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Abstract 

The Coupled Model Intercomparison Project (CMIP) model simulations show widespread 

uncertainties in El Niño Southern Oscillation (ENSO) statistics and dynamics. In the first chapter, 

we use the concept of the linear recharge oscillator (ReOsc) to diagnose the ENSO-dynamics in 

CMIP3 and CMIP5 model simulations. The ReOsc model parameters allow us to quantify Sea 

Surface Temperature (SST) and thermocline (h) damping, SST coupling to h and vice-versa, 

sensitivity to wind stress and heat flux forcings and separate atmospheric from oceanic processes. 

Our results show that the ENSO-dynamics and their diversity within the CMIP ensemble are well 

represented with the ReOsc model diagnostics. We also illustrate that the ENSO dynamics show 

more significant biases relative to observations and spread within the models than simple large-scale 

statistics such as SST standard deviation would suggest. The CMIP models underestimate the 

atmospheric positive and negative feedbacks, and they have compensating atmospheric and oceanic 

errors, the thermocline damping is too strong, and stochastic noise forcings in models is too weak. 

The CMIP5 models only show marginal improvements relative to CMIP3, and our analysis gives 

directions for improvement. 

 

In the second chapter, we investigate the accuracy of using the 200C isotherm (Z20) as an h proxy 

for ENSO studies instead of the maximum gradient of temperature (maxgrad). Our results indicate 

that the standard deviation of h is larger when maxgrad is used instead of Z20, which manifests in 

the SST-h phase relationships with the Z20 estimates being more similar to the theoretical recharge 

oscillator. Using the ReOsc model, we diagnose ENSO dynamics for both cases and find that Z20 

estimates have stronger SST damping, stronger h influence on SST, weaker h damping and weaker 

SST influence on h in comparison to maxgrad. The differences in the dynamical parameters and the 

change in the atmospheric and ocean parameter compensation indicate substantial differences in the 

ENSO dynamics diagnosis representation for the two h estimation techniques. 



 

In the third chapter, we analyze the changes in ENSO dynamics of the CMIP5 simulations for the 

RCP 8.5 scenario relative to the historical control simulation. ReOsc model is used to focus on 

changes in the growth rate of T and h anomalies, the coupling between the two, and the noise forcing 

driving the ENSO variability. We further focused on the feedbacks controlling the growth rate of T, 

namely the Bjerknes wind to SST feedback, the atmospheric net heat flux, and the residual oceanic 

feedback. We find significant changes in nearly all of these essential elements of the ENSO 

dynamics, although the ensemble shows minimal changes in the overall ENSO variability. The 

growth rate of T weakens resulting from a combination of increased negative atmospheric net heat 

flux feedbacks, increased positive Bjerknes wind-SST feedback, and increased residual oceanic 

feedbacks. Further notable changes are an increase in the growth rate of h and a stronger coupling 

of T to h. Sensitivity analysis can explain why these strong dynamical changes lead to effectively 

no changes in the overall ENSO variability but are likely to affect the predictability of ENSO. 
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CHAPTER 1. INTRODUCTION

1.1 El Niño Southern Oscillation (ENSO)

The term El Niño refers to the large-scale ocean-atmosphere climate phenomenon linked to

a periodic warming in sea-surface temperatures across the central and east-central equato-

rial Pacific (between approximately the date line and 120◦W). El Niño represents the warm

phase of the El Niño Southern Oscillation (ENSO) cycle, and is sometimes referred to as

a Pacific warm episode. El Niño originally referred to an annual warming of sea-surface

temperatures along the west coast of tropical South America. Trenberth and Hoar (1997)

reviewed the meaning of the term ”El Nino” and how it has changed in time with increasing

knowledge of the ENSO phenomenon.

ENSO is important to be studied as recent studies indicate that the occurrence of

floods, droughts or climate related disasters may be more predictable in the years of El

Niño or La Niña. Past El Niño have caused floods and landslides in Peru and California,

droughts in Australia and are known to influence the Indian monsoon (Kumar et al. 1999,

2006). ENSO is known to affect ecosystems especially coral reefs (Glynn and De Weerdt

1991; Aronson et al. 2000), agriculture (Hansen et al. 1998; Adams et al. 1999), tropical

cyclones, drought (Dilley and Heyman 1995; Schoennagel et al. 2005; Vicente-Serrano

et al. 2011), bushfires, floods and other extreme weather events worldwide (Vincent et al.

2011; Cai et al. 2012). Potential future changes in extreme El Niño occurrences could have

profound socio-economic consequences.

Fig. 1.1 illustrates the three tropical pacific ENSO patterns for (a) El Niño events (b)

La Niña events and (c) neutral conditions. The neutral conditions are depicted by Fig 1.1(c)

and we can see the convection associated with rising branches of the Walker Circulation

over the Maritime continent, northern South America, and eastern Africa.

El Niño and La Niña are departures from this neutral conditions where the Walker
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a	

b	

c	

Figure 1.1: Generalized Walker Circulation (December-February) anomaly overlaid
on map of average sea surface temperature anomalies during (a) El Niño events, (b)
during La Niña events and (c) ENSO-neutral conditions. Illustration sourced from
NOAA/Climate.gov, drawing by Fiona Martin.
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circulation deviates from neutral conditions. El Niño is characterized by an anomalous

warming of the central and eastern equatorial Pacific (Fig. 1.1(a)), which is associated

with westerly wind anomalies, an eastward shift of the western Pacific atmospheric deep-

convective pattern and a reduced zonal slope of the ocean thermocline along the equator.

During La Niña (Fig. 1.1(c)), central and eastern SST are anomalously low with

stronger trade winds and an increased zonal thermocline slope. Bjerknes (1969) discussed

the existence of a coupled positive feedback,where an initial eastern equatorial warm sea

surface anomaly induces a weakening of the wind field due to a reduced zonal SST gradient.

The weakening of the wind field leads to a deepening of the thermocline in the east, which

reinforces the initial warm anomaly (vice versa for La Niña).

Figure 1.2: Summary of decision process in determining El Niño conditions. Image
sourced from NOAA/Climate.gov, illustration by Glen Becker and Fiona Martin.

The decision process usually followed in determining El Niño conditions can be nicely

summarized by the decision tree shown in Figure 1.3 sourced from the NOAA Climate.gov
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website. NOAA’s Climate Prediction Center, which is part of the National Weather Service,

declares the onset of an El Niño episode when the 3-month average sea-surface tempera-

ture departure exceeds 0.5◦C in the east-central equatorial Pacific [between 5◦N-5◦S and

170◦W-120◦W].

1.2 ENSO theory and Simple statistical Models

for ENSO

Bjerknes (1969) first hypothesized that ENSO is a result of ocean–atmosphere interaction

in the tropical Pacific and later Wyrtki (1975, 1985) indicated that the growth and decrease

in sea level over the western Pacific Ocean are related to ENSO. The salient cyclic nature of

ENSO was later explained by the combined Bjerknes– Wyrtki – Cane– Zebiak hypothesis.

This hypothesis emphasized that ENSO is a natural basin-wide tropical Pacific ocean– at-

mosphere oscillation system and a positive feedback along with subsurface ocean memory

of the dynamical system are essential for ENSO. Based on this hypothesis Jin (1997a,b)

developed a recharge–discharge oscillator model for ENSO represented by six equations.

The equatorial thermocline depth is one of the main variables for understanding ENSO

dynamics, and the upper ocean dynamics can be approximately represented by the follow-

ing equation,

hE = hW + τ̂ (1.1)

hW denotes the thermocline depth anomaly in the western Pacific, hE is the thermo-

cline depth anomaly in the equatorial eastern Pacific; and τ̂ is proportional to the zonally

integrated wind stress in this band.

5



CHAPTER 1. INTRODUCTION

The tropical wind anomaly associated with ENSO is largely over the western to central

Pacific , hence the thermocline depth changes averaged over the western equatorial Pacific

is approximated as,

dhW
dt

= −r(hW + ατ̂) (1.2)

where r is the collective damping of the upper ocean system through mixing and the

equatorial energy loss to the boundary layer currents at the east and west sides of the ocean

basin. ατ̂ is the Sverdrup transport across the basin and has a minus sign because a westerly

wind stress anomaly will lead to a shallower thermocline over the western Pacific. Equation

(1.1) and (1.2) describe the basinwide equatorial oceanic adjustment under anomalous

wind stress forcing of low frequencies (Jin 1997a).

The climatological upwelling associated with the climatological trade wind along the

equator pumps water into the surface layer which thereby leads to the local thermocline

depth to control the SST. This central to east Pacific SST anomaly variations can be ap-

proximately depicted as,

dTE
dt

= −cTE + γhE + δsτE (1.3)

where TE , τE are SST and windstress averaged over the central to eastern equatorial

Pacific respectively, c is a collective damping rate, γhE represents the thermocline up-

welling process and δsτE is the advective feedback process. γ is the thermocline feedback

coeeficient and and δsis Ekman pumping feedback coefficient.

The simple approximate relations of the atmospheric response to a warm SST anomaly

in the central to eastern Pacific is a local westerly wind response over the same region and
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for the east SST anomaly there is an easterly anomaly. These can be represented by the

following equations,

τ̂ = bTE, τE = b′TE (1.4)

where b and b’ are coupling coefficients.

The two prognostic and two diagnostic equations were presented as an extended recharge

oscillator by incorporating the concept of eigen values by (Burgers et al. 2005),

dhW
dt

= −r(hW + ατ) (1.5)

dTE
dt

= −ε1(TE − γhhE) (1.6)

τ = bTE; (1.7)

dhE
dt

= −ε2(hE − hW − τ) (1.8)

Equation (1.5) elucidates the collective response of the western Pacific to wind stress

changes through Kelvin waves, Rossby waves and western boundary reflection. The mis-

match between the windstress and thermocline tilt is an important factor for interannual

variability according to Neelin et al. (1998). In the context of the above equations the mis-

match is caused due to TE reacting instantaneously to hE but Kelvin waves takes time to

propagate a signal from Central Pacific to the East Pacific.

By making the approximations that h is almost equal to 0.5*(hE + hW ) the equations
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can be written as,

dTE
dt

= a11TE + a12h (1.9)

dh

dt
= a21TE + a22h (1.10)

the coefficients aij are estimated by straightforward algebra.

The recharge discharge mechanism can be explained by a schematic diagram, as

shown in Fig. 1.3. During the warm phase of ENSO, anomalous westerlies cause an

anomalous tilt of the thermocline. The thermocline deepens when SST anomalies are get-

ting too positive in the eastern part of the equatorial Pacific. Westerly wind stress anomaly

gets created, the curl of the which is associated with a poleward Sverdrup transport. This

divergence of the Sverdrup transport leads to a discharge of equatorial heat content. This

phase is the discharge phase of the oscillator.

The divergence of zonally integrated Sverdrup transport eventually results in a dis-

charge of heat content which shallows the entire equatorial Pacific thermocline causes

system to move into Phase 2 where eastern Pacific SST leads to a La Niña event. Once

SST anomalies are back to normal, the westerly wind stress anomaly disappears. Then,

the thermocline becomes more shallow in the eastern part, leading to the appearance of

upwelling in the east Pacific. SST anomalies become negative, and easterly wind stress

appears. The anomalous cool SST in the eastern Pacific induces anomalous easterlies and

causes a recharge of upper ocean heat content due to a convergence of Sverdrup transport.

The Sverdrup current is bringing heat content towards the Equatorial region, recharging the

system.
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The recharge then conditions the system to start a new cycle leading the warm phase

of ENSO to the cold phase. The same process but with the opposite sign can lead the cold

phase to the warm phase. After that, the system reaches another transition phase, with a

deep thermocline due to the previous recharge (Figure 1.3- Phase IV) that would eventually

sink in Eastern part leading to a new El Niño phenomenon. Thus, ”the recharge–discharge

process makes the coupled system oscillate on interannual time scales”.

5 yr (see Fig. 7b dashed line). A hint for a periodic
ENSO cycle is also evident in the vertical structure of
the composited subsurface temperature anomalies and
heat content anomalies in Figs. 3 and 4, where it can be
seen that as the warm ENSO develops and propagates
eastward, development of the ensuing cold phase of
ENSO is already initiated in the western Pacific. Fur-
ther examination of various SST tendency terms points
to a relatively simple picture for the ENSO in our
coupled model, a picture that is consistent with much
simpler theoretical coupled models.

In this section, we further demonstrate that indeed
the basic picture or basic mechanisms derived from a
simple theoretical coupled model based on a ZC-type
coupled framework appears to capture the essence of
the ENSO cycle simulated in our much more complex
coupled model. We take a very simple approach,
namely, we will compare the correlation maps and co-
variance maps for the ocean heat content evolution as-
sociated with the model-simulated ENSO cycle. The
panels in the right column of Fig. 14 are essentially

equivalent to those in Fig. 3b. What is very striking in
Fig. 14f (Fig. 14j), for instance, is the subsurface warm
water (cold water) 12 month prior to (after) the peak
warming at the surface at zero lag (middle panel). This
feature is also evident in the left column for the corre-
lations as well. There is however one significant differ-
ence comparing the panels of the left and right columns,
that is, there is a clear signature of the second baroclinic
mode structure in the correlation patterns in the left
column, particularly from the central to the eastern
equatorial Pacific. This is reflected in the opposite signs
of the correlation in the top and bottom sections of the
upper 300 m of the equatorial eastern Pacific, as seen
most clearly in Figs. 14 d,e. However, this signal virtu-
ally disappears in the covariance plots in the right col-
umn, suggesting that this mode has only a minor con-
tribution to the subsurface temperature anomalies that
influence SSTs. Thus, we conclude that the high-order
vertical mode of equatorial oceanic waves appears to
play only a very minor role in the model-simulated
ENSO cycle. This is perhaps a convincing model evi-

FIG. 13. Schematic diagram illustrating the recharge–discharge oscillator for the ENSO cycle. Phase 1 represents El Niño conditions
and phase 3, the La Niña conditions. Phases 2 and 4 are transition conditions. The red and blue colors indicate the positive and negative
SST and subsurface temperature anomalies, respectively. The black arrows represent the anomalous wind stress. The blue thick arrows
represent the anomalous Sverdrup transport; the gray arrows indicate the climatological upwelling across the thermocline.

1 APRIL 2007 Z H A N G E T A L . 1279
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Figure 1.3: Schematic diagram of the recharge–discharge oscillator mechanism for
ENSO. Phase 1 is El Niño conditions, Phase 3 is La Niña conditions. Phases 2
and 4 are transition conditions. The red and blue colors indicate the positive and
negative SSTAs respectively. The blue thick arrows represent the anomalous Sverdrup
transport,black arrows represent the anomalous wind stress, the gray arrows indicate
the climatological upwelling across the thermocline.Figure and caption sourced from
(Zhang et al. 2007; Meinen and McPhaden 2000)

Although conceptual models provide a computationally efficient way to diagnose

ENSO dynamics in complex GCMs, it is also imperative to note their limitations. The

non linear nature of ENSO and the expected change in ENSO dynamics due to a warm-
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ing future scenario stresses the need for conceptual models to examine and incorporate

non-linearities in the model framework. Graham et al. (2015) carried out a reassessment

study to highlight deficiencies in linear conceptual models arising from fixed estimated pa-

rameters and note that multiplicative noise instead of additive noise is most appropriate.

While most of the conceptual models approximate the feedback parameters to be linear, in-

cluding a non linear atmospheric component to the model leads to improvement in ENSO

asymmetry reproduction (Choi et al. 2013).

Applicability of the recharge discharge mechanism to the different types of ENSO

was addressed by Ren and Jin (2013) who point out the interference of a strong decadal

background signal in case of the Western Pacific ENSO. Eigenmode analysis by Bejarano

and Jin (2008) reveals existence of two most important modes quasi-quadrennial (QQ; have

periods of around 4 yr) and quasi-biennial (QB; period of 2 years). For QQ mode the phase

transition is due to the slow oceanic dynamic adjustment of equatorial heat content, which

is consistent with the simple conceptual recharge oscillator. In QB mode the anomalous ad-

vection of sea surface temperature by equatorial zonal current anomalies plays a dominant

role in phase transition. The simplest recharge oscillator equations may-not encompass all

the varied flavours of ENSO.

The thermocline depth (h) is an important variable in the study of ENSO phenomenon

and is defined as the depth at which ocean potential temperature gradient is maximum.

Most commonly used proxy is the depth of the 20◦C isotherm (Z20 henceforth). The

accuracy of using the Z20 needs to be investigated as several studies have advocated the

use of maximum gradient of temperature instead of Z20 for future ENSO projections and

analysis (Zelle et al. 2004; Yang and Wang 2009).

10
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negative (Fig. 8c), irrespective of the sign of SST anoma-

lies, i.e. with weak nonlinearity in the Niño-3 shortwave

feedback. These two types of models are characterized by a
single atmospheric regime-like behaviour in eastern equa-

torial Pacific that is either mainly subsiding (the SUB type

corresponding to an always positive aSW, 23 models,

Fig. 8d, and Table 1) or mainly convective (the CONV

type corresponding to an always negative aSW, 12 models,

Fig. 8f). The 21 remaining models (the MIX type, Fig. 8b,
e) display a comparable behaviour to observations with a

shift from positive aSW
- (subsident condition) for negative

SSTA in Niño3 to a negative aSW
? (convective conditions)

(a)

(b)

(c)

(d)

Fig. 7 Atmosphere feedbacks
during ENSO for pre-industrial
control simulations–CMIP3
(blue) and CMIP5 (red).
a atmospheric Bjerknes
feedback, computed as the
regression of Niño 4 wind stress
over Niño3 SST
(10-3 N m-2 !C-1); b heat flux
feedback, computed as the
regression of total heat flux over
SST in Niño3 (W m-2 !C-1);
c Shortwave component of (b);
d Latent heat flux component of
(b). Reference datasets, shown
as black solid circles and
dashed lines, are ERA40 for
(a) and OAFlux for (b), (c) and
(d). See models and centres
legend in Fig. 1 and Table 1.
The CMIP3 and CMIP5 multi-
model mean are shown as
squares on the left of each panel
with the whiskers representing
the inter-model standard
deviation

2010 H. Bellenger et al.

123

Figure 1.4: Atmosphere feedbacks during ENSO for pre-industrial control simu-
lations–CMIP3 (blue) and CMIP5 (red). (a)Bjerknes feedback(regression of Niño4
wind stress over Niño3 SST(10−3 N m−2 ◦C−1); (b) heat flux feedback (regression of
total heat flux over SST in Niño3 (W m−2 ◦C−1); (c)Shortwave component of (b);
(d) Latent heat flux component of (b). Observations shown as black solid circles
and dashed lines, are ERA40 for (a) and OAFlux for (b), (c) and (d). The CMIP3
and CMIP5 multimodel mean are shown as squares on the left of each panel with
the whiskers representing the inter-model standard deviation. Figure and caption
sourced from Bellenger et al. (2014)
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1.3 ENSO in General Circulation Models (GCMs)

Over the last few decades, steady progress has taken place in simulating and predicting

ENSO global variability using coupled General Circulation Models (Latif et al. 2001;

Davey et al. 2002; Achuta Rao and Sperber 2002). Improvements in Coupled Model Inter-

comparision Project - Phase 3 (CMIP3) model formulation such as improved parameterized

physics and increase in the horizontal and vertical resolutions of atmospheric component

models etc. have led to a better spatial representation of the east Pacific SST anomalies

(Achuta Rao and Sperber 2006).

Coupled Global Climate Models (CGCMs)are capable of simulating realistic ENSO,

albeit with the occurrence of significant biases concerning ENSO characteristics. System-

atic errors in simulating both the mean climate and the natural variability persist (Capotondi

et al. 2006; Zhang and Jin 2012). Coupled Model Intercomparison Project phase 3 models

(CMIP3) underestimate the thermodynamic damping and positive feedbacks, e.g. zonal

advective and thermocline feedbacks (Meehl et al. 2007; Kim and Jin 2011; Lloyd et al.

2009). These feedbacks are essential as they are responsible for ENSO variability, and dis-

play a large diversity of ENSO amplitude, stability, and teleconnections (Guilyardi 2006;

Kim and Jin 2011).

Guilyardi et al. (2009) report that models have difficulty in simulating the correct

intensity and spatial structure of the East Pacific cold tongue along the equatorial Pacific

(Reichler and Kim 2008), the mean thermocline depth and slope along the equator and the

structure of the equatorial currents (Brown and Fedorov 2008). Models fail to correctly

simulate the mean zonal equatorial wind stress (Guilyardi 2006; Lin 2007), the meridional

extent of the wind variability in the eastern Pacific which is essential for ENSO phase

change (Zelle and Dijkstra 2005). The models tend to produce anomalies that extend too far
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into the western tropical Pacific, and the simulations typically have diffused thermoclines

(Davey et al. 2002). The models also have difficulty in simulating the spatial and temporal

structure of the El Niño-La Niña asymmetry (Monahan and Dai, 2004), amplitude and

structure of ENSO variability (Davey et al. 2002) and correct phase locking between the

annual cycle and ENSO.

The “double Intertropical Convergence Zone (ITCZ)” which is a significant source

of model error and is responsible for excessive precipitation over the tropics exists in the

models (Lin 2007). Latif et al. (2001) carried out an inter-comparison of an ensemble of

twenty-four coupled ocean-atmosphere models in terms of performance of the annual mean

state, the seasonal cycle, and the inter-annual variability and almost all models (even those

employing flux corrections) showed problems in simulating the SST climatology.

CMIP5 models have shown some improvements over CMIP3 in regards to ENSO

simulation. Kim and Jin (2011) suggested that both the heat flux and atmospheric Bjerknes

feedbacks contribute to CMIP3 model errors. Bellenger et al. (2014) reviewed ENSO rep-

resentation in CMIP3 and CMIP5 model and investigated if there has been any progress in

the representation of these atmospheric feedbacks in the CMIP5 ensemble. Fig. 1.4 sourced

from (Bellenger et al. 2014) shows the atmospheric feedback parameters for CMIP3 and

CMIP5 models for the pre-industrial control run. For almost all feedback parameters there

is no significant improvement in the model ensemble mean. There is no qualitative change

in the multi-model ensemble mean atmospheric Bjerknes feedback ( Fig 1.4 (a)). The

observed heat flux feedback (Fig. 1.4 (b)), is also underestimated by most CMIP3 and

CMIP5 models. CMIP3 and CMIP5 models both poorly reproduce the shortwave feedback

(almost zero) as CMIP5 models still struggle to represent convection and cloud processes

(Jiang et al. 2012) . There is some improvement in CMIP5 models when comparing the

latent heat flux feedback.
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Kim and Yu (2012) reported that CMIP5 models simulate more realistically the ob-

served spatial patterns of the two types (or flavours) of ENSO and have a significant re-

duction of inter-model diversity in their amplitudes of the two types of ENSO. Zhang

and Jin (2012) demonstrated a modest improvement in simulating the meridional width

of ENSO sea surface temperature (SST) anomaly that generally tends to be narrow, which

is attributable to a more realistic simulation of equatorial winds and ENSO periodicity in

CMIP5 models.

1.4 ENSO in a greenhouse warming scenario

NATURE GEOSCIENCE | VOL 3 | JUNE 2010 | www.nature.com/naturegeoscience 395

REVIEW ARTICLENATURE GEOSCIENCE DOI: 10.1038/NGEO868

past millennium49,50. However, there is no direct palaeo-analogue 
of the rapid greenhouse-gas-induced climate change that we are 
currently experiencing.

Detecting externally forced changes in the characteristics of 
ENSO using observational and climate change simulations is dif-
ficult because of the large intrinsic variations in ENSO behaviour, 
which can occur on multidecadal and centennial timescales, even 
in the absence of external changes52–54. This problem can be par-
tially overcome in CGCMs by performing multiple runs with the 
same model and measuring forced changes against natural vari-
ability from long, unforced control experiments. However, in the 
real world this is not possible, and naturally occurring variability 
could be masking changes driven by global warming.

ENSO processes and feedbacks may be affected by greenhouse-
gas-induced changes in mean climate or by direct changes to some 
of those physical feedbacks and this could, in turn, lead to changes 
in the characteristic amplitude or frequency of ENSO events. As 
illustrated in Fig. 3, some CGCMs show an increase in the ampli-
tude of ENSO variability in the future, others show a decrease, and 
some show no statistically significant changes. Figure 3 is based 
on just one of many studies that have come to the same conclu-
sions9,10,55–60. Based on the assessment of the current generation of 
CGCMs, there is no consistent picture of changes in ENSO ampli-
tude or frequency in the future. However, by assessing individual 
feedback processes16 separately in CGCMs, we can shed some light 
on how ENSO might be affected by climate change:

Mean upwelling and advection. Both the mean upwelling of cold 
water in the eastern equatorial Pacific and the mean subsurface 
advection act to strengthen the climatological temperature gradi-
ents in the horizontal and the vertical. If a positive thermal anomaly 
occurs in the east Pacific, then these processes damp that anom-
aly. Mean upwelling and mean advection in CGCMs are reduced 
under climate change due to the general weakening of the equa-
torial trade winds25. This would lead to a tendency for enhanced 
ENSO activity.

Thermocline feedback. Changes to the eastern equatorial Pacific 
thermocline depth can affect the character of El Niño. A flatten-
ing of the equatorial thermocline on interannual timescales leads 
to a positive SST anomaly in the east Pacific. As the climatologi-
cal thermocline shoals in CGCMs under greenhouse warming, 
the SST response to an anomaly in thermocline depth should 
increase15. In CGCM projections, changes in the mean depth 
of the thermocline in the east Pacific are affected by two com-
pensating processes; thermocline shoaling or rising up tends to 
reduce the depth in the east, but a reduction of the equatorial 
thermocline slope tends to deepen it24,25. These changes could 
be expected to enhance the amplitude of ENSO events under 
climate change.

SST/wind stress (Ekman) feedback. A weakening of the wind stress 
during El Niño events on interannual timescales leads to positive 
SST anomalies as less cold water is pumped upwards from below the 
surface of the ocean. Those positive SST anomalies further weaken 
the wind stress. This effect could increase under climate change 
because of the reduced mixed-layer depth that arises as a result of 
the reduced mean trade wind strength, and increased thermal strat-
ification15,33. Wind stress anomalies could become more effective 
at exciting SST anomalies; in addition, the wind stress response to 
SST anomalies can become stronger in regions where SST increases 
are largest15, that is, on the equator. Both effects would tend to 
amplify ENSO.

Surface zonal advective feedback. This is a positive feedback in 
the ENSO cycle. The anomalous zonal advection of the mean SST 

gradient amplifies El Niño events during their growth phase. As 
there is little change in the mean zonal SST gradient in CGCMs 
(Fig. 2c), it is unlikely that this feedback would change signifi-
cantly under climate change. However, it might be important if 
the relative frequency of occurrence of different types of ENSO 
modes changes31. The zonal advective feedback is more promi-
nent in central Pacific El Niño, or ‘Modoki’, variability in which 
SST anomalies occur principally in the central Pacific without the 
warm anomalies in the east.

Atmospheric damping. The atmospheric damping of SST anoma-
lies is generally partitioned into components associated with sen-
sible and latent heat fluxes, and surface short wave (SW) and long 
wave (LW) fluxes. In general we expect that SST anomaly damp-
ing through surface fluxes will increase because of increased cli-
matological SSTs15,17. This increase would therefore tend to reduce 
ENSO variability. Surface flux damping might also change because 
of mean cloud changes brought about by weakening of Walker cir-
culation and/or changes in cloud properties. Cloud feedbacks and 
their link to the two large-scale circulation regimes that operate in 
the east Pacific (subsidence and convective61) remain a large uncer-
tainty in CGCMs17,62, probably driving a large fraction of the ENSO 
errors in the control climate conditions of present-day CGCMs17.

Atmospheric variability. Westerly wind variability in the west 
Pacific, often associated with coherent intraseasonal variability 
and the MJO, has been shown to be important in triggering and 
amplifying El Niño events63–66. Thermocline anomalies excited 
in the west can propagate to the east, where they are amplified. 
Climate change simulations in several CGCMs project a future 
enhancement of the intraseasonal variability in the equatorial 
Pacific in response to greenhouse gas increase, and this is an 
important factor for potential intensification of the El Niño activ-
ity38. However, it should be noted that the simulation of the MJO 
and related activity is perhaps one of the major weaknesses of cur-
rent CGCMs, but is an area in which there is considerable poten-
tial for improvement.

Other processes and feedbacks. Other processes have been shown 
to play a role in determining the precise characteristics of ENSO 
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Figure 3 | Projected changes in the amplitude of ENSO variability, 
as a response to global warming, from the CMIP3 models8,9. The 
measure is derived from the interannual standard deviation (s.d.) 
of a mean sea-level-pressure index, which is related to the strength 
of the Southern Oscillation variations. Positive changes indicate a 
strengthening of ENSO, and negative changes indicate a weakening. 
Statistical significance is assessed by the size of the blue bars, and the 
bars indicated in bold colours are from those CMIP3 CGCMs that are 
judged to have the best simulation of present-day ENSO characteristics 
and feedbacks.
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Figure 1.5: Projected changes in ENSO amplitude variability in CMIP3 models as
a response to global warming. This figure is sourced from (Collins et al. 2010)

SST and atmospheric pressure instrumental records since the late 19th century allow

us to explore changes in some aspects of ENSO (Worley 2005, Smith 2008). For a more

extended analysis, paleo-climate data records from oceanic and lake sediments, corals and

tree rings have been used to diagnose changes in ENSO many years into the past. NIÑO3

SST records indicate variations in the amplitude and frequency of ENSO and increased

14
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ENSO activity over the past 50–100 years. Vecchi and Wittenberg (2010) used a state-of-

the-art global climate model to suggest that ENSO changes similar to those over the past

millennium could occur without changes to radiative forcing.

Van Oldenborgh et al. (2005) analyzed the climate model experiments prepared for

IPCC AR4 and reported that the amplitude of ENSO variability had large uncertainties and

has no statistically significant changes in the future. They estimated very little influence of

global warming on ENSO. Collins et al. (2010) report that global warming induced change

in the mean climate of the Pacific region, may modify one or more of the physical processes

responsible for characteristic amplitude or frequency of ENSO events. Expected changes

would be weakening of tropical easterly trade winds, faster warming of ocean surface near

the equator and more slowly farther away; shoaling of the equatorial thermocline along

with steeper temperature gradients across the thermocline. Change in nonlinear feedbacks

like cloud-albedo or thermocline-SST feedback could also lead to different ENSO dynam-

ics. As illustrated in Fig. 1.5 sourced from (Collins et al. 2010), the amplitude of ENSO

variability in the future based on CMIP3 models show an increase in some CGCMs, other

CGCMs show a decrease, and some show no statistically significant changes.

ENSO amplitude is represented by magnitude of the associated sea surface tempera-

ture (SST) variability no consensus on the change in the magnitude of the associated SST

variability (Guilyardi 2006; Collins et al. 2010; Stevenson et al. 2012). Kim et al. (2014)

attributed this lack of consensus to expectation of unidirectional trend in ENSO amplitude

over the entire twenty-first century, and unrealistic model dynamics of tropical Pacific SST

variability.

The large uncertainty in the projected change in ENSO amplitude is due to the perfor-

mance of CGCMs in simulating the feedback processes discussed above and their relative

importance varies. Although overall ENSO dynamics are approximately linear (Jin 1997a)
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there are non linear aspects which have important implications on ENSO characteristics

(An and Jin 2004).

1.5 Research objectives and outline

From the above discussions few major research questions arise that are associated with

ENSO in a changing climate. The various questions are as follows:

1. Is the Recharge Oscillator model a good representation of ENSO in CMIP models?

2. Evaluation of ENSO in historical scenario:

Do the CMIP models exhibit changes in internal dynamics?

Is there an effect of model biases and model spread on ENSO dynamics?

Do compensating model parameter errors exist?

How good are the models in terms of a dynamical skill score?

3. Effect of ENSO thermocline estimation techniques on ENSO

Is there a difference in the diagnosis of ENSO dynamics representation due to

different techniques of estimating thermocline depth.

4. Evaluation of ENSO in climate change scenario:

Effect of climate change on the ENSO dynamics, statistics and predictability.

This thesis is outlined as follows. Chapter 2 will answer questions 1 and 2 providing

proof of concept to illustrate the skill of the linear recharge oscillator model in diagnosing

the ENSO behavior in different CMIP model simulations. The chapter will then focus

on the characteristics of the CMIP model ensemble utilizing the ReOsc model parameter

diagnostics. The ENSO dynamics, ENSO statistical parameters, effect of model biases and
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spread on ENSO dynamics, atmospheric and oceanic feedback errors will be investigated

and the chapter will be concluded with an inter-comparison of all CMIP models on the

basis of a skill score.

Chapter 3 will focus on the third question and evaluate the estimation techniques of

thermocline depth anomaly, which is an important variable of ENSO dynamics. We shall

investigate the differences in diagnosis of CMIP ENSO dynamics representation in the

recharge oscillator model framework when using two definitions of thermocline depth.

Chapter 4 will focus on the fourth question, i.e. ENSO dynamics climate change sim-

ulations with respect to historical scenario using the ReOsc model. We will carry out sen-

sitivity analysis to analyze effect of probable ENSO dynamic changes on ENSO variability

and predictability.

The thesis is concluded with three short summary sections of the main result chapters

and with a section on future work.
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Chapter 2

An evaluation of ENSO dynamics

in CMIP simulations in the

framework of the recharge

oscillator model

This thesis chapter originally appeared in the literature as

Vijayeta, A., Dommenget, D. , An evaluation of ENSO dynamics in CMIP sim-

ulations in the framework of the recharge oscillator model. Climate Dynamics,

51(5-6), 1753-1771 (2018). https://doi.org/10.1007/s00382-017-3981-6
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CHAPTER 2. ENSO IN HISTORICAL SCENARIO

2.1 Introduction

El-Niño Southern Oscillation (ENSO) is the dominant mode of interannual climate vari-

ability in the tropical Pacific. ENSO has its origins in the tropical Pacific but it is known

to influence the weather all over the world. The dynamics that control ENSO are impor-

tant for global seasonal climate predictions, but are also important for long-term global

climate change. ENSO being a result of complicated dynamical processes encompasses

several atmospheric and oceanic feedbacks. The main linear atmospheric feedbacks are the

Bjerknes feedbacks (Bjerknes 1969) and the net atmospheric heat flux feedback (Zebiak

and Cane 1987). The Bjerknes feedbacks are essentially a positive feedback loop leading

to ENSO growth and the net atmospheric heat flux feedback is a negative feedback. Several

conceptual models have been proposed which condense the dynamics of ENSO into sim-

ple theoretical frame works like the delayed action oscillator (Suarez and Schopf 1988) the

recharge oscillator(Jin 1997a,b) and the further simplified recharge oscillator (Burgers et al.

2005). For our analysis, we use the latter and refer to it as the ReOsc model henceforth.

State-of-the-art coupled general circulation models (CGCMs) are capable of simu-

lating the ENSO dynamics albeit with some biases with respect to the observed ENSO

characteristics. Latif et al. (2001) carried out an intercomparison of an ensemble of twenty-

four CGCMs in terms of performance of the annual mean state, the seasonal cycle and the

interannual variability and almost all models (even those employing flux corrections) ex-

hibited problems in simulating the sea surface temperature (SST) climatology. Although

our understanding of ENSO has improved over the last decades CGCM simulations of

the phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5)

still have difficulties in simulating the climatology of the tropical Pacific, this includes the

correct intensity and spatial structure of the East Pacific cold tongue along the equatorial

Pacific(Bellenger et al. 2014; Reichler and Kim 2008), mean thermocline depth and slope
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along the equator and the structure of the equatorial currents (Brown and Fedorov 2008),

mean zonal equatorial wind stress (Guilyardi 2006) and meridional extent of the wind vari-

ability which is important for ENSO phase change (Zelle and Dijkstra 2005).

Because of the scale of ENSO effects on the weather all over the world, changes in dy-

namics of ENSO in the future is an important scientific question that needs to be answered.

Van Oldenborgh et al. (2005) showed no statistically significant changes in amplitude of

ENSO variability in the future. Uncertainties in the variability being large, they estimated

very little influence of global warming on ENSO. On the other hand, Collins et al. (2010)

report that global warming may change mean climate of the Pacific region, which in turn

may modify one or more of the physical processes responsible for determining the charac-

teristics of ENSO. Expected changes would be weakening of tropical easterly trade winds,

faster warming of ocean surface near the equator and more slowly farther away; shoaling of

the equatorial thermocline along with steeper temperature gradients across the thermocline.

Change in non-linear feedbacks like cloud-albedo or thermocline-SST feedback could also

lead to different ENSO dynamics. However, confidence in these findings is undermined by

the diversity in the model projections. Simulations from different CGCMs result into very

different future projections of ENSO (Collins et al. 2010). Here again the uncertainty in

the GCGM simulation of the ENSO dynamics is a limiting factor. The relative importance

of different processes contributing to the ENSO dynamics is different from model to model

and different to those observed.

The aim of this study is to evaluate the CGCM simulation of the CMIP 3 and 5

databases in their performance of ENSO dynamics. We will base our analysis on the Re-

Osc model, which has been used in many studies to analyze ENSO dynamics in different

ways (Burgers et al. 2005; Frauen and Dommenget 2010; Jansen et al. 2009; Levine and

McPhaden 2015; Yu et al. 2016). The ReOsc model being a simplified representation of

ENSO dynamics, allows us to diagnose the dynamical parameters of the ENSO variability
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from the statistics of the model simulations or observations. The advantage of this ap-

proach in comparison to simple statistical parameters (e.g. SST standard deviation, SST

pattern) or heat budget analysis (e.g. the BJ-index from Jin et al. (2006)) is that it defines a

dynamical framework with only a small numbers of parameters. The dynamical framework

allows us to determine the sensitivity of ENSO statistics to different dynamical parameters.

Further, the simplicity of the model allows for a large reduction of complexity in the ENSO

dynamics. This approach will help us to get from model evaluations towards direct model

developments by linking error in large-scale statistics with dynamical processes that are

closer to the processes that are simulated in CGCMs.

This chapter is organized as follows. The data sets, model and methods used are

described in Section 2.2. The statistical analysis and test of the ReOsc model skill to

represent ENSO dynamics is presented in Section 2.3. The main results of this study are

presented in Section 2.4. It addresses the CMIP model ENSO dynamics in terms of ReOsc

model parameters along with the effect of CMIP model parameter distributions and biases

on ENSO dynamics. Section 2.5 presents a dynamical skill (bias) score of each CMIP

model based on the results of the previous sections. The study is concluded with a summary

and discussion in Section 2.6.

2.2 Data, models and methods

For observational data we use the 1950–2014 HadISST1.1 data (Rayner et al. 2003) for

SST and the 1982–2002 BMRC 20 ◦C isotherm depths of (Smith 1995) as an estimate for

the thermocline depth. Since the BMRC 20 ◦C isotherm depths record is much shorter

than the SST record we restrict our analysis of SST and thermocline depth co-variability

to 1982–2002. The 1979–2014 ERA Interim data set is used for estimates of zonal surface

wind stress (Dee et al. 2011) and the 1984–2004 OA Flux for estimates of surface heat
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fuxes (Yu and Weller 2007).

We analyze model simulations from the CMIP3 and CMIP5 databases (Meehl et al.

2007; Taylor et al. 2012). For the CMIP3 models we use the “20 cm3” simulations and the

“historical” scenario for the CMIP5 models for the years 1900–1999. Only one ensemble

members have been used from each model. We used all available models that provide all

climate variables needed for the following analysis. These are 10 CMIP3 and 29 CMIP5

models; see Table 2.1.

Table 2.1:: CMIP3 and CMIP5 models with the corresponding model numbers
1755An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator…

1 3

the coupling between T and h. The two equations are forced 
by stochastic noise terms !1 and !2. The parameters of the 
2-dimensinal model Eq. (1) are estimated for observations and 
also for each CMIP model simulation by multivariate linear 
regressing the monthly mean tendencies of T and h against 
monthly mean T and h, respectively. Following the approach in 
previous studies (Burgers et al. 2005; Frauen and Dommenget 
2012; Jansen et al. 2009). The residual of the linear regression 
fit can be interpreted, as the random noise forcings with the 
standard deviation (stdv) of the residuals being the stdv of the 
noise forcings for the T and h equations (!1 and !2).

The ReOsc model strongly simplifies the ENSO dynamics 
and each of the 4 parameters and the two noise forcing terms 
can be a result of many different physical processes in the 
atmosphere and oceans. To further untangle the complexity 
the parameters, a11 and a21 can be split up into an atmospheric, 
a11A and a21A, and oceanic part, a11O and a21O following the 
approach of Frauen and Dommenget (2010) and Yu et al. 
(2016): 

The atmospheric damping (or growth rate) of T, a11A, 
is effectively a coupling to wind stress and net heat flux 
(Frauen and Dommenget 2010): 

(2)
a11 = a11O + a11A

a21 = a21O + a21A

The coefficient C!T is the linear regression of zonal wind 
stress, !x, in the central Pacific box and NINO3 SST. This 
essentially represents one of the three Bjerknes feedbacks. 
CfT is a linear regression between net atmospheric heat flux 
and SST in the NINO3 region. λ is a positive free coupling 
parameter and ! the ocean mixed layer depth following the 
approach of Frauen and Dommenget (2010), which is based 
on the study of Jin et al. (1997a). The atmospheric part of 
the coupling of h to T, a21A, can be expressed as: 

The oceanic parts of the couplings to T, a11O and a21O, 
in Eq. (2) can be estimated as the residuals of a11 and a21 in 
Eq. (2) when a11A and a21A are estimated from Eqs. (3) and 
(4). All parameters values as estimated from observations 
or calculated are listed in Table 2 for an overview. In the 
analysis part the parameters C!T, CfT, a11O and a21O will be 
estimated for the CMIP simulations in the same way as for 
the observations. To reduce the complexity in the analysis 
we assumed ! to be the same for all models. The coupling 
parameter λ is fixed for all analysis, as it was estimated in 

(3)a11A = a12!C"T +
CfT

#

(4)a21A =
a22
2
!C"T

Table 1  CMIP3 and CMIP5 models with the corresponding model numbers

No. CMIP3 model No. CMIP3 model

1 CGCM3.1 6 GISS-ER
2 CGCM3.1.T63 7 IPSL-CM4
3 CNRM-CM3 8 MPI-ECHAM5
4 GFDL-CM2.0 9 MRI-CGCM2.3.2
5 GISS-AOM 10 UKMO-HADCM3
No. CMIP5 model No. CMIP5 model

1 ACCESS1-0 16 GISS-E2-R
2 ACCESS1-3 17 GISS-E2-R-CC
3 CCSM4 18 HadCM3
4 CESM1-BGC 19 HadGEM2-CC
5 CESM1-CAM5 20 HadGEM2-ES
6 CESM1-FASTCHEM 21 IPSL-CM5A-MR
7 CESM1-WACCM 22 IPSL-CM5B-LR
8 CNRM-CM5 23 MPI-ESM-LR
9 CSIRO-Mk3-6-0 24 MPI-ESM-MR
10 CanESM2 25 MRI-ESM1
11 FGOALS-g2 26 NorESM1-M
12 GFDL-ESM2G 27 NorESM1-ME
13 GFDL-ESM2M 28 bcc-csm1-1-m
14 GISS-E2-H 29 CMCC-CM
15 GISS-E2-H-CC

All analysis is based on monthly mean anomaly time series for thermocline depth

averaged over the equatorial Pacific (130◦E–80◦W, 5◦S–5◦N) and NINO3 (150◦W–90◦W,

5◦S–5◦N) SST index and net heat flux, and central Pacific (160◦E – 140◦W, 6◦S–6◦N) zonal

surface wind stress. Monthly anomalies are computed by subtracting the mean seasonal

cycle for each dataset.
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The ReOsc model from (Burgers et al. 2005) is given by two tendency equations of the

NINO3 region SST anomalies, T, and equatorial Pacific mean thermocline depth anomalies,

h:
dT (t)

dt
= a11T (t) + a12h(t) + ζT (2.1)

dh(t)

dt
= a21T (t) + a22h(t) + ζh (2.2)

The model parameters a11 and a22 represent the damping (or growth rate) of T and h,

and the parameters a12 and a21 the coupling between T and h. The two equations are forced

by stochastic noise terms ζT and ζh. The parameters of the 2-dimensional model Equation

(2.1) and (2.2) are estimated for observations and also for each CMIP model simulation

by multivariate linear regressing the monthly mean tendencies of T and h against monthly

mean T and h, respectively following the approach in previous studies (Burgers et al. 2005;

Frauen and Dommenget 2012; Jansen et al. 2009). The residual of the linear regression fit

can be interpreted, as the random noise forcings with the standard deviation (stdv) of the

residuals being the stdv of the noise forcings for the T and h equations (ζT and ζh).

The ReOsc model strongly simplifes the ENSO dynamics and each of the 4 parameters

and the two noise forcing terms can be a result of many different physical processes in the

atmosphere and oceans. To further untangle the complexity the parameters, a11 and a21 can

be split up into an atmospheric, a11Aand a21A, and oceanic part, a11O and a21O following

the approach of Frauen and Dommenget (2010) and Yu et al. (2016) :

a11 = a11A + a11O (2.3)

a21 = a21A + a21O (2.4)
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The atmospheric damping (or growth rate) of T, a11A, is effectively a coupling to wind

stress and net heat flux(Frauen and Dommenget 2010):

a11A = a12λCτT +
CfT
γ

(2.5)

The coefficient CτT is the linear regression of zonal wind stress, τx, in the central Pa-

cific box and NINO3 SST. This essentially represents one of the three Bjerknes feedbacks.

CfT is a linear regression between net atmospheric heat flux and SST in the NINO3 region.

λ is a positive free coupling parameter and γ the ocean mixed layer depth following the

approach of Frauen and Dommenget (2010), which is based on the study of Jin (1997a).

The atmospheric part of the coupling of h to T, a21A, can be expressed as:

a21A =
a22
2
λCτT (2.6)

The oceanic parts of the couplings to T, a11O and a21O, in Equations (2.3) and (2.4)

can be estimated as the residuals of a11 and a21 in Equations (2.3) and (2.4) when a11A

and a21A are estimated from Equations (2.5) and (2.6). All parameters values as estimated

from observations or calculated are listed in Table 2.2 for an overview. In the analysis part

the parameters CτT , CfT , a11O and a21O will be estimated for the CMIP simulations in the

same way as for the observations. To reduce the complexity in the analysis we assumed

γ to be the same for all models. The coupling parameter λ is fixed for all analysis, as it

was estimated in (Frauen and Dommenget 2010) from running CGCM sensitivity studies.

Even though the ocean components are by definition residuals of the feedback parameters

after subtracting the atmospheric components, they are a combination of the of thermocline

feedback, zonal advection feedback and Eckman pumping feedback. It is beyond the scope

of this thesis to formulate the ocean feedbacks individually, there are other methods of
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estimating the ocean feedback processses individually namely the BJ index.

It should be noted here that in model simulations the regions of wind-SST or other

interactions may be shifted in location (e.g. east–west shift), but be otherwise similar to

observations. This would lead to changes in the estimated parameters. We will not discuss

such variations due to regional shifts, but leave this to future studies.

The ReOsc model Equations (2.1)and (2.2) can be integrated with stochastic noise

forcing terms ζT and ζh to generate stochastic time series of T and h. We therefore inte-

grated the equations with a time step of 24 h and red noise forcing terms ζT and ζh. The

decorrelation time of ζT and ζh is set to 3 days to mimic weather fluctuations that effectively

results into white noise for monthly mean data. Monthly mean stdv of the noise forcings is

the stdv as observed or estimated from the CMIP simulations in Equations (2.1) and (2.2)

as described above.

Table 2.2:: All model parameters values as estimated from observations or calculated
otherwise

1756 A. Vijayeta, D. Dommenget 
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(Frauen and Dommenget 2010) from running CGCM sen-
sitivity studies.

It should be noted here that in model simulations the 
regions of wind-SST or other interactions may be shifted in 
location (e.g. east–west shift), but be otherwise similar to 
observations. This would lead to changes in the estimated 
parameters. We will not discuss such variations due to 
regional shifts, but leave this to future studies.

The ReOsc model Eqs. (1) can be integrated with sto-
chastic noise forcing terms !1 and !2 to generate stochastic 
time series of T and h. We therefore integrated the equations 
with a time step of 24 h and red noise forcing terms !1 and !2. 
The decorrelation time of !1 and !2 is set to 3 days to mimic 
weather fluctuations that effectively results into white noise 
for monthly mean data. Monthly mean stdv of the noise forc-
ings is the stdv as observed or estimated from the CMIP 
simulations in Eq. (1) as described above.

3  Proof of concept

Before we apply the ReOsc model to diagnose the ENSO 
dynamics in the CMIP model simulations we first like to 
start with a proof of concept. We therefore do a number 
of different analyses to illustrate the skill of the ReOsc 
model in diagnosing the ENSO behavior in different model 
simulations.

We start the analysis by evaluating the observed time 
series of T and h, see Fig. 1a. In addition to the standard 
deviations of T and h, the power spectrum of T and the lag-
lead correlation between T and h are two important statistical 
characteristics describing the ENSO behavior; see Fig. 1c, 
d. The observed time evolution of h leads that of T by about 
5–6 months (peak of cross-correlation), which is indicative 
of the ENSO recharge and discharge mechanism, which is 
the fundament of the ReOsc model.

The stochastic integration of the ReOsc model with the 
observed parameters (see Table 2) shows very similar sto-
chastic behavior. Figure 1b shows a 20 years sample from 

the 1000 years long integration. The statistical properties 
stdv(T), stdv(h), power spectrum of T and the cross correla-
tion between T and h based on the 1000 years integration of 
the ReOsc model are all similar to observed. The stdv(h), 
spectral slope and the cross-correlation are, however, slightly 
overestimated (Table 3). In summary, we conclude that the 
ReOsc model does replicate the main stochastic character-
istic of T and h and their interaction fairly well.

Figure 2 shows the power spectrum and cross correla-
tion between T and h for four CMIP5 models. Here we 
highlighted four CMIP simulations that have fairly differ-
ent ENSO behaviors. They differ in the shape of the power 
spectrum, the overall variance and in the cross correlation 
between T and h. The stochastic integrations of the ReOsc 
model with the parameter from the four CMIP model simu-
lations (see Sect. 2 for details) do replicate the differences in 
these main statistical characteristics fairly well. For instance, 
the ReOsc integration mimicking the bcc-csm1-1-m simula-
tion has a much stronger peak in the power spectrum than 
the one for the CMCC-CM, replicating the same difference 
seen in the original CMIP simulations of bcc-csm1-1-m and 
CMCC-CM. Similarly, the weak cross correlation between T 
and h in the CMCC-CM simulation is well captured by the 
ReOsc integration. These preliminary results suggest that 
the ReOsc model is capable of capturing the most important 
characteristics of ENSO behavior in CMIP simulations.

We now compare four main statistical properties [stdv(T), 
stdv(h), power spectrum slope and cross correlation between 
T and h] of all CMIP simulations against the ReOsc integra-
tion mimicking the CMIP models, see Fig. 3. Here we first 
of all focus on the proof of concept, but we will in the next 
sections discuss the results further. The ReOsc model is able 
to replicate the stdv(T) and stdv(h) with very high correla-
tions for both CMIP3 and 5 (see Fig. 3). It may, however, 
be argued that this is not totally unexpected, as we have fit-
ted the model parameters to the T and h tendency Eqs. (1) 
for each model. This essentially enforces a close match in 
stdv(T) and stdv(h) if the ReOsc model has any value in 
presenting the main dynamics of the CMIP simulations. 
However, the fact that we closely reproduce the stdv(T) and 
stdv(h) does suggest that the ReOsc is capturing some essen-
tial elements of the ENSO dynamics in the CMIP simula-
tions. It should be pointed out here that this model does not 
consider seasonal difference in the parameters (all param-
eters are constants) neither does it consider non-linearities. 
Thus, to first order these are not essential to understand the 
main ENSO statistics presented in this study.

The ReOsc model also has some skill in reproducing the 
variations in the power spectrum. To captures the difference 
in the power spectrum we estimated the slope (in log-scale) 
of the power spectrum for each model and observations for 
periods from 6 months to 5 years (see Fig. 3c). This marks 
the range of the power spectrum in which the variance is 

Table 2  All model parameters values as estimated from observations 
or calculated otherwise

a11 (T damping/growth rate) − 0.074 [1/month]
a12 (T coupling to h) 0.021 [C/m/month]
a22 (h damping/growth rate) − 0.022 [1/month]
a21 (h coupling to T) − 1.23 [m/C/month]
stdv (!1) (amplitude of T noise) 0.25 [C/month]
stdv (!2) (amplitude of h noise) 2.22 [m/month]
C!T (wind-SST feedback) 0.011 [N/m2/C]
CfT (atmos. heat–SST feedback) − 16.9 [W/m2/C]
! (free coupling parameter) 2100  [m3/N]
! (scaled ocean mixed layer depth) 79.0 [C  m2/W/month]
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2.3 Proof of concept

Before we apply the ReOsc model to diagnose the ENSO dynamics in the CMIP model

simulations we first like to start with a proof of concept. We therefore do a number of dif-

ferent analyses to illustrate the skill of the ReOsc model in diagnosing the ENSO behavior

in different model simulations.

We start the analysis by evaluating the observed time series of T and h, see Fig. 2.1a.

In addition to the standard deviations of T and h, the power spectrum of T and the la-

glead correlation between T and h are two important statistical characteristics describing

the ENSO behavior; see Fig. 2.1c, d. The observed time evolution of h leads that of T by

about 5–6 months (peak of cross-correlation), which is indicative of the ENSO recharge

and discharge mechanism, which is the fundament of the ReOsc model.

The stochastic integration of the ReOsc model with the observed parameters (see Table

2.2) shows very similar stochastic behavior. Figure 2.1b shows a 20 years sample from the

1000 years long integration. The statistical properties stdv(T), stdv(h), power spectrum of T

and the cross correlation between T and h based on the 1000 years integration of the ReOsc

model are all similar to observed. The stdv(h), spectral slope and the cross-correlation

are, however, slightly overestimated (Table 2.3). In summary, we conclude that the ReOsc

model does replicate the main stochastic characteristic of T and h and their interaction

fairly well.

Figure 2.2 shows the power spectrum and cross correlation between T and h for four

CMIP5 models. Here we highlighted four CMIP simulations that have fairly different

ENSO behaviors. They differ in the shape of the power spectrum, the overall variance and

in the cross correlation between T and h. The stochastic integrations of the ReOsc model
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Figure 1: (a) Time series of observed NINO3 SST anomaly (T) and mean equatorial Pacific
thermocline depth (h) anomaly. (b) Time series of ReOsc toy model T and h. (c) Power
spectra of T. The red vertical lines mark the 5yrs and 0.5yrs periods, which mark the period
range used to estimate the spectral slopes in the analysis sections. (d) Cross correlation
between T and h. The solid vertical red lines are the 4 and 8 month lead, which mark the
lag range used in the analysis sections.

Figure 2.1: (a) Time series of observed NINO3 SST anomaly (T) and mean Equa-
torial Pacific thermocline depth (h) anomaly. (b) Time series of ReOsc toy model T
and h. (c) Power spectra of T. The red vertical lines mark the 5 years and 0.5 years
periods, which mark the period range used to estimate the spectral slopes in the
analysis sections. (d) Cross correlation between T and h. The solid vertical red lines
are the 4 and 8 month lead, which mark the lag range used in the analysis sections.

with the parameter from the four CMIP model simulations (see Sect. 2.2 for details) do

replicate the differences in these main statistical characteristics fairly well. For instance,

the ReOsc integration mimicking the bcc-csm1-1-m simulation has a much stronger peak
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Table 2.3:: Comparison of observational data and REOSC toy model estimates

1757An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator…

1 3

strongly increasing with period length (e.g. see Fig. 2c). 
The ReOsc model estimates are closely following the varia-
tions in the CMIP models suggesting that the ReOsc model 
describes much of the large-scale variations in the power 
spectra shape.

The mean cross correlation between T and h for 4–8 
months lag (h leading T) is also fairly well captured by the 
ReOsc model (Fig. 3d). However, the ReOsc model tends to 
overestimate the cross correlation between T and h, suggest-
ing that T and h are more tightly related in the ReOsc model 
than they are in the CMIP simulations. Given the simplicity 
of the ReOsc model this is not entirely unexpected.

Another way of testing the ReOsc model is to evaluate 
the tendencies of T and h. According to the ReOsc model 
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Fig. 1  a Time series of observed NINO3 SST anomaly (T) and mean 
equatorial Pacific thermocline depth (h) anomaly. b Time series of 
ReOsc toy model T and h. c Power spectra of T. The red vertical lines 
mark the 5 years and 0.5 years periods, which mark the period range 

used to estimate the spectral slopes in the analysis sections. d Cross 
correlation between T and h. The solid vertical red lines are the 4 and 
8 months lead, which mark the lag range used in the analysis sections

Table 3  Comparison of observational data and REOSC toy model 
estimates

stdv of T stdv of h Spectral slope Mean correlation 
(4–8 months lead)

Observa-
tion 
(1982–
2002)

1.0 6.8 − 2.5 0.61

Recharge 
oscilla-
tor toy 
model

0.99 7.8 − 3.1 0.71

Figure 2

Figure 2: Power spectra of T (upper) and cross correlations between T and h (lower) for
some example CMIP5 models (black) and for are the ReOsc model regenerated data (green).
Positive lead times in the cross-correlations indicate h leading T.

Figure 2.2: Power spectra of T (upper) and cross correlations between T and h
(lower) for some example CMIP5 models (black) and the ReOsc model regenerated
data (green) for the same model. Positive lead times in the cross-correlations indicate
h leading T.

in the power spectrum than the one for the CMCC-CM, replicating the same difference

seen in the original CMIP simulations of bcc-csm1-1-m and CMCC-CM. Similarly, the

weak cross correlation between T and h in the CMCC-CM simulation is well captured by

the ReOsc integration. These preliminary results suggest that the ReOsc model is capable
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of capturing the most important characteristics of ENSO behavior in CMIP simulations.

We now compare four main statistical properties [stdv(T), stdv(h), power spectrum

slope and cross correlation between T and h] of all CMIP simulations against the ReOsc

integration mimicking the CMIP models, see Fig. 2.3. Here we first of all focus on the proof

of concept, but we will in the next sections discuss the results further. The ReOsc model

is able to replicate the stdv(T) and stdv(h) with very high correlations for both CMIP3

and 5 (see Fig. 2.3). It may, however, be argued that this is not totally unexpected, as

we have fitted the model parameters to the T and h tendency Eqs. (2.1),(2.2) for each

model. This essentially enforces a close match in stdv(T) and stdv(h) if the ReOsc model

has any value in presenting the main dynamics of the CMIP simulations. However, the fact

that we closely reproduce the stdv(T) and stdv(h) does suggest that the ReOsc is capturing

some essential elements of the ENSO dynamics in the CMIP simulations. It should be

pointed out here that this model does not consider seasonal difference in the parameters

(all parameters are constants) neither does it consider non-linearities. Thus, to first order

these are not essential to understand the main ENSO statistics presented in this study.

The ReOsc model also has some skill in reproducing the variations in the power spec-

trum. To captures the difference in the power spectrum we estimated the slope (in log-

scale) of the power spectrum for each model and observations for periods from 6 months to

5 years (see Fig. 2.3c). This marks the range of the power spectrum in which the variance

is strongly increasing with period length (e.g. see Fig. 2.2c). The ReOsc model estimates

are closely following the variations in the CMIP models suggesting that the ReOsc model

describes much of the large-scale variations in the power spectra shape.

The mean cross correlation between T and h for 4–8 months lag (h leading T) is also

fairly well captured by the ReOsc model (Fig. 2.3d). However, the ReOsc model tends to

overestimate the cross correlation between T and h, suggesting that T and h are more tightly
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Figure 3
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Figure 3: Scatter plots of observed (black), CMIP3 (red) and CMIP5 (blue) data on x-axis
and ReOsc toy model regenerated data on y axis for (a) Standard deviation of T [oC]; (b)
standard deviation of h [m]; (c) Spectral slope of T (log-scale) estimated from 5yrs to 0.5yrs
periods [log(oC2)/log(yr−1)]; (d) mean of the cross correlation between T and h for lags 4
to 8 mon. (h leading T). Observed errorbars are the 90% confidence intervals.

Figure 2.3: Scatter plots of observed (black), CMIP3 (red) and CMIP5 (blue) data
on x-axis and ReOsc toy model regenerated data on y axis for (a) Standard deviation
of T [◦C]; (b) Standard deviation of of h [m]; (c) Spectral slope of T (log-scale)
estimated from 5 years to 0.5 years periods [log(◦C2)/log(year−1)]; (d) mean of the
cross correlation between T and h for lags 4 to 8 mon. (h leading T). Observed error
bars are the 90% confidence intervals. The r value marks the correlation between the
x-axis vs. the y-axis of CMIP data points. Supplemental Table S2.1 lists all model
values shown in this figure.

related in the ReOsc model than they are in the CMIP simulations. Given the simplicity of

the ReOsc model this is not entirely unexpected.

Another way of testing the ReOsc model is to evaluate the tendencies of T and h.

According to the ReOsc model Eqs. (2.1), (2.2) the tendencies of T and h should be
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related to T and h themselves [first two terms on the rhs of Eqs. (2.1), (2.2)] and to the

noise terms ζT and ζh. Given the estimated parameters we can evaluate what the correlation

between the sum of the two T and h terms in Eqs. (2.1), (2.2) and the tendencies of T and

h for all CMIP simulations, see Fig. 2.4a, b. The correlations for the tendencies of T in

the ReOsc model are distributed somewhere between 0.2 and 0.8 with a mean of about 0.5.

The spread in this distribution reflects the different ReOsc model parameters in the CMIP5

simulations. The distribution is similar for h, but the correlation for the h tendencies tend

to be larger, indicating that h is more strongly forced by the two T and h terms than by

the noise term [last terms in Eqs. (2.1),(2.2)]. We can estimate what distributions of

correlations we should expect from the ReOsc model, by doing Monte Carlo integrations

of the ReOsc model with the same CMIP parameters.

We therefore integrated a 1000 years long time series of the ReOsc model for each

CMIP model parameter set and computed the correlation values. We did these 100 times

for each model. The ReOsc model distributions are very similar to those of the CMIP

models, see red lines in Fig. 2.4a and b. Spread, mean values and even more detailed

variations in the distributions are similar to those of the CMIP5 simulations, suggesting

that the ReOsc model Eqs. ((2.1), (2.2)) does give a good approximation of the T and h

tendencies and their relations to T and h themselves.

Finally, we test the noise estimates of the ReOsc model tendencies Eqs. ((2.1), (2.2)).

The assumption of the ReOsc model is that the noise forcings ζT and ζh have a low lag-1

auto correlations. Thus, essentially being white noise. The distribution of the lag-1 auto

correlations for ζT and ζh in the ReOsc model integrations are shown in Fig. 2.4c, d. The

distributions have nearly no spread and have a mean of about 0.2, which is close to what

is expected for white noise. The estimates of the residual noise for the CMIP5 simulations

show a much wider spread and for ζh(for h tendencies) the mean of the distribution is higher

(∼ 0.4).
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Figure 4

T tendency vs. sum(T and h terms)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

correlation (dT/dt vs. sum T and h terms)

0

1

2

3

4

5

6

7
p
ro

b
a
b
ili

ty
 d

e
n
si

ty
CMIP models

ReOsc models

h tendency corr.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

correlation (dh/dt vs. sum T and h terms)

0

1

2

3

4

5

6

7

8

9

10

11

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

T noise lag-1 autocorr.

-0.2 0 0.2 0.4 0.6 0.8

lag-1 correlation of 
1

0

5

10

15

20

25

30

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

h noise lag1 autocorr.

-0.2 0 0.2 0.4 0.6 0.8

lag-1 correlation of 
2

0

5

10

15

20

25

30

35

40

45

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Figure 4: Statistics of the T and h tendencies for proof of concept. Probability density of: (a)
the correlation between dT/dt and the sum of the T and H term of eq.[1]; (b) the correlation
between dh/dt and the sum of the T and H term of eq.[1]; (c) the lag-1 auto-correlation of
ξ1, (d) the lag-1 auto-correlation of ξ2. Blue bars are CMIP model data and the red lines
are based on the ReOsc model stochastic integrations using parameter sets from the CMIP
models. See text for details.

Figure 2.4: Statistics of the T and h tendencies for proof of concept. Probability
density of: (a) the correlation between dT/dt and the sum of the T and h term of
eqs. (2.1),(2.2); (b) the correlation between dh/dt and the sum of the T and h term
of eqs. (2.1),(2.2); (c) the lag-1 auto-correlation of ζT , (d) the lag-1 auto-correlation
of ζh. Blue bars are CMIP model data and the red lines are based on the ReOsc
model stochastic integrations using parameter sets from the CMIP models. See text
for details.

This indicates that the residual noise forcing estimates in the CMIP model show some

deviations from the white noise estimate, in particular for the h tendencies. It illustrates

some limitation of the ReOsc model in describing the fully complex CMIP simulations.

However, in summary we conclude from this section that the ReOsc model gives a good

first order representation of the main ENSO behaviors in the CIMP simulations and that the
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ReOsc model parameter estimates therefore are a good diagnostic to describe the ENSO

behavior in these model simulations.

2.4 CMIP model ENSO dynamics

After establishing the efficiency of the ReOsc model in replicating the CMIP representation

of ENSO, we now focus on the characteristics of the CMIP model simulations ensemble

utilizing the ReOsc model parameter diagnostics in combination with other statistical pa-

rameters. We start with a comparison of the CMIP models against observations in Sect.

2.4.1. This will be followed by an analysis of the atmospheric and oceanic contributions to

the diversity in the dynamics of ENSO in Sect. 2.4.2 and a closer look at the CMIP model

ensemble spread in Sect. 2.4.3. This will be followed by an analysis of the sensitivity of

the ENSO dynamics to the different model parameters in Sect. 2.4.4, which will be utilized

to develop a dynamical bias score for the models in Sect. 2.5 and to summarize the CMIP

model parameter spread.

2.4.1 Comparison towards observations

The main statistical properties [stdv(T), stdv(h), spectral slope and lag cross correlation

between T and h] of the CMIP3 and CMIP5 ensemble means are fairly close to the obser-

vations (Fig. 2.3). The results of Bellenger et al. (2014) for the observed stdv(T) agree

fairly well with our findings. The stdv(T), stdv(h) and the cross correlation between T

and h for 4–8 months. lag (h leading T) are all on average slightly underestimated by the

CMIP3 and CMIP5 ensembles. However, more remarkable are the quite large spreads in

the CMIP3 and CMIP5 ensembles in stdv(T) and stdv(h). They are clearly inconsistent

with the observed uncertainties. The spread within the models will be discussed in more

detail in Sect. 2.4.3.
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We now focus on the ReOsc model parameters; see Fig. 2.5. Here we combined the

two parameters that influence the T tendency equation in Fig. 2.5a. Both T damping (a11)

and coupling to h (a12) are very close to the uncertainties boundary of the observed values

for the CMIP3 and CMIP5 ensemble means. However, the spread of these parameters is

again larger than expected from statistical uncertainties, suggesting that many CMIP3 and

CMIP5 simulations have T damping (a11) and coupling to h (a12) significantly different

from that observed.

The parameters influencing the h tendency equation are shown in Fig. 2.5b. The

coupling to T is within the observed uncertainties for the CMIP3 and CMIP5 ensemble

means suggesting a fairly good agreement of the models with observations in this parameter

in average. The h damping (a22) is in most model simulations clearly over estimated (more

negative). This has even increased slightly from the CMIP3 to the CMIP5 ensemble (Fig.

2.5b). The strength of the noise forcing estimates for T and h (stdv (ζT ) and stdv (ζh )) are

shown in Fig. 2.5c. The mean T noise forcing is very similar to observed, but the strength

of the h noise forcing is underestimated in most CMIP3 and CMIP5 simulations. There

is also a very large spread within the model ensembles with some models having stronger

noise forcings than observed. In particular, the noise forcing of the T tendencies (ζT )

are much more widely spread within the models than would be expected from statistical

uncertainties. Some models have less than half as much stdv(ζT ) than observed. Here it

is interesting to note that despite underestimating the forcing strengths and overestimating

the damping of h (a22) the overall variability of T (stdv(T)) is not strongly underestimated,

but is in the ensemble mean close to observed.

An alternative way of evaluating the ReOsc model is to look at the relative contribution

of the three forcing terms in rhs of Eqs. ((2.1),(2.2)). We estimated the relative contribution

of each term by building the mean fraction that each of the three terms contribute to the sum

of the absolute values of each term of each monthly mean, see Fig. 2.6. The largest (∼ 50%)
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Figure 5
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Figure 5: Eq. [1] parameters of the ReOsc model for observed (black), CMIP3 (red) and
CMIP5 (blue) models. (a) T damping (a11) vs. T coupling to h (a12); (b) h damping (a22)
vs. h coupling to T (a21); (c) noise forcing for T (stdv(ξ1)) vs. noise forcing h (stdv(ξ2)).
See models and corresponding numbers in Table XXX. Supplemental Table XXX lists all
model values shown in this figure.

Figure 2.5: Equation (2.1) and (2.2) parameters of the ReOsc model for observed
(black), CMIP3 (red) and CMIP5 (blue) models. (a) T damping (a11) vs. T coupling
to h (a12); (b) h damping (a22) vs. h coupling to T (a21); (c) noise forcing for T
(stdv(ζT )) vs. noise forcing h (stdv(ζh)). The r value marks the correlation between
the x-axis vs. the y-axis of CMIP data points. See models and corresponding numbers
in Table 2.1. Supplemental Table S2.2 lists all model values shown in this figure.

contribution to the observed T and h tendencies comes in average from the noise forcings,

illustrating that ENSO is a strongly noise driven process. The second largest contribution

(∼ 36%) to the observed T tendencies comes from the coupling to h indicating the strong

influence of the thermocline variability onto the SST variability. This coupling is even
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stronger than the direct effect of T (∼ 17%). Similarly, the tendencies of h are also more

strongly forced by the coupling to T (∼ 36%) and less so by h itself (∼ 7%).

The ensemble means of CMIP3 and CMIP5 are very similar to the observed contri-

butions to the T tendencies. However, both ensembles tend to underestimate the relative

contribution of the noise forcings to the h tendencies. This is consistent with the above

finding that the strength of the h noise forcing (stdv(ζh )) was underestimated by the CMIP

models and that the h damping was too strong. The relative contribution of h to the tenden-

cies of T is also slightly underestimated.

Individual models show a fairly wide spread in the relative contributions of the differ-

ent terms to the T and h tendencies. These can in general be linked to the variations in the

model parameters (Fig. 2.5).

CMIP5 model 20, for instance, has a strong contribution of T to the tendencies of T

(Fig. 2.6a), which is consistent with the strong damping (a11) in this model (Fig. 2.5a).

In turn, CMIP5 model 7 with a near zero a11 value has almost no contribution of T to the

tendencies of T. However, here we have to consider that the relative contributions cannot

always be related to the absolute values of the parameters. Low forcing strengths in the

CMIP models (Fig. 2.5c), for instance, do not necessarily imply low relative contributions

to the tendencies, because the relative contributions of the forcings also result from the

integrations with the other parameters of the model. For instance, CMIP5 model 14 does

have a relative contribution of the forcings to the T tendency close to those observed, but at

the same time it has much weaker noise forcing (stdv(ζT ); see Fig. 2.5c) and weaker over

all T variability (Fig. 2.3a). Biases in the other parameters of the model also contribute to

the relative contribution of the forcings.
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Figure 6
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Figure 6: Mean percentage contributions of the three rhs terms of eq. [1] of the ReOsc model
to (a) the monthly mean dT/dt and (b) the monthly mean dh/dt for observations (last bar),
CMIP3 (first 10 bars), CMIP5 models (second rows of bars) and all model mean (second
last bar).

Figure 2.6: Mean percentage contributions of the three rhs terms of Equation (2.1)
and (2.2) of the ReOsc model to (a) the monthly mean dT/dt and (b) the monthly
mean dh/dt for observations (last bar), CMIP3 (first 10 bars), CMIP5 models (second
rows of bars) and all model mean (second last bar).

2.4.2 Contribution from atmospheric and oceanic dynamics

The ReOsc model parameters a11 and a21 can be split into an atmospheric and a residual

oceanic part following the approach of Frauen and Dommenget (2010) (see Sect. 2.2).

We will use this approach to get some further separation between atmospheric and oceanic

processes.
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We start the discussion with the atmospheric processes contributing to the T damping

(a11A), which are the wind- SST Bjerknes feedback (CτT ) and the atmospheric net heat

flux (CfT ), see Fig. 2.7a. The observed CτT is positive representing a positive feedback

and CfT is negative representing a negative feedback for a11 (see Eqs. (2.5),(2.6)). The

combined observed atmospheric feedback on T is a positive growth rate a11A (Fig. 2.7b),

which is dominated by the positive Bjerknes feedback (CτT ).

The CMIP models ensemble means and indeed almost all model simulations underes-

timate both Bjerknes (CτT ) and the atmospheric net heat flux (CfT ), feedbacks. CτT is in

ensemble mean only half as strong as observed and similarly CfT is only half as strong as

observed. This is qualitatively similar to the finding of Bellenger et al. (2014) and Lloyd

et al. (2009). The combined atmospheric growth rate a11A is in the ensemble mean still pos-

itive, but weaker than observed and some models have even negative atmospheric growth

rates (damping). Even though the two biases in CτT and CfT do compensate each other a

little bit, as we have a positive and a negative feedback underestimated, they do not com-

pensate each other completely, because the CτT term is much stronger for a11A than the

CfT term.

The oceanic contribution to the growth rate of T (a11O) is estimated as the residual of

a11 after considering the atmospheric part (see Eq. (2.3)). The observed oceanic feedback

to T is a strong damping (Fig. 2.7b, c) that counter acts the positive atmospheric growth

rates leading to the much weaker total damping of a11. Thus, the weak total T damping

(a11 in Fig. 2.5a) is a result of strong positive atmospheric growth rate and strong oceanic

damping. Again, nearly all CMIP5 model simulations underestimate the oceanic damping

and the ensemble means are significantly smaller than the observed value. The coupling of

h to T (a21) can also be split into an atmospheric and oceanic part (see Eqs. (2.5) and (2.6)).

Here the observed a21 is dominated by the oceanic part (a21O) with a smaller contribution

from the atmospheric part (a21A; Fig. 2.7c, d). This is similar in the CMIP ensembles, but
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Figure 7
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Figure 7: Atmospheric and oceanic parameter components for observed (black), CMIP3
(red) and CMIP5 (blue) models. (a) Atmospheric Bjerknes feedback (CτT ) [N/m2/oC] vs.
atmospheric heat flux feedback [W/m2/oC]; (b) oceanic (a11o) and atmospheric (a11a) com-
ponents of T damping [1/mon]; (c) oceanic feedbacks of T damping (a11o) [1/mon] vs. h
coupling to T (a21o) [m/oC/mon]; (d) oceanic (a21o) and atmospheric (a21a) components of
h coupling to T [m/oC/mon]. The cyan line in (b) and (c) marks the compensation line at
which atmospheric and oceanic components add up to the observed total vales of a11 and
a21, respectively. See models and corresponding numbers in Table XXX. Supplemental Table
XXX lists all model values shown in this figure.

Figure 2.7: Atmospheric and oceanic parameter components for observed (black),
CMIP3 (red) and CMIP5 (blue) models. (a) Atmospheric Bjerknes feedback (CτT )
[N/m2/◦C] vs. atmospheric heat flux feedback [W/m2/◦C]; (b) oceanic (a11O) and
atmospheric (a11A) components of T damping [1/mon]; (c) oceanic feedbacks of T
damping (a11O) [1/month] vs. h coupling to T (a21O) [m/◦C/month]; (d) oceanic
(a21O) and atmospheric (a21A) components of h coupling to T [m/◦C/month]. The
cyan line in (b) and (c) marks the compensation line at which atmospheric and oceanic
components add up to the observed total values of a11 and a21, respectively. The r
value marks the correlation between the x-axis vs. the y-axis of CMIP data points.
See models and corresponding numbers in Table 2.1.

the models tend to underestimate the oceanic part and overestimate the atmospheric part.

The overestimation of a21A results mostly from the too strong h damping (a21A; see Eq.

(2.5) and Fig. 2.5b).
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2.4.3 Spread within the model ensembles

In addition to how the models compare to the observations we can consider the spread

within the model ensemble. If the models are consistent with each other within the sta-

tistical uncertainties of the data, then they should have a spread similar to the statistical

uncertainties of the observations (Figs. 2.3, 2.5, 2.7). However, the CMIP3 and CMIP5

model ensembles show much larger spreads in all statistics and parameters shown. In par-

ticular, the ENSO statistics stdv(T), stdv(h) and the cross-correlation between h and T show

large spread. Also, the spread in a11, stdv(ζT ) and stdv(ζh), CτT , CfT , a11A and a11O are

very large. This highlights large diversity in the model simulations with models not only

having very different ENSO statistic, but also having very different process parameters,

suggesting that the processes controlling ENSO in the different model simulations can be

very different from model to model.

The variation in the parameters within the CMIP model ensemble have many inter-

esting cross-correlations. Some of them are shown in Figs. 2.5 and 2.7 and all cross-

correlations are listed in Table 2.4. It is beyond this study to discuss all of these cross-

relations in the parameters and most of these will be addressed in future further studies. In

the following we like to point out a few interesting relations. The ReOsc model parameters

(Eq. (2.1), (2.2); a11, a12, a22, a21, stdv(ζT ) and stdv(ζh)) show very little cross correlations

within the CMIP ensemble. Only the strength of the noise forcings (stdv(ζT ) and stdv(ζh))

have a stronger positive correlation, suggesting that models that have stronger noise forc-

ing on T also have strong noise forcing on h (see Fig. 2.5c). We can also notice a positive

correlation between the strength of the noise forcing on T (stdv(ζT )) and the coupling of

h to T (a21). A reason for his correlation is unclear to us and would need further future

investigations.

If we extend the discussion on all cross-correlation with the atmospheric and oceanic
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Table 2.4:: Cross-correlation in the variations of the parameters in CMIP ensembles

1765An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator…

1 3

Some other cross-correlations are quite remarkable too. 
The atmospheric feedbacks C!T and CfT, for instance, are 
negatively correlated. Thus the variations in these two 
feedbacks seem to be having compensating effects on a11a 
(see Eq. (3)). Subsequently, variations in a11a are largely 
unrelated to variations in C!T and CfT (Table 4) despite a11a 
being a direct function of both (Eq. (3)). Other studies have 
pointed out a similar relationship between C!T and CfT. Bayr 
et al. (2017) argue that such a negative relationship can 
result from a shift in the mean state position of the uplifting 
branch of the walker circulation.

The atmospheric part of the h coupling to T (a21a) is 
positively correlated to the h damping (a22) as expected 
from Eq. (4). However, the Bjerkness feedback (C!T) is also 
expected to be positively correlated following Eq. (4), but it 
has a significant negative cross-correlation. Again, we have 
no explanation for this unexpected relation.

4.4  Sensitivities of ENSO statistics to the ReOsc 
model biases and spreads

We now focus on the sensitivity of the ENSO statistics to the 
ReOsc model parameter biases and spreads discussed above. 
The advantage of using the conceptual framework of the 
ReOsc model is that we can evaluate the relative importance 
of different parameters or feedbacks biases by integrating 

the dynamics ReOsc model and analyzing how the ENSO 
statistic changes.

We estimate the sensitivity of an ENSO statistic, σk, to a 
parameter, pi, of the ReOsc model by integrating the ReOsc 
model with all other parameters set to the CMIP ensem-
ble mean parameters and perturbing pi by a small δpi. The 
change in the ENSO statistic, δσk, relative to the control inte-
gration in which all parameters are set to the CMIP ensemble 
mean parameters gives us an estimate of the sensitivity !ki: 

All integrations are done for 500 years using the same 
white noise forcing. We estimate the sensitivities to C!T, CfT, 
a11o  and a21o  by incorporating them into the ReOsc model 
Eq. (1) replacing a11 and a21 using Eqs. (2–4). By multiply-
ing the sensitivity, estimated with Eq. (5), with a difference 
in a particular parameter, Δpi, we can estimate the change in 
the ENSO statistic Δσki: 

It needs to be noted here that we made a first order 
linear approximation in this approach. However, the 
ENSO statistics in the ReOsc model are in general not a 
linear function of the parameters, but do show some non-
linear behavior (e.g. changing a11 = 0.1 by Δa11 = −0.1 
does not have the exact opposite effect of changing it by 

(5)!ki ≈
"#k

"pi

(6)Δ!ki = Δpi ⋅ "ki

Table 4  Cross-correlation in the 
variations of the parameters in 
CMIP ensembles
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Correlation values with magnitudes < 0.5 are shown in light grey. Values > 0.5 are blue if they are >0.5 
in both CMIP3 and CMIP5 ensembles, otherwise they are in dark grey

parameters (a11A, a11O, a21A, a21O, CτT and CfT ,) we see many more significant cross-

correlations. The most remarkable cross relation here is that the models tend to underesti-

mate all three elements (CτT , CfT and a11O) contributing to a11 yet the total a11 is about

the same as observed (Fig. 2.5a). This suggests that the variations of the model simula-

tions relative to the observed atmospheric and oceanic process have strong compensating

effects: model simulations that have too strong atmospheric growth rates also have too

strong oceanic damping leading to a total T damping close to observed. This is illustrated
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in Fig. 2.7b: the models line up closely to the compensation line, which marks the line

on which the sum of a11A and a11O adds up to the observed a11. We are not aware of any

physical process that could explain this behavior. We will discuss possible implications of

this further in the final summary and discussion section.

Some other cross-correlations are quite remarkable too. The atmospheric feedbacks

CτT and CfT , for instance, are negatively correlated. Thus the variations in these two

feedbacks seem to be having compensating effects on a11A (see Eq. (2.5)). Subsequently,

variations in a11A are largely unrelated to variations in CτT and CfT (Table 2.4) despite

a11A being a direct function of both (Eq. (2.4)). Other studies have pointed out a similar

relationship between CτT and CfT . Bayr et al. (2018) argue that such a negative relation-

ship can result from a shift in the mean state position of the uplifting branch of the walker

circulation.

The atmospheric part of the h coupling to T (a21A) is positively correlated to the h

damping (a22) as expected from Eq.(2.6). However, the Bjerkness feedback (CτT ) is also

expected to be positively correlated following Eq. (2.6), but it has a significant negative

cross-correlation. Again, we have no explanation for this unexpected relation.

2.4.4 Sensitivities of ENSO statistics to the ReOsc model

biases and spreads

We now focus on the sensitivity of the ENSO statistics to the ReOsc model parameter

biases and spreads discussed above. The advantage of using the conceptual framework of

the ReOsc model is that we can evaluate the relative importance of different parameters or

feedbacks biases by integrating the dynamics ReOsc model and analyzing how the ENSO

statistic changes.

We estimate the sensitivity of an ENSO statistic, σk, to a parameter, pi, of the ReOsc
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model by integrating the ReOsc model with all other parameters set to the CMIP ensemble

mean parameters and perturbing pi by a small δpi. The change in the ENSO statistic, δσk,

relative to the control integration in which all parameters are set to the CMIP ensemble

mean parameters gives us an estimate of the sensitivity λki:

λki ≈
δσk
δpi

(2.7)

All integrations are done for 500 years using the same white noise forcing. We es-

timate the sensitivities to CτT , CfT , a11O and a21O by incorporating them into the ReOsc

model Eqs. (2.1),(2.2) replacing a11 and a21 using Eqs. ((2.3)-(2.6)). By multiplying the

sensitivity, estimated with Eq.(2.7), with a difference in a particular parameter, 4pi, we

can estimate the change in the ENSO statistic4σki :

4σki = 4pi.λki (2.8)

It needs to be noted here that we made a first order linear approximation in this ap-

proach. However, the ENSO statistics in the ReOsc model are in general not a linear func-

tion of the parameters, but do show some nonlinear behavior (e.g. changing a11 = 0.1 by

4a11 = 0.1 does not have the exact opposite effect of changing it by4a11 = +0.1). It also

needs to be considered that the sensitivity of the λki will in general depend on the values of

all other parameters as well.

Figure 2.8a shows the changes in stdv(T) and stdv(h) for the biases of the CMIP en-

semble mean (of both CMIP3 and 5) relative to the observed values. First, we can note that

the stdv(T) and stdv(h) behave similar: parameter changes that increase the stdv(T) also

increase stdv(h). Suggesting that the strength in variability T and h are strongly linked.

The largest changes in stdv(T) and stdv(h) result from the biases in the Bjerknes feedback
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Figure 8
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Figure 8: Sensitivity of statistical properties to different parameters variations for model
biases towards observations (upper) and for the model ensemble internal spread (lower). (a)
changes in stdv(T) [oC] and stdv(h) [m] due to biases in the CMIP models relative to the
observed; (b) changes in the spectral slope [log(oC2)/log(yr−1)] and the cross correlation
between T and h for lags 4 to 8 mon (h leading T) due to biases in the CMIP models relative
to the observed; (c) same as (a) but due to the CMIP model internal spread; (d) same as
(b) but due to the CMIP model internal spread. See text for details.

Figure 2.8: Sensitivity of statistical properties to different parameters variations for
model biases towards observations using eq. (2.8) (upper) and for the model ensemble
internal spread using the absolute values of eq. (2.8) (lower). (a) changes in stdv(T)
[◦C] and stdv(h) [m] due to biases in the CMIP models relative to the observed; (b)
changes in the spectral slope [log(◦C2)/log(year−1)] and the cross correlation between
T and h for lags 4 to 8 mon (h leading T) due to biases in the CMIP models relative
to the observed; (c) same as (a) but due to the CMIP model internal spread; (d)
same as (b) but due to the CMIP model internal spread. Negative 4 std(T or h) in
(a) and (b) indicate a reduction in the std(T or h) of the ReOsc model. See text for
details.

CτT , the residual oceanic T damping a11O and the atmospheric net heat flux CfT . This

reflects that all three have relatively large biases to the observed values (Fig. 2.7a, b) com-

bined with a relatively large sensitivity of the ENSO statistics in the ReOsc model to these
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parameters. In turn, the total T damping a11 has only a small sensitivity, although it has

the same sensitivity (λki) as a11O. However, the bias to observed in a11 (Fig. 2.5a) is much

smaller than in a11O (Fig. 2.7b).

The much too weak CτT in the CMIP models would result into a much weaker stdv(T)

and stdv(h), and the too weak a11O would result into a stronger stdv(T) and stdv(h). The

strongly opposing effects combine (Eqs. (2.3),(2.5)) into the total T damping a11, which

has very little bias to observations and therefore has very little effect on stdv(T) and stdv(h).

The biases in the strength of the noise forcings and the h damping a22 also have some

significant influence on stdv(T) and stdv(h), whereas the biases in a12, a21 and a21O have

very little influence.

The effects of the parameters on the power spectrum slope and the cross-correlation

between h and T, (rTh), are shown in Fig. 2.8b. The spectral slope changes are remarkably

similar to the changes in stdv(T), but with reversed sign: parameters that increase the spec-

tral slope (thus becoming less negative; see Fig. 2.3c) decrease the stdv(T) (compare with

Fig. 2.8a). This suggests that models with stronger SST variability also have a stronger

increase in SST variance with increasing periods (more negative spectral slope) and thus

have a more pronounce interannual variability. There is indeed a negative correlation of

-0.6 between the std(T) and the spectral slopes in the CMIP ensemble (compare Fig. 2.3a,

c).

The cross-correlation rTh is most strongly affect by the biases in the h damping (a22), h

forcing strength (stdv(ζh)) and CτT . Most other parameters have little effect on rTh. There

is a weak indication that changes in the parameters that lead to a stronger rTh also lead

to more negative spectral slope. This suggests that models with stronger delayed coupling

between h and T have a stronger increase in SST variance with increasing periods (more

negative spectral slope) and thus have a more pronounced interannual variability.
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The CMIP models have fairly large spread within the ensemble in nearly all param-

eters. We estimate the sensitivity of the statistics to these parameter variations by using

absolute values of Eq. (2.8) (neglecting the signs) with4pi being the stdv of the parame-

ters within the CMIP ensemble, see Fig. 2.8c, d. The largest changes in statistics of stdv(T)

and stdv(h) again result from the spread in CτT , a11O and CfT . However, the spread in a11

and stdv(ζT ) are now more important than in the bias towards observations. This is due to

the fact that a11 had little bias towards observations, but have fairly large spread within the

CMIP models (see Fig. 2.5a).

The spectral slope again behaves similarly to the stdv(T) with the noticeable difference

that the T coupling to h (a12) has stronger influence on the spectral slope than it does on

the stdv(T). The T coupling to h (a12) also has the most strongly influence on the cross-

correlation rTh. The damping of h (a22) has a similarly strong influence, but most other

parameters have weaker effects on rTh.

2.5 Bias score of CMIP models

We can summarize the CMIP model biases relative to the observed ENSO ReOsc model

parameters by combining all parameter biases into a normalized bias score, Sσki:

Sσki =
1

σk(obs)

√√√√1

8

8∑
n=1

(4pin.λkn)2 (2.9)

with Sσki the bias score for the ENSO statistic σk for the model with index i, the

model bias in the parameter pn relative to observed,4pin, and the observed ENSO statistic,

σk(obs). This bias score is effectively a root mean square error (RMSE) in the eight model

parameters (a12, a22, stdv(ζT ), stdv(ζh ), CτT , CfT , a11O and a21O) scaled by the sensitivity

of the ENSO statistics to these parameters (λkn) in the ReOsc model and normalized by the
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absolute value of the observed ENSO statistic, σk(obs).It thus provides a dynamics- based

bias score of ENSO. The higher the bias score the more the model dynamics deviate from

the observed dynamics, hence the ideal model should have a bias score close to or within

the observed uncertainties.
Figure 9
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Figure 9: Dynamical skill scores of CMIP models for different statistical properties.
Skill scores for (a) stdv(T) [oC] vs. stdv(h) [m]; (b) stdv(T) [oC] vs. spectral slope
[log(oC2)/log(yr−1)]; (c) stdv(T) [oC] vs. cross correlation between T and h for lags 4
to 8 mon (h leading T); (d) spectral slope [log(oC2)/log(yr−1)] vs. cross correlation between
T and h for lags 4 to 8 mon (h leading T). See text for details.

Figure 2.9: Dynamical skill scores of CMIP model for different statistical properties.
Skill scores for (a) stdv(T) [◦C] vs. stdv(h) [m]; (b) stdv(T) [◦C] vs. spectral slope
[log(◦C2)/log(year−1)]; (c) stdv(T) [◦C] vs. cross correlation between T and h for
lags 4 to 8 mon (h leading T); (d) spectral slope [log(◦C2)/log(year−1)] vs. cross
correlation between T and h for lags 4 to 8 mon (h leading T). The r value marks
the correlation between the x-axis vs. the y-axis of CMIP data points. See text for
details. See models and corresponding numbers in Table 2.1. Supplemental Table
S2.3 lists all model values shown in this figure.
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Figure 2.9 shows the bias scores for all CMIP models for the ENSO statistics stdv(T),

stdv(h), spectral slope and the mean cross-correlation between h and T at lags 4–8 months

(rTh). In addition, we show an estimate of the observed uncertainties by replacing4pin in

Eq.(2.9) with the 90% uncertainty values of the observed parameters as shown in Figs. 2.5

and 2.7.

There are a number of interesting aspects in the bias score results. Starting with the

bias scores in stdv(T) and stdv(h) (Fig. 2.9a) we can first of all notice that all models are

relatively far away from the observed uncertainty estimate. Much more than they are from

any of the individual parameters (see. Figs. 2.5, 2.7). This is due to the role of compensat-

ing errors. In the definition of the bias score (Eq. (2.9)) we have implicitly assumed that the

biases are independent. However, some of the parameters with the strongest sensitivities

have very strongly compensating biases (see CτT , CfT and a11O Fig. 2.7a, b). While these

compensating errors lead to relatively small biases in the ENSO statistics, they do not lead

to small bias values in Eq. (2.9). Thus, the main reason why the models are far away from

good bias values is the dominance of compensating errors. This is in particular captured by

the bias in a11A, which combines CτT and CfT , and by the bias in a11O (Fig. 2.7b). Models

that perform well in these have in general small bias scores and vice versa.

Further we can notice that the bias scores in stdv(T) and stdv(h) are nearly identical.

Models that perform well in stdv(T) also perform well in stdv(h). This first of all reflects

that the correlation between stdv(T) and stdv(h) in the CMIP ensemble is fairly high (r =

0.9). Thus, the strength of the SST variability in the CMIP model simulations is strongly

linked to the strength of the thermocline variability. The tight relation in the bias scores

also indicates that the sensitivities, λki, in the ReOsc model for stdv(T) and stdv(h) are

very strongly linked to each other. A parameter change that leads to a change in stdv(T)

also leads to an equivalent change in stdv(h).
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Figure 10
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Figure 10: Summary of CMIP model parameter biases and spreads. Observed values and
spread (90% interval) are marked by the black line and grey shaded area. The combined
distributions of CMIP3 and CMIP5 are shown as blue bars with a the blue line marking the
mean of the distributions. The parameters are sorted by how strongly the CMIP model’s
paramneter biases influence the stdv(T) as shown in Fig. 8a. The most influential is the
upper most.

Figure 2.10: Summary of CMIP model parameter biases and spread. Observed
values and spread (90% interval) are marked by the black line and grey shaded area.
The combined distributions of CMIP3 and CMIP5 models are shown as blue bars
with the blue line marking the mean of the distributions. The parameters are sorted
by how strongly the CMIP model’s parameter biases influence the stdv(T) as shown
in Fig. 2.8a. The most influential is the uppermost.
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The bias scores of stdv(T) and stdv(h) are also relatively wide spread out with a clear

separation between the models. Again, this is much stronger than in any of the individual

parameters (see Figs. 2.5, 2.7). It is indicating that the dynamical skills of the CMIP model

is indeed very different between the models.

The bias score in the spectral slope behaves very similar to the skill score of the stdv(T)

(Fig. 2.9b). Here it has to be noted that the statistical estimate of the spectral slope of

the T time series is independent of the stdv(T). The tight relation therefore suggests that

the spectral slope and the stdv(T) are dynamically linked. This we already indicated in

the discussion of the sensitivities above with the moderate negative correlation between

spectral slope and the stdv(T) in the CMIP ensembles (r = -0.57), but here the dynamical

skill suggests an even tighter relationship.

The bias score for cross-correlation rTh is more independent from the other bias

scores, but also shows less spread within the models and is also closer to the observed

uncertainties. In summary of all skill scores we cannot see much difference in the bias

scores of the ensembles means of the CMIP3 and CMIP5 simulation, although there is a

weak tendency for the CMIP5 ensemble to have slightly smaller biases than the CMIP3

ensemble.

The bias scores of the models as a whole are surprisingly bad considering that the

models match observed ENSO statistic much better than the bias scores would suggest.

As mentioned above this is due to the fact that the models have compensating biases. A

comparison of the CMIP model spread in stdv(T) with the CMIP model spread in the model

parameters illustrates this, see Fig. 2.10. We can note that the ensemble mean stdv(T) is

very close to the observed with the model distribution wider than the observed uncertainty,

but still close to the observed. However, the most important parameters (Fig. 2.10b–e)

all have substantial biases towards the observed values and relatively large spread. It is
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surprising that the models manage to simulate the observed stdv(T) so well given such

large biases in the controlling ENSO dynamics.

2.6 Summary and discussion

In this study, we introduced the linear recharge oscillator model as a diagnostic tool to eval-

uate the representation of ENSO dynamics in the CMIP model database. We presented a

proof of concept analysis that illustrated that ENSO-statistics and their diversity within the

CMIP ensemble, can be well represented with the linear recharge oscillator model diagnos-

tics. Although simplified to only represent the first order dynamics, presenting only a linear

system, we believe it is an efficient tool to replicate ENSO dynamics in CMIP models. It

provides a very effective bridge between simple statistical analysis of ENSO variability and

the fully complex dynamical ENSO system with all its feedbacks and processes.

Starting with the simple statistics of the variability in T and h we found that the CMIP

ensembles in the mean can present those fairly well, but the model ensemble spread is

relatively large suggesting that many models are not consistent with the observed values.

Furthermore, as we will point out further below, the good fit in these simple statistics seem

to mask bigger problems in the model dynamics of ENSO, as they result from the analysis

of the ReOsc model parameters.

The CMIP model simulations present the six parameters of the ReOsc model Equa-

tions ((2.1) , (2.2)) with different quality. All six parameters show fairly large spread within

the CMIP ensemble, with some models being nearly undamped in T tendencies (a11 ≈ 0)

and others having more than twice as much damping then the ensemble mean. Other bi-

ases of significance are a too strong damping of h and in general too weak stochastic noise

forcing on h.

More significant problems in the CMIP ensemble dynamics became apparent when
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we split up the growth rate (damping) of T ( a11) into atmospheric and oceanic feedbacks.

Atmospheric feedbacks (Bjerknes wind–SST feedback, CτT , and atmos. heat flux feed-

back, CfT ) are largely underestimated, which is consistent with previous studies (Lloyd

et al. 2009; Bellenger et al. 2014) and also consistent with the idea of Dommenget et al.

(2014) that CGCM simulations are often closer to a slab ocean El Niño dynamics (Dom-

menget 2010) than to the observed ENSO dynamics. All three elements that make up the

growth rate of T (Bjerknes wind-SST feedback, CτT , atmos. heat flux feedback, CfT , and

oceanic damping of T, a11O) are strongly underestimated in the CMIP ensemble, while at

the same time the total of T ( a11) is essentially unbiased. This is achieved by strongly

compensating biases: too weak atmospheric growth rates (a11A) combined with too weak

oceanic damping (a11O).

Here it has to be noted that the oceanic damping of T (a11O) was estimated as the

residual of a11 minus a11A (Eqs.(2.3), (2.4)). A possible explanation for the strong com-

pensation between atmospheric and oceanic feedbacks may therefore be a limitation in the

ReOsc model approach used here. The assumption that a11A results from Eq.(2.3) may be

limited. However, it is very likely that oceanic processes do contribute to damping of a11

and it therefore seems reasonable to assume that the results presented do hold to some de-

gree. It is beyond this study to solve this unexpected result and future study need to address

this issue in more detail.

Assuming that there is indeed a compensating effect of atmospheric feedbacks (a11A)

and oceanic feedbacks (a11O) in the CMIP ensemble, then we would need to find a reason

of why that is. We are not aware of any physical mechanism that could explain such a

relationship, but we cannot exclude such a possibility. For instance, Bayr et al. (2018) and

partly Kim et al. (2008) argue that CτT and CfT are dynamically linked by the position of

the Walker circulation. Whether some mechanism like this could explain the link between

a11A and a11O is unclear. An alternative possibility is that the CGCM models are tuned to
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produce the observed ENSO statistics: by doing so model developers may have, by coinci-

dent, tuned errors into the atmospheric and oceanic dynamics that compensate each other

nearly completely. Thus, CMIP models may produce apparently good ENSO simulations

for the wrong reasons.

The combination of errors we find in the CMIP models suggests that the relative im-

portance of ocean dynamics for the simulated ENSO SST variability is underestimated.

This results from underestimated oceanic processes such as noise forcing for h, ocean cou-

pling of h to T(a21O) and too strong damping of h. This is at large consistent with the

findings of Kim et al. (2014), who also report an underrepresentation of oceanic processes

in ENSO. At the same time CMIP models underestimate atmospheric damping, which al-

lows the models to create ENSO variability with realistic amplitudes. Thus, it appears

that the relative importance of atmospheric processes in the CMIP models is larger than

observed.

The ReOsc model allowed us to estimate the sensitivity of the ENSO statistics to

each model parameter. It illustrated that in terms of model biases towards observed the

most important parameter errors are in CτT , CfT , and a11O, and to a lesser extent in the

noise forcing and damping of h. In terms of CMIP ensemble spread the same parameters

contribute to the ENSO statistics uncertainty, but in addition the growths rate of T (a11) is

important too.

Based on these sensitivities we defined a dynamical bias score that is essentially a

normalized root mean squared in the model parameters. All CMIP model have fairly bad

bias scores relative to what we could expect from observed uncertainties. These bad bias

scores mostly result from the compensating errors in the dynamics as describes above.

Even if we would exclude the less clear estimate of a11O the bias scores would remain

fairly bad (correlation with original bias score of Eq. (2.9) is still 0.85 if a11O is excluded).
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Bias scores that are based on just the ENSO statistics (e.g. stdv(T), etc.) or just the ReOsc

model parameters of Eqs. (2.1),(2.2)(not shown) would be much better. However, these

would exclude the most important elements of ENSO dynamics (CτT , CfT , and a11O) and

would therefore not present a complete picture. Bellenger et al. (2014) also found little

relation between skill scores based on simple ENSO statistical properties vs. those based

on dynamics properties. From the bias scores that we estimated we find a fairly clear

ranking in the CMIP model performance with no substanital improvement from CMIP3 to

CMIP5. The best models in this skill score are the family of models from NCAR/UCAR

(CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM).

The results we found here have some implications for ENSO studies with CGCMs.

The fact that the models produce realistic ENSO statistics with compensating errors in

dynamics highlights some concerns in the models skill in predicting future SST evolutions.

This is relevant not only for seasonal to interannual forecasting, but also for long time

climate change projections. Even though models in the ensemble mean project a systematic

shift towards El Niño like conditions Collins et al. (2010), this projection is undermined

by the CGCM having systematic biases in the dynamics. How ENSO will change in the

future strongly depends on the right sensitivity of the tropical Pacific region to the different

forcings (e.g. heat fluxes and winds) that drive these changes.

The recent global warming hiatus and the mismatch of the CMIP simulations in pre-

dicting tropical Pacific climate trends (e.g. in winds or the Walker Circulation) may be

some further indication that the model ENSO dynamics do not have the right balance in

feedbacks (England et al. 2014; Kociuba and Power 2014; McGregor et al. 2014). The

framework that we have introduced here may help to address such biases. Therefore, the

good news from this study is that we can expect that future CGCM simulations will im-

prove in ENSO dynamics, if model developers can use approaches like the one we have

introduced here to improve the dynamics of the model.
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Supplementary	Table	S2.1:	CMIP3	and	CMIP5	model	variability	statistics.	
	

	
	

stdv(T) stdv(h) rTh grad

CMIP3 #1 0.41 3 0.46 -1

CMIP3 #2 0.44 3.1 0.31 -1.6

CMIP3 #3 1.7 12.8 0.61 -3.4

CMIP3 #4 0.98 6.2 0.48 -2.4

CMIP3 #5 0.17 2.7 0.35 -1.7

CMIP3 #6 0.2 3.2 0.34 -2.1

CMIP3 #7 1.04 5.9 0.53 -3.1

CMIP3 #8 1.24 8.1 0.59 -2.5

CMIP3 #9 0.67 4.6 0.52 -2.1

CMIP3 #10 1.06 7.3 0.48 -2.8

	
	 	

stdv(T) stdv(h) rTh grad

CMIP5 #1 0.73 6 0.29 -3

CMIP5 #2 0.73 6.3 0.21 -2.3

CMIP5 #3 1.09 7 0.42 -3.2

CMIP5 #4 0.88 5.9 0.36 -2.7

CMIP5 #5 0.9 6.5 0.47 -2.9

CMIP5 #6 0.91 5.8 0.47 -3

CMIP5 #7 1.12 7.4 0.36 -3

CMIP5 #8 0.94 6.9 0.59 -2.8

CMIP5 #9 0.77 5.8 0.52 -2.4

CMIP5 #10 0.98 6.4 0.42 -3.1

CMIP5 #11 0.8 6.2 0.52 -2.9

CMIP5 #12 0.75 4.4 0.37 -2.3

CMIP5 #13 1.42 10.7 0.43 -2.7

CMIP5 #14 0.6 4.6 0.54 -2.6

CMIP5 #15 0.83 6.5 0.54 -3.3

CMIP5 #16 0.55 4.5 0.38 -3.1

CMIP5 #17 0.52 4.3 0.49 -3.3

CMIP5 #18 0.86 6.1 0.49 -2.7

CMIP5 #19 0.93 5.4 0.4 -2.1

CMIP5 #20 0.84 4.8 0.31 -1.8

CMIP5 #21 0.77 4.4 0.32 -2.5

CMIP5 #22 0.71 4.7 0.49 -2.7

CMIP5 #23 0.81 6.1 0.48 -2

CMIP5 #24 0.68 5.8 0.33 -1.8

CMIP5 #25 0.57 4.1 0.35 -2.4

CMIP5 #26 1.05 8 0.55 -3.1

CMIP5 #27 1.06 7.6 0.46 -3.2

CMIP5 #28 1.2 5.3 0.62 -2.8

CMIP5 #29 0.6 4.7 0.4 -2
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Supplementary	Table	S2.2:	CMIP3	and	CMIP5	model	parameters.	

	
	
	 	

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o

CMIP3 #1 -0.23 0.028 -0.005 -1.09 0.2 1.06 -9.9 0.0058 0.21 -0.45 -0.03 -1.06

CMIP3 #2 -0.15 0.018 -0.044 -0.87 0.21 1.03 -8.7 0.0064 0.14 -0.29 -0.3 -0.57

CMIP3 #3 -0.02 0.021 -0.04 -1.21 0.32 2.29 -2.3 0.0058 0.23 -0.25 -0.24 -0.96

CMIP3 #4 -0.08 0.031 -0.051 -1.24 0.31 1.65 -8 0.0067 0.33 -0.41 -0.36 -0.89

CMIP3 #5 -0.16 0.006 -0.046 -2.04 0.09 0.92 -20 0.011 -0.1 -0.05 -0.53 -1.5

CMIP3 #6 -0.09 0.005 -0.055 -1.43 0.08 1.15 -15.8 0.0135 -0.05 -0.05 -0.79 -0.64

CMIP3 #7 -0.01 0.034 -0.089 -1.23 0.25 1.21 -5.6 0.0047 0.26 -0.27 -0.43 -0.8

CMIP3 #8 -0.08 0.024 -0.035 -1.03 0.37 2.34 -4.5 0.0034 0.12 -0.2 -0.13 -0.9

CMIP3 #9 -0.14 0.028 -0.031 -1.27 0.29 1.24 -5.6 0.0103 0.53 -0.68 -0.34 -0.93

CMIP3 #10 -0.06 0.018 -0.022 -0.95 0.32 1.36 -2.3 0.0079 0.27 -0.33 -0.18 -0.77

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06

CMIP5 #2 -0.01 0.016 -0.097 -1.52 0.23 1.31 -2.9 0.0049 0.13 -0.14 -0.5 -1.01

CMIP5 #3 -0.01 0.022 -0.059 -1.03 0.22 1.58 -12.5 0.0091 0.27 -0.28 -0.56 -0.47

CMIP5 #4 -0.02 0.021 -0.063 -1.09 0.21 1.4 -10.5 0.0086 0.25 -0.27 -0.56 -0.53

CMIP5 #5 -0.05 0.023 -0.037 -1.28 0.2 1.54 -10.1 0.0086 0.29 -0.33 -0.33 -0.95

CMIP5 #6 -0.03 0.025 -0.059 -1.13 0.21 1.46 -10.4 0.0081 0.3 -0.33 -0.5 -0.62

CMIP5 #7 0 0.024 -0.081 -1.18 0.23 1.67 -7.6 0.0066 0.24 -0.24 -0.56 -0.62

CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65

CMIP5 #29 -0.09 0.015 -0.048 -1.04 0.23 1.36 -8.1 0.0065 0.1 -0.19 -0.33 -0.71
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Supplementary	 Table	 S2.3:	 CMIP3	 and	 CMIP5	 bias-scores	 for	 different	 ENSO	
statistics	as	in	Fig.	9.	
	

 
 

  

stdv(T) stdv(h) rTh grad

CMIP3 #1 0.38 0.39 0.13 0.29

CMIP3 #2 0.35 0.36 0.14 0.27

CMIP3 #3 0.44 0.43 0.1 0.34

CMIP3 #4 0.32 0.32 0.12 0.25

CMIP3 #5 0.46 0.44 0.21 0.33

CMIP3 #6 0.49 0.47 0.22 0.36

CMIP3 #7 0.47 0.48 0.21 0.37

CMIP3 #8 0.56 0.56 0.13 0.44

CMIP3 #9 0.49 0.45 0.11 0.37

CMIP3 #10 0.33 0.32 0.1 0.25

 

stdv(T) stdv(h) rTh grad

CMIP3 #1 0.62 0.61 0.2 0.48

CMIP3 #2 0.55 0.55 0.22 0.43

CMIP3 #3 0.2 0.2 0.11 0.15

CMIP3 #4 0.24 0.25 0.13 0.18

CMIP3 #5 0.22 0.22 0.08 0.16

CMIP3 #6 0.24 0.25 0.12 0.18

CMIP3 #7 0.37 0.37 0.16 0.29

CMIP3 #8 0.27 0.27 0.07 0.21

CMIP3 #9 0.48 0.48 0.12 0.38

CMIP3 #10 0.29 0.3 0.17 0.23

CMIP3 #11 0.44 0.43 0.12 0.34

CMIP3 #12 0.41 0.41 0.15 0.32

CMIP3 #13 0.28 0.28 0.09 0.22

CMIP3 #14 0.56 0.55 0.18 0.43

CMIP3 #15 0.6 0.59 0.18 0.46

CMIP3 #16 0.34 0.34 0.17 0.24

CMIP3 #17 0.36 0.36 0.18 0.26

CMIP3 #18 0.36 0.35 0.1 0.27

CMIP3 #19 0.5 0.5 0.13 0.39

CMIP3 #20 0.49 0.49 0.14 0.38

CMIP3 #21 0.37 0.37 0.14 0.29

CMIP3 #22 0.3 0.3 0.12 0.23

CMIP3 #23 0.6 0.59 0.15 0.47

CMIP3 #24 0.52 0.52 0.19 0.41

CMIP3 #25 0.61 0.61 0.22 0.48

CMIP3 #26 0.32 0.31 0.08 0.25

CMIP3 #27 0.32 0.31 0.1 0.25

CMIP3 #28 0.46 0.46 0.21 0.37

CMIP3 #29 0.41 0.4 0.14 0.31

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06

CMIP5 #2 -0.01 0.016 -0.097 -1.52 0.23 1.31 -2.9 0.0049 0.13 -0.14 -0.5 -1.01

CMIP5 #3 -0.01 0.022 -0.059 -1.03 0.22 1.58 -12.5 0.0091 0.27 -0.28 -0.56 -0.47

CMIP5 #4 -0.02 0.021 -0.063 -1.09 0.21 1.4 -10.5 0.0086 0.25 -0.27 -0.56 -0.53

CMIP5 #5 -0.05 0.023 -0.037 -1.28 0.2 1.54 -10.1 0.0086 0.29 -0.33 -0.33 -0.95

CMIP5 #6 -0.03 0.025 -0.059 -1.13 0.21 1.46 -10.4 0.0081 0.3 -0.33 -0.5 -0.62

CMIP5 #7 0 0.024 -0.081 -1.18 0.23 1.67 -7.6 0.0066 0.24 -0.24 -0.56 -0.62

CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65

CMIP5 #29 -0.09 0.015 -0.048 -1.04 0.23 1.36 -8.1 0.0065 0.1 -0.19 -0.33 -0.71

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06

CMIP5 #2 -0.01 0.016 -0.097 -1.52 0.23 1.31 -2.9 0.0049 0.13 -0.14 -0.5 -1.01

CMIP5 #3 -0.01 0.022 -0.059 -1.03 0.22 1.58 -12.5 0.0091 0.27 -0.28 -0.56 -0.47

CMIP5 #4 -0.02 0.021 -0.063 -1.09 0.21 1.4 -10.5 0.0086 0.25 -0.27 -0.56 -0.53

CMIP5 #5 -0.05 0.023 -0.037 -1.28 0.2 1.54 -10.1 0.0086 0.29 -0.33 -0.33 -0.95

CMIP5 #6 -0.03 0.025 -0.059 -1.13 0.21 1.46 -10.4 0.0081 0.3 -0.33 -0.5 -0.62

CMIP5 #7 0 0.024 -0.081 -1.18 0.23 1.67 -7.6 0.0066 0.24 -0.24 -0.56 -0.62

CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65

CMIP5 #29 -0.09 0.015 -0.048 -1.04 0.23 1.36 -8.1 0.0065 0.1 -0.19 -0.33 -0.71

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06

CMIP5 #2 -0.01 0.016 -0.097 -1.52 0.23 1.31 -2.9 0.0049 0.13 -0.14 -0.5 -1.01

CMIP5 #3 -0.01 0.022 -0.059 -1.03 0.22 1.58 -12.5 0.0091 0.27 -0.28 -0.56 -0.47

CMIP5 #4 -0.02 0.021 -0.063 -1.09 0.21 1.4 -10.5 0.0086 0.25 -0.27 -0.56 -0.53

CMIP5 #5 -0.05 0.023 -0.037 -1.28 0.2 1.54 -10.1 0.0086 0.29 -0.33 -0.33 -0.95

CMIP5 #6 -0.03 0.025 -0.059 -1.13 0.21 1.46 -10.4 0.0081 0.3 -0.33 -0.5 -0.62

CMIP5 #7 0 0.024 -0.081 -1.18 0.23 1.67 -7.6 0.0066 0.24 -0.24 -0.56 -0.62

CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65

CMIP5 #29 -0.09 0.015 -0.048 -1.04 0.23 1.36 -8.1 0.0065 0.1 -0.19 -0.33 -0.71

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06

CMIP5 #2 -0.01 0.016 -0.097 -1.52 0.23 1.31 -2.9 0.0049 0.13 -0.14 -0.5 -1.01

CMIP5 #3 -0.01 0.022 -0.059 -1.03 0.22 1.58 -12.5 0.0091 0.27 -0.28 -0.56 -0.47

CMIP5 #4 -0.02 0.021 -0.063 -1.09 0.21 1.4 -10.5 0.0086 0.25 -0.27 -0.56 -0.53

CMIP5 #5 -0.05 0.023 -0.037 -1.28 0.2 1.54 -10.1 0.0086 0.29 -0.33 -0.33 -0.95

CMIP5 #6 -0.03 0.025 -0.059 -1.13 0.21 1.46 -10.4 0.0081 0.3 -0.33 -0.5 -0.62

CMIP5 #7 0 0.024 -0.081 -1.18 0.23 1.67 -7.6 0.0066 0.24 -0.24 -0.56 -0.62

CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65

CMIP5 #29 -0.09 0.015 -0.048 -1.04 0.23 1.36 -8.1 0.0065 0.1 -0.19 -0.33 -0.71

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06
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CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65

CMIP5 #29 -0.09 0.015 -0.048 -1.04 0.23 1.36 -8.1 0.0065 0.1 -0.19 -0.33 -0.71

a11 a12 a22 a21 stdv( 1) stdv( 2) CfT C T a11a a11o a21a a21o
CMIP5 #1 -0.01 0.018 -0.086 -1.46 0.21 1.45 -10.7 0.0044 0.03 -0.04 -0.4 -1.06

CMIP5 #2 -0.01 0.016 -0.097 -1.52 0.23 1.31 -2.9 0.0049 0.13 -0.14 -0.5 -1.01

CMIP5 #3 -0.01 0.022 -0.059 -1.03 0.22 1.58 -12.5 0.0091 0.27 -0.28 -0.56 -0.47

CMIP5 #4 -0.02 0.021 -0.063 -1.09 0.21 1.4 -10.5 0.0086 0.25 -0.27 -0.56 -0.53

CMIP5 #5 -0.05 0.023 -0.037 -1.28 0.2 1.54 -10.1 0.0086 0.29 -0.33 -0.33 -0.95

CMIP5 #6 -0.03 0.025 -0.059 -1.13 0.21 1.46 -10.4 0.0081 0.3 -0.33 -0.5 -0.62

CMIP5 #7 0 0.024 -0.081 -1.18 0.23 1.67 -7.6 0.0066 0.24 -0.24 -0.56 -0.62

CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59
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CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96
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CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65
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CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1
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CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66
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CMIP5 #8 -0.1 0.025 -0.028 -1.42 0.32 1.85 -18.4 0.0075 0.15 -0.26 -0.22 -1.2

CMIP5 #9 -0.07 0.02 -0.042 -1.08 0.24 1.54 -1 0.0051 0.2 -0.27 -0.22 -0.86

CMIP5 #10 -0.01 0.027 -0.086 -1.31 0.25 1.34 -6.9 0.0075 0.33 -0.35 -0.68 -0.63

CMIP5 #11 -0.05 0.02 -0.03 -1.31 0.22 1.26 -16.8 0.0066 0.06 -0.11 -0.21 -1.1

CMIP5 #12 -0.12 0.029 -0.068 -0.93 0.31 1.59 -5.5 0.0054 0.25 -0.37 -0.39 -0.54

CMIP5 #13 -0.03 0.021 -0.053 -1.24 0.35 2.2 -11.9 0.0079 0.2 -0.23 -0.44 -0.8

CMIP5 #14 -0.05 0.023 -0.069 -1.52 0.17 1.21 -13.9 0.0046 0.05 -0.09 -0.33 -1.19

CMIP5 #15 -0.01 0.023 -0.073 -1.55 0.2 1.28 -12.7 0.0043 0.05 -0.06 -0.33 -1.21

CMIP5 #16 -0.01 0.018 -0.072 -1.4 0.13 0.97 -14 0.0087 0.15 -0.17 -0.66 -0.74

CMIP5 #17 -0.01 0.02 -0.078 -1.58 0.13 0.96 -13.5 0.008 0.16 -0.18 -0.66 -0.92

CMIP5 #18 -0.08 0.02 -0.018 -1.08 0.28 1.29 -2 0.0072 0.27 -0.35 -0.14 -0.94

CMIP5 #19 -0.14 0.022 -0.038 -0.83 0.42 1.64 -3.8 0.0042 0.15 -0.28 -0.17 -0.66

CMIP5 #20 -0.15 0.022 -0.054 -0.83 0.41 1.69 -2.6 0.0044 0.17 -0.32 -0.25 -0.59

CMIP5 #21 -0.06 0.025 -0.061 -0.96 0.27 1.13 -3.7 0.0066 0.3 -0.36 -0.42 -0.54

CMIP5 #22 -0.08 0.022 -0.059 -1.22 0.24 1.42 -9.8 0.0071 0.21 -0.29 -0.44 -0.78

CMIP5 #23 -0.09 0.017 -0.051 -0.99 0.28 2.15 -3.2 0.0033 0.08 -0.17 -0.18 -0.82

CMIP5 #24 -0.1 0.013 -0.082 -1.37 0.29 2.07 -3 0.0047 0.09 -0.19 -0.41 -0.96

CMIP5 #25 -0.11 0.018 -0.096 -1.3 0.25 1.62 -2.7 0.0029 0.08 -0.19 -0.29 -1.01

CMIP5 #26 -0.05 0.022 -0.037 -1.34 0.23 1.9 -9.3 0.0071 0.21 -0.26 -0.27 -1.07

CMIP5 #27 -0.03 0.019 -0.051 -1.07 0.24 1.93 -8.1 0.0076 0.2 -0.23 -0.4 -0.66

CMIP5 #28 -0.08 0.045 -0.036 -0.85 0.36 1.38 -5.8 0.0051 0.41 -0.5 -0.19 -0.65
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CHAPTER 3. THERMOCLINE ESTIMATION TECHNIQUES

3.1 Introduction

The El Niño–Southern Oscillation (ENSO) in the tropical Pacific is the most critical year-

to-year climate fluctuation affecting seasonal-to-interannual climate variability globally.

It results from the interactions between the equatorial Pacific warm waters and the general

atmospheric circulation in the Tropics (Wyrtki 1975; Rasmusson and Carpenter 1982). The

dynamics that control ENSO are essential for global seasonal climate predictions but are

also crucial for long-term global climate change.

One of the most important variable for ENSO studies is the thermocline depth in

equatorial Pacific (h). Fiedler (2010) described thermocline as ”a layer of water in which

temperature changes more rapidly with depth than it does in the layers above (surface

or mixed layer) or below (deep water)”. Although the theory of formation and structure

of thermocline is still a fundamental problem in physical oceanography (Pedlosky 2006),

there are several techniques used for estimating h. Most tropical Pacific ocean studies

consider the depth of 20◦C isotherm ( Z20 henceforth) as an optimal proxy for thermocline

depth (Meyers 1979; Kessler 1990; Smith 1995; Vecchi and Harrison 2000; Meinen and

McPhaden 2000; Fedorov and Philander 2001; Yang and Wang 2009).

Many recent studies have questioned the accuracy of using Z20 as a proxy for ther-

mocline depths. Wang et al. (2000) showed that Z20 has problems representing the ther-

mocline depth accurately and that it is suitable to represent warm pool but may fail for

the cold tongue and coastal upwelling regions as it may surface during the cold seasons.

Vecchi et al. (2006) found Z20 to be problematic for multi-model climate change analysis

as isotherms exhibit inter-model variability and also will change over time in a changing

climate. The changes in isotherms were also model dependent as they are a function of

other aspects (e.g. climate sensitivity of the model, diapycnal mixing etc.), hence they used
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the maximum gradient of temperature (dT/dz; maxgrad henceforth) definition of thermo-

cline depth. Yang and Wang (2009) noted that under a changing climate scenario the trends

in the thermocline depth measured as depth of 20◦C isotherm and as the depth of maxi-

mum dT/dz can be of opposite sign. They wrote that “During the transient period of global

warming, the tropical thermocline is usually enhanced because the surface layer warms

more and faster than the lower layers. The depth of maximum vertical temperature gradi-

ent shoals, which is consistent with the enhanced thermocline. However, the 20◦C isotherm

depth deepens, which suggests a weakened thermocline.”

Analysing and evaluating the thermocline depths estimation techniques are impor-

tant as the effect of thermocline depth changes on ENSO has been well established. Most

ENSO theories like the delayed oscillator (Suarez and Schopf 1988; Battisti and Hirst 1989)

the recharge-discharge oscillator (Jin 1997a,b) and the further simplified recharge oscilla-

tor (Burgers et al. 2005) have stressed on the role of the upper-oceanic heat content in the

ENSO cycle. According to the recharge oscillator theory, the depth of the main thermocline

plays an essential dynamic role in ENSO oscillation by controlling temperatures of water

upwelled in the eastern equatorial pacific, and deeper main thermocline means upwelling

of warmer waters. Thermocline anomalies, in turn, affect the Sea Surface Temperature

(SST ) anomalies in east equatorial Pacific, which impacts zonal winds. They showed that

the Z20 for February-March is positively and significantly correlated (0.72) with Niño 3.4

sea surface temperature (SST s) 10 months after, which suggests that warm water builds up

in the tropical Pacific before the onset of El Niño and a substantial heat content anomaly

in the Pacific Ocean mixed layer is a necessary condition for El Niño growth. Thermocline

depth anomaly also affects the ENSO phase transition while phase lag between zonally av-

eraged thermocline depths in the east pacific produces the SST - h oscillation. McPhaden

et al. (2006) showed that in the central-eastern equatorial Pacific, the thermocline fluctua-

tions are transferred to the surface mainly through vertical advection by mean upwelling, a
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process called “thermocline feedback”. Variations in the equatorial thermocline depth lead

ENSO SST anomalies in the eastern Pacific by at least two seasons, and hence variations in

the thermocline depths are a significant predictor of ENSO (Meinen and McPhaden 2000;

McPhaden et al. 2006).

The relationship between the thermocline depth and SST anomalies in the equatorial

Pacific, however, is not straightforward. Harrison and Vecchi (2001) investigated the si-

multaneous relationship between h and SST in the equatorial Pacific and found significant

correlations only in the eastern and east-central Pacific hence concluded it is “inappropriate

to attribute SST changes to thermocline depth changes.” Zelle et al. (2004) showed that

thermocline depth anomalies lead SST anomalies in time, with a longitude-dependent de-

lay ranging from 2 weeks in the eastern Pacific to 1 year in the central Pacific. The growing

lag toward the west is linked with the increasing mean depth of the thermocline. In addi-

tion to the local advection/mixing the much longer delay in the central Pacific may also be

associated with more basin-wide adjustment to thermocline perturbations (Philander 1981).

ENSO cycle also exhibits strong seasonal dependence, with events tending to develop

in summer/autumn, peak in winter, and decay in subsequent spring (Rasmusson and Car-

penter 1982). Both the SST and the zonal slope of the equatorial thermocline experience a

significant annual cycle. Studies based on heat budget analysis of the surface layer (Wang

and McPhaden 2000; Kang et al. 2001) also suggested that during the different phases of

the ENSO cycle (or different seasons) different budget terms had varying level of contri-

bution. Therefore seasonality may also be a feature in the direct relationship between the

thermocline depth and SST anomalies.

This chapter investigates the accuracy of using Z20 as a thermocline proxy for ENSO

studies as opposed to using maxgrad. Assuming that Z20 is the best proxy for h, Z20

and maxgrad should be equal and make no difference to the ENSO statistics, dynamics,
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and predictability. We will base our analysis on the ReOsc model, which has been used

in many studies to analyze ENSO dynamics in different ways (Burgers et al. 2005; Jansen

et al. 2009; Frauen and Dommenget 2010; Levine and McPhaden 2015). The ReOsc model

is a simplified representation of ENSO dynamics, allows us to diagnose the dynamical

parameters of the ENSO variability from the statistics of the model simulations or obser-

vations.

This chapter is organized as follows. The data sets, models, and methods used are

described in Section 3.2. The main results of this study are presented in Section 3.3 where

we analyze the effect of thermocline depth estimation techniques on ENSO statistics (dif-

ferences in annual mean, seasonal mean, field averaged h, standard deviation of h), ENSO

dynamics (use the recharge oscillator model to see differences in SST damping, h damp-

ing), variability and predictability. The summary and discussion are presented in Section

3.4.

3.2 Model simulation, data and methods

3.2.1 Observational datasets and CMIP Model Simulations

For observations we use data prepared by the Australian Bureau of Meteorology Research

Centre (BMRC) using an optimal interpolation technique, which combined data from moored

buoys, expendable bathythermographs, and Argo floats (Smith 1995). The BMRCZ20 data

set covers the tropical Pacific basin on a 1◦ latitude and 2◦ longitude grid and is available

for the period of January 1980 to January 2011 with monthly resolution. The SST , Z20

and maxgrad estimates are calculated from the potential temperature. Since the BMRC

20◦C record is much shorter we restrict our analysis of observed SST and thermocline

depth co-variability to 1980–2011.
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Table 3.1:: CMIP5 models with the corresponding model numbers

01 ACCESS1-0
02 ACCESS1-3
03 CCSM4
04 CESM1-BGC
05 CESM1-CAM5
06 CNRM-CM5
07 CSIRO-Mk3-6-0
08 CanESM2
09 FGOALS-g2
10 GFDL-ESM2G
11 GFDL-ESM2M
12 GISS-E2-H-CC
13 GISS-E2-R
14 GISS-E2-R-CC
15 HadGEM2-CC
16 HadGEM2-ES
17 IPSL-CM5A-MR
18 IPSL-CM5B-LR
19 MPI-ESM-MR
20 NorESM1-M
21 NorESM1-ME
22 bcc-csm1-1-m
23 CMCC-CM
24 GFDL-CM3
25 CMCC-CESM
26 CESM1-FASTCHEM
27 FGOALS-s2
28 IPSL-CM5A-LR
29 CESM1-WACCM
30 HadCM3
31 bcc-csm1-1
32 CNRM-CM5-2
33 CESM1-CAM5-1-FV2
34 CMCC-CMS

The analysis uses CMIP5 model simulation of the historical scenario for the period

1900-1999 (Moss et al. 2010; Taylor et al. 2012) and RCP8.5 for 2048-2100 for the Figure

3.2. We use all model simulations that have all variables available needed for this analysis.

These are 34 model simulations, see Table 3.1 out of which we have RCP8.5 data available

for 25 models. The historical scenario over the period from 1900 to 1999 is considered

as the control climate. All data is linearly detrended and anomalies relative to the mean

seasonal cycle are defined. The maxgrad estimate is computed by using spline interpolation
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technique, where we fitted a curve to the potential temperature data points at various depth

levels with 0.1m scaling. We then find the gradient at each point, and the level of maximum

gradient is choosen as the maxgrad estimate. The Z20 estimate is calculated as the depth

of the 20◦C isotherm. maxgrad is computed as dt/dz of the time-mean T instead of the

time-mean of the high frequency dt/dz. It is beyond the scope of this chapter to analyse

the differences between the two, but we will look at it for future work.

Our analysis is based on monthly mean anomaly time series for SST and thermocline

depth averaged over the equatorial Pacific (130◦E–80◦W, 5◦S–5◦N) and NINO3 (150◦W–90◦W,

5◦S–5◦N) SST index.

3.2.2 The Recharge Oscillator Model

The linear ENSO dynamics are evaluated on the basis of the ReOsc model from (Burg-

ers et al. 2005; Frauen and Dommenget 2012; Vijayeta and Dommenget 2018). This

model is given by two tendency equations of the NINO3 region (150◦W–90◦W, 5◦S–◦N)

SST anomalies, T , and equatorial Pacific (130◦E–80◦W, 5◦S–◦N) mean thermocline depth

anomalies, h:

dT (t)

dt
= a11T (t) + a12h(t) + ζT (3.1)

dh(t)

dt
= a21T (t) + a22h(t) + ζh (3.2)

The model parameters a11 and a22 represent the growth rate (or damping) of T and

h, and the parameters a12 and a21 the coupling between T and h. The two equations are

forced by stochastic noise terms ζT and ζh. The parameters of the 2-dimensional model Eqs.

(3.1),(3.2) are estimated for each CMIP model simulation by multivariate linear regressing
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the monthly mean tendencies of T and h against monthly mean T and h, respectively,

following the approach in previous studies (Burgers et al. 2005; Jansen et al. 2009). The

residual of the linear regression fit can be interpreted, as the random noise forcings with

the standard deviation (stdv) of the residuals being the stdv of the noise forcings for the

T and h equations (ζT and ζh). The ReOsc model Eqs.(3.1),(3.2) can be integrated with

stochastic noise forcing terms ζT and ζh to generate stochastic time series of T and h. We

therefore integrated the equations with a time step of 24 hours and red noise forcing terms

ζT and ζh. The decorrelation time of ζT and ζh is set to 3 days to mimic weather fluctuations

that effectively results into white noise for monthly mean data.

The ReOsc model strongly simplifes the ENSO dynamics and each of the 4 parameters

and the two noise forcing terms can be a result of many different physical processes in the

atmosphere and oceans. To further untangle the complexity the parameters, a11 and a21 can

be split up into an atmospheric, a11Aand a21A, and oceanic part, a11O and a21O following

the approach of Frauen and Dommenget (2010) and Yu et al. (2016) :

a11 = a11A + a11O (3.3)

a21 = a21A + a21O (3.4)

The atmospheric damping (or growth rate) of T , a11A, is effectively a coupling to wind

stress and net heat flux (Frauen and Dommenget 2010):

a11A = a12λCτT +
CfT
γ

(3.5)

The coefficient CτT is the linear regression of zonal wind stress, τx, in the central
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Pacific box and NINO3 SST . This essentially represents one of the three Bjerknes feed-

backs. CfT is a linear regression between net atmospheric heat flux andT in the NINO3

region. λ is a positive free coupling parameter and γ the ocean mixed layer depth following

the approach of Frauen and Dommenget (2010), which is based on the study of Jin (1997a).

The atmospheric part of the coupling of h to T , a21A, can be expressed as:

a21A =
a22
2
λCτT (3.6)

The oceanic parts of the couplings to T , a11O and a21O, in Eqs. (3.3) and (3.4) can

be estimated as the residuals of a11 and a21 in Eqs. (3.3) and (3.4) when a11A and a21A

are estimated from Eqs. (3.5) and (3.6). In the analysis part the parameters CτT , CfT ,

a11O and a21O will be estimated for the CMIP simulations in the same way as for the

observations. To reduce the complexity in the analysis we assumed γ to be the same for all

models. The coupling parameter λ is fixed for all analysis, as it was estimated in (Frauen

and Dommenget 2010) from running CGCM sensitivity studies.

3.3 Results

3.3.1 Mean thermocline depth in the equatorial Pacific

Figure 3.1 shows the idealised temperature profile where the blue curve represents current

ocean temperature and the red curve a future warmer ocean temperature profile. The two

curves are identical except that the red curve is offset by +3 ◦C. In this case we are assuming

an uniform warming of the ocean at all depth levels. The dashed black line represents the

maxgrad estimates, and as the temperature profiles are only offset by a certain amount of

uniform warming, the gradient of temperature (maxgrad) which represents the thermocline

depth doesn’t change. But the Z20 which represents the 20◦C isotherm deepens as there
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is now much more surface heat in the upper ocean layers. In such a case the Z20 estimate

might not be a good proxy for the thermocline depth as it may not coincide with the same.

The effect of future greenhouse warming on the thermocline depths in CMIP5 models

is shown in Figure 3.2. The figure shows the mean temperature profiles of the equatorial

Pacific (130◦E - 280◦E, 5◦S - 5◦N) for the historical and RCP8.5 scenarios of three CMIP5

models. The corresponding right panels shows the East Pacific (210◦E - 270◦E, 5◦S -

5◦N) and West Pacific (130◦E - 170◦E, 5◦S - 5◦N) temperature profiles with the dashed

horizontal lines representing maxgrad estimates. The Z20 estimates are not shown in

figure, but they are the depths associated with the intersecting point of the black dashed

lines and temperature curves. In most models the temperature profile warms on all levels,

but the warming is not uniform with depth. The most robust warming is at the surface,

and the least amount of warming is very close to the mean thermocline depth although the

warming patterns are different for each model. For example, in the CESM1-BGC model

the Z20 deepens minimally in all three considered regions of the equatorial Pacific but

Figure 1
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Figure 1: Sketch of idealised temperature profiles, Z20 and thermocline depth. The blue and
red temperature profiles are identical with the only difference of a constant off set of 3oC.
The thermocline depth is the same for both profiles, but Z20 is deeper in the warmer profile.

Figure 3.1: Sketch of idealised temperature profiles Z20 and maxgrad, the profiles
are exactly similar with a 3 ◦C offset. In a warming climate the Z20 may change
while the maxgrad depths remains the same.
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Figure 3.2: The temperature profiles averaged over Equatorial Pacific (130◦E -
280◦E) for three different models are shown with the corresponding East Equatorial
Pacific (210◦E - 270◦E) and West Equatorial Pacific (130◦E - 170◦E) in the right
panels. The blue curves are for historical data and red curves denotes the RCP8.5
(future) ocean temperatures. The dashed red and blue lines represent the maxgrad
estimates for historical and RCP8.5 scenario data, Z20 is the depth where the black
dashed line intersects the temperature curves (not shown).

71



CHAPTER 3. THERMOCLINE ESTIMATION TECHNIQUES

the maxgrad becomes shallower. In the CSIRO-Mk3-6-0 model the warming in ocean

temperatures is quite substantial, Z20 deepens but maxgrad shallows. The shallowing

of maxgrad is greater than the deepening of Z20 , especially in the West Pacific region

for the model. In the GISS-E2-H-CC model the historical and future temperature profiles

are nearly identical except the top 100m, Z20 is not changing and the maxgrad becomes

shallower. The Z20 cannot capture the changes in thermocline depths as Z20 estimates are

at same depth levels, but in reality the thermocline becomes shallower in the future ocean

warming scenario. In all the three above mentioned examples and other CMIP5 models

that are not shown, we see the same discrepancies of Z20 either not changing or deepening

while the actual thermocline shoals. in In such cases the feasibility of using Z20 estimates

to represent the thermocline depths comes under question as it is incapable of capturing the

effect of ocean warming on thermocline depths.

Figure 3.3(a) shows the annual climatological mean observed values of maxgrad and

Z20 in the equatorial Pacific (upper 300m) plotted against the upper equatorial ocean tem-

perature averaged over 5◦N and 5◦S. Both thermocline depth estimates generally coincide

with each other, except in the West Pacific warm pool region where the maxgrad is shal-

lower than the Z20 by about 20–40 m. Figure 3.3(b) shows the CMIP5 multi-model ensem-

ble (MME) mean values of temperature in the upper upper equatorial ocean along with the

maxgrad and Z20 and it is consistent with observations. Figure 3.3(c) and 3.3(d) show the

annual mean differences between Z20 and maxgrad for observations and CMIP5 MME,

respectively. In the eastern Pacific, where the thermocline dynamics is vital to theT and

coupled variabilities, the Z20 can adequately represent the maxgrad. The thermocline is

deep in the western Pacific, hence the discrepancy between the Z20 and maxgrad does

not matter as the surface is hardly affected by the thermocline locally. Therefore, for a

steady-state mean climate, themaxgrad can be adequately represented by Z20 , and it will

not be inconsistent, which has been shown by several studies (Zelle et al. 2004; Zhu et al.
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2015). The problem would arise in a changing climate scenario where the surface warms

and hence the isotherms shift upwards due to which the thermocline and Z20 may or may

not coincide.
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Figure 3.3: Climatological annual mean of equatorial Pacific ocean temperature
(the upper 300 m; ◦C) averaged between 5◦S to 5◦N for (a) Observed BMRC data
(1980-2011) and (b) CMIP5 multi model mean ensemble historical data (1900-1999).
The black lines show the location of the 20◦C isotherm (Z20 ) and green lines show
the location of maximum vertical temperature gradient(maxgrad). Climatological
annual mean difference between maximum vertical temperature gradient (maxgrad)
and 20◦C isotherm (Z20 ) for (c) Observed BMRC data (1980-2011) and (d) CMIP5
multi model mean ensemble historical data(1900-1999).

73



CHAPTER 3. THERMOCLINE ESTIMATION TECHNIQUES

3.3.2 Thermocline depth variability in the context of ENSO

dynamics

Figure 3.4 shows the thermocline depth anomaly time series of the Equatorial Pacific

(130◦E - 280◦E, 5◦S - 5◦N), East Equatorial Pacific (210◦E - 270◦E, 5◦S - 5◦N) and West

Equatorial Pacific (130◦E - 170◦E, 5◦S - 5◦N) for observations and one CMIP5 model

(ACCESS1-3). The correlation values are indicated on the northwest side in the panels.

For both the observations and CMIP5 models, the standard deviation is higher for West

Pacific. Also in this region the depth of maxgrad is a lot shallower than Z20 . The higher

correlation in the CMIP5 models between the two time series as compared to observations

is due to the fact that observations are prone to having a number of errors. The CMIP5

models in comparison do not have inconsistencies between theT and thermocline depth

data.

Figure 3.5(a),(b) shows the power spectrum of the thermocline depth anomaly for ob-

servation and CMIP5 MME respectively, Z20 and maxgrad estimates are shown in red

and blue curves. While for ENSO studies theT A power spectrum is a more important sta-

tistical parameter it is imperative to look at the changes in the h power spectrum. For longer

timescales the Z20 and maxgrad estimates evolve similarly with maxgrad extimates hav-

ing higher variance for both observations and individual CMIP5 models. For shorter time

scales the maxgrad estimates have greater variance which means they are more noisier

and this correlates with the higher standard deviation of maxgrad estimates. In conclusion

the importance of higher frequencies of thermocline depth anomalies is relatively greater in

case ofmaxgrad estimates. It is beyond the scope of this study to investigate reason for the

differences in the variance distribution at different time scales, it certainly supports the fact

that the different h anomaly estimation techniques leads to differences in the representation

of ENSO dynamics.
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Figure 3.4: The thermocline depth anomaly time series for (a) Equatorial Pacific
(130◦E - 280◦E) (b) East Equatorial Pacific (210◦E - 270◦E) (c) West Equatorial
Pacific (130◦E - 170◦E). (d), (e), (f) are the corresponding time series for one CMIP5
model:ACCESS1-3 for the same regions as (a), (b), (c) respectively.
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Figure 3.6(a) shows the observed correlation betweenT and h. The observed time

evolution of h leads that of T by about 5–6 months (peak of cross-correlation) for the Z20

estimates and about 7-8 months for themaxgrad estimates. This is indicative of the ENSO

recharge and discharge mechanism diagnosis differences between the two estimation tech-

niques, which is the fundamental basis of the ReOsc model. The observed T and h (Z20 )

correlation have a more pronounced out of phase relationship as compared to the observed

T and h (maxgrad) correlation. This is evident in the historical CMIP5 simulations as
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Figure 3.5: Power Spectrum of (a) Observed thermocline depth anomaly (b)
CMIP5 MME thermocline depth anomalies.
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well as shown in Figure 3.6(b), where T and h (Z20 ) have a very clear out-of- phase

relation, with a strong positive correlation when h leads T and a roughly equally strong

negative correlation when T leads h at about the same lead time of 5–8 months overall

increase in correlation at the peak. These changes are qualitatively similar in the maxgrad

estimates, but are shifted further downwards indicating differences in the correlation pat-

terns at different lead/lag months. The maxgrad estimates has a quite significant negative

instantaneous (lag = 0) cross-correlation and the cross-correlation peak for negative lead

times (T leads h) is much larger than the one for positive lead times. The different char-

acteristics of the thermocline depth estimates as discussed in this subsection indicate that

they can potentially affect the ReOsc model parameters and therefore the representation of

ENSO dynamics and its diagnosis in the ReOsc model.

Figure 3.7 shows the statistics of h variability. The standard deviation of h (stdv(h))

and mean cross correlation betweenT and h for 4–8 months lag (h leadingT ) have been

shown for observation and CMIP5 models. The stdv(h) slightly increases while the mean 4-
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Figure 3.7: Statistics of ENSO variability: Scatter plot of (a) Standard deviation of
h (Stdv(h)) for CMIP5 model historical data (1900-1999), (b) 4-8 month mean T - h
correlation, for CMIP5 model historical data (1900-1999), with 20◦C isotherm (Z20
) data on x-axis and maximum vertical temperature gradient(maxgrad) on y-axis.
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8 months correlation decreases formaxgrad estimates as opposed to Z20 estimates in both

observations and all CMIP5 models. The stdv(h) difference within the CMIP5 ensemble

between the Z20 and maxgrad estimates is quite significant in few individual models.

Also the 4-8 mean correlation for four models is significantly lower. Overall, the variability

statistics for CMIP5 model ensemble mean show significant changes in the ensemble mean

and almost twice the value of Z20 for some individual models. We can conclude that

the two different h estimation techniques influence the representation of ENSO dynamics.

Substantial changes are being reflected in the diagnosis of ENSO dynamics and we will

further illustrate the same in the following subsections.

Figure 3.8(a), (b) shows the correlation between Z20 and maxgrad estimations of the

thermocline depths across the equatorial Pacific for observations and CMIP5 model mean

respectively. Both models and observations have similar correlation patterns over the equa-

torial Pacific. Higher correlation exists between Z20 and maxgrad in the Central Pacific

regions off equator for both datasets. The west and east pacific have less than 0.6 correla-

tion which indicates substantial differences in the thermocline depth estimation techniques.

Figure 3.8(c), (d) shows the difference in standard deviation of thermocline depth anomaly

between maxgrad and Z20 estimations across the equatorial Pacific for observations and

CMIP5 model mean respectively. The differences in the East Pacific aren’t as substantial

as West pacific, where the high differences between the standard deviations of thermocline

depth anomaly suggests higher variability in case of maxgrad estimates.

Figure 3.9(a) presents the lead-lag correlations between the latitude averaged BMRC

Z20 anomalies and the BMRC T anomalies. This depicts the local T and h relationship,

where the correlation between h and T anomalies are plotted as a function of longitude

and lag. The data sets are averaged over the 5◦N and 5◦S latitudes. The correlation val-

ues are depicted by the contour lines, positive lag denotes h leading T anomalies. This is

consistent with the findings shown previously by (Zelle et al. 2004), where they showed
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Figure 3.8: Statistics of ENSO variability: Cross correlation between maximum
vertical temperature gradient (maxgrad) and 20◦C isotherm (Z20 ) for (a) Observed
BMRC data (1980-2011) and (a) CMIP5 multi model mean ensemble historical data
(1900-1999). Standard deviation of h (stdv(h)) difference between maxgrad and
Z20 for (c) Observed BMRC data (1982-2002) and (d) CMIP5 multi model mean
ensemble historical data(1900-1999).
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that thermocline depth anomalies leadT anomalies in time with a longitude dependent de-

lay. Variations in thermocline depth is an important factor for ENSO cycle. Meinen and

McPhaden (2000) have shown that the thermocline depth anomalies (related to Warm Wa-

ter Volume) are precursor to emergence of T anomalies related to ENSO. h and T have

less than a month delay (almost in phase) in the eastern Pacific, but in the Central and

Western Pacific there is almost 9-10 months delay (significant delay). This h and T cor-

relation structure is also seen with the maxgrad estimates, but the correlation values are

significantly lower as compared to Z20, indicating different dynamics. The thermocline

Figure 3.9: (a), (b) Lead-lag correlations between observed h andT anomalies for
Observed BMRC data (1982-2002) Z20 estimates and maxgrad respectively; and
CMIP5 multi model mean ensemble historical data(1900-1999).
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is shallow in the eastern Pacific hence more substantial correlations than the central Pa-

cific which affects the efficiency of connections between the thermocline and the surface

temperature variability.

3.3.3 Dynamical Implications

The linear ENSO dynamics can very well be represented by the ReOsc model parameters

(Vijayeta and Dommenget 2018). Hence we can use the model to look for changes in

the linear ENSO dynamics due to thermocline depth calculation techniques. Figure 3.10

shows the comparison of the Z20 and maxgrad estimates of the ReOsc model parameters

and highlights some significant difference in the mean parameters. The Z20 estimates of

the ReOsc model have a stronger negative growth rate (SST damping; a11) as compared

to maxgrad for all models as shown in Figure 3.10(a). The case is different for the h

damping (a22), biggest differences can be seen in the h equation parameters. The coupling

ofT to h (a12) decreases in maxgrad for both models and observations which means that

the effect of h (maxgrad) on T is weaker than the effect of Z20 . This could be because

the Z20 estimates are shallower than the maxgrad hence greater influence on the T . The

coupling of h to T (a21) becomes stronger implying the relatively greater influence of T

on thermocline depths. The differences in all the four parameters indicates changes in

the diagnosis of the ENSO dynamics for the two h estimation techniques. For maxgrad

estimates the T damping becomes more positive for some models and h influence on T

parameter perhaps contributes to the damping in the T evolution rather than (a11).

In addition, to the ReOsc model parameters, the strength of the noise forcings may

change for ζh. Figure 3.10 (e), (f) shows changes in stdv(ζT ) and stdv(ζh), the latter changes

significantly than the former. This is expected as ζT is the T equation residual noise and we

use the same T anomaly time series for both sets of parameter estimations. The stdv(ζh) is

stronger in maxgrad estimates for almost all CMIP5 models and is almost twice the value
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for Z20 estimates for the observations. This is expected as h residual noise will reflect the

same changes as in the h anomaly time series. We have already shown that the standard

deviation of h is greater for maxgrad estimates and hence it is reflected in the h noise
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(c)    SST influence on h (a21)
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(d)    Thermocline Damping  (a22)
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(e)   SST noise
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(f)   h noise

1
2

3
4 5

6

78

9 10

11

12

1314

15
16

17

18
1920

21
22

23

24
25

26

27

28
29

30

31
32

33

34

Obs
CMIP5 mean

Figure 3.10: Equation (3.1),(3.2) parameters of the ReOsc model for observed
CMIP5 models for (a)T damping (a11); (b)T coupling to h (a12); (c) h coupling
toT (a21); (d) h damping (a22); (e) noise forcing forT (stdv(ζT ) ); (f) noise forcing
h (stdv(ζh) ). See models and corresponding numbers in Table 3.1
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parameter too.

(a)   SST tendency equation (z20)
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(b)   SST tendency equation (maxgrad)
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(c)   H tendency equation (z20)
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(d)   H tendency equation (maxgrad)
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Figure 3.11: Mean percentage contributions of the three rhs terms of Eqs.(3.1),(3.2)
of the ReOsc model to (a),(b) the monthly mean dT/dt and (c),(d) the monthly mean
dh/dt for CMIP5 models, observations (last bar) and all model mean (second last bar)
for Z20 and maxgrad estimates respectively.
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Figure 3.11 provides an alternate way to evaluates the differences in the aforemen-

tioned diagnosis of ReOsc ENSO representation when using the Z20 and maxgrad esti-

mates respectively. We look at the relative contribution of the three forcing terms in rhs of

Eqs. ((3.1),(3.2)). Similar to the analysis in Chapter 2, we estimated the relative contribu-

tion of each term by building the mean fraction that each of the three terms contribute to the

sum of the absolute values of each monthly mean term. The largest (∼ 50%) contribution to

the observed T and h tendencies comes in average from the noise forcings for both Z20 and

maxgrad estimates, illustrating that ENSO is a strongly noise driven process. The second

largest contribution to the observed T tendencies comes from the coupling to h indicating

the strong influence of the thermocline variability onto theT variability. This coupling is

even stronger than the direct effect of T. Formaxgrad estimates theT noise contribution re-

mains more or less same when compared to Z20 , but instead of the T damping parameter,

damping for the oscillatory sytem is dominated by the h influence on T parameter.

Similarly, the tendencies of h are also more strongly forced by the coupling to T and

less so by h itself. In this case the thermocline damping contribution to the h evolution

equation is stronger, and it comes at the cost of the stochastic noise exciting the system.

Interestingly the T influence on h contributions is almost similar for both maxgrad and

Z20 estimates. The CMIP5 ensemble means are very similar to the observed contributions

to theT tendencies.

The ReOsc model parameters a11 and a21 can be split into an atmospheric and a resid-

ual oceanic part following the approach of Frauen and Dommenget (2010). The oceanic

contribution to the growth rate of T (a11O) is estimated as the residual of a11 after con-

sidering the atmospheric part (see Eq. (3.3)). The observed oceanic feedback to T is a

strong damping that counter acts the positive atmospheric growth rates leading to the much

weaker total damping of a11. Thus, the weak total T damping (a11) is a result of strong

positive atmospheric growth rate and strong oceanic damping. The coupling of h to T (a21)
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can also be split into an atmospheric and oceanic part (see Eqs. (3.5) and (3.6)).

Here in Figure 3.12 the observed a21 is dominated by the oceanic part (a21O) with a

smaller contribution from the atmospheric part (a21A) for Z20 estimates. This is similar in

the CMIP ensembles, but the models tend to underestimate the oceanic part and overesti-

mate the atmospheric part. For maxgrad estimates we also see that the atmospheric and

oceanic compensation patterns have changed as compared to Z20 estimates. This indicates

the differences in ENSO dynamics diagnosis, and this dis-similar compensation of error

is probably what drives the different contribution of ReOsc model terms in Figure 3.11.

From this whole section we can fairly conclude that though the ENSO dynamics are un-

changed the diagnosis of ReOSc representation clearly has large differences between the

two thermocline depth estimates.

3.3.4 Thermocline depth seasonality

Figure 3.13 (a), (b) shows the seasonality of thermocline feedback which is defined as the

correlation between NINO3 T and h anomalies. The red lines are for the Z20 estimates

and blue lines denote the maxgrad estimates for observations and CMIP5 multi model

ensemble mean respectively. The relationship between thermocline depth variability and

T is dependent on seasons and is at its lowest during spring. The correlation values for

maxgrad estimates are significantly lower for both observations and CMIP5 models, in

fact for CMIP5 MME the spring time correlation values are negative. This is consistent

with our previous findings that upon using the maxgrad estimates the T - h coupling is

weaker which suggests of different ENSO dynamics. Even though the thermocline depth

has the strongest persistence during spring, its variations is hard to be communicated to

the surface. ENSO prediction skill usually also experiences a significant skill drop during

spring (Balmaseda et al. 1994). This is supported by the weakest correlation between

T anomalies and Z20 anomalies in the Niño3 region during spring (red curve) and for
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maxgrad estimates this persistence is stronger (blue curve).

Zhu et al. (2015) showed that the ENSO spring persistence barrier owes its existence

not only to the weakest coupling between large-scale T and wind anomalies (Bjerknes

feedback) but also to the weakest subsurface-surface connection (thermocline feedback).

This study concentrates only on the thermocline feedback, but it has been established that

the two feedbacks may partially be dependent upon each other. The T - h seasonal cor-

relation diagnosis is different for both thermocline depth estimation techniques hence will

also reflect in the ENSO prediction skill. It should also be noted that the month to month
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Figure 3.12: ReOsc model parameters of CMIP5 model simulations from
Eqs.(3.5),(3.6) for (a) Ocean component of T damping (a11o); (b) Ocean component
of h coupling to T (a21o); (c) T damping components (a11a; a11o); (d) Components
of h coupling to T (a21a; a21o). See models and corresponding numbers in Table 3.1.
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change in correlation values are sharper for maxgrad estimates which perhaps is the result

of higher standard deviation of thermocline depth.This is more pronounced in the observed

values as compared to CMIP5 MME, but also indicated in individual models.The thermo-

cline depth anomalies leading T anomalies have a change in their relationship post 2000

(Meinen and McPhaden 2000) but as this study is limited to 1900-1999 dataset ,it is not

investigated here.

Figure 3.13: Simultaneous correlations as a function of season between h and T
anomalies averaged over the Niño3 region for (a) Observed BMRC data(Calculations
are performed for 1980–2011) and (b) CMIP5 MME(1900-1999).The blue lines are
for Z20 -SST correlation and red lines are for maxgrad estimates.
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3.3.5 Sensitivity analysis and Skill score

We analyze the sensitivity of the ENSO statistics to the ReOsc model parameter biases

and spreads using the conceptual framework of the ReOsc model. It is computationally

efficient to evaluate the relative importance of different parameters or feedbacks biases by

integrating the dynamics ReOsc model and analyzing how the ENSO statistic changes.

We have already used this approach in Chapter 2 sensitivity analysis. We estimate the

sensitivity of an ENSO statistic,σk, to a parameter, pi, of the ReOsc model by integrating
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Figure 3.14: Dynamical skill scores of CMIP5 model for different statistical prop-
erties. Skill scores for (a) stdv(T) (◦C) ;(b) stdv(h) (m) and (c) cross correlation
between T and h for lags 4–8 months (h leading T).the values for Z20 estimates are
on the x-axis and maxgrad estimates on y-axis.
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the ReOsc model with all other parameters set to the CMIP ensemble mean parameters and

perturbing pi by a small δpi. The change in the ENSO statistic, k, relative to the control

integration in which all parameters are set to the CMIP ensemble mean parameters gives

us an estimate of the sensitivity λki:

λki ≈
δσk
δpi

(3.7)

All integrations are done for 1000yrs using the same white noise forcing in all integra-

tions. Here we are estimating the sensitivities to the six parameters from the ReOsc model

eq. (3.1),(3.2). By multiplying the sensitivity with a difference in a particular parameter,

pi, we can estimate the change in the ENSO statistic ki:

4σki = 4pi.λki (3.8)

It needs to be noted here that we made a first order linear approximation in this ap-

proach. However, the ENSO statistics in the ReOsc model are in general not a linear

function of the parameters, but do show some non-linear behavior (e.g. changing a11 = 0.1

by 4a11 = - 0.1 does not have the exact opposite effect of changing it by 4a11 = + 0.1).

It also needs to be considered that the sensitivity of the λki will in general depend on the

values of all other parameters as well. We can summarize the CMIP model biases relative

to the observed ENSO ReOsc model parameters by combining all parameter biases into a

normalized skill score, Sσki:

Sσki =
1

σk(obs)

√√√√1

6

6∑
n=1

(4pin.λkn)2 (3.9)

with σki the skill score for the ENSO statistic σk for the model with index i, the model
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bias in the parameter pn relative to observed, 4pin, and the observed ENSO statistic, σk

(obs). This skill score is effectively a root mean square error (RMSE) in the six model

parameters (a11, a12, a21, a22, stdv(ζT ), stdv(ζh)) scaled by the sensitivity of the ENSO

statistics to these parameters (λkn) in the ReOsc model and normalized by the absolute

value of the observed ENSO statistic, σk (obs). It thus provides a dynamics-based skill

score of ENSO.

We used this skill score approach for evaluating the CMIP3/5 models in chapter 2.

Here we use a simpler skill score based on only 6 parameters, from (3.1)and (3.2). The

main finding from this figure is that when using maxgrad estimates the ReOsc feedback

parameters change, and that reflects in the parameters sensitivity to a change. Larger skill

score when using maxgrad estimates doesn’t mean the models are worse, it simply means

while the ENSO dynamics remain same our diagnosis of it’s representation in the ReOsc

model differs, leading to differences in sensitivity analysis and it gets reflected in a different

skill score. We calculate the skill score for the models for all three statistical variables of T ,

h and T - h cross correlation. For all three properties the maxgrad estimates have worse

scores as compared to Z20 estimates.

3.3.6 Predictibility

Figure 3.15(a) and (b) shows the plot of NINO3 T anomalies and equatorial Pacific h

anomalies for observations and one CMIP5 model respectively. The graphs exhibit an

elliptical shaped orbit centered at origin and rotating clockwise. The starting points of the

trajectory are marked as a and end points as b, for observations we show 21 years data

until 2002 and for the CMIP5 model a snapshot of roughly 16 years is shown. The data

has been smoothed using a moving average method, which is equivalent to using a low

pass filtering where each datapoint is replaced by average of neighbouring data points. The

ellipticity and rotating direction depends on lag between SST and h anomalies, a smaller
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lag makes the orbit more elliptical. The recharge discharge mechanism can be explained

as follows, an initial positive SST anomaly induces Westerly wind forcing over the central

and western Pacific. The thermocline deepens in the Eastern Pacific, which results in a

positive feedback amplifying the SST anomaly until oscillation reached a mature phase.

At the same time thermocline reduces in the western Pacific which leads to discharge of

heat content, reducing eastern Pacific thermocline depth. This transition allows for the

upwelling of cold water which in turn enforces negative SST anomaly. As a response to

cold SST anomaly western Pacific thermocline deepens and there is recharge of equatorial

heat content. The zonal mean equatorial thermocline depth is essential in forming the

coupled recharge oscillator and the time delay between h and SST depends on dynamics

of the coupled model and noise forcing. For the Figure 3.15 (c) and (d) using the ReOsc

model we generate T and h time series while keeping the stochastic noises constant. We

generate theZ20 andmaxgrad T - h phase relationships for all models and we have similar

characteristics as results. The Z20 T - h phase diagrams are more closer to the theoretical

recharge discharge oscillator and the maxgrad T -h phase diagrams are more asymmetric

with T leading thermocline depths. This is again preliminary results and we need to tune

and scale our parameters.

In Figure 3.12 (a) it can be seen that when thermocline depth anomalies are estimated

using different techniques the diagnosis of ENSO dynamics representation differs from

one another. The differences in the maxgrad and Z20 estimates are primarily due to

thermocline depth variations and not noise forcings as we have already shown in Figure 3.6

that the noise forcings aren’t very different for the two estimation techniques. In the case

of Z20 estimates due to the greater lag the recharge and discharge of heat content is slower

as opposed to maxgrad estimates.

Figure 3.16 uses a simple regression equation with thermocline depth anomaly as the

predictor and SSTA as the predictand to predict T anomaly upto 24 months. The regres-
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sion model is only using h and not T. Therefore when the lag-correlation is zero, then the

model will have no skill, as we can see for lag=4 with maxgrad. We are using this only

as a preliminary analysis to look for differences in the Z20 and maxgrad estimates. The

figure has SST anomaly forecasts for each CMIP5 model and the model mean ensemble is

highlighted. In this figure the blue line points to Z20 and the red line is for the maxgrad

estimates. The maxgrad estimates has a lag 0 correlation, so we can use the T - h cor-

relation for predictions for the first two months while Z20 has prediction skills beyond

two months. The differences in the prediction skill at different lead months for the two

estimates allows us to make a choice depending on the lead month we need to forecast.

3.4 Summary and discussions

In this chapter, we investigated the accuracy of using the 20◦C isotherm (Z20 ) as a ther-

mocline depth proxy for ENSO studies instead of using the original definition of maximum

gradient of temperature (maxgrad). We started our analysis by looking at the differences

in the mean Pacific thermocline depths when calculated using Z20 andmaxgrad estimates.

Our results indicated that the maxgrad and Z20 estimates have similarity as well

as differences while representing the thermocline depths. In some models Z20 estimates

is incapable of capturing the effect of ocean warming on thermocline depths. The anal-

ysis was further focused on the thermocline depth variability and we found that stdv(h)

slightly increases while the mean 4-8 months correlation decreases for maxgrad estimates

as opposed to Z20 estimates in both observations and all CMIP5 models. The thermocline

depths estimated using maxgrad approach exhibited more variability than Z20 estimates.

For the power spectrum analysis of thermocline depth, we found that for longer time-

scales the Z20 and maxgrad estimates evolve similarly with maxgrad estimates having

higher variance for both observations and individual CMIP5 models. For shorter time
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scales the maxgrad estimates have greater variance which means they are more noisier

and this correlates with the higher standard deviation of maxgrad estimates. We then

investigated the correlation between T and h and found that observed time evolution of h

leads that of T by about 5–6 months (peak of cross-correlation) for the Z20 estimates and

about 7-8 months for the maxgrad estimates. The observed T and h (Z20) correlation

have a more pronounced out of phase relationship as compared to the observed T and h

(maxgrad) correlation. This is evident in the historical CMIP5 simulations as well where

T and h (Z20) have a very clear out-of-phase relation, with a strong positive correlation

when h leads T and a roughly equally strong negative correlation when T leads h at about

the same lead time of 5–8 months and overall increase in correlation at the peak. This

indicated that the ENSO recharge and discharge mechanism is different between the two

estimation techniques, which is the fundamental basis of the ReOsc model.

Using the ReOsc model, we next diagnosed ENSO dynamics for both cases and found

that Z20 estimates have stronger T damping, stronger h influence on T , weaker h damping

and weaker T influence on h in comparison to maxgrad. The differences in the dynamical

parameters and the change in the atmospheric and ocean parameter compensation indi-

cated substantial differences in the ENSO dynamics diagnosis representation for the two h

estimation techniques. Furthermore, the larger standard deviation of h for maxgrad also

manifests in the T - h phase relationships with the Z20 estimates being more similar to the

theoretical recharge oscillator and themaxgrad T - h phase diagrams are more asymmetric

with T leading thermocline depths. The main conclusion was that there is substantial dif-

ferences in the ENSO dynamics representation diagnosis when using the two thermocline

estimation techniques, and when using maxgrad estimates it was clear that thermocline

may not have that much of a stronger influence on driving T as suggested by current liter-

ature.

This chapter is based on preliminary findings and calls for further analysis. We intend
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to address few interesting questions in our future work. The first would be to examine the

relationship between maxgrad and other more frequently used measures of upper-ocean

heat, such as the heat content (vertically-averaged temperature, say over the top 300 m) and

warm water volume. We suspect the warm water volume and upper ocean heat estimates

to be similar to maxgrad rather than Z20. We would also need to look closely as to why

the spectra in Fig. 3.5 differ between maxgrad and Z20 and the implications about the time

scales of variability present at different depths and longitudes. The huge change in zero-lag

correlation in Fig. 3.6b is also interesting, and deserves investigation; we intend to look at

the recharge/discharge process, and the time scales of conveyance (upwelling/mixing) of

subsurface temperature anomalies into the surface layer.
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Figure 3.15: Phase orbits of (a) Observed data and (b) CMIP5 ACCESS1-0 his-
torical data(1900-1999).The T As are plotted on x-axis and h anomalies are plotted
on y-axis.a,b denotes the starting and end points respectively. The red lines are for
Z20 and blue lines represent maxgrad estimates.
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Figure 3.16: SST anomaly predictability using the ReOsc model for CMIP5 multi
model mean ensemble historical data(1900-1999).
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Chapter 4

Simulated future changes in ENSO

dynamics in the framework of the

linear recharge oscillator model

This thesis chapter originally appeared in the literature as

Dommenget, D., Vijayeta, A., Simulated future changes in ENSO dynam-

ics in the framework of the linear recharge oscillator model. Clim Dyn 53,

4233–4248 (2019). https://doi.org/10.1007/s00382-019-04780-7
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CHAPTER 4. ENSO FUTURE SCENARIO

4.1 Introduction

Anthropogenic climate change not only alters the mean state climate, but also potentially

affects the nature of internal climate variability. How in detail the internal variability will

change is an important question of anthropogenic climate change research. In particular,

the potential changes in the most important mode of natural climate variability, the El Niño

Southern Oscillation (ENSO) mode, are still a subject of current research (Collins et al.

2010; Cai et al. 2015b).

Previous studies on changes in the ENSO variability primarily focussed on changes in

ENSO statistics, such as the standard deviation (stdv) of the sea surface temperature (SST)

variability, the power spectral peak of SST (periodicity) or the changes in the pattern of

ENSO SST variability (Van Oldenborgh et al. 2005; Yeh et al. 2009; Collins et al. 2010;

Stevenson et al. 2012; Chen et al. 2017). Studies of future climate change with simulations

from the couple model intercomparison project (CMIP) found mostly little changes in these

statistics. The overall stdv of ENSO in the CMIP ensemble mean is not changing signif-

icantly and the periodicity of ENSO is also not changing significantly. However, there is

large spread in the CMIP ensemble with individual models showing clear trends in these

statistics, but with opposing directions, averaging to a near zero ensemble mean result.

A number of studies have analysed changes in recent observed ENSO variability (Lee

and McPhaden 2010; McPhaden et al. 2011; McPhaden 2012; Lübbecke and McPhaden

2013; Guan and McPhaden 2016; Capotondi and Sardeshmukh 2017). These studies sug-

gest that ENSO statistics, dynamics and the pattern have been changing in the recent

decades relative to previous decades. A recent study by Zhao et al. (2016) also suggests

that the predictability of ENSO is decreasing in recent decades, indicating changes in the

dynamics of ENSO. Whether these changes are consistent with the CMIP model projec-
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tions is, however, unclear. Here it also needs to be considered that changes in observed

ENSO characteristics are typically based on a relatively short time period, which will make

it difficult to distinguish such variations from natural internal low-frequency variability

(Wittenberg et al. 2014).

Much of these observed changes in ENSO are linked to changes in the tropical Pacific

mean state (McPhaden et al. 2011; Zhao et al. 2016). These mean state changes them-

selves have been analysed in several studies (Liu et al. 2005; Vecchi et al. 2006; DiNezio

et al. 2012; England et al. 2014; Bayr et al. 2014; Luo et al. 2015, 2016, 2018; Kohyama

et al. 2017). Many of these studies find large differences between observed trends and

those project by CMIP simulations. In particular, the changes in the Walker circulation

and associated winds, and changes in the equatorial mean SST pattern are inconsistent

between recent observations and CMIP model projects. These diverse results are further

complicated by the fact the current climate model simulations of ENSO have significant

common biases in the underlying processes and dynamics (Bellenger et al. 2014; Vijayeta

and Dommenget 2018).

Some studies analysed the dynamical changes of ENSO in CMIP3 and CMIP5 model

simulations (Kim and Jin 2011; Chen et al. 2015). Both studies analysed heat budget terms

of tropical Pacific SST. Kim and Jin (2011) found significant change in elements of ENSO

dynamics, that due to competing effects lead to no changes in the stability of ENSO. Chen

et al. (2015) explored the dynamical elements that lead to changes in ENSO amplitude.

They found that change in the thermocline and zonal advection feedback are the main

drivers in ENSO amplitude changes.

The combination of the above-mentioned studies on changes in ENSO variability, we

find a fairly diverse picture, with inconsistencies between recent observations and models,

between different model simulations and significant model biases in the ENSO dynam-
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ics. Given these uncertainties, it is instructive to gain a better dynamical understanding of

the changes in the ENSO variability. We therefore focus in this study on the changes in

dynamics of the ENSO mode in future climate change simulations.

The analysis of the ENSO dynamics presented in this study will be based on the linear

recharge oscillator (ReOsc) model (Jin 1997a; Burgers et al. 2005; Jansen et al. 2009). The

ReOsc model is a very effective way of describing the essential elements of the ENSO

dynamics, such as the SST growth rate and the coupling to the SST to the thermocline

depth, which represents the delayed negative feedback leading to the observed oscillating

nature of ENSO. It can be used as an effective diagnostic tool to estimate these important

dynamical elements of ENSO based on the outputs of model simulations or observations. It

can further be used to understand how changes in important dynamical aspects, such as the

wind-SST feedback affect ENSO statistics. Vijayeta and Dommenget (2018) has illustrated

in a recent study that the ReOsc model describes the ENSO dynamics and statistics in the

diverse CMIP ensembles very well.

This chapter is organized as follows: the next Section 4.2 introduces the CMIP model

data, the ReOsc model equations and how it is used to estimate the ENSO dynamics. It also

discusses some of the limitations in this approach. Section 4.3 presents the main results of

this study, starting with analysis of the thermocline depth, some simple ENSO statistics

followed by an analysis of the ReOsc dynamics, which is the main focus of this study. The

section will be concluded with a look at possible changes in the predictability. The last

section 4.4 provides a summary and discussion.
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4.2 Data, models and methods

4.2.1 CMIP5 model simulations

The analysis is based on CMIP5 model simulation of the historical and the RCP8.5 scenario

(Moss et al. 2010; Taylor et al. 2012). We use all model simulations that have all variables

available needed for this analysis. These are 25 model simulations, see Table 4.1. The

historical scenario over the period from 1881 to 1980 is considered as the control climate.

The RCP8.5 from 2051 to 2100 is considered for the climate change period. All data is

linearly detrended and anomalies relative to the mean seasonal cycle are defined.

4.2.2 The recharge oscillator model

The linear ENSO dynamics are evaluated on the basis of the ReOsc model from Burg-

ers et al. (2005); Frauen and Dommenget (2010); Vijayeta and Dommenget (2018). This

model is given by two tendency equations of the NINO3 region (150◦W–90◦W, 5◦S–5◦N)

SST anomalies, T, and equatorial Pacific (130◦E–80◦W, 5◦S–5◦N) mean thermocline depth

anomalies, h:
dT (t)

dt
= a11T (t) + a12h(t) + ζT (4.1)

dh(t)

dt
= a21T (t) + a22h(t) + ζh (4.2)

The model parameters a11 and a22 represent the growth rate (or damping) of T and h,

and the parameters a12 and a21 the coupling between T and h. The two equations are forced

by stochastic noise terms ζT and ζh. The parameters of the 2-dimensional model Eqs. (4.1),

(4.2) are estimated for each CMIP5 model simulation by multivariate linear regression the

monthly mean tendencies of T and h against monthly mean T and h, respectively, following

103



CHAPTER 4. ENSO FUTURE SCENARIO

Table 4.1:: List of CMIP5 models used in this study, the numbers in this table refer
to the numbers used in the figures

4235Simulated future changes in ENSO dynamics in the framework of the linear recharge oscillator…

1 3

The ReOsc model approach is different from the widely 
used Bjerknes stability (BJ) index or similar SST heat budget 
analysis (e.g. Jin et al. 2006; Kim and Jin 2011; Kim et al. 
2014; Chen et al. 2015). The terms of the BJ-index analysis 
can in most cases not be directly related to the parameters of 
the ReOsc, and it only discusses SST stability. In turn, the 
advantage of the ReOsc model is that the dynamical param-
eters of the model can be more directly linked to the ENSO 
variability statistics, such as standard deviation (stdv) of T, 
stdv(h), the power spectrum or coupling between T and h, by 
integrating the ReOsc model equations (VD18).

The residual of the linear regression fit for the ReOsc 
model can be interpreted, as the random noise forcings 
with the stdv of the residuals being the stdv of the noise 
forcings for the T and h equations ( !T and !h ). However, it 
also needs to be considered that this simple linear model 
fit does not fully represent the ENSO dynamics in the 
models. Mismatches between the true, more complex, 
dynamics and the ReOsc model fit will also project onto 
the residual noise terms of the model. VB18 did evaluate 
the goodness of fit to the CMIP model. They found that the 

residual noise terms fit well with the white noise assump-
tion, but they also do show some indications of the linear 
ReOsc model does not fully represents the ENSO dynam-
ics in the CMIP models, leading to some enhanced spread 
in the noise terms.

The thermocline depth (h) marks the depth at which 
the vertical temperature gradients are largest, see sketch in 
Fig. 1. It is often estimated on the basis of the depth of 20 °C 
isotherm (Z20), because this is a more robust approximation 
when the data is of coarse resolution (Meyers 1979; Kessler 
1990; Smith 1995; Yang and Wang 2009). Studies of future 
climate change simulations often used the maximum in the 
temperature gradients to estimate the thermocline depth 
(Vecchi and Soden 2007; Yeh et al. 2009). Previous studies 
with the ReOsc model used Z20 to estimate the thermocline 
depth (h) (Burgers et al. 2005; Jansen et al. 2009 and VD18).

However, this poses a problem when studying climate 
change, because a uniformly warming temperature pro-
file will not change the thermocline depth, but will lead to 
deeper Z20 (Yang and Wang 2009), see sketch in Fig. 1. This 
may potentially lead to artificial changes in the ReOsc model 
dynamics, even though nothing may have changed in the 
dynamics. To address this problem, we evaluate the ENSO 
dynamics and the ReOsc model parameters on the basis of 
both, a Z20 and a maximum gradient (maxgrad) estimate of 
the thermocline. Both estimates are based on high-resolution 
(0.1 m) spline fits of the CMIP5 simulation temperature pro-
files. In the following analysis, we will use the maxgrad 
estimate for the thermocline depth if not otherwise noted.

The growth rate of T (a11) in the ReOsc model can be 
split into an atmospheric (a11A) and oceanic contribution 

Table 1  List of CMIP5 models 
used in this study

The numbers in this table refer 
to the numbers used in the fig-
ures

Model

1. ACCESS1-0
2. ACCESS1-3
3. BNU-ESM
4. CESM1-BGC
5. CESM1-CAM5
6. CMCC-CM
7. CNRM-CM5
8. CSIRO-Mk3-6-0
9. CanESM2
10. GFDL-CM3
11. GFDL-ESM2G
12. GFDL-ESM2M
13. GISS-E2-H-CC
14. GISS-E2-H
15. GISS-E2-R-CC
16. GISS-E2-R
17. IPSL-CM5A-LR
18. IPSL-CM5A-MR
19. IPSL-CM5B-LR
20. MIROC-ESM-CHEM
21. MIROC-ESM
22. MIROC5
23. MRI-CGCM3
24. NorESM1-ME
25. bcc-csm1-1
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Fig. 1  Sketch of idealised temperature profiles, Z20 and thermocline 
depth (maxgrad). The blue and red temperature profiles are identical 
with the only difference of a constant off set of 3 °C. The thermocline 
depth is the same for both profiles, but Z20 is deeper in the warmer 
profile
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the approach in previous studies (Burgers et al. 2005; Jansen et al. 2009; Vijayeta and

Dommenget 2018).

The ReOsc model approach is different from the widely used Bjerknes stability (BJ)

index or similar SST heat budget analysis (Jin et al. 2006; Kim and Jin 2011; Chen et al.

2015). The terms of the BJ-index analysis can in most cases not be directly related to the

parameters of the ReOsc, and it only discusses SST stability. In turn, the advantage of the

ReOsc model is that the dynamical parameters of the model can be more directly linked to

the ENSO variability statistics, such as standard deviation (stdv) of T, stdv(h), the power

spectrum or coupling between T and h, by integrating the ReOsc model equations (Vijayeta

and Dommenget 2018).

The residual of the linear regression fit for the ReOsc model can be interpreted, as the

random noise forcings with the stdv of the residuals being the stdv of the noise forcings for

the T and h equations (ζT and ζh). However, it also needs to be considered that this simple

linear model fit does not fully represent the ENSO dynamics in the models. Mismatches

between the true, more complex, dynamics and the ReOsc model fit will also project onto

the residual noise terms of the model. Vijayeta and Dommenget (2018) did evaluate the

goodness of fit to the CMIP model. They found that the residual noise terms fit well with

the white noise assumption, but they also do show some indications of the linear ReOsc

model does not fully represents the ENSO dynamics in the CMIP models, leading to some

enhanced spread in the noise terms.

The thermocline depth (h) marks the depth at which the vertical temperature gradients

are largest, see sketch in Fig. 4.1. It is often estimated on the basis of the depth of 20

◦C isotherm (Z20), because this is a more robust approximation when the data is of coarse

resolution (Meyers 1979; Kessler 1990; Smith 1995; Yang and Wang 2009). Studies of

future climate change simulations often used the maximum in the temperature gradients to
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estimate the thermocline depth (Vecchi and Soden 2007; Yeh et al. 2009). Previous studies

with the ReOsc model used Z20 to estimate the thermocline depth (h) (Burgers et al. 2005;

Jansen et al. 2009; Vijayeta and Dommenget 2018).

However, this poses a problem when studying climate change, because a uniformly

warming temperature profile will not change the thermocline depth, but will lead to deeper

Z20 (Yang and Wang 2009), see sketch in Fig. 4.1. This may potentially lead to artificial

changes in the ReOsc model dynamics, even though nothing may have changed in the

dynamics. To address this problem, we evaluate the ENSO dynamics and the ReOsc model

parameters on the basis of both, a Z20 and a maximum gradient (maxgrad) estimate of

the thermocline. Both estimates are based on high-resolution (0.1 m) spline fits of the

CMIP5 simulation temperature profiles. In the following analysis, we will use the maxgrad

estimate for the thermocline depth if not otherwise noted.

The growth rate of T (a11) in the ReOsc model can be split into an atmospheric (a11A)

and oceanic contribution (a11O) following the approach of (Frauen and Dommenget 2010;

Vijayeta and Dommenget 2018):

a11 = a11A + a11O (4.3)

The atmospheric growth rate of T (a11A) is estimated as a linear combination of atmo-

spheric heat flux feedback (CfT ), the wind-stress (Bjerknes) feedback (CτT ):

a11A = a12λCτT +
CfT
γ

(4.4)

CτT is the linear regression of zonal wind stress, τx, in the central Pacific region

(160◦E–140◦W, 6◦S–6◦N) and T, and CfT is the linear regression of net atmospheric heat
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flux in the NINO3 region and T. λ is a positive free coupling parameter and the ocean mixed

layer depth that are assumed to be constant for all simulations (Vijayeta and Dommenget

2018). a11O is estimated as the residual growth rate:

a11O = a11 − a11A (4.5)

Vijayeta and Dommenget (2018) provided a proof of concept, illustrating this ReOsc

model approach. They found, for instance, that the ReOsc model is capable in repro-

ducing the CMIP model simulations stdv(T) with correlation of 0.99 by integrating Eqs.

(4.1),(4.2) with the estimated model parameters. Similarly, other important statistics, such

as stdv(h), the cross correlation between T and h or the power spectral slope (see section be-

low for a definition) are also reproduced very well (correlation > 0.8) with this approach.

However, the model does have some limitations and it does make some simplifications.

Some notable limitations are, as discussed in Vijayeta and Dommenget (2018): The power

spectral distribution of variance is wider in the CMIP model simulations than it is simu-

lated in the ReOsc fitted to the CMIP models. The cross-correlation between T and h is

slightly overestimated in the fitted ReOsc models, and, as mentioned above, the residual

noise forcing terms are not just white noise forcings, but do partly reflect more complex

dynamics that are not captured by this linear ReOsc model approach.

Important simplifications of the ReOsc model: It is a linear approach and therefore

does not consider non-linearity in the ENSO dynamics or state dependent noise forcings.

Further, the model describes ENSO in a one-dimensional SST index (T), therefore neglect-

ing ENSO diversity in respect to regional differences in the ENSO amplitudes (e.g., central

Pacific vs. east Pacific events).
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4.2.3 Estimation of sensitivities with the recharge oscillator

model

The sensitivity of ENSO statistics to changes in the ReOsc model parameters can be esti-

mated by integrating the ReOsc model with white noise forcing (Vijayeta and Dommenget

2018). We therefore integrate the ReOsc model for 1000 years with all parameters set to

the mean values of the historical simulations. Based on the resulting T and h time series we

compute the control ENSO statistics. In a second integration, we use the same white noise

forcings, but change one or all of the ReOsc model parameters to the mean values of the

RCP8.5 simulations. Based on the resulting T and h time series we compute the RCP8.5

ENSO statistics, and the differences to the control simulations provides us an estimate of

the sensitivity to the parameter changes. Given that we used the same white noise forcings

in both integrations, these estimates have no statistical uncertainties from the integrations.

4.2.4 The power spectral slope

The spectral power slope is a non-dimensional characteristic of a power spectrum that ef-

fectively captures the time scale behaviour. Following the approach of Vijayeta and Dom-

menget (2018) we estimated the slope (in log-scale) from 1 to 7 years period to capture

the range of the power spectrum in which the variance is strongly increasing with period

(decreasing with frequency) and where the ENSO variance peaks. Simulations with a more

pronounced interannual peak tend to have steeper slopes (more negative), and those with a

less pronounce interannual peak or a shift towards low-frequencies tend to have a less steep

slope (less negative). The spectral power slope therefore captures changes in the time scale

behaviour or periodicity relatively well. This is in particular true for a damped oscillation

as described by the ReOsc model.
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We tested this approach in a wide range of different CMIP simulations and ReOsc

models (Eqs. (4.1),(4.2)) integrated with different parameters and found this metric to be

the best fit to describe variations of the peak of the power spectrum. An increased (less step

or more flat) slope in these simulations corresponds, in statistical average, to a shift in the

peak towards lower frequencies. In turn, a decreased (stepper or less flat) corresponds, in

statistical average, to a shift in the peak towards higher frequencies. However, it needs to

be noted that it is only one parameter describing a power spectrum that has more than one

degree of freedom. Therefore, changes in the power spectrum can occur that are no capture

by this parameter.

4.2.5 Estimates of uncertainties

In the following analysis, we will estimate uncertainties in the ENSO statistics and the Re-

Osc model parameters in two ways: First, we will provide a confidence interval for the

statistical significance in changes from the historical to the RCP8.5 simulation for each in-

dividual model. Second, we will provide a confidence interval for changes in the ensemble

mean values.

The 95% confidence interval for all parameters based on regressions (e.g., ReOsc

model parameters and power spectral slope), are estimated for each model for the 50 years

period of the RCP8.5 simulations. However, instead of presenting the confidence interval

for each individual simulation we only show the mean 95% confidence interval of the en-

semble in reference to the one-to-one line (e.g. see Figs. 4.5, 4.6, 4.7). This effectively

illustrates if individual model parameters have changed from the historical to the RCP8.5

simulations. For uncertainties in the standard deviations, we followed a Chi squared distri-

bution approach and assumed that the confidence interval is proportional to the expectation

value (e.g. see Fig. 4.5a). The ensemble mean uncertainties are presented by 95% confi-

dence interval of a Students t test, assuming that each simulation represents an independent

109



CHAPTER 4. ENSO FUTURE SCENARIO

sample (e.g., see red line in Fig. 4.5a).

Figure 1
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Figure 1: Sketch of idealised temperature profiles, Z20 and thermocline depth. The blue and
red temperature profiles are identical with the only difference of a constant off set of 3oC.
The thermocline depth is the same for both profiles, but Z20 is deeper in the warmer profile.

Figure 4.1: Sketch of idealised temperature profiles, Z20 and thermocline depth
(maxgrad). The blue and red temperature profiles are identical with the only differ-
ence of a constant off set of 3 ◦C. The thermocline depth is the same for both profiles,
but Z20 is deeper in the warmer profile

4.3 Results

4.3.1 Thermocline depth changes

The thermocline depth is one of the two dynamical variables of the ReOsc model, repre-

senting a proxy of upper ocean heat content. Mean state changes in the thermocline depth

can affect the dynamics of ENSO, but potentially will also affect the estimation of the ther-

mocline depth by Z20 (see sketch in Fig. 4.1). It is therefore a good starting point for the

analysis of the dynamical changes of ENSO.
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Figure 2
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Figure 2: (a) CMIP equatorial Pacific mean (150oE–80oW , 5oS–5oN) temperature profiles
of the historical (blue) and RCP8.5 scenario (red). Estimates of the thermocline depth and
Z20 are shown as well. (b) Difference in the temperature profiles. The doted lines mark the
95% confidence interval.

Figure 4.2: (a) CMIP5 equatorial Pacific mean (150◦E–80◦W, 5◦ S-5◦N) temperature
profiles of the historical (blue) and RCP8.5 (red) scenario. Estimates of the thermo-
cline depth (maxgrad) and Z20 are shown as well. (b) Difference in the temperature
profiles. The dotted lines mark the 95% confidence interval

Figure 4.2 shows the mean temperature profiles of the equatorial Pacific for the histor-

ical and RCP8.5 CMIP5 ensemble mean together with thermocline depth estimates. The

temperature profile warms on all levels, but the warming is not uniform with depth, see Fig.

4.2b. The strongest warming is at the surface and the least amount of warming is very close

to the mean thermocline depth of the historical simulations,followed by stronger warming

in deeper layers. This profile is very different from what may have been expected from a

transient or equilibrium warming (Manabe et al. 1991; Yoshimori et al. 2016). It suggests

a dynamical adjustment of the upper equatorial Pacific, which leads to reduced warming at

the thermocline depth.

The thermocline depth becomes shallower in the RCP85 scenario, which is due to the

fast warming at the surface layers. This is consistent with the results of previous studies of

simulated future thermocline depth changes (Vecchi and Soden 2007; Yeh et al. 2009; Kim

and Jin 2011; Chen et al. 2015). In turn, Z20 does deepen, but not as much as one may

have expected from a homogenous warming. This is due to the minimum of warming at
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Figure 3

Figure 3: Mean Changes in (a) the thermocline depth (maxgrad) and (b) Z20 for CMIP
RCP8.5 minus historical simulations over the equatorial Pacific domain. (c) is the difference
of (b) – (a). Negative values indicate shallower thermocline depth in the RCP8.5 simulations.
Values are in meter.

Figure 4.3: Mean changes in (a) the thermocline depth (maxgrad)and (b) Z20 for
CMIP RCP8.5 minus historical simulations over the equatorial Pacific domain. (c)
Is the difference of b–a. Negative values indicate shallower thermocline depth in the
RCP8.5 simulations. Values are in m

the thermocline, which counteracts the deepening of Z20.

The different behaviour of the thermocline depth and Z20 is also reflected in the re-

gional changes of the equatorial Pacific, see Fig. 4.3. The thermocline depth decreases

relatively uniformly, but more in the central and west Pacific, and less in the east Pacific.

Z20 shows a fairly different behaviour. It strongly deepens in the eastern Pacific and slightly

along the equator. Off the equator Z20 becomes shallower, in contrast to what you would

expect from a warming temperature profile. Upper layers (above Z20) of the off-equatorial
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central Pacific cool (not shown), leading to a shallowing of Z20. This suggests a strong

dynamical rearrangement of the upper equatorial Pacific: warm upper ocean off-equatorial

water shifts into the equatorial region.

These changes in the thermocline depth also affect the cross-correlation between T

and h (Fig. 4.4). In the historical CMIP5 simulations T and h (Z20) have a very clear out-

of phase relation, with a strong positive correlation when h leads T and a roughly equally

strong negative correlation when T leads h at about the same lead time of 5–8 months (Fig.

4.4a). This does change significantly in the future RCP8.5 simulations for Z20 estimates.

The cross-correlation shifts upwards between the lags 12 to + 8 months, leading to a now

significant positive instantaneous (lag = 0) correlation (Fig. 4.4a). It further leads to a

change of the peak crosscorrelation at positive lead times, with a shift to smaller lead times

and an overall increase in correlation at the peak.

These changes are qualitatively similar in the maxgrad estimates, but are much weaker.

A notable difference to the Z20 estimate can be seen in the mean cross-correlation of the
Figure 4
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Figure 4: The cross-correlation of T vs. h for (a) the Z20 and (b) the maxgrad estimates. The
blue lines are the historical ensemble mean values and the grey shaded area mark standard
error for a t-test. The red lines are the RCP8.5 ensemble mean values. Positive lag times
indicate the time evolution of h leads T.

Figure 4.4: The cross-correlation of T vs. h for (a) the Z20 and (b) the maxgrad
estimates. The blue lines are the historical ensemble mean values and the grey shaded
area mark the standard error for a t-test. The red lines are the RCP8.5 ensemble
mean values. Positive lag times indicate the time evolution of h leads T
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historical simulations. The maxgrad estimates has a quite significant negative instanta-

neous (lag = 0) cross-correlation and the cross-correlation peak for negative lead times (T

leads h) is much larger than the one for positive lead times. The different characteristics

of the thermocline depth estimates as discussed in this subsection indicate that they can

potentially affect the ReOsc model parameters and therefore the dynamics of ENSO as es-

timates by the ReOsc model.We will therefore, in the following analysis section, consider

both thermocline estimates.

4.3.2 Changes in statistics of ENSO variability

Before we start analysing changes in the ENSO dynamics, it is instructive to look at changes

in the overall statistics of ENSO variability. Similar analysis has been done in previous

studies, and we therefore will keep this discussion short to focus more on the dynamical

changes.

Figure 4.5 shows statistics of T and h variability. In addition to the standard deviation

of T, Z20 and the thermocline depth, an estimate of the spectral power of T and its slope

is shown (see Sect. 4.2 for details). The standard deviation of T (Fig. 4.5a) is essentially

unchanged in most models. However, some models do show quite significant changes (e.g.,

models 14 or 5). The power spectrum of T varies from model to model, but the historical

and RCP8.5 scenario spectra are nearly identical in ensemble mean, with some reduction

in variance on the lower frequencies in the RCP8.5 scenario (Fig. 4.5b). The reduction in

decadal variability in the RCP8.5 scenario may be related to the missing external forcings

such as volcanoes or variations in aerosols (Maher et al. 2014). The reduction in decadal

variance is reflected in slightly, but statistically not significant, flatter slope in the interan-

nual variability (see Fig. 4.5b, c). This suggests no significant change in the periodicity of

ENSO is present in the CMIP5 simulations. Some models, however, do show some changes

in opposite directions (e.g., models 5 and 22; Fig. 4.5c).
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Figure 5
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Figure 5: Statistics of ENSO variability: (a) stdv(T), (b) power spectrum of T normalized
by the mean variance within 7yrs to 1yrs period, (c) power spectral slope of T variability, (d)
stdv(h) for the Z20 estimate and (e) stdv(h) for the maxgrad estimate. Each blue number
marks a different model (see Table 1). Ensemble mean values in a, c, d and e are marked
be the black circle with the red line marking the 95% confidence interval. The shaded area
around the one-to-one line in a, c, d and e mark the mean 95% confidence interval for the
individual models (see methods for details). The t-values for the ensemble mean differences
are shown in lower left corner of panels a, c, d and e. An absolute t-value > 2.0 passes the
95% confidence interval. Supplemental Table S1 lists all model values shown in panels a,
c, d and e. The two black vertical lines in (b) mark the frequency interval over which the
spectral slopes have been estimated.

Figure 4.5: Statistics of ENSO variability: (a) stdv(T), (b) power spectral slope of T
variability, (c) stdv(h) for the Z20 estimate and (d) stdv(h) for the maxgrad estimate.
Each blue number marks a different model (see Table 4.1). Ensemble mean values
are marked be the black circle with the red line marking the 95% confidence interval.
The shaded area around the one-to-one line mark the mean 95% confidence interval
for the individual models (see methods for details). The t-values for the ensemble
mean differences are shown in lower left corner of each panel. An absolute t-value >
2.0 passes the 95% confidence interval. Supplemental Table S4.1 lists all model values
shown in this figure.

The standard deviation of h slightly decreases for both, the Z20 and the maxgrad

estimates. Indeed, the changes in standard deviation of h highly correlate within the CMIP5
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ensemble (correlation 0.9 between the Z20 and maxgrad estimates). However, the changes

are more significant in the Z20 estimate. Overall, the variability statistics show very little

changes, neither in the ensemble mean nor for most individual models. Despite missing

changes in the ENSO statistics, we cannot conclude that the dynamics of ENSO have not

changed, as we will illustrate in the following subsections.

4.3.3 Changes in the recharge oscillator dynamics

The ReOsc model parameters give a good first guess estimate of the linear ENSO dynamics.

Thus, changes in these dynamics provide a good first guess of changes in the linear ENSO

dynamics. Figure 4.6 shows the ReOsc model parameters and how they change for both

thermocline depth estimates (Z20 and maxgrad). A comparison of the Z20 and maxgrad

estimates of the ReOsc model highlights some significant difference in the mean parameters

(see Fig. 4.6 left vs. right column).

In the historical simulations, the Z20 estimates of the ReOsc model finds a negative

growth rate (damping; a11) for all models, whereas the maxgrad estimates finds values

centred around zero. Somewhat the opposite holds for the growth rates of h. It is beyond

the scope of this study to further explore these differences in the mean ENSO dynamics

resulting from the Z20 and maxgrad estimates. However, future studies should address the

implications of such differences for the understanding of ENSO dynamics and the role of

the thermocline estimates.

Focusing on the changes in the parameters, we can find a significant decrease in the

growth rate of T (a11 ; Fig. 4.6a, b). This is more strongly so in the Z20 estimate, but

still present in the maxgrad estimates too. In the Z20 estimates it decreases in every single

model simulation, which for most models suggest an increase in the damping (negative

growth rate) of T by more than a 100%. This is most striking considering that increased
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damping of T should reduce stdv(T), but this is not simulated in the CMIP5 simulations

(Fig. 4.5a). This apparent mismatch will be discussed further in Sect. 4.2.4, when we

Figure 6
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Figure 6: ReOsc model parameters: left column for the Z20 estimate and right column for
the maxgrad estimates. Growth rate of T (a11; upper row), coupling of T to h (a12; second
row from top), coupling of h to T (a21; third row from top) and growth rate of h (a11; lowest
row). Details as in Fig. 5. Details as in Fig. 5. Supplemental Table S2-3 lists all model
values shown in this figure.

Figure 4.6: ReOsc model parameters: left column for the Z20 estimate and right
column for the maxgrad estimates. Growth rate of T (a11; upper row), coupling of
T to h (a12; second row from top), coupling of h to T (a21; third row from top) and
growth rate of h (a22; lowest row). Details as in Fig. 4.5. Supplemental Table S4.2
and S4.3 lists all model values shown in this figure.
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Figure 7
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Figure 7: (a) Atmospheric net heat flux feedback (cfT ) and (b) wind-stress feedback (cτT ).
Details as in Fig. 5. Supplemental Table S4 lists all model values shown in this figure.

Figure 4.7: (a) Atmospheric net heat flux feedback (CfT ) and (b) wind-stress feed-
back (CτT ). Details as in Fig. 4.5. Supplemental Table S4.4 lists all model values
shown in this figure.

discuss the sensitivity of the ENSO statistics to the dynamical changes.

The coupling of T to h (a12; Fig. 4.6c, d) increases significantly in nearly all models

and in the ensemble mean. This indicates that T is becoming more sensitive to variations

in h. This may be a reflection of the shallower and more pronounced thermocline depth

(maxgrad) in the RCP8.5 scenario (Fig. 4.2a). In turn, the coupling of h to T (a21; Fig. 4.6e,

f) also increases slightly. However, this change suggests that h is becoming less sensitive

to T, since a21 is negative. This change is more pronounced in the maxgrad estimate of

h. The growth rate of h (a22; Fig. 4.6c, d) increases significantly for the Z20 estimates

and slightly, but not statistically significant, for the maxgrad estimates. This increase in

growth rate would suggest an increase in stdv(h), but the CMIP5 simulations show a small

decrease (Fig. 4.5c, d).

In addition, to the ReOsc model parameters, the strength of the noise forcings can

change [ T and h in Eqs. (4.1),(4.2)]. However, changes in stdv(T) and stdv(h) are small
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and not statistically significant (not shown). The changes in both stdv(T) and stdv(h), even

though not strong, are highly correlated (0.9) in the CMIP5 ensemble members between

the Z20 and maxgrad estimates. This suggest that changes in the forcing strength of Z20

and the thermocline (maxgrad) behave similarly. The growth rate of T (a11) can be split

into a number of atmospheric and ocean processes to further gain insight in the changes of

ENSO dynamics [see Eqs. (4.3)-(4.5)]. The atmospheric feedbacks are a combination of

the net heat flux feedback (CfT ) and the wind-stress (Bjerknes) feedback (CτT ). Both of

these feedbacks show significant changes, see Fig. 4.7.

The atmospheric net heat flux feedback becomes more negative in every single model

simulation with an average increase in the negative feedback for each model by a factor

of 3 (Fig. 4.7). The change in CfT is consistent with the increased overall damping of T

(a11). This change in CfT is consistent with the increased thermodynamical damping in the

BJ-index analysis of Kim and Jin (2011). The Bjerknes feedback (CτT ) increases slightly

(∼ 15%), but still statistically significant. This increase counteracts the increased overall

damping of T (a11).

The combined contribution of CfT and CτT to the overall damping of T (a11) can be

summarized to an atmospheric damping of T (a11A) and the residual contribution to a11 as

an oceanic feedback [a11O ; see Eq. (4.5)]. Figure 4.8 shows the distribution of a11 and

a11O in the historical and RCP8.5 scenario simulations. The atmospheric feedbacks (a11A)

are positive in all model simulations and become even more so in the RCP8.5 scenario. The

increase in a11A illustrates that the slight increase in CτT overcompensates the decrease in

CfT . Similarly, but with revised sign, the oceanic feedbacks (a11O) are negative in all model

simulations and become even more so in the RCP8.5 scenario, which, combined with the

changes in a11A, gives a shift in the distribution to the upper left in Fig. 4.8. The overall

increased damping of T (a11) is a combination of increased ocean and atmospheric net heat

flux damping and counteracting increased positive Bjerknes feedback.

119



CHAPTER 4. ENSO FUTURE SCENARIO

Figure 8
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Figure 8: Atmospheric (a11a) and oceanic (a11o) contributions to the growth rate of T for
(a) the Z20 and (b) maxgrad estimates. Historical ensemble mean values are marked by the
blue circles and RCP8.5 values in red circles. The t-values for the ensemble mean differences
are shown in upper right corners of each panel. An absolute t-value > 2.0 passes the 95%
confidence interval. Supplemental Table S4 lists all model values shown in this figure.

Figure 4.8: Atmospheric (a11A) and oceanic a11O contributions to the growth rate
of T for (a) the Z20 and (b) maxgrad estimates. Historical ensemble mean values
are marked by the blue circles and RCP8.5 values in red circles. The t-values for
the ensemble mean differences are shown in upper right corners of each panel. An
absolute t-value > 2.0 passes the 95% confidence interval. Supplemental Table S4.4
lists all model values shown in this figure.

In summary, we found stronger and more significant changes in the ENSO dynamics

(Figs. 4.4, 4.6, 4.7, 4.8) than in the statistics of the ENSO variability (Fig. 4.5). All of these

dynamical changes are qualitatively similar in the Z20 and maxgrad estimates of h, but in

most of them are more pronounced in the Z20 estimates. The qualitative agreement in the

Z20 and maxgrad estimates suggests that these results are robust, independent of how the

thermocline depth variability (h) is estimated. The significant changes in the dynamics in

the absence of equally significant changes in the statistics of the ENSO variability suggests

that the changes in the dynamics must have counteracting effects on the ENSO variability.

This will be explored further in the following subsection.
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4.3.4 Sensitivity of ENSO variability to the changes in the

dynamics

We can use the ReOsc model to evaluate how the changes in the ENSO dynamics would

affect the ENSO variability (see Sect. 4.2 for details).

Figure 4.9 shows the sensitivities for stdv(T), stdv(h), the slope of the T power spec-

trum and the cross-correlation between T and h. Here we focus on the Z20 estimates and

do not discuss the maxgrad estimates, as they are qualitatively similar.

We can first of all note that the changes in the statistics of the ENSO variability in

the CMIP5 simulations are very well captured by the integrations of the ReOsc model with

changes in the parameters, for all four statistics of the ENSO variability (compare CMIP5

with all in Fig. 4.9a–c). Thus, the ReOsc model is a good approximation of how these

changes in ENSO statistics relate to changes in the ENSO dynamics.

The sensitivity to the individual ReOsc parameters shows some clear counteracting

effects for the different ENSO statistics. The stdv(T) has overall very little change, resulting

from a compensation of decreased variability due to the increased damping of T (a11) and

an increased variability due to the decreased damping of h (a22; Fig. 4.9a). The stdv(h)

behaves similarly, but with opposite signs for sensitivities in a11 and a22. In addition, the

increased coupling of T to h and, to a lesser extent, the decreased coupling of h to T reduces

the variability in h (Fig. 4.9a).

The sensitivity of the power spectral slope of T variability is anti-correlated to the

sensitivity of stdv(T) (Fig. 4.9b), suggesting that increased T variability goes along with a

more strongly negative slope in the power spectrum of T. The latter is, in statistical average,

an indication of a more pronounced interannual variability (peak). Subsequently, the de-

creased damping of h increased the interannual variability (peak), and in turn the increased
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damping of T decreased it, combined leading to essentially no change in the power spectral

slope. The cross-correlation between T and h is mostly shifting upwards between the lags

-10 to + 8 months (Fig. 4.4a). This difference in cross-correlation is well captured by the

ReOsc model integration (Fig. 9c). It results from a combination of changes in mostly a11

and a22. The increased damping in T essentially reduces the cross-correlation between T

and h, since the changes (Fig. 4.9c) are roughly the opposite of the mean cross-correlation

Figure 9

Figure 9: Changes in statistics of ENSO variability due to changes in the ReOsc parameters:
(a) differences in stdv(T) vs. stdv(h), (b) differences in stdv(T) vs. spectral slope of T and
(c) the differences in cross-correlation of T vs. h. CMIP model ensemble mean changes are
marked by “CMIP” and changes in the ReOsc model integrations due to changes in one or
all parameters are marked by the coloured markers or lines. Positive changes in all statistics
imply larger values in the RCP8.5 simulations relative to the historical. Positive lag times
in (c) indicate the time evolution of h leads T.

Figure 4.9: Changes in statistics of ENSO variability due to changes in the ReOsc
parameters: (a) differences in stdv(T) vs. stdv(h), (b) differences in stdv(T) vs.
spectral slope of T and (c) the differences in cross-correlation of T vs. h. CMIP
model ensemble mean changes are marked by “CMIP” and changes in the ReOsc
model integrations due to changes in one or all parameters are marked by the coloured
markers or lines. Positive changes in all statistics imply larger values in the RCP8.5
simulations relative to the historical. Positive lag times indicate the time evolution
of h leads T. Supplemental Table S4.1 lists all model values shown in this figure.
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(Fig. 4.4a). The decreased damping in h is somewhat opposing the effect of increased

damping in T for longer lag/lead times. However, the instantaneous (lag = 0) correlation is

increased by both changes in a11 and 22. This results in the future RCP8.5 cross-correlation

being now much more in-phase, rather than a clear out-of-phase relation.

The changes in the coupling of T to h have a somewhat weaker, but still relevant

impact on the cross-correlation. They show a somewhat higher frequency oscillation (red

line in Fig. 4.9c) than the overall cross-correlation (Fig. 4.4a) with the same signs for

shorter lag/lead times as the overall cross-correlation. This suggests a shift of the peaks of

the overall cross-correlation (at about -8 and + 6 months; see Fig. 4.4a) towards shorter

lag/lead times (as seen in Fig. 4.4a). The changes in coupling of h to T (a21), in turn,

contribute very little to the changes in the cross-correlation.

4.3.5 Sensitivity of ENSO predictability to the changes in

the dynamics

The changes of the ENSO dynamics we described above have the potential to affect the

predictability of ENSO. The CMIP5 simulations do not give any indication of predictabil-

ity of ENSO or changes thereof, as the ensemble does not include forecast runs. We can

use the ReOsc model integrations to approximate the predictability of ENSO in the CMIP5

simulations based on the model parameters and changes thereof. This, however, should

only be considered with some caution, as it does not fully reflect the dynamics and pre-

dictability of ENSO in the CMIP models. Thus, it is an outlook to motivate further studies

on change in the predictability of ENSO. Again, we will focus on the Z20 estimates and do

not discuss the maxgrad estimates, as they are qualitatively similar but weaker.

We conduct a long ReOsc model control integration with the mean model parameters

from the CMIP5 historical simulations. We then start forecast runs at 400 different initial
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conditions from the control run, each being 5 years apart from each other. In the forecast

runs the noise forcings of the ReOsc model is chosen to be different from the control

run, creating a new independent realization of the T to h evolution. The forecast skill is

evaluated by the correlation between the control and forecast run at different lead times,

see Fig. 4.10a. We repeat these simulations with the same noise values, but with the mean

model parameters from the CMIP5 RCP8.5 simulations (Fig. 4.10a). The difference in the

forecast correlation skill between the historical and the RCP8.5 simulation result purely

from the difference in the model parameters. Since the noise forcings are identical in these
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Figure 10: (a) Anomaly correlation skill in the ReOsc forecast integrations for historical
(blue) and RCP8.5 (red) CMIP ensemble mean model parameters. (b) Changes in the
correlation skill in the ReOsc forecast integrations due to changes in the individual ReOsc
parameters. See text for details.

Figure 4.10: (a) Anomaly correlation skill in the ReOsc forecast integrations for
historical (blue) and RCP8.5 (red) CMIP ensemble mean model parameters. (b)
Changes in the correlation skill in the ReOsc forecast integrations due to changes in
the individual ReOsc parameters. See text for details.
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runs there are no statistical uncertainties in the differences between the runs resulting from

the random noise.

We can first of all note that the correlation skill scores of the CMIP5 historical runs

are decreasing relatively fast, if compared to published ENSO forecast skills (Jin et al.

2008). This mostly reflects the limited skill of the ReOsc model, but does not suggest

that the CMIP5 have lower ENSO predictability than state-of-the-art forecast models. We

therefore have to take these results with a grain of caution, as the true ENSO predictability

in the CMIP5 model simulations is likely to be significantly larger than presented in these

ReOsc model runs.

The RCP8.5 runs show a clear change in forecast correlation skill relative to the histor-

ical run, with larger forecast skill for shorter (< 10 months) lead times and smaller forecast

skill for longer lead times (Fig. 4.10a, b). We can evaluate the sensitivity of these changes

in the forecast skills to the individual ReOsc model parameters by repeating these simu-

lations with the same noise values, but with the mean model parameters from the CMIP5

historical simulations and a single parameter from the RCP8.5 simulations (Fig. 4.10b).

The changes in the parameters a11 and a22 have the largest impact on the predictability.

The increased damping of T (a11) results into decreased forecast correlation skill on all lead

times. In turn, the decreased damping of h (a22) results into increased forecast correlation

skill on all lead times, mostly compensating the changes from a11 . The changes in the

coupling of T to h (a12) most closely follow the overall change in the correlation skill (Fig.

4.10b), suggesting that they contribute significantly to the overall shift in forecast skill.

4.4 Summary and discussion

In this study, we analysed the changes in the linear ReOsc model dynamics, as they are

simulated in CMIP5 simulations for the RCP8.5 scenario relative to the historical control
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simulation. The primary focus in this study was on the growth rate of T and h, the coupling

between the two and the noise forcing driving the ENSO variability. We further focused

on the feedbacks controlling the growth rate of T, namely the Bjerknes wind-SST, the

atmospheric net heat flux and the residual oceanic feedback. The CMIP5 ensemble shows

fairly significant changes in nearly all of these important elements of the ENSO dynamics,

despite the fact that the ensemble shows very little changes in the overall ENSO variability

strength or periodicity (time scale behaviour of the power spectrum).

The growth rate of T weakens in nearly all simulations, reflecting more strongly

damped ENSO dynamics. This results from a combination of changes in the main feed-

backs. The atmospheric net heat flux feedbacks become more strongly damped in all sim-

ulations, supporting the overall decrease in growth rate of T. However, this is overcom-

pensated by an increased Bjerknes wind-SST in most simulations. The increased Bjerknes

feedback leads to an increased growth rate of T, which in combination with the also in-

creased negative net heat flux feedbacks still leads to an overall atmospheric growth rate

change that is positive. The residual oceanic feedbacks are becoming more negative and

therefore lead to the overall decrease in growth rate of T. Other notable changes in the

ENSO dynamics are an increase in the growth rate of h in most simulations, leading to a

less damped h variability. The coupling of T to h is also increasing in most simulations,

reflecting a T variability that is more strongly influenced by variation in h. In turn, the

coupling of h to T is becoming weaker (less negative), indicating that h becomes slightly

less sensitive to T. The strength in noise forcings on T or h shows little to no changes.

The ReOsc model framework allows us to estimate the sensitivity of ENSO variability

to these dynamical changes. It can also explain why there is essentially no changes in

ENSO variability, while there are significant changes in the ENSO dynamics. The strength

of the ENSO variability (T) is not changing due to compensating effects of the decrease

in growth rate of T that is concurrent with an increase in growth rate of h. Similarly,
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the periodicity or time scale behaviour of ENSO is not changing due to compensating

effects. The decreases in the growth rates of T alone, would reduce the interannual ENSO

oscillations, which would be reflected in an increase in the spectral slope (slope flattens).

This is, however, compensated by the increase in the growth rates of h and by the increased

coupling of T to h, leading effectively to no changes in spectral slope.

It is difficult to compare these findings in changes of ENSO dynamics with previous

studies based on the BJindex stability or SST heat budget analysis, due to the inherently

different approaches taken and due to the different set of models analysed (Kim and Jin

2011; Chen et al. 2015). However, we think that there is some agreement between these

studies. Reported changes in atmospheric feedbacks (CfT and CτT ) and mean thermocline

depth are largely consistent. Compensating effects in different dynamics leading to no

overall changes in stability found in Kim and Jin (2011) appears to be consistent with our

findings. Further studies should, however, combine the ReOsc modelling approach with

the BJ-index stability analysis to gain better understanding of the process controlling the

ENSO dynamics in a changing climate.

While the above described dynamical changes may effectively not change the overall

ENSO variability statistics, they can potentially affect the predictability of ENSO. The

CMIP5 ensemble does not allow to directly evaluate the predictability of ENSO, but the

ReOsc model framework can be used to get some approximation of predictability changes

in the CMIP5 simulations. The ReOsc model analysis indicates that the predictability of

ENSO increases for shorter lead times (< 9 months), but decreases on longer lead times.

This of T, and an increased predictability due to the increased growth rate of h. The shift

towards higher predictability at shorter lead times and lower predictability longer lead times

is linked to the increased coupling strength of T to h. This is also reflected in the changes

in cross-correlation between T and h, which shifts to shorter lead times when h leads T.

However, we have to keep in mind that we used the ReOsc model as surrogate model of
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the CMIP simulations. Further, more in-depth studies using CMIP models are required to

address the predictability changes in more detail.

The CMIP5 ensemble also shows significant changes in the mean thermocline depth,

which are likely to contribute to the dynamical changes found. Here it does matter whether

thermocline depth is estimated by Z20 isotherm or by maxgrad. The latter should be more

appropriate for climate change studies, as it is not affected by the mean temperature of the

profile, but it does reflect the ‘true’ thermocline depth. The changes in temperature profile

show a remarkable minimum change at the depth that coincides with the historical mean

thermocline depth. This suggest a significant dynamical adjustment of the upper equatorial

Pacific that is not just a reflection of a transient warming with more warming at the surface

and less warming in deeper layers.

It is beyond the scope of this study to fully analysis why we observe the dynami-

cal changes described above. However, some indications may be given from the analysis

presented here. The increased negative net heat flux feedback and the increased positive

Bjerknes feedback are both likely to be related to the El Niño like mean state changes. At

least this would be consistent with some previous findings: first it was shown before that

the CMIP5 ensemble has a mean cold tongue bias in the SST and too weak net heat flux

and positive Bjerknes feedback (Bellenger et al. 2014; Vijayeta and Dommenget 2018). It

was further shown that these two feedbacks are indeed related to the mean sst biases (Lloyd

et al. 2012; Bayr et al. 2018). If we further consider that the CMIP5 ensemble has an El

Niño like mean state changes in the RCP8.5 scenario (Collins et al. 2010; Liu et al. 2005),

then the mean SST in the RCP8.5 scenarios is effectively reducing the CMIP5 ensemble

mean state cold tongue biases. Subsequently, the negative net heat flux and the positive

Bjerknes feedback are both expected to increase too.

The increase in the growth rate of the thermocline, the reduced overall variability of h
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and the changes in the coupling between T and h is likely to partly result from the shallower

mean thermocline depth with a sharper temperature gradient in the RCP8.5 scenario. Since

thermocline depth is a positive definite number, it is likely that its variability is proportional

to its mean value, if no other dynamical changes occur. Thus, a shallower mean h would go

along with a reduced variability of h. The sharper temperature profile in the RCP scenario

can potentially support less damped variability of h, and therefore supports an increased

growth rate. However, the picture is more complex with different behaviours in the mean

Z20 and maxgrad estimates, with additional different regional changes and other dynamical

changes occurring.

The linear ReOsc model approach presented here, neglects non-linearities in the ENSO

dynamics and therefore cannot make any statements on how non-linear ENSO dynamics

may change in the future climate change. It further also does not consider regional shifts in

ENSO, such as shifts towards more east or central Pacific events. However, non-linear dy-

namics or regional patterns of ENSO are important aspects of ENSO dynamics and studies

have shown that they can potentially change (Yeh et al. 2009; Boucharel et al. 2011; Cai

et al. 2015a). It is therefore interesting to see how this ReOsc modelling approach could be

used to address such problems. This will be addressed in future studies.

Finally, we have to give some caveat note about this CMIP5 ensemble result.

Although, we find highly significant changes in the dynamics of ENSO in the CMIP5

ensemble this does not necessarily imply that the real world will respond in the same way.

The CMIP5 ensemble has substantial common biases in the ENSO dynamics discussed here

and in its mean state (Bellenger et al. 2014; Vijayeta and Dommenget 2018). Furthermore,

the CMIP5 ensemble does have a significant spread in its mean state, the mean ENSO

dynamics and how it responses in the RCP8.5 scenario. Combined, these common model

biases and spread undermine the reliability of these results. It also illustrates that ENSO
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in a climate system with slightly different mean states and slightly different mean ENSO

dynamics, as simulated in individual CMIP5 models, can respond differently to climate

change. It thus requires better understanding of the underlying processes and resolving

the common model bias issues to gain more confidence about future changes in ENSO

dynamics.
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Supplementary Table S4.1: Statistical values for all models shown in Figure 4.5. First 
statistical value in each column is the historical run and second is the RCP8.5 run. 

 
 
 

 

Supplementary Table S1: Statistical values for all models shown in Fig. 5. First
statistical value in each column is the historical run and second is the RCP8.5
run.

Model stdv(T) spec. slope T stdv(Z20) stdv(t-cline)

#1 0.78 0.79 -3.07 -2.6 6.6 5.3 8.5 7.6

#2 0.77 0.86 -2.3 -3.05 6.4 6.1 8.3 9.9

#3 1.46 1.28 -2.88 -2.26 8.5 5.5 11.5 8.6

#4 0.88 0.83 -2.57 -2.81 6 4.6 8.6 6.5

#5 0.83 1.22 -2.67 -3.5 6.2 6.9 8.6 10.6

#6 0.66 0.83 -1.9 -2.83 5.1 5.6 7.2 7.8

#7 1.01 1.02 -2.82 -2.68 7.9 7.1 9.3 9.4

#8 0.78 0.77 -2.17 -1.85 6.3 5.6 8.4 8.5

#9 1.05 0.85 -3.02 -2.46 6.9 4.3 11.5 7.6

#10 1.13 1.15 -2.92 -2.68 7.3 6.2 9.9 8.2

#11 0.79 0.85 -2.15 -2.08 4.8 4.6 5 4.4

#12 1.45 1.18 -2.74 -2.07 10.6 7.6 13.3 8.8

#13 0.9 0.89 -3.37 -3.01 6.6 5.7 10 8.5

#14 0.24 0.72 -1.85 -2.44 2.1 5.6 3.5 7.5

#15 0.55 0.46 -3.15 -2.62 4.2 3 4.9 3

#16 0.54 0.44 -2.86 -2.63 4 2.8 4.8 2.8

#17 0.75 0.64 -2.26 -2.11 4.3 2.6 6.6 4.5

#18 0.76 0.65 -2.49 -2.45 4.2 2.8 6.2 4.4

#19 0.71 1.05 -2.68 -3.1 4.8 6.4 7.1 10.1

#20 0.5 0.38 -1.59 -1.02 3.9 3.3 8 5.2

#21 0.49 0.4 -1.51 -1.48 4 3.4 7.9 5.8

#22 1.33 1.4 -2.74 -1.86 11.8 10.6 18 18.8

#23 0.63 0.95 -1.92 -2.75 4.6 5.9 7.4 10.5

#24 1.07 0.88 -3.29 -2.61 7.8 6.3 8.1 6.3

#25 0.73 0.65 -2.38 -2.43 4.5 3.4 5.9 4.3
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Supplementary Table S4.2: ReOsc model parameters for all models shown in Figure 4.6 for 
the Z20 estimates. First statistical value in each column is the historical run and second is the 
RCP8.5 run. 
 
 

 

Supplementary Table S2: ReOsc model parameters for all models shown in Fig.
6. for the Z20 estimates. First statistical value in each column is the historical run
and second is the RCP8.5 run.

Model a11 a12 a21 a22 stdv( T) stdv( h)

#1 -0.04 -0.08 0.018 0.021 -1.54 -0.98 -0.071 -0.024 0.22 0.21 1.67 1.63

#2 -0.02 -0.08 0.017 0.025 -1.5 -1.31 -0.098 -0.035 0.25 0.24 1.55 1.57

#3 -0.06 -0.11 0.031 0.044 -1.06 -0.74 -0.027 -0.007 0.34 0.33 1.96 1.66

#4 -0.06 -0.1 0.023 0.033 -1.12 -0.97 -0.045 -0.012 0.22 0.21 1.77 1.4

#5 -0.08 -0.08 0.023 0.031 -1.29 -1 -0.02 0.001 0.2 0.23 1.82 1.74

#6 -0.09 -0.11 0.016 0.024 -1.14 -1.06 -0.045 0.008 0.24 0.23 1.56 1.52

#7 -0.15 -0.17 0.025 0.031 -1.51 -1.34 0.003 0.016 0.36 0.35 2.42 2.24

#8 -0.11 -0.17 0.019 0.031 -1.04 -1.54 -0.025 -0.013 0.27 0.31 1.91 1.65

#9 -0.05 -0.15 0.028 0.032 -1.29 -0.82 -0.048 0.011 0.27 0.28 1.65 1.5

#10 -0.09 -0.18 0.033 0.048 -1.34 -1.27 -0.028 0.032 0.29 0.33 1.96 1.8

#11 -0.18 -0.25 0.033 0.048 -1.02 -0.94 -0.025 0.008 0.32 0.34 1.89 1.75

#12 -0.06 -0.16 0.023 0.032 -1.24 -1.18 -0.028 0.024 0.37 0.37 2.45 2.18

#13 -0.05 -0.14 0.024 0.037 -1.34 -1.43 -0.04 0.015 0.21 0.21 1.63 1.63

#14 -0.14 -0.19 0.003 0.031 -0.37 -1.55 -0.135 0.049 0.12 0.19 1.01 1.71

#15 -0.04 -0.1 0.021 0.029 -1.37 -1.38 -0.06 -0.069 0.14 0.15 1.07 1.09

#16 -0.03 -0.13 0.019 0.029 -1.27 -1.13 -0.062 -0.053 0.14 0.15 1.05 1.18

#17 -0.09 -0.17 0.026 0.04 -1.03 -0.81 -0.071 -0.069 0.3 0.28 1.3 1.19

#18 -0.1 -0.17 0.028 0.032 -0.97 -0.75 -0.051 -0.054 0.28 0.29 1.3 1.25

#19 -0.1 -0.17 0.022 0.034 -1.22 -1.02 -0.053 0.052 0.26 0.29 1.64 1.81

#20 -0.13 -0.32 0.008 0.023 -0.71 0.05 -0.037 -0.044 0.24 0.2 1.05 0.96

#21 -0.15 -0.26 0.01 0.016 -0.76 -0.04 -0.027 -0.047 0.25 0.23 1.04 1.13

#22 -0.07 -0.1 0.012 0.011 -0.98 -0.49 -0.019 -0.028 0.4 0.52 2.82 3.19

#23 -0.13 -0.16 0.021 0.034 -1.29 -1.25 -0.05 0.025 0.26 0.29 1.69 1.73

#24 -0.07 -0.09 0.02 0.023 -1.09 -1.18 -0.027 -0.013 0.25 0.22 2.26 1.9

#25 -0.16 -0.25 0.038 0.046 -1.36 -1.12 -0.041 -0.022 0.29 0.31 1.53 1.45
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Supplementary Table S4.3: ReOsc model parameters for all models shown in Figure 4.6 for 
the maxgrad estimates. First statistical value in each column is the historical run and second 
is the RCP8.5 run. 
 

 

Supplementary Table S3: ReOsc model parameters for all models shown in Fig.
6. for the maxgrad estimates. First statistical value in each column is the
historical run and second is the RCP8.5 run.

Model a11 a12 a21 a22 stdv( T) stdv( h)

#1 0.04 0.03 0.017 0.018 -2.41 -1.96 -0.16 -0.144 0.22 0.21 2.06 1.97

#2 0.03 0.03 0.015 0.018 -2.37 -2.62 -0.175 -0.153 0.25 0.24 1.87 2.07

#3 0.04 0.02 0.026 0.027 -1.75 -1.42 -0.145 -0.139 0.34 0.33 2.71 2.38

#4 0.01 0.01 0.017 0.023 -1.86 -1.59 -0.115 -0.138 0.22 0.21 2.25 2.03

#5 0 0.04 0.017 0.021 -2.08 -1.8 -0.107 -0.132 0.2 0.24 2.22 2.4

#6 -0.05 -0.02 0.011 0.016 -1.72 -1.58 -0.088 -0.071 0.24 0.23 1.98 1.77

#7 -0.07 -0.09 0.02 0.021 -1.84 -1.81 -0.08 -0.057 0.36 0.35 2.91 2.71

#8 0 -0.06 0.016 0.017 -1.85 -2.24 -0.132 -0.117 0.27 0.32 2.44 2.42

#9 0.04 0 0.019 0.017 -2.58 -1.96 -0.156 -0.153 0.26 0.28 2.49 1.98

#10 0.01 -0.05 0.025 0.033 -2 -1.65 -0.131 -0.088 0.3 0.32 2.71 2.35

#11 -0.08 -0.14 0.03 0.046 -1.23 -0.99 -0.111 -0.09 0.32 0.33 1.78 1.85

#12 0.03 -0.05 0.021 0.025 -1.88 -1.39 -0.129 -0.079 0.37 0.37 3.22 2.62

#13 0.05 0.05 0.018 0.026 -2.49 -2.57 -0.152 -0.175 0.21 0.21 2.19 2.26

#14 -0.1 0.02 0.005 0.021 -2.51 -2.4 -0.237 -0.168 0.12 0.19 1.59 2.43

#15 0.03 -0.02 0.02 0.028 -1.86 -1.53 -0.135 -0.157 0.14 0.15 1.18 1

#16 0.03 -0.05 0.018 0.024 -1.85 -1.21 -0.134 -0.139 0.14 0.16 1.11 1.17

#17 -0.01 -0.03 0.019 0.021 -1.94 -1.87 -0.172 -0.222 0.3 0.29 1.86 1.36

#18 -0.01 -0.05 0.02 0.023 -1.61 -1.55 -0.14 -0.167 0.28 0.29 1.74 1.32

#19 -0.03 0.01 0.015 0.019 -2 -1.86 -0.141 -0.11 0.26 0.28 2.11 2.25

#20 -0.11 -0.15 0.002 0.003 -3.04 -1.83 -0.256 -0.191 0.25 0.21 3.82 2.43

#21 -0.11 -0.16 0.003 0.002 -2.98 -1.78 -0.263 -0.197 0.25 0.23 3.92 2.83

#22 0 -0.03 0.009 0.008 -1.6 -1.66 -0.091 -0.108 0.39 0.51 4.89 5.7

#23 -0.04 -0.01 0.014 0.018 -2.25 -2.26 -0.161 -0.115 0.26 0.29 2.82 2.96

#24 -0.02 -0.06 0.019 0.021 -1.19 -1.14 -0.079 -0.048 0.25 0.22 2.38 1.96

#25 -0.04 -0.11 0.028 0.031 -1.97 -1.53 -0.183 -0.209 0.29 0.31 2.29 2.21
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Supplementary Table S4.4: Reosc feedback and model parameters for all models shown in  in 
Figure 4.7 and 4.8. First statistical value in each column is the historical run and second is the 
RCP8.5 run. 
 

 

Supplementary Table S4: ReOsc feedback and model parameters for all models
shown in Fig. 7 and 8. First statistical value in each column is the historical run
and second is the RCP8.5 run.

Z20 estimate maxgrad estimate
Model cfT c  T a11A a11B a11A a11B

#1 -10.96 -13.4 0.005 0.007 0.18 0.21 -0.22 -0.29 0.16 0.18 -0.13 -0.15

#2 -2.87 -9.54 0.005 0.008 0.19 0.28 -0.22 -0.36 0.17 0.2 -0.13 -0.16

#3 -10.15 -14.52 0.006 0.008 0.41 0.57 -0.47 -0.68 0.33 0.35 -0.29 -0.34

#4 -11.1 -14.68 0.009 0.009 0.44 0.62 -0.49 -0.72 0.32 0.44 -0.31 -0.43

#5 -9.36 -15.53 0.009 0.01 0.43 0.6 -0.51 -0.68 0.32 0.4 -0.31 -0.36

#6 -0.57 -15.48 0.007 0.008 0.24 0.37 -0.33 -0.47 0.17 0.24 -0.22 -0.26

#7 -17.64 -20.1 0.008 0.008 0.41 0.51 -0.56 -0.68 0.33 0.35 -0.4 -0.44

#8 -0.35 -3.71 0.006 0.006 0.23 0.37 -0.34 -0.54 0.19 0.21 -0.19 -0.27

#9 -6.44 -12.04 0.007 0.012 0.41 0.48 -0.46 -0.63 0.28 0.25 -0.24 -0.25

#10 -8.77 -13.58 0.005 0.007 0.38 0.55 -0.47 -0.73 0.29 0.37 -0.28 -0.43

#11 -6.15 -8.26 0.005 0.005 0.36 0.53 -0.55 -0.78 0.33 0.51 -0.41 -0.65

#12 -12.81 -16.14 0.008 0.008 0.37 0.53 -0.44 -0.7 0.34 0.42 -0.31 -0.47

#13 -11.59 -16.59 0.005 0.004 0.25 0.38 -0.3 -0.52 0.19 0.27 -0.13 -0.22

#14 -8.03 -16.61 0.004 0.004 0.02 0.25 -0.16 -0.44 0.04 0.17 -0.13 -0.15

#15 -12.24 -17.45 0.009 0.008 0.39 0.53 -0.42 -0.63 0.36 0.5 -0.33 -0.52

#16 -12.49 -19.04 0.009 0.01 0.37 0.56 -0.41 -0.69 0.35 0.46 -0.32 -0.52

#17 -1.62 -4.67 0.005 0.007 0.25 0.39 -0.34 -0.55 0.18 0.2 -0.19 -0.23

#18 -2.8 -5.83 0.006 0.007 0.38 0.43 -0.47 -0.6 0.27 0.31 -0.28 -0.36

#19 -9.33 -15.72 0.007 0.008 0.34 0.53 -0.45 -0.7 0.23 0.29 -0.26 -0.28

#20 -1.31 -6.49 0.007 0.006 0.11 0.34 -0.24 -0.65 0.03 0.04 -0.14 -0.19

#21 -1.57 -6.29 0.007 0.007 0.14 0.23 -0.29 -0.49 0.05 0.03 -0.15 -0.19

#22 -9.55 -11.69 0.008 0.009 0.2 0.2 -0.27 -0.3 0.16 0.15 -0.16 -0.17

#23 -2.45 -14.36 0.004 0.005 0.17 0.28 -0.31 -0.43 0.11 0.14 -0.15 -0.16

#24 -7.34 -9.27 0.008 0.009 0.33 0.37 -0.4 -0.46 0.32 0.34 -0.34 -0.4

#25 -6 -9.23 0.006 0.008 0.48 0.58 -0.63 -0.83 0.35 0.4 -0.4 -0.51
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Chapter 5

Epilogue

5.1 Summary and Conclusions

This chapter provides a summary of the three previous results chapter which are presented

as three subsections below, followed by future research questions that could be addressed

using the results of our analysis.

5.1.1 Chapter 2

In this chapter, we introduced the linear recharge oscillator model as a diagnostic tool to

evaluate the representation of ENSO dynamics in the CMIP model database. We presented

a proof of concept analysis that illustrated that ENSO-statistics and their diversity within

the CMIP5 ensemble are well represented with the linear recharge oscillator model diag-

nostics. Starting with the simple statistics of the variability in T and h we found that the

CMIP ensembles mean can be represented reasonably well, but the model ensemble spread

is relatively large, suggesting that many models are not consistent with the observed values.

Among the six ReOsc parameters, three parameters showed relatively large spread
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within the CMIP ensemble and significant biases. T damping (a11) was ≈ 0 for some

models and twice as much damping then the ensemble mean for others. Damping of h

(a22) was too strong and too weak stochastic noise forcing on h for most models.

On splitting up the growth rate (damping) of T ( a11) into atmospheric and oceanic

feedbacks, we found that the atmospheric feedbacks (Bjerknes wind–SST feedback, CτT ,

and atmos. heat flux feedback, CfT ) are primarily underestimated, which is consistent with

previous studies (Lloyd et al. 2009; Bellenger et al. 2014). We found that a11 was mostly

unbiased while the three individual elements Bjerknes wind-SST feedback, CτT , atmos.

heat flux feedback, CfT, and oceanic damping of T, a11O were strongly underestimated

in the CMIP ensemble. We concluded this is due to strong compensating errors in the

atmospheric and oceanic components, which is too weak atmospheric growth rates (a11A)

compensated with too weak oceanic damping (a11O).

The reason for the compensating effect of atmospheric feedbacks (a11A) and oceanic

feedbacks (a11O) in the CMIP ensemble could either be because C andCfT are dynamically

linked by the position of the Walker circulation or that the CGCM models are tuned to

produce the observed ENSO statistics, which by default tunes errors into the atmospheric

and oceanic dynamics that compensate each other nearly ultimately thus producing useful

ENSO simulations for the wrong reasons. The combination of errors we find in the CMIP

models suggests that the relative importance of ocean dynamics for the simulated ENSO

SST variability is underestimated. This results from underestimated oceanic processes,

which is consistent with the findings of Kim et al. (2014). We find an under representation

of ENSO oceanic processes in the models such as noise forcing for h, ocean coupling of

h to T(a21O) and too strong damping of h. We also find that CMIP models underestimate

atmospheric damping allowing models to create ENSO variability with realistic amplitudes.

Thus, it appears that the relative importance of atmospheric processes in the CMIP models

is larger than observed.
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We then used the ReOsc model to estimate the sensitivity of the ENSO statistics to

each model parameter and arranged the parameters from most to least significant as follows:

CτT ,CfT , and a11O, and to a lesser extent in the noise forcing and damping of h. In terms of

CMIP ensemble spread, the same parameters contribute to the ENSO statistics uncertainty,

but in addition, the growth rate of T (a11) is essential too. Based on the sensitivities, we

calculated a normalized root mean square in the model parameters, called a dynamic skill

score. All CMIP models exhibit bad bias scores relative to observed uncertainties, which is

due to the compensating errors in the dynamics. Leaving out the less essential parameters

does not improve the scores. Ranking the CMIP models show no substantial improvement

from CMIP3 to CMIP5. The best models in this skill score are the family of models from

NCAR/UCAR (CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM).

Our results have implications for ENSO studies with CGCMs as compensating errors

could affect future SST evolution prediction skill of the models. Models producing real-

istic ENSO statistics with existing compensating errors could potentially affect seasonal,

interannual forecasting and future climate change projections. ENSO changes in the future

strongly depend on the right sensitivity of the tropical Pacific region to the different forc-

ings (e.g., heat fluxes and winds), and significant systematic biases in the CGCM ENSO

dynamics undermines model ensemble mean predictions about future (frequent extreme

El-Nino).

5.1.2 Chapter 3

In this chapter, we investigated the accuracy of using the 20◦C isotherm (Z20) as a thermo-

cline depth proxy for ENSO studies instead of using the original definition of maximum

gradient of temperature (maxgrad). We started our analysis by looking at the differences in

the mean Pacific thermocline depths when calculated using Z20 and maxgrad estimates.
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Our results indicated that the maxgrad and Z20 estimates have similarity as well as

differences while representing the thermocline depths. In some models Z20 estimates is

incapable of capturing the effect of ocean warming on thermocline depths. The analysis

was further focused on the thermocline depth variability and we found that stdv(h) slightly

increases while the mean 4-8 months correlation decreases for maxgrad estimates as op-

posed to Z20 estimates in both observations and all CMIP5 models. The thermocline depths

estimated using maxgrad approach exhibited more variability than Z20 estimates.

For the power spectrum analysis of thermocline depth, we found that for longer time-

scales the Z20 and maxgrad estimates evolve similarly with maxgrad estimates having

higher variance for both observations and individual CMIP5 models. For shorter time

scales the maxgrad estimates have greater variance which means they are more noisier and

this correlates with the higher standard deviation of maxgrad estimates. We then investi-

gated the correlation between SST and h and found that observed time evolution of h leads

that of SST by about 5–6 months (peak of cross-correlation) for the Z20 estimates and

about 7-8 months for the maxgrad estimates. The observed SST and h (Z20) correlation

have a more pronounced out of phase relationship as compared to the observed SST and h

(maxgrad) correlation. This is evident in the historical CMIP5 simulations as well where

SST and h (Z20) have a very clear out-of-phase relation, with a strong positive correla-

tion when h leads SST and a roughly equally strong negative correlation when T leads h

at about the same lead time of 5–8 months and overall increase in correlation at the peak.

This indicated that the ENSO recharge and discharge mechanism is different between the

two estimation techniques, which is the fundamental basis of the ReOsc model.

Using the ReOsc model, we next diagnosed ENSO dynamics for both cases and found

that Z20 estimates have stronger SST damping, stronger h influence on SST, weaker h

damping and weaker SST influence on h in comparison to maxgrad. The differences in the

dynamical parameters and the change in the atmospheric and ocean parameter compensa-
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tion indicated substantial differences in the ENSO dynamics diagnosis representation for

the two h estimation techniques. Furthermore, the larger standard deviation of h for max-

grad also manifests in the SST-h phase relationships with the Z20 estimates being more

similar to the theoretical recharge oscillator and the maxgrad SST-h phase diagrams are

more asymmetric with SST leading thermocline depths. The main conclusion was that

there is substantial differences in the ENSO dynamics representation diagnosis when us-

ing the two thermocline estimation techniques, and when using maxgrad estimates it was

clear that thermocline may not have that much of a stronger influence on driving SST as

suggested by current literature.

5.1.3 Chapter 4

In this chapter, we evaluated the simulated changes in future ENSO dynamics in the frame-

work of the linear ReOsc model dynamics, by analysing the RCP8.5 scenario relative to

the historical control simulation. We focused on the growth rate of T and h, the coupling

between the two and the noise forcing driving the ENSO variability and feedbacks con-

trolling the growth rate of T ( Bjerknes wind-SST, the atmospheric net heat flux and the

residual oceanic feedback).

The CMIP5 Ensemble showed very little changes in the overall ENSO variability

strength but shows fairly significant changes in nearly all of these important elements of

the ENSO dynamics. In all simulations ENSO dynamics is strongly damped due to weak-

ened growth rate of T which in turn is due to changes in the atmospheric feedbacks. In

most simulations net heat flux feedback become more strongly damped, increased Bjerk-

nes wind-SST feedback resulting in overall decrease in growth rate of T. Increased negative

net heat flux feedbacks still leads to an overall atmospheric growth rate change that is pos-

itive.
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The residual oceanic feedbacks were becoming more negative and therefore lead to the

overall decrease in growth rate of T. Other notable changes in the ENSO dynamics were an

increase in the growth rate of h in most simulations, leading to a less damped h variability.

The coupling of T to h is also increased in most simulations, reflecting a T variability that

is more strongly influenced by variation in h. The coupling of h to T is became weaker

(less negative), indicating that h becomes slightly less sensitive to T. The strength in noise

forcings on T or h showed little to no changes.

We looked at the sensitivity of ENSO variability to dynamical changes and found no

changes in ENSO variability, while there are significant changes in the ENSO dynamics.

The strength of the ENSO variability (T) does not change due to compensating effects of

the decrease in growth rate of T and increase in growth rate of h. The time scale behaviour

of ENSO was found to not change due to compensating effects. The decrease in the growth

rate of T reduces the inter-annual ENSO oscillations increasing spectral slope (slope flat-

tens) which in turn is compensated by the increase in the growth rates of h and by the

increased coupling of T to h, leading effectively to no changes in spectral slope.

We then analysed predictability changes in the CMIP5 simulations and found that the

predictability of ENSO increased for shorter lead times (< 9 months), but decreased on

longer lead times. The shift towards higher predictability at shorter lead times and lower

predictability at longer lead times is linked to the increased coupling strength of T to h.

This is also reflected in the changes in cross-correlation between T and h, which shifted to

shorter lead times when h leads T.

The CMIP5 ensemble also showed significant changes in the mean thermocline depth,

which are likely to contribute to the dynamical changes found. The increased negative

net heat flux feedback and the increased positive Bjerknes feedback are both likely to be

related to the El Niño like mean state changes. We showed that CMIP5 ensemble has
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a mean cold tongue bias in the SST and too weak net heat flux and positive Bjerknes

feedback and these two feedbacks are related to the mean SST biases. Considering CMIP5

ensemble has an El Niño like mean state changes in the RCP8.5 scenario, the mean SST in

the RCP8.5 scenarios is effectively reducing the CMIP5 ensemble mean state cold tongue

biases. Subsequently, the negative net heat flux and the positive Bjerknes feedback are both

expected to increase too. The increase in the growth rate of the thermocline, the reduced

overall variability of h and the changes in the coupling between T and h is likely to partly

result from the shallower mean thermocline depth with a sharper temperature gradient in

the RCP8.5 scenario. Since thermocline depth is a positive definite number, it is likely that

its variability is proportional to its mean value, if no other dynamical changes occur. Thus, a

shallower mean h would go along with a reduced variability of h. The sharper temperature

profile in the RCP8.5 scenario can potentially support less damped variability of h, and

therefore supports an increased growth rate. However, the picture is more complex with

different behaviours in the mean Z20 and maxgrad estimates, with additional different

regional changes and other dynamical changes occurring.

5.2 Future work

The three studies in this thesis have improved understanding of the ENSO dynamics in the

framework of the linear ReOsc model and the interplay/compensation between the differ-

ent atmospheric and oceanic feedback errors. Secondly, we showed that the thermocline

depth may not have that much of a stronger influence on driving SST as suggested by cur-

rent literature when using maxgrad estimates, where maxgrad is defined as the depth of

maximum gradient of temperature. Also that the in a changing climate scenario, dynamical

changes may not effectively lead to overall ENSO variability, but is likely to affect ENSO

predictability.
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From the analysis and results presented in Chapter 2,3 and 4 we identify the following

research objectives for future work:

1. In Chapter 2 our results show the CGCMs tend to underestimate the oceanic damping

of SST. The bias in ocean component of damping parameter reveal errors in the ocean

models and further analysis is needed to determine if it is due to excessive upwelling

or a shallow mixed layer. We would also like to illustrate physical representation of

the “h damping”, and reason for overestimation of the parameter in models.

In Sec. 2.4.3 and Table 2.4 we present some of the interesting and significant inter

parameter correlations. Although Wengel et al. (2018) proposed physical interpre-

tations of some correlations and anti correlation, still some significant correlations

are unanswered. A detailed analysis of the origin of these co-variations is needed.

For example, the T noise parameter is correlated with a21 coupling parameter and

anti-correlated with the Bjerknes feedback strength. The atmospheric component of

SST damping a21a is anti correlated with Bjerknes feedback strength Cτt. One hy-

pothesis for this could be that the “weaker cold tongue” models that appropriately

place their deep convection, convective non-linearity, wind coupling, and westerly

wind events farther east, also tend to have stronger recharge/discharge dynamics —

due to their eastward-shifted and meridionally-wider wind responses to SST, which

results in longer Rossby wave delays and a slower delayed negative feedback onto

equatorial SST (Capotondi et al. 2006).

We estimated the ReOsc model noise parameters by multivariate regression, where

the residuals were primarily white noise. Further exploration of the residuals of

the regression fits to identify the extent to which deterministic non-linearity and/or

multiplicative noise are important. The residuals turn out to be critical forcings for

the ReOsc (accounting for most of the variance, Fig. 2.4), so it is important to more
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thoroughly assess the validity of the white noise assumption.

While using the linear ReOsc model approach presented here, we neglect non-linearities

in the ENSO dynamics and therefore cannot make any statements on how non-linear

ENSO dynamics may change in the future. Our analysis also does not consider re-

gional shifts in ENSO, such as shifts towards more east or central Pacific events.

However, non-linear dynamics or regional patterns of ENSO are important aspects

of ENSO dynamics and studies have shown that they can potentially change (Yeh

et al. 2009; Boucharel et al. 2011). This is one potential area of future research, to

investigate whether the non-linear feedback parameters influence the ENSO dynam-

ics. Nonlinearity can play a particularly crucial role at the onset of the strongest and

most impactful El Niño events (Vecchi et al. 2006; Gebbie et al. 2007; Thual et al.

2018), and may also play a key role in the ENSO response to climate change.

For calculating the sensitivities in eq. (2.8) we made a first order linear approxima-

tion but the ENSO statistics in the ReOsc model are in general not a linear function

of the parameters. We would like to derive the same analytically in terms of simple

nonlinear functions.

The main result of Chapter 2 was to highlight existence of compensating atmospheric

and oceanic errors, but for future work we intend to look at the physics and pattern

biases underlying the identified dynamical biases, and propose initial hypotheses and

possible next steps for identifying and addressing the biases.

2. Chapter 3 highlighted a key challenge in conceptual modeling – how to map concep-

tual large-scale parameters onto real-world features and detailed physical processes.

As formulated, the ReOsc seems conceptually better suited to the maxgrad defini-

tion of thermocline depth, rather than Z20. The thermocline only coincidentally falls

along Z20 for the recent historical observations. The large inter-model spread of
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maxgrad and Z20 relationships (Fig. 3.7) is intriguing and it would be interesting to

re-examine results of Chapter 2 with maxgrad, rather than Z20, and test if we would

have qualitatively similar results. Figs. 3.10 and 3.14 actually suggest that maxgrad

stratifies the models better than Z20, so there is a chance that using maxgrad could

have better identified the model biases and differences.

Post 1999 the predictability of the ENSO has been shown to decrease (Meinen and

McPhaden 2000). The Z20 isotherm is still being used as proxy for thermocline

depths for ENSO studies. We would like to analyse using both Z20 and maxgrad

estimates if the thermocline depth differences have an effect on ENSO predictabil-

ity. We have shown in our preliminary analysis that both estimates are influenced by

seasonality and they differ in the SST - h leadlag correlation patterns. We would also

examine the relationship between maxgrad and other more frequently used mea-

sures of upper-ocean heat, such as the heat content (vertically-averaged temperature,

say over the top 300 m) and warm water volume.

3. In chapter 4 there is much scope for a number of future research objectives. Fig. 4.9

indicates that reduced damping of h (a22) has a huge impact on the projected ENSO

amplitude, completely counteracting the increased damping of T (a11). We would be

interested in examining the physical processes that lead to this reduced damping of

h.

In Fig. 4.10b we intend to address the physical reasons for the changes in predictabil-

ity. The shift of predictability toward shorter leads could be due to enhanced zonal-

advective and Ekman feedbacks at short leads, and reduced recharge/discharge sig-

nals at long leads.

Section 4.4 presents opportunities to interpret the dynamical changes in terms of the

underlying physical processes, and to relate the ReOsc results to those from other
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conceptual frameworks. In Chapter 4 we present that projected changes toward a

more El Niño-like mean climate would effectively reduce the models biases relative

to the historically observed climate, leading to stronger SST-wind coupling and sur-

face heat flux damping. This also implies that the model sensitivity may depend on

the model bias, and how near the model (or reality) is to the nonlinear limits of these

changes – e.g. to a state with no cold tongue or upwelling at all (like a strong El

Niño), or an outcropped east Pacific thermocline (like a strong La Niña), or a very

deep equatorial thermocline (as hypothesized for some paleoclimates, and realized

in some low-resolution CGCMs). We intend to extend framework of this study to

include such nonlinear situations and also investigate if these non-linearities only

appear during a particular season or phase of the ENSO cycle.

We also intend to discuss the impacts of model biases on the projected ENSO sensi-

tivities to climate change. For example, most of the models generate historical sim-

ulations with an excessive cold tongue, which inhibits convective cloud feedbacks

near the equator. This could leave too much room in the future for increases in sim-

ulated equatorial convective cloud, resulting in an excessive increase in surface heat

flux damping in most models. As a possible emergent constraint for future ENSO

changes, it would be interesting to assess whether the models with more-realistic

historical simulations (both in terms of background mean state, and ENSO dynam-

ics metrics as described in Chapter 2) project future changes that are significantly

different from the less-realistic models.

4. In terms of the use of ReOsc model for ENSO analysis, there is a scope of future

work to incorporate metrics developed in this thesis into community frameworks for

model evaluation, such as the ENSO metrics package recently developed by Planton

et al. (2020).

The results of the thesis (Chapter 2) illustrate the large biases in feedback parameters
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and negligible improvement from CMIP3 to CMIP5 in terms of ENSO representation

in CMIP models. The use of the ReOsc model provides an opportunity for modellers

to investigate extent of the individual feedback errors and improve their simulations.
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S. M. Vicente-Serrano, J. I. López-Moreno, L. Gimeno, R. Nieto, E. Morán-
Tejeda, J. Lorenzo-Lacruz, S. Beguerı́a, and C. Azorin-Molina. A multiscalar
global evaluation of the impact of enso on droughts. Journal of Geophysi-
cal Research: Atmospheres, 116(D20), 2011. doi: 10.1029/2011JD016039.
URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2011JD016039.

A. Vijayeta and D. Dommenget. An evaluation of ENSO dynam-
ics in CMIP simulations in the framework of the recharge oscillator
model. Climate Dynamics, 51(5):1753–1771, 2018. ISSN 1432-0894.
doi: 10.1007/s00382-017-3981-6. URL https://doi.org/10.1007/

s00382-017-3981-6.

E. M. Vincent, M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello,
and G. Madec. Interannual variability of the South Pacific Convergence Zone
and implications for tropical cyclone genesis. Climate Dynamics, 36(9):1881–
1896, 2011. ISSN 1432-0894. doi: 10.1007/s00382-009-0716-3. URL
https://doi.org/10.1007/s00382-009-0716-3.

B. Wang, R. Wu, and R. Lukas. Annual adjustment of the thermocline in
the tropical Pacific Ocean. Journal of Climate, 13(3):596–616, 2000. ISSN
08948755. doi: 10.1175/1520-0442(2000)013〈0596:AAOTTI〉2.0.CO;2.

W. Wang and M. J. McPhaden. The Surface-Layer Heat Bal-
ance in the Equatorial Pacific Ocean. Part II: Interannual Vari-
ability*. Journal of Physical Oceanography, 30(11):2989–3008,
2000. ISSN 0022-3670. doi: 10.1175/1520-0485(2001)031〈2989:

161

https://doi.org/10.1175/1520-0442(2000)013{%}3C1814:TPSSTA{%}3E2.0.CO http://0.0.0.2
https://doi.org/10.1175/1520-0442(2000)013{%}3C1814:TPSSTA{%}3E2.0.CO http://0.0.0.2
https://doi.org/10.1175/JCLI4258.1
https://doi.org/10.1175/JCLI4258.1
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016039
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016039
https://doi.org/10.1007/s00382-017-3981-6
https://doi.org/10.1007/s00382-017-3981-6
https://doi.org/10.1007/s00382-009-0716-3


REFERENCES

TSLHBI〉2.0.CO;2. URL http://journals.ametsoc.org/doi/abs/10.

1175/1520-0485{%}282001{%}29031{%}3C2989{%}3ATSLHBI{%}3E2.0.

CO{%}3B2.

C. Wengel, D. Dommenget, M. Latif, T. Bayr, and A. Vijayeta. What
Controls ENSO-Amplitude Diversity in Climate Models? Geophysical Re-
search Letters, 45(4):1989–1996, feb 2018. ISSN 19448007. doi: 10.1002/

2017GL076849. URL http://doi.wiley.com/10.1002/2017GL076849.

A. T. Wittenberg, A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng. ENSO
modulation: Is it decadally predictable? Journal of Climate, 27(7):2667–
2681, 2014. ISSN 08948755. doi: 10.1175/JCLI-D-13-00577.1.

K. Wyrtki. El Niño—The Dynamic Response of the Equato-
rial Pacific Oceanto Atmospheric Forcing, 1975. ISSN 0022-
3670. URL http://journals.ametsoc.org/doi/abs/10.1175/

1520-0485{%}281975{%}29005{%}3C0572{%}3AENTDRO{%}3E2.0.

CO{%}3B2.

K. Wyrtki. Water displacements in the Pacific and the genesis of El Nino cy-
cles. Journal of Geophysical Research, 90(5):7129–7132, 1985. ISSN 0148-
0227. doi: 10.1029/JC090iC04p07129.

H. Yang and F. Wang. Revisiting the Thermocline Depth in the Equato-
rial Pacific. Journal of Climate, 22(13):3856–3863, jul 2009. ISSN 0894-
8755. doi: 10.1175/2009JCLI2836.1. URL https://doi.org/10.1175/

2009JCLI2836.1.

S.-W. Yeh, J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin.
El Niño in a changing climate. Nature, 461(7263):511–514, 2009. ISSN
1476-4687. doi: 10.1038/nature08316. URL https://doi.org/10.1038/

nature08316.

M. Yoshimori, M. Watanabe, H. Shiogama, A. Oka, A. Abe-Ouchi,
R. Ohgaito, and Y. Kamae. A review of progress towards understanding
the transient global mean surface temperature response to radiative pertur-
bation. Progress in Earth and Planetary Science, 3(1):21, 2016. ISSN
2197-4284. doi: 10.1186/s40645-016-0096-3. URL https://doi.org/10.

1186/s40645-016-0096-3.

L. Yu and R. A. Weller. Objectively analyzed air-sea heat fluxes for the global
ice- free oceans (1981-2005). Bulletin of the American Meteorological Soci-
ety, 88(4):527–539, 2007. ISSN 00030007. doi: 10.1175/BAMS-88-4-527.

Y. Yu, D. Dommenget, C. Frauen, G. Wang, and S. Wales. ENSO dy-
namics and diversity resulting from the recharge oscillator interacting with

162

http://journals.ametsoc.org/doi/abs/10.1175/1520-0485{%}282001{%}29031{%}3C2989{%}3ATSLHBI{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485{%}282001{%}29031{%}3C2989{%}3ATSLHBI{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485{%}282001{%}29031{%}3C2989{%}3ATSLHBI{%}3E2.0.CO{%}3B2
http://doi.wiley.com/10.1002/2017GL076849
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485{%}281975{%}29005{%}3C0572{%}3AENTDRO{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485{%}281975{%}29005{%}3C0572{%}3AENTDRO{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485{%}281975{%}29005{%}3C0572{%}3AENTDRO{%}3E2.0.CO{%}3B2
https://doi.org/10.1175/2009JCLI2836.1
https://doi.org/10.1175/2009JCLI2836.1
https://doi.org/10.1038/nature08316
https://doi.org/10.1038/nature08316
https://doi.org/10.1186/s40645-016-0096-3
https://doi.org/10.1186/s40645-016-0096-3


REFERENCES

the slab ocean. Climate Dynamics, 46(5):1665–1682, 2016. ISSN 1432-
0894. doi: 10.1007/s00382-015-2667-1. URL https://doi.org/10.

1007/s00382-015-2667-1.

S. E. Zebiak and M. A. Cane. A Model El Niño–Southern Oscilla-
tion. Monthly Weather Review, 115(10):2262–2278, oct 1987. ISSN
0027-0644. doi: 10.1175/1520-0493(1987)115〈2262:AMENO〉2.0.CO;

2. URL https://doi.org/10.1175/1520-0493(1987)115{%}3C2262:

AMENO{%}3E2.0.COhttp://0.0.0.2.

H. Zelle and H. Dijkstra. El Nifio and Greenhouse Warming: Results from
Ensemble Simulations with the. Journal of Climate, 18:4669–4683, 2005.

H. Zelle, G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh. The Re-
lationship between Sea Surface Temperature and Thermocline Depth in the
Eastern Equatorial Pacific. Journal of Physical Oceanography, 34(3):643–
655, mar 2004. ISSN 0022-3670. doi: 10.1175/2523.1. URL http:

//journals.ametsoc.org/doi/abs/10.1175/2523.1.

Q. Zhang, A. Kumar, Y. Xue, W. Wang, and F. F. Jin. Analysis of the ENSO
cycle in the NCEP coupled forecast model. Journal of Climate, 20(7):1265–
1284, 2007. ISSN 08948755. doi: 10.1175/JCLI4062.1.

W. Zhang and F. F. Jin. Improvements in the CMIP5 simulations of ENSO-
SSTA meridional width. Geophysical Research Letters, 39(23):1–5, 2012.
ISSN 19448007. doi: 10.1029/2012GL053588.

M. Zhao, H. H. Hendon, O. Alves, G. Liu, and G. Wang. Weakened
Eastern Pacific El Niño predictability in the early Twenty-First Century.
Journal of Climate, 29(18):6805–6822, 2016. ISSN 08948755. doi: 10.

1175/JCLI-D-15-0876.1. URL https://journals.ametsoc.org/doi/

pdf/10.1175/JCLI-D-15-0876.1.

J. Zhu, A. Kumar, and B. Huang. The relationship between thermocline
depth and SST anomalies in the eastern equatorial Pacific: Seasonality and
decadal variations. Geophysical Research Letters, 42(11):4507–4515, 2015.
ISSN 19448007. doi: 10.1002/2015GL064220. URL https://agupubs.

onlinelibrary.wiley.com/doi/pdf/10.1002/2015GL064220.

163

https://doi.org/10.1007/s00382-015-2667-1
https://doi.org/10.1007/s00382-015-2667-1
https://doi.org/10.1175/1520-0493(1987)115{%}3C2262:AMENO{%}3E2.0.CO http://0.0.0.2
https://doi.org/10.1175/1520-0493(1987)115{%}3C2262:AMENO{%}3E2.0.CO http://0.0.0.2
http://journals.ametsoc.org/doi/abs/10.1175/2523.1
http://journals.ametsoc.org/doi/abs/10.1175/2523.1
https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-15-0876.1
https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-15-0876.1
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015GL064220
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015GL064220

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	El Niño Southern Oscillation (ENSO)
	ENSO theory and Simple statistical Models for ENSO
	ENSO in General Circulation Models (GCMs)
	ENSO in a greenhouse warming scenario
	Research objectives and outline

	An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator model
	 Introduction
	Data, models and methods
	Proof of concept
	CMIP model ENSO dynamics
	Comparison towards observations
	Contribution from atmospheric and oceanic dynamics
	Spread within the model ensembles
	Sensitivities of ENSO statistics to the ReOsc model biases and spreads

	Bias score of CMIP models
	Summary and discussion

	Effects of thermocline estimation techniques on ENSO using the linear recharge oscillator model
	Introduction
	Model simulation, data and methods
	Observational datasets and CMIP Model Simulations
	The Recharge Oscillator Model

	Results
	Mean thermocline depth in the equatorial Pacific 
	Thermocline depth variability in the context of ENSO dynamics 
	Dynamical Implications 
	Thermocline depth seasonality
	Sensitivity analysis and Skill score 
	Predictibility

	Summary and discussions

	Simulated future changes in ENSO dynamics in the framework of the linear recharge oscillator model
	Introduction
	Data, models and methods
	CMIP5 model simulations
	The recharge oscillator model
	Estimation of sensitivities with the recharge oscillator model
	The power spectral slope
	Estimates of uncertainties

	Results
	Thermocline depth changes
	Changes in statistics of ENSO variability
	Changes in the recharge oscillator dynamics
	Sensitivity of ENSO variability to the changes in the dynamics
	Sensitivity of ENSO predictability to the changes in the dynamics

	Summary and discussion

	Epilogue
	Summary and Conclusions
	Chapter 2
	Chapter 3
	Chapter 4

	 Future work

	References

