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Abstract 
BACKGROUND: Macrophage migration inhibitory factor (MIF), produced by 

monocytes/macrophages, has been reported to be involved in inflammatory 

responses and wound healing. Endogenous and exogenous danger associated 

molecular pattern (DAMP) molecules possess either beneficial tissue repair 

function or provoke detrimental uncontrolled inflammation responses. The 

release of DAMPs following cell lysis or tissue damage is implicated in the 

pathogenesis of multiple auto-inflammatory diseases. An increasing number of 

studies link MIF release to conditions in which cell membrane leakage and tissue 

damage occur. However, the mechanism by which MIF is released has not been 

fully elaborated.  

AIMS: The aim of this study was to seek evidence of MIF as a DAMP molecule. 

Also, MIF tautomerase activity as a key mechanism involved in this function was 

explored. 

METHODS: In the first set of studies, MIF release following cell death was 

studied. For this purpose, various forms of cell death including apoptosis, primary 

necrosis, pyroptosis and necroptosis were induced in THP-1 monocytes. Cell 

death inhibitors were also employed. Cell death was confirmed using Annexin V-

FITC and PI staining and lactate dehydrogenase (LDH) release. MIF release was 

measured using ELISA. Next, MIF modulatory role in inflammatory responses 

induced by TLR4 activation was investigated. For this, wild-type (WT) and MIF 

gene deplete (Mif-/-) macrophages of different sources and classical dendritic cells 

were employed. Pro-inflammatory responses in WT and Mif-/- cells were induced 

by TLR4 activation using bacterial lipopolysaccharide (100 ng/ml) for various 

time points (2, 6 and 24 h). WT cells in separate groups were pre-treated with an 

inhibitor of MIF tautomerase activity (4-IPP). Produced levels of type I interferon 

and TNF-α were measured using luciferase reporter bioassay and ELISA, 

respectively. 



14 
 

RESULTS: Data indicated a significant correlation between MIF release and 

lytic but not apoptotic forms of cell death in monocytes. In addition, findings 

demonstrated a variable role for MIF in TLR4 induced type I interferon and TNF-

α production in both macrophages and dendritic cells. In addition, a possible role 

for MIF tautomerase function was suggested. 

CONCLUSION: Together, these results for the first time unveil a correlation 

between MIF release and lytic modes of cell death in monocytes, suggesting 

passive release following cell lysis. These findings identify lytic cell death as a 

novel mechanism involved in MIF release. Importantly, MIF can regulate TLR-

dependent production of type I interferon differently in macrophages and 

dendritic cells. These findings shed new light on the novel role of MIF as a 

potential DAMP molecule. 

 

 

 

 

 

Keywords: MIF, DAMP, Cell death, Type I interferon, Inflammation, 

Macrophage, Dendritic cell 
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Chapter 1. Literature Review 
 

1.1. Macrophage migration inhibitory factor – structure and variants 

Macrophage migration inhibitory factor (MIF) is a multi-functional molecule 

with hormone, cytokine, chaperone and enzyme like activities (1-3). MIF is a 

small protein (12.5 kDa) composed of 114 amino acids (4, 5). The MIF family 

comprises the MIF-1 isoform and the recently recognised D-dopachrome 

tautomerase isoform (D-DT, MIF-2) that have similar but not identical structural 

and functional characteristics (6, 7).  

Investigation of three dimensional structure of MIF family proteins suggested 

conflicting results regarding the presence of single form or a mixture of monomer, 

dimer and trimer forms in vivo (2). MIF monomer subunits associate to form 

homodimer or homotrimer units via C-terminus which could also dissociate into 

the monomeric state (8). This dynamic oligomer interconversion may be 

associated with MIF’s distinct functional diversity. Both the trimeric and 

monomeric units exert chaperone-like function (9, 10). The trimeric MIF form 

has a solvent-permeable cavity in the centre and the catalytic site of its enzymatic 

activity located between two monomeric units (8). MIF possesses intrinsic 

dopachrome/phenylpyruvate tautomerase catalytic activity and also thiol 

oxidoreductase enzymatic functions.   

MIF is expressed by a wide range of  tissues and cells of the immune system 

including dendritic cells, monocytes and macrophages (11, 12). In addition to 

chaperone-like and intrinsic enzymatic activities, MIF can directly interact with 

various intracellular and extracellular molecules and receptors (12).  

MIF was historically recognized in 1966 as a cytokine that regulates macrophage 

migration during type IV hypersensitivity responses (13, 14). MIF was later “re-

discovered” as it appeared to have the capacity to act as a pituitary hormone and 

also to counteract the immunosuppressive and anti-inflammatory responses of 

glucocorticoids (15, 16).  
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MIF-2 (D-DT) is another family member introduced as a structural homolog 

(Figure 1) of MIF in 1998 (17). Both similar and different properties between D-

DT and MIF-1 have been reported (6, 18-20). Gene encoding MIF-1 and D-DT 

proteins are located next to each other on chromosome 22. Based on amino acid 

sequence similarity of about 35%, MIF-1 and D-DT are considered as structural 

homologous proteins (18). Three-dimensional structure of both proteins is 

similarly a barrel-shaped homotrimer (21). Several recent studies implied 

significant multi-functional similarity between MIF-1 and D-DT (22). Both 

proteins have been reported to be expressed ubiquitously in many cell types and 

tissues during physiological and inflammatory conditions (23). When they bind 

to the same cell surface receptor (CD74/CD44) complex, intracellular ERK1/2 

MAP kinase is activated that results in pro-inflammatory responses (7, 22). In 

terms of their tautomerase enzymatic function, MIF-1 exerts stronger activity 

than MIF-2. During the last years, various inhibitors of tautomerase activity were 

identified that suppress MIF-1 alone (S,R-3-(4-hydroxyphenyl)-4,5-dihydro-5-

isoxazole acetic acid methyl ester, ISO-1) or both MIF-1 and MIF-2 (4-iodo-6-

phenylpyrimidine, 4-IPP) simultaneously (24, 25). 

 

 

Figure 1. Three-dimensional structure of human MIF proteins. 
X-ray crystallography of (A) D-DT and (B) MIF-1 proteins in the forms of monomer (left panel) 
and homotrimer (right panel). Each monomer consist of two antiparallel α-helix and a β-sheet. 
Three identical monomers of human MIF isoforms assemble into a homotrimer structure with 
rotational symmetry. This figure adapted from Merck et al., 2012 (6). 
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Oxidised MIF (oxMIF) is a recently discovered disease-related isoform of MIF 

that circulates in the plasma under certain conditions. oxMIF expression by 

several immune cells that play important roles in acute infections, cancers and 

chronic inflammatory disorders is reported (26). Recently, targeting oxMIF by 

employing a neutralising antibody was shown to successfully suppress the 

tumorigenic effect of MIF and enhance the response of tumor cells to anti-cancer 

therapies (27). Moreover, the application of monoclonal antibodies against 

oxMIF lessened the severity of acute and chronic enterocolitis, cooperatively with 

glucocorticoids, in mouse models (26). These findings indicate that oxMIF can 

be a valuable biomarker and therapeutic target in different cancers (26-28).  

 

1.2. Mechanisms of MIF action 

Unless otherwise specified, here the term MIF is used for the described “original” 

isomer (MIF-1). MIF can act as cytokine, enzyme, chemokine, hormone and 

chaperone in autocrine, paracrine and endocrine modes of action (29). MIF 

biological functions including binding to receptors and interactions with protein 

partners, both of which could be affected by its intrinsic catalytic activities (12).  

 

1.2.1. Intrinsic enzymatic functions 

1.2.1.1. Dopachrome tautomerase activity 

X-ray crystal structure analysis (Figure 2) reveals that MIF contains a 

tautomerase motif on the interface between monomer subunits of trimeric form; 

the catalytic site located on the pocket encompasses proline (Pro1) at the N-

terminal residue (30). The tautomerase pocket is involved in conversion of keto 

and enol forms of D-dopachrome (d-isomer of 2-carboxy-2,3-dihydroindole-5,6-

quinone) into DHICA (5,6-dihydroxyindole-2-carboxylic acid) (30). The relevant 

physiological MIF substrate is still unclear, since currently known substrates, D-

dopachrome and its precursor (D-Tyrosine), are not produced in vertebrates (1).  
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Figure 2. The flexibility of the three-dimensional structure of MIF. 
One tautomerase active site located between the interfaces of monomer subunits in each MIF 
homotrimer molecule that are surrounded by a central hydrophobic channel. This figure 
adapted from Bloom et al., 2016 (12). 
 
 
 
 
 
During recent years, several classes of competitive, allosteric, or covalent/suicide 

inhibitors of MIF tautomerase activity are reported to antagonise its biological 

functions (31). However, there continues to be controversy about the exact 

biological importance of the MIF tautomerase active site (12). 

 

1.2.1.2. Thiol-protein oxidoreductase (TPOR) activity 

MIF molecules contain one pseudo-(E)LR motif  (Asp-44-X-Arg-11) that acts as 

the active site for TPOR function (12). MIF has cysteine-mediated redox function 

due to the intrinsic thiol (di-sulfide) protein oxidoreductase (TPOR) property that 

requires a disulphide motif in the centre of its catalytic site (32). The cysteine 81 

residue of MIF acts as "switch cysteine" in the central thiol-

protein oxidoreductase motif and enables the formation of an enzymatically 

active form of MIF (28). 

MIF participates in controlling cellular redox homeostasis via its TPOR activity 

(33). In addition, MIF oxidoreductase (redox) activity promotes myocardial 

protection by reducing oxidative stress during ischemia-reperfusion injury (34, 
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35). Moreover, MIF TPOR activity could play a role in the suppression of 

apoptosis and binding to intracellular partners in macrophage stimulation during 

septic shock (36-38). MIF-2 (D-DT) lacks the pseudo-(E)LR motif (18). 

 

1.2.2. Molecular chaperone-like role  

MIF is a heat-stable molecule and exposes a hydrophobic surface that makes it a 

member of the “small molecular chaperone” family (39). MIF possess ATP-

independent chaperone-like action assisting in proper folding of various 

macromolecules to reach their final active conformation and enable their normal 

functions (9, 10, 39). Dissociation of MIF oligomers into the monomer form can 

efficiently drive its chaperone-like function to bind and refold the thermally 

denatured molecule of malate dehydrogenase (MDH) and glycogen 

phosphorylase b (Phb) into their native conformations (39). 

Some studies suggested chaperone-like activity to play a role in pathological 

conditions. Amyotrophic lateral sclerosis (ALS) disease is manifested by a 

mutation in the superoxide dismutase (SOD1) gene and the abnormal 

accumulation of SOD1 protein. It is shown that MIF can play a protective role in 

ALS by direct binding with misfolded SOD1 and preventing its aggregation (40-

43). Also, MIF binds to insulin in pancreatic beta cells to support the proper 

folding and hexamer formation that ensure normal insulin function (10). 
 

1.2.3. Hormone- and chemokine-like activities 

MIF has been described as a hormone derived from the anterior pituitary that 

counteracts the immunosuppressive function of glucocorticoids (16, 44, 45). 

Moreover, MIF was historically introduced as the regulator of random migration 

and chemotaxis of macrophages (46). These findings imply a role for MIF as a 

cytokine, chemokine or ligand for specific receptors. This will be described in 

detail below, but a full review of the many reported pro-inflammatory actions of 

MIF is beyond the scope of this chapter. 

https://www.sciencedirect.com/topics/neuroscience/adenosine-triphosphate
https://www.sciencedirect.com/topics/immunology-and-microbiology/superoxide
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1.3. MIF secretion and release  

1.3.1. Unconventional mode of secretion 

Intracellular MIF is mainly localised in cytoplasmic small vesicles/pools (47, 48), 

nucleus (49, 50) and is accompanied by Golgi complex-associated protein p115 

(51). MIF is secreted by non-classical pathways without targeting to endoplasmic 

reticulum (ER), as a result of lacking a signal sequence at the amino (N-terminal) 

terminus of its polypeptide chain (48). Unconventional secretion modes of 

inflammatory proteins, particularly danger-associated molecular patterns 

(DAMPs), by extracellular vesicles can be either active by live cells after 

stimulation, or passive as a result of necrosis (52).  

 

1.3.2. Constitutive and stimulated secretion   

MIF is constitutively produced by many cell types and released in small amounts 

from pre-existing intracellular pools (47, 53). MIF is variously reported to be 

released following by stimulation with pathogen-associated molecular pattern 

(PAMP) molecules (bacterial lipopolysaccharide, LPS), cytokines (TNF-α), and 

hormones (corticosteroids and adrenocorticotrophic hormone) (3, 47, 51, 54). 

However, studies in this thesis call into question these findings. 

 

1.3.3. MIF in extracellular vesicles  

Extracellular vesicles (EVs) can act as an essential route of intracellular and cell-

to-cell communication by conveying biological cargoes and signal transduction 

under physiological and pathological conditions (55). Characterisation of the 

proteomic content and functional analysis of EVs can provide valuable clues for 

identifying novel biomarkers and therapeutic targets in disease (56, 57).  

It has been reported that MIF can be secreted by non-classical mode via EVs in 

some cell types in response to particular signals and thus transfer regulatory 

signals (47, 58, 59). For example, MIF is co-expressed with well-defined 

biomarkers in the exosomes secreted from lung cancer cells that could improve 
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the specificity of lung cancer diagnosis (60). In addition, MIF is secreted in 

exosomes by adipocytes in response to adipokines that affect insulin resistance 

(61, 62). 

 

1.4. MIF-1 and D-DT signal through receptor binding and endocytosis  

MIF binding to different receptor complexes (Figure 3) has been reported to 

trigger various cell responses such as recruitment of immune cells, production of 

inflammatory mediators, cell proliferation and survival (63, 64). The diversity of 

reported cell surface binding partners of MIF is not typical of cytokines, and 

which of the reported receptors is most important for MIF function is still 

unresolved. 
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Figure 3. Surface receptor complexes for MIF family cytokines and their triggered 
signalling pathways.  
(A) Interaction of MIF-1 and D-DT (MIF-2) with CD74-CD44 complex result in the 
phosphorylation of SRC that activates ERK1/2, PI3K-AKT and AMPK signalling cascades 
regulating cell growth, migration and cell death, glucose uptake and autophagy. This is the only 
identified pathway for MIF-2 (B) MIF binding to CD44-CXCR2 or CXCR4 complexes 
resulting in the activation of G-coupled proteins followed by triggering PI3K-AKT, PLC-β and 
ERK1/2 signalling events. (C) Two potential signal transduction modes following MIF ligation 
to the receptor complex consisting of CXCR7 involves the activation of PI3K-AKT and 
ERK1/2 mediate by β-arrestin. (D) Binding of MIF to CXCR4/CXCR7 complex without the 
involvement of CD74 and CD44 via β-arrestin could only stimulate the PI3K-AKT signals. 
This figure adapted from Jankauskas et al., 2019 (18). In the graph, green and red lines 
represent stimulation and inhibition, respectively. 
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1.4.1. Cognate receptor 

CD74 (invariant chain of MHC class II) is referred to the cognate MIF receptor 

and is reported to be involved in the recruitment and formation of MIF receptor 

complexes (65). Both MIF-1 and MIF-2 are described to form high-affinity 

receptor-ligand complexes with CD74 (7). CD74 is involved in some immune-

relevant disorders through controlling cell activation, expansion and motility (66, 

67). 

 

1.4.2. Non-cognate receptors 

The co-receptor molecule CD44 is reported to be a fundamental member of the 

MIF-CD74 receptor complex (64). Phosphorylation and recruitment of CD44 

following by MIF-CD74 binding is described to mediate subsequent activation of 

several signalling cascades (63, 64). In addition, CXC chemokine receptors 

(CXCR2, CXCR4, and CXCR7) are associated with MIF receptor complex that 

promote induction of multiple downstream signalling cascades (64, 68-71). CD74 

is identified as an important element of these MIF receptor complexes by 

immunoprecipitation studies (18).  
 
 
1.5. MIF biological activities  

1.5.1. Diversity of MIF biological functions 

MIF can exert a wide range of biological properties (Table 1) according to the 

producing cell and conditions (72).  
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Table 1. A summary of various functions and molecular mechanisms of MIF action. 
 

Biological roles  Mechanisms of action 

Inflammatory cytokine  Induces the expression pro-inflammatory mediators  

Chemotactic chemokine  Induces rolling and adhesion of leukocytes to vessel wall   

Promotes transendothelial migration of leukocytes 

Hormone activity  Glucocorticoid antagonist released by the anterior pituitary 

Enzymatic activity  Tautomerase activity  

Thiol-protein oxidoreductase (TPOR) activity 

Deregulation of cell cycle  Regulates p53-mediated cell death 

Neuronal renewal  Promotes neural stem/progenitor cells proliferation  

Enhances neural differentiation  

Tumorigenic activity  Stimulates proliferation of tumour cells and tumour growth  

Inhibits apoptosis  

Suppress anti-tumoral immune responses 

Pro-angiogenesis  Induces secretion of pro-angiogenic factors  

Cancer metastasis favouring Reduces E-cadherin expression  

Increases matrix metalloproteinases expression 

Table is adapted from Nobre et al., 2017 (73). 
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1.5.2. Post-translational modifications affect MIF functions 

Post-translational modifications (PTMs) of MIF (Table 2), particularly at proline 

and cysteine residues of the catalytic site, are suggested to impact MIF functions 

and may be partly responsible for the diverse functions exhibited by MIF (74).  

 

 

 
Table 2.  Post-translational modifications in MIF molecule and their biological 
significance. 

Table is adapted from Schindler et al., 2017 (74). 
 

Modification type Chemistry of modification Biological consequences Ref 

Met-1 Cleavage of N-terminal 
methionine 

Unknown (15, 75) 

Cys-57/60 Conformational change of 
ß-sheet  

Disease-related isoform of MIF in 
septicemia, psoriasis, asthma, 
ulcerative colitis, Crohn’s disease, 
Alzheimer’s 

(76) 

Pro-2 Oxidation of proline-imine Tautomerase function loss 
Maintained anti-apoptotic activity 

(26) 

Pro-2 Covalent binding of 
isothiocyanates epicatechin-
quinone, carbamylation 

Tautomerase function loss 
Conformational alteration 
Inhibition of CD74 binding 

(77-80) 

Cys-60 Cysteinylation at Cys-60 Regulation of B and T cells 
responses 

(81) 

Cys-81 S-Nitrosation Enhancement of oxidoreductase 
function 
Augmenting cardioprotective 
function 

(82, 83) 

Ser-112  
Thr-113 

S-Glycosylation Reduced ERK1/2 and AKT 
activation 

(81) 

Ser-91 Phosphorylation Reduction of cysteinylated MIF 
function 

(81) 
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1.6. MIF as a candidate DAMP molecule 

1.6.1. DAMP definition – release and function 

According to “Danger Theory” model (84), danger-associated molecular pattern 

(DAMP) molecules can be secreted actively or passively by stressed or necrotic 

cells. They act as danger signals once they are released following lytic cell death 

and damage during microbial infections, inflammation and tumour progression 

(85-87). However, the definition of danger message transporter molecules has 

been refined since the first description, and the term has caused many 

controversies (88).    

 

1.6.2. DAMP molecules are released upon necrotic cell death  

1.6.2.1. Cell death modes 

The ancient dogma about the definition of apoptosis and accidental necrosis has 

been changed by finding new forms of death. Apoptosis is a programmed form 

of cell death which aims to maintain homeostasis, remove damaged cells and 

promote normal tissue development and healing (89, 90). Apoptotic cells are 

eventually cleared via phagocytosis, termed efferocytosis, without triggering 

inflammation (91). In comparison, necrotic forms of cell death can be triggered 

by various external and internal factors and lead to severe tissue damage and cell 

death (89, 90). Different types of necrotic cell death including necroptosis, 

pyroptosis, and secondary necrosis end in shared cellular outcomes (92). Table 3 

provides a brief description of the various forms of cell death and their association 

with the release of DAMP molecules (92).   

Advanced understanding of relationships between disease development and 

aberrant cell death pathways may result in strategies that contribute to clinical 

intervention. Different modes of cell death are linked with tissue injury and 

dysregulation immune responses in several diseases including cancers, infection, 

neurodegenerative diseases, and inflammatory and autoimmune disorders (93, 

94).  
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Table 3. Comparison of different cell death forms. 

 Apoptosis Necroptosis Pyroptosis Necrosis 

Mode of cell death Programmed Programmed Programmed Accidental 

Initiators TNF-α 

FasL 

TRAIL 

Pathogens 

Environmental factors 

TNF-α 

FasL 

TRAIL 

Microbial infections 

Ischemic injury  

DAMPs 

Microbial infections 

Toxins  

Infections 

Inflammation 

Trauma 

Intermediate 

signalling 

Caspase-3, -7, -8-

dependent  

Mitochondrial 

pathway 

 

Caspase-independent 

TNFR signalling 

JNK activation 

Necrosomes 

Caspase 1-dependent 

Nod-like receptors 

Pyroptosome 

Inflammasomes 

- 

Cellular events Non-lytic  

Cell shrinkage 

DNA fragmentation 

Apoptotic bodies 

Lytic 

Loss of plasma 

membrane 

Swollen organelles 

Lytic 

Pore formation 

Leak of contents 

Lytic 

Leak of contents 

Inflammation Non-inflammatory Pro-inflammatory Pro-inflammatory Pro-inflammatory 

Immunogenicity - ++ ++ +++ 

DAMPs released - Long genomic DNA  

IL-6 

HMGB1  

ATP  

IL-1α/β 

IL-6 

IL-18 

TNF-α  

Chemokines 

 

HMGB1 

ATP  

IL-1α 

IL-33  

mRNA  

Genomic DNA 

Table is adapted from Inoue et al., 2013 (95). 
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1.6.2.1.1. Apoptosis and primary necrosis 

Apoptosis is a programmed cell death that follows a distinct sequences of events 

including initiation, execution and final stages (96). Apoptosis is tightly regulated 

through two major (extrinsic and intrinsic) signalling pathways (96). These 

pathways are tightly regulated through several canonical signals including 

nuclear factor NF-κB, c-Jun N-terminal kinase (JNK), tumour protein p53, and 

tumour necrosis factor (TNF) pathways. Also, numerous environmental factors 

modulate apoptosis-related signalling pathways (91, 97). The final cellular 

outcome of apoptosis is a set of changes in normal cellular morphological and 

biochemical features including chromatin condensation, membrane blebbing, and 

fragmentation of genomic DNA (96, 98). In addition, apoptotic cells/bodies can 

expose newly expressed or modified molecules such as phosphatidylserine (PS) 

as “eat me” signals to trigger phagocytosis (99, 100).  Cells undergoing apoptosis 

are eventually cleared via phagocytosis without triggering inflammation (91, 101).  

Abnormal apoptosis is associated with the pathophysiology of autoimmune 

diseases (102), microbial infection (103), cancer (104), developmental 

abnormities (105), and neurodegenerative disorders (106). Understanding the 

relationships between environmental triggers and compromised signalling is 

pivotal to the development of therapeutical and preventive modalities (91).  

In contrast to apoptosis, necrotic forms of cell death occur as a pathological 

process following exposure to physical, chemical and physiological damage 

(107). Morphologically, necrosis can be defined by the swelling of mitochondria, 

disruption of plasma membrane and explosive release of cellular substances (108). 

The final outcome is release of danger molecules and elicitation of pro-

inflammatory responses (107, 109).  

Primary and secondary necrosis (accelerated primary necrosis) have both shared 

and distinct properties (92, 110). Primary necrosis is induced by toxic substances, 

depletion of ATP, heat shock response, freeze thaw cycles, toxins, oxidative 

damage, all of which lead to cell lysis, DAMP release and activation of 
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inflammatory and immune responses (102, 111, 112). Secondary necrosis is a 

passive cell swelling that occurs as the consequence of deficient or insufficient 

removal of apoptotic cells by phagocytes (113, 114). 
 

1.6.2.1.2. Pyroptosis 

Pyroptosis is a programmed and caspase-dependent form of necrotic cell death 

that ends in cellular lysis, and release of pro-inflammatory mediators (115). 

Inflammasomes are protein complexes involved in pyroptosis induction. They 

consist of procaspase-1 zymogen and a member of NLR (Nod-Like Receptor) 

family or AIM2-like receptor (ALR) family, which are linked directly through 

CARD (Caspase activation and recruitment domain) interaction or indirectly by 

the adapter ASC (Apoptosis-associated Speck-like) protein (116, 117). The 

formation of NLRP3 inflammasome complex results in the activation of caspase-

1 and ultimately the secretion of mature, bioactive forms of IL-18 and IL-1β, and 

DAMPs such as IL-1α and HMGB1 (118, 119). Nigericin, a bacterial pore-

forming toxin, can induce pyroptosis mediated by NLRP3 inflammasome (120). 

Pyroptotic cell death is a protective mechanism for macrophages and dendritic 

cells in response to intracellular microbial pathogens (112, 121). In addition, 

pyroptosis can be induced by silica, asbestos, monosodium urate (MSU) crystals, 

and nigericin in macrophages and dendritic cells (122). Moreover, pathogen-

associated molecular patterns (PAMPs) can induce pyroptotic death through the 

stimulation of toll-like receptors (112, 121).  Although inflammasome activation 

during pyroptosis plays a vital role against intracellular pathogens, aberrant or 

excessive induction may contribute to inflammatory diseases, Alzheimer, 

diabetes, and cancer (123, 124).  

 

1.6.2.1.3. Necroptosis 

Necroptosis is a regulated type of necrotic cell death induced by death receptors, 

toll-like receptors and interferons  (125). Ripoptosome and necrosome complexes 
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are involved in necroptosis induction via toll-like receptor 3 (TLR3) and the 

tumour necrosis factor receptor 1 (TNFR1) signal transduction pathway (126). 

Kinase activity of receptor-interacting protein 1 and 3 (RIP1 and RIP3) is 

required for necroptosis induced by TNF-α (127). The final stage of necroptosis 

represents morphological features of both apoptosis and necrosis. The necroptotic 

form of cell death is associated with DAMP release due to plasma membrane 

disruption and stimulation of pro-inflammatory responses. Released DAMP 

molecules act as cytokines and chemotactic factors to contribute to acute and 

chronic inflammatory reactions (128). Necroptosis can be induced 

experimentally using artificial second mitochondria-derived activator of caspases 

(SMAC) mimetics that antagonise X-linked IAP (XIAP) in caspase suppressed 

cells (129, 130).   

Necroptosis is associated with the production of organ-specific DAMPs that 

could be considered as diagnostic biomarkers (131). In addition, necroptosis 

could be of clinical importance in the pathogenesis of various inflammatory 

diseases, cancer and neurodegenerative disorders (131-134).  

 

1.6.2.1.4. Ferroptosis 

Ferroptosis is a non-apoptotic regulated mode of cell death and is dependent on 

the intracellular levels of iron (135-137). Ferroptotic cell death results from lethal 

accumulation of lipid peroxide arising from reactive oxygen species (ROS) 

generation (138). Ferroptosis is involved in various physiological and 

pathological events such as neurodegeneration and elimination of cancer cells 

(139). 

 

1.6.2.1.5. Autophagic cell death 

Autophagy is the main intracellular mechanism responsible for degrading and 

recycling of unwanted cytoplasmic components and nutrients to provide new 

essential components or source of energy (140). Autophagy is involved in normal 
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homeostasis by controlling cellular damage, removal of senescent cells and 

suppression of tumorigenesis (141). Also, autophagy has been shown to regulate 

innate and adaptive immune responses against intracellular pathogens (142). 

Autophagy-mediated cell death is a caspase-independent programmed cell death 

that occurs during physiologically and pathologically relevant circumstances 

such as embryogenesis and elimination of tumor cells (143). 
 

1.6.3. Evidences suggesting MIF is released like a DAMP molecule 

MIF is found abundantly in the extracellular space during inflammation and tissue 

injury (144). Some studies linked MIF release to conditions in which cell 

membrane leakage and tissue damage occur (87, 145-148). A study showed that 

MIF exacerbates neurologic damage through the induction of cell death in stroke, 

and MIF deletion reduced neuronal death induced by spinal cord damage in mice 

(149, 150). Circulating levels of MIF potentially resulting from DAMP-like 

release are suggested as a valuable prognostic biomarker for neurological injury, 

ischemia-induced hepatocellular damage, post-cardiac arrest syndrome and renal 

cortex necrosis (87, 145-148, 151).  

In a recent report, remarkable MIF release was reported in human neutrophils 

following secondary necrosis but not stimulation by microbial agents or 

inflammatory mediators (152, 153). However, MIF release upon cell death 

induction in monocytes/macrophages has not been previously shown. This 

knowledge gap is addressed in my thesis. 
 

1.6.4. Key roles of DAMP molecules  

1.6.4.1. DAMP molecules modulate immunity and inflammation 

Danger-associated molecular pattern (DAMP) molecules are recognised by 

multiple intracellular and extracellular pattern recognition receptors (PRRs). The 

main DAMP-sensing receptors (Table 4) are toll-like receptors (TLRs), RIG-I-
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like receptors (RLRs), NOD-like receptors (NLRs), and the receptor for advanced 

glycation end products (154, 155).  

 

Table 4. Pattern recognition receptors (PRRs) and their relevant DAMP ligands. 
PRR family Major members DAMP ligands 

TLRs TLR1-9 HMGB1, HSPs, S100 proteins, 
histones, DNA, RNA, mtDNA, 
syndecans, biglycan, versican,  
heparan sulfate  fibrinogen 

NLRs NOD1, NOD2, NLRP family Uric acid, mROS, histones,  
biglycan, LMW hyaluronan 

RLRs RIG-I, MDA5, LGP2 RNA 

CDSs AIM2-like receptor DNA 

Scavenger receptors CD36, CD44, CD68, CD91, 
CXCL16, RAGE 

HMGB1, HSPs, S100 proteins, 
calreticulin, versican 

TLR, toll-like receptor; NLR, NOD-like receptor; RIG-I-like receptors (RLRs); CDS, cytosolic 
DNA sensor. Table is adapted from  Roh et al., 2018(155). 
 

 

DAMP molecules are of pathological importance for diseases such as cancers, 

autoimmune disorders, metabolic syndrome, and neurodegenerative diseases 

(155, 156). Accumulating evidence from clinical studies suggests many DAMP 

molecules as valuable prognostic/diagnostic biomarkers and potential therapeutic 

targets in various infectious and inflammatory diseases (155-157).  

As summarised in Table 5, DAMPs can exert a vast range of inflammatory 

functions including conveying the danger message, regulating immune responses, 

contributing to cellular interactions, and coordination of tissue regeneration 

processes (86). Although DAMPs contribute to normal host defence and promote 

repair regeneration, they can serve as danger signals to trigger innate and adaptive 

immune responses following interaction with their sensing receptors (155, 158). 

Activation of immune responses leads to the production of cytokines and pro-

inflammatory mediators such as interferon type I and TNF-α (159).  
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Table 5. DAMP molecules involved in sterile inflammation and inflammatory disease. 

Alu-RNA, RNA transcribed from Alu elements; DAMP, damage- associated molecular pattern; DCs, 
dendritic cells; dsRNA, double- stranded RNA; HMGB1, high- mobility group box 1 protein; HSPs, 
heat shock proteins; IFN-I, type I interferons; MSU, monosodium urate; mtDNA, mitochondrial DNA; 
NK cells, natural killer cells; NLRs, NOD- like receptors; pDCs, plasmacytoid dendritic cells; RA, 
rheumatoid arthritis; RAGE, receptor for advanced glycation end products; RIG- I, retinoic acid 
inducible gene I; RLRs, RIG- I-like receptors; SLE, systemic lupus erythematosus, TLRs, Toll- like 
receptors. Table is adapted from Gong et al., 2018 (159). 
 

Sensing 
receptors 

Expression 
pattern 

DAMPs Pro- inflammatory 
functions 

Inflammatory 
diseases 

TLR2 Ubiquitous 
DCs 
Monocytes 
Macrophages 
Neutrophils 

HMGB1, HSPs, versican, 
biglycan, decorin, 
eosinophil- derived neurotoxin, 
surfactant protein A/D, 
β- defensin 3, histone 

Promotes the production of 
pro- inflammatory cytokines 
and chemokines 

IRI 
RA 
cancer  
inflammatory 
diseases 

TLR3  
 

Ubiquitous 
DCs 
Monocytes 
Macrophages 
NK cells 

mRNA Promotes the production of 
pro- inflammatory cytokines, 
chemokines and IFN type I 

IRI  
inflammatory 
diseases 

TLR4  Ubiquitous 
DCs 
Monocytes 
Macrophages 
Neutrophils  
Endothelial cells 
 

HMGB1, tenascin- C, HSPs, 
S100s, biglycan, decorin, 
 heparin sulfate, 
 hyaluronic acid, fibrinogen, 
fibronectin, β- defensin,  
surfactant protein A/D, 
lactoferrin, neutrophil elastase, 
peroxiredoxin, histone, ox- LDL 

Promotes the production of 
pro- inflammatory cytokines, 
chemokines and IFN type I 
 

IRI 
RA 
cancer  
inflammatory 
diseases 

TLR7  Ubiquitous 
pDCs 
Monocytes 
Macrophages 
B cells 

IgG-ribonucleoprotein complex, 
microRNAs 
 

Promotes the production 
of IFNα and other cytokines 
and chemokines 
 

SLE  
inflammatory 
diseases 

TLR9  Ubiquitous 
pDCs 
Monocytes 
Macrophages 
B cells 

IgG-chromatin complex, 
mtDNA, 
HMGB1 
 

Promotes the production 
of IFNα and other cytokines 
and chemokines 
 

SLE  
inflammatory 
diseases 

NLRP3  DCs 
neutrophils 
Monocytes 
Macrophages 

MSU, glucose,  
cholesterol crystals, 
ATP, Alu- RNA 

Promotes IL-1β and IL-18 secretion  
initiates pyroptosis 

Gout 
Atherosclerosis 

RIG- I  Ubiquitous 
epithelial cells 
myeloid cells 

Endogenous 5′ppp RNA Promotes the production 
of IFN- I and other cytokines and 
chemokines 

SLE 
cancer 

AIM2  Ubiquitous 
Epithelial cells 
DCs 
Monocytes 
Macrophages 
B cells  
NK cells 

Cytoplasmic DNA,  
damaged DNA 
 

Promotes IL-1β and IL-18 secretion 
Initiates pyroptosis 
 

Cancer 
chronic kidney 
disease 

RAGE  Ubiquitous HMGB1, S100s, DNA Upregulates inflammatory genes 
Promote migration 
proliferation apoptosis 

Diabetes 
cancer  
inflammatory 
diseases 
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1.6.4.2. DAMP molecules orchestrate the process of tissue repair  

Tissue repair refers to a complex molecular and cellular process of regeneration 

of damaged tissue to restore typical architecture and function (160, 161). Several 

intracellular and extracellular DAMP molecules such as high-mobility group box 

(HMGB)-1 and adenosine triphosphate (ATP) are shown to orchestrate the 

healing process of damaged tissue by controlling the responses of innate and 

adaptive immunity, and tissue regeneration (162-164). In wound healing, released 

alarmins and DAMPs can act as chemokines and promote the migration of 

required cells (mainly phagocytes) to eliminate dead cells and debris (163). 

Afterwards, several cell types proliferate to replace the normal tissue architecture 

and extracellular matrix. Finally, pro-angiogenic functions of DAMP molecules 

can participate in the angiogenesis process to form new blood vessels (165). 

 

1.6.5. Evidences suggesting MIF acts like a DAMP molecule  

1.6.5.1. MIF can regulate innate and adaptive immune responses 

Once released, MIF can regulate various aspects of immune system. MIF induces 

the production of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, 

nitric oxide (NO), prostaglandin E2 (PGE2) and H2O2 (166), as well as enhancing 

macrophage activities such as intracellular killing and phagocytosis (167, 168). 

In addition, MIF triggers autophagy and in turn autophagy can mediate MIF 

secretion (169, 170). MIF also can regulate tissue homeostasis and wound healing 

(171, 172).  

 

1.6.5.1.1. Production of type I interferons upon TLR stimulation 

Type I interferons (IFN), mainly IFN-α and IFN-β, are part of the first line of host 

immune defence against microbial invasion (173). They exert biological 

functions including antiviral action, immunomodulatory and anti-proliferative 

effects (174). Enhanced activation of type I IFNs is shown in infectious diseases 

and inflammatory disorders such as AIDS, SLE and tuberculosis (173, 175). 
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As shown in Table 6, Type I  IFNs can be produced by various cell types 

including dendritic cells, epithelial cells, phagocytes, fibroblasts and 

synoviocytes (176). The main intracellular pathways involved in their production 

include RIG-I (retinoic acid-inducible gene I), TRIF (TIR-domain-containing 

adapter-inducing interferon-β) and IRF7 (Interferon regulatory factor 7) (177). 

 
Table 6. Major pathways of type I interferon production. 
 

The table is adapted from https://www.invivogen.com/review-type1-ifn-production. 
 

 

Toll-like receptor 4 (TLR4) can interact with PAMP and DAMP molecules as 

binding ligands to trigger immune responses (188, 189). Bacterial 

lipopolysaccharide (LPS) is a well-defined ligand of TLR4 (189). Following by 

ligand recognition, TLR4 employs several downstream accessory molecule 

protein-protein interactions to transfer the stimulatory signal (190, 191). TLR4 

signalling is comprised of two well-defined MyD88-dependent and MyD88-

independent (TRIF-dependent) pathways (192). The MyD88-dependent pathway 

is responsible for the expression of several pro-inflammatory cytokines such as 

Pathways Main actors Localisation Inducers Cell types Ref 

RIG-I 
pathway 

RIG-I (MDA-5) Cytoplasmic Single-strand RNA viruses 
Double-strand RNA viruses 

Conventional DCs 
Fibroblasts 
Hepatocytes 

 
(178-183) 

TRIF pathway TLR3-TRIF Internal vesicles Unmethylated ds RNA Macrophages 
Hepatocytes 

 
(181, 182, 
184) 

TLR4-TRIF Plasma membrane Viral glycolipids 

IRF7 pathway TLR9-MyD88- 
IRF7(IRF5) 

Endosome Unmethylated RNA  
Injured cells 

Plasmacytoid DCs 
 
 

(185-187) 

TLR7/8-
MyD88- 
IRF7(IRF5) 

Unmethylated CpG DNA  
Chromatin immune complexes 

https://www.invivogen.com/review-type1-ifn-production
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IL-6 and TNF-α (192). The MyD88-independent pathway results in the 

production of interferon-inducible genes and type I interferon (193).  

Toll-like receptor 9 (TLR9) has been shown to be localized in endoplasmic 

reticulum (ER), endosomes, and lysosomes (194). TLR is expressed in multiple 

immune cells such as plasmacytoid dendritic cells (pDCs), neutrophils monocytes, 

CD4+ T cells and B cells as well as several nonimmune cell types (195). TLR9 

can recognise DNA molecules containing unmethylated CpG motifs found in 

intracellular bacteria and viruses (196). TLR9 interaction with the cytosine-

phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) triggers MyD88-

dependent signalling cascade that culminate in the production type I interferon 

and inflammatory cytokines (197). 

 

1.6.5.1.2. Regulation of TLR signalling pathways 

TLR signalling can be down-regulated at multiple levels to ensure the termination 

of harmful inflammatory responses. In addition, some pathogens negatively 

control TLR signalling by various mechanisms to evade innate responses of host 

defence (198, 199). Major ways of regulatory mechanisms are mainly classified 

into major modes of blockade of adaptor complexes formation, disruption of 

signal-regulated proteins, TLR trafficking and transcriptional regulatory 

mechanisms (200).  

The modulation of TLR4-induced responses is mediated at multiple levels 

including negative regulation by receptor endocytosis and degradation (201), 

transcriptional regulation (202, 203) and regulation of intracellular signaling 

elements (204, 205). Some factors such as cell type and exposure circumstances 

affect the production of type I IFNs (206). Although macrophages and dendritic 

cells both express TLR4, they differentially respond to the same ligands, a fact 

which may account for their different roles in immune responses (207). 
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Multiple stimuli including DAMP molecules are known to induce the production 

of type I interferons (188, 189). Here, I will focus on TLR4- and TLR9-dependent 

mechanisms that I study in my experimental sections. 
 

1.6.5.1.3. MIF modulates TLR4-induced pro-inflammatory responses 

The regulation of TLR4-induced responses by MIF in various cell types has been 

reported (208). Extracellular MIF was shown to control the cell surface level of 

TLR4 in response to LPS through controlling TLR4 mRNA expression (209-211). 

However, controlling the surface TLR4 levels is not the only way in which MIF 

can affect TLR4 responses (212, 213). A study has shown that TLR4-induced 

signals can be transduced in conditions of low levels of TLR4 receptor expression 

observed in MIF deficiency (213, 214). Induction of TLR4 responses in 

peritoneal macrophages of MIF knockout mice leads to a declined level of TNF-

α without affecting IL-6 production, indicating selective post TLR4 effects (214).  

Exogenous MIF is reported to promote LPS-induced production of IL-1β and 

TNF-α (215). The expression of TLR4 and LPS-stimulated responses are 

neutralised by anti-MIF antibodies, a finding which shows the function of 

extracellular MIF (216). Also, the induction of NF-κB activity by MIF has been 

suggested as another step of modulating the TLR4 response (217-219).   

Inhibition of MIF tautomerase activity or MIF silencing by use of siRNA reduces 

TLR4 expression, NF-кB nuclear translocation and the production of pro-

inflammatory mediators (220, 221). Therefore, MIF tautomerase function could 

be one of the actions responsible for its modulatory effect on TLR4-induced 

responses. The involvement of MIF tautomerase activity is reported to be cell-

type specific. ISO-1 (a MIF tautomerase inhibitor) can have various effects on 

TLR4-induced responses in both human monocyte-derived macrophages (MDM) 

and monocytes. This was shown by a remarkable decreased production of pro-

inflammatory mediators by human primary monocytes but not macrophages 

stimulated with LPS. In addition, expression of TLR4 on cell surface of MDMs 
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was not affected by ISO-1. These findings suggest that modulation of MIF 

tautomerase function may alter TLR4 responses but could be dependent on the 

type of cell involved (222). 

Although TLR4 signalling mediated induction of type I interferon is well 

described, the role of MIF in this effect is not clear. My thesis also aims to address 

this experimentally. 
 

1.6.5.2. MIF can regulate the process of tissue repair  

There is growing interest in the role of danger signals in tissue repair. Aside from 

MIF’s ability to modulate immune responses, increasing evidence suggests MIF 

as a mediator of tissue regeneration and wound healing. MIF-dependent tissue 

repair is mediated via MIF-receptor complex and subsequent cellular and 

molecular responses (223). However, controversy exists about the actual role of 

MIF in tissue repair (Figure 4). On the one hand, MIF is believed to be beneficial 

in the process of wound healing (224, 225); on the other hand, some data suggest 

opposing effects (171, 172). 

 

 

 
 
Figure 4. Opposing concepts about the role of MIF in tissue repair. 
Two opposite theories including (a) advantageous and (b) unfavourable roles of MIF in wound 
healing presented. Re-ep; re-epithelialization. The figure is taken from Gilliver et al., 2010 
(226). 
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1.7. MIF as a biomarker and therapeutic target 

Several recent reviews suggested that MIF may serve as a clinical biomarker and 

novel therapeutic target for inflammatory diseases, autoimmune disorders, 

metabolic diseases and cancers (227-229). High MIF levels in plasma are 

reported in septic shock, severe sepsis and systemic inflammatory conditions 

(230). Although plasma levels of MIF do not explicitly discriminate the bacterial 

origin of infection, elevated MIF level is correlated with disease severity and 

early marker to predict poor outcome and mortality (231-233). In patients 

infected with Neisseria meningitides, increased MIF concentration strongly 

correlated with the severity of infection and fatal outcome (234). Also, higher 

level of MIF in cerebrospinal fluid is linked to virulent species of Neisseria 

meningitis and with disease severity (235). In addition, combination of MIF 

plasma level and  other biomarkers is a valuable biosignature to discriminate 

between Tuberculosis and non-Tuberculosis pulmonary infections (236).  

Furthermore, several studies pointed out a correlation between increased MIF 

levels in serum and other body fluids and severity of disease in some autoimmune 

diseases including SLE and rheumatoid arthritis (237, 238). In many cases, 

animal models of these diseases are improved by MIF antagonism. 
 

1.8. Strategies for MIF inhibition 

Diverse strategies have been employed to target a range of MIF physiological 

functions and some of them are under preclinical evaluation (239). They range 

from small molecule inhibitors capable of targeting the MIF tautomerase catalytic 

site to biologics-based inhibitors interfering with MIF production and biological 

functions (12). There are unique challenges and opportunities with using small 

molecules and biologics-based inhibitors targeting MIF function. However, small 

molecules have surpassed biologics as they render less immunogenicity, have 

more cost-effective manufacturing and are suitable for oral delivery and 

absorption (12).  
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Treatment with anti-MIF antibody and MIF antagonist was reported to diminish 

the severity of inflammatory responses, moderate tissue injury and improve the 

survival of chronic models such as obstructive pulmonary disease (COPD) and 

animal models such as Pneumococcal pneumonia infection (240, 241). In 

addition, treatment with MIF antagonist has been shown to alleviate the clinical 

severity of arthritis and myositis associated with Ross River virus infection in 

mice (242). 

In cancers, MIF function contributes to multiple phases of pathogenesis including 

cell proliferation, angiogenesis and metastasis (73, 243). Blocking MIF by using 

tautomerase inhibitors, MIF siRNA or anti-MIF antibodies resulted in effective 

attenuation of cancer development and progression, indicating the potential 

application of MIF-targeted therapeutic approaches in malignancies (244-246). 

 

1.8.1. Small molecule inhibitors  

Since MIF has been recognized as a pharmacological target in many auto-

inflammatory disorders, cancers and microbial infections, various types of MIF 

inhibitors that can target functions are under investigation (247). During recent 

decades, several approaches such as in silico methods and high-throughput 

screening (HTS) have been employed to screen and develop new drugs that 

interfere with the function of MIF (248). 

During the past decades, several inhibitor compounds that suppress MIF 

tautomerase function have been discovered that could act directly via competition 

and allosteric or covalent binding to the tautomerase catalytic pocket (247). The 

MIF tautomerase active site is located adjacent to CD74 binding motif that could 

suggest impeding MIF signalling by inhibitors of tautomerase activity (249). 

Inhibition of MIF function by using covalent inhibitors of the tautomerase active 

site could interfere with its secretion and biological functions (248, 250).  

The best-identified inhibitor of MIF tautomerase function is (S, R)-3-(4-

hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) that is 
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an irreversible MIF antagonist (31). ISO-1 and some inhibitors of isoxazoline 

class can competitively interfere with several features of MIF activity by binding 

to Asn-97 residue of tautomerase catalytic site of MIF molecule (251). The effects 

of ISO-1 have been investigated in vivo in animal models of endotoxemia (252), 

colitis (253), melanoma (254) and colon cancer (254) and also in 

vitro glucocorticoid overriding (31), translocation of nuclear NF-κB (252, 253) 

and cytokine-induced death of beta cells (151) with promising outcomes. 

Jorgensen-3, a 1, 2, 3-triazoles derivative, acts as an agonist of MIF binding to 

CD74 receptor and interact with residue Asn-97 of MIF tautomerase catalytic site 

(255). Other examples of MIF tautomerase inhibitors are 4-iodo-6-

phenylpyrimidine (4-IPP) and isothiocyanate BITC, reported to irreversibly 

inactivate MIF by covalent modification of N-terminus Pro-1 in tautomerase 

active site. These compounds can hinder several MIF biological roles, MIF 

secretion and binding to CD74 (80, 256, 257). Recently, the novel compound 4-

(3-carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) was identified as a 

specific inhibitor of MIF-2 that interfere with MIF-2 interaction with CD74 (24). 

MIF receptor agonists and antagonists have been found to affect CD74 binding 

and signal transduction particularly through ERK1/2 and AMPK pathways (255). 

However, the administration of MIF tautomerase inhibitors as a pharmaceutical 

drug is currently restricted due to adverse effects such as off-target toxicity (258). 

 

1.8.2. Biological-based inhibitors 

MIF neutralising antibody treatment has been reported to effectively promote 

tumour regression, impede tissue healing and reduce inflammatory responses 

(225, 259-261). Therapeutic efficiency of a neutralising MIF antibody (Imalumab) 

in aggressive colorectal cancer is under clinical trial investigation in humans 

(262). In addition, heat shock protein 90 (HSP90) can stabilise MIF by reduction 

of its intracellular degradation in cancer cells (263, 264) and would be an 

alternative approach to target MIF activity in cancer (265). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/isothiocyanate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/n-terminus
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1.9. Summary 

In summary, various aspects of MIF biology suggest it as a DAMP, potentially 

released during cell death, and impacting on immune pathways such as type I IFN 

production. In my thesis, I examine these two aspects of MIF function. 
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Chapter 2. Materials and Methods 
 

2.1. Chemicals and reagents  

A list of all chemicals and other reagents used throughout this project and the 

source of their manufacture is presented in Table 7. 
 

Table 7. List of chemicals and other reagents and the source of their manufacture. 
Chemical Source 

Lipopolysaccharide (LPS) from Escherichia 
coli O111:B4 

Sigma-Aldrich 

Bovine serum albumin (BSA) Sigma 

RPMI 1640 medium Gibco 

DMEM medium Gibco 

Fetal bovine serum (FBS) Gibco 

Penicillin/streptomycin  Gibco 

NaCl  Merck 

Na2HPO4 Merck 

KH2PO4 Merck 

NH4Cl Merck 

NaHCO3 Merck 

KCl Merck 

EDTA  Merck 

HEPES  Merck 

CaCl2  Merck 

G418 Gibco 

L-Glutamine Gibco 

TrypLE Gibco 
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Ethanol  Merck 

Nigericin  Cayman Chemical Company 

Recombinant human TNF-α ImmunoTools 

BV-6 Selleckchem 

Z-VAD-FMK AdooQ Bioscience 

Z-YVAD-FMK abcam 

Necrostatin-1  AdipoGen Life Sciences 

Propidium iodide (PI)  Sigma 

Sphero™ AccuCount Blank Particles  Spherotech Inc 

Annexin V-FITC conjugate BioLegend 

Annexin V binding buffer BioLegend 

4-Iodo-6-phenylpyrimidine (4-IPP) Sigma 

Recombinant IFN type I   BEI Resources 

Trypan blue solution  Sigma 

Passive lysis buffer (5X) Promega 2022-03-12 

Luciferase assay reagents Promega E1501 

Human MIF ELISA kit BioLegend 

IL-1β ELISA kit BioLegend 

TNF-α ELISA kit BioLegend 

Lactate dehydrogenase (LDH) assay kit Promega 

Tetramethylbenzidine (TMB) solution Life Technologies 
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2.2. Preparation of buffers and solutions 

2.2.1. Phosphate-buffered saline (PBS)  

137 mM NaCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, and 2.7 mM KCl were added 

in distilled water. The buffer was sterilized by autoclaving and stored at 4°C. 

 

2.2.2. Red Blood Cells (RBC) lysing solution  

Ammonium chloride lysis buffer (10X concentration) was prepared by adding 

NH4Cl 8.02 g, NaHCO3 0.84 g and disodium EDTA 0.37 g to 100 mL of distilled 

water. Working solution was prepared using distilled water and stored at 4°C. 

 

2.2.3. Propidium Iodide solution  

Stock solution (1 mg/mL) of propidium Iodide (PI) was prepared in distilled 

water. Stock solution was protected from light and stored at 4°C.  

 

2.2.4. Passive lysis buffer 

Passive lysis buffer is formulated for rapid lysis of cells without the need for 

scraping adherent cells and the advantage of minimal auto-luminescence. 

Working solution (1X) was prepared by adding distilled water to stock buffer (5X 

concentration) and stored at -20°C. 

 

2.2.5. Luciferase assay reagent 

Working solution of luciferase assay reagent was prepared by adding luciferase 

assay buffer (10 mL) to each vial of lyophilized substrate. Working solution was 

protected from light and aliquots were stored at -20°C.  
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2.3. Media preparation 

2.3.1. Complete culture media  

RPMI 1640 and DMEM media were supplemented with heat-inactivated Foetal 

Bovine Serum (FBS, 10%, v/v), penicillin (100 U/mL), streptomycin (100 µg/ml) 

and L-Glutamine (2 mM). All media were stored at 4°C. 

 

2.3.2. L-cell conditioned media  

Conditioned medium obtained from L929 cells (murine fibroblast cell line) was 

used as an alternative to recombinant macrophage colony-stimulating factor (M-

CSF) for the generation of bone marrow-derived macrophages (BMDMs). Briefly, 

L929 cells (5 × 105 cells) were maintained in T-175 cm2 flasks with primary 50% 

confluence in 50 ml of complete RPMI 1640 media for 7 days at 37°C in a 

humidified atmosphere with 5% CO2. L-cell conditioned medium was then 

collected, centrifuged (1200 rpm for 5 min) and passed through 0.2 µm filter. 

Collected media were stored at -80°C.  

 

2.3.3. Ag8.653 conditioned media   

Conditioned medium obtained from Ag8.653 cells (murine myeloma cells) was 

used as an alternative source of GM-CSF for the generation of murine bone 

marrow-derived dendritic cells (BMDCs). Briefly, Ag8.653 cells were first 

maintained in complete RPMI 1640 media containing G418 (1mg/mL). Then, 

cells (4 × 107) were cultured in T-175 cm2 flasks containing 50 ml of complete 

RPMI 1640 media without G418 for 4 days. Conditioned medium was then 

collected, centrifuged (1200 rpm for 5 min), passed through a 0.2 µm filter and 

stored at -80°C. For the experiments, culture media was supplemented with 10 %, 

v/v of Ag8.653 conditioned media. 
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2.4. Animals 

Female C57BL/6 Wild type (WT) and MIF-1 knockout (Mif -/-) mice (8-12 weeks) 

were used with the approval of Monash University Ethics Committee (MMCB) 

and in accordance with National and institutional guidelines. Mif−/− mice were 

originally obtained from Professor R. Bucala, Yale School of Medicine (266, 

267). All mice were housed in individually ventilated cages and were 

euthanized by the inhalation of carbon dioxide (CO2).  

 

2.5. Cell lines and culture conditions  

2.5.1. Human monocyte cell line 

The human monocyte THP-1 cell line has been widely used as a model for 

studying functions of monocytes/macrophages (268). In this study, THP-1 cells 

were maintained as suspension culture in complete RPMI 1640 medium at 37°C 

in a humidified atmosphere with 5% CO2.  

 

2.5.2. Immortalised mouse macrophage cell line   

Mouse immortalized bone marrow-derived macrophages (iBMMs) were 

generated from primary bone marrow-derived macrophages from the WT and 

Mif-/- mice. The cells were immortalized with the CreJ2 virus and were grown as 

adherent cells in complete DMEM media at 37°C in humidified CO2 incubator. 

For experiments, iBMM cells were detached from the flask using TrypLE 

solution and seeded in 96-well plates (1 × 105 cell/well) overnight (269).  

 

2.6. Isolation and generation of mouse primary immune cells  

All mouse procedures were undertaken under approval by Monash University 

Animal Ethics Committees.  

 
 
 
 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124613/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124613/
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2.6.1. Harvesting and culture of peritoneal macrophages     

The peritoneal cavity is a common source for harvesting primary naive murine 

macrophages (270). To harvest peritoneal cavity cells (PECs), the dead mouse 

abdomen was firstly sprayed with ethanol (70%, v/v) and a small incision was 

made using a sterile scalpel. Then, abdominal skin was removed using forceps to 

reach the peritoneum. Next, 5 mL of pre-chilled PBS containing FBS (3%, v/v) 

was injected into the peritoneal cavity using a 5 mL syringe attached to a 25 gauge 

needle. After a gentle massage to the mouse abdomen to dislodge any attached 

cells, the peritoneal fluid was collected slowly. Subsequently, a plastic Pasteur 

pipette was used to collect the remaining fluid from the cavity. Finally, the cell 

suspension was collected into the tubes and centrifuged (1200 rpm, 5 min, and 

4°C). The cell pellet was resuspended in complete RPMI medium and counted on 

a haemocytometer. Collected resident peritoneal cells were seeded in 96-well 

plates (3 × 105 cell/well) and incubated at 37°C in humidified incubator with 5% 

CO2 overnight. Then, non-adherent cells were removed by gentle washing with 

medium and adherent cells were used for further treatment.  

 

2.6.2. Isolation of bone marrow progenitor cells 

To harvest bone marrow (BM) cells, muscles were cut away from the femur, knee 

joints were dislocated, and any remaining tissue from the femur was gently 

removed without any damage to the bone. Bones were placed in PBS on ice until 

ready to process. Then, bones were transferred to ethanol (70%, v/v) for 15 

seconds, rinsed in PBS and then media. Both ends of each bone were cut off using 

heavy scissors and flushed gently with media using a 3 mL syringe and a 23 gauge 

needle. After that, the clumps of bone marrow cells were dissociated by drawing 

up into the syringe and gently pushing back out to obtain a single cell suspension. 

Harvested cells were centrifuged (1200 rpm, 5 min, and 4°C) and the pellet was 

resuspended in RBC lysis buffer for 5 min on ice. After that, samples were 

centrifuged and obtained pellet was resuspended in complete media. Viability of 
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cell suspension was confirmed to be more than 90% by trypan blue exclusion on 

a haemocytometer. Collected BM cells were divided into two aliquots to allow 

the generation of both macrophages and dendritic cells from each mouse.  

 

2.6.3. Generation of bone marrow-derived macrophages 

On Day 0 of BM harvesting, one part of isolated BMs was cultured in plates with 

low-attachment surface in complete RPMI supplemented with L-cell conditioned 

media (20%, v/v). The medium was renewed every 3 days (on days 3 and 6) to 

allow differentiation of BMs to bone marrow-derived macrophages (BMDMs). 

On Day 7, BMDMs were detached from the plate using a cell scraper, seeded in 

96-well plate (1 × 105 cell/well) and incubated at 37°C in a humidified incubator 

with 5% CO2 overnight. Using plates with low-attachment surface allows easier 

and better detachment of BMDMs. The myeloid progenitor cells that were 

cultured in vitro show relatively stable differentiation into BMDMs, suggesting 

better homogeneity than peritoneal macrophages (271).  

 

2.6.4. Generation of bone marrow-derived dendritic cells  

BM cells were seeded onto the culture flasks on day 0 in complete RPMI medium 

supplemented with Ag8.653 conditioned media (10%, v/v). Media was renewed 

on days 3, 6, 8 and 10 to allow differentiation of BM cells into immature bone 

marrow-derived dendritic cells (BMDCs). On Day 11, BMDCs were collected 

and seeded in 96-well plate (1 × 105 cell/well) (272).  

 

2.7. Cell death induction    

A textbook chapter authored during my candidacy outlines these methods in 

additional detail and is attached as appendix 1.   
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2.7.1. Induction of apoptosis and primary necrosis 

Staurosporine and ethanol were employed to induce apoptotic and necrotic forms 

of cell death, respectively (273, 274). For this purpose, THP-1 cells were firstly 

challenged overnight with/without LPS (100 ng/mL) and then exposed to 

staurosporine (1 μM) or ethanol (%10, v/v) for a time course of 1-6 hrs.  

 

2.7.2. Induction of pyroptosis 

THP-1 cells were firstly challenged overnight with/without LPS (100 ng/mL). 

Then, LPS-stimulated THP-1 monocytes were exposed to nigericin (10 µM) for 

3 h to induce pyroptotic cell death (275).  

 

2.7.3. Induction of necroptosis 

THP-1 cells were treated with a combination of recombinant human TNF-α (30 

ng/mL), SMAC mimetic BV-6, (1 µM) and general caspase inhibitor (Z-VAD-

FMK, 25 µM) for 24 h for induction of necroptotic cell death (276).  

 

2.8. Cell death inhibition 

These experimental details are also outlined in the published textbook chapter in 

Appendix 1.  

Different types of cell death inhibitors were used in separate experimental groups 

for the following reasons:   

- As positive control to verify the occurrence of the desired form of cell death  

- To define cell death form leading to MIF release 

 

2.8.1. Inhibition of pyroptosis 

THP-1 cells in were pre-treated with pan caspase inhibitor (Z-VAD-FMK, 50 µM, 

1h) or caspase-1 inhibitor (Z-YVAD-FMK, 25 µM, 1h) to hinder the occurrence 

of pyroptosis induced by nigericin in LPS-stimulated cells. 

 



51 
 

2.8.2. Inhibition of necroptosis 

THP-1 cells were pre-treated with necrostatin-1 (30 µM, 1h) to block the 

occurrence of necroptotic cell death induced by a combination of TNF-α, SMAC 

mimetic BV-6, and general caspase inhibitor. 

 

2.9. Assays to detect cell death    

See also Appendix 1.  

 

2.9.1. Propidium Iodide (PI) staining    

The pattern of cell death induced by ethanol was detected using PI staining and 

SPHEROTM AccuCount particles to improve the precision of cell counting. For 

this purpose, counting particles were added to each well (1:10 dilution in FACS 

buffer, v/v) and the plate was then centrifuged (1200 rpm, 5 min, and 4°C). Next, 

pellets were washed with PBS and incubated in FACS buffer containing PI 

solution (5 μL) for 5 min at room temperature in the dark. Finally, samples (10 

000 events) were assessed within 1 h using a flow cytometer and data were 

analysed by FlowJo v10 software. Cells positive for PI indicated the occurrence 

of necrotic cell death. The absolute cell count was calculated using the following 

equation: (A/B) x (C/D) = Number of cells per μL. Where:  

A = number of events for the sample  

B = number of events for the particles  

C = number of particles per 50 μL  

D = volume of test sample initially used in μL  

 

2.9.2. Lactate dehydrogenase release assay 

Pyroptotic and necroptotic forms of cell death were quantified by detection of 

lactate dehydrogenase (LDH) released due to the loss of cell membrane integrity. 

This enzymatic assay measures the released levels of LDH using a colorimetric-

based method. The amount of formed product is proportional to the number of 
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necrotic cells. After the treatment, samples were centrifuged (1200 rpm, 5 min, 

and 4°C) and supernatants were collected. Next, equal amounts of supernatant 

from each sample was mixed with CytoTox reagent and incubated for 30 min at 

room temperature in darkness. Finally, equal amounts of stop solution was added 

to each well and the absorbance (490 nm) of product read using a microplate 

reader within 1 h. The following controls were included in the assay: 

- No cell control, to exclude background readings of culture media 

- Maximum LDH release control: lysis solution added to a separate group of 

untreated cells 45 min prior to supernatant collection to obtain total cellular LDH 

The value for all samples were subtracted from background value and the 

corrected values were used to calculate cytotoxicity percentage.  

 

2.9.3. SYTOX™ Green Nucleic Acid Stain 

SYTOX® Green nucleic acid stain is a green-fluorescent nuclear and 

chromosome counterstain that allows quick determination of cell viability using 

flow cytometry (277).  Briefly, harvested cells were exposed to 5 nM of 

SYTOX® Green solution (5 min, dark). The fluorescence emission was detected 

using a fluorescent reader. 

 

2.9.4. Annexin V-FITC and PI dual staining 

The pattern of cell death induced by staurosporine or blocked with pan caspase 

inhibitor was identified by dual labelling with Annexin V-FITC and PI. For these 

experiments, THP-1 cells were harvested from each well and washed with PBS. 

Then, cells were resuspended in staining buffer containing Annexin V-FITC (5 

μL) in binding buffer (100 μL) and incubated for 15 min at room temperature in 

dark. After that, PI staining solution (5 μL) was added to each sample and 

incubated for a further 5 min at room temperature in the dark. Finally, samples 

(10 000 events) were assessed within 1h using a flow cytometer and data obtained 

were analysed by FlowJo v10 software. Cells positive for Annexin V-FITC and 
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negative for PI were considered as early apoptosis. Double positive cells were 

considered late apoptosis/necrotic forms of cell death. 

 

2.10. Detection of cytokine release using ELISA 

2.10.1. Measurement of human MIF release  

Cell supernatants were collected and kept at -80 ˚C. The level of MIF in the 

supernatants was measured using ELISA kit (BioLegend, Inc) as the 

manufacturer’s instruction. It is unclear from the manufacturer’s instructions 

whether this ELISA kit can distinguish between MIF-1 and MIF-2. 

 

2.10.1.1. Preparation of required buffers and solutions 

- Coating buffer: 0.1 M Sodium Carbonate, 7.13 g NaHCO3 and 1.59 g Na2CO3 

were added to 1.0 L of distilled water and pH was adjusted to 9.5 with 10 N NaOH. 

Coating buffer was freshly prepared or used within 7 days of preparation and 

stored at 2-8°C. 

- Reagent diluent: BSA (1%, v/v) was mixed with PBS and pH was adjusted to 

7.2-7.4. Reagent diluent was freshly prepared. 

- Wash buffer: PBS containing Tween-20 (0.05%, v/v) was prepared and stored 

at 2-8°C. 

- Stop solution: 2 N H2SO4 was prepared and used as stop solution. 

- Standards: Top standard (2000 pg/mL) was prepared from the stock standard 

using reagent diluent and vortexed to mix well. Then, serial dilutions of six tubes 

of standards at final concentrations of 1000 pg/mL, 500 pg/mL, 250 pg/mL, 125 

pg/mL, 62.5 pg/mL and 31.25 pg/mL were prepared. Reagent diluent alone was 

used as blank to adjust for background absorbance. 
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2.10.1.2. Assay procedure and calculation of data 

Human MIF (pg/ml) released by THP-1 cells in culture supernatants was 

measured using ELISA. In the first step, 100 μL of human MIF capture antibody 

(1:200 in coating buffer) was added to each well and incubated overnight at 4°C. 

Then, plate was aspirated and washed three times with wash buffer (≥ 300 

μL/well). After the last wash, plates were inverted and blotted on absorbent paper 

to remove any residual wash buffer. After that, plates were blocked with assay 

reagent (≥ 200 μL/well) at room temperature for 1 h, followed by washing. Next, 

100 μL of each standard and sample was added into the appropriate well and 

incubated at room temperature for 2 h. The plates were then aspirated and washed. 

In the next step, 100 μL of diluted detection antibody (1:200 in reagent diluent, 

v/v) was added to each well and incubated at room temperature for 1 h. Plate was 

then aspirated and washed. Afterwards, 100 μL of diluted Streptavidin-HRP A 

enzyme reagent (1:250 in reagent diluent, v/v) was added to each well and 

incubated at room temperature for 20 min. Contents were then aspirated and plate 

washed. In the final wash step, plate was soaked in wash buffer for 30 seconds to 

1 min for each wash. Finally, TMB substrate solution (100 μL) was added to each 

well and incubated at room temperature for 30 min in darkness, followed by 

stopping the reaction by adding stop solution (50 μL) to each well. Finally, the 

plate was read on a Fluostar OPTIMA instrument (BMG LABTECH) at 450 nm 

within 30 min of stopping reaction and wavelength correction at 540 nm. The 

blank absorbance was then subtracted from the value of each standard and sample. 

The standard curve was plotted using Optima Control Software (BMG 

LABTECH) and was employed to calculate the concentration of human MIF 

(pg/ml) in samples. 

 

2.10.2. Measurement of human IL-1β secretion  
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Cell supernatants were collected and kept at -80 ˚C. The level of IL-β in the 

supernatants was measured using ELISA kit (BioLegend, Inc) as the 

manufacturer’s instruction.  

 

 

2.10.2.1. Preparation of required buffers and solutions 

- Coating buffer: 0.1 M sodium carbonate, 7.13 g NaHCO3 and 1.59 g Na2CO3 

were added to 1.0 L of distilled water and pH was adjusted to 9.5 with 10 N NaOH. 

Coating buffer was freshly prepared or used within 7 days of preparation and 

stored at 2-8°C. 

- Assay diluent: FBS (10%, v/v) was mixed with PBS and pH adjusted to 7.0.  

- Wash buffer: Tween-20 (0.05%, v/v) was added to PBS and used fresh or 

within 3 days of preparation (stored at 2-8°C).  

- Stop solution: 1 M H3PO4 or 2 N H2SO4 was prepared and used as stop solution. 

- Standards preparation: Top standard concentration of human IL-1β protein 

(2000 pg/mL) was prepared from the stock standard in reagent diluent and was 

vortexed to mix. Then, serial dilutions of six tubes of human IL-1β standards 

(31.25-100 pg/mL) were prepared. Reagent diluent alone was used as blank to 

adjust for the background absorbance. 

 

2.10.2.2. Assay procedure and calculation of data 

Level of human IL-1β (pg/ml) in culture supernatants was measured using ELISA. 

Firstly, 100 μL of diluted human IL-1β capture antibody (1:200 in coating buffer) 

was added to each well and incubated overnight at 4°C. Then, plates were 

aspirated and washed three times with wash buffer (≥ 300 μL/well). After the last 

wash, plates were inverted and blotted on absorbent paper to remove any residual 

buffer. Then, plates were blocked with assay diluent (≥ 200 μL/well) at room 

temperature for 1 h. Next, plates were aspirated and washed. After that, 100 μL 
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of each standard or sample was added into appropriate well and incubated at room 

temperature for 2 h. Plates were then aspirated and washed. Afterwards, 100 μL 

of diluted detection antibody (1:200 in assay diluent, v/v) was added to each well 

and incubated at room temperature for 1 h. Plates were then aspirated and washed. 

Subsequently, 100 μL of diluted Avidin-HRP enzyme reagent (1:1000 in assay 

diluent, v/v) was added to each well for 30 min at room temperature. Plates were 

then aspirated and washed. In the final wash step, plates were soaked in wash 

buffer for 30 seconds to 1 min for each wash. Finally, TMB substrate solution 

(100 μL) was added to each well and incubated at room temperature for 30 min 

in darkness, followed by adding stop solution (50 μL) to each well. The plates 

were then read on a Fluostar OPTIMA instrument (BMG LABTECH) at 450 nm 

within 30 min of stopping reaction and using wavelength 540 nm. The blank 

absorbance was subtracted from the value of each standard and sample. The 

standard curve was plotted using Optima Control Software (BMG LABTECH) 

and was employed to calculate the concentration of human IL-1β level (pg/ml) in 

each sample. 
 

2.10.3. Measurement of mouse TNF-α secretion using ELISA 

Cell supernatants were collected and kept at -80 ˚C. The level of TNF-α in the 

supernatants was measured using ELISA kit (BioLegend, Inc) as the 

manufacturer’s instruction.  

 

2.10.3.1. Preparation of required buffers and solutions 

- Coating buffer: 0.1 M sodium carbonate, 7.13 g NaHCO3 and 1.59 g Na2CO3 

were added to 1.0 L of distilled water and pH was adjusted to 9.5 with 10 N NaOH. 

Coating buffer was freshly prepared or used within 7 days of preparation and 

stored at 2-8°C. 
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- Assay diluent: FBS was mixed with PBS (10%, v/v) and pH was adjusted to 

7.0. Assay diluent was freshly prepared and stored at 2-8°C. 

- Wash buffer: Tween-20 (0.05%, v/v) was mixed with PBS and used fresh or 

within 3 days of preparation (stored at 2-8°C).   

- Stop solution: 2 N H2SO4 was prepared and used as stop solution. 

- Standard preparation: Top standard of mouse TNF-α protein (1000 pg/mL) 

was prepared from the stock standard and vortexed to mix. Then, serial dilution 

of six tubes of mouse TNF-α protein standards (15.6-500 pg/mL) were prepared 

in assay diluent. Assay diluent alone was used as blank. 

 

2.10.3.2. Assay procedure and data calculation 

The levels of mouse TNF-α (pg/ml) in supernatants were measured using ELISA. 

Firstly, 100 μL of diluted capture antibody (1:250 in coating buffer) was added 

to each well and incubated overnight at 4°C. Plates were then aspirated and 

washed three times with wash buffer (≥ 300 μL/well). After last wash, the plates 

were inverted and blotted on absorbent paper to remove any residual buffer and, 

the plates were blocked with assay reagent (≥ 200 μL/well) at room temperature 

for 1 h. The plates were then aspirated and washed. After that, 100 μL of each 

standard or sample was added into appropriate wells and incubated at room 

temperature for 2 h. The plates were then aspirated and washed. Afterwards, 100 

μL of diluted detection antibody (1:250 in assay diluent, v/v) was added to each 

well and incubated at room temperature for 1 h. Subsequently, the plates were 

aspirated and washed. Then, 100 μL of diluted SAv-HRP enzyme reagent (1:250 

in assay diluent, v/v) was added to each well at room temperature for 1 h. The 

plates were then aspirated and washed. In the final wash step, the plates were 

soaked in wash buffer for 30 sec for each wash. Finally, TMB substrate solution 

(100 μL) was added to each well and incubated at room temperature for 30 min 

in the dark, followed by adding stop solution (50 μL) to each well. The plates 

were read on a Fluostar OPTIMA instrument (BMG LABTECH) at 450 nm 
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within 30 min of stopping reaction and wavelength correction at 540 nm. The 

blank absorbance was subtracted from the value of each standard and sample. The 

standard curve was plotted using Optima Control Software (BMG LABTECH) 

and was employed to calculate the concentration of TNF-α (pg/ml) level in each 

sample. 

 

2.11. Induction of type I interferon production  

Cells were pre-treated with/without an inhibitor of MIF tautomerase activity (4-

IPP, 50 μM, and 1h) and were then stimulated with agonists for TLR4 (LPS, 100 

ng/ml) or TLR9 (CpG ODNs; 0.05 and 0.1 μM). The incubation period for most 

experiments were 2, 6 and 24 hrs. 

 

2.12. Detection of type I interferon using luciferase bioassay  

The level of mouse interferon type I (IU/mL) in culture supernatant was measured 

based on a luciferase bioassay system. Stimulation of an ISRE-luciferase reporter 

cell line (LL171) with interferon induces expression of luciferin that can be 

determined using a luminescence assay (278, 279). Briefly, LL171 cells were 

seeded (2 × 104 cells/well), and then exposed to each sample supernatant or serial 

dilutions of standard (50-0.781 IU/mL). After 6 h, media was removed and LL171 

cells were washed and lysed in passive lysis buffer (1X). Equal volume of each 

cell lysate was mixed with luciferase assay reagent and luciferase signal measured 

using a luminescence reader Fluostar OPTIMA (BMG LABTECH). The standard 

curve was plotted using Microsoft Excel and employed to calculate the 

concentration of mouse interferon type I (IU/mL) in each sample. 

 

2.13. Statistical analysis  

Data analysis was performed by Graph Pad Prism 7 using One-way ANOVA and 

Tukey’s multiple comparison test. P values less than 0.05 were considered 

statistically significant. 
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Chapter 3. MIF Is Released by Necrotic Cells like a DAMP Molecule 
 

3.1. Introduction 

As outlined in chapter 1, migration inhibitory factor (MIF) is an evolutionarily 

conserved non-glycosylated protein (4) which exists preformed in multiple cell 

types including monocytes and macrophages and is expressed in a wide range of 

other tissues (11). MIF is generally considered as a multi-functional protein that 

can act as a cytokine, enzyme and hormone (280-282). MIF acts in both an 

autocrine and a paracrine manner to regulate innate and adaptive responses (283) 

and amplifies the production and release of inflammatory mediators (166, 167, 

282). MIF also exerts a role in tissue repair and wound healing (223, 284).  

MIF is constitutively released by cells in vitro as a result of de novo synthesis or 

release from preformed cytosolic stores (47). Induction of MIF release has been 

described by inflammatory stimuli such as lipopolysaccharide (LPS), tumor 

necrosis factor (TNF)-α and also several hormones (3, 47, 53, 54). However, 

some evidence suggests that MIF release is an outcome of tissue damage, raising 

the possibility of considering MIF as a damage-associated molecular pattern 

molecule (DAMP) (87, 146-148). DAMPs are released by cells undergoing life-

threatening stress (285),  and exert effects on innate and adaptive immune 

responses, and promote tissue healing (286) after inflammation, both sterile and 

infection-associated (287-289). Whether the release of MIF to the extracellular 

space reflects a DAMP-like process has not been previously examined.  
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Cell death is considered in two main forms, apoptotic and necrotic death. 

Whereas apoptosis is a normal programmed process for cell clearance, necrosis is 

triggered by external factors or disease. Many studies have reported that by using 

different doses of a particular stimulus, apoptotic and necrotic death types can be 

induced sequentially in an individual cell population (102, 290, 291). Necrosis is 

a non-programmed form of cell death which can be caused by toxic substances 

or physiological damage such as oxidative stress. The phenomenon of apoptotic 

necrosis is seen in cells during late apoptotic stages in cells that have not been 

phagocytosed. This is particularly pertinent to in vitro experiments, where 

apoptosis might be induced, but phagocytosis of dying cells does not occur, as 

the whole population is undergoing apoptosis (292, 293).  

Necrosis can occur in a variety of contexts, depending on the stimulus, and 

different terms have employed to describe various forms of these processes. 

Pyroptosis is generally mediated by inflammasome complexes activating 

caspase-1, such that using caspase-1 inhibitors can distinguish pyroptosis from 

other necrotic cell death forms (119, 294-296). Necroptosis is initiated through 

the activity of receptor-interacting protein 1 (RIP1), for example, induced by 

TNF-α binding to TNFR1 or experimentally induced by endogenous proteins 

called second mitochondria-derived activator of caspases (SMAC) or artificial 

SMAC-mimetics in combination with caspase inhibitors. Necroptosis is inhibited 

by suppression of RIP1 kinase activity with necrostatin-1 (276, 297-301).  

As monocyte/macrophages are a major source of MIF (302), the studies designed 

in this chapter aimed to examine whether MIF release is associated with induced 

cell death in monocyte/macrophages. For this purpose, we induced well-

described forms of cell death and measured MIF release. 

Methods used in this chapter are described in chapter 2 and the published book 

chapter (Appendix 1). 

 

http://www.diffen.com/difference/Apoptosis_vs_Necrosis#Types_of_Necrosis_and_Their_Causes
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3.2. Results 

3.2.1. MIF is not released by THP-1 cells in response to inflammatory stimuli 

or glucocorticoid 

Cells were treated with LPS (TLR4 ligand), TNF-α (a pro-inflammatory cytokine) 

and the glucocorticoid, dexamethasone. As shown in Figures 5A, B and C, none 

of the tested stimuli induced significant MIF release in THP-1 monocytes. As 

shown in Figures 5D, E and F, none of the tested modulators induced death in 

THP-1 monocytes.  
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Figure 5. Effect of various modulators on MIF release. 
THP-1 monocytes were treated with stimuli including bacterial lipopolysaccharide (LPS, 0.01 
- 10 µg/ml), dexamethasone (10 -6 -10 -9 M) and TNF-α (30 ng/ml) overnight. The released 
level of MIF was measured in culture supernatants using ELISA (A-C). Cell death was detected 
using SYTOX™ Green Nucleic Acid Stain (D-F). Data are represented as mean ± SEM of 
triplicate technical and independent experimental replicates. 

3.2.2. MIF is released by THP-1 cells during pyroptosis and necroptosis 

Recent studies have demonstrated that MIF is required for NLRP3 

inflammasome-dependent IL-1 and IL-18 release by human and mouse 

monocytes/macrophages (280, 303). Moreover, inhibition or loss of MIF 

abrogates caspase-1-dependent pyroptosis (280). Here, I investigated whether 

MIF is released by THP-1 cells following activation of the NLRP3 inflammasome 

and induction of pyroptosis. Cells were primed with LPS overnight, then treated 

with the NLPR3 activating pore-forming toxin nigericin for 1-3 hours. In addition, 

cells were treated with either the caspase-1 inhibitor Y-VAD-FMK or the pan-

caspase inhibitor Z-VAD-FMK.  

Following priming with LPS, treatment of cells with nigericin induced significant 

cell death after 1 hour, increasing after 2 and 3 hours.  This was partially inhibited 

by caspase-1 inhibition at 1 and 2 hours, suggesting at least some of the cell death 

is due to pyroptosis, particularly at the earlier time point (Fig 6A-C).  The pan-

caspase inhibitor, on the other hand, had a much more pronounced inhibitory 

effect on cell death at each time point (Fig 6A-C). Thus, the data suggest that 

pyroptosis is a significant component of the cell death response to nigericin at 

early time points, but after that death proceeds via other caspase-dependent 

pathways. Moreover, in the absence of LPS priming, nigericin induced cell death 

that was largely independent of caspase-1 activation but was abrogated with the 

pan-caspase inhibitor (Fig 6A-C).  
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As expected, release of IL-1 only occurred in response to nigericin after LPS 

priming and its release was significantly reduced with caspase-1 inhibition (Fig 

6D-F). In contrast, significant release of MIF was seen in response to nigericin 

regardless of whether the cells were primed with LPS or not, and was inhibited 

by treatment with both the caspase-1 inhibitor and the pan-caspase inhibitor (Fig 

6D-F). These data suggest that MIF is released regardless of the mode of cell 

death; be it dependent on caspase-1 or other caspases. However, it is interesting 

to note that the caspase-1 inhibitor had a greater effect on MIF release than it did 

on cell death, possibly suggesting a more direct connection between caspase-1 

and MIF release. 
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Figure 6. Effect of pyroptosis on MIF release. 
Pyroptosis was induced using nigericin in LPS-stimulated monocytes for 1-3 hours. (A-C) Cell 
death was detected using LDH release assay. The level of IL-1β (D-F) and MIF (G-I) in the 
supernatant was measured using ELISA. The effects of pan caspase and caspase-1 inhibitor 
were also examined. Panels A, D, G reflect 1h, panels B, E, H reflect 2h and panels C, F, I 
reflect 3h time points. Data are represented as mean ± SEM of triplicate technical and 
independent experimental replicates. **P < 0.01, and ****P < 0.0001.  

To determine whether MIF is released by THP-1 cells following induction of 

necroptosis, cells were treated with rhTNF, BV-6 and Z-VAD-FMK for 6 hours 

to induce necroptotic cell death. Cell death occurrence was detected by LDH 
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release and secreted MIF level was measured in culture supernatants by ELISA. 

As shown in Figures 7A and B, cytotoxicity in necroptosis-induced cells 

compared to untreated cells (media only), accompanied by a significant increase 

in MIF release. Treatment of cells prior to necroptosis induction with a specific 

inhibitor, necrostatin-1, suppressed both cytotoxicity and MIF release. Together, 

these data confirm that MIF is released by cells undergoing both pyroptotic and 

necroptotic cell death. 
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Figure 7. Effect of necroptosis on MIF release. 
Induction of necroptosis using a combination of BV-6, rhTNF-α and Z-VAD-FMK for 18 hours 
led to necroptosis. Necroptosis cell death was detected using LDH release assay. The effect of 
necroptosis on MIF release was assessed using ELISA. These effects were remarkably 
inhibited by using necrostatin-1 (NEC-1). Data are represented as mean ± SEM of triplicate 
technical and independent experimental replicates. ***P < 0.001. 

 

3.2.3. MIF is released by necrotic, but not apoptotic THP-1 cells 

In order to induce primary necrosis, THP-1 monocytes were exposed to ethanol 

(10%, V/V) for a period of 1-6 h. Necrosis was detected using PI staining and 
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flow cytometry analysis. The released level of MIF in culture supernatants was 

measured using ELISA. The results are shown as the percentage of viable cells 

relative to untreated cells.  

As presented in Figure 8A, ethanol exposure induced necrotic cell death in THP-

1 monocytes, demonstrated as a remarkable reduction of cell viability from the 

first hour of treatment compared to untreated cells. Results obtained from ELISA 

showed a remarkable MIF release by THP-1 monocytes following the first hour 

of ethanol exposure (Figure 8B).   

In order to clarify the cell death form responsible for MIF release, THP-1 

monocytes were treated with a well-defined apoptosis inducer (staurosporine, 10 
-6 M) for a period of 1-6 hours. The proportion of cells undergoing apoptotic and 

necrotic death was determined by Annexin V-FITC and PI dual staining using 

flow cytometry, and MIF released was assessed by ELISA at the indicated time 

points during 1-6 hours of incubation. 

MIF appeared in the supernatant simultaneously with the significant increase in 

double Annexin positive and PI positive population, indicating release by necrotic 

but not early apoptotic cells (Fig 8). These findings suggest that MIF release only 

follow the kinetics of necrosis and not early apoptosis in THP-1 monocytes.   
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Figure 8. Effect of ethanol on cell death induction and MIF release. 
THP-1 monocytes were treated with ethanol (10%, v/v) or staurosporine (10 -6 M) for a period 
of 1-6 hours. Cell death induced by (A) ethanol and (C) staurosporine was assessed using flow 
cytometry. MIF concentration in culture supernatants obtained from treatment with (B) ethanol 
and (D) staurosporine was quantified by ELISA. Data are represented as mean ± SD of 
triplicate independent experimental replicates. ****P < 0.001, one-way ANOVA with a 
correction provided by the Tukey's multiple comparisons test.  
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3.3. Discussion 

MIF is reported to be constitutively secreted by monocytes and macrophages even 

in the absence of stimulation (47, 304). Several available studies have highlighted 

a remarkable MIF release as the consequence of damage in various tissues (87, 

147) and also by neutrophils undergoing secondary necrosis in vitro (152). 

However, any association between MIF release and cell death has not been 

reported in monocytes or macrophages.  

The main properties of a DAMP is to be released by cells under stress or by dying 

cells, and to elicit inflammatory responses (84). As MIF has been widely reported 

to play various inflammatory effects, it potentially meets the criteria of being 

considered as a DAMP. To examine this hypothesis, I induced different necrotic 

forms of cell death in THP-1 monocytes and measured MIF release, to find any 

association between cell death and MIF release.  

Firstly, I treated monocytes with well-defined monocyte activation modulators, 

followed by measuring the level of MIF released. The selected macrophage 

modulators failed to induce a noticeable MIF release. This calls into some 

published findings suggesting LPS induces MIF release by macrophages.  

In comparison with some previous studies reporting significant MIF release 

induced by LPS, here the level of MIF released by stimulation of THP-1 

monocytes with a wide range of LPS concentrations (0.01 - 10 µg/ml) overnight 

did not show any significant changes compared with unstimulated cells. 

One explanation might be the methodological differences between this study and 

others in regards to LPS incubation time, LPS concentration and the type and 

source of tested cells. Here, I treated human THP-1 monocytes with LPS 

overnight. However, some previous studies suggested maximum MIF levels are 

observed  9 to 12h of LPS stimulation in murine RAW 264.7 macrophage cell 

line, followed by degradation after its peak level without affecting cell viability 

(302). More evidences suggest that the peak of MIF secretion by THP-1 cells 

following LPS treatment can be observed between 2 and 6h without inducing cell 
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death or cell stress (51, 53). In accordance with the results obtained here, LPS (10 

µg/ml) reduced the viability of bovine mammary epithelial cells (BMEC) to 

around 50% after 24h of LPS treatment (305). In addition, LPS (10 µg/ml) 

induced about 40% cell death in murine macrophages after 48h of treatment (306). 

In bone marrow-derived macrophages (BMDM), LPS (100 ng/ml) has been 

demonstrated to induce early apoptosis at about 6 hours of treatment (307).  

In exploring the effect of cell death on MIF release, I examined whether cell death 

can affect the level of MIF released by monocytes. Various cell death types 

including apoptosis, primary necrosis, pyroptosis and necroptosis were induced 

in THP-1 monocytes. Assessing the type of death induced in monocytes and 

measuring the level of MIF released revealed a strong correlation of MIF release 

with all forms of necrotic cell death but not with early apoptosis.   

MIF was significantly released following necrotic forms of cell death including 

primary necrosis, NLRP3-dependent pyroptosis and RIP1-dependent necroptosis. 

Therefore, I can conclude that MIF possesses the first condition of being a DAMP. 

Overall, results presented in the current chapter propose that the release of MIF 

is highly significant following various necrotic forms of cell death. Considering 

the pro-inflammatory function of MIF, its release by dying cells would introduce 

MIF as a novel DAMP. This study importantly demonstrated that necrosis can be 

considered a significant method of MIF release by macrophages in vitro.  
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Chapter 4. MIF Differently Regulates TLR-induced Interferon 

Production in Macrophages and Dendritic Cells 
 

4.1. Introduction   
Type I interferons are a family of cytokines produced by macrophages and 

dendritic cells upon toll-like receptor (TLR) activation which can modulate innate 

and adaptive immune responses. Macrophages and dendritic cells differentially 

respond to the same stimuli which accounts for their dissimilar roles in immune 

responses (207). Type I interferon signalling is tightly regulated and 

dysregulation could lead to tissue damage and autoimmunity (296, 308). 

Both TLR4 and TLR9 are expressed by macrophages and dendritic cells and are 

activated following ligand binding. Although other TLRs are also important, 

bacterial lipopolysaccharide (LPS) can induce the TLR4 signalling pathway, 

leading to the production of pro-inflammatory mediators including type I 

interferon (190, 309).  

The regulation of TLR4-induced pro-inflammatory responses by MIF has been 

reported in several contexts, including modulation of host responses against 

gram-negative bacteria by macrophages, production of pro-inflammatory 

mediators, TLR4 receptor expression and NF-κB activation (208-211, 214-219). 

MIF tautomerase function is suggested to be one of the activities responsible for 

MIF modulatory effect on TLR4-induced inflammatory responses, depending on 

the type of cell involved (220-222). The role of MIF in the regulation of TLR4-

induced IFN production has not been examined. In addition, no evidence is 

available regarding whether MIF is involved in TLR9-induced IFN type I 

production. 

This part of my project aimed to evaluate the possible role for endogenous MIF 

in type I interferon production by different cell types. I used mouse macrophages 

of different sources (iBMMs, PECs and BMDMs) and bone-marrow derived 

dendritic cells (BMDCs) to examine MIF effects on IFN type I produced by 
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different sources. In addition, the effects of genetic MIF deletion and the 

suppression of its tautomerase enzymatic activity were compared. MIF regulation 

of type I IFN produced in response to stimulation of different TLRs including 

TLR4 and TLR9 (in some experiments) was examined. 

 

4.2. Results   

4.2.1. MIF and type I interferon production by macrophages  

I planned formal confirmation of preliminary data (not shown) across multiple 

representative immortalized and primary macrophage cell types. Mean data from 

three independent experiments each in biological triplicate represent the formal 

experiments. Murine WT and Mif-/- macrophages of different sources including 

iBMMs, PECs and BMDMs derived from wild-type (WT) and MIF gene deleted 

(Mif-/-) mice were treated with/without the agonist for TLR4 (LPS; 100 ng/ml) for 

various time points (2, 6 and 24h). Also, WT and Mif-/- cells in separate groups 

were pre-treated with/without an inhibitor of MIF tautomerase activity (4-IPP; 50 

μM). Cell culture supernatants were then examined for secreted level of type I 

IFN using a luciferase luciferase reporter bioassay which detected total type I 

interferon activity. Levels of secreted TNF-α were measured using ELISA. 

As shown in Figure 9A, the addition of LPS to WT and Mif -/- iBMM cells induced 

the release of type I IFN into the culture medium. LPS-induced type I IFN 

secretion by Mif -/- iBMMs was significantly higher than their WT counterparts. 

In contrast, type I IFN secretion in response to LPS was significantly reduced by 

inhibition of MIF tautomerase activity in WT macrophages, with similar effects 

in Mif -/- cells.  

To confirm this, further experiments were performed using bone marrow-derived 

macrophages (BMDMs). Data again showed no inhibitory effect of MIF deletion 

on type I IFN, and indeed showed significant increases under LPS stimulation 

(Figure 9C). This was further confirmed in peritoneal macrophages (PECs), 

where Mif -/- cells demonstrated an increase in type I IFN release compared to WT 
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cells, as seen in iBMM and BMDMs, suggesting a suppressive effect of 

endogenous MIF on type I IFN production (Figure 9B). However, inhibition of 

tautomerase action of MIF-1 by the addition of 4-IPP in both WT and Mif -/- cells 

reduced the level of type I IFN released in LPS- stimulated cells (Figure 9B). 

These findings would suggest that endogenous MIF has a possible down-

regulatory role for LPS-induced type I IFN secretion in macrophages, distinct 

from the effect of suppression of MIF tautomerase activity which caused a 

remarkable reduction of type I IFN production by LPS-stimulated macrophages. 

Overall, type I IFN production is enhanced in Mif -/- iBMMs, PECs and BMDMs 

by LPS and is inhibited by tautomerase inhibitor. 
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Figure 9. Type I interferon produced by WT and Mif -/- macrophages. 
Murine WT and Mif -/- macrophages including (A) iBMMs, (B) PECs and (C) BMDMs were 
pre-treated with/without MIF inhibitor (4-IPP, 50 μM) and then stimulated with/without LPS 
(100 ng/ml) for 2, 6 or 24 h. Levels of type I interferon in cell culture supernatants was 
measured using luciferase bioassay. Data are expressed as mean ± SEM, n = 3 mice per each 
group (triplicate experimental replicates). iBMM cells were tested in four independent 
experimental replicates in technical quadruplicate, data are expressed as mean ± SD. *P < 0.05, 
**P < 0.01, ***P < 0.005, or ****P < 0.001, one-way ANOVA with a correction by Tukey's 
multiple comparisons test. ND; non-detectable.     
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4.2.2. MIF regulates the production of TNF-α by macrophages  

To assess whether MIF plays a role in the secretion of pro-inflammatory 

cytokines like TNF-α following TLR4 activation, both WT and Mif -/- 

macrophages were exposed to LPS. In separate groups, cells were pre-treated 

with/without MIF tautomerase suppressor (4-IPP) before LPS challenge. Levels 

of secreted TNF-α were measured using ELISA. 

As shown in Figures 10A-C, the addition of LPS to WT and Mif -/- cells induced 

the secretion of TNF-α into the culture medium from iBMMs, PECs and BMDMs 

at all tested time points. Mif gene deletion in LPS-stimulated macrophages 

showed no significant effect on TNF-α secretion compared with their WT 

counterparts. However, inhibition of MIF tautomerase function by 4-IPP 

modestly suppressed TNF-α secretion in LPS-stimulated WT and Mif -/- iBMM 

and BMDM macrophages but not PECs (Figure 10B).   
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Figure 10. Levels of TNF-α secreted by WT and Mif -/- cells. Murine WT and Mif -/- cells 
including (A) iBMMs, (B) PECs and (C) BMDMs were pre-treated with/without MIF inhibitor 
(4-IPP, 50 μM) and then stimulated with/without LPS (100 ng/ml) for 2, 6 or 24 hours. TNF-α 
in cell culture supernatants was measured using ELISA. Data are expressed as mean ± SEM, 
n = 3 mice per each group (triplicate experimental replicates). iBMM cells were tested four 
times (four experimental replicates) and four replicates in each separate experiment (four 
technical replicates). *P < 0.05, **P < 0.01, ***P < 0.005, or ****P < 0.001, one-way 
ANOVA with correction by Tukey's multiple comparisons test. ND; non-detectable.  
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4.2.3. MIF and type I interferon in primary dendritic cells – preliminary data 

Next, preliminary experiments were undertaken to examine whether the 

production of type I IFN followed by TLR stimulation is affected by endogenous 

MIF function in dendritic cells. Bone marrow-derived dendritic cells (BMDCs) 

generated from wild-type (WT) and MIF gene deleted (Mif-/-) mice were treated 

with/without agonists for either TLR4 (LPS; 100 ng/ml) or TLR9 (CpG ODNs; 

0.1 μM) for various time points (2, 6 and 24h). In separate groups, WT BMDCs 

were treated with/without an inhibitor of MIF tautomerase activity (ISO-1; 100 

μM) before TLR4/TLR9 activation. Murine type I IFN was measured using 

luciferase bioassay in cell culture supernatants.  

Data show that the activation of TLR4 in both WT and Mif-/- BMDCs led to type 

I IFN production after 6 hours of stimulation in comparison with unstimulated 

cells (Figure 11A). The production of type I IFN in response to TLR4 activation 

was significantly lower in Mif-/- BMDCs compared to WT BMDCs. However, 

inhibition of MIF tautomerase activity using ISO-1 in WT BMDCs showed no 

effect on type I IFN production.  

As demonstrated in Figure 11B, type I IFN was also produced upon TLR9 

stimulation after 24 hours in both WT and Mif-/- BMDCs (Figure 11B). However, 

MIF gene deficiency or the suppression of MIF tautomerase activity failed to 

affect TLR9-induced type I IFN production by BMDCs at this time point. 

These preliminary data suggest that MIF is required for TLR4-induced type I IFN 

production in dendritic cells at early time points. These experiments encouraged 

development of a formal study of this question in further experiments, data from 

which follows. 
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Figure 11. Type I IFN production by dendritic cells upon TLR4 or TLR9 stimulation. 
Bone marrow-derived dendritic cells (BMDCs) generated from WT and Mif -/- mice were pre-
treated with/without MIF inhibitor (ISO-1; 100 μM) and then stimulated with/without TLR4 
agonist (LPS; 100 ng/ml) or TLR9 agonist (CpG ODNs; 0.1 μM) for 2, 6 or 24 h. The levels 
of IFN type I produced upon either TLR4 (A) or TLR9 (B) activation was measured using 
luciferase bioassay. Data represents the mean ± S.E.M. of three mice. *P < 0.05, **P < 0.01, 
***P < 0.005, or ****P < 0.001, one-way ANOVA with a correction by Tukey's multiple 
comparisons test. ND; non-detectable.      
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Next, I investigated the role of MIF in TLR4-induced TNF-α responses in 

dendritic cells. WT and Mif-/- BMDCs were treated with/without TLR4 agonist 

(LPS; 100 ng/ml) for various time points (2, 6 and 24h). In separate groups, WT 

cells were pre-treated with inhibitor of MIF tautomerase activity (ISO-1; 100 μM). 

The secreted level of TNF-α in culture supernatants was detected using ELISA.    

Data show TNF-α production in response to TLR4 stimulation in both WT and 

Mif-/- BMDCs in comparison with unstimulated cells (Figure 12). Mif-/- BMDCs 

showed reduced TLR4-induced TNF-α production only at 6 hours. However, 

suppression of MIF tautomerase activity significantly declined TNF-α release by 

LPS stimulated dendritic cells at 6 hours in comparison with LPS alone. These 

preliminary data do not make clear the requirement of MIF for TNF-α production 

by dendritic cells. These experiments encouraged development of a formal study 

of this question in replicated experiments, data from which follows.    
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Figure 12. TNF-α production by dendritic cells upon TLR4 stimulation. 
Bone marrow-derived dendritic cells (BMDCs) from WT mice were treated with/without MIF 
inhibitor (ISO-1; 100 μM) and then both WT and Mif -/- cells were stimulated with/without 
TLR4 agonist (LPS; 100 ng/ml) for 2, 6 or 24 h. The levels of TNF-α produced was measured 
using ELISA. Data represents the mean ± S.E.M. of three mice. *P < 0.05, **P < 0.01, or 
****P < 0.001, one-way ANOVA with a correction by Tukey's multiple comparisons test. ND; 
non-detectable.  
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4.2.4. MIF is required for type I interferon production by dendritic cells 

I next undertook experiments to formally examine whether MIF imparts a role in 

type I interferon secretion in response to TLR4 agonist (LPS, 100 ng/ml) 

activation by primary dendritic cells. As shown in Figure 13A, the addition of 

LPS to WT and Mif -/- cells induced the release of type I IFN from BMDCs at all 

tested time points. However, Mif-/- BMDCs secreted significantly less type I IFN 

compared with their WT counterparts.  

As shown in Figures 13B, the addition of LPS to WT and Mif -/- cells also induced 

significantly the secretion of TNF-α by BMDCs. Primary bone marrow-derived 

dendritic cells (BMDCs) from Mif -/- mice produced less TNF-α compared with 

their WT counterparts after 24h of treatment, indicating a possible role for MIF 

on LPS-induced TNF-α production in primary dendritic cells. The suppression of 

MIF tautomerase activity using 4-IPP caused a remarkable reduction in LPS-

stimulated type I interferon and TNF-α secretion by both WT and Mif -/- BMDCs.  

These findings suggest that MIF is required for LPS-stimulated secretion of type 

I interferon by primary dendritic cells and that its tautomerase activity has a role 

to play.  

Overall, LPS or CpG stimulation does not enhance type I interferon production 

in BMDCs from Mif -/- mice compared to WT mice. Furthermore, while 

tautemerase inhibition by ISO-1 did not inhibit (or marginally inhibit) the 

interferon production from WT cells, 4-IPP inhibits the interferon production in 

both WT and Mif -/- BMDCs.  
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Figure 13. Levels of type I IFN and TNF-α production by WT and Mif -/- dendritic cells. 
Murine WT and Mif -/- dendritic cells (BMDCs) were pre-treated with/without MIF inhibitor 
(4-IPP, 50 μM) and then stimulated with/without LPS (100 ng/ml) for 2, 6 or 24 h. Secreted  
level of type I interferon in cell culture supernatants was measured using luciferase bioassay. 
Data are expressed as mean ± SEM, n = 3 mice per each group (triplicate independent 
replicates). *P < 0.05, **P < 0.01, ***P < 0.005, or ****P < 0.001, one-way ANOVA with 
correction by Tukey’s multiple comparisons test. ND; non-detectable.    



81 
 

4.3. Discussion   

Type I interferons (IFNs) are produced by macrophages and dendritic cells as one 

of the main elements of host immune defences against microbial invasion. They 

impart both beneficial and detrimental roles in various immune and autoimmune 

inflammatory disorders (190, 207, 309). The production of type I IFN is triggered 

by various receptors including toll-like receptors (TLRs) in response to pattern-

associated molecular pattern (PAMP) and danger-associated molecular pattern 

(DAMP) recognition (310). The production of type I IFNs is tightly regulated and 

over-production is associated with uncontrolled immune reactions and impaired 

host immune defence in some chronic auto-inflammatory conditions such as SLE 

(296, 308, 311, 312).  

MIF in both intracellular and extracellular forms can regulate immune responses 

through the effect on the production of several mediators and cell interactions 

(217). MIF possesses multiple biological functions in autoimmune diseases, 

inflammatory disorders and cancers through receptor-mediated and endocytic 

pathways (71). Although regulation of various pro-inflammatory mediators by 

MIF has been reported (266, 313), its role in the production of type I IFNs by 

macrophages and dendritic cells has not been examined.  

MIF has been shown to contribute to pathophysiology of several TLR4 related 

diseases. In type 1 diabetes, oxidative stress and inflammatory reactions is linked 

with activation of TLR4 pathway (314, 315). In an experimental type 1 diabetes 

mellitus model, MIF deficiency was associated with reduction of serum levels of 

pro-inflammatory cytokines and impaired activation of splenic and pancreatic 

macrophages and dendritic cells (316). A lower expression of TLR4 and co-

stimulatory molecules, and decreased induction of lymphocyte proliferation was 

shown in MIF-deficient cells (317). This study confirmed that MIF may be linked 

with the development and progression of type 1 diabetes mellitus (318). Although 

enhanced expression of IFN-α and IFN-β by islet cells and infiltrating 

macrophages and dendritic cells was described to exacerbate the destruction of 
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β-cell, no study demonstrated any direct link between MIF and type I IFN in this 

context (319, 320). 

This chapter of my thesis aimed to investigate MIF involvement in the production 

of TLR-induced type I IFNs by murine macrophages and dendritic cells. I also 

sought to investigate whether the pattern of type I IFN production between 

macrophages and dendritic cells differs in response to TLR4 activation. Moreover, 

the possible role of the tautomerase enzymatic activity of MIF was studied by 

using well-defined inhibitor. My findings in this chapter show that macrophages 

demonstrated enhanced type I IFN production in the absence of MIF compared 

to WT cells. This observation was consistent across all macrophage types with 

the same pattern demonstrated in immortalized and primary macrophages.  

The discrepancy between the levels of IFN detected in BMDCs stimulated with 

LPS in different experiments (data depicted in Figure 11 versus Figure 13) is 

likely due to differences in the purity, source and serotypes of LPS used across 

the two different laboratories in which these experiments were conducted. 

Regardless, the results consistently show a role for MIF regulating IFN 

production in BMDCs.  

In addition, enhanced type I IFN production in Mif-/- mice which lack MIF-1 (but 

do express MIF-2), suggests that MIF-1 acts as an endogenous negative regulator 

of LPS-induced type I IFN in examined macrophages. However, blockade of 

tautomearse activity by a potent antagonist (4-IPP) that binds covalently to 

enzymatic active site of both MIF-1 and MIF-2 molecules also caused a 

significant reduction in LPS-induced type I IFNs productionsuggesting a possible 

regulatory role for intracellular MIF-1 and MIF-2 in of type I IFN production in 

macrophages through their enzymatic tautomerase function. Furthermore, this is 

further shown when LPS-induced production of pro-inflammatory cytokine 

(TNF-α) by iBMMs and BMDMs from Mif-/- mice was unaffected, yet reduced 

when MIF-1 and MIF-2 tautomerase activity was blocked. 
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The results of this study suggest that MIF-1 and maybe MIF-2 molecules can 

influence IFN induction following TLR4 induction; however, more experiments 

are required to confirm this. 

In line with the results described above, the regulation of TLR4-induced 

macrophage pro-inflammatory responses by MIF has been reported in several 

settings, including modulation of host responses against gram-negative bacteria 

(LPS) by macrophages, production of pro-inflammatory mediators, TLR4 

receptor expression, and NF-κB activation (208-211, 214-219). In terms of 

tautomerase activity, some studies suggested tautomerase function to be one of 

the activities responsible for MIF modulatory effect on TLR4-induced 

inflammatory responses, depending on the type of involved cell (220-222). 

However, any role for MIF on type I IFN production has not been reported. 

In investigating a possible role for MIF in dendritic cells, my results suggest that 

MIF may be a positive regulator of type I IFN production in these cells since Mif-

/- BMDCs showed reduced IFN production compared to those derived from WT 

mice. In addition, dual inhibition of MIF-1 and MIF-2 tautomerase activity using 

4-IPP in WT and Mif-/- BMDCs inhibited IFN production further in LPS-

stimulated type I IFNs secretion. Cultured BMDCs are more similar than other 

primary macrophages to pDC that are the dominant source of type I IFN 

production in vivo (ref for this here). My duration of this study did not allow me 

to undertake studies in pDCs, which would be an obvious next step and important 

to fully understand the role of MIF in type I interferon production. 

With regards to IFN production, the results obtained in this chapter indicate that 

MIF molecules exerts opposite regulatory roles in macrophages and dendritic 

cells upon the activation of TLR4 pathway. In addition, tautomerase enzymatic 

activity was identified as a possible mechanism by which MIF may regulate type 

I IFN production in both macrophages and dendritic cells.  

In this chapter, I also investigated the role of MIF in regulating TNF-α production 

by LPS in macrophages (PECs and BMDMs) and in BMDCs. Unlike 
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macrophages, TNF-α induced by LPS in bone marrow dendritic cells was 

noticeably reduced in Mif -/- cells compared to WT cells suggesting that MIF 

might be required for LPS-stimulated secretion of TNF-α in BMDCs and that its 

tautomerase activity may also have a role to play. The effects of 4-IPP in Mif -/- 

cells suggests a possible role for MIF-2. MIF-1 and tautomearse activity is 

required for IFN and TNF by BMDCs, and MIF-2 is probably involved as well. 

Briefly, we demonstrated that MIF-1 deficiency and MIF-1/MIF-2 tautomerase 

inhibition reduced the ability for type I IFN and pro-inflammatory TNF-α 

cytokine production in dendritic cells in response to TLR4 stimulation. It is 

possible that both MIF-1 and MIF-2 influences on dendritic cell activation; 

however, further investigations are essential to establish this. 

My results with regards to the effect of MIF tautomerase inhibitor, are in 

agreement with other studies in the literature. A study confirmed requirement of 

tautomerase activity for MIF autocrine and paracrine actions in macrophage 

inhibition (321). In addition, inhibition of MIF-1 tautomerase activity using ISO-

1 is considered a potential therapeutic strategy in several TLR-mediated 

inflammatory conditions (247). For example, enhanced MIF expression during 

viral infections such as H5N1 influenza virus pneumonia and Respiratory 

syncytial virus (RSV) is essential for viral clearance and production of 

inflammatory cytokines induced by TLR4 activation such as TNF-α. In these 

studies, ISO-1 suppressed TNF-α secretion by infected macrophages (222, 322-

324). In comparison, the compound 4-IPP covalently binds within the 

tautomerase enzymatic sites of both MIF-1 and MIF-2 and block their signalling 

pathways possibly through the inhibition of the NF-κB (325-328). 

The main finding of this chapter is that MIF modulates TLR4-induced responses 

in macrophages and dendritic cells. It is widely known that controlling TLR4-

mediated inflammatory responses is crucial to restore the homeostasis and 

prevent development of auto-inflammatory diseases and septic shock (200). 

Several pieces of evidence shows that negative regulation of TLR4 signalling 



85 
 

pathway occurs at multiple levels via intracellular regulatory checkpoints (329). 

In this regards, several intracellular molecules such as chaperones and adaptor 

proteins identified that negatively regulate TLR4 signalling (329). In addition, 

various natural and synthetic compounds are presented as TLR4 antagonists and 

TLR4-induced type I IFN production at drug development stage (330-333). 

Results of this chapter are in line with the previously published studies suggesting 

that intracellular MIF might play a direct role by interacting with one or several 

regulatory molecules in TLR signalling pathway as a mechanism to down-

regulate the production of both type I IFN and TNF-α in macrophages and 

dendritic cells. 

The regulation of TLR4-induced responses by MIF in various cell types including 

dendritic cells and macrophages of various sources has been reported (208). 

Extracellular MIF was shown to control the cell surface level of TLR4 in response 

to LPS through controlling TLR4 mRNA expression (209-211). Induction of 

TLR4 responses in peritoneal macrophages of MIF knockout mice leads to a 

declined level of TNF-α, indicating selective post TLR4 effects (214). Also, the 

induction of NF-κB activity by MIF has been suggested as another step of 

modulating the TLR4 response (217-219). Inhibition of MIF tautomerase activity 

reduces TLR4 expression, NF-кB nuclear translocation and the production of pro-

inflammatory mediators (220, 221). Therefore, MIF tautomerase function could 

be one of the actions responsible for its modulatory effect on TLR4-induced 

responses. There are some hypotheses that might partly explain the opposite 

results obtained here on macrophages versus dendritic cells. Firstly, MIF-1 is 

shown to be expressed on both murine macrophages (334) and dendritic cells 

(335) but MIF-2 is only reported in murine dendritic cells (336). Another 

explanation could be difference between macrophages and dendritic cells in terms 

of MIF expression and type I IFN and TNF-α production upon TLR4 activation 

(337).   
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It is known that MIF is involved in host resistance to several parasitic infections. 

In mouse models of infection with Toxoplasma gondii and Trypanosoma cruzi, 

MIF-deficient DCs displayed weakened resistance to the parasites. In the absence 

of endogenous MIF, impaired maturation of DCs was associated with a weaker 

production of IL-12 and pro-inflammatory mediators, and reduced expression of 

costimulatory molecules (338, 339). These studies confirmed the requirement of 

endogenous MIF for early maturation of DCs and host protection against parasitic 

infections. It is known that one of the main effects of MIF on the immune system 

is the upregulation of TLR4 expression (212). Activation of TLR4 pathway and 

induction of type I IFN response in dendritic cells following by recognition of 

PAMPs derived from T. gondii and T. cruzi play critical role in conferring 

protection during the infection (340-345). In addition, MIF has been shown to the 

important in the pathogenesis of TLR4-related viral infections caused by 

influenza virus (346), dengue virus (347, 348), Ebola virus (349), and HIV (350). 

It has been shown that maturation of conventional BMDCs by TLR4 stimulation 

is associated with significant up-regulation of MIF, type I IFN (mainly IFN-β) 

and TNF-α production (335, 351, 352). These findings suggest that modulation 

of MIF tautomerase function may alter TLR4 responses but could be dependent 

on the type of cell involved (222). Although TLR4 signalling mediated induction 

of type I interferon is well described, the role of MIF in this effect is not clear. 

This chapter of my thesis partly addressed this experimentally. 

Taken together, the present study for the first time demonstrates that intracellular 

MIF-1 and possibly MIF-2 molecules regulate the production of type I IFN upon 

TLR4 stimulation. In addition, MIF molecules have opposite effects on primary 

macrophages and dendritic cells. Moreover, a potential role for tautomerase 

enzymatic activity of MIF is suggested. These findings reveal MIF as an 

important regulator of type I IFN production and pro-inflammatory response in 

macrophages and dendritic cells. Although more detailed experiments are 

necessary to explain the exact mechanism involved in this effect, there is no doubt 
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that MIF-1/MIF-2 and the tautomearse function represent potential target for TLR 

related diseases. 

 

Conclusion 

In summary, the present study for the first time suggests that MIF-1 gene deletion 

was consistently associated with increased IFN release in response to LPS, 

suggesting that MIF-1 acts as an endogenous inhibitor of LPS induced type I 

interferon release. Future studies should examine MIF effects in pDCs, as well as 

examine the potential role of MIF-2 that is suggested by the opposing effects of 

MIF deficiencies and tautomerase inhibition in macrophages and the effects of 

tautomerase inhibition in cells deficient in MIF-1. Some evidence of a role for 

MIF in supporting TNF-α production was found.  
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Chapter 5. Summary Discussion 
MIF as a multifunctional molecule can control inflammation, direct innate and 

adaptive immune responses, and orchestrate tissue regeneration and healing (12) 

which are the main properties of characterised DAMP molecules (165). 

Importantly, MIF exerts physiological functions inside cells and modulates 

immune responses and tissue healing upon active secretion during inflammatory 

conditions (12, 144). Several studies have demonstrated significant release of 

MIF in conditions associated with tissue damage and injury (87, 145-151). In 

addition, a DAMP-like passive release of MIF by neutrophils undergoing necrotic 

cell death has been shown (152, 153). Although considerable indirect evidence is 

available, to our knowledge, ours is the first study to clearly show that MIF 

possesses characteristics of a DAMP molecule. In the first part of this project, I 

aimed to study whether MIF is released like a DAMP molecule. In the next step, 

I examined whether MIF regulates TLR dependent responses, which may reflect 

DAMP like activity. 

The results obtained in this study showed that MIF was passively released like a 

DAMP molecule by monocytes undergoing necrotic (primary necrosis, 

pyroptosis and necroptosis) but not apoptotic cell death. This finding identifies 

MIF as a candidate DAMP molecule. It has been proven that many DAMP 

molecules are secreted in extracellular vesicles (EVs) as an important route to 

mediate cell-to-cell communications in physiological and pathological conditions 

(52, 55). In this regard, MIF has been shown to be found in EVs in response to 

particular signals and thus transfer regulatory signals (47, 58, 59). For example, 

MIF is co-expressed with well-defined biomarkers in the exosomes secreted from 

lung cancer cells that could improve the specificity of lung cancer diagnosis (60). 

In addition, MIF is secreted in exosomes by adipocytes in response to adipokines 

that affect insulin resistance (61, 62). These findings could provide a link between 

two parts of my thesis that has not been investigated here. Following release or 

secretion, MIF impart a wide range of biological functions (87, 145-151). In 
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conclusion, my study demonstrates that MIF meets several criteria for it to be 

considered a DAMP, as it is released during necrotic cell death and is active in 

inflammation. 

In an attempt to reveal a novel innate immune immunomodulatory role for MIF, 

we also showed a divergent role for endogenous MIF in the regulation of type I 

interferon in macrophages and dendritic cells. Moreover, my research work 

showed the involvement of MIF in IFN release varies according to cell type, with 

a role provisionally demonstrated in dendritic cells, but also that a role for MIF-

2 cannot be excluded as demonstrated by the use of tautomerase inhibitors. Future 

studies should address these remaining knowledge gaps. Overall, my findings 

expand the current knowledge and understanding of the mode of release and 

biological function of MIF in immune cells. 

 

Future directions 

Future studies are required to investigate the mechanism behind the role of MIF 

in type I IFN production. Also, I suggest performing the same experiments on 

pDC as the dominant source of IFN-α in vivo. Identification of intracellular 

transcriptome profiles of relevant inflammatory genes is recommended to detect 

differential gene expression following cellular stimuli or damage in wild-type and 

Mif-/- cells.  Also, study of the stimulation of other toll-like receptors like TLR7 

and TLR9 may provide more information to the field. In addition, using other 

approaches to inhibit MIF tautomerase activity, and studying the effect of MIF-2 

such as through the use of MIF-2 deficient, or MIF-1/MIF-2 double deficient cells, 

could be worthy. Furthermore, these findings should prompt future in vivo 

experiments in autoimmune and infectious animal models.   
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Appendix 1. Assays for measuring cell death to detect macrophage migration 

inhibitory factor (MIF) release  
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Abstract 

Cell death is a vital process for maintaining tissue homeostasis and removing 

potentially harmful cells. Cell death can be both programmed and non-

programmed and is commonly divided into two main forms termed apoptotic and 

necrotic death modes. In this chapter cell death is classified into apoptosis, 

primary necrosis, pyroptosis and necroptosis. This chapter outlines the 

measurement of these different types of cell death and the relationship of 

measuring MIF release in these assays.  
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1. Introduction 

Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine 

and pleiotropic inflammatory mediator that is constitutively produced by a 

variety of cells, including monocytes and macrophages (5, 12, 353). In contrast 

to many cytokines, MIF is constitutively expressed and stored in intracellular 

cytoplasmic pools, and therefore does not require de novo protein synthesis 

before secretion. As a result, MIF can be rapidly released in response to stimuli, 

such as microbial products, pro-inflammatory mediators, proliferative signals, 

hypoxia and stress (302, 354). Importantly, MIF is implicated in the 

pathogenesis of sepsis (355), inflammatory and autoimmune diseases such as 

rheumatoid arthritis (238, 356) and systemic lupus erythematosus (237, 357). 

Thus suggesting MIF-directed therapies might offer new treatment 

opportunities for human diseases in the future (247). Multiple clinical studies 

have also pointed to the potential of MIF as a biomarker in the context of 

inflammatory diseases, including systemic infections and sepsis, autoimmune 

diseases, cancer, and metabolic disorders (358). 

The mechanism by which MIF is secreted/released has not been fully established, 

although in a recent study MIF was found to be released by neutrophils during 

secondary necrosis, but not in response to microbial stimulators (153, 359). Cell 

death is commonly divided into two main forms termed apoptotic and necrotic 

death modes. Apoptosis is a programmed non-lytic mode of cell death that is 

tightly regulated through extrinsic and intrinsic major signalling pathways 

mediated by caspases (360), and apoptotic cells are regularly cleared by 

phagocytosis without triggering inflammation (361-364).  

Here, we describe techniques for inducing and measuring different forms of cell 

death in cells of the monocyte/macrophage lineage. In particular, we cover 

techniques for examining apoptosis, necrosis, pyroptosis and necroptosis (Table 

1).  
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Pyroptosis and necroptosis are forms of non-apoptotic cell death, where the cell 

swells and membrane rupture releases cellular contents (365). Pyroptosis is a 

form of programmed necrosis which is caspase-dependent and can be activated 

by microbial pathogens (366). Detecting the caspase-1 dependency using 

caspase-1 inhibitor can be used to distinguish pyroptosis from other necrotic cell 

death forms as outlined below in this methods chapter, and additionally so is the 

measurement of IL-1β via ELISA (89, 90, 294, 295, 367-369). 

Necroptosis is initiated through several internal and external ligand-receptor 

interactions. Similar to pyroptosis, it can result in organ swelling, membrane 

rupture and release of cell contents. For necroptosis to occur Kinase activity of 

receptor-interacting protein 1 (RIP1) is required and is induced by TNF-α by 

binding to its receptor (TNFR1), which causes the recruitment of the TNF-

receptor-associated death domain (TRADD), RIPK1 and ubiquitin E3 ligases to 

form a complex (370). It is then the deubiquitination of RIPK1, which causes its 

disassociation from this complex and a formation of a new complex termed 

complexIIb (the necrosome). Caspase-8 then needs to be inhibited for necroptosis 

to occur. Necroptosis can be experimentally induced by endogenous protein 

called second mitochondria-derived activator of caspases (SMAC) or artificial 

SMAC-mimetics in combination with caspase inhibitors. Necroptosis can be 

inhibited by suppression of RIP1 kinase activity with necrostatin-1, which can be 

done experimentally as outlined in the methods below (276, 297-301, 371). The 

detection of pyroptosis and necroptosis is via the lactate dehydrogenase (LDH) 

assay. This assay measures the release of this enzyme upon cell death due to 

plasma membrane damage, with LDH activity proportional to cell lysis. 

This chapter outlines the measurement of various forms of cell death and how 

measuring the level of MIF is a tool which can be correlated with necrotic cell 

death regardless of the necrosis form and involved pathways. Blocking necrosis 

is also associated with suppression of MIF release. In summary, measuring MIF 

release/level can be considered as a biomarker of necrotic cell death and tissue 
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injury and is a beneficial additional measurement to be performed in cell death 

assays. 

 

Table 1. Overview of multiple modalities of induced cell death and 

methodology.   

Cell death 
induced 

Inducer/s Intermediate  

signalling 

Inhibitor/s Detection methods  References 

Necrosis Ethanol None Pan caspase 
inhibitor  

(Z-VAD-FMK) 

Flow cytometry assay: 
quantification of PI staining. 

 

(22) 

Pyroptosis   LPS + Nigericin 

 

Caspase-1 
dependent, 

NLRP3 
inflammasome 
activation 

Pan caspase 
inhibitor  

(Z-VAD-FMK) 

Caspase-1 
inhibitor  

(Z-YVAD-FMK) 

Florescence-based detection 
of LDH activity 

MIF and IL-1β ELISA 

(30) 

 

Necroptosis  TNF-α + Z-
VAD-FMK + 
BV-6  

Caspase 
independent, 

RIP1 kinase 

Necrostatin-1 Florescence-based detection 
of LDH activity 

MIF ELISA 

(32) 

 

 
2. Materials  

2.1. Inducing apoptosis with staurosporine  

1. Staurosporine (1 µM) 

2. Pan caspase inhibitor, Z-VAD-FMK (50 µM), 

2.2. Inducing necrosis with ethanol  

1. Ethanol 10%, v/v 

2.3. Inducing pyroptosis with nigericin 

1. Nigericin (10 µM) 

2. Lipopolysaccharide (100 ng/ml) 

3. Caspase-1 inhibitor, Z-YVAD-FMK (25 µM)   

2.4. Inducing necroptosis 
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1. SMAC mimetic BV-6 (IAP antagonist, 1 µM, see Note 1) 

2. Necrostatin-1 (30 µM, see Note 2)  

3. Recombinant human TNF-α (30 ng/ml) 

3.5 Colorimetric-based Lactate dehydrogenase (LDH) release assay 

1. LDH assay kit (see Note 4) 

Cell Line: Human monocyte THP-1 leukemic cells (ATCC TIB-202, see Note 5) 

Complete media: 500 mL RPMI 1640 media supplemented with 10% Heat-

inactivated Foetal Bovine Serum (FBS), 100 U/ml penicillin and 100 µg/ml 

streptomycin and 2 mM L-Glutamine 

Tissue culture consumables: T75 vented flasks, 6 well plates and 96 well plates. 

 

3. Methods 

All procedures are carried out at room temperature unless otherwise specified. 

All procedures should be carried out in a class II biological hazard cabinet to 

maintain a sterile environment unless otherwise specified. 

 

3.1. Inducing necrosis with ethanol  

1. Seed THP-1 cells (1 × 105 cells/well) in round bottom 96-well plate in 160 

µl in complete media (see Note 6). 

2. Keep a set of triplicate wells as media alone control wells for the assay. These 

wells complete the same experimental procedure outline lined below with 

the exception that media is added to the wells at each step instead of reagents. 

3. Add 50 µM Z-VAD-FMK to triplicate wells and incubate at 37°C in CO2 

incubator for 30 min. 

4. Add ethanol 10%, v/v in triplicate wells. Incubate for 1-6 hours at 37°C in a 

CO2 incubator.  

5. Centrifuge the cells at 1200 rpm for 5 minutes. Harvest the cell pellets for 

flow cytometry based cell death assay (section 3.5). If required, supernatants 



95 
 

can be collected and stored at -20/-80°C for analysis of secreted factors (e.g. 

by ELISA). 

 

3.2. Inducing pyroptosis with nigericin 

1. Seed THP-1 cells (1 × 105 cells/well) in flat bottom 96-well plate in 160 µl 

in complete media. 

2. Keep a set of triplicate wells as media alone control wells for the assay. These 

wells complete the same experimental procedure outline below with the 

exception that media is added to the wells at each step instead of reagents. 

3. Add LPS (20 µl, final concentration of 100 ng/ml) in a total to a 200 µl 

volume to triplicate wells and incubate overnight (16-18 h) at 37°C in a CO2 

incubator.  

4. Centrifuge and remove the media. Add 20 µl of 10x concentrate of caspase-

1 inhibitor (25 µM, Z-YVAD-FMK) and incubate for 30 minutes at 37°C in 

a CO2 incubator.  

5. Add 20 µl of nigericin (10 µM) to LPS stimulated wells in triplicate and 

create a time course with hourly intervals for 1 to 3 hours at 37°C in a CO2 

incubator. Create a separate plate for each time point. 

6. At each hour time point. Centrifuge the cells at 1200rpm for 5 minutes and 

collect 180 µl of the supernatant for MIF, IL-1β (see Note 8) cytokine assays 

(as per ELISA protocol) and measurement of cell death by LDH assay 

(section 3.6) (372). Supernatants can be stored at -20/-80°C until assays are 

performed. 

 

3.3. Inducing necroptosis 

1. Seed THP-1 cells (5 × 105 cells/well) in round bottom 96-well plate in 160 

µl in complete media. 
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2. Keep a set of triplicate wells as media alone control wells for the assay. These 

wells complete the same experimental procedure outline lined below with 

the exception that media is added to the wells at each step instead of reagents. 

3. Add 20 µl of Necrostatin-1 (30 µM) in triplicate wells to create a necroptosis 

induced group. 

4. To these wells, add 20 µl of a mixed combination of recombinant human 

TNF-α (30 ng/ml, final concentration) and SMAC mimetic BV-6 (IAP 

antagonist, 1 µM, final concentration) for 18 hours. 

5. Centrifuge the cells at 1200 rpm for 5 minutes and collect 180 µl the 

supernatant for MIF ELISA assay (as per ELISA protocol). Cell death was 

detected by LDH release assay (section 3.6). Supernatants can be stored at -

20/-80°C until assays are performed. 

 

3.4. Colorimetric-based Lactate dehydrogenase (LDH) release assay  

Vehicle-Only Cells Control: Untreated cells serve as a control for the use of the 

solvent delivery vehicle in the assay. Add the same solvent used to deliver the 

test compounds to the vehicle control wells. 

1. Carry out protocols for inducing pyroptosis (section 3.3) and necroptosis 

(section 3.4) as per methods above. In addition, for the LDH assay include 

the following controls; a no cell control (this will determine background 

readings of the culture media), an untreated cell control and a maximum LDH 

release control (add 10 ul of 10x lysis solution per 100 ul of untreated cells, 

45 minutes prior to adding CytoTox 96R reagent) to allow calculation of % 

cytotoxicity. 

2. Forty-five minutes prior to harvesting supernatants (from the pyroptosis and 

necroptosis experiments sections 3.3 and 3.4 above), induce cell lysis in the 

set of Maximum LDH Release Control wells by adding 10 μl of Lysis 

Solution (10X) for every 100 μl of cells. Total cellular LDH is measured by 

lysis of cells. 
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3. Spin at 1200 rpm for 5 minutes.  

4. Collect 100 µl of the supernatant for LDH release assay. 

5. Add 50 μl of the supernatant all wells using a multichannel pipette to a fresh 

96-well flat-bottom (enzymatic assay) plate. 

6. Add 50 μl of CytoTox 96R Reagent to each well of the enzymatic assay plate 

containing the samples.  

7. Cover the plate with foil to protect it from light and incubate for 30 minutes 

at room temperature. 

8. Add 50 μl of Stop Solution to each well. 

9. If any large bubbles are present pop these with sterile tip. 

10.  Read the absorbance at 490nm, using a microplate reader, within 1 hour of 

adding the Stop Solution. 

11. For calculation of results, subtract the average absorbance value for the 

Culture Medium Background from all absorbance values.  

12. Subtract the average absorbance values for the Volume Correction Control 

from the absorbance values obtained for the Target Cell Maximum LDH 

Release Control. Use the corrected values obtained in the following formula 

to calculate percent cytotoxicity.  

13. Results are presented as cytotoxicity percentage. 

 

3.5. Propidium Iodide (PI) staining    

The pattern of cell death induced by ethanol was detected using PI staining and 

SPHEROTM AccuCount particles to improve the precision of cell counting. For 

this purpose, counting particles were added to each well (1:10 dilution in FACS 

buffer, v/v) and the plate was then centrifuged (1200 rpm, 5 min, and 4°C). Next, 

pellets were washed with PBS and incubated in FACS buffer containing PI 

solution (5 μL) for 5 min at room temperature in the dark. Finally, samples (10 

000 events) were assessed within 1 h using a flow cytometer and data were 

analysed by FlowJo v10 software. Cells positive for PI indicated the occurrence 
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of necrotic cell death. The absolute cell count was calculated using the following 

equation: (A/B) x (C/D) = Number of cells per μL. Where:  

A = number of events for the sample  

B = number of events for the particles  

C = number of particles per 50 μL  

D = volume of test sample initially used in μL  

 

4. Notes 

1. Use of SMAC mimetic BV-6 (IAP antagonist) is to reduce 

polyubiquitination of RIP1 and increases sensitivity to cell death. 

2. Necrostatin-1 is a specific inhibitor of RIP1 kinase inducing necroptosis. 

3. Counting beads for use in flow cytometry are available from a range of 

scientific companies for purchase.  

4. LDH assay kits are commercially available to quantify cell viability via the 

release of LDH. It is an enzymatic assay allowing the quantification of 

released LDH to be measured via a colorimetric assay. The amount of colour 

formed is proportional to the number of lysed cells.  

5. Beware of cell line variability for the induction of different forms of cell 

death. Some cell lines may have varying caspases and some may lack 

function. Perform an initial dose response curve to ensure the appropriate 

concentration of compound for your cell line is used. 

6. To perform these assays, THP-1 cells can be seeded at a range of 1 to 5 × 105 

cells/well, keeping cell number consistent between wells in a single 

experiment. 

7. For pyroptosis assays, release of IL-1β can be used as a specific readout for 

inflammasome activation. 

8. The use of counting beads can assist the standardization between cell death 

assays and determination of absolute cell count via the equation in the 

methods section 3.5.  



99 
 

9.  PI staining alone can be performed to indicate late apoptosis/necrosis cell 

death. PI is a membrane impairment dye which is largely excluded from 

viable cells and binds to double stranded DNA. 
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