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Abstract

As the Large Hadron Collider (LHC) at CERN collects unprecedented amounts of

data with increasing precision, particle physicists are given the opportunity to test the

theoretical frameworks that they have built over the last six decades. Monte Carlo

event generators allow theory and experiment to make contact, and help provide a

testing ground for the various models and physical processes involved in simulating

high-energy particle collisions. Event generators are a key piece of the high-energy

triumvirate, along with experiments and theory, serving both as a tool for novel phys-

ical models, and as an area of fundamental research in and of itself.

This thesis focuses on improving the low-energy modelling of a high-energy

collision. As the protons collide, their constituents, quarks and gluons, emit

bremsstrahlung radiation to reduce their energy and momentum, until they reach

the confinement scale, an energy scale at which perturbation theory breaks down.

At this point, Monte Carlo event generators use phenomenological models to con-

vert these fundamental particles into the composite ones, called hadrons, that experi-

ments detect, a process called hadronization. The twomajor models of hadronization

in high-energy event generation are the cluster model and the Lund string model, and

this thesis will study both as well as provide extensions to them.

We have addressed this topic with three projects: first, we describe a small change

to the description of the production of strange quarks in the low-energy regime, and

aim to bridge the gap that we see in this modelling for electron-positron & proton-

proton collisions. We achieve a better description of hadrons containing strange

quarks. Second, we build a framework to build up the spacetime structure of a proton-

proton collision, and use this information to inform and govern the colour reconnec-

tion algorithm, which reconnects quarks and antiquarks in clusters different from

their initially assigned ones. We compare our model to data and show reasonable

vii



viii Abstract

agreement for minimum bias events, where the experimental triggers select events

with the least possible bias. Third, we present a model for string-string interactions

that preserves energy and momentum, but allows the strings, and thus the hadrons

created from their fragmentation, to push on each other. We compare our model to

the ordinary baseline Lund string model and show that the new model has some of

the signatures seen in recent data from the LHC.
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1

Introduction

The natural sciences are concerned with studying all the observable phenomenol-

ogy that we have encountered in Nature. The overarching goal of science is to build

models that describe these phenomena, while also yielding cogent and coherent pre-

dictions for future phenomena. The three most commonly known natural sciences

are the ones taught in schools: biology, chemistry, and physics. All three are parts of

a larger whole, but each are frameworks with a set of tools that are appropriate to the

given task at hand. If one wishes to describe macroscopic and microscopic organisms

and the interactions between these bodies, biology is the most appropriate tool to do

so. If one asks what these organisms share in common, one needs biochemistry to

be able to describe the production of proteins or other biochemical compounds, and

how these react with one another. Zooming in on these chemicals’ building blocks is

fully the remit of chemistry, the study of the periodic table and its inhabitants: atoms.

However if one wants to understand the fundamental interactions between these

atoms, one needs fundamental physics, primarily quantum mechanics. We may

also ask the question that we have continued to ask, both in this introduction, and

throughout human history - what’s smaller?

An atom is comprised of negatively-charged electrons, which are electromagneti-

cally bound to the positively-charged nucleus, a dense core of protons and neutrons.

However, protons and neutrons are not fundamental particles, but instead strongly-

bound composite particles called hadrons, made of quarks bound together by gluons.

But at this level, we can no longer use just quantum mechanics to describe these par-

ticles nor their phenomenology. We need a new framework: quantum field theory,

1



2 1. Introduction

in particular the Standard Model of particle physics [1–9], where particles are repre-

sented by fields. The StandardModel (SM) encapsulates three of the four fundamental

forces in Nature - electromagnetism, the weak nuclear force, and the strong nuclear

force, and the SM describes these interactions between all known visible matter.

In Quantum Chromodynamics (QCD) [1], also known as the strong nuclear

force, the fundamental particles are quarks and gluons, collectively referred to as par-

tons [10,11], and these fundamental partons are the building blocks for hadrons like

protons and neutrons. Partons carry a fundamental charge called colour-charge. This

charge is analogous to electric charge in Quantum Electrodynamics (QED), the quan-

tum field theory of electromagnetism that governs the interaction between particles

carrying electrical charges and photons - the force-mediating particle of the theory.

Electric charge in QED is carried by, for example, electrons 1, but it is not carried

by photons. In QCD, both quarks and gluons carry colour charge, meaning that

there are interactions between quarks and gluons similar to QED, but also gluon self-

interactions which have no analogy in QED. It is this self-interaction that causes most

of the headaches associated with studying QCD while vastly enriching the theory.

One of the difficulties associated with studying quarks and gluons is that they

cannot be extracted from a proton and studied individually. A key property of QCD

is the notion of confinement, whereby particles that carry colour are not observable.

We may instead try to approach this problem from a different angle: by probing

the constituents of protons with accelerated particles. The Large Hadron Collider

(LHC) [12] was created to accelerate protons to within a fraction of the speed of

light, and then collide them head on, providing a means to probe the nuances of their

internal substructure and to test the predictions of QCD.

Monte Carlo event generators [13–16] form the third member of the triumvirate

of high-energy physics, along with theory and experiment. Event generators per-

form highly detailed simulations of the various physical processes involved in a col-

lision. Since Nature is inherently quantum, event generators mimic this randomness

by probabilistically producing events, starting from the initial protons, and ending

with as detailed a final-state as possible. This property affords Monte Carlo event

generators great flexibility in being able to perform a battery of tests and present

1Their antiparticle counterpart, the positron, also carries electric charge, see Chap. 2.
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firm predictions to be tested against experimental data. To do so, event generators

separate the numerous physical processes that occur during a collision in a hierarchy

of energy or resolution scales. The hard process forms the backbone of an event -

a short-distance, high-energy scattering that is calculated from perturbation theory.

This is combined with parton distribution functions - quantities that cannot be cal-

culated from first principles and must be experimentally extracted. While the hard

process forms the base of an event, determining the largest energy scale, the proton is a

composite object, meaning that when two collide there may be several parton-parton

interactions, known as multiple parton interactions (MPI) [17].

In the hard process, the colliding partons undergo large momentum transfers

and correspondingly are accelerated, and undergo bremsstrahlung. In QCD, quarks

and antiquarks can radiate gluons, gluons can split into quark-antiquark pairs, and

gluons can radiate other gluons. Event generators model this process via the par-

ton shower [18–25], iteratively producing radiation probabilistically to evolve from

one resolution scale to a lower one. This process cannot be continued to arbitrar-

ily small resolutions scales, as parton showers hit an infrared cutoff in the form of

the hadronization scale O(ΛQCD) ∼ 200 MeV. At this point, perturbative techniques

become inadequate, and instead event generators use phenomenological models to

convert all the individually coloured quarks and gluons produced from all the previ-

ous steps, into the composite colourless hadrons that can be, in principle, detected.

This process is known as hadronization, and it is the phenomenology of this process

that this thesis is concerned with.

There are two major models of hadronization used in general-purpose high-

energy Monte Carlo event generators: the Lund string model [26,27], and the cluster

model [28]. In both of these models, quark-antiquark pairs are produced during the

hadronization process, creating hadrons as they do so. Many of these hadrons will

be unstable, and as such will undergo further particle decays [29], with probabilities

determined by experimentally measured branching ratios, where available.

At the LHC, and at any future colliders, QCD processes make up the major-

ity of the observed data. In order to study rare processes or to search for any new

physics, such as supersymmetric particles or other extensions to the Standard Model,

modelling the background plays a vital role. Indeed, there are already signs that the
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hadronization models and general soft-physics modelling in contemporary Monte

Carlo event generators are insufficient to model some of the recent results from the

ALICE [30–33] and CMS [34–36] experiments at the LHC, with the ATLAS [37]

experiment also following up on several of these results [38, 39]. The conventional

Lund string and cluster models are unable to qualitatively describe key collective ef-

fects, such as strangeness enhancement or flow-like observables. The aim of this thesis

is to build and study new hadronization models inspired by these anomalous results.

Outline of the Thesis

This thesis is structured as follows: in Chap. 2 we give a broad overview of the Stan-

dard Model, and review the key concepts of Quantum Chromodynamics and Monte

Carlo event generators. In Chap. 3, we focus on the two major models of hadroniza-

tion in high-energy event generators, and their shortcomings with regards to describ-

ing collective effects in proton-proton collisions. Chapters 4, 5, and 6 present pub-

lished material. In Chap. 4, we present a reparameterization of the production of

strange quarks during the non-perturbative stages of event generation. We then build

a framework to introduce spacetime coordinates into the Herwig event generator in

Chap. 5, and then use spacetime separation as a discriminant for the colour recon-

nection mechanism. Chap. 6 presents a new model for string-string interactions in

the event generator Pythia, and we show that this model may be able to explain the

flow-like observables seen at the LHC. Lastly, we end this thesis with a summary and

concluding remarks in Chap. 7.



2

The Standard Model and Quantum

Chromodynamics

The Standard Model of particle physics (SM) [1–9] is a relativistic quantum field the-

ory 1 that is able to describe three of the four known forces in Nature: electromag-

netism, the strong nuclear force, and the weak nuclear force. The particles described

by the Standard Model are represented by fields, and obey a number of fundamental

symmetries. These symmetries are made manifest with group theory, and the Stan-

dard Model uses the product of three gauge groups:

SU(3)C × SU(2)L × U(1)Y, (2.1)

which contains the strong nuclear force, governed by SU(3)C, and the combined

electromagnetic and weak nuclear forces, described by SU(2)L × U(1)Y, collectively

referred to as the electroweak sector [2, 8, 48, 49]. The strong force has eight gen-

erators [50] which correspond to the eight gluons - the force-mediating particle of

QCD. In the electroweak gauge group, the subscripts L and Y denote the quantum

numbers of left-handedness and hypercharge respectively. This gauge group has four

generators [50], and thus fourmassless bosons: three weak isospin bosonW1,W2,W3,

and a hypercharge bosonB. However, due to spontaneous symmetry breaking (SSB)

caused by the Higgs mechanism [4, 6, 7, 9] which introduces the scalar Higgs boson,

1Quantum field theory is now a mature field, and an interested reader is directed to the many
excellent pedagogical textbooks available [40–47].

5



6 2. The Standard Model and Quantum Chromodynamics

the electroweak gauge group collapses:

SU(2)L × U(1)Y −−→
SSB

U(1)Q. (2.2)

The Higgs boson does not couple to electric charge Q, a quantum number that is a

linear combination of one generator of the weak interaction T3 and hypercharge Y :

Q = T3 + Y. (2.3)

The Higgs mechanism generates mass terms for three linear combinations of theWi

and B bosons, which correspond to the physical, massive W± and Z0 bosons. The

fourth and final linear combination corresponds to the remaining (i.e. unbroken)

symmetry of U(1)Q. This boson remains massless and is identified as the photon γ.

Two classes of particles exist: fermions and (gauge) bosons. In the SM, fermions

are spin-1/2 particles, while bosons are either spin-0 or spin-1. For each fermion,

there exists an antipartner [51], for example the electron’s antiparticle counterpart is

the positron. Antiparticles have the same physical mass as their particle counterpart,

though the quantized charges, such as electric charge, are the opposite [50].

Particles in the SM are characterized by their electroweak and strong quantum

numbers. Due to the parity 2 violation in weak interactions [52], different weak quan-

tum numbers are assigned to the left- and right-handed components of these particles.

This results in left- and right-handed projections of quarks belong to different multi-

plets of the electroweak gauge group, namely left-handed projectionsQL are grouped

in the fundamental representation of SU(2)L, i.e. a doublet, while right-handed pro-

jections QR are singlets:

QL =


uL
dL


 ,


cL
sL


 ,


tL
bL


 , QR = uR, dR, cR, sR, tR, bR.

The subscripts L,R refer to the left- and right-handed projections of the fermion

2The parity operator reverses the sign of all spatial components of a vector: P[(x, y, z)] →
(−x,−y,−z).
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fields:

ΨL =
1

2
(1− γ5)Ψ, (2.4)

ΨR =
1

2
(1 + γ5)Ψ. (2.5)

Leptons (fermions that do not interact strongly) can be grouped similarly:

lL =


νe,L
eL


 ,


νµ,L
µL


 ,


ντ,L
τL


 , lR = eR, µR, τR.

Only left-handed neutrinos νe, νµ, ντ have been observed [53], and consequently the

right-handed neutrinos are removed from the theory. Neutrinos are also considered

to be massless in the SM. While both electroweak and Higgs physics are incredibly

rich theories and research avenues, this thesis is concerned with the intricacies of the

strong force.

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a quantum field theory that describes the in-

teractions between quarks and gluons, and in doing so composite particles such as

protons and neutrons. Particles that are composed of quarks are collectively referred

to as hadrons, and fall into two major subclasses: mesons, which are bound quark-

antiquark pairs, and baryons, which are bound triplets of (anti-)quarks. More exotic

bound states, such as tetraquarks, pentaquarks [54] or glueballs, are allowed in the

current framework of QCD. There have been several potential tetraquark candidates

proposed [55–57], and similarly for pentaquarks [58].

In QCD, there are 6 quark species, known as flavours, that can be categorized

into 3 families of pairs: up and down, charm and strange, and top and bottom, as

shown in Tab. 2.1. Quarks carry fractional electric charge, meaning they couple to

photons like electrons and they are spin-1/2 particles, i.e. fermions. They also carry

an additional quantum number for the strong force, known as colour.

QCD is a non-abelian gauge theory, with a gauge group of SU(3) [1], with quarks

belong to the fundamental representation, meaning that they carry one of three



8 2. The Standard Model and Quantum Chromodynamics

Flavour Charge (e) Mass

up (u) 2
3

2.2 MeV

down (d) −1
3

4.7 MeV

charm (c) 2
3

1.3 GeV

strange (s) −1
3

93 MeV

top (t) 2
3

173 GeV

bottom (b) −1
3

4.2 GeV

Table 2.1: Table of quark properties, where the 3 families of quark flavours are pairs of rows. Charge
is given in units of electron charge. Masses quoted for the three lightest quarks u, d, and s are the
so-called current masses, evaluated in a mass-independent subtraction scheme such as MS scheme [59],
at a scale of ∼ 2 GeV. The c and b quarks are the running masses in the MS scheme. The t quark’s
mass is taken from direct measurement. Taken from the Particle Data Group review [60].

colours at any given moment, commonly referred to as red, green, and blue. Sim-

ilarly, there are three anti-colours, which antiquarks carry, since they belong to the

conjugate representation. Gluons belong to the adjoint representation and conse-

quently carry one of the eight linearly independent colour states - the colour octet -

meaning that they are allowed to undergo self-interactions.

The QCD Lagrangian [46] is given by:

LQCD =
∑

f

q̄fi (iγµDµ −mf )ij q
f
j −

1

4
Ga
µνG

aµν , (2.6)

where the sum is over the flavours f of quark fields qf , which have mass (mf )ij =

mfδij . The index i = 1, 2, 3 counts the three colour-states of the quark. The field

strength tensor Ga
µν is given by:

Ga
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (2.7)

where Aaµ is the gluon field, with gauge coupling gs, and structure constants fabc of

SU(3). The index a = 1, ..., 8 counts the eight independent colour-states of the gluon.
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If a field ψ transforms under a local gauge transformation [1] as:

ψ(x)→ ψ′(x) = eiα(x)ψ(x), (2.8)

ψ̄(x)→ ψ̄′(x) = e−iα(x)ψ̄(x), (2.9)

then taking the usual partial spacetime derivative yields:

∂µψ
′(x) = eiα(x)∂µψ(x) + i (∂µα(x)) eiα(x)ψ(x). (2.10)

The naïve kinetic term of ψ̄∂µψ in the Dirac equation would not be invariant under

the local gauge transformations in Eq. 2.9, since:

ψ̄∂µψ → ψ̄∂µψ + i (∂µα) ψ̄ψ. (2.11)

where the dependence on spacetime coordinates x has been suppressed. In order for

the kinetic term to preserve gauge symmetry, the QCD covariant derivative Dµ in

Eq. 2.6 is then given by:

(Dµ)ij = δij∂µ + igsT
a
ijA

a
µ, (2.12)

where T aij are the generators of the SU(3) Lie group. The covariant derivative con-

tains the usual spacetime derivative ∂µ, but the second term ensures gauge invariance,

namely that:

ψ̄′Dµψ
′ = ψ̄Dµψ, (2.13)

where we have suppressed the colour indices of the fields and the covariant derivative.

In Fig. 2.1, we illustrate the QCD Lagrangian pictorially. The first set of terms

correspond to the quark propagator and the quark-gluon interaction vertex, which

along with the gluon propagator on the second line, are analogous to QED3. The last

two terms in Fig. 2.1 have no analogy in QED as the photon cannot self-interact since

it carries no electric charge.

While the QCD Lagrangian in Eq. 2.6 is remarkably simple, there are several

caveats. Firstly, the first term in Eq. 2.6 contains the quark mass terms mf q̄
fqf ,

3One would need to replace the gluon propagators (curly) with photon propagators.
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LQCD = +

+ ++

Figure 2.1: Diagrammatic QCD Lagrangian, adapted from [61]. Quark lines are solid, while gluon
lines are curly. The last two terms - the three-gluon and four-gluon vertices - occur due to the fact that
the gluon carries colour.

though these terms may only exist in a model where QCD is treated as a separate

theory from the Standard Model. In the full Standard Model, these mass terms are

not invariant under electroweak symmetry, i.e. quarks (and fermions in general) can-

not have such mass terms a priori since they break electroweak symmetry. Instead

their mass must be generated by another mechanism, which in the Standard Model is

the Higgs mechanism [4, 6, 7].

Secondly, in Eq. 2.6, in order to quantize the gluon field in the path integral for-

malism [62] there need to be some extra terms, namely a gauge fixing term and a ghost

field term, see e.g. [47]. The gauge fixing term introduced by Faddeev and Popov [63]

is given by:

LFP = − 1

2ξ

(
∂µGa

µ

)2
. (2.14)

The ghost field, η, terms for the gluon field is given by:

Lghost = ∂µη̄
a∂µηa + gsf

abc∂µη
cGbµηa, (2.15)

and these terms are necessary to remove the unphysical timelike and longitudinal

components of the gluon. These modifications mean that the Lagrangian in Eq. 2.6

becomes:

LQCD → LQCD + LFP + Lghost. (2.16)

Finally, the QCD Lagrangian can include a CP-violating term, where C is charge
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and P is parity:

Lθ ∝ θGaµνG̃a
µν (2.17)

where G̃a
µν = 1

2
εµνρσG

aρσ is known as the dual field and εµνρσ is the antisymmet-

ric Levi-Civita symbol, and coupling constant θ. Experimental constraints have set

an upper bound on the coupling θ � 10−9 [64, 65]. While CP-violation occurs in

the electroweak sector, there is currently no evidence for this violation in the strong

sector, an open question that is known as the strong CP problem 4.

2.2 The Strong Coupling αs

Perturbative calculations using the Lagrangian in Eq. 2.16 still yield divergent results

in the ultraviolet limit, i.e. infinities when integrating over loop-momenta 5 in gluon

and quark self-energy processes. The remedy for this is to introduce the notion of

renormalization [67], where the couplings and masses entering into the Lagrangian

are actually ‘bare’ couplings and masses. Introducing identical copies of the terms

with a multiplicative factor allows one to absorb the individual logarithmic diver-

gences into these factors, and producing well-defined, finite answers6. The result of

these changes mean that the couplings and masses now depend on the energy scale in-

volved in the interaction in question. This dependence is referred to as the ‘running’

of the coupling.

The coupling strength αs(q2) = g2
s(q

2)/4π between quarks and gluons varies dras-

tically as a function of energy scale q2, and its functional dependence is encoded in

the so-called beta function:

β(αs) = q2∂αs
∂q2

. (2.18)

Using perturbation theory to expand the beta function in terms of the strong coupling

leads to (at the lowest order):

β(αs) = −α2
sb0, (2.19)

4For more details, there are many reviews on the strong CP problem, see e.g. [65, 66]
5See Sec. 2.3 for more details on loops.
6An interested reader can find an in-depth review of renormalization in e.g. [43, 46, 47, 68]



12 2. The Standard Model and Quantum Chromodynamics

where the coefficient b0 [69, 70] is given by:

b0 =
33− 2nf

12π
, (2.20)

where nf is the number of flavours of quarks, which depends on the scale q2, as only

quarks with mass .
√
q2 may contribute to b0. For nf ≤ 167, which is true of the

Standard Model where nf is at most 6, the beta function has a negative sign, and

consequently the coupling αs decreases with increasing energy scale q2. Substituting

Eq. 2.18 into Eq. 2.19, we obtain:

− α2
sb0 = q2 dαs

dq2
=

dαs
d ln q2

, (2.21)

which, upon rearranging, yields:

− dαs
b0α2

s

= d ln q2. (2.22)

Integrating between scales q2 and µ2 then gives:

1

αs(q2)
− 1

αs(µ2)
= b0 ln

(
µ2

q2

)
, (2.23)

where µ2 is an arbitrary reference scale. A typical choice for this reference scale is the

mass of theZ0 boson, and the coupling at this scale has been experimentally measured

to be αs(m2
Z0) ∼ 0.118 [60]. The solution to Eq. 2.23 can then be written as:

αs(q
2) =

1

b0 ln
(
q2/Λ2

QCD

) , (2.24)

where ΛQCD is an infrared cutoff given by:

Λ2
QCD = µ2 exp

(
− 1

b0αs(µ2)

)
. (2.25)

Upon inspecting Eq. (2.24), it becomes clear that the strong coupling can exceed unity,

and indeed even diverge as q2/Λ2 → 1, while, conversely, in the limit of q2/Λ2 →∞,

the coupling vanishes.

7There is also the extra constraint that there are no additional colour-charged fields.



2.2. The Strong Coupling 13

The key result of Eq. 2.24 is that the strong coupling between quarks and gluons

decreases as the energy of the interaction increases, meaning the partons becomemore

and more weakly interacting at higher energies, a phenomenon known as asymptotic

freedom [69,70]. Consequently, processes at these corresponding energy scales can be

calculated via the conventional perturbative techniques available to particle physicists.

On the other hand, as the energy scale of the interaction decreases, the coupling

strength grows larger, until one reaches scales close to the hadronization scale of

O(ΛQCD) ∼ 200 MeV where the coupling diverges and perturbative techniques be-

gin to break down, since they are dependent on expansions in αs. As αs grows for

decreasing q2, at some point the perturbative expansion is no longer well-defined,

namely the terms one discards are of the same order, if not larger than the last terms

entering into the calculation. It is in this regime that colour confinement [71] occurs,

the phenomenon by which we cannot directly observe individual coloured partons.

Due to the perturbative techniques deteriorating, physicists need other approaches.

There are two main avenues for low-energy physics studies: lattice QCD, and phe-

nomenological models in Monte Carlo event generators. The latter will be covered

in depth in Chap. 3.

Lattice QCD [71–73] discretizes spacetime into a hypercube, and quarks are de-

fined on the lattice sites while gluons are defined on the links connecting sites. The

discretization process is implemented by a lattice spacing a which introduces a natu-

ral ultraviolet cutoff of 1/a, regulating the high-energy behaviour of the theory. To

recover continuum QCD, the lattice spacing can be taken to a → 0. This is the

typical procedure taken by lattice studies in order to extrapolate their discretized re-

sults to make predictions about continuum QCD. In discretizing spacetime, time is

Wick-rotated 8 and as such becomes Euclidean. The result of this is that the results

that lattice QCD yield are steady-state solutions, and the configurations these stud-

ies investigate cannot include time evolution. While lattice QCD is an active and

fascinating field of research, it is outside of the scope of this thesis.

8For more details, see e.g. [47].
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2.3 Cross Sections and the Factorization Theorem

At particle colliders, the detectors count the number of occurrences of given events,

which is directly related to the likelihood of the associated scattering process occur-

ring - known as the cross section. Calculating cross sections is thus an important task

from the theoretical side, and the factorization theorem [74–79] allows physicists

to factorize the cross section into two parts: the high-energy (short-distance) scale

physics, and the low-energy (long-distance) scale physics. The inclusive9 cross sec-

tion for two colliding protons A,B to produce final n-particle state can be factorized

as:

σ(AB → n) =
∑

a,b

∫
dxadxbfa/A

(
xa, µ

2
F

)
fb/B

(
xb, µ

2
F

)
× σ̂ab→n(µ2

F , µ
2
R), (2.26)

where the so-called parton distribution functions (PDFs) fa/A, fb/B are experimen-

tally extracted quantities, and encode the distributions of a given parton species a, b in

the respective protons as a function of the respective momentum fraction xa, xb they

carry. Themomentum fractions xa,b of partons a, b are a fraction of the incoming pro-

tons’ momentum: pa,b = xa,bpA,B. The PDFs also depend on the factorization scale

µ2
F , an unphysical, but computationally useful, energy scale at which the high-energy

and low-energy physics are factorized. Since the PDFs probe hadronic properties,

the infrared singularities that arise in this realm are absorbed into the PDFs through

their dependence on the factorization scale. This introduction of a scale dependence

parameters is similar to the effect of using of renormalization to remove ultraviolet

divergences. The partonic-level cross section σ̂ab→n is calculable from perturbation

theory, and it depends on the factorization scale µ2
F and the renormalization scale µ2

R.

It should be noted that while the factorization theorem has been proven to all

orders in the context of electron-positron and deep inelastic scattering collisions, it

has yet to be rigorously proven for proton-proton collisions beyond so-called leading

twist, where the composite nature of protons complicates matters significantly. Re-

cent advances in the field have started building the pieces for rigorously extending the

factorization theorem to proton-proton collisions by studying double-parton scatter-

ing [80–84]. A Monte Carlo simulation for double-parton scattering based on these

9Inclusive here means that one sums over all possible final states.
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approaches has recently been implemented [85, 86].

The partonic-level cross section from Eq. 2.26 can be written at leading-order, also

known as the Born-level, as:

σ̂
(LO)
ab→n =

∫
Fab|M(a+ b→ n)|2dΦn, (2.27)

where Fab is the flux factor of the incoming partons a, b, given by:

Fab =
1

4
√

(pa · pb)2 −m2
am

2
b

. (2.28)

In Eq. 2.27,M(a+b→ n;µ2
F , µ

2
R) is the scattering amplitude for the parton-level pro-

cess a + b→ n, and its evaluation depends on the factorization and renormalization

scales. The invariant squared matrix element |M|2 and the flux factor are integrated

over the n-particle Lorentz-invariant phase space:

dΦn = (2π)4δ(4)

(
pa + pb −

n∑

i=1

pi

)
n∏

i=1

d3pi
(2π)32Ei

. (2.29)

These squared matrix elements are calculated through the application of Feynman

rules, see for example [43, 47], which can be derived from the Lagrangian given in

Eq. 2.6. The fundamental building blocks of the invariant matrix elements are vertex

factors for interaction points, wave functions for external particles, and propagator

factors for internal particle lines (i.e. virtual particles that connect interaction points).

In order to perform precision calculations, it is necessary to go beyond the leading-

order partonic-level cross-section in Eq. 2.27 and to calculate higher-order terms.

These higher-order terms can have l loops and m extra external particles, leading

to a general form for a partonic-level cross section of:

σ̂ab→n =
∞∑

m=0

∫
Fab|

∞∑

l=0

M(l)(a+ b→ n+m)|2dΦn+m. (2.30)

Choosing the number of loops and extra external particles defines the order of the

perturbative expansion, for example next-to-leading-order (NLO) corrections have
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l +m = 1, so the full NLO partonic-level cross-section can be written as:

σ̂
(NLO)
ab→n = σ̂

(m=0,l=0)
ab→n + σ̂

(m=1,l=0)
ab→n + σ̂

(m=0,l=1)
ab→n , (2.31)

namely, as the sum is of the leading-order cross section, the real (i.e. additional exter-

nal particle) correction, and the virtual (i.e. additional loop) correction respectively.

Successively higher-order cross sections will involve more loops and/or more external

legs such that the sum l +m ≤ n for a given order.

In the NLO partonic-level cross section of Eq. 2.31, there will arise two sets of sin-

gularities, i.e. infinities: first, when integrating over the Lorentz-invariant phase space

for the real correction term, and second, when integrating over the loop-momenta in

the virtual correction term. The KLN theorem [87–90] ensures that these singulari-

ties will cancel order-by-order, if one keeps both real and virtual corrections.

2.4 Monte Carlo Event Generators

While particle physicists have crafted an elegant and successful frameworkwithQCD,

we need ways to compare the theory to the data that experiments observe and collect.

Monte Carlo event generators [13, 60], such as Pythia [14, 91], Herwig [15, 92, 93],

and Sherpa [16,94], are computer programs that aim to simulate all the physical pro-

cesses involved in high-energy collisions. The aboveMonte Carlo event generators are

general-purpose, being able to simulate a large number of different types of scattering

processes such as electron-positron, electron-proton, or proton-proton, but this thesis

will focus on the latter.

Monte Carlo event generators separate physical processes in terms of a hierarchy

of energy scales, starting with the primary hard process using the factorization the-

orem, calculated with a fixed-order expansion in perturbation theory. This process

determines the highest energy scale in a given event. The partons produced from and

incoming to the hard process are fed into the parton shower algorithm, evolving the

partons down in energy scale by bremsstrahlung. Once the energy scales are close to

the hadronization scale, the parton shower ends, and hadronization takes over, con-

verting the partons via a phenomenological model into colourless hadrons. These

hadrons undergo further particle decay and act as input to detector simulations.
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2.4.1 Hard Process

The hard process is themost energetic part of a given collision, and in the case ofQCD

and proton-proton scattering, involves fundamental partonic interactions. These in-

teractions are calculated by perturbation theory, truncating the calculation at some

order, then convolved with parton distribution functions as in Eq. 2.26. Event gen-

erators such as Pythia and Herwig come included with several 2 → 2 and 2 → 3

(leading-order) processes automatically. As the technology of computers and ma-

trix element calculations improves, more event generators have surfaced, solely spe-

cializing in performing higher-order calculations, ready to be used in more general-

purpose event generators. In order to carefully combine the parton shower radia-

tion with these higher-order terms, one needs a prescription to avoid thorny issues

such as over- or under-counting regions of phase space. Two such prescriptions are

matching, and merging. Examples of matching procedures include MC@NLO [95],

and POWHEG [96], while merging procedures include CKKW(-L) [25, 97], and

MENLOPS [98]. More detailed reviews of matching and merging can be found

in [13, 99].

Examples of matrix element generators include Comix [100], and Mad-

Graph5_aMC@NLO10 [102]. There are also generators dedicated to specific processes

such as vector-boson interactions: VBFNLO [103,104], and MCFM [105–107]. Her-

wig has its own dedicated interface for handling the hard process as well as performing

matching, called MATCHBOX [108].

2.4.2 Parton Shower

Partons produced from the hard process are evolved from the corresponding energy

scale down to the shower cutoff scale, chosen to be close to the hadronization scale.

During this evolution, the partons emit bremsstrahlung - braking radiation. Incoming

partons may also emit bremsstrahlung, known as initial-state radiation, typically im-

plemented via backwards-evolution [109, 110]. Partons produced during the parton

shower also undergo the subsequent showering process until they reach the cutoff

scale.
10A modern unification of the matrix element generator MadGraph5 [101] with the matching for-

malism of MC@NLO.
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The physical roots for a parton shower lie in the fact that the cross section is en-

hanced in certain regions of phase space. In particular, if a QCD parton is present as

an external leg, the matrix element gets enhanced for the case of: the splitting/emis-

sion of two partons very close in angle - the collinear singularity, and the emission of

a low-energy gluon - the soft singularity. In gauge theories, such as QCD, amplitudes

and phase space factorize in these soft and collinear limits of the theory [20,22,111].

As a result, the cross section σn+1 for a given number of particles n with one addi-

tional emission can be factorized into the n particle cross section σn and a universal

splitting function that creates the extra emission. Using this notion of a splitting func-

tion, one can construct the parton shower, with each parton probabilistically evolved

down in energy scale, starting from the hard process momentum-transfer scale, down

to a shower cutoff scale.

In Monte Carlo event generators, there are two major paradigms of parton show-

ers: either a DGLAP-based [18–20] parton shower [112–116], where a single parton

splits or emits as a 1 → 2 process, or a dipole/antenna shower [21, 117–129], where

a pair of partons radiate as a 2 → 3 process. The DGLAP formalism starts from

the factorization of the matrix element in the collinear limit, for final-state parton

a→ bc:

|Mn+1|2 −−−−→
collinear

8παs
Pa→bc
q2
|Mn|2, (2.32)

where Pa→bc are known as the DGLAP splitting functions or kernels [18–20]. These

splitting functions also contain colour factors that are process dependent - CA =

NC = 3, CF = 4/3, and TR = 1/2. At leading-order, the allowed DGLAP split-

ting processes are gluon emissions: q → qg or g → gg, and gluon splitting: g → qq̄,

depicted in Fig. 2.2. Due to energy and momentum conservation, a 1 → 2 splitting

process cannot occur with all partons being on-shell. Thus parton showers using the

DGLAP formalism need to have a recoil strategy or kinematics map to reshuffle mo-

mentum. This can either occur at each individual branching step by designating a

single recoiling parton or a system of recoiling partons, or at the end of the entire

shower process.

The dipole/antenna formalism begins from the factorization of the matrix el-

ement in the soft limit, for final-state partons emitting in the following process
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Figure 2.2: The different branchings in a DGLAP-based QCD parton shower: (top left) q → qg, (top
right) g → gg, and (bottom centre) g → qq̄, along with the colour flow produced using the leading-
colour approximation. There is one more branching: q → gq, though it is directly related to the left
branching.

IK → ijk:

|Mn+1|2 −−→
soft

4παsCSijk|Mn|2, (2.33)

where C is the process-dependent colour factor, and Sijk is the universal soft (eikonal)
factor, given by (for massless partons):

Sijk =
2sik
sijsjk

, where sij = 2pi · pj. (2.34)

The allowed dipole/antenna processes depend on the pair of radiating partons. The

recoiler is specified by the factorization process that produces the dipole/antenna

splitting function. For dipole showers, one parton in the pair is designated the emitter,

while the other is a recoiler, while antenna showers are agnostic to which parton is

the emitter or recoiler as both participate in the process and as such both will recoil.

While QCD in its full form is an SU(3) gauge group, Monte Carlo event gener-

ators typically use the leading-colour approximation [130, 131]. This approximation

generalizes the QCD gauge group to one with an arbitrary number of colours Nc to

give a gauge group of SU(Nc). This produces terms which will depend on Nc, and

subleading terms of O(1/N2
c ). The leading-colour approximation finally takes the

limit of Nc →∞, removing any terms that are subleading in colour11. As a result of
11It should be noted that although the leading-colour approximation drops terms subleading in
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this approximation, only planar Feynman diagrams [130, 131], i.e. diagrams where

the colour flow between partons can be drawn exclusively in the plane, enter into

the event generation, and no two quarks in an event may share the same colour. In

the leading-colour approximation, gluons carry a colour and an anti-colour. A key

consequence of taking the leading-colour approximation is that there is no quantum

interference in the splitting process, since these terms are subleading.

For the single parton branching used in DGLAP showers, this results in the

colour flow shown in Fig. 2.2. For the dipole shower, this means that only colour-

connected dipoles radiate, since there are no ‘repeated’ colours, reducing the number

of dipoles to consider during the parton shower, as there is no dipole-dipole inter-

ference. In comparison, in QED showers, one must consider all possible dipoles

for radiation [132], since there is no such leading-colour approximation, and instead

terms can only become suppressed from the lack of available phase space. While the

DGLAP-based parton shower does not have coherence between partons, it can be

imposed via certain constraints on the showering process [133], such as angular or-

dering [134], whereby subsequent emissions have a smaller emission angle than the

emission before. The two pictures of showering, DGLAP-based and dipole/antenna

based, are dual frameworks to each other, with the former capturing the full collinear

and the partial soft structure of QCD emissions, while the latter captures the full soft

and partial collinear structure.

While three is very different from infinity, the leading-colour approximation

works remarkably well in electron-positron collisions, a relatively clean environ-

ment since only the outgoing products of the collision may carry colour. One

strength of the leading-colour approximation is that colour-suppressed contributions

are also kinematically suppressed. In the more busy and complicated environment

of proton-proton collisions, this approximation is still used, though the accuracy of

the approximation is somewhat diminished. However, recent research has delved

into introducing parton showers without this approximation, instead choosing to

improve the shower with QCD colour structures or to use a full-colour parton

shower [108, 135–142].

Working in the DGLAP framework, the differential probability for a final-state

colour, numerical values are still obtained with Nc = 3, e.g. in the β function in Eq. 2.19, and in the
colour factors CA and CF in amplitudes.
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parton a to undergo a branching is given by:

dPa,branch

dq2
=
αs
2π

1

q2

∫ zmax

zmin

dz
∑

b,c

Pa→bc(z), (2.35)

where q2 is an energy or resolution scale, z is the energy fraction of parton b with

respect to a i.e. Eb = zEa, with c taking the rest, i.e. Ec = (1 − z)Ea, and z is

bounded between [zmin, zmax], and Pa→bc are the DGLAP splitting functions [18–20]

depicted in Fig. 2.2. The parton shower evolves partons from a scale Q2
0 down to a

lower energy scale Q2
1 by generating emissions. In order to do so, we need to define

the probability that there are no emissions between these two scales. If δq2 = Q2
0−Q2

1,

then the naïve application of Eq. (2.35) would yield a branching probability of:

δq2

q2

αs
2π

∫ zmax

zmin

dz
∑

b,c

Pa→bc(z). (2.36)

The naïve probability of no branching is then:

1− δq2

q2

αs
2π

∫ zmax

zmin

dz
∑

b,c

Pa→bc(z). (2.37)

Subdividing δq2 into n steps would then yield a probability for no emissions that is n

multiplicative copies of Eq. 2.37, since each interval must have no emissions. Taking

the infinitesimal limit of n→∞ yields the Sudakov form factor, i.e. the no-emission

probability for parton a between two scales Q2
0 > Q2

1:

∆a(Q
2
0, Q

2
1) = exp

(
−
∫ Q2

0

Q2
1

dq2

q2

αs
2π

∫ zmax

zmin

dz
∑

b,c

Pa→bc(z)

)
. (2.38)

The Sudakov form factor can be similarly defined in the dipole/antenna framework,

and forms the backbone of the parton shower algorithm.

Parton shower research is an extremely active area of research, and includes build-

ing a parton shower from quantum mechanical amplitudes, rather than the conven-

tional matrix elements [143, 144], implementing next-to-leading order parton show-

ers [145–148], developing showers that use helicity-dependent matrix element correc-

tions or splitting functions [149,150], as well as including spin correlations [151–157].
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2.4.3 Multiple Parton Interactions

As protons are composite objects, when two collide there may be more than one

subcollision between the partonic constituents of these protons. These subcollisions

between partons are called Multiple Parton Interactions (MPI) and these processes

form a vital part of proton-proton collision event generation.

MPI were first introduced to Monte Carlo event generators in [17], where the

pairwise interactions between partons were produced in an approximately indepen-

dent fashion, i.e. with Poissonian statistics as an initial ansatz, and extended from

the perturbative regime of high-p⊥ down to the low-p⊥ region. The model also in-

troduced the notion of an impact parameter dependence on the number of MPI in

an event. Protons are extended objects, with a finite size, and when they collide at

extremely high energies, they are Lorentz-contracted into two colliding discs or pan-

cakes. Accordingly, these discs may overlap more or less, depending on the distance

between the centres of the discs, known as the impact parameter.

When MPI are produced, the colour structure connecting them to each other

and to the beam remnant is unclear. There are no first-principles guidelines, and in-

deed colour reconnection was first introduced in [17] to change the initially produced

colour structure for MPI. We will discuss colour reconnection more in Sec. 3.4.

Most early implementations of MPI did not include parton showers for the addi-

tional partonic interactions, with only the hard process undergoing initial-state and

final-state radiation. However, Pythia, Herwig, and Sherpa have since introduced

showers for the partons entering into or produced from additional MPI [158]. In

Herwig and Sherpa, the MPI modelling is separated from the parton shower, while

in Pythia, the two processes are interleaved [115], so that new MPI and additional

initial-state radiation act as competitors for the energy available in a given collision.

Since the introduction of MPI, a proliferation of research in the area has contin-

ued. Herwig uses an MPI model based on the eikonal factorization [159–162]. Her-

wig has also recently studied and improved theMPImodel on several fronts [163,164].

We will discuss the MPI model used in Herwig in more depth in Chap. 5.



2.4. Monte Carlo Event Generators 23

2.4.4 Hadronization

One of the most distinctive features of QCD is confinement. Since confinement dic-

tates that we cannot measure or detect quarks and gluons directly, we need a phe-

nomenological model that converts the individual partons that carry colour into

colourless composite hadrons, some of which will be detected by experiments and

some of which will undergo further decay. This conversion process is known as

hadronization. There are twomajor paradigms of hadronization in high-energy event

generators: the Lund string model [26, 165] implemented in Pythia, and the clus-

ter model [28, 166], implemented in Herwig and Sherpa. We will present the main

features of the two models in Chap. 3, as well as other hadronization-related phe-

nomenology.

2.4.5 Decays

There are two major stages of decays in a Monte Carlo event generator: perturbative

resonance decays, and hadronic decays. For resonance decays, such as the decay of the

electroweak bosonsW± and Z0, the Higgs boson, or the top quark, if the products of

the decay have energy scales above the hadronization scale, they will be evolved down

via the parton shower. Recent work has begun to phrase top quark resonance decays

in the language of antenna showers [167]. Note that the top quark decay process is

considered in most event generators to be perturbative since its decay width is larger

than the hadronization scale. Consequently, the top quark is the only quark that is

not involved in hadronization modelling.

A vital part of modelling the low-energy regime of an event is accurate simula-

tion of hadronic decays. During the hadronization phase, Lund strings and clusters

can break up through a number of steps, finally creating on-shell excited hadrons,

called primary hadrons. These primary hadrons are typically unstable, and event

generators have to handle the decay processes of these unstable hadrons, using decay

tables with experimentally extracted branching ratios. These decay tables have to be

supplemented with additional free parameters to model any branching ratios that are

unmeasured, and to ensure that the sum of all branching ratios is unity. Another ap-

proach for modelling particle decays is to use quantum mechanical decay amplitudes,

for example by using simple phase space models like those in Pythia/Jetset [168], or
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more sophisticated frameworks, with QQ 12, and EvtGen [29] for hadron decays, and

TAUOLA [169–171] for tau decays.

2.4.6 Detector Simulations

General-purpose Monte Carlo event generators do not have detector simulation, i.e.

they do not simulate the minute and intricate processes involved in produced par-

ticles colliding with the surfaces of the detector, nor the geometry of the detector

itself. When experimentalists wish to model the whole event down to the detector

level, they use the output from event generators as input into dedicated simulation

software, such as Geant4 [172, 173], which simulates the propagation of particles

through matter.

12QQ - The CLEO Event Generator, see http://www.lns.cornell.edu/public/CLEO/soft/QQ



3

Hadronization and Colour

Reconnection

Hadronization is the phenomenological model that describes individually coloured

partons from the end of the parton shower process and their subsequent transition

into colourless hadrons. This chapter aims to give an overview of some of the models

of hadronization used in high-energy event generators, their respective sets of colour

reconnection models, and the signs of collectivity in proton-proton collisions. An

excellent and in-depth review of hadronization as it applies to Z0 decays can be found

in [174].

3.1 Independent Fragmentation

Independent fragmentation [175] is the oldest framework for hadronization, offering

arguably the simplest picture: each parton hadronizes independently of any other

ones. To achieve this, the model uses an iterative branching1, akin to the parton

shower, of the form q → h + q′ where h is the produced hadron, containing quark

content qq̄′. The q′q̄′ pair are created out of the vacuum, with a Gaussian transverse

momentum distribution. A schematic illustration of the iterative branching is shown

in Fig. 3.1. One of the most widely known versions of independent fragmentation is

the Field-Feynman model [176, 177].

As Fig. 3.1 illustrates, there is a natural ‘rank ordering’ of the hadrons produced,

1The iterated branching is also known as the unit cell.

25
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q0

h0(q0q̄1)

q1

h1(q1q̄2)

q2

h2(q2q̄3)

q3

Figure 3.1: Schematic diagram of the iterative branchings of the form qi → hi+qj used in independent
fragmentation. Each hadron hi produced will take a fraction of the energy and momentum of quark
qi.

with the most energetic being produced first, i.e. hadron h0 being produced before

hadron h1, and so and so forth, creating an outside-in fragmentation process. It should

be noted that this rank ordering cannot be interpreted as time ordering.

3.2 Lund String Model

In the short distance regime, the potential between a quark-antiquark pair is domi-

nated by a Coulombic potential, verymuch like the potential between an electron and

positron, as shown in the top panel of Fig. 3.3. The Lund string model [26,165,178–

180] takes inspiration from results in lattice QCD2, see e.g. [182,183] amongst other

phenomenological calculations3 that indicate that the potential between a quark and

an antiquark grows linearly with distance, as shown schematically in Fig. 3.2. The

form of the potential V (r) = κr− a
r
between two static quarks as a function of their

spatial separation, sometimes known as the Cornell potential [186], though strictly

speaking the Cornell potential has extra terms that are of the form 1/r2 and a con-

stant in order to obey conservation laws. For ‘large’ distances, i.e. r & 1 fm, the

potential tends to V = κr, where κ ∼ 1 GeV/fm is the constant growth rate of the

potential - more commonly known as the string tension. There is a Coulombic term

2Lattice QCD is an approach to study non-perturbative phenomena in QCD by discretizing space-
time. Quarks are fields defined at the lattice sites, while gluons act as the links interconnecting the
sites. A thorough review of lattice QCD can be found in [181].

3Examples include Regge phenomenology, see e.g. [184], and quarkonium spectroscopy, see
e.g. [185].
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Figure 3.2: Schematic diagram of the Cornell potential between a static quark-antiquark pair [186].

in the potential as well, but this is ignored in the Lund string model. The physical

interpretation of the linear potential is that the QCD vacuum tries to expel 4 the field

lines between the quark and the antiquark, causing the field lines to be confined to a

thin tube of gluonic flux lines, as shown in the bottom panel of Fig. 3.3.

3.2.1 Yo-yo motion

The simplest string possible is thus a massless quark-antiquark pair, propagating away

from each other in one spatial direction x and one temporal t. They start with only

kinetic energy, but as they travel away from each other, the attractive force between

them causes the quarks to lose energy and momentum, and transfer it to the string

stretched between them, stored as potential energy. Once the quarks have lost all their

kinetic energy, their motion reverses and the string transfers its potential energy back

to the quarks. This is known as the yo-yo mode, shown schematically in Fig. 3.4.

The quarks are initially at (t, x) = (0, 0) and travelling with equal and opposite

momenta, and there is no potential energy in the string:

(E, px) =
Ecm

2
(1,±1),

Estring = 0,

(3.1)

4This is the colour-superconductivity analogue of the Meissner effect, see e.g. [187]



28 3. Hadronization and Colour Reconnection

Figure 3.3: Schematic diagram of the field lines of (top) the Coulombic potential between static quark-
antiquark pairs at short distances, which resembles the potential between positive and negative charges
in QED, and (bottom) the linear potential between the same static quark-antiquark pair at larger dis-
tances, forming a Lund string, a potential without an analogy in QED.

where we set the speed of light c = 1. Each endpoint propagates away from the origin,

losing kinetic energy until it is stationary. At this point, the string has maximum

potential energy and extent:

(E, px) = (0, 0),

Estring = Ecm.
(3.2)

The time taken until this point from the origin, is then simply given by κt1 = px(0),

i.e.:

t1 =
Ecm

2κ
, (3.3)

which is the quarter period of motion.

Once the quarks have been pulled back to x = 0, they are back to the initial

configuration, but with their momenta swapped, thus this point in time t2 is the
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t

t1

t2

t3

t4

x

Figure 3.4: Schematic diagram in (1+1)-D of a massless quark-antiquark pair undergoing classical yo-
yo motion in the Lund string model. The different coloured trajectories are to track the endpoints as
they reach the various times: t1 is a quarter period and is reached when the quarks are at maximum
separation, t2 is the half period, where the partons are back to the start, but travelling in the opposite
direction, t3 is the third quarter period, and lastly, t4 is the full period, where the yo-yo has returned
to its initial configuration.

half-period of motion: t2 = Ecm

κ
. The two other times in Fig. 3.4 are then:

t3 =
3Ecm

2κ
,

t4 =
2Ecm

κ
,

(3.4)

at which point, the qq̄ pair has completed one full period of motion. The area swept

out by the yo-yo mode by t4 is proportional to the invariant mass of the string:

κ2A = m2 = E2
cm. (3.5)

To see this, let the starting coordinates of the qq̄ pair be (t, x) = (0, 0). At t1, the

distance the quark has travelled is given by: x1,q = t1 = Ecm/2κ, and similarly for

the antiquark: x1,q̄ = −t1, where we have let the quark propagate in the positive

x-direction. The total area swept out is then simply 4 sets of triangles with equal

sub-area: t1(x1,q − x1,q̄)/2, giving:

A = 4 · t1(x1,q − x1,q̄)

2
=
E2

cm

κ2
. (3.6)
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t′c
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Figure 3.5: Schematic diagram of the yo-yo mode in Fig. 3.4 after a boost in the positive x direction.

It may seem that this string is not Lorentz covariant, since the shape of the yo-yo

mode in Fig. 3.4 is clearly not invariant under boosts along the x-axis. If we boost

in the positive direction, the square-shaped motion becomes rectangular, as shown in

Fig. 3.5. However, while the shape of the yo-yo motion is not invariant, nor the time

at which the ends turn around t′a and t′b, the area swept out during one full period 2t′c

is indeed invariant, since this is proportional to the total invariant mass of the string.

Since the yo-yo motion in Fig. 3.4 is determined for massless quarks propagat-

ing along lightcones, one question one might ask is what happens for strings with

massive quark endpoints? Since the lightcones represent the massless limit, massive

quarks travel along hyperbola, the asymptotes of which are the lightcones. A thor-

ough review of the massless relativistic string as well as extending the Lund string

model to massive quarks can be found in [165].

3.2.2 String fragmentation

The yo-yo motion described was inspired by the massless classical relativistic string,

but as we have mentioned particle physics is inherently quantum mechanical. As

the endpoints of the string propagate, they may transfer enough energy to the string

to create quark-antiquark pairs between the original endpoints. In the string model,

string fragmentation occurs by qq̄ pairs quantum tunnelling in the force field between
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q0 q̄0

q1q̄1

Figure 3.6: Schematic diagram of the tunnelling process in the field lines of a given quark-antiquark
pair. The newly produced quark-antiquark pair no longer have field lines stretched between them.
Since the q1q̄1 pair has to tunnel out with some finite m⊥, the pair production reduces the overall
string ‘length’.

the string endpoints, as demonstrated in Fig. 3.6. The distance the pair has to tunnel is

proportional to the transverse mass of the pair per unit string tension: d = m⊥,q/κ =√
m2
q + p2

⊥,q/κ.

Using the WKB approximation [26, 165] to calculate the probability for tun-

nelling, one then obtains:

P ∼ exp

(
−
πm2

⊥,q
κ

)
= exp

(
−πm

2
q

κ

)
exp

(
−
πp2
⊥,q
κ

)
. (3.7)

In other words, the transverse momentum distribution for quarks produced via string

breaks is independent of the mass, and as a consequence the type, of quark produced.

While the p⊥ distribution is universal, there is a Gaussian mass suppression in Eq. 3.7,

suggesting that heavier species are suppressed relative to the lighter ones. In particular,

only three species of quarks may be produced during the string fragmentation process

in Pythia: up, down, and strange, with a relative weight of approximately 1 : 1 : 0.22,

since the top quark does not participate in hadronization, and the charm and bottom

quarks are too massive to be pair-produced at any reasonable rate. It should be noted

that while the mass suppression is well-motivated from Eq. 3.7, there is no a priori

knowledge of whichmasses to use, e.g. the values in Tab. 2.1, the so-called constituent

masses, or some other mass definitions. Instead, the relative production rates are free

parameters tuned to data.

Baryons can also be produced in string fragmentation, via two different mecha-

nisms: pair-production of a two-quark system, known as diquarks, at a single vertex,

analogous to the ordinary string fragmentation discussed above, and the so-called

popcorn mechanism. In an ordinary string break, the produced qq̄ pair has to have

the right colours to produce a colourless hadron, i.e. given an initial pair q0q̄0 with
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q̄0

q̄1

q0

q1

q̄0

q̄1

q0

q1 q2 q̄2

Figure 3.7: Schematic diagram of the popcorn mechanism, in which (top) a qq̄ pair tunnel out but
do not have the correct colour to break the string, until (bottom) the third colour pair of quarks are
produced, creating a baryon and an antibaryon.

colours red and anti-red, all other subsequent qq̄ pairs must also have those colours.

In the popcorn mechanism, a qq̄ pair may be produced with the ‘wrong’ colour to

break the string, meaning that the produced pair does not break the string. A sub-

sequent pair may break the string, as long as they have the third and final colour

to make a colourless baryon. We have included Fig. 3.7 as an example. The pop-

corn model also allows for mesons to be produced between the baryons, reducing the

strong correlations introduced by producing two primary baryons adjacent to each

other. We will not discuss this mechanism further, but instead direct the interested

reader to [188–190].

The tunnelling mechanism in Eq. 3.7 is a stochastic iterative process whereby a

string produces a string (remnant) and a hadron. Sampling the tunnelling probability

determines the flavour content of the new hadron to be produced, as well as its p⊥

relative to the string axis, but we need one final piece of the fragmentation puzzle to

create a hadron: the longitudinalmomentum taken from the string along its axis. This

fraction z follows the distribution of the so-called symmetric Lund fragmentation

function:

f(z) = N
(1− z)a

z
exp

(−bm2
⊥

z

)
, (3.8)

where z is the fraction of the string’s available lightcone momentum taken by a cre-

ated hadron, while the string retains the remainder 1 − z. The parameters a and b

are two free parameters in the string model, m2
⊥ = m2 + p2

⊥ is the transverse mass

of the produced hadron, and N is an overall normalization constant. The form of
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zW+W−h
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Figure 3.8: Schematic diagram in the (1+1)-D undergoing a single fragmentation, producing a hadron
with invariant mass m2 by taking a fraction z of the positive lightcone momenta W+ of the right-
most string endpoint. In order to put the hadron on-shell, the string must also donate some negative
lightcone momenta, denotedW−h, to the hadron.

the fragmentation function is uniquely defined by some very simple constraints such

as left-right symmetry, which are presented in App. A. The free parameter a may in

general be flavour-dependent, while b is strictly independent of the flavour of the pro-

duced pair. Large a suppresses the hard region of z → 1 where a fragmenting hadron

takes a large fraction of the lightcone momentum, while large b suppresses the soft

region of z → 0. For strings with very massive quark endpoints, namely charm and

bottom quarks, there have been several models modifying the fragmentation func-

tion, such as the Bowler model [191], and the Peterson/SLAC model [192].

Having selected m⊥ and z for the fragmenting hadron, the string remnant is up-

dated to conserve energy and momentum, i.e. one of the pair-produced quarks will

replace the fragmenting endpoint, and will receive −p⊥,q to conserve the transverse

momentum along the string. Fig. 3.8 depicts a single string break, with a hadron tak-

ing z from the positive lightcone momentaW+ = E + pz, leaving behind (1− z)W+

for the remnant. In order for the hadron to be put on-shell with transverse massm⊥,
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Figure 3.9: Schematic diagram of a string fragmenting in (1+1)-D via two breaks (numbered vertices 1
and 2) and creating three primary hadrons h1, h2, h3. The primary hadrons will then undergo particle
decay, decaying into more stable particles.

it must also take some of the negative lightcone momentaW−h = z−W− given by:

z− =
m2
⊥

zW+W−
(3.9)

String fragmentation proceeds iteratively from either end of the string, choosing an

end at random for each string break, until finally, the string remnant falls below a

given cutoff invariant massW 2
stop, implemented as a free parameter of the model. This

remnant then undergoes isotropic decay into two hadrons. All the hadrons produced

from string breaks are called primary hadrons, and are typically unstable, undergoing

further particle decays.

We include an example of multiple string breaks in Fig. 3.9, an initial pair of

string endpoints q0q̄0 propagate away from each other, and there are two subsequent

string breaks labelled 1 and 2. After both breaks have occurred, the string has been

completely converted into three hadrons: h1, h2, and h3, which have as their quark

content q0q̄1, q1q̄2, and q2q̄0, respectively.

Overall, the string fragmentation has a number of similarites with the indepen-

dent fragmentation scheme. Firstly, there is also a notion of rank ordering, since one

can trace out the history of the hadrons produced from the string fragmentation pro-

cess. Secondly, one can view the whole string fragmentation with a quark-antiquark

pair undergoing independent fragmentation, but with an additional constraint of be-
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ing kinematically entangled, via the so-called left-right symmetry. By having the full

string fragment, the joining procedure required in independent fragmentation be-

comes far simpler, as well as maintaining energy-momentum conservation. The sym-

metric Lund fragmentation function in Eq. 3.8 can be compared to the analogous

fragmentation function in the independent fragmentation scheme:

find.(z) ∼ (1− z)c−1, (3.10)

for a constant c.

The largest difference between the Lund string model and the independent frag-

mentation model is that the latter is unable to describe what is now called the ‘Lund

string effect’ in three-jet events [193–196]. Three-jets events in electron-positron colli-

sions can be attributed to a hard scattering process of e+e− → qgq̄. In the Lund string

model, this configuration of partons are all connected by a long colour string, with a

q−g string and a g−q̄ string, and no string stretched between the quark and antiquark.
The particle density observed between the quark and antiquark jets decreased more

strongly with increasing transverse mass of the produced particles than the particle

density between the gluon-identified jet and either of the two other jets [195]. In the

independent fragmentation model, the reduced particle density between the q and q̄

jets cannot be described, while in the Lund string model, there is no string in this re-

gion, thus the likelihood of particle being produced there is significantly lower. While

independent fragmentation is only of historical interest in contemporary hadroniza-

tion, the iterative cascade process did survive, albeit with some modifications, in the

fragmentation process of the Lund string model.

3.2.3 Other string structures

While the yo-yo mode is an instructive guide to the principles behind the Lund string

model, there are many more aspects to the model. Parton showers create long colour-

chains that connect a quark to an antiquark via a series of gluons, as shown in Fig. 3.10.

In the string model, these connecting gluons act as kinks to the structure of the

straight string as described above. While these gluons add a number of computa-

tional complexities to the mechanics of string motion, the Lund model is extremely
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Figure 3.10: Schematic diagram of the more complicated string topologies that can occur in the Lund
string model: (top left) general strings with gluon kinks, (top right) gluon loops, and (bottom centre)
junctions. Red lines indicate the string segments between the connections, and the black arrows the
momentum vectors of the connected partons.

powerful in its momentum-space description of hadronization, since gluon kinks are

well-motivated in its framework and add very few new parameters.

Other colour topologies that may occur in the string model are: gluon loops,

where there are no quark/antiquark endpoints, and instead two gluons with any

number of gluonic connections between them; and junctions, which are used in

describing baryons, and connect three (anti-)quarks together in a Y-shaped meeting

point. A schematic diagram of these general strings has been included in Fig. 3.10, and

one can build more general and complicated string topologies out of these building

blocks [197]. While they are extremely interesting to study and a necessary part of

modelling hadronization, they are outside the scope of this thesis.

3.2.4 Strings or bags?

One approach to model low-energy QCD has been to use techniques from condensed

matter field theory, namely, to describe the QCD vacuum as a dual5 superconduc-

tor [187, 198]. There are two such types of superconductor: type-I and type-II. In

type-I superconductors it is energetically favourable for field lines to coalesce and vor-

5Dual here meaning the roles of magnetism and electricity have been transposed.
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Figure 3.11: Schematic diagram of a (grey) cluster undergoing fission, and the produced clusters
undergoing decay (creating two black hadrons), or continuing to fission once more. Coloured lines
trace the partonic constituents of the clusters.

tex lines can carry many units of flux, while in type-II superconductors, the vortex

lines may only carry a single unit of flux. Translating these types toQCD leads to two

different QCD models: the bag model [199, 200], and the string model respectively.

The Lund string model is just one model of string-based hadronization and there

are a variety of other approaches [174], such as the UCLA model [201], the Artru-

Mennessier string [202,203], and the CalTech-II model [204], though the Lund string

is by far the most widely used one.

While some results in lattice QCD originally supported a strongly type-II QCD

vacuum [205, 206], more recent lattice studies suggest that QCD vacuum is some-

where between type-I and type-II [207, 208], suggesting that both models will need

to be reconsidered and perhaps married. Work such as rope hadronization [209] has

incorporated these nuances of the boundary between type-I and type-II superconduc-

tors into the more conventional hadronization models. Hadronization physics is ripe

for introducing and adapting well-documented vortex-vortex interaction [210, 211]

phenomena from superconductor physics.

3.3 Cluster Model

The cluster model [28, 166] starts from the notion of preconfinement [212], where

the evolution of partons from the hard process can be calculated with perturbation

theory, up to a ‘preconfinement’ scale. This results in finite mass clusters of colourless
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combinations of partons, decoupled from the scale of the hard process, and indeed

the total centre of mass energy of the collision [92].

The first stage of the cluster model in Herwig is to take partons and put them

on-mass-shell. In particular, a non-perturbative parameter in the cluster model is the

constituent mass of the gluon, mg, which controls how much phase space is avail-

able for the kinematics and flavour of quark-antiquark produced pair. In Herwig, all

quarks are massive during the non-perturbative stages of hadronization modelling,

and the masses used are the constituent masses6. In theory, diquark pairs may be pro-

duced via the same mechanism, though this would only be consistent with showers

that end at a larger cutoff than typical, since at this pointmg would have to be signif-

icantly larger than the shower cutoff. After making every gluon massive with mass

mg, Herwig isotropically splits these gluons into light quarks, with the option for

strangeness production [213]. In Chap. 4, we present a publication which reparam-

eterizes strangeness production during the non-perturbative gluon splitting process,

as well as during the cluster fission and decay (see Sec. 3.3.1). After gluon splitting,

the event only contains colour-connected quark-antiquark pairs, called clusters. Once

all gluons have been split, nearest neighbours in colour space are paired up to form

colourless clusters, i.e. the leading-colour colour-topology produced in the parton

shower is retained. This choice is motivated by the fact that for angular-ordered show-

ers in electron-positron collisions, the nearest neighbours in colour space are nearest

neighbours in phase space [28].

Clusters should be viewed as the highly excited progenitors of the hadrons de-

tected, with a universal mass spectrum at LEP, independent of the hard process scale,

in dijet production in e+e− annihilation. For proton-proton collisions, this universal

mass spectrum property begins to break down, due to the nature of multiple parton

interactions and the corresponding colour structures.

3.3.1 Cluster fission and decay

Like the stringmodel, the cluster model can produce qq̄ pairs from the vacuum, break-

ing the cluster in two. There are two types of this pair-production: cluster fission and

6The constituent mass value of a quark is model dependent, but typical masses for up and down
quarks are approximately one-third of the proton mass, i.e. mu,md ∼ 330 MeV, since three of them
are required to form the proton.
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cluster decay. The two stages are schematically outlined in Fig. 3.11. Heavy clusters

undergo cluster fission, which breaks a cluster up into either two lighter cluster, or a

lighter cluster and a hadron. The latter case may be compared with the string frag-

mentation mechanism, though the exact mechanism and momentum redistribution

may be different.

Clusters too light for fissioning undergo cluster decay, where hadrons are pro-

duced. Clusters produced from fissioning will also undergo cluster decay. In cluster

decay, a cluster may decay into one or two hadrons, depending on the kinematics of

the situation. In the latter case, energy-momentum conservation can be done imme-

diately. In the former, momentum has to be reshuffled with neighbouring clusters in

order to conserve energy and momentum.

3.4 Colour Reconnection

If two MPI have outgoing partons that are close together in phase space, then one

would expect that they can interfere during the parton shower7, due to the limited

number of colours in QCD. However, since the parton shower is formulated in the

leading-colour approximation, interference effects between different colour-ordered

amplitudes are neglected.

Indeed, even if the two MPI did not have an overlap in momentum space, they

must be correlated via some common colour-topology, since they were both pro-

duced from the same initial pair of colourless protons. This ambiguity in the colour

structure of MPI can have drastic effects on the overall colour structure of an event.

As the leading-colour approximation drops suppressed terms of O(1/N2
c ), it is

ignoring corrections that can contribute ∼ 10% for Nc = 3. In precise predictions,

the approximation requires some corrections, one method of which is colour recon-

nection (CR). The historical aspects of colour reconnection on precise measurements

are reviewed in depth in [214]. As the points above highlight, there are two reasons

for including colour reconnection [215]: first, as a corrective measure for small er-

rors in e.g. the leading-colour approximation, which one may refer to as static CR;

7In the purely energy-momentum framework, there is no notion of spatial separation. If one in-
troduces spacetime coordinates, and the parton showers in each MPI occur at shorter scales than the
transverse separation of the two MPI, then the interference effects may be neglected.
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and second, as a means of approximating the dynamical exchange of extremely soft,

long-range gluons between different parts of an event, also known as dynamic CR.

The first example of colour reconnection as it applies to Monte Carlo event gen-

erators arrived with the original MPI model developed in [17], where it was a nec-

essary ingredient to explain the rising average transverse momentum distribution

with respect to multiplicity. Here, colour reconnection rearranged the strings’ colour

topologies to reduce the string ‘length’ λ:

λ =
∑

i,j

ln

(
m2
ij

m2
0

)
, (3.11)

where the sum runs over the string colour-connected pairs of partons i and j. By

minimizing the string length, the total invariant mass of the string is also lowered.

Less massive strings produce on average fewer hadrons, resulting in an increase in the

average transverse momentum.

Colour reconnection is typically implemented in event generators as a non-

perturbative phenomenon, though recent work has aimed to approach the prob-

lem in a number of ways: from a perturbative perspective during the parton

shower [216–218], using perturbative colour evolution as inspiration for new mod-

els [219], or using the colour structure and rules of full QCD to guide the colour

reconnection model [197]. We will now review the different colour reconnection

models in the string and cluster hadronization models.

3.4.1 String-Based CR

Several different models for string-based colour reconnection in Pythia have been

developed since its inception [214]. We have included a schematic diagram of how

colour reconnection can work for an example pair of strings in Fig. 3.12. As men-

tioned above, the original model for string-based colour reconnection was based on

the colour structure produced when generating multiple parton interactions, and

merged partons from an MPI with low-p⊥ with those from a high-p⊥ MPI proba-

bilistically. The CR model is biased towards low transverse momentum MPI, which

have a larger spatial extent, and continues attempting to reconnect increasingly higher

p⊥ MPI systems, with decreasing probability.



3.4. Colour Reconnection 41

q1

q̄1

q2

q̄2

g1

g2

q1

q̄1

q2

q̄2

g1

g2

Figure 3.12: Schematic diagrams of two strings ( left) before colour reconnection, and (right) after.
Colour reconnection can change the colour topology of an event by reconnecting different partons
from two different Lund strings to minimize global string ‘length’. Quark endpoints are denoted as
full circles, and kinks in the structure are connecting gluons (see Fig. 3.10).

Double boson production, e.g. e+e− → W+W−, at LEP in principle provided an

excellent theoretical test-bed for how colour reconnection is tied to spacetime sepa-

ration [220]. The double boson system can decay via hadronic channels, creating a

colour disconnected pair of quark-pair systems: q1q̄1 and q2q̄2. Since the bosons will

decay at different spacetime points, and the quark-antiquark pairs will themselves de-

velop a spatial separation, the colour reconnection model uses spacetime information

to guide the colour-topology modifications. The CR model also had two variants,

one for each type of superconductor (see Sec. 3.2.4). While the model is very power-

ful at modelling the clean environment of electron-positron collisions, it has not been

extended to hadronic collisions yet.

In [197], the colour reconnection model uses the gauge group structure of QCD

to probabilistically modify the colour topology of strings, while also allowing more

complex and rich string structures to form. It also ensures that the colour connections

between the MPI as they are produced from the beam remnant can have non-trivial

colour correlations, as an attempt to go beyond the usual leading-colour MPI colour

structure.

3.4.2 Cluster-Based CR

Since the first step of the cluster model is to kinematically remap the partons to have

their constituent mass, and then to force all gluons at the end of the shower to non-

perturbatively split into qq̄ pairs, cluster-based colour reconnection occurs after this

stage, but before cluster fission and decay.
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Figure 3.13: Schematic diagrams of two clusters ( left) before colour reconnection, and (right) after.
Cluster colour reconnection aims to minimize the sum of the two cluster masses and probabilistically
reconnects the cluster constituents accordingly.

Three different models for cluster-based colour reconnection have been investi-

gated in Herwig 7: Plain [221], Statistical [221], and Baryonic [213]. Plain CR aims

to minimize the sum of cluster masses in a pair-wise fashion, as shown in Fig. 3.13.

For a given cluster, the plain CR algorithm finds the corresponding cluster (if there

is one) that gives the smallest reconnected mass sum, and accepts with a constant

probability. It applies this sequentially to all the clusters in the event, removing any

reconnected clusters as it does so. This model does not find the global minimum

which is not only computationally expensive and unfeasible for environments such

as proton-proton collisions which can have many tens of clusters, but most likely

unphysical, but instead finds a local minimum. It should also be noted that cluster

reconnections that would produce clusters in an octet (i.e. they come from the same

gluon splitting that produced them) are automatically vetoed [221, 222].

Statistical CR is a simulated-annealing [223] method of performing colour recon-

nection, aimed at providing an approximate solution to the mass sum minimization

problem. Statistical CR, much like the plain CR model, aims to minimize the total

sum of cluster masses during its reconnection process. However, rather than consid-

ering each cluster individually and looking for the partner that minimizes the cluster

mass sum of the pair, the statistical CR model selects random pairs of clusters from

the event. Treating colour reconnection as a thermodynamic-type problem, if the

sum of cluster masses is lowered by a potential reconnection, this reconnection is

immediately accepted, with a probability of 1. Otherwise, if the mass sum would

increase, the reconnection is accepted with the probability:

pacc = exp

(−∆λ

T

)
, (3.12)
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where ∆λ =
∑(

m2
post

)
−∑

(
m2

pre

)
≥ 0 is the change in invariant mass sum after

performing colour reconnection. The temperature-type parameter T controls the

number and size of possible mass increases, slowly lowered over the runtime of the

model, analogous to the clusters ‘cooling’ down. While an interesting model, it has

many more parameters than the plain CRmodel, without any sizeable changes in the

comparisons to data [221].

Baryonic CR extends the cluster model from simple qq̄ pairs to also include

so-called baryonic clusters of triplets of (anti-)quarks that then get converted to a

diquark-quark pair during cluster fission and decay. The baryonic CR algorithm

works as follows: for a given cluster, boost back to its rest frame, and search for

clusters that have the largest rapidity span along the given cluster’s quark axis. If the

largest span is aligned in the same direction, i.e. the orientation of the qq̄ systems

is the same, then the type of reconnection will be a baryonic one. The algorithm

will then select the cluster with the second largest rapidity span to perform a bary-

onic reconnection, converting three conventional clusters into two baryonic clusters

(a triple quark cluster and a triple antiquark cluster). If instead the largest rapidity

span is anti-aligned with the given cluster’s quark axis, then the reconnection will be

a so-called mesonic one, analogous to the plain CR algorithm above.

By transforming to the rest frame of a given cluster and using rapidity span max-

imization, the baryonic CR algorithm circumvents the issue of comparing cluster

masses before and after colour reconnection. Baryonic clusters are typically heavier

than the conventional clusters, and indeed, comparing the sum of three masses to

two is somewhat an unbalanced comparison, thus rendering a mass-based CR algo-

rithm unfeasible. By using rapidity span maximization, the baryonic CR algorithm

is able to select cluster constituents that are flying in similar directions, which has

the same physical intuition involved in mass minimization algorithms. One short-

coming of the model is that baryonic clusters cannot be created outside of the colour

reconnection algorithm, nor can they currently re-reconnect, i.e. they can only be

produced, not destroyed. However, recent studies of soft gluon evolution inspired

colour reconnection have allowed baryonic cluster creation and destruction [219].

While the baryonic CRmodel improves Herwig’s description of baryonic observ-

ables, it does not have a spacetime description. This results in an algorithm that does
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Figure 3.14: Evidence for collective effects in proton-proton collisions: ( left) strangeness enhancement
as a function of particle multiplicity observed by ALICE [31] and (right) near-side ridge effect in high-
multiplicity events observed by CMS [35].

not have any notion of spacetime separation and as a result causality. Chap. 5 presents

a framework to introduce spacetime coordinates during the multiple parton interac-

tions and the end of the parton shower. These coordinates combined with rapidity

will then be used as the CR measure that we aim to minimize in the baryonic CR

model.

3.5 Collectivity in Proton-Proton Collisions

While both the Lund string model and the cluster model have had a large amount

of success at describing a wide variety of final-state observables at the LHC, recent

evidence fromALICE and CMS have pointed to some severe shortcomings in the two

approaches. Two major pieces of evidence of collective effects have been reproduced

in Fig. 3.14, namely the strangeness enhancement as final state particle multiplicity

increases observed byALICE, and the near-side ridge effect in high-multiplicity events

observed by CMS, which are discussed below.

Strangeness enhancement has been seen by ALICE [31,33,224] and ATLAS [39],

where it appears to be easier to produce mesons and baryons containing strange
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quarks8 than the Lund string model and the cluster model can explain. In both mod-

els, non-perturbative strangeness production is given by a constant weight that is the

rate of suppression of ss̄ pairs relative to up or down pairs. Due to this probability

being static, the left panel of Fig. 3.14 showcases the utter failure of the Lund string

model to describe strange-containing hadrons as a function of charged multiplicity,

i.e. the total number of charged particles detected. The solid flat line in the left panel

of Fig. 3.14 highlights the Lund string model’s agnosticism to multiplicity, since the

production rate solely depends on the produced quark’s mass, and has no understand-

ing of the dynamics of the event. The two models that are better able to describe the

strangeness enhancement are the Dipsy-implemented9 [226] rope model [209], and

the heavy-ion inspired event generator EPOS [227, 228].

The other major piece of evidence for collective effects is the so-called near-side

ridge seen in high multiplicity events at CMS [35,36]. CMS uses a ‘distance’ measure

between a pair of detected particles i, j, which is defined as:

R2
ij = (ηi − ηj)2 + (φi − φj)2 , (3.13)

where η is the pseudo-rapidity of the particle:

η =
1

2
ln

( |~p|+ pL
|~p| − pL

)
, (3.14)

where ~p is the 3-momentum of the given particle, pL is the longitudinal component,

and φ is the azimuthal angle of the particle’s momentum. Plotting R2
ij in Eq. 3.13 for

every particle pair (excluding self correlations) and normalizing to background corre-

lations, one obtains the right-side set of plots in Fig. 3.14. In the bottom right panel,

there are three distinctive features: a peak at (0, 0) corresponding to intra-jet parti-

cles, i.e. a large number of hadrons all travelling in a collimated spray; a far-side ridge

at ∆φ ∼ π corresponding to energy and transverse momentum conservation; and

lastly, the near-side ridge at ∆φ ∼ 0. It is this final feature that the Lund string model

and the cluster model cannot describe. In heavy-ion collisions, this is a well-known

feature attributed to the quark-gluon plasma (QGP) expanding outwards, creating az-

8Hadrons containing at least one strange quark are sometimes collectively referred to as hyperons.
9It has also been implemented in Pythia and Angantyr [225].
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imuthal correlations as a result of the non-trivial geometric spacetime structure of the

dense medium of the QGP and the resultant impact this structure has on propagating

partons.

The main shortcoming in both of these hadronization models is that the funda-

mental object in each model (the string and the cluster respectively) has almost no

knowledge of any other such object in a given event. Typically the only way to allow

strings or clusters to ‘interact’ with each other is via colour reconnection. Recent

work suggested that colour reconnection [229] can produce some of the flow-like

correlations detected. As described in Sec. 3.4.2, baryonic colour reconnection [213]

was developed to better model strangeness enhancement and the overall description

of baryon production in Herwig 7, using the results from ALICE [31] as inspiration.

Similarly, the effects of colour reconnection on hadron-flavour observables in Pythia

were studied in [230]. While these studies on colour reconnection have shown some

promise, there are no conclusive results yet.

There have been a wide variety of attempts to model the collective phenomena

at the hadronization level. A study of the string fragmentation model in Sec. 3.2.2

investigated modifications to the transverse momentum distribution inspired by ther-

modynamics [231]. Rope hadronization [209] allows nearby strings to form a colour

rope of a higher colour-multiplet. The roots for the rope and shoving model lie in

results from lattice QCD [183,232], which found Casimir scaling in the potential be-

tween highermultiplets compared to the baseline potential between a quark-antiquark

pair. Interpreting this as an increase in string tension and building so-called ropes out

of the Lund strings, the rope model was able to better describe the enhancement of

strangeness and baryon production via the popcorn mechanism.

The shoving model [233, 234] pushes overlapping strings apart transversely by

adding a series of very soft gluon kicks to each string. EPOS [227, 228, 235] uses a

hadronization model based on string density, whereby strings produced on the pe-

ripheries of a collision, called the corona, act as if they are in relative isolation. Mean-

while, strings produced in the centre of a collision, called the core, will hadronize

collectively in a heavy-ion inspired manner. In Chap. 6, we present a framework

to allow two strings to interact with each other by compressing longitudinally and

repelling off each other transversely during string fragmentation.
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Strangeness in the Cluster Model

Just as the strong coupling αs runs, as discussed in Sec. 2.2, the masses of quarks enter-

ing into the QCD Lagrangian in Eq. 2.6 must also be renormalized and consequently

they scale with energy. This scaling is dependent on the renormalization scheme one

chooses. A typical choice is the M̄S scheme [43, 47, 68], a modification of the mini-

mal subtraction scheme [236,237]. The so-called ‘current’ masses are calculated in an

analogous fashion to the steps for the strong coupling. Current masses are not suit-

able for non-perturbative, low-energy physics, since their definition and calculation

belong to the perturbative regime. If the current masses in Tab. 2.1 are used in Eq. 3.7

for the Lund string model, the relative production rate for up : down : strange quarks

is approximately 1 : 1 : 0.87, suggesting that strangeness is produced at roughly the

same rate as up and down quarks.

Another mass for quarks is the so-called constituent mass, where hadrons (and

their mass) are created by “gluing” together constituent quarks. The masses of con-

stituent quarks is calculated by comparing the quark content of hadrons, singling out

the appropriate flavour, and taking the effectivemass difference. This provides a rough

effective mass for a valence quark caused by the interaction of the valence quark and

the sea gluons and quarks. Using constituent quark masses of mu = md = 330 MeV

andms = 486 MeV in Eq. 3.7, results in a drastically different set of production rates:

1 : 1 : 0.14. Due to the ambiguity in the choice of quark masses, strangeness produc-

tion at the non-perturbative level in both the string and cluster model is implemented

as a tuneable free parameter of the model. For example, in Pythia, the production

rates of strange quark-antiquark pairs relative to up or down pairs is approximately

47
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0.22, which is somewhat close to the constituent masses value seen above.

However, having this free tuneable parameter is not a fully satisfactory solution,

for several reasons. Firstly, while these constant weights are useful parameters in tun-

ing and modelling average effects in event generation, they offer no insight into how

the topology of the event impacts the rate of strangeness production. Recent exten-

sions to the string model [209,231] have demonstrated that modifying the strangeness

production rate according to the environment in a given event can give a better de-

scription of the strangeness enhancement that has been seen by ALICE.

Secondly, as we show in Sec. 4.1, the values of the cluster strangeness produc-

tion rate that result from tuning to e+e− data and LHC minimum bias data in-

dependently do not match up well, and present vastly different explanations of

strangeness production during the cluster evolution in the cluster model. In particu-

lar, at e+e−, strangeness production is preferred during the cluster fission and decay

stages, while at LHC, the main source of non-perturbative strangeness arises from the

non-perturbative gluon splitting mechanism.

In the publication presented in Sec. 4.1, we study the modelling of the sources

of non-perturbative strangeness in the cluster model in Herwig. We devise a sim-

ple model that reparameterizes the strangeness production for the three main stages

of cluster physics: production, fission, and decay. The model is motivated by the

strangeness enhancement seen at ALICE [31], and changes the relative production

rates from constant average weights to dynamic probabilities that depend on the

topology of a given event. The reparameterization uses the invariant mass of the

relevant system in a given stage of the cluster model. We present two tunes for the

new parameterization, one for e+e− and one for LHC minimum bias respectively,

and show an improvement in the description of Kaon production rates (the lightest

hadron containing a strange quark).
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Abstract We present a modification to the non-perturbative
strangeness production mechanisms in the Monte-Carlo
event generator Herwig in order to make the processes more
dynamic and collective. We compare the model to a series of
observables for soft physics at both LEP and LHC.

1 Introduction

The non-perturbative elements of simulating LHC events
remain an active area of research in light of recent ALICE and
CMS data [1,2]. Signs of strangeness enhancement and col-
lective effects in high multiplicity events respectively have
inspired several phenomenological models, ranging from
interacting strings [3,4], to relativistic hydrodynamics [5],
to tweaks to the existing multiple parton interaction mecha-
nisms [6] and colour reconnection [7,8] models. Monte Carlo
event generators [5,9–11] provide a useful testing ground for
these models.

Arguably the most successful models of hadronization
which try to reproduce strangeness enhancement in high-
multiplicity events are rooted in the physics of collectiv-
ity, where the dense environment of high multiplicity events
leads to more complicated systems which interact with one
another. Heavy ion event generators typically prefer a hydro-
dynamic viewpoint, where the quark-gluon plasma acts as
a perfect fluid, changing the dynamics of hadronization.
High-energy pp event generators tend to use sophisticated
iterations of the more conventional proton collision tech-
niques, such as the DIPSY rope model where several overlap-
ping Lund strings [12] combine into a higher-representation
colour field, which then may enhance strangeness production
and may also shove each other transversely outwards, mim-
icking the fluid behaviour of quark-gluon plasma. Another
model [13] has attempted to use a thermodynamics inspired

a e-mail: cody.duncan@monash.edu

route to string fragmentation and was able to explain a harder
transverse momentum spectrum for heavier particles.

Herwig [9] has recently developed a new model for colour
reconnection, where baryonic clusters were allowed to be
produced in a geometric fashion [8], in an attempt to explain
the results of [1]. The model was able to create heavier
hadrons, and in particular more baryons, but in order to better
describe the data, the non-perturbative gluon splitting mech-
anism was allowed to produce ss̄ pairs as well as the default
lighter species. However, the production weight was sim-
ply set to a flat number, tuned to Minimum Bias events at
the LHC. In this paper, we will mainly focus on the fun-
damental mechanisms of strangeness production in cluster
hadronization, namely the production rate of ss̄ pairs during
non-perturbative gluon splitting, cluster fission, and cluster
decay. In doing so, we are taking the first steps to a rework of
strangeness production in the Herwig hadronization phase. A
full model would also need to consider colour reconnection,
since this rearranges the colour topology and thus the mass
distribution inside an event, affecting the scaling that we are
interested in studying.

In this study, we aim to introduce a simple dynamic model
of strangeness production in Herwig, in which each non-
perturbative production stage uses the kinematic informa-
tion of the relevant surrounding colour-singlet system. After
reviewing the current mechanisms of hadronization in Sect. 2,
we perform two separate tunes to a number of light strange
meson observables for LEP and LHC Minimum Bias events
in Sect. 3. We show that the tuned current strangeness pro-
duction parameters are drastically different between the two
collider types, and propose a mass-based scaling for the rel-
evant production weights in Sect. 4, comparing two different
mass-like measures to scale the probability. In Sect. 5, we
tune our new model and compare the results with the old
model in Herwig, as well as perform a comparison to the
default Lund string model in Pythia [10] with the Monash
tune [14]. We briefly summarize the work and possible future
avenues for research in Sect. 6.
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2 The Herwig Hadronization Model

To accurately describe a full QCD event, one must be able
to model the non-perturbative physics contributions, e.g.
hadronization of individual quarks & gluons from the parton
shower and the multiple parton interactions to form colour-
singlet hadrons.

Figure 1 sketches a schematic event, focusing on the final
state. After generating a hard matrix element for the event,
Herwig performs a parton shower, producing a number of
soft and collinear partons. After the parton shower reaches
O(1) GeV, the hadronization phase of simulation occurs. In
Herwig, the hadronization model is the cluster model [15],
based on the colour preconfinement [16] property from the
angular-ordered parton shower. A cluster can be considered
to be a highly primordial, excited colour-singlet qq̄ pair.

There are several parts to the hadronization model in Her-
wig, in the following algorithmic order:

• Non-perturbative gluon splitting,
• Colour reconnection,
• Cluster fission,
• Cluster decay to hadron pairs,
• Unstable hadron decays.

In Fig. 1, we have omitted colour reconnection since this step
simply changes the colour topology of the event, not the con-
tent of the clusters. While modifying the colour reconnection
algorithm would have a non-trivial impact on the later stages
of hadronization, namely cluster fission and decay, it is out-
side the scope of this paper, but these correlations will be
studied and addressed in future work. Since the scope of this

Shower Parton Splitter Fission Decay

Fig. 1 Figure of a simplified event where we show the major stages
of hadronization after the parton shower that can contribute to non-
perturbative strangeness production. Grey ellipses are clusters, while
black are hadrons

project is mainly focused on light strange hadron production,
we tune predominately to pion and kaon observables. We will
also ignore unstable hadron decays for the purposes of this
paper.

The three other listed stages in hadronization are each
allowed to contribute to the overall strangeness in the event,
since they each produce new qq̄ pairs. We briefly recall the
details of each step as presented in depth in [9].

2.1 Non-perturbative gluon splitting

Once the parton shower ends, all gluons undergo a non-
perturbative splitting into qq̄ pairs. The species of the pair
is determined by a given weight, e.g. in the tune from [8]
the weights of up, down, and strange are 2:2:1. The default
version of Herwig does not allow for strangeness production
at this step, only uū and dd̄ pairs. The only constraint on
the gluon splitting is that the gluon mass is at least twice the
constituent mass of the species in question, and the gluons
are split isotropically.

After all the gluons in an event have been split, nearest
neighbours in momentum space are most likely to be nearest
neighbours in colour space [16], and clusters are formed from
the momentum-space neighbouring qq̄ pairs, with a mass
distribution decoupled from the hard scattering process that
created them.

2.2 Cluster fission

Exceptionally heavy clusters are allowed to fission into two
lighter, less excited clusters if the mass M of the original
cluster satisfies the condition:

Mp ≥ q p + (m1 + m2)
p, (1)

where p and q are parameters that control the fissioning rate
criteria, and m1,2 are the parton masses of the heavy clus-
ter. In Herwig, p is given separate values for light quarks
(u, d, s), charm, and bottom. The light quark weights are
further subdivided, and strangeness is suppressed by a flat
weight. q has a similar divide between the quark species.

After selecting clusters to fission, the cluster fissioner pro-
duces a qq̄ pair from the light quarks with a fixed weight, dis-
tinct values for each flavour of quark (bar top), and diquarks.
Each parton from the pair go into a separate cluster, giving
the new pair of clusters a mass distribution of:

Mi = mi + (M − mi − mq)R
1/w
i , (2)

where w is the splitting parameter that controls the rate of
splitting for clusters containing different species of quarks.

123
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2.3 Cluster decay

The last stage of cluster-based physics is at the cluster decay
level, in which clusters decay into excited hadrons. Given
a cluster with constituents q1, q̄2, the weight for producing
hadrons ha = q1q̄, hb = qq̄2, where q denotes a quark or
diquark species, is given by:

W(ha, hb) = Pqwasawbsb p
∗
a,b, (3)

where Pq is the production weight for the given quark or
diquark species, wi are the weights for the relevant hadron
production, and si are the suppression factors for the corre-
sponding hadrons. The final factor in the weight is the two-
body phase space factor that controls how readily the cluster
can decay into the two chosen hadrons.

2.4 Herwig strangeness parameters

The Herwig parameters that control non-perturbative
strangeness production are the gluon splitting weight -
SplitPwtSquark, and the cluster fission & decay weight
- PwtSquark. In the original model, cluster fissioning and
cluster decaying are controlled by the same parameter. The
first step in our understanding of the different contributions
is to disentangle cluster fission from cluster decay and intro-
duce one additional parameter which controls the production
of a ss̄ pair during cluster fission - FissionPwtSquark.
The decay parameter remains the same.

3 Tuning of the existing model

In this section we tune the parameters for strangeness pro-
duction of the existing model first to LEP and then to LHC
data. Hadronization models are typically tuned to LEP data
if they do not rely on pp-specific event topology, e.g. mul-
tiple parton interactions and their effects on colour recon-
nection, since LEP provides a clean QCD final state envi-
ronment which imposes relatively strict constraints on what
one’s hadronization model is allowed to do.

The tuning is achieved by using the Rivet and Profes-
sor frameworks for Monte Carlo event generators [17,18]. In
order to understand the overall effects of strangeness produc-
tion on different stages of the event generation, we keep all
other hadronization parameters that were previously tuned
to LEP data at their default values [9,19]. In the first tune
(TUNE1), we only consider the effects of the parameters
that are directly responsible for strangeness production as
explained in Sect. 2.

In a second tuning attempt (TUNE2), we introduce the
new parameter for the cluster fission stage. Tuning these
3 different parameters will allow us to study the phases of
strangeness production during event generation and will shed
light on the differences between LEP and LHC.

We note that this section is an extended part of the intro-
duction to visualize and highlight the effects of the afore-
mentioned different parameters and to see at which stage
non-perturbative strangeness production is preferred.

3.1 LEP tuning

For the tuning to LEP data, the following observables from
ALEPH [20,21], DELPHI [22], SLD [23] and PDG hadron
multiplicities [24], which represent a good description of
event shapes and π , K multiplicities, were used with equal
weights:

• Mean charged multiplicities for rapidities |y| < 1.0,

|y| < 1.5 and |y| < 2.0
• K 0 spectrum
• Mean π0 multiplicty
• Mean KS + KL multiplicity
• Mean K 0 multiplicity
• Mean π+/π− multiplicty
• Mean K+K− multiplicity
• Ratio (w.r.t π±) of mean K± multiplicity
• Ratio (w.r.t π±) of mean K 0 multiplicity
• K± scaled momentum

The resulting parameter values for the two different tunes are
listed in Table 1.

While being able to describe all the considered LEP data
on equally good footing, we improve the simulation of the
observables which were considered in the tuning procedure.
TUNE2 gives better agreement to the data, at least with
respect to the K± multiplicity, highlighting the necessity to
disentangle the cluster fission and cluster decay parameters.
The corresponding plots are shown in Fig. 2, where we com-
pare the default version with our two new tunes.

Table 1 Results of the parameter values for strangeness production
at the different stages of the event generation (LEP). In both default
Herwig and TUNE1, cluster fission and decay have the same parameter.
In TUNE2, they are allowed to be different, but the tuning procedure
returned equal values. In default Herwig, there is no g → ss̄ option

LEP Default TUNE1 TUNE2

Gluon Splitting – 0.24 0.19

Cluster Fission 0.66 0.53 0.69

Cluster Decay 0.66 0.53 0.69
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Fig. 2 Measurement of K± multiplicities at SLD [23] and K 0 spectrum as measured at ALEPH [20] for
√
s = 91.2 GeV. We show a comparison

between the default Herwig model and our two different tunes

3.2 LHC tuning

For the tuning to LHC data, we solely focus on identified
particle distributions which were measured at ALICE [25]
and CMS [2]. We limit the tuning to a center of mass energy
of

√
s = 7 TeV due to the lack of suitable available Rivet

analyses at higher energies. The following observables were
considered in the tuning procedure with equal weights:

• K+ + K− yield in INEL pp collisions at
√
s = 7 TeV in

|y| < 0.5
• K/π in INEL pp collisions at

√
s = 7 TeV in |y| < 0.5

• K 0
S rapidity distribution at

√
s = 7 TeV

• K 0
S transverse momentum distribution at

√
s = 7 TeV

The resulting parameter values are shown in Table 2.
The outcome of the tuning procedure is shown for the pT

distribution of K+ + K− yields and the K/π ratio in Fig. 3.
Again the retuning of the default model with the incor-

poration of an additional independent parameter at the clus-
ter fission stage improves the description of the considered
observables significantly.

3.3 Summary

The general approach in tuning a hadronization model is to
tune the parameters to LEP data and then assume it is able
to describe LHC observables as well since hadronization is
assumed to factorize and should not depend on the process
involved.

Table 2 Results of the parameter values for strangeness production
at the different stages of the event generation (LHC). In both default
Herwig and TUNE1, cluster fission and decay have the same parameter,
while in TUNE2 they are allowed to be different. In default Herwig,
there is no g → ss̄ option

LHC Default TUNE1 TUNE2

Gluon Splitting – 0.95 0.95

Cluster Fission 0.66 0.05 0.02

Cluster Decay 0.66 0.05 0.25

The main difference between LEP and LHC is the denser
hadronic environment one encounters due to multiple parton
interactions and therefore also the enhanced effect of colour
reconnections on the distribution of final state particles. Be
that as it may, we believe that the probability to produce
strangeness e.g at the stage of non-perturbative gluon split-
ting should be a universal parameter and be independent of
the process in question.

Since the data shows that clearly different parameter val-
ues are preferred at LHC and LEP the approach to have a
single valued probability is not suited for the description of
both LHC and LEP observables. It may capture the average
effect but it does not allow for fluctuations on an event-by-
event basis. We tackle this problem by assuming that the rate
at which strangeness is produced depends on the hadronic
density of the immediate environment, which will be dis-
cussed in the next section.
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Fig. 3 Transverse momenta spectra for K+ + K− and K/π ratio as measured by ALICE[25] at
√
s = 7 TeV in the central rapidity region. We

show a comparison between the default Herwig model and our different tunes.

4 Kinematic strangeness production

As mentioned above, the various splitting probabilities and
weights are flat numbers tuned to data, without any considera-
tions for the topology of a given event. In order to have a more
dynamic picture, where the splitting probabilities depend on
the environment, we choose to scale the weights with respect
to colour-singlet masses. The mass of a colour-singlet system
at a given phase of hadronization scales the probability for
strangeness production up or down, depending on a charac-
teristic mass scale for each step.

As a simple starting point for mass-based power scaling,
we replace the flat weights in each of the steps mentioned in
Sect. 2 with the following functional form:

ws(m)2 = exp

(
−m2

0

m2

)
, (4)

where m2
0 is the characteristic mass scale for each phase, and

m2 is the total invariant mass of the relevant colour-singlet
system. In this work, we will introduce another mass-based
measure which replaces m2 in the denominator of Eq. 4: the
threshold production measure, λ. We discuss the difference
in the two approaches in Sect. 4.3. For now, we will continue
to use the total invariant mass as an example in the following
sections.

The weights in Eq. 4 are only for strangeness production,
and they are relative to the production weights of up and down
quarks. In the limit of a very heavy colour-singlet, the rate of
producing strangeness will be the same as that of the lighter
quarks, while in the low-mass limit, only the lighter quarks

will be allowed to be produced. The appeal of an exponential
scaling is that this model only introduces one extra parameter
to the default model of hadronization in Herwig, and indeed,
it does not introduce any extra parameters if one splits the
fission and decay parameters. Thus we avoid a proliferation
of parameters in our model, and we still have a natural mech-
anism to allow for event-by-event fluctuations in strangeness
production.

The scaling of the production rate in Eq. 4 only applies to
ss̄ pairs, and not to any diquarks containing strange quarks.
Default Herwig does not allow gluons to non-perturbatively
split into diquark-diantiquark pairs, nor does it allow these
pairs to be produced during cluster fissioning and decay.
Diquarks may only be produced as remnants of the incom-
ing baryons, or from baryon-number violating processes
[9]. Since diquark species would fundamentally affect the
baryon yields, which we are not studying in this work, we
leave diquark production considerations to a future rework
of baryon production in Herwig.

4.1 Non-perturbative gluon splitting

At the end of the shower, instead of immediately splitting
the gluons into qq̄ pairs with the species determined by their
given weights, we instead collect the various colour-singlet
systems in the event, what we call pre-clusters. While colour
preconfinement dictates that the mass distribution of clusters
is independent of the hard energy scale, there are no such
constraints on the masses of the colour-singlet pre-clusters.
As shown schematically in Fig. 6, a parton shower can pro-
duce gluons and quark-antiquark pairs at a perturbative level,
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Fig. 4 Mass distributions for colour-singlet systems immediately before the Parton Splitter, Cluster Fissioner, and Cluster Decayer steps in LEP
and LHC Minimum Bias events. Note the different mass axis scales

Fig. 5 Comparison of LEP and LHC Minimum Bias mass spectra of clusters immediately before cluster fission and cluster decay

separating the event into a number of different pre-clusters
with a variety of masses.

Every gluon in the same pre-cluster will get the same
weight, since they belong to the same colour-singlet sys-
tem, and thus have the same mass measure for strangeness
production, but since the species is picked probabilistically,
this does not mean that all the gluons will produce strange
quark-antiquark pairs. The constraint from default Herwig
still applies, namely that even in situations where there is a
very heavy pre-cluster, if a gluon cannot access the phase
space necessary to split into a ss̄ pair, then it will undergo
the usual splitting to up or down quarks.

The characteristic mass scale for pre-clusters will unfor-
tunately depend on the type of collider one uses. As shown
in Fig. 4, there is a very broad tail for the proton colliders
due to the number of pre-clusters that one can produce. This
is a by-product of the type of dense and complicated final
state environment of high energy hadron colliders. At LEP,
there are two peaks for the pre-cluster mass distribution, one

at close to 91.2 GeV, corresponding to events where there
are only gluon emissions from the outgoing qq̄ legs from
the hard scattering process, and very few colour-singlets fall
between the two peaks, due to the simple fact that perturba-
tive gluon splitting is suppressed compared to perturbative
gluon emission.

4.2 Cluster fission and decay

At the cluster fission and cluster decay level, the colour-
singlet is the cluster itself. We allow the characteristic mass
scale and characteristic production probability to be dif-
ferent for the two phases. As shown in Fig. 5, the typi-
cal cluster masses at the cluster fission and cluster decay
stages are roughly similar for both LEP and LHC, which we
hope to reflect in the characteristic mass scales for the two
tunes. We note that Figs. 4 and 5 are plotted without turning
on the exponential scaling, which would change the mass
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Fig. 6 Schematic topology of colour-singlets that can occur from per-
turbative gluon and quark shower splitting, before the gluons undergo
non-perturbative splitting

distribution slightly, but the figures are benchmarks of the
typical colour-singlet total invariant masses.

4.3 Colour-singlet masses

In the previous sections we have used the total invariant mass
of the colour-singlet systems as the mass measure in Eq. 4, but
there are issues with this approach. In using the total invariant
mass of a given colour-singlet to scale the strangeness weight,

Table 3 Results for the tuned
characteristic mass scales m0, in
units of GeV, of our new model
using the total invariant mass of
a colour-singlet object for LEP
and LHC tunes respectively

Invariant mass LEP LHC

Gluon Splitting 97 48

Cluster Fission 3 22

Cluster Decay 23 4

we have neglected to take into account the massive nature of
the partons in the pre-clusters and clusters. We argue that
given two colour-singlets of the same total invariant mass, if
one cluster has much heavier endpoints or constituents that
the other, then the one with lighter endpoints or constituents
should more readily produce ss̄ pairs from the vacuum (Fig.
6).

To remove the biasing effects of massive constituents, we
have implemented another mass measure:

λ = m2
cs −

(∑
i

mi

)2

, (5)

where m2
cs is the total invariant mass of the colour-singlet

system, and mi are the invariant masses of the endpoints for
pre-clusters or the constituent partons in a cluster.

Gluons are massive in Herwig, but because their masses
are used to produce the ss̄ pair, we do not include them in
the subtraction term. The λ measure would replace the mass-
based denominator in Eq. 4. We have presented the distri-
butions of the λ measure for each of the stages in Fig. 7,
and a comparison between the distributions of the two mass
measures in Figs. 9 and 8. The λ measure has the appealing
feature that if one produced a ss̄ pair at the gluon splitting
level, this extra mass wouldn’t propagate extra strangeness
enhancement further into the hadronization process.

Fig. 7 Threshold mass, λ, distributions for colour-singlet systems immediately before the Parton Splitter, Cluster Fissioner, and Cluster Decayer
steps at LEP events at 91.2 GeV and LHC Minimum Bias events at 7 TeV
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Fig. 8 Comparison of the two different mass measures for the cluster fission and cluster decayer stages respectively for LEP events at 91.2 GeV

Fig. 9 Comparison of the two different mass measures for the cluster fission and cluster decayer stages respectively for LHC Minimum Bias events
at 7 TeV

5 Analysis

We first tune the 3 parameters of our mass-based scaling
model to the same identified strange particle yields at LEP
and LHC as in Sect. 3. The new tunable parameters are
MassScale (for gluon splitting), FissionMassScale,
and DecayMassScale, which are defined by Eq. 4. The
outcome of the tuning procedure for the relevant parameter
values is shown in Tables 3 and 4 for LEP and LHC Mini-
mum Bias, for both the total invariant mass measure and the
λ measure.

With the three new characteristic mass scales, we are
able to improve the description of all observables considered
in the tuning especially for LHC observables as shown in
Fig. 10, where we compare the two different mass measures
after tuning, as well as the Monash tune [14] for Pythia.

Although the simple tuning recommends different values
for the usage at LHC and LEP it is also feasible to use the
set of parameters obtained from the tuning to LHC data and

Table 4 Results for the tuned
characteristic mass scales m0, in
units of GeV, of our new model
using our λ measure (defined in
Eq. 5) of a colour-singlet object
for LEP and LHC tunes
respectively

λ measure LEP LHC

Gluon Splitting 72 37

Cluster Fission 4 20

Cluster Decay 16 10

still get improved results for LEP observables which was not
possible by having a simple flat number as the probability to
produce strange quarks as is shown in Fig. 11.

5.1 Discussion

The default version of Herwig did not allow for strange pro-
duction during the gluon splitting stage. By allowing this
process, improvements can be seen in all the considered
observables. With our new model, there is a more physically
motivated dynamic strangeness production mechanism at all
stages of the hadronization.
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Fig. 10 K+ +K− yield and K/π ratio as measured by ALICE [25] at
7 TeV. Shown is a comparison between the default version of Herwig
(without baryonic reconnection), i.e. static production of strangeness,

the new approach which introduces dynamical strangeness production
with the two different measures (Mass and Lambda) and Pythia with
the Monash tune

Fig. 11 Measurement of K± multiplicities at SLD [23]
√
s =

91.2 GeV. We show a comparison between the default Herwig model
and the dynamical strangeness production where we used the LHC-
tuned parameters (see Tables 3 and 4) and Pythia with the Monash tune

The multiple parton interaction model in Herwig involves
two types of subprocesses, hard and soft. Hard processes are
allowed to shower and emit quarks and gluons, while soft
ones produce only gluons which may not shower. These soft
gluons are all colour-connected to each other and the beam
remnants, resulting in a single pre-cluster when undergoing

non-perturbative gluon splitting. This type of pre-cluster typ-
ically has a large invariant mass due to the large number of
soft gluons and the isotropic nature of their momentum dis-
tribution, resulting in a high strangeness production weight
for this subsystem. The resulting produced strange particles
coming from these soft interactions are distributed uniformly
in rapidity.

There are three key differences between the LEP and LHC
environments during hadronization. Firstly, LEP has a much
lower energy scale than the LHC, naturally limiting the pos-
sible distribution of colour-singlet masses at the stage of non-
perturbative gluon splittings. As a result, a direct comparison
between LEP and LHC in our model is not straightforward.

Secondly, while LEP and LHC simulations may have very
similar cluster mass distributions, the number of clusters is
far higher for the latter. Similarly, at the pre-cluster level,
LEP prefers colour-singlets that span the entire final state, as
shown in Fig. 4, i.e. no perturbative gluon splittings during
the parton shower. This results in the majority of events either
having enhanced strangeness production or none at all, at the
gluon splitting level, meaning that a flat weight at this level
in hadronization can be justified for LEP runs.

Finally, and related to the previous two, LEP is a much
cleaner environment. For lepton collisions, there are no mul-
tiple parton interactions, nor much effect from colour recon-
nection. However, in proton collisions, these are both vital
phases of the simulation that drastically change the mass
topology of the event.
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Table 5 Expected value of strangeness production weight of our new
model in LEP events at 91.2 GeV, comparing the total invariant mass
results with the λ measure results

E(ws) at LEP Mass λ

Gluon Splitting 0.096 0.164

Cluster Fission 0.297 0.166

Cluster Decay 0.009 0.016

Table 6 Expected value of strangeness production weight of our new
model in LHC Minimum Bias events at 7 TeV, comparing the total
invariant mass results with the λ measure results

E(ws) at LHC Mass λ

Gluon Splitting 0.555 0.571

Cluster Fission 0.018 0.020

Cluster Decay 0.153 0.041

Taking the characteristic mass scales from Tables 3 and 4,
we have translated these into an effective expected value for
the weights for the two mass measures. For LEP events, as
shown in Table 5, the total invariant mass approach prefers
cluster fissioning, while for the λ measure, non-perturbative
gluon splitting and cluster fissioning are approximately the
same. It should be noted that aside from the gluon splitting
weights, there is no direct translation between the kinematic
picture and the old model of strangeness production, but these
expected values give an idea of the average weights. For
gluon splitting at LEP, the weight simply varies between 0
and the maximal value, since pre-clusters are predominately
situated around two peaks, as shown in Fig. 4, and the value
shown in Table 5 is simply half the maximal value of 0.192
in the invariant mass case, and 0.328 for the λ measure.

For LHC Minimum Bias events, the expected value for
the weights are shown in Table 6. There is very little dif-
ference between using the two mass measures at the gluon
splitting and cluster fission stages, while cluster decay is sig-
nificantly suppressed when using the λ measure. The enor-
mous suppression of strangeness production during the later
stages of hadronization compared to the gluon splitting is
almost certainly a hint that colour reconnection plays a non-
trivial role in producing strange hadrons. Our new kinematic
model uses a mass-based scaling, but colour reconnection
aims to lower the cluster masses to some local minimum,
meaning that it is in direct conflict with our considerations.
For LEP simulations, colour reconnection has a small effect,
while in LHC simulations, colour reconnection is a vital phe-
nomenon. Future work will study the correlations between
the role colour reconnection plays and our model, in partic-
ular, varying the amount of colour reconnection that takes
place in an event, and allowing baryonic clusters to form.

Our studies showed that there is virtually no quantitative
difference between using the tuned invariant mass parameters
and the tuned λ measure parameters. However, the results in
Tables 5 and 6 suggest that the λ measure bridges the divide
between the two types of collision better.

We have also compared the results of our new model with
Pythia and the Monash tune in Figs. 10 and 11. While the
Monash tune aims to describe a number of observables other
than the strangeness production rate in Pythia, it is tuned to
both LEP and LHC data [14], making it an apt benchmark
for this discussion.

We can see that our model performs marginally better
than Pythia, and significantly better than default Herwig,
when trying to describe the K± and drastically better on
both counts for the K/π ratio yields, as shown in Fig. 10.
However, in the low-p⊥ region, both Pythia and our model
overestimate the data. When using LHC Minimum Bias tuned
parameters for LEP simulations, our model outperforms the
default Herwig model, but Pythia describes the data better,
as shown in Fig. 11.

We expect that changing non-perturbative strangeness
production scaling should not change the overall event-shape
observables, such as the Sphericity, and total jet broaden-
ing. We have included several of these observables from
ALEPH data [20,21] in Fig. 12, to confirm that there are
only minor statistical differences between default Herwig 7
and our new scaling when one is concerned with non-species
specific observables.

While we have not fully solved the discrepancy between
the weights for LEP and LHC strangeness production, we
have achieved two results: firstly, we have narrowed the gap
between the weights of the two types of collision, and in
particular, our model can be used with LHC Minimum Bias
tuned parameters to better describe LEP data. Secondly, we
have made the first steps to a more sophisticated treatment
of hadronization and pair production at the low-energy scale
in Herwig.

6 Conclusion and outlook

We have introduced a three-part model that scales the prob-
ability for strangeness production during the hadronization
phase of event generation in Herwig. The scaling is directly
controlled by the mass of the corresponding event colour-
singlet subsystem at each step. With this mechanism, we
allow for greater fluctuations in the production of strange
pairs on an event-by-event basis.

We have studied the mechanism for non-perturbative
strangeness production in detail and found that the current
flat probability model is irreconcilable with both LEP and
LHC data. A hadronization model should be able to have
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Fig. 12 Event-shape observables from ALEPH [20,21], comparing the results of default Herwig to our new LEP tuned non-perturbative strangeness
production scaling, for both mass and λ measures. The new scaling does not impact on event-shape observables

minimal effects on LEP simulations, but produce significant
effects for LHC simulations.

After allowing a mass-based scaling, and tuning the
parameters to LEP and LHC data, we find that we are able
to narrow the gap between the two collider types, and able to
describe some observables better than the Lund string model
in Pythia with the Monash tune. We also provide expected
values for non-perturbative strangeness production, which
capture the average values for event-by-event fluctuations.

It should be noted that we have not considered heavier
hyperons, the production of which has been shown to be
increased by creating baryonic clusters at the colour recon-
nection stage [8]. Baryonic clusters, which are heavier by
nature, would modify our model’s strangeness production
rates. Understanding the interplay between our new model
and colour reconnection will be left for future work.

There is still much left to understand in soft physics, but
understanding the correlations created between the various
models in hadronization are imperative to having more pre-
cise and useful Monte Carlo event generators.
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62 4. Strangeness in the Cluster Model

4.2 Errata for Kinematic Strangeness Production in

Cluster Hadronization

1. In §2, paragraph three, the statement: “In Fig. 1, we have omitted colour recon-

nection since this step simply changes the colour topology of the event, not the content

of the clusters.” is misleading. The revised statement should read: “In Fig. 1, we

have omitted colour reconnection since this step simply changes the colour topology

of the event, not the quark content of the event.” where boldface indicates the

change.

2. In §2.1, paragraph two, the sentence: “After all the gluons in an event have been

split, nearest neighbours inmomentum space aremost likely to be nearest neighbours

in colour space [16], and clusters are formed from the momentum-space neighbour-

ing qq̄ pairs, with a mass distribution decoupled from the hard scattering process

that created them.” has a typographical error. The sentence should read: “After

all the gluons in an event have been split, nearest neighbours in momentum space

are most likely to be nearest neighbours in colour space [16], and clusters are formed

from the colour-space neighbouring qq̄ pairs, with a mass distribution decoupled

from the hard scattering process that created them.” where boldface indicates the

change.

3. In Table (1), the second parameter tune values (right most column) are 0.690,

and 0.685 for cluster fission and cluster decay respectively. As discussed in the

text, the parameters were decoupled, but tuning resulted in similar values.

4. In Figure (11), the labels “LEP-Mass” and “LEP-Lambda” are erroneous. They

should read “LHC-Mass” and “LHC-Lambda” since they are the LHC-tuned

parameters applied to e+e− data.

5. The work compares the new strangeness production model against LHC min-

imum bias data, and what we call “LEP data”. While most e+e− plots in the

work compare to data from LEP, in Figure (2) left pane, and Figure (11), the

work compares of the model to SLD data [238], which was actually an experi-

ment at the SLAC National Accelerator Laboratory. It is more accurate to say

“e+e− data” in the work.



5

Spacetime Coordinates and

Hadronization

Multiple parton interactions (MPI) modelling forms a key part of describing proton-

proton collisions. Pythia [239] and Sherpa generate MPI ordered in decreasing trans-

verse momentum [17] and extract partons with an on-average decreasing momentum

fraction, in such a way that the sum of these fractions never exceeds unity, thereby

ensuring energy and momentum conservation. Herwig uses the eikonal model pre-

viously implemented in JIMMY [159], which we outline below. A detailed review of

the eikonal model can be found in [92].

Generating MPI with perturbative QCD techniques requires knowledge of multi-

parton distribution functions, the multi-particle analogues of the parton distribution

functions fa/A and fb/B in the factorization theorem of Eq. 2.26. Double- and multi-

parton distribution functions have been studied theoretically since the 1970s [80–

86,240–243]. There are, however, very few direct experimental constraints on them,

especially beyond the level of double-PDFs. Since proton-proton event generation can

involve an arbitrary number of scattering processes, a simple iterative approach can

be motivated by noting that the genuine multi-parton correlations tend to be relevant

only in small parts of phase space, see e.g. [85, 86] for the case of double-PDFs. The

approach used by Herwig is the eikonal model which starts with an ansatz for the

average number of partonic interactions in a given event, dependent on the impact
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parameter b and the centre of mass energy s:

〈n(b, s)〉 = A(b)σinc
hard

(
s; pmin
⊥
)
, (5.1)

where A(b) is the so-called overlap function, and σinc
hard is the inclusive cross section

to produce a pair of partons with transverse momentum above the cutoff pmin
⊥ . Since

the protons are composite objects with finite size, the overlap function depends on

the impact parameter, i.e. the transverse distance between the proton centres, and the

effective radius of the proton. In Herwig, the overlap function used is generated by

assuming that the matter distribution in transverse space of the proton, G(b;µ), is of

the same form [159] as the electromagnetic form factor for the proton:

G(b;µ) =

∫
d~k

(2π)2

exp(~k ·~b)
(1 + ~k2/µ2)2

(5.2)

where µ is the inverse proton radius, a free parameter of the model. The overlap

function between two protons is then the convolution of two such form factors:

A(b;µ) =

∫
d2b′G(b′;µ)G(b′ − b;µ), (5.3)

leading to a Bessel function of the second kind:

A(b;µ) =
µ2

96π
(µb)3K3(µb). (5.4)

There are two types of MPI in Herwig, hard and soft, but both follow the same route

as described above. The distinction between the two mainly lies in the cross section

values, the inverse proton radius which is different between the two types of MPI, and

the fact that partons involved in hard scattering processes undergo parton showering,

while those in soft scattering processes do not.

Herwig uses the assumption that the MPI are uncorrelated, resulting in a Poisso-

nian distribution for the number of scatters n for a given impact parameter. Once

n is generated, Herwig ensures energy and momentum conservation by vetoing any

MPI that would violate this. The hardMPI also undergo independent parton showers

in Herwig, meaning that there is no interference between these subcollisions during
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the radiative part of event generation. Colour reconnection, as described in Sec. 3.4,

recovers some of the interference physics. While the MPI generation in Herwig has

an explicit spacetime dependence on the impact parameter, b, it is integrated over to

generate the unitarized cross section for inelastic collisions, meaning that there is no

final explicit impact parameter generated for a given event.

Since the overlap function in Eq. 5.4 is formulated in transverse space, one might

then ask how the MPI are distributed in this space, and what effects spatial separa-

tion might have on the later stages of physical modelling. In order to answer these

questions, a framework for generating spacetime coordinates must first be built.

5.1 Spacetime in Event Generators

Monte Carlo event generators are almost universally formulated in the energy-

momentum framework, meaning that there is no information, nor indeed any no-

tion at all, of spacetime coordinates and causal separation between particles in an

event. Once the event reaches the later stages of the simulation, the physical span

of the event has reached distances on the order of several fermis, meaning that an

exclusively energy-momentum framework is no longer appropriate. It will not offer

realistic information about the distances between partons, nor whether or not they

should be allowed to be aware of one another, let alone interact.

As the high-energy and the heavy-ion phenomenology communities begin to

study and test one another’s frameworks, high-energy event generators are begin-

ning to build in spacetime coordinates, a vital part of modelling in heavy-ions since

the collision systems are much larger than those of proton-proton collisions. Re-

cent work has begun to study spacetime coordinates in proton-proton collisions and

the distribution of hadrons in an event [244], investigating hadronization-level space-

time coordinates and hadron density. The shoving model [230, 233], implemented

in Pythia, Dipsy [226], and Angantyr [225], builds a simple framework for space-

time coordinates to push strings apart during hadronization, using a repulsive force

that depends on the transverse-spatial separation between the strings. However, in

order to rigorously test high-energy event generators in a heavy-ion setting, we need

to build spacetime coordinates into each individual proton-proton scattering to test
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its validity. From there, one can then embed individual nucleon-nucleon scatters into

the larger collision system. This is particularly important for hadronization models

developed in the proton-proton collision environment, such as the Lund string and

cluster models, since these are all formulated in momentum space.

In the publication presented in Sec. 5.2, we develop a framework for introducing

spacetime coordinates during the event simulation. We argue that spacetime coordi-

nates are predominately produced by two stages of the simulation, namely the initial

transverse separation due tomultiple parton interactions, and the distance propagated

by the end of the parton shower. After introducing spacetime coordinates, we then

use this new information to help inform and assist the baryonic colour reconnection

algorithm [213], as described in Sec. 3.4.2. Comparing our model to data shows rea-

sonable agreement, though diffractive events are still poorly understood andmodelled

in Herwig. The quantitative success of the spacetime framework encourages future

work to embed Herwig’s hadronic collision modelling into heavy-ion environments

to test the capabilities of the cluster hadronization model.
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Abstract We present a model for generating spacetime
coordinates in the Monte Carlo event generator Herwig 7,
and perform colour reconnection by minimizing a boost-
invariant distance measure of the system. We compare the
model to a series of soft physics observables. We find rea-
sonable agreement with the data, suggesting that pp-collider
colour reconnection may be able to be applied in larger sys-
tems.

1 Introduction

As the LHC reaches unprecedented levels of precision and
data collection, the playground for studying QCD effects has
increased manifold. In particular, Monte Carlo event gener-
ators [1–5] provide an ideal arena for testing novel ideas in
the low-energy regime, i.e. the mechanisms of hadroniza-
tion, where non-perturbative effects have to be phenomeno-
logically modelled, and the underlying event. One aspect of
proton-proton collisions that is poorly understood is exactly
how multiple parton-parton interactions from the initial scat-
tering process interfere and interact with one another during
the hadronization stage.

Multiple parton interactions were first introduced in [6],
and implemented in Pythia [4], where its importance in
hadronic collisions was highlighted beyond a doubt. A sim-
ilar physical notion was introduced in [7] and later imple-
mented in Herwig++ [1,8,9], with some recent improve-
ments to soft and diffractive scatterings in [2,10] to Herwig 7.

One such model of this interference between subcollisions
in an event is colour reconnection [11–15], whereby a Monte
Carlo event generator reduces some kinematic, momentum-
based measure of the event. The physical intuition for such
a mechanism is twofold: to correct for errors in the leading-

a e-mail: cody.duncan@monash.edu

colour approximation of the parton shower, and to allow
multiple parton interactions, which may have been colour-
connected, to have cross-talk. A summary of the history of
colour reconnection and the effects of such a mechanism
on precise measurements is given in [16]. Colour reconnec-
tion in Herwig 7 first focused on reconnecting excited qq̄
pairs called clusters, minimizing the sum of the invariant
masses. Later work [14] expanded upon this model to intro-
duce the possibility of forming so-called baryonic clusters
qqq and q̄q̄q̄ from three ordinary/mesonic clusters. Other
methods have investigated colour reconnection at the pertur-
bative stages of event simulation or taken inspiration from
perturbative techniques [17–19].

Most pp event generators are developed in the energy-
momentum framework for the various stages of event simula-
tion, meaning that none of the physics modelled involves any
notion of spacetime separation. While the energy-momentum
framework has been very successful, there are still several
issues at hand. In particular, it does not have an adequate
answer to what parts of the event are allowed to undergo
colour reconnection within a given slice of phase space, if one
thinks that colour reconnection needs to be a causal effect.
Collisions of heavy ions have shown that spacetime struc-
ture is important in modelling where interactions start, since
a jet starting at the edge of the quark-gluon plasma will lose
far less energy to one travelling through the centre of dense
medium, a phenomenon known as jet quenching [20–22].
As a result, pp-oriented event generators have also started
to include more spacetime information, using these coordi-
nates for various aspects of the simulation, such as collective
hadronization effects [23,24], and a spacetime evolution of
the parton shower [25]. Pythia recently introduced a frame-
work for generating spacetime coordinates [26] for quantita-
tive studies of Lund string fragmentation [27]. The effects of
introducing spacetime coordinates have been recently stud-
ied in dipole evolution in γ ∗A collisions [28].

0123456789().: V,-vol 123
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As high energy and heavy ion phenomenology begin to
have more interaction with each other, an immediate question
one should ask is if the models developed in each field can
be applied to the other successfully. Without spacetime infor-
mation, high energy event generators cannot hope to be able
to describe hadronization of large systems well. This work
aims to be the first steps of introducing spacetime coordinates
and using them to aid the baryonic colour reconnection model
[14]. We intend this to be a proof of concept that will allow us
to apply this hadronization model to heavy ions in later work.

The format of the article is as follows: we start by recall-
ing elements of modelling high energy collisions, such as
the underlying event, cluster hadronization, and colour recon-
nection models in Herwig 7, in Sect. 2. In Sect. 3, we describe
our method of systematically assigning coordinates to the
multiple parton interactions and the partons at the end of
the shower. We then present our model of using this space-
time information to perform colour reconnection in Sect. 4.
We briefly describe additional modifications that have been
applied in the making of this and related works in Sect. 5.
We tune our new model in Sect. 6 and present the results of
the procedure in Sect. 7. Lastly, with Sect. 8, we summarize
our model and future work.

2 Event simulation in Herwig 7

We briefly summarize the pertinent points of modelling the
underlying event and hadronization in Herwig 7.

2.1 Multiple parton interactions (MPI)

Since the proton is a composite particle, when two pro-
tons collide, there may be several parton-parton interactions,
which fall into two classes in Herwig 7: hard and soft. Par-
tons from hard scatters undergo parton showering, while soft
scatters do not.

For a given event, Herwig 7 generates a number of each
type of these scatters. The average number of interactions for
a given impact parameter b and centre of mass energy s is
schematically given by:

〈nint〉 = A(b;μ)σ inc(s; pmin⊥ ), (1)

where σ inc is the inclusive cross section to produce a pair
of partons above a defined minimum transverse momentum,
A(b;μ) is the overlap function between the two protons, and
μ2 is commonly referred to as the inverse hadron length. In
Herwig 7, both the hard and soft MPI scatters have the same
form for Eq. 1, and indeed it is assumed that they both have
the same functional form for the overlap function, but with
different values for μ2. Similarly, the inclusive cross sections
are different values for hard and soft scatters.

Herwig 7 assumes the MPI to be independent of one
another (including energy-momentum conservation), lead-
ing to a Poissonian probability distribution. Using the nota-
tion of [3], we can write the joint probability distribution to
produce h hard and k soft scatters at a given b1 as:

Ph,k(b) = (2χh)
h

h!
(2χk)

k

k! e−2(χh+χk ), (2)

where 2χh,k = A(b;μh,k)σ
inc
h,k is the so-called eikonal factor.

This formalism was developed in [29] and Herwig’s imple-
mentation is built on the JIMMY framework [7].

Equation 2 is then integrated over b space to produce an
exact probability to produce the corresponding number of
hard and soft scatters in an event:

Ph,k =
∫

d2bPh,k(b, s)∫
d2b

∑∞
h≥1,k=0 Ph,k(b, s)

. (3)

Herwig 7 samples the distribution in Eq. 3 probabilistically,
to obtain a number h of hard scatters, and k of soft scatters.
The primary hard subprocess in Minimum Bias event gen-
eration in Herwig 7 is an interaction between two valence
(antiquarks) [12], while subsequent MPI collisions are ini-
tiated by regular 2 → 2 QCD processes. The incoming
legs are evolved backwards to pairs of gluons extracted from
the beam remnant, with the colour topology defined in the
NC → ∞ limit. The colour topology is motivated by the
leading-colour approximation used in the shower, though as
discussed in [12], this is a phenomenological choice rather
than an approximation.

As Herwig 7 produces each scatter, it checks the available
energy and momentum in the protons. If the protons cannot
produce another scatter, the MPI production algorithm ter-
minates. As a result, Herwig 7 typically generates a subset of
the total number of scatters sampled from Eq. 3. More details
of the technicalities involved in the implementation of MPI
algorithm can be found in [1].

2.2 Cluster model

Partons from a scattering process are showered down to the
parton shower cutoff scale, and the resulting colour topology
has triplets connected to anti-triplets via gluon connections.
At the hadronization scale and below, Herwig 7 uses the clus-
ter hadronization model [30], based on the pre-confinement
property of angular-ordered showers [31].

The first step in the cluster model is to non-perturbatively
split the gluons into quark-antiquark pairs. To split the glu-
ons, Herwig 7 uses a kinematic map at the end of the shower
to put the gluons on-constituent-mass-shell and performs an

1 We have suppressed the functional dependence on centre of mass
energy s.
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isotropic decay. The constituent-mass of the gluon is a non-
perturbative parameter of Herwig 7 hadronization model.

Nearest quark-antiquark neighbours in colour space,
which are typically nearest neighbours in momentum space
due to pre-confinement, are then collected into colourless,
excited quark-antiquark pairs, i.e. clusters. From there, the
clusters undergo colour reconnection.

2.3 Colour reconnection

Clusters typically connect partons from the same multiple
parton interaction scattering. Colour reconnection alters the
colour topology of the event, and allows the different MPI to
interact with one another at the hadronization level.

As mentioned in Sect. 2.1, Herwig 7 chooses the leading-
colour topology for the additional scatters, thus they are
colour-connected to the beam remnant and other subpro-
cesses. As noted in [12], colour reconnection is a required
part of hadronization modelling in hadron collisions since the
leading-colour approximation performs significantly worse
in non-perturbative parts of the event generation.

Colour reconnection aims to minimize a given measure of
the event, typically momentum-based. Herwig 7 has a variety
of colour reconnection algorithms [12,14], namely:

• Plain,
• Statistical/metropolis,
• Baryonic.

The plain colour reconnection model locally minimizes pair-
wise cluster invariant masses:

m2
qq̄ = (

pq + pq̄
)2

. (4)

The criteria for two clusters to undergo colour reconnection
and swap partners is:

mqq̄ ′ + mq ′q̄ < mqq̄ + mq ′q̄ ′ . (5)

If a pairing reduces the invariant mass, it is allowed to recon-
nect with a flat probabilistic weight, typically tuned to LHC
data, while ensuring that the model doesn’t adversely affect
LEP simulations. Baryonic colour reconnection was recently
implemented in Herwig 7 [14], and it uses a more sophisti-
cated algorithm. For each cluster in the event, the algorithm
searches for other clusters which occupy the same neighbour-
hood in rapidity-space. It searches for two types of candidate
clusters for reconnection: baryonic, and (ordinary) mesonic.

In the baryonic case, given a cluster A, transform the
momenta of all other clusters to the rest frame of A, and
search for two other clusters that have the same orientation
of quark axis in rapidity space. It then chooses the pair of
candidate clusters which have the largest rapidity span in
this frame. If the reconnection is accepted, the quarks are

then collected into a three-component cluster, called a bary-
onic cluster, and similarly the antiquarks are collected into
an anti-baryonic cluster.

In the mesonic case, if the candidate cluster B with the
largest rapidity span has a quark axis oriented in the opposite
direction to cluster A, reconnect qAq̄B and qBq̄A, in much
the same manner as the plain colour reconnection model.
For both types of cases in baryonic colour reconnection, the
probabilities for reconnection are given by two different flat
weights, pM,reco and pB,reco.

While the statistical colour reconnection model is outside
the scope of this paper, we mention that it aims to minimize
mass, much like the plain model, but it allows reconnection
to increase the mass of the system with a suppressed proba-
bility, and is based on the simulated annealing optimization
algorithm [32].

In all cases, colour reconnection qualitatively aligns
colours between partons that move into the same direction
such that the multiplicity of particles produced in between
them is reduced and the produced particles carry more
momentum on average.

3 Spacetime coordinate generation

We present the two parts of how our model systematically
generates coordinates for the multiple parton interaction scat-
tering centres and the hadronization stage. We argue that
these are the two stages of event generation that are most
impactful on spacetime coordinates.

3.1 MPI coordinate generation algorithm

To obtain an intelligent and relevant value for the impact
parameter, the MPI coordinate generator takes the produced
values for h, k in Eq. 3 and stochastically samples the dis-
tribution of Eq. 2, vis-a-vis a veto algorithm. Thus, the pro-
duced b, when the number of events tends to infinity, will be
the correct distribution for a given set of h and k.

As shown in Fig. 1, the joint Poissonian behaves as we
expect. The more scatters that Herwig 7 produces, the more
likely it is that the sampled b will be central, while hav-
ing more soft scatters for a fixed number of total scatters
makes the distribution have a broader tail. In this work we
will be using the Bessel proton profile, meaning that the over-
lap function is a Bessel function of the third kind:

A(b;μ) = μ2

96π
(μb)3K3(μb). (6)

It should be noted that the results of the sampling should
not be surprising. At large numbers of interactions, the sam-
pled impact parameters tend to be closer to 0, since a larger
than average number of interactions requires a more central
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Fig. 1 Joint Poissonian distribution Ph,k(b), as a function of impact
parameter b, for a number of h hard scatters and k soft scatters. We
have picked one large (7) and one small (1) value, and show the vari-
ous combinations. The more collisions that occur, the more likely the
collision is to be central. Keeping the number of interactions fixed but
having more soft interactions makes the distribution have a broader
tail. We have used the following fixed values for the normalized dis-
tributions: σ inc

hard = 83 mb, σ inc
soft = 127 mb, μ2

hard = 0.71 GeV2, and
μ2

soft = 0.52 GeV2. These distributions are normalized independently
to unit area

collision. Once b is determined for a given event, we set the
incoming beam positions to be at (±b/2, 0, 0, 0), i.e. aligned
along the x-axis, for simplicity.

The overlap function A(b;μ) in Eq. 6 is generated by the
convolution of the two protons’ form factors, G(b;μ):

A(b) =
∫

d2b′G(b′)G(b − b′), (7)

where we have suppressed the dependence on μ for clarity.
The overlap function governs the density of MPI scattering
centres in the transverse plane for a given offset between the
protons.

To obtain the MPI centre positions, we sample the inte-
grand of Eq. 7. We generateh hard scatters, and k soft scatters,
using two different μ2 values for the hard and soft interac-
tions. As a result, hard scatters are slightly more concentrated
in the centre of the transverse plane, while soft scatters have
a longer tail.

Once these points have been generated, all coordinates
including the proton positions get the same random global
rotation in the transverse plane. The beam remnants receive
the sampled proton positions. A schematic diagram of the
results of the MPI coordinate generation algorithm is shown
in Fig. 2. The overlap need not necessarily be a Bessel func-
tion, and we have included the results of the MPI coordinate
generation for a uniform proton profile in Fig. 2. For this
type of proton profile, MPI centres can only be situated in
the overlap. However, for the rest of the paper, we will work
with the Bessel function profile.

3.2 Tracing spacetime during parton showers

The spacetime structure of the parton-shower evolution was
already considered in the early paper on QCD cascades by
Fox and Wolfram (see Fig. 1 of [33]). Later the spacetime
evolution of the parton shower was introduced, for example,
to study jets in hadronic e+e− events at LEP [34] and in
deep-inelastic ep scattering [35]. Very recently in a publica-
tion on the space–time structure of hadronization in the Lund
Model [26] the authors mention that a sensible spacetime pic-
ture of parton-shower evolution would introduce some space-
time offsets to their model. However, the authors assumed
that the offsets are most likely small in their case and there-
fore neglected them in their studies.

In the following section, we will investigate in more detail
how the parton shower affects the spacetime structure of an
event as implemented in the family of Herwig 7 generators.
Referring to [36, Section 3.8] for details, we briefly recall
the essential concepts of the Herwig 7 spacetime model.
It should be noted that there are two major parton shower
options in Herwig, namely the angular-ordered shower [37]
and the dipole shower [38]. For this work, we will focus on
the angular-ordered shower, and its use of virtuality as an
evolution variable.

The mean lifetime τ of a parton in its own rest frame,
during the parton shower evolution, is calculated in a similar
manner as for particles decays, i.e. taking into account its
natural width � and virtuality q2:

τ(q2) = h̄
√
q2

√
(
q2 − M2

)2 +
(

�q2

M

)2
. (8)

Equation 8 interpolates between the lifetime for an on-mass
shell parton τ(q2 = M2) = h̄/�, and for a highly virtual
(i.e. off-mass shell) parton τ(q2 
 M2) = h̄/

√
q2. We note

that the mean lifetime in Eq. 8 is equivalent to the standard
notion of formation time used in heavy ion phenomenology
as well as in general jet quenching research [39–42]. We
show the equivalence in Appendix.2

Once a lifetime is calculated according to Eq. 8, the parton
decays according to an exponential decay law, with a rest-
frame decay time t∗:

Pdecay(t < t∗) = 1 − exp

(

− t∗

τ

)

. (9)

After sampling a rest-frame decay time, this time can be con-
verted to the lab-frame decay time t , and a distance travelled
in the lab-frame, d:

t = γ t∗, d = βγ t∗, (10)

2 The authors are grateful for Gavin Salam’s notes on the notion of
formation time for massless soft and collinear gluons.
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Fig. 2 Result of MPI Coordinate Generator algorithm with the Bessel proton profile (left), and an example for a uniform (black disc) proton profile
(right). Green and orange points are partons sampled in a given proton, mauve points are accepted MPI collision centres, and black are the beam
remnants

where γ and β are the usual Lorentz factors.
Very light quarks and gluons with a small natural width

may travel unphysically large distances according to Eq. 8 in
the final steps of the parton shower. Similarly, there are issues
with assigning particles with no well-defined width space-
time coordinates in the above manner. In order to counter this
issue, a minimum width � = ν2/M is introduced, where ν2

(GeV2) is a free parameter of the order of lower limit of par-
ton’s virtuality. This is essentially the spacetime equivalent of
a shower Q2 ≈ 	2

QCD cutoff scale. The daughters of the par-
ton splitting are then given the starting coordinates defined
by Eq. 10. We note that the above considerations are, in our
model, a phenomenological model of the spacetime structure
of an event, which arise during the initial collision of the pro-
tons, and the subsequent perturbative evolution of the event.

In order to study the size of the parton-shower spacetime
effects, we will first consider the distance that each parton
propagates during the shower. The distance that we are inter-
ested in is the difference between a given parton’s production
and decay vertex, L:

L =
√(

ddecay − dprod
)2

, (11)

where d ≡ dμ = (t, x, y, z) is the position of a parton rel-
ative to the centre of the collision, i.e. the origin. However,
since the MPI smearing discussed in the previous section
affects only the transverse plane we will also consider trans-
verse distance, constructed from the transverse components
of the above vertices, r = √

Δx2 + Δy2.

In Fig. 3 we show the Lorentz-invariant distance L (left
panel) and transverse distance (right panel) traveled by the
gluons at the last step of the parton shower evolution for three
different processes: minimum bias, Drell–Yan and Higgs-
boson production at the LHC at the collision energy 7 TeV.
The simulation was performed using default version of Her-
wig 7 with three different values of ν2: 1, 2 and 5 GeV2.
We see that most of the partons reach fermi-scale distances
which are comparable to the size of the MPI coordinate gen-
eration, as shown in Fig. 2. Therefore, it is important to take
the parton shower effects into account. We also see that in soft
Minimum Bias processes the partons travel shorter distances,
as expected since there is less parton-shower activity in these
types of events than in the two other processes. Finally we
see that the results, and especially the long distance tails of
the distributions, are strongly dependent on the scale ν2. This
indicates that the furthest distances are traveled by partons
in the final step of the evolution.

This is also visible in Fig. 4 where we show the spacetime
structure of a parton shower of a sample Minimum Bias event,
with ν2 = 1 GeV2, neglecting the spacetime structure of
the MPI positions. The final step distances are denoted by
red dotted lines, while the intermediate steps are black solid
lines. In order to quantify this effect in Fig. 5 we show the
ratio of distance traveled by partons in the last step of their
evolution to the total distance (distance traveled during the
entire evolution).

We see that in the case of both minimum bias and Drell–
Yan processes for ν2 values similar to a typical parton-shower
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Fig. 3 The total
Lorentz-invariant distance L
(left panel) and transverse
distance r (right panel) traveled
by the gluons at the last step of
the parton shower evolution for
three different processes:
minimum bias, Drell–Yan and
Higgs-boson production at the
LHC at the centre-of-mass
energy 7 TeV. The simulation
was performed using default
version of Herwig 7 using three
different values of ν2: 1, 2 and
5 GeV2
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Fig. 4 An example of a parton
shower spacetime structure (i.e.
neglecting spacetime structure
of MPI) of a Minimum Bias
event in the transverse plane
generated with the minimum
virtuality ν2 = 1 GeV2. The red
dotted lines represent the
evolution of the last particle in
the parton shower while the rest
of the evolution is denoted by
the black lines. Both panels
show the same event with the
right panel magnifying the
center of the event
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cutoff scale, i.e. below 2 GeV2, 90% of the total distance is
indeed due to the final step of the parton shower. In the case
of the Higgs boson production, the distributions look very
different. It is because in the simulation we took into account
the decay lifetime of the Higgs boson, however when we
neglect it, the distributions look very similar to the two other
processes.

To summarize, we can expect the fermi-scale parton
shower and even further intermediate particle decay dis-
tances. As such, these effects have to be included in spacetime
colour reconnection model. We also showed that tracing out
the microscopic detail of the parton shower spacetime evo-
lution is somewhat unnecessary, since only the low-energy
scale of emissions (final steps) have any major impact on the
spacetime position of partons, i.e. soft emissions close to the
hadronization scale. Finally, it is important to stress that the
Heisenberg uncertainty relations impose limits on how much
simultaneous energy-momentum and spacetime information
one can have on an individual parton.

These results should not be considered as physical, but
give us a benchmark of roughly what part of the event sim-
ulation drives the creation of large separations in distance
between partons.

Instead, we propose a simpler model that assigns coor-
dinates only to the very last partons of the parton shower,
just before the hadronization. This is in line with the uncer-
tainty principle as the smearing is only visible for particles
at a very soft scale. We may understand the partons’ posi-
tions then as being smeared out around the scattering cen-
tres. This idea represents us taking the semi-classical limit of
the parton shower, and generating coordinates in a similarly
semi-classical manner.

3.3 Parton shower coordinates

As the partons propagate during the shower, we may assign a
spacetime propagation to their motion, but as we have shown
above, these distances are only significant at energy levels
close to the hadronization scale. As a consequence, we will
only give spacetime coordinates to the partons that remain at
the end of the shower. In our model of spacetime coordinates,
we will not consider z, t coordinates and keep our discussion
to the transverse plane. We note that we have chosen the
centre of mass frame in order to construct our model, and to
extend this to any given frame, one need only transform the
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Fig. 5 The ratio of the distance traveled by partons in the last step of
evolution to the total distance (distance traveled during entire evolution)

variables correspondingly. All considerations below will be
invariant to any boosts along the z-axis.

Before the clusters are formed, each surviving parton from
a given MPI scattering centre receives an extra transverse
propagation distance from the scattering centre coordinates.
Instead of tracing out the positional history of each parton
during the shower, we take all partons at the end of the shower
and propagate them according to Eq. 9. As argued above, this
resembles a smearing of each partons’ coordinate around the
scattering centre within its intrinsic uncertainty.

As discussed in Sect. 3.2, at the end of the perturbative
shower, partons will have very small virtualities, meaning
that using the precise form of Eq. 8 performs poorly. We
instead approximate the mean lifetime by considering the
width term in the denominator. Each parton of species p
will automatically receive a minimum virtuality, ν2, for their
mean lifetime in their rest-frame:

τ0,p = h̄m p

ν2 . (12)

This mean lifetime is derived from Eq. 8, by taking the on-
mass shell limit – τ(q2 = M2) = h̄/� and using the follow-
ing form for the width of the on-mass shell partons:

� = ν2

mp
. (13)

With the mean lifetime from Eq. 12, we proceed as
explained in Sect. 3.2, using Eqs. 9 and 10 to set each par-
ton’s position relative to the MPI scattering centre that they
originated from, adding only the transverse coordinates of
the propagation distance.

Equation 12 corresponds to a lab-frame mean lifetime of:

τ ′
0,p = γ τ0,p = h̄E p

ν2 , (14)

x

y

Fig. 6 A schematic diagram for how our model introduces trans-
verse spacetime coordinates for the multiple parton interactions (black
points), and for the end of the parton shower. Different coloured points
are partons from different, respectively ring-coloured MPI centres. The
thin black circles represent a characteristic scale for parton propagation
about the MPI centre

where Ep is the lab-frame energy of the given parton. The
main motivation for the mass dependence of the mean life-
time in Eq. (12) is that the decay distance of external light
quarks is proportional to their energy (and independent of
their mass) which is in agreement with expectations from
the linear confining potential of QCD, see e.g. [43] and ref-
erences therein, as well as other hadronization models such
as the Lund string model [27].

As a result of this construction, quark-antiquark pairs pro-
duced during the non-perturbative gluon splitting will receive
the same spacetime position. One may believe this leads to
issues where colour reconnection wants to pair these partons
together, but Herwig 7 does not allow them to since they
would be in a colour-octet state [12,44]. These partons will
also have slightly different rapidities, due to kinematics from
the gluon splitting.

Once all the partons have their new coordinates with
respect to their MPI scattering centre, we then shift these
coordinates using the points produced from the MPI coordi-
nate generator, as shown schematically in Fig. 6. The black
points are the MPI centres, and partons from those systems
are spread by Eq. 10, around their respective centre. Different
coloured partons refer to partons originating from different
MPI systems.

4 Spacetime colour reconnection

With the transverse coordinates in place, we use this informa-
tion to perform and inform colour reconnection. We present
the outline for plain spacetime colour reconnection model,
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but we will use the baryonic spacetime model for tuning and
in the discussion in the rest of the paper.

4.1 Plain spacetime colour reconnection

As mentioned in Sect. 2.3, the measure for allowing plain
colour reconnection is the sum of invariant cluster masses
before and after, and the reconnection is given by a flat tuned
weight. However, there is at least one major issue with this
construction: this measure aims to reconnect cluster con-
stituents so that they are closer in momentum space, but with-
out any input from spacetime which would perhaps prohibit
a causally-disconnected colour reconnection.

Using the coordinates we have introduced in Sect. 3, we
now define the following spacetime-inspired measure for a
single cluster with constituents i, j :

R2
i j = Δr2

i j

d2
0

+ Δy2
i j , (15)

where d0 is the characteristic length scale for colour recon-
nection in our spacetime model, which is a tunable parameter.
Δr2

i j = (x⊥,i −x⊥, j )
2 is the transverse spacetime separation

squared between the constituent quarks. We include rapidity
differences in Eq. 15. This is inspired by conventional jet
algorithms, where we replace the azimuthal separation Δφ2

i j
with transverse separation. The parameter d0 effectively acts
as a measure to increase the importance of transverse to lon-
gitudinal components. The measure in Eq. 15 captures the
transverse separation between the constituents and their lon-
gitudinal separation.

Using the measure from Eq. 15, we proceed in the same
fashion as Eq. 5, by minimizing the sum of the pairing of
cluster constituents. For a given cluster, we pick the candidate
cluster that minimizes the measure the most. If the sum of the
cluster separations is smaller after a possible reconnection:

Rqq̄ ′ + Rq ′q̄ < Rqq̄ + Rq ′q̄ ′ , (16)

then we accept the reconnection with a flat probability,
pM,reco. A similar model was studied earlier in [45].

4.2 Baryonic spacetime colour reconnection

Baryonic spacetime colour reconnection uses the algorithm
from [14], and outlined in Sect. 2.3. The partners for mesonic
and baryonic colour reconnection are found by using the pro-
jection onto a given cluster’s quark axis.

If instead we find a baryonic reconnection, we cannot
directly compare the sum of Eq. 15 for the constituents of
the clusters before and after colour reconnection, since we
would be starting with 3 clusters – each with 2 partons –
and ending with 2 clusters with 3 partons, and the distance
measure is an ill-defined quantity in the latter situation.

In the ordinary baryonic colour reconnection algorithm,
3-component clusters, once formed, are reduced to a quark-
diquark system, where the diquark system is chosen as the
pair of quarks with the lowest total invariant mass. In keep-
ing with our spacetime paradigm, we choose the pair as the
closest in spacetime. Given 3 mesonic clusters, we look at the
set of triplets {q1, q2, q3} and select the pair that are closest –
calculated via Eq. 15, and similarly for the set of antitriplets.
We choose these partons to become a diquark system, with
their constituents’ mean spacetime position and rapidity.

We allow baryonic reconnection if the following criterion
is true:

Rq,qq + Rq̄,q̄q̄ < Rq,q̄ + Rqq,q̄q̄ , (17)

which is analogous to Eq. 16, and we accept this reconnection
with probability pB,reco = wb. If the reconnection is rejected,
all three candidate clusters remain ordinary mesonic clusters.

We note that the baryonic spacetime colour reconnec-
tion has a bias for using rapidity as its first discriminating
factor when searching for potential partners. However, we
hope that, by using the extra information provided by the
transverse separation between constituents, we will be able
to improve upon the original baryonic colour reconnection
model, especially in larger systems like heavy ion collisions.

To see the spacetime picture of an event, we have produced
Fig. 7, which highlights the spacetime coordinate generation
procedure outlined in Sect. 3. In the upper panel of Fig. 7, we
have plotted all the clusters formed from the non-perturbative
gluon splitting at the end of the shower, before any colour
reconnection. The points in the plots represent cluster con-
stituents, and the connecting lines represent the clusters.

Performing baryonic spacetime colour reconnection, using
ν2 = 1 GeV2, d0 = 0.5 fm, and wb = 0.5, on this event then
produces the lower panel in Fig. 7, where we have highlighted
the different types of clusters. Red lines correspond to rear-
ranged clusters: (dotted) baryonic, and (solid) mesonic, while
black lines are untouched clusters.

5 Modifications to the existing model

While incorporating spacetime coordinates into the
Herwig 7 MPI model, we have had to modify parts of the
original implementation. These changes are of a more gen-
eral nature than the specifics of our model. As we wish to
focus on the changes that our model has, we will report the
changes in a separate contribution [46]. We summarize the
most relevant modifications below:

• The kinematics is improved and produces the wanted
inclusive spectrum.
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Fig. 7 The colour-topology of
a sample Minimum Bias event
in rapidity and transverse
spacetime coordinates, before
(top) and after (bottom) colour
reconnection. The parameters
used for reconnection here are
ν2 = 1 GeV2, d0 = 0.5 fm, and
baryonic reconnection weight
wb = 0.5. Black lines
correspond to clusters which are
automatically produced from the
parton shower and which have
not undergone any colour
reconnection, while red lines are
the newly rearranged (dotted
lines) baryonic and (solid lines)
mesonic clusters

• Introduction of diffraction ratio RDiff parameter for better
tuning performance.

• Cross-section handling takes into account the diffractive
cross section to calculate the eikonalised cross sections.

• The dummy process used by Herwig 7 in Minimum Bias
events is replaced to contain only initial state quarks.

• The partner finding process and scale setting are modified
with respect to the standard Herwig 7 mode.
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In the right plot we pick three parameter pairs to define variations to be shown in the data comparison, see Figs. 9, 10, 11 and 12

The effects of these changes and their discussion are post-
poned to [46].

6 Tuning

We started the tuning process within the Autotunes [47]
framework that internally makes use of the Rivet and Profes-
sor frameworks [48,49] for Monte Carlo event generators.
To elucidate the effects of parameter variations, we illustrate
the modifications in χ2-values in Fig. 8. Here, we show by
variation of strongly correlated parameter pairs where the
minimum of the parameters are located. The white spaces
in the planes for the parameter sets (RDiff , σtot) and (μ2

hard,
pmin⊥ ) are regions in parameter space where the model fails to
fit the soft and hard cross-sections without violating the total
cross-section. In the left χ2-plane, we added lines to mark the
total cross sections that are predicted by the Donnachie and
Landshoff model, where DLMode 1 refers to [50], DLMode2
refers to [50] but normalized to [51].3

In the (ν2, d0)-plane, we define three parameter points to
be used in the later data comparisons. The red point, corre-
sponding to the best fit value (ν2 = 4.5 GeV2, d0 = 0.15
fm) will be referred to as “H7 + STCR”. To show variations
in the spacetime model, we choose two other points: blue –
(ν2 = 2.1 GeV2, d0 = 0.55 fm), and green – (ν2 = 3.3
GeV2, d0 = 0.05 fm). These two points will be referred to
as “Variation 1” and “Variation 2” in the following.

We compared the model in the tuning procedure to data
from [53–57] and the red parameter point in Fig. 8 corre-
sponds to the parameters that are reflected in Table 1.

3 A third mode that is implemented in Herwig 7 that would refer to
[52] would predict a total cross section of σtot = 120.496 mb and is not
acceptable with our tuning.

Table 1 The newly tuned parameters for minimum bias simulation and
our baryonic spacetime colour reconnection model. The top row is the
re-tuned parameters of the old Herwig 7 minimum bias model. The
bottom row is the three new parameters of the spacetime components
of our model, and a determined parameter of the old model

σtot [mb] RDiff pmin⊥ [GeV] μ2
hard [GeV2]

96.0 0.2 3.0 1.5

ν2 [GeV2] d0 [fm] wb (μ2
soft [GeV 2])

4.5 0.15 0.98 0.254

The parameters in the first row have been previously
included in the Herwig 7 minimum bias model. RDiff was
not explicitly part of the regular model in Herwig 7 but was
effectively tuned as the amplitude of the non-diffractive cross
section. pmin⊥ is the cut on the transverse momentum where
the hard MPI component, described by perturbative QCD
2 → 2 process is taken over by the soft, multi-peripheral MPI
model [9,10]. The parameter for the inverse proton radius is
μ2

hard and is communicated together with the determined (not
tuned) parameter for the soft inverse radius μ2

soft to the MPI
coordinate generator.

The parameters in the second row are the three new param-
eters introduced for our spacetime model. First, the minimum
virtuality ν2, which dictates the traveling of the final partons
after the shower step, takes a rather large value 4.5 GeV2 in
comparison to the parton shower Q2 cutoff.

Second, the colour reconnection distance scaled0 in Eq. 15
has a tuned value of 0.15 fm. This length scale is the strength
of the transverse component of the spacetime measure rel-
ative to the rapidity component. It can also be considered
the characteristic length scale of colour reconnection in the
transverse plane in our model.

Finally, the baryonic colour reconnection probability
weight wb, after tuning, has a value of 0.98. This seems to be
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Fig. 9 Charged particle spectrum against rapidity and transverse
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Nch slices. An overall good agreement with data is found. The variation

is purely in the spacetime length and minimum virtuality parameters of
our model as defined in Fig. 8 and in the corresponding text
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Fig. 10 Differential cross-section with respect to the number of charged particles as measured by [55]

very large but the model, as described in [14], already makes
strong restrictions on the possible cluster configurations such
that the cluster triplets that are potential candidates for the
baryonic reconnection are strongly favoured.

We have kept the probability for strangeness production
during the non-perturbative gluon splitting as the tuned value
from [14], although there have been recent developments in
the description of non-perturbative strangeness production in
cluster hadronization [58]. We leave a full retune of all the
hadronization parameters to future work.

7 Results

In this section, we describe the data comparison of the tuned
parameter set. In Fig. 9, we have collated various cuts on the
track momentum, and similarly on the minimum number of

charged particles for the rapidity and transverse momentum
distributions as measured in [55]. Beside the central param-
eter set (red), we also show the results of the variations as
gray lines (solid and dashed). These are crucial observables
for the description of Minimum Bias and soft physics, and
we find that the model is perfectly capable at describing the
distributions.

In Fig. 10, we compare the differential cross-section with
respect to the number of charged particles as measured by
[55] with our model’s results. We observe that for high
charged particle multiplicity the central line overshoots the
data and that “Variation 1” is closer to the central data line.
With the increased d0 in “Variation 1”, the colour reconnec-
tion probability is increased. For a high number of additional
scatters, the probability is increased to produce smaller clus-
ters and therefore less particle production in the cluster fission
and decay processes.
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Fig. 12 Predictions for the average sum of particle transverse momenta as a function of the leading track’s transverse momentum, and the average
transverse momentum as a function of the azimuthal angle of the leading track [56]

To illustrate examples of observables that are hardly mod-
ified by the variations in the spacetime components of the
model, we show in Fig. 11 the measured rapidity gap frac-
tion and the pion, kaon, and proton yields as measured by
[53,59]. Variations in the spacetime components of the model
have very little impact on these observables. The rapidity gap
for small values is mostly driven by the hard and soft MPI
that could potentially be modified but is known to be rel-
atively invariant to colour reconnection effects. The tail of
the rapidity gap cross section is mainly filled by double and
single diffraction, which are not modified by the smearing of
the MPI collision centers. The fairly poorly described proton
yield will be the subject of further studies.

Typical observables that are used to verify the description
of MPI models in underlying event measurements are the
angle of the particle production with respect to the leading
track as well as the average sum of transverse momenta in
the region towards, away, and transverse to the leading track.
Comparing our model to data measured at the ATLAS col-
laboration [56], we find that the turn on behaviour, p⊥ < 2.5
GeV for the leading track, is slightly too low. This has also
been seen in the previous Herwig models. For leading tracks
above 2.5 GeV, the average transverse momentum sum is
about 10% too large. This can also be seen in the radial
dependence with respect to the leading track. In the Her-
wig MPI model, there is no azimuthal correlation between
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the additional scatters. Herwig’s only mechanism to correlate
the additional scatters is the colour reconnection. Introduc-
ing methods to correlate these scatters, as well as correlate
them angularly, is left to future work (Fig. 12).

8 Conclusion and outlook

We have implemented spacetime coordinate generation for
two stages of event simulation: the positions of MPI scatter-
ing centres, and the propagation distance in the transverse
plane of partons at the end of the parton shower. We then
used these transverse coordinates and the rapidity of the clus-
ter constituents to define a measure that we minimize when
performing baryonic colour reconnection, creating a model
we call baryonic spacetime colour reconnection.

Overall we find that the proposed algorithm for baryonic
spacetime colour reconnection gives meaningful results for
many observables in Minimum Bias interactions at the LHC.
This is an important step as with this prescription at hand we
may explore larger systems, where spacetime structure will
play an important role, as is the case in heavy ion collisions.
However, we deliberately leave these new areas of study to
future work after establishing the algorithm in pp collisions
in the first place.

There is plenty of room for future work based on the pre-
scription we present here. One avenue might be to look at
only allowing certain MPI subsystems to reconnect with each
other based on closeness in spacetime [60]. Alternatively,
one may try to use the ideas of [18] but limit the compu-
tation complexity of the problem by only performing the
soft-gluon-evolution inspired colour reconnection in a small
neighbourhood of spacetime.

One may also look to study the final state of the event in
more detail using spacetime coordinates, an avenue started
by [26]. One interesting idea is the interplay between Bose–
Einstein correlations, and hadron position and extent [61].
Studying these effects could help one develop a more sophis-
ticated and systematic model for generating spacetime coor-
dinates.

As perturbative calculations become more precise,
improving hadronization phenomenological models remains
a key part of Monte Carlo event generator development.
Overall, we have shown that it is possible to introduce space-
time coordinates and then use this information to help assist
colour reconnection and potentially other soft physics phe-
nomena.
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Appendix: Formation time and mean lifetime

The discussion below is adapted from [62]. For a branching
of the kind i → jk where j is the produced soft, collinear
gluon, we start with the definition of qi and expand in terms
of the products of the branching:

q2
i = (

p j + pk
)2

= 2p j · pk
= 2E j Ek (1 − cos θ) (18)

∼ E j Ekθ
2

= Ek

E j
k2⊥

where k⊥ := E jθ (19)

where in the second line we have assumed the products are
massless, and the fourth line is the small angle approxima-
tion.

Using Eq. 8 for a virtual splitting parton, and ignoring the
natural width term, one obtains:

τ ∼ 1
√
q2
i

. (20)

Since Eq. 20 is defined in the rest frame of the decaying
parton, the boost factor is:
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γ = Ei√
q2
i

= E j + Ek
√
q2
i

(21)

The lifetime in the lab frame is then:

τ ′ = γ τ ∼ E j + Ek
√
q2
i

1
√
q2
i

= (E j + Ek)
E j

Ek

1

k2⊥
(22)

= E j

k2⊥
where we have used the result of Eq. 19 in the second line,
and in the last line we have used the soft approximation:
E j � Ek , i.e. a very soft gluon produced from a splitting
where the quark takes most of the energy and momentum.

The final expression in Eq. 22 is the standard expression
for the formation time of a massless soft, collinear gluon (see
[39–42] for more details).
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5.3 Errata for Spacetime Colour Reconnection in Her-

wig

1. In Figure (8), there are missing labels for DLMode1 and DLMode2, which con-

strain the available parameter space. The cut in the left most pane is caused by

DLMode1 constraints. In the centre pane, DLMode1 causes the cut-line from

(0,4) to (3.4,0.3), and DLMode2 causes the cut-line from (3.4,0.3) to (5,0).

2. In §2.1 - Multiple Parton Interactions (MPI), the sentence: “The primary hard

subprocess inMinimumBias event generation inHerwig 7 is an interaction between

two valence (antiquarks) [12], while ... ” has a typographical error. The sentence

should read: “The primary hard subprocess in Minimum Bias event generation

in Herwig 7 is an interaction between two valence (anti)-quarks [12], while ... ”

where the boldface type indicates the change.

3. In §2.2 - Cluster model, the sentence: “It then chooses the pair of candidate clusters

which have the largest rapidity span in this frame.” has a typographical error. The

sentence should read: “It then chooses the pair of candidate clusters which has the

largest rapidity span in this frame.” where the boldface type indicates the change.

4. In the opening paragraph of §3.1 - MPI coordinate generation algorithm, the

sentence: “To obtain an intelligent and relevant value for the impact parameter,

the MPI ...” has a typographical error. The sentence should read: “To obtain an

intelligible and relevant value for the impact parameter, the MPI ...” where the

boldface type indicates the change.
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6

Repulsive Strings

The Lund stringmodel has been remarkably successful, agreeing verywell with a large

range of data from LEP and LHC. However, as discussed in Sec. 3.5, more experimen-

tal data and more rigorous tests of the model have highlighted some shortcomings. In

particular, the CMS near-side ridge effect has brought into question the Lund string

model’s assumption that each string hadronizes independently.

The shoving model [233, 234] has shown some success at describing the near-side

ridge effect, in which nearby overlapping strings push on each other with a micro-

scopically described force, inspired by earlier analytical results [245]. To do this, the

shoving model builds a set of coordinates in transverse space, then adds very soft

gluon kicks to the string-segment spanning a pair of dipoles in small steps in rapidity.

One issue with the shoving model is that in order to add the very soft gluons, they

must be given a finite mass in order to avoid being absorbed into nearby harder gluon

kicks, since the string model has a finite resolution [246].

The goal of the work presented in Sec. 6.1 is to modify the string fragmentation

procedure described in Sec. 3.2.2 by introducing repulsion, without the need for a

large number of very soft gluon kicks. To this end, we present a toy model for pro-

ducing collective effects which works as follows: strings have a rapidity span, defined

by the difference in rapidity between its endpoints. A particle’s rapidity y is given by:

y =
1

2
ln

(
E + pL
E − pL

)
. (6.1)

Pseudo-rapidity (see Eq. 3.14 is the experimentally accessible analogous quantity, but
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for this work we will use rapidity throughout. Whenever a string break occurs, a pre-

vious endpoint is carried away by the produced hadron (see Sec. 3.2.2), and the string’s

new endpoint will necessarily have a smaller absolute rapidity. We can associate the

change (i.e. loss) in the string’s rapidity span with the produced hadron. Strings that

overlap in rapidity space have an increased potential energy between them, causing

them to push each other apart transversely. To generate the repulsive transverse mo-

mentum, the strings are compressed longitudinally, and the hadrons produced during

the string fragmentation receive some transverse momentum. The fraction of re-

pulsive transverse momentum that is donated to each hadron is proportional to the

associated rapidity span of the hadron.

We apply this framework to pairs of simple qq̄ string configurations, starting with

the symmetric parallel case. We then generalize to more complicated string-end mo-

menta topologies, such as strings with transversely moving endpoints, and partially

overlapping strings. We show that with our model we can introduce significant two-

particle azimuthal correlations that highly depend on the strength of repulsion.

In comparison to the more comprehensive shoving model, our model cannot yet

be extended to arbitrary string topologies such as strings with gluon kinks, gluon

loops, or junctions. However, as we show in the paper, our model circumvents the is-

sues that Pythia has with handling very soft gluons, as well as having amuch larger im-

pact on azimuthal correlations in comparison to the effects from the shoving model.
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Fragmentation of Two Repelling QCD Strings

Cody B Duncan1* and Peter Skands1
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* cody.duncan@monash.edu

Motivated by recent discoveries of flow-like effects in pp collisions, and noting
that multiple string systems can form and hadronize simultaneously in such
collisions, we develop a simple model for the repulsive interaction between
two QCD strings with a positive (colour-oriented) overlap in rapidity. The
model is formulated in momentum space and is based on a postulate of a
constant net transverse momentum being acquired per unit of overlap along
a common rapidity direction. To conserve energy, the strings shrink in the
longitudinal direction, essentially converting m2 to p2

⊥ for constant m2
⊥ = m2+p2

⊥
for each string. The reduction in m2 implies a reduced overall multiplicity
of produced hadrons; the increase in p2

⊥ is local and only affects hadrons in
the overlapping region. Starting from the simplest case of two symmetric
and parallel strings with massless endpoints, we generalize to progressively
more complicated configurations. We present an implementation of this model
in the Pythia event generator and use it to illustrate the effects on hadron
p⊥ distributions and dihadron azimuthal correlations, contrasting it with the
current version of the “shoving” model implemented in the same generator.
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1 Introduction

Hadronization models play an essential role in the description of hadronic events in high-
energy collisions, connecting the short-distance physics of quarks and gluons with the
observable world of colourless (long-lived) hadrons via a dynamical process that enforces
confinement. The two major models of hadronization used in proton-proton event gen-
eration are the Lund string model [1–4] and the cluster model [5–7], with the former
implemented in Pythia [8–10] and Epos [11, 12], and the latter in Herwig [13–15] and
Sherpa [16,17].

While the Lund string model has been able to qualitatively describe a large number
of hadron-level observables from e+e− to proton-proton collisions across a wide range of
CM energies (see e.g. mcplots [18]), recent data in particular from the LHC experiments
have highlighted some shortcomings. ALICE has shown unequivocally that strangeness
production increases as a function of event multiplicity in minimum-bias event samples [19,
20], while CMS discovered the near-side ridge in high-multiplicity events [21, 22]. The
latter has been elaborated upon in a number of studies by both ATLAS and CMS [23–27],
and there are also several additional indications of strangeness enhancement e.g. in the
underlying event [28–30]. Both of these phenomena are widely believed to have their
roots in collective effects, but in the baseline Lund string model, each string hadronizes
independently of the others (modulo effects of colour reconnections, see, e.g. [31]).

Several proposals have been made that can potentially explain these phenomena. Rope
hadronization [32, 33] takes aligned strings in rapidity and enhances their string tensions
based on a Casimir scaling argument [34,35], leading to increased strangeness production
and higher average p⊥ values in string breaks. Shoving, a mechanism for microscopic
string-string interactions which generates transverse momentum pressure between over-
lapping strings, was proposed in [36, 37] and showed long-range azimuthal correlations.
Both the Rope and shoving model have been implemented in Pythia, Dipsy [38], and
Angantyr [39]. Alternatively, the approach taken by Epos [12] invokes the notion of a
critical string density beyond which a heavy-ion inspired hydrodynamic modelling takes
over, which includes collective flow and thermally enhanced strangeness production. Yet a
third line of argument is that colour reconnections (CR) can produce flow-like effects [40],
essentially by creating net boosted hadronising systems. Baryon-to-meson ratios may
also be altered by CR effects [41] but would have to be supplemented by something like
Rope hadronisation to significantly alter net strangeness fractions. Other models proposed
include thermodynamic string fragmentation [42], which used an exponential transverse
mass spectrum instead of the usual Gaussian form. Recent work on the cluster model
has also tried to capture some of the collective-like effects seen by introducing baryonic
clusters and strangeness enhancement in Herwig [43,44].

We here take the same basic starting point as the shoving model [36,37], namely that
nearby QCD strings should exert a force upon one another. We focus on repulsive forces

2
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since we assume that colour-reconnection models such as [41] (based on colour algebra
and string-length minimisation) provide a first approximation to any attractive effects.
We further assume that all of the hadronizing colour charges emanate from a region that
is small compared with the typical width of a string. This restricts the applicability of our
model to small systems but allows us the simplification of working entirely in momentum
space. By contrast, the shoving model adopts an explicit picture of the spatial distribution
and time evolution of the strings. (The space-time structure of hadronization in the Lund
model was also recently further explored in [45].) Furthermore, the effect of the interaction
is in our model represented via a global rescaling of the 4-momenta of the string endpoints
combined with a local addition of p⊥ to hadrons formed in regions of string overlap,
while the shoving model imparts transverse momentum by adding a number of low-energy
slightly massive gluons to each string. Despite similar physical starting points, we therefore
do expect some qualitative differences to arise between the shoving model [36,37] and our
momentum-space realization of repelling strings.

The article is organized as follows. Sec. 2 presents a short review of the Lund string
model with emphasis on those features that are most relevant to our toy extension model.
Sec. 3 introduces our string-string interaction model in the context of the simplest two-
string configuration, and presents how the repulsion is implemented during string frag-
mentation, and the effects on primary hadron transverse momentum. We then extend
this formalism to a more general parallel two-string configuration in Sec. 4 and then to
strings with endpoints with both longitudinal and transverse momentum in Sec. 5. To
make a connection with the phenomenological characterisations of collective flow used in
heavy-ion inspired studies, we illustrate the effects on two-particle cumulants, c2{2}, for
selected two-string configurations in Sec. 6. In Sec. 7, we discuss the effects of decays of
short-lived primary hadrons. Modifications for strings with massive endpoints are briefly
discussed in Sec. 8 before we conclude and give an outlook for future work in Sec. 9.

2 Lund String Model

The Lund string model [1–4] is based on the linear nature of the confinement potential
V (r) = κr between static quark-antiquark pairs separated by distances greater than about
a femtometre (see e.g. [35]). Strings are implemented in Pythia at the end of the pertur-
bative shower, where long colour-chains produced by the shower are collected into colour
singlets, the so-called Lund strings.

A Lund string represents a confined gluonic flux tube or vortex line. In the simplest case
it runs between a quark endpoint via any number of intermediate gluons (which generate
transverse kinks in the structure) to an antiquark endpoint. Other colour topologies are
possible as well, such as junctions and gluon loops. In this work, we restrict our attention
to simple qq̄ strings without any transverse gluon excitations.

As the endpoints propagate outward in opposite directions from the production point,
their energy and momentum gets transferred to the Lund string that stretches between
them. When sufficient energy is available, new q′q̄′ pairs can be produced in the string
field (typically by invoking a Schwinger-type tunneling mechanism [46]); the string thereby
breaks into successively shorter pieces each of which ultimately becomes an on-shell
hadron, in a process called fragmentation. In the ordinary Lund string model, each string
fragments independently, and each string break is independent of any others.

Fragmentation proceeds by successively splitting off one hadron from either endpoint
(chosen at random), with the created hadron at each step taking a fraction z of the string’s
available lightcone momentum distributed according to the Lund symmetric fragmentation

3
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function:

f(z) = N
(1− z)a

z
exp

(−bm2
⊥

z

)
, (1)

with the leftover string retaining the remainder 1−z. N is a normalisation constant and a
and b are phenomenological parameters to be determined from fits to data, see e.g. [47,48].
m2
⊥ = m2 + p2

⊥ is the transverse mass of the produced hadron; its p⊥ is obtained as the
(vector) sum of the p⊥ values of each of its constituent quarks. In the absence of collective
effects each string break is assumed to impart an equal and oppositely oriented p⊥ to
the produced quark and antiquark, which by default is given a Gaussian distribution, by
analogy with the Schwinger mechanism in QED [46]. In the Rope model [32], the coherent
fragmentation of multiple nearby colour charges can cause the width of this p⊥ distribution
(as well as strangeness and baryon production probabilities) to increase. While we believe
those arguments to be fundamentally correct, for simplicity we focus in this work solely
on the collective repulsion aspect, keeping other string-breaking aspects unmodified.

2.1 Fragmentation and rapidity

In the context of interacting strings, we will be interested in the effective overlap in rapidity
between a produced hadron and a nearby string piece. To start with, we need an expression
for the rapidity span taken by each hadron along an axis defined by its own string system.

Letting m0 denote a generic hadron mass, the rapidity span of a simple qq̄ string with
massless endpoints traveling in opposite directions along the z-axis is:

∆y0 = ln

(
W+q

m0

)
−
[
− ln

(
W−q̄
m0

)]
,

= ln

(
W 2

m2
0

)
,

(2)

where W± = E ± pz are their lightcone momenta, and W 2 = W+W− is the squared
invariant mass of the string. Throughout this work, we will use the z axis as the (common)
rapidity axis, and our example configurations will be defined so that this is reasonable,
but there is obviously nothing special about this choice; the formalism we develop can be
applied for any choice of axis.

After a hadron, h, is split off from one of the endpoints, let the invariant mass of
the leftover string be W ′2. The size of the rapidity interval associated with the produced
hadron can then be identified with the difference:

∆yh = ln

(
W 2

m2
0

)
− ln

(
W ′2

m2
0

)
= ln

(
W 2

W ′2

)
, (3)

which is independent of m0. App. A elaborates on how Eq. (3) relates to the sequence of
z fractions and hadron mass values for arbitrary (sequences of) string breaks, using the
notation from [4, 45] which also matches the code implementation. Below, we shall use
these expressions to quantify the total rapidity overlap that a given hadron has with a
nearby string piece.

3 Repulsion Between Two Parallel Identical Strings

We start by considering the simplest possible configuration: two straight and parallel
strings of the same squared invariant mass, W 2.

4
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y = 0 Compression Repulsion

qq̄

q̄ q

Figure 1: Schematic diagram of the simplest two-string configuration and the two steps
in our model: compressing the strings (black solid lines) and repulsion during the string’s
fragmentation. The hadrons (grey ovals) receive p⊥ proportional to the string length they
take. We have ignored the Gaussian transverse momentum generation in the Lund string
model for the purposes of this figure. The transverse separation between the strings in
the diagram is for clarity.

Viewed in space-time, the repulsion between two such strings should depend on their
(time-dependent) transverse separation distance [49, 50]. However, in the context of
hadronization in high-energy particle collisions, the preceding perturbative stages of event
generation are normally treated in momentum space, i.e. in terms of plane-wave approxi-
mations that are not well localized in space-time. Thus, one faces a problem of mapping
partons represented in momentum space onto string systems represented in space-time.
In the framework of classical string theory, on which the Lund model is based, one may
simply use the string tension κ to convert between the two pictures. But when multiple
string systems are involved, any interactions between them will depend on the space-time
separation between the production points of each system, which the momentum-space
perturbative boundary conditions only serve to fix up to an ambiguity ∝ 1/ΛQCD. More-
over, while a strict classical interpretation would in principle allow for arbitrarily small
separations, string descriptions are only appropriate for long-distance QCD. Interesting
work has been done recently to bridge the two pictures [45,51], but for the purpose of this
study we would like to explore how far we can get if we stay in momentum space.

Our underlying assumption will be that our colliding systems are of order a hadronic
size (hence we do not address heavy ions) and that, by the time strings are formed, they
are already at least some “typical” transverse distance apart, again of order hadronic sizes
even if the directions of motion of the endpoints were originally completely parallel. We
make the boost-invariant ansatz that parallel strings impart a constant amount of net
transverse momentum to each other per unit of overlap in rapidity,

dp⊥R
dy

= cR , (4)

where the constant cR, which has dimensions of GeV per unit rapidity, represents the main
tuneable parameter in our model. It controls the strength of the repulsion, or alternatively,
the conversion strength of longitudinal momentum into transverse momentum.1 Non-
parallel configurations will be discussed below. We further make the ansatz that each
hadron produced in the overlap region receives a fraction of the total repulsion p⊥ in
proportion to (the overlapping portion of) its rapidity span according to Eq. 3.

A schematic diagram of how our model works is shown in Fig. 1. In a first step, we
remove an amount of longitudinal momentum from the original endpoints (“compression”),
in proportion to the size of the total rapidity overlap between the two strings. In the second

1In a future extension we shall relate this to an increase in the tension of the individual strings as well,
in a manner similar to what is done in Rope hadronization, but this is outside the scope of this work.
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step, the energy that was removed in the compression step is imparted back to the hadrons
formed in the region(s) of overlap, as transverse momentum (“repulsion”).

3.1 String Compression

Each string is defined by its two endpoints, which for simplicity we take to be massless
for now and travelling in opposite directions along the z axis. Right-moving endpoints
thus start out with lightcone momenta W+ = 2E and W− = 0 and vice versa for the
left-moving ones. In the fully symmetric setup we consider here, both strings will undergo
the same transformations described below. We focus on just one of them.

Since the strings have equal invariant masses, the overlap is simply the full rapidity
span of each string, i.e. ∆yov = ∆ystring, which is given by Eq. (2). For this work, we
found that using too small an m0 can lead to pathological results since this presumes that
every hadron you can create has an invariant mass of that order. Instead, we will choose
to work with m0 = mρ = 0.77 GeV. Thus, by integration of Eq. (4) the p⊥ gained by each
string will be:

p⊥R = ±cR ·∆yov, (5)

where the ± sign symbolically represents that the kicks will act in opposite directions, so
that no net p⊥ is gained by the string-string system as a whole.

To conserve energy, this p⊥ must be acquired at the expense of some amount of longi-
tudinal momentum. We start by defining a set of intermediate rescaled lightcone momenta
W ′± = f±W± with

f+f− = 1−
p2
⊥,R
W 2

≤ 1, (6)

which corresponds to a W ′ string system with a lower invariant mass,

W ′−W
′
+ = W ′2 = W 2 − p2

⊥R . (7)

This first step of the model is illustrated by the left-hand part of Fig. 1, labelled “Compres-
sion”. In the simple case studied in this section the compression factors f+ and f− must
be equal for symmetry reasons. (More general cases, with f+ 6= f−, will be considered in
the next section.)

A particularly simple way of representing the repulsion effect would be to boost the W ′

system transversely by a factor ~β⊥ = ~p⊥R/W ′. However, as G. Gustafson demonstrated
during enjoyable discussions in Lund, such a boost would assign relatively more of the
repulsion p⊥ to high-rapidity hadrons than to central ones, in contrast with the manifestly
longitudinally invariant form of Eq. (4). Instead, we therefore modify the fragmentation
of the W ′ system in a more local way, by allowing each produced hadron to receive an
additional amount of p⊥ in a manner designed to reproduce Eq. (4).

Writing the 4-vectors as (p+, p−, ~p⊥), the W ′ system is defined by:

p′q = fW+

(
1, 0,~0⊥

)
,

p′q̄ = fW−
(

0, 1,~0⊥
)
.

(8)

As remarked above, this has a lower total energy, W ′, than that of the original system.
The “missing energy” will gradually be added back during the fragmentation process, in
the form of additional p⊥ given to the hadrons that are formed in the region(s) of overlap.
Unlike the standard fragmentation p⊥ in string breaks, which is randomly and indepen-
dently distributed in azimuth for each breakup, a single global φ choice characterises the
p⊥ component from repulsion (with π + φ used for the hadrons in the recoiling string
system). We will now discuss the details of this second step, illustrated by the right-hand
part of Fig. 1, labelled “Repulsion”.

6
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3.2 Repulsion

As mentioned in Sec. 2.1, we can assign a rapidity span to each hadron as it gets produced
by the rapidity span lost by the string when producing the hadron. Using Eq. (36), a
hadron receives a corresponding fraction of p⊥R, calculated in the same manner as Eq. (5):

p⊥h = cR∆yh = p⊥R
∆yh

∆ystring
, (9)

where ∆yh is the rapidity span of the string taken by the hadron, such that
∑

∆yh =
∆ystring, and consequently the summed repulsion momentum given to hadrons is equal to
the total repulsion momentum. Generalising to cases in which the two strings do not fully
overlap, the numerator and denominator of the rapidity-span ratio in the last expression
can simply be changed to refer to the overlapping portions of the hadron and total rapidity
spans, respectively. After the hadron receives the repulsion p⊥, its energy is then adjusted
by the amount required to put it back on shell. In this way, the “missing energy” discussed
above is gradually added back to the system.

Note that, if there were no other sources of transverse momentum, putting a hadron
on-shell after the repulsion would always increase its energy. However, since each string
break is associated with a randomly distributed fragmentation p⊥ (with each hadron in
general receiving contributions from two such breaks), which must be added vectorially
to the repulsion p⊥, some hadrons may have lower total p⊥ after adding the repulsion
effect. In our modeling setup, such hadrons are regarded as donating some energy back
to the string system’s reservoir of “missing energy”, with the sum over all hadrons still
respecting eq. (5).

With this modification, we follow the same iterative fragmentation procedure as in
ordinary Pythia, splitting off hadrons from either end, allowing them to receive additional
repulsion p⊥ and putting them back on shell, until the invariant mass of the remaining
string system drops below a cutoff value:

W 2
rem < W 2

stop. (10)

At this point, we add any remaining repulsion p⊥ to the remnant object, as well as
any energy that is still missing from the compression process. This makes total energy
and momentum conservation explicit. Pythia then produces two final hadrons from this
modified remnant string.

3.3 Results

In the rest of this section, we study the consequences of our model for an explicit example
configuration defined by:

p+1 = p+2 = 400
(

1, 0,~0⊥
)

GeV ,

p−1 = p−2 = 400
(

0, 1,~0⊥
)

GeV .
(11)

To highlight the effects of the fragmentation repulsion, we have chosen endpoint energies of
200 GeV (corresponding to rather long strings), and, at this stage, consider only primary
hadrons (hadrons that are produced directly from the fragmenting string). The smearing
caused by decays of (short-lived) primary hadrons into secondaries will be discussed in
Sec. 7.

The left pane of Fig. 2 shows the average p⊥ of primary hadrons as a function of
∆yh, as defined by Eq. (3). The red dashed histogram shows the results of using the
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Figure 2: Distribution of average primary-hadron p⊥ as a function of ∆yh. Left: compari-
son of baseline Lund model (red solid line) to our model for cR = 0.2 GeV (blue solid line),
our model with only the repulsion p⊥ component (blue dot-dashed line) and the shoving
model (black dashed line). The shoving model exhibits a lower average p⊥ since the soft
gluons it adds make the strings longer causing the multiplicity of produced hadrons to
increase faster than the total p⊥. Right: the effect of varying the repulsion strength cR.

ordinary Lund model, which — since the Gaussian transverse momentum generation in
the baseline Lund model is independent of the rapidity span — is a flat distribution
modulo endpoint effects, The two blue histograms illustrate the effects of our compression
and fragmentation repulsion model, for a representative value of cR = 0.2 GeV. The
dot-dashed histogram shows the repulsion component by itself (obtained by turning off
the Gaussian fragmentation p⊥ component via StringPT:sigma = 0). The solid blue
histogram shows the combination of the fragmentation and repulsion p⊥ components, for
the same reference value of cR. For small ∆y, this mimics the baseline string model, while
for large ∆y, the repulsion p⊥ takes over as the dominant source of transverse momentum.

We also include a comparison to the shoving model as implemented in Pythia 8.2
[36, 37]. For the shoving parameters used in our study (see App. B for details), the
average transverse momentum per unit rapidity span taken actually decreases relative to
the baseline (solid red) model. We interpret this as a result of the physical mechanism by
which the shoving model pushes the two strings apart, which is implemented as a number
of very soft transverse gluon excitations. While this does increase the total p⊥, it also
increases the total string length. The latter in turn increases the hadron multiplicity,
with the result that the average p⊥ per hadron can decrease. In our model, by contrast,
the compression step ensures that the total multiplicity decreases; the repulsion step then
adds p⊥, implying that both the total and the average p⊥ per hadron must increase.

The results of varying cR from 0 GeV (equivalent to the no-repulsion baseline case)
to 0.4 GeV per unit of rapidity overlap are shown in the right panel of Fig. 2. As cR
increases, the slope of the average hadron p⊥ increases with the rapidity span of the string
taken, as expected from the ansatz in Eq. (9).

In Fig. 3, we show the same model examples but now as a function of the more directly
observable rapidity of the hadrons, instead of the rapidity span they take. For the normal
Lund string model, this produces a variant of the famous rapidity plateau (red solid line).
For the parameters we studied, the shoving model (dashed black line) does not change the
average p⊥ appreciably (while the average multiplicity of the event is increased [37]). In
contrast, for our reference value of c = 0.2 GeV, our repulsion model (blue solid line, with
the repulsion component illustrated by the blue dashed line) does increase the average
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Figure 3: Distributions for the average p⊥ of primary hadrons as a function of the hadron’s
rapidity for the symmetric parallel strings configuration. Left : comparison of the baseline
Lund model (red solid line), with our fragmentation repulsion model (blue solid line), which
has a higher 〈p⊥〉 in the plateau region. The component which is due to the repulsion effect
is illustrated by the blue dot-dashed line. Also shown is the result of using the shoving
model (black dashed line) [37], for the same string configuration. The shoving model does
not have significant deviation from the baseline Lund model for this observable (see text).
Right : the effect that varying the repulsion strength cR.

primary hadron p⊥. The net increase is less than linear since the ordinary (Gaussian)
fragmentation p⊥ is oriented randomly with respect to the repulsion p⊥, and the two
components add vectorially.

As in the previous figure, the right panel of Fig. 3 illustrates the effect of varying cR in
the range 0 to 0.4 GeV per unit of rapidity overlap. For larger values of cR, the rapidity
plateau begins to lose some of its flat structure, particularly in the middle of the string,
near yhadron = 0. To fix the flatness, one may adjust the stopping mass parameter W 2

stop

in Pythia’s implementation of the string model, though this is outside the scope of this
work.

4 General Parallel Two-String Configuration

We now extend the considerations in Sec. 3 to a more general configuration, by letting
the strings have an arbitrary parallel configuration. Without loss of generality, we assume
that the two strings do still overlap, either partially, or one string’s rapidity span is fully
contained inside the rapidity span of the other. Relabeling as needed, we require in the
former case that the left-moving (W−) end of string 1 is contained within the rapidity span
of string 2, and the right-moving (W+) end of string 2 is contained within the rapidity
span of string 1.

In the context of the momentum-space representation of the Lund model that our
repulsion framework is based on, the full space-time evolution of a string is determined
solely by the starting values of the 4-momenta of its endpoints. By initially reducing
these momenta, the “compression” step of our model expresses the physical expectation
that, as two nearby strings expand simultaneously and repel each other, it will not be
possible to convert all of the kinetic energy of their endpoints into potential energy stored
in the corresponding strings; instead, some fraction of the original kinetic energy is “held
in reserve”, to be converted into transverse momentum during the fragmentation process.

9
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z
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Figure 4: Schematic (1+1)-D spacetime diagram of the general parallel two-string config-
uration, where the two strings have a region of overlap (dotted parallel lines). The two
endpoints in the region of overlap will be subjected to more compression and repulsion.

When we now turn to consider asymmetric configurations, we must answer not only how
much of the total kinetic energy must be held in reserve in this way, but also which fraction
of it to take from each of the reservoirs represented by the two endpoints.

In our fragmentation repulsion model, we will use the ansatz that endpoints “inside”
a region of overlap should undergo more compression than ones “outside”, since the cor-
responding string regions experience more of the accumulated interaction. In Fig. 4, we
show a (1+1)-D diagram of a general string configuration, with an overlapping region cen-
tred around a slightly negative rapidity (in the given frame). The right-moving endpoint
of the dashed-orange string piece overlaps with the solid-black string system during the
entire time over which its original kinetic energy is converted to potential energy. By
contrast, the left-moving endpoint of the same dashed-orange string piece only overlaps
with the black system during half of the time that it takes to convert all of its kinetic
energy to potential energy. In this sense, the right-moving endpoint can be considered to
be “inside” the region of overlap while the left-moving one ultimately travels “outside” of
that region. Alternatively, the portion of the black-solid string system that is represented
by its left-moving endpoint has a bigger fraction of total overlapping area than the portion
that is represented by its right-moving endpoint.

4.1 String Compression

In the general case that the strings are not symmetric in the longitudinal direction, one
must make a choice whether to allow them to exchange pL or not. For simplicity and
since we wish to focus on the transverse repulsion effects here, we choose to ignore the
possibility of pL exchange in this first version version of our model. Thus, the only change
with respect to the symmetric case is that the rescaling factors for each of the four endpoint
momenta will no longer be equal.

Regardless of longitudinal recoil, the compression factors for each string system i ∈
[1, 2] must satisfy:

f+1f−1 = f2
1 = 1−

p2
⊥,R
W 2

1

,

f+2f−2 = f2
2 = 1−

p2
⊥,R
W 2

2

,

, (12)
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where p⊥,R is the total p⊥ ∝ ∆yov from repulsion to be assigned (equally and oppositely) to
the two systems, see eq. (5), and longitudinal momentum conservation, ∆pL,1 = −∆pL,2,
implies:

(1− f+1)W+1 − (1− f−1)W−1

= (1− f−2)W−2 − (1− f+2)W+2 .
(13)

This gives three constraints for four unknowns. Imposing the further condition of no
longitudinal momentum exchange, ∆pL,1 = ∆pL,2 = 0, eq. (13) separates into:

(1− f+1)W+1 − (1− f−1)W−1 = 0,

(1− f−2)W−2 − (1− f+2)W+2 = 0.
(14)

The problem can then be solved with a unique set of solutions for each compression factor
f±i. Inserting the first two constraints Eq. (12) into Eq. (14), we obtain a quadratic
equation for f−i:

W−if2
−i + (W+i −W−i) f−i − f2

iW+i = 0. (15)

Since the compression factors must be positive, there is only one solution to this equation:

f−i =
(W−i −W+i) +

√
(W−i −W+i)

2 + 4W 2
i f

2
i

2W−i
, (16)

or equivalently using the longitudinal momentum component WLi = (W+i −W−i)/2,

W ′−i = f−iW−i =
√
W 2
Li +W 2

i f
2
i −WLi ,

W ′+i = f+iW+i =
√
W 2
Li +W 2

i f
2
i +WLi .

(17)

In the limit of W+i = W−i, i.e. WLi = 0, we reproduce the symmetric case for the

given string i, i.e. f±i =
√
f2
i . By construction, longitudinal momentum is conserved,

W ′+i −W ′−i = W+i −W−i. However, energy is not:

E′i =
W ′+i +W ′−i

2
= Ei

√
1−

p2
⊥,R
E2
i

. (18)

When we perform the fragmentation repulsion, we regain the “lost” energy by giving
the primary hadrons the repulsion p⊥ and putting them on-shell again, with the string
remnant absorbing the remaining energy. Thus, we conserve energy and momentum after
compression and fragmentation of the strings.

It should be mentioned that our choice of no pL exchange does introduce a dependence
on the frame in which the system is considered. This is due to the fact that while the light-
cone momenta W± follow a simple rescaling under longitudinal boosts, the compression
factors f±i depend non-linearly on W±i as seen in Eq. (16), complicating their transfor-
mations under such boosts. Specifically, compressing the strings then boosting the entire
system results in a (marginally) different momentum topology than boosting the strings
with the same boost factor and then compressing them. In this work unless otherwise
stated, we compute compression factors in the overall CM frame of the two-string system.
(A possible alternative, not pursued here, would be to boost the system longitudinally
such that the centre of the overlap region is at y = 0.)
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p−1 p+1

p+2p−2

Compression Repulsiony = 0

Figure 5: Schematic diagram of the general two-string configuration and how we perform
the string compression using Eq. (16), and then the fragmentation repulsion. Only primary
hadrons in the region of overlap will receive p⊥ proportional to the string length taken.
We have ignored the Gaussian transverse momentum generation in the Lund string model
for the purposes of this figure.

4.2 Repulsion

The repulsion effect we seek to model is local; additional p⊥ should be imparted to hadrons
formed within regions of string overlap, and not to those outside. Fragmenting the (com-
pressed) string from the outside in as usual, and using Eq. (3) to compute rapidity spans,
we distinguish three cases for each produced hadron:

1. The span is completely outside the overlap region;

2. The span is completely inside the overlap region;

3. The span straddles the boundary of the overlap region.

In the first case, the hadron receives no repulsion p⊥, while in the second, it is computed
according to Eq. (9) and assigned repulsion p⊥ following the same procedures as described
in Sec. 3. In the last case, only the portion of the rapidity span inside the overlap region
contributes to Eq. (9).

To illustrate the repulsion effect we consider a two-string scenario defined by the fol-
lowing endpoints (using the same lightcone notation as previously),

p+1 = 1200
(

1, 0,~0⊥
)

GeV,

p−1 = 300
(

0, 1,~0⊥
)

GeV,

p+2 = 100
(

1, 0,~0⊥
)

GeV,

p−2 = 1000
(

0, 1,~0⊥
)

GeV,

(19)

This configuration is then boosted back to the overall CM frame. An illustration of the
compression and repulsion steps for this type of configuration is given in Fig. 5.

4.3 Results

In Fig. 6, we show the average primary hadron p⊥ distribution as a function of the string
rapidity span taken by the hadron.

In the left panel of Fig. 6, the red histogram is the ordinary Lund model, which is
agnostic to the the rapidity span taken by a hadron. The blue histograms are the result of
our implemented model for cR = 0.2 GeV, for both the repulsion component (dot-dashed),
which matches the ansatz in Eq. (9), and the full fragmentation (solid), which matches
the baseline Lund model and the repulsion component in the limits of small and large ∆y
respectively. Lastly, we have also included the results of using the shoving model for this
configuration. These results are largely similar to the results for the symmetric, parallel
configuration in Sec. 3.3.
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Figure 6: Distribution of average hadron p⊥ for primary hadrons as a function of the
rapidity span that they take, for the asymmetric two-string configuration discussed in the
text. Left : the baseline Lund model (red solid) compared to our model of fragmentation
repulsion (blue solid line). For the latter, the blue dot-dashed histogram illustrates the
component which is due to repulsion. Also shown is the result of using the shoving model,
which, like the baseline Lund model, is agnostic to the amount of string length taken.
Right : the effect of varying cR in Eq. (9).

The right panel of Fig. 6 highlights the effects of varying cR on the average primary
hadron p⊥ distribution as a function of the string’s rapidity span taken by the hadron for
the full fragmentation repulsion. For cR = 0 GeV, we reproduce the ordinary Lund model.
As the repulsion factor increases, the slope of the average p⊥ increases, since the two are
proportional via Eq. (9).

In Fig. 7, we present the average primary hadron p⊥ distribution as a function of the
hadron’s rapidity (as measured in the overall CM frame of the two strings). Since the
configuration is asymmetric with respect to the endpoints of the two strings, the resultant
compression and fragmentation repulsion will also reflect this asymmetry. The red his-
togram is the ordinary Lund string model, and again we reproduce the rapidity plateau,
with a small asymmetry due to the configuration of strings. The blue histograms are our
fragmentation repulsion for cR = 0.2 GeV where we have shown only the repulsion com-
ponent (dot-dashed), and the full fragmentation repulsion (solid). We have also included
the results of the shoving model (black dashed).

Fig. 7 also showcases the considerations from Sec. 4.2. In comparison to Fig. 3 where
the repulsion component has a sharp cut-off at the edges of the rapidity overlap region, in
the general case we have longer tails that extend beyond the overlap region due to hadrons
taking rapidity spans that are only partially in the overlap region.

Comparing Figs. 3 and 7, we see the same structures for each respective model. Our
fragmentation repulsion exhibits an increased average p⊥ for hadrons inside the rapidity
overlap region, while hadrons outside that region have a diminished p⊥ contribution from
the repulsion. As in the previous section, we see that the shoving model considered in this
study does not change the distribution, apart from minor deviations near the endpoints.

5 Two-String Systems with Relative Rotations and Boosts

We now consider string systems with endpoints that have non-vanishing transverse mo-
menta. The examples we consider in this section will still be defined so that the z axis
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Figure 7: Distribution of average hadron p⊥ for primary hadrons as a function of yhadron,
for the asymmetric two-string example described in the text. The repulsion component of
our fragmentation repulsion increases the 〈p⊥〉 in the region of overlap (indicated by the
grey dashed lines, using m0 = 0.5 GeV in the rapidity calculation).
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Figure 8: Schematic diagram of two string systems defined by the endpoint momenta given
in Eq. (20), corresponding to (left) a relative boost and (right) a relative rotation.

remains a sensible choice of common rapidity axis. Specifically, we will consider systems
like those illustrated in Fig. 8, with endpoint momenta (in conventional 4-momentum
notation):

p1 = E( 1, sin θ, 0, − cos θ) ,

p2 = E( 1, sin θ, 0, cos θ) ,

p3 = E( 1, − sin θ, 0, − cos θ) ,

p4 = E( 1, − sin θ, 0, cos θ) ,

(20)

so that the string systems defined by the (1,2) and (3,4) pairings are still parallel but
each are transversely boosted relative to the overall CM, by β = ± sin θ, while the systems
defined by the pairings (1,4) and (2,3) are at rest relative to the overall CM but are rotated
with respect to each other, with a relative opening angle of 2θ. In all cases, the CM energy
is ECM = 4E. For definiteness we take sin θ = 0.1 in the examples below unless otherwise
stated.

5.1 Symmetric configuration with relative boost

Taking the simplest symmetric two-string configuration, we ask what happens in the
situation depicted in the left-hand panel of Fig. 8 in which both strings have some (equal
and opposite) transverse momentum before compression.

Using the same arguments as above, we wish to convert a fraction of the original
longitudinal momenta of the endpoints (defined along the common rapidity axis, here the
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z axis) into transverse momentum instead of into potential energy of the string(s).
As before, the total amount of repulsion p⊥ is determined from the effective rapid-

ity overlap, which we compute from the longitudinal momentum components (along the
chosen common axis) of the endpoints,

∆yov = min(y1+, y2+)−max(y1−, y2−) , (21)

where yi+ and yi− refer to the rapidities of the right- and left-moving endpoints of string i
respectively and we regulate the rapidity values of massless endpoints in the p⊥ → 0 limit
by imposing m ≥ m0 in the denominator of our rapidity definition:

y = ln
E + pL√
m2 + p2

⊥

. (22)

Using lightcone coordinates as before, the longitudinal component of a general string-end
momentum is pL = (W+ −W−)/2, and the energy is E = (W+ +W−)/2.

The string-ends will be rescaled in a similar manner to the parallel strings in Sec. 3.
Since the rescaling is done on the full 4-vectors, the string endpoints will lose some p⊥.
We use the ansatz of giving this extra transverse momentum reservoir, denoted p⊥,res to
the fragmenting hadrons as a fraction of the rapidity span they take from the string:

p⊥,h =

(
cR +

p⊥,res

∆yov

)
∆yh, (23)

where ∆yov is string-string overlap defined via Eq. (21, and ∆yh is the amount of rapidity
span taken by the hadron inside of the overlap region, as discussed in Sec. 4. (Alternatively,
and probably more correctly, one could distribute p⊥,res among all the hadrons, not just
those in the overlap region; or boosting the compressed string transversely so that it
regains its original total p⊥; but since since p⊥,res is typically very small it is a minor
effect.)

As in the previous section we assume no longitudinal momentum exchange, ∆pL = 0.
Writing the total longitudinal momentum of string i ∈ [1, 2] as

pL,i = pL,+i + pL,−i , (24)

with pL,±i the longitudinal momentum of the respective endpoints, we can generalize
Eq. (16) to:

f−i =
pL,i +

√
p2
L,i − 4pL,−ipL,+if2

i

2pL,−i
. (25)

In the limit of the string ends carrying p⊥ → 0, Eq. (25) exactly reproduces Eq. (16).
The amount of repulsion ⊥ given to each hadron during the fragmentation process

should be proportional to the (overlapping portion of the) rapidity span it takes. The def-
inition, Eq. (36), is given in terms of the quantities used to characterize the fragmentation
of each string in its own CM frame, along the axis defined by its endpoints in that frame,
whereas we here want to along the chosen common axis in the string-string CM frame. As
a very simple way to “project” the rapidity span, we use

∆yeff =
∆ystring

∆y∗string

∆y∗taken , (26)

where the ∆ystring is the rapidity span of the given string evaluated along the common
axis defined in the string-string frame and ∆y∗string = ln

(
W 2/m2

0

)
is the (larger) span
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Figure 9: Distribution of average hadron p⊥ of primary hadrons as a function of the
hadron’s rapidity, for the symmetric configuration (left) and the general configuration
(right), where the two strings have an equal and opposite boost in the transverse direction.
The latter configuration is boosted back to the two-string rest frame before compression
and fragmentation. We have added the repulsion p⊥ in the same direction as the overall
motion of each string.

evaluated in the string’s own rest frame. ∆y∗taken = ln
(
W 2/W ′2

)
is the rapidity span of

the hadron taken in the string’s own rest frame.
The effective string length in Eq. (26) taken is invariant under longitudinal boosts,

and reproduces the parallel configuration in the limit where each string endpoint carries
vanishing p⊥. Eq. (26) also sums to give the correct rapidity span along the z-axis, and is
agnostic to the direction of the transverse momentum.

The last point to address is in which direction in azimuth to apply the repulsion.
Considering the transverse plane only (in the string-string CM frame), the two systems
will have some equal and opposite overall motion, which we denote by ~p⊥,rel = ~p⊥1−~p⊥2 =
2~p⊥1. Assuming that, by the time strings are formed, the string systems are already
separated a bit (on average) along this axis, it seems plausible to us to apply the repulsion
p⊥ along the same direction. To provide some variability and in order to have a well-
defined repulsion axis also in the p⊥,rel to0 limit, we add a random component as well:

~n⊥1 = N(~p⊥,rel + ρ~n⊥,ran) (27)

where ~n⊥,ran is a unit-vector in a randomly chosen azimuthal direction, the normalisation
factor

N =
1√

p2
⊥,rel + ρ2 + 2ρ(~p⊥,rel · ~n⊥,ran)

(28)

ensures |n⊥1| = 1, and ρ is a free parameter of order 1 GeV which governs the relative
importance of the random component. The repulsion for string 1 is oriented with n⊥1,
and that for string 2 in the opposite direction.

The choice of direction can have a significant effect on two-particle azimuthal corre-
lations, as we will describe in Sec. 6, but it does not have a drastic effect at the level of
the distributions for the average hadron transverse momentum versus hadron rapidity and
rapidity span taken.
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5.2 Results

We present the results in Fig. 9. Both panels show the average primary hadron p⊥ as
a function of yhadron (defined along the common string-string axis, here the z axis, in
their overall CM frame). In these plots we have chosen to add the repulsion p⊥ in the
same direction as each string’s overall transverse motion, and chosen a larger value of
cR = 0.4 GeV compared to the parallel configurations, to make the effects of the repulsion
stand out a bit more clearly against the p⊥ contributed already from the endpoints.

In Fig. 9, our fragmentation repulsion exhibits similar effects as those seen in Figs. 3
and 7, though the enhancement of average primary hadron p⊥ is less drastic than in the
parallel configurations. The reason for this is twofold: first, since the strings are no longer
parallel, the amount of rapidity overlap between the two strings is reduced, resulting in less
total repulsion p⊥. Second, the boosted endpoints show up as peaked structures around
the endpoints’ rapidity.

While the effects of our fragmentation repulsion are less distinctive in Fig. 9, the
framework will still have a distinctive effect on the two-particle azimuthal correlations, as
we will discuss in Sec. 6.

5.3 Asymmetric configurations

Generalizing to an arbitrary configuration with strings that have endpoints with transverse
momentum follows naturally from combining the frameworks presented in Sec. 4 and
Sec. 5.1. The effects are smaller than in the symmetric configuration with opposite boosts,
since the overlap in rapidity along the z-axis decreases the more transversely boosted the
endpoints are. This results in less compression, and less fragmentation repulsion. We will
use the configuration from Eq. (19), with a boost factor of β = 0.1 in opposite directions
for each string.

In the right panel of 9, we show the results of boosting each string in the general con-
figuration given by Eq. (19) in opposite directions, then boosting back to their common
rest frame, and then performing our compression and fragmentation repulsion. We have
chosen to present the results of using cR = 0.4 GeV since larger values of this parameter
are required to have visible results for this observable. The results are in line with our
expectations from previous sections, namely that strings with endpoints that have trans-
verse components will compress and repel less than strings that are completely parallel,
and similarly with strings that are not completely overlapping.

5.4 Rotated configurations

Configurations such as those depicted in the right-hand pane of Fig. 8 can be treated
using the same arguments as for the boosted configurations. The endpoints again have
non-vanishing transverse momenta, hence the rapidity spans computed along the common
rapidity axis are always smaller than those in the respective string CM frames.

In the specific example shown in 8, p⊥,res = 0 since each of the (1,4) and (2,3) strings
have zero net p⊥. Compression factors are computed from the longitudinal momentum
components as in Eq. (25, and the effective span taken by each hadron is projected onto
the common axis using Eq. (26).

Finally, since each of the strings are at rest the ~p⊥,rel in Eq. (27) is zero hence the
random component will dominate in the choice of azimuth direction. (A more physical
choice could potentially be made by using the direction transverse to the plane spanned by
the two strings, but since we consider the case of vanishing ~p⊥,rel to be of limited general
interest we do not pursue this further here.)

17

104 6. Repulsive Strings



SciPost Physics Submission

0.0 0.2 0.4 0.6 0.8 1.0
cR [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c 2
{2

}
Two-particle cumulant c2{2} of primary hadrons as a function of cR

Symmetric
Symmetric, boosted (+)
Symmetric, boosted (-)
Symmetric, boosted ( )

0.0 0.2 0.4 0.6 0.8 1.0
cR [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c 2
{2

}

Two-particle cumulant c2{2} of primary hadrons as a function of cR

General
General, boosted (+)
General, boosted (-)
General, boosted ( )

Figure 10: Two-particle cumulant for the symmetric (left panel) and the general (right
panel) two-string configurations, at the level of primary hadron production. We show
the curves for the simplest parallel two-string case, and three variations on the equal
and oppositely boosted two-string case. The variations are: the repulsion p⊥ acts in
the same direction as the given string’s overall transverse motion (“Boosted, (+)”), the
repulsion p⊥ acts in the opposite direction (“Boosted, (−)”), and lastly, the repulsion p⊥
acts perpendicularly to the string’s boost (“Boosted, (⊥)”). For each curve, when cR = 0,
we reproduce the baseline Lund string model.

There are many other configurations that one may consider, but with the four config-
urations discussed in this work, we have presented the overall framework for our model of
fragmentation repulsion.

6 Flow and Cumulants for Two-String Configurations

Long-distance correlations in rapidity and azimuth have been used extensively to probe
collective aspects of event structure, including flow, in both proton-proton and heavy-ion
collisions. (See, e.g., [52] for a succinct review of elliptic flow in heavy-ion phenomenology,
and references therein.) Here, we focus on just one such observable, the two-particle
cumulant, c2 {2}, which is designed to suppress non-flow contributions. It is calculated as:

c2 {2} =
〈
〈e2i(φi−φj)〉

〉
,

=

〈
2

n (n− 1)

n∑

i<j

cos (2(φi − φj))
〉
,

(29)

where in the first line the outer angle bracket is the average over all events, and the inner
is the average over all n particles in a given event. In the second line of Eq. (29), we have
removed the self-correlations i = j, and used the fact that the cosine function is an even
function.

The two-particle cumulant will depend not only on the repulsion strength cR, but also
on the direction of the repulsion, in particular for cases where the strings have an overall
transverse motion such as the transversely boosted strings, where ~vdet 6= 0. In this work,
we will simply show the three extreme cases of the repulsion directions for the transversely
boosted configurations, as discussed in Sec. 5.2
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Figure 11: Illustration of the net reduction of average hadron p⊥ caused by allowing
excited primary hadrons (solid histograms) to decay (dot-dashed histograms), for the
baseline Lund model (red) and our fragmentation repulsion model (blue). The example
configuration is the symmetric parallel two-string configuration described in Sec. 3; the
primary-hadron spectra are the same as those in Fig. 3.

In Fig. 10, we plot the results for the two-particle cumulant for the symmetric two-
string configuration at the level of primary hadrons, as a function of the repulsion constant
cR. There are four curves in the plot. The first curve, labelled ‘Symmetric’ is the simplest
two-string configuration, considered in Sec. 3. In this configuration, there is no preferred
φ direction, and it takes larger values of the repulsion constant to overcome the Gaus-
sian transverse momentum distribution of the Lund fragmentation model, and to have a
significant effect on the cumulant.

The three other curves are variations on the configuration described in Sec. 5.1 where
the two strings each have a boost of β = 0.1 in equal and opposite directions. The varia-
tions occur when one adds the repulsion p⊥ to the primary hadrons during fragmentation.
The curves are labelled according to the direction in which the repulsion p⊥ is added with
respect to the given string’s overall boost direction. If we add the repulsion p⊥ in the
same direction as the string’s motion, we can greatly enhance the two-particle cumulant.
If instead we add it in the opposite direction, we at first reduce the two-particle cumulant,
but as the repulsion gets larger, the cumulant begins to increase. Lastly, if we add the
repulsion p⊥ perpendicularly to the string’s motion we greatly reduce the cumulant, but
at large values of the repulsion constant, the rate of decrease begins to level out.

We obtain analogous results for the general configuration in the right panel of Fig. 10,
though the cumulant for all values of cR is less than for the symmetric case, due to the
smaller overlap in rapidity.

We compared the symmetric parallel configuration in our fragmentation repulsion
framework to the analogous configuration in the shoving model, and found that the two-
particle cumulant is significantly smaller for the shoving model, at least with the parameter
set described in App. B. For the shoving model, we calculated the two-particle cumulant
to be c2{2} = 0.00957 (averaged over 200,000 events), which is of the order of the baseline
Lund model.
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Figure 12: Two-particle cumulant for final-state hadrons in the symmetric configuration
(left), and the general configuration (right), as a function of the repulsion constant cR.
Both plots exhibit the same trends as the primary hadron distributions in Fig. 10, though
the correlations are slightly reduced, as expected from excited hadrons decaying isotropi-
cally into potentially non-hadronic final states.

7 Final-State Hadrons

In the previous sections, we considered the p⊥ and rapidity distributions at the level of
the primary hadrons produced in the fragmentation process. Decays of those hadrons into
secondaries (via processes like ρ → ππ, π0 → γγ, etc.) will smear the distributions in
rapidity and dilute the p⊥ enhancement per hadron. In this section, we include decays of
all final-state particles with lifetimes shorter than τ = 10 mm/c. In Pythia, this is done
with the two switches: ParticleDecays:limitTau0 = on, and ParticleDecays:tau0Max

= 10. With this criterion, weakly decaying strange hadrons are treated as stable, while all
particles with shorter lifetimes are decayed. This matches the typical definition for stable
particles used at LHC.

In Fig. 11, we present the average hadron p⊥ distribution as a function of hadron
rapidity, for the symmetric parallel configuration from Sec. 3. We replot the results for the
baseline Lund model (red solid) and our fragmentation repulsion (blue solid) for primary
hadrons. Allowing excited primary hadrons to decay produces the dot-dashed lines in
Fig. 11, for the baseline Lund (red dot-dashed) and our fragmentation repulsion (blue
dot-dashed).

As expected, the plateau has been lowered for the baseline Lund model, since excited
primary hadrons can decay into non-hadronic final state particles, which remove some of
the available p⊥. Similarly, the fragmentation repulsion exhibits a lowering of its peak
and general structure. However, the difference between the structure of the fragmentation
repulsion and the rapidity plateau of the Lund model remains intact when decays are
turned on, meaning our model can still be distinguished from the baseline Lund model.

In Fig. 12, we show the effects of varying the repulsion constant cR on the two-particle
azimuthal cumulant c2{2} of final-state hadrons, for the symmetric configurations (left)
and the general configurations (right). As shown, the cumulant exhibits the same trends
as the primary hadron counterparts in Fig. 10, though the effects have been somewhat
reduced, due to the non-hadronic particles produced during particle decays.

The key result of allowing particle decays is that our fragmentation repulsion model,
implemented at the level of the primary hadrons produced during string fragmentation,
still retains its key signatures at the level of final-state hadrons, at least at the level of the
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Figure 13: Distribution of average hadron p⊥ for primary hadrons as a function of the
rapidity span of the string taken by the hadron, for the symmetric, parallel two-string
configuration with massive endpoints.

two-string configurations.

8 Strings With Massive Endpoints

The final generalisation we will consider in this work concerns strings with massive end-
points. The starting point for the compression process is the same as in the massless case,
in that we rescale the 4-momenta as if the endpoints were massless:

pµ± → p′µ± = f±p
µ
±, (30)

where the subscript ± refers to the positively and negatively z-aligned endpoints respec-
tively. The compression factors are, however, slightly modified relative to those in Eq. (12).
Using the conservation of invariant mass:

W ′2 = W 2 − p2
⊥,R,

thus (f+p+ + f−p−)2 = (p+ + p−)2 − p2
⊥,R,

(31)

where we have inserted the original and rescaled endpoint momenta in the second line.
Expanding Eq. (31) and rearranging gives:

(1− f2
+)m2

+ + (1− f2
−)m2

− + 2p+ · p− − p2
⊥,R = 2f+f−p+ · p−. (32)

Using the longitudinal momentum conservation to remove, e.g., f+ produces a quadratic
in f− which can be simply solved to calculate the two compression factors.

After calculating the new momenta for the endpoints in the manner described above,
we put the endpoints back on shell:

E′± =
√
m2
± + ~p′2± =

√
m2
± + f2

±~p
2
± ≤ E±, (33)

where the last inequality of Eq. (33) emphasises the fact that f± are indeed compression
factors. With Eqs. (32, 33), we now have a prescription for compressing strings with
massive endpoints. The repulsion part is the same as that described in Secs. 3.2 and 5.3.

In Fig. 13, we present the results of our fragmentation repulsion model for the sym-
metric, parallel two-string configuration with massive endpoints. As expected, Fig. 13
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reproduces the same characteristics as Fig. 2, and in particular, the significant difference
between the shoving model and the Lund model with our fragmentation repulsion remains.

Lastly, with the above prescription for handling symmetric, parallel strings with mas-
sive endpoints, we can extend this formalism to the general two-string configuration using
the frameworks of this section and Sec. 5.3. A full presentation of this and an extension
to strings with gluon kinks will be discussed in future work.

9 Conclusion and Outlook

We have presented a framework to compress two simple qq̄ strings and repel them at the
level of string fragmentation, a model we call fragmentation repulsion. We have shown
that this induces an increased average p⊥ per hadron in regions of string overlaps and that
this in turn generates non-trivial two-particle azimuthal correlations.

With the configurations presented, one may begin to build up the more complicated
string topologies from the smaller pieces we have considered. Future work will look first at
strings with gluon kinks, then at configurations with more than two overlapping strings.
More complicated string topologies such as junctions and closed gluon loops will also need
to be addressed to turn the model into a full-fledged description of LHC events.

A shortcoming of our work is that it does not provide a microscopic description of
the string-string interactions, unlike the shoving model. That is, we describe the effect
simply in terms of an effective average p⊥ density that we postulate is accumulated by
strings that overlap in rapidity, and which is transferred to the hadrons that are produced
in the overlapping regions. Despite its relative simplicity, the model exhibits distinctive
signatures in both average hadron transverse momentum and two-particle azimuthal cor-
relations which are easy to understand intuitively. The amount of repulsion generated
via Eq. (5) is longitudinally boost invariant, but there remains some frame dependence
— and associated ambiguities — in our choices of rapidity and repulsion axes, and in the
definition of the compression procedure. We aim to study these aspects further in future
work.

We round off by noting that, since the cluster hadronization model is based on simple
qq̄ systems not unlike those considered here, it might be possible to apply our model also
in the context of the cluster model, to let clusters repel off one another while losing some
longitudinal momentum. However, since a cluster undergoes fissioning and decay, the
repulsion would need to be split between the two products in the respective processes.
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We thank Gösta Gustafson for his valuable comments on the work, Christian Bierlich for
his helpful comments about the current implementation of the shoving model in Pythia
8.2, and Helen Brooks & Johannes Bellm for discussions of our work. CBD is supported by
the Australian Government Research Training Program Scholarship and the J. L. William
Scholarship. This work was funded in part by the Australian Research Council via Dis-
covery Project DP170100708 – “Emergent Phenomena in Quantum Chromodynamics” –
and in part by the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No 722105 – MCnetITN3.

22

6.1. Published Material 109



SciPost Physics Submission

References

[1] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation
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[36] C. Bierlich, G. Gustafson and L. Lönnblad, A shoving model for collectivity in
hadronic collisions (2016), 1612.05132.

[37] C. Bierlich, G. Gustafson and L. Lönnblad, Collectivity without plasma in hadronic
collisions, Phys. Lett. B779, 58 (2018), doi:10.1016/j.physletb.2018.01.069, 1710.

09725.

[38] C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and Exclusive Ob-
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A String Fragmentation in Pythia

The Lund string fragments probabilistically by taking steps along the lightcone momenta
W±, where W+W− = W 2. A hadron is created by taking a fraction zh of a given end’s
lightcone momentum and the rest of the string keeps 1− zh of the lightcone momentum.
In order to put the hadron on shell, we also need to take some lightcone momentum from
the other end.

Following the notational convention of [4], if we have taken i iterative steps in the
fragmentation process, producing qiq̄i pairs, each of which take a fraction zi, and 0 ≤ zi ≤
1, we can write the fractions of the initial total W± taken at each step:

x+,i = zi

i−1∏

j=1

(1− zj) ,

and x−,i =
m2
⊥,i

x+,iW 2
,

since m2
⊥,i = x+,ix−,iW 2,

(34)

where we have assumed without loss of generality that the hadrons have been fragmenting
from the W+ end of the string.

Since the string can fragment from either end of the string, Pythia needs two sets of
these x± pairs, where now the ± sign refers to the lightcone momenta of the opposite
end of the given fragmenting end. We will label them x and x̃. These two pairs track
how much has been taken from the two end points in the two different directions, and the
differences are the amount of lightcone momentum actually left:

x̄tot,+ = x+ − x̃−, and x̄tot,− = x̃+ − x−, (35)

Using Eq. (3), we can now calculate the rapidity span of the string that a fragmenting
hadron i takes with it:

∆y = ln

(
x̄tot,+x̄tot,−

(x̄tot,+ − xh,+)(x̄tot,− − xh,−)

)
, (36)
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where xh,± is the lightcone momentum fraction taken by a new hadron fragmentation from
the positive end and negative end respectively.

At some cutoff invariant mass W 2
stop, this fragmentation process stops, and the remnant

string is broken into two final hadrons.

B Shoving Model Parameters

In the shoving model (as implemented in Pythia 8.2), there are several parameters that
govern the rate and amount of shoving. We summarise the parameter values we used to
produce Fig. 3 in Tab. 1. We did not include the flavour changing aspects of the Rope
model.

Parameter Value

Ropewalk:rCutOff 10.0

Ropewalk:limitMom on

Ropewalk:pTcut 2.0

Ropewalk:r0 0.41

Ropewalk:m0 0.2

Ropewalk:gAmplitude 10.0

Ropewalk:gExponent 1.0

Ropewalk:deltat 0.1

Ropewalk:tShove 1.0

Ropewalk:deltay 0.1

Ropewalk:tInit 1.5

Table 1: Input parameters used in Fig. 3 for the shoving model.

We also set the two strings’ endpoints to have mu = 0.33 GeV, though this configu-
ration and our massless endpoint configuration were set to have the same total invariant
mass for each string. Since the shoving model also requires partons to have transverse
spacetime coordinates, we set the strings to be 2.46 fm apart in transverse space (six
times the input parameter Ropewalk:r0). We chose to set the strings relatively far apart,
relative to the transverse radius of the string, since we discovered that for the above pa-
rameter set, a transverse separation between our two straight strings of d⊥ < 5r0 lead to,
in our opinion, pathological results. To understand what each parameter governs in the
model, we direct the reader to [37].
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6.2 Errata for Fragmentation of Two Repelling Lund

Strings

1. In the third paragraph of §2 - Lund StringModel, the final sentence should read:

“In the ordinary Lund string model, each string fragments independently, unaware

of the environment around them.”

2. In the first paragraph of §3.2 - Repulsion, the sentence: “Using Eq. (36), a hadron

receives a corresponding fraction of ...” has a typographical error. This sen-

tence should read: “Using Eq. (3), a hadron receives a corresponding fraction of

...” where the boldface type indicates the change.

3. In the final paragraph of §3.2 - Repulsion, the amount of transverse momentum

given to the string remnant is implemented as:

p
(rem)
⊥,R = p⊥,R −

∑

h

p
(h)
⊥,R, (6.2)

namely the total repulsion transverse momentum calculated previously mi-

nus the sum of repulsion transverse momentum taken by the earlier produced

hadrons p(h)
⊥,R. This is equivalent to calculating it as:

p
(rem)
⊥,R =

∆yrem

∆ystring

p⊥,R, (6.3)

where ∆yrem and ∆ystring are the rapidities spans of the string remnant, and the

string before any fragmentations occur respectively.

4. In §3.3 - Results, the second paragraph has a typographical error: “The red dashed

histogram shows ...”. This sentence should read: “The red solid histogram ...”

where the boldface indicates the change.

5. In Fig. (3), the final clause: “Right: the effect that varying the repulsion strength

CR” has a typographical error. The sentence should read: “Right: the effect of

varying the repulsion strength CR” where boldface indicates the change.

6. In §5.1, in the sixth paragraph, the sentences: “The amount of repulsion⊥ given

to each hadron during the fragmentation process should be proportional to the (over-
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lapping portion of the) rapidity span it takes. The definition, Eq. (36), is given in

terms of the quantities used to characterize the fragmentation of each string in its

own CM frame, along the axis defined by its endpoints in that frame, whereas we

here want to along the chosen common axis in the string-string CM frame.” have ty-

pographical errors. The correct sentences should read: “The amount of repulsion

p⊥ given to each hadron during the fragmentation process should be proportional

to the (overlapping portion of the) rapidity span it takes. The definition, Eq. (3), is

given in terms of the quantities used to characterize the fragmentation of each string

in its own CM frame, along the axis defined by its endpoints in that frame. We in-

stead want to consider the chosen common axis defined in the string-string CM

frame.” where boldface indicates the changes.

7. In §5.1, in the seventh paragraph, the sentence immediately before Eq. (27):

“To provide some variability and in order to have a well-defined repulsion axis also

in the p⊥,rel to0 limit, we add a random component as well:” has a typographical

error. The sentence should read: “To provide some variability and in order to

have a well-defined repulsion axis also in the p⊥,rel → 0 limit, we add a random

component as well:” where boldface indicates the change.

8. In §5.4, in the second paragraph, the sentences: “In the specific example shown in

8, p⊥,res = 0 since each of the (1,4) and (2,3) strings have zero net p⊥. Compression

factors are computed from the longitudinal momentum components as in Eq. (25,

...” have typographical errors. The sentences should read: “In the specific ex-

ample shown in Fig. (8), p⊥,res = 0 since each of the (1,4) and (2,3) strings have

zero net p⊥. Compression factors are computed from the longitudinal momentum

components as in Eq. (25), ...” where boldface indicates the changes.

9. In §8 - Strings with Massive Endpoints, as well as in Fig. (13), the masses of the

endpoints was not quoted. The masses used in the plot and the study were the

constituent mass of the up quark - 330 MeV.

10. In Appendix A, the paragraph between Eq. (34) and Eq. (35) is somewhat un-

clear. The paragraph should read: “In the Pythia implementation of the string

model, the string probabilistically fragments from either endpoint. As such, Pythia

keeps track of the lightconemomenta available for either endpoint. Wewill label the
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lightcone momenta of the positive rapidity endpoint as x, and that of the negative

rapidity endpoint as x̃. These lightcone momenta each have two components - the

endpoint’s relative positive and negative lightcone momenta, denoted by subscripts

±. The amount of lightcone momentum left at any point during the fragmentation

process is given by:”
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Conclusion

The work presented in this thesis has been focused on Monte Carlo event generators

and the development of novel extensions to the non-perturbative regime of high-

energy collision simulation. Monte Carlo event generators are a key part of testing

our understanding of the physical processes involved in collisions, not only to deepen

our knowledge of the Standard Model, but also to better model the background pro-

cesses that dominate in colliders.

The foundations of QCD, and the various physical processes modelled in Monte

Carlo event generators were reviewed inChap. 2, highlighting the place hadronization

has in overall high-energy modelling. In Chap. 3, the two major models of hadroniza-

tion have been reviewed, comparing and contrasting the Lund string model and the

cluster model, as well as the shortcomings of the current models to describe recent

data. These chapters form the background for this thesis and the published work

presented in the following chapters.

In Chap. 4, the non-perturbative strangeness production in Herwig 7 was first

studied and retuned. Building on the work started in [219], we quantify the data-

preferred relative rates during the three main stages of evolution in the cluster model:

gluon splitting, cluster fission, and cluster decay. The strangeness weight was modi-

fied to depend on the invariant mass of the respective colour singlet breaking apart

during these stages. Performing a retuning to e+e− and LHC data, we showed a bet-

ter agreement between the two environments. The code has been implemented and

made public in Herwig 7.2.

We build a framework to introduce spacetime coordinates to the Monte Carlo

119
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event generator Herwig 7 in Chap. 5, though our considerations are easily trans-

latable and implementable in other event generators. We show that the spacetime

coordinates are predominately affected by the multiple parton interactions stage and

at the end of the parton shower, where the softest partons are produced. These space-

time coordinates are used to govern the baryonic colour reconnection probability

for the cluster model. Comparing the model again to minimum-bias data from the

LHC showed reasonable agreement, though diffractive events still need to be better

understood from, among other ones, a spacetime perspective. This code will be im-

plemented in a future release of Herwig 7.

Switching focus from the clustermodel to the Lund stringmodel, Chap. 6 presents

a model that builds on the Lund string fragmentation model. In the standard Lund

model, string fragmentation is independent of any other strings in the event, and uses

a Gaussian distribution to impart non-perturbative transverse momentum to the pri-

mary hadrons. In our model, two strings overlapping in rapidity compress and repel

off each other at the level of string fragmentation, circumventing the need to perform

microscopic (and time consuming) gluon kicks to the entire string. The model is de-

veloped to handle any two-string configuration, from parallel strings, to transversely

boosted ones, to finally rotated ones. We show that with our framework, one can

introduce significant two-particle azimuthal correlations, a clear sign of collective ef-

fects in proton-proton collisions. One issue remains at hand: to extend this model to

more complicated string topologies and to multiple strings. The code will be made

public in a future release of Pythia 8.

Event generators offer a means to explore our understanding of QCD, and to

rigorously test it against experimental data. As parton showers and hard process gen-

eration improve in precision, it becomes a pressing issue to investigate the deficien-

cies in contemporary hadronization models. In the absence of first-principles guiding

lights, hadronization phenomenology plays a vital role of mapping coloured partons

produced from parton showers and multiple parton interactions onto the hadrons de-

tected by experiments. Nomatter the type of potential future collider built, processes

involving QCD will be present in at least the final state of the event, and having in-

creasingly sophisticated models will be important to finding any new physics, either

from beyond the Standard Model, or from unknown aspects of QCD.
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As the era of the firewall between the high-energy and heavy-ion communities

is coming to a hopeful end, testing the physics and event generators developed in

each field against the other will be an extremely active area of research. It will allow

physicists to begin to understand the transition from one regime to the other, but to

do so, we need to build up the relevant frameworks. As an example, Chap. 5 aims

to not only improve our understanding of the relevance of spacetime coordinates in

proton-proton collisions, but also to allow future research into applying Herwig to

heavy-ion collisions.

Potential Future Work

Event generators are constantly evolving and undergoing new developments in order

to better match the unprecedented levels of data being published by the various exper-

iments at the LHC. With regards to innovation in the hadronization and soft-physics

community, there are several directions that the work in this thesis would underpin.

Better understanding the non-perturbative strangeness production mechanisms re-

mains a vital ingredient to improving event generators’ predictions for species-specific

hadron-level observables. Similarly, baryon production is still poorly modelled in

both the Lund string and cluster models, particularly with respect to (anti-)baryon-

(anti-)baryon azimuthal correlations, as reported in [32].

With the spacetime coordinates framework in place for event generation in Her-

wig, one will be readily able to build a heavy-ion event generator to comprehensively

test the QCD modeling in Herwig in a new environment. Testing the performance

of general-purpose Monte Carlo event generators against established heavy-ion event

generators, which typically use the drastically different paradigm of relativistic hy-

drodynamics, is an important step in gaining a better insight into how QCD behaves

at different scales and in different environments.

In a similar vein, one potential avenue of research could be to develop novel MPI

models that incorporate more transverse-space considerations, such as the gluonic hot

spots model in [247], as well as studying their ability to quantitatively describe and

generate collective effects in high-multiplicity events. It is also imperative to simulta-

neously test and improve the modelling of the colour structures created from theMPI
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generation, since this colour topology sets the initial framework for any later colour

reconnections between strings/clusters or colour connections between partons.

Cluster-based Monte Carlo event generators do not currently have any interac-

tions between the clusters, other than a simple rearrangement of the constituents via

colour reconnection. The interacting strings framework presented in Chap. 6 focuses

on simple qq̄ strings which are analogous to clusters, resulting in a highly transfer-

able model. Testing this model in the cluster hadronization framework would give a

real insight into whether the correlations seen in the published work are still observ-

able in real, high-multiplicity events. It is also important to continue the interacting

strings model in the Lund string framework and build a fully-fledged phenomenolog-

ical model, that incorporates more of the rich physics of the string structures men-

tioned in Sec. 3.2.3, in order to test it against LHC data.
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Appendix A

Symmetric Lund Fragmentation

Function

The symmetric Lund fragmentation function, f(z), governs the fraction of lightcone

momenta a hadron will take from the fragmenting string, and has the form:

f(z) = N
(1− z)a

z
exp

(−bm2
⊥

z

)
, (A.1)

where we have reproduced the fragmentation function from Sec. 3.2.2, and will use

the terminology developed there. To obtain the form of the fragmentation function,

the Lund model [165] starts by taking a step between two vertices which correspond

to two independent string breaks. The vertices are given by the points 1 and 2 depicted

in Fig. A.1, after taking many steps along the positive lightcone during the fragmen-

tation process and producing a hadron with transverse mass m⊥ =
√
m2 + p2

⊥. One

may have instead chosen to do the same process, but taking many steps along the

negative lightcone, and take one more step, going from 2 to 1 consequently.

Vertex 1 has hyperbolic coordinates given by the proper time Γ, and the rapidity

y of the string fragmentation:

Γ1 = κ2x+1x−1, y1 =
1

2
log

(
x+1

x−1

)
(A.2)

where x±1 = t1±x1 are the lightcone distance variables for the vertex 1, and similarly

for vertex 2. Taking steps from the positive lightcone end, the lightcone momentum

in the string before the hadron is produced is W+1 = κx+1. The hadron takes a

139



140 Appendix A. Symmetric Lund Fragmentation Function

t

x

m2

z+W+1

W−2 = κx−2 W+1 = κx+1

z−W−2

2
1

Figure A.1: Producing a hadron of massm2 with two string breaks at the vertices 1 and 2, taking pos-
itive lightcone momentum fraction z+, or alternatively taking negative lightcone momenutm fraction
z−.

fraction z+ of this. Similarly, from the negative lightcone direction, the negative

momentum before producing the hadron isW−2 = κx−2.

The probability to arrive at vertex 1 after the many steps from the positive direc-

tion before can be written as:

H(Γ1)dΓ1dy1, (A.3)

where H is an a priori unknown probability distribution. The probability for pro-

ducing a hadron with momentum fraction z+ at vertex 1 is given by: f(z+)dz+. Pro-

ducing this hadron will require taking one more step to production vertex 2. Thus

the joint probability is then simply the product of these two individual probabilities.

Similarly, one can obtain the joint probability from the negative direction, this time

taking momentum fraction z− from the negative lightcone momentum.

Since we wish the physics to be agnostic to our choice of direction, a property

known in the Lund model as left-right symmetry, the two joint probabilities are

equated:

H(Γ1)dΓ1dy1f(z+)dz+ = H(Γ2)dΓ2dy2f(z−)dz−. (A.4)

Letting the hadron massm2 = z−W−2z+W+1 be fixed, and noting that the quantities

dy1 = dy2 are identical, one can also obtain relations between the vertex coordinates

and the momentum fractions:

Γ1 =
m2(1− z−)

z−z+

, Γ2 =
m2(1− z+)

z−z+

. (A.5)
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Since the proper time coordinates Γ are wholly dependent on z±, one can insert them

into Eq. A.4 and rewrite it as:

h(Γ1) + g(z+) = h(Γ2) + g(z−), (A.6)

where h(Γ) = log(H(Γ)), and g(z) = log(zf(z)). One can eliminate the g depen-

dence from Eq. A.6 by taking partial derivatives of the two momentum fractions

independently.

Following the steps of [165], one can arrive at a differential equation that both

vertex proper times must obey:

d

dΓ

(
Γ

dh

dΓ

)
= −b, (A.7)

where b is some constant. Solving Eq. A.7, one obtains the following form for the

unknown probability distribution H:

H(Γ) = CΓa exp (−bΓ) , (A.8)

for constants C and a. Using the results of Eq. A.8 and inserting into Eq. A.6, one

obtains the uniquely defined form of the fragmentation function in Eq. A.1, assuming

that the constant a is species-independent of the qq̄ pair produced during the string

fragmentation.
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