Verbal morphosyntax and three-participant events in Sudest, an Oceanic language of Papua New Guinea

Harriet Elisabeth Margaret Sheppard Bachelor of Arts (Hons)

Copyright notice

© Harriet Sheppard (2020).

I certify that I have made all reasonable efforts to secure copyright permissions for third-party content included in this thesis and have not knowingly added copyright content to my work without the owner's permission.

Abstract

This thesis presents a description of Sudest verbal morphosyntax, with a focus on the expression of three-participant events. Sudest is an Oceanic language belonging to the Papuan Tip cluster. It is spoken by approximately 3,800 people on the islands of Vanatina and Yeina in Milne Bay Province, Papua New Guinea. It is one of the more conservative Papuan Tip languages, preserving the ProtoOceanic SVO constituent order, rather than the innovative SOV order shared by the majority of other Papuan Tip languages. Sudest is predominantly head-marking, and shows nominativeaccusative alignment. The description and analysis presented in this thesis is based on several months of fieldwork on Vanatina Island and draws predominantly on the analysis of text data.

The thesis is presented in three parts. Chapters 1 to 3 present an introduction to the core topics of the thesis. Chapter 1 introduces the language and its speakers and discusses the data on which the description and analysis are based. Chapter 2 presents a review of literature related to threeparticipant events (3PEs) and introduces the framework used to investigate such events in the current work. Chapter 3 is a grammatical sketch that introduces areas of the grammar most relevant to the study of verbal morphosyntax and 3PEs.

The second part of the thesis provides a detailed description of verbal morphosyntax: an area where Sudest, like many Oceanic languages, displays great complexity. Chapter 4 analyses the verb complex, which includes nearly two dozen pre- and postverbal slots. Preverbal morphemes include three associated motion prefixes that indicate prior, concurrent, and subsequent motion, a phenomenon which is not commonly described for Oceanic languages. Chapter 5 is concerned with two 'classificatory' paradigms found in the Sudest verb complex: manner-of-causation prefixes and classificatory verbs. The manner-of-caustion prefixes specify the manner in which an action is carried out (e.g. 'by hand', 'by spearing'). Such morphemes are a widespread feature among the Papuan Tip languages, and are sometimes known as 'classificatory' prefixes in the literature. The second type of morphemes are a set of classificatory verbs meaning 'get', which are selected based on properties of the O argument referent (e.g. consistency, composition, and number). Classificatory verbs of this type are, to date, not attested in any other Oceanic languages; they appear to be unique to Sudest. Chapter 6 analyses multi-verb constructions, many of which can be analysed as nuclear-layer serialisation. There are a variety of types, including directional, causeeffect, sequential, adverbial, and aspectual constructions. The classificatory 'get' verbs also play a prominent role in multi-verb constructions, particularly ones that encode handling and causedmotion events.

The third part of the thesis investigates in detail the expression of 3PEs, which, following Margetts \& Austin (2007: 397), are defined as 'dynamic states of affairs that crucially involve three entities in their conceptualization'. The investigation of 3PEs in chapter 7 takes the semantic event types as

a starting point and examines which means are used - morphological, syntactic, and/or pragmatic - to encode a third event participant in the Sudest data. Chapter 8 reviews these findings and considers the frequency of the different strategies in the corpus data. Additionally, it investigates possible correlations between the semantic event types and their formal encoding by different strategies. Chapter 8 also compares the Sudest expressions of 3PEs to cross-linguistic tendencies and considers issues with the 3PE framework on the basis of the Sudest findings.

Declaration

This thesis is an original work of my research and contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Signature:

Print Name: Harriet Sheppard

Date: 28-07-2020

Acknowledgements

This research was supported by an Australian Postgraduate Award (APA) Scholarship and a scholarship from the Documentation of Endangered Languages Program (DoBeS) of the Volkswagen Foundation. DoBeS funding came specifically from the projects Cross-linguistic patterns in the encoding of three-participant events (2013-2017) and Cross-linguistic patterns in the encoding of three-participant events - investigating BRING and TAKE (2017-2020).

This thesis would not have been possible without the participation, assistance and support of so many people. First, I would like to express my profound appreciation and gratitude to the people of Vanatina. Special thanks must go to Jaclyn Sam and Sylvester Kieran, who took me into their beautiful home and fed and looked after me during my time on the island. Thanks also to the extended family of Kieran and Meira Kebari in Uyeuye for making me so welcome. My heartfelt thanks go to my first Sudest teacher, the late Abel Sam, who answered my endless questions about the language with infinite patience, worked with me to transcribe and translate texts during my first two fieldtrips. I would also like to thank Noelyne Livinai, Colette Stevens, and Virgil Kevin for their own invaluable contributions, including all their work transcribing and translating the corpus, and their willingness to take part in recordings and elicitation sessions. While too numerous to list individually here, I am grateful to everyone who supported the project by contributing recordings, taking an interest in my work, or by welcomed me into their homes. Ago laghilaghìye moli wengga! Awararingangga laghiye moli weingguyanggi ghemi na rakaiwo na regha na aravu Vanatinake ghalighalinganiye gha gugu.

I am also grateful to Fr Tony Young who, after suggesting Vanatina as a potential field site to my supervisor, both facilitated my travels during my first field trip and provided me with an introduction to the communities at Uyeuye and Vuwo. Georgia Kaipu at the Papua New Guinea National Research Institute was a great help during the planning stages of my fieldwork. I would also like to acknowledge the work of Michael and Thera Anderson. Their writing on Sudest was my first introduction to the language.

Words fall short, but I'm indebted to my supervisors, Anna Margetts and Simon Musgrave, for their expertise, guidance, support, encouragement and for the infinite reserves of patience afforded to me throughout this journey. I am grateful to Alice Gaby and Howie Manns for providing feedback for sections of the thesis. I also benefitted from discussions with and feedback from other members of the 3PE research project: Katherina Haude, Nikolaus Himmelmann, Dagmar Jung, Frank Seifart, Sonja Riesberg, Stefan Schnell, and Claudia Wegener. Andrew Margetts' technical support is also very appreciated. Thanks to my fellow PhDs and colleagues, both past and present. A special thanks to Lee Murray who, in addition to making sure I never ran out of delicious baked goods, never failed to provide a fresh perspective on a range of topics. She also commented on previous drafts
of the thesis and proofread much of the final manuscript. I would also like to acknowledge the two examiners whose insightful and thoughtful feedback led to minor amendments in the final submitted thesis.

I am very grateful to my family and friends for the years of love and support, and for their understanding in times when I was absent! I would like to thank my parents, Barbara and Michael Sheppard, who encouraged (and financed) my very first linguistic endeavours as a teenager; my siblings, Alice, Maddy, and Sam; my grandmother, Margaret Corke; my aunt Diana Corke; and my late grandparents, Tony Corke, and Alison and Ron Sheppard. Thanks also to my Austrian 'sister', Veronika Platz. Thanks to Zola Lawry, Freya Martin, Camille Williams, Allie Thom, Elly Gandy, and Lee Murray. Finally, I would like to thank David Crotty and Gudrun Sheppard, without whom I likely wouldn't have finished this thesis. Thanks to David for your unwavering support, for helping proofread the final drafts, and for making such beautiful maps.

I would like to acknowledge that the majority of this thesis was written while I was living and working on the traditional lands of the Kulin Nations and the Wadawurrung People. I pay my respects to their Elders, past, present, and emerging.

Table of Contents

LIST OF ILLUSTRATIONS XVI
ABBREVIATIONS XX
1 INTRODUCTION 1
1.1 Introduction and aims of thesis1
1.2 Sociolinguistic situation 3
1.3 Geographic, social, and cultural background 5
1.3.1 Natural environment 5
1.3.2 Prehistory, early contact and settlement patterns 6
1.3.3 Economy, trade and ceremonial exchange 8
1.3.4 Kinship 9
1.3.5 Belief systems 10
1.4 The Sudest language 11
1.4.1 Linguistic classification and typological profile 11
1.4.2 Language maintenance, education, and literacy 13
1.4.3 Previous linguistic research 15
1.5 Data collection, methodology, and the corpus 16
1.5.1 Field site, consultants, and field work 16
1.5.2 Workflow and software 18
1.5.3 Archiving, citation, transparency and reusability 19
1.5.4 Basic linguistic theory 19
1.5.5 The corpus 20
1.5.5.1 Participants 20
1.5.5.2 Texts 21
1.6 Structure of the thesis 24
2 LITERATURE AND METHODOLOGY 26
2.1 Introduction 26
2.2 Previous research on three-participant events 27
2.3 The semantics of three-participant events: target events 30
2.4 The morphosyntax of three-participant events: encoding strategies 33
2.4.1 Three-place predicate strategy 35
2.4.2 Oblique and adjunct strategies 37
2.4.3 Serial verb strategy 38
2.4.4 Adnominal strategy 41
2.4.5 Directional strategy 42
2.4.6 Absorption Strategy 44
2.5 Corpus annotation of 3PEs 47
3 GRAMMATICAL SKETCH 49
3.1 Introduction 49
3.2 Phonology and orthography 49
3.3 Word classes 53
3.3.1 Noun-verb distinction and lexical flexibility 53
3.3.2 Verbs 54
3.3.2.1 Intransitive verbs 55
3.3.2.2 Transitive verbs 57
3.3.2.3 Reduplication 58
3.3.2.3.1 Formal realisation 58
3.3.2.3.2 Function 60
3.3.3 Nouns 63
3.3.3.1 Nominalisation 63
3.3.3.1.1 Reduplication 63
3.3.3.1.2 $R a$ - agentive 64
3.3.3.1.3 Ghe-instrumental 65
3.3.3.1.4 Compound place nouns with ghamba 'place' 65
3.3.4 Pronouns 66
3.3.5 Demonstratives 67
3.3.5.1 Pronominal and adnominal demonstratives with iya and thiya 71
3.3.5.2 Locative adverbials with ghe 73
3.3.6 Adpositions 73
3.3.6.1 e general locative preposition 'to, from, with' 74
3.3.6.2 we recipient 'to' and source 'from' 75
3.3.6.3 kaiwa benefactive and purposive 'for' 77
3.3.6.4 wei- accompaniment 'with' 78
3.3.7 Tense, aspect, mood particles 79
3.3.7.1 Me immediate past 80
3.3.7.2 Va remote past 83
3.3.7.3 Ne future 84
3.3.7.4 Kero and $m a$ 'already' 85
3.3.7.5 Mbe 'still' 86
3.3.7.6 Mbala obligation 87
3.3.7.7 Mbwata and nunggo 'perhaps' 87
3.3.8 Interrogatives 88
3.4 The noun phrase 90
3.4.1 Number marking 90
3.4.1.1 Irregular and suppletive plurals 91
3.4.1.2 Reduplicated plurals 92
3.4.1.3 Kin term plurals with $o=$ 93
3.4.1.4 Plurals with =nggi 94
3.4.2 Determiners 95
3.4.3 Modifiers 97
3.4.3.1 Adjectives 97
3.4.3.2 Quantifiers 99
3.4.3.3 Numerals 99
3.4.3.3.1 Numeral classifiers 100
3.4.3.3.2 Cardinal numbers 102
3.4.3.3.3 Ordinal numerals 105
3.4.4 Possession 105
3.4.4.1 Direct possession 106
3.4.4.2 Indirect possession 107
3.4.5 Relative clauses 110
3.5 Clauses 111
3.5.1 Verbal clauses 111
3.5.2 Non-verbal clauses 112
3.5.2.1 Identity and attribution clauses 113
3.5.2.2 Location clauses 114
3.5.2.3 Possession clauses 'have' 115
3.5.2.4 Possibility and ability clauses 116
3.5.2.5 Need and desire clauses 117
3.6 Clause Combinations 118
3.6.1 Coordination 118
3.6.2 Complement clauses 120
3.6.3 Adverbial clauses 122
3.6.3.1 Time clauses with mbanga 'time' 122
3.6.3.2 Reason and result clauses with kaiwa 'reason' 123
3.6.3.3 Conditional clauses with thonggo and posi 'if' 124
3.7 Negation 124
3.7.1 Prohibitions 124
3.7.2 Denial 125
3.7.2.1 Verbal predicate negation 126
3.7.2.2 Non-verbal predicate negation 129
3.7.2.3 Negative verbs 130
4 THE VERB COMPLEX 132
4.1 Introduction 132
4.2 Bound subject and object pronouns. 134
4.2.1 Subject indexes 136
4.2.1.1 Basic subject indexes 136
4.2.1.2 Immediate past subject indexes 137
4.2.1.3 Intentional subject indexes 138
4.2.2 Object Indexes 140
4.3 Preverbal elements 142
4.3.1 Imperatives 143
4.3.1.1 ko= imperative 143
4.3.1.2 no=admonitive. 144
4.3.1.3 $\quad w o=$ hortative 145
4.3.2 $n d e=$ dehortative 146
4.3.3 Universal quantifiers $y a$ - and raka- 'all' 148
4.3.4 Associated motion prefixes 149
4.3.4.1 la- 'and go' 150
4.3.4.2 ruku- 'go and' 152
4.3.5 Posture and motion prefixes 153
4.3.5.1 yo- 'while going' 153
4.3.5.2 ro- 'sit and, stay and' 154
4.3.5.3 nde- 'stand and' 156
4.3.5.4 di- 'fall and' 158
4.3.6 thu- 'unintentionality' and i - 'intentionality' 159
4.3.7 ve-reciprocal. 161
4.3.8 Valence changing and rearranging prefixes 162
4.3.8.1 $m a$ - and rara-detransitivisers 162
4.3.8.2 $v a$-causativiser 164
4.3.8.2.1 Causative $v a$ - with the transitive $=n g a$ 167
4.4 Postverbal elements 170
4.4.1 Valence changing and rearranging enclitics 171
4.4.1.1 $=n g a$ transitiviser 171
4.4.1.2 =wana applicative 174
4.4.2 =ma 'hither' and =wo 'thither' 175
4.4.3 =ya 'YA' 177
4.4.4 Demonstratives 179
4.4.5 moli intensifier 181
4.4.6 mun 'a bit' 182
4.4.7 =va repetition 183
4.4.8 =engge 'just' 184
4.4.9 vara 'truly' 185
5 ‘CLASSIFICATORY’ ELEMENTS IN THE VERB COMPLEX 187
5.1 Introduction 187
5.2 Manner-of-causation prefixes 189
5.2.1 mwana-, ghe- and nji- 'with hands' 193
5.2.2 vi- 'with fingers' 196
5.2.3 thu- 'by pointing' 197
5.2.4 vuri- 'with feet' 197
5.2.5 ghala- 'by body weight' 198
5.2.6 ri- 'with teeth' 199
5.2.7 go- 'by speaking' 200
5.2.8 riri- and taga- 'by striking' 200
5.2.9 vo- 'by spearing' 203
5.2.10 go- and ki- 'by cutting' 204
5.2.11 sowo- 'by sawing' 207
5.2.12 Pseudo-manner-of-causation stem thuwo- 'grip (with tongs)' 208
5.2.13 Unattested manner-of-causation prefixes and manner-specifying verbs 209
5.3 Classificatory verbs 211
5.3.1 Verbal classifiers 211
5.3.2 Sudest classificatory verbs 214
5.3.2.1 wo and mban rigid entity classificatory verbs 216
5.3.2.2 li and langa flexible entity classificatory verbs 219
5.3.2.3 thin and bigi container-and-contents classificatory verbs 222
5.3.2.4 thagha tool with handle classificatory verb 224
5.3.2.5 yambi vessel classificatory verb 224
5.3.2.6 yengge fire classificatory verb 225
5.3.2.7 tako plural general classificatory verb 225
5.3.3 Hold 226
5.3.4 Reclassification and unexpected classificatory verb use 228
5.3.5 Classificatory verbs and manner-of-carrying 232
5.3.5.1 Stimuli responses with buku 'book' 237
5.3.6 Regional context, origins and grammaticalisation of the classificatory verbs 239
6 MULTI-VERB CONSTRUCTIONS 243
6.1 Introduction 243
6.2 Independently inflected verbs 245
6.2.1 Sequencing constructions with ko 'finish' 246
6.2.2 Directional constructions 247
6.3 Complex verbs 248
6.3.1 Directional constructions 250
6.3.1.1 Transitive directional verbs 250
6.3.1.1.1 Ghembe 'go to(wards)' 251
6.3.1.1.2 Mbele 'follow' 252
6.3.1.1.3 Njolanga 'go over' 253
6.3.1.2 Intransitive directional verbs 254
6.3.1.2.1 Ru 'go in' and ranggi 'go out' 256
6.3.1.2.2 $N j a$ 'go down' and voro 'go up' 260
6.3.1.2.3 Mena 'come' and vutha 'arrive' 265
6.3.1.2.4 Njogha 'go back' 266
6.3.1.2.5 Mwandí 'go straight' 268
6.3.1.2.6 Viva/vuva 'go first' 268
6.3.1.2.7 Njaniya 'go down (from)' 269
6.3.1.2.8 Virt 'move up (from)' 270
6.3.1.2.9 Ri 'go (from)' 271
6.3.1.2.10 Nggalai and goraun 'go around' 271
6.3.1.2.11 Valawe 'go across' 272
6.3.1.2.12 Yere 'go past' 273
6.3.2 Handling constructions with classificatory verbs 273
6.3.3 PUT constructions 280
6.3.4 Cause-effect constructions 284
6.3.5 Benefactive constructions 287
6.3.6 Simultaneous and sequential constructions 289
6.3.7 Synonymous constructions 290
6.3.8 Adverbial constructions 291
6.3.8.1 Wogiyawe 'properly' 292
6.3.8.2 Vakatha 'carefully' 294
6.3.8.3 Roro 'in vain' 294
6.3.8.4 Thavwi 'accidentally' 295
6.3.8.5 Kubaro 'quietly' 296
6.3.8.6 thuwole 'secretly' 297
6.3.8.7 Thuwowa 'deeply' 297
6.3.9 Aspectual constructions 297
6.3.9.1 Kai 'inceptive' 298
6.3.9.2 Vao 'completive' 299
6.3.9.3 Vun 'be finishing' 302
6.3.10 Nested complex verb constructions 303
6.3.10.1 Directional nested constructions 304
6.3.10.2 Handling nested constructions 306
6.3.10.3 PUT nested constructions 306
6.3.10.4 Aspectual nested constructions 307
7 ENCODING STRATEGIES OF THREE-PARTICIPANT EVENTS 308
7.1 Introduction 308
7.2 Three-place predicate strategy 310
7.3 Adjunct strategy 312
7.3.1 R-type adjunct substrategy 313
7.3.1.1 Underived R-type adjunct 313
7.3.1.2 Derived R-type adjunct 317
7.3.1.3 R-type adjunct with classificatory verbs 318
7.3.2 T-type adjunct substrategy 321
7.4 Serial verb strategy 323
7.4.1 Serial verbs with PUT 324
7.4.2 Serial verbs with classificatory verbs 328
7.4.3 Serial verbs with 'give' 330
7.4.4 Cause-effect and sequential serial verbs 333
7.5 Adnominal possessive strategy 334
7.6 Directional strategy 336
7.6.1 Adverbial directionals 337
7.6.2 Directional verbs 338
7.6.2.1 Combination adverbial and directional verb strategies 340
7.6.3 Associated motion prefixes 341
7.7 Absorption strategy 343
7.7.1 Direct lexicalisation strategy 343
7.7.2 Affix-based classification strategy 345
7.8 Combination encoding strategies 348
7.8.1 Adjunct and directional strategies 348
7.8.1.1 Adjunct and directional verb 348
7.8.1.2 Adjunct and directional associated motion prefix 354
7.8.2 Adjunct and absorption strategies 355
7.8.3 Serial verb and directional strategies 357
7.8.3.1 Serial verb and directional verb 357
7.8.4 Serial verb, adnominal possessive, and directional verb strategies 358
7.8.4.1 Serial verb and directional adverbial 358
7.8.5 Adnominal possessive, directional verb, and absorption strategies 359
7.9 More than three participants: additional instrument 360
7.9.1 Adjunct strategy with absorbed instrument 360
7.9.1.1 Adjunct strategy with absorbed instrument 360
7.9.1.2 Causative adjunct with absorbed instrument 362
7.9.2 Adjunct and directional strategies with absorbed instrument 363
7.9.2.1 Adjunct and directional verb with absorbed instrument 363
7.9.2.2 Adjunct and associated motion prefix with absorbed instrument 364
7.9.3 Serial verb strategy with absorbed instrument 365
7.9.4 Adnominal possessive strategy with absorbed instrument 365
7.9.5 Directional strategy with absorbed instrument 365
7.9.5.1 Directional adverbial strategy with absorbed instrument 366
7.9.5.2 Directional verb with absorbed instrument 366
7.10 More than three participants: adding a further R-type participant 367
8 OVERVIEW AND DISCUSSION 369
8.1 Introduction 369
8.2 Inventory of 3PE constructions in Sudest 369
8.3 Frequencies of three-participant events 376
8.4 Correlations between event type and encoding strategy 380
8.5 Comparison with previous 3PE research 382
8.6 Issues with the current framework. 384
8.7 Conclusions and future research 386
APPENDIX A: TABLE OF TEXTS 389
APPENDIX B: SAMPLE SUDEST TEXTS 392
REFERENCES 399

List of illustrations

List of maps
Map 1 Milne Bay Province, Papua New Guinea XXIII
Map 2 Louisiade Archipelago, Papua New Guinea XXIV
Map 3 Vanatina and Yeina, Papua New Guinea XXV
Map 1.1 Papuan Tip-speaking region 11
List of figures
Figure 2.1 Ditransitive alignment types (adapted from Van Lier 2012: 5) 29
Figure 3.1 Maximal lexical noun phrase 90
Figure 4.1 The verb complex 133
Figure 4.2 Preverbal slots of the verb complex 142
Figure 4.3 Postverbal slots of the verb complex 171
List of tables
Table 1.1 Speakers in the corpus 21
Table 1.2 The Sudest corpus 22
Table 2.1 Types of three-participant events (Margetts et al. 2019a) 31
Table 2.2 Encoding strategies of three-participant events (Margetts et al. 2019b) 33
Table 3.1 Sudest consonants (based on Anderson and Ross 2002: 322) 50
Table 3.2 Sudest vowels 50
Table 3.3 Pronouns 67
Table 3.4 demonstrative enclitics 68
Table 3.5 TAM particles 80
Table 3.6 Question words 88
Table 3.7 Quantifiers 99
Table 3.8 Quality numeral classifiers, * indicates classifiers attested in the corpus or elicitation data, ^ indicates classifiers reported in Anderson and Anderson (1991: A1-4) 102
Table 3.9 Repeater numeral classifiers, * indicates classifiers attested in the corpus or elicitation data, ^ indicates classifiers reported in Anderson and Anderson (1991: A4-5) 102
Table 3.10 Possessive pronominal suffixes 105
Table 3.11 The possessive classifier gha 'classifier 1' 108
Table 3.12 The possessive classifier le 'classifier 2' 109
Table 4.1 Basic subject indexes 136
Table 4.2 Immediate past subject indexes 137
Table 4.3 Intentional subject indexes 138
Table 4.4 Object indexes 140
Table 4.5 Verb stems attested with the universal quantifiers 149
Table 4.6 Valence changing and rearranging prefixes 162
Table 4.7 Verbs attested with the causative prefix va-. *derived causative obligatorily occurs in a complex verb with a CLFV, ^derived causative obligatorily occurs with a manner-of-causation prefix/(un)intentional prefix. 164
Table 4.8 Verbs attested with the causative prefix va- and the transitive enclitic=nga 168
Table 4.9 Verbal derivations: enclitics 171
Table 4.10 Verbs attested with the transitivising enclitic =nga. Derived transitive obligatorily occurs in multi-stem verb with a CLFV, ^derived causative obligatorily occurs with a manner-of-causation prefix 172
Table 4.11 Verbs attested with the applicative enclitic =wana 174
Table 5.1 Manner-of-causation prefixes (*indicates prefixes attested by M. Anderson and Ross (2002), ^ prefixes attested by Ezard (1978)) 191
Table 5.2 Sudest classificatory verbs 215
Table 5.3 PUT stimuli task responses 238
Table 6.1 Transitive directional stems in directional complex verbs. 250
Table 6.2 Directional complex verbs with ghembe 'go to(wards)' 251
Table 6.3 Directional complex verbs with mbele 'follow' 252
Table 6.4 Directional complex verbs with njolanga 'go over' 253
Table 6.5 Intransitive directional verbs in directional complex verbs 254
Table 6.6 Directional complex verbs with ranggi 'go out' and ru 'go in' 256
Table 6.7 Directional complex verbs with ranggi 'go out' and ru 'go in' 257
Table 6.8 Directional complex verbs with nja 'go down' voro 'go up' and intransitive V_{1} 260
Table 6.9 Directional complex verbs with nja 'go down' voro 'go up' and transitive V_{2} 262
Table 6.10 Directional complex verbs with transitivised nja 'go down' voro 'go up' and transitive V_{1} 263
Table 6.11 Directional complex verbs with mena 'come' and vutha 'arrive' 265
Table 6.12 Directional complex verbs with njogha 'go back' 267
Table 6.13 Directional complex verbs with viva/vuva 'go first' 268
Table 6.14 Directional complex verbs with viri 'move up (from)' 270
Table 6.15 Directional complex verbs with nggalai and goraun 'go around' 272
Table 6.16 Directional complex verbs with valawe 'go across' 272
Table 6.17 Handling constructions with underived transitive V_{2} 275
Table 6.18 Handling constructions with causativised V_{2} 278
Table 6.19 Handling and transfer constructions with GET and intransitive V_{2} 279
Table 6.20 PUT complex verbs. 280
Table 6.21 'Partial completion' complex verbs with ra 'put' 283
Table 6.22 Cause-effect complex verbs 284
Table 6.23 Benefactive complex verbs 287
Table 6.24 Simultaneous complex verbs 289
Table 6.25 Sequential complex verbs 290
Table 6.26 Synonymous complex verbs 290
Table 6.27 Adverbial V_{2} stems 292
Table 6.28 Adverbial constructions with wogiyawe 'properly' 292
Table 6.29 Adverbial constructions with vakatha 'properly' 294
Table 6.30 Adverbial complex verbs with roro 'in vain' 294
Table 6.31 Adverbial complex verbs with thavwi 'accidentally' 295
Table 6.32 Adverbial complex verbs with kubaro 'quietly'. 296
Table 6.33 Aspectual complex verbs with kai 'inceptive' 298
Table 6.34 Intransitive aspectual complex verbs with vao 'completive' 300
Table 6.35 Monotransitive aspectual complex verbs with vao 'completive' 301
Table 6.36 Aspectual complex verbs with vun 'be finishing' 303
Table 6.37 Directional complex verbs with nested complex verbs of handling and putting. 305
Table 7.1 Three-participant event encoding strategies in Sudest (adapted from Margetts et al. 2019b) 308
Table 7.2 Verbs in three-place predicate constructions 311
Table 7.3 Verbs in underived R-type adjunct constructions 314
Table 7.4 Verbs in derived R-type adjunct constructions 317
Table 7.5 Verbs in R-type adjunct constructions with optional CLFV 318
Table 7.6 Verbs in T-type adjunct constructions (type A events) 321
Table 7.7 Verbs in T-type adjunct constructions (type G and Hevents) 322
Table 7.8 PUT serial verb constructions with CLFV V_{2} 324
Table 7.9 PUT serial verb constructions with CLFV V_{1} and unexpressed R 325
Table 7.10 PUT serial verb constructions with lexical V_{1} 326
Table 7.11 Serial verb constructions with CLFV V2 328
Table 7.12 Serial verb constructions with 'give' 331
Table 7.13 Cause-effect and sequential serial verb constructions 334
Table 7.14 Verbs in possessive constructions 335
Table 7.15 Verbs in adverbial constructions. 337
Table 7.16 Verbs in directional verb constructions 338
Table 7.17 Combination adverbial and directional verb constructions 340
Table 7.18 Verbs in associated motion constructions 341
Table 7.19 Verbs in direct lexicalisation constructions 344
Table 7.20 Verbs in affix-based classification constructions 345
Table 7.21 Verbs in combination adjunct and directional-verb constructions 349
Table 7.22 Verbs in combination adjunct and associated motion prefix constructions 354
Table 7.23 Verbs in combination adjunct and affix-based classification constructions 356
Table 7.24 Verbs in combination serial verb and directional-verb constructions 357
Table 7.25 Verbs in combination adjunct, possessive, and directional verb constructions 358
Table 7.26 Verbs in combination serial verb and adverbial constructions 359
Table 7.27 Verbs in combination possessive, directional verb, and affix-based classification constructions 359
Table 7.28 Verbs in adjunct constructions with an absorbed instrument 360
Table 7.29 Adjunct constructions with causativising manner-of-causation prefixes 362
Table 7.30 Verbs in combination adjunct and directional verb constructions with an absorbed instrument 363
Table 7.31 Verbs in combination adjunct and associated motion prefix constructions with an absorbed instrument 364
Table 7.32 Verbs in serial verb constructions with an absorbed instrument 365
Table 7.33 Verbs in possessive constructions with an absorbed instrument. 365
Table 7.34 Verbs in adverbial constructions with an absorbed instrument 366
Table 7.35 Verbs with directional-verb constructions with an absorbed instrument 366
Table 7.36 Constructions expressing more than one event 367
Table 8.1 Inventory of distinct 3PE construction types by encoding strategy in corpus and elicitation (single and combination strategies, and constructions with a fourth participant) 372
Table 8.2 Inventory of 3PE construction types by encoding strategy in text subcorpus (single and combination strategies, and constructions with a fourth participant) 374
Table 8.3 Inventory of distinct 3PE construction types by encoding strategy (\%=<100) 376
Table 8.4 Token frequency in text subcorpus (single and combination strategies, and constructions with a fourth participant) 378
Table 8.5 Strategy frequency in tokens in text subcorpus (\%=<100) 379
Table 8.6 Events of impact and their encoding strategies (combined corpus) 380

Abbreviations

In main text and tables

A\&A	Anderson and Anderson (1991)
A\&R	Anderson and Ross (2002)
M\&A	Margetts and Austin (2007)
3PE	three-participant event
CLFV	classificatory verb
MC	Main clause
NP	Noun phrase
POc	Proto-Oceanic
PP	Prepositional/postpositional phrase
SAP	Speech-act participant
s.b.	somebody
s.o.	someone
s.th.	something
s.wh.	somewhere
VC	verb complex
w.	with
WOc	Western Oceanic

In interlinearised examples

-	morpheme boundary
$*$	ungrammatical form
-	morpheme break shown in English but not Sudest
$?$	marginal/uncertain form (when appearing before an example)
$=$	clitic boundary
1	first person
2	second person
3	third person
ACT	active voice
ADDR	addressee
ADJ	adjective
ADM	admonitive
AG	agentive
AM	associated motion
ANA	anaphoric
AND	andative
APPL	applicative
ART	article
BEN	benefactive
BOAT	vessel classificatory verb

CAUS	causative
CLF	classifier
CNJ	conjunction
CNTR	container-and-contents classificatory verb
COMP	complementizer
COMPL	completive
DAT	dative
DEHORT	dehortative
DEM	demonstrative
DET	determiner
DETR	detransitiviser
DIST	distal
DITR	ditransitive
DU	dual
EMPH	emphatic
ERG	ergative
EXCL	exclusive
EXCLAM	exclamation
F	feminine
FIRE	fire classificatory verb
FLEX	flexible entity classificatory verb
FOC	focus
FUT	future
GEN	general
GET	classificatory verb
GNRL	general classificatory verb
HAB	habitual
HORT	hortative
HYP	hypothetical
IMM	immediate
IMP	imperative
INCL	inclusive
INJ	interjection
INS	instrumental
INT	intentional
INTS	intensifier
INTEN	intentionally
INTR	intransitive
INTRJ	interjection
IRR	irrealis
IU	intonation unit
LOC	locative
NEC	necessitive
NEG	negation, negative
NH	non-human
NUM	numeral

OBJ	object
OBL	obligation
PERF	past perfect
PERS	personal
PFV	perfective
PL	plural
POSS	possessive
POT	potential
PP	prepositional/postpositional phrase
PREP	preposition
PRF	perfective
PROG	progressive
PROH	prohibitive
PROX	proximate/proximal
PST	past
PURP	purpose
Q	question particle/marker
R	realis
PUT	verb stems 'put'
RECP	reciprocal
RED	reduplication
REM	transitive
REMOTE	remote
REP	remoteness
REV	repetitive
RIGD	reversive
RL	rigid entity classificatory verb
SG	realis
SMINTENT	singular
TEN	subject marker
SP	specificity
SPKR	subject
SUBJ	tense aspect mood
TAM	the

Map 1 Milne Bay Province, Papua New Guinea

Map 2 Louisiade Archipelago, Papua New Guinea

Map 3 Vanatina and Yeina, Papua New Guinea

1 Introduction

1.1 Introduction and aims of thesis

The Sudest language is spoken in the southeast of Milne Bay Province, Papua New Guinea (PNG) on the islands of Vanatina and Yeina in the Louisiade Archipelago (see Map 1 to Map 3). The language, like the majority of the nearly 60^{1} languages spoken in the province, is an Oceanic language belonging to the Papuan Tip cluster, a first level subgroup of Western Oceanic (Lynch et al. 2002; Ross et al. 2016). Sudest has approximately 3,800 speakers (National Statistical Office of Papua New Guinea, 2014). ${ }^{2}$

The name 'Sudest' (or Sud-Est) was assigned to the island of Vanatina by the French explorer de Bougainville in 1768 (Macgillivray 1852) and subsequently used in the linguistic literature to designate the main language spoken on the island (e.g. Armstrong 1922; Ray 1937; Ross 1988; M. Anderson \& Ross 2002; Ross et al. 2016). The island is also sometimes referred to as 'Tagula', the name for the island in Misima, the language of Misima Island located some 80 kilometres to the north of Vanatina. ${ }^{3}$ In the Sudest language, the island is called Vanatina from vana 'land' and tina(e) 'his/her mother' meaning 'motherland'. ${ }^{4}$ Inhabitants of the island refer to themselves as Vanatina une, literally 'fruits of the motherland', and the language as vanga Vanatina 'language of the motherland'. In the last 40 years, the autodenomination Vanatinai has increasingly been used by the wider world to refer to the island. ${ }^{5}$ Throughout the current work, I call the island Vanatina but I refer to the language as Sudest. Admittedly, this is an inelegant situation, but, given that it was not possible to have a wide consultation process with speakers from across the two islands regarding nomenclature, I continue to use the name already established in the linguistic literature. Naming

[^0]practices may change at such a time as when wider consultation with communities around the islands is possible (cf. Nafsan (Thieberger 2014) and Vatlongos (Ridge 2018)).

This thesis is a description of the morphosyntax of verbal clauses in Sudest, with particular focus on the expression of three-participant events (3PEs) and the ways they are encoded in the language. The study is the most detailed description of the language to date or, indeed, of any of the Oceanic languages spoken in the Louisiade Archipelago. Within the Papuan Tip languages, Sudest and the other VO languages of eastern Milne Bay Province are of particular interest to typological and historical linguistics, given their relative conservatism in regards to the morphosyntactic innovations undergone by the majority of Papuan Tip languages.

The thesis focusses on the area of verbal morphosyntax for two reasons. First, it is frequently one of the areas of greatest complexity in Oceanic languages (Lynch et al. 2002: 45). Second, a detailed knowledge of verbal morphosyntax is needed in order to investigate the encoding of 3PEs. For Sudest, it is certainly true that the verb complex is the locus of most of the language's morphosyntactic complexity; much of the verb complex is highly agglutinative, with just over 20 possible pre- and postverbal slots. Some aspects of the Sudest verb complex are relatively typical of Oceanic languages and some are characteristic of the Papuan Tip cluster, while others are uncommon and may be specific to Sudest.

The second and related focus of the thesis is an investigation of 3PEs in Sudest. Three-participant events, as the name suggests, are events that 'crucially involve three entities in their conceptualization' (Margetts and Austin 2007: 397). Importantly, Margetts and Austin's (2007) definition is a semantic one; the number of arguments present in clauses encoding 3PEs do not necessarily reflect the number of participants that are expressed by it. Three-participant events include not just events of transfer from one human participant to another (e.g. give s.o. s.th., teach s.o. s.th), but also events of inverse transfer (e.g. get s.th. from s.o., steal s.th. from s.o.), events of spatial transfer to and from a location (e.g. put s.th. s.wh., get s.th. from s.wh.), and verbs of physical input by (non-)body part instruments (e.g. hit s.o./s.th. with s.th., cut s.o./s.th. with s.th., kick s.o./s.th, punch s.o./s.th.) among others (Margetts \& Austin 2007). Three-participant events are encoded in a diverse variety of ways both cross-linguistically and within single languages (see, e.g., Narasimhan, Eisenbeiß, and Brown 2007; van Lier 2012). This suggests that 3PEs may pose a challenge to human cognition and linguistic abilities. At the same time, however, they have been argued to be central event types that have played an intrinsic role in the emergence of human societies (e.g. giving events, events of impact involving tools) (Margetts \& Austin 2007). Despite such intra- and extra-linguistic considerations, until the turn of the century, much of the research into 3PEs has focussed only on verbs that take three syntactic arguments and the so-called 'dative' alternation (e.g. I sent Sam a present vs. I sent a present to Sam) (see, e.g., Mukherjee 2005: 3-63
for a review of ditransitive research for English) and/or giving verbs which are often divergent from the expression of other 3PEs (e.g. Haspelmath 2001; Newman 1996, 1997). The current thesis forms part of a larger project funded by the Documentation of Endangered Program of the Volkswagen Foundation investigating the expression of 3PEs in a number of languages spoken around the Pacific Rim, which includes a number of Austronesian and Papuan languages as well as languages from both North and South America. ${ }^{6}$ To explore the expression of 3PEs in Sudest, the current study takes as a starting point the 12 semantic types of 3PEs distinguished by Margetts and Austin (2007) and the morphosyntactic encoding strategies they identify. The analysis looks at 1) the range of encoding strategies used to express 3PEs in Sudest, 2) the relative frequencies of each of the strategies in the Sudest corpus, and 3) if there are any correlations between semantic event types and encoding strategies. By applying the framework set out by Margetts and Austin (2007), the Sudest corpus may be more easily compared with other languages and used for further comparative investigation into various topics concerning 3PEs, such as cross-linguistic patterns and relative frequencies of the encoding strategies constructions.

The remainder of this chapter is structured as follows. Section 1.2 presents information about the sociolinguistic situation. Information about the geographic, social, and cultural background is discussed in $\S 1.3$. Section 1.4 outlines the linguistic classification of Sudest and language maintenance and literacy rates, and then reviews previous linguistic research on the language. Section 1.5 summarises information related to data collection, methodology, and the Sudest corpus. Finally, $\S 1.6$ discusses the structure of the thesis.

1.2 Sociolinguistic situation

The Sudest language (ISO 639-3: tgo) consists of a series of dialects that runs the length of the island of Vanatina, from the northeast to the southwest tip of the island, and form a mutually intelligible dialect continuum (see §1.3.2 for discussion of settlement patterns and how they relate to the current dialect situation). Lepowsky (1993: 49, fn. 24) distinguishes four major dialect areas, while Eberhard et al. (2020) distinguish five. Moving from the western end of the island to the eastern tip, Lepowsky (1991: 49, fn. 24) outlines the following dialect group areas: the first is spoken along the southwest coast up to and including the region around Jelewaga and on the northwest coast from Embambalia up to Nainhill. The second dialect group is spoken in the area surrounding the Veora River; this includes Madawa on the south coast and Taranggiya on the north coast. The third dialect group includes the area surrounding Pamela and Pantava on the south coast and the north central coast from Njenja all the way up to Araetha. The fourth dialect is spoken from

[^1]Njuru on the south coast and Rambuso on the north coast all the way to the south-eastern tip of the island at Seghe. Eberhard et al. (2020) distinguish a separate dialect spoken on the eastern tip of the island, which is distinct from the dialect group spoken in Rambuso, Rehuwo and Njuru. The variety of Sudest spoken on Yeina is not mentioned by either Lepowsky (1991) or Eberhard et al. (2020) but appears to constitute an additional dialect group. Data collected for the corpus from Yeina speakers as well as field notes and speaker observations suggest that the Yeina variety is most closely related to the dialect spoken along the central coast of the island in and around Pamela and Vuwo, but includes a large number of lexical borrowings from Nimowa. Inhabitants of Western Point (also known as Boboghagha) on the western tip of Vanatina speak a variety of Nimowa (also Nimoa or Rifao, ISO 639-3: nmw) as their first language. ${ }^{7}$ Nimowa is the language most closely related to Sudest, and the only other language of the Nimoa-Sudest family. Apart from Western Point, Nimowa is also spoken on a number of islands in the Calvados Chain from Nimowa just to the north of Vanatina, all the way to Panawina in the northwest (see Map 2).

The description of the language presented in this thesis focusses on the central dialect of Sudest, more specifically the variety spoken on the north coast from Njenja in the west up to the village of Araetha in the east. The variety is referred to as vanga Pamela 'language of Pamela' by speakers and is referred to as both the 'central dialect' and 'Pamela dialect' throughout the current work. ${ }^{8}$ In addition to the Pamela dialect data, a small number of texts in the corpus come from speakers of other dialects, specifically the Veora dialect spoken in Taranggiya and the Yeina dialect. The dialects for each speaker and text in the corpus are listed in §1.5.3.

The current study included little scope to investigate the variation between the Sudest dialects. Some general observations can, however, be made here. One of the most immediately salient differences between the dialects is the phoneme inventory; the central and eastern dialects use a dental fricative [ð] where the western Jelewaga and Veora river dialects use an alveolar fricative [z], meaning that thotho 'home' is realised as [ðоðо] in the east and as [zozo] in the the west. The west, central and eastern regions can traditionally also be distinguished by their use of the respective negative particles maaruwo, nandere, and ningiye and the related predicative negation forms (§3.83). There appears to be a sizeable number of vocabulary items that have non-cognate forms, e.g. 'moon' is manjala in the Pamela dialect and woghena in the more westerly dialects. As noted above, the Yeina dialect seems to use more borrowings from Nimowa than other varieties. These

[^2]preliminary observations of the variation between the Sudest speaking communities indicate that geographic differences between the dialects are a rich topic for future investigation.

1.3 Geographic, social, and cultural background

The area of modern-day Milne Bay Province - the eastern tip of mainland PNG and surrounding islands - is sometimes known as 'the Massim' in scholarly literature. The term came into use in the late nineteenth century anthropological literature and is most likely a colonial derivation from the name of Misima Island (Young 1983: 4). The peoples of the region share a number of salient cultural practices including matrilineal descent, feast giving, elaborate mortuary exchanges, interisland exchange networks, and 'big man' society, although not all groups in the region share all or any of the practices (Young 1983: 5). The majority of the languages spoken in the region are also Oceanic languages that belong to the Papuan Tip subgroup of Western Oceanic, with the exception of the Papuan isolate Yéli Dnye (also Yele) spoken on neighbouring Rossel Island which lies to the east of Vanatina (Eberhard et al. 2020).

The Massim region first gained attention from the wider world with the publication of Malinowski's (1922; 1929; 1935) seminal ethnographies on aspects of life in the Trobriand Islands. Over the ensuing century, the region has hosted numerous anthropologists, many of whom have paid particular attention to the Kula exchange network (see e.g. Leach \& Leach 1983 and the references therein). The anthropologist Lepowsky conducted fieldwork on Vanatina in the late 1970s, primarily on the south coast at Jelewaga; she is still remembered by islanders today. The reader should refer to her work for detailed accounts of Vanatina customs, cultural practices, trade, and health with a focus on gender (1979; 1982; 1983; 1985; 1987; 1989; 1990a; 1990b; 1990c; 1991; 1993; 2001).

The remainder of this section outlines some aspects of the geographic, cultural, and social background of the Sudest speech community.

1.3.1 Natural environment

The Louisiade Archipelago lies in the far southeast of Milne Bay Province and separates the Coral Sea from the Solomon Sea. The archipelago is a continuation of the Owen Stanley Range and consists of ten larger volcanic islands - the peaks of the submerged mountain range - and 90 smaller, coral islands (Lepowsky 1993: 43). Vanatina is the largest of the volcanic islands (followed by Misima and Rossel Islands in size) and lies nearly 300 kilometres from the PNG mainland. The island is approximately 80 kilometres long and between 12 and 24 kilometres wide, with a mountain
chain running the length of the island. The highest point on the island is Mt Riyo (also Riu), rising 805 metres above sea level. There is little flat land on the island, with the mountains dropping steeply to the coast, where mangrove swamps separate the land from the sea. Yeina lies approximately ten kilometres off the north of Vanatina. It is just over nine kilometres long and approximately 2.3 kilometres across at its widest. Small hills stretch the length of the island, not exceeding 80 metres above sea level. Both Vanatina and Yeina are located in a lagoon inside a protective reef. The reef and lagoon system stretches all the way from Ware Island (also Wari) in the west, some 60 kilometres from the PNG mainland, and ends just to the east of Vanatina, separating the neighbouring Rossel Island from the rest of the archipelago by a deep-sea passage known to have strong currents.

1.3.2 Prehistory, early contact and settlement patterns

Archaeological knowledge of the Louisiade Archipelago is so far limited. Recent work from Shaw (2014; 2016a) and Shaw and Dickinson (2017) detail the results from excavations carried out on the neighbouring Rossel Island and Nimowa. ${ }^{9}$ The excavations there have led Shaw (2016b) to posit a Late Pleistocene colonisation of Rossel Island from some point between 14-10,000 BP ($\sim 12,050-$ $8,050 \mathrm{BE}$) based on waisted stone tool assemblages. ${ }^{10}$ Rossel Island was separated from Vanatina by sea even in the Late Pleistocene, when sea levels were far lower (Shaw 2017: 11). Thus, it is relatively safe to assume that human occupation on Vanatina and Yeina dates back to this period as well, although the inhabitants during that period would obviously not have been Austronesianspeaking peoples. Currently, pottery found on Nimowa dating to 1350-1290 BP (~600-660 CE) is the earliest physical evidence of an Austronesian presence in the archipelago (Shaw 2016a; Shaw \& Dickinson 2017). A shallow channel measuring under 3km separates Nimowa from Vanatina, so, again, it can be inferred that there would have been an Austronesian presence on the larger island from at least this period.

In the late precolonial period, the majority of people on Vanatina lived in inland villages and hamlets on the top of mountain ridges (Lepowsky 1993: 51-2). Villages located in the mountains were closer to the more fertile interior of the island. The elevated location also afforded better protection and warning from attacks by raiding parties from other islands (Lepowsky 1993). Oral histories of this period report an increase in raiding parties. Lepowsky (1993) posits that they were

[^3]the result of increased pressure for resources on the arid, coral islands in the Calvados Chain during drought.

The people of Vanatina have had sporadic sightings and contact with Europeans since the $17^{\text {th }}$ century. The earliest recorded sighting comes from the Spaniard Luis Vaez de Torres in 1606 (Parsonson 1967: 136), but the first recorded interaction between the people of Vanatina and Europeans was over two centuries later in 1849, when the HMS Rattlesnake surveyed the region and found a way through the protective barrier reef (Macgillivray 1852). In a practice of forced, indentured labour known as 'blackbirding', Australian ships lured, coerced and kidnapped approximately 60,000 men, women, and children of the southwestern Pacific onto ships and then put them to work in the Queensland sugar cane fields (Banivanua-Mar 2007). The practice lasted approximately 40 years, starting in 1863. Between 1883 and 1885, Australian boats turned to the islands of modern-day PNG, including the Louisiade Archipelago, for forced labour (Corris 1968). When the Queensland government closed off these islands to 'recruiters' in 1885, 71 men were returned to Vanatina, along with 13 packets of trade goods given in compensation for men who had died before they could return (Lepowsky 1993: 63). Like Pacific Islanders forced into labour on the sugar plantations, they came back speaking a pidgin that they called vanga lumo or 'European's language' (Lepowsky 1993: 63). ${ }^{11}$ A variety of vanga lumo was also used between European bêche-de-mer fishermen and pearlers and islanders in the 1870s and early 1880s (Lepowsky 1993: 63). Lepowsky (1993: 63, fn. 39) reports that some elderly descendants still spoke vanga lumo during her time on Vanatina in the late 1970s. Vanga lumo is likely the source for a variety of everyday words used today in Sudest, for example oliman 'old man' instead of amalisari, posi 'suppose' or 'if' instead of thonggo 'if' and introduced items like kwaliko 'clothing' and bilikan '(metal) pot'.

In 1888, the discovery of gold on the neighbouring island of Panatinani (also Joannet) was reported (British New Guinea Annual Report 1890: 22). This led to an influx of miners to Vanatina - mainly from Queensland -for a short time, there were between 700 and 800 miners on the island, although by 1891 there were only 38 miners left following the discovery of gold on Misima (British New Guinea Annual Report 1890: 21; Lepowsky 1993: 65).

Major upheavals came to the archipelago during World War II. After Japanese forces took control of Rabaul in January 1942, all white civilians and government personnel were evacuated from the Louisiade Archipelago (Lepowsky 1989: 210). When the Australian New Guinea Administrative Unit (ANGAU) arrived in the Archipelago at the end of 1942, a Misima man along with his followers killed the commanding officer and his officers on Motorina Island (Lepowsky 1989: 214). The man was prophesying the return of ancestral spirits along with ships full of European cargo if

[^4]all white and mixed-race people were killed. In addition to the ANGAU officials, a Filipino trader and his Vanatina crew were also killed as a result of the prophesy (Lepowsky 1989: 211-9). Following the killings, ANGAU ordered the population of the archipelago to move to designated coastal sites that would be easier to 'control' (Lepowsky 1989: 216).

The ANGAU edict has never been officially lifted, and the population of Vanatina today still live in the designated coastal villages and hamlets. The forced migration to the coast has directly shaped the geographic distribution of Sudest's dialects, as people from a single village or neighbouring villages moved to both the north and south coasts either side of the mountains. This means that individuals from Pamela and Vuwo speak a nearly identical variety of Sudest despite being located a day's walk from each other over the mountain range, while people from Vuwo speak a different dialect than people in Taranggiya, a two hour walk away along a flat, coastal path. Contact between the south and north central coast remains frequent and people often make the mountain crossing to visit friends and relatives.

1.3.3 Economy, trade and ceremonial exchange

The majority of Vanatina practice self-sustaining agriculture using slash and burn techniques. The crops cultivated today consist of both traditional and introduced species and include yam, taro, sweet potato, cassava, banana, betel nut, coconut, pineapple, aibeka and other leafy greens, breadfruit, mango, papaya, various citrus varieties and more. Sago is also a primary staple; there are sago swamps throughout the island. Many people own chickens and pigs, but these are usually reserved for special occasions and exchange purposes. Fish and other aquatic animals from local reefs, mangrove swamps and freshwater waterways are the islanders' main source of protein, occasionally supplemented with wild pigs. To earn a cash income, some people produce shell-disk necklaces (bagi) or pan for gold.

Vanatina is one of the most fertile islands in the archipelago as well as the largest. In addition, it is underpopulated in comparison with the other islands. 'Surplus' produce from the gardens and the bush, particularly sago and betel nut, continue to have an important role in trade and exchange practices with neighbouring islands. Since before the colonial era, Vanatina have traded with Misima for large wooden dishes, with Utian (Brooker) Island for clay cooking pots, with Sabarl Island for slaked lime for chewing betel nut, and with Panaeati for sailing canoes (sailau) (Lepowsky 1983).

Memorial feasts play a central role in Vanatina custom. There are at least three feasts, the last of which may be held up to 20 years after the death of the individual being commemorated (see

Lepowsky 1983, 1993 for detailed descriptions). ${ }^{12}$ Such feasts involve kinspeople, affines and others with exchange obligations who must provide produce for the event itself and additionally supply produce and ceremonial valuables to exchange between kinspeople, affines and a preorganised heir - typically a patrilineal cross-cousin (Lepowsky 1993). In order to discharge one's memorial feast exchange obligations, Vanatina frequently go on intra- and inter-island exchange expeditions to collect or persuade exchange partners to part with ceremonial valuables (Lepowsky 1993). Exchange of valuables in the southern Louisiades does not follow the clear patterns attested in the Kula exchange region to the north (cf. Malinowski 1922; Leach \& Leach 1983). Individuals build up networks of exchange partners who may or may not be related to them and an exchange may involve an immediate payment (e.g. a pig for some shell-disk necklaces), or it may involve the visiting exchange partner promising to repay a debt for an item in the future (Lepowsky 1993). The main exchange items are shell-disk necklaces, shell valuables, greenstone axe heads, ceremonial lime spatulas, clay pots, wooden dishes, pandanus sleeping mats, pigs, yams and sago. Someone who accumulates more ceremonial valuables than the minimum to perform their mortuary feast obligations may be given the title of giya 'giver' or 'big (wo)man', ${ }^{13}$ a title that both men and women can acquire (Lepowsky 1993).

Lepowsky (1983; 1991; 1993) reports that trade and exchange patterns have changed over time. Prior to the arrival of Europeans in the archipelago, trade and exchange was frequently interrupted by raids on Vanatina by people - sometimes even trade partners - from the less fertile Calvados Chain (Lepowsky 1983). Overall, oral tradition suggests that the volume of trade and exchange was far lower in the $19^{\text {th }}$ century than the $20^{\text {th }}$ century, likely due to raids and more limited access to watercraft, but that exchange and trade networks were just as extensive (Lepowsky 1983). Recent insight into the archaeological record provided by Shaw (2016a; 2016b) also supports an extensive Louisiade trade network.

1.3.4 Kinship

The people of Vanatina and Yeina belong to twelve exogamous matrilineal clans. Each has a series of totems that include a bird, a snake, a fish or other marine animal, a tree, and a type of bush vine; in some cases, a clan has multiple bird or fish tokens (Lepowsky 1983: 468). The set of totem birds

[^5]is similar throughout the clans of Milne Bay province, despite differences in the exact clan names and language backgrounds of the different islands. The clan birds are used to help determine clanmates from outside of Vanatina and thereby also identify potential exchange partners and hospitality obligations (Lepowsky 1983).

Inheritance rights over forest and reef areas as well as ceremonial valuables, pigs and, household goods come from one's mother and mother's brother(s) and both women and men inherit rights (Lepowsky 1993). Permission to build or use land (e.g. for gardening or to build a house) outside of one's own ancestral lands may be negotiated with local matrilineages or sub-clans (Lepowsky 1993). After marriage, a couple often alternates residence between both spouses' natal villages, but over time, will often settle more permanently in one location (Lepowsky 1993: 105-6).

There is a general naming avoidance between in-laws. Instead, people use familiar terms of address for specific in-laws or address in-laws as ' X 's wife', ' Y 's mother' or more generically as amala=na 'man=ADDR.PROX' meaning 'that man there' or eli-sarit 'woman-HON' meaning 'old woman' for older generations. If an in-law's name is a common word, that word should also be avoided. For example, the male head of an extended family I met was named after a type of banana. When an inlaw wished to refer to the specific kind of banana, they typically replaced the name of the banana with the word for a different variety of banana.

1.3.5 Belief systems

Traditional beliefs continue to be practiced concurrent with Christian beliefs on the island (see Lepowsky 1989; 1990a; 1990b; 1991; 1993). Vanatina belief systems recognise a wide range of supernatural beings. These include creator spirits, ancestor spirits and spirits of specific locations (Lepowsky 1993: 127-42). Ancestor spirits dwell on the summit of the island's tallest peak, Mt Riyo. Within the province, the people of Vanatina have traditionally been known as formidable sorcerers and witches (Lepowsky 1991). Indeed, the language has words for both sorcerer (rimbire) and witch (wadawada) but also distinguishes those that do not know any magic (numombwalambwala). Today, people continue to practice and pass on spells, especially those related to healing, agriculture, and trade, although magic use is not always benign and illness and death are sometimes also attributed to magical interference. ${ }^{14}$

The post WWII years brought Methodist (United Church) and Catholic missionaries to the southern Louisiades starting in 1947 (Lepowsky 1993). Villages and hamlets today have an affiliation to one

[^6]of the two largest denominations, although other churches like the Seventh Day Adventists also have a smaller presence on the island. On the central north coast, Rambuso and Taranggiya are majority Methodist, while Araetha through to Njenja are Catholic, although people of one denomination often visit the closest service regardless of affiliation. Catholic and Methodist services are conducted predominantly in Sudest with some English. Most hymns are in Misima or Nimowa.

1.4 The Sudest language

1.4.1 Linguistic classification and typological profile

Sudest belongs to the Oceanic subgroup of the Austronesian language family. It is classified as Western Oceanic and belongs to the Nimoa-Sudest family of the Papuan Tip cluster (Lynch et al. 2002; Ross et al. 2016). The link between the various Papuan Tip languages has been recognised by linguists for a long time going back to Capell (1943). Map 1.1 (Ross et al. 2016: 631) shows the Papuan Tip speaking region, which stretches from the south-central coast of mainland PNG all the way around the eastern tip and out into the islands of Milne Bay Province. Sudest is spoken in the southeast extreme of the Papuan Tip speaking region.

Map 1.1 Papuan Tip-speaking region
Scholars, particularly since the 1970s, have proposed a number of subgroupings within the Papuan Tip cluster (e.g. Pawley 1975; Ross 1979; 1988; Lynch et al. 2002; Ross et al. 2011; 2016). Ross (1988) groups the Papuan Tip languages into two higher order linkages: Nuclear Papuan Tip and

Peripheral Papuan Tip. The latter comprised the Central Papuan languages and the Kilivila-Misima linkage that contained Nimoa-Sudest family as a subgroup. Lynch et al. (2002: 104) argue that the Peripheral Papuan Tip languages showed significant internal diversity, suggesting an earlier split from Proto-Papuan Tip than the other languages in the group. They suggest that the shared features of Peripheral Papuan Tip were independent innovations - some of which also occurred in other Oceanic languages - and consequently identify four rather than two higher order subgroups of Papuan Tip: the Nuclear Papuan Tip linkage, Kilivila-Misima linkage, Nimoa-Sudest family, and the Central Papuan family (Lynch et al. 2002: 104). More recently, Ross et al. $(2011 ; 2016)$ call into question the integrity of the Nuclear Papuan Tip linkage, instead recognising the Suauic linkage and Northern Mainland-D'Entrecasteaux linkage as higher order subgroups. The most recent changes proposed by Ross et al. $(2011$; 2016) do not, however, change the status of the NimoaSudest family, which stands apart among the other Papuan Tip languages, with Chowning (1989: 126) labelling the Nimoa-Sudest family 'phonologically highly aberrant' when compared with the other Papuan Tip languages.

The majority of Papuan Tip languages have undergone the cross-linguistically unusual shift away from VO constituent order to OV order and a related move from prepositions to postpositions. Both of these changes are attributed to early contact with Papuan languages (Lynch 1981: 110-1; Ross 1988: 193; Lynch et al. 2002: 15). Unlike the majority of the Papuan Tip languages, Sudest, along with Nimowa and the languages of the Kilivila-Misima linkage excluding Misima, retain the canonic Oceanic VO constituent order (Lynch et al. 2002: 104). Sudest shows a partial shift in the placement of adpositions, with a mix of prepositions and postpositions and an ambiposition that can precede or follow its complement. It also displays the order of possessor-possessum typical of OV languages, a feature that often spreads to non-OV languages spoken in areas adjacent to OV languages (Dryer 2013).

As well as OV constituent order and postpositions, Lynch et al. (2002: 104) state that Papuan Tip languages are 'almost defined' by an additional three morphosyntactic innovations: loss of common articles, addition of pronominal possessive suffixes to adjectives in both attributive and predicative functions, and extension of the possessive pronominal suffixes to object pronominal function within the verb. Like all other languages in the cluster, Sudest does not have a reflex of the Proto Oceanic (POc) common articles ($\left.* a,{ }^{*} n a,{ }^{*} t a\right)$. It also shows a fossilised 3SG possessive suffix $-y a$ on three adjectives/stative verbs laghitye '(be) big', nasiye '(be) small', and thovuye '(be) good'. Sudest does, however, retain a separate bound possessive pronominal system and bound object system.

Sudest is a nominative-accusative language in the formal marking - both syntactic and morphological - of core arguments. The single argument of an intransitive verb (S) and the more agent-like argument of a transitive verb (A) pattern in the same way and contrast with the non-
agent-like argument of a transitive verb (O). The verb complex is arguably the most complex area of Sudest and is highly agglutinative for an Oceanic language, with just under two dozen pre- and post-verbal slots (see chapter 4). Complex agglutination is an innovative feature again associated with the OV Papuan Tip languages (Bradshaw 1982: 12).

Sudest has Oceanic-typical valence-changing and valence-rearranging morphology (§4.2.8, §4.3.1), posture-based prefixes (one of which can have a quasi-aspectual function) (§4.2.5), and discontinuous negation (§3.8.3.1). Multi-verb constructions, many of which could be classified as nuclear-layer serial verb constructions, are also common (see chapter 6). Like many other Papuan Tip languages, Sudest also has verbal prefixes that specify the manner in which an action is carried out (§5.1). It is relatively common for Oceanic languages with some form of serialisation to have a type of construction with a motion verb followed by some sort of action verb, labelled 'sequential' or 'associated motion' serial verb constructions in the literature (Lynch et al. 2002: 47; ClearyKemp 2015: 134). In Sudest, these motion verbs have grammaticalised into prefixes that make a three-way distinction of prior, subsequent and concurrent motion in relation to the event expressed by the verb, and are comparable to associated motion morphemes first noted in some Australian languages (e.g. Koch 1984; Wilkins 1991) (§4.2.4). Sudest, to the best of my knowledge, also appears to be the only Oceanic, or indeed Austronesian language, attested to have verbal classifiers in the form of a suppletive set of classificatory verbs - of the kind labelled Type-A classificatory verbs in Aikhenvald’s (2000) typology (§5.2). The Sudest classificatory verbs (CLFVs) make a seven-way distinction based on properties of the object referent of the verb (e.g. rigidity/flexibility, emptiness/fullness, composition, and number).

1.4.2 Language maintenance, education, and literacy

Sudest is acquired by all children on Vanatina and Yeina from birth, with the exception of children from Western Point, who acquire a variety of Nimowa as a first language. Sudest is used in the majority of everyday contexts apart from education and literacy-based activities (discussed in detail below). Sudest speakers are exposed to Nimowa from early childhood and the majority, if not all, teens and adults are either actively or passively proficient or fluent in the language as an L2. Along the north central coast of Vanatina, many people also have an active or passive knowledge of Misima. English is the lingua franca of Milne Bay Province and is typically first learnt in formal settings in primary school, starting from around the age of seven. Nearly all adults have some level of English proficiency, with the most fluent speakers being those that completed the highest levels of education and/or have spent time on the mainland. Knowledge of Tok Pisin is limited generally to individuals who have lived or travelled outside of the Province. While Sudest speakers are
multilingual in the neighbouring Oceanic languages, Nimowa and Misima speakers, although also multilingual, typically have limited knowledge or passive understanding of Sudest. They often state that Sudest is far too hard to learn. This may be due to Sudest's distinctive phonology in comparison with its Papuan Tip speaking neighbours, and unfamiliar features like the classificatory verbs. It is uncommon for Vanatina to speak Yélî Dnye, the Papuan isolate spoken on neighbouring Rossel Island.

There are around half a dozen elementary schools on Vanatina and four primary schools; the primary schools are located at Griffin Point, Rambuso, Rehuwo and Madawa. All children on the north central coast attend elementary and primary school. Depending on where children live, some primary school students board for the week or term at school. Access to a high school education (grade $9+$) is very competitive and is highly valued by Vanatina communities. Typically, less than 20 students continue on to high school each year from all of Vanatina. ${ }^{15}$ Children must leave the island to attend high school; children from Catholic families usually attend Hagita High School, located just outside of Alotau, the provincial capital, and Methodist children go to Misima High School. For the last few years, the newly-opened Hope Academy, based at the Mission of the Sacred Heart, Nimowa, has also been offering grade nine to 12 secondary schooling and diploma courses for a wider range of students from around the archipelago. ${ }^{16}$ A small number of students also continue from primary school to vocational colleges on Misima and Sideia Islands.

According to Ethnologue (Eberhard et al. 2020), literacy rates for Sudest speakers are between 50 and 70 percent in their L1 and between 75 and 90 percent in L2s (English, Nimowa, and/or Misima). Anecdotal and observational data gathered during fieldwork on the north central coast support these percentages for L2 English literacy. Most speakers literate in English also appear to have at least reading abilities in Nimowa and Misima (likely through exposure to religious and other texts produced by missionaries in these languages), but it is unclear whether this extends to writing abilities. L1 literacy levels, however, are likely below 50 percent; literacy education in Sudest is not part of the school curriculum at any level. ${ }^{17}$ While Sudest literacy is not taught in the school

[^7]system, there are two developments that may lead to increased Sudest literacy rates, namely the publication of the New Testament and increased access to mobile phones and text messaging. Access to books is limited on Vanatina and Yeina and the most commonly owned book is the Bible. Previously, most households only owned written religious material in English, Misima, or Nimowa, but this has changed since the publication of the New Testament in 2015 by the Summer Institute of Linguistics (SIL). A mobile telephone tower was installed at Tagula station on Vanatina in 2014. While mobile phone ownership is far from ubiquitous - let alone access to phone credit and electricity for charging - those who do own a phone do appear to be using Sudest when communicating with other Sudest speakers via text message and messaging apps.

1.4.3 Previous linguistic research

There has been limited descriptive linguistic work published on the Papuan Tip cluster to date. ${ }^{18}$ Of the Kilivila-Misima linkage and the Nimoa-Sudest family, all of which retain VO clause order, the best described language is Kilivila, with two published grammars from Senft (1986) and Lawton (1993). Senft has also published extensively on specific aspects of Kilivila (e.g. 1987; 1996; 1999; 2000; 2001; 2004; 2008; 2009; 2011; 2012; 2017a; 2017b). Long-term language-related work of Misima and Sudest has been carried out by Christian missionaries with the aim of translating the Bible. Some of this work includes linguistic descriptions. However, little of this work is published. Unpublished descriptions of aspects of Misima and Muyuw, both languages of the Kilivila-Misima linkage, have been produced in the course of work conducted by SIL. ${ }^{19}$ For work on Misima see Callister and Callister (1985), W. Callister (1985a; 1985b; 1985c; 1987; 1993), and S. Callister (2005). For work on Muyuw see Daphne Lithgow (1970a; 1970b; 1970c), David Lithgow (1969a; 1969b; 1973), and Lithgow and Lithgow (1973a; 1973b; 1973c; 1974). Linguistic information on Nimowa is even more limited. Both Capell et al. (1970) and Henderson and Henderson (1974) include Nimowa wordlists, while Ezard (1978) includes an appendix with 'classificatory prefixes in Nimowa'. Henderson and Henderson (1974: 50) note that there is a Nimowa dictionary of nearly 300 pages produced by Fr. D. K. Twomey in the 1950s, however, to date, I have been unable to locate a copy.

The earliest written record of the Sudest language is a short word list in a report by Armstrong (1922). There are three field notebooks by Capell (1928a; 1928b; 1930s) with vocabularies and

[^8]grammatical notes on the Rambuso dialect of Sudest, which are archived with PARADISEC. ${ }^{20}$ Ray (1937), Henderson and Henderson (1974) and David Lithgow (1976) all include fragmentary information on the language, and Ezard (1978) again contains a list of some 'classificatory prefixes' (cf. chap. 5) in Sudest along with the Nimowa data already mentioned. Anderson and Anderson have carried out fieldwork under the auspices of SIL in Pamela village, primarily in the 1980s and early 1990s. They have produced a number of manuscripts including a Sudest reader (M. Anderson 1987), a Sudest-English lexicon (M. Anderson 1990?), a grammar sketch (Anderson \& Anderson 1991), and a phonology sketch (Anderson \& Anderson 1992). There is also a short publication on object-classifying morphemes (M Anderson 1992) and a published grammatical sketch by M. Anderson and Ross (2002). A Sudest version of the New Testament was published and distributed throughout the island in 2015 and is based on the Central dialect spoken in Pamela. Multiple sources mention a Sudest dictionary, again produced by Fr. D. K. Twomey but, like the Nimowa dictionary, a copy could not be located.

1.5 Data collection, methodology, and the corpus

In this section, I outline details related to data collection and methodology of the current work. Details pertaining to the field site, consultants, and field work are given in §1.5.1 and a discussion of the workflow is given in $\S 1.5 .2$. Section 1.5 .3 addresses archiving and issues around verifiability and reusability of the language data and $\S 1.5 .4$ discusses basic linguistic theory, the informal framework on which the current analysis is based. Finally, $\S 1.5 .5$ outlines the make-up of the corpus.

1.5.1 Field site, consultants, and field work

The language data for this thesis comes from a corpus of texts, elicitation data and field notes collected on Vanatina unless otherwise indicated. The corpus was recorded during three field trips between 2014 and 2016, totalling approximately six months. ${ }^{21}$ Some elicitation data were also subsequently collected via telephone in 2017 and 2018.

During my trips to Vanatina, I stayed with the extended Kieran family in the hamlet of Uyeuye, ${ }^{22}$ a five-minute walk from the larger village of Vuwo. Uyeuye has around 20 residents, while Vuwo has approximately 100. I was introduced to the community by Fr Tony Young, who has lived and worked in the Louisiade Archipelago on and off for the past sixty years. In 2014, he was the priest

[^9]for the local diocese based on Nimowa, which includes much of the Calvados Chain and Vanatina. He helped me to connect with the community of the central north coast of Vanatina, who were interested to work with a linguist documenting and describing the Sudest language.

Many people contributed recordings to the corpus and answered the many questions I had about the Sudest language and Vanatina. I worked with a number of language experts regularly over the three fieldtrips. My first Sudest teacher and language expert was Abel Sam. ${ }^{23}$ He was in his 50s when I met him. He was born and grew up in Araetha, but had been living at the Mission of the Sacred Heart on Nimowa for nearly a decade. He took part in Sudest writing and transcription training with SIL in the 1990s. Abel worked as my primary language expert during the first field season, transcribing and translating texts with me. He worked as a language expert for the project intermittently during the 2015 and 2016 field season. ${ }^{24}$ During the 2015 and 2016 fieldtrips, Noelyne Livina and Colette Stevens worked with me as primary language experts in transcribing and translating texts. Noelyne Livina was also born in Araetha and was in her early 60s at the time of data collection. She currently lives in Njenja. Noelyne attended nursing school after finishing grade 10, and worked as a nurse in Alotau for a number of years during her 20s before moving back to Vanatina. Colette Stevens was born in Mba and currently lives in Uyeuye. She attended Sideia Vocational College after completing primary school, and worked there for a number of years after completing her training. During my final field season Virgil Kevin also started working with me, transcribing and translating texts. He was born in 1984, also in Mba. His mother is a secondary school teacher and he moved around Milne Bay Province while growing up and completed grade 12. He now lives on Nimowa. Abel, Noelyne and Colette all spoke/speak Sudest as their first language and were/are also fluent in Nimowa and Milne Bay English, with varying levels of passive and spoken Misima and some Tok Pisin. Virgil is bilingual in Sudest and PNG English with English as his dominant language. Throughout all three field seasons, many other members of the community contributed to the project as language experts, participating in stimuli and elicitation tasks and also sometimes transcription and translation sessions. Anne Edwards, Kieran Kebari, Josephine Banian, Livina Luke, Jaclyn Sam, Marie Camilos, Meira Kebari, Miriam Michael, Sylvester Kieran, and Tajin Roberts were all particularly active and helpful in these endeavours.

All texts and elicitation in the current corpus were recorded in Uyeuye and Vuwo. During the 2015 and 2016 field seasons, recording sessions were run every Sunday in the local community house in Vuwo after church services. This gave interested speakers between Araetha and Njenja, and sometimes further afield, a more convenient opportunity to record after attending church services.

[^10]None of the houses have glass windows or any type of insulation in Uyeuye and Vuwo, so while attempts were made to minimise external noises during recordings, the realities of everyday life in a village means that this is not always possible.

1.5.2 Workflow and software

Workflow during each field season varied due to access to power sources and the availability of language experts. It was a requirement for this project to create a searchable text database in ELAN (EUDICO Linguistic Annotator) ${ }^{25}$ or Toolbox ${ }^{26}$ format to ensure compatibility with the annotations of three-participant events in the other languages participating in the larger project. During the first field season, I had no access to solar or generator power. This meant that transcription, translation, and interlinearisation of texts was completed by hand and by playing back each text on the recorder. Upon returning from the field, an .eaf file of each text was created in ELAN. Each text was then ‘chunked’ into intonation units (IUs). Himmelmann (2006: 260) argues that IUs correspond approximately to a line or verse in spoken genres. He considers them a 'basic unit into which native speakers themselves chunk their utterances' (Himmelmann 2006: 260). The defining criteria of what constitutes an IU vary in the literature, although there is usually overlap in defining criteria. Common defining criteria for an IU include change of pitch at the at the end of the IU, lengthening of the final segment in the IU, a pause at the end of the IU, reset of the baseline pitch at the beginning of the IU, and anacrusis (an acceleration of the unstressed initial syllables at the beginning of the IU) (Du Bois et al. 1992; Chafe 1994; Himmelmann 2006). IUs usually do not display all of these criteria and only two or three of the diagnostic criteria are present (Himmelmann 2006: 260). Once each text was chunked, it was then transcribed in ELAN, creating text-media linkage, before being imported as a .txt file into the Toolbox software program, where it was interlinearised. During subsequent field seasons, I had access to solar power and could import recordings directly into ELAN to chunk and transcribe the text and then move it across to Toolbox to interlinearise and translate. This sped up workflow considerably and allowed for more consistent translation and interlinearisation. Being able to play back the sound file while transcribing, checking and later analysing and describing the language meant that analyses were continuously checked and compared against original data and transcriptions could also be refined.

During the first two field seasons, transcription and translation was physically written out by myself with language experts dictating and verifying the texts and translations, as the majority of speakers have lower levels of Sudest literacy than English literacy and little experience handling recording

[^11]equipment or computers. During the 2016 field season Virgil Kevin transcribed and translated the majority of texts by hand before I entered them into the digital corpus in consultation with a speaker.

1.5.3 Archiving, citation, transparency and reusability

All recordings of Sudest made over the course of this project are currently in the process of being archived in The Language Archive of the Max Planck Institute. ${ }^{27}$ The importance of archiving corpora from language documentation and description projects on un(der)-described languages and citing the sources of language examples has been of increasing concern in the field and is considered best practice today (see e.g. Bird \& Simons 2003; Woodbury 2003, 2011; Thieberger 2006, 2009; Gawne et al. 2017; Berez-Kroeker et al. 2018). By archiving the corpus and making it accessible and citing each example in the thesis by an identifiable text title, IU and/or timecode, the analysis is more verifiable and replicable. This means that future readers will be able to more critically engage with the analyses presented here.

Archiving the corpus also serves to preserve arguably the most valuable output of the current project: the primary data collection of recorded Sudest texts. Any grammatical description produced will only ever be a partial and biased description of the language; one that follows current fashions in topics that are or are not analysed and explored and also includes the researcher's own language history, training and biases (cf. Thieberger 2006: 6). Archiving the data allows future researchers to explore and investigate further linguistic and extra-linguistic topics. The corpus of an un(der)described language provides a snapshot of a particular variety of a language spoken at a specific time by a speech community. The corpus could, at some future point, also become one of the primary remaining records of the language if it ceases to be spoken. It is, therefore, a valuable repository for the language, stories and culture of its speakers and potential resource for revitalisation programs (although one strongly hopes that it is never needed for this purpose).

1.5.4 Basic linguistic theory

The description of Sudest presented in this thesis is presented within the informal framework of 'basic linguistic theory', a term coined by Dixon (1997). Within the framework, an analysis is developed inductively through the collection and investigation of naturalistic language data, providing specific justification for each piece of analysis (Dixon 1997; 2010a). The overall

[^12]framework of basic linguistic theory is cumulative in nature. The informal descriptive metalanguage is built on linguistic scholarship going back to the Sanskrit and Greek grammarians, continually augmented with concepts from multiple areas of more 'modern' linguistics, including structuralism, (pre-1975) generative grammar, and particularly typology (Dryer 2006; Dixon 2010a). The framework is continually added to and revised as new phenomena and issues come to light (Dixon 2010a). It can be considered one of the most suitable and accessible frameworks for a typologically informed approach to descriptive grammatical analysis in the context of language documentation.

The theoretical assumptions and descriptive metalanguage labelled by Dixon (1997; 2010a; 2010b; 2012) and Dryer $(2001 ; 2006)$ as 'basic linguistic theory' have tacitly been the prevailing framework used in many grammatical descriptions of un(der)described languages since the last decade or so of the $20^{\text {th }}$ century (Dryer 2006: 210-2). Grammatical descriptions based within the informal framework have the advantage, as Evans and Dench (2006: 6) highlight, that they have proven to be more readable and accessible to a wider audience of linguistics (and non-linguists) in the short- and long-term compared with more formal theoretical approaches.

1.5.5 The corpus

1.5.5.1 Participants

The corpus contains recordings from 25 speakers, 14 women and 11 men. The ages of the speakers range from early twenties to speakers in their sixties at the time of recording. The list of speakers is presented in Table 1.1 All speakers were given the choice of what name to record (Christian or Sudest) as well as the option to be given an anonymous pseudonym, but no speakers elected to be identified by a pseudonym.

Speaker	Age	Gender	Dialect
Anne Edwards	$50-60$	F	Central
Colette Stevens	$30-40$	F	Central
Denise Mary	$40-50$	F	Central
Jaclyn Sam	$30-40$	F	Central
Josephine Banian	$40-50$	F	Central
Joyce Mao	$40-50$	F	Central
Lydia Noel	$50-60$	F	Yeina
Lydia Sale	$40-50$	F	Central
Lydia Saulo	$20-30$	F	Central
Meira Kebari	$60-70$	F	Taranggiya
Miriam Michael	$30-40$	F	Yeina
Monica Michael	$30-40$	F	Central
Noelyne Livina	$60-70$	F	Central
Pauline Donny	$20-30$	F	Central
Abel Sam	$50-60$	M	Central
Alexander Gitali	$50-60$	M	Central
Livina Luke	$50-60$	M	Taranggiya
Michael Karuwo	$20-30$	M	Central
Michael Kebasi	$50-60$	M	Central
Norbert Simeon	$40-50$	M	Taranggiya
Patrick Kieran	$30-40$	M	Central
Simon Thomas	$30-40$	M	Central
Sylvester Kieran	$40-50$	M	Central
Tajin Roberts	$20-30$	M	Central
Trudo Camillus	$40-50$	M	Central

Table 1.1 Speakers in the corpus
The majority of participants had some formal primary school education in English. Three participants had had no formal education. Approximately a third attended high school up to grade ten and/or vocational college. One participant had completed grade twelve. All but five speakers were born in and lived within the Central dialect region between Araetha and Njenja. Three speakers come from the Taranggiya area, one of whom still lived there at the time of recording. The remaining two speakers had spent a large portion of their adult life on the central north coast after marrying members of the community there. Two speakers originally come from Yeina but moved to the north central coast upon marriage.

1.5.5.2 Texts

The description of Sudest presented in this thesis is primarily based on a corpus of 73 transcribed, interlinearised, text-audio aligned texts and some 20 hours of elicitation recordings. The corpus was
recorded over three field seasons in 2014, 2015, and 2016 in Uyeuye and Vuwo on Vanatina. The bulk of elicitation data were also collected during these field trips with a small amount of elicitation taking place in 2017 and 2018 via telephone. Table 1.2 presents an overview of the corpus by text type and length (both in IUs and minutes). The corpus can be divided into two subcorpora: one with more 'naturalistic' texts like narratives, procedurals, and conversations and a stimuli corpus based on non-linguistic stimuli materials. Throughout the thesis I refer to the collection of naturalistic texts as the 'text subcorpus', the stimuli texts as the 'stimuli subcorpus' and the combined subcorpora as the 'corpus'. A full list of the corpus texts, including speakers and text type, is given in Appendix A. Appendix B presents a transcription of two of the corpus texts including a gloss line and free translation. As discussed in §1.5.3, the corpus will be housed in The Language Archive and accessible to all interested parties with the exception of texts that have either been restricted at the wish of speakers) or due to sensitive information. Elicitation recordings and metadata will be archived in the same location.

	text type	no. of texts	IU	time mins	time secs
naturalistic texts	anecdote				
	conversation	6	281	13	3
	family/personal history	6	352	10	43
	procedural	23	350	18	6
	traditional narrative	17	2175	97	2
	total	53	4648	209	7
stimuli texts	put stimuli task	5	1122	103	19
	cut and break task	6	1343	157	28
	family problems picture task	8	2006	94	30
	frog story task	1	127	5	35
	total	20	4598	360	52

Table 1.2 The Sudest corpus
The corpus comprises nine and a half hours of transcribed, interlinearised, text-audio aligned texts or 9,246 IUs. Arguably, the total number of IUs is a more accurate way to quantify the corpus as they indicate a somewhat 'objective' and cross-linguistically comparable unit of spoken language while the total recorded time includes long pauses and periods where no speaking occurs ${ }^{28}$. This is evidenced by the fact that stimuli recordings make up over 60 percent of total corpus by time (6

[^13]hours) compared with the naturalistic texts (3 hours, 29 minutes) but the stimuli subcorpus contains fewer IUs (4598) than the naturalistic text subcorpus (4648) due to long pauses to view stimuli materials and complete tasks.

The text subcorpus predominantly contains narrative and procedural texts with only one conversational text and reflects the somewhat opportunistic way in which data were collected. This is due to a number of factors. Firstly, the specific texts recorded were overwhelmingly chosen by the speakers themselves and therefore reflect a preference to record narratives and procedurals about traditional practices for posterity. Secondly, as has been repeatedly noted in the literature (e.g, Crowley 2007, Bowern 2008), recording conversational data in the field can be tricky for a myriad of reasons.

The stimuli subcorpus contains recordings based on tasks with non-linguistic stimuli (picture book, picture cards, and video). The stimuli tasks allow for both intra- and inter-linguistic comparison and were selected to augment the text corpus by targeting particular semantic domains related to 3PEs and language-specific morpheme paradigms. The PUT task (Bowerman et al. 2004) targets putting and taking events, including giving events by playing short videos of these events to speakers who then describe what occurred immediately after watching each video. This task was used because it targets a wide range of different 3PEs and because such events of putting and taking often involve the use of classificatory verbs in Sudest (chapter 5). The CUT-BREAK stimuli task (Bohnemeyer et al. 2001) also uses short video clips that are played to the speaker. Again, the videos target a semantic domain that includes 3PEs, namely events in which an agent uses an instrument to impact on a patient. The task was also selected because the expression of events of cutting and breaking in Sudest frequently include reference to the manner of causation of the event by way of an eponymously named set of verbal prefixes (chapter 5). In the family problems stimuli task (Carroll et al. 2009), a pair of speakers are presented with 16 picture cards one at a time. The speakers are asked to describe each picture and after doing this discuss amongst themselves how to combine the pictures to make up a narrative. Once they have done this, they then tell the story to an audience. The task targets a range of areas including question and response, the description and categorisation of non-linguistic stimuli, and extended narrative production (San Roque et al. 2012: 138). The family problems task is also very rich in 3PEs, including handling and transferring events that commonly involve classificatory verbs and adds valuable conversational data to the corpus, albeit on limited topics.

All examples presented in the thesis are referenced by their text title (name and date of recording) and by the IU and time code. So, the example presented in (1) comes from the text titled 'kula exchange' that was recorded on the tenth of December, 2014. The IU, in this case 14, follows the text title and date and the time code follows the IU, with both the start and end time given (41.910
46.010). The time code is provided as this is a static reference that will not change unlike IUs which may be refined or moved.

$$
\begin{array}{ll}
\text { meth } i=w a & \text { Rogha } \tag{1}\\
\text { 3PL.IMM.PST=go } & \text { place.name } \\
\text { 'we went to Rossel Island' }
\end{array}
$$

$$
\text { (kula_exchange_101214 014, } 41.910 \text { 46.010) }
$$

Stimuli examples contain 'stimuli' in the title, as in (2)

```
ela=ma i=thin-giya ndeghi we=ya wevo=ma
    woman=DET 3SG=GET.SG.CNTR-give cup PREP=YA young.woman=DET
    'the woman gives the cup (with contents) to the girl'
```

 (put_stimuli_191015_01_02 130-3, 487.610 492.072)
 All elicitation files contain 'e' as their title, as in (3). Because these texts have not been text-audio aligned, they do not include a time code or IU but do include the date of recording (300915 or $30^{\text {th }}$ of September 2015). If more than one elicitation session was run on a single day, the title also indicates the session number the example comes from (' 01 ').
(3) mbwa kero $i=b w a l a$
water already $3 \mathrm{SG}=$ boil
'the water boiled' (e_300915_01)

Sudest examples that do not come from my own data collection are cited, as in (4).
(4) va i=thuwe=nggi=ya gharighari vavana

PST $3 \mathrm{SG}=$ see $=3 \mathrm{PL}=$ YA people some
'he saw some people'
(Anderson \& Anderson 1991: 16)

The interlinear glosses in this thesis follow the conventions set out in the Leipzig Glossing Rules. ${ }^{29}$ For Sudest examples taken from other sources, some glosses have been changed to be consistent with the current glossing system, e.g. ' 3 sS ' for 'third singular subject' changes to ' 3 SG ', as in (4) above.

1.6 Structure of the thesis

The thesis comprises three sections. Chapters 1 to 3 contain introductory matter to the Sudest language and three-participant events. After the presentation of general background information here, Chapter 2 discusses the literature related to the study of three-participant events and presents the event types distinguished by Margetts and Austin (2007) and their encoding strategies, with an emphasis on those constructions attested in the Oceanic languages. Chapter 3 provides a grammatical sketch of Sudest, focussing on areas most relevant to the expression of 3PEs in the

[^14]language. Chapters 4 to 6 examine Sudest verbal morphosyntax in detail. Chapter 4 outlines the verb complex, describing the morphemes that can fill each of the possible 22 pre- and post-verbal slots. Chapter 5 examines the two 'classificatory' paradigms found in the verb complex. First, it considers the manner-of-causation prefixes that encode the manner in which an action is completed (e.g. 'by hand', 'by cutting', 'by spearing'); this type of morpheme is more frequently known as a 'classificatory' prefix in the Papuan Tip literature. The second group of morphemes consists of a group of classificatory verbs translatable as 'get', which are selected based on properties of the object referent that include consistency, composition, and number. The presence of classificatory verbs in Sudest is of particular note as they are otherwise unattested in the Oceanic (and Austronesian) languages. Chapter 6 then outlines the ways in which verb stems may combine in multi-verb constructions. Finally, Chapter 7 and 8 return to the topic of three-participant events. Chapter 7 investigates the encoding strategies used in Sudest to express 3PEs. Chapter 8 discusses inventory and frequencies of 3PEs in the Sudest data and considers the Sudest 3PEs in a crosslinguistic perspective.

2 Literature and methodology

2.1 Introduction

The semantic notion of three-participant events (3PEs) is often linked to the vast literature on ditransitive verbs and their alternations. Ditransitive verbs, however, are not necessarily as widespread as they may appear when looking at the literature, which often takes major European languages as a starting point. Over the last two decades, events with three participants have begun to receive more widespread attention from linguists. The resulting research has shown that there are a wide range of functionally equivalent morphosyntactic constructions that languages use to encode 3PEs, instead of or as well as verbs with three syntactic arguments.

As noted in the previous chapter (§1.1), one of the aims of this thesis is to provide a comprehensive analysis and description of 3PEs in Sudest. In order to do this, I take the 12 3PE types identified by Margetts and Austin (2007, henceforth abbreviated to M\&A) - revised in Margetts et al (2019a; 2019 b) - as a starting point for the investigation of 3PEs in Sudest. I follow M\&A's definition of 3PEs as 'dynamic states of affairs that crucially involve three entities in their conceptualization' (p . 397). The study of 3PEs presented here took place in the context of a larger project investigating the crosslinguistic patterns in the encoding of 3PEs, examining the patterning of 3PE encoding strategies both intra- and cross-linguistically through the analysis of corpus data from endangered languages. ${ }^{30}$

This chapter is structured as follows. Section 2.2 discusses the literature and trends related to the investigation of 3PEs and ditransitives. Section 2.3 presents a discussion of 3PE event types. This is followed in $\S 2.4$ by a description of crosslinguistically attested morphosyntactic encoding strategies for 3PEs. Each of the encoding strategies relevant to the study of 3PEs in Sudest is then considered in turn in more detail in $\S 2.4$. 1 to $\S 2.4 .6$, using examples from the Oceanic family to illustrate the discussion. Finally, $\$ 2.5$ outlines the methodology used in the corpus-based investigation of 3PEs in Sudest, including the process of corpus annotation.

[^15]
2.2 Previous research on three-participant events

In this section I consider some of the key literature related to the study of 3PEs. The discussion presented here does not aim to provide an exhaustive summary of 3 PE related works, but rather a snapshot to contextualise the current study. For further discussion see, e.g., M\&A; Malchukov et al. 2010a). Mukherjee (2005: 3-63) also provides an in-depth review of major approaches of threeplace predicates, particularly for English.

The focus of much research in descriptive, typological, and theoretical linguistics has frequently been on syntactic ditransitive verbs, i.e. verbs with three syntactic arguments (e.g. Goldberg 1992; Haspelmath 1993; 2004; Anagnostopoulou 2003; Siewierska \& Hollman 2004; Mukherjee 2005; Kittilä 2006a; 2006b) and their alternations such as the 'dative alternation', e.g., Lee gave Sam a biscuit versus Lee gave a biscuit to Sam (e.g. Harley 2002; Krifka 2004; Rappaport Hovav \& Levin 2008; see also Levin (1993: 45-50) for a list of works on alternations in English). Yet another body of work looks at the alignment of ditransitives: that is the treatment of the two objects of a ditransitive construction compared with the single object of a monotransitive construction (Blansitt 1984; Dryer 1986; Croft 1991: 100-8; Siewierska 2003; 2004; Haspelmath 2001; 2005a; 2007; Malchukov et al. 2010b). Because of (rather than despite) the large literature on ditransitives, there is little consensus on a definition of 'ditransitive'. Some definitions relate to specific morphosyntactic constructions while others are semantic in nature, or some mix of both (cf. Dryer 1986; Anagnostopoulou 2003; Mukherjee 2005; Conti 2008). ${ }^{31}$

It is common for 'give' verbs to be used as the main or only type of verb in research on ditransitives (e.g. Haspelmath 2001; 2005b; Siewierska 2003). However, relying on a 'prototypical' ditransitive verb, particularly 'give', can be misleading, as Borg and Comrie warn:
[I]in many languages [...] "give" is syntactically a very atypical ditransitive verb. This is not particularly surprising: items from the most basic vocabulary are more likely to be anomalous morphologically and syntactically. But this does demonstrate that more care needs to be taken in the choice of the most typical ditransitive verb, selection of "give" always requiring cross-checking with a variety of other verbs of similar valency (Borg \& Comrie 1984: 123)

This is clearly demonstrated in Newman's work on 'give' (1996; 1997). Newman (1996) explores aspects of 'give' and the 'exceptionality' of 'give' verbs and expressions. This work is continued

[^16]in Newman's (1997) edited volume, which also takes the semantic concept of 'give' as a starting point to investigate typological variation and acquisition of 'give'-type events. ${ }^{32}$

Since the turn of the century, there has been an increase in research that takes the explicitly semantic concept of 'three-participant events' as a point of departure for investigation rather than 'ditransitivity'. Three-participant events were the topic of investigation at a series of workshops in Melbourne between 2000 and 2002 and at the Max Planck Institute for Psycholinguistics in 2003, which looked at cross-linguistic variation and developmental perspectives of 3PEs (see Narasimhan et al. 2007 and other contributions in Linguistics 43/3). The effects that animacy and animacy hierarchies can have on the expression of 3PEs in some languages have also been the topic of a 2011 workshop at Lancaster University and subsequent publications (see van Lier 2012 and other contributions of Linguistic Discovery 10/3). Influential in the ongoing research into 3PEs is the work by M\&A and Margetts (2002; 2007) which extends the semantic range of event types from that identified in much of the previous literature and catalogues the morphosyntactic encoding strategies attested in a variety of languages to express such events. ${ }^{33}$ As stated above, the current work uses M\&A's inventory of event types and attested encoding strategies as a foundation for the investigation of 3PEs in Sudest (see $\S 2.3$ for discussion of event types and $\S 2.4$ for an outline and examples of encoding strategies).

A parallel and sometimes complementary area of investigation to 3PEs, particularly since Dryer's (1986) influential paper on primary object and direct object languages, has been research that looks at ditransitive alignment types (e.g., Blansitt 1984; Croft 1990: 152-5; Siewierska 2003; 2004: 5766; Haspelmath 2001; 2005a; 2007; Malchukov et al. 2010a). Alignment traditionally refers to monotransitive verbs - verbs with an agent-like argument A and patient-like argument P (sometimes also labelled ' O ') - and how their arguments are treated in relation to the single argument (S) of an intransitive verb. The notion can also be extended to the two non-agent arguments of a ditransitive verb: the theme-like argument T and the recipient- or benefactive-like argument R, and whether one or the other or neither are treated more like the P of a monotransitive

[^17]construction (Dryer 1986: 814). ${ }^{34}$ Figure 2.1 shows the main types of ditransitive alignment discussed in the literature (e.g. Dryer 1986; Haspelmath 2005a; Malchukov et al. 2010a).

Figure 2.1 Ditransitive alignment types (adapted from Van Lier 2012: 5)
Direct object languages (Dryer 1986) or languages with indirective alignment (Haspelmath 2005a) treat T the same way as P (e.g. by indexing or cross-referencing on the verb) and R is treated differently. Primary object languages (Dryer 1986) or languages with secundative alignment (Haspelmath 2005a) show the inverse patterning: they encode R in the same way as P , and treat T differently. In neutral alignment, P, T, and R are treated identically and in tripartite alignment they are all treated differently (Haspelmath 2005a). ${ }^{35}$ A language can display a single ditransitive alignment type, or it can have multiple alignment types depending on language specific constraints (e.g. specific verbs, animacy of arguments).

Like in the wider literature on ditransitives, definitions of 'ditransitive' vary in the alignment literature. Dryer (1986) specifies that his discussion relates to 'semantically ditransitive' clauses. This includes both predicates with three syntactic arguments and some predicates with two syntactic arguments and a third participant expressed by a PP. However, Dryer (1986) does not specify by exactly what semantic criteria a predicate should be included or excluded from the category of 'ditransitive'. His examples are restricted to 'typical' ditransitives, predominantly 'give' and other transfer events such as 'bring', 'take', 'send' and 'sell'. Malchukov et al. (2010a) have a similar definition for 'ditransitive constructions', but theirs explicitly includes only transfer verbs with 'an agent argument (A), a recipient-like argument (R), and a theme argument (T)' (p. 1). ${ }^{36}$ Siewierska (2003: 344), however, views ditransitive alignment as 'neither semantic nor morphosyntactic, but hold[ing] at a more abstract level'. Nevertheless, her discussion, like the above-cited works,

[^18]primarily relies on 'give' verbs and other common transfer verbs in constructions with three arguments or two arguments and an PP.

2.3 The semantics of three-participant events: target events

There is extensive and ongoing debate about the nature of 'events' and how to identify and differentiate them in philosophy, psychology, and linguistics (see Pianesi \& Varzi 2000; Casati \& Varzi 2008; and Pederson \& Bohnemeyer 2011 for overviews). The current investigation of 3PEs does not assume a formal definition of 'event' but uses 'event' as a pretheoretical notion (cf. Margetts 1999: 313). Following Margetts (1999), events are conceptualised as involving participant(s) - again a pretheoretical notion. Events and their participants can be considered to occur in the real world and located in time. For example, an event of putting involves someone placing something somewhere at a particular moment. Importantly, events and participants do not constitute structural units of language like a clause does. For this reason, there is not necessarily a one to one mapping between events and clauses or participants and arguments of the verb (i.e. a clause with a transitive verb with two arguments can still express a 3PE with the third participant expressed as, e.g., an adjunct, the possessor of one of the arguments, or is even evoked by the verb itself but not expressed by an argument or adjunct).

The investigation of 3PEs in Sudest in this work draws on the list of event types provided in Margetts et al. (2019a), which is based on the inventory of types identified by M\&A. As noted above, M\&A define 3PEs as 'dynamic states of affairs that crucially involve three entities in their conceptualization' (p. 397).

Table 2.1 presents the target 3PE types identified by M\&A (p. 398) and updated in Margetts et al. (2019a). Both sources classify an event type as a 3PE if it is (a) expressed as a monomorphemic three-place predicate in at least one language - that is, a classic 'ditransitive' verb with three arguments that can be identifiable by relevant morphosyntactic operations in the specific language and that can be fully referential - or (b) an event is expressed by a monomorphemic two-place predicate and the third participant is included in the verb's semantic representation in at least one language (e.g. instruments in bite or punch) and is also expressed by one of the other 3PE encoded strategies in at least one other language. Margetts and Austin do not differentiate between third participants expressed by an oblique or adjunct given that distinguishing oblique arguments from adjuncts, can be fraught, particularly for less documented languages. They group such constructions together.

Table 2.1 Types of three-participant events (Margetts et al. 2019a)
Type A Agent causes recipient to receive theme:
verbs of discrete or continuous causation of movement of an entity to a recipient give, pass, hand, send, deliver, pay, feed, provide with, sell (s.o. s.th.)
including verbs signifying a deictically specified direction
bring, take (s.o. s.th.)
verbs of instantaneous causation of ballistic motion of an entity to a recipient throw, toss, kick (s.o. s.th.)
Comments: including 'throw s.th. to s.o.' (for them to have, catch) but not 'throw s.th. at s.o.'. Excluding 'inform' etc. which is classified as Type C

Type B Agent causes theme to move to or to be located at location:
verbs of discrete or continuous causation of movement of an entity to or towards a location
cause BE AT location:
put, place, position, leave, keep, hold down, plant, sow, build, fix, attach ... (s.th. s.wh.)
cause MOVE TO location:
bring/take, carry, send, lead, throw, drag, deliver, pull, push, seat, lay, stand up ... (s.th. (to) s.wh.)

Comments: including 'throw s.th. at s.o. or s.th.' but not 'throw s.th. to s.o.'. Excluding caused motion FROM location; which is classified as Type E
Type C Agent acts to communicate information to recipient:
verbs of explication
tell, show, ask, teach, inform of (s.o. s.th.)
Comments: NPs like 'story', 'news', 'joke', 'warning', 'letter', 'picture', etc. are counted as theme participants

- NPs and pronouns are counted as participants, passages of direct or indirect speech are not
- excluding habitual 'calling' events e.g. he (habitually) calls her "aunty", cf. FN 5 In M\&A.
- Excluding 'write a letter' which is classified as Type F

Type D Agent/recipient takes possession of theme from source:
verbs of receiving
receive, learn, inherit, get, hear (s.th. from s.o.)
Comments: In practice 'get' and 'take' verbs can often not be clearly identified as belonging to Type D or Type E. They can be classified as DE
Type E Agent removes theme from R-type possession or location:
verbs of discrete or continuous caused motion FROM location
get, take, send, carry, throw, lead, deliver, pay, provide with, drag, pull, push, wash off (s.th. from s.wh.)
verbs of dispossession from possession
rob, steal, snatch, remove, deprive, ask for, demand (s.th. from s.o.)
Comments: In practice, 'get' and 'take' verbs can often not be clearly identified as belonging to Type D or Type E. They can be classified as DE
Type F Agent intends to cause recipient to receive theme (and it is the activity which creates or makes available the Theme for the Recipient)
verbs of creation
build, cook, make, write, catch, plant, ... (s.th. for s.o.)
verbs of preparation for use,
fill, load, pour (drink), prepare, ... (s.th. for s.o.)
verbs of obtaining
search, hunt, kill, pick, get, take, book, bring, drop off, ... (s.th. for s.o.)

Type G	Agent uses non-body part instrument to impact on or make change to patient: verbs of physical input with non-body part instrument hit, beat, cut, break, kill, cover, pound (s.o./s.th. with instrument), skewer, shovel, snip, spear, join (s.o./s.th.)
Type H	Agent uses body part instrument to impact on or make change to patient: verbs of physical input with body part instrument kick, punch, lick, bite, gore, slap (s.o. /s.th.)
Type I	Conditions of satisfaction imply that agent causes recipient to receive theme: verbs of giving with associated satisfaction conditions promise, lend, guarantee, owe (s.o. s.th.)
Type J	Agent acts to cause recipient to receive theme at some future point in time: verbs of future transfer leave, bequeath, allocate, offer (s.o. s.th.)
Type K	Agent allows recipient to receive theme: verbs of permission and enablement permit, allow, enable, sanction (s.o. [to receive] s.th.)
Type L	Agent causes recipient to not receive or not have access to theme: verbs of refusal refuse, deny, distract, withhold, hide, obstruct access to, (s.o. [from] s.th / s.th. from s.o.)

Margetts and Austin (2007: 396) give the three participants of 3PEs the macro labels A, T and R, in reference to the cross-linguistic patterning of semantic roles that they encounter in much of their data. The A participant is an agent-like participant (M\&A: 396). The R participant is named for the role of recipient but can also have the semantic role of addressee, beneficiary, goal, source, or location (M\&A: 396). The T participant (theme) is an entity (physical or non-physical) that is moved between A and R (M\&A: 396). However, not all participants in the event types identified as 3PEs by M\&A fit into these macro labels. For example, type-G and type-H events (see Table 2.1 above) express events which involve an instrument, and it is not clear whether M\&A subsume this under the notion of the T participant.

The identified types of 3PE can be divided into 12 semantic subgroups. These include the most commonly discussed type of 3PEs in the literature, namely the one in which the agent causes a recipient to receive a theme (type A). They also include events of refusal where the agent causes the recipient to not receive or have access to the theme (type L), and events without a recipient (or location) but an instrument instead, in which the agent uses a non-body part (type G) or a body part (type H) to impact or make a change to a patient. ${ }^{37}$

[^19]
2.4 The morphosyntax of three-participant events: encoding strategies

Margetts and Austin (2007) and Margetts et al. (2019b) identify seven encoding strategies used to express 3PEs in the surveyed languages. Each of these strategies can be further divided into substrategies. Many of the substrategies distinguish how the R and T participant are treated, i.e. which participant is the 'third' participant and not encoded as a core argument of the verb. The patterning shown by R-type substrategies can be compared with direct object/indirective alignment and T-type substrategies with primary object/secundative alignment (see Dryer 1986; Haspelmath 2005a; Malchukov et al. 2010a). Table 2.2 presents the seven encoding strategies identified by Margetts et al. (2019b) building on M\&A (p. 402-3). While the encoding of a single event is not always restricted to just one clause, the current list of event types and the discussion of 3PEs is restricted to those events that are expressed by a single clause.

Table 2.2 Encoding strategies of three-participant events (Margetts et al. 2019b)

4. Incorporation strategy

One participant is expressed by an incorporated nominal.
(a) R-type incorporated nouns
4a
(b) T-type incorporated noun

- Argument status of the incorporated noun can be marked as a subannotation, e.g. $4 \mathrm{c}-1$.

5. Adnominal strategy

The verb takes two arguments. A third participant is expressed as an adnominal dependent of one argument.
$\begin{array}{lll}\text { (f) } & \begin{array}{l}\text { Possessive strategy (R-type) }\end{array} & \mathbf{5 a} \\ & \text { The R-type participant is expressed as the possessor of the theme. } & \\ \text { (g) } & \text { Proprietive strategy (T-type) } & \mathbf{5 b}\end{array}$
(g) $\begin{aligned} & \text { Proprietive strategy (T-type) } \\ & \\ & \text { The T-type participant is expressed as the dependent of the agent. }\end{aligned}$
6. Directional strategy 6

An adverbial directional marker or serialized verb indicates transactional orientation.
7. Absorption strategy

The verb stem (typically the verbal lexeme) includes information about one of the participants.
(a) Direct lexicalization

The verb is formally distinct from any noun denoting the event participants, but its semantics include reference to one of the participants.
(b) Zero derivation

The verb derives by zero-conversion from a noun denoting one of the participants.
(c) Denominal derivation

The verb derives by overt derivation from a noun denoting one of the participants.
(d) Absorbed classifiers or object markers

The verb takes two arguments, but the verb stem has absorbed what used to be 7e a classifier, or an object marker which conveys information about a further participant.
(e) Participant-based event classification

7f
The verb stem carries information about one of the participants and characterises the event with respect to one of the participants.
(f) Affix-based classification

A participant is evoked by a non-pronominal, non-valence-increasing affix (e.g. instrument or manner of causation affixes).

The definitions of the encoding strategies are all predicated on the assumption that the verbal predicate encoding the event is a two-place (monotransitive) or three-place predicate (ditransitive), which may itself be underived or derived. The strategies are defined and labelled according to how the third participant, which is often not an argument of the predicate, is expressed. Verbal arguments, following M\&A's (p. 401) working definition, are unmarked or marked by nominative, accusative, ergative, absolutive, or dative case marking, while obliques and adjuncts are marked by adpositions or cases other than those listed above (e.g. instrumental, allative, ablative, locative, etc.). ${ }^{38}$ In some

[^20]cases, the third participant may be expressed using more than one encoding strategy (M\&A: 437). However, the encoding strategies identified by M\&A do not explicitly deal with cases in which a participant expressed as an argument of the predicate may also be indicated by an additional element in the clause (e.g. by a verbal classifier). This is discussed further in chapter 8 (§8.6).

The remainder of this section discusses in turn each of the encoding strategies and sub-types that are relevant to Sudest. Examples used to illustrate these strategies are taken from other Oceanic languages, and in some cases from non-Oceanic Austronesian languages. The discussion also highlights the differences between the encoding strategies set out in M\&A and the revised strategies proposed by Margetts et al. (2019b). The revised strategies supersede previous strategy lists. Further discussion and examples, particularly for the strategies not discussed here, can be found in Margetts $(2002,2007)$ and M\&A.

2.4.1 Three-place predicate strategy

In the three-place predicate strategy, all three participants are expressed as syntactic arguments of the verb (M\&A: 403). The strategy is divided into substrategies based on whether the predicate is underived or derived: the direct-argument strategy, the causative strategy, and the applicative strategy (M\&A: 403). As the names suggest, the causative and applicative strategies form threeplace predicates through the addition of causative and applicative derivational morphology respectively.

Three-place predicates, particularly direct argument strategy constructions, have received the most attention cross-linguistically in the literature. They are common in English (e.g. Billy gave her the toy truck, Sam's uncle left him a fortune, Micha carried the baby to the house). Three-place predicates are, however, far less common in Oceanic languages. In a survey of 28 Oceanic languages, Margetts (2007) finds that just over half of the languages (15 or 54%) do not have any three-place predicates. Of the languages that do, typically the language will only have between one and five verbs of this type in total (Margetts 2007: 75). The most common type of three-place predicates attested in Margetts' (2007) Oceanic survey are applicative strategy constructions. In contrast, only the direct-argument and causative substrategies are found in Sudest.

The direct-argument substrategy consists of an underived verb that takes three core arguments, i.e., an underived three-place predicate (M\&A: 403). ${ }^{39}$ Examples of the strategy from Tawala (Papuan Tip, PNG) are shown in (1) and (2). There are two attested direct-argument strategy verbs in Tawala:

[^21]wele 'give' and hagu 'help (s.o. with s.th.)' (Ezard 1997). In (1) and (2), the R-type participant is indexed on the verb by an object suffix. In (1), it is also cross-referenced by a NP lawa 'people'. The T-type participant is expressed by an unmarked NP; aniani po muhala 'vegetables and meat' and om bagibagi 'your work' in (1) and (2) respectively.

TAWALA (PAPUAN TIP, PNG)

ega	aniani	po	muhala	lawa	ta-wele-hi
NEG	vegetable	and	meat	people	1INCL-give-3PL

(Ezard 1997: 103)

apo	om	bagibagi	hi-na-hagu-m
FUT	2SG.POSS	work	3PL-POT-help-2SG

'if they help you (with) your work'
(Ezard 1997: 102)

The patterning of the three arguments in the Tawala examples is typical of Oceanic languages with underived three-place predicates. In Margetts' (2007) survey, of the seven languages with the threeplace predicate strategy, five show primary object alignment like this, i.e. encoding the R-type participant in the same way as the patient-like object of two-place predicates.

In the causative substrategy, a three-place predicate is derived from a two-place predicate through the addition of causative morphology. The example pairs in (3) and (4) from Mekeo (Papuan Tip, PNG) show the two-place predicates $a f i$ 'take' and inu 'drink' in (3a) and (4a) respectively followed by causativised ditransitive examples with the causativiser $p a-$ 'CAUS' in (3b) and (4a).
(3) MEKEO (PAPUAN TIP, PNG)
a. a? iva la-afi-a
knife 1SG-take-3SG
'I took a/the knife'
(Jones 1998: 86)
b. moni a-la-pa-afi-o
money FUT-1SG-CAUS-take-2SG
'I will give you the money'
(Jones 1998: 350)
(4) a. tsi mijia-ŋа $a-i n u-a$
tea sweet-3SG.POSS 1SG-drink-3SG
'I drink sweet tea'
(Jones 1998: 187)
b. otsi vei la-pa-uni-pa-a
horse water 1SG-CAUS-drink-THC-3SG
'I water the horse (lit. I cause the horse to drink water)'
(Jones 1998: 318)

The causative strategy is the least common strategy overall in Margetts’ (2007) sample of Oceanic languages, with just five languages (17\%) attested to have this type of three-place predicate. However, it is found in all three Papuan Tip languages in the survey.

2.4.2 Oblique and adjunct strategies

In the oblique and adjunct strategies, a monotransitive verb takes two arguments. The third participant is expressed as an oblique or adjunct, usually by a NP marked by an oblique case (e.g., locative, comitative, instrumental, etc.) or by an adpositional phrase (M\&A: 411). Although it is theoretically possible to distinguish between the oblique and adjunct strategies - the former is subcategorised for by the verb while the latter is not - it can be exceedingly difficult to do this in some cases (M\&A: 411). Due to their similarities and the potential issues surrounding their division, M\&A group the two strategies together.

The oblique/adjunct strategies are divided into two subtypes depending on which participant is expressed by the oblique/adjunct (M\&A: 413-5). In the R-type substrategy, the R-type participant is expressed by an oblique/adjunct, and the verb takes A and T as syntactic arguments. In the Ttype strategy, the T-type participant is the one encoded by an oblique/adjunct. Margetts (2007: 88) posits that the oblique/adjunct strategy is the most widespread strategy crosslinguistically. It is certainly widespread among the Oceanic languages, where the third participant is usually marked by an adpositional phrase, and only rarely by a case marker (Margetts 2007: 88).

Araki (North Vanuatu linkage, Vanuatu) has both R-type and T-type oblique constructions (François 2012). One group of verbs that express 3PEs always occur in R-type oblique/adjunct constructions, while a second group of three verbs (sle(i) 'give', varia 'show', vse(i) 'tell') show an alternation between the R-type and T-type constructions. This alternation is dependent on an underlying referential hierarchy: \pm local (i.e., speech-act participants or third person) and \pm human (François 2012: 108-19). Consider the examples presented in (5) and (6). The theme participants in (5) are chickens while the recipient is first person singular. Because of this, the human recipient is encoded by an object suffix on the verb $-a^{\prime} 1 \mathrm{SG}$ ' and the chickens, which are lower on the hierarchy, are encoded by a PP, making it a T-type substrategy construction.

(5) ARAKI (North VANUATU, VANUATU)

$\begin{array}{llll}o=v s e i-a ́ & l o & p l a-m & \text { to } \\ \text { 2SG.IRR=show-1SG } & \text { LOC } & \text { FARMING-2SG.POSS } & \text { chicken }\end{array}$
'show me your chickens'
(François 2012: 113)

In (6), it is the first-person theme that is higher on the referential hierarchy than the third person recipient. The encoding is, therefore, reversed with the theme expressed by the object suffix and the recipient by the PP headed by the dative preposition $s a$.

$$
\begin{array}{ll}
o=p a=v s e i-a ́ & \text { sa-na } \\
2 \text { SG.IRR=FUT=show-1SG } & \text { DAT-3SG } \\
\text { 'will you show me to her'' } & \tag{François2012:113}
\end{array}
$$

Margetts et al.'s (2019) updated encoding strategies further distinguish oblique/adjunct substrategies in cases where applicative or causative morphology is involved in the expression of the 3PE. The R-type and T-type oblique/adjunct applicative substrategy replaces the 'oblique applicative' substrategy listed in A\&M. The amended substrategy allows for the distinction between R-type and T-type oblique/adjunct constructions that include applicative morphology. In this substrategy, the applicative introduces an applied object that is simultaneously expressed as an oblique/adjunct. The Tawala example in (7) shows a R-type oblique/adjunct applicative strategy construction. The use of the applicative $-e$ 'TR' with the verb bah' 'say' derives a verb 'say something to someone', in which T is both marked on the verb by the object suffix and as an oblique by the PP , while R is expressed as secondary object by an unmarked NP .
(7) Tawala (Papuan Tip, PNG)

lugagayo	atapu-hi bada all-3PL i-bah'-e-hi law man	3SG-say-TR-3PL	lawa	person	LOC-3PL

the official recited all the laws to the people
(Ezard 1997: 289, cited in Margetts \& Austin 2007: 90)
Margetts et al. (2019b) introduce a further distinction in cases where causative morphology plays a role in the construction. The oblique/adjunct causative substrategy introduces an agent encoded as the subject of the verb rather than an R or T-type participant. Like the applicative substrategy, the causative substrategy distinguishes whether it is R or T that is expressed by the oblique/adjunct. The example from Ughele (Meso-Melanesian, Solomon Islands) presented below shows an underived transitive clause with ko 'be' (8) followed by an R-type causative oblique/adjunct construction (9). The derived verb va-ko 'CAUS-be' means 'put'. It takes a new agent as the subject of the verb (ghoi ' 2 SG'), and demotes the agent of the intransitive verb to object position.
(8) UGHELE (Meso-Melanesian, Solomon Islands)
ko rie pa vanua
be 3PL LOC house
'they were staying at home'
(Frostad 2013: 136)
(9) pa vei tughu va-ko-a ghoi na buka taga rau?

LOC where EMPH CAUS-be-3SG.OBJ 2SG ART book POSS 1SG
'where did you put my book?'
(Frostad 2013: 121)

2.4.3 Serial verb strategy

In the serial verb strategy, two or more verbs form a complex construction and share the three participants as arguments (or arguments and an adjunct) between them. Like the oblique/adjunct strategy, A\&M distinguish sub-types of the strategy depending on whether it is the R-type participant or T-type participant that is introduced by the serial construction.

The examples in (10) and (11) show R-type serialised 3PE constructions in Kokota (MesoMelanesian, Solomon Islands). The verb tufa 'give' functions as a benefactive/malefactive in serial verb constructions (Palmer 2009: 212). When it occurs as the final stem in these constructions, it introduces an R-type participant as an object of the verb complex, encoded by an object enclitic. In (10), tufa 'give' adds an addressee to the clause in a verb complex with turi 'tell'.
(10) Kокота (Meso-MElanesian, Solomon Islands)

ara-hi	a	turi	tufa=nigo	kaike	tu-turi
1-EMPH	1EXCL	tell	give/affect=2SG	one	RED-tell

'I'm going to tell you a story'
(Palmer 2009: 174)
The clause in (11) describes a cutting event. The addition of the third verb stem in the sequence, tufa 'give', specifies that the wood chopping is done for a beneficiary. As the clause in (11) is an imperative, a second person subject marker is omitted (Palmer 2009: 331).

toka	fa-nhigo	tufa=nau	gazu	ine
chop	CAUS-be.finished	give/affect=1SG	wood	this(within.reach)

(Palmer 2009: 176)
R-type serialised participant constructions, particularly those with 'give' verbs that add a beneficiary or recipient, are a common type of construction (M\&A; Margetts 2007). T-type serialised participant constructions are not as common in Oceanic languages. Margetts (2007: 92) identifies a single example from Tobati (Sami/Jayapura Family, Indonesia), which is presented in (12). ${ }^{40}$ Tobati speakers did, however, give the caveat that they preferred a single-verb construction with an instrument case marker.
(12) TObati (NORTH NEw GUINEA, INDONESIA)
nehu adu-re wa hony-re hu
1SG stone-FOC take dog-FOC throw
'I threw a stone at the dog' (Donohue 2002: 198, cited in Margetts 2007: 92)
Another example comes from Tetun Dili (Timor-Babar/Timoric, Timor). In this serial verb, the V_{1} lori 'take' introduces an instrument participant:
(13) Tetun Dili (Timoric, Timor-Leste)
abó lori tudik ko'a paun
grandfather take knife cut bread
'grandfather used the knife to cut the bread'
(Hajek 2006: 241)

[^22]In some cases, the third participant is an oblique/adjunct and not a direct argument of the multiverb construction. In the example from Kele (Admiralties, PNG) in (14), the intransitive verb to ‘stand' introduces a source PP hen eluh 'from Eluh'.
(14) KELE (ADMIRALTIES, PNG)

tamet	i-kuni	pamei	i-to	hen	eluh
Tamet	3SG-take	betelnut	3SG-stand	LOC	Eluh

'Tamet took betelnut from Eluh'
(Ross 2002a: 139)

The verb tar 'give' often occurs in multi-verb constructions to introduce a recipient PP to the action of the V_{1} stem in Tolai (Meso-Melanesian, PNG) (Mosel 1984), as in (15) and (16) with the V_{1} stems tak 'pick up' and kaile 'sing' respectively.
Tolai (MESO-MELANESIAN, PNG)

$\ldots m a$	$d i a$	tak-tar	$i a$	$t a=g u$
and	3PL	pick.up-give	3 SG	to $=1 \mathrm{SG}$

' ... and they gave it to me'
(Mosel 1984: 144, cited in Margetts 2007: 94)

$$
\begin{array}{rllllll}
\text {...ma } & i & g a & \text { kaile-tar } & a & \text { malira } & \text { ta-diat } \tag{16}\\
\text { and } & \text { 3SG } & \text { REMOTE } & \begin{array}{l}
\text { sing-give }
\end{array} & \text { ART } & \text { love.spell } & \text { to-3PL }
\end{array}
$$

'...and he sang a love spell to them' (Mosel 1984: 128, cited in Margetts 2007: 94)
In some languages, including many of the Oceanic languages, there is a diachronic connection between directional verbs in serial verb constructions and adverbial directional markers with meanings like 'hither' and 'thither' (Ross 2004). Given the link between these construction types (at least in Oceanic) and that the difference between them can be a matter of the degree of grammaticalisation, Margetts et al. (2019b) classify some types of serial verb constructions with directional stems as a subtype of the directional strategy (see §2.4.5 for discussion of directional serial verb constructions that are now classified as the directional strategy). Multi-verb constructions with a directional verb that are still analysed as serial verb strategy constructions are those in which the inclusion of the directional verb introduces the expression of the third participant. An example of this can be found in the Jabêm (New Guinea Oceanic, PG) clause below in (16). Locomotion verbs like $p^{w} a n \partial$? 'insert' do not entail directionality (Ross 2002: 285). To specify directionality, a directional verb such as sep 'descend' is added which can also take a bare locative adjunct NP with no adposition (Ross 2002; 286).

(17) JABÊM (NEW GUINEA OCEANIC, PNG)

[^23]
2.4.4 Adnominal strategy

The adnominal strategy of expressing 3PEs involves a two-place predicate with the third participant indicated by an adnominal dependent on one of the verb's arguments (M\&A: 426). There are two substrategies of the adnominal strategy: the possessive strategy and the proprietive strategy. These can be compared to the R-type and T-type substrategies that are found in the other encoding strategies. In the possessive strategy, the R-type participant is expressed as the possessor of the theme, while in the proprietive strategy, it is the T-type participant that is a dependent of the agent. The possessive adnominal strategy is well-documented in the Oceanic languages (Song 1997; 1998; 2005; Lichtenberk 2002; Margetts 2007). In some Oceanic languages, the construction is so grammaticalised that only a benefactive interpretation is possible, while in others, both the original possessive interpretation and possessor as beneficiary interpretation are semantically compatible (M\&A: 427; Margetts 2007: 110-1). The proprietive strategy is a very uncommon strategy crosslinguistically and is unattested among the Oceanic languages (see M\&A (pp. 428-9) for discussion and examples of the strategy).

The strategy is attested in Vera'a (North Vanuatu linkage, Vanuatu). The language has two indirect possessive constructions, only one of which can have a benefactive reading. The benefactive reading is only possible (but not obligatory) with possessive constructions in which the classifier and, if present, the possessor, precedes the possessed noun. This is the case in (18) with le 'give, take'; the resulting clause has a caused-possession reading in which the possessor is interpreted as the recipient of the transfer event.

(18) Vera'a (North Vanuatu linkage, Vanuatu)
 nik è le=n go-k èn va'al
 2SG TAM give/take=ART POSS.EAT-1SG ART banana

'give me a banana [to eat] (lit. give'/take my banana)'
(Schnell 2012: 132)
In the second construction, exemplified in (19) also with the verb $l e$ 'give, take', the possessed noun precedes the possessive classifier and possessor, and the resulting event does not have a benefactive interpretation.

$d i r=k$	$l e=n$	$n a k$	$s u-s u \bar{o}$	$m u-g i=k$	$s u \bar{o}$
3PL=TAM	give/take=ART	canoe	RED-paddle	POSS.GNRL-3SG=TAM	Paddle pen
away					
'they took his canoe and paddled away'		(Schnell 2012: 141)			

2.4.5 Directional strategy

In the directional strategy the verb takes two arguments, and a directional element in the verb complex indicates the transactional orientation of the event (Margetts et al. 2019b). The third participant implicated by the directional morpheme is an R-type participant with the semantic role of goal, recipient, beneficiary, or addressee (Margetts 2007: 97). Margetts et al. (2019b) identify two directional elements: adverbial directional markers, as discussed in M\&A (p. 430), and directional verbs in serial verb constructions (Margetts et al. 2019b). A third type of directional strategy is also identified in Sudest: using associated motion prefixes to indicate transactional orientation (see §7.6.3). In some languages, the directional element alone can introduce an R-type participant. In other languages, however, an adjunct or oblique type markers may also be required (Margetts 2007: 98). This results in a combination of oblique/adjunct strategy and directional strategy construction.

The adverbial directional marker substrategy is widespread among Oceanic languages (Margetts 2007: 96-102). Many Oceanic languages have directional markers that follow the verb stem(s) in the verb complex (Lynch et al. 2002: 46). The directional markers are descended from directional verbs in serial verb constructions in Proto-Oceanic (Ross 2004: 311). The specific number of directional adverbials and distinctions made by them vary from language to language, but frequent distinctions include a binary contrast 'towards speaker' and 'away from speaker' or a ternary contrast 'towards speaker', 'towards addressee', and 'away from both' (Margetts 2007: 98). A ternary system is found in the Papuan Tip language Misima, as shown in (20) to (22). In (20) and (21) the directional suffixes -im 'towards speaker' and -iwa 'towards addressee' are the only indication of a third, R-type participant, while in (22) the suffix -ik 'towards third person/away (from speaker and addressee)' occurs with a PP with the semantic role of goal.
MISIMA (PAPUAN TIP, PNG)

wawaya \quad u-nana-he=an-im
child

'bring the child up to me'
(21) henala baba ya i-baun=an-iwa?
who word this 3SG-say=3-towards.ADDR
'who told you that word?'
(W. Callister 1985a: 8)
(W. Callister 1985a: 51)

u-pwat=an-ik	limi-ya
2SG.R-move=3-away(from.speaker)	house-LOC
'take it/them to the house'	

(W. Callister 1985a: 49)

As mentioned in §2.4.3, the second type of directional substrategy involves directional verbs in serial verb constructions rather than grammaticalised directional markers. Margetts and Austin (2007) analyse all directional serial verb constructions as instances of the serial verb strategy. Given that the distinction between adverbial directional and directional verb in a serialised construction is not always clear-cut but rather a matter of the degree of grammaticalisation, Margetts et al. (2019b) prefer to classify some types of directional multi-verb constructions as a subtype of the directional strategy. In cases where the directional verb in the construction only indicates directionality towards a (potential) third participant, the 3PE is analysed as a type of directional strategy construction (Margetts et al. 2019b). In practical terms, this means that serialised verbs with a directional stem are classed as the directional strategy in cases where the third participant can also be encoded by an NP or PP with a target concept/verb, regardless of whether the directional verb is present or not (Margetts et al. 2019b). ${ }^{42}$

Some serial verb constructions with directional verbs in Saliba-Logea (Papuan Tip, PNG) can be analysed as examples of the directional strategy. Consider the examples in (23) to (25). In (23), the transitive verb gabae 'throw' does not occur in a serialised construction with a directional verb but can still take a PP with the semantic role of goal. In (24) and (25), gabae 'throw' occurs with the directional verb dobi 'go down' in a serial verb construction. In (24), the third participant is indicated by both a PP with the semantic role of goal and by the directional verb dobi 'go down' -

[^24]making it a combination oblique/adjunct and directional strategy construction - but in (25), the directional verb is the only indication of the third participant.

Saliba-Logea (Papuan Tip, PNG)

wawayo-o	wa	ye-gabae-di	tenema- i
child-PL	ANA	3SG-throw-3PL	DIST-LOC

'he abandoned the children there (lit. he threw the children there)' (Dawuda 2009: 62)

$$
\begin{array}{llll}
\text { se-gabae-dobi-yei- } \varnothing & \text { gana-kano } & \text { ne } & \text { unai } \tag{24}\\
\text { 3PL-throw-go.down-TR-3SG } & \text { fence-inside } & \text { DIST } & \text { PP.SG }
\end{array}
$$

'they throw it (human body) down into that inside part (of the drum)'
(Dawuda 2009: 321)
se-gabae-dobi-ei- \varnothing
3PL-throw-go.down-TR-3SG
'they throw it down'
(Margetts 1999: 103)
In cases where it may be unclear whether a certain serial verb construction is an instance of the serial verb or directional strategy, Margetts et al. (2019) propose that the construction should be coded as an instance of the directional strategy until further data and/or analysis indicates otherwise.

The directional serial verbs that can be analysed as instances of the directional strategy in the updated encoding strategies is larger than those in M\&A's serial verb strategy. This is because directional serial verbs without an overt expression of a third participant in the form of an NP or PP are also considered expressions of 3PEs by Margetts et al. (2019b). However, not all directional serialised verbs can necessarily be analysed as expressing a 3PE. If there is not a clear endpoint implied by the directional verb due to the context and/or verbal semantics, the clause is not analysed as a 3PE (e.g. 'put up' in 'put up the fish smoker' where 'up' does not imply a goal).

2.4.6 Absorption Strategy

In the absorption strategy, information about the third participant is included in the verb stem, typically - but not always - in the verbal lexeme (Margetts et al. 2019b). Margetts et al. (2019b) identify six substrategies of the absorption strategy: the direct lexicalisation strategy, zero derivation strategy, denominal derivation strategy, absorbed classifier or object marker strategy, participant-based event classification strategy, and the affix-based classification. The current definition of the strategy differs from previous definitions (M\&A: 431; Margetts 2007: 116) in that the element carrying information about a third participant does not have to be the verbal lexeme itself, but can also be an affix, as is the case for the affix-based classification substrategy.

The absorption strategy is different from the other encoding strategies in that the expression of the third participant is not necessarily a matter of argument structure and syntactic expressions. Because
of this, as M\&A point out, it can be hard to determine 'what counts as information "included" in the verb [stem]' (p. 432). Should information that is implicated count or only information that is entailed? Making these distinctions would require a very fine-grained (and time-intensive) semantic analysis of each individual verb, and could be subject of a study in its own right. A detailed account of the absorption strategy in Sudest is therefore beyond the scope of this thesis. Nevertheless, the strategy should not be ignored completely and in particular the affix-based classification substrategy will be considered as it has a prominent role in the encoding of some types of 3PEs.

All six substrategies of the absorption strategy are attested in the Oceanic languages (Margetts 2007), However, only the direct lexicalisation, zero derivation, and affix-based classification strategies are attested in Sudest. In the direct lexicalisation strategy, the semantics of the verb include reference to a third participant, although the verb stem itself is distinct from any noun denoting the participant (Margetts et al. 2019). ${ }^{43}$ Common examples from English like bite, gore, and kick include information about an instrument participant - i.e. teeth, horn/tusk, and foot/feet respectively. Similar examples can also be found in Oceanic languages, as in the Toqabaqita (Southeast Solomonic, Solomon Islands) and Kokota (New Ireland/Northwest Solomonic, Solomon Islands) examples with qale 'bite' (26) and dupa 'punch' (27).
(26) TOQABAQITA (GUADALCANAL-GELIC, SOLOMON ISLANDS)

thaama-ka	$q a e!$	teqe	kui	mai	nena,	ada	$k a$
father-INCL.PERS	VOC	one	dog	VEN	there(2)	TIM	3SG.INT

bite INCL
'Oy!, there is a dog over there; it might bite us'
(Lichtenberk 2008: 383)
(27) Kokota (NEw Ireland/Northwest Solomonic, Solomon IsLands)
manei n-e-ke dupa=nau ara
3SG RL-3SG-PFV punch=1SG 1SG
'he punched me'
(Palmer 2009: 193)

In the example of the direct lexicalisation substrategy from Tolai in (28), it is the participant with the semantic role of theme that is indicated by the verb tabar 'give food'. The participant is also expressed here by an optional PP.

[^25]| TOLAI (M | SO-MELA | N, PNG | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ...upi so.that | $\begin{array}{ll} \text { dia } & g a \tag{28}\\ \text { they } & \text { TAM } \end{array}$ | tabar
 give.food | nam
 DEM | $\begin{aligned} & r a \\ & \text { ART } \end{aligned}$ | umana
 PL | Iapan
 Japan | $m a$ with | ta some |
| umana kakaruk PL \qquad chicken | | | | | | | | |
| '... (they were asked) to give chicken to the Japanese' | | | | | | | | |
| (Mosel 1984: 144, cited in Margetts 2007: | | | | | | | | |

In the zero derivation substrategy, the verb indicating the third participant is derived from a noun denoting the third participant without any derivational morphology. In the Saliba example presented below, the noun tuha 'poison root' functions as a verb meaning 'kill with poison root' and specifies the instrument of the event:
SALIBA (PAPUAN TIP, PNG)
yama se-tuha
fish \quad 3PL-poison.root
'they killed fish with poison root'
(Margetts 2007: 118)

Margetts et al. (2019b) include a sixth substrategy that is labelled the affix-based classification substrategy. In this substrategy, a third participant is indicated by a non-pronominal, non-valenceincreasing affix such as an instrument or manner-of-causation affix. Prefixes that indicate the manner of causation of an event are attested in a number of other Oceanic languages (Ezard 1978; Margetts 2007; Osumi 1995; Ozanne-Riverre \& Rivierre 2004; Lichtenberk 1983; Ross 2002b) (see $\S 5.2$ for further discussion of these prefixes in Oceanic languages). They are often labelled 'classificatory prefixes' in the Papuan Tip literature (e.g. Ezard 1978). The manner semantics of the prefixes frequently evoke a specific type instrument participant; common instruments indicated by the prefixes include body-part instruments like hands, teeth, and feet, or non-body part instruments like blades and pointy objects like sticks and spears. W. Callister (1985a: 3-5) describes Misima 'classificatory prefixes', some of which appear to be good candidates for the affix-based classification substrategy. In examples (30) to (32), the prefixes ala 'with teeth', go 'with knife' and hana 'with trunk (of a person or object)' occur with verbs of breaking and evoke an instrument participant.

> MISIMA (PAPUAN TIP, PNG)
> ala-gebal
> with.teeth-break
> 'break it with teeth'
(W. Callister 1985a: 4)
(31)
go-tomwa
with.knife-cut
'cut it up with a knife'
(W. Callister 1985a: 4)

> hana-gabom
> with.trunk(person/thing)-break
> 'break it (by leaning or bumping against theme)'

(W. Callister 1985a: 4)

Verbal modifiers indicating the involvement of an instrument participant are not restricted to Oceanic languages, and, for example are widely attested in multiple language families of North America (Mithun 1999: 118-26).

The affix-based classification substrategy is not included in M\&A, but Margetts (2007) does identify the strategy, labelling it as the 'classifier strategy'. She considers it as a substrategy of the 'verbal modifier strategy' along with the directional strategy. Grouping the two strategies together makes sense in the context of the Oceanic languages, as they both diachronically come from verb stems in multi-verb constructions that have grammaticalised (Bradshaw 1982; Lynch et al 2002; Verkerk \& Frostad 2013). Margetts et al. (2019) include the affix-based classification substrategy as a type of absorption, despite the fact that the information evoking the third participant is not strictly absorbed into the verbal lexeme. They argue for this categorisation because affix-based classification supplements the absorbed classifier/object marker substrategy. As discussed in §5.2, data from Sudest clearly demonstrate that constructions in which a still-productive, unabsorbed morpheme separate from the verbal lexeme can also play an important role in the expression of 3PEs and, therefore, need to be included in the typology.

A further issue that is highlighted when considering the absorption substrategies is that the definition of the encoding strategy has an inbuilt assumption that the information included in the semantics of the verb lexeme or affix relate to a third participant and not to an argument of the verb. Indeed, all of the encoding strategies only specify the expression of the third participant with the two other participants (assumed to be) encoded as core arguments of the verb. Such definitions automatically disregard cases where a verbal lexeme or affix carries information about one of the argument participants. A consequence of this is that verbal classifiers, which operate on an absolutive basis (Keenan 1984), are not taken into consideration in the coding of 3PEs despite their important role in the expression of handling and transfer events in some languages (see Mithun 1999; Aikhenvald 2000). This topic is discussed further in chapters 7 and 8 (see also $\S 5.2$ for a description of the Sudest verbal classifiers).

2.5 Corpus annotation of 3PEs

In order to investigate the event types, their encoding strategies, and their frequencies, the entire Sudest corpus was coded for 3PEs. The updated 12 event types from Margetts et al. (2019a) were used as a starting point for corpus searches (see Table 2.1 for list of event types). The corpus was
searched for both Sudest and English ${ }^{44}$ target words. Once identified, each 3PE token was tagged in a custom tier with a three-part annotation, noting the event type, the specific concept, and the encoding strategy. Cases where a target verb occurs but does not express a 3PE were also coded as such. Consider the two examples in (33) and (34), both with the verb wo 'get (singular rigid entity)'. Example (33) shows a 3PE with the third, R-type, participant expressed as an adjunct PP. The event expresses a Type-E event in which an agent removes a theme from a location. Because the R-type participant is expressed as an adjunct, this is a token of the R-type oblique/adjunct strategy. The resulting code in the corpus is therefore ' $\mathrm{E}(\mathrm{get}) 2 \mathrm{a}$ '.

ela=ma	$i=w o$	$n d e g h i=m a$	e	$m b w a=m a$	variye
woman=DET	3SG=GET.SG.RIGD	$n d e g i=m$ cup=DET	PREP	water=DET	container
tine					
inside					
the woman gets the cup from inside the water container					

$$
\text { (put_stimuli_191015_02_02 086-87, } 592.593 \text { 601.682) }
$$

In (34), there is no expression of a third, source participant and the event is consequently not counted as a 3PE token (this is coded as ' X (get)' in the annotation tier). ${ }^{45}$

wevo=ko	$i=w o$	sises	$i=k i-$ ten $=a$	kaliko
young.woman=DIST	3SG=GET.SG.RIGD	scissors	3SG=by.cutting-break=YA	cloth
'the woman gets the scissors (and) cuts the cloth'				

(cb_stimuli_051016_02_02 124, 903.213 906.758)
The application of the coding to the corpus resulted in a searchable database that enables the filtering of results by event type, specific events, and encoding strategy which in turn allows for the investigation of a wide range of 3PE related questions. ${ }^{46}$

[^26]
3 Grammatical sketch

3.1 Introduction

This chapter provides a grammatical overview of Sudest. The topics covered give a basic understanding of the language and provide a background for the focus of the study. There are two previous sketch grammars of the language. Anderson and Anderson (1991) is an unpublished manuscript and M Anderson and Ross (2002) is a shorter, published sketch grammar, henceforth referred to as A\&A and A\&R respectively. ${ }^{47}$ The current grammatical sketch is based on corpus and elicitation data collected for the present study, but references the previous sketch grammars where relevant.

As noted earlier, Sudest is a nominative-accusative head-marking language with SV/AVO constituent order (see also the typological profile in §1.4.1). The current chapter is ordered as follows: $\S 3.2$ outlines the phonology of Sudest; $\S 3.3$ discusses the major (and some minor) word classes; and $\S 3.4$ describes the noun phase. Section 3.5 describes basic verbal clauses in $\S 3.5 .1$, and the major types of non-verbal clauses in § 3.5.2. Finally, $\S 3.6$ describes clause combinations and §3.7 outlines negation.

3.2 Phonology and orthography

With 33 consonants, Sudest has a relatively large phoneme inventory for an Oceanic language. A main characteristic of the phoneme system is the contrast between plain consonants and labialised, prenasalised, and prenasalised labialised consonants. Prenasalised and labialised consonants are common features among the Oceanic languages of Melanesia (Lynch et al. 2002: 34-5). The Sudest phoneme system presented here is based on A\&R (2002: 322-4), with amendments and supporting data drawn from the current project. Table 3.1 presents the Sudest consonant phonemes of the language.

[^27]| | bilabial | labiodental dental | alveolar | alveopalatal palatal | velar |
| :---: | :---: | :---: | :---: | :---: | :---: |
| stop | $\mathrm{p} \quad \mathrm{b}$ | | t d | | $\mathrm{k} \quad \mathrm{g}$ |
| labialised stop | $\mathrm{p}^{\mathrm{w}} \quad \mathrm{b}^{\mathrm{w}}$ | | | | $\mathrm{k}^{\mathrm{w}} \quad \mathrm{g}^{\mathrm{w}}$ |
| prenasalised stop | ${ }^{\text {mb }}$ | | ${ }^{\text {n }}$ d | | Ig |
| prenasalised labialised stop | $\mathrm{m}^{\mathrm{b}}{ }^{\text {w }}$ | | | | ${ }^{\text {g }} \mathrm{g}^{\text {w }}$ |
| nasal | m | | n | n | y |
| labialised nasal | $\mathrm{m}^{\text {w }}$ | | | | $\mathrm{y}^{\text {w }}$ |
| fricative | | v ð | s | | 8 |
| labialised fricative | | V^{w} | | | $8^{\text {w }}$ |
| affricate | | | | dz | |
| prenasalised affricate | | | | ${ }^{\mathrm{n}} \mathrm{d}_{\text {¢ }}$ | |
| trill | | | r | | |
| approximant | | | | j | w |
| lateral approximate | 位 | | 1 | | |

Table 3.1 Sudest consonants (based on Anderson and Ross 2002: 322)
The velar fricative $/ \gamma /$ has an allophone $[\mathrm{h}]$, which occurs before the back vowels $/ \mathrm{o} /$ and $/ \mathrm{u} /$. Anderson and Ross (p. 322) note that the labialised velar fricative $/ \gamma^{w} /$ has two allophones $\left[\gamma^{\mathrm{w}}\right]$ and [h^{w}] in apparent free variation. In the current dataset, only $\left[\mathrm{h}^{\mathrm{w}}\right]$ is attested.

There are six vowels found in Sudest, as presented in Table 3.2 below:

	front	middle	back
close	i		u
mid-open	e	∂	o
open		a	

Table 3.2 Sudest vowels
A contrast does exist between long and short vowels, illustrated by the minimal pairs (1):
(1)
ma
u
thonggo
'already', 'bird'
'friend'
'if'
maa
uu
thoonggo
'NEG'
'clan'
'deep sea, saltwater’

However, long vowels are uncommon. The majority of orthographically repeated vowels (e.g. 'aa', 'oo') in the corpus are the result of reduplication and are in separate syllables belonging to the base and reduplicant (e.g. ama-amala /a.ma.a.ma.la/ 'men' and utu-utu /u.tu.u.tu/ 'talking' or 'story'). This separation implies a process of glottal stop insertion (i.e. [amaPamala] and [utuPutu]) (see §3.3.2.3 and §3.3.3.1.1 for discussion of verbal and nominal reduplication).

All vowel sequences are rising, i.e. /ai/, /ae/, /ao/, /au/, /ei/, /eu/, /oi/, /ou/. The schwa/2/does not occur in any vowel sequence. Vowel sequences are not analysed as diphthongs; evidence for their monophthong status comes from reduplication rules. ${ }^{48}$ When reduplicated, a vowel sequence is

[^28]'split', as shown in the following examples listed in (2). Thus, the second vowel in a sequence is analysed as a separate syllable from the preceding vowel
(2) kaiwo \rightarrow ka-kaiwo
mwaewo \rightarrow mwa-mwaewo
$v a o n a \rightarrow v a$-vaona
thoi \rightarrow tho-thoi
morouma \rightarrow moro-morouma

```
'work' \(\rightarrow\) working'
'greet' \(\rightarrow\) 'greeting'
'count' \(\rightarrow\) 'counting'
'leak' \(\rightarrow\) leaking'
'k.o. fish (singular)' \(\rightarrow\) 'k.o. fish (plural)'
```

Syllable structure is $(\mathrm{C}) \mathrm{V}(\mathrm{N}) .{ }^{49}$ The labialised, prenasalised, and prenasalised labialised consonants are analysed as unit phonemes and there are no consonant clusters. Stress is not always predictable; however, it frequently falls on the penultimate syllable (or the antepenultimate syllable, if the penultimate syllable contains a schwa).

Throughout the thesis and the corpus, I use the orthography set out in A\&R (p. 324), which has also been adopted by Sudest speakers. It differs from the phonemic symbols presented in Table 3.1 and Table 3.2 in the following ways: $/ \gamma /$ is written as $g h, / \mathrm{y} /$ as $n y, / \delta /$ as $t h$ and $/ \mathrm{y} /$ as $n g .{ }^{50}$ The schwa is written as \dot{i}. Superscripts are written as ordinary letters; thus, $/ \mathrm{b}^{\mathrm{w}} /$ becomes $b w, /{ }^{\mathrm{m}} \mathrm{b}^{\mathrm{w}} /$ becomes $m b w$ and so on, $/ \mathrm{g} \mathrm{g} /$ and $/ \mathrm{g} \mathrm{g}^{\mathrm{w}} /$ are written as $n g g$ and $n g g w$ respectively, and $\widehat{\mathrm{d} z}$ and ${ }^{\mathrm{n}} \widehat{\mathrm{d}}$ are written as j and $n j$.

Declaratives, imperatives, and interrogatives can generally be distinguished based on intonation. The following observations are made based on simple auditory analysis. The pitch trace shown in examples (3) to (6) illustrates these three clause types. Declarative clauses typically show falling intonation - particularly clause-finally, as in (3) and (4).
(3)

'they were afraid of their father' (fp_stimuli_191015_02 166, 461.981 463.511)
(4)

4) rama-ø ne i=mararu=inda
father-3SG.POSS FUT 3SG=be.afraid=1INCL
'father will be afraid of us' (couples_story_101214 031, 94.380 96.680)

[^29]Polar (yes-no) questions are syntactically identical to declarative sentences. They can be identified by the rising intonation on the penultimate syllable followed immediately by falling intonation on the final syllable. This is shown in the pitch trace in (5).

(couples_story_101214 046, 125.510 127.990)
Prototypical imperatives, including prohibitions like the one shown in (6), rise sharply at the beginning and then fall throughout the rest of the clause.

(6) thava $u=$ mararu =ime!

PROH 2SG=be.afraid =1EXCL
'don't be afraid of us!' (couples_story_101214 052, 139.690 141.947)
Minimal pairs of consonants with similar places of articulation are presented in (7), along with their phonemic status. The labialised stops (excluding the voiced labialised bilabial stop $/ \mathrm{b}^{\mathrm{w}} /$) only occur in a small number of words/morphemes in the corpus. No minimal pairs with their non-labialised counterparts could be identified.

3.3 Word classes

The major word classes in Sudest are verbs (§3.3.1) and nouns (§3.3.3). Minor word classes include pronouns (§3.3.4), demonstratives (§3.3.5), adpositions (§3.3.6), TAM particles (§3.3.7), and interrogatives (§3.3.8) (see $\S 3.4 .3$ for discussion of nominal modifiers including adjectives, quantifiers, and numerals).

3.3.1 Noun-verb distinction and lexical flexibility

Judging from text occurrences, most Sudest roots clearly belong to a single word class. They only function as a different word class via overt derivational processes. A subset of roots, however, may function as both the head of a verb complex (VC) or NP without any overt derivational morphemes or processes (63 distinct roots in the current data). The verbal and nominal use of two of these roots, kaiwo 'the act of working' or 'work' and kewe 'carry (on stick)' or 'carrying stick' are shown in (8) and (9) respectively. The verbal use of the lexemes in (8a) and (9a) is indicated by the subject proclitic preceding them. In (8b), kaiwo 'work' is the head of a possessive NP, indicated by the possessive classifier le 'POSS.CLF2' preceding the lexeme. In (9b), kewe 'carrying stick' is the object of the general preposition e, a position that can only be filled by an NP.

ra=kaiwo	e	uma	tine
1INCL=work	PREP	garden	inside
'we work in the garden'			

(education_241214069, 246.091 247.800)
b. le- \varnothing kaiwo ne $i=v u y o w o$

POSS.CLF2-3SG.POSS work FUT 3SG=be.heavy
'her work(ing) will be hard'
(widow_251015 035, 109.481111 .800)
(9) a. thi=kewe mbombo

3PL=carry(on.stick) pig
'they carry a pig (on a stick)' (hunting_261214 036, 78.480 82.800)
$\begin{array}{llll}\text { b. } & \text { ra=va-kwate=nggi } & \text { e } & \text { kewe } \\ \text { 1INCL=CAUS-hang=3PL } & \text { PREP } & \text { carrying.stick } \\ \text { 'we hang them (sago bundles) on a carrying stick' }\end{array}$
(sago_101214 065, 171.310174 .090)

In such cases as those illustrated in (8) and (9), it is difficult (if not impossible) to say whether the verbal or nominal use "came first". Austronesian and particularly Oceanic languages often display some level of lexical 'flexibility' like in Sudest. The literature shows two robust schools of thought. The first posits that certain languages or lexeme groups lack a distinction between major word
classes such as verbs and nouns (and sometimes adjectives); i.e. that these are precategorial roots. ${ }^{51}$ Some Oceanic languages, especially Polynesian languages, have been analysed as lacking a distinction between these word classes entirely, e.g. Tongan (Churchward 1953; Tchekhoff 1981; Broschart 1997; Völkel 2017), Samoan (Mosel \& Hovdhaugen 1992), Fijian (Milner 1956, 1972), (although see Dixon (1988) for an alternate analysis of Fijian). The second, alternative analysis posits that a lexeme is assigned to a particular word class and through conversion or zero-derivation the same form can then occur in a different word class. ${ }^{52}$ Oceanic languages analysed as possessing zero-derivation or conversion include Tinrin (Osumi 1995), Nafsan (Thieberger 2006), and Paluai (Schokkin 2014). Recent typological work, however, proposes that the flexibility or rigidity of word classes in a given language should be viewed not as "all-or-nothing", but rather as a matter of degree of flexibility (Bisang 2013; van Lier \& Rijkhoff 2013; van Lier 2016). Criteria for establishing and/or measuring such flexibility, however, are still up for debate (again, see van Lier and Rijkhoff (2013) for a recent overview). An extended discussion of this issue is beyond the scope of the current study. For the present work, roots that occur as verbs and nouns without derivational morphology are referred to as 'verbs' when functioning as the head of a VC and nouns when functioning as the head of a NP.

3.3.2 Verbs

Inflected Verbs are the only words that take a bound subject index. They form a large open word class in Sudest, with over 600 entries in the current corpus lexicon. Verbs can be divided into intransitive and transitive. The vast majority of transitive verbs are monotransitive; only three attested transitive stems are ditransitive. It is possible that some verb stems are ambitransitive, but due to the specifics of Sudest verbal morphosyntax, it is difficult to establish whether there is a class of ambitransitive verbs (see §3.3.2.2 below for further discussion).

The majority of verb stems can occur as simplex independent verbs, i.e. they can occur in a VC with only a subject index and optionally pre- and postverbal elements. A small number of verb stems, however, do not function as fully independent verbs and can only i) occur in VC with specific preverbal elements such as a posture prefix (§4.3.5) or manner-of-causation prefixes (§5.2) as a sort of crutch when occurring in a simplex VC , and/or ii) they can only occur in complex verb constructions with at least one other verb stem (see chapter 6), or iii) a verb stem has a sense that

[^30]differs in complex verb constructions from its sense when in a simplex construction. Verb stems, particularly ones on either end of a sequence of verbs in complex verb constructions, are have been widely documented to grammaticalise in Oceanic languages but also cross-linguistically (see Crowley 2002; Aikhenvald 2006 for overviews). Verb stems of this kind include some stems with aspectual and adverbial semantics ($\$ 6.3 .8$ and §6.3.9) and the four PUT stems that encode putting events (§6.3.3). The gradualness of the grammaticalisation process means that old and new senses of a stem (and potentially structures) can often coexist in a language synchronically (Lichtenberk 1991a). The gradualness of the process can also mean that it is not necessarily clear or testable when a morpheme moves from the lexicon and becomes fully grammaticalised. These three types of restricted verb stems were once presumably fully verbal and functioned as simplex independent verbs. When analysing them, one could take an approach that only looks at whether they can synchronically function as independent verbs and has the same sense in both simplex and complex constructions and group all other stems as grammaticalised postverbal morphemes. However, this means that stems that semantically form a group - in the case of Sudest primarily adverbial, aspectual, and PUT stems - are divided between the lexicon and grammar. In the current analysis, I group such stems semantically and regard them as verb stems that cannot function independently (see Margetts 1991, 2005 for a similar approach).

The basic verb class distinctions of intransitive and transitive verbs are outlined in §3.3.2.1 and §3.3.2.2 respectively. Verbal reduplication is discussed in §3.3.2.3. The verb complex is by far one of the most complicated areas of Sudest grammar, with aspects of its morphosyntax forming a major part of this thesis. Chapter 4 discusses the VC and its slots; Chapter 5 presents a discussion of manner-of-causation prefixes and classificatory verbs (CLFVs), and an analysis of multi-verb constructions is presented in Chapter 6. See also $\S 3.3 .1$ for a discussion of lexical flexibility.

3.3.2.1 Intransitive verbs

Intransitive verbs take an obligatory argument (S), which is expressed by a subject proclitic and an optional conominal (using Haspelmath's 2013 terminology). They cannot take an object enclitic. Intransitive verbs can be divided into stative and active verbs. Stative verbs denote states while the active verbs describe events. Intransitive verbs that take valence-increasing morphology can be further divided into O-type and A-type verbs depending on whether S corresponds to A or O of the derived verb.

The basis for the division of stative and active verbs is both semantic and morphosyntactic. The S argument of stative verbs takes the semantic role of undergoer rather than actor. Stative verbs are the only verbs that function attributively (see §3.4.3.1). Examples (10) and (11) show the stative
verbs dayagha 'be hot' and bwadi 'be black/blue' functioning as verbal predicates in (10a) and (11a), and as postnominal modifiers in (10b) and (11b). It should be noted that bwadi 'be black/blue' is obligatorily reduplicated when functioning attributively. This does not appear to the be case for any other attested stative verbs.
$\begin{aligned} \text { (10) a. } \quad i=n g a & \text { "mbe } \\ & i=\text { dayagha" } \\ 3 \mathrm{SG}=\text { say } & \text { still } 3 \mathrm{SG}=\text { be.hot }\end{aligned}$
'he said "it's still hot"" (sinenabe_and_takonabe_231115 094, 247.020 249.673)
b. tina-e thi=ge mbwa dayagha
mother-3SG.POSS 3PL=boil water be.hot
'Mother(s), they boil hot water' (new_mother_251214 066-7, 156.460 160.713)
(11) a. i=nga "ngingi-na i=bwadi

3SG=say tooth/teeth-2SG.POSS 3SG=be.black/blue
'he said "your teeth are black' (child_and_giant_201015 103, 273.561 277.120)
b. wewe bwadi-bwadi
grass.skirt RED-be.black/blue
'black grass skirts’
(traditional_dress_051214 017, 40.88044 .520)

Unlike active intransitive (and transitive) verbs, reduplication of the stative verbs has an intensifying function (§3.3.2.3). Consider the sentences shown in (12) with bane 'be tired'. In (12a), the particle moli 'really, very' is used to indicate that the subject is 'very tired', while in (12b) the verb is reduplicated to indicate the intensity of the state.
(12) a. menda riwa-me i=bane moli
yesterday body-1EXCL.POSS 3SG=be.tired INTS
'yesterday we were really tired (lit. our body was tired really tired)'
(stone_cooking_251015 006, 17.520 19.730)
b. riwa-nggu i=bane-bane
body-1SG.POSS 3SG=RED-be.tired
'I am really tired' (sudest_lexicon)

Active intransitive verbs encode events that are instigated in some manner by the S argument. Examples of active intransitive verbs are presented in examples (13) to (15).
(13) $a=w a \quad e \quad$ uma tine $1 \mathrm{SG}=\mathrm{go}$ PREP garden inside
'I go to the garden'
(womens_work_221214 026, 64.578 68.348)
(14)

thi $=y a k u$	$n a$	regha
3PL=live/sit/stay	and	one
'they sit together'		(fp_stimuli_201015_04 094, 282.628 284.030)

(15) nggama=ma mbugha=ma thí=dobu
child=DET $\quad \operatorname{dog}=\mathrm{DET} \quad 3 \mathrm{PL}=$ fall
'the child (and) the dog fall'
(frogstory_161214 093-4, 240.750 244.400)
Stative and active intransitive verbs that take valence-increasing morphology can be further categorised as A-type and O-type verbs; this is discussed further in §4.2.8.2 and §4.3.1. Intransitive verbs can also be derived from some transitive stems with the detransitivising prefixes ma- and rara-(§4.2.8.1).

3.3.2.2 Transitive verbs

Monotransitive stems take two core arguments (A and O). As Sudest has nominative-accusative alignment, the A argument is expressed in the same way as an S argument of an intransitive verb, i.e. by a subject proclitic and optional co-referential NP. The O argument can be expressed by either an object enclitic (16), NP (17) or both (18) (see $\S 3.3 .4$ and $\S 4.1$ for discussion of independent and bound pronouns).
(16) $i=n g a \quad$ "mbwata ne hu=ghan=nggo?"
$3 \mathrm{SG}=$ say maybe FUT $2 \mathrm{PL}=$ eat=1SG
'he said "maybe you will eat me?" (mandumbunga_02_181016 202, 507.846 513.271)
(17) $i=$ tate $=y a \quad$ uye
$3 \mathrm{SG}=$ open=YA pot
'she opens the pot'
(crab_girl_081115 044, 111.460113 .744)
(18) $i=t e n=n g g i=y a$

3PL=break=3PL=YA carrot=DET PREP table=DET top-3SG.POSS
'he cuts the carrots on the tabletop'
(cb_stimuli_101116 011, 119.250 123.668)

Nearly all transitive verbs are monotransitive, as in the above examples. There are only three attested ditransitive verbs. (For examples and discussion of the ditransitive verbs, see 4.2.8.2, §6.3.2, §6.3.8, §7.1, and §7.3).

It was not possible to determine the transitivity status of a subset of verb stems in the corpus at the time of writing, due to gaps in the data. This is because third person objects can be omitted in discourse when retrievable from the context and, importantly, the third person singular objects are unmarked in the bound object paradigm (§3.3.4). This means that the transitivity of some stems is ambiguous without additional evidence (such as elicitation data). For examples like in (19) with thuwe 'see', it is not clear whether the verb is transitive or intransitive.

```
ra=thuwe=?
1INCL=see=?
'we see (it?)'
```

(snake_passage_061215 086, 201.759 203.624)

Additional data, like the example presented in (20), show us that thuwe 'see' can take an object enclitic:

$$
\begin{align*}
& \text { me=thuwe=nggo } \tag{20}\\
& \text { 3SG.IMM.PST=see=1SG } \\
& \text { 'he saw me }
\end{align*}
$$

(family_ties_081115 045, 111.939 113.332)

Testing a verb's ability to take an object marker tells us that a verb stem is not exclusively intransitive. It is, however, possible that verbs like thuwe 'see' are actually ambitransitive, but this remains an issue that is not obviously testable. This is not an isolated issue among Oceanic languages: see Margetts (1999a: 75) and Schokkin (2014: 103, 286) for similar comments on Saliba and Paluai respectively. All demonstrably transitive stems are, therefore, analysed as transitive in this thesis.

Transitive verbs can be derived from intransitive verbs through the addition of the causative prefix $v a$ - (§4.2.8.2), the transitivising enclitic $=n g a(\S 4.3 .1 .1)$, a combination of both the causative prefix and transitive enclitic (§4.2.8.2.1), or the applicative enclitic =wana (§4.3.1.2). A prominent subgroup of the transitive verbs are the classificatory verbs: see $\S 5.2$ for a discussion of these verbs.

3.3.2.3 Reduplication

Verbal reduplication has several related functions in Sudest. Depending on the type of event expressed by the verb, it can indicate i) intensification, ii) progressive aspect, or ii) iterative aspect. Only one morpheme in the VC is ever reduplicated. In some cases, a prefix or the second verb in a multi-verb construction is reduplicated instead of the (first) verb. Some data suggest that the variation in the element reduplicated in some cases indicates participant number, however, there is also contradicting evidence (see further below in this section for discussion).

3.3.2.3.1 Formal realisation

Reduplication typically consists of the repetition of either the first syllable, as in (21) and (22), or the first two syllables of the verb root, as in (23) and (24).

$i=$ yo-yo\quad eee	
3SG=RED-fly	EMPH
'he is flying (for a long time),	

$v a$	$m b e$	$t h \dot{i}=v i$ - $\boldsymbol{v i v a t h a}=\varnothing$
REM.PST	still	3PL=RED-prepare=3SG

'they still kept on preparing it (a feast)' (bush_betelnut_011115 094, 224.138 227.617)
(23) this=keli-keli

3PL=RED-grate
'they were grating (cassava)' (stone_cooking_251015 029, 82.129 83.390)
(24) mbugha i=mena kero i=kwara-kwarabithi
dog 3 SG=come already 3 SG=RED-jump
'the dog comes (and) is jumping repeatedly'
(frogstory_161214 053, 133.220136 .516)

Aside from single-syllable verb roots, it is far more common for the first two syllables to be reduplicated for verbs with two or more syllables. From a sample of 241 verbs with more than one syllable, 84 percent (203) reduplicate the first two syllables and only 16 percent (38) reduplicate only the initial stem. Some general statements can be made about which verb stems take single or double reduplication; however, these do not account for the majority of reduplicated forms.

In verbs with vowel sequences, the vowels are 'split' and the second vowel is excluded from the reduplicated stem (for this reason vowel sequences are not analysed as diphthongs, see §3.2). If the first syllable is followed by a vowel, only the first syllable is reduplicated. as with gaith ${ }^{\text {' fight' in }}$ (25). If an onsetless syllable follows the second syllable, the first two syllables are reduplicated, as is the case with ngginau 'build' in (26). ${ }^{53}$
(25) mbe thi=ga-gaithi
still 3PL=RED-fight
'they are still fighting' (fp_stimuli_191015_05 164, 316.436 317.838)

umo-umoru=ko	thí=nggina-ngginau	la-ma	nggolo
RED-young.man=DIST	3PL=RED-build	POSS.CLF2-1EXCL	house
'the men are building our house'		(e_081116_02)	

All verbs that begin with a vowel reduplicate the first two syllables, as in (27) with utu 'speak' and uthighe 'shit' in (28).
(27) $m a \quad$ ra=utu-utu=engge
already 1INCL-RED-speak-just
'we are just speaking'
(fp_stimuli_201015_01 002, 62.578 64.080)
(28) i=uthi-uthighe-ranggi= \varnothing

3SG=RED-shit-go.out=3SG
'she is shitting it out' (Sudest_lexicon)

[^31]Two patterns can be observed for those verbs with CVN syllable structure with single syllables. The first pattern involves simple reduplication of the entire syllable, as in (29) with kom 'crawl'. The second pattern is possibly best represented by a templatic rule of $\mathrm{CVN}>\mathrm{CVNiCV}$ (remember that the ' \mathfrak{i} ' is a schwa); thus, the verb mun 'drink' becomes mипimu 'drinking' as in (30).

```
nari-ye=ma kero i=kom-kom
son-3SG.POSS=DET already 3SG=red-crawl
    'his son is already crawling' (fp_stimuli_191015_02 088, 213.690 215.230)
```

```
ne i=njogha kero i=munimu=\emptyset=va
FUT 3SG=go.back already 3SG=drink.PROG=3SG=REP
```

'he will go back (to his friends) he is already drinking it (beer) again' (fp_stimuli_191015_03 176, 469.555 471.200)

Among the latter type of verbs with a syllable-final nasal, the verb ghan 'eat' takes an irregular progressive form ghaningga 'eating', with the velar fricative becoming a prenasalised velar stop:
(31) "u=ghaningga buda, rumbu-me?"

2SG=eat.PROG what grandparent/child-1EXCL
"what are you eating, grandmother?" (mandumbunga_061215 051, 145.528 148.850)
The formal patterns described here for the reduplication of verbal stems also apply to the reduplication of nominal stems, as in example (26) above with umo-umoru 'young men'. Reduplication plays a role in nominalisation (§3.3.3.1.1) and number marking for nouns (§3.4.1). Many synchronically monomorphemic verbs and nouns also appear to be the result of reduplication, although these inherently reduplicated roots no long longer have unreduplicated counterparts in the language, e.g. njightnjighi 'be cold', ghareghare 'know', yamwayamwa 'appearance', wadawada 'witch', and yenggiyanggi 'monitor lizard'.

3.3.2.3.2 Function

The functions of verbal reduplication depend on the type of verb. For stative verbs, reduplication functions as an intensifier. In (32), the stative verb laghiye 'be big' in the idiomatic phrase ghareye ilaghiye 'she is scared' (lit. 'her heart is big') is reduplicated to indicate that she is very scared (lit. 'her heart is very big'):

$$
\begin{array}{llll}
\text { gh-e } & u=k o & \text { ghare-ye } & i=\text { laghi-laghiye } \tag{32}\\
\text { POSS.CLF1-3SG.POSS } & \text { friend=DIST } & \text { heart-3SG.POSS } & \text { 3SG=RED-be.big }
\end{array}
$$

'her friend is very scared (lit. her friend's heart is very big)'
(bush_betelnut_011115 031, 76.830 78.466)
For non-punctual events, reduplication expresses the progressive aspect, with the action viewed as 'ongoing at time of reference' (Bybee et al. 1994: 126). In (33), the reduplication of yaku 'live, stay'
indicates that the event is ongoing. See examples (21) to (23), (25) to (28), and (30) and (31) above for further examples of reduplicated verbs with progressive semantics.

$v a$	thí=yaku-yaku	ghe=ko
REM.PST	3PL=RED-live/stay	LOC=DIST

'they were living there'
(skeleton_1810 01215, 35.74037 .210)
For verbs that express a punctual event, the resulting reduplicated form is iterative. The reduplicated form can indicate an action that is immediately repeated, as in (33) with ughi 'smash', or one that is repeated over a longer period of time, as in (34) with giya 'give', which has a somewhat habitual reading 'I always give you shell money'.

lolo=ma	i=taga-ughi-ughi=ya	ghaningga=ma	umbwa-ra
person=DET	3SG=by.striking-RED-smash=YA	food=DET	NUM.CLF-one

'the person is smashing a (piece of) food repeatedly'
(cb_stimuli_051016_01 119, 1272.741 1276.930)

$$
\begin{array}{ll}
\text { a=giya-giya } & \text { ndavarí } \\
\text { 1SG=RED-give } & \text { shell.money } \tag{e_211116_02}
\end{array}
$$

'I always/repeatedly give you shell money'

Only one element in the VC can be reduplicated. When the verb is detransitivised or causativised, it is the derivational prefix ma- 'DETR' or va- 'CAUS' that is reduplicated instead of the verb root. The reduplication of the prefix has the same effect as reduplication of the verb stem in an underived predicate. In (36) the reduplicated detransitiviser ma-specifies that the punctual action of tearing a piece of cloth is repeated. In (37) the reduplicated causative prefix signals intensification.

$$
\begin{array}{ll}
\text { kaliko }=\text { ko } & i=m a-m a-\text { nggangga } \tag{36}\\
\text { cloth=DIST } & \text { 3SG=RED-DETR-tear }
\end{array}
$$

'the cloth keeps tearing' (cb_stimuli_051016_02_01 061, 378.020 379.892)

```
\(i=\boldsymbol{v a} \boldsymbol{-} \boldsymbol{v a}-\operatorname{loghe}=\varnothing\)
    3SG=RED-CAUS-be.sweet/fatty=3SG
```

'he (a husband) makes her (his wife) very happy (lit. makes very greasy/sweet)' (fp_stimuli_191015_03 162, 430.310 432.080)

In VCs with manner-of-causation prefixes (§5.2) generally, the verb root is reduplicated in corpus tokens. However, there are also two tokens in which the prefix is reduplicated. Consider the two VCs below with a reduplicated verb root (38) and reduplicated manner-of-causation prefix (39). Both VCs involve a punctual verb and, in both cases, the reduplication specifies that the action is repeated even though the reduplicated element differs.

lolo=ko	$i=m w a n a-t e n-t e n=a$	wool=ko	e	tebol=ko
person=DIST	3SG=by.hand-RED-break=YA	wook=DIST	PREP	table=DIST vwata-e
top-3SG.POSS				
'the person repeatedly breaks the wool on the table top'				

thi=mwana-mwana-thatha= \varnothing
3PL=RED-w.hands-tear=3SG
'they repeatedly tear it (a piece of cloth)'
(cb_stimuli_051016_02_01 065, 405.940 407.552)
In elicitation, speakers also find reduplication of either the manner-of-causation prefix or verb stem grammatical. However, the majority of speakers identify a semantic distinction that relates to 'verbal number' (Corbett 2001) or 'pluractionality' (Newman 1980). Specifically, the distinction appears to be one between 'event number' and 'participant number' (Corbett 2001: 246). Depending on which element is reduplicated, speakers identify the resulting VC as indicating repetition of the action for punctual verbs (or an event in progress for non-punctual verbs), i.e. event number, or actions carried out on multiple entities (i.e. participant number). However, the situation is not as clear-cut when comparing speaker responses. In some cases, speakers associated participant number with the reduplication of the prefix and event number with reduplication of the verb root, as in (40). In other cases (such as (41)), speakers attributed event number to examples with reduplicated prefixes and participant number to those with reduplicated verb roots.
(40) a. ela=ma i=vuri-vuri-ten=a ndamwa-ndamwa
woman=DET 3SG=RED-w.feet-break=YA RED-leaf
'the woman breaks the leaves by standing on them/while standing on them'
(e_231116_02)
$\begin{array}{lll}\text { b. } \quad \text { ela=ma } & i=\text { vuri-ten-ten=a } & \text { ndamwa } \\ \text { woman=DET } & 3 \mathrm{SG}=\mathrm{w} . \text { feet-RED-break=YA } & \text { leaf }\end{array}$
'the woman repeatedly breaks the leaf by standing on it/while standing on it'
(e_231116_02)
(41)
$\begin{array}{lll}\text { a. } & \text { ela }=\text { ma } & \text { i=taga-taga-ten }=a\end{array} \quad \begin{aligned} & \text { thiyo }=m a \\ & \text { woman=DET }\end{aligned} \quad$ 3SG=RED-by.striking-break=YA $\quad \begin{aligned} & \text { string=DET }\end{aligned}$
(e_161116_01)
b. ela=ma $\quad i=$ taga-ten-ten $=a \quad$ thiyo $=m a$
woman=DET $\quad 3 \mathrm{SG}=$ by.striking-RED-break=YA \quad string=DET
'the woman breaks the strings'
(e_161116_01)

In yet other cases such as (42) with a reduplicated prefix, either a plural event number or participant number interpretation was possible depending on context.
(42) $a=$ ghala-ghala-ten $=a \quad$ thiyo $=m a$

1SG=RED-by.body.weight-break=YA string/rope=DET
'I repeatedly break the rope using my body weight (e.g. of a swing by sitting on it)' 'I break more than one rope using my body weight (e.g. of swings by sitting on them)' (e_161116_01)

The current data indicate that verbal reduplication can have a variety of pluractional functions in Sudest. However, the range of responses and differences in use between corpus tokens and elicitation responses and lack of consensus point to verbal reduplication, particularly predicates with manner-of-causation prefixes, as an area of interest for future research. Plural participant number is also expressed by classificatory verbs (§5.2). ${ }^{54}$

3.3.3 Nouns

Nouns can be formally identified as they can function as the head of a noun phrase. They can be distinguished from verbs by the fact that they do not take subject or object indexes (see §4.2). Nouns form a large open word class in Sudest with over 800 entries in the corpus lexicon. Sudest, like all the Papuan Tip languages (Lynch et al. 2002: 102), does not have any common or proper articles, so nouns cannot be subcategorised based on the article they take. Unmarked nouns can have a definite or indefinite interpretation. Definiteness can be indicated by a determiner enclitic. The remainder of this section outlines the different types of nominalisation. Pronouns are presented in $\S 3.3 .4$ and the noun phrase is discussed in §3.4.

3.3.3.1 Nominalisation

A noun can be formed from a verb in Sudest by reduplication (§3.3.3.1.1), or with the addition of the agentive prefix ra- (§3.3.3.1.2) or the instrumental prefix ghe-(§3.3.3.1.3) and reduplication of the verb stem. Place nouns are formed by compounding the noun ghamba 'place' with verbs (§3.3.3.1.4).

3.3.3.1.1 Reduplication

Nouns may be derived from verbs by reduplication. There are less than a dozen such tokens attested in the corpus. They tend to be nouns denoting actions/activities as in (43) and (44), or the results of activities, as in (45).

[^32]```
thi=vaghare=nggo nangge-nangge a=nangge=ya mat
3PL=teach=1SG RED-weave 1SG=weave=YA mat
'they taught me weaving, I wove mats' (education_241214 026-8, 85.640 93.550)
```

| ...kaiwa- $\varnothing$ | thonggo | $i=$ ghena | wei-ye | le- $\varnothing$ |  |
| :--- | :--- | :---: | :--- | :--- | :--- |
| reason-3SG.POSS | if | 3SG=sleep | PREP-3SG.POSS | POSS.CLF2-3SG.POSS |  |
| umoru | le- $\varnothing$ |  | ghambi-ghambi | ne | $i=v u y u w o$ |
| young.man | POSS.CLF2-3SG.POSS | RED-give.birth | FUT | 3SG=be.heavy |  |
| '...because if she sleeps with her husband, her labour will be difficult' |  |  |  |  |  | (new_mother_251214 012-4, 31.203 40.563)


| wo- $i=$ vo-rori-yathu | $l e$ | ro-rori=na |
| :--- | :--- | :--- |
| HORT-3SG=by.spearing-write-throw.away | POSS.CFL2 | RED-write=ADDR.PROX |
| 'she must/will write down her writing' |  | (c_031116 243, 440.500 443.360) |

The reduplication patterns for nouns derived from verbs follows the same patterning as verbal reduplication discussed in the previous section (§3.3.2.3). Reduplication is also used to mark plural nouns (§3.4.1).

### 3.3.3.1.2 Ra- agentive

The prefix ra-is used to form agentive nouns. The prefix most frequently combines with a reduplicated verb stem to form as agentive noun as in (46), but also combines with multi-verb construction (47), verbal prefix-verb stem combinations (48), and verb-noun compounds (49).
(46) gha-nda ra-vanggu-vanggu thi=mena thi=vanggu=inda

POSS.CLF1-1INCL.POSS AG-RED-lead 3PL=come 3PL=lead=1INCL
e garowo=ko
PREP shore=DIST
'our ancestors (lit. leaders) come (and) lead us to the shore'
(engginas_story_231016 019, 40.68044 .033 )
(47)

| lolo=ko | $i=m a r e=k o$ | $o=$ rama-e | ida-nji |
| :--- | :--- | :--- | :--- |
| person=DIST | 3SG=die=DIST | PL=father-3SG.POSS | name-3PL.POSS |
| ra-ghan-thaga |  |  |  |
| AG-eat-feast |  |  |  |
| 'the person who died's father's (relatives) are called 'feast eaters'" |  |  |  |

(funeral_feasting_081015_01 159, 447.169 450.137)
(48) ra-nde-vuva

AG-stand.and-go.first
'leader' (e_091215)
(49) ra-ngginau-wangga thovuye

AG-build-boat good
'a good canoe builder (canoe_021015 030, 66.31067 .879 )

### 3.3.3.1.3 Ghe- instrumental

Instrumental nouns can be productively formed by combining the instrumental prefix $g h e$ - with a reduplicated verb, as shown in (50) and (51).

| (50) | wevo | $i=w o$ | ghe-ro-rori |
| :--- | :--- | :--- | :--- |
| young.woman | 3SG=GET.SG.RIGD | INS-RED-draw/write |  |

'the young woman gets the pencil'
(put_stimuli_191015_01_02 070-1, 278.695 281.370)
(51) va $\quad$ i=taga-vewo bali=ma o ghe-mwadi-mwadiwo=ma

REM.PST 3SG=by.striking-push ball=DET or INS-RED-play=DET
gamagai=ko $\quad w e=n g g i$
children=DIST PREP=3PL
'he threw the ball or the toy to the children'
(e_021115_01)

In a single attested instance shown in (52b), the verb stem vana 'climb' is not reduplicated, and instead combines with the manner-of-causation prefix nji- 'by hand' (§5.1) and the causative prefix $v a$ - (§4.2.8.2), meaning 'cause to climb using the hands'. The resulting instrumental noun ghenjivavana specifies a single-plank ladder and contrasts with the instrumental noun ghevanavana, meaning 'rung ladder' (52a).
(52) a. ghe-vana-vana

INS-RED-climb
'ladder' (e_091215)
$\begin{array}{llll}\text { b. } \begin{array}{lll}\text { ande } & e & \text { la-ma }\end{array} & \begin{array}{l}\text { ghe-nji-va-vana } \\ \text { NEG1 }\end{array} \quad \text { PREP } & \text { POSS.CLF2-1EXCL.POSS } & \text { INS-by.hand-CAUS-climb }\end{array}$

### 3.3.3.1.4 Compound place nouns with ghamba 'place'

Many place nouns are formed by compounding the noun ghamba 'place' with verb stem(s) or verbnoun combinations. The resulting compound denotes the location where the action specified by the verb stem(s) occurs. In (53), ghamba 'place' combines with the verb stem ghena 'sleep' to mean 'bed'. In (54) it combines with the multi-verb construction bebe-yathu 'break-throw away' to mean 'reef break'. In the third example, shown in (55), ghamba combines with a verb-noun compound gudu mbwa 'fetch water' to mean 'water-fetching place' or 'watering hole'.

| wevo $=$ ko | $i=y a k u$ | $e$ | $l e-\varnothing$ | ghamba | ghena |
| :---: | :---: | :---: | :---: | :---: | :---: |
| young.woman =DIST | 3SG=stay | PREP | POSS.CLF2-3SG.POSS | place | sleep |
| 'the girl sits on her bed (place of sleeping/sleeping place)' |  |  |  |  |  |
| (cb_stimuli_051016_01 237, 2558.110 2561.460) |  |  |  |  |  |


| ve=yaku | vara | $[\ldots]$ | $e$ | bagodi=ko | nggora |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.INT=stay/live | really |  | PREP | wave=DIST | like |

$l e-\emptyset \quad$ ghamba bebe-yathu
POSS.CLF2-3SG.POSS place break-throw.away
'she really lives [...] at the waves, like the reef break (lit. place of breaking-throwing
away)'
(crab_girl_081115 098-101, 243.872 251.007)

| ...nggora | vara | le-nji | ghamba | gudu | mbwa=ko |
| :---: | :--- | :--- | :--- | :--- | :--- |
| like | really | POSS.CLF2-3PL.POSS | place | fetch | water=DIST |

'...like their water-fetching place' (mandumbunga_02_181016 136, 336.183 338.877)

In the above examples, the compound NPs are all indirectly possessed, taking the possessive classifier le 'POSS.CLF2' (§3.4.4.2). When ghamba 'place' occurs as an independent noun, it is directly possessed, with a possessive pronoun suffix attaching directly to the noun (§3.4.4.1), as in (56). In (56), the directly possessed noun ghamba-nggu 'place-1SG.POSS' refers to the speaker's birthplace, while in (57) the compound ghamba yaku 'living place' denotes where the speaker lives.

| ghamba-nggu= $\boldsymbol{k o}$ <br> place-1SG.POSS=DIST | ida-e <br> name-3SG.POSS | Yeina <br> place.name |
| :--- | :--- | :--- | :--- |
| 'my place's name is Yeina (Piron) island' |  |  |
| (family_ties_081115 003-4, 10.240 13.292) |  |  |

### 3.3.4 Pronouns

Sudest has four basic types of pronouns: independent pronouns, possessive suffixes (see 3.4.4), subject proclitics (see §4.1.1), and object enclitics (see §4.1.2) presented in Table 3.3. These pronoun types are widespread in the Oceanic languages. The subject proclitics are further divided into the 'basic' subject indexes and two sets of portmanteau subject indexes, which specify tense and intentionality of the event respectively. All pronoun sets distinguish first, second and third person, and singular and plural number. First person plural pronouns further distinguish clusivity; the inclusive pronouns include the speaker and addressee, while the exclusive pronouns include the speaker and non-speech act participants and exclude the addressee.

|  | independent | basic <br> subject <br> index | immediate <br> past subject <br> index | intentional <br> subject <br> index | object <br> index | possessive |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG | ghino | $(y) a=$ | $m a=$ | $v a=$ | $=n g g o$ | $-n g g u$ |
| 2SG | ghen | $u=$ | $m o=$ | $v o=$ | $=n g g e$ | $-n$ |
| 3SG | iye | $i=$ | $m e=$ | $v e=$ | $=\varnothing$ | $-y e,-e,-\varnothing$ |
| 1INCL | ghinda | $r a=$ | $m a r a=$ | $v a r a=$ | $=$ inda | $-n d a$ |
| 1EXCL | ghime | $w o=$ | $m o o=$ | $v o=$ | $=i m e$ | $-m e$ |
| 2PL | ghemi | $h u=$ | $m o u=$ | $v o h u=$ | $=n g g a$ | $-m i$ |
| 3PL | thiye | thi $=$ | $m e t h i=$ | $v a t h i=$ | $=n g g i$ | $-n j i$ |

Table 3.3 Pronouns
The independent pronouns can replace nouns and function as the head of a NP. The independent pronouns can fill the subject (58) and object (59) NP slots with verbal predicates, and function as the subject of non-verbal predicates (60) or the object of an preposition (or postposition) (61). NPs consisting of an independent pronoun do not take nominal modifiers.

(58) | ela-ela | moli | thiye | ne | thí=tuthi-tuthi=ya |
| :--- | :--- | :--- | :--- | :--- |
| RED-woman | INTS $\quad$ 3PL | FUT | 3PL=RED-choose=YA |  |

'the older women, they choose the youths'
(funeral_feasting_081015_02 076-8, 199.840 207.120)

(60) iye nggama wevo

3SG child young.woman
'she is a female child' (crab_girl_081115 004-5, 9.750 17.052)
(61) nggorongga methi=dage e ghen?
how 3PL.IMM.PST=speak PREP 2SG
'how did they tell you (lit. speak to you)?' (cooking_111015 033, 95.860 97.673)
The co-occurrence of the independent pronouns with the subject and object proclitics is discussed in §4.2.

### 3.3.5 Demonstratives

Sudest has demonstrative enclitics, which express spatio-temporal and discourse deictic relations. The exophoric functions of the Sudest demonstratives have been investigated more systematically
than their endophoric functions. Endophoric functions are not commented on further here and remain a topic of future investigation. ${ }^{55}$ The demonstrative enclitics are listed in Table 3.4.

| Demonstrative | Meaning | Function |
| :--- | :--- | :--- |
| $=k e$ | 'this (near speaker)' | speaker-proximate, temporal <br> (present/time of speaking/time of event, <br>  <br> $=n a$ |
| $=k o$ | 'this/that (near addressee)' | nddressee-proximate, anaphoric <br> $=y o$ |

Table 3.4 demonstrative enclitics
There is a basic three-way distinction in the spatial use of the demonstratives $=k e$ 'this (speakerproximate)', =na 'this/that (addressee-proximate)', =ko 'that (distal)'. The fourth demonstrative $=y o$ 'that' (distal)' is not identified in previous literature on the language. It has a more restricted use than the other demonstratives and is only ever used to establish exophoric reference to a place. The demonstratives are not independent words, but rather enclitics that occur in both noun phrases (see §3.3.7) and VCs (see §4.4.4). Their distribution within the NP is relatively flexible and they are in complementary distribution with another determiner, the givenness marker $=m a$ (see §3.4.2). They occur postnominally and cliticise onto the noun, a nominal modifier, or both. Excluding the distal demonstrative $=y o$, the demonstrative enclitics can mark the beginning and end of relative clauses (see §3.4.5). They can also form demonstrative pronouns with the demonstrative bases iya and thiya (§3.3.5.1), and locative proforms with the locative base ghe (§3.3.5.2).

The speaker- and addressee-proximate demonstratives are used when something is judged to be close to either the speaker or addressee, or judged to be within their physical space or sphere of influence. This includes items that the speaker/addressee is touching, but also items that are judged to be closer to one speech-act participant (SAP) over the other - this can be something that is centimetres away or metres away. Examples (62) and (63) show the speaker- and addresseeproximate demonstratives. In (62) the demonstrative occurs with a directly-possessed body part noun. This is common, even though the semantics of the noun and the possessive construction already indicate physical proximity to the speaker.

| (62) | ghino | njima-nggu=ke | thonggo | thi $=l i=\emptyset$ |
| :--- | :--- | :--- | :--- | :--- |
| 1SG | skin-1SG.POSS=SPKR.PROX | if | 3PL=GET.SG.FLEX=3SG | and |
| thív=li-ra= $\varnothing$ | $e$ | thilo! |  |  |
| 3PL= GET.SG.FLEX-put=3SG | PREP | kundu.drum |  |  |
| 'my skin, if they get it they (will) put it on a kundu drum!' |  |  |  |  |

(lizard_and_possum_121015 040-1, 107.830 112.231)

[^33]| thare bosowa-e | u=yengge-giya | gha-mi |
| :--- | :--- | :--- |
| REQ possibility-3SG.POSS $\quad 2 \mathrm{SG}=\mathrm{GET} . \mathrm{FIRE}$-give | POS.CLF1-2PL.POSS |  |
| ndighe=na $\quad$ we=nggo? |  |  |
| fire=ADDR.PROX PREP=1SG |  |  |
| 'is it possible (that) you give your fire to me?' |  |  |

(skeleton_181015 026-28, 66.60073 .180 )

The distal demonstrative $=k o$ is used when the referent is judged to be neither close nor connected to either speech act participant. The referent can be a few metres from the speaker and hearer, or kilometres away from the interlocutors and out of sight. In (64), the speaker is referring to a neighbouring house some 10 metres away from the house where the recording was taking place, while the example in (65) describes a reef approximately five kilometres away and not visible at the time of utterance. Example (65) also demonstrates the use of the speaker-proximate deictic $=k e$ to encompass not just the speaker, but a larger area in which the speaker is located: in this case the whole island of Vanatina.

| ve=ruku-ruku=ma | nggora | nggolo=ko | mayao=ko |
| :--- | :--- | :--- | :--- |
| 3SG.INT=RED-run=hither | like | house=DIST | inland=DIST |

'he was running like to that house inland [speaker points with hand to neighbouring house]'
(Bwaindiya_151115 093, 258.070 260.980)

```
ragha=ko iya=ko ina Yeina na Vanatina=ke
reef=DIST DEM=DIST location place.name and place.name=SPKR.PROX
'that reef is between Yeina and Vanatina'
 (feast_of_the_fish_271015 164-5, 426.163 431.210)
```

The final deictic, $=y o$, is also a distal deictic. Like $=k o$, it is used when a referent is judged to be far from both the speaker and hearer. As with the distal enclitic $=k o,=y o$ can be used to refer to an entity mere metres away or a location on the far side of the island, as in (66), in which the speaker is describing a place located off the north coast.

$$
\begin{array}{llll}
\text { gha=niye } & \text { mwari-mwaritau } & \text { iya } \quad \text { baria=yo }  \tag{66}\\
\text { LOC=SP } & \text { RED-fish } & \text { DEM } \quad \text { barrier.reef=DIST } \\
\text { 'that fishing place is (at) the barrier reef (at Madawa)' }
\end{array}
$$

(mandumbunga_02_181016 016-8, 59.343 55.709)

While $=k o$ and $=y o$ are used to describe entities the same distance from the deictic centre, =yo adds an emphatic element which can be translated as 'over there'. The enclitic =yo is typically spoken with a lengthened vowel and a change to falsetto voice, and is accompanied by a hand gesture indicating the direction of the entity. As mentioned above, unlike the other demonstrative enclitics, $=y o$ is only ever used exophorically and to indicate a location. The enclitic only occurs five times in the corpus; in narratives, it only ever occurs reporting direct speech. This contrasts drastically with the token counts of the other demonstratives ( $=$ ke 711 tokens, $=$ na 307 tokens, and $=k o 1375$ tokens). No speakers produced -yo while completing Wilkins' (1999) demonstrative questionnaire,
although all of them found its use grammatical for the large-scale geographic space questions (scenes 24 and 25) when prompted and questioned about its use in these scenes. In some cases, speakers produced additional examples with the enclitic. Deictics with long vowels (and in some cases, falsetto voice) with distal and remote semantics are attested in other Milne Bay Papuan Tip languages, including Buhutu (Cooper 1992), Kilivila (Senft 2004: 64), and Saliba-Logea (Dawuda 2009: 63-4; Margetts 2018: 268-9). Dawuda (2009: 101) finds that the Logea demonstrative is used as an additional identification device when the speaker is uncertain that a hearer has identified or can correctly identify a referent. The limited Sudest data suggest that this may also be the function of the enclitic $=y o$ (see examples (78) and (84) and for further tokens). ${ }^{56}$

As well as having spatial use, the speaker-proximate demonstrative $=k e$ and distal demonstrative $=k o$ function temporally. The speaker-proximate $=k e$ is used to specify that the time being referred to is the same or temporally close to the time of utterance. Consider the following examples, in which mbanga=ke 'time=SPKR.PROX' can refer to a very specific 'now' (67), or to a more general 'nowadays’ (68).

| mbanga=ke | ne | $a=$ vaona | lolo | riwa-ye |
| :--- | :--- | :--- | :--- | :--- |
| time=SPKR.PROX | FUT | 1SG=count/read | person | body-3SG.POSS |
| 'now I will list (lit. count) a person's body' | (body_parts_251015 001-3, 1.821 7.480) |  |  |  |


| iya | kaiwa | ne | u=thuwe | mbanga=ke | mara-mara=ko | ma |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DEM | reason | FUT | 2SG=see | time | tPKR.PROX | RED-eye=DIST | already |
| voghi=wo | vara | ma | ina | $e$ | valivangga | regha |  |

The speaker-proximate demonstrative $=k e$ also occurs with the temporal verb ghiviya 'be morning' to mean 'this morning, as in (69).

$$
\begin{align*}
& \text { me=ghiviya=ke }  \tag{69}\\
& \text { 3SG.IMM.PST=be.morning=SPKR.PROX } \\
& \text { 'this morning I got up' }
\end{align*}
$$

mo=ghena-thuweiru
1SG.IMM.PST=sleep-be.awake
(cooking_111015 002-3, 14.690 17.407)

The speaker-proximate demonstrative is also used in at least one type of expression about the future to mean, for example, 'next month' (70) and 'next year' (71). In this temporal construction, the object of the PP is the inalienably-possessed noun ghamwa 'face, forehead', that takes the third person inclusive possessive pronoun and the speaker-proximate demonstrative. The noun is the head of a possessive NP, in which the unit of time specified is expressed as the possessor of

[^34]ghamwa-nda 'forehead-1INCL.POSS' or 'our head' and precedes the preposition (as is the case for all nominal possessors in PPs with $e$ §3.3.6.1).


| ne | $t h i=w a$ | $e$ | sikulu | theghathegha=ke | $e$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FUT | $3 \mathrm{PL}=\mathrm{go}$ | PREP | school | harvest/year=SPKR.PROX | PREP |
| ghamwa-nda=ke |  |  |  |  |  |
| 'they | go to | ool next |  |  |  |

The distal deictic $=k o$ is used to refer to events and times further in the past. In (72), the speaker is describing a period of time from her youth.

$$
\begin{equation*}
 \tag{72}
\end{equation*}
$$

The distal is used in (73) in the possessive NP mbangako iyako gaithiko 'time of that fight' while discussing a fight from legend, to specify that the event is in the past.

$$
\begin{array}{lccccl}
\text { ra=nga } & e & \text { mbanga=ko } & \text { iya=ko } & \text { gaithi=ko } & \text { va }  \tag{73}\\
\text { INCL=say } & \text { PREP } & \text { time=DIST } & \text { DEM=DIST } & \text { fight=DIST } & \text { REM.PST } \\
i=\text { ya-raka=nggi } & \text { boda=ko } & & & \\
\text { 3SG=all-clear/separate=3PL } & \text { relative=DIST } & & \\
\text { 'we say, at that time of that fight, it separated the relatives/people' }
\end{array}
$$

$$
\text { (feast_of_the_fish_271015 158-60, } 411.660 \text { 417.487) }
$$

### 3.3.5.1 Pronominal and adnominal demonstratives with iya and thiya

The singular demonstrative base iya and its plural counterpart thiya can form demonstrative pronouns and adnominal demonstratives in combination with the demonstrative enclitics. The demonstrative bases appear to have developed from the singular and plural third person independent pronouns iye ' 3 SG ' and thiye ' 3 PL '. Examples of $i y a$ as a demonstrative pronoun are shown in (74) to (76) and examples of thiya in (77) and (78). While thiya is used exclusively as a plural demonstrative, iya is sometimes used with non-singular referent, including both (human) animate referents (75) and inanimate referents as in (77).

```
amba thi=vivatha=engge \(\quad \boldsymbol{y} \boldsymbol{y}=\boldsymbol{k} \boldsymbol{k}\)
then \(\quad 3 \mathrm{PL}=\) prepare=just \(\quad \mathrm{DEM}=\mathrm{DIST}\)
```

'then they prepare that'
(kula_exchange_081215 034, 101.400 106.130)
ela-ela=nggi iya
RED-woman=3PL DEM
'these are women (lit. women are these)' (fp_stimuli_201015_126, 501.570 503.480)
(76) gheghe- $\varnothing \quad$ ghae iya=ke leg-3SG.POSS cover DEM=SPKR.PROX
'these are his shoes (lit. his shoes/leg covers are these)'
(fp_stimuli_201015_01 054, 225.480 226.890)

```
wo-ra=tamwe=nggi-va
NEC-1EXCL=look.for=3PL-REP
'let's look for these'
```

```
thiya=ke
DEM.PL=SPKR.PROX
 (fp_stimuli_191015_05 121, 204.820 206.130)
```

(78) $m a \quad$ thiy $a=y o$
already DEM=DIST
'those (over there)'
(fp_stimuli_191015_05 110, 190.150 191.120)

The demonstrative bases can also combine with the demonstrative enclitics to function as adnominal demonstratives. The adnominal demonstratives follow the noun in the NP with a demonstrative enclitic occurring both on the noun and demonstrative base. This is shown in in (79) with $=k e$ 'this (speaker proximate)' and $=k o$ 'that (distal)', and in (80) with , =na 'this/that (addressee proximate)'.
(79)

| $w o=v a i d i=y a$ | thari $=$ ke | $i y a=k e$ | $e$ |
| :---: | :---: | :---: | :---: |
| 1EXCL=find=YA | badness=SPKR.PROX | DEM=SPKR.PROX | PREP |
| ghemba=ko | iya $=$ ko |  |  |
| village=DIST | DEM=DIST |  |  |

'we found these problems (lit. this badness) in that village'
(moving_291214 009-10, 14.000 18.060)
(80) mbe hu=uno-uno vara ida-e=na
still 2PL=RED-say(name) really name-3SG.POSS=ADDR.PROX
iya $=n a$
DEM=ADDR.PROX
'you still keep saying that name' (mandumbunga_02_181016 252, 642.040 645.051)

The demonstrative base iya also obligatorily occurs in non-verbal clauses that express want and need (see §3.5.2.5).

### 3.3.5.2 Locative adverbials with ghe

Locative adverbials are formed by combining the locative base ghe with one of the demonstrative enclitics. In (81) to (82), the adverbial demonstrative functions as a locative adjunct, following an intransitive and transitive verb respectively.

| iya $=k e$ $n e$ $i=w a$ <br> DEM=SPKR.PROX FUT 3SG=go | ghe=na <br> LOC=ADDR.PROX |
| :--- | :--- | :--- | :--- |
| 'this will go there (near addressee)' | (fp_stimuli_191015_03 331, 802.240 803.750) |

```
wo-u=tamwe=ya ghamba-e,ghe=na
HORT=2SG=look.for=YA place-3SG.POSS LOC=ADDR.PROX
'look for a place there (near addressee)'
```

(fp_stimuli_191015_03 090, 256.990 259.360)
Examples (83) and (84) show the locative adverbial functioning as a predicate in non-verbal clauses (§3.5.2.2).

| umbaumbala $=m a$ | $i=n g a$ | "lolo | regha | ina- $\varnothing$ |
| :---: | :---: | :---: | :---: | :---: |
| giant=DET | 3SG=say | person | one | location-3SG.POSS |

ghe $=k e$ "
LOC=SPKR.PROX
'the giant said "someone is in here" (child_and_giant_201015 083, 212.180 214.930)

```
yangga \(=r a \quad\) ghe \(=y o\)
NUM.CLF=one LOC=DIST
```

'one is over there [points to picture nearby on the floor]'
(fp_stimuli_191015_05 100, 170.230 171.490)

### 3.3.6 Adpositions

Sudest has four adpositions. It is one of the few Papuan Tip languages (along with the languages of the Kilivila-Misima linkage and the Central Papuan Tip languages Magori and Yoba) that retain canonic Oceanic prepositions (Lynch et al. 2002: 104).

The four adpositions can be divided into free and bound adpositions using Crowley's (1998: 1512) model. The general preposition $e$ 'to, from, with' is the only free preposition. The bound adpositions can be further divided into verbal and nominal adpositions; we 'to, from' is a verbal ambiposition and takes an object enclitic, while the postposition kaiwa 'for' and the preposition wei- 'with' are nominal adpositions and take a possessive pronominal suffix. Interestingly, while the adpositions we 'to, from' and kaiwa 'for' take pronominal markings that agree with the NP complement of the adposition, wei- 'with' takes a possessive pronominal suffix that indicates the person and number of the S/A argument (that is, the 'accompanier' rather than the 'accompanied', with the latter expressed by a NP complement).

### 3.3.6.1 e general locative preposition 'to, from, with'

The free preposition $e$ 'to, from, with' has a general locative meaning. It can be used to indicate a goal, source, location, moment or period in time, but also an instrument, and, infrequently, a recipient. The preposition $e$ 'to, from, with' is not used with locational adjuncts headed by inherently locational nouns. These include place names, the nouns thotho 'home', bode 'down (low)', or yavoro 'up (high)', or locative adverbials with the locative base ghe (§3.3.5.2). Tokens of each of the attested semantic roles of the general preposition are presented in examples (85) to (90).
(85) kero wo=raka $[e \quad u m a]_{\text {GOAL }}$ already 1 PXCL=go.PL PREP garden
'we already went to the garden' (stone_cooking_251015 018, 50.050 52.730)
(86)

| wevo $=m a$ | $i=$ wo | apel $=m a$ | $[e$ |
| :--- | :--- | :--- | :--- | | buku=ma |
| :--- |
| youngwoman=DET |$\quad$ 3SG=GET.SG.RIGD $\quad$| apple=DET |
| :--- |$\quad$| PREP |
| :--- |
| book=DET |

(put_stimuli_201015_02 163, 982.360 985.110)

If the object of the preposition occurs with a possessor NP, the possessor precedes the preposition, as in (87).

| vethi=yaku | $[$ Rose | $e$ | ghamba-e $]_{\text {LoC }}$ |
| :--- | :--- | :--- | :--- |
| 3PL.INT=stay | pers.name | PREP | place-3SG.POSS |

'they stay at Rose's place'
(fp_stimuli_191015_07 038, 98.860 100.890)

| $i=n j o g h a$ | we=nggi | tina-e | na | rama-e | $[e$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG=go.back | $\mathrm{PREP}=3 \mathrm{PL}$ | mother-3SG.POSS | and | father-3SG.POSS | PREP |
| mbanga=ko | $i y a=k o]_{\mathrm{TIME}}$ |  |  |  |  |
| time=DIST | DEM=DIST |  |  |  |  |

'she returned to her mother and father at that time' (bush_betelnut_011115 137-138)

```
ra=va-kwate=nggi-ya [e kewe [INST
1INCL=CAUS-hang=3PL-FOC PREP carry.stick
'we lift them with a carrying stick' (sago_101214 065, 171.310 174.090)
```

Recipient PPs usually take the adposition we 'to, from'. Less commonly, the general preposition can also be used to indicate a recipient (90).

| nggorongga | meth $\dot{i}=$ dage | [ $e$ | ghen] ${ }_{\text {REC }}$ |
| :---: | :---: | :---: | :---: |
| how | 3PL.IMM.PST=speak | PREP | 2SG |
| 'how did they tell you?' |  |  | (cookin |

The directly-possessed noun ina 'location' occurs in locational adjuncts, including PPs which indicate that a referent is already located in the place specified by the adjunct. The directlypossessed noun precedes the preposition and, when following verbal predicates, takes a possessive suffix that 'agrees' with the $\mathbf{S}$ (91) or O (92) argument of the verb (see also §3.5.2.2 for examples of verbless locative predicates with ina and $e$ ).

$$
\begin{align*}
& \text { ve=yaku } \quad[\text { ina- } \varnothing \quad e \quad \text { thiyo }]_{\text {Loc }}  \tag{91}\\
& \text { 3SG.INT-stay location-3SG.POSS PREP rope/jail } \\
& \text { 'he stays in the cell' (fp_stimuli_191015_05 453-4, 1006.620 1008.490) } \\
& \text { 'she holds water in a bucket' } \\
& \text { water location-3SG.POSS PREP bucket }  \tag{92}\\
& \text { (fp_stimuli_191015_01 021-2, } 93.259 \text { 97.210) }
\end{align*}
$$

Non-verbal predicates of 'having' are also expressed by a PP construction with $e$, see §3.5.2.2.
Objects of PPs with $e$ are frequently headed by directly-possessed locative or body-part relational noun such as ghadidi 'side', gherei 'behind', mbothi 'nose, tip, point', raberabe 'underneath', tine 'inside, during', and ghamwa 'face, forehead, front'. See (86) above with vwata 'top' and (93) below with ghadidi 'beside'.

| (93) | umoru=ma <br> young.man=DET | $i=n d e g h a t h \dot{t}$ 3SG=stand | [e PREP | $\begin{aligned} & \text { tebol=ma } \\ & \text { table=DET } \end{aligned}$ | ghadidi-ye] ${ }_{\text {Loc }}$ beside/near-3SG.POSS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 'the man stands | side the table |  | imuli 0510 | 601 244-5,2620.325 |

### 3.3.6.2 we recipient 'to' and source 'from'

The adposition we 'to, from, with' is primarily used to indicate recipients and animate sources but can also be used to encode goals and instruments under certain conditions. It is also used to respond to questions pertaining to possession or location of an entity. The adposition is analysed as an ambiposition as it may occur before or after its complement (Libert 2006). ${ }^{57}$ In the corpus, it most frequently precedes its NP complement when one is present. It can further be classed as a verbal ambiposition, as it takes an object marker from the verbal object enclitic paradigm (§4.2.2) that agrees with the person and number of its complement.

The object marker and a lexical object can cooccur in the same ambipositional phrase, as shown in examples (94) to (97). The ambiposition precedes its object NP in (94) and (95), and follows its NP

[^35]object in (96) and (97). When the ambiposition is followed by a lexical object, it takes the enclitic $=y a$ which may be a paragogic syllable (see $\S 4.4 .3$ for further discussion).
(94) $i=n j o g h a \quad$ tina $-e=n g g i=y a \quad$ rama-e $]_{\mathrm{REC}}$ 3SG=go.back to/from=3PL=YA mother-3SG.POSS and father-3SG.POSS 'she returned to her mother and father' (bush_betelnut_011115 137, 323.950 326.120)

| $i=n j o g h a$ | $[w e=\varnothing=y a$ | levo $]_{\mathrm{REC}}$ |
| :--- | :--- | :--- |
| 3PL=go.back | to/from=3SG=YA | POSS.CLF2.3SG.POSS:young.woman | 'he returns to his wife' (fp_stimuli_201214_04 062, 189.150 191.070)

(96) iya second last=ko $\quad i=w o-$ giya $=\varnothing$ DEM second.last.person=DIST 3SG=GET.SG.RIGD-giya=3SG

| $[$ last $=k o$ | $w e=\emptyset]_{\mathrm{REC}}$ |
| :--- | :--- |
| last.person=DIST-PREP | to/from=3SG |

'that second last (man) give it (ceremonial limestick) to the last (man)'
(bwaindiya_151115 079, 231.340 234.373)
(97) veth $\dot{=}=$ wo

ити [Sabali une we=nggi $]_{\mathrm{REC}}$
3PL.INT=GET.SG.RIGD
lime place.name friends PREP=3PL
'they get lime from their Sabari friends' (skeleton_181015 041, 99.004 102.170)
The ambiposition can also occur without a lexical object, as in (98) to (100).
(98) "te-mbe ne u=njogha=va $[w e=n g g o]_{\mathrm{GOAL}}$ more-still FUT $2 \mathrm{SG}=$ go.back=REP to/from=1SG
"come back again to me" (mandumbunga_02_181016 394, 990.683 992.800)

Ambipositional phrases nearly always follow lexical objects of the predicate, (99) but they may also come between verb and its lexical object, as in (100).

| i=nanggo $\quad$ ndighe $=k o \quad[\text { we=nggi }]_{\text {SOURCE }}$ |
| :--- |
| 3SG=ask.for $\quad$ fire $=$ DIST $\quad$ to/from=3PL |

'he asked for fire from them' (skeleton_181015 041, 99.004102 .170 )

| thi $=$ giya$\quad[\text { we=nggi }]_{\text {REC }}$ | ghaningga | dayagha |
| :--- | :---: | :--- |
| 3PL=giveto/from=3PL <br> food | hot |  |

While ambipositional phrases most frequently take the semantic roles of recipient and animate sources, they are also used to express goals and instruments. The preposition $e$ 'to, from, with' is the default adposition used to express these latter roles, but it cannot occur without a lexical object. In cases where the object referent is easily retrievable from the discourse and, therefore, does not have to be overtly expressed, the ambiposition we replaces $e{ }^{58}$ Consider the examples presented in

[^36]in (101) and (102), in which the referent of the prepositional complement is the O argument in the preceding clause. In these cases, the adposition cannot take a lexical object.

```
(101)
 l=wo
 [we=\emptyset] GOAL
 to/from=3SG
 'she got a wooden dish (and) put the child in it'
 (crab_girl_081115 041-2, 103.69 110.380)
(102) th\dot{i}=rumbo ndigghe na thi=vada nggama=ko riwa-e
 3PL=make(fire) fire and 3PL=warm child=DIST body-3SG.POSS
 [we=\emptyset] INST
 to/from=3SG
 'they make a fire and they warm the child with it'
 (new_mother_251214 059-60, 143.810 148.350)
```

The ambiposition can also occur in questions and responses relating to ownership and possession. When asking or answering questions of ownership or possession, we often occurs postpositionally with an independent pronoun complement, as in the response speaker 2 gives in (103) or the question in (104).
(103)

| $<1>$ | thela | le- $\varnothing$ | thelau |
| :--- | :--- | :--- | :--- |
| who | iya $=k o$ ? |  |  |


| <ghime | $w e]_{\mathrm{REC}}$ | $b u b u$ | $v a$ | $i=v a-$ modo $=\varnothing$ |
| :---: | :---: | :--- | :--- | :--- |
| 1EXCL | to/from | grandparent/child | REM.PST | 3SG=CAUS-payment=3SG |

speaker 1: 'whose land is that?'
speaker 2: 'ours, grandad bought it’ (short_story_111015 013, 31.293 35.183)
(104) botel $=n a \quad$ ghen we $]_{\text {REC }}$
bottle=ADDR.PROX 2SG to/from
'is that bottle yours?'
(dem_quest_311016)

### 3.3.6.3 kaiwa benefactive and purposive 'for'

The postposition kaiwa 'for' has a benefactive or purposive function. It is a nominal postposition and takes a possessive pronominal suffix (§3.4.4) that agrees with the person and number of its object. ${ }^{59}$

The postpositional objects in (105) and (106) have animate referents that take the semantic role of benefactive:

[^37](105) $h u=k a b u$ gheleth $\dot{i}=k e \quad$ iya $=k e \quad$ ghemi kaiwa-mi $]_{\text {BEN }}$

2PL=plant betel.nut=SPKR.PROX DEM=SPKR.PROX 2PL for-2PL.POSS
'you plant this betel nut for you'
(working_011115 014-15, 50.106 52.576)
(106)
$\left.\begin{array}{lll}\begin{array}{ll}\text { bwebwe } & m e=\text { la-lovivina }=\varnothing \\ \text { dad } & \text { 3SG.IMM.PST-and.go-prepare=3SG }\end{array} \quad[\text { kaiwa- } n g g u]_{\text {BEN }} \\ \text { for-1SG.POSS }\end{array}\right]$ (bamily_ties_081115 044, 108.868 111.137)

Postpositional phrases with an inanimate-object referent have a purposive interpretation. They indicate for what purpose or reason the action of the verb is performed, as in (107) and (108).

| veth $i=$ ghalolo $=\varnothing$ | $[l e-n j i$ | market | kaiwa-e $]_{\text {PURP }}$ |
| :--- | :--- | :--- | :--- |
| 3PL.INT=harvest=3SG | POSS.CLF2-3PL.POSS | market | for-3SG.POSS |

'they harvest it for their market' (fp_stimuli_191015_02 015, 30.510 32.568)
(108) mbanga=niye thi=raka-ranggi na thi=ghiva=va thi=rumbo ndighe time=SP 3PL=go.PL-go.out and 3PL=trade(kula) 3PL=make(fire) fire [ranggi=ko kaiwa-Ø] $]_{\text {PURP }}$
going.out=DIST for-3SG.POSS
'when they go out and trade, they make a fire for the going out (i.e. they light a fire in order to prepare for the journey by completing various rituals)
(funeral_feasting_081015_02 091-2, 233.850 240.419)

### 3.3.6.4 wei- accompaniment 'with'

The bound preposition wei- 'with' expresses accompaniment. The preposition can be characterised as a nominal adposition like the benefactive postposition kaiwa 'for' as it also takes a possessive pronominal suffix. In contrast to kaiwa and the nominal adpositions typically attested in Oceanic languages (e.g. Crowley 1998), in the case of wei-, the suffix does not agree in person and number with the object of the PP, i.e. the companion, but rather with the accompanier - typically the S/A argument of the verb in clauses with a verbal complex. In (109), the preposition takes the second person singular possessive suffix - $n$ to agree with the $S$ argument of the verb yaku 'live, stay', while the object of the PP is expressed by an lexical NP. In (110), the preposition takes the first person singular possessive suffix -nggu and likewise agrees with the S argument of mena 'come'. The object of the PP is expressed by the pronoun ghen ' 2 SG '.

| thí=nga | "u=re-yaku | [wei-n |
| :--- | :--- | :--- |
| 3PL=say | 2SG=stay.and-stay/live | with-2SG.POSS |

$l o u-n=k e]_{\text {ACCOMP }}{ }^{\prime \prime}$
sibling.opp.sex-2SG.POSS=SPKR.PROX
'they said "you stay with your brother"" (crab_girl_081115 009-10, 25.150 28.470)
(110) $a=m e n a \quad$ whei-nggu $]_{\text {ACCOMP }}$ 1SG=come with-1SG.POSS 2SG
'I (will) come with you'

When the complement of the PP is plural, regardless of person, the preposition takes additional morphology, with the enclitic $=y a(\$ 4.3 .3)$ and the third person plural object enclitic $=n g g i$. If the PP includes a lexical object, a second instance of the enclitic $=y a$ attaches to the plural object enclitic, as in (111).
(111) thera=ko kero thi=raka e mbwa=ko tine youth=DIST already 3PL=go.PL PREP water=DIST inside veth $i=$ mun $=a \quad$ yee $\quad$ wei-nji=ya=nggi=ya giya-giya 3PL.INT=drink=YA k.o.herbs with-3PL.POSS=YA=3PL RED-big.person vavana $=v a]_{\text {ACCOMP }}$
some=REP
'the youths go to the water to drink herbs with some big men again'
(funeral_feasting_081015_02 026-7, 70.530 76.480)

The preposition typically takes an animate complement, as in the above examples. However, it can also take inanimate complements, as shown in (112) and (113).

| (112)ghenangga=ko <br> decorative.limestick=DIST | Ware=ko <br> place.name=DIST | une <br> friends | already <br> [wei-nji $]_{\text {Accomp }}$ |  |
| :--- | :--- | :--- | :--- | :--- | | 3PL=go.up-hither |
| :--- |

'the lime stick, the Ware friends already came up with it'
(bwaindiya_151115 028-9, 95.020 103.216)
(113) iye va le- $\varnothing$ wei-ye ghare

3SG REM.PST with-3SG.POSS POSS.CLF2-3SG.POSS heart
laghí-laghíye] ${ }_{\text {ACCOMP }}$
RED-big
'he was very worried (lit. he was with a very big heart)'
(mandumbunga_02_181016 161, 397.295 401.079)

The PP can occur with =engge 'just' to specify that no additional participants accompanied the subject(s) of the event, as in (114) wei-me=engge 'with-1EXCL.POSS=just' meaning 'with just us'.

```
 wo=nja [wei-me=engge }\mp@subsup{]}{\textrm{ACCOMP}}{
 1EXCL=go.down with-1EXCL.POSS=just
 'we went down with just us (women)' (menstruation_081015 018-19, 58.48 61.600)
```


### 3.3.7 Tense, aspect, mood particles

There are seven particles that express information about tense, aspect, and mood (TAM) in Sudest which are listed in Table 3.5.

| TAM particle | meaning |
| :--- | :--- |
| $m e$ | immediate past |
| $v a$ | remote past |
| ne | future |
| kero, ma | already |
| mbe | still |
| mbala | should |
| mbwata, nunggo | perhaps |
| Table 3.5 TAM particles |  |

The Tam Particles are independent, invariable forms with a grammatical function. They occur in clauses with non-verbal and verbal predicates. The tense particles also occur in temporal adjuncts. The particles are not obligatory and can be omitted when the pertinent information is retrievable from the context.

The particles generally precede the predicate. If there is a subject conominal in a clause with a VC, any TAM particles usually occur between the conominal and VC. However, this is not always the case and the TAM particles are also attested preceding both the conominal and VC. Because the TAM particles can be separated from the VC by a conominal, they are analysed as outside of VC when occurring in clauses with verbal predication. ${ }^{60}$

When there is more than one TAM particle in a clause, the tense particles (me 'immediate past', va 'past' and ne 'future') follow all aspect and modality particles, with the exception of ma 'already', which follows the tense particles. Modal directives that occur within the VC are discussed in chapter 4 (see §4.4.1 and §4.4.2).

### 3.3.7.1 Me immediate past

The immediate past tense particle $m e$ is named for its function in specifying that the moment of the situation occurred shortly before the moment of speech (or reference point). The particle is also used in the corpus in historical/traditional narratives and procedurals that describe past, habitual events.

The particle $m e$ is used to indicate that the situation occurred in the near past, either the same day as the moment of speech/reference point or the previous night, but not the previous day. In (115), $m e$ occurs in the non-verbal predicate in a passage of direct speech in which a grandmother asks her granddaughter about how the previous night went with her new husband.

[^38]| (115)elisari $=k o$ $i=v a i t o=\varnothing$ <br> old.woman=DIST $3 S G=a s k=3 S G$ | $i=n g a$ | "nggorongga | me | gougou?" |
| :--- | :--- | :--- | :--- | :--- | :--- |

'the old woman asks her "how was last night?",
(mandumbunga_02_181016 359-60, 901.494 906.204)
In clauses with a verbal predicate, the particle combines with the subject index. This can be seen in (116), in which me combines with the first person singular subject index $a=$ (see $\S 4.2 .1 .2$ for immediate past subject indexes).

cooking_111015 004-5, 19.270 22.733)

The label 'immediate past' is adopted from A\&A and A\&R. Anderson and Anderson (p. 20) state that the particle is also used to specify recent past when the moment of the situation is the same day as or the day before the moment of speech/reference point, i.e. 'yesterday' and not just 'last night'. However, speakers rejected such biduonal ('within two days') usage - the conflation of hodiernal past (today) and hesternal past (yesterday) (Botne 2012). Instead, speakers use the temporal noun menda 'yesterday' when describing situations that occurred the day before the moment of speech. To locate situations that occurred further in the past than a few days, speakers use the remote past particle $v a(\S 3.3 .7 .2)$.

The immediate past particle also appears to have a discourse function to mark past, habitual activities and situations. In the corpus, it occurs in traditional narratives set in the distant past, and in procedural texts when describing traditional practices that are no longer adhered to. The example in (117) comes from a narrative about the first person to use fire on Vanatina:


The first 42 intonation units (IUs) in (117) nearly exclusively use the immediate past particle and subject indexes (excluding sequences of clauses that describe series of events in which only the first VC is marked for tense). This part of the narrative describes how Mandumbunga, the first person to have fire, would secretly go about her day in order to procure and cook her food. The narrator uses the immediate past particle and immediate past subject indexes to outline Mandumbunga's daily routine, up to the point of describing her going to the toilet one day, at which time her secret is discovered by her granddaughters. At this point, the narrator switches to the general subject indexes and does not mark the clause for tense in any way (amba thikubaro reghamba we... 'then they follow behind her...'). The remainder of the text describes what happens after Mandumbunga is disovered. Here, the immediate past particle/indexes are only used in their immediate past function in the text in situations describing situations that took place shortly before the reference point.

A second example of the habitual function of $m e$ 'IMM.PST' is presented in (118) from a procedural text on menstruation. Here the immediate past is used when describing traditional practices associated with menstruation that are no longer adhered to today, when the speaker switches to describing what menstruating people do today after noroke 'today', like in the previous example, she switches from the immediate past to the general subject indexes.

'I will talk about how a woman menstruated, in the past menstruation or menstruation, they made it secret/taboo [...] today, a woman's period, they (women) walk while menstruating in front of men...'
lit: 'I will talke about how a woman stayed in the bush, it went first there, stay (in) the bush or stay (in the) village they made it secret/taboo [...] today woman's staying (in the) bush, they walk (with) it in front of men...'
(menstruation_081015 001-15, 6.030 50.828)

### 3.3.7.2 Va remote past

The remote past particle $v a$ contrasts with the immediate past marker $m e$ (§3.3.7.1). It is used to specify that a situation occurred a few days ago, a few weeks ago, a few years ago, or in the distant past. ${ }^{61}$ The elicited example (119) describes an event from the previous week. Note that the past particle $v a$ combines with menda 'yesterday' to indicate a location in time at least a few days prior to the reference point.

| $l o l o=k o$ | iya $=k o$ | menda=va | $i=v u t h a$ | wik=ko |
| :--- | :--- | :--- | :--- | :--- |
| person=DIST | DEM=DIST | yesterday=REM.PST | 3SG=arrive | week-=DIST |

$\boldsymbol{v a} \quad m a \quad i=w a=k o$
REM.PST already $3 \mathrm{SG}=\mathrm{go}=\mathrm{DIST}$
'that person arrived last week (lit. that person arrived the week that already went)'
(e_251115_01)

In (120), the remote past particle is used when describing an event from a few years ago.

| (120) | $v a$ | $a=u t u-n g a$ | $w o=m b e=r e g h a$ | $a=$ uno-giya |
| :---: | :---: | :---: | :---: | :---: |
|  | REM.PST | 1SG=speak-TR | POSS.CLF1.1SG.POSS=still=one | 1SG=call(name)-give |
|  | $\begin{aligned} & \text { ida-nggu } \\ & \text { name-1SG.P } \end{aligned}$ | $\begin{aligned} & \text { we=nggi } \\ & \text { to }=3 \mathrm{PL} \end{aligned}$ | lo teecha POSS.CLF2.1SG.POSS teacher |  |
| (education_241214 011-3, 38.790 47.290) |  |  |  |  |
|  |  |  |  |  |

The example from a traditional narrative in (121) describes events from the distant past.

[^39]| regha | $\boldsymbol{v a}$ | numobwalabwala | na | regha | wadawada |
| :--- | :--- | :--- | :--- | :--- | :--- |
| one | REM.PST | non.witch | and | one | witch |

'one (girl) was a muggle and one was a witch'
(bush_betelnut_011115 003-4, 10.015 14.680)
In (122), va 'REM.PST' occurs with the temporal adjunct mbanga regha 'one time' to specify that the situation is located in the past.

| (122) | va | mbanga | regha | yenggiyenggi | na | ighai-ye | wondeya... |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REM.PST | time | one | monitor.lizard | and | cousin-3SG.POSS | possum |  | 'one time monitor lizard and his cousin possum...'

(lizard_and_possum_121015 004, 11.100 14.778)

### 3.3.7.3 Ne future

The tense particle $n e$ is used to mark future reference. It can be used to signal a situation or event that will occur in the near future, as in (123) and (124) which describe events that occurred immediately after the moment of speech or events anticipated to occur at a later time, as in (125).
ne $a=u t u-n g a \quad$ итoru $n a$ wevo
FUT $1 \mathrm{SG}=$ speak-APPL young.man and young.woman
meth $\dot{i}=v i-g h a t h \dot{i}$
3PL.IMM.PST=w.fingers-tight
'I will talk about how young men and women (traditionally) had relationships (lit.
touched)'
(dating_081015 001-3, 1.360 11.041)
(124)

| ne | $u=$ lingg =ya | $m b w a$ |
| :--- | :--- | :--- |
| FUT | 2 SG=pour=YA | water |

'you will pour out the water’ (c_031116 017, 43.110 44.430)

| thaga=ko $\quad$ ne ina | $e$ | Friday |  |
| :--- | :--- | :--- | :--- | :--- |
| feast=DIST FUT be.located | PREP | Friday |  |
| 'the feast will be on Friday' |  |  | (e_081116_02) |

The future particle also introduces the apodosis in predictive conditional constructions that describe a hypothetical future event, as in (126). See $\S 3.6 .3 .3$ for further discussion of conditionals.

| (126) | thonggo | $u=w a$ | $e$ | njight | $e$ | rimu=ko | vwata-e | $[\ldots]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| if | $2 \mathrm{SG}=\mathrm{go}$ | PREP | sea | PREP | reef=DIST | on.top-3SG.POSS |  |  |
| ne | $u=$ vaidi $=y a$ | undivivi | ina | ghe=ko |  |  |  |  |
| FUT | 2SG=find=YA | mud.crab | be.located | LOC=DIST |  |  |  |  |

'if you go to the sea, to on the reef $[\ldots]$ you will find the crab there' (crab_girl_081115 103-10, 252.882 270.026)

Languages which mark multiple past intervals are commonly symmetrical, meaning that they also mark the same relative temporal intervals in the future (Botne 2012). Anderson and Ross (p. 337) describe an immediate future marker $n a$, which contrasts with the future marker $n e$. They (A\&R p.
337) report that the particle $n a$ is used when the situation is anticipated to occur the same day as the time of reference. However, the current corpus shows ne performing this function (see examples (123) and (124) above). Furthermore, no near-future particle is attested in the corpus. In targeted elicitation speakers also only produced the particle ne and corrected the researcher's use of $n a$ to $n e$. The current data, therefore, contrast with the diachronic record of the language, indicating that Sudest today no longer has symmetrical tense markers.

### 3.3.7.4 Kero and $m a$ 'already'

The two particles kero and ma signal the completeness of a state, or that an action/event is already completed. The two particles are typically translated as 'already' and are glossed as such in the corpus. Kero occurs more frequently in the corpus than $m a$ ( 318 tokens to 222). Consider examples (127) and (128).

$$
\text { (127) } \begin{array}{llllll}
\text { mborowa-ye=ko } \\
\text { trunk-3SG.POSS=DIST }
\end{array} \quad[\ldots] ~ \begin{array}{ll}
\text { kero } \\
\text { already }
\end{array} \quad \begin{aligned}
& i=m w e g h e \\
& \text { 3SG=be.ripe }
\end{aligned} \quad \begin{aligned}
& n a \\
& \text { and }
\end{aligned} \quad \begin{aligned}
& \text { ma } \\
& \text { already }
\end{aligned}
$$

$i=$ garimbi
3SG=be.strong/hard
'(at this point in its growth) the tree trunk is already mature and is already strong'
(c_031116 121-3, 229.070 234.890)


$$
\text { (feast_of_the_fish_271015 059-60, } 141.960 \text { 145.610) }
$$

The two appear to be used interchangeably by speakers, however, they do not share the same relative position when co-occurring with other TAM particles; kero precedes any tense particles, as in (129), and $m a$ follows any tense particles, as in (128) above. This suggests that there they may be differences between the two particles. The particle $m a$ also collocates more frequently with the remote past particle va ( 22 tokens) than kero ( 5 tokens).

```
(129) ngingi-nggu=ke kero va i=ma-bebe
 tooth/teeth-1SG.POSS=SPKR.PROX already REM.PST 3SG=DETR-break
 'my tooth was already broken' (dem_quest_201015 038, 115.370 117.240)
```

When the particles kero and ma 'already' occur with the continuative aspect (expressed by the reduplication of the verb stem, $\S 3.3 .2 .3$ ), they indicate that the situation of the proposition is already underway and ongoing at the time of reference, as in (130) and (131).
kero wo=vwala-vwala
already $\quad 1 E X C L=R E D-b a k e / m u m u$
'we are already baking (by stone oven/mumu)'
(stone_cooking_251015 061, 168.590 177.200)
(131)

| $\boldsymbol{m a}$ | $i=$ ro-sike-sike | vara |
| :--- | :--- | :--- |
| already | 3SG=sit.and-RED-hop | really |
| 'he is already kneeling' |  |  |

(bwaindiya_151115 076, 221.111 224.380)
See also §6.2.1 for discussion of sequencing constructions with the verb ko 'finish' and §6.3.9 for complex verbs with the completive stem vao 'COMPL'.

### 3.3.7.5 Mbe 'still'

The particle mbe has an anterior continuing function (cf. Bybee et al. 1994: 318): it indicates that the situation commenced before the time of reference and continues into the time of reference, as in (132) to (134).
(132) mbe $i=g h e n a \quad e \quad$ daghata=ma vwata- $e$
still 3SG=sleep PREP log=DET back/top-3SG.POSS
'he is still asleep on top of the log' (child_and_giant_201015 016-7, 50.220 53.410)
(133)
ela $=m a \quad$ mbe ina- $\varnothing \quad e \quad t o=k e$
woman=DET still be.located-3SG.POSS PREP outside=SPKR.PROX
'the woman is still out there (on the reef)' (chicken_story_181015 031, 72.860 76.300)
(134) kero $i=g h a m b \dot{i}=y a \quad n g g a m a=m a \quad$ mbe $e$ rovo=ma engge already 3 SG=give.birth=YA child=DET still PREP grave=DET just
tine
inside
'she gave birth to the baby (while) still in the grave'
(couples_story_101214 013-4, 50.700 55.100)

In clauses with negative polarity, the particle indicates that the situation has not yet eventuated at the time of reference, with an expectation that it will 'still' eventuate at some future point, consider (135) and (136):
(135)

| ande | mbe | meth $i=$ ghe $=r e$ |
| :--- | :--- | :--- |
| NEG1 | still | 3PL.IMM.PST=marry=NEG2 |

'they still don't marry/they aren't married yet' (dating_081015 007, 19.540 21.304)

CONJ NEG1 still FUT 3SG=go=NEG2 PREP village another/one
'but she still will not go to another village' [context: during specific parts of the mourning period a widow has certain restrictions placed on her, including restrictions of movement]
(funeral_feasting_081015_01 120, 348.630352 .160 )

The particle combines with the first possessive classifier gha and the numeral regha 'one' to mean 'myself', 'yourself', itself, as in (137) (see also §3.4.4.2).

```
(137) i=longga gha- }=\mathbf{=mbe}=regh
 3SG=walk POSS.CLF1-3SG.POSS=still=one
 '(the child) walks by itself' (new_mother_251214 114-5, 284.884 288.363)
```


### 3.3.7.6 Mbala obligation

The particle mbala 'should' expresses weak obligation and is an agent-oriented modality (cf. Bybee et al. 1994: 177), consider (138) and (139).


The particle is also used at the beginning of the apodosis in counterfactual conditional sentences (see also §3.6.3.3):

| (140) thonggo | $m e$ | $v e=$ ranggi | $e$ | ghaiwabu=ko | mbala |
| :--- | :--- | :--- | :--- | :--- | :--- |
| if | IMM.PST | 3SG.INT=go.out | PREP | north=DIST | OBL |
| me=thalaten | Yeina |  |  |  |  |
| 3SG.IMM.PST=break.in.half | place.name |  |  |  |  |
| 'if (the giant snake) had gone out to the north, she would have broken Yeina (Piron |  |  |  |  |  |
| Island) in half' | (snake_passage_061215 197-9, 477.760 483.656) |  |  |  |  |

See $\S 4.4 .1$ for modal directives and $\S 4.4 .2$ for the dehortative in the VC.

### 3.3.7.7 Mbwata and nunggo 'perhaps'

The probability mood particles mbwata and nunggo 'perhaps' both indicate that a speaker is not willing to assert the truth of the proposition. It is unclear if the two particles differ semantically or pragmatically. Both typically occur clause initially, but mbwata occurs far more frequently in the corpus (62 tokens to 6 ):
(141) i=nga "mbwata ne $a=w a \quad v a=r u k u-t h u w e=n g g i "$

3SG=say perhaps FUT 1SG=go 1SG.INT=run-see=3PL
'he said "maybe I will go to see them",
(mandumbunga_02_181016 057, 161.581 164.074)
mbwata iya nari-ye?
perhaps DEM son-3SG.POSS
'perhaps this is his son?'
(fp_stimuli_201015_01 236, 882.560 884.303)
(143)

| nunggo $\quad$ maa | $u=g h a n=a$ | bwarogi | ghe=ke |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| perhaps $\quad$ NEG $\quad 2 \mathrm{SG}=\mathrm{eat=YA}$ | fish | LOC=SPKR.PROX |  |  |
| wo-vo=ruku-ghan=ya | wondeya | le-n | boda-boda |  |
| HORT-2SG.INT=run-eat=YA | possum | POSS.CLF2-2SG.POSS | RED-relative |  |

$w e=n g g i$
PREP=3PL
'maybe you don't eat fish here, go to eat possum with your relatives'
(marriage_111015 072-3, 218.535 226.110)

### 3.3.8 Interrogatives

Content questions are marked by question words. As is common for Oceanic languages (see Lynch et al. 2002: 52), question words in Sudest generally belong to the same word class as the constituent being questioned, and do not constitute a single group among themselves, however they are listed together here for convenience. The majority of the question words can also function alone to form a question sentence, e.g. nggorongga? 'how?' is a complete sentence. All attested question words are listed in Table 3.6.

| form | gloss | questions what | related word class |
| :---: | :---: | :---: | :---: |
| thela | 'who' | identity of person | nominal |
| thevala | 'who (PL)' | identity of persons | nominal |
| buda (kai) | 'what (thing)' | identity of non-human/non-animate | nominal |
| thembanga | 'when' | (point in) time | adverbial |
| maninggiye | 'when' | (point in) time | adverbial |
| angga | 'where' | location | adverbial |
| ningga | 'where' | location | adverbial |
| nggorongga | 'how, why' | manner, quality | adverbial |
| the | 'which' | identity of object/item | modifier |
| thambo | 'which (of a set) | identity of object/item | modifier |
| thare | 'is it/are there/do...' | request for item/action | modifier |
| $t a b$ | 'is it/are there/do...' | request for item/action | modifier |
| (na) $k a$ | 'what about...' | purpose/use of a specific item/entity | modifier |
| -viye | 'how many' | quantity | numeral |

Table 3.6 Question words
There are three pairs of question words that appear to be used interchangeably: thembanga and maninggiye 'when', angga and ningga 'where', and the general interrogative lexemes thare and tab both meaning 'are there...' or 'do...'. At least the tab is borrowed from Misima (S. Callister et al. 2005). The origins of the other competing pairs are unknown. Buda 'what' and buda kai 'what thing' are used interchangeably.

Content questions can have rising intonation, although this is not always the case. The lexemes can occur in situ, as in (144) and (145), or fronted, as in (146) and (147).


The general requests thare and tab 'are there, is there, do' and (na)ka 'what about' are always fronted. Examples (148) and (149) show the use of thare, and (150) shows an example with tab (which is used interchangeably).
(148) thare kunumwana?

REQ banana
'are there any bananas?' (e_171015_03 099)
(149) thare va u=ravu ngingi-n=na va

REQ REM.PST 2SG=know tooth-2SG.POSS=ADDR.PROX REM.PST
$i=m a-b e b e$ ?
3SG=DETR-break
‘did you know your tooth is broken’ (dem_quest_201015)
(150) thi=nga "tab valikaiwa-e wo=u=nja=ma?"

3PL=say REQ possibility-3SG.POSS HORT=2SG
'they said "is it possible (that) you come down here?"'
(mandumbunga_02_181016 208, 525.677 528.663)
Questions with naka request information about a referent already known to all SAPS. Example (151) comes from a discussion on kinship terms between two relatives in which one speaker asks about their relationships to particular relatives.
(151) naka tina-nda?
what.about mother-1INC:.PL.POSS
'what about our mother?'

### 3.4 The noun phrase

The head of a noun phrase (NP) can be a lexical noun, an independent pronoun, a demonstrative pronoun or a (nominalised) modifier (i.e. adjectives, quantifiers and numerals). Noun phrases can function as the subject and object of verbal predicates, i.e. as a conominal of the subject and object indexes (cf. Haspelmath 2013, see $\S 4.2$ for further discussion), or as an adjunct in an oblique role. They also function as predicates and subjects in non-verbal predicates (§3.5).

A lexical noun is the only head of a NP that can take all possible NP modifiers. Pronouns do not take any modifiers. Demonstrative pronouns and nominalised modifiers can be modified by a demonstrative enclitic. Figure 3.1 shows the maximal lexical NP. The head of the phrase is the only obligatory element of the NP.

```
(vata '(too) much/many') (POSS.N) (PL=) (CLF-POSS) \(\mathbf{N}(-\mathrm{POSS} / \mathrm{SP})\) (=DET) (MOD) (=PL)
 (RC) (=DET)
```

Figure 3.1 Maximal lexical noun phrase
The following sections describes each of the elements of the NP in turn. Number marking is outlined in $\S 3.4 .1$ and determiners in $\S 3.4 .2$. Section 3.4.3 describes the different nominal modifiers, including adjectives (§3.4.3.1), quantifiers (§3.4.3.2), and numerals (§3.4.3.3). Finally, §3.4.4 and §3.4.5 discuss possession and relative clauses respectively.

### 3.4.1 Number marking

Number is not obligatorily marked on all nouns in Sudest. The higher a noun is on the animacy hierarchy, the more likely it is that the noun can (or must) take overt plural marking. Human nouns are nearly always marked for plural by at least one of the four plural markers; speakers generally do not accept unmarked human nouns for plural referents in elicitation. Other animate and inanimate nouns lower on the animacy hierarchy with a non-singular referent are not necessarily marked for plural. In these cases, number may be marked within the NP by a quantifier (§3.4.3.2) or a numeral (§3.4.3.3). Many non-singular NPs are not marked for number at all. In these cases, number may be indicated elsewhere in the clause, e.g. by a subject index (152) on the verb, an object index on the verb (153), on an adposition (154), or even by one of the classificatory verbs (155) which mark verbal number. See $\S 4.2$ for subject and object indexes, §3.3.6 for adpositions, and $\S 5.2$ for discussion of the classificatory verbs.
vwakirakira=ma thi=raka-voro e ghamba-nji=ma
frog=DET 3 PL=all-go.up REP Place-3PL.POSS=DET
'the frogs all climb up to their place'
(frogstory_161214 124, 323.794327 .226 )
$u=v i l e=n g g i=y a \quad$ vari
$2 \mathrm{SG}=$ turn.over $=3 \mathrm{PL}=\mathrm{YA}$ stone
'you turn over the stones' (crab_girl_081115 108, 262.810 264.281)

| $i=$ dage | we=nggi=ya | gha- $\varnothing$ | thegha |
| :--- | :--- | :--- | :--- |
| 3SG=speak | PREP=3PL=YA | POSS.CLF1-3SG.POSS | male.youth |
| 'she speaks to her young men' | (chicken_story_181015 004-5, 15.680 18.800) |  |  |

(155) gamaina=ma i=mena i=langa-ra buku=ma
pubescent.girl=DET 3SG=come 3SG=GET.PL.FLEX-put book=DET
'the girl comes (and) puts her books' (put_stimuli_201015_01 092, 570.237 572.860)

There are four ways in which plurals may be overtly marked within a NP. They can be marked by an irregular or suppletive form (§3.4.1.1), a reduplicated form (§3.4.1.2), the plural proclitic $o=$ (§3.4.1.3), and/or the third person plural object enclitic =nggi (§3.4.1.4).

### 3.4.1.1 Irregular and suppletive plurals

A small number of nouns have an irregular or suppletive plural form. There are just four irregular or suppletive pairs attested in the corpus and all are for human nouns: lolo 'person' and gharighari 'people' (156), nggama 'child' and gamagai 'children' (157), ${ }^{62} u$ 'friend and une 'friends' (158), and wevo 'young woman, wife' and wanakau 'young women' (159). The base forms can only be interpreted as singular; the irregular or suppletive forms are therefore obligatory in plural contexts.

```
(156) a. mbanga lolo i=mare...
 time person 3SG=die
 'when a person dies...' (funeral_feasting_081015_01 008, 31.280 36.980)
 b. gharighari=ke methi=mena e uma tine
 people=SPKR.PROX 3PL.IMM.PST=come PREP garden inside
 'the people came to the garden' (fp_stimuli_201015_01 133,541.900 543.869)
(157) a. nggama=ke i=randa
 child=SPKR.PROX 3SG=cry
 'the child cries'
 (fp_stimuli_191015_02 105, 260.810 262.122)
```

[^40]b. gamagai thi=vutha
children 3PL=arrive
'the children arrive'
(snake_passage_061215037, 87.822 89.510)
(158) a.

| gha-n | $\boldsymbol{u}=n a$ | $n e$ | $i=$ ro-thuweiru |
| :--- | :--- | :--- | :--- |
| POSS.CLF1-2SG.POSS | friend=ADDR.PROX | FUT $\quad$ 3SG=sit.and-be.awake |  |
| 'your friend will stay and wake up' | (crab_girl_081115 021, 51.630 54.060) |  |  |

b. gha-Ø une kero methí=ya-raka e

POSS.CLF1-3SG.POSS friends already 3PL.IMM.PST=all-go.PL PREP
ghemba
village
'all his friends had already gone to the village'
(child_and_giant_201015 024, 60.140 61.894)
(159) a.

| wevo=ke | $i=l i-$ ranggi=ya | gha- $\varnothing$ |
| :--- | :--- | :--- |
| young.woman=SPKR.PROX | $3 S G=$ GET.SG.FLEX-go.out | POSS.CLF1-3SG.POSS |
| koat |  |  |
| coat |  |  |

'the young woman takes off her coat'
(put_stimuli_201015_02 131, 761.440 764.420)
b. wanakau=ko methi=njimbo yami-nji=ko
young.women=DIST 3PL.IMM.PST=wear k.o.grass.skirt-3PL.POSS=DIST
'the young women wore their grass skirts'
(traditional_dress_051214 049, 144.330147 .448

### 3.4.1.2 Reduplicated plurals

Plural nouns can also be formed by way of reduplication. Reduplication patterns for forming plural nouns are the same as those for nominalisation (§3.3.3.1.1) and verb stems (§4.3). As with verbal reduplication and nominalising reduplication, only a small number of multisyllabic nouns attested in the corpus reduplicate the first syllable ( $7.8 \%$ or 4 nouns), as in (160) and (161). The majority of nouns reduplicate the first two syllables ( $90.2 \%$ or 46 nouns), as in (162) and (163). Reduplication is a productive process for deriving plurals, as can be observed by the reduplication of the loan word piletti 'plate' in (163).

```
(160) i=go-vaito=nggi=ya euni-wo=ma i=nga "ka-kaka
 3SG=by.speaking-ask=3PL=YA NUM.CLF-two=DET 3SG=say RED-spirit/ghost
 ghemi?"
 2PL
 'he asked the two (women), he said "are you ghosts?"
 (mandumbunga_02_181016 200-201, 501.448 507.846)
```



Fifty-one plural nouns in the corpus are formed by reduplication. Elicitation and field notes indicate that the number of reduplicated plural forms far exceeds that number. It is not completely predictable which nouns may form a plural in this way, although attested reduplicated nouns show some patterns. All human and animate nouns tested have a reduplicated plural form with a small number of exceptions. The human nouns with an irregular or suppletive plural, as discussed §3.4.1.1 above, do not have a reduplicated plural form; neither does the noun thegha '(male) youth'. The latter may be due to the fact that a noun theghathegha 'harvest season, year' also exists. Generally, unmarked nouns that already contain reduplication (e.g., kamkam 'chicken' and mbombo 'pig') do not form plurals by reduplication. However, an exception to this is the plural ka-kaka 'REDghost/spirit' meaning 'ghosts' or 'spirits' (see (160) above). Many inanimate nouns also have a reduplicated plural form.

### 3.4.1.3 Kin term plurals with $o=$

Kin terms take a plural proclitic $o=$. If the kin term is directly possessed (§3.4.4.1), the proclitic attaches to the noun, as in (164). For indirectly-possessed nouns (§3.4.4.2), the clitic attaches to the possessive classifier (A\&R, p. 327), as in (165). ${ }^{63}$
(164) kaiwa-e o=rama-e
reason-3SG.POSS PL=father-3SG.POSS
'because of his fathers (i.e. his father and forefathers)'
(family_ties_081115 011, 31.05032 .610 )

[^41]| (165) | amala=ma $\quad n a$ | $\boldsymbol{o}=$ =gha- $\varnothing$ | boda-boda | thit=ro-nja |
| :--- | :--- | :--- | :--- | :--- |
| man=DET $\quad$ and | PL=POSS.CLF1-3SG.POSS | RED-relative | 3PL-sit-go.down |  |

'the man and his nephews sat down beside her' (Anderson \& Anderson 1991: 68)
In addition to the proclitic, plural kin term nouns can also be optionally reduplicated for number, consider the two sentences in (166).

```
(166)a. o=lou-n=ko ne thi=vutha noroke?
 PL=sibling.opposite.sex-2SG.POSS=DIST FUT 3PL=arrive today
 'will your brothers/sisters arrive today?', (e_221015_01)
 b. o=lo-lou-nggu theu-vari
 PL=RED-sibling.opposite.sex-1SG.POSS NUM.CLF-four
 'I have four brothers/sisters'
 (e_171015_03)
```


### 3.4.1.4 Plurals with =nggi

The final way in which plurality is explicitly marked in the NP is through the addition of the plural clitic $=n g g i$. This appears to be an extended use of the third person plural object index that marks objects in VCs (see $\S 3.3 .4$ and $\S 4.2$ ). The enclitic in its plural function is optional and can occur with any lexical noun. It cliticises either onto the head of the NP, as in (167) and (168), or to a modifier (when a modifier is present), as in (169) and (170).

| thangwethangwe | $l e-\varnothing$ | mbari=nggi |
| :--- | :--- | :--- |
| k.o.eagle | POSS.CLF2-3SG.POSS | spear=3PL |
| 'Thangwethangwe eagle's spears' | (eagle_story_081115 026, 77.900 81.170) |  |


| wevo $=m a$ | $o$ | ela=ma | i=bigi-ranggi=ya |
| :--- | :--- | :--- | :--- |
| young.woman=DET | or | woman=DET | 3PL=GET.PL.CNTR-go.out=YA |

buku=nggi=ma
book=3PL=DET
'the young woman or the woman takes out the books' (put_stimuli_191015_01_02 034-5, 118.610 122.440)
(169)
gha- $\varnothing$
POSS.CLF1-3SG.POSS
mbandi-mbandi vavana=nggi
red-warriors/clan.member some=3PL
(bwaindiya_151115 018, 63.77068 .760 )
(170)

| wo | une=ke | gharighari | thovu-thovuye=nggi |
| :--- | :--- | :--- | :--- |
| POSS.CLF1.1SG | friends=SPKR.PROX | people <br> RED-people=3PL |  |
| 'my friends (are) good people' |  | (e_221015_01 007, 34.580 37.561) |  |

The enclitic can cooccur with all other plural markers. In (171), =nggi combines with a suppletive plural and a reduplicated plural and in (172) it occur in combination with the kin term plural enclitic.

```
(171) i=nga "gharighari=nggi o ka-kaka=nggi?"
 3SG=say people=3PL or RED-ghost=3PL
 'he said (are they) people or spirits?"'
 (mandumbunga_02_181016 163, 403.944 407.210)
(172) bwebwe o=rama-e moli=nggi
 dad PL=father-3SG.POSS INTS=3PL
 `Dad's true ancestors'
 (family_ties_081115 032, 78.704 82.084)
```


### 3.4.2 Determiners

A defining feature of the Papuan Tip languages is their lack of reflexes for the Proto-Oceanic common articles (Lynch et al. 2002: 104). Postnominal elements that have been analysed as having an anaphoric, givenness, specificity and/or definiteness function, however, are relatively widespread among the cluster (e.g. Misima [W. Callister 1985b: 5], Gapapaiwa [McGuckin 2002: 300], Tawala [Ezard 1991: 143], Saliba [Cleary-Kemp 2006], Dobu [Lithgow 1985: 33]). In Sudest, there are seven determiner enclitics which can be divided into two groups based on their distribution. The first contains the determiners =niye and =ninji. The second consists of five elements: the determiner $=m a$ and the four demonstrative enclitics (see $\S 3.3 .5$ for discussion of the demonstrative enclitics).

Anderson and Anderson (1991: 10-1) analyse the determiner set =niye and =ninji as marking specificity and $=m a$ as a givenness marker. Without undertaking a systematic investigation, the current corpus data appear to support this analysis in general terms. Anderson and Anderson's analysis, therefore, is adopted throughout the current work. A future discourse-based investigation (and comparison of the determiners) is needed to give a more fine-grained understanding of their uses and functions.

As stated above, the enclitics =niye and =ninji are analysed as primarily marking specificity. They are also used in the formation of ordinal numbers (§3.4.3.3). They occur postnominally and attach to the noun (173), or to a modifier when present (174). Example (173) also illustrates the relative positions of the specificity markers to the second group of determiners, with the specificity markers always preceding the other determiners.

| iya | oliman $=$ niye $=$ ke |
| :--- | :--- |
| DEM | old.man=SP=SPKR.PROX |

'this is the old man'
(fp_stimuli_191015_02 097, 245.540 246.901)
(174) yawarumbu-nggu laghiye=niye daughter-3SG.POSS big=SP
'my eldest daughter'
(widow_251015 049, 139.076 141.637)

These clitics contain the third person singular and plural possessive pronouns -ye and -nji (§3.3.4, §3.4.4). The specificity marker =niye occurs in singular NPs, as in the above examples as well as in plural NPs (175). The second enclitic, =ninji, only occurs with plural nouns. However, it appears to be falling out of use, with only one token of it in the corpus (176), which comes from a text from one of the older speakers in the corpus. This contrasts with the 120 tokens of $=$ niye in the corpus.

```
(175) tha-thanavu=niye iya ma=nga=ma
RED-custom=SP DEM 1SG.IMM.PST=say=DET
'the customs (for dating) are these that I said' (dating_081015 048, 125.270 127.550)
(176) Sinenabe na Takonabe utu-utu=ninji
pers.name and pers.sname RED-story=SP.PL
'the story (lit. words) of Sinenabe and Takonabe'
 (sinenabe_and_takonabe_231115 001, 4.930 9.710)
```

The enclitic $=m a$ has a paradigmatic relationship with the demonstrative determiners (§3.3.5). It attaches to the noun or nominal modifiers in the NP, and follows a specificity marker when one is present. The enclitic is used to indicate givenness. ${ }^{64}$ It is used when an entity has already been introduced in the discourse and is therefore already known, or when the speaker assumes the hearer is familiar with the referent. In (177), the NP gha une 'his friends' first occurs without a determiner; a few clauses later, is occurs with the givenness marker, as the referent has already been introduced.

'his friends said "he already went" [...] ]his friends left him, he was still staying and sleeping there'
(child_and_giant_201015 013-20, 41.929 57.032)

In (178), =ma occurs on all of the three NPs. This is presumably because the speaker is describing a video that they watched together with the hearer and therefore assumes that they are known referents.

| (178) | ela=ma | $i=v a t a d \dot{i}$ | kandel=ma | $e$ |
| :--- | :--- | :--- | :--- | :--- |
| woman=DET | 3SG=build | candle=DET | PREP | base/trunk=DET |

'the woman puts (lit. builds) the candle in the candlestick holder'
(put_stimuli_191015_02_02 004-5, 27.435 31.262)

[^42]
### 3.4.3 Modifiers

The nominal modifiers include adjectives (§3.4.3.1), quantifiers (3.4.3.2) and numerals (§3.4.3.3). The modifiers occur postnominally in the NP , with the exception of the prenominal quantifier vata 'many'. The plural enclitic $=n g g i$ ' 3 PL' or a determiner may attach to either the head noun or a modifier or both. Modifiers from all three groups are attested functioning as the head of a NP. It is uncommon for a noun to take two modifiers; however, the limited data indicate that there is some variation in the respective ordering of the modifiers. This can be seen in examples (179) to (181). In (179), the numeral precedes the adjective, while in (180) and (181) the adjective precedes the numeral.

(179) \begin{tabular}{lllll}
$e$ \& ghemba \& regha <br>

PREP \& \begin{tabular}{l}
togha <br>
village

 \& 

one

 \& 

new
\end{tabular}

\end{tabular}

'at a new village'
(bush_betelnut_011115 065, 150.790153 .580 )
(180) buket kelakelava regha
bucket white one
'one white bucket’ (put_stimuli_231015 050, 400.650 403.400)
(181) mbombo laghìye umbwa-iwo
pig be.big NUM.CLF-two
'two big pigs'

### 3.4.3.1 Adjectives

The Sudest 'adjectives' are lexemes that also function as stative verbs ${ }^{65}$. A small number of adjectives are unattested as stative verbs; systematic testing is needed to verify whether all property words have identical distribution patterns. ${ }^{66}$ Examples (182) to (185) present the lexemes molao '(be) long/tall' and laghiye '(be) big' functioning predicatively and attributively.

| gha- $\varnothing$ | yamwaywamwa <br> POSS.CLF1-3SG.POSS | ne <br> appearance | FUT |
| :--- | :--- | :--- | :--- | i=molao | 3SG=be.long/tall |
| :--- | :--- |

'its (a recording/story) appearance will be long (i.e. it will seem to long)'

[^43](183)

| $l o l o=m a$ | $i=w o$ | sises $=m a \quad$ na | $i=$ ten=a |
| :--- | :--- | :--- | :--- | :--- |
| person=DET | 3SG=GET.SG.RIGD | scissors=DET and $\quad$ 3SG=break=YA |  | (cb_stimuli_051016_01 136, 1507.700 1514.630)


| gamoi-ye $=$ ko | $i=$ laghiye |
| :--- | :--- |
| stomach-3SG.POSS=DIST | $3 S G=$ be.big |

'her stomach is big'
3SG=be.big
(new_mother_251214 082-83, 194.260 198.094)

| $i=w o$ | umbwa | laghiye |
| :--- | :--- | :--- |
| 3SG=GET.SG.RIGD | stick | big |

'she gets a big stick'
big
(crab_girl_081115 083, 206.010 208.783)

A defining morphosyntactic innovation of the Papuan Tip linkage is that nearly all languages 'retain or reflect the addition of a pronominal possessive suffix to the adjective (both attributive and predicative) agreeing in person and number with the noun it describes' (Lynch et al. 2002: 104). Some property lexemes in Sudest appear to reflect this and end in ' $y e$ ' (which is identical to the third person singular possessive pronominal -ye). Examples of this are given above in (184) and (185) with laghitye '(be) big', and below in (186) and (187) with thovuye '(be) good'.
ra-ghina-ghinagha AG-RED-travel.by.sea 'good sailor'
(187)

| gha- $\varnothing$ | une=ma | thovu-thovuye=ma | otam |
| :--- | :--- | :--- | :--- |
| POSS.CLF1-3SG.POSS | friends=DET | RED-good=DET | all.the.time |
| $i=m u n i m u=\varnothing$ | wei-ye=nggi |  |  |
| $3 S G=$ drink.PROG=3SG | PREP-3SG.POSS=3PL |  |  |

'his good friends, all the time he drinks (alcohol) with them' (fp_stimuli_201015_04 066, 206.750 209.980)

Unlike in some other Papuan Tip languages, the ending of the property words in Sudest is invariant. It does not change to reflect the number or person of the noun, as can be observed above in (187), in which the adjective modifies a noun with a plural referent. However, adjectives occurring in NPs with a plural referent are usually reduplicated, as in (187). This is the case even when there is no other overt expression of plural in the NP (see (183) above).

### 3.4.3.2 Quantifiers

A small group of nominal modifiers express quantity, and are therefore labelled as quantifiers. The quantifiers are listed below in Table 3.7. All occur postnominally save for vata 'many', which fills a prenominal position in the NP.

| form | meaning | position in NP/VP |
| :--- | :--- | :--- |
| mun | 'a bit, few' | follows N in NP, also used adverbially following V 'a bit' |
| seiwo | 'a bit, few' | follows N, also used adverbially following V 'a bit, slowly' |
| than | 'another' | follows N |
| thangari | 'all, every, many (lit. 100)' | follows N |
| wolaghitye | 'all, every | follows N |
| lemoyo | 'many' | follows N |
| vata | 'many' | precedes N |
| ighanagha | 'many, most' | follows N |
| vavana | 'other, some' | follows N |
| Table 3.7 Quantifiers |  |  |

Examples of some of the quantifiers are given in (188) to (191). The only prenominal quantifier vata 'many' is presented in (188), while the remaining examples all contain postnominal modifiers.

| (188) | bwarogi=niye | mbe | ina- $\varnothing$ | we, | ne | $u=$ thuwe |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| fish=SP | still | be.located-3SG.POSS | PREP FUT | $2 S G=$ see |  |  |

'that fish is still there, you will see it's body's many spines (lit. spears)' (feast_of_the_fish_271015 154, 397.570 402.840)

| thi $=$ ngamwe | mbugha-mbugha | lemoyo |
| :--- | :--- | :--- |
| 3PL=feed | RED-dog | many |

'they feed many dogs'
(hunting_261214006, 14.900 17.450)

| gha- $\varnothing$ | mbandit-mbandit | vavana=nggi |
| :--- | :--- | :--- |
| POSS.CLF1-3SG.POSS | RED-clan.member/warrior | some=3PL |

'some of his clan member/warriors'
(bwaindiya_151115 018, 63.77068 .760 )

| bagi | ghemba | thangari | kero | thi $=$ mban $=\varnothing$ |
| :--- | :--- | :--- | :--- | :--- |
| shell.money.necklace | village | every/hundred | already | 3PL=GET.PL.RIGD=3SG |

‘shell money, every village uses (lit. gets) it’ (bagi_181215 033-4, 104.170 109.590)

### 3.4.3.3 Numerals

Sudest has a decimal numeral system. The language has an elaborate system of numeral classification, with at least 66 attested classifiers that are selected based on qualities of the counted entity/ies. In the Papuan Tip languages, numeral classifiers are found in both Sudest and Nimowa, as well as all Kilivila-Misima languages save Misima (Owens \& Lean 2018: 149). Like all of the Papuan Tip languages with numeral classifiers, Sudest numeral classifiers prefix onto the numeral
root. The numeral roots from one to ten are listed in (192). All of the numeral roots require a numeral classifier prefix in order to be grammatical, with the exception of the generic numeral regha 'one', which does not take a classifier prefix and can be used with any noun.

| (192) | 1 | ra, regha | 6 | wona |
| :---: | :--- | :--- | :--- | :--- |
| 2 | wo, iwo | 7 | piri |  |
| 3 | to | 8 | wa |  |
| 4 | vari | 9 | siwo |  |
| 5 | lima | 10 | yaworalo, -woro |  |

The numerals for multiples of ten, hundred and thousand are listed in (193). These are additive; multiples of ten are formed using the prefix $y e-$, multiples of one hundred with the prefix sari-, and multiples of a thousand with the prefix ho-:

(193) | 20 | ye-wo | 80 | ye-wa |
| :--- | :--- | :--- | :--- |
| 30 | ye-to | 90 | ye-siwo |
| 40 | ye-vari | 100 | thangari |
| 50 | ye-lima | 200 | sari-ye-wo |
| 60 | ye-wona | 1000 | ho-sari-ye-ra |
| 70 | ye-piri | 2000 | ho-sari-ye-wo |

The numeral classifiers are described in §3.4.3.3.1, followed by a discussion of cardinal (§3.4.3.3.2) and ordinal (§3.4.3.3.3) numbers.

### 3.4.3.3.1 Numeral classifiers

In order to count in Sudest, one needs to know what is being counted. There are at least 66 distinct classifier prefixes in Sudest. These classifiers can be divided into two groups: quality classifiers and repeaters. Quality classifiers refer to salient feature(s) of the counted item(s), such as gender, animacy, type of animal, shape, and substance. The repeaters 'repeat' the phonological form of the noun with which they occur (Bender \& Beller 2006). Repeaters in Sudest only occur with the single noun they repeat or, occasionally, a second noun that is closely related semantically (e.g. vari- is the classifier used to count vari 'stone(s)'). There are 34 attested numeral classifiers in the current data. Anderson and Anderson (1991: A1-5) list some of these, along with an additional 32 classifiers not found in the corpus, bringing the total identified Sudest numeral classifiers to 66. These divide nearly perfectly in half between quality classifiers and repeaters. Table 3.8 presents the quality classifiers (listed in approximate order of animacy).

| classifier | count items |
| :---: | :---: |
| theghe-*^ | men, people of unspecified gender, jaws, graves |
| thejighe-* | men |
| theu(ni)-*^ | women, (NB: eunda 'one' is irregular) |
| umbwa/umbo-*^ | sticks and stick-like items, trees, plants, many animals including fish (excluding birds and reptiles), single units of food, temporal units like weeks and months, years (e.g. 2004) |
| man-*^ | birds, reef animals (excluding fish), insects, headlice, flying fox (not possum), prawns, beads (NB: manda 'one' is irregular) |
| mara-* | fish (ten or more) |
| uye-*^ | giant clams, k.o. shark, banana bunches, banana seeds, banana bunch, areca nut bunches, betelnut bunches |
| wabwi/wabu-*^ | groups of humans and birds, some groups of inanimate objects, e.g. coral, gravel |
| nau-*^ | groups of animals such as birds, dogs, fish, and pigs (but not humans) |
| tari-*^ | items with multiple, long parts. Includes plants such as sugarcane, stands of sago, pineapple, banana trees, mangroves, etc. |
| the-* | strings of items e.g. fish, flowers |
| kiki/gigi-*^ | bodily extremities of both humans and animals, including legs, arms, fingers, toes, and claws |
| $w e-* \wedge$ | sago bundles (as these are tied in pairs, we-ra 'one' denotes two bricks tied together, we-to 'two' denotes two bundles of two bricks, etc.) |
| mbamba-*^ | bundles and bunches of things, books, packets of food (e.g. rice, sugar, food wrapped in a cover) |
| mbun-*^ | axes, bush knives and knives, cutlery and eating implements (plates, mugs) |
| mbwana-* | floors/stories in a house, windows, levels of a verandah, tables of different heights |
| nggamwa/nggawa-*^ | baskets (full or empty), bags, bilung |
| tan-*^ | bagi, necklace, grass skirts, woven walls (NB: tanda 'one' is irregular) |
| gethi-*^ | flat items including baked items, floorboards, and human/pig chests |
| vale-*^ | round, flat items (e.g. baked sago, tapioca), wooden dishes, stingrays, computer screens |
| vwara-*^ | round, flat items (e.g. pots, drums, containers, billycans) |
| voghi̇-*^ | spherical objects (e.g. eyes, betelnut, coconut, mangos, guavas, pawpaw, eggs) |
| (y)angga-*^ | branches, flat, flexible items such as leaves, money (only notes), paper, cloth and clothing, string, plastic, sails, mats |
| $d u-^{\wedge}$ | water and watery items (e.g. waters, puddles, creeks, rivers, pig wallows) |
| ghe-* | riches (money, greenstone axe, shell money), waves (of water) |
| vo-* | coconut (fruit) |
| banggwara-^ | a half or part of something, e.g. part of a hand of bananas |
| vunyi-* | broken items |
| vuvu-*^ | solid objects, broken sticks, pieces of cloth |
| bubu -^ | sago loaves |
| ghene-* | nights |
| mwathi̇-^ | only used to count nogha 'k.o wooden dish' |
| thara-*^ | hand of bananas |

Table 3.8 Quality numeral classifiers, * indicates classifiers attested in the corpus or elicitation data, ^ indicates classifiers reported in Anderson and Anderson (1991: A1-4)

The remaining numeral classifiers are repeaters and take a shape which is identical to the item(s) they count. These are listed in Table 3.9 below.

| classifier | count items | classifier | count items |
| :---: | :---: | :---: | :---: |
| ida-^ | names | ghabubu-^ | graves |
| kavorere-^ | fingernails and toenails | kamwathi*^ | paths, roads |
| likeke-^ | fingers and toes | njengge-^ | ditch drains |
| mbonjiwo-^ | pus | uma-^ | gardens |
| ngganggara $\wedge^{\wedge}$ | ribs | walaghe-^ | footprints |
| nggilenggile-^ | shoulders, front halves of carcases | nggolo-*^ | houses, cookhouses, etc. |
| ghavwala-*^ | Y branches | pwakau-^ | black paints |
| lati-^ | narrow surface roots | wangga-*^ | boats/transport |
| vagaga-^ | plant stems | mango-^ | low tides |
| gogo-^ | holes | manjamanjala-^ | lights |
| gunugu-^ | valleys | mundu-^ | smoke |
| ragha-^ | reefs | ghilolo-^ | dreams |
| raurau-^ | islands | goghaimba-^ | parables |
| tholowo-^ | valleys | mbanga-*^ | times (e.g. we did it four times) |
| vari-*^ | stones | mbaro-^ | for instructions, laws, rules |
| wou-^ | mountains | njiviya-^ | njiviya mortuary feasts |

Table 3.9 Repeater numeral classifiers, * indicates classifiers attested in the corpus or elicitation data, ^ indicates classifiers reported in Anderson and Anderson (1991: A4-5)

### 3.4.3.3.2 Cardinal numbers

As noted earlier, cardinal numbers follow a decimal system and are morphologically complex. They are formed by combining a classifier prefix with a numeral base. They modify nouns, as in (194) and (195), or can function as the head of an NP as in (196) and (197). The numeral classifier umbwais used with a wide variety of entities. While it is presumably related to the noun umbwa 'stick, tree', it is not only used when counting many types of plants, sticks and stick-like entities, but is also for most animals (except for birds and reptiles) as well as units of food, as in (194).

| lolo=ma <br> person=DET$\quad$i=taga-ughi-ughi=ya <br> 3SG=by.striking-RED-smash=YA | ghaningga=ma <br> food=DET | umbwa-ra <br> NUM.CLF-one |
| :--- | :--- | :--- | :--- |
| 'the person is smashing one piece of food' |  |  | (cb_stimuli_051016_01 119, 1272.741 1276.930)

In contrast, the numeral classifier vale- is selected based on the shape of the entity, and is only used with round, flat entities. In (195) it is used in an NP that refers to a certain type of cassava cake that is wrapped in banana leaves and baked in a hot stone oven. The classifier is also used with other flat items like wooden plates, stingrays and even computer screens.

```
(195) wo=vakatha vwala-vwala=ma vale-iwo=ma
1EXCL=make RED-hot.stone.baked.good=DET NUM.CLF-two=DET
'we made two baked rounds (of cassava cake)'
(stone_cooking_251015 114, 309.820 312.650)
```

The numeral classifier mbamba- is used with bundles and bunches of things wrapped in a cover, including books as in (196). The classifier (th)euni- only occurs with human women (197).

```
(196) lolo=ma i=langa=nggi=ya buks ko mbamba-ra
person=DET 3SG=GET.PL.FLEX=3PL=YA books but NUM.CLF-one
i=dobu
3SG=fall.down
'the person holds (lit. gets) books but one falls down'
(put_stimuli_231015 045-6, 368.990 375.008)
```

euni-wo=ko ida-ida-nji

```
euni-wo=ko ida-ida-nji
NUM.CLF-two=DIST RED-name-3PL.POSS
NUM.CLF-two=DIST RED-name-3PL.POSS
'the two (girl)'s names' (mandumbunga_02_181016 212, 537.102 538.683)
```

'the two (girl)'s names' (mandumbunga_02_181016 212, 537.102 538.683)

```

In some cases, the invariable numeral regha 'one' is used instead of a morphologically complex numeral with a numeral classifier and the numeral base \(r a\) 'one'. It is generally used when introducing a new referent. In this context, it can be translated as ' \(a / a n\) ', with a comparable function to an indefinite article. For example, in (198), the speaker is beginning to tell a story and introduces the protagonist, a snake, for the first time.
\[
\begin{array}{llll}
\text { (198) } & \begin{array}{l}
\text { a=utu=nga } \\
\text { 1SG=speak-TR }
\end{array} & \begin{array}{l}
\text { mwata } \\
\text { snake }
\end{array} & \begin{array}{l}
\text { regha } . . . \\
\text { one }
\end{array}
\end{array}
\]
'I (will) talk about a snake...'
(snake_story_101214 005, 22.31024 .640)

In contrast, morphologically complex forms for 'one' are generally used when there is an emphasis on the specific number of a particular referent involved in the event or situation. This is the case in (194) and (196) above. In (194), the speaker specifies that only one piece of food (a carrot) is smashed (although there are multiple carrots lying on the table in the stimulus video); in (196) it is only one book of many that falls onto the ground. However, in some instances in the data, regha is used where a number with a numeral classifier might be anticipated, as in (199). Here, the two protagonists are introduced in the first IU. Only after that is regha used when referring to them, instead of the (irregular) numeral eunda 'one' used with for human women.
\begin{tabular}{llllll}
(199) & wanakau & theuni-wo & \(v a\) & ga-gamaina=nggi & regha \\
young.women & NUM.CLF-two & REM.PST & RED-unmarried.girl=3PL & one \\
va & numombwalambwala & regha & wadawada & \\
REM.PST & non.magical.person & one & witch &
\end{tabular}
'two young women were unmarried girls; one was a non-magical person and one a witch'
(bush_betelnut_011115 002-4, 5.499 14.680)

Numbers above ten are additive. Numbers 11 to 19 are formed by adding numerals one to nine after the numeral 'ten'(200). For these larger numbers, the classifier repeats and occurs on each numeral. Such repetition of numeral classifiers in a single number is reported in at least one Papuan Tip language (Kilivila (Kiriwina)) (Lawton 1993: 155), although it is not discussed in crosslinguistic literature (e.g. Aikhenvald 2000; Owens et al. 2018).
\begin{tabular}{ll}
mbwana-yawora & mbwana-ra \\
NUM.CLF-ten & NUM.CLF-one
\end{tabular}
'eleven (windows)'
(mandumbunga_02_181016 519, 1304.806 1306.969)
Multiples of ten (i.e. 20, 30, 40, etc.) are formed by inserting the prefix ye- between the classifier prefix and numeral root. Numbers between multiples of ten (i.e. 21, 22, 23 etc.), take the conjunction na 'and' and a numeral from one to nine, as in (201).
\begin{tabular}{lllll}
(201) & njin & \(\boldsymbol{t a r i - y e}\)-wo & \(\boldsymbol{n a}\) & \(\boldsymbol{t a r i}\)-to \\
& flower & NUM.CLF-tens-two & and & NUM.CLF-three \\
& 'twenty-three flowers (attached to a plant)
\end{tabular}

Numbers from 100 to 199 are formed with thangari 'one hundred', as in (202) and (203): \({ }^{67}\)

Numbers 200 and above take the prefixes -sari 'hundreds' and -ye '-tens' like in (204) with the repeater numeral classifier wangga-.
\begin{tabular}{lllll}
(204) & \begin{tabular}{ll}
wangga-wangga & wangga-sari-ye-to
\end{tabular} & \(\boldsymbol{n a}\) & wangga-lima & \\
& RED-boat & NUM.CLF-hundreds-tens-three & and & NUM.CLF-five
\end{tabular}\(\quad\)\begin{tabular}{l}
(e_161215)
\end{tabular}

Numbers 1000 and above are formed by adding the prefix ho- 'thousands' before the prefixes sari'hundreds' and ye- 'tens'. Numbers in the thousands do not take a numeral classifier, but unless the number is exactly 1000,2000 , etc., the following numerals will contain a numeral classifier, like in (205).

\footnotetext{
\({ }^{67}\) Thangart is also a quantifier meaning 'all, every' (see §3.4.3.2).
}
(205) ho-sari-ye-wo na umbwa-vari \(\quad e \quad\) tine... thousands-hundreds-tens-two 'in 2004...'
(moving_291214 056, 119.950123 .090)

\subsection*{3.4.3.3.3 Ordinal numerals}

Ordinal numbers are formed through the addition of one of the specificity determiners (§3.4.2) to the cardinal form, as shown in (206) and (208).
(206) thaga theghe-wo=niye
feast NUM.CLF-two=SP
'the second feast' (funeral_feasting_081015_01 123, 357.212 361.180)
(207) mbanga-wo=niye

NUM.CLF-two=SP
'the second (time)'
(crab_girl_081115 065, 161.910163 .842)

The plural specificity enclitic =ninji only occurs in the single, elicited example presented in (208) and it is unclear if there is a functional difference between the use of the two enclitics in ordinals.
(208) \(\begin{array}{ll}\text { bagod } \mathbf{i}=k o & \text { ghe-vari=ninji=ko } \\ \text { wave=DIST } & \text { NUM.CLF-four=SP.PL=DIST } \\ \text { 'the fourth }\end{array}\)
'the fourth wave'

\subsection*{3.4.4 Possession}

There are two types of constructions for expressing possession in Sudest. They will be referred to as 'direct' and 'indirect' possession (cf. Lichtenberk 1985; Lynch et al 2002: 40). In direct possession, a possessive pronoun suffix occurs directly on the possessed noun. In indirect possession, the possessive pronoun is suffixed onto a possessive classifier which precedes the possessed noun. Directly possessed nouns are generally entities closely associated with the possessor (such as body parts and family), while all other nouns are indirectly possessed. Both possessive constructions involve the possessive pronominal suffixes already presented in §3.3.4. They are repeated below in Table 3.10. The suffix indicates the person and the number of the possessor.
\begin{tabular}{lllll}
\hline & 1INCL & 1EXCL & \(\mathbf{2}\) & \(\mathbf{3}\) \\
\hline SG & & \(-n g g u\) & \(-n,-\emptyset\) & \(-y e,-e,-\emptyset\) \\
PL & \(-n d a\) & \(-m a\) & \(-m i\) & \(-n j i\) \\
\hline
\end{tabular}

Table 3.10 Possessive pronominal suffixes

\subsection*{3.4.4.1 Direct possession}

Entities considered to be intrinsically associated with a possessor occur in directly-possessed constructions. In these constructions, a possessive pronominal suffix attaches to the possessed noun (possessum). When a possessor noun is present, it precedes the possessum. This is a typical feature of western Melanesian Oceanic languages (Lynch et al. 2002: 41). Nouns that take direct possession, are obligatorily possessed and fall into semantic groups typical of inalienable possession in Oceanic languages (see Lynch et al. 2002: 41). In Sudest, most body-part and locative-part nouns, as well as consanguineal, kin terms occur in direct possessive constructions. A small number of affinal kin terms and abstract nouns also take direct possession. In the current data, there are 39 nouns that take direct possession marking.

Examples (209) and (210) show directly-possessed body-part nouns. As well as physical body parts, other 'person parts' like ida 'name', yawali ‘life', ghamba 'place', and nuwa 'desire' take direct possession. In (211), both the possessor ghamba 'place' and the possessum ida 'name' are directlypossessed person-part nouns.
\begin{tabular}{lll}
a=ngggiya & \(e\) & nima-nggu \\
1SG=sew & PREP & hand-1SG.POSS
\end{tabular} 'I sew by hand (lit. with my hand)'
(education_241214 020, 65.762 70.070)
\begin{tabular}{lll}
\begin{tabular}{l}
\(i=n g a\)
\end{tabular}\(\quad\) "ngingi-n=na & \(i=\) bwadi" \\
3SG=say \(\quad\) tooth/teeth-2SG.POSS=ADDR.RPOX & 3SG=be.black \\
'he said "your tooth is black"" \(\quad\) (child_and_giant_201015 103, 273.561 277.120)
\end{tabular}
ghamba-nggu=ko ida-e Yeina place-1SG.POSS=DIST name-3SG.POSS place.name
'my place's name is Yeina'
(family_ties_081115 003-4, 10.240 13.292)
There is an overlap between many locative-part nouns and body-part nouns. When they have an inanimate possessor, they function as locative-part nouns, as in (212) to (214).
(212) \(i=\) vutha \(e\) nggolo ghadidi-ye 3SG=arrive PREP house side-3SG.POSS 'he arrives at the house's side' (skeleton_181015 024, 62.583 64.997)
(213) amba \(i=r u k u=w o ~ e ~ g h e r e i-n j i ~\) then 3SG=run=thither PREP behind-3PL.POSS 'then it runs away behind them'
(frogstory_161214 122-3, 319.950323 .794)
(214)
\begin{tabular}{|c|c|c|c|c|}
\hline wevo=ma & \[
i=w o
\] & apel \(=\) ma & \({ }^{e}\) & \(b u k=m a\) \\
\hline young.woman=DET & 3SG=GET.SG.RIGD & apple=DET & PREP & book=DET \\
\hline \multicolumn{5}{|l|}{vwata-nji} \\
\hline 'the woman gets the & pple from on top & off the book & & \\
\hline
\end{tabular}

The examples in (215) and the second possessed noun in (216) show directly-possessed consanguineal kin terms, while the first directly-possessed noun in (216) and the possessed noun in (217) show two of only three attested affinal kin terms that take direct possession. \({ }^{68}\)
(215) lou-nda
opposite.sex.sibling-1INCL.POSS
'our sister and brother/our brother and sister' (kinship_071015 019, 61.480 66.720)
(216) \(\boldsymbol{m b o r i y a}-\boldsymbol{n}=a\)
opp.sex.in.law.gen.removed-2SG.POSS=YA
umoru \(=k o \quad i=\) vanggu
young.man=DIST 3SG=lead/marry
\(\boldsymbol{y}\) awarumbu-n=ko
daughter-2SG.POSS=DIST
'your son-in-law is the man married (to) your daughter'
(kinship_071015 056, 148.144151 .316)
(217) uтоги=ko ghendiya-e
young.man=DIST same.sex.in.law.gen.removed-3SG.POSS
'that man's father-in-law' (fp_stimuli_191015_07 042, 104.980 107.770)

The noun gha 'food' also occurs in directly-possessed constructions, as in (218). This noun is possibly the historical source for the first possessive classifier \(g h a\) (§3.4.4.2 below).

> (218) \(\begin{aligned} & \text { meth } \dot{\boldsymbol{i}}=\text { mbimb } \dot{\boldsymbol{t}}\end{aligned} \quad \begin{aligned} & \text { gha-nji } \\ & \text { 3PL.IMM.PST=clutch } \\ & \text { food-3PL.POSS }\end{aligned} \quad \begin{aligned} & \text { PREP }\end{aligned} \quad \begin{aligned} & \text { thangganggali- } n j i=k e \\ & \text { armpit-3PL.POSS=SPKR.PROX }\end{aligned}\) 'they clutched their food in their armpits (to warm it)' (mandumbunga_061215 035-6, 106.393 109.680)

See also §3.5.2.4 for discussion of the directly-possessed noun valikaiwa 'possibility' in non-verbal predicates.

\subsection*{3.4.4.2 Indirect possession}

The majority of nouns occur in indirect possessive constructions. In this construction type, the possessive pronominal suffix attaches to a possessive classifier which precedes the possessed noun, and the possessed noun remains uninflected. There are two possessive classifiers: \(g h a\) and \(l e\), which are labelled 'classifier one' and 'classifier two' respectively.

Classifier one, gha 'POSS.CLF1', occurs in possessive constructions with nouns denoting comestible and potable items, along with items related to their preparation and consumption. This

\footnotetext{
\({ }^{68}\) The third noun is mwane-nggu 'husband-1SG.POSS', however, speakers say they prefer the indirectly possessed lo umoru 'POSS.CLF2.1SG young man' meaning 'my husband'. Mwane does not occur in the corpus.
}
classifier also occurs with nouns for items considered to be intimately - although not intrinsically - related to the possessor, such as clothing, baskets and some abstract nouns, particularly those describing intimate qualities or habits. The classifier is presumably etymologically derived from or related to the directly possessed noun gha 'food' (see (218) above) and/or the verb ghan 'to eat'. Table 3.11 presents the classifier in combination with the possessive pronominal suffixes. The firstperson singular form wo is irregular both in the shape of the classifier and in that it does not take a pronominal suffix. The two third person singular forms appear to be in free variation.
\begin{tabular}{lllll}
\hline & 1INCL & 1EXCL & \(\mathbf{2}\) & 3 \\
\hline SG & & wo & gha-n & gha- \(\varnothing\), gh-e \\
PL & gha-nda & gha-ma & ghe-mi & gha-nji \\
\hline \multicolumn{2}{l}{ Table 3.11 The possessive classifier gha 'classifier 1' }
\end{tabular}

Examples (219) to (221) show food nouns and nouns for food storage and kitchenware heading indirectly-possessed constructions with gha 'POSS.CLF1'.

In (222) and (223), clothing items occur in possessive constructions with gha. (224) shows the classifier with a less tangible entity thanavu 'custom, habit'.
(222)
gha-ma
POSS.CLF1-1INCL.POSS
'their headdresses'

\section*{tabwayo}
headdress
(traditional_dress_051214 056, 159.660 163.352)
(223)
\(i=n j i m b o \quad g h-e \quad r i\)
3SG=put.on POSS.CLF1-3SG.POSS loincloth
'he put on his loincloth' (mandumbunga_02_181016 141348.275 349.920)
(224)

POSS.CLF1.1SG custom/habit=DET 3SG=be.bad
'my ways/habits are bad/my bad habits' (fp_stimuli_191015_02 050, 125.030 126.896)

The possessive classifier gha also forms a complex phrase meaning 'oneself' with the particle mbe 'still, yet' and the numeral regha 'one':

The second possessive classifier is \(l e\) 'POSS.CLF2'; it is used with all remaining nouns. Table 3.12 shows possessive classifier two with the possessive pronominal suffixes. The first person singular form of classifier two is irregular in form just like its classifier one counterpart discussed above and likewise does not take a possessive pronoun suffix. The first-person inclusive forms are also irregular. The classifier for first person inclusive does not take a pronominal suffix.
\begin{tabular}{lllll}
\hline & 1INCL & 1EXCL & \(\mathbf{2}\) & \(\mathbf{3}\) \\
\hline SG & & \(l o\) & \(l e-n\) & \(l e-\varnothing\) \\
PL & \(l a\) & \(l a-m a\) & \(l e-m i\) & \(l e-n j i\) \\
\hline \multicolumn{2}{l}{ Table 3.12 } & The & possessive classifier le 'classifier 2 '
\end{tabular}

Table 3.12 The possessive classifier le 'classifier 2'
Examples of possessive constructions with classifier two are given in (227) to (231). Nearly all affinal kin nouns occur in indirectly possessed constructions with the classifier le 'POSS.CLF2'. Examples (227) to (229) show examples with affinal kin nouns. The nouns wevo 'young woman' and umoru 'young man' mean 'wife' and 'husband' respectively when in a possessive construction with the classifier, as in (227) and (228). The possessive constructions lo wevo 'my wife' and le wevo 'his wife' (227) contract to lovo and levo respectively.

\section*{ande \(\quad e \quad\) la-ma \\ NEG1 PREP POSS.CLF2-1EXCL.POSS}
'we don't have a dustpan (lit. our dustpan)'

\section*{ghenonggu=re}
dustpan=NEG2
(moving_291214 032, 60.966 62.646)
\begin{tabular}{llll}
\(\boldsymbol{l} \boldsymbol{e}-\emptyset\) & \begin{tabular}{l}
ghambi-ghambi
\end{tabular} ne \(\quad i=\) vuyewo \\
POSS.CLF2-3SG.POSS & RED-give.birth & FUT \(\quad\) 3SG=be.heavy \\
'her labour will have problems' & (new_mother_251214 013-4, 35.740 40.563)
\end{tabular}

Some nouns occur in possessive constructions with either classifier. In these cases, the classifier specifies the intended use of the possessed item by the possessor, for example wo mbwa 'my (drinking) water' contrasts with lo mbwa 'my (washing/watering) water' and wo kamkam 'my chicken (for eating)' contrasts with lo kamkam 'my chicken (for raising/gifting/etc.)'. The nouns thegha 'youth' can have the same two senses as its English counterpart. In (232), it takes classifier one gha and denotes young male individual(s) while in (233), with classifier two le, the noun refers to a particular period of a man's life.
\begin{tabular}{llll}
(232) & \begin{tabular}{l}
\(i=\) dage
\end{tabular}\(\quad\) we=nggi=ya & gha- \(\varnothing\) & thegha \\
3SG=speak & PREP=3PL=YA & POSS.CFL1-3SG.POSS & youth
\end{tabular}
(233) le-ø thegha=ko tine kero i=ghe

PREP POSS.CLF2-3SG.POSS youth=DIST inside already 3SG=marry
'in his youth, he already married' (fp_stimuli_191015_05 020-1, 39.150 41.310)

\subsection*{3.4.5 Relative clauses}

Relative clauses (RC) follow the noun. There is no dedicated relative marker in Sudest; relative clauses may be entirely unmarked. More frequently, the RC is marked by either a demonstrative or givenness determiner on the common argument (CA) which is repeated at the end of the RC.

Sudest relative clauses have not yet been investigated in great depth. However, the corpus shows that the CA has a range of functions, both in the main clause (MC) and RC. In (234), the CA is the S of the MC as well as the RC . The givenness determiner \(=m a\) marks both the CA and end of the RC . The CA is bolded in both the MC and the RC .
(234) [thovuye=niye \(=\boldsymbol{m a}\) [maa va i=nda=ma \(\left.]_{\mathrm{RC}}\right]_{\mathrm{NP}} \quad i=\) dage \(w e=y a\) good \(=\mathrm{SP}=\mathrm{SP}=\mathrm{DET}\) NEG REM.PST \(3 \mathrm{SG}=\) burn=DET \(3 \mathrm{SG}=\) speak \(\mathrm{PREP}=\mathrm{YA}\)
rumbu-nji=ko
grandparent/grandchild-3PL.POSS=DIST
'the good (one), (who) was not burnt, spoke to her grandmother'
(mandumbunga_02_181016 255-7, 651.994 657.479)
The CA in both (235) and (236) is the O of the MC and the S of the RC. In (235), the end of the RC does not take a determiner.
\(\left.\begin{array}{llll}\text { (235) } & \text { gha-ma } & \text { une } & v a \\ \text { POSS.CLF1-1EXCL.POSS } & \text { friend } & \text { REM.PST } & \text { thi=rangi=ya } \\ \text { 3PL=cry=YA }\end{array}\right]\)
(pigs_251214 041-2, 104.560 109.347)
```

(236) thiye ne thi=tuthi-tuthi=ya [gharighari thegha=ko
3PL FUT 3PL=RED-select=YA people youth=DIST
$\left.[\text { thi }=\text { raka-vutha }=k o]_{\mathrm{RC}}\right]_{\mathrm{NP}}$
3PL=go.PL-arrive=DIST
'they will select the young men (who) are arriving' (context: women select the most
attractive men with the most magic to go trade with their neighbours)

```
 (funeral_feasting_081015_02 078, 203.420 207.120)

In (237) and (238), the CA is the O in both the MC and RC:

The CA in (239) is a temporal adjunct in the MC and S in the RC .

\subsection*{3.5 Clauses}

This section describes the basic features of verbal clauses (§3.5.1) and non-verbal clauses (§3.5.2).

\subsection*{3.5.1 Verbal clauses}

Inflected verbs can, and frequently do, form complete clauses in Sudest. Each inflected verb takes an obligatory subject-index proclitic (240) and transitive verbs take an optional object-index enclitic (241).
(240)
\(i=g h e n a\)
3SG=sleep
'he sleeps'
(bwaindiya_151115 123, 314.231317 .410)
(241)
\(i=v a i d i=n g g i\)
\(3 \mathrm{SG}=\) find \(=3 \mathrm{PL}\)
'he finds them'
(fp_stimuli_191015_01 136, 514.655 515.680)

When lexical arguments do occur, the unmarked constituent order is SV for intransitive clauses (242) and AVO in transitive clauses (243). As in many Oceanic languages, there is no evidence of a verb phrase that includes lexical objects along with the verb (see also §4.1).
(242) umbaumbala \(i=\) vutha
giant \(3 \mathrm{SG}=\) arrive
'the giant arrives' (child_and_giant_201015 032-3, 78.480 84.421)
(243) nggama=ma \(i=\) thuwe=ya diya=ko yangga-yangga child=DET 3 SG=see=YA deer=DIST RED-branch
'the child sees deer antlers'
(frogstory_161214 082-3, 214.400 218.186)

Adjuncts generally follow the VC. They are marked by adpositions (244) with the exception of place names (245) and a small number of other locational nouns (see §3.3.6.1).
(244) wadawada=ma i=njogha e ghemba witch=DET \(3 \mathrm{SG}=\) go.back PREP village
'the witch goes back to the village' (bush_betelnut_011115 052, 122.120 124.400)
(245) wo=yaku Vuwo

1EXCL=stay place.name
'we stay at Vuwo'
(moving_291214 008, 11.893 14.000)

As VCs and verbal clauses are the focus of this study, they are not discussed further here (see chapter 4 for further discussion of the VC and its slots). The occurrence of lexical arguments in verbal clauses is discussed further in \(\S 4.2\).

\subsection*{3.5.2 Non-verbal clauses}

A non-verbal clause consists of a non-verbal predicate and a subject (Dryer 2007). \({ }^{69}\) There are a number of types of non-verbal clauses in Sudest. There is no copular in Sudest and non-verbal predicates express relations typical of verbless clauses crosslinguistically (see Dixon 2010) including: identity and attribution (§3.5.2.1), location (§3.5.2.2), and possession (§3.5.2.3). There are also non-verbal predicates that express possibility (§3.5.2.4) and desire/need (§3.5.2.5). When

\footnotetext{
\({ }^{69}\) Dixon (2010) analyses verbless clauses as containing two arguments; a verbless clause subject and verbless clause complement with an empty predicate slot.
}
present, TAM particles (§3.3.7) precede the non-verbal predicate and the discontinuous negation markers (§3.7) surround it.

\subsection*{3.5.2.1 Identity and attribution clauses}

Relations of identity and attribution are expressed by juxtaposition of a subject and non-verbal predicate. To express logical identity, the non-verbal predicate follows the subject, as in (246) and (247).
(246) mbombo va ighai-ye
pig REM.PST cousin-3SG.POSS
'Pig was his cousin’ (pig_and_dugong_101214 009, 42.360 44.874)
(247) ida-e Njiviya \(^{70}\)
name-3SG.POSS k.o.feast
'its name is Njiviya' (funeral_feasting_081015_01 087-8, 254.080 260.380)
In the case of classification, the subject can precede the non-verbal predicate, as in (248), but more frequently in the corpus the order is reversed and the subject follows the non-verbal predicate, as in (249).
(248) ghino ra-ghambwe-ghambwera

1SG AG-RED-be.sick
I am a sick person (with leprosy)’ (lizard_and_possum_121015 035-6, 97.18 100.820)
(249) lolo ghino
person 1SG
'a person am I (not a ghost)' (mandumbunga_02_181016 206, 519.214 521.915)
Examples (250) and (251) show non-verbal clauses with attributive relations, in which the inherently reduplicated roots bwabwana '(be) grown (up)' and boboma '(be) forbidden, sacred' function nominally. The morphemes also function as intransitive stative verbs (§3.3.2.1) and as postnominal modifiers (§3.4.3.1). However, here they are not functioning verbally, as they do not take a subject index, an obligatory element in all verbal clauses. They are also not modifying the preceding nouns (nggama 'child' and bigi-bigi 'RED-thing'), as they are separated from them by TAM particles. TAM particles do not occur within NPs, but they do precede both verbal and nonverbal predicates.

\footnotetext{
\({ }^{70}\) Njiviya is the first of three mortuary feasts that are traditionally held for a person. It occurs shortly after death. See Lepowsky (1993: 241 - 246) for an account of a Njiviya feast.
}
```

(250) nggama kero bwabwana
child already grow
'the child is already grown'
(251) bigi-bigi ighanagha me boboma-nji e uma
RED-thing many IMM.PST forbidden/sacred-3PL.POSS PREP garden
tine
inside
'many things were sacred in the garden' (menstruation_081015 030-1, 90.791 96.630)

```

\subsection*{3.5.2.2 Location clauses}

Location clauses are headed by the directly-possessed noun ina 'location' followed by a locative predicate: most frequently, a PP with \(e\) 'to, from, with' (§3.3.6.1), the locative base ghe 'here, there' (§3.3.5.2), or a place name. \({ }^{71}\) In (252) and (253) the locative predicate is a PP with \(e\) 'to, from, with'. Example (252) shows a token with a possessor NP amala=ma 'man=DET' preceding the subject, while in (253) the possessor of ina 'location' is only indicated by the possessive suffix -nji '3PL.POSS'.
(252) amala=ma mbe ina- \(\varnothing\) vara \(e\) wangga=ma vwata- \(\varnothing\) man=DET still/yet location really PREP boat=DET top-3SG.POSS 'the man was still in the canoe (lit. the man's location is in the canoe)'
(mandumbunga_02_181016 435, 1103.826 1106.173)
(253) mbe-ne ina-nji e ghemba
still/yet-FUT location-3PL.POSS PREP village
'they are still in the village (their location is the village)'
(fp_stimuli_191015_02 188, 521.933 523.670)

The following three examples show location clauses with different types of predicates including a place name (254), the locative base ghe 'here, there' (255), and the noun bode 'below' (256).
(254) iye kero ina-Ø Njira

3SG already location-3SG.POSS place.name
'he was already in Njira (lit. his location is Njira)'
(bwaindiya_151115 115, 296.628 298.586)
(255)
\begin{tabular}{lcl}
tina-nji & maa & ina- \(\varnothing\)
\end{tabular}\(\quad\) ghe=ke \(\quad\) loch-3SG.POSS \(\quad\) LOC=SPKR.PROX
(fp_stimuli_191015_01 036, 131.100 133.090)

\footnotetext{
\({ }^{71}\) Non-verbal locational clauses with adpositional predicates are quite widespread in Austronesian languages, e.g. Arosi (Lynch \& Horoi 2002: 569), Taba (Bowden 2005: 777-8), and Indonesian (Sneddon et al. 2010: 246).
}
\begin{tabular}{llll}
(256) & kero & ina-nda & bode \\
already & location-1INCL.POSS & down/below
\end{tabular}
'we are already below (lit. our location is already below)'
(engginas_story_231016 037, 74.994 76.750)

\subsection*{3.5.2.3 Possession clauses 'have'}

Existential clauses for expressing predicate possession in Sudest, like some location clauses, also involve the preposition \(e\) 'to, from, with'. In this construction, the preposition follows an optional NP denoting the possessor and precedes a possessive NP indicating the possessum. Examples (257) and (258) both have possessor NP preceding the PP. However, it is far more common for this to be omitted as in (259) when the possessor is easily retrievable from the discourse. In predicate possession clauses the preposition \(e\) 'to, from, with', can best be translated as 'have'. \({ }^{72}\)

\footnotetext{
\({ }^{72}\) The Sudest 'have' construction appear to resemble locational possessive constructions, which are attested relatively widely crosslinguistically, including in a number of Polynesian languages (Stassen 2009). The Sudest construction, however, differs significantly from the locational possession which take the possessum as the grammatical subject, and from the possessor as an oblique encoded by case affixes or adpositions. The Sudest construction more closely corresponds in form to what Stassen (2009) labels 'with-possessives' (also known as 'comitative possessives' and 'accompaniment possessives'), although they are semantically distinct from such constructions. These constructions are not as common crosslinguistically; Stassen (2009: 395) only finds them in one Oceanic language (Rotuman, Central Pacific linkage). With-possessive constructions take the possessor as the subject of the clause, with the possessum encoded by an oblique, usually marked for case or the object of an adposition and typically with associative or comitative semantics (Stassen 2009: 54). Often, but not always, both locational possessives and with-possessives also include a locative or existential predicate (Stassen 2009). In the case of Sudest, the preposition \(e\) does not have a comitative function; although it can be translated as 'with', it is only ever used to encode instruments. Accompaniment is specified by the preposition wei- 'with' (§3.3.6.4).
}
(fp_stimuli_191015_07 033, 86.400 88.996)

Some negated predicate possession clauses also have an existential interpretation, as in (260), which describes a man being kept in a lightless, doorless cell (see also §3.7).
(260) ande \(\quad e \quad l e-\emptyset \quad\) manjamanjala=re ande \(e\)
NEG1 PREP POSS.CLF2-3SG.POSS light=NEG2 NEG1 PREP
\(l e-\varnothing \quad\) dowo \(=\) re
POSS.CLF2-3SG.POSS door=NEG2
'there isn't a light, there isn't a door/he doesn't have light, he doesn't have a door (in his cell)'
lit: 'not with his light, not with his door'
(fp_stimuli_191015_01 065, 246.687 249.050)

\subsection*{3.5.2.4 Possibility and ability clauses}

Clauses of possibility and ability are expressed by the directly-possessed nouns valikaiwa and bosowa (both 'possibility'). \({ }^{73}\) In clauses expressing possibility, the possibility noun (valikaiwalbosowa) takes an impersonal third person singular possessive pronoun suffix -e '3SG.POSS' followed by a verbal complement clause specifying the possible situation. Clauses expressing ability differ from clauses expressing possibility in the possessive pronominal suffix occurring on the predicate; the suffix on valikaiwa/bosowa indicates the person and number of the referent whose ability is being spoken about (i.e. the subject of the complement clause). Examples (261) to (263) show clauses expressing possibility (or impossibility, in the case of (263)). Valikaiwa and bosowa 'possibility' are analysed as nominal predicates with a verbal complement rather than adverbials in a verbal clause due to the fact that in negated clauses, it is the noun that is negated and not the VC, as in (263).
(261) valikaiwa-e thi=ghan=a lolo=ko \(\quad i=m a r e=k o \quad\) une possibility-3SG.POSS 3PL=eat=YA person=DIST 3SG=die=DIST spirit 'it's possible they eat the person who has died's spirit' (funeral_feasting_081015_01 07, 216.866 220.245)
(262)
\begin{tabular}{lllll}
bosowa-e & \multicolumn{1}{c}{\(u=n g a\)} & thiyo \(=k o\) & \(i=\) ma-ten & \(o\) \\
possibility-3SG.POSS & \(2 \mathrm{SG}=\) say & string=DIST & 3SG=DETR-break & or \\
\(i=\) vo-ten=a & & thiyo \(=k o\) & & \\
3SG=by.spearing-break=YA & string=DIST & &
\end{tabular}
'it's possible you can say the string breaks or s/he breaks the string (by spearing)' (cb_stimuli_051016_03 028, 108.317 112.427)

\footnotetext{
\({ }^{73}\) Bosowa is borrowed from the Misima noun bosowai 'able, ability' which occurs in a comparable construction in Misima (S. Callister et al. 2005). In Sudest, bosowa is used interchangeably with valikaiwa 'possibility', although it occurs less frequently in the corpus (8 tokens and 24 tokens respectively).
}
```

[..] ko ande valikaiwa-e=re
ne i=njogha
FUT 3SG=go.back
'it's not possible that girl will go back'
(funeral_feasting_081015_02 109-10, 274.120 279.120)

```

Clauses expressing ability are presented in (264) and (265), with clauses expressing inability presented in (266) and (267). In corpus tokens, the verbal complement clause is omitted as it is retrievable from the wider context, like (264) and (266). However, it is possible to include it, as shown in the examples taken from A\&A and shown in (265) and (267).
kero valikaiwa-nggu
already possibility-1SG.POSS
'I am already able (to walk on land)' (pig_and_dugong_101214 039, 133.010 134.900)
bosowa-nggu \(\quad y a=g a e\)
possibilty-1SG.POSS \(1 \mathrm{SG}=\) =swim
'I can swim/I am able to swim'
(Anderson \& Anderson 1991: 63)
\begin{tabular}{llll}
\(v a\) & thi \(=\) ro-vurigheghe & maa & valikaiwa-nji \\
REM.PST & 3PL=stay.and-be.strong/hard & NEG & possibility-3PL.POSS
\end{tabular}
'they struggled (but) were unable (to fly and save the girl)'
(bush_betelnut_011115 102, 245.920 249.940)
(267) nande bosowa-me=re wo=vana bwadibwadi

NEG1 possibility-1EXCL.POSS=NEG2 1EXCL=climb coconut
'we can't climb coconut trees/ we are unable to climb coconut trees'
(Anderson \& Anderson 1991: 63)

\subsection*{3.5.2.5 Need and desire clauses}

Need and desire are also expressed by a verbless clause. The clause takes a complex NP made of the directly-possessed noun nuwa 'desire' and the demonstrative pronoun iya 'DEM' (§3.3.5.1) as a predicate and a complement clause expressing the thing or situation that is needed or desired. Neighbouring Misima uses a similar construction to express desire and want with a cognate noun nuwa 'desire' (S. Callister et al. 2005). Ross et al. (2016: 595) report comparable constructions in a number of other Oceanic languages as well. The subject of the clause is the possessor of nuwa 'desire' and is typically not overtly expressed (as in (268)), but is sometimes included for clarity, particularly for non-SAPs, as in (269). Examples (268) and (269) show the construction with a NP object. \(\operatorname{In}(270)\) and (271), the clauses take verbal complement clauses.
(268) nuwa-n iya gogomwau=niye=ke
desire-2SG.POSS DEM riches=SP=SPKR.PROX
'you want those riches'
lit: 'your desire is that (for) those riches' (family_ties_081115 022, 55.380 57.470)
(269)
\begin{tabular}{lllll}
ghaningga=ke & nuwa-e & iya & njighi & laghìye \\
food=SPKR.PROX & desire-3SG.POSS & DEM & sea/saltwater & big
\end{tabular}
'the food needs more salt'
lit: 'the food's desire is that (for) big salt(water)' (e_021115_02 120, 397.070 399.700)
(270) nuwa-nggu iya \(a=v a n g g u=\varnothing\)
desire-1SG.POSS DEM 1SG=lead=3SG
'I want to marry him'
lit: 'my desire is that I lead him' (fp_stimuli_191015_07 034, 88.996 90.900)
(271) nuwa-nji iya thí=tawoi-ranggi=ya gamoi-nji une
desire-3PL.POSS DEM 3PL=shit-go.out=YA stomach=3PL.POSS friut
'they want/need to purge the contents of their stomachs
lit: their desire is that they shit out the fruit of their stomachs'
(kula_exchange_081215 027, 85.790 89.210)

\subsection*{3.6 Clause Combinations}

This section presents a range of clause combinations. Coordination is presented in §3.6.1, followed by complement clauses in \(\S 3.6 .2\), and finally a variety of adverbial clauses in \(\S 3.6 .3\). There is little proof of grammatical dependency for complement and adverbial clauses and, therefore, little evidence for structural subordination. See \(\S 3.4 .5\) for discussion of relative clauses.

\subsection*{3.6.1 Coordination}

The conjunctive coordinator na 'and' links phrases, as in (272), and clauses, as in (273) and (274). Clauses connected by na 'and' often describe a sequential series of events, although this is not always the case. Compare (273) and (274).
```

(272) noroke $a=u t u=n g a \quad m b o m b o ~ n a ~ u t h u w o g h \dot{t}$
today $1 \mathrm{SG}=$ speak $=\mathrm{TR}$ pig and dugon
'today I talk about Pig and Dugong’ (pig_and_dugong_101214 004, 19.900 29.510)


| (274) | yenggiyenggi | $v a$ | $i=y a k u$ | $v a l i$ | imba | na | wondeya |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| monitor.lizard | REM.PST | 3 3GG=live/stay | side | tidal.river | and | possum |  |

'Monitor Lizard lived on one side of the river and Possum lived on one side of the river' (lizard_and_possum_121015 008, 22.706 26.863)

Adversative clause coordination is indicated by the coordinator ko 'but' (276).

| (275) | sori maa toto | ko butu |
| :--- | :--- | :--- | :--- | :--- |
|  | sorry NEG message but feast.invitation |  |
|  | 'sorry, not "message" but "feast invitation"" |  |

(kula_exchange_081215 101, 290.380 293.810)

| (276) | $i=g a g a$ | gha-e | gha- | mbe | regha |
| :--- | :--- | :--- | :--- | :--- | :--- | ko

ande mbe ne $i=w a=r e=$ engge $e \quad$ ghemba than NEG1 still FUT 3SG=go=NEG2=just PREP village other 'she cooks her food herself but she still cannot leave the village' (funeral_feasting_081015_01 119-20, 346.666 352.160)

The coordinator ko can also function conjunctively with clauses to mean 'and', typically when it is followed by the sequential coordinator amba. ko amba occurs 29 times in the corpus, compared with three tokens of na amba.

```
(277) thi=tawoi-vao= \(\varnothing \quad i=k o\) ko amba ma thi=thithu
 3PL=shit-COMPL=3SG 3SG=finish but then already 3PL=bathe
 'they finish shitting and then they bathe'
 (funeral_feasting_081015_02 072-3, 189.430 195.310)
```

Asyndetic coordination is also common in Sudest. Lists of nouns frequently do not have an explicit conjoiner (278) and both same-subject (279) and switch-subject clauses (280) also occur without coordination.

| $i=$ tamwe $=y a$ | bigi | thangari=ke | ghaningga | mbombo | tobotobo |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG=look.for=YA | thing | every=SPKR.PROX | food | pig | greenstone.axe |
| 'she looks for every, food, pigs, greenstone axes' |  |  |  |  |  | (funeral_feasting_081015_01 141-2, 402.322 )


| umoru $=m a$ $i=w o$ | sledgehama=ma <br> young.man=DET | 3SG=GET.SG.RIGD | $i=r$ riri=ten=a |
| :--- | :--- | :--- | :--- |
| sledgehammer=DET | 3SG=by.striking=break=YA |  |  |
| kwama=ma <br> cloth=DET |  |  |  |
| 'the man gets the sledgehammer (and) breaks the cloth by striking' |  |  |  |

(cb_stimuli_051016_01 129, 1407.310 1412.740)
(280) this raka-itete $=\varnothing$ mbe i=ro-ghena-ghena ghe=ko

3PL=go.PL-leave=3SG still/yet 3 SG=stay.and-RED-sleep $\quad$ LOC=DIST
'they all left him (and) he stays sleeping there'
(child_and_giant_201015 020, 55.180 57.032)
The disjunction $o$ 'or' conjoins phrases (281) and clauses (282).

| (281) | wevo $\boldsymbol{o}$ <br> ela $i=l i=y a$ <br> young.woman or woman 3SG=GET.SG.FLEX=YA | kwama <br> cloth | na |
| :--- | :--- | :--- | :--- | :--- |
| and |  |  |  |

'a young girl or a woman gets a cloth and tears it with her hands'
(put_stimuli_191015_01_01 048-9, 184.585 190.239)
(282) ko amba ma thegha=ko thi=ghan=a bwarogi o thi=ghan $=a$
but then already youth=DIST 3PL=eat=3SG fish or $3 \mathrm{PL}=$ eat=YA
mbombo
pig
'.. and then they eat fish or they eat pig'
(funeral_feasting_081015_02 115-6. 288.515 293.210)

The sequential coordinator amba 'then' links clauses (283). As mentioned above, amba frequently occurs with the coordinator ko 'but' to mean 'and then' (284) (see also (277) above).

```
(283)
 ra=nggari=nggi
```

    'we count them (sago bundles) and count them (lit. it)'
                                    (sago_101214 052, 136.667 139.140)
    (284) nggama=ke $i=b w a b w a n a ~ n a ~ i=g h e ~ k o ~ a m b a ~ m a ~$
child=SPKR.PROX $3 \mathrm{SG}=$ grow.up and $3 \mathrm{SG}=$ marry but then already
$u=$ thin-ve $=\varnothing \quad n a m b o=k e$
2SG=GET.SG.CNTR-give=3SG basket=SPKR.PROX
'the child grows up and marries and then you give (the child) the basket (with precious items for the child)' (marriage_111015 056-7, 173.806 176.623)

The coordinator amba 'then' combines with the adverbial muyai 'after' to mean 'later' or 'then after', as in (285).
(285) a=thavwi kwaliko amba muyai a=wa e uma tine
$1 \mathrm{SG}=$ wash clothing then after $1 \mathrm{SG}=$ go PREP garden inside
'I wash the clothes then later I go to the garden'
(womens_work_221214 024-6, 60.035 68.348)

### 3.6.2 Complement clauses

Complement clauses in Sudest can take the form of 'sentence-like' or 'nominalised' complements (following Noonan 2007). Sentence-like complements are more common than nominalised complements (which are limited to verbs that can be nominalised). Sentence-like complement clauses fill the same postverbal position as lexical object arguments. They have no formal indication
of subordination and have the same structure as main clauses. Example of sentence-like and nominalised complement clauses with ravu 'know' are presented in (286) and (287) respectively.

| (286) | $u=r a v u$$\quad$ ngingi- $n=n a$ | $v a$ | $i=m a-b e b e ? ~$ |
| :--- | :--- | :--- | :--- | :--- |

Examples (288) to (294) show further examples of sentence-like complement clauses with a range of predicates. All the complement clauses shown in the examples below, as well as the one above in (286), could theoretically function as main clauses. As shown in (288), direct speech is always introduced by the utterance predicate nga 'say'.
$\begin{array}{llll}\text { (288) } & \begin{array}{ll}i=\text { dage } & \text { we }=\varnothing \\ \text { 3SG }=\text { speak } & \text { PREP=3SG }\end{array} & \text { POSS } & i=n g a \\ & \text { " } u=\text { vathinggu } & \text { nggama=na" } & \\ & 2 S G=\text { wash } & \text { child=ADDR.PROX } & \end{array}$
'he told his wife, he said "(you) wash the child""
(marriage_111015 034-5, 108.950 115.470)
(289) $i=$ renuwanga $v a \quad$ thi=nggar $i=\emptyset$ ina- $\varnothing \quad$ sel $=k o$ 3SG=think.about REM.PST 3PL=tie=3SG location-3SG.POSS PREP cell=DIST tine
inside
'he thought about (when) they tied him in the cell'
(fp_stimuli_191015_02 044-5, 109.782 113.590)
(290) rama-e $\quad m e=n d e$-ghathi $\quad i=t h u w e=y a$
father-3SG.POSS 3SG.IMM.PST=stand.and-tight? $3 \mathrm{SG}=\mathrm{see}=\mathrm{YA}$
ghendiya-e $\quad i=u n i g h a ~ y a w a r u m b u-y e$
in.law.gen.removed-3SG.POSS 3SG=hit daughter-3SG.POSS
'her father stands and watches his son in law hit his daughter' (fp_stimuli_191015_02 102-4, 255.810 260.780)
(291) lolo=ko $\quad i=m j e \quad i=k i-t e n=a \quad$ waranisi $i=n g g i l e$
person=DIST 3 SG=try $3 S G=b y . c u t t i n g=b r e a k=Y A \quad$ orange $\quad 3 S G=b r e a k$
nima-e
hand-3SG
'the person tried to cut an orange, she cuts her hand'
(cb_stimuli_051016_02_01 162, 870.231 873.629)
(292) va $i=m a r a r u \quad$ nggama $=k o$ ne $i=$ ghan $=\varnothing$

REM.PST 3SG=be.afraid child=DIST FUT 3SG=eat=3SG
'he was afraid the child would eat him'
(child_and_giant_201015 121, 324.286 328.585)
(293)

| me=telipuna | $i=n g g e=\varnothing$ | $e$ | toutou |
| :--- | :--- | :--- | :--- |
| 3SG.IMM.PST=start | 3SG=hit=3SG | PREP | floorboard |

'she started to hit her (daughter) upstairs (lit. on the floorboards)'
(crab_girl_081115 087, 215.394 217.622)

```
ra=roro thela i=njimbukiki=\varnothing
 1INCL=not.know who 3SG=look.after=3SG
 'we don't know who (will) look after it (a baby)'
 (dating_081015 057, 147.910 149.944)
```

The nominal predicates that express possibility/ability, need and desire/want also take complement clause arguments. These are discussed in (§3.5.2.4) and (§3.5.2.5).

### 3.6.3 Adverbial clauses

This section describes time (§3.6.3.1), reason and result (§3.6.3.2), and conditional (§3.6.3.3) clauses. Adverbial clauses are introduced by a number of nouns and conjunctions. Like complement clauses, the adverbial clauses show no formal sign of structural subordination and can function as main clauses.

### 3.6.3.1 Time clauses with mbanga 'time'

The noun mbanga 'time' functions as a temporal subordinator meaning 'when'. It introduces the event of the subordinate clause as temporally coincidental (295) or contiguous to the main clause (296). The subordinate clause always precedes the main clause.
(295) mbanga veth $=$ vutha gheleth $i=k o$ va $i=r a u$ time 3PL.INT=arrive betelnut=DIST REM.PST 3SG=fruit 'when they arrived, the betelnut tree was fruiting'
(bush_betelnut_011115 016-7, 40.210 42.923)
(296)

| mbanga | me=nda-wogiyawe | $i=w o-r u=w o=\varnothing$ |
| :--- | :--- | :--- |
| time | 3SG.IMM.PST=burn-properly | $3 S G=G E T . S G . R I G D-g o . o u t=t h i t h e r=3 S G$ |

'when he was properly cooked, she took him out (of the fire)'
(crab_girl_081115 038-9, 94.327 99.430)

### 3.6.3.2 Reason and result clauses with kaiwa 'reason'

Reason clauses are introduced by the noun kaiwa 'reason' (see §3.3.6.3 for discussion of the related benefactive-purposive adposition kaiwa). The subordinator is a directly-possessed noun and in its subordinating function it takes a third person singular possessive suffix (either -e or $-\varnothing$ ). The reason clause follows the main clause. Examples (297) and (298) show verbal subordinate clauses, while the reason clause in (299) has a nominal predicate.

| (297) | $\begin{aligned} & a=\text { mbele } \\ & 1 \mathrm{SG}=\text { follow } \end{aligned}$ | bwebwe <br> dad | kaiwa- $\varnothing$ <br> reason-3SG.POSS | o-rama-e <br> PL-father-3S | POSS | $\begin{aligned} & \text { thi }=\text { mena } \\ & \text { 3PL=come } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vanatina-e <br> place.name-3SG.POSS |  |  |  |  |  |
|  | 'I follow dad | because h | his forefathers came | e from Vanatina (family_ties_0 | 1150 | -12, 28.21035 |
| (298) | ande mbe <br> NEG1 still | ne FUT | thi=ghena wei-nji 3PL=sleep PREP-3 | $\begin{aligned} & j i=y a=n g g=y a \\ & -3 \mathrm{PL} \cdot \mathrm{POSS}=\mathrm{YA}= \end{aligned}$ | $\mathrm{L}=\mathrm{YA}$ |  |
|  | $\begin{aligned} & l e-n j i \\ & \text { POSS.CLF2-31 } \end{aligned}$ | PL.POSS |  | kaiwa-e reason-3SG.POSS | $\begin{aligned} & \text { ne } \\ & \text { FUT } \end{aligned}$ | $\begin{aligned} & \text { thíi=vakowana } \\ & \text { 3PL=spoil } \end{aligned}$ |
|  | le-nji |  | bigi-bigi=ko |  |  |  |
|  | POSS.CLF2-31 | PL.POSS | RED-thing=DIST |  |  |  |

'they still cannot sleep with their wives because they will spoil their things (i.e. the magic spells they have performed to ensure successful trade)' (kula_exchange_081215 076-8, 225.000 233.250)
(299) wondeya $i=d a g e \quad w e=y a$ ighai-ye yenggiyenggi "maa possum 3SG=speak PREP=YA cousin-3SG.POSS monitor.lizard NEG valikaiwa-e kaiwa- $\varnothing$ ghino ra-ghambwe-ghambwera possibility-3SG.POSS reason-3SG.POSS 1SG AG-RED-be.sick
'Possum spoke to his cousin Monitor Lizard "it's not possible (for me to go fishing), because I'm a sick person"" (lizard_and_possum_121015 034-5, 94.192 100.820)

Result clauses are introduced by the verbless predicate clause iya kaiwa-e (lit. DEM reason3SG.POSS) 'that is its/the reason'. ${ }^{74}$ The subordinate result clause always follows the clause(s) describing the reason(s):
(300)

| $i=$ divwara | uvwa-uvwa | iya | kaiwa-e | noroke | mankwathi | maa |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG=break | RED-testicle | DEM | reason-3SG.POSS | today | bush.fowl | NEG |  |
| ma | $i=y o$ | $n a$ | $i=w a$ | bwagabwaga |  |  |  |
| already | $3 S G=f l y$ | and | $3 S G=$ go | far.away |  |  |  |

'he broke his testicles, that is why today bush fowl cannot fly or (and) go far' (bush_betelnut_011115 123-6, 296.489 303.390)

[^44]| (301) | boda <br> people still | thi=longwe-longwe=engge | 3PL=RED-hear=just |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$| utu=niye |
| :--- |
| story=SP |$\quad$| iya |
| :--- |
| DEM |$\quad$| kaiwa- $\varnothing$ |
| :--- |
| reason-3SG.POSS |

'the people were hearing the story/news (about his good looks), that's why they wanted to see him' (feast_of_the_fish_271015 067-8, 161.477 165.650)

### 3.6.3.3 Conditional clauses with thonggo and posi 'if'

The protasis in all conditional sentences is introduced by thonggo (302) or posi (303) both meaning 'if'. ${ }^{75}$ The protasis tends to precede the apodosis.

| thonggo | wo=thaga | wo=raka | Saisai=ko | wo=raka |
| :--- | :--- | :---: | :--- | :--- |
| if | 1EXCL=feast | 1EXCL=go.PL | place.name=DIST | 1EXCL=go.PL |
| Panaeati | wo=raka | Misima | wo=raka | Rogha |
| place.name | 1EXCL=go.PL | place.name | 1EXCL=go.PL | place.name |

'if we feast, we go to the Calvados Chain, we go to Panaeati, we go to Misima, we go to Rossel (to trade)'
(kula_exchange_101214 067-71, 199.680 208.749)
(303)

| $i=n g a$ | "posi | nggonggo" | $i=n g a$ | "iya=ko | ne | $i=k a k a l a v a "$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG=say | if | mist | $3 S G=$ say | DEM=DIST | FUT | 3SG=be.white" |

'she says "if (there is) mist", she says "that (the mist) will be white""
(mandumbunga_02_181016 040-1, 117.755 122.295)
In counterfactual conditionals, the apodosis is introduced by the obligation particle mbala 'OBL' (§3.3.7.6):
(304) thonggo maa va $\quad$ thi=yeghe $=\emptyset$ na $\begin{aligned} & \text { i=voro }\end{aligned} e^{2}$ malavuta if NEG REM.PST 3PL=cut=3SG and 3SG=go.up PREP shallow.water ko $e \quad$ mbwa=ko tine mbala ghinda noroke but PREP water=DIST inside OBL 1INCL today $r a=m b \dot{i} m b \dot{i} \quad g h a-n d a$ 1INCL=clutch/hold(underarm) food-1INCL
'if they hadn't cut it (the tree) and it went up into the shallows but down into the water, today we would hold our food underarm (to heat it)'
(mandumbunga_061215 106-7, 300.063 310.830)

### 3.7 Negation

### 3.7.1 Prohibitions

Prohibitions are indicated by the particle thava or the shortened variant tha both translatable as 'don't'. The two forms are used interchangeably, except when the prohibitive marker is functioning

[^45]as a complete sentence meaning 'don't!'. In such cases, only the long version, thava, may occur. The prohibitive marker always occurs clause-initially, as in the following two examples:

```
(305) thava u=mararu=ime
 PROH 2SG=be.afraid=1EXCL
```

    'don't be afraid of us!' (couples_story_101214 052, 139.690 141.947)
    (306) $i=n g a$ tha $\boldsymbol{a} u=$ longga-kubaro'
3SG=say PROH 2PL=walk-hide
'she said "don't keep quiet when you walk (lit. walk-hide)""
(mandumbunga_061215 060, 170.640 172.180)

The prohibitive particle is also used to mark negative obligation, as in (307).

| (307) | nggama | gha-Ø | vethe | kure | tha |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | child | POSS.CLF1-3SG.POSS | k.o.basket | leftover.food | PROH |
|  | $i=k w a r a-k w a r a$ |  |  |  |  |
|  | 3SG=RED-not.have= $\varnothing$ |  |  |  |  |
|  | 'the child's food basket must not be empty (lit. must not not be having) |  |  |  |  |

(small_child_051214 050-1, 118.540 122.410)

See §3.3.7.6 for discussion of the obligation particle mbala 'should' and $\S 4.3 .1$ and $\S 4.3 .2$ for the modal directives and dehortatives inside the VC.

### 3.7.2 Denial

Expressions of denial vary between the different dialects of Sudest. There are at least three different particles used around the island, nandere, maaruwo and ningiye, which are all the equivalent of 'no' and 'nothing'. The latter, ningiye, is used by speakers to the south-east of Vuwo and is (most probably) cognate with the Misima particle nigeya 'no'. Nandere is traditionally used by central dialect speakers and maaruwo by the speakers in the northwest. Both nandere and maaruwo are attested in the current corpus with similar frequencies ( 9 and 11 tokens respectively), and individual speakers are attested using both. This is unsurprising given that Vuwo is situated at the edge of the central dialect region and some speakers in the corpus originally come from areas where the northern dialect is spoken. Example (308) contains the negator maaruwo in response to a polar question:

| (308) $i=n g a$ | "mbwata | ne | hu=ghan=nggo?" | theuni-wo=ko | thi=nga |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG=say maybe FUT 2PL=eat=1SG | NUM.CLF-two=DIST | 3PL=say |  |  |  |
| "maaruwo" $\quad i=n g a ~ " m b w a t a ~ n e ~ u=g h a n=i m e ~$ |  |  |  |  |  |

'he said "maybe you will eat me?" the two (girls) said "no!" she said "maybe you will eat us""
(mandumbunga_02_181016 202-, 507.846

The negative particles can also mean 'nothing'. In (309), the speaker is describing how menstruating women today may carry out everyday tasks without any restrictions compared to earlier times when certain activities where restricted.

| wo = ghaningga | amba | muyai | wo=raka | $e$ | uma |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1EXCL=eat.PROG | then | later | 1EXCL=go.PL | PREP | garden | tine $\quad m e=v i v a=k o \quad n a n d e r e$ inside 3SG.IMM.PST=go.first=DIST NEG

'we (women) eat then later go to the garden, in the past nothing (lit. first nothing, i.e. women in the past didn't work in the garden while menstruating)'
(menstruation_081015 020-1, 61.60069 .861 )
In (310), nandere 'no, nothing' is used for emphasis after a clause with negative polarity:
(310) ande me ne thi $=g h e=r e=v a$ kero nandere

NEG1 IMM.PST FUT 3PL=marry=NEG2=REP already NEG
'they will not be married anymore, (it's) already nothing'
(divorce_111015 031, 74.42077 .609 )

### 3.7.2.1 Verbal predicate negation

Multifunctionality of negatives is common in the Oceanic languages (Mosel 1999: 16-17) and forms related to the two negation particles nandere and maaruwo are used as negation markers for both verbal and non-verbal predicates. The two negative markers are the discontinuous negative marker $(n) a n d e \ldots=r e$ and the negative particle maa. Discontinuous negation is a parallel innovation among numerous Oceanic languages (Lynch et al. 2002: 51-52). Speakers use (n)ande... $=r e$ and maa interchangeably and find their use equally grammatical, although their relative frequency in the corpus differs somewhat, with 121 tokens of (n)ande $\ldots=r e$ and 65 of maa. The first half of the discontinuous marker ( $n$ ) ande and the negative marker maa are in a paradigmatic relationship and precede the predicate and any TAM particles. As a subject conominal can occur between the negative particles ( $n$ )ande and maa and a verbal predicate (see further below), they are considered outside the VC.

Examples of the two negation markers with verbal predicates are presented in (311) to (313). The second half of the discontinuous negative marker ( $n$ ) ande $\ldots=$ re cliticises onto the VC following the directional adverbials and demonstratives, and, in the case of transitive verbs, following the object index when one is present, as in (311) (see §4.4. for the relative position of the postverbal elements in the VC). When a lexical object is present, it is outside of the VC and follows the negative clitic, as in (312).
(311) ande $u=$ tamwe $=$ nggi=re

NEG1 2SG=look.for=3PL=NEG2
'you don't look for them'
(organising_021015 017, 42.750, 44.780)
(312)

| ande | mbe | ne | $i=$ ghan=re | bwarogi |
| :--- | :--- | :--- | :--- | :--- |
| NEG1 | still | FUT | 3SG=eat=NEG2 | fish |

'she still will not eat fish'
(new_mother_251214 088, 209.850 212.610)
(313)

| maa | $v a$ | thi $=r a v u$ | Peter | le- $\varnothing$ | vakatha |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NEG | REM.PST | 3PL=know | pers.name | POSS do |  |

'they did not know (about) Peter's actions 'fp_stimuli_191015_07 053-4, 137.260 140.880)

There are seven tokens in the corpus in which maa and the second half of the discontinuous negation marker $=r e$ 'NEG2' cooccur, an example of this is given in (314). While speakers do not find this combination ungrammatical, it does appear to be a peripheral construction type; it is only used by two male speakers in their early- to mid-twenties in the corpus.
(314) yenggiyenggi maa va i=ghambwera=re
monitor.lizard NEG REM.PST 3SG=be.sick=NEG2
Monitor lizard was not sick’ (lizard_and_possum_121015 007, 20.197, 22.706)
The negative markers hold rightward scope. Consider the position of the temporal adverbial mbanga regha 'one time' (lit. 'time one') in (315) and (316). When the adverbial is outside of the scope of negation, it specifies that it is only one time that the activity encoded by the VC did not occur, as in (315). However, when mbanga regha 'one time' follows the negative particle and is inside the scope of negation, it specifies that the activity encoded by the VC 'never' occurs/occurred (i.e. ' $X$ does not occur one time'), as in (316).


The majority of tokens in the corpus, like the ones above in (311) to (313), do not include a subject conominal, i.e. a lexical NP expressing the subject argument. When a subject conominal is present, it most frequently precedes the negative marker (SNeg, 36 tokens). However, it can also follow the negative marker (NegS, 8 tokens). Like the examples above in (315) and (316) with the temporal adverbial, the relative position of the subject conominal in relation to the negative marker appears to relate to scope and predicate negation vs. sentence negation. Consider the example in (317), in
which the conominal precedes the negative particle ande, and the example in (318), in which the conominal follows the negative particle.

| Ebeutu | ande | i=go-njogha=re | le- $\varnothing$ |  |
| :--- | :--- | :--- | :--- | :--- |
| pers.name | NEG1 | 3SG=by.speaking-go.back=NEG2 | POSS.CLF2-3SG.POSS |  |
| tina-e |  | utu=ko | gha- $\varnothing$ | rumwaru |
| mother-3SG.POSS | word=DIST | POSS.CLF1-3SG.POSS | straight |  |

'Ebeutu didn't answer her mother's clear words'
(crab_girl_081115 071-3, 172.850 180.790)

| ande | ne | dage | ghalinga-nda | i=laghitye $=$ re | $e$ | ghemba=ko |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NEG1 | FUT | word | voice-1INCL.POSS | 3SG=be.big=NEG2 | PREP | village=DIST |
| tine |  |  |  |  |  |  |
| inside |  |  |  |  |  |  |

The limited data suggest a categorical-thetic distinction (cf. Kuroda 1972). Categorical statements have a subject-predicate judgement structure that involves naming an entity then affirming or denying a statement about the entity, while thetic statements are internally unstructured, affirm or deny a situation, and do not have a 'subject' in the logical sense (see Kuroda 1972; Sasse 1987). Such a correlation is not unique to Sudest. Margetts (1999b) observes an identical correlation between the variation in the ordering of subject and negative marker and categorical-thetic judgements in Saliba, a Suauic Papuan Tip language.

Further examples of SNeg (categorical) tokens are given in (319) to (321) and tokens of NegS (thetic) clauses are presented in (322) to (324). The two sets of examples show typical characteristics of categorical vs. thetic utterances also attested in Saliba (Margetts 1999b: 24-6). The NegS examples in (319) to (321) and above in in (314) and (317) are referential: their subjects are presupposed, while the predicate is denied. The utterances in (314), (317), and (319) involve specific protagonists from narratives, often marked by demonstrative enclitics or proper names. Example (320) is talking about Sudest culture itself, while (321) describes a specific protagonist and event depicted in a stimulus video.
(319) kamkam maa $i=v a i d i=y a \quad$ karitau iya=ma engge
chicken NEG 3 SG=find=YA tridacna.clam DEM=DET just

| $i=$ vuri-mban= $\varnothing$ | karitau | $e$ | ghae-ye | $[\ldots]$ |
| :--- | :--- | :--- | :--- | :--- |
| 3SG=w.feet-GET.PL.RIGD=3SG | tridacna.clam | PREP | mouth-3SG.POSS |  |

3SG=w.feet-GET.PL.RIGD=3SG tridacna.clam PREP mouth-3SG.POSS

| gha- $\varnothing$ | une | maa | thi $=$ ravu $=\varnothing$ |
| :--- | :--- | :--- | :--- |
| POSS.CLF1-3SG.POSS | friends | NEG | 3PL=know=3SG |

'the chicken didn't see (lit. find) the clam just put it (her foot) in the clam's mouth [...] her friends didn't know (about chicken's accident)'
(chicken_story_181015 013-, 35.280


Examples (322) to (324) and (318) above show NegS thetic utterances. These all come from procedural texts and explain situations that should not occur in general, rather than specific subjects that are not engaging in X or Y practice. The NegS tokens are non-referential and unspecific, with subject NPs unmarked by determiners, as (318), (322), and (323) show. Example (324) does include a demonstrative in the possessive NP subject. However, the statement is unspecific insofar as it is describing the general practice forbidding fathers of newborn infants from sleeping with their wives.
(322) buwo maa wevo $i=v a k a t h a=\emptyset \quad$ mbe umo-umoru=engge
courting.gift NEG young.woman $3 \mathrm{SG}=\mathrm{do} /$ make $=3 \mathrm{SG}$ still RED-young.man=just
iya thí=giya buwo
DEM 3PL=give courting.gift
'a courting gift, no young woman does it, it's still just young men, they give courting
gifts’
(dating_081015 079, 214.520 219.746)
(323)

| --итоги | meththi=ya-yaku | ande | ne | wanakau |
| :---: | :---: | :---: | :---: | :---: |
| RED-young.man | 3PL.IMM.PST-all-stay/sit | NEG1 | FUT | girl |
| thí=thin-yere $=$ re madile |  | madibe |  | yamwa-nji |
| 3PL=GET.SG.CNTR-walk.past=NEG2 bl |  |  |  | forehead/fro |
| (when) young men were all sitting, no young women will walk/take the (menstrual) |  |  |  |  |
| blood in front of |  | nstruati | _08 | 1015 061-3, |

(324) ande ne nggama=ko rama-e i=yo-njolanga=re

NEG1 FUT child=DIST father-3SG.POSS 3SG=fly-go.across =NEG2
nggama=ko tina-e gheghe
child=DIST mother-3SG.POSS leg/foot
'no child's father will go across a child's mother's legs (i.e. engage in intercourse)'
(new_mother_251214 109-10, 269.310 277.160)

### 3.7.2.2 Non-verbal predicate negation

In non-verbal predicates, the negative markers precede the predicate and the second part of the discontinuous marker follows the predicate. This is illustrated in examples (325) to (329) that show negated tokens of each of the non-verbal predicates described in $\S 3.5$.


There are far fewer tokens of non-verbal predicate negation in the corpus than verbal predicate negation, and no instances of NegS non-verbal predicates. However, subject-negation (SNeg) examples like those above in (325) to (327) do display a categorical reading with presupposed subjects and elicited pairs. The two sentences presented in (330) further support a categorical-thetic interpretation for non-verbal predicates. In the SNeg utterance in (330a), there are women who are not in the house, but in the NegS utterance in (330b) there are no women in the house.


### 3.7.2.3 Negative verbs

There are two negative verbs in Sudest botewa 'not want' and roro 'not know'. Examples of botewa 'not want' are presented in (331) and (332). Note that the negative verb may be negated itself by the discontinuous negation marker, as in (332).
(331) kero i=botewa типіти
already $3 \mathrm{SG}=$ not.want drink
'he doesn't want the alcohol (lit. drink)'
(fp_stimuli_191015_05 362, 848.329 850.180)
(332) ande i=botewa=re regha

NEG1 3SG=not.want=NEG2 one
'she doesn't reject one (type of recording) (lit. she doesn't not want one)'
(c_031116 037, 80.640 82.680)

An example of roro 'not know' is given in (333) (see (292) for a further example). Example (334) presents a token of the particle koghai, which means 'I don't know' and is only used in response to a question.
(333) kero veth $=$ roro le=ko ida-e already 3PL.INT=not.know person=DIST name-3SG.POSS
'they don't know the person's name'
(mandumbunga_02_181016 227, 578.051 581.408)
$\begin{array}{llllll}\text { (334) } & \text { th } \dot{i}=\text { vato }=\emptyset & \text { "naka } & \text { gha- } n & u=m a ? " & i=n g a \\ & \text { 3PL=ask=3SG } & \text { what.about } & \text { POSS.CLF1-2SG.POSS } & \text { friend=DET } & \text { 3SG=say }\end{array}$

## "koghai"

I.do.not.know
'they asked "what about your friend?", she said "I don't know""
(bush_betelnut_011115 053-5, 124.400 130.505)

## 4 The verb complex

### 4.1 Introduction

This chapter analyses and describes the composition of the verb complex (VC) in Sudest. It is intended to provide a detailed background to the analyses presented in the following chapters. The description of the VC presented in this chapter is based on corpus and stimuli data, with supplementary elicitation data. Previous descriptions of the VC by A\&R and A\&A served as a valuable point of entry into the study of one of the most complex areas of the language. The current analysis builds and refines the previous descriptions, retaining A\&R's nomenclature where appropriate.

It has become widely accepted to use the term 'verb complex' over 'verb phrase' when describing a structure which includes the verb and closely related grammatical elements in Oceanic languages (e.g. Lichtenberk 1983, 2008; Thieberger 2006; Palmer 2009; Guérin 2011 ${ }^{76}$; Schnell 2011; Frostad 2012; Vaa 2013, Lacrampe 2014). ${ }^{.7}$ As Pawley (2003) highlights, what is often referred to as the 'verb phrase' in transformational treatments is distinct from the constructions described by that label in Oceanic languages (see e.g. Crowley 1982:118). In the former, it is a strictly syntactic unit, excluding subjects but including direct objects expressed by lexical NPs. The latter, on the other hand, typically includes subject and object indexes marked on the verb but excludes lexical expressions of both subject and object, as there are typically no tests that demonstrate that the object NP forms a constituent together with the VC in Oceanic languages.

The Sudest VC can constitute a complete sentence by itself and is minimally composed of subject index and verb stem(s). Like many other Oceanic languages, the Sudest VC is also one of the areas of greatest complexity, with over 20 possible pre- and postverbal slots. The maximal VC is presented in Figure 4.1 It should be noted, however, that the longest attested VCs tend to have no more than half a dozen slots filled. In some cases, the exact limits of co-occurrence and exclusivity remain to be further tested and explored; future data may indicate minor ordering differences.

[^46]\[

$$
\begin{aligned}
& \left.(\mathrm{IMP}=) \text { SUBJ }=\binom{n d e=}{\text { DEHORT }}\binom{\text { ya/raka }=}{\text { 'all' }}\binom{\text { A- subsequent }}{\text { AM }}\left(\begin{array}{c}
\text { ruku- prior AM } \\
\text { yo- concurrent AM }
\end{array}\right\}\right)\left(\left\{\begin{array}{l}
\text { posture- } \\
\text { motion- }
\end{array}\right\}\right) \\
& \left.\left(\left\{\begin{array}{c}
i \text { - 'intentional' } \\
\text { thu- 'unintentional' }
\end{array}\right\}\right)\binom{v e-}{\text { RECP }}\binom{\text { manner-of-- }}{\text { causation- }}\left(\begin{array}{c}
\text { ma/rara- DETR } \\
v a-\text { CAUS }
\end{array}\right\}\right)
\end{aligned}
$$
\]

$$
\begin{aligned}
& \binom{=\text { engge }}{\text { just' }}\binom{\text { vara }}{\text { 'truly' }^{\prime}}
\end{aligned}
$$

Figure 4.1 The verb complex
The VC is defined based on the following two criteria: a) no phrase can intervene between the components of the VC ; and b ) the VC components have a fixed order. The VC is also never divided/broken up across intonation units. TAM particles and the first part of the discontinuous negation marker ande 'NEG1' (or the alternate negator maa 'NEG') precede the VC, but are not considered part of the VC. This is because subject NPs, fronted object NPs, and temporal adverbials can separate them from the VC (see $\S 3.3 .7$ and $\S 3.7 .3$ for TAM and negation respectively). ${ }^{78}$

Before continuing to the description of the VC, a note on the distinction between affixes and clitics is in order. The two previous descriptions of Sudest treat the bound pre- and postverbal morphemes differently without explicitly outlining criteria for their analyses. There is a vast literature, both formal and descriptive, on clitics and their properties, particularly in relation to affixes. ${ }^{79}$ Nevertheless, distinguishing the two types of bound morphemes from one another in one language - much less cross-linguistically - is notoriously difficult. Haspelmath (2011) even contends that there are no satisfactory criteria to distinguish clitics from affixes cross-linguistically. In the Sudest VC, some of the bound elements display more canonical clitic-like behaviour - for example, the demonstrative morphemes display 'promiscuity’ (Spencer \& Luis 2012b, see §3.3.5, §3.4.2, and $\S 4.4 .4$ ) - but this is not true for the majority of bound forms in the VC. Another oft-cited criterion of clitics is their lack of prosodic prominence (e.g. stress, tone), whereas affixes may have prosodic prominence (Spencer \& Luis 2012a; Dixon 2010a). Study of a reasonable sample of bound VC morphemes from the corpus using the Praat software package ${ }^{80}$ indicates that they show variation in stress patterning as well. Some bound morphemes are never stressed, e.g. object indexes (§4.2.2), however, others can be, e.g. the transitive and applicative morphemes =nga and =wana (§4.5.1).

[^47]Stress on the verb stem(s) also shifts depending on which bound morphemes are present. The current data, particularly phonetic evidence, indicate that distinguishing affixes from clitics in the VC is a complex problem in need of further investigation. Due to the lack of explicit defining criteria, previous analyses of the language are also opaque.

In light of these considerations, the current analysis largely follows the affix-clitic distinctions outlined in A\&R, albeit with the caveat that these distinctions are currently placeholder labels until a more complete analysis is carried out. Following A\&R, both subject and object indexes - as well as all bound postverbal morphemes - are marked as clitics (indicated by ' $=$ '), while derivational preverbal elements - the positional and motion morphemes, reciprocal morpheme, universal quantifiers, manner-of-causation morphemes and (un)intentionality morphemes - are labelled as affixes (indicated by '-'). Morphemes that have grammaticalised from verb stems are also labelled as affixes. These include the quantifier raka- 'all' and the subsequent and prior associated motion prefixes la- 'and go' and ruku- 'go and'. All remaining bound morphemes are labelled as clitics.

The chapter is divided into three parts. The argument indexes - the bound subject and person forms - are discussed in $\S 4.2$, as is as their co-occurrence with nominal arguments. Section 4.3 outlines each of the preverbal elements in turn. Section 4.4 describes the postverbal slots, also in the order in which they occur.

### 4.2 Bound subject and object pronouns

Core arguments can be indexed on the verb by way of bound subject and object indexes in clauses with verbal predicates. Subject indexes are obligatory, and are frequently the only expression of the subject in clauses with verbal predicates. A lexical NP, which may be an independent pronoun, can also precede the VC. Sudest can be categorised as a primary object language (Dryer 1986). In primary object languages, the single object of a monotransitive verb and the argument with the role of goal/beneficiary of the ditransitive verb are treated in the same way, while the other argument of the ditransitive verb (with the role of theme/patient) is treated differently (see also §7.2 and §7.4.1 for discussion of the three ditransitive verbs in Sudest). The primary object of transitive verbs is indicated by an object index, a lexical NP, or both. The subject and object indexes make the same distinctions for person and number as the independent pronouns and the possessive pronoun suffixes (§3.3.4). They distinguish between first, second and third person singular and plural, with first person plural pronouns also making a distinction for clusivity. Like other Oceanic languages, the bound person forms do not distinguish gender.

There is an extensive literature addressing the status of bound person forms, particularly those bound person forms that can co-occur with a coreferential lexical NP with the same reference and
role as the bound person form (e.g. Jelinek 1984; Mithun 1986; Bresnan \& Mchombo 1987; Austin \& Bresnan 1996; Lichtenberk 1997; Corbett 2003; 2006; Siewierska 2004; Kibrik 2011; Hengeveld 2012; Haspelmath 2013). The often-tacit assumption in many analyses is that a verbal argument can only be expressed once in the clause (see Kibrik 2011: Ch. 3 \& 6 for extended discussion). A consequence of this assumption is that bound person forms have been analysed as agreement or 'cross-reference' markers, with the NP instantiating the 'real' argument (e.g. Baker 1996; Evans 2002; Bickel \& Nichols 2007), or as bound pronouns that index the argument with an "adjunct" NP (e.g. Jelinek 1984). A third view proposes that the bound person forms sometimes function as a pronoun and sometimes as an agreement marker depending on the context: if a nominal is present, it is an agreement marker, and if it is absent, the bound person form is a pronoun (e.g. Bresnan \& Mchombo 1987; Van Valin \& LaPolla 1997; Lichtenberk 1997).

The Eurocentric nature of 'agreement' analyses has been pointed out many times (Mithun 2003; Kibrik 2011; Haspelmath 2013). Such analyses are influenced by the sort of 'grammatical agreement' attested in German and English, which is cross-linguistically extremely rare; Siewierska (1999) finds it in just two languages of a 272-language sample (or less than $1 \%$ ). Although not an original critique, recent work challenges the assumptions relating to the uniqueness of the argument expression, pointing out that it is common for languages to distribute the expression of meaning across a clause (Kibrik 2011; Haspelmath 2013). ${ }^{81}$ For example, independent pronouns are frequently assumed to be in complementary distribution with lexical NPs (e.g. English) however, this does not hold cross-linguistically; independent pronouns occur in in clauses with coreferential NPs in some languages (e.g. Hausa and Spanish) (Kibrik 2011).

The current analysis of Sudest adopts Haspelmath's (2013) conceptualisation of argument indexes. He argues that bound person forms (both affixes and clitics) should be treated as a phenomenon sui generis. Following Haspelmath's terminology, bound person markers in Sudest are described as subject and object indexes, and NPs with the same reference and role as the index are referred to as conominals. In this view, both the index and a conominal 'jointly constitute' an argument (Haspelmath 2013: 212). Haspelmath identifies three canonic types of indexes situated on a continuum. The Sudest bound person paradigms can be analysed as near-canonic cross-indexes: they may co-occur with a conominal, but a conominal is not obligatory. First and second person objects are an exception to this; they may only be expressed by either an object index or an

[^48]independent pronoun but not both. Therefore, they more closely resemble pro-indexes (which may not occur with a conominal). ${ }^{82}$

The remainder of $\S 4.2$ is organised in the following manner: the three subject marking paradigms are discussed in turn in §4.2.1, and the object markers and patterns of object expression are described in §4.2.2.

### 4.2.1 Subject indexes

There are three sets of subject indexes: 'basic' or 'unmarked' subject proclitics, immediate past subject proclitics, and intentional subject proclitics. The latter two paradigms combine the basic subject indexes with immediate past and intentional morphemes. Such forms are common among the Oceanic languages of Melanesia, although the semantic distinctions made vary (Lynch et al. 2002).

The subject indexes, along with the verb stem(s) (as previously stated), are the only obligatory elements of the VC. A subject marker is the first element of the VC, except in imperative clauses (although not dehortative clauses). Note that only the basic subject indexes can occur with imperative proclitics.

### 4.2.1.1 Basic subject indexes

The basic subject index paradigm is presented in Table 3.3, and repeated in Table 4.1 below.

|  | 1INCL | 1EXCL | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| SG |  | $(y) a=$ | $u=$ | $i=$ |
| PL | $r a=$ | $w o=$ | $h u=$ | thi $=$ |
| Table 4.1 Basic subject indexes |  |  |  |  |

The basic subject markers specify the person and number of the argument. A subject conominal typically only occurs when (re)introducing, when specifying a subject referent, or for emphasis. A clause with a basic subject marker can have any temporal reference, which can either be specified by context, or overtly marked by a TAM particle (§3.5) or temporal adverbial. Examples (1) and (2) have a present temporal reference at the time of utterance. In (1) time of reference is inferred from context, while in (2) the time of reference is indicated by the temporal noun noroke 'today'.

[^49](1) gha-nda $\quad u=m a \quad i=$ ringe

POSS.CLF1-1INCL.POSS friend=DET 3SG=be.exhausted
'our friend is exhausted'
(c_031116 041, 87.450 89.440)
(2) noroke $\boldsymbol{a}=u t u-n g a \quad$ mbombo na uthuwoghi
today $1 \mathrm{SG}=$ speak-TR pig and dugong
'Today I talk about Pig and Dugong' (pig_and_dugong_101214 004-5, 19.900 29.510)
In (3), the basic subject index $a=$ ' 1 SG ' occurs in a clause with near future temporal reference, indicated by the temporal adverbial mbanga=ke 'time=SPKR.PROX' meaning 'now' and the future particle $n e$. The remote past particle $v a$ in (4) specifies that the action described by the verb took place at least a day prior to the time of reference.
(3) mbanga=ke ne a=vaona lolo riwa-e ghaghadì time=SPKR.PROX FUT 1 SG=count/read person body-3SG.POSS until umbali-ye=ke ndamwa-ndamwa na gheghe like-likeke head-3SG.POSS=SPKR.PROX RED-leaf and leg RED-finger/toe
'today I will list (lit. count) a person's body (parts) from their head hair to their toes' (body_parts_251015 001-5, 1.821 12.905)
(4) $v a \quad y a=g h e$

REM.PST $1 \mathrm{SG}=$ marry
'I married'
(sweeping_011115022, 48.27051 .040 )

### 4.2.1.2 Immediate past subject indexes

The immediate past subject indexes combine the basic subject markers and the immediate past particle $m e$ (§3.3.7.1). The immediate past subject marker paradigm is presented in Table 4.2.

|  | 1INCL | 1EXCL | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| SG |  | $m a=-$ | $m o=$ | $m e=$ |
| PL | mara $=$ | moo $=$ | mou $=$ | meth $\dot{=}=$ |
| Table 4.2 Immediate past subject indexes |  |  |  |  |

As discussed in §3.3.7.1, the immediate past subject indexes have a number of functions. As the name suggests, they can indicate that the event or state referred to occurred in the near past - either the same day or the night prior to the time of utterance/reference point. They are also used when describing past, habitual events. Examples (5) and (6) show the immediate past function of the indexes; the speakers are describing events from earlier that same day and the night before respectively.
$\begin{array}{llllll}\text { (5) } \boldsymbol{m a}=\text { ghena-thuweiru } & i=v u v a & \text { moli } & \text { ma=wa } & e & \text { kamwath } \dot{1} \\ \text { 1SG.IMM.PST=sleep-be.awake } & \text { 3SG=go.first } & \text { INTS } & \text { 1SG=go } & \text { PREP } & \text { path }\end{array}$ I got up, first I went to the toilet (lit. go to the path)'
(cooking_111015 004-5, 19.270 22.733)

| ande ma=ghena=re | gougou |
| :--- | :--- |
| NEG 1SG.IMM.PST=sleep=NEG | night |

(last_night_181214001, 0.780 4.730)
Examples of the habitual use of the immediate past subject indexes are presented in (7) and (8). Example (7) describes traditional courting and dating practices, while the example presented in (8) outlines traditional trade networks of the region and practices surrounding trade.

'during their relationship, it was not hidden, it was public (lit. moved in the light), the young woman's mother and father knew (about) it [...]'
(dating_081015 037-42, 94.070111 .480 )
(8) methi=wa Saisai=ko methi=yo-bigi=ya

3PL.IMM.PST=go place.name=DIST 3PL.IMM.PST=while.going-GET.PL.CNTR=YA

| yambiya | tobotobo | mbombo | veth $\dot{=}=w o$ | umo | Sabali |
| :--- | :--- | :--- | :--- | :--- | :--- |
| sago | greenstone.axehead | pig | 3PL.INT=GET.SG.RIGD | lime | place.name |

une we=nggi
friends $\quad \mathrm{PREP}=3 \mathrm{PL}$
'they went to the Calvados chain, they took sago, greenstone axes (and) pigs to get (caustic) lime from their Sabara friends'
(kula_exchange_101214 021-8,65.130 90.390)

### 4.2.1.3 Intentional subject indexes

In the intentional subject index paradigm presented in Table 4.3, the indexes combine the basic subject indexes with the morpheme $v(V)$-. Unlike the immediate past marker, the intentional morpheme does not occur outside of the subject index paradigm; any full form it may have had is not identifiable in the language today.

|  | 1INCL | 1EXCL | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| SG |  | $v a=$ | $v o=$ | $v e=$ |
| PL | vara $=$ | $v o o=$ | $v o h u=$ | veth $\dot{=}=$ |

Table 4.3 Intentional subject indexes
The intentional subject indexes are used when the event expressed by the verb is anticipated or intended to occur in the near future and in this context is accompanied by the future particle $n e$, as in (9) and (10). Clauses with an intentional marker are generally preceded by a grounding expression - typically a VC with a motion verb or a temporal adjunct
(9)

| "thela | ne | $i=y o$ | na | $\boldsymbol{v} \boldsymbol{v}=$ =wo-njogha | vara |
| :--- | :--- | :--- | :--- | :--- | :--- |
| who | FUT | 3SG=fly | and | 3SG.INT=GET.SG.RIGD-go.back | truly |

la-ma?"
POSS.CLF2-1EXCL.POSS
"who will fly and bring back our relative?"
(bush_betelnut_011115 098, 236.819 239.740)
(10) "ne ya=wa $\boldsymbol{v} \boldsymbol{a}=$ thuwe=nggi"

FUT 1SG=go $\quad 1 \mathrm{SG} . \mathrm{INT}=\mathrm{see}=3 \mathrm{PL}$
"I will go to see them" (mandumbunga_02_181016 061, 171.285 174.846)
The intentional subject indexes do not always occur in clauses expressing intended, future events. In many cases, they are used to describe events with past temporal reference that took place rather than were just intended to occur. The following examples in (11) to (15) show the intentional subject indexes in VCs describing events that have already occurred.

| $m a=w a$ | $e$ | kesin | $v a=b i g i=y a$ | ghaningga |
| :--- | :--- | :--- | :--- | :--- |
| 1SG.IMM.PST=go | PREP | kitchen | 1SG.INT=GET.PL.CNTR=YA | food |
| 'I went to the kitchen to get food' | (cooking_111015 010, 37.590 40.130) |  |  |  |


| $v a$ | $i=w a$ | $\boldsymbol{v e}=g h e$ | Mbumbunari |
| :--- | :--- | :--- | :--- |
| REM.PST | 3SG=go | 3SG.INT=marry | place.name |

'she went to marry in Mbumbunari'
(marriage_111015 004, 13.010 16.340)
In (13), there is no explicit temporal reference, but it can be inferred from the context, given that the speaker is discussing her educational history.

| $a=n j a-$-wo $=k o$ | $v \boldsymbol{a}=$ vutha | Sideia | $v a=$ sikulu |
| :--- | :--- | :--- | :--- |
| 1SG=go.down-thither=DIST | 1SG.INT=arrive | place.name | 1SG.INT=attend.school |
| 'I went down (i.e. west) to arrive at Sideia to go to school' |  |  |  |

(education_241214 008-9, 24.626 35.257)
(14) amba me ve=ruku-ru nunggo mbowo
then IMM.PST 3SG.INT-run-go.in maybe still
$\boldsymbol{v e}=l a-y a w e=v a \quad$ lolo o koghai
3SG.INT=and.go-swing=REP person or I.do.not.know
'then she ran in to maybe swing the baby again (before coming back) or I don't know' (c_031116 043-4, 91.160 95.940)
(15) mbanga regha vethi=gudu mbwa Tamwero e mbwa=ko
time one 3PL.INT=fetch water place.name PREP water=DIST
tine
inside
'one time, they fetch water at Tamwero, at the water'
(mandumbunga_061215 055-7, 158.028163 .985

### 4.2.2 Object Indexes

The object indexes are presented in Table 3.3 in chapter 3 and repeated below in Table 4.4. The third person singular object marker is a zero morpheme.

|  | 1INCL | 1EXCL | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| SG |  | $=n g g o$ | $=n g g e$ | $=\emptyset$ |
| PL | $=n d a$ | $=m e$ | $=m i$ | $=n g g i$ |
| Table 4.4 Object indexes |  |  |  |  |

Table 4.4 Object indexes
As can be observed in Table 4.4, the third person singular object is unmarked on the verb by an index. The zero marker $=\varnothing$ is used in examples throughout the thesis when there is no overt indication of the object argument by a lexical NP. When there is an object NP present, the zero marker is omitted from the VC. The use of the zero marker is to clearly indicate the valence of the verb and its argument structure, and does not presuppose that a zero marker is actually present. ${ }^{83}$

Examples (16) and (17) show the object indexes occurring with a monotransitive and ditransitive verb stem respectively. As noted above, Sudest can be classified as a primary object language (Dryer 1986) and the semantic goal in (17) is expressed by the object index just like the single object of the monotransitive verb in (16).

$$
\begin{array}{cl}
" a h, & a=\text { mararu=ngga } "  \tag{16}\\
\text { yes } & 1 \mathrm{SG}=\text { be. afraid=2PL }
\end{array}
$$

$$
\begin{equation*}
\text { "yes, I'm scared of you" (couples_story_101214 049, } 131.544 \text { 133.980) } \tag{17}
\end{equation*}
$$

```
amalisari i=vaghare=inda la
old.man 3SG=teach=1INCL POSS.CLF2.1INCL
mumuga=ke
custom/tradition=SPKR.PROX
'old man teaches us our customs'
```

The object indexes may fill the third postverbal slot, following the transitive (18) and applicative enclitics (19) (§4.4.1) and the directional enclitics (20) (§4.4.2).
(18) mbaro $i=v a-n d e g h a t h i=g a=n g g i$
law $\quad 3 S G=$ CAUS-stand $=T R=3 P L$
'the law gets them (lit. the law makes them stand)'
(ft_stimuli_191015_01 088, 343.468345 .280

| bubu | va | $i=$ gaith $i=$ wana $=$ nggo | | |
|---|---|---|---|---|
| grandparent/child | REM.PST | 3SG=be.angry=APPL=1SG | | wanji |
| :--- |
| 'my grandmother scolded me for/because of the sweeping' |

[^50]| thi $=$ vanggu-ru $u=w o=n g g i=y a$ | giya-giya | $o$ | bwabwari |
| :--- | :--- | :--- | :--- |
| 3PL=lead-go.in=thither=3PL=YA | RED-big.man | or | guest |

'they welcome (lit. lead in) the big men or guests'
(e_251115_01 037-9, 125.834 130.719)
The object indexes occur in two places outside of the VC. They cliticise onto the ambiposition we 'to, from' (§3.3.6.2), indicating the person and number of the object of the PP (21). The use of the third person plural object index $=n g g i$ also appears to have extended; it can function as a general plural marker in NPs as in (22) (see §3.4.1.4).
(21) i=njogha we=nggi tina-e na rama-e 3SG=go.back PREP=3PL mother-3SG.POSS and father-3SG.POSS 'she returns to her mother and father' (bush_betelnut_011115 137, 323.950 326.120)

| rumbu- $n j i$ | $i=$ ro-mban=a | le-nji |
| :--- | :--- | :--- |
| grandparent/child=3SG.POSS | 3SG=sit.and-GET.PL.RIGD=YA | POSS.CLF2-3SG.POSS |
| kabura $=\boldsymbol{n g g i = m a}$ |  |  |
| sago.share=3PL=DET |  |  |
| 'their grandmother stayed back and got their shares of sago' |  |  |

$$
\text { (snake_passage_061215 018-20, } 43.802 \text { 50.960) }
$$

As mentioned above, primary objects may be expressed in three ways: (a) by an object index; (b) by a nominal object; (c) by an object index and conominal. The sentence presented in (23), as well as examples above in (16) to (19) show the first type of construction, in which the object index is the only expression of the object.

| (23)thi $=$ thalavu $=$ ime | $e$ | gha-ma | kaiwo=ko |
| :--- | :--- | :--- | :--- |
| 3PL=help=1EXCL | PREP | POSS.CLF-1EXCL.POSS | work-DEM |
| 'they help us with our work' | (pigs_251214 030-1, 76.182 78.660) |  |  |

The second way in which the object may be expressed is by a nominal object with no object index, as in (24) and (25).
(24) $a=$ thavwi $=v a \quad$ bigi-bigi 1SG=wash=REP RED-thing
'I wash my things again'
(womens_work_221214 022, 54.264 58.005)

| "nggama=ko ne i=ghan | ghino |  |  |
| :--- | :--- | :--- | :--- |
| child=DIST | FUT | 3SG=eat | 1SG |
| "the child will eat me" |  | (child_and_giant_201015 110, 292.980 294.400) |  |

The example in (25) is the only corpus token with an independent pronoun as a lexical object. In elicitation, some speakers found clauses with independent pronoun objects (such as the one in (26)) ungrammatical, while others found them grammatical, but still preferred object indexes over independent pronouns.
?ela=ko me=vaito ghino
woman=DIST 3SG.IMM.PST=ask 1SG
intended: 'the woman questions me' (e_041116; e_211116_02)

The third way in which the object may be expressed is by an object index and conominal, as in (27) and (28). Double expression of the object is only grammatical for third person plural arguments; first and second person arguments can only be expressed by either an object index or a lexical object.

$$
\begin{array}{lll}
i=\text { warari=nga=nggi } & l e & \text { nggama-nggama }  \tag{27}\\
\text { 3SG=be.happy=TR=3PL } & \text { POSS.CLF2.1SG } & \text { RED-child }
\end{array}
$$

'he is happy for his children' (ft_stimuli_201015_01 250, 940.370 942.496)
(28)

| ne $\quad$ th $\dot{i}=m b a n=n g g i=y a$ | thegha |
| :--- | :--- | :--- |
| FUT | 3PL=GET.PL.RIGD=3PL=YA |
| 'they will get the youths' | (funeral_feasting_081015 020, 55.576 57.820) |

Given that third person singular objects are unmarked on the verb, the only overt expression of third person singular objects is by way of a lexical object as in (29).

$$
\begin{array}{lll}
i=\text { vakatha } & \text { uma } & \text { togha }  \tag{29}\\
3 \text { SG=make } & \text { garden } & \text { new }
\end{array}
$$

'he makes a new garden'
(garden_planning_021015 002, 4.110 9.473)

See also the classificatory verbs in §5.3.

### 4.3 Preverbal elements

There are 11 possible preverbal slots in the VC. The preverbal elements are listed in Figure 4.1 along with the postverbal elements and repeated below in Figure 4.2. This section of the chapter presents each of the preverbal elements in turn, excluding the subject indexes already discussed in $\S 4.2 .1$ and the manner-of-causation prefixes which are analysed in more detail in $\S 5.2$ in the next chapter.


Figure 4.2 Preverbal slots of the verb complex
As was mentioned in the introduction of the chapter, the current description adopts the nomenclature used in A\&R where appropriate. I also explicitly note instances where the current data suggest an analysis substantially different from previous descriptions.

### 4.3.1 Imperatives

The first slot of the VC, preceding the subject marker, may be filled by one of the three imperatives: the imperative $k o=$, admonitive $n o=$ and hortative $w o=$. The imperatives only occur with the basic subject indexes. For other directives, see also $\S 4.3 .2$ for discussion of the preverbal dehortative affix $n d e=$ and $\S 3.7 .2$ for the prohibitive particles tha and thava.

### 4.3.1.1 ko= imperative

The imperative $k o=$ is used to give direct commands to a second person (Bybee et al. 1994: 179), and thus takes only second person subjects:

| $\boldsymbol{k} \boldsymbol{o}=u=$ tamwe =ya | ghamba-nji | $g h e=n a!$ |
| :--- | :--- | :--- |
| IMP-2SG=look.for=YA | place-3PL.POSS | LOC=ADDR.PROX |
| 'look for their place there (near addressee)!' |  |  |

(ft_stimuli_191015_03 164, 435.962 437.820)

| iy $a=n a$ | $\boldsymbol{k o}=u=u t u$ | $l e=k o$ | $l e-\varnothing$ |
| :---: | :---: | :---: | :---: |
| DEM=ADDR.PROX | $\mathrm{IMP}=2 \mathrm{SG}=$ speak | person=DIST | POSS.CLF2=3SG.POSS |
| utu-utu maa | $i=$ tharit |  |  |
| RED-story NEG | 3SG=be.bad |  |  |
| 'that's it, say (to her) | ), the person's story | n't bad!' | (c_031116 024, 54.820 |
| 58.190) |  |  |  |

The imperative is typically used when commanding children, but can also be used between adults with a close relationship. This is the case in the two examples above, which are conversations between two close friends of the same age and a husband and wife respectively. The examples below come from elicitation, although such commands can frequently be heard around the village.
(32) $\boldsymbol{k o}=u=$ mena $\quad g h e=k e$ !

IMP=2SG=come LOC=SPKR.PROX
'come here!'
(33) $\boldsymbol{k o}=h u=r a k a-w a!$

IMP=2PL=all-go
'all of you go away!'
There are limited tokens of the imperative in the corpus. This can partially be attributed to the text types and speaker demographics ${ }^{85}$ in in the corpus as, well as the fact that the hortative $w o=$ is used

[^51]far more frequently when issuing directives, particularly between adults (§4.3.1.3). An imperative can also be expressed by a VC with no imperative proclitic, in (34) and (35).

| wadawada=ma | $v a$ | $i=$ dage | $w e=y a$ | gh-e |
| :--- | :--- | :--- | :--- | :--- |
| witch=DET |  | REM.PST | 3SG=speak | PREP=YA | POSS.CLF1-3SG.POSS

'the witch said to her friend the woman without magic, she said "you climb!""
(bush_betelnut_011115 018, 42.923 47.301)

$$
\begin{array}{llll}
i=n g a & \text { "hu=njogha=wo } & \text { vohu }=\text { vanggu }=m a=\varnothing & r a=\text { thuwe }=\varnothing "  \tag{35}\\
\text { 3SG=say } & \text { 2SG=go.back-thither } & \text { 2PL.INT=lead=hither=3SG } & \text { 1INCL=see=3SG }
\end{array}
$$

'she said "go back thither to bring (lit. lead) him hither (and) we (can) see him""
(mandumbunga_02_181016 273, 686.632 691.112)

### 4.3.1.2 no= admonitive

The admonitive indicates that the speaker is issuing a warning (Bybee et al. 1994: 179). ${ }^{86}$ Like with the imperative, the admonitive proclitic only occurs with second person subjects. VCs with the admonitive typically warn the addressee from performing an action with an undesirable consequence:

| thonggo | ande | ghamna-n | i=wara-warari=re | maa |
| :--- | :--- | :--- | :--- | :--- |
| if | NEG | feeling-2SG.POSS | 3SG=RED-be.happy=NEG2 | NEG |
| no=u=nggau | morouma | $e$ | njighi |  |
| ADM=2SG=spear | k.o.fish | PREP | sea |  |

'if you aren't feeling happy, don't (try to) spear morouma fish in the sea (because you won't catch any)' (mandumbunga_061215 168-9, 476.633
481.187)

$$
\begin{array}{ll}
\boldsymbol{n o}=u=k i-\text { ten }(- \text { thavwi })=y a & \text { nima-n! } \\
\text { ADM=2SG=by.cutting-break(-by.mistake)=YA } & \text { hand-2SG.POSS } \\
\text { 'don't cut your hand (by mistake)!' } & \tag{e_091215}
\end{array}
$$

(38) $u=l a w e=y a \quad m a r u n ~ n o=u=d o b u$ ! $2 \mathrm{SG}=$ catch $=$ YA banister $\mathrm{ADM}=2 \mathrm{SG}=$ fall
'hold the banister, don't fall!
The admonitive, like the imperative, is typically directed at children. Possibly for this reason there is only the single token of it in the corpus, given in (36). See also the dehortative $n d e=(\$ 4.3 .2)$ and prohibitive particle tha(va) 'don’t' (\$3.7.2) for further negative directives.

[^52]
### 4.3.1.3 wo= hortative

The hortative $w o=$ is used by the speaker to encourage or incite someone to action (Bybee et al. 1994: 179). Unlike the imperative and admonitive morphemes, the hortative is not restricted to second person subjects (39) but can be self-directed (40) or directed at a group including the speaker (41) as well. They also occur in VCs directed at third person subjects, as in (42) and (43).

| $l e=\emptyset$ | $g h a i$ | $l e=k o$ | $i=n g a$ |
| :--- | :--- | :--- | :--- |
| POSS.CLF2=3SG.POSS | maternal.uncle | person=DIST | 3 3SG=day |

" $\boldsymbol{w o}=u=$ thuwe-wogiyawe $=\varnothing$ "
HORT-2SG=see-be.good=3SG
'his maternal uncle said "look at it carefully""
(mandumbunga_02_181016 039, 114.877117 .755
(40) $\boldsymbol{w} \boldsymbol{o}=a=w a \quad e \quad$ kamwath $\dot{ }$

HORT $=1 \mathrm{SG}=$ go PREP path
'I'm going to the toilet (lit. I go to the path)' (c_031116 109, 210.434 211.940)
(41)

| ok wo=ra=utu-vao | vara |
| :--- | :--- |
| ok HORT=1INCL-speak-COMPL | truly |
| 'ok, let's finish talking' |  |

(c_031116 276, 510.950 512.880)
(42)

$$
\begin{array}{ll}
\boldsymbol{w o}=i=r u=v a & g h e=k e \\
\text { HORT=3SG-go.in=REP } & \text { LOC=SPKR.PROX } \\
\text { 'it goes in here' } & \text { (ft_stimuli_191015_03 264, 649.700 651.040) }
\end{array}
$$

(43) $i=n g a$ "thenjighe-wo $\boldsymbol{w o}=t h \dot{i}=n j o g h a \quad$ thi=ro-thuwe $=\varnothing$ "

3SG=say NUM.CLF-two HORT=3PL=go.back $3 \mathrm{PL}=$ sit.and-see=3SG
'he said "(let) two boys go back and check on her'
(chicken_story_181015 036, 82.093 84.440)
Anderson and Ross (p. 336) classify wo $=$ as a necessity modality meaning 'must', however, the corpus and elicitation data better fit a hortative analysis. Bybee et al (1994: 177) classify necessity modals as indicating the existence of 'physical conditions compelling an agent to complete the predicate action, as in [...] "I need to hear a good loud alarm in the morning to wake up"" (emphasis in original). Such necessity is not evident in typical tokens in the corpus with the proclitic; speakers even report that the hortative is less forceful than the imperative proclitic (§4.3.1.1). Consider the sentence presented in (44), where the hortative follows the request tab vaikaiwae 'is it possible'.

$$
\begin{array}{lcll}
t h \dot{i}=n g a & \text { "tab } & \text { valikaiwa-e } & \text { wo=u=nja=ma?" }  \tag{44}\\
\text { 3PL=say } & \mathrm{Q} & \text { be.possible-3SG.POSS } & \text { HORT=2SG-go.down=hither }
\end{array}
$$

'they said "is it possible (for) you to come down?",
(mandumbunga_02_181016 208, 525.677 528.663)

### 4.3.2 $n d e=$ dehortative

The proclitic $n d e=$ may fill the third preverbal slot of the VC , immediately following the subject index. The proclitic has two related functions. The first is as a dehortative (45) - for which the morpheme is also named - and the second is as an additional, emphatic negative marker (46), in conjunction with one of the regular negative markers (§3.7.3.1.1). The dehortative function will be considered first before describing the emphatic negation function.

```
\(i=n g a \quad\) "ne \(\quad h u=\boldsymbol{n d e}=y e g h e=\varnothing\)
3 SG=say FUT 2 PL=DEHORT=cut=3SG
```

'you shouldn't cut it' (mandumbunga_061215 084-85, 237.651 239.170)

| ande | mbe | $i=n d e=$ renguwang $=$ =re | mun | gha= $\varnothing$ |
| :---: | :---: | :---: | :---: | :---: |
| NEG1 | still | 3SG=DEHORT=think.about=NEG2 | a.bit | POSS.CLF1=3SG.POSS |
| $\begin{array}{ll} \text { thari=ko } & \text { thovuye }=k o \\ \text { bad=DIST } & \text { good=DIST } \end{array}$ |  |  |  |  |
| 'he still didn't think of his badness/mistakes or his goodness/success at all' |  |  |  |  |

(ft_stimuli_201015_01 226, 846.999 850.500)
In its dehortative function, the proclitic is used to urge the hearer to not do something (often translated as 'should not’) and is less forceful than VCs with the admonitive proclitic (\$4.3.1.2) or prohibition particles (§3.7.2). It is homophonous with the sixth ranked prefix nde- 'stand and' (\$4.3.5.3). The two preverbal elements likely have a shared origin but today fill separate slots in the VC. ${ }^{87}$ In its dehortative function, the proclitic obligatorily occurs with the future particle $n e$. If no future particle is present, $n d e=$ is interpreted as the positional prefix nde- 'stand and'. Compare the two sentences presented below:

```
(47)a. ne \(u=n d e=\) dage
 FUT 2 SG=DEHORT=speak
 'you shouldn't speak'
b. u=nde-dage
\(2 \mathrm{SG}=\) stand.and-speak
'stand and speak'
```

The dehortative does not hold scope over all elements in the VC. In VCs with both the dehortative and the subsequent associated motion prefix la- 'and go' (§4.3.4.1), the dehortative only urges the agent against undertaking the proposition of the verb stem but not against the action denoted by $l a$-. In (48), the speaker is only urging the addressee against getting the speaker's chewing basket, but not against the addressee leaving. The speaker in (49) is likewise urging the hearers not to eat the shellfish before they leave.

[^53]| ne $\quad u=$ nde $=$ la-thin | lo | vethe |
| :--- | :--- | :--- |
| FUT $\quad$ 2SG=DEHORT=and.go-GET.SG.CNTR | POSS.CLF2.1SG | k.o.basket |
| gha-ghawi=na |  |  |
| RED-chew=ADDR.PROX |  |  |
| 'don't get my chewing basket (before) going/leaving', | (e_171116_03) |  |


| ne $\quad h u=$ nde $=$ la-ghan =a | soka=na |
| :--- | :--- |
| FUT $\quad 2 \mathrm{PL}=\mathrm{DEHORT}=$ and.go-eat=YA | k.o.mollusc=ADDR.PROX |
| 'don't eat the shellfish (before) going/leaving' | (e_141116_01) |

The second function of the dehortative is in negative statements. In this construction, the dehortative clitic obligatorily co-occurs with the negative polarity particle mun 'a bit' which occurs in a postverbal slot and adds the sense 'not a bit', 'not at all' or 'never' to already negated VCs (§4.4.6). Example (50) as well as (46) above show a VC with the discontinuous negative marker ande...re, while (51) shows the negative marker maa with the dehortative and negative polarity particle.

| ande | $i=\boldsymbol{n d} \boldsymbol{e}=$ thin-njogha= $\varnothing=$ re | mun | $w e=\varnothing$ |
| :--- | :--- | :--- | :--- |
| NEG1 | 3SG=DEHORT=GET.SG.CNTR-go.back=3SG=NEG2 | a.bit | PREP=3SG |

'he never returned it (the spear) to him (his cousin)'
(eagle_story_081115 046, 127.630 131.900)
(51) $i=n g a \quad$ "тaa $i=\mathbf{n d e}=$ go-ghembe=nggo mип"
$3 \mathrm{SG}=$ say $\mathrm{NEG} \quad 3 \mathrm{SG}=\mathrm{DEHORT}=$ by.speaking-go.towards=1SG a.bit
'she said "he didn't speak to me a bit/at all",
(mandumbunga_02_181016 423, 1074.122 1076.918)

There is one token in the corpus in which the order of the dehortative proclitic and the subsequent associated motion prefix is reversed. Compare the ordering of the dehortative and subsequent motion morphemes in (52) with the examples presented above in (48) and (49).

```
maa \(i=l a-n d e=u t u-\) thai=ngge- mun \(=r e\)
 NEG 3SG=and.go-DEHORT=speak-be.close=2SG-a.bit=NEG2
'he doesn't talk and be close to you a bit'
```

(mandumbunga_02_181016 392, 986.071 988.673)

The reason for the reversed ordering is unclear. It is possible that there is some dialect or idiolectal variation at play. ${ }^{88}$ It could also be the case that the emphatic negative function is not a function of the dehortative but rather the positional prefix. Further data would be necessary to further explore and pinpoint the cause for such variation.

[^54]Anderson and Ross (p. 337) note the dehortative function of the proclitic, labelling it as 'shouldn't'. They do not specify the obligatory use of the future in conjunction with the dehortative function and there is not mention of the emphatic negative function with the negative polarity morpheme mип 'a bit'.

### 4.3.3 Universal quantifiers ya- and raka- 'all'

The two morphemes ya- and raka- are universal quantifiers meaning 'all'. They occur with plural subject referents and specify that all potential members of a group are agents of the event or action of the verb. The current data and analysis align with that set out in A\&R. The prefix raka- 'all' comes from the intransitive motion verb raka 'go (PL)', which can likewise only occur with plural subjects. ${ }^{89}$
(53) menda wo=ya-ghena varae=ke kaiwa-e yesterday 1EXCL=all-sleep sun=SPKR.PROX reason-3SG.POSS 'yesterday we all slept because of the (hot) sun' (stone_cooking_251015 007, 19.730 24.120)
(54) $v a \quad t h \dot{i}=\boldsymbol{y} a-r i-n g g a u=\varnothing$

REM.PST 3PL=all-w.teeth-spear=3SG
'they all speared him with their teeth'
(feast_of_the_fish_271015 152, 393.270394 .560 )
(55) bwarogi=ma kero methi=raka-ru e le-nji
fish=DET already 3PL=all-go.in PREP POSS.CLF2-3PL.POSS
doda=ma
hole-DET
'all the fish had already gone into their holes'
(mandumbunga_061215 065-6, 180.890 185.645)
(56) gha- $\emptyset \quad$ une thi=raka-iteten $=\varnothing$ mbe

POSS.CLF1-3SG.POSS friends 3PL=all-leave=3SG still
$i=r o-g h e n a-g h e n a \quad g h e=k o$
3SG=sit.and-RED-sleep LOC=DIST
'all his friends all left him still staying and sleeping there'
(child_and_giant_201015 019-20, 54.12057.032)
The prefixes appear to be in complementary distribution and each occur with different sets of verb stems. The verb stems they are attested to occur with are listed in Table 4.5. The main observable tendency from the available sample is that raka-nearly exclusively occurs with motion verbs while

[^55]$y a$ - occurs with a broader range of event types. The verb raka 'go (PL)' occurs with ya-presumably to avoid ambiguity.

| raka- |  | $\boldsymbol{y a}$ - |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| verb | gloss | valence | verb | gloss | valence |
| njogha | 'go back' | INTR | ghena | 'sleep' | INTR |
| ranggi | 'go out' | INTR | longga | 'walk' | INTR |
| ru | 'go in' | INTR | raka | 'go (PL)' | INTR |
| thuweiru | 'wake up/get up' | INTR | thavi | 'beat (sago)' | INTR |
| voro | 'go up' | INTR | vo | 'flee' | INTR |
| vutha | 'arrive' | INTR | wareri | 'leave' | INTR |
| wa | 'go' | INTR | yaku | 'stay' | INTR |
| iteten | 'leave' | TR | ghan | 'eat' | TR |
| mbele | 'follow', | TR | mun | 'drink' | TR |
|  |  |  | nggau | 'spear' | TR |

Table 4.5 Verb stems attested with the universal quantifiers
The prefix ya- 'all' occurs preceding both the positional prefixes, as in (57), and the manner-ofcausation prefixes (see (54) above).

$$
\begin{align*}
& \text { thi=ya-ro-kururu }  \tag{57}\\
& \text { 3PL=all-sit.and-bend.down(head) } \\
& \text { 'they all sit with bent heads/pray' } \tag{e_040318}
\end{align*}
$$

On the other hand, raka- is not attested with any other preverbal elements. It is possible that it does not fill the same preverbal slot as the other universal quantifier and may even be a $\mathrm{V}_{1}$ stem in a multi-verb construction. They are grouped together due to their identical function as universal quantifiers and their complementary distribution in terms of the verbs they occur with. ${ }^{90}$

### 4.3.4 Associated motion prefixes

The fifth and sixth slots in the VC may be filled by associated motion prefixes. The category of associated motion was first identified by Koch (1984) in Kaytej/Kaytetye (Parma-Nyungan, Australia). In recent years, there has been a growing body of research produced describing associated motion morphemes not just in Australian languages but also in languages in the Americas, particularly in Amazonia as well as in Africa and parts of Asia (see Guillaume 2016; Guillaume \& Koch 2017). Associated motion morphemes introduce a motion sub-event to the VC they occur in, in addition to the event or activity denoted by the verb stem(s). The morphemes typically also specify whether the motion sub-event occurs prior to (go and V ), concurrently ( V

[^56]while going) or subsequent to (V and go) the event of the verb (Koch 1984; Wilkins 1991; Guillaume 2016).

Associated motion morphemes commonly grammaticalise from motion verbs in multi-verb constructions ${ }^{91}$ cross-linguistically (Guillaume \& Koch 2017). Multi-verb constructions, often labelled as 'sequential' constructions, are common in the Oceanic languages (Lynch et al. 2002: 47). The $V_{1}$ slot in these sequential constructions is typically restricted to verbs of motion with an unrestricted $\mathrm{V}_{2}$; such constructions effectively mirror functions of associated motion morphemes attested in other languages, with the $\mathrm{V}_{1}$ expressing a motion event that temporally precedes the event of the $\mathrm{V}_{2}$ (Cleary-Kemp 2015: 134). A possible candidate for a grammaticalised prior associated motion affix in an Oceanic language come from Vatlongos (previously Southeast Ambrym, Central Vanuatu linkage, Vanuatu). Crowley (2002) describes a prefix ha- 'motion' that precedes the subject prefix in the VP and indicates 'that an action takes place as a result of going somewhere in order to perform it' (p. 666). The Vatlongos prefix is the only attested potential grammaticalised associated motion marker in an Oceanic language that I am aware of (cf. D. Ross 2017).

In Sudest, three motion verbs have further developed into associated motion prefixes. The subsequent associated motion prefix la- (§4.3.4.1) occurs in the fifth slot of the VC and the prior ruku-(§4.3.4.1) and concurrent associated motion yo- (§4.3.5.1) fill the sixth slot.

The earlier description of the language by $\mathrm{A} \& \mathrm{R}$ identifies subsequent and concurrent associated motion prefixes as preverbal morphemes in the VC , but does not mention the prior associated motion prefix. Their analysis also differs somewhat from the one presented here: they suggest that the subsequent motion prefix indicates 'movement or the intention to move' (p. 337), but they only describe the adverbial function of the concurrent motion prefix.

### 4.3.4.1 $1 a$ - 'and go'

The single prefix $l a$ - '(V) and go' fills the fifth slot of the VC. It adds a subsequent motion subevent to the VC and specifies movement away from the location where the event or action denoted by the verb stem takes place. The prefix likely is derived from the Proto-Papuan Tip verb *laqo 'to walk' (Schlossberg 2012: 119). Assuming this is the origin of the prefix, it is unusual that the resulting construction has come to mean '(V) and go' rather than a purposive 'go and (V)' which is a type of serial verb construction in many Oceanic language. ${ }^{92}$ It is possible that $l a$ - developed subsequent

[^57]motion semantics rather than a subsequent motion/purposive meaning because the prefix ruku- 'and go’ (§4.3.4.2) already served this function (as do the intentional subject indexes to a certain degree). Alternatively, la- may have originally had a subsequent/purposive meaning but ruku-came into competition with it and it then developed subsequent semantics. Consider the examples presented in (58) and (59); the motion component added by the prefix is particularly clear as the verbs stems they occur with do not have a motion component. ${ }^{93}$
(58) $i=l a-$ vuri-linggi-thavwi $=\varnothing$

3SG=and.go-w.feet-pour-by.mistake=3SG
'she accidentally kicked it (a bucket) over and kept walking'
(put_stimuli_231015 053, 408.314 409.712)
(59) tina-e na rama-e mbe me gougou ma
mother3SG.POSS and father-3SG.POSS still IMM.PST night already
thi $=$ la-dage $\quad w e=\varnothing$
3PL=and.go-speak $\quad$ PREP $=3$ SG
'her mother and father, when it was still night/dark, spoke to her before leaving'
(crab_girl_081115 007-8, 21.120 25.150)

Some tokens with la- 'and go' are followed by a second VC that specifies the subsequent motion indicated by $l a$-, as in the following three examples presented in (60) to (62):
(60)

| mbanga | $v a$ | $i=$ ghiviya | th $\dot{\boldsymbol{i}=\text { la-vakatha }=v a}$ | ghaningga |
| :--- | :--- | :--- | :--- | :--- |
| time | REM.PST | 3SG=be.morning | 3PL=and.go-make=REP | food |

thí=ya-wareri
3PL=all-leave
'when it was early morning, they prepared the food (and/before) they all left'
(mandumbunga_02_181016-7 539, 1352.295 1357.693)

| $a=$ la-thavwi=ya | amba | muyai | $a=w a$ | $e$ | uma | tine |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG=and.go-wash=YA | then | later | 1SG=go | PREP | garden | inside |

'I wash the clothes then later I go to the garden'
(womens_work_221214 024-6, 60.035 68.348)

The subsequent associated motion prefix is not in complementary distribution with at least the concurrent associated motion prefix yo- 'while going' (§4.3.5.1) and the two associated motion prefixes may co-occur as shown in (62):
$\begin{array}{ll}\text { thíl}=\boldsymbol{l a} \text {-yo-vaviri } & i=n j a=m a=k o \\ \text { 3PL=and.go-while.going-laugh } & 3 S G=\text { go.down=hither=DIST } \\ \text { 'they laughed while walking (before) they went down there (to the water hole)' }\end{array}$ (mandumbunga_02_181016 159, 391.316 394.500)

[^58]
### 4.3.4.2 ruku- 'go and'

The associated motion prefix ruku- 'go and (V)' indicates prior motion to the activity or event denoted by the verb stem, often with an implied purposive interpretation 'go (to) X'. Examples (63) to (66) illustrate the use of the prefix.

```
wo=i=ruku-rori iya=na
IMP=3SG=go.and-write DEM=ADDR.PROX
```

'she goes to write that' (c_031116 241, 437.721 439.161)

| $" w o=v a r a=r u k u-t h u w e=n g g i$ | $l e-n$ | boda-boda" |
| :--- | :--- | :--- |
| HORT=1INCL.INT=go.and-see=3PL | POSS.CLF2-2SG.POSS | RED-relative |

'we go/are going to see your relatives’ (marriage_111015 070, 212.180 216.154)

| umoru=ma | $i=\boldsymbol{r u k u}$-taga-bebe =ya | umbwa=ma |
| :--- | :--- | :--- |
| man=DET | 3 SG=go.and-by.striking-break=YA | tree/stick=DET |

'the man goes to break the stick'
(e_230218)
(66) nggora utowo va i=ruku-wo kin
like stingray REM.PST 3SG-go.and-GET.SG.RIGD spear
'like Stingray, he went to get the spear'
(feast_of_the_fish_271015 149, 378.040 381.170)

The prior motion prefix ruku- 'go and' is derived from the intransitive manner-of-motion verb ruku 'run'. The prefix does not retain the manner-of-motion semantics of the verb stem and fills a preverbal slot preceding the positional prefixes, as demonstrated by the example presented in (67). ${ }^{94}$

$$
\begin{array}{ll}
u=r u k u-r e-y a k u & \text { ghe=ko } \\
2 \text { SG=go.and-sit.and-stay } & \text { LOC=DIST } \tag{e_161116_01}
\end{array}
$$

'you go and stay there (for a while)'

The associated motion prefix does not always signal physical motion. The example in (68) involves metaphorical motion of a sickness towards a child if their mother does not follow a specific postpartum diet.
(68) gido nasiye i=ruku-vutha ghambwera kero i=gan
sickness small 3SG=run-arrive sickness already 3SG=exist
'a small illness is going to arrive (or) the sickness already exists'
(new_mother_251214 099, 238.660 242.510)

[^59]
### 4.3.5 Posture and motion prefixes

The posture and motion prefixes fill the seventh slot in the VC. Posture verbs cross-linguistically specifically 'sit', 'stand', 'lie', or some combination of the three - tend to take on existential and/or locational functions and, in some cases, then develop grammaticalised aspectual meanings (Kuteva 1999; 2001; Heine \& Kuteva 2002; Lichtenberk 2002).

In the case of Sudest, the postural prefixes ro- 'sit and, stay and' (§4.3.5.2) and nde- 'stand and' (§4.3.5.3) have not developed aspectual semantics, but have grammaticalised into prefixes. The prefix ro- also has a second, locational sense in addition to its posture sense. The analysis of the posture prefixes agrees with description presented previously by A\&R. ${ }^{95}$ The motion prefix di- 'fall and' (§4.3.5.4) introduces a causational falling event to the verb it occurs with. This analysis contrasts with A\&R's description, in which it is given the gloss 'move and' with associated motion semantics.

### 4.3.5.1 yo- 'while going'

The associated motion prefix yo- '(V) while going' expresses a motion subevent that occurs concurrently with the event encoded by the verb stem. The prefix fills the sixth slot of the VC and directly follows the subsequent associated motion prefix $l a$ - when present (see example (62) above and discussion in §4.3.4.1). Like the other associated motion prefixes, yo- 'while going' is derived from a motion verb, in this case the verb yo 'fly'. Examples of the prefix occurring with non-motion event verbs are presented in (69) to (72).

$$
\begin{array}{ll}
" h u=\boldsymbol{y o}-u t u-u t u & h u=n j a=w o=n a "  \tag{69}\\
\text { 2PL=while.going-RED-speak } & \text { 2PL=go.down=thither=ADDR.PROX }
\end{array}
$$

"talk while you walk (when) you go down there"
(mandumbunga_061215 059, 167.540 170.640)
(70) uтоги=ma $i=y o-v u r \dot{\text {-vewo }} \quad$ bal=ma
young.man=DET 3 SG=while.going-w.feet-push ball=DET
'the man kicked the ball with his feed while moving/dribbling'
(e_040318)
The combination of the prefix with a classificatory verb (§4.3) produces a VC meaning 'carry, take (to somewhere/someone) lit. 'get/hold while going'):

$$
\begin{array}{lllll}
\begin{array}{l}
\text { amba=ma } \\
\text { then=DET }
\end{array} \quad \begin{array}{l}
i=\boldsymbol{y o} \text {-tako=nggi } \\
\text { 3PL=while.going-GET.PL.GNRL=3PL }
\end{array} & e & m b w a=k o & \text { tine }  \tag{71}\\
\text { PREP } & \text { water=DIST } & \text { inside }
\end{array}
$$

[^60]| $i=\boldsymbol{y o}$-thin $=\varnothing$ | $n a$ | ve=ngamwe $=\varnothing$ |
| :--- | :--- | :--- |
| 3SG=while.going-GET=3SG | and | 3SG.INT=feed=3SG |

'she takes it (sago pudding) and feeds her (the snake)'
(snake_passage_061215 048-9, 113.762 118.866)

When the morpheme yo occurs with a verb with motion semantics, it has an adverbial reading of 'quickly', as in (73) to (75). From the current data, it is unclear whether these examples are instances of metaphorical usage of the verb yo 'fly' or of the prefix. ${ }^{96}$

$$
\begin{array}{ll}
\text { nggama=ma } & i=y o-r u k u  \tag{73}\\
\text { child=DET } & 3 \text { SG=fly/while.going-run } \\
\text { 'the child runs quickly' }
\end{array}
$$

(e_221116_01)

| nima-n | tha | $i=$ vuyowo | $u=$ yo-ruku! |
| :--- | :--- | :--- | :--- |
| hand-2SG.POSS | PROH | $3 S G=$ be.heavy | $2 S G=$ fly/while.going-run |

'don't have a heavy hand, be quick! (lit. run quickly)'
(ft_stimuli_201015_02 090-1, 303.540 308.608)

$$
\begin{array}{ll}
v a & \text { thi }=\text { yo-vanggu }=\varnothing  \tag{75}\\
\text { REM.PST } \quad 3 \text { PL=fly/while.going-lead=3SG } \\
\text { 'where did they quickly lead him?' }
\end{array}
$$

$$
\text { angga }=n i y e=k e
$$

where=DET=SPKR.PROX
(ft_stimuli_201215_04 028, 76.323 80.340)

### 4.3.5.2 ro- 'sit and, stay and'

The prefix ro-has two functions: to indicate the posture of the subject as sitting 'sit and', as in (76) and (77), and to specify that the subject stays back or remains somewhere while undertaking the action denoted by the verb, as in (78) and (79). The 'stay and' sense carries an implication that the subject remains somewhere while others leave; this is often explicitly stated, as in (78). Note that the prefix has an allomorph $r e$ - that only occurs with the verb yaku 'stay, live, sit' (79).

```
 amala=ma ma i=ro-kururu
 man=DET already 3SG=sit.and-bend.head.down
 'the man sat bent over'
 (couples_story_101214 038,107.866
 110.530)
 i=ro-itete tebol=ma
 3SG=sit.and-leave table=DET
```

(77)
'she pushed out from the table while seated (on a chair) (lit. sitting she left the table)'
(cb_stimuli_051016_03 119, 440.245 442.740)

[^61](78)

```
thi=raka-iteten=\varnothing mbe i=ro-ghena-ghena ghe=ko
3PL=all=leave=3SG still 3SG=sit.and-RED-sleep LOC=DIST
```

'they all left him, (and) he still stayed sleeping'
(child_and_giant_201015 020, 55.180 57.032)

| thí=nga | $" u=\boldsymbol{r e}$-yaku | wei-n"" | $l o u=k e$ |
| :--- | :--- | :--- | :--- |
| 3PL=say | 2SG=sit.and-stay | PREP-2SG.POSS | sibling.opp.sex=SPKR.PROX |

'they said "you stay/remain with your brother'
(crab_girl_081115 009-10, 25.150 28.470)

The prefix is derived from a verb ro 'sit, stay'. The verb today has been replaced by yaku 'stay, live, sit', and is only retained in the idiomatic expression ro e ghembe 'stay in the village' which means 'be menstruating':

| $i=$ ro | $e$ | ghemba |
| :--- | :--- | :--- |
| 3SG=sit/stay | PREP | village |

'she is menstruating (lit. she sits/stays in the village)'
(menstruation_081015 003, 12.365 17.740)

The interpretation of the prefix as 'sit and' or 'stay and' is not always predictable and can be context-dependent. The directional verbs are an exception to this, as the prefix always specifies the posture of the subject as 'sitting'. In VCs headed by a directional verb with ro-, the directional verb loses its motion sense/component. In these cases, the verb (only) indicates the directional orientation of the subject in relation to other entities in the surrounding environment. Such VCs describe the static state rather than a dynamic sitting event. Thus, in (81), ro-nja 'sit and-go down' describes an event in which the subject is already sitting down.

| wevo | regha | $i=r o-n j a$ | $i=r i$-thinge |
| :---: | :---: | :---: | :---: |
| young.woman | one | 3SG=sit.and=go.down | 3SG=w.teeth-get(w.teeth) |
| gha-ø |  | ndeghí |  |
| 1POSS.CLF-3S | G.POSS | cup |  |
| 'a girl is sittin | down | nd) gets a cup with h | teeth' |

$$
\text { (put_stimuli_191015_01_02 189-91, } 734.469740 .5620
$$

The VCs with directional verbs and ro- in (82) to (84) likewise describe static states. In (82), vuvu 'go first' specifies that the subject is located in front of his wife while seated in a canoe; in (83), mbele 'follow, go after' describes the reverse situation, in which the subjects are seated after or behind someone.

| $l e=k o$ | $I l a g h i=k o$ | $v a$ | $i=r o-v u v a$ |
| :--- | :--- | :--- | :--- |
| person=DIST | pers.name=DIST | REM.PST | 3SG=sit.and-go.first |

'the person Ilaghi was seated in front (of his wife in a canoe)
(mandumbunga_02_181016 407, 1031.755 1033.908)
(83)

| yeghiyegh $\dot{=}=n a$ | kero mbe thi=ro-mbele-mbele vara |  |
| :--- | :--- | :--- | :--- | :--- |
| late.afternoon=ADDR.PROX | already still | 3PL-sit.and-RED-follow truly |
| elisari=ko |  |  |
| old.woman=DIST |  |  |
| 'in the late afternoon they were still seated following the old woman (i.e. with the old |  |  |
| woman in front)' |  |  |
| (mandumbunga_02_181016 307-8, 769.744775.945) |  |  |

Unlike the subjects in the previous examples, the subject in (84) is inanimate. The speaker is discussing how to order a series of pictures, and decides that some of them should 'sit back' in their current position while rearranging the rest.

```
iya=ko thi=ro-njogha
DEM=DIST 3PL=sit.and-go.back
'those (pictures) sit/remain back'
```

(ft_stimuli_191015_05 018, 35.16036 .584 )

In some cases, the combination of verb and prefix produces relatively unpredictable, idiomatic VCs. The prefix combines with ten 'break' to derive a verb meaning 'block (while seated)' (85), and sike 'hop' combines with the prefix to mean 'kneel' (86).

$$
\begin{array}{llllll}
i=w a & m a & v e=r o-t e n=n g g i & v a r a & e & \text { ranggi=ko }  \tag{85}\\
\text { 3SG=go } & \text { already } & \text { 3SG.INT=sit.and-break=3PL } & \text { truly } & \text { PREP } & \text { exit=DIST }
\end{array}
$$

'she went to block them (while seated) (mandumbunga_061215 154, 447.900 450.475)

| ma | $i=r \boldsymbol{r}$-sike-sike | vara |
| :--- | :--- | :--- |
| already | 3SG=sit.and-RED-hop | really |

'he is already kneeling'
(bwaindiya_151115 076, 221.111224 .380 )

### 4.3.5.3 nde- 'stand and'

The prefix $n d e$-specifies the posture of the subject as standing 'stand and'. It is homonymous with the dehortative proclitic $n d e=$ (see $\S 4.3 .2$ above). It is unknown whether the prefix historically developed from a verb meaning 'stand' or similar, although cross-linguistic data suggest that this is likely (cf. Lichtenberk 2002). Examples of the prefix are presented in (87) to (91). The meaning of VCs with the prefix is for the most part predictable, as is the case in (87). However, this is not always the case. Compare the examples presented in (88) and (89). The posture prefix combining with the manner-of-causation prefix mwana- 'by hand' and ten 'break' means 'stand and break by hand', while the combination of just the posture prefix with ten 'break' without the manner-ofcausation prefix has the meaning 'block while standing' (see also (85) above with ro- 'sit and').
wevo $=m a \quad i=n d e$-thingingi
young.woman=DET $3 \mathrm{SG}=$ stand.and-smile
'the young woman stands and smiles' (put_stimuli_231015 033, 283.065 285.665)

| $a=\boldsymbol{n d e}$ - mwana- ten $=a$ | thiyo $=k e$ |
| :--- | :--- |
| 1SG=stand.and-w.hands-break=YA | string/rope=SPKR.PROX |
| 'I stood/was standing and broke the string with my hands' |  |



Like the other posture prefix, nde-may occur in locative VCs with inanimate subject referents that are 'standing' or otherwise vertical:

| umbwa=ke $i=\boldsymbol{n d e}$ - vadede $e$ | dumodumo=ko <br> stick/tree=SPKR.PROX | $3 S G=$ stand.and-lean | PREP | wall=DIST |
| :--- | :--- | :--- | :--- | :--- |

There is no single verb in Sudest that means 'stand', to express that a subject is simply standing the posture prefix combines with the verb ghathi 'touch':

| (91) | i=nde-ghathi | $n a$ | $i=$ mwana-bebe $=y a$ |
| :--- | :--- | :--- | :--- |
| 3SG=stand.and-touch | and | 3SG=w.hands-breal=YA | umbwa |
| stick/tree |  |  |  |

$$
\text { (cb_stimuli_051016_02_01 167, } 895.522 \text { 897.990) }
$$

When the prefix occurs with a directional verb, the resulting VC can either specify the orientation of the subject in relation to other physical entities in the environment or motion while standing In (92), the prefix combines with vivalvuva 'go first' to mean 'stand in front (of s.o./s.th.)'. ${ }^{97}$ This mirrors the examples in the corpus in which the other posture prefix ro- 'sit and' occurs with directional verbs. In contrast, when $n d e$ - 'stand and' combines with njogha 'go back', as in (93), it means 'step back'.
(92) va tagaith $\dot{=}=n g g i \quad$ th $\dot{i}=n d e-v u v a \quad$ e gaith $\dot{i}=k o$

REM.PST angry.person=3PL 3PL=stand.and-go.first PREP fight=DIST
'the angry ones [...] stand at the front of the fight' (feast_of_the_fish_271015 093-4, 233.670235 .603 238.480)

[^62]| (93) | $i=$ mena | $i=t h \dot{t n}-r u-w o=\emptyset$ | $e$ | ghamba=ma |
| :--- | :--- | :--- | :--- | :--- |$\quad n a$

$$
i=\boldsymbol{n d e}-n j o g h a=v a
$$

3SG=stand.and-go.back=REP
'he comes, puts it (a box) in its place and steps back again'
(put_stimuli_231015 057-8, 455.900 462.281)

The combination of the prefix with a classificatory verb has lexicalised to mean 'hold' and does not specify the posture of the subject. Consider the examples presented in (94) and (95), both from stimuli data. The first example describes a situation in which a woman is standing and holding a stick, while the second example describes a clip in which a woman is holding a cup containing counters while clearly sitting on the ground. Note that the singular CLFV thin is used in (95) with the plural object referent kountas. This is because the container-and-contents CLFVs are used when referring to full containers, but also when referring to specific content(s). The singular and plural distinction of the CLFV refers to the number of containers, not whether the contents are plural or singular (see §5.3.2.3).

| wevo=ma | $i=$ nde-wo | $u m b w a=m a$ |
| :--- | :--- | :--- |
| young.woman=DET | 3SG=stand.and-GET.SG.RIGD | stick/stree=DET |

'the woman holds the stick' (cb_stimuli_051016_01 186, 2045.316 2047.968)

| elisari $=m a$ | $i=\boldsymbol{n d} \boldsymbol{e}$-thin $=a$ | kountas=ma | $e$ |
| :--- | :--- | :--- | :--- |
| old.woman=DET | 3SG=stand.and-GET.SG.CNTR=YA | counters=DET | PREP |

kap $=m a \quad$ tine
cup $=$ DET inside
'the old woman holds the counters in a cup'
(put_stimuli_231015 015-6, 144.930 151.194)

### 4.3.5.4 di- 'fall and'

The motion prefix $d i$ - 'fall and' shares a cause-effect relationship with the event described by the verb. The event encoded by the verb is a consequence of the subject falling and is often involuntary. There is only one token of the prefix in the corpus, shown in (96), which describes how the bush fowl lost the ability to fly after landing poorly and breaking his testicles. The remaining examples presented in (97) to (99) are taken from elicitation data.

| $i=d i$-vwara | $u v w a-u v w a$ |
| :--- | :--- |
| 3SG=fall.and-crack | RED-testicle |

'he fell and cracked his testicles’ (bush_betelnut_011115 123, 296.489 298.690)

## $a=d i$-linggi $=\varnothing$

1SG=fall.and-pour=3SG
'I fall and pour/tip them out (e.g. items in a basket)'
(98)

$$
\begin{array}{lll}
\text { amala }=m a & i=\text { di-nggila } & \text { umbwa=ma } \\
\text { man=DET } & \text { 3SG=fall.and-break } & \text { stick/tree=DET } \\
\text { 'the man falls and breaks the stick' }
\end{array}
$$

The prefix can also occur with voro 'go up', for example to describe the movement of water 'falling up' from a spring or rock fissure:

```
mbwa=ko i=di-voro
water=DIST 3SG=fall.and-go.up
'the water flows up/bubbles up (e.g. from a spring)' (e_221116_01)
```

Anderson and Ross (p. 333) describe the prefix as meaning 'move (and)'. However, this analysis is not borne out in the current data. Additionally, the translations A\&A provide to accompany their examples appear to further support a 'fall and' analysis. ${ }^{98}$ Consider (100) and (101).
(100) $m a=d i-y a k u$

1SG.IMM.PST-fall.and-stay
'I fell and sat down'
(Anderson \& Anderson 1991: 26)
(101) umbwa=ko me=di-gana
tree=DIST 3SG.IMM.PST=fall.and-fence path
'the tree fell and blocked the road'
(Anderson \& Anderson 1991: 26)

### 4.3.6 thu- 'unintentionality' and $i-$ 'intentionality'

The eighth preverbal slot may be filled by the unintentional prefix $t h u$ - and the prefix $i$-. Anderson and Ross (p. 333) describe $i$ - as indicating deliberateness or intentionality. However, current data do not necessarily support such an analysis, as the prefix's use is highly restricted (see below for further discussion).

The prefix thu-specifies that the agent unintentionally performs the action or event expressed by the verb. Example (102) shows the prefix with the verb vai 'drop'.


The unintentional prefix can be used interchangeably with the more common verb stem thavwi 'accidentally’ (§6.3.8.3). Consider the sentences presented in (103), all describing the same stimulus video in which a woman walks past a bucket and accidentally tips it over. The sentences

[^63]in (103a) and (103b) use the prefix to specify the that bucket is only poured out (linggi) or bumped (tuva) unintentionally while in (103c) and (103d) the verb stem thavwi 'accidentally' is used to convey the same information. The prefix and verb stem are used interchangeably by both younger and older speakers.

d. $\quad i=l a=v u r i-l i n g g i-t h a v w i=\varnothing$
$3 \mathrm{SG}=$ and.go=w.feet-accidentally=3SG
'she accidentally kicked it over and kept walking'
(put_stimuli_231015 053, 408.314 409.712)

The intentional prefix $i$ - described by A\&R does not occur in the corpus. Speakers did accept a VC with ghawe 'be lost' and the prefix $i$-. In this construction, the stative verb requires both an (un)intentional and causative prefix to be judged grammatical. All other attempts to elicit $i$ 'intentional' were deemed ungrammatical by speakers, including with other verbs such as vai 'drop' and tuva 'bump'. In the elicited tokens with va-ghare 'CAUS-be lost', the unintentional prefix thuappeared to suggest a more permanent loss, while the 'intentional' prefix $i$ - indicated a more temporary misplacement:

| a=thu-va-ghawe | lo | nambo |
| :--- | :--- | :--- |
| 1SG=UNINTENT-CAUS-be.lost | POSS.CLF2.1SG | basket |
| 'I lost my basket (for good)' |  |  |

b. a=i-va-ghawe lo nambo

1SG=INTENT?-CAUS-be.lost POSS.CLF2.1SG basket
'I forgot/misplaced my basket (somewhere)'
(e_091215)

The distinction between the two prefixes appears to be more complicated when the object referent is animate, as in (105). Speakers again suggested that thu- 'unintentionally' indicated a more lasting
loss, potentially resulting from the theft or premature death of the dog, while $i$ - would be more appropriate in situations where the animal may have run away or escaped and could still return. Such examples, however, also raise questions surrounding the function of the causative prefix in such contexts.

| (105)a. | A=thu-va-ghawe | lo | mbugha |
| :--- | :--- | :--- | :--- |
|  | 1SG=UNINTENT-CAUS-be.lost | POSS.CLF1.1SG | $\operatorname{dog}$ |

$\begin{array}{llll}\text { b. } & A=i-\text { va-ghawe } & \text { lo } & \text { mbugha } \\ & \text { 1SG=INTENT?-CAUS-be.lost } & \text { POSS.CLF1.1SG } & \operatorname{dog} \\ & \text { 'I lost my dog (maybe it ran away/escaped)' } & \end{array}$ (e_091215)

Further data are needed to more fully understand the function(s) of these two preverbal morphemes. The current data overall support the 'unintentional' sense of thu-, but do not necessarily support the 'intentional' function of $i$-.

### 4.3.7 ve-reciprocal

The ninth slot in the VC contains the reciprocal prefix ve-. The prefix may occur with transitive verbs to indicate a mutual relationship between the subject and primary object in which they perform the same action on one another. The valence in reciprocal VCs is identical to the valence in non-reciprocal VCs, as evidenced by the object indexes in examples (106) to (108) and the lexical object in (109) (which agree in number and person with the subject).
(106) $r a=v \boldsymbol{e}-v a i t o=i n d a$

1 INCL=RECP-ask=1INCL
'we ask each other'
(ft_stimuli_201015_01 006, 68.901 70.850)
(107) gha-nji=ma gha nggila-nggila thí=ve-ngge=nggi
food-3PL.POSS=DET POSS.CLF1 RED-shell.spoon 3PL=RECP-hit=3PL
'their food's spoons hit each other' [context: the child and giant are eating from the same pot at the same time and keep clashing their eating utensils]
(child_and_giant_201015 080-2, 204.610 212.180)
(108)
$r a=v e-l i-v e=i n d a \quad k w a m a=m a$
1INCL=RECP-GET.SG.FLEX-give=1INCL clothing=DET
'we give/exchange our clothes with each other'
(109) mbanga=va thi=ghena va thi=ve-wo-giya
time=REM.PST 3PL=sleep REM.PST 3PL=RECP-GET.SG.RIGD-give
wokini-nji
back-3PL.POSS
'when they slept, they were back to back (lit. they gave each other their backs)'
(mandumbunga_02_181016 345-6, 866.734 871.244)

### 4.3.8 Valence changing and rearranging prefixes

The slot immediately preceding the verb stem may be filled by one of the detransitivising prefixes or by the causative prefix. The detransitivisers are discussed first in §4.3.8.1 and derivational causatives are outlined in $\S 4.3 .8 .2$. An overview of the derivational processes is given in Table 4.6.

| derivational morpheme | meaning | process |
| :---: | :---: | :---: |
| ma-, rara- | detransitive | type 1: $\mathrm{O} \rightarrow \mathrm{S}, \mathrm{A} \rightarrow \emptyset$ |
| $v a$ - | causative | $\begin{aligned} \text { type 2: } \mathrm{S} & \rightarrow \mathrm{O}, \emptyset \rightarrow \mathrm{~A}, \text { or } \\ \text { type 3: } \mathrm{A} & \rightarrow \text { primary OBJ, } \\ \mathrm{O} & \rightarrow \text { secondary OBJ, } \emptyset \rightarrow \mathrm{A} \\ \text { type 4: } \mathrm{S} & \rightarrow \text { adjunct, } \emptyset \rightarrow \mathrm{A}, \emptyset \rightarrow \mathrm{O} \\ \text { type 5: } \mathrm{A} & \rightarrow \mathrm{O}, \mathrm{O} \rightarrow \text { adjunct, } \emptyset \rightarrow \mathrm{A} \\ \text { type 6: } \mathrm{A} & \rightarrow \mathrm{O}, \mathrm{O} \rightarrow \mathrm{~A}^{99} \end{aligned}$ |
| $v a-\ldots=n g a$ | causative and transitive | type 7: $\mathrm{S} \rightarrow \mathrm{O}, \varnothing \rightarrow \mathrm{A}$ <br> type 8: S $\rightarrow \mathrm{A}, \emptyset \rightarrow \mathrm{O}$ |

Table 4.6 Valence changing and rearranging prefixes

### 4.3.8.1 ma- and rara- detransitivisers

There are two detransitivising prefixes: ma- and rara-. They are used interchangeably, albeit with differing frequencies; there are 56 tokens of ma- to 16 tokens of rara-. The sentences presented in (110) and (111) describe stimuli videos in which a tree branch and piece of cloth break spontaneously. The examples illustrate the interchangeability of the two prefixes.

| $\begin{array}{ll}\text { umbwa=ko } & \text { ghavwala }\end{array}$ | $\begin{array}{l}\text { i=ma-bebe }\end{array}$ |  |
| :--- | :--- | :--- |
| stick/tree=DIST | $\begin{array}{l}\text { forked.branch }\end{array}$ | 3SG=DETR-break |$]$ (the forked tree branch breaks' $\quad$ (cb_stimuli_051016_02_01 143, 783.180 784.940)

b. umbwa=ma yangga i=rara-bebe
stick/tree=DET branch 3SG=DETR-break
'the tree branch breaks
(cb_stimuli_051016_01 089, 996.413 999.750)
(111)a.

| kwama=ma | $i=m a-t h a t h a$ | $n a$ | vuvu-iwo |
| :---: | :---: | :---: | :---: |
| cloth=DET | 3SG=DETR-tear | and | NUM.CLF-two |
| 'the cloth tea | in two' |  | (cb_stimu |

b. i=rara-thatha

3SG=DETR-tear
'it (a cloth) tears' (cb_stimuli_051016_01 053, 545.370 546.510)

[^64]In POc, the anti-causative prefix *ma-derived intransitive verbs from transitive verbs that could be used statively or dynamically. Ross (1998: 25) reports that most modern reflexes of the POc prefix reflect this and are used to derive stative verbs, e.g. Arosi (Southeast Solomonic, Solomon Islands) ma-hita 'be split, broken' from hita 'split, hit, strike (s.th.)'. However, in North New Guinea and Papuan Tip languages, including Misima, reflexes of *ma-derive dynamic intransitive verbs. This is also the case for Sudest, as shown in the examples above (i.e. 'the stick breaks' and not 'the stick is broken').

Derived verbs with the detransitive prefix like in (112), as well as the sentences above in (110) and (111), express states of affairs that do not involve an external agent; that is, events that were never transitive, and for which the formal mechanism of the prefixes is needed to express this. ${ }^{100}$
(112) thiyo=ma i=rara-ten i=ma-ten rope/string=DET 3 SG=DETR-break 3 SG=DETR-break
'the string breaks, it breaks' (cb_stimuli_101116 066-9, 866.240 878.541)
Detransitivised VCs with ma- and rara- can also be used to describe states of affairs in which an external agent is known, but it is the undergoer of the event that is foregrounded, as in (113) and (114).
(113) amala=ma i=mwana-vairi ndeghi, mbwa i=ma-linggi e
man=DET 3SG=w.hands-lift cup water 3SG=DETR-pour PREP
tebol=ma $\quad v$ wata
table=DET on.top
'the man picks up the cup, the water spills on the table'
(put_stimuli_191015_02_02 092, 643.505 647.823)

| wevo=ko | $i=$ wo | sledgehama | na | $i=n g g e$ |
| :--- | :--- | :--- | :--- | :--- |
| young.woman=DIST | 3SG=GET.SG.RIGD | sledgehammer | and | 3SG=hit |
| umbwa=ma | na | $i=$ rara-bebe |  |  |
| stick/tree=DET | and | 3SG=DETR-break |  |  |

'the young woman gets a sledgehammer and hits the stick and it (the stick) breaks' (cb_stimuli_051016_01 150-1, 1700.477 1713.099)

The prefix rara- is not described in either A\&R or A\&A, while $m a$ - is labelled as a 'stativiser'. However, neither ma-nor rara- function as a stativiser in any corpus tokens. In elicitation, speakers sometimes proposed a possible stative interpretation of VCs with one of the prefixes, although a dynamic reading was also always possible depending on context, as in (115). Whether the detransitivisers are more widely used to derive stative verbs is unclear.

```
(115) thinba i=ma-vu
 door 3SG=DETR-open
 'the door opens/the door is open'
```

[^65]
### 4.3.8.2 va-causativiser

There are two operations which produce a derived causative VC. ${ }^{101}$ The first derives a causative VC through the addition of the causative prefix $v a$-, while the second derives a causative through the addition of both causative prefix and the transitive suffix -nga. The first type of causatives will be considered here before discussing the causatives with both derivational affixes in §4.3.8.2.1.

For the majority of attested derived verbs with the causative prefix, the $S$ of the intransitive verb becomes the O of the derived transitive verb. At the same time, a new subject (A) with the semantic role of causer is introduced, thereby increasing the valence from one to two - or two to three if the underived verb is monotransitive. A small subset of verbs, however, undergo one of four different derivational processes with $v a$ - to derive a causative VC, two of which rearrange the VC and its arguments, but do not increase the valence. ${ }^{102}$ Verbs stems attested with the causative are listed in

Table 4.7.

| verb | underived <br> meaning | derived meaning | underived <br> valence | derived <br> valence |
| :--- | :--- | :--- | :--- | :--- |
| ghawe^ | 'be lost' | 'lose .s.th.' | INTR | TR |
| kote* | 'be hanging, hang' | 'hang s.th.' | INTR | TR |
| kware* | 'be hanging, hang' | 'hang s.th.' | INTR | TR |
| loghe | 'be fatty; sweet'' | 'make s.o. happy (lit. fatty/sweet)' | INTR | TR |
| nginjinginji | 'be white' | 'make s.th. white' | INTR | TR |
| thu | 'be breastfed' | 'breastfeed s.o.' | INTR | TR |
| ghe | 'marry' | 'make s.o. marry' | INTR | TR |
| mare^ | 'die | 'kill' | INTR | TR |
| nggela | 'turn over' | 'turn s.th over' | INTR | TR |
| ravu | 'know' | 'teach' | TR | DITR |
| mara* | 'look' | 'show s.th. (to s.o.)' | INTR | TR |
| mararu | 'be frightened of' | 'frighten s.o.' | TR | TR |
| mun | 'drink' | 'make s.o. drink' | TR | TR |
| ngwamwe | 'feed' | 'feed' | TR | TR |
| yaro | 'fool, trick' | 'fool, trick', | TR | TR |

Table 4.7 Verbs attested with the causative prefix va-. *derived causative obligatorily occurs in a complex verb with a CLFV, $\wedge$ derived causative obligatorily occurs with a manner-of-causation prefix/(un)intentional prefix

Most frequently, as stated above, the causative prefix derives monotransitive verbs from intransitive verbs (both stative and active), in which S becomes O and a new causer A is introduced. Verbs of this type include ghe 'marry', loghe 'be fatty; be sweet', nggela 'turn over', nginjinginji 'be black',

[^66]thu 'be breastfed', kote and kware both 'hang' and mare 'die'. Examples (116) and (117) show underived and derived tokens with ghe 'marry':

| (116) | ne thi=ghe |
| :--- | :--- |
| FUT 3PL=marry |  |
| 'they will marry' |  |

(dating_081015 022, 58.53059 .950 )
(117) mbwata thi=va-ghe=nggi
maybe 3 PL=CAUS-marry=3PL
'maybe they made them marry/married them'
(ft_stimuli_191015_05 176, 388.570 390.527)

A subset of these causativised forms require additional elements to be grammatical. This is the case for the verb ghawe 'be lost'. As discussed above in §4.3.6, causativised verbs also obligatorily take an (un)intentional prefix (see examples (104) and (105)). The intransitive verb mare 'die' may only be causativised to mean 'kill' in combination with a manner-of-causation prefix (§4.1) in addition to the causative prefix:

| levo $=m a$ | $i=$ mare |
| :--- | :--- |
| POSS.CLF2:young.woman=DET | $3 \mathrm{SG}=\mathrm{die}$ |
| his wife died' |  |

(couples_story_101214 006, 25.15027 .920 )

| amala $=m a$ | $i=m w a n a-$ va-mare | umoru $=m a$ |
| :--- | :--- | :--- |
| man=DET | $3 S G=w . h a n d s-C A U S-d i e ~$ | young.man=DET |
| 'the man kills the youth with by strangling/choking' |  |  |

A further subset of the intransitive verbs may only be causativised in conjunction with a classificatory verb in a multi-verb construction (see also §5.3 and §6.3.4). The derived transitive VCs with kote and kware, both meaning 'hang', have the same argument structure as those already presented with an introduced causer as $\mathrm{A} ; \mathrm{S}$ becomes O but the VC requires a classificatory verb in $\mathrm{V}_{1}$ position to be grammatical. Examples (118) and (119) show the underived and derived VCs with kote 'hang'.


A single monotransitive verb ravu 'know' derives a ditransitive causative meaning 'teach'. As with the intransitive verbs that derive monotransitive verbs, the causativised VC introduces an A with the semantic role of causer, while the subject of the underived verb - in this case A - becomes the primary object of the verb (i.e. the object expressed by object index). The single object of the
underived verb becomes a secondary object in the derived construction, expressed by a lexical NP, illustrated by the underived and derived examples in (122) and (123).
(122) $w e v o=k o \quad i=r a v u$ vanga lumo
young.woman=DIST $3 \mathrm{SG}=\mathrm{know}$ language white.person
'the young woman knows/learns English'
(123)
elisar $i=m a \quad i=v a-r a v u=n g g o \quad$ nangge-nangge
old.woman=DET 3 SG=CAUS-know=3SG RED-weave
'the old woman teaches me weaving'

The second kind of causative attested introduces an A with the semantic role of causer as well as an O with the semantic role of theme; the underived S is no longer an argument of the verb, and can only occur as an adjunct. Mara 'look' is the only verb of this type attested in the corpus. Like the two verbs meaning 'hang', the causativised verb mara 'look' is only grammatical as part of a multi-verb construction with a CLFV. Consider the two examples presented in (124) and (125).
(124) ...ko amba thi=mara-voro e umbwa=ko ndamwa

CNJ then 3PL=look-go.up PREP tree/stick=DIST leaf
'...so then they look up into the tree's leaves'
(mandumbunga_02_181016 194, 483.115 486.193)
(125)
thì=la-thin-va-mara bia we $=\varnothing$
3PL=and.go=GET.SG.CNTR-CAUS-look beer PREP=3SG
'they showed (made look) the beer to him as they went past'
(ft_stimuli_191015_07 130-1, 315.990

There are three types of derived causatives with $v a$ - that do not increase the valence of the VC. In the first type, the monotransitive verb mun 'drink' is causativised, but the resulting verb remains monotransitive. The derived VC introduces a causer as A; A and O of the underived clause become O and adjunct respectively of the derived verb. Compare the underived sentence in (126) with derived one in (127).

| $i=m u n=a$ | $m b w a$ | $e$ | nggolo |
| :--- | :--- | :--- | :--- |
| $3 \mathrm{SG}=$ drink=YA | water | PREP | house |

'she drank water in the house' (feast_of_the_fish_271015 079, 191.503 196.343)

| $t h \dot{i}=\mathbf{v a}$ - mun=nggi | $e$ | yee |
| :--- | :--- | :--- |
| 3PL=CAUS-drink=3PL | PREP | herbs |

'they make them drink the herbs'
(funeral_feasting_081015 021)

In the second type of construction, the $A$ of the underived verb becomes the $O$ of the causative construction and the A of the derived construction is not a new argument but rather the O of the underived verb. The only verb of this type attested in mararu 'be afraid' which becomes va-mararu 'cause s.o. to be afraid' or 'frighten s.o.':

## (128) rama ne $i=m a r a r u=i n d a$ <br> father FUT 3 SG=be.afraid=1INCL

'father will be afraid of us' (couples_story_101214 031, 94.380 96.680)
$\begin{array}{llll}\text { (129) } & \text { Mary } & i=v a-\text { mararu } & \text { John } \\ & \text { Mary } & \text { 3SG=CAUS-be.afraid } & \text { John }\end{array}$
'Mary frightens John' (e_191015)
The final two transitive verbs attested with $v a$ - also do not increase in valence when causativised. The underived verbs, however, are already semantic causatives (ngamwe 'feed' and yaro 'trick'), and the derived verbs are unchanged in both argument structure and semantically. Compare the underived and derived pairs given in (130) and (131) and (132) and (133).
$\begin{array}{llll}\text { (130) } & \begin{array}{l}\text { ela=ma } \\ \text { woman=DET }\end{array} & \begin{array}{l}\text { i=ngamwe=nggo } \\ \text { 3SG=feed=1SG }\end{array} & e \\ \text { PREP } & \text { bwarogi } \\ \text { fish }\end{array}$
'the woman feeds me with fish' (e_261016)
(131) i=va-ngamwe=nggo e bwarogi

3 SG=CAUS-feed $=1$ SG PREP fish
'he feeds me with fish' (e_251115_01)
(132) $i=y a r o=n g g i$
$3 \mathrm{SG}=$ trick=3PL
'she tricks them’ (bush_betelnut_011115 057, 133.110 135.510)
(133) $i=\boldsymbol{v a}$-yaro=ya diya na $i=r u k u-v o$

3SG=CAUS-trick=YA deer and 3SG=run-flee
'he tricked the deer and it ran away' (frogstory_161214 117-8, 307.520 313.834)

### 4.3.8.2.1 Causative $v a$ - with the transitive $=n g a$

Some verbs take both the causative prefix $v a$ - and the transitive enclitic $=n g a(\S 4.4 .1 .1) .{ }^{103}$ The attested verbs of this type are listed in Table 4.8 and are all intransitive - both active and stative deriving monotransitive verbs through the addition of the valence-changing morphology. Most of the attested verbs derive causative constructions, in which a causer A is introduced and the intransitive S becomes O of the derived construction. Three verbs pattern like verbs with just the transitive enclitic, with S becoming A and a new argument introduced as O .

[^67]| verb | underived meaning | derived meaning | underived valence | derived <br> valence |
| :---: | :---: | :---: | :---: | :---: |
| bithabitha | 'be decorated' | 'decorate s.th' | INTR | TR |
| boboma | 'be forbidden, sacred’ | 'make s.th forbidden, sacred' | INTR | TR |
| gaith ${ }^{\text {b }}$ | 'be angry' | 'make s.o. angry, anger' | INTR | TR |
| giri | 'be decorated (w. lime)' | 'decorate s.th./s.o. (w lime)' | INTR | TR |
| ии | 'be bruised' | 'bruise s.o./s.th.' | INTR | TR |
| vurigheghe | 'be strong, hard' | 'make 'strong, encourage' | INTR | TR |
| warari | 'be happy' | 'make s.o. happy' | INTR | TR |
| dubwara | 'look (for sexual partner)' | 'make s.o. look (for a sexual partner)' | INTR | TR |
| ghavatha | 'dress <br> (traditionally), | 'dress s.o. (traditionally)' | INTR | TR |
| kaiwo | 'work' | 'use s.th. (i.e. cause s.th. to work)' | INTR | TR |
| kubaro | 'hide' | 'hide s.th.' | INTR | TR |
| mbuthu | 'grow' | 'make s.th. grow' | INTR | TR |
| ruku | 'run' | run/plan s.th.' | INTR | TR |
| utu | 'speak' | 'question (make s.o. to speak)' | INTR | TR |
| voro | 'move, walk up' | 'take/bring up s.th.' | INTR | TR |
| yaku | 'live, stay, sit' <br> 'go to/attend | 'make s.o. sit' | INTR | TR |
| market | market (as a vendor)' | 'market s.th., sell at market' | INTR | TR |
| mbaro | 'advise' | 'govern, manage s.th./s.o.' | INTR | TR |
| mwadiwo | 'play' | 'play with s.th.' | INTR | TR |

Table 4.8 Verbs attested with the causative prefix va- and the transitive enclitic =nga
The examples presented below with the stative verbs vurigheghe 'be strong' and gaithí 'be angry' compare tokens of the underived verbs with their causativised counterparts:

if widow 3SG=be.strong POSS.CFL2 work FUT 3SG=be.light
'if a widow is strong, her work will be light/easy'
(widow_251015 036-7, 111.800116 .351 )
(135) thi=ghan= $\varnothing$ na $i=v a$-vurigheghe-nga riwa-nji=ko

3PL=eat=3SG and 3SG=CAUS-be.strong-TR body-3PL.POSS=DIST
'they eat it (hot food) and it makes their bodies strong/strengthens their bodies'
(hunting_261214 019-20, 40.43044 .870 )
(136)
$\begin{array}{ll}\text { amala }=k e & i=\text { gaith } \dot{t} \\ \text { man=SPKR.PROX } & 3 \text { SG=be.angry }\end{array}$
$w e=y a \quad$ levo
PREP=YA POSS.CLF2:young.woman
(ft_stimuli_201015_01 157, 617.406 619.590)
(137)
'the man is angry with his wife'
$\begin{array}{lll}\text { Mary } & i=v a-\text { gaithi-nga } & \text { John } \\ \text { Mary } & \text { 3SG=CAUS-be.angry-TR } & \text { John }\end{array}$
'Mary makes John angry/angers John' (e_191015 051)

The examples from (138) to (141) present underived and derived tokens with the active intransitive verbs utu 'speak' and mbuthu 'grow'. As with the stative verbs presented above, S becomes O and a new causer A is introduced.

| kero | wevo | $i=u t u$ | $w e=y a$ | rama-e |
| :--- | :--- | :--- | :--- | :--- |
| already | young.woman | $3 S G=$ speak | PREP=YA | father-3SG.POSS |

'the young woman speaks with her father'
(ft_stimuli_191015_05 392, 913.748 916.880)
(139) thí=va-utu-nga wevo=ke

3PL=CAUS-speak-TR young.woman=SPKR.PROX
'they question (lit. make talk) the young woman'
(ft_stimuli_191015_05 425-6, 965.550 967.650)
(140) uu $i=m b u t h u$
clan $3 \mathrm{SG}=$ grow
'the clan grows'
(family_251015 016, 63.81365 .844 )
(141) noroke tari i=va-mbuthu-nga ghemba regha
today family $3 \mathrm{SG}=$ CAUS-grow-TR village one
'today, a family makes the village grow’ (family_251015 007-10, 31.190 46.770)

With three verbs (market '(attend) market (as a vendor)', mbaro 'advise' and mwadiwo 'play') the addition of $v a-\ldots=n g a$ does not produce a causative verb, instead functioning like those verbs with only the transitive enclitic in which S becomes A and a new O is introduced (§4.4.1.1). Consider the example pairs in (142) and (143) with market '(attend) market (as a vendor)'. In these examples, the derived verb takes a new object with the semantic role of theme (this is also the case for the verb mbaro 'advise').
(142) th $\dot{i}=w a \quad$ veth $\dot{i}=$ market

3PL=go 3PL.INT=attend.market
they go to (attend) market (as vendors)'
(ft_stimuli_201015_04 088, 266.027 267.492)
(143)
$a=\boldsymbol{v a}-m a r k e t i-n g a \quad y a m b i y a \quad$ we=nggi
1SG=CAUS-attend.market-APPL sago PREP=3PL
'I sell (market) the sago to them' (e_261116_02)
Example (144) shows first an intransitive and then a transitivised token with mwadiwo 'play'. The derived form takes an O with the semantic role of instrument, although there is no surface realisation of that in this specific example.


```
man 3SG=plays PREP ball man 3SG=GET.SG.RIGD ball and
\(i=\boldsymbol{v} \boldsymbol{a}-\) mwadiwo \(=\boldsymbol{n g} \boldsymbol{a}=\varnothing\)
3SG=CAUS-plays=TR=3SG
```

'the man plays with a ball [...] the man gets the ball and plays (with) it' (put_stimuli_191015_01_01 015-27, 55.053 86.275)

Patterning emerges when comparing the derived verbs that take $v a-,=n g a$ and $v a-\ldots=n g a$ in the corpus. ${ }^{104}$ All verbs with $v a-\ldots=n g a$ and $=n g a$ increase the valence of the verb from one to two, while verbs occurring with $v a$ - do not always have their valence increased and do not all have an intransitive base form. Over a third of the verbs that take -nga overlap with those occurring with $v a-\ldots=n g a$, while no verb that has a derived causative form with just $v a$ - occurs with other valence increasing or rearranging morphemes. It is currently no data available showing whether all verbs that take the transitive enclitic may also be causativised with $v a-\ldots=n g a$ and vice versa. The patterning, however, does suggest there may be an A-type and O-type verb distinction (Dixon 1988). With A-type verbs, the S of the intransitive verb corresponds to the A of the transitive verb and a new O is introduced, while for O -type verbs it is the opposite: S becomes O with an introduced A . In such an analysis, verbs that take $v a$ - are nearly exclusively O-type verbs and those that take $=n g a$ are A-type verbs, with some or all of the A-type verbs being able to function as O-type verbs through the addition of $v a$ - to derived forms with the transitivising enclitic $=n g a$.

### 4.4 Postverbal elements

There are 11 postverbal slots in the VC. The attested order of the slots is re-presented in Figure 4.3 Only the enclitics in the first and second postverbal slots occur exclusively in the VC. The morphemes that occur in the remaining nine slots also occur in other phrase types. In general, the further from the verb stem, the less tightly bound the element is. The remainder of the chapter describes each of the postverbal slots in turn, excluding the object indexes (which are discussed earlier in the chapter (§4.2.2), and the second half of the discontinuous negation marker $=r e$ (which is discussed in the section on negation in chapter 3 (§3.7.3.1.1)).

[^68]| 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\left\{\begin{array}{c}=\text { wana } \mathrm{APPL} \\ =n g a \mathrm{TR}\end{array}\right\}\right)\left(\left\{\begin{array}{c}=m a^{\prime}{ }^{\prime} \mathrm{hither}^{\prime} \\ =\text { wo }{ }^{\prime} \text { 'thither }{ }^{\prime}\end{array}\right\}\right)(=\mathrm{OBJ})(=\mathrm{YA})(=\mathrm{DEM})\binom{$ moli }{INT}$\binom{$ = re }{ NEG2 }$\binom{$ mun }{ a bit' }$\binom{=v a}{$ REP } |  |  |  |  |  |  |  |
| $\binom{$ engge }{ 'just' } $\left.\begin{array}{c}11 \\ \text { vara } \\ \text { (really }\end{array}\right)$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

Figure 4.3 Postverbal slots of the verb complex

### 4.4.1 Valence changing and rearranging enclitics

The first postverbal slot can be filled by either the transitivising enclitic =nga or the applicativising enclitic =wana, discussed further in §4.4.1.1 and §4.4.1.2 respectively. Table 4.9 outlines the enclitics and their respective derivational processes.

| derivation | marking | argument transfer |
| :--- | :--- | :--- |
| transitive | $=n g a$ | $\mathrm{~S} \rightarrow \mathrm{~A}, \varnothing \rightarrow \mathrm{O}$ |
|  |  | $\mathrm{S} \rightarrow \mathrm{O}, \varnothing \rightarrow \mathrm{A}$ |
| applicative | =wana | $\mathrm{S} \rightarrow \mathrm{A}, \varnothing \rightarrow \mathrm{O}$, or |
|  |  | $\mathrm{S} \rightarrow \mathrm{A}, \mathrm{O} \rightarrow \mathrm{O}(\mathrm{O}=$ theme $\rightarrow$ stimulus $)$ |

Table 4.9 Verbal derivations: enclitics

### 4.4.1.1 =nga transitiviser

The transitivising enclitic $=n g a$ derives monotransitive verbs from stative and active intransitive verbs. For the majority of verbs with the enclitic occurring in the corpus, the S of the underived verb becomes the A of the derived verb, which also introduces an argument as O . A small number of the verbs that occur with $=n g a$ form causative constructions in conjunction with classificatory verbs or manner-of-causation prefixes, in which $S$ becomes $O$ of the derived transitive verb and a causer A is introduced. The verbs attested with the transitivising enclitic are listed in Table 4.10. This enclitic also derives transitive verbs from intransitive verbs, in combination with the causative prefix $v a$ - (see §4.3.8.2.1).

| verb | underived meaning | derived meaning | underived <br> valence | derived <br> valence |
| :--- | :--- | :--- | :--- | :--- |
| nemo | 'be happy' | 'be happy with s.o./s.th. | INTR | TR |
| warari | 'be happy' | 'be happy about s.th. | INTR | TR |
| longga | 'walk' | 'walk to/look for' | INTR | TR |
| ruku(-voro) | 'run (up)' | 'run (up) to' | INTR | TR |
| njogha | 'go back' | 'go backwards to' | INTR | TR |
| yaku | 'stay; live; sit' | 'live s.wh.' | INTR | TR |
| dubwara | 'look (for sexual | 'look for s.o. (sexual/romantic | INTR | TR |
|  | partner)' | partner)' | INTR | TR |
| ghayawo | 'look' | 'look at s.th.' | INTR | TR |
| kaiwo | 'work' | 'work on s.th.' | INTR | TR |
| loyau | 'exchange' | 'exchange for s.th.' | INTR | TR |
| mbaro | 'advise' | 'govern, manage s.th./s.o.' | INTR | TR |
| tarawe | 'praise' | 'praise s.o.' | INTR | TR |
| thaga | 'feast' | 'feast on s.th.' | INTR | TR |
| utu | 'talk' | 'talk about s.th.' | INTR | TR |
| vana | 'climb' | 'climb s.th.' | INTR | TR |
| vivatha | 'prepare', | 'prepare (for) s.th.' | INTR | TR |
| wareri | 'leave' | 'leave s.o./s.th.' | INTR | TR |
| voro ${ }^{\wedge *}$ | 'go up' | 'lift up' | INTR | TR |
| njo | 'go down' | 'put s.th. up' | INTR | TR |
| Table |  |  |  |  |

Table 4.10 Verbs attested with the transitivising enclitic =nga. Derived transitive obligatorily occurs in multi-stem verb with a CLFV, ^derived causative obligatorily occurs with a manner-of-causation prefix

The majority of derived verbs with =nga add an O with the semantic role of theme/patient. However, a small number of derived verbs add a goal, source, location, or stimulus object. Examples (145) and (146) show tokens of the verb vana 'climb'. When transitivised, as in (146), vana takes a theme as its object.
numombwalmbwala $\quad i=v a n a$
non.magical.person $\quad 3 S G=$ climb
'the muggle/non-witch climbs' (bush_betelnut_011115 026-7, 62.011 68.590)

| $v e=v a n a=n g a=v a$ | umbwa | regha <br> one |
| :--- | :--- | :--- |
| 3SG.INT=climb=TR=REP |  |  |
| 'he climbs another tree' |  |  |
| (frogstory_161214 064-65, 159.400 162.540) |  |  |

As discussed in §4.3.8.2.1, at least a third of the verbs that occur in causative VCs with $v a-\ldots=n g a$ can also be transitivised with just =nga. Example (147) shows the transitivised verb utu=nga 'speak about', which adds a theme as O. See examples (138) and (139) above for tokens of intransitive utu 'speak' and causativised va-utu=nga 'make talk, question'.

$$
\begin{array}{llll}
a=u t u=n g a=n g g i=y a & \text { bwanbwani } & n a & \text { thangwethangwe }  \tag{147}\\
1 \mathrm{SG}=\text { speak=TR=3PL=YA } & \text { sea.eagle } & \text { and } & \text { k.o.eagle }
\end{array}
$$

'I (will) speak about Bwanibwani eagle and Thangwethangwe eagle'
(eagle_story_081115 002-3, 5.490 11.196)

Derived transitives with the motion verbs longga 'walk', ruku 'run' and njogha 'go back' add an O with the semantic role of goal. Transitivised tokens with ruku 'run' and longga 'walk' are shown in (148) and (149) respectively. The latter is used here euphemistically to describe someone looking for a romantic or sexual partner.

```
(148) maa ne i=ruku=nga rama-e
 NEG FUT 3SG=run=TR father-3SG.POSS
 'he will not run to his father' (fp_stimuli_201015_02 114, 385.180 387.679)
\begin{tabular}{llll}
wevo & ande & me=longga=nga=re & umoru \\
young.woman & NEG1 & 3SG.IMM.PST=walk=TR=NEG2 & young.man
\end{tabular} 'a girl does not look for (lit. walk to) a young man'
(dating_081015 043, 111.480 115.240)
```

When the enclitic combines with psychological verbs, the object added has the semantic role of stimulus, as shown for the verbs nemo (150) and warari (151) which both mean 'be happy'. The verb warari 'be happy' also occurs with the applicative enclitic =wana. They appear to be used interchangeably and =wana also adds a stimulus as O (see example (158), §4.4.1.2).
(150) nggama=ke na tina-e ne thi=nemo=nga=nggo child=SPKR.PROX and mother-3SG.POSS FUT 3PL=be.happy=TR=1SG
'the child and his mother will be happy with/because of me'
(ft_stimuli_201015_04 047, 139.210 141.240)
(151) $i=$ warari=nga $=n g g i \quad$ le nggangga=ma

3SG-be.happy=TR=3PL POSS.CLF2 children=DET
'he was happy about/because of his children'
(ft_stimuli_201015_01 250, 940.370 942.496)
A small number of tokens with $=n g a$ added to directional motion verbs derive a causative construction, introducing a causer as A and demoting S to O . These derived forms all include either a manner-of-causation prefix (152) or a part of a multi-stem verb with a classificatory verb, as in (153) and (154). Cross-linguistically, manner-of-causation prefixes tend to develop causative tendencies (Bradshaw 1982), and classificatory verbs in combination with intransitive verbs also result in VCs with causative semantics (see $\S 5.3$ and $\S 6.3$ for further discussion and examples of classificatory verbs with intransitive $\mathrm{V}_{2}$ stems).

| (152) | $v a$ | $i=m w a n a-$ voro=nga |
| :--- | :--- | :--- |$\quad$ wangga=ko

'he pulled the canoe up'

$$
\begin{array}{ll}
i=l i \text {-voro }=n g a & \text { gheghe=na }  \tag{153}\\
\text { 3SG=GET.SG.FLEX-go.up=TR } & \text { leg=ADDR.PROX }
\end{array}
$$

'she lifts up her leg'
(put_stimuli_231015 065, 519.966523 .189 )

| elisari=ke | $i=$ thin- $n j o=n g a$ | $n d e g h i=k e$ | $e$ |
| :--- | :--- | :--- | :--- |
| old.woman=SPKR.PROX | 3SG=GET.SG.CNTR-go.down=TR | cup=SPKR.PROX | PREP |
| ghamba | ghaningga $=k o$ | vwata |  |
| place | food=DIST | top |  |

'the old woman puts the cup down on top of the table (lit. food's place)'
(put_stimuli_201015_01 160-2, 908.160 913.280)

### 4.4.1.2 =wana applicative

The applicative enclitic =wana occurs with psychological verbs and verbs of nonverbal expression and adds an O argument with the semantic role of stimulus. The verbs attested with the applicative enclitic are listed in Table 4.11, all verbs save one derive transitive verbs from intransitive stative and active verbs while the single transitive verb botewa 'not want' remains transitive.

| verb | underived meaning | derived meaning | underived valence | derived valence |
| :--- | :--- | :--- | :--- | :--- |
| atemuru | 'be annoyed' | 'be annoyed at s.o.' | INTR | TR |
| gaithi | 'be angry, fight' | 'be angry at s.o.'. | INTR | TR |
| maraka | 'be angry' | 'be angry at s.o.' | INTR | TR |
| warari | 'be happy' | 'be happy with s.o.' | INTR | TR |
| tinguru | 'grunt (in anger)' | 'grunt (in anger) at s.o. | INTR | TR |
| yamwaundu | 'pout'' | 'pout at s.o.' | INTR | TR |
| botewa | 'not want s.o./s.th.' | 'dislike s.o.' | TR | TR |

Table 4.11 Verbs attested with the applicative enclitic =wana
As can be observed by comparing (155) and (156) with gaithi 'be angry', the stimulus PP of the intransitive clause in (155) becomes a core argument in the derived construction in (156). There are no data on whether some or all verbs that take =wana show this sort of alternation, although it is quite possible that this is the case. Thus, as the O of the derived verb would otherwise be an adjunct and not a core argument, the enclitic is analysed as an applicative in the current work. See also above in (136) for an intransitive token of gaithi, and (137) for a causativised token of the verb with the causative and transitive morphemes va-gaithi=nga 'make s.o. angry'.

| amala=ke | $i=$ gaith $\dot{t}$ |
| :--- | :--- |
| man=SPKR.PROX | 3SG=be.angry |

$w e=y a \quad$ levo PREP=ya POSS.CLF2:young.woman
'the man is angry with his wife'
(fp_stimuli_201015_01 157, 617.406 619.590)

| bubu | $v a$ | $i=$ gaith $\dot{=}=\boldsymbol{w a n a}=$ nggo | wanji | baya |
| :--- | :--- | :--- | :--- | :--- |
| granparent/child | REM.PST | 3SG=be.angry=APPL=1SG | broom | reason |

'grandma was angry with me because of the sweeping'
(sweeping_011115002, 4.470 10.850)
Examples (157) to (161) show further tokens of the applicative enclitic with psychological verbs. The enclitic only occurs with the verbs gaithit 'be angry, fight' and atemuru 'be annoyed' in the text corpus; all remaining examples come from elicitation.
(157)
thi=ve-gaith $\dot{i}=$ wana $=$ nggi $\quad$ o $\quad$ thí=ve-atemuru=wana=nggi
3PL=RECP-be.angry=APPL=3PL $\quad$ or $\quad$ 3PL=RECP-be.annoyed=APPL=3PL
'they are angry with each other or they are annoyed with each other'
(divorce_111015 016, 35.19038 .430 )
The applicative occurs with the verb warari 'be happy' and appears to have the same sense and function as the derived verb with the transitiviser $=n g a$, shown in (150) above.
$a=$ warari=wana $=$ ngge
$1 \mathrm{SG}=$ be.happy=APPL=2SG
'I'm happy with you/because of you' (e_161116_02)
The enclitic also derives transitive VCs from intransitive active verbs that denote activities associated with particular emotions. The activity is typically carried out as a physical expression of the associated emotion. The two verbs of this type attested with =wana are yamwaundu 'pout (angrily)' (159) and tinguru 'grunt (angrily)' (160).

$$
\text { (159) } \begin{align*}
& i=\text { yamwaundu=wana }=\text { nggo } \\
& \text { 3SG=pout=APPL=1SG } \tag{e_151116}
\end{align*}
$$

'she pouts/makes an angry face at me'
(160) $i=$ tinguru $=\boldsymbol{w a n a}=$ nggo
$3 \mathrm{SG}=$ grunt $=\mathrm{APPL}=1 \mathrm{SG}$
'she grunts (in anger) at me"

The addition of =wana to the transitive verb botewa 'not want' is somewhat idiomatic. The valence and argument structure remain the same, but the enclitic changes the meaning from 'not want (something/someone) to 'not like/dislike (someone)':
$\begin{array}{ll}a=\text { botewa=wana } & \text { ela=ko } \\ \text { 1SG=not.want=APPL } & \text { woman=DIST }\end{array}$
'I don't like/dislike the woman'

### 4.4.2 =ma 'hither' and =wo 'thither'

The second postverbal slot can be filled by one of two directional enclitics =ma 'hither' and =wo 'thither'. Such directional morphemes are widely attested in the Oceanic languages (Lynch et al. 2002: 46). The enclitic =ma indicates movement towards the deictic centre - typically the speaker - and =wo encodes movement away from the deictic centre. In the direct speech in (162) a grandmother orders her grandchildren to first go away from her in order to bring a specific man to the grandmother to meet her.

| (162) | $i=n g a$ | " $h u=n j o g h a=w \boldsymbol{o}$ | vohu $=$ vanggu $=\boldsymbol{m a}=\varnothing$ | $r a=t h u w e=\varnothing^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 3SG=say | 2SG=go.back=thither | 2PL.INT=lead=hither=3SG | $1 \mathrm{INCL}=$ see $=3 \mathrm{SG}$ |

'she said "go back thither/there to bring him here/hither (to me) (and) we can see him"" (mandumbunga_02_181016 273, 686.632 691.112)

The following examples show the position of the directionals in relation to the other postverbal slots of the VC, namely following the transitiviser (163) and preceding the object indexes (164).
(163) umbwa yangga-yangga $i=v a n a=n g a=m a \quad$ iya $=n a$
tree/stick RED-branch $3 \mathrm{SG}=\mathrm{climb}=\mathrm{TR}=$ hither $\quad \mathrm{DEM}=\mathrm{ADDR} . P R O X$
'the tree branches, he climbs them hither'
(frogstory_161214 085-6, 219.230 223.780)
(164) thi-vanggu-ru=wo=nggi=ya giya-giya o bwabwari

3PL=lead-go.in=thither=3PL=YA RED-big.man or guest
'they welcome in the big men or the guests (lit. they lead them in thither)'
(e_251115_01)

As discussed earlier, the directionals orient motion in relation to the deictic centre. This deictic centre is often the speaker, as in (165) and (166), but can also be a larger centre such as a village (167) or an entire island (168).

'you have to come back to me again'
(mandumbunga_02_181016 394, 990.683992 .800
(166) $u=l i-n j o g h a=\boldsymbol{w} \boldsymbol{o}=\varnothing=n a$

2SG=GET.SG.FLEX-go.back=thither=3SG=ADDR.PROX
'put it back there (near addressee)' (ft_stimuli_191015_03 184, 481.180 482.160)

The directional =wo 'thither' In (167), =wo 'thither' can only be used if the deictic centre is not at Nju but rather somewhere to the northwest, in this case Mwalaghagha. Similarly, in (168), the speaker can only utter the sentence if they are located somewhere to the southeast of Ware Island. In this instance, Vanatina and the subjects of the clause are moving towards the speaker.

| Mwalaghagha | $v a$ | $m a$ | $t h \dot{i}=r a k a-$ voro $=\boldsymbol{w o}=k o$ |
| :--- | :--- | :--- | :--- |
| place.name | REM.PST | already | 3PL=all-go.up=thither=DIST |

'(the people/fish of) Mwalaghagha had all gone up (to the southeast) there (to Nju)' (feast_of_the_fish_271015 059, 141.960 143.912)
(168) ne $i=$ wareri Ware na $i=$ voro $=\boldsymbol{m a}=k e$

FUT 3SG=leave place.name and 3SG=go.up=hither=SPKR.PROX 'it will leave Ware and come up (to the southeast) here (i.e. to Vanatina)'
(bwaindiya_151115 013, 46.206 50.790)

### 4.4.3 =ya ' $\mathrm{YA}^{\prime}$

The clitic =ya and its allomorph =a may fill the fourth postverbal slot in the VC. Anderson and Ross ( p .340 ) analyse $=y a$ as a focus marker that attaches to the element immediately preceding the focussed constituent. Anderson and Anderson state that the enclitic 'appears to point the focus in the verbal construction at the object instead of the action' (p.36). Data from the current corpus indicates that restrictions based on the final vowel/nasal of the root and what other postverbal VC slots are filled call into question a focus analysis of the enclitic.

The enclitic attaches to transitive verbs in cases where there is a following nominal object. It only occurs in tokens when it is the final element in the VC. This means that it never co-occurs with any elements from slots five to 11 . Additionally, it can only attach to the verb root itself or the plural object index $=n g g i,{ }^{105}$ never directly to the transitive or applicative enclitics or directionals. Examples (169) to (174) present examples with the enclitic. The allomorph $=a$ is used when the enclitic attaches to verbs ending in nasals, as in (174).
(169) thi=bigi=ya ghaningga

3PL=GET.PL.CNTR=YA food
'they get the food'
(ft_stimuli_191015_07 156, 374.700 376.260)
(170)
$\begin{array}{ll}i=\text { taga-kothe }=y a & \text { righe }=k o \\ \text { 3SG=by.striking-poke=YA } & \text { trunk=DIST }\end{array}$
'she struck the tree trunk'
(bush_betelnut_011115030, 73.870 76.830)
(171)
$r a=$ simai $=\boldsymbol{y} \boldsymbol{a}$
$1 \mathrm{INCL}=$ squeeze/strain=YA
bwadìbwadi
coconut
(c_031116 159, 286.610 287.636)
(172) lo

| lo | umoru | $i=n g g i n a u=y a$ | lo |
| :--- | :---: | :--- | :--- | nggolo

(173)
$\begin{array}{llllll}i=\text { ten }=\text { nggi }=\boldsymbol{y a} \boldsymbol{a} & \text { karot=ma } & e & \text { tebol=ma } & \text { vwata } & e \\ \text { 3SG=break=3PL=YA } & \begin{array}{l}\text { carrot=DET }\end{array} & \text { PREP } & \text { table=DET } & \text { top } & \text { PREP }\end{array}$
kaina=ma laghiye
knife=DET big
'he cuts the carrots on the table top with a large knife'
(cb_stimuli_101116 011, 119.250123 .668 )
(174)

> wo =mban=a
> 1EXCL=GET.PL.RIGD=YA
> 'we get the stones'
vari-vari $=m a$

RED-stone=DET
(stone_cooking_251015 077, 212.520 214.290)

[^69]For verbs that end in a schwa [ə], the final vowel assimilates to [a] when followed by a nominal object. Compare the token in (175) (with no nominal object and a verb-final schwa) with (176), in which [ə] becomes [a] before the nominal object mwata Linggiya 'Linggiya snake'.
(175) polis ne thi=momodi $=\varnothing$
police FUT 3PL=pull=3SG
'the police will pull him'
(fp_stimuli_201015_04 027, 72.860 76.323)
(176) i=momod=a mwata Linggiya

3SG=pull=YA snake personal.name
'she pulled Linggiya Snake' (snake_story_101214 013-4, 43.780 45.920)
The clitic also attaches to the ambiposition we 'to, for' (§3.3.6.2) and preposition wei 'with' (§3.3.6.4) when the object of the PP is expressed by an NP that follows the preposition/ambiposition and has third person reference.

There appear to be morphophonological restrictions and tendencies governing =ya in the morphosyntactic environments in which it occurs in the VC. As illustrated by the above examples in (169) to (174), the enclitic nearly always attaches to verbs ending in the front vowels [i] and [e], the vowel sequences [ai] and [au], and the nasal [n], when they precede nominal objects. The final vowel of verbs ending in a schwa also changes with [ə] moving forward and down and becoming [a] when the verb precedes a nominal object (176).The enclitic does not occur with verbs ending in [a], and generally does not occur with verbs ending in the back vowels [ o ] or [ u$]$. However, if a verb ending in $[\mathrm{a}],[\mathrm{o}]$, or $[\mathrm{u}]$ takes a third person plural object index and there is a conominal, $=y a$ cliticises to the object index. Compare the pairs of examples in (177) to (180) without and with the object index and =ya:
(177) i=mwana-vatha umbwa=ma yanggai

3SG=w.hands-gather tree/stick=DET branch
'she gathers the branches with her hands'
(cb_stimuli_051016_01 111, 1210.900 1216.670)
(178)
$a=$ kula-vatha=nggi=ya lo
$1 \mathrm{SG}=$ call-gather=3PL=YA POSS.CLF2.1SG
gharighari=ko
'I call my children together/to gather'
people=DIST
(cooking_111015 028-9, 83.440 87.780)
(179)
$i=$ vamo gaeba
3SG=dry wooden.dish
'he dries the wooden dish'
(e_191015 094, 290.890 293.505)
(180) Jaclyn $i=v a m o=n g g i=y a \quad$ pileti
pers.name 3 SG=dry=3PL=YA plate
'Jaclyn dries the plates'
(e_300915_01 112, 364.818 368.459)

The presence of any of the postverbal morphemes excluding a third person plural object index also blocks the occurrence of $=y a$, as shown in (181) to (184).


The apparent restrictions on the occurrence of $=y a$ based on the phonological shape of the verbs it attaches to bring into question a focus analysis. Such restrictions on a morpheme that carries real functional load would seem odd; further analysis is currently needed in order to verify or refute the analysis of $=y a$ as a focus marker. Consequently, the enclitic is glossed as 'YA' throughout the study. While investigating the occurrence of $=y a$, it was also considered whether the enclitic could be a surface realisation of the third person singular object index $=\varnothing \cdot{ }^{106}$ However, this hypothesis can be discounted given that $=y a$ also occurs with the third plural object index. Again, morphophonological restrictions on a functional morpheme make this doubly unlikely. Another hypothesis is that =ya is a form of word-final vowel epenthesis that adds a paragogic syllable. A definitive answer, however, must be left to future investigation.

### 4.4.4 Demonstratives

The ternary spatio-temporal demonstrative enclitics (§3.3.5) may fill the fifth postverbal slot in the VC. In this slot, the demonstratives function as locative adverbials, indicating the source, goal, path or location of the event encoded by the verb. Such adverbial demonstratives in the VC are not widespread in the Oceanic languages, but do occur, for example, in the Papuan Tip language Sinaugoro (Central Papuan Family, PNG, Tauberschmidt 1999: 47) and Vaeakau-Taumako (formerly Pileni, Polynesian, Solomon Islands, Næss \& Hovdhaugen 2011: 126-7). Demonstratives

[^70]functioning adverbially may be used in place of a locative adjunct with the locative base ghe (§3. 3. 5. 2). Compare the token in (185) - where the demonstrative cliticises onto the locative base ghe to mean 'there (near addressee)' - with the example shown in (186), where the demonstrative enclitic occurs VC finally and also indicates a goal 'there (near addressee)'.

```
u=li-ra=\varnothing ghe=na
2SG=OBJ.CLF-put=3SG LOC=ADDR.PROX
```

    'put it there (near addressee)' (ft_stimuli_201015_02 214, 714.829 716.554)
    $u=l i-n j o g h a=w o=\varnothing=\boldsymbol{n a}$
$2 \mathrm{SG}=\mathrm{OBJ}$.CLF-g.back=thither=3SG=ADDR.PROX
'you return it (a picture) back there (near addressee)'
(ft_stimuli_191015_03 182, 479.220480 .500 )

In (187) the demonstrative specifies the location where the event takes place. In (188) it indicates the path followed by the subject.

| $i=n j o g h a$ $e$ | ghemba | ve=kaiwo=ko |  |
| :--- | :--- | :--- | :--- |
| 3SG=go.back | PREP | village | 3SG.INT=work=DIST |

'he goes back to the village to work there'
(ft_stimuli_191015_03 329-30, 798.825 802.420)
(188) iya te-mbe $a=m b e l e=n g g i=k e=v a$ DEM more-still 1SG=follow=3SG=SPKR.PROX=REP
'that (is why) I follow them here (from Yeina to Sudest) in the same way'
(family_ties_081115 034, 84.848 86.465)
The demonstratives also function as temporal adverbs. The demonstrative $=k e$ 'here (speaker proximal)' occurs VC internally to specify that an event has occurred or will occur close to the time of reference. This can be seen in (189) in which the speaker is describing events from earlier that same morning. ${ }^{107}$

```
me \(=\) ghiviya \(=k \boldsymbol{e}\)
 3SG.IMM.PST=be.morning=SPKR.PROX
 'early this morning'
```

                                (cooking_111015002, 8.25014 .690 )
    The enclitic $=k o$ 'there (distal)' designates an event as occurring in a more distant past. When it combines with the verb vivalvuvva 'go first', the resulting meaning is idiomatic and is the equivalent of English phrases such as 'in the olden days' or 'in the past':
(190) va $i=v i v a=k \boldsymbol{v}$ va $i=$ vuyuwo moli

REM.PST 3SG=go.first=DIST REM.PST 3SG=be.heavy INTS
'in the past (lit. it went first there') it was very hard'
(bagi_181215 012, 27.107 29.310)

[^71]
### 4.4.5 moli intensifier

The sixth postverbal slot only has a single candidate: the intensifier moli. This modifier is used to emphasise the intensity of an event or state, and can be glossed as 'very' or 'really: ${ }^{108}$


The intensifier occurs in the somewhat idiomatic temporal VC with vivalvuva 'go first' meaning 'first' or 'firstly':
(195) i=vuva moli a=rumbo ndeghí..
$1 \mathrm{SG}=$ go.first INTS 1SG=make(fire) fire
'first(ly), I make a fire...' (womens_work_221214 013-4, 27.526 34.614)
(196) $i=v u v a=k o$ moli vara ra=nga rama-nda...

1SG=go.first=DIST INTS truly 1PL.INC=say father-1INCL.POSS
'firstly, we say our father...' (kinship_071015 006-7, 19.260 26.720)

Anderson and Anderson (p. 47) describe moli as an intensifier. Both they and A\&R (p. 344) include examples of moli occurring postverbally, although neither include it in their description of the postverbal elements of the VC. Data from the corpus, however, demonstrates the particle's VC-

[^72]internal position following the demonstrative adverbials (as in (196)), and preceding the second part of the discontinuous negative marker $=r e(a s i n(193))$.

### 4.4.6 mun 'a bit'

The negative-polarity particle mun 'a bit' can fill the eighth postverbal slot in the VC. In the VC, the particle obligatorily occurs with the dehortative proclitic $n d e=$ (§4.3.2). Together, they have an emphatic negative function that can be glossed as '(not) a bit', ' (not) at all' or '(n)ever'. ${ }^{109}$ Examples with the polarity particle are presented in (197) and (198), see also (46) and (50) to (52) for further examples. Note: VCs with emphatic negation also always have one of the negative markers $(a n d e . . .=r e$ or maa).

| ko | wolaghiye | ande | regha | $i=n d e=$ thari $=$ re | $\begin{align*} & \boldsymbol{m u n}  \tag{197}\\ & \text { a.bit } \end{align*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CONJ | everything | NEG1 | one | 3SG=DEHORT=be.bad=NEG2 |  |
| 'but the rest isn't bad all' |  |  |  |  |  |


| thonggo | wevo | togha | ande | mbe | $i=n d e=$ ghamb $i=r e$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| if | young.woman | new | NEG1 | still | 3SG=DEHORT=give.birth=NEG2 |

mun...
a.bit
'if a young woman still hasn't given birth ever...'
(new_mother_251214 003-4, 7.699 13.002)
There is some variation in the ordering of $=r e$ 'NEG2' and mun 'a bit'. There are four tokens in which the ordering of these morphemes is reversed. All four tokens share a further atypical feature, namely the combination of the negator maa 'NEG' with the second half of the discontinuous negator $=r e$ 'NEG2' instead of ande 'NEG1'. Consider the two tokens presented in (199):

(199) | $i=n g a$ | "posi | hu=ghena | gougou | na |
| :--- | :---: | :---: | :---: | :---: |
| 3SG=say if | 2PL=sleep | night | and | NEG |
| $i=n d e=$ ghena-thai-ngge | mun=re | maa |  |  |
| 3SG=DEHORT=sleep-be.close.to=2SG | a.bit=NEG2 | NEG |  |  |
| $i=n d e=v \dot{\text { - }}$-ghathi=ngge |  | mun=re..." |  |  |
| 3SG=DEHORT=w.fingers-touch=2SG | a.bit=NEG2 |  |  |  |

'she said "if you sleep tonight and he doesn't sleep close to you at all (and) does not touch you at all..." (mandumbunga_02_181016 354-5, 885.646 894.102)

The four tokens were produced by one speaker in a single text, while the five remaining corpus tokens with the 'standard' ordering of =re mun came from four different speakers. This suggests that the variation may be idiolectal in nature. This speaker was also only one of two speakers to produce the maa... $=r e$ negation combination; both of the speakers that did produce the combination were men of the same age (early 20s at the time of recording). The second speaker did not produce

[^73]any predicates with mun 'a bit', but the common usage of maa $\ldots=r e$ could potentially point to a wider type variation.

The negative-polarity item is not mentioned by A\&R. Neither they nor A\&A include any tokens of the particle. This is likely due to a gap in their data, as they also do not identify the negative emphatic function of the dehortative prefix $n d e=$ in combination with mun (the most common type of clause in which the particle is attested).

### 4.4.7 =va repetition

The enclitic $=v a$ can fill the ninth slot in the VC. It indicates repetition and can be glossed as 'again'. It specifies either that an activity is being performed a number of times (200) or that an individual or entity is returned to an earlier state (201) or location. It does this even when the action of returning the entity is not a repeated action itself, as in (202).

| (200) | Bwaindiya pers.name | gha-ma <br> POSS.CLF1-1EXCL.POSS | friend | wo- $u=$ ghaywawo $-n g a=v a$ <br> HORT-2SG=watch-TR=REP |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { ghena=ko?" } \\ & \text { lime.stick=DIST } \end{aligned}$ |  |  |  |
|  | 'Bwaindiya said "our friend, look at the limestick again", |  |  | $\begin{aligned} & \text { again"" } \\ & \text { ya_151115 059-60, } 180.896 \text { 185.912) } \end{aligned}$ |
| (201) | $\begin{array}{ll} \text { kero } & i= \\ \text { already } & 3 \end{array}$ | $i=$ pa-panunuwana $=\boldsymbol{v} \boldsymbol{a}$ 3SG=RED-make.happy=REP | $\begin{aligned} & \text { levo }=m a \\ & \text { POSS.CLF } \end{aligned}$ | :young.woman=DET |
|  | 'already he is making his wife happy again' |  |  |  |

(ft_stimuli_191015_03 221, 557.350 560.092)
(202) ela=ma $\quad$ ndegh $\dot{i}=m a \quad e \quad m b w a=m a$ variye woman=DET 3SG=GET.SG.RIGD cup=DET PREP water=DET container tine na kero $\quad i=w o-u t u-n j o g h a=\varnothing=v a$
inside and already 3SG=GET.SG.RIGD-immerse-go.back=3SG=REP
'the woman gets the cup from the water container and then puts it back again'
(put_stimuli_191015_02_02 086-9, 592.593 611.800)
The enclitic also occurs in clauses with the particles te-mbe 'more-still'. The combination of morphemes specifies that the situation denoted by the verb is the same or similar to another prior situation. Thus, this combination can collectively be glossed as 'in the same way'. In (203), the speaker outlines the parallel trading partnerships traditionally practised between the people of Vanatina and neighbouring islands.

| (203) | $\begin{aligned} & \text { veth } \dot{i}=\text { loyau } \\ & \text { 3PL.INT=exchange } \end{aligned}$ | Panaeati <br> place.name | Vanatina-e=ke <br> place.name-3SG.PO | S=SPKR.PROX | $\begin{aligned} & \text { veth } i=w a \\ & \text { 3PL.INT=go } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Misima te-mbe <br> place.name more-still |  | $\begin{aligned} & =\text { giy } a=\varnothing=\boldsymbol{v} \boldsymbol{a} \\ & \text { NT }=\text { give }=3 \mathrm{SG}=\text { REP } \end{aligned}$ | nggorei-ye like-3SG.POSS | buda <br> what |
|  | $\begin{aligned} & \text { veth } \dot{i}=\text { giya }=\varnothing \\ & \text { 3PL.INT= give=3SG } \end{aligned}$ | Panaeati place.nam | $\begin{aligned} & w e=n g g i \\ & \text { PREP=3PL } \end{aligned}$ |  |  |

'we exchange to Panaeati, (people of) Vanatinae go to Misima (and) trade (lit. give) it in the same way like how they give it to Panaeati'
(kula_exchange_101214 047-51, 147.630149 .965 162.110)

### 4.4.8 =engge 'just'

The tenth postverbal slot can be filled by the restrictive enclitic =engge. The enclitic can be glossed as 'just ${ }^{110}$, only, merely' and specifies that 'only' the activity of the verb is being undertaken to the exclusion of any other activity. In (204) the use of =engge emphasises that participants are 'just' meant to talk and do not have to do anything else.

| ra=utu vara | nggora=ke | kero |
| :--- | :---: | :---: |
| 1INCL=speak | really | like=SPKR.PROX |
| already |  |  |

(ft_stimuli_201015_01 001-2, 59.450 64.080)

Further examples with the enclitic are given in (205) to (208):
(205) l

| $l e$ | gogomwa=ko | $v a$ | $i=$ la-bigi=mban=ø |  | $e$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| POSS.CLF2 | riches=DIST | REM.PST |  | 3SG=and.go-GET.PL.RIGD-put=3SG | PREP |  |
| $l e$ | nambo=ko | tine | ko | amba | $i=$ wareri=engge |  |
| POSS.CLF2 | basket=DIST | inside | CNJ | then | 3SG=leave=just |  |

'her riches, she put them in her basket and then just left' (bush_betelnut_011115 131-, 312.530319 .720 )
(206)

| wevo $=k o$ | $i=w o-v a i r i$ <br> young.woman=DIST | sises=ma <br> 3SG=GET.SG.RIGD-lift | na <br> scissors=DET | ma | | |
|---|---|---|---|---|---|---|
| and |  |  |  |  |$\quad$| already |
| :--- |

(cb_stimuli_051016_01 239-40, 2577.138 2584.366)
(207) amba i=renuwanga=engge vara thari
then $3 \mathrm{SG}=$ think.about=just truly bad
'then he just thought of the problems' (ft_stimuli_201015_01 227, 851.010 853.140)

[^74]$\begin{array}{lllllll}\text { (208) ande } & \text { me-ne } & \text { thi=ghan=re } & \text { bwarogi } & {[\ldots]} & \text { thi=ghan=engge } & \text { vara } \\ \text { NEG1 } & \text { more-FUT } & \text { 3PL=eat=NEG2 } & \text { fish } & & \text { 3PL=eat=just } & \text { really }\end{array}$
NEG1 more-FUT 3PL=eat=NEG2 fish 3PL=eat=just really
theyara na ghaningga
ginger and food
'they cannot eat fish [...] they just eat ginger and (meat-free) food' (funeral_feasting_081015_02 100-03, 253.260 264.264)

### 4.4.9 vara 'truly'

The final possible element of the VC is the particle vara. The particle emphasises the veracity of the situation described by the VC, and can be glossed as 'truly' or 'really' (in the sense of 'actually'):


It is relatively common for there to be no overt reflection of vara 'truly, really' in the free translation in corpus tokens. In these cases, however, the wider context of the texts often appears to support a reading that would include 'truly/really'. The example presented in (212) follows just a few clauses after the example already given above in (209), in which 'truly' is expressed in the translation. The examples come from a traditional narrative; the speaker is describing the journey made by a snake between Vanatina, Yeina and Rossel Island, emphasising the exact 'real' route taken by the snake (as she - the snake - is credited with creating and changing certain landmarks). ${ }^{111}$

| ve=yaku | vara | Yeina | luwa |
| :--- | :--- | :--- | :--- |
| 3SG.INT=stay | truly | place.name | middle |

'she (really/truly) stayed in the middle of Yeina (island)'
(snake_passage_061215 190, 458.450 461.640)

[^75]The example presented in (213) comes from a text that describes the traditional trade networks of the Louisiades. The speaker concludes by stating that these networks are, in fact, still functioning today, and will continue to do so.

| (213) | ma-ma |  |  | mumugatradition/custom | ande <br> NEG1 | $\begin{aligned} & \text { ne } \\ & \text { FUT } \end{aligned}$ | $\begin{aligned} & i=k o=r e \\ & 3 \mathrm{SG}=\text { finish=NEG2 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | POSS.CLF2-1EXCL.POSS |  |  |  |  |  |  |
|  | mbe | $i=n a w e$ | vara |  |  |  |  |
|  | still | $3 \mathrm{SG}=$ continue |  |  |  |  |  |
|  | 'our | stoms/traditio | nev | d, they still (re | y/actu | ) con |  |
|  |  |  |  | (kula_ex | nge_10 | 2140 | , 218.190224 .3 |

Anderson and Ross and A\&A gloss the morpheme as 'really', but do not consider it to be positioned within the VC. It is included in the analysis of the VC in the current description as it precedes any lexical object (if present), as shown in (214).

| mbe | $i=$ nunuwana | vara | levo |
| :--- | :--- | :--- | :--- |
| still | $3 S G=l o v e$ | truly | POSS.CLF2:young.woman |

'he still (really/truly) loves his wife' (ft_stimuli_191015_05 316, 724.350 726.339)

## 5 'Classificatory’ elements in the verb complex

### 5.1 Introduction

As was shown in chapter 3, Sudest has nominal classification systems widely attested among the Oceanic languages of the western Pacific (Lynch et al. 2002): possessive classifiers (§3.4.4.2) and numeral classifiers (§3.4.3.1.1). This chapter describes two further sets of 'classificatory' morphemes that occur within the verb complex. The first group consists of a set of over a dozen derivational prefixes that specify how an action is carried out. Such affixes are traditionally labelled 'classificatory prefixes' in the Papuan Tip literature (Capell 1943; Ezard 1978), although the term 'manner-of-causation prefixes' is adopted here for reasons that are outlined below. The second group comprises a suppletive set of ten classificatory verbs (CLFVs) with a basic meaning of 'get' that can be grouped into seven categories. While verbal classifiers are attested in multiple Papuan languages (see Aikhenvald 2000: 171 and the references therein or Fedden 2011 for a recent description of two verbal classifier systems in Mian), no verbal classifier system is, to the best of my knowledge, attested in an Oceanic language. Examples of the manner-of-causation prefixes are presented in (1), which show the transitive verb bebe 'break' in sentences both with and without the verbal prefixes.

[^76]The examples presented in (2) show two of the classificatory verbs. When appearing as the only verb stem in the VC, the basic meaning of the verbs is 'get'. The verbs are selected based on the qualities and number of the object referent. For example, in (2a), the singular CLFV wo 'get (sg. rigid entity)' is used with the object vari 'stone', but in (2b) its plural counterpart mban 'get (pl. rigid entity)' occurs with the plural object referent varivarit 'stones'.
$\begin{array}{llll}\text { (2) a. } & \begin{array}{l}\text { lolo } \\ \text { person }\end{array} & \begin{array}{l}i=\boldsymbol{w o} \\ \text { 3SG=GET.SG.RIGD }\end{array} & \text { vari } \\ & \text { stone }\end{array}$
'the person gets the stone' (put_stimuli_191015_01_02 162, 593.630 595.586)
b. wo=mban=a

1EXCL=GET.PL.RIGD=YA
'we get the stones'
vari-vari
RED-stone
(stone_cooking_251015 077, 212.520 214.290)

The descriptions of the two verbal paradigms are grouped in the current chapter due to their prominence in both the Sudest VC and the expression of 3PEs, and because of the traditional nomenclature of the two types of morphemes. Nevertheless, as I will now show, only one of the paradigms can be considered 'classificatory' in terms of being a type of nominal classification.

Before continuing to the description of these two groups of morphemes, it is, therefore, necessary to consider the term 'classificatory' further. Verbal classifiers are included in the majority of nominal classification typologies as a kind of nominal classification, along with numeral, noun and possessive classifiers (Aikhenvald 2000; Kilarski 2013; Fedden \& Corbett 2017; see Passer 2016a, 2016b for an opposing view). ${ }^{112,113}$ The present analysis follows Aikhenvald's (2000: 149) definition of verbal classifiers as 'categorizing the referent of [the verb's] argument in terms of shape, consistency, size, structure, position, and animacy' (Aikhenvald 2000: 149). The Sudest verbs fit within such a definition. Thus, they can be considered a type of noun classification device as their selection is based on properties of the O argument referent. The manner-of-causation prefixes, however, do not fit into the above definition. If one is to analyse the prefixes as categorising any referent, it is that of an instrumental adjunct and not a verbal argument. ${ }^{114}$ Furthermore, the Sudest prefixes specify the manner in which an action is carried out rather than

[^77]the instrument itself, although some of the manner prefixes do entail the use of particular types of instrument (e.g. ri-- 'with teeth').

The chapter is divided into two sections: a description of the manner-of-causation prefixes is presented in §5.2, followed by an analysis of the classificatory verbs in §5.3. Used in conjunction with traditional text data, the CUT-BREAK stimuli task (Bohnemeyer et al. 2001) and PUT project stimuli task (Bowerman et al. 2004) proved useful to investigate the manner-of-causation prefixes and classificatory verbs respectively. This is because manner-of-causation morphemes and verbal classifiers frequently play a role in the expression of events from semantic domains of cutting and breaking and placement respectively.

### 5.2 Manner-of-causation prefixes

'Classificatory prefixes' are a well-known feature of the Papuan Tip and their study goes back to Capell (1943), who characterised them as 'defin[ing] the manner in which an action is carried out - by hand, by word of mouth, by poking holes, etc.' (p. 242). Following A\&R (2002), however, the current study adopts the term 'manner-of-causation prefix' in its stead (including when citing literature that discuses 'classificatory prefixes'), which serves not only to avoid confusion with classificatory verbs specifically, but also serves as a more descriptive term that specifies the function of the prefixes.

Manner-of-causation prefixes are attested both in Nimowa (Ezard 1978) and Misima (W. Callister 1985a), two of the most closely related languages to Sudest. Further descriptions of manner-ofcausation prefixes in Papuan Tip languages include Ezard's detailed descriptions of the Tawala prefixes (1978, 1992, 1997), Huckett (1974) on Iduna, Olson (1992) on Gumawana and Ross (2002) on 'Ala'ala. ${ }^{115}$ There are also descriptions of manner-of-causation prefixes attested in Oceanic languages outside of the Papuan Tip cluster, including Bali-Vitu (Meso-Melanesian cluster, Ross 2002c), Manam (North New Guinea cluster, Lichtenberk 1983) and multiple New Caledonia languages (Ozanne-Rivierre \& Rivierre 2004). The most extensive description of a New Caledonian system is found in Osumi (1995) on Tinrin (also Tîrî).

Bradshaw (1982: 80, 1985: 28) and subsequent scholars (e.g. Crowley 2002: 177; Ozanne-Rivierre \& Rivierre 2004: 350; Verkerk \& Frostad 2013: 10) propose that the manner-of-causation prefixes are grammaticalised $V_{1}$ stems in serial verb constructions with cause-effect (resultative) semantics. Bradshaw (1982: 67-68) analyses the manner-of-causation morphemes as falling along a continuum.

[^78]At one end are verb stems that indicate manner-of-causation in cause-effect complex verbs. Further down the continuum are prefixes that have lost their independent verb status and may have undergone phonological reduction and/or semantic bleaching (Bradshaw 1982). At the far end of the continuum, Bradshaw (1982) finds prefixes that have experienced such extreme semantic bleaching that they function as general causative prefixes. Some Papuan Tip languages today have multiple general causative prefixes as a result of this process. For example, both Muyuw and Iduna have five general causative prefixes unrelated to the Austronesian causative *pa(ka)- (Bradshaw 1982). ${ }^{16}$ Recurring semantic distinctions are found in the manner-of-causation prefixes across Oceanic languages no matter the size of individual language's inventories and include actions completed with various body parts (fingers, hand, teeth, feet), cutting or chopping actions, and actions involving the voice (Bradshaw 1982; Ozanne-Rivierre \& Rivierre 2004).

The Sudest manner-of-causation prefixes are presented in Table 5.1. Many of the prefixes are also identified in Ezard (1978) and A\&R as manner-of-causation prefixes. The prefixes can roughly be divided into those that specify a manner that involves a body-part and those that specify non-bodypart involvement. ${ }^{117}$ The distinction, however, is not always clear-cut. For example, the prefix vo'by spearing, piercing' occurs in VCs describing an event in which an entity is speared or pierced with a sharp tool but is also used when describing the action of poking holes into something with a finger (e.g. poking holes in the dirt while planting). In a third type of event, vo- is used to specify that an object is being manipulated by the 'pointy end' of an animal or human, i.e. by using the head/snout/tusks.

[^79]| prefix | meaning | potentially related verbs |
| :---: | :---: | :---: |
| ghe- | 'by hand' |  |
| mwana- *^ |  |  |
| nji- |  |  |
| $v i-*$ | 'with fingers' | $v i ' b r a i d / p l a i t ~(h a i r) ' ~$ |
| thu-* | 'by pointing' |  |
| vuri-*^ | 'with feet' |  |
| ghala-* | 'by body weight' |  |
| ri-*^ | 'with teeth' | ghari 'bite' |
| ririt^ | 'by striking (with bent arm)' |  |
| taga-* |  | taga 'cut (leaf)' |
| go- | 'by speaking' | go 'speak (a language)' |
| vo-* | 'by spearing/piercing' | vwe 'spear' |
| go-* | 'by cutting' | $g u$ 'cut (tree)' |
| ki-*^ |  |  |
| sowo- | 'by sawing' |  |
| pseudo-prefix |  |  |
| thuwo-* | 'with tongs' | thuwo 'grip with tongs, get with tongs' |

Table 5.1 Manner-of-causation prefixes (*indicates prefixes attested by M. Anderson and Ross (2002), ^ prefixes attested by Ezard (1978))

The current analysis distinguishes 15 manner-of-causation prefixes and one pseudo-prefix, which are grouped based on semantic and formal criteria. Semantically, the prefixes conform to prefixes documented in other Papuan Tip languages: they specify the manner in which an action is performed. Formally, the prefixes are in a paradigmatic relationship and are mutually exclusive. While nearly all the prefixes - with the potential exclusion of the English borrowing sowo- 'by sawing' - have likely grammaticalised from verb stems in multi-stem constructions, the majority of the prefixes have no identifiably related verbal counterparts today, and cannot function as independent verbs in the VC. Instead, they fill a preverbal slot in the VC following the reciprocal prefix $v e$-, and preceding the causative prefix $v a$ - (see $\S 4.3$ for positional slots in the verb complex). ${ }^{118}$

Six of the prefixes may be related independent verb stems that are attested in the lexicon. Some of these verb stems ( $g u^{\prime}$ 'cut (tree)', taga 'cut (leaf)', vwe 'spear') have only been attested in elicitation and/or in texts with older speakers, suggesting that they may be falling out of use. In one case, the prefix is also phonologically reduced (gharí 'bite', rí- 'with teeth'). As previously noted, a tendency towards semantic bleaching is a pervasive feature of the Papuan Tip manner-of-causation prefixes and this appears to be born out when comparing the Sudest prefixes and their more general

[^80]semantics to their verb stem counterparts. Semantic bleaching may also be responsible for multiple prefixes with identical semantics (e.g. ghe-, mwana-, and nji- 'by hand'). Indeed, evidence from A\&R points to the prefixes go- and ki- 'by cutting' (§5.2.10) previously possessing distinct semantics that are not present in the current data.

The manner-of-causation prefixes typically occur in clauses that describe events where an agent uses an instrument to impact or come into physical contact with a patient. Most commonly, these are different kinds of events of breaking, e.g. 'break', 'crack', 'crush', 'cut', ‘rip', 'saw', 'scratch', 'smash', 'snap', 'split', 'tear'. Indeed, many events of breaking are distinguished by the manner-of-causation prefix they take. This is shown in the previous section in (1), where mwana-bebe 'with hands-break' means 'snap' or 'break (using hands)' and go-bebe 'by cutting-break' means 'cut'. Events of exerting force and caused accompanied motion without bringing about a change of state in a patient also regularly take a manner-of-causation prefix, e.g. 'immerse', 'poke', 'push', 'pull', 'take in/out', 'turn over'.

The prefixes occur with both transitive or intransitive verbs. Argument structure and valence remain the same when a manner-of-causation prefix combines with a transitive verb, as in (1) above. ${ }^{119}$ When a prefix occurs with an intransitive verb stem, it typically has a function comparable with the causativiser $v a$ - ( $\S 4.3 .8 .2$ ) in addition to its manner-specifying function and the derived verb is transitive. Compare the intransitive clause with ranggi 'go out' in (3a) with the derived transitive clause containing manner-of-causation prefixes in (3b). The S of the intransitive clause is demoted to the O argument of the transitive clause and a new agent-like argument $(\mathrm{A})$ is introduced.

| a. | i=ranggi | $e$ | thiyo |
| :--- | :--- | :--- | :--- |
|  | 3SG=go.out | PREP | string/jail |
|  | 'he goes out of the jail' |  |  | (fp_stimuli_191015_05 461, 1017.760 1018.610)

b. wevo=ma $\quad i=m$ wana-ranggi $=y a \quad$ kap $=m a$
young.woman=DET 3 SG=w.hands-go.out=YA cup=DET
'the girl takes/pulls out the cup' (cb_stimuli_101116 016, 214.590 217.735)
The manner-of-causation prefixes for striking (riri- and taga- 'by striking') and piercing (vo- 'by piercing/spearing') combine with intransitive verbs of motion to describe the actions of paddling or poling a canoe respectively. Unlike all other constructions involving a manner-of-causation prefix and intransitive verb, the derived forms are not transitive, but rather remain intransitive and appear to specify the manner of motion of the subject ( S ) rather than an object (although the event also entails the caused motion of the vessel as well but this is expressed by an adjunct not by a core

[^81]argument of the verb). Compare the intransitive examples with ranggi 'go out' and lawa 'go across' in (4) and (5) with the causativised VC in (3b).
(4)

| i=vo-ranggi <br> 3SG=by.piercing-go.out <br> 'he poled out to Rospoin point' | Rospoin <br> place.name | mbothi-ye <br> nose-3SG.POSS |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (mandumbunga_02_181016 121, $301.877 ~ 304.387) ~$ |  |  |

The remainder of this section outlines each of the prefixes in turn before considering the pseudo-manner-of-causation prefix and stems attested in previous descriptions of the language that do not occur in the current data (both corpus and elicitation).

### 5.2.1 mwana-, ghe- and nji- 'with hands'

The three prefixes mwana-, ghe- and nji-specify that an action is completed using the hands. In many cases, the prefixes may be used interchangeably without any apparent semantic difference. Consider the three sentences presented in (6):

| (6) a. | $l o l o=k o$ | $i=$ momod $\dot{t}$ | wool $=$ ko | $n a$ | $i=m w a n a-t e n=\emptyset$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | person=DIST | 3SG=pull | wool=DIST | and | 3SG=w.hands-break=3SG |

'the person pulls the wool and breaks it with their hands/snaps it'

$$
\text { (cb_stimuli_051016_01 166, } 1875.420 \text { 1880.925) }
$$

b. $\quad a=$ ghe-ten $=a \quad$ thiyo $=k e$

1SG=w.hands-break=YA string=SPKR.PROX
'I break the string with my hands/snap the string' (e_181116_02)
c. amala=ko $\quad i=n j i-t e n=a \quad$ thiyo $=k o$
man=DIST 3SG=w.hands-break=YA string/rope=DIST
'the man breaks the string with his hands/snap the string'
(cb_stimuli_051016_02_02 131, 994.605 997.659)

None of the prefixes has an identifiable corresponding verb form and the prefix mwana- is the only one of the three prefixes identified in previous literature. This may be due to the relative frequencies of the three prefixes. In the corpus, there are 162 tokens of mwana- but only four tokens of nji- and two of ghe-.

One set of tokens from elicitation does show a semantic distinction between mwana- and ghe- 'with hands'. As shown in (7) and (8), when the intransitive stem ru 'go in' combines with mwana- it
means 'pull', and when it combines with ghe- it means 'push'. It is unclear whether there are further such combinations, tendencies or constraints on the three prefixes and how they combine (or do not) with specific verb stems.
(7) $\quad a=m w a n a-r u=w o$ 1SG=w.hands-go.in=thither
daghata $=m a \quad e \quad$ nggolo raberabe
'I pull the log in under the house' (e_021115_01)
$i=\boldsymbol{g h e}-\boldsymbol{r u}=$ wo daghata=na $\quad$ nggolo=ko raberabe
3SG=w.hands-go.in=thither
log=ADDR.PROX PREP
house=DIST under
'I push the $\log$ in under the house'
(e_021115_01)

Some speakers also note that nji- 'with hands' is associated with actions involving not just hands but specifically fingernails. This analysis is compatible with the examples in (9) and (10) which describe the picking of a flower and stem and a rat scratching; both activities that generally involve nails/claws.
(9) $\quad i=n j i-n g g i l a=\varnothing \quad n a \quad m a \quad i=m e n a \quad i=v o-t h i t h i$
3SG=w.hands-break=3SG and already 3SG=come 3SG=by.spearing-push.through

$$
\begin{array}{ll}
e & b a b a=k o \\
\text { PREP } & \text { wall=DIST }
\end{array}
$$

'he broke/plucked it (a flower) by hand hands and he came and poked/stabbed it into the wall' (mandumbunga_02_181016 091-92, 236.642 240.264)

| teo $=m a$ | $i=$ ruku-ranggi | $i=n j i-$ koko $=y a$ | nggama=ma | mbothi-ye |
| :--- | :---: | :---: | :--- | :--- |
| rat=DET | 3SG=run-go.out | 3SG=w.hands-scrape | child=DET | nose-3SG.POSS |
| 'the |  |  |  |  |

(frogstory_161214 058-59, 145.292 149.910)

A hands and nails interpretation also fits the derived verb in (11) nji-vun 'by hand-turn off', which means 'pinch (using hands)' but is extended here to describe abdominal contractions experienced during childbirth.

$$
\begin{array}{ll}
\text { gamo-ye } & i=n j \boldsymbol{i}-\text { vun }=\varnothing  \tag{11}\\
\text { stomach-3SG.POSS } & 3 S G=\text { w.hands-turn.off/finish=3SG } \\
\text { 'she has contractions (lit. her stomach pinches her)' } \\
& \text { (new_mother_251214 041, 98.500 101.037) }
\end{array}
$$

Examples (12) and (13) show the only spontaneous examples of the prefix ghe-. In (12), a girl immerses a receptacle in a body of water, and in (13) a woman physically rolls a man over so that he is sleeping closer to her granddaughter (in the hope of marrying them).

| regha | $i=n j a$ | $i=\boldsymbol{g h e}$ - utu $=\varnothing$ |
| :--- | :--- | :--- |
| one | 3SG=go.down | $3 S G=$.hands-immerse=3SG |

'one (girl) went down (and) dipped it by hand (into the water)'
(mandumbunga_02_181016 174, 430.279 435.642)

```
elisari=ko va i=ghe-vaghile =
woman=DIST REM.PST 3SG=w.hands-turn=3SG
```

'the old woman turned him over with her hands'
(mandumbunga_02_181016 341-342, 858.137 861.780)

It is possible that the prefixes were previously semantically more distinct but have become similar due to semantic bleaching as is suggested by the fingernails connotation that nji- sometimes carries.

There is also evidence that the prefix mwana- is developing a secondary meaning 'quickly'. This can be seen when comparing the three examples in (14) to (16) with the examples in (17) and (18) (as well as (6a) and (7) above); the latter of which only express the 'with hands' sense. While the event of getting a burning log/stick in (14) presumably involves the use of the hands, the same cannot be said for the examples shown in (15), where the speaker is urging the hearers to discuss their story quickly so that they can get on with recording it, and (16), which describes a man lowering his head into a bucket.
(14) i=mwana-yengge ndighe

3SG=w.hands-GET.SG.FIRE fire
'he quickly gets/grabs the fire' (child_and_giant_201015 067, 172.580 177.210)

| ...ko | wo-vara=mwana-utu=nga-kai | vara | iya $=k o$ |
| :---: | :--- | :--- | :--- |
| but | IMP-1INCL.INT=w.hands-speak=TR-INC | really | DEM=DIST |

'...but we will quickly talk about that first'
(fp_stimuli_201015_02 237, 802.840 804.380)
(16) i=mwana-njo=nga umbali-ye $e$ buket

3SG=w.hands-go.down=TR head-3SG.POSS PREP bucket
'he quickly lowers his head down to the bucket'
(put_stimuli_201025_01 041-2, 305.695 309.230)
(17) i=mwana-thatha kaliko e nima-e

3SG=w.hands-tear cloth PREP hand-3SG.POSS
'she tears cloth with her hands’ (cb_stimuli_051016_02_02 053, 414.984 417.500)
(18) $i=m j e \quad v e=m w a n a-n g o n j e \quad u n e=k o$

3SG=try $\quad 3 \mathrm{SG} . I N T=w . h a n d s-p i c k \quad$ fruit=DIST
'she tried to pick that fruit by hand'
(bush_betelnut_011115 038-39)

Manner-of-causation prefixes specifying the involvement of the hands crosslinguistically may have a tendency to grammaticalise over other manner-of-causation morphemes, albeit usually into general causatives. Bradshaw (1982: 72) finds that in at least two Papuan Tip languages, Tawala and Iduna, the manner-of-causation prefixes meaning 'with hands' only sometimes expresses their manner-specifying function, and are now also used as a general causative prefix alongside reflexes of the Austronesian causative *pa(ka)-. For a number of North American languages, Mithun (2002) reports that 'with hands' manner-of-causation morphemes have also grammaticalised into general
causatives. She speculates that this tendency of hand-related manner-of-causation morphemes to grammaticalise over others is due to the ubiquitous nature of actions involving the use of hands. This ubiquity leads to such morphemes becoming the default marker and opens them up to reanalysis.

### 5.2.2 vi- 'with fingers'

The prefix $v i$ - indicates that the action involves the fingers. In (19), the subject clasps a piece of material between her fingers.

| wanakau=ko | regha | $i=v i-k i k i=y a$ | kaliko <br> one <br> young.women=DIST | valit <br> side |
| :--- | :--- | :--- | :--- | :--- |
| mbothi-ye |  |  |  |  |

(cb_stimuli_051016_02_01 104, 616.770 621.701)
The prefix may be related to the transitive verb vi 'braid/plait (hair)':

```
a=vi umbalu-nggu=ke
1SG=braid(hair) head/hair-1SG.POSS=SPKR.PROX
```

'I braid my hair' (e_231116_02)

There are ten tokens of the prefix in the corpus, the majority of which occur in with a CLFV to specify that the object is acquired using the fingers, as in (21) and (22).
(21) wevo-ma $i=v i$-wo kap e tebol=ma
young.woman=DET 3SG=w.fingers-GET.SG.RIGD cup PREP table=DET
vwata-e
top-3SG.POSS
'the girl gets the cup with her fingers from the table top'
(put_stimuli_191150_02_01 011-4, 72.731 79.524)
(22) $\quad b u k u=m a \quad i=g h e n a-g h e n a \quad$ lolo=ma $\quad i=m e n a=$ engge $m a$
book=DET 3SG=RED-sleep person=DET 3SG=come=just already
$i=l a$-vi-thin $=\varnothing$
3SG=and.go-w.fingers-GET.SG.CNTR=3SG
'the book is lying on the floor, the person just comes and gets it with their fingers'
(put_stimuli_231015 055, 430.840 434.223)

In (23), the verb kum 'tap' combines with the prefix to mean 'touch' or 'caress', and in (24) the prefix occurs with varara 'turn on' to specify the action needed to switch on a light or computer.

```
maa i=nde-vi-kum=nggo mun
NEG 3SG=DEHORT-w.fingers-tap=1SG a.bit
```

'he didn't touch/caress me a bit' (mandumbunga_02_181016 362, 909.414 911.897)

| $l o l o=m a$ | $i=v i$-varara | $l e-\varnothing$ | powa=ma |
| :--- | :--- | :--- | :--- |
| person=DET | 3SG=w.fingers-turn.on | POSS.CLF2-3SG.POSS | power=DET |

'the person turns/switches on the power (with their finger)'
(put_stimuli_231015 019, 176.370 181.468)

### 5.2.3 thu- 'by pointing'

The prefix thu-appears to indicate that the action is completed with explicit pointing on the agent's part, either with a non-body part instrument or hand/arm. The use of the prefix is highly restricted and appears to only combine with the verb vatomwe 'show'. The prefix does not occur in the corpus and the only tokens of it comes from elicitation, shown in (25).

```
gamaina i=thu-vatomwe koukou we=nggo
girl 3SG=w.pointer-show canoe PREP=1SG
'the girl showed the canoe to me (with a pointer/by pointing)' (e_041215_02)
```

M. Anderson and T. Anderson (1991: 23) provide an example of the prefix occurring alongside $r u$ 'go in, enter' with the meaning 'poke (instrument)'. Speakers, however, rejected the example cited by A\&A, shown in (26).

$$
\begin{array}{lll}
\text { *i } i=t h u-r u-w o ~_{l} & e & \text { goga } \\
\text { 3SG=w.point-move/go.in-thither } & \text { PREP } & \text { hole } \tag{e_111116}
\end{array}
$$

Intended: 'he poked (the instrument) into the hole'
While the prefix may have fallen out of use in the last three decades, the above example was rejected by speakers who would have been in their 20s and 30s in the late 80 s and early 90 s, suggesting that any such prefix may already have been falling out of use then. Attempts to elicit thu- 'by pointing' with additional verbs were also deemed ungrammatical by speakers.

### 5.2.4 vurí- 'with feet'

The prefix vuri- signals the involvement of the feet in the action. There is no specific verb with the meaning 'kick' in the language and the sense of 'kick' is conveyed by adding the manner-ofcausation prefix vuri- 'with feet' to the verb stem vewo 'push':

$$
\begin{array}{lll}
\text { nggama=ma } & i=\text { vuri-vewo } & \text { bal }=m a \\
\text { child=DET } & \text { 3SG=w.feet-push } & \text { ball=DET } \tag{e_211116_02}
\end{array}
$$

'the child kicks the ball'
There are four tokens of the prefix in the corpus, and the prefix has no identifiable corresponding verb form (although see further below). The corpus examples are presented in (28) to (30) (the fourth token is identical to (30) and is therefore not repeated here). In (28), where vuri- 'with feet'
is preceded by the subsequent associated motion prefix $l a=$ 'and go', the clause describes a series of events in which a woman kicks over a bucket seemingly accidentally and then walks away.

$$
\begin{array}{lll}
\text { ela=ma } & \text { i=mena=engge } & \text { ma }  \tag{28}\\
\text { woman=DET } & \text { 3SG=come=just } & \text { already }
\end{array}
$$

$i=l a$-vuri-linggi-thavwi $=\varnothing$
3SG=and.go-with.feet-pour-accidentally=3SG
'the woman came and tipped it (a bucket) over accidentally with her foot and kept going'
(put_stimuli_231015 053-4, 408.314 409.712)

Example (29) describes the action of pushing a chair out from a table while being seated.

| wevo $=k o$ | $i=$ ro-vala-ra | $e$ | chair |
| :--- | :--- | :--- | :--- |
| young.woman=DIST | 3SG=stay.and-cover-put | PREP | chair |

$i=v u r i-v e w o-$ rangg $i=\varnothing$
3SG=w.feet-push-go.out=3SG
'the woman sits on a chair (and) she pushes it out using her feet' (cb_stimuli_051016_02_01 057, 333.643 341.136)

The example given in (30) is different from the preceding tokens in that the instrument type specified by the prefix is both the manner/instrument of the action and the theme of the event karitau 'tridacna clam' is not an argument of the verb but rather the possessor of gha-ye 'mouth3SG.POSS' and part of the PP. The combination of vuri- 'with feet' and mban 'put' is also notable because mban 'put' never functions as an independent verb and only occurs in complex verbs with a monotransitive $\mathrm{V}_{1}(\S 6.3 .3)$. In this case, the prefix is filling the function of what is usually a monotransitive verb.
(30) $i=$ vuri-mban $=\varnothing$ karitau $e \quad$ gha-ye

3SG=w.feet-put=3SG tridacna.clam PREP mouth-3SG.POSS
'she puts it (her foot) in the tridacna clam's mouth'
(chicken_story_181015 016-17, 42.070 45.720)

### 5.2.5 ghala- 'by body weight'

The prefix ghala- indicates that an action is completed using an individual's own body weight:

| a=ghala-bebe $=y a$ | umbwa=ke | yanggai |
| :--- | :--- | :--- |
| 1SG=by.body.weight-break=YA | tree/stick=SPKR.PROX | branch |
| 'I break the tree branch (e.g. by climbing/stepping on it)' |  |  |

The prefix appears to have no related verb form. ${ }^{120}$ The only token of the prefix in the corpus is presented in (32). It describes how a couple is sinking first one end of a canoe and then the other

[^82]while passionately kissing. The stem utu 'immerse' is only grammatical in verbs with a manner-ofcausation prefix or in $\mathrm{V}_{2}$ position in complex verbs (§6.3.2, 6.3.4).

| wangga | thíswa | vethi=ghala-utu | vali | wangga |
| :--- | :--- | :--- | :--- | :--- |
| boat | 3PL=go | 3PL.INT=w.body.weight-immerse | side | boat |

mbothi-ye thi=wa vali wangga mbothi-ye
nose-3SG.POSS 3PL=go side boat nose-3SG.POSS
'the boat, they go, they sink (one) boat end, they go (sink the other) boat end'
(mandumbunga_02_181016 450, 1138.193 1143.183)

### 5.2.6 ri- 'with teeth'

The prefix $r i$ - indicates that an action or event was completed using the teeth:
(33) karitau le-nji ela-ghi
tridacna.clam 3SG=w.teeth-hold POSS.CLF2-3PL.POSS woman-old/esteemed
'the tridacna clam clasped their old woman with its teeth (i.e. with its shell)'
(chicken_story_181015 018, 45.72047 .201 )
The prefix may be historically related to the verb ghari 'bite'. There are six tokens of the prefix in the corpus. It occurs with the verb thinge 'get with teeth, grip with teeth' ${ }^{121}$ in five of the tokens, doubly marking the manner of the event, as in (34) (the remaining four tokens describe the same stimulus video and are, therefore, not repeated below). Further, elicited examples are presented in (35) and (36).

| wevo $=m a$ | $i=r i$-thinge $=y a$ | gha- $\varnothing$ | ndeghí | $e$ |
| :--- | :--- | :--- | :--- | :--- |
| young.woman=DET | 3SG=w.teeth-get.w.teeth | POSS.CLF1-3SG.POSS | cup | PREP |
| gha-ye |  |  |  |  |
| mouth-3SG.POSS |  |  |  |  |

'the woman got her cup with her teeth' (put_stimuli_191015_02_02 009, 59.347 62.326)
$\begin{array}{lll}\text { ela }=m a & i=r \boldsymbol{i} \text {-ten }=a & \text { thiyo }=m a \\ \text { woman=DET } & 3 \mathrm{SG}=\text { w.teeth-break=YA } & \text { rope/string=DET }\end{array}$
'the woman breaks the string (with her teeth)'
(36)

```
 waragoi \(i=r i\)-va-mare \(\quad l o l o=k o\)
 crocodile 3SG=w.teeth-CAUS-die person=DIST
 'the crocodile killed the person with its teeth'
```

        (e_041215_02)
    [^83]
### 5.2.7 go- 'by speaking'

The prefix go- indicates that the event involves speech:

$$
\left.\begin{array}{lcc}
\begin{array}{l}
i=n g a
\end{array} \quad \text { "maa } \quad \text { i=nde-go-ghembe=nggo-mun"" }  \tag{37}\\
\text { 3SG=say } \quad \text { NEG } \quad \text { 3SG=NEG?-by.speaking-go.towards=1SG-a.bit }
\end{array}\right] \text { 'she said "he didn't speak to me at all/a bit"" }
$$

The prefix is presumably related to the transitive verb go 'speak (a language)', shown in (38). It is also homophonous with the manner-of-causation prefix $g o$ - 'by cutting' (§5.2.10).

| ande | $u=\boldsymbol{g o}=r e$ | vanga | Vanatina | moli |
| :--- | :--- | :--- | :--- | :--- |
| NEG1 | 2 SG=speak=NEG2 | language | Sudest | INTS |

'you don't speak (in) the Sudest language' (c_031116 033, 68.416 72.615)
There are five tokens of the prefix in the corpus. It combines with directional verbs to encode events of directed communication, as in (37) with ghembe 'go to(wards)', meaning 'speak (to s.o.)', and in (39) with njogha 'go back', meaning 'respond' or 'talk back'.
(39) Yenggiyenggi i=go-njogha $\quad$ we $=\emptyset \quad$ ighai-ye $\quad i=n g a \ldots$ monitor.lizard 3SG=by.speaking-go.back PREP=3SG cousin-3SG.POSS 3SG=say 'Monitor Lizard responded to his cousin, he said...'
(lizard_and_possum_121015 044, 115.825118 .086 )
In (40) it occurs with the verb of communication vaito 'ask'.

```
i=go-vaito=nggi=ya euni-wo=ma
3SG=by.speaking-ask=3PL=YA COUNT.CLF-two=DET
'he asked the two women'
(mandumbunga_02_181016 200, 501.448 505.193)
```

The prefix can also occur with verbs of physical impact to specify manner/cause. Such a combination can be used to describe the use of spells to effect change, as in (41).

| wadawada=ma | i=go-nggila | umbwa | $e$ | kukura |
| :--- | :--- | :--- | :--- | :--- |
| witch=DET | 3SG=by.speaking-break | stick/tree | PREP | spell |
| 'the witch breaks the tree with a spell' |  |  |  |  |

The prefix is not documented in previous work on the language, however prefixes that indicate talking or speech are relatively common among the Papuan Tip languages (cf. Capell 1943: 243 250; Ezard 1978: 1165). There is also a cognate prefix go- 'involving speech' in Misima (W. Callister 1985a: 5).

### 5.2.8 riri- and taga- 'by striking'

The prefixes riri- and taga- specify that an action involves a striking motion with a bent arm:

| (42) | i=riri-viya | le-vo | umbali-ye | $e$ |
| :--- | :--- | :--- | :--- | :--- |
| 3SG=by.striking-split | POSS.CLF2-young.woman | head-3SG.POSS | PREP | ndighe |
| wood |  |  |  |  |

(feast_of_the_fish_271015 088, 213.951 219.480)

```
\(i=t a g a=k o t h e \quad\) righe \(=k o\)
3SG=by.striking-poke trunk=DIST
```

'she struck that tree trunk (with a stick)' (bush_betelnut_011115 030, 73.870 76.830)

The prefix riri- does not appear to have a related verbal counterpart in use today but the prefix tagadoes. The transitive verb taga means 'cut (leaves)' but cannot be used when describing cutting events involving other object referents such as a banana plant. This is illustrated by the examples in (44).
(44) a. a=taga mbouye=ko
$1 \mathrm{SG}=$ cut(leaf) young.shoots=DIST
'I cut the young shoots'
b. *a=taga kunumwana umbwa=ke

1SG=cut banana tree/stick=SPKR.PROX
Intended: 'I cut the banana plant' (e_251116_02)

The two prefixes do not entail a particular instrument in the same way as the manner-of-causation prefixes outlined in the previous sections. This is demonstrated by the example pairs shown in (45) and (46). The examples presented in (45) describe an event in which an agent uses their forearm and hand in a motion reminiscent of a knifehand strike ('karate chop') to break a stick. In contrast, the event described in (46) involves an agent using a sledgehammer to break a piece of cloth strung between two tables.
(45)

| a. $\quad i=$ riri-nggila | umbwa=ma <br> 3SG=by.striking-break | tree/stick=DET | PREP |
| :--- | :--- | :--- | :--- | | nima-e |
| :--- |
| arm/hand-3SG.POSS |

'she broke the stick with his hand (by striking)'
(cb_stimuli_051016_03 425, 1811.594 1813.790)
b. i=taga-nggila $e$ nima-e

3SG=by.striking-break PREP arm/hand-3SG.POSS
'she breaks it (a stick) with her hand (by striking),
(cb_stimuli_101116 061, 791.098 795.880)
(46) a. uтоги=ma $i=$ wo sledgehama i=riri-ten=a
young.man=DET 3SG=GET.SG.RIGD sledgehammer 3SG=by.striking=break=YA
kwama=ma
cloth=DET
'the man gets a sledgehammer (and) he breaks the cloth (by striking)'
(cb_stimuli_051016_01 129, 1407.310 1412.740)
b. i=taga-ten=a kwama=ma e hama

3SG=by.striking=break=YA cloth=DET PREP hammer
'he breaks the cloth with a hammer (by striking)'
(cb_stimuli_051016_03 272, 1070.777 1073.020)

The examples in (45) and (46) also illustrate the interchangeability of the two prefixes; the sentences in (45a) and (45b) come from two different speakers describing the same video stimulus, as do the sentences in (46a) and (46b). The prefixes also occur with nearly identical frequencies in the corpus ( 50 tokens of riri- and 48 of taga-). Use of the two prefixes does not appear to be related to the variables of age or gender. There may be slight regional variety. There is a slight tendency for people from further to the west (around Taranggiya) to use riri- slightly more often than taga-; the opposite pattern can be observed for speakers from the east (Vuwo and eastwards). ${ }^{122}$

The causativised verb va-mare 'CAUS-die' or 'kill' obligatorily takes a manner-of-causation prefix. The prefixes taga- and riri- can be used when the death was the result of a beating (47), but the two prefixes are also used as default 'neutral' prefixes when the manner of death is unspecified, unknown, or there is no prefix that specifies the exact manner (48).

$$
\begin{array}{llll}
\text { th } \dot{i}=n g g e=\varnothing & \text { yenggiyenggi } & \text { na } & \text { thí=taga-va-mare }=\varnothing  \tag{47}\\
\text { 3PL=hit.SG=3SG } & \text { monitor.lizard } & \text { and } & \text { 3PL=by.striking-CAUS-die=3SG } \\
\text { 'they hit Monitor Lizard and kill him' }
\end{array}
$$

(lizard_and_possum_121015 050, 128.240 132.713)

| umoru $=$ ma $i=$ taga/riri-va-mare | wevo=ma <br> young.man=DET | 3SG=by.striking/by.striking-CAUS-die |
| :--- | :--- | :--- |$\quad$ young.woman=DET

When the two prefixes occur with intransitive directional verbs, the resulting construction remains intransitive with the prefixes specifying the manner of motion, i.e. that the agent is paddling (a canoe), as in (49) (see also (5)).

(mandumbunga_02_181016 398, 1002.146 1005.102)

[^84]
### 5.2.9 vo- 'by spearing'

The prefix $v o$ - indicates the involvement of a spearing or piercing motion in the completion of the event described by the verb stem:

$$
\begin{align*}
& \text { amala=ko } \quad i=v o-\text {-bebe }=y a \quad \text { karot }=k o \quad e \quad u m b w a  \tag{5}\\
& \text { man=DIST } 3 \text { SG=by.spearing=break=YA carrot=DIST PREP stick/tree } \\
& \text { 'the man breaks the carrot with a stick (by stabbing)' } \\
& \text { (cb_stimuli_051016_02_02 074, } 583.990 \text { 587.398) }
\end{align*}
$$

The prefix is related to the verb stem vwe 'spear' (51); however, the verb form appears to have fallen out of use and is only attested in elicitation data. In contrast, the synonymous verb nggau 'spear' (52) occurs in five different texts in the corpus (six tokens).

$$
\begin{align*}
& i=v w e=y a \quad \text { bwarogi }  \tag{51}\\
& \text { 3SG=spear=YA } \quad \text { fish } \\
& \text { 'he spears a fish' } \tag{52}
\end{align*}
$$

(e_251115_01)

```
u=nggau=a morouma
2SG=spear=YA k.o.fish
'you spear the morouma fish'
```

(mandumbunga_061215 164, 470.459 472.884)
There are 43 tokens of the prefix in the corpus. Events described by VCs with the prefix generally involve a pointed instrument. ${ }^{123}$ This is usually a long, thin, non-body part instrument, as in the example above and in (53) and (54).

| ela=ko | $i=\boldsymbol{v o}$-utu | kaliko $=k o$ | $e$ | umbwa |
| :--- | :--- | :--- | :--- | :--- |
| woman=DIST | 3SG=by.spearing-immerse | cloth=DIST | PREP | stick/tree |

'the woman pierces/stabs the cloth with a stick'
(cb_stimuli_101116 065, 852.340 855.520)
In (54), the flower stem is both a part of the object, and the instrument used to 'spear' the woven wall (see also (30) for a similar example).
$\begin{array}{llll}\text { (54) } & i=n j i-n g g i l a=\varnothing & n a & m a \\ & \text { 3SG=w.hands-break=3SG } & \text { and } & \text { already }\end{array}$ 3SG=come
$i=v \boldsymbol{O}-$ thith $i=\varnothing \quad e \quad b a b a=k o$
3SG=by.stabbing-push.through=3SG PREP wall=DIST
'he plucked/broke it (a flower) with his hands, he came (and) inserted it into the wall
by piercing/stabbing (the woven wall)'
(mandumbunga_02_181016 091-92, 236.642 240.264)
The prefix is also used when the instrument involved is a bodily extremity, such as a finger (55), head (56) or other extremity like a the snout or tusks of an animal (57).

[^85]| $a m b a$ | $i=\boldsymbol{v o} \boldsymbol{o}-$ thitn-vairi $=\varnothing$ | $[\ldots]$ | $a m b a$ |
| :--- | :--- | :--- | :--- |
| then | 3SG=by.spearing-GET.SG.CNTR-lift=3SG |  | then |

$i=v o-$ thin-vewo $=\varnothing$
3SG=by.spearing-GET.SG.CNTR-push=3SG
then it (a deer) lifts him up (with its head) [...] then it (the deer) pushes him (using
head)'
(frogstory_161214 087, 223.780 226.100)

| mbombo $=k o$ | $i=v o-$ thin-vairi | $l o$ | nambo |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| pig=DIST | 3SG=by.spearing-GET.SG.CNTR-lift | POSS.CLF1.1SG.POSS | basket |  |  |
| $e$ | soki/mbothi-ye | na | i=tara-yathu | lo |  |
| PREP | tusk/nose-3SG.POSS | and | 3SG=pour-throw.away | POSS.CLF1.1SG.POSS |  |

bigi-bigi
RED-things
'the pig poked (up) my basket with its tusks/snout and tipped my things out'
(e_211016_02)

The prefix occurs with the CLFV bigi 'get (pl. container-with-contents)' to specify head-carrying (58), which is the most common manner of carrying loads on the island. See §5.3.2.3 and $\S 5.3 .5$ for further discussion of these types of examples.

```
nambo \(\quad r a=v o-b i g i=\varnothing\)
basket 1INCL=by.spearing-GET.PL.CNTR=3SG
```

'the baskets, we get/load on our heads' (education_241214 037, 116.420 123.310)

The prefix also occurs with intransitive motion verbs to specify the manner of motion - and thereby the mode of transport - such as poling a canoe, as in (59). (See also (4) above for a further example). Like the parallel constructions with taga- and riri- 'by striking' that specify the manner of travelling as paddling (a canoe), the derived construction is intransitive.

| $i=$ mena | $i=v o-l a w a$ | Wavowavo |
| :--- | :--- | :--- |
| 3SG=come | 3SG-by.spearing-go.across | place.name |

'he comes (and) poles across to Wavowavo
(mandumbunga_02_181016 118-9, 292.979 299.157)

### 5.2.10 go- and ki- 'by cutting'

The prefixes $g o$ - and $k i$ - indicate that the action is accomplished by cutting (see $\S 5.2 .7$ for the homophonous prefix go- 'by talking'). The two prefixes can be used interchangeably, as shown in the two sentences presented in (60), which describe the same stimulus video.

| a.amala=ma <br> man=DET$\quad$$i=$ go-ten=a <br> 3SG=by.cutting-break=YA | thiyo=ma <br> string=DET$\quad$PREP$\quad$kelumo=ma <br> axe=DET | | | |
|---|---|---|---|---|
| 'the man cuts the string with an axe' |  |$\quad$|  |
| :--- | :--- | :--- | :--- | :--- |
| (cb_stimuli_101116 018, 251.199 254.988) |

The prefix $g o$ - is likely derived from the verb $g u$ 'cut' (61). The verb $g u$ 'cut' only occurs six times in the corpus compared with 109 tokens of $g o-$. Moreover, it is only used by speakers over the age of 50 . The prefix ki-does not appear to have a related independent verb form in use today.

| (61) | Yagharembo <br> personal.name | DEM | Da | $\boldsymbol{i}=\boldsymbol{g u}$ |
| :--- | :--- | :--- | :--- | :--- |
| REM.PST | 3SG=cut | vwarivwari=ko <br> banana=DIST |  |  |

'Yagharembo was the one who cut down that banana (plant)'
(mandumbunga_061215 088, 246.315 250.260)
The 'cutting' prefixes $g o$ - and ki- are among the most frequent ones in the CUT-BREAK stimuli data ( 109 tokens of $g o$ - and 58 of $k i-$ ), but there are only three tokens of $k i$ - in the text corpus and no tokens of go-. The two prefixes only occur with verbs of breaking but, while the prefix go- 'by cutting' occurs with a wide range of verb stems (e.g. nggila 'break', ten 'break', thatha tear', viya 'split'), the prefix ki- is only grammatical in combination with the break verb ten, and speakers judge other combinations with the prefix ungrammatical, as illustrated by the grammaticality judgement of the example presented in (62).

$$
\begin{array}{lll}
\text { *amala=ma } & i=k i-n g g i l a & u m b w a=m a \\
\text { man=DET } & \text { 3SG=w.single.cut-break } & \text { tree/stick=DET }
\end{array}
$$

M. Anderson and Ross (p. 332) analyse go- as indicating that an action is completed with more than one cut and ki- as specifying that an action is completed with a single cut. While the prefixes may have had those distinct senses at one time, that analysis is not born out by the current data set, which shows that the two prefixes are used interchangeably. This can be seen clearly in the results from the CUT-BREAK task (Bohnemeyer et al. 2001). Responses to ten of the stimuli videos where cutting was the manner of breaking included responses with both go- and ki-. In multiple instances, a single speaker offered more than one possible response to a video: one with go- and one with ki-. Consider the sentences presented above in (60) and below in (63). The examples in (60) describe an event involving a single cut and the sentences in (63) describe a video in which it takes multiple cuts to break through a tree branch.
(63)

| a. | $\text { wevo }=k e$ <br> young.woman=SPKR.PROX | $\begin{aligned} & i=\text { go-vole }=y a \\ & 3 \mathrm{SG}=\text { by.cutting } \end{aligned}$ | $\mathrm{t}=\mathrm{YA}$ |  | $\begin{aligned} & a=k o \\ & \mathrm{ck}=\mathrm{DIST} \end{aligned}$ | ghavwala branch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 'the woman cuts the tree branch' (cb_stimuli_051016_02_01 173, 917.511 920.700) |  |  |  |  |  |
| b. | $\begin{aligned} & i=k i \text {-ten }=a \\ & 3 \mathrm{SG}=\text { by } . c u t t i n g-b r e a k=Y A \end{aligned}$ | mwalamwala small.branch(es) | PREP | kaina <br> knife | nasiye <br> small |  |
|  | 'she cut the small branch with a small knife' |  |  |  |  |  |

Neither prefix appears to be sensitive to other parameters such as the nature of the instrument. Both prefixes are used in clauses describing events where instruments such as axes, knives and scissors are used. There may be some sensitivity, however, to the type of object of the cutting event. For ten of the video stimuli both prefixes occur interchangeably with several object referents, including rope, cloth, items of food and sticks. However, there are a further ten stimuli videos for which responses only include one of the prefixes and not both. The prefix $k i$ - occurs in responses to stimuli where the object referent is cloth, hair, or rope, while go- occurs in response with object referents of solid comestibles and a stick. These referents correspond to the flexible entity and rigid entity categories to which the CLFVs are sensitive (§5.3). This distinction could also be a leftover trace of the 'single cut' and 'multiple cuts' reading of the prefixes, as items such as cloth, hair and rope typically do not require as much effort to cut or slice as sturdier items such as food and wood:

```
thi=ki-ten=a njimwa-e
3PL=by.cutting =break=YA skin-3SG.POSS
```

'they cut the umbilical cord' (new_mother_251214 057, 137.914 140.450)

| ndamwa $-e=k o$ | $r a=\boldsymbol{k i}$ - ten $=\varnothing$ |
| :--- | :--- |
| leaf-3SG.POSS=DIST | 1INCL=by.cutting-break=3SG |

'its (the coconut's) leaf, we cut it’ (c_031116 131-132, 246.960 251.303)
(66)

| lolo=ko | $i=w o$ | kelumo | nasiye | na | $i=\boldsymbol{g o} \boldsymbol{- v i y a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| person=DIST | 3SG=GET.SG.RIGD | axe | small | and | 3SG=by.cutting-split |

ghaningga
food
'the person gets the axe and splits the food (a carrot)'
(cb_stimuli_051016_01 165, 1859.939 1866.999)

$$
\begin{array}{llll}
\text { ela }=m a & i=\text { ten }=a & \text { bwarogi=ma } & i=\text { go-vole }=\varnothing  \tag{67}\\
\text { woman=DET } & \text { 3SG=break=YA } & \text { fish=DET } & \text { 3SG=by.cutting-break(into pieces)=3SG }
\end{array}
$$

na vuvu-to
and NUM.CLF-three
'the woman breaks the fish, she cuts it in three'
(cb_stimuli_071116 066-8, 642.522 652.663)

### 5.2.11 sowo- 'by sawing'

The prefix sowo- indicates that an action involves sawing. The English borrowing shows that the group of prefixes can incorporate new members. The prefix is likely a relatively recent addition to the paradigm and no mention of it is made in previous literature. The prefix occurs in responses from four speakers to a stimulus video in which a stick is sawn in half. In total, there are five tokens of the prefix in the corpus; some of the responses are presented below in (68) to (70).
(68) amala=ma i=sowo-nggila umbwa=ma man=DET 3SG=by.sawing-break tree/stick=DET
'the man breaks the stick by sawing’ (cb_stimuli_101116 020, 274.467 277.475)
(69)

```
amala=ko i=sowo-ten=a umbwa=ko i=sowo-ten=\varnothing
man=DIST 3SG=by.sawing-break=YA tree/stick=DIST 3SG=by.sawing-break=3SG
e sowo
PREP saw
```

'the man saws the branch; the man saws the branch with a saw'
(cb_stimuli_051016_02_01 123-4, 696.070 708.769)
(70) lolo=ko $\quad$ umbwa=sowo-ten=a o
person=DIST 3SG=by.sawing-break=YA tree/stick=DET or
$i=k i-t e n=\varnothing$
$3 \mathrm{Sg}=$ by.cutting-break=3SG
'the person saws the stick or cuts it' (cb_stimuli_051016_01 083-4, 943.130 960.489)

The alternative responses to the same stimulus video in (70) and (71) that include the prefixes kiand go-, both 'by cutting', indicate that the newer prefix sowo- 'by sawing' may be replacing the two prefixes in contexts in which the instrument is a saw.

| $i=$ go-vole =ya | umbwa=ma | $e$ | sowo | $o$ |
| :--- | :--- | :--- | :--- | :--- |
| 3SG=by.cutting-break=YA | tree/stick=DET | PREP | saw | or |
| $i=k i-t e n=a$ | umbwa=ma |  |  |  |
| 3SG=by.cutting-break=YA | tree/stick=DET |  |  |  |

'he cuts the stick with a saw or he cuts the stick'
(cb_stimuli_051016_03 177, 750.273 752.688)

There is no related independent verb form in Sudest; however, two responses to the stimulus video include an instrumental PP e sowo 'with a saw', shown in (71) and (69). This could mean that the prefix sowo- had a nominal rather than verbal origin like the other prefixes, although sowo- may also have originated directly from the English verb saw rather than via the borrowed noun.

### 5.2.12Pseudo-manner-of-causation stem thuwo- 'grip (with tongs)'

The verb thuwo 'grip with tongs, get with tongs' or 'get with tongs' is analysed as a pseudo-manner-of-causation stem. The morpheme functions as an independent verb in the corpus meaning 'grip (with tongs)', as shown in (72).

| $i=w o$ | ghido | na | $i=$ thuwo | vwarivwari |
| :---: | :---: | :---: | :---: | :---: |
| 1SG=GET.SG.RIGD | tongs | and | 3SG=grip(w.tongs) | banana |
| 'she gets the tongs and grips/gets a banana' |  |  |  |  |
|  |  |  |  |  |

The verb also occurs in constructions with stems that generally only occur with a fully verbal $\mathrm{V}_{1}$ stem, although the manner-of-causation prefix vuri- 'with feet' can also occur in a complex verb with a PUT stem, as shown above in example (30) in §5.2.4. In (73), it occurs with ra 'put', and in (74) with the completive stem vao, which can be translated as 'finished'.

| i=thuwo-ra | kunumwana | nggwe-nggwe | $e$ | tebol=ma |
| :--- | :--- | :--- | :--- | :--- |
| 3SG=grip.w.tongs-put | banana | RED-be.ripe | PREP | table=DET |
| vwata- $\varnothing$ |  |  |  |  |
| on.top-3SG.POSS |  |  |  |  |

'she puts the ripe banana on the table (using tongs)'
(put_stimuli_191015_01_02 137-138, 507.620 511.429)

```
kero wo=thuwo-vao=\varnothing
already 1EXCL=grip.w.tongs-COMPL=3SG
```

'we finished getting it (hot stone) with tongs'
(stone_cooking_251015 074, 205.214 207.026)
The stem is included here as it can also occur in contexts where only the manner-of-causation morphemes occur and no full verb stems may occur and modifies the manner in which the action is carried out. For example, the morpheme may occur before verbs meaning 'break', as in (75), and before classificatory verb stems, as in (76). These examples suggest that there may be a second or emerging thuwo morpheme that is a prefix 'with tongs', which diverges from the verb stem.

```
a=thuwo-ten=a kunumwana
1SG=w.tongs-break=YA banana
'I break/cut the banana (with tongs)'
```

$$
\begin{array}{llrll}
\text { ela=ma } & \text { i=thuwo-thin-vai=ya } & \text { nambo=ma } & e & \text { kleko=ma }  \tag{76}\\
\text { woam=DET } & \text { 3SG=w.tongs-GET.SG-lower=YA } & \text { basket=DET } & \text { PREP } & \text { hook=DET } \\
\text { 'the woman lowers the basket down from the hook with tongs' } & & \text { (e_251116_02) }
\end{array}
$$

### 5.2.13Unattested manner-of-causation prefixes and manner-specifying verbs

The lists of manner-of-causation prefixes in Ezard (1978) and A\&R include a number of morphemes that either do not occur in the current data, or appear to be more verbal in nature rather than affixal, as will be argued below.
M. Anderson and Ross (p. 322) list two homophonous manner-of-causation prefixes: yo- 'with fire' and $y o$ - 'by stepping on', but there are no tokens of either morpheme in the corpus. During elicitation, both sentences in Sudest and the contact language (English) were tested in attempts to elicit the prefixes. However, speakers interpreted the morpheme yo-in elicitation stimuli as the concurrent associated motion prefix 'while going' (§4.3.5.1). Example (77) comes originally from A\&A (p. 25). Moreover, when presented with the sentence, no speaker interpreted it as having the intended meaning, but rather as the adverbial function 'quickly' of the concurrent motion prefix when it occurs with verbs that include motion semantics.

$$
\begin{array}{lll}
\text { amala }=k o & m e=y o-\text {-voro }=m a & g h e=k e  \tag{77}\\
\text { man=DIST } & \text { 3SG.IMM.PST-YO-go.up=hither } & \text { LOC=SPKR.PROX }
\end{array}
$$

Intended: 'the man came up here by light'
Meaning: 'the man came (quickly) up here'
For the sense of 'with/by fire (light)' to be present, an additional clause must be added, as in (78).

$$
\begin{array}{llll}
\text { amala=ko } & \text { me=thin }=a & \text { thenggi } & n a \\
\text { man=DIST } & \text { 3SG.IMM.PST=GET.SG.CNTR=YA } & \text { coconut.torch } & \text { and } \\
\text { me=yo-voro=ma } & \text { ghe=ke } & \\
\text { 3SG.IMM.PST-YO-go.up=hither } & \text { LOC=SPKR.PROX } & \\
\text { 'the man got a torch and came (quickly) up here' } \tag{e_211116_02}
\end{array}
$$

The intended meaning and actual meaning of the elicited sentences targeting the second manner-of-causation prefix listed by A\&R as yo- 'by stepping on' also appears to be incompatible with the prefix. When speakers were asked about the potential cause of the breaking event in (79), they posited it could be due to running into the tree, suggesting a link between the prefix and the manner of the event but not one that involves stepping on the tree and applying weight. Such a link is also absent in (80), which was interpreted as describing the activity of walking through thick vegetation and hacking it aside with a bush knife or similar. Both sentences are, however, compatible with a concurrent motion interpretation where the event of the verb stem occurs while the subject is moving.
(79) $a=y o-b e b e=y a \quad u m b w a=k e$
$3 \mathrm{SG}=\mathrm{YO}$-break $=$ YA stick/tree=SPKR.PROX
Intended meaning: 'I broke the tree/stick (by stepping on it)'
Meaning:
'I walk/move and break the tree'
(e_181116_02)

$$
\begin{array}{ll}
a=\boldsymbol{y o}-\text { ten }=a & \text { ndamwa- } \text { ndamwa }  \tag{80}\\
1 \mathrm{SG}=\mathrm{YO}=\text { break=YA } & \text { RED-leaf }
\end{array}
$$

'I move/walk and break/cut the leaves'

Both language change and dialect variation seem unlikely reasons for the lack of recognition of the two yo- prefixes. The prefixes were tested with speakers who would have already been adults when A\&A conducted their original fieldwork in the 1980s. While the breadth of variation in Sudest remains a topic for future exploration, dialect variation also seems an unlikely cause, as both the current data and A\&A's data come from the central dialect. In addition, intra-island travel is common, and speakers report mutual intelligibility between the Sudest dialects and comment explicitly on lexical and phonetic variation and their origins. While a potential semantic link between the concurrent associated motion prefix yo- 'while going' and some examples with the reported manner-of-causation prefix yo- 'by stepping on' can be drawn, any trace of a homophonous prefix meaning 'with fire' is completely absent from any current data. The interpretation by speakers of these examples also indicates that they are the concurrent associated motion prefix. ${ }^{124}$
M. Anderson and Ross (2002: 332) analyse the morpheme gita as a manner-of-causation prefix meaning 'by grasping between two fingers/both hands'. The current data show the morpheme functioning as an independent verb meaning 'pull' or 'drag', as in (81):

| ghino | ma=gita | $e$ | denga=ko |
| :--- | :--- | :--- | :--- |
| 1SG | 1SG.IMM.PST=pull | PREP | cooking.stones=DIST |
| 'I pulled it off the cooking stones' | (cooking 11 |  |  |

(cooking_111015 024, 74.04075 .870 )

Attempts to elicit the sense listed by A\&R produced clauses with mwana- or ghe-, both 'with hands', or $v i$ - 'with fingers'. In the corpus and elicitation data gita fills the verb stem slot rather than the manner-of-causation slot and is not in complementary distribution with the manner-of-causation prefixes, as shown in (82) to (84). Note that the verb is compatible with an event that involves neither the hands or feet, as in (84), where it occurs with the manner-of-causation prefix vuri- 'with feet'.
(82) i=mwana-gita pensil

3SG=w.hands-pull pencil
'she pulls off the pencil (lid/cap with her hands)'
(cb_stimuli_051016_02_01 180-181, 992.260 1007.014)

$$
\begin{array}{lllll}
\text { wevo }=m a & i=m w a n a-\text { gita } & \text { kandel=ma } & e & \text { righe=ma }  \tag{83}\\
\text { young.woman=DET } & \text { 3SG=w.hands-pull } & \text { candle=DET } & \text { PREP } & \text { trunk/base=DET } \\
\text { 'the young woman pulls the candle from the candlestick with her hands' }
\end{array}
$$

[^86](put_stimuli_191015_02_02 006-7, 38.045 42.177)

| $a=$ vuri-gita | mutu $=$ ke |
| :--- | :--- |
| 1SG=w.feet-pull | weed=SPKR.PROX |

'I pull the weed out (with my feet)'

On the basis of the current data available, gita 'pull' is analysed as a verb. It is possible that the 'with both hands/arms' interpretation of the stem arose from the fact that the verb typically describes events involving both hands, as in the tokens from the current corpus (see (82) and (83)).

### 5.3 Classificatory verbs

Sudest has a group of verbal classifiers comprising ten suppletive classificatory verbs (CLFVs) that can be grouped into seven categories. The choice of CLFV depends on culturally salient qualities of the referent of the O argument of the verb. These properties include consistency/flexibility, composition, and number. As independent verbs, the stems mean 'get' or 'take (from)'. They also occur in a wide range of complex verbs that encode events of handling, and caused motion, such as 'give', 'take (to)', 'put', 'turn', and 'wash' (see also §6.3.2 for a detailed discussion of all complex verbs).

The remainder of this chapter is dedicated to describing the classificatory verbs. An overview of the main features of verbal classifiers and where they are found is given in §5.3.1. In §5.3.2, the Sudest CFLVs are presented and then discussed in turn. Section 5.3.3 describes the verbs' occurrence with the posture prefix nde- 'stand and' with which they combine to mean 'hold'. The reclassification of nouns using CLFVs as well as unexpected combinations of verb and object referent(s) is described in §5.3.4, and the CLFVs and their manner-of-carrying connotations are presented in §5.3.5. Finally, §5.3.6 considers possible origins for the Sudest paradigm and potential future grammaticalisation pathways.

### 5.3.1 Verbal classifiers

Verbal classifiers are generally considered a type of nominal classification device along with noun classifiers, numeral classifiers and possessive classifiers, and are comparatively rare crosslinguistically, see e.g. Aikhenvald (2000); Kilarski (2013), and Fedden and Corbett (2017). ${ }^{125}$ The

[^87]number of verbal classifiers in a language can vary widely, from just two to around 40 (Kilarski 2013: 40). They function on an 'absolutive' basis, classifying the referent of an S or O argument of intransitive verbs and transitive verbs respectively (3.1 1984).

Aikhenvald (2000) differentiates three types of verbal classifiers: incorporated generic nouns, verbal affixes and suppletive verbs. ${ }^{126}$ Cross-linguistically, verbal classifiers occur in the expression of certain states and events (Aikhenvald 2000; Kilarski 2013). If a language has verbal classifiers that occur in intransitive predicates, they will occur in existential, positional/posture and/or free movement (e.g. 'fall') expressions. If they occur in transitive predicates, they will occur in handling expressions ('give', 'take') and other expressions of caused motion and manipulation.

Classificatory verbs can themselves be divided into two groups that Aikhenvald (2000: 154-62) labels type-A and type-B. Type-A CLFVs categorise the S/O argument based on inherent properties of the referent. Type-B verbs classify the $\mathrm{S} / \mathrm{O}$ argument based on its orientation in space and ensuing properties. Languages with type-A classifiers are attested across North America in multiple language families but also as an areal feature in other regions, including some Chibchan languages in South America and Tibeto-Burman languages in Asia (Mithun 1999; Aikhenvald 2000; Kilarski 2013). Type-B languages are also attested across North America, and CLFVs that combine orientation and inherent properties of the argument referent are found in Papuan languages, including in Asmat, Engan, Huon, and Waris families in PNG, and in some Papuan languages of southern and central Bougainville (Foley 1986; Aikhenvald 2000; Kilarski 2013).

The Sudest CLFVs fall under Aikhenvald's (2000) Type-A classification, with verb stems selected based on properties of the referent of O . While existential-type verbal classifiers are 'extremely widespread' in Papuan languages (Aikhenvald 2000: 171), to the best of my knowledge, there are no verbal classifiers attested among the Oceanic languages or any other Austronesian languages. This is supported by Aikhenvald (2000: 171), who states that ' $[t]$ here are no verbal classifiers in [...] the Austronesian family'. In Kilarski's (2013) more recent overview of the study of nominal classification systems there is similarly no mention of Oceanic verbal classifiers.

While CLFVs are otherwise unattested in the Oceanic languages, there are cases where suppletive pairs expressing events of caused motion and transfer display verbal number or pluractionality. ${ }^{127}$

[^88]Nimowa, the only other language of the Nimoa-Sudest family, shows a number distinction for events of getting with the suppletive pair ho 'get (pl.)' and yomo 'get (sg.)'. Examples in (85) and (86) show the singular and plural verbs respectively occurring with a range of object referents. Unlike the Sudest CLFVs, the Nimowa suppletive pair only distinguishes the number of the object and no other properties such as consistency and composition. ${ }^{128}$
$\left.\begin{array}{llllll}\begin{array}{lll}\text { yove } & \text { i-ho } & \text { hasaho/nabo/kaliko/pusa }\end{array} & \text { he } & \text { tebo } & \text { bwatane } \\ \text { girl } & \text { 3SG-get.SG } & \text { mango/basket/cloth/cat } & \text { PREP } & \text { table } & \text { top }\end{array}\right]$ (author's fieldnotes)

| yovei-yomo(-di) | hasaho/nabolkaliko/pusa | he tebo bwatane |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| girl | 3SG-get.PL(-3PL) | mango/basket/cloth/cat | PREP | table top |
| 'the girl gets the mangos/clothes from the table' |  | (author's fieldnotes) |  |  |

Like the Sudest verbs (see §6.3.3), the Nimowa verbs that mean 'get' are also used in combination with the stem te to mean 'put', as in (87) and (88). ${ }^{129}$

| yove i-ho-te | nabo | he | tebo | bwatane |
| :--- | :--- | :--- | :--- | :--- |
| girl 3 3G-get.SG-put | basket | PREP | table |  |
| top |  |  |  |  |

> (author's fieldnotes)
yove i-yomo-te $\quad$ hasaho he
girl $\quad$ 3SG-get.PL-put

mango $\quad$ PREP | table |
| :--- |
| 'the girl puts the mangos on the table' |

Sobei (Sarmi-Jayapura family), another Western Oceanic language, has a suppletive verb pair that means 'take (in a direction)' rather than 'get'. They are likewise selected based on the number of the object referent (R. Sterner 1975; J. Sterner 1987; J. Sterner \& Ross 2002). From the limited current data on the two languages, it appears that the suppletive verb pairs are conditioned only by the number of the object referent and no other features. ${ }^{130}$

Some scholars do not consider CLFVs as a fully-fledged type of nominal classification system (e.g. Grinevald 2000; Passer 2016a, 2016b). Grinevald (2000: 68) classifies them as a 'covert lexical means of nominal classification'. She equates suppletive CLFV systems with verbs of ingesting found in 'any language' that imply properties of the ingested object, such as eat, drink, chew, nibble, etc. (Grinevald 2000: 68), although Grinevald (2004) does include CLFVs in a subsequent typology

[^89]of classifiers (see also Barron (1982) and Plank (1984) for discussions on semantic agreement in verbs). Rice (2009: 120) points out that equating verbs of consumption in English with classificatory systems like those found in the Athabaskan languages ignores the fact that the consumption verbs are differentiated based on the manner of consumption, not the consumed item. Of course, in the case of consumption verbs the two cannot be completely separated, for example, in most situations it is unlikely that one would say 'I drank my steak'. Furthermore, verbs used in expressions of consumption are not used - at least in English - in other parts of the lexicon, particularly in those areas where the CLFVs are used, i.e. in the encoding of existential or locative states and handling events (Rice 2009: 120). Positions similar to Rice's (2009) can also be found in Aikhenvald (2000: 154) and Kilarski (2013: 43), who point out that the choice of such verbs of consumption and even posture verbs in, for example, Russian or German, are not paradigmatic, whereas 'classificatory verbs provide a set of paradigmatic oppositions for the choice of verb sets depending on the physical properties of S/O' (Aikhenvald 2000: 154).

Throughout the thesis, I follow the position of Aikhenvald (2000), Rice (2009) and Kilarski (2013) and consider the Sudest CLFVs a type of nominal classification. The boundary between grammar and lexicon is often ambiguous (particularly for elements in the Sudest VC) and can be invoked for linguistic convenience rather than based on features of a language. In the case of Sudest, however, there is evidence to indicate that the CLFVs show signs of grammaticalisation, specifically their semantic bleaching in some complex verbs (see §5.3.6 and §6.3.2). Even if one does not subscribe to this view, the pervasive nature of CLFVs in languages where they occur and their use in the expression of such basic human experiences and activities as existence in space and interacting with physical entities in the environment should make the study of these verbal paradigms of great interest.

### 5.3.2 Sudest classificatory verbs

The Sudest CLFVs group into seven classes comprising ten verbs, which are presented in Table 5.2. As stated, they encode not only the event of the verb - as independent verbs they mean 'get' or 'take (from)' - but also classify the object referent of the verb in terms of consistency, composition, and number and, therefore, align with Aikhenvald's (2000) type-A CLFVs.

| Singular object | Plural object | Object category | Example objects |
| :---: | :---: | :---: | :---: |
| wo | mban | rigid | people, animals (including fish), fruit and non-leafy vegetables, trees, sticks, stones, knives, axe heads without handles; empty non-flexible containers (bowls, plates, pots), heads (body part), abstract nouns related to speech/language (e.g. utu 'story', toto 'message'), kaiwo 'work' |
| $l i$ | langa | flexible | cloth, leaves, flowers, leafy foods, paper, string, body paint, empty flexible containers, worms, arms and hands (body parts) |
| thin | bigi | container with contents/container with contents; single object with multiple parts | full containers, contained items in a container, books, necklaces, tables, thari 'dance' |
| thagha |  | tools with handles | axe, adze, hammer |
| yambi |  | boats and transport craft | canoes, sailing canoes and boats |
| yengge |  | fire | fire |
|  | tako | plural objects (general) | Attested with wide range of object referents including objects typically associated with other plural OCVs. |

Table 5.2 Sudest classificatory verbs
The verbs can be divided based on the types of object referents with which they occur. The categories of rigid entity, flexible entity, and container-and-contents have two members each that further distinguish number of the object (singular or plural). The tool with handle, boat, and fire categories do not have plural verb forms and only occur with singular object referents in the data. The final verb is a general plural CLFV and occurs with any type of plural object referent, including object referents that would typically occur with plural rigid entity, flexible entity, and container-and-contents CLFVs. While the CLFVs wo and mban are labelled as 'rigid' CLFVs because they are used with rigid entities such as sticks, trees, stones, non-leafy fruits and vegetables, empty nonflexible containers, etc., not all object referents that occur with them are rigid. The two CLFVs also function as somewhat of a default category and are used with most animate object referents among other non-rigid entities. The term 'rigid' is used throughout the thesis because many object referents that occur with the two CLFVs can be classified by this property in contrast to the flexible category and out of convenience. A small number of abstract nouns are also attested with particular CLFVs.

Nouns related to speech/language (e.g. utu 'story', toto 'message') are attested with the rigid entity verbs and thari 'dance' occurs as the object of the container-and-contents CLFV.

The object-categorising qualities of some of the CLFVs was first noted by A\&A and further discussed in M. Anderson (1992) and A\&R. ${ }^{131}$ The previous descriptions analyse the CLFVs as prefixes but also state that some can also occur as verbs. The previous descriptions, however, do not make note of the fact that all stems have the same meaning of 'get'. In the current data, all ten CLFVs are attested functionally as independent verbs that mean 'get'. M. Anderson and Ross's inventory of stems also differs slightly from the one presented here. They include the monotransitive verb tara and analyse it as indicating uncountable object substances like water and rice. The current data show that tara is a monotransitive verb and means 'pour' rather than a CLFV meaning 'get'. It therefore typically does occur with mass nouns such as reisi 'rice', kure 'food scraps/leftovers', or mbwa 'water', as in (89). The verb tara 'pour' can also, theoretically, occur with countable items, as in ( 90 ) where mangoes are being poured out onto the ground. This implies a plural reading of the object referent as a pouring event that typically involves the pouring of a mass entity or more than one item.

| lolo=ma | $i=$ tara | mbwa=ma | ghaghada | i=tara-vao |
| :--- | :--- | :--- | :--- | :--- |
| person=DET | 3SG=pour | water=DET | until | 3SG=pour-COMPL |
| 'the person pours out the water until they finish pouring (i.e. all the water is poured |  |  |  |  |
| out)' |  |  |  |  |
| (put_stimuli_231015 083, 667.460673 .521 ) |  |  |  |  |


| u=tara | mbathi | $e$ | thelau | vwata-e |
| :--- | :--- | :--- | :--- | :--- |
| 2SG=pour | mango | PREP | ground | top-3SG.POSS |

'you pour the mangos onto the ground'
In the current data, morphemes $A \& R$ characterise as object-classifying prefixes - excluding tara 'pour' and with the addition of yambi 'get (sg. boat)' and yengge 'get (sg. fire)' - occur not just in VCs as independent verbs meaning 'get' but also play a central role in many complex verbs that encode a wide range of handling and transfer events. Such complex verbs are analysed in chapter 6 (§6.3.1.2, §6.3.2, and §6.3.3). Their use in some complex verbs does suggest that the verbs may be becoming grammaticalised in some contexts. This is discussed further in §5.3.6.

### 5.3.2.1 wo and mban rigid entity classificatory verbs

The CLFVs wo and mban are used with singular and plural rigid entity object referents respectively. The rigid entity category is the largest and is used with object referents that include natural items

[^90]like sticks, trees, stones, solid foodstuffs such as yams, taro, mangoes, pawpaw, etc., and man-made objects like knives and axe heads (axes with handles see §5.3.2.4). Human and most animal referents - with, at least, the exception of worms, which take the flexible entity CLFVs (§5.3.2.2) - also occur with the rigid entity stems. Some individual body parts, as well as a number of abstract nouns, are also attested with the CLFVs. The two sentences presented in (2) (repeated in (91) below) show the two CLFVs occurring with object referents vari-(vari) 'stone(s)'.

```
(91) a. lolo i=wo vari
person 3SG=GET.SG.RIGD stone
 'the person gets the stone' (put_stimuli_191015_01_02 162, 593.630 595.586)
 b. wo=mban=a vari-vari
 1EXCL=GET.PL.RIGD=YA RED-stone
 'we get the stones'
```

RED-stone (stone_cooking_251015 077, 212.520 214.290)

The plural CLFV is likely historically linked to the stem mban 'put'. It is one of four PUT stems, all of which can only occur in complex verbs in $V_{2}$ position with a transitive verb of handling in $V_{1}$ position, most frequently a CLFV (see §6.3.3). The potential origins of the CLFVs and the link between the two mban stems is considered further in §5.3.6.

The rigid entity CLFVs are used when the object referent is human and not self-moving. Classificatory verbs are generally not used with self-moving human object referents and the monotransitive verb vanggu 'lead' is used instead (Sheppard forthcoming, see also §6.3.1.2, §6.3.3, and $\S 6.3 .5$ ). The two human object referents of the complex verbs with wo in (92) and (93) are not self-moving. In (92), the person is searching for a bird to fly a lost relative back to the village, and in (93) describes the event of burying a dead person.

| "thela ne $\quad$ i=yo | $n a \quad v e=w o-n j o g h a$ | vara |  |
| :--- | :--- | :--- | :--- | :--- |
| who $\quad$ FUT 3 SG=fly | and 3SG.INT=GET.SG.RIGD-go.back | really |  |
| la-ma |  | boda=ko?" |  |
| POSS.CLF2-1EXL.POSS | relative=DIST |  |  |
| ""who will fly and bring back our relative?"" |  |  |  |

(bush_betelnut_011115 098, 236.819 239.740)

```
ra=wo-beku
1INCL=GET.SG.RIGD-bury
'we bury the (dead) person'
```

```
lolo \(=k o\)
person=DIST
 (funeral_feasting_081015_01 106, 304.020 307.600)
```

Specific body parts can also be the object referent of VCs with CLFVs. The head (umbali) is the only body part that takes the rigid entity classifier (arms and hands occur with the flexible entity stems, §5.3.2.2). In (94), the agent is also the 'owner' of the head, lowering his own head down into a bucket.
(94) lolo $i=k u r u r u \quad$ na $i=\boldsymbol{w o}-m b a n=a \quad$ umbali-ye person 3SG=bend.down.head and 3SG=GET.SG.RIGD-put=YA head-3SG.POSS $e \quad b w a g i t$ tine $e \quad$ tebol vwata-e PREP bucket inside PREP table top-3SG.POSS
'the person bends his head and puts his head inside a bucket (that is) on top of a table'
(put_stimuli_191015_01_02 113-5, 427.991 434.721)
Several nouns denoting abstract entities also occur with the rigid entity verbs. The majority of these concepts can be grouped semantically as relating speech and language. Consider the examples in (95) to (97).

| (95) | thi $=$ variye $=\varnothing$ | na | kwarimaiya | $i=w a$ | ve=wo | toto |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 \mathrm{PL}=$ send $=3 \mathrm{SG}$ | and | k.o.fish | $3 \mathrm{SG}=\mathrm{go}$ | 3SG.INT=GET.SG.RIGD | message |
|  | thovuye good |  |  |  |  |  |

(feast_of_the_fish_271015 038-40, 95.938 99.828)

In the above example, wo takes the object toto message, while in (96) the speaker also uses the rigid entity CLFV when discussing finishing his story for the day by 'putting it (the story) here'. In this case, the speaker does not introduce the object referent with a lexical NP, but it is recoverable from the context.

| ...ko | noroke | $a=\boldsymbol{w o}-\mathrm{kura}=\varnothing$ | ghe $=k e$ |
| :---: | :---: | :---: | :---: |
| but | today | 1SG=GET.SG.RIGD-put=3SG | LOC=SPKR.PROX |
| ' ...but today I'll leave it (the story) here' |  |  |  |
|  |  |  |  |

In some cases, the link between the rigid entity CLFVs and object referent(s) relating to information and language could be due to metaphorical extensions of real-world objects. For example, in (97), the noun righe 'tree trunk, base (of a tree)' is used to mean 'start' or 'base' of a story.
(97) thela ne i=wo-ra righe
who FUT 3SG=GET.SG.RIGD-put tree.base/trunk
'who will start (the story) (lit. who will put the tree base)'
(c_031116 237, 429.120 431.790)

In (98), the young girl Ebeutu does not understand or 'get' her mother's message properly when she calls back to her, and, consequently, later cooks her brother instead of feeding him.
(98) tina-e le- $\varnothing$ kula=ko gha- $\varnothing \quad$ rumwaru mother=3SG POSS.CLF2-3SG.POSS call=DIST POSS.CLF1-3SG.POSS straight
Ebeutu maa me=wo-wogiyawe $=\varnothing$
pers.name NEG 3SG.IMM.PST=GET.SG.RIGD -properly=3SG
'the clear (meaning) of her mother's call, Ebeutu didn't understand it properly (lit. her mother's call's straightness, Ebeutu didn't get it properly)'

The singular rigid entity CLFV is also used in the rhetorical question thela iwo 'who knows?' or, literally, 'who gets it?':

$$
\begin{align*}
& \text { thela } \quad i=\boldsymbol{w o}=\emptyset  \tag{99}\\
& \text { who } \quad 3 \mathrm{SG}=\mathrm{GET} . \mathrm{SG} . \mathrm{RIGD=3SG} \\
& \text { 'who knows (lit. who gets it)' }
\end{align*}
$$

$$
\text { (child_and_giant_201015 015, } 46.189 \text { 50.220) }
$$

The singular rigid entity stem also combines with the manner-of-causation prefix taga- 'by striking' to mean 'take (a picture)' or 'record (video/audio)' (100). The origin of taga-wo 'take (photo), record' is not clear. It could be related to the action and/or sound involved in taking photographs, particularly with older cameras, e.g. the winding action needed to operate wind-up cameras, the action of pressing down a button to take a photograph/start recording, and/or the strike-like noise made by a camera shutter.

| (100) | me-ne | ra=utu | vara | nggora=ke |
| :--- | :--- | :--- | :--- | :--- | | kero |
| :--- |
| IMM.PST-FUT | 1INCL-speak $\quad$ really | like=SPKR.PROX | already |
| :--- | :--- |
| $i=$ taga-wo $=\varnothing$ |  |
|  |  |
| 3SG=by.striking-GET.SG=3SG |  |
|  | 'we will talk like this and she already records it (lit. gets by striking)' |

(fp_stimuli_201015_01 001, 59.450 62.450)
A final immaterial entity, kaiwo 'work', also occurs as the object of the rigid classifier:

| (101) | $i=\boldsymbol{w o}$ | gha- $\varnothing$ | kaiwo |
| :--- | :--- | :--- | :--- |
|  | 3SG=GET.SG.RIGD | POSS.CLF1-3SG.POSS | work |
|  | 'he gets work' | (fp_stimuli_191015_05 278 616.064 617.190) |  |

### 5.3.2.2 li and langa flexible entity classificatory verbs

The flexible entity CLFV pair li 'get (sg. flexible entity)' and langa 'get (pl. flexible entity)' are used with flexible entity object referents such as cloth and clothing, leaves, flowers, leafy foods, natural twine, string, rope, cloth, clothing, paper, mats and other natural fibres, body paint and empty flexible containers, such as baskets. Examples (102) to (105) show the flexible entity CLFVs in VCs, first as independent verbs, and then in complex verbs. In (102) the object referent is a piece of paper, while in (103) the object referents are leaves.

```
(102) ra=li=ya
 1INCL=GET.SG.FLEX=YA
 'we get her paper'
```

gha pepa
POSS.CLF. 1 paper
(c_031116 016, 42.490 44.468)
(103)

| ra=langa | njingga- $n j i n g g a=k e ~$ |
| :--- | :--- |
| 1INCL=GET.PL.FLEX | RED-leaf=SPKR.PROX |
| 'we get the leaves' |  |

In (104), the speaker describes a woman peeling a banana and then placing the fruit and peel down. The singular rigid entity stem wo is used when describing putting down the fruit and the singular flexible entity stem $l i$ is used to describe placing the banana peel on the table. Vegetable and fruit 'skin', as well as animal pelts and skin, occur with the flexible entity CLFVs when they are removed from the entities they cover.

'she peels the ripe banana and puts it on the plate, she puts the skin on the table top' (cb_stimuli_051016_03 380, 1515.120 1523.610)

The object referent in (105) are sago sleeping mats that the subject has been ordered to burn.

| ghamba-mi=na | ghanggalatha | u=ranggi |
| :--- | :--- | :--- |
| place-2PL.POSS=ADDR.PROX | sago.mat | 2GS=go.out |
| u=langa-ngambu= $\varnothing^{132}$ |  |  |
| 2SG=GET.PL.FLEX-burn=3 |  |  |
| 'your place's sago mats, go out (and) burn them' |  |  |

(marriage_111015 037, 119.710124 .920 )

Hands and arms also occur as the object referent of the flexible entity stems. Like the token with umbali-ye 'head-3SG.POSS' in (94), it is the agent and possessor of the body parts that manipulates the arm and hand in (106) and (107) respectively. No other body parts are attested as the object of CLFVs.

| $i=l i$-vairí | valì | nima-e |
| :--- | :--- | :--- |
| 3SG=GET.SG.FLEX-lift | one.side | hand/arm-3SG.POSS |

'she lifts one of her arms' (mandumbunga_02_181016 189, 470.424 472.860)

| ela=ma | $i=l i$-va-mara | nima-e | ghare |
| :--- | :--- | :--- | :--- |
| woman=DET | 3SG=GET.SG.FLEX-CAUS-look | hand/arm-3SG.POSS | palm/chest/heart |
| 'the woman shows the palm of her hand' | (cb_stimuli_101116 070, 885.278 887.754) |  |  |

The singular stem $l i$, like the plural rigid stem mban, has a presumably related transitive verb that means 'pull' (see §5.3.6 for discussion of potential origins of the CLFVs). The verb $l i$ 'pull' is used interchangeably with the verb momodit 'pull', as shown in (108) and (109) that describe the same stimulus picture in which a pair of police pull a man along. Cases like the one in (108) are easy to

[^91]differentiate from instances of the flexible entity CLFV because, aside from contextual knowledge, the object referent is human. If this were the CLFV, it would have to be wo 'get (sg. rigid enity).
\[

$$
\begin{array}{ll}
\text { th }=\text { =ruku-li= }, & \text { giya-giya=ma }  \tag{108}\\
\text { 3PL=go.and-pull=3SG } & \text { RED-big.man=DET }
\end{array}
$$
\]

'they go and pull him, the big men (police)' (fp_stimuli_201015_01 147-8, 595.090 596.560)
(109) polis ne thi=momodi= $\varnothing$
police FUT 3PL=pull=3SG
'the police pull him'
(fp_stimuli_201015_04 027, 72.860 76.323)

The verb also takes a human object in the phrase ghe i/melinggo 'marriage pulls/ed me' in (110) and (111). In the examples, the two speakers talk about moving to their husbands' villages when they are married.

| (110) | ghamba-nggu=ko <br> place-1SG.POSS=DIST | ida-e <br> name-3SG.POSS | Yena <br> place.name | ghe marriage |
| :---: | :---: | :---: | :---: | :---: |
|  | $m e=1 i=n g g o$ | $a=$ mena | Vanatina- $\varnothing$ |  |
|  | 3SG.IMM.PST=pull=1SG | 1SG=come | place.name-3S | SSS=SPKR.PROX |
|  | 'my place (of birth) is ca Vanatina' | led Yena (Piron | n Island), ma (family_ | ge pulled me, I came to 081115 003-6, 10.240 19.785) |

(111) menda ghe $i=l i=n g g o \quad n a \quad a=r u=m a=k e$
yesterday/past marriage $3 \mathrm{SG}=$ pull $=1 \mathrm{SG}$ and $1 \mathrm{SG}=$ go.in=hither=SPKR.PROX
Vuwo
place.name
'in the past, marriage pulled me and I came in here to Vuwo'
(vuwo_111015 004-5, 16.900 21.370)

The sense of 'pull' also occurs in several tokens that describe harvesting cassava. Verbs meaning 'pull' appear to be used over the general verb ghalolo 'gather, harvest' for produce that is pulled by a stalk from the ground. ${ }^{133}$ Compare the examples in (112) and (113) with $l i$ 'pull' and gita 'pull (out from)' respectively which describe harvesting cassava and taro, two crops that are typically pulled from the ground by their stalks, to (114), where ghalolo 'gather, harvest' is used with unspecified objects/produce.

| wo = raka | voo=li | tapiyoka=ma |
| :--- | :--- | :--- |
| 1INCL=go.PL | 1INCL.INT=pull | cassava=DET |
| 'we went to pull cassava/tapioca' | (stone_cooking_251015 021, 58.080 61.190) |  |

[^92](113)
vethi=la-gita gha-ø samuwo uthu viya 3PL.INT=and.go-pull POSS.CLF1-3SG.POSS k.o.taro k.o.taro k.o.taro 'they harvested (pulled) his samuwo, uthu, and viya taro'
(mandumbunga_02_181016 369, 925.003928 .051 )
(114)

| $a=w a$ | $e$ | $u m a$ | tine | $v a=\boldsymbol{g h a l o l o}=\varnothing$ |
| :--- | :--- | :--- | :--- | :--- |
| 1SG=go | PREP | garden | inside | 1SG.INT=harvest/pick=3SG |

'I go to the garden, harvest it (food)' (womens_work_221214 027, 68.348 70.081)

### 5.3.2.3 thin and bigi container-and-contents classificatory verbs

The final pair of CLFVs that make a distinction for number of the object referent is the container-and-contents pair thin 'get (sg. container-and-contents)' and bigi 'get (pl. container-andcontents) ${ }^{134}$ As the name suggests, the container-and-contents verbs are used for containers that are holding contents, such as baskets, bags, and cooking pots, as well as for bowls, plates and cups containing food and drink. They also occur with object referents that are made up of multiple parts, such as brooms (115) and books (116).

| (115)$i=n g a$ $" u=n j a$ | $u=$ thin $=a$ | wanji | na | $u=$ wanji" |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $3 S G=$ say | $2 S G=$ go.down | $2 S G=G E T . S G . C N T R=Y A$ | broom | and |
|  | $2 S G=$ sweep |  |  |  |  |

'she said "go down, get a broom and sweep!""
(sweeping_011115 009-10, 24.580 28.040)
(116)
nggama eunda thi=bigi=nggi=ya buku=nggi
child one.F 3 PL=GET.PL.CNTR=3PL=YA book=3PL
'a girl gets the books’ (put_stimuli_191015_01_01 101-3, 437.686 444.265)
In (117) and (118) the container-and-contents CLFVs occur in complex verbs. In (117) the object referent is a full basket that contains riches.

| (117) | thí=thin-giya | $l e-\emptyset$ | nambo |
| :--- | :--- | :--- | :--- | bigi-bigi=ko

'they gave her basket (with) all the things, her riches'
(bush_betelnut_011115 130-1, 311.030314 .470 )
The CLFVs are used not only when the full container(s) are the object referent(s) of the VC but also when the 'contained' contents are the object referent(s). In (118), the speaker is describing a picture in which a couple are transporting baskets of fruit and vegetables. Because the food is contained in a basket, the plural container-and-contents stem bigi is used rather than the plural rigid entity stem mban, that would be used if the subjects were just carrying the produce in their arms. Note that bigi 'get (pl. container-and-contents)' is only used when there is more than one container,

[^93]even if it is the contents that are being referred to. If there is more than one object referent contained in a single receptacle, the singular container-and-contents stem thin is used.

| thí=bigi-mena | ghaningga |
| :--- | :--- |
| 3PL=GET.PL.CNTR-come | food |

'they bring food'
(fp_stimuli_201015_01 121, 473.860 476.235)

Another case of a contained entity as object referent is presented in (119). The speaker describes how menstruating women were traditionally prohibited from walking directly in front of men, e.g. when men were sitting in a house and a woman walked past. The object referent of the verb is the contained menstrual blood (madibe). ${ }^{135}$

| (119) | ande <br> NEG1 | ne FUT | wanakau young.women | $\begin{aligned} & \text { thi }=\text { thin- } \text { yere }=\text { re } \\ & \text { 3PL=GET.SG.CNT } \end{aligned}$ | TR-go.past=NEG2 | madibe <br> blood | PREP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | yamwa-nji <br> face/forehead-3PL.POSS |  |  | $i=$ boboma | $w e=n g g i=y a$ | ито-итоги |  |
|  |  |  |  | face/forehead-3PL.POSS 3SG=be.taboo/sacre | $\mathrm{PREP}=3 \mathrm{PL}=\mathrm{YA}$ | RED-you |  |
|  | 'young <br> the y | vom | annot take | (menstrual) blood (menstruatio | d in front (of the on_081015 063 | $\begin{aligned} & \text { en), it it } \\ & 182.45 \end{aligned}$ | $000 \mathrm{f}$ |

The noun thari 'dance' denotes an event rather than an entity and occurs as the object of VCs with the container-and-contents stem thin, as in (120), rather than a rigid entity CLFV, which occur with the majority of attested abstract nouns. A hypothesis for this is that thari 'dance' occurs as the object of this CLFV because 'taking up' a dance also typically involves transporting related paraphernalia, such as specific clothing, ceremonial coconut oil, and body paint.

| ve=thin-voro | thari | Nju |
| :--- | :--- | :--- |
| 3SG.INT=GET.SG.CNTR-go.up | dance | place.name |
| 'he brings the dance up to Nju' | (feast_of_the_fish_271015 013-14, 34.997 45.200) |  |

In some cases, manner-of-causation prefixes combine with the CLFVs to specify the manner in which an object is handled. Such combinations are generally predictable, e.g. mwana-wo 'with hands-GET.SG.CNTR' or 'get with hands'. However, when the prefix vo- 'by spearing' combines with the container-and-contents CLFVs it results in a somewhat unpredictable meaning. Rather than specifying an actual spearing or piercing action, the combination indicates that the object is being manipulated with a person's head (58) (repeated in (121)) or an animal's snout/beak or tusks (122).
(121) nambo ra=vo-bigi
basket 1INCL=by.spearing-GET.PL.CNTR
'the baskets we get/load on our heads' (education_241214 037, 116.420 123.310)

[^94]| (122) | $m b o m b o=k o$ | $i=v o-t h i n-v a i r i ~$ | lo | nambo |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{pig}=$ DIST | 3SG=by-spearing-GET.SG.CNTR-lift | POSS.CLF2.1SG | basket | PREP |
|  | soki/mothi-ye) |  |  |  |  |
|  | 'the pig lifts $n$ | y basket with its tusk/snout' |  | (e_21 | 16_02) |

The extension of $v o$ - from a meaning of 'piercing' or 'spearing' to manipulating using one's head or an animal's snout or other pointed body part, while not completely predictable, is not too difficult to conceptualise. See $\S 5.3 .5$ for further discussion of the expression of head-carrying and manner-of-carrying expressions.

### 5.3.2.4 thagha tool with handle classificatory verb

The CLFV thagha is used when the object referent is a single tool with a handle such as an adze, axe or hammer. When referring to an axe head (having been removed from its handle), or to tools with a non-separable handle, such as crowbars, the rigid entity CLFVs wo or mban are used. The verb is used with singular object referents and, unlike the CLFVs already described, it does not have a plural-object counterpart. Examples (123) to (125) show the CLFV, first as an independent verb in (123) and (124), and then in a complex verb in (125).
(123) ra=thagha kelumo na ra=waghi

1INCL=GET.SG.TOOL axe and 1EXCL=remove.sago.bark
'they get an axe and remove sago bark' (sago_101214 013-4, 39.660 47.310)

| lolo=ko | i=thagha | hama |
| :--- | :--- | :--- |
| person=DIST | 3SG=GET.SG.TOOL | hammer |

'that man gets an axe' (cb_stimuli_051016_02_01 178, 961.360 964.819)
(125)

| amala=ma | i=thagha-giya | kelumo | thovuye | we=nggo |
| :--- | :--- | :--- | :--- | :--- |
| man=DET | 3SG=GET.SG.TOOL=give | axe | good | PREP=1SG |
| 'the man gave a good axe to me' |  |  | (e_071116_03) |  |

### 5.3.2.5 yambi vessel classificatory verb

The CLFV yambi is used when the object referent is a single transport vessel of some kind, e.g. a small, paddling outrigger canoe (koukou), a sailing outrigger (sailau), or any other type of boat (wangga). Examples of the stem as an independent verb and in complex verbs are given in (126) to (128). Example (126) shows the only corpus token of the verb.

```
(126) vethi=yambi=ya sailau laghìye
3PL.INT=GET.SG.BOAT=YA sailing.outrigger big
'they get a large sailing outrigger' (kula_exchange_101214 045, 141.020 143.970)
```

| (127) | $\begin{aligned} & a=m j e \\ & \text { 1SG=try } \end{aligned}$ | $\begin{aligned} & a=\text { yambi } \\ & \text { 1SG=GET.SG.BOAT } \end{aligned}$ | wangga <br> boat | $\begin{array}{lll} a & k o & l o \\ & \text { but } & \text { PO } \end{array}$ | S.CLF2.1SG | ndavari shell.money |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | maa laghiye <br> NEG big |  |  |  |  |  |
|  | 'I tried to buy (lit. get) a boat but my money was not big (enough)' |  |  |  |  | (e_211016_01) |
| (128) | wo=ruku <br> $1 \mathrm{INCL}=$ | u-yambi-giya go.and-GET.SG.BOAT-give |  | $\begin{aligned} & \text { vangga=ko } \\ & \text { poat=DIST } \end{aligned}$ | $\begin{aligned} & \text { we=nggi } \\ & \text { PREP }=3 \mathrm{PL} \end{aligned}$ | te-ne <br> more-FUT |
|  | $\begin{aligned} & \text { thi=yambi- } n j o g h a=\varnothing=v a \\ & \text { 3PL=GET.SG.BOAT-go.back=3SG=REP } \end{aligned}$ |  |  |  |  |  |

### 5.3.2.6 yengge fire classificatory verb

The CLFV yengge 'get' occurs when the object referent of the verb is a fire, generally a burning stick or log. Keeping a fire alight is an important daily task and, on most days, someone - usually someone caring for smaller children or an older community member - remains in the village to keep a fire burning. When it is time to cook, a child will often be sent off to 'get' a burning stick from whomever was keeping the fire alight. Tokens of yengge 'get (sg. fire)' are presented in (129) to (131). The example given in in (129) describes the introduction of fire to Vanatina from Rossel Island by a bird (woman).

| ...ko $\quad$ iya | ndighe $=k o$ | $m a=m a$ | mandumbunga | $v a$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| but DEM | fire=DIST | bird=DET | k.o.bird | REM.PST |  |
| ve=yengge $=\emptyset$ |  | Rogha | $n a$ | $i=v u t h a$ |  |
| 3SG.INT=GET.SG.FIRE=3SG | place.name | and | 3SG=arrive |  |  |
| i=yengge-ra= $\varnothing$ | $e$ | $n d a m w a$ |  |  |  |
| 3SG=GET.SG.FIRE-put=3SG | PREP | leaf |  |  |  |

'...but that fire, Mandumbunga got it (fire) from Rossel Island and arrived (at Vanatinae), she put it (the fire) on the leaf'
(mandumbunga_061215 078-80, 215.500 224.570)
(130) tanuwaga me=mena i=yengge ndighe=ma
owner 3SG.IMM.PST=come 3SG=GET.SG.FIRE fire=DET
'the spirit came (and) got the fire' (skeleton_181015 055-6, 129.000 132.717)
(131) hu=yengge-giya gha-m ndighe=na we=nggo

2PL=GET.SG.FIRE-give POSS.CLF1-2PL.POSS fire=SPKR.PROX PREP=1SG
'give your fire to me'
(skeleton_181015 027-8, 68.695 73.180)

### 5.3.2.7 tako plural general classificatory verb

The final CLFV is the plural general stem tako. The CLFV can occur with any class of object referents, including rigid entity, flexible entity, and container-and-contents object referents instead
of their respective plural stems. Like the other plural CLFVs, any object referent that occurs with tako is automatically interpreted as plural, even if there is no overt marking of plurality. This is shown in the elicited example below, for which a singular object interpretation is ungrammatical:

```
(132) a=tako mbathi
 3PL=GET.PL.GNRL mango
```

'I get the mangoes/*mango'
Corpus examples of tako 'get' as an independent verb and as a stem in a complex verbs are presented in (133) to (135). In (133) and (71) the verb occurs with animate object referents typically assigned to the rigid classifiers. In (135), thiyo 'string' occurs with tako instead of the flexible entity CLFV.
th $\dot{i}=\boldsymbol{t a k o}=n g g i=y a \quad$ mbugha-mbugha=ko wolaghiye 3PL=GET.PL.GNRL=3PL=YA RED-dog=DIST all/every
'they get/gather all the dogs'
(hunting_261214 022, 45.55048 .928 )

| $a m b a=m a$ | $i=y o-t a k o=n g g i$ | $e$ | $m b w a=k o$ | tine |
| :--- | :--- | :--- | :--- | :--- |
| then=DET | 3PL=while.going-GET.PL.GNRL=3PL | PREP | water=DIST | inside |

'then he takes them (a group of youths) to the water'
(funeral_feasting_081015_02 068, 175.083 177.980)

| amala=ma | $\quad i=$ mwana-ten-ten $=a$ |  | thiyo $=m a$ |
| :--- | :--- | :--- | :--- |
| man=DET | $3 \mathrm{SG}=\mathrm{w}$. hands-RED-break=YA | string=DET |  |
| $i=$ tako-yathu- - $a=\varnothing$ | $e$ | tebol $=$ ma |  |
| 3SG=GET.PL.GNRL-throw.away-put=3 | PREP | table=DET |  |

'the man is breaking the string and gathering it and throwing them (the broken pieces)
over/on the table'
(cb_stimuli_071116 080, 769.600773 .155 )

### 5.3.3 Hold

There are two ways to express that an agent is holding an entity in Sudest and both involve the CLFVs. Classificatory verbs usually have the meaning of 'get', but they can also be used when the agent is already physically holding the theme. This can be seen in (136), where the speaker uses a CLFV to describe a scene from a stimulus video in which a man starts out holding a machete and then uses it to cut a branch of a tree.

| (136) | $i=\boldsymbol{w o}$ | kaina | laghìye | na | $i=n g g i l a$ | umbwa=ko |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 3SG=GET.SG.RIGD | knife | big | and | $3 S G=b r e a k$ | tree=DIST | branch

'he holds (lit. gets) a big knife and cuts the tree branch'
(cb_stimuli_051016_01 021, 181.870 186.530)

Alternatively, a CLFV can combine with the posture prefix nde- 'stand and' (§4.3.5.3) to explicitly specify 'hold', as in (137).

| (137) | wevo | regha | $\boldsymbol{i = n d e}$-wo | bigi | regha |
| :--- | :--- | :--- | :--- | :--- | :--- |
| young.woman | one | $3 \mathrm{SG}=$ stand.and-GET.SG.RIGD | thing | one |  |

(put_stimuli_231015 056, 443.220447 .126 )
While a holding event can be encoded by either a bare CLFV or a CLFV with the posture prefix, the two encoding strategies' distribution varies. ${ }^{136}$ Bare CLFVs tend to be used to express 'hold' when the hold event is the first in a series of events, as in (136), while VCs with the posture prefix and a CLFV are used when the hold event is the final event in a series of events, as in (138) to (140), or when describing a holding event in isolation from other events, as in (141). Only a small number of tokens in the corpus are like that shown above in (137), where an initial hold event with the posture prefix is followed by a description of a series of events.


[^95]In 'hold' VCs with the posture prefix, the CLFV is still selected based on properties of the object referent. However, both the sense of motion of the verb stem and the postural sense of the prefix (i.e. 'standing') are neutralised. In (138) and (141), the subjects are indeed standing while holding buckets of water, but in (139) the subject is seated on a chair at a table. In contexts like (139) where the subject is sitting and holding an item, the posture prefix $n d e$ - 'stand and' cannot be replaced with the second posture prefix ro- 'sit and, stay and' (§4.3.5.2) to mean 'hold' This is evidenced by examples as in (142), in which ro- combines with a CLFV but means 'stay and get' rather than 'hold'.


### 5.3.4 Reclassification and unexpected classificatory verb use

Like all nominal classification, the CLFVs can contribute additional information about lexical items that themselves do not specify differences made by the verbs (Aikhenvald 2000: 267; ContiniMorava \& Kilarski 2013: 272). The term "reclassification" 'refers to a different categorization of a noun due to the choice of a different classificatory [morpheme] in order, for example, to highlight a certain feature of the referent' (Fedden 2011: 197). In Sudest, reclassification primarily pertains to nouns whose referents can be full or empty and, conversely, commonly contained objects (e.g. unprocessed garden and bush produce and cooked food that are often stored in baskets or pots). As discussed earlier, the classifiers also serve to reclassify the referents of nouns based on number; namely, whether they are singular or plural. As such, they are often the only overt indication of number in the clause. The examples shown in (143) and (144) illustrate how the noun ndeghí 'cup' is reclassified. In (143), the singular container-and-contents stem thin is used to specify that the cup contains something, while in (144) the stem mban 'get (pl. rigid entity) is used, and thus indicates that the object referents are empty. The use of mban in the second example also specifies a plural object referent in contrast to singular thin in the first example. In both sentences, only the CLFVs overtly specify the number of the object referent.

| lolo | $i=\boldsymbol{t h} \boldsymbol{h} \boldsymbol{n}=a$ |
| :--- | :--- |
| person | 3SG=GET.SG.CNTR=YA |

'the person gets their (full) cup' (put_stimuli_191015_01_02 063, 238.279 240.540)

```
(144) ela=ko i=nde-mban=a mbwa gha-\varnothing
woman=DIST 3SG=stand.and-GET.PL.RIGD=YA water POSS.CLF1-3SG.POSS
ndeghi
cup
'the woman holds the (empty) water cups'
(cb_stimuli_051016_02_01 099-100, 578.420 589.639)
```

The extended example in (145) shows how the CLFVs can reclassify an entity and also highlights their referent tracking function. The excerpt comes from a procedural narrative describing traditional dating practices. When a basket (nambo) is first mentioned, the speaker uses the singular flexible verb $l i$ that specifies the basket is empty. The speaker then describes how the boy's family collect various valuables to fill the basket with before the boy gives it to the girl's family. In the penultimate line of the example or nearly two lines after the basket is last mentioned, the speaker uses the singular container-and-contents stem thin to refer back to the basket and thus also indicates that the basket has been filled; in this case with all the valuables collected by the girl's family.

'If (a girl/young woman) begins to sleep with a young man, the young man's mother and father and relatives get a(n empty) basket and give it to the boy, and his relatives get greenstone axes, shell money necklaces, pig tusks, food in an emidima basket (for the basket) and give it (the full nambo basket) to the girl's mother and father and relatives and they get it'
(first_time_251214 007-26, 16.960 71.620)
Tools with handles such as axes, adzes and hammers can be reclassified based on whether the speaker is referring to just the tool head or to the complete (component) tool, including the handle.

[^96]The example in (146) shows tobotobo 'greenstone axe' occurring with the specific handled-tool CLFV thagha 'get'.
$\begin{array}{ll}\text { a=thagha } & \text { tobotobo } \\ \text { 1SG=GET.SG.TOOL } & \text { greenstone.axe }\end{array}$
'I get the greenstone axe'

As the speaker who provided the above elicited example emphasised, one would only use thagha in cases where the greenstone axe head was attached to a handle. While this may be the default state for regular, everyday axes (kelumo), tobotobo 'greenstone axes' are typically only inserted into decorative hafts when put on display for trade or ceremonial purposes. ${ }^{138}$ Generally speaking, greenstone axe heads are handled or transported separate to their handles, and, therefore, the rigid entity CLFVs are used, as is the case in (147), which describes a journey to Rossel Island in search of greenstone axes.

| (147) | meth $\dot{=}=w a$ | Rogha | veth $\boldsymbol{i}=\boldsymbol{w o}$ | tobotobo |
| :---: | :---: | :---: | :---: | :---: |
|  | 3PL.IMM.PST=go | place.name | 3PL.DEQ=GET.SG.RIGD | greenstone.axe |
|  | 'they went to Rossel Island to get (a) greenstone axe' |  |  |  |
|  | (kula_exchange_101214 014-6, 41.910 50.860) |  |  |  |

In (148), tobotobo 'greenstone axe' occurs with yet another CLFV, this time thin 'get (sg. container-and-contents)' to indicate that the speaker is referring to a basket of axe heads. In the initial clause with thin and tobotobo in the first line of the example, the CLFV is the only indication that the object referent is a container of axe heads rather than a single tobotobo; a fact that is only explicitly stated in the following clause with the possessive NP tobotoboma ghanji nambo 'the tobotobos' basket'.

| i=njogha | $i=$ thin $=v a$ | tobotobo | $i=n g a$ |
| :--- | :--- | :--- | :--- |
| 3SG=go.back | 3SG=GET.SG.CNTR=REP | greenstone.axe | 3SG=say |


| " $r a=v a-n j a=\varnothing$ | $r a=v a-n j a=\varnothing^{\prime \prime}$ | na | $i=n j o g h a$ |
| :---: | :---: | :---: | :---: |
| 1INCL=CAUS-go.down=3SG | 1INCL=CAUS-go.down=3SG | and | 3SG=go.back |

i=thin-ra tobotobo=ma gha-nji nambo
3SG=GET.SG.CNTR-put greenstone.axe=DET POSS.CLF1-3PL.POSS basket
'he returns (to the boat and) again gets the greenstone axes (in a container), he says
"we unload it, we" and he (to the cave and) puts (down) the greenstone axe basket"
(child_and_giant_201015 055-60, 140.240 153.140)

The semantic motivation for the reclassification of nouns in the corpus is generally clear. This can be seen in the examples presented thus far in the discussion. There are, however, tokens in the corpus in which one CLFV occurs with one noun where a different noun would generally be

[^97]anticipated. This is the case for around half of the tokens in which a CLFV takes an axe with handle (kelumo) or hammer with handle (hama) as the object of a CLFV. In 13 of 25 tokens, speakers use wo 'get (sg. rigid entity)' instead of the tool with handle verb thagha 'get (singular tool)'. All save one token come from stimuli data, meaning there is no ambiguity as to whether the speakers are just referring to the tool heads rather than the combined tool head and handle. This is illustrated by the following two examples in which speakers describe the same stimulus video. In (149), the first speaker uses the expected verb thagha, while in (150) the second speaker uses wo, which is supposedly reserved only for axe heads.

| (149) | $\begin{aligned} & \text { lolo=ko } \\ & \text { person=DIST } \end{aligned}$ | $i=n d e-t h a g h a$ <br> 3SG=stand.and | 1-GET.SG.TOOL | $\begin{aligned} & \text { kelumo=ko } \\ & \text { axe=DIST } \end{aligned}$ | $\begin{aligned} & i=k i-\text { ten }=a \\ & 3 \mathrm{~S}=\text { by.cutting-break=YA } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { thiyo }=k o \\ & \text { string=DIST } \end{aligned}$ |  |  |  |  |
|  | 'the person holds the axe (and) cuts the string' |  |  |  |  |
| (150) | $i=w o$ | kelumo $=$ ko | na i=ki-ten |  | thiyo $=m a$ |
|  | 3SG=GET.SG | axe=DIST | and 3S=by.c | g-break=YA | string $=$ DET |
|  | 'he gets the axe and cuts the string' (cb_stimuli_051016_01 070, 848.800 |  |  |  |  |

In this case, the data suggest that the age of the speaker is a factor in CLFV choice. All tokens with thagha 'get (singular tool)' were produced by speakers aged 60 years of age and over, while the tokens with wo 'get (sg. rigid entity)' come from speakers younger than 40 (there were no data from speakers aged between 40 and 60). The rigid entity CLFVs wo and mban occur with the widest range of object referents and consequently occur most frequently in the corpus. The corpus data suggest it may be in the process of replacing thagha 'get (singular tool)' for younger speakers. However, it should be noted that younger speakers also recognised and produced the verb in elicitation.

In some cases, variation in the choice of CLFV occurs where another would be expected, and there are neither identifiable contextual linguistic factors nor extralinguistic factors that offer a plausible motivation for the variation. Consider the examples presented in (151) to (153).

| (151) | amali-sari=ke | $i=l i-r a$ | thiyo $=$ ke | $e$ |
| :---: | :---: | :---: | :---: | :---: |
|  | man-old=SPKR.PROX | 3SG=GET.SG.FLEX-put | rope=SPKR.PROX | PREP |
|  | $u m b w a=k e$ | ghavwala |  |  |
|  | tree=SPKR.PROX | Y.branch |  |  |

(put_stimuli_201015_02 139, 821.677 825.212)
thiyo=ma me=thin-nda $\quad$ e umbwa=ma yangga
rope=DET 3SG.IMM.PST=GET.SG.CNTR-put PREP tree=DET branch 'the rope, he puts up it on the tree branch'
(put_stimuli_201015_01 045, 320.220322 .346 )

| amala | $i=$ i=mban-ra | thiyo | $e$ | umbwa | ghavwala |
| :--- | :--- | :--- | :--- | :--- | :--- |
| man | 3SG=GET.PL.RIGD-put | rope | PREP | tree | Y.branch |

'the man puts the ropes on the tree branch'
(put_stimuli_191015_02_01 019, 122.958 128.074)

The examples come from three descriptions of the same stimulus video in which a person places a coil of rope over a tree branch. Out of the five speakers that completed the stimuli task, just two used the expected CLFV $l i$ 'get (sg. flexible entity)', exemplified by (151). A further two used thin 'get (sg. container)', as in (152), and one used mban 'get (pl. rigid entity), as in (153).

Further 'mismatches' between object referent and CLFV are present in tokens with a further half dozen or so nouns in the corpus. The fact that the mismatches arise primarily in stimuli responses - particularly for responses to the PUT stimuli task (Bowerman et al. 2004) - suggests that at least some mismatches could be the result of specific stimuli or the stimuli task environment, i.e. watching and responding to videos, including some videos with object referents that are not necessarily clearly identifiable and/or culturally salient. Another potential explanation could be that the variation is a product of semantic bleaching. It could be the case that the CLFVs are in the early stages of a semantic bleaching process comparable to the semantic bleaching of the manner-ofcausation prefixes that is attested in some Papuan Tip languages as discussed in §5.2. Such mismatches, however, are in the minority in the corpus. Speakers have strong opinions about 'correct' CLFVs for specific object referents when questioned and were always very forthcoming in correcting the researcher, both during elicitation, and in everyday interactions when the incorrect CLFV was used. Future investigation may shed light on the reason for such mismatches.

### 5.3.5 Classificatory verbs and manner-of-carrying

It is common for Oceanic languages to have multiple verbs meaning 'carry' that distinguish the manner in which an item is carried, e.g. 'carry in hands', 'carry on head', 'carry hanging from head/shoulder' (Ross 2016: 433). This is not surprising given that carrying has traditionally been the only way to transport goods overland in Oceanic language speaking communities, and is still the only mode of transporting goods on Vanatina. The prevalence of such manner-specific distinctions when describing carrying events also entails culturally specific knowledge on the part of the speaker about how specific items are usually carried, as highlighted by Hill (2016) in her discussion of Longgu (Southeast Solomonic, Solomon Islands) carry verbs.

Sudest has four documented verbs that specify how an entity is carried, although they do not appear to entail motion and are therefore analysed as meaning 'bear'. The 'bear' verbs are listed in (154) (see Sheppard (forthcoming) for examples and further discussion of their usage). Manner-ofcarrying can also be specified within the VC through the addition of a manner-of-causation prefix (§5.2).

| (154) | gogo <br> kithaghe | 'bear across/on shoulder(s)' |
| :--- | :--- | :--- |
| kewe | 'bear on forehead/shoulder with string' (e.g. like a bilum bag) |  |
| kembimbi | 'bear under the arm' |  |

In Sudest, there appear to be no particular verbs that specify two of the most common modes of carrying used on the island, namely, in the arms or hands, and on the head. However, the CLFVs appear to obtain carry (in a manner) senses through contrast with the explicit manner of bearing verbs. The CLFV bigi 'get (pl. container-and-contents)', in particular, is used in contexts of bearing on the head, even when the object referent is singular. This connection between specific CLFVs and a particular mode of carrying likely arises from real-world knowledge about how specific items are normally transported.

The majority of caused motion events in the corpus that encode events that can be translated as 'carry' or 'take (somewhere)' involve one of the CLFVs but do not typically specify the mode of the carrying; at least not in any explanations or translations given by speakers. When questioned about these two specified modes of transporting entities, however, speakers consistently respond with two specific construction types. The first construction type consists of a single VC with a CLFV as the head and the addition of the concurrent associated prefix yo- 'while going' (§4.3.5.1), as in (155). The second construction type is a biclausal construction with two separately inflected verbs that consists of a VC headed by a CLFV followed by a VC with the intransitive verb wa 'go', as in (156), or occasionally another intransitive motion verb (§6.2.2).

| (155) | a=yo-wo | nggama=ke | $e$ |
| :--- | :--- | :--- | :--- |
| 1SG=while.going-GET.SG.RIGD | nggolo |  |  |
| child=SPKR.PROX | PREP | house |  |

> 'I carry the child to the house (in my arms)'

| $a=$ wo | nggama | a=wa | $e$ | nggolo |
| :--- | :--- | :--- | :--- | :--- |
| 1SG=GET.SG.RIGD | child | 3 SG=go | PREP | house |

'I get the child (in my arms) and go to the house'

The combination of CLFV with a specific type of material entity appears to be sufficient to evoke a certain mode of carrying. In the above examples, the CLFV wo 'get (sg. rigid entity)' occurs with

[^98]the child as the theme entity being transported. When questioned, speakers viewed this as the prototypical way to describe an event in which the theme entity was carried by the agent in their arms. In (157), the combination of mustard leaf as the carried item and $l i$ 'get (sg. flexible entity)' were produced when specifically eliciting the mode of carrying as in the hands.


Examples (158) and (159) show typical responses to questions about carrying items on the head. Such responses take the container-and-contents CLFV bigi 'get (pl. container-and-contents)' and involve the two types of constructions outlined above in (155) and (156). Carrying items on the head on Vanatina is generally restricted to women like in many other Oceanic language speaking communities (Ross et al. 2016: 433). ${ }^{140}$

| wo=yo-bigi $\boldsymbol{y}$ ya | nambo-nambo | $e$ | mbwa=ko |
| :--- | ---: | :--- | ---: |
| 1INCL=while.going-GET.PL.CNTR=YA | RED-basket | PREP | water=DIST |
| 'we carry the baskets to the water (on our heads)' |  | (e_261117) |  |


| wanakau=ma | thi=bigi | le-nji | nambo-nambo |
| :--- | :--- | :--- | :--- |
| young.women=DET | 3PL=GET.PL.CNTR | POSS.CLF2-3PL.POSS | RED-basket |
| thi=wa | $e$ | sikulu |  |
| 3PL=go | PREP | school |  |

'the girls get their baskets and go to school (on their heads)' (e_071116_03)
There is a notable distinction between the uses of the CLFVs in such constructions when the number of the carried items is changed. The sentence in (160) was supplied by the speaker to describe a situation in which a girl carries a few pieces of food in her hands. The plural CLFV mban 'get (pl. rigid entity)' is used to encode the event. However, in (161), when the speaker is describing a situation involving one girl carrying a single basket on her head, the speaker still uses a plural CLFV; in this case, the plural container-and-contents verb bigi 'get (pl. container-and-contents)'.

| (160) | $\begin{aligned} & \text { wevo }=m a \\ & \text { young.woman=DET } \end{aligned}$ | $\begin{aligned} & i=y o-m b a n=a \\ & 3 \mathrm{SG}=\text { while.going-GET.PL.RIGD=YA } \end{aligned}$ | ghanï̈ngga food | PREP |
| :---: | :---: | :---: | :---: | :---: |
|  | nggolo=ko tine house=DIST inside |  |  |  |
|  | 'the girl carries the foo | od (PL) into the house (in her hands) |  | (e_120717) |

[^99]```
(161) i=bigi=ya le-\emptyset nambo na i=wa e
3SG=GET.PL.CNTR=YA POSS.CLF2-3SG.POSS basket and 3SG=go PREP
sikulu
school
'she carries/takes her basket to school (on her head) (lit. she gets/carries the basket
and goes to school)'
(e_081116_01)
```

As already discussed (see $\S 5.2 .9$ and $\S 5.3 .2 .3$), the manner-of-causation prefix $v o$ - 'by spearing' can combine with a container-and-contents CLFV to overtly specify that a someone is supporting an object on her head. ${ }^{141}$ The 'mismatch' between the number of object referents and the use of bigi 'get (pl. container-with-contents)' also occurs in these constructions, as can be observed in (162) and (163).

(162)	$i=v o-b i g i=y a$	buku=nggi/buku 3SG= by.spearing-GET.PL.CNTR=YA book=3PL/book	mbamba-ra COUNT.CLF-one
'she gets/loads the books/one book (on her head)'		(e_131016_01)	

'the girl gets/loads the saucepan with water (on her head)'

It appears that in the specific context of bearing an item on the head, the plural CLFV bigi 'get (pl. container-and-contents)' does not always indicate multiple object referents but instead suggests the mode of carrying. The link between bigi and head-carrying is also supported by the fact that speakers either find the addition of vo- 'by spearing' to a VC with thin 'get (sg. container-andcontents)', with the meaning 'carry on head', only marginally acceptable:

? $a=$ vo- $\boldsymbol{t h} \boldsymbol{i n}=a$	$l o$	nambo
1SG=by.spearing-GET.SG.CNTR=YA	POSS.CLF2.1SG.POSS	basket
'I carry my basket (on my head)'		$\left(\mathrm{e}_{1} 120917 / \mathrm{e}\right.$ _171116_02)

Furthermore, during elicitation, speakers also accepted that sentences like the one below in (165) with thin 'get (sg. container-and-contents)' could refer to a situation where a basket was carried by a person on their head. However, such a token was never provided when the speakers were asked explicitly to describe such a situation. Instead, they only ever provided tokens with the plural container-and-contents CLFV bigi.

[^100]| $i=$ thin $=a$ | $l e-\varnothing$ | $n a m b o$ | $n a$ | $i=w a$ |
| :--- | :--- | :--- | :--- | :--- |$\quad e$.

However, this does not mean that all caused motion events with the stem bigi entail that the transported entity is carried on the head, or that VCs with thin cannot encode events with head carrying. The first point can be demonstrated by examples such as (166) and (167). Example (166) uses the CLFV bigi to describe a picture of a couple carrying baskets of produce in their arms.

```
(166) thi=yo-bigi e market vethi=sel
    3PL=while.going-GET.PL.CNTR PREP market 3PL.INT=sell
    'they take them (baskets of produce) to market to sell'
```

 (fp_stimuli_191015_07 157, 376.260 379.280)
 Example (167) likewise rules out an exclusive 'carry on head' reading as the speaker here is describing transporting produce between Vanatina and the Calvados Chain Islands: a journey that entails travel by sea rather than on land.

(167)	meth $\mathbf{i}=w a$	Saisai=ko	meth $\dot{\boldsymbol{t}}=\boldsymbol{y o}$-bigi=ya
3PL.IMM.PST=go	place.name=DIST	3PL=while.going-GET.PL.CNTR=YA	

'they went to the Calvados Chain Islands, they took food, sago, greenstone axes (and)
pigs’
(kula_exchange_101214 021-5, 65.130 81.490)
The second point, namely that thin 'get (sg. container-and-contents)' can be used to describe headcarrying events, is suggested by example (168), which describes a woman taking a pot of sago pudding to a cave from her village. While there is no explicit mention of mode of carrying, the default mode for a woman carrying a pot of pudding would be on her head.

$$
\begin{array}{ll}
\text { me=kiwaki=ko } & i=\boldsymbol{y o}-\text { thin }=\varnothing \tag{168}\\
\text { 3SG.IMM.PST=make.sago.pudding=DIST } & \text { 3SG=while.going-GET.SG.CNTR=3SG }
\end{array}
$$

The fact that the verb stem bigi can occur with a singular object referent suggests either that there is a second, head-carrying sense of the verb that 'competes' with the plurality sense of the verb, or that there are two related but separate verbs, i.e. 'get (pl. container-and-contents)' vs. 'bear (on head)'. Examples in which bigi occurs with a singular object referent, as in (161), or when it occurs with vo- 'by spearing', as in (162) and (163), support a two-verb analysis, similar to the ones outlined for mban ('get (pl. rigid entity)' vs. 'put') described in §5.3.2.1, and li ('get (sg. flexible entity)' vs. 'pull') discussed in §5.3.2.2 . On the other hand, elicitation tokens like those in (158)
and (159), and in (166) and (167) that occur with the plural container-and-contents sense of bigi show that contextual knowledge is necessary to know whether the event described involves headcarrying or not. This supports an analysis of bigi as a single verb with multiple - but not necessarily mutually exclusive - senses. Furthermore, not all transport events that likely involve head-carrying take the stem bigi in the corpus, with some encoded by the singular container-and-contents CLFV thin (168).

No matter whether bigi is analysed as two separate stems or as one, the examples presented in this section suggest that there is a connection between the CLFVs, the object referents and the mode of carrying (head/hands). This connection involves cultural knowledge about how certain material objects either should, or are, typically transported (cf. Hill 2016). The CLFVs appear to be used in contrast to the manner of bearing verbs to imply certain common manners of carrying that are not lexicalised by the 'bear' verbs.

5.3.5.1 Stimuli responses with buku 'book'

The norms relating to how items are typically carried could also help explain at least one area of 'mismatches' between CLFVs and object referents found in results from the PUT stimuli task (Bowerman et al. 2004). The stimuli task includes seven scenes in which books are moved around. In four of the scenes, an agent moves a single book, while, in the remaining three scenes, an agent moves stack of books. In each of the three scenes where the stack of books is moved and in one scene where a single book is moved, the agent moves along with the book. The task was conducted with five speakers. ${ }^{142}$ All save two of the 35 responses to scenes involving the caused motion of books involve at least one CLFV, either as an independent verb, complex verb, or both. Table 5.3 shows the CLFVs in responses by the five speakers to the seven stimuli videos involving the caused motion of books. The column labelled 'event description' is taken from Bowerman et al.'s (2004) description of each video with an additional note in parentheses indicating whether the agent accompanies the motion event or remains still.

[^101]| | event description | object number | S1 | S2 | S3 | S4 | S5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vid 1 | toss book on floor (while sitting on chair) | SG | thin | thin | thin | thin | thin |
| vid 2 | drop book deliberately onto floor (while sitting on chair) | SG | thin | thin | thin | thin | thin |
| vid 3 | put book on floor (from squatting position) | SG | thin | thin | thin | thin | thin |
| vid 4 | (walks up to magazine) takes magazine from floor (and walks away holding it in hands) | SG | thin | thin | thin | thin | thin |
| vid 5 | (walks up to table holding books in arms and) put armload of books on table | PL | bigi | mban | mban | mban | langa |
| vid 6 | take armload of books off table (and goes while holding books in arms) | PL | bigi | mban | mban | tako | mban |
| vid 7 | (walks towards camera holding pile of books in arms and) drop book accidentally on floor | PL | bigi | n / a | n / a | langa | n / a |

Table 5.3 PUT stimuli task responses
As Table 5.3 shows, there is a striking difference between the CLFV usage in the tokens with a singular object referent and a plural object referent. All 20 responses to the four videos with a single book take the expected container-and-contents singular verb thin, which also occurs with multi-part items like books. However, when one turns to the responses to stimuli videos with a stack of books, the case is quite different. Only one speaker uses the expected plural container-and-contents verb bigi (and uses it consistently in all three responses). Of the remaining four speakers, speakers 2 and 3 use mban 'get (pl. rigid entity)' for two of the stimuli responses and do not use a CLFV to describe the final video; instead only describing the book-dropping event in isolation. Speakers 4 and 5 switch between different plural CLFVs, with speaker 4 using a different CLFV in each of their responses. Examples (169) to (171) show three responses to video 5, where a different CLFV is used in each (the remaining two tokens are not presented as they closely resemble (170) and use the same CLFV).

wevo	eunda	$i=$ bigi=nggi=ya	buku=nggi	na		
young.woman	one.F	3SG=GET.PL.CNTR=3PL=YA	book=3PL	and		
$i=$ bigi-ra=		e	tebol	vwata-e		
3SG=GET.PL.CNTR=-put=3	PREP	table	top-3SG.POSS			

'one girl holds (lit. gets) the books and puts them on the table top'
(put_stimuli_191015_01_01 101-4, 437.686 445.777)
(170)

wevo=ma	i=mena	i=mban-ra=nggi=ya	buku-buku=ma	
young.woman=DET	3SG=come	3SG=GET.PL.RIGD-put=3PL=YA	RED-book=DET	
wolaghitye	e	tebol=ma	vwata-e	
all/every	PREP	table=DET	top-3SG.POSS	

'the girl comes, she puts all the books on the table top'
(put_stimuli_231015 061, 489.177 493.410)
(171)

gamaina=ma	$i=$ mena	$i=$ langa-ra	buku=ma
unmarried.young.woman=DET	3SG=come	3SG=GET.PL.FLEX=put	book=DET

'the young woman comes, puts the books (down)'
(put_stimuli_201015_01 092, 570.237 572.860)

A possible explanation for the unexpected variation in CLFV choice may stem from the mode of carrying the plural objects. In all of the videos, the $\operatorname{book}(\mathrm{s})$ is handled and transported while held in the hands or arms. On Vanatina, a single book is likely to be held and carried short distances in the hands (or, when transported over long distances, stored in a basket). ${ }^{143}$ A stack of books, on the other hand, is typically carried on the head by women or children (e.g. on the way to school, church, etc.). ${ }^{144}$ Consequently, the responses to videos with a single book conform to expectations of how such an item is handled and moved, while the scenes with more than one book do not as they are carried in hands rather than on the head. It could be the case that when certain objects are not carried in the expected manner, it is particularly salient to the speaker and, to highlight this, the speaker may avoid the expected CLFV bigi 'get (pl. container-and-contents)' that can also imply 'headcarrying' and thereby signal an 'unusual' mode of carrying. This could also explain why variation in CLFV use is found both in the responses from individual speakers and across the responses from the five speakers. Given that the speakers are describing situations that are not the norm for the community, this may cause uncertainty or more variability in choice of CLFV. In order to further investigate this hypothesis, future investigation could include stimuli that target common items being carried both in ways that are culturally expected, and in ways that might be more marked for Sudest speakers.

5.3.6 Regional context, origins and grammaticalisation of the classificatory verbs

As already noted, CLFVs of the type described here appear to be unique to Sudest among the Oceanic languages. The question therefore arises as to the origins of the Sudest CLFV paradigm. As discussed in §5.3.1, a wide range of Papuan languages spoken on the mainland are attested to have verbal classifiers. Closer to Vanatina, the Papuan isolate Yélî Dnye, spoken on neighbouring Rossel Island, has three suppletive verb sets that could be analysed as CLFVs. Levinson and Brown (2012: 275) label the Yélî Dnye system a 'covert system of nominal classification of verbs'. This echoes Grinevald's (2000: 68) characterisation of CLFVs, which she does not categorise as nominal classification devices. Similar to the mainland Papuan systems, existential and positional predicates in Yélî Dnye are expressed by posture verbs (Levinson \& Brown 2012). In existential and locative statements, the S argument referent is classified by whether it is 'standing', 'sitting' or 'hanging'

[^102](Levinson \& Brown 2012). Events of 'putting' and 'taking' are also encoded by suppletive verb paradigms that make the same posture distinctions based on properties of the O argument referent (Levinson \& Brown 2012). Example (172) first shows a locative statement with kaapî 'cup', a 'standing' referent, followed by a taking event in which the cup becomes the O argument and therefore the 'standing' take verb $y: o o$ is also selected.

(Levinson \& Brown 2012: 278)

The Oceanic Papuan Tip languages are known for undergoing grammatical change attributed to prolonged contact with Papuan languages (Lynch et al. 2002: 15). If the CLFVs are the result of contact with Papuan languages, however, one might expect more Oceanic languages than just Sudest to have a CLFV system. One might also expect the Sudest system to be based on posture verbs like the systems found in Yélî Dnye and the majority of mainland Papuan languages with CLFVs (Aikhenvald's (2000) type-B CLFVs) rather than a system that appears to have more in common with those found in Athabaskan languages (Aikhenvald's type-A CLFVs, see §5.3.1). ${ }^{145}$ None of the Sudest CLFVs appear to be borrowings from the Yélî Dnye suppletive sets or any other Yélî Dnye verbs. ${ }^{146}$

The fact that two of the CLFVs have related verb stems (li 'pull' and mban 'put') and that bigi 'get (pl. container-and-contents)' has a related stem or secondary sense ('bear on head') suggests that at least some of the CLFVs have developed from verbs of handling. ${ }^{147}$ Verbal classifiers that developed from verbs of handling are also attested in some Waris languages, spoken in the northwest of PNG (Seiler 1985, 1986; Foley 1986: 91). In the Waris language Imonda, verbal classifiers appear to have developed from verbs of handling in complex verbs which, over time, lost their verbal meaning in some contexts (Seiler 1986). Unlike the Sudest classifiers, the Imonda ones have completely grammaticalised into prefixes (Seiler 1986). Without further diachronic data or recognisable cognates or sources to identify if they are loanwords, determining the origins of the Sudest classificatory system further is currently not possible. A related question that the current data cannot answer is how the CLFVs became a somewhat rigid semantic paradigm when such paradigms are not present in Nimowa or attested in any other Papuan Tip or Oceanic languages.

[^103]While verbal classifiers are an areal feature in some regions and the Papuan Tip languages are known for their language-contact related features, it is also unclear why such a development would only take place in Sudest and which languages could have influenced it.

Despite not having a clear indication as to the origins of the CLFVs, evidence from complex verbs suggests that the stems, at least in some contexts, may be in the process of grammaticalising into verbal classifier prefixes. The CLFVs occur in V_{1} position in a number of complex construction types (see chapter 6 for discussion of each construction type and exhaustive lists of attested complex verbs with CLFVs). They frequently occur in complex verbs with a transitive V_{2} stem that encodes an event of handling or transfer (e.g. beku 'bury', giya 'give', iteten 'leave', kaivt 'steal', ngambu 'burn, roast', etc.). Unlike other types of multi-verb constructions with a CLFV, these constructions are equally grammatical and have the same valence when the CLFV is omitted. Compare (173) and (174); both clauses use the monotransitive verb giya 'give', and describe giving events in which a piece of clothing is given. In (173), however, giya 'give' occurs in a complex verb with the CLFV li, while in (174) giya 'give' functions as an independent verb (see §6.3.2).

ela $=m a$	i=li-giya	kwama=ma	lolo	regha
woman=DET	3SG=GET.SG.FLEX-give	cloth/ing=DET	person	one
we $=\varnothing$				
PREP=3SG				
'the woman gives (a piece of) clothing to a person'				

noroke	lumo-lumo=ke	hu=giya	kaliko
today	RED-white.person=SPKR.PROX	2PL=give	cloth/ing

(traditional_dress_051214 108-10, 282.860 288.040)
In these constructions, the CLFVs show signs of desemanticisation or 'semantic bleaching': one of the key mechanisms involved in grammaticalisation (Heine \& Kuteva 2002: 2). Desemanticisation occurs when certain forms are reinterpreted in particular contexts as having 'more abstract, grammatical meanings' and consequently also a loss of semantic content (Heine \& Kuteva 2002: 3). In complex verbs with transitive V_{2} stems, the 'get' sense of the verb is absent, and the stems only serve to specify qualities of the object referent(s). In (175) and (176), the classificatory stems specify whether the basket is empty or full respectively.

...na	thí=thin-giya $=\varnothing$	$w e=y a$	wevo $=k o$
and	3PL=GET.SG.CNTR-give=3SG	PREP=YA	young.woman=DIST

'... and they give it (a full basket) to the girl's mother and father' (first_time_251214 021-23, 58.230 64.780)

Such examples show that the CLFVs may be undergoing the initial steps in the path towards becoming verbal classifier affixes.

6 Multi-verb constructions

6.1 Introduction

This chapter describes the structural and semantic parameters of multi-verb constructions in Sudest. Multi-verb constructions are a productive domain in the language and complex verbs in which two or more verb stems combine in one verb complex play a prominent role in the encoding of 3PEs. A detailed understanding of these constructions is, therefore, crucial to any description and discussion of 3PEs in the language.

Multi-verb constructions are widely attested across the Oceanic languages (Lynch et al. 2002: 467), and are an areal feature found in the Austronesian, Papuan, and contact languages of the region (Crowley 1990; Givón 1990; Senft 2008). Work focussing on these constructions in the Oceanic languages, sub-groups and individual languages include: Bradshaw (1982; 1993; 2010); Crowley (1987; 2002); Durie (1988); Early (1993), Hamel (1993), Sperlich (1993), Bril and Ozanne-Rivierre (2004), Margetts (2005), François (2006), Lichtenberk (2006), Schneider (2007), Thieberger (2007) and Næss (2011), among others. Cleary-Kemp (2015) includes a survey of the multi-verb constructions found in 36 Oceanic languages.

Multi-verb constructions comparable to the Sudest constructions have frequently been analysed as serial verb constructions (SVCs) in the literature. ${ }^{148} \mathrm{~A}$ key parameter of SVCs, particularly in the Oceanic literature, is the distinction between 'nuclear-layer' and 'core-layer' serialisation. The term comes from Foley and Olsen's (1985) work within the framework of role and reference grammar. In their framework, the clause consists of three layers: the nucleus, core and periphery. The nucleus includes only the predicate, while the core comprises the nucleus and nominal arguments. The periphery contains all nuclear and core elements as well as non-core arguments. Oceanic nuclearlayer SVCs are obligatorily contiguous, combining multiple verb stems in a complex nucleus with

[^104]a single, shared set of pronominal markers. Core-layer SVCs are less tightly bound, with each verb stem in the construction taking its own set of pronominal markers. ${ }^{149}$

It has been pointed out (e.g., Cleary-Kemp 2015: 97) that 'verb serialisation' has been used as a broad umbrella term to describe comparatively heterogeneous constructions. Aikhenvald (2006; 2018) considers serialisation as existing as part of a continuum of multi-verb constructions. A range of common parameters have been proposed for defining constructions as SVCs (e.g., Sebba 1987; Aikhenvald 2006; 2018; Cleary-Kemp 2015; Haspelmath 2016). However, there is no unanimous consensus on specific features. Such parameters typically include some of the following criteria: each verb stem must be able to occur independently as a main verb in single-stem construction; the construction must be monoclausal and represent a single event (e.g., tense must hold scope over all verbs); and, the verbs must share at least one argument and include no subordination or coordination. Not all of the Sudest multi-verb constructions satisfy all of the key criteria. For example, some stems in 'nuclear' constructions do not occur synchronically in single-stem or 'simplex' predicates, and the 'core' constructions can include conjunction with no apparent difference in meaning. Consequently, throughout the current analysis, I refer to these constructions by the umbrella term 'multi-verb constructions' as a somewhat 'neutral', descriptive label. These constructions include core-like sequences, which I label 'independently inflected verbs', and nuclear-like sequences, which I call 'complex verbs'. ${ }^{150}$

As well as distinguishing multi-verb constructions depending on whether they are individually inflected or form a complex nucleus with a single set of pronominal markers, another important criterion is their symmetricality (Aikhenvald 2006; 2018). Symmetricality pertains to how restricted each verb stem slot is in the construction (henceforth V_{1} and V_{2}). In an asymmetrical construction, one slot is unrestricted, taking a verb from a relatively open or large class while the other slot may only be filled from a smaller, closed or restricted set of stems (Aikhenvald 2006: 21-22). The slots in a symmetrical construction, on the other hand, are all relatively open and unrestricted. Aikhenvald (2006:22) considers the semantic and syntactic head of the construction to be the unrestricted stem, and therefore views the symmetrical constructions as being doubly headed. Semantically, an asymmetrical construction can typically be characterised as expressing a single event. The stem in the restricted slot modifies the event expressed by the head verb, while a symmetrical construction describes a series of events that are generally ordered according to temporal iconicity (Aikhenvald 2006: 22). The diachronic pathways the two construction types follow are also distinct. Asymmetrical constructions tend to grammaticalise into directional,

[^105]applicative and tense and aspect morphemes, and symmetrical constructions lexicalise and become more idiomatic (Aikhenvald 2006: 30-5).

Crowley (2002: 40-42) finds three types of argument sharing in core-layer serialisation in Oceanic languages: same-subject, switch-subject, and ambient constructions. ${ }^{151}$ Verb stems in same-subject constructions, as the name suggests, share the same subject. In switch-subject constructions, the object of V_{1} is the subject of V_{2}. Ambient constructions can only be core-like, with the V_{2} taking an obligatory third-person singular subject. The verb stems do not share an argument in ambient constructions. The status of the V_{2} subject is currently an open question. Some scholars interpret the subject of the V_{2} to be the entire event of the V_{1} (e.g., Crowley 2002: 40-41; Aikhenvald 2006: 18), however Cleary-Kemp (2015: 131) suggests an alternative analysis of ambient constructions where the V_{2} subject marking is a morphosyntactic requirement and semantically vacuous.

Lynch et al. (2002: 46-47) identify five common semantic types of functions in Oceanic serial verb constructions: directional/positional, sequential, causative (labelled 'cause-effect' in the current analysis), manner, and ambient. ${ }^{152}$ In addition, Cleary-Kemp's (2015: 132-141) typological study also identifies aspectual functions - typically imperfective and completive/sequencing - as widespread among Oceanic languages, and instrumental and benefactive functions as less common, but also attested semantic properties. Furthermore, she finds that while some semantic properties traverse argument sharing categories, there are general correlations between the two (Cleary-Kemp 2015: 132-41).

The following discussion examines the Sudest multi-verb constructions, taking into particular consideration questions of contiguity, symmetricality, argument sharing (for independently inflected verbs) and semantics. The analysis is divided into two primary sections. Where $\S 6.2$ looks at the smaller group of independently inflected, $\S 6.3$ describes the larger group of complex verbs.

6.2 Independently inflected verbs

There are two types of possible constructions with independently inflected verbs in Sudest that closely resemble ambient serialisation. In these constructions, the second verb obligatorily taking a third-person singular subject index; a common type of serialisation found in Oceanic languages (Crowley 2002; Cleary-Kemp 2015). However, coordinators can be inserted between the two verb complexes without any apparent change in meaning. As most definitions of serialisation explicitly

[^106]exclude constructions that can be coordinated (e.g., Durie 1997: 295; Aikhenvald 2006: 1; ClearyKemp 2015: 1), it is difficult to more confidently analyse them as mono-clausal constructions without additional supporting formal criteria. . The specific and regular structure of the sequences shows that they can be considered a type of construction, albeit a less tightly bound one, than the complex verbs discussed later in this chapter in §6.3.

It is generally more difficult to identify sequences of individually inflected verbs as a mono-clausal construction (i.e. core-layer serialisation or similar) than it is to identify complex verb constructions as a mono-clausal construction (i.e. nuclear-layer serialisation or similar) (e.g. Margetts 2004b, 2005). This is not to say that Sudest does not have constructions that could be analysed as corelayer SVCs. It is highly likely that further study may identify more possible candidates for corelayer SVCs in the language and further formal criteria to support a core-layer analysis of constructions like those presented below in §6.2.1 and §6.2.2.

6.2.1 Sequencing constructions with ko 'finish'

In the sequencing construction, the first verb obligatorily consists of a complex verb comprised of an open V_{1} slot and the completive stem vao in V_{2} (discussed further in §6.3.9). The second verb is restricted to the intransitive stem ko 'finish' with a third person singular subject marker. Examples of this construction are shown in (1) to (2).

$$
\begin{align*}
& \text { thi }=\text { tawoi-vao }=\varnothing \quad i=k o \tag{1}\\
& \text { 3PL=shit(diarrhoea)-COMPL=3SG 3SG=finish } \\
& \text { 'they stop shitting (diarrhoea)' (funeral_feasting_081015_02 072, 189.430 192.880) } \tag{2}\\
& \text { 'we finish making that stone baking pit' }
\end{align*}
$$

(stone_cooking_251015 060, 164.460 168.590)
Completive multi-verb constructions with a stem meaning 'finished' are common in Oceanic languages, often developing aspectual properties (Cleary-Kemp 2015: 137-138) or discourse linkage functions (Crowley 2002: 81-82; Cleary-Kemp 2015: 219-220). In Sudest, the construction typically occurs in procedural and narrative texts to indicate that one event is completed before another begins. It is frequently accompanied by the sequential coordinator amba 'then'. Consider the two extended examples given in (3) and (4).

$$
\begin{align*}
& a=w i=\varnothing \quad a=w i-\mathbf{v a o}=\varnothing \quad \text { } \quad \text { i=ko } \quad \text { amba } \quad a=\text { ten }=\varnothing \tag{3}\\
& 1 \mathrm{SG}=\text { grind=3SG } \quad 1 \mathrm{SG}=\text { grind-COMPL=3SG } \quad 3 \mathrm{SG}=\text { finish then } \quad \text { 1SG=break=3SG } \\
& \text { [...] } a=\text { ten-vao= } \varnothing \quad i=k o \quad \text { amba } a=b u s=\varnothing \\
& 1 \mathrm{SG}=\text { break-COMPL=3SG } 3 \mathrm{SG}=\text { finish then } 1 \mathrm{SG}==\text { bore }=3 \mathrm{SG}
\end{align*}
$$

'I grind/smooth it (the bagi shell), I finish grinding it then I cut it [...] I finish cutting it 246
then I bore it (to make holes)'
(bagi_181215 009-16, 18.790 50.130)
(4) $i=i k u \quad$ uma $i=\boldsymbol{i k u} \boldsymbol{v} \boldsymbol{v a o} \quad i=\boldsymbol{k} \boldsymbol{o} \quad i=m w a$

3SG=chop(tree) garden 3SG=chop(tree)-COMPL 3SG=finish 2SG=dry
$w o=w o-n g a m b u=\varnothing$
1EXCL=GET.SG.RIGD-burn=3SG
'he chopped the garden (i.e., the trees to clear for the garden), he finished chopping (then) it dried (and) we burnt it'
(working_011115 004-5, 16.691 24.985)

The initial verb in the completive construction often, but not always, repeats the verb stem of the prior clause; a feature of tail-head linkage, which is a sequencing device found in both Papuan (de Vries 2005) and Oceanic languages, e.g., Sye (Crowley 1998: 282), Lolovoli (Hyslop 2001: 426), Nafsan (Thieberger 2006: 327-28), and Abma (Schneider 2009). The Sudest tokens also involve another key feature of tail-head linkage, namely, falling intonation on the 'tail' clause, and rising intonation on the 'head' clause, in this case, the completive construction with ko 'finish'.

6.2.2 Directional constructions

In the second construction type, the first verb is transitive, while the second verb is an intransitive directional verb that takes a third person singular subject marker referring to the event expressed by the preceding verb, as in (5) to (7), with the motion verbs njogha 'go back' and wa 'go'.

thi=kewe	mbombo=ko	i=njogha	e	ghemba
3PL=carry(on.stick)	pig=DIST	3SG=go.back	PREP	village

'they carried the pig on a stick back to the village (lit. they carried the pig on a stick, it goes back to the village)' (hunting_261214 036)
(6)

thi=bigi=ya	le-nji	bigi-bigi	$\boldsymbol{i}=\boldsymbol{w a}$	e
3PL=GET.PL.CNTR=YA	POSS.CLF2-3PL.POSS	RED-thing	3SG=go	PREP

(e_261116)

```
a=rori=ya leta i=w\boldsymbol{a}\mathrm{ we=nggi=ya lo}
1SG=write=YA letter 3SG=go PREP=3PL=YA POSS.CLF2.1SG
boda-boda
RED-relative
'I write a letter to my relatives (lit. I wrote a letter it goes to my relatives)' (e_311016)
```

The independently inflected directional constructions with an initial CLFV and wa 'go' as a second verb, as in the example above in (6) and below in (8), are one of the basic ways to encode a carrying event. ${ }^{153}$

| wanakau=ma | thi=mban=a | gha-nji | $i=w a$ |
| :--- | :--- | :--- | :--- |e

Like the sequencing constructions discussed in the previous section, the directional constructions can be separated by a coordinator, as shown in (9) and (10).

i=thagha	$l e-\emptyset$	kelumo=ma	na	$i=w \boldsymbol{a}$	e
3SG=GET.SG.TOOL	POSS.CLF2-3SG.POSS	axe=DET	and	3SG=go	PREP
uma tine					
garden inside					

'he carries his axe to the garden (lit. he gets his axe and it goes to the garden)'
(e_181016_01)
(10)

wanakau=ma	thi=bigi=ya	le-nji	nambo-nambo	
young.women=DET	3PL=GET.PL.CNTR=YA	POSS.CLF2-3PL.POSS	RED-basket	
$\boldsymbol{n a} \quad \boldsymbol{i}=\boldsymbol{w a}$	\boldsymbol{e}	sikulu		
and	$3 \mathrm{SG}=\mathrm{go}$	PREP	school	

'the girls carry their baskets to school (lit. the girls get their baskets and it goes to
school)'
(e_071116_03)

See also directional complex verbs in §6.3.1.

6.3 Complex verbs

There are over 250 distinct contiguous verb combinations attested across the corpus and elicitation data. The majority of the constructions contain two verb stems, although a small number contain three. In these constructions, no morpheme may intervene between the verb stems save certain derivational morphology. They function as a single grammatical word, obligatorily sharing a single set of subject and, if transitive, object indexes. The overall valence of the construction is that of the verb stem with the highest valence. Temporal and aspectual marking has scope over the whole construction, as does negation. In (11), the past particle $v a$ and particle $m a$ 'already' indicate that both subevents of the complex verb have already occurred.

[^107]| $v a$ | $m a$ | $t h i=v u t h a-v a i d i=n g g i$ | mbungaghalaghalamanggo | morouma
 k.o.fish |
| :--- | :--- | :--- | :--- | :--- |
| REM. already | $3 P L=$ arrive-find=3PL | countless | | |
| PST | | | | |
| 'they arrived and found countless morouma fish' | | | | |
| (mandumbunga_061215 127-9, 365.769 | 372.734) | | | |

When the complex verb is negated by the discontinuous negation marker (n)ande ...re, the marker surrounds the whole verb complex, as in (12).

$$
\begin{array}{llll}
\text { ande } & i=n d e-\text { thin-njogha }=\varnothing=\boldsymbol{r} \boldsymbol{e} & \text { mun } & \text { we= } \varnothing \tag{12}\\
\text { NEG1 } & \text { 3SG=DEHORT-GET.SG.CNTR-go.back=3SG=NEG2 } & \text { a.bit } & \text { PREP=3SG } \\
\text { 'he didn't return/give it back to him' } \quad \text { (eagle_story_081115 046, } & 127.630 \text { 131.900) }
\end{array}
$$

As stated above, a generally agreed upon requirement for a multi-verb construction to be considered true serialisation is the ability of each verb stem in the construction to also function independently as the only verb stem in a verb phrase/complex (Sebba 1987: 39; Aikhenvald 2006: 1; Cleary-Kemp 2015: 102). Not all stems in the complex verbs attested in Sudest comply with this criterion. Restricting the investigation to only those constructions with fully verbal stems would, however, ignore a significant proportion of constructions, including several that play a prominent role in the expression of 3PEs. Throughout the current description, I explicitly note all verb stems that cannot, or are not, attested to function as independent verbs.

In previous work on Sudest, $A \& R$ (p.339) conclude that there are no clear cases of verb serialisation, but assert that verb compounding of two verb stems is productive, giving the three examples reproduced in (13) to (15). They state that verb compounding in the language is not well understood, but that examples in (13) and (14) show a relationship equivalent to coordination, and that the construction in (15) has a V_{1} indicating motion and a V_{2} indicating direction (these construction types are discussed in $\S 6.3 .6$ on simultaneous and sequential and in $\S 6.3 .1$ on directional complex verbs respectively).

$$
\begin{array}{ll}
\text { kero } \quad \text { i=ghan-ghan-wothi } \\
\text { already } \quad \text { 3SG=RED-eat-sing } \\
\text { 'already she was eating and singing' } \tag{14}
\end{array}
$$

(adapted from Anderson \& Ross 2002: 334)
thi=vutha-vale $=n g g i=y a \quad$ gharighari
$3 \mathrm{PL}=$ arrive-meet=3PL=YA people
'they arrived and met people'
(adapted from Anderson \& Ross 2002: 335)
(15) thi=vanggu-njogha=nggo

3PL=lead-go.back=1SG
'they take me back'
(adapted from Anderson \& Ross 2002: 335)
The stem combinations attested in the data show that Sudest complex verbs encode a variety of semantic properties, including some that are commonly, and other that are less-commonly attested
in Oceanic languages (see Crowley 2002 and Cleary-Kemp 2015 for Oceanic, Aikhenvald 2006; 2018 for cross-linguistic patterns). Nine construction types can be distinguished in the data based on their semantic properties. These are presented in §6.3.1 to §6.3.9. The structure and patterns of complex verbs with more than two stems are discussed in §6.3.10. It should be highlighted that the notion of argument sharing for the complex verbs is a purely semantic one relating to the logical arguments of the verbs as the verb stems share one set of syntactic argument between them.

6.3.1 Directional constructions

Directional complex verbs are one of the most common type found cross-linguistically (Foley and Olson 1985: 42; Aikhenvald 2006: 48), and are common in Oceanic languages (Crowley 2002). They are the largest group of complex verbs in Sudest. In these constructions, the V_{1} slot is relatively unrestricted and the V_{2} slot is filled by a directional verb that specifies the literal or fictive motion of the event argument. ${ }^{154}$. Intransitive V_{1} stems are usually (although not always) manner of motion verbs, and V_{1} transitive stems are frequently ones of handling and caused motion.

The directional verbs that fill the V_{2} slot express motion along a trajectory, e.g., voro 'go up', nja 'go down', njogha 'go back'. There are 20 directional stems attested in these constructions that divide into two subgroups: there are four transitive stems that licence a locational object (§6.3.1.1), and 16 intransitive directional stems (§6.3.1.2). (See also independently inflected directional constructions in §6.2.2).

6.3.1.1 Transitive directional verbs

The first subset of three directional verbs are monotransitive and take an object that specifies the orientation of the event in relation to the ground entity, i.e., whether they are oriented towards a goal or source, follow a moving entity, or a particular path. The monotransitive directional verbs are listed in Table 6.1.

directional stem	gloss	object
ghembe	'go to/towards'	goal
mbele	'follow'	path
njolanga	'go over'	path
labl 6.1 Trat		

Table 6.1 Transitive directional stems in directional complex verbs

[^108]The verb ghembe 'go to(wards)' takes an object with the semantic role of goal, while the remaining three verbs take an object with the semantic role of path. Transitive directional verbs that take locational objects are attested in other (Western) Oceanic languages (see, e.g., Durie 1988).

6.3.1.1.1 Ghembe 'go to(wards)'

The verb ghembe 'go to(wards)' takes a goal as its object. The complex verbs it occurs in are listed in Table 6.2. The tables throughout this chapter give the individual and combined gloss and transitivity status of each of the verb stems (INTR 'intransitive, TR 'monotransitive, and DITR 'ditransitive') and token count in the corpus. Complex verbs only attested in elicitation data are labelled with 'EE' (elicitation English) or 'ES' (elicitation Sudest), where 'EE' refers to examples resulting from English to Sudest translations, and 'ES' indicates constructions presented in Sudest to speakers.

$\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}$	V $\mathbf{~ g l o s s}$	combined meaning	transitivity	tokens
ruku-ghembe	'run'	'run to'	INTR-TR	1
longga-ghembe	'walk'	'walk to'	INTR-TR	1
taodo-ghembe	'crawl'	'crawl to'	INTR-TR	2

Table 6.2 Directional complex verbs with ghembe 'go to(wards)'
The stem is only attested with intransitive manner of motion V_{1} stems in the corpus and is used in combination with these stems to add a goal argument. Examples (16) to (18) show all the combinations with ghembe 'go to(wards)' found in the corpus.
(16) i=taodo-ghembe uye $=m a$

3SG=crawl-go.to clay.pot=DET
'the child crawls to the clay pot' (child_and_giant_201015 074-5, 191.450 195.082)
(17)
amala=ma $\quad i=$ longga-ghembe $=y a \quad$ karot=ma $\quad e \quad$ tebol $=m a$
man=DET 3 SG=walk-go.to=YA carrot=DET PREP table=DET
vwata- \varnothing
top-3SG.POSS
'the man walks to the carrot on the table' (cb_stimuli_101116 084, 1051.5501058 .889)
(18) $i=r u k u-g h e m b e=\varnothing$

3SG=run-go.towards=3SG
'he ran towards him (his son)'
(fp_stimuli_201015_01 248, 937.768 939.100)

6.3.1.1.2 Mbele 'follow'

The directional mbele 'follow' describes motion following an entity that can be animate or inanimate. The complex verbs with mbele 'follow' are listed in Table 6.3.

$\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}$	V1 gloss	combined meaning	transitivity	tokens
raka-mbele	'go (PL)'	'chase, follow'	INTR-TR	2
kubaro-mbele	'hide/be hiding'	'hide and follow'	INTR-TR	1
utu-mbele	'speak'	'describe (a series of things), lit. 'talk	INTR-TR	1
nggari-mbele	'tie'	following (s.th.)'		
rangi-mbele	'cry for, mourn'	'tie along/following (s.th.)	'cry after/for'	INTR-TR
uno-mbele	'say (a name)'	'say (name)'	INTR-TR	1
vakatha-mbele	'do, make'	'do following along'	INTR-TR	2

Table 6.3 Directional complex verbs with mbele 'follow'
When mbele 'follow' occurs with an intransitive verb with a motion component in V_{1}, the directional verb adds an object argument that denotes the goal referent the subject is following. In (19), the subjects are ordered to follow a person in order to catch them, and in (20) a grandchild is hiding and following his grandmother.

$$
\begin{array}{lllll}
i=n g a & \text { "hu=raka-mbele }=\emptyset " & i=n g a & w o=h u=a w e & l e=k o!" \tag{19}\\
3 S G=\text { say } & \text { 2PL=go.PL-follow=3SG } & 3 S G=\text { say } & \text { HORT=2PL=catch } & \text { person=DIST } \\
\text { 'he said "you follow him", he said "catch that person!"" } \\
& \text { (bwaindiya_151115 096-7, } 263.926 \text { 266.210) }
\end{array}
$$

rumbu-ye=ma	mbe	me=$=$ kubaro-mbele $=\varnothing$	vara
grandchild/parent-3SG.POSS=DET	still	3SG.IMM.PST=hide-follow=3SG	really
'the grandchild hid following her (her grandmother)'			

(snake_passage_061215 077, 177.926 180.768)
When mbele 'follow' combines with verbs that do not have a motion component it has a pluractional meaning. The activity of V_{1} is interpreted as being repeated, which can, in turn, indicate a plural object or event reading (see $\S 3.3 .2$ for reduplication, and $\S 5.3$ for CLFVs). The repeated activity can take place immediately over a short period of time, as in (21) with the intransitive verb utu 'speak'. In this example, the speaker is explaining to the hearer how they will each describe a series of pictures that are lined up in front of them one after the other.

(21) $k o$	ra=utu-mbele-vara	iya=na
	COORD	1INCL=speak-follow-really

'we will speak along/following them (a series of pictures)' (fp_stimuli_201015_02 120, 405.012 407.430)

Examples (22) and (23) show mbele 'follow' with transitive V_{1} stems. Both sentences describe a repeated series of events completed one after the other. In (22), the agent follows along from one knot to the next (tying each one up).
(22)

```
i=nggari le-\varnothing nuwo=ko i=nggari-mbele=\varnothing te-ma
3SG=tie POSS.CLF2-3SG.POSS knot=DIST 3SG=tie-follow=3SG more-already
ve=nja=engge
3SG.INT=go.down=just
```

'he tied the knot, he kept tying them until he went down (to the bottom)' [context: a man is descending a 12 story building and tying a knot at the entry to each level to lock it]
(mandumbunga_02_181016 531-3, 1334.571 1342.144)
In (23), the subjects keep repeating a person's name.

```
mbe thi=uno-mbele-mbele vara le=ko ida-ye
    still 3PL=say(name)-RED-follow really man=DIST name-3SG.POSS
```

 'they keep on mentioning his name'
 (mandumbunga_02_181016 234, 597.214 599.979)
 In (24) and (25), the events described by the V_{1} are not repeated immediately one after the other and instead are more habitual, repeated over a longer period of time. In (24), a particular eagle's cry is attributed to him crying for spears that his cousin stole from him.

$\begin{array}{ll} \text { "sangweee" } \tag{24}\\ \text { onomatopoeic.bird.call } \end{array} \quad[\ldots]$	thangwethangwe noroke k.o.eagle today	$\begin{aligned} & \text { u=longwe } \\ & 2 \mathrm{SG}=\text { hear } \end{aligned}$	nggora like
iya $=$ ko ghalinga-e	me $=$ rangi-mbele $=y a$ 3SG.IMM.PST=cry.for-follow	$l e-\emptyset$	
DEM=DIST voice-3SG.POSS		POSS.CLF2	-3SG.POSS
kin-kin=ko			
RED-spear=DIST			
"'sangweee", Thangwethangw he is crying for his spears'	eagle, today (when) you hear (eagle_story_081115	s voice, i 64-7, 177	like that, 24 189.489)

Example (25) discusses the repeated hunting expeditions trained dogs take part in throughout their lives.

waidi $=$ ko	thi $=$ vakatha-mbele $=\varnothing$	ghaghadi	engge	mbugha-mbugha=ko
hunt=DIST	3PL=do/make-follow=3SG	until	just	RED-dog=DIST

thi=thanja
3PL=be.old
'the hunting, they (the dogs) keep doing it until the dogs are old'
(hunting_261214 037-42, 82.800 95.720)

6.3.1.1.3 Njolanga 'go over'

The final transitive directional verb are only attested in complex verbs with the V_{1} yo 'fly'.

$\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{1}}$ gloss	combined meaning	transitivity	tokens
yo-njolanga	'fly'	'fly/go over'	INTR-TR	2
Table 6.4 Directional complex verbs with njolanga	'go over'			

The two stems have similar semantics, and both describe a path which traverses the object entity. The stem njolanga 'go over' cannot function as a main verb. In combination with the intransitive manner of motion stem yo 'fly' it indicates motion over an entity. In (26), the complex verb describes how the recently deceased cross over a particular tree that marks the boundary to the place of the ancestors on the summit of Mount Rio.

```
ra=yo-njolanga ghatha=ko mborowa
    1INCL=fly-go.over k.o.plant=DIST trunk
    'we fly/jump over the Ghatha trunk' (engginas_story_231016 035-6,69.690 74.994)
```

In (27), the speaker euphemistically describes intercourse as the man 'flying over' the women's legs.

ande	ne	nggama=ko	rama-e	i=yo-njolanga=re
NEG1 \quad FUT	child=DIST	father-3SG.POSS	3SG=fly-go.across=NEG2	
nggama=ko	tina-e	gheghe		
child=DIST	mother-3SG.POSS	foot/leg		

'the child's father cannot have intercourse with the child's mother (lit. cannot fly over the child's mother's legs)' (new_mother_251214 109-10, 269.310 277.160)

6.3.1.2 Intransitive directional verbs

There are 17 intransitive stems attested in the V_{2} slot of directional complex verbs, which are listed in Table 6.5. The stems njolanga 'go over' and viri 'ascend (vertically)' cannot occur as main verbs in simplex predicates.

directional stem	gloss	orientation
mena	'come'	(deictic) goal
mwandi	'go straight'	goal
$n j a$	'go down, go (to the southeast)'	goal
njogha	'go back, return'	goal
ru	'go in, enter (enclosed container)'	goal
voro	'go up, go (to the northwest)'	goal
vutha	'arrive'	goal
vivalvuva	'go first'	goal
njaniya	'go down'	source
ranggi	'go out, exit (enclosed container)'	source
ri	'go'	source
viri	'ascend (vertically)'	source
nggalai	'go around'	path
goraun	'go around'	path
njolanga	'go across'	path
valawe	'go across (water)'	path
yere	'go past/by'	path
Table 6.5 Intransitive directionalverbs in directional complex verbs		

Table 6.5 Intransitive directional verbs in directional complex verbs

The orientation of the transitive verbs discussed above can be observed in the semantics of the object argument. What is described here as the orientation of the intransitive directional verbs can be observed by the default reading of locational adjuncts (which is however defeasible, as discussed below). Consider the two PPs in (28) with the general preposition e 'to, from, with': while the PP following the source-oriented directional ri 'go (from)' has a source reading 'from in the garden', the PP following the goal-oriented verb njogha 'go back' is interpreted as a goal 'to the village'.

methi=ri	e	uma	tine	thi= $\boldsymbol{n j o g h a}$	e	ghemba
3PL.IMM.PST=go(from)	PREP	garden	inside	3PL=go.back	PREP	village

As mentioned, the verbs directional orientation is manifested in the default interpretation of the locational adjuncts. This default interpretation is defeasible, as evidenced by tokens in which a source-oriented directional stem occurs with an adjunct that has a goal reading (and vice versa). Compare the two sentences in (29) with the source-oriented directional ranggi 'go out, exit', which specifies motion out of an enclosed space. In (29a), the PP e thiyo has the reading 'from the jail', where the PP denotes the enclosed space. However, in (29b) the combination of the verb and the PP has the reading of 'out of an enclosed space and towards a goal'. It is world knowledge and the context of the utterance which clarify that a reading of 'exit your father' is not felicitous.

$v a$	$m a$	$i=$ ranggi	\boldsymbol{e}	thiyo
REM.PST	already	3SG=go.out	PREP	rope/jail

'he already went out from the jail'
(fp_stimuli_191015_02 072)
b. "thonggo ne ra=ranggi we=ya rama-n rama-n
if FUT 1INCL=go.out PREP=YA father-2SG.POSS father-2SG.POSS
ne $i=m a r a r u=$ inda"
FUT 3 SG=be.afraid $=1$ INCL
"if we go out (of here) to your father, your father will be afraid of us'
(couples_story_101214 030-1, 91.838 96.680)
The majority of the directional motion verbs in Sudest are goal-oriented, expressing motion in a direction. Such asymmetrical patterning that preferences goals was first noted by Ikegami (1987), and has been reported as widespread cross-linguistically in motion and caused motion events (e.g., Arnold, 2008; Lakusta \& Landau, 2005; Lakusta et al. 2007; Regier \& Zheng, 2007; Narasimhan et al. 2012).

The remainder of this section describes complex verbs with each of the intransitive directional stems.

6.3.1.2.1 Ru 'go in' and ranggi 'go out'

The intransitive directional verbs $r u$ 'go in' and ranggi 'go out' encode motion into and out of an enclosed space respectively. When describing motion on a geographic scale, such as when travelling between islands, ru 'go in' is used to describe motion towards land and ranggi is used to describe motion away from land. Attested complex verbs with an intransitive V_{1} and one of the two directional verbs are presented in Table 6.6.

$\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}$	V $\mathbf{~ g l o s s}$	combined meaning	transitivity	tokens
longga-ru	'walk'	'walk in'	INTR-INTR	1
raka-ru	'go (PL)'	'go in'	INTR-INTR	3
ruku-ru	'run'	'run in'	INTR-INTR	1
raka-ranggi	'go (PL)'	'go out (seaward)'	INTR-INTR	8
ruku-ranggi	'run'	'run out'	INTR-INTR	1
kela-ranggi	'peep'	'peep outside/ outwards'	INTR-INTR	2

Table 6.6 Directional complex verbs with ranggi 'go out' and ru 'go in'
Examples (30) to (35) show ru 'go in' and ranggi 'go out' in intransitive complex verbs. In (30) and (31), ru'go in' occurs with manner of motion verbs to indicate directionality into a house.

amba	me=ruku-ru	nunggo	mbowo	$v e=l a-$ yawe $=v a$
then	3SG.IMM.PST=run-go.in	perhaps	still?	3SG.INT=and.go-swing

lolo
person
'then she rushed/ran in (to her house), perhaps to swing the person (before returning)' [context: a speaker returned to her house next door during recording to settle her infant who was sleeping in a hammock] (c_031116 043-4, 91.160 95.940)
(31) i=longga-ru e nggolo

3SG=walk-go.in PREP house
'she walks into the house'
(put_stimuli_201015_01 038-39, 289.110 293.350)
In (32) and (33), the V_{2} stems indicate the directionality of animals entering and exiting their holes.

bwarogi=ma	kero	methi=raka-ru	e	le- $n j i$
fish=DET	already	3PL=go.PL-go.in	PREP	POSS.CLF2-3PL.POSS
doda=ma				
hole-DEM				
'the fish had already gone into their holes'				

(mandumbunga_061215 065-6, 180.890 185.645)
(33) teo=ma i=ruku-ranggi
rat=DET $3 \mathrm{SG}=$ run-go.out
'the rat ran out (from a hole)'
(frogstory_161214 058, 145.292 146.800)

The directionality indicated by ranggi 'go out' in (34) is on the global scale, and here encodes movement out from the coast, indicated by the addressee proximal deictic $=n a$ 'there' in the verb complex, towards the shallow reef area e njighi 'to the sea'.

thi=raka-ranggi=wo $=$ na	e	njigh \dot{t}	e
3PL=go.PL-go.out=thither=ADDR.PROX	PREP	salt.water	PREP
manggomanggo $=k o$			
low.tide=DIST			

'they went out from there to the sea at low tide (i.e., onto the exposed reef)' (chicken_story_181015 008-9, 23.888 28.960)

In (35), the directionality of the construction pertains to the fictive motion of the subject's gaze looking out from a doorway.

$$
\begin{array}{lll}
i=\text { ro-kela-ranggi } & e & \text { mbwanganggila=ke } \tag{35}\\
\text { 3SG=stay.and-peep-go.out } & \text { PREP } & \text { doorway=SPKR.PROX } \\
\text { 'he stayed and peeped out the doorway' }
\end{array}
$$

(mandumbunga_02_181016 497-98, 1253.183 1261.163)
Table 6.7 shows the attested complex verbs with a monotransitive V_{1} and one of the two directional verbs. The majority of the monotransitive directional complex verbs express caused motion events. Ranggi 'go out' is also used in a number of constructions that describe bodily processes.

$\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}$	V1 gloss	combined meaning	transitivity	tokens
GET-ru	'get'	'take in'	TR-INTR	19
gudu-ru	'fetch (water)'	'fetch in (water)'	TR-INTR	1
lawe-ru	'catch'	'catch and take in'	TR-INTR	1
vanggu-ru	'accompany, lead'	'lead in'	TR-INTR	4
vanja-ru	'unload'	'unload into'	TR-INTR	1
GET-ranggi	'GET'	'take out'	TR-INTR	59
gita-ranggi	'pull'	'pull out'	TR-INTR	1
linggi-ranggi	'pour'	'pour out'	TR-INTR	1
vewo-ranggi	'push'	'push out'	TR-INTR	3
tawoi-ranggi	'shit (diarrhoea)'	'shit out (diarrhoea)'	TR-INTR	1
uthighe-ranggi	'shit'	'shit out'	TR-INTR	2
ghaluwo-ranggi	'sputter, spew (liquid)'	'sputter out'	TR-INTR	1

Table 6.7 Directional complex verbs with ranggi 'go out' and ru 'go in'
Examples (36) to (44) show the stems ru'go in' and ranggi 'go out' with transitive V_{1} stems. In (36) and (37) items are being removed from containers.
(36) vali nima-e i=gita-ranggi e ghamba-e=ma
side hand-3SG.POSS 3SG=pull-go.out PREP place-3SG.POSS=DET
'one hand pulls it (candle) out from its place (candlestick)'
(put_stimuli_231015 031-2, 267.394 274.368)

lolo	regha	i=wo-ranggi=ya	vari	e	mbwa	tine
person	one	3SG=GET.SG.RIGD-go.out=YA	stone	PREP	water	inside
ina- \varnothing		e	bilikan			
location-3SG.POSS	PREP	pot				
'a person takes out a stone from the water in a pot'						

(put_stimuli_191015_01_01 174, 697.336 701.762)

When CLFVs combine with directional stems the resulting complex verb can express a table-top scale ${ }^{155}$ event, as in (37) above, where the subject remains stationary while taking a stone out of a pot. Directional complex verbs with a CLFVs can also express a caused motion event on a larger scale, as in (38), where the subject moves along with the object out of the garden.

kero thi=bigi-ranggi=ya	ghaningga=ke	e	uma=ko	
already	3PL=GET.PL.CNTR-go.out=YA	food=SPKR.PROX	PREP	garden=DIST
tine				
inside				
'they are already taking the food out from the garden'				

(fp_stimuli_201015_01 138, 556.430 559.109)
There is no formal distinction by which the two types of caused motion events can be differentiated. This means that they can only be distinguished through contextual knowledge. Another example of this is shown in the two sentences presented in (39). The two sentences describe two nearly identical stimuli videos, where a young woman in (39a) places a suitcase just inside a doorway while remaining stationary on the outside of it, and in (39b), the young woman walks through the doorway while holding the suitcase.

(39) a.	wevo=ma	$i=$ thin-ru	$l e-\varnothing$	bogisi
young.woman=DET	3SG=GETSG.SG.CNTR-go.in	POSS.CLF2-3SG.POSS	box	

'the young woman puts her box in(to) the doorway'
(put_stimuli_191015_02_02 103-5)
b. wevo $=$ ma $\quad i=$ thin $=a \quad$ le- $\varnothing \quad$ bogisi
woman=DET 3SG=GET.SG.CNTR=YA POSS.CLF2-3SG.POSS box
ve=thin-ru $\quad e \quad$ nggolo mbwanganggila tine
3SG.INT=GET.SG.CNTR-go.in PREP house doorway inside
'the girl gets the box (and) carries/takes it into the house's doorway' (put_stimuli_191015_02_02 054-5)

[^109]The tokens in (40) and (41) are two descriptions of the same scene in which a man is lead into a jail cell by the police. Both sentences use a complex verb with a transitive V_{1} and $r u$ ' go in' in V_{2}. In (41), the goal adjunct $=n a$ 'ADDR.PROX' cliticises to the end of the VC.

| thi $=$ vanggu-ru $=w o=\varnothing$ | ina- \varnothing | e | sel tine |
| :--- | :--- | :--- | :--- | :--- |
| 3PL=lead-go.in=thither=3SG | location-3SG.POSS | PREP | cell inside |
| 'they lead him into a cell' | | (fp_stimuli_191015_05 452, 1003.980 1006.060) | |

(41)
$m a \quad$ thi $=$ lawe $-\mathbf{r u}=w o=n a$
already 3PL=catch-go.in=thither=ADDR.PROX
'they took him in there (into a cell)' (fp_stimuli_191015_05 447, 996.167 997.570)

The complex verb vanja-ru 'unload-go in' in (42) describes the activity of unloading cargo onto land.

The directional ranggi 'go out' is also attested in multiple complex verbs that describe bodily functions that involve various substances leaving the body, including sputtering out liquid (43) and defecating various objects or substances as in (44) and (45).
(43) ma i=gha-ghaluwo-ranggi=engge njighi
already 3SG=RED-sputter-go.out=just salt.water
'she was already sputtering out seawater'
(chicken_story_181015 042-3, 95.570 99.480)
(44) i=uthighe-ranggi=ya ndave-ndavari

3SG-shit-go.out=YA RED-shell.money
'she shits out shell money' (snake_passage_061215 054-5, 127.000 129.020)
(45) nuwa-nji iya thi=tawoi-ranggi=ya gamoi-nji une
desire-3PL.POSS DEM 3PL=shit(diarrhoea)-go.out=YA stomach-3PL.POSS fruit
'they want to purge the contents of their stomachs (lit. shit out their stomachs' fruit)'
(kula_exchange_081215 027, 85.790 89.210)
The final attested complex verb combines the monotransitive verb linggi 'pour' with ranggi 'go out' to mean 'pour out'. Examples of this are presented in (46) and (47).
(46) amala=ma i=linggi-ranggi=ya mbwa e uye=ko
man=DET 3 SG=pour-go.out=YA water PREP pot=DIST
'the man pours the water out of the pot'

ela=ke	$i=$ linggi-ranggi=ya	gamagai	$l e=n j i$
woman=SPKR.PROX	$3 \mathrm{SG}=$ pour-go.out=YA	children	POSS.CLF2=3PL.POSS
ghe=mwadi-mwadiwo	e	pulo vwata	

$$
\text { (put_stimuli_201015_02 039-42, } 257.650 \text { 264.085) }
$$

While the complex verb in (46) occurs with the expected source adjunct, the complex verb in (47) occurs with a goal adjunct rather than a source adjunct. This is because a source interpretation of 'pouring out the children's toys from on top of the floor' is infelicitous.

6.3.1.2.2 Nja 'go down' and voro 'go up'

The intransitive directional verbs nja 'go down' and voro 'go up' express upwards and downwards motion. Sudest has a space system that is typical of many Oceanic languages (Ross 2003). On a geographic scale, the two directional verbs have secondary, horizontal senses. In these contexts, nja means 'go (to the northwest)', and voro means 'go (to the southeast)' when moving both on land or at sea (or in the air). Both directional stems are goal-oriented, and nearly always take an adjunct with the semantic role of goal. The attested intransitive complex verbs with the two stems are given in Table 6.8.

V_{1}	V_{1} gloss	combined meaning	transitivity	tokens
ruku-nja	'run'	'run down'	INTR-INTR	1
ghe-nja	'marry'	'settle down'	INTR-INTR	7
mara-nja	'look'	'look down'	INTR-INTR	1
mun-nja	'dive'	dive	INTR-INTR	12
ra-nja	'burn'	'burn down'	INTR-INTR	1
raka-voro	'go (PL)'	'go up'	INTR-INTR	8
ruku-voro	'run'	'run up'	INTR-INTR	3
yo-voro	'fly'	'fly up (horizontal/up wind)'	INTR-INTR	2
mara-voro	'look'	'look up'	INTR-INTR	2
mbuthu-voro	'grow (plants)'	'grow up'	INTR-INTR	1
mun-voro	'dive'	'swim up (to surface)	INTR-INTR	1
righe-voro	'climb (hill)'	'climb up (a hill)'	INTR-INTR	1

Table 6.8 Directional complex verbs with nja 'go down' voro 'go up' and intransitive V_{l}
Examples (48) and (49) present tokens of nja 'go down' and voro 'go up' occurring with the intransitive V_{1} stem mun 'dive, move underwater'.
(48)

i=mun-nja	e	mbwa	tine
3SG=dive-go.down	PREP	water	inside

'he dived down into the water'
(frogstory_161214 098, 252.570 256.611)
(49)

ela=ko	maa	ma	$i=$ mun-voro
woman=DIST	NEG	already	3SG=dive-go.up

'the woman did not swim up (to the surface) (lit. dive up)'
(mandumbunga_02_181016 445, 1125.377 1127.2751)
The examples in (50) to (52) show the two stems combining with manner of motion stems ruku 'run' and yo 'fly'.
(50) i=ruku-nja

3SG=run-go.down
'he ran down'
(frogstory_161214 014, 36.81038 .030)
(51) i=ruku-voro gha=niye Vanamawo point

3SG=run-go.up LOC=SP place.name top.of.hill
'he ran up to that place, the top of Vanamawo'
(bwaindiya_151115 111-2, 289.671 292.834)
(52) kubwana vouta i=yo-voro
morning.star biggest 3SG=fly-go.up
'the morning start comes/flies up' (chicken_story_181015 047, 108.329 111.860)
The directional verb in (53) indicates the upwards growth of a plant. In (54), the complex verb ranja 'burn-go down' is comparable to its English translation 'burn down'.
(53) $i=m b u t h u-v o r o=k o$

3PL=grow-go.up=DIST
'it (a coconut tree) grows upwards’ (c_031116 282, 520.480 521.667)
(54) i=ra-vao $\quad i=r a-n j a$

3SG=burn-COMPL 3SG=burn-go.down
'it (a fire) burns out, it burns down’ (stone_cooking_251015 055, 145.580 149.730)

In complex verbs with mara 'look', the V_{2} stems indicate fictive rather than literal motion, encoding the direction of the subject's gaze: mara-nja 'look down' in (55), and mara-voro 'look up' in (56).

(55) mbamba-ra	$i=d o b u$	$n a$	$i=m a r a-n j a$	$n a$	$i=$ uthuwe
NUM.CLF-one	$3 S G=$ fall	and	3SG=look-go.down	and	$3 S G=$ see

$$
\text { (put_stimuli_231015 046, } 372.190375 .008 \text {) }
$$

(56) ko amba thi=mara-voro e umbwa=ko ndamwa

COORD then 3PL=look-go.down PREP tree=DIST leaf 'so then they both looked up into the tree leaves'
(mandumbunga_02_181016 194, 483.115 486.193)

The directional verb nja 'go down' also combines with the intransitive verb ghe 'marry' in an idiomatic complex verb similar to the English 'settle down', which is used to describe a newly married couple:
thi=ghe-nja
3SG=marry-go.down
'they settle down (lit. marry down)' (fp_stimuli_191015_03 149, 404.170 405.370)

Table 6.9 shows the attested directional complex verbs with nja 'go down' or voro 'go up' and a monotransitive V_{1}.

$\mathbf{V}_{\mathbf{1}}$	V1 gloss	combined meaning	transitivity	tokens
GET-nja	'get'	'take down (hill/stairs/wind)'	TR-INTR	3
kewe-voro	'carry (w stick)'	'carry up (hill/upwind, using a stick)	TR-INTR	1
vanggu-voro	'lead'	'accompany/lead up'	TR-INTR	1
GET-voro	'get'	'take up (hill/wind/stairs)	TR-INTR	9

Table 6.9 Directional complex verbs with nja 'go down' voro 'go up' and transitive V_{2}
The monotransitive complex verbs examples presented in (58) to (61). They all describe caused motion events where the subject accompanies the object that is being moved.
(58) $i=$ kewe-kewe-voro $=m a=n a$
yambiya
3SG=RED-carry(w.stick)-go.up=hither=ADDR.PROX
sago
'he is carrying the sago up here' (marriage_111015030, 92.980 98.150)
(59)
$t h \dot{i}=v a n g g u$-voro $=m a=\varnothing$
3PL=lead-go.up=hither=3SG
'they took him up (here)'
(mandumbunga_02_181016 280, 705.949 707.949)
(60) nggama yanga iya=va ve=thin-voro thari
child handsome DEM=REM.PST 3SG.INT=GET.SG.CNTR-voro dance
Nju
place.name
'the handsome child was the one to take the dance up to Nju'
(feast_of_the_fish_271015 028-31, 69.596 77.340)

$$
\begin{array}{lcc}
\text { ghena=ko } & \text { amala=ko } & i=w o-n j a=\emptyset \tag{61}\\
\text { lime.stick=DIST } & \text { man=DIST } & \text { 3SG=GET.SG.RIGD-go.down=3SG } \\
\text { 'the ceremonial limestick, the man took it down (to the village)' }
\end{array}
$$

(bwaindiya_151115 040-1, 122.351 126.990)

There is also a second group of complex verbs with a monotransitive V_{1} and nja 'go down' or voro 'go up', presented in Table 6.10. They are differentiated from the first group by the presence of the transitive suffix $=n g a$ on the $V_{2}(\S 4.4 .1 .1)$. No other directional verbs take the transitive suffix like this in complex verbs.

$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{1}}$ gloss	combined meaning	transitivity	tokens
GET-njo=nga'156	'get'	'take down'	TR-TR	10
tabe-njo $=$ nja	'open'	'take down'	TR-TR	1
tara-njo $=n g a$	'pour'	'pour out and down'	TR-TR	1
yaru-njo $=$ nga	'gather'	'gather down'	TR-TR	1
GET-voro $=$ nga	'get'	'put up'	TR-TR	2
thuwobwadi-voro $=$ nga	'grab/tackle'	'pull up'	TR-TR	1
Table 6.10 Directional complex verbs with transitivised nja 'go down' voro 'go up' and transitive V_{1}				

The presence or absence of the transitivising enclitic in complex verbs with nja 'go down' and voro 'go up' formally distinguishes 'table-top' caused motion events - where an object is moved while the subject remains stationary - from caused motion events, where the subject moves along with the object. This can be seen in the comparison of the examples in (154) and (63) (below) with a CLFV in V_{1} position and the transitive enclitic, with the constructions shown above in (61) and (60), also with a CLFV but without the transitive enclitic. Where the examples below describe putting a cup down on a table and putting a box on a bookshelf, the previous examples describe taking objects 'up' and 'down' between villages.

elisari=ke	i=thin- $\boldsymbol{n j o = n g a}$	$n d e g h i=k e$	e
old.woman=SPKR.PROX	3SG=GET.SG.CNTR-go.down=TR	cup=SPKR.PROX	PREP
ghamba	ghaningga=ko	vwata- \varnothing	
place	food=DIST	top-3SG.POSS	

'the old woman puts the cup down on top of the table (lit. food's place)'
(put_stimuli_201015_01 160-2, 908.160 913.280)

```

\footnotetext{
\({ }^{156}\) The open central vowel [a] in nja becomes the close-mid back [ o ] before the transitive suffix - \(n g a\), between the palatal and velar prenasalised stops.
}
\begin{tabular}{lllll} 
amala=ma & i=thin-voro=nga & bogisi & \(e\) & buku=ma \\
man=DET & 3SG=GET.SG.CNTR-go.up=TR & box & PREP & book=DET \\
ghamba-e & & & & \\
place-3SG.POSS & & &
\end{tabular}
'the man puts the box on the bookshelf'
(put_stimuli_191015_02_02 027-9, 205.478 214.176)
This can also be seen in the other \(\mathrm{V}_{1}\) verbs that occur with the transitivised directional verbs. In (64), the complex verb with thuwobwadt 'grab' describes an action in which a man pulls a girl (up) out of the water while remaining stationary in his canoe. Example (65) describes the action of taking down a picture from a wall. These can be contrasted with the verbs that do not take the transitive enclitic kewe 'carry (on stick)' and vanggu 'lead', shown above in (58) and (59) respectively, that entail the accompaniment of the subject.


The combination of a CLFV and the transitivised directional nja 'go down' is used when describing the removal of clothing or other objects from on one's person, as in (66) and (67), or taking it off someone else, as in (68). When expressing the sense of 'take off', the complex verb always occurs with a source adjunct expressing the body part from which the object was taken, as in (67) and (68), rather than an adjunct expressing a goal.
(66)
```

i=nga "u=li-njo=nga gha-n
3SG=say 2SG=GET.SG.FLEX-go.down=TR POSS.CLF1-2SG.POSS
kwaliko=na"
cloth/clothing=ADDR.PROX
'she said "take off your clothing""

```
(mandumbunga_02_181016 428, 1086.561 1088.602)
\begin{tabular}{|c|c|c|c|c|}
\hline na & [...] & nima-e & \(i=\) voro & \(a\) \\
\hline young.woman=DET & & hand-3SG.POSS & 3SG=go.up & and \\
\hline
\end{tabular}
\(\boldsymbol{i = m w a n a - l i - n j o = n g a ~}\) umbali-ye=ma ghae 3SG=w.hand-GET.SG.FLEX-g.down=TR head-3SG.POSS=DET cover 'the young woman's [...] hand goes up and she takes off (lit. down) her hat (lit. head's cover)'
(put_stimuli_231015 033-4, 283.065 291.379)
(68) ela=ma regha i=li-njo=nga flowa wevo=ma woman=DET one 3 SG=GET.SG.FLEX-g.down=TR flower young.woman=DET
\(e \quad u m b a l i-y e\)
PREP head/hair-3SG.POSS
'the woman takes the flower down from the girl's hair'
(put_stimuli_201015_01 020-1, 150.940 155.080)

\subsection*{6.3.1.2.3 Mena 'come' and vutha 'arrive'}

The two directional verbs mena 'come' and vutha 'arrive' both specify motion to a certain point. Semantically, mena 'come' can be distinguished for being the only deictic directional verb specifying motion towards the deictic centre, which is often the speaker. The attested directional constructions with mena 'come' and vutha 'arrive' and intransitive and monotransitive \(\mathrm{V}_{1}\) verbs are given in Table 6.11.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{1}}\) gloss & combined meaning & transitivity & tokens \\
\hline gae-mena & 'swim' & 'swim (towards deictic centre)' & INTR-INTR & 1 \\
longga-vutha & 'walk' & 'walk and arrive, arrive walking/on foot' & INTR-INTR & 1 \\
ruku-vutha & 'run' & 'run and arrive', 'arrive running' & INTR-INTR & 3 \\
yo-vutha & 'fly' & 'fly and arrive, arrive flying' & INTR-INTR & 2 \\
GET-mena & 'get' & 'bring' & TR-INTR & 3 \\
vewo-mena & 'push' & 'push' & TR-INTR & 2 \\
GET-vutha & 'get' & 'bring (typically + human obj)' & TR-INTR & 6 \\
\hline
\end{tabular}

Table 6.11 Directional complex verbs with mena 'come' and vutha 'arrive'
Examples (69) to (72) show the two verbs in constructions with intransitive manner of motion \(\mathrm{V}_{1} \mathrm{~s}\) in which they signal directed motion towards an end point.
(69) ma thi=gae-mena nggora umbwa regha va i=roroghagha already 3PL=swim-come like tree one REM.PST 3SG=wait 'they come swimming (to)/swim towards like a log that was waiting'
(frogstory_161214 103-4, 272.400)
(70) \(i=y o-y o \quad\) eee \(i=y o-v u t h a\)

3SG=RED-fly EMPH 3SG=fly-arrive
'he flew and flew; he arrived flying (at the protagonist's home)'
(bush_betelnut_011115 117, 285.120 287.571)
(71) mbugha-mbugha=ko tanuwaga-nji i=ruku-vutha RED-dog=DIST owner-3PL.POSS 3SG=run-arrive
'the dogs' owner arrives running (at the place where their dogs have cornered a pig)'
(hunting_261214 032-3, 67.930 73.370)
(72) gido nasiye i=ruku-vutha we= \(\varnothing\)
sickness small \(3 \mathrm{SG}=\) run-arrive \(\quad \mathrm{PREP}=3 \mathrm{SG}\)
'small illnesses (will) come/arrive to them (a small child)'
(new_mother_251214 099, 238.660 242.510)

Examples (73) to (75) show the two directional verbs in constructions with transitive \(\mathrm{V}_{1}\) verbs. While both GET-mena and GET-vutha are frequently translated as 'bring', only complex verbs with mena 'come' express deictic motion.
(73) tene \(u=m w a n a-m w a n a-v e w o-m e n a=\varnothing\)
later 2SG=RED-w.hands-push-come=3SG
'later, keep pushing it (to me) with your hands'
(fp_stimuli_1910_0315 079, 235.109 236.670)
(74)
\begin{tabular}{llll} 
thambwa & bigi-bigi & menda=va & \(a=\) mban-mena \\
what & RED-thing \(\quad\) yesterday=REM.PST & 1 SG=GET.PL.RIGD-come \\
iya=ke & & ina- \(\varnothing\) & ghe \(=k e\) \\
DEM=SPKR.PROX & location-3SG.POSS & LOC=SPKR.PROX
\end{tabular}
'those things that I brought here' (child_and_giant_201015 115, 305.500 308.712)
\(i=\) wo-vutha nari-ye=ma
3SG=GET.SG.RIGD-arrive
'she brought her son'
son-3SG.POSS=DET
(couples_story_101214 042, 117.110 119.340)

\subsection*{6.3.1.2.4 Njogha 'go back'}

The directional verb njogha 'go back, return' expresses motion on a return path towards a place (or person) where the moving entity was previously located (e.g., 'run back', 'put back'). In complex verbs, it can also specify the return of the shared argument to a previous state (e.g., 'tie back up', 'bend back'). The directional only expresses repetition of an action insofar as the action is repeated
in order to return to a previous location/state (a repeated action is signalled by the repetition enclitic \(=v a\) 'REP, §4.4.7). The complex verbs with njogha 'go back, return' are listed in Table 6.12.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V1 gloss & combined meaning & transitivity & tokens \\
\hline dage-njogha & 'speak' & 'speak back, answer' & INTR-INTR & 2 \\
kula-njogha & 'call' & 'call back (to s.o. behind)' & INTR-INTR & 2 \\
raka-njogha & 'go (PL)' & 'go back' & INTR-INTR & 4 \\
GET-njogha & 'get' & 'put/take back' & TR-INTR & 20 \\
linggi-njogha & 'pour', & 'pour back' & TR-INTR & 1 \\
nggari-njogha & 'tie' & 'tie back up' & TR-INTR & 1 \\
njimbo-njogha & 'put on, wear' & 'put back on (clothing)' & TR-INTR & 1 \\
renuwanga-njogha & 'think about' & 'think back remember' & TR-INTR & 24 \\
tabe-njogha & 'take off/open' & 'take back off' & TR-INTR & 1 \\
variye-njogha & 'send' & 'send back' & TR-INTR & 1 \\
vathawo-njogha & 'bend' & 'bend back' & TR-INTR & EE/ES \\
vwowi-njogha & 'plug' & 'plug back up' & TR-INTR & 1 \\
\hline Table 6.12 Directional complex verbs with njogha & 'go back' & &
\end{tabular}

The sentences in (76) to (78) show njogha with intransitive \(\mathrm{V}_{1}\) verbs. In (77) and (78), the directional njogha 'go back' indicates fictive motion towards the hearer 'answer (someone)' and 'call back (to someone)'.
(76) thi=raka-njogha e ghemba

3PL=go.PL-go.back PREP village
'they ran back to the village' (child_and_giant_ 121015, 61.894 64.050)
(77) i=dage-njogha we=ya tina-e

3SG=speak-go.back PREP=YA mother-3SG.POSS
'she answered (spoke back) to her mother' (crab_girl_081115 075, 182.311 184.350)
(78) yengiyenggi i=kula-njogha we ighai-ye wondeya
monitor.lizard 3SG=call-go.back PREP cousin-3SG.POSS possum
'Monitor Lizard calls back to Possum'
(lizard_and_possum_121015 031-2, 87.290 90.632)

The complex verbs in (79) to (81) have a transitive \(\mathrm{V}_{1}\). In (79) and (80), the objects are moved back to a previous location, whereas in (81), the item is returned to a previous state, i.e., from being tied up, to untied, to retied. The PP in (80) describes an instrument but in other contexts could describe a goal.
(79) \(w e v o=k o \quad\) kunumwana nggwe-nggwe na young.woman=DIST 3SG=GET.SG.RIGD banana RED-be.ripe and \(i=\operatorname{simo}=y a \quad\) njimwa-e \(\quad n a \quad i=w o-n j o g h a=\varnothing \quad e\) 3SG=peel=YA skin-3SG.POSS and 3SG=GET.SG.RIGD-go.back=3SG PREP pilet \(=k o\)
plate=DIST
'the woman gets a ripe banana (from a plate) and peels the skin and puts it (the banana) back on the plate
(cb_stimuli_051016_01 148-9, 1682.535 1690.876)
\begin{tabular}{lllll} 
ela \(=m a\) & i=linggi-njogha & mbwa & \(e\) & \(n d e g h \dot{i}=m a\) \\
woman=DET & 3SG=pour-go.back & water & PREP & cup=DET
\end{tabular} 'the woman poured water back with the cup'
(put_stimuli_191015_02_02 097-98, 688.694 693.047)
\begin{tabular}{lll}
\(i=\) nggari-njogha \(=v a\) & \(l e\) & nuwo=ko \\
\(3 S G=t i e-g o . b a c k=R E P\) & POSS.CCL2 & knot=DIST
\end{tabular}
'he tied the knot back up again'
(mandumbunga_02_181016 530-1, 1331.537 1336.278)

\subsection*{6.3.1.2.5 Mwand \(\dot{\text { ' }}\) 'go straight'}

The verb mwandt 'go straight' expresses motion in a direction along a straight trajectory. It occurs in a single intransitive complex verb in the corpus where it combines with the intransitive \(\mathrm{V}_{1}\) ruku 'run', shown in (82).
(82) numombwalambwala=ma i=ruku-mwandi \(i=w a \quad v e=y a k u \quad e\)
non-witch=DET 3SG=run-go.straight 3SG=go 3SG.INT=stay PREP
\begin{tabular}{lllll} 
buruburu & \(m a\) & \(e\) & ghamba & regha=va \\
sky & already & PREP & place & one=REP
\end{tabular}
'the non-witch ran/shot straight (up), she went to stay/live in the sky, already to another place'
(bush_betelnut_011115 046-8, 108.420 115.480)

\subsection*{6.3.1.2.6 Viva/vuva 'go first'}

The directional verb vivalvuva 'go first/ahead, precede' indicates motion in a direction with the subject of the independent verb, or the shared argument of a complex verb precedes someone or something that follows behind, either immediately or sometime later. Table 6.13 shows the two directional verbs attested with vivalvuva 'go first'.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}} \mathbf{-} \mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & transitivity & tokens \\
\hline raka-vuva & 'go (PL)' & 'go first' & INTR-INTR & 1 \\
GET-vuva & 'get' & 'take/carry in front' & TR-INTR & 1 \\
\hline
\end{tabular}

Table 6.13 Directional complex verbs with viva/vuva 'go first'
In the intransitive complex verb in (83), a mother sends her children home ahead of her.
```

(83) a=variye=nggi=ya lo gharighari na thi=raka-vuva
1SG=send=3PL=YA POSS.CLF2.1SG people and 3PL=go.PL-go.first
thotho=ko }\mp@subsup{}{}{157
home=DIST
'I send my children (lit. my people) and they go home first'
(stone_cooking_251015 024-5, 68.840 71.470)

```

In the transitive complex verbs with a CLFV in \(\mathrm{V}_{1}\) in (84) and (85), the subject is taking the object somewhere ahead of someone else. In (84), the speaker is going ahead of others with a basket to garden. The example in (85) describes precautions a pregnant person should take, including taking a burning torch to the toilet 'first' when it is light so that later in the dark she will be able to find her way safely.
\begin{tabular}{lllll} 
a=thin-vuva & nambo=ke & \(e\) & uma=ko & tine \\
1SG=GET.SG.CNTR-go.first & basket=SPKR.PROX & PREP & garden=DIST & inside
\end{tabular}
\(i=\) yengge-vuva \(=\varnothing \quad e \quad\) kamwath \(\dot{i}=k o \quad\) amba muyai
3SG=GET.SG.FIRE-go.first=3SG PREP path-DIST then later
\(i=l o n g g a \quad\) gougou bode 3SG=walk night down
'she takes it (a burning torch) down to the toilet first then later in the night she walks down'
(new_mother_251214 036-8, 86.720 95.610)

\subsection*{6.3.1.2.7 Njaniya 'go down (from)'}

The directional verb njaniya 'go down (from)' expresses downward motion from a direction. The source-anchored directionality of the event can again be observed in the default reading of locational adjuncts. The only attested multi-verb construction with njaniya 'go down (from)' takes a CLFV in \(V_{1}\) position and means 'take down, remove (from)', as exemplified in (86) and (87). All tokens describe table-top space caused motion events where the subject remains stationary while moving the shared argument. It is unclear whether the construction can also be used when describing a caused motion event involving the subject moving along with the object.

\footnotetext{
\({ }^{157}\) Thotho 'home' along with place names do not take the locative/general preposition \(e\) when occurring as an adjunct.
}
(86)
thí=li-njaniya
3PL=GET.SG.FLEX-go.down
\begin{tabular}{lll} 
thetheghan=ma & \begin{tabular}{l} 
galigaliya- \(n j i\) \\
animal=DET
\end{tabular} & shadow-3PL.POSS
\end{tabular}\(\quad\) PREP
shadow-3PL.POSS PREP
dumodumo
wall
'they take the animal picture down from the wall'
(put_stimuli_191015_02_02 051-3, 350.847 355.107)
\begin{tabular}{llll}
\(l o l o=k e\) & \(i=\) wo-njaniya & pilet=ke & \(e\) \\
person=SPKR.PROX & 3SG=GET.SG.RIGD-go.down & plate=SPKR.PROX & PREP \\
\(k a p=k e\) & vwata-e & & \\
cup=SPKR.PPROX & top-3SG.POSS & \\
'the person takes the plate down from on top of the cup' &
\end{tabular}
\[
\text { (put_stimuli_201015_02 140-2, } 832.140 \text { 837.307) }
\]

\subsection*{6.3.1.2.8 Virt 'move up (from)'}

The directional stem viri 'move up (from), rise (from)' expresses upward vertical motion from a direction. It cannot function as a main verb \({ }^{158}\) and appears to only be grammatical in complex verbs with intransitive \(\mathrm{V}_{1}\) verbs. The attested complex verbs with virí 'move up (from)' are listed in Table 6.14.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & transitivity & tokens \\
\hline mun-viri & 'dive, move underwater' & 'dive/swim up' & INTR-INTR & ES/SE \\
tabo-viri & 'grow' & 'grow up' & INTR-INTR & 1 \\
wa-viri & 'rise' & 'rise, go up' & INTR-INTR & ES/SE \\
yo-viri & 'fly' & 'fly up' & INTR-INTR & ES \\
\hline
\end{tabular}

Table 6.14 Directional complex verbs with viri 'move up (from)'
The attested complex verbs with the directional stem are presented in (88) to (91). The complex clause mun-viri 'dive-move up (from)' or 'dive up (from)' contrasts with the complex verb munvoro 'dive-go up' or 'dive up' presented above in (49) (§6.3.1.2.2), which expresses upward motion with an implied goal.

\footnotetext{
\({ }^{158}\) There is an intransitive verb viri 'be born'. It is unclear whether the two stems are related.
}
(88) uтоги=ma i=mun-viri \(\quad e \quad\) ngambuwo
young.man=DET 3SG=dive-move.up(vertically) PREP ocean
'the man goes/dives up from the ocean (i.e., is ascending vertically up from deep
water)' (e_091215)
(89)
\(\begin{array}{llll}\text { mundu } & \text { i=wa-viri } & e & \text { njamnjam } \\ \text { smoke } & 3 S G=\text { move- up(vertically) } & \text { PREP } & \text { bush }\end{array}\)
'the smoke rises from the bush'
(e_091215)
(90) i=tabo-viri

3SG=grow-move.up(vertically)
'(the child) grows up' (fp_stimuli_201015_04 100, 293.620 295.086)
```

ma=na i=yo-viri
bird=ADDR.PROX 3SG=fly-move.up(vertically)

```
'the bird flies up'
(e_021115_01)

\subsection*{6.3.1.2.9 Ri 'go (from)'}

The directional verb \(r i\) ' go (from)' indicates motion from a direction, and in this way is a counterpart of the transitive directional ghembe 'go to(wards)' (§6.3.1.1.1). Like njaniya 'go down (from)', the verb is only attested in one complex verb with a CLFV (two tokens) and is illustrated by the two examples in (92) and (93).
(92) ela=ko \(\quad\) i=thin \(-\mathbf{r i}=y a \quad\) nambo laghiye e ghemba
woman=DIST 3SG=GET.SG.CNTR-go(from)=YA basket big PREP village
'the woman takes the big basket from village'
(e_280917)
\begin{tabular}{llll}
\(e\) & gha- \(\varnothing\) & vethe & kure \\
PREP & POSS.CLF1-3SG.POSS & k.o.basket \(\quad\) leftover.food \\
\(i=\) thin-ri= \(\varnothing\) & \(i=\) thin \(n-n j a=\varnothing\) \\
3SG=GET.SG.CNTR-go(from)=3SG & 3SG=GET.SG.CNTR-go.down=3SG
\end{tabular}
(the child) has a basket of pre-cooked food, (their mother) carries it away (from the
village) carries it down (wind)'
(small_child_051214 035-6, 90.250 94.270)

\subsection*{6.3.1.2.10 Nggalai and goraun 'go around'}

The intransitive verbs nggalai and goraun 'go around' refer to movement along a trajectory that goes around a ground entity. The stem goraun is borrowed from English, although it is unclear how widely it is used. Table 6.15 shows the complex verbs in which the two directional verbs are attested.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & transitivity & tokens \\
\hline yo-nggalai & 'fly' & 'fly around/ circumvent by flying' & INTR-INTR & 2 \\
yo-goraun & 'fly' & 'fly around/ circumvent by flying' & INTR-INTR & 1 \\
ruku-goraun & 'run & 'run around' & INTR-INTR & 1 \\
\hline
\end{tabular}

Table 6.15 Directional complex verbs with nggalai and goraun 'go around'
The two stems are only attested in intransitive complex verbs, exemplified in (94) to (96). Both nggalai and goraun combine with yo 'fly' to mean 'fly around (s.th./s.o.)'.
(94) kero \(i=\) thuwe takana=ma i=yo-nggalai Tagina theiye already \(3 \mathrm{SG}=\) see cockatoo=DET \(3 \mathrm{SG}=\mathrm{fly}\)-go.around place.name village.edge 'she saw the white cockatoo fly around the edge of Tagina'
(marriage_111015 024, 71.13075 .825 )
(95) \(m a=m a \quad i=m e n a \quad m a \quad i=y o-y o-g o r a u n\)
bird=DET 3 SG=come bird 3 SG=RED-fly-go.around 'the bird comes and is flying around (the boy and dog)'
(frogstory_161214 081, 210.180214 .400 )
(96) thí=ruku-goraun \(e\) umbwa regha

3PL=run-go.around PREP tree one
'they run around a tree'
(frogstory_161214 096, 247.270 251.002)

\subsection*{6.3.1.2.11 Valawe 'go across'}

The verb valawe 'go across' refers to movement that goes across a ground entity. It only occurs in two directional complex verbs in the data, which are listed in Table 6.16.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}} \mathbf{-} \mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{1}}\) gloss & combined meaning & transitivity & tokens \\
\hline GET-valawe & 'get' & 'take across' & TR-INTR & 1 \\
renuwanga-valawe & 'think about' & 'forget about' & TR-INTR & 1 \\
\hline
\end{tabular}

Table 6.16 Directional complex verbs with valawe 'go across'
In (97), the directional occurs with a CLFV to describe caused motion over water. \({ }^{159}\)

\footnotetext{
\({ }^{159}\) Valawe 'go across' is not used to describe going overland, e.g., between the north and south coasts of Vanatina. For this, the transitive directional valangani 'go across’ is used (§6.3.1.1.3).
}
\begin{tabular}{llllll} 
(97) thonggo & \(u=n j i m b u k i k i\) & \(l e-n\) & wangga & & \\
if & \(2 S G=\) look.after & POSS.CLF2-2SG.POSS & boat & & \\
valikaiwa-e & \(n e\) & \(i=\) wo-valawe=ngge & \(e\) & ngambuwo \\
be.possible-3SG.POSS & FUT & 3SG=GET.SG.RIGD-go.across=2SG & PREP & ocean \\
'if you look after your boat, it is possible it will take you across the ocean'
\end{tabular} (canoe_021015 023-4, 52.618 58.000)

The complex verb in (98), renuwanga-valawe 'think about-go across', combines in a construction that is less obviously compositional than many of the other directional complex verbs to mean 'forget'. In this construction, the ground entity that is moved across is the thing that is forgotten.
\begin{tabular}{llll} 
"ida-n & \(m a\) & thela?"" & \(i=n g a\) \\
name-3SG.POSS & already & who & \(3 S G=\) say
\end{tabular}
"wo=la-renuwanga-valawe \(=\varnothing\) "
1EXCL=and.go-think.about-go.across=3SG
'what's your name?" she said "we forgot it before we left/went"
(mandumbunga_02_181016 230-1, 587.020 591.279)

\subsection*{6.3.1.2.12 Yere 'go past'}

The directional verb yere 'go past/by' specifies motion past a ground entity. It only occurs in one complex verb in the data with a CLFV (two tokens), as in (119). The example describes how menstruating women should traditionally avoid walking directly in front of men.
\begin{tabular}{llllll} 
ande & ne & wanakau & thi=thin-yere=re & madibe & \(e\) \\
NEG1 & FUT & young.women & 3PL=GET.SG.CNTR-go.past=NEG2 & blood & PREP \\
yamwa-nji & & \(i=\) boboma & we=nggi=ya & umo-umoru \\
face/forehead-3PL.POSS & 3SG=be.taboo/sacred & PREP=3PL=YA & RED-young.men
\end{tabular}
'young woman cannot take the (menstrual) blood in front (of the men), it is taboo for the young men'
(menstruation_081015 063-4, 182.454 194.070)

\subsection*{6.3.2 Handling constructions with classificatory verbs}

The handling complex verbs take one of the ten CLFVs (§5.3) in \(\mathrm{V}_{1}\) position, and either a transitive verb that encodes a handling event in \(V_{2}\) position, or an intransitive \(V_{2}\) that express a positional event and combines with a CLFV to express an event of handling or manipulation. As noted in chapter 5, classificatory verbs appear to be unattested in any other Oceanic languages. However, verbal classifiers, including classificatory verbs cross-linguistically occur frequently in predicates expressing handling events (see e.g., Mithun 1999; Aikhenvald 2000; Kilarski 2013). The Sudest handling complex verbs can be divided into three groups based on properties and valence of the \(V_{2}\) stem: underived transitive \(V_{2}\), causativised transitive \(V_{2}\), and intransitive \(V_{2}\).

The largest group of handling complex verbs take an underived transitive \(\mathrm{V}_{2}\). The meaning of the complex verb in nearly all cases is the same as that of a simplex predicate with only the \(\mathrm{V}_{2}\) verb, albeit potentially lacking semantic detail provided by the CLFV. This is illustrated in the examples in (100) to (102) that describe three events involving the giving of a container. The clause in (100) with the simplex predicate makes no reference as to whether the container (ghatighatit 'coconut bottle') is empty or filled, while the complex verbs in (101) and (102) explicitly specify the emptiness or fullness of the containers (nambo 'basket') through the use of the CLFV li 'get (sg. flexible entity)', used with an empty, flexible container, and the CLFV thin 'get (sg. container-andcontents)', used with a full container.
(100) ghatighati thela ne hu=mena hu=giya= \(\varnothing \quad\) we=nggi? coconut.bottle who FUT \(2 \mathrm{PL}=\) come \(2 \mathrm{PL}=\) give= \(=3 \mathrm{SG} \quad\) PREP=3PL 'a coconut bottle, who (of you) will come (and) give it to them?'
(c_031116 268-9, 494.699 498.010)
(101)
\begin{tabular}{llll} 
amba & methi=li-giya & nambo & \(w e=\emptyset\) \\
then & 3PL.IMM.PST=GET.SG.FLEX-give & basket & PREP=3SG
\end{tabular}
'then they give a (empty) basket to him'
(dating_081015 074, 201.500 204.860)
```

(102) na thi=thin-giya $=\varnothing \quad$ we $=y a \quad$ wevo $=k o$
and 3PL=GET.SG.CNTR-give=3SG PREP=YA young.woman=DIST
tina-e na rama-e
mother-3SG.POSS and father-3SG.POSS
'and they give it (a full basket) to the girl's mother and father'
(first_time_251214 021-23, 58.230 64.780)

```

Table 6.17 lists the handling complex verbs with underived transitive \(\mathrm{V}_{2}\) stem.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{V}_{1} \cdot \mathbf{V}_{2}\) & \(\mathrm{V}_{2}\) gloss & combined meaning & \(\mathrm{V}_{2}\) transitivity & tokens \\
\hline GET-beku & 'bury' & 'bury' & TR & 2 \\
\hline GET-dowe & 'load' & 'load' & TR & 1 \\
\hline GET-ge & 'cook (in liquid)' & 'put on to cook' & TR & 3 \\
\hline GET-giya & 'give' & 'give' & TR & 10 \\
\hline GET-imbo & 'cover' & 'cover' & TR & 1 \\
\hline GET-vagumo & 'put over' & 'put over, cover' & TR & 4 \\
\hline GET-itete & 'leave & 'leave' & TR & 1 \\
\hline GET-kaivi & 'steal' & 'steal' & TR & 1 \\
\hline GET-kitho & 'hang' & 'hang' & TR & 1 \\
\hline GET-linggi & 'pour' & 'pour' & TR & 1 \\
\hline GET-monje & 'stick' & 'stick' & TR & 1 \\
\hline GET-papa & 'stick' & 'stick' & TR & 2 \\
\hline GET-ngambu & 'burn, cook (roast)' & 'burn, cook (roast)' & TR & 7 \\
\hline GET-thewo & 'clean' & 'clean' & TR & 3 \\
\hline GET-thithi & 'insert' & 'clean' & TR & 3 \\
\hline GET-utu & 'immerse' & 'immerse' & TR & 6 \\
\hline GET-vairi & 'lift, raise' & 'lift, raise' & TR & 12 \\
\hline GET-vamo & 'dry' & 'dry' & TR & EE \\
\hline GET-vatha & 'gather' & 'gather' & TR & 2 \\
\hline GET-vathinggu & 'wash' & 'wash' & TR & 1 \\
\hline GET-vatomwe & 'show' & 'show' & TR & 3 \\
\hline GET-vavatha & 'put on (clothing)' & 'put on (clothing)' & TR & 3 \\
\hline GET-vavathi & 'put inside/on' & 'put inside/on' & TR & 2 \\
\hline GET-vewo & 'push' & 'push' & TR & 1 \\
\hline GET-yathu & 'throw away' & 'throw away' & TR & 19 \\
\hline GET-ve & 'give' & 'give' & DITR & 6 \\
\hline
\end{tabular}

Table 6.17 Handling constructions with underived transitive \(V_{2}\)
Stimuli data show that the Sudest constructions describe a single event rather than a sequential series of sub-events. For example, 'bury' rather than 'get and bury'. Consider the examples (103) and (104), which both describe short stimuli videos. In both instances, the initial event of physically picking up the object is described by a simplex predicate with a CLFV and the subsequent clause describes another single event of 'throwing away' or 'put over' using a complex verb with GET as \(\mathrm{V}_{1}\).
(103) amala regha le-ø buku na
man one 3SG=GET.SG.CNTR=YA POSS.CLF2-3SG.POSS book and
\(i=\) thin-yathu \(=\varnothing\) bode
3SG=GET.SG.CNTR-throw.away=3SG down
'a man gets his book and throws it down'
(put_stimuli_191015_01_01 176-7, 715.724 720.160)
(104) lolo regha i=wo gaeba na
person one 3SG=GET.SG.RIGD plate and
\(i=\boldsymbol{w o}-\boldsymbol{v a g u m o}=\varnothing \quad\) gha- \(\varnothing \quad\) ndeghi we
3SG=GET.SG.RIGD-put.over=3SG POSS.CLF1-3SG.POSS cup PREP
'a person gets a plate and puts it over a cup (i.e., covers the cups with the plate)'
(put_stimuli_191015_01_01 162-4, 661.510 667.234)

Examples (105) and (106) describe stimuli in which the agent is already holding the item at the beginning of the video. Again, GET- \(V_{2}\) complex verbs are used to describe a single event, namely throwing something away and hanging something up.

(put_stimuli_231015 010, 114.420 118.430)

One construction with a transitive \(\mathrm{V}_{2}\) expresses a different proposition from its simplex counterpart. The complex verb GET-ge 'get-cook (in liquid)' adds a caused motion component not present in the single-verb clause and means 'put on to cook'. Compare (107) and (108).
\(\begin{array}{lll}\text { (107) } & \text { thi }=\text { ge } & \text { gha-nji } \\ & \text { 3SG=cook } & \text { food-3PL.POSS }\end{array}\)
'they cook their food' (kula_exchange_081215 058, 171.300 173.860)
(108) ghino ma=thin-ge \(=\varnothing \quad e \quad\) deng \(a=k o\)

1SG 1SG.IMM.PST=GET.SG.CNTR-cook=3SG PREP cooking.stones=DIST
'I put it (a pot filled with food) on to cook on the cooking stones'
(cooking_111015 022, 66.82069 .733 )
The two stems \(u t u\) 'immerse' and vairit 'lift, raise' can only occur as \(\mathrm{V}_{2}\) in complex verbs, as in (109) and (110), or in conjunction with a manner-of-causation prefix (see §5.2).
```

(109) ela=ma i=wo-utu umbali-ye e buket=ma
woman=DET 3SG=GET.SG.RIGD-immerse head-3SG.POSS PREP bucket=DET
tine
inside
'the woman immerses/puts her head in the bucket'
(put_stimuli_191015_02_02 078-9, 529.658535.247)
(110) wevo umbali-ye \quad i=wo-vairi buket tine
young.woman 3SG=GET.SG.RIGD-lift head-3SG.POSS PREP bucket inside
e tebol vwata-e
PREP table top-3SG.POSS
'the girl lifts her head from inside the bucket on the table top'
(put_stimuli_191015_01_02 123, 461.110 466.972)

```

All the handling combinations described thus far have been monotransitive; however, there is one ditransitive handling construction with the stem ve 'give'. The \(\mathrm{V}_{2}\) stem ve 'give' cannot function as an independent verb. In examples (111) to (113) it occurs with a CLFV V \({ }_{1}\). Like the two other three-place predicates attested in Sudest (see §7.2), complex verbs with ve 'give' show primary/secondary object alignment in Dryer's (1986) terminology. \({ }^{160}\) The recipient of a threeplace predicate is encoded in the same manner as the patient-like object of a two-place predicate, in Sudest that is by an object enclitic, and the theme is expressed by a lexical NP or understood from the context. The CLFV is selected based on properties of the theme (see also §7.4.1).
(111) \(a=\) thagha-ve=ngge

1SG=GET.SG.TOOL-give=2SG

\section*{kelumo}
axe
'I give you an axe'
(112) nggama=ke i=bwanabwana na \(i=g h e \quad\) ko amba child=SPKR.PROX 3SG=grow.up and 3SG=marry but then \(u=\) thin \(-\boldsymbol{v e}=\varnothing \quad\) nambo \(=k e\) 2SG=GET.SG.CNTR-give=3SG basket=SPKR.PROX
'the child grows up and marries then you give him the basket' (marriage_111015 056-7, 173.806 179.678)
(113) wanakau=ma theuni-wo thi=ve-thin-ve=nggi=ya kap
young.women=DET NUM.CLF-two 3 PL=RECP-GET.SG.CNTR-give=3PL=YA cup
'two young women exchange a cup' (put_stimuli_231015 040, 334.280 337.019)

The stem \(v e\) 'give' also occurs in complex verbs with the monotransitive verb giya also 'give' in \(\mathrm{V}_{1}\) (see (172) in §6.3.6 below). For a monotransitive complex verbs with giya 'give', see (101) and (102) above.

\footnotetext{
\({ }^{160}\) Secundative alignment in Malchukov et al.'s (2010) terms.
}

There are three handling complex verbs that take a causativised monotransitive \(\mathrm{V}_{2}\) verb. These are shown in Table 6.18.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{2}}\) gloss & combined meaning & \(\mathbf{V}_{\mathbf{2}}\) transitivity & tokens \\
\hline GET-va-kote & 'CAUS-hang' & 'hang' & TR & EE/ES \\
GET-va-kware & 'CAUS-hang & 'hang' & TR & 1 \\
GET-va-mara & 'CAUS-see & 'show' & TR & 1 \\
\hline Table 6.18 Handling constructions with causativised \(V_{2}\) & & & \\
\hline
\end{tabular}

Table 6.18 Handling constructions with causativised \(V_{2}\)
The causativised monotransitive verbs, like the underived transitive verbs discussed above, can be replaced with a simplex predicate with only the causativised verb without any semantic difference. Compare the sentences given in (114) with kote 'hang'. The causativised simplex predicate in (114a) is interchangeable with the complex verb with a CLFV in (114b). Without the causative prefix, the \(\mathrm{V}_{2}\) is judged ungrammatical, as in (114c).
\begin{tabular}{llllll} 
Michael & \(i=\) va-kote & kwama & \(e\) & umbwa & ghavwala \\
personal.name & 3SG=CAUS-hang & cloth & PREP & tree & k.o.branch \\
'Michael hangs a cloth on a tree branch' & & & (e_041215_01_01)
\end{tabular}
\(\begin{array}{lll}\text { b. Jaclyn } & \text { i=li-va-kote }=\text { ya }\end{array}\)
\begin{tabular}{lll} 
towel & \(e\) & umbwa \\
towel & PREP & tree
\end{tabular}
yangga
branch
'Jaclyn hangs the towel on the tree branch'
(e_300915_01)
c. *wevo \(=m a \quad i=\) li-kote \(=y\)
young.woman=DET 3 SG=GET.SG.FLEX-hang=YA
kwama=ma \(\quad e\)
cloth=DET PREP
umbwa=ma
tree=DET
Intended: 'the girl hangs the cloth on the branch'
(e_120917)
Examples (115) and (116) show tokens with the other two causativised \(\mathrm{V}_{2}\) stems: \(k\) ware, which also means 'hang' and mara 'see':
\begin{tabular}{lll}
\(i=\) voro & ve=wo-va-kware & ghena \(=\) ko \\
3SG=go.up & 3SG.INT=GET.SG.RIGD-CAUS-hang & lime.stick=DIST
\end{tabular}
'he went up to hang the limestick' (bwaindiya_151115 120, 306.900 309.918)
\begin{tabular}{llll} 
ela=ma & i=li-va-mara & nima-e & ghare \\
woma=DET & 3SG=GET.SG.FLEX-CAUS-see & hand-3SG.POSS & \begin{tabular}{l} 
chest/palm
\end{tabular}
\end{tabular}
'the woman shows her hand' (cb_stimuli_101116 070, 885.278 887.754)
The third set of handling constructions take an intransitive \(\mathrm{V}_{2}\) stem and are listed in Table 6.19. Unlike the transitive \(\mathrm{V}_{2}\) stems that occur in handling constructions, the intransitive \(\mathrm{V}_{2}\) stems by themselves do not express a handling event and they only encode a handling event in complex verbs with a CLFV. None of the \(\mathrm{V}_{2}\) can function as independent verbs with only a subject index alone. Both vala 'be on top' and vadede 'be leaning' are only grammatical as independent verbs with
either a positional prefix or motion prefix (§4.3.5) as a crutch, and vaghile 'turn' is only grammatical as an independent verb with a manner-of-causation prefix (§5.2). The fourth stem thuwole 'be hidden' only occurs in complex verbs.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{2}\) gloss & combined meaning & \(\mathbf{V}_{\mathbf{2}}\) transitivity & tokens \\
\hline GET-thuwole & 'be hidden' & 'hide (s.th.)' & INTR & 1 \\
GET-vadede & 'lean' & 'lean (s.th.) up' & INTR & EE/ES \\
GET-vala & 'be on top of, cover' & 'be on top' & INTR & 7 \\
GET-vaghile & 'turn' & 'turn over' & INTR & 2 \\
\hline
\end{tabular}

Table 6.19 Handling and transfer constructions with GET and intransitive \(V_{2}\)
Unlike the other complex verbs already described in this section in which the \(\mathrm{V}_{1}\) has a predominantly classificatory function, the CLFV appears to have a causative function. The complex verbs introduce a causer as the \(A\) argument and the \(S\) argument of the simplex intransitive becomes the \(O\) of the complex verbs. This is illustrated by the two clauses presented in (117) with vadede 'lean'. In (117a) the intransitive predicate with the posture prefix nde- 'stand and' takes the stick (umbwake) as S , while in the complex verb in (117b) with a CLFV the stick is now the O and a new A argument.


Examples (118) to (120) show the remaining handling complex verb with intransitive \(\mathrm{V}_{2}\) stems.
\begin{tabular}{llll}
\(i=l i\)-vala & \(t h i y o=k e\) & \(e\) & \(u m b w a=k e\) \\
3SG-GET.SG.FLEX-be.on.top & rope=SPKR.PROX & PREP & \begin{tabular}{l} 
tree=SPKR.PROX
\end{tabular} \\
\begin{tabular}{l} 
yanggai \\
branch
\end{tabular} & & \\
'she places the rope over the tree branch, & &
\end{tabular}
'she places the rope over the tree branch'
(put_stimuli_201015_01 012, 105.480 107.980)
\begin{tabular}{ll}
\(i=\) wo-vaghile & lou-ye \(=m a\) \\
\(3 S G=\) GET.SG.RIGD-turn & sibling.opp.sex-3SG.POSS=DET
\end{tabular}
'she turned her brother over' (crab_girl_081115 036, 88.760 91.754)
(120) ndighe \(=m a \quad v a \quad i=y\) engge-thuwole \(=\varnothing\)
fire=DET REM.PST 3SG=GET.SG.FIRE-be.hidden=3SG
'the fire, she hid it'
(stone_cooking_251015 078, 214.290 219.370)

\subsection*{6.3.3 PUT constructions}

There is no independent verb meaning 'put' in Sudest. Instead, events of putting are encoded by a complex verb containing a CLFV or other transitive verb in the \(\mathrm{V}_{1}\) slot and one of four PUT stems in the \(\mathrm{V}_{2}\) slot: ra, nda, kura and mban. \({ }^{161}\) In some instances, the PUT stems can be used interchangeably, while other combinations are restricted to specific PUT stems. The complex verbs with the PUT stems are given in Table 6.20. The PUT stems nearly always take a transitive \(\mathrm{V}_{1}\), however, there is at least one complex verb in which \(r a\) 'put' combines with an intransitive verb dage 'speak' to mean 'promise (something to someone)'. This shows that at least one of the PUT stems is transitive as the valence of a complex verb is the same as the stem with the highest valence in the construction. The remaining three stems are only attested in transitive complex verbs and are therefore provisionally viewed as transitive in the current analysis.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{V}_{1}-\mathbf{V}_{2}\) & \(V_{1}\) gloss & combined meaning & \(\mathrm{V}_{1}-\mathrm{V}_{2}\) transitivity & tokens \\
\hline wo-kura & 'GET (s.g. rigid entity) & 'put & TR-TR & 10 \\
\hline GET-nda & 'GET' & 'put' & TR-TR & 29 \\
\hline GET-mban & 'GET' & 'put' & TR-TR & 31 \\
\hline du-mban & 'throw' & 'throw in/on & TR-TR & 2 \\
\hline linggi-mban & 'pour' & 'pour into/on' & TR-TR & 5 \\
\hline yaru-mban & 'gather' & 'place, put' & TR-TR & 1 \\
\hline dage-ra & 'speak' & 'promise (s.th.)' & INTR-TR & EE/ES \\
\hline GET-ra & 'GET' & 'put' & TR-TR & 88 \\
\hline tate-ra & 'open' & 'open and put/place' & TR-TR & 1 \\
\hline thinge-ra & 'get w. teeth' & 'put (with teeth)' & TR-TR & 1 \\
\hline thuwo-ra & 'get w. tongs' & 'put down (with tongs)' & TR-TR & 3 \\
\hline vanggu-ra & 'lead' & 'put (+human self-moving obj.)' & TR-TR & 1 \\
\hline vole-ra & 'chop' & 'chop and put away' & TR-TR & 1 \\
\hline vu-ra & 'open' & 'open and put' & TR-TR & 1 \\
\hline
\end{tabular}

Table 6.20 PUT complex verbs
In constructions with the CLFV wo 'get (sg. rigid entity)', the four PUT stems can be used interchangeably with each other. Consider the sentences presented in (121) from four speakers describing the same stimulus video, each using a different PUT stem to describe the one scenario. Like the handling events with transitive verbs in \(\mathrm{V}_{2}\) position, the PUT constructions encode a single event rather than an event of getting and putting, as illustrated by (121a) with a separate 'get' and 'put' VC.
\[
\begin{array}{lllll}
\text { (121)a. } & e l a=m a & m e=w o & \text { waranisi }=m a & i=s i m a=\emptyset \\
& \text { woman=DET } & \text { 3SG.IMM.PST=GET.SG.RIGD } & \text { orange=DET } & \text { 3SG=peel=3SG }
\end{array}
\]
\begin{tabular}{llllll}
\(e\) & nima-e & \(n a\) & \(i=\boldsymbol{w o}-\boldsymbol{m b a n}=\varnothing=a\) & \(e\) & pilet=ko \\
PREP & hand-3SG.POSS & and & 3SG=GET.SG.RIGD-put=3SG=YA & PREP & plate=DIST
\end{tabular}
'the woman got the orange, peels it by hand and puts it on the plate'
(cb_stimuli_051016_02_02 025-6, 237.570 229.910)

\footnotetext{
\({ }^{161}\) The stem mban is presumably historically related to the classificatory verb mban 'get (pl. rigid items)'.
}
\(\begin{array}{lll}\text { b. } & i=\boldsymbol{w o} \boldsymbol{o} \boldsymbol{r} \boldsymbol{a}=\varnothing & e \\ & \text { pilet } \\ & 3 \mathrm{SG}=\mathrm{GET} . \text { SG.RIGD-put=3SG } & \text { PREP } \\ \text { plate }\end{array}\)
'she puts it (an orange) on the plate'
(cb_stimuli_051016_03 377, 1485.170 1486.780)
c. te-mbe une \(\quad\) ewo pinda=va pilet=ma tine
more-still 3SG=GET.SG.RIGD-put=again fruit PREP place=DET inside
'she puts the fruit on the plate again' (cb_stimuli_101116 047, 609.800 612.893)
d. i=wo-kura \(=\varnothing \quad e \quad\) pilet \(=m a \quad\) tine 3SG=GET.SG.RIGD-put=3SG PREP plate=DET inside
'she puts it (an orange) on the plate' (cb_stimuli_071116 070, 679.760 682.097)
A similar construction is used in neighbouring Nimowa, where a stem meaning 'get' combines with a second stem te 'put'. Currently, there is no data available to show if the stem te 'put' can function as a simplex predicate. Compare the Nimowa examples in (122) and (123) with the Sudest examples above in (121).
(122) Nimowa (NimOA-SUDEST FAMILY)
\begin{tabular}{lllll} 
yove i-ho-te & hosaho/nabo/pusa & he & tebo \begin{tabular}{l} 
bwatane \({ }^{162}\) \\
girl
\end{tabular} 3SG-get.SG-put & \begin{tabular}{l} 
mango/basket/cat
\end{tabular} \\
PREP & table top
\end{tabular}
'the girl puts the mango/basket/cat on the table'
(123) yove i-yomo-te hasaho/nabo/pusa he tebo bwatane
girl 3SG-get.PL-put mango/basket/cat PREP table top
'the girl puts the mangos/baskets/cats on the table'

The four PUT stems are not always interchangeable. In terms of frequency, \(r a\) ( 96 tokens) and mban ( 39 tokens) occur the most in the corpus and are also used in the greatest variety of complex verbs. The stem nda is only grammatical in combination with a CLFV \(\mathrm{V}_{1}\). The stem kura is only grammatical in complex verbs with the CLFV wo 'get (sg. rigid entity)' and is otherwise ungrammatical. Speakers find complex verbs with kura and other CLFVS ungrammatical:
```

(124) *u=li-kura kwaliko-na e tebol=na
2SG=GET.SG.FLEX-PUT cloth-2SG.POSS PREP table=ADDR.PROX
vwata-e
top-3SG.POSS
intended: 'put the cloth on the table') (e_071116_03)

```

Complex verbs with a \(\mathrm{V}_{1}\) with caused motion or change of state semantics and either ra or mban in \(V_{2}\) position specify that the object of the clause is placed or moved somewhere as a result of the \(V_{1}\) event, as in (125) to (129).

\footnotetext{
\({ }^{162}\) The Nimowa data come from limited elicitation recordings collected by the researcher from Nimowan speakers living on Sudest.
}
(125) \(\quad i=l i n g g i-m b a n=\varnothing \quad e \quad m b w a\) variye \(3 \mathrm{SG}=\) pour-put=3SG PREP water container 'she pours it (water) into a water container' (put_stimuli_191015_02_02 099, 693.047 695.076)
(126)
amala=ma \(\quad i=d \boldsymbol{u}-\boldsymbol{m b a n}=a \quad\) vari \(\quad e \quad l e-\emptyset\)
man=DET \(3 \mathrm{SG}=\) throw-put=YA stone PREP POSS.CLF2-3SG.POSS
sisikwa tine
k.o.basket inside
'the man throws a stone into the bag'
(put_stimuli_191015_02_02 100-2, 702.077 708.317)
(127) gha-nji \(\quad\) ndighe \(\quad\) ya \(=k e \quad\) thi \(=v o l e-r a=\varnothing\)

POSS.CLF1-3PL.POSS fire(wood) DEM=SPKR.PROX 3PL=chop-put=3SG
\(w e=\varnothing\)
PREP=3SG
'that's their firewood, they chopped and put it there'
(fp_stimuli_191015_01 015-6, 73.966 76.840)
(128) ela=ma i=tate-ra bogisi=ma nasiye e tebol=ma
woman=DET \(3 \mathrm{SG}=\) open-put box=DET small PREP table=DET
\(v w a t a-\emptyset\)
top-3SG.POSS
'the woman opens and puts the small box on the table top'
(cb_stimuli_101116 060, 778.527 782.906)
(129)
\(i=\) voro \(\quad i=\) vanggu-ra \(=\varnothing \quad w e=\varnothing\)
\(3 \mathrm{SG}=\) go.up \(\quad 3 \mathrm{SG}=\) lead-put \(=3 \mathrm{SG} \quad \mathrm{PREP}=3 \mathrm{SG}\)
'he goes up (and) leads/puts her there'
(mandumbunga_02_181016 523, 1314.704 1316.398)

In (130) and (131), ra changes the event from an event of getting to one of putting with the two instrument-specifying verbs thuwo 'get (with tongs)' or thinge 'get (with mouth)'.
(130) ela=ma i=thuwo-ra kunumwana=ma nggwe-nggwe e
woman=DET 3SG=get.w.tongs-put banana=DET RED-be.ripe PREP
tebol \(=m a \quad\) vwata- \(\varnothing\)
table=DET top-3SG.POSS
'the woman puts the ripe banana on the table with tongs'
(put_stimuli_231015 084, 682.440 687.087)
(131)
\begin{tabular}{lllll} 
wevo \(=\) ma & i=thinge-ra & kap=ma & \(e\) & tebol=ma \\
young.woman & 3SG=get.w.mouth-put & cup=DET & PREP & \begin{tabular}{l} 
table=DET
\end{tabular} \\
=DET & & & & \\
vwata- \(\varnothing\) & & & & \\
top-3SG.POSS & & &
\end{tabular}
'the woman put the cup down on the table top with her mouth'
(put_stimuli_231015 114-5, 954.110 958.570)

Example (132) shows the only attested combination of a PUT stem with an intransitive \(\mathrm{V}_{1}\) dage 'speak' to mean 'promise (something to someone)'.
```

(132)
me=dage-ra
ndavari
ghagha-ye
sibling.same.sex-3SG.POSS
we
3SG.IMM.PST=speak-put
shell.money
PREP
'she promised the riches to her sister'
(e_261116_01)

```

The stem \(r a\) also occurs in complex verbs with a \(\mathrm{V}_{1}\) that expresses a change of state and a manner-of-causation prefix (§5.2). In these constructions, the stem does not indicate caused motion to a location. Instead, in combination with a manner-of-causation prefix, the stem gives a reading of 'partial completion' to the break event, as in (133).
\(i=m w a n a-n g g i l a-r a \quad u m b w a\)
3SG=w.hands-break-PUT stick
'she half/partially breaks the stick with her hands'
(cb_stimuli_051016_03 332, 1248.910 1250.935)

The attested combinations of manner-of-causation prefixes, \(\mathrm{V}_{1}\) and \(r a\) 'put' are given in Table 6.21. All tokens come from stimuli task data.
\begin{tabular}{lllllll}
\hline prefix & prefix gloss & \(\mathbf{V}_{\mathbf{1}}\) & \(\mathbf{V}_{\mathbf{1}}\) gloss & combined meaning & \begin{tabular}{l}
\(\mathbf{V}_{\mathbf{1}}\) \\
transitivity
\end{tabular} & tokens \\
\hline go- & 'by cutting' & ten & 'break' & 'partially break' & TR & 1 \\
mwana- & 'w. hands' & bebe & 'break' & 'partially break' & TR & 1 \\
mwana- & 'w. hands' & nggila & 'break' & 'partially break' & TR & 3 \\
mwana- & 'w. hands' & thatha & 'tear' & 'partially tear' & TR & 2 \\
mwana- & 'w. hands' & viya & 'cut/split' & 'partially split/break' & TR & 1 \\
\hline
\end{tabular}

Table 6.21 'Partial completion' complex verbs with ra 'put'
Examples (134) to (136) show further tokens of the construction expressing partial completion with other change of state verbs.
 'she half/partially tears the cloth with her hands'
\[
\text { (cb_stimuli_051016_03 404, } 1656.104 \text { 1660.360) }
\]
(135) umbwa-ra meth \(\dot{i}=\) go-ten-ra \(=\varnothing\)

NUM.CLF-one 3PL.IMM.PST-by.cutting-break-put=3SG
'one (piece of food), they partially cut it' (cb_stimuli_051016_01 092, 1033.950 1039.006)
(136) wevo=ma \(i=m w a n a-b e b e-r a \quad u m b w a=m a ~ y a n g g a i ~\) young.wo \(3 \mathrm{SG}=\mathrm{w} . h a n d s-b r e a k=P U T\) tree=DET branch man=DET
'the girl partially breaks the tree branch with her hands'
\[
\text { (cb_stimuli_051016_01 132, } 1456.750 \text { 1463.348) }
\]

\subsection*{6.3.4 Cause-effect constructions}

The cause-effect complex verbs express temporally iconic series of events in which the \(\mathrm{V}_{1}\) expresses causation and the \(V_{2}\) indicates the effect resulting from the event predicated by the \(V_{1}\). In the example presented in (137), a girl drops a bailer, which causes it to be immersed in the water.
\begin{tabular}{llllll} 
(137) & \(v a\) & \(m a\) & \(i=m w a n a-w o=\) engge & tagataga=ko & \(m a\) \\
& REM.PST & already & 3SG=w.hands-GET.SG.RIGD=just & bailer=DIST & already
\end{tabular}
\(i=t h u v a i-u t u=\varnothing\)
\(3 \mathrm{SG}=\) drop-immerse \(=3 \mathrm{SG}\)
'she got the bailer (and) she dropped and immersed it (in the water)'
(mandumbunga_02_181016 411, 1040.826 1044.632)
Complex verbs expressing cause-effect relations are common both cross-linguistically (Aikhenvald 2006: 29) and in Oceanic languages (Cleary-Kemp 2015: 135). \({ }^{163}\) In Sudest, the two slots are relatively unrestricted in terms of verb selection. Temporally iconic \(\mathrm{V}_{1}-\mathrm{V}_{2}\) order and unrestricted verb selection for both slots are typical for cause-effect constructions cross-linguistically (Aikhenvald 2006: 15).

The attested cause-effect stem combinations are presented in Table 6.22. All \(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\) stems may function as independent verbs, except \(u t u\) 'immerse' which only occurs in complex verbs. \({ }^{164}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{V}_{1}-\mathbf{V}_{2}\) & \(\mathrm{V}_{1}-\mathrm{V}_{2}\) gloss & combined meaning & transitivity & tokens \\
\hline kula-vaidi & 'call-find' & 'call to find', 'call for' & INTR-TR & 1 \\
\hline kula-vatha & 'call-gather' & 'call together/gather (by calling)' & INTR-TR & 1 \\
\hline utu-ravagha & 'speak-stop' & 'advise to stop/ tell to stop' & INTR-TR & 1 \\
\hline thithu-yathu & 'bathe-throw away' & 'wash away (s.th.)' & INTR-TR & 1 \\
\hline kweru-vanginjinginji & 'scrape-CAUS-be white' & 'scrape white/clean' & TR-TR & 1 \\
\hline lawe-gana & 'catch-fence' & 'block' & TR-TR & 1 \\
\hline thuvai-utu & 'drop-immerse' & 'sink (s.th. into water)' & TR-TR & 1 \\
\hline vole-ten & 'cut (into pieces)-break' & 'cut/chop' & TR-TR & 2 \\
\hline titit-vaidi & 'remember, reminiscefind' & 'realise, find by thinking' & TR-TR & 1 \\
\hline renuwanga-vaidi & 'think about-find' & 'remember' & TR-TR & 2 \\
\hline renuwanga-yathu & 'think about-throw away' & 'forgive' & TR-TR & EE \\
\hline linggi-yathu & 'pour-throw away' & 'pour out' & TR-TR & 7 \\
\hline rori-yathu & 'write-throw away' & 'write down' & TR-TR & 1 \\
\hline tawoi-yathu & 'shit (diarrhoea)-throw away' & 'empty bowels (due to diarrhoea)' & TR-TR & 1 \\
\hline ten-yathu & 'cut-throw away' & 'cut away', 'cut and threw away’ & TR-TR & 2 \\
\hline
\end{tabular}

Table 6.22 Cause-effect complex verbs

\footnotetext{
\({ }^{163}\) Such complex verbs are known by various names in the Oceanic literature, including 'causatives' (Lynch et al. 2002: 47), cause-result (Margetts 2005: 67), resultative (Cleary-Kemp 2015: 135) and cause-effect (Aikhenvald 2006: 14).
\({ }^{164}\) Not to be confused with the intransitive verb \(u t u\) 'speak' and related noun utu(utu) 'story'.
}

All attested cause-effect complex verbs are transitive. The majority of the constructions contain two transitive stems while four constructions comprise of an intransitive \(\mathrm{V}_{1}\) and transitive \(\mathrm{V}_{2}\). Just under half the constructions take yathu 'throw away' in \(\mathrm{V}_{2}\) position. One cause-effect complex verb with yathu 'throw away' takes an intransitive \(\mathrm{V}_{1}\) thithu 'bathe, wash (oneself)', and means 'wash away (from on one's body)'. The example in (138) describes a widow washing off charcoal and body paint applied for a mortuary feast.
(138) \(\begin{array}{clll}\ldots a m b a=m a & \text { wambwi=ko } & \text { ve=thithu=yathu } & \text { ngimba=ko } \\ \text { then=DET } & \text { widow=DIST } & \text { 3SG.INT=bathe-throw.away } & \text { charcoal=DIS }\end{array}\)
'...then the widow washes away the charcoal'
(funeral_feasting_081015_01 113, 324.045 327.740)
All remaining tokens containing yathu 'throw away' take transitive \(\mathrm{V}_{1}\) stems. In the constructions shown in (139) to (141), the activity of \(\mathrm{V}_{1}\) results in the disposal of the shared argument.
th \(\hat{i}=\) tawoi-yathu
3PL=shit(diarrhoea)-throw.away
'they shat out saltwater'

\section*{njighi}
salt.water
(funeral_feasting_081015_02 056, 139.990 146.190)
(140) lolo=ma i=linggi-yathu mbwa=ma e ndeghi=ma
person=DET 3SG=pour-throw.away water=DET PREP cup=DET
'the person pours out the water in the cup'
(put_stimuli_191015_02_02 063, 433.611437 .756
(141) \(i=\) ten-yathu \(=\varnothing \quad\) e pulo vwata- \(\varnothing\)

3SG=break-throw-away=3SG PREP floor top-3SG.POSS
'he cuts (and) throws it (hair) away on the floor'
'he cuts it (hair) away on the floor' (cb_stimuli_051016_01 137, 1520.660 1523.494)
In (142) and (143), the meanings are somewhat more abstract and less predictable. In (142), the subject will 'write out' her writings, and in (143) the subject forgives an individual by 'throwing away' their anger/dispute with someone.
(142) wo=i=vo-rori-yathu le- \(\varnothing\)

HORT=3SG=by.spearing-write-throw.away POSS.CLF2-3SG.POSS
ro-rori=na
RED-write=ADDR.PROX
'she will/shall write out her writings'
\[
\text { (c_031116 243, } 440.500443 .360 \text { ) }
\]
(143) \(a=\) renuwanga-yathu=ngge

1SG=think.about-throw.away=2SG
'I forgive you' (e_lexicon)
The three other constructions with an intransitive \(\mathrm{V}_{1}\) all share an initial event of communication that brings about (or attempts to bring about) a specific action:
```

(144) $i=m j e ~ i=u t u-r a v a g h a=\varnothing$
$3 \mathrm{SG}=$ try $\quad 3 \mathrm{SG}=$ speak-stop=3SG

```
'he tries to advise him (another man) to stop (hitting his wife)'
                                    (fp_stimuli_201015_01 233, 870.163 872.050)
(145) \(m e=\) the-vao
ghaningga=ko \(\quad a=\boldsymbol{k u l a} \boldsymbol{a}\)-vath \(\boldsymbol{a}=n g g i=y a\)
1SG.IMM.PST=serve-COMPL food=DIST \(\quad 1 \mathrm{SG}=\) call-gather=3PL=YA
lo gharighari=ko
POSS.CLF2.1SG people=DIST
'I finish serving the food (and) call (and) gather my children (lit. my people)'
(cooking_111015 028-9, 83.440 87.780)
(146) thi \(=n g a=v a\) ne thít=kula-vaidi=ya le-nji 3SG=say=again FUT 3PL=call-find=YA POSS.CLF2-3PL.POSS
vwakirakira \(=m a\) ina- \(\varnothing \quad e \quad u m b w a=k o \quad\) ghadidi-ye
frog=DET location-3SG.POSS PREP tree=DIST beside-3SG.POSS
'again, they say they will call (and) find their frog around the tree' (frogstory_161214 037, 91.04096 .540

The verbs of cognition renuwanga 'think about' and titt 'contemplate', in (147) and (148) respectively, combine with vaidi 'find' to describe processes in which the subject 'finds' a realisation or solution as a result of thinking it over.
(147) ko amba veth \(i=\) renuwanga-vaid \(i=\varnothing=v a\)
but then 3PL.INT=think.about-find=3SG=again
'but then they thought about (and) found it (the solution to their problem)'
(snake_passage_061215 110, 267.969 271.769)
(148) gha- \(\varnothing \quad\) rumwaru gha-mbe-regha i=titi-vaidi \(=\varnothing\)

POSS.CLF1-3SG.POSS straight POSS.CLF1-still-one 3SG=contemplate-find=3SG
'his path, he himself contemplates (and) finds it (i.e., he has an epiphany)'
(fp_stimuli_191015_07 124, 300.910303 .760 )

The final three cause-effect constructions are given in (149) to (151). Example (149) is the only cause-effect construction with derivational morphology with the causative on \(\mathrm{V}_{2}\) va-nginjinginji 'CAUS-be white'.
(149) \(\quad i=k w e r u-v a-n g i n j i n g i n j i=\varnothing\)
\(3 \mathrm{SG}=\) scrape-CAUS-be.white=3SG
'she scraped him white/clean (i.e., she scraped all the charcoal/carbon off the roasted
flesh until it was clean),
\[
\text { (crab_girl_081115 040, } 99.430103 .690 \text { ) }
\]
(150) amala=ma \(\quad\) i=vole-ten \(=a \quad\) umbwa=ma yanggai
man=DET \(3 \mathrm{SG}=\) chop-break=YA tree=DET branch
'the man chops and breaks the tree branch' (cb_stimuli_071116 010, 115.590118 .802 )
\begin{tabular}{llll} 
(151) & i=lawe-gane-gane \(=y a\) & nggama \(=k o\) & le- \(\varnothing\) \\
child=DIST & POSS.CLF2-3SG.POSS & pamwath \(\dot{t}\)
\end{tabular}
'it (a spider) blocks the child's way’ (new_mother_251214 020-1, 51.818 53.210)

\subsection*{6.3.5 Benefactive constructions}

The benefactive constructions share semantic similarities with the cause-effect complex verbs, however, the \(\mathrm{V}_{2}\) in these constructions is restricted. The benefactive constructions have iconic ordering: \(\mathrm{V}_{1}\) describes an action and the \(\mathrm{V}_{2}\) stem giya 'give' introduces a recipient or beneficiary who receives something or benefits from the action of \(\mathrm{V}_{1}\). The recipient or beneficiary is indicated by PP with the ambiposition we, as in (152) and (153).
(152) u=gudu-giya mbwa we=nggo 2SG=fetch-give water PREP=1SG 'you fetch me water (lit. you fetch (and) give water to me)' (e_251115_01 010, 39.58641 .900 )
(153) mbala u=utu-giya \(=\varnothing \quad\) we \(=\varnothing\)

HYP 2 SG=speak-give=3SG \(\quad\) PREP=3SG
'you should tell it to her' (c_031116 081, 158.970 161.030)

Complex verbs with a 'give' stem are common cross-linguistically and constructions with 'give' in \(\mathrm{V}_{2}\) typically have benefactive semantics (Aikhenvald 2006; 2018). Such constructions appear to be rare in Oceanic languages (Cleary-Kemp 2015: 139), although they are attested in at least three languages of the Solomon Islands (Davis 2003: 210-1; Mosel 1984: 126; Palmer 2009: 212). Table 6.23 lists the Sudest benefactive complex verbs.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & transitivity & tokens \\
\hline utu-giya & 'speak' & 'tell (s.th. to s.o.)' & INTR-TR & 3 \\
gudu-giya & 'fetch (water)' & 'fetch (water) (for s.o.)' & TR-TR & EE \\
ten-giya & 'break' & 'break and give' & TR-TR & 2 \\
uno-giya & 'say (s.o.'s name)' & 'introduce' & TR-TR & 4 \\
vanggu-giya & 'lead' & 'give (person to s.o.)' & TR-TR & 1 \\
\hline Table 6.23 Benefactive complex verbs & & &
\end{tabular}

Table 6.23 Benefactive complex verbs
One construction contains an intransitive \(\mathrm{V}_{1}\) utu 'speak', as in (153) and (154) below, however the complex verb itself is transitive, taking its valence from the \(\mathrm{V}_{2}\) stem.
\begin{tabular}{lll}
\(i=\) utu-giya \(=\varnothing\) & we \(=y a\) & ra-mbar-mbaro \\
3SG=speak-give=3SG & PREP=YA & AG-RED-law/custom
\end{tabular}
'he tells it to the judge'
(fp_stimuli_191015_07 083, 207.650 211.430)

The remaining benefactive complex verbs contain a transitive \(\mathrm{V}_{1}\) stem. Examples (155) and (156) show benefactive construction with the stem uno 'say (name)', and (157) and (158) illustrate constructions with the stem ten 'break'.
(155)
\begin{tabular}{lll} 
a=uno-giya & ida-nggu & we=nggi \\
1SG=say(name)-give & name-1SG.POSS & PRE
\end{tabular}
'I give my name to them'
(education_241214 012, 40.860 44.390)
le=ko i=uno-giya ida-e we=nggi
person=DIST 3 GG=say(name)-give name-3SG.POSS PREP=3PL
'the person gave his name to them' (mandumbunga_02_181016 214, 540.173 542.346)
```

amba wo=ten-giya-giya $=\varnothing \quad$ we=nggi=ya gha-ma
then $1 E X C L=$ break-RED-give=3SG \quad PREP=3PL=YA POSS.CLF1-1EXCL
une $=k o$
friends=DIST

```
    'then we cut and gave it to our friends' (stone_cooking_251015 119, 321.040 323.260)
\begin{tabular}{ll} 
wo \(=\) ten-giya-giya \(=\varnothing\) & we \(=\) nggi \\
1EXCL-break-RED-give \(=3 S G\) & PREP \(=3 P L\)
\end{tabular}
'we cut and give it (pork) to them' (pigs_251214 040, 102.630 104.560)

In (159) the (160), the verb vanggu 'lead' does not have its literal interpretation of 'lead' or 'accompany', but expresses that a person is being given, for example, in marriage or for adoption.
\begin{tabular}{llllll} 
i=nga & "noroke & a=vanggu-giya \(=\varnothing\) & we=ngge & iya=ke & iya \\
3SG=say & today & 1SG=lead-give=3SG & PREP=2SG & DEM=SPKR.PROX & DEM \\
tamwasa-kurikuri" \\
person.who-have.diseased.skin \\
'she said "today I give you this one with skin disease"" \\
(mandumbunga_02_181016 382, 958.928 962.268)
\end{tabular}
(160)
\begin{tabular}{llll} 
rama-nggu & \(v a\) & \(i=\) vanggu-giya=nggo & \(w e=y a\) \\
father-1SG.POSS & REM.PST & 3SG=lead-give=1SG & PREP=YA
\end{tabular}
le-Ø boda-boda
POSS.CLF2-3SG.POSS RED-relative
'my father gave me to his relatives (to adopt)'
There appears to be a constraint that prohibits the use of a more typical predicate meaning 'give' (e.g., complex verbs with a CLFV and a 'give' verb, see §6.3.2) when referring to the permanent transfer of a human when describing e.g., marriage or adoption. In these contexts, only the complex verb vanggu-giya 'lead-give' is acceptable to speakers, although a complex verb GET-giya 'getgive' or simply giya 'give' is used for non-permanent transfer events such as passing a baby between two people. \({ }^{165}\)

\footnotetext{
\({ }^{165}\) Vanggu 'lead' is generally used instead of a CLFV to encode caused motion events where the agent is not physically moving the human theme (see Sheppard forthcoming). It could also be that vanggu 'lead' is used
}

\subsection*{6.3.6 Simultaneous and sequential constructions}

The simultaneous and sequential complex verbs consist of two relatively open verb slots that describe two activities undertaken concurrently, or a series of sequential activities that occur one after the other and generally describe quotidian activity combinations. Complex verbs with simultaneous semantics and unrestricted slots are attested in Oceanic languages, for example, Mwotlap (François 2006: 233-4), but sequential complex verbs in Oceanic languages tend to have a restricted slot containing a motion verb and unrestricted slots are not typical (Cleary-Kemp 2015: 134). \({ }^{166}\) The simultaneous complex verbs are presented in Table 6.24.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V1-V2 gloss & combined meaning & transitivity & tokens \\
\hline ghena-vaghile & 'sleep-turn' & 'turn over in sleep' & INTR-INTR & 1 \\
ghena-thai & 'sleep-be close' & 'sleep close to (s.o./s.th.) & INTR-TR & 5 \\
utu-thai & 'speak-be close & 'speak and be close' & INTR-TR & 1 \\
mun-tamwe & 'drink-look for' & 'drink and look for (s.th. else)' & TR-TR & 1 \\
\hline
\end{tabular}

Table 6.24 Simultaneous complex verbs
The examples presented in (161) to (164) show the simultaneous complex verbs. As noted in §6.3.2, the stem vaghile 'turn' can only function independently in a VC with a manner-of-causation prefix.
(161) "ma \begin{tabular}{lll} 
already & \begin{tabular}{l} 
u \(=\) mun-tamwe \(=\) nggi \\
\(2 S G=\) drink-look.for=3PL
\end{tabular} & vara \\
& really
\end{tabular}
"you were just drinking (alcohol) and looking for them"
(fp_stimuli_201015_01 106, 415.269 417.280)
(162) i=ghena-vaghile

3SG-sleep-turn
'she turns over while sleeping/she sleeps and turns over'
(163) maa va thi=ve-ghena-thai=nggi moli

NEG REM.PST 3PL=RECP-sleep-be.close=3PL INTS
'they didn't sleep close to each other'
(mandumbunga_02_181016 348, 873.551 876.193)

\footnotetext{
in these contexts instead of a CLFV because the object (the baby/bride(groom)) is not (necessarily) being physically passed or moved to someone or somewhere, but is being led into a relationship rather than the permanence of the transfer.
\({ }^{166}\) The Sudest associated motion prefixes (§4.3.4, §43.5.1) presumably grammaticalised from motion verbs in complex verbs.
}
\begin{tabular}{llll} 
maa & \(i=l a=\) nde=utu-thai=ngge-mun=re & [..] & te-mbe \\
NEG & 3SG=and.go=DEHORT=speak-be.close=2SG-a.bit=NEG2 & & more-still \\
ne & \(u=\) njogha=ma=va & we=nggo & \\
FUT & 2SG=go.back-=hither=REP & PREP=1SG &
\end{tabular}
'(if) he doesn't talk and be close to you a bit [...] return to me again'
(mandumbunga_02_181016 392, 986.071 988.673)

The sequential complex verb combinations are listed in Table 6.25.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V1-V2 \(\mathbf{l}\) gloss & combined meaning & transitivity & tokens \\
\hline ghena-thuweiru & 'sleep-be awake' & 'wake up, get up' & INTR-INTR & 5 \\
vutha-vaidi & 'arrive-find' & 'arrive and/to find' & INTR-TR & 1 \\
thavwi-utu & 'wash-immerse' & 'wash and immerse' & TR-TR & 2 \\
\hline
\end{tabular}

Table 6.25 Sequential complex verbs
Examples of the sequential constructions are presented in (165) to (167). The stem utu, as mentioned previously in this chapter, only occurs in complex verbs or with manner-of-causation prefixes in independent VCs.
\begin{tabular}{ll}
\begin{tabular}{l} 
me \(=\) ghiviya \(=k e\)
\end{tabular} & mo=ghena-thuweiru \\
3SG.IMM.PST=be.daybreak=SPKR.PROX & 2SG.IMM.PST=sleep-be.awake \\
mo=vakatha \(\quad\) buda? & \\
2SG.IMM.PST=do/make what & \\
'this morning (when) you woke up; you did what?
\end{tabular}
(cooking_111015 002-3, 14.690 17.407)
(166) a=thavwi-utu ghaningga=ko e uye=ko tine 1SG=wash-immerse food=DIST PREP clay.pot=DIST inside 'I rinse the food and immerse it in the pot' (cooking_111015 0145-6, 48.710 55.665)
(167) va ma thi=vutha-vaidi=nggi mbungaghalaghalamanggo morouma REM.PST already 3PL=arrive-find=3PL countless k.o.fish 'they arrived and found countless morouma fish'
(mandumbunga_061215 127-9, 365.769372 .734 )

\subsection*{6.3.7 Synonymous constructions}

A group of three complex verbs show combinations of two (near) synonymous verb stems. As noted elsewhere, \(v e\) 'give' can only occur in complex verbs with either a CLFV or the monotransitive 'give' stem giya, and cannot function independently.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}} \mathbf{-} \mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{1}} \mathbf{-} \mathbf{V}_{\mathbf{2}}\) gloss & combined meaning & transitivity & tokens \\
\hline kwan-yaro & 'lie-trick' & 'trick' & INTR?-TR & 1 \\
yaru-vatha & 'gather-gather' & 'gather together' & TR-TR & 1 \\
giya-ve & 'give-give' & 'give' & DITR-TR & EE/ES \\
\hline Table 6.26 Synonymous complex verbs & & &
\end{tabular}

Table 6.26 Synonymous complex verbs

To the best of my knowledge, no synonymous complex verbs are described in studies of Oceanic languages, however, such constructions are a productive type of serialisation cross-linguistically (Durie 1997: 337; Aikhenvald 2006: 30). The complex verbs frequently signal properties like repetition, duration, or intensification of an activity, an event, or a state (Aikhenvald 2006: 30). It is unclear from the current data if there are systematic differences in the use, distribution or meaning of the synonymous complex verbs. Compare the simplex predicates with yaru 'gather' in (168) and vatha 'gather' in (169) with the complex verb yathu-vatha in (170).
\begin{tabular}{lll} 
ela=ma & \(i=y a r u\) & bin=ma \\
woman=DET & 3SG=gather & bean=DET
\end{tabular}
'the woman gathers the beans' (put_stimuli_201015_01 142-3, 837.550 840.650)
(169) wevo=ma \(\quad\) kaina=wa a i=mwana-vatha
young.woman=DET 3SG=GET.SG.RIGD knife=DET PREP 3SG-w.hands-gather
umbwa=ma yanggai
tree=DET branch
'the woman gets the knife and gathers the branches with her hands'
(cb_stimuli_051016_01 111, 1210.900 1216.670)
(170) ne \(i=\boldsymbol{y} \boldsymbol{a r u}\)-vatha=nggi boda
FUT 3SG=gather-gather=3PL people
'they will gather together the people'
(lizard_and_possum_121015 043, 113.330 115.825)

The other two complex verbs kwan-yaro 'lie-trick' and giya-ve 'give-give' are presented below in (171) and (172) respectively.
(171) mbe \(i=k \boldsymbol{w} \boldsymbol{a n}-\boldsymbol{y} \mathbf{a r o}=\) ind \(a\)
still 3SG=lie-trick=1INCL.P
'she was tricking us!'
(mandumbunga_061215 133, 382.222384 .185 )

As discussed in §6.3.2, the ditransitive stem ve 'give' only occurs in complex verbs with a monotransitive \(\mathrm{V}_{1}\) stem; in this case, the synonymous verb giya 'give'.
(172)
\begin{tabular}{lll}
\(i=\) giya-ve=nggo & mbombo & umbwe-iwo \\
3SG=give-give=1SG & pig & NUM.CLF-two
\end{tabular}
'he gives me two pigs'
(e_251115_01 060, 196.798 199.103)

\subsection*{6.3.8 Adverbial constructions}

The adverbial constructions consist of a \(V_{1}\) that describes an activity followed by a \(V_{2}\) specifying how the activity is performed. Complex verbs expressing equivalent manner functions are widely attested both in the Oceanic languages and cross-linguistically (Lynch et al. 2002: 47; Aikhenvald 2006: 29). The adverbial \(\mathrm{V}_{2}\) stems are listed in Table 6.27.
\begin{tabular}{ll}
\hline adverbial stem & gloss \\
\hline wogiyawe & 'properly' \\
vakatha & 'carefully' \\
roro & 'in vain' \\
thavwi & 'accidentally' \\
kubaro & 'quietly' \\
thuwole & 'secretly' \\
thuwowa & 'deeply' \\
\hline Tabl & \\
\hline
\end{tabular}

Table 6.27 Adverbial V2 stems
The majority of the adverbial stems cannot function independently as the head of a verb complex. Of those that can, the stem in adverbial complex verbs diverges semantically from its independent counterpart. They also do not contribute to the valence of the construction, which takes its valence from that of the \(V_{1}\) verb. \({ }^{167}\)

\subsection*{6.3.8.1 Wogiyawe 'properly'}

The adverbial stem wogiyawe indicates that the event of the preceding verb is done 'properly' or 'well'. The stem generally cannot occur as an independent verb. All complex verbs with wogiyawe 'properly, well' are presented in Table 6.28.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V1 gloss & combined meaning & V \(_{\mathbf{1}}\) transitivity & tokens \\
\hline ghavatha-wogiyawe & 'dress' & 'dress properly/well' & INTR & 1 \\
ghena-wogiyawe & 'sleep & 'sleep well' & INTR & 1 \\
kaiwo-wogiyawe & 'work' & 'work well' & INTR & 1 \\
me-wogiyawe & 'live, stay' & 'live well' & INTR & 1 \\
yaku-wogiyawe & 'live, stay' & 'live well' & INTR & 1 \\
nda-wogiyawe & 'burn' & 'cook properly' & INTR & 2 \\
GET-wogiyawe & 'get' & ''understand properly' & TR & 1 \\
ghambi-wogiyawe & 'give birth' & 'give birth safely' & TR & 1 \\
ravu-wogiyawe & 'know' & 'know well' & TR & 1 \\
thuwe-wogiyawe & 'see' & 'look properly' & TR & 1 \\
vakatha-wogiyawe & 'make, do' & 'do properly' & TR & 2 \\
mwana-wogiyawe & 'with hands' & 'put properly' & TR & 2 \\
\hline
\end{tabular}

Table 6.28 Adverbial constructions with wogiyawe 'properly'
Examples (173) to (175) show wogiyawe 'properly, well' in intransitive complex verbs and examples (176) to (178) show the stem in monotransitive complex verbs.

\footnotetext{
\({ }^{167}\) An alternative analysis is that some or all of the \(V_{2}\) stems are their own class of adverbial suffixes that have grammaticalised from their \(\mathrm{V}_{2}\) position in complex verbs. This is a common grammaticalisation path for morphemes with adverbial semantics in Oceanic languages (Verkerk \& Frostad 2013).
}
```

(173) nande ma=ghena-wogiyawe=re
NEG1 1SG.IMM.PST-sleep-properly=NEG2
'I didn't sleep well'
(last_night_181214008, 16.68019 .810)
(174) $i=n d a$-wogiyawe
3SG=be.burnt-properly
'he is well cooked'
(crab_girl_081115 037, 91.754 94.327)
(175) noroke kero thi=yaku-wogiyawe wei-ye
today already 3PL=stay=properly PREP-3SG.POSS
levo=ke
POSS.CLF2:young.woman=SPKR.PROX
'today they live well with his wife'
(fp_stimuli_201015_01 115, 453.770
456.380)
(176) $i=$ vakatha-wogiyawe $n g g a m a=m a \quad$ riwa-ye
3SG=make-properly child=DET body-3SG.POSS
'she prepares the child’s body properly’ (marriage_111015 041, 133.010 135.710)
(177) ande $i=k a i w o=r e \quad i=k a i w o-w o g i y a w e=r e$
NEG1 3SG=work=NEG2 3SG=work-properly=NEG2
'it won't work, it won't work properly'
(kula_exchange_081215 051-2, 152.460 158.781)
(178) tina-e le- $\varnothing \quad$ kula=ko gha- \varnothing
mother-3SG.POSS
rumwaru maa me=wo-wogiyawe $=\varnothing$
straight NEG 3SG.IMM.PST=GET.SG.RIGD-properly=3SG
'the clearness of her mother's message, Ebeutu didn't understand it (lit. get)'
(crab_girl_081115 026-8, 66.130 71.970)

```

Wogiyawe 'properly' is also attested in combination with a manner-of causation prefix mwana- 'by hand', as in (179), and can be translated 'he "properlied" with his hands' referring an action in which the subject adjusts his hat. Neither mwana- 'by hand' nor wogiyawe 'properly' can function independently as a verb but, in this case, they appear to use each other as a crutch to build a grammatical verb together.
\begin{tabular}{lllll} 
(179) & \begin{tabular}{ll}
\(i=l i-r a\) & umbali-ye
\end{tabular} & ghae & \(n a\) & \(i=\boldsymbol{m} w a n a-w o g i y a w e\) \\
& 3SG=GET-put & head-3SG.POSS & cover & and
\end{tabular} 3SG=w.hands-properly \(=3\) SG
'he put his hat on and adjusts/places it properly'
(put_stimuli_191015_01_01 229-30, 967.776 970.887)

\subsection*{6.3.8.2 Vakatha 'carefully'}

Adverbial complex verbs with vakatha specify that the event expressed by the \(\mathrm{V}_{2}\) is completed 'carefully'. Its occurrence in the data is limited. The two attested complex verbs are listed in Table 6.29 and exemplified in (180) and (181). \({ }^{168}\)
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) gloss & combined meaning & \(\mathbf{V}_{\mathbf{1}}\) transitivity & tokens \\
\hline momodi-vakatha & 'pull-carefully' & 'pull carefully' & TR & 1 \\
vathawo-vakatha & 'bend-carefully' & 'bend carefully' & TR & EE/ES \\
\hline
\end{tabular}

Table 6.29 Adverbial constructions with vakatha 'properly'
(180) Sylvester \(i=m w a n a-v a t h a w o-v a k a t h a ~ n a i l ~\) personal.name \(3 \mathrm{SG}=\mathrm{w}\).hands-bend-carefully nail 'Sylvester straightens the nail carefully (i.e., bends it properly)' (e_300915_01 122, 404.400 409.070)
(181) amala=ko i=momodi-vakatha gha- \(\varnothing \quad\) kwaliko ghamba man=DIST 3SG=pull-carefully POSS.CLF1-3SG.POSS clothing place 'the man pulls the suitcase carefully'
(put_stimuli_201015_01 166-7, 943.160 950.512)

\subsection*{6.3.8.3 Roro 'in vain'}

The frustrative adverbial stem roro 'in vain' indicates that the event expressed by \(\mathrm{V}_{1}\) is not fully realised and that the intended outcome of the action does not eventuate for some reason. It appears to be related to, but not identical in meaning to, the transitive stem roro 'not know':
\begin{tabular}{lll} 
ra=roro & thela & \(i=n j i m b u k i k i\) \\
1INCL=not.know & who & 3SG=look.after
\end{tabular} 'we don't know who will look after it'
(dating_0810 057, 147.910 149.944)
\begin{tabular}{llll} 
kero & vethi=roro & \(l e=k o\) & ida-e \\
already & 3PL.INT=not.know & person=DIST & name-3SG.POSS
\end{tabular}
'already they didn't know (i.e., had forgotten) the person's name'
(mandumbunga_02_181016 227, 578.051 581.408)
The attested complex verb combinations with roro 'in vain' are given in Table 6.30.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & V \(\mathbf{1}\) transitivity & tokens \\
\hline nanggo-roro & 'ask for' & 'ask in vain for (s.th./s.o.)' & TR & EE \\
ravagha-roro & 'stop' & 'not be able to stop (s.th./s.o.)' & TR & 1 \\
tamwe-roro & 'look for' & 'look in vain for (s.th/s.o.)' & TR & 1 \\
ten-roro & 'cut' & 'try to cut (s.th./s.o.)' & TR & 1 \\
vole-roro & 'chop' & 'try to cut (s.th./s.o.)' & TR & 1 \\
\hline
\end{tabular}

Table 6.30 Adverbial complex verbs with roro 'in vain'

\footnotetext{
\({ }^{168}\) The stem may be related to the transitive verb vakatha 'do, make'. When vakatha occurs in \(\mathrm{V}_{1}\) position in adverbial constructions or in other types of VCs, it has the reading 'do, make', as in example (176) in the previous section.
}

All complex verbs with roro 'in vain' are listed in examples (184) to (188).
(184) amala=ko i=vole-roro umbwa=ko
man=DIST 3SG=chop-in.vain tree=DIST
'the man tries to chop the tree (but it doesn't' break)'
(cb_stimuli_051016_02_02 099, 730.110 732.747)
(185) amala=ko i=taga-ten-roro
\begin{tabular}{llll} 
thiyo \(=k o\) & muyai & vara & \(a m b a\) \\
string=DIST & later & really
\end{tabular}
man=DIST 3SG=by.striking-break
string=DIST later really then
\(i=\) riri - ten \(=\varnothing\)
\(3 \mathrm{SG}=\) by.striking=break=3SG
'the man tries to cut the string by striking (and) at last he breaks it by striking'
(cb_stimuli_051016_02_02 109, 787.892 792.205)
(186) \(i=\) ravagha-roro \(=n g g i\)

3SG=stop-in.vain=3PL
'he wasn't able to stop them' [context: one man is attempting to break up a fight
between two other men] (fp_stimuli_201015_04 023, 62.190 67.505)
(187) kero thi=tamwe-roro le-nji vwakirakira=ma already 3PL=look.for-in.vain POSS.CLF2-3PL.POSS frog=DET
'they looked in vain for their frog' (frogstory_161214 013, 32.410 36.810)
(188) i=nanggo-roro bwarogi

3SG=ask.for-in.vain fish
'he asked in vain for fish (but there wasn't any or no one would give him any)'
(e_091215)

\subsection*{6.3.8.4 Thavwi 'accidentally'}

The adverbial stem thavwi indicates that the action of the \(\mathrm{V}_{1}\) was accidental or done by mistake. \({ }^{169}\) The complex verbs with thavwi 'accidentally' are listed in Table 6.31.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & \(\mathbf{V}_{\mathbf{1}}\) transitivity & tokens \\
\hline linggi-thavwi & 'pour out' & 'tip over accidentally' & TR & 1 \\
ngge-thavwi & 'hit' & 'hit accidentally' & TR & 1 \\
nggila-thavwi & 'break' & 'break accidentally' & TR & 1 \\
ten-thavwi & 'break' & 'break accidentally' & TR & EE \\
\hline \multicolumn{2}{l}{ Table 6.31 Adverbial complex verbs with thavwi 'accidentally' } & &
\end{tabular}

The examples in (189) and (190) both have a \(\mathrm{V}_{1}\) meaning 'break' and describe situations where someone accidentally cuts themself.

\footnotetext{
\({ }^{169}\) There is also an independent, homophonous verb thavwi 'wash'. It is unclear if the two morphemes are diachronically related. See (166) in §6.3.6 for an example of thavwi 'wash' in a complex verb.
}
(189)
\(i=n g g i l a-t h a v w i \quad n i m a-e\)
3SG=break- accidentally hand-3SG.POSS
'he accidentally cut his finger' (cb_stimuli_051016_02_01 161, 867.010 870.000)
(190)
no=u=ki-ten-thavwi
nima-n
hand-2SG.POSS
'Don't cut your hand accidentally'

The examples in (191) and (192) describe the same stimulus video in which a woman accidentally tips over a bucket before continuing on her way.
(191) \(\quad i=l a\)-vuri-linggi-thavwi \(=\varnothing\)

3SG=and.go-w.feet-pour-by.mistake=3SG
'she accidentally kicked it over and kept walking'
(put_stimuli_231015 053, 408.314 409.712)
(192)
\(\begin{array}{llll}\text { ande } & i=\text { thuwe=re } & \text { buket=ke } & \text { i=la-ngge-thavwi=ø } \\ \text { NEG1 } & \text { 3SG=see=NEG2 } & \text { bucket=DIST } & \text { 3SG=and.go-hit-by.mistake=3SG }\end{array}\)
'she didn't see the bucket (and) she accidentally hits it and kept walking' (put_stimuli_201015_02 127-8, 732.040 735.726)

\subsection*{6.3.8.5 Kubaro 'quietly'}

In adverbial constructions the verb kubaro 'hide' specifies that the event expressed by the \(\mathrm{V}_{1}\) is completed 'quietly'. As an independent verb, kubaro has the related meaning of 'hide', as in (193), or with the posture prefix ro- 'sit and' to mean 'be quiet', as in (194).
\[
\begin{array}{lll}
\text { nggama=ma } & \text { i=kubaro } \\
\text { child=DET } & \text { 3SG=hide } & \text { Vuwo } \\
\text { place.name }  \tag{e_171215_02}\\
\text { 'the child hides in Vuwo' }
\end{array}
\]
(194)
"u=ro-kubaro!"
2SG=sit.and-hide
"be quiet (lit. stay and hide),

There are only two adverbial complex verbs with kubaro 'hide' in the data, These are listed in Table 6.32 and shown in examples (195) and (196).
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{-} \mathbf{-} \mathbf{\mathbf { V } _ { \mathbf { 2 } } \text { gloss }}\) & combined meaning & \(\mathbf{V}_{\mathbf{1}}\) transitivity & tokens \\
\hline ghena-kubaro & 'sleep-hide' & 'sleep quietly, & INTR & 1 \\
longga-kubaro & 'walk-hide' & 'walk quietly, secretly' & INTR & 1 \\
\hline
\end{tabular}

Table 6.32 Adverbial complex verbs with kubaro 'quietly'
(195) \(a=\) ghena-kubaro

1SG=sleep-hide
'I slept quietly' (last_night_181214 020, 47.430 49.609)
```

(196) $i=n g a \quad$ "tha hu=longga-kubaro
3SG=say PROH 2PL=walk-hide
'she said "don't walk quietly""

```
(mandumbunga_061215 060, 170.640 172.180)

\subsection*{6.3.8.6 thuwole 'secretly'}

The stem thuwole 'be hidden' cannot occur independently. In an adverbial construction it indicates that the activity of \(\mathrm{V}_{1}\) is hidden from others or done 'secretly'. The single construction attested in the corpus is presented in (197).
\begin{tabular}{llll} 
i=ngamwe-thuwole=nggi=ya & bwarogi=ke & morouma=ke & \(e\) \\
3SG=feed-be.hidden=3PL=YA & fish=SPKR.PROX & k.o.fish=SKR.PROX & PREP \\
mbwa=ke & tine & & \\
water=SPKR.PROX & inside & &
\end{tabular}
'she fed the fish secretly in the water' (mandumbunga_061215 134, 384.185 388.194)

\subsection*{6.3.8.7 Thuwowa 'deeply'}

According to speakers, the stem thuwowa only occurs in one complex verb with the stem ghena 'sleep' to specify that the subject is sleeping deeply, as in (198). It cannot function as an independent verb.
(198) boda=ko wolaghiye kero thi=ya-ghena-thuwowa
relative=DIST all/every already \(3 \mathrm{P}=\) all-sleep-be.fast.asleep
'all those relatives were already fast asleep'
(mandumbunga_02_181016 491, 1235.755 1239.430)

\subsection*{6.3.9 Aspectual constructions}

The final group of complex verbs have aspectual functions. They consist of an unrestricted \(\mathrm{V}_{1}\) slot and a restricted \(\mathrm{V}_{2}\) which may take one of three aspectual stems: kai 'inceptive', vao 'completive' or vun 'be finishing'. \({ }^{170}\) The aspectual stems do not contribute to the valence of the construction. Although Lynch et al. (2002) do not mention aspectual SVCs in regards to Oceanic languages, Cleary-Kemp (2015: 136-7) finds SVCs with aspectual semantics in many Oceanic languages.

\footnotetext{
\({ }^{170}\) Anderson and Ross (p. 338) propose that the Sudest aspectual stems are enclitics which follow the directional enclitics \(=m a\) 'hither' and =wo 'thither', however, the current corpus data show that the deictic enclitics follow the aspectual stems, as in (209). The different order of the morphemes does not preclude a suffix analysis of the aspectual morphemes and, like the adverbial stems discussed in the previous section, an alternate analysis of the aspectual stems is that they are grammaticalised suffixes.
}

\subsection*{6.3.9.1 Kai 'inceptive'}

The inceptive stem kai indicates that the action expressed by the \(V_{1}\) is just beginning, is undertaken for the first time, or is the first in a series of actions. It cannot function as an independent verb. \({ }^{171}\) The inceptive stem is attested in constructions with intransitive, monotransitive and ditransitive verbs, which are listed in Table 6.33.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{~ g l o s s ~}\) & combined meaning & V transitivity & tokens \\
\hline ghena-kai & 'sleep' & 'sleep for the first time (with s.o.)' & INTR & 1 \\
thari-kai & 'dance' & 'start dancing' & INTR & 1 \\
GET-kai & 'get' & 'get first' & TR & 1 \\
lawe-kai & 'catch' & 'catch for the first time' & TR & 3 \\
mun-kai & 'drink' & 'start to drink' & TR & 4 \\
thuwe-kai & 'see' & 'see first' & TR & 4 \\
utu \(=\) nga-kai & 'talk=TR' & 'talk about (s.th.) first' & TR & 2 \\
vaidi-kai & 'find' & 'findfirst' & TR & 1 \\
vakatha-kai & 'do/make' & 'do first' & TR & 2 \\
vanjo-kai & 'cast (spell)' & 'start to cast' & TR & 1 \\
vaghare-kai & 'teach' & 'teach first (s.th. to s.o.)' & DITR & 1 \\
\hline Table 6.33 Aspectual complex verbs with kai 'inceptive' & &
\end{tabular}

In (199) to (201), the inceptive is used to specify that the action of \(\mathrm{V}_{1}\) is just starting.
\begin{tabular}{llll}
\(v a\) & \(i=\) thari-kai & vara & ghe \(=k o\) \\
REM.PST & 3SG=dance-INC & really & LOC=DIST
\end{tabular}
'he started dancing there'
(feast_of_the_fish_271015 072, 171.858 174.354)
(200)
\(\begin{array}{llll}\text { thi=mun-kai=ya } & \text { rogibo } & \text { gha-ø } & \text { umbwa-umbwa } \\ \text { 3PL=drink-INC=YA } & \text { refuse } & \text { POSS.CLF1-3SG.POSS } & \text { RED-tree }\end{array}\)
'they start to drink the preparation/start to drink the preparation for the first time' (kula_exchange_081215 015, 49.39051 .350 )
\begin{tabular}{lll} 
amala=ko & i=vanjo-kai & kukura \\
man=DIST & 3SG=cast-(spell)-INC & spell
\end{tabular}
'the man starts casting spells' (kula_exchange_081215 009-10, 29.240 33.810)

The inceptive stem is also used to indicate that the event expressed by the \(V_{1}\) is performed for the first time. The example in (202) describes what happens when a young woman sleeps with a young man for the first time.

\footnotetext{
\({ }^{171}\) The morpheme kai is also a noun meaning 'thing' and as an independent verb means something like 'to thingy', typically used as a placeholder to avoid a particular word or when a lexical item is not remembered.
}
(202)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
thonggo \\
if
\end{tabular} & \[
\begin{aligned}
& i=\text { ghena-kai } \\
& \text { 3SG=sleep-INC }
\end{aligned}
\] & \begin{tabular}{l}
wei-ye \\
ACC-3SG.POSS
\end{tabular} & \begin{tabular}{l}
итоги \\
young.man
\end{tabular} & \[
\begin{aligned}
& \text { umoru=ko } \\
& \text { young.man=DIST }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
tina-e \\
mother-3S
\end{tabular} & \[
\begin{array}{ll} 
& n a \\
i . P O S S & \text { and }
\end{array}
\] & \begin{tabular}{l}
rama-e \\
father-3SG.POSS
\end{tabular} & \begin{tabular}{l}
na le-ø \\
and POSS.C
\end{tabular} & F2-3SG.POSS \\
\hline boda-boda RED-relat & \[
\begin{aligned}
& t h i=l i=y a \\
& \text { 3PL=GET. }
\end{aligned}
\] & SG.FLEX=YA & \begin{tabular}{l}
nambo... \\
basket
\end{tabular} & \\
\hline
\end{tabular}
'if she sleeps with a boy for the first time, the boy's mother and father and relatives get a basket...,
(first_time_251214 008-12, 18.360 32.670)

In (203), the inceptive specifies that the police are arresting a particular person for the first time.
(203) polis this=lawe - kai \(=\varnothing\)
police \(\quad 3 \mathrm{PL}=\) catch \(-\mathrm{INC}=3 \mathrm{SG}\)
'the police catch/arrest him for the first time'
(fp_stimuli_191015_05 058, 95.762 97.250)

The stem kai 'INC' is also used to describe the first in a series of generally similar events. In (204), the speaker is describing the different things she learned at vocational college, beginning with the first thing she learnt, which was sewing. The verb vaghare is one of the three ditransitive verbs attested in the language. Like the stem ve 'give', the recipient of vaghare 'teach' is encoded by the object enclitic and the thing being taught is encoded by a lexical NP.
\(\begin{array}{llll}\text { (204) } & v a & \text { thít=vaghare }- \text {-kai=nggo } & \text { nggiyanggia... } \\ & \text { REM.PST } & 3 P L=\text { teach }-\mathrm{INC}=1 \mathrm{SG} & \text { sewing }\end{array}\)
In (205), the speaker is asking the hearer about which picture (out of several pictures) they saw first.
(205) angga iya mara=thuwe - kai \(=\varnothing=m a\) ?
which DEM 1INCL.IMM.PST=see-INC=3SG=DET
'which one (picture) did we see first?' (fp_stimuli_191015_03 021, 35.380 36.790)

\subsection*{6.3.9.2 Vao 'completive'}

The completive stem vao indicates that the event expressed by the preceding verb is completed or finished. The stem cannot function independently and only occurs in complex verbs. Like all the aspectual \(\mathrm{V}_{2}\) stems, vao 'COMPL' occurs with both intransitive and transitive \(\mathrm{V}_{1}\) stems. The intransitive verbs attested in complex predicates with vao are listed in Table 6.34.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}} \mathbf{V}_{\mathbf{2}}\) & V1 gloss & combined meaning & V transitivity & tokens \\
\hline ghawi-vao & 'chew (betel nut)' & 'finish chewing (betel nut)' & INTR & 1 \\
kiwak-vao & 'make sago pudding' & 'finish making sago puding' & INTR & 1 \\
koghane-vao & 'make (cooking pit)' & 'finish making (cooking pit)' & INTR & 1 \\
kot-vao & 'attend court' & 'finish attending court' & INTR & 1 \\
mwaritau-vao & 'fish' & 'finish fishing' & INTR & 2 \\
nda-vao & 'burn, cook (roast)' & 'finish burning/ cooking' & INTR & EE \\
sikulu-vao & 'attend school' & 'finish school' & INTR & 1 \\
thavi-vao & 'beat (sago)' & 'finish beating' & INTR & 1 \\
thithu-vao & 'bathe' & 'finish bathing' & INTR & 1 \\
utu-vao & 'speak' & 'finish speaking' & INTR & 2 \\
voi-vao & 'open sago tree' & 'finish opening sago tree', & INTR & 1 \\
\hline
\end{tabular}

Table 6.34 Intransitive aspectual complex verbs with vao 'completive'
The sentences in (206) and (207) show intransitive complex verbs with the completive stem.
(206) ok wo=ra=utu-vao vara
ok HORT=1INCL=speak-COMPL really
'ok, we're finished talking'
(c_031116 276, 510.950 512.880)
(207)
\(i=t h i t h u-v a o\)
3SG=bathe-COMPL
'he finished bathing' (mandumbunga_02_181016 139, 343.554 345.642)

The monotransitive complex verbs with vao 'COMPL' are given in Table 6.35, with tokens presented in (208) to (210).
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{V}_{1}-\mathrm{V}_{2}\) & \(\mathrm{V}_{1}\) gloss & combined meaning & \(V_{1}\) transitivity & tokens \\
\hline dowe-vao & 'load (canoe)' & 'finish loading' & TR & 1 \\
\hline ge-vao & 'cook' & 'finish cooking' & TR & 1 \\
\hline GET-vao & 'get' & 'finish getting' & TR & 1 \\
\hline ghan-vao & 'eat' & 'finish eating' & TR & 5 \\
\hline iwon-vao & 'cover (s.th. with leaves)' & 'finish covering' & TR & 1 \\
\hline keli-vao & 'grate' & 'finish grating' & TR & 3 \\
\hline mun-vao & 'drink' & 'finish drinking' & TR & 1 \\
\hline njanggi-vao & 'clean' & 'finish cleaning & TR & 1 \\
\hline rumbo-vao & 'make/light (a fire)' & 'finish lighting' & TR & 1 \\
\hline tam-vao & 'cream (food)' & 'finish creaming' & TR & 1 \\
\hline tara-vao & 'pour' & 'finish pouring' & TR & 1 \\
\hline tawoi-vao & 'have diarrhoea' & 'stop having diarrhoea' & TR & 1 \\
\hline ten-vao & 'break' & 'finish getting ( w . tongs)' & TR & 1 \\
\hline thatha-vao & 'tear' & 'finish tearing' & TR & 1 \\
\hline the-vao & 'serve (food)' & 'finish serving' & TR & 1 \\
\hline thiki-vao & 'peel (with blade)' & 'finish peeling' & TR & 1 \\
\hline thuwo-vao & 'get (with tongs)' & 'finish covering' & TR & \\
\hline vakatha-vao & 'make, do' & 'finish making' & TR & 1 \\
\hline vaona-vao & 'read' & 'finish reading' & TR & ES \\
\hline va-ranggi-vao & 'CAUS-go in', ‘feel inside (s.th., with e.g., hands)' & \[
\begin{aligned}
& \text { 'finish } \\
& \text { inside' }
\end{aligned}
\] & TR & 1 \\
\hline vatha-vao & 'gather', meaning with 'farewell' & 'farewell, bid goodbye' & TR & 1 \\
\hline vivatha-vao & 'prepare' & 'finish preparing' & TR & 2 \\
\hline wathi-vao & 'wrap' & 'finish wrapping' & TR & 1 \\
\hline wi-vao & 'grind' & 'finish grinding' & TR & 1 \\
\hline yaghara-vao & 'smoke (food)' & 'finish smoking' & TR & 1 \\
\hline
\end{tabular}

Table 6.35 Monotransitive aspectual complex verbs with vao 'completive'
(208) maa me=mwana-thatha-vao kwama=ko

NEG 3SG.IMM.PST=w.hands-tear-COMPL cloth=DIST
'she doesn't finish tearing the cloth by hand'
(cb_stimuli_071116 083, 795.681 798.777)
(209) gamagai thí=mban-vao=ma lo \(\quad\) bigi-bigi children 3PL=GET.PL-COMPL=hither POSS.CLF2.1SG RED-thing 'the children finished bringing (me) my things' (e_080118)
(210) mbanga=va ma i=la-vatha-vao=nggi vara bwarogi time \(=\) REM.PST already \(3 \mathrm{SG}=\) and.go-gather-COMPL \(=3 \mathrm{PL}\) really fish 'one time, she finished gathering the fish'
(mandumbunga_02_181016 001-2, 640 12.899)
As discussed in \(\S 6.2 .1\), the complex verbs with the completive stem vao 'COMPL' frequently occur in a larger, independently inflected construction. These constructions consist of an initial aspectual complex verb with the completive stem followed by a second VC with the intransitive verb ko 'finish' with a third-person subject marker. The independently inflected sequencing constructions
like the one above have discourse-linking function and form comparable to tail-head linkage with the initial completive complex verb repeating the verb of the previous clause as in (211).
\[
\begin{array}{lcc}
r a=\text { vuri }=\varnothing & r a=\text { vuri-vao }=\varnothing & i=\boldsymbol{k o}  \tag{211}\\
\text { 1INCL=squeeze.sago=3SG } & \text { 1INCL=squeeze.sago-COMP=3SG } & \text { 3SG=COMPL } \\
\text { 'we squeeze it (sago), we finish squeezing it' } & \text { (sago_101214 } & \text { 030, } 79.320 \text { 81.970) }
\end{array}
\]

Completive complex verbs also have a sequencing, tail-head linkage function without the separately inflected VC with ko 'finish', as illustrated by the examples shown in (212) to (214). In these examples, the last clause is repeated in a complex verb with the completive stem.
\begin{tabular}{|c|c|c|c|}
\hline \(a=t a m\) & tapioka \(=\) ma & \(a=\) tam -va o \(=\varnothing\) & \(a=n j a\) \\
\hline 1SG=cream & cassava=DET & 1SG=cream-COMPL=3SG & 1SG=go.down \\
\hline \[
\begin{equation*}
a=r u m b o=\varnothing \tag{212}
\end{equation*}
\] &  & & \\
\hline
\end{tabular}
'I cream the cassava, I finish creaming it, I go down, I light it (a fire)...'
(stone_cooking_251015 047-49, 124.210 130.331)
\[
\begin{array}{llll}
a=g e=y a & \text { bwarogi=ko } & a=\text { ge-vao } & \text { bwarogi=ko } \\
\text { 1SG=cook=YA } & \text { fish=DIST } & \text { 1SG=cook-COMPL } & \text { fish=DIST } \\
a=\text { thin-ranggi= } & & a=\text { the }=\varnothing \text {... } & \\
\text { 1SG=GET-go.out }=3 \text { SG } & \text { 1SG=serve=3SG } &
\end{array}
\]
'I cook the fish, I finish cooking the fish, I take it out (the cooking pot from the fire) I
serve it...'
(fishing_071015 014-6, 36.465 43.741)
(214)
\(\begin{array}{llll}i=\text { thithu } & i=\text { thithu-vao } & i=\text { voro } & i=\text { poka-pokau... } \\ \text { 3SG=bathe } & \text { 3SG=bathe-COMPL } & \text { 3SG=go.up } & \text { 3SG=RED-paint.body }\end{array}\)
'he bathed, he finished bathing, he went up, he painted (his body)...' (mandumbunga_02_181016 138-40, 343.554 348.275)

\subsection*{6.3.9.3 Vun 'be finishing'}

The final aspectual verb is vun 'be finishing'. A related independent transitive verb 'extinguish, turn off' also exists. Examples (215) and (216) show vun 'extinguish' used as a transitive verb. In (215), the traders are extinguishing the trade magic upon returning home. Example (216) discusses the more prosaic activity of putting out a fire.
\begin{tabular}{lll} 
th \(\dot{i}=\) vun \(=a\) & gha-nji & waiwai=ko \\
3PL=extinguish=YA & POSS.CLF1-3PL.POSS & beauty=DIST \\
'they turn off their beauty' & (kula_exchange_081215 085, 246.280 249.440)
\end{tabular}
(216)
\[
\begin{array}{lll}
\text { wanakau } & \text { th } \dot{i}=\text { vun }=a & \text { ndighe }=m a \\
\text { young.women } & \text { 3PL=put.out=YA }
\end{array} \quad \begin{aligned}
& \text { fire=DET }
\end{aligned}
\]

In complex verbs, vun indicates that the event encoded by the preceding verb stem is coming to an end or is about to finish. As an aspectual stem, vun is not transitive. This is evidenced by the fact that when it occurs with an intransitive \(\mathrm{V}_{1}\) verb, the resulting complex verb is also intransitive. Table 6.36 lists attested complex verbs with vun 'be finishing' in complex verbs.
\begin{tabular}{lllll}
\hline \(\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\) & V \(\mathbf{1}\) gloss & combined meaning & V \(_{1}\) transitivity & tokens \\
\hline kaiwo-vun & 'work' & 'be finishing working' & INTR & ES \\
utu-vun & 'speak' & 'be finishing talking' & INTR & 1 \\
GET-vun & 'get' & 'be finishing brining & TR & ES \\
uthighe-vun & 'shit' & 'fart (lit. be finishing shitting)' & TR & 1 \\
vaona-vun & 'read' & 'be finishing reading' & TR & ES \\
\hline
\end{tabular}

Table 6.36 Aspectual complex verbs with vun 'be finishing
There are only two tokens of vun 'be finishing' in the corpus, shown in (217) and (218). In (217), the speaker talks about his plans to finish telling a long story the next day.
\begin{tabular}{lllll} 
(217) & \begin{tabular}{l} 
evole \\
tomorrow
\end{tabular} & \begin{tabular}{l} 
amba \\
then
\end{tabular} & \begin{tabular}{l}
\(a=\) mena \\
1SG=come
\end{tabular} & \(a=\boldsymbol{u t u}\)-vun \\
& \(1 \mathrm{SG}=\) speak-be.finishing
\end{tabular}
'tomorrow then I'll come (and) be finishing speaking (telling the story)'
(mandumbunga_02_181016 547, 1375.513 1377.882)
In (187), the combination of uthighe 'shit' and vun 'be finishing' combine in a less obviously compositional and more opaque construction to mean 'fart'.
\(\begin{array}{ll}i=\text { ro-taodo-ghembe } & i=\text { ro-uthighe-vun }=\varnothing \\ \text { 3SG=stay.and-crawl-towards } & \text { 3SG=stay.and-shit-be.finishing=3SG }\end{array}\)
'seated he crawled towards it (the fire) (and) he farted (lit. was finishing shitting)' (child_and_giant_201015 087, 220.390 223.604)

Further, elicited complex verbs with vun 'be finishing' are presented in (219) to (221).
\[
\begin{array}{lll}
\text { nggama=ko } & i=\text { wo-vun=ma } & \text { ghelethi }  \tag{219}\\
\text { child=DIST } & \text { 3SG=GET.SG.RIGD-be.finishing=hither } & \text { betel.nut } \\
\text { 'the child is finishing brining (me) betel nut' } &
\end{array}
\]
\(i=v a o n a-v u n \quad b u k u\)
3SG=read-be.finishing book
'he's finishing reading a book'
(221) thí=kaiwo-vun

3SG=work=be.finishing
'they are finishing working'

\subsection*{6.3.10 Nested complex verb constructions}

The discussion thus far has been restricted to two-stem complex verbs. There are, however, a small number of complex verbs containing three verb stems in the corpus and elicitation data. In many
languages, multi-verb sequences with more than two stems are best analysed as nested constructions, where one complex verb fills a single slot within another complex verb (Aikhenvald 2006: 35). In languages where complex verbs can be understood as nested constructions, there are usually language-specific constraints regulating which types of multi-stem sequences can contain a nested construction (Dixon 2006: 344). Cleary-Kemp (2015: 147) contends that almost all 'poly-verbal' SVCs in Oceanic are nested in this manner with the exception of directional constructions. Dixon (2006: 344) comes to a similar conclusion from a crosslinguistic perspective.

The Sudest three-stem complex verbs can also be best understood as nested constructions, where the \(V_{1}\) of the construction is itself a complex verb. This means they are all left-nested, which is the most common type of nesting cross-linguistically (Dixon 2006: 344). In the schema of the nested complex verbs presented below, the initial nested position in the complex verb is represented in the round brackets, and \(I\) label the two stems \(\mathrm{V}_{1 \mathrm{a}}\) and \(\mathrm{V}_{1 \mathrm{~b}}\). The second slot of the macro construction is located outside the round brackets and is labelled \(\mathrm{V}_{2}\) :
\[
\left[\left(\mathrm{V}_{1 \mathrm{a}}-\mathrm{V}_{1 \mathrm{~b}}\right)-\mathrm{V}_{2}\right]
\]

Adopting a nested analysis, the logical argument sharing patterns and valence of the complex verbs can also be understood by analysing them step-by-step. Argument sharing and valence of the embedded construction \(\left(\mathrm{V}_{1 \mathrm{a}}-\mathrm{V}_{1 \mathrm{~b}}\right)\) is analysed first and then combined with the \(\mathrm{V}_{2}\) stem as part of the macro construction. In Sudest, the attested types of multi-verb constructions that can take a nested slot as \(\mathrm{V}_{1}\) (i.e., \(\mathrm{V}_{1 \mathrm{a}}-\mathrm{V}_{1 \mathrm{~b}}\) ) are the directional, handling, PUT, and aspectual constructions; although other types are likely possible. Nearly all complex verbs that fill the \(\mathrm{V}_{1}\) slot are handling complex verbs, but PUT and benefactive complex verbs are also attested in the nested slot. There are eight distinct three-stem constructions attested in the corpus and an additional dozen or so combinations from elicitation data.

\subsection*{6.3.10.1 Directional nested constructions}

Directional complex verbs are attested with a number of embedded complex verbs in \(\mathrm{V}_{1}\) position in the corpus. The directional macro construction can take a nested handling complex verb or a PUT complex verb in \(\mathrm{V}_{1}\) position. The attested constructions are presented in Table 6.37.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{V}_{1 \mathrm{a}} \mathbf{V}_{\mathbf{1 b}}\) & \(\mathrm{V}_{1 \mathrm{a}} \mathbf{-} \mathrm{V}_{1 \mathrm{~b}}\) gloss & \[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{a}}-\mathrm{V}_{1 \mathrm{~b}} \\
& \text { transitivity }
\end{aligned}
\] & \(\mathbf{V}_{2}\) & \(\mathrm{V}_{2}\) gloss & \begin{tabular}{l}
\[
\mathbf{V}_{2}
\] \\
transitivity
\end{tabular} & combined meaning & tokens \\
\hline GET-kitho & 'get-hang' & TR-TR & njogha & 'go back' & INTR & 'hang back' & 1 \\
\hline GET-thithi & 'get-insert & TR-TR & njogha & 'go back' & INTR & \begin{tabular}{l}
'insert \\
back in'
\end{tabular} & 1 \\
\hline GET-utu & 'get-immerse & TR-TR & njogha & 'go back' & INTR & \begin{tabular}{l}
'immerse \\
back'
\end{tabular} & 1 \\
\hline GET-yathu & 'get-throw away' & TR-TR & ru & 'go in' & INTR & 'throw in' & SE \\
\hline GET-yathu & 'get-throw away' & TR-TR & voro \(=n \mathrm{~g} a\) & \[
\begin{aligned}
& \text { 'go } \\
& \text { up=TR' }
\end{aligned}
\] & TR & 'throw up' & SE \\
\hline GET-mban & 'get-put' & TR-TR & njogha & 'go back' & INTR & 'put back' & SE \\
\hline
\end{tabular}

Table 6.37 Directional complex verbs with nested complex verbs of handling and putting
The attested three constructions with an embedded handling complex verb contain the directional verb njogha 'go back' in \(\mathrm{V}_{2}\) position, as in (222) to (224). Elicitation data shows further three-stem sequences with different directional verbs in \(\mathrm{V}_{2}\), as in (225) and (226).

'the woman puts the flower back in the young woman's hair (lit. the young woman's
hair's flower)' (put_stimuli_191015_02_02 010, 72.941 75.423)
(223)
\begin{tabular}{lll} 
amala \(=m a\) & \(i=[(\) li-kitho \()-\boldsymbol{n j o g h a}]\) & thiyo \(=m a\) \\
man=DET & 3SG=GET.SG.FLEX-hang-go.back & rope=DET
\end{tabular}
'the man hangs back the rope' (put_stimuli_191015_01_02 194, 758.683 762.968)
\begin{tabular}{llllll} 
ela \(=m a\) & \(i=w o\) & \(n d e g h i=m a\) & \(e\) & \(m b w a\) & variye
\end{tabular}
woman=DEM 3SG=GET.SG.RIGD cup=DET PREP water container
tine \(n a \quad\) kero \(\quad i=[(\boldsymbol{w o}-\boldsymbol{u t u})-\boldsymbol{n j o g h a}]=\varnothing=v a\)
inside and already 3SG=GET.SG.RIGD-immerse-go.back=3SG=again
'the woman takes the cup from inside the water container and immerses it back again'
(put_stimuli_191015_02_02 086-9, 592.593 611.800)
(225)
\begin{tabular}{llll} 
nggama=ko & \(i=[(\boldsymbol{l i}-\boldsymbol{y} \boldsymbol{t h} \boldsymbol{h} \boldsymbol{u})-\boldsymbol{r u}]=\) wo & kwama=ko & \(e\) \\
child=DIST & 3SG=GET.SG.FLEX-throw.away-go.in=thither & \begin{tabular}{l} 
cloth=DIST
\end{tabular} & PREP \\
nggolo=ko & tine & & \\
house=DIST & inside & &
\end{tabular}
'the child throws the cloth into the house'
(226)
\begin{tabular}{llll} 
nggama=ko & \(\boldsymbol{i = [ ( \boldsymbol { l i } - \boldsymbol { y a t h } \boldsymbol { u } ) \text { -voro=nga } ]}\) & kwama=ko & \(e\) \\
child=DIST & 3SG=GET.SG.FLEX-throw.away-go.up=TR & \begin{tabular}{l} 
cloth=DIST
\end{tabular} & PREP \\
tebol=ko & vwata-e & & \\
table=DIST & top-3SG.POSS & &
\end{tabular}
'the child throws the cloth up on the table'
(e_120917)

There is also a token in which a directional complex verb contains a PUT construction in the \(\mathrm{V}_{1}\) slot, as in (227).
\[
\left.\begin{array}{lllll}
\text { (227) } \begin{array}{llll}
\text { vari }=m a & \text { thi }=[(\boldsymbol{w o}-\boldsymbol{m b a n})-n j o g h a=\emptyset
\end{array} & e & \text { bilikan=ma } & \text { tine } \\
\text { stone=DET } & \text { 3PL=GET.SG.RIGD-put-go.back=3SG } & \text { PREP } & \begin{array}{l}
\text { pot=DET }
\end{array} & \text { inside }
\end{array}\right]
\]

As discussed in \(\S 6.3 .3\), the various PUT stems are interchangeable in some complex constructions but not in others. In three-stem directional complex verbs containing a nested PUT construction, the \(\mathrm{V}_{1}\) slot may only be filled by a PUT construction containing mban 'put' in \(\mathrm{V}_{1 \mathrm{~b}}\). The use of one of the other PUT stems, such as ra 'put', is ungrammatical. Compare (228) with (227).
\begin{tabular}{lllll} 
(228) \begin{tabular}{ll} 
* wevo \(=m a\) \\
young.woman=DET & 3SG=GET.SG.RIGD-put-go.back
\end{tabular} & \begin{tabular}{l} 
vari \\
stone
\end{tabular} & \begin{tabular}{l}
\(e\) \\
PREP
\end{tabular} & \begin{tabular}{l} 
bilikan=ma \\
pot=DET
\end{tabular} \\
inside
\end{tabular}

\subsection*{6.3.10.2 Handling nested constructions}

There is a three-stem construction attested in the corpus that involves two handling multi-stem constructions, one nested inside the other:
\[
\begin{array}{llll}
\text { amala }=m a & i=\text { mwana-ten-ten }=a & & \text { thiyo }=m a  \tag{229}\\
\text { man= DET } & 3 \mathrm{SG}=\text { w.hands-RED-break=YA } & \text { string }=\mathrm{DET} \\
i=[(\text { tako-yathu }) \text {-vala }]=\varnothing & e & \text { tebol }=\text { ma } \\
\text { 3SG=GET.PL-throw.away-be.on.top=3SG } & \text { PREP } & \text { table=DET }
\end{array}
\]
'the man is breaking the string and throwing it over the table'
(cb_stimuli_071116 080, 769.600 773.155)

\subsection*{6.3.10.3 PUT nested constructions}

PUT macro constructions can take a nested complex verb in \(\mathrm{V}_{1}\) position. In contrast to the directional macro construction in (227) with mban 'put' nested in the \(\mathrm{V}_{1 \mathrm{a}}\) slot, the macro PUT sequences with a nested construction can only take \(r a\) 'put' as \(V_{2}\). There are just two instances of this type attested in the corpus (one token each in the corpus): GET-vala-ra 'get-be on top-put' or 'put on top' in (230), and GET-yathu-ra 'get-throw away-put' or 'throw away onto' in (231).
(230) ela=ma vari \(\quad\) e \(\quad\) (wo-vala \()-\boldsymbol{r a}] \quad\) buku=ma
woman=DET 3SG=GET.SG.RIGD-be.on.top-put stone PREP book=DET
\(\nu w a t a-\varnothing\)
top-3SG.POSS
'the woman puts the stone on top of the book'
(put_stimuli_191015_02_02 111-2, 774.260 779.364)
(231) i=mwana-thatha kwama=ma na \(i=[(\boldsymbol{t a k o}-\boldsymbol{y} \boldsymbol{a t h} \boldsymbol{u})-\mathrm{ra}]=\varnothing\)

3SG=w.hands-tear cloth=DET and 3SG=GET.PL.GNRL-throw.away-put=3SG
e pulo
PREP floor
'she tears the cloth with her hands and throws it on the floor'
(cb_stimuli_071116 003-5, 35.480 40.860)

\subsection*{6.3.10.4 Aspectual nested constructions}

The final attested three-stem sequence in (232) involves an aspectual complex verb with the completive stem vao 'finish' and a nested benefactive construction.
\(\begin{array}{lllll}\text { (232) } & i=[(\boldsymbol{u t u}-\boldsymbol{g i y a})-\boldsymbol{v a o}]=\varnothing & \text { we } & \text { tina-e } & \text { na rama-e } \\ & 3 S G=\text { speak-give-finish=3SG } & \text { PREP } & \text { mother-3SG.POSS } & \text { and rather }\end{array}\)
'he tells everything/finishes telling it to his mother and father
(child_and_giant_201015 130, 344.000349 .490 )

\section*{7 Encoding strategies of three-participant events}

\subsection*{7.1 Introduction}

This chapter presents an analysis of the morphosyntactic strategies used in Sudest to encode threeparticipant events (3PEs). The investigation takes Margetts et al.'s (2019a) list of target events as a starting point (see \(\S 2.3\) for a full list of the events and \(\S 2.5\) for methodology). The description of 3PEs presented in this chapter aims to exhaustively account for all 3PEs attested in the corpus (both the text and stimuli subcorpora) and to supplement gaps in the corpus with elicitation data.

As discussed in chapter 2 (§2.4), Margetts et al. (2019b) identify seven types of encoding strategies used to express 3PEs across a variety of languages, each with two or more substrategies. Table 7.1 re-presents these encoding strategies with those not attested in Sudest in grey. At least one substrategy from each of the encoding strategies is attested in Sudest excluding the incorporation strategy. The absence of the incorporation strategy is not surprising given that there is no (attested) noun incorporation in Sudest. As well as 3PEs expressed by a single encoding strategy, it is also common for them to be encoded by a combination of two (or sometimes three) strategies, or to include a fourth, instrument participant.

Table 7.1 Three-participant event encoding strategies in Sudest (adapted from Margetts et al. 2019b)
\begin{tabular}{|c|c|c|}
\hline & encoding strategy & strategy code \\
\hline \multirow[t]{6}{*}{1.} & \multicolumn{2}{|l|}{Three-place predicate strategy} \\
\hline & \multicolumn{2}{|l|}{All three participants are expressed as syntactic core arguments of the verb.} \\
\hline & All three arguments are expressed as direct arguments of the verb (which does not carry valence increasing morphology). & \\
\hline & (b) Causative strategy & 1b \\
\hline & \begin{tabular}{l}
The verb stem is restricted to two arguments, with a third argument added by a causative affix. \\
(c) Applicative strategy
\end{tabular} & 1 c \\
\hline & The verb stem is restricted to two arguments, with a third argument added by an applicative affix. & \\
\hline \multirow[t]{5}{*}{2.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Oblique and adjunct strategies \\
The verb takes two arguments. A third participant is expressed as an oblique argument or an adjunct.
\end{tabular}}} \\
\hline & & \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
(a) R-type obliques and adjuncts \\
The verb takes two arguments, and a third, R-type participant is expressed as an oblique argument or an adjunct. \\
- "Oblique applicative": The verb includes an applicative-like marker: \\
- "Oblique causative": The verb includes a causative-like marker.
\end{tabular}} & 2a \\
\hline & & \[
\begin{aligned}
& \text { 2a-APPL } \\
& \text { 2a-CAUS }
\end{aligned}
\] \\
\hline & & 2 b \\
\hline
\end{tabular}
(b) T-type obliques and adjuncts

The verb takes two arguments and a third, T-type participant (incudes instruments) is expressed as an oblique argument or an adjunct.
- "Oblique Causative": The verb includes a causative-like marker.
3. Serial verb strategy

Two (or more) verbs combine in a complex construction and share the three participants as arguments (or adjuncts) between them.
(a) R-type serialized Participant

The serialized verb introduces a R-type participant. \(\mathbf{3 a}\)
(b) T-type serialized Participant

3b
4. Incorporation strategy

One participant is expressed by an incorporated nominal.
(a) R-type incorporated nouns \(\quad\) 4a
(b) T-type incorporated noun 4b
- Argument status of the incorporated noun can be marked as a subannotation, e.g. \(4 \mathrm{c}-1\).
5. Adnominal strategy

The verb takes two arguments. A third participant is expressed as an adnominal dependent of one argument.
\begin{tabular}{lll} 
(a) Possessive strategy (R-type) & 5a \\
The R-type participant is expressed as the possessor of the theme. & 5b \\
(b) Proprietive strategy (T-type) & \\
& The T-type participant is expressed as the dependent of the agent.
\end{tabular}
6. Directional strategy 6

An adverbial directional marker or serialized verb indicates transactional orientation.
7. Absorption strategy

The verb stem (typically the verbal lexeme) includes information about one of the participants.
(a) Direct lexicalization

7a
The verb is formally distinct from any noun denoting the event participants, but its semantics include reference to one of the participants.
(b) Zero derivation

The verb derives by zero-conversion from a noun denoting one of the participants.
(c) Denominal derivation

The verb derives by overt derivation from a noun denoting one of the participants.
(d) Absorbed classifiers or object markers

The verb takes two arguments, but the verb stem has absorbed what used to be a classifier, or an object marker which conveys information about a further participant.
(e) Participant-based event classification

The verb stem carries information about one of the participants and characterises the event with respect to one of the participants.

\section*{(f) Affix-based classification}

A participant is evoked by a non-pronominal, non-valence-increasing affix (e.g. instrument or manner of causation affixes).

Each example presented in this chapter also includes a coding reference for the construction. The coding can be used to search for 3PEs of this type in the Sudest corpus. For example, the 3PE in (1)
is tagged as 'A(give-giya)2a'. 'A' stands for the target event expressed by the 3 PE ; the specific event is listed inside the parentheses 'give'; and, as there is more than one verb in Sudest that means 'give', the specific verb giya is also listed. Finally, the code following the parentheses lists the encoding strategy/strategies. In this case, ' 2 a ' means that the strategy used to encode the 3PE is the R-type adjunct strategy (see \(\S 2.4\) for a list of the encoding strategies and their respective codes).
\[
\begin{array}{llll}
\text { thi }=\text { giya } \quad \text { toto } & e & \text { ghemba=ko }  \tag{1}\\
\text { 3PL=give } \quad \text { message } & \text { PREP } & \begin{array}{l}
\text { village=DIST }
\end{array} \\
\text { 'they give the message to the village' (chicken_story_181015 064-5, } & \text { 144.918 148.923) } \\
\text { A(give-giya)2a }
\end{array}
\]

The chapter is structured as follows: single-strategy constructions are presented in §7.2 to §7.7, starting with three-place predicates (strategy 1) in §2.4.1, and finishing with the absorption strategy (strategy 7) in §7.7. Three-participant event constructions involving a combination of strategies are discussed in \(\S 7.8\), followed by constructions with a fourth participant in §7.9. Finally, constructions expressing a combination of more than one type of 3 PE are described in \(\S 7.10\). See chapter 8 for an inventory of 3PE constructions and comparison of encoding strategy token frequencies in the corpus.

\subsection*{7.2 Three-place predicate strategy}

In the three-place strategy, all three participants are expressed as arguments of the verb (as outlined in §2.4.1). This strategy is not widely used in Sudest; it is restricted to just two attested verb stems. Such a low number of three-place predicates is a common feature of Oceanic languages (Margetts 2007: 87). The two Sudest verbs are vaghare and va-ravu, both meaning 'teach'. As discussed in chapter 2, Margetts et al. (2019b) distinguish several subtypes of the three-place predicate strategy, based on whether they are derived or underived, along with the kind of derivational process involved. The verb vaghare 'teach' is likely historically a causativised verb with the causative prefix va-. However, as there is no verb ghare in use today, vaghare is classified as an instance of the direct argument substrategy (strategy 1a). (There is an inherently reduplicated monotransitive verb ghareghare which also means 'know', and vaghare is presumably historically derived by the causative prefix). \({ }^{172}\) The case of va-ravu is synchronically bimorphemic. It is a causativised form of the monotransitive verb ravu 'know', and it is analysed as an instance of the causative substrategy (strategy 1b).

\footnotetext{
\({ }^{172}\) There is also the directly-possessed noun ghare which means 'heart, chest, palm (of hand)', which may be related to the POc noun *qate 'liver, seat of emotions and thoughts' (Osmond 2016a: 520). While in various Oceanic languages, the form for 'know, understand' has the same form as reflexes of *qate- 'liver', and 'liver' and 'heart' nouns are often related to body-part metaphors of emotion, Osmond (2016b: 239) believe that these similarities have emerged by chance (p. 239).
}

Table 7.2 shows the two events encoded by the three-place predicate strategy in the data. It indicates the event type (see Table 2.1 for a complete list) and the encoding strategy (see Table 7.1). The table also lists the token frequencies of each event in the text and stimuli subcorpora. If no token number is included in the text token or stimuli token columns, the construction is only attested in elicitation data. As Table 7.2 show, the verb vaghare 'teach' occurs in the corpus eight times (all in the same text), while va-ravu 'teach' only occurs in elicitation. \({ }^{173}\)
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline teach & vaghare & 'teach' & C & 1 a & 8 & - \\
teach & va-ravu & 'CAUS-know' & C & 1 b & - & - \\
\hline & & & & total & 8 & 0 \\
\hline
\end{tabular}

Table 7.2 Verbs in three-place predicate constructions
The two 'teach' verbs can be used interchangeably without any apparent semantic difference, as illustrated in (2) and (3):
(2) thi=vaghare \(=\) nggo nangge-nangge

3PL=teach=1SG RED.weave
'they taught me weaving'
(education_241214 026-27)
C(teach-vaghare) 1 a
(3) elisari=ma \(\quad i=v a-\) ravu \(=n g g o \quad\) nangge-nangge
old.woman=DET 3SG=CAUS-know=3SG RED-weave
'the old woman teaches me weaving' (e_051217)
C(teach-ravu) 1 b
Both verbs share the same argument structure, as shown in (4) and (5). The A (the teacher) is minimally indexed on the verb by the subject marker. \(R\) (the student) is marked by an object enclitic and/or lexical NP. Finally, T (the thing being taught) is expressed by a bare NP. \({ }^{174}\) The T-type participant in (4) is a possessive NP headed by the noun vakavakatha 'making' (as discussed in §3.3.3.1.1, reduplication can be a nominalised process).
(4) thi=vaghare=nggo ghamba ghena gha- \(\varnothing\) vaka-vakatha 3PL=teach=1SG place sleep POSS.CLF1-3SG.POSS RED-make 'they taught me bed making (lit. sleeping place's making)'
(education_241214 060-61)
C(teach-vaghare) 1 a
(5)
\begin{tabular}{lllll} 
Lydia & \(i=\) va-ravu & Michael & vanga & lumo \\
pers.name & 3SG=CAUS-know & pers.name & language & white.person
\end{tabular}
'Lydia teaches Michael English'
(e_041215_01)

\footnotetext{
\({ }^{173}\) Interestingly, the underived base forms show the reverse pattern: ravu 'know' is far more frequent than ghareghare 'know' in the corpus ( 25 tokens to 5 tokens).
\({ }^{174}\) As stated in chapter 4, the absence of an adposition is one of the criteria that establishes argumenthood.
}

The two three-place predicates demonstrate the regular Oceanic patterning in the encoding of the two objects. In three-place predicates, R is encoded by an object marker on the verb in the same way as O of a two-place predicate, while T is encoded by a bare NP. Sudest can, therefore, be characterised as a primary object language following Dryer (1986).

One further ditransitive construction meaning 'give' is attested in in the language. The construction is a complex verb (see \(\S 2.4 .3\) for further discussion).

\subsection*{7.3 Adjunct strategy}

The oblique and adjunct strategies involve a two-place predicate with two arguments, with the third participant expressed as an oblique or adjunct (see §2.4.2). Margetts and Austin (2007: 88) suggest that these strategies could be a universal or nearly-universal encoding strategy for 3PEs; and the strategies are certainly widespread in the Oceanic languages (Margetts 2007). The Sudest constructions have been categorised as the adjunct strategy. This is because the attested verbs do not subcategorise for the third participant (typically a PP), which only optionally occurs in the clause. Adjunct-strategy constructions are one of the most common types of 3PEs in the corpus, in terms of both the number of constructions and the number of tokens in the corpus (see \(\S 8.2\) and \(\S 8.3\) for discussion).

The strategy is used to express a wide range of 3PEs; it is attested with all target event types, with the exceptions of events \(\mathbf{J}\) to \(\mathrm{L} .{ }^{175}\) Both the R-type and T-type adjunct substrategies are attested in Sudest, although the latter is far more limited in both the target event types encoded by it and the overall number of tokens; event types A to F are expressed by the R-type substrategy, and A, G and H type events are encoded by the T-type substrategy. Examples (6) and (7) illustrate type A events in which the agent causes the recipient to the receive the theme. Example (6) shows an R-type adjunct strategy in which R is encoded by a PP weya le bodaboda 'to her relatives'. The 3PE in (7) is a T-type adjunct construction and it is T that is expressed by a PP e mbathí 'mango'.
\begin{tabular}{lllll} 
mend \(a=v a\) & \(i=\) variye & ghaningga & lemoyo & \(\boldsymbol{w e}=y a\) \\
yesterday=REM.PST & 3SG=send & food & many & PREP=YA
\end{tabular}

\section*{\(l e-\varnothing\)}
boda-boda
POSS.CLF2-3SG.POSS
RED-relative
'she sent plenty of food to her relatives'
\[
\begin{array}{r}
\left(\mathrm{e} \_021115 \_02\right. \text { 064-65) } \\
\text { A(send) } 2 \mathrm{a}
\end{array}
\]

\footnotetext{
\({ }^{175}\) This may be a gap in the data as these three types of target events are nearly entirely absent from the corpus and elicitation data
}
\begin{tabular}{llll} 
ela=ma & i=ngamwe=nggo & \(\boldsymbol{e}\) & mbathi \\
woman=DET & 3SG=feed=1SG & PREP & mango
\end{tabular}
'the woman feeds me mango (lit. the woman feeds me with mango)' (e_261016)
A(feed) 2 b

This section describes the three types of R-type adjunct 3PEs in §7.3.1 and the T-type adjunct 3PEs in §7.3.2. Adjunct-strategy constructions also occur in a range of combination 3PEs, discussed later in this chapter. Combination-strategy 3PEs include constructions in which the adjunct strategy combines with directional verbs (§7.8.1), directional associated motion prefixes (§7.8.1.2), and absorption affix-based classification constructions. It also occurs in constructions with a fourth participant; for these, see \(\S 7.8 .2\) to \(\S 7.9 .2 .2\).

\subsection*{7.3.1 R-type adjunct substrategy}

This section presents all R-type adjunct constructions attested in the text and stimuli data, with supplementary data from elicitation. The elicitation data are used in cases where it can contribute further insight or clarity to the expression of the participants, or in instances where an event type is not attested in the corpus. The underived-adjunct strategy 3PEs are discussed first, followed by a discussion of the derived-adjunct strategy 3PEs. The final part of this section describes the R-type adjunct-strategy constructions that optionally take a classificatory verb without any formal or semantic change.

\subsection*{7.3.1.1 Underived R-type adjunct}

There are 15 attested verbs that occur in underived R-type adjunct strategy 3PEs, shown in Table 7.3.
\begin{tabular}{lllllll}
\hline event & verb & gloss & event type & strategy code & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline give (gift) & vaghavagha & 'give (gift)' & A & 2 a & 2 & - \\
send & variye & 'send' & A & 2 a & 1 & - \\
lead & vanggu & 'lead' & B & 2 a & 1 & - \\
plant & kabu & 'plant' & B & 2 a & - & - \\
pour & linggi & 'pour' & B & 2 a & - & - \\
pull & momodi & 'pull' & B & 2 a & - & - \\
ask for & nanggo & 'ask for' & C & 2 a & 1 & 1 \\
show & vatomwe & 'show' & C & 2 a & - & - \\
hear & longwe & 'hear' & D & 2 a & - & - \\
get & GET & 'get' & D & 2 a & - & - \\
get & GET & 'get' & E & 2a & 1 & 18 \\
pull & gita & 'pull' & E & 2a & 1 & - \\
steal & kaivi & 'steal' & E & 2a & - & - \\
catch & lawe & 'catch' & F & 2a & - & - \\
cook & ge & 'cook' & F & 2a & - & - \\
\hline & & & & total & 7 & 19 \\
\hline
\end{tabular}

Table 7.3 Verbs in underived \(R\)-type adjunct constructions
There are two verbs attested in underived R-type adjunct constructions from the type A events. An example of a 3PE with the verb variye 'send' is shown above in (6). The second verb that expresses a type A event, vaghavagha 'give (gift)', specifies a giving event in which the theme is a gift (usually in the context of intra- and inter-island exchange networks). While it is potentially unclear that vaghavagha 'give (gift)' is a monotransitive verb with an object argument from (8), the elicited example in (9) shows that the verb is indeed monotransitive, with the object referent expressed by both the object enclitic \(=n g g i\) ' 3 PL ' and the following conominal mbombo 'pig(s)'.
\[
\begin{array}{ll}
t h \dot{i}=v a g h a v a g h a=\varnothing & \text { we=nggi }  \tag{8}\\
3 \mathrm{PL}=\text { give }(\mathrm{gift})=3 \mathrm{SG} & \text { PREP=3PL }
\end{array}
\]
'they give it (a slaughtered pig) to them'
(kula_exchange_081215 062, 177.890 180.874)
A(give.gift)2a
\[
\begin{array}{lll}
\text { a=vaghavagha=nggi=ya } & \text { mbombo } & \text { we=ngge }  \tag{9}\\
\text { 1SG=give(gift)=3PL=YA } & \text { pig } & \text { PREP=2SG } \\
\text { 'I gift the pigs to you' } & &
\end{array}
\]
(e 2111602 )
A(give.gift) 2 a

There is a somewhat larger group of five underived R-type adjunct constructions that encode type B events. The examples in (10) to (13) show the monotransitive verbs vanggu 'lead', momodi 'pull', linggi 'pour', and kabu 'plant'. Because R takes the semantic role of goal (rather than recipient, as in the two type A events above), the PPs are headed by the general preposition \(e\) 'to, from, with'.


The sentences in (14) and (15) show the two attested R-type adjunct 3PEs expressing events of communication (type C events): nanggo 'ask for' and vatomwe 'show'. \({ }^{176}\)
```

i=nanggo ndighe=ke we=nggi
3SG=ask.for fire=PROX PREP=3PL

```
'he asked for fire from them' (skeleton_181015 041)
C(ask.for)2a
\begin{tabular}{llll} 
wo=vatomwe & \begin{tabular}{l} 
mbombo=na \\
pig=ADDR.PROX
\end{tabular} & \begin{tabular}{l} 
we=nggi=ya \\
PREP=3PL=YA
\end{tabular} & \begin{tabular}{l} 
gha- \(n d a\) \\
PSS.CLF1-1INCL.POSS
\end{tabular} \\
une=ko & & \\
friends=DIST & & (e_021115_01022) \\
'we showed the pig to our friends' & & C(show-vatomwe) 2 a
\end{tabular}

Example (16) shows one of two type D adjunct strategy verbs, longwe 'hear':
\[
\begin{array}{llll}
\text { thi }=\text { longwe }=y a & \text { toto } & \text { we=ya } & \text { le=nji }  \tag{16}\\
\text { 3PL=hear=YA } & \text { message } & \text { PREP=YA } & \text { POSS.CLF2=3PL.POSS }
\end{array} \begin{gathered}
\text { bubu } \\
\text { grandparent }
\end{gathered}
\]

\footnotetext{
\({ }^{176}\) It is possible that vatomwe 'show' was diachronically bimorphemic, with an initial causative prefix and intransitive verb stem. However, no form tomwe meaning 'see' or similar is in use today. The synchronic verb for 'see' is thuwe 'see (TR)'. There is also the verb mara 'look (INTR)' which is related to mara 'eye' and occurs in a causativised complex verb with a CLFV which also means 'show' (see §7.4.2).
}

Underived R-type adjunct events with classificatory verbs (CLFVs, §5.3) can express either type D events, as in (17) where R is an animate source ('get something from someone'), or type E events, as in (18) and (19) in which \(R\) is an inanimate source ('get something from somewhere').
\begin{tabular}{llll}
\(i=\) thin & we=nggo & lo & nambo \\
3SG=GET.SG.CNTR & PREP=1SG & POSS.CLF.2.1.SG & basket \\
'he gets from me my basket' & &
\end{tabular}
\(\left(\mathrm{e}-021115 \_02\right)\)
\(\mathrm{D}(\mathrm{get}) 2 \mathrm{a}\)
(18)
\begin{tabular}{llll}
\(i=w o=\emptyset\) & \(e\) & \(m b w a=k o\) & tine \\
3SG=GET.SG.RIGD=3SG & PREP & water=DIST & inside
\end{tabular}
'she gets it (a fish) from the water' (mandumbunga_061215 028, 85.946 88.522) E(get)2a
(19)
\begin{tabular}{llll} 
ela=ke & \(i=\) thin=a & karton=ke & \(e\) \\
woman=SPKR.PROX & 3SG=GET.SG.CNTR=YA & \begin{tabular}{l} 
box=SPKR.PROX
\end{tabular} & PREP \\
table \(=k e\) & & \\
table=SPKR.PROX & & & \\
'the woman gets the box from the table' &
\end{tabular}
(put_stimuli_201015_02 092-94, 558.500563 .880 ) E(get)2a

The verb gita 'pull (from)' can also express a type E event. The verb specifies motion from a source; it contrasts with the verb momodí, also 'pull', which indicates motion towards a goal. This can be observed by comparing the two PPs headed by \(e\) 'to, from, with' in (20) with gita 'pull (from)', and the example of momodit 'pull', above in (11).
\begin{tabular}{llll} 
(20) ghino & \(m a=\) gita \(=\varnothing\) & \(e\) & denga=ko \\
1SG & 1SG.IMM.PST=pull & PREP & stone.cooking.tripod=DIST
\end{tabular}
'I pulled it (a pot of food) from the stone cooking tripod'
(cooking_111015 024, 74.04075 .870 )
E(pull-gita)2a

Elicitation data show that at least two type F events can be expressed by the R-type adjunct substrategy, using the postposition kaiwa 'for' to indicate a beneficiary/future recipient R participant. Example (21) shows a 3PE with ge 'cook', while (22) shows a 3PE with lawe 'catch'.
(21) \(v a \quad i=g e \quad\) bwarogi=ma le-Ø umoru

REM.PST 3SG=cook fish=DET POSS.CLF2-3SG.POSS man
kaiwa-e
for-3SG.POSS
'she cooks fish for her husband' (e_021115_01 088)
F(cook) 2 a
(22) \(i=l a w e ~ m a ~ m a n d a ~ k a i w a-n g g u ~\) 3SG=catch bird one for-1SG.POSS
'he caught a bird for me'
(e_251115_0162)

F(catch) 2 a

\subsection*{7.3.1.2 Derived R-type adjunct}

There are four derived transitive verbs which occur in the R-type adjunct substrategy, listed in Table 7.4.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline sell & va-marketi=nga & 'CAUS-market=TR' & A & 2a-CAUS-APPL & - & - \\
take up & \begin{tabular}{l} 
va-voro \(=n g a\)
\end{tabular} & 'CAUS-go up=TR' & B & 2a-CAUS-APPL & 1 & - \\
hang & \(v a-\) kote & 'CAUS-hang' & B & 2a-CAUS & 1 & - \\
tell & utu=nga & 'speak=TR' & C & 2a-APPL & - & - \\
\hline & & & & total & 1 & 0 \\
\hline
\end{tabular}

Table 7.4 Verbs in derived \(R\)-type adjunct constructions
For two of the four derived verbs, the predicate is formed through the addition of both the causative prefix \(v a\) - and transitive enclitic \(=n g a\) (§4.3.8.2.1). As illustrated in (23), the verb markett 'attend market' (from the English noun) takes the valency-increasing morphology to derive a monotransitive predicate meaning 'sell':
\begin{tabular}{lll} 
a=va-marketi=nga & \begin{tabular}{l} 
yambiya \\
sago
\end{tabular} & \begin{tabular}{l} 
we=nggi \\
1SG=CAUS-attend.market=TR
\end{tabular} \\
'I sell the sago to them' & &
\end{tabular}
\[
\begin{array}{r}
\left(\mathrm{e} \_261116 \_02\right)  \tag{23}\\
\text { A(sell)2a-CAUS-APPL }
\end{array}
\]

In the second case, the monotransitive verb 'take up' is derived from the intransitive directional verb voro 'go up', as in (24).
\begin{tabular}{llll} 
thi \(i=\) va-voro=nga & thari=ko & \(e\) & thaga=ko righe \\
3PL=CAUS-go.up=TR & dance=DIST & PREP feast=DIST base \\
'and they take up that dance to the feasting place' & (feast_of_the_fish_271015 053) \\
& B(take.up-voro)2a-CAUS-APPL
\end{tabular}

In one case, the derived monotransitive verb only takes the causative prefix \(v a\)-, as in (25),
```

ra=va-kote=nggi e kewe
1INCL=CAUS-hang=3PL PREP carrying.stick
'we hang them (sago bundles) on a carrying stick'

```
(sago_101214 065, 171.310174 .090 )
B(hang-kote)2a-CAUS
The final derived verb takes the intransitive stem utu 'speak' and combines it with only the transitivising enclitic =nga to mean 'talk about', as shown in (26).
\begin{tabular}{lll}
\begin{tabular}{ll}
\(i=u t u=n g a\) & utu=na
\end{tabular} & we=ime \\
3SG=speak=TR & story=ADDR.PROX & PREP=1EXCL \\
'he tells/talks about a story to us' &
\end{tabular}
(e_021115_01 032)
C(tell-utu)2a-APPL

\subsection*{7.3.1.3 R-type adjunct with classificatory verbs}

In at least seven cases (listed in Table 7.5), a single event can be encoded by either a construction with a single monotransitive verb stem, or by a complex verb with a CLFV in \(\mathrm{V}_{1}\) slot and the same monotransitive verb stem in \(\mathrm{V}_{2}\) position (CLFVs are discussed in \(\S 5.2\) and complex verbs with CLFVs are analysed in §6.3.2).
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline give & giya & 'give' & A & 2a & 10 & 3 \\
give & GET-giya & 'get-give' & A & 2a-CLFV & 9 & 6 \\
hang & GET-va-kote & 'GET-CAUS-hang' & B & 2a-CAUS-CLFV & - & - \\
hang & kitho & 'hang' & B & 2a & - & - \\
hang & GET-kitho & 'get-hang' & B & 2a-CLFV & - & 2 \\
leave & iteten & 'leave' & B & 2a & 1 & - \\
leave & GET-iteten & 'get-leave' & B & 2a-CLFV & - & 1 \\
load & dowe & 'load' & B & 2a & - & - \\
load & GET-dowe & 'get-load' & B & 2a-CLFV & - & 1 \\
throw away & yathu & 'throw away' & B & 2a & - & - \\
throw away & GET-yathu & 'get-throw away' & B & 2a-CLFV & - & 5 \\
steal & kaivi & 'steal' & E & 2a & - & - \\
steal & GET-kaivi & 'get-steal' & E & 2a-CLFV & 1 & - \\
\hline & & & & total & 21 & 18 \\
\hline
\end{tabular}

Table 7.5 Verbs in R-type adjunct constructions with optional CLFV
Both the simple VCs with a single verb stem and their complex-verb counterparts with CLFVs are analysed as instances of the R-type adjunct substrategy. This is because the presence or absence of the CLFV in the expression of the 3PE does not change the event type encoded, the verb valence, or the expression of the participants. Like all the other R-type adjunct constructions, A and T are encoded as the subject and object of the verb, and R is an adjunct. Consider the clauses in (27) and (28), in which giya 'give' is the only verb stem in the VC, with (29) and (30), in which giya is the second verb in a complex verb with a CLFV: \({ }^{177}\)
(27) levo=ke i=giya-giya sapu we=nggi

POSS.CLF2:young.woman=SPKR.PROX 3SG=RED-give goodness PREP=3PL
'his wife is giving the good (testimony/account) to them'
(fp_stimuli_191015_05 429-31, 970.960 974.580)

\footnotetext{
\({ }^{177}\) While the presence of a CLFV with these verbs does not change the strategy the 3PE is assigned to in the current analysis, they are distinguished from each other in the corpus annotation by the addition of 'CLFV' to the event code, so 'A(give-give)2a' becomes 'A(give-give)2a-CLFV'.
}
(28) thi=giya we=nggi ghaningga dayagha
3PL=give PREP=3PL food be.hot
'they give them hot food'
(hunting_261214 017-8, 37.440 40.430)
A(give-giya)2a
(29)
\(\begin{array}{llll}\text { amba } & \text { methi }=l i \text { li-giya } & \text { nambo } & \text { we }=\emptyset \\ \text { then } & \text { 3PL.IMM.PST=GET.SG.FLEX-give } & \text { basket } & \text { PREP=3SG }\end{array}\)
'then they give a (empty) basket to him'
(dating_081015 074, 201.500 204.860)
A(give-giya)2a-CLFV
(30)
\begin{tabular}{rlll}
\(\ldots n a\) & thi \(=\) thin-giy \(a=\varnothing\) & \(w e=y a\) & wevo \(=k o\) \\
and & 3PL=GET.SG.CNTR-give=3SG & PREP=YA & young.woman=DIST
\end{tabular}
\(\begin{array}{lll}\text { tina-e } & n a & \text { rama-a } \\ \text { mother-3SG.POSS } & \text { and } & \text { father-3SG.POSS }\end{array}\)
'... and they give it (a full basket) to the girl's mother and father'
(first_time_251214 021-23, 58.230 64.780)
A(give-giya)2a-CLFV

The examples in (31) to (35) show examples of this type of strategy encoding type B events. While simple VCs without a CLFV are grammatical, complex verbs appear to be preferred in terms of usage. There are 14 tokens of simple verbs without a CLFV and 25 of complex verbs with a CLFV.
(31) Jaclyn \(i=l i-v a=k o t e=y a \quad\) towel \(e\) umbwa yangga Jaclyn 3SG=GET.SG.FLEX-CAUS-hang=YA towel PREP tree branch
'Jaclyn hangs the towel on the tree branch'
(e_300915_01 135)
B(hang-hang)2a-CAUS-CLFV
(32) lolo=ko thiyo=ma e umbwa=ma yangga
person=DIST 3SG=GET.SG.CNTR-hang rope=DET PREP tree=DET branch
'the person hangs the rope on the tree branch'
(put_stimuli_231015 010, 114.420118 .430 )
B(hang- kitho)2a-CLFV
(33)
\begin{tabular}{lll}
\begin{tabular}{l}
\(i=l i-i t e t e n=a\)
\end{tabular} & \begin{tabular}{l} 
wangga
\end{tabular} & \begin{tabular}{l} 
lumo=ko \\
3SG=GET.SG.FLEX-leave=YA \\
boat
\end{tabular} \\
mhite.person=DIST & \(e\) \\
mara-e \\
in.front-3SG.POSS \\
'he leaves it (a box) in front of the car (lit. white-person's boat)' \\
(put_stimuli_191015_02_02 123-4, 834.305 840.061) \\
B(leave)2a-CLFV
\end{tabular}


Examples (36) and (37) show the only attested type E event encoded by this strategy with kaivi 'steal'. In (37), the CLFV mban 'get (pl. rigid entity)' specifies that the agent is stealing more than one fish while the number of fish stolen remains unspecified in (36).
\begin{tabular}{lllll}
\(v e=k a i v i\) & \(b w a r o g i=m a\) & we=ya & gh-e & une \\
3SG.INT=steal & fish=DET & PREP=YA & POSS.CLF1-3SG.POSS & friends \\
'he steals (the) fish from his friends' & & \((\mathrm{e} 311016)\) \\
& & \\
& & E(steal)2a
\end{tabular}
\begin{tabular}{llll} 
ve=mban-kaivi & bwarogi=ma & gha- \(\varnothing\) & une=ko \\
3SG.INT=GET.PL.RIGD-steal & fish=DET & POSS.CLF1-3SG.POSS & friends=DIST \\
\(e\) & \(l e=n j i\) & ghata & \\
PREP & POSS.CLF2=3PL.POSS & \begin{tabular}{l} 
drying.rack
\end{tabular} &
\end{tabular}
'he steals his friend's fish from the drying rack'
(lizard_and_possum_121015 019-20, 52.509 57.380)
E(steal)2a-CLFV

Classificatory verbs occur with a range of other verbs of handling in similar constructions to the ones outlined in this section. However, they are analysed as instances of the serial verb strategy (§7.4.2), as either they are intrinsic to the grammaticality of the VC, or the handling verbs are not attested in simple VCs without a CLFV. It is also possible that some of the R-type adjunct constructions with underived handling verbs (described in §7.3.1) may also occur in complex verbs with CLFVs but are currently not attested. Classificatory verbs also occur with directional elements including directional verbs, directional adverbial enclitics, and associated motion prefixes, all of which are analysed as directional strategy constructions (§7.4).

\subsection*{7.3.2 T-type adjunct substrategy}

T-type adjunct strategy constructions are uncommon in Sudest. Two type A events encoded by Ttype adjunct constructions are attested, as well as a number of type G and H events.

The two attested T-type constructions expressing type A events are listed in Table 7.6:
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline make drink & va-mun & 'CAUS-drink' & A & \(2 \mathrm{~b}-\) CAUS & 1 & - \\
feed & \((v a-\)-)ngamwe & '(CAUS-)feed' & A & \(2 \mathrm{~b}(-\mathrm{CAUS})\) & - & - \\
\hline & & & & total & 1 & 0 \\
\hline
\end{tabular}

Table 7.6 Verbs in T-type adjunct constructions (type A events)
The monotransitive stem mun 'drink' may be causativised to produce a predicate meaning 'cause to drink' or 'make drink'. The derived verb remains monotransitive while the argument structure changes. The A and O arguments of the underived construction become the object and adjunct respectively of the derived verb, and a causer is introduced as A. An A type event with the causativised verb is shown in (38), in which prospective traders are made to drink particular herbs in preparation for a trading expedition.
(38)
\(\begin{array}{lll}t h \dot{i}=v a-m u n=n g g i & e & \text { yee } \\ \text { 3PL=CAUS-drink=3PL } & \text { PREP } & \text { herbs }\end{array}\)
'they make them drink the herbs'
(funeral_feasting_081015 021)
A(drink)2b-CAUS

The other attested T-type adjunct construction that expresses a type A event takes the verb ngamwe 'feed', as in (39) and (40). As can be observed when comparing the two examples below, the causative prefix can occur in the construction without any semantic or formal changes in the clause. This variation is also attested in corpus tokens of ngamwe that do not qualify as 3PEs because there is no overt reference to the item being consumed; that is, there is no adjunct.


A(feed)2b
\begin{tabular}{lllll} 
Lydia & \(i=v a-\) ngamwe \(=y a\) & Michael & \(e\) & mbathí \\
pers.name & 3SG=CAUS-feed=YA & pers.name & PREP & mango
\end{tabular}
'Lydia feeds Michael (with) mango'
(e_191015)
A(feed)2b-CAUS

This variation does not appear to be linked to extra-linguistic factors such as speaker age, gender, education etc., as speakers switch between constructions. The variation may be a result of analogy with va-тип 'make drink'. The VC with the causative prefix, however, is not used as frequently as
the underived form and only accounts for just over 10 percent of all tokens across both the corpus and the elicitation data.

Type G and H events are also commonly encoded by the adjunct strategy in Sudest. In these constructions, an agent uses a body part or other instrument to impact or change a patient participant. In these constructions, the patient is encoded as the object of the verb and the instrument is expressed by an adjunct PP. Margetts et al. (2019b) group adjunct-strategy constructions with instrument adjuncts together with T-type adjunct substrategy constructions. The list of attested type G and H T-type adjunct events is given in Table 7.7.
\begin{tabular}{lllllll}
\hline 3PE & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline break & ten & 'break' & G & 2 b & - & 4 \\
break & vole & 'break' & G & 2 b & - & 4 \\
break & vole-ten & 'chop-break' & G & 2 b & - & 1 \\
cover & ghavo & 'cover' & G & 2 b & 1 & - \\
hit & ngge & 'hit' & H & 2 b & - & 1 \\
tear & thatha & 'tear' & H & 2 b & - & 1 \\
\hline & & & & total & 1 & 11 \\
\hline
\end{tabular}

Table 7.7 Verbs in T-type adjunct constructions (type \(G\) and \(H\) events)
T-type adjunct-substrategy 3PEs with non-body part instrument adjuncts are presented in (41) and (42). Examples with body-part instruments are given in (43) and (44).
(41) amala=ma wevo=ma umbali-ye \(\quad i=t e n=a \quad e\) man=DET 3 SG=break=YA young.woman=DET hair-3SG.POSS PREP sises \(=m a\)
scissors=DET
'the man cuts the woman's hair with scissors'
(cb_stimuli_101116 040, 497.490501 .810 )
G(break-ten)2b
(42)
\begin{tabular}{llll}
\(v a\) & \(t h i=g h a v o=\emptyset\) & \(e\) & \(d a\) \\
REM.PST & 3PL=cover=3SG & PREP & mat
\end{tabular} 'they covered him with a mat'
(feast_of_the_fish_271015 052)
G(cover-ghavo) 2 b
\begin{tabular}{lllll} 
ela=ma & \(i=\) thatha & manjarin=ma & \(e\) & nima-e \\
woman=DET & 3SG=tear & mandarin=DET & PREP & hand-3SG.POSS
\end{tabular}
'the woman peels (lit. tears) the mandarin with her hands'
\begin{tabular}{lll}
\begin{tabular}{l} 
umoru \(=k o\) \\
young.man=DIST
\end{tabular} & \multicolumn{1}{l}{\(\quad i=\) wo } \\
3SG=GET.SG.RIGD
\end{tabular}
'the man gets a piece of food and hits it with his hand'

The complex verb vole-ten 'chop-break' is classed as an adjunct-strategy construction. This is because both monotransitive verb stems individually have the same argument structure. Additionally, the combination of the two stems does not significantly alter the meaning of the predicate. Compare the two examples presented in (45), in which the same stimulus video is described by two different speakers. In (45a), only the verb stem vole 'chop' is used, while in (45b) the complex verb vole-ten 'chop-break' is used.
\begin{tabular}{lll} 
(45) a. & \begin{tabular}{l}
\(i=v o l e=y a\) \\
3SG=chop=YA
\end{tabular}\(\quad\)\begin{tabular}{l} 
umbwa \\
stick/tree
\end{tabular}\(\quad e\) & Relumo \\
'he chops the stick with an axe'
\end{tabular}\(\quad\)\begin{tabular}{l} 
axe \\
\\
\end{tabular}
b. \begin{tabular}{llllll} 
amala=ma & \(i=v o l e-t e n=a\) & umbwa=ma & yangga & \(e\) & kelumo=ma \\
man=DET & 3 SG=chop-break=YA & stick/tree=DET & branch & PREP & axe=DET
\end{tabular}
'the man chops the tree branch with the axe'
(cb_stimuli_071116 010, 115.590118 .802 )
G(chop_break-vole_ten)2b

Three-participant events of breaking, tearing, smashing, and so forth are also frequently expressed by the affix-based classification substrategy of the absorption strategy (§7.7.2) or a combination of the adjunct and absorption substrategies (§7.8.2).

\subsection*{7.4 Serial verb strategy}

Serial verb constructions combine two or more verb stems in a complex construction. The construction shares the three participants as arguments, or as two arguments and an adjunct (see \(\S 2.4 .3\) ). While it is called the 'serial verb strategy', it also includes constructions with two (or more) verbs, not just constructions that have been analysed as serial verb strategy constructions (Margetts et al. 2019b). For example, constructions with a verb stem that does not function independently in simplex clauses are also analysed as serial verb strategy constructions. Along with the adjunct strategy, the serial verb strategy is the second most common encoding strategy in Sudest. All of the Sudest serial verb strategy constructions are monotransitive, with the third participant expressed by an adjunct, with the exception of three ditransitive constructions with the verb stem \(v e\) 'give'. Nearly all of the constructions fall under the R-type serialised-participant substrategy, with only a single T-type construction. Directional complex verbs also a play a prominent role in the expression of 3PEs, but they are not classified as straightforward instance of the serial verb strategy. Those without an overt expression of R are analysed as a type of directional strategy construction (see
§7.6.2), while those with an overt expression of the third participant are analysed as a combination adjunct-directional verb strategy (see §7.8.1).

The majority of serial-strategy tokens in Sudest fall into three categories, which are presented in order of their frequency in the corpus in §7.4.1 to §7.4.4. These are constructions with a PUT stem (§7.4.1), constructions with a CLFV \(\mathrm{V}_{1}\) and monotransitive \(\mathrm{V}_{2}\) denoting a handling action (§7.4.2), and constructions with a 'give' verb stem (§7.4.1), There are also three attested constructions of the serial strategy that do not fall into these groupings; these are discussed in §7.4.4.

\subsection*{7.4.1 Serial verbs with PUT}

Constructions expressing events of 'putting' with one of the four PUT stems are the most common type of 3PE to be expressed by the serial strategy, in terms of both number of distinct types of constructions and token frequency in the corpus. These constructions are discussed in detail in Chapter 6 (see §6.3.3). As noted in §6.3.3, the PUT verb stems cannot function independently in simplex VCs; thus, they only occur in complex verbs. The constructions nearly always take a transitive \(\mathrm{V}_{1}\), most frequently a CLFV, and one of the four stems that mean 'put' in \(\mathrm{V}_{2}\), which introduces an R-type goal adjunct - making them R-type serial-verb strategy constructions. The different combinations and their frequencies are listed in Table 7.8.
\begin{tabular}{lllllll}
\hline event & verb & gloss & event type & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline put & GET-ra & 'get-put' & B & 3 a & 17 & 48 \\
put & GET-mban & 'get-put' & B & 3 a & 3 & 21 \\
put & GET-nda & 'get-put' & B & 3 a & 3 & 17 \\
put & GET-kura & 'get-put' & B & 3 a & 2 & 5 \\
\hline & & & & total & 25 & 91 \\
\hline Thl & & & & &
\end{tabular}

Table 7.8 PUT serial verb constructions with CLFV V2
All four PUT stems occur in basic putting events with a CLFV, although only the CLFV wo 'get (sg. rigid entity)' is grammatical in constructions with kura 'put'. Examples (46) to (49) exemplify each of the PUT stems ra, mban, nda, and kura in serial-verb strategy constructions with GET verbs in \(\mathrm{V}_{1}\). \({ }^{178}\)
(46) va ve=yengge \(=\varnothing\) Rogha na \(i=v u t h a\) REM.PST 3SG.INT=GET.SG.FIRE=3SG place.name and 3SG=arrive \(i=\) yengge- \(a=\varnothing \quad e \quad\) ndamwa
3SG=GET.SG.FIRE-put=3SG PREP leaf
'she got fire from Rossel/Yele and she arrived (and) put it (the fire) in the leaves'
(mandumbunga_061215 079-80, 218.340 224.570)

\footnotetext{
\({ }^{178}\) As noted previously, the verb stem mban 'put' is likely historically related to the CLFV mban 'get (pl. rigid entity)'. The two verbs never occur in complex verbs together.
}
B(put-CLFV_ra)3a
\begin{tabular}{lllllll} 
lolo & regha & \(i=w o-m b a n=a\) & umbwa & une & \(e\) & ndeghi \\
person & one & 3SG=GET.SG.RIGD-put=YA & tree & fruit & PREP & cup
\end{tabular}
'a person puts the tree fruit in a cup' (put_stimuli_191015_01_02 001-2, 6.68011 .620 ) B(put-CLFV_mban)3a
\begin{tabular}{llll} 
thí=thin- \(n d a\) & ndavari & \(e\) & yamwa=nda \\
3PL=GET.SG.CNTR- & shell.money & PREP & forehead=1INCL.POSS
\end{tabular}
put
'they put shell money on our forehead (when we die)'
(engginas_story_231016 040, 80.390 83.080)
B(put-CLFV_nda)3a
ra=wo-kura
pilet
e tebol=ko vwata-e
1INCL=GET.SG.RIGD-put
plate
PREP table=DIST
on.top-3SG.POSS
'we put a plate on the table'
(education_241214 053-6, 186.750 196.214) B(put-CLFV_kura)3a

In some cases, the goal of the putting event is left unexpressed, usually in instances where it is retrievable from the wider context. For the current analysis, such implied goals are counted as event participants. These tokens are, therefore, considered examples of the serial verb strategy and are tagged accordingly in the corpus. Table 7.9 lists the frequencies of R-less tokens in the corpus.
\begin{tabular}{lllllll}
\hline event & verb & gloss & event type & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline put & GET-ra & 'get-put' & B & \(3 \mathrm{a}-\mathrm{R}\) & 9 & 11 \\
put & GET-mban & ''get-put' & B & \(3 \mathrm{a}-\mathrm{R}\) & - & 2 \\
put & GET- nda & 'get-put' & B & \(3 \mathrm{a}-\mathrm{R}\) & 2 & 2 \\
put & GET-kura & 'get-put' & B & \(3 \mathrm{a}-\mathrm{R}\) & 2 & - \\
\hline & & & & total & 13 & 15 \\
\hline
\end{tabular}

Table 7.9 PUT serial verb constructions with CLFV \(V_{1}\) and unexpressed \(R\)
The example in (50) comes from a text that describes baking cassava cakes between layers of heated stones. While the goal location (the hot stones where the cassava cake is cooked) is not explicitly mentioned in the putting clause, it is recoverable from the wider context. The subsequent clause explicitly refers to the cassava cake being 'stone-baked'; along with real-world knowledge about how such cakes are usually cooked (i.e. between hot stones), this means that the hearer can easily deduce the goal of the putting event.

B(put-CLFV_kura)3a-R

The examples in (51) and (52) are descriptions of short video sequences. Thus, the goal is easily identifiable when considered in conjunction with the stimulus video.
(51) ela regha i=thin-nda gha-Ø kap woman one 3SG=GET.SG.CNTR-put POSS.CLF1-3SG.POSS cup 'a woman puts her cup (on a table)' (put_stimuli_191015_01_02 192-3, 747.658 751.340) B(put-CLFV_nda)3a-R
\begin{tabular}{llllll} 
mbwa & ina- \(\varnothing\) & \(e\) & bilikan & tine & \(i=w o=m b a n=a\) \\
water & be.located-3SG.POSS & PREP & pot & inside & \(3 S G=\) GET.SG.RIGD-put=YA \\
vari
\end{tabular}
\[
\begin{array}{r}
\text { (put_stimuli_201015_01 022-3, 168.180 173.061) } \\
\text { B(put-CLFV_mban)3a-R }
\end{array}
\]

The second group of PUT complex verbs take a verb other than a CLFV in the \(\mathrm{V}_{1}\) slot, shown in Table 7.10. In these complex verbs, the \(V_{1}\) verb specifies the manner in which the putting event is performed, e.g., by pouring, opening, or throwing. As noted in \(\S 6.3 .3\), the combinations appear to be lexicalised; each of the \(\mathrm{V}_{1}\) stems can only occur with either ra or mban (nda and kura only occur with CLFVs).
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline put by leading & vanggu-ra & 'lead-put' & B & 3 a & 2 & - \\
put by opening & tate-ra & 'open-put' & B & 3 a & 1 & - \\
chop and put & vole-ra & 'chop-put' & B & 3 a & - & 1 \\
put by pouring & linggi-mban & 'pour-put' & B & 3 a & - & 6 \\
put by throwing & du-mban & 'throw-put' & B & 3 a & - & 2 \\
throw down & GET-yathu-ra & 'get-throw away-put' & B & 3 a & - & 1 \\
put on/over & GET-vala-ra & 'get-cover-put' & B & 3 a & 1 & 2 \\
promise & dage-ra & 'speak-put' & I & 3 a & - & - \\
\hline & & & total & 4 & 12 \\
\hline
\end{tabular}

Table 7.10 PUT serial verb constructions with lexical \(V_{1}\)
The constructions with \(r a\) 'put' expressing type B events are presented in (53) to (57). The complex verb vanggu-ra 'lead-put', shown in (53), describes an event in which a person (T) is taken and left somewhere (R). Like the previous complex verbs with vanggu 'lead' in (74) and (75) above, the verb takes only human, self-moving objects.
\[
\begin{array}{lll}
i=\text { voro } & i=\text { vanggu }- \text { ra }=\emptyset & w e=\emptyset  \tag{53}\\
3 S G=\text { go.up } & 3 S G=\text { lead-put }=3 \mathrm{SG} & \text { PREP=3SG }
\end{array}
\]
'he goes up (and) leads her there'
(mandumbunga_02_181016 523, 1314.704 1316.398)
ela=ma \(\quad i=\) tate-ra bogisi=ma nasiye \(e \quad\) tebol=ma vwata
woman=DET \(3 \mathrm{SG}=\) open-put box=DET small PREP table=DET on.top 'the woman opens and puts the small box on the table top'
(cb_stimuli_101116 060, 778.527782 .906 )
B(open_put-tate_ra)3a
(55)
```

gha-nji ndighe iya=ke thi=vole-ra=\emptyset
POSS.CLF1-3PL.POSS fire(wood) DEM=SPKR.PROX 3PL=chop-put=3SG
we=\varnothing
PREP=3SG

```
'that's their firewood, they chopped and put it there'
\(\left(f p \_\right.\)stimuli_191015_01 015-6, 73.96676 .840\()\)
B(chop put-vole_ra) 3 a

The complex verbs in (56) and (57) contain three verb stems. In these constructions, a handling complex verb fills the \(\mathrm{V}_{1}\) position of the PUT construction (see \(\S 6.3 .2\) and \(\S 7.4 .3\) ). In (56), the handling complex verb tako-yathu 'get (general plural)-throw away', meaning 'throw away' is nested in the \(\mathrm{V}_{1}\) slot of the PUT construction, which specifies that T-type participant kwama 'cloth' is put on the floor. See \(\S 6.3 .10\) for discussion of nesting in complex verbs.
```

i=mwana-thatha kwama=ma na i=tako-yathu-ra=\varnothing
3SG.w.hands-tear cloth=DET and 3SG=GET.PL.GNRL-throw.away-PUT=3SG
e pulo
PREP floor

```
'she tears the cloth with her hands and throws them on the floor'
(cb_stimuli_071116 003-4, 35.48040 .860 )
B (put-get_yathu_ra) \(2 \mathrm{a}+3 \mathrm{a}\)

The handling complex verb in \(\mathrm{V}_{1}\) position in (57) specifies that the stones ( T ) are placed on top of a cassava cake (R).
kero wo=mban-vala-ra= \(\quad e \quad\) e mbombwa \(=m a\)
already 1EXCL=GET.PL.RIGD-cover-put=3SG PREP round.baked.item=DET
vwata-e
on.top-3SG.POSS
'already we put them (stones) over the round baked good (a cassava cake)'
(stone_cooking_251015 078, 214.290 219.370) B(put-wo_vala_ra)3a

The stem ra 'put' is also attested in combination with the intransitive stem dage 'speak' to mean 'promise'. In this instance, the putting is not achieved by physical means, but by speaking. In (58) the ndavari 'shell money' \((\mathrm{T})\) is promised to 'her sister' (R).
\begin{tabular}{|c|c|c|c|}
\hline \(m e=\) dage -ra & ndavari & ghagha-ye & \(w\) \\
\hline 3SG.IMM.PST=speak-put & shell.money & sibling.same.sex-3SG.POS & PREP=3SG \\
\hline \multicolumn{3}{|l|}{'she promised shell money/riches to her sister'} & (e_261116_01 \\
\hline
\end{tabular}

There are two complex PUT verbs with mban 'put' in \(V_{2}\) position. In (60), mban 'put' combines with \(d u\) 'throw' and in (56) it combines with linggi 'pour', to indicate that T is put somewhere by throwing and pouring respectively.
```

amala=ma i=du-mban=a vari e le-\emptyset
man=DET 3SG=throw-put=YA stone PREP POSS.CLF2-3SG.POSS
sisikwa=ma tine
k.o.bag=DET inside

```
the man throws a stone into the bag'
                                    (put_stimuli_191015_02_02 100-2, 702.077 708.317)
                                    B(throw_put-du-mban)3a
\begin{tabular}{llllll} 
wevo \(=\) ke & \(i=\) linggi-mban=a & mbwa & \(e\) & bilikan & tine \\
young.woman=SPKR.PROX & 3SG=pour-put=YA & water & PREP & pot & inside
\end{tabular}
'the girl pours the water into the pot'
\[
\text { (put_stimuli_191015_01_02 037-8, } 151.460157 .553 \text { ) }
\]

\subsection*{7.4.2 Serial verbs with classificatory verbs}

The second type of serial-verb strategy construction resembles the R-type adjunct-strategy constructions with CLFVs, discussed in §7.3.1.3. It takes a CLFV in \(V_{1}\) position followed by a \(V_{2}\) that specifies the activity expressed by the VC. The constructions are analysed as serial-strategy constructions because, unlike the adjunct-strategy verbs with a CLFV, the valence and/or semantics of the VC changes when the CLFV is removed, or they are ungrammatical as independent verbs (see §6.3.2 for an overview of complex verbs of handling and transfer with a CLFV). The serialverb strategy constructions with a CLFV are listed in Table 7.11.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline insert & GET-thithi & 'get-insert' & B & 3 a & - & 1 \\
put to cook & GET-ge & 'get-cook' & B & 3 a & 2 & - \\
lean & GET-vadede & 'get-lean' & B & 3 a & - & - \\
put over & GET-vala & 'get-be on top' & B & 3 a & - & 3 \\
throw over & GET-yathu-vala & 'get-throw away- & B & 3 a & - & 1 \\
& & be on top' & & & \\
show & GET-va-mara & 'get-CAUS-see' & C & 3 a & - & 1 \\
lift & GET-vairi & 'get-lift' & E & 3 a & - & 1 \\
hide & GET-thuwole & 'get-be hidden' & L & 3 a & - & - \\
cover & GET-vagumo & 'get-cover' & G & 3 b & - & 2 \\
\hline
\end{tabular}

Table 7.11 Serial verb constructions with CLFV V2

The majority of 3PEs of this type express type B events of caused motion to or towards a location. In (61) and (62), the CLFV combines with the monotransitive verb stems thithi 'insert' and ge 'cook' respectively. The verb stem thithi 'insert' only occurs in complex verbs, or in simplex constructions with a manner-of-causation prefix.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
wanakau=ma \\
young.women=DET
\end{tabular} & \begin{tabular}{l}
theun-iwo \\
NUM.CLF-two
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\(i=n d e-g h a t h i\) \\
3SG=stand.and-stand?
\end{tabular}} \\
\hline \begin{tabular}{l}
gherei-ye \\
behind-3SG.POSS
\end{tabular} & \multicolumn{2}{|l|}{and 3SG=GET.SG.RIGD-insert=3SG} & PREP & \begin{tabular}{l}
umbali-ye \\
head-3SG.POSS
\end{tabular} \\
\hline \begin{tabular}{l}
gha- \(\varnothing\) \\
POSS.CLF1-3SG.PO
\end{tabular} & \multicolumn{4}{|l|}{flowa} \\
\hline
\end{tabular}
'(there are) two girls, one stand behind (the other) and pushes into her hair a flower' (put_stimuli_231015 038-9, 318.822326 .462 ) B(insert-CLFV_thithi)3a

The complex verb with ge 'cook' (62) is different from the other serial-strategy constructions with a CLFV, in that the CLFV adds caused-motion semantics to an event that otherwise would not express caused motion, i.e. thin-ge 'put to cook' not ge 'cook (s.th.)'.
\[
\begin{array}{llll}
\text { (62) } \begin{array}{lll}
\text { ghino } \quad \text { ma=thin-ge }=\varnothing & e & \text { denga=ko } \\
\text { 1SG } \quad \text { 1SG.IMM.PST=GET.SG.CNTR-cook=3SG } & e & \text { PREP } \\
\text { cooking.stones=DIST }
\end{array} \\
\text { 'I put it on to cook on the cooking stones' } & \text { (cooking_111015 022, 66.820 69.733) } \\
& & & B \text { (put.to.cook-CLFV_ge)3a }
\end{array}
\]

The CLFVs also combine with the intransitive verbs vadede 'be leaning, lean' (63), vala 'be on top' (64), and thuwole 'be hidden, hide' (65). In these constructions, the CLFV has a function comparable to the causative prefix \(v a\) - (§4.3.8.2); the S of the intransitive verb becomes the O (i.e. the T-type participant) of the complex verb. The verbs vadede 'be leaning, lean' and thuwole 'be hidden, hide' can only function as simplex verbs in conjunction with a posture prefix (§4.3.5). The complex verb in (65) with thuwole 'be hidden, hide' is the only type L 3PE attested in the corpus.
(63) thi=wo-vadede=ya umbwa e baba

3PL=GET.SG.RIGD-lean=YA stick PREP wall
'they lean the stick against the wall'
\[
\text { (e_191015 112, } 374.760378 .773 \text { ) }
\]

B(lean-CLFV_vadede)3a
\begin{tabular}{llll}
\(i=l i\)-vala & thiyo=ke & \(e\) & \(u m b w a=k e\) \\
3SG-GET.SG.FLEX-cover & rope=SPKR.PROX & PREP & \begin{tabular}{l} 
tree=SPKR.PROX
\end{tabular} \\
yangga & & \\
branch & & & \\
'she places the rope over the tree branch' & &
\end{tabular}
(put_stimuli_201015_01 012, 105.480 107.980)
\(\overline{\mathrm{B}}\) (put_over-CLFV_vala) 3 a
\begin{tabular}{ll}
\(i=\) wo-thuwole & gha- \(\varnothing\) \\
3SG=GET.SG.RIGD-be.hidden & POSS.CLF1-3SG.POSS
\end{tabular}

\footnotetext{
gheleth \(\dot{i}\) we=nggo
betelnu
PREP=1SG.POSS
(e_261116_01)
L(hide-CLFV_thuwole) 3 a
}

The construction in (66) is one of the few serial-verb constructions with three verb stems. Such complex verbs are analysed as containing a nested construction within the complex verb in the initial position (see §6.3.10). In (66), the nested complex verb tako-yathu 'get (plural)-throw away' is incorporated into a second handling verb with vala 'be on top' to create the macro-construction 'throw over/on top'.
\[
\begin{equation*}
 \tag{66}
\end{equation*}
\]
'the man is breaking the string and throws it over the table'
(cb_stimuli_071116 080, 769.600773 .155 )
B(throw_over-CLFV_yathu_vala)3a

In (67), the \(\mathrm{V}_{2}\) stem is a derived monotransitive verb va-mara 'CAUS-see', which combines with a CLFV to mean 'show'. It appears to be interchangeable with the verb vatomwe 'show' (see (15) above in 7.3.1.1). While the underived intransitive verb mara 'see' can function as an independent verb, the causativised verb alone is ungrammatical; it always follows a CLFV.
```

thi=la-thin-va-mara bia we=\varnothing
3PL=and.go-GET.SG.CNTR-CAUS-see beer-PREP PREP=3SG

```
'they show the beer to him (on the way past)'
(fp_stimuli_191015_07 130-1, 315.990 317.880)
C(show-CLFV_CAUS_mara)3a

There is a substrategy of the serial verb strategy where the serialised participant is a T-type rather than a R-type. This construction is rare and is only attested with vagumo 'cover'. The construction takes a CLFV in \(\mathrm{V}_{1}\) and vagumo 'cover' in \(\mathrm{V}_{2}\). The patient participant ndeghi 'cup' is expressed as a core argument of the predicate and the item covering it (the instrument) is indicated by a PP.
\begin{tabular}{lcclll}
\(i=w o\) & pilet & na & \(i=\) wo-vagumo & \(n d e g h \dot{i}\) & \(w e=\emptyset\) \\
3SG=GET.SG.RIGD & plate & and & 3SG=GET.SG.RIGD-cover & cup & PREP=3SG
\end{tabular}
'she gets a plate and she covers the cup with it'
(put_stimuli_191015_01_01 156-157, 640.602 644.302)
G(cover-CLFV_vagumo)3b

\subsection*{7.4.3 Serial verbs with 'give'}

Verb stems meaning 'give' occur in a range of serial-strategy constructions, both in verbs expressing straightforward events of giving but also in benefactive constructions in which the \(\mathrm{V}_{1}\)
expresses an action and the 'give' \(\mathrm{V}_{2}\) introduces a recipient or beneficiary. The serial constructions with 'give' verbs are listed in Table 7.12.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline give & GET-ve & 'get-give' & A & 3 a & 4 & 2 \\
give & giya-ve & 'give-give' & A & 3 a & - & - \\
give & GET-giya-ve & 'GET-give-give' & A & 3 a & - & - \\
give (a person) & vanggu-giya & 'lead-give' & A & 3 a & 1 & - \\
cut and give & ten-giya & 'break-give' & A & 3 a & 2 & - \\
tell & utu-giya & 'speak-give' & C & 3 a & 2 & - \\
fetch (water) & gudu-giya & 'fetch(water)-give' & F & 3 a & - & - \\
\hline & & & & total & 9 & 2 \\
\hline
\end{tabular}

Table 7.12 Serial verb constructions with 'give'
There are three distinct 'give' constructions. Basic giving events with the monotransitive verb giya 'give' can also be expressed by R-type adjunct strategy constructions (see (29) and (30) above in §7.3.1.3 for examples) and by possessive strategy constructions (see (82) and (83) below in §2.4.4). The serial-strategy constructions all contain a second 'give' stem: ve 'give'. As discussed in the previous chapter ( \(\S 6.3 .2\) and \(\S 6.3 .8\) ), the stem ve 'give' cannot function independently in simplex predicates; it only occurs in complex verbs. It is attested in three distinct constructions with (i) a CLFV (69); (ii) giya 'give' (70); or (iii) with both a CLFV and giya 'give' in a three-stem construction (71). While the only serial-strategy 'give' construction with ve produced in the corpus is with a CLFV, speakers produce all three in elicitation, along with the adjunct strategy 'give' constructions, and find them interchangeable.
\(\begin{array}{lllll}\text { (69) } & \text { nambo=ko } & \text { iya }=k o & \text { thi }=\text { =mban }=a & \text { bigi-bigi=ko } \\ \text { basket=DIST } & \text { DEM=DIST } & \text { 3PL=GET.PL.RIGD=YA } & \text { RED-thing=DIST } & \text { wolaghtye } \\ & \text { all }\end{array}\)
\begin{tabular}{llll}
\(e\) & tine \(=k o\) & thi=thin-ve & wevo=ko \\
PREP & inside=DIST & 3PL=GET.SG.CNTR =give & \begin{tabular}{l} 
young.woman=DIST
\end{tabular} \\
le- \(\varnothing\) & & boda-boda & \\
POSS.CLF2-3SG.POSS & RED-relative &
\end{tabular}
'that basket, they get all the things in it, (and) they give it to that girl's relatives' (dating_081015 075-78, 204.860 214.520)

A(give-CLFV_ve)3a
(70) \(i=g i y a-v e=n g g o \quad\) mbombo umbwe-iwo 3SG=give-give=1SG pig NUM.CLF-two 'he gives me two pigs'
(e_251115_01 060, 196.798 199.103)
A(give-giya_ve)3a
\(\begin{array}{lll}\text { ela }=\text { ko } & i=\text { wo-giya-ve=nggo } & \text { tobotobo } \\ \text { woman=DIST } & \text { 3SG=GET.SG.RIGD-give-give=1SG } & \text { greenstone.axe }\end{array}\)
'the woman gives me a greenstone axe'
(e_231116_02)
A(give-giya_ve)3a-CLFV

Along with the three-place predicates meaning 'teach’ (see §2.4.1), complex verbs with ve 'give' are the only attested ditransitive verbs in Sudest. Like the 'teach' verbs, 'give' constructions with ve show primary objectivity (Dryer 1986); R is treated like the single object O of a monotransitive verb, R is indexed on the verb by the object enclitic and/or a lexical NP , and T is expressed by a free NP object. In complex verbs with both ve 'give' and a CLFV, the CLFV is still selected based on the properties of the T referent, even though T is encoded as the secondary object in this instance and R is the primary object (i.e. the object indexed on the verb). Consider the example in (72): the CLFV \(l i\) 'get (sg. flexible entity)' 'classifies' kwama 'cloth', the T-type participant and not \(l o\) bodaboda 'my relatives'. If it were to agree with R, the CLFV selected would be mban 'get (pl. rigid entity)'.
\begin{tabular}{llll}
\(a=l i-v e=n g g i\) & \(l o\) & boda-boda & kwama \\
1SG=GET.SG.FLEX-give=3PL & POSS.CLF2:1SG & RED-relative & \\
cloth
\end{tabular}
'I give my relatives the cloth'
(e_041215_02)
A(give-ve)3a-CLFV

The remaining four serial-strategy constructions with 'give' are a group of benefactive complex verbs with giya 'give' (§6.3.5). The constructions are similar to complex verbs with cause-effect semantics; \(\mathrm{V}_{1}\) encodes an action and the \(\mathrm{V}_{2}\) stem giya 'give' specifies that the action of \(\mathrm{V}_{1}\) results in an exchange that is directed towards a recipient or beneficiary expressed by an adjunct PP.

The first benefactive complex verb is the verb ten-giya 'break-give' (73), used to describe the activity of preparing and distributing food to community members:
```

...amba wo=ten-giya-giya=\emptyset we=nggi=ya gha-ma
then 1EXCL=break-RED-give=3SG PREP=3PL=YA POSS.CLF1-1EXCL
une=ko
friends=DIST
'...then we cut and were giving it (cassava cake) to our friends'

``` (stone_cooking_251015 119, 321.040323 .260 )

A(cut_give)3a
The complex verb vanggu-giya 'lead-give' is used to mean 'give (person)' when referring to situations in which a person is 'given' in marriage (74) or is adopted (75). Such permanent transfer events of a human cannot be expressed by any of the constructions meaning 'give' already described in this section, or by adjunct strategy constructions with only giya 'give' (§7.3.1.3). The verbs giya 'give', wo-giya 'GET (sg. rigid entity)-give', and wo-ve 'GET (rigid singular)-give', however, can be used to describe non-permanent transfer of, e.g., babies or children being passed between people.
(74)

\section*{\(i=n g a\) "noroke a=vanggu-giya we=ngge iya=ke iya \(3 \mathrm{SG}=\) say today \(1 \mathrm{SG}=\) lead-give \(\mathrm{PREP}=2 \mathrm{SG}\) DEM=SPKR.PROX DEM tamwasa-kurikuri" \\ one.with-k.o.diseased.skin \\ 'she said "today I give to you this one, the one with skin disease"' (context: a grandmother gives one of her granddaughter's in marriage to a visitor)}
(mandumbunga_02_181016 382, 958.928 962.268)
A(give_person-vanggu_giya)3a
```

rama=nggu i=vanggu-giya=nggo we=ya le-\varnothing
father=1SG.POSS 3SG=lead-give=1SG
PREP=YA POSS.CLF2-3SG.POSS
boda-boda
RED-relative
'my father gave me to his relatives (to adopt)', (e_041116)
A(give_person-vanggu_giya)3a

```

The verb giya 'give' combines with an intransitive \(\mathrm{V}_{1}\) utu 'speak' to express a type C event meaning 'tell (something to someone)', as in (76) and (77).
\begin{tabular}{|c|c|c|c|c|}
\hline amala \(=\) ma & \(i=u t u\)-giya & toto & \(w e=y a\) & ra-mbaro-mbaro \\
\hline man=DET & \(3 \mathrm{SG}=\) speak-give & message & \(\mathrm{PREP}=\mathrm{YA}\) & AG-RED-law/custom \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{'the man tells the news to the police officer'}} & (e_151217) \\
\hline & & & & C(tell-utu_giya)3a \\
\hline
\end{tabular}
\begin{tabular}{lll}
\(i=u t u-\) giya \(=\emptyset\) & we \(=y a\) & ra-mbaro-mbaro \\
\(3 \mathrm{SG}=\) speak-give=3SG & PREP=YA & AG-RED-law/custom
\end{tabular}
'he tells it to the judge' (fp_stimuli_191015_07 083, 207.650 211.430)
C(tell-utu_give)3b

There is one type F serial-strategy benefactive complex verb gudu-giya 'fetch (water)-give' (78) in which the fetching of water is specifically completed in order to give it to someone else.
\[
\begin{array}{lll}
u=\text { gudu-giya } & \text { mbwa } & \text { we=nggo }  \tag{78}\\
2 \text { SG=fetch-give } & \text { water } & \text { PREP=1SG }
\end{array}
\]
'you fetch water for me' (e_251115_01 010, 39.58641 .900 )

F(fetch.water) 3 a

\subsection*{7.4.4 Cause-effect and sequential serial verbs}

The final group of three serial constructions, listed in Table 7.13, express iconically the temporal substructure of the macro-event, with the event encoded by \(\mathrm{V}_{1}\) temporally preceding that of \(\mathrm{V}_{2}\).
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline break and throw away & ten-yathu & 'break-throw away' & B & 3 a & - & 1 \\
wash and immerse & thavwi-utu & 'wash-immerse' & B & 3 a & 1 & - \\
pour away & linggi-yathu & 'pour-throw away' & E & 3 a & - & 2 \\
\hline & & & total & 1 & 3 \\
\hline
\end{tabular}

Table 7.13 Cause-effect and sequential serial verb constructions
The cause-effect constructions ten-yathu 'break-throw away' (79) and linggi-yathu 'pour-throw away' (80) express temporally-iconic events in which the \(\mathrm{V}_{2}\) event of 'throwing away' is the direct consequence of the 'cutting' and 'pouring' \(V_{1}\) events (see \(\S 6.3 .4\) for cause-effect complex verbs).
\begin{tabular}{llll}
\(i=\) ten-yathu \(=\varnothing\) & \(e\) & pulo & vwata \\
3SG=break-throw.away=3SG & PREP & floor & top
\end{tabular}
'he cuts and throws it (hair) away on the floor'
'he cuts it (hair) away on the floor' (cb_stimuli_051016_01 137, 1520.660 1523.494)
B(break_throw.away)3a
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{align*}
& \text { lolo=ma }  \tag{80}\\
& \text { person=DET }
\end{align*}
\] & \begin{tabular}{l}
\(i=l i n g g i-y a t h u\) \\
3SG=pour-throw.away
\end{tabular} & \[
\begin{aligned}
& m b w a=m a \\
& \text { water=DET }
\end{aligned}
\] & PREP & \[
\begin{aligned}
& \text { ndeghi=ma } \\
& \text { cup=DET }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{'the person pours out the water from the cup' (put_stimuli_191015_02_02 063-4, 433.611 437.756)}} \\
\hline & & & & \\
\hline \multicolumn{5}{|r|}{E(pour_throw_away)3a} \\
\hline
\end{tabular}

Similarly, the complex verb thavwi-utu 'wash-immerse' (81) describes a sequential series of subevents (§6.3.7). The VC depicts a common everyday series of related events where an agent washes the dirt off peeled vegetables and immerses them in water to avoid oxidation.
(81) a=thavwi-utu ghaningga=ko e uye=ko tine

1SG=wash-immerse food=DIST PREP clay.pot=DIST inside
'I rinse the food and immerse it in the pot' (cooking_111015 0145-6, 48.710 55.665)
B(wash_immerse)3a

\subsection*{7.5 Adnominal possessive strategy}

In the possessive strategy, a substrategy of the adnominal strategy, the third participant, \(R\), is expressed as the possessor of T (see §2.4.4). The strategy is attested in Sudest but is uncommon, with just eight distinct 3PEs attested. The verbs attested in adnominal possessive constructions are given in Table 7.14. The verb giya 'give' and the complex verbs with a CLFV and giya and kaivi 'steal' are also attested expressing 3PEs in R-type adjunct constructions (§7.3.1.3).
\begin{tabular}{lllllll}
\hline event & verb & gloss & event type & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline give & giya & 'give' & A & 5 a & 1 & 2 \\
give & GET-giya & 'get-give' & A & \(5 \mathrm{a}-\mathrm{CLFV}\) & - & 1 \\
steal & GET-kaivi & 'get-steal' & E & \(5 \mathrm{a}-\mathrm{CLFV}\) & - & - \\
catch & lawe & 'catch' & F & 5 a & - & - \\
cook & ge & 'cook' & F & 5 a & 1 & - \\
fish & kosi & 'fish' & F & 5 a & - & - \\
prepare & vivatha & 'prepare' & F & 5 a & 1 & - \\
\hline & & & & total & 3 & 3 \\
\hline
\end{tabular}

Table 7.14 Verbs in possessive constructions
In type A events with giya 'give', R has the semantic role of beneficiary and is understood to be the future possessor of T. As with the adjunct strategy 3PEs with giya (§7.3.1.3), possessive strategy constructions with giya can take the form of a simplex verb (82) or complex verb with a CLFV (83).
\begin{tabular}{lllll}
\(e\) & ghemba-ghemba & mbombo=ko & \begin{tabular}{l}
\(i=\) giya
\end{tabular} & la=ma \\
PREP & RED-village & pig=DIST & 3SG=give & POSS.CLF2=1EXCL.POSS \\
gogomwau & & & \\
riches
\end{tabular}
'In our villages, the pig gives us our riches (lit. gives our riches)'
(pigs_251214 007-9, 12.849 20.409)
A(give)5a
(83)
\begin{tabular}{lllll} 
Mei & i=wo-giya & Kieran & le- \(\varnothing\) & ghamba \\
pers.name & 3SG=GET.SG.RIGD-give & pers.name & POSS.CLF2-3SG.POSS & place \\
yaku & & & & \\
stay & & & \\
'Mei gives Kieran a seat' (lit. Mei gives Kieran's seat) &
\end{tabular}
(e_300915_01 030, 92.097 97.865)
A(give-giya)5a-CLFV
The R-type participant again has the semantic role of beneficiary in type F events of creation and preparation, as in (84) to (86). In (84) and (85), the lexical object gha 'food' is a directly-possessed noun. \({ }^{179}\) In Sudest, 3PEs expressed by the possessive strategy with directly-possessed NPs appear to be limited to the noun gha 'food'. This is unsurprising, given the link between inalienable possession and direct possessive constructions.
```

th $\hat{i}=g e=y a \quad$ gha-e
3PL=cook=YA food-3SG.POSS

```
'they cooked food for him (lit. his food)'
(mandumbunga_02_181016 288, 727.004 729.785)
F(cook-ge)5a

\footnotetext{
\({ }^{179}\) The noun gha 'food' is the presumed origin of the possessive classifier gha, used in direct possessive constructions in which the possessed item is food, drink or a small number of other non-comestible items such as clothing, see chapter 3, §3.4.4 for a description of possession.
}
\[
\begin{array}{lllll}
\text { tina-e } & i=\text { vakatha } & \text { nggoreiye } & i=\text { vivatha } & \text { gha-ye } \\
\text { mother-3SG.POSS } & 3 \text { SG=do/make } & \text { correct } & 3 \text { SG=prepare } & \text { food-3SG.POSS }
\end{array}
\]
'his mother did it like that/correctly, she prepared food for him (lit. his food)'
(mandumbunga_02_181016 078, 208.489 211.357)

The choice of possessive classifier in indirectly-possessed constructions can also indicate the purpose for which the T-type participant is intended (§3.4.4.2). In (86), the use of the possessive classifier 1 wo 'POSS.CLF1.1SG' indicates that the fish is intended for eating, while in (87) the use of classifier 2 lo 'POSS.CLF2.1SG' specifies that the pig is intended for another purpose, e.g. to be domesticated and raised or traded.
\begin{tabular}{lll}
\(l e-n\) & umoru & \(m e=k o s i=y a\) \\
POSS.CLF2-2SG.POSS & young.man & 3SG.IMM.PST=fish=YA \\
bwarogi & \\
fish & \\
'your husband caught fish for me (to eat)'
\end{tabular}
wo
POSS.CLF1.1SG

F(fish-kos)5a
\begin{tabular}{llll} 
i=lawe & lo & mbombo & mbwajam \\
3SG=catch & POSS.CLF2.1SG & pig & wild \\
'he catches a wild pig for me (to raise)' &
\end{tabular}

In the type E event with kaivi 'steal' (88), R is the previous possessor (maleficiary) of T.
\begin{tabular}{|c|c|c|c|}
\hline umoru=ko & \(i=m b a n-k a i v i\) & gha- \(\varnothing\) & \(u n e=k o\) \\
\hline young.man=DIST & 3SG=GET.PL.RIGD-steal & POSS.CLF1-3SG.POSS & friends=DIST \\
\hline gha-nji & bwarogi & & \\
\hline POSS.CLF1-3PL.P & OSS fish & & \\
\hline \multicolumn{3}{|l|}{'the man stole fish from his friends (lit. his friends fish)'} & (e_261117) \\
\hline & & E(s & -CLFV_steal)5a \\
\hline
\end{tabular}

\subsection*{7.6 Directional strategy}

The directional strategy involves a monotransitive verb plus a directional marker that indicates the transactional orientation of the verb and implicates a third, R-type participant (§2.4.5). Margetts et al. (2019b) distinguish two substrategies: the adverbial-directional strategy and the directional-verb strategy. Sudest utilises both substrategies to encode 3PEs, as well as a third construction-type involving the use of the associated motion prefixes. This third substrategy with associated motion prefixes is not identified as an encoding strategy in previous 3PE literature but examples from the Sudest corpus show that it is a productive way of encoding 3PEs in the language. The adverbialdirectional strategy is discussed first in §7.6.1, followed by the directional-verb strategy in §7.6.2 and the associated motion directional strategy in §7.6.2.1.

\subsection*{7.6.1 Adverbial directionals}

The two adverbial directional enclitics =ma 'hither' and =wo 'thither' indicate movement towards and away from the deictic centre (§4.4.2). Table 7.15 shows the three verbs with which they are attested in 3PEs. The pattern of indicating a third participant solely by directional adverbials is not as widely attested in the Sudest data as other encoding strategies. The adverbials also occur in conjunction with other encoding strategies, particularly with the directional-verb strategy (§7.6.2.1)
\begin{tabular}{lllllll}
\hline event & verb & gloss & event type & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline bring/take & GET & 'get' & A & \(6-\mathrm{D}\) & 3 & - \\
build & nggina & 'build' & B & \(6-\mathrm{D}\) & - & - \\
lead/bring & vanggu & 'bring' & B & \(6-\mathrm{D}\) & 3 & - \\
\hline & & & & total & 6 & 0 \\
\hline
\end{tabular}

Table 7.15 Verbs in adverbial constructions
The adverbial directional \(=m a\) 'hither' is used in 3PEs to indicate that an event is oriented towards the deictic centre, nearly always the speaker. It is used in commands and requests with a CLFV to mean 'bring (to me)', as in (89) and (90).
\begin{tabular}{ll}
\(u=w o=m a\) & \(l o u-n=n a\) \\
2SG=GET.SG.RIGD=hither & \begin{tabular}{l}
\(l o u\) \\
sibling.opp.sex-2SG.POSS=ADDR.PROX
\end{tabular}
\end{tabular}
'you bring (me) your brother!' (crab_girl_081115 057, 141.740 143.830)
A(bring/take-CLFV)6-D

A verb complex headed by a CLFV with the subsequent associated motion prefix la- 'and go' expresses a type E event, i.e. caused motion from a location. In (90), the addition of the adverbial modifies the event expressed by the verb from 'get' to 'bring', which combines with la- to mean 'bring' and go' rather than 'get and go' (see (106) and (107) below in §7.6.2.1 for the type E event).
```

vo-hu=la-nde-thin=ma=engge lo plastik
NEC-2PL=and.go-stand.and-GET.SG.CNTR=hither=just POSS.CLF2.1SG plastic.bag
'Just bring me my plastic (bag), before going/continuing'

```
                                    (c_031116 064, 125.490 129.499)
                                    A(bring/take-CLFV)6-D

In (91), the enclitic =ma 'hither' is used with vanggu 'lead' to again indicate directionality towards the speaker \((\mathrm{R})\) :
\begin{tabular}{llll} 
(91) \(i=n g a\) & \(" h u=n j o g h a=w o\) & \(v o h u=v a n g g u=m a=\emptyset\) & \(r a=t h u w e=\varnothing "\) \\
& 3SG=say & \(2 P L=\) go.back=thither & 2PL.INT=lead=hither=3SG
\end{tabular}\(\quad\) 1INCL=see=3SG
'she says "you go back thither (and) lead/bring him hither (to me and) we'll look at him' (mandumbunga_02_181016 273, 686.632 691.112)

There is a single elicited example of a 3PE with =wo 'thither', shown in (92).
\begin{tabular}{lllll} 
(92) \begin{tabular}{ll} 
ghine & iya=va
\end{tabular} & wo=nggina=wo & nggolo & nasiye=ko \\
1EXCL & DEM=REM.PST & 1EXCL=build=thither & house & little=DIST
\end{tabular}
'we built that outhouse thither/that way' (e_021115_01 062-3, 234.076 238.784)
B(build)6-D

\subsection*{7.6.2 Directional verbs}

Some directional complex verbs (§6.3.1.2) are analysed as a substrategy of the directional strategy. In these 3PE constructions, the \(\mathrm{V}_{1}\) stem is a monotransitive verb; the \(\mathrm{V}_{2}\) slot is filled by an intransitive directional verb, which specifies the path, and also indicates the transactional orientation of the event. The R-type participant is implied by the directional verb and can also be overtly expressed by an adjunct (such examples are analysed as a combination adjunct-directional strategy). Attested directional complex verbs with no overt R are listed in Table 7.16. While all the corpus tokens include a CLFV as \(\mathrm{V}_{1}\), other monotransitive verbs also occur in these types of 3PEs. Examples of these verbs can be found in §7.8.1, where combination adjunct and directional-verb constructions are discussed.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline bring & GET-mena & 'get-come' & \(\mathrm{A} / \mathrm{B}\) & \(6-\mathrm{V}\) & - & 2 \\
take down & GET-nja & 'get-go down' & B & \(6-\mathrm{V}\) & 1 & - \\
put down & GET-njo=nga'80 & 'get-go down=TR' & B & \(6-\mathrm{V}\) & 1 & 2 \\
put back & GET-njogha & 'get-go back' & B & \(6-\mathrm{V}\) & - & 1 \\
hang back & GET-kitho-njogha & 'get-hang-go back' & B & \(6-\mathrm{V}\) & - & 1 \\
take out & GET-ranggi & 'get-go out' & E & \(6-\mathrm{V}\) & 5 & 15 \\
\hline & & & total & 7 & 21 \\
\hline
\end{tabular}

Table 7.16 Verbs in directional verb constructions
The majority of events with a directional verb specify motion towards a recipient or goal (type A and \(B\) events). The tokens presented in (93) to (98) show type A and B events in which the directional verbs implicate a goal or recipient participant. In (93), nja 'go down' indicates caused motion 'down' to(wards) a village that is being visited by traders from the island of Ware.
\[
\begin{array}{llll}
\text { amala=ko } & i=w o-n j a & \text { iya } & \text { ghena=ko }
\end{array} \text { laghiye }
\]

\footnotetext{
\({ }^{180}\) As mentioned in chapter 6, the open central vowel [a] in nja is realised as a close-mid back [o] before the transitive suffix \(=n g a\).
}

In (94), a nearly-identical VC takes the transitivising enclitic =nga. As discussed in §6.3.1.2, the absence or presence of the transitive enclitic =nga in these types of constructions with the directional verb nja 'go down' (or voro 'go up'), signals that the event is an accompanied or nonaccompanied caused-motion event (see e.g. Margetts et al. forthcoming; Sheppard forthcoming). Those VCs without the transitiviser encode events in which A physically accompanies T somewhere, e.g. 'taking down (to somewhere)' as in (93). In events with the transitiviser, A remains stationary while moving T, e.g. 'putting down' as in (94). See \(\S 7.8 .1\) for further examples of this type in combined adjunct-directional verb constructions.
\[
\begin{array}{lll}
\text { ela=ma } & i=\text { wo-njo=nga } & \text { umbali-ye }  \tag{94}\\
\text { woman=DET } & \text { 3SG=GET.SG.RIGD-go.down=TR } & \text { head-3SG.POSS }
\end{array}
\]
'the woman puts the (teapot) lid down (on a table)'
(cb_stimuli_101116 082, 1013.671 1019.757) B(bring/take)6-V

The constructions with njogha 'go back' in (95) and (96) express caused motion back to a location where T was previously located. The complex verb in (96) contains a nested complex verb of handling: li-kitho 'get (sg. flexible entity)-hang' meaning 'hang'.
iya \(=k e \quad r a=l i-n j o g h a=\varnothing\)

DEM=SPKR.PROX 1EXCL=GET.SG.FLEX-go.back=3SG
'this, we put it back (where it was)' (context: two speakers are organising picture cards in order a narrative out of them) (fp_stimuli_201015_02 130, 453.440 455.220)

B(take_back)6-V
```

amala=ma i=li-kitho-njogha thiyo=ma
man=DET 3PL=GET.SG.FLEX-hang-go.back rope=DET
'the man hangs the rope back (on the branch)'
(put_stimuli_191015_01_02 194, 758.683 762.968)

```

The verb mena 'come' is the only deictic directional, specifying movement towards the deictic centre, as in (97) where the speaker is requesting that an item be brought to her.
\[
\begin{array}{ll}
\text { wo- } u=\text { thin }=\text { mena } & n a m b o=n a  \tag{97}\\
\text { NEC-2SG=GET.SG.CNTR-come } & \text { basket=ADDR.PROX } \\
\text { 'bring the basket (to me)' } &
\end{array}
\]
(e_101116)
A(bring-CLFV_- mena)6-V

In (98), the deictic centre is the foreground in a stimulus video. The speaker describes a video in which a man walks into the frame with a stack of books, then walks towards the foreground of the shot.

\footnotetext{
amala \(=m a \quad\) regha \(\quad\) i=bigi-mena buku=na
man=DET one 3SG=GET.PL.CNTR-come book=ADDR.PROX
'one man brings books' (put_stimuli_191015_01_01 181-2, 758.826 762.744)
}

The directional verb ranggi 'go out' indicates movement away from an enclosed source. It is one of the few directional verbs that typically specifies movement from a location rather than to a location. In (99), ranggi 'go out' specifies that the stones are being taken out from a fire; in (100) it specifies that the teapot lid is taken 'out' of the teapot.
```

wo=mban-ranggi=ya varí-vari
1EXCL=GET.PL.RIGD-go.out=YA
RED-stone

```
'the take the stones out (of the fire)'
(stone_cooking_251015 100, 274.147 276.256)
E(take_out)6-V
(100)
\(\begin{array}{lll}i=\text { wo-ranggi }=y a & \text { tipot=ko } & \text { umbali-ye } \\ \text { 3SG=GET.SG.RIGD-go.out=YA } & \text { teapot=DIST } & \text { head-3SG.POSS }\end{array}\)
'she takes off (lit. out) the teapot lid (from the teapot)'
(cb_stimuli_051016_01 230, 2480.815 2487.050)
E(take_out)6-V

\subsection*{7.6.2.1 Combination adverbial and directional verb strategies}

The adverbial-directional and directional-verb substrategies can combine in a single 3PE. Constructions of this type are listed in Table 7.17.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline lead up & vanggu-voro & 'lead-go up' & B & \(6-\mathrm{V}+6-\mathrm{D}\) & 1 & - \\
put in & GET-ru & 'get-go in' & B & \(6-\mathrm{V}+6-\mathrm{D}\) & 4 & 1 \\
unload & vanja-ru & 'unload' & B & \(6-\mathrm{V}+6-\mathrm{D}\) & 1 & - \\
\hline & & & total & 6 & 1 \\
\hline
\end{tabular}

Table 7.17 Combination adverbial and directional verb constructions
Tokens of the three combination constructions of this kind are shown in (101) to (103). It is common for VCs with the directional verb ru 'go in' to include the directional adverbial =wo 'thither', as in (102) and (103).
(101) \(t h \dot{i}=v a n g g u\)-voro \(=m a=\varnothing\)
\(3 \mathrm{PL}=\) lead-go.up=hither=3SG
'they lead him up hither (to the village)'
(mandumbunga_02_181016 280, 705.949 707.949)
B(lead)6-V+6-D
(102) iya \(e\) uye \(=k o\) tine, ma=thin- \(r u=w o=\varnothing\) DEM PREP pot=DIST inside 1SG.IMM.PST=GET.SG.CNTR-go.in=thither=3SG 'he's inside the pot, I put him in (it)' (crab_girl_081115 077-9, 188.170 195.410)

B(take_in)6-V+6-D
(103)
thi \(=\) vanja-ru=wo
yawudo=ko
3PL=unload-go.in=thither
thing=DIST
'they unloaded those things in (to the inlet)'
(bwaindiya_151115 036-9, 114.040122 .351 )
B(unload)6-V+6-D

\subsection*{7.6.3 Associated motion prefixes}

Sudest has a third type of directional substrategy involving two of the associated motion prefixes (see §4.3.4 and §4.3.5). Encoding strategies involving associated motion morphemes have not been identified in previous literature on 3PEs (c.f. Margetts 2007; M\&A; Margetts et al. 2019b). As discussed in chapter 4 (§4.3.), the associated motion prefixes introduce a motion subevent to the VC. The Sudest associated motion prefixes yo- 'while going' and la- 'and go' encode a motion event that occurs concurrently with or following the event encoded by the verb(s). The Sudest prefixes also specify directionality of the event, a common feature of associated motion morphemes cross-linguistically (see e.g. Koch 1984; Guillaume 2016). Only CLFVs are attested with associated motion prefixes in the corpus encoding 3PEs; these are listed in Table 7.18. At least one of the 'carry’ verbs can also occur in an associated motion directional strategy 3PE (§7.9.2.2).
\begin{tabular}{llllllll}
\hline event & prefix & verb & gloss & event type & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline carry, take & \(y o-\) & GET & 'while going-get' & B & \(6-\mathrm{AM}\) & 5 & 1 \\
take & \(l a-\) & GET & 'and go-get' & E & 6-AM & 4 & - \\
\hline & & & & total & 9 & 1 \\
\hline
\end{tabular}

Table 7.18 Verbs in associated motion constructions
The concurrent associated motion prefix yo- 'while going' combines with a CLFV to mean 'carry, take (something somewhere)'. While there are a number of verbs that mean 'carry' in Sudest, they are typically only used when highlighting a specific manner in which an item is being held, and do not encode the actual transport event of taking the item somewhere (see §5.3.5). In 3PEs with yo-, the concurrent prefix implies motion to(wards) R which is also optionally expressed by an adjunct in a combination adjunct-associated motion construction (§7.8.1.2). Instances without an adjunct are analysed as tokens of the associated motion directional strategy. In such cases, R is generally retrievable from the context, as in (167), in which a speaker describes trade between islands. The goal (R) of the 3PE in the second clause, Saisai 'Calvados Chain', \({ }^{181}\) is the same as the goal in the first clause.

\footnotetext{
\({ }^{181}\) The Calvados Chain are the group of islands that run from Pana Varavara in the west to Nigaho, a tiny island off the northwest tip off of Panatinani.
}
\begin{tabular}{lll}
\begin{tabular}{l} 
meth \(\dot{i}=w a\)
\end{tabular} & \begin{tabular}{l} 
Saisai=ko \\
3PL.IMM.PST=go \\
place.name=DIST
\end{tabular} & \begin{tabular}{l} 
meth \(\dot{1}=y o-b i g i=y a\)
\end{tabular} \\
3PL=while.going-GET.PL.CNTR=YA & ghaningga \\
food
\end{tabular}

In (105), a woman prepares sago pudding and leaves to take it to feed a snake living in a cave. While the cave is not overtly expressed, it is retrievable from an earlier part of the text.
\begin{tabular}{llll}
\(i=\) ro-kiwak & \(n a\) & \(i=\) wareri & \(n a\) \\
\(3 S G=\) sit.and-make.sago.pudding & and & \(3 S G=l e a v e\) & and
\end{tabular}
\(i=y o-\) thin \(=\varnothing \quad n a \quad\) ve=ngamwe \(=\varnothing\)
3SG=while.going-GET.SG.CNTR=3SG and 3SG.INT=feed=3SG
'she stays and makes sago pudding and leaves and she carries it and feeds her (the snake in the cave)' (snake_passage_061215 046-9, 108.950118 .866 ) B(take-CLFV)6-AM

The subsequent associated motion prefix la- 'and go' can also have a 3 PE reading when it occurs in VCs with a CLFV. The prefix implies movement away from the location where the event encoded by the verb takes place. It is used to express type E events in the corpus, in which T is removed from a location. Consider the situation presented in (106), taken from the same text as the example above in (105). It follows on from the feeding of the snake; the snake repays the woman for the sago pudding by excreting shell money, the woman then gathers the pieces of shell and takes them away from the cave the snake is living in.
\[
\begin{array}{llll}
i=\text { uthighe }=\varnothing & \text { kero } & i=\text { la-bigi=ya } & \text { ndava-ndavari }  \tag{106}\\
\text { 3SG=shit=3SG } & \text { already } & \text { 3SG=and.go-GET.PL.CNTR=YA } & \text { RED-shell.money/disks }
\end{array}
\] '(the snake) shat it, (the woman) already takes away/gets the shell money and goes' (snake_passage_061215 083-4) E(take-CLFV)6-AM

In (107), the speaker describes people getting supplies before leaving their village to go trade for ceremonial goods. The use of the subsequent associated motion prefix with bigi 'get (pl. container-and-contents)' means 'take away' or 'get and go (from somewhere)'
```

(107) mbanga=niye thi=raka-ranggi na thi=ghiva=va thi=rumbo ndighe
time=DET 3PLall-go.out and 3PL=trade=REP 3PL=make(fire) fire
ranggi=ko kaiwa-\varnothing amba=ma th\dot{i}=la-mban=a
go.out=DIST for-3SG.POSS then=already 3PL=and.go-GET.PL.RIGD=YA
amba=ma thi=la-mban=a le-nji bwadibwadi
then=already 3PL=and.go-GET.PL.RIGD=YA POSS.CLF2-3PL.POSS coconut
le-nji bunama=nggi le-nji
POSS.CLF2-3PL.POSS ceremonial.coconut.oil=3PL POSS.CLF2-3PL.POSS
nambo-nambo=nggi
RED-basket=3PL

```
'at the time for them to all go out and trade, they make a fire for (planning) the trip, then they take away their coconuts, ceremonial coconut oil and baskets (form the village to trade)'
(funeral_feasting_081015_02 091-6, 233.850 246.865)
E(take-CLFV)6-AM

\subsection*{7.7 Absorption strategy}

In the absorption strategy, a two-place predicate takes two arguments. The third participant is evoked by the lexical semantics of the verb, or by a morphological component of the verbal predicate (§2.4.6). Because the strategy looks beyond the argument structure and syntactic expressions of participants, 3PE expressions involving the absorption strategy can be harder to systematically investigate. This is because it can be harder to rigorously classify what counts as an 'evoked' participant.

Two absorption substrategies are attested in Sudest: the direct lexicalisation substrategy and the affix-based classification substrategy. These are discussed in §7.7.1 and §7.7.2 respectively.

\subsection*{7.7.1 Direct lexicalisation strategy}

The third participant in the direct lexicalisation substrategy is evoked in the semantics of the verb (§2.4.6). A small number of verbs identified indicate an additional participant in their semantics (listed in Table 7.19). It is highly likely that there are further verbs that could classify as showing the direct lexicalisation strategy; however, a detailed lexico-semantic analysis is beyond the scope of the current study. Also, given the current number of attested verbs, it does not appear to be a dominant strategy in Sudest. Indeed, many events which are expressed by the absorption strategy in other languages (e.g. cut, kick, kill), are expressed by predicates with a manner-of-causation prefix in affix-based classification strategy constructions (§7.7.2).

There are four attested direct lexicalisation verbs, listed in Table 7.19. These verbs are transitive, taking a patient as direct object; the third participant, an instrument, is indicated in the predicate's semantics.
\begin{tabular}{lllllll}
\hline event & verb & gloss & event type & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline stone & biri & 'stone' & G & 7 a & - & - \\
spear & nggau & 'spear' & G & 7 a & 5 & - \\
spear & vwe & 'spear' & G & 7 a & - & - \\
bite & ghari & 'bite' & H & 7 a & - & - \\
\hline & & & & total & 5 & 0 \\
\hline
\end{tabular}

Table 7.19 Verbs in direct lexicalisation constructions
The verb biri means 'stone (someone/something)' and clearly evokes a hard projectile, typically an actual stone (108).
\(\begin{array}{llll}a=w o & \text { vari } & a=b i r i=y a & m a \\ \text { 1SG=GET.SG.RIGD } & \text { stone } & \text { 1SG=stone=YA } & \text { bird }\end{array}\)
'I get a stone (and) stone a bird'

The two verbs nggau (109) and vwe (110) both mean 'spear'. The verb nggau 'spear' is the only one that occurs in the corpus. The verb vwe 'spear' is presumably the origin of the manner-ofcausation prefix vo- 'by spearing’ (§5.5.1.9). The independent verb form does not occur in the corpus and only occurs in elicitation with older speakers, suggesting that it may be archaic.
\(\begin{array}{cllll}\text { (109) } & \begin{array}{c}\text {..amba } \\ \text { then }\end{array} & \text { FUT } & \begin{array}{l}u=\text { ranggi } \\ \text { 2SG=go.out }\end{array} & \begin{array}{l}u=\text { nggau } \\ \text { 2SG=spear }\end{array} \\ & \text { k.o.fish }\end{array}\)
'...then you will go out (and) spear morouma fish'
(mandumbunga_061215 164, 470.459 472.884) G(spear-nggau)7a
(110) \(\begin{array}{lll}\text { umoru=ma } & i=v w e & \text { mwata }=m a \\ \text { young.man=DET } & \text { 3SG=spear } & \text { snake=DET } \\ \text { 'the man spears the snake' } & \end{array}\)

The final direct lexicalisation verb identified is the stem ghari 'bite', shown in (111).
(111) njigha \(i=\) ghari=nggo
red.ant \(\quad 3 \mathrm{SG}=\) bite \(=1 \mathrm{SG}\)
'a red ant bit me'

\subsection*{7.7.2 Affix-based classification strategy}

In the affix-based classification substrategy, the third participant is evoked by a non-pronominal, non-increasing affix (§2.4.6). \({ }^{182}\) The manner-of-causation prefixes (§5.2) specify the manner in which an action is completed and thereby often evoke an instrument participant. Because of this, they play a prominent role in the encoding of 3PEs that involve an instrument, most commonly type G and H events. The manner-of-causation prefixes also frequently occur in combination adjunct-affix-based classification strategy construction (§7.8.2).

The verbs that occur in affix-based classification constructions are listed in Table 7.20. The verbs attested in group \(G\) and \(H\) events overlap and are only distinguished by the manner-of-causation prefix they take, as some evoke a non-body part instruments but others a body part instrument.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline break & bebe & 'break' & G & 7 f & - & 22 \\
break & nggila & 'break' & G & 7 f & - & 9 \\
break & ten & 'break' & G & 7 f & 2 & 58 \\
break & vole & 'break' & G & 7 f & - & 24 \\
break (partial) & bebe-ra & 'break-put' & H & 7 f & - & 1 \\
break (partial) & nggila-ra & 'break-put' & H & 7 f & - & 1 \\
bruise & va-uu=nga & 'CAUS-be bruised=TR' & G & 7 f & 1 & - \\
kick & vewo & 'push' & H & 7 f & - & - \\
kill & va-mare & 'CAUS-die' & H & 7 f & 1 & - \\
poke & kothe & 'poke' & G & 7 f & 3 & - \\
poke & kum & 'poke' & G & 7 f & 1 & - \\
poke & kum & 'poke' & H & 7 f & 1 & - \\
smash & ughi & 'smash' & G & 7 f & - & 4 \\
smash & vithi & 'smash' & G & 7 f & - & 1 \\
split & viya & 'split' & G & 7 f & - & 10 \\
tear & nggangga & 'tear' & H & 7 f & - & 4 \\
tear & thatha & 'tear' & G & 7 f & - & 5 \\
tear & thatha & 'tear' & H & 7 f & - & 21 \\
break & bebe & 'break' & G & 7 f & - & 22 \\
\hline & & & & total & 9 & 182 \\
\hline
\end{tabular}

Table 7.20 Verbs in affix-based classification constructions
Many 3PEs expressed by this strategy consist of a relatively unspecific verb stem that expresses an action that causes a change in the 'material integrity' (Hale \& Keyser 1987 cited in Levin 1993: 242) of the patient participant (e.g. 'break', 'split', 'tear', etc.), and a manner-of-causation prefix. Examples of the affix-based classification constructions are given in (112) to (118). In (112), the

\footnotetext{
\({ }^{182}\) When the prefixes occur with monotransitive verbs, they do not increase the valence of the VC but when they occur with intransitive directional verbs, they have a causativising function, see §7.9.1.1 for 3PEs with a causativising manner-of-causation prefix as well as \(\S 5.2\) for further discussion.
}
prefix vo-evokes a pointed instrument and combines with bebe and nggila, both 'break', to mean 'spear (something)'. The prefix mwana- 'by hand' combines with bebe (113) and nggila (114), again both meaning 'break', to specify that the stick is broken using the hands. Note that the use of the stem \(r a\) 'put' in (114) specifies that the action is only partially completed (§6.3.3).
```

i=vo-bebe=\varnothing o i=vo-nggila=\varnothing
3SG=by.spearing-break=3SG or 3SG=by.spearing-break=3SG

```
    'he breaks it by stabbing or he breaks it by stabbing/with a pointed implement
                            (cb_stimuli_051016_03 009, 60.220 62.930)
                                    G(break-bebe)7f, G(break-nggila)7f
\begin{tabular}{lll}
\begin{tabular}{l} 
wevo \(=m a\)
\end{tabular}\(\quad i=m w a n a-b e b e=y a\) & \(u m b w a\) \\
young.woman=DET & \(3 \mathrm{SG}=\mathrm{w}\). hands=break=YA & \begin{tabular}{l} 
tree/stick
\end{tabular} \\
'the woman breaks the stick with her hands' &
\end{tabular}
(cb_stimuli_051016_02_01 163, 883.096 885.260)
H(break-bebe)7f
(114) i=mwana-nggila-ra umbwa 3SG=w.hands-break-PUT stick/tree
'she partially breaks the stick' (cb_stimuli_051016_03 332, 1248.910 1250.935) H(partial_break-nggila_ra)7f

The manner-of-causation prefixes modify the change-of-state verb ten 'break' in (115) and (116). In (115), ki- 'by cutting' specifies that the instrument participant is a blade. In (116), mwana- 'by hand' specifies the use of the hands in the action, just like in (113) and (114) above.
\[
\begin{array}{ll}
t h \dot{i}=k i-\text {-ten }=a & \text { njimwa-e }  \tag{115}\\
\text { 3PL=by.cutting-break=YA } & \text { skin-3SG.POSS }
\end{array}
\]
'they cut the umbilical cord with a blade'
(new_mother_2512 05714, 137.914 140.450)
G(break-ten)8
(116) amala=ko \(i=m w a n a-t e n \quad\) thiyo \(=k o\)
man=DIST 3SG=w.hands-break string=DIST
'the man breaks the string with his hands'
(cb_stimuli_051016_02_02 057-8, 445.770 460.222)
H(break-ten)H

Examples (117) and (118) show the prefixes vo- 'by spearing' and mwana- 'by hand' with thatha and ngggangga, both meaning 'tear'.
\begin{tabular}{ll}
\(i=\) vo-thatha & \(k w a m a=m a\) \\
3SG=by.spearing-tear & cloth=DET
\end{tabular}
'she tears the cloth by stabbing/with a pointed instrument'
(cb_stimuli_051016_01 195-6, 2119.670 2127.200)
G(tear-thatha) 8
```

(118) ela=ko i=mwana-nggangga kwali=ko
woman=DIST 3SG=w.hands-tear cloth=DIST

```
    'the woman tears the cloth (with her hands)'
        \((\mathrm{cb}\) _stimuli_051016_02_02 048, 400.580404 .283\()\)
H(tear-thatha) 7 f

As discussed in §5.2.8, the two prefixes taga- and riri- both indicate that the event occurs as the result of a striking motion similar to a karate chop. In these events, the manner-of-causation prefix indicates the involvement of a third participant. However, whether it is a body part or non-body part instrument can only be determined by the wider context. In (119) and (120), the instrument is referred to in the clause immediately preceding the 3PE clause; in (121), however, the last overt mention of the referent is nearly 40 IUs prior.
\begin{tabular}{lllll}
\(i=w o\) & umbwa & na & \(i=\) taga-kothe & righe \(=k o\) \\
3SG=GET & tree/stick & and & 3SG=by.striking-poke & tree.trunk=DIST
\end{tabular}
'she got a stick and she struck the tree trunk'
(bush_betelnut_011115 029-30, 71.590 76.830)
G(poke-kothe) 7 f
(120) \(i=l i=y a \quad\) nima-e na \(i=\) taga-ten \(=a \quad\) thiyo

3SG=GET.SG.FLEX=YA hand-3SG.POSS and 3SG=by.striking-break=YA rope/string 'he takes his hand and breaks the string by striking it'
(cb_stimuli_051016_01 246, 2625.850 2630.792)
H(break-ten)7f


In (122) the use of taga- is ambiguous: it is never specified whether Monitor Lizard is beaten to death with an instrument such as a stick, or with fists.


As discussed in (§5.1.8), va-mare 'CAUS-die' obligatorily takes a manner-of-causation prefix. This is most frequently taga- 'by striking', which can specify that the referent was beaten to death as in (122) above. However, it can also be used as a default prefix when the cause of death is unknown
or unspecified. Further examples with va-mare CAUS-die' are given in (123) and (124). In the first example, the manner-of-causation prefix vuri- 'with feet' specifies that feet are used to crush the cockroach. In the second, the prefix ri- 'with teeth, mouth' indicates that the instrument used to kill the person was the crocodile's mouth/teeth.
\begin{tabular}{lll}
\begin{tabular}{ll} 
nggama \\
child
\end{tabular} & \begin{tabular}{l}
\(i=\) vuri-va-mare \\
3SG=w.feet-CAUS-die
\end{tabular} & \begin{tabular}{l} 
yamboyambo \\
cockraoch
\end{tabular}
\end{tabular}
'a child kills a cockroach by crushing it with their feet'
\begin{tabular}{lll} 
waragoi & \(i=r i\)-va-mare & lolo=ko \\
crocodile & 3SG=w.teeth-CAUS-die & person=DIST
\end{tabular}
'the crocodile killed the person with its teeth'
(e_041215_02)
H(kill)7f

Kicking events are not lexicalised by a single verb in Sudest. Instead, they are expressed by combining the prefix vuri- 'with feet' and the verb vewo 'push', as in (125).
\[
\begin{array}{ll}
a=\text { vuri-vewo } & b a l=k e  \tag{125}\\
1 \text { SG=w.feet-push } & \text { ball=SPKR.PROX }
\end{array}
\]
'I kick the ball/I push the ball with my foot'
\[
\begin{array}{r}
\left(\mathrm{e} \_211116 \_02\right) \\
\mathrm{H}(\mathrm{kic} \mathrm{c}) 7 \mathrm{f}
\end{array}
\]

\subsection*{7.8 Combination encoding strategies}

Combination strategies where two (or three) encoding strategies combine in a single 3PE construction are common in Sudest. Adjunct and directional combinations are discussed in §7.8.1, followed by adjunct and absorption combinations in §7.8.2, serial-verb and directional combinations in \(\S 7.8 .3\), and finally adnominal-possessive, directional, and absorption combinations in §7.8.5.

\subsection*{7.8.1 Adjunct and directional strategies}

The adjunct strategy is attested in combination with the directional verb (§7.8.1.1) and associated motion prefix (§7.8.1.2) directional substrategies.

\subsection*{7.8.1.1 Adjunct and directional verb}

The constructions in this group consist of a monotransitive complex verb with an intransitive directional verb in \(V_{2}\) position. The adjunct-directional verb strategy is one of the most common combination strategies. In these constructions, the transactional orientation of the event towards R
is indicated by the directional verb and simultaneously overtly expressed by an adjunct that follows the VC. In a number of cases, directionality is additionally marked by way of one of the adverbial directionals. In principle, either of the two combined strategies is sufficient to encode the 3 PE that are expressed by the combination. The verbs attested in this combination strategy are listed in Table 7.21.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline bring & GET-mena & 'get-come' & A & \(2 \mathrm{a}+6-\mathrm{V}\) & - & - \\
give back & GET- njogha & 'get-go back' & A & \(2 \mathrm{a}+6-\mathrm{V}\) & 2 & - \\
bring & GET-mena & 'get-come' & B & \(2 \mathrm{a}+6-\mathrm{V}\) & 1 & \\
put/take back & GET- njogha & 'get-go back' & B & \(2 \mathrm{a}+6-\mathrm{V}\) & 1 & 2 \\
put/take back & GET-njogha & 'get-go back' & B & \(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}\) & - & 1 \\
put down & GET- njo=nga & 'get-go down=TR' & B & \(2 \mathrm{a}+6-\mathrm{V}\) & - & 3 \\
put/take in & GET-ru & 'get-go in' & B & \(2 \mathrm{a}+6-\mathrm{V}\) & 3 & - \\
take up & GET-voro & 'get-go up' & B & \(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}\) & - & 1 \\
put up & GET-voro=nga & 'get-go up=TR' & B & \(2 \mathrm{a}+6-\mathrm{V}-\mathrm{APPL}\) & - & 1 \\
catch and take in & lawe-ru & 'catch-go.in' & B & \(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}\) & 1 & - \\
pour out & linggi-ranggi & 'pour-go out' & B & \(2 \mathrm{a}+6-\mathrm{V}\) & - & 1 \\
lead/take in & vanggu-ru & 'lead-go in' & B & \(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}\) & 2 & - \\
put/take down & GET- njaniya & 'get-go down' & E & \(2 \mathrm{a}+6-\mathrm{V}\) & - & 4 \\
put down & GET-njo=nga & 'get-go down=TR' & E & \(2 \mathrm{a}+6-\mathrm{V}-\mathrm{APPL}\) & - & 3 \\
take out & GET-ranggi & 'get-go out' & E & \(2 \mathrm{a}+6-\mathrm{V}\) & - & 19 \\
pull out & gita-ranggi & 'pull-go out' & E & \(2 \mathrm{a}+6-\mathrm{V}\) & - & 1 \\
\hline & & & & total & 10 & 36 \\
\hline
\end{tabular}

Table 7.21 Verbs in combination adjunct and directional-verb constructions
The majority of 3PEs encoded by this type of combined strategy take a CLFV in \(\mathrm{V}_{1}\) and express directed events of taking, bringing and putting. Examples of constructions with a CLFV are presented in (126) to (139). Many of these complex verbs can occur in both type A and type B events and are only distinguished by the referent of the R. This is the case with (126) and (127), with CLFV-mena 'get-come' meaning 'bring' and (128) to (130) with CLFV-njogha 'get-go back' or 'take back'.
\begin{tabular}{llll} 
i=wo-mena & lo & kaina & we=nggo \\
3SG=GET.SG.RIGD-come & POSS.CLF2.1SG & knife & PREP=1SG
\end{tabular}
'she brings my knife to me'
(e_161215)
A(bring-CLFV_mena)2a+6-V
\begin{tabular}{llll} 
thambwa & bigi-bigi \(\quad\) menda \(=v a\) & \(a=\) mban-mena= \(\varnothing\) \\
what & RED-thing yesterday=REM.PST & 1 SG=GET.PL.RIGD-come=3 \\
iya=ke & \(\quad\) ina- \(\varnothing\) & ghe \(=k e\) \\
DEM=SPKR.PROX & be.located-3SG.POSS & LOC=SPKR.PROX
\end{tabular}
'those things during the past, I brought them here' (child_and_giant_201015 115, 305.500308 .712 ) B(bring-CLFV_mena)2a+6-V
```

(128) thi=wo ghena=ko na thi=wo-njogha $=\varnothing$
3PL=GET.SG.RIGD limestick=DIST and 3PL=GET.SG.RIGD-go.back=3SG
$w e=\varnothing$
PREP=3SG
'they got the limestick and they returned it to him (its owner)'
(bwaindiya_151115 109, 285.120 288.064)
A(take_back) $2 \mathrm{a}+6-\mathrm{V}-\mathrm{CLFV}$
(129)

thi $=$ bigi-njogha	$l e-n j i$	bigi-bigi=ko	e
3PL=GET.PL.CNTR-go.back	POSS.CLF2-3PL.POSS	RED-thing=DIST	PREP

le-Ø ghamba yaku
POSS.CLF2-3SG.POSS place stay
'they put back/return their things to their place' (kula_exchange_081215 083-4, 242.160 246.280)

In some cases, the directional verb is combined with the adverbial directional (marked with the strategy code '+6-D') as in (130) with the directional verb njogha 'go back' and the adverbial directional $=m a$ 'hither'. Tokens like (129) and (130) without and with the adverbial directional are counted separately in the corpus. However, they are discussed here in this section as the presence or absence of an adverbial enclitic does not alter the event type of these constructions.

$$
\begin{array}{lll}
\text { iya }=k o & u=l i-n j o g h a=m a=\varnothing & \text { ghe=ke } \tag{130}\\
\text { DEM=DIST } & \text { 2SG=GET.SG.FLEX-go.back=thither=3SG } & \text { DEM=SPKR.PROX }
\end{array}
$$

'that one, you bring it back here' (fp_stimuli_191015_03 247, 620.670 622.760) B(take/bring) $2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}$

The directional verbs ranggi 'go out' and njaniya 'go down (from)' in (131) to (133) express events in which T is taken from a source R (type E events): 'take out (from)' and 'take down (from)' respectively.
(131) kero thi=bigi-ranggi=ya ghaningga=ke e uma=ko already 3PL=GET.PL.PL.CNTR-go.out=YA food=SPKR.PROX PREP garden=DIST
tine
inside
'they are already taking the food out from the garden'
(fp_stimuli_201015_01 138, 556.430559 .109)
E(take_out)2a+6-V
(132)

$l o l o=k e$	$i=w o-n j a n i y a$	pilet=ke	e
person=SPKR.PROX	3SG=GET.SG.RIGD-go.down	plate=SPKR.PROX	PREP
kap=ke	vwata-e		
cup=SPKR.PPROX	top-3SG.POSS		
'the person takes the plate down from on top of the cup'			

```
(133) ela=ma ma i=mena i=thin-njaniya= }\varnothing=v
woman=DET already 3SG=come 3SG=GET.SG.CNTR=go.down=3SG=REP
e buku=ma ghamba-e
PREP book=DET place-3SG.POSS
```

'the woman came and took it (a box) down from the bookshelf'
(put_stimuli_201015_01 072-3, 452.409 455.650)
E(take_down-CLFV_njaniya) $2+a+6-\mathrm{V}$

As discussed earlier, (§6.3.1.2, §7.6.2), most complex verbs with a CLFV and a directional verb can express either events in which A moves along the same trajectory with T (i.e. events of taking to/from somewhere), or events in which only T is moved and A remains more or less stationary (i.e. events of putting or taking from). In such cases, context generally specifies whether the event involves accompanied or non-accompanied motion, as in (134) and (135) with the directional verb $r u$ 'go in'. In (134), a young woman (A) moves with a box (T) in order to take it into a house (R), but in (135), the protagonist (A) remains stationary as she cannot put herself in the pot (R) along with the wooden bowl (T).

In §6.3.1.2 and §7.6.2, it was noted that the absence or presence of the transitiviser $=n g a$ in directional complex verbs with nja 'go down' and voro 'go up' does differentiate these two types of event (taking events with a moving A vs. putting events with a stationary A). This can be seen in the two pairs of examples shown in (136) and (137), and (138) and (139). Events in which the A remains stationary take the transitivising enclitic $=n g a$, as in (137) and (139), while events in which A moves along with T do not take the enclitic, as in (136) and (138).
(136) amala=ko i=wo-nja ghena ngga=ko laghiye man=DIST 3SG=GET.SG.RIGD=go.down DEM limestick ebony=DIST big 'the man takes the ebony lime stick down (to the village)' (bwaindiya_151115 041-2) B(take_down-CLFV_nja) $2 \mathrm{a}+6-\mathrm{V}$

```
(137)
elisari=ke \(\quad i=t h \dot{i n}-n j o=n g a \quad\) ndeghít=ke e
old.woman=SPKR.PROX 3SG=GET.SG.CNTR-go.down=TR cup=SPKR.PROX PREP
ghamba ghaningga=ko vwata- \(\varnothing\)
place food=DIST top-3SG.POSS
'the old woman puts the cup down on top of the table (lit. place of food)'
                                    (put_stimuli_201015_01 160-2)
                                    B(take_down-CLFV_nja)2a+6-V-APPL
(138) nuwa-e iya ve=thin-voro thari Nju
    desire- DEM 3SG.INT=GET.SG.CNTR-go.up dance place.name
    3SG.POSS
    'he wants to take the dance up to Nju'
        (feast_of_the_fish_271015 012-14, 33.277 45.200)
                            B(take_down-CLFV_nja)2a+6-V+6-D
\begin{tabular}{lllll} 
amala=ma & \(i=\) thin-voro=nga & bogisi & \(e\) & buku=ma \\
man=DET & 3SG=GET.SG.CNTR-go.up=TR & box & PREP & book=DET \\
ghamba-e & & & & \\
place-3SG.POSS & & &
\end{tabular}
'the man puts the box on the bookshelf'
(put_stimuli_191015_02_02 027-9, 205.478 214.176)
B(take_up-CLFV_voro)2a+6-V-APPL
```

While the majority of combined adjunct-directional verb constructions take a CLFV in V_{1} position, not all of them do. Examples (140) to (142) show combination constructions with the monotransitive verbs vanggu 'lead', gita 'pull', and lawe 'catch' in V_{1} position. In (140) and (142), the VCs include an additional directional element in the form of the directional enclitic $=w o$ 'thither'.
th $\dot{i}=$ vanggu-ru $=w o=\varnothing \quad$ ina- $\varnothing \quad e \quad$ sel tine 3PL=lead-go.in=thither=3SG be.located-3SG.POSS PREP cell inside 'they lead him into a cell'

$$
\begin{equation*}
\text { (fp_stimuli_191015_05 452, } 1003.980 \text { 1006.060) } \tag{140}
\end{equation*}
$$ B(lead_in) $2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}$

The complex verbs vanggu-ru 'lead-go in' meaning 'lead in' or 'take in' (140) and gita-ranggi 'pull-go out' or 'pull out' (141) in the above examples are quite predictable in their semantics. This is not the case for the combination of lawe 'catch' with ru 'go in' in (142). The combination does not appear to describe the act of catching T, but rather the act of taking the already-captured T-type
participant (in)to the prison cell - indeed, (142) comes from the same text as (140) and describes the same event using a different V_{1} stem. Note also that in (142) R is encoded by the demonstrative $=n a$ 'there (addressee-proximate)' which is attached to the VC itself. Demonstratives occurring in the VC are discussed in §4.4.4. They are interchangeable with an adjunct with the locative base ghe 'LOC', and are thus considered adjuncts.

```
(142) kero methi=thinggari \(=\varnothing\) e sel ma
    already 3PL.IMM.PST=tie=3SG PREP cell already
    \(t h i=l a w e-r u=w o=\varnothing=n a\)
    3PL=catch-go.in=thither=3SG=ADDR.PROX
    'they already tied him in the cell, they took him in there'
                                    (fp_stimuli_191015_05 446-7, 994.410 997.570)
                                    B(take_in-lawe_ru)3a+6-V+6-D
```

In a small number of cases, as already discussed in §6.3.1.2, a combination adjunct-directional verb construction that would typically express a type B (or A) event expresses a type E event. That is, the R has the semantic role of source, not goal. In at least some cases, the 'unexpected' semantic role of R appears to be due to a fixed (idiomatic) expression. For example, the construction li$n j o=n g a$ 'get (sg. flexible entity)-go down=TR' or 'put/take down' can be used to mean 'take off (clothing/item worn on body)' with the R-type participant understood to be the wearer's body or specific body part. This is the case in (143) in which a woman removes a flower that a second woman is wearing in her hair.

(143)ela=ma regha woman=DET one	$3 \mathrm{li-njo=nga}$	flowa	wevo=ma
	oneT.SG.FLEX-g.down=TR	flower	young.woman=DET

e umbali-ye
PREP head/hair-3SG.POSS
'the woman takes the flower down from the girl's hair' (put_stimuli_201015_01 020-1, 150.940 155.080) E(take_down-CLFV_nja)2a+6-V-APPL

The reverse is also attested. The 3PE with ranggi 'go out' in (47) occurs with an R-type participant with the semantic role of goal (type B event), despite the fact that this directional verb typically specifies a transactional orientation from a source (type E event). As noted in §6.3.1.2, an interpretation of the adjunct PP as a source is pragmatically infelicitous (as one cannot 'pour something out from the floor') and the adjunct is therefore interpreted as having the semantic role of goal.

| ela=ke | linggi-ranggi=ya | gamagai | le-nji |
| :--- | :--- | :--- | :--- | :--- |
| woman=SPKR.PROX | 3SG=pour-go.out=DOC | children | POSS.CLF2-3PL.POSS |
| ghe-mwadi-mwadiwo | e | pulo vwata | |
| INS-RED-play | PREP floor top | | |

'the woman pours out the children's toy onto the floor'
(put_stimuli_201015_02 039-42, 257.650 264.085) B(pour_out) $2 \mathrm{a}+6-\mathrm{V}$

These explanations, however, do not appear to account for all instances in which combination constructions occur with an adjunct with an 'unexpected' semantic role. For example, it is unclear why (145) and (146) take the directional njo=nga go down=TR' to express type E events when one would expect the use of the directional njaniya 'go down (from)' to be used. In fact, njaniya 'go down' is used by other speakers to describe the same stimuli videos; compare (145) with example (132) above, which describes the same stimulus video using the directional verb njaniya 'go down (from)'. This is also the case for (146) and example (133).

| amala=ke | $i=$ wo-njo=nga | |
| :--- | :--- | :--- |\quad| ghaningga=ke |
| :--- |
| man=SPKR.PROX |\quad 3SG=GET.SG.RIGD-go.down=TR \quad| food=SPKR.PROX |
| :--- | (put_stimuli_201015_01 131-3, 776.614785 .694) E(take_down-CLFV_nja)2a+6-V-APPL

```
ela i=thin-njo=nga bogisi=ma e buku=ma
woman 3SG=GET.SG.CNTR-go.down=TR box=DET PREP book=DET
    ghamba-nji
    place-3PL.POSS
```

 'the woman puts the box down on the bookshelf'
 (put_stimuli_191015_02_02 093-4, 656.764 662.584)
 E(take_down-CLFV_nja)2a+6-V-APPL

7.8.1.2 Adjunct and directional associated motion prefix

In this strategy, the associated motion prefix yo- 'while going' indicates the transactional orientation towards R which is simultaneously encoded by an adjunct. As shown in Table 7.22, the combination strategy is not common in the corpus, with only a single attested construction.

event	verb	gloss	event type	encoding strategy	text tokens	stimuli tokens
carry, take	GET	'while going-get'	B	$2 a+6-\mathrm{AM}$	1	1

Table 7.22 Verbs in combination adjunct and associated motion prefix constructions
In the corpus, yo- 'while going' only combines with CLFVs to express a 3PE, as shown in (147) and (148). It can also occur with at least one other monotransitive verb kewe 'carry (on stick)' to express a four-participant event (see §7.9.2).
(147) thi=yo-bigi e market veth $i=$ sel 3PL=while.going-GET.PL.CNTR PREP market 3PL.INT=sell 'they carry/take them (baskets of produce) to market to sell'
(fp_stimuli_191015_07 157)
B(take-CLVF)2a+6-AM
(148) $a m b a=m a \quad i=y o-t a k o=n g g i \quad e \quad m b w a=k o \quad$ tine then=DET 3PL=while.going-GET.PL.GNRL=3PL PREP water=DIST inside 'then he takes them (a group of youths) to the water'
(funeral_feasting_081015_02 068)
B(take-CLFV)2a+6-AM

As discussed in §5.3.5, there is no manner-neutral 'carry' verb in Sudest. Combination constructions with a CLFV and yo- 'while going' are one of the most common elicitation responses speakers give when describing carrying events with a direction:

(149)	$\begin{aligned} & a=y o-w o \\ & \text { 1SG=while.going-GET.SG.RIGD } \end{aligned}$		$\begin{aligned} & \text { nggama=ke } \\ & \text { child=SPKR.PROX } \end{aligned}$	$\begin{array}{ll} e & \text { nggold } \\ \text { PREP } & \text { house } \end{array}$		
	'I carry the child to the house'			(e_081116_01)		
				B (take-CLVF)2a+6-AM		
(150)	nggama=ko	$i=y o-l i=y a$			$\begin{aligned} & \text { ndiya }=k o \\ & \text { mustard=DIST } \end{aligned}$	ndamwe leaf
	child=DIST	$3 \mathrm{SG}=$ while.going-	ET.SG.FLEX=YA			
	bubu we					
	grandparent/c	Id PREP				
	'the child carries/takes the mustard leaf to her grandmother'				(e_161116_01)	
				B	CLVF)2a+6-AM	

7.8.2 Adjunct and absorption strategies

These constructions combine the adjunct strategy and the absorption affix-based classification strategy. They only express 3PEs in which physical input by a non-body or body part is used (type G and H events). The verbs attested to occur in the combination strategy are listed in Table 7.23. This strategy is the most frequent combination strategy in terms of total tokens in the corpus. However, the high number of tokens nearly exclusively comes from CUT-BREAK stimuli data.

event	verb	gloss	event type	strategy code	text tokens	stimuli tokens
break	nggila	'break'	G	$2 \mathrm{~b}+7 \mathrm{f}$	-	3
break	ten	'break'	G	$2 \mathrm{~b}+7 \mathrm{f}$	-	36
break	vole	'break'	G	$2 \mathrm{~b}+7 \mathrm{f}$	-	5
smash	ughi	'smash'	G	$2 \mathrm{~b}+7 \mathrm{f}$	-	1
smash	vithi	'smash'	G	$2 \mathrm{~b}+7 \mathrm{f}$	-	2
split	viya	'split'	G	$2 \mathrm{~b}+7 \mathrm{f}$	1	13
tear	thatha	'tear'	G	$2 \mathrm{~b}+7 \mathrm{f}$	-	5
break	bebe	'break'	H	$2 \mathrm{~b}+7 \mathrm{f}$	-	3
break	nggila	'break'	H	$2 \mathrm{~b}+7 \mathrm{f}$	-	5
break	ten	'break'	H	$2 \mathrm{~b}+7 \mathrm{f}$	-	13
break	vole	'break'	H	$2 \mathrm{~b}+7 \mathrm{f}$	-	4
tear	thatha	'tear'	H	$2 \mathrm{~b}+7 \mathrm{f}$	-	1
				total	1	91

$\overline{\text { Table } 7.23 \text { Verbs in combination adjunct and affix-based classification constructions }}$
Examples of this strategy combination are given in examples (151) to (156).
(151) amala=ma thiyo $\quad i=$ go-ten $=a \quad e \quad$ kelumo $=m a$
man=DET 3 SG=by.cutting-break=YA string=DET PREP axe=DET
'the man cuts the string with an axe' (cb_stimuli_101116 018, 251.199 254.988)
G(break-ten)2b+7f
(152) $i=m w a n a-t e n-t e n \quad$ thiyo $=m a \quad e \quad$ nima-nima $=e$ 3SG=w.hands-RED-break string=DET PREP RED-arm/hand=3SG.POSS 'he broke the string repeatedly with his hands'
(cb_stimuli_051016_03 398, 1626.530 1629.120)
H(break-ten) $2 b+7 f$
(153)
$i=v o-t h a t h a \quad k w a m a=m a \quad e \quad u m b w a$ 3SG=by.spearing-tear cloth=DET PREP stick/tree
'she tears the cloth with a stick by stabbing'
(cb_stimuli_051016_03 432, 1865.012 1868.262)
G(tear-thatha)2b+7f
(154)
$i=$ riti-thatha \quad kwama $=m a \quad e \quad$ nima $=e$
3SG=by.striking-tear cloth=DET PREP arm/hand=3SG.POSS
she tears the cloth with arm (by striking it)'
(cb_stimuli_051016_03 397, 1606.430 1609.164)
H(tear-thatha) $2 \mathrm{~b}+7 \mathrm{f}$
(155)

$i=$ ririt-viya	levo	umbali=ye	e
3SG=by.striking-split	POSS.CLF2:young.woman	head=3SG.POSS	PREP
undigethigethí			
chopped.firewood			
'cracks his wife's head with the firewood'			

(feast_of_the_fish_271015088, 213.951 219.480)
G(split)2b+7f

(cb_stimuli_071116 054, 488.740493 .265)
G(smash-ughi) $2 b+7 f$

7.8.3 Serial verb and directional strategies

The serial verb strategy combines the directional verb (§7.8.3.1) and directional adverbial (§0) substrategies in combination constructions.

7.8.3.1 Serial verb and directional verb

The serial verb strategy is attested in combination with the directional-verb strategy in two instances in the corpus, listed in Table 7.24.

event	verb	gloss	event type	encoding strategy	text tokens	stimuli tokens
put back	GET-mban-njogha	'get-put-go back'	B	$3 \mathrm{a}+6-\mathrm{V}$	-	1
immerse back	GET-utu-njogha	'get-immerse-go back'	B	$3 \mathrm{a}+6-\mathrm{V}$	-	1
			total	0	2	

Table 7.24 Verbs in combination serial verb and directional-verb constructions
In (157), the complex verb wo-mban 'get (sg. rigid entity)-put' combines with the directional verb njogha 'go back' to indicate the transactional orientation of the event. The token in (158) describes the same stimulus video as (157), but the speaker uses the more specific verb utu 'immerse', which implies the presence of a substance in which the T-participant can be immersed.
vari=ma thí=wo-mban-njogha $=\varnothing \quad e \quad$ bilikan tine
stone=DET 3PL=GET.SG.RIGD-put-go.back=3SG PREP pot inside
$w e=y a \quad m b w a=m a$
PREP=YA water=DET
'the stone, they put it back in the pot with the water'

$$
\begin{array}{r}
\text { (put_stimuli_191015_01_02 009-11, } 34.12039 .140 \\
\text { B(put-get_mban)3a+6-V }
\end{array}
$$

```
(158)
lolo=ma i=wo-utu-njogha=ya vari=ma e
person=DET 3SG=GET.SG.RIGD-immerse-go.back=YA stone=DET PREP
bilikan tine
pot inside
'the person immerses the stone back in the pot'
                    (put_stimuli_201015_02 063-5, 373.889 379.300)
                        B(immerse-get_utu)3a+6-V
```

The two complex verbs are analysed as a combination serial verb-directional verb strategy rather than a combination adjunct-directional verb strategy. This is because the stem mban 'put', above in (157), and $u t u$ 'immerse', above in (158), only occur in complex verbs and require the first stem in the construction to be grammatical.

7.8.4 Serial verb, adnominal possessive, and directional verb strategies

There is a single attested construction in which the serial verb, adnominal-possessive, and directional-verb strategies combine.

event	verb	gloss	event type	strategy code	text tokens	stimuli tokens
insert back	GET-thithi-njogha	'get-insert-go back'	B	$3 a+5 a+6-\mathrm{V}$	-	1
Table 7.25 Verbs						

Table 7.25 Verbs in combination adjunct, possessive, and directional verb constructions
Example (159) shows the single token of this combination construction found in the corpus. The first two verb stems li-thithi 'get (sg. flexible entity)-insert' are classified as the serial strategy. This is because thithi 'insert' is only grammatical in complex verbs or with a manner-of-causation prefix (see (159) below for an example of this kind). The directional strategy is represented by the verb njogha 'go back', which specifies directionality towards a previous location (in this case, the girl's hair). Finally, R is overtly expressed using the adnominal-possessive substrategy, with R (the young woman's hair) encoded as the possessor of T (a flower).

7.8.4.1 Serial verb and directional adverbial

There is a single construction and token which combines the serial verb and directional adverbial strategies.

event	verb	gloss	event type	strategy code	text tokens	stimuli tokens
put	GET- $r a$	'get-put'	B	$3 \mathrm{a}-\mathrm{R}+6-\mathrm{D}$	-	1

Table 7.26 Verbs in combination serial verb and adverbial constructions
In the single token, shown in (160), the speakers are discussing the order in which a series of pictures should be laid out. The R-type participant is not overtly expressed. Instead, the directionality of the event is indicated by the directional adverbial =wo 'thither (away from speaker)', as well as from context.

$$
\begin{align*}
& \text { wo }=u=\text { bigi-ra }=\varnothing=\text { wo } \tag{160}\\
& \text { HORT=2SG=GET.PL.CNTR-put=3=thither } \\
& \text { 'put them away (there)' }
\end{align*}
$$

(fp_stimuli_201015_02 081, 265.890 267.290)
B(put-CLFV_ra)3a-R+6-D

7.8.5 Adnominal possessive, directional verb, and absorption strategies

In this combination strategy, the adnominal possessive, directional verb, and affix-based absorption strategies combine to encode a single type B event.

event	verb	gloss	event type	strategy code	text tokens	stimuli tokens
insert back	thithi-njogha	'insert-go back'	B	$5 \mathrm{a}+6-\mathrm{V}+7 \mathrm{f}$	-	1

Table 7.27 Verbs in combination possessive, directional verb, and affix-based classification constructions
The single token of this combination construction type is presented in (161). The goal is expressed as the possessor in 'her daughter's hair's cover'. The manner-of-causation prefix, vo- 'by spearing' here does not refer to a separate instrument participant, but rather describes the pointed shape of the T-type participant that is being inserted (which is in fact a flower rather than a 'cover'). See also example (159) above, which describes the same stimulus video using a combination serial verb, adnominal possessive, and directional verb construction.

ela=ma	$i=$ vo-thithi- $n j o g h a=\varnothing=$ $=$ va	yawurumbu-ye
woman=DET	3SG=by.spearing-insert=3SG=REP	
umbali-ye	ghae	
daughter-3SG.POSS		
hair/head-3SG.POSS		
cover		

'the woman reinserts the flower (lit. cover) into her daughter's hair' (lit. inserts her
daughter's hair's cover)' (put_stimuli_201015_01 074-5, 461.492 466.550) B(insert_back) $5 \mathrm{a}+6-\mathrm{V}+7 \mathrm{f}$

7.9 More than three participants: additional instrument

A small number of 3 PE constructions include reference to a fourth participant. In these constructions, the fourth participant is an instrument and is expressed by one of the absorption substrategies (§7.7). The encoding strategies with a fourth participant can be divided into four groups. Adjunct constructions with a fourth participant are discussed in §7.9.1, followed by combination adjunct-directional constructions in §7.9.2, serial verb constructions in §7.9.3, adnominal constructions in §7.9.4, and directional constructions in §7.9.5.

7.9.1 Adjunct strategy with absorbed instrument

The adjunct-strategy constructions attested with a fourth participant can be divided into adjunct constructions with an absorbed instrument (§7.9.2.2) and adjunct constructions with a causativising manner-of-causation prefix that simultaneously evokes an instrument participant (§7.9.2.1).

7.9.1.1 Adjunct strategy with absorbed instrument

In these constructions, the 3PE is expressed by an R-type adjunct construction and a fourth participant is indicated by the absorption substrategy; either direct lexicalisation (§7.7.1) or affixbased classification (§7.7.2). The list of these constructions is given in Table 7.28.

event	verb	gloss	event type	strategy code	text tokens	stimuli tokens
get (w. tongs)	thuwo	'get (w. tongs)'	B	2a-more-instr-7a	-	1
pull (ashore)	bwata	'pull (ashore)'	B	2a-more-instr-7f	-	-
push	vewo	'push'	B	2a-more-instr-7f	-	-
bring/take	GET	'get'	D	2a-more-instr-7f	-	-
bring/take	GET	'get'	E	2a-more-instr-7f	-	6
pull	gita	'pull'	E	2a-more-instr-7f	-	3
lift/raise	vairi	'lift'	E	2a+7f-more-instr-7f	-	1
				total	0	11

Table 7.28 Verbs in adjunct constructions with an absorbed instrument
There is one construction with thuwo 'get (with tongs)' (162) in which information about the fourth participant is included in the semantics of the verb stem (i.e. the lexical-absorption strategy).

(162) | lolo $=m a$ | i=thuwo | kunumwana=ma | nggwe-nggwe | e |
| :--- | :--- | :--- | :--- | :--- |
| person=DET | 3SG=get.w.tongs | banana=DET | RED-be.ripe | PREP |
| tebol=ma | vwata- \varnothing | | | |
| table=DET | top-3SG.POSS | | | |

'the person gets/picks up the the ripe banana with tongs from the table top' (put_stimuli_231015 025-6, 218.817 224.702)

E(get_thuwo)2a-more-instr-7a

The remaining constructions indicate a fourth participant by way of a manner-of-causation prefix. The examples (163) to (165) show type B events with the verbs vewo 'push' and bwata 'pull (ashore)'. In each example, the manner-of-causation prefix in the VC evokes an instrument as a fourth participant.
(163)

$i=m w a n a-v e w o$	wangga $=m a$	e	to
3SG=w.hands-push	boat=DET	PREP	outside

'she pushes the canoe out (using hands)'
(e_021115_02 098, 312.640315 .030)
B(push)2a-more-instr-7f
(164) v

$v a$	$i=$ taga-vewo	bali=ma	gamagai	we=nggi
REM.PST	3SG=by.striking=push	ball=DET	children	PREP=3PL

'he hit the ball (by striking with his hand and arm) to the children'

$$
\begin{array}{r}
\left(\mathrm{e} _021115 _01084,324.280330 .021\right) \\
\text { B(push)2a-more-instr-7f }
\end{array}
$$

(165)
$u=m w a n a-b w a t a \quad$ wangga $=k o \quad e \quad$ garawo $2 \mathrm{SG}=$ w.hands-pull.ashore boat=DIST PREP shore/inlet 'pull the boat onto the shore with your hands' (e_021115_01 080, 307.990311 .260) B(pull.ashore)2a-more-instr-7f

In (166) the verb gita 'pull (from)' specifies a type E event in which T is pulled from R.

$$
\left.\begin{array}{l}
\text { (166) } \begin{array}{l}
\text { wevo } \\
\text { young.woman }
\end{array} \quad \begin{array}{l}
\text { i=mwana-gita } \\
\text { 3SG=by.hand-pull }
\end{array} \begin{array}{l}
\text { kandel } \\
\text { candle }
\end{array} \quad \text { PREP }
\end{array} \begin{array}{l}
\text { ghamba-e } \\
\text { 'the girl pulls the candle from the candlestick.POSS }
\end{array}\right] \text { (lit. its place) with her hand' }
$$

The CLFVs can also take a manner-of-causation prefix that specifies the instrument used to 'get' the T participant. In (167) the prefix $v i$ - 'with fingers' specifies that the toy is picked up using the fingers. In (168), the man takes the knife using his hands.

```
(167)
    i=vi-thin=a
    lou-ye o ghagha-ye
    sibling.opp.sex-3SG.POSS or sibling.same.sex-YA
    'she gets the toy with her fingers from her brother or sister' (e_021115_02 028)
                                    D(bring/take)2a-more-instr-7f
\begin{tabular}{lllll} 
amala=ma & \(i=m w a n a-\) wo & kaina=ma & laghiye & \(e\) \\
man=DET & 3SG=by.hand-GET.SG.RIGD & knife=DET & big & PREP
\end{tabular}
tebol=ma vwata
table=DET top
'the man picks up the big knife from the tabletop'

In (169), the stem vairt 'lift' takes the prefix mwana- 'by hand' to indicate that the young woman picks up the bottle using her hands. The stem vairi 'lift' is one of a number of transitive stems that only occur in complex verbs or in conjunction with a manner-of-causation prefix. Therefore, in (169), the prefix not only indicates the use of the hands in carrying out the action, but is also essential for the grammaticality of the VC.
\begin{tabular}{llllll} 
wevo & \(i=\) mwana-vairi & bwadila & \(e\) & tebol=ma & vwata-e \\
young.woman & 3SG=by.hand-lift & bottle & PREP & table=DET & top-3SG.POSS \\
'a young woman lifts up a bottle from the table with her hands'
\end{tabular}
\[
\text { (put_stimuli_191015_02_01 007-9, } 55.65062 .650 \text { ) }
\]

E(lift)2a+7f-more-instr-7f

\subsection*{7.9.1.2 Causative adjunct with absorbed instrument}

In these constructions a manner-of-causation prefix occurs in a VC headed by an intransitive directional verb. In addition to specifying the manner in which the action is carried out (and thus evoking a fourth, instrument participant), the prefix also functions as a causativiser (see §5.2). The resulting 3PEs are, therefore, classified as causative adjunct R-type strategy constructions with a fourth, instrument participant. The list of causative-adjunct constructions - all from elicitation - is given in Table 7.29.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
strategy \\
code
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline push in & \(r u\) & 'go in' & B & 2a-CAUS+6-D-more-instr-7f & - & - \\
pull in & \(r u\) & 'go in' & B & 2a-CAUS+6-D-more-instr-7f & - & - \\
take out & ranggi & 'go out' & E & 2a-CAUS-more-instr-7f & - & - \\
\hline & & & & total & 0 & 0 \\
\hline
\end{tabular}

Table 7.29 Adjunct constructions with causativising manner-of-causation prefixes
The clauses presented in (7) to (172) show examples of the construction. Examples (7) to (8) show two of the prefixes that mean 'by hand' occurring with the directional ru 'go in' and the adverbial directional marker =wo 'thither' (with which the directional verb frequently collocates). The two prefixes indicate different manners of caused motion, with mwana- specifying a pulling event and ghe- a pushing event (§5.2.1).
\begin{tabular}{lllll} 
a=mwana-ru=wo & \begin{tabular}{l} 
daghata=ma \\
1SG=w.hands-go.in=thither
\end{tabular} & \begin{tabular}{l} 
e \\
log=DET
\end{tabular} & PREP & nggolo \\
house & raberabe \\
under
\end{tabular} =w.hands-go.in=thither
'I pull the \(\log\) under the house by hand'
B(pull.in-ru)2a-CAUS+6-D-more-instr-7f
\begin{tabular}{lllll}
\(i=\) ghe-ru=wo & daghata=na & \(e\) & nggolo=ko & raberabe \\
3SG=w.hands-go.in=thither & log=ADDR.PROX & PREP & house=DIST & under
\end{tabular}
'I push the log in under the house by hand'
(e_021115_01)
B(pull.in-ru)2a-CAUS+6-D-more-instr-7f

In (172), the pseudo manner-of-causation prefix thuwo 'with tongs' causatives the intransitive verb ranggi 'go out'.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{(172)} & ela \(=m a\) & \(i=\) thuwo-ranggi \(=\) ya & ghaninggama & & uye \\
\hline & woman=DET & \(3 \mathrm{SG}=\mathrm{w}\).tongs-move.out=YA & food & PREP & clay.pot \\
\hline & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{'the woman takes the food from the pot using tongs' (e_111116)}} \\
\hline & & & & & \\
\hline
\end{tabular}

\subsection*{7.9.2 Adjunct and directional strategies with absorbed instrument}

Combination adjunct and directional constructions also occur in events with an additional participant. Combination adjunct-directional verb constructions with a fourth, instrument participant are discussed first (\$7.9.2.1), followed by a discussion of an adjunct-associated motion construction with an instrument participant (§7.9.2.2).

\subsection*{7.9.2.1 Adjunct and directional verb with absorbed instrument}

Table 7.30 lists the attested combination adjunct-directional verb constructions with a fourth, instrument participant evoked by an absorption-strategy construction.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline carry up (on & kewe-voro & 'carry (on stick)- & B & \begin{tabular}{l}
\(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}-\) more-
\end{tabular} & 1 & - \\
stick) & & go up' & & instr-7a & & \\
push out & vewo-ranggi & 'push-go out' & B & \(2 \mathrm{a}+6-\mathrm{V}-\)-more-instr-7f & - & 1 \\
take out & GET-ranggi & 'get-go out' & E & \(2 \mathrm{a}+6-\mathrm{V}-\)-more-instr-7f & - & 1 \\
pour out & linggi-ranggi & 'pour-go out' & E & \(2 \mathrm{a}+6-\mathrm{V}-\) more-instr-7f & - & - \\
\hline
\end{tabular}

Table 7.30 Verbs in combination adjunct and directional verb constructions with an absorbed instrument
The 3PE with the monotransitive verb kewe 'carry (on stick)' combines with the directional verb voro 'go up' in (173) in a combination R-type adjunct-directional verb strategy. A fourth, instrument participant is specified by the verbal semantics (direct lexicalisation strategy) rather than a manner-of-causation prefix. The VC also includes the directional enclitic =ma 'hither'.
\[
\begin{array}{ll}
\text { (173) } \begin{array}{ll}
\text { ma } & i=\text { kewe-kewe-voro }=m a=n a \\
\text { already } & \text { 3SG=RED-carry.on.stick-go.up=hither=ADDR.PROX sago } \\
\text { he's already carrying sago up (to) there' } & \text { (marriage_111015 030, 92.980 98.150) } \\
\text { B(carry_up-kewe_voro)2a+6-V+6-D-more-instr-7a }
\end{array}
\end{array}
\]

In (174) and (175) the fourth participant is indicated by the manner-of-causation prefixes mwana'by hand' and vuri- 'by foot' respectively. Both occur with the directional verb ranggi 'go out'.


The example in (176) includes a goal, as the R-type participant and the instrument participant is again evoked by the manner-of-causation prefix.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline kontena container & mbwata maybe & \begin{tabular}{l}
buda \\
what
\end{tabular} & \begin{tabular}{l}
kai \\
thing
\end{tabular} & \begin{tabular}{l}
\(i=m w a n a-\) vewo-rangg \(i=y a\) \\
3SG=w.hands-push-go.out=YA
\end{tabular} & \begin{tabular}{l}
seiwo \\
slowly
\end{tabular} & PREP \\
\hline to outside & & & & & & \\
\hline
\end{tabular}
(put_stimuli_231015 122, 1018.249 1022.754)
B(push)2a+6-V-more-instr-7f

\subsection*{7.9.2.2 Adjunct and associated motion prefix with absorbed instrument}

The monotransitive verb kewe 'carry (on stick)' can combine with the concurrent associated motion prefix yo- 'while going' in a combined adjunct-directional associated motion construction, with a fourth, instrument participant evoked by the verb stem itself.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline carry (on stick) & kewe & 'carry (on stick)' & B & 2a+6-AM-more-instr-7a & - & - \\
\hline
\end{tabular}

Table 7.31 Verbs in combination adjunct and associated motion prefix constructions with an absorbed instrument
The construction does not occur in the corpus but is used in elicitation by speakers when they describe directed carrying events that typically involve using a carrying stick, such as transporting a pig (177).


\subsection*{7.9.3 Serial verb strategy with absorbed instrument}

In this construction, one stem in a complex verb includes information about a fourth, instrument participant.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline put (w tongs) & thuwo-ra & 'get (w tongs)-put' & B & 3a-more-instr-7a & - & 3 \\
\hline
\end{tabular}

Table 7.32 Verbs in serial verb constructions with an absorbed instrument
In (178), the serial strategy with thuwo-ra 'carry (on stick)-put' expresses a 3PE, while the stem thuwo 'get (with tongs)' indicates an additional instrument participant.
(178) ela=ma i=thuwo-ra kunumwana=ma nggwe-nggwe e
woman=DET 3SG=get.w.tongs-put banana=DET RED-be.ripe PREP
tebol \(=m a \quad\) vwata
table=DET on.top
'the woman puts the ripe banana on the table with tongs'
(put_stimuli_231015 084, 682.440687 .087 )
B(put_w.tongs-thuwo_ra)3a-more-instr-7a

\subsection*{7.9.4 Adnominal possessive strategy with absorbed instrument}

In this strategy, the 3PE is expressed by the adnominal possessive strategy; the verb itself includes information about a fourth participant. There is only a single token of this strategy in the corpus, with the verb vwala 'bake (with hot stones)' which is listed in Table 7.33.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline bake (w hot stones) & vwala & 'bake (w. hot stones) & F & 5a-more-instr-7a & 1 & - \\
\hline
\end{tabular}

Table 7.33 Verbs in possessive constructions with an absorbed instrument
The corpus example of this strategy is presented in (179):
\[
\begin{array}{lll}
\text { (179) } \begin{array}{lll}
i=n g a & \text { "ne } \quad u=v w a l a & \text { gha-nggu"" } \\
& \text { 3SG=say } & \text { FUT } 2 \text { 2SG=bake.w.hot.stones } \\
\text { food-1SG.POSS }
\end{array} \\
& \text { 'he said "you will bake my food (in a stone oven)"" }
\end{array}
\]
(mandumbunga_02_181016 073, 196.153 199.552)
F(bake.hot.stones)5a-more-instr-7a

\subsection*{7.9.5 Directional strategy with absorbed instrument}

Both the directional adverbial strategy (§7.9.5.1) and directional verb strategy (§7.9.5.2) occur in 3PEs with a fourth, instrument participant.

\subsection*{7.9.5.1 Directional adverbial strategy with absorbed instrument}

A directional adverbial construction can take a manner-of-causation prefix and thereby indicate a fourth, instrument participant. The only example of this comes from elicitation:
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline push & vewo & 'push' & B & 6-D-more-instr-7f & - & - \\
\hline
\end{tabular}

Table 7.34 Verbs in adverbial constructions with an absorbed instrument
In (180), the manner-of-causation prefix indicates that the hearer should use their hands to push the ball to the speaker.
\[
\begin{array}{ll}
u=m w a n a-v e w o=m a & b a l i=n a  \tag{180}\\
2 \text { SG=by.hands-push=hither } & \text { ball=ADDR.PROX }
\end{array}
\]
'push (me) the ball with your hands' (e_311116)

A(push)6-D-more-instr-7f

\subsection*{7.9.5.2 Directional verb with absorbed instrument}

In a number of directional-verb construction constructions which are listed in Table 7.35, a manner-of-causation prefix evokes an additional instrument participant.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline event & verb & gloss & \begin{tabular}{l}
event \\
type
\end{tabular} & strategy code & text tokens & \begin{tabular}{l}
stimuli \\
tokens
\end{tabular} \\
\hline push (towards deictic centre) & vewo-mena & 'push-come & B & 6-V-more-instr-7f & - & 1 \\
\hline take down & \begin{tabular}{l}
tabe- \\
njo=nga
\end{tabular} & 'prise open-go & E & 6-V-APPL-more-instr7f & - & 1 \\
\hline pour down & \begin{tabular}{l}
tara- \\
\(n j o=n g a\)
\end{tabular} & \[
\begin{aligned}
& \text { down=TR' } \\
& \text { 'pour-go } \\
& \text { down=TR' }
\end{aligned}
\] & E & 6-V-APPL- more-instr-7f & - & 1 \\
\hline & & & & total & 0 & 3 \\
\hline
\end{tabular}

Table 7.35 Verbs with directional-verb constructions with an absorbed instrument
In (181), the prefix mwana- 'by hand' combines with the directional complex verb vewo-mena 'push-come' meaning 'push (towards deictic centre)' to specify that A should use their hands to complete the action.
tene \(u=m w a n a-m w a n a-v e w o-m e n a=\varnothing\)
later 2SG=RED-w.hands-push-come=3SG
'later push it (to me) with your hands' (fp_stimuli_1910_0315 079, 235.109 236.670)
B(push-vewo_mena)6-V-more-instr-7f
The tokens in (182) and (183) also use the prefix mwana- 'by hand' to specify that A uses their hands to 'take down' a picture from where it was stuck (to a wall) and to 'pour down (or out)' some
counters from a cup. Because the events only involve the caused motion of T (while A remains stationary), the directional verb nja 'go down' takes the transitive enclitic (see §7.6.2 and §6.3.1.1).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{(182)} & \[
\begin{aligned}
& e v o=m a \\
& \text { ung.woman= }=\mathrm{DE}
\end{aligned}
\] & \begin{tabular}{l}
kero \\
alrea
\end{tabular} & & down=TR=RI & & \[
\begin{aligned}
& \text { iktur }=m a \\
& \text { icture=DET }
\end{aligned}
\] \\
\hline & \multicolumn{6}{|l|}{\(m e=l i\)-papa \(=\varnothing=m a\)} \\
\hline & \multicolumn{6}{|l|}{3SG.IMM.PST=GET.SG.FLEX-stick=3SG=DET} \\
\hline & \multicolumn{6}{|l|}{\begin{tabular}{l}
'the woman took down/pried off the picture that had been stuck (to the wall) with her hands' \\
(put_stimuli_231015 073-4, 586.892 593.998) \\
E(take_down-tabe_nja)6-V-APPL-more-instr-7f
\end{tabular}} \\
\hline \multirow[t]{3}{*}{(183)} & \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
\begin{tabular}{llll} 
elisar \(\mathbf{i}=m a\) & \(i=n d e-\)-thit \(n=a\) & kountas=ma & \(e\) \\
old.woman=DET & 3SG=stand.and-GET.SG.CNTR=YA & counters=DET & PREP \\
kap=ma & tine & \(n a \quad i=m w a n a-\)-tara- \(n j o=n g a=\emptyset\) & \\
cup=DET & inside & and & 3SG=by.hand-pour-go.down=TR=3SG
\end{tabular} \\
'the old woman holds counters in a cup and pours them out (lit. down) with her hand' (put_stimuli_231015 015-6, 144.930 151.194) \\
E(pour_out-tara_nja)6-V-APPL-more-instr-7f
\end{tabular}}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\subsection*{7.10 More than three participants: adding a further R-type participant}

There are no 3PE constructions in the corpus that express both a source and a goal location within a single clause. If both are expressed, the expressions of source and goal are typically distributed over separate clauses. However, in elicitation, a small number of clauses involving both a source and a goal participant are attested. These are listed in Table 7.36.
\begin{tabular}{lllllll}
\hline event & verb & gloss & \begin{tabular}{l} 
event \\
type
\end{tabular} & \begin{tabular}{l} 
encoding \\
strategy
\end{tabular} & \begin{tabular}{l} 
text \\
tokens
\end{tabular} & \begin{tabular}{l} 
stimuli \\
tokens
\end{tabular} \\
\hline bring & GET & 'get' & A\&E & \(6-\mathrm{D} \& 2 \mathrm{a}\) & - & - \\
load & dowe & 'load' & B\&F & \(2 \mathrm{a} \& 5 \mathrm{a}\) & - & - \\
load & dowe & 'load' & B\&F & \(2 \mathrm{a} \& 2 \mathrm{a}\) & - & - \\
spear & nggau & 'spear' & F\&G & \(5 \mathrm{a} \& 7 \mathrm{a}\) & - & - \\
\hline
\end{tabular}

Table 7.36 Constructions expressing more than one event
In (184), the directional adverbial =ma 'hither' specifies directionality towards the speaker (event type A). Because the referent of the PP weya Bubu is not the same referent as the speaker (the deictic centre), the PP headed by we 'to, from' is interpreted as indicating a source participant (event type E).
(184) \(u=w o=m a \quad\) gheleth \(\dot{i}\) we=ya bubu
\(2 \mathrm{SG}=\mathrm{GET}=\) hither betel.nut PREP=YA grandparent/grandchild
'get/bring me the betel nut from bubu'
(e_031116)
A\&E(bring/take)6-D\&2a

The two examples in (185) are functionally equivalent, both describing the customary practice of loading guests' boats with gifts of food. The two clauses simultaneously express events of discrete movement to a location (event type B) and indicate that the A makes the T available to an R (event type F). In both instances, the goal is indicated by the adjunct strategy, with the PP e wangga=ko 'on the boat'. In (185a), a beneficiary is encoded as the future possessor, while in (185b), the beneficiary is encoded by the PP bwabwarima kaiwanji 'for the guests'.
(185) a. gamagai thi=dowe bwabwari=ma gha-nji \(\quad e \quad\) wangga \(=k o\) children 3PL=load guest=DET food-3PL.POSS PREP boat=DIST 'the children load the food on the boat for the guests (lit. they load the guests' food onto the boat)'
(e_261116_02)
B\&F(load)2a\&5a
b. gamagai thi=dowe ghaningga=ma e wangga=ko bwarbwari=ma children 3PL=load food=DET PREP boat=DIST guest=DET kaiwa-nji reason-3PL.POSS
'they load the food on the boat for the guests (lit. they load the guests' food onto the boat for the guests)'
(e_261116_02)
B\&F(load)2a\&2a

The final construction combines the possessive adnominal strategy and the lexical absorption strategy to express a combination of a type F and a type G event. The T-type participant is encoded as the object of the verb, while R is the possessor of T . The verb nggau 'spear' specifies the tool that is used catch the fish.
\begin{tabular}{lll} 
ve=nggau & gha-ma & bwarogi \\
3SG.INT=spear.fish & POSS.CLF1-1EXCL & fish \\
'he spears fish for us (lit. our fish)' &
\end{tabular}
(e_251115_01)
F\&G(spear_nggau)5a\&7a

\section*{8 Overview and discussion}

\subsection*{8.1 Introduction}

Chapter 7 presented a categorisation of every 3PE identified in the corpus and elicitation data. The present chapter takes a step back and considers patterns (or the lack thereof) in the data, along with how the Sudest 3PEs compare to those of other Oceanic languages. The chapter also considers issues in capturing salient features of some languages in the coding (and categorisation) of 3PEs.

The chapter is structured as follows. Section 8.2 looks at the inventory of attested 3PE constructions in Sudest, including which encoding strategies and combinations are more or less common. Section 8.3 reviews the token frequencies of the encoding strategies: that is, which ones occur most frequently in the corpus itself. Next, Section 8.4 considers whether any correlations can be identified between the event types and encoding strategies. In §8.5, the Sudest findings are compared with previous research on 3PEs in Oceanic languages. Section 8.6 discusses limitations of the framework employed in the study: specifically, the exclusion of certain features from the framework that play a prominent role in the expression of 3PEs in some languages, including Sudest. Finally, \(\S 8.7\) presents some concluding remarks as well as ideas for future and complementary research directions.

\subsection*{8.2 Inventory of 3PE constructions in Sudest}

There are 182 3PE constructions attested across the corpus and elicitation data. The term 'construction' refers to each distinct 3 PE , so \(i=\) thin-voro ' \(3 \mathrm{SG}=\) get ( sg . container-and-contents)-go up' meaning 'she takes it up' and \(i=\) thin-nja ' \(3 \mathrm{SG}=\) get (sg. container-and-contents)-go down' meaning 'she takes it down' are counted as two distinct constructions. The two constructions \(i=\) thinvoro 'get (sg. container-and-contents)-go up' and \(i=t h i n-n j a\) 'get (sg. container-and-contents)-go down' group together as a single type of encoding strategy: specifically, the directional verb substrategy. The 182 distinct constructions can be grouped by the encoding strategy combination to which they belong. The 182 constructions can, in turn, be grouped into 37 distinct 3PE encoding strategy combinations. It should be noted that neither the number of constructions nor the number of encoding strategy combinations relate to the token frequency of the constructions in the corpus; this is discussed in \(\S 8.3\). Table 8.1 lists each of the 37 encoding strategy combinations and the
number of distinct constructions attested for each encoding strategy. The table divides single encoding strategy constructions from combination strategy constructions and encoding strategy constructions with a fourth participant. The table is organised from most common to least common constructions. In cases where two or more construction types occur equally in the dataset, the strategy with the lower code number is listed first, which is listed in the column 'encoding strategy (code). \({ }^{183}\)

\footnotetext{
\({ }^{183}\) For the purposes of corpus annotation, Margetts et al. (2019b) assign each strategy a number (1-7) so the three-place predicate strategy is assigned the label ' 1 ', the oblique/adjunct strategy ' 2 ', etc., see Table 2.2 for the complete list with numbers and \(\S 2.5\) for discussion of corpus annotation practices.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Encoding strategy & \(4^{\text {th }}\) participant strategy & Code & Number counts & of constructions \% \\
\hline 1. & R-type serial verb & & 3a & 34 & 18.68\% \\
\hline 2. & R-type adjunct & & 2a & 32 & 17.58\% \\
\hline 3. & absorption affix-based classification & & 7 f & 19 & 10.44\% \\
\hline 4. & R-type adjunct, directional verb & & \(2 \mathrm{a}+6-\mathrm{V}\) & 12 & 6.59\% \\
\hline 5. & T-type adjunct, absorption affix-based classification & & \(2 \mathrm{~b}+7 \mathrm{f}\) & 12 & 6.59\% \\
\hline 6. & T-type adjunct & & 2b & 9 & 4.95\% \\
\hline 7. & adnominal possessive strategy & & 5a & 7 & 3.85\% \\
\hline 8. & directional verb & & 6-V & 6 & 3.30\% \\
\hline 9 & R-type adjunct & absorption affix-based classification & 2a-more-instr-7f & 5 & 2.75\% \\
\hline 10. & R-type adjunct, directional verb, directional adverbial & & \(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}\) & 4 & 2.20\% \\
\hline 11. & absorption direct lexicalisation & & 7 a & 4 & 2.20\% \\
\hline 12. & R-type adjunct, directional verb & absorption affix-based classification & 2a+6-V-more-instr-7f & 3 & 1.65\% \\
\hline 13. & directional adverbial & & 6-D & 3 & 1.65\% \\
\hline 14. & directional verb applicative & absorption affix-based classification & \begin{tabular}{l}
6-V(-APPL)-more- \\
instr-7f
\end{tabular} & 3 & 1.65\% \\
\hline 15. & directional verb, directional adverbial & & 6-V+6-D & 3 & 1.65\% \\
\hline 16. & R-type adjunct causative & absorption affix-based classification & \begin{tabular}{l}
2a-CAUS(-R)+7f- \\
more-instr-7f
\end{tabular} & 2 & 1.10\% \\
\hline 17. & R-type adjunct causative, directional adverbial & absorption affix-based classification & 2a-CAUS+6-D-more- instr-7f & 2 & 1.10\% \\
\hline 18. & R-type serial verb strategy, directional verb & & \(3 \mathrm{a}+6-\mathrm{V}\) & 2 & 1.10\% \\
\hline 19. & directional associated motion & & 6-AM & 2 & 1.10\% \\
\hline 20. & three-place predicate direct argument & & 1a & 1 & 0.55\% \\
\hline 21. & three place predicate causative & & 1 b & 1 & 0.55\% \\
\hline 22. & R-type adjunct \& R-type adjunct & & 2a\&2a & 1 & 0.55\% \\
\hline 23. & R-type adjunct \& adnominal possessive & & 2a\&5a & 1 & 0.55\% \\
\hline 24. & R-type adjunct, directional associated motion & & \(2 \mathrm{a}+6-\mathrm{AM}\) & 1 & 0.55\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Encoding strategy} & \(4^{\text {th }}\) participant strategy & Code & \multicolumn{2}{|l|}{Number of constructions counts \%} \\
\hline 25. & R-type adjunct, directional associated motion & absorption direct lexicalisation & 2a+6-AM-more-instr7a & 1 & 0.55\% \\
\hline 26. & R-type adjunct, directional verb, directional adverbial & absorption direct lexicalisation & \begin{tabular}{l}
2a+6-V+6-D-more- \\
instr-7a
\end{tabular} & 1 & 0.55\% \\
\hline 27. & R-type adjunct causative & & 2a-CAUS-more-instr-7f & 1 & 0.55\% \\
\hline 28. & R-type adjunct & absorption direct lexicalisation & 2a-more-instr-7a & 1 & 0.55\% \\
\hline 29. & R-type serial verb strategy, adnominal possessive, directional verb & & \(3 a+5 a+6-V\) & 1 & 0.55\% \\
\hline 30. & R-type serial verb strategy, directional adverbial & & \(3 \mathrm{a}+6-\mathrm{D}\) & 1 & 0.55\% \\
\hline 31. & R-type serial verb strategy & absorption direct lexicalisation & 3a-more-instr-7a & 1 & 0.55\% \\
\hline 32. & T-type serial verb strategy & & 3b & 1 & 0.55\% \\
\hline 33. & adnominal possessive \& absorption direct lexicalisation & & \(5 \mathrm{a} \& 7 \mathrm{a}\) & 1 & 0.55\% \\
\hline 34. & adnominal possessive, directional verb, absorption affix-based classification & & \(5 \mathrm{a}+6-\mathrm{V}+7 \mathrm{f}\) & 1 & 0.55\% \\
\hline 35. & adnominal possessive & absorption direct lexicalisation & 5a-more-instr-7a & 1 & 0.55\% \\
\hline 36. & directional adverbial \& R-type adjunct & & 6-D\&2a & 1 & 0.55\% \\
\hline 37. & directional adverbial & absorption affix-based classification & 6-D-more-instr-7f & 1 & 0.55\% \\
\hline & & & total & 182 & 100\% \\
\hline
\end{tabular}

The inventory attested in the corpus and elicitation data shown in Table 8.1 can be compared with Table 8.2, presented below, which shows the comparable list of construction types for the text subcorpus (the most naturalistic dataset available). There are 20 fewer 3PE construction types and 120 fewer distinct constructions attested in the text subcorpus than in the total dataset (consisting of the combined corpus (stimuli and texts) and elicitation). However, the encoding strategies that contribute more than \(2 \%\) of the total constructions across both the combined dataset and text subcorpus remain relatively stable. For both datasets, the R-type serial verb strategy is the most common ( \(18.68 \%\) in the combined corpus and \(26.23 \%\) in the text subcorpus respectively), followed by the R-type adjunct strategy ( \(17.58 \%\) and 19.67), the absorption affix-based classification strategy ( \(10.44 \%\) and \(9.84 \%\) ), and the combination R-type adjunct-directional verb strategy ( \(6.59 \%\) and \(6.56 \%\) ). The fact that the serial verb strategy is the most common construction type attested in both datasets can be attributed to the prevalence of the 'put' stems (discussed previously in §6.3.3 and §7.4.2). Not only are there four distinct 'put' stems - which are counted as four separate constructions here - but they are restricted to complex verbs. In the combined corpus, they account for \(44.12 \%\) (or 15 of 34 constructions); in the text subcorpus, \(62.5 \%\) (or 10 of 16 constructions) of the R-type serial verb strategy constructions.


\footnotetext{
Table 8.2 Inventory of 3PE construction types by encoding strategy in text subcorpus (single and combination strategies, and constructions with a fourth participant)
}

The 3PE constructions can also be looked at in terms of what proportion of the total number of constructions involve a single encoding strategy (e.g. R-type adjunct strategy), compared with those that either combine more than one encoding strategy or add a fourth participant (e.g. combination R-type adjunct-directional verb strategy, or an R-type adjunct strategy with a fourth participant added via the absorption strategy). While the use of combination strategies (and to a lesser extent, constructions with a fourth participant) are relatively widespread in the data, the majority of constructions involve only a single strategy. Single strategy constructions in the combined corpus and elicitation dataset account for just under two-thirds ( \(64.85 \%\) ) of all constructions, and in the text subcorpus, for just over three-quarters ( \(78.7 \%\) ) of all constructions.

The frequencies of construction types differ somewhat when looking at which strategies occur the most overall in distinct 3PE constructions. To investigate this, all distinct constructions involving a certain strategy were grouped together. So, combination R-type adjunct-directional verb strategy constructions were added to 'pure' R-type adjunct strategy constructions involving only a single encoding strategy in order to assess the overall prevalence of the R-type adjunct strategy. Combination R-type adjunct-directional verb strategy constructions were also added to the counts of the 'pure' directional strategy construction. \({ }^{184}\) Table 8.3 shows the total frequencies of each encoding strategy, both in the combined dataset (corpus and elicitation) and in the text subcorpus. Note that as combination constructions are counted more than once, the total percentage exceeds \(100 \%\). For both datasets, the order of the R-type serial constructions and R-type adjunct constructions reverses when looking at the total number of constructions containing these strategies - which includes combination strategies - compared with the number of 'pure' single strategy constructions (listed in Table 8.1 and Table 8.2). Overall, the R-type adjunct strategy is the most common ( \(36.81 \%\) in the combined dataset and \(32.79 \%\) in the text subcorpus), followed by the serial verb strategy ( \(21.43 \%\) and \(26.23 \%\) ). Table 8.3 also shows clearly how common overall the directional verb strategy is, with approximately a fifth of all 3PE constructions in both datasets containing this encoding strategy ( \(19.78 \%\) and \(21.31 \%\) ).

There is a marked difference in the frequencies of the absorption affix-based classification strategy ( \(18.68 \%\) and \(11.48 \%\) ) and the T-type adjunct strategy ( 11.54 and \(4.92 \%\) ) across the two datasets. The contrast in frequencies for of these two strategies can be attributed to the inclusion of the stimuli subcorpus (which contains a large number of constructions involving these two strategies) in the combined dataset. There is a small difference in the use of the directional adverbial strategy between the data sets: it is more common in the text subcorpus ( \(13.11 \%\) ) compared with the combined

\footnotetext{
\({ }^{184}\) The frequency percentage for each strategy is the total number of constructions it is attested in, so 67 for the R-type adjunct strategy constructions in the combined dataset, divided by the total number of constructions in the corpus and elicitation combined dataset (182).
}
dataset \((8,79 \%)\). This may be due to the inclusion of stimuli data in the latter, as directional strategies are not generally used in combination with the T-type adjunct strategy and the absorption affix-based classification strategy. The remaining strategies account for less than ten percent of all constructions in both datasets.
\begin{tabular}{llllll}
\hline \multirow{2}{*}{ Code } & Strategy & \multicolumn{2}{c}{ Corpus \& elicitation } & \multicolumn{2}{c}{ Text subcorpus only } \\
& & counts & \(\%\) & counts & \%
\end{tabular}

Table 8.3 Inventory of distinct 3PE construction types by encoding strategy \((\%=<100)\)

\subsection*{8.3 Frequencies of three-participant events}

Another way to view the Sudest 3PEs is in terms of token frequencies in the corpus. The token frequency is distinct from the inventory of 3PEs discussed in the previous section. Token frequency relates to how many times a particular encoding strategy occurs in the corpus. The 3PE inventory, on the other hand, relates to how many distinct 3PEs are attested. For example, there are eight tokens of the three-place direct argument strategy in the corpus (1a), but they are all the same construction with vaghare 'teach'. Thus, there is only one 3PE construction attested for the threeplace direct argument strategy. Only frequencies from the text subcorpus are considered in the discussion of token frequencies. In total, there are 153 3PE tokens in the text corpus. However, token frequencies will not be considered for the combined stimuli and text corpus. This is because the stimuli subcorpus contains data from multiple recordings of the same stimuli tasks (see §1.5.5.2 for discussion of texts in the corpus). Two of the tasks in particular, the PUT task (Bowerman et al. 2004) and the CUT-BREAK task (Bohnemeyer et al. 2001) nearly exclusively consist of stimuli videos depicting events that correspond to 3PE target events - type A, B, and E events and type G and H events respectively. For example, the absorption affix-based classification strategy occurs 279 times in the stimuli subcorpus - making it the most frequent encoding strategy in the stimuli
subcorpus - but the same strategy occurs just ten times in the text subcorpus and is the sixth most frequent encoding strategy. \({ }^{185}\)

Table 8.4 presents the token frequencies of each of the encoding strategies (single and combination strategies, and constructions with a fourth participant) in the text subcorpus.

\footnotetext{
\({ }^{185}\) This is not to suggest that the text subcorpus is a truly 'representative' sample of the language. However, it is still more spontaneous and naturalistic in nature than the combined corpus.
}
\begin{tabular}{|c|c|c|c|c|}
\hline Encoding strategy & \begin{tabular}{l}
\(4^{\text {th }}\) participant \\
strategy
\end{tabular} & Code & \multicolumn{2}{|l|}{Number of tokens counts \%} \\
\hline 1. R-type serial verb & & 3a & 54 & 35.29\% \\
\hline 2. R-type adjunct & & 2a & 30 & 19.61\% \\
\hline 3. directional associated motion & & 6-AM & 9 & 5.88\% \\
\hline 4. absorption affix-based classification & & 7f & 9 & 5.88\% \\
\hline 5. three-place predicate direct argument & & 1a & 8 & 5.23\% \\
\hline 6. R-type adjunct, directional verb & & \(2 \mathrm{a}+6-\mathrm{V}\) & 7 & 4.58\% \\
\hline 7. directional verb & & 6-V & 7 & 4.58\% \\
\hline 8. directional adverbial & & 6-D & 6 & 3.92\% \\
\hline 9 directional verb, directional adverbial & & 6-V+6-D & 6 & 3.92\% \\
\hline 10 absorption direct lexicalisation & & 7a & 5 & 3.27\% \\
\hline 11 directional verb, directional adverbial & & \(2 \mathrm{a}+6-\mathrm{V}+6-\mathrm{D}\) & 3 & 1.96\% \\
\hline 12 adnominal possessive & & 5a & 3 & 1.96\% \\
\hline 13 T-type adjunct & & 2b & 2 & 1.31\% \\
\hline 14 R-type adjunct, directional associated motion & & \(2 \mathrm{a}+6-\mathrm{AM}\) & 1 & 0.65\% \\
\hline 15 R-type adjunct, directional verb, directional adverbial & absorption direct lexicalisation & \[
\begin{aligned}
& \text { 2a+6-V+6-D-more-instr- } \\
& 7 \mathrm{a}
\end{aligned}
\] & 1 & 0.65\% \\
\hline 16 T-type adjunct, absorption affix-based classification & & \(2 \mathrm{~b}+7 \mathrm{f}\) & 1 & 0.65\% \\
\hline 17 adnominal possessive & absorption direct lexicalisation & 5a-more-instr-7a & 1 & 0.65\% \\
\hline & & total & 153 & 100\% \\
\hline
\end{tabular}

Table 8.4 Token frequency in text subcorpus (single and combination strategies, and constructions with a fourth participant)

The patterning of token frequencies in the text corpus in many ways mirrors the encoding strategies, with the most-attested to least-attested constructions discussed in the previous section. The majority of tokens in the corpus only involve a single encoding strategy ( 133 tokens or \(86.93 \%\) ), and just 20 tokens ( \(13.07 \%\) ) are encoded by multiple strategies or involve a fourth participant. The two most common encoding strategies in terms of token frequencies are the R-type serial verb strategy ( 54 tokens or \(35.29 \%\) ) and the R-type adjunct strategy ( 30 tokens or \(19.61 \%\) ), which combined account for just over half of all attested tokens ( 84 tokens or \(54.9 \%\) ). As discussed above, the pervasiveness of the serial verb strategy is primarily due to the fact that all basic events of 'putting' and 'placement' - as well as those that specify the manner of the placement - are obligatorily expressed as a multiverb construction involving one of the four PUT stems (§6.3.3., §7.4.2). Three-participant events with one of the PUT stems account for 38 ( \(70.37 \%\) ) of the 54 serial verb strategy constructions. A further four tokens are manner-specific complex verbs with a PUT stem(e.g. linggi-mban 'pour-put, put by pouring', vanggu-ra 'lead-put, put by leading'), meaning that PUT constructions account for over a quarter ( 42 tokens or \(26.14 \%\) ) of all 3PEs in the corpus and just under three quarters ( \(74.07 \%\) ) of all serial verb strategy constructions. Besides the R-type serial verb strategy and the R-type adjunct strategy, the only other encoding strategies that make up over five percent of all 3PE tokens in the corpus are the directional associated motion prefix strategy (5.88\%), the absorption affixbased classification strategy ( \(5.88 \%\) ), and the three-place predicate direct argument strategy (5.23\%).

Table 8.5 presents the overall frequencies of each of the (sub)strategies in the text subcorpus. Again, the total percentage exceeds 100 per cent due to combination strategy tokens being counted twice.
\begin{tabular}{lllll}
\hline & Encoding strategy & Code & \multicolumn{2}{l}{ Number of tokens } \\
counts & \% \\
\hline 1. & R-type serial verb & 3 a & 54 & \(35.53 \%\) \\
\hline 2. & R-type adjunct & 2a & 42 & \(27.63 \%\) \\
\hline 3. & directional verb & \(6-\mathrm{V}\) & 24 & \(15.79 \%\) \\
\hline 4. & directional adverbial & 6-D & 16 & \(10.53 \%\) \\
\hline 5. & directional associated motion & 6-AM & 10 & \(6.58 \%\) \\
\hline 6. & absorption affix-based classification & 7 f & 10 & \(6.58 \%\) \\
\hline 7. & three-place predicate direct argument & 1 a & 8 & \(5.26 \%\) \\
\hline 8. & absorption direct lexicalisation & 7 a & 5 & \(3.29 \%\) \\
\hline 9 & adnominal possessive & 5 a & 4 & \(2.63 \%\) \\
\hline 10 & T-type adjunct & 2 b & 3 & \(1.97 \%\) \\
\hline & absorption direct lexicalisation & more & 2 & \(1.31 \%\) \\
\hline
\end{tabular}

Table 8.5 Strategy frequency in tokens in text subcorpus \((\%=<100)\)
The R-type serial verb strategy ( 54 tokens or \(35.53 \%\) ) and R-type adjunct strategy ( 42 tokens or \(27.63 \%\) ) remain the most common encoding strategies, even though the serial verb strategy does not occur in any combination strategies in the text subcorpus. The importance of the directional
strategies for encoding 3PEs in Sudest also becomes clear when looking at the overall token frequencies - both in single encoding strategy constructions and combination encoding strategy constructions. The three directional substrategies (directional verb, adverbial directional, and associated motion prefix strategies), are cumulatively the next most frequent strategies overall, and are present in a third of all 3PEs in the corpus ( 50 tokens or \(32.9 \%\) ). The remaining five strategies (affix-based classification, direct argument, direct lexicalisation, possessive, and T-type adjunct) together occur 30 times ( \(19.73 \%\) ) in the subcorpus.

\subsection*{8.4 Correlations between event type and encoding strategy}

Overall, the majority of target events are expressed by a variety of encoding strategies. This means that patterning between event type and target strategy is limited. The strongest correlations between event types and encoding strategies are found for events of impact in which an instrument is used on a patient (type G and H target events), the absorption strategies, and, to a lesser extent, the Ttype adjunct strategy. There are also some correlations between the directional strategies and events of caused motion (type A, B, and E events). Finally, while there is a limited number of attested events in which A intends to cause R to receive T (type F target events), the data suggest that the adnominal possessive strategy may be a preferred strategy to encode such events. The remainder of this section explores each of these correlations in turn.

Events of impact involving an instrument (type G and H events) are almost exclusively encoded by absorption strategy constructions, T-type adjunct strategy constructions, or a combination of both in the combined corpus. Furthermore, these encoding strategies encode non-impact 3PEs in only a handful of attested constructions. The encoding strategies used to encode type G and H events and their frequencies in the combined corpus are given in Table 8.6.
\begin{tabular}{lllll}
\hline & Strategy & Code & \multicolumn{2}{c}{ Number of tokens } \\
& & & counts & \(\%\) \\
\hline 1. & absorption affix-based classification & 7 f & 191 & \(63.46 \%\) \\
\hline 2. & T-type adjunct and absorption affix-based classification & \(2 \mathrm{~b}+7 \mathrm{f}\) & 92 & \(30.56 \%\) \\
\hline 3. & T-type adjunct & 2 b & 12 & \(3.99 \%\) \\
\hline 4. & absorption direct lexicalisation & 7 a & 5 & \(1.66 \%\) \\
\hline 5. & T-type serial verb & 3 b & 1 & \(0.33 \%\) \\
\hline & & total & 301 & \(100 \%\) \\
\hline
\end{tabular}

Table 8.6 Events of impact and their encoding strategies (combined corpus)
The affix-based classification substrategy involving a manner-of-causation prefix and the T-type adjunct strategy can be used either interchangeably or in combination when expressing a wide variety of type G and H target events. The majority of these 3PEs are encoded by the affix-based classification strategy ( 191 tokens or \(63.46 \%\) ), followed by a combination of this strategy with the

T-type adjunct strategy ( 92 tokens or \(30.56 \%\) ). The remaining \(5.98 \%\) of tokens are encoded by the T-type strategy alone ( 12 tokens or \(3.99 \%\) ), the absorption direct lexicalisation strategy ( 5 tokens or \(1.66 \%\) ), or the T-type serial verb strategy ( 1 token or \(0.33 \%\) ). As discussed in chapter 2, the events involving an instrument impacting on a patient do not fit into the macro semantic roles with a T- and R-type participant. Instead, they have participants with the semantic roles of instrument and patient. It is, therefore, not necessarily surprising that type \(G\) and \(H\) events are encoded differently from other events, and that the encoding strategies used are more or less restricted to encoding these event types.

It can also be noted that while there are a variety of encoding strategies used to express A, B and E events, the directional strategy is only attested encoding these three event types. Whether the directional strategy is restricted to these three target event types or this is just a tendency and they may also occur with other event types is unclear. In any event, it is clear that the directional strategy plays an important role in the expression of the three event types that involve caused motion to or from a location. A more detailed study of these event types of events and their encoding in Sudest can be found in Sheppard (forthcoming).

Some correlations can also be observed between events in which an agent intends to cause the recipient to receive the theme (type F events) and the adnominal possessive strategy. This observation comes however with the caveat that there are only a few events of this type attested in the data. There are eight attested constructions expressing type F events, only three of which occur the corpus (and only once each). The remaining five constructions are only attested in elicitation data. The three type F events attested in the corpus - as well as two of those attested in elicitation are encoded by the possessive strategy. The remaining three constructions from the elicitation data are encoded by the R-type adjunct and serial verb strategies. While the possessive strategy is also used to encode other event types, the limited data suggest that it could be a preferred strategy for expressing events involving the creation, preparation, and obtaining of T for R .

Before concluding the discussion on correlations between event types and encoding strategies, it should also be noted that some target event types are underrepresented in the current data: specifically, events of types I, J, K, and L. In type I events, conditions of satisfaction imply that A causes R to receive T (e.g. promise, lend (s.o. s.th.)). In type J events, A acts to cause R to receive T at a future point (e.g. leave, allocate (s.o. s.th.)). In type K events, A allows R to receive T (e.g. permit, allow (s.o. s.th.)). And in type L and events, A causes R not to receive or access T (e.g. refuse, hide (s.o./s.th. from s.o). There are no attested tokens of these 3PEs in the corpus data, and only one or two attested constructions of each of these event types in elicitation data.

The only attested type I event involves the two-place complex verb dage-ra 'speak-put' meaning 'promise (s.th. to s.o.)' (see §7.4.2). The single type L 3PE is expressed by GET-thuwole 'get-hide' meaning 'hide', which is likewise a two-place complex verb (see §7.4.3). The type J events identified in elicitation involve predicates that also encode different three-participant event types. For example, vatomwe 'show' (1) can have the implication that what is being shown is on offer. Similarly the 'give' verb constructions in (2) and (3) can be interpreted as an offer to give rather than an outright giving event.
\[
\begin{array}{lll}
i=v a t o m w e=y a & \text { mbombo } & \text { we=nggo }  \tag{1}\\
3 \mathrm{SG}=\text { show=YA } & \text { pig } & \text { PREP=1SG }
\end{array}
\]
'he offered (lit. showed) a pig to me' (e_211116_01)
\begin{tabular}{lll} 
mbugha=ma & \(i=r \dot{\boldsymbol{t}}\)-wo-ve=nggo & \(t e o=m a\) \\
dog=DET & 3SG=w.teeth-GET.SG.RIGD-give=1SG & rat=DET
\end{tabular}
'the dog offered me the rat in its mouth'
\begin{tabular}{lllll} 
rama- nggu & \(i=\) vanggu-giya=nggo & we =ya & le & boda-boda \\
father-1SG.PSS & 3SG=lead-give=1SG & PREP=YA & POSS.CLF2 & RED-relative \\
'my father offered me to his relatives (to adopt)' & & \((\mathrm{e}\) _041116)
\end{tabular}

The verb vatomwe 'show' can also be used to imply a type K event (the only one attested in the data). In (4), vatomwe 'show' implies that R is allowed to take (temporary) possession of R :
(4) Lydia \(i=v a t o m w e=y a ~ l e \quad\) koukou we=ya Michael pers.name \(3 S G=\) show=YA POSS.CLF2 canoe PREP=YA pers.name 'Lydia allows (lit. shows) her canoe to (be used) by Michael' (e_041215_01)

Finally, responses in elicitation for type L target events typically consist of negated clauses, like in (5) with ande ivaghevaghere 'not give (as gift)'.
(5) ande \(i=v a g h e v a g h e=r e ~ m b o m b o=m a \quad\) we=nggi=ya bwabwari=ma NEG1 3SG=give(gift)=NEG2 pig=DET \(\quad\) PREP=3PL=YA visitor=DET
'they refused (to give) the pig to the visitors'
(e_261116_02)
Given the minimal data on type I, J, K, and Levents, it not possible to draw any type of conclusions relating to event types and potential links to particular encoding strategies.

\subsection*{8.5 Comparison with previous 3PE research}

When comparing the encoding strategies used to express 3PEs in Sudest with those attested in other Oceanic languages, Sudest generally conforms to the patterning identified for Oceanic languages by Margetts (2007). All encoding strategies - although not all substrategies - identified by Margetts (2007) in her survey of 28 Oceanic languages are found in Sudest, excluding the incorporation strategy. There is no attested noun incorporation in Sudest, and therefore no use of this strategy.

Within the directional strategy, Sudest also makes use of an additional substrategy not identified in previous literature: the directional associated motion strategy. Margetts' (2007) survey is based on data from grammatical descriptions rather than corpus data. It is therefore not possible to compare the relative frequencies of encoding strategies and tokens of 3PEs in the Sudest data with other languages in this study.

Like the majority of Oceanic languages with three-place predicates identified by Margetts (2007), Sudest only has a small number of predicates that take three core arguments. These predicates are the R-type serial verb strategy constructions with ve 'give' (\$7.4.1); the three-place predicate direct argument strategy verb vaghare 'teach'; and the three-place predicate causative strategy verb \(v a\) ravu 'teach' (§7.2). It is not surprising that the two event types that can be encoded by three-place predicates are 'give' and 'teach'. Semantically, 'give' verbs are often considered to be the prototypical three-participant event (Haspelmath 2005b); if a language only has one three-place predicate it is nearly always 'give' (Kittilä 2006). However, 'give' has long been identified as atypical cross-linguistically (e.g. Borg \& Comrie 1984; Newman 1996; 1997). Kittilä (2006a) argues that 'give's exceptional status relates to its high level of formal and semantic transitivity (in line with Hopper and Thompson (1980)), and goes so far as to propose a universal that if a language has only a single three-place predicate, that predicate will be 'give'. The fact that the only other event type that takes three core arguments is 'teach' is also typical of languages with a small number of three-place predicates. In these languages, the most frequent event types encoded by ditransitive verbs also include 'teach' and 'show' (see e.g. Kittilä 2006a; Malchukov et al. 2010a: 50). A further '(near-)universal' Kittilä (2006a: 606) proposes is that, if there are derived and underived threeplace predicates, it will be 'give' that is underived. This is also borne out in the Sudest data. The verb stem ve 'give' obligatorily occurs in complex verbs, but does not take any derivational morphology. \({ }^{186}\) It is the 'teach' verbs va-ravu and vaghare that are derived (or show evidence of historically being derived) (§7.2).

As discussed, the directional associated motion strategy used in Sudest is not identified as a 3PE encoding strategy in either Margetts (2007) or M\&A. Associated motion morphemes also appear to be undocumented in any other Oceanic language. However, multi-verb constructions with sequential semantics involving a motion verb in \(\mathrm{V}_{1}\) are relatively widespread among Oceanic languages (Lynch et al. 2002: 47). Cleary-Kemp (2015: 134) even proposes that they should be labelled 'associated motion' serial verb constructions, based on their similarity to associated motion prefixes identified in other language families. In a number of North New Caledonia languages,

\footnotetext{
\({ }^{186}\) The valence of complex verbs is determined by the verb stem with the highest valence in the construction. The stem \(v e\) 'give' is analysed as ditransitive because it only ever occurs with monotransitive \(\mathrm{V}_{1}\) stems, and because the complex verbs it occurs in take three core arguments (§6.3.2, §6.3.7).
}
comparable constructions to the Sudest ones express simultaneous events with a posture or motion \(\mathrm{V}_{1}\) and a fixed \(\mathrm{V}_{2}\) stem meaning 'put' (Ozanne-Rivierre 2004). These constructions often have the formula ' X is moving taking (or carrying) Y ' (Ozanne-Rivierre: 345). In these languages, however, it is the \(\mathrm{V}_{2}\) verb 'take' that tends to grammaticalise into an associative morpheme meaning 'with'. Example (6) shows a serial verb construction with sequential semantics in Nemi (North New Caledonian), with a \(\mathrm{V}_{1}\) motion verb ta 'go up' and \(f e\) 'take' in \(\mathrm{V}_{2}\).
(6) NEMI (NORTH NEW CALEDONIA)
\begin{tabular}{llll} 
wo-n & ta-nga-me & \(f e\) & Kaavo \\
1SG-PERF & go.up-REV-towards & take & pers.name
\end{tabular} 'I have come to fetch Kaavo'
(Ozanne-Rivierre 2004:
336)

Nêlêmwa, another North New Caledonia languages, has an associative morpheme ve (probably historically derived from \(f e\) 'take') in serial constructions that indicates that the horse is running with the theme participant (Ozanne-Rivierre 2004: 339).
NÊLEAMWA (NORTH NEW CALEDONIA)
\(I \quad\) thege-ve ye \(\quad\) yu
3SG run-ASSOC him \(\quad\) ERG
'the horse dragged him'
(Ozanne-Rivierre 2004: 339)

While none of the examples listed in Ozanne-Rivierre (2004) appear to imply a third participant, it is possible that other Oceanic languages also have 'associated motion' 3PEs, whether they involve a grammaticalised morpheme or a multi-verb construction.

\subsection*{8.6 Issues with the current framework}

The 3PE framework set out by M\&A assumes that the 3PE is encoded by a transitive predicate with either two or three core arguments. The encoding strategies are generally categorised by how the 'third' participant is expressed. This means that a 3PE expressed, for example, by an intransitive verb with two adjuncts does not neatly fit into the categories of the framework. The fact that the encoding strategies are identified and categorised by how they encode the 'third' participant also means that aspects of the constructions may be ignored by the categorisation of the encoding strategies, even though they are relevant. As shown in §5.2, the CLFVs in Sudest classify the referent of the object (the T-type participant). However, because the T-type participant is encoded as one of two syntactic arguments, these classificatory morphemes are not taken into account in the description of the encoding strategies; also, the CLFVs are not distinguished in the coding. This means that the 3PE in (28) with giya 'give' (which includes no information about the nature of the
object) is treated identically as the constructions with a CLFV in (29) and (30) (which entail information about the object).
thí=giya we=nggi ghaningga dayagha

3PL=give PREP=3PL food be.hot
'they give them hot food'
(hunting_261214 017-8, 37.440 40.430)
amba methi=li-giya
then 3 3PL.IMM.PST=GET.SG.FLEX-give
'then they give a (empty) basket to him'
nambo we \(=\emptyset\)
basket \(\mathrm{PREP}=3 \mathrm{SG}\)
(dating_081015 074, 201.500 204.860)
\begin{tabular}{lll}
\begin{tabular}{lll}
..\(n a\) & thi \(=\) =thin-giya \(=\varnothing\) & \(w e=y a\)
\end{tabular} & wevo \(=k o\) \\
and & 3PL=GET.SG.CNTR-give=3SG & PREP=YA \\
tina-e & na \(\quad\) rama- \(a\) & \\
mother-3SG.POSS \(\quad\) and & \\
father-3SG.POSS & \\
'...and they give it (a full basket) to the girl's mother and father'
\end{tabular}
(first_time_251214 021-23, 58.230 64.780)

Margetts and Austin (2007) do in fact identify a strategy related to 'classifiers or object markers' (p. 434): specifically, the absorbed classifier/object marker strategy, a substrategy of the absorption strategy. In this strategy, the verb takes two arguments and 'the verb stem has absorbed what used to be a classifier or object marker which conveys information about a further participant' (Margetts et al. 2019: 2). Margetts and Austin (2007: 434) give a number of North American languages (including Tsalagi (Cherokee)) as an example of this strategy. Cherokee has around 40 sets of classificatory verbs that express handling and caused motion events (Montgomery-Anderson 2008: 278). The diachronic source of the classificatory verbs is noun incorporation, but the incorporated element is no longer separable or necessarily identifiable in the synchronic verb sets (Mithun 1999: 111; Montgomery-Anderson 2008: 277). The Cherokee classificatory verbs therefore fit the criteria of having an 'absorbed' element that conveys information about a participant. However, as discussed in \(\S 5.3 .1\), verbal classifiers cross-linguistically function on an 'absolutive' basis (Keenan 1984). This means that like the CLFV in Sudest, a verbal classifier in a monotransitive predicate will always specify properties of the object referent, rather than a third participant that is not a core argument.

Cross-linguistically, verbal classifiers in transitive predicates overwhelmingly occur in predicates expressing events of handling and caused motion, and are usually monotransitive (Aikhenvald 2000: 154; Kilarski 2013: 42). This means that for any language with verbal classifiers in transitive predicates, there will likely be a relatively high number of 3PEs that include a verbal classifier, as is the case for Sudest (and likely Cherokee). In fact, classificatory verbs occur in over one third ( \(35 \%\) ) of all 3PE constructions in the Sudest data ( 64 distinct constructions). Additionally, they occur in \(57 \%\) ( 87 tokens) of all 3PE tokens in the text subcorpus. However, there is no place in the
framework to holistically account for this important feature, which plays such a prominent role in the expression of 3PEs in the language. This means that for languages like Sudest with verbal classifiers, a cross-linguistic comparison of 3PEs based on encoding strategies alone can ignore key features of 3PEs - and thus similarities and differences - between, for example, languages with verbal classifiers.

\subsection*{8.7 Conclusions and future research}

This thesis has presented an analysis of Sudest verbal morphosyntax and the expression of threeparticipant events. The thesis is based on primary fieldwork. Like any such project, the most valuable output of the project is arguably the language data itself (Morey 2005: 78). The data collected for the thesis includes 73 transcribed, interlinearised, text-audio aligned texts (approx. 9.5 hours) and some 20 hours of elicitation recordings. These texts are currently in the process of being archived in in The Language Archive of the Max Planck Institute so that they are available for transparency and reusability. \({ }^{187}\)

The first three chapters presented introductory matter. Chapter 1 introduced the language, its speakers and the aims of the thesis. Chapter 2 reviewed the literature related to the study of threeparticipant events. It also introduced Margetts and Austin's (2007) list of three-participant events and morphosyntactic encoding strategies, which form the starting point for the investigation of three-participant events in Sudest. Chapter 3 provided a grammar sketch of the language.

Chapters 4 to 6 focussed on the verb complex in Sudest. Chapter 4 presented an analysis of the slots in the verb complex. The Sudest verb complex shows many features that are widespread in Oceanic languages - such as valence changing and rearranging morphology and posture-based prefixes - but the data also showed that Sudest has a group of three prefixes with associated motion semantics that have grammaticalised from motion verbs with manner semantics. While multi-verb constructions with a motion verb slot and sequential semantics are common in Oceanic languages, grammaticalised associated motion morphemes appear to be unattested. Chapter 5 described two 'classificatory' verbal elements in the language. The manner-of-causation prefixes, traditionally called 'classificatory prefixes' in the literature, are common in the Papuan Tip languages. They indicate the manner in which the event encoded by the verb comes about (e.g. 'by hands', 'by cutting'). The second group of morphemes discussed in chapter 5 were the classificatory verbs. The group of classificatory verbs mean 'get' and are selected based on properties of the object referent (e.g. consistency, composition, and number). The presence of classificatory verbs in Sudest is of particular note, as they are otherwise unattested in the Oceanic (and Austronesian) languages.

\footnotetext{
\({ }^{187}\) The corpus will soon be available at https://hdl.handle.net/1839/a67b355f-a22d-4e86-a95d-e41a2674e196.
}

Chapter 6 provided an analysis of the approximately 250 multi-verb constructions attested in the Sudest dataset, many of which could be analysed as nuclear-layer serialisation.

Chapter 7 and chapter 8 presented an overview of the encoding of 3PEs in Sudest. Chapter 7 provided an analysis of all 3PEs attested in the Sudest data, grouped by the encoding strategies identified by M\&A. The current chapter has presented a discussion of the 3PE encoding strategy combinations, looking at the inventory of encoding strategies and which are used most frequently to express 3PEs (§8.2); the token frequency of the encoding strategies in the text subcorpus (§8.3); and potential correlations between encoding strategies and target events (§8.4). For both the inventory of 3PE constructions and token frequencies in the corpus, the serial verb strategy and Rtype adjunct strategy were found to be the most common encoding strategies. The directional strategy also plays a prominent role in 3PE encoding, with the third-highest number of tokens in the corpus. The only strong link between event types and encoding strategies involves the use of the absorption strategy - particularly the affix-based classification strategy - and the T-type adjunct strategy to express events involving impact by an instrument (type G and H target events). There also appears to be a restriction on directional strategy constructions only encoding caused-motion events (type A, B, and E target events). Also, there is potentially a link between the adnominal possessive strategy and events in which A intends to cause R to receive T (type F target events), although the encoding strategy is not restricted to type F events. As was shown in \(\S 8.5\), the 3 PE encoding strategies that occur in Sudest conform overall to previous research on Oceanic languages (cf. Margetts 2007), with the exception of the directional substrategy involving associated motion prefixes. The associated motion strategy is not attested in previous 3PE literature (neither Oceanic nor non-Oceanic); through its identification in the Sudest data, it can now be added to the list of identified 3PE encoding strategies.

The Sudest case study of 3PEs also highlights a limitation of the 3PE framework by M\&A, namely its inability to capture salient features of 3PEs that relate to the expression of participants which are already encoded as arguments. As mentioned, the current framework primarily classifies strategies in terms of how a third participant is added to a transitive construction. As discussed, verbal classifiers cross-linguistically convey information about a core argument. Furthermore, because cross-linguistically verbal classifiers tend to occur in the same types of semantic domains, (specifically, handling and caused-motion events), they are likely to play a prominent role in the expression of 3PE in languages with verbal classifiers. However, due to the reasons outlined above, they are effectively 'ignored' by the 3PE coding. This could, in turn, leads to commonalities and potential correlations being missed when comparing 3PE findings across languages.

While taking the above limitations into account, the Sudest findings contribute to our knowledge of 3PEs. The Sudest study provides not just qualitative but also quantitative data about 3PEs, in a
language that could be used in the area of linguistic typology to investigate questions about 3PEs as well as related topics from semantic typology.

Finally, the investigation in chapter 7 showed that the range of encoding strategies used to express 3PEs is large and relatively heterogeneous. At least for the Sudest case, the notion of 3PE is possibly too broad to find meaningful patterns in the syntax-semantic interface. Future avenues of research could involve the investigation of more specific semantic domains within the 3PE target events using the Sudest corpus. Two such semantic domains that show promise for future investigation are CUT-BREAK and PUT-TAKE events. These two areas have received attention in the form of individual language studies and investigations into the semantic variability and constraints across languages; see Majid and Bowerman (eds. 2007) and Majid et al. (2008) for CUT-BREAK events and Kopecka and Narasimhan (eds. 2012) for PUT-TAKE events. The Sudest data lend themselves particularly well to a comparative study of these two semantic domains, because the same stimuli tasks used for investigations in Majid and Bowerman (eds. 2007) and Kopecka and Narasimhan (eds. 2012) were also carried out during Sudest data collection. This means that my findings would be directly comparable to this body of literature. One such study that focusses on a specific semantic domain has already been undertaken, looking at directed caused accompanied motion events (Sheppard, forthcoming) and Margetts et al. (forthcoming), which compares the Sudest findings with parallel investigations from other languages from the 3PE project.

\section*{Appendix A: Table of texts}

The following table contains a list of all texts in the corpus divided into the text and stimuli subcorpora. For each text, the text title, speaker(s), type of text are listed as well as the number of intonation units (IUs) it has and its length in minutes and seconds. The text types are divided into anecdotes (A), conversations (C), narratives (N), personal narratives (PN), traditional narratives (TD), stimuli (ST), and stimuli narratives (SN).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Text title & Consultant & \multicolumn{2}{l|}{ Type } & IU & \multicolumn{1}{l|}{ Mins } & Secs \\
\hline \multicolumn{1}{|l|}{ Text subcorpus } & \multicolumn{2}{l|}{} \\
\hline cooking_111015 & Jaclyn Sam \& Joyce Mao & A & 37 & 1 & 47 \\
\hline last_night_181214 & Josephine Banian & A & 27 & 1 & 6 \\
\hline short_story_111015 & Pauline Donny & A & 15 & 0 & 38 \\
\hline stone_cooking_251015 & Miriam & A & 122 & 5 & 29 \\
\hline sweeping_011115 & Jaclyn Sam & A & 36 & 1 & 24 \\
\hline working_011115 & Monica Michael & A & 44 & 2 & 11 \\
\hline c_061116 & \begin{tabular}{l} 
Colette Stevens, Livina Luke, Meira \\
Kebari, Noelyne Livina
\end{tabular} & C & 352 & 10 & 43 \\
\hline lizard_and_possum_121015 & Michael Karuwo & N & 51 & 2 & 13 \\
\hline marriage_111015 & Lydia Sale & N & 91 & 4 & 35 \\
\hline bwaindiya_151115 & Norbert Simeon & N & 127 & 5 & 27 \\
\hline chicken_story_181015 & Simon Thomas & N & 73 & 2 & 40 \\
\hline child_and_giant_201015 & Livina Luke & N & 145 & 6 & 30 \\
\hline couples_story_101214 & Lydia Saulo & N & 55 & 2 & 35 \\
\hline pig_and_dugong_101214 & Denise Mary & N & 52 & 2 & 41 \\
\hline skeleton_181015 & Simon Thomas & N & 58 & 2 & 19 \\
\hline education_241214 & Colette Steven & PN & 87 & 5 & 4 \\
\hline family_251015 & Anne Edwards & PN & 23 & 1 & 27 \\
\hline family_ties_081115 & Lydia Noel \& Jaclyn Sam & PN & 69 & 2 & 39 \\
\hline moving_291214 & Meira Kebari & PN & 98 & 3 & 32 \\
\hline vuwo_111015 & Miriam & PN & 20 & 0 & 53 \\
\hline widow_251015 & Anne Edwards & 53 & 2 & 31 \\
\hline bush_betelnut_011115 & Noelyne Livina & TN & 147 & 5 & 49 \\
\hline snake_passage_061215 & Lydia Noel & 214 & 8 & 38 \\
\hline crab_girl_081115 & Joyce Mao & TN & 123 & 5 & 54 \\
\hline eagle_story_081115 & Joyce Mao & 72 & 3 & 24 \\
\hline engginas_story_23116 & Alexander Gitali & 47 & 1 & 36 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Text title & Consultant & Type & IU & Mins & Secs \\
\hline feast_of_the_fish_271015 & Michael Kebasi \& Noelyne Kadewe & TN & 167 & 7 & 14 \\
\hline mandumbunga_02_181916 & Tajin Roberts & TN & 547 & 22 & 57 \\
\hline Mandumbunga_061215 & Lydia Sale & TN & 175 & 8 & 11 \\
\hline snake_story_101214 & Meira Kebari & TN & 31 & 1 & 19 \\
\hline bagi_181215 & Sylvester Kieran & P & 37 & 1 & 55 \\
\hline body_parts_251015 & Josephine Banian & P & 56 & 3 & 53 \\
\hline canoe_021015 & Abel Sam & P & 30 & 1 & 10 \\
\hline dating_081015 & Josephine Banian & P & 83 & 4 & 50 \\
\hline divorce_111015 & Noelyne Kandewe & P & 31 & 1 & 17 \\
\hline first_time_251214 & Joyce Mao & P & 28 & 1 & 0 \\
\hline fishing_071015 & Patrick Kieran & P & 18 & 0 & 47 \\
\hline funeral_feasting_081015_01 & Josephine Banian, Trudo Camillus & P & 165 & 7 & 45 \\
\hline funeral_feasting_081015_02 & Abel Sam & P & 121 & 5 & 2 \\
\hline garden_planning_021015 & Meira & P & 23 & 1 & 3 \\
\hline hunting_261214 & Sylvester Kieran & P & 46 & 1 & 40 \\
\hline kinship_071015 & Abel Sam and Jaclyn Sam & P & 106 & 5 & 0 \\
\hline kula_exchange_081215 & Noelyne Livina & P & 112 & 5 & 20 \\
\hline kula_exchange_101214 & Josephine Banian & P & 80 & 3 & 46 \\
\hline mangroves_261214 & Colette Steven & P & 21 & 1 & 3 \\
\hline menstruation_081015 & Josephine Banian & P & 65 & 3 & 16 \\
\hline new_mother_251214 & Joyce Mao & P & 123 & 5 & 6 \\
\hline organising_021015 & Abel Sam & P & 19 & 0 & 49 \\
\hline pigs_251214 & Noelyne Livina & P & 44 & 1 & 52 \\
\hline sago_101214 & Abel Sam & P & 69 & 3 & 2 \\
\hline small_child_051214 & Josephine Banian & P & 53 & 2 & 9 \\
\hline traditional_dress_051214 & Josephine Banian & P & 115 & 5 & 2 \\
\hline womens_work_221214 & Colette Steven & P & 45 & 2 & 54 \\
\hline
\end{tabular}

Stimuli subcorpus
\begin{tabular}{|l|l|l|l|l|l|}
\hline cb_stimuli_051016_01 & Jaclyn Sam & S & 246 & 43 & 50 \\
\hline cb_stimuli_051016_02_01 & Meira Kebari & S & 183 & 17 & 11 \\
\hline cb_stimuli_051016_02_02 & Meira Kebari & S & 138 & 16 & 58 \\
\hline cb_stimuli_051016_03 & Noelyne Livina & S & 560 & 40 & 14 \\
\hline cb_stimuli_071116 & Colette Stevens & S & 125 & 19 & 53 \\
\hline cb_stimuli_101116 & Abel Sam & S & 91 & 19 & 22 \\
\hline fp_stimuli_191015_01 & Meira Kebari, Noelyne Livina & S & 146 & 9 & 20 \\
\hline fp_stimuli_191015_02 & Meira Kebari, Noelyne Livina & S & 202 & 9 & 36 \\
\hline fp_stimuli_191015_03 & Meira Kebari, Noelyne Livina & S & 418 & 17 & 12 \\
\hline fp_stimuli_191015_05 & Meira Kebari, Noelyne Livina & S & 475 & 17 & 13 \\
\hline fp_stimuli_191015_07 & Meira Kebari, Noelyne Livina & S & 165 & 6 & 35 \\
\hline fp_stimuli_201015_01 & Jaclyn Sam, Sylvester Kebari & S & 254 & 15 & 52 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Text title & Consultant & Type & IU & Mins & Secs \\
\hline fp_S_201015_02 & Jaclyn Sam, Sylvester Kebari & S & 239 & 13 & 34 \\
\hline fp_S_201015_04 & Jaclyn Sam, Sylvester Kebari & S & 107 & 5 & 8 \\
\hline put_S_191015_01_01 & Noelyne Livina & S & 241 & 17 & 2 \\
\hline put_S_191015_01_02 & Noelyne Livina & S & 249 & 17 & 9 \\
\hline put_S_191015_02_01 & Meira Kebari & S & 37 & 3 & 56 \\
\hline put_S_191015_02_02 & Meira Kebari & S & 129 & 14 & 43 \\
\hline put_S_201015_01 & Jaclyn Sam & S & 175 & 16 & 26 \\
\hline put_S_201015_02 & Sylvester Kieran & S & 168 & 16 & 50 \\
\hline put_S_231015 & Abel Sam & S & 123 & 17 & 13 \\
\hline frogstory_161214 & Lydia Saulo & SN & 127 & 5 & 35 \\
\hline
\end{tabular}

\section*{Appendix B: Sample Sudest texts}

\section*{Skeleton's Story (by Simon Thomas)}
\begin{tabular}{lllllll} 
skeleton utuutuniye & \(v a\) & mbwa tanuwaga & va & gha & ndighe & imare \\
skeleton utu-utu niye & va & mbwa tanuwaga & va & gha & ndighe & \(\mathrm{i}=\) mare \\
skeleton RED-word-SP & REM.PST & water & owner & REM.PST & POSS.CLF1 fire & 3SG=die
\end{tabular}
skeleton's story, before, the water spirit's fire went out
\begin{tabular}{llllll} 
gha & ndighe va & imare iwa & vevoro & Vanambithimbithit & ghemba \\
gha & ndighe & va & \(\mathrm{i}=\) mare & \(\mathrm{i}=\) wa & ve=voro
\end{tabular} Vanambithimbithi ghemba
\begin{tabular}{lll} 
regha & idae & Vanambithimbithi \\
regha & ida-ye & Vanambithimbithi \\
one & name-3SG.POSS & place.name
\end{tabular}
his fire went out (and) he went to go up to Vanambithimbithí, a village called Vanambithimbithi

\begin{tabular}{llll} 
orumburumbumeko & \(v a\) & thityaku & we \\
o-rumbu-rumbu-me=ko & va & thí=yaku & we \\
PL-grandparent/child-1EXCL.POSS=DIST & REM.PST & 3PL=stay & goal/source/rec \\
our ancestors lived there & &
\end{tabular}
\begin{tabular}{lllll} 
ngginangginau & iyako & wakiwakiniyeko & va & thidagedageko \\
nggina-ngginau & iya=ko & wakí-wakini-ye \(=k o\) & va & thi=dage-dage \(=k o\)
\end{tabular}

RED-building.materials DEM=DIST RED-bone-3SG.POSS=DIST REM.PST 3PL=RED-speak=DIST
that skeleton (lit. building materials), his bones were creaking (lit. speaking)


They (the people) said "somebody is coming" the elders didn't recognise him, they said
giyagiyako thimbumbunya thinga "nggorongga amalako maa e mbunmbunmaniye?" giya-giya=ko thi=mbumbunya thi=nga nggorongga amala=ko maa e mbunmbunmani-ye RED-big.person=DIST 3PL=not.recognise 3PL=say how man=DIST NEG PREP flesh-3SG.POSS the elders didn't recognise him, they said "why doesn't that man have any flesh?"
```

thinga "wakiwakiniyeengge rara e angganiyeko?"
thi=nga wakiwakini-ye=engge rara e angga-niye=ko

```
3PL=say bones-3SG.POSS=just be.from(masc) PREP where-SP=DIST
they say "he is just bones! Where is he from?"
```

thìvevaivaitonggi
thi $=$ ve-vaito=nggi
3 PL=RECP-ask=3PL

```
they asked each other
\begin{tabular}{lllll} 
giyagiyako & thinga & mbe & bigi regha tanuwaga iyana!" \\
giya-giya=ko & thi=nga & mbe & bigi regha tanuwaga iya =na \\
RED-big.man=DIST & 3PL=say & still/yet thing one owner & DEM=ADDR.PROX \\
the elders said "there's something about that person!"
\end{tabular}

na we=nggo
na we=nggo
and goal/source/rec=1SG
A(give-giya)2a-CLFV-yengge
he came close to the house and he said "my fire died. Is it possible for you to give your fire to
me?"
\begin{tabular}{lccc} 
giyagiyako & thìi=nga & "uyenggegiya & nditghena" \\
giya-giya=ko & thi=nga & u=yengge-giya & ndighe=na \\
RED-big.person=DIST 3PL=say & 2SG=GET.SG.FIRE-give fire =ADDR.PROX \\
those elders said (to a younger person) "you give the fire (near addressee)"
\end{tabular}
\begin{tabular}{llll} 
thiyengge & ndighema & thiyenggegiya & we \\
thi =yengge & ndighe=ma & thi=yengge-giya & we \\
3PL=GET.SG.FIRE & fire=DET & 3PL=GET.SG.FIRE-give & goal/source/rec
\end{tabular}

A(give-giya)2a-CLFV-yengge
they got fire and they gave it to him
\begin{tabular}{llll} 
ma & \(i=\) wareriva & iwa & venja \\
ma & \(\mathrm{i}=\) wareri \(=\mathrm{va}\) & \(\mathrm{i}=\mathrm{wa}\) & \(\mathrm{ve}=\mathrm{nja}\) \\
already & \(3 \mathrm{SG}=\) leave=REP & \(3 \mathrm{SG}=\) go & 3SG.INT=go.down \\
he left again he went down
\end{tabular}
```

iwa venja
i=wa ve=nja
3SG=go 3SG.INT=go.down

```
he went down
\begin{tabular}{llllll} 
ma & thivariyenggiya & thegha & thenjighewo & thinga & "wo=hu=variyenggi \\
ma & thi \(=\) variye=nggiya & thegha & thejighe-wo & thi \(=\) nga & wo \(=h u=\) variye=nggi \\
already & \(3 P L=\) send=3PL=YA & male.youth \(C O U N T . C L F-t w o ~\) & \(3 P L=\) say & & \(I M P=2 \mathrm{PL}=\) send \(=3 \mathrm{PL}\)
\end{tabular}
\begin{tabular}{lll} 
ghe \(-w o=n a\) & theghanggina & wothíwa buda kai \\
ghe \(-w o=n a\) & theghe-nggi=na & wo=thi=wa buda kai \\
COUNT.CLF-two=ADDR.PROX & COUNT.CLF-PL=ADDR.PROX & IMP=3PL=go what thing
\end{tabular}
tanuwaga iya"
tanuwaga iya
owner DEM
then they (the elders) sent two young boys, they said "you send those two, those youths, they (should) go (to see) what that person is"
\begin{tabular}{lllll} 
imena & inanggo & ndigheke & wenggi & thitghewona \\
\(\mathrm{i}=\) mena & \(\mathrm{i}=\) nanggo & ndighe=ke & we=nggi & thi=ghewo=na \\
3SG=come & 3SG=ask & fire=SPKR.PROX & goal/source/rec=3PL 3 3L=go.away=ADDR.PRO
\end{tabular}
he came and asked for fire from them, (the youths) went away
thikubaro reghamba amalaghtniye ivuvuva
thi=kubaro reghamba amala-ghi-niye \(\mathrm{i}=\mathrm{vu}\)-vuva
3PL=hide behind man-HON-SP 3SG=RED-go.first
they hide behind (while) the old man (the skeleton) was going first
\begin{tabular}{lllll}
\(i=\) vuvuva & \(i=v\) vuvuva & iranggiwona & e & mbwana \\
\(\mathrm{i}=\) vu-vuva & \(\mathrm{i}=\) vu-vuva & \(\mathrm{i}=\) ranggi-wo=na & e & mbwa=na \\
3SG=RED-go.first & 3SG=RED-go.first & 3SG=go.out-thither=ADDR.PROX & PREP & water=ADDR.PROX
\end{tabular}

\section*{tine}
tine
inside
he was going first, he was going first, he was going away down along the water
```

iranggi-wo=na iranggi-wo=na
i=ranggi-wo=na i=ranggi-wo=na
3SG=come.out-thither=ADDR.PROX 3SG=come.out-thither=ADDR.PROX

```
he went away down there, he went away down there
\begin{tabular}{lllll} 
iwa & ma & iwa & vemunnja & Thuwarighena \\
\(\mathrm{i}=\mathrm{wa}\) & ma & \(\mathrm{i}=\mathrm{wa}\) & \(\mathrm{ve}=\mathrm{mun}\)-nja & Thuwarighena \\
3SG=go already & 3SG=go & 3SG.INT=dive-go.down & place.name
\end{tabular}
he went, he went and dived down (into the water) at Thuwarighena
iya ranggiwona
iya ranggi=wo=na
DEM come.out thither=ADDR.PROX
that's the place out there!
```

iwa ve=munnja we
i=wa ve=mun-nja we
3SG=go 3SG.INT=dive-go.down goal/source/rec
he went and dived down there

```
\begin{tabular}{ll}
\begin{tabular}{l} 
ghewoma \\
ghe-wo=ma
\end{tabular} & \begin{tabular}{l} 
thinjogha \\
thi \(=\) njogha
\end{tabular}
\end{tabular}
COUNT.CLF-two=DET 3PL=go.back
the two (boys) went back
\(\begin{array}{lllll}\text { thinjogha thinga "ghama } & \text { une mbwako e } & \text { ranggiwoko } \\ \text { thi=njogha thi=nga gha-ma } & \text { une mbwa=ko e ranggi=wo=ko } \\ \text { 3PL=return } & \text { 3PL=say } & \text { POSS.CLF1-1EXCL.POSS friends water=DIST PREP go.out=thither=DIST }\end{array}\)
iyako tanuwaga memena
iya \(=\) ko tanuwaga me=mena
DEM =DIST owner 3SG.IMM.PST=come
they went back and they said "our friends, that water out there, the person comes (from there)"
```

utu ghaghad\dot{t}
utu ghaghadi
story/word end/until
the end

```

\section*{Bagi (by Sylvester Kieran)}
```

autunga bagi utuniye
a=utunga bagi utuniye
1SG=speak= TR k.o.shell.necklace story/word=SP
I (will) tell a bagi story
iviva
i=viva
3SG=go.first
first
amunja
a=mun-nja
1SG=dive-go.down
I dive (to collect shells)
awa vamban bagi
a=wa va=mban bagi
1SG=go 1SG.INT=GET.RIGD.PL k.o.shell.necklace
I go to get bagi (shells)

```
```

thinga sapsap
thi=nga sapsap
3PL=say k.o.shell
They are called sapsap (lit. they say sapsap)

```

\section*{avoro abebe}
a=voro a=bebe
\(1 S G=\) go.up \(1 S G=\) break
I go up (from the sea and) I break it into pieces (them/sapsap)

\section*{Amba yabebe mипитипиwo}
amba a=bebe munumunuwo
then \(1 \mathrm{SG}=\) break many.parts
then I break (the sapsap) into small/many pieces
amba awi
amba \(a=w i\)
then \(1 \mathrm{SG}=\) grind(bagi.on.stone)
then I grind/smooth it (the bagi shells on a grinding stone)
awivao iko
a=wivao i=ko
1SG - grind(bagi.on.stone)-COMPL 3SG=finish
I finish grinding it (the bagi on the stone and) it is finished
amba aten
amba \(\mathrm{a}=\) ten
still/then 1SG=break
and then I cut it (the bagi shells with cutters/pliers)
va ivivako va ivuyowo moli
va \(\mathrm{i}=\) vivako va \(\mathrm{i}=\) vuyowo moli
REM.PST 3SG= go.first-DIST REM.PST 3SG=be.heavy INTS
in the past it was very difficult (making bagi)
noroke kaero ithovuye kaiwae lumo kaero thivakatha kata
noroke kaero \(\mathrm{i}=\) thovuye kaiwae lumo kaero thi=vakatha kata
day already 3SG=be.good reason -3SG.POSS white.person already 3PL=make/do cutter/pliers
today it is easier because white people (have) made pliers
na aten weya sapsapke
na \(a=\) ten weya sapsap
and 1SG=break PREP=YA k.o.shell-SPKR.PROX
and I cut with it (the pliers) sapsap shells
atenvao iko
a=tenvao \(\quad i=k o\)
1SG=brea-COMPL 3SG=finish
I finish cutting it (and) it is finished
```

amba abus
amba a=bus
then 1SG=bore
then I bore it (holes in the shells)
ambama abulale
ambama a=bulale
then=DEM 1SG=roll/smooth
then I smooth it (the sapsap beads)
na avakatha ivuyowo moli
na gha vakatha i=vuyowo moli
and POSS.CLF1 action 3SG=be.heavy INTS
and its production (bagi making) is very hard
iya kaiwa
iya kaiwa
DEM reason
because of this
mbangake noroke
mbanga=ke today
time/when=SPKR.PROX
now, today
baginiye
bagi=niye
k.o.shell.necklace=SP
bagi's
mwada ilaghiye
mwada i=laghiye
payment 3SG=be.big
payment is big
kaiwae awo bagi avamodo weya thelau
kaiwae a=wo bagi a=vamodo weya thelau
reason-3SG.POSS 1SG=GET.RIGD.SG k.o.shell.necklace 1SG=pay PREP=YA ground
becuase I get bagi, I pay for land
awo bagi avamodo weya mbombo
a=wo bagi a=vamodo we=ya mbombo
1SG - GET.RIGD.SG k.o.shell.necklace 1SG=pay PREP=YA pig
I get bagi (and) I pay for pigs
awo bagi avamodo weya wevo
a=wo bagi a=vamodo we=ya wevo
1SG - GET.RIGD.SG k.o.shell.necklace1SG - pay PREP=YA young.woman
I get bagi (and) I pay for women with it (i.e can pay brideprice)

```
```

bigi thangarike
bigi thangari=ke
thing every/all=SPKR.PROX
anything/everything
avamodo weya e bagi
a=vamodo we e bagi
1SG - pay PREP PREP k.o.shell.necklace\$
I pay for with bagi
iya kaiwa
ya kaiwa
DEM reason
for this reason
mwadae ilaghiye
mwadae i=laghiye
payment -3SG.POSS 3SG=be.big
the payment is big
na bagi
na bagi
and k.o.shell.necklace
and bagi
ghemba thangarike kaero thimban
ghemba thangari=ke kaero thi=mban
village every/all=SPKR.PROX already 3PL=GET.RIGD.PL
every villlage uses (lit. gets) them (bagi)
na thighavatha we
na thi=ghavatha we
and 3PL=dress PREP
and they dress with it
na thìvakaiwonga
na thi=va-kaiwo=nga
and 3PL=CAUS-work=TR
and they work for it
ago
ago
thanks
thanks

```

\section*{References}

Aikhenvald, AY 2000, Classifiers: A typology of noun categorization devices, Oxford University Press, Oxford.
Aikhenvald, AY 2006, 'Serial verb constructions in typological perspective' in AY Aikhenvald \& RMW Dixon (eds.), Serial verb constructions: A cross-linguistic typology, pp. 1-68, Oxford University Press, Oxford; New York.
Aikhenvald, AY 2018, Serial verbs, Oxford University Press, Oxford.
Aikhenvald, AY \& Dixon, RMW (eds.) 2006, Serial verb constructions: a cross-linguistic typology, Oxford University Press, Oxford; New York.
Anagnostopoulou, E 2003, The syntax of ditransitives: Evidence from clitics, vol. 54, Mouton de Gruyter, Berlin; New York.
Anderson, M 1987, Vanatina ghabuku, Summer Institute of Linguistics.
Anderson, M 1990, Sudest-English dictionary, SIL Language and Culture Archives.
Anderson, M 1992, 'Object classifying morphemes in Sudest', Language and Linguistics in Melanesia, vol. 23, no. 2, pp. 193-198.
Anderson, M \& Anderson, T 1991, Sudest Grammar Essentials, Summer Institute of Linguistics, Milne Bay Province.
Anderson, M \& Anderson, T 1992, Organised phonology data Sudest (Tagula, Vanatina) language, Summer Institute of Linguistics.
Anderson, M \& Ross, M 2002, 'Sudest' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic languages, pp. 322-346, Curzon, Richmond, Surrey.
Anderson, S 2005, Aspects of the Theory of Clitics, Oxford University Press, Oxford; New York.
Armstrong, WE 1922, Report on anthropology of South-Eastern Division (excluding Woodlark Is.), Engineer Group, Bosilai, East Cape, Normanby Is. (South Coast), Fergusson Island (Morima), Papua Annual Report for the Year 1921-22, pp. 26-39, retrieved from https://nla.gov.au/nla.obj-163760092/view?sectionId=nla.obj-183010152\&partId=nla.obj163792570\#page/n100/mode/lup
Arnold, JE 2008, 'Reference production: Production-internal and addressee-oriented processes', Language and Cognitive Processes: Language Production, vol. 23, no. 4, pp. 495-527.
Austin, P \& Bresnan, J 1996, 'Non-configurationality in Australian aboriginal languages', Natural Language \& Linguistic Theory, vol. 14, no. 2, pp. 215-268.
Baker, MC 1996, The polysynthesis parameter, Oxford University Press, New York; Oxford.
Banivanua-Mar, T 2007, Violence and colonial dialogue: the Australian-Pacific indentured labor trade, University of Hawai‘i Press, Honolulu.
Barron, R 1982, ‘Das Phänomen klassifikatorischer Verben', Apprehension: Das Sprachliche Erfassen von Gegenständen, vol. 1, pp. 133-46.
Bender, A \& Beller, S 2006, 'Numeral Classifiers and Counting Systems in Polynesian and Micronesian Languages: Common Roots and Cultural Adaptations', Oceanic Linguistics, vol. 45, no. 2, pp. 380-403.
Berez-Kroeker, AL, Gawne, L, Kung, SS, Kelly, BF, Heston, T, Holton, G, Pulsifer, P, Beaver, DI, Chelliah, S, Dubinsky, S, Meier, RP, Thieberger, N, Rice, K, \& Woodbury,

AC 2018, 'Reproducible research in linguistics: A position statement on data citation and attribution in our field', Linguistics, vol. 56, no. 1, pp. 1-18.
Bickel, B \& Nichols, J 2007, 'Inflectional morphology', Language Typology and Syntactic Description, vol. 3, no. 2, pp. 169-240.
Bird, S \& Simons, G 2003, ‘Seven dimensions of portability for langauge documentation and description', Language, vol. 79, no. 3, pp. 557-582.
Bisang, W 2013, 'Word class systems between flexibility and rigidity: An integrative approach' in J Rijkhoff \& E Van Lier (eds.), Flexible Word Classes: Typological studies of underspecified parts of speech, pp. 271-303, Oxford University Press, Oxford.
Blansitt, EL 1984, 'Dechticaetiative and dative' in F Plank (ed.), Objects: towards a theory of grammatical relations, pp. 127-150, Academic Press, London.
Bohnemeyer, J, Bowerman, M, \& Brown, P 2001, ‘Cut and break clips’ in SC Levinson \& NJ Enfield (eds.), Manual for the field season 2001, pp. 90-96, Max Planck Institute for Psycholinguistics, Nijmegen.
Borg, AJ \& Comrie, B 1984, 'Object diffuseness in Maltese' in F Plank (ed.), Objects: towards a theory of grammatical relations, pp. 109-126, Academic Press, London.
Botne, R 2012, 'Remoteness distinctions' in RI Binnick (ed.), The Oxford handbook of tense and aspect, Oxford University Press, Oxford; New York.
Bowden, JF 2005, 'Taba' in A Adelaar \& NP Himmelmann (eds.), The Austronesian languages of Asia and Madagascar, pp. 769-792, Routledge, London; New York.
Bowerman, M, Gullberg, M, Majid, A, \& Narasimhan, B 2004, 'Put project: the crosslinguistic encoding of placement events' in A Majid (ed.), Field Manual, vol. 9, pp. 1024, Max Planck Institute for Psycholinguistics, Nijmegen.
Bowern, C 2008, Linguistic fieldwork: a practical guide, Palgrave Macmillan, Basingstoke [England]; New York.
Bradshaw, J 1982, Word order change in Papua New Guinea Austronesian languages, doctoral thesis, University of Hawai'i at Mānoa.
Bradshaw, J 1993, 'Subject relationships within serial verb constructions in Numbami and Jabêm', Oceanic Linguistics, vol. 32, no. 1, pp. 133-161.
Bradshaw, J 2010, ‘Manner and path serialization in Numbami' in J Bowden, NP Himmelmann, \& MD Ross (eds.), A journey through Austronesian and Papuan linguistic and cultural space: Papers in honour of Andrew K. Pawley, pp. 441-453, Pacific Linguistics, Canberra.
Bresnan, J \& Mchombo, SA 1987, 'Topic, Pronoun, and Agreement in Chichewa', Language, vol. 63, no. 4, pp. 741-782.
Bril, I \& Ozanne-Rivierre, F (eds.) 2004, Complex predicates in Oceanic languages: studies in the dynamics of binding and boundness, Mouton de Gruyter, Berlin; New York.
British New Guinea: annual report by Her Majesty's Administrator of the Government from 4th September 1888 to 30th June 1889, with map and appendices, 1890, RS Brain, Government Printer, retrieved from https://nla.gov.au/nla.obj-82611601/view?sectionId=nla.obj-86281491\&partId=nla.obj82614333\#page/n20/mode/lup/search/maximum+
Broschart, J 2009, ‘Why Tongan does it differently: Categorial distinctions in a language without nouns and verbs', Linguistic Typology, vol. 1, no. 2, pp. 123-166.
Bybee, J, Perkins, R, Pagliuca, W 1994, The evolution of grammar: tense, aspect, and modality in the languages of the world, University of Chicago Press, Chicago.
Callister, S, Fifita, E \& Harrar, M 2005, Baaba ana talisi ana buki: Misima dictionary, Summer Institute of Linguistics.
Callister, W 1985a, Verbs and Verb Phrases in the Misima Language, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.

Callister, W 1985b, Particles and grammatical words in Misima, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Callister, W 1985c, The Clause in the Misima Language, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Callister, W 1987, 'How Austronesian focus works in the Misima language', Language and Linguistics in Melanesia, vol. 16, no. \(1 \& 2\), pp. 71-99.
Callister, W 1993, 'Misiman phonology' in J Clifton (ed.), Phonologies of Austronesian languages 2, vol. 40, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Callister, W \& Callister, S 1985, Nouns and Noun Phrases in the Misima Language, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Capell, A (collector), Capell, A (researcher), Newton, P (depositor), Pawley, A (compiler), \& Tomasetti, W (compiler) 1970, Section G 1-13 Milne Bay languages: Collected by Andrew Pawley and Wiliiam Tomasetti, 1969-70, from students at various high schools in Milne Bay District, lexicon, retrieved from https://paradisec.org.au/fieldnotes/image_viewer.htm?NGMBCV108,13
Capell, A 1928a, deposited 1999, 'Sudest and Rossel Islands texts and notes', Pacific and Regional Archive for Digital Sources in Endangered Cultures (PARADISEC), retrieved from http://paradisec.org.au/fieldnotes/image_viewer.htm?MBSEY102,80.
Capell, A 1928b, deposited 1999, 'Texts and notes on Rambuso', Pacific and Regional Archive for Digital Sources in Endangered Cultures (PARADISEC), retrieved from http://paradisec.org.au/fieldnotes/image_viewer.htm?MBSEY101,100,1,S,80.
Capell, A 1943, The linguistic position of south-eastern Papua, Australasian Medical Publishing Co., Sydney.
Capell, A 1999, 1930s (deposited, ‘Comparative vocabularies of some Southern PNG languages', Pacific and Regional Archive for Digital Sources in Endangered Cultures (PARADISEC), retrieved from https://paradisec.org.au/fieldnotes/image_viewer.htm?OLVOC219,7.
Carroll, A, Evans, N, Hoenigman, D, \& San Roque, L 2009, The family problems picture task, Designed for use by the Social Cognition and Language Project. A collaboration of The Australian National University, Griffith University, University of Melbourne and the Max Planck Institute for Psycholinguistics.
Casati, R \& Varzi, AC 2008, 'Event Concepts' in TF Shipley \& JM Zacks (eds.), Understanding Events: from perception to action, Oxford University Press, Oxford; New York.
Chafe, W 1994, Discourse, consciousness, and time: the flow and displacement of conscious experience in speaking and writing, University of Chicago Press, Chicago.
Chowning, A 1989, 'The "Papuan Tip" languages reconsidered' in R Harlow \& R Hooper (eds.), Oceanic languages: papers from the fifth international conference on Austronesian linguistics, Auckland, New Zealand, January 1988, pp. 113-140, Linguistics Society of New Zealand, Auckland.
Churchward, CM 1953, Tongan grammar, Open University Press, London.
Cleary-Kemp, J 2006, Givennes, definiteness, and specificity in a language without articles: The use of NP markers in Saliba, an Oceanic language of Papua New Guinea, honours thesis, Monash University, Melbourne.
Cleary-Kemp, J 2015, Serial Verb Constructions Revisited: A Case Study from Koro, doctoral thesis, University of California.
Comrie, B 1985, Tense, Cambridge University Press, Cambridge; New York.

Comrie, B 2003a, 'Recipient person suppletion in the verb "give"' in MR Wise, TN Headland, \& RM Brend (eds.), Language and life: Essays in memory of Kenneth L. Pike, pp. 265281, SIL International, Dallas, TX.
Comrie, B 2003b, 'Some thoughts on "give" in Austronesian and Papuan languages' in B Kaswanti Purwo (ed.), Pertemuan Linguistik Pusat Kajian Bahasa dan Budaya Atma Jaya: Kedua Belas, pp. 1-22, Yayasan Odor Indonesia, Jakarta.
Comrie, B \& Polinsky, M (eds.) 1993, Causatives and transitivity, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Conti, C 2008, Receptores y beneficiarios: estudio tipológico de la ditransitividad, Lincom Europa, München.
Contini-Morava, E \& Kilarski, M 2013, 'Functions of nominal classification', Language Sciences, vol. 40, no. C, pp. 263-299.
Cooper, R 1992, 'That's what I'm talking about: Discourse level deixis in Buhutu', Language and Linguistics in Melanesia, vol. 23, pp. 95-105.
Corbett, GG 2000, Number, Cambridge University Press, Cambridge; New York.
Corbett, GG 2003, 'Agreement: the range of the phenomenon and the principles of the Surrey Database of Agreement', Transactions of the Philological Society, vol. 101, no. 2, pp. 155-202.
Corbett, GG 2006, Agreement, Cambridge University Press, Cambridge; New York.
Corbett, G \& Fedden, S 2016, 'Canonical gender', Journal of Linguistics, vol. 52, no. 3, pp. 495-531.
Corbett, G \& Fedden, S 2018, 'New approaches to the typology of gender' in S Fedden, A Jenny, \& G Corbett (eds.), Non-canonical gender systems, pp. 9-35, Oxford University Press, Oxford.
Corbett, G, Fedden, S, \& Finkel, R 2017, ‘Single versus concurrent systems: nominal classification in Mian', Linguistic Typology, vol. 21, no. 2, pp. 209-260.
Corris, P 1968, "'Blackbirding" in New Guinea Waters, 1883-84: An Episode in the Queensland Labour Trade', The Journal of Pacific History, vol. 3, pp. 85-105.
Croft, W 1990, Typology and Universals, Cambridge University Press, Cambridge.
Crowley, T 1982, The Paamese language of Vanuatu, Pacific Linguistics, Canberra.
Crowley, T 1987, ‘Serial Verbs in Paamese’, Studies in Language, vol. 11, no. 1, pp. 35-84.
Crowley, T 1990, 'Serial verbs and prepositions in Bislama' in JWM Verhaar (ed.), Melanesian Pidgin and Tok Pisin, pp. 57-89, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Crowley, T 1998, ‘An Erromangan (Sye) Grammar', Oceanic Linguistics Special Publications, no. 27.
Crowley, T 2002a, Serial verbs in oceanic: a descriptive typology, Oxford University Press, Oxford; New York.
Crowley, T 2002b, 'Southeast Ambrym' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic languages, pp. 660-670, Curzon, Richmond, Surrey.
Crowley, T 2007, Field linguistics: A beginner's guide, Oxford University Press, Oxford; New York.
Dahl, Ö 1985, Tense and aspect systems, Blackwell, Oxford.
Davis, K 2003, A grammar of the Hoava language, Western Solomons, Pacific Linguistics, Canberra.
Dawuda, C 2009, Discourse functions of demonstratives and place adverbs in exophoric reference in Logea, an Oceanic language of Papua New Guinea, doctoral thesis, Monash University, Melbourne.
de Vries, L 2005, ‘Towards a typology of tail-head linkage in Papuan languages’ Studies in Language, vol. 29, no. 2, pp. 363-384.

Dept. of National Planning and Monitoring 2010, Рариa New Guinea development strategic plan 2010-2030, Port Moresby.
Dixon, RMW 1988, A grammar of Boumaa Fijian, University of Chicago Press, Chicago.
Dixon, RMW 1997, The Rise and Fall of Languages, Cambridge University Press, Cambridge.
Dixon, RMW 2006, 'Serial verb constructions: Conspectus and coda' in AY Aikhenvald \& RMW Dixon (eds.), Serial verb constructions: A cross-linguistic typology, pp. 338-350, Oxford University Press, Oxford; New York.
Dixon, RMW 2010a, Basic linguistic theory. Volume 1: Methodology, Oxford University Press, Oxford; New York.
Dixon, RMW 2010b, Basic linguistic theory. Volume 2: Grammatical topics, Oxford University Press, Oxford; New York.
Dixon, RMW 2012, Basic Linguistic Theory. Volume 3: further grammatical topics, Oxford University Press, Oxford; New York.
Dixon, RMW \& Aikhenvald, AY (eds.) 2002, Word: a cross-linguistic typology, Cambridge University Press, Cambridge; New York.
Dryer, MS 1986, 'Primary Objects, Secondary Objects, and Antidative', Language, vol. 62, no. 4, pp. 808-845.
Dryer, MS 2001, 'What is basic linguistic theory?', unpublished manuscript, retrieved from https://www.acsu.buffalo.edu/~dryer/blt.
Dryer, MS 2006, 'Descriptive Theories, Explanatory Theories, and Basic Linguistic Theory' in FK Ameka, AC Dench, \& N Evans (eds.), Catching Language: The Standing Challenge of Grammar Writing, pp. 207-234, Mouton de Gruyter, Berlin; New York.
Dryer, MS 2007, 'Clause types' in T Shopen (ed.), Language typology and syntactic description, Volume I: Clause structure, vol. 1, pp. 224-275, Cambridge University Press, Cambridge.
Dryer, MS 2013, 'Order of Genitive and Noun' in MS Dryer \& M Haspelmath (eds.), The World Atlas of Language Structures Online, Max Planck Institute for Evolutionary Anthropology, Leipzig.
Du Bois, JW, Cumming, S, Schuetze-Coburn, S, \& Paolino, D 1992, ‘Discourse Transcription', Santa Barbera Papers in Linguistics, vol. 4.
Durie, M 1988, 'Verb Serialization and "Verbal-Prepositions" in Oceanic Languages', Oceanic Linguistics, vol. 27, no. 1/2, pp. 1-23.
Durie, M 1997, 'Grammatical structures in verb serialization' in A Alsina, J Bresnan, \& P Sells (eds.), Complex predicates, pp. 289-354, CSLI Publications, Stanford, California.
Early, R 1993, 'Nuclear Layer Serialization in Lewo', Oceanic Linguistics, vol. 32, no. 1, pp. 65-93.
Eberhard, DM, Simons, GF, \& Fennig, CD (eds.) 2020, Ethnologue: Languages of the World, 23rd edn, SIL International, Dallas, Texas.
Evans, N 2002, 'The true status of grammatical object affixes: Evidence from Bininj Gunwok’ in N Evans \& HJ Sasse (eds.), Problems of Polysynthesis, pp. 15-50, Akademie Verlag GmbH, Berlin.
Evans, N \& Dench, A 2006, 'Introduction: Catching Language' in F Ameka, A Dench, \& N Evans (eds.), Catching Language: The Standing Challenge of Grammar Writing, pp. 140, Mouton de Gruyter, Berlin.
Evans, N \& Osada, T 2005, 'Mundari: The myth of a language without word classes', Linguistic Typology, vol. 9, no. 3, pp. 351-390.
Ezard, B 1978, 'Classificatory prefixes of the Massim cluster' in SA Wurm \& L Carrington (eds.), Second International Conference on Austronesian Linguistics: Proceedings 2, Eastern Austronesian, pp. 1159-1180, Pacific Linguistics, Canberra.

Ezard, B 1992, 'Tawala derivational prefixes: A semantic perspective’ in MD Ross (ed.), Papers in Austronesian Lingusitics no. 2, pp. 147-250, Pacific Linguistics, Canberra.
Ezard, B 1997, A grammar of Tawala: an Austronesian language of the Milne Bay area, Papua New Guinea, Pacific Linguistics, Canberra.
Fedden, S 2011, A grammar of Mian, De Gruyter Mouton, Berlin.
Fedden, S \& Corbett, G 2017, 'Gender and Classifiers in Concurrent Systems: Refining the Typology of Nominal Classification', Glossa: A Journal of General Linguistics, vol. 2, no. 1, pp. 1-47.
Fedden, S \& Corbett, GG 2018, 'Extreme classification’, Cognitive Linguistics, vol. 29, no. 4, pp. 633-675.
Foley, WA 1986, The Papuan languages of New Guinea, Cambridge University Press, Cambridge; New York.
Foley, WA \& Olson, M 1985, ‘Clausehood and verb serialization' in J Nichols \& AC Woodbury (eds.), Grammar inside and outside the clause, pp. 17-60, Cambridge University Press, Cambridge; New York.
Foley, WA \& Van Valin, RD 1984, Functional syntax and universal grammar, Cambridge University Press, Cambridge.
François, A 2006, 'Serial verb constructions in Mwotlap’ in AY Aikhenvald \& RMW Dixon (eds.), Serial verb constructions: A cross-linguistic typology, pp. 223-238, Oxford University Press, Oxford; New York.
François, A 2012, 'Ditransitive alignment and referential hierarchies in Araki', Linguistic Discovery, vol. 10, no. 3, pp. 97-124.
Frostad, BH 2013, A grammar of Ughele: an Oceanic language of Solomon Islands, doctoral thesis, Radboud University, Nijmegen.
Gawne, L, Kelly, BF, Berez-Kroeker, AL, \& Heston, T 2017, 'Putting practice into words: The state of data and methods transparency in grammatical descriptions', Language Documentation and Conservation, vol. 11, pp. 157-189.
Givón, T 1990, 'Verb serialization in Tok Pisin and Kalam: A comparative study of temporal packaging' in SJ Verhaar \& WM John (eds.), Melanesian Pidgin and Tok Pisin: Proceedings of the First International Conference on Pidgins and Creoles in Melanesia, pp. 19-55, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Goldberg, AE 1992, ‘The inherent semantics of argument structure: The case of the English ditransitive construction' in Cognitive Linguistics, vol. 3, pp. 37-74.
Grinevald, C 2000, 'A morphosyntactic typology of classifiers' in G Senft (ed.), Systems of nominal classification, pp. 50-92, Cambridge University Press, Cambridge.
Grinevald, C 2004, ‘Classifiers' in GE Booij, C Lehmann, J Mugdan, \& S Skopeteas (eds.), Morphologie / Morphology; Ein internationales Handbuch zur Flexion und Wortbildung / An international handbook on inflection and word-formation, vol. 2, pp. 1016-1031, Mouton de Gruyter, Berlin.
Grünthal, R 2003, Finnic adpositions and cases in change, Société finno-ougrienne.
Guérin, V 2011, 'A Grammar of Mavea: An Oceanic Language of Vanuatu', Oceanic Linguistics Special Publications, no. 39.
Guillaume, A 2016, 'Associated motion in South America: Typological and areal perspectives' Linguistic Typology, vol. 20, no. 1, pp. 81-177.
Guillaume, A \& Koch, H 2017, 'Associated motion workshop', paper presented at the 12th Conference of the Association for Linguistic Typology (ALT), Australian National University, Canberra.
Hajek, J 2006, ‘Serial verbs in Tetun Dili’ in AY Aikhenvald \& RMW Dixon (eds.), Serial Verb Constructions: A Cross-linguistic Typology, pp. 239-253, Oxford University Press, Oxford; New York.

Haji-Abdolhosseini, M, Massam, D, \& Oda, K 2002, 'Number and Events: Verbal Reduplication in Niuean', Oceanic Linguistics, vol. 41, no. 2, pp. 475-92.
Hamel, PJ 1993, 'Serial Verbs in Loniu and an Evolving Preposition', Oceanic Linguistics, vol. 32, no. 1, pp. 111-32.
Harley, H 2002, 'Possession and the double object construction' in P Pica \& J Rooryck (eds.), Linguistic variation yearbook, vol. 2, pp. 31-70.
Haspelmath, M 1993, 'More on the typology of inchoative/causative verb alternations' in B Comrie \& M Polinsky (eds.), Causatives and Transitivity, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Haspelmath, M 2001, Cross-linguistic study of ditransitives, paper presented at the Association for Linguistic Typology conference, University of California, Santa Barbara.
Haspelmath, M 2004, 'Explaining the Ditransitive Person-Role Constraint: A Usage-Based Approach', Constructions, vol. 2, pp. 1-71.
Haspelmath, M 2005a, 'Argument Marking in Ditransitive Alignment Types', Linguistic Discovery, vol. 3, no. 1, pp. 1-21.
Haspelmath, M 2005b, 'Ditransitive constructions: the verb "give"' in M Haspelmath, M Dryer, D Gil, \& B Comrie (eds.), The world atlas of language structures, Oxford University Press, Oxford.
Haspelmath, M 2007, ‘Ditransitive alignment splits and inverse alignment' Functions of Language, vol. 14, no. 1, pp. 79-102.
Haspelmath, M 2011, 'The Indeterminacy of Word Segmentation and the Nature of Morphology and Syntax', Folia Linguistica: Acta Societatis Linguisticae Europaeae, vol. 45, no. 1, pp. 31-80.
Haspelmath, M 2013, 'Argument indexing: A conceptual framework for the syntactic status of bound person forms' in D Bakker \& M Haspelmath (eds.), Languages across boundaries: Studies in memory of Anna Siewierska, pp. 197-226.
Haspelmath, M 2016, 'The Serial Verb Construction: Comparative Concept and Crosslinguistic Generalizations', Language and Linguistics, vol. 17, no. 3, pp. 291-319.
Heine, B \& Kuteva, T 2002, World Lexicon of grammaticalization, Cambridge University Press, Cambridge; New York.
Henderson, J \& Henderson, A 1974, ‘Three studies in languages of eastern Papua' in Workpapers in Papua in Papua New Guinea languages, pp. 39-61, SIL, Ukarumpa, Papua New Guinea.
Henderson, JE 1975, 'Yeletnye, the language of Rossel Island' in TE Dutton (ed.), Studies in languages of Central and South-East Papua, pp. 817-852, Pacific Linguistics, Canberra.
Hengeveld, K 2012, 'Referential Markers and Agreement Markers in Functional Discourse Grammar', Language Sciences, vol. 34, no. 4, pp. 468-479.
Hengeveld, K \& Rijkhoff, J 2005, 'Mundari as a flexible language', Linguistic Typology vol. 9 no. 3 (2005), 406-431 Mundari as a flexible language', Linguistic Typology, vol. 9, no. 3, pp. 406-431.
Hill, D 2016, 'Bride-price, Baskets, and the Semantic Domain of "Carrying" in a Matrilineal Society', Oceanic Linguistics, vol. 55, no. 2, pp. 500-521.
Himmelmann, NP 2006, ‘The challenges of segmenting spoken language' in J Gippert, NP Himmelmann, \& U Mosel (eds.), Essentials of language documentation, pp. 253-274, Mouton de Gruyter, Berlin; New York.
Hockett, CF 1948, 'Potawatomi III: The Verb Complex', International Journal of American Linguistics, vol. 14, no. 3, pp. 139-149.
Hoffmann, J 1903, Mundari Grammar, Bengal Secretariat Press, Calcutta.

Hopper, PJ \& Thompson, SA 1980, 'Transitivity in Grammar and Discourse', Language, vol. 56, no. 2, pp. 251-299.
Huckett, J 1974, 'Notes on Iduna grammar' in Workpapers in Papua New Guinea Languages 15, pp. 127-262, SIL, Ukarumpa, Papua New Guinea.
Hyslop, C 2001, The Lolovoli dialect of the North-East Ambae language, Vanuatu, Pacific Linguistics, Canberra.
Ikegami, Y 1987, "'Source" vs. "goal": A case of linguistic dissymmetry' in R Dirven \& G Radden (eds.), Concepts of case, pp. 122-146, Gunter Narr, Tübingen.
Jauncey, D 2011, Tamambo: the language of West Malo, Vanuatu, Pacific Linguistics, Canberra.
Jelinek, E 1984, 'Empty categories, case, and configurationality', Natural Language \& Linguistic Theory, vol. 2, no. 1, pp. 39-76.
Jones, AA 1997, Towards a lexicogrammar of Mekeo: an Austronesian language of West Central Papua, Pacific Linguistics, Canberra.
Keenan, EL 1984, 'Semantic correlates of the ergative/absolutive distinction', Linguistics, vol. 22, pp. 197-223.
Keesing, RM 1985, Kwaio grammar, Pacific Linguistics, Canberra.
Kibrik, AA 2011, Reference in discourse, Oxford University Press, Oxford.
Kilarski, M 2013, Nominal classification: a history of its study from the classical period to the present, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Kilarski, M 2014, 'The place of classifiers in the history of linguistics' Historiographia Linguistica, vol. 41, no. 1, pp. 33-78.
Kittilä, S 2006a, 'The anomaly of the verb 'give' explained by its high (formal and semantic) transitivity', Linguistics, vol. 44, no. 3, pp. 569-612.
Kittilä, S 2006b, 'The woman showed the baby to her sister: On resolving humanness-driven ambiguity in ditransitives' in L. Kulikov, A Malchukov, \& P de Swart (eds.), Case, valency and transitivity, pp. 291-308, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Koch, H 1984, 'The category of 'associated motion' in Kaytej’, Language in Central Australia, vol. 1, no. 1, pp. 23-34.
Krifka, M 2004, 'Semantic and pragmatic conditions for the dative alternation', Korean Journal of English Language and Linguistics, vol. 4, no. 1, pp. 1-32.
Kuroda, SY 1972, ‘The Categorical and the Thetic Judgment: Evidence from Japanese Syntax', Foundations of Language, vol. 9, no. 2, pp. 153-185.
Kuteva, T 1999, 'On "sit'/'stand'/'lie" auxiliation', Linguistics, vol. 37, no. 2, pp. 191-213.
Kuteva, T 2001, Auxiliation, an enquiry into the nature of grammaticalization, Oxford University Press, New York.
Lacrampe, S 2014, Lelepa: topics in the grammar of a Vanuatu language, doctoral thesis, Australian National University, Canberra.
Lakusta, L \& Landau, B 2005, 'Starting at the end: the importance of goals in spatial language', Cognition, vol. 96, no. 1, pp. 1-33.
Lakusta, L, Wagner, L, O’Hearn, K, \& Landau, B 2007, ‘Conceptual Foundations of Spatial Language: Evidence for a Goal Bias in Infants', Language Learning and Development, vol. 3, no. 3, pp. 179-197.
Lawrence, SE-L 2015, 'Witchcraft, Sorcery, Violence: Matrilineal and Decolonial Reflections' in M Forsyth \& R Eves (eds.), Talking it Through: Responses to Sorcery and Witchcraft Beliefs and Practices in Melanesia, pp. 55-73, Australian National University Press, Canberra.
Lawton, R 1993, Topics in the Description of Kiriwina, Pacific Linguistics.

Leach, JW \& Leach, ER (eds.) 1983, The Kula: new perspectives on Massim exchange, Cambridge University Press, Cambridge; New York.
Lepowsky, M 1979, 'A Preliminary Report on Cultural Factors Affecting Health and Nutrition: Sudest Island and the Louisiade Archipelago, Papua New Guinea', Report Submitted to the Provincial Health Officer, Milne Bay Province, Mimeographed and Distributed by the National Planning Office, Port Moresby, Papua New Guinea.
Lepowsky, M 1982, 'A comparison of alcohol and betelnut use on Vanatinai (Sudest Island)' in Through a glass darkly: Beer and modernization in Papua New Guinea, Monograph 18.

Lepowsky, M 1983, 'Sudest Island and the Louisiade archipelago in Massim exchange', in JW Leach and E Leach (eds.), The Kula: New Perspectives in Massim Exchange, pp. 467501, Cambridge University Press, Cambridge.
Lepowsky, M 1985, 'Food taboos, malaria and dietary change: Infant feeding and cultural adaptation on a Papua New Guinea island', Ecology of Food and Nutrition, vol. 16, no. 2, pp. 105-126.
Lepowsky, M 1987, 'Food taboos and child survival: A case study from the Coral Sea' in N Scheper-Hughes (ed.), Child Survival, pp. 71-92, Springer, Dordrecht, Netherlands.
Lepowsky, M 1989, 'Soldiers and spirits: The impact of World War II on a Coral Sea island' in GM White \& LC Lindstrom (eds.), The Pacific Theater: Island Representations of World War II, vol. 8, pp. 205-230, University of Hawai‘i Press, Honolulu.
Lepowsky, M 1990a, 'Big men, big women, and cultural autonomy', Ethnology, vol. 29, no. 1, pp. 35-50.
Lepowsky, M 1990b, 'Gender in an egalitarian society: A case study from the Coral Sea' in PR Sanday \& RG Goodenough (eds.), Beyond the Second Sex. New Directions in the Anthropology of Gender, pp. 172-223, University of Pennsylvania Press, Philadelphia.
Lepowsky, M 1990c, 'Sorcery and penicillin: Treating illness on a Papua New Guinea island', Social Science \& Medicine, vol. 30, no. 10, pp. 1049-1063.
Lepowsky, M 1991, 'The way of the ancestors: Custom, innovation, and resistance', Ethnology, vol. 30, no. 3, pp. 217-235.
Lepowsky, M 1993, Fruit of the Motherland: gender in an egalitarian society, Columbia University Press, New York.
Lepowsky, M 2001, 'The Queen of Sudest; White women and colonial cultures in British New Guinea and Papua' in NM McPherson (ed.), In Colonial New Guinea: Anthropological Perspectives, pp. 125-150, University of Pittsburgh Press, Pittsburgh.
Levin, B 1993, English verb classes and alternations: a preliminary investigation, University of Chicago Press, Chicago.
Levinson, SC 2000, 'Yélî Dnye and the Theory of Basic Color Terms', Journal of Linguistic Anthropology, vol. 10, no. 1, pp. 3-55.
Levinson, SC 2006, 'The language of space in Yélî Dnye' in SC Levinson (ed.), Grammars of space: Explorations in cognitive diversity, pp. 157-203, Cambridge University Press.
Levinson, SC \& Brown, P 2012, 'Put and take in Yélî Dnye, the Papuan language of Rossel Island' in A Kopecka \& B Narasimhan (eds.), Events of putting and taking: A crosslinguistic perspective, pp. 273-296, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Libert, A 2006, Ambipositions, Lincom Europa, München.
Lichtenberk, F 1983, A grammar of Manam, University of Hawai‘i Press, Honolulu.
Lichtenberk, F 1985, 'Possessive constructions in Oceanic languages and in Proto-Oceanic' in A. Pawley \& L. Carrington (eds.), Austronesian linguistics at the 15th Pacific Science Congress, pp. 93-140, Pacific Linguistics, Canberra.

Lichtenberk, F 1991a, 'On the gradualness of grammaticalization' in E Closs Traugott \& B Heine (eds.), Approaches to Grammaticalization vol. 1 John Benjamins Publishing, Amsterdam; Philadelphia, pp. 37-80.
Lichtenberk, F 1991b, 'Semantic change and heterosemy in grammaticalization', Language, vol. 67, no. 3, pp. 475-509.
Lichtenberk, F 1997, 'Head-marking and objecthood' in J Bybee, J Haiman, \& SA Thompson (eds.), Essays on language function and language type, dedicated to T. Givón, pp. 301322, Benjamins Publishing Company, Amsterdam; Philadelphia.
Lichtenberk, F 2002, 'Posture verbs in Oceanic’, in J Newman (ed.), The Linguistics of Sitting, Standing, and Lying, pp. 269-314.
Lichtenberk, F 2006, 'Serial verb constructions in Toqabaqita' in AY Aikhenvald \& RMW Dixon (eds.), Serial verb constructions: A cross-linguistic typology, pp. 254-272, Oxford University Press, Oxford; New York.
Lichtenberk, F 2008, A grammar of Toqabaqita, Mouton de Gruyter, Berlin; New York.
Liep, John 2009, A Papuan plutocracy: ranked exchange on Rossel Island, Aarhus University Press, Lancaster.
Lithgow, Daphne 1970a, The discourse in Muyuw, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, Daphne 1970b, The paragraph in Muyuw, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, Daphne 1970c, The sentence in Muyuw, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, D \& Lithgow, D 1973a, Muyuw noun classes, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, D \& Lithgow, D 1973b, Muyuw verbs, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, D \& Lithgow, D 1973c, Transitive and intransitive verb-stems in Muyuw, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, D \& Lithgow, D 1974, Muyuw language, [linguistic-type = lexicon], Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, David 1969a, Muyuw clause types and structure, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, David 1969b, Muyuw phrases, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, David 1973, Muyuw noun phrases, unpublished, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lithgow, David 1976, ‘Austronesian languages: Milne Bay and adjacent islands' in SA Wurm (ed.), New Guinea area languages and language study 2: Austronesian languages, pp. 441-523, Department of Linguistics, Research School of Pacific Studies, Australian National University.
Lithgow, David 1985, 'A grammatical analysis of a Dobu text' in Workpapers in Papua New Guinea Languages, pp. 25-56, Summer Institute of Linguistics, Ukarumpa, Papua New Guinea.
Lucy, J 2000, 'Systems of Nominal Classification: A concluding discussion' in G Senft (ed.), Systems of nominal classification, pp. 326-341, Cambridge University Press, Cambridge.
Lynch, J 1981, 'Melanesian diversity and Polynesian Homogeneity: the other side of the coin', Oceanic Linguistics, vol. 20, no. 2, pp. 95-129.
Lynch, J, Crowley, T, \& Ross, M (eds.) 2002, The Oceanic languages, Curzon, Richmond, Surrey.

Lynch, J \& Horoi, R 2002, 'Sudest' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic languages, pp. 562-572, Curzon, Richmond, Surrey.
MacGillivray, J 1852, Narrative of the Voyage of HMS Rattlesnake, Commanded by the Late Captain Owen Stanley, RN, FRS Etc. During the Years 1846-1850. Including Discoveries and Surveys in New Guinea, the Louisiade Archipelago, etc., vol. 2, T and W. Boone, London.
Malchukov, A, Haspelmath, M, \& Comrie, B (eds.) 2010, Studies in ditransitive constructions a comparative handbook, De Gruyter Mouton, Berlin; New York.
Malchukov, A, Haspelmath, M, \& Comrie, B 2010, 'Ditransitive constructions: a typological overview' in A Malchukov, M Haspelmath, \& B Comrie (eds.), Studies in Ditransitive Constructions: A Comparative Handbook, pp. 1-64, De Gruyter Mouton, Berlin; New York.
Malinowski, B 1922, Argonauts of the western Pacific: an account of native enterprise and adventure in the archipelagoes of Melanesian New Guinea, Routledge and Kegan Paul, London.
Malinowski, B 1929, The Sexual Life of Savages in North-Western Melanesia: An Ethnographic Account of Courtship, Marriage, and Family Life Among the Natives of the Trobriand Islands, British New Guinea, Routledge, London.
Malinowski, B 1935, Coral Gardens and Their Magic: A Study of the Methods of Tilling the Soil and of Agricultural Rites in the Trobriand Islands, Routledge, London.
Margetts, A 1999a, 'Negation in Saliba (Papua New Guinea, Milne Bay Province)' in E Hovdhaugen \& U Mosel (eds.), Negation in Oceanic languages, pp. 20-44, Lincom Europa, Munich.
Margetts, A 1999b, Valence and transitivity in Saliba: an Oceanic language of Papua New Guinea, Radboud University Nijmegen Nijmegen.
Margetts, A 2002, 'The Linguistic Encoding of Three-Participant Events in Saliba', Studies in Language, vol. 26, no. 3, pp. 613-36.
Margetts, A 2004a, 'From implicature to construction: emergence of a benefactive construction in Oceanic', Oceanic Linguistics, vol. 43, no. 2, pp. 445-468.
Margetts, A 2004b, 'Core-layer juncture in Saliba' in in I Bril \& F Ozanne-Rivierre (eds.), Complex predicates in Oceanic languages: Studies in the Dynaimics of Binding and Boundedness, pp. 65-88, Mouton de Gruyter, Berlin; New York.
Margetts, A 2005, 'Positional Slots in Saliba Complex Verbs', Oceanic Linguistics, vol. 44, no. 1, pp. 65-89.
Margetts, A 2007, 'Three-participant Events in Oceanic Languages', Oceanic Linguistics, vol. 46, no. 1, pp. 71-127.
Margetts, A 2008a, 'Learning verbs without boots and straps? The problem of 'give' in Saliba', Cross-Linguistic Perspectives on Argument Structure: Implications for Learnability, pp. 111-137.
Margetts, A 2008b, ‘Transitivity Discord in Some Oceanic Languages’, Oceanic Linguistics, vol. 47, no. 1, pp. 30-44.
Margetts, A 2018, 'Saliba-Logea: Exophoric Demonstratives', Demonstratives in CrossLinguistic Perspective, vol. 14, p. 257.
Margetts, A \& Austin, PK 2007, 'Three-participant events in the languages of the world: towards a crosslinguistic typology', Linguistics, vol. 45, no. 3, pp. 393-451.
Margetts, A, Haude, K, Himmelmann, N, Jung, D, Riesberg, S, Schnell, S, Seifart, F, Sheppard, H, \& Wegener, C forthcoming, 'Cross-linguistic patterns in the lexicalisation of BRING and TAKE', Studies in Language.

Margetts, A, Haude, K, Himmelmann, N, Jung, D, Seifart, F, Riesberg, S, Schnell, S, \& Wegener, C 2019a, Three-participant events project - Encoding Strategies, retrieved from https://dobes.mpi.nl/wp-content/uploads/2020/07/3PE-Target-events_version_2019.pdf.
Margetts, A, Haude, K, Himmelmann, N, Jung, D, Seifart, F, Riesberg, S, Schnell, S, \& Wegener, C 2019b, Three-participant events project - Target events, retrieved from https://dobes.mpi.nl/wp-content/uploads/2020/07/3PE-Encoding-Strategies-version2019.pdf.

Milner, GB 1972, Fijian grammar, Third edition, Government Press, Suva, Fiji.
Mithun, M 1984, ‘The evolution of noun incorporation', Language, vol. 60, no. 4, pp. 847894.

Mithun, M 1986, 'When zero isn't there' in V Nikiforidou, M VanClay, M Niepokuj, \& D Feder (eds.), Proceedings of the twelfth annual meeting of the Berkeley Linguistics Society: February 15-17, 1986, pp. 195-211, Berkeley Linguistics Society, University of California, Berkeley, California.
Mithun, M 1999, The languages of native North America, Cambridge University Press, New York.
Mithun, M 2002, 'The role of lexicalization in the grammaticalization of causatives' in I Wischer \& G Diewald (eds.), New reflections on grammaticalization, vol. 49, p. 237, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Mithun, M 2003, 'Pronouns and agreement: The information status of pronominal affixes', Transactions of the Philological Society, vol. 101, no. 2, pp. 235-278.
Mosel, U 1984, Tolai syntax and its historical development, Pacific Linguistics, Canberra.
Mosel, U 1999, 'Towards a typology of negation in Oceanic languages' in E Hovdhaugen \& U Mosel (eds.), Negation in Oceanic languages, pp. 1-19, Lincom Europa, Munich.
Mosel, U \& Hovdhaugen, E 1992, Samoan reference grammar, Scandinavian University Press, Oslo.
Mukherjee, Joybrato 2005, English ditransitive verbs: aspects of theory, description and a usage-based model, Rodopi, Amsterdam.
Næss, Å 2011, 'Directional Verbs in Vaeakau-Taumako', Oceanic Linguistics, vol. 50, no. 1, pp. 120-139.
Næss, Å \& Hovdhaugen, E 2011, A Grammar of Vaeakau-Taumako, De Gruyter Mouton, Berlin, Boston.
Narasimhan, B, Eisenbeiß, S, \& Brown, P 2007, ""Two's company, more is a crowd": the linguistic encoding of multiple-participant events', Linguistics, vol. 45, no. 3, pp. 383392.

Narasimhan, B, Kopecka, A, Bowerman, M, Gullberg, M, \& Majid, A 2012, 'Putting and taking events: A crosslinguistic perspective’ in A Kopecka \& B Narasimhan (eds.), Events of putting and taking: A crosslinguistic perspective, pp. 1-20, John Benjamins Publishing Company, Amsterdam; Philadelphia.
National Statistical Office of Papua New Guinea 2014, '2011 National Population and Housing Census: Ward Population Profile, Southern Region', National Statistics Office, Papua New Guinea.
Nevis, J, Joseph, B, Wanner, D, \& Zwicky, A 1994, Clitics: a comprehensive bibliography: 1892-1991, John Benjamins Publishing Company, Amsterdam.
Newman, J 1996, Give: A cognitive linguistic study, Walter de Gruyter, Berlin.
Newman, J (ed.) 1997, The linguistics of giving, John Benjamins Publishing Company, Philadelphia.
Newman, P 1980, The classification of Chadic within Afroasiatic, Leiden University Press, Leiden.

Noonan, M 2007, ‘Complementation' in T Shopen (ed.), Language typology and syntactic description. Volume II: Complex constructions, 2nd edition, pp. 52-151, Cambridge University Press, Cambridge.
Olson, C 1992, ‘Gumawana (Amphlett Islands, Papua New Guinea): Grammar sketch and texts' in MD Ross (ed.), Papers in Austronesian Lingusitics no. 2, pp. 251-430, Pacific Linguistics, Canberra.
Osmond, M 2016a, 'Body part metaphors' in M Ross, A Pawley, \& M Osmond (eds.), The lexicon of Proto Oceanic: The culture and environment of ancestral Oceanic society, vol. 5, People, body and mind, pp. 519-534, Asia-Pacific Linguistics, Canberra.
Osmond, M 2016b, 'Health and disease' in M Ross, A Pawley, \& M Osmond (eds.), The lexicon of Proto Oceanic: The culture and environment of ancestral Oceanic society, vol. 5, People, body and mind, pp. 334-266, Asia-Pacific Linguistics, Canberra.
Osumi, M 1995, ‘Tinrin Grammar' Oceanic Linguistics Special Publications, no. 25.
Oven, MV, Brauer, S, Choi, Y, Ensing, J, Schiefenhövel, W, Stoneking, M, \& Kayser, M 2014, 'Human genetics of the Kula Ring: Y-chromosome and mitochondrial DNA variation in the Massim of Papua New Guinea', European Journal of Human Genetics, vol. 22, no. 12, pp. 1393-1403.
Owens, K, Lean, G, Paraide, P, \& Muke, C 2018, History of Number: Evidence from Papua New Guinea and Oceania, Springer International Publishing, Cham.
Ozanne-Rivierre, F 2004, 'The evolution of the verb "take" in New Caledonian languages' in I Bril \& F Ozanne-Rivierre (eds.), Complex predicates in Oceanic languages: studies in the dynamics of binding and boundness, pp. 331-346, Mouton de Gruyter, Berlin; New York.
Ozanne-Rivierre, F \& Rivierre, J-C 2004, 'Verbal compounds and lexical prefixes in the languages of New Caledonia' in I Bril \& F Ozanne-Rivierre (eds.), Complex predicates in Oceanic languages: Studies in the Dynaimics of Binding and Boundedness, pp. 347-372, Mouton de Gruyter, Berlin; New York.
Palmer, B 2009, Kokota grammar, University of Hawai‘i Press, Honolulu.
Parsonson, GS 1967, 'Torres and the Discovery of Southern New Guinea', New Zealand Geographer, vol. 23, no. 2, pp. 132-156.
Passer, MB 2016a, The typology and diachrony of nominal classification, LOT, Amsterdam.
Passer, MB 2016b, ‘(What) Do verb classifiers classify?’ Lingua, vol. 174, pp. 16-44.
Patjole, C 2018, 'Elementary schools to be phased out by 2021', Loop PNG, 30 May.
Pawley, A 1975, ‘The relationships of the Austronesian languages of Central Papua: a preliminary study' in TE Dutton (ed.), Studies in languages of central and south-east Papua, Pacific Linguistics, Canberra.
Pawley, A 2003, 'Grammatical categories and grammaticisation in the Oceanic verb complex', Cornell Working Papers In Linguistics, vol. 19, pp. 149-172.
Pederson, E \& Bohnemeyer, J 2011, 'On representing events - an introduction' in J Bohnemeyer \& E Pederson (eds.), Event Representation in Language and Cognition, pp. 1-12, Cambridge University Press, Cambridge.
Pederson, E, Danziger, E, Wilkins, D, Levinson, SC, Kita, S, \& Senft, G 1998, 'Semantic typology and spatial conceptualization', Language, vol. 74, no. 3, pp. 557-589.
Peterson, D 1999, Discourse-functional, historical, and typological aspects of applicative constructions, doctoral thesis, University of California at Berkeley.
Peterson, J 2005, 'There's a grain of truth in every "myth", or, Why the discussion of lexical classes in Mundari isn't quite over yet', Linguistic Typology, vol. 9, no. 3, pp. 391-405.
Pianesi, F \& Varzi, AC 2000, ‘Events and event talk' in J Higginbotham, F Pianesi, \& AC Varzi (eds.), Speaking of events, pp. 3-47, Oxford University Press, New York; Oxford.

Plank, F 1984, 'Verbs and Objects in Semantic Agreement: Minor Differences between English and German That Might Suggest a Major One', Journal of Semantics, vol. 3, no. 4, pp. 305-360.
Rappaport Hovav, M \& Levin, B 2008, 'The English dative alternation: The case for verb sensitivity', Journal of Linguistics, vol. 44, no. 1, pp. 129-167.
Ray, SH 1937, ‘The Languages of the Eastern Louisiade Archipelago’, Bulletin of the School of Oriental and African Studies, vol. 9, no. 02, pp. 363-384.
Reesink, G 2013, 'Expressing the GIVE event in Papuan languages: A preliminary survey', Linguistic Typology, vol. 17, no. 2, pp. 217-266.
Regier, T \& Zheng, M 2007, ‘Attention to Endpoints: A Cross-Linguistic Constraint on Spatial Meaning', Cognitive Science, vol. 31, no. 4, pp. 705-719.
Reindl, DF 2001, 'Areal effects of the preservation and genesis of Slavic postpositions' in L Šarić \& DF Reindl (eds.), On Prepositions, pp. 56-71, Biblioteks- und Informationssystem der Universität Oldenburg, Oldenburg.
Rice, S 2009, 'Athapaskan eating and drinking verbs and constructions' in J Newman (ed.), The linguistics of eating and drinking, pp. 109-152, Amsterdam; Philadelphia.
Ridge, E 2018, 'Language Contexts: Vatlongos, Southeast Ambrym (Vanuatu)'. Language Documentation and Description, vol. 15, pp. 87-122.
Ross, D 2017, 'A Cross-Linguistic Survey of Associated Motion and Directionals' in International workshop on 'associated motion', p. 92, Australian National University, Canberra.
Ross, M 1979, The Austronesian languages of Papua: towards a family tree, Port Moresby: Mimeo, University of Papua New Guinea.
Ross, M 1988, Proto Oceanic and the Austronesian languages of Western Melanesia, Pacific Linguistics, Canberra.
Ross, M 1998, 'Proto Oceanic phonology and morphology' in M Ross, A Pawley, \& M Osmond (eds.), The lexicon of Proto Oceanic: the culture and environment of ancestral Oceanic society, vol. 1: Materia Culture, pp. 15-35, Pacific Linguistics, Canberra.
Ross, M 2002a, 'Kele' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic languages, pp. 123-147, Curzon, Richmond, Surrey.
Ross, M 2002b, ''Ala'ala' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic languages, pp. 347-361, Curzon, Richmond, Surrey.
Ross, M 2002c, 'Bali-Vitu' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic languages, pp. 362-386, Curzon, Richmond, Surrey.
Ross, M 2003, 'Talking about space: terms of location and direction' in M Ross, A Pawley, \& M Osmond (eds.), The lexicon of Proto Oceanic: The culture and environment of ancestral Oceanic society, vol. 2, The physical environment, pp. 187-220, Pacific Linguistics, Canberra.
Ross, M 2004, 'The grammaticalization of directional verbs in Oceanic languages' in I Bril \& F Ozanne-Rivierre (eds.), Complex predicates in Oceanic languages: studies in the dynamics of binding and boundedness, pp. 297-329, Mouton de Gruyter, Berlin; New York.
Ross, M 2016, 'Posture and Movement' in M Ross, A Pawley, \& M Osmond (eds.), The lexicon of Proto Oceanic: The culture and environment of ancestral Oceanic society, vol. 5, People, body and mind, pp. 367-456, Asia-Pacific Linguistics, Canberra.
Ross, M, Pawley, A, \& Osmond, M 2011, The lexicon of Proto Oceanic: the culture and environment of ancestral Oceanic Society, vol. 4, Animals, Asia-Pacific Linguistics, Canberra.

Ross, M, Pawley, A, \& Osmond, M 2016, The lexicon of Proto Oceanic: The culture and environment of ancestral Oceanic society, vol. 5, People, body and mind, Asia-Pacific Linguistics, Canberra.
San Roque, L, Gawne, L, Hoenigman, D, Miller, JC, Rumsey, A, Spronck, S, Carroll, A, \& Evans, N 2012, 'Getting the story straight: Language fieldwork using a narrative problem-solving task', Language Documentation and Description, vol. 6, pp. 135-174.
Sasse, H-J 1987, 'The Thetic/Categorical Distinction Revisited', Linguistics: An Interdisciplinary Journal of the Language Sciences, vol. 25, no. 3, pp. 511-580.
Schlossberg, J 2012, Lexical Reconstruction of Proto Papuan Tip, honours thesis, Monash University, Melbourne.
Schneider, C 2007, 'Verb serialisation and incipient grammaticalisation in Abma', Oceanic Linguistics, vol. 48, no. 1, pp. 1-35.
Schneider, CC 2009, 'Information Structure in Abma', Oceanic Linguistics, vol. 48, no. 1, pp. \(1-35\).
Schnell, S 2011, A grammar of Vera'a, unpublished manuscript, Kiel University.
Schnell, S 2012, 'Referential Hierarchies in Three-Participant Constructions in Vera'a', Linguistic Discovery, vol. 10, no. 3, pp. 125-147.
Schokkin, GH 2014, A grammar of Paluai: the language of Baluan Island, Papua New Guinea, doctoral thesis, James Cook University, Cairns.
Sebba, Mark 1987, The syntax of serial verbs: an investigation into serialisation in Sranan and other languages, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Seiler, W 1985, 'Imonda, a Papuan language', Pacific Linguistics, Canberra.
Seiler, W 1986, 'Noun-Classificatory Verbal Prefixes as Reanalysed Serial Verbs', Lingua: International Review of General Linguistics, vol. 68, no. 2-3, pp. 189-207.
Senft, G 1986, Kilivila: the language of the Trobriand islanders, vol. 3, Mouton de Gruyter, Berlin; Boston.
Senft, G 1987, 'Kilivila color terms', Studies in Language, vol. 11, no. 2, pp. 313-346.
Senft, G 1996, Classificatory particles in Kilivila, vol. 1, Oxford University Press, Cary, North Carolina.
Senft, G 1999, 'ENTER and EXIT in Kilivila', Studies in Language, vol. 23, no. 1, pp. 1-23.
Senft, G 2000a, ‘COME and GO in Kilivila’ in The Second International Conference on Oceanic Linguistics (SICOL), pp. 105-136, Pacific Linguistics.
Senft, G 2000b, 'What do we really know about nominal classification systems' in G Senft (ed.), Systems of nominal classification, p. 11, Cambridge University Press, Cambridge.
Senft, G 2001, 'Frames of spatial reference in Kilivila', Studies in Language, vol. 25, no. 3, pp. 521-555.
Senft, G 2004, 'Aspects of spatial deixis in Kilivila' in G Senft (ed.), Deixis and demonstratives in Oceanic languages, pp. 59-80, Pacific Linguistics, Canberra.
Senft, G 2007, 'Nominal Classification' in D Geeraerts \& H Cuyckens (eds.), The Oxford Handbook of Cognitive Linguistics, pp. 676-696, Oxford University Press, Oxford.
Senft, G 2008a, 'Event conceptualization and event report in serial verb constructions in Kilivila: Towards a new approach to research and old phenomenon' in Serial verb constructions in Austronesian and Papuan languages, pp. 203-230, Pacific Linguistics Publishers, Canberra.
Senft, G (ed.) 2008b, Serial verb constructions in Austronesian and Papuan languages, Pacific Linguistics, Canberra.
Senft, G 2009, 'Trobriand Islanders' forms of ritual communication' in G Senft \& EB Basso (eds.), Ritual communication, pp. 135-158, Berg, Oxford; New York.

Senft, G 2011, 'To have and have not' in N Evans, A Gaby, SC Levinson, \& A Majid (eds.), Reciprocals and Semantic Typology, pp. 225-232, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Senft, G 2012, 'Referring to colour and taste in Kilivila Stability and change in two lexical domains' in A Schalley (ed.), Practical Theories and Empirical Practice: A Linguistic Perspective, vol. 40, p. 71, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Senft, G 2017a, ‘Acquiring Kilivila Pragmatics-the Role of the Children’s (Play-) Groups in the first 7 Years of their Lives on the Trobriand Islands in Papua New Guinea', Studies in Pragmatics, vol. 19, pp. 40-53.
Senft, G 2017b, 'Expressions for emotions-and inner feelings-in Kilivila, the language of the Trobriand Islanders: A descriptive and methodological critical essay' in N Tersis \& P Boyeldieu (eds.), Le langage de l'emotion: Variations linguistiques et culturelles, pp. 349-376, Peeters, Leuven.
Shaw, B 2014, The archaeology of Rossel Island, Massim, Papua New Guinea: Towards a prehistory of the Louisiade Archipelago, doctoral thesis, Australian National University.
Shaw, B 2016a, 'The late prehistoric introduction of pottery to Rossel Island, Louisiade Archipelago, Papua New Guinea: Insights into local social organisation and regional exchange in the Massim', Archaeology in Oceania, vol. 51, no. S1, pp. 61-72.
Shaw, B 2016b, 'The Massim region of Papua New Guinea: A review and proposed chronology', Journal of Pacific Archaeology, vol. 7, no. 1, pp. 106-125.
Shaw, B 2017, 'Late Pleistocene Colonisation of the Eastern New Guinea Islands? The Potential Implications of Robust Waisted Stone Tool Finds from Rossel Island on the Long-Term Settlement Dynamics in the Massim Region' Journal of Pacific Archaeology, vol. 8, no. 2, pp. 1-16.
Shaw, B \& Dickinson, WR 2017, ‘Excavation on Nimowa Island, Louisiade Archipelago, Papua New Guinea: Insights Into Cultural Practices and the Development of Exchange Networks in the Southern Massim Region', The Journal of Island and Coastal Archaeology, vol. 12, no. 3, pp. 398-427.
Sheppard, H forthcoming, 'Directed caused accompanied motion events in Sudest' in A Margetts, B Hellwig, S Riesberg, \& M Schipping (eds.), Caused accompanied motion: Bringing and taking events in a cross-linguistic perspective, John Benjamins Publishing Company, Amsterdam; New York.
Siewierska, A 1999, 'From anaphoric pronoun to grammatical agreement marker: Why objects don't make it', Folia Linguistica, vol. 33, no. 1-2, pp. 225-252.
Siewierska, A 2003, 'Person agreement and the determination of alignment', Transactions of the Philological Society, vol. 101, no. 2, pp. 339-370.
Siewierska, A 2004, Person, Cambridge University Press, New York.
Siewierska, A \& Hollman, W 2004, 'Ditransitive clauses in English with special reference to Lancashire Dialect' in M Hannay \& G Steen (eds.), The English clause: usage and structure, John Benjamins Publishing Company, Amsterdam, Philadelphia.
Siewierska, A \& van Lier, E 2013, 'Introduce: encoding a non-prototypical three-participant event across Europe' in E van Gelderen, M Cennamo, \& B Jóhanna (eds.), Argument Structure in Flux: The Naples-Capri Papers, vol. 131, pp. 169-200.
Sneddon, JN, Adelaar, A, Noverini Djenar, D, \& Ewing, MC 2010, Indonesian reference grammar, 2nd ed., Allen \& Unwin, Crows Nest, New South Wales.
Song, JJ 1996, Causatives and causation: a universal-typological perspective, Longman, London; New York.
Song, JJ 1997, 'The History of Micronesian Possessive Classifiers and Benefactive Marking in Oceanic Languages’, Oceanic Linguistics, vol. 36, no. 1, pp. 29-64.

Song, JJ 1998, 'Benefactive marking in Oceanic languages: From possessive classifiers to benefactive marking' in A Siewierska \& JJ Song (eds.), Case, Typology, and Grammar: In Honor of Barry J. Blake, pp. 247-275, John Benjamins Publishing Company, Amsterdam.
Song, JJ 2005, ‘Grammaticalization and structural scope increase: possessive-classifier-based benefactive marking in Oceanic languages', Linguistics, vol. 43, no. 4, pp. 795-838.
Spencer, Andrew. 2012a, Clitics: an introduction, Cambridge University Press, Cambridge.
Spencer, A \& Luís, A 2012b, 'The canonical clitic' in D Brown, M Chumakina, \& GG Corbett (eds.), pp. 124-150, Oxford University Press, Oxford; New York.
Sperlich, WB 1993, ‘Serial Verb Constructions in Namakir of Central Vanuatu’, Oceanic Linguistics, vol. 32, no. 1, pp. 95-110.
Stassen, Leon 2009, Predicative possession, Oxford University Press, Oxford; New York. Steele, S 1989, 'Subject Values', Language, vol. 65, no. 3, pp. 537-78.
Sterner, J \& Ross, M 2002, 'Sobei' in J Lynch, M Ross, \& T Crowley (eds.), The Oceanic Languages, pp. 167-185, Curzon, Richmond, Surrey.
Sterner, JK 1987, 'Sobei Verb Morphology Reanalyzed to Reflect POC Studies', Oceanic Linguistics, vol. 26, no. 1/2, pp. 30-54.
Sterner, RH 1975, ‘Sobei Verb Inflection', Oceanic Linguistics, vol. 14, no. 2, pp. 128-145.
Talmy, L 1996, 'Fictive motion in language and "ception"" in P Bloom, MA Peterson, L Nadel, \& MF Garrett (eds.), Language and space, vol. 21, pp. 1-276, MIT Press, Cambridge, Massachusetts.
Tauberschmidt, Gerhard 1999, A grammar of Sinauggoro: an Austronesian language of the Central Province of Papua New Guinea, Pacific Linguistics, Canberra.
Tchekhoff, C 1981, Simple sentences in Tongan, Pacific Linguistics, Canberra.
The National 2019, 'Govt not changing outcome-based education system: Minister', The National, June 26, retrieved from https://www.thenational.com.pg/govt-not-changing-outcome-based-education-system-minister.
Thieberger, N 2006, 'A Grammar of South Efate: An Oceanic Language of Vanuatu', Oceanic Linguistics Special Publications, no. 33.
Thieberger, N 2007, 'The demise of serial verbs in South Efate' in D Eades, J Lynch, \& J Siegel (eds.), Language Description, History and Development: Linguistic Indulgence in Memory of Terry Crowley, pp. 237-251, John Benjamins Publishing Company, Amsterdam.
Thieberger, N 2009, 'Steps toward a grammar embedded in data' in A Arkhipov \& P Epps (eds.), New Challenges in Typology Transcending the Borders and Refining the Distinctions, pp. 389-407, De Gruyter, Berlin, Boston.
Thieberger, N 2014, 'Guide to materials in Nafsan, South Efate', retrieved from https://nthieberger.net/sefate.html.
Toto Thovuye Loi Ghaligae: Sudest New Testament 2015, 1st edn, Bible League International, Crete, Illinois.
Vaa, A 2013, A grammar of Engdewu, an Oceanic language of the Solomon Islands, doctoral thesis, University of Oslo, Oslo.
Valin, RDV \& LaPolla, RJ 1997, Syntax: structure, meaning, and function, Cambridge University Press, Cambridge; New York.
van Lier, E 2012, 'Referential effects on the expression of three-participant events across languages - an introduction in memory of Anna Siewierska’, Linguistic Discovery, vol. 10, no. 3, pp. 1-17.
van Lier, E 2016, 'Lexical flexibility in Oceanic languages' Linguistic Typology, vol. 20, no. 2, pp. 197-232.
van Lier, E \& Rijkhoff, J 2013, ‘Flexible word classes in linguistic typology and grammatical theory' in J Rijkhoff \& E van Lier (eds.), Flexible word classes: a typological study of underspecified parts-of-speech, pp. 1-30, Oxford University Press, Oxford.
Van Valin, RD \& LaPolla, RJ 1997, Syntax: Structure, meaning and function, Cambridge University Press, Cambridge.
Verkerk, A \& Frostad, BH 2013, ‘The Encoding of Manner Predications and Resultatives in Oceanic: A Typological and Historical Overview', Oceanic Linguistics, vol. 52, no. 1, pp. 1-35.
Völkel, S 2017, 'Word classes and the scope of lexical flexibility in Tongan', Studies In Language, vol. 41, no. 2, pp. 445-495.
Wilkins, D 1999, ‘The 1999 demonstrative questionnaire: "this" and "that" in comparative perspective' in D Wilkins (ed.), Manual for the 1999 Field Season, pp. 1-24, Max Planck Institute for Psycholinguistics, Nijmegen.
Wilkins, DP 1991, 'The semantics, pragmatics and diachronic development of 'associated motion' in Mparntwe Arrernte', Buffalo Papers in Linguistics, vol. 1, pp. 207-257.
Woodbury, AC 2011, 'Language documentation' in PK Austin \& J Sallabank (eds.), The Cambridge Handbook of Endangered Languages, Cambridge University Press, Cambridge; New York.
Woodbury, T 2003, 'Defining documentary linguistics', Language Documentation and Description, vol. 1, no. 1, pp. 35-51.
Young, M 1983, ‘The Massim: An introduction’, The Journal of Pacific History, vol. 18, no. 1, pp. 4-10.
Zúñiga, F \& Kittilä, S 2010, Benefactives and malefactives: typological perspectives and case studies, John Benjamins Publishing Company, Amsterdam; Philadelphia.
Zwicky, A \& Pullum, G 1983, 'Cliticization vs Inflection: English n't', Language, vol. 59, no. 3, pp. 502-513.
Zwicky, AM 1977, On clitics, Indiana University Linguistics Club, Bloomington, Indiana.```


[^0]:    ${ }^{1}$ https://pnglanguages.sil.org/resources/provinces/province/Milne\%20Bay
    ${ }^{2}$ The islands of Vanatina and Yeina are located within the Yeleyemba Rural Local Level government (LLG). The two islands are divided into six wards. The approximate number of speakers is calculated based on the number of inhabitants of wards 5-9 and ward 16 in the Yaleyemba LLG in the 2011 census data (National Statistical Office of Papua New Guinea, 2014). The ward of Western Point (ward 4) is excluded from speaker estimates as the inhabitants of Western Point (Boboghagha) primarily speak a variety of Nimowa. A relatively small number of speakers away from Vanatina and Yeina - no more than a few hundred - and this number is included in the current estimate. I consider the current speaker estimate to supersede the figure of 2,000 speakers listed in the current edition of Ethnologue (Eberhard et al. 2020) as their figure comes from 1988 and is clearly outdated.
    ${ }^{3}$ There was also a government outpost on the north-west tip of the island with this name and Leposwky (1993: 309 fn .24 ) reports that a village with the name Ragule existed thereabouts in precolonial times and may be the origin of the Misima name.
    ${ }^{4}$ Vanatina can also refer to 'the mainland' or a large island in opposition with the term raurau 'island'.
    ${ }^{5}$ The spelling 'Vanatinai' originates from the ethnographic work of Lepowsky (e.g. 1982; 1993) and differs from that used throughout this thesis which adopts the more widespread orthography developed by SIL.

[^1]:    ${ }^{6}$ http://dobes.mpi.nl/research-projects/cross-linguistic-patterns-in-the-encoding-of-three-participant-events/

[^2]:    ${ }^{7}$ I use the spelling of 'Nimowa' rather than 'Nimoa' when referring to the island of Nimowa and the language spoken in the Calvados chain. 'Nimowa' is the spelling used both by Nimowa speakers and throughout the Louisiade Archipelago for the place name and language. I use the spelling 'Nimoa' only to refer to the NimoaSudest language family.
    ${ }^{8}$ This is also the variety documented by M. Anderson and T. Anderson (1991) and M. Anderson and Ross (2002). Data for their work was collected in Pamela on the south coast of the island.

[^3]:    ${ }^{9}$ The only other excavation carried out in the archipelago was undertaken by Geoff Irwin in the late 1980s on Misima and Motorina Islands, with results yet to be published (Shaw 2016a).
    ${ }^{10}$ The inhabitants of Rossel Island are culturally, linguistically and genetically unique in Milne Bay (Liep 2009; Shaw 2014; J. Henderson 1975; Levinson 2000, 2006; Oven et al. 2014). The language spoken on the island, Yélî Dnye, is an isolate and was presumably spoken in the region before the arrival of Austronesian speakers (Levinson 2000; 2006).

[^4]:    ${ }^{11}$ Today vanga lumo is used to refer to the English language.

[^5]:    ${ }^{12}$ In the text funeral_feasting_081015_01, three memorial feasts are listed. They occur in the following order: njiviya (lit. 'by hand-split' or 'split by hand'), which refers to the act of breaking a sago log; ghalonggalongga (lit. 'his/her walk(ing)'), at which time a widowed spouse may leave their house/village again; and mbwanggwimwanggwi (no known translation), at which time all taboos are lifted and a widowed spouse may remarry. Lepowsky (1991) describes four memorial feasts with a fifth optional feast. Lepowsky (1983: 497) also reports that in earlier times, the 'traditional' elaborate memorial feasts were not held, and they are partially a by-product of inter-island pacification that occurred in the earlier colonial period.
    ${ }^{13}$ Giya 'giver' comes from the verb giya 'give'.

[^6]:    ${ }^{14}$ Lawrence (2015) argues that the knowledge capital of traditional practices, including the widespread use of sorcery and witchcraft, correlate highly with gender egalitarianism, which, in turn, is at least partially responsible for the low levels of gender-based violence in the province compared with the rest of the country.

[^7]:    ${ }^{15}$ The 2010-2030 strategic plan of the PNG government aims to introduce universal secondary education up to grade 10, but there is no timeline given as to when this will be achieved by (Department of National Planning and Monitoring 2010).
    ${ }^{16}$ Hope Academy exclusively offers web-based education for students via distance education and was founded by Fr. Tony Young. The majority of students live and study on Nimowa, but learning centres have been set up on Vanatina, Rossel Island and a number of islands in the Calvados Chain. An Alotau campus was also opened in 2015.
    ${ }^{17}$ The PNG education system is currently in the process of restructuring. Until 2013, elementary schools used vernacular languages as the language of instruction, from 2013, however, the PNG government stated they would defund all elementary education in vernacular languages and reintroduce English as the language of instruction in the first three years of education (PNG Department of National Planning and Monitoring 2010: 55). As of June 2019, there are also plans to move the early years of education back into primary schools and to phase out elementary schools across the country by 2021, according to statements made in the PNG national parliament by the current and previous education ministers (Patjole 2018; Govt not changing outcome-based education system: Minister 2019).

[^8]:    ${ }^{18}$ See Lynch et al. (2002: 881-2) for a full list of published grammatical descriptions of Papuan Tip languages and Schlossberg (2012: 173-6) for an updated list of both published and unpublished Papuan Tip grammatical descriptions.
    ${ }^{19}$ http://www.sil.org/pacific/png/

[^9]:    ${ }^{20}$ Pacific and Regional Archive for Digital Sources in Endangered Cultures (http://www.paradisec.org.au)
    ${ }^{21}$ Because the first nine months of the year consist of a cyclone season followed by a rainy season, there is only a three-month window in which field trips are feasible.
    ${ }^{22}$ Meaning 'rainy place' or 'very rainy'.

[^10]:    ${ }^{23}$ Vanatina have both Christian and Sudest given names and generally use their Christian names for official purposes. Typically, people take a patronymic last name, using their father's Christian name although some women take their husband's patronymic or Christian name as a family name.
    ${ }^{24}$ Abel Sam passed away during late 2018 before the completion of this thesis.

[^11]:    ${ }^{25}$ https://tla.mpi.n1/tools/tla-tools/elan/
    ${ }^{26}$ http://www-01.sil.org/computing/toolbox/

[^12]:    ${ }^{27}$ All recordings without any kind of accessibility restrictions (so, minimally all interlinearised texts currently in the corpus as well as some elicitation recordings) will be made accessible upon the completion of the project to any users who agree to the terms and conditions of the archive. The corpus will soon be available at https://hdl.handle.net/1839/a67b355f-a22d-4e86-a95d-e41a2674e196.

[^13]:    ${ }^{28}$ The corpus is also not measured in 'words'. Word count can vary greatly depending on whether a language is more analytic or synthetic. Moreover, it is notoriously difficult to define what is a word both for individual languages and cross-linguistically and there is still a lack of consensus for cross-linguistic parameters that can be used to define what a word is (see, e.g., Dixon \& Aikhenvald 2002; Haspelmath 2011).

[^14]:    ${ }^{29} \mathrm{https}: / /$ www.eva.mpg.de/lingua/resources/glossing-rules.php

[^15]:    ${ }^{30}$ The project was supported by two grants: Cross-linguistic patterns in the encoding of three-participant events, funded by the Documentation of Endangered Languages Program, Volkswagen Foundation, 20132017 and Cross-linguistic patterns in the encoding of three-participant events - investigating BRING and TAKE, Documentation of Endangered Languages Program, Volkswagen Foundation, 2017-2020 $\underline{\mathrm{http}: / / d o b e s . m p i . n l / r e s e a r c h-p r o j e c t s / c r o s s-l i n g u i s t i c-p a t t e r n s-i n-t h e-e n c o d i n g-o f-t h r e e-p a r t i c i p a n t-e v e n t s / ~}$

[^16]:    ${ }^{31}$ Throughout the thesis the term 'three-place predicate' is used interchangeably with 'ditransitive' to refer to verbs with three syntactic arguments.

[^17]:    ${ }^{32}$ Some further work concentrating on give-type events includes Comrie (2003a; 2003b), Kittilä (2006a), Margetts (2008a), and Reesink (2013). Work focussing on other kinds of 3PEs include Siewierska and van Lier's (2013) research on 'promise' and Zúñiga and Kittilä's (2010) study on malefactives and benefactives, Comrie and Polinsky (1993) and Song (1996) on causatives, Peterson (1999) on applicatives, and Song (1997; 1998; 2005) and Margetts (2004a) on the emergence of benefactive constructions in Oceanic.
    ${ }^{33}$ The origin of the term three-participant event is unclear. Possibly the earliest attested use comes from Kemmer (1993). While Kemmer (1993) does not provide defining criteria for 3PEs, her characterisation of events and event participants are not dissimilar from those followed in the current work: 'The term "event" in this work will serve as a convenient cover term for actions, processes and states - in other words, an event is the conceptual correlate of a verb' (Kemmer 1993: 8) and events are 'treat[ed] in terms of participants, the referential entities involved in the event, and relations, the relationships linking the participants in a given event' (Kemmer 1993: 8 emphasis original).

[^18]:    ${ }^{34}$ Dryer (1986) uses the terms 'notional direct object' (DO) for T, and 'notional indirect object' (IO) for R. The current discussion adopts the labels used by Haspelmath (2001; 2005a) and subsequent scholars (e.g. Siewierska 2003; 2004; Malchukov et al. 2010a; 2010b) as they are widely used in the literature today.
    ${ }^{35}$ Malchukov et al. (2010a: 6) also identify 'horizontal' alignment, in which T and R are treated identically but differently from P. However, there are no attested clear cases of this type of alignment.
    ${ }^{36}$ Like M\&A, Malchukov et al. (2010a: 11-5) also analyse ditransitive constructions based on their encoding strategies. Several of their strategies overlap with (and are based on) encoding strategies identified by M\&A (see §2.4). Malchukov et al. (2010a), unlike M\&A, restrict their investigation to underived constructions only, and do not include constructions with causative or applicative morphology.

[^19]:    ${ }^{37}$ There are minor differences in the updated list of event types provided in Margetts et al. (2019b) from the previous version: namely, type B and type E events now include events in which the agent causes the theme to be moved to/from a location, not just to/from an animate entity.

[^20]:    ${ }^{38}$ Malchukov et al. (2010a: 12) critique M\&A's division of the dative case marking constructions and dative adpositional constructions into two separate encoding strategies (i.e., the three-place predicate strategy and the oblique/adjunct strategy respectively). They point out that such a distinction can be highly contentious even for large and well-studied language like Japanese (Malchukov et al. 2010a: 12). While this point merits further consideration, it is not relevant to the Sudest data, which has neither case marking nor a dedicated dative adposition.

[^21]:    ${ }^{39}$ The verb does not necessarily have to be underived, but rather no derivational morphology can be involved in the expression of the argument(s) (M\&A: 403).

[^22]:    ${ }^{40}$ Cleary-Kemp (2015: 139 fn . 19) only finds two languages with any instrumental serial verb construction in Oceanic, one is Tobati and the second is Numbami (North New Guinea, PNG), which does not appear to have any 3PEs encoded by this strategy (see Bradshaw 1993 for Numbami instrumental serial verbs).

[^23]:    ya-pwanc? mo e-sep aò-?-súy
    1SG-IRR:insert taro 3SG-IRR:descend mouth-1SG.POSS-hole
    'I'll put the taro into my mouth'
    (Ross 2002: 286, cited in Margetts 2007: 93)

[^24]:    ${ }^{41}$ W. Callister (1985a) analyses Misima verbs as 'action-focussed' and 'undergoer-focussed' rather than intransitive and transitive respectively. He labels the verbal suffix -an sometimes as an 'undergoer referencing clitic' (UR) and at other times as a third person object enclitic that does not specify number (W. Callister 1985a). For the sake of clarity and comparability, the enclitic is glossed as an object enclitic in the examples presented here. W. Callister (1985a: 8) describes the verbal prefix nana- as a 'movement prefix' that derives undergoer-focussed verbs (i.e. two-place predicates), typically with verbs of motion.
    ${ }^{42}$ As a reminder, serial verb constructions with directional stems are still analysed as cases of the serial verb strategy when a third participant cannot be expressed as an NP or PP with a particular target verb unless it is in serial verb construction with directional verb.

[^25]:    ${ }^{43}$ Margetts and Austin (p. 432) label this substrategy the 'inherent lexical meaning strategy'.

[^26]:    ${ }^{44}$ English is the contact language and language used for glossing and translating the corpus.
    ${ }^{45}$ The second clause in (34), however, is counted as a Type G event encoded by the affix-based classification absorption substrategy, in which an instrument participant is evoked by the manner-of-causation prefix ki'by cutting'.
    ${ }^{46}$ The 3PE annotations are included in the Sudest corpus that is in the process of being archived (see §1.5)

[^27]:    ${ }^{47}$ As A\&R is more recent, published description of the language, I view it as superseding A\&A for all topics covered in both sketch grammars.

[^28]:    ${ }^{48}$ This is found in other Oceanic languages, e.g., Tamambo (Jauncey 2011:30).

[^29]:    ${ }^{49}$ Some loanwords retain word final consonants, although a word-final schwa is also frequently added to loanwords ending in a consonant.
    ${ }^{50}$ The velar nasal is written as $\eta$ in the New Testament translation (2014) produced by SIL.

[^30]:    ${ }^{51}$ The crosslinguistic literature on this topic is extensive, for example, in the case of Mundari (Austroasiatic, India), debate on this topic extends back over a century to Hoffmann (1903) and continues into the present (e.g. Evans and Osada 2005; Peterson 2005; Hengeveld \& Rijkhoff 2005). For a general overview, see van Lier and Rijkhoff (2013).
    ${ }^{52}$ Rijkhoff and van Lier (2013) highlight that the terms 'zero-derivation' and 'conversion' are used relatively interchangeably by many scholars but point out that zero-derivation assumes a zero-affix while conversion does not.

[^31]:    ${ }^{53}$ As stated in §3.2, syllable structure in Sudest is (C)V(N).

[^32]:    ${ }^{54}$ There are also at least two suppletive verb pairs that specify participant number: wa 'go' and raka 'go (pl.)', and ngge 'hit (sg. OBJ)' and gabwa 'hit (pl. OBJ)'.

[^33]:    ${ }^{55}$ Wilkins's (1999) demonstrative questionnaire was carried out with five speakers to complement and supplement corpus data and fieldnotes.

[^34]:    ${ }^{56}$ This could also explain why $=y o$ DIST' does not occur in any of the elicitation sessions with the demonstrative questionnaire (Wilkins 1999) that were completed for Sudest, as the referent was already identifiable to all SAPS.

[^35]:    ${ }^{57}$ Flexible adpositions like this have also been labelled 'bipositional adpositions' or 'bipositions' (Grünthal (2003: 59) and 'alternpositions' (Reindl 2001).

[^36]:    ${ }^{58}$ It is most likely that under these conditions we can also be used for an inanimate source. There are, however, no such examples in the corpus or elicitation data.

[^37]:    ${ }^{59}$ The postpositional function has grammaticalised from the directly possessed noun kaiwa 'reason', which is used to introduces reason and result clauses (§3.6.3.2).

[^38]:    ${ }^{60}$ The variation in the order of TAM particles and subject conominals may relate to scope and e.g. predicate focus vs. sentence focus as appears to be the case for negation (see §3.7.2.1) and is a matter for future research.

[^39]:    ${ }^{61}$ Anderson and Ross (2002: 335) label $v a$ 'a 'distant past' particle. The term 'remote past' is used to align more closely with terminology used in cross-linguistic studies (e.g. Comrie 1985; Dahl 1985; Bybee et al. 1994; Botne 2012).

[^40]:    ${ }^{62}$ The noun nggama 'child' may also be reduplicated to form a plural nggama-nggama 'children'. There is a semantic distinction between the two plural forms, the irregular form gamagai refers to any group of two or more children while the reduplicated form nggamanggama is restricted to describing an individual's offspring (biological or adopted).

[^41]:    ${ }^{63}$ The current corpus and elicitation data do not contain any tokens of indirectly possessed kin terms with the plural proclitic.

[^42]:    ${ }^{64}$ The marker $=m a$ is homophonous with the spatially deictic directional marker $=m a$ 'hither’ (§4.4.2). Interestingly, this parallels the Saliba anaphoric marker wa which is also homophonous with a directional marker =wa 'towards addressee' (Cleary-Kemp 2006: 6-7). Cleary-Kemp points out that this could be a case of heterosemy (see Lichtenberk 1991b) with both deriving from a common historical source. The fact that semantically and syntactically comparable morphemes in Sudest also show this potential heterosemy might suggest that this is a more widespread grammaticalisation pathway among the Papuan Tip languages.

[^43]:    ${ }^{65}$ Like the zero-derivation nouns discussed in §3.3.1, the question of whether these should be considered stative verbs that are functioning attributively, members of a more flexible word class, or a distinct adjective word class is not considered further here. The term 'adjective' is used for convenience to refer to modifiers of a noun phrase that are neither quantifiers nor numerals and 'state a property [...] and further specify the referent of a noun' (Dixon 2010: 70). With that caveat in mind and in the interests of readability, the quotation marks are omitted elsewhere in the thesis.
    ${ }^{66}$ Whether all lexemes that function as stative verbs may also function adjectively in Sudest also remains an open question at the present. Property lexemes functioning attributively tend to be smaller, closed classes in Oceanic languages, Van Lier (2016) shows that lexemes for certain property concepts tend to occur in both function in Oceanic languages and others are restricted, only occurring as stative verbs.

[^44]:    ${ }^{74}$ Alternatively, iya kaiwa-e could be analysed as a possessive phrase with iya as a lexical possessor 'that [thing]'s reason'. It is analysed as a non-verbal predicate clause because $i y a+$ noun is a common pattern for nominal predicate clauses meaning 'this is/was $\mathrm{X}^{\prime}$, and because most speakers translate the construction to 'that is why' in English.

[^45]:    ${ }^{75}$ According to speakers, posi derives from English possible and is a relatively old borrowing going back multiple generations. It only occurs eight times in the corpus compared with 66 occurrences of thonggo.

[^46]:    ${ }^{76}$ Guérin uses the term 'verbal complex'.
    ${ }^{77}$ An early use of the term comes from Hockett, describing a construction with 'a verb or a close-knit phrase with a verb at its center' (1948: 139) in the Algonquian language Potawatomi/Bode'wadmi.

[^47]:    ${ }^{78}$ This differs from A\&R's description that includes TAM particles and NEG1 in the VC.
    ${ }^{79}$ A full or even partial treatment of the literature is beyond the scope of this study. Zwicky (1977) and Zwicky and Pullum (1983) are classic works on the topic with the latter providing six criteria for identifying clitics. Nevis et al. (1994) is a bibliography of works on clitics up to 1991. See Anderson (2005) and Spencer and Luis (2012a) and the references therein for more recent treatments of the topic and also Spencer and Luis (2012b) who propose a number of characteristic form and distributional properties of the 'canonical' clitic. ${ }^{80}$ http://www.fon.hum.uva.nl/praat/download win.html

[^48]:    ${ }^{81}$ See Steele (1989) and Mithun (2003) for earlier critiques. Dixon (2010: 40-1) also questions the usefulness of the agreement vs. pronoun discussion for linguistic description.

[^49]:    ${ }^{82}$ Gramm-indexes are the third type of index; they obligatorily occur with a conominal, and are crosslinguistically rare. German and English bound person forms are examples of gramm-indexes; they fall under the category of 'agreement marker' in much of the literature.

[^50]:    ${ }^{83}$ This annotation decision becomes an issue if there are any labile verbs in the language. At the time of writing, there is no evidence to suggest the existence of a class of labile verbs, although completely ruling out such a group is difficult precisely because third personal singular is expressed by zero (see §3.3.2 for discussion of verb types).
    ${ }^{84}$ Baya 'for, because' is Nimowa and equivalent to the Sudest benefactive and purposive postposition kaiwa 'for' (§3.3.5.3).

[^51]:    ${ }^{85}$ The corpus contains no data from anyone under 18 years of age at the time of recording.

[^52]:    ${ }^{86}$ Anderson and Ross (p. 336) label the admonitive a 'caution' particle.

[^53]:    ${ }^{87}$ There is one token that appears to be an exception to this in the corpus in which the dehortative prefix occurs in a slot closer to the verb than would be anticipated; this is discussed further below.

[^54]:    ${ }^{88}$ The speaker is originally from Pamela on the central south coast, unlike the majority of speakers in the corpus who are from the central north coast. Speakers from Pamela, however, reportedly speak a nearly identical variety of Sudest to speakers from Vuwo and surrounds. In addition, the data on which A\&R is based was recorded in Pamela and they also report that the dehortative precedes la- 'and go'. Idiolectal variation cannot be ruled out, the speaker has some unusual negation usage which combines the negative marker maa 'and the second half of the discontinuous marker $=r e$ (see §3.7.3.1). Indeed, the order $=r e$ and mun is also reversed in (52).

[^55]:    .${ }^{89}$ There is also a homonymous transitive verb raka 'clear (land), destroy, tear down'.

[^56]:    ${ }^{90}$ The order of at least $y a=$ in relation to the associated motion prefixes is not identifiable from the current data. In lieu of concrete evidence, here the universal quantifiers are listed as the fourth rank elements in the VC following A\&R.

[^57]:    ${ }^{91}$ I use 'multi-verb construction' as an umbrella term to include not just those constructions analysed as serial verbs but also compound verbs and other constructions with more than one verb stem.
    ${ }^{92}$ For example, Saliba, another Papuan Tip language, has just type of purposive core-layer serial verbs which often takes the cognate verb lao 'go' in the $\mathrm{V}_{1}$ slot (Margetts 2004b:75).

[^58]:    ${ }^{93}$ Such examples with 'non-motion' semantics are 'good' diagnostic examples for identifying associated motion morphemes, according to Guillaume (2016).

[^59]:    ${ }^{94}$ It is currently unclear whether the prior associated motion prefix shares the fifth slot with $l a$ - 'and go' or is in complementary distribution with yo- 'while going' in the sixth slot. Until further data are collected to verify its relative distribution, the prior associated motion prefix is grouped with the concurrent associated motion prefix in the sixth slot.

[^60]:    ${ }^{95}$ They label the prefixes 'positional' prefixes. 'Posture' prefix is used here as it is the more recognisable and common term in the descriptive and typological literature.

[^61]:    ${ }^{96}$ A test to verify the status of $y o$ in such instances would be to see if other preverbal elements (e.g. the posture, motion, reciprocal, manner-of-causation prefixes) could come between it and the (other) verb stem in the VC. The sense 'quickly', from a diachronic perspective, likely represents an intermediate stage in the grammaticalisation from yo 'fly' to yo- 'while going'.

[^62]:    ${ }^{97}$ Viva and vuva, both 'go first', appear to be used interchangeably by speakers and in similar frequencies in the corpus ( 27 and 24 tokens respectively).

[^63]:    ${ }^{98}$ Anderson and Ross do not provide any examples with the prefix.

[^64]:    ${ }^{99}$ There are also two semantically causative stems that take the prefix. In these cases, there is no argument transfer and seemingly no semantic difference between the underived and derived forms.

[^65]:    ${ }^{100}$ Sentences in (110) to (112) all describe stimuli videos involving spontaneous breaking.

[^66]:    ${ }^{101}$ Any verb with a morphological causative can also form a periphrastic causative, although no such tokens occur in the text corpus and were only the result of elicitation and/or contact with English. Periphrastic causatives are biclausal constructions with vakatha 'make' in the first VC followed by a second VC that describes the caused event.
    ${ }^{102}$ Anderson and Ross (p. 333) only describe the most common type of derived causatives.

[^67]:    ${ }^{103}$ Such causatives with two derivational affixes are attested in other Oceanic languages, e.g. North-East Ambae (Northern Vanuatu Linkage, Vanuatu, Hyslop 2001:336) and Kwaio (Longgu/Malaita/Makira family, Solomon Islands, Keesing 1985: 55).

[^68]:    ${ }^{104}$ Anderson and Ross (p. 333) describe the same distribution of the two morphemes and their cooccurrence in some causative VCs, but cannot identify a differentiating factor.

[^69]:    ${ }^{105}$ As previously noted, first and second person object indexes do not occur with conominals. This, in turn, means that they do not occur with $=y a$.

[^70]:    ${ }^{106}$ In Saliba, another Papuan Tip language, the third person singular object suffix $-\varnothing$ has an allomorph $-y a$, which is triggered when preceding a directional suffix (Margetts 1999: 75), although its use is triggered by VC internal morphology rather than a nominal object.

[^71]:    ${ }^{107}$ There are no examples of $=k e$ being used for future reference in VCs in the corpus. However, it is used in nominal expressions meaning 'next month', 'next year', etc.

[^72]:    ${ }^{108}$ When occurring in an NP, moli can have an intensifying function, e.g. kaiwo ighinagha moli 'very many uses'. It is also used to specify close blood relations, e.g. tinanggu moli 'my really/true/bio mother' (which may be in contrast to other women who could also be called 'mother', such as one's mother's sister or a foster or adoptive mother).

[^73]:    ${ }^{109}$ The particle may be related to the transitive verb mun 'drink'.

[^74]:    ${ }^{110}$ Even though the gloss might suggest it, the enclitic does not have an aspectual function.

[^75]:    ${ }^{111}$ The snake is credited with creating the twisting passage in the reef called Snake Passage between Vanatina and the western tip of Yeina Island. See also Lepowsky (1991: 125-6) for another version of the narrative (in English).

[^76]:    a. i=bebe $=y a \quad u m b w a=m a \quad y a n g g a i$ 3SG=break=YA tree/stick=DET branch
    'he breaks the tree branch' (cb_stimuli_051016_01 035, 309.792 313.600)
    b. i=mwana-bebe=ya umbwa

    3SG=w.hands-break=YA stick/tree
    'she breaks a stick with her hands/she snaps it'
    (cb_stimuli_051016_02_01 163, 883.096 885.260)
    c. $\quad i=g o-b e b e=\varnothing$

    3SG=by.cutting-break=3SG
    'she breaks it (a stick) by cutting/she cuts it'
    (cb_stimuli_051016_01 112, 1218.011 1219.922)

[^77]:    ${ }^{112}$ Definitions of 'nominal classification' and exactly what is classified are sometimes ambiguous in the literature - are they classifying a noun or a real-world entity? See Senft (2000, 2007), Lucy (2000) and Contini-Morava and Kilarski (2013) for discussion. Contini-Morava and Kilarski (2013: 265) use 'nominal classification' as an umbrella term for "classification of nouns and/or extralinguistic entities to which nouns refer that is grammaticalized to some degree, and expressed in one or more syntactic contexts that relate to nouns". Recent work from Corbett and Fedden (2016, 2018), Fedden and Corbett (2017, 2018), and Corbett et al. (2017) calls for a Canonical Typology approach to investigation and analysis of nominal classifiers. Within this framework they argue for gender and classifier systems to be considered under the umbrella of 'nominal classification' and outline the criteria for 'canonical gender' against which all types of nominal classification systems can be measured and analysed.
    ${ }^{113}$ Passer (2016a; 2016b) excludes 'verb classifiers', i.e. verbal classifier affixes, from his typology of nominal classification. However, his conclusions are partially based on a data set that includes 'classificatory' systems analogous with the Sudest and wider Papuan Tip manner-of-causation prefixes that specify manner/cause and/or instrument rather than properties of the S/O argument referent. Languages with these 'classificatory' stems included in his data set are Manam (Oceanic), Kumiai (Kumeyaay/Digueño, Yuman), and Great Andamanese languages.
    ${ }^{114}$ For this reason, they are also sometimes labelled as 'instrumental prefixes' (e.g. Olson (1992) on Gumawana (Nuclear Papuan Tip)). M. Anderson and T. Anderson (1991: 23) also label the Sudest prefixes as 'instrumental affixes'.

[^78]:    ${ }^{115}$ Capell (1943: 236-253) lists prefixes for ten Papuan Tip languages although Ezard (1978: 1162-3) and Bradshaw (1982: 61) question the reliability of some of this data.

[^79]:    ${ }^{116}$ Bradshaw (1982) links the emergence of the manner-of-causation prefixes with the SOV clause order of the majority of Papuan Tip. The Nimoa-Sudest languages are an exception to this with SVO clause order and manner-of-causation prefixes.
    ${ }^{117}$ The prefix go- 'by speaking' is grouped as a body-part manner-of-causation prefix, which parallels other parts of the grammar. For example, the noun ghalinga 'voice' is a directly possessed noun, as are nearly all body part nouns.

[^80]:    ${ }^{118}$ An alternative analysis is that the manner-of-causation prefixes are verb stems, the majority of which can no longer function as independent verbs. The fact that the prefixes may be followed by a causative prefix does not exclude this potential analysis as there are complex verbs in which the $\mathrm{V}_{2}$ stem is causativised (see $\S 6.3 .2$ ). Nevertheless, they are analysed as prefixes here due to the semantic differences between the prefix and verb forms. The prefixes also precede classificatory verbs in the VC that are otherwise never preceded by other verb stems in the VC. Given the gradual and non-uninform nature of grammaticalisation, it is also to be expected that some of the prefixes still share an identifiable link to related verb stems.

[^81]:    ${ }^{119}$ A manner-of-causation prefix obligatorily occurs with one transitive verb, the causativised va-mare 'CAUS-die' or 'kill'.

[^82]:    ${ }^{120}$ One speaker in her early thirties provided an example of ghala as a transitive verb meaning 'lay down/fasten down (e.g. floorboards/stones)', however multiple older speakers did not recognise such a verb.

[^83]:    ${ }^{121}$ The verb thinge 'get with teeth' can occur without the manner-of causation prefix ri- 'with teeth' but cannot occur with any other manner-of-causation prefixes.

[^84]:    ${ }^{122}$ It is also possible that the prefix taga- was originally borrowed from Nimowa or Misima, which both use manner-of-causation prefixes taga- to indicate the involvement of a "hit" (Ezard 1978: 1173) and "force" (W. Callister 1985a: 5) respectively. For Sudest, A\&R list taga- as indicating the action is accomplished 'by bending the arm' but do not mention riri-, while Ezard (1978: 1174) cites riri- as indicating the involvement of a hit but does not list taga-

[^85]:    ${ }^{123}$ M. Anderson and Ross (2002: 332) list the prefix as meaning 'with an instrument'.

[^86]:    ${ }^{124}$ M. Anderson and T. Anderson and A\&R only identify the subsequent associated motion prefix $l a$ - which they label 'be going to'. This gap in the description potentially results in their analysis of the two yo- prefixes.

[^87]:    ${ }^{125}$ Recent work within a Canonical Typology approach argues against the traditional separation of gender and classifier systems, particularly in light of newer data from, for example, languages with systems that are 'midway' between classical gender and classifier systems or languages with both 'gender' and 'classifiers' (Corbett \& Fedden 2015; Fedden \& Corbett 2017). Corbett and Fedden $(2016,2018)$ outline morphosyntactic properties that can be used a as a baseline from which to analyse a language's nominal classification system(s)

[^88]:    as closer or further away from 'canonical gender'. See also Fedden and Corbett 2017) and the contributions in Fedden et al. (2018) for applications of canonical gender to specific languages. See Kilarski $(2013,2014)$ for history of the study of nominal classifiers.
    ${ }^{126}$ Aikhenvald's (2000) classificatory noun incorporation corresponds to Mithun's (1984) type IV noun incorporation (classificatory noun incorporation). Noun incorporation is attested in Oceanic languages but follows patterns consistent with Mithun's type I (lexical compounding) (Margetts 2008b). Noun compounding will not be considered further here.
    ${ }^{127}$ Verbal reduplication is also attested as having pluractional functions in some Oceanic languages, for example, in the Polynesian language Niuean (Haji-Abdolhosseini et al. 2002). In Sudest, verbal reduplication may also have a pluractional function, see §3.3.2.3.

[^89]:    ${ }^{128}$ Nimowa language data were collected from fluent bilingual Sudest-Nimowan speakers who had either one Nimowan parent or had lived on Nimowa for at least five years.
    ${ }^{129}$ From the current, limited data, it is not clear whether the Nimowa verb pair ho/yomo occurs as extensively as the Sudest classificatory verbs in expressions of handling.
    ${ }^{130}$ Sudest also has at least two pairs of suppletive verbs that specify number of the S/O argument, functioning on an absolutive basis. For the intransitive verbs wa 'go' and raka 'go (pl.)', wa can occur with singular or plural subject referents but raka can only occur with a plural subject. The transitive verbs ngge 'hit (sg.)' and gabwa 'hit (pl.)' specify whether the referent of the O argument is singular or plural.

[^90]:    ${ }^{131}$ The current analysis uses a different nomenclature than the earlier analyses for some of the categories. The labels 'rigid' and 'flexible' are adopted here over A\&R's 'solid' and 'non-solid'.

[^91]:    ${ }^{132}$ Examples with a plural CLFV and no overt expression of an object are marked by the zero morpheme $\varnothing$ in examples. This does not assume a zero allomorph of the third person plural object index $=n g g^{\prime} 3$ PL' but for clarity to show the transitivity of the VC.

[^92]:    ${ }^{133}$ An alternative analysis could be that the verb $l i$ in these tokens is the classificatory verb and the relatively pliable cassava stems are interpreted as 'flexible' entities. Aside from the fact that another 'pull' verb (gita 'pull (out from)') is used when describing harvesting another crop that is processed in the same manner, a further argument against such an analysis is that the situation being described involved the harvesting of a considerable amount of cassava - likely multiple plants - in which case the plural flexible entity classificatory verb langa would have been more appropriate.

[^93]:    ${ }^{134}$ There is also a noun bigi 'thing'.

[^94]:    ${ }^{135}$ Although it is unclear whether the 'container' is the item used to absorb the blood or the woman herself.

[^95]:    ${ }^{136}$ The comments on distributional differences are based on stimuli data as getting and holding events can be distinguished based on each stimulus video whereas tokens from narrative texts, etc., can be ambiguous as to which sense is meant.

[^96]:    ${ }^{137}$ This gift is known as buwo and is separate from any bridewealth or brideprice. The exchange of a buwo gift does not entail marriage at a later date but allows a couple to continue the relationship publicly as long as they desire to do so. See also Lepowsky (1993: 103-4) for a discussion on traditional dating practices.

[^97]:    ${ }^{138}$ Indeed, in the corpus, none of the 10 tokens of the noun tobotobo occurs as the object of the classificatory verb thagha.

[^98]:    ${ }^{139}$ Events with kewe 'bear (on stick)' can involve a single agent carrying a stick, for example, with pairs of pineapple or sago bundles hung across the end of the stick, or when a stick is carried between two agents each with an end of the stick resting on their respective shoulders, e.g. when large objects such as pigs are being transported. Generally, only men transport goods in this way.

[^99]:    ${ }^{140}$ The majority of everyday tasks involving the transportation of goods also fall to women, such as those related to maintaining the garden and harvesting produce, fetching water and firewood and washing household items and clothing. This makes head-carrying one of the most common types of transport modes.

[^100]:    ${ }^{141}$ Or that an animal is using its head/snout/beak/tusks to manipulate or carry an object.

[^101]:    ${ }^{142}$ The speakers ranged in age from mid 30s to late 60 s at the time of recording. Two of the speakers are male and three are female. The stimuli task includes three versions that vary the order of the videos to minimise order effects. Speakers 1 and 2 viewed version one, speaker 3 viewed version two and speakers 4 and 5 viewed version three.

[^102]:    ${ }^{143}$ Furthermore, in all save one of the stimuli videos with a single book, the agent does not move along with the theme, but simply places or tosses a book somewhere. Only the event with the magazine involves accompanied motion (i.e. carrying/taking) where the agent and theme change location together.
    ${ }^{144}$ A man might carry books in a bilum or small basket clutched under the arm. However, it seems far more common to see women carrying such items, e.g. when going to church and then giving them to the men later.

[^103]:    ${ }^{145}$ As outlined in §4.3.5, Sudest does have posture prefixes meaning 'sit (and)' and 'stand (and)', but these add a sub-event or positional specification to the VC and are not a nominal classification system. See also §5.3.3 for discussion of nde- 'stand and' with CLFVs.
    ${ }^{146}$ There also appear to be no identifiable cognates in Misima, the closest related language to Sudest with a dictionary (S. Callister et al. 2005) and available grammatical descriptions (W. Callister 1985a, 1985b; Callister \& Callister 1985).
    ${ }^{147}$ Although particularly in the case of bigi, without diachronic data, it is impossible to say which sense is the 'original' sense. It is not unfathomable to imagine a shift from specifying the type of object handled, to the manner of handling of said type of object.

[^104]:    ${ }^{148}$ A comprehensive overview of the serialisation literature is beyond the scope of this thesis. For general discussion, see Foley and Olson (1985), Foley \& Van Valin (1984), Van Valin \& LaPolla (1997), Durie (1997), Aikhenvald \& Dixon (2006), and Aikhenvald (2018). For serialisation in Oceanic, refer to the works listed above and references therein, especially Crowley (2002) and Cleary-Kemp (2015).

[^105]:    ${ }^{149}$ Nuclear- and core-layer serialisation correspond to what Aikhenvald (2006) labels contiguous and noncontiguous serialisation.
    ${ }^{150}$ The term complex verb also avoids a differentiation between serialisation and compounding, see Margetts (1999: 101) and Aikhenvald (2006: 1) for similar remarks.

[^106]:    ${ }^{151}$ Aikhenvald (2006; 2018) labels switch-subject constructions 'switch-function' constructions, and ambient-subject constructions 'event-argument' constructions.
    ${ }^{152}$ As described above, 'ambient' is a morpho-syntactic distinction rather than a semantic one (Aikhenvald 2006: 18-9; Cleary-Kemp 2015: 132).

[^107]:    ${ }^{153}$ The other 'basic' way to express events of carrying is with a VC with a CLFV and the concurrent associated motion prefix yo- 'while going’ (§4.3.5.1).

[^108]:    ${ }^{154}$ The term 'fictive motion' is taken from Talmy (1996:211) and refers to 'linguistic instances that depict motion with no physical occurrence, for example the fence goes form the plateau to the valley; [...] I looked out past the steeple'.

[^109]:    ${ }^{155}$ Events that take place in a table-top scale space are ones like passing the salt and pepper that take place in a small space around the size of a table (cf. Pederson et al. 1998). For handling events, the subject generally remains stationary while manipulating an object.

