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The necessity of cybersecurity is becoming apparent as we grow increasingly de-

pendent on technology in our daily lives. cybersecurity allows us to protect our

digital information that is stored and transferred via the Internet. Because of this

growing dependence, this research project endeavours to design, construct and

evaluate new post-quantum cryptographic primitives that not only secure such

information against cyber attacks, but also protect it from the probable vulnera-

bilities that will emerge as a result of quantum computer technology.

To begin with, this thesis focuses on different variants of digital signatures such as

ring, linkable-ring and threshold signatures schemes. These new constructions are

then applied in a cryptocurrency protocol where further cryptographic techniques

such as homomorphic commitments, zero knowledge proofs and range proofs are

utilised to guarantee a high level of security. The results of the security evalua-

tion of these constructions and protocols show that they are secure in terms of

unforgeability, anonymity, linkability and non-slanderability.

A novel post-quantum Linkable Ring Signature scheme is first proposed, which

enables the public to verify if two or more signatures were generated by the same

signer, whilst still protecting the anonymity of this signer. The scheme achieves

unconditional anonymity and security guarantees with the lattice-based hardness

assumptions. The proposed scheme is generalised to be applied in a post-quantum

cryptocurrency protocol based on the Ring Confidential transaction RingCT, which

forms the foundation of the privacy-preserving protocol in any post-quantum se-

cure cryptocurrency such as Hcash.

In further research, this thesis presents an innovated Lattice-based Ring Confiden-

tial Transactions supporting Multiple-Input and Multiple-Output wallets. This
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construction is a fully functional underlying scheme for cryptocurrency applica-

tions. We extend the quantum resistant linkable ring signature scheme to support

these multiple transactions. The security model provides stronger security for bal-

ance and anonymity properties, including the use of a lattice-based range proof.

In the end, another new post-quantum cryptographic mechanism is introduced,

named the Lattice-based Linkable Ring Signature with Co-Signing, which offers

a distributed authorisation feature to protect electronic wallets. It also covers

a formal definition of a security model for this authorisation scheme, so accom-

plishes the security requirements to protect any privacy preserving applications

like the blockchain cryptocurrency protocols (including the RingCT). To address

key-generation security concerns, and to support compression of keys and signa-

tures, this proposal incorporates a distributed key generation along with a solid

public-key aggregation. Finally, we prove the security of this construction in the

random oracle model and the standard lattice-based hardness assumption.
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Chapter 1

Introduction

Cryptology, the science of secret writing, has existed for many years. Different

organisations including governments, businesses and the military use cryptology

to keep their communication secure against adversaries. Cryptology is divided

in two areas: cryptography which is concerned with the design of techniques to

encrypt information, and cryptanalysis which is related to the mechanisms used

to break such cryptographic techniques. Public-key (or asymmetric) cryptography

has become increasingly relevant to modern society, mainly in terms of securing

digital communications like the Internet. The main uses of this cryptographic

system are Encryption/Decryption, Digital Signatures and Key Exchange.

Digital Signature schemes, are analogous to real handwriting signatures, as they

have the same common goal of certifying the content of documents. However,

digital signatures are capable of providing stronger security guarantees in terms

1
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of authenticity, unforgeability, and non-repudiation [KL14, HPSS08]. These ad-

vantages make digital signatures practical and widely accepted in today’s digital

society. Digital signatures can be used, for instance, to certify documents, to au-

thenticate individuals and enterprises, or to be employed as a component of other

cryptographic protocols. They can also provide the foundation for Public Key

Infrastructure (PKI), where digital signatures are used in public-key certificates

and are implemented under the standard “X.509” [MMB17]. Certificates based

on this standard are developed in current network security applications including

Internet Protocol Security (IPSec), Transport Layer Security (TLS), Secure Shell

(SSH) and Secure/Multipurpose Internet Mail Extension (S/MIME) [MMB17].

In a higher abstraction, these tools are employed to protect Internet communica-

tion, Virtual Private Networks (VPN), intranets, software updates, the Internet of

Things (IoT) and sensitive data in different industries like healthcare and finance.

Digital Signature schemes have also represented the starting point of the develop-

ment of new cryptographic primitives. One of these primitives is the ring signature

scheme that was initially formalized in [RST01], where the authors defined it as

having members of a group who do not want to cooperate. This means that sign-

ers in this scheme will no longer have a manager who can eventually reveal their

identity, and thus the anonymity is unconditionally preserved. This approach was

considered a security improvement when compared with group signature schemes

[CVH91], where a group manager was part of the construction. A property called

“Linkability” was afterwards introduced to the ring signature scheme [LWW04b],

which is known as a Linkable Ring Signature (LRS) scheme. This new feature en-

ables the public verifier to check whether two or more signatures are produced by

same signer whilst preserving his anonymity property. These types of signatures

enable practical privacy preserving applications, including cryptocurrencies, that

can anonymously prevent double spending.

Cryptocurrencies are applications that use virtual assets and cryptographic mech-

anisms to conduct e-commerce operations such as electronic payments or money

transfers. Those payments can be carried out among accounts or wallets, inde-

pendently of a central party [CELR18]. This leads to some advantages like lower
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transaction fees, theft resistance and anonymous payments. The Ring Confiden-

tial Transaction (RingCT) [Noe15] is a cryptographic protocol that is employed by

Monero, which is one of the most popular cryptocurrencies to date. The RingCT

performs e-commerce operations in a decentralised network while maintaining

complete-anonymity of the parties involved in the transactions [CELR18]. In the

RingCT framework, complete-anonymity provides a remarkable advantage since

other cryptocurrencies, such as Bitcoin, are only pseudo-anonymous [KKM14].

These schemes, nevertheless, are based on the integer factorization and dis-

crete logarithm assumptions, represented by Rivest, Shamir and Adleman (RSA)

[RSA78] and Elgamal [ElG84, Elg85] asymmetric public-key cryptosystems, re-

spectively. Conventional cryptographic schemes such as RSA, DSA and ECC,

whose security guarantees are based on mathematical assumptions like discrete

logarithm, factoring large numbers and/or number theory, are believed to be vul-

nerable with the onset of powerful quantum computers [Sho99]. This perceived

vulnerability has motivated researchers in the area of post-quantum cryptography

to construct approaches against these computers. Among the alternatives, lattice-

based cryptography has attracted the attention of this field due to its distinguish-

ing features and new applications. Algorithms based on this new lattice-based

primitive are efficient, simple and highly parallelizable and provide strong, provable

security guarantees under the worst-case hardness assumptions [MR09, CCJ+16].

Therefore, this thesis aims to design and evaluate new, compact and efficient post-

quantum cryptographic schemes that seek to overcome the presence of powerful

quantum computers. This research also focuses on the construction of linkable

and threshold ring signature schemes due to their capabilities in relevant applied

research cryptography, such as cryptocurrencies.
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1.1 Research Methodology

1.1.1 Research Questions

1. Main question: How to design and evaluate a post-quantum Linkable Ring

Signature scheme using lattice-based mathematical assumptions (such as

Ring-SIS or Module-SIS).

2. Sub-questions :

• Are the security assurances (unforgeability, anonymity, linkability and

non-slanderability) of this scheme guaranteed?

• Does this scheme provide better performance results compared to other

Linkable Ring Signature schemes?

• Can this Linkable Ring Signature scheme be extended to be securely

used in applications like cryptocurrencies?

• Can we design and incorporate particular functionalities in the proposed

Linkable Ring Signature scheme?

1.1.2 Research Objectives

The aims of this thesis are detailed as follows:

1. Design a post-quantum Linkable Ring Signature scheme that uses lattice-

based cryptographic assumptions (Ring-SIS and Module-SIS) in order to pro-

vide better security and performance assurances.

2. Analyse the security of the proposed schemes (in terms of unforgeability,

anonymity, linkability and non-slanderability) in order to guarantee reliabil-

ity.

3. Evaluate the performance of the proposed cryptographic constructions and

optimise them.
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4. Construct a cryptocurrency protocol based on the Extended Linkable Ring

Signature scheme, and analyse its security properties (in terms of balance,

anonymity, and non-slanderability) and performance.

5. Design new authorisation functionality that can be incorporated into both

the previously devised Linkable Ring Signature and the cryptocurrency pro-

tocol.

1.1.3 Research Contributions

The main contribution of this thesis is the construction of practical post-quantum

cryptographic primitives using lattice-based cryptography that combine desirable

security, efficiency and functionality properties. The list of contributions of this

thesis is summarised as follows:

1. Design and construction of the first post-quantum linkable ring signature,

known as Lattice-based one-time Linkable Ring Signature (L2RS) along with

the security evaluation (in terms of unforgeability, anonymity, linkability and

non-slanderability) and performance analysis. This construction is a gen-

eralisation of the BLISS [DDLL13] scheme which is currently one of the

practical and secure lattice-based digital signatures. The L2RS provides un-

conditional anonymity as well as security guarantees under the hardness of

the Ring Short Integer Solution (Ring-SIS) standard lattice assumption. We

also devised and constructed a new cryptocurrency privacy-preserving pro-

tocol, called Lattice Ring Confidential transaction (LRCT). This protocol

employs the proposed post-quantum L2RS as a fundamental building block

along with a homomorphic commitment primitive to form the foundation

of any privacy-preserving protocols for blockchain cryptocurrencies, such as

Hcash. The first version of these novel schemes supports transactions from

Single-Input to Single-Output (SISO) wallets. These two contributions were

published in [ATSS+18].
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2. Construction of the Multiple-Input Multiple-Output Lattice RingCT v2.0

(MIMO.LRCT) cryptocurrency protocol which was extended from the pre-

vious L2RS and SISO.LRCT schemes [ATSS+18]. This proposed construc-

tion supports multiple-input and multiple-output wallets in crytocurrency

transactions. The MIMO.LRCT inherits the post-quantum security guar-

antees from SISO.LRCT, which are the hardness of lattice mathematical

assumption (the Ring-SIS), and the unconditional anonymity. This newer

version enhances the LRCT’s security model, particularly the anonymity

and balance properties. In the case of anonymity, it includes analyses of

both user and amount privacy, contrary to another similar work [SALY17]

which only considered user anonymity. The balance security property now

includes the out-of-range attacks [BBB+18] and the security proofs which

were overlooked by previous RingCT’s proposal [ATSS+18, SALY17]. The

security analysis illustrates how to incorporate a lattice-based range proof

in the MIMO.LRCT protocol, which was a missing component in former pro-

posals [ATSS+18, SALY17]. To begin with, this protocol deals with the

difficulties stemming from the imperfection of lattice-based zero-knowledge

proofs. To be more specific, the range proofs follow the approach based on

1-of-2 OR-proofs, but our analysis shows that directly applying lattice-based

OR-proofs from [dPLNS17] does not provide soundness for the range proof.

This argument leads us to carefully select the challenge space, as we de-

scribe in Chapter 5. Although these challenges are smaller -in norm- than

the ones used in the OR-proofs, they are still larger than the challenges in

[LLNW18]. In this framework, we achieve a lower soundness error than the

previous lattice-based range proof as in [LLNW18]. Moreover, a thorough

concrete performance analysis of the MIMO.LRCT protocol is provided by

including this range proof analysis. Concrete bounds are applied to derive

preliminary scheme parameters for regular RingCT transactions that support

operations of 64-bit amounts along with fewer Multiple Input and Output

wallets. The work of this contribution was published in [ATKS+19].

3. Construction of the first post-quantum Multiple-Input Multiple-Output
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Lattice-based Linkable Ring Signature with Co-Signing (MIMO.L2RS-CS)

scheme, which can be adapted to a post-quantum cryptocurrency protocol

such as the LRCT [ATKS+19]. The L2RS-CS offers complete-anonymity, and

can support MIMO feature for transactions between wallets. The L2RS-CS

is built on top of the post-quantum LRS from [ATSS+18] and integrates a

Distributed Key Generation (DKG) together with a solid public-key aggrega-

tion (in the post-quantum settings) which bring a high level of security and

compression for the cosigners’ keys. Additionally, we formalise another new

security model, called Linkable Ring Signature with Co-Signing (LRS-CS),

having a special combination of two Threshold Signature (TS) constructions,

the (NCS-out-of-NCS)-TS and (1-out-of-w)-LRS schemes (which are used in

Monero [Alo18, GN18]). Although Threshold Ring Signatures (TRS) can

be seen as a combination of TS and RS schemes, it is a different type of

primitive to our proposed LRS-CS. Namely, in TRS any subset of t out of

n signers can cooperate to generate a signature while hiding the signers’

subset. In contrast, under our LRS-CS model, there are w groups of NCS

cosigners, so that all the NCS signing keys within the signing group cooper-

ate to produce the signature while hiding the signers among the w groups.

Furthermore, in LRS-CS the NCS cosigners interactively generate and share

a single public-key, whereas in TRS each cosigner has an individual public-

key generated with a non-interactive key-generation algorithm. Therefore,

LRS-CS can be viewed as a more specialised primitive than the TRS; how-

ever, one that suffices for RingCT authorisation and can also be implemented

with much shorter signatures than existing lattice-based TRS schemes, as we

demonstrate in the performance evaluation of our L2RS-CS scheme. The se-

curity of the L2RS-CS scheme is proven in the classical random oracle model

where the properties of unforgeability, linkability and non-slanderability are

demonstrated to be computationally secure from the standard lattice-based

Module-SIS hardness assumption. In terms of anonymity, we show that this

construction is unconditionally secure under the Leftover Hash Lemma (LHL)

[DDLL13].
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Table 1.1 provides a general description of the contributions of this thesis along

with its corresponding research objectives.

Table 1.1: Thesis Contributions

Contribution Description Objectives

1 Construction of the L2RS with security and
performance evaluation

1, 2 and 3

2 Construction of the cryptocurrency
SISO.LRCT as an application of the L2RS

4

3 Construction of the cryptocurrency
MIMO.LRCT with security and perfor-
mance analyses

2, 3 and 4

4 Construction of the MIMO.L2RR-CS with se-
curity and performance analyses

2, 3, and 5

1.2 Outline of the thesis

The organisation of the remaining parts of this thesis are summarised as follows:

• Chapter 2 presents the literature review associated with the thesis’ objec-

tives. It reviews concepts of public key cryptography, post-quantum cryp-

tography and their applications to cryptocurrencies.

• Chapter 3 describes general definitions and notations that are employed

throughout this thesis.

• Chapter 4 illustrates the first cryptographic construction, the Lattice-based

Linkable Ring Signature (L2RS) with its corresponding security and perfor-

mance analyses. It also extends this initial proposal to a cryptocurrency

protocol that is called Lattice-based Ring Confidential Transaction (LRCT).

• Chapter 5 extends the initial L2RS and LRCT constructions. They now

support transfers from multiple input wallets to multiple output wallets.

It provides a comprehensive security analysis for a cryptocurrency protocol

that supports operations of 64-bits amounts.
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• Chapter 6 shows how we modified the L2RS to incorporate an authorisa-

tion functionality which uses threshold signatures. Under this functionality,

several co-signers interact to generate a signature.

• Chapter 7 provides the conclusion of this thesis and possibilities of future

research.



Chapter 2

Literature Review

Cryptography is the area of computer science which is responsible for protecting

private information and communications. We can easily observe how it is used in

many aspects of our daily lives. For instance, when we log onto our personal com-

puters or email accounts, our passwords are protected by one-way hash functions.

Moreover, multiple applications exploit the public-key cryptography to devise and

implement several protocols, like digital certificates to protect our online finan-

cial transactions. Another example of applied cryptography includes blockchain

and cryptocurrencies where the user’s privacy is preserved during a transaction.

On the other hand, classical computers were invented more than 70 years ago.

Since then, many improvements have been proposed to speed up their hardware

resources. Different technologies of advanced computation have been investigated

to achieve such optimisations. Quantum computing will likely be one of those

technologies that perform faster computations by far. Unfortunately, classical

10
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cryptography would be vulnerable in the event of powerful quantum computers

becoming practical because they would break the hardness of the mathematical as-

sumptions which are used to secure many cryptographic applications. Therefore,

this chapter will delve into the significant background of cryptography, certain

applications to digital currency, and the threat of quantum attacks.

We start firstly by defining cryptographic digital signature schemes, in Section 2.1.

In Section 2.2, several extensions based on digital signatures, that is, the group

and ring signature schemes, are discussed. Then, linkable ring signatures are then

introduced in Section 2.3. The discussion of the quantum attacks on classical cryp-

tography is demonstrated in Section 2.4, where then lattice-based cryptography

(Section 2.5) is presumed to be a promising solution to that threat. In Section

2.6, cryptocurrencies are studied to understand how linkable ring signatures are

employed to provide security to such applications. Threshold-signature primitives

are reviewed in Section 2.7, which are important in cryptocurrencies since they

enable an extra layer security for the transaction of wallets. Finally, the chapter

concludes with a summary in Section 2.8.

2.1 Digital Signature – Conventional Ap-

proaches

Public-key (or asymmetric) cryptography has become increasingly relevant to

modern society, mainly in terms of securing digital communications like the In-

ternet. The main uses of this cryptographic system are: Encryption/Decryp-

tion, Digital Signatures and Key Exchange. Digital Signature schemes, are anal-

ogous to real handwriting signatures, as they have the same common goal of

certifying the content of documents. However, digital signatures are capable of

providing stronger security guarantees in terms of authenticity, unforgeability,

non-repudiation, public verifiability, transferability and, perhaps in some cases,

anonymity [KL14, HPSS08]. These characteristics make digital signatures practi-

cal and widely accepted in today’s digital society.
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Digital signatures can be used to certify documents, to authenticate individu-

als and enterprises and as a component of other cryptographic protocols. They

can also provide the foundation for public-key cryptography, where these digital

signatures are used in public-key certificates and are widely accepted under sev-

eral international standards, such as the X.509 [MMB17]. Certificates based on

this standard are implemented in current network security applications including

Internet Protocol Security (IPSec), Transport Layer Security (TLS), Secure Shell

(SSH) and Secure/Multipurpose Internet Mail Extension (S/MIME) [MMB17]. In

a higher abstraction, these tools can be used to protect Internet communication,

Virtual Private Networks (VPN) and intranets, software updates, the Internet of

Things (IoT) and sensitive data in industries like healthcare and finance.

The concept of a Digital Signature was proposed (1976) in [DH76], where it was de-

scribed that every user who has a couple of keys, Private-Key denoted as “Pr-Key”

(a.k.a. secret or signing key) and Public-Key “Pub-Key” (a.k.a. verification key),

will only publish their “Pub-Key”. The digital signature σ is then generated based

on the message µ and the signer ’s “Pr-Key”, and ultimately it will be verified by

anyone who knows the signer ’s “Pub-Key”. A successful verification signature

means that a third party approves the authenticity of the message µ. Figure 2.1

illustrates the concept of digital signatures where Alice plays the role of a signer

and Bob plays the roles of the verifier. The security of such signatures is usually

guaranteed on certain mathematical hardness assumptions.

This digital signature idea was later made practical by Rivest, Shamir and Adle-

man (RSA) in [RSA78], where the security of this RSA cryptographic scheme

relied on the hardness of the Integer Factorization Problem (IFP). More precisely,

the RSA public key is a product (n = pq) of two secret, large prime numbers p and

q, and the security relies on finding the factors p and q of n. This RSA signature

scheme has three Probabilistic Polynomial Time (PPT) algorithms:

1. Key generation “KeyGen”: this algorithm creates the pair of keys,

“Pub-Key”: (n, e) and “Pr-Key”: d. This algorithm depends on the se-

curity parameter λ (the number of bits in n), which is the input of this
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Figure 2.1: Digital Signature Idea

algorithm.

2. Signing “Sign”: in this algorithm, the sender will generate a signature σ

based on a message µ, 0 ≤ µ ≤ n. It is computed as σ = µd mod n, and

(σ, µ) will be sent to the recipient.

3. Verification “Ver”: the recipient verifies the message µ’s authenticity by

checking µ
?
= σe mod n. This is a deterministic algorithm as it only outputs

accept or reject.

Another well-known digital signature scheme Elgamal was proposed in [ElG84,

Elg85]. Its security is based on the hardness of the Discrete Logarithm Problem

(DLP), which is the difficulty of finding an exponent x such that y ≡ gx mod p

where y, q and p are given. Some variants of this scheme were later proposed,

like the Digital Signature Algorithm (DSA) and the Digital Signature Standard

(DSS) [KG13]. This scheme also has three main algorithms, which are described

as follows:

1. KeyGen: given a security parameter λ, a pair of keys are generated by the

sender, the “Pub-Key”: (p, g, y) and the “Pr-Key”: x, where p is a prime,

g is a primitive root modulo p, x ←↩ U(Zq∗), where U(Zq∗) is a uniform

distribution over Zq∗ and y = gx mod p.
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2. Sign: a message µ, where 0 ≤ µ ≤ p, is signed by the sender by choosing a

random k, where 1 ≤ k ≤ p−2 satisfying gcd(k, p−1) = 1. Then, the sender

computes σ1 = gk mod p and σ2 = k−1(µ − xσ1) mod p− 1. The signature

σ of the message µ is (σ1, σ2).

3. Ver: any potential verifier checks 0 < σ1 < q and 0 < σ2 < q, then computes

w = σ2
−1 mod p, u1 = µ ·w mod p, u2 = σ1 ·w mod p, and v = gu1 · (yu1)

mod p. The signature σ is authentic iff v = σ1.

The security of Digital Signatures is said to be computationally secure, meaning

that these schemes cannot be secure against an adversary who has both unlimited

time and unlimited computational power [Kat10]. In this situation, the attacker,

who has the victim’s “Pub-Key”, will try all possible values of the signature σ

by using the verification algorithm. The signature σ will ultimately be forged

when the adversary has found one σ′ that satisfies the verification test of the

message µ. This level of security also implies that a digital signature scheme cannot

even be perfectly secure against a weak adversary: an attacker, even without

knowing a victim’s “Pub-Key”, can randomly forge a signature σ with negligible

probability. Nevertheless, having a computationally secure notion will ensure that

it is impossible to forge a signature scheme except with a small or negligible

probability for any efficient adversary or with a PPT algorithm [Kat10], where the

running time is measured based on the security parameter λ. The larger the λ,

the more secure the signature scheme. Hence, in digital signatures schemes, the

security relies on hardness assumptions, such as the IFP with RSA and DLP with

Elgamal. The hardness assumptions of the current and practical digital signatures,

which are based on classical cryptography, are briefly described in Table 2.1 below.

The security analysis and requirements of digital signature schemes were formally

proposed in [GMR88], providing a definition of attack models (as Table 2.2) as

well as how an adversary might be successful in breaking digital signature schemes

(as in Table 2.3). In this explanation, the legitimate signer is denoted as U and

the adversary as A. We can say that this analysis provides an upper–layer security
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Table 2.1: Summary of Digital Signature Schemes

Digital Signature Schemes Hardness Assumption

Plain RSA – (1978) [RSA78]; RSA-
FDH – (1993) [BR93, BR96]

IFP

Elgamal – (1984) [ElG84, Elg85] DLP
DSA – (1991) [KG13] DLP
Schnorr – (1989) [Sch89, Sch91] DLP
DSS/ECDSA (Elliptive Curve DS Al-
gorithm) – (2013) [KG13]

DLP

of digital signature schemes where the interaction between U and A is evaluated,

guaranteeing that signatures are not forged.

Table 2.2: Digital Signature Attacks Models

Digital Signature
Attacks

Description

Key-Only (KO) A only knows U ’s Pub-Key.

Known Message (KM)
Besides knowing U ’s Pub-Key, A has a
collection of U ’s message-signatures pairs:
(µ1, σ1), . . . , (µt, σt).

Generic Chosen Mes-
sage (GCM)

A chooses a list of messages (µ1, . . . µt) that is
independent of U ’s Pub-Key prior to attempt
in breaking U ’s DS. Under these conditions,
A creates valid U ’s DS (µ1, σ1), . . . , (µt, σt).

Directed Chosen Mes-
sage (DCM)

This differs from a GCM attack in that the
list of messages is chosen after knowing U ’s
Pub-Key but before any signatures are seen.

Adaptive Chosen Mes-
sage (ACM)

U is also used as an “Oracle”, where A uses
to sign messages that depend on previously
obtained message–signature pairs.

Table 2.3: Success at Breaking a Digital Signature Scheme

Digital Signature
Forgeries

Description

Total break A is able to recover U ’s Pri-Key.
Universal forgery A is able to forge the σ of any µ.

Selective forgery
A can forge a σ for a particular message cho-
sen by A

Existential forgery
A can forge a σ of at least one message whose
signature was not already seen.

After analyzing the security of digital signatures, it is emphasized that their foun-

dational schemes are computationally secure. In the case of the RSA and Elgamal
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schemes, they will be completely broken if an adversary solves the factoring as-

sumptions and the DLP, respectively. Furthermore, standard digital signatures

have served as a reference point to devise new cryptographic schemes such as

group, ring, and linkable ring signatures.

2.2 Group and Ring Signatures

A new type of signature, introduced as a proof of knowledge in [CVH91], aims to

create a digital signature scheme based on a group of individuals. This construc-

tion, is known as the Group Signature scheme (see Figure 2.2), has the following

properties:

• Individuals who belong to this group can create signatures.

• A group signature can be verified by public users without revealing the iden-

tity of the individual who signed the signature.

• In case of disputes, there exists a Group Manager (GM) who is capable of

disclosing the identity of the signer, to handle and resolve the situation.

Figure 2.2: Group Signature Idea

An initial setup is defined to allow the group manager to control the group’s mem-

bership and generate the signing keys of the group members (w members as in
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Figure 2.2) [CVH91]. Beyond the security guarantees of standard digital signature

schemes, a group signature scheme provides anonymity and unlinkability of the

group signer. This means that it is computationally difficult to disclose the group

signer’s identity (except for the group manager) and that it is computationally

infeasible to decide whether two signatures were signed by the same signer. This

cryptographic scheme has a wide range of applications like electronic voting, elec-

tronic auctions and electronic cash systems [CVH91]. However, as the scheme is

bundled to the group manager, some issues may arise in efficiency and security

[RST01]. For instance, it may require a large number of interactions between the

group manager and the group members to manage the group, to create signatures

and to solve disputes. Furthermore, if the group manager is targeted by an at-

tacker, the whole scheme might be compromised since the anonymity property

could be broken.

The notion of Ring Signature schemes was formally proposed in [RST01, RST06]

as another cryptographic primitive based on group signatures, where the term ring

defines an ad-hoc network and the possible set of signers. Figure 2.3 provides a

brief illustration of this idea. Under the assumption that this scheme must have

a standard digital signature scheme like RSA, the main differences in comparison

with the standard group signatures are that

• There is no group manager, and therefore, there are no procedures for man-

aging prearranged groups like setting, changing and deleting them. This also

implies that the anonymity of the group’s signer can be unconditionally or

computationally preserved unless the signer reveals its identity.

• There is no key distribution among the members of the group, so groups

can be formed spontaneously. This indicates that independent public key

schemes with different signatures and key sizes can be used.

• The Group Signature scheme is useful when members of the group want

to cooperate to generate the signature, whereas this is not a necessity for

members in a Ring Signature scheme.
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Figure 2.3: Ring Signature Idea

The construction of the Ring Signature scheme also has three PPT algorithms: Key

Generation (KeyGen), Ring Signature Generation (RingSign) and Ring Signature

Verification (RingVer).

1. (KeyGen): given the security parameter λ, the pair of keys (Pub-Key,

Pr-Key) are generated by each member of the group or ring. The (Pub-Key)

of the ring signer can also be obtained from a PKI directory or a certificate.

2. (RingSign): a signer π out of w members generates the signature σ ←

RingSign(Pr-Keyπ, µ, L), where Pr-Keyπ represents the signer’s private-key,

the message µ ∈ {0, 1}∗ and the list L contains the public keys of the ring

signatures’ members L = {Pub-Key1,Pub-Key2,Pub-Key3, . . . ,Pub-keyw}.

3. (RingV er): this deterministic algorithm verifies (µ, σ) with respect to the

list L and outputs: accept or reject.

Several generalisations of the Ring Signature scheme have been developed. These

include Threshold Ring Signature [BSS02], Proxy Ring Signature [ZSNL04], Con-

ditionally Anonymous Ring Signature [LLM+07] and Ring Signcryption [HZW06].

A primay focus of this research is on a particular extension of this ring signature

scheme called Linkable Ring Signature, which has been applied in scenarios like

cryptocurrency [Noe15] and e-voting [LWW04b].
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2.3 Linkable Ring Signature

The linkability property of Ring Signatures allows one to detect if two signatures

have been generated by the same signer (using the same private key) whilst still

preserving their anonymity. The first proposal was introduced in [LWW04b] with

the name Linkable Spontaneous Anonymous Group Signatures (LSAG), where the

scheme was proved to be secure under the discrete logarithm assumptions and

the Random Oracle Model (ROM). The idea is represented in Figure 2.4. In

comparison with previous unlinkable ring signature schemes, this adds a PPT

algorithm to verify the linkability property. In doing so, it uses a label that is

attached to each signature σ and consists of hiding the identity of the signer

by using a cryptographic hash function modeled as a random oracle. The label is

then used by a deterministic linkable algorithm to anonymously check whether two

valid signatures have identical label or not. If the label is identical, it means that

a signer has created two signatures. This particular feature opens the possibility

of many practical scenarios [LWW04b, LAH+14, TW05]. For example:

• Cryptocurrency: to prevent double spending while preserving the

anonymity of the miner. In fact, this approach is being used in the Monero

software application [Noe15].

• E-voting: to discard duplicate votes from an anonymous person (double-

voting).

• E-survey: to detect double submissions of any pseudonymous responder.

• Ad-hoc networks: to provide anonymous authentication.

• Access control: to anonymously verify how many times a file/directory is

accessed either on-premises or in cloud storage.

The security of most of the current Linkable Ring Signatures relies on classical

cryptographic mathematical assumptions (DLP and IFP). A brief summary of these

schemes is given in Table 2.4.
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Figure 2.4: Linkable Ring Signature Idea

Table 2.4: Linkable Ring Signature Schemes – Hardness Assumptions

Linkable Ring Signature Schemes Hardness Assumption

Au et al. [ACST06, ALSY07] IFP
Au et al. [ALSY06] DLP
Fujisaki et al. [FS07, Fuj11] DLP
Liu et al. [LSW06, LWLW06,
LWW04b, LW05a, LASZ14]

DLP

Tsang et al. [TW05, TAL+10] IFP
Yuen et al. [YLA+13] IFP
Zheng et al. [ZLCL07] DLP

There are still some research directions on these Linkable Ring Signatures schemes

that were initially discussed in [LWW04b], including

• To construct a scheme that provides unconditional anonymity.

• To construct a scheme using different hardness assumptions.

• To devise shorter and more efficient schemes.

• To apply the linkable ring signature in more scalable applications like e-

voting and/or cryptocurrency.

This thesis investigates the design of post-quantum secure linkable ring signatures

and their variants, in particular, using lattice-based cryptography, which is be-

lieved to have potential in addressing the aforementioned problems. Thus, the
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next section will discuss post-quantum cryptography, which could stand against

adversarial quantum technology. In addition, it turns out that some of these

post-quantum algorithms provide practical performance results as well as new

cryptographic applications.

2.4 The Art of Quantum Computing

This literature review has shown how classical cryptography has become relevant

for computer, network and Internet security, where public-key algorithms are being

used as strong protection against certain cyber-attacks. Those algorithms, which

were previously discussed (see Table 2.1 and Table 2.4), rely upon computational

problems (integer factorization and discrete logarithm) that are conjectured to be

intractable or infeasible with any realistic amount of computational resources. The

main security idea of these algorithms, sometimes called one-way functions, is that

they are relatively easy to compute but extremely difficult to reverse [KL14].

However, a new physical paradigm for computing, Quantum Computing, is believed

to pose a threat to these cryptographic algorithms. In 1994, Shor showed in

Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer [Sho99] how these computers can exploit quantum mechanics to

significantly speed up certain computations, efficiently solving those mathematical

problems that are associated with the security of classical public-key cryptography.

As a result, it was claimed that a powerful quantum computer would utterly

jeopardize the security of public-key algorithms.

In 1996, Grover devised a quantum algorithm [GK96] that sped up the search in an

unordered database, showing that it also posed a threat to symmetric algorithms

[CCJ+16] like Triple Data Encryption Standard (3-DES), Advanced Encryption

Standard (AES) and Hash functions (SHA2 and SHA3). Symmetric algorithms

can overcome this problem by doubling the key sizes and increasing the output

(in the case of hash functions), but this situation will not be the same with clas-

sical public-key algorithms, where alternative foundations will be sorely needed.
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Although there is not yet nowadays a practical powerful quantum computer in

operation, scientists and experts predict that one will be built within 20 years

[CCJ+16]. This indicates that all the schemes (including the Linkable Ring Sig-

natures scheme; see Table 2.4) based on these mathematical foundations will be

unusable with the onset of quantum computers. Table 2.5 illustrates, based on

[CCJ+16, BL17a], how a large-scale quantum computer would impact the classical

public-key cryptography.

Table 2.5: Impact of Quantum Computing on Classical Public-key Cryptog-
raphy

Digital Signature Schemes
Hardness Assump-
tion

Impact –
Shor’s Algo-
rithm

Plain RSA – (1978) [RSA78];
RSA-FDH – (1993) [BR93, BR96]

IFP Broken

Elgamal – (1984) [ElG84, Elg85] DLP Broken
DSA – (1991) [KG13] DLP Broken
Schnorr – (1989) [Sch89, Sch91] DLP Broken
DSS/ECDSA (Elliptive Curve DS
Algorithm) – (2013) [KG13]

DLP Broken

Since Shor’s discovery, industry and academia have focused their research on

the practicability of scalable quantum computers, mainly to exploit their unde-

niable capabilities. For example, this type of computer can efficiently process

large amounts of information in parallel [BLM17, CCJ+16]. This situation has

led to a new area in the field of cryptography called post-quantum cryptography,

aimed at constructing new cryptographic algorithms that are intractable even in

the presence of powerful quantum computers. Among the current post-quantum

cryptographic proposals (see Table 2.6 based on [CCJ+16, BL17b, BL17a]), lattice-

based cryptography has attracted attention within the cryptographic community.

It is one of the most promising candidates to be standardized as a post-quantum

cryptography solution due to its efficiency, parallelism, and believed security guar-

antees like resistance against quantum attacks [Lau17, MR09]. Lattices also of-

fer a strong security assurance under the assumed worst-case hardness of lattice

problems, which is significantly better than the assumed average-case hardness of
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other cryptographic constructions. Besides the basic primitive schemes (Encryp-

tion, Digital Signatures and Key Exchange), lattice-based cryptography provides

several new advanced and powerful constructions like Fully Homomorphic Encryp-

tion (FHE) [Go09] (with some applications [TBS14, ATBS15]), Multilinear Maps

[GGH13], Identity-Base Encryption (IBE) [ABB10], Attribute-Based Encryption

(ABE) [Boy13], Functional Encryption [BSW11] and Obfuscation [GGH+16]. The

next section will define lattices and explain how they are applied in cryptography.

Table 2.6: Post-Quantum Cryptographic Algorithms

Post-
Quantum
Primitive

Advantages Disadvantages

Lattice-based

New applications like Fully Ho-
momorphic Encryption (FHE);
relatively simple and efficient
implementations; parallelism;
strong security guarantees.

Difficulty in provid-
ing precise estimates
to secure some lattice
schemes; issues in per-
formance make some
schemes impractical, like
FHE.

Code-based
Very short signatures; efficient
verification process.

Very large public key
sizes; inefficient signing
process; there is not a
current scheme that over-
come these issues.

Multivariate
polynomial

More successful in Digital Signa-
tures.

Some proposed schemes
are broken.

Hash-based sig-
natures

Requires only hash functions to
be secure; flexible as these signa-
tures can be instantiated with any
hash function. Hash-based sig-
natures are classified as stateful
and stateless. In the former, af-
ter each signature generation, the
state (or the secret key) is up-
dated, whereas in the latter, it
does not require this update pro-
cess, which make the implemen-
tation easier.

The signer must keep the
record of previous signa-
tures; any error will lead
to insecurity; large signa-
ture size.

Isogenies on
Supersingular
Elliptic Curves

Computations can be paral-
lelized.

Signing and verification
processes are slow.
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2.5 Lattice-based Cryptography

Lattices were initially investigated by the mathematicians Gauss, Hermite and

Minkowski during the 19th century. Then, in the late 20th century, several com-

putational aspects were investigated, resulting in certain classical cryptographic al-

gorithms being broken [Po16]. During this time a number of important discoveries

in this area were made, such as: the Lenstra-Lenstra-Lovász (LLL) basis-reduction

algorithm in 1982 [LLL82]; and Ajtai’s worst-case to average-case security reduc-

tion for lattices in 1996 [Ajt96], which yielded the first lattice-based cryptographic

function. In 1997, the first public-key encryption scheme based on lattices was de-

vised by Ajtai and Dwork [AD97]. During this year, the Goldreich, Goldwasser and

Halevi (GGH) public-key encryption and digital signature schemes were also pro-

posed [GGH97]; and in 1998, the NTRU public-key cryptosystem scheme [HPS98],

which used polynomial rings was also constructed. Following these proposals, a

few improvements in Ajtai’s schemes were carried out by Micciancio and Regev

in [MR09], introducing new methods of analysis over lattices, such as Gaussian

measures and harmonic analysis, which were relevant for the design and analysis

of lattice-based cryptographic schemes. Afterwards, lattices began to be used in

designing new cryptography schemes, which to some extent were implemented to

overcome the quantum computing paradigm and also to construct new types of

schemes in cryptography. Table 2.7 shows a brief comparison between this post-

quantum lattice primitive and classical public-key cryptography.

Table 2.7: Comparison of Lattice-Based and Classical Cryptography

Lattice-Based Cryptography
Classical Public-key Cryp-
tography

Security based on a worst-case
problem.

Security based on an average-case
problem.

Based on hardness of lattice prob-
lems.

Based on factoring, DLPs.

Still not broken by quantum algo-
rithms.

Broken by quantum algorithms.

Simple computation: Additions
and multiplication.

Requires modular exponentia-
tion.
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b2

b1

Figure 2.5: A non-full-rank lattice with basis vector (1, 1) (taken from [Vai11])

2.5.1 Definition

A lattice is a geometric object that can be defined as a periodic grid of discrete

points in n-dimensional real space Rm. Mathematically, a lattice is the set of all

integer combinations. Given n linearly independent vectors {b1, . . . ,bn} ∈ Rm,

where these vectors are also known as a basis of the lattice, a lattice is therefore

generated as:

L(b1, . . . ,bn)
def
=

{ n∑
i=1

xibi | xi ∈ Z for 1 ≤ i ≤ n

}

In the lattice, n and m define the rank and the dimension respectively, and n ≤ m.

A lattice is called full-rank (see Figure 2.5) when n = m; otherwise the lattice is

non-full-rank (see Figure 2.6). The basis of a lattice can be represented by a

matrix B = [b1 . . .bn] ∈ Rm×n. Hence, using this matrix notation, where Bx

is the matrix-vector multiplication, a lattice can also be represented as L(B)
def
=

{Bx | x ∈ Zn}.
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b1

Figure 2.6: The lattice Z2 with basis vectors (0, 1) and (1, 0) (taken from
[Vai11])

The concept of unimodular matrix U ∈ Zn×n (integer square matrix with deter-

minant ±1) is used to generate an infinite number of different bases for a lattice.

This means that if B is the basis of a lattice L(B) then BU is the basis for L(B)

for any unimodular matrix U. Using multiple bases Bs in a lattice is a relevant

concept that can be applied in cryptography [MR09]. Algebraically, the determi-

nant is used to prove that the absolute value of the determinant basis B is equal

to the volume of the pararallelpiped generated by the basis vectors of the lattice

L(B): det(L(B)) = |det(B)|. Geometrically, it corresponds to the inverse of the

density of the lattice points in Rm, and to prove that the basis belongs to the lat-

tice, the notion of the fundamental parallelepiped is used to calculate this density

[Vai11]. A dual lattice is defined as L(B)∗
def
= {y|〈x,y〉 ∈ Z,∀x ∈ L(B)}. In this

case, L(B)∗ is the set of vectors y satisfying 〈x,y〉 ∈ Zn for all vectors x ∈ L(B).
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2.5.2 q-ary Lattices

The class of q-ary lattices L satisfies the relation qZn ⊆ L ⊆ Zn for an integer

q, which means that the vector x ∈ L is determined by x mod q. These lattices

have one-to-one correspondence with linear codes in Znq . This means that, given a

matrix A ∈ Zn×mq , for some integers q, m and n, two m-dimensional q-ary lattices

can be defined as:

Lq(A) = {y ∈ Zm : y = AT s mod q for some s ∈ Zn},

L⊥q (A) = {y ∈ Zm : Ay = 0 mod q}.

These q-ary lattices are dual to each other:

Lq(A) = qL⊥q (A)∗

L⊥q (A) = qLq(A)∗

2.5.3 Cyclic Lattices

The cyclic lattices were introduced in [Mic07] to improve the efficiency of previous

lattice-based cryptographic functions by replacing the general matrices by others

with a special structure. Under this technique a lattice L(A) with a matrix A ∈

Zn×mq can be replaced by a block matrix of the form A = [A(1), | . . . |A(m/n)],

having each block A(1) ∈ Zn×nq as a circulated matrix. This means that each block

rotates the coordinates of the A(1)’s first column cyclically. Cyclic lattices brings

improvements in storage and running time since the entire matrix is now replaced

by this circulated matrix. In terms of storage, it now stores only the first column

of the matrix (needed only m elements) rather than storing the entire matrix

(with nm elements). This result is similar for the running time with O(m) after

employing this technique. Cyclic lattices still provide a high level of security since

some studies assume that solving lattice problems on these types lattices is as hard
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as the general lattices case [Mic07]. Although, this improvement was shown to be

used in one-way functions, is not sufficient for other more useful cryptographic

primitives, like collision resistant hash functions.

2.5.4 Ideal Lattices

Extending the cyclic lattices idea, further studies were carried out to create efficient

constructions based on the worst-case assumptions. For instance, in [LM06], it

demonstrated how to design collision resistant hash functions, using a standard

lattice problems for a new type called ideal lattices of certain polynomial rings.

This new variant of lattices is defined in [LM06] as:

Definition 2.1 (Ideal Lattices). An ideal lattice is an integer lattice L(B) ⊆ Zn
such that L(B) = {g mod f : g ∈ I} for some monic polynomial f of degree n

and ideal I ⊆ Z[x]/f , where f are:

• Polynomial f(x) should be monic polynomial, which means that the coeffi-

cient of the largest power of x is 1.

• Polynomial f(x) should be irreducible, which means that an ideal lattice of

the ring Z[x]/f defines a full-rank lattice in Zn.

• The ring norm ‖g‖f 1 is not much bigger than ‖g‖∞ for any polynomial

g. That is, the smaller the ratio ‖g‖f/‖g‖∞, the harder it is to break the

function.

2.5.5 Computational Problems

The lattice computational problems are defined based on [MR09, Po16]:

1. Shortest Vector Problem (SVP): given a basis B ∈ Zm×n, the challenge

is to find the shortest non-zero vector t in the lattice L(B) with ‖v‖ =

1In the ring Z[x]/f with infinitive norm ‖(g + f)‖f = ‖g mod f‖∞, the ‖ · ‖f is a norm that
does not depend on the choice of g [LM06].
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λ1(L). Whereas the λ1(L) denotes the minimum distance of a lattice which

is the length of a shortest nonzero lattice vector, ‖ · ‖ commonly denotes the

Euclidean norm.

2. Approximate version of SVP (SVPγ): given a basis a lattice B ∈ Zm×n of

an n-dimensional lattice L = L(B), find a nonzero vector v ∈ L such that

‖v‖ ≤ γ(n) ·λ1(L). This means that it outputs the length of a lattice vector

which is at most some approximation factor γ(n) times the length of the

shortest nonzero vector with n being the dimension of the lattice.

3. Decisional Approximate SVP (GapSV Pγ): given the basis of a lattice B ∈

Zm×n of an n-dimensional lattice L = L(B) and λ1(L) as the norm of the

shortest non-zero vector of the lattice, it determines which is the case: (1)

λ1(L) ≤ 1 or (2) λ1(L) > γ(n), where γ(n) is the approximation factor γ ≥ 1

and is typically taken to be a function of the lattice dimension.

4. Closest Vector Problem (CVP): given the basis of a lattice B ∈ Zm×n and

a target vector t, which is not necessarily in the lattice, the challenge is to

find the lattice point v ∈ L(B) closest to the target t with respect to a given

norm.

5. Approximate version of CVP (CVPγ): it is a problem that with input B ∈

Zm×n and t ∈ Zm, it returns x ∈ L(B) such that for all y ∈ L(B)‖x− t‖ ≤

γ‖y− t‖.

6. Shortest Independent Vectors Problem (SIVP): given the basis of a lattice

B ∈ Zn×n, the problem consists of finding n linearly independent vectors S =

[s1, . . . sn],∀si ∈ L(B), such that the maximum norm vector si is minimum:

‖S‖ = maxi ‖si‖.

In lattice-based cryptography, the approximation factor (denoted by γ), is used to

treat the lattice problems SVP, CVP and SIVP. More precisely, SVPγ indicates

that the challenge is to find a vector whose norm is at most γ times that of the

shortest nonzero vector. The most common norm used in these problems is the
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Euclidean norm ‖x‖2 =
√∑n

i=1 x
2
i [Pei08]. Computationally efficient solutions

might be found in these problems if a lattice is in dimension 1, 2 or 3, where

basic mathematical tools such as Gaussian elimination can be used. However,

it is believed the complexity increases, and it becomes computationally difficult,

even for the power of quantum algorithms, when lattice-based cryptography uses

higher dimensions of 100 or above [Reg04, HPSS08]. This is, in fact that LLL can

solve SVPγ in poly(n) time for gamma exponential in n, but despite many years

of research since the LLL algorithm was published in the 1980s, the best known

algorithms for SVPγ and CVPγ for γ = poly(n) have running time exponential in

n, which is the lattice dimension.

2.5.6 Discrete Gaussian Distribution

Discrete Gaussian distribution is believed to be crucial in the development of

lattice-based cryptographic constructions since it is used to proved certain lattice

problems. This notion is defined as:

Definition 2.2 ([Po16]). For any positive integer n and real s > 0, which is taken

to be s = 1 when omitted, define the Gaussian function ρs : Rn → R+ of parameter

or width s as ρs(x) := exp (−π‖x‖2/s2) = ρ(x/s).

2.5.7 Foundations

In this section, it is explained the main average-case problems, the Short Integer

Solution (SIS) problem and the Learning With Errors (LWE), and their variants

over mathematical rings. These problems turn out to be fundamental in the con-

struction of lattice-based cryptosystems.

• Short Integer Solution (SIS) problem: Discovered by Ajtai [Ajt96], this serves

as the foundation of schemes such as one-way functions, collision-resistant

hash functions and digital signatures. A formal definition of the SISn,q,β,m

problem, as stated in [Po16], is that the columns of the matrix A ∈ Zn×mq are
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formed given m uniformly random vectors ai ∈ Znq . The challenge is to find

a nonzero integer vector z ∈ Zm of norm ‖z‖ ≤ β such that Az =
∑

i aizi =

0 ∈ Znq . This problem can be represented as an average-case SVPβ on q-ary

m-dimensional integer lattices: L⊥q (A) := {z ∈ Zm : Az = 0 mod q}. In

other words, this problem tries to find a sufficiently short nonzero vector

in L⊥q (A), where A is chosen to be uniformly random [Po16, LS15]. Ajtai

shows in [Ajt96] that SIS is at least as hard as approximating several worst-

case lattice problems, such as GapSVP. The function z → A ∗ z is typically

a many-to-one and not reversible, which means that it cannot be used in

encryption algorithms, as the reverse property is needed.

• Learning With Errors (LWE) problem: This scheme was introduced by Regev

in [Reg10] (2005). It was shown that this problem is as hard to solve as sev-

eral worst-case lattice problems and therefore, some cryptographic schemes

have based their security under this assumption. The main idea of this prob-

lem is to recover a secret s ∈ Znq , given a set of approximate random linear

equations on s, where each equation is corrected up to some small additive

error. If there is no error, it would be trivial to solve the equations to get s by

using mathematical techniques such as Gaussian elimination in polynomial

time. However, the problem becomes complex once the error is introduced

which makes Gaussian elimination techniques fail. Based on this discussion,

it can be said that the LWE obtains hardness based on worst-case lattice

problems. The LWE problem, in turn, is at least as hard as approximating

the standard lattice problems SIVP and decision-LWE problem of the short-

est vector problem GapSVP in the worst case. Thus, the LWE problem is

also said to be difficult even for quantum computing attack [BLP+13]. In

addition, LWE is attractive, as it typically leads to efficient implementations

involving low-complexity operations such as additions and multiplications.

In the LWE problem, n and q are positive integers. The χ ∈ Z is taken to be

a discrete Gaussian distribution (error distribution) with width αq for some

α < 1. For a secret vector s ∈ Znq , the LWE distribution As,χ ∈ Znq × Zq is
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sampled by choosing a ∈ Znq uniformly at random, choosing e← χ, and the

output is: (a, b = 〈s, a〉+ e mod q).

Two variants of the LWE are defined: the search-LWE (to find a secret given

LWE samples) and decision-LWE (to distinguish between random and LWE

samples); a precise definition is as follows:

1. Search-LWEq,n,χ,m problem: For uniformly random s ∈ Znq , given m

independent samples (ai, bi) from Ar→s,χ, find s.

2. Decision-LWEq,n,χ,m problem: Distinguish with non-negligible advan-

tage between two cases: (1) given m independent samples (ai, bi) from

Ar→s,χ for a uniformly random s ∈ Znq or (2) the uniform distribution

on pairs (ai,bi).

• Ring SIS (R-SIS) problem: This construction was introduced by Micciancio

in [Mic07] and is an analogue of the SIS problem described above. This Ring

refers to the mathematical structure and differs from the Ring Signature

scheme that was discussed in Section 2.2. This problem is parameterized with

the ring R, which is a degree-n polynomial ring of the form R = Z[X]/(f(X)),

where f(X) can be either Xn+1 or X2k +1. We let Rq := R/qR. Saying this,

the R-SISq,β,m is defined as follows: given m uniformly random elements

ai ∈ Rq, defining a vector a ∈ Rm
q , find a nonzero vector z ∈ Rm of norm

||z|| ≤ β such that fa(z) := 〈a, z〉 = at · z =
∑

i aizi = 0 ∈ Rq where the

vector z is over R as ||z|| = (
∑

i ||zi||2)1/2 [Po16]. Schemes based on the

SIS problem are not practical due to their inefficiency in terms of storage

and computational time. This is mainly because of the random matrix A,

as illustrated in Figure 2.7, where both the storage and the computation

function time require O(nm).

The main advantage of R-SIS is that it is relatively compact and efficient

when compared to SIS. An ideal lattice [LM06, PR06] helps to improve

the efficiency of this SIS scheme and so is commonly referred to Ring-

SIS or Ideal-SIS. This improvement can be described as having a ma-

trix A of size m × n that uses only two vectors (or polynomials), which
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Figure 2.7: Short Integer Solution (SIS) – example

are rotated with a negation (see highlighted in red Figure 2.8) until en-

tirely the size of A. As a result, this scheme now requires O(m); that

is, A × z is computed faster and more compactly than SIS. Figure 2.9

shows an example of Ring-SIS when the polynomials are computed as:

(5 + 8x + 3x2 + 2x3) × (1 + x + x3) + (10 + 9x + x2 + 7x3) × (x2 + x3)

in the ring Zp[x]/(xn + 1). The hardness of R-SIS (similarly to SIS) can be

proved at least as hard as certain problems on ideal lattices in the worst case,

and it is claimed that, for typical choices of R, the SVPγ and the SIVPγ prob-

lems on ideal lattices are very hard to solve in the worst case [LM06, PR06].

As a consequence, R-SIS leads to providing constructions such as one-way

functions, collision-resistance functions, identification schemes and digital

signatures, but not for encryption.

• Ring LWE (R-LWE) problem: introduced in [LPR10] and a search variant

in [SSTX09], this is an analogue of the standard LWE problem. As with the

R-SIS problem, the LWE constructions are inefficient, in terms of storage

and computational time. The ideal lattices are utilised to enhance the LWE

construction, which then turns into the Ring-LWE. This is illustrated in the

example (see Figure 2.10), where the left illustrates the inefficient matrix

A, whilst the right shows the Ring-LWE using ideal lattices. The ring-LWE

is defined in the ring R = Z[X]/f(X) with the three properties of ideal

lattices described in Section 2.5.4, and for an integer modulus q defining the
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Figure 2.8: Ring-SIS - example 1

Figure 2.9: Ring-SIS - example 2

quotient ring Rq := R/(qR) = R = Z[X]/f(X). The ring-LWE problem is

to distinguish pairs (ai, bi) ∈ Rq × Rq from uniformly random pairs where

bi = ai · s + ei. The s ∈ Rq is a random secret, the ai ∈ Rq is uniformly

random and independent, and the ei ∈ R is the noise or error, which is short

and independent.

This assumption results in being secure, as stated in [LPR10]; there is quan-

tum resistance and provable worst-case hardness, which means that breaking

certain instantiations of Ring-LWE is at least as hard as quantum SVPγ on

any ideal lattice in the ring R. Two versions of R-LWE (search and decision)

are explained as follows:

1. Ring-LWE search version: In the ring R = Zq[x]/(xn + 1), A is taken

arbitrarily and independent from a Gaussian distribution, where s is

random in R and ei are small with a distribution symmetric around
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Figure 2.10: LWE (left) and Ring-LWE (right) – example

zero so given: (a1, a1 · s + e1), . . . , (ak, ak · s + ek), the challenge is to

find s [SSTX09].

2. Ring-LWE decision version: In the ring R = Zq[x]/(xn + 1) and given

arbitrarily many independent samples from A and B: (a1,b1), . . . ,

(ak,bk), the questions are

– Does there exist an s and small e1, . . . , ek such that bi = ai ·s+ei?

or,

– Are all bi uniformly random in R?

These questions are the foundational problems in lattice-based cryptog-

raphy where the decision Ring-LWE oracle has to determine where the

b belongs to. Most definitions in cryptography require decision prob-

lems for their constructions such as pseudorandom functions. That

is, to break an encryption scheme, it needs to decide whether a value

comes from the same distribution or a random one. In this case, the

Ring-LWE distribution in the decision problem is pseudorandom, and

therefore it is more appropriate for public-key cryptography [LPR10].

• Ring-LWE Public-key cryptosystem: This public-key cryptosystem

with a fix ring Rq = Zq[x]/(xn + 1) for n a power of 2, can be described

as:



Chapter 2: Literature Review 36

– Key generator algorithm: chooses uniformly random a ∈ Rq; two small

s and e ∈ R. It outputs the secret key s and the public key (a, b =

a · s+ e) ∈ R2
q .

– Encryption process : to encrypt an n-bit message µ ∈ {1, 0}n, it chooses

three random small r, e1, e2 ∈ R from the distribution χ ∈ Z. The

output of this process is the pair (u, v) ∈ R2
q .

– Decryption process : to decrypt the ciphertext, it is required to compute

v − u · s = (r · e− s · e1 + e2) + [q/2] ·m ·mod · q. Finally, the message

µ can be recovered by removing the approximation error or noise.

The parameters a, t, u and v are pseudorandom based on the decision Ring-

LWE, which implies semantic security or indistinguishability under chosen-

plaintext attack (IND-CPA). This indicates that this scheme reveals nothing

about the encrypted messages to a passive adversary and therefore [Po16]

classifies this as passive secure encryption.

2.5.8 Lattice-Based Digital Signatures

Digital signatures underlying their security in lattice-based cryptography can be

categorized as GGH/NTRUSign, Hash-and-sign and Fiat-Shamir signatures.

Signatures based on GGH [GGH97] and NTRUSign [HPS01] were the first schemes

employing lattice-based cryptography, their security being based on the CVP prob-

lem. Both signatures, however, were completely broken in [NR09]. Hash-and-sign

[GPV08] and one-time [LM08] lattice-based signatures were introduced to pro-

vide provably secure schemes which relied on the hardness of worst-case lattice

problems, though they were still inefficient. For example, Hash-and-sign produced

signature sizes of megabytes long. Likewise, the one-time signatures required a

tree-hashing transformation techniques like Merkle trees which turned to be im-

practical [Po16, Lyu12]. By contrast, the Fiat-Shamir signatures [Lyu09] is the

framework of Bimodal Lattice Signature Scheme (BLISS) which is one of the most

practical lattice-based digital signature schemes [Po16].
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2.5.8.1 Fiat-Shamir and BLISS Signatures

The construction of the Fiat-Shamir digital signature is established with a

three-message identification scheme. It follows the Fiat Shamir protocol from

[FS86, AABN02], which is also known as the three-move protocol, by the use of

the messages: Commitment-Challenge-Response. The Fiat-Shamir transformation

then [FS86, AABN02] converts this protocol into a signature scheme. Lattice-

based signature schemes apply this transformation [Lyu12, Lyu09], typically rely-

ing their security on the SIS lattice problem. The initial step of such schemes was

to construct a lattice-based identification scheme whereby the challenge is treated

as a polynomial ring R. The security of the identification scheme is reduced to

the hardness of the SVP problem as well as the random oracle model (ROM). The

identification scheme is then transformed into a digital signature with several opti-

mizations within the parameter settings. For instance, improving the length of the

signature and making it computationally infeasible to find collisions in the hash

function family H. The security of the scheme is also dependent on the hardness

of finding collisions in certain hash function families. An adversary who is able

to forge a signature can then use this to find a collision in a hash function chosen

randomly from H. Therefore, it was said that forging a signature and finding a

collision in a randomly chosen h ← H(·) is equivalent to finding short vectors in

the ring-SIS problem.

Further improvements of these constructions were subsequently effectuated

[Lyu12]. One being the hardness of the lattice problem assumption; that is, adapt-

ing ring-LWE from ring-SIS. This change resulted in optimal signature and key

sizes, significantly improving the efficiency of such constructions. Another opti-

misation occurred in the signing procedure that involves asymptotically shorter

signatures. This stage required an additional technique, denominated rejection

sampling, so that the distribution of the signatures is independent of the secret-

key. Since this distribution is sampled from the normal distribution, highly accu-

rate computations would be needed [Lyu12]. This enhanced scheme is shown to be

strongly unforgeable, based on the worst-case hardness in the SVP problem. One
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state-of-the-art lattice-based signature scheme is the Bimodal Lattice Signature

Scheme (BLISS) [DDLL13]. The main contribution of this work was the signif-

icant improvement in the rejection sampling stage. The BLISS is demonstrated

to be practical, as Figure 2.11 shows how this scheme provides acceptable levels

of efficiency and compactness. For instance, by comparing it to RSA-2048 and

having an estimated security of 128 bits (BLISS-II), it provides public-key and

private-key sizes of 7 and 2 kilobits, respectively.

Figure 2.11: Lattice-Based and Classical Assumptions Signatures [DDLL13]

Later in this thesis we show that based on this assumption digital signatures

(BLISS) can be used to implement a Linkable Ring Signature scheme, which pro-

vides security guarantees against quantum attacks (or at least no known quantum

algorithm) as well as offering efficiency and compactness when compared with

classical public-key cryptography.

Several lattice-based ring signature schemes have been proposed [BK10, CLRS10,

WW12, AMBB+13, WS11, LLNW16], where a few number of them are Linkable

Ring Signatures LRS. The first of these constructions [YHAL+17] is based on

the development of a lattice-based weak Pseudo Random Function (wPRF), an

accumulator scheme (Acc) and a framework named as Zero-Knowledge Arguments

of Knowledge (ZKAoK). These techniques are used to construct LRS schemes

where the security guarantees for the LRS properties’, unforgeability, anonymity,

linkability and non-slanderability, rely on the lattice problems. The second lattice

LRS scheme [ZZTA17] uses ideal lattices along with a lattice-based homomorphic

commitment technique in its construction. The security properties are based on

the hardness of lattice-based assumptions; however, there is no discussion as to
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how to secure the scheme in terms of non-slanderability. This scheme is also

shown to be used in a cryptocurrency application. The last lattice LRS proposal

[BHS18] is devised using lattice-based variants named Module-SIS and Module-

LWE problems and its security properties rely on the lattice-based assumptions.

With this background in place, this thesis presents the designed the Lattice-based

one-time Linkable Ring Signature (L2RS) scheme, which was independently and

concurrently constructed with [BHS18]. The L2RS scheme shares similar fea-

tures, but the L2RS scheme offers unconditional anonymity. This construction

is a generalisation of BLISS, a demonstrated practical lattice-based digital sig-

nature [DDLL13]. It is secure in terms of unforgeability, linkability and non-

slanderability under the lattice hardness of the Ring-SIS problem and unlike the

above lattice-based LRS schemes [YHAL+17, ZZTA17, BHS18], the L2RS scheme

achieves unconditional anonymity, meaning that this scheme will be secure even

if an adversary has unlimited computational resources and time. This scheme

(L2RS) will be explained in Chapter 4.

Having discussed Linkable Ring Signatures schemes along with the positive ef-

fect of using Lattice-based Cryptography, this review now examines how these

cryptographic structures can be applied to cryptocurrencies.

2.6 The Age of Cryptocurrencies

Cryptocurrencies are applications that use virtual assets and cryptographic mech-

anisms to conduct e-commerce operations such as electronic payments or money

transfers. Those payments can be carried out among accounts or wallets, inde-

pendently of a central party [CELR18]. This leads to some advantages like lower

transaction fees, theft resistance and anonymous payments. Bitcoin [Nak09] is

by far the most widely known and decentralised cryptocurrency to date, having

its three underlying building blocks: the transactions, blockchain and consensus

protocol. It allows a party to perform electronic financial operations in a decen-

tralised Peer-to-Peer (P2P) network, contrary to the traditional banking model.
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Although, it was intended to achieve privacy and anonymity in Bitcoin by using

pseudonyms, some analyses [RS13, KKM14] show that these security properties

are compromised, thus information about the payers, payees and transactions can

be revealed. This indicates that Bitcoin is only a pseudo-anonymous cryptocur-

rency.

Since its creation, Bitcoin has revolutionised the field of digital currency and thus

motivated the invention of new cryptocurrencies, also known as alcoins. An exam-

ple of these, CryptoNote [VS13], was proposed to address the privacy weaknesses

of Bitcoin. It also offers a framework that can be extended to other cryptocur-

rencies such as Bytecoin [Byt15] and Monero [Mon14]. CryptoNote cryptocur-

rency [VS13] uses Traceable Ring Signatures, also referred to as One-time Ring

Signatures, a fundamental building block to achieve true anonymity. With true

anonymity any member of the ring (or group) can create a signature, but it is

infeasible by a verifier to identify the real signer. These type of signatures hides

information about the parties: (sender and receiver), and it also has a key im-

age or linking tag to prevent double spending coins. However, evaluation of this

construction in [Noe14, Mac15, NNM14] discovers serious vulnerabilities of this

cryptocurrency which impacts the privacy of the involved parties in the transac-

tion. This CryptoNote is also affected due to its weaknesses, since there is not a

securely effective mechanism to hide the transferred amount.

The Ring Confidential Transactions RingCT [Noe15] protocol was devised to ad-

dress these issues. This protocol extends the former CryptoNote scheme by using

a new class of linkable ring signatures called Multi-layered Linkable Spontaneous

Anonymous Group Signature (MLSAG) based on [LWW04b]. This signature is

spontaneous (or ad-hoc), which removes the dependency of a trusted third party

and group members are unaware of belonging to a determined group, thereby en-

hancing the anonymity property. It is also multilayered, meaning that it allows

multiple inputs and outputs (wallets) in transactions. The security of RingCT

is ameliorated by introducing Confidential Transactions [Max15], which enable

amounts to be hidden by using the Pedersen Commitment [Ped91] technique.

This cryptographic technique enables a party to commit to a chosen secret value
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while keeping it hidden from other parties, allowing this commitment to be opened

at a later time. Such a primitive offers homomorphic properties, allowing parties

to prove the account balance by computing homomorphically computing input and

output accounts/wallets to show that their difference is zero. RingCT added an-

other verification mechanism for the committed output amounts which was called

range proof, guaranteeing that this amount lies in a range of non-negative values

and avoiding the creation of free money. Bulletproofs [BBB+18] are an efficient

technique for this range preservation, but these approaches rely on number theory

assumptions.

Subsequently, further improvements were proposed in RingCT 2.0 [SALY17] and

RingCT 3.0 [YSL+19]. In particular, they provided formal definitions for both the

cryptocurrency protocol, the security model, and a sound security analysis of the

RingCT protocol. The RingCT protocol improves the size of the signature by using

one-way accumulators [BdM93] along with signatures of knowledge (SoK) [CL06].

However, it requires a trusted setup for its accumulator to achieve the signature

constant size and hence contradicts the philosophy of decentralised cryptocurren-

cies.

Nevertheless, the security of this RingCT protocol relies on classical number-theory

mathematical assumptions, in particular, the hardness of DLP [ElG84, Elg85].

In Section 2.4, it was discussed how these classical assumptions would become

invalid when a powerful quantum computer is fully developed, and how Lattice-

based cryptography would overcome this threat. In the post-quantum setting,

several RingCT’s have been proposed. The first post-quantum RingCT scheme us-

ing Lattice-based cryptography was devised in [ATSS+18], called Lattice RingCT

v1.0. This was an extended work based on both the L2RS and RingCT construc-

tions. These schemes used the Bimodal Lattice Signature Scheme (BLISS) - a

demonstrated practical and secure lattice-based digital signature [DDLL13], as a

underlying building block. The schemes are secure in terms of balance, unforgeabil-

ity, linkability and non-slanderability under the lattice hardness of the Module-SIS

problem, and they also achieve unconditional anonymity. However, this proposed

lattice-based RingCT protocol was limited. Firstly, it only enables transfers from a
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single input wallet to a single output wallet (SISO). The RingCT model, in which

signatures are one-time, needs to receive change after making a payment or trans-

fer, thus a new output wallet is required. This dependent functionality points

out the importance of supporting multiple input and output wallets. Secondly,

introducing more than one output wallet also introduces new security problems

like the negative output amount attack [BBB+18], where an adversary is capable

of creating extra coins or free money. This problem was addressed in the former

RingCT [Noe15] by using range proofs. Lastly, the proposed Lattice RingCT v1.0

showed no security definitions, nor proofs.

An improved version of the Lattice-based Ring Confidential Transactions (LRCT),

supporting Multiple-Input wallets and Multiple-Output (MIMO), wallets was con-

structed. It was called Lattice RingCT v2.0 or MIMO.LRCT. This protocol was

an extension of the SISO.LRCT scheme ([ATSS+18]) where its underlying frame-

work (L2RS signature) was changed to be compatible to this extension. The

MIMO.LRCT offers formal definitions and security proofs, and inherits the mecha-

nisms used in former RingCT techniques, like homomorphic commitments, amount

and range preservation. The proposed MIMO.LRCT scheme inherits the post-

quantum security guarantees from the L2RS scheme, like the hardness of lattice-

based assumptions as well as unconditional anonymity. Recently, a novel efficient,

scalable and practical lattice-based RingCT protocol was devised in [EZS+19],

where it accomplished significant improvements in the signature and key-pair sizes

and running time.

Authorisation is an important feature in digital currencies which ameliorates the

level of security when wallets are transferred. Since the wallets can be spent with

their owners’ secret-keys (SKs), then such SKs are a point of vulnerability. For

instance, if they are stolen or lost, the wallets’ owners will be unable to access

their funds and perhaps they might lose their money forever. Therefore, multi-

signature schemes enable this authorisation functionality where multiple cosigners

NCS cooperate to create a joint SK. The same number of cosigners NCS then need

to interact to sign a transaction which confirms that a wallet has been transferred.
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Besides multi-signatures increasing the difficulty for adversaries to mount an at-

tack (as all NCS cosigners need to be compromised), they also offer redundancy,

which might protect SKs from being lost [EBS16]. The next Section discusses the

definition of this cryptographic primitive.

2.7 Threshold Signature Schemes

The notion of (t,n)-Threshold Signature (TS) schemes was initially conceptualised

by Desmedt and Frankel in [DF89]. They defined TS as a cryptographic protocol

where a subset of size t out of n cosigners collaborates to jointly sign a given mes-

sage m. Contrary to standard digital signatures, TS splits the secret key (sk) into

multiple shares distributed across n participants. Later, an interactive protocol is

performed with at least the threshold number of cosigners (t out of n) to produce

a signature. TS constructions contain several benefits including reliability and

security. For instance, TS is employed to augment the confidentiality of secret

keys, increase the resilience against secret key exposure, and enable decentralisa-

tion of trust [Bra19]. Furthermore, metering applications [DHS03] utilise TS to

measure the interaction between servers and clients so e-business can charge fees

for advertisements. Similarly, blockchain technology, particularly cryptocurrencies

[GBGN17], incorporates TS schemes to provide an extra, more restrictive layer of

security. More specifically, this involves the authorisation in digital currencies

where a certain number of parties collaborates to approve electronic payments.

Figure 2.12 displays this model. In this case, Alice needs authorisation from the

cosigners, Wilson, William and Walter, to create a (ring) signature.

Securing the cryptographic keys is always crucial to attaining a respectable level

of reliability in any secure cryptocurrency application. Since the digital wallets

can be spent with their sk’s, this would be a single point of vulnerability. For

instance, if such sk’s are stolen or lost, the owners of the corresponding wallets

would be unable to access their funds. Consequently, TS protocols enable this

authorisation property to segregate the ownership of digital wallets. Besides TS
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Figure 2.12: Threshold-Signature Idea

schemes increasing the difficulty for adversaries to mount an attack (as multiple

cosigners need to be compromised), they also offer redundancy, which might pro-

tect sk’s from being lost [EBS16]. In addition, there are other mechanisms that

help to secure the generation of cryptographic keys in digital currencies. The

Distributed Key Generation (DKG) protocol guarantees that nobody learns about

the sk during the execution of the protocol [GJKR07, TCZ+20]. DKG also op-

erates in a complete decentralised distribution of the trust among the parties, so

it requires no trusted party. The public-key aggregation is another mechanism

that allows the public verifier to only see the aggregate public-key rather than the

cosigners’ public-keys, providing more favourable privacy and performance results

[Alo18, BDN18, MPSW19]. The integration of these controls would prevent the

well-known rogue key (or key cancellation) attacks where a dishonest actor is capa-

ble of signing transactions on behalf of honest cosigners [Alo18, GN18, TCZ+20].

The security concept of most cryptographic primitives and protocols is changing

due to the foreseeable presence of a sufficiently powerful quantum computer. The

security assumptions of public-key cryptography that are based on the classical

number theory would be efficiently broken in the event of large-scale quantum

computers becoming practical [Sho99]. Nowadays, post-quantum cryptographers

are devising new algorithms in anticipation of quantum attacks. Among the several

approaches proposed to address this concern, lattice-based cryptography appears

to be a practical alternative to both classical cryptography and this quantum
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computing threat. Many lattice-based schemes and protocols have shown opti-

mal performance, simplicity, and reliable security proofs based on the worst-case

hardness assumptions, meaning that at least one instance of the lattice problem

is hard to solve. Moreover, lattice-based cryptosystems even allow powerful new

classes of cryptographic mechanisms, such as fully homomorphic encryption and

functional encryption [BLM17, BLM18].

The Ring Confidential Transaction (RingCT) [Noe15] is a cryptographic protocol

that is widely employed by Monero, one of the most popular cryptocurrencies to

date. The RingCT performs e-commerce operations in a decentralised network

while maintaining complete-anonymity for the parties involved and also prevent-

ing double spending coins [CELR18]. These security properties are achieved by

employing Linkable Ring Signature (LRS) schemes [LWW04b]. In the RingCT

framework, complete-anonymity provides a remarkable advantage since other cryp-

tocurrencies, such as Bitcoin, are only pseudo-anonymous [KKM14]. Further im-

provements were proposed in RingCT 2.0 [SALY17] and RingCT 3.0 [YSL+19].

These presented formal definitions for both the cryptocurrency protocol and the

corresponding security model. Moreover, certain variants of RingCT incorpo-

rate an authorisation feature for distributed and co-signing digital wallets by

adapting a combination of TS and Ring Signature (RS) schemes [Alo18, GN18].

However, this authorisation model has been constructed with number theory

assumptions and thus it would be insecure against quantum attacks. In the

post-quantum setting, the first Lattice-based RingCT (LRCT) was devised in

[ATKS+19, ATSS+18]. The LRCT uses the Bimodal Lattice-based Signature

Scheme (BLISS) [DDLL13], a demonstrated, practical and secure lattice-based

digital signature [DDLL13, DLL+18], as an underlying building block. In a re-

cent study, an efficient, scalable and practical lattice-based RingCT protocol was

devised in [EZS+19]. Nonetheless, these post-quantum approaches did not incor-

porate an authorisation model in their design which, as discussed above, can be

achieved by using TS schemes.

Several TS schemes have been proposed after its introduction in [DF89]. Most of
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the existing TS schemes [Bol03, GGN16, GJKR96, GJKR03, Sho00] and Thresh-

old Ring Signature (TRS) schemes [BSS02, LWW04a, LW05b, OTYO18, TWC+04,

WFLW03, YLA+11] have been designed with the classical cryptographic assump-

tions, and only a few constructions are lattice-based. The first lattice-based TRS

[CLRS10] was devised based on an identification scheme and the standard lattice-

based Short Integer Solution (SIS) hardness problem. The signature size of this

scheme was around 25 MB with t = 50 and n = 100. Later, a new study [BS13] pro-

posed an enhanced version of [CLRS10]. The authors modified this model for the

anonymity property, which brought improvements to the signature size (around 13

MB with same ring and threshold sizes as [CLRS10]). In [WDZ+14], an ID-Based

TRS from lattices was designed in the random oracle model. The security prop-

erties therein relied on a non-standard lattice-based assumption that they defined

as a general Graded Computational Diffie-Hellman Problem (gCDHP). Another

scheme was constructed in [CHGL19] to be applied in a message block sharing

application; however, its analysis disregarded the evaluation of the best known

lattice attacks, and overlooked a security reduction in the standard lattice-based

Ring-SIS problem seemingly used in this work. However, since DKG protocols are

not utilised in their designs, in all likelihood these lattice-based proposals will find

themselves vulnerable to rogue key attacks. In addition, they are incompatible

with the linkability technique.

2.8 Summary

This chapter has reviewed the key topics covered in this research project. In cryp-

tography, digital signatures enable useful mechanisms that are applied in real appli-

cations. It studied how group and ring signatures are extended from standard dig-

ital signatures and what security properties are satisfied. Linkable ring signatures,

another extension, helps to preserve the privacy of the signer while inheriting the

functionality and security properties from ring signatures. Some cryptocurrency

applications exploit such features to offer anonymous transactions along with other

security guarantees. Quantum attacks are believed to break those cryptographic
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constructions based on public-key cryptography, including the linkable ring signa-

tures that are based on number theory assumptions. Among the post-quantum

cryptographic approaches, lattice-based cryptography provides certain advantages

in security, performance and functionality. Some RingCT cryptocurrency proto-

cols have been constructed using lattice-based cryptography which include the

constructions of this project.



Chapter 3

Preliminaries

This chapter recalls several preliminary notations and definitions that are used

throughout the entire thesis. We use a polynomial ring R = Z[x]/f(x), where

f(x) = xn + 1 with n being a power of 2. The ring Rq is then defined to be the

quotient ring Rq = R/(qR) = Zq[x]/f(x), where Zq denotes the set of all positive

integers modulo q (a prime number q = 1 mod 2n) in the interval
[
b−q

2
c, b q

2
c
]
. The

challenge space Sn,κ, is the set of all binary vectors of length n and Hamming weight

κ. Hash functions are modeled as Random Oracle Model (ROM), H0 :→ {0, 1}l,

H1 with range Sn,κ ⊆ R2q, and similarly H2 with range Sn,κ2 ⊆ R2q. When we

write x ←↩ D, for a distribution D, it means that if D is a set then x is chosen

uniformly at random from D. The discrete Gaussian distribution over Zm with

standard deviation σ ∈ R and center at zero, is defined by Dm
σ (x) = ρσ(x)/ρσ(Zm),

where ρσ is the m-dimensional Gaussian function ρσ(x) = exp(−‖x‖2/(2σ2)) for

x ∈ Zm. We denote vectors by bold lower case (e.g. t) whilst matrices are denoted

48
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by upper case (e.g. A), and the identity matrix as I. Vector transposition is

denoted by vT . For a vector t ∈ Zm and p ∈ [1,+∞], we then define the norm

`p as ‖t‖p = (
∑m

i=1 |ti|p)1/p. In the case of p = ∞, we define the `∞ norm of t as

‖t‖∞ = maxmi=1 |ti|. We say that a function neg(n) is negligible in n if neg(n) < 1
2n

,

and a function f(n) is overwhelming if 1− f(n) is negligible.

Definition 3.1 (R-SISKq,n,m,β problem). (Based on [DDLL13], Def. 2.3). Let

denote K some uniform distribution over the ring Rn×m
q . Given a random matrix

A ∈ Rn×m
q sampled from K distribution, find a non-zero vector v ∈ Rm

q such that

Av = 0 and ‖v‖2 ≤ β, , where ‖ · ‖2 denotes the Euclidean norm.

Definition 3.2 (MSISKq,m,k,β problem). Let K be some uniform distribution over

the ring Rk×m
q . Given a random matrix A ∈ Rk×m

q sampled from K, find a non-

zero vector v ∈ Rm×1
q such that Av = 0 and ‖v‖2 ≤ β, where ‖ · ‖2 denotes the

Euclidean norm.

Lemma 3.3. ([BCK+14]) Let R = Z[x]/(xn + 1) where n > 1 is a power of 2 and

0 < i, j < 2n− 1. Then all the coefficients of 2(xi − xj)−1 ∈ R are in {−1, 0, 1}.

This implies that ‖2(xi − xj)−1‖ ≤
√
n.

Lemma 3.4. For a, b ∈ Rq, the following relations hold ‖a‖ ≤
√
n‖a‖∞, ‖a·b‖ ≤

√
n‖a‖∞ · ‖b‖∞, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

Lemma 3.5 (Leftover Hash Lemma (LHL)). (Based on [DDLL13], Lemma B.1).

Let H be a universal hash family of hash functions from X to Y. If h← H and x←

X are chosen uniformly and independently, then the statistical distance between

(h,h(x)) and the uniform distribution on H× Y is at most
1

2

√
|Y |/|X|.

Remark 3.6. We use this lemma for a SIS family of hash function H(S0) = A′0·S0 ∈

Rq,with S0 ∈ DomS0 , where each function is indexed by A′0 ∈ R
1×(m−1)
q . The

DomS0 ⊆ R
1×(m−1)
q consists of a vector of Rq elements with coefficients in set

Γ
def
= (−2γ, 2γ). This is a universal hash family if s − s′ is invertible in Rq for all

distinct pairs s, s′ in Γn ⊆ Rq. This can be guaranteed by appropriate choice q

of Rq, e.g. as shown in ([LS18], Corollary 1.2), it is sufficient to use q such that

f(x) = xn + 1 factors into k irreducible factors mod q and 2γ < 1√
k
· q1/k. We

assume that Rq is chosen to satisfy this condition.
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Definition 3.7 (Gaussian Distribution). The discrete Gaussian distribution over

Zm with standard deviation σ ∈ R and center at zero, is defined by Dm
σ (x) =

ρσ(x)/ρσ(Zm), where ρσ is m dimensional Gaussian function ρσ(x) = exp
(
−‖x‖2

2σ2

)
.

3.1 Rejection Sampling

The notion of rejection sampling was initially introduced in [VN51]. It states

that given a source bound of a probability distribution g, one can sample from

an arbitrary target probability distribution f . To be more specific, a sample t

is selected from g and is accepted with probability f(t)/(M · g(t)) with M being

some positive real, this condition is restarted if it is not accepted.

Lemma 3.8 (Rejection Sampling). (Based on [DDLL13], Lemma 2.1). Let V be

an arbitrary set, and h : V → R and f : Zm → R be probability distributions. If

gv : Zm → R is a family of probability distributions indexed by v ∈ V with the

property that there exists a M ∈ R such that ∀v ∈ V, ∀v ∈ Zm,M · gv(z) ≥ f(z).

Then the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output(z, v) with probability f(z)/(M · gv(z)).

2. v ← h, z ← f, output(z, v) with probability 1/M .

3.2 Homomorphic Commitment Definition

This is a cryptographic technique that is used to provide confidential transactions,

in particular cryptocurrencies [Noe15]. This primitive allows one party to commit

to a chosen value while keeping it secret to other parties, then this committed

value can be revealed later. The definition of such technique, which is based on

[BDL+18], has three algorithms: (KeyGen, Com, Open), such that:

• Pub-Params ← KeyGen(1λ): A PPT algorithm that produces a public com-

mitment parameter Pub-Params after receiving the security parameter (λ).
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• c ← Com: A PPT algorithm that receives the Pub-Params, the randomness

r and the message m. This algorithm generates the commitment c.

• m′ ← Open: A PPT algorithm that receives the commitment c along with

the randomness r, and it outputs m′. A valid commitment c is opened if

(m′ = m).

The security properties of this non-interactive homomorphic commitment scheme

are defined as:

Definition 3.9 (Hiding). This property ensures that the commitment Com(m, r)

does not leak information on m, that is, for any PPT adversary A, it holds that:∣∣∣∣∣∣Pr

A(cb) = b :
Pub-Params← KeyGen(1λ); r← RandGen(Pub-Params);

(m,m′)← A(Pub-Params); b← {0, 1}; cb ← Com(r,mb)

− 1

2

∣∣∣∣∣∣ ,
is negl(λ).

Definition 3.10 (β−Binding). This property ensures that the commitment

Com(m, r) can only be opened in one way, that is, for any PPT adversary A,

it holds that:

Pr


r 6= r′ ∧

m 6= m′ ∧

Com(m, r) = Com(m′, r′)

:

Pub-Params← KeyGen(1λ);

r← RandGen(Pub-Params);

(m, r,m′, r′)← A(r)

 ≤ negl(λ),

where ‖r‖, ‖r′‖ ≤ β.
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3.3 Fiat-Shamir Non-Interactive Zero-

Knowledge Proofs in the Random Oracle

Model

Zero-knowledge proof of knowledge (ZKPoK) is a two party protocol between the

prover and the verifier, which allows the prover to convince the verifier that he

knows some information, without revealing anything about the secret apart from

what the claim itself already reveals [BCK+14].

Definition 3.11. Let be L ⊆ {0, 1}∗ the language that has witness relationship

R ⊆ {0, 1}∗ × {0, 1}∗ if x ∈ L ↔ ∃(x,w) ∈ R. We call w a witness for x ∈ L.

Let (P ,V) be a two-party protocol where P (prover) and V (verifier) are PPT

algorithms, and L,L′ be languages with witness relations R,R′ with R ⊂ R′.

Then (P ,V) has a proof σ with completeness error α, public input x and private

input w, if the following conditions are satisfied:

• The protocol uses a hash function H modeled as a random oracle which is

called by both P and V . This protocol has the following form: on input

(x,w), P outputs a proof σ that is sent to V . On input x, the verifier V

accepts or rejects σ.

• Completeness: whenever (x,w) ∈ R, the honest verifier accepts the proof σ

with probability at least 1− α.

• Soundness: given a dishonest prover A with input x, it outputs a valid proof

σ with non-negligible probability, then there there exists a PPT algorithm E

(the knowledge extractor) that extracts a witness w′ satisfying (x,w′) ∈ R′.

• Special honest-verifier zero-knowledgeness (HVZK): there exists two PPT algo-

rithms S (the simulator) and SH (random oracle simulator) that take x ∈ L,

and output the proofs σsim = S(x) and SH(x, ·) such that is computationally

indistinguishable from σ = P(x,w) and H(·) generated by a real protocol.
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The SISO of L2RS and LRCT

1The Linkable Ring Signature (LRS) primitive is receiving much attention in the

cryptographic field thanks to its distinguishing capability of anonymously detect-

ing whether two linkable ring signatures were signed by same signatory. Tech-

nically, this primitive uses a linking tag that has a secure relationship with the

signer’s secret-key to detect if such condition is satisfied. Monero [Noe15], a cryp-

tocurrency application, employs this property to protect digital coins from double

spending attacks while keeping the signer’s identity unrevealed. Thus, the user’s

anonymity is preserved. However, as most of the proposed LRS schemes rely on

number theory assumptions, then this primitive and its variants could be vulner-

able to quantum attacks [Sho99, GK96, CCJ+16].

1This chapter was published as: Alberto Torres W.A., Steinfeld R., Sakzad A., Liu J.K.,
Kuchta V., Bhattacharjee, N., Au M.H., Cheng, J. (2018) Post-Quantum One-Time Linkable
Ring Signature and Application to Ring Confidential Transactions in Blockchain (Lattice RingCT
v1.0). In: Susilo W., Yang G. (eds) Information Security and Privacy. ACISP 2018. Lecture
Notes in Computer Science, vol 10946. Springer, Cham. DOI:https://doi.org/10.1007/978-3-
319-93638-3 32.
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In this chapter, the first post-quantum model of linkable ring signatures is intro-

duced, which is called Lattice-based one-time Linkable Ring Signature (L2RS). The

construction of the L2RS is motivated by the discrete logarithm scheme (the LRS

from [LWW04a]) and the Bimodal Lattice Signature Scheme (BLISS) [DDLL13].

The security model shows that the adversary is restricted to interact with the chal-

lenger one-time. We prove that the distribution of the signature is independent to

the secret key used to produce that signature by the leftover hash lemma, as de-

fined in Chapter 3. Thus the L2RS provides unconditional anonymity; in contrast

to [LWW04a] where this property is computationally secure. Other security prop-

erties are protected under the lattice hardness assumption, that is, the Ring Short

Integer Solution (Ring-SIS) [Mic07]. Afterwards, this novel signature is applied in a

post-quantum cryptocurrency protocol, denominated by Lattice Ring Confidential

transaction (LRCT), which forms the foundation of a privacy-preserving protocol

in any post-quantum secure cryptocurrency application. The first version of these

schemes supports transfers from Single-Input to Single-Output (SISO) wallets.

This chapter begins by defining the LRS scheme, along with its algorithms and the

correctness requirements, in Section 4.1. Then, in Section 4.2, the security model

defines what type of attacks are considered in the security evaluation, namely,

the unforgeability, anonymity, linkability, and non-slanderability attacks. Next,

the construction of the L2RS is presented, in Section 4.3, where its algorithms

are explained in detail. The results of the security analysis, which follow the

definitions of the security model, are shown along with its proofs in Section 4.4.

In the following Section 4.5, the application of the proposed scheme, the LRCT, is

defined and explained. The performance analysis of the above schemes (L2RS and

LRCT) is explored in Section 4.6 where the parameters and signatures sizes are

provided in different versions, concretely. The chapter concludes with a summary

in Section 4.7.
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4.1 Definitions of LRS

The Linkable Ring Signature LRS scheme has five Probabilistic Polynomial Time

(PPT) algorithms (LRS.Setup, LRS.KeyGen, LRS.SigGen, LRS.SigVer, LRS.SigLink).

In addition, the correctness of this scheme is satisfied by the signature correctness

(LRS.SigGen Correctness) and the linkability correctness (LRS.SigLink Correctness).

These algorithms are specified as follows:

• LRS.Setup: a PPT algorithm that takes the security parameter λ and pro-

duces the Public Parameters (Pub-Params).

• LRS.KeyGen: a PPT algorithm that by taking the Pub-Params, it produces

a pair of keys: the public-key pk and the private-key sk.

• LRS.SigGen: a PPT algorithm that receives the Pub-Params, the signer π’s

sk, a message µ and the list L of users’ pk’s in the ring signature, and outputs

a signature σL(µ).

• LRS.SigVer: a PPT algorithm that takes Pub-Params, a signature σL(µ), a list

L of pk’s and the message µ, and it verifies if this signature was legitimately

created. This algorithm outputs either: Accept or Reject.

• LRS.SigLink: a PPT algorithm that inputs two valid signatures σL(µ1) and

σL(µ2). It determines if these signatures were produced by same signer π,

without revealing his/her identity. Thus, this algorithm has a deterministic

output: Linked or Unlinked.

Correctness requirements:

• LRS.SigGen Correctness: this property guarantees that valid signatures signed

by honest signers are accepted by a verifier with overwhelming probability.

• LRS.SigLink Correctness: this requirement ensures that if two signatures

σL(µ1) and σL(µ2) are signed by an honest signer π, so SigLink outputs

Linked with overwhelming probability.
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4.2 Security Model

4.2.1 Oracles for adversaries

The following oracles are available to any adversary who tries to break the security

of the LRS scheme:

• pki ← JO(⊥). The Joining Oracle, on request, adds new user(s) to the

system. It returns the public-key(s) pki.

• ski ← CO(pki). The Corruption Oracle, on input a pki, it returns the corre-

sponding ski.

• σ′L(µ) ← SO(w,L, pkπ, µ). The Signing Oracle, on input a group size w,

a set L of w pk’s, the signer’s pkπ, and a message µ, this returns a valid

signature σ′L(µ).

4.2.2 Security Game Definition

• One-time Unforgeability. One time unforgeability for the LRS scheme

is defined in the following game between a simulator S and an adversary A

who has access to the oracles JO, CO, SO and the random oracle:

1. S generates and gives the list L of pk’s to A.

2. A may query the oracles according to any adaptive strategy.

3. A gives S a ring signature size w, a set L of w pk’s, a message µ and a

signature σL(µ).

A wins the game if:

– LRS.SigVer(σL(µ))=Accept.

– pk’s in the L are outputs from JO oracle.

– No pk in L has been input to CO.
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– σL(µ) is not an output of SO.

– No signing key pkπ was queried more than once to SO.

The advantage of the one-time unforgeability in the LRS scheme is denoted

by

Advantageot−unfA (λ) = Pr[A wins the game ].

Definition 4.1 (One-Time Unforgeability). The L2RS scheme is one-time

unforgeable if for all PPT adversary A, Advantageot−unfA (λ) is negligible.

• Unconditional Anonymity. It should be infeasible for an adversary A

to distinguish a signer’s pk with probability larger than 1/2, even if the ad-

versary has unlimited computing resources. This property for a LRS scheme

is defined in the following game between a simulator S and an unbounded

adversary A.

1. A may query JO according to any adaptive strategy.

2. A gives S the L = {pk0, pk1}, which is the output of the JO, and a

message µ.

3. S flips a coin b = {0, 1}, then S computes the signature σb =

LRS.SigGen(L, skb, µ,Pub-Params). This signature is given to A.

4. A outputs a bit b′.

5. The output of this experiment is defined to be 1 if b = b′, or 0 “zero”

otherwise.

A wins the game if:

– pk0 and pk1cannot be used by CO and SO.

– Outputs 1, where b = b′, with Pr = 1/2.

The unconditional anonymity advantage of the LRS scheme is denoted by

AdvantageAnonA (λ) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
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Definition 4.2 (Unconditional Anonymity). An LRS scheme is uncondi-

tional anonymous if for any unbounded adversary A, AdvantageAnonA (λ) is

zero.

• Linkability. It should be infeasible for an adversary A to unlink two valid

LRS signatures which were correctly generated with same skπ. Meaning that

when these two valid signatures are the input of LRS.SigLink, the algorithm

outputs Unlinked. To describe this security property, we use the interaction

between a simulator S and an adversary A:

1. The A queries the JO multiple times.

2. The A outputs two signatures σL(µ), σ′L′(µ
′), and two lists L, L′ of pk’s.

A wins the game if:

– The pk’s in L and L′ are outputs of JO.

– A queried CO only once to get the skπ, corresponding to pkπ.

– By calling LRS.SigVer on input σL(µ) and σ′L′(µ
′), it outputs Accept

on both inputs.

– Finally, it gets Unlinked, when calling LRS.SigLink on input σL(µ) and

σ′L′(µ
′).

Thus the advantage of the linkability in the LRS scheme is denoted by

AdvantageLinkA (λ) = Pr[A wins the game].

Definition 4.3 (Linkability). The L2RS scheme is linkable if for all PPT

adversary A, AdvantageLinkA is negligible.

• Non-slanderability. It should be infeasible for an adversary A to link

two valid LRS signatures which were correctly generated with different sk’s.

This means that an adversary can slander an honest user for signing a valid

signature so the adversary can produce another valid signature such that

the LRS.SigLink algorithm outputs Linked. To describe this, we use the

interaction between a simulator S and an adversary A:



Chapter 4: The SISO of L2RS and LRCT 59

1. The S generates and gives the list L of pk’s to A.

2. The A queries the JO and CO to obtain pkπ and skπ, respectively.

3. A gives the generated parameters to S.

4. S uses the skπ and calls the SO to output a valid signature σL(µ),

which is given to A.

5. The A uses the remaining keys of the ring signature (w − 1) to create

a second signature σ′L(µ) by calling the SO algorithm.

A wins the game if:

– An LRS.SigVer, on input σL(µ) and σ′L(µ), outputs Accept.

– The keys pkπ and skπ were not used to generate the second signature

σ′L(µ).

– When calling the L2RS.SigLink on input σL(µ) and σ′L(µ), it outputs

Linked.

Thus the advantage of the non-slanderability in the L2RS scheme is denoted

by

AdvantageNSA (λ) = Pr[A wins the game].

Definition 4.4 (Non-Slanderability). An LRS scheme is non-slanderable if

for all PPT adversary A, AdvantageNSA is negligible.

4.3 L2RS Scheme Description

We define the L2RS = (L2RS.Setup, L2RS.KeyGen, L2RS.SigGen, L2RS.SigVer,

L2RS.SigLink) as follows:
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4.3.1 L2RS.Setup

By receiving the security parameter λ, this L2RS.Setup algorithm randomly

chooses A = (a1, . . . , am−1) ←↩ R1×(m−1)
q and H = (h1, . . . ,hm−1) ←↩ R1×(m−1)

q .

This outputs the public parameters Pub-Params:(A,H).

Remark 4.5. To prevent malicious attack, the L2RS.Setup incorporates a trap-

door in A and H, in practice L2RS.Setup would generate A and H based on the

cryptographic Hash function H2 evaluated at two distinct and fixed constants.

Definition 4.6 (Function L2RS.Lift). This function maps R1×m
q to R1×m

2q with re-

spect to a public parameter A ∈ R1×(m−1)
q . Given a ∈ Rq, we let L2RS.Lift(A, a) ,

(2 ·A,−2 · a + q) ∈ R1×m
2q .

4.3.2 Key Generation - L2RS.KeyGen

This algorithm receives the public parameters, consisting of: (A,H), it generates

a key pair in Rq, then we:

• Pick (s1, . . . , sm−1) with every component chosen uniformly and indepen-

dently with coefficients in (−2γ, 2γ), where γ = log(2nκ)

• Establish ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q .

• Compute a = A ·S mod q ∈ Rq. The a and S are the public-key pk and the

private-key sk, respectively.

This L2RS.KeyGen algorithm is described in the following Algorithm 1:

4.3.3 Signature Generation - L2RS.SigGen

The L2RS.SigGen algorithm inputs the user’s private-key Sπ, the message µ, the

list of user’s public-keys L and the public parameters Pub-Params: H ∈ R1×(m−1)
q

and A ∈ R1×(m−1)
q . This algorithm outputs the signature σL(µ). We call π the
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Algorithm 1 L2RS.KeyGen - Key-pair Generation (a,S)

Input: Pub-Param: A ∈ R1×(m−1)
q .

Output: (a,S), being the public-key and the private-key, respectively.
1: procedure L2RS.KeyGen(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ←↩ (−2γ, 2γ)n, for 1 ≤ i ≤

m− 1
3: Compute a = A · S mod q ∈ Rq.
4: return (a,S).

index in {1, . . . , w} of the user or signatory who wants to sign a message µ. For a

message µ ∈ {0, 1}∗, the fixed list of public-keys L = {a1, . . . , aw} and the private-

key Sπ which corresponds to aπ with 1 ≤ π ≤ w; the following computations are

performed:

1. We define the linkability tag as H2q =
(
2 ·H,−2 ·h+q

)
∈ R1×m

2q , where H is

the fixed public parameter for all users, and h = H · Sπ ∈ Rq. We consider

STπ ∈ R
1×(m−1)
q as an element in R2q and let ST2q,π =

(
STπ , 1

)
∈ R1×m

2q , such

that H2q · S2q,π = q ∈ R2q.

2. The π’s public-key is lifted fromR1×m
q toR1×m

2q , so by calling the lift function

L2RS.Lift(A, aπ), we get A2q,π = (2 · A,−2 · aπ + q) ∈ R1×m
2q . Note that

A2q,π · S2q,π = q ∈ R2q

3. By choosing a random vector uπ = (u1, . . . , um)T , where ui ←↩ Dn
σ , for 1 ≤

i ≤ m, we calculate cπ+1 = H1

(
L,H2q, µ,A2q,π · uπ,H2q · uπ

)
.

4. We choose random vector ti = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dn
σ , for 1 ≤

j ≤ m, then for (i = π+ 1, . . . , w, 1, 2, . . . , π− 1), after lifting from R1×m
q to

R1×m
2q , using L2RS.Lift(A, ai), we obtain A2q,i = (2 ·A,−2 · ai + q) ∈ R1×m

2q .

Then, we compute ci+1 = H1

(
L,H2q, µ,A2q,i · ti + q · ci,H2q · ti + q · ci

)
.

5. A random bit b ∈ {0, 1} is selected and then it computes tπ = u + S2q,π · cπ ·

(−1)b by using rejection sampling (Definition 3.8).

6. Finally, it outputs the signature σL(µ) =
(
c1, t1, . . . , tw,h

)
.

A formal description of this algorithm is shown in Algorithm 2.
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Algorithm 2 L2RS.SigGen - Signature Generation σL(µ)

Input: Sπ, µ, L = {a1, . . . , aw}, Pub-Params: H ∈ R1×(m−1)
q and A ∈ R1×(m−1)

q .

Output: σL(µ) =
(
c1, t1, . . . , tw,Pub-Params

)
1: procedure L2RS.SigGen(Sπ, µ, L,Pub-Params)
2: Set H2q =

(
2 ·H,−2 · h + q

)
∈ R1×m

2q , where h = H · Sπ ∈ Rq.

3: Call L2RS.Lift(A, aπ) to obtain A2q,π = (2 ·A,−2 · aπ + q) ∈ R1×m
2q .

4: Let u = (u1, . . . , um)T , where ui ←↩ Dn
σ , for 1 ≤ i ≤ m.

5: Compute cπ+1 = H1

(
L,H2q, µ,A2q,π · u,H2q · u

)
.

6: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
7: Call L2RS.Lift(A, ai) to obtain A2q,i = (2 ·A,−2 · ai + q) ∈ R1×m

2q

8: Let ti = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dσ, for 1 ≤ j ≤ m.

9: Compute ci+1 = H1

(
L,H2q, µ,A2q,i · ti + q · ci,H2q · ti + q · ci

)
.

10: Choose b←↩ {0, 1}.
11: Let tπ ←↩ u + S2q,π · cπ · (−1)b.

12: Continue with probability
1(

M exp

(
− ‖S2q,π · cπ‖2

2σ2

)
cosh

(
〈tπ,S2q,π · cπ〉

σ2

))
otherwise Restart.

13: return σL(µ) =
(
c1, t1, . . . , tw,h

)
.

4.3.4 Signature Verification - L2RS.SigVer

The L2RS.SigVer algorithm receives the signature σL(µ) along with the message µ,

the fixed list L = {a1, . . . , aw} and the Pub-Params: (A,H) ∈ R1×(m−1)
q ×R1×(m−1)

q ,

and it outputs a decisional verification answer: Accept or Reject (see Algorithm 3).

The signature σL(µ) can be publicly validated by computing H2q =
(
2 ·H,−2 ·h+

q
)
∈ R1×m

2q in ci+1 for (i = 1, . . . , w), and it is verified and only accepted under the

following conditions: ‖ti‖2 ≤ B2 and ‖ti‖∞ < q/4 for 1 ≤ i ≤ w, where B2 is the

acceptance bound [DDLL13], c1 = H1

(
L,H2q, µ,A2q,w ·tw+q ·cw,H2q ·tw+q ·cw

)
.

Theorem 4.7. Let B2 = ησ
√
nm and q/4 >

(√
2(λ+ 1) ln 2 + 2 ln (nm)

)
σ and

σL(µ) =
(
c1, t1, . . . , tw,h

)
be generated based on Algorithm 2. Then the output of

Algorithm 3 on input σL(µ) is Accept with probability 1− 2−λ.

Proof. In this proof, we use [lemma 4.4, parts 1 and 3, in [Lyu12]]. The part

3 of this lemma shows that the bound on Euclidean norm B2 = ησ
√
nm, for

a given η > 1, has a probability Pr[‖ti‖2 > ησ
√
nm] ≥ 1 − 2λ. In addition,
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Algorithm 3 L2RS.SigVer - Signature Verification

Input: σL(µ) =
(
c1, t1, . . . , tw,h

)
, L = {a1, . . . , aw}, µ, Pub-Params

Output: Accept or Reject
1: procedure L2RS.SigVer(σL(µ), Pub-Params)
2: if H2q =

(
2 ·H,−2 · h + q

)
then Continue

3: for (i = 1, . . . , w) do
4: Call L2RS.Lift(A, ai) to obtain A2q,i = (2 ·A,−2 · ai + q) ∈ R1×m

2q .

5: if ci+1 = H1

(
L,H2q, µ,A2q,i ·ti+q ·ci,H2q ·ti+q ·ci

)
then Continue

6: else if ‖ti‖2 ≤ B2 then Continue
7: else if ‖ti‖∞ < q/4 then Continue

8: else if c1 = H1

(
L,H2q, µ,A2q,w · tw + q · cw,H2q · tw + q · cw

)
then Accept

9: else Reject

10: return Accept or Reject

the bound on infinity norm (‖ti‖∞ < q/4) is analysed in part 1 of this lemma

where its union bound is also considered. It turns out that η is required such

q/4 > ησ >
(√

2(λ+ 1) ln 2 + 2 ln (nm)
)
σ, except with probability of 2−λ.

4.3.5 Signature Linkability - L2RS.SigLink

The L2RS.SigLink algorithm, illustrated in Algorithm 4, takes two signatures

as input: σL(µ1) and σL(µ2), and it outputs either Linked if these signa-

tures were generated by same signatory, or Unlinked, otherwise. For a fixed

list of public-keys L and given two signatures: σL(µ1) and σL(µ2), with the

list L which can be described as: σL(µ1) =
(
c1,µ1 , t1,µ1 , . . . , tw,µ1 ,hµ1

)
and

σL(µ2) =
(
c1,µ2 , t1,µ2 , . . . , tw,µ2 ,hµ2

)
.

These two signatures must be successfully accepted by the L2RS.SigVer algorithm,

then one can verify that the linkability property is achieved if the linkability tags

(hµ1 and hµ2) of the above signatures σL(µ1) and σL(µ2) are equal.
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Algorithm 4 L2RS.SigLink - Signature Linkability

Input: σL(µ1) and σL(µ2)
Output: Linked or Unlinked

1: procedure L2RS.SigLink(σL(µ1), σL(µ2))

2: if
(

L2RS.SigVer(σL(µ1)) = Accept and L2RS.SigVer(σL(µ2)) = Accept
)

then Continue [
3: else if hµ1 = hµ2 then Linked
4: else Unlinked ]

5: return Linked or Unlinked

4.3.6 Correctness of SigGen

Beyond the required conditions of L2RS.SigVer, we claim that if σL(µ1) =

(c1, t1, . . . , tw,h) is the output of the L2RS.SigGen algorithm on input

(µ, L,Sπ,Pub-Params), then the output of L2RS.SigVer on input (µ, L, σL(µ1))

should be accepted. We need to show that when L2RS.SigVer computes

H1(L,H2q, µ,A2q,w · tw + q · cw,H2q · tw + q · cw), the result is equal to c1. We also

show that H1(L,H2q, µ,A2q,i · ti + q · ci,H2q · ti + q · ci) = ci+1 for 1 ≤ i ≤ w − 1

in L2RS.SigVer. In this evaluation, we consider two scenarios, one when i 6= π and

i = π:

• For i 6= π, in L2RS.SigGen we have ci+1 = H1(L,H2q, µ,A2q,i ·

ti + q · ci,H2q · ti + q · ci), while in L2RS.SigVer we compute

ci+1 = H1(L,H2q, µ,A2q,i · ti + q · ci,H2q · ti + q · ci). These are

equal since A2q,i · ti + q · ci (in L2RS.SigGen) = A2q,i · ti + q · ci (in

L2RS.SigVer); and H2q · ti + q · ci (in L2RS.SigGen) = H2q · ti + q · ci (in

L2RS.SigVer).

• For i = π, in L2RS.SigGen we have cπ+1 = H1(L,H2q, µ,A2q,π · u,H2q · u),

whereas in L2RS.SigVer we calculate cπ+1 = H1(L,H2q, µ,A2q,π · tπ + q ·

cπ,H2q ·tπ+q ·cπ). In this case, we need to show that cπ+1 (in L2RS.SigGen)

= cπ+1 (in L2RS.SigVer). In doing so, the following equalities need to be

proved:
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1. A2q,π · u = A2q,π · tπ + q · cπ, which is equivalent to A2q,π · (u− tπ) =

q · cπ. Here, we replace tπ as defined in Algorithm 2, to obtain:

A2q,π · (u− u− S2q,π · cπ · (−1)b) = q · cπ ⇐⇒

−A2q,π · S2q,π · cπ · (−1)b = q · cπ ⇐⇒

−q · cπ · (−1)b = q · cπ

We distinguish two cases for b:

– When b = 0, we verify that -q · cπ = q · cπ mod 2q.

– When b = 1, we have q · cπ = q · cπ mod 2q.

2. H2q · u = H2q · tπ + q · cπ, which means that:

H2q · (u− tπ) = q · cπ ⇐⇒

H2q · (u− u− Sπ · cπ · (−1)b) = q · cπ ⇐⇒

−H2q · S2q,π · cπ · (−1)b = q · cπ ⇐⇒

−q · cπ · (−1)b = q · cπ

We distinguish between two cases:

– When b = 0, it is verified that −q · cπ = q · cπ mod 2q.

– When b = 1, we have q · cπ = q · cπ mod 2q.

4.3.7 Correctness of SigLink

We show that an honest user π who signs two messages µ1 and µ2 in the L2RS

scheme with the list of public-keys L, obtains a Linked output from L2RS.SigLink

algorithm with overwhelming probability. As shown in Algorithm 4, two signatures

σL(µ1) and σL(µ2) were created, and then successfully verified by L2RS.SigVer.

Therefore, the linkability tags hµ1 and hµ2 must be equal. To prove this, we show
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that:

H2q,µ1 =
(
2 ·H,−2 · hµ1 + q

)
∈ R2q,where

H = Pub-Param and hµ1 = (H · Sπ + q) ∈ Rq

H2q,µ2 =
(
2 ·H,−2 · hµ2 + q

)
∈ R2q,where

H = Pub-Param and hµ2 = (H · Sπ + q) ∈ Rq

The first parts of the linkability tag in both L2RS signatures have same equality

with following probability:

Pr
[
2 ·H = 2 ·H

]
= 1.

Ultimately, the second part uses the honest user’s private-key Sπ is used, so we

conclude that:

Pr
[
− 2 · hµ1 + q + 2 · hµ2 − q = 0

]
= 1.

4.4 Security Analysis

Theorem 4.8 (One-Time Unforgeability). Suppose
√

q2n

2(γ+1)·(m−1)·n is negligible in

n and 1
|Sn,κ| is negligible and y = h is polynomial in n, where h denotes the number

of queries to the random oracle H1. If there is a PPT algorithm against one-time

unforgeability of L2RS with non-negligible probability δ, then there exist a PPT

algorithm that can extract a solution to the R-SISKq,m,β problem (for β = 2B2)

with non-negligible probability

(
δ − 1

|Sn,κ|

)
·
(
δ− 1
|Sn,κ|
y
− 1
|Sn,κ|

)
−
√

q2n

2(γ+1)·(m−1)·n .

Proof. As stated in [DDLL13], this L2RS scheme relies on the R-SISKq,m,β prob-

lem to be secure against any existential forger. This means that a forgery algo-

rithm succeeds with a negligible probability and so we conclude that under this

probability, the attacker will also find a solution to the R-SISKq,m,β problem. To
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prove this, we start replacing the L2RS.SigGen algorithm with L2RS.Hybrid-1 and

L2RS.Hybrid-2 algorithms that are used to simulate the creation of the signatures,

until we obtain an algorithm that breaks the R-SISKq,m,β problem. These Hybrid

algorithms are illustrated in Algorithm 5 and Algorithm 6, respectively.

In L2RS.Hybrid-1, the output of the random oracle H1 is chosen at random from

Sn,κ ⊆ R2q and then it is programmed, without checking the value of A2q,π ·u and

H2q · u being already set. This equality can be described as:

H1(L,H2q, µ,A2q,w · tw + q · cw,H2q · tw + q · cw) =

H1(L,H2q, µ,A2q,π · u,H2q · u)

Every time the L2RS.Hybrid-1 is called, the probability of generating u such that

A2q,π ·u and H2q ·u are equal to one of the previous output that was queried is at

most 2−n+1. We define that the probability of getting a collusion each time is at

most h · 2−n+1, where “h” is the number of calls to the random oracle H1, whereas

the probability of occurring a collision after “o” queries to the L2RS.Hybrid-1 is at

most o · h · 2−n+1, which is negligible (Based on [DDLL13], Lemma 3.4).

After analyzing how c1 can be forged, we evaluate the (t1, . . . , tw) of the L2RS

scheme. We claim that these are forgeable when an attacker finds a PPT algo-

rithm F to solve the R-SISKq,m,β problem. This attack can be simulated using

the L2RS.Hydrid-2 shown in Algorithm 6, where tπ is directly chosen from the

distribution Dn
σ (Based on [DDLL13], Lemma 3.5).

The public-key A2q ∈ R1×m
2q is generated such A2q · S2q = q ∈ R2q, so finding a

vector v such that A2q · v = 0 mod q . We denote y = h where y is the number of

times the random oracle H1 is programmed during this attack. Then this attack

is performed as follows:

1. Random coins are selected for the forger φ and signer ψ.

2. The random oracle H1 is called to generate the responses of the users in the

L2RS scheme, (c1, . . . , cw)←↩ Sn,κ.
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Algorithm 5 One-Time Unforgeability - Signature algorithm of L2RS Hybrid 1

Input: Sπ, µ, L = {a1, . . . , aw}, Pub-Params: H and A.

Output: σL(µ) =
(
c1, t1, . . . , tw,h

)
1: procedure L2RS.Hybrid-1(Sπ, µ, L,Pub-Params)
2: Set H2q =

(
2 ·H,−2 · h + q

)
∈ R1×m

2q , where h = (H · Sπ + q) ∈ Rq.

3: Call L2RS.Lift(A, aπ) to obtain A2q,π = (2 ·A,−2 · aπ + q) ∈ R1×m
2q .

4: Let u = (u1, . . . , um)T , where ui ←↩ Dn
σ , for 1 ≤ i ≤ m.

5: Choose at random cπ+1 ←↩ Sn,κ
6: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
7: Call L2RS.Lift(A, ai) to obtain A2q,i = (2 ·A,−2 · ai + q) ∈ R1×m

2q .
8: Let ti = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dn

σ , for 1 ≤ j ≤ m.

9: Compute ci+1 = H1

(
L,H2q, µ,A2q,i · ti + q · ci,H2q · ti + q · ci

)
.

10: Choose b←↩ {0, 1}.
11: Let tπ ←↩ u + S2q,π · cπ · (−1)b.

12: Continue with probability
1(

M exp

(
− ‖S2q,π · cπ}‖2

2σ2

)
cosh

(
〈tπ,S2q,π · cπ〉

σ2

))
otherwise Restart.

13: return σL(µ) =
(
c1, t1, . . . , tw,h

)
.

3. These create a SubRoutine that takes as input (A2q, φ, ψ, c1, . . . , cw).

4. F is initialized and run by providing the A2q and forger’s random coins φ.

5. The SubRoutine signs the message µ using the signer’s coins ψ in the

L2RS.Hydrid-2, this produces a signature σL(µ).

6. During the signing process, F calls the oracle H1 and answers are placed in

the list (c1, . . . , cw), the queries are kept in a table in the event that same

queries are used in this oracle.

7. F is stopped and it outputs a forgery that is the SubRoutine’s result

(c1, t1, . . . , tw,h), with negligible probability δ. This output has to be suc-

cessfully accepted by the L2RS.SigVer algorithm.

If the random oracle was not called using some input A2q,i ·ti+q ·ci,H2q ·ti+q ·ci,

then F has 1/|Sn,κ| chances of producing a c such that c = H1(L,H2q, µ,A2q · t +

q · c,H2q · t + q · c). This turns out that δ− 1/|Sn,κ| be the probability that c = cj

for some j.
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Algorithm 6 One-Time Unforgeability - Signature algorithm of L2RS Hybrid 2
σL(µ)

Input: Sπ, µ, L = {a1, . . . , aw}, Pub-Params: H and A.

Output: σL(µ) =
(
c1, t1, . . . , tw,h

)
1: procedure L2RS.Hybrid-2(Sπ, µ, L,Pub-Params)
2: Set H2q =

(
2 ·H,−2 · h + q

)
∈ R1×m

2q , where h = (H · Sπ + q) ∈ Rq.

3: Call L2RS.Lift(A, aπ) to obtain A2q,π = (2 ·A,−2 · aπ + q) ∈ R1×m
2q .

4: Let u = (u1, . . . , um)T , where ui ←↩ Dn
σ , for 1 ≤ i ≤ m.

5: Choose at random cπ+1 ←↩ Sn,κ
6: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
7: Call L2RS.Lift(A, ai) to obtain A2q,i = (2 ·A,−2 · ai + q) ∈ R1×m

2q .
8: Let ti = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dn

σ , for 1 ≤ j ≤ m.

9: Compute ci+1 = H1

(
L,H2q, µ,A2q,i · ti + q · ci,H2q · ti + q · ci

)
.

10: Choose b←↩ {0, 1}.
11: Choose tπ ←↩ Dm

σ

12: Continue with probability
1

M
otherwise Restart.

13: return σL(µ) =
(
c1, t1, . . . , tw,h

)
.

Forgery 1. Let’s consider the situation that cj+1 is the result after using F

which is cj+1 = H1(L,H2q, µ
′,A2q · t′+ q · cj,H2q · t′+ q · cj). Then by comparing

this with a legitimate signature, we have:

H1

(
L,H2q, µ,A2q ·t+q·cj,H2q ·t+q·cj

)
= H1

(
L,H2q, µ

′,A2q ·t′+q·cj,H2q ·t′+q·cj
)

F will find a preimage of cj if µ 6= µ′ or A2q · t + q · cj 6= A2q · t′ + q · cj or

H2q · t+ q ·cj 6= H2q · t′+ q ·cj. Then, we have with overwhelming probability that

µ = µ′ and A2q ·t+q ·cj = A2q ·t′+q ·cj and H2q ·t+q ·cj = H2q ·t′+q ·cj. These

equalities will result in: A2q(t− t′) = 0 mod 2q and H2q(t− t′) = 0 mod 2q. We

assume that both t and t′ are different and they met the L2RS.SigVer conditions,

so it yields t− t′ 6= 0 mod q, and ‖t− t′‖ ≤ 2B2.

Forgery 2. In this scenario, we assume that the L2RS scheme can be forged by

an attacker F as it was presented in the Forgery 1 and obtain cj, then another

attacker can generate (c′j, . . . , c
′
w) ←↩ Sn,κ by replaying the first attack and using

same message µ. We use the forking lemma [BN06] to show the probability of
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cj = c′j and the forger uses an oracle response c′j is at least:

(
δ − 1

|Sn,κ|

)
·

(
δ− 1
|Sn,κ|
y
− 1
|Sn,κ|

)
(4.1)

Therefore, with the probability (4.1), F creates a signature σL(µ) =

(c′1, t
′
1, . . . , t

′
w,h) where A2q · t + q · cj = A2q · t′ + q · c′j and H2q · t + q · cj =

H2q · t′ + q · c′j. We now obtained: A2q · (t − t′) = q(cj − c′j) mod 2q and

H2q · (t − t′) = q(cj − c′j) mod 2q. Since cj − c′j 6= 0 mod 2, so in both equa-

tions, we have t − t′ 6= 0 mod 2q where ‖t − t′‖∞ < q/2. By applying this

reduction, we find a small non-zero vector v = t− t′ 6= 0 mod q. This v will com-

pute A2q · v = 0 mod q with ‖v‖ ≤ 2B2. Since A2q mod q = 2(A,−a) mod q, we

have 2(A,−a)v = 0 mod q, this implies that (A,−a)v = 0 mod q, since q is odd.

Notice that L2RS.Hydrid-2 shown in Algorithm 6 no longer uses the private-key

Sπ, except for generating A2q,π to obtain the final R-SISKq,m,β solution. We modi-

fied the L2RS.KeyGen algorithm with the L2RS.Hydrid-3 game shown in Algorithm

7, where the public-key a is uniformly and randomly taken: a ←↩ Rq. By the

argument of the Leftover Hash Lemma (LHL) - Lemma 3.5 and our assumption

that
√

q2n

2(γ+1)·(m−1)·n is negligible in n. The probability of success of an attacker

in L2RS.Hydrid-3 differs by a negligible amount from the success probability in

L2RS.KeyGen and is thus non-negligible. Therefore, this vector v will be a solu-

tion to the R-SISKq,m,β problem, where β = 2B2, with non-negligible probability

and with respect to (A,−a) over Rq.

Algorithm 7 Key pair generation of L2RS Hybrid 3 (a,S)

Input: Pub-Param: A.
Output: (a,S), being the public-key and the private-key, respectively.

1: procedure L2RS.hybrid-3(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ←↩ (−2γ, 2γ)n, for 1 ≤ i ≤

m− 1
3: Choose a←↩ Rq

4: return (a,S).
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Theorem 4.9 (Anonymity). Suppose
√

q2n

2(γ+1)·(m−1)·n is negligible in n with an at-

tack against the unconditional anonymity that makes h queries to the random or-

acle H1, where h, w are polynomial in n, then the L2RS scheme is unconditionally

secure for anonymity as defined in Def. 4.2.

Proof. We prove the anonymity of this scheme using the sequence-of-games ap-

proach [Sho04] where we make changes between successive games. In doing so, we

use the “transition based on indistinguishability”. We can start this analysis by:

Game 0: Suppose that an attacker A is given the list of pk’s L = {a0, a1},

the signature σL(µ), message µ, and the random oracle models (H1 and H2).

The key generation algorithm creates the pair of users’ keys in this ring sig-

nature: Private-Keys ←↩ (S0,S1) and the Public-Keys ←↩ (a0, a1); a user b

is chosen uniformly at random from the list L = {a0, a1}, then the signature

σL(µ) = L2RS.SigGen(Sb, µ, L,Pub-Param) is generated. So in Game 0, a PPT

adversary A outputs a guess b′ ∈ {0, 1}; thus in the event Game 0, A succeeds

in breaking ambiguity Game 0(b = b′) if Pr[Game 0] ≤ 1
2

+ non− negl(λ).

Game 1: Changes in this game are made to the user π in the second part of

the linkability tag h = (H · S) ∈ Rq, in signature of user π, and public-key

a = (A ·S) ∈ Rq in the L2RS.KeyGen algorithm. The h and a1 are now randomly

chosen from Rq. We claim that |Pr[Game 0]− Pr[Game 1]| ≤ εLHLG1
.

Where εLHLG1
is the advantage of some efficient algorithm which is negligible. In

both cases h = (H · S) ∈ Rq and a = (A · S) ∈ Rq, we know that H and A

are uniform and S is chosen small and with coefficients in (−2γ, 2γ). When S is

multiplied by H and A respectively, it gives h and a that are close to uniform over

Rq. By applying the Leftover Hash Lemma (LHL) - Lemma 3.5, the statistical

distance between the distribution of (h mod q and a mod q) and the uniform dis-

tribution on Rq ×Rq is at most n · 1
2
·
√

q2n

2(γ+1)·(m−1)·n . We conclude that in Game

1:

|Pr[Game 0]− Pr[Game 1]| ≤ n · 1
2
·
√

q2n

2(γ+1)·(m−1)·n . (4.2)
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Game 2: This time a change is made in the second part of the remaining public-

keys ai (1 ≤ i ≤ w, i 6= π) which are in the ring signature list L. They are now

randomly chosen as ai ←↩ Rq. It turns out that |Pr[Game 1] − Pr[Game 2]| ≤

εLHLG2
.

Where εLHLG2
is the advantage of some efficient algorithm which is negligible. We

consider that for (i = 1 to w where i 6= π), we know that ai = (A · Si mod q) are

uniform and all Si’s are chosen small with coefficients in (−2γ, 2γ). When the Si’s

are multiplied by Ai’s, it gives (ai mod q)’s that are close to uniform over Rq. By

applying the Leftover Hash Lemma (LHL) - Lemma 3.5, the statistical distance

between the distribution of the (A · Si mod q)’s and the uniform distribution on

Rq×Rq is at most n · 1
2
·
√

qn

2(γ+1)·(m−1)·n · (w−1). So in Game 2, we conclude that:

|Pr[Game 1]− Pr[Game 2]| ≤ n · 1
2
·
√

qn

2(γ+1)·(m−1)·n · (w − 1). (4.3)

Game 3: At this time, we make a change in cπ+1. Instead of programming the

oracle as H1(L,H2q, µ,A2q,i · u,H2q · u), it is now randomly chosen cπ+1 ←↩ Sn,κ.

We have that |Pr[Game 2] − Pr[Game 3]| ≤ εG3 where εG3 is the advantage

of some efficient algorithm which is negligible. This scenario outputs a signature

σL(µ1) = (c1, t1, . . . , tw,h) and programs the oracle as H1(L,H2q, µ,A2q,π · tπ +

q · cπ,H2q · tπ + q · cπ) = cπ+1. Then, the adversary A makes h queries to H1; so

the distinguishing advantage of the signing algorithm and the one in Game 2 is

at most h · 2−n+1. We conclude that in Game 3:

|Pr[Game 2]− Pr[Game 3]| ≤ h · 2−n+1. (4.4)

Game 4: In this game a change is made in tπ. Namely, instead of computing it

as u + S2q,π · cπ · (−1)bit, it is now directly chosen from the Gaussian distribution

Dn
σ . It is argued that |Pr[Game 3]− Pr[Game 4]| ≤ εRSG4

.

Where εRSG4
is the advantage of some efficient algorithm which is negligible. In

previous Games, tπ is computed using rejection sampling - Lemma 3.8, thus it

is always sample from the Gaussian distribution Dn
σ . In this Game, however, tπ



Chapter 4: The SISO of L2RS and LRCT 73

is directly chosen from Dn
σ , this means that the advantage εRSG4

will be zero as

in both Game 3 and Game 4, tπ is having same distribution. In Game 4, we

have:

|Pr[Game 3]− Pr[Game 4]| = 0. (4.5)

Game 5: Finally, in the Game 5, a change is made in the index π. Namely,

instead of choosing π + 1, it will be randomly chosen (1, . . . , w). We claim that

|Pr[Game 4] − Pr[Game 5]| ≤ εG5 where εG5 is the advantage of some efficient

algorithm which is negligible. In this Game 5, we consider that when π is replaced

by a fixed d, it might produce some collisions with previous queries to the oracle

H1; saying this, the adversary A may make h queries to H1; therefore, the distin-

guishing advantage of the signing algorithm between Game 4 and this Game 5

is at most h · 2−n+1 · w. Finally, in Game 5 we have:

|Pr[Game 4]− Pr[Game 5]| ≤ h · 2−n+1 · w. (4.6)

We also conclude that in Game 5, the adversary’s view is statistical independent

of π, thus Pr[Game 5] = 1
w

.

Combining the probabilities of the above games (4.2), (4.3), (4.4), (4.5), and (4.6),

we obtain:

|Pr[Game 5]− Pr[Game 0]| ≤ |Pr[Game 1]− Pr[Game 0]|+ |Pr[Game 2]−

Pr[Game 1]|+ |Pr[Game 3]− Pr[Game 2]|+ |Pr[Game 4]− Pr[Game 3]|+

|Pr[Game 5]− Pr[Game 4]|.

By replacing the resulting probabilities, we have:

|Pr[Game 5]− Pr[Game 0]| ≤ 1

w
− 1

2
+ ε, (4.7)

which means that |Pr[Game 5]− Pr[Game 0]| ≤ ε, which itself is smaller than

n · (w − 1)

2
·

(√
q2n

2(γ+1)·(m−1)·n +

√
qn

2(γ+1)·(m−1)·n

)
+ h · 2−n+1 · (1 + w).
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We notice that since h and w are polynomial in n, we get h · 2−n+1 · (1 + w) is

negligible in n. In addition, we can say that

(√
q2n

2(γ+1)·(m−1)·n +
√

qn

2(γ+1)·(m−1)·n

)
≤

2 ·
√

q2n

2(γ+1)·(m−1)·n , which is negligible by the assumption that
√

q2n

2(γ+1)·(m−1)·n is also

negligible. Hence we conclude that ε is negligible, meaning that Pr[Game 0] ≤
1
2

+ ε.

Theorem 4.10 (Linkability). The L2RS scheme is linkable in the random oracle

model if the R-SISKq,m,β problem is hard.

Proof. We construct the algorithm B for the R-SISKq,m,β problem. This algorithm

runs the linkability attack game (Def. 4.3) as follows:

1. B generates using the L2RS.KeyGen algorithm all private-keys Si’s with the

corresponding public-keys ai’s, then B gives Sπ to the attacker A as a re-

sponse to the attacker’s CO query.

2. A outputs two signatures σL(µ1) and σ′L′(µ
′) along with their correspond-

ing lists L and L′ such that both signatures are successfully verified by

L2RS.SigVer, but the linkability tags are different hµ1 6= hµ′ .

3. B computes hµπ = H · Sπ mod q, where π is the true signer’s π linkability

tag. This hµπ tag can then be compared with the linkability tags hµ1and

hµ′ , output by A, in step 2, and one of them will be different.

4. Without loss of generality, suppose hµ1 6= hµπ mod q. Using the forking

lemma [BN06], B rewinds the attacker A to the H1 query correspond-

ing to the L2RS.SigVer of the signature σL(µ1). B reruns A with a dif-

ferent response of H1 and ultimately gets another signature: σL(µ2) =

(c1,µ2 , t1,µ2 , . . . , tw,µ2 ,hµ2). This second signature is used to extract a so-

lution to the R-SISKq,m,β problem, in case the A finds an efficient way to

unlink these signatures, as shown in step 7.

5. The adversary A matches the challenge message of both signatures where

H2q,µ1 and A2q,w,µ1 are kept. Thus we have:
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(a) A2q,w,µ1 · tw,µ1 + q · cw,µ1 = A2q,w,µ1 · tw,µ2 + q · cw,µ2 ,

(b) H2q,µ1 · tw,µ1 + q · cw,µ1 = H2q,µ1 · tw,µ2 + q · cw,µ2 .

These expressions can be represented as:

(a) A2q,w,µ1 · (tw,µ1 − tw,µ2) = q · (cw,µ2 − cw,µ1),

(b) H2q,µ1 · (tw,µ1 − tw,µ2) = q · (cw,µ2 − cw,µ1).

Reducing them modq we have (if (cw,µ2 − cw,µ1) 6= 0 mod 2):

(a) A2q,w,µ1 · (tw,µ1 − tw,µ2) = 0 mod q,

(b) H2q,µ1 · (tw,µ1 − tw,µ2) = 0 mod q.

We denote by t′w,µ1 , the first (m− 1) ring elements in tw,µ1 and by t′′w,µ1the

m-th ring element in tw,µ1 , i.e. tw,µ1 − tw,µ2 =

 t′w,µ1 − t′w,µ2

t′′w,µ1 − t′′w,µ2

 ∈ Rm
q , and

using the public-key and linkability parts, we have:

(a) 2 ·A · (t′w,µ1 − t′w,µ2) = −2 · a · (t′′w,µ1 − t′′w,µ2),

(b) 2 ·H · (t′w,µ1−t′w,µ2) = −2 ·hµ1 · (t′′w,µ1−t′′w,µ2), where hµ1 , H ·Sπ ∈ Rq.

6. We let S̄ =
(t′w,µ1−t

′
w,µ2

)

(t′′w,µ1−t
′′
w,µ2

)
mod q where (t′′w,µ1 − t′′w,µ2) 6= 0 mod q. We distin-

guish two cases:

(a) If S̄ 6= Sπ mod q, since we have A · S̄ = A ·Sπ = a mod q, then (S̄−S)

is a small non-zero vector R-SISKq,m,β solution for A ∈ R1×(m−1)
q .

(b) If S̄ = Sπ mod q, then hµ1 = H · S̄ mod q = H · Sπ mod q. The target

is to show that hµ1 = hµπ mod 2 and hµ1 = hµπ mod q. If so, then we

have hµ1 = hµπ mod 2q, which is a contradiction with our assumption

at step 4 of this proof. We now prove the first target:

hµ1 = −2 · h′µ1 + q = 1 mod 2 = −2 ·H · Sπ + q = hµπ ,

where the first and the last equalities follow from definition of h in

second line of Algorithm 2. To show the second target, we have

hµ1 = −2 · hµ1 + q = −2 · hµ1 mod q
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= −2 ·H · S̄ mod q = −2 ·H · Sπ mod q = hµπ ,

where the first and the last equalities follow from definition of h in

second line of Algorithm 2 and the middle equality is true based on the

argument at the beginning of step (6.b).

7. Since (cw,µ2 − cw,µ1) 6= 0 mod 2, we have (tw,µ1 − tw,µ2) 6= 0 mod 2q. In

addition, we know that ‖tw,µ1 − tw,µ2‖∞ < q/2, which implies that (tw,µ1 −

tw,µ2) 6= 0 mod q. Ultimately, we have A · (tw,µ1 − tw,µ2) = 0 mod q and

‖(tw,µ1−tw,µ2) mod q‖ ≤ 2B2. Therefore, this small non-zero vector (tw,µ1−

tw,µ2) is the output of the algorithm B, and this vector is a solution to the

R-SISKq,m,β problem with β = 2B2 for a ∈ Rq.

Theorem 4.11 (Non-Slanderability). For any linkable ring signature, if it satisfies

unforgeability and linkability, then it satisfies non-slanderability.

Proof. Let’s suppose there is a non-slanderability adversary ASland who is given

pki, ski, i 6= π, and i ∈ {1, . . . w}, and he produces a valid signature σ′L(µ) with

linkability tag hσ′L(µ) which is equal to hσL(µ), σL(µ) being the legitimate signature

generated with respect to skπ. This means that ASland can create a signature with

the linkability tag hσL(µ) without knowing skπ. The adversary can also compute

a valid σ′′L(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which hσ′′L(µ) 6= hσ′L(µ). We

give (σ′′L(µ), σ′L(µ)) to the forger, which can turn it to an R-SISKq,m,β solution. In

particular, it will be computationally secure when two valid signatures created

by different users are unlinked using the L2RS algorithms. An adversary A will

break these properties with negligible probability as demonstrated in Theorems

(4.8 and 4.10), and with these probabilities the A will find a R-SISKq,m,β solution.

Therefore, non-slanderability is implied by the definitions of the unforgeability

(Def. 4.1) and linkability (Def. 4.3).

Corollary 4.12 (Non-Slanderability). The L2RS scheme is non-slanderable under

the assumptions of Theorem 4.8 and Theorem 4.10.
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4.5 Lattice RingCT v1.0 Protocol (LRCT)

This RCT protocol described in [SALY17] can be constructed based on the LRS

scheme. Its algorithms are defined as follows:

• RCT.Setup: this PPT algorithm uses L2RS.Setup where it takes the security

parameter λ and outputs the public parameters Pub-Params.

• RCT.KeyGen: this PPT algorithm uses the L2RS.KeyGen to produce a pair

of keys, the public-key pk and the private-key sk.

• RCT.Mint: a PPT algorithm that generates new coins. This algorithm re-

ceives the public-key pk and the amount $, it outputs a coin cn along with

its associated coin-key ck.

• RCT.Spend: a PPT algorithm that receives the Pub-Params, a set of input

wallets IWi with 1 ≤ i ≤ w, a user π’s input wallet IWπ along with its set

of secret keys Kπ, a set of output addresses OA, some transaction string µ ∈

{0, 1}∗ and the set of output wallets OW . Then, this algorithm outputs the

transaction TX = (µ, IW,OW ), uses L2RS.SigGen to generate and output

the signature σ(µ), and finally output a set of transaction/serial numbers

TN , which is used to prevent the double spending.

• RCT.Verify: a deterministic PPT algorithm that takes as input the Pub-

Params, the signature σ(µ), the TX, and the TN , it then uses L2RS.SigVer

and outputs either: Accept (1) or Reject (0).

4.5.1 LRCT construction

The Lattice RingCT LRCT scheme requires a homomorphic commitment (Com) as

an additional primitive. It is a cryptographic technique used to provide confidential

transactions, in particular cryptocurrencies [Noe15]. This primitive allows one

party to commit to a chosen value while keeping it secret to other parties, then

this committed value can be revealed later. This model is restricted to have a
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Single-Input Single-Output (SISO) wallets, meaning that an Input Wallet will be

spent into an Output Wallet (OW) only. We use the structure of the L2RS.KeyGen

scheme Algorithm 1, where the public parameter A ∈ R1×(m−1)
q is used to commit

to a scalar message m ∈ Domm ⊆ Rq with Domm = [0, . . . , 2`−1] ⊆ Z. This

property is defined as ComA(m, sk) = A · sk + m ∈ Rq, where the randomness

sk ∈ Domsk ⊆ R(m−1)×1
q . The properties of the homomorphic operations are also

defined as:

ComA(m1, sk) ± ComA(m2, sk′) , ComA(m1, sk)± ComA(m2, sk′) mod q

, ComA(m1 ±m2, sk± sk′) mod q, (4.8)

where m1,m2 ∈ Rq; and sk, sk′ ∈ R(m−1)×1
q . The integers m1,m2 ∈ Z are encoded

in binary as coefficient vectors m1 = (m1,0, . . . ,m1,`−1, 0, . . . , 0) ∈ {0, 1}n and

m2 = (m2,0, . . . ,m2,`−1, 0, . . . , 0) ∈ {0, 1}n where mj =
∑`−1

i=0(mj,i · 2i), with

mj,i ∈ {0, 1} and j ∈ {0, 1}, and m = m1 − m2 = (m1,0 − m2,0, . . . ,m1,`−1 −

m2,`−1, 0, . . . , 0) ∈ {−1, 0, 1}n. The difference between these vectors is zero ∈ Rq

if m1 = m2, non-zero otherwise. This means that the commitment is performed

to each bit.

The SISO scheme using the protocol Lattice RingCT v1.0, LRCT = (LRCT.Setup,

LRCT.KeyGen, LRCT.Mint, LRCT.Spend, LRCT.Verify) works as follows.

1. (Pub-Params) ← LRCT.Setup(λ): On input security parameter λ, this al-

gorithm calls L2RS.Setup and outputs the public parameters, (A,H) ∈

R1×(m−1)
q ×R1×(m−1)

q .

2. (a,S)← LRCT.KeyGen(A): Given the public parameter A, it outputs a pair

of keys, the public-key pk: a ∈ Rq and the private-key sk: S ∈ R(m−1)×1
q .

Then we define the commitment of the LRCT.KeyGen as a = A·S+0 mod q ∈

Rq = ComA

(
0,S
)
.
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3. (cn, ck) ← LRCT.Mint(a, $): This is illustrated in Algorithm 8. It receives

a valid one-time address a as well as an input amount $ ∈
[
0, . . . , 2`$ − 1

]
.

Then, to create a coin cn, this algorithm chooses a coin-key ck ∈ DomS.

Then, the commitment of Mint is computed as cn = A · ck + $ mod q ∈

Rq = ComA($, ck). This algorithm returns (cn, ck).

Algorithm 8 LRCT.Mint

Input:
(
a ∈ Rq, $ ∈ Bnw

)
, being the Public-key, the amount and the public pa-

rameter, respectively.
Output: (cn, ck), where they are the coin and the coin key, respectively.

1: procedure LRCT.Mint(a, $)

2: Let ckT = (ck1, . . . , ckm−1) ∈ R1×(m−1)
q with cki ←↩ (−2γ, 2γ)n, for 1 ≤ i ≤

m− 1
3: cn = A · ck + $ mod q ∈ Rq = ComA($, ck), where A ∈ R1×(m−1)

q is the
public parameter and a component of a.

4: return (cn, ck)

4. (TX, σL′(µ), TN) ← LRCT.Spend(µ, IW, IWπ, Kπ, OA,Pub-Params): De-

scribed in Algorithm 9, this follows the steps:

(a) The IW and IWπ were properly constructed. In this SISO protocol a

user π spends one IW into one OW , this means that the π’s number

of wallets to be spent Nin = 1.

(b) We denote the π’s input wallet to be spent as IW
(1)
π ={

a
(1)
(in),π, cn

(1)
(in),π

}
∈ Rq×Rq, with the corresponding private part K

(1)
π ={

S
(1)
(in),π, ck

(1)
(in),π

}
∈ R1×(m−1)

q ×R1×(m−1)
q , and the one (Nout = 1) output

valid address OA = a
(1)
(out) where π intends to spend his money. Then,

π selects $
(1)
(out) ∈

[
0, . . . , 2`$ − 1

]
, such balances satisfy: $

(1)
(in),π = $

(1)
(out).

The LRCT.Mint
(
a

(1)
(out), $

(1)
(out)

)
is called to obtain

(
cn

(1)
(out), ck

(1)
(out)

)
, this

defines an output wallet as OW = OW (1) =
{
a

(1)
(out), cn

(1)
(out)

}
. Then,

the coin-key ck
(1)
(out) and $(out) are securely sent to the user holding the

output valid address OA = a
(1)
(out).

(c) π selects w − 1 (or the L2RS list L) of input wallets IW = IW
(1)
i ={

a
(1)
(in),i, cn

(1)
(in),i

}
i∈[w]

, to anonymously spend IW
(1)
π , with w being the

ring signature size.
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(d) A new list is constructed as L′ =
{
â

(1)
(in),i

}
i∈[w]

∈ Rq, where â
(1)
(in),i is

the homomorphic commitment with randomness Ŝ
(1)

(in),i that we define

as follows:

• â
(1)
(in),i = a

(1)
(in),i+cn

(1)
(in),i−cn

(1)
(out) = ComA

(
$

(1)
(in),i−$

(1)
(out), Ŝ

(1)

(in),i

)
, such

that for the user’s π this is a zero commitment: ComA

(
0, Ŝ

(1)

(in),π

)
.

• Ŝ
(1)

(in),i =
(
S

(1)
(in),i + ck

(1)
(in),i − ck

(1)
(out)

)
∈ Rq.

(e) To create the proof of knowledge, we use the π’s private-

key: Ŝ
(1)

(in),π, the list L′ and a transaction string µ ∈ {0, 1}∗.

Then, the signature of knowledge is generated by calling the

L2RS.SigGen
(
Ŝ

(1)

(in),π, L
′, µ,Pub-Params

)
, Algorithm 2, which outputs

σL′(µ) =
(
c1, t1, . . . , tw,h

)
.

(f) We set the transaction TX as (µ, IW,OW ) and TN = h.

(g) This algorithm ultimately outputs TX, TN , and σL′(µ).

5. (Accept/Reject) ← LRCT.Verify
(
TX, σL′(µ), TN

)
: This algorithm calls

L2RS.SigVer (Algorithm 3) with σL′(µ) =
(
c1, t1, . . . , tw,h

)
, TN = h,

L′ =
{
â(in),i

}
i∈[w]

=
{
a(in),i + cn(in),i − cn(out)

}
∈ Rq and Pub-Params, this

ultimately outputs either Accept or Reject.

4.6 Performance Analysis

Remark 4.13. This research project did not consider the implementation of the

schemes SISO.L2RS and SISO.LRCT, as a result there is not run time analysis. The

project only evaluates the signature and key sizes of the proposed constructions.

We proposed a set of parameters (Table 4.1) to implement the L2RS and

SISO.LRCT schemes. They are secure against direct lattice attacks in terms of

the BKZ algorithm Hermite factor δ, using the value of δ = 1.007, based on the

BKZ 2.0 complexity estimates with pruning enumeration-based Shortest Vector

Problem (SVP) [CN11], this might give 90− 100 bits of security. We use the con-

ditions stated in the L2RS.SigVer algorithm and in the security analysis (Section
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Algorithm 9 LRCT.Spend - SISO

Input: (µ, IW, IWπ, OA,Pub-Params), being the message, the Input Wallets, π’s
Input Wallet, the Output Address and the public parameters, respectively.

Output:
(
TX, σL′(µ), TN

)
1: procedure LRCT.Spend(µ, IW, IWπOA,Pub-Params)

2: Define π’s IW
(1)
π =

{
a

(1)
(in),π, cn

(1)
(in),π

}
∈ Rq × Rqand K

(1)
π ={

S
(1)
(in),π, ck

(1)
(in),π

}
∈ R1×(m−1)

q ×R1×(m−1)
q .

3: Define a valid output address OA = a
(1)
(out) and $

(1)
(out) ∈

[
0, . . . , 2`$ − 1

]
such

$
(1)
(in),π = $

(1)
(out), then compute

(
cn

(1)
(out), ck

(1)
(out)

)
← LRCT.Mint

(
a

(1)
(out), $

(1)
(out)

)
.

4: Define OW 1 =
{
a

(1)
(out), cn

(1)
(out)

}
∈ Rq ×Rq.

5: Send securely coin-key ck
(1)
(out) to user’s a

(1)
(out).

6: Create the list of input wallets IW
(1)
i

{
a

(1)
(in),i, cn

(1)
(in),i

}
i∈[w−1]

(Ring Confi-

dential Transaction).
7: Set L′ =

{
â(in),i

}
i∈[w]
∈ Rq , where â(in),i is the homomorphic commitment

with randomness Ŝ(in),i.

8: Define â
(1)
(in),i = a

(1)
(in),i + cn

(1)
(in),i − cn

(1)
(out) = ComA

(
$

(1)
(in),i − $

(1)
(out), Ŝ

(1)

(in),i

)
.

9: Define Ŝ(in),i =
(
S(in),i + ck(in),i − ck(out)

)
∈ Rq.

10: Call L2RS.SignGen
(
Ŝ(in),π, L

′, µ,Pub-Params
)

and retrieve σL′(µ) =(
c1, t1, . . . , tw,h

)
.

11: Set TX = (µ, IW,OW ), TN = h.
12: return

(
TX, σL′(µ), TN

)
4.4). Table 4.1 illustrates this information for five different versions of both L2RS

and SISO.LRCT: I, II, III, IV and V, where these versions vary with the polynomial

ring degree n. The figures of this table infer that the signature size grows linear

with the number of users in the Ring Signature.
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Table 4.1: Concrete parameters and sizes for L2RS and SISO.LRCT

Parameter Description I II III IV V

n Polynomial ring degree 128 256 512 1024 2048

m Polynomial ring size 18 10 6 5 5

λ Security parameter 100 100 100 100 100

δ Hermite factor 1.007 1.007 1.007 1.007 1.007

log(q) Modulus q - quotient 123 61 31 26 27

κ Random Oracle weight 32 21 17 14 12

η Correctness 1.1 1.1 1.1 1.1 1.1

α Rejection sampling 0.1 0.1 0.1 0.1 0.1

M Rejection sampling 1.0027 1.0027 1.0027 1.0027 1.0027

γ ≈ log(2 · n · κ) Private-key density 13.6 13.6 13.6 13.6 13.6

σ Gaussian standard deviation 337151 287898 283754 332435 435260

private-key 1.95 KB 1.93 KB 1.96 KB 3.28 KB 6.78 KB

public-key 1.92 KB 1.90 KB 1.93 KB 3.24 KB 6.74 KB

w = 12 7.2 KB 7.7 KB 8.9 KB 15 KB 30.9 KB

w = 5 28.4 KB 30.9 KB 36.7 KB 62 KB 126 KB

w = 8 44.3 KB 48.4 KB 57.6 KB 97.2 KB 198.7 KB

w = 16 86.6 KB 94.8 KB 113.2 KB 191.1 KB 390.5 KB

w = 32 171.2 KB 187.6 KB 224.5 KB 379 KB 774.1 KB

w = 64 340.4 KB 373.3 KB 447.1 KB 754.6 KB 1541.4 KB

w = 128 678.9 KB 744.7 KB 892.3 KB 1505.9 KB 3075.9 KB

1 w is the Ring Signature size

4.7 Summary

As our society becomes increasingly reliant on technology, cybersecurity is be-

coming an essential ingredient to protect our information assets. Cryptographic

techniques, an important tool of cyber-security, currently rely on computational

assumptions to offer security guarantees. However, these assumptions could easily

be broken by a large quantum computer. The cryptographic community is begin-

ning to understand the importance of constructing post-quantum cryptographic

techniques to withstand such attacks. Therefore, this research aimed to devise

post-quantum constructions that can be applied in cryptocurrencies.
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This chapter showed the first contribution, which was designing and constructing

a privacy preserving linkable ring signature (the L2RS) that is protected against

quantum attacks by using lattice-based cryptography. The scheme provides uncon-

ditional anonymity, meaning that even an adversary with unlimited computational

resources and time, would be unable to break into this property. The remaining

properties, the unforgeability, linkability and non-slanderability are computation-

ally secure under the lattice hardness assumptions. Moreover, based on the L2RS

scheme, a novel cryptocurrency protocol (LRCT) was devised and constructed

which inherited the post-quantum security guarantees of the L2RS. The perfor-

mance results illustrated that the signature size grows linearly with the number

of users in the Ring Signature.

Nevertheless, these proposals have some limitations. To begin with, they only

enable transfers from a Single Output wallet to a Single Output wallet (SISO). In

the RingCT model, signatures are one-time. If one then needs to receive change

after making a payment or transfer, a new output wallet is required, so this points

out the importance of supporting multiple input and output wallets. Secondly,

having more than one output wallet also introduces a new security problem like the

negative output amount (or out-of-range) attack [BBB+18], where an adversary is

capable of creating extra coins. This attack is addressed in the previous RingCT

[Noe15] by using a range proof technique; however, this technique is not post-

quantum secure.

These constraints were, in part, the motivation for continuing this research project.

In the next chapter, the second version of both schemes, the L2RS and the LRCT,

will be presented. These constructions are migrated to support transfers from

Multiple-Input to Multiple-Output MIMO wallets.



Chapter 5

The MIMO of L2RS and LRCT

1CryptoNote [VS13], a cryptocurrency protocol, was proposed to address privacy

weaknesses in Bitcoin [RS13, KKM14]. It also offers a framework that can be

extended by other cryptocurrencies such as Bytecoin [Byt15] and Monero [Mon14].

CryptoNote uses traceable ring signatures [FS07] as a fundamental component to

achieve true anonymity, where any member of the ring (or group) can create a

signature, but it is infeasible by a verifier to identify the real signer. This type

of signature hides information about both the sender and receiver, and it also

has a linking tag to prevent the double spending of coins. Further enhancements

to this framework have resulted in an extended protocol called Ring Confidential

Transactions “RingCT” [Noe15]. The RingCT protocol uses three techniques: a

1This chapter was published as: Alberto Torres W., Kuchta V., Steinfeld R., Sakzad A., Liu
J.K., Cheng J. (2019) Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets. In:
Jang-Jaccard J., Guo F. (eds) Information Security and Privacy. ACISP 2019. Lecture Notes in
Computer Science, vol 11547. Springer, Cham. DOI:https://doi.org/10.1007/978-3-030-21548-
4 9.
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new type of ring signature Linkable Ring Signatures [LWW04b], a homomorphic

commitment and a range proof, to preserve the privacy of the sender and the

receiver as well as the transaction amounts.

This chapter describes the construction of the Lattice-based Ring Confidential

Transactions (LRCT), which supports Multiple-Input and Multiple-Output wallets

(MIMO). This construction is a generalisation of the SISO.LRCT scheme (from

Chapter 4) where its underlying structure - the L2RS signature - was modified

for improved compatibility with this new version. The MIMO.LRCT inherits the

post-quantum security guarantees from SISO.LRCT, such as the hardness of lattice

mathematical assumptions, as well as unconditional anonymity.

At the outset, we enhanced the MIMO.LRCT’s security model, particularly the

anonymity and balance properties. In the case of anonymity, the chapter includes

the analysis of both user and amount privacy; in contrast to another similar work

[SALY17] which only considered user anonymity. More specifically, the proposed

construction is reduced to demonstrate that the anonymity property relies on the

left over hash lemma (defined in Chapter 3), meaning that the distribution of the

signature is independent to the secret key (including the secret part of the wallets)

used to produce that signature.

The balance property now includes the out-of-range attacks [BBB+18] and the

security proofs which previous RingCT’s proposals such as [SALY17] and the

SISO.LRCT (in Chapter 4) did not address. The RingCT model, where signatures

are one-time, needs to receive change after making digital wallet transactions, so

the SISO.LRCT is incompatible with this requirement since it only supports single

transfers. As a result, a new output wallet is required. This leads to the impor-

tance of constructions that allow multiple input and output wallets. In addition,

introducing more than one output wallet also demands for another security con-

cern; that is, the negative output amount attack [BBB+18], where an adversary is

capable of creating extra coins (also known as free money). The security analysis

illustrates how to incorporate a lattice-based range proof in the MIMO.LRCT pro-

tocol to overcome such attacks. This protocol deals with the difficulties stemming
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from the imperfection of lattice-based zero-knowledge proofs. To be more specific,

the range proofs follow the approach based on 1-of-2 OR-proofs, but our analysis

shows that directly applying lattice-based OR-proofs from [dPLNS17] does not

provide soundness for the range proof. Although these challenges are smaller -in

norm- than the ones used in the OR-proofs, they are still larger than the chal-

lenges in [LLNW18]. In this framework, we achieve lower soundness error than

the previous lattice-based range proof as in [LLNW18].

Moreover, a thorough concrete performance analysis of the MIMO.LRCT protocol

is provided by including this range proof analysis. Concrete bounds are applied to

derive preliminary scheme parameters for regular RingCT transactions that support

operations of 64-bit amounts along with fewer Multiple Input and Output wallets.

Therefore, these analyses serve as a benchmark and motivation for future studies.

The organisation of this chapter is as follows. The definitions and security model

of the upgraded MIMO.LRS are illustrated in Section 5.1, which is followed by

its construction (the MIMO.L2RS) and the security analysis in Section 5.2 and

Section 5.3, respectively. The definition and security analysis of the MIMO.LRCT

are presented in Section 5.4. Whereas Section 5.5 introduces the definitions of the

building blocks used by the cryptocurrency protocol MIMO.LRCT scheme, whereas

Section 5.6 describes its construction. The techniques utilised to handle the out-

of-range attacks (the range preservation) are reported in Section 5.7. Section 5.8

and Section 5.9 display the security and performance analyses of the MIMO.LRCT

scheme, respectively. Finally, Section 5.10 presents the summary of this chapter.

5.1 MIMO.LRS - Definitions and Security

Model

This section introduces the definition and security model of a Multiple Input Mul-

tiple Output Linkable Ring Signature (MIMO.LRS).
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5.1.1 MIMO.LRS Definitions

A MIMO.LRS scheme has five Probabilistic Polynomial Time (PPT) algorithms

(MIMO.LRS.Setup, MIMO.LRS.KeyGen, MIMO.LRS.SigGen, MIMO.LRS.SigVer,

MIMO.LRS.SigLink). In addition, the correctness of this scheme is satisfied by

the signature correctness MIMO.LRS.SigGen Correctness and the linkability cor-

rectness MIMO.LRS.SigLink Correctness. Table 5.1 illustrates a summary of these

algorithms.

Table 5.1: MIMO.LRS Algorithms

Algorithm Input Output Description

MIMO.LRS.Setup
The security pa-

rameter

The public pa-

rameters

Public parame-

ters creation

MIMO.LRS.KeyGen
The public parame-

ters
The pair keys

Public and pri-

vate keys cre-

ation

MIMO.LRS.SigGen

Private-key, mes-

sage, list of public-

keys in the Ring

Signature and the

public parameters

Signature
Ring signature

generation

MIMO.LRS.SigVer

Signature, mes-

sage, list of public-

keys in the Ring

Signature and the

public parameters

Accept or Re-

ject

Verify whether

or not a sig-

nature was

successfully

generated

MIMO.LRS.SigLink
Two verified signa-

tures

Linked or Un-

linked

Verify whether

or not two

successfully

generated sig-

natures are

linked
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• MIMO.LRS.Setup: a PPT algorithm that takes the security parameter λ and

produces the Public Parameters (Pub-Params).

• MIMO.LRS.KeyGen: a PPT algorithm that by taking the Pub-Params, it

produces a pair of keys: the public-key pk and the private-key sk.

• MIMO.LRS.SigGen: a PPT algorithm that receives the Pub-Params, a signer’s

private-keys sk(k)
π where sk(k)

π denotes the k’th input private key of signer π,

for k = 1, ..., Nin, a message µ, and the list L of pk’s in the ring (as in 5.1).

We defined w as the size of the ring and Nin as the number of input wallets

(useful in the MIMO.LRCT protocol). This algorithm outputs a signature

σL(µ).

L ,
{

pk
(k)
i

}
i∈[w],k∈[Nin]

(5.1)

• MIMO.LRS.SigVer: a PPT algorithm that takes Pub-Params, a signature

σL(µ), a list L of pk’s and the message µ, and it verifies if this signature

was legitimately created, this algorithm outputs either: Accept or Reject.

• MIMO.LRS.SigLink: a PPT algorithm that inputs two valid signatures σL(µ1)

and σL(µ2) and it anonymously determines if these signatures were produced

by same signer π. Thus, this algorithm has a deterministic output: Linked

or Unlinked.

Correctness Requirements:

• MIMO.LRS.SigGen Correctness: this guarantees that valid signatures signed

by honest signers will be accepted by a verifier with overwhelming probabil-

ity.

• MIMO.LRS.SigLink Correctness: this ensures that if two signatures σL(µ1)

and σL(µ2) are signed by an honest signer π, SigLink will output Linked

with overwhelming probability.
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5.1.2 Oracles for adversaries

The following oracles are available to any adversary who tries to break the security

of an MIMO.LRS scheme:

• pk
(k)
i ←↩ JO(⊥). The Joining Oracle, on request, adds new user(s) to the

system. It returns the public-key(s) pk
(k)
i .

• sk
(k)
i ← CO(pk

(k)
i ). The Corruption Oracle, on input a pk

(k)
i that is a query

output of JO, returns the corresponding sk
(k)
i .

• σ′L(µ)← SO(w,L, pk(k)
π , µ). The Signing Oracle, on input a group size w, a

set L of w pk(k)’s, the signer’s pk(k)
π , and a message µ, this oracle returns a

valid signature σ′L(µ).

5.1.3 Security Game Definition for MIMO.LRS

• One-time Unforgeability. One time unforgeability for the MIMO.LRS

scheme is defined in the following game between a simulator S and an adver-

sary A who has access to the oracles JO, CO, SO and the random oracle:

– S generates and gives the list L of pk(k)’s to A.

– A may query the oracles according to any adaptive strategy.

– A gives S a ring signature size w, a set L of w pk(k)’s, a message µ and

a signature σL(µ).

A wins the game if:

1. MIMO.LRS.SigVer(σL(µ))=Accept.

2. pk(k)’s in the L are outputs from JO oracle.

3. σL(µ) is not an output of SO.

4. No signing key pk(k)
π was queried more than once to SO.

5. ∀i ∈ [w] ∃k ∈ [Nin] s.t. pk
(k)
i is not corrupted.
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The advantage of the one-time unforgeability in the MIMO.LRS scheme is

denoted by

Advantageot−unfA (λ) = Pr[A wins the game ]

Definition 5.1 (One-Time Unforgeability). The MIMO.LRS scheme is one-

time unforgeable if for all PPT adversary A, Advantageot−unfA (λ) is negli-

gible.

• Unconditional Anonymity. It should be infeasible for an adversary A

to distinguish a signer’s pk(k) with probability larger than 1/2, even if the

adversary has unlimited computing resources. This property for MIMO.LRS

schemes is defined in the following game between a simulator S and an

unbounded adversary A.

– A may query JO according to any adaptive strategy.

– A gives S the L = {pk
(k)
0 , pk

(k)
1 }k∈[Nin], which is the output of the JO,

and a message µ.

– S flips a coin b = {0, 1}, then S computes the signature σb =

MIMO.LRS.SigGen(L, sk
(k)
b , µ,Pub-Params). This signature is given to

A.

– A outputs a bit b′.

– The output of this experiment is defined to be 1 if b = b′, or 0 “zero”

otherwise.

A wins the game if:

1. pk
(k)
0 and pk

(k)
1 cannot be used by CO and SO.

2. A outputs b′ such b = b′.

The unconditional anonymity advantage of the MIMO.LRS scheme is denoted

by

AdvantageAnonA (λ) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
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Definition 5.2 (Unconditional Anonymity). The MIMO.LRS scheme

is unconditional anonymous if for any unbounded adversary A,

AdvantageAnonA (λ) is zero.

• Linkability. It should be infeasible for an adversaryA to unlinked two valid

MIMO.LRS signatures which were correctly generated with same sk(k)
π . To

describe this, we use the interaction between a simulator S and an adversary

A:

– The A queries the JO multiple times.

– The A outputs two signatures σL(µ) and σ′L′(µ
′) and two lists L and L′

of pk(k)’s.

L′ ,
{

pk
′(k)
i

}
i∈[w],k∈[Nin]

(5.2)

A wins the game if:

1. By calling MIMO.LRS.SigVer on input σL(µ) and σ′L′(µ
′), it outputs

Accept on both inputs.

2. The pk(k)’s in L and L′ are outputs of JO.

3. Finally, it gets unlinked, when calling MIMO.LRS.SigLink on input σL(µ)

and σ′L′(µ
′).

Thus the advantage of the linkability in the MIMO.LRS scheme is denoted

by

AdvantageLinkA (λ) = Pr[A wins the game].

Definition 5.3 (Linkability). The MIMO.LRS scheme is linkable if for all

PPT adversary A, AdvantageLinkA is negligible.

• Non-slanderability. It should be infeasible for an adversary A to linked

two valid MIMO.LRS signatures which were correctly generated with different

sk(k)’s. This means that an adversary can frame an honest user for signing

a valid signature so the adversary can produce another valid signature such
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that the MIMO.LRS.SigLink algorithm outputs linked. To describe this, we

use the interaction between a simulator S and an adversary A:

– The S generates and gives the list L of pk(k)’s to A.

– The A queries the JO and CO to obtain pk(k)
π and sk(k)

π , respectively.

– A gives the generated parameters to S.

– S uses the sk(k)
π and calls the SO to output a valid signature σL(µ),

which is given to A.

– The A uses the remaining keys of the ring signature (w − 1) to create

a second signature σ′L(µ) by calling the SO algorithm.

A wins the game if:

1. The MIMO.LRS.SigVer, on input σL(µ) and σ′L(µ), outputs Accept.

2. The keys pk(k)
π and sk(k)

π were not used to generate the second signature

σ′L(µ).

3. When calling the MIMO.LRS.SigLink on input σL(µ) and σ′L(µ), it out-

puts linked.

Thus the advantage of the non-slanderability in the MIMO.LRS scheme is

denoted by

AdvantageNSA (λ) = Pr[A wins the game].

Definition 5.4 (Non-Slanderability). The MIMO.LRS scheme is non-

slanderable if for all PPT adversary A, AdvantageNSA is negligible.

5.2 MIMO.L2RS Scheme construction

In this section, we construct a lattice-based version of the MIMO.LRS. The scheme

MIMO.L2RS = (MIMO.L2RS.Setup, MIMO.L2RS.KeyGen, MIMO.L2RS.SigGen,

MIMO.L2RS.SigVer, MIMO.L2RS.SigLink) works as follows.
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5.2.1 MIMO.L2RS.Setup

By receiving the security parameter λ, this MIMO.L2RS.Setup algorithm randomly

chooses A ←↩ R2×(m−1)
q and H ←↩ R2×(m−1)

q . This outputs the public parameters

(Pub-Params): A and H.

Remark 5.5. To prevent malicious attack, MIMO.L2RS.Setup incorporates a trap-

door in A or H, in practice MIMO.L2RS.Setup would generate A and H based on

the cryptographic Hash function H2 evaluated at two distinct and fixed constants.

Definition 5.6 (Function MIMO.L2RS.Lift). This function maps R2
q to R2q

with respect to a public parameter A ∈ R2×(m−1)
q . Given a ∈ R2

q, we let

MIMO.L2RS.Lift(A, a) , (2 ·A,−2 · a + q) ∈ R2×m
2q with q = q · (1, 1)T .

5.2.2 Key Generation - MIMO.L2RS.KeyGen

This algorithm receives the public parameter Pub-Param: A ∈ R2×(m−1)
q , then it

generates a key pair in R2
q, we:

• Pick (s1, . . . , sm−1) with every component chosen uniformly and indepen-

dently with coefficients in (−2γ, 2γ).

• Define S = (s1, . . . , sm−1)T ∈ R1×(m−1)
q .

• Compute a = (a1, a2)T = A ·S mod q ∈ R2
q. The a and S are the public-key

pk and the private-key sk, respectively.

This MIMO.L2RS.KeyGen algorithm is described in the following Algorithm 10.

Algorithm 10 MIMO.L2RS.KeyGen - Key-pair Generation (a,S)

Input: Pub-Param: A ∈ R2×(m−1)
q .

Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.KeyGen(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ←↩ (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

3: Compute a = (a1,a2)T = A · S mod q ∈ R2
q .

4: return (a,S).
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5.2.3 Signature Generation - MIMO.L2RS.SigGen

The MIMO.L2RS.SigGen algorithm inputs the user’s private-key S
(k)
(in),π, the mes-

sage µ, the list of user’s public-keys L′ and the public parameters Pub-Params:

H ∈ R1×(m−1)
q and A ∈ R1×(m−1)

q . This algorithm outputs the signature

σL′(µ). We call π the index in {1, . . . , w} of the user or signatory who wants

to sign a message µ. For a message µ ∈ {0, 1}∗, the fixed list of public-keys

L = {a(k)
(in),1, . . . , a

(k)
(in),w} and the private-key S

(k)
(in),π which corresponds to a

(k)
(in),π

with 1 ≤ π ≤ w and k ∈ [1, Nin + 1]; the following computations are performed:

1. We define the linkability tag as H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where

H is the fixed public parameter for all users, and h(k) = H · S(k)
(in),π ∈ R2

q.

We consider S
(k),T
(in),π ∈ R

1×(m−1)
q as an element in R2q and let S

(k),T
(in),2q,π =(

S
(k),T
(in),π, 1

)
∈ R1×m

2q , such that H
(k)
2q · S

(k),T
(in),π = q ∈ R2q.

2. The π’s public-key is lifted fromR1×m
q toR1×m

2q , so by calling the lift function

MIMO.L2RS.Lift(A, a
(k)
(in),π), we get A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π + q) ∈ R2×m
2q .

3. Note that A
(k)
2q,π · S

(k),T
(in),π = q ∈ R2q

4. By choosing a random vector u(k) = (u1, . . . , um)T , where ui ←↩

Dn
σ , for 1 ≤ i ≤ m, we calculate cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π ·

u(k)
}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
.

5. We choose random vector t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dn

σ , for 1 ≤

j ≤ m, then for (i = π+ 1, . . . , w, 1, 2, . . . , π− 1), after lifting from R1×m
q to

R1×m
2q , using MIMO.L2RS.Lift(A, a

(k)
(in),i), we obtain A

(k)
2q,i = (2 ·A,−2 ·a(k)

(in),i+

q) ∈ R2×m
2q . Then, we compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i·t

(k)
i +

q · ci
}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
.

6. Select a random bit b ∈ {0, 1} and finally compute t(k)
π ← u(k) + S

(k)
2q,π · cπ ·

(−1)b
(k)

using rejection sampling (Definition 3.8).

7. Output the signature σL′(µ) =
(
c1,
{
t

(k)
1 , . . . , t(k)

w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.
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Remark 5.7. π adds a record to homomorphically compute and verify the amount

preservation property; this uses the homomorphic commitment scheme (defined

in Section 5.5.1). The result of this computation is a commitment to zero. This

new record is placed in the position (Nin + 1) and then a list L′ is defined as

(5.13) (Section 5.6 provides further explanation of this record within the proposed

cryptocurrency protocol). Contrary, the linking tags (or h(k)) only needs Nin since

h(k) are tags generated based on the number of input secret keys.

A formal description of this algorithm is shown in Algorithm 11.

Algorithm 11 MIMO.L2RS.SigGen - MIMO Signature Generation σL′(µ)

Input: {S(k)
(in),π

}k∈[Nin+1], µ, L′ as in (5.13), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.SigGen(S

(k)
(in),π

, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)
(in),π

∈ R2
q .

4: Call MIMO.L2RS.Lift(A,a
(k)
(in),π

) to obtain A
(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ←↩ Dnσ , for 1 ≤ i ≤ m.

6: Compute cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call MIMO.L2RS.Lift(A,a
(k)
(in),i

) to obtain A
(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do
13: Choose b(k) ←↩ {0, 1}.
14: Let t

(k)
π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)
, where S

(k)
2q,π = [(S

(k)
π )T , 1]T .

15: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π · cπ‖2

2σ2

)
cosh

( 〈t(k)π ,S
(k)
2q,π · cπ〉
σ2

))−1

otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

5.2.3.1 Correctness of MIMO.L2RS.SigGen

Proof. Beyond the required conditions of MIMO.L2RS.SigVer, we claim that

if σL′(µ) =
(
c1,
{
t

(k)
1 , . . . , t(k)

w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
is the output of the

MIMO.L2RS.SigGen algorithm on input (µ, L,Sπ,Pub-Params), then the output

of MIMO.L2RS.SigVer on input (µ, L, σL(µ)) should be accepted. We need to show

that when MIMO.L2RS.SigVer computes H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·t

(k)
i +q ·

ci
}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
, the result is equal to c1. We also show
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that this H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
= ci+1 for 1 ≤ i ≤ w − 1 in MIMO.L2RS.SigVer. In this evaluation,

we consider two scenarios, one when i 6= π and i = π:

• For i 6= π, in MIMO.L2RS.SigGen we have ci+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t
(k)
i + q · ci

}
k∈[Nin+1]

)
, while in MIMO.L2RS.SigVer we compute

ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·t

(k)
i +q ·ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·t

(k)
i +q ·

ci
}
k∈[Nin+1]

)
. These are equal since A

(k)
2q,i ·t

(k)
i +q ·ci (in MIMO.L2RS.SigGen)

= A
(k)
2q,i · t

(k)
i + q · ci (in MIMO.L2RS.SigVer); and H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

(in MIMO.L2RS.SigGen) = H
(k)
2q ·t

(k)
i +q ·ci

}
k∈[Nin+1]

(in MIMO.L2RS.SigVer).

• For i = π, in MIMO.L2RS.SigGen we have cπ+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
,

whereas in MIMO.L2RS.SigVer we calculate cπ+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · t(k)

π + q · cπ
}
k∈[Nin+1]

,
{
H

(k)
2q · t(k)

π +

q · cπ
}
k∈[Nin+1]

)
. In this case, we need to show that cπ+1 (in

MIMO.L2RS.SigGen) = cπ+1 (in MIMO.L2RS.SigVer). In doing so, the

following equalities need to be proved:

1. A
(k)
2q,π ·u(k) = A

(k)
2q,π ·t(k)

π +q ·cπ, which is equivalent to A
(k)
2q,π ·(u(k)−t(k)

π )

= q · cπ. Here, we replace t(k)
π as defined in Algorithm 11, to obtain:

A
(k)
2q,π · (u(k) − u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

) = q · cπ ⇐⇒

−A
(k)
2q,π · S

(k)
2q,π · cπ · (−1)b

(k)

= q · cπ ⇐⇒

−q · cπ · (−1)b = q · cπ

We distinguish two cases for b:

– When b = 0, we verify that -q · cπ = q · cπ mod 2q.

– When b = 1, we have q · cπ = q · cπ mod 2q.
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2. H
(k)
2q · u(k) = H

(k)
2q · t(k)

π + q · cπ, which means that:

H
(k)
2q · (u(k) − t(k)

π ) = q · cπ ⇐⇒

H
(k)
2q · (u(k) − u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

) = q · cπ ⇐⇒

−H
(k)
2q · S

(k)
2q,π · cπ · (−1)b = q · cπ ⇐⇒

−q · cπ · (−1)b = q · cπ

We distinguish between two cases:

– When b = 0, it is verified that −q · cπ = q · cπ mod 2q.

– When b = 1, we have q · cπ = q · cπ mod 2q.

5.2.4 Signature Verification - MIMO.L2RS.SigVer

This is described in Algorithm 12. Furthermore, in the following theorem, we show

the bound of βv which is used in this verification algorithm (MIMO.L2RS.SigVer).

Algorithm 12 MIMO.L2RS.SigVer - MIMO Signature Verification
Input: σL′ (µ) as in (5.16), L′ as in (5.13), µ, and Pub-Params.
Output: Accept or Reject
1: procedure MIMO.L2RS.SigVer(σL′ (µ), L′, Pub-Params)
2: for (1 ≤ k ≤ Nin + 1) do

3: if H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q then Continue

4: for (i = 1, . . . , w) do
5: for (1 ≤ k ≤ Nin + 1) do

6: Call MIMO.L2RS.Lift(A,a
(k)
(in),i

) to obtain A
(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

7: if ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·t

(k)
i +q·ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·t

(k)
i +q·ci

}
k∈[Nin+1]

)
then Continue

8: else if ‖t(k)i ‖2 ≤ βv (the acceptance bound based on [DDLL13]) then Continue

9: else if ‖t(k)i ‖∞ < q/4 then Continue

10: if c1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1]

,
{
h
(k)
2q · t

(k)
w + q · cw

}
k∈[Nin+1]

)
then Accept

11: else Reject

12: return Accept or Reject

Theorem 5.8. Let βv = ησ
√
nm and q/4 >

(√
2(λ+ 1) ln 2 + 2 ln (nm)

)
σ and

σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)

w

}
k∈[Nin+1]

,
{
h(k)
}
k∈[Nin]

)
be generated based on Algo-

rithm 11. Then the output of Algorithm 12 on input σL′(µ) is accepted with prob-

ability 1− 2−λ.
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Proof. In this proof, we start mentioning that in BLISS [DDLL13], for a desired

expected rejection and repetition M , if we take the definition of α where M = e
1

2α2 ,

then t(k)
π will be indistinguishable from Dσ if σ ≥ α · ‖S(k)

2q,π · cπ‖ [Section 3.2 in

[DDLL13]]. We also use [lemma 4.4, parts 1 and 3, in [Lyu12]]. The part 3

of this lemma shows that the bound on Euclidean norm βv = ησ
√
nm, for a

given η > 1, has a probability Pr[‖t(k)
i ‖2 > ησ

√
nm] ≥ 1 − 2λ. In addition,

the bound on infinity norm (‖ti‖∞ < q/4) is analysed in part 1 of this lemma

where its union bound is also considered. It turns out that η is required such

q/4 > ησ >
(√

2(λ+ 1) ln 2 + 2 ln (nm)
)
σ, except with probability of 2−λ.

5.2.5 Signature Linkability - MIMO.L2RS.SigLink

The MIMO.L2RS.SigLink algorithm, illustrated in Algorithm 13, takes two

signatures as input: σL(µ1) and σ′L′(µ2), and it outputs either Linked if these

signatures were generated by same signatory, or Unlinked, otherwise. Given

public-keys’ lists L and L′, and two signatures: σL(µ1) and σ′L′(µ2), which can

be described as: σL(µ1) =
(
c1,µ1 ,

{
t

(k)
1,µ1

, . . . , t(k)
w,µ1

}
k∈[Nin+1]

,
{
h(k)
µ1

}
k∈[Nin]

)
and

σ′L′(µ2) =
(
c1,µ2 ,

{
t

(k)
1,µ2

, . . . , t(k)
w,µ2

}
k∈[Nin+1]

,
{
h(k)
µ2

}
k∈[Nin]

)
.

These two signatures must be successfully accepted by the MIMO.L2RS.SigVer

algorithm, then one can verify that the linkability property is achieved if the

linkability tags (h(k)
µ1

and h(k)
µ2

) of the above signatures σL(µ1) and σ′L′(µ2) are

equal.

Algorithm 13 L2RS.SigLink - Signature Linkability

Input: σL(µ1) and σ′L′(µ2)
Output: Linked or Unlinked

1: procedure MIMO.L2RS.SigLink(σL(µ1), σ′L′(µ2))

2: if
(

MIMO.L2RS.SigVer(σL(µ1)) = Accept and MIMO.L2RS.SigVer(σ′L′(µ2))

= Accept
)

then Continue [

3: else if h(k)
µ1

= h(k)
µ2

then Linked
4: else Unlinked ]

5: return Linked or Unlinked



Chapter 5: The MIMO of L2RS and LRCT 99

5.2.5.1 Correctness of MIMO.L2RS.SigLink

Proof. We show that an honest user π who signs two messages µ1 and µ2 in the

MIMO.L2RS scheme with the list of public-keys L, obtains a Linked output from

MIMO.L2RS.SigLink algorithm with overwhelming probability. As shown in Algo-

rithm 13, two signatures σL(µ1) and σL(µ2) were created, and then successfully

verified by MIMO.L2RS.SigVer. Therefore, the linkability tags h(k)
µ1

and h(k)
µ2

must

be equal. To prove this, we show that:

H
(k)
2q,µ1

=
(
2 ·H,−2 · h(k)

µ1
+ q
)
∈ R2×m

2q ,where

H = Pub-Param and h(k)
µ1

= (H · S(k)
(in),π + q) ∈ R2

q

H
(k)
2q,µ2

=
(
2 ·H,−2 · h(k)

µ2
+ q
)
∈ R2×m

2q ,where

H = Pub-Param and h(k)
µ2

= (H · S(k)
(in),π + q) ∈ R2

q

The first parts of the linkability tag in both MIMO.L2RS signatures have same

equality with following probability:

Pr
[
2 ·H = 2 ·H

]
= 1.

Ultimately, the second part uses the honest user’s private-key S
(k)
(in),π is used, so we

conclude that:

Pr
[
− 2 · h(k)

µ1
+ q + 2 · h(k)

µ2
− q = 0

]
= 1.

5.3 MIMO.L2RS - Security Analysis

Theorem 5.9 (One-Time Unforgeability). Suppose
√

q4n

2(γ+1)·(m−1)·n is negligible in

n, 1
|Sn,κ| is negligible and y = h is polynomial in n, where h denotes the number
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of queries to the random oracle H1. If there is a PPT algorithm against one-time

unforgeability of MIMO.L2RS with non-negligible probability δ, then there exist a

PPT algorithm that can extract a solution to the MSISKq,m,k,β problem (with β =

2βv) with non-negligible probability

(
δ− 1

|Sn,κ|

)
·
(
δ− 1
|Sn,κ|
y
− 1
|Sn,κ|

)
−
√

q4n

2(γ+1)·(m−1)·n .

Proof. As stated in [DDLL13], this MIMO.L2RS scheme relies on the MSISKq,m,k,β

problem to be secure against any existential forger. This means that a forgery

algorithm succeeds with a negligible probability and so we conclude that under

this probability, the attacker will also find a solution to the MSISKq,m,k,β prob-

lem. To prove this, we start replacing the MIMO.L2RS.SigGen algorithm with

MIMO.L2RS.Hybrid-1 and MIMO.L2RS.Hybrid-2 algorithms that are used to simu-

late the creation of the signatures, until we obtain an algorithm that breaks the

MSISKq,m,k,β problem. These Hybrid algorithms are illustrated in Algorithm 14

and Algorithm 15, respectively.

In MIMO.L2RS.Hybrid-1, the output of the random oracle H1 is chosen at random

from Sn,κ ⊆ R2q and then it is programmed, without checking the value of A
(k)
2q,π ·

u(k) and H
(k)
2q · u(k) being already set. This equality can be described as:

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1]

,{
h

(k)
2q · t(k)

w + q · cw
}
k∈[Nin+1]

)
=

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
Every time the MIMO.L2RS.Hybrid-1 is called, the probability of generating u,

(such that A
(k)
2q,π · u(k) and H

(k)
2q · u(k) are equal to one of the previous output

that was queried), is at most 2−n+1. We define that the probability of getting a

collusion each time is at most h · 2−n+1, where “h” is the number of calls to the

random oracle H1, whereas the probability of occurring a collision after “o” queries

to the MIMO.L2RS.Hybrid-1 is at most o · h · 2−n+1, which is negligible (Based on

[DDLL13], Lemma 3.4).

After analyzing how c1 can be forged, we evaluate the t
(k)
1 , . . . , t(k)

w of the

MIMO.L2RS scheme. We claim that these are forgeable when an attacker finds
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Algorithm 14 MIMO.L2RS.Hybrid-1

Input: {S(k)
(in),π

}k∈[Nin+1], µ, L′ as in (5.13), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.Hybrid-1(S

(k)
(in),π

, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)
(in),π

∈ R2
q .

4: Call L2RS.Lift(A,a
(k)
(in),π

) to obtain A
(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ←↩ Dnσ , for 1 ≤ i ≤ m.

6: Choose at random cπ+1 ←↩ Sn,κ
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A,a
(k)
(in),i

) to obtain A
(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do
13: Choose b(k) ←↩ {0, 1}.
14: Let t

(k)
π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)
, where S

(k)
2q,π = [(S

(k)
π )T , 1]T .

15: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π · cπ‖2

2σ2

)
cosh

( 〈t(k)π ,S
(k)
2q,π · cπ〉
σ2

))−1

otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

a PPT algorithm F to solve the MSISKq,m,k,β problem. This attack can be simu-

lated using the MIMO.L2RS.Hybrid-2 shown in Algorithm 15, where tπ is directly

chosen from the distribution Dn
σ (Based on [DDLL13], Lemma 3.5).

The public-key A
(k)
2q,π ∈ R2×m

2q is generated such A
(k)
2q,π ·S

(k),T
(in),π = q ∈ R2

2q, so finding

a vector v such that A
(k)
2q,π ·v = 0 mod q with 0 = (0, 0)T . We denote y = h where

y is the number of times the random oracle H1 is programmed during this attack.

Then this attack is performed as follows:

1. Random coins are selected for the forger φ and signer ψ.

2. The random oracle H1 is called to generate the responses of the users in the

L2RS scheme, (c1, . . . , cw)←↩ Sn,κ.

3. These create a SubRoutine that takes as input (A
(k)
2q,π, φ, ψ, c1, . . . , cw).

4. F is initialized and run by providing the A
(k)
2q,π and forger’s random coins φ.

5. The SubRoutine signs the message µ using the signer’s coins ψ in the

MIMO.L2RS.Hybrid-2, this produces a signature σL(µ).
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6. During the signing process, F calls the oracle H1 and answers are placed in

the list (c1, . . . , cw), the queries are kept in a table in the event that same

queries are used in this oracle.

7. F is stopped and it outputs a forgery that is the SubRoutine’s result

(c1,
{
t

(k)
1 , . . . , t(k)

w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

), with negligible probability δ. This

output has to be successfully accepted by the MIMO.L2RS.SigVer algorithm.

If the random oracle was not called using some input
{
A

(k)
2q,i · t

(k)
i + q ·

ci
}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

, then F has 1/|Sn,κ| chances of producing

a c such that c = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q · t(k) + q · c

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t(k) + q · c
}
k∈[Nin+1]

)
. This turns out that δ − 1/|Sn,κ| be the probability that

c = cj for some j.

Algorithm 15 MIMO.L2RS.Hybrid-2

Input: {S(k)
(in),π

}k∈[Nin+1], µ, L′ as in (5.13), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.Hybrid-2(S

(k)
(in),π

, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)
(in),π

∈ R2
q .

4: Call L2RS.Lift(A,a
(k)
(in),π

) to obtain A
(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ←↩ Dnσ , for 1 ≤ i ≤ m.

6: Choose at random cπ+1 ←↩ Sn,κ.
7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A,a
(k)
(in),i

) to obtain A
(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ←↩ Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do
13: Choose b(k) ←↩ {0, 1}.

14: Choose t
(k)
π ←↩ Dn×mσ

15: Continue with probability
1

M
otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

Forgery 1. Let’s consider the situation that cj+1 is the result after using F

which is cj+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ′,
{
A

(k)
2q · t′(k) + q · cj

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t′(k) + q · cj
}
k∈[Nin+1]

)
. Then by comparing this with a legitimate signature, we

have:
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H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q ·t(k)+q·cj

}
k∈[Nin+1]

,
{
H

(k)
2q ·t(k)+q·cj

}
k∈[Nin+1]

)
=

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ′,
{
A

(k)
2q ·t′(k)+q·cj

}
k∈[Nin+1]

,
{
H

(k)
2q ·t′(k)+q·cj

}
k∈[Nin+1]

)
F will find a preimage of cj if µ 6= µ′ or A

(k)
2q · t(k) + q · cj 6= A

(k)
2q · t′(k) + q · cj

or H
(k)
2q · t(k) + q · cj 6= H

(k)
2q · t′(k) + q · cj. Then, we have with overwhelm-

ing probability that µ = µ′ and A
(k)
2q · t(k) + q · cj = A

(k)
2q · t′(k) + q · cj

and H
(k)
2q · t(k) + q · cj = H

(k)
2q · t′(k) + q · cj. These equalities will result in:

A
(k)
2q (t(k)− t′(k)) = 0 mod q and H

(k)
2q (t(k)− t′(k)) = 0 mod q. We assume that both

t and t′ are different and they met the MIMO.L2RS.SigVer conditions, so it yields

t− t′ 6= 0 mod q, and ‖t− t′‖ ≤ 2βv.

Forgery 2. In this scenario, we assume that the MIMO.L2RS scheme can be

forged by an attacker F as it was presented in the Forgery 1 and obtain cj,

then another attacker can generate (c′j, . . . , c
′
w) ←↩ Sn,κ by replaying the first

attack and using same message µ. We use the forking lemma [BN06] to show the

probability of cj = c′j and the forger uses an oracle response c′j is at least:

(
δ − 1

|Sn,κ|

)
·

(
δ− 1
|Sn,κ|
y
− 1
|Sn,κ|

)
(5.3)

Therefore, with the probability (5.3), F creates a signature σL(µ) =(
c′1,
{
t
′(k)
1 , . . . , t

′(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
where A

(k)
2q ·t(k)+q·cj = A

(k)
2q ·t′(k)+q·cj

and H
(k)
2q · t(k) + q · cj = H

(k)
2q · t′(k) + q · cj. We now obtained: A

(k)
2q · (t(k) −

t
′(k)) = q(cj − c′j) mod 2q and H

(k)
2q · (t(k) − t

′(k)) = q(cj − c′j) mod 2q. Since

cj − c′j 6= 0 mod 2, so in both equations, we have t(k) − t
′(k) 6= 0 mod 2q where

‖t(k) − t
′(k)‖∞ < q/2. By applying modq reduction, we find a small non-zero vec-

tor v(k) = t(k) − t
′(k) 6= 0 mod q. This v(k) will compute A

(k)
2q · v(k) = 0 mod q

and H
(k)
2q · v(k) = 0 mod q with ‖v(k)‖ ≤ 2βv. Since v(k) is same for both

A
(k)
2q and H

(k)
2q , we only use the former to continue this analysis. We say that

A
(k)
2q mod q = 2(A,−a(k)) mod q, then 2(A,−a(k))v(k) = 0 mod q, this implies

that (A,−a(k))v(k) = 0 mod q, since q is odd. The probability of success of an

attacker in MIMO.L2RS.Hydrid-3 differs by a negligible amount from the success
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probability in MIMO.L2RS.KeyGen and is thus non-negligible. Therefore, this vec-

tor v will be a solution to the MSISKq,m,k,β problem, where β = 2βv, with non-

negligible probability and with respect to (A,−a(k)) over R2
q. Furthermore, no-

tice that MIMO.L2RS.Hybrid-2 shown in Algorithm 15 no longer uses the private-

key S(k)
π , except for generating A

(k)
2q,π and H

(k)
2q to obtain the final MSISKq,m,k,β

solution. For A
(k)
2q,π, we modified the MIMO.L2RS.KeyGen algorithm with the

MIMO.L2RS.Hydrid-3 game shown in Algorithm 16, where the public-key a(k) is

uniformly and randomly taken as a(k) ←↩ R2
q. On the other hand, for H

(k)
2q , we chose

the linking taq uniformly and randomly as h(k) ←↩ R2
q. By the argument of the

Leftover Hash Lemma (LHL) - Lemma 3.5 and our assumption that
√

q4n

2(γ+1)·(m−1)·n

is negligible in n.

Algorithm 16 MIMO.L2RS.Hybrid-3 (a,S)

Input: Pub-Param: A.

Output: (a,S), being the public-key and the private-key, respectively.

1: procedure MIMO.L2RS.hybrid-3(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ←↩ (−2γ, 2γ)n, for 1 ≤ i ≤

m− 1

3: Choose a←↩ R2
q

4: return (a,S).

Theorem 5.10 (Anonymity). Suppose
√

q4n

2(γ+1)·(m−1)·n is negligible in n with an

attack against the unconditional anonymity that makes h queries to the random

oracle H1, where h, w are polynomial in n, then the MIMO.L2RS scheme is uncon-

ditionally secure for anonymity as defined in Definition 5.2.

Proof. We prove the anonymity of this scheme using the sequence-of-games ap-

proach [Sho04] where we make changes between successive games. In doing so, we

use the “transition based on indistinguishability”. We can start this analysis by:

Game 0: Suppose that an attacker A is given the list of pk’s L =

{a(k)
0 , a

(k)
1 }k∈[Nin+1], the signature σL(µ), message µ, and the random oracle model
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(H1). The key generation algorithm creates the pair of users’ keys in this ring sig-

nature: Private-Keys ←↩ {S(k)
0 ,S

(k)
1 }k∈[Nin+1] and the Public-Keys ←↩ (a

(k)
0 , a

(k)
1 );

a user b is chosen uniformly at random from the list L = {a(k)
0 , a

(k)
1 }, then the

signature σL(µ) = MIMO.L2RS.SigGen(S
(k)
b , µ, L,Pub-Param) is generated. So

in Game 0, a PPT adversary A outputs a guess b′ ∈ {0, 1}; thus in the event

Game 0, A succeeds in breaking ambiguity Game 0(b = b′) if Pr[Game 0] ≤
1
2

+ non-negl(λ).

Game 1: Changes in this game are made to the user π in the second part of the

linkability tag h(k) = (H ·S(k)) ∈ R2
q, in signature of user π, and public-key a(k) =

(A · S(k)) ∈ R2
q in the MIMO.L2RS.KeyGen algorithm. The h(k) and a(k) are now

randomly chosen from R2
q. We claim that |Pr[Game 0]−Pr[Game 1]| ≤ εLHLG1

.

Where εLHLG1
is the advantage of some efficient algorithm which is negligible. In

both cases h(k) = (H ·S(k)) ∈ R2
q and a(k) = (A ·S(k)) ∈ R2

q, we know that H and

A are uniform and S(k) is chosen small and with coefficients in (−2γ, 2γ). When

S(k) is multiplied by H and A respectively, it gives h(k) and a(k) that are close to

uniform over R2
q . By applying the Leftover Hash Lemma (LHL) - Lemma 3.5,

the statistical distance between the distribution of (h(k) mod q and a(k) mod q)

and the uniform distribution on R2
q × R2

q is at most n · 1
2
·
√

q4n

2(γ+1)·(m−1)·n . We

conclude that in Game 1:

|Pr[Game 0]− Pr[Game 1]| ≤ n · 1
2
·
√

q4n

2(γ+1)·(m−1)·n . (5.4)

Game 2: This time a change is made in the second part of the remaining public-

keys ai (1 ≤ i ≤ w, i 6= π) which are in the ring signature list L. They are now

randomly chosen as a
(k)
i ←↩ R2

q. It turns out that |Pr[Game 1]−Pr[Game 2]| ≤

εLHLG2
.

Where εLHLG2
is the advantage of some efficient algorithm which is negligible. We

consider that for (i = 1 to w where i 6= π), we know that a
(k)
i = (A · S(k)

i mod q)

are uniform and all S
(k)
i ’s are chosen small with coefficients in (−2γ, 2γ). When

the S
(k)
i ’s are multiplied by Ai’s, it gives (a

(k)
i mod q)’s that are close to uniform
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over R2
q. By applying the Leftover Hash Lemma (LHL) - Lemma 3.5, the statis-

tical distance between the distribution of the (A · S(k)
i mod q)’s and the uniform

distribution on R2
q ×R2

q is at most n · 1
2
·
√

q2n

2(γ+1)·(m−1)·n · (w − 1). So in Game 2,

we conclude that:

|Pr[Game 1]− Pr[Game 2]| ≤ n · 1
2
·
√

q2n

2(γ+1)·(m−1)·n · (w − 1). (5.5)

Game 3: At this time, we make a change in cπ+1. Instead of programming the or-

acle as H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π ·u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q ·u(k)

}
k∈[Nin+1]

)
, it is

now randomly chosen cπ+1 ←↩ Sn,κ. We have that |Pr[Game 2]−Pr[Game 3]| ≤

εG3 where εG3 is the advantage of some efficient algorithm which is negligible. This

scenario outputs a signature σL′(µ) =
(
c1,
{
t

(k)
1 , . . . , t(k)

w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
and programs the oracle as H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π ·u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q ·

u(k)
}
k∈[Nin+1]

)
= cπ+1. Then, the adversary A makes h queries to H1; so the dis-

tinguishing advantage of the signing algorithm and the one in Game 2 is at most

h · 2−n+1. We conclude that in Game 3:

|Pr[Game 2]− Pr[Game 3]| ≤ h · 2−n+1. (5.6)

Game 4: In this game a change is made in t(k)
π . Namely, instead of computing it

as u(k) +S
(k)
2q,π ·cπ · (−1)bit, it is now directly chosen from the Gaussian distribution

Dn
σ . It is argued that |Pr[Game 3]− Pr[Game 4]| ≤ εRSG4

.

Where εRSG4
is the advantage of some efficient algorithm which is negligible. In

previous Games, t(k)
π is computed using rejection sampling - Lemma 3.8, thus it

is always sample from the Gaussian distribution Dn
σ . In this Game, however, t(k)

π

is directly chosen from Dn
σ , this means that the advantage εRSG4

will be zero as

in both Game 3 and Game 4, t(k)
π is having same distribution. In Game 4, we

have:

|Pr[Game 3]− Pr[Game 4]| = 0. (5.7)

Game 5: Finally, in the Game 5, a change is made in the index π. Namely,

instead of choosing π + 1, it will be randomly chosen (1, . . . , w). We claim that
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|Pr[Game 4] − Pr[Game 5]| ≤ εG5 where εG5 is the advantage of some efficient

algorithm which is negligible. In this Game 5, we consider that when π is replaced

by a fixed d, it might produce some collisions with previous queries to the oracle

H1; saying this, the adversary A may make h queries to H1; therefore, the distin-

guishing advantage of the signing algorithm between Game 4 and this Game 5

is at most h · 2−n+1 · w. Finally, in Game 5 we have:

|Pr[Game 4]− Pr[Game 5]| ≤ h · 2−n+1 · w. (5.8)

We also conclude that in Game 5, the adversary’s view is statistical independent

of π, thus Pr[Game 5] = 1
w

.

Combining the probabilities of the above games (5.4), (5.5), (5.6), (5.7) and (5.8)

we obtain:

|Pr[Game 5]− Pr[Game 0]| ≤ |Pr[Game 1]− Pr[Game 0]|+ |Pr[Game 2]−

Pr[Game 1]|+ |Pr[Game 3]− Pr[Game 2]|+ |Pr[Game 4]− Pr[Game 3]|+

|Pr[Game 5]− Pr[Game 4]|.

By replacing the resulting probabilities, we have:

|Pr[Game 5]− Pr[Game 0]| ≤ 1

w
− 1

2
+ ε, (5.9)

which means that |Pr[Game 5]− Pr[Game 0]| ≤ ε, which itself is smaller than

n · (w − 1)

2
·

(√
q4n

2(γ+1)·(m−1)·n +

√
q2n

2(γ+1)·(m−1)·n

)
+ h · 2−n+1 · (1 + w).

We notice that since h and w are polynomial in n, we get h · 2−n+1 · (1 + w) is

negligible in n. In addition, we can say that

(√
q4n

2(γ+1)·(m−1)·n +
√

q2n

2(γ+1)·(m−1)·n

)
≤

2 ·
√

q4n

2(γ+1)·(m−1)·n , which is negligible by the assumption that
√

q2n

2(γ+1)·(m−1)·n is also
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negligible. Hence we conclude that ε is negligible, meaning that Pr[Game 0] ≤
1
2

+ ε.

Theorem 5.11 (Linkability). The MIMO.L2RS scheme with parameter βv is link-

able in the random oracle model if the MSISKq,m,k,β problem (with β = 2βv) is

hard.

Proof. We construct the algorithm B for the MSISKq,m,k,β problem. This algorithm

runs the linkability attack game (Definition 5.3) as follows:

1. B generates using the MIMO.L2RS.KeyGen algorithm all private-keys S
(k)
i ’s

with the corresponding public-keys a
(k)
i ’s, then B gives S(k)

π to the attacker

A as a response to the attacker’s CO query.

2. A outputs two signatures σL(µ1) and σ′L′(µ
′) along with their correspond-

ing lists L and L′ such that both signatures are successfully verified by

MIMO.L2RS.SigVer, but the linkability tags are different h(k)
µ1
6= h

(k)
µ′ with

k ∈ [Nin].

3. B computes h(k)
µπ = H · S(k)

π mod q, where π is the true signer’s π linkability

tag. This h(k)
µπ tag can then be compared with the linkability tags h(k)

µ1
and

h
(k)
µ′ , output by A, in step 2, and one of them will be different.

4. Without loss of generality, suppose h(k)
µ1
6= h(k)

µπ mod q. Using the fork-

ing lemma [BN06], B rewinds the attacker A to the H1 query corre-

sponding to the MIMO.L2RS.SigVer of the signature σL(µ1). B reruns

A with a different response of H1 and ultimately gets another signature:

σL(µ2) =
(
c1,µ2 ,

{
t

(k)
1,µ2

, . . . , t(k)
w,µ2

}
k∈[Nin+1]

,
{
h(k)
µ2

}
k∈[Nin]

)
. This second sig-

nature is used to extract a solution to the MSISKq,m,k,β problem, in case the

A finds an efficient way to unlink these signatures, as shown in step 7.

5. The adversary A matches the challenge message of both signatures where

H
(k)
2q,µ1

and A
(k)
2q,w,µ1

are kept. Thus we have:
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(a) A
(k)
2q,w,µ1

· t(k)
w,µ1

+ q · cw,µ1 = A
(k)
2q,w,µ1

· t(k)
w,µ2

+ q · cw,µ2 ,

(b) H
(k)
2q,µ1
· t(k)

w,µ1
+ q · cw,µ1 = H

(k)
2q,µ1
· t(k)

w,µ2
+ q · cw,µ2 .

These expressions can be represented as:

(a) A
(k)
2q,w,µ1

· (t(k)
w,µ1
− t(k)

w,µ2
) = q · (cw,µ2 − cw,µ1),

(b) H
(k)
2q,µ1
· (t(k)

w,µ1
− t(k)

w,µ2
) = q · (cw,µ2 − cw,µ1).

Reducing them modq we have (if (cw,µ2 − cw,µ1) 6= 0 mod 2):

(a) A
(k)
2q,w,µ1

· (t(k)
w,µ1
− t(k)

w,µ2
) = 0 mod q,

(b) H
(k)
2q,µ1
· (t(k)

w,µ1
− t(k)

w,µ2
) = 0 mod q.

We denote by t′(k)
w,µ1

, the first (m− 1) ring elements in t(k)
w,µ1

and by t′′(k)
w,µ1

the

m-th ring element in t(k)
w,µ1

, i.e. t(k)
w,µ1
− t(k)

w,µ2
=

 t′(k)
w,µ1
− t′(k)

w,µ2

t′′(k)
w,µ1
− t′′(k)

w,µ2

 ∈ Rm
q , and

using the public-key and linkability parts, we have:

(a) 2 ·A · (t′(k)
w,µ1
− t′(k)

w,µ2
) = −2 · a(k) · (t′′(k)

w,µ1
− t′′(k)

w,µ2
),

(b) 2·H·(t′(k)
w,µ1
−t′(k)

w,µ2
) = −2·h(k)

µ1
·(t′′(k)

w,µ1
−t′′(k)

w,µ2
), where h(k)

µ1
, H·S(k)

π ∈ R2
q.

6. We let S̄
(k)

=
(t
′(k)
w,µ1
−t′(k)w,µ2

)

(t
′′(k)
w,µ1
−t′′(k)w,µ2

)
mod q where (t′′(k)

w,µ1
− t′′(k)

w,µ2
) 6= 0 mod q. We distin-

guish two cases:

(a) If S̄
(k) 6= S(k)

π mod q, since we have A · S̄(k)
= A · S(k)

π = a(k) mod q,

then (S̄
(k) − S(k)) is a small non-zero vector MSISKq,m,k,β solution for

A ∈ R2×(m−1)
q .

(b) If S̄
(k)

= S(k)
π mod q, then h(k)

µ1
= H · S̄(k)

mod q = H · S(k)
π mod q. The

target is to show that h(k)
µ1

= h(k)
µπ mod 2 and h(k)

µ1
= h(k)

µπ mod q. If so,

then we have h(k)
µ1

= h(k)
µπ mod 2q, which is a contradiction with our

assumption at step 4 of this proof. We now prove the first target:

h(k)
µ1

= −2 · h′(k)
µ1

+ q = 1 mod 2 = −2 ·H · S(k)
π + q = h(k)

µπ ,
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where the first and the last equalities follow from definition of h(k) in

second line of Algorithm 11. To show the second target, we have

h(k)
µ1

= −2 · h(k)
µ1

+ q = −2 · h(k)
µ1

mod q

= −2 ·H · S̄(k)
mod q = −2 ·H · S(k)

π mod q = h(k)
µπ ,

where the first and the last equalities follow from definition of h(k) in

second line of Algorithm 11 and the middle equality is true based on

the argument at the beginning of step (6.b).

7. Since (cw,µ2 − cw,µ1) 6= 0 mod 2, we have (t(k)
w,µ1
− t(k)

w,µ2
) 6= 0 mod 2q. In

addition, we know that ‖t(k)
w,µ1
− t(k)

w,µ2
‖∞ < q/2, which implies that (t(k)

w,µ1
−

t(k)
w,µ2

) 6= 0 mod q. Ultimately, we have A · (t(k)
w,µ1
− t(k)

w,µ2
) = 0 mod q and

‖(t(k)
w,µ1
− t(k)

w,µ2
) mod q‖ ≤ 2βv. Therefore, this small non-zero vector (t(k)

w,µ1
−

t(k)
w,µ2

) is the output of the algorithm B, and this vector is a solution to the

MSISKq,m,k,β problem with β = 2βv for a(k) ∈ R2
q.

Theorem 5.12 (Non-Slanderability). For any linkable ring signature, if it satisfies

unforgeability and linkability, then it satisfies non-slanderability.

Proof. Let’s suppose there is a non-slanderability adversary ASland who is given

pki, ski, i 6= π, and i ∈ {1, . . . w}, and he produces a valid signature σ′L(µ) with

linkability tag hσ′L(µ) which is equal to hσL(µ), σL(µ) being the legitimate signature

generated with respect to skπ. This means that ASland can create a signature with

the linkability tag hσL(µ) without knowing skπ. The adversary can also compute

a valid σ′′L(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which hσ′′L(µ) 6= hσ′L(µ). We

give (σ′′L(µ), σ′L(µ)) to the forger, which can turn it to an MSISKq,m,k,β solution.

In particular, it will be computationally secure when two valid signatures created

by different users are unlinked using the L2RS algorithms. An adversary A will

break these properties with negligible probability as demonstrated in Theorems

(5.9 and 5.11), and with these probabilities the A will find a MSISKq,m,k,β solution.
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Therefore, non-slanderability is implied by the definitions of the unforgeability

(Definition 5.1) and linkability (Definition 5.3).

Corollary 5.13 (Non-Slanderability). The MIMO.L2RS scheme is non-slanderable

under the assumptions of Theorem 5.9 and Theorem 5.11.

5.4 Ring Confidential Transaction Protocol

(RCT)

In this section we formally define the RCT protocol which was initially established

in the former RingCT 2.0 protocol [SALY17].

Definition 5.14 (Account or wallet). A wallet has a public component “act”

and a private component “ask”. The act is composed of the user’s pk (or a valid

address) and the coin cn, while the ask is formed of the user’s sk along with the

coin-key ck.

The RCT protocol has five PPT algorithms (RCT.Setup, RCT.KeyGen, RCT.Mint,

RCT.Spend, RCT.Verify). It also satisfies correctness (RCT.Correctness). These

algorithms are summarised in Table 5.2.
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Table 5.2: RCT Algorithms

Algorithm Input Output Description

RCT.Setup
The security pa-

rameter

The public parame-

ters

Public parameters cre-

ation. This calls the

L2RS.Setup

RCT.KeyGen
The public parame-

ters
The pair keys

Public and private

keys creation. This

calls the L2RS.KeyGen

RCT.Mint
The public-key and

the amount ($)
Coins Coins generation

RCT.Spend

The message, the

input wallets,

user ’s input wal-

let, user ’s private

keys, the output

addresses and the

public parameter

The transaction,

the signature and

the group of linking

tags

Amount transfer from

one or more input

wallets to one or more

output wallets. This

also checks double

spending, amount and

range preservation

RCT.Verify
RCT.Spend’s out-

put
Accept/Reject

Verify whether or not

the transactions were

successfully generated

• RCT.Setup: this PPT algorithm takes the security parameter λ and outputs

the public parameters Pub-Params.

• RCT.KeyGen: this PPT algorithm uses the Pub-Params to produce a pair of

keys, the public-key pk and the private-key sk.

• RCT.Mint: a PPT algorithm generating new coins by receiving Pub-Params

and the amount $. This algorithm outputs a coin cn and a coin-key ck.

• RCT.Spend: a PPT algorithm that receives the Pub-Params, a set of input

wallets {IWi}i∈[w] with w being the size of the ring, a user π’s input wallets
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IWπ along with its set of secret keys Kπ, a set of output addresses OA,

some transaction string µ ∈ {0, 1}∗, the output amount $ and the set of

output wallets OW . Then, this algorithm outputs: the transaction TX =

(µ, IW,OW ), the signature sig and a set of transaction/serial numbers TN,

which is used to prevent the double spending coins.

• RCT.Verify: a deterministic PPT algorithm that takes as input the Pub-

Params, the signature sig, the TX, and the TN and verifies if the transaction

was legitimately generated and outputs either: Accept or Reject.

Transaction Correctness requirements: RCT.Correctness ensures that an

honest user (payer) is able to spend or transfer any of his accounts (wallets) into

a group of destination accounts (payee), where this transaction is accepted with

overwhelming probability by a verifier. Thus the correctness of RCT is guaranteed

if for all PPT adversaries A, it holds that:

Pr


RCT.Verify

(
TX, sig, TN

)
= 1:

Pub-Params←↩RCT.Setup(1λ);

(µ, IW,OA)←↩A(Pub-Params, IWπ, Kπ)

with (IWπ, Kπ);

(pk, sk)←↩RCT.KeyGen(Pub-Params);

(cn, ck)←↩RCT.Mint(Pub-Params, $);

(TX, sig, TN)←↩RCT.Spend(µ,

Pub-Params, IWπ, Kπ, IW,OA, $(out)).


=1−neg(λ).

5.4.1 Oracles for adversaries

We now list all the adversarial oracles used in RCT, and we define them as:

• AddGen(i): on input a query number i, this oracle picks randomness τi, runs

algorithm
(
pki, ski

)
← RCT.KeyGen(Pub-Params, τi), and returns the public-

key or one-time address pki.
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• ActGen(i, $i): on input a query number i and an amount $i, it runs

(cni, cki) ← RCT.Mint
(
Pub-Params, $i

)
. Then, ActGen adds i and the ac-

count acti =
(
pki, cni

)
to empty lists I and IW , respectively. ActGen out-

puts (acti, cki) for the one-time address pki, where these addresses are added

to a list PK. The associated secret key with account acti is defined as aski ,

(ski, cki). With this aski, the challenger calls MIMO.L2RS.SigGen(ski, · , · , · )

to determine the transaction number TNi of acti and adds it to a list T N .

• O-Spend(µ, IW, IWπ, OA, $(out),Pub-Params): on input the

transaction string µ, input accounts (wallets) IW contain-

ing IWπ and output addresses OA, it runs (TX, sig, TN) ←

RCT.Spend(µ,Kπ, IW, IWπ, OA, $(out),Pub-Params) and adds the out-

puts to T , where IWπ ∈ IW . We assume that at least one account/address

in IWπ has not been corrupted. We define the set of transaction numbers

in the RCT.Spend queries as T N ∗.

• Corrupt(i): on input query number i ∈ I, uses account key aski to determine

the transaction/serial number TNi of account acti with address pki, then

adds TNi and (TNi, $i) to lists C and B respectively and finally returns τi.

5.4.2 Security Game Definition

The protocol RCT is modeled in terms of balance, anonymity and non-slanderability

for security analysis purposes, which are defined as follows.

Definition 5.15 (Balance). This property requires that any adversary cannot

spend any account without her control and cannot spend her own accounts with

a larger output amount. This security property is guaranteed if for all PPT ad-

versaries A, it holds that:

Pr

A wins :
Pub-Params←↩ LRCT.Setup(1λ);

({IW (k)
i }i∈[w],k∈[Nin], T )←↩ AAddGen,ActGen,O-Spend,Corrupt(Pub-Params)

 ,
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is negl(λ), where adversaries’ oracles are defined in Section 5.4.1. We have that

IW
(k)
i = {pk

(k)
(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin] and T = (TX, sig, TN). These spends can be

transferred to the challenger with the account address pk(out) = {pk
(j)
(out)}j∈[Nout],

where we assume not all of them are corrupted, and at least one of them is honest.

This pk(out) has been created by the AddGen oracle, so the challenger knows all

balances of the spent accounts and output accounts involved in the adversarial

spends T . This means that TX = (µ, IW,OW ) with OW = {OW (j)}j∈[Nout] =

{pk
(j)
(out), cn

(j)
(out)}j∈[Nout] being the output wallet corresponding to output account

pk(out). The adversary A wins this experiment if her outputs satisfy the following

conditions:

1. RCT.Verify(TX, sig, TN) = 1.

2.
∑

k∈E(in)
$

(k)
(in),π <

∑
j∈G(out)

$
(j)
(out), where we let π ∈

[w] s.t. π′s row {pk
(1)
(in),π, . . . , pk

(Nin)
(in),π} are the ones that have

{TN (1)
π , . . . , TN

(Nin)
π } which are found in ActGen, E(in) are the cor-

rupted inputs, and G(out) are the not corrupted outputs in T . For each

TN (k) let $
(k)
(in) be the amount queried to ActGen at the index query i such

TN ⊆ T N . $
(k)
(in) is also defined as equal to zero if IW

(k)
i is equal to some

input wallet IW queried to O-Spend, using same TN, which means that

IW
(k)
i has been spent.

3. TN cannot be the output of previous queries to the O-Spend(·) (i.e. TN ∩

T N ∗ = ∅).

4. pkπ is queried to O-Spend oracle only once.

5. PK ⊆ PK, where PK , {pk
(k)
(in),i}i∈[w],k∈[Nin].

Our extended anonymity property captures two types of attacks (compared to one

type in [SALY17]) that depend on the adversary’s choices for users π0, π1 ∈ [w]

and output amounts $(out),0, $(out),1. It starts with the user anonymity attack where

the adversary selects π0 6= π1 with $(out),0 = $(out),1, while in the amount privacy

attack this adversary chooses π0 = π1 with $(out),0 6= $(out),1. We formally define

this property as:
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Definition 5.16 (Anonymity). This property requires that two proofs of knowl-

edge with the same transaction string µ, input accounts IW , output addresses OA,

distinct both output amounts ($(out),0, $(out),1) and spent accounts IWπ0 , IWπ1 ∈

IW are indistinguishable, meaning that the spender’s accounts and amounts are

successfully hidden among all the honestly generated accounts. The protocol RCT

is called anonymous if for all PPT adversaries A = (A1,A2), it holds that:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b′ = b :

Pub-Params←↩ Setup(1λ);

(µ, IWπ0 , IWπ1 , IW,OA, $(out),0,

$(out),1)←↩ AAddGen,ActGen,O-Spend,Corrupt
1 (Pub-Params);

b←↩ {0, 1};

(TX∗, sig∗b , TN
∗)←↩ RCT.Spend(µ,Kπb , IWπb , IW,

OA, $(out),b,Pub-Params);

b′ ←↩ AO-Spend,Corrupt
2 (Pub-Params, (TX∗, sig∗b , TN

∗))


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

is negl(λ), where adversaries’ oracles are defined in Section 5.4.1. In addition, the

following restrictions should be satisfied:

1. For all b ∈ {0, 1}, any account in IWπi has not been corrupted.

2. Any query in the form of (·, IWπ, ·, ·), such that IWπ ∩ IWπi 6= ∅ has not

been issued to O-Spend oracle.

Definition 5.17 (Non-Slanderability). This property requires that a malicious

user cannot slander any honest user after observing an honestly generated spend-

ing. That is, it is infeasible for any malicious user to produce a valid spending that

shares at least one transaction/serial number with a previously generated honest

spending. The protocol RCT is non-slanderable if for all PPT adversaries A, it

holds that:
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Pr

A wins :

Pub-Params←↩ RCT.Setup(1λ);(
(TX, sig, TN), (TX∗, sig∗, TN∗)

)
←↩ AAddGen,ActGen,O-Spend,Corrupt(Pub-Params)

 ,

is negl(λ), where adversaries’ oracles are defined in Section 5.4.1, and

(TX, sig, TN) is one output of the oracle O-Spend for some (µ, IWπ, IW,OA).

We say A succeeds if the output satisfies:

1. RCT.Verify(TX∗, sig∗, TN∗) = 1,

2. (TX∗, sig∗, TN∗) /∈ T , and

3. TN ∩ C = ∅ but TN ∩ TN∗ 6= ∅.

5.5 Building Blocks Construction

In this section, we describe the construction of the underlying lattice-based prim-

itives that are used in the construction of a MIMO.RCT. This includes a lattice-

based homomorphic commitment (COM) scheme and a MIMO version of L2RS

signatures (specified in Section 5.1) that is used as a Proof of Knowledge (PoK).

The COM and PoK are formally defined in the preliminaries within Chapter 3.

5.5.1 Lattice-based Commitment Construction

The MIMO.LRCT protocol requires a non-interactive homomorphic commitment

(Com) as an essential primitive. We construct the three algorithms: (KeyGen,

Com, Open), using the MIMO.L2RS construction (Section 5.2):

• A ← KeyGen(1λ): A PPT algorithm that produces a public commitment

parameter A ∈ R2×(m−1)
q after receiving the security parameter (λ). In doing

so, we call the MIMO.L2RS.Setup (Section 5.2) to generate A ∈ R2×(m−1)
q .
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• c ← ComA(m, sk): A PPT algorithm that receives the public parameter

A (from KeyGen), the randomness sk and the message formed as m =

(0,m)T ∈ R1×2
q . This algorithm generates the commitment c ∈ R2

q. The

randomness sk ∈ Domsk ⊆ R(m−1)×1
q with every component chosen uniformly

and independently with coefficients in (−2γ, 2γ), is produced by calling the

MIMO.L2RS.KeyGen (Algorithm 10) and the message m ∈ Domm = Rq, then

the commitment c = ComA(m, sk) = A · sk + m ∈ R2
q.

• m′ ← OpenA(c, sk): A PPT algorithm receiving commitment c and random-

ness sk, and it outputs m′. A valid c is opened if (m′ = m). This algorithm

computes m′ = (0,m′)T = OpenA(c, sk) = c−A · sk.

Remark 5.18. Domm is full and not a small subset Rq, whereas Domsk is only a

small domain versus q. These adjustments help us to obtain better parameters

than SISO.LRCT and security against out-of-range attacks.

This homomorphic commitment scheme performs the following operations:

ComA(m, sk) ± ComA(m′, sk′) , ComA(m, sk)± ComA(m′, sk′) mod q

, ComA(m±m′, sk± sk′) mod q. (5.10)

Theorem 5.19 (Hiding). If 1
2

√
q2n

2(γ+1)·(m−1)·n is negligible in security parameter λ,

then the above Com is information theoretically hiding.

Proof. Suppose that a PPT adversary A is given two messages (m,m′), the

public parameter A ∈ R2×(m−1)
q and the randomness sk. A bit b is chosen

uniformly at random from b = {0, 1}, and the commitment is generated as

cb ← ComA(mb, sk) = A · sk + mb. This adversary A outputs a guess b′ ∈ {0, 1},

where A succeeds in breaking the hiding property when (b = b′). We now analyze

the generated commitment cb with a uniformly random element from R2
q. We

know that sk is chosen small with coefficients in (−2γ, 2γ). By applying the Left-

over Hash Lemma (Lemma 3.5), we argue that the statistical distance between the

distribution of c and the uniform distribution onR2
q is at most

(
1
2
·
√

q2n

2(γ+1)·(m−1)·n

)
,

which is negligible in (λ).
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Theorem 5.20 (β−Binding). The described Commitment Scheme is computa-

tionally β−binding if the MSISKq,m,k,2β problem is hard.

Proof. Suppose that an adversary A generates (c, sk, sk′) such that m =

OpenA(c, sk) and m′ = OpenA(c, sk′) with m = (0,m)T ∈ R1×2
q and m′ =

(0,m′)T ∈ R1×2
q being valid messages and m 6= m′. Using the Open algorithm,

we have A · (sk − sk′) = (m − m′) = (0,m − m′)T 6= 0, where we find a small

non-zero vector v =
(

sk− sk′
)T

with respect to the first row A1 of the public

commitment parameter A, such that A1 ·v = 0 mod q, with ‖v‖ ≤ 2β. Therefore,

this vector v gives a solution to the MSISKq,m,k,2β problem.

5.5.2 (MIMO.L2RS) as a Proof of Knowledge

We adapt all the notations from [ATSS+18] into our MIMO.L2RS that signs a

signature for multiple wallets, which means that it signs Nin L2RS signatures in

parallel. This MIMO.L2RS is an extension of the single-input and single-output

proposal from [ATSS+18]. In such extension, we needed to modify the Lattice-

based one-time Linkable Ring Signature (L2RS) to be capable of signing multiple

wallets. Precisely, we adjusted the key generation, the signature generation and the

verification algorithms to sign the total number of input wallets that a user wants

to transfer to some output wallets. We call these algorithms: MIMO.L2RS.KeyGen,

MIMO.L2RS.SigGen and MIMO.L2RS.SigVer, and we describe them in Algorithms

(10, 11 and 12), respectively.

The security properties of the MIMO.L2RS are inherited from the L2RS’ security

analysis. By appropriately modifying these analysis, we can obtain the same

results for unforgeability, anonymity, linkability and non-slanderability, which are

shown in Theorems (5.9, 5.10, 5.11, 5.12) , respectively.

The MIMO.L2RS signature scheme is also used as a Proof of Knowledge (PoK ) to

accomplish, in part, the MIMO.LRCT’s balance property. This PoK is formalised,

namely as:
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Proposition 5.21. The MIMO.L2RS.SigGen and MIMO.L2RS.SigVer which are

described in Algorithms 11 and 12, respectively, are a Fiat-Shamir Non-Interactive

Proof of Knowledge in the Random Oracle Model (Section 3.3) for the relations

RPoK and R′PoK that we represent as:

RPoK ,

 {a(k)
(in),i, cn

(k)
(in),i, cn

(j)
(out), µ}; {S

(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃i ∈ [w] s.t. a
(Nin+1)
(in),i = ComA(0,S

(Nin+1)
(in),i ); ‖S(Nin+1)

(in),i ‖ ≤ βwit



R′PoK ,


{a(k)

(in),i, cn
(k)
(in),i, cn

(j)
(out), µ

′}; {S(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃z ∈ [w] s.t. v
(Nin+1)
z = (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T ;

a
(Nin+1)
(in),z · vNin+1

z,(2) = ComA(0,v
(Nin+1)
z,(1) );

∥∥v(Nin+1)
z

∥∥ ≤ β′wit


where βwit = 3 · 2γ is said to be the honest prover’s witness norm and β′wit = 2 · βv
being the extracted malicious prover’s witness norm. βv is the acceptance bound of

t from Algorithm 12 and a
(Nin+1)
(in),i is defined in (5.14).

Proof.

Completeness: Since MIMO.L2RS runs parallel L2RS signatures, we said that

the MIMO.L2RS’s correctness (Subsection 5.2.3.1) allows to achieve completeness

in the MIMO.L2RS signature scheme.

Soundness: We show that for all PPT adversaries A of MIMO.L2RS, there

is a PPT algorithm Ext, which extracts a valid witness of MIMO.L2RS.

We perform a first run (ci, . . . , cw) ←↩ Sn,κ where we assume that ci =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i−1 · t

(k)
i−1 + q · ci−1

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i−1 + q ·

ci−1

}
k∈[Nin+1]

)
was a response to a random oracle H1 (collision resistance) query

made by A. When A rewinds (second run) by responding with ci 6= c′i, we ob-

tain another proof (t
′(k)
1 , . . . , t′(k)

w ) and the corresponding hash values (c′i, . . . , c
′
w).

Then, we verify around the ring signature loop (going backwards) to find a colli-

sion in the input of H1, so for k = Nin + 1, such that A
(Nin+1)
2q,i−1 · t

(Nin+1)
i−1 + q · ci−1 =

A
(Nin+1)
2q,i−1 · t

′(Nin+1)
i−1 + q · c′i−1 mod 2q. In each stage, we analyze two cases. If ci−1 6=

c′i−1 (case 1), then we use this collision to extract a witness; otherwise, if ci−1 =

c′i−1 (case 2) then we move backwards (-1) until the first case holds. Once this con-

dition is met, we set the index z = i−x where x is the number that decreases if case
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2 holds. Subsequently, the following equality is built based on this collision, we said

that A
(Nin+1)
2q,z ·t(Nin+1)

z +q ·cz = A
(Nin+1)
2q,z ·t′(Nin+1)

z +q ·c′z mod 2q with cz+1 = c′z+1.

We reorganise this equality as A
(Nin+1)
2q,z ·(t(Nin+1)

z −t′(Nin+1)
z ) = q ·(cz−c′z) mod 2q,

when this is reduced modq, we have A
(Nin+1)
2q,z · (t(Nin+1)

z − t′(Nin+1)
z ) = 0 mod q.

Since cz − c′z 6= 0 mod 2, so we have t(Nin+1)
z − t′(Nin+1)

z 6= 0 mod 2q where

‖t(Nin+1)
z − t′(Nin+1)

z ‖∞ < q/2. By reducing modq, we find a small non-zero vec-

tor v
(Nin+1)
z , t(Nin+1)

z − t′(Nin+1)
z 6= 0 mod q with ‖v(Nin+1)

z ‖ ≤ 2 · βwit. This

v
(Nin+1)
z will compute A

(Nin+1)
2q,z · v(Nin+1)

z = 0 mod q. Since A
(Nin+1)
2q,z mod q =

2 · (A,−a) mod q, we have 2 · (A,−a
(Nin+1)
(in),z ) · v(Nin+1)

z = 0 mod q, this implies

that (A,−a
(Nin+1)
(in),z ) · v(Nin+1)

z = 0 mod q, since q is odd. Then, we consider

v
(Nin+1)
z = (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T where a

(Nin+1)
(in),z · v(Nin+1)

z,(2) = A · v(Nin+1)
z,(1) mod q.

Finally, we extract the witness as a
(Nin+1)
(in),z · v(Nin+1)

z,(2) = ComA

(
0,v

(Nin+1)
z,(1)

)
with

(v
(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T 6= 0 mod q.

HVZK: This property is guaranteed by the MIMO.L2RS’s anonymity (in Theo-

rem 5.10) as well as the hiding property of the homomorphic commitment scheme

which was proved in Theorem 5.19.

5.6 MIMO Lattice-based RingCT Construction

In this section, we construct the MIMO Lattice-based RingCT (MIMO.LRCT) pro-

tocol (Table 5.3 shows the MIMO.LRCT’s notations), where one is allowed to

have multiple (IW ) and to spend them into multiple (OW ). Furthermore, two

sub-protocols are needed to support the MIMO.LRCT’s threat model, which are:

MIMO.L2RS security properties (subsection 5.2) and range preservation (subsec-

tion 5.7).

The MIMO scheme works using a set of algorithms MIMO.LRCT

= (MIMO.LRCT.Setup, MIMO.LRCT.KeyGen, MIMO.LRCT.Mint,

MIMO.LRCT.Spend, MIMO.LRCT.Verify) and they are listed as:

1In this work, we consider that all users have a fixed number of input wallets Nin.
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Table 5.3: Notation of the Lattice RingCT v2.0

Notation Description

act Account or Wallet “Public part” =
(
pk, cn

)
∈ R2

q ×R2
q.

ask Account or Wallet “Private part” =
(
sk, ck

)
∈ R2

q ×R2
q.

Sn,κ Binary vectors of length n of weight κ.
$ Amount ∈ Sn,κ.
$(in) Group of input amounts $

(k)
(in) for k ∈ [Nin].

$(out) Group of output amounts $
(j)
(out) for j ∈ [Nout].

`$ The bit-length of $.
w Number of users in the ring.
Nin Number of input wallets of a user1.

IWi Input wallet of the i-th user acti =
{

pk
(k)
(in),i, cn

(k)
(in),i

}
k∈[Nin]

.

IW Set of input wallet = {IWi}i∈[w].

IWπ Input wallet of user π =
{

pk
(k)
(in),π, cn

(k)
(in),π

}
k∈[Nin]

.

Kπ User π’s private-keys = askπ =
{

sk
(k)
(in),π, ck

(k)
(in),π

}
k∈[Nin]

.

Nout Number of output wallets.

OW Set of output wallet = {OW (j)}j∈[Nout] = {pk
(j)
(out), cn

(j)
(out)}j∈[Nout].

OA Set of output addresses =
{

pk
(j)
(out)

}
j∈[Nout]

.

TX Transaction = (µ, IW,OW ).
TN Set of serial/transaction numbers (linking tag).

1. (Pub-Params)← MIMO.LRCT.Setup(λ): On input the security parameter λ,

this algorithm calls MIMO.L2RS.Setup (Section 6.3.1) and outputs the public

parameters A ∈ R2×(m−1)
q and H ∈ R2×(m−1)

q .

2. (a,S) ← MIMO.LRCT.KeyGen(A): Given the public parameter A ∈

R2×(m−1)
q , it runs MIMO.L2RS.KeyGen (Algorithm 10) and outputs a pair

of keys, the public-key or one-time address pk as a ∈ R2
q and the private-

key sk as S ∈ R(m−1)×1
q . A homomorphic commitment is generated as

a = ComA(0,S) = A · S + 0 mod q ∈ R2
q.

3. (cn, ck)← MIMO.LRCT.Mint(A, $): It receives the public parameter A and

input amount $ ∈ [0, 2`$−1]. It computes a coin cn, by choosing a coin-key

ck ∈ DomS, where every component of ck is chosen uniformly and inde-

pendently, then compute cn (as Algorithm 17) and this algorithm returns

(cn, ck).
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Algorithm 17 MIMO.LRCT.Mint

Input:
(
A ∈ R2×(m−1)

q , $ ∈ [0, 2`$−1]
)
, being the public parameter A and the

amount $.
Output: (cn, ck), where they are the coin and the coin key, respectively.

1: procedure MIMO.LRCT.Mint(A, $)

2: Let ckT = (ck1, . . . , ckm−1) ∈ R1×(m−1)
q with cki ←↩ (−2γ, 2γ)n, for 1 ≤ i ≤

m− 1
3: cn = ComA($, ck) = A · ck + $ mod q ∈ R2

q with $ = (0, $)T ∈ R1×2
q

4: return (cn, ck)

4. (TX, sig, TN)← MIMO.LRCT.Spend(µ, IW, IWπ, Kπ, OA, $
(j)
(out),Pub-Params):

This algorithm spends/transfers amounts from the user π’s input wallets

to some output wallets. We denote the user π who successfully created its

input wallets IWπ, based on determine amounts $(in). Note that notation of

these parameters are defined in Table 5.3, and this spend algorithm is briefly

described in Algorithm 18. Then, π selects the recipients’ valid public keys

or output addresses OA where π wants to spend his/her amount. To do so

π performs the following steps:

(a) π receives {$(j)
(out)}j∈[Nout], with $

(j)
(out) ∈ [0, . . . , 2`$−1], such balance sat-

isfies, we call this condition amount preservation. This checks that in-

put amounts are equal to output amounts, by checking if the following

equality holds:

Nin∑
k=1

$
(k)
(in),π =

Nout∑
j=1

$
(j)
(out). (5.11)

π then runs MIMO.LRCT.Mint(A, $
(j)
(out)) for j ∈ [Nout] and obtain

(cn
(j)
(out), ck

(j)
(out))j∈[Nout], which define the output wallets as

OW = {OW (j)}j∈[Nout] = {a(j)
(out), cn

(j)
(out)}j∈[Nout]. (5.12)

Then, the output coin-keys and amounts {ck
(j)
(out), $

(j)
(out)}j∈[Nout] are se-

curely sent to users with valid OAj = {a(j)
(out)}j∈[Nout].

(b) User π selects (w − 1) input wallets from the blockchain which he/she

uses to anonymously transfer her/his input wallets {IW (k)
π }k∈[Nin].
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Then, a preliminary ring signature list is built as IW = {IWi}i∈[w] =

{a(k)
(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin].

(c) π adds a record to IWi in order to homomorphically compute and

verify the amount preservation; this uses the homomorphic commitment

scheme (defined in Section 5.5.1). The result of this computation is a

commitment to zero, where the user π is only able to obtain since he/she

knows both IWπ and OW . This new record is placed in the position

(Nin + 1) and then a list L′ is defined as:

L′ =
{

a
(k)
(in),i

}
i∈[w],k∈[Nin+1]

, (5.13)

with a
(Nin+1)
(in),i , ComA

(∑Nin
k=1 $

(k)
(in),i −

∑Nout
j=1 $

(j)
(out),S

(Nin+1)
(in),i

)
, where

S
(Nin+1)
(in),i ,

∑Nin
k=1 S

(k)
(in),i+ck

(k)
(in),i−

∑Nout
j=1 ck

(j)
(out) ∈ R

(m−1)×1
q . This implies

that

a
(Nin+1)
(in),i =

Nin∑
k=1

a
(k)
(in),i + cn

(k)
(in),i −

Nout∑
j=1

cn
(j)
(out). (5.14)

Note that if the amount preservation conditions (5.11) and (5.15) (for

every k ∈ [Nin]) are achieved, then a
(Nin+1)
(in),i = ComA(0,S

(Nin+1)
(in),i ).

a
(k)
(in),i = ComA(0,S

(k)
(in),i) = A · S(k)

(in),i + 0 mod q ∈ R2
q. (5.15)

(d) To sign the transaction, we use the π’s private-keys: {S(k)
(in),π}k∈[Nin+1],

the list L′ and a transaction string µ ∈ {0, 1}∗. Then, we run

MIMO.L2RS.SigGen (Algorithm 11) which outputs:

σL′(µ) =
(
c1, {t(k)

1 , . . . , t(k)
w }k∈[Nin+1], {h(k)}k∈[Nin]

)
. (5.16)

(e) We show that the output amount $
(j)
(out) lies in a non-zero

range value, by running our range proof (Algorithm 21)
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ΠRange.PRange
({

cn
(j)
(out), ck

(j)
(out), $

(j)
(out),A

}
j∈[Nout]

)
. This proof out-

puts:
{
PoK

(j)
Range

}
j∈[Nout]

.

(f) We set the transaction TX as (µ, IW,OW ) and TN = {h(k)}k∈[Nin].

This algorithm outputs TX, TN, sigπ =
(
σL′(µ),

{
PoK

(j)
Range

}
j∈[Nout]

)
.

5. (Accept/Reject) ← MIMO.LRCT.Verify(TX, sigπ, TN): This algorithm calls

MIMO.L2RS.SigVer(sigπ,1, L
′,Pub-Params) (Algorithm 12) with sigπ,1 =

σL′(µ), and on input sigπ,2 =
{
PoK

(j)
Range

}
j∈[Nout]

, it runs (Algorithm

22) ΠRange.VRange
({
PoK

(j)
Range, cn

(j)
(out),A

}
j∈[Nout]

)
. This MIMO.LRCT.Verify

outputs Accept if both MIMO.L2RS.SigVer(·) and ΠRange.VRange(·) output

Accept, else it outputs Reject.

Algorithm 18 MIMO.LRCT.Spend

Input: (µ, IW, IWπ ,Kπ , OA, $
(j)
(out)

,Pub-Params), being the message, the input wallets, π’s input wallet, π’s

private keys, the output addresses, the output amount and the public parameter, respectively.
Output:

(
TX, σL′ (µ), TN

)
1: procedure MIMO.LRCT.Spend(µ, IW, IWπ ,Kπ , OA, $

(j)
(out)

,Pub-Params)

2: User π selects
{

$
(j)
(out)

}
j∈[Nout]

such that (5.11) is satisfied.

3: User π runs MIMO.LRCT.Mint
(
A, $

(j)
(out)

)
for j ∈ [Nout] to generate

(
cn

(j)
(out)

, ck
(j)
(out)

)
and sets OW as in

(5.12).

4: User π sends securely coin-keys and amounts
{
ck

(j)
(out)

, $
(j)
(out)

}
j∈[Nout]

to user’s OAj = a
(j)
(out)

for j ∈
[Nout].

5: Create the list of input wallets IW =
{
IWi

}
i∈[w]

=
{
a
(k)
(in),i

, cn
(k)
(in),i

}
i∈[w],k∈[Nin]

.

6: Let L′ =
{
a
(k)
(in),i

}
i∈[w],k∈[Nin+1]

, where a
(k)
(in),i

are defined in (5.15) and (5.14) for 1 ≤ k ≤ Nin and

k = Nin + 1, respectively.

7: Call MIMO.L2RS.SigGen
({

S
(k)
(in),π

}
k∈[Nin+1]

, L′, µ,Pub-Params
)

and obtain σL′ (µ) as in (5.16).

8: Run ΠRange.PRange
({

cn
(j)
(out)

, ck
(j)
(out)

, $
(j)
(out)

,A
}
j∈[Nout]

)
for j ∈ [Nout], it outputs{

PoK
(j)
Range

}
j∈[Nout]

.

9: Set sigπ = (σL′ (µ),
{
PoK

(j)
Range

}
j∈[Nout]

).

10: Let TX = (µ, IW,OW ) and TN =
{
h(k)

}
k∈[Nin+1]

.

11: return
(
TX, sigπ , TN

)

5.7 Range Preservation of the MIMO.LRCT

This section presents the techniques that we use to preserve the range preservation;

that is, these techniques prevent the negative output amount $(out) attack, also

known as out-of-range attack. Since $(out) is decomposed into binary representation
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such $(out) =
∑`$−1

i=0 2ibi, where bi ∈ {0, 1}, we start proving that each bit bi

is binary, using the OR-Proof technique from [dPLNS17]. We adjust this OR-

Proof technique to our commitment scheme, which is constructed in Section 5.5.1.

Thereafter, we use a range-proof technique to show that this amount lies in a range

of non-negative values, so we prove that each committed output amount is within

a range which cannot overflow (e.g. [0, 264)).

5.7.1 Binary Proof.

We define a protocol for the OR-Proof for our homomorphic commitments as ΠOR

with the prover POR and the verifier VOR. This protocol is a zero knowledge proof

where the commitment of the bit cb opens to have a value b ∈ {0, 1}. The proof

is approximate or relaxed by using a relaxation factor f . Meaning that this proof

only proves knowledge of a randomness of the bit rb such that f · cb opens to

a message f · b with f ∈ Rq with respect to rb. We use the public parameter

A ∈ R2×(m−1)
q to define our two binary relations such ROR = R0 ∨R1:

R0 , {(cb, rb) ∈ R2
q ×R(m−1)×1

q , cb = ComA(0, rb) = A · rb + 0, ‖rb‖ ≤ BOR}

R1 , {(cb, rb) ∈ R2
q ×R(m−1)×1

q , cb = ComA(1, rb) = A · rb + 1, ‖rb‖ ≤ BOR}

Two relaxed binary relations (i.e. R′OR = R′0 ∨ R′1) with B′OR > BOR are also

defined where a witness will be recovered by the soundness extractor:

R′0 , {(cb, rb), 2 · cb = ComA(2 · 0, rb) = A · rb + 2 · 0, ‖rb‖ ≤ B′OR}

R′1 , {(cb, rb), 2 · cb = ComA(2 · 1, rb) = A · rb + 2 · 1, ‖rb‖ ≤ B′OR}

We now define below a challenge set of monomials such that for any distinct pair of

monomials X i, Xj ∈ C0 with all the coefficients of 2 · (X i−Xj)−1 are in {−1, 0, 1}

according to Lemma 3.3. Since we are using monomials, the relaxation factor is

defined as f = 2.

C0 , {X i ∈ Rq, i = 0, . . . , 2n− 1}
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Remark 5.22. The main difference between our OR-proof and the OR-proof from

[dPLNS17] is the size of the challenges. As we cannot achieve soundness of our

range proof using the same challenge space as in [dPLNS17], we adapt their pro-

tocol to another challenge space which we call C0 (this space was introduced in

[BCK+14]), which consists of monomials in Rq. With this new space C0 we are

now able to prove the soundness of our relaxed proof to the relaxed relation R′OR

with relaxation factor f = 2. However, because the relatively small size of the

challenge space C0 these relatively small challenges, ΠOR needs to repeat the basic

protocol θ times in parallel, where the rejection sampling (defined in Lemma 3.8)

returns something after θ − 1 repetitions. In practice, we only need a relatively

small θ < 20, whereas previous lattice based range proofs (i.e. [LLNW18]) need

much larger θ > 100 for the same soundness level.

The challenge space P consists of the set of all permutations of dimension n,

Perm(n), and a bit c ∈ {0, 1}, i.e. P , {p = (s, c) ∈ Perm(n) × {0, 1}}. Each

p ∈ P permutes the exponent of a polynomial in C0 according to the permutation

s. Let f, g ∈ C0 be two monomials, if f = X if , g = (−1)c ·X ig and s(if ) = ig, then

we define p(f) = g. It holds that Pr[p(f) = g] = 1/|C0| for a uniformly random

p ∈ P, for any two fixed elements f, g ∈ C0. σOR is defined to be a positive real

parameter, whereas BOR is a positive real bound. We also need a cryptographic

hash function H modeled as random oracle, which maps arbitrary inputs to the

uniform distribution over the challenge space Pθ. Our OR-Proof protocol ΠOR is

defined in Algorithms (19 and 20), for proving if one bit is binary.

5.7.2 Range Proof.

We define a range proof Πrange, having two algorithms, one for the prover Prange,

and one for the verifier Vrange. Prange receives from MIMO.LRCT.Spend(·), Al-

gorithm 18, the parameters {$(j)
(out), cn

(j)
(out), ck

(j)
(out)}j∈[Nout] ∈ [0, . . . , 2`$−1] × R2

q ×

R(m−1)
q . We define the first relation Rrange for this protocol:
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Algorithm 19 OR-Proof Protocol ΠOR, prover’s algorithm POR
Input: (cb = A · rb + b,A, rb, b ∈ {0, 1})

Output:
{
f
(t)
0 , f

(t)
1 , r

(t)
0 , r

(t)
1

}θ
t=1

1: procedure ΠOR.POR(cb,A, rb, b)
2: for (1 ≤ t ≤ θ) do

3: Let f
(t)
1−b ←↩ C0

4: Let u(t) ←↩ Dn(m−1)
σOR

5: r
(t)
1−b ←↩ D

n(m−1)
σOR

6: a
(t)
1−b := A · r(t)1−b + f

(t)
1−b · (1− b)− f

(t)
1−b · cb

7: a
(t)
b

:= A · u(t)

8: Concatenate (a1−b)|| :=
(
a
(1)
1−b, . . . ,a

(θ)
1−b

)
9: Concatenate (ab)|| :=

(
a
(1)
b , . . . ,a

(θ)
b

)
10: (p(1), . . . , p(θ)) := H

(
cb, (a

(t)
1−b)||, (a

(t)
b )||

)
←↩ Pθ

11: for (1 ≤ t ≤ θ) do

12: f
(t)
b = (p(t))2b−1(f

(t)
1−b)

13: r
(t)
b = u(t) + f

(t)
b · rb

14: rb|| :=
(
r
(1)
b , . . . , r

(θ)
b

)
15: (fb · rb)|| :=

(
f
(1)
b · rb, . . . , f (θ)b · rb

)
16: Continue with probability 1−min

 D
n(m−1)θ
σOR

(rb||)

3·Dn(m−1)θ
(fb·rb)||,σOR

(rb||)
, 1

 otherwise Restart

17: return PoKOR =
{
f
(t)
0 , f

(t)
1 , r

(t)
0 , r

(t)
1

}θ
t=1

Algorithm 20 OR-Proof Protocol ΠOR, verifier’s algorithm VOR
Input: (cb,A, PoKOR) with PoKOR =

{
f
(t)
0 , f

(t)
1 , r

(t)
0 , r

(t)
1

}θ
t=1

Output: Accept or Reject
1: procedure ΠOR.VOR(cb,A, PoKOR)
2: for (1 ≤ t ≤ θ) do

3: Let a
(t)
0 := A · r(t)0 − f

(t)
0 · cb

4: Let a
(t)
1 := A · r(t)1 + f

(t)
1 · 1− f (t)1 · cb

5: Concatenate (a0)|| :=
(
a
(1)
0 , . . . ,a

(θ)
0

)
6: Concatenate (a1)|| :=

(
a
(1)
1 , . . . ,a

(θ)
1

)
7: (p(1), . . . , p(θ)) := H

(
cb, (a0)||, (a1)||

)
←↩ Pθ

8: for (1 ≤ t ≤ θ) do

9: if ‖r(t)0 ‖ ≤ B′OR ∧ ‖r
(t)
1 ‖ ≤ B′OR then Continue; otherwise Reject

10: else if f
(t)
0 ∈ C0 ∧ f (t)1 = p(t)(f

(t)
0 ) then Continue; otherwise Reject

11: return Accept

Rrange ,

 {cn
(j)
(out)}, {$

(j)
(out), ck

(j)
(out)} : ∀j , cn

(j)
(out) = ComA($

(j)
(out), ck

(j)
(out)) =

A ·ck
(j)
(out) + $

(j)

(out), ‖ck
(j)
(out)‖ ≤ 2β, $

(j)
(out) ∈ [0, . . . , 2`$−1]


A relaxed relation (R′range) is also defined by using f where the corresponding

witness will be recovered by its soundness extractor:
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R′range ,

 {cn
(j)
(out)}, {$

(j)
(out), ck

(j)
(out)} : ∀j s.t. f · cn

(j)
(out) = ComA(f · $(j)

(out), ck
(j)
(out)) =

A ·ck
(j)
(out) + f · $

(j)

(out), ‖ck
(j)
(out)‖ ≤ 2β, $

(j)
(out) ∈ [0, . . . , 2`$−1], f = 4


Prange and Vrange are described below in algorithms (21 and 22):

Algorithm 21 Range-Proof Protocol ΠRange, prover’s algorithm PRange
Input:

({
cn

(j)
(out)

, ck
(j)
(out)

, $
(j)
(out)

,A
}
j∈[Nout]

)
Output:

{
PoK

(j)
Range

}
j∈[Nout]

1: procedure ΠRange.PRange(
{
cn

(j)
(out)

, ck
(j)
(out)

, $
(j)
(out)

,A
}
j∈[Nout]

)

2: for (1 ≤ j ≤ Nout) do

3: Decompose in binary $
(j)
(out)

=
{
b
(j)
i

}`$−1

i=0

4: Compute commitment to each bit cb
(j)
i = ComA(b

(j)
i , rb

(j)
i ) = A · rb(j)

i + b
(j)
i , as defined in Section

5.5.1
5: for (0 ≤ i ≤ `$ − 1) do

6: Calls binary proof PoK
(j)
OR,i = ΠOR.POR(cb

(j)
i ,A, rb

(j)
i , b

(j)
i )

7: Compute prck(j) =
∑`$−1
i=0 2irb

(j)
i − ck

(j)
(out)

8: Compute prcn(j) =
∑`$−1
i=0 2icb

(j)
i − cn

(j)
(out)

, it should be equal to ComA(0,prck(j))

9: y(j) ←↩ Dn(m−1)
σRange

10: c(j) ← H(prcn(j) · y(j))

11: z(j) ← prck(j) · c(j) + y(j), this is a PoK of ComA(0,prck(j))

12: z|| = (z(1), . . . , z(Nout))

13: (prck · c)|| =
(
prck(1) · c(1), . . . ,prck(Nout) · c(Nout)

)
14: Continue with probability 1−min

 D
n(m−1)
σRange

(z||)

M·Dn(m−1)
(prck·c)||,σRange

(z||)
, 1

 otherwise Restart

15: return PoK
(j)
Range =

{
PoK

(j)
OR,i, cb

(j)
i , z(j), c(j)

}
i∈[0,`$−1],j∈[Nout]

Algorithm 22 Range-Proof Protocol ΠRange, verifier’s algorithm VRange
Input:

({
PoK

(j)
Range

}
j∈[Nout]

)
, where PoK

(j)
Range =

{
PoK

(j)
OR,i, cb

(j)
i , z(j), c(j)

}
i∈[0,`$−1],j∈[Nout]

.

Output: Accept or Reject

1: procedure ΠRange.VRange(
{
PoK

(j)
Range

}
j∈[Nout]

)

2: for (1 ≤ j ≤ Nout) do
3: for (0 ≤ i ≤ `$ − 1) do

4: Accept
?
= ΠOR.VOR(cb

(j)
i ,A, PoK

(j)
OR,i), this checks the binary proof for cb

(j)
i

5: Compute vrcn(j) =
∑`$−1
i=0 2icb

(j)
i − cn

(j)
(out)

6: Check c(j)
?
= H(A · z(j) − vrcn(j) · c(j)), otherwise Reject; this checks the range proof of zero com-

mitment
7: return Accept or Reject

Theorem 5.23 (Binary Proof). If σOR ≥ 22
√
κBOR and B′OR ≥ 2

√
nσOR, then

the protocol ΠOR(POR,VOR) is a R′b-Protocol complete for relation ROR and sound

for relation R′OR.
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Proof.

Correctness We show that A · r(t)
0 − f

(t)
0 · cb = A · u(t) so:

a
(t)
0 = A · r(t)

0 − f
(t)
0 · cb

= A · (u(t) + f
(t)
b · rb)− f (t)

0 · cb

= A · u(t) + f
(t)
b · (A · rb− cb)

= A · u(t) + f
(t)
b · (b)

Since b = 0, then this condition holds.

In the case when b = 1, we refer to the line 12 of POR (Algorithm 19), we have

f
(t)
1 = (p(t))1(f

(t)
0 ), then line 9 of VOR (Algorithm 20) is satisfied. When b =

0, we have f
(t)
0 = (p(t))−1(f

(t)
1 ) ⇐⇒ (p(t))f

(t)
0 = (f

(t)
1 ), this also shown that

the condition holds. We also check the bound of (r
(t)
0 , r

(t)
1 ), where the rejection

sampling lemma (to include the new lemma in the definition) is used to show

that the distribution of rb|| (from Algorithm 19, line 14) is statistically close to

D
n(m−1)θ
σOR . Therefore, and each component r

(t)
b is statistically close to D

n(m−1)
σOR . A

condition is needed σOR ≥ ‖fb · rb)||‖. By the tail bound lemma (to be included)

‖r(t)
b ‖2 ≤

√
n(m− 1) · σOR = B′OR, except with probability 2n(m−1).

Soundness Let (cn, rb) ∈ R0 ∨ R1. Let POR be a deterministic prover, who

queries H on the same input. Therefore, her success probability depends on the

output of H only. Let p0 = 1/|C0| + ε be the success probability of the prover

POR. We need to construct an extractor E to extract the values r′′b and f ′′b while

making poly(|(cn, rb)|)/ε times queries to H. It holds that (cn, r′′b , f
′′
b ) ∈ R′0 ∨

R′1. Extractor E runs POR(cn) on a challenge p ←↩ P and outputs a valid proof

(cn, (r0, r1, f0, f1)). Then, E runs POR(cn) on random challenges and outputs a

proof (cn, (r′0, r
′
1, f

′
0, f

′
1)) such that f0 6= f ′0 or f1 6= f ′1. Let α ∈ {0, 1} be a bit

such that fα 6= f ′α. Let (cn, a0, a1) be the hash query by POR(cn). Since both

proofs verify, we have aα = A · rα + fαα− fα · cn and aα = A · r′α + f ′αα− f ′α · cn.
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Subtracting these two equations results into:

(fα − f ′α) · cn = A · (rα − r′α) + α(fα − f ′α)

Set r′′α = rα− r′α and f ′′α = fα− f ′α. It follows that (cn, r′′α, f
′′
α) ∈ R′0∨R′1. Finally,

we show that POR(cn) outputs a proof such that fα 6= f ′α with at least negligible

probability ε.

Pr[POR succ. ∧(f0 = f ′0 ∨ f1 = f ′1)]

= Pr[POR succ.]− Pr[POR succ. ∧ (f0 = f ′0 ∧ f1 = f ′1)]

= p0 − Pr[POR succ. ∧ (f0 = f ′0 ∧ p(f0) = p(f ′0))]

≥ p0 − Pr[p(f0) = p(f ′0)] = ε. (5.17)

HVZK: To prove special honest-verifier zero-knowledgeness, we have to show that

the honest-verifier distribution and simulated distribution are identical. We show

how to construct a simulator S. For (cn, rb) ∈ R0 ∨R1 and a challenge p ∈ P the

simulator S does the following:

1. f0 ←↩ C0

2. f1 = p(f0)

3. For α ∈ {0, 1}, sample rα ←↩ Dn(m−1)
σOR

4. For α ∈ {0, 1}, compute aα = A · rα + fα · α− fα · cn

5. Abort with probability 1− 1/M

6. Output (r0, r1, f0, f1)

Using the rejection sampling bounds, the distribution of the output of S is identical

to the honest one.
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Theorem 5.24 (Range Proof). The protocol described in Step 2 of the range proof

is a proof of knowledge (from [Lyu12]) complete for relation Rrange and sound for

relation R′range with βrange = 2`$+2n
√
κn(m− 1)σOR + 22

√
nβv.

Proof. We prove the three security of a zero-knowledge proof of knowledge as

defined in Definition 3.3.

Completeness: If the prover follows the protocol, then the following equation

holds:

H(Ar− f ′D,µ) = H
(
A · (f ′r + r0)− f ′D,µ

)
(5.18)

From (5.21) follows that f ′D = ComA(0, r) = A · r. Then, (5.18) is equivalent to:

H(Ar− f ′D,µ) = H
(
A · (f ′r + r0)− f ′D,µ

)
= H

(
f ′Ar + Ar0 − f ′A · r, µ

)
= H(Ar0, µ) = f ′,

where the last equation satisfies the verification. By the rejection sampling (Def-

inition 3.8 the prover responds with probability 1/M2. The distribution of r is

statistically close to D
n(m−1)

12n
√
n(m−1)

since ‖f ′r‖ ≤ n
√
n(m− 1) within the statistical

distance 2−100.

Soundness: To prove the soundness, we need to extract a witness (f, $, r) s.t.

f · cn = ComA(f · $, r) with $ ∈ [0, 2`$ − 1].

From the OR proof witness extraction in Theorem 5.23, we first extract (f ′′i , bi, ri)

with bi ∈ {0, 1} such that for all i ∈ [`$] the following relation holds:

f ′′i · cni = ComA(f ′′i · bi, ri). (5.19)

Let f ′′i = fi − f ′i bet the difference between two challenges fi and f ′i . According

to Lemma 3.3 it holds that f ′′ is invertible in Rq. Consequently we can multiply
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Table 5.4: ΠPoK∗ protocol [Lyu12]

PPoK(r, µ,D) VPoK(D)

Pick r0 ∈ Dm(n−1)
σ0

Compute U := A · r0

Set f ′ := H(Ar0, µ)
Compute r := f ′r + r0

Abort with prob. ρ0 from (5.22)
f ′, r−−→

Check f ′ := H(Ar− f ′D,µ)

(5.19) by (f ′′i )−1 and get:

cni = ComA

(
bi, (f

′′
i )−1 · ri

)
, (5.20)

for all i ∈ [`$]. We now extract an opening (f ′, r̃) of a commitment to 0 in the last

step of the range proof protocol such that:

f ′ ·

(
`$−1∑
i=0

2i · cni − cn

)
= ComA(0, r) (5.21)

⇐⇒ f ′ ·
`$−1∑
i=0

2i · cni − f ′ · cn = ComA(0, r)

holds. Note that we use the PoK∗ protocol from [Lyu12] which we adapt to our

setting using D :=
(∑`$−1

i=0 2i · cni − cn
)

and present in the Table 5.4:

where

ρ0 := 1−min

{
D
n(m−1)
σ0 (r)

M ·Dn(m−1)
(f ′·r),σ0

(r)
, 1

}
(5.22)

and σ0 = 12n
√
n(m− 1). Using (5.20), it follows that:

f ′ ·
`$−1∑
i=0

2i · cni = f ′ · ComA

(
`$−1∑
i=0

2i · bi,
`$−1∑
i=0

2i(f ′′i )−1 · ri

)
. (5.23)

After inserting the definition of cn into (5.21), we obtain:

f ′ · cn = f ′ ·
`$−1∑
i=0

2i · cni − ComA(0, r) (5.24)
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Next, we insert (5.23) into (5.24) to get:

f ′ · cn = f ′ · ComA

(
`$−1∑
i=0

2i · bi,
`$−1∑
i=0

2i(f ′′i )−1 · ri

)
− ComA(0, r)

= ComA

(
f ′ · $, f ′ ·

`$−1∑
i=0

2i(f ′′i )−1 · ri − r

)
, (5.25)

where we set $ =
∑

i 2
ibi (note $ ∈ [0, 2`$ − 1]). Now, we would have liked to

show that f · (f ′′i )−1 · ri is ‘small’, but it is not. Instead, assume, there is a small

and invertible g ∈ Rq, such that g · (f ′′i )−1 = hi is small. Since f ′′i is a non-zero

difference of monomials from C0, by Lemma 3.3, we can take g = 2 as it is small

and invertible in Rq. Multiplying the right hand-side of (5.25) by g yields:

(g · f ′) · cn = ComA

(
g · f ′ · $, f ′ ·

`$−1∑
i=0

2ihi · ri − g · r

)
. (5.26)

We get the desired ‘small’ range proof witness(
f = g · f ′, $, r′ = f ′ ·

∑`$−1
i=0 2ihi · ri − g · r

)
, where ‖r′‖ ≤ βrange and using

estimations from Lemma 3.4,

βrange =

∥∥∥∥∥f ·
`$−1∑
i=0

hi · ri − g · r

∥∥∥∥∥
2

≤

∥∥∥∥∥f ·
`$−1∑
i=0

hi · ri

∥∥∥∥∥
2

+ ‖g · r‖2

≤
√
n · ‖f‖∞ ·

∥∥∥∥∥
`$−1∑
i=0

2ihi · ri

∥∥∥∥∥
∞

+
√
n · ‖g‖∞ · ‖r‖∞

≤
√
n · 2
√
κ ·
√
n · 2`$ · 2

√
n(m− 1)σOR +

√
n · 2
√
κ · 2βv

≤ 2`$+2n
√
κn(m− 1)σOR + 22

√
nκβv. (5.27)

SHVZK: Here we have to show that our range proof satisfies the requirement

of perfect simulation. Since the underlying OR proof is perfectly simulatable as

showed in the last proof of Theorem 5.23, we only need to show that the underlying

proof of knowledge from Table 5.4 is simulatable too. Given a challenge f ′, the

simulator aborts with probability 1− 1/M2. Otherwise, we have to show the PoK
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is zero-knowledge. To do so the simulator picks r ←↩ Dn(m−1)

12n
√
n(m−1)

and computes

A·r−f ′D to guarantee that the verification equation f ′ = H(A·r−f ′D) is satisfied.

The simulator outputs simulated transcript r, f ′, which is indistinguishable by

rejection sampling (3.8) and by hiding property declared in Theorem 5.19 of our

commitment scheme.

5.8 Security Analysis of the MIMO.LRCT

Theorem 5.25 (Balance). If MIMO.L2RS with parame-

ter βv is unforgeable, linkable and ComA is β−binding

with β = 4
√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv), then MIMO.LRCT satisfies bal-

ance.

Proof. By definition of successful balance attack (Definition 5.15), ∃i ∈ [w] such

that
∑

k∈Ei∗
(in)

$
(k)
(in),i∗ <

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ , being i∗ a dishonest transaction. For this

analysis we consider three cases, case 1.1, case 1.2 and case 2:

• Case 1 - TN ∈ T N from ActGen: we consider two sub-cases, the outsider

and insider attacks which are described as follows:

– Case 1.1 - The outsider attack: ∀i ∈ [w] ∃k∗ ∈ [Nin] such that

IW
(k∗)
i is not corrupted, this means that not all inputs to Ti∗ are cor-

rupted. We show that given any PPT MIMO.LRCT adversary, we can

construct a MIMO.L2RS adversary, which has equal advantage. In do-

ing this reduction, we firstly define the entities interacting to prove

LRCT-Unforgeability. We use a challenger, MIMO.L2RS.Challenger, and

two adversaries MIMO.L2RS(B) and MIMO.LRCT(A). This experi-

ment begins with the challenger who generates the Pub-Params ←

MIMO.L2RS.Setup(λ), and these Pub-Params are given to the adver-

sary B. This adversary then runs A, by simulating A’s oracle answers
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(Definition 5.15). We assume that A makes at most qad, qac, qco and

qspend queries to AddGen, ActGen, Corrupt and O-Spend respectively.

This simulation runs as follows:

∗ AddGen(i): on input a query number i, B forwards the query to its

own JO and obtains the public-key(s) pk
(k)
i . B returns these to A.

∗ ActGen(i, $i): on input address index i and an amount $i, B runs al-

gorithm MIMO.LRCT.Mint(Pub-Params, $i) and returns the account

IWi =
(
pk

(k)
i , cn

(k)
i

)
and its corresponding ck

(k)
i to A.

∗ O-Spend(µ, IW, IWi, OA, $
(j)
(out),Pub-Params): on input the trans-

action strings µ, input wallet IW containing IWi, output ad-

dresses OA, and Pub-Params, B creates a signature by calling

its signing oracle as: σL′(µ)i ← SO(w, IW, pk
(k)
i , µ), then B

builds the MIMO.LRCT.Spend output as (TXi, sigi, TNi), where

TX = (µ, IW,OA), TNi is the linking tag, and sigi =

(σL′(µ)i, {σ(j)
range}j∈[Nout]). These outputs are returned to A.

∗ Corrupt(i): on input query number i, B calls its corruption oracle

to obtain the private key sk
(k)
i ← CO(pk

(k)
i ). This private-key is

returned to A.

A outputs a forgery transaction (TX∗, sig∗π, TN
∗) such

MIMO.LRCT.Verify(TX∗, sig∗π, TN
∗) = 1 where sig∗π =

(σL′(µ)∗π, {σ
(j)
range}∗j∈[Nout]

). B also outputs its forgery σL′(µ)∗π and

IW ∗, where IW ∗ is the input list in TX∗. We show that the ad-

vantage of MIMO.L2RS(B) adversary is equal as the advantage of

MIMO.LRCT(A) to break the unforgeability property. In this simula-

tion, A’s view is perfectly simulated by B as in the real balance game.

Moreover, in the event where A wins the game and case 1.1 occurs,

then B also wins its game. This forgery meets the conditions of both

definitions, the MIMO.L2RS one-time unforgeability (Definition 5.1)

and balance (Definition 5.15), which we summarise below:
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1. In both views MIMO.LRCT.Verify(·) = 1 (Definition 5.15, Condition

1) and MIMO.L2RS.SigVer(·) = 1 (Definition 5.1, Condition 1),

transaction signatures must be valid.

2. The pk
(k)
i of the list accounts were generated during the simulation

by AddGen oracle (Definition 5.15, Condition 2) and this oracle

forwarded queries to the MIMO.L2RS’s oracle JO(·) (Definition

5.1, Condition 2).

3. The forgeries sig∗π and σL′(µ)∗π are not the output of the O-Spend(·)

(Definition 5.15, Condition 3) and SO(·) (Definition 5.1, Condition

3) oracles, respectively.

4. pk(k)
π was only queried to O-Spend(·) oracle once (Definition 5.15,

Condition 4), and thus only a query was forwarded to SO(·) (Def-

inition 5.1, Condition 4).

5. The condition of this case 1.1 (∀i ∈ [w] ∃k∗ ∈ [Nin] such that

IW
(k∗)
i ) implies that ∃k∗ s.t. pk

(k∗)
i is not corrupted (Definition

5.1, Condition 5). Therefore, this also meets the condition of the

MIMO.L2RS.

To sum up, if the outsider adversary breaks this case 1.1 attack,

then we refer to the Theorem 5.9 (Unforgeability) where the security

analysis reduces to the MSISKq,m,k,β problem with β = 2βv. Thus we

said that βcase1.1 = 2βv.

– Case 1.2 - The insider attack: ∃i ∈ [w] ∀k∗ ∈ [Nin] such that

IW
(k∗)
i is corrupted, meaning that all inputs to Ti∗ are corrupted. We

start this case by running the extractor of the MIMO.L2RS’s proof

of knowledge (in Proposition 5.21) so we can extract the witness

of this signature relation as a
(Nin+1)
(in),i∗ · v

(Nin+1)
i∗,(2) = ComA

(
0,v

(Nin+1)
i∗,(1)

)
with (v

(Nin+1)
i∗,(1) ,v

(Nin+1)
i∗,(2) )T 6= 0 mod q. For simplicity, we define

gL2RS , v
(Nin+1)
i∗,(2) and r , v

(Nin+1)
i∗,(1) . Then, we have a

(Nin+1)
(in),i∗ =

g−1
L2RS · ComA

(
0, r
)

=
∑Nin

k=1 a
(k)
(in),i∗ + cn

(k)
(in),i∗ −

∑Nout
j=1 cn

(j)
(out),i∗ from
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definition of a
(Nin+1)
(in) in (5.14) [from Section 5.6]. We said that∑Nout

j=1 cn
(j)
(out),i∗ ,

∑
j∈Gi∗

(out)
cn

(j)
(out),i∗ +

∑
j∈Ei∗

(out)
cn

(j)
(out),i∗ where Gout

and Eout are Ti∗ ’s not corrupted and corrupted outputs, respectively.

Then, replacing with this definition, we have g−1
L2RS · ComA

(
0, r
)

=

ComA

(∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ ,S

(Nin+1)
(in),i∗

)
+
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ .

The latter equation is equivalent to
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = g−1

L2RS ·

ComA

(∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ , r− S

(Nin+1)
(in),i∗

)
. Afterwards, we

multiply both sides by gL2RS and it results in:

gL2RS ·
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = ComA (gL2RS ·∆, r) , (5.28)

where r , gL2RS ·(r−S
(Nin+1)
(in),i∗ ) and ∆ ,

∑Nin
k=1 $

(k)
(in),i∗−

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ .

Since $
(k)
(in),i∗ ∈ [0, 2`$ − 1] and max(Nin, Nout) ≤ N , then

∑Nin
k=1 $

(k)
(in),i∗ ∈

[0, N · 2`$ − 1] and
∑

j∈Gi∗
(out)

$
(j)
(out),i∗ ∈ [0, N · 2`$ − 1] where Nin ≤ N

and Nout ≤ N , respectively. We have,
∣∣∣$(k)

(in),i∗ − $
(j)
(out),i∗

∣∣∣ ≤ N · (2`$ − 1)

and $
(k)
(in),i∗ − $

(j)
(out),i∗ < 0, which is less than q/2 by the choice of q.

Therefore, ∆ mod q = ∆ ∈ [−N · (2`$ − 1),−1]. We now run the proof

of knowledge extractor of parallel range proofs from Theorem 5.24,

∀j ∈ [Eout] cn
(j)
(out),i∗ . We then obtain:

gRange ·
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = ComA

(
gRange · $, ck

)
, (5.29)

where gRange = f, $ ,
∑

j∈Ei∗
(out)

$
(j)

(out) and the randomness

ck ,
∑

j∈Ei∗
(out)

ck
(j)

(out), as per in (5.26). If we multiply and subtract

both equations (5.28) and (5.29) by gRange and gL2RS, respectively, it

results to 0 = ComA

(
gRange · gL2RS · (∆− $),gRange · r− gL2RS · ck

)
.

Assuming that ‖gRange · gL2RS‖ < 1√
k
· q1/k where k denotes the

number of irreducible factors modq of xn + 1, then by [Corollary

1.2 from 2.[LS18]], gRange · gL2RS is invertible in Rq. This im-

plies that gRange · gL2RS · (∆ − $) 6= 0 mod q, using the fact that

∆−$ 6= 0 mod q. Therefore, we obtain a β−binding collision for ComA
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with β−binding =
∥∥∥gRange · r − gL2RS · ck

∥∥∥ ≤ βcase1.2. By replacing

this β−binding with the results of the witness extraction, it turns

out that βcase2.2 ≥ 4
√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv).

• Case 2 - TN /∈ T N from ActGen (Linkability Attack):

∃k∗ ∈ [Nin] s.t. IW k∗
i with i ∈ [w] was queried to O-Spend, where

k∗’th is the real input account in the forgery transaction with TN, and

TN 6⊆ T N .

In this proof, we show that any PPT MIMO.LRCT adversary has equal advan-

tage to the corresponding MIMO.L2RS adversary. In doing this reduction, we

firstly define the entities interacting to prove the LRCT-Linkability. We use

a challenger, MIMO.L2RS.Challenger, and two adversaries MIMO.L2RS(B)

and MIMO.LRCT(A). This experiment begins with the challenger who

generates the Pub-Params ← MIMO.L2RS.Setup(λ), and these are given to

the adversary B. This adversary then runs A, by simulating A’s oracle

answers (see Section 5.4.1). We assume that A makes at most qad, qac

queries to AddGen and ActGen respectively, then by querying the oracle

O-Spend, it will generate a signature or PoK. This simulation runs as follows:

– AddGen(i): on input a query number i, B forwards the query to its own

JO and obtains the public-key(s) pk
(k)
i . B returns these to A.

– ActGen(i, $i): on input address index i and an amount $i, B runs al-

gorithm LRCT.Mint(Pub-Params, $i) and returns the account IWi =(
pk

(k)
i , cn

(k)
i

)
and its corresponding ck

(k)
i to A.

– O-Spend(µ, IW, IWi, OA, $
(j)
(out),Pub-Params): on input the transaction

strings µ, input wallet IW containing IWi, output addresses OA, and

Pub-Params, B creates a signature by calling its signing oracle as:

σL′(µ)i ← SO(w, IW, pk
(k)
i , µ), then B builds the MIMO.LRCT.Spend

output as (TXi, sigi, TNi), where TX = (µ, IW,OA), TNi is the linking



Chapter 5: The MIMO of L2RS and LRCT 140

tag, and sigi = (σL′(µ)i, {σ(j)
range}j∈[Nout]). These outputs are returned to

A.

– Corrupt(i): on input query number i, B calls its corruption oracle

to obtain the private key sk
(k)
i ← CO(pk

(k)
i ), and this private-key is

returned to A.

A outputs two transaction forgeries (TX∗, sig∗π, TN
∗) and

(TX ′,∗, sig′,∗π , TN
′,∗), whereas B outputs two signature forgeries σL∗(µ)∗π

and σL∗(µ)′,∗π with their corresponding IW ∗ and IW ′,∗ which were taken

from TX∗ and TX′,∗, respectively. These forgeries meet the conditions of

the balance MIMO.LRCT (Definition 5.15) and the MIMO.L2RS linkability

definition (Definition 5.3), and we summarise these as:

1. In both views MIMO.LRCT.Verify(·) = 1 (Definition 5.15, Condition 1)

and MIMO.L2RS.SigVer(·) = 1 (Definition 5.3, Condition 1), transaction

signatures must be valid.

2. The pk
(k)
i of the list accounts were generated during the simulation by

AddGen oracle (Definition 5.15, Condition 2) and this oracle forwarded

queries to the MIMO.L2RS’s oracle JO(·) (Definition 5.3, Condition 2).

3. Condition 3 of (Definition 5.15) implies

MIMO.L2RS.SigLink(σL∗(µ)∗π, σL∗(µ)′,∗π ) = Unlinked (Definition

5.3, Condition 3).

We showed that the advantage of MIMO.L2RS(B) adversary is equal as

MIMO.LRCT(A) to break the linkability property. Then, we refer to

the Theorem 5.11 (Linkability) where the security analysis reduces to the

MSISKq,m,k,β problem with β = 2βv. Thus we said that βcase2 = 2βv.

Corollary 5.26 (Balance). The Balance of MIMO.LRCT is satisfied if

MSISKq,m,k,βBalance is hard where βbalance = max(βcase1.1, βcase1.2, βcase2).
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Proof. By combining Theorem 5.25 (Balance), along with Theorem

5.20 (β−Binding), Theorem 5.9 (MIMO.L2RS Unforgeability) and The-

orem 5.11 (Linkability), this analysis concludes that the βbalance =

max(βcase1.1, βcase1.2, βcase2). βcase1.2 is seen as the maximum, then we

said that βbalance = 4
√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv).

Remark 5.27. In the balance proof, we only need zero-time unforgeability, meaning

that in the reduction the attacker produces a forgery without seeing any signatures.

Secondly, we do not need the message part of the signature, and thus this is treated

as a Proof of Knowledge.

Theorem 5.28 (LRCT-Anonymity). Suppose n · 1
2
·
√

q4n

2(γ+1)·(m−1)·n and o ·h ·2−n+1

are negligible in n with an attack against the unconditional anonymity that makes h

queries to the random oracle H1, then the MIMO.LRCT scheme is unconditionally

secure for anonymity and amount privacy as defined in Definition 5.16.

Proof. We prove the anonymity of this scheme using the sequence-of-games ap-

proach. We begin our analysis by:

Game 0 - Real Game: We firstly define the entities interacting to prove this

LRCT-Anonymity property. We use a challenger, MIMO.LTCR.Challenger, and two

adversaries, MIMO.LRCT(A1) and MIMO.LRCT(A2). This experiment begins with

the challenger who generates the Pub-Params ← MIMO.L2RS.Setup(λ), and this

output is given to the adversary A1. Then, A1 runs the oracles, which were defined

in Definition 5.16. We assume that A1 makes at most qad, qac, and qco queries to

AddGen, ActGen, and Corrupt, respectively. This simulation runs as follows:

• AddGen(i): on input a query number i, it returns the public-key(s) pk
(k)
i .

• ActGen(i, $i): on input address index i and an amount $i, A1 runs algorithm

LRCT.Mint(Pub-Params, $i) and returns the account IWi =
(
pk

(k)
i , cn

(k)
i

)
and

its corresponding ck
(k)
i .
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• O-Spend(µ, IW, IWi, OA, {$(j)
(out),i}j∈[Nout],Pub-Params), and it outputs

(TX, sigi, TNi).

• Corrupt(i): on input query number i, it outputs (sk
(k)
i , ck

(k)
i ).

Now A1 construct IW with w accounts from the ActGen’s queries qac, then it

selects two elements π0 and π1 from IW , such IWπ0 = {pk
(k)
π,0, cn

(k)
π,0}k∈[Nin] and

IWπ1 = {pk
(k)
π,1, cn

(k)
π,1}k∈[Nin], with pk

(k)
π,0 = ComA(0, sk

(k)
π,0), pk

(k)
π,1 = ComA(0, sk

(k)
π,1),

cn
(k)
π,0 = ComA($

(k)
(in),0, ck

(k)
π,0) and cn

(k)
π,1 = ComA($

(k)
(in),1, ck

(k)
π,1). After this A1 out-

puts (µ, IWπ0 , IWπ1 , IW,OA, $
(j)
(out),0, $

(j)
(out),1), where

∑Nin
k=1 $

(k)
(in),0 =

∑Nout
j=1 $

(j)
(out),0

and
∑Nin

k=1 $
(k)
(in),1 =

∑Nout
j=1 $

(j)
(out),1. The MIMO.LRCT.Challenger picks at random

b = {0, 1} and returns (TX∗, sig∗b , TN
∗
b )←

hookleftarrowRCT.Spend(µ,Kπb , IWπb , IW,OA, $(out)bPub-Params) where

IWπb = {pk(k)
πb
, cn

(k)
πb } and cn

(k)
πb = ComA($

(k)
(in),πb

, ck(k)
πb

) to A2. The adver-

sary A2 runs the oracles as (Definition 5.16):

• O-Spend(µ, IW ′, IW ′
π, OA, $

(j)
(out),Pub-Params) with IW ′ 6= IW and IW ′

π 6=

Wπ0 ,Wπ1 . This outputs (TX∗′, sig∗b′
′, TN∗b′

′), with TN∗b′
′ = ComH(0, sk

(k)
π,b′
′
)

• Corrupt(i): on input query number i, it returns (sk
(k)
i , ck

(k)
i ).

The adversary A2 outputs b′. If we define the S0 to be the event that b = b′, then

the A2’s advantage is |Pr[S0]− 1
2
|.

Game 1 - Signature: In this game, we perform changes in the signature

sig∗b = (σL′(µ)b, {σrange(j)
b }j∈[Nout]), in particular σL′(µ)b. Instead of generating

this real signature with MIMO.L2RS.SigGen (Algorithm 11), we use the hybrids

MIMO.L2RS.Hybrid-1 and MIMO.L2RS.Hybrid-2, Algorithms 14 and 15, respec-

tively; based on our security analysis in Section 5.3 (MIMO.L2RS unforgeability).

In the transition from the real signature to hybrid 1, the (cπ+1)b is chosen at

random. This transition concluded that the statistical distance between cπ+1 and

Sn,κ ⊆ R2q will be at most εGame1 = o · h · 2−n+1, which is negligible (Based on

[DDLL13], Lemma 3.4), where h and o are the number of queries to H1 and the

hybrid 1, respectively. We now consider the transition from hybrid 1 to hybrid
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2. The output of both hybrids follows the same distribution due to the rejection

sampling (Lemma 3.8). This means that choosing tπ at random, will not have any

effect in the output of both hybrids. Let S0 be the event that b = b′ in Game 1.

We claim that the view of the adversary in Game 0 and Game 1 is:

|Pr[S0]− Pr[S1]| ≤ εGame1. (5.30)

Game 2 - User Anonymity (π0 6= π1 with $(out),0 = $(out),1): Changes in

this game are made to TN∗b and pkπb . TN∗b is now randomly chosen from R2
q.

When b′ = 0, then pkπ0 ←↩ R
2
q whereas pkπ,1 = ComA(0, skπ,1). When b′ = 1 then

pkπ1 ←↩ R
2
q whereas pkπ,0 = ComA(0, skπ,0). When skπ,b is multiplied by H and A

respectively, it gives TN∗b and pkπb that are close to uniform over R2
q. By applying

the Leftover Hash Lemma (LHL) - Lemma 3.5, the statistical distance between

the distribution of (TN∗b mod q and pkπb mod q) and the uniform distribution on

R2
q×R2

q is at most

(
n · 1

2
·
√

q4n

2(γ+1)·(m−1)·n

)
, which is negligible. Let S2 be the event

that b = b′ in Game 2. We claim that

|Pr[S1]− Pr[S2]| ≤ εGame2. (5.31)

Game 3 - User Anonymity (π0 6= π1 with $(out),0 = $(out),1): We now transform

Game 1 into Game 2, where we choose pkπ1−b at random. This means that when

b′ = 0, then pkπ1 ←↩ R
2
q and when b′ = 1 then pkπ0 ←↩ R

2
q. We conclude that by

applying the Leftover Hash Lemma (LHL) - Lemma 3.5, the statistical distance

between the distribution of (pkπb mod q) and the uniform distribution on R2
q is at

most

(
n · 1

2
·
√

q2n

2(γ+1)·(m−1)·n

)
which is negligible. Let S3 be the event that b = b′

in Game 3. We claim that

|Pr[S2]− Pr[S3]| ≤ εGame3. (5.32)

Game 4 - Amount Privacy (π0 = π1 with $(out),0 6= $(out),1): In this

transitional Game, we choose cnπb at random, instead of computing cnπb =
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ComA($(out),πb , ckπb). We use the result of the Theorem 5.19 (Homomorphic Com-

mitment Hiding), to show that by applying the Leftover Hash Lemma (Lemma

3.5), we argue that the statistical distance between the distribution of cnπb and

the uniform distribution on R2
q is at most

(
1
2
·
√

q2n

2(γ+1)·(m−1)·n

)
which is negligible.

Let S4 be the event that b = b′ in Game 4, then we claim that

|Pr[S3]− Pr[S4]| ≤ εGame4. (5.33)

Combining (5.30), (5.31), (5.32), and (5.33), we obtain

∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ ≤ εGame1 + εGame2 + εGame3 + εGame4,

and this is negligible.

Theorem 5.29 (LRCT-Non-Slanderability). If MIMO.LRCT satisfies balance,

then it satisfies non-slanderability as in Definition 5.17. In addition, the

non-slanderability of MIMO.LRCT can be reduced to the non-slanderability of

MIMO.L2RS.

5.9 Performance Analysis

Remark 5.30. This research project did not consider the implementation of the

schemes MIMO.L2RS and MIMO.LRCT, as a result there is not run time analysis.

The project only evaluates the signature and key sizes of the proposed construc-

tions.

In this section, we propose a set of parameters for the MIMO.LRCT scheme. This

construction is secure against direct lattice attacks in terms of the BKZ algorithm

Hermite factor δ, using the value of δ = 1.007, based on the BKZ 2.0 complexity es-

timates with pruning enumeration-based Shortest Vector Problem (SVP) [CN11].

We let n = 1024, m = 132, log q = 196, κ = 14, η = 1.1, α = 0.5, σ = 22010,

σOR = 277350 and `$ = 64 to achieve the security parameter λ = 100, with α
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being the rejection sampling parameter determined in ([DDLL13] Section 3.2).

Signature sizes of this analysis are illustrated in Table 5.5, where regular numbers

for Nin and Nout were taken from Monero blockchain network2.

Table 5.5: Size estimation for MIMO.LRCT

MIMO.LRCT (Nin, Nout) = (1, 2) (Nin, Nout) = (2, 2) (Nin, Nout) = (3, 2)

log(β) (Theorem 5.25) ≈ 126.3 ≈ 126.3 ≈ 126.3

Signature size (w = 1) ≈ 4.8 MB ≈ 5.1 MB ≈ 5.4 MB
Signature size (w = 5) ≈ 6.7 MB ≈ 8 MB ≈ 9.2 MB

Private-key size ≈ 49 KB ≈ 73 KB ≈ 98 KB
Public-key size ≈ 97 KB ≈ 146 KB ≈ 195 KB

5.10 Summary

This chapter has presented the upgraded version of the Lattice-based Ring Con-

fidential Transactions protocol. This new protocol supports Multiple-Input and

Multiple-Output (MIMO) wallets in transactions, and it is a fully functional proto-

col construction for cryptocurrency applications such as Hcash. This version of the

protocol has been implemented 3; however, this implementation is out of the scope

of this research project. Since the MIMO cryptocurrency setting introduces new

balance security requirements (i.e. those against out-of-range amount attacks),

we have provided a refined balance security model to capture such attacks, as

well as several improvements in the anonymity model to capture amount privacy

attacks. This protocol extends a previously proposed ring signature scheme in the

LRCT v1.0 protocol (described in Chapter 4), to support the MIMO requirements

while preserving the post-quantum security guarantees, and uses a lattice-based

zero-knowledge range proof to achieve security against out-of-range attacks.

As a point of reference for future research, we propose preliminary parameter

evaluation and signature sizes. The result of the performance analysis shows that

the signature size grows linearly with the number of users in the ring, as well

as the number of wallets to be transferred. This results in large signature sizes.

2https://moneroblocks.info/
3https://github.com/chainchip/Lattice-RingCT-v2.0
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Several improvements could be applied to this scheme which include, splitting the

transferred amount or using amortisation techniques to reduce the signature size.

This work has also already served as a motivation for further study; for instance,

the recent work of [EZS+19] produced a significant improvement in a lattice-based

RingCT which provided practical signatures sizes of around 100 KB.

In the next chapter, this research project continues to devise an authorisation

model to control the wallets that are transferred in the post-quantum crypto-

graphic world. In doing so, a new cryptographic technique is explored, which is a

combination of threshold-signature and ring signature schemes. Then, we adjusted

this new proposal in our construction, the MIMO.L2RS.



Chapter 6

Lattice-based Linkable Ring

Signature with Co-Signing

1When electronic wallets are transferred by more than one party, the level of secu-

rity can be enhanced by decentralising the distribution of authorisation amongst

those parties. Threshold signature schemes enable this functionality by allowing

multiple cosigners to cooperate in order to create a joint signature. These cosigners

interact to sign a transaction which then confirms that a wallet has been trans-

ferred. However, in the event of a post-quantum attack, existing threshold signa-

ture schemes that support such an authorisation technique in privacy-preserving

cryptocurrency protocols - like Ring Confidential Transaction (RingCT) - would

not provide adequate security.

1This chapter was stored in the public repository https://eprint.iacr.org/2020/1121: Alberto
Torres W.A., Steinfeld R., Sakzad A., Kuchta V. (2020) Post-Quantum Linkable Ring Signature
Enabling Distributed Authorised Ring Confidential Transactions in Blockchain [ATSSK20]
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In this chapter, we present a new post-quantum cryptographic mechanism, called

Lattice-based Linkable Ring Signature with Co-Signing (L2RS-CS), which offers

a distributed authorisation feature to protect electronic wallets. A novel secu-

rity model for L2RS-CS is also formalised to capture the security and privacy

requirements to protect transactions in applications to blockchain cryptocurrency

protocols, such as the RingCT. To address key-generation security concerns, and

to support compression of keys and signatures, the L2RS-CS incorporates a dis-

tributed key generation along with a solid public-key aggregation. Finally, we

prove the security of our constructed L2RS-CS in the random oracle model and

the standard lattice-based Module-SIS hardness assumption.

We construct the first post-quantum Lattice-based Linkable Ring Signature with

Co-Signing (L2RS-CS) scheme which can be adapted to a post-quantum cryp-

tocurrency protocol such as the LRCT [ATKS+19]. The L2RS-CS offers complete-

anonymity, and can support Multiple Input wallets to be transferred to Multiple

Output wallets (MIMO). The L2RS-CS is built on top of the post-quantum LRS

from [ATSS+18] and integrates a DKG together with a solid public-key aggregation

(in the post-quantum settings) which bring a high level of security and compression

for the cosigners’ keys.

Additionally, we formalise another new security model, called Linkable Ring Signa-

ture with Co-Signing (LRS-CS), having a special combination of two constructions,

the (NCS-out-of-NCS)-TS and (1-out-of-w)-LRS schemes (which are used in Mon-

ero [Alo18, GN18]). Although TRS can be seen as a combination of TS and RS

schemes, it is a different type of primitive to our proposed LRS-CS. Namely, in

TRS any subset of t out of n signers can cooperate to generate a signature while

hiding the signers’ subset. In contrast, under our LRS-CS model, there are w

groups of NCS cosigners, so that all the NCS signing keys within the signing group

cooperate to produce the signature while hiding the signers among the w groups.

Furthermore, in LRS-CS the NCS cosigners interactively generate and share a single

public-key, whereas in TRS each cosigner has an individual public-key generated

with a non-interactive key-generation algorithm. Therefore, LRS-CS can be viewed

as a more specialised primitive than TRS; however, one that suffices for RingCT
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authorisation and can also be implemented with much shorter signatures than

existing lattice-based TRS schemes, as we demonstrate in the evaluation of our

scheme.

The security of our proposed L2RS-CS scheme is proven in the classical random ora-

cle model where the properties of unforgeability, linkability and non-slanderability

are demonstrated to be computationally secure from the standard lattice-based

Module-SIS hardness assumption. In terms of anonymity, we show that this

construction is unconditionally secure under the Leftover Hash Lemma (LHL)

[DDLL13]. Table 6.1 illustrates a comparison of the existing lattice-based TRS

schemes, including our L2RS-CS construction.

Finally, the chapter illustrates the selection of concrete and secure parameters as a

result of the security analysis to protect the scheme against adversaries and known

lattice attacks. These parameters are then use to estimate signature and key-pair

sizes that are also compare with similar constructions.

Table 6.1: Lattice-based Threshold Ring Signatures with NCS = 50 and w = 100.

Proposals LinkabilityDKG
Aggregate
pk

Lattice-
based As-
sumption

Signature
Size

Cayrel et al.
[CLRS10]

7 7 7 SIS 25 MB

Bettaieb et al.
[BS13]

7 7 7 ISIS 13 MB

Wei et al.
[WDZ+14]

7 7 7 gGCDHP1 NP2

This work (L2RS-
CS)

X X X Module-SIS 1.2 MB

1 general Graded Computational Diffie-Hellman Problem
2 Parameter values and signature sizes were not provided

The remaining chapter is structured as follows. In Section 6.1 our multi-signatures

scheme is defined and its security model is explained 6.2. Next, the construction

of this proposed scheme is described in Section 6.3. The security and performance

analyses are shown in Section 6.4 and Section 6.5, respectively. This chapters

concludes with a summary in Section 6.6.
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6.1 Definition of a Linkable Ring Signature with

Co-Signing

In this section, we present the definition of our proposed model, the Linkable Ring

Signature with Co-Signing (LRS-CS), which offers an authorisation feature. Under

this model, any group of NCS cosigners among w groups has the ability to partic-

ipate in a protocol that produces the signature, whilst hiding the identity of the

signing group. The model also includes a linking tag, making it capable of detect-

ing whether two signatures have been signed by same group of cosigners. Despite

this authorisation functionality being implicitly used by Monero [Alo18, GN18], it

was not formalised; therefore, we have proposed this new model. The LRS-CS con-

sists of a five-tuple scheme, with (Setup, KeyGen, SigGen, SigVer, SigLink), which

we define as follows:

• PP ← Setup(1λ): a Probabilistic Polynomial Time (PPT) algorithm that

takes the security parameter λ and produces the Public Parameters (PP).

• (pk,SK) ← KeyGen(PP): a PPT interactive protocol among a number

of cosigners (NCS) that by taking the PP, it produces a pair of keys:

the aggregate shared public-key pk and the set of cosigner’ secret-keys

SK = {sk1, . . . , skNCS}.

• σ(µ) ← SigGen(SK, µ, L,PP): a PPT interactive protocol that receives the

PP, a message µ, the list L as in (6.1) to be the list of public keys with w

users in the ring, and Nin inputs (i.e this represents the number of input

wallets of each user in a cryptocurrency application). The cosigners owning

the secret keys in the set SK = {sk(k)
i,1 , . . . , sk

(k)
i,NCS
} interact to produce the

signature σ(µ).

L =
{

pk
(k)
i

}
i∈[w],k∈[Nin]

(6.1)

• (Accept/Reject) ← SigVer(σ(µ), µ, L,PP): a deterministic algorithm that

takes PP, a signature σ(µ), the list L, and the message µ and checks σ(µ)
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is a correct signature. If the signature is valid, it outputs Accept, otherwise

Reject.

• (Linked/Unlinked) ← SigLink(σ(µ)1, σ(µ)2): a deterministic algorithm that

verifies if two signatures σ(µ)1 and σ(µ)2 were produced by the same signer

while hiding the identity of such signer. Thus, this algorithm outputs Linked

if such condition is met, otherwise outputs Unlinked.

The LRS-CS scheme satisfies the SigGen Correctness where valid signatures are

produced by honest signers, and it is then accepted by a public verifier with

overwhelming probability. We said that the LRS-CS scheme is correct if for

any PP ← Setup(1λ), a honest user π runs the protocols (pkπ,SKπ) ←

KeyGen(PP), and σ(µ) ← SigGen(SKπ, µ, L,PP), it holds that Pr[Accept ←

SigVer(σ(µ), µ, L,PP)] = 1− neg(λ).

The scheme also achieves SigLink Correctness. Such property guarantees that two

valid signatures σ(µ)1 and σ(µ)2 are signed and linked by an honest signer with

overwhelming probability. We show that the LRS-CS scheme satisfies SigLink Cor-

rectness property if for any PP ← Setup(1λ) with a honest user π runs the pro-

tocols (pkπ,SKπ) ← KeyGen(PP), and σ(µ)1 ← SigGen(SKπ, µ, L,PP), σ(µ)2 ←

SigGen(SKπ, µ, L,PP), it holds that Pr[Linked ← SigLink(σ(µ)1, σ(µ)2)] = 1 −

neg(λ).

The communication model assumes that the parties involve in our computational

model are connected by a network of point-to-point and broadcast channels.

6.2 Security Model for LRS-CS

Our security model is motivated by [ATSS+18, BS13] where the adversary corrupts

and controls the behaviour of (NCS − 1) cosigners, so forging LRS-CS is as hard

as solving the underlying hardness problem. This model also captures anonymity,

linkability and non-slanderability as principal properties to secure LRS-CS schemes.

We begin by defining the oracles that can be accessed by the adversary.
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6.2.1 Oracles for adversaries

The following oracles are available to any adversary who tries to break the security

of the L2RS-CS scheme ∀k ∈ [Nin]:

• pk
(k)
i ← KO(⊥). The KeyGen Oracle, on request, adds new user(s) to the

system. It runs the KeyGen interactive protocol between the challenger (who

controls one cosigner) and the adversary (who controls (NCS−1) cosigners).

This oracle returns the aggregate shared public-key pk
(k)
i .

Remark 6.1. The challenger C generates with the KeyGen algorithm, the

aggregate shared public-key pk(k)
π and its pair-keys (pk

(k)†
π,1 , sk

(k)†
π,1 ), where

Lsh =
{
pk

(k)†
π,1 , . . . ,pk

(k)
π,NCS

}
. Without loss of generality, we define the C’s

public-key (pk
(k)†
π,1 ) to occur at least once, and to be in the first position of

the Lsh. On the other hand, the adversary A arbitrarily chooses its public-

key for (NCS−1) cosigners, so it can control
{
pk

(k)
π,2, . . . ,pk

(k)
π,NCS

}
from Lsh.

Then, A can also compute its aggregate shared public-key pk(k)
π by calling

the KO oracle. This means that A can play the role of all cosigners, except

for pk
(k)†
π,1 .

• σ(µ)← SO(L, µ,pk(k)
π ). The Signing Oracle, on input a group size w, a set

L as in (6.1), the signer’s pk(k)
π , and a message µ. This oracle returns a valid

signature σ(µ).

6.2.2 One-Time Unforgeability

We point out that forging LRS-CS is infeasible assuming that the adversary is able

to corrupt (NCS−1) cosigners. Consequently, the LRS-CS scheme is secure against

any existentially unforgeable PPT adversary A under chosen-message attacks if

no A has a non-negligible advantage. One-time unforgeability property is then de-

fined in the following interactive game between the challenger C and an existential

adversary A who has access to the oracles in Section 6.2.1:

• C runs PP← Setup(1λ) and gives it to A.
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• A queries the KO oracle Qk times.

• A queries the SO oracle Qs times on input (µ, L,pk(k)
π ) for a message µ,

L = {pk
(k)
1 , . . . ,pk(k)

π , . . . ,pk(k)
w } (with w − 1 decoyed users in the ring) as

in (6.1), which contains the aggregate shared public-key (pk(k)
π )sh.

• A finishes this simulation and outputs a forgery (L∗, µ∗, σ(µ∗)∗) for a new

message µ∗, where L∗ =
{

pk
∗(k)
i

}
i∈[w],k∈[Nin]

.

A wins the game if:

1. SigVer(L∗, µ∗, σ(µ∗)∗) outputs Accept.

2. SO was queried at most once.

3. (L∗, µ∗, σ(µ∗)∗) is not an output of SO.

4. For all i ∈ [w], there exists k ∈ [Nin] such that pk
∗(k)
i ∈ L∗ was generated

by the KO oracle.

5. Every pk
∗(k)
i was used to query SO as a signing key rather than a decoy at

most once.

The advantage of the adversary A in breaking the LRS-CS scheme is defined as

the probability that A wins the above game. We say that A breaks this game

with (τ,Qs, Qk, εuf ) if A runs in time at most τ and with negligible probability

εuf after having made at most Qs signing queries, Qk queries to KO, and (NCS −

1) corrupt cosigners. Thus, we denote this property as Advantageot-unf
A (λ) =

Pr[A wins the game].

Definition 6.2 (One-Time Unforgeability). The LRS-CS scheme is said to be one-

time unforgeable if no adversary with (τ,Qs, Qk, εuf ) is able to break the scheme.
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6.2.3 Unconditional Anonymity

This property requires that any powerful adversaries are incapable of saying which

member of the ring created a particular signature. We define that it should be

infeasible for an adversary A to distinguish a signer’s pk(k)
π with non-negligible

advantage, even if the adversary has unlimited computing resources and time.

This property for LRS-CS schemes is defined in the following game between a

simulator S and an unbounded adversary A.

• A may query KO oracle according to any adaptive strategy.

• A gives S the L =
{

pk
(k)
i0
,pk

(k)
i1

}
k∈[Nin]

, where i0, i1 ∈ [w] which is the

output of the KO oracle, and a message µ.

• S flips a coin b = {0, 1}, then S computes the signature σ(µ)b =

SigGen(L, sk
(k)
ib
, µ,PP). This signature is given to A.

• A outputs a bit b′.

• The output of this experiment is defined to be 1 if b = b′, otherwise 0.

A wins the game if:

1. pk
(k)
i0

, pk
(k)
i1

, and sk(k) /∈ {sk(k)
i0
, sk

(k)
i1
} cannot be used by SO.

2. A outputs b′ such b = b′.

The unconditional anonymity advantage of the LRS-CS scheme is denoted by

AdvantageAnon
A (λ) =

∣∣∣Pr[b = b′]− 1
2

∣∣∣.
Definition 6.3 (Unconditional Anonymity). The LRS-CS scheme is called un-

conditional anonymous if for any unbounded adversary A, AdvantageAnon
A (λ) is

negligible.
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6.2.4 Linkability

It should be infeasible for an adversary A to generate (with same sk(k)
π ) two valid

LRS-CS signatures which are Unlinked. To describe this, we use the interaction

between a simulator S and A:

• The A queries the KO oracle multiple times.

• The A outputs two signatures σ(µ) and σ(µ)′ and two lists L as in (6.1) and

L′ =
{

pk
′(k)
i

}
i∈[w],k∈[Nin]

.

A wins the game if:

1. By calling SigVer on input σ(µ) and σ(µ)′, it outputs Accept on both inputs.

2. The pk(k)’s in L and L′ are outputs of KO oracle.

3. Finally, it gets Unlinked, when calling SigLink on input σ(µ) and σ(µ)′.

Thus the advantage of the linkability in the LRS-CS scheme is denoted by

AdvantageLink
A (λ) = Pr[A wins the game].

Definition 6.4 (Linkability). The LRS-CS scheme is linkable if for all PPT ad-

versary A, AdvantageLink
A (λ) is negligible in λ.

6.2.5 Non-Slanderability

It should be infeasible for an adversary A to output linked for two valid LRS-

CS signatures which were correctly generated with different sk(k)’s. This means

that an adversary can frame an honest user for signing a valid signature so the

adversary can produce another valid signature such that the SigLink algorithm

outputs Linked. To describe this, we use the interaction between a simulator S

and an adversary A:

• A queries the KO to generate (pk
(k)
i , sk

(k)
i ) with i 6= π.
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• S queries the KO to create (pk(k)
π , sk(k)

π ) and gives pk(k)
π to A.

• S calls the SO with sk(k)
π and outputs a valid signature σ(µ), which is then

given to A.

• A produces a second signature σ(µ)′ by calling the SO algorithm.

A wins the game if:

1. The SigVer, on input σ(µ) and σ(µ)′, outputs Accept.

2. When calling the SigLink on input σ(µ) and σ(µ)′, it outputs linked.

Thus the advantage of the non-slanderability in the LRS-CS scheme is denoted by

AdvantageNS
A (λ) = Pr[A wins the game].

Definition 6.5 (Non-Slanderability). The LRS-CS scheme is non-slanderable if

for all PPT adversary A, AdvantageNS
A (λ) is negligible in λ.

6.3 A Lattice-based Construction of the LRS-CS

This section describes technically the Lattice-based Linkable Ring Signature with

Co-Signing (MIMO.L2RS-CS) scheme. This construction comprises the following

algorithms, Setup, KeyGen, SigGen SigVer, and SigLink.

6.3.1 Setup

By receiving the security parameter λ, this Setup defines A = [A′‖I] ∈ R2×(m−1)
q

and H = [H′‖I] ∈ R2×(m−1)
q (as Lemma 6.6), where A′ ←↩ R2×(m−3)

q , H′ ←↩

R2×(m−3)
q are chosen uniformly and randomly, and I denotes the identity. This

algorithm outputs the public parameters (PP): A and H.

Lemma 6.6. If q ≥ 4n, then solving the MSIS-HNF problem with a matrix A =

[A′‖I] ∈ R2×(m−1)
q , in the Hermite Normal Form (HNF), is as hard as solving the

MSISKq,m,k,β problem with A = [A′‖A′′] ∈ R2×(m−1)
q uniformly random.
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Proof. Given the MSIS instance A = [A′‖A′′] ∈ R2×(m−1)
q , if A′′−1 exists, then

we can reduce it to MSIS-HNF instance, which is of the form Ā = A′′−1
1,1 × A.

Therefore, this reduction works with probability equal to the probability that

A′′−1
1,1 exists; then, it remains to show that this probability is non-negligible.

We denote the entries of A′′ =

A′′1,1 A′′1,2

A′′2,1 A′′2,2

 ∈ R2×2
q , so the inverse matrix

A′′−1 = 1
det(A′′)

·

 A′′2,2 −A′′1,2

−A′′2,1 A′′1,1

, with det(A′′)−1 = (A′′1,1A
′′
2,2 − A′′1,2A

′′
2,1)−1 ∈

Rq if the inverse exists. Then, we have that A′′ is invertible if and only

if 1
det(A′′)

exists in Rq. Let’s define the events S0 =
{

A′′−1does not exist
}

,

and S1 =
{

det(A′′)−1 does not exist in Rq

}
. We said that PrA′′←↩R2×2

q

[
S0

]
=

Pr
[
S1

]
= P1 + P2, where P1 = Pr

[
S1 | A′′−1

2,2 exists
]
× Pr

[
A′′−1

2,2 exists
]
, and

P2 = Pr
[
S1 | A′′−1

2,2 does not exist
]
×Pr

[
A′′−1

2,2 does not exist
]
. We consider that if

A′′1,1 ←↩ Rq and A′′−1
2,2 exists in Rq, then A′′1,1×A′′2,2 is uniform in Rq, i.e. ∀Ā ∈ Rq:

Pr
A′′1,1←↩Rq

[
A′′1,1 ×A′′2,2 = Ā

]
= Pr

A′′1,1←↩Rq

[
A′′1,1 = Ā×A′′−1

2,2

]
=

1

|Rq|
(6.2)

Let S2 be the event where a uniform element in Rq is not invertible in Rq.

We observe that Pr
[
S2

]
≤ n

q
as in [SSTX09]. Then by using (6.2), we have

that P1 ≤ Pr
[
S2

]
and P2 ≤ Pr

[
A′′−1

2,2 does not exist in Rq

]
, which is equiva-

lent to Pr
[
S2

]
, since A′′2,2 is uniformly random element in Rq. Therefore, we

argue that Pr
[
S1

]
≤ P1 + P2 ≤ 2 × Pr

[
S2

]
≤ 2n

q
. Subsequently, we want to

show that 1 − Pr
[
S2

]
≥ non-negligible and this is implied by q ≥ 4n. These

conditions lead to the probability that det(A′′)−1 exist in Rq is: 1 − Pr
[
S1

]
=

Pr
[
det(A′′)−1 exist in Rq

]
≥ 2n

q
≥ 1

2
.

Remark 6.7. Setup incorporates a trapdoor in A or H, in practice Setup would

generate A and H based on the cryptographic Hash function H2 evaluated at two

distinct and fixed constants.

Definition 6.8 (Function Lift). This function maps R2
q to R2q with respect to a

public parameter A ∈ R2×(m−1)
q . Given a ∈ R2

q, we let Lift(A, a) , (2 ·A,−2 ·a +

q) ∈ R2×m
2q with q = q · (1, 1)T .
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6.3.2 Key Generation (KeyGen)

The KeyGen (Algorithm 23) is an interactive protocol where NCS cosigners col-

laborate to produce a pair of keys. We define the public-key to be a , pk, and

the secret-key as S , sk. Once receiving the public parameters PP, each cosigner

creates the corresponding secret-key S̄
T
p and public-key āp (steps 2-4). After the

cosigners interact to verify their public-keys, the aggregate shared public-key ash

is jointly computed by each cosigner (step 14). The cosigners also calculate their

corresponding secret-key STp using the list of cosigners (step 16). This solid aggre-

gate shared public-key enables this scheme to be secure against rogue key attacks

[Alo18, GN18, TCZ+20].

Algorithm 23 Key Generation

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,SK

)
, with SK =

{
ST1 , . . . ,S

T
NCS

}
being the shared public-key and cosigner’s secret-key, respec-

tively.
1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄

T
p = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ←↩ (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Calculates āp = (ā1, ā2)T = A · S̄p mod q ∈ R2
q .

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS ]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners
8: Receives āp′ with p′ 6= p
9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′ ) then Accept
12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, Lsh) · S̄Tp
17: return

(
ash,SK

)
, without loss of generality, each cosigner only outputs and holds its corresponding

secret-key STp′ .

6.3.3 Signature Generation (SigGen)

The SigGen (Algorithm 24) is an interactive protocol, among NCS cosigners, which

outputs the signature σ(µ). This protocol receives a message µ, the public param-

eters, the list L that contains the public-keys of w users in the ring, and a set

with the consigners’ secret keys, SK =
{

S
(k)
π,1, . . . ,S

(k)
π,p, . . . , ,S

(k)
π,NCS

}
k∈[Nin]

with
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Nin number of input wallets. The SigGen extends the L2RS [ATSS+18] which fol-

lows the Fiat-Shamir transformation and uses the rejection sampling technique

(step 40) that hides the secret key from the signature.

Remark 6.9. The number if iterations M of the SigGen until the rejection sampling

test accepts is N = Nin×NCS cosigners with inputs T = MN so that M = O(1) (is

constant), the expected time is small with N small, which is the main application

in practice.

6.3.4 Signature Verification (SigVer)

The SigVer (Algorithm 25) verifies the generated signature by receiving

(µ, L, σ(µ),PP) and outputing Accept or Reject. Additionally, Theorem 6.10 shows

the bound of βv that is used in this algorithm.

Theorem 6.10. Let βv = ησ
√
nm, q/4 > σ

√
2(λ+ 1) ln 2 + 2 ln (nm), and

σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)

w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
be generated based on Algorithm

24. Then the output of Algorithm 25 on input σ(µ) is accepted with probability

1− 2−λ.

Proof. For a desired expected rejection and repetition M , if we take the definition

of α where M = e
1

2α2 , then t(k)
π will be indistinguishable from Dσ if σ ≥ α ·‖S(k)

2q,π,p ·

cπ‖ [Section 3.2 in [DDLL13]]. We also use [lemma 4.4, parts 1 and 3, in [Lyu12]].

The part 3 of this lemma shows that the bound on Euclidean norm βv = ησ
√
nm,

for a given η > 1, has a probability Pr
[
‖t(k)

i ‖2 > ησ
√
nm
]
≥ 1−2−λ. In addition,

the bound on infinity norm (‖ti‖∞ < q/4) is analysed in part 1 of this lemma

where its union bound is also considered. It turns out that η is required such

q/4 > ησ > σ
√

2(λ+ 1) ln 2 + 2 ln (nm), except with probability 2−λ.

6.3.5 Correctness of SigGen

We show in the following proof that valid signatures are signed by honest signers,

such that σ(µ) =
(
c1,
{
t

(k)
1 , . . . , t(k)

w

}
k∈[Nin]

,
{
h(k)
π

}
k∈[Nin]

)
is the output of the
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Algorithm 24 Signature Generation

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do
3: Each cosigner “π, p”:

4: Computes the linking tag h
(k)
π,p = H · S(k)

π,p ∈ R2
q .

5: ō
(k)
π,p = H0

(
h
(k)
π,p

)
6: Broadcasts ō

(k)
π,p to other cosigners p′ ∈ [NCS ]

7: Receives ō
(k)
π,p′ with p′ 6= p, then “π, p” securely sends h

(k)
π,p to the cosigners

8: Receives h
(k)
π,p′ with p′ 6= p

9: “π, p” verifies:
10: for (1 ≤ p′ ≤ NCS) do

11: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

12: else Abort protocol

13: Computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

14: Calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

15: Calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

16: Chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

17: Computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

18: o
(k)
π,p = H0

(
r
(k)
π,p, z

(k)
π,p

)
19: Broadcasts o

(k)
π,p to other cosigners p′ ∈ [NCS ]

20: Receives o
(k)
π,p′ with p′ 6= p, then “π, p” securely sends r

(k)
π,p and z

(k)
π,p to the cosigners

21: Receives r
(k)
π,p′ and z

(k)
π,p′ with p′ 6= p

22: “π, p” verifies:
23: for (1 ≤ p′ ≤ NCS) do

24: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

25: else Abort protocol

26: “π, p” computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

27: “π, p” performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π , µ, r

(k)
π , z

(k)
π

)
.

28: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
29: for (1 ≤ k ≤ Nin) do
30: Each cosigner “π, p”:

31: Selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

32: Sends t
(k)
i,p to other cosigners p′ ∈ [NCS ] securely

33: Receives t
(k)
i,p′ with p′ 6= p from other cosigners

34: Computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

35: “π, p” calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

36: Compute ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

37: for (1 ≤ k ≤ Nin) do
38: Choose b(k) ←↩ {0, 1}.
39: “π, p” computes t

(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S

(k)
π,p)T , 1]T .

40: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
41: “π, p” broadcasts t

(k)
π,p to other cosigners

42: “π, p” receives t
(k)
π,p′ with p′ 6= p and computes t

(k)
π =

∑NCS
p′=1

t
(k)
π,p′

43: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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Algorithm 25 Signature Verification

Input: σ(µ), µ,PP, and L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

.

Output: Accept or Reject
1: procedure SigVer(σ(µ), µ, L,PP)

2: Computes H
(k)
2q = (2 ·H,−2 · h(k) + q) ∈ R2×m

2q

3: for (i = 1, . . . , w) do
4: for (1 ≤ k ≤ Nin) do

5: “π, p” calls Lift(A,a
(k)
i, ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

6: Compute ∀k ∈ [Nin], ci+1 = H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H

(k)
2q · t

(k)
i + q · ci

})
7: Check ‖t(k)

i,p′‖2 ≤ βv (see Theorem 6.10)

8: Check ‖t(k)
i,p′‖∞ < q/4

9: if c1 = H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,w · t

(k)
w + q · cw

}
,
{
H

(k)
2q · t

(k)
w + q · cw

})
then Accept

10: else Reject

11: return Accept or Reject

SigGen algorithm on input (µ, L,S(k)
π,p,PP). Then, on input (µ, L, σ(µ),PP), the

SigVer algorithm outputs Accept with overwhelming probability.

We demonstrate that when SigVer (step 9) computes ∀k,∈ [Nin],

H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,w · t(k)

w + q · cw
}
,
{

H
(k)
2q · t(k)

w + q · cw
})

, this result should be

equal to c1. The SigVer also verifies ∀k, w ∈ [Nin], [w] that H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i ·

t
(k)
i +q ·ci

}
,
{

H
(k)
2q · t

(k)
i +q ·ci

})
= ci+1. This evaluation considers two scenarios:

• When i 6= π, ∀k ∈ [Nin], SigGen evaluates ci+1 = H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i ·

t
(k)
i + q · ci

}
,
{

H
(k)
2q · t

(k)
i + q · ci

})
, while SigVer computes ci+1 =

H1

(
L,H

(k)
2q , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{

H
(k)
2q · t

(k)
i + q · ci

})
. These are equal

since A
(k)
2q,i · t

(k)
i · q · ci (in SigGen) = A

(k)
2q,i · t

(k)
i · q · ci (in SigVer); and

H
(k)
2q · t

(k)
i + q · ci (in SigGen) = H

(k)
2q · t

(k)
i + q · ci (in SigVer).

• When i = π, ∀k ∈ [Nin], SigGen checks cπ+1 = H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z

(k)
π

)
,

whereas SigVer calculates cπ+1 = H1

(
L,H

(k)
2q,π, µ,A

(k)
2q,π · t(k)

π · q · cπ,H
(k)
2q,π ·

t(k)
π + q · cπ

)
. In this case, we need to show that cπ+1 (in SigGen) = cπ+1

(in SigVer). In doing so, we evaluate two equalities one related to the public

key r
(k)
π = A

(k)
2q,π · t(k)

π + q · cπ, and the other associated to the linking tag

z
(k)
π,p′ = H

(k)
2q,π,p′ · t

(k)
π,p′ + q · cπ. These equalities are analysed as follows:
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1. The first equality is compared with ∀(k, p′) ∈ [Nin]× [NCS]:

r(k)
π = A

(k)
2q,π · t(k)

π + q · cπ ⇐⇒
NCS∑
p′=1

r
(k)
π,p′ =

{
A

(k)
2q,π ·

NCS∑
p′=1

t
(k)
π,p′

}
+ q · cπ ⇐⇒

NCS∑
p′=1

A
(k)
2q,π · u

(k)
π,p′ =

{
A

(k)
2q,π ·

NCS∑
p′=1

(
u

(k)
π,p′ + S

(k)
2q,π,p′ · cπ · (−1)b

(k))}
+

q · cπ ⇐⇒
NCS∑
p′=1

A
(k)
2q,π · u

(k)
π,p′ =

NCS∑
p′=1

A
(k)
2q,π · u

(k)
π,p′ +

NCS∑
p′=1

{
A

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+

q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
A

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
(2 ·A,−2 · a(k)

π + q) · [S(k)
π,p′ , 1]T · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

{
2 ·A,−2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ + q

}
·

{
NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · [S̄(k)
π,p′ , 1]

}T

· cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 =

{
2 ·A ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k)
π,p′ ,−2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ + q

}
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 =

{
2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ ,−2 ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · ā(k)
π,p′ + q

}
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 = q · cπ · (−1)b
(k)

+ q · cπ ⇐⇒

−q · cπ · (−1)b
(k)

= q · cπ ⇐⇒

We distinguish two cases for b:

– When b = 0, we verify that −q · cπ = q · cπ mod 2q.
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– When b = 1, we have q · cπ = q · cπ mod 2q.
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2. Consequently, the second equality is also examined with ∀(k, p′) ∈

[Nin]× [NCS]:

z(k)
π = H

(k)
2q,π · t(k)

π + q · cπ ⇐⇒
NCS∑
p′=1

z
(k)
π,p′ =

{
H

(k)
2q,π ·

NCS∑
p′=1

t
(k)
π,p′

}
+ q · cπ ⇐⇒

NCS∑
p′=1

H
(k)
2q,π · u

(k)
π,p′ =

{
H

(k)
2q,π ·

NCS∑
p′=1

(
u

(k)
π,p′ + S

(k)
2q,π,p′ · cπ · (−1)b

(k))}
+

q · cπ ⇐⇒
NCS∑
p′=1

H
(k)
2q,π · u

(k)
π,p′ =

NCS∑
p′=1

H
(k)
2q,π · u

(k)
π,p′ +

NCS∑
p′=1

{
H

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+

q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
H

(k)
2q,π · S

(k)
2q,π,p′ · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
(2 ·H,−2 · h(k)

π + q) · [S(k)
π,p′ , 1]T · cπ · (−1)b

(k)

}
+ q · cπ ⇐⇒

0 =

NCS∑
p′=1

{
(2 ·H,−2 ·

NCS∑
p′

h
′(k)
π,p′ + q) · [S(k)

π,p′ , 1]T · cπ · (−1)b
(k)

}
+ q · cπ ⇐⇒

0 =

{
2 ·H,−2 ·

NCS∑
p′

H · S(k)
π,p′ + q

}
·

{
NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · [S̄(k)
π,p′ , 1]

}T

·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 =

{
2 ·H,−2 ·H ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k),T
π,p′ + q

}
·

{
NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · [S̄(k)
π,p′ , 1]

}T

· cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 =

{
2 ·H ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k)
π,p′ ,−2 ·H ·

NCS∑
p′

H(ā
(k)
π,p′ , L

sh) · S̄(k),T
π,p′ + q

}
·

cπ · (−1)b
(k)

+ q · cπ ⇐⇒

0 = q · cπ · (−1)b
(k)

+ q · cπ ⇐⇒

−q · cπ · (−1)b
(k)

= q · cπ ⇐⇒
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We distinguish between two cases:

– When b = 0, it is verified that −q · cπ = q · cπ mod 2q.

– When b = 1, we have q · cπ = q · cπ mod 2q.

6.3.6 Signature Linkability (SigLink)

The SigLink (Algorithm 26) checks whether two signatures were correctly pro-

duced by the same signer, but it does not reveal the identify of such signer. The

correctness proof of this algorithm is described in Appendix 6.3.7.

Algorithm 26 Signature Linkability
Input: σ(µ)1 and σ(µ)2
Output: Linked or Unlinked
1: procedure SigLink(σ(µ)1, σ(µ)2)

2: if
(
SigVer(σ(µ)1, ∗) = Accept and SigVer(σ(µ)2, ∗)) = Accept

)
then Continue [

3: else if h
(k)
µ1 = h

(k)
µ2 then Linked

4: else Unlinked ]

5: return Linked or Unlinked

6.3.7 Correctness of SigLink

We show that an honest user π who signs two messages µ1 and µ2 in the

MIMO.L2RS-CS scheme with the list of public-keys L, obtains a Linked output

from SigLink algorithm with overwhelming probability. As shown in Algorithm

26, two signatures σ(µ)1 and σ(µ)2 were created, and then successfully verified by

SigVer. Therefore, the linkability tags h(k)
µ1

and h(k)
µ2
∀k ∈ [Nin] must be equal. To

prove this, we show that:

H
(k)
2q,µ1

=
(
2 ·H,−2 · h(k)

µ1
+ q
)
∈ R2×m

2q ,where

H = PP and h(k)
µ1

= (H · S(k)
π + q) ∈ R2

q

H
(k)
2q,µ2

=
(
2 ·H,−2 · h(k)

µ2
+ q
)
∈ R2×m

2q ,where

H = PP and h(k)
µ2

= (H · S(k)
π + q) ∈ R2

q
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The first parts of the linkability tag in both MIMO.L2RS-CS signatures have same

equality with following probability:

Pr
[
2 ·H = 2 ·H

]
= 1.

Ultimately, the second part uses the honest user’s secret-key S(k)
π is used, so we

conclude that:

Pr
[
− 2 · h(k)

µ1
+ q + 2 · h(k)

µ2
− q = 0

]
= 1.

6.4 Security Analysis

This section presents the results of our security evaluation. It demonstrates that

the L2RS-CS is computationally secure in terms of unforgeability, linkability and

non-slanderability from the Module-SIS lattice assumption, and it is uncondition-

ally secure for anonymity under the Leftover Hash Lemma (LHL).

Theorem 6.11 (One-Time Unforgeability). If there is a PPT algorithm against

one-time unforgeability of L2RS-CS that makes Quf queries to the random oracles

H0,SO and KO, with non-negligigle probability δ; then, there exist a PPT algo-

rithm that can extract a solution to the MSISKq,m,k,β problem, where β = 2βv and

with non-negligible probability

(
δ − εuf − 1

|Sn,κ|

)
·

(
δ−εuf− 1

|Sn,κ|
Qs+Q1

− 1
|Sn,κ|

)
. The εuf

is neg(n) if the following conditions hold:

1.
2·Nin·NCS(2·Quf+1)2

2n+1 ≤ neg(n), with Quf = max(Q0, Qs, Qk),

2. 1
|Sn,κ| ≤ neg(n),

3. 1√
k
· q1/k ≤ neg(n).

Proof. The MIMO.L2RS-CS scheme relies on the MSISKq,m,k,β problem to be secure

against any existential forger. This means that a forgery algorithm succeeds with

a negligible probability. We conclude that under this probability, the attacker
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will also find a solution to the MSISKq,m,k,β problem. We consider the sequence of

games in this proof where a PPT A is the adversary against the MIMO.L2RS-CS

scheme.

Game 0 - Real Game: This is defined as the original attack game where the

challenger C and the adversary A interact to produce a forgery. We know that

a , pk and S , sk; then, the real Game starts with the challenger C who calls

PP ← Setup(1λ) and gives PP to A. C runs KeyGen (Algorithm 23), where C

starts computing ā†1 and S̄
†
1. When the adversary A sends āp′ with p′ ∈ [2, NCS],

C returns ā†1 to A. After that, C performs the aggregate shared public-key as

ashπ =
∑NCS

p′ H2(āp′ , L
sh) · āp′ with Lsh =

{
ā1, . . . , āNCS

}
. C outputs (ashπ ,S

T
1 ) with

its secret-key computed as ST1 = H2(ā1, L
sh) · S̄T1 . A queries the KO oracle Qk

times.

The challenger C and the adversary A interact to generate a signature σ(µ)t on

(Lt, µt) with Lt =
{

a
(k)
1 , . . . , (a

(k)
π )sh, . . . , a

(k)
w

}
∀k ∈ [Nin] and for any t ∈ [1, Qs].

We assume that (a
(k)
π )sh was generated following the KeyGen algorithm and from

which the challenger C’s public-key (ā†1) occurs once. WheneverA sends interactive

queriesQs with (Lt, µt) to C who behaves as in Algorithm 27 and ultimately returns

σ(µ)t to A.

The adversary A completes the simulation and outputs a forgery (L∗, µ∗, σ(µ)∗).

A wins the game if this forgery satisfies the following conditions:

1. SigVer(L∗, µ∗, σ(µ∗)∗) outputs Accept.

2. SO was queried at most once.

3. (L∗, µ∗, σ(µ∗)∗) is not an output of SO.

4. For all i ∈ [w], there exists k ∈ [Nin] such that pk
∗(k)
i ∈ L∗ was generated

by the KO oracle.

5. Every pk
∗(k)
i was used to query SO as a signing key rather than a decoy at

most once.
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Algorithm 27 SigGen - Game 0

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h
(k)
π,p = H · S(k)

π,p ∈ R2
q .

4: C sets ō
(k)
π,p = H0

(
h
(k)
π,p

)
5: When A sends ō

(k)
π,p′ with p′ ∈ [2, NCS ], C returns ō

(k)
π,p to A.

6: When A sends h
(k)
π,p′ with p′ ∈ [2, NCS ], C sends h

(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

11: C calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

14: C computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

15: C sets o
(k)
π,p = H0

(
r
(k)
π,p, z

(k)
π,p

)
16: When A sends o

(k)
π,p′ with p′ ∈ [2, NCS ], C returns o

(k)
π,p to A.

17: When A sends r
(k)
π,p′ and z

(k)
π,p′ with p′ ∈ [2, NCS ], C sends r

(k)
π,p and z

(k)
π,p to A. Then, C computes as

follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

20: else Abort protocol

21: C computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

22: C performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π , µ, r

(k)
π , z

(k)
π

)
.

23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)
i,p′ with p′ ∈ [2, NCS ], C returns t

(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

28: C calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

30: for (1 ≤ k ≤ Nin) do
31: C chooses b(k) ←↩ {0, 1}.
32: C computes t

(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S

(k)
π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
34: When A sends t

(k)
π,p′ with p′ ∈ [2, NCS ], C returns t

(k)
π,p to A

35: C computes t
(k)
π =

∑NCS
p′=1

t
(k)
π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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If we define the event S0 where the adversary A wins Game 0, then we argued

that A’s advantage is negligible:

Pr[S0] ≤ ε0. (6.3)

Game 1: This game is similar to Game 0, but this time the challenger C behaves

different in the random oracle H0 as illustrated in Algorithm 28 (step 15). On a

y-th query r
(k)
y and z

(k)
y from the adversary A, then C proceeds as follows:

1. C returns H0

(
r

(k)
y , z

(k)
y

)
if this is already defined.

2. C chooses at random o
(k)
y ←↩ Sn,κ, otherwise.

3. C verifies if there exists p′ ∈ [1, y − 1] such that o
(k)
y = H0

(
r

(k)
π,p′ , z

(k)
π,p′

)
for

previous queries of r
(k)
π,p′ and z

(k)
π,p′ . In the case where p′ exists, the game is

aborted, otherwise:

4. C sets o
(k)
y = H0

(
r

(k)
π,p′ , z

(k)
π,p′

)
and returns o

(k)
y to A.

The difference between the Game 0 and Game 1 is that the challenger C aborts

when he tries to set a same hash value H0 for two different inputs. This game

evaluates the probability that C aborts the game under this situation. The total

number of queries Q0 to H0 oracle is at most Q0 +Qs. Then the probability that

C aborts Game 1 is

Q0+Qs∑
y=1

Pr
[(

r
(k)
π,p′ , z

(k)
π,p′

)
∈
{

r
(k)
y′ , z

(k)
y′

}
y′<y

]
≤

Q0+Qs∑
y=1

y−1∑
y′=1

Pr
u
(k)

π,p′←↩D
n
σ

[
r

(k)
π,p′ = r

(k)
y′

]
≤

Q0+Qs∑
y=1

y − 1

2n
≤ (Q0 +Qs)(Q0 +Qs + 1)

2n
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Let S1 be the event where the A wins this Game with negligible probability

(Q0+Qs)(Q0+Qs+1)
2n

≤ ε1. Then we argue that:

|Pr[S0]− Pr[S1]| ≤ ε1. (6.4)

Algorithm 28 SigGen - Game 1

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h
(k)
π,p = H · S(k)

π,p ∈ R2
q .

4: C sets ō
(k)
π,p = H0

(
h
(k)
π,p

)
5: When A sends ō

(k)
π,p′ with p′ ∈ [2, NCS ], C returns ō

(k)
π,p to A.

6: When A sends h
(k)
π,p′ with p′ ∈ [2, NCS ], C sends h

(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

11: C calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

14: C computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

15: C chooses at random o
(k)
π,p ←↩ Sn,κ

16: When A sends o
(k)
π,p′ with p′ ∈ [2, NCS ], C returns o

(k)
π,p to A.

17: When A sends r
(k)
π,p′ and z

(k)
π,p′ with p′ ∈ [2, NCS ], C sends r

(k)
π,p and z

(k)
π,p to A. Then, C computes as

follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

20: else Abort protocol

21: C computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

22: C performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π , µ, r

(k)
π , z

(k)
π

)
.

23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)
i,p′ with p′ ∈ [2, NCS ], C returns t

(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

28: C calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

30: for (1 ≤ k ≤ Nin) do
31: C chooses b(k) ←↩ {0, 1}.
32: C computes t

(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S

(k)
π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
34: When A sends t

(k)
π,p′ with p′ ∈ [2, NCS ], C returns t

(k)
π,p to A

35: C computes t
(k)
π =

∑NCS
p′=1

t
(k)
π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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Game 2: This game is identical to Game 1 except that the SigGen algorithm

is still modified by the challenger C. When A sends interactive queries Qs with

(Lt, µt) to C for signing using the SigGen algorithm, then C behaves as shown in

Algorithm 29.

The C chooses cπ+1 at random from Sn,κ ⊆ R2q, Algorithm 29 (step 22), after that

C programs the answer of the random oracle H1 ∀k ∈ [Nin] as:

H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
= H1

(
L,H

(k)
2q,π, µ,A

(k)
2q,π · t(k)

π · q · cπ,

H
(k)
2q,π · t(k)

π + q · cπ
})
,

without verifying if the values of r
(k)
π =

∑NCS
p′=1 A

(k)
2q,π ·u

(k)
π,p′ and z

(k)
π =

∑NCS
p′=1 H

(k)
2q,π ·

u
(k)
π,p′ ∀(k, p′) ∈ [Nin]× [NCS] were already set. Every time Algorithm 29 is called

by A, the probability of generating u
(k)
π,p′ , such that r

(k)
π and z

(k)
π are equal to

one of the previous values that were queried is at most 2−n+1. Therefore, if the

SigGen in Game 2 and H1 are queried Qs and Q1 times, respectively, then the

probability of getting one collision each time is at most Nin ·NCS ·(Qs+Q1) ·2−n+1.

Additionally, the probability that a collision happens after Qs queries is at most

Nin ·NCS ·Qs · (Qs +Q1) · 2−n+1, which is negligible (Based on [DDLL13], Lemma

3.4).

Let S2 be the event where the A wins Game 2 with negligible probability Nin ·

NCS ·Qs · (Qs +Q1) · 2−n+1 ≤ ε2. Then we claim that:

|Pr[S1]− Pr[S2]| ≤ ε2. (6.5)

Game 3: In this game the adversary A queries the random oracle H0 as in

Algorithm 30 (step 5), and stores the answers in QH0 . The game aborts as in

(step 11) if the āp’s are not in the set QH0 . The successful acceptance of āp is

equal to guess a preimage for the the given op that is committed in (step 5). As

a result, the success probability is at most 1
|Sn,κ| .
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Algorithm 29 SigGen - Game 2

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h
(k)
π,p = H · S(k)

π,p ∈ R2
q .

4: C sets ō
(k)
π,p = H0

(
h
(k)
π,p

)
5: When A sends ō

(k)
π,p′ with p′ ∈ [2, NCS ], C returns ō

(k)
π,p to A.

6: When A sends h
(k)
π,p′ with p′ ∈ [2, NCS ], C sends h

(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

11: C calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

14: C computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

15: C chooses at random o
(k)
π,p ←↩ Sn,κ.

16: When A sends o
(k)
π,p′ with p′ ∈ [2, NCS ], C returns o

(k)
π,p to A.

17: When A sends r
(k)
π,p′ and z

(k)
π,p′ with p′ ∈ [2, NCS ], C sends r

(k)
π,p and z

(k)
π,p to A. Then, C computes as

follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

20: else Abort protocol

21: C computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

22: C chooses at random cπ+1 ←↩ Sn,κ
23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)
i,p′ with p′ ∈ [2, NCS ], C returns t

(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

28: C calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

30: for (1 ≤ k ≤ Nin) do
31: C chooses b(k) ←↩ {0, 1}.
32: C computes t

(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S

(k)
π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
34: When A sends t

(k)
π,p′ with p′ ∈ [2, NCS ], C returns t

(k)
π,p to A

35: C computes t
(k)
π =

∑NCS
p′=1

t
(k)
π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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Let S3 be the event where the A wins Game 3 with negligible probability over

R2
q which is at most 1

|Sn,κ| ≤ ε3. Then we claim that:

|Pr[S2]− Pr[S3]| ≤ ε3. (6.6)

Algorithm 30 KeyGen - Game 3 and Game 4

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respectively.

1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄

T
p = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ←↩ (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Calculates āp = (ā1, ā2)T = A · S̄p mod q ∈ R2
q .

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS ]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners
8: Receives āp′ with p′ 6= p
9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′ ) then Accept
12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, Lsh) · S̄Tp
17: return

(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and holds its

corresponding secret-key STp′ .

Game 4: In this game the adversary A queries the random oracle H2 as in

Algorithm 30 (step 16), and stores the answers in QH2 . The game aborts if the

āp, L
sh’s are in the set QH2 . We upper bound the probability of this abort in this

game at most
QH2

2P
where P is the min-entropy of āp. We use the Leftover Hash

Lemma (LHL) argument to show that the distribution of āp′ is closed to uniform

just by itself. The statistical distance between the distribution D(āp′) and the

uniform distribution R2
q is at most εLHL, where the min-entropy of R2

q = 2 ·n log q.

Likewise, we argue the min-entropy of D(āp) ≤ 1
2n

. This proves that if this is not

aborting, the output of H2 and āp are completely independent of any adversary

view.

Let S4 be the event where the A wins Game 4 with negligible probability over

R2
q which is at most

QH2

2n
≤ ε4. Then we claim that:
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|Pr[S3]− Pr[S4]| ≤ ε4. (6.7)

Game 5: This Game now modify the KeyGen in algorithm 31 (step 4), and SigGen,

Algorithm 32 (step 3), where the linking tag is computed. We recall that public-

key as ā
(k)
π,p = A · S̄(k)

π,p mod q ∈ R2
q. We now choose ā

(k)
π,p′ ∀(k, p′) ∈ [NCS] × [Nin]

uniformly and randomly such ā
(k)
π,p′ ←↩ R2

q. Moreover, we now choose h
(k)
π,p′ ∀(k, p′) ∈

[NCS] × [Nin] uniformly and randomly such h
(k)
π,p′ ←↩ R2

q, rather than computing

the linking tag as h(k)
π,p = H · S(k)

π,p ∈ R2
q. We recall that S(k)

π,p = H2(āp, L
sh) · S̄Tp (as

KeyGen Algorithm 23) where S̄
(k)
π,p is chosen small and with coefficients in (−2γ, 2γ).

We redefine h(k)
π,p = H ·H2(āp, L

sh) · S̄Tp . Then, we now define a new random matrix

Hnew = H ·H2(āp, L
sh).

We know that the public parameter A and Hnew are uniform and S̄
(k)
π,p is chosen

small and with coefficients in (−2γ, 2γ). Then, multiplying these A and Hnew by

the secret key S̄
(k)
π,p, it results in a

(k)
π that is close to uniform over R2

q.

By the Leftover Hash Lemma (LHL) argument (Lemma 3.5), we show that the

statistical distance between the distribution of a(k) mod q and the uniform dis-

tribution on R2
q is at most Nin · NCS · 1

2
·
√

q4n

2(γ+1)·(m−1)·n , which is negligible in

n.

Let S5 be the event where the A wins Game 5 with negligible probability R2
q is

at most Nin ·NCS · 1
2
·
√

q4n

2(γ+1)·(m−1)·n ≤ ε5. Then we claim that:

|Pr[S4]− Pr[S5]| ≤ ε5. (6.8)

Game 6: The challenger C behaves different in the random oracle H0 as illustrated

in Algorithm 33 (step 11). On a y-th query āp′ , from the adversary A, then C

proceeds as follows:

1. C returns H0

(
āy
)

if this is already defined.

2. C chooses at random oy ←↩ Sn,κ, otherwise.
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Algorithm 31 KeyGen - Game 5

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respectively.

1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄

T
p = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ←↩ (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Choose āp ←↩ R2
q

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS ]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners
8: Receives āp′ with p′ 6= p
9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′ ) then Accept
12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, Lsh) · S̄Tp
17: return

(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and holds its

corresponding secret-key STp′ .

3. C verifies if there exists p′ ∈ [1, y − 1] such that o
(k)
y = H0

(
āp′
)

for previous

queries of āp′ . In the case where p′ exists, the game is aborted, otherwise:

4. C sets o
(k)
y = H0

(
āp′
)

and returns o
(k)
y to A.

The difference between the Game 5 and Game 6 is that the challenger C aborts

when he tries to set a same hash value H0 for two different inputs. This game

evaluates the probability that C aborts the game under this situation. The total

number of queries Q0 to H0 oracle is at most Q0 +Qk where Qk is the number of

queries to the KO oracle. Then the probability that C aborts Game 6 is

Q0+Qk∑
y=1

Pr
[(

āp′
)
∈
{

āy′
}
y′<y

]
≤

Q0+Qk∑
y=1

y−1∑
y′=1

Pr
A←↩R2×(m−1)

q

[
āp′ = āy′

]
≤

Q0+Qk∑
y=1

y − 1

2n
≤ (Q0 +Qk)(Q0 +Qk + 1)

2n
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Algorithm 32 SigGen - Game 5

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The linking tag is chosen at random h
(k)
π,p ←↩ R2

q

4: C sets ō
(k)
π,p = H0

(
h
(k)
π,p

)
5: When A sends ō

(k)
π,p′ with p′ ∈ [2, NCS ], C returns ō

(k)
π,p to A.

6: When A sends h
(k)
π,p′ with p′ ∈ [2, NCS ], C sends h

(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

11: C calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

14: C computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

15: C chooses at random o
(k)
π,p ←↩ Sn,κ.

16: When A sends o
(k)
π,p′ with p′ ∈ [2, NCS ], C returns o

(k)
π,p to A.

17: When A sends r
(k)
π,p′ and z

(k)
π,p′ with p′ ∈ [2, NCS ], C sends r

(k)
π,p and z

(k)
π,p to A. Then, C computes as

follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

20: else Abort protocol

21: C computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

22: C chooses at random cπ+1 ←↩ Sn,κ.
23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)
i,p′ with p′ ∈ [2, NCS ], C returns t

(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

28: C calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

30: for (1 ≤ k ≤ Nin) do
31: C chooses b(k) ←↩ {0, 1}.
32: C computes t

(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S

(k)
π,p)T , 1]T .

33: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
34: When A sends t

(k)
π,p′ with p′ ∈ [2, NCS ], C returns t

(k)
π,p to A

35: C computes t
(k)
π =

∑NCS
p′=1

t
(k)
π,p′

36: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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Let S6 be the event where the A wins this Game with negligible probability

(Q0+Qk)(Q0+Qk+1)
2n

≤ ε6. Then we argue that:

|Pr[S5]− Pr[S6]| ≤ ε6. (6.9)

Algorithm 33 KeyGen - Game 6

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respectively.

1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄

T
p = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ←↩ (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Choose āp ←↩ R2
q

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS ]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners
8: Receives āp′ with p′ 6= p
9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do

11: if Choose op′ ←↩ R2
q

then Accept
12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: ash =
∑NCS
p′ H2(āp′ , L

sh) · āp′ with Lsh =
{
ā1, . . . , āNCS

}
15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, Lsh) · S̄Tp
17: return

(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and holds its

corresponding secret-key STp′ .

Game 7: This Game performs similar to Game 6 but we now modify (for

the signer π) the KeyGen Algorithm 34 (step 14). The aggregate public-key as

a
sh(k)
π =

∑NCS
p′ H2(ā

(k)
π,p′ , L

sh) · ā(k)
π,p′ . We now choose a

sh(k)
π ∀(k) ∈ [Nin] uniformly

and randomly such a
sh(k)
π ←↩ R2

q. As in Game 1, it shows that ā
(k)
π,p′ is uniformly

random. We assume that ∀ h ←↩ Sn,κ where h is the output of the hash function

H2. We said that h needs to be invertible in R2
q, then to achieve this condition, we

choose Sn,κ such that ‖h‖∞ < 1√
k
· q1/k as shown in ([LS18], Corollary 1.2), with

probability 1.

Let S7 be the event where the A wins Game 7 with negligible probability, that

is 1 ≤ ε7. Then we claim that:

|Pr[S6]− Pr[S7]| ≤ ε7. (6.10)



Chapter 6: Lattice-based Linkable Ring Signature with Co-Signing 178

Algorithm 34 KeyGen - Game 7

Input: PP: A ∈ R2×(m−1)
q .

Output:
(
ash,

{
ST1 , . . . ,S

T
NCS

})
, being the shared public-key and cosigner’s secret-key, respectively.

1: procedure KeyGen(A)
2: Each cosigner p ∈ {1, . . . , NCS}:
3: Selects S̄

T
p = (s̄p,1, . . . , s̄p,m−1) ∈ R1×(m−1)

q , where s̄p,i ←↩ (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

4: Choose āp ←↩ R2
q

5: op = H0(āp)
6: Broadcasts op to other cosigners p′ ∈ [NCS ]
7: Receives op′ with p′ 6= p, then “p” sends āp to the cosigners
8: Receives āp′ with p′ 6= p
9: Each cosigner verifies:
10: for (1 ≤ p′ ≤ NCS) do
11: if op′ = H0(āp′ ) then Accept
12: else Abort protocol

13: Each cosigner computes the shared public-key as:

14: Choose ash ←↩ R2
q

15: Each cosigner calculates its corresponding secret-key as:

16: STp = H2(āp, Lsh) · S̄Tp
17: return

(
ash,

{
ST1 , . . . ,S

T
NCS

})
, without loss of generality, each cosigner only outputs and holds its

corresponding secret-key STp′ .

Game 8: This Game now changes are made on the t
(k)
1 , . . . , t(k)

w from the SigGen

algorithm. When A sends interactive queries Qs with (Lt, µt) to C for signing using

the SigGen algorithm, then C behaves as in Algorithm 35. This time, the C chooses

t(k)
π,p at random from Dn×m

σ as in Algorithm 35 (step 33) instead of computing it as

t(k)
π,p = u

(k)
π,p +S

(k)
2q,π,p ·cπ · (−1)b

(k)
(Based on [DDLL13], Lemma 3.5). We claim that

this Game is forgeable when A finds a PPT algorithm F to solve the MSISKq,m,k,β

problem. This attack performs as follows:

1. Random coins are selected for the forger φ and signer ψ.

2. The random oracle H1 is called to generate the responses of the users in the

SigGen scheme, (c1, . . . , cw)←↩ Sn,κ.

3. These create a SubRoutine that takes as input (A
(k)
2q,π, φ, ψ, c1, . . . , cw).

4. F is initialized and run by providing the A
(k)
2q,π and forger’s random coins φ.

5. The SubRoutine signs the message µ using the signer’s coins ψ in the Algo-

rithm 35, this produces a signature σL(µ).

6. During the signing process, F calls the oracle H1 and answers are placed in

the list (c1, . . . , cw), the queries are kept in a table in the event that same

queries are used in this oracle.
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Algorithm 35 SigGen - Game 8

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The linking tag is chosen at random h
(k)
π,p ←↩ R2

q .

4: C sets ō
(k)
π,p = H0

(
h
(k)
π,p

)
5: When A sends ō

(k)
π,p′ with p′ ∈ [2, NCS ], C returns ō

(k)
π,p to A.

6: When A sends h
(k)
π,p′ with p′ ∈ [2, NCS ], C sends h

(k)
π,p to A. Then, C computes as follows:

7: for (2 ≤ p′ ≤ NCS) do

8: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

9: else Abort protocol

10: C computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

11: C calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

12: C calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

13: C chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

14: C computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

15: C chooses at random o
(k)
π,p ←↩ Sn,κ.

16: When A sends o
(k)
π,p′ with p′ ∈ [2, NCS ], C returns o

(k)
π,p to A.

17: When A sends r
(k)
π,p′ and z

(k)
π,p′ with p′ ∈ [2, NCS ], C sends r

(k)
π,p and z

(k)
π,p to A. Then, C computes as

follows:
18: for (2 ≤ p′ ≤ NCS) do

19: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

20: else Abort protocol

21: C computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

22: C chooses at random cπ+1 ←↩ Sn,κ.
23: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
24: for (1 ≤ k ≤ Nin) do

25: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

26: When A sends t
(k)
i,p′ with p′ ∈ [2, NCS ], C returns t

(k)
i,p to A.

27: C computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

28: C calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

29: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

30: for (1 ≤ k ≤ Nin) do
31: C chooses b(k) ←↩ {0, 1}.
32:

33: C chooses t
(k)
π,p ←↩ Dn×mσ

34: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
35: When A sends t

(k)
π,p′ with p′ ∈ [2, NCS ], C returns t

(k)
π,p to A

36: C computes t
(k)
π =

∑NCS
p′=1

t
(k)
π,p′

37: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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7. F is stops this simulation and outputs a forgery σ(µ)∗ =(
c∗1,
{
t
∗(k)
1 , . . . , t∗(k)

w

}
,h∗(k)

π

)
, with negligible probability. This output

has to be successfully accepted by the SigVer algorithm.

If the random oracle was not called using some input A
(k)
2q,i · t

∗(k)
i · q · c∗i ,H

(k)
2q ·

t
∗(k)
i + q · c∗i (∀i, k ∈ [w]× [Nin]), then F has 1/|Sn,κ| chances of producing a c∗i+1

such that c∗i+1 = H1

(
L∗,H

(k)
2q , µ

∗,A
(k)
2q,i · t

∗(k)
i · q · c∗i ,H

(k)
2q · t

∗(k)
i + q · c∗i

)
. We claim

that ε7 − 1/|Sn,κ| is the probability that c∗i+1 = cj+1 for some j. In this analysis,

we now consider two types of forgeries:

Forgery 1. We consider that cj+1 is the result after using F which is cj+1 =

H1

(
L′,H

(k)
2q , µ

′,A
(k)
2q,j · t

′(k)
j · q · cj,H(k)

2q · t
′(k)
j + q · cj

)
. Then we have ∀k ∈ [Nin]:

H1

(
L∗,H

(k)
2q , µ

∗,A
(k)
2q,j · t

∗(k)
j · q · cj,H(k)

2q · t
∗(k)
j + q · cj

)
=

H1

(
L′,H

(k)
2q , µ

′,A
(k)
2q,j · t

′(k)
j · q · cj,H(k)

2q · t
′(k)
j + q · cj

)
,

F finds a preimage of cj+1 if µ∗ 6= µ′ or A
(k)
2q,j · t

∗(k)
j · q · cj 6= A

(k)
2q,j · t

′(k)
j · q · cj

or H
(k)
2q · t

∗(k)
j + q · cj 6= H

(k)
2q · t

′(k)
j + q · cj. Then, we have with overwhelm-

ing probability that µ∗ = µ′ or A
(k)
2q,j · t

∗(k)
j · q · cj = A

(k)
2q,j · t

′(k)
j · q · cj or

H
(k)
2q · t

∗(k)
j + q · cj = H

(k)
2q · t

′(k)
j + q · cj. These equalities will result in:

A
(k)
2q,j(t

∗(k)
j − t

′(k)
j ) = 0 mod q and H

(k)
2q (t

∗(k)
j − t

′(k)
j ) = 0 mod q. We assume that

both t
∗(k)
j and t

′(k)
j are different and they met the SigVer Algorithm conditions, so

it results in t
∗(k)
j − t

′(k)
j 6= 0 mod q, and ‖t∗(k)

j − t
′(k)
j ‖ ≤ 2βv.

Forgery 2. We assume that cj+1 was a response to a random oracle H1 query

made by A and it records the cj+1 and the signature σ(µ) on message µ. Then,

fresh random elements are generated as (c′j, . . . , c
′
w) ←↩ Sn,κ. We use the forking

lemma [BN06] to show the probability of cj+1 6= c′j+1 and the forger uses an oracle
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response c′j+1 is at least:

(
Pr[S7]− 1

|Sn,κ|

)
·

(
Pr[S7]− 1

|Sn,κ|

Qs +Q1

− 1

|Sn,κ|

)
,

which is negligible. Therefore, with this probability, A creates a signature

σ(µ)′ =
(
c′1,
{
t
′(k)
1 , . . . , t′(k)

w

}
,h′(k)

π

)
where A

(k)
2q,j · t

∗(k)
j · q · cj = A

(k)
2q,j · t

′(k)
j · q · c′j

and H
(k)
2q · t

∗(k)
j + q · cj = H

(k)
2q · t

′(k)
j + q · c′j. We now obtain

A
(k)
2q,j · (t

∗(k)
j −t

′(k)
j ) = q(cj−c′j) mod 2q and H

(k)
2q (t

∗(k)
j −t

′(k)
j ) = q(cj−c′j) mod 2q.

Since cj−c′j 6= 0 mod 2, so in both equations, we have t
∗(k)
j −t

′(k)
j 6= 0 mod 2q where

‖t∗(k)
j − t

′(k)
j ‖∞ < q/2. By applying modq reduction, we find a small non-zero

vector v(k) = t
∗(k)
j − t

′(k)
j 6= 0 mod q. This v(k) will compute A

(k)
2q,j · v(k) = 0 mod q

and H
(k)
2q · v(k) = 0 mod q with ‖v(k)‖ ≤ 2βv. Since v(k) is same for both

A
(k)
2q,j and H

(k)
2q , we only use the former to continue this analysis. We say that

A
(k)
2q,j mod q = 2(A,−a(k)) mod q, then 2(A,−a(k))v(k) = 0 mod q, this implies

that (A,−a(k))v(k) = 0 mod q, since q is odd. Therefore, this vector v will

be a solution to the MSISKq,m,k,β problem, where β = 2βv, with non-negligible

probability and with respect to (A,−a(k)) over R2
q.

Let S8 be the event where the A wins Game 8 with negligible probability(
Pr[S7]− 1

|Sn,κ|

)
·

(
Pr[S7]− 1

|Sn,κ|
Qs+Q1

− 1
|Sn,κ|

)
to solve the MSISKq,m,k,β problem.

Combining the results of the above Games (6.3), (6.4), (6.5), (6.6), (6.7), (6.8),

(6.9), and (6.10) we obtain:

∣∣∣∣∣
(

Pr[S7]− 1

|Sn,κ|

)
·

(
Pr[S7]− 1

|Sn,κ|

Qs +Q1

− 1

|Sn,κ|

)∣∣∣∣∣ ≤ Pr[Solve MSIS],

Since Pr[S7] ≥ Pr[S0]− εuf with εuf =
∑7

i=1 εi, and we let δ = Pr[S0] then
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∣∣∣∣∣
(
δ − εuf −

1

|Sn,κ|

)
·

(
δ − εuf − 1

|Sn,κ|

Qs +Q1

− 1

|Sn,κ|

)∣∣∣∣∣ ≤ Pr[Solve MSIS]

Theorem 6.12 (Anonymity). Suppose that the quantities: Nin·NCS
2
·
√

q4n

2(γ+1)·(m−1)·n

and 2·Qanon·(2·Qanon+2·Qanon·NCS+1)
2n

are negligible in n with Qanon = max(Q0, Q1, Qs).

Then, the L2RS-CS scheme provides unconditionally anonymity against any adver-

sary who makes Qanon queries to the random oracles H0, H1, and SO.

Proof. We prove the anonymity property of the MIMO.L2RS-CS scheme by using

the sequence-of-games approach [Sho04]:

Game 0 - Real Game: This Game follows the definition of unconditional

anonymity in Section 5.1.3. We assume that an adversary A, by using the KO,

creates a list of pk(k)’s L =
(
pk

(k)
i0
,pk

(k)
i1

)
∀k ∈ [Nin] and ∀i0, i1 ∈ [w]. A gives the

L and a message µ to the challenger. The challenger then flips a coin b←↩ {0, 1},

then creates a signature σ(µ)b = SigGen(S
(k)
ib
, µ, L,PP) and gives σ(µ)b to A. The

adversary A outputs a guess b′. A wins this game if the following conditions are

achieved:

1. pk
(k)
i0

and pk
(k)
i1

must not be used by CO and SO.

2. A outputs b′ such b = b′, with Pr = 1/2.

If we define the event S0 where the adversary A wins Game 0, then we claim that

A2’s advantage is 1
2

+ ε0.

|Pr[S0]− 1
2
| ≤ ε0. (6.11)

Game 1: In this game, we analyse the KeyGen Algorithm 23 in order to show

that ā
(k)
π,p is independent to ā

(k)
π,p′ . In the step 11 of this protocol, the challenger

verifies that oπ,p′ = H0(āπ,p′). Then, there are two cases to be considered:
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• Case 1: āπ,p′ was queried by A to the random oracle H0 before āπ,p was sent.

We define the event E1 where the adversary A queries the H0 up to revealing

āπ,p. E2 to be the event when A guesses āπ,p, with no information of āπ,p′ .

Then, we state that with the following probability āπ,p′ is independent of

āπ,p:

Pr[E1] = Pr[E2] ≤ 1

2n

, where 2n is the min-entropy of āπ,p.

• Case 2: āπ,p′ was not queried, which means that the chance to satisfy the

following condition is negligible:

Pr[oπ,p′ = H0(āπ,p′)] ≤
1

2|H0|

Let S1 be the event where the A wins Game 1 with negligible probability R2
q is

at most 1
2n
≤ ε1. Then we claim that:

|Pr[S0]− Pr[S1]| ≤ ε1. (6.12)

Game 2: This Game now modifies the KeyGen Algorithm 23 (step 4), and

SigGen Algorithm 24 (step 3), where the linking tag is computed. We know that

the public-key is computed as ā
(k)
π,p = A · S̄(k)

π,p mod q ∈ R2
q. Then, we choose

ā
(k)
π,p′ ∀(k, p′) ∈ [NCS]× [Nin] uniformly and randomly such ā

(k)
π,p′ ←↩ R2

q. Moreover,

we select h
(k)
π,p′ ∀(k, p′) ∈ [NCS]× [Nin] uniformly and randomly such h

(k)
π,p′ ←↩ R2

q,

rather than computing the linking tag as h(k)
π,p = H · S(k)

π,p ∈ R2
q. We recall that

S(k)
π,p = H2(āp, L

sh) · S̄Tp (as KeyGen Algorithm 23) where S̄
(k)
π,p is chosen small and

with coefficients in (−2γ, 2γ). We redefine h(k)
π,p = H · H2(ā

(k)
π,p, Lsh) · S̄Tp , where a

new random matrix Hnew = H ·H2(ā
(k)
π,p, Lsh).

Since the public parameter A and Hnew are uniform and S̄
(k)
π,p is chosen small and

with coefficients in (−2γ, 2γ), then multiplying these A and Hnew by the secret key

S̄
(k)
π,p, it results in ā

(k)
π,p and h(k)

π,p that are close to uniform over R2
q. By the Leftover
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Hash Lemma (LHL) argument (Lemma 3.5), we show that the statistical distance

between the distribution of a(k) mod q and the uniform distribution on R2
q is at

most Nin ·NCS · 1
2
·
√

q4n

2(γ+1)·(m−1)·n , which is negligible in n.

Let S2 be the event where the A wins Game 2 with negligible probability R2
q is

at most Nin ·NCS · 1
2
·
√

q4n

2(γ+1)·(m−1)·n ≤ ε2. Then we claim that:

|Pr[S1]− Pr[S2]| ≤ ε2. (6.13)

Game 3: Rather that computing ō
(k)
π,p = H0

(
h(k)
π,p

)
, ō

(k)
π,p is now chosen at random

as seen in Algorithm 36, in step 5. On a y-th query h(k)
y from the adversary A,

then C proceeds as follows:

1. C returns H0

(
h(k)
y

)
if this is already defined.

2. C chooses at random ō
(k)
y ←↩ Sn,κ, otherwise.

3. C verifies if there exists p′ ∈ [1, y− 1] such that ō
(k)
y = H0

(
h

(k)
π,p′

)
for previous

queries of h
(k)
π,p′ . In the case where p′ exists, the game is aborted, otherwise:

4. C sets ō
(k)
y = H0

(
h

(k)
π,p′

)
and returns ō

(k)
y to A.

The difference between the Game 2 and Game 3 is that the challenger C aborts

when he tries to set a same hash value H0 for two different inputs. This game

evaluates the probability that C aborts the game under this situation. The total

number of queries Q0 to H0 oracle is at most Q0 +Qs. Then the probability that

C aborts Game 3 is

Q0+Qs∑
y=1

Pr
[(

h
(k)
π,p′

)
∈
{

h
(k)
y′

}
y′<y

]
≤

Q0+Qs∑
y=1

y−1∑
y′=1

Pr
ō
(k)
y ←↩Sn,κ

[
h

(k)
π,p′ = h

(k)
y′

]
≤

Q0+Qs∑
y=1

y − 1

2n
≤ (Q0 +Qs)(Q0 +Qs + 1)

2n



Chapter 6: Lattice-based Linkable Ring Signature with Co-Signing 185

Let S3 be the event where the A wins this Game with negligible probability

(Q0+Qs)(Q0+Qs+1)
2n

≤ ε3. Then we argue that:

|Pr[S2]− Pr[S3]| ≤ ε3. (6.14)

Algorithm 36 SigGen - Game 3

Input: SK =
{
S
(k)
π,p′

}
p′∈[NCS ],k∈[Nin]

, µ, L =
{
a
(k)
i

}
i∈[w],k∈[Nin]

as in (6.1), and PP.

Output: σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
1: procedure SigGen(SK, µ, L,PP)
2: for (1 ≤ k ≤ Nin) do

3: The challenger C computes the linking tag h
(k)
π,p = H · S(k)

π,p ∈ R2
q .

4: C sets ō
(k)
π,p = H0

(
h
(k)
π,p

)
5: C chooses at random ō

(k)
π,p ←↩ Sn,κ

6: When A sends ō
(k)
π,p′ with p′ ∈ [2, NCS ], C returns ō

(k)
π,p to A.

7: When A sends h
(k)
π,p′ with p′ ∈ [2, NCS ], C sends h

(k)
π,p to A. Then, C computes as follows:

8: for (2 ≤ p′ ≤ NCS) do

9: if ō
(k)
π,p′ = H0

(
h
(k)
π,p′

)
then Accept

10: else Abort protocol

11: C computes the shared linking tag h
(k)
π =

∑NCS
p′ h

(k)
π,p′

12: C calls Lift(H,h
(k)
π ) to obtain H

(k)
2q,π = (2 ·H,−2 · h(k)

π + q) ∈ R2×m
2q .

13: C calls Lift(A,a
(k)
π ) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

π + q) ∈ R2×m
2q .

14: C chooses u
(k)
π,p = (uπ,p,1, . . . , uπ,p,m)T , where uπ,p,i ←↩ Dnσ , for 1 ≤ i ≤ m.

15: C computes r
(k)
π,p = A

(k)
2q,π · u

(k)
π,p and z

(k)
π,p = H

(k)
2q,π · u

(k)
π,p

16: C sets o
(k)
π,p = H0

(
r
(k)
π,p, z

(k)
π,p

)
17: When A sends o

(k)
π,p′ with p′ ∈ [2, NCS ], C returns o

(k)
π,p to A.

18: When A sends r
(k)
π,p′ and z

(k)
π,p′ with p′ ∈ [2, NCS ], C sends r

(k)
π,p and z

(k)
π,p to A. Then, C computes as

follows:
19: for (2 ≤ p′ ≤ NCS) do

20: if o
(k)
π,p′ = H0

(
r
(k)
π,p′ , z

(k)
π,p′

)
then Accept

21: else Abort protocol

22: C computes r
(k)
π =

∑NCS
p′=1

r
(k)
π,p′ and z

(k)
π =

∑NCS
p′=1

z
(k)
π,p′

23: C performs ∀k ∈ [Nin], cπ+1 = H1

(
L,H

(k)
2q,π , µ, r

(k)
π , z

(k)
π

)
.

24: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
25: for (1 ≤ k ≤ Nin) do

26: C selects t
(k)
i,p = (ti,p,1, . . . , ti,p,m)T , where ti,p,j ←↩ Dnσ , for 1 ≤ j ≤ m.

27: When A sends t
(k)
i,p′ with p′ ∈ [2, NCS ], C returns t

(k)
i,p to A.

28: C computes t
(k)
i =

∑NCS
p′=1

t
(k)
i,p′

29: C calls Lift(A,a
(k)
i ) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

30: C runs ∀k ∈ [Nin] ci+1 = H1

(
L,H

(k)
2q,π , µ,

{
A

(k)
2q,i · t

(k)
i + q · ci

}
,
{
H2q,π · t(k)i + q · ci

})
.

31: for (1 ≤ k ≤ Nin) do
32: C chooses b(k) ←↩ {0, 1}.
33: C computes t

(k)
π,p = u

(k)
π,p + S

(k)
2q,π,p · cπ · (−1)b

(k)
, where S

(k)
2q,π,p = [(S

(k)
π,p)T , 1]T .

34: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π,p · cπ‖2

2σ2

)
cosh

( 〈t(k)π,p,S
(k)
2q,π,p · cπ〉
σ2

))−1

otherwise

Restart.
35: When A sends t

(k)
π,p′ with p′ ∈ [2, NCS ], C returns t

(k)
π,p to A

36: C computes t
(k)
π =

∑NCS
p′=1

t
(k)
π,p′

37: return σ(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin]

,
{
h
(k)
π

}
k∈[Nin]

)
.
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Game 4: This Game performs similar to Game 3 but we now modify (for

the signer π) the KeyGen, Algorithm 23 (step 14). The aggregate public-key as

a
(k)
π =

∑NCS
p′ H2(ā

(k)
π,p′ , L

sh) · ā(k)
π,p′ . We now choose ā

(k)
π ∀(k) ∈ [Nin] uniformly and

randomly such a
(k)
π ←↩ R2

q. As in Game 1, it shows that ā
(k)
π,p′ is uniformly ran-

dom. We assume that ∀ h←↩ Sn,κ where h is the output of the hash function H2.

we said that h needs to be invertible in R2
q, then to achieve this condition, we

choose Sn,κ such that ‖h‖∞ < 1√
k
· q1/k as shown in ([LS18], Corollary 1.2), with

probability 1.

Let S4 be the event where the A wins Game 4 with negligible probability, that

is 1 ≤ ε4. Then we claim that:

|Pr[S3]− Pr[S4]| ≤ ε4. (6.15)

Game 5: Changes on this game are made in the remaining public-keys a
(k)
i (1 ≤

i ≤ w, i 6= π), ∀k ∈ [Nin] which are in the list of the ring L. We know that

a
(k)
i =

∑NCS
p′ H(ā

(k)
i,p′ , L

sh) · ā(k)
i,p′ and secret-key S

(k)
i =

∑NCS
p′ H(ā

(k)
i,p′ , L

sh) · S̄(k)
i,p′ ,

where ā
(k)
i,p′ = A · S̄(k)

i,p′ ∀(k, p′) ∈ [NCS]× [Nin]. We now choose uniformly random

ā
(k)
i,p′ , and all S̄

(k)
i,p′ ’s are chosen small with coefficients in (−2γ, 2γ). When the S̄

(k)
i,p′ ’s

are multiplied by the public parameter A, it gives (ā
(k)
i,p′)’s that are close to uniform

over R2
q.

By the Leftover Hash Lemma (LHL) argument (Lemma 3.5), we show that the sta-

tistical distance between the distribution of the (A ·S(k)
i mod q)’s and the uniform

distribution on R2
q ×R2

q is at most Nin ·NCS · 1
2
·
√

q4n

2(γ+1)·(m−1)·n · (w − 1).

We define the event S5 where A wins Game 5 with negligible probability Nin ·

NCS · 1
2
·
√

q4n

2(γ+1)·(m−1)·n · (w − 1) ≤ ε5.

|Pr[S4]− Pr[S5]| ≤ ε5. (6.16)

Game 6: It changes the behaviour of the random oracle H1 in the SigGen, Algo-

rithm 24 (step 21). The challenger chooses cπ+1 at random from Sn,κ ⊆ R2q, after
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that, the answer of the random oracle is programmed H1 ∀k ∈ [Nin] as:

H1

(
L,H

(k)
2q,π, µ, r

(k)
π , z(k)

π

)
= H1

(
L,H

(k)
2q,π, µ,A

(k)
2q,π · t(k)

π + q · cπ,

H
(k)
2q,π · t(k)

π + q · cπ
})

without verifying if the values of r
(k)
π =

∑NCS
p′=1 A

(k)
2q,π ·u

(k)
π,p′ and z

(k)
π =

∑NCS
p′=1 H

(k)
2q,π ·

u
(k)
π,p′ were already set ∀p′ ∈ [NCS]. We argue that the probability of A generating

u
(k)
π,p′ , such that r

(k)
π and z

(k)
π are equal to one of previous queries is at most 2−n+1.

Therefore, if the SigGen (in this Game 3) and H1 are queried Qs and Q1 times,

respectively, then the probability of getting one collision each time is at most

NCS · (Qs +Q1)2−n+1. Additionally, the probability that a collision happens after

Qs queries is at most NCS · Qs · (Qs + Q1)2−n+1, which is negligible (Based on

[DDLL13], Lemma 3.4).

Let S6 be the event where the A wins Game 6 with negligible probability NCS ·

Qs · (Qs +Q1)2−n+1 ≤ ε6. Then we claim that:

|Pr[S5]− Pr[S6]| ≤ ε6. (6.17)

Game 7: Changes in this game are made on the t
(k)
1 , . . . , t(k)

w from the SigGen,

Algorithm 24 (step 39). This time, the challenger chooses ∀p′, t
(k)
π,p′ now directly

from the Gaussian distribution Dn×m
σ , instead of computing it as t(k)

π =
∑NCS

p′=1 t
(k)
π,p′

with t
(k)
π,p′ = u

(k)
π,p′ + S

(k)
2q,π,p′ · cπ · (−1)b

(k)
(Based on [DDLL13], Lemma 3.5). Since

t
(k)
π,p′ is computed using rejection sampling (as Lemma 3.8), thus it is always sample

from the Gaussian distribution Dn
σ(µ). This means that any adversary will have

no advantage in breaking the anonymity property in this Game due to both cases

have same distribution.

Let S7 be the event where the A wins Game 7 with zero probability 0 = ε7. Then

we claim that:

In this game, the view of the adversary A is independent of b; therefore,
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Pr[S7] = Pr[b′ = b] = 1
2
. (6.18)

The results of the Games are combined from (6.11), (6.12), (6.13), (6.14), (6.15),

(6.16), (6.17), and (6.18) we obtain

Pr[S0] = Pr[S7] +
6∑
i=1

εi,

by replacing (6.18) in the Pr[S0], we have

Pr[S0] =
1

2
+

6∑
i=1

εi, then we conclude that Pr

[
S0 −

1

2

]
=

6∑
i=1

εi is negligible.

Theorem 6.13 (Linkability). The L2RS-CS scheme is linkable in the random

oracle model if the MSISKq,m,k,β problem is hard with β ≤ 2βv(1 +
√
nNin2γ).

Proof. We construct a challenger C and an adversary A to solve the MSISKq,m,k,β

problem. They run the linkability attack game (Def. 6.4) ∀k ∈ [Nin], namely:

1. C generates using the KeyGen (Algorithm 23) all secret-keys S
(k)
i ’s with the

corresponding public-keys a
(k)
i ’s, then C gives S(k)

π =
∑NCS

p′ S
(k)
π,p′ to the ad-

versary A.

2. A outputs two signatures σ(µ1) and σ′(µ′1) along with their corresponding

lists L and L′, respectively. These signatures are successfully verified by

SigVer (Algorithm 25) with their linkability tags different such that h(k)
µ1
6=

h
(k)

µ′1
.

3. C computes the linking tags as h(k)
π = H · S(k)

π,p mod q, where “π” is the

legitimate signer. This h(k)
π can then be compared with the linkability tags

h(k)
µ1

and h
(k)
µ′ that were outputted by A (in step 2) and one of them would

be different.
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4. Without loss of generality, suppose h(k)
µ1
6= h(k)

π mod q. Using the forking

lemma [BN06], C rewinds the attacker A to the random oracle “H1” query

that corresponds to the SigVer of the signature σL(µ1). C reruns A with

a different response of H1 and obtains two signatures: σ(µ2) and σ′(µ′2).

Then, we use this signature σ(µ1) and σ(µ2) to extract a solution to the

MSISKq,m,k,β problem if the adversary A finds an efficient algorithm to unlink

these signatures (as further shown in step 7).

5. The adversary A matches the challenge message of both signatures where

H
(k)
2q,µ1

,A
(k)
2q,w,µ1

and q are fixed. Subsequently, we obtain the following rela-

tions:

A
(k)
2q,w,µ1

· t(k)
w,µ1

+ q · cw,µ1 = A
(k)
2q,w,µ1

· t(k)
w,µ2

+ q · cw,µ2
H

(k)
2q,µ1
· t(k)

w,µ1
+ q · cw,µ1 = H

(k)
2q,µ1
· t(k)

w,µ2
+ q · cw,µ2

(6.19)

These expressions can be represented as:

A
(k)
2q,w,µ1

· (t(k)
w,µ1
− t(k)

w,µ2
) = q · (cw,µ2 − cw,µ1)

H
(k)
2q,µ1
· (t(k)

w,µ1
− t(k)

w,µ2
) = q · (cw,µ2 − cw,µ1)

(6.20)

Reducing (6.20) modq with (cw,µ2 − cw,µ1) 6= 0 mod 2, it results in:

A
(k)
2q,w,µ1

· (t(k)
w,µ1
− t(k)

w,µ2
) = 0 mod q

H
(k)
2q,µ1
· (t(k)

w,µ1
− t(k)

w,µ2
) = 0 mod q

(6.21)

We recall the definition of H
(k)
2q,µ1

and A
(k)
2q,w,µ1

in SigGen, Algorithm 24 (steps

8 and 9), respectively, then we have:

(
2 ·A,−2 · a(k)

µ1 + q
)
· (t(k)

w,µ1
− t(k)

w,µ2
) = 0 mod q(

2 ·H,−2 · h(k)
µ1

+ q
)
· (t(k)

w,µ1
− t(k)

w,µ2
) = 0 mod q

(6.22)

Afterwards, if we define (t(k)
w,µ1
− t(k)

w,µ2
) as:
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t(k)
w,µ1
− t(k)

w,µ2
=

 t′(k)
w,µ1
− t′(k)

w,µ2

t′′(k)
w,µ1
− t′′(k)

w,µ2

 ∈ Rm
q (6.23)

Then, by replacing (6.22) in (6.23), it results in:

(
2 ·A,−2 · a(k)

µ1 + q
)
·

 t′(k)
w,µ1
− t′(k)

w,µ2

t′′(k)
w,µ1
− t′′(k)

w,µ2

 = 0 mod q

(
2 ·H,−2 · h(k)

µ1
+ q
)
·

 t′(k)
w,µ1
− t′(k)

w,µ2

t′′(k)
w,µ1
− t′′(k)

w,µ2

 = 0 mod q.

(6.24)

Since we reduce (6.24) to modq, q is odd, and H · (t′(k)
w,µ1
− t′(k)

w,µ2
) = h(k)

µ1
·

(t′′(k)
w,µ1
− t′′(k)

w,µ2
) mod q. We claim that (t′′(k)

w,µ1
− t′′(k)

w,µ2
) 6= 0 is invertible in Rq.

To show this, we have (cw,µ2 − cw,µ1) 6= 0 mod 2. Therefore, using (6.20),

we conclude (t(k)
w,µ1
− t(k)

w,µ2
) 6= 0 mod 2, and (t(k)

w,µ1
− t(k)

w,µ2
) 6= 0 mod 2q.

Additionally, we know that ‖t(k)
w,µ1
− t(k)

w,µ2
‖∞ < q/2 and ‖t(k)

w,µ1
− t(k)

w,µ2
‖2 <

2βv as SigVer, Algorithm 25, which implies that (t′′(k)
w,µ1
− t′′(k)

w,µ2
) 6= 0 mod q.

Furthermore, since 2βv <
1√
k
· q1/k as in ([LS18], Corollary 1.2), then (t′′(k)

w,µ1
−

t′′(k)
w,µ2

) is invertible in Rq. After that, we establish h(k)
µ1

as:

h(k)
µ1

= H · (t
′(k)
w,µ1
−t′(k)w,µ2

)

(t
′′(k)
w,µ1
−t′′(k)w,µ2

)
mod q (6.25)

6. Then, S̄
(k)
µ1

is well-defined since (t′′(k)
w,µ1
− t′′(k)

w,µ2
) is invertible in Rq, then we

said that:

S̄
(k)
µ1

,
(t
′(k)
w,µ1
−t′(k)w,µ2

)

(t
′′(k)
w,µ1
−t′′(k)w,µ2

)
mod q (6.26)

7. By using S(k)
π from (step 3), we consider two cases, when S̄

(k)
µ1

= S(k)
π mod q

and S̄
(k)
µ1
6= S(k)

π mod q. These cases are analysed as follows:

(a) Case 1: If S̄
(k)
µ1

= S(k)
π mod q, we show that h(k)

µ1
= −2 · H · S̄(k)

µ1
=

−2 ·H · S(k)
π = h(k)

π mod q, which is a contradiction with respect to the

above assumption (step 4), where h(k)
µ1
6= h(k)

π mod q.
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(b) Case 2: When S̄
(k)
µ1
6= S(k)

π mod q, we have a
(k)
µ1 = A · S̄(k)

µ1
= A · S(k)

π =

a
(k)
π mod q, then using (6.26) we have:

A ·
(t′(k)
w,µ1
− t′(k)

w,µ2
)

(t′′(k)
w,µ1
− t′′(k)

w,µ2
)

= A · S(k)
π mod q ⇐⇒

A · (t′(k)
w,µ1
− t′(k)

w,µ2
) = A · S(k)

π · (t′′(k)
w,µ1
− t′′(k)

w,µ2
) mod q ⇐⇒

A ·
(

(t′(k)
w,µ1
− t′(k)

w,µ2
)− S(k)

π · (t′′(k)
w,µ1
− t′′(k)

w,µ2
)
)

= 0 mod q

then we let this small non-zero vector v ,
(

(t′(k)
w,µ1
−t′(k)

w,µ2
)−S(k)

π ·(t′′(k)
w,µ1
−

t′′(k)
w,µ2

)
)

be the output of the adversary A, and this vector is a solution

to the MSISKq,m,k,β problem with respect to the public parameter A ∈

R2×(m−1)
q , where β = ‖v‖ and ‖v‖ ≤ 2βv(1 +

√
nNin2γ).

Theorem 6.14 (Non-Slanderability). For any linkable ring signature, if it satisfies

unforgeability and linkability, then it satisfies non-slanderability.

Proof. Let’s suppose there is a non-slanderability adversary ASland who is given

pki, ski, i 6= π, and i ∈ {1, . . . w}, and he produces a valid signature σ′(µ) with

linkability tag hσ′(µ) which is equal to hσ(µ), σ(µ) being the legitimate signature

generated with respect to skπ. This means that ASland can create a signature with

the linkability tag hσ(µ) without knowing skπ. The adversary can also compute

a valid σ′′(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which hσ′′(µ) 6= hσ′(µ). We

give (σ′′(µ), σ′(µ)) to the forger, which can turn it to an MSISKq,m,k,β solution. In

particular, it will be computationally secure when two valid signatures created by

different users are unlinked using the L2RS-CS algorithms. An adversary A will

break these properties with negligible probability as demonstrated in Theorems

(6.11 and 6.13), and with these probabilities the A will find a MSISKq,m,k,β solution.

Therefore, non-slanderability is implied by the definitions of the unforgeability

(Def. 6.2) and linkability (Def. 6.4), and their security analyses, respectively.

Corollary 6.15 (Non-Slanderability). The L2RS-CS scheme is non-slanderable

under the assumptions of Theorem 6.11 and Theorem 6.13.
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6.5 Performance Analysis

Remark 6.16. This research project did not consider the implementation of the

scheme L2RS-CS, as a result there is not run time analysis. The project only

evaluates the signature and key sizes of the proposed construction.

After consolidating the conditions (shown in Table 6.2) from the correctness and

security analyses, which were discussed in earlier sections, we chose the optimal

parameters of our L2RS-CS with Hermite factor δ = 1.0045 and security parameter

λ = 128 bits. This evaluation follows the analysis of the attack on SIS from [MR09]

that we use to estimate secure values for the parameters. In our experiment, we

then set the polynomial ring degree n = 28 instead of n = 27 since it yields

a shorter signature size and a optimal value for log2(q) = 58, as illustrated in

Figures 6.1.a and 6.1.b, respectively. Consequently, we selected the number of

ring elements of the matrices of the PP to be m = 23. This also allowed us to

determine the Hamming weight of each challenge vector (κ = 23), the Gaussian

standard deviation (σ = 188416), and the log β = 38.9 (which also solves the

lattice assumption). With these results, we attained a signature size of 1.26 MB

with the cosigner’s pair of keys (|sk|=10 KB, |pk|=3.6 KB). This evaluation was

restricted to ring size w = 100, Nin = 1 and Nout = 1, which was compared with

existing lattice-based TRS schemes [BS13, CLRS10], as shown in Table 6.1. In a

different experiment, we analysed how the signature size grows with the ring size

and NCS cosigners while comparing our L2RS-CS with [BS13, CLRS10]. Despite all

approaches growing linearly with the ring size w, our L2RS-CS scheme generated

shorter signature sizes than previous constructions (Figure 6.2.a). In terms of the

NCS cosigners (Figure 6.2.b), our proposed scheme achieved constant time and

provided better signature sizes than other lattice-based TRS, in particular when

NCS > 22.
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Table 6.2: List conditions for MIMO.L2RS-CS’s performance analysis

Order Condition Description

1 Sn,κ =
(
n
κ

)
· 2κ > 2λ The challenge space

2 γ ≥ log(nk) n/a

3 ‖Sc‖ ≤
√
mnk2γ Rejection sampling

4 σ ≥ α‖Sc‖ Rejection sampling from BLISS,

α = {0.5, 0.55, 0.7, 1}

5 βv = ησ
√
nm SigVer and Correctness, with

(η = 1.1)

6 NinNCS
1
2

√
q4n

2(γ+1)(m−1)n ≤ 2−λ Left Over Hash Lemma, with se-

curity parameter (λ = 128)

7 β ≤ 2βv + 2βv
√
n2γ β from the linkability analysis

8 min
(
q, 22
√

2n log(q) log(δ)
)
> β Shortest vector length ([MR09]-

P156), with Hermite factor (δ =

1.0045)
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Figure 6.1: Analysis of signature size and q versus n with fixed w = 11.

Finally, we also explored how the signature size grows when selecting regular values

for Nin and Nout. We also set w = 11 since it currently offers secure anonymity,

according to Monero’s blockchain1. The outcome of this evaluation is presented

in Table 6.3. This reveals that the signature size grows linearly with the Nin for

any NCS > 2.

1https://moneroblocks.info/
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Figure 6.2: Analysis of signature size versus w and NCS .

Table 6.3: Size estimation for L2RS-CS for any NCS ≥ 2

L2RS-CS (Nin, Nout) = (1, 2) (Nin, Nout) = (2, 2) (Nin, Nout) = (3, 2)

Signature size (w = 11) ≈ 138.8 KB ≈ 289.8 KB ≈ 452.9 KB
Private-key size ≈ 10.6 KB ≈ 11.1 KB ≈ 11.6 KB
Public-key size ≈ 3.6 KB ≈ 3.8 KB ≈ 4 KB

6.6 Summary

In this chapter, we presented the new post-quantum cryptographic mechanism,

called Lattice-based Linkable Ring Signature with Co-Signing (L2RS-CS), which

offers a distributed authorisation feature to protect electronic wallets. A novel

security model for L2RS-CS was also formalised that captures the security and pri-

vacy requirements to protect transactions in applications to blockchain cryptocur-

rency protocols, such as the RingCT. To address key-generation security concerns,

and to support compression of keys and signatures, the L2RS-CS incorporates a

distributed key generation along with a solid public-key aggregation. Finally, we

proved the security of our constructed L2RS-CS in the random oracle model and

the standard lattice-based Module-SIS hardness assumption.



Chapter 7

Conclusions and Future Research

This thesis points out the importance of constructing post-quantum cryptographic

primitives to deal with the predicted quantum attacks that pose a threat to tra-

ditional cryptography. All the proposed schemes in this thesis used the post-

quantum lattice-based cryptography, which is considered one of the most feasible

alternatives to overcome the threat of quantum attacks. The Linkable Ring Signa-

ture and Threshold Signature are the core schemes that were instantiated by the

use of lattice-based cryptography. These schemes currently have a wide applica-

tion in today’s digital world, cryptocurrencies in particular. Following this trend,

this research utilised the above proposed schemes to extend, devise and construct

a post-quantum cryptocurrency protocol. The study focused on the Ring Confi-

dential Transaction (or RingCT) that is widely used by Monero’s cryptocurrency

application. Additionally, with the Threshold Signature, an authorisation setting

is incorporated to increase the level of security of digital wallets. It is expected

195



Chapter 7: Conclusions and Future Research 196

that the result of this thesis motivates future studies within the area of applied

cryptography.

The first contribution of this thesis, the design and construction of the post-

quantum Lattice-based Linkable Ring Signature (L2RS), was described in Chapter

4. This scheme achieved unconditional anonymity, meaning that even a powerful

adversary with unlimited computational resources and time, would be incapable of

breaking into this property. Other properties such as the unforgeability, linkability

and non-slanderability are computationally secure under the standard Ring Short

Integer Solution (Ring-SIS) lattice hardness assumption. Moreover, to extend the

L2RS scheme, a novel post-quantum cryptocurrency protocol (the LRCT) was de-

vised and constructed, inheriting the post-quantum security guarantees from the

L2RS. The performance results illustrated that signature size grows linearly with

the number of users in the ring. However, these proposals had some limitations.

For example, they only enable transfers from a Single Output wallet to a Single

Output wallet (SISO). In the RingCT model, signatures are one-time. If one then

needs to receive change after making a transfer, a new output wallet is required,

so this reveals the importance of supporting multiple input and output in digi-

tal wallets. Furthermore, having more than one output wallet also introduces a

new security problem like the negative output amount (or out-of-range) attack

[BBB+18], where an adversary can create extra coins (of free money). Although

this attack was addressed in the previous RingCT versions [Noe15] by employing

a range proof technique, it is post-quantum insecure. These limitations were in

part the motivation for the subsequent contributions of this thesis.

Another post-quantum primitive was later presented in Chapter 5, addressing

the limitations of the prior proposals. A second version of the Lattice-based Ring

Confidential Transactions (LRCT) was designed and constructed, supporting trans-

actions of Multiple-Input and Multiple-Output wallets (MIMO). This scheme ex-

tended the SISO.LRCT cryptocurrency protocol, as well as its underlying building

block, the L2RS signature. The MIMO.LRCT also inherited the post-quantum se-

curity guarantees from the SISO.LRCT and L2RS; in other words, the hardness

of the lattice mathematical assumption (the Ring-SIS) was added to secure the
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balance security property. The MIMO.LRCT captured the amount privacy attacks

and user anonymity which were then proved to be unconditionally secure. The

performance evaluation showed preliminary parameters and signature sizes that

can be referred for future research. The result of this evaluation demonstrated

that the signature size also grows linearly with the number of users in the ring. In

the end, this study has served as a motivation for further studies. For instance, in

a recent work, [EZS+19] produced a significant improvement of the lattice-based

RingCT which resulted in practical signatures sizes.

A further development was thereafter proposed to improve the security of the

LRCT cryptocurrency protocol. It included an authorisation model for the ex-

penditure of digital wallets by segregating its corresponding secret-keys. This im-

provement was introduced in Chapter 6, where the new scheme was denominated

as Lattice-based Linkable Ring Signature with Co-Signing (L2RS-CS), which offers

a distributed authorisation feature to protect such wallets. A novel model associ-

ated with this construction (the LRS-CS) that can be utilised in further research

(i.e. it can be instantiated by different security assumptions) was also proposed.

The building blocks employed in this scheme included, Threshold Ring Signatures

(TRS), Distributed Key Generation (DKG) and key aggregation. These methods

led not only to support the security of the scheme but also to achieve a certain

level of compression of the cryptographic keys that are linked to the wallets. The

security of the L2RS-CS was proved in the random oracle model with the lattice-

based Module-SIS hardness assumption, and the anonymity property was inherited

from the previous constructions of the (L2RS). The outcomes of the performance

evaluation demonstrated that the signature size of L2RS-CS also grows linearly

with the number of users in the ring, and the number of input wallets Nin. How-

ever, the analysis showed that the signature size is constant and independent of

the number of cosigners NCS while achieving better signature sizes in comparison

with prior and similar constructions.
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7.1 Future Research

There are still possible research directions after having constructed several post-

quantum cryptographic primitives within this thesis. They might cover certain

types of improvements, new features and perhaps new applications.

• Performance: all the schemes introduced in this thesis (L2RS, LRCT and

L2RS-CS) are subject to improving signature size. Since the size of these

schemes grows linearly with the number of users in the ring, it would be

interesting to study how this size can somehow be improved (in constant

or logarithmic size, for instance). The LRCT cryptocurrency protocol could

be further improved, particularly to split the transferred amount or using

amortisation techniques to reduce the signature size.

• Applications: whilst this thesis did evaluate the application in cryptocur-

rencies; however, the L2RS and L2RS-CS have the potential for other pri-

vacy preserving protocol applications such as supply chain [MQ18], e-voting

[KY19], or direct anonymous attestation that has a direct application in

trusted computing [TW05].

• Security and Functionalities: besides the security properties examined

in the proposed constructions, there are other possible aspects that can be

analysed. For example, forward security would protect past signatures or

transactions if the secret keys had been compromised. The L2RS-CS has

the possibility for being extended to t-out-of-NCS (with t < NCS) since the

current threshold signature evaluates NCS-out-of-NCS [Bra19]. This exten-

sion would bring a robustness property where t− 1 malicious parties cannot

prevent the protocol from producing a valid signature, so this enables the

schemes to be more resilient and tolerant to failures.



Bibliography

[AABN02] Michel Abdalla, Jee An, Mihir Bellare, and Chanathip Namprem-

pre. From identification to signatures via the Fiat-Shamir transform:

Minimizing assumptions for security and forward-security. In EU-

ROCRYPT, pages 418–433. Springer, 2002.

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice

(H) IBE in the Standard Model. In EUROCRYPT, volume 6110,

pages 553–572. Springer, 2010.

[ACST06] Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P.

Tsang. Short Linkable Ring Signatures Revisited. In EuroPKI, pages

101–115. Springer, 2006.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with

worst-case/average-case equivalence. In Proceedings of the twenty-

ninth annual ACM symposium on Theory of computing - STOC ’97,

pages 284–293, New York, 1997. ACM Press.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In

STOC, pages 99–108. ACM, 1996.

[Alo18] Kurt Alonso. Zero to Monero: Multisig Chap-

ter. https://github.com/SarangNoether/zero-to-

monero/blob/master/multisig chapter-1-0.pdf, 2018.

[ALSY06] Man Ho Au, Joseph K Liu, Willy Susilo, and Tsz Hon Yuen. Se-

cure ID-based linkable and revocable-iff-linked ring signature with

199



Bibliography 200

constant-size construction. In INDOCRYPT, volume 4329, pages

364–378. Springer, 2006.

[ALSY07] Man Ho Au, Joseph K. Liu, Willy Susilo, and Tsz Hon Yuen. Cer-

tificate Based (Linkable) Ring Signature. In ISPEC, pages 79–92.

Springer, 2007.

[AMBB+13] Carlos Aguilar Melchor, Slim Bettaieb, Xavier Boyen, Laurent

Fousse, and Philippe Gaborit. Adapting Lyubashevsky’s Signature

Schemes to the Ring Signature Setting. In AFRICACRYPT, pages

1–25. Springer, 2013.

[ATBS15] Wilson Abel Alberto Torres, Nandita Bhattacharjee, and Bala Srini-

vasan. Privacy-preserving biometrics authentication systems using

fully homomorphic encryption. International Journal of Pervasive

Computing and Communications, 11(2):151–168, 6 2015.

[ATKS+19] Wilson Alberto Torres, Veronika Kuchta, Ron Steinfeld, Amin

Sakzad, Joseph K. Liu, and Jacob Cheng. Lattice RingCT v2.0

with Multiple Input and Output Wallets. In ACISP, pages 156–175.

Springer, 2019.

[ATSS+18] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K.

Liu, Veronika Kuchta, Nandita Bhattacharjee, Man Ho Au, and Ja-

cob Cheng. Post-Quantum One-Time Linkable Ring Signature and

Application to Ring Confidential Transactions in Blockchain (Lattice

RingCT v1.0). In ACISP, pages 558–576. Springer, 2018.

[ATSSK20] Wilson Alberto Torres, Ron Steinfeld, Amin Sakzad, and Veronika

Kuchta. Post-Quantum Linkable Ring Signature Enabling Dis-

tributed Authorised Ring Confidential Transactions in Blockchain.

In Cryptology ePrint Archive: Report 2020/1121, 2020.

[BBB+18] Benedikt Bunz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,

Pieter Wuille, and Greg Maxwell. Bulletproofs: Short Proofs for



Bibliography 201

Confidential Transactions and More. In IEEE Symposium on Secu-

rity and Privacy. IEEE, 2018.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim

Lyubashevsky, and Gregory Neven. Better Zero-Knowledge Proofs

for Lattice Encryption and Their Application to Group Signatures.

In ASIACRYPT, pages 551–572. Springer, 2014.

[BDL+18] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oech-

sner, and Chris Peikert. More Efficient Commitments from Struc-

tured Lattice Assumptions. In SCN, pages 368–385. Springer, 2018.

[BdM93] Josh Benaloh and Michael de Mare. One-Way Accumulators: A

Decentralized Alternative to Digital Signatures. In EUROCRYPT,

pages 274–285. Springer, 1993.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact Multi-

signatures for Smaller Blockchains. In ASIACRYPT, pages 435–464.

Springer, 12 2018.

[BHS18] Carsten Baum, Lin Huang, and Oechsner Sabine. Towards

Practical Lattice-Based One-Time Linkable Ring Signatures.

https://eprint.iacr.org/2018/107, 2018.

[BK10] Zvika Brakerski and Yael Tauman Kalai. A Framework for Efficient

Signatures, Ring Signatures and Identity Based Encryption in the

Standard Model. https://eprint.iacr.org/2010/086, 2010.

[BL17a] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography.

Nature, 549(7671):188–194, 9 2017.

[BL17b] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography-

dealing with the fallout of physics success. IACR Cryptology ePrint

Archive, 2017:314, 2017.



Bibliography 202

[BLM17] Johannes Buchmann, Kristin Lauter, and Michele Mosca. Postquan-

tum Cryptography State-of-the-Art. IEEE Symposium on Security

and Privacy, 15(4):12–13, 2017.

[BLM18] Johannes Buchmann, Kristin Lauter, and Michele Mosca. Postquan-

tum Cryptography, Part 2. IEEE Symposium on Security and Pri-

vacy, 16(5):12–13, 9 2018.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
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