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Abstract 

The urban drainage system has become more and more vulnerable under the 

increasingly severe climate changes conditions and ecological problems over 

the past decades. New paradigms such as Sponge Cities and Water Sensitive 

Urban Design (WSUD) have emerged to supplement the urban flood-resistance 

capacity without massively retrofitting the underground system. Compared with 

the traditional urban infrastructure construction, water sensitive urban design is 

1) more complex as decentralized facilities are susceptible to centralized 

systems, 2) aiming more at long-term multi-benefits of separate facilities that 

have very limited individual capacity and 3) vulnerable to future uncertainties 

such as land use changes. Currently, none of the existing methods can 

comprehensively consider the long-term adaptation of the complex urban water 

system (centralized + decentralized), which not only needs to cover the overall 

design of various independent systems, but also evaluate the integrated 

performance of the system under the uncertainty of the future.  

The purpose of this thesis is to develop a planning method that provides step-

by-step and time-dependent urban water infrastructure implementation 

pathways, which covers a range of water systems and various uncertain factors 

in the future, while improving the sustainability and liveability of urban water 

system and even the whole city. 

Three different case studies were selected considering their compatibility to 

different research tasks. A rural catchment (with very a small centralized system) 

was used to ensure accurate and differentiated analysis for decentralized 

system planning where as a larger and urbanized catchment was studied for 

more adequate information for the centralized network system (e.g. topology 

structure of the network). A smaller catchment with balanced amount of 

centralized and decentralized system was adopted for testing the methodology 

in explorative modellings (to reduce the overall runtime).  

The first research phase proposed a planning method which integrates a GIS 

fuzzy process and hierarchical fuzzy inference system for urban flood 
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vulnerability assessment and WSUD planning. The method was tested in 

Yangchen Lake Peninsula, China. The application showed that the method 

could maintain the dominant characteristics of the designing elements while 

taking into account the surrounding environment and revealing hidden 

information with limited data availability. By analysing the flood resistance 

capacity from the WSUD plan through this method, a drainage network 

expansion algorithm was developed for simulating the feedbacks between 

WSUD plans and network plans. The algorithm was tested in the Elster 

Catchment in Melbourne and replicated similar topological structure compared 

to the real one while having far less vulnerable junctions.  

After establishing the feedback between infrastructure plans (WSUD and 

drainage network), a three-stage model was designed to explore possible 

futures of urban water infrastructure plans, identify the robust infrastructure 

scenarios against future flooding and optimize the adaptation plans. The model 

was tested in Scotchman’s Creek in Melbourne and was capable of generating 

urban water infrastructure implementation pathways with multiple infrastructure 

options to achieve multiple objectives. 

Lastly, two acceleration modules were designed based on artificial neural 

network (ANN) and rough set theory (RST) to reduce the simulation time of the 

global exploration stage and increase the applicability of the three-stage model. 

The acceleration module, designed with ANN, can reduce the total simulation 

time by 80% while maintaining its prediction accuracy. An error correction 

method based on the validation process has also been proposed and tested to 

solve the overestimation of this module. The acceleration module based on 

rough set theory is capable of dynamically adjusting the exploration speed 

(timesaving: 16.45% - 82.47%) and prediction accuracy (r: 0.9418 – 0.6963). 

The three-stage pathway generation model was developed on the basis of two 

validated models (SWMM and DAnCE4Water), the result from the global 

exploration was used to validate and analyse the performance of the 

acceleration module. The research results in this thesis provide important 

insights and models for improving the robustness of long-term urban water 

infrastructure to support the uptake of sponge cities. 
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1.1 Overview 

Urbanisation has changed the permeability of land which leads to more runoff 

in urban areas during rain events. To avoid flooding and subsequent damages 

to properties and impacts on human safety and health, surface water needs to 

be drained and removed in time. Historically, this has been achieved by using 

underground pipe systems designed to convey the water away as quickly as 

possible, or by using retention ponds designed to store as much water as 

possible.  

Urban drainage systems are designed to serve for decades. However, their 

planning and design process considers only limited adaptability to future 

changes. Traditional urban drainage systems, which are usually planned for a 

lifespan of 50-100 years using designed rainfall, have therefore become more 

and more vulnerable to increased urbanisation and the increasing impact of 

climate change. The premature failure and poor adaptability of the current 

urban water infrastructures highlights the limitations of the traditional long-term 

planning processes of these systems.  

New paradigms such as Sponge Cities and Water Sensitive Cities have 

emerged to supplement the urban flood-resistance capacity without massively 

retrofitting the underground system. Such concepts also aim at overcoming 

limitations of current urban water management and expanding environmental 

service to provide green and blue cites to restore the local climate. Compared 

with the traditional urban development, the contribution to flood mitigation from 

water sensitive design is smaller and more decentralized while the investment 

of which is larger and aiming more at long-term benefits.  

Future urban scenarios such as master plans, population growth, and climate 

change can never be certainly predicted in the long-term. The most convincible 

case is the "shrinking city" phenomenon in Dresden, Germany. As the capital 

of the Saxony state, the second largest city in eastern Germany, experts believe 

the economy, population will get rapid development after the unification in 1990. 

Large-scale construction of infrastructures was carried out to serve the rapid 

development. But in a few years, Dresden’s population was shrinking rather 

than growing, its demand for water was sharply reduced, and the water system 
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facilities that the government planned and invested in for a long time did not 

promote the city's development but became a drag. In order to minimize losses, 

Dresden predicted the future population trend for seven times in the following 

15 years and revised the urban planning, but none of the predictions was 

correct (Moss, 2008; Wiechmann & Pallagst, 2012).  

 

Figure 1.1 Projections and realities of population development in Dresden since 

1990 (Wiechmann & Pallagst, 2012) 

When dealing with future uncertainties, existing planning methods cannot 

provide adequate robustness or adaptability to alternative plans in the long term, 

as these “uncertainties” are often not statistical in nature(Walker, Haasnoot, & 

Kwakkel, 2013). For the urban water system, the uncertainty includes not only 

the state of the city (economy, climate, etc.), but also the human factors 

(population, etc.)(Lempert, 2003; Quade & Carter, 1989). Although some 

researchers have realized this problem and tried to "optimize" the system based 

on possible future scenarios, this static optimization process is often carried out 

with a limited number of future scenarios and cannot provide reliably high-

adaptability plans(Walker et al., 2013). Therefore, the emerging planning 

methods are more inclined to provide different but interchangeable plans and 

implementation pathways. 

Currently, none of the existing methods can comprehensively consider the long-

term adaptation of complex urban water system, which not only needs to cover 
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the overall design of various independent systems, but also to evaluate the 

collective performance of the system under the uncertainty of the future.  

The aim of this thesis is therefore  to develop a planning method to provide 

step-by-step and time-dependent urban water infrastructure implementation 

pathways, which covers all kinds of water facilities (structural and non-structural, 

traditional and new) and various uncertainty factors in the future, so as to 

improve the sustainability and reliability of urban water system and even the 

whole city. 

1.2 Overall aim and tasks 

The purpose of this thesis is to develop a new dynamic adaptive optimization 

planning method for urban water system planning which provides step-by-step 

construction guidance, covering the structural strategies of various facilities and 

non-structural policy measures, considering various uncertainty factors in the 

future, so as to improve the sustainability and reliability of the urban water 

system. The main research questions are as follows: 

1. In the planning of green infrastructures, how to improve the decision reliability 

under limited data availability and reduce the uncertainty of planners' subjective 

perceptions? 

2. In the planning of grey infrastructures, how to comprehensively consider the 

influence of green infrastructure planning in different construction stages and 

to improve the robustness of grey-green systems? 

3. How to deduce the urban development and the construction of complex 

drainage system, while identifying problems in the long-term construction and 

operation process to generate a robust urban water implementation pathway? 

4. How to improve the identification speed of urban water implementation 

pathway and improve the applicability of this method? 

1.3 Scope of the research 

This research aims to develop methods for identifying robust water 

infrastructure implementation pathways to increase the resilience to the 
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changing demand of water service, across the exploratory space for futures 

under deep uncertainty. Although the aim is to develop a general method that 

can be applied to all urban water streams (supply, sewage and drainage), the 

work will in the first instance focus on adaptation of urban drainage system to 

assure a city’s flood resilience. 

1.4 Outline of the thesis 

The thesis will consist of eight chapters. An overview of each chapter is 

provided below. 

Chapter 1: Introduction 

This chapter introduces the background and purpose of this study, overall 

research aim and objectives, scope of the research, and culminates in providing 

the outline of the thesis. 

Chapter 2: Literature review 

This chapter first defines infrastructure and typical infrastructure planning 

process to clarify the object and model framework of the research. The 

changing focuses of long-term infrastructure planning is then discussed to 

address the multiple objectives of infrastructure planning considered in this 

research. A review of popular methods, regarding both structural and non-

structural infrastructure planning, used to fight against urban flooding issue is 

also provided to determine the candidate strategy options used in this research. 

Finally, a review of current methods which can be used to develop plans for 

infrastructure implementation, especially in water system, is carried out. This 

includes a review on tools focusing on the social influences and feedbacks, 

tools that aim at optimizing or modifying existing plans, and tools which try to 

build up adaptive and flexible plans through time. A conclusion summarising 

the literature and the research gaps is provided. 

Chapter 3: Hierarchical fuzzy evaluation of spatial vulnerability and WSUD 

suitability in urban areas 

In this chapter, we developed an easily applicable decision-making framework 

that applies a hierarchical FIS system (Şener & Şener, 2015) on a fuzzified GIS 

system, in order to offer better decision supports with fewer user-defined data. 
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The hierarchical FIS system aims to reduce the subjective judgement from 

planners, minimizing uncertainty in the system. The fuzzified GIS system 

provides comprehensive information on the surrounding environment to 

support better decisions. The developed framework and the traditional MCDM 

method were applied on a planning program at Yangchen Lake Resort, Suzhou, 

Jiangsu, China. The results of both methods were compared so that the pros 

and cons for each approach could be analyzed. 

Chapter 4. WSUD-dependent drainage system design 

In this chapter, a WSUD-dependent urban drainage planning method is 

proposed. On the basis of urban spatial vulnerability assessment method 

proposed in chapter 3,  the planners could expend the existing network to more 

vulnerable areas and optimized the size and layout of the drainage system. 

Chapter 5. Urban water infrastructure implementation pathway 

In this chapter, an optimal plan and transition design method of water system 

through global scenario exploration is proposed to improve the adaptability and 

robustness of long-term urban water system planning. Starting from the current 

state of the city, all reasonable urban development situation at each time step 

(climate, population, economy, etc.) were explored as well as possible urban 

water system construction (construction of WSUD facilities, expansion pipe 

network, etc.). By evaluating the efficiency of water systems in all possible 

urban scenarios in a certain time step, the robustness of the system planning 

is analyzed, and the transition routes between schemes are designed. 

Chapter 6. Acceleration of pathway exploration by deep learning 

An acceleration module based on machine learning algorithm was developed 

to predict the performance of urban water system under different city scenarios 

and reduce exploration time. The following works have been conducted: (1) a 

comprehensive statistical trial-and-error analysis method is proposed and 

tested to avoid local optimization of network structure. (2) a neural network was 

integrated in the explorative adaptation planning to significantly reduce the 

simulation time, performance was tested and analyzed; (3) a correction method 

was proposed and tested to minimize the overestimation problem of the 

designed exploration framework. 
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Chapter 7. Acceleration of pathway exploration by dynamic learning 

A dynamic accelerated global exploration module (AM - RST) is developed 

based on rough set theory in this chapter which, in the process of exploring, 

could continue to improve prediction accuracy by self-updating. The parameter 

"significance" is introduced, which changes the expression of causal rules in 

traditional rough theory. By expressing causal rules in a probability way, the 

influence of error distribution on decision-making is compensated, and the 

accuracy of (AM-RST) in practical application (especially when dealing with big 

data) is improved. 

Chapter 8. Conclusions and future work 

This chapter summarises the key findings in modelling and experiments. 

Conclusions and practical implications, and strengths and limitations of this 

study are highlighted. Recommendations for future work are also provided.  
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2.1 Introduction 

This chapter aims to provide a critical review of the relevant literature which 

underpins the research questions outlined in this thesis. The literature review 

has been conducted to gain a better understanding of the knowledge which has 

already been gained in this field and to identify significant information gaps 

which this research aims to fill. 

The chapter will begin by defining infrastructure and a brief overview of typical 

planning process to clarify the object of the research. The changing focuses of 

long-term infrastructure planning is then discussed to address the increasing 

demand (technical and social) of multi-function infrastructure. A review of 

popular methods, regarding both structural and non-structural infrastructure 

planning, used to fight against urban flooding issue is also provided. 

Finally, a review of current methods which can be used to develop plans for 

infrastructure implementation, especially in water system, is carried out. This 

included a review on tools focusing on the social influences and feedbacks, 

tools that aim at optimizing or modifying existing plans, and tools which try to 

build up adaptive and flexible plans through time.   

A conclusion summarising the literature that was reviewed and the research 

gaps that have been identified through this process have provided. These 

knowledge gaps have been used as the basis for the research questions within 

this thesis.  

2.2 Overview 

2.2.1 Long-term infrastructure planning 

Infrastructure, as one of the fundamental parts of civilization has several 

definitions from different perspectives. (Jochimsen, 1966) first defined 

infrastructure as the important preconditions of economic development. It was 

regarded as the ensemble of material, institutional and personal facilities, and 

data that contribute to realizing the equalization of the remuneration of 

comparable inputs in the case of a suitable allocation of resources. 

Nevertheless, with the progress of urban development, attention gradually 

switched to the functionality of infrastructure. (Buhr, 2003) stated that each type 
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of infrastructure should be defined according to its effects. He regarded 

infrastructure as the sum of all relevant economic data such as rules, stocks, 

and measure with the function of mobilising the economic potentialities of 

economic agents.  

Technically, engineers limited the use of the term "infrastructure" to describe 

fixed assets in the form of networks. They regard infrastructure as the network 

of assets "where the system as a whole is intended to be maintained indefinitely 

at a specified standard of service by the continuing replacement and 

refurbishment of its components" (Group, 2000). With the rapid expansion of 

decentralized technologies, infrastructure now refers to facilities that usually 

require certain capital investments, provide “public services” and are planned, 

designed, constructed, and operated by or under the supervision of government 

agencies/private companies(Goodman, 2015). 

The principal types of infrastructure include systems for transportation, water 

supply, wastewater, solid wastes, water resource management and electric 

power generation and supply. These systems are involved in the normal 

planning and budgeting processes of governmental and local public works 

agencies. They also constitute the principal elements of municipal engineering. 

Most of these facilities have generally recognized methods for estimating needs, 

and many may also be valued in terms of their tangible economic benefits 

(Goodman, 2015; Torrisi, 2009). 

This research mainly focuses on the long-term planning of urban water 

infrastructures, especially flood-resistance systems. These systems are 

traditionally with long service life and built underground, which strongly requires 

adaptive and resilient planning. 

2.2.2 Typical Infrastructure Planning Steps 

Although more and more computational tools and methods have been 

developed to support infrastructure planning, they are more likely to be used 

for verification or evaluation rather than planning. In this section, the typical 

infrastructure planning process was investigated to support the framework 
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design of a ‘planning’ model which could automatically and computationally 

replicate the manual planning process. 

The methods of infrastructure planning range from simple approaches such as 

employing professional judgment to sophisticated computational optimization 

techniques. The selection of methods for a planning effort depends on the type 

of project, the requirement of planning organization, the available resources for 

investigations and the capabilities and preferences of the planning 

staff.(Goodman, 2015) 

There are different planning protocols and guidelines for the different types of 

infrastructure at different places, however most infrastructure planning 

processes include the following steps.  

1. Formulation of goals and objectives: setting up long-term plans and goals for 

the whole infrastructure system, considering broad policies and laws;  

2. Problem identification and analysis—investigation and projection of 

relationships of demand and supply as well as investment, resource-

consumption and profit; identification of risk and opportunities for development 

and management; 

3. Solution development and impact assessment—design structural solutions 

and/or non-structural solutions to solve the problem, and assess the impacts; 

4. Designing alternatives and analysis—comparison of different measures and 

detailed assessment of performance to optimized the design; 

5. Recommendations—identifying priorities and setting schedules for 

implementation 

6. Decisions—considering feasibility from technical, financial, legal and other 

aspect; 

7. Implementation—confirming final design and construction planning, doing 

the construction; 

8. Operation and Management—maintenance, renovation and retrofit. 
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In proceeding from the initial to the final phases of a planning and management 

process, the work in one phase can suggest changes in one or more of the 

other phases. This effect can be referred to as feedback, but the linkages may 

be in both forward and backward directions. 

In this study, step 1 to 6 will be integrated into the proposed modelling 

framework and the linkages will be considered. 

2.3 Objective of Long-term infrastructure planning 

As discuss in 2.2.2, the objective setting is commonly the first step of 

infrastructure planning. The problem is complex when it comes to long-term 

infrastructure planning as the objective can change over time. A review of 

objectives was carried out in this section to identify possible goals of urban 

(water) infrastructures. 

2.3.1 Provide social service 

General economical implication 

Infrastructure planning stabilizes the economy 
When the term of long-range infrastructure planning first occurred in the 1920s 

(Mitchell, 1922), it was believed to provide increasing volume of construction 

work. In the UK, proposals for new parliamentary procedures for processing 

major infrastructure projects was raised in the early 19th century to promote 

enterprise and competitiveness and underpin the economy (Marshall, 2011). 

(Reid, 2008) mentioned a United States report, Infrastructure 2008: A 

Competitive Advantage, which suggests that regional and national 

infrastructure plans as well as government infrastructure management could 

keep competitiveness in the fluctuating global economy. 

Economy constrain infrastructure planning 
With the process of urban development, economic feasibility starts to become 

a critical factor in planning, especially in developing countries where 

infrastructure planning systems are complex, multi-levelled and 

underperformed relative to needs and expectations. (Romeo & Smoke, 2015) 

found that the 2008 global financial crisis affected resource availability for 

infrastructure and placed subnational governments in many developing 

countries under pressure of funding. The demand for more and better 
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infrastructure increases with greater economic development, higher citizen 

awareness/expectations and the influence of external trends and global 

agreements (e.g. the Millennium Development Goals) after the crisis.  

Infrastructure planning promotes the economy 
Research also indicates that the viability of the economy is dependent upon a 

viable stock of public infrastructure. With commentators start highlighting the 

need for increasing spending on infrastructure, (Landers, 2014) found several 

report that seeks to highlight the economic benefits that the US would derive 

should such a boost in funding occur. Reports indicates that as a result of the 

added infrastructure spending, real GDP would increase in all major US 

industries, but construction and transportation would improve most.  

Servicing a growing population 

Serve daily use 
One of the other principal function of infrastructure is to serve the need of a 

growing population. According to UN estimates 1.7 billion urban dwellers will 

be added to the urban population in the next 40 years(Duenas & Wegelin, 2011). 

Plans such as the Alexandra Renewal Project in 2001 was carried out to extend 

and renew infrastructure copping with a significant increase in population 

growth which has, and continues to, impact negatively on local infrastructure 

systems such as water (Landie, 2011). (Shepherd, 2005) analysed the 

population shift with the changing age profile and the resulting implications for 

infrastructure planning.  

Offer work opportunities 
After World War I, the closing down of war industries and the demobilizing of 

the army have produced an excess of labour. The water works superintendent 

is called upon to offer worth relief work in water infrastructures (Cuddeback, 

1919). (Kurtzleben, 2011) found that infrastructure spending is more effective, 

dollar for dollar, than many forms of tax cuts at boosting jobs growth. (Leigh & 

Neill, 2011) examine the effect of a federally-funded local infrastructure 

spending program on local unemployment rates in Australia, which shows that 

higher government expenditure on roads substantially reduces local 

unemployment. Based on a statistical and spatialized analysis of 

unemployment in the Paris region, (L'Horty & Sari, 2013) found that the Great 
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Paris Express project could partially improve situation of working people in the 

Paris region.  

2.3.2 Sustain future challenges 

Sustainability 
The concept of sustainability is to meet the needs of the present without 

compromising the ability of future generations to meet their own needs 

(Brundtland et al., 1987). The beginnings of the conversation in sustainability in 

the water sector are over the same period as the beginnings of the 

environmental movement in the 20th century  when concerns were raised about 

the degradation of the environment by developments (Ho, 2010). The idea of 

sustainable design was carried out which has two objectives: to maximize the 

quality of the built environment and to minimize the negative impact to the 

natural environment (McLennan, 2004). (Sahely, Kennedy, & Adams, 2005) 

proposed a feedback mechanism in a framework that have important 

sustainability implications for both environmental and socio-economic aspects. 

The main goal of the infrastructure designer in a sustainable design is to provide 

the best service possible using the least amount of resources. 

 

Figure 2.1 Framework for assessing infrastructure systems. (Sahely et al., 2005) 

As a result, the design of infrastructure begins aiming at plan and manage 

resources while maintain their traditional functions (Goodman, 2015). For 

example, wastewater infrastructure for source separation is regarded as a 

promising concept while competitive technologies are being developed to 
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overcome the inflexibility of the present end-of-pipe technology (Larsen, 2011); 

Feasible infrastructure plans are developed and compared by treating water 

with social value for seawater desalination systems (Fisher & Huber-Lee, 2011); 

Mathematical models are also developed to integrate and optimize urban water 

infrastructures for supply-side planning and policy (Lim, Suh, Kim, & Park, 

2010).  

Uncertainty  
Urban water infrastructure is facing more and severer challenges in the process 

of urbanization. Cities are competing with each other as well as the environment 

to access enough quantity and quality of water resources. Meanwhile, climate 

change is generating more extreme weather events to aging infrastructures, 

increasing hydrological variability and higher uncertainty about water 

availability ("Water and Cities: Ensuring Sustainable Futures," 2015).  These 

challenges are no longer contained within the traditional confines of water 

“issues” but are intertwined with energy, development, infrastructure, and 

overall issues of sustainability (Weinstein & Clifton, 2012). 

Infrastructure planning is now coming across with problems that characterized 

by uncertainties: those resulting from a lack of information and those resulting 

from uncertainties about the future. The former one (lack of information) can 

generally be represented by probability distributions (Beh, Maier, & Dandy, 

2015) while the latter one (unknow future) are often about the state of the world 

in the future (e.g. economic situation) and human factors (e.g. population 

growth) that impact on infrastructure functioning for which have no probability 

distributions, which is defined as ‘deep uncertainties’ (Robert J Lempert, 2003; 

Quade & Carter, 1989) 

Although some planners are aware of the importance of such external factors, 

most of them still try to develop statistic “optimal” plans using single “most likely” 

futures based on extrapolation trends or a small number of hypothesized 

outlooks, these plans may be vulnerable to failure if deeply uncertain future 

conditions deviate from those assumed during optimization(Haasnoot, Kwakkel, 

Walker, & ter Maat, 2013; Herman, Zeff, Reed, & Characklis, 2014)  
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Considering the risks posed by these challenges, the term “robustness” has 

gradually been recommended in infrastructure planning. The concept of it is 

described as ‘the insensitivity of a system design to errors, random or otherwise, 

in the estimate of those parameters affecting design choice’ (Matalas & Fiering, 

1977). According to Matalas, robust decisions should be adaptable to a range 

of “wait and see” strategies “with some economic efficiency or optimality traded 

in favour of adaptability and robustness”. (Mortazavi-Naeini et al., 2015) 

suggest that the selection of an approach to making robust decisions that is 

well suited to the problem context and the preferences of the decision maker is 

an important consideration.  

In this research, the major objectives for urban water infrastructure (especially 

drainage systems) would be 1) daily use function such as performance on flood 

resistance; 2) economic function such as cost-efficiency; 3) sustainability and 

uncertainty such as adaptation capacity and routes over time. 

2.4 Strategy options for water infrastructure planning against flooding 

A review on typical urban water drainage infrastructures (options) for planning 

that can achieve the select objectives was conducted in this section. 

2.4.1 Drainage network upgrade  

As a result of increased urbanization, decreased infiltration rates, and climate 

change, flooding in cities has become one of the most significant problems. 

Aging urban drainage systems as well as their performances are prone to 

symptomatic decay under these situations. Physical measures aimed at 

reducing flood risks in a catchment scale, includes the development of local 

and regional water retention areas or canal broadening (Neuvel & Van Der 

knaap, 2010). Hydraulic rehabilitation plans can also be developed and 

implemented to maintain suitable urban drainage system performance against 

flooding (Sebti, Bennis, & Fuamba, 2013; Yazdi, Lee, & Kim, 2014).  

2.4.2 Water Sensitive Urban Design 

Water sensitive urban design (WSUD) denotes another approach to the 

planning and design of urban development, namely the integration of urban 

water systems with the natural water systems as part of the hydrological cycle 
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(Barton & Argue, 2007). To deal with flooding problems, possible application of 

WSUD includes swales, bioretention systems, rainwater tanks and etc. (AWA, 

2005). 

Unlike the drainage network which is designed for general urban services, 

WSUD focusses on smaller rain events rather than the exceedance events (B 

Gersonius et al., 2012). It also helps to achieve water conservation, control 

urban soil erosion and groundwater depression cone, reduce water pollution 

and improve the urban ecological environment goals (Che, Zhang, Li, Li, & 

Wang, 2010; Li, Wang, & Che, 2010)  

2.4.3 Land-use planning 

Land-use planning, also named as “zoning regulation”, limits the construction 

of buildings and development in certain flood plain, hence reduces its 

vulnerability against flood (Dawson et al., 2011; Meyer, Priest, & Kuhlicke, 

2012). However, if endangered locations have already been developed, it is 

recommended that the administration should fund acquisition of land and 

structures at risk from willing sellers in the floodplain (Kundzewicz, 2002).  

2.4.4 Risk spreading (e.g. insurance) 

Risk spreading redistributes the cost of damage across the population and 

through time to reduce the potential loss from flooding. (Abbas, Amjath-Babu, 

Kächele, & Müller, 2015; Dawson et al., 2011). These mechanisms are needed 

in order to help flood victims recover after losses. Post-flood recovery is often 

less spectacular than actions during flood, as national leaders and the media 

who have left the natural catastrophe area become disinterested (Kundzewicz, 

2002). 

In this research, the drainage upgrade and WSUD would be used as candidate 

strategies while the land-use planning would be used as a spatial restriction in 

the model. Some non-structural options such as risk spreading would not be 

modelled as it has no direct relation to all goals (e.g. flooding) but could be 

considered as a compensation of certain goals (e.g. economic function). 

2.5 Tools for Infrastructure Planning 
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A review on available infrastructure planning tools was carried out in this section 

to investigate the applicability and opportunities of existing method on long-term 

planning for multiple objectives with multiple strategies determined above. 

The tools were classified into three categories, the synectic approaches, the 

statistic approaches and the exploring approaches, with the engagement of 

computation increase from none to highly. The development history of these 

tools and their gaps in application were summarized at the end of this section. 

2.5.1 Synectic approaches 

Perspective Method 
‘Perspectives method’, derived from Cultural Theory (Thompson, Ellis, & 

Wildavsky, 1990) helps to classify, analyse and explore changing perspectives 

and according social response. A ‘perspective’ is a consistent description of the 

perceptual screen through which people interpret the world, and which guides 

them in acting. Some researchers also adopt it in water management as well 

as flood management, describing people’s dynamic view on the value of 

water/impact of flood and how they should be managed (Haasnoot, Middelkoop, 

Offermans, Beek, & Deursen, 2012).  

In application to water researches, three stereotypical perspectives are usually 

distinguished, focusing either on environment (Egalitarian), control (Hierarchist) 

or economy (Individualist). 

To start with, both a world view (how people interpret the world) and a 

management style (how they act upon it) is comprised for each perspective and 

gathered in a table. By making different combinations of worldviews and 

management styles, a matrix of perspective-based scenarios can be developed, 

or existing scenarios can be interpreted and tested. A so-called perspective 

map can later be used to present trade-offs strategies considering two or more 

perspectives as well as how people’s perspectives changes through time. 

Analysis on existing plans, policy papers, scenario studies and other 

documents as well as expert meetings, interviews and workshops are needed 

to work out these maps.  
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Figure 2.2 Perspective settings of the Perspective Method (Haasnoot et al., 

2012) 

(Middelkoop et al., 2004) structured climate, land use and socio-economic 

scenarios, as well as water management strategies with the Perspectives 

method in the Rhine and Meuse Rivers and generated a series of integrated 

scenarios. The water systems were evaluated and compared under different 

possible futures, considering the risk, cost and benefits of different strategies. 

Results demonstrate that, at the scale of the entire Rhine basin, the influence 

of climate change on extreme floods is much stronger than the influence of land 

use changes. Flood risk management in the lower river deltas should not fully 

rely on flood mitigation measures in the upstream basin. It also becomes clear 

that no flood risk management strategy is superior in all respects and in all 

circumstances. Under changing climate conditions, the present-day type of 

management in the lower river reaches runs the risk of becoming an expensive 

attempt to fully control flood risk problems, while trying to avoid real choices, 

without actually solving the problems in a long-term view.  
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Figure 2.3 Strategy analysis of the Perspective Method (Haasnoot et al., 2012) 

(Offermans, Haasnoot, & Valkering, 2011) applied perspective method to 

analyse the response to future social and water events and the future social 

acceptance of different water management strategies. The result of perspective 

mapping was imported into an Integrated Assessment Meta Model (IAMM) to 

generate scenarios and integrated them with information of the water system 

into storylines. These storylines were evaluated for their social and physical 

robustness and their capacity to adapt to changing conditions. Results indicates 

that the scale of uncertainties are important for decisions on water management 

strategies and the performance for strategies for the nearby future is mainly 

determined by climate variability, while for the longer term (>50 years) climate 

change is important to take into account. A sustainable strategy could then be 

a strategy that is robust for climate variability (fluctuations within the climate) 

and social change in the near future, and flexible enough to adapt to climate 

change (fluctuations between different climates) and social change in the long 

term. 
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The Adaptive wheel 
The Adaptive wheel was first designed in 2007 to assess in which way the 

institutions (formal governmental policies and informal social patterns of 

engagement) stimulate the capacity of society to adapt to climate change.  

 

Figure 2.4 Different scenarios and analysis from The Adaptive wheel (Gupta et 

al., 2010) 

The inner circle of the wheel shows the adaptive capacity as a whole, the middle 

circles shows the dimensions and the outer-circle shows the criteria. By 

applying colours to distinguish between high to low adaptive capacity, this 

wheel may be used to both assess and inform social actors about how their 

institutions influence different aspects of adaptive capacity and where there 

may be room for discussion and reform. These information will be collected into 
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a story to communicate the strengths and weaknesses of a specific institution 

or institutional context in terms of adaptive capacity.  

(Gupta et al., 2010)  carried out a case study in which the Adaptive Capacity 

Wheel was used to assess the performance of institutions in the Dutch 

urbanized municipalities of Delft and Zaandam with respect to sharing 

responsibilities for rainfall and ground water management between residents 

and government actors. The wheel was formed with six dimensions: variety, 

learning capacity, room for autonomous change, leadership, availability of 

resources and fair governance as well as their 22 criteria. Data was collected 

through in-depth interviews with nineteen stakeholders involved in the 

municipalities’ local water management. Result of such a wheel leads to a 

discussion on how institutions can enhance the adaptive capacity of society in 

a particular context. The colours in the wheel immediately identify areas in 

which the institutions do not encourage adaptive capacity, and the explanation 

of the researcher can help to better understand why institutions are not 

functioning well in those areas and what can be done to improve their impact 

on the adaptive capacity of society. 

On the basis of Adaptive Wheel, (Schneider et al., 2014) present a conceptual 

and methodological approach for interdisciplinary sustainability assessments of 

water governance systems called the Sustainability Wheel. The approach 

combines transparent identification of sustainability principles, their regional 

contextualization through sub-principles (indicators), and the scoring of these 

indicators through deliberative dialogue within an interdisciplinary team of 

researchers, taking into account their various qualitative and quantitative 

research results. A case study was done on a complex water governance 

system in the Swiss Alps. Besides the current situation, four visions of different 

future develop strategies (growth, stabilization, moderate and RegiEau group) 

are also analysed and compared. The result indicates that the approach is 

advantageous for structuring complex and heterogeneous knowledge, gaining 

a holistic and comprehensive perspective on water sustainability, and 

communicating this perspective to stakeholders. 

2.5.2 Statistic approaches 
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Assumption-Based Planning  
Assumption-Based Planning (ABP), initially developed by RAND in the 1990s 

to solve a US Army strategic planning problem, has been used as a post-

planning tool in many other projects that deals in a structured way with 

uncertainty in an existing plan. 

 

Figure 2.5 Workflow of the Assumption-Based Planning (Dewar, Builder, Hix, & 

Levin, 1993) 

It follows a five-step procedure: 1) identify important assumptions; 2) identify 

assumption vulnerabilities; 3) define signposts; 4) define shaping actions and 

5) define hedging actions. These steps do not necessarily depend on all the 

preceding steps as Figure 4.4 shows. Signposts are an indication that an 

assumption is becoming more vulnerable or is failing. Shaping actions are 

intended to exert what control the organization has over the vulnerability of 

those assumptions. Hedging actions are those actions that should be taken 

before the world of the violated assumption is projected to come about, to 

preserve organizational options or to prepare for that world(Dewar et al., 1993). 

 (Taneja, Walker, Ligteringen, Van Schuylenburg, & Van Der Plas, 2010) 

proposed a combination approach of ABP and Adaptive policymaking and 

applied it to a port expansion plan of Rotterdam in The Netherlands. ABP was 

used to examine the existing plan and identifying underlying assumptions as 

well as finding out the load-bearing and vulnerable assumptions. Adaptive 
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Policymaking was then used setting up actions against vulnerability and 

opportunity and contingency planning in case of failure. Result shows this 

manages to identify the uncertainties in an existing plan, and subsequently 

improves its robustness through taking actions either in the planning stage, or 

by preparing actions in advance that can be taken as knowledge is gained 

about the future world, thereby achieving successful outcomes across a variety 

of futures. 

(Hermans, Naber, & Enserink, 2012) combined Dynamic Actor Network 

Analysis (DANA) with assumption-based planning to address dynamics related 

to long-term monitoring on water management. ABP is used to identify critical 

elements for monitoring as well as planning the monitoring process and setting 

signposts and triggers. One of the main conclusion about ABP is that there are 

certain difficulties in identifying useful indicators and expectations of their 

development over time. Thus, although the concepts of critical assumptions, 

signposts and triggers are useful and simple, their application in practice 

requires quite some effort.  

Robust Decision Making 
Robust Decision Making (RDM) was originally developed by (Robert J. Lempert, 

Groves, Popper, & Bankes, 2006). The approach aims to “design robust 

strategies from the information in computer-simulation models and to identify 

vulnerabilities, opportunities, and trade-offs among these strategies 

systematically”. It provides an iterative, analytic decision support methodology, 

often embedded in a process of participatory stakeholder engagement, 

intended to support decisions under conditions of “deep uncertainty”.  

RDM also follows a five-step procedure:  

1) Identify the initial candidate robust strategies, by either decision-makers’ 

preference or ranking by performance;  

2) Identify vulnerabilities, by searching one or more clusters of future states 

where candidate strategies performs poorly;  
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3) Suggest hedges against vulnerabilities, by suggesting a relatively small set 

of alternative strategies that address the vulnerabilities of candidate ones;  

4) Characterize deep uncertainties and trade-offs among strategies, the trade-

off curve are presented for strategy choices in Step 3 and decision makers can 

use this information to choose a new candidate robust strategy and to 

characterize the deep uncertainties most important to their decision; 

5) Consider Improved Hedging Options and Surprises, by repeating Step 1 to 

4 with different candidate strategies. 

 

Figure 2.6 Workflow of the Robust Decision Making (Robert J. Lempert et al., 

2006) 

(Matrosov, Padula, & Harou, 2012) applies RDM to the UK’s Thames water 

resource system with stochastic simulation and regret analysis to investigate 

the robustness of different supply and demand management scheme portfolios 

for the system. Future hydrological inflows, water demands and energy prices 

are considered explicitly for estimated future conditions. Study reveals some 

limitation of RDM such as possibility of missing better portfolios and time-

consuming in computation, as well as benefits like evaluating the effect of 
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multiple dimensions of uncertainty and explicitly simulating the nonlinear 

interactions between different supply and demand management schemes. 

(Kim & Chung, 2014) developed an index-based robust decision making 

framework for watershed management dealing with water quantity and quality 

issues in a changing climate. Alternative development was generated and 

filtered taking consideration watershed component, residents’ preferences on 

water management demands, and vulnerability of different management. 

These alternatives were then prioritized based on a minimax regret strategy for 

robust decision. The proposed procedure was applied to the Korean urban 

watershed, which has suffered from streamflow depletion and water quality 

deterioration. Result shows that the framework provides a useful watershed 

management tool for incorporating quantitative and qualitative information into 

the evaluation of various policies with regard to water resource planning and 

management.  

(Casal-Campos, Fu, Butler, & Moore, 2015) developed a regret-based 

approach to robust decision making. Instead of using system performance as 

the indicator, the proposed approach evaluates strategies by assessing their 

relative performance loss (i.e., regret) across all impact categories and future 

scenarios. “Regret” of a decision (i.e., by selecting a specific drainage strategy) 

is defined as the missed opportunity to choose an alternative path of action 

which would have resulted more beneficial once the future is revealed. Thus, 

the basis of the method is to select the strategy that minimizes the opportunity 

loss or regret accrued from all the considered future states. With a case study 

on a range of watershed-scale “green” and “gray” drainage strategies under 

four socio-economic future scenarios, the concept proves to be useful in 

identifying performance trade-offs and recognizing states of the world most 

critical to decisions.  

(Singh, Reed, & Keller, 2015) introduced a many-objective robust decision 

making (MORDM) framework that allows decision makers to pose multiple 

objectives, explore the trade-offs between potentially conflicting preferences of 

diverse decision makers, and to identify strategies that are robust to deep 

uncertainties. The framework employs multi-objective evolutionary search to 
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identify trade-offs between strategies, re-evaluates their performance under 

deep uncertainty, and uses interactive visual analytics to support the selection 

of robust management strategies. MORDM was demonstrated on a stylized 

decision problem posed by the management of a lake in which surpassing a 

pollution threshold causes eutrophication. Results indicates the MORDM 

framework enables the discovery of strategies that balance multiple 

preferences and perform well under deep uncertainty. On the base of this 

framework, (Hadka, Herman, Reed, & Keller, 2015) introduces a new open 

source software to support this bottom-up environmental systems planning 

called OpenMORDM.  

(Daron, 2014) investigated the challenges and opportunities in introducing 

robust decision making to the planning process in developing countries. A case 

study on plan to prevent railway infrastructure against sea level rise was carried 

out in South Africa with both traditional predict-then-act framing and RDM 

assess-risk-of-policy framing. Result shows that RDM can improve on predict-

then-act approaches in helping to better identify those uncertainties which are 

important to a specific decision, removing unnecessary analysis of irrelevant 

variables. Adopting the RDM approach should also reduce the risk of 

implementing decision strategies that are prone to projection errors. 

Nevertheless, the complex realities of decision making processes, the need to 

combine quantitative data with qualitative understanding and competing 

environmental, socio-economic and political factors all pose significant 

obstacles to the full adaptation of RDM in developing countries like South Africa. 

Info-gap 
Info-gap, first developed by (Ben-Haim, 2006), begins by constructing a 

representation of the severe uncertainty, which it then uses to estimate the 

consequences of alternative strategies provided exogenously to the analysis. 

The approach informs decision-makers by providing them trade-off curves that 

compare these strategies according to two criteria it calls “robustness” and 

“opportuneness.” 

(McCarthy & Lindenmayer, 2007) used info-gap decision theory to explore the 

relative economic benefits of revegetating the catchment with exotic plantations 
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or native vegetation under the uncertain impact of water yield and the risk of 

wildfire. Coping these non-probabilistic sources of uncertainty with info-gap, 

results show the horizon of uncertainty in info-gap methods is unbounded while 

it is bounded to specific limits in, for example, min-max approaches and interval 

analysis. Info-gap methods consider trade-offs between the performance 

parameters and robustness to uncertainty instead of between different 

performance parameters.  

 

Figure 2.7 Workflow of the Info-gap (Ben-Haim, 2006) 

(Chisholm & Wintle, 2012) applied info-gap theory to an ecosystem services 

trade-off case study in South Africa. Two alternative land uses strategies are 

tested, native vegetation conservation and exotic timber plantation, to maximize 

ecosystem service investment returns. The uncertain variables are the carbon 

price and the water price. Results indicates the outcome of info-gap analyses 

can be sensitive to the choice of uncertainty model. With a ‘‘no-information’’ 

uncertainty model that assumes equal relative uncertainty across both 

variables, info-gap theory identifies a minimally acceptable reward threshold 

above which conservation is preferred. However, with an uncertainty model that 
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allows the carbon price to be substantially more uncertain than the water price, 

conservation of native vegetation becomes an economically more robust 

investment option than establishing alien pine plantations. 

 (Hall et al., 2012) used both Info-gap and RDM to evaluate alternative paths 

for climate-altering greenhouse gas emissions given the potential for nonlinear 

threshold responses in the climate system and a variety of other key 

parameters. The study finds that the two approaches reach similar but not 

identical policy recommendations. Info-gap explicitly considers both the 

potential gains if conditions turn out better than expected alongside losses if 

they turn out worse, which RDM does not. However, RDM can identify cases 

representing each situation and enable decision makers to trade one against 

the other. In addition to that, info-gap does not have any rules for balancing 

between robustness and most opportuneness, it asks decision makers to set 

minimum and aspirational performance levels and to favour the strategies that 

meet these levels. On the contrary, RDM considers imprecise probabilities and 

suggests probability thresholds ascribed to a scenario that might cause a 

decision maker to choose an alternative strategy.  

(Matrosov, Woods, & Harou, 2013) apply both Info-gap and RDM to a water 

resource system planning problem: London’s water supply system expansion 

in the Thames basin. The methods help identify which out of 20 proposed water 

supply infrastructure portfolios is the most robust given severely uncertain 

future hydrological inflows, water demands and energy prices. Multiple criteria 

of system performance are considered: service reliability, storage susceptibility, 

capital and operating cost, energy use and environmental flows. Initially the two 

decision frameworks lead to different recommendations. Result suggested the 

two methods are complementary and can be beneficially used together to better 

understand results. 

(Korteling, Dessai, & Kapelan, 2012) utilises an integrated method based on 

Information-Gap decision theory and Multi-Criteria Decision Analysis to 

quantitatively assess the robustness of various water supply side and water 

demand side management options over a broad range of plausible futures. 

Findings show that beyond the uncertainty range explored with the headroom 
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method, a preference reversal can occur, i.e. some management options that 

underperform at lower uncertainties, outperform at higher levels of uncertainty.  

2.5.3 Exploring approaches 

Adaptation Tipping Points 
(Kwadijk et al., 2010) introduced the concept of ‘adaptation tipping points’, 

which is reached when the magnitude of change is such that the current 

management strategy can no longer meet its objectives. It involves the five 

steps below(B. Gersonius et al., 2012). 

 

Figure 2.8  Comparison of classical decision making and Adaptive tipping point 

decision making (Kwadijk et al., 2010) 

1. Specify the functions and uncertain parameters of interest. The objectives 

for these functions (acceptable standards) as well as candidate strategy are 

also defined.  

2. Quantify the particular threshold values for the acceptable standards. These 

threshold values can be defined either according to regulations (e.g., by 

national law) or decided by the stakeholders involved and can change over time. 
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3. Identify the ATPs by assessing the specific boundary conditions (i.e., the 

system state) under which acceptable standards may be compromised.  

4. Use climate change scenarios to transform the specific boundary conditions 

under which an ATP will occur into an estimate of when it is likely to occur (an 

estimate of the earliest and latest times that the performance of a strategy is no 

longer acceptable). 

5. If it is desired that an ATP should not be reached, alternative and adaptive 

strategies will be needed to enhance climate change resilience.  

(Kwadijk et al., 2010) used ATPs method as a bottom-up approach to assess 

capacity and vulnerability of the current water management system to climate 

change and sea level rise before failure, the two questions “what are the first 

issues that planner will face as a result of climate change” and “when can they 

expect that” are answered. A case study for long-term water management 

planning, which mainly focus on flood defence, drinking water supply and 

protection of the Rotterdam Harbour in the Netherlands is carried out. Results 

indicates less dependency on climate projections in ATPs than a traditional top-

down approach starting from climate scenarios. In addition, ATPs analysis 

provides a lot of information about the system and its weaknesses. 

(B. Gersonius et al., 2012) introduced a hybrid method called “Mainstreaming 

method”, to facilitate mainstreaming adaptation of stormwater systems to 

climate change. The approach starts with an analysis of adaptation tipping 

points (ATPs). The extension concerns the analysis of adaptation opportunities 

besides climate change in the stormwater system such as the ‘normal’ 

maintenance, modification or renewal of infrastructure, buildings and public 

spaces. The results from both analyses are then used in combination to identify 

and exploit Adaptation Mainstreaming Moments (AMMs). A case study in 

Netherlands was carried out with the proposed hybrid method to the 

management of flood risk for an urban stormwater system. Results shows this 

method will enhance the understanding of the adaptive potential of stormwater 

systems and helps to increase the no-/low-regret character of adaptation.  
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Adaptive Policy Making  
(Walker, Rahman, & Cave, 2001) first proposed this approach to cope with the 

uncertainties that confront them by creating policies that respond to changes 

over time and that make explicit provision for learning. The approach makes 

adaptation explicit at the outset of policy formulation. Thus, the inevitable policy 

changes become part of a larger, recognized process and are not forced to be 

made repeatedly on an ad hoc basis. The approach involves the following three 

steps: 

 

Figure 2.9 Workflow of the Adaptive policy making (Walker et al., 2001) 

Set the stage. Objectives, constraints, and available policy options are specified 

or discussed in this step and come out with a definition of acceptable success. 

Assemble the basic policy. Promising strategies are specified at this step, as 

well as identification of the necessary conditions for success.  

 Identify the vulnerabilities and design actions. Vulnerabilities can reduce 

acceptance of the policy to the point where its success is jeopardized. To 

address that, mitigating actions are designed for certain vulnerabilities and can 

be put in place immediately. Various hedging actions are developed, in 

anticipation of uncertain vulnerabilities, to diversify or reduce exposure or 

cushion the consequences.  
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Translate signposts and set up triggers. Signposts should be monitored in order 

to be certain that the underlying analysis remains valid and additional actions 

are taken in a timely and effective manner. The critical levels and appropriate 

contingency plans that make up the triggers should also be specified in this 

step.  

To design well-functioned adaptive strategies, (Swanson et al., 2010) 

suggested the following seven methods:  

1) using integrated and forward-looking analysis;  

2) monitoring key performance indicators to trigger built-in policy adjustments;  

3) undertaking formal policy review and continuous learning;  

4) using multi-stakeholder deliberation;  

5) enabling self-organization and social networking;  

6) decentralizing decision making to the lowest and most effective jurisdictional 

level; 

and 7) promoting variation in policy responses.  

(Kwakkel, Walker, & Marchau, 2012) assessed the efficacy of Adaptive Policy 

Making for guiding the long-term development of infrastructure. The 

performance of a dynamic adaptive plan is compared with the performance of 

a static, rigid implementation plan across a wide spectrum of conceivable 

futures. Results reveal that the static rigid plan outperforms the dynamic 

adaptive plan in only a small part of the spectrum. Moreover, given the wide 

array of possible futures, the dynamic adaptive plan has a narrower spread of 

outcomes than the static rigid plan, implying that the dynamic adaptive plan 

exposes planners to less uncertainty about its future performance despite the 

wide variety of uncertainties that are present.  

(Hamarat, Kwakkel, Pruyt, & Loonen, 2014) used multi-objective robust 

simulation optimization to specify appropriate conditions for adapting a policy, 

by identifying conditions that produce satisfactory results across a large 
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ensemble of scenarios. A case study on EU energy case is demonstrated using 

a multi-objective evolutionary optimization technique, the Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II), with adaptive policy making. Results 

shows the optimization helps in identification of appropriate triggers for actions 

through computational methods instead of best guesses or historic data. 

Adaptation Pathways 
(Haasnoot et al., 2012) developed the Adaptation Pathways method on the 

basis of adaption tipping points (Kwadijk et al., 2010). Pathway emerges when 

reaching a tipping point, and additional actions are needed. This approach 

presents a sequence of possible actions after a tipping point in the form of trees. 

It uses computational scenario approaches to assess the distribution of the sell-

by date of several strategies across a large ensemble of transient scenarios. 

Rather than taking a one-off decision now about a ‘best’ option, the approach 

encourages the decision maker to postulate ‘‘what if’’ scenarios and to take a 

more flexible approach.(Ranger, Reeder, & Lowe, 2013)  

 

Figure 2.10 Workflow of the Adaptation Pathways (Ranger et al., 2013) 

(Haasnoot et al., 2012; Haasnoot, Middelkoop, van Beek, & van Deursen, 2011) 

first developed this method using multiple realisations of transient scenarios 

with an Integrated Assessment Meta Model (IAMM). A hypothetical case study 

was carried out to illustrate the application. Simulated with three climate 

scenarios and thirteen policy options, the robustness of policies are then 

analysed by comparing its performance with the ranges for the indicators of 

certain perspective. Pathways were generated by using the sell-by date of each 

option and their perspective-based targets on the basis of the assumption that, 
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if a policy option no longer meets the targets, it is necessary to add, or to shift 

to another policy option. 

(Ranger et al., 2013) apply the adaptation pathway in a performance-based 

way instead of timely way in the case of Thames Estuary 2100 Project. Each of 

the strategies is evaluated by the maximum sea level before it fails and the shift 

among strategies depends on the actually sea level where the uncertainty lies. 

(Haasnoot et al., 2014) evaluates its IAMM model with approach of closed 

questions. The results show that the existing model fits the purpose of 

screening and ranking of policy options and pathways to support the strategic 

decision making. A complex model can subsequently be used to obtain more 

detailed information. 

(Maru, Stafford Smith, Sparrow, Pinho, & Dube, 2014) found short-term 

responses to vulnerability can risk locking in a pathway that increases specific 

resilience but creates greater vulnerability in the long-term. Equally, longer-term 

actions towards increasing desirable forms of resilience need to take account 

of short-term realities to respond to acute and multiple needs of marginalized 

remote communities.  

Dynamic Adaptive Policy Pathways 
A new paradigm has been conceived that infrastructures should be planned 

with a strategic vision of the future, committing to short-term actions, under a 

framework to guide future actions so as to dynamically adapt over time to meet 

changing (unforeseen) circumstances (Haasnoot et al., 2013). To realize this, 

“Dynamic Adaptive Policy Pathways” was proposed base on the strong feature 

of “Adaptive Policy Making” and “Adaptation Pathways”:  Think beforehand the 

actions and signposts of possible failure of a plan while monitor over time to 

trigger the actions. Visualizes sequences of possible actions through time, and 

includes uncertainties concerning societal values through perspectives. This 

approach involves nine steps: 

1) Describe the study area, including the system’s characteristics, the 

objectives, the constraints in the current situation, and potential constraints in 

future situations. Like in APM, the result will be a definition of success.  
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2) Analyse the problem. The current situation and possible future situations, 

which are  ‘business as usual cases’, are compared to the specified objectives 

to identify whether there are any gaps. Both opportunities and vulnerabilities 

are considered.  

3) Identifies sufficient possible strategies, which can help meeting the definition 

for success. These actions can be specified in light of the opportunities and 

vulnerabilities, categorized according to the types of actions (i.e. shaping, 

mitigating, hedging actions).  

 

Figure 2.11 Workflow of the Dynamic Adaptive Policy Pathways (Haasnoot et 

al., 2013) 

4) Evaluate the strategies. Sell-by date for each strategy is identified by 

assessing them individually on the outcome indicators for each scenario. The 

vulnerabilities and opportunities will be reassessed and repeat step 3 if needed. 
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5) Assemble of pathways. A pathway consists of a concatenation of strategies, 

where a new strategy is activated once its predecessor is no longer able to 

meet the definition of success.  

6) Develop preferred pathways. Identify pathways that fit well within one or 

more specified perspective. Form the basic structure of a dynamic adaptive 

plan with these pathways. 

7) Improve the robustness of the preferred pathways. Define actions to get and 

keep each of the pathways on track for success. Set up the monitoring system 

specifies what to monitor, and the triggers specify when a contingency action 

should be activated. 

8) Translate the results into a dynamic adaptive plan, which specifies actions 

to be taken immediately, actions to be taken now to keep open future 

adaptations, and the monitoring system. 

9) Implement the plan and establish the monitoring system. Signpost 

information related to the triggers is collected, and actions are activated, altered, 

stopped, or expanded in response to this information.  

(Haasnoot et al., 2013) applied this approach on a long-term water 

management plan of the Rhine Delta in the Netherlands about the future arising 

from social, political, technological, economic, and climate changes. With the 

result of an adaptation pathways map with policy advisors and policymakers 

have shown an interest in the method as they suggest that the approach is 

comprehensive and more complex than a traditional scenario-strategy impact 

analysis for one or two points in the future and planners have experienced that 

plans change over time, and an adaptive strategy is an attractive idea for 

planners facing deep uncertainty. 

(Kwakkel, Haasnoot, & Walker, 2015) developed a model-driven approach 

supporting the development of promising adaptation pathways. Possible 

futures over uncertainties related to climate change, land use, cause-effect 

relations, and policy efficacy are generate and candidate pathways are 

evaluated over this ensemble using an Integrated Assessment Meta Model. 
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Attention are focus on the robustness of the performance of the candidate 

pathways on multiple objectives, and a multi-objective evolutionary algorithm 

are used to find these promising pathways. Result supports that this approach 

is useful for supporting the development of dynamic adaptive plans. Through 

this method, a subset of most promising pathways are successfully identified. 

Moreover, some of these pathways contain solutions that had been discarded 

in earlier research.  

 

2.6 Conclusions of literature review and key knowledge gaps 

The history and development of the current planning tools is summarised in 

Figure 2.12. A comparison of this tools is presented in Table 1, and then 

discussed in the subsequent sub-sections.  

 

Figure 2.12 Development of existing long-term planning tools 

Perspective method and Adaptive wheel both offer pre-assessed strategy 

options and helps the decision makers to find the better balanced one(s) when 

the future turns out to be at some place they assumed. Perspective method 
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regards views from different groups of people while adaptive wheel is 

concerned on how different drivers influence strategies and their functions 

under plausible futures. These methods help to understand infrastructure 

planning through feedbacks, from social and technical systems, but have 

certain limitation on application as the analysis of either people’s perspective or 

drivers of strategies mostly rely on the cognition of the researcher. Additionally, 

they offer mostly independent strategies which may be difficult to switchover in 

practice. 

Table 1. Comparison of current planning tools 

Planning Approach Plans Scenarios Key advantages Key gaps 

Synectic 

Approach 

Perspectives 

Method 

Independent 

Strategies 

Guessed 

Future 

• Describe people’s dynamic 

view over strategies and 

service they provide 

• Can’t guarantee feasible shift 

among strategies 

• Require understanding of 

strategies and perspectives 

The 

Adaptive 

wheel 

- 
Guessed 

Future 

• Evaluate the key objectives 

and the weakness of the water 

system 

• Need to design strategies 

• Subjective identification of 

objectives and indicators 

Static 

Approach 

Assumption-

Based 

Planning 

Candidate 

Plans 

Guessed 

Future 

• Identify the uncertainties in an 

existing plan 

• Improve the robustness of 

plans through contingency 

actions 

• Difficult in identifying 

indicators and their 

expectations over time 

• Original plan and contingency 

actions are subjective 

Robust 

Decision 

Making 

Candidate 

Plans 

Interested 

Future 

space 

• Evaluating the effect of 

multiple uncertainty 

• Simulating the nonlinear 

interactions between 

parameters 

• Enables decision makers to 

trade one plan against the other 

• Possibility of missing better 

portfolios 

• Time-consuming in 

computation 

• Require quantitative data and 

qualitative understanding 

Info-gap 
Candidate 

Plans 

Interested 

Future 

space 

• Consider trade-offs between 

the performance parameters 

and robustness to uncertainty 

• Possibility of missing better 

portfolios 

• Time-consuming  

• Result is sensitive to the 

uncertainty model 

• Depends on decision makers to 

balance between robustness 

and opportuneness 

Dynamic 

Approach 

Adaptation 

Tipping 

Points 

Candidate 

Plans 

Future 

space 

• Assess capacity and 

vulnerability of existing plans 

before failure 

• Provides information about the 

system and its weaknesses. 

• No guarantee of successful 

adaptation 

• Require comprehensive 

understanding of strategies and 

adaptation plans 

Adaptive 

Policy 

Making 

Independent 

Strategies 

Future 

space 

• Expose planners to less 

uncertainty about its future 

performance despite the wide 

variety of uncertainties that are 

present 

• Difficulties in identification of 

appropriate triggers for actions 

• Possibility of missing better 

contingency actions 

• Regardless the timeliness of 

strategies. 

Adaptation 

Pathways 

Independent 

Strategies 

Future 

space 

• Present possible actions after a 

tipping point in the form of 

trees 

• Encourage to take a more 

flexible approach 

• Unable to evaluate with large 

range of future;  

• Short-term responses to 

vulnerability may lock in a 

pathway that increases specific 
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resilience but creates greater 

vulnerability in the long-term. 

Dynamic 

Adaptive 

Policy 

Pathways 

Independent 

Strategies 

Future 

space 

• Think beforehand the actions 

and signposts of possible 

failure 

• Monitor over time to trigger 

the actions 

• Visualize possible actions 

through time 

• Include uncertainty concerning 

societal values 

• Unable to deal with complex 

infrastructure strategy 

combinations 

Assumption-based planning tries to identify the vulnerability of plans under 

different situations and design contingency actions to overcome these 

weakness in case it happens. It offers better flexibility as well as resistance to 

uncertainties in long-term planning. Nevertheless, it still has the limitation of 

cognition on both scenarios and strategies as researchers might underestimate 

or unforeseen the vulnerability of plans as well as plausible events that may 

happen.  

Robust Decision Making and Info-gap make an effort to overcome these kinds 

of cognitional issue by sampling scenarios within possible range of futures and 

assessing the performance of plans under all these conditions. The former 

method put more emphasis on where the strategies might fail and how to modify 

them to be more robust. The later one offers a trade-off between “robustness” 

and “opportuneness”. Similar to assumption-based planning, these methods 

require a set of long-term plans that have been priori-designed and offers the 

optimizations on the basis of them. Although both of them tries to reduce the 

uncertainties in future scenarios, limitation still lies in the formulation of the initial 

plans as researchers usually design based on their understanding and 

estimation of strategies. There is a chance that we miss good plans from the 

beginning. 

Adaptive tipping points works similar to robust decision making, it focuses on 

defining if and when the system will fail and adaptation strategies are needed, 

thus enabling policy makers to plan the adaptation. The difference is that the 

identification of ATPs by no means guarantees successful adaptation. It also 

share the limitation of possible lack of understanding or strategies. 

With the help of more powerful computational resources and efficient algorithms, 

approaches like adaptive policy making and adaptation pathways start to 
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explore both in uncertain scenario space and plausible strategy space. 

Adaptive policy making inherits the idea of assumption-based planning, using 

a user-defined standard of success instead of a manually analysis vulnerability, 

to assess all possible strategies under different scenarios, design contingency 

actions and reassess the whole plan to get a more robust solution. Adaptation 

pathways deals with the problem by evaluating the sell-by date of all possible 

actions from now on and formulate possible implementation pathways that 

leads to a successful ending. As these two method are complementary in a way 

that the former one (Adaptive policy making) didn’t consider the timeliness of 

strategies and the later one (Adaptation pathways) has low tolerance on 

unforeseen failure of strategies, a combination of both, Dynamic Adaptive 

Policy Pathways is also carried out that evolves both sell-by date of strategies 

and contingency options, to further reduce the uncertainty of future and design 

a more robust plan for decision makers. These approaches are breakthroughs 

in the field of long-term infrastructure planning as they take account of 

uncertainties both in strategies and future, but improvements can still be made 

as the strategies used in these methods are still independent and the planning 

itself usually concentrates on a single goal. Further researches to identify the 

cooperation effect of multiple-strategies as well as multiple-objectives are still 

needed to put these long-term planning approaches into more efficient practice. 

The review of different bodies of literature deemed relevant for the research 

area of infrastructure planning, has allowed for a number of conclusions to be 

drawn out as well as insights into possible improvements of current planning-

supporting method. Overall, the key findings of the literature review are 

summarised as follows: 

An increasingly comprehensive infrastructure system is desired to provide 

multiple functions that meets the need of the society in consideration of not only 

the technical performance but also the economic and social benefits. 

Besides the changing requirement of urban water infrastructures, with more 

unpredicted events happen, the challenge of uncertainties in future and 

strategies themselves has attracted more and more concerns. There is a need 

to support decision making in planning process to meet these needs. 
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Current planning support tools have gone through a process of continuous 

improvement, to overcome the limitation of cognition of researchers and 

workout a more robust plan for future. Yet there still need efforts to improve 

current approaches for more feasible and flexible plans. 

 

 

2.7 Research questions 

This research aims to develop methods for identifying robust water 

infrastructure implementation pathways to increase the resilience to the 

changing demand of water service, across the exploratory space for futures 

under deep uncertainty. Although the aim is to develop a general method that 

can be applied to all urban water streams (supply, sewage and drainage), the 

work will in the first instance focus on the adaptation of urban drainage system 

to assure a city’s flood resilience. The research will answer these questions: 

1. In the planning of green infrastructures, how to improve the decision reliability 

under limited data availability and reduce the uncertainty of planners' subjective 

perceptions? 

2. In the planning of grey infrastructures, how to comprehensively consider the 

influence of green infrastructure planning in different construction stages and 

to improve the robustness of grey-green systems? 

3. How to deduce the urban development and the construction of complex 

drainage system, while identifying the problems in the long-term construction 

and operation process to generate a robust urban water implementation 

pathway? 

4. How to improve the identification speed of urban water implementation 

pathway and improve the practicability of this method? 
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3.1 Introduction 

With the tremendous development in China over the past few decades, various 

problems resulting from rapid urbanization, population growth, and climate 

change have emerged. The failure of water drainage systems is one of the most 

common. Due to a low design capacity, a lack of maintenance, and a reduction 

in natural buffering areas, flooding and waterlogging caused by this failure are 

in turn causing huge losses in terms of both property and human lives. 

The Sponge City concept was proposed in 2012 in China during the Low-

Carbon Urban Development and Technology Forum to address the conflict 

between development and resilience cities face (Xia et al., 2017). Similar 

concepts in urban planning, such as Best Management Practices (Urbonas & 

Stahre, 1993), Low Impact Development (Fairlie, 1996), and Water Sensitive 

Urban Design (Wong & Brown, 2009) have been successfully practiced, but 

there is still a long way to go to adapt, improve, and develop proper techniques, 

strategies, and planning methods to meet local conditions and needs in China. 

Followed by a barrage of government-issued policies, several cities in China 

with different population densities, spatial scales, and climate conditions are 

currently sponsored to explore the applicative national strategy and practice of 

Sponge City by the 2020s. Meanwhile, current Sponge City designs and 

construction plans do not satisfy our expectations (Xia et al., 2017). To achieve 

better performance and more cost-efficiency, it is urged that a proper decision-

making method be employed in the planning process. Although many novel, 

powerful, and accurate models and tools to support decision making have 

emerged in recent years (Albano, Mancusi, & Abbate, 2017; Ferguson, Brown, 

Frantzeskaki, de Haan, & Deletic, 2013; Hall et al., 2012; Inam et al., 2017; 

Urich et al., 2012), most of them have been developed and used by 

experienced researchers or developers. It is almost impossible for lay designers 

and decision makers to correctly and easily apply those tools to their work.  

Some widely used methods are usually simple and straightforward. One of the 

most commonly used decision support method is Multi-Criteria Decision Making 

(MCDM), which combines quantitative and qualitative criteria to form a single 

index of evaluation. Implemented in a Geographic Information System(GIS) 
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environment, MCDM has been applied in various studies in spatial analysis or 

planning in areas such as resource management (Chang, Qi, & Yang, 2012), 

urban planning (Chen & Paydar, 2012; Jeong, García-Moruno, & Hernández-

Blanco, 2013; R. Rahman & Saha, 2008; van Niekerk et al., 2016), and 

vulnerability assessment (Araya-Munoz, Metzger, Stuart, Wilson, & Carvajal, 

2017; Pourghasemi, Moradi, Fatemi Aghda, Gokceoglu, & Pradhan, 2013; 

Radmehr & Araghinejad, 2015; M. R. Rahman, Shi, & Chongfa, 2014) over the 

last few decades. Such spatial-based MCDM involves a set of geographically 

defined basic units (e.g., polygons, or cells), and a set of evaluation criteria 

represented as map layers (Chen & Paydar, 2012). The criterion maps rank 

each unit with an overall score according to the attribute values and criteria 

weights using different analyzing approaches (e.g., Boolean overlay, weighted 

linear combination, and ordered weighted average) (R. Rahman & Saha, 2008). 

The Analytical Hierarchy Procedure (AHP) (Saaty, 1980) is a method widely 

used for ranking multi-criteria weights. It calculates the weighting factors using 

a pairwise comparison matrix where all relevant criteria are compared against 

each other with reproducible preference factors. 

Another decision support method is Fuzzy Decision Making, which is a 

mathematical method for supporting decision making under uncertain situations 

with limited information (Zadeh, 1996). It consists in an inference structure that 

enables appropriate human reasoning capabilities. It has been widely applied 

in studies relating to vulnerability assessment (Araya-Munoz et al., 2017; G. 

Lee, Jun, & Chung, 2014; M.-J. Lee, Kang, & Kim, 2015; Radmehr & 

Araghinejad, 2015; Rezaei, Safavi, & Ahmadi, 2013; Şener & Şener, 2015; 

Singh & Nair, 2014) and urban planning (Gray et al., 2014; Navas, Telfer, & 

Ross, 2011; Talebian & Shafahi, 2015; Teh & Teh, 2011; Zhang, Wang, Chen, 

& Zhu, 2011). The approach sets up a fuzzy inference system (FIS), which 

consists in user-defined membership functions and decision rules (Zadeh, 

1996). The value for each criterion is first divided into classes/words, and a 

membership function is used to identify the range of each class/word. Each 

class has overlay parts with adjacent classes to represent the fuzziness. The 

decision rules represent the ambiguous designing principle of the planner (e.g., 

if the imperviousness is low and the pollution productivity is high, then the 
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vulnerability is high). The criterion maps rank each unit by allocating their input 

distribution in the membership function and finding out their output distribution 

according to the rule set and rule strength, which is called the Mamdani method 

(Sivanandam, Sumathi, & Deepa, 2007).  

Realistically, the application of such methods requires a comprehensive 

understanding of the planning process as well as sufficient data. On one hand, 

the more data we have, the more comprehensive we can understand the 

situation and make more reliable decisions. On the other hand, the more data 

we are dealing with, the more subjective pairwise comparison matrixes (e.g., 

MCDM) or decision rules (e.g., FIS) we need to establish and therefore the 

more uncertain we are of the decisions. Nevertheless, the above method 

usually evaluates criteria units individually (especially polygons) and disregards 

the surrounding features. 

In this study, we developed an easily applicable decision-making framework 

that applies a hierarchical FIS system (Şener & Şener, 2015) on a fuzzified GIS 

system, in order to offer better decision supports with fewer user-defined data. 

The hierarchical FIS system aims to reduce the subjective judgement from 

planners, minimizing uncertainty in the system. The fuzzified GIS system 

provides comprehensive information on the surrounding environment to 

support better decisions. The developed framework and the traditional MCDM 

method were applied on a planning program at Yangchen Lake Resort, Suzhou, 

Jiangsu, China. The results of both methods were compared so that the pros 

and cons for each approach could be analyzed. 

3.2 Methods and Data Description 

3.2.1 Site Description 

The 61.7 km2 Yangchen lake resort consists of two peninsulas, over which 

more than 100 inner rivers are spread (see Figure 3.1). About 3.5 km2 of land 

area is used for various kinds of farming activities (rice, vegetable, fruit, and 

fishery) and 5 km2 is used for public landscapes and parks. A new town is 

gradually developing at the upper end of the left peninsula. 
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Due to pollution from farming and a lack of maintenance, more than one-third 

of the inner rivers are blocked. The performance of the drainage system is poor 

in the town area as the town has been expanding for decades with the drainage 

system never upgraded/expanded. 

The aim of the design is to offer decision support for Sponge City planning 

(where to introduce new techniques, cost-efficiency on adapting strategies, 

etc.), such that the retrofit impact in the area of the resort is minimized and the 

spatial planning of strategies is reasonable. 

There are four candidate strategies: business as usual (BAU), rain tank or 

green roof (small scale system), rain garden or bioretention cell (large scale 

system), and re-planning. 

 
Figure 3.1 Case Study: Yangchen lake resort. 

3.2.2 Data Collection and Criteria Selection 

On the basis of a dwg map from the stakeholders, field investigations were 

carried out to gather information about land use, the source of pollution, and 

the environmental status on site. The dwg file was then transformed into a GIS 

map via ArcGIS, and these data were inputted into each polygon. Together with 

experienced designers, major criteria pertaining to permeability, pollution 

productivity, loss from flooding, and retrofit cost, were identified. Due to 

limitations in data accessibility, the four features are represented by 0, 1, and 2 

(indicating low, medium, and high, for the degree of each criterion) for every 

polygon according to the designers’ experience (see Table 3.1). 
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Table 3.1. Geographic Information System (GIS) features for the resort. 

Land Use Permeability Pollutant Productivity Loss from Flooding Retrofit Cost 

Farm 1 2 1 1 

Building 0 1 2 2 

Green space 2 0 0 0 

(* 0: Low; 1: Medium; 2: High). 

3.2.3 Methodology 

We applied MCDM and HFIS in this case study according the following 

procedures (see Figure 3.2). 

Multi-Criteria Decision Making with an Analytical Hierarchy Procedure 
The MCDM process requires decision makers to rank the criteria based on 

pairwise comparisons. In this study, these comparisons were obtained from a 

survey of 25 experts that included members of the urban planning institute as 

well as academic experts specialized in urban planning. Each participant was 

asked to rank the criteria and class by referring to a numerical scale of 1–9, 

with a score of 1 representing indifference between the two criteria and 9 

indicating a great amount of concern (R. Rahman & Saha, 2008).  

 
Figure 3.2 Multi-Criteria Decision Making (MCDM) and Hierarchical Fuzzy 

Inference System (HFIS) flow chart. 
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The final 25 pairwise comparisons matrixes were establish based on the mean 

value of all survey results. The weight for each criterion, class, and strategy 

were then calculated using the AHP method (see Figure 3.3). The consistency 

ratio (CR) was calculated to evaluate the consistency of pairwise comparisons. 

A standard CR threshold value of 0.10 was applied.  

 

Figure 3.3 Pairwise comparisons matrixes of AHP method 

After the factors, their weights, and all constraints in the decision tree were 

established for each strategy, the suitability of each strategy was calculated for 

each unit in the criterion map according to its criteria value (Suitability = Criteria 

Weight × Class Weight × Strategy Weight). The sponge urban planning map 

was generated by selecting the most suitable strategy for each unit. 

 

Figure 3.4 AHP structure 

Hierarchical Fuzzy Inference System (HFIS) Decision Making 
Step 1. “Fuzzification” of GIS Maps 

As discussed before, a major goal of this framework is to provide 

comprehensive information from the surrounding environment for each criteria 

unit. Thus a “fuzzified GIS system” was designed to convert all polygon-based 

GIS layers and their criteria values into grid-based GIS layers. In this study, we 
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first divided the resort into 100 m × 100 m (1 ha) grids. The size of the grids 

was determined considering the mid-value (0.55 ha) and distribution (<1 ha: 

63%) of the polygon area in the GIS map. Such grids offered an adequate 

capacity of embracing characteristics of multiple polygons. Permeability, 

pollutant productivity, and loss from flooding was calculated for each grid 

according to the corresponding value in the polygon they intersected (Equation 

(1)). 

𝐼𝐵,𝑗 =∑ 𝐼𝐴,𝑗
𝑎𝑖
′

𝐴𝑖
′

𝑎𝑖
′

1
 (1) 

Where, 

IB,j is the criteria value of grid j;  

IA,i is the value of the corresponding criteria in polygon i;  

ai’ is the intersect area of grid j and polygon i;  

Ai’ is the area of polygon i. 

Step 2. Fuzzy Analysis 

A Matlab (R2017a) toolbox, the Fuzzy Logic Designer, was used to set up the 

FIS based on the result from Step 1. The Gaussian Membership Functions are 

adopted for the following criteria to allow better deviation to these fuzzified 

values (see Figure 3.5). “Permeability” and “pollutant productivity” were first 

analyzed to evaluate the “vulnerability” of each grid. Together with the “loss 

from flooding,” the “vulnerability” went through the FIS again to calculate the 

“develop potential”. The calculation of the above functions are based on 

Mamdani method (Sivanandam, Sumathi, & Deepa, 2007). The advantage of 

using a two-layer fuzzy process instead of dealing with three parameters at a 

time (using permeability, pollutant productivity, and loss for flooding to directly 

analyze develop potential) is that the former requires fewer inputs. The two-

layer fuzzy module requires two rule sets with 25 rules each (for two parameters 

with 5 value ranges, the minimum amount of rules will be 5 × 5), while the one-
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layer module would need a set of 125 rules. If fewer rules are designed, more 

uncertainty will be reduced from the cognitive limitation. 

 
Figure 3.5 Designed membership functions of the hierarchical fuzzy inference 

system (FIS). 

Step 3. “Defuzzification” of GIS Maps and Strategy Selection 

In this stage, the grid map contains output on development potential of each 

grid, resulting from comprehensive consideration of spatial (Step 1) and 

cognitive (Step 2) factors. Such information is not helpful for planners as they 

are grid-based rather than polygon-based (each polygon is an individual unit 

that can be retrofitted, such as building, farmland, etc.). Thus, the grid map was 

translated to an original polygon-based GIS map through Equation (2) and 

Equation (3) so that the development potential for each polygon can be 

understood. 

𝐷𝐴,𝑖 =∑𝐷𝐵,𝑗
𝑎𝑗
′

𝐴𝑖
  (2) 

𝐴𝑖 =∑𝑎𝑗
′  (3) 

Where, 

DA,i is the development potential of polygon i;  

DB,i is the development potential of grid j;  

aj’ is the intersecting area of grid j and polygon i;  

Ai is the area of polygon i. 
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A third fuzzy process was conducted with the development potential and retrofit 

cost, in the same way as Step 2, to determine the strategy to be chosen 

(business as usual, rainwater tank, rain garden, or re-planning). The 

Trapezoidal Membership Function are adopted in this step to allow crisper 

decision choices (see Figure 3). The strategy for each polygon was then 

calculated, assembled, and visualized as a sponge urban design map. 

3.3 Results and Discussion 

3.3.1 AHP Result 

The result weight and consistency ratio is listed in Table 3.2 and 3.3 relatively.  

The consistency ratio of all results are less than 0.1, indicating reliability of the 

result (R. Rahman & Saha, 2008). According to the analysis results, in the 

process of sponge city construction at the present stage, the main factors that 

planners consider are retrofit cost (0.3286), flood loss (0.2994) and potential 

pollution (0.2117) whose weight sum up to 0.8397, far higher than the other 

three factors. 

The planners are tend to implement retrofit in areas with lower permeability, 

higher flood loss, lower retrofit cost, higher pollution potential, smaller area or 

which being used as farm land. 

Table 3.2 Criteria tree and Analytical Hierarchy Procedure (AHP) results. 

Goal Weight Criteria Weight Class Weight 

Strategy Weight 

Business 

As 

Usual 

Raintank 

Green 

Roof 

Rain 

Garden 

Bioretention 

Re-

Planning 

Development 1.0000 

Permea-

bility 
0.0553 

High 0.0754 0.6692 0.1155 0.1155 0.0998 

Medium 0.2290 0.2500 0.2500 0.2500 0.2500 

Low 0.6955 0.0871 0.3854 0.3854 0.1422 

Land use 0.0649 

Farm 0.6955 0.0886 0.0952 0.5513 0.2649 

Building 0.2290 0.3812 0.4331 0.1030 0.0828 

Park 0.0754 0.6201 0.0708 0.2166 0.0925 

Area (ha) 0.0401 

1.19–45 0.1140 0.3000 0.3000 0.3000 0.1000 

0.25–

1.19 
0.4054 0.2500 0.2500 0.2500 0.2500 

0–0.25 0.4806 0.2857 0.2857 0.2857 0.1429 

Flood 

loss 
0.2994 

High 0.7514 0.0445 0.1723 0.1958 0.5874 

Medium 0.1782 0.0813 0.3598 0.3598 0.1991 

Low 0.0704 0.3000 0.3000 0.3000 0.1000 
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Retrofit 

cost 
0.3286 

High 0.0658 0.4167 0.0833 0.0833 0.4167 

Medium 0.2172 0.3000 0.3000 0.3000 0.1000 

Low 0.7171 0.3125 0.3125 0.3125 0.0625 

Pollution 0.2117 

High 0.7429 0.0457 0.1451 0.3494 0.4598 

Medium 0.1939 0.0871 0.3854 0.3854 0.1422 

Low 0.0633 0.3313 0.2916 0.2916 0.0855 

Table 3.3 Consistency ratio of the AHP analysis 

Goal CR Criteria CR Class CR 

CR 

Business 

As 

Usual 

Raintank 

Green 

Roof 

Rain 

Garden 

Bioretention 

Re-

Planning 

Development 0.0226 

Permea-

bility 
0.0735 

High 0.0162 0.0028 0.0005 0.0005 0.0004 

Medium 0.0000 0.0032 0.0032 0.0032 0.0032 

Low 0.0077 0.0033 0.0148 0.0148 0.0055 

Land use 0.0735 

Farm 0.0282 0.0040 0.0043 0.0249 0.0120 

Building 0.0520 0.0057 0.0064 0.0015 0.0012 

Park 0.0486 0.0030 0.0003 0.0011 0.0005 

Area (ha) 0.0279 

1.19–45 0.0000 0.0014 0.0014 0.0014 0.0005 

0.25–

1.19 
0.0000 0.0041 0.0041 0.0041 0.0041 

0–0.25 0.0000 0.0055 0.0055 0.0055 0.0028 

Flood 

loss 
0.0279 

High 0.0370 0.0100 0.0388 0.0440 0.1321 

Medium 0.0077 0.0043 0.0192 0.0192 0.0106 

Low 0.0000 0.0063 0.0063 0.0063 0.0021 

Retrofit 

cost 
0.0355 

High 0.0000 0.0090 0.0018 0.0018 0.0090 

Medium 0.0000 0.0214 0.0214 0.0214 0.0071 

Low 0.0000 0.0736 0.0736 0.0736 0.0147 

Pollution 0.06850 

High 0.0744 0.0072 0.0228 0.0550 0.0723 

Medium 0.0077 0.0036 0.0158 0.0158 0.0058 

Low 0.0123 0.0044 0.0039 0.0039 0.0011 

3.3.2 Fuzzified GIS Map 

Compared to the original GIS maps, the fuzzified maps present the same or 

less intensive criteria values in most areas (see Figure 3.4). This indicates that 

the fuzzification process under this gridding scale can maintain the dominant 

characteristics of the polygons while considering the surrounding environment 

and can make reasonable adjustments. Notably, the highlighted Areas A and B 

initially had the same attribute values but ended up with different fuzzified 

values. The reason for these differences results from the more intensive land 

use in Area A. Despite the same land use type, there were more scattered 

green spaces and inner rivers within Area B. The fuzzified GIS map proved to 

be efficient in revealing this non-significant information, which influences the 

final decision. 
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3.3.3 WSUD Plans 

The result of the sponge urban planning map is presented in Figure 3.5. This 

map suggests that 55.6% (MDCM) or 49.7% (HFIS) of the resort can undertake 

the business as usual strategy. These areas include the majority of the west 

and north green spaces of the resort and the residential areas in the middle 

peninsula. These areas have relatively good permeability (by themselves or by 

adjacent to the lake), moderate pollutant productivity, or low loss from flood. 

 

Figure 3.4 Example of a fuzzified GIS map (pollutant productivity). 

 

Figure 3.5 Sponge urban planning maps for MCDM (left) and hierarchical FIS 

(right). 
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It is also suggested that 22.7% (MDCM) or 28.7% (HFIS) of the resort apply 

rainwater tanks or green roofs. These areas consist of high-density buildings 

whose runoff contributes to the pollution in adjacent areas (such as farming).  

The map further suggests that 21.7% (MDCM) or 21.6% (HFIS) of the resort 

have rain gardens or bioretention cells implemented. Most of these would be 

located in areas related to farming. The pollution from fish farming is extremely 

high, so it is advisable to take advantage of the reserved land and to construct 

a large-scale rain garden to hold and treat the runoff from the farming area.  

3.3.4 Comparison of MCDM and HFIS 

In this study, the two methods both require selection and identification of criteria 

and their classes’ ranges. To generate a planning map, MCDM methods 

required the planners to fulfil 25 pairwise comparison matrixes, which consist 

of 141 manual evaluations for deciding the importance between two criteria to 

their upper level criteria. The three-level HFIS required to design 34 decision 

rules to determine which strategy was preferred under certain conditions. 

Table 3.4 Comparison of the results from HFIS and MCDM. 

Comparison criteria HFIS MCDM 

Strategy Choice 

Business as usual 49.7% 55.6% 

Green roofs 28.7% 22.7% 

Rain gardens 21.6% 21.7% 

Replanning 0.0% 0.0% 

Overlay area of choosing same strategy 

(other than BAU) 
69.7% 

User-defined decisions 34 141 

As discussed in Section 3.2, the two methods produced similar results 

regarding the total area of each strategy (see table 3.4). The HFIS suggested 

a bit more rain tank/green roof uptake instead of business as usual (6%). In 

regard to the spatial distribution of the strategies, 69.7% of the resort planning 

generated by the HFIS uses the exact same strategy as that used by MCDM. 

When only looking into polygons with green roof and rain garden strategies, the 

two methods suggested difference with respect to 3.26% of the planning area. 

This indicates that there are more conflicts between the two method on the 

choice of whether to build decentralized systems (from business as usual to 
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green roofs), rather than the size of decentralized systems (green roofs or 

raingardens) 

3.4 Conclusions 

In this chapter, a practical decision support method, the Hierarchical Fuzzy 

Decision-Making (HFDM), was proposed and tested against traditional Multi 

Criteria Decision-Making method (MCDM). When dealing with inadequate 

amount of data in the planning process, the proposed fuzzification of GIS 

system, together with the application of hierarchical fuzzy inference system, 

could provide more reliable information of the planning area. The method 

sharply reduces the number of user-defined parameter, which tries to minimize 

the uncertainty of basic data and user subjective factors in planning decisions. 

The main results are as follows: 

 (1) A fuzzy pre-processing and de-fuzzy evaluation methods of GIS layers are 

proposed, so that the spatial units (such as buildings) that are normally 

independently evaluated can include comprehensive information of adjacent 

environments and improve the rationality of planning decisions. According to 

the median area and area distribution of spatial units in existing GIS, a grid with 

an area of 1 hectare was determined for fuzzy processing. The results show 

that the fuzzy process can maintain the dominant characteristics of spatial units, 

take into account the adjacent environmental parameters and make reasonable 

adjustments to express important hidden information. This process can also 

effectively adapt to the hierarchical fuzzy inference system and more 

realistically simulate the planning process of planners, providing a higher 

reliability of decision-making assistance. 

 (2) A hierarchical fuzzy inference system was designed by imitating the 

planning process of planners. Both the HFDM and the common MCDM were 

applied to the same planning case. The results show that in the case of similar 

results, the traditional MCDM method needs to analyze 25 judgment matrices, 

including 141 subjective comparisons, and requires the users to have high 

professional quality. While the HFDM only needs 59 reasoning rules, which 

requires the users to have general professional quality. The design idea of the 

HFDM proposed in this study reduces the custom parameters by 58% 
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compared with the conventional method, which reduces the subjective 

uncertainty of users to a certain extent. 

 (3) Results indicate that the HFDM proposed in this study and the traditional 

MCDM can generate similar WSUD planning scheme. In terms of the spatial 

distribution of applicable technologies, the matching degree can reach 69.7% 

(excluding regions applying “business as ususal”); The difference in the 

percentage of applicable technologies is only 6 per cent. The HFDM appealed 

to evaluate more vulnerable areas through GIS fuzzification, thus more WSUD 

facilities were recommended, where the MCDM recommended “business as 

usual”. Considering the robustness of urban water system, a reasonable 

redundant system is necessary. 
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4.1 Introduction 

Although there has been a continuous upsurge in developing decentralized 

systems, the reliable functioning of essential infrastructures such as stormwater 

drainage is particularly important to prevent urban flooding. The design of urban 

stormwater drainage networks involves many factors such as the land use and 

topography of the catchment, which makes it difficult to ensure the optimum of 

the designed network by manual calculation. Meanwhile, due to the 

synchronization of pipe network construction and urban development, it is often 

impossible to predict future development when designing pipe network. As a 

result, the design of urban drainage systems is increasingly referring to 

numerical modelling approaches (Korving & Clemens, 2005).  

Existing approaches which deal with the generation of sewer network (models) 

cover various aspects in a different manner. Three aspects can be identified as 

most relevant (Blumensaat, Wolfram, & Krebs, 2011): (1) topological issues of 

network generation, (2) hydraulic network dimensioning, and (3) the 

differentiation of surface characteristics and linkage to the drainage network. In 

most cases, these approaches were designing drainage networks through 

topological measures on the basis of DEM data, and validated through 

hydraulic modelling (Jana, Reshmidevi, Arun, & Eldho, 2007; Liu & Zhang, 2010; 

Moderl, Butler, & Rauch, 2009; Yan, Tang, & Pilesjö, 2018). 

Although these algorithms have been proved to be efficient, there is still a large 

gap when applying to the long-term planning: The construction of drainage 

system could affect the planning of other flood prevention facilities, (e.g. less 

WSUD systems is needed in the areas with newly-build drainage system while 

more in areas with old systems); Similarly, the planning of WSUD systems will 

affect planning of the drainage networks (retrofit plans of old urban drainage 

system might be replaced by sufficient WSUD plans). There are currently no 

computational tools that simulates the interdependency between two or more 

facility options. 

In this chapter, a WSUD-dependent urban drainage planning method is 

proposed enabling co-planning between centralized and decentralized systems 

in the long-term. The method was developed on the basis of urban spatial 
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vulnerability assessment method proposed in chapter 3, encouraging network 

expansion to more vulnerable areas (according to other plans such as WSUD). 

The method also evaluates the feasibility and cost-efficiency of the expansion 

(mainly on depth of pipes in this study), which generates feedback to other 

plans (WSUD) in the long-term. 

4.2 Methods and Data Description 

4.2.1 WSUD-dependent drainage system design 

The WSUD-dependent planning method is divided into two parts: exploration & 

expansion module and pipe diameter adjustment module. 

The exploration & expansion module is shown in Figure 4.2.1, whereas the flow 

chart of the proposed algorithm is shown in Figure 4.2.2. 

 
Figure 4.2.1 Exploratory expansion process of the WSUD-depend method 
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 The planning steps are as follows: 

1) Spatial information initialization. 

The planning area is first divided into grids and the flood vulnerability is 

evaluated with the fuzzy method presented in chapter 3. In this case study, as 

the vulnerability of the area now is significantly different to that in the past (when 

the drainage network was designed), it is hypothesis that all the area (grids) 

reached by the real network now is vulnerable at the time it was designed and 

the proposed method would generate a network based on this vulnerable map 

to enable rational comparison. 

The resolution of grid is the same as that in chapter 3. A grid of 100 meters 

×100 meters (1 hectare) is adopted to ensure the accuracy while considering 

the surrounding influence of the structures or plots.  

2) Network exploration  

Select one or several existing outlets, new outlets, or existing pipe junctions as 

the initial nodes, take the grid where the initial node locates as the initial grid 

and expand the network to the four adjacent grids. If the target grid is flood 

vulnerable and no pipe network is connected in the grid, a new node will be 

added and connected to the initial node. If the grid is not vulnerable and there 

is no network connection, a new virtual node is created, and the node is virtually 

connected to the initial node. If the grid has an established network, then skip. 

When setting the upstream node, the location is chosen near the grid centre 

and adjacent to the roads. When there is no road, the location is selected near 

the grid centre with no buildings on it. The ground elevation is recorded at the 

same time when the node is placed. When setting up the connection, the 

distance between upstream node and the downstream (initial) nodes is 

evaluated, and the elevation of the pipeline is calculated according to the pipe 

network slope (considering the covering soil thickness); 
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Figure 4.2.2 Flow chart of the drainage system design algorithm 

The upstream nodes and upstream virtual nodes are used as the new starting 

nodes, and the grid where they are located is used as the starting grid. The 

exploration is carried out to the three adjacent grids (excluding the initial/starting 

grid explored in the previous step). 

If the target grid is flood vulnerable and no pipe network is connected in the grid, 

a new node will be added and connected to the initial node. If the grid is not 

vulnerable and there is no network connection, a new virtual node is created, 
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and the node is virtually connected to the initial node. When establishing the 

connection, record the distance and elevation (for both the bottom and top of 

the pipe, and the surface) difference between this node and the starting node, 

and accumulate the distance in the previous step to get the distance between 

this node and the initial node; 

When the explored grid is vulnerable and is connected with planned networks, 

the distance between the two routes from the initial nodes is compared and the 

shorter one is retained; the depth from the surface to the top of the pipe was 

also considered as the second determinant. If there are more than 3 continuous 

virtual nodes during the exploration and no new nodes are created, the nodes 

and connections on the exploration path will be deleted. When a new node can 

be created in the exploring grid and the starting grid is a virtual node, the virtual 

node of the exploring path will be converted to a node and the virtual path to a 

path. 

3) Network design and feedback 

When the exploration is completed (when all explorations reach the planned 

boundary), the time-area Method (Ross, 1921) is used to calculate the pipe 

diameter segment by segment in reverse order of the exploration.  

As the existing network is designed based on a one in five year standard, the 

simulated network was also sized under an one in five year return period. 

Besides, the simulated network was also sized under one in one year and one 

in two year return period to investigate the possibility of having better system 

performance with low design standard (less investment or retrofit work) and 

good topologic structure. 

For the grid with high vulnerability but no planned network, the decision maker 

could consider extra decentralized planning (such as WSUD) in the long-term.  

4.2.2 Network evaluation 

4.2.2.1 Topological comparison 
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The topology of the pipe network was evaluated using Graph theoretical 

approach (Bondy & Murty, 1976), which is a method from discrete mathematics. 

This method uses mathematical structure to simulate the relationship between 

points and lines in a network structure. In this chapter, an open source software 

Gephi (Bastian, Heymann, & Jacomy, 2009) is adopted to calculate the 

following parameters are compare the structural differences between simulated 

and real networks: 

1) Degree Distribution 

"Degree" refers to the number of nodes connected with a certain node through 

both ends of a pipe network structure, while "degree distribution" refers to the 

probability/frequency distribution of "degree" of all nodes in a network. The 

higher the degree of node, the stronger its role in the connection of the network. 

2) Modularity 

Modularity refers to the degree to which the pipe network can be divided into 

modules (clustering), which reflects the aggregation of pipes in the drainage 

system. The higher the modularity, the denser the connections between the 

nodes in each module, while the connections between the nodes in different 

modules are more separate (that is, the partition of the pipe network is more 

significant). 

3) Betweenness Centrality Distribution 

When the rainwater pipe network system is considered as a whole, there is a 

shortest path between each upstream inflow node and each outlet (the shortest 

in structure, not exactly in geography). Betweenness centrality refers to the 

number of shortest paths through a node in a pipe network system. The higher 

betweenness centrality the node is, the more important it is to the pipe network. 

4) Eccentricity Distribution 

Eccentricity refers to the maximum distance between one node and all other 

nodes. The higher the eccentricity of a node, the greater the delay of its 

transmission affected by or on other nodes. 
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The drainage network has obvious directivity under normal working condition. 

The practical significance of the first two parameters is the connectivity of pipe 

network and the significance of sub-system structure partition. The latter two 

parameters is the mutual connection and influence between pipe network 

nodes/segments and surrounding nodes/segments when flood occurs, so the 

calculation is based on undirected network. 

4.2.2.1 Performance Comparison 

The performance of pipe network is evaluated by its hydraulic performance. 

SWMM was used to connect each grid to the nearest node to form a water 

catchment system. The following parameters are calculated under three 

different rainfall conditions to compare the performance difference between 

simulated network and real network: 

1) Total water volume of flooding and maximum overflow flow at a single node; 

2) Distribution of flooded time and average overflow intensity of nodes (overflow 

volume/flooded time); 

3) Estimated construction cost. 

4.2.3 Site Description 

The drainage system in Elster Creek catchment, Australia was selected as the 

study area in this chapter to apply the proposed method and compare the pros 

and cons between the modelled network and the real one. 
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Figure 4.2.3 Existing stormwater network layout plan of Elster Creek (Olesen, 

Löwe, & Arnbjerg-Nielsen, 2017) 

The Elster Creek catchment is located in Melbourne, Australia, which covers 

an area of approximately 45 square kilometers. This catchment is mainly 

composed of residential areas, which have suffered multiple flood disasters in 

recent years (Olesen et al., 2017). The existing drainage network in this area is 

shown in Figure 4.2.3. 

4.3 Results and Discussion 

4.3.1 Topologic similarity 

The structure of the real network (left) and the simulated network (right, one in 

two years standard) of Elster Creek watershed is shown in figure 4.3.1.  

For the simulated pipe network, the range of the designed pipes was limited to 

pipes larger than DN300 for the following reasons: 1) the purpose of the 

simulated pipe network is mainly to guide the overall planning of the pipe 

network and the collaborative planning with decentralized facilities, too detailed 

designs could lead to more possibilities and deviations which is a drawback to 

planners ; 2) smaller pipes are more likely to be the user-end systems which 

have limited individual impacts on the failure of the overall system, the 
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accumulation impact of them could still be simulated as these catchment areas 

are still connected to their downstream main pipes. Thus, only pipes larger than 

DN300 were considered for both systems to enable to comparison. 

 
Figure 4.3.1 Existing pipe network (left) and simulated pipe network (right) in 

Elster Creek 

Under this premise, the real network consists of 10,011 nodes and 10,414 pipes. 

The simulated pipe network consists of 3,330 nodes and 3,360 pipes. In 

practice, the urban drainage system requires placing manholes at a certain 

distance, e.g. every of 80 to 100D (nominal internal diameter) with 200m as the 

maximum in Melbourne. Thus, the existing pipe network has a manhole 

distancing of 24m – 200m while the simulated pipe network has that of 100m - 

140m (according to the size of the grid 100m x 100m), which results in the huge 

difference of node and pipe numbers. Although the total numbers of nodes and 

pipes are different, the topological similarity indexes discussed in this section 

are all evaluated in the form of distribution, so they are still comparable. 

It can be seen from figure 4.3.1 that the real network and the simulated network 

in this basin form three smaller drainage systems according to the three outlet, 

but separation of the three tree structures in the simulated network is more 

sharp. In terms of the layout of main pipes (thicker pipe segments), there is no 

obvious inclination of the north-south main pipes and east-west main pipes in 
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the real network, while the simulated pipe network tends to arrange the main 

pipes east-west. 

 

 
Figure 4.3.2 degree distribution of real pipe network (up) and simulated pipe 

network (down) in Elster Creek 

The average node degree of the real network is 1.029 and the average degree 

of the simulated network is 1.009. The degree distribution of the two is shown 

in figure 4.3.2. The results show that the degree distribution of the real network 

is similar to that of the simulated network. In the two kinds of pipe systems, the 

node with degree 2 occupies the dominant position, indicating that the node 

and pipe segment that plays the role of transfer have a large proportion. 

Compared with the real network, only 1 and 3 nodes in the simulated pipe 

network account for a slightly higher proportion. This is because in the real pipe 

network, more stormwater inlet nodes will be arranged along the pipe segment 
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that plays the role of transfer, while only one node will be set in each grid in the 

simulated network. In the real pipe network, there are nodes with a degree of 

5-7, which are often vulnerable parts of the pipe network, but they do not appear 

in the simulated pipe network. 

 

 

Figure 4.3.3 module size distribution of real pipe network (up) and simulated 

pipe network (down) in Elster Creek 

The modularity of the real network is 0.958 and the number of modules is 74; 

the modularity of the simulated network is 0.945 and the number of modules is 

50. The module size distribution of the two is shown in figure 4.3.3. The Y-axis 

in the figure is the number of nodes contained in each module. The results show 

that the real pipe network and the simulated pipe network are clearly divided 
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into modules (with high module degree), and the clustering degree of the 

regions is similar. The real pipe network module tends to be small but has a 

large number (samples are concentrated in the lower half of the Y-axis midline), 

while the simulated pipe network module tends to be large, so the number is 

slightly small. 

 

 

Figure 4.3.4 betweenness centrality distribution between real pipe network (up) 

and simulated pipe network (down) in Elster Creek watershed 

The betweenness centrality distribution of the two is shown in figure 4.3.4, 

which is roughly the same. There are more nodes with low betweenness and 

fewer nodes with high betweenness, showing an obvious inverse ratio. The 

value range of the simulated network is relatively concentrated, mainly below 
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900,000, while the value range of the real network is slightly wider, mainly 

aggregates in [0, 700000] and [800000, 1200000]. Therefore, there are 

extremely important nodes in the real network, which may carry a large amount 

of transfer flow, and the distribution is uneven. 

 

 

Figure 4.3.5 Eccentricity distribution of real pipe network (up) and simulated 

pipe network (down) in Elster Creek 

The eccentricity distribution of the two is shown in figure 4.3.5. The overall 

eccentricity of the real network is higher, which is caused by the fact that there 

are more nodes and segments of the same length in the network. The 

eccentricity distribution of real pipe network shows three clear peaks and 

troughs, while the peaks and troughs of the simulated network are fuzzy. This 
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indicates that there are three independent long-distance drainage pipe chords 

in the real pipe network, while there are also long-distance drainage pipe 

network chords in the simulated network, but their independence is not strong, 

that is, on the whole, the simulated pipe network is less prone to pulse flood 

peak. 

To sum up, the simulated network has certain similarity with the existing pipe 

network in topological structure, and the design of the simulated pipe network 

is more uniform, which can avoid the problems of too high node betweenness 

(too high transfer flow) or too strong eccentricity (pulse flood peak). 

4.3.2 Hydrologic similarity 

The node overflow volume distribution of the two networks is shown in figure 

4.3.6. The distribution of the one in five years simulated network is close to the 

real network. Compared with the one-year standard and two-year network, the 

real one and the five-year one accounts for more smaller flooding events, 85.44% 

and 86.43% respectively. In the real system, 5 nodes had overflow of more than 

10m3, and one node had overflow of more than 100m3. However, only one and 

two nodes of the one-year standard and two-year standard simulated pipe 

network overflow flow is higher than 10m3, while the five-year standard controls 

the overflow flow of all nodes below 10m3. Results show that the existing 

network can offer sufficient system resilience in a five years storm while having 

several fragile nodes with extreme floods. Meanwhile the simulated network 

could significantly reduce the opportunity of having vulnerable layouts due to 

its explorative design pattern. 
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Figure 4.3.6 Flood volume distribution of real pipe network and simulated pipe 

network in Elster Creek 

The distribution of flooded time between real and simulated networks is shown 

in FIG. 4.3.7. Although different degrees of flood occurred in the four kinds of 

pipe networks in a five-year storm, 99% of the impacted nodes were flooded for 

around 1.0 hours. The maximum flooded time of the real network is 4.0 hours, 

while that of the simulated network is 2.5-3.0 hours. The flood affected nodes 

of five-year standard simulated network were the least (22.88%), followed by 

the real network (44.74%), and there were more flood affected nodes of the 

one-year standard and the two-year standard (66.46% and 59.49%). 

 
Figure 4.3.7 Flood intensity distribution of real pipe network and simulated pipe 

network in Elster Creek 

 
Figure 4.3.8 Flood time distribution of real pipe network and simulated pipe 

network in Elster Creek 

P
ro

p
o

rt
io

n
 o

f 
n

o
d

es
 

P
ro

p
o

rt
io

n
 o

f 
n

o
d

es
 



Chapter 4. WSUD-dependent drainage system design 

94 
 

The flooding intensity distribution can be obtained by considering the overflow 

volume and flooded time of impacted nodes, as shown in FIG. 4.3.8. The 

proportion of flood affected nodes of the one-year standard and two-year 

standard simulated network with low intensity (less than 1m3/h) is much higher 

than the existing network and the five-year standard simulated network, but 

there are 11 nodes in the existing network with flooding intensity higher than 

100m3/h. 

Table 4.3.1 Comparison of the hydraulic performance 

 
Total flooded 

volume 

（m3） 

Max node flooded 

volume 

（m3） 

Construction 

cost 

Short flood event 

ratio 

 (<30min) 

Existing network 558.295 302.073 1.0000 96.89% 

One year return 

period 
410.570 18.168 0.7206 86.88% 

Two years return 

period 
310.616 15.850 0.7999 91.80% 

Five years return 

period 
47.927 2.528 1.0935 98.47% 

Table 4.3.1 shows the total overflow flow volume, maximum node overflow 

volume, total construction cost (calculated by pipe diameter and pipe length) 

and short-term flooding ratio (for nodes with flood duration less than 30 minutes) 

of the four pipe networks. 

The above comparison results show that the five-year simulated network has 

similar performance of the real network. However, there are several vulnerable 

points in the real system, which leads to higher total flooding volume and the 

maximum node overflow volume than all the simulated pipe networks. Such 

difference was resulting from the dual optimization on the layout and sizing, 

while the real network, as a result of cumulative upgrades, usually optimize one 

at a time. 

With the urban vulnerability analysis method from chapter 3, the WSUD-

dependent drainage system design algorithm can reasonably plan urban 

drainage network and adjust pipe diameters. Plans under one in one year or 

one in two years standard have slightly lower performance than the existing 

pipeline system, but these networks are less easily to include vulnerable node, 
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therefore does not lead to serious flooding in the area. Meanwhile, the total 

construction cost is less than 80% of the existing network. 

The simulation network under one in five year standard has excellent 

hydrological performance, and its construction cost is only 10% higher than the 

existing pipe network. 

4.3.3 Robustness of the networks 

 

Figure 4.3.9 The vulnerable points of real pipe network and simulated pipe 

network in Elster Creek 
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The distribution of vulnerable nodes between the real and simulated pipe 

network with different standards is shown in figure 4.3.9. As the five-year 

designed network is more efficient and more expensive than the existing 

network, it will not be discussed in this section. 

As can be seen from the figure, although the one-year and two-year designed 

network has more flooded nodes than the existing system, its node overflow 

volume is smaller and more dispersed. However, the overflow node of existing 

pipe network is more concentrated, and the overflow volume is extremely large. 

As the damage of urban flooding is often a process from quantitative change to 

qualitative change. Minor flood only brings inconvenience to the life of residents, 

while large flood could lead to a disaster, causing loss of life and property. 

Therefore, for the robustness of urban drainage network, the impact of small 

and scattered overflow on the city is far less than that of large and concentrated 

overflow. Therefore, the proposed planning method can effectively improve the 

robustness of the city. 

4.4 Conclusion 

In this section, a WSUD-dependent drainage system planning method was 

proposed which is applicable to old and new area network extension planning 

of for urban stormwater network planning. On the basis of the fuzzy evaluation 

method in chapter 3, the vulnerable areas were identified and the planned 

drainage system be expanded these areas and being optimized. Main 

conclusions are as follows: 

1) On the basis of the real planning process and objectives of existing drainage 

network, the simulated network generated by the proposed method can well 

reproduce the degree distribution (connectivity) of existing network, while 

avoiding the occurrence of over-high-degree nodes (fragile nodes); It has the 

same modularity (partition sharpness), but the clusters are larger and lesser 

than the real one. The distribution of betweenness centrality (node importance) 

is roughly the same, but the occurrence of nodes with too high importance 

(fragile nodes) is avoided. Compared with the real network, the eccentricity 
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(long-distance drainage) is lower and more concentrated, and the pulse flood 

peak is less easy to occur. 

2) The performance of the one-in-five years designed network is generally 

similar to that of the real network (distribution of overflow volume, node flooded 

time, node flooding intensity, etc.), and is better than the one-in-one year and 

one-in-two years designed network. However, there are several vulnerable 

nodes in the real network, and the maximum overflow volume, maximum 

flooding intensity and total overflow volume of the nodes are much higher than 

all the simulated networks. Plans under one in one year or one in two years 

standard have slightly lower performance than the existing pipeline system, but 

these networks are less easily to include vulnerable node and the total 

construction cost is less than 80% of the existing network. The simulation 

network under one-in-five-year standard has excellent hydrological 

performance, and its construction cost is only 10% higher than the existing pipe 

network. 

3) The lower standard network generated by the proposed algorithm has more 

flood affected nodes with smaller more dispersed overflow. Compared with the 

larger and more concentrated flood affected nodes of the real network, the 

simulated network systems can also better inhibit the transformation of flood 

disaster from quantitative change to qualitative change under the lower design 

standards, improve the robustness of the city, and reduce the construction cost 

of the network. 
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5.1 Introduction 

Although the idea of infrastructure long-term planning has been proposed for 

several decades, the long-term implementation and performance of 

infrastructures are often affected by future uncertainties, including urban 

economy, climate and population changes. These parameters are extremely 

difficult to predict due to long term uncertainties. The most convincible case is 

the "shrinking city" phenomenon in Dresden, Germany. As the capital of the 

Saxony state, the second largest city in eastern Germany, experts believed the 

economy, population will get rapid development after the unification in 1990. 

Large-scale construction of infrastructures was carried out to serve the rapid 

development. But in a few years, Dresden’s population was shrinking rather 

than growing, its demand for water was sharply reduced, and the water system 

facilities that the government planned and invested in for a long time did not 

promote the city's development but became a drag. In order to minimize losses, 

Dresden predicted the future population trend for seven times in the following 

15 years and revised the urban planning, but none of the predictions was 

correct (Moss, 2008; Wiechmann & Pallagst, 2012). It is not just Dresden but 

many cities in Germany and Europe face the same problem. 

In order to deal with this problem, more and more computational tools have 

been developed in aiding future scenarios exploration to reduce the impact of 

future uncertainties, as well as to assist the design of more reliable long-term 

planning, such as the Adaptation Tipping Point (Kwadijk et al., 2010), Robust 

Decision Making (Lempert, Groves, Popper, & Bankes, 2006), Information gap 

(Ben-Haim, 2006) and so on. There are also some exploratory planning tools 

that try to simulate the performance of different infrastructure plans under 

different scenarios, so as to further reduce the influence of subjective 

knowledge limitations of planners. For example, Adaptive Policy Making 

(Walker, Rahman, & Cave, 2001), Adaptation Pathways (Haasnoot, 

Middelkoop, Offermans, Beek, & Deursen, 2012) and Dynamic Adaptive Policy 

Pathway (Haasnoot, Kwakkel, Walker, & ter Maat, 2013). 

As stated in the literature review section, the limitations of existing tools are that 

they cannot assess the adaptability of complex real-world water systems with 
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multiple technologies (centralized + decentralized), nor can they optimize water 

systems for multiple design objectives simultaneously. As an extremely large 

number of future scenarios need to be explored and tremendous amount of 

possible urban water system plans need to be evaluated, the calculation time 

is extremely large. These methods all choose to optimize the calculation 

efficiency by exploring in specific schemes (future scenarios and/or urban water 

system plans which likely to have better performances). This optimization 

method has the following disadvantages: 

1. Due to the limitation of the exploration scope, the optimal planning scheme 

obtained may be the local optimal rather than the global optimal, so the final 

proposed scheme is not necessarily the best one; 

2. Due to the narrowing of the scope of exploration, there is no continuity 

between better schemes, no transition between schemes, and poor adaptability 

of planning; 

3. In the optimization of the planning scheme with multiple design objectives, 

the exploration scope will be limited to a very small extent, and it is very likely 

that the optimal scheme satisfying multiple objectives can't be found at the 

same time. Therefore, this method is often not used for multi-objective planning. 

Therefore, a new exploration method was proposed in this chapter which 

explores, evaluates, analyzes and designs transition of urban water system 

planning with global exploration, and accelerates the calculation process 

through machine learning (see chapter 6 and chapter 7 for details), so as to 

avoid the above shortcomings. 

In this chapter, an optimal plan and transition design method of water system 

through global scenario exploration is proposed to improve the adaptability and 

robustness of long-term urban water system planning. Starting from the current 

state of the city, all reasonable urban development situation at each time step 

(climate, population, economy, etc.) were explored as well as possible urban 

water system construction (construction of WSUD facilities, expansion pipe 

network, etc.). By evaluating the efficiency of water systems in all possible 

urban scenarios in a certain time step, the robustness of the system planning 
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was analysed, and the transition routes between schemes were designed. The 

rationality of the model inputs was also evaluated through a sensitivity analysis 

to eliminate redundant parameters and their uncertainties to the resulting 

pathways. 

5.2 Methods and Data Description 

5.2.1 Multi-strategy exploration and evaluation module 

In this section, a multi-strategy scenario exploration module is proposed and 

developed on the basis of DAnCE4Water platform (C. Urich & Rauch, 2014; 

Christian Urich et al., 2012). 

DAnCE4Water, Dynamic Adaptation for enabling City Evolution for Water, is a 

decision-making tool that integrates urban development simulation, water 

system hydraulic calculation (SWMM) and cloud computing. As one of the core 

functions of the platform, Urban Development module (UDM) can simulate the 

evolution process of a city and its water infrastructure under different 

development scenarios (climate change and population growth). As a long-term 

planning and decision-making supporting tool, DAnCE4Water is an 

improvement of robust decision planning method. Its workflow is shown in figure 

5.2.1, and the process is as follows: 

1) Input the current status of city C, water system W, city development scenario 

in the next time step Δ C into UDM, and simulates the city status C' in the next 

time step; 

2) Evaluate the performance of the water system W, deciding the optimized 

adjustment Δ W, simulates the updated water system W' in the UDM; 

3) Re-evaluate the efficiency of the water system and adjust it repeatedly until 

the efficiency of the water system meets the design goal; 

4) Set C' and W' as the current status, and repeat step 1) to 3), to get one 

optimized urban water infrastructure implementation pathway under city 

development scenario ΔC; 

5) Select a new city development scenario ΔC', repeat the above process. 
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6) Select the pathway that can satisfy the most development scenarios as the 

robustness pathway. 

 
Figure 5.2.1 DAnCE4Water exploration process 

Compared to Robust Decision Making (Lempert et al., 2006) and Information 

gap (Ben-Haim, 2006), this algorithm  integrates the timing design of planning 

schemes and can better provide construction guidance for long-term planning. 

Compared to Adaptive Policy Making (Walker et al., 2001), Adaptation 

Pathways (Haasnoot et al., 2012) and Dynamic Adaptive Policy Pathway 

(Haasnoot et al., 2013). It relies more on exploratory simulation, which is less 

affected by the subjective cognitive limitations of planners, and can provide 

guidance for long-term planning with less uncertainty. 

However, since this algorithm only uses one single data stream in each 

exploration process, and can only consider the increase or decrease of the 

same candidate strategy in one exploration, it cannot be applied to the water 

system planning considering the common development with multiple strategies 

in the real world. 

Therefore, a multi-strategy exploration module based on the DAnCE4Water 

platform was developed by reconstructing the exploration process, as shown in 

figure 5.2.2. The main idea to replace the single data stream with parallel data 

streams, replace random exploration with global exploration, and separate the 

evaluation module from the exploration process. 



Chapter 5. Urban water infrastructure implementation pathway 

104 
 

1) Select the current status of city C, water system W, duplicate the data stream 

according to all possible city development scenario {Δc} , input the data streams 

into the UDM, and simulate all possible city status {C’} in the next time step  

2) For each city status C’ in {C’}, duplicate the data streams according to all 

possible water system adjustment options {Δw}, input the data streams into 

UDM,  simulate all possible water system status {W’} in C’; 

3a) Evaluate the performance of each water system in {W'} under the 

corresponding city status C ', and store results in the database for further 

analysis; 

3b) Take {C'} and {W'} which matches with each C ' as current status for the 

next time node, repeat the process to explore all possible urban scenarios and 

water system. 

 
Figure 5.2.2 The proposed multi-strategy exploration and evaluation module 

5.2.2 Robustness evaluation module 

On the basis of the exploration module, a robustness evaluation module is 

proposed in this section to evaluate the robustness of different water system 

schemes in the long-term urban development. 

As shown in figure 5.2.2, the robustness evaluation module is independent from 

the exploration module. The output of the exploration module at each time step 

is the input of the exploration module for the next time step, as well as the input 

of the performance evaluation module. Such separation improves the efficiency 

of both modules. The output from performance evaluation module will serve as 

the input of the robustness evaluation module in this section. 
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Robustness is the ability of something to withstand or overcome adverse 

conditions or to be rigorously tested (Stevenson, 2010). The robustness of 

urban water infrastructure planning should not only include the robustness of 

water system, but also ensure a sufficiently low failure rate in the case of 

foreseeable or unforeseeable flood disasters. It should also include the 

robustness of planning, that is, the urban water system can be adjusted 

according to the future or unforeseeable development trend, so as to ensure 

that the planned water system can always have sufficient robustness. This 

section discusses the former robustness, i.e. the robustness of water system, 

the latter one will be discussed in the next section. 

Two user-defined parameters, failure assessment matrix (D) and acceptable 

failure rate (A), are introduced to evaluate the robustness of water system. 

These two custom parameters are different from the uncertain custom 

parameters described earlier in this thesis. The former ones are mainly the 

experience description or guess related to the objective fact, and its uncertainty 

will lead the deviation of the objective fact in the simulation. The D and A are 

the planner's description of objective fact. Although different planners have 

different descriptions of the same fact, it will not affect the objective fact that 

have happened. This is one of the advantages of separating the robustness 

evaluation module from the exploration process. 

A customized 1×n failure assessment matrix (D) is used to evaluate whether a 

certain water system W meets the design goal or expectation in a given 

situation. The elements in the matrix correspond to each performance index of 

a design goal of the water system, while the planners customize the expectation 

interval di of each performance index. If the system performance P obtained in 

step 3a) of 5.2.1 can meet all the expectations of indicators in D, it is considered 

that the water system has no failure under a given situation. Whether a water 

system fails in a specific situation can be calculated by equations 5.1 and 5.2. 

𝑠𝑖 = {
1,   𝑝𝑖 ∈ 𝑑𝑖
0,   𝑝𝑖 ∉ 𝑑𝑖

 （5.1） 

Where, 
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si refers to the success of a certain performance indicator under a give 

situation; 

pi refers to the ith value of the performance indicator; 

di refers to corresponding expecting value range of the indicator. 

𝐹𝑖 =  1 −∏𝑠𝑖

𝑛

𝑖=1

 （5.2） 

Where,  

Fi refers to the failure determination of the water system under a given 

situation； 

By comparing to the acceptable failure rate (A), whether the assessed water 

system can meet the design goal or expectation stably in all possible scenarios 

could be determined, which reflects the robustness of the water system. For a 

specific water system W, the ratio of all the failure determination times and all 

the evaluation times in the exploration process is the failure probability of the 

system. Acceptable failure rate refers to the maximum failure probability of 

water system that the city or urban planners are willing to take. Therefore, the 

robustness of the water system can be calculated by equation 5.3: 

𝑅𝑖 = ⌈𝐴 −
∑ 𝐹𝑗
𝑛
𝑗=1

𝑛
⌉  （5.3） 

Where, 

Ri refers to the robustness of the ith water system scheme 

Fj refers to the failure determination of the water system in the jth 

evaluation； 

n refers to total number of evaluation times of the water system. 

⌈𝑥⌉ refers to the symbol of ceiling(x). 

5.2.3 Adaptability design module 
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As mentioned above, the robustness of water system long-term implementation 

is considered, and an adaptation design module is proposed in this section. As 

shown in figure 5.2.2, the adaptive planning module proposed in this section is 

only related to the robustness evaluation module, so it can be quickly adjusted 

according to the adjustment of customized parameters in the robustness 

evaluation by planners. 

Firstly, all water system schemes are classified according to their 

corresponding time steps. According to the robustness evaluation results, the 

robust water system schemes in adjacent time steps are connected in series, 

and then the series path is adjusted through adaptivity assessment. The 

adaptability of each scheme is determined by equations 5.4 and 5.5. 

𝐶𝑊𝑡,𝑖,𝑊𝑡+1,𝑗
= 

{
 
 

 
 
1,   

|𝑊𝑡+1,𝑗 −𝑊𝑡,𝑖|

𝛥𝑤
≤ 1

0,   
|𝑊𝑡+1,𝑗 −𝑊𝑡,𝑖|

𝛥𝑤
> 1

 （5.4） 

Where,  

𝐶𝑊𝑡,𝑖,𝑊𝑡+1,𝑗
 refers to the connectivity between water system Wt,I and Wt+1,j; 

Wt,i refers to the ith  optional water system in time step t; 

𝛥𝑤 refers to the maximum construction works that can be built between 

two adjacent time steps. 

𝐴𝐷𝑊𝑡,𝑖,𝑊𝑡+1,𝑗
= 𝐶𝑊𝑡,𝑖,𝑊𝑡+1,𝑗

𝑅𝑡,𝑖𝑅𝑡+1,𝑗 （5.5） 

Where, 

𝐴𝐷𝑊𝑡,𝑖,𝑊𝑡+1,𝑗
 refers to the adaptivity between water system Wt,I and Wt+1,j; 

Rt,i refers to the robustness of the ith  optional water system in time step t. 

Disconnect the path with an adaptability of 0 and delete the planning scheme 

that is not connected with the node of the previous time step in the order of time, 

and then the construction path planning diagram of urban water system 

adaptation pathway can be obtained. 
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5.2.4 Site Description 

The case study was carried out in Scotchman’s Creek catchment, locates at 

the southeast of Melbourne CBD. The catchment is mostly located within 

Monash City council but a part of the catchment (6%) is situated within 

Whitehorse City council. It has an area of approximately 10.36 km2 and a 

population of approximately 25,000 residents.  

The council started to introduce rainwater tanks to households since 2005 to 

deal with the unpredictable rainfall events (e.g., reduce peak flow during highly 

intensive rainfall event, store stormwater during drought season). Although the 

council tried to set up a progressive goal of rainwater tank uptake rate in the 

area, there were several obstacles in making such a plan: (1) The spatial 

distribution of rainwater tanks will largely influence the flood resistance in the 

catchment resulting from them. Thus, the promoting of higher rainwater tank 

uptake rate cannot be easily determined compared to upsizing pipe systems; 

(2) The population growth in the area could infect the construction of houses 

and buildings which increases the impervious surfaces in the catchment as well 

as the opportunity for uptake rainwater tanks; (3) The flood-resistance 

robustness of the combined drainage system (under different rainwater tank 

uptake ratio and pipe system capacity) was unclear. 

Thus, a long-term (2015–2035) evolution of the urban development, climate 

change and water infrastructure adaptation were simulated by DAnCE4Water 

(Dynamic Adaptation for enabling City Evolution for Water) (C. Urich & Rauch, 

2014; Christian Urich et al., 2012) to set up a robust plan of progressive goals 

for both rainwater uptake ratio and drainage pipe system upsizing. With the 

initial city scenario established based on the real-world catchment in 2015, 

DAnCE4Water ran in a 5-year interval to simulate the transformation of the city 

and assess the urban water system performance with different drainage 

infrastructure updates under all possible development scenarios. 
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Figure 5.2.3 Designed exploration of the Scotchman’s Creek catchment area. 

The development scenario consists of two parameters: the population growth 

rate (PGR) and the climate change factor (CCF). As the population growth does 

not directly contributes to the change of urban land uses, the household growth 

rate was derived from the population growth. The growth of household numbers 

usually leads to the need for new houses and buildings, thus changing the land 

uses in the urban area. The 5-year household growth rate is between [0.03,0.06] 

has been which calculated based on the minimum and maximum annual 

population growth rate in the area according to the 1990–2015 census data 

from the Australian Bureau of Statistics (see table 5.1).As the annual population 

growth ranged from 0.009 to 0.022 per year, the 5-year population growth would 

be 0.046 – 0.114, assuming every two person turns into one household, the 5-

year household growth rate was thus set to 0.03 – 0.06. DAnCE4Water would 

replace old buildings and construct new ones according to the increased 

household through its urban development module (UDM) (C. Urich & Rauch, 

2014; Christian Urich et al., 2012). The 5-year climate change factor is a 

coefficient used to magnify the 5-year designed storm. Initialized to 1.00, CCF 

is assumed to change every 5 years within three rates: 0.95X, 1.00X or 1.05X. 

Three drainage update options were tested: (1) business as usual, (2) uptake 

rainwater harvesting tanks and (3) upsize drainage pipes. “Business as usual 

(BAU)” maintained the existing infrastructures from the previous step. The more 
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BAU was taken, the less contribution would be done in reducing flooded 

junctions. “Uptake rainwater harvesting tank (RWHT)” increased the current 

probability of households installing rainwater harvesting tanks by 5%. The more 

RWHT was taken, the more decentralized systems would be built to reduce the 

runoff and peak flow. “Upsize drainage system (PIPE)” upgrades the drainage 

network, which was divided into 4 groups according to their diameters. Each 

upgrade enlarged one group of pipes, from the large one to the small one. The 

more PIPE was taken, the higher capacity of the drainage network would be. 

Table 4.1 Population change in Australia (1990 - 2015) 

Time Population Population growth rate 

Dec-1990 17,169,800  -  

Dec-1991 17,379,000  1.22% 

Dec-1992 17,557,100  1.02% 

Dec-1993 17,719,100  0.92% 

Dec-1994 17,893,400  0.98% 

Dec-1995 18,119,600  1.26% 

Dec-1996 18,330,100  1.16% 

Dec-1997 18,510,000  0.98% 

Dec-1998 18,705,600  1.06% 

Dec-1999 18,919,200  1.14% 

Dec-2000 19,141,000  1.17% 

Dec-2001 19,386,500  1.28% 

Dec-2002 19,605,400  1.13% 

Dec-2003 19,827,200  1.13% 

Dec-2004 20,046,000  1.10% 

Dec-2005 20,311,500  1.32% 

Dec-2006 20,627,500  1.56% 

Dec-2007 21,016,100  1.88% 

Dec-2008 21,475,600  2.19% 

Dec-2009 21,865,600  1.82% 

Dec-2010 22,172,500  1.40% 

Dec-2011 22,522,200  1.58% 

Dec-2012 22,928,000  1.80% 

Dec-2013 23,297,800  1.61% 

Dec-2014 23,640,300  1.47% 

Dec-2015 23,984,600  1.46% 

(source: 3101.0 Australian Demographic Statistics) 

The exploration randomly selected a PGR, a CCF and a drainage infrastructure 

update within the available range and applied to the base city scenario. The 

UDM would then generate a future scenario of the city while the performance 
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of the combined system (the number of flooded junctions in the catchment area 

along the drainage network) would be evaluated by SWMM. The result city 

scenario was saved as the base city scenario for the next 5-year decision (see 

Figure 5.2.3).  

The result scenarios were classified by the drainage infrastructure status (e.g., 

how many steps of BAU, RWHT and PIPE were adopted respectively). The 

corresponding distribution of system performance (flooded junctions) for each 

status was calculated. As only one strategy was taken in each decision step, 

the status contains the year information as well. If the number of flooded 

junctions of a status was below the target (110 in 2020, 100 in 2025, 90 in 2030 

and 80 in 2035, which is 100%, 91%, 82%, 73% of the flooded junctions in 2015) 

in over 95% of the cases, the status would be consider “robust.” The “robust” 

statuses were connected in a timeline to form a drainage infrastructure 

implementation pathway as the long-term plan in this case study. 

5.2.5 Sensitivity Analysis 

A Sensitivity analysis of the model is helpful to understand the hidden impact 

of input changes on output, so as to determine which parameters need higher 

accuracy or more accurate prediction to ensure more accurate model output. 

In this section, the sensitivity analysis was carried out for the exploration 

module only, as the robustness evaluation module and the adaptive planning 

module are both analysis and processing of the results of the exploration 

module. 

Morris method (Morris, 1991) is a widely-used method in modelling to determine 

which factors may have effects which are (a) negligible, (b) linear and additive, 

or (c) nonlinear or involved in interactions with other factors (Saltelli, Tarantola, 

Campolongo, & Ratto, 2004). Through individually randomized ‘one-factor-at-

a-time’ experiments, the impact of changing one factor at a time (the elementary 

effect) is evaluated in turn. 

1) Randomly select the values of each parameter as the initial status; 
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2) Select one of the unchanged parameters, slightly change its value (not 

beyond the value range), and record the change of the result (equation 5.6). 

Repeat this step until all parameters have been changed. 

3) repeat step 2) 10 times from the initial status; 

4) repeat steps 1) to 3) 50 times and evaluate the sensitivity of the model 

according to equations 5.6, 5.7 and 5.8. 

𝑑𝑖(𝑥
𝑙) =

|𝑦(𝑥𝑙+1) − 𝑦(𝑥𝑙)|

∆
  （5.6） 

Where, 

di(xl) refers to the influence on the output from the ith change on parameter 

x; 

y(xl) refers to the output before parameter x changes; 

y(xl+1) refers to the output after parameter x changes; 

Δ refers to the magnitude for the parameter change. 

Two indexes (µ, σ) are used to indicate the sensitivity of input parameters. µ is 

used to detect input factors with an important overall influence on the output, 

calculated by equation 5.7. σ is used to detect factors involved in interaction 

with other factors or whose effect is nonlinear, calculated by equation 5.8. 

𝜇 =∑
𝑑𝑖
𝑟

𝑟

𝑖=1

 （5.7） 

𝜎 = √∑
(𝑑𝑖 − 𝜇)

2

𝑟

𝑟

𝑖=1

 （5.8） 

Where, 

di refers to the influence on the output when a certain parameter changes 

for the ith time; 

r refers to the total number of changes of a certain parameter. 
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Since the inputs do not always follow a uniform distribution, the parameters’ 

values in this study are sampled in the space of the quantile of the distributions, 

each quantile varies in [0,1]. When giving a quantile value for a given input 

factor, the actual value taken by the factor is derived from its statistical 

distribution. 

Input parameters of UDM include population growth rate, climate change rate 

and candidate water system update strategies. As the population growth rate 

and climate change factors have cumulative influences on the efficiency of 

water system, and qualitative changes are caused by quantitative changes, it 

is difficult for conventional methods to analyse the influences of these 

parameters on model output and the differences between the influences of 

various parameters. Population and climate change factors were used instead. 

As little information can be found to achieve possible probability distribution of 

input parameters, the following Monte-Carlo method is applied to estimate the 

distribution for each input parameter.  

1) Select a time step Ti;  

2) Select strategy adopted for each time step in [T1, Ti];  

3) Select population growth rate and climate change rate for each time step in 

[T1, Ti]]; 

 4) Run UDM to generate a scenario with households and climate change factor.  

5) Repeat step1)-4) for 30,000 times. 

5.3 Results and Discussion 

5.3.1 Urban water infrastructure implementation pathway  

The urban water infrastructure implementation pathway for Scotchman's Creek 

catchment (2015-2035) generated by the proposed method is shown in figure 

5.3.1. The exploration model was run by the cloud computing center of Monash 

university, with 1 virtual computer as the main control machine for task 

distribution and result storage, and 32 virtual computers as the operation 

machine. A total of 2.93 million scenarios were simulated, which took about 1 
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year and 6 months in real time. The urban development simulation module and 

water system performance evaluation module accounted for 50% respectively. 

Both the robustness evaluation module and the adaptive planning module take 

minutes. 

According to figure 5.3.1 (top), when the robustness requirement of the water 

system is high (acceptable failure rate less than or equal to 1%), the flood 

resistance ability of the water system can only be met through continuous 

upsizing of drainage network system. This indicates that among all candidate 

strategies, the flood resistance capacity from expansion of urban pipe network 

is the largest, which is consistent with the sensitivity analysis results.  

In 2030, a water system with highly upgraded drainage network as well as small 

amount of WSUD facilities could also meet the needs of the flood prevention, 

but with the further development of the city, the subsequent derivative system 

are unable to continue to ensure the reliability of the system, and therefore not 

have robustness of planning (the inability to transition between scheme). This 

also indicates that WSUD, represented by distributed rainwater facilities, 

cannot guarantee that the city is completely free from the threat of flooding 

either during the recent construction or after the long-term construction. 

Therefore, in addition to the construction of infrastructure, attention should also 

be paid to the promotion of non-structure measures (such as relevant policies 

and publicity, etc.), so as to improve the flood resistance awareness and risk 

avoidance ability of urban residents as much as possible, and enhance urban 

resilience from another aspect. 
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Figure 5.3.1 Urban water infrastructure implementation pathways for 

Scotchman’s Creek 
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If the expectation of water system robustness is slightly reduced (acceptable 

failure rate less than or equal to 5%), this proposed method can provide 4 water 

system construction paths of global robustness optimization and 4 construction 

paths of local robustness optimization. The combination of sponge facilities and 

pipe network system was incorporated into the planning path with the 

improvement of maximum failure rate. As can be seen from figure 5.3.1 (middle), 

1) within the urban water systems with high robustness, majorities are still plans 

dominated with pipe system and assisted with WSUD facilities still. 2) For 

robust plans dominated by WSUD facilities, the coverage rate of WSUD 

facilities is at least 10%; 3) In the plan which WSUD completely replaces the 

pipe system (coverage rate reaches 20%) is not robust enough. This indicates 

that when the total coverage area of sponge facilities in the city reaches a 

certain volume (greater than or equal to 10%), the flood disaster in the basin 

can be effectively reduced, but it still cannot completely replace the status of 

the pipe network system. 

If the expectations of water system robustness is further reduced (acceptable 

failure rate less than or equal to 10%), the method will provide more path to the 

water system construction, but it is worth noting that neither the plans with low 

WSUD coverage and no updated pipe system in the short-term (2020,2025), 

nor those with only WSUD facilities in the long-term (2035) has high robustness. 

This shows that if the existing pipe network system is not yet perfect, blindly 

building WSUD facilities will bear certain risks. However, in the long run, it is 

still possible for the city to finally achieve the goal of robust water system (locally 

optimized construction path), but not only use the water system with scattered 

facilities. 

In addition, in the short term, maintaining the existing water system is a 

basically unworkable strategy that cannot guarantee the effective operation of 

the water system. While the "business as usual" strategy, although in some 

stage of the medium and long term, can maintain the robustness of the system, 

will reduce the robustness of the planning (adaptivity). 

5.3.2 Feasibility of multi-objective pathway 
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Thanks to the three independent model structure of exploration-evaluation-

planning proposed in this chapter, construction pathway planning can be 

carried out for multiple targets respectively after completion of exploration, and 

the results can be superimposed and the common construction path can be 

selected as the multi-objective construction path of water system. 

When the construction pathway does not meet the requirements of multiple 

objectives, there is no need to re-explore like conventional methods. Only the 

failure assessment matrix (D) and acceptable failure rate (A) in the evaluation 

module need to be adjusted according to the actual situation until a feasible 

pathway can be obtained. 

5.3.3 Model Sensitivity 

The frequency distribution of each input parameter estimated by the Monte-

Carlo method is shown in figure 5.3.2. The sensitivity analysis results of the 

exploration model evaluated by Morris method are shown in figure 5.3.3. The 

higher the absolute value of the µ, the greater the influence of this parameter 

on the output result. The higher the absolute value of the σ, the greater the 

interaction of this parameter with other parameters. 
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Figure 5.3.2 The frequency distribution of input variables by Monte-Carlo 

sampling 
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The results show that the five-year climate change rate (CCF) has the highest 

positive correlation with the performance of urban water system (number of 

flooded nodes) and the largest synergistic effect with other parameters, which 

is consistent with the situation in the real world where climate change leads to 

the increasing failure of urban water system. It is worth noting that due to the 

highest sensitivity of climate change factors, the accuracy of its prediction has 

the greatest impact on the results, and it is very difficult to predict it. Therefore, 

the results of traditional non-exploratory prediction methods are highly 

uncertain. 

 

Figure 5.3.3 The sensitivity result of the exploration and evaluation module by 

Morris method 

WSUD strategy and drainage network strategy are negatively correlated with 

the water system performance, indicating that these two strategies are indeed 

helpful to reduce flooding. The capacity of traditional network strategy to reduce 

flooding is obviously higher than that of WSUD strategy, but its influence by 

other parameters is also significantly higher than that of WSUD strategy. In 

other words, WSUD facility has a limited capacity to reduce urban flooding, but 

its stability of reducing capacity is higher. 

The capacity of flood reduction is determined by the system capacity of different 

strategies, but the difference of stability of the capacity reduction may be 

determined by the spatial characteristic of different strategies. The spatial 
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location of rainwater system is relatively fixed, and the reduction of flooding is 

not only related to rainfall, but also related to the spatial distribution of WSUD 

facilities (runoff changes caused by them). Due to its fixed space, it is greatly 

affected by the other two. As a decentralized system, WSUD facilities have 

large spatial location variability, and their flood reduction is related to rainfall 

and land properties, and their runoff reduction capacity is small, so they are 

less affected by fixed pipe network system. 

The strategy of business as usual is positively correlated with the water system 

performance, but the influence degree is small, and it is also less affected by 

other parameters. It indicates that this parameter may be a redundant 

parameter, but its influencing factors are not clear currently (as will be explained 

in chapter 8), so the parameter is retained in this chapter 

Population growth is almost irrelevant to the failure rate of urban water system, 

and has little interaction with other parameters, which is a redundant parameter 

for water system. This is because in the UDM module, the existing single-family 

residential land is changed into multiple houses or apartments to meet the 

demand of population growth, so the change of land property is minimal and 

the impact on water system performance is negligible. However, the 

construction of WSUD facilities in the module will take the opportunity of 

housing renewal, thus it is not treated as redundant parameters in this chapter. 

5.4 Conclusion 

In this chapter, three independent modules, global exploration, robustness 

assessment and adaptive optimization design, are proposed to optimize the 

construction pathway of water system and design the transition scheme, so as 

to improve the adaptability and robustness of long-term urban water system 

planning. The main results are as follows: 

1) A three-stage scenario exploration model (exploration-evaluation-

adaptability optimization) is developed, which realizes the exploration of urban 

water infrastructure implementation pathway with multiple strategies and 

multiple objectives. The proposed parallel exploration module improves the 

local correlation and comparability between scenarios and avoids the 
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disadvantages of local optimization in traditional methods. The proposed 

evaluation module and adaptability optimization module, which are separated 

from the exploration module, greatly accelerate the assessment speed of the 

pathway, and realize the design of multi-objective construction path, avoid the 

risk of failure of path generation caused by the subjective cognition of planners, 

and improve the practicality of construction pathway. 

2) The results enrich the understanding of WSUD facilities and urban water 

system construction. Experiment showed that WSUD system, in long-term or 

short, cannot guarantee robust flood prevention, thus more attention should be 

paid to the application of non-structure measures; When the total coverage area 

of WSUD facilities in the city reaches a certain volume (greater than or equal to 

10%), the flood disaster in the basin can be effectively reduced, but it still cannot 

completely replace the capacity of the pipe system. In the case that the existing 

pipe network system is not yet perfect, blindly building only WSUD facilities will 

bear certain risks. However, in the long run, it is still possible for the city to finally 

achieve the goal of robust water system (locally optimized construction path), 

but it is definitely not the water system that only adds WSUD facilities on the 

existing basis. 
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6.1 Introduction 

In chapter 5, a global exploration model of urban water infrastructure 

implementation pathway is proposed. By changing the traditional exploration 

structure, it realizes multi-strategy scenario exploration, avoids the 

disadvantages of local optimal in traditional methods, and improves the 

feasibility of the transition design between schemes. It is obvious that the 

performance and time consumption of exploration are two mutually restricting 

factors in the practical application. The more scenarios are explored, the higher 

the reliability of planning and the longer the time consumption. 

Unfortunately, there is no way to reduce exploration time without changing the 

scope of exploration. Therefore, this chapter studies the feasibility of integrating 

the artificial neural network (multilayer Perceptron, Multi - Layer Perceptron, 

MLP) with the pathway exploration model, using machine learning to study the 

scenarios (including urban situation and water system situation), use "global 

exploration sampling + clustering" instead of global exploration, in order to 

reduce the feasibility of the computing time. 

In recent years, Artificial Neural Networks (ANNs), as a data-drive, self-adaptive 

and non-linear forecasting tool was applied in various fields such as natural 

resource management (Mustafa, Rezaur, Saiedi, & Isa, 2012; Ruben, Zhang, 

Bao, & Ma, 2017; Singh et al., 2017), pattern recognition (Kumar, Singh, & 

Shahani, 2015; Ripley & BrianD, 2009) , medical diagnosis (Sun et al., 2017) 

and decision making (Erdem & Hasselmo, 2012; Ivey, Bullock, & Grossberg, 

2011). As a matter of fact, the methods and its derivative tool are often used in 

short-term decision makings or predictions (event scale) rather than long-term 

planning (strategy scale). To cope with the exploration model, the machine 

learning algorithm was designed and trained to predict urban water 

infrastructure performance for individual events while the decision on planning 

was made based on microscopic strategy performance distribution.  

An acceleration module based on machine learning algorithm was developed 

to predict the performance of urban water system under different city scenarios 

and reduce exploration time. The following works have been conducted: (1) a 

comprehensive statistical trial-and-error analysis method is proposed and 
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tested to avoid local optimization of network structure. (2) a neural network was 

integrated in the explorative adaptation planning to significantly reduce the 

simulation time, performance was tested and analyzed; (3) a correction method 

was proposed and tested to minimize the overestimation problem of the 

designed exploration framework. 

6.2 Methods and Data Description 

6.2.1 Site Description 

The location and project studied in this chapter are the same as that in chapter 

5, which is the 20-year long-term plan of Scotchman's Creek catchment water 

system (2015-2035), as shown in section 5.2.4. Taking the results of the 

exploration model in chapter 5 as the control group, the differences between 

the water system construction path generated by the global exploration method 

and that generated by the global acceleration exploration method (am-ann) 

were analyzed. The control group data contained 2.93 million scenarios and 

their water system performance evaluation results, of which 1.73 million were 

scenarios with uniformly distributed inputs and 1.2 million were scenarios with 

randomly distributed inputs. 

6.2.2 Acceleration module 

The proposed accelerated exploration started with a normal exploration and 

paused when a user-defined amount of simulations had been finished. These 

simulations (inputs and results) were used as the training set to train an ANN 

while the exploration continued. The exploration then stopped when a second 

user-defined amount of simulations had been finished. These extra simulations 

would be used for validation of the trained ANN. The ANN is trained with 

different structures and settings and tested on the validation simulations. The 

errors of the validation are used to choose the best structure and setting, and 

the ANN does the rest of the exploration by predicting with the scheduled PGR, 

CCF and add-on strategies (as the normal exploration) but skipping the UDM 

and SWMM process. 

The results in the reference exploration (the scenarios as well as the evaluated 

system performance) were classified into three sets: the training set (size: 0.1%, 
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1% or 10%), the validation set (size: 10%) and the test set (size: the remaining 

data).  

The training set was used to train the network (e.g., weights) while the validation 

set was for adjusting the structure of the network (e.g., number of nodes) [4]. 

The test set was used to assess the performance of a trained and validated 

network. In most literature (Abderrahim, Chellali, & Hamou, 2016; Fan, Wang, 

& Li, 2016; Feng et al., 2015; Lopez, Rene, Boger, Veiga, & Kennes, 2017; 

Mirici, 2018; Raheli, Aalami, El-Shafie, Ghorbani, & Deo, 2017; Saeidi, 

Mohammadzadeh, Salmanmahiny, & Mirkarimi, 2017; Sun et al., 2017), as the 

network structure are usually pre-defined or tested by trial-and-error, the 

validation sets are usually disused or replaced by the test sets. Under such 

substitution, the performance of the network is only meaningful for certain sets 

(the ‘test sets’), which have been optimized during the training, rather than for 

the untrained data which we expect more precise predictions. 

6.2.3 Artificial neural network design 

Type of ANN 
There are several groups of networks such as Feedforward Networks (e.g., 

Multi-layer Perceptron (Rumelhart, Hinton, & Williams, 1986), the Probabilistic 

Neural Network (Enke & Thawornwong, 2005), the Dynamic Neural Network 

(Guresen, Kayakutlu, & Daim, 2011)), Recurrent Networks (e.g., Elman 

Network (Lee & Chen, 1995), Autoregressive Networks (Kodogiannis & Lolis, 

2002)), Polynomial Networks (e.g., Ridge Polynomial Networks (Ghazali, 

Hussain, Al-Jumeily, & Merabti, 2007), Function Link Network (Hussain, 

Knowles, Lisboa, & El-Deredy, 2008)), Modular Networks, Support Vector 

Machine and so forth. (Ramos & Martínez, 2013). 

Among these extensive types of ANNs and their derivations, The multi-layer 

perceptron (MLP), a feedforward multilayer network with non-linear node 

functions, is the most commonly encountered one (T. D. Pham, Yoshino, & Bui, 

2016; Ramos & Martínez, 2013). Practically, MLP shows successful 

generalization capability, effectiveness and efficiency in forecasting time series 

(Feng et al., 2015; Raheli et al., 2017; Ruben et al., 2017; Singh et al., 2017), 

as well as great compatibility coping with different optimization methods or 
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existing models (Raheli et al., 2017; Zadkarami, Shahbazian, & Salahshoor, 

2016). Although MLP is usually the better choice or at least the same 

performance with respect to other proposal networks (Ramos & Martínez, 2013), 

there remain certain delimitations that have a remarkable impact on the training 

accuracy and efficiency. Such aspects include the structure of the network, the 

activation function of nodes, the existence of bias units, the quality and quantity 

of training and validation datasets, the choice of training algorithm and 

parameters and so forth. In this paper, the MLP network will be adopted while 

the design process of these aspects will be investigated and adapted to the 

case study. The network will be established using PyBrain (Schaul et al., 2010), 

a modular Machine Learning Library for Python. 

The Structure of MLP Network 
The MLP usually consists of nodes(units) arranged in three types of layer: the 

input layer, the hidden layer(s) and the output layer. As Figure 2 shows, each 

node (unit) has its own output value y and is connected by real-valued weights 

w to all (and only) the nodes of the subsequent layer. For the ith node in the lth 

layer nil, let Sil be the set of nodes that connect to nil, f(x) be the activation 

function of nil, the output value is calculated using Formula (1): 

𝑦
𝑛𝑖
𝑙 = 𝑓( ∑ 𝑤𝑗𝑖

𝑚𝑙𝑦𝑛𝑗
𝑚

𝑛𝑗
𝑚∈𝑆𝑖

𝑙

) 
(1) 

where 𝑦
𝑛𝑖
𝑙 is the output value the ith node in the lth layer; 𝑤𝑗𝑖

𝑚𝑙 is the weight of 

the connection between this node and the jth node in the mth layer; 𝑦𝑛𝑗
𝑚 is the 

output value of the jth node in the mth layer; f(x) be the activation function of 

this node. 

The input layer receives the input data while the output of output layer refers to 

the predicted results. Thus, both only requires only 1 layer to fulfil the task. The 

number of nodes in these layers are determined according to the number of 

input variables and target variables (Ba, 1997). In some cases, the input and 

output variables are linearly normalized to (0,1) or (−1,1), to avoid 

computational problems or to meet algorithm requirement (Lopez et al., 2017; 

Piotrowski, Napiorkowski, Napiorkowski, & Osuch, 2015; Zhang, Eddy Patuwo, 
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& Y. Hu, 1998). In this study, such methods were not applied because: (1) with 

the exploration continues, the input variables will always exceed the range of 

the existing records while the output variable also has the chance. (2) the 

weights may undo the scaling. 

The number of hidden layers and its nodes has a significant impact on MLP 

training(Ba, 1997; Laudani, Lozito, Riganti Fulginei, & Salvini, 2015). Simple 

networks maybe less accurate in learning the problem while complex networks 

may take excessively long training time. One hidden layer is usually sufficient 

in most cases (Abderrahim et al., 2016; Bayram, Ocal, Laptali Oral, & Atis, 2015; 

Fan et al., 2016; Feng et al., 2015; Lopez et al., 2017; Mirici, 2018; B. T. Pham, 

Tien Bui, Prakash, & Dholakia, 2017; Raheli et al., 2017; Ramos & Martínez, 

2013; Saeidi et al., 2017; Sun et al., 2017; Talebi, Nasrabadi, & Mohammad-

Rezazadeh, 2018) while sometimes multiple hidden layers shows better 

learning on certain problems (Zadkarami et al., 2016). 

 
Figure 2. Structure and value propagation of MLP. 

The number of nodes in hidden layer is usually determined through a trial-and-

error method (Feng et al., 2015; Raheli et al., 2017; Talebi et al., 2018). The 

range of attempts is usually within 1 to 20 (Abderrahim et al., 2016; Fan et al., 

2016; Feng et al., 2015; Lopez et al., 2017; Mirici, 2018; Raheli et al., 2017; 

Saeidi et al., 2017; Sun et al., 2017), or 3 times the number of input variables 

(Talebi et al., 2018). The best number of nodes was the one having the smallest 

mean-square error (MSE) and root-mean-square error (RMSE) and the highest 

correlation coefficient (r) for the validation data set. (Ruben et al., 2017) 
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In this paper, the designed MLP consists 1 input layer, 1 hidden layer and 1 

output layer. There will be 5 nodes in the input layer representing climate 

change factor, population, the number of decision take for BAU, RWHT and 

PIPE within the 20 years and 1 node in the output layer referring to the flooded 

junctions. No variables will be normalized. The number of nodes in the hidden 

layer will be determined within 1 to 20 through trail-and-error method. 

The Activation Functions 
The role of activation function (AF) in MLP is to non-linearize the linear 

combination of weights and node values passing through from the previous 

layer. Practically, there are three types of AFs: (1) the analytic AFs, which are 

classic functions such as Gaussian, Sigmoid and Tanh; (2) the fuzzy AFs, which 

has faster convergence in training; and (3) the adaptive AFs, which improves 

the nonlinear response of the network (Laudani et al., 2015). Although the fuzzy 

AFs perform better on specific problems (Tang, Deng, & Huang, 2016), there is 

little evidence on the advantage of such AFs in practice. On the other hand, the 

adaptive AFs also suffer from a more complex and error-prone training 

algorithm (Laudani et al., 2015). Thus, only classic analytic AFs are considered 

in this study.  

For nodes in the hidden layer, most commonly used AFs are the logistic sigmoid 

function (Bayram et al., 2015; T. D. Pham et al., 2016; Piotrowski et al., 2015), 

the tanh function (Humphrey et al., 2017; Talebi et al., 2018; Zadkarami et al., 

2016). These two functions are similar in shape while different in output ranges 

(sigmoid: [0,1], tanh: [–1,1]). For the output layer, most researchers adopt linear 

function (Bayram et al., 2015; Humphrey et al., 2017; Ruben et al., 2017; 

Zadkarami et al., 2016). 

In this paper, the log-sigmoid function has been used for the hidden layer nodes 

while linear function has been applied in the output layer to test their 

performance on handling random noise. 

Bias Unit 
The bias unit is an extra set of nodes added to all layers but the output layer, 

which helps to get a better and quicker learning of the network. The output value 

of a bias unit is fixed value while the weights of connection from the bias unit to 
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the subsequent nodes are still adjustable. The addition of bias unit introduces 

a threshold value that may influence the activation of the subsequent nodes 

(Ba, 1997; Lopez et al., 2017), or, from another perspective, helps to move the 

AF in the subsequent nodes along the x-axis for better learning results. Thus, 

in most cases, bias units always contribute positively to the network. 

Learning Algorithm and Parameter Setting 
The traditional and most commonly used training method for MLP is the two-

step error-backpropagation method (Lopez et al., 2017; Raheli et al., 2017; Sun 

et al., 2017). Firstly, the input vector is fed into the input layer, propagating 

forward through hidden layer(s) to the output layer. Then, the error is calculated 

in the gradient descent and propagated backward from the output layer through 

the hidden layer(s) to the input layer, which modifies the weights for every 

connection between nodes. The training repeats until the network’s overall error 

are less than a predefined learning rate, or until the number of maximum 

epochs is reached. Learning rate is a damping factor applied to weights 

correction during training (Laudani et al., 2015), indicating the amount that the 

weights are updated. Epoch is a measure of the number of times all of the 

training vectors are used once to update the weights. Obviously, when dealing 

with huge datasets, it is super time consuming if all the weights are recomputed 

for each training vector. Thus, there is also a batch-learning term for the 

backpropagating method, which feeds multiple training samples in one 

forward/backward pass. The number of samples in one pass is called batch 

size while such one forward/backward process is count as one iteration. 

As the original backpropagation method is likely to be slow (Bayram et al., 

2015), improved strategies such as Second-order On-Line training methods 

have been developed. Although these second-order training algorithms are 

likely to converge significantly faster than first-ordered backpropagation (Ba, 

1997), they require more complex data preprocessing as well as more storage 

and computational costs. Luckily, there are also several improved first-order 

backpropagation methods. The most commonly used is the Backpropagation 

with Momentum (Lopez et al., 2017; Saeidi et al., 2017), which significantly 

speed up the training process. The momentum is an inertial factor applied to 

the weights during the back propagate process, which aims to maintain the 
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direction of weight changing (Laudani et al., 2015). The addition of momentum 

accelerates convergence where the learning quality is good while precisely 

reduces the number of oscillations where bad (Ba, 1997). 

The settings of training parameters are more likely to be empirical and case-

dependent. In most cases, the start/fixed learning rate will be in the range of 

[0.01,0.3] (Abderrahim et al., 2016; Mirici, 2018; T. D. Pham et al., 2016; Saeidi 

et al., 2017) while the end learning rate within [0.00013,0.001] (Mirici, 2018; 

Raheli et al., 2017). The number of epochs usually depends on the training data 

size and the computational capacity, ranging from 200 to 15,000 (Lopez et al., 

2017; Mirici, 2018; B. T. Pham et al., 2017; T. D. Pham et al., 2016; Raheli et 

al., 2017; Saeidi et al., 2017; Zadkarami et al., 2016). Momentum is typically 

set to 0.9 [22], although the optimal value might be task-specific (Lopez et al., 

2017; Mirici, 2018; T. D. Pham et al., 2016). 

The designed network structure and learning parameters are shown in Table 1. 

All combinations of structure and learning parameters were tested with the first 

0.1% of data and validated with the following 0.05% data. After the best 

structure was determined, the network was again tested with different size of 

training set size to find the best application pattern. The validation set size is 

half of the training set. The best performing structure and application patter 

were applied to the case study to study the feasibility of ANN in supporting long-

term planning. 

Table 1. Designed Neural Network Parameters. 

Type 
Structure Activation 

Function 

Bias 

Units 
Learning Settings 

Name Layer Node 

MLP 

input 1 5 - True 
training size 1 

0.1%, 1%, 

10% 

batch size 1 

hidden 1 1–20 sigmoid True 
learning rate 0.01, 0.1, 0.3 

learning rate decay 1.0 

output 1 1 linear False 

momentum 0.1–0.9 

epoch 
500, 1000, 

5000 
1 Training size is the percentage of total data used as the training set, tested after the ANN 

structure being determined. 

6.2.4 Validation and evaluation 
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The performance of learning results was assessed by the root-mean-square 

error (RMSE), which is a commonly used index in machine learning (Fan et al., 

2016; Mirici, 2018; T. D. Pham et al., 2016; Sun et al., 2017). The lower RMSE 

it is, the better prediction the module makes (Raheli et al., 2017).  

RMSE is defined as the absolute value of the estimated error between the 

predicted result and the observed result, calculated by: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

𝑛
 (2) 

where Oi is the observed result; Pi is the predicted result. 

As the unit of RMSE is case-dependent, the correlation coefficient (r) (Fan et 

al., 2016; Mirici, 2018; T. D. Pham et al., 2016; Sun et al., 2017) was adopted 

to compare the training performance with other studies. 

𝑟 =
∑ (𝑃𝑖 − 𝑃̅)(𝑂𝑖 − 𝑂̅)
𝑛
𝑖=1

√∑ (𝑃𝑖 − 𝑃̅)
2𝑛

𝑖=1 ∑ (𝑂𝑖 − 𝑂̅)
2𝑛

𝑖=1

 
(3) 

where Oi is the observed result; Pi is the predicted result; 𝑂̅ is the mean value 

of the observed result;  𝑃̅ is the mean value of the predicted result. 

Practically, as the decision in long-term infrastructure implementation planning 

is not scenario-based but strategy-based, the distribution of predict results for 

each strategy combination should be more convincible than RMSE. Thus, the 

prediction distribution of outputs was also adopted in this study as the other 

performance indicator 

6.3 Results and Discussion 

6.3.1 ANN structure and setting 

As mentioned in the previous section, all combinations of structure (number of 

hidden nodes) and learning parameters (learning rate, momentum and number 

of epochs) were tested with the first 0.1% of all data (training size = 0.1) and 

validated with the following 10% of data. For each parameter, the distributions 

of RMSE for each candidate value under all possible combinations are shown 

in Figure 3.  
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By adopting ANN(MLP) in urban water infrastructure performance prediction, 

the RMSE of such method ranges from 10.97–19.33 nodes with the observed 

flooded junctions ranging from 20 to 146. For the number of hidden nodes, 

setting 1 node caused the highest average RMSE (16.62) which may due to the 

strongest linearity of the network. With the number of hidden nodes rises to 4 

nodes, the average RMSE drops gradually to 15.46 where the non-linearity 

starts to develop effect. From 4 nodes to 20 nodes, the average RMSE keeps 

stable within (15.13,15.56). Although there is no significant difference in the 

average RMSE with the number of hidden nodes changing, the distributions of 

RMSE still have dramatic and irregular variations. These distributions are 

characterized by the minimum, maximum, Q1, Q3 and mid-values, which 

indicates 100%, 75%, 50%, 25%, 0% chance of getting a higher RMSE than 

the given value, respectively. Thus, the lower these values are, the better 

performance of the network we will get.  

 
Figure 3. RMSE Distributions under different manipulated variables. 

As shown in Table 2, the MLP network with 15 nodes was always in the top 5 

well-performed structure and has significant advantages in low mid-value 

compared to others. The 17 nodes network is slightly better than the 15 nodes 

one on minimum, Q3 and maximum as well as slightly poor on Q1 and mid-
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value. Thus, the network of 15 and 17 hidden nodes are selected as the 

candidate structure for the following studies.  

Table 2. Comparison of performance distribution for different number of hidden 

nodes. 

 1st RMSE 2nd RMSE 3rd RMSE 4th RMSE 5th RMSE 

Min 12 10.97 14/17 11.17 19 11.18 9 11.25 15 11.26 

Q1 19 11.95 18 12.04 16 12.05 15 12.08 13 12.16 

Mid 15 14.02 17 14.20 8 16.67 19 16.79 10 16.98 

Q3 17 18.15 5 18.17 10/12 18.19 13/14 18.20 15 18.21 

Max 17 18.37 8 18.39 9 18.41 6 18.42 15/16 18.43 

Following the same process, the rest parameters are then determined: 

momentum = 0.1, learning rate = 0.01, epoch = 5000. 

The candidate network was again tested with different size of training set size 

to find the best application pattern (see Table 3). The result indicates that 

network with 15 nodes performs better than the 17 nodes one under the select 

learning parameter, which is within 3 times the number of input variables [38]. 

Training with the first 10% data will have a significant improvement in reducing 

the RMSE while maintaining an acceptable time-saving capacity (reduce 80% 

of the time).  

Table 3. ANN performance under different training set sizes. 

 Training 

Size 

Hidden 

Nodes 

Learning 

Rate 
Momentum Epoch RMSE 

Validation 

set 

0.001 

15 

0.01 0.1 5000 

11.5051 

0.01 11.8653 

0.1 9.7961 

0.001 

17 

12.2593 

0.01 12.5760 

0.1 11.9862 

Test set 0.1 15 0.01 0.1 5000 10.5722 

The best performing structure and application pattern (Table 3) were then 

applied to the case study. The overall RMSE for the whole observed data and 

the predicted data is 10.5722 and the detailed performance of MLP prediction 

is shown in Figure 4. The overall RMSE is slightly higher than the validation 

result (9.7961). 

The correlation coefficient (r) of the test set was 0.821, which was preferable 

compared to rs in the other close applications of ANN (flood discharge: 0.683–



Chapter 6. Acceleration of pathway exploration by deep learning 

135 
 

0.851 (Seckin, 2011), open-channel junction velocity field: 0.035–0.884 

(Sharifipour, Bonakdari, & Zaji, 2018), drought effects on surface water 

quality:0.819–0.922 (Safavi & Malek Ahmadi, 2015), BOD in river: 0.505–0.821 

(Raheli et al., 2017)).  

Taking account of the tremendous amount of data in this case study, the above 

result suggested the proposed statistical trial-and-error method for determining 

network parameters is feasible and reliable on selecting the best structures. 

6.3.2 Accelerated pathway exploration   

To analyze the performance variations of different implementation strategy 

combinations for the urban water system in the case study, boxplots are again 

used while the upper end of the whiskers is set to 95th percentile (Figure 4). In 

other word, the probability of a certain system performing better than this upper 

end is 95%. Thus, the accuracy on the 95th percentile and Q3 is practically 

more important than that of mid-value, Q1 and minimum. 

For strategies containing only rainwater tanks ([0,5.0,0], [0,10.0,0], [0,15.0,0] 

and [0,20.0,0]), the first two combinations are all included in the training set and 

share the same distribution with the observed results. For the latter two 

strategies, the 95th percentile errors are −0.24% and −1.26% respectively while 

the Q3 errors being −2.28% and −5.68%. This suggests the designed MLP 

network is effective and has relatively good performance in predicting strategies 

with spatial randomness. The performance of purely decentralized systems 

may have stronger and more linear relation with the rainfall events and urban 

permeability (related to buildings/population), which makes the prediction of 

these purely decentralized strategies better than the mixed strategies. 

For the same reason, the purely business as usual strategies also have good 

predictions: for [3,0.0,0], Q3 = −0.22% and 95th = 0.18%; for [4,0.0,0], Q3 = 

−0.77% and 95th= −0.88%. As no additional systems were implemented in 

these scenarios, the designed network performs well in generalizing the relation 

between water system performance and rainfall events and urban permeability. 
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Figure 4. ANN performance for different strategy combinations (supported by 

Matplotlib (Hunter, 2007)). 
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For the overall performance, the MLP result has similar minimum, Q1 and mid-

value compared to the observed result (min: 20, 20; Q1: 48.1, 47.0; mid: 58.3, 

60.0). Whereas the predicted values have a narrower range (20.0–88.44) than 

the observed ones (20–93) despite the outliers. Such phenomena indicate that 

the prediction in the high-value events (poorly performed water system in 

practice) tend to aggregate to the Q3. This suggests that, from an overview 

perspective, the adoption of ANN supported planning may raise the chance of 

overestimating the performance of urban water systems.  

6.3.3 Correction of the prediction 

To make this proposed method applicable and reliable in practice, the error 

distributions of the result are investigated to solve the overestimating problem. 

As shown in Figure 5, all errors of Q3 lie between (−10.56%,8.76%) and 95th 

percentile between (−18.91%,14.95%). The majority of these errors are 

negative, indicating universal overestimations of the urban water system.  

As Table 4 shows, the adoption of safety coefficient could effectively raise the 

error from negative to positive (from overestimation to under estimation) while 

slightly enlarge the standard deviation of the errors.  

As these errors are related to the network structure and its final status, a safety 

coefficient, which comes from the validation process, is adopted to adjust the 

final output of the network. By investigating the observed data and the predicted 

data in the validation set, a multiplicator or exponent can be calculated out and 

applied for the test set. As the 95th percentile is the dominant factor of this case 

study, the safety coefficient also comes from the 95th percentile of the 

validation (multiplicator:1.0910, exponent:1.0272). 

Table 4. Mean ± SD error of adopting the safety coefficient. 

 Observed Error Multiplicator Exponent 

Q3 −2.29% ± 4.28% 3.38% ± 4.73% 3.43% ± 4.72% 

95th percentile −3.13% ± 6.34% 2.63% ± 7.15% 2.96% ± 7.32% 
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(a)          (b) 

 
(c)          (d) 

 
(e)          (f) 

Figure 5. Error distribution of MLP predicted result and corrected result ((a,b) 

observed errors for 95th percentile and Q3; (c,d) corrected errors for 95th 

percentile and Q3 by multiplication; (e,f) corrected errors for 95th percentile and 

Q3 by exponent). 

The result of correction is shown in Figure 5. There is no obvious difference 

between correction with multiplicator and exponent. The corrected errors of Q3 

lied in −3.05% to 18.24% (multiplicator) and −2.96% to 17.87% (exponent) 

while that of the 95th percentile in −11.69% to 25.41% (multiplicator) and 

−11.60% to 25.36% (exponent). 

6.3.4 Urban water infrastructure implementation pathway (accelerated by 

deep learning) 

As shown in Table 5, the accelerated exploration identified all robust drainage 

infrastructure status in the reference exploration while overestimated three. The 

corrected accelerated exploration identified most robust drainage infrastructure 
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status in the reference exploration while underestimated one. The 

underestimated one has no influence on the plan generation as there is no 

connectable route in the previous decision year. Thus, the correction is 

essential and effective to raise the robustness of the proposed accelerated 

exploration. 

Table 5. Robust progressive goal for Scotchman’s Creek. 

 
Reference 

Exploration 

Accelerated 

Exploration 

Corrected Accelerated 

Exploration 

2020 [0,0,1]1 [0,0,1] [0,0,1] 

2025 [0,0,2] [0,0,2] [0,0,2] 

2030 

[0,0,3] 

[0,5,2] 

[0,10,1] 

[0,15,0] 

[1,0,2] 

- 

[0,0,3] 

[0,5,2] 

[0,10,1] 

[0,15,0] 

[1,0,2] 

[1,5,1] 

[0,0,3] 

[0,5,2] 

[0,10,1] 

- 

[1,0,2] 

- 

2035 

[0,0,4] 

[0,5,3] 

[0,10,2] 

- 

- 

[0,0,4] 

[0,5,3] 

[0,10,2] 

[1,5,2] 

[2,0,2] 

[0,0,4] 

[0,5,3] 

[0,10,2] 

- 

- 
1 [BAU,RHWT(%),PIPE]. 

Notably, for 95th percentile, the majority of errors are controlled within ±10%. 

The two outliers represent the two pure strategies of upgrading pipes, [0,0.0,3] 

and [0,0.0,4]. Although there are great errors on these two strategies 

(underestimation of water system), the origin system performance of them is 

good enough that the errors have no influence on identifying them as good 

strategies (not influencing decision). This error also indicates that different from 

purely decentralized strategies, such purely centralized strategies which have 

only relations with rainfall events, do not have a preferable prediction at all.  

Such a result indicates that when using the MLP to predict a black box problem, 

such as the urban water system in the case study, there should be at least two 

related input factors for each variable (the candidate infrastructure, e.g., pipe, 

rwht) to ensure reliable prediction. 

 
6.4 Conclusion 
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Aiming at the time-consuming of the global exploration model proposed in 

chapter 5, deep learning (artificial neural network method) is introduced into the 

exploration model to speed up the exploration process while ensuring the 

prediction accuracy. The main conclusions are as follows: 

1) Multi-layer perceptron (MLP) network is integrated with the exploratory model 

proposed in chapter 5, and being applied to the water system construction 

pathway planning of Scotchman's Creek watershed in Australia. While 

providing the same pathway, the accelerated global exploration model (AM - 

ANN) proposed in this chapter can reduce the simulation time by 80%. 

2) the MLP network adopted in this chapter has different predictive performance 

for different types of water system scenarios. The prediction of water systems 

that update only decentralized facilities is better than that update both 

centralized and decentralized facilities, while the latter is better than that update 

only centralized facilities. The above results, combined with the results of 

sensitivity analysis in chapter 5 (the degree of interaction between parameters 

and other parameters), illustrate that MLP neural network should screen related 

input variables according to the sensitivity of input variables to improve the 

accuracy of output variables. 

3) An optimization method of neural network structure was proposed by using 

statistical analysis instead of variable-control method. Under the condition of 

using 10% of the training data, 10% of the verification data and 80% of the test 

data, the validation error (RMSE) is 9.7961, the test error (RMSE) is 10.5722, 

and the correlation coefficient (r) is 0.821. The results show that this method 

can help to design more reasonable neural network (avoid local optimization of 

design parameters) and obtain more stable neural network with less training 

data. Although this optimization method takes a little more time than the 

traditional control variable method, it provides enough stability and precision to 

make up for this deficiency. 

4) The correction method proposed in this chapter based on the verification 

process can effectively solve the problem that the overall prediction of urban 

water system performance by the global accelerated exploration method (AM-
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ANN) tends to be optimistic (3.13%±6.34% more flooded nodes than the control 

group). The multiplication factor and power factor calculated according to the 

verification data can control the prediction tendency problem in an acceptable 

range and have very limited influence on the final decision (2.63%±7.15% more 

flooded nodes than the control group). This correction method does not reduce 

the error but shifts the error to the conservative estimate to make the decision 

made by the forecast result more reliable, so this correction method has more 

practical significance. 
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7.1 Introduction 

Compared with the global exploration module in chapter 5, the accelerated 

global exploration module (AM-ANN) proposed in chapter 6 can greatly reduce 

the computation time without affecting the final decision, but still has the 

following disadvantages: 

1) The training set is based on the first 10% of time series data of the control 

group, so the scenario distribution of each time step in the training set is uneven 

and irregular. For neural network, the quality of training set is one of the 

important factors that affect the quality of prediction. Therefore, when applying 

the accelerated global exploration module (AM-ANN), it will be affected by the 

uncertainty of the time step distribution of scenarios in the training set. 

2) After the completion of the neural network training, the result is used in all 

subsequent scenario prediction and have no adaptation capacity toward 

changes. E.g. When the subsequent exploration range exceeds the original 

training range, the proposed method can only predict based on the old learning 

result. Thus the AM - ANN will be affected by the uncertainty of the training set 

quality. 

Therefore, the accelerated module (AM) should not only provide reliable 

performance on prediction, but also be robust to deal with uncertainties such 

as data quality, quantity and time order. 

Rough set theory (Pawlak, 1982) , as a mathematical tool for analyzing and 

conceptualizing inaccurate, uncertain or vague knowledge, has been 

successfully applied in bioinformatics, medicine and data mining (Chen, Li, Luo, 

Horng, & Wang, 2015; Liang, Wang, Dang, & Qian, 2014; Ye, Chen, & Ma, 

2013) to cluster and predict scenarios. 

A dynamic accelerated global exploration module (AM - RST) is developed 

based on rough set theory in this chapter which, in the process of exploring, 

could continue to improve prediction accuracy by self-updating. The parameter 

"significance" is introduced, which changes the expression of causal rules in 

traditional rough theory. By expressing causal rules in a probability way, the 

influence of error distribution on decision-making is compensated, and the 
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accuracy of (AM-RST) in practical application (especially when dealing with big 

data) is improved. 

7.2 Methods and Data Description 

7.2.1 Site Description 

The location and project studied in this chapter are the same as that in chapters 

5 and 6, which is the 20-year long-term plan of Scotchman's Creek catchment 

water system (2015-2035), as shown in section 5.2.4. Taking the results of the 

exploration model in chapter 5 as the control group, the differences between 

the water system construction path generated by the global exploration method 

and that generated by the global dynamic acceleration exploration method (AM-

RST) were analyzed. The control group data contained 2.93 million scenarios 

and their water system performance evaluation results, of which 1.73 million 

were uniform scenarios and 1.2 million were random scenarios. 

7.2.2 Dynamic acceleration module by rough set theory 

The working flow of AM-RST is shown in figure 7.2.1. The core idea is to 

improve the accuracy of prediction by learning from events that cannot be 

accurately predicted. 

Different from traditional machine learning modules, this module can distinguish 

predictable and unpredictable scenarios through the causal rule deducted from 

rough set theory. The rules are in the form of "if... (scenario)..., then... 

(prediction of performance) ...”, which does not always (and does not need to) 

contain all parameters. Thus, the entire rule set does not cover all sampling 

space, nor have an intersection. At the same time, each causal rule has its 

corresponding credibility, which depends on the users’ decision to apply. 

The reduction in computing time from AM-RST is embodied in two aspects: one 

is to skip the SWMM assessment process of the predictable scenarios, the 

second is to skip the UDM process of the predictable scenarios in the last time 

step (these scenarios do not need to go through SWMM as they will be 

predicted by AM-RST, neither go through UDM for subsequent city scene 

exploration as they are in the last step). In the global exploration model 

proposed in chapter 5, the time consumption of UDM development simulation 
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module and SWMM evaluation module is 50% respectively, so the dynamic 

accelerated global module proposed in this chapter should have the same 

computing time reduction capacity as the accelerated global module in chapter 

6. 

 
Figure 7.2.1 The dynamic learning module based on rough set theory 

As shown in figure 7.2.1, dynamic learning module of AM-RST requires a user-

defined minimum number of data (U) to trigger the (re-)training. When global 

explore module operation, accelerate module will first estimate the city scenario 

(urban status,  water system status) and compare it with the existing causal 

rules, then process the data into UDM for the predictable scenarios (if it's the 

last time step, skip), and make the prediction. The result will store into the 

database R’; If the scenario cannot be predicted by the causal rule, the normal 
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exploration steps (go through UDM, SWMM evaluation) are applied, and the 

scenario parameters and water system performance evaluation results are 

stored in the training database R. When the total amount of data in the training 

database reaches U, the rough causal rule (re-)training algorithm is triggered 

(Walczak & Massart, 1999) to update the causal rule set. 

Compared with existing researches (Doherty, Lukaszewicz, Skowron, & Szalas, 

2006), there are two significant differences in the application of rough set theory 

in this chapter: 1) The data volume is huge (about 2.93 million scenario 

simulations), which far exceeds other existing studies 2) The corresponding 

relationships between "scenario" (future of the city and the drainage system 

plan) and "water system performance" are fuzzy, especially for the "scenarios" 

with random spatial layout (e.g. decentralized systems). These two 

characteristics lead to the fact that the same "scenario" (with different layout of 

decentralized system with same total area) can correspond to many different 

"water system performances”, so the accuracy of causal rules concluded by the 

traditional rough set algorithm is very low and cannot be applied. In order to 

solve this problem, this study did not attempt to accurately cluster " scenario " 

and "water system performance" through optimization methods, but recorded 

the probability distribution of "water system performance" under similar 

"scenario" to represent the uncertain fluctuation of "water system performance" 

under a "scenario". 

Thus, the index "Significance (Sig)" is proposed as the highest probability of 

"water system performance" in a causal rule (in other word, under a certain 

scenario), which represents the uniformity of " performance" distribution in the 

rule (the lower the value is, the more uniformly distributed it is). When the 

Significance of a rule reaches the minimum user-defined value (Sigmin), the rule 

will be saved into the causal rule set and be applied in the prediction of the 

dynamic accelerated exploration module (AM-RST). In the process of 

prediction, the predicted "performance" will be randomly selected according to 

the recorded probability of the applying rule. 

7.2.3 Validation and evaluation 
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Root mean square error (RMSE, see equation 6.2) and correlation coefficient 

(r, see equation 6.3) are used to evaluate the performance of AM-RST. the 

lower RMSE, the higher r, the better prediction effect of the model (Raheli, 

Aalami, El-Shafie, Ghorbani, & Deo, 2017). 

Since there are both prediction results and exploration results in the process of 

dynamic accelerated global exploration (AM-RST), two root-mean-square 

errors, RMSE and RMSE*, are used to evaluate its prediction ability. RMSE is 

the root mean square error of all prediction results, which reflects the accuracy 

of prediction of this module. RMSE* is the root mean square error of all 

exploration results (including prediction), which reflects the degree of influence 

of the application of this module on the final decision (water system construction 

pathway).Meanwhile, since the concept of "significance" is introduced, different 

minimum significance will affect the reduction ability of operation time. 

Therefore, the time reduction in SWMM evaluation module, UDM exploration 

module and global exploration module are also used as evaluation basis. 

7.3 Results and Discussion 

7.3.1 Urban water infrastructure implementation pathway (accelerated by 

dynamic learning) 

Figure 7.3.1 shows the construction pathway of Scotchman's Creek catchment 

generated by the global exploration method and the dynamic accelerated global 

exploration method. The Sigmin in AM-RST is 0.5 and 0.25. 

When Sigmin=0.5, the selection of rough causal rule is the most rigorous. The 

rule will be recorded only when the probability of a water system performance 

value is higher than 50%. In this circumstance, the path generated by the 

dynamic accelerated global exploration module is exactly the same as the 

global exploration under the condition that the acceptable failure rate of the 

system is 1% and 5% (including the determination of the robustness and 

adaptive planning of the water system scenario). 
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Figure 7.3.1 The construction pathway of Scotchman's Creek catchment 

generated by the global exploration method and the dynamic accelerated global 

exploration method. 

When Sigmin=0.25, the selection of rough causal rule is more tolerant. The rule 

will be recorded when the probability of a certain water system performance 

value is higher than 25%. When the acceptable failure rate of the system is 1%, 

the path generated by the module is exactly the same as that of the global 

exploration. This is because when the acceptable failure rate of the system is 

very low, there are too few scenarios of the water system with robustness, so 

the prediction accuracy cannot be fully reflected. When the acceptable failure 

rate of the system is 5%, the module also shows an optimistic estimate for some 

situations. According to its prediction results of water system scenario [0,5.0, 1] 

in 2025, the failure rate of the system was calculated to be 4.87%, while the 

failure rate of the system calculated according to the global exploration method 

was 5.56%. Therefore, there was a mis-determination. This error caused two 

"local optimized path " was convicted for "global robust path", which leads a 

certain degree of unforeseen risk to the planners, even if the risk is not high (Δ 

= 0.69%) 

On the whole, even if the most tolerant Sigmin is adopted for AM-RST, the effect 

of errors on the robustness determination of water system (based on the 

difference of system failure rate) is no more than 2%, and the conservative 

estimations are far more than the optimistic ones. Therefore, the dynamic 

accelerated global exploration module  proposed in this chapter can be applied 

to the exploration of urban water system construction path, and the prediction 

accuracy has little influence on the final decision. 

7.3.2 Evaluation of the self-learning process 

As Sigmin affects the selection of rough causal rules, the efficiency of dynamic 

acceleration exploration module varies with different Sigmin. The performance 

of module prediction accuracy and operation time reduction under different 

Sigmin is shown in table 7.3.1. 
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The results show that with the reduction of Sigmin (0.5→0.25), the reduced 

computation time by skipping the SWMM evaluation module increases from 

8.34% to 41.17%, and the computation time by skipping the UDM deduction 

module increases from 8.11% to 40.15%. Since UDM module and SWMM 

module each account for about 50% of the exploration time, and the 

computation time cut by skipping the two modules is very similar, according to 

the structure of the acceleration module, most of the predictions are made at 

the last planned time node. This is because the mode of the exploration model 

is exponential, so the number of scenarios at the last planning time syep 

accounts for about 80% of the total. 

Table 7.3.1 The prediction performance of AM-ANN under different Sigmin 

Sigmin 0.500 0.475 0.450 0.425 0.400 0.375 0.350 0.325 0.300 0.275 0.250 

r 0.9418 0.9300 0.9136 0.8421 0.7959 0.7702 0.7909 0.6982 0.7202 0.7001 0.6963 

RMSE 16.28 16.88 16.22 18.41 18.49 18.17 16.82 19.31 18.06 18.84 19.18 

RMSE* 6.63 7.42 8.25 11.83 13.49 14.14 13.15 17.20 15.94 17.03 17.52 

Time 

saving 

SWMM 8.34% 9.70% 12.98% 20.72% 26.64% 30.30% 30.53% 39.70% 38.99% 40.97% 41.74% 

UDM 8.11% 9.31% 12.55% 20.07% 25.83% 29.49% 29.62% 38.88% 37.88% 39.97% 40.73% 

Total 16.45% 19.01% 25.53% 40.79% 52.47% 59.79% 60.15% 78.58% 76.87% 80.94% 82.47% 

At the same time, with the decrease of Sigmin, the proportion of operation time 

reduced by skipping SWMM module is gradually increased, indicating that with 

the increase of the tolerance of causal rules, the accelerated exploration 

module predicts more scenarios of earlier planned nodes, which is consistent 

with the original intention of the design. 

The reduction of overall operation time increased from 16.45% to 82.47%. 

During the reduction of Sigmin, the reduction of operation time in the early stage 

was relatively large, while the change in the later stage was relatively stable. In 

this process, RMSE increased from 16.28 to 19.18 and RMSE* increased from 

6.63 to 17.52. It can be seen that, with the decrease of Sigmin, the prediction 

error does not increase significantly (RMSE), but the total prediction amount 

increases significantly (RMSE*). Compared with the error (10.5722) of the 

accelerated global exploration module (AM-ANN) in chapter 6 of this paper, the 

error is higher under the same operation time reduction condition. 
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With the decrease of Sigmin, the correlation coefficient r decreased from 0.9418 

to 0.6963, and the prediction result maintained a strong correlation with the 

reference value of the control group. However, it is acceptable compared with 

other applications of artificial neural network (0.7760 (Pham, Yoshino, & Bui, 

2016), 0.890 (Ruben, Zhang, Bao, & Ma, 2017), 0.735-0.857(Raheli et al., 

2017)). However, compared with the accelerated global exploration module 

(AM-ANN) in chapter 6 of this paper (0.8210), the correlation coefficient r is 

relatively low under the same operation time reduction condition. 

It is important to note that although the dynamic accelerated global exploration 

module (AM-RST) has a relatively poor performance on RMSE and r, compared 

to AM-ANN), but the prediction of such method tend to be more conservative 

estimates (the actual system performance will be better than the prediction). 

While the problem of optimistic estimation (the actual system performance will 

be worse than the prediction) in AM-ANN, although could be corrected by 

algorithm, still remains large uncertainties in final decision. Therefore, the AM-

RST proposed in this chapter is more suitable for the exploration of the 

construction pathways of urban water system. 

7.3.3 Analysis of the background noise 

According to section 7.3.2, although the RMSE and correlation coefficient r of 

the dynamic accelerated global exploration module (AM-RST) are not as good 

as that of the accelerated global exploration module (AM-ANN), the robustness 

evaluation accuracy based on its prediction results is better. Meanwhile, with 

the decrease of Sigmin, the RMSE increase is not significant (+2.90) and the 

initial RMSE is relatively large (16.28). This indicates that the prediction results 

of the global dynamic accelerated exploration module (AM-RST) have large 

background noise, which does not change with the changes of module 

parameters, and is caused by the algorithm's own defects. 

The detailed prediction process under Sigmin=0.5 was analyzed in this section 

(in this case, the prediction error is the smallest, so the background noise can 

be located more accurately). The results show that the background noise 

mainly originates from the following two parts: 
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1) Part of the background noise is caused by the spatial randomness 

(uncertainty) of the WSUS facility layout. As the strategy of "uptake rainwater 

harvesting tanks" will randomly construct WSUD facilities on constructible land 

in the exploration model, its layout has spatial randomness and its influence on 

water system efficiency is uncertain. Table 7.3.2 shows a set of inputs and 

predicted outputs that conform to the same rough causal rule. As can be seen 

from the table, since Sigmin is set to screen rules and probabilistic output is 

adopted, the prediction results of the first two scenarios are relatively accurate, 

and the overall error (from the perspective of robustness evaluation of water 

system) is not large. But in the same water system update scenario, as the 

WSUD facilities’ spatial randomness, there is huge differences in the water 

system performance (the latter three have 19.3% - 40.9% less flooding than the 

previous two). As the AM - RST deduct its rule from the first two scenarios, it 

directly predicts the latter three scenarios, which leads to a great error. 

This indicates that the dynamic accelerated global exploration module has the 

problem of preconception in the induction of causal rules. That is to say, some 

current scenarios do not show their uncertainties (for example, WSUD facilities 

have little impact on water system when their total volume is small, so their 

spatial distribution does not show its impact on water system in the early phase), 

and the causal rules concluded by AM-RST module will prejudice such 

scenarios. When the uncertainties of these situations show up in the later stage, 

the existing AM-RST algorithm cannot recognize this problem, and then predict 

these scenarios based on the inherent causal rule, leading to large background 

noise. 

Table 7.3.2 The performance fluctuation of urban water system due to WSUD 

spatial distribution and the related prediction errors 

Year CCF Population BAU RWHT PIPE Observation Prediction 

2035 1.1025 11504 0 15 1 88 86 

2035 1.1025 11500 0 15 1 84 87 

2035 1.1025 11509 0 15 1 71 86 

2035 1.1025 11509 0 15 1 55 86 

2035 1.1025 11502 0 15 1 52 87 
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2) Another part of the noise is due to the misunderstanding of "business as 

usual" strategy (redundant data issues). When investigating into the prediction 

process, 8,217 scenario predictions (around 3.36% of the total scenarios 

predicted) were found relevant to the " business as usual" strategy while there 

were only three rules related to this strategy. All the three rules contain only the 

"business as usual" strategy in the “if… (scenario)…” part. This means a lot of 

scenarios with “business as usual" as well as other water system upgrade 

strategies are applying these three rules, making their performance prediction 

far from correct and resulting in a certain amount of background noise. The 

reason for this problem is that the strategy of "business as usual" does not 

make any changes to the water system. According to the sensitivity analysis 

results in chapter 5, its influence on the water system efficiency and synergistic 

effect with other parameters are small, so it is a redundant parameter. However, 

the AM-RST module cannot identify the redundancy of this parameter, so it tries 

to generalize its rules, thus causing errors. 

It is worth noting that, although the population is also a redundant parameter 

according to the sensitivity analysis results, it has little impact on the AM-RST 

module due to its small change range (3%-6%), while BAU has a large change 

range (0-4), so it has a big impact. 

7.3.4 Robustness of the dynamic acceleration module 

Since the AM-RST's training data is inputted in the time order of the exploration, 

and may have the potential problem of preconception, different input processes 

may affect the effectiveness of the module. Therefore, three random time 

sequences (randomly scrambling control data) was applied to the module with 

Sigmin=0.25 to investigate the robustness of the module (including the mean 

value of various indicators, standard deviation and relative standard deviation). 

The results are shown in table 7.3.3. When Sigmin=0.25, AM-RST has the 

highest global error RMSE* and prediction error RMSE, so its robustness is the 

worst which is as well representative. The results show that the AM-RST 

module has extremely robust computing time reduction ability (relative standard 

deviation <1%) and prediction accuracy (relative standard deviation <2%). 

Table 7.3.3 Performance of AM-RST under different input sequences 
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Sigmin=0.25 
Control 

Group 

Sequence 

A 

Sequence 

B 

Sequence 

C 
Average STD RSTD 

r 0.6963 0.6877 0.7121 0.6876 0.6959 0.0100 1.43% 

RMSE 19.18 18.65 18.41 18.65 18.72 0.28 1.50% 

RMSE* 17.52 16.94 16.67 16.94 17.02 0.31 1.82% 

Time 

saving 

SWMM 41.74% 41.18% 40.98% 41.17% 41.27% 0.28% 0.69% 

UDM 40.73% 40.15% 39.86% 40.15% 40.22% 0.32% 0.79% 

Total 82.47% 81.33% 80.85% 81.33% 81.50% 0.60% 0.73% 

It is worth noting that the time series of training data not only has no obvious 

effect on the efficiency of AM-RST module, but also has very little effect on the 

background noise. However, this phenomenon does not overrule the 

conclusion that preconceptions and uncertain data are the main background 

noise. This phenomenon is caused by background noise, which is not caused 

by data errors, but by data incompleteness (that is, the error is not caused by 

incorrect understanding of the scenarios, but by incomplete understanding of 

the scenarios). 

7.4 Conclusion 

A dynamic accelerated global exploration method (AM-RST) is proposed in this 

chapter which improves the robustness of acceleration process. The parameter 

"significance (Sig)" is introduced to offset the influence of error distribution on 

decision-making by expressing the causal rule in a probability manner and 

improve the accuracy of AM-RST module in practical application. The main 

conclusions are as follows: 

1) With the most tolerant Sigmin in dynamic accelerated exploration, the 

prediction results tend to be a conservative estimate, and with probabilistic 

output. These prediction ensures minimal error in water system robustness 

analysis (error in system failure rate is less than 2%), and therefore AM - RST 

module can be applied to the exploration of urban water system construction 

pathways. 

2) with the decrease of Sigmin (0.5→0.25), the reduction of simulation time 

increased from 16.45% to 82.47%, the prediction error RMSE increased from 

16.28 to 19.18, the errors are slightly higher than that of the AM-ANN module. 

However, the overall prediction of AM-ANN module has the problem of 
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optimistic estimation, which leads to large uncertainty for the final decision. 

Therefore, AM-RST module is more suitable for the exploration of the urban 

water system construction pathways. 

3) There is a large background noise in the prediction of AM-RST module, 

which does not change with the changes of module parameters, mainly due to 

the spatial randomness of sponge facility layout (the problem of uncertainty) 

and the misunderstanding of “business as usual” strategy (the problem of 

redundant data). This indicates that the AM-RST module is susceptible to 

preconception and may form prejudice in the process of induction of causal 

rules. 

4) In the exploration of different time series, the AM-RST module shows 

extremely robust computing time reduction ability (relative standard deviation 

<1%) and prediction accuracy (relative standard deviation <2%). The timing 

sequence of the exploration process also has a very small impact on the 

background noise, indicating that the background noise brought by uncertainty 

always exists but is stable in AM-RST, and the noise level exactly reflects the 

uncertainty level 
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8.1 Research implications 

8.1.1 Planning under uncertainties 

The quantity and quality of data, as well as the planners who deals with it, are 

two of the typical uncertainties in a planning process. In this thesis, a practical 

decision support method, the Hierarchical Fuzzy Decision-Making (HFDM), 

was proposed to simulate the manual planning/evaluation process under 

inadequate data, and tested against traditional Multi Criteria Decision-Making 

method (MCDM) in a decentralized system planning.  

The GIS fuzzification process can maintain the dominant characteristics of 

spatial units, take into account the adjacent environmental parameters and 

make reasonable adjustments to express important hidden information. The 

integrated fuzzy inference design can simulate the manual evaluating process 

and reduces the custom parameters by 58% compared with the conventional 

method. 

Results indicates that the proposed method, to some extent, reduces the 

uncertainty of basic data (by digging all possible information that could influence 

a decision) and user subjective factors (by simulating decision process to avoid 

manual misjudgement) in planning decisions.  

8.1.2 Robust urban water infrastructure implementation pathways 

As mentioned in section 2.6, the latest long-term planning approaches are still 

considering their strategies independently and their planning usually cannot 

have more than two goals. In this thesis A three-stage scenario exploration 

model (exploration-evaluation-adaptation) is developed, which realizes the 

exploration of urban water infrastructure implementation pathway with multiple 

strategies and multiple objectives. The proposed parallel exploration module 

improves the local correlation and comparability between scenarios and avoids 

the disadvantages of local optimization in traditional methods. The proposed 

evaluation module and adaptability optimization module, which are separated 

from the exploration module, greatly accelerate the assessment speed of the 

pathway, and realize the design of multi-objective construction path, avoid the 

risk of failure of path generation caused by the subjective cognition of planners, 

and improve the practicality of construction pathway. 
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8.1.3 (Dynamically) learning scenario exploration 

The three-stage pathway generation model have promising speed on multiple-

objective evaluation while its exploration and evaluation process can take 

extreme long time. To make the model applicable, two acceleration modules 

were developed copping with the exploration module and the evaluation module. 

1) Artificial neural network method is introduced into the exploration model to 

speed up the exploration process while ensuring the prediction accuracy. With 

the same pathway provided, the accelerated global exploration model (AM - 

ANN) can reduce the simulation time by 80%. This module better prediction of 

water systems that update only decentralized facilities than that update both 

centralized and decentralized facilities, which is better predicted than that 

update only centralized facilities.  

2) A dynamic accelerated global exploration method (AM-RST) is proposed 

which improves the robustness of acceleration process. The parameter 

"significance (Sig)" is introduced to offset the influence of error distribution on 

decision-making by expressing the causal rule in a probability manner and 

improve the accuracy of AM-RST module in practical application. With the 

decrease of Sigmin (0.5→0.25), the reduction of simulation time increased from 

16.45% to 82.47%, and the prediction errors are slightly higher than that of the 

AM-ANN module. However, the overall prediction of AM-ANN module has the 

problem of optimistic estimation, which leads to large uncertainty for the final 

decision. Therefore, AM-RST module is more suitable for the exploration of the 

urban water system construction pathways. In the exploration of different time 

series, the AM-RST module shows extremely robust computing time reduction 

ability (relative standard deviation <1%) and prediction accuracy (relative 

standard deviation <2%).  

8.2 Practical implications 

8.2.1 ‘Planning’ model 

As mentioned in section 1.1, the traditional long-term planning approaches are 

more likely to be evaluation tools which was used in a ‘manual plan – 

computational evaluate – manual adjust’ pattern. The model proposed in this 

thesis was a literally ‘planning’ tool which after setting all parameters, 
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computationally explores all possible scenarios, evaluates all possible strategy 

plans and optimize adaptation pathways. As the results (urban water 

infrastructure pathways) was generated by global exploration pattern, the 

robustness of the plan is creditable as long as the evaluation module is reliable 

(which is the commonly used SWMM in this case). 

The result pathways could be directly used by decision makers as they could 

always find what stage the city is currently at in the graph (as it is a global 

exploration). Adaptation routes can be adopted as long as they are happy to 

take the known risk (acceptable failure rate). 

8.2.2 Co-system planning model 

A co-planning method between centralized (sewer) and decentralized (WSUD) 

systems in the long-term was also proposed in this thesis. The method was 

developed on the concept of reflect interactions and feed backs among different 

system plans in their long-term planning. This approach could more rationally 

simulate the decisions of planners during a long-term ‘implementation’ process. 

8.2.3 Macro understanding of centralized and decentralized systems 

The urban water infrastructure implementation pathway of Scotchmen’s Creek 

enriches the understanding of WSUD facilities and drainage system 

construction. Results showed that: 

1) WSUD system, in long-term or short, cannot guarantee robust flood 

prevention, thus more attention should be paid to the application of non-

structure measures.  

2) When the total coverage area of WSUD facilities in the city reaches a certain 

volume (greater than or equal to 10%), the flood disaster in the basin can be 

effectively reduced, but it still cannot completely replace the capacity of the pipe 

system.  

3) In the case that the existing pipe network system is not yet perfect, blindly 

building only WSUD facilities will bear certain risks. However, in the long run, it 

is still possible for the city to finally achieve the goal of robust water system 
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(locally optimized construction path), but it is definitely not the water system that 

only adds WSUD facilities on the existing basis. 

8.3 Research limitations 

8.3.1 Scope of the case study 

The case study used in this thesis have several unsatisfactory: 

1) For the Hierarchical Fuzzy Decision-Making (Chapter 3), the WSUD-

depended drainage system planning (Chapter 4) and the robust pathway 

generation model (Chapter 5 - 7), three different sites were chosen as case 

study areas, which greatly broke the consistency of the proposed method. The 

reason of choosing different case studies instead of one was majorly due to the 

compatibility between research scope and case scope, as well as the data 

availability of different sites. In brief, the case of Scotchman’s creek is much 

smaller and was therefore the preferred size for testing the methodology in 

explorative modellings (to reduce the overall runtime). Whereas a larger 

catchment (Elster Catchment) was required for the network generation to 

provide adequate information (e.g. network structure in topology) in the proper 

scale and a more rural one (with very a small centralized system, Yangchen 

Lake Peninsula) was required to ensure more accurate and differentiated result 

for decentralized system planning.To reduce the impact of this problem, the 

following hypothesis were made in this thesis: 

I. It was shown in chapter 3 by case study that the Hierarchical Fuzzy 

Decision-Making is effective in interpreting spatial hidden information and 

could have more rational assessment on vulnerability. Thus, a hypothesis 

was made in chapter 4 that the same method would work in Elster Creek 

case study and the vulnerability map used in chapter 4 was assumed to be 

generated by this method (which is actually derived from existing network 

layout) so that the two proposed method theoretically could be integrated. 

II. It was proved in chapter 4 by case study that the proposed co-system 

planning method could have feedbacks among the planning of the system. 

Thus, a hypothesis was made in chapter 5 that the same method could work 

in Scotchman’s Creek case study and the strategy status in each time step 

would have impact on strategies in the next time step (which is actually 

realized using stochastic process) so that the two method theoretically could 
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be integrated. This hypothesis had very limited impact on the accuracy of 

robust pathway generation as that model was using a global exploration 

method, in which all scenarios would always be evaluated someday. The 

impact of the hypothesis is only on the possibility of reaching the ‘accurate 

answer’ in a shorter time. 

2) The pathway generation model was only tested in a small catchment in 

Melbourne, where there might be significant difference (lower building density, 

higher natural soil infiltration rate, etc.) compare to other region such as China. 

Some of the results may not be accurate if applied in case studies in other areas 

or larger catchments. 

3) The objectives and strategy options used in this thesis is quite limited, due 

to computational time. Changing or increasing the amount of strategies and 

objectives might have an influence on the acceleration performance and 

prediction accuracy (of machine learning). 

8.3.2 Incompletable global exploration 

It took extreme long time for the global exploration model to run a ‘reference’ 

result (for the acceleration model to compare with). Theoretically, it would took 

forever if the exploration is true ‘global’ but the result won’t differ much as long 

as the sampling point is enough. In the thesis, the ‘reference’ global exploration 

result can’t be fully proved to have sufficient sampling points. Thus, some 

results derived from the robust pathways might not be accurate. Notably, the 

performance of acceleration module is still rational and referable, as they have 

been proved to be able to have accurate prediction with the same set of data. 

In other word, if given the data from an exploration with ‘sufficient’ sampling 

points, the proposed acceleration module will also have good predictions. 

8.3.3 General applicability of the acceleration module 

Due to the time constraint, both acceleration modules are tested on a single 

case study. The applicability of the proposed modules to other cases remains 

unknown. Especially for the AM-ANN module, it is not clear whether the trained 

result is more efficient on the particular case (on future scenario) or on the 

performance of combined drainage systems (on drainage system plans). 

However, the time reduction by AM-ANN will always be stable due to the 

algorithm (The ANN can always predict after trained, so the time saving 

capacity is fixed), while the accuracy of prediction might depend on cases. 



Chapter 8. Conclusion and future work 

166 
 

8.4 Future works 

8.4.1 More comprehensive co-system planning 

The WSUD-dependent drainage network planning method proposed in this 

study considers the extension of old and new pipe networks in the process of 

urban expansion, but does not cover the reconstruction of old urban areas and 

adjustment of plot planning; The relevant feedback factors only consider the 

complementary plans such as decentralized facilities planning, but do not cover 

the restricted plans such as underground pipe corridor planning and road 

planning. Economic evaluation elements only consider the total consumables, 

not the construction amount, these aspects need to be further improved, in 

order to achieve a real overall planning.  

8.4.2 Better learning algorithms 

The global acceleration module (AM-ANN) proposed in this study has a good 

prediction ability for the situation where only the distributed facilities/spatial 

distribution strategy is updated, and a large prediction error for other situations. 

Meanwhile, the global dynamic acceleration module (AM-RST) has an opposite 

performance. It remains to be further explored whether we can take advantage 

of these two kinds of methods to form an efficient and dynamic comprehensive 

accelerated exploration method.  

For the AM-RST, the contributor to the huge background noise is still unclear. 

Future studies could look into the land use layout of the case study, unsatisfying 

convergence point, or limitation of the algorithm. 

8.4.3 Dynamic objectives and strategies 

As a long-term planning tool, the proposed model in this thesis haven’t 

considered the situation where technology upgrades (better performance of the 

existing infrastructure), new strategy options (new infrastructure), new 

objectives (which can’t be reflect by existing performance indicators). These 

unknown unknows would be some of the large challenges to long-term planning 

tools, as all of them required a new/extra explorations which, 1) can’t predict 

the prediction performance of acceleration module to these factors; 2) can’t 

predict their performance as a servicing system; 3) might overturn the existing 

robust pathways, which will require to redo a broader exploration than the 

existing one. 

8.4.4 Global exploration 
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Global exploration is a method that most researchers try to avoid due to its time 

and effort consumption. For a long time, researchers hope to replace global 

exploration by local exploration in the smallest possible scope and avoid falling 

into local optimization by various optimization methods. However, global 

exploration is always the one with the lowest uncertainty among all methods. 

With the rapid development of machine learning in recent years, there are a lot 

of problems to be further explored in the application field of global exploration. 

8.5 Final remarks 

In summary, this research has resulted in a model that allows the exploration 

of urban water infrastructure implementation pathways for multiple objectives 

with multiple strategies. 

The thesis has provided scholarly contributions related to long-term 

infrastructure planning and co-system planning. With some improvement, it 

could provide a valuable tool for policymakers and practitioners to evaluate 

robust plans to adapt to future.  

 
 


