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Abstract

Exploratory data analysis is vital to modern science workflows; it allows scientists to grasp

problems with their data and generate new hypotheses. This work explores three facets of

exploratory data analysis workflows as applied to biological data science: data wrangling,

integration and visualisation. It contributes new statistical computing interfaces and

frameworks with the explicit aim of enabling scientists to understand their data and

models in their biological context. In chapter 2 we show that genomics data can be

represented using tidy data semantics, and consequently the process of wrangling it can

be simplified via our grammar of genomic data transformation. The next contribution

is exploring the implications of our grammar on the integration and representation of

genomics data. In chapter 3, we provide a framework for integrating genomics data from

multiple assays, via combining model estimates over their genomic regions. Next we

extend our grammar to represent single variable measurements along the genome in

multiple ways; in chapter 4 we present a software tool that allows coverage scores to be

aggregated and visualised over an experimental design and genomic features and use this

tool to uncover intron signal in RNA-seq data. Finally, in chapter 5 we contribute a new

visualisation interface that provides scientists with a toolkit for discovering structure in

their high dimensional data, and assist them in understanding when non-linear dimension

reduction has worked appropriately.
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Chapter 1

Introduction

Exploratory data analysis (EDA) is a vital element of the modern statistical workflow - it is

an analyst’s first pass at understanding their data; revealing all its messes and uncovering

hidden insights (Tukey, 1977; Grolemund and Wickham, 2017). It is an iterative process

involving computation and visualization, leading to new hypotheses that can be tested

and formalised using statistical modelling (Figure 1.1). As datasets grow in complexity

and become increasingly heterogeneous and multidimensional, the use of EDA becomes

vital to ensure the integrity and quality of analysis outputs. This is certainly true in high-

throughput biological data science, where constraints on computation time and memory,

in addition to the analyst’s time, makes EDA difficult and neglected, which impacts the

robustness and reliability of any downstream analysis.

This thesis focuses on core aspects of EDA as part of a biological data science workflow:

wrangling, integration and visualisation, with a focus on applications to genomics and

transcriptomics. To begin we discuss wrangling biological data using a coherent represen-

tation and programming interface (Figure 1.2). Section 1.1 introduces a grammar-based

framework for transforming genomics data that is described in Chapter 2. We then look

at integrating data and model outputs over genomic regions to gain biological insight

(1.3). Section 1.2 introduces a framework for incorporating genomic regions over multiple

assays, described in Chapter 3, while 1.3 discusses finding ‘interesting’ genomic regions

via combining multiple summaries of a single assay, described in 4. Next, we consider

1



CHAPTER 1. INTRODUCTION

Figure 1.1: An idealised model of the biological data science workflow (adapted from Grolemund
and Wickham (2017)). We begin with data generated from one or more biological
assay(s) corresponding to a research hypothesis or question. Our primary focus is
on data generated from bulk assays that measure gene expression (RNA-seq), genetic
variation (DNA-seq), and gene regulation (ChIP-seq, ATAC-seq). Throughout this
process, we need computational tools to gain insight into the biology under study and
communicate our analysis in a reproducible manner.

the challenges in visualising high dimensional data (Figure 1.4). Section 1.4 introduces

an interactive visualisation approach for understanding non-linear dimension reduction

techniques described in Chapter 5. Lastly, in Chapter 6 describes the outputs of the thesis

and plans for future developments.

1.1 A grammar for genomic data analysis

The approach taken by the suite of software packages collectively known as the tidyverse

is an attempt to formalise aspects of the EDA process in the R programming language

under a single semantic known as tidy data (R Core Team, 2019; Wickham et al., 2019;

Wickham, 2014). Simply put, a tidy data set is a rectangular table where each row of the

table corresponds to an observation, each column corresponds to a variable and each

cell a value. There is a surprisingly large amount of utility that can be achieved with

this definition. By having each column representing a variable, variables in the data

can be mapped to graphical aesthetics of plots. This paradigm enables the grammar of

2



CHAPTER 1. INTRODUCTION

Figure 1.2: In the wrangle phase of the workflow, data from an assay is imported into a program-
ming language. It is then tidied into a new representation that should capture the
biological semantics of the measurements. Following this, the representation can be
transformed to generate new summaries.

graphics as implemented by ggplot2 (Wickham, 2016; Wilkinson, 2005). User interfaces

as implemented by tidyverse, and in particular the dplyr package, are fluent; they form

a domain specific language (DSL) that gives users a mental model for performing and

composing common data transformation tasks (Wickham et al., 2017; Fowler, n.d.).

It is unclear whether the fluent interfaces as implemented using the tidy data framework

can be more generally applied and useful in fields such as high-throughput biology

where domain specific semantics are required (Figure 1.2). This is particularly true in the

Bioconductor ecosystem, where much thought has gone into the design of data structures

that enable interoperability between different tools, biological assays and analysis goals

(Huber et al., 2015a).

Chapter 2 shows that the tidy data semantic is applicable to in memory data measured

along the genome and develops a fluent interface to transforming it called plyranges. The

software provides a framework to an assist an analyst to compose queries on genomics

datasets. Our software is agnostic to how counts from bulk assays have been obtained.

3
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Indeed, we have used data obtained from both alignment and quantification based ap-

proaches throughout the thesis to perform useful analyses.

This chapter has been published as Lee, Cook, and Lawrence (2019).

1.2 Integration of genomic data structures

It is rare that a biological data analysis will involve a single measurement assay or that

only one aspect of a measurement assay will be of interest to the biological question under

study (Figure 1.3). While there are many approaches to integrating data sets from multiple

assays using multivariate statistical techniques (Meng et al., 2016; Stein-O’Brien et al.,

2018) and data structures to represent them (Ramos et al., 2017), there has been little

thought given to the interoperability between these approaches and the tidyverse. In

Chapter 3 we describe a simple end-to-end workflow for integrating results along the

genome using plyranges. This workflow shows that our grammar based approach does

not impair interoperability between the tidyverse and Bioconductor approaches, and in

Figure 1.3: Data from multiple assays can be combined together using modelling and transforma-
tions to gain biological insight. This is achieved either via a statistical technique or
more simply via joining data and model results so they have a common representation
across different granularities of the genome.

4



CHAPTER 1. INTRODUCTION

fact they work seamlessly together. This chapter has been published as Lee, Lawrence,

and Love (2020).

5
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1.3 Representation of genomic data structures

In Chapter 4 we explore the limits of the tidy data semantic by extending plyranges to

analyse coverage estimated on RNA-seq data by developing a new software tool called

superintronic. We show that the long-form tidy representation is an effective way of

combining the experimental design and reference annotations into a single genomic data

structure for exploration. We use superintronic to develop a framework for discovering

interesting regions of coverage and apply our approach to integrating intron signal from

RNA-seq data. This chapter is based on my software and analysis contributions to the Lee

et al. (2020).

1.4 Interactive visualisation for high-dimensional data

Finally, we move away from data wrangling and towards the integration of visualisation

with model-based summaries of high-dimensional data sets (Figure 1.4). We focus on

a common tool for EDA (especially applied to single-cell transcriptomics): non-linear

dimension reduction (NLDR). We consider the incorporation of interactive and dynamic

graphics to assist analysts in using NLDR techniques for cluster orientation tasks. In

Figure 1.4: Visualisation is a tool for making sense of models. Here we explore, how well a model
has captured the structure within the data using interactive graphics.

6



CHAPTER 1. INTRODUCTION

particular, we advocate for the use of tours (Cook et al., 1995) alongside an NLDR visuali-

sation to highlight potential pitfalls and distortions obtained from an NLDR method. This

approach acknowledges that there is no ‘one’ best visualisation or dimension reduction

for a high-dimensional dataset, and we often want to have an understanding of both the

global and local structure within our data.

Chapter 5 introduces a software package called liminal for constructing these views and

a user interaction framework for identifying distortions. We present several case studies

using data that capture aspects of single cell transcriptomics workflows, and use our

approach to diagnose the quality of results obtained via popular NLDR methods like

t-distributed stochastic neighbour embeddings (t-SNE) (Maaten and Hinton, 2008).

7





Chapter 2

plyranges: a grammar of data

transformation for genomics

There is a cognitive load placed on users in learning a data abstraction from the Bioconduc-

tor project and understanding its appropriate use. Users must navigate these abstractions

to perform a genomic analysis task, when a single data abstraction, a GRanges object will

suffice. By recognizing that the GRanges class follows ‘tidy’ data principles, we create a

grammar of genomic data transformation, defining verbs for performing actions on and

between genomic interval data and providing a way of performing common data analysis

tasks through a coherent interface to existing Bioconductor infrastructure. We implement

this grammar as a Bioconductor/R package called plyranges.

2.1 Background

High-throughput genomics promises to unlock new disease therapies, and strengthen

our knowledge of basic biology. To deliver on those promises, scientists must derive a

stream of knowledge from a deluge of data. Genomic data is challenging in both scale and

complexity. Innovations in sequencing technology often outstrip our capacity to process

the output. Beyond their common association with genomic coordinates, genomic data are

heterogeneous, consisting of raw sequence read alignments, genomic feature annotations

like genes and exons, and summaries like coverage vectors, ChIP-seq peak calls, variant

9



CHAPTER 2. PLYRANGES: A GRAMMAR OF DATA TRANSFORMATION FOR GENOMICS

calls, and per-feature read counts. Genomic scientists need software tools to wrangle

the different types of data, process the data at scale, test hypotheses, and generate new

ones, all while focusing on the biology, not the computation. For the tool developer, the

challenge is to define ways to model and operate on the data that align with the mental

model of scientists, and to provide an implementation that scales with their ambition.

Several domain specific languages (DSLs) enable scientists to process and reason about

heterogeneous genomics data by expressing common operations, such as range manipula-

tion and overlap-based joins, using the vocabulary of genomics. Their implementations

either delegate computations to a database, or operate over collections of files in standard

formats like BED. An example of the former is the Genome Query Language (GQL) and

its distributed implementation GenAp which use a SQL-like syntax for fast retrieval of

information of unprocessed sequencing data (Kozanitis, Christos et al., 2014; Kozanitis and

Patterson, 2016). Similarly, the Genometric Query Language (GMQL) implements a DSL

for combining genomic datasets (Kaitoua, A et al., 2017). The command line application

BEDtools develops an extensive algebra for performing arithmetic between two or more

sets of genomic regions (Quinlan and Hall, 2010). All of the aforementioned DSLs are

designed to be evaluated either at the command line or embedded in scripts for batch

processing. They exist in a sparse ecosystem, mostly consisting of UNIX and database

tools that lack biological semantics and operate at the level of files and database tables.

The Bioconductor/R packages IRanges and GenomicRanges (R Core Team, 2019;

Lawrence et al., 2013a; Huber et al., 2015a) define a DSL for analyzing genomics data

with R, an interactive data analysis environment that encourages reproducibility and

provides high-level abstractions for manipulating, modelling and plotting data, through

state of the art methods in statistical computing. The packages define object-oriented (OO)

abstractions for representing genomic data and enable interoperability by allowing users

and developers to use these abstractions in their own code and packages. Other genomic

DSLs that are embedded in programming languages include pybedtools and valr (Dale,

Pedersen, and Quinlan, 2011; Riemondy et al., 2017), however these packages lack the

interoperability provided by the aforementioned Bioconductor packages and are not easily

extended.

10
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The Bioconductor infrastructure models the genomic data and operations from the per-

spective of the power user, one who understands and wants to take advantage of the subtle

differences in data types. This design has enabled the development of sophisticated tools,

as evidenced by the hundreds of packages depending on the framework. Unfortunately,

the myriad of data structures have overlapping purposes and important but obscure

differences in behavior that often confuse the typical end user.

Recently, there has been a concerted, community effort to standardize R data structures

and workflows around the notion of tidy data (Wickham, 2014). A tidy dataset is defined

as a tabular data structure that has observations as rows and columns as variables, and

all measurements pertain to a single observational unit. The tidy data pattern is useful

because it allows us to see how the data relate to the design of an experiment and the

variables measured. The dplyr package (Wickham et al., 2017) defines an application

programming interface (API) that maps notions from the general relational algebra to

verbs that act on tidy data. These verbs can be composed together on one or more tidy

datasets with the pipe operator from the magrittr package (Bache and Wickham, 2014).

Taken together these features enable a user to write human readable analysis workflows.

We have created a genomic DSL called plyranges that reformulates notions from existing

genomic algebras and embeds them in R as a genomic extension of dplyr. By analogy,

plyranges is to the genomic algebra, as dplyr is to the relational algebra. The plyranges

Bioconductor package implements the language on top of a key subset of Bioconductor

data structures and thus fully integrates with the Bioconductor framework, gaining access

to its scalable data representations and sophisticated statistical methods.

2.2 Results

2.2.1 Genomic Relational Algebra

Data Model

The plyranges DSL is built on the core Bioconductor data structure GRanges, which is a

constrained table, with fixed columns for the chromosome, start and end coordinates, and

the strand, along with an arbitrary set of additional columns, consisting of measurements

11
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chr1

start endseqname strand

1001

gene_id score

chr1

chr1

102012 120303 +

-

... ... ... ...

1001 10

520211 526211 2151 25

... ...

Figure 2.1: An illustration of the GRanges data model for a sample from an RNA-seq experiment.
The core components of the data model include a seqname column (representing the
chromosome), a ranges column which consists of start and end coordinates for a
genomic region, and a strand identifier (either positive, negative, or unstranded).
Metadata are included as columns to the right of the dotted line as annotations
(gene_id) or range level covariates (score).

or metadata specific to the data type or experiment (Figure 2.1). GRanges balances flexibility

with formal constraints, so that it is applicable to virtually any genomic workflow, while

also being semantically rich enough to support high-level operations on genomic ranges.

As a core data structure, GRanges enables interoperability between plyranges and the rest

of Bioconductor. Adhering to a single data structure simplifies the API and makes it easier

to learn and understand, in part because operations become endomorphic, i.e., they return

the same type as their input.

GRanges follow the intuitive tidy data pattern: it is a rectangular table corresponding to

a single biological context. Each row contains a single observation and each column is

a variable describing the observations. GRanges specializes the tidy pattern in that the

observations always pertain to some genomic feature, but it largely remains compatible

with the general relational operations defined by dplyr. Thus, we define our algebra as an

extension of the dplyr algebra, and borrow its syntax conventions and design principles.

12



CHAPTER 2. PLYRANGES: A GRAMMAR OF DATA TRANSFORMATION FOR GENOMICS

Verb Description
summarize() aggregate over column(s)

Aggregate disjoin_ranges() aggregate column(s) over the union
of end coordinates

reduce_ranges() aggregate column(s) by merging
overlapping and neighboring
ranges

mutate() modifies any column
select() select columns

Modify (Unary) arrange() sort by columns
stretch() extend range by fixed amount
shift_(direction) shift coordinates
flank_(direction) generate flanking regions
%intersection% row-wise intersection
%union% row-wise union
compute_coverage coverage over all ranges

Modify (Binary) %setdiff% row-wise set difference
between() row-wise gap range
span() row-wise spanning range
join_overlap_*() merge by overlapping ranges
join_nearest merge by nearest neighbor ranges
join_follow merge by following ranges

Merge join_precedes merge by preceding ranges
union_ranges range-wise union
intersect_ranges range-wise intersect
setdiff_ranges range-wise set difference
complement_ranges range-wise set complement
anchor_direction() fix coordinates at direction

Operate group_by() partition by column(s)
group_by_overlaps() partition by overlaps
filter() subset rows

Restrict filter_by_overlaps() subset by overlap
filter_by_non_overlaps() subset by no overlap

Table 2.1: Overview of the plyranges grammar. The core verbs are briefly described and catego-
rized into one of the following higher level categories: aggregate, modify, merge, operate,
or restrict. A verb is given bold text if its origin is from the dplyr grammar.

13
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Algebraic operations

The plyranges DSL defines an expressive algebra for performing genomic operations with

and between GRanges objects (see table 2.1). The grammar includes several classes of

operation that cover most use cases in genomics data analysis. There are range arithmetic

operators, such as for resizing ranges or finding their intersection, and operators for

merging, filtering and aggregating by range-specific notions like overlap and proximity.

Arithmetic operations transform range coordinates, as defined by their start, end and

width. The three dimensions are mutually dependent and partially redundant, so direct

manipulation of them is problematic. For example, changing the width column needs

to change either the start, end or both to preserve integrity of the object. We introduce

the anchor modifier to disambiguate these adjustments. Supported anchor points include

the start, end and midpoint, as well as the 3’ and 5’ ends for strand-directed ranges. For

example, if we anchor the start, then setting the width will adjust the end while leaving

the start stationary.

The algebra also defines conveniences for relative coordinate adjustments: shift (unan-

chored adjustment to both start and end) and stretch (anchored adjustment of width). We

can perform any relative adjustment by some combination of those two operations. The

stretch operation requires an anchor and assumes the midpoint by default. Since shift

is unanchored, the user specifies a suffix for indicating the direction: left/right or, for

stranded features, upstream/downstream. For example, shift_right() shifts a range to

the right.

The flank operation generates new ranges that are adjacent to existing ones. This is useful,

for example, when generating upstream promoter regions for genes. Analogous to shift, a

suffix indicates the side of the input range to flank.

As with other genomic grammars, we define set operations that treat ranges as sets of

integers, including intersect, union, difference, and complement. There are two sets of these:

parallel and merging. For example, the parallel intersection (x %intersect% y) finds

the intersecting range between xi and yi for i in 1. . . n, where n is the length of both x

and y. In contrast, the merging intersection ( intersect_ranges(x, y)) returns a new
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set of disjoint ranges representing wherever there was overlap between a range in x and

a range in y. Finding the parallel union will fail when two ranges have a gap, so we

introduce a span() operator that takes the union while filling any gap. The complement()

operation is unique in that it is unary. It finds the regions not covered by any of the ranges

in a single set. Closely related is the between() parallel operation, which finds the gap

separating xi and yi. The binary operations are callable from within arithmetic, restriction

and aggregation expressions.

To support merging, our algebra recasts finding overlaps or nearest neighbors between

two genomic regions as variants of the relational join operator. A join acts on two GRanges

objects: x and y. The join operator is relational in the sense that metadata from the x

and y ranges are retained in the joined range. All join operators in the plyranges DSL

generate a set of hits based on overlap or proximity of ranges and use those hits to merge

the two datasets in different ways. There are four supported matching algorithms: overlap,

nearest, precede, and follow (Figure 2.2). We can further restrict the matching by whether the

query is completely within the subject, and adding the directed suffix ensures that matching

ranges have the same direction (strand).

For merging based on the hits, we have three modes: inner, intersect and left. The inner

overlap join is similar to the conventional inner join in that there is a row in the result

for every match. A major difference is that the matching is not by identity, so we have to

choose one of the ranges from each pair. We always choose the left range. The intersect join

uses the intersection instead of the left range. Finally, the overlap left join is akin to left

outer join in Codd’s relational algebra: it performs an overlap inner join but also returns

all x ranges that are not hit by the y ranges.

Since the GRanges object is a tabular data structure, our grammar includes operators to

filter, sort and aggregate by columns in a GRanges. These operations can be performed

over partitions formed using the group_by() modifier. Together with our algebra for

arithmetic and merging, these operations conform to the semantics and syntax of the dplyr

grammar. Consequently, plyranges code is generally more compact than the equivalent

GenomicRanges code (Figure 2.3).
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x

y

join_overlap_inner(x,y)

x x

y y

join_overlap_intersect(x,y) join_overlap_left(x,y)

A B C

*

Figure 2.2: Illustration of the three overlap join operators. Each join takes two GRanges objects,
x and y as input. A ‘Hits’ object for the join is computed which consists of two
components. The first component contains the indices of the ranges in x that have been
overlapped (the rectangles of x that cross the orange lines). The second component
consists of the indices of the ranges in y that overlap the ranges in x. In this case a
range in y overlaps the ranges in x three times, so the index is repeated three times.
The resulting ‘Hits’ object is used to modify x by where it was ‘hit’ by y and merge
all metadata columns from x and y based on the indices contained in the ‘Hits’ object.
This procedure is applied generally in the plyranges DSL for both overlap and nearest
neighbor operations. The join semantics alter what is returned: A: for an inner join
the x ranges that are overlapped by y are returned. The returned ranges also include
the metadata from the y range that overlapped the three x ranges. B An intersect join
is identical to an inner join except that the intersection is taken between the overlapped
x ranges and the y ranges. C For the left join all x ranges are returned regardless
of whether they are overlapped by y. In this case the third range (rectangle with the
asterisk next to it) of the join would have missing values on metadata columns that
came from y.
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library(plyranges)
gwas <- read_bed('snps.bed')
exons <- read_bed('exons.bed')
res <- exons %>% 

join_overlap_inner(snps) %>%
          group_by(rsID) %>%
          summarise(n = n_distinct(exonID))

A

B library(GenomicRanges)
library(rtracklayer)
gwas  <- import('snps.bed')
exons <- import('exons.bed')
hits <- findOverlaps(exons, gwas, 
                     ignore.strand = FALSE)
olap <- splitAsList(exons$name[queryHits(hits)],
                    gwas$name[subjectHits(hits)])
n <- lengths(unique(olap))
res <- DataFrame(rsID = names(n), 
                 n = as.integer(n))

Figure 2.3: Idiomatic code examples for plyranges (A) and GenomicRanges (B) illustrating an
overlap and aggregate operation that returns the same result. In each example, we have
two BED files consisting of SNPs that are genome-wide association study (GWAS)
hits and reference exons. Each code block counts for each SNP the number of distinct
exons it overlaps. The plyranges code achieves this with an overlap join followed by
partitioning and aggregation. Strand is ignored by default here. The GenomicRanges
code achieves this using the Hits and List classes and their methods.

2.2.2 Developing workflows with plyranges

Here we provide illustrative examples of using the plyranges DSL to show how our gram-

mar could be integrated into genomic data workflows. As we construct the workflows we

show the data output intermittently to assist the reader in understanding the pipeline steps.

The workflows highlight how interoperability with existing Bioconductor infrastructure,

enables easy access to public datasets and methods for analysis and visualization.
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Peak Finding

In the workflow of ChIP-seq data analysis, we are interested in finding peaks from islands

of coverage over chromosome. Here we will use plyranges to call peaks from islands of

coverage above 8 then plot the region surrounding the tallest peak.

Using plyranges and the Bioconductor package AnnotationHub (Morgan, 2017) we can

download and read BigWig files from ChIP-Seq experiments from the Human Epigenome

Roadmap project (Roadmap Epigenomics Consortium et al., 2015). Here we analyse a

BigWig file corresponding to H3 lysine 27 trimethylation (H3K27Me3) of primary T CD8+

memory cells from peripheral blood, focussing on coverage islands over chromosome 10.

First, we extract the genome information from the BigWig file and filter to get the range

for chromosome 10. This range will be used as a filter when reading the file.

library(plyranges)

chr10_ranges <- bw_file %>%

get_genome_info() %>%

filter(seqnames == "chr10")

Then we read the BigWig file only extracting scores if they overlap chromosome 10. We

also add the genome build information to the resulting ranges. This book-keeping is good

practice as it ensures the integrity of any downstream operations such as finding overlaps.

chr10_scores <- bw_file %>%

read_bigwig(overlap_ranges = chr10_ranges) %>%

set_genome_info(genome = "hg19")

chr10_scores

#> GRanges object with 5789841 ranges and 1 metadata column:

#> seqnames ranges strand | score

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr10 1-60602 * | 0.04228

#> [2] chr10 60603-60781 * | 0.16324
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#> [3] chr10 60782-60816 * | 0.37214

#> [4] chr10 60817-60995 * | 0.16324

#> [5] chr10 60996-61625 * | 0.04228

#> ... ... ... ... . ...

#> [5789837] chr10 135524723-135524734 * | 0.14432

#> [5789838] chr10 135524735-135524775 * | 0.25023

#> [5789839] chr10 135524776-135524784 * | 0.42779

#> [5789840] chr10 135524785-135524806 * | 0.73002

#> [5789841] chr10 135524807-135524837 * | 1.03103

#> -------

#> seqinfo: 25 sequences from hg19 genome

We then filter for regions with a coverage score greater than 8, and following this reduce

individual runs to ranges representing the islands of coverage. This is achieved with the

reduce_ranges() function, which allows a summary to be computed over each island: in

this case we take the maximum of the scores to find the coverage peaks over chromosome

10.

all_peaks <- chr10_scores %>%

filter(score > 8) %>%

reduce_ranges(score = max(score))

all_peaks

#> GRanges object with 1085 ranges and 1 metadata column:

#> seqnames ranges strand | score

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr10 1299144-1299370 * | 13.22640

#> [2] chr10 1778600-1778616 * | 8.20512

#> [3] chr10 4613068-4613078 * | 8.76027

#> [4] chr10 4613081-4613084 * | 8.43660

#> [5] chr10 4613086 * | 8.11508

#> ... ... ... ... . ...
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#> [1081] chr10 135344482-135344488 * | 9.23238

#> [1082] chr10 135344558-135344661 * | 11.84341

#> [1083] chr10 135344663-135344665 * | 8.26966

#> [1084] chr10 135344670-135344674 * | 8.26966

#> [1085] chr10 135345440-135345441 * | 8.26966

#> -------

#> seqinfo: 25 sequences from hg19 genome

Returning to the GRanges object containing normalized coverage scores, we filter to find

the coordinates of the peak containing the maximum coverage score. We can then find a

5000 nt region centered around the maximum position by anchoring and modifying the

width.

Finally, the overlap inner join is used to restrict the chromosome 10 coverage islands, to

the islands that are contained in the 5000nt region that surrounds the max peak (Figure

2.4).

#> GRanges object with 890 ranges and 2 metadata columns:

#> seqnames ranges strand | score.x score.y

#> <Rle> <IRanges> <Rle> | <numeric> <numeric>

#> [1] chr10 21805891-21805988 * | 0.02066 29.9573

#> [2] chr10 21805989-21806000 * | 0.02112 29.9573

#> [3] chr10 21806001-21806044 * | 0.02207 29.9573

#> [4] chr10 21806045-21806049 * | 0.02159 29.9573

#> [5] chr10 21806050-21806081 * | 0.02112 29.9573

#> ... ... ... ... . ... ...

#> [886] chr10 21810878 * | 5.24952 29.9573

#> [887] chr10 21810879 * | 5.83534 29.9573

#> [888] chr10 21810880-21810884 * | 6.44268 29.9573

#> [889] chr10 21810885-21810895 * | 7.07055 29.9573

#> [890] chr10 21810896-21810911 * | 6.44268 29.9573
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Figure 2.4: The final result of the plyranges operations to find a 5000nt region surrounding the
peak of normalised coverage scores over chromosome 10, displayed as a density plot.

#> -------

#> seqinfo: 25 sequences from hg19 genome

Computing Windowed Statistics

Another common operation in genomics data analysis is to compute data summaries

over genomic windows. In plyranges this can be achieved via the group_by_overlaps()

operator. We bin and count and find the average GC content of reads from a H3K27Me3

ChIP-seq experiment by the Human Epigenome Roadmap Consortium.

We can directly obtain the genome information from the header of the BAM file: in this

case the reads were aligned to the hg19 genome build and there are no reads overlapping

the mitochondrial genome.

bam <- read_bam(h1_bam_sorted, index = h1_bam_sorted_index)

locations <- bam %>%

get_genome_info()

Next we only read in alignments that overlap the genomic locations we are interested in

and select the query sequence. Note that the reading of the BAM file is deferred: only

alignments that pass the filter are loaded into memory. We can add another column rep-

resenting the GC proportion for each alignment using the letterFrequency() function
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from the Biostrings package (Pagès et al., 2018). After computing the GC proportion as

the score column, we drop all other columns in the GRanges object.

alignments <- bam %>%

filter_by_overlaps(locations) %>%

select(seq) %>%

mutate(

score = as.numeric(letterFrequency(seq, "GC", as.prob = TRUE))

) %>%

select(score)

alignments

#> GRanges object with 8275595 ranges and 1 metadata column:

#> seqnames ranges strand | score

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr10 50044-50119 - | 0.276316

#> [2] chr10 50050-50119 + | 0.250000

#> [3] chr10 50141-50213 - | 0.447368

#> [4] chr10 50203-50278 + | 0.263158

#> [5] chr10 50616-50690 + | 0.276316

#> ... ... ... ... . ...

#> [8275591] chrY 57772745-57772805 - | 0.513158

#> [8275592] chrY 57772751-57772800 + | 0.526316

#> [8275593] chrY 57772767-57772820 + | 0.565789

#> [8275594] chrY 57772812-57772845 + | 0.250000

#> [8275595] chrY 57772858-57772912 + | 0.592105

#> -------

#> seqinfo: 24 sequences from an unspecified genome

Finally, we create 10000nt tiles over the genome and compute the number of reads and

average GC content over all reads that fall within each tile using an overlap join and

merging endpoints.
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bins <- locations %>%

tile_ranges(width = 10000L)

alignments_summary <- bins %>%

join_overlap_inner(alignments) %>%

disjoin_ranges(n = n(), avg_gc = mean(score))

alignments_summary

#> GRanges object with 286030 ranges and 2 metadata columns:

#> seqnames ranges strand | n avg_gc

#> <Rle> <IRanges> <Rle> | <integer> <numeric>

#> [1] chr10 49999-59997 * | 88 0.369019

#> [2] chr10 59998-69997 * | 65 0.434211

#> [3] chr10 69998-79996 * | 56 0.386513

#> [4] chr10 79997-89996 * | 71 0.512973

#> [5] chr10 89997-99996 * | 64 0.387747

#> ... ... ... ... . ... ...

#> [286026] chrY 57722961-57732958 * | 36 0.468202

#> [286027] chrY 57732959-57742957 * | 38 0.469529

#> [286028] chrY 57742958-57752956 * | 38 0.542936

#> [286029] chrY 57752957-57762955 * | 42 0.510652

#> [286030] chrY 57762956-57772954 * | 504 0.526942

#> -------

#> seqinfo: 24 sequences from an unspecified genome; no seqlengths

Quality Control Metrics

We have created a GRanges object from genotyping performed on the H1 cell line, con-

sisting of approximately two million single nucleotide polymorphisms (SNPs) and short

insertion/deletions (indels). The GRanges object consists of 7 columns, relating to the alle-

les of a SNP or indel, the B-allele frequency, log relative intensity of the probes, GC content

score over a probe, and the name of the probe. We can use this information to compute the
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transition-transversion ratio, a quality control metric, within each chromosome in GRanges

object.

First we filter out the indels and mitochondrial variants. Then we create a logical vector

corresponding to whether there is a transition event.

h1_snp_array <- h1_snp_array %>%

filter(!(ref %in% c("I", "D")), seqnames != "M") %>%

mutate(transition = (ref %in% c("A", "G") & alt %in% c("G","A"))|

(ref %in% c("C","T") & alt %in% c("T", "C")))

We then compute the transition-transversion ratio over each chromosome using

group_by() in combination with summarize() (Figure 2.5).

ti_tv_results <- h1_snp_array %>%

group_by(seqnames) %>%

summarize(n_snps = n(),

ti_tv = sum(transition) / sum(!transition))

ti_tv_results

#> DataFrame with 24 rows and 3 columns

#> seqnames n_snps ti_tv

#> <Rle> <integer> <numeric>

#> 1 Y 2226 1.43812

#> 2 6 154246 3.32013

#> 3 13 83736 3.40669

#> 4 10 120035 3.49401

#> 5 4 153243 3.29529

#> ... ... ... ...

#> 20 16 77538 3.19828

#> 21 12 113208 3.47852

#> 22 20 57073 3.71210
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Figure 2.5: The final result of computing quality control metrics over the SNP array data with
plyranges, displayed as a dot plot. Chromosomes are ordered by their estimated
transition-transversion ratio. A white reference line is drawn at the expected ratio for
a human exome."

#> 23 21 32349 3.50480

#> 24 X 55495 3.58220

2.3 Discussion

The design of plyranges adheres to well understood principles of language and API

design: cognitive consistency, cohesion, endomorphism and expressiveness (Green and

Petre, 1996). To varying degrees, these principles also underlie the design of dplyr and

the Bioconductor infrastructure.

We have aimed for plyranges to have a simple and direct mapping to the user’s cognitive

model, i.e., how the user thinks about the data. This requires careful selection of the

level of abstraction so that the user can express workflows in the language of genomics.

This motivates the adoption of the tidy GRanges object as our central data structure. The

basic data.frame and dplyr tibble lack any notion of genomic ranges and so could not

easily support our genomic grammar, with its specific verbs for range-oriented data
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manipulation. Another example of cognitive consistency is how plyranges is insensitive

to direction/strand by default when, e.g., detecting overlaps. GenomicRanges has the

opposite behavior. We believe that defaulting to purely spatial overlap is most intuitive to

most users.

To further enable cognitive consistency, plyranges functions are cohesive. A function

is defined to be cohesive if it performs a singular task without producing any side-

effects. Singular tasks can always be broken down further at lower levels of abstraction.

For example, to resize a range, the user needs to specify which position (start, end,

midpoint) should be invariant over the transformation. The resize() function from the

GenomicRanges package has a fix argument that sets the anchor, so calling resize()

coalesces anchoring and width modification. The coupling at the function call level is

justified since the effect of setting the width depends on the anchor. However, plyranges

increases cohesion and decouples the anchoring into its own function call.

Increasing cohesion simplifies the interface to each operation, makes the meaning of

arguments more intuitive, and relies on function names as the primary means of expres-

sion, instead of a more complex mixture of function and argument names. This results

in the user being able to conceptualize the plyranges DSL as a flat catalog of functions,

without having to descend further into documentation to understand a function’s argu-

ments. A flat function catalog also enhances API discoverability, particularly through

auto-completion in integrated developer environments (IDEs). One downside of pushing

cohesion to this extreme is that function calls become coupled, and care is necessary to

treat them as a group when modifying code.

Like dplyr, plyranges verbs are functional: they are free of side effects and are generally

endomorphic, meaning that when the input is a GRanges object they return a GRanges

object. This enables chaining of verbs through syntax like the forward pipe operator from

the magrittr package. This syntax has a direct cognitive mapping to natural language and

the intuitive notion of pipelines. The low-level object-oriented APIs of Bioconductor tend

to manipulate data via sub-replacement functions, like start(gr) <- x. These ultimately

produce the side effect of replacing a symbol mapping in the current environment and

thus are not amenable to so-called fluent syntax.
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Expressiveness relates to the information content in code: the programmer should be

able to clarify intent without unnecessary verbosity. For example, our overlap-based

join operations are more concise than the multiple steps necessary to achieve the same

effect in the original GenomicRanges API. In other cases, the plyranges API increases

verbosity for the sake of clarity and cohesion. Explicitly calling anchor() can require more

typing, but the code is easier to comprehend. Another example is the set of routines for

importing genomic annotations, including read_gff(), read_bed(), and read_bam().

Compared to the generic import() in rtracklayer, the explicit format-based naming in

plyranges clarifies intent and the type of data being returned. Similarly, every plyranges

function that computes with strand information indicates its intentions by including

suffixes such as directed, upstream or downstream in its name, otherwise strand is ignored.

The GenomicRanges API does not make this distinction explicit in its function naming,

instead relying on a parameter that defaults to strand sensitivity, an arguably confusing

behavior.

The implementation of plyranges is built on top of Bioconductor infrastructure, meaning

most functions are constructed by composing generic functions from core Bioconductor

packages. As a result, any Bioconductor packages that uses data structures that inherit

from GRanges will be able to use plyranges for free. Another consequence of building on

top of Bioconductor generics is that the speed and memory usage of plyranges functions

are similar to the highly optimized methods implemented in Bioconductor for GRanges

objects.

A caveat to constructing a compatible interface with dplyr is that plyranges makes ex-

tensive use of non-standard evaluation in R via the rlang package (Henry and Wickham,

2017). Simply, this means that computations are evaluated in the context of the GRanges

objects. Both dplyr and plyranges are based on the rlang language, because it allows

for more expressive code that is free of repeated references to the container. Implicitly

referencing the container is particularly convenient when programming interactively.

Consequently, when programming with plyranges, a user needs to generally understand

the rlang language and how to adapt their code accordingly. Users familiar with the

tidyverse should already have such knowledge.
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2.4 Conclusion

We have shown how to create expressive and reproducible genomic workflows using the

plyranges DSL. By realising that the GRanges data model is tidy we have highlighted how

to implement a grammar for performing genomic arithmetic, aggregation, restriction and

merging. Our examples show that plyranges code is succinct, human readable and can

take advantage of the interoperability provided by the Bioconductor ecosystem and the R

language.

We also note that the grammar elements and design principles we have described are

programming language agnostic and could be easily be implemented in another language

where genomic information could be represented as a tabular data structure. We chose

R because it is what we are familiar with and because the aforementioned Bioconductor

packages have implemented the GRanges data structure.

We aim to continue developing the plyranges package and to extend it for use with more

complex data structures, such as the SummarizedExperiment class, the core Bioconductor

data structure for representing experimental results (e.g., counts) from multiple sample

experiments in conjunction with feature and sample metadata. Although, the Summarized-

Experiment is not strictly tidy, it does consist of three tidy data structures that are related

by feature and sample identifiers. Therefore, the grammar and design of the plyranges

DSL is naturally extensible to the SummarizedExperiment.

As the plyranges interface encourages tidy data practices, it integrates well with the

grammar of graphics (Wickham, 2016). To achieve responsive performance, interactive

graphics rely on lazy data access and computing patterns, so the deferred mechanisms

within plyranges should help support interactive genomics applications.

2.5 Availability of Data and Materials

The BigWig file for the H3K27Me3 primary T CD8+ memory cells from peripheral blood

ChIP-seq data from the Human Roadmap Epigenomics project

was downloaded from the AnnotationHub package (2.13.1) under accession AH33458
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(Morgan, 2017; Roadmap Epigenomics Consortium et al., 2015). The BAM file correspond-

ing to the H1 cell line ChIP-seq data is available at NCBI GEO under accession GSM433167

(Barrett et al., 2013; Roadmap Epigenomics Consortium et al., 2015). The SNP array data

for the H1 cell line data is available at NCBI GEO under accession GPL18952 (Roadmap

Epigenomics Consortium et al., 2015).

The plyranges package is open source under an Artistic 2.0 license (Lee, Lawrence, and

Cook, 2018). The software can be obtained via the Bioconductor project website https:

//bioconductor.org or accessed via Github https://github.com/sa-lee/plyranges.
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Chapter 3

Fluent genomics with plyranges

and tximeta

We construct a simple workflow for fluent genomics data analysis using the R/Biocon-

ductor ecosystem. This involves three core steps: import the data into an appropriate

abstraction, model the data with respect to the biological questions of interest, and inte-

grate the results with respect to their underlying genomic coordinates. Here we show

how to implement these steps to integrate published RNA-seq and ATAC-seq experiments

on macrophage cell lines. Using tximeta, we import RNA-seq transcript quantifications

into an analysis-ready data structure, called the SummarizedExperiment, that contains the

ranges of the reference transcripts and metadata on their provenance. Using Summa-

rizedExperiments to represent the ATAC-seq and RNA-seq data, we model differentially

accessible (DA) chromatin peaks and differentially expressed (DE) genes with existing

Bioconductor packages. Using plyranges we then integrate the results to see if there is

an enrichment of DA peaks near DE genes by finding overlaps and aggregating over

log-fold change thresholds. The combination of these packages and their integration with

the Bioconductor ecosystem provide a coherent framework for analysts to iteratively and

reproducibly explore their biological data.
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3.1 Introduction

In this workflow, we examine a subset of the RNA-seq and ATAC-seq data from Alasoo

et al. (2018), a study that involved treatment of macrophage cell lines from a number of

human donors with interferon gamma (IFNg), Salmonella infection, or both treatments

combined. Alasoo et al. (2018) examined gene expression and chromatin accessibility

in a subset of 86 successfully differentiated induced pluripotent stem cells (iPSC) lines,

and compared baseline and response with respect to chromatin accessibility and gene

expression at specific quantitative trait loci (QTL). The authors found that many of the

stimulus-specific expression QTL were already detectable as chromatin QTL in naive cells,

and further hypothesize about the nature and role of transcription factors implicated in

the response to stimulus.

We will perform a much simpler analysis than the one found in Alasoo et al. (2018), using

their publicly available RNA-seq and ATAC-seq data (ignoring the genotypes). We will

examine the effect of IFNg stimulation on gene expression and chromatin accessibility, and

look to see if there is an enrichment of differentially accessible (DA) ATAC-seq peaks in

the vicinity of differentially expressed (DE) genes. This is plausible, as the transcriptomic

response to IFNg stimulation may be mediated through binding of regulatory proteins to

accessible regions, and this binding may increase the accessibility of those regions such

that it can be detected by ATAC-seq.

Throughout the workflow (Figure 3.1), we will use existing Bioconductor infrastructure to

understand these datasets. In particular, we will emphasize the use of the Bioconductor

packages plyranges and tximeta and the SummarizedExperiment class (Figure 3.2). The

plyranges package fluently transforms data tied to genomic ranges using operations like

shifting, window construction, overlap detection, etc. It is described by Lee, Cook, and

Lawrence (2019) and leverages underlying core Bioconductor infrastructure (Lawrence

et al., 2013b; Huber et al., 2015b) and the tidyverse design principles Wickham et al. (2019).

The tximeta package described by Love et al. (2019) is used to read RNA-seq quantifi-

cation data into R/Bioconductor, such that the transcript ranges and their provenance
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Import data

Model assays

Integrate ranges

tximeta()

se

coldata

object

function

Key

dds

DESeq()

atac

lmFit() + eBayes()

de_genes da_peaks

de_genes boot_genes

all_genes

da_peaks

genes_olap_peaks

gene_peak_all_thresholds

join_overlap_left()

reduce_ranges_directed()

...

summarize()

origin_peak_all_thresholds

Figure 3.1: An overview of the fluent genomics workflow. First, we import data as a Summa-
rizedExperiment object, which enables interoperability with downstream analysis
packages. Then we model our assay data, using the existing Bioconductor packages
DESeq2 and limma. We take the results of our models for each assay with respect to
their genomic coordinates, and integrate them. First, we compute the overlap between
the results of each assay, then aggregate over the combined genomic regions, and finally
summarize to compare enrichment for differentially expressed genes to non differen-
tially expressed genes. The final output can be used for downstream visualization or
further transformation.

are automatically attached to the object containing expression values and differential

expression results.

3.1.1 Experimental Data

The data used in this workflow is available from two packages: the macrophage Biocon-

ductor ExperimentData package and from the workflow package fluentGenomics (Lee

and Love, n.d.).

The macrophage package contains RNA-seq quantification from 24 RNA-seq samples, a

subset of the RNA-seq samples generated and analyzed by Alasoo et al. (2018). The paired-

end reads were quantified using Salmon (Patro et al., 2017), using the Gencode 29 human

reference transcripts (Frankish, GENCODE-consoritum, and Flicek, 2018). For more

details on quantification, and the exact code used, consult the vignette of the macrophage
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Transcripts/ 
Gene / Peaks

Samples

rowData
rowRanges assays

colData

Figure 3.2: A SummarizedExperiment orients bulk assay measurements as matrices where rows
correspond to features, and columns correspond to samples. The rows have their own
accessor functions which contains additional data about the feature of interest, in
this rowRanges() returns a GRanges where rows are the genomic coordinates for
each gene measured in the assay, while colData() returns a DataFrame where rows
contain information about the samples.

package. The package also contains the Snakemake file that was used to distribute the

Salmon quantification jobs on a cluster (Köster and Rahmann, 2012).

The fluentGenomics package contains functionality to download and generate a cached

SummarizedExperiment object from the normalized ATAC-seq data provided by Alasoo

and Gaffney (2017). This object contains all 145 ATAC-seq samples across all experimental

conditions as analyzed by Alasoo et al. (2018). The data can be also be downloaded directly

from the Zenodo deposition.

The following code loads the path to the cached data file, or if it is not present, will create

the cache and generate a SummarizedExperiment using the the BiocFileCache package

(Shepherd and Morgan, 2019).

library(fluentGenomics)

path_to_se <- cache_atac_se()

We can then read the cached file and assign it to an object called atac.
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atac <- readRDS(path_to_se)

A precise description of how we obtained this SummarizedExperiment object can be found

in section 3.2.2.

3.2 Import Data as a SummarizedExperiment

3.2.1 Using tximeta to import RNA-seq quantification data

First, we specify a directory path, where the quantification files are stored. You could

simply specify this directory with:

path <- "/path/to/quant/files"

where the path is relative to your current R session. However, in this case we have

distributed the files in the macrophage package. The relevant directory and associated

files can be located using system.file().

path <- system.file("extdata", package="macrophage")

Information about the experiment is contained in the coldata.csv file. We leverage the

dplyr and readr packages (as part of the tidyverse) to read this file into R (Wickham et al.,

2019). We will see later that plyranges extends these packages to accommodate genomic

ranges.

library(readr)

library(dplyr)

colfile <- file.path(path, "coldata.csv")

coldata <- read_csv(colfile) %>%

select(

names,

id = sample_id,

line = line_id,
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condition = condition_name

) %>%

mutate(

files = file.path(path, "quants", names, "quant.sf.gz"),

line = factor(line),

condition = relevel(factor(condition), "naive")

)

glimpse(coldata)

#> Rows: 24

#> Columns: 5

#> $ names <chr> "SAMEA103885102", "SAMEA103885347", "SAMEA103885043", "SA...

#> $ id <chr> "diku_A", "diku_B", "diku_C", "diku_D", "eiwy_A", "eiwy_B...

#> $ line <fct> diku_1, diku_1, diku_1, diku_1, eiwy_1, eiwy_1, eiwy_1, e...

#> $ condition <fct> naive, IFNg, SL1344, IFNg_SL1344, naive, IFNg, SL1344, IF...

#> $ files <chr> "/Users/slee0046/thesis/renv/library/R-4.0/x86_64-apple-d...

After we have read the coldata.csv file, we select relevant columns from this table, create

a new column called files, and transform the existing line and condition columns into

factors. In the case of condition, we specify the “naive” cell line as the reference level.

The files column points to the quantifications for each observation – these files have

been gzipped, but would typically not have the ‘gz’ ending if used from Salmon directly.

One other thing to note is the use of the pipe operator, %>%, which can be read as “then”,

i.e. first read the data, then select columns, then mutate them.

Now we have a table summarizing the experimental design and the locations of the

quantifications. The following lines of code do a lot of work for the analyst: importing the

RNA-seq quantification (dropping inferential replicates in this case), locating the relevant

reference transcriptome, attaching the transcript ranges to the data, and fetching genome

information. Inferential replicates are especially useful for performing transcript-level

analysis, but here we will use a point estimate for the per-gene counts and perform

gene-level analysis. The result is a SummarizedExperiment object.
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library(SummarizedExperiment)

library(tximeta)

se <- tximeta(coldata, dropInfReps=TRUE)

se

#> class: RangedSummarizedExperiment

#> dim: 205870 24

#> metadata(6): tximetaInfo quantInfo ... txomeInfo txdbInfo

#> assays(3): counts abundance length

#> rownames(205870): ENST00000456328.2 ENST00000450305.2 ...

#> ENST00000387460.2 ENST00000387461.2

#> rowData names(3): tx_id gene_id tx_name

#> colnames(24): SAMEA103885102 SAMEA103885347 ... SAMEA103885308

#> SAMEA103884949

#> colData names(4): names id line condition

On a machine with a working internet connection, the above command works without

any extra steps, as the tximeta function obtains any necessary metadata via FTP, unless

it is already cached locally. The tximeta package can also be used without an internet

connection, in this case the linked transcriptome can be created directly from a Salmon

index and gtf.

makeLinkedTxome(

indexDir=file.path(path, "gencode.v29_salmon_0.12.0"),

source="Gencode",

organism="Homo sapiens",

release="29",

genome="GRCh38",

fasta="gencode.v29.transcripts.fa.gz", # ftp link to fasta file

gtf=file.path(path, "gencode.v29.annotation.gtf.gz"), # local version
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write=FALSE

)

Because tximeta knows the correct reference transcriptome, we can ask tximeta to sum-

marize the transcript-level data to the gene level using the methods of Soneson, Love, and

Robinson (2015).

gse <- summarizeToGene(se)

One final note is that the start of positive strand genes and the end of negative strand genes

is now dictated by the genomic extent of the isoforms of the gene (so the start and end of the

reduced GRanges). Another alternative would be to either operate on transcript abundance,

and perform differential analysis on transcript, and so avoid defining the transcription

start site (TSS) of a set of isoforms, or to use gene-level summarized expression but to pick

the most representative TSS based on isoform expression.

3.2.2 Importing ATAC-seq data as a SummarizedExperiment object

The SummarizedExperiment object containing ATAC-seq peaks can be created from the

following tab-delimited files from Alasoo and Gaffney (2017):

• The sample metadata: ATAC_sample_metadata.txt.gz (<1M)

• The matrix of normalized read counts: ATAC_cqn_matrix.txt.gz (109M)

• The annotated peaks: ATAC_peak_metadata.txt.gz (5.6M)

To begin, we read in the sample metadata, following similar steps to those we used to

generate the coldata table for the RNA-seq experiment:

atac_coldata <- read_tsv("ATAC_sample_metadata.txt.gz") %>%

select(

sample_id,

donor,

condition = condition_name
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) %>%

mutate(condition = relevel(factor(condition), "naive"))

The ATAC-seq counts have already been normalized with cqn (Hansen, Irizarry, and Wu,

2012) and log2 transformed. Loading the cqn-normalized matrix of log2 transformed read

counts takes ~30 seconds and loads an object of ~370 Mb. We set the column names so

that the first column contains the rownames of the matrix, and the remaining columns are

the sample identities from the atac_coldata object.

atac_mat <- read_tsv(

"ATAC_cqn_matrix.txt.gz",

skip = 1,

col_names = c("rownames", atac_coldata[["sample_id"]])

)

rownames <- atac_mat[["rownames"]]

atac_mat <- as.matrix(atac_mat[,-1])

rownames(atac_mat) <- rownames

We read in the peak metadata (locations in the genome), and convert it to a GRanges object.

The as_granges() function automatically converts the data.frame into a GRanges object.

From that result, we extract the peak_id column and set the genome information to the

build “GRCh38”. We know this from the Zenodo entry.

library(plyranges)

peaks_df <- read_tsv(

"ATAC_peak_metadata.txt.gz",

col_types = c("cidciicdc")

)

peaks_gr <- peaks_df %>%

as_granges(seqnames = chr) %>%
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select(peak_id=gene_id) %>%

set_genome_info(genome = "GRCh38")

Finally, we construct a SummarizedExperiment object. We place the matrix into the assays

slot as a named list, the annotated peaks into the row-wise ranges slot, and the sample

metadata into the column-wise data slot:

atac <- SummarizedExperiment(

assays = list(cqndata=atac_mat),

rowRanges = peaks_gr,

colData = atac_coldata

)

3.3 Model assays

3.3.1 RNA-seq differential gene expression analysis

We can easily run a differential expression analysis with DESeq2 using the following code

chunks (Love, Huber, and Anders, 2014). The design formula indicates that we want to

control for the donor baselines (line) and test for differences in gene expression on the

condition. For a more comprehensive discussion of DE workflows in Bioconductor see

Love et al. (2016) and Law et al. (2018).

library(DESeq2)

dds <- DESeqDataSet(gse, ~line + condition)

# filter out lowly expressed genes

# at least 10 counts in at least 6 samples

keep <- rowSums(counts(dds) >= 10) >= 6

dds <- dds[keep,]

The model is fit with the following line of code:
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dds <- DESeq(dds)

Below we set the contrast on the condition variable, indicating we are estimating the log2

fold change (LFC) of IFNg stimulated cell lines against naive cell lines. We are interested

in LFC greater than 1 at a nominal false discovery rate (FDR) of 1%.

res <- results(dds,

contrast=c("condition","IFNg","naive"),

lfcThreshold=1, alpha=0.01)

The results() function extracts a summary of the DE analysis: in this case for each gene

we have the LFC comparing the two cell lines, the Wald test statistic of LFC from the fitted

negative binomial GLM, and associated p-value and corrected p-value accounting for the

FDR. To see the results of the expression analysis, we can generate a summary table and a

mean-abundance (MA) plot (Dudoit et al., 2002):

summary(res)

#>

#> out of 17806 with nonzero total read count

#> adjusted p-value < 0.01

#> LFC > 1.00 (up) : 502, 2.8%

#> LFC < -1.00 (down) : 247, 1.4%

#> outliers [1] : 0, 0%

#> low counts [2] : 0, 0%

#> (mean count < 3)

#> [1] see ’cooksCutoff’ argument of ?results

#> [2] see ’independentFiltering’ argument of ?results

DESeq2::plotMA(res, ylim=c(-10,10))

We now output the results as a GRanges object, and due to the conventions of plyranges,

we construct a new column called gene_id from the row names of the results. Each row
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Figure 3.3: Visualization of DESeq2 results as an “MA plot”. Genes that have an adjusted p-
value below 0.01 are colored blue.In this case the LFC between conditions is shown on
the y-axis, while the average normalised gene counts across all conditions are shown
on the x-axis. The assumption of an RNA-seq analysis that most genes are not DE, so
most genes are scattered about zero on the y-axis while genes that have evidence of DE
are far from the zero baseline. The x-axis gives a sense of the total expression of the
gene.

now contains the genomic region ( seqnames, start, end, strand) along with corresponding

metadata columns (the gene_id and the results of the test). Note that tximeta has correctly

identified the reference genome as “hg38”, and this has also been added to the GRanges

along the results columns. This kind of book-keeping is vital once overlap operations are

performed to ensure that plyranges is not comparing across incompatible genomes.

suppressPackageStartupMessages(library(plyranges))

de_genes <- results(dds,

contrast=c("condition","IFNg","naive"),

lfcThreshold=1,

format="GRanges") %>%

names_to_column("gene_id")

de_genes
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#> GRanges object with 17806 ranges and 7 metadata columns:

#> seqnames ranges strand | gene_id baseMean

#> <Rle> <IRanges> <Rle> | <character> <numeric>

#> [1] chrX 100627109-100639991 - | ENSG00000000003.14 171.571

#> [2] chr20 50934867-50958555 - | ENSG00000000419.12 967.751

#> [3] chr1 169849631-169894267 - | ENSG00000000457.13 682.433

#> [4] chr1 169662007-169854080 + | ENSG00000000460.16 262.963

#> [5] chr1 27612064-27635277 - | ENSG00000000938.12 2660.102

#> ... ... ... ... . ... ...

#> [17802] chr10 84167228-84172093 - | ENSG00000285972.1 10.04746

#> [17803] chr6 63572012-63583587 + | ENSG00000285976.1 4586.34617

#> [17804] chr16 57177349-57181390 + | ENSG00000285979.1 14.29653

#> [17805] chr8 103398658-103501895 - | ENSG00000285982.1 27.76296

#> [17806] chr10 12563151-12567351 + | ENSG00000285994.1 6.60409

#> log2FoldChange lfcSE stat pvalue padj

#> <numeric> <numeric> <numeric> <numeric> <numeric>

#> [1] -0.2822450 0.3005710 0.00000 1.0000000 1.000000

#> [2] 0.0391223 0.0859708 0.00000 1.0000000 1.000000

#> [3] 1.2846179 0.1969067 1.44545 0.1483329 1.000000

#> [4] -1.4718762 0.2186916 -2.15772 0.0309493 0.409728

#> [5] 0.6754781 0.2360530 0.00000 1.0000000 1.000000

#> ... ... ... ... ... ...

#> [17802] 0.5484518 0.444319 0 1 1

#> [17803] -0.0339296 0.188005 0 1 1

#> [17804] 0.3123477 0.522700 0 1 1

#> [17805] 0.9945187 1.582373 0 1 1

#> [17806] 0.2539975 0.595751 0 1 1

#> -------

#> seqinfo: 25 sequences (1 circular) from hg38 genome

43



CHAPTER 3. FLUENT GENOMICS WITH PLYRANGES AND TXIMETA

From this, we can restrict the results to those that meet our FDR threshold and select (and

rename) the metadata columns we are interested in:

de_genes <- de_genes %>%

filter(padj < 0.01) %>%

select(

gene_id,

de_log2FC = log2FoldChange,

de_padj = padj

)

We now wish to extract genes for which there is evidence that the LFC is not large.

We perform this test by specifying an LFC threshold and an alternative hypothesis

(altHypothesis) that the LFC is less than the threshold in absolute value. In this case, the

p-values are taken as maximum of the upper and lower Wald tests under the hypothesis

absolute value of the estimated LFC is lower than the threshold. To visualize the result

of this test, you can run results without format="GRanges", and pass this object to

plotMA() as before. We label these genes as other_genes and later as “non-DE genes”,

for comparison with our de_genes set.

other_genes <- results(dds,

contrast=c("condition","IFNg","naive"),

lfcThreshold=1,

altHypothesis="lessAbs",

format="GRanges") %>%

filter(padj < 0.01) %>%

names_to_column("gene_id") %>%

select(

gene_id,

de_log2FC = log2FoldChange,

de_padj = padj

)
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3.3.2 ATAC-seq peak differential abundance analysis

The following section describes the process we have used for generating a GRanges object

of differential peaks from the ATAC-seq data in Alasoo et al. (2018). The code chunks for

the remainder of this section are optional.

For assessing differential accessibility, we run limma (Smyth, 2004), and generate the a

summary of LFCs and adjusted p-values for the peaks:

library(limma)

design <- model.matrix(~donor + condition, colData(atac))

fit <- lmFit(assay(atac), design)

fit <- eBayes(fit)

idx <- which(colnames(fit$coefficients) == "conditionIFNg")

tt <- topTable(fit, coef=idx, sort.by="none", n=nrow(atac))

We now take the rowRanges() of the SummarizedExperiment and attach the LFCs and

adjusted p-values from limma, so that we can consider the overlap with differential

expression. Note that we set the genome build to “hg38” and restyle the chromosome

information to use the “UCSC” style (e.g. “chr1”, “chr2”, etc.). Again, we know the

genome build from the Zenodo entry for the ATAC-seq data.

atac_peaks <- rowRanges(atac) %>%

remove_names() %>%

mutate(

da_log2FC = tt$logFC,

da_padj = tt$adj.P.Val

) %>%

set_genome_info(genome = "hg38")

seqlevelsStyle(atac_peaks) <- "UCSC"
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The final GRanges object containing the DA peaks is included in the fluentGenomics and

can be loaded as follows:

library(fluentGenomics)

peaks

#> GRanges object with 296220 ranges and 3 metadata columns:

#> seqnames ranges strand | peak_id da_log2FC

#> <Rle> <IRanges> <Rle> | <character> <numeric>

#> [1] chr1 9979-10668 * | ATAC_peak_1 0.266185

#> [2] chr1 10939-11473 * | ATAC_peak_2 0.322177

#> [3] chr1 15505-15729 * | ATAC_peak_3 -0.574160

#> [4] chr1 21148-21481 * | ATAC_peak_4 -1.147066

#> [5] chr1 21864-22067 * | ATAC_peak_5 -0.896143

#> ... ... ... ... . ... ...

#> [296216] chrX 155896572-155896835 * | ATAC_peak_296216 -0.834629

#> [296217] chrX 155958507-155958646 * | ATAC_peak_296217 -0.147537

#> [296218] chrX 156016760-156016975 * | ATAC_peak_296218 -0.609732

#> [296219] chrX 156028551-156029422 * | ATAC_peak_296219 -0.347678

#> [296220] chrX 156030135-156030785 * | ATAC_peak_296220 0.492442

#> da_padj

#> <numeric>

#> [1] 9.10673e-05

#> [2] 2.03435e-05

#> [3] 3.41708e-08

#> [4] 8.22299e-26

#> [5] 4.79453e-11

#> ... ...

#> [296216] 1.33546e-11

#> [296217] 3.13015e-01

#> [296218] 3.62339e-09
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#> [296219] 6.94823e-06

#> [296220] 7.07664e-13

#> -------

#> seqinfo: 23 sequences from hg38 genome; no seqlengths

3.4 Integrate ranges

3.4.1 Finding overlaps with plyranges

We have already used plyranges a number of times above, to filter(), mutate(), and

select() on GRanges objects, as well as ensuring the correct genome annotation and style

has been used. The plyranges package provides a grammar for performing transforma-

tions of genomic data (Lee, Cook, and Lawrence, 2019). Computations resulting from

compositions of plyranges “verbs” are performed using underlying, highly optimized

range operations in the GenomicRanges package (Lawrence et al., 2013b).

For the overlap analysis, we filter the annotated peaks to have a nominal FDR bound of

1%.

da_peaks <- peaks %>%

filter(da_padj < 0.01)

We now have GRanges objects that contain DE genes, genes without strong signal of

DE, and DA peaks. We are ready to answer the question: is there an enrichment of DA

ATAC-seq peaks in the vicinity of DE genes compared to genes without sufficient DE

signal?

3.4.2 Down sampling non-differentially expressed genes

As plyranges is built on top of dplyr, it implements methods for many of its verbs

for GRanges objects. Here we can use slice() to randomly sample the rows of the

other_genes. The sample.int() function will generate random samples of size equal to

the number of DE-genes from the number of rows in other_genes:
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size <- length(de_genes)

slice(other_genes, sample.int(n(), size))

#> GRanges object with 749 ranges and 3 metadata columns:

#> seqnames ranges strand | gene_id de_log2FC

#> <Rle> <IRanges> <Rle> | <character> <numeric>

#> [1] chr10 73007217-73096974 - | ENSG00000122884.12 0.0113795

#> [2] chr1 84479259-84497790 + | ENSG00000117133.10 0.0459108

#> [3] chr11 6612763-6619485 - | ENSG00000166340.16 0.0746887

#> [4] chr22 50274979-50307627 - | ENSG00000196576.14 -0.0770331

#> [5] chr3 47381011-47413441 + | ENSG00000076201.14 0.2679236

#> ... ... ... ... . ... ...

#> [745] chr9 128882112-128918039 + | ENSG00000136802.11 -0.1382607

#> [746] chr4 39045039-39126857 + | ENSG00000109790.16 0.4629770

#> [747] chr5 134904906-135007959 + | ENSG00000132570.14 -0.1941958

#> [748] chr7 101232092-101238820 - | ENSG00000106404.13 0.0782562

#> [749] chr2 61177418-61191203 + | ENSG00000173209.23 -0.2909704

#> de_padj

#> <numeric>

#> [1] 4.49164e-10

#> [2] 1.35088e-22

#> [3] 3.82540e-13

#> [4] 3.69999e-05

#> [5] 2.54437e-18

#> ... ...

#> [745] 1.00657e-06

#> [746] 7.82130e-04

#> [747] 9.51328e-12

#> [748] 2.51972e-06

#> [749] 9.43889e-06
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#> -------

#> seqinfo: 25 sequences (1 circular) from hg38 genome

We can repeat this many times to create many samples via replicate(). We are sub-

sampling gene sets without evidence of DE to have the same size as DE gene set, because

for each set we want to how different the ATAC peaks around these different sets assuming

the number of DE genes is fixed. The sampling of the non-DE genes is done without

replacement so each replication produces a different set to compare. By replicating the sub-

sampling multiple times, we minimize the variance on the enrichment statistics induced

by the sampling process.

# set a seed for the results

set.seed(2019-08-02)

subsamp_genes <- replicate(10,

slice(other_genes, sample.int(n(), size)),

simplify = FALSE)

This creates a list of GRanges objects as a list, and we can bind these together using

bind_ranges(). This function creates a new column called resample on the result that

identifies each of the input GRanges objects:

subsamp_genes <- bind_ranges(subsamp_genes, .id = "resample")

Similarly, we can then combine the subsamp_genes GRanges, with the DE GRanges object.

As the resample column was not present on the DE GRanges object, this is given a missing

value which we recode to a 0 using mutate()

all_genes <- bind_ranges(

de=de_genes,

not_de = subsamp_genes,

.id="origin"

) %>%
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mutate(

origin = factor(origin, c("not_de", "de")),

resample = ifelse(is.na(resample), 0L, as.integer(resample))

)

all_genes

#> GRanges object with 8239 ranges and 5 metadata columns:

#> seqnames ranges strand | gene_id de_log2FC

#> <Rle> <IRanges> <Rle> | <character> <numeric>

#> [1] chr1 196651878-196747504 + | ENSG00000000971.15 4.98711

#> [2] chr6 46129993-46146699 + | ENSG00000001561.6 1.92722

#> [3] chr4 17577192-17607972 + | ENSG00000002549.12 2.93373

#> [4] chr7 150800403-150805120 + | ENSG00000002933.8 3.16722

#> [5] chr4 15778275-15853230 + | ENSG00000004468.12 5.40894

#> ... ... ... ... . ... ...

#> [8235] chr17 43527844-43579620 - | ENSG00000175832.12 -0.240918

#> [8236] chr17 18260534-18266552 + | ENSG00000177427.12 -0.166059

#> [8237] chr20 63895182-63936031 + | ENSG00000101152.10 0.250539

#> [8238] chr1 39081316-39487177 + | ENSG00000127603.25 -0.385054

#> [8239] chr8 41577187-41625001 + | ENSG00000158669.11 0.155922

#> de_padj resample origin

#> <numeric> <integer> <factor>

#> [1] 1.37057e-13 0 de

#> [2] 3.17478e-05 0 de

#> [3] 2.01310e-11 0 de

#> [4] 1.07360e-08 0 de

#> [5] 4.82905e-18 0 de

#> ... ... ... ...

#> [8235] 9.91611e-03 10 not_de

#> [8236] 9.12051e-05 10 not_de

#> [8237] 1.74085e-09 10 not_de
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#> [8238] 2.65539e-03 10 not_de

#> [8239] 2.96375e-17 10 not_de

#> -------

#> seqinfo: 25 sequences (1 circular) from hg38 genome

3.4.3 Expanding genomic coordinates around the transcription start

site

Now we would like to modify our gene ranges so they contain the 10 kilobases on either

side of their TSS. There are many ways one could do this, but we prefer an approach via

the anchoring methods in plyranges. Because there is a mutual dependence between the

start, end, width, and strand of a GRanges object, we define anchors to fix one of start and

end, while modifying the width. As an example, to extract just the TSS, we can anchor by

the 5’ end of the range and modify the width of the range to equal 1.

all_genes <- all_genes %>%

anchor_5p() %>%

mutate(width = 1)

Anchoring by the 5’ end of a range will fix the end of negatively stranded ranges, and fix

the start of positively stranded ranges.

We can then repeat the same pattern but this time using anchor_center() to tell

plyranges that we are making the TSS the midpoint of a range that has total width

of 20kb, or 10kb both upstream and downstream of the TSS.

all_genes <- all_genes %>%

anchor_center() %>%

mutate(width=2*1e4)

3.4.4 Use overlap joins to find relative enrichment

We are now ready to compute overlaps between RNA-seq genes (our DE set and resampled

sets) and the ATAC-seq peaks. In plyranges, overlaps are defined as joins between two
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GRanges objects: a left and a right GRanges object. In an overlap join, a match is any range

on the left GRanges that is overlapped by the right GRanges. One powerful aspect of the

overlap joins is that the result maintains all (metadata) columns from each of the left and

right ranges which makes downstream summaries easy to compute.

To combine the DE genes with the DA peaks, we perform a left overlap join. This returns

to us the all_genes ranges (potentially with duplication), but with the metadata columns

from those overlapping DA peaks. For any gene that has no overlaps, the DA peak

columns will have NA values.

genes_olap_peaks <- all_genes %>%

join_overlap_left(da_peaks)

genes_olap_peaks

#> GRanges object with 27766 ranges and 8 metadata columns:

#> seqnames ranges strand | gene_id de_log2FC

#> <Rle> <IRanges> <Rle> | <character> <numeric>

#> [1] chr1 196641878-196661877 + | ENSG00000000971.15 4.98711

#> [2] chr6 46119993-46139992 + | ENSG00000001561.6 1.92722

#> [3] chr4 17567192-17587191 + | ENSG00000002549.12 2.93373

#> [4] chr4 17567192-17587191 + | ENSG00000002549.12 2.93373

#> [5] chr4 17567192-17587191 + | ENSG00000002549.12 2.93373

#> ... ... ... ... . ... ...

#> [27762] chr1 39071316-39091315 + | ENSG00000127603.25 -0.385054

#> [27763] chr1 39071316-39091315 + | ENSG00000127603.25 -0.385054

#> [27764] chr8 41567187-41587186 + | ENSG00000158669.11 0.155922

#> [27765] chr8 41567187-41587186 + | ENSG00000158669.11 0.155922

#> [27766] chr8 41567187-41587186 + | ENSG00000158669.11 0.155922

#> de_padj resample origin peak_id da_log2FC da_padj

#> <numeric> <integer> <factor> <character> <numeric> <numeric>

#> [1] 1.37057e-13 0 de ATAC_peak_21236 -0.546582 1.15274e-04

#> [2] 3.17478e-05 0 de ATAC_peak_231183 1.453297 9.73225e-17
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#> [3] 2.01310e-11 0 de ATAC_peak_193578 0.222371 3.00939e-11

#> [4] 2.01310e-11 0 de ATAC_peak_193579 -0.281615 7.99889e-05

#> [5] 2.01310e-11 0 de ATAC_peak_193580 0.673705 7.60043e-15

#> ... ... ... ... ... ... ...

#> [27762] 2.65539e-03 10 not_de ATAC_peak_5357 -1.058236 3.69052e-16

#> [27763] 2.65539e-03 10 not_de ATAC_peak_5358 -1.314112 6.44280e-26

#> [27764] 2.96375e-17 10 not_de ATAC_peak_263396 -0.904080 8.19577e-13

#> [27765] 2.96375e-17 10 not_de ATAC_peak_263397 0.364738 2.08835e-08

#> [27766] 2.96375e-17 10 not_de ATAC_peak_263399 0.317387 1.20088e-08

#> -------

#> seqinfo: 25 sequences (1 circular) from hg38 genome

Now we can ask, how many DA peaks are near DE genes relative to “other” non-DE

genes? A gene may appear more than once in genes_olap_peaks, because multiple peaks

may overlap a single gene, or because we have re-sampled the same gene more than once,

or a combination of these two cases.

For each gene (that is the combination of chromosome, the start, end, and strand), and the

“origin” (DE vs not-DE) we can compute the distinct number of peaks for each gene and the

maximum peak based on LFC. This is achieved via reduce_ranges_directed(), which

allows an aggregation to result in a GRanges object via merging neighboring genomic

regions. The use of the directed suffix indicates we are maintaining strand information. In

this case, we are simply merging ranges (genes) via the groups we mentioned above. We

also have to account for the number of resamples we have performed when counting if

there are any peaks, to ensure we do not double count the same peak:

gene_peak_max_lfc <- genes_olap_peaks %>%

group_by(gene_id, origin) %>%

reduce_ranges_directed(

peak_count = sum(!is.na(da_padj)) / n_distinct(resample),

peak_max_lfc = max(abs(da_log2FC))

)
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Figure 3.4: A boxplot of maximum LFCs for DA peaks for DE genes compared to non-DE genes
where genes have at least one DA peak.

We can then filter genes if they have any peaks and compare the peak fold changes between

non-DE and DE genes using a boxplot:

library(ggplot2)

gene_peak_max_lfc %>%

filter(peak_count > 0) %>%

as.data.frame() %>%

ggplot(aes(origin, peak_max_lfc)) +

geom_boxplot()

In general, the DE genes have larger maximum DA fold changes relative to the non-DE

genes.

Next we examine how thresholds on the DA LFC modify the enrichment we observe of

DA peaks near DE or non-DE genes. First, we want to know how the number of peaks

within DE genes and non-DE genes change as we change threshold values on the peak

LFC. As an example, we could compute this by arbitrarily chosen LFC thresholds of 1 or 2

as follows:
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origin_peak_lfc <- genes_olap_peaks %>%

group_by(origin) %>%

summarize(

peak_count = sum(!is.na(da_padj)) / n_distinct(resample),

lfc1_peak_count =

sum(abs(da_log2FC) > 1, na.rm=TRUE) / n_distinct(resample),

lfc2_peak_count =

sum(abs(da_log2FC) > 2, na.rm=TRUE) / n_distinct(resample)

)

origin_peak_lfc

#> DataFrame with 2 rows and 4 columns

#> origin peak_count lfc1_peak_count lfc2_peak_count

#> <factor> <numeric> <numeric> <numeric>

#> 1 not_de 2391.8 369.5 32.5

#> 2 de 3416.0 1097.0 234.0

Here we see that DE genes tend to have more DA peaks near them, and that the number

of DA peaks decreases as we increase the DA LFC threshold (as expected). We now show

how to compute the ratio of peak counts from DE compared to non-DE genes, so we can

see how this ratio changes for various DA LFC thresholds.

For all variables except for the origin column we divide the first rows values by the second

row, which will be the enrichment of peaks in DE genes compared to other genes. This

requires us to reshape the summary table from long form back to wide form using the

tidyr package. First we pivot the results of the peak_count columns into name-value pairs,

then pivot again to place values into the origin column. Then we create a new column

with the relative enrichment:

library(tidyr)

origin_peak_lfc %>%

as.data.frame() %>%
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pivot_longer(cols = -origin) %>%

pivot_wider(names_from = origin, values_from = value) %>%

mutate(enrichment = de / not_de)

#> # A tibble: 3 x 4

#> name not_de de enrichment

#> <chr> <dbl> <dbl> <dbl>

#> 1 peak_count 2392. 3416 1.43

#> 2 lfc1_peak_count 370. 1097 2.97

#> 3 lfc2_peak_count 32.5 234 7.2

The above table shows that relative enrichment increases for a larger LFC threshold.

Due to the one-to-many mappings of genes to peaks, it is unknown if we have the same

number of DE genes participating or less, as we increase the threshold on the DA LFC.

We can examine the number of genes with overlapping DA peaks at various thresholds

by grouping and aggregating twice. First, the number of peaks that meet the thresholds

are computed within each gene, origin, and resample group. Second, within the origin

column, we compute the total number of peaks that meet the DA LFC threshold and the

number of genes that have more than zero peaks (again averaging over the number of

resamples).

genes_olap_peaks %>%

group_by(gene_id, origin, resample) %>%

reduce_ranges_directed(

lfc1 = sum(abs(da_log2FC) > 1, na.rm=TRUE),

lfc2 = sum(abs(da_log2FC) > 2, na.rm=TRUE)

) %>%

group_by(origin) %>%

summarize(

lfc1_gene_count = sum(lfc1 > 0) / n_distinct(resample),

lfc1_peak_count = sum(lfc1) / n_distinct(resample),
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lfc2_gene_count = sum(lfc2 > 0) / n_distinct(resample),

lfc2_peak_count = sum(lfc2) / n_distinct(resample)

)

#> DataFrame with 2 rows and 5 columns

#> origin lfc1_gene_count lfc1_peak_count lfc2_gene_count lfc2_peak_count

#> <factor> <numeric> <numeric> <numeric> <numeric>

#> 1 not_de 271.2 369.5 30.3 32.5

#> 2 de 515.0 1097.0 151.0 234.0

To do this for many thresholds is cumbersome and would create a lot of duplicate code.

Instead we create a single function called count_above_threshold() that accepts a

variable and a vector of thresholds, and computes the sum of the absolute value of the

variable for each element in the thresholds vector.

count_if_above_threshold <- function(var, thresholds) {

lapply(thresholds, function(.) sum(abs(var) > ., na.rm = TRUE))

}

The above function will compute the counts for any arbitrary threshold, so we can apply

it over possible LFC thresholds of interest. We choose a grid of one hundred thresholds

based on the range of absolute LFC values in the da_peaks GRanges object:

thresholds <- da_peaks %>%

mutate(abs_lfc = abs(da_log2FC)) %>%

with(

seq(min(abs_lfc), max(abs_lfc), length.out = 100)

)

The peak counts for each threshold are computed as a new list-column called value. First,

the GRanges object has been grouped by the gene, origin, and the number of resamples

columns. Then we aggregate over those columns, so each row will contain the peak
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counts for all of the thresholds for a gene, origin, and resample. We also maintain another

list-column that contains the threshold values.

genes_peak_all_thresholds <- genes_olap_peaks %>%

group_by(gene_id, origin, resample) %>%

reduce_ranges_directed(

value = count_if_above_threshold(da_log2FC, thresholds),

threshold = list(thresholds)

)

genes_peak_all_thresholds

#> GRanges object with 8239 ranges and 5 metadata columns:

#> seqnames ranges strand | gene_id origin

#> <Rle> <IRanges> <Rle> | <character> <factor>

#> [1] chr1 196641878-196661877 + | ENSG00000000971.15 de

#> [2] chr6 46119993-46139992 + | ENSG00000001561.6 de

#> [3] chr4 17567192-17587191 + | ENSG00000002549.12 de

#> [4] chr7 150790403-150810402 + | ENSG00000002933.8 de

#> [5] chr4 15768275-15788274 + | ENSG00000004468.12 de

#> ... ... ... ... . ... ...

#> [8235] chr17 43569620-43589619 - | ENSG00000175832.12 not_de

#> [8236] chr17 18250534-18270533 + | ENSG00000177427.12 not_de

#> [8237] chr20 63885182-63905181 + | ENSG00000101152.10 not_de

#> [8238] chr1 39071316-39091315 + | ENSG00000127603.25 not_de

#> [8239] chr8 41567187-41587186 + | ENSG00000158669.11 not_de

#> resample value threshold

#> <integer> <IntegerList> <NumericList>

#> [1] 0 1,1,1,... 0.0658243,0.1184840,0.1711436,...

#> [2] 0 1,1,1,... 0.0658243,0.1184840,0.1711436,...

#> [3] 0 6,6,6,... 0.0658243,0.1184840,0.1711436,...

#> [4] 0 4,4,4,... 0.0658243,0.1184840,0.1711436,...
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#> [5] 0 11,11,11,... 0.0658243,0.1184840,0.1711436,...

#> ... ... ... ...

#> [8235] 10 1,1,1,... 0.0658243,0.1184840,0.1711436,...

#> [8236] 10 3,3,2,... 0.0658243,0.1184840,0.1711436,...

#> [8237] 10 5,5,5,... 0.0658243,0.1184840,0.1711436,...

#> [8238] 10 3,3,3,... 0.0658243,0.1184840,0.1711436,...

#> [8239] 10 3,3,3,... 0.0658243,0.1184840,0.1711436,...

#> -------

#> seqinfo: 25 sequences (1 circular) from hg38 genome

Now we can expand these list-columns into a long GRanges object using expand_ranges().

This function will unlist the value and threshold columns and lengthen the resulting GRanges

object. To compute the peak and gene counts for each threshold, we apply the same

summarization as before:

origin_peak_all_thresholds <- genes_peak_all_thresholds %>%

expand_ranges() %>%

group_by(origin, threshold) %>%

summarize(

gene_count = sum(value > 0) / n_distinct(resample),

peak_count = sum(value) / n_distinct(resample)

)

origin_peak_all_thresholds

#> DataFrame with 200 rows and 4 columns

#> origin threshold gene_count peak_count

#> <factor> <numeric> <numeric> <numeric>

#> 1 not_de 0.0658243 708.0 2391.4

#> 2 not_de 0.1184840 698.8 2320.6

#> 3 not_de 0.1711436 686.2 2178.6

#> 4 not_de 0.2238033 672.4 1989.4

#> 5 not_de 0.2764629 650.4 1785.8
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#> ... ... ... ... ...

#> 196 de 5.06849 2 2

#> 197 de 5.12115 0 0

#> 198 de 5.17381 0 0

#> 199 de 5.22647 0 0

#> 200 de 5.27913 0 0

Again we can compute the relative enrichment in LFCs in the same manner as before, by

pivoting the results to long form then back to wide form to compute the enrichment.

origin_threshold_counts <- origin_peak_all_thresholds %>%

as.data.frame() %>%

pivot_longer(cols = -c(origin, threshold),

names_to = c("type", "var"),

names_sep = "_",

values_to = "count") %>%

select(-var)

We visualize the peak enrichment changes of DE genes relative to other genes as a line

chart:

origin_threshold_counts %>%

filter(type == "peak") %>%

pivot_wider(names_from = origin, values_from = count) %>%

mutate(enrichment = de / not_de) %>%

ggplot(aes(x = threshold, y = enrichment)) +

geom_line() +

labs(x = "logFC threshold", y = "Relative Enrichment")

We computed the sum of DA peaks near the DE genes, for increasing LFC thresholds on

the accessibility change. As we increased the threshold, the number of total peaks went

down (likewise the mean number of DA peaks per gene). It is also likely the number of
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Figure 3.5: A line chart displaying how relative enrichment of DA peaks change between DE
genes compared to non-DE genes as the absolute DA LFC threshold increases.

DE genes with a DA peak nearby with such a large change went down. We can investigate

this with a plot that summarizes many of the aspects underlying the enrichment plot

above.

origin_threshold_counts %>%

ggplot(aes(x = threshold,

y = count + 1,

color = origin,

linetype = type)) +

geom_line() +

scale_y_log10()

61



CHAPTER 3. FLUENT GENOMICS WITH PLYRANGES AND TXIMETA

1

10

100

1000

0 1 2 3 4 5
threshold

co
un

t +
 1

origin

not_de

de

type

gene

peak

Figure 3.6: A line chart displaying how gene and peak counts change as the absolute DA LFC
threshold increases. Lines are colored according to whether they represent a gene that
is DE or not. Note the x-axis is on a log10 scale.

3.5 Discussion

We have shown that by using plyranges and tximeta (with the support of the Bioconductor

and tidyverse ecosystems) we can iterate through the biological data science workflow:

from import, through to modeling, and data integration.

There are several further steps that would be interesting to perform in this analysis; for

example, we could modify window size around the TSS to see how it affects enrichment,

and vary the FDR cut-offs for both the DE gene and DA peak sets. We could also have

computed variance in addition to the mean of the resampled set, and so drawn an interval

around the enrichment line.

Finally, our workflow illustrates the benefits of using appropriate data abstractions pro-

vided by Bioconductor such as the SummarizedExperiment and GRanges. These abstractions

provide users with a mental model of their experimental data and are the building blocks

for constructing the modular and iterative analyses we have shown here. Consequently,

we have been able to interoperate many decoupled R packages (from both Bioconductor
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and the tidyverse) to construct a seamless end-to-end workflow that is far too specialized

for a single monolithic tool.

3.6 Software Availability

The workflow materials can be fully reproduced following the instructions found at the

Github repository sa-lee/fluentGenomics. Moreover, the development version of the

workflow and all downstream dependencies can be installed using the BiocManager

package by running:

# development version from Github

BiocManager::install("sa-lee/fluentGenomics")

# version available from Bioconductor

BiocManager::install("fluentGenomics")
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Chapter 4

Exploratory coverage analysis

with superintronic and plyranges

Here we consider a tidy-data approach for exploring estimated coverage from RNA-seq

data. We establish a simple framework, for aggregating across experimental design, and

annotated genomic regions to discover ‘interesting’ coverage trace plots. We highlight

how this framework can be used to develop data descriptions that find putative genes

with intron retention. Our framework is implemented in a software package called

superintronic, available at https://github.com/sa-lee/superintronic.

4.1 Introduction

In high-throughput sequencing data sets, coverage is the estimated number of reads

that overlap a single position of the reference genome, and is important for assessing

sequencing data quality and used in many different aspects of omics analysis such peak-

calling in ChIP-seq or variant calling in DNA-seq (Sims et al., 2014). Here we emphasise

looking at coverage traces to find biological events of interest, rather than only relying on

numerical summaries of the data (Figure 4.1. By faceting these traces over combinations

of the experimental design and with their biological context such as gene annotations,

we can gain an insight into biological signal under study. Of course, due to the sheer

size of most reference genome annotations it would take an extremely long time for an
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Figure 4.1: An illustrative coverage trace plot from Chapter 2. The coverage score is defined as
the number of reads that overlap a single base position within a reference genome.
For example, at position 21.807 of chromosome 8 there are approximately 12 reads
overlapping it.

analyst to look at every single possible region where there is some interesting signal within

the coverage trace. Because visualisation does not scale, we need to search the possible

space of coverage traces and provide diagnostics for identifying traces with interesting

biology. We have taken inspiration from visualisation literature; in particular the idea

of scatter plot diagnostics (“scagnostics”) for summarising the space of all possible 2D

scatter plots to a small number of descriptors of each scatter plots properties such as

density or monotonicity (Friedman and Stuetzle, 2002; Wilkinson, Anand, and Grossman,

2005). Similarly, searching for unusual time series via estimating descriptors such as

seasonality or autocorrelation, and visualising those descriptors instead (Hyndman, Wang,

and Laptev, 2015).

Although there are many flexible and powerful software tools, like BEDtools or deepTools,

for exploring and estimating coverage from common genomic data formats (Quinlan and

Hall, 2010; Ramrez et al., 2014), it is advantageous to have tooling that is tightly coupled

to a statistical computing language such as R. This allows interoperability between other

software packages for data wrangling, visualisation and modelling within the ecosystem

of the language that may not be possible with a single command line tool. There are also
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gains in reproducibility as analysts do not have to move between multiple software suites

to explore their processed transcriptomics data.

In Lee et al. (2020), we showed that there is evidence that a major source of intron reads in

RNA-seq datasets is pre-mRNA, and sought data analysis techniques to unravel different

aspects of intron signal. In light of this, we made the assumption that most intron reads

do not necessarily point to intron retention (IR) events, and developed a workflow based

on combining multiple summary statistics, “data descriptors”, to find coverage traces that

appear to have IR-like events by collapsing coverage scores over a design matrix alongside

the exonic and intronic parts of a gene. To do this we developed a new R package called

superintronic that provides tooling for exploratory coverage analysis by extending and

integrating our previous software package, plyranges (Lee, Cook, and Lawrence, 2019).

In this paper, we describe methodology for establishing data descriptors by turning

coverage vectors into long form tidy data using superintronic and plyranges. We provide

a workflow below using a zebrafish RNA-seq dataset for developing data descriptors to

find IR like coverage traces within genes known to have minor class splicing events.

4.2 Methods

superintronic is an R package used for estimating, representing, and visualising per-base

coverage scores, that can then be flexibly summarised over factors within an experimental

design and collapsed over regions of the genome using our companion package plyranges.

The aspects of this combined workflow are summarised in Figure 4.2.

4.2.1 Representation of coverage estimation

The per base coverage score is estimated directly from one or more BAM files that represent

the units within the experimental design, along with an optional experimental design

table that is returns a long-form tidy GRanges data structure. The coverage estimation

is computed via the Rsamtools package, and users have the ability to estimate coverage

in parallel and drop regions in the genome where there is no coverage (Morgan et al.,

2020; Lawrence et al., 2013b). This representation is tidy, since each row of the resulting
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Figure 4.2: An overview of the superintronic and plyranges workflow. Coverage is estimated
directly using the design matrix that contains a source column pointing to the locations
of BAM files. The long-form representation is output as a GRanges object, and
contains columns that were part of the design. Additional annotations are added with
join functions, here we show the particular case of expanding the coverage GRanges to
include exonic and intronic parts of a gene. This object can be further analysed using
plyranges and our data descriptors approach, and then descriptors can be visualised
as a scatter plot matrix with the GGally and ggplot2 packages (Schloerke et al., 2020;
Wickham, 2016). Coverage traces can be directly generated with superintronic and
collapsed over parts of the design matrix to identify differences between groups.

GRanges data structure corresponds to position(s) within a given sample with a given

coverage score alongside any variables such as biological group. While the long-form

representation repeats the same information for a sample within the design, the size of

the resulting GRanges in memory can be compressed using run-length encoding for any

categorical variable, which is a form of data compression where “runs” of a vector are

stored rather than their values. For example, the character vector of letters “a”, and “b” is

shortened so successive values are stored as a single value with their lengths:

#> [1] "b" "a" "b" "b" "a" "a" "b" "a" "a" "a"

#> character-Rle of length 10 with 6 runs

#> Lengths: 1 1 2 2 1 3

#> Values : "b" "a" "b" "a" "b" "a"
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This representation is memory efficient: at worst it will be the same size as the input, and

at best reduce the size by a factor corresponding to the largest run. The allows us to easily

transform the coverage scores and integrate annotations using the plyranges grammar,

and visualise traces using ggplot2 (Wickham, 2016).

4.2.2 Integration of external annotations

External reference annotations, perhaps transcripts or exons, can be coerced to GRanges

objects, are incorporated into the coverage GRanges by taking the intersection of the

annotation with the GRanges using an overlap intersect join from the plyranges software.

The resulting intersection will now contain the per base coverage that are overlapped the

genomic features in the annotation, along side any metadata about the features themselves.

Since our main workflow interest is in discovering coverage traces with IR profiles,

superintronic provides some syntactic sugar for unravelling gene annotations into their

exonic and intronic parts, and intersecting them with a coverage GRanges. Split reads that

cross the boundaries of exon and intron parts are counted towards both unless filtered

beforehand.

4.2.3 Discovery of regions of interest via ‘data descriptors’

Once the coverage GRanges has reference genomic features, data descriptors can be com-

puted via collecting summary statistics across the factors of the experimental design and

features of interest. This can be achieved using plyranges directly by first grouping across

variables of interest, computing descriptors defined by superintronic and then pivoting

the results into a wide form table for additional processing or visualisation. There are

many descriptors defined by superintronic that are weighted statistics (as we have to

account for the number of bases covered, or the width of the range) of the coverage score,

such as the mean and standard deviation. There are also descriptors that can be used to

find the number of times the coverage trace is above a certain number of bases or score.

To find coverage traces that have unusual descriptors, the descriptors can be visualised

directly as a scatter plot matrix. After that thresholds can be applied to filter the genomic

features that had extreme descriptors on the coverage GRanges, and the traces can be
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visualised. By default superintronic displays coverage traces oriented from the 5’ to 3’

end of the gene, with the view_coverage() function. Traces can be highlighted according

to a genomic feature of interest, figures in this chapter have orange areas corresponding to

intronic parts of the gene, while dark green areas referring to exonic parts.

4.3 A workflow for uncovering intron retention in a ze-

brafish experiment

In the study of gene regulation, there is much interest in uncovering the effects of aberrant

minor class splicing (called U12 splicing) on the transcriptome. Minor class splicing is a

regulatory process where a class of introns (called U12 introns in this case but there exist

other classes in eukaryotic organisms such as U2 introns) are removed from pre-mRNA

prior to gene expression (Turunen et al., 2013). The removal of these introns is catalysed by

small ribonucleoproteins (snRNPs) which identify key motifs and branch sites in the intron

to begin splicing (Markmiller et al., 2014). Here we describe an exploratory workflow for

finding coverage traces with evidence for intron retention using RNA-seq data from a

knockout experiment in zebrafish obtained from the Heath Lab at Walter and Eliza Hall

Institute. Code for this analysis is available at https://github.com/sa-lee/thesis/

tree/master/scripts/superintronic.R.

The data consist of 11 zebrafish samples from single-end polyA enriched RNA-seq libraries

pooled from zebrafish larvae. The experimental factors looked at combinations of genotype

(whether the gene rnpc3 has been knocked out or not) and line (whether the zebrafish

larvae have the caliban cal or mutant caliban zm-cal phenotype). Within each combination

there are three biological replicates, except for the combination zm-cal and wild-type rnpc3

which had two replicates.

FASTQ files were aligned to the GRCz11 reference genome using subjunc with the default

parameters called from Rsubread to produce BAM files for each sample (Liao, Smyth, and

Shi, 2013, 2019). The coverage was then estimated directly from the set of BAM files using

superintronic into the long form GRanges representation we described above.
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The gene annotation files were obtained as GFF files from RefSeq as is standard for

Zebrafish analyses. The GFF was used to construct the exonic and intronic parts of each

gene as GRanges object using superintronic. We further filtered genes that had a single

exon or genes that were overlapping others in the annotation and that were not on the

main contigs of the reference genome (i.e. excluding mitochondria) to simplify our analysis

and reduce any coverage ambiguity. This left 18,270 genes available for computing data

descriptors on in order to detecting IR-like coverage traces. Across each combination

of genotype and line, we first log2 transformed the coverage score with an offset of one,

and then intersected the coverage GRanges with exonic and intronic features of each gene.

For each gene, the mean and standard deviation of the log-transformed coverage score

weighted by the number of bases covered were computed over all intron and exon parts

within the groupings of genotype and line. We also computed the bases above descriptor

for intron features. It refers to the total number of bases within an intron that has a score

above the overall average exon coverage score. The scatter plot matrix view of these

descriptors is shown in Figure 4.3 for a single biological group in the experiment. Using

these views and by summarising over the data descriptors, we came up with thresholds

for finding genes that have IR-like traces within each biological group.

We selected genes with the following thresholds: genes have an average exon log-coverage

greater than the mean of average exon log-coverage values across all genes, have an

average intron log-coverage greater than the average standard deviation of exon log-

coverage values over all genes, and the standard deviation of intron log-coverage values is

twice the standard deviation of exon log-coverage values. That is, we are selecting genes

that are expressed but have large average intron expression that is more variable than the

gene’s exon expression. This results in a total of 86 genes selected to link back to their

underlying coverage traces, with the overlaps shown in the UpSet plot in Figure 4.4 (Lex

et al., 2014). The procedure produces gene coverage traces with known minor class splice

sites affected by the knockout procedure such as ccdc43 and nat15 (figures 4.5 and 4.6),

as well as some that appear to have U12 intron retention like events such as mapk3 or

tspan31 (figures 4.7 and 4.8) that affect other parts of the gene.
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Figure 4.3: A hexbin scatter plot matrix of the data descriptors estimated for the cal rnpc3 knock
out zebrafish line. To identify coverage traces with IR like events, we want a set
of descriptors that will find genes with the following characteristics: the gene is
“expressed” that has a large number of intron bases relative to the coverage of other
intron features, and has relatively stable coverage within exon features. To do this we
looked at the descriptor, as well as computing the the mean and standard deviation of
both exon and intron features.
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Figure 4.4: Gene overlaps found between each combination of genotype and line using the thresh-
olds defined in the text. Our procedure mostly finds genes with IR like profiles across
all groups (28 shared between all four) or that is unique to a single group, since we do
not consider looking at differential IR and run our thresholding separately for each
group of replicates. The rnpc3 knockout lines share the largest overlap in results.
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Figure 4.5: The ccdc43 gene is known to have enhanced U12 intron retention in the caliban
phenotype and increase retention when rnpc3 is knocked out as can be seen directly
from the intron located at around 31.603Mb.
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Figure 4.6: The gene nat15 exhibits another example of U12 intron retention, located at around
27.93Mb, in the rnpc3 knockout groups.
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Figure 4.7: The gene mapk3 appears to have intron retention close to the start of the gene that
have different impacts downstream, which result in different IR profiles between the
knockout and wild-type groups.
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Figure 4.8: The gene tspan31 has a potential cryptic splice site within the intron retained in the
knockout groups.
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4.4 Discussion

We have shown how coverage can be represented in the tidy data framework and inte-

grated with experimental metadata and reference annotations. This framework allowed

us to build data descriptions that are simple aggregations of various aspects of genomic

features over factors within a designed experiment and link those descriptions to their

underlying coverage traces.

Our zebrafish workflow shows that our approach using superintronic and plyranges is

able to uncover interesting biological signals in a purely data-driven manner. We did not

include additional information that could have been useful when deriving our selected

genes, such as sequence motifs for U12 class of introns, or exploit the experimental design

to find differential IR like profiles. However, if that was of interest, one could look at the

overlaps, like we did in Figure 4.4, or combine our data descriptors with external estimates

using limma (Ritchie et al., 2015), like our proposed index method in Lee et al. (2020). The

gene candidates obtained by our thresholds have been validated by the Heath lab using

qPCR.

Although the example we have explored has related to finding coverage traces with

IR-like events, the workflow of building and then visualising data descriptors could be

generalised to other types of omics analyses, such as peaking finding in ChIP-seq, and

to use more sophisticated methods for identifying thresholds of ‘interesting’ traces. Our

approach would also greatly benefit from interactive graphics that dynamically link say a

gene description to an underlying coverage trace, for rapid exploration. This is left for

future work.
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Chapter 5

Casting multiple shadows: high-

dimensional interactive data visu-

alisation with tours and embed-

dings

There has been a rapid uptake in the use of non-linear dimensionality reduction (NLDR)

methods such as t-distributed stochastic neighbour embedding (t-SNE) in the natural

sciences as part of cluster orientation and dimension reduction workflows. The appro-

priate use of these methods is made difficult by their complex parameterisations and the

multitude of decisions required to balance the preservation of local and global structure

in the resulting visualisation. We present visual diagnostics for the pragmatic usage

of NLDR methods by combining them with a technique called the tour. A tour is a se-

quence of interpolated linear projections of multivariate data onto a lower dimensional

space. The sequence is displayed as a dynamic visualisation, allowing a user to see the

shadows the high-dimensional data casts in a lower dimensional view. By linking the

tour to a view obtained from an NLDR method, we can preserve global structure and

through user interactions like linked brushing observe where the NLDR view may be

misleading. We display several case studies from both simulated and real data from single
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cell transcriptomics, that shows our approach is useful for cluster orientation tasks. The

implementation of our framework is available as an R package called liminal available at

https://github.com/sa-lee/liminal.

5.1 Introduction

High dimensional data is increasingly prevalent in the natural sciences and beyond but

presents a challenge to the analyst in terms of data cleaning, pre-processing and visuali-

sation. Methods to embed data from a high-dimensional space into a low-dimensional

one now form a core step of the data analysis workflow where they are used to ascertain

hidden structure and de-noise data for downstream analysis .

Choosing an appropriate embedding presents a challenge to the analyst. How does

an analyst know whether the embedding has captured the underlying topology and

geometry of the high dimensional space? The answer depends on the analyst’s workflow.

Brehmer et al. (2014) characterised two main workflow steps that an analyst performs

when using embedding techniques: dimension reduction and cluster orientation. The

first relates to dimension reduction achieved by using an embedding method, here an

analyst wants to characterise and map meaning onto the embedded form, for example

identifying batch effects from a high throughput sequencing experiment, or identifying

a gradient or trajectory along the embedded form (Nguyen and Holmes, 2019). The

second relates to using embeddings as part of a clustering workflow. Here analysts are

interested in identifying and naming clusters and verifying them by either applying

known labels or colouring by variables that are a-priori known to distinguish clusters.

Both of these workflow steps rely on the embedding being representative of the original

high dimensional dataset, and becomes much more difficult when there is no underlying

ground truth.

As part of a visualization workflow, it’s important to consider the perception and interpre-

tation of embedding methods as well. Sedlmair, Munzner, and Tory (2013) showed that

scatter plots were mostly sufficient for detecting class separation, however they also noted

that often multiple embeddings were required. For the task of cluster identification, Lewis,

Van der Maaten, and Sa (2012) showed experimentally that novice users of non-linear
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embedding techniques were more likely to consider clusters of points on a scatter plot to

be the result of a spurious embedding compared to advanced users who were aware of

the inner workings of the embedding algorithm.

A complementary approach for visualizing structure in high dimensional data is the tour.

A tour is a sequence of projections of a high dimensional dataset onto a low-dimensional

basis matrix, and is represented as an animated visualization (Asimov, 1985; Buja and

Asimov, 1986). Given the dynamic nature of the tour, user interaction is important for

controlling and exploring the visualisation: the tour has been used previously by Wickham,

Cook, and Hofmann (2015) for exploring statistical model fits and by Buja, Cook, and

Swayne (1996) for exploring the space of factorial experimental designs.

While there has been much work on the algorithmic details of embedding methods, there

are relatively few tools designed to assist users to interact with these techniques: when

is an embedding sufficient for the task at hand? Several interactive interfaces have been

proposed for evaluating or using embedding techniques. Buja et al. (2008) used tours to

guide analysts during the optimisation of multidimensional scaling methods by extending

their interactive visualisation software called XGobi and GGobi into a new tool called

GGvis (Swayne, Cook, and Buja, 1998; Swayne et al., 2003; Swayne and Buja, 2004). Their

interface allows the analyst to dynamically modify and check whether an MDS configura-

tion has preserved the locality and closeness of points between the configuration and the

original data. Ovchinnikova and Anders (2020) created the Sleepwalk interface for check-

ing non-linear embeddings in single cell RNA-seq data. It provides a click and highlight

visualisation for colouring points in an embedding according to an estimated pairwise

distance in the original high-dimensional space. Similarly, the TensorFlow embedding

projector is a web interface to running some non-linear embedding methods live in the

browser and provides interactions to colour points, and select nearest neighbours (Smilkov

et al., 2016). Finally, the work by Pezzotti et al. (2017) provides a user guided and modified

form of the t-SNE algorithm, that allows users to modify optimisation parameters in

real-time.

There is no one-size fits all: finding an appropriate embedding for a given dataset is a

difficult and a somewhat poorly defined problem. For non-linear methods, there are
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many parameters to explore that can have an effect on the resulting visualisation and

interpretation. Interfaces for evaluating embeddings require interaction but should also

be able to be incorporated into an analysts workflow. Instead, we implement a more

pragmatic workflow by incorporating interactive graphics and tours with embeddings

that allows users to see a global overview of their high dimensional data and assists them

with cluster orientation tasks.

The rest of the paper is organised as follows. The next section provides background

on dimension reduction methods, including an overview of the tour. Then we describe

the visual design of liminal, followed by implementation details. Next we provide case

studies that show how our interface assists in using embedding methods. Finally, we

describe the insights gained by using liminal and plans for extensions to the software.

5.2 Overview of Dimension Reduction

In the following section, we provide a brief overview of the goals of DR methods with

respect to the data analyst, in addition to their high level the mathematical details. Here

we restrict our attention to two recent methods that are commonly used in the literature:

t-distributed stochastic neighbour embedding (t-SNE) and uniform manifold alignment

and projection (UMAP); however we do mention several other techniques (Maaten and

Hinton, 2008; McInnes, Healy, and Melville, 2018).

To begin we suppose the data is in the form rectangular matrix of real numbers, X =

[x1, . . . , xn], where n is the number of observations in p dimensions. The purpose of any

DR algorithm is to find a low-dimensional representation of the data, Y = [y1, . . . , yn],

such that Y is an n × d matrix where d � p. The hope of the analyst is that the DR

procedure to produce Y will remove noise in the original dataset while retaining any latent

structure.

DR methods can be classified into two broad classes: linear and non-linear methods.

Linear methods perform a linear transformation of the data, that is, Y is a linear trans-

formation of X; one example is principal components analysis (PCA) which performs an

eigendecomposition of the estimated sample covariance matrix (Hotelling, 1933). The
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eigenvalues are sorted in decreasing order and represent the variance explained by each

component (eigenvector). A common approach to deciding on the number of principal

components to retain is to plot the proportion of variance explained by each component

and choose a cut-off.

For non-linear methods Y is generated via a pre-processed form of the input X such

as the k-nearest neighbours graph or via a kernel transformation. Multidimensional

scaling (MDS) is a class of DR method that aims to construct an embedding Y such that

the pair-wise distances (inner products) in Y approximate the pair-wise distances (inner

products) in X (Torgerson, 1952; Kruskal, 1964a). There are many variants of MDS, such

as non-metric scaling which amounts to replacing distances with ranks instead (Kruskal,

1964b). A related technique is Isomap which uses a k-nearest neighbour graph to estimate

the pair-wise geodesic distance of points in X then uses classical MDS to construct Y

(Silva and Tenenbaum, 2003). Other approaches are based on diffusion processes such as

diffusion maps (Coifman et al., 2005). A recent example of this approach is the PHATE

algorithm (Moon et al., 2019). Here an affinity matrix is estimated via the pair-wise

distance matrix and k-nearest neighbours graph of X. The algorithm de-noises estimated

distances in high-dimensional space via transforming the affinity matrix into a Markov

transition probability matrix and diffusing this matrix over a fixed number of time steps.

Then the diffused probabilities are transformed once more to construct a distance matrix,

and classical MDS is used to generate Y. A general difficulty with using non-linear DR

methods for exploratory data analysis is selecting and tuning appropriate parameters. To

see the extent of these choices we now examine the underpinnings of t-SNE and UMAP.

The t-SNE algorithm estimates the pair-wise similarity of (Euclidean) distances of points in

a high dimensional space using a Gaussian distribution and then estimates a configuration

in the low dimensional embedding space by modelling similarities using a t-distribution

with 1 degree of freedom (Maaten and Hinton, 2008). There are several subtleties to the to

use of the algorithm that are revealed by stepping through its machinery.

To begin, t-SNE transforms pair-wise distances between xi and xj to similarities using a

Gaussian kernel:
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pi|j =
exp(−‖xi − xj‖2/2σ2

i )

∑k 6=i exp(−‖xj − xk‖2/2σ2
i )

The conditional probabilities are then normalised and symmetrised to form a joint proba-

bility distribution via averaging:

pij =
pi|j + pj|i

2n

The variance parameter of the Gaussian kernel is controlled by the analyst using a fixed

value of perplexity for all observations:

perplexityi = exp(− log(2)∑
i 6=j

pj|i log2(pj|i))

As the perplexity increases, σ2
i increases, until it is bounded above by the number of

observations , n − 1, in the data, corresponding to σ2
i → ∞. This essentially turns t − SNE

into a nearest neighbours algorithm, pi|j will be close to zero for all observations that are

not in the O(perplexityi) neighbourhood graph of the ith observation (Maaten, 2014).

Next, the target low-dimensional space, Y, pair-wise distances between yi and yj are

modelled as a symmetric probability distribution using a t-distribution with one degree of

freedom (Cauchy kernel):

qij =
wij

Z
where wij =

1
1 + ‖yi − yj‖2 and Z = ∑

k 6=l
wkl .

The resulting embedding Y is the one that minimizes the Kullback-Leibler divergence

between the probability distributions formed via similarities of observations in X, P and

similarities of observations in Y, Q:

L(P ,Q) = ∑
i 6=j

pij log
pij

qij
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Re-writing the loss function in terms of attractive (right) and repulsive (left) forces we

obtain:

L(P ,Q) = −∑
i 6=j

pij log wij + log ∑
i 6=j

wij

So when the loss function is minimised this corresponds to large attractive forces, that

is, the pair-wise distances in Y are small when there are non-zero pij, i.e. xi and xj are

close together. The repulsive force should also be small when the loss function is min-

imised, that is, when pair-wise distances in Y are large regardless of the magnitude of the

corresponding distances in X.

Taken together, these details reveal the sheer number of decisions that an analyst must

make. How does one choose the perplexity? How should the parameters that control

the optimisation of the loss function (done with stochastic gradient descent), like the

number of iterations, or early exaggeration ( a multiplier of the attractive force at the

beginning of the optimisation), or the learning rate be selected? It is a known problem

that t-SNE can have trouble recovering topology and that configurations can be highly

dependent on how the algorithm is initialised and parameterized (Wattenberg, Viégas, and

Johnson, 2016; Kobak and Berens, 2019; Melville, 2020). If the goal is cluster orientation a

recent theoretical contribution by Linderman and Steinerberger (2019) proved that t-SNE

can recover spherical and well separated cluster shapes, and proposed new approaches

for tuning the optimisation parameters. However, the cluster sizes and their relative

orientation from a t − SNE view can be misleading perceptually, due to the algorithms

emphasis on locality.

Another recent method, UMAP, has seen a large rise in popularity (at least in single

cell transcriptomics) (McInnes, Healy, and Melville, 2018). It is a method that is related

to LargeVis (Tang et al., 2016), and like t-SNE acts on the k-nearest neighbour graph.

Its main differences are that it uses a different cost function (cross entropy) which is

optimized using stochastic gradient descent and defines a different kernel for similarities

in the low dimensional space. Due to its computational speed it is possible to generate

UMAP embeddings in more than three dimensions. It appears to suffer from the same
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perceptual issues as t-SNE, however it supposedly preserves global structure better than

t-SNE (Coenen and Pearce, 2019).

5.2.1 Tours explore the subspace of d-dimensional projections

The tour is a visualisation technique that is grounded in mathematical theory, and is able

to ascertain the shape and global structure of a dataset via inspection of the subspace

generated by the set of low-dimensional projections (Asimov, 1985; Buja and Asimov,

1986).

Like when using other DR techniques, the tour assumes we have a real data matrix X

consisting of n observations in p dimensions. First, the tour generates a sequence of

p × d orthonormal projection matrices (bases) At∈N, where d is typically 1 or 2. For each

pair of orthonormal bases At and At+1 that are generated, the geodesic path between

them is interpolated to form intermediate frames, and giving the sense of continuous

movement from one basis to another. The tour is then the continuous visualisation of the

projections Yt = XAt, that is the projection of X onto At as the tour path is interpolated

between successive bases. A grand tour corresponds to choosing new orthonormal bases at

random; allowing a user to ascertain structure via exploring the subspace of d-dimensional

projections. In practice, we first sphere our data via principal components to reduce

dimensionality of X prior to running the tour. Instead of picking projections at random, a

guided tour can be used to generate a sequence of ‘interesting’ projections as quantified

by an index function (Cook et al., 1995). While our software, liminal, is able to visualise

guided tours, our focus in the case studies uses the grand tour to see global structure in

the data.

5.3 Visual Design

Tours provide a supportive visualisation to NLDR graphics, and can be easily incorporated

into an analysts workflow with our software package, liminal. Our interface allows

analysts to quickly compare views from embedding methods and see how an embedding

method preserves or alters the geometry of their data. Using multiple concatenated and

linked views with the tour enhances interaction techniques, and allows analysts to perform
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cluster orientation tasks via linked highlighting and brushing (McDonald, 1982; Becker

and Cleveland, 1987). This approach allows our interface to achieve the three principles

for interactive high-dimensional data visualisation outlined by Buja, Cook, and Swayne

(1996): finding gestalt (identifying patterns in visual forms), posing queries, and making

comparisons.

5.3.1 Finding Gestalt: focus and context

To investigate latent structure and the shape of a high dimensional dataset, a tour can

be run without the use of an external embedding. It is often useful to first run principal

components on the input as an initial dimension reduction step, and then tour a subset

of those components instead, i.e. by selecting them from a scree plot. The default tour

layout is a scatter plot with an axis layout displaying the magnitude and direction of each

basis vector. Since the tour is dynamic, it is often useful to be able to pause and highlight

a particular view. In addition to pause, play and reset buttons, brushing will pause the

tour path, allowing users to identify ‘interesting’ projections. The domain of the axis

scales from running a tour is called the half range, and is computed by rescaling the input

data onto hyper-dimensional unit cube. We bind the half range to a mouse wheel event,

allowing a user to pan and zoom on the tour view dynamically. This is useful for peeling

back dense clumps of points to reveal structure.

5.3.2 Posing Queries: multiple views, many contexts

We have combined the tour view in a side by side layout with a scatter plot view as

has been done in previous tour interfaces XGobi and DataViewer (Buja, Hurley, and

McDonald, 1986; Swayne, Cook, and Buja, 1998). These views are linked; analysts can

brush regions or highlight collections of points in either view. Linked highlighting can

be performed when points have been previously labelled according to some discrete

structure, i.e. cluster labels are available. This is achieved via the analyst clicking on

groups in the legend, which causes unselected groupings to have their points become

less opaque. Consequently, simple linked highlighting can alleviate a known downfall of

methods such as UMAP or t-SNE: that is distances between clusters are misleading. By
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highlighting corresponding clusters in the tour view, the analyst can see the relationship

between clusters, and therefore obtain a more accurate representation of the topology of

their data.

Simple linked brushing is achieved via mouse-click and drag movements. By default,

when brushing occurs in the tour view, the current projection is paused and corresponding

points in the embedding view are highlighted. Likewise, when brushing occurs in the

embedding view, corresponding points in the tour view are highlighted. In this case, an

analyst can use brushing for manually identifying clusters and verifying cluster locations

and shapes: brushing in the embedding view gives analysts a sense of the shape and

proximity of cluster in high-dimensional space.

5.3.3 Making comparisons: revising embeddings

As mentioned previously, when using any DR method, we are assuming the embedding

is representative of the high-dimensional dataset it was computed from. Defining what

it means for embedding to be ‘representative‘ or ’faithful’ to high-dimensional data is

ill-posed and depends on the underlying task an analyst is trying to achieve. At the very

minimum, we are interested in distortions and diffusions of the high-dimensional data.

Distortions occur when points that are near each other in the embedding view are far

from each other in the original dataset. This implies that the embedding is not continuous.

Diffusions occur when points are far from each other in the embedding view are near in

the original data. Whether points are near or far is reliant on the distance metric used;

distortions and diffusions can be thought of as the preservation of distances or the nearest

neighbours graphs between the high-dimensional space and the embedding space. As

distances can be noisy in high-dimensions, ranks can be used instead as has been proposed

by Lee and Verleysen (2009). Identifying distortions and diffusions allows an analyst to

investigate the quality of their embedding and revise them iteratively.

These checks are done visually using our side-by-side tour and embedding views. In the

simplest case, a local continuity check can be assessed via one to one linked brushing from

the embedding to the tour view. Similarly, diffusions are identified from linked brushing

on the tour view, highlighting points in the embedding view.
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5.4 Software Infrastructure

We have implemented the above design as an open source R package called liminal (Lee

and Cook, 2020). The package allows analysts to construct concatenated visualisations,

drawn with the Vega-Lite grammar of interactive graphics via the vegawidget package

(Satyanarayan et al., 2017; Lyttle and Vega/Vega-Lite Developers, 2020). It provides an

interface for constructing linked and stand alone interfaces for manipulating tour paths

via the shiny and tourr packages (Chang et al., 2020; Wickham et al., 2011).

5.4.1 Tours as a streaming data problem

The process of generating successive bases and interpolating between them to

construct intermediary frames, means the tour is a dynamic visualisation technique.

Generally, the user would set d = 2 and the tour is visualised as an animated scatter

plot. This process of constructing bases and intermediate frames and visualising the

resulting projection is akin to making a “flip book” animation. Like with a flip book, an

interface to the tour requires the ability to interact and modify it in real time. The user

interface generated in liminal allows a user to play, pause, and reset the tour animation,

panning and zooming to modify the scales of the plot to provide context and click events

to highlight groups of points if a labelling variable has been placed on the legend.

These interactions are enabled by treating the basis generation as a reactive stream. Instead

of realising the entire sequence, which limits the animation to have a discrete number of

frames, new bases and their intermediate frames are generated dynamically via pushing

the current projection to the visualisation interface. The interface listens to events like

pressing a button or mouse-dragging and reacts by pausing the stream. This process

allows the user to manipulate the tour in real time rather than having to fix the number of

bases ahead of time. Additionally, once the user has identified an interesting projection or

is done with the tour, the interface will return the current basis for use downstream.
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5.4.2 Linking and highlighting views via interactions

The embedding and tour views are linked together via rectangular brushes; when a brush

is active, points will be highlighted in the adjacent view. Because the tour is dynamic,

brush events that become active will pause the animation, so that a user can interrogate

the current view. By default, brushing on the embedding view will produce a one-to-

one linking with the tour view. For interpreting specific combinations of clusters, the

multiple guides on the legend can be selected in order to see their relative orientations.

The interface is constructed as a shiny gadget specifically designed for interactive data

analysis. Selections such as brushing regions and the current tour path are returned after

the user clicks done on the interface and become available for further investigation.

5.5 Case Studies

The next section steps through case studies of our approach using simulations and an

application to single cell RNA-seq data.

The first three case studies use simulations where the cluster structure and geometry of the

underlying data is known. We start with a simple example where we generated spherical

clusters that are embedded well by t-SNE. Then we move onto more complex examples

where the tour provides insight, such as clusters that have substructure and where there is

more complex geometry in the data.

In the final case study, we apply our approach to clustering the mouse retina data from

Macosko et al. (2015), and apply the tour to the process of verifying marker genes that

separate clusters.

We strongly recommend viewing the linked videos for each case study while reading.

Links to the videos are available in table 5.1 and in the figures for each case study. The

videos presented show the visual appearance of the liminal interface, and how we can

interact with the tour via the controls previously described. If you are unable to view

the videos, the figures in each case study consist of screenshots that summarise what is

learned from combining the tour and an embedding view.
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5.5.1 Case Study 1: Exploring spherical Gaussian clusters

To begin we look at simulated datasets that reproduce known facts about the t-SNE

algorithm. Our first data set consists of five spherical 5-d Gaussian clusters embedded in

10-d space, each cluster has the same covariance matrix. We then computed a t-SNE layout

with default settings using the Rtsne package (Krijthe, 2015), and set up the liminal linked

interface with grand tour on the 10-d observations.

From the video linked in Figure 5.1, we learn that t-SNE has correctly split out each cluster

and laid them out in a star like formation. This is agrees with the tour view, where once

we start the animation, the five clusters begin to appear but generally points are more

concentrated in the projection view compared to the t-SNE layout (Figure 5.1a). This can

be seen via brushing the t-SNE view (Figure 5.1b).

5.5.2 Case Study 2: Exploring spherical Gaussian clusters with hierar-

chical structure

Next we view Gaussian clusters from the Multi Challenge Dataset, a benchmark simulation

data set for clustering tasks (Rauber, 2009). This dataset has two Gaussian clusters with

equal covariance embedded in 10-d, and a third cluster with hierarchical structure. This

cluster has two 3-d clusters embedded in 10-d, where the second cluster is subdivided

into three smaller clusters, that are each equidistant from each other and have the same

covariance structure. From the video linked in Figure 5.2, we see that t-SNE has correctly

identified the sub-clusters. However, their relative locations to each other is distorted,

with the orange and blue groups being far from each other in the tour view (Figure 5.2a).

We see in this case that is difficult to see the sub-clusters in the tour view, however, once

we zoom and highlight they become more apparent (Figure 5.2b). When we brush the

sub-clusters in the t-SNE, their relative placement is again exaggerated, with the tour

showing that they are indeed much closer than the impression the t-SNE view gives.
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Figure 5.1: Screenshots of the liminal interface applied to well clustered data, a video of the tour
animation is available at https://player.vimeo.com/video/439635921.
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Figure 5.2: Screenshots of the liminal interface applied to sub-clustered data, a video of the tour
animation is available at https://player.vimeo.com/video/439635905.
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Figure 5.3: Example high-dimensional tree shaped data, n = 3000 and p = 100. (a) The true data
lies on 2-d tree consisting of ten branches. This data is available in the phateR package
and is simulated via diffusion-limited aggregation (a random walk along the branches
of the tree) with Gaussian noise added (Moon et al., 2019). (b) The first two principal
components, which form the initial projection for the tour, note that the backbone of the
tree is obscured by this view. (c) The default t-SNE view breaks the global structure of
the tree. (d) Altering t-SNE using the first two principal components as the starting
coordinates for the embedding, results in clustering the tree at its branching points.

5.5.3 Case Study 3: Exploring data with piecewise linear structure

Next we explore some simulated noisy tree structured data (Figure 5.3). Our interest here

is how t-SNE visualisations break topology of the data, and then seeing if we can resolve

this by tweaking the default parameters with reference to the global view of the data set.

This simulation aims to mimic branching trajectories of cell differentiation: if there were

only mature cells, we would just see the tips of the branches which have a hierarchical

pattern of clustering.

First, we apply principal components and restrict the results down to the first twelve

principal components (which makes up approximately 70% of the variance explained in

the data) to use with the grand tour.
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Figure 5.4: Screenshots of the liminal interface applied to tree structured data, a video of the tour
animation is available at https://player.vimeo.com/video/439635892.

Moreover, we run t-SNE using the default arguments on the complete data (this keeps the

first 50 PCs, sets the perplexity to equal 30 and performs random initialisation). We then

create a linked tour with t-SNE layout with liminal as shown in Figure 5.4.

From the linked video, we see that the t-SNE view has been unable to recapitulate the

topology of the tree - the backbone (blue) branch has been split into three fragments
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(Figure 5.4a). We can see this immediately via the linked highlighting over both plots.

If we click on the legend for the zero branch, the blue coloured points on each view

are highlighted and the remaining points are made transparent. From, here it becomes

apparent from the tour view that the blue branch forms the backbone of the tree and is

connected to all other branches. From the video it is easy to see that cluster sizes formed

via t-SNE can be misleading; from the tour view there is a lot of noise along the branches,

while this does not appear to be the case for the t-SNE result (Figure 5.4b).

From the first view, we modify the inputs to the t-SNE view, to try and produce a better

trade-off between local structure and retain the topology of the data. We keep every

parameter the same except that we initialise Y with the first two PCs (scaled to have

standard deviation 1e-4) instead of the default random initialisation and increase the

perplexity from 30 to 100. We then combine these results with our tour view as displayed

in the linked video in the caption of Figure 5.5.

The video linked in Figure 5.5 shows that this selection of parameters results in the tips of

the branches (the three black dots in Figure 5.3a) being split into three clusters representing

the terminal branches of the tree. However, there are perceptual issues following the

placement of the three groupings on the t-SNE view that become apparent via simple

linked brushing. If we brush the tips of the yellow and brown branches (which appear to

be close to each other on the t-SNE view), we immediately see the placement is distorted

in the t-SNE view, and in the tour view these tips are at opposite ends of the tree (Figure

5.5b). Although, this is a known issue of the t-SNE algorithm, we can easily identify it via

simple interactivity without knowing the inner workings of the method.

5.5.4 Case Study 4: Clustering single cell RNA-seq data

A common analysis task in single cell studies is performing clustering to identify groupings

of cells with similar expression profiles. Analysts in this area generally use non linear DR

methods for verification and identification of clusters and developmental trajectories (i.e.,

case study 1). For clustering workflows the primary task is verify the existence of clusters

and then begin to identify the clusters as cell types using the expression of “known”

marker genes. Here a ‘faithful’ a embedding should ideally preserve the topology of
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Figure 5.5: Screenshots of the liminal interface applied to tree structured data, a video of the tour
animation is available at https://player.vimeo.com/video/439635863.
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the data; cells that correspond to a cell type should lie in the same neighbourhood in

high-dimensional space. In this case study we use our linked brushing approaches to

look at neighbourhood preservation and look at marker genes through the lens of the tour.

The data we have selected for this case study has features similar to those found in case

studies 2 and 3.

First, we downloaded the raw mouse retinal single cell RNA-seq data from Macosko

et al. (2015) using the scRNAseq Bioconductor package (Risso and Cole, 2019). We have

followed a standard workflow for pre-processing and normalizing this data (described

by Amezquita et al. (2020)): we performed QC using the scater package by removing

cells with high proportion of mitochondrial gene expression and low numbers of genes

detected, we log-transformed and normalised the expression values and finally selected

highly variable genes (HVGs) using scran (McCarthy et al., 2017; Lun, McCarthy, and

Marioni, 2016). The top ten percent of HVGs were used to subset the normalised expression

matrix and compute PCA using the first 25 components. Using the PCs we built a shared

nearest neighbours graph (with k = 10) and used Louvain clustering to generate clusters

(Blondel et al., 2008).

To check and verify the clustering we construct a liminal view. We tour the first five PCs

(approximately 20% of the variance in expression), alongside the t-SNE view which was

computed from all 25 PCs. We have selected only the first five PCs because there is a

large drop in the percentage of variance explained after the fifth component, with each

component after contributing less than one percent of variance. Consequently, increasing

the number of PCs to tour would increase the dimensionality and volume of the subspace

we are touring but without adding any additional signal to the view.

Due to latency of the liminal interface we do a weighted sample of the rows based on

cluster membership, leaving us with approximately 10 per cent of the original data size -

4,590 cells. Although this is not ideal, it still allows us to get a sense of the shape of the

clusters as seen from the linked video in Figure 5.6. If one was interested in performing

more in-depth cluster analysis we recommend an iterative approach of removing large

clusters and then re-running the liminal view as a way finding more granular cluster

structure.
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Figure 5.6: Screenshots of the liminal interface applied to single cell data, a video of the tour
animation is available at https://player.vimeo.com/video/439635812.
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From the video linked in Figure 5.6, we learn that the embedding has mostly captured the

clusters relative location to each other to their location in high dimensional space, with a

notable exception of points in cluster 3 and 10 as shown with linked brushing (Figure 5.6a).

As expected, t-SNE mitigates the crowding problem that is an issue for tour in this case,

where points in clusters 2,4,6, and 11 are clumped together in tour view, but are blown up

in the embedding view (Figure 5.6b). The tour appears to form a tetrahedron like shape,

with points lying on surface and along the vertices of the tetrahedron in 5-d PCA space - a

phenomena that has also been observed in Korem et al. (2015) (Figure 5.6c). Brushing on

the tour view, reveals points in cluster 9 that are diffuse in the embedding view, points in

cluster 9 are relatively far away and spread apart from other clusters in the tour view, but

has points placed in cluster 3 and 9 in the embedding (Figure 5.6d).

Next, we identify marker genes for clusters using one sided Welch t-tests with a minimum

log fold change of one as recommended by Amezquita et al. (2020), which uses the testing

framework from McCarthy and Smyth (2009). We select the top 10 marker genes that

are upregulated in cluster 2, which was one of the clumped clusters when we toured on

principal components. Here the tour becomes an alternative to a standard heatmap view

for assessing shared markers; the basis generation (shown as the biplot on the left view)

reflects the relative weighting of each gene. We run the tour directly on the log normalised

expression values using the same subset as before.

From the video linked in Figure 5.7, we see that the expression of the marker genes, appear

to separate the previously clumped clusters 2,4,6, and 11 from the other clusters, indicating

that these genes are expressed in all four clusters (Figure 5.7a). After zooming, we can

see a trajectory forming along the clusters, while the axis view shows that magnitude of

expression in the marker genes is similar across these separated clusters which is consistent

with the results of marker gene analysis (Figure 5.7b).
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Figure 5.7: Screenshots of the liminal tour applied to a marker gene set, a video of the tour
animation is available at https://player.vimeo.com/video/439635843.
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5.6 Discussion

We have shown that the use of tours as a tool for interacting with high dimensional

data provides an additional insight for interrogating views generated from embeddings.

The interface we have designed in the liminal package, allows a user to gain a deeper

understanding of an embedding algorithm, and rectifies perceptual issues associated

with NLDR methods via linked interactions with the tour. As we have shown in the

simulation case studies, the t-SNE method can produce misleading embeddings which

can be detected through the use linked brushing and highlighting. In the case when the

data has a piecewise linear geometry, like the tree simulation, the tour preserves the shape

of the data which can be obscured by the embedding method.

Our framework can also be useful in practice, as displayed in the fourth case study. The

tour when combined with t-SNE allowed us to identify clusters, while giving us an idea

of their orientation to each other. Moreover, we could visually inspect the separation of

clusters using a tour on marker gene sets. We see our approach as being valuable to the

single cell analyst who wants to make their embeddings more interpretable.

We have shown in the case studies, that one to one linked brushing can be used to identify

distortions in the embedding, however we would like extend this to one to many linked

brushing, which would allow us to directly interrogate neighbourhood preservation. This

form of brushing acts directly on a k-nearest neighbours (k-nn) graph computed from a

reference dataset: when a user brushes over a region in the embedding, all the points

that match the graphs edges are selected on the corresponding tour view. The reference

data set for computing nearest neighbours (for example a distance matrix, or the complete

data matrix) can be independent of the tour or embedding views. In place of highlighting,

one could use opacity or binned colour scales to encode distances or ranks instead of the

neighbouring points. We have begun implementing this brush in liminal, using the FNN

or RcppAnnoy packages for fast neighbourhood estimation on the server side, however

there are still technicalities that need be resolved (Beygelzimer et al., 2019; Eddelbuettel,

2020). Brush composition, such as ‘and’, ‘or’, or ‘not’ brushes, could be used to further

100



CHAPTER 5. CASTING MULTIPLE SHADOWS: HIGH-DIMENSIONAL INTERACTIVE DATA
VISUALISATION WITH TOURS AND EMBEDDINGS

investigate mismatches between the k-nn graphs estimated from both the embedding and

tour views.

There are some limitations in using the liminal interface for larger datasets. First, t-SNE

avoids the crowding problem, points are separated into distinct regions on the display

canvas. For the tour, points are concentrated in the centre of the projection and become

difficult to see. We have recently proposed a simple non-linear transformation for the

tour called a sage tour that aims to fix this problem (Laa, Cook, and Lee, 2020). Second,

as n increases both the embedding view and tour view become harder to read due to

over-plotting, while the interactivity and animation become slower as there is more data

passing from the server to the client. For the tasks we have looked at in this paper, where

shape and density are important to the analyst, we think that better displays and sub-

sampling strategies are more useful than being able to look at every single point on the

canvas. We showed in our single cell clustering case study that doing a weighted sample

based on cluster membership still allowed us to get a sense of relative cluster orientation,

however there are alternative sampling approaches that could be applied, like selecting

points close to the cluster centres. Alternative displays via statistical transformations

could also mitigate the need to show all of the data. Recent work by Laa et al. (2020) is a

promising area for further investigation, as well as work from topological statistics (Rieck,

2017; Genovese et al., 2017).
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CHAPTER 5. CASTING MULTIPLE SHADOWS: HIGH-DIMENSIONAL INTERACTIVE DATA
VISUALISATION WITH TOURS AND EMBEDDINGS

Table 5.1: Case Study Videos

Case Study Example URL

1 gaussian https://player.vimeo.com/video/439635921
2 hierarchical https://player.vimeo.com/video/439635905
3 trees-01 https://player.vimeo.com/video/439635892
3 trees-02 https://player.vimeo.com/video/439635863
4 mouse-01 https://player.vimeo.com/video/439635812

4 mouse-02 https://player.vimeo.com/video/439635843
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Chapter 6

Conclusion

In this thesis, I have designed tools to explore workflow steps that are integral to modern

biological data science. In particular, I have implemented software that facilitates the

wrangling, integration, and visualisation of high-throughput biological data in a principled

and pragmatic manner. The early chapters of this thesis explored the tidy data semantic

and its extension to range based genomics data. This culminated in the development of

“plyranges: a grammar of genomic data transformation” in Chapter 2, which developed

a new domain specific language for genomics data analysis. The applicability of the

plyranges interface and use of the tidy data concept were further interrogated in Chapter

3, “Fluent genomics with plyranges and tximeta”, which described techniques integrating

data along the genome, and emphasised the importance of interoperability between

analysis tools. Similarly, Chapter 4, “Exploratory coverage analysis with superintronic

and plyranges”, tackled data integration from a different angle by looking at multiple

summaries of variables measured along the genome to find putative regions of intron

retention. In the final part of the thesis I moved towards visualisation issues as they related

to working with high-dimensional data common in biological data science. Chapter 5,

“Casting multiple shadows: high-dimensional interactive data visualisation with tours

and embeddings”, explored pragmatic approaches to high dimensional data visualisation

in light of the rise of popular non-linear embedding methods.
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A significant amount of my work has been devoted to the development of open source R

packages and workflows: plyranges, fluentGenomics, superintronic and liminal. I have

emphasised how coherent software packages are tools for thought; they enable analysts to

reason about their data and models through the composition of workflows. To finish, I

will discuss the implications of this work and provide suggestions for further research.

6.1 Software Development

The plyranges package develops a suite of verbs for interacting with genomic data as

a GRanges object. Since its release on Bioconductor, it has been relatively successful:

it has been downloaded 26,874 times from 14,271 unique IP addresses. I have also

had the privilege of teaching workshops on plyranges at Bioconductor conferences

which also led to the development of the fluentGenomics workflow package, outlined

in Chapter 3. A broader impact of the work, has been the discussions around the con-

cepts of fluent interfaces and tidy data within the Bioconductor community, which has

led to several developments currently in place that are exploring different approaches

for fluent interfaces for other types of omics data. The plyranges package is avail-

able to download from https://bioconductor.org/packages/plyranges and the flu-

entGenomics workflow is available to download from https://bioconductor.org/

packages/release/workflows/html/fluentGenomics.html.

The superintronic software described in Chapter 4 has been used in Lee et al. (2020) to

disentangle and view intron signal in RNA-seq data. Here, we again show the strengths

of providing a long-form representations of genomics data (in this case coverage vectors).

By leveraging plyranges we were then able to create a set of data descriptors that we

could link back to the raw data to discover genes thought to be associated with a real

biological signal. An interesting extension to this work would be applying it to single

cell and long-read based transcriptomics data, where scalability and much larger design

matrices would become an issue. The superintronic package is available to download

from https://github.com/sa-lee/superintronic.

Finally, the liminal software aims to provide a more holistic approach to analysis tasks

requiring the use of dimensionality reduction algorithms. We showed how to incorporate
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CHAPTER 6. CONCLUSION

interactive graphics and tours to identify problems with embeddings. Based on the case

studies provided I believe that the methods used in liminal could be broadly applicable

to many high dimensional datasets and NLDR methods. The liminal package is available

to download from https://github.com/sa-lee/liminal.

6.2 Further Work

A limitation of the grammar as we have implemented it in plyranges is lack of scalability

and computational speed for data sets that do not fit in memory. We attempted several

techniques for performing delayed operations over range-based data, however a more

general approach that allows for data stored on the cloud or in scientific data formats like

HDF5 that leverage existing Bioconductor frameworks would be useful. We showed in

chapters 3 ad 4 that an analyst is able to do some very complex data transformations and

re-sampling procedures via casting results into GRanges object. However, it is unclear

whether the semantics of our grammar can be extended to data that can not be efficiently

reshaped into long form tidy representations. Moreover, further work is required to

explore the design space of grammars for data transformations and grammars for graphics

when the data are large, multifaceted and non-rectangular.

We showed in Chapter 5 that tours provide a global overview that can be used as tool

for exploring model fits. An issue that arises is how to scale the tour as the number

of observations increases. There are latencies in sending data from the back end to the

visualisation client that causes lag during animation. One could also question whether

point based displays are appropriate in this case, and it would be worth exploring the

usability of animations based on binning the projections. Moreover, when the number of

observations are large, the points in the projections are concentrated in the centre of the

tour display obscuring interesting aspects of the data. This is mitigated via having the

ability to zoom, but further research into transforming the projections to avoid crowding

would be valuable. An added complexity to changes in visual displays are thinking about

the design of user interactions, and several promising avenues based on section tours

could be explored (Laa et al., 2020; Laa, Cook, and Valencia, 2020).
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Appendix A

Getting started with the

plyranges package

A.1 Ranges revisited

In Bioconductor there are two classes, IRanges and GRanges, that are standard data

structures for representing genomics data. Throughout this document I refer to either

of these classes as Ranges if an operation can be performed on either class, otherwise I

explicitly mention if a function is appropriate for an IRanges or GRanges.

Ranges objects can either represent sets of integers as IRanges (which have start, end

and width attributes) or represent genomic intervals (which have additional attributes,

sequence name, and strand) as GRanges. In addition, both types of Ranges can store

information about their intervals as metadata columns (for example GC content over a

genomic interval).

Ranges objects follow the tidy data principle: each row of a Ranges object corresponds to

an interval, while each column will represent a variable about that interval, and generally

each object will represent a single unit of observation (like gene annotations).
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Consequently, Ranges objects provide a powerful representation for reasoning about

genomic data. In this vignette, you will learn more about Ranges objects and how via

grouping, restriction and aggregation you can perform common data tasks.

A.2 Constructing Ranges

To construct an IRanges we require that there are at least two columns that represent at

either a starting coordinate, finishing coordinate or the width of the interval.

#> IRanges object with 7 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 2 1 0

#> [2] 1 1 1

#> [3] 0 1 2

#> [4] -1 1 3

#> [5] 13 14 2

#> [6] 14 14 1

#> [7] 15 14 0

To construct a GRanges we require a column that represents that sequence name ( contig

or chromosome id), and an optional column to represent the strandedness of an interval.

#> GRanges object with 7 ranges and 1 metadata column:

#> seqnames ranges strand | gc

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr2 2-1 - | 0.762551

#> [2] chr1 1 - | 0.669022

#> [3] chr2 0-1 + | 0.204612

#> [4] chr2 -1-1 - | 0.357525

#> [5] chr1 13-14 - | 0.359475

#> [6] chr1 14 - | 0.690291
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#> [7] chr2 15-14 - | 0.535811

#> -------

#> seqinfo: 2 sequences from an unspecified genome; no seqlengths

A.3 Arithmetic on Ranges

Sometimes you want to modify a genomic interval by altering the width of the interval

while leaving the start, end or midpoint of the coordinates unaltered. This is achieved

with the mutate verb along with anchor_* adverbs.

The act of anchoring fixes either the start, end, center coordinates of the Range object, as

shown in the figure and code below and anchors are used in combination with either

mutate or stretch.

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 1 10 10

#> [2] 2 11 10

#> [3] 3 12 10
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#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 1 10 10

#> [2] 2 11 10

#> [3] 3 12 10

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] -4 5 10

#> [2] -7 2 10

#> [3] -1 8 10

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] -2 7 10

#> [2] -3 6 10

#> [3] 1 10 10

#> GRanges object with 3 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] seq1 -4-5 +

#> [2] seq1 -7-2 *

#> [3] seq1 3-12 -

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

#> GRanges object with 3 ranges and 0 metadata columns:

#> seqnames ranges strand
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#> <Rle> <IRanges> <Rle>

#> [1] seq1 1-10 +

#> [2] seq1 2-11 *

#> [3] seq1 -1-8 -

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Similarly, you can modify the width of an interval using the stretch verb. Without

anchoring, this function will extend the interval in either direction by an integer amount.

With anchoring, either the start, end or midpoint are preserved.

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] -4 10 15

#> [2] -3 7 11

#> [3] -2 13 16

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] -14 10 25

#> [2] -13 7 21

#> [3] -12 13 26

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] -4 20 25

#> [2] -3 17 21

#> [3] -2 23 26
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#> GRanges object with 3 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] seq1 -9-5 +

#> [2] seq1 -8-2 *

#> [3] seq1 3-18 -

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

#> GRanges object with 3 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] seq1 1-15 +

#> [2] seq1 2-12 *

#> [3] seq1 -7-8 -

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Ranges can be shifted left or right. If strand information is available we can also shift

upstream or downstream.

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] -9 -5 5

#> [2] -8 -8 1

#> [3] -7 -2 6

#> IRanges object with 3 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 11 15 5
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#> [2] 12 12 1

#> [3] 13 18 6

#> GRanges object with 3 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] seq1 -9--5 +

#> [2] seq1 -8 *

#> [3] seq1 13-18 -

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

#> GRanges object with 3 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>

#> [1] seq1 11-15 +

#> [2] seq1 12 *

#> [3] seq1 -7--2 -

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

A.4 Grouping Ranges

plyranges introduces a new class of Ranges called RangesGrouped, this is a similar idea to

the grouped data.frame\tibble in dplyr.

Grouping can act on either the core components or the metadata columns of a Ranges

object.

It is most effective when combined with other verbs such as mutate(), summarise(),

filter(), reduce_ranges() or disjoin_ranges().

#> GRanges object with 7 ranges and 1 metadata column:

#> Groups: strand [2]
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#> seqnames ranges strand | gc

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr2 1-10 - | 0.889454

#> [2] chr2 2-11 + | 0.180407

#> [3] chr1 3-12 - | 0.629391

#> [4] chr2 4-13 + | 0.989564

#> [5] chr1 5-14 - | 0.130289

#> [6] chr1 6-15 - | 0.330661

#> [7] chr2 7-16 - | 0.865121

#> -------

#> seqinfo: 2 sequences from an unspecified genome; no seqlengths

A.5 Restricting Ranges

The verb filter can be used to restrict rows in the Ranges. Note that grouping will cause

the filter to act within each group of the data.

#> GRanges object with 2 ranges and 1 metadata column:

#> seqnames ranges strand | gc

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr2 2-11 + | 0.180407

#> [2] chr1 5-14 - | 0.130289

#> -------

#> seqinfo: 2 sequences from an unspecified genome; no seqlengths

#> GRanges object with 2 ranges and 1 metadata column:

#> Groups: strand [2]

#> seqnames ranges strand | gc

#> <Rle> <IRanges> <Rle> | <numeric>

#> [1] chr2 1-10 - | 0.889454

#> [2] chr2 4-13 + | 0.989564
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#> -------

#> seqinfo: 2 sequences from an unspecified genome; no seqlengths

We also provide the convenience methods filter_by_overlaps and

filter_by_non_overlaps for restricting by any overlapping Ranges.

#> IRanges object with 4 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 5 9 5

#> [2] 10 14 5

#> [3] 15 19 5

#> [4] 20 24 5

#> IRanges object with 5 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 2 4 3

#> [2] 3 6 4

#> [3] 4 8 5

#> [4] 5 10 6

#> [5] 6 12 7

#> IRanges object with 2 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>

#> [1] 5 9 5

#> [2] 10 14 5

#> IRanges object with 2 ranges and 0 metadata columns:

#> start end width

#> <integer> <integer> <integer>
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#> [1] 15 19 5

#> [2] 20 24 5

A.6 Summarising Ranges

The summarise function will return a DataFrame because the information required to

return a Ranges object is lost. It is often most useful to use summarise() in combination

with the group_by() family of functions.

#> DataFrame with 2 rows and 2 columns

#> query gc

#> <integer> <numeric>

#> 1 1 0.675555

#> 2 2 0.635795

A.7 Joins, or another way at looking at overlaps between

Ranges

A join acts on two GRanges objects, a query and a subject.

The join operator is relational in the sense that metadata from the query and subject ranges

is retained in the joined range. All join operators in the plyranges DSL generate a set of

hits based on overlap or proximity of ranges and use those hits to merge the two datasets

in different ways. There are four supported matching algorithms: overlap, nearest, precede,

and follow. We can further restrict the matching by whether the query is completely within

the subject, and adding the directed suffix ensures that matching ranges have the same

direction (strand).
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Figure A.1: Query and Subject Ranges
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The first function, join_overlap_intersect() will return a Ranges object where the start,

end, and width coordinates correspond to the amount of any overlap between the left and

117



APPENDIX A. GETTING STARTED WITH THE PLYRANGES PACKAGE
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Figure A.2: Intersect Join

right input Ranges. It also returns any metadata in the subject range if the subject overlaps

the query.

#> GRanges object with 2 ranges and 2 metadata columns:

#> seqnames ranges strand | key.a key.b

#> <Rle> <IRanges> <Rle> | <character> <character>

#> [1] chr1 2-4 + | a A

#> [2] chr1 6-7 + | a B

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

The join_overlap_inner() function will return the Ranges in the query that overlap

any Ranges in the subject. Like the join_overlap_intersect() function metadata of the

subject Range is returned if it overlaps the query.

#> GRanges object with 2 ranges and 2 metadata columns:

#> seqnames ranges strand | key.a key.b

#> <Rle> <IRanges> <Rle> | <character> <character>
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Figure A.3: Inner Join

#> [1] chr1 1-7 + | a A

#> [2] chr1 1-7 + | a B

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

We also provide a convenience method called find_overlaps that computes the same

result as join_overlap_inner().

#> GRanges object with 2 ranges and 2 metadata columns:

#> seqnames ranges strand | key.a key.b

#> <Rle> <IRanges> <Rle> | <character> <character>

#> [1] chr1 1-7 + | a A

#> [2] chr1 1-7 + | a B

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

The join_overlap_left() method will perform an outer left join.
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Figure A.4: Left Join

First any overlaps that are found will be returned similar to join_overlap_inner().

Then any non-overlapping ranges will be returned, with missing values on the metadata

columns.

#> GRanges object with 3 ranges and 2 metadata columns:

#> seqnames ranges strand | key.a key.b

#> <Rle> <IRanges> <Rle> | <character> <character>

#> [1] chr1 1-7 + | a A

#> [2] chr1 1-7 + | a B

#> [3] chr1 9-10 - | b <NA>

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Compared with filter_by_overlaps() above, the overlap left join expands the Ranges

to give information about each interval on the query Ranges that overlap those on the

subject Ranges as well as the intervals on the left that do not overlap any range on the

right.
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Finding your neighbours

We also provide methods for finding nearest, preceding or following Ranges. Conceptually

this is identical to our approach for finding overlaps, except the semantics of the join are

different.

#> IRanges object with 4 ranges and 1 metadata column:

#> start end width | gc

#> <integer> <integer> <integer> | <numeric>

#> [1] 5 9 5 | 0.780359

#> [2] 10 14 5 | 0.780359

#> [3] 15 19 5 | 0.780359

#> [4] 20 24 5 | 0.780359

#> IRanges object with 4 ranges and 1 metadata column:

#> start end width | gc

#> <integer> <integer> <integer> | <numeric>
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#> [1] 5 9 5 | 0.777584

#> [2] 10 14 5 | 0.603324

#> [3] 15 19 5 | 0.780359

#> [4] 20 24 5 | 0.780359

#> IRanges object with 0 ranges and 1 metadata column:

#> start end width | gc

#> <integer> <integer> <integer> | <numeric>

#> IRanges object with 5 ranges and 1 metadata column:

#> start end width | gc

#> <integer> <integer> <integer> | <numeric>

#> [1] 2 4 3 | 0.777584

#> [2] 3 6 4 | 0.827303

#> [3] 4 8 5 | 0.603324

#> [4] 5 10 6 | 0.491232

#> [5] 6 12 7 | 0.780359

Example: dealing with multi-mapping

This example is taken from the Bioconductor support site.

We have two Ranges objects. The first contains single nucleotide positions corresponding

to an intensity measurement such as a ChIP-seq experiment, while the other contains

coordinates for two genes of interest.

We want to identify which positions in the intensities Ranges overlap the genes, where

each row corresponds to a position that overlaps a single gene.

First we create the two Ranges objects

#> GRanges object with 6 ranges and 0 metadata columns:

#> seqnames ranges strand

#> <Rle> <IRanges> <Rle>
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#> [1] VI 3320 *

#> [2] VI 3321 *

#> [3] VI 3330 *

#> [4] VI 3331 *

#> [5] VI 3341 *

#> [6] VI 3342 *

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

#> GRanges object with 2 ranges and 1 metadata column:

#> seqnames ranges strand | gene_id

#> <Rle> <IRanges> <Rle> | <character>

#> [1] VI 3322-3846 * | YFL064C

#> [2] VI 3030-3338 * | YFL065C

#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Now to find where the positions overlap each gene, we can perform an overlap join. This

will automatically carry over the gene_id information as well as their coordinates (we can

drop those by only selecting the gene_id).

#> GRanges object with 8 ranges and 1 metadata column:

#> seqnames ranges strand | gene_id

#> <Rle> <IRanges> <Rle> | <character>

#> [1] VI 3320 * | YFL065C

#> [2] VI 3321 * | YFL065C

#> [3] VI 3330 * | YFL065C

#> [4] VI 3330 * | YFL064C

#> [5] VI 3331 * | YFL065C

#> [6] VI 3331 * | YFL064C

#> [7] VI 3341 * | YFL064C

#> [8] VI 3342 * | YFL064C
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#> -------

#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Several positions match to both genes. We can count them using summarise and grouping

by the start position:

#> DataFrame with 6 rows and 2 columns

#> start n

#> <integer> <integer>

#> 1 3320 1

#> 2 3321 1

#> 3 3330 2

#> 4 3331 2

#> 5 3341 1

#> 6 3342 1

A.8 Grouping by overlaps

It’s also possible to group by overlaps. Using this approach we can count the number of

overlaps that are greater than 0.

#> IRanges object with 6 ranges and 2 metadata columns:

#> Groups: query [2]

#> start end width | gc query

#> <integer> <integer> <integer> | <numeric> <integer>

#> [1] 5 9 5 | 0.827303 1

#> [2] 5 9 5 | 0.603324 1

#> [3] 5 9 5 | 0.491232 1

#> [4] 5 9 5 | 0.780359 1

#> [5] 10 14 5 | 0.491232 2

#> [6] 10 14 5 | 0.780359 2
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#> IRanges object with 6 ranges and 3 metadata columns:

#> Groups: query [2]

#> start end width | gc query n_overlaps

#> <integer> <integer> <integer> | <numeric> <integer> <integer>

#> [1] 5 9 5 | 0.827303 1 4

#> [2] 5 9 5 | 0.603324 1 4

#> [3] 5 9 5 | 0.491232 1 4

#> [4] 5 9 5 | 0.780359 1 4

#> [5] 10 14 5 | 0.491232 2 2

#> [6] 10 14 5 | 0.780359 2 2

Of course we can also add overlap counts via the count_overlaps() function.

#> IRanges object with 4 ranges and 1 metadata column:

#> start end width | n_overlaps

#> <integer> <integer> <integer> | <integer>

#> [1] 5 9 5 | 4

#> [2] 10 14 5 | 2

#> [3] 15 19 5 | 0

#> [4] 20 24 5 | 0

A.9 Reading Genomic Files

We provide convenience functions via rtracklayer and GenomicAlignments for read-

ing/writing the following data formats to/from Ranges objects.

plyranges functions File Format

read_bam() BAM

read_bed()/write_bed() BED

read_bed_graph()/ write_bed_graph() BEDGraph

read_narrowpeaks()/write_narrowpeaks() narrowPeaks

read_gff() / write_gff() GFF(1-3)/ GTF
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plyranges functions File Format

read_bigwig() / write_bigwig() BigWig

read_wig() /write_wig() Wig

A.10 Learning more

There are many other resources and workshops available to learn to use plyranges and

related Bioconductor packages, especially for more realistic analyses than the ones covered

here:

• The fluentGenomics workflow package is an end-to-end workflow package for

integrating differential expression results with differential accessibility results.

• The Bioc 2018 Workshop book has worked examples of using plyranges to analyse

publicly available genomics data.

• The extended vignette in the plyrangesWorkshops package has a detailed walk

through of using plyranges for coverage analysis.

• The case study by Michael Love using plyranges with tximeta to follow up on

interesting hits from a combined RNA-seq and ATAC-seq analysis.
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