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Abstract

Owing to its abundance and renewability, the direct conversion of cellulosic biomass to

biochemicals via consolidated bioprocessing (CBP) is attractive. The convoluted dy-

namics of enzymatic saccharification, fermentation of soluble sugars through cellular

metabolism, and concurrent cellulase secretion in CBP eludes a full mechanistic under-

standing of the underlying process fundamentals, thus, rational process and microbial

strain designs and optimizations are challenging. The foregoing limitations are best re-

solved with theory-based dynamic modelling frameworks, yet, existing frameworks that

rely on semi-mechanistic approaches at most, are not adequate to represent all critical

nuances of CBP. This study proposes the coupling of two complementing frameworks —

population balances and cybernetic models, to simulate the enzymatic saccharification

and fermentation in CBP, respectively. The population balances, which lack analytical

solutions, are solved numerically over a discrete-continuous mesh to embody the discrete

bond-breaking phenomena of enzymatic saccharification while economizing on the com-

putational load. Through an assessment of a variety of numerical solutions over several

performance indicators, the Fixed Pivot Technique (FPT) demonstrated increased su-

periority, where FPT offers at least 7% better accuracy and 63% more efficiency than

the second-best contender. Thus, the FPT is used as the basis for the development of

population balances in this work. To represent the enzymatic saccharification of the com-

plex distributed-heterogeneous polymeric cellulose, a new modelling platform termed the

Multi-Layered Population Balance Model (ML-PBM) is developed, which enables various

key aspects of the saccharification occurring over the entire breakdown process to be cap-

tured. As a core component for predicting the well-known slowdown phenomenon, the

ML-PBM properly accounts for heterogeneity in cellulose crystallinity and chain lengths

across the structural layers of cellulose particles with different morphologies. Beyond a

decent quantitative fit to highly nonlinear dynamic experimental data collected across

different conditions, the ML-PBM reveals that the rate slowdown phenomenon is po-
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tentially due to heterogeneity in cellulose properties coupled with cellulose morphology.

Subsequently, the ML-PBM is coupled with a metabolic network-based Lumped Hybrid

Cybernetic Model (L-HCM) to form a new framework, named the Unified Cybernetic-

Population Balance Model (UC-PBM), to simulate CBP of cellulose. To account for the

interdependent dynamics of saccharification and fermentation in CBP, the UC-PBM fea-

tures a closed-loop control mechanism between global regulation of extracellular cellulases

and local intracellular regulation of fermentation at the network level. Through a case

study on Clostridium thermocellum, the UC-PBM reveals that the cellulolytic microorgan-

ism actively reciprocates via flux re-distribution to changes in the environment through

the onset of famine/feast conditions, which is dependent on the saccharification dynam-

ics. Despite good fit with most exometabolomic data, the model overpredicts cellulosome

secretion by more than three times in a nutrient-rich condition, while preserving the pre-

diction of cellulase-coupled biomass growth with less than 6% error margin. This result

suggests that future consideration of a new group of cellulase-decoupled growth metabolic

pathways will allow for a more rigorous representation of the microorganism’s metabolic

behaviour. The foregoing insights on the nature of the cellulolytic microorganism would

not have been possible with existing frameworks devoid of the closed-loop regulation.

In overall, the UC-PBM is a rational framework with the potential to facilitate sound

cellulose bioprocessing.
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Chapter 1

Introduction

1.1 Background and Motivation

Production of biochemicals from renewable resources is a promising alternative to fossil

fuels that pose various adverse effects on the environment [1–3]. Cellulosic plant biomass

is considered an excellent resource for biochemical production, primarily because they are

not derived from crops, but from forest or agricultural residues, including switchgrass [4],

wheat straw [5], corn stover [6], rice straw [7], and poplar [3], among many others. The

use of cellulosic biomass, therefore, helps to alleviate some issues associated with disposal

of solid wastes, increase of trade deficits and declining energy security [2, 8, 9]. In this

regard, consolidated bioprocessing (CBP) provides routes for direct conversion of cellulosic

biomass to biochemicals using microbial cell factories, as the consolidation of cellulase

synthesis, cellulose saccharification and fermentation of released sugars in a single unit

1
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operation vastly enhances the process economics. Despite the outstanding potential,

CBP is encumbered by the absence of native microorganism strains with crucial traits

for efficient bioconversion of cellulose under industrial conditions, such as high titre and

yield of target biochemicals, tolerant to toxic compounds and secretion of cellulases at

high levels without compromising the fermentation capacity [10–14].

To that end, metabolic engineering is a potential strategy to develop an ideal CBP

strain by integrating all the required biological functionalities into a host strain. CBP

strain developments through metabolic intervention strategies could benefit from an in-

tegrated quantitative understanding of the metabolic capabilities of the organism but,

new target organisms are often less well characterised [14], especially against diverse and

sophisticated cellulosic properties. Besides, a trial-and-error type approach for strain

developments with an incomplete understanding of the metabolic mechanisms consumes

substantial resources and time, and may lead to haphazard process designs [15]. Such

limitations in CBP strain developments call for a holistic in silico approach to examine

the metabolic characteristics of the target host organisms supported with a predictive

capacity of dynamic shifts in the metabolism to various environmental and genetic per-

turbations. In silico tools which can be used for this purpose should be able to capture the

process dynamics to enable accurate prediction of productivity as well as yield [1,16–19].

However, development of reliable dynamic CBP models is challenging due to increased

complexity arising from coupled dynamics of saccharification and fermentation.

The enzymatic saccharification or hydrolysis of cellulose is riddled with its own set

of challenges. Rate of conversion of cellulose to valuable monomeric and oligomeric prod-

ucts is often significantly slowed down after an initial rapid but short-lived phase. A

mechanistic understanding of the underlying mechanisms and key driving factors has yet
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to be fully established due to complexities in cellulose structure and properties, as well

as hydrolysis reactions, impeding the development of effective processes [20–23]. The

sources of complexity include recalcitrant nature and ultrastructural organization of cel-

luloses, mixture of insoluble celluloses and dissolved enzymes, multiple elementary steps

for substrate-enzyme interactions, concerted action of enzymes with different modes of

scission, and polydispersity of cellulose polymer chains. Owing to the interplay between

the complex process dynamics above, fine control of the enzymatic hydrolysis of cellulose

is challenging, which can be effectively addressed by employing predictive mathematical

models. Despite past efforts, most models developed thus far lack the ability to predict

the foremost critical aspect of cellulose enzymatic hydrolysis, which controls the produc-

tivity of the process, i.e., the rate slowdown, and as a result, enzymatic hydrolysis is often

poorly represented in existing models.

On the other hand, fermentation of soluble sugars by microorganisms is aided by

intricate cellular metabolism across vast networks of metabolic reactions. Moreover, in a

CBP setting, both saccharification and fermentation of celluloses are highly interdepen-

dent as cellulolytic microorganisms consume fermentable sugars for the energy required to

secrete cellulases, which in return facilitates saccharification to maintain a constant supply

of fermentable sugars for metabolism. Consequently, without a fundamental understand-

ing of all critical aspects of the process, a rational reaction engineering of enzymatic

hydrolysis and subsequent fermentation process, as well as any metabolic interventions to

engineer ideal CBP strains, is difficult. Such limitations call for predictive modelling to

promote a mechanistic understanding of CBP of cellulose. However, existing models do

not represent the interdependent dynamics of saccharification and fermentation in CBP

in a mechanistic manner.
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This work proposes the use of two contrasting but complementing modelling tools

– population balances and cybernetic models, to simulate saccharification and fermen-

tation, respectively, in CBP of cellulose. Like the usual partial differential equations

of conservation of mass, momentum and energy, population balances deliver the fourth

governing equation that conserves the transport of dispersed phase entities [24,25]. Pop-

ulation balance model (PBM) is an elegant mathematical tool to describe the temporal

evolution of dispersed phase entities and specific ways through which the dispersed en-

tities change their states, such as polymeric substrates and specific modes of enzymatic

scission, respectively. Therefore, PBM is used as the basis for the development of the

Multi-Layered Population Balance Model (ML-PBM) in this research to simulate the en-

zymatic hydrolysis of cellulose, where all critical features of the process are mechanistically

and independently reflected, based on first principles wherever possible. The ML-PBM is

specially formulated to manifest and explain the potential primary mechanisms of the cel-

lulose hydrolysis rate slowdown. In tandem, the use of the PBM necessitates assessment

and customization of numerical solution techniques specifically to solve depolymerization

population balance equations (PBEs) because analytical solutions are often limited to sim-

plistic circumstances. Conversely, cybernetic models view the microorganisms as sentient

beings that encompass specialized regulatory mechanisms used to optimally control the

allocation of finite internal resources to steer the metabolism to fulfil certain objectives,

which often gravitate towards ensuring the survival of the microorganisms [26]. Devel-

oped across many iterations over the past three decades [17], cybernetic models evolved

from imposing minimalistic perspective on cellular metabolism via single lumped reaction

routes from substrates to products [27–32], to a more advanced metabolic network-based

cybernetic models [33–38]. The latter is particularly attractive for the application in this

work, which not only aims to benefit bioprocess optimizations through reaction engineer-
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ing, but also to aid metabolic interventions to engineer optimal strains. Lumped Hybrid

Cybernetic Model (L-HCM) [36–38] specifically stands out as it allows accurate dynamic

metabolic modelling with high resolution at the network level, yet it remains computa-

tionally efficient and requires minimal experimental measurements for implementation.

Inspired by the works of Ho et al. [39, 40], population balances (ML-PBM) and

cybernetic models (L-HCM) are coupled to establish a comprehensive framework to rep-

resent the dynamics of CBP of cellulose. The resulting framework, named the Unified

Cybernetic-Population Balance Model (UC-PBM), equipped with the unification of var-

ious process features, allows a more fundamental analysis of CBP of cellulose. Unlike

any existing frameworks, the coupling of the ML-PBM and the L-HCM presents a unique

closed-loop network-level control mechanism to portray the interdependent dynamics of

CBP of cellulose. In overall, accurate, detailed network-based simulation of complex dy-

namics of CBP enabled by the UC-PBM offers itself as a promising tool for both strain

engineering and bioprocess optimizations.

1.2 Objectives

Alluding to the motivations in the preceding section, the main objectives of this research

are prescribed chronologically as follows:

1. To adapt and apply various potential solution techniques to solve depolymerization

PBEs, followed by a detailed performance assessment of the techniques. This in-

cludes the exploration of the inherent characteristics of each technique and attempts

to improve solution accuracy specific to the nature of this work. The best-suited
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solution technique chosen from this study will be used for subsequent works.

2. To develop a population balance modelling framework for enzymatic hydrolysis of

celluloses inclusive of all the inherent critical characteristics of the process. This

includes detailed parametric analysis and validation of the model against various

experimental data from the literature. The resulting model will be used to determine

the potential rate slowdown mechanism and other insightful process fundamentals.

The model developed here will be used to fulfil subsequent objective.

3. To develop an overall comprehensive framework for CBP of cellulose by coupling

population balances and cybernetic models. This includes detailed parametric anal-

ysis and validation of the model against various experimental data from the lit-

erature. The resulting model will be used for a detailed analysis of CBP at a

fundamental level to reveal new and useful findings on the metabolism of a chosen

CBP host strain.

1.3 Organization of the Thesis

The thesis is organized as shown in Figure 1.1 and the details are as follows. In Chapter

1, a brief background on CBP of cellulose and the need for modelling frameworks is

established. A summary of the research scheme and the breakdown of objectives that

must be fulfilled to arrive at the thesis is also explained. In Chapter 2, a thorough

review of the challenges associated with modelling CBP of cellulose, existing modelling

frameworks available in the literature and their limitations are presented. This is followed

by a detailed exposition of the efforts undertaken in this work to address the research gaps.
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Figure 1.1: Chart illustrating the thesis structure.

Chapter 3 presents the study of various sectional techniques to solve depolymerization

PBEs. Subsequently, the exhaustive development of the ML-PBM to model enzymatic

hydrolysis of cellulose is presented in Chapter 4. In Chapter 5, the formulation of the

comprehensive UC-PBM to model CBP of cellulose is deliberated. Overall, Chapter 3

– 5 incrementally demonstrates the fulfilment of the three research objectives. Lastly,

Chapter 6 presents an overall conclusion to the research and recommendations for future

works.

Due to the computational nature of this work that involves mathematical formulation

of model frameworks, the research methodologies are embedded in the respective chapters

of the thesis to enhance readability. Highly technical details of the model formulations are

relegated to Appendices, where Appendix A contains details pertaining to the numerical
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solution techniques to solve depolymerization population balances, Appendix B includes

information concerning the ML-PBM, Appendix C organises materials related to the UC-

PBM and Appendix D consolidates all MATLAB codes written for this research.



Chapter 2

Literature Review

2.1 Modelling Consolidated Bioprocessing of

Cellulose

Optimal design of microbial strains and process configurations to maximize the productiv-

ity and the economic viability of CBP can be greatly facilitated by employing predictive

mathematical modelling frameworks. CBP of cellulose by microbial cell factories is best

resolved by models that integrate process fundamentals of both saccharification of dis-

tributed heterogeneous cellulose and regulation of fermentation at the metabolic network

level. However, such models are often overlooked because of the associated difficulty in

maintaining a reasonable computational efficiency and mechanistic accuracy of dynamic

biological systems. Such limitations call for a new modelling approach that economizes

on computational intensity without compromising the representation of critical factors of

9
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the process.

In this research, the requisites for mechanistic modelling of CBP are satisfied by

addressing the saccharification and the fermentation components separately using popu-

lation balances and cybernetic models, respectively. Their integration thereof delivers an

all-encompassing framework that closely resembles the dynamics of CBP. In the forthcom-

ing subsections, the challenges of modelling the separate components of CBP of cellulose,

as well as the shortcomings of past efforts to address the challenges, are extensively re-

viewed. Subsequently, the research scheme of this work to address the knowledge gaps

are deliberated in Section 2.2.

2.1.1 Population Balance Modelling for Depolymerization

Processes

In principle, saccharification of cellulosic polymers or depolymerization is a form of break-

age process. The fundamental understanding of the breakage phenomenon is of critical

importance, not only in polymer science, but also in diverse fields including cell biology,

geology, agriculture engineering, etc. To model the particle breakage phenomenon, the

Population Balance Equation (PBE) that describes the spatial and temporal dependence

of the number density for a dispersed phase entity, is the fundamental governing equa-

tion [24, 25]. However, the reliability of the solution techniques employed is an essential

criterion to model the breakage phenomenon with adequate accuracy. Due to the com-

plexity exhibited by the breakage PBE in the form of a linear partial integro-differential

equation, generalized analytical solutions are a rare find and exist only for very specific

cases as elucidated by Ziff and McGrady [41, 42]. In this regard, numerical solutions are
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often necessary [43–45].

To enable utilization of the PBE for a wider range of applications, many numerical so-

lution techniques had been devised to date. The three main classes of solution techniques,

apart from the conventional finite difference [46] and the finite element techniques [47],

are the method of successive approximations [25], the method of moments [48–51] and the

sectional methods [44,52–59]. Although all these methods have been demonstrated to be

successful in solving the PBE, the choice of the solution technique should support the nec-

essary requisites of a specific application. While it is important to accurately predict the

particle distribution along the internal coordinate of choice, it is equally vital to preserve

the fundamental moment-related properties at the same time. For breakage phenomena

that involve particulate systems, the fundamental moment-related properties are the total

number of particles and the total mass [44,55]. For this reason, the sectional technique is

an apt and convenient choice as this technique is devised to preserve a number of selected

properties while at the same time yields the complete number density at a reasonable

accuracy [44]. Although the method of moments is comparatively more computationally

efficient, it is not capable of predicting the transients of the complete number density

accurately. Additionally, the sectional techniques meet mid-way between maintaining the

accuracy of the predictions and the computational efficiency [52], thus rendering it an at-

tractive choice for practical day-to-day usage in the industry. Alternatively, Monte Carlo

methods could also be used to solve PBEs involving depolymerization processes [60–62].

The use of Monte Carlo methods becomes inevitable when the associated model is highly

complex [63]. However, the high computational intensity associated with the Monte Carlo

simulation renders it unsuitable for general usage and model-based optimizations [62].

The foregoing discussion primarily focused on the general breakage phenomenon
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that can be entirely approximated by continuous distribution kinetics. However, several

important breakage phenomena are inherently discrete in nature, e.g., polymer degrada-

tion [64–66] and dynamics of molecular clusters in the aerosol domain [67]. In this case,

a fully discrete PBE is established by forming a set of Ordinary Differential Equations

(ODEs) for each integer multiples of a single structural unit of the particulate system [67].

The solution of the fully discrete set of ODEs is often not practical due to the typical

wide range of particle size in many particulate systems, which translates to extremely

large number of ODEs to be solved numerically [43, 45, 54, 67, 68]. Although the fully

discrete solutions are impractical to be applied directly, they serve as a benchmark for

the performance of other short-cut solution techniques. The impracticality of numeri-

cally solving the fully discrete PBE for large systems calls for the development of solution

strategies that strike a balanced compromise between solution accuracy and computa-

tional efficiency.

2.1.2 Modelling Frameworks for Enzymatic Hydrolysis of

Cellulose

A full mechanistic understanding of enzymatic hydrolysis of cellulose has been elusive,

owing to the effects of various confounding factors on the process dynamics resulting in

excessive variability, which cannot be readily discerned through conventional experimen-

tal approaches. As an alternative, models to elucidate the fundamentals of enzymatic

hydrolysis of cellulose should necessarily be physicochemical-based mechanistic models

that independently account for the key factors of the process.

The modelling of enzymatic hydrolysis of cellulose is arduous due to the complex
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structural arrangements of cellulosic biomass and its disposition to any form of degra-

dation. For instance, cellulosic biomass encompasses structural arrangements spanning

across multiple scales. At the microscopic scale, cellulose is a linear, homopolymer of

anhydrous glucose molecules bound together by β-1,4 glycosidic bonds, with cellobiose

(disaccharide) as the basic repeating unit. Subsequently, the cellulosic polymers are as-

sembled into structures of increasing scales, starting from elementary fibrils, followed

by microfibril or fibril aggregates and lastly microfibril aggregates or macrofibrils [8, 69].

Moreover, high insolubility of cellulose particles in water forces the enzymes to operate at

the liquid-solid interface to depolymerize cellulose chains [3], which renders the process

many orders of magnitude slower as the cellulose accessibility by the enzymes is limited to

the surface polymers [69,70]. Although cellulose hydrolysis is generally viewed as a surface

ablation process, the possibility of enzymes diffusing through the pores and hydrolysing

internal polymers as discussed by past studies [71–73] or analogous manifestations should

not be completely ruled out.

Furthermore, strong hydrogen bonds between cellulose chains form crystalline re-

gions that are more impervious to degradation than amorphous regions, but the possible

arrangement of the two regions in the cellulose particles in unison with the observed

process dynamics remains elusive. In addition, the hydrolysis of cellulose is catalysed

by three major classes of enzymes, namely endoglucanases (EG) that randomly cleave

any β-1,4 glycosidic bonds, exoglucanases or cellobiohydrolases (CBH) that processively

cleave cellobiose dimers from chain-ends and β-glucosidases (BG) that hydrolyse cel-

lobiose and other soluble oligomers (DP < 7) to glucose monomers [8, 69]. Given that

each enzyme has a specialized mode of scission, the concerted action of the enzymes ex-

hibits strong synergism, which is only evident when the complete cellulose chain length
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distributions are considered. Lastly, pre-treatment processes to improve the accessibil-

ity of enzymes to the cellulose fractions in lignocellulosic biomass prior to hydrolysis are

often performed at harsh conditions (elevated temperatures and pressures, presence of

acidic/alkaline medium, etc.) [2, 8, 20], which can severely disrupt the properties of the

native celluloses, and its effects on the enzymatic hydrolysis remain poorly understood.

To aid sound cellulose bioprocessing, models for enzymatic hydrolysis should es-

sentially uncover insights into the critical, yet uninformed process mechanisms. Various

modelling approaches for simulating enzymatic hydrolysis of celluloses have been devel-

oped so far. However, currently available models do not embody all the essential aspects of

the process as discussed above. For example, a so-called enzyme-centric approach decom-

posed the enzyme-substrate interactions into multiple elementary steps, but neglected the

distributed nature of the cellulose polymer chains [72, 74–78]. The complete distribution

of cellulose chains and different modes of scission were considered in other more struc-

tured models, which however, did not account for substrate morphology to demonstrate

the heterogeneity of the insoluble celluloses [79–81]. A few sophisticated models have

incorporated detailed substrate-enzyme interactions, substrate morphology and cellulose

chain distributions [43, 82–85]. Despite some promising results, these recent models also

lack the ability to accurately capture the complex and delicate aspect of system dynam-

ics over the entire period of enzymatic hydrolysis process, especially the sharp decline

in rate after an initial rapid phase [69, 85–90]. For instance, Levine et al. [84] utilized

a complex random sequential arrangement to model the adsorption of the enzymes, and

while the model fit to the initial rapid phase is commendable, the rate slowdown at the

late phase of hydrolysis was not predicted adequately. Similarly, the ability of the model

by Huron et al. [83] to predict the rate slowdown is doubtful as validation with experi-
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mental data is lacking for late phases of the process. The mechanistic model developed

by Griggs et al. [43, 82] which was later calibrated and validated with the experimental

data by Nag et al. [85] assigned different rates of hydrolysis to two separate cellulose

populations, i.e., amorphous and crystalline celluloses, to simulate the effect of different

enzyme accessibility to the amorphous and crystalline regions. Although it was not their

intention to explicitly model the amorphous and crystalline celluloses, doing so was em-

pirically sufficient to match the rate slowdown to a certain extent. To the best of the

author’s knowledge, none of the currently available models provides a mechanistic basis

for predicting this slowdown phenomenon in the enzymatic hydrolysis of celluloses. An

up-to-date review of the existing kinetic models of enzymatic hydrolysis that highlights

the limitations of the models and motivation of this work is given in Table 2.1.
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Table 2.1: Review of existing models for the enzymatic hydrolysis of celluloses, bench-
marked against the core features of the ML-PBM developed in this research.

Ref.
Model features Core rate

slowdown
mechanism

Remarks
Distributed
cellulose
chain
lengths

Multiple
enzyme-
substrate
interaction

Multiple
modes of
enzymatic
scission

Insoluble
substrate
morphol-
ogy

Kadam et
al. [91]

n.a.∗ n.a. n.a. n.a. Product
inhibition

Michaelis-
Menten (MM)
based kinetics

Peri et
al. [90]

n.a. n.a. n.a. n.a. Adsorption,
product
inhibition

MM-based
kinetics

Levine et
al. [84]

√ √ √ √
Accessible
substrate
surface area
and cellulose
fraction

Fails to trace
the rate
slowdown
adequately at
late phases

Bezerra et
al. [87, 88],
Bezerra
and
Dias [89]

n.a. n.a. n.a. n.a. Product
inhibition

MM-based
kinetics

Praestgaard
et al. [77]

√ √
n.a. n.a. Decomplex-

ation, enzyme
inactivation

–

Hosseini
and Shah
[79,80]

√
n.a.

√
n.a. n.a. Prediction of

rate slowdown
is not apparent

Gao et
al. [76]

n.a.
√

n.a. n.a. Decomplex-
ation

–

Maurer et
al. [75]

n.a.
√

n.a. n.a. Complexation –

Shang et
al. [74]†

n.a.
√

n.a. n.a. Complexation –

Kumar
and
Murthy
[92]†

√
n.a.

√ √
n.a. Fails to trace

the rate
slowdown
adequately at
late phases

Continued on next page
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Table 2.1 – (continued)

Ref.
Model features Core rate

slowdown
mechanism

Remarks
Distributed
cellulose
chain
lengths

Multiple
enzyme-
substrate
interaction

Multiple
modes of
enzymatic
scission

Insoluble
substrate
morphol-
ogy

Griggs et
al. [43, 82],
Nag et
al. [85]

√ √ √ √
Different
reactivity to
amorphous &
crystalline
cellulose
populations

Empirical
assignment of
differential
rates of
hydrolysis to
separate
cellulose
populations

Luterbacher
et
al. [72, 78]

n.a.
√

n.a.
√

Accessible
substrate
surface area
and cellulose
fraction

–

Lebaz et
al.
[81, 93,94]

√
n.a.

√
n.a. Product

inhibition
Model only
validated for
initial phase
(t ≤ 7 h)

Huron et
al. [83]

√
n.a.

√ √
Product
inhibition,
enzyme
deactivation

Unable to
predict rate
slowdown
without enzyme
deactivation

Eibinger et
al. [63]†

√ √ √ √
Decomplex-
ation of CBH

Model only
validated for
initial phase
(t ≤ 7 h)

Tervasmäki
et al. [95]

n.a. n.a. n.a. n.a. Empirical
decrease in
enzyme adsorp-
tion/activity,
product
inhibition

Empirical
rate-decreasing
factors are
exclusive to
each fed-batch
sub-population

Liang et
al. [96]

n.a.
√

n.a. n.a. Enzyme
deactivation
and empirical
decrease in
adsorption

Empirical
assignment of
decreasing rate
coefficients with
respect to
conversion

Continued on next page
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Table 2.1 – (continued)

Ref.
Model features Core rate

slowdown
mechanism

Remarks
Distributed
cellulose
chain
lengths

Multiple
enzyme-
substrate
interaction

Multiple
modes of
enzymatic
scission

Insoluble
substrate
morphol-
ogy

Caro et
al. [97]

n.a. n.a.
√ √

Empirical
setting of
parameter to
reflect the
hydrolysable
portion of
cellulose

Highly
empirical
MM-based
kinetics

Lischeske
and
Stickel [98]

n.a. n.a. n.a. n.a. Adsorption
with varying
degree of
accessibility to
facile and
recalcitrant
glucans

Phenomen-
ological
assignment of
adsorption
coefficients to
mimic varying
degree of
accessibility

Nill and
Jeoh [99]

n.a.
√

n.a. n.a. Depletion of
productive
enzyme binding
sites on
cellulose

Phenomen-
ological use of
separate
exponential
decay rates for
depletion of
productive
binding sites
during the
initial and the
late phase

This work:
ML-
PBM [100]

√ √ √ √
Heterogeneity
in cellulose DP
& crystallinity,
substrate
morphology

Predicts the full
transient of the
process
mechanistically,
substrate
morphology can
be inferred

∗n.a. – not available.
†Stochastic model solved via Monte Carlo simulation involves high computational intensity,unsuitable

for general usage and model-based optimizations [62].
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2.1.3 Modelling Frameworks for Metabolic Systems of

Cellulolytic Microorganisms

As microorganisms cannot directly assimilate celluloses, cellulose polymer chains are first

broken down to simple sugars through enzymatic hydrolysis. Here, commercial depoly-

merizing enzymes could either be dosed externally or cellulases could be synthesized in

situ by cellulolytic microorganisms. The latter, where microorganisms are responsible

for synthesizing the cellulases in the abiotic environment and concurrently ferment the

simple substrates into bioproducts, is referred to as CBP of cellulose. Unlike the micro-

bial utilization of soluble substrates, the biochemistry of the metabolism of cellulolytic

microorganisms, or CBP strains, utilizing cellulose is rather elaborate. As the cellulase

synthesis poses a substantial metabolic burden, CBP strains generally encompass mul-

tiple phenotypic functions that induce regulation of carbon sources and internal cellular

resources between cell growth and cellulase synthesis. Moreover, exponential cell growth is

not very apparent during cellulose utilization as the fermentable substrates are not present

in excess but are produced and consumed instantaneously over the full span of conver-

sions [101]. Understandably, a dynamic regulation of resources exists in the metabolism of

CBP strains to maintain the balance between secreting cellulases to produce fermentable

substrates and to ensure survival through cell growth.

Despite the development of various approaches to model metabolic systems, currently

existing models do not embody all the essential traits for modelling metabolism of CBP

strains. For instance, unstructured kinetic models haphazardly truncate the metabolic

pathways into a single-step reaction extending from substrates to products [16,36], leading

to the loss of vital quantitative information on flux distribution. Moreover, most of the
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existing unstructured models [102–107] that rely on grossly simplified Michaelis-Menten

(MM) and Monod kinetics, only cater to simultaneous saccharification of fermentation

(SSF) of cellulose by non-cellulolytic microorganisms with exogenous addition of fun-

gal cellulases for saccharification. Constraint-based approaches such as the flux balance

analysis (FBA) [108] and elementary mode analysis (EMA) [109] do not reflect dynamic

shifts in the metabolism as response to external stimuli, whereas the dynamic flux balance

analysis (DFBA) [110] and the macroscopic bioreaction models (MBM) [111] include the

metabolic responses to external perturbations by varying substrate uptake rates but not

the intracellular flux distribution. Moreover, DFBA and FBA manifest the metabolism

through a single optimal solution of flux distribution among many equally possible al-

ternate solutions [16]. Conversely, the Dynamic Reduction of Unbalanced Metabolism

(DRUM) [112] implicitly accounts for the dynamic metabolic shift by dividing metabolic

networks into subnetworks, which are then represented by separate simple proportional

kinetics. Nevertheless, all the models above disregard the regulatory mechanism of cellular

resources and metabolic burden, which are essential factors that influence the metabolism

of CBP strains. In addition, all the existing models for metabolic systems above do not

include provisions to trace the effects of dynamically evolving polymeric environment of

the cellulose during CBP. As CBP strains are known to regulate the extracellular cellulase

levels as required based on the level and nature of the encountered substrates [14], one

can expect that the varying polymeric environment during the hydrolysis of cellulose to

actively dictate the metabolism. In return, the regulation of extracellular cellulases is

governed by the intracellular regulation at network level, subject to the metabolic bur-

den. Therefore, all the limiting features of the existing models above are deemed crucial

to capture the metabolic nuances of CBP strains.
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2.2 Efforts to Address Research Gaps

2.2.1 Employing Sectional Techniques to Solve

Depolymerization Population Balances over a Hybridized

Discrete-Continuous Mesh

This research rests on the idea of addressing the saccharification of cellulosic polymers

using the population balances, which require a fit-for-purpose, tailored numerical solution

strategy. As raised in Section 2.1.1, breakage PBEs for large systems require a solution

strategy that offers adequate accuracy whilst economizing on the computational load.

As far as the sectional techniques are concerned, one of the possibilities is to employ a

discrete-continuous mesh by splitting the particle size domain (or in the polymer con-

text, degree of polymerization; DP) into a discrete domain at the small size range and

a continuous domain at large size range [54, 55, 67, 68]. Doing so allows the user to pre-

dict the populations of the monomers and oligomers at the small size range distinctly

using the discrete mesh and, at the same time, economize on the computational load by

approximating the large size range via a continuous mesh. The former has great experi-

mental significance as the individual concentrations and the properties of small oligomers

may differ considerably and they may elute as separate peaks when performing analytical

chromatography [113]. Furthermore, in cases where the recombination of monomers and

small oligomers occurs [65,114], the use of a discrete-continuous mesh is inevitable to cap-

ture the detailed molecular dynamics at the small size region. Although Kostoglou [68]

gave the analytical solutions to the discrete-continuous model for chain-end scission (by

approximating the continuous region using a first-order Taylor series expansion of the con-
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tinuous fundamental model [115]), this approach lacks versatility as it cannot be readily

extended to account for more complex molecular phenomena, e.g., the simultaneous occur-

rence of breakage and aggregation. As the sectional techniques were originally developed

for solving continuous distribution kinetics, implementing a fully continuous formulation

for problems with a semi-continuous/semi-discrete nature would pale in accuracy and

efficiency. Nevertheless, applications that are not inherently discrete (e.g., emulsions,

granulations, crystallization) could still benefit from the fully continuous implementation

of the sectional techniques.

As the use of the sectional techniques is more versatile and practical, this work

examines in detail the implementation of the sectional techniques for solving the two

most commonly encountered depolymerization phenomena, i.e., chain-end and random

scissions, on a discrete-continuous mesh. Three state-of-the-art sectional techniques are

studied here, i.e., the Fixed Pivot Technique (FPT) developed by Kumar and Ramkr-

ishna [55] and further explored by Ho et al. [54], the Cell Average Technique (CAT)

established by Kumar et al. [44], and the Finite Volume Scheme (FVS) devised by Saha

et al. [53]. In this work, the CAT and the FVS are examined for the first time on the

discrete bond-breaking processes of depolymerization. The prevailing shortcomings in

the existing implementation for both chain-end and random scissions that hitherto have

not been uncovered are highlighted and modifications are proposed to improve the perfor-

mance of the sectional techniques. Particularly, the issue of an abrupt under-prediction in

the number density for chain-end scission at the discrete-continuous boundary is revealed

and solved for the first time. Not only that, a continuous analogue of the discrete ran-

dom scission stoichiometric kernel that yields a far superior prediction is proposed. The

detailed analysis of the sectional techniques are deliberated in Chapter 3. Suggestions for
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the choice and the implementation of sectional techniques for various circumstances in a

depolymerization context are also provided.

The foregoing efforts, which are intended to adapt and assess various available solu-

tion techniques to solve depolymerization PBEs, address the first research objective. This

research finds the FPT that offers adequate accuracy, good computational efficiency, and

ease of implementation, is the best choice to solve depolymerization PBEs. Subsequently,

the FPT is used as the basis for the development of an elaborate modelling framework

for enzymatic hydrolysis of cellulose, which is introduced in the following section.

2.2.2 Introducing Multi-Layered Population Balance Model

for Enzymatic Hydrolysis of Cellulose

Using the population balance modelling framework and the solution strategy emphasised

in the previous section, a new approach for modelling the enzymatic hydrolysis of cellulose

is developed. Various mechanistic aspects of cellulose hydrolysis as discussed in Section

2.1.2 are explicitly incorporated, including multiple elementary steps in enzyme-substrate

interactions, different modes of enzymatic scission and complete cellulose chain distribu-

tion. More importantly, the new model has an elaborate hierarchical scheme to account

for non-uniform distributions of cellulose properties across the structural layers of cellu-

lose particles and the concomitant morphologies. Unlike existing models, the resulting

model, which is termed the Multi-Layered Population Balance Model (ML-PBM) in this

work, not only enables an accurate prediction of the rate slowdown with a single set of

model parameters, but also yields mechanistic insights into the sophisticated aspects of

the process, i.e., the extent of microfibril aggregation and the resulting cellulose particle
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morphology, arrangement of probable cellulose chain distribution, physicochemical effects

of pre-treatment steps in cellulose preparations on cellulose properties and its subsequent

impact on hydrolysis.

The core elements of the ML-PBM are illustrated in Figure 2.1 and the motivation

of the ML-PBM is reflected in Table 2.1, where its core features are compared to those

of major cellulose hydrolysis models from the literature. In line with global efforts to

promote the growth of technologies based on renewable resources, the ML-PBM proposed

in this work is not only useful to provide guided and rational optimizations to enzymatic

hydrolysis of celluloses as well as to guide the preparation of commercial celluloses and

biosynthesis of celluloses for various applications, but it also serves as an essential element

to be integrated in other computational frameworks to simulate cellulose-related processes

(e.g., fermentation process). The development of the ML-PBM addresses the second

research objective and is explored in detail in Chapter 4.

2.2.3 Introducing Unified Cybernetic-Population Balance

Model for Consolidated Bioprocessing of Cellulose

The elaborate metabolic systems of cellulolytic microorganisms accompanied by the com-

plex cellulose characteristics renders the development of CBP model highly challenging.

To address the inherent limitations of existing modelling approaches as seen in Section

2.1.3, this work draws inspiration from the studies of Ho et al. [39,40], where population

balances and cybernetic models were interlinked to simultaneously account for both the

distributed dynamics of polymeric saccharification and regulation of cellular metabolism

during fermentation. Here, this research addresses the limitations of the previous works
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Figure 2.1: A schematic representation of the ML-PBM and the UC-PBM concepts.
The closed-loop regulatory mechanism in the metabolism of cellulolytic microorganisms
utilizing cellulose is realized through the coupling between the ML-PBM and the L-HCM.
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that relied on a simplified unstructured lumped cybernetic model (LCM), only catered to

the hydrolysis of soluble natural polymers (i.e., starch) devoid of extensive recalcitrance,

and formulated network-independent extracellular enzyme balances. For CBP of cellulose,

the ML-PBM [100] introduced in the previous section is employed, where the model offers

a mechanistic interpretation for the recalcitrance of cellulose against degradation, which is

crucial to gauge the efficacy of CBP strains to consume cellulose. Moreover, the ML-PBM

also discerns the dynamic changes in the properties of residual celluloses and the compo-

sition of released fermentable sugars and other soluble oligomers, which are the primary

impetus that triggers the regulatory mechanisms in CBP strains. For the fermentation

component, the Lumped Hybrid Cybernetic Model (L-HCM) [36–38] is utilized, where the

L-HCM offers good estimates of diverse metabolic behaviours with minimal experimental

data for implementation and includes dynamic cellular regulations and flux distributions

at the network level, without considerably adding on to the computational intensity of

the overall framework. By coupling the ML-PBM and the L-HCM, a closed-loop control

mechanism is featured between global regulation of extracellular cellulases and local in-

tracellular regulation of fermentation at the network level. Unlike any existing models,

the resulting model, which is termed the Unified Cybernetic-Population Balance Model

(UC-PBM), closely mimics the interdependent dynamics of CBP through the closed-loop

interactions. The features of the UC-PBM are illustrated in Figure 2.1. Notably, the

UC-PBM allows detailed analysis of the dynamic substrate-cellulase-microorganism in-

teractions and is particularly useful for initial studies on new emerging CBP strains.

The advent of the UC-PBM tackles the third research objective, where the effective-

ness of the UC-PBM is demonstrated through a case study of Clostridium thermocellum.

This microorganism has been researched for about 70 years [116] for its potential as a
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promising CBP strain, with new findings continue to be reported [117, 118], and yet a

complete understanding of its physiology remains elusive. The UC-PBM not only pro-

vides a better understanding of the nature of the flux regulation and the excellent cellu-

lolytic ability in C. thermocellum, but also reveals the possibility of previously unrecog-

nized cellulosome-decoupled growth metabolic diversity that explains growth-independent

down-regulation of cellulases under nutrient-rich conditions, knowledge of which is equally

important for rational strain design for improved performance. Given the potentials of

this unique framework, the UC-PBM must not be ignored in future investigations of am-

biguous metabolic traits of C. thermocellum (e.g., premature growth cessation, overflow

metabolism, etc.), or other promising CBP strains, under diverse environmental condi-

tions. In general, the UC-PBM is not only useful to examine the metabolic characteristics

of microorganisms, but it is also imperative for sound metabolic interventions for effective

strain developments, bioprocess designs and optimizations. The detailed exploration of

the UC-PBM is presented in Chapter 5.





Chapter 3

Solving Depolymerization

Population Balances Using Sectional

Techniques on a Discrete-Continuous

Mesh

3.1 Preface

As alluded to in Section 2.2.1, this chapter presents a comparative assessment of sectional

techniques (FPT, CAT and FVS) to solve depolymerization population balances over

a discrete-continuous mesh. Moreover, the performance of the CAT and the FVS for

discrete bond-breaking depolymerization processes is explored for the first time in this

29
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work. In addition, the inherent shortcomings of the sectional techniques are identified,

and solutions are proposed accordingly, where relevant. A major portion of this chapter

is published in Ahamed et al. [119].

3.2 Theoretical Framework

3.2.1 Discrete-Continuous Mesh

Figure 3.1: A graphical representation of a typical discrete-continuous mesh, where p
denotes the number of grid points in the discrete region and q is the number of grid
points in the continuous region. Alternative notations are displayed in the parentheses.
Here, xp+q = xp+q+1/2 = N , where N is the maximum DP of the polymer distribution and
vm = 1 is the DP of a monomer.

A typical discrete-continuous mesh is illustrated in Figure 3.1, where p and q are the

number of grid points in the discrete and the continuous region, respectively. The value

of p can be chosen such that it fulfils the requisites of the application [54]. The total

number of discretized sections throughout the entire domain is denoted by I = p+ q,

where each section is represented by the grid points, xi. Taking a cue from Kumar and

Ramkrishna [55], Kumar et al. [44] and Saha et al. [53], the grid points are encompassed by

the boundary points [xi−1/2, xi+1/2], where the boundary points are the midpoints between
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the adjacent grid points, i.e., xi−1/2 = (xi + xi−1)
/

2, and the width of each section is given

as ∆xi = xi+1/2 − xi−1/2. In the discrete region, the grid points are spaced one monomer

unit apart and x1 = vm, where vm = 1 is the DP of a monomer. Likewise, the last grid

point is xp+q = x(p+q)+1/2 = N , where N is the maximum DP of the polymer distribution.

To maintain the width of each section in the discrete region to be one monomer unit,

the lower boundary of the first section is chosen as x1−1/2 = 0.5 in this work. The width

of the sections in the continuous region can be chosen arbitrarily, where it can take on

a uniform or a non-uniform grid depending on the nature of the application [44], with

one logical constraint that the grid points should be spaced more than vm apart. In this

work, geometric grids with a common ratio of r = (xp+q/xp+1)1/(q−1) are employed for the

continuous region to cater for a broad distribution of DP, which is common for natural

polymers. In this case, given the values of p, N and vm, the value of q which ensures that

the grid points in the continuous region are spaced at least vm unit apart is given by Ho

et al. [54]:

q < 1 +

{
ln

(
N

p+ vm

)/
ln

(
1 +

vm
p+ vm

)}
(3.1)

This meshing strategy is implemented for all the sectional techniques in this work.

3.2.2 General Discretized PBE Framework for Sectional

Techniques

Few terminologies employed here require clarification to avoid ambiguity in the subsequent

texts. In the polymer context, the terms ‘population density’ and ‘molar concentration

density’ are used interchangeably as the latter can be associated with the number of

molecules through the use of the Avogadro number [54]. Likewise, ‘particle size’ and
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‘DP’ as well as ‘particle’ and ‘polymer’ are also denoted interchangeably throughout this

chapter.

To facilitate the representation of different sectional techniques on a uniform frame-

work, it is convenient to introduce the following general discretized PBE:

dCi
dt

=

Birth of DP = xi︷ ︸︸ ︷∑
a

I∑
j=a

ηsec
ij kjCj −

Death of
DP = xi︷ ︸︸ ︷
ϕsec
i kiCi; i = 2, 3, . . . , I (3.2)

Here, Ci is the molar concentration of the polymer in the i-th section, I is the final section

in the DP domain, ηsec
ij is the allocation function for polymers entering the i-th section

due to the breakage of DP = j where j ≥ i, ϕsec
i is the weighted allocation function for

polymers leaving the i-th section due to the breakage of DP = i, and finally ki is the rate

kernel for the breakage of polymers in the i-th section. In Eq. (3.2), the first summation

over the domain a is included to maintain the generality of the equation for all three

techniques, where a denotes the lower limit of the second summation. For FPT and FVS,

a = i only and therefore, the first summation disappears, whereas for CAT, a = i − 1, i,

and i + 1. The superscript “sec” denotes sectional techniques. The temporal evolution

of the monomer concentration is computed separately for all the sectional techniques for

chain-end and random scission, respectively, as follows:

dC1

dt
= 2kγ2C2 +

I∑
j=3

kγjCj (3.3)

dC1

dt
=

I∑
j=2

(
2

xj−1

)
kαj Cj (3.4)
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In this work, for simplicity, Ci(t) is written as Ci, but it shall be understood that

the molar concentration is an explicit function of time. Where the molar concentration

density ci is required instead, mean value theorem is applied on Ci =
∫ xi+1/2

xi−1/2
c(v, t) dv to

arrive at ci = Ci
/

(xi+1/2 − xi−1/2), and for the discrete region, ci = Ci. One can apply Eq.

(3.2) to the discrete-continuous mesh introduced in Section 3.2.1 by using the appropriate

ηsec
ij and ϕsec

i given in the subsequent subsections for each sectional technique. Readers

interested in the final discrete-continuous ODEs which can be readily integrated with

suitable commercial ODE solvers are referred to Appendix A.1 – A.3.

3.2.3 Fixed Pivot Technique (FPT)

One of the most state-of-the-art sectional techniques for solving the breakage PBEs is the

FPT [52]. The FPT was devised to conserve two important properties of the distribution

[55]. In this regard, the total number of particles and the total mass of the system,

characterized by the zeroth and the first moments, respectively, are usually chosen [44,

52–55]. The simplicity of the FPT lies in its polymer allocation function, where the

polymers entering the i-th section due to the breakage of the parent polymers are directly

allocated to two adjacent grid points in such a way that it preserves the two moments.

Referring to the general discretized PBE in Eq. (3.2), for the FPT, a = i only and the

polymer allocation function is as follows:

ηFPT
ij =

xi+1∫
xi

(
xi+1 − v
xi+1 − xi

)
b(v, xj) dv +

xi∫
xi−1

(
v − xi−1

xi − xi−1

)
b(v, xj) dv (3.5)

For the FPT, ϕFPT
i = 1. Here, x’s are the grid points, v is the continuous DP and b(v, xj)

is the stoichiometric kernel for the formation of daughter polymers with DP = v due to
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the breakage of parent polymers with DP = xj. The stoichiometric kernels are exclusive

for different modes of scission or breakage and are discussed in Section 3.3.

3.2.4 Cell Average Technique (CAT)

The CAT is another sectional technique that also conserves the total number of particles

and the total mass of the system. In fact, the CAT was proposed to alleviate the FPT’s

issue with over-prediction at regions with steep number density variations [44]. Unlike the

FPT, the CAT computes the average size of all the polymers that enter the i-th section

due to the breakage of larger parent polymers. If this average size is larger than the

representative size xi, the polymers are shared between xi and xi+1, and if the average

size is smaller than xi, then the polymers are shared between xi−1 and xi [44,52]. Although

the CAT was shown to perform better than the FPT [44], Kostoglou and Karabelas [52]

stated that this result may not be general as the performance of the sectional techniques

is sensitive to the choice of the pivot sizes. Nevertheless, it is noteworthy to comprehend

that the CAT was only tested for simple continuous particle breakage processes and never

tested for an inherently discrete bond-breaking depolymerization process and that further

substantiates the purpose of this present work. Referring to Eq. (3.2), for the CAT,

a = i− 1, i, and i+ 1, and the polymer allocation functions are given as:

ηCAT
ij =



p
(0)
i−1,j

(
v̄i−1 − xi−1

xi − xi−1

)
H(v̄i−1 − xi−1); for a = i− 1

p
(0)
ij

[(
v̄i − xi−1

xi − xi−1

)
H(xi − v̄i) +

(
v̄i − xi+1

xi − xi+1

)
H(v̄i − xi)

]
; for a = i

p
(0)
i+1,j

(
v̄i+1 − xi+1

xi − xi+1

)
H(xi+1 − v̄i+1); for a = i+ 1

(3.6)
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and ϕCAT
i = 1, where

p
(s)
ij =

mi
j∫

xi−1/2

vsb(v, xj) dv (3.7)

The term p
(s)
ij in Eq. (3.7) should not be confused with the meshing parameter, p, that

denotes the number of grid points in the discrete region. Here, the upper limit of the

integral is mi
j = xi when j = i, otherwise mi

j = xi+1/2. H(x) is the Heaviside step function

that is defined as:

H(x) =


1; x > 0

1/2; x = 0

0; x < 0

(3.8)

The average polymer size entering the i-th section is simply:

v̄i =
Mi

Vi
(3.9)

where the total mass and the total number of particles entering the i-th section are

expressed, respectively, as:

Mi =
I∑
j=i

p
(1)
ij kjCj (3.10)

Vi =
I∑
j=i

p
(0)
ij kjCj (3.11)

3.2.5 Finite Volume Scheme (FVS)

The mass conserving and number preserving FVS established by Saha et al. [53] is con-

sidered in this work, where two weight allocations are introduced to the birth and the

death terms of the PBE to ensure the conservation of the zeroth and first moments. The
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FVS was shown to predict the properties well for simple breakage processes even at a very

coarse mesh [53]. Here, the performance of the FVS is examined for an inherently discrete

bond-breaking depolymerization process on a discrete-continuous mesh. Referring to Eq.

(3.2), for the FVS, a = i only and the polymer allocation functions are given as:

ηFVS
ij = ωb

j p
(0)
ij (3.12)

ϕFVS
i =

ωb
i

xi

i∑
j=1

xjp
(0)
ji (3.13)

where the weight allocation for preserving the total number of particles and the total

mass is defined as:

ωb
j =

xj

(
j∑
i=1

p
(0)
ij − 1

)
j∑
i=1

(xj − xi)p(0)
ij

(3.14)

For j = i = 1, the weights ωb
1 and ϕFVS

1 are zero [53], as the monomers do not undergo

any further breakage into smaller sizes.

3.3 Case Study

3.3.1 Preamble

To demonstrate the performance of the sectional techniques, here, a polymer with a

realistically broad DP distribution employed by Ho et al. [54] is chosen, where the polymer

is assumed to be starch with glucose as the monomer and the initial distribution is given

in the form of the gamma distribution:
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c(v, 0) =
MTΩ(v)∫ N

1
Ω(v) [(162v + 18)] dv

; Ω(v) =
vλ−1 exp (−v/φ)

φλΓ(λ)
(3.15)

where MT is the initial total mass concentration of the polymer, λ = M̄n

/
(M̄w − M̄n),

φ = M̄w − M̄n and Γ(λ) is the gamma function. The parameters for the above distribution

are obtained from Breuninger et al. [120], where the number-average DP is M̄n = 4100

and weight-average DP is M̄w = 5430. The initial mass concentration, MT = 10 g/L and

maximum DP, N = 22496, are chosen for this study.

As alluded to previously, both chain-end and random scissions are investigated and

the solutions via the sectional techniques are benchmarked against the fully discrete (ex-

act) solution. The final ODEs for fully discrete solutions for both scissions are presented

in Appendix A.1. For clarity, superscripts γ and α are used to denote chain-end scission

and random scission, respectively. The system of ODEs is integrated using the ‘ode15s’

sub-routine of MATLAB® R2016a. Non-negativity of the solution vector is ensured by

invoking the ‘NonNegative’ option of the solver. The solutions are computed on a work-

station equipped with an Intel® Core™ i5-7200U processor with a clock speed of 2.50

GHz and 16 GB of installed memory (RAM). Following Kostoglou and Karabelas [52],

the molar concentration density is represented as the dimensionless population density:

c̃(v, t) =
x0c(v, t)

ζ0(0)
(3.16)

where x0 = ζ1(0)/ζ0(0) and the k-th order moment of the polymer population is given as:

ζk(t) =

∞∫
0

vkc(v, t) dv =
I∑
i=1

xkiCi (3.17)
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In addition, the results are reported in dimensionless time θ = t/t99%, where t99% refers

to the time required for 99% monomer production [54]. Likewise, the moments are nor-

malized against the initial moments of identical order, i.e., ζk(t)/ζk(0). Additionally, one

can track the progress of depolymerization through the normalized version of the zeroth

moment that represents the extent of the breakage [53].

In this study, the sectional techniques are assessed for their performance in predicting

the population density, as well as the zeroth, first and second moments. The second

moment is included due to its significance in polymer applications, i.e., for predicting

the polydispersity index (PDI) [54]. The PDI describes the degree of non-uniformity

in the distribution of the polymer and is expressed as PDI(t) = M̄w(t)/M̄n(t), where

M̄w(t) = ζ2(t)/ζ1(t) and M̄n(t) = ζ1(t)/ζ0(t) [121].

To quantify the prediction error, a global error indicator similar to that employed

by Ho et al. [54] is adopted here:

εi =
1

F

F∑
j=2

∣∣∣∣Cexact
i (tj)− Csec

i (tj)

Cexact
i (tj)

∣∣∣∣ ; tF = t99% (3.18)

It should be noted that in Eq. (3.18) above, the errors are collectively computed from

t2 to t99%, where F is the total number of time steps between the two limits. Here, the

initial time, t1 = 0 is excluded to discount the error accrued in the initial mass due to the

discretization of the DP domain. The global errors, εi, are computed for the polymers in

the discrete region excluding the monomer, i.e., i = [2, p], as their accurate predictions are

of practical importance in the polymer context. In addition, εi is also a good reflection of

the solution accuracy at the continuous region as the errors in this region are inevitably

propagated to the discrete region through the polymer birth and breakage events. Errors



3.3. Case Study 39

for the monomer densities (i = 1) are excluded from the error computations as they are

usually of several orders of magnitude larger compared to the other DPs. In addition to

the global error, the relative error for the moments [122] is computed as follows:

ξk = max
t

∣∣∣∣ζexact
k (t)− ζsec

k (t)

ζexact
k (t)

∣∣∣∣ (3.19)

The monomer evolution follows the same trend as the zeroth moment and thus, the errors

in monomer predictions are reflected in the zeroth moment error. The error in the initial

mass of the polymer due to the discretization of the DP domain is separately computed

as:

εD =

∣∣∣∣∣∣∣∣
[
I∑
i=1

Csec
i (0)× (162xi + 18)

]
−MT

MT

∣∣∣∣∣∣∣∣ (3.20)

3.3.2 FPT and CAT Predicts Chain-end Scission while FVS

Fails

In this work, chain-end monomer scission is examined, which implies the removal of

one monomer unit from the end of the polymer chain. Here, the discretized PBEs are

formulated for all sectional techniques based on the “continuous fundamental model” for

chain-end scission by McCoy and Madras [115], which satisfies the conservation of number

and mass. The stoichiometric kernel for this mode of scission is given separately for the

monomer and the rest of the oligomers as [54, 115,123,124]:

bγ(v, xj) =

{
δ(v − vm); for DP = 1

δ(v − [xj − vm]); for DP > 1
(3.21)
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To test the performance of the sectional techniques, a linear rate kernel, kγ(v) = v, is

considered. For all the results of chain-end scission that follows, meshing configuration of

[p, q] = [100, 500] and non-uniform grids with a common ratio, r = 1.0109, are employed

for the continuous region, unless stated otherwise. The error in the initial mass due

to discretization based on this meshing configuration is εD ∼ O(10−4). The numerical

solutions for this case are shown in Figure 3.2 for the late phase of depolymerization, i.e.,

θ = 1, where all the numerical errors would have accrued significantly.

Figure 3.2: A comparison of the population density for chain-end scission with a linear
rate kernel, kγ(v) = v.

From Figure 3.2, it is evident that the FVS fails to predict the population density

(excluding the monomer). Unlike the FPT and the CAT, particles that fall in the i-th sec-

tion due to chain-end scission do not get assigned to the adjoining pivot points in the FVS,

thereby resulting in a zero-birth section as the interval widths are stretched apart with

the increasing DP. This failure in the population density prediction consequently results

in incorrect predictions of the molar concentration transients of individual oligomers, as
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Figure 3.3: A comparison of (a) temporal evolutions of oligomers with DP = 2 and 10,
(b) zeroth moment, (c) first moment, and (d) second moment, for chain-end scission with
a linear rate kernel, kγ(v) = v.

shown in Figure 3.3(a). Because of the zero-birth section, the breakage of larger polymers

that lie to the right of this section via chain-end scission does not result in the birth of

smaller polymers to the left. This results in a net loss of mass and is reflected by the

near-zero number densities of the FVS at the small size region, which are attained at a

much faster rate as compared to other sectional methods and the exact solution. This is

an inherent weakness of the FVS in dealing with chain-end scission and further details on

the failure of the FVS for chain-end scission are provided in Appendix A.4.

Despite this poor prediction of the population density, Figure 3.3(b) and (c) show
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Figure 3.4: A comparison of (a) the total molar concentrations of DP 2 to N and
the monomer molar concentration, and (b) the rate of change in the monomer molar
concentration as given by the RHS of Eq. (3.3), for chain-end scission with a linear rate
kernel, kγ(v) = v.

that the FVS unexpectedly predicts the zeroth and the first moments well. The perfor-

mance of the FVS, however, is unsatisfactory for the prediction of the second moment

(Figure 3.3(d)). Additionally, the FVS is also successful in predicting the temporal evo-

lution of the monomer density (Figure 3.4(a)), although it fails to predict the rest of the

population densities. To understand this counter-intuitive result, the rate of change in
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Figure 3.5: A comparison of the total mass of polymers with DP 2 to N and the mass
of monomer, for chain-end scission with a linear rate kernel, kγ(v) = v.

the monomer molar concentration is obtained by computing the Right Hand Side (RHS)

of Eq. (3.3) at every time step using the incorrectly predicted population densities of the

FVS. As shown in Figure 3.4(b), the computed rate closely matches that of the exact

solution, which allows one to rationalize the good prediction of the monomer concentra-

tion transient. Consequently, good prediction of the zeroth moment is also attained as

the bulk of the zeroth moment is contributed by the monomer, which is of many orders

of magnitude larger than the total molar concentration of the rest of the DPs (Figure

3.4(a)). Essentially, the effect of the incorrect population densities for the size region of

DP = 2 to N is shrouded by the accurate prediction of the monomer concentration by

the FVS. For the first moment, it is not difficult to rationalize the accurate prediction

by the FVS, as the total mass of DP = 2 to N (computed using the incorrect population

density transient) and the total mass of the monomer at any particular time match the

exact solution, as shown in Figure 3.5. Despite failing to predict the population densities

for chain-end scission, the FVS strongly retains its ability to preserve the moments. From
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the investigation (not shown), this counter-intuitive behaviour of the FVS is independent

of the type of rate kernels, initial distribution and meshing convention. As improving

the formulation of the solution technique is not within the scope of this research, further

future research to circumvent this issue by the FVS community is certainly encouraged.

In contrast to the performance of the FVS, Figure 3.2 and Figure 3.3 show that the

FPT and the CAT predict the population density, zeroth, first and the second moments

almost flawlessly. Moreover, Figure 3.4(a) and Figure 3.5 also indicate that the FPT

and the CAT closely predict the temporal evolution of the monomer density along with

the transient of the complete population density. Interestingly, the solution for the CAT

coincides with the solution for the FPT. The mathematical rationale for this behaviour is

given in Appendix A.5. In dealing with the chain-end scission using the FPT, Ho et al. [54]

showed that the FPT was able to predict the monomer transient using a very coarse mesh,

i.e., [p, q] = [10, 30], but a much finer mesh of [p, q] = [100, 500] was necessary to maintain

an accurate prediction of the complete population density. Nevertheless, the latter only

makes up to about 2.7% of the maximum DP, i.e., (p+ q)
/
N ≈ 2.7%. The need for a

finer mesh to capture the transient of the complete population density is also true for the

CAT when dealing with chain-end scission due to the identical set of final equations. For

guidelines on meshing, readers are referred to the study by Ho et al. [54]. Ultimately,

chain-end scission is the most challenging breakage phenomenon to be approximated by

sectional techniques and the performance of the FPT and the CAT demonstrated in this

work is no simple feat. To substantiate the observations above, the εi of the DPs in the

discrete region for both the FPT and the CAT are ∼ O(10−2), while for the FVS it ranges

between ∼ O(10−1) and ∼ O(100). As for the zeroth and the first moments, the errors

(ξ0 and ξ1) of all three sectional techniques are negligible, at about ∼ O(10−5). Lastly,
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Figure 3.6: Predictions of the zeroth moment for chain-end scission with: (a) a constant
rate kernel, kγ(v) = v, and (b) a quadratic rate kernel, kγ(v) = v2.

the second moment errors, ξ2, for both the FPT and the CAT are 0.028, whereas for the

FVS, the error is significantly larger at 34.575.

The performance of the sectional techniques is further explored for chain-end scission



46 Chapter 3. Solving Depolymerization Population Balances

by employing a constant rate kernel, kγ(v) = 1, and a quadratic rate kernel, kγ(v) = v2,

while retaining the rest of the test conditions. A similar trend is observed for both the

FPT and the CAT, where both techniques predict the population densities, zeroth, first

and second moments exceptionally well. Surprisingly, for the FVS, the predictions of the

monomer evolution and the zeroth moment (Figure 3.6) deteriorate. Consequently, the

zeroth moment error, ξ0, of the FVS increases to the range of ∼ O(10−2) to ∼ O(10−1).

3.3.3 Modified Sectional Technique Solves the Discrepancy at

the Discrete-Continuous Boundary for Chain-End

Scission

The results thus far suggest that the FPT and the CAT can complacently tackle the

discrete-continuous implementation for chain-end scission. However, upon further scrutiny,

a sudden drop in the number density is observed at the discrete-continuous boundary with

the existing implementation. Such an inconsistency, to the best of the author’s knowledge,

has not been reported as few have explored the possibility of using sectional techniques

for solving chain-end scission on a discrete-continuous mesh. Here, attempt to resolve

this issue is presented. The discrepancy at the discrete-continuous boundary, i.e., at xp+1

is shown in Figure 3.7. This discrepancy is observed to be apparent at times with steep

number density variation, e.g., at θ = 0.70. In Figure 3.7, even with a fine mesh con-

figuration of [p, q] = [100, 500], the discrepancy is clearly observed. A coarser mesh at

the continuous region or a narrow polymer distribution further amplifies this discrepancy,

which further impairs the prediction of population densities in the discrete region. Addi-

tionally, the need to resolve such discrepancy becomes crucial when the DP of choice at
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the discrete-continuous boundary is of great importance.

Figure 3.7: The discrepancy in the population density for chain-end scission with a
linear rate kernel, kγ(v) = v. The discrepancy occurs at the discrete-continuous boundary,
i.e., xp+1 = 101. FPT 1, FPT 2 and FPT 3 represent the original fixed pivot solution,
the modified fixed pivot solution and the alternative meshing strategy to alleviate the
discrepancy, respectively.

To resolve this discrepancy, the reason for this discrepancy is first delved. In the

original FPT implementation on a discrete-continuous mesh, the grid points xp and xp+1

lie at the boundary between the discrete and the continuous region. Imposing the chain-

end scission stoichiometric kernel on Eq. (3.5), the polymer allocation function at xp+1

is:

ηFPT
p+1,p+2 =

vm
xp+2 − xp+1

(3.22)

where ηFPT
p+1,j = 0, ∀ j | j 6= p+ 2. Thus, xp+1 receives polymer allocations solely from the

splitting of polymers from xp+2 and there is no intra-interval polymer birth despite the

fact that xp+1 lies in the fully continuous region. This is the cause of the observed discrep-
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ancy, where the population density of xp+1 is always under-predicted. This discrepancy is

corrected by modifying the limits of the integral and by introducing a correction factor,

χ = xp+1(r − 1)/2 (or χ = d/2, if an arithmetic uniform mesh is employed for the contin-

uous region, where d is the common difference between the grid points) to the Dirac delta

term of the chain-end scission stoichiometric kernel to calculate ηFPT
p+1,p+1:

ηFPT
p+1,p+1 =

x(p+1)+1/2∫
x(p+1)−1/2

[
v − x(p+1)−1/2

x(p+1)+1/2 − x(p+1)−1/2

]
δ (v − [xp+1 − (vm − χ)]) dv

=
xp+1 − vm + χ− x(p+1)−1/2

x(p+1)+1/2 − x(p+1)−1/2

= 1− vm
x(p+1)+1/2 − x(p+1)−1/2

(3.23)

Due to this additional birth at the section represented by xp+1, which is now shared

between the grid points xp and xp+1, an equal amount of particle allocation should be

discounted from xp to conserve mass. Hence, instead of ηFPT
p,p+1 = 1, it is:

ηFPT
p,p+1 =

vm
x(p+1)+1/2 − x(p+1)−1/2

(3.24)

The correction above is found to be adequate in resolving the issue of discrepancy

at the discrete-continuous region boundary, cf. FPT 2 in Figure 3.7. This is achieved

while retaining the accuracy of the original formulation. Moreover, the modified formu-

lation works well for any type of grids and rate kernels. The temporal evolutions of the

population density for FPT 1 and FPT 2 at xp+1 are shown in Figure 3.8, where the FPT

2 exhibits an improved performance compared to the FPT 1. Specifically, the FPT 2

minimizes the inherent under-prediction at regions near the peak, where there is a drastic

variation in the population density. The modifications above can also be similarly applied
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to the CAT.

Figure 3.8: Temporal evolution of the dimensionless population density of xp+1 = 101
for FPT 1 (original formulation), FPT 2 (modified formulation) and FPT 3 (alterna-
tive meshing strategy). Here, chain-end scission is simulated with a linear rate kernel,
kγ(v) = v.

3.3.4 Alternative Meshing Strategy to Alleviate Discrepancy

at the Discrete-Continuous Boundary for Chain-End

Scission

Alternatively, it is found that one can constrain the number of grid points in the continuous

region, q, based on Eq. (3.1), to offer a smooth transition of number densities between

the discrete and the continuous region:

q =

⌊
1 +

{
ln

(
N

p+ vm

)/
ln

(
1 +

vm
p+ vm

)}⌋
(3.25)
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where floor function bZc denotes the nearest lower integer to Z. In this work, for p = 100

and N = 22496, the constraint in Eq. (3.25) sets q = 549 (as opposed to the original

setting of [p, q] = [100, 500]). The alternative meshing strategy above, represented by

FPT 3 in Figure 3.7 and Figure 3.8, demonstrates equally decent improvement to the

discrepancy at the discrete-continuous boundary as the modified sectional technique (FPT

2) introduced in the previous section. Nevertheless, the alternative meshing strategy is

advocated here as it offers a simpler and intuitive solution to the issue of discrepancy

at the discrete-continuous boundary. Moreover, the new meshing strategy applies for all

sectional techniques and works well for any type of grids and rate kernels.

3.3.5 Prediction of Chain-End Scission over Uniform Mesh in

the Continuous Region

To divulge the performance of the sectional techniques in solving chain-end scission under

different scenarios, the capability of the solution techniques is further stretched by em-

ploying a uniform mesh. One main drawback of utilizing a uniform mesh over a broadly

distributed system is that the common difference between the pivots or the section widths

in the continuous region would be invariably large. Table 3.1 gives the average global er-

rors and moment errors of the FPT and the CAT over a uniform mesh with progressively

refined mesh. The results show that for a uniform mesh, the mesh has to be refined to

(p+ q)
/
N ≈ 9.3% to attain similar (albeit still poorer) accuracy to that exhibited by uti-

lizing a non-uniform geometric mesh, i.e., (p+ q)
/
N ≈ 2.7%. Therefore, in general, for a

widely distributed particulate system, a non-uniform geometric mesh is more appropriate,

whereas for a small and narrowly distributed system, a uniform mesh is a better choice.
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This further suggests the need for a prudent mesh design to cater to the requisites of the

application.

Table 3.1: Average global errors (ε̄), and moments errors (ξ0, ξ1, ξ2) of the FPT and the
CAT for chain-end scission with a linear rate kernel, kγ(v) = v, over a uniform mesh with
progressively refined mesh. For a non-uniform geometric mesh with [p, q] = [100, 500] and
a common ratio, r = 1.0109, the ε̄ is 0.047, ξ0 and ξ1 are 3.53× 10−5, and ξ2 is 0.028.

[p, q]
Common
difference,

d
(p+ q)

/
N ε̄ ξ0 ξ1 ξ2

[100, 500] 44.9 2.7% 0.6376 0.0054 0.0054 0.3130

[100, 1000] 22.4 4.9% 0.3367 0.0026 0.0026 0.1580

[100, 2000] 11.2 9.3% 0.1697 0.0012 0.0012 0.0769

3.3.6 New Modified Stoichiometric Kernel for Random

Scission Improves the Prediction of All Sectional

Techniques

Random scission in the polymer context implies that each bond within a polymer chain is

equally likely to break at any given time [64, 66, 125]. In view of the fact that a polymer

chain with DP = j contains only j − 1 bonds that are susceptible to depolymerization,

Kumar and Ramkrishna [55] and Ho et al. [39] attempted to approximate the inherently

discrete nature of depolymerization by employing the following random scission kernel:

bα1 (v, xj) =
2

xj − 1
(3.26)

This stoichiometric kernel was tested in this work and is found to perform well for all three

sectional techniques using a relatively fine mesh. However, considerable over-predictions
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are evident when a coarse mesh is imposed. In applying Eq. (3.26), the use of a continuous

PBE with a continuous stoichiometric kernel to predict the fully discrete PBE is, at best,

a forceful approximation. In this work, it is proposed that this approximation gap due to

the discretization error can be closed by employing a continuous analogue of the inherently

discrete bond-breaking process. Notably, to imitate the discrete process, the continuous

stoichiometric kernel should be free from intra-interval interactions, leading to:

bα2 (v, xj) =
2

xj−1

(3.27)

In tandem with Eq. (3.27), all intra-interval birth contributions at the continuous region

are eliminated. For all the results of random scission that follows, meshing configuration

of [p, q] = [10, 50] and non-uniform grids with a common ratio, r = 1.1683, are employed

for the continuous region, unless stated otherwise. The error in the initial mass due

to the associated discretization is εD ∼ O(10−3). The numerical solutions for all three

sectional techniques using bα1 (v, xj) and bα2 (v, xj) are demonstrated in Figure 3.9(a) and

(b), respectively. From the results, the latter is found to be superior, where even at a

very coarse mesh of [p, q] = [10, 50] (as compared to 22496 ODEs for the exact solution),

the considerable deviation observed with the use of bα1 (v, xj) reduces markedly.

It should be noted that the mesh applied in this case is extremely coarse, i.e.,

(p+ q)
/
N ≈ 0.3%. The over-predictions exhibited by the sectional techniques, partic-

ularly for the CAT, are greatly reduced by imposing the new bα2 (v, xj) kernel. However,

the FVS exhibits marginal improvements, as both cases show good prediction accuracy.

This observation is congruent with the findings of Saha et al. [53], where the FVS was

shown to adequately predict the densities for a wide range of rate kernels at coarse meshes

for random scission. Despite the improvements for both the FPT and the CAT, slight de-
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Figure 3.9: The performance of different sectional techniques for random scission with
a linear rate kernel, kα(v) = v, using: (a) bα1 (v, xj) = 2/(xj − 1), and (b) bα2 (v, xj) =
2/(xj−1).

viations at regions of steep number density variations persist, similar to the observations

reported by Kumar and Ramkrishna [55], where the accuracy can be further improved by

mesh refinement. Intriguingly, the solution of the FVS is observed to coincide with the

solution of the FPT when the new bα2 (v, xj) kernel is imposed (see Appendix A.6).
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Figure 3.10: The performance of the sectional techniques in predicting the zeroth
and second moments along with temporal evolution of oligomers using: (a) bα1 (v, xj) =
2/(xj − 1), and (b) bα2 (v, xj) = 2/(xj−1), for pure random scission with a linear rate kernel,
kα(v) = v.
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The enhancements brought about by the kernel is not limited to the prediction of

the population densities, as a substantial increase in accuracy is also seen in the moments

and temporal evolution of the oligomer predictions, as shown in Figure 3.10. Although

all the sectional techniques exhibit considerable improvements in the prediction of all the

properties, the CAT pales in comparison as there are still notable deviations in the zeroth

moment and temporal evolution of the oligomers with the improved kernel.

Table 3.2: Average global errors (ε̄) and moments errors (ξ0, ξ1, ξ2) for random scission
with a linear rate kernel, kα(v) = v.

Errors
FPT CAT FVS

bα1 (v, xj) bα2 (v, xj) bα1 (v, xj) bα2 (v, xj) bα1 (v, xj) bα2 (v, xj)

ε̄ 0.2390 0.1414 0.3299 0.1019 0.1679 0.1414

ξ0 0.1041 0.0045 0.1589 0.1740 0.0598 0.0045

ξ1 0.1041 0.0041 0.1589 0.0734 0.0598 0.0041

ξ2 0.1489 0.1178 0.2101 0.0734 0.0844 0.1178

To quantify the performance, the average global errors and moment errors for all

three sectional techniques are tabulated in Table 3.2. The decline in the moment errors

is significant, especially for the FPT. The errors exhibited by the FPT and the FVS for

the modified kernel are identical (and lower compared to that of the CAT) as the final

equations using this kernel for both techniques coincide. Ultimately, the modified stoichio-

metric kernel proposed here preserves the “discrete” nature of the bond-breaking process.

The random scission case using the modified stoichiometric kernel is also examined for a

constant and a quadratic rate kernel, and positive outcomes are similarly observed.
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3.3.7 Prediction of Random Scission over Uniform Mesh in the

Continuous Region

To further illustrate the behaviour of the sectional techniques under different types of

mesh, the performance of the sectional techniques for random scission over a uniform mesh

with progressively refined mesh is shown in Table 3.3. For the FPT and the FVS, the

uniform mesh has to be refined to (p+ q)
/
N ≈ 0.9% to attain similar prediction accuracy

to that demonstrated by the non-uniform geometric mesh at (p+ q)
/
N ≈ 0.3%, whereas

for the CAT, the uniform mesh has to be refined to (p+ q)
/
N ≈ 1.8% in order to achieve

similar accuracy to the non-uniform counterpart (cf. errors in Table 3.2 for bα2 (v, xj)

kernel). The performance of the sectional techniques over a uniform mesh follows a similar

trend to that of a non-uniform mesh, where the CAT is found to pale in comparison to

the FPT and the FVS in terms predictions of zeroth moment and temporal evolution

of oligomers. In general, random scission is more tolerant to the implementation of the

uniform mesh than chain-end scission.

Table 3.3: Average global errors (ε̄), and moments errors (ξ0, ξ1, ξ2) of the FPT, the
FVS and the CAT for random scission with the new improved stoichiometric kernel and
linear rate kernel, kα(v) = v, over a uniform mesh with progressively refined mesh.

Sectional
tech-

niques
[p, q]

Common
difference,

d
(p+ q)

/
N ε̄ ξ0 ξ1 ξ2

FPT/FVS
[100, 100] 226.2 0.9%

0.1020 0.0675 1.08×10−5 0.0744

CAT 0.7750 0.9460 0.8800 0.8800

FPT/FVS
[100, 200] 112.5 1.3%

0.0805 0.0513 6.17×10−6 0.0591

CAT 0.1288 0.2520 0.2035 0.2035

FPT/FVS
[100, 300] 74.9 1.8%

0.0671 0.0412 6.14×10−6 0.0462

CAT 0.0473 0.1354 0.0969 0.0969
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3.3.8 Summary

Based on the findings in the preceding sections, a few points regarding the use of sectional

techniques to solve depolymerization PBEs on a discrete-continuous mesh can be gleaned.

For chain-end scission, the use of the FVS is impractical as the formulation is inherently

incapable of dealing with a discontinuous stoichiometric kernel, leading to failure in the

number density prediction (despite being able to preserve the moments). Conversely, the

FPT and the CAT give an identical performance for any type of rate kernels and mesh

configurations. The computation time taken by the CAT, however, is considerably longer

(tCAT = 19.0 s and tFPT = 7.0 s for the numerical solutions shown in Figure 3.2), thus

rendering the FPT to be the superior choice. For random scission, the implementation

of the modified stoichiometric kernel enables accurate modelling with a very coarse mesh

using all three sectional techniques. Among the three techniques assessed, the CAT is

found to be marginally inferior in the prediction of the zeroth moment and temporal

evolution of oligomers. The FPT and the FVS which yield an identical set of final ODEs,

perform well when tested using a coarse mesh for all types of classical power-law rate

kernels. Although the computation times for both the FPT and the FVS are comparable

(tFVS = 1.2 s and tFPT = 0.8 s for the numerical solutions shown in Figure 3.9), the FPT

is advocated here as the FVS eventually concurs to the mechanism of particle allocation

of the FPT and forms identical ODEs.
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3.4 Concluding Remarks

Three state-of-the-art sectional techniques assessed in this study reveal varying degrees of

capabilities in solving the discrete bond-breaking depolymerization PBEs on a discrete-

continuous mesh. The study reveals that a discrete-continuous mesh, along with a prudent

choice of mesh types and parameters, is essential to successfully model discrete bond-

breaking depolymerization processes. From the comparison of the sectional techniques,

chain-end scission can only be tackled by the FPT and the CAT, whereas for random

scission, all three sectional techniques — FPT, CAT and FVS, demonstrate excellent

performance when intra-interval terms are disregarded, which includes the use of a new

continuous analogue of the fully discrete random scission stoichiometric kernel. In terms

of modelling simultaneous chain-end and random scissions on a discrete-continuous mesh,

only the FPT and the CAT are the feasible choices through a superposition of the PBEs for

various breakage phenomena. Due to this additive response, the performance-enhancing

modifications proposed in this work also apply to the simultaneous breakage phenomena.

Nevertheless, the assessment suggests that the added implementation complexity in the

CAT offers no additional advantage over the FPT in all performance indicators assessed.

In addition, the FPT is relatively simpler to implement and is computationally more

efficient. Thus, the first research objective is achieved as the FPT is the best choice for

dealing with the depolymerization PBEs on a discrete-continuous mesh and is used as

the basis for the development of a new modelling framework for enzymatic hydrolysis of

cellulose, which is detailed in the next chapter.



Chapter 4

Multi-Layered Population Balance

Model Predicts the Dynamics of

Enzymatic Hydrolysis of Cellulose

4.1 Preface

As alluded to in Section 2.2.2, this chapter introduces the Multi-Layered Population

Balance Model (ML-PBM) to simulate enzymatic hydrolysis of cellulose. Here, special

mechanistic considerations are made in the model to account for the rate slowdown often

encountered in the enzymatic hydrolysis of cellulose. The numerical solution technique

(FPT) explored in the previous chapter forms the foundation for the development of the

ML-PBM in this chapter. The work presented here is published in Ahamed et al. [100].

59
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4.2 Model Framework

4.2.1 Conceptual Description of Heterogeneity in Cellulose

Properties

Cylindrical shapes are assumed for cellulose microfibrils [43, 82–84], where the cellulose

chains are arranged laterally in layers across the radial direction (Figure 4.1A). The cel-

lulose chains in each layer are confined and do not crossover to the adjacent layers. The

hydrolysis of celluloses is restricted to the polymers on the surface and the polymers on

the subsequent layers are exposed as the surface polymers are gradually solubilized by

the enzymes. The microfibril is modelled to shrink in the radial direction as the cellu-

lose mass is lost through solubilization, whereas the length of the cylinder is assumed

to remain unchanged as it is usually several orders of magnitude larger than the radius,

following the maximum DP of the cellulose distribution [126].

Provided that the enzymes work their way into the cellulose particles radially from

the exterior and that enzyme deactivation and product inhibition are not the rate-limiting

factors [89, 127–129], there must be changes in the substrate-related factors that dictate

the rate slowdown. Potential factors attributed to the rate slowdown in the configuration

described in Figure 4.1 include crystallinity, cellulose DP, and particle size, as widely

discussed in the literature. In this work, it is hypothesized that the pre-treatment prior

to hydrolysis reactions causes a non-uniform distribution of these key factors.

The native celluloses have a near homogeneous distribution of cellulose chains and

properties across the multi-layered microfibril (Figure 4.1B). Pre-treatments upset this
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Figure 4.1: The depiction of the multi-layered distributed cellulose ultrastructure hy-
pothesis. A cylindrical shape is assumed for microfibrils (A), where the cellulose chains
are organized in two-dimensional layered lattices. R(t) is the microfibril radius, R0 = 1 nm
is the thickness of a single layer (i.e., the diameter of a single glucan molecule) and L is the
length of the microfibril. The individual layers are denoted as l, where l = 1, 2, 3, . . . , lmax

and lmax = R(0)/R0. The native celluloses are made up of homogeneous polymer dis-
tribution across the layers (B) and the pre-treatment isolates the distribution into the
penetration and internal zones (C). Microfibril aggregates and the nature of the aggre-
gates are traced based on the model-predicted initial particle radius, R(0) (D). Densely
packed microfibril aggregates can be visualized macroscopically as a multi-layered large
cylinder encompassing numerous microfibrils analogous to a single microfibril.

uniformity, leading to the formation of two distinct zones with different properties and

distributions (Figure 4.1C). The outer zone (significantly affected by pre-treatment) is
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characterized by a larger portion of celluloses with amorphous structure [126,130,131] and

lower DP [132], which is defined as the “penetration zone” at the vicinity of the surface,

while leaving the “internal zone” relatively untouched. The severity of pre-treatments will

understandably affect the extent of the penetration zone in the microfibrils. The variation

in the properties of the zones delivers different working conditions to the enzymes, which

in this work is hypothesized to result in the rate slowdown.

The amorphous region of celluloses is hydrolysed much more rapidly as compared to

the crystalline region due to the reduction in the enzyme accessibility to the latter owing

to the strong hydrogen bonds [69,70,85,133]. The pre-treatments cause partial hydrolysis

or degradation of cellulose chains, resulting in shorter cellulose chains on average in the

penetration zone, as compared to the internal zone. Although the action by endoglu-

canases (EG) is greatly affected by the extent of cellulose crystallinity [134], crystallinity

barely affects the cellobiohydrolases (CBH) [134–136]. Conversely, the rate of processive

cleaving of cellobiose from chain ends by CBH is faster when short chains are encoun-

tered as chain ends provide ample binding sites for enzymatic action, but the cellulose

DP has little to no effect on the random cleaving action of EG [69]. Therefore, the rate of

EG and CBH actions will in general decline naturally as the enzymes progress from the

penetration zone to the internal zone, but on the account of different mechanisms.

Here, the formation of two distinct zones (penetration and internal zones) composed

of celluloses with different properties is included as a core element of modelling to predict

the slowdown phenomenon. This multi-layered modelling concept applies to the following

two different situations affected by the extent of microfibril aggregation. The microfibril

aggregates can conform to one of two possibilities as shown in Figure 4.1D. If loosely

packed, all microfibrils are prone to enzymatic or chemical (pre-treatment) attack from all
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directions and the ML-PBM traces the particle radius of a single microfibril. Conversely,

densely packed microfibril aggregates limit the enzymatic and chemical attack to the

microfibrils at the exterior, and this can be visualized in the same manner as a single

microfibril, i.e., a macroscopic multi-layered cylindrical structure. In the latter, the ML-

PBM considers the aggregate as the cellulose particle and traces the macroscopic particle

radius. In the subsequent text, the microfibril or the microfibril aggregates are collectively

referred as cellulose particles for brevity, where the two are distinguished from each other

based on the two possible cases (Figure 4.1D) given by the order of magnitude of the

model-predicted initial particle radius, R(0). The detailed technical formulation of the

multi-layered distributed cellulose hydrolysis is further expounded in Appendix B.1.

4.2.2 Hydrolysis Reaction Mechanisms

In this work, celluloses are generally treated as insoluble populations contained within

the cellulose particles, while polymers with DP < 7 are regarded as soluble oligomers,

which are liberated into the reaction medium [8, 69]. Three distinct enzymatic actions

on the hydrolysis of celluloses — processive cellobiose cleaving from the chain ends by

CBH, random cleaving by EG and conversion of cellobiose to glucose by β-glucosidases

(BG), are included in the ML-PBM. Reaction mechanisms of enzymatic hydrolysis of

celluloses by CBH, EG and BG are established in Table 4.1. Note here that as the extent

and mechanisms of CBH processivity remain uncertain [22], a complete processivity is

assumed, where the CBH remains engaged to the cellulose chains until the polymer is

reduced to a tetramer or a trimer, as shown in Eqs. (4.7) and (4.8). Due to the processivity

of the CBH, the possibility of EG binding to existing CBH-polymer complexes is also

included, as given by Eq. (4.5).
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Table 4.1: Reaction mechanisms of enzymatic hydrolysis of celluloses. Here, Em
F

are the free enzymes, Em
S are the surface-adsorbed enzymes, Em

B PS(i) are the enzyme-
polymer complexes, where m = CBH, EG, BG or EG-CBH, PS(i) are the insoluble
surface polymers and P(i) are the soluble oligomers, i (or j) denotes the DP and N
represents the maximum cellulose DP.

Adsorption of enzymes:

ECBH
F

kCBH
a←−−→
kCBH

d

ECBH
S (4.1)

EEG
F

kEG
a←−→
kEG

d

EEG
S (4.2)

Complexation of enzymes:

ECBH
S + PS(i)

kCBH
f,i←−−→
kCBH

e

ECBH
B PS(i); i = 7, 8, . . . , N (4.3)

EEG
S + PS(i)

kEG
f,i←−→
kEG

e

EEG
B PS(i); i = 7, 8, . . . , N (4.4)

EEG
S + ECBH

B PS(i)
kEG

f,i←−→
kEG

e

EEG−CBH
B PS(i); i = 4, 5, . . . , N (4.5)

Hydrolysis of insoluble celluloses:

ECBH
B PS(i)

kCBH
h−−−→ ECBH

B PS(i− 2) + P(2); i = 5, 6, . . . , N (4.6)

ECBH
B PS(4)

kCBH
h−−−→ 2P(2) + ECBH

F (4.7)

ECBH
B PS(3)

kCBH
h−−−→ P(2) + P(1) + ECBH

F (4.8)

EEG
B PS(j)

kEG
h,j−−→ PS(j − i) + PS(i) + EEG

F ; j = 7, 8, . . . , N ; i = 1, 2, . . . , N − 1 (4.9)

EEG−CBH
B PS(j)

kEG
h,j−−→ PS(j − i) + PS(i) + EEG

F + ECBH
F ;

j = 4, 5, . . . , N ; i = 1, 2, . . . , N − 1
(4.10)

Continued on next page
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Table 4.1 – (continued)

where

PS(i) =

{
P(i); 1 ≤ i < 7

PS(i); i ≥ 7

Hydrolysis of soluble oligomers:

EEG
F + P(j)

kEG
h′−−→ P(j − i) + P(i) + EEG

F ; j = 3, 4, . . . , 6; i = 1, 2, . . . , 5 (4.11)

EBG
F + P(2)

kBG
h′−−→ 2P(1) + EBG

F (4.12)

4.2.3 Population Balance Modelling for Enzymatic Hydrolysis

Process

Here, a dynamic hydrolysis process model based on the reaction mechanisms shown in

Table 4.1 is provided. While the cleaving of cellobiose into glucose by BG can be described

by simple kinetics, other hydrolysis reactions, are conveniently represented using a general

discretized breakage PBE as follows:

dCi
dt

=
N∑
j=i

ηm
ijk

m
j Cj − km

i Ci; m = CBH,EG (4.13)

where the polymer allocation function ηm
ij for FPT is given as:

ηm
ij =

xi+1∫
xi

(
xi+1 − v
xi+1 − xi

)
bm(v, xj) dv +

xi∫
xi−1

(
v − xi−1

xi − xi−1

)
bm(v, xj) dv;

m = CBH,EG

(4.14)



66 Chapter 4. Multi-Layered Population Balance Model

As celluloses are linear homopolymers, one-dimensional PBM with DP as the sole

internal coordinate is employed in this work. Alternatively, two-dimensional PBM [62]

can be adapted for the hydrolysis of branched polymers such as hemicelluloses. Here, km
i ,

Ci and xi are the hydrolysis rate kernel, molar concentration and representative grids for

polymers with DP = i, respectively, whereas, v is the continuous DP and b
v,xj
m is the stoi-

chiometric kernel that describes the distinct modes of scission by different enzymes. Note

that the molar concentration in Eq. (4.13) can be interchanged with molar concentration

densities, c(v, t), by applying the mean value theorem, that is, Ci(t) =
∫ xi+1/2

xi−1/2
c(v, t) dv,

where it forms the basis for derivation of ML-PBM equations according to the hydrol-

ysis reaction mechanisms given in Table 4.1. Eq. (4.13) is numerically solved over a

hybridized discrete-continuous mesh as described in Chapter 3. Here, the monomer and

oligomers with great experimental significance are modelled discretely with high accuracy

while approximating the rest of the polymer sizes in a continuous domain to reduce the

computational load. The complete form of all equations is provided in Appendix B.3.

While the stoichiometric kernel in the PBE specifies the mode of enzymatic scission,

the hydrolysis rate kernel specifies the functional relationship between the rate of scission

and the DP (cf. Table B.1 in Appendix B.3). In the context of the reaction mechanisms

and PBE presented above, it is worth mentioning that apparent rate coefficients are chosen

for complexation and hydrolysis for EG, where both are taken as inversely proportional to

the cellulose DP, i.e., kEG
f (v) = kEG

p,f

/
v and kEG

h (v) = kEG
p,h

/
v, where v is the cellulose DP,

kEG
p,f and kEG

p,h are rate constants. This is an implicit attempt to relate the rate coefficients to

the crystallinity, where the variation in the crystallinity is accompanied by a change in the

average cellulose DP, as deliberated in Section 4.2.1. The complexation and hydrolysis

by EG are challenged by the limited navigation and cleavage through densely packed
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crystalline regions. The proposition here allows the enzymatic action of EG to experience

a rate slowdown as it progresses from the penetration zone to the internal zone with

increasing degree of crystallinity (accompanied by the increase in average cellulose DP).

This scheme is adequate until better explicit relationships between the crystallinity and

the cellulose DP or other substrate-centric properties emerge.

4.2.4 Multi-Layered Population Balance Model (ML-PBM)

The preceding sections provided an overall outlook of the conceptual model and the ac-

companying reaction mechanisms. Here, the approach undertaken to account for the

heterogeneity in the cellulose properties in line with the ML-PBM is presented. Ex-

perimental molecular weight distribution from Size Exclusion Chromatography (SEC) of

various celluloses are studied to identify any indication of heterogeneity in the distribu-

tions. Subsequently, the experimental distributions are fitted using two superimposed

gamma distributions. This allows the de-convolution of the bimodality often observed

in the experimental distributions of celluloses into two individual distributions. In line

with the multi-layered distributed cellulose hypothesis, the two individual distributions

with smaller and larger average DP are assigned to the penetration zone and the internal

zone, respectively. In general, the molar concentration density in the form of the gamma

distribution is given as:

c(v, t) =
MΩ(v)∫ N

1
Ω(v) [(162v + 18)] dv

; Ω(v) =
vλ−1 exp (−v/φ)

φλΓ(λ)
(4.15)

where λ = M̄n

/
(M̄w − M̄n), φ = M̄w − M̄n, M̄n is the number-average DP, M̄w is the

weight-average DP, Γ(λ) is the gamma function and M is the mass concentration of the
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celluloses. In tandem with the multi-layered modelling concept, Eq. (4.15) can be used

to identify the cellulose distribution in individual layers, in the penetration/internal zone

or the overall distribution by imposing the corresponding value to the parameters λ, φ

and M . The variation of the cellulose distribution across layers of cellulose particles

provides the necessary heterogeneity in the cellulose properties to exhibit the hydrolysis

rate slowdown. Further details on formulating initial multi-layered cellulose distribution

is explored in Appendix B.4.

Subsequently, the heterogeneous cellulose distribution characterized above is inte-

grated with the cellulose structure shown in Figure 4.1. The overall mass concentration

of the bimodal cellulose distribution is linked to the cellulose structure as:

MT = nρπLR(0)2 (4.16)

where n denotes the total number of particles per unit volume of the reaction medium

and ρ = 1500 g/L is the density of the celluloses. The overall mass concentration is a

sum of the mass concentration of the distribution of the penetration and internal zones,

MT = MP +MI, where the mass concentration contained in the penetration zone is cal-

culated based on the particle geometry as MP = 2nρπLR0R(0)Pzone. Here, Pzone is the

number of layers in the penetration zone. The total number of layers in a single cellulose

particle is thus:

lmax =
R(0)

R0

= round

(
2Pzone

rmass,P

)
(4.17)

where rmass,P = MP

/
MT is the mass ratio of the penetration zone. With the above, Pzone

and rmass,P, along with other model parameters, are fitted to the experimental hydrolysis

data, where the resulting initial particle radius, R(0) reveals the nature of the microfibril
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aggregation (Figure 4.1D). The foregoing quantification of the experimental distribution

allows one to identify the nature of the distributions in distinct zones in terms of number

and weight-average DPs as well the concomitant cellulose morphology.

4.3 Results and Discussion

4.3.1 Heterogeneity in Cellulose Distribution

The experimental cellulose distributions from the literature and the corresponding model

fits are shown in Figure 4.2A – C. Here, the model was fitted to the raw experimental

data from the respective literature, where the distributions were originally normalized to

the maximal values. An inverse procedure was employed where the fitted distributions

(Figure 4.2A — C) were used as starting points. This was done because cellulose analytics

often do not reflect the nature and the distribution of the real cellulosic starting material

[138]: (a) experimental molecular weight distributions are known to vary extensively

between batches of celluloses, cellulose preparation methods and calibration standards

used [137, 139], (b) the activation treatments employed prior to SEC or Gel Permeation

Chromatography (GPC) with the use of standard solvents, e.g., N,N-dimethylacetamide

containing lithium chloride (DMAc/LiCl), are known to exhibit pronounced cellulose

degradation resulting in the loss of average DP [138, 139], and (c) the low molecular

weight polymers are also often substantially lost in the precipitation and purification

steps of the analytical procedures [138]. Here, the average DPs of the distinct zones are

retained while calibrating the mass portions of the zones, dictated by the rmass,P to the

experimental hydrolysis data. By doing so, a more accurate distribution of the celluloses
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Figure 4.2: Fitting to experimental molecular weight distributions of celluloses (A, B
and C) and subsequent prediction of probable distributions by the ML-PBM (D, E and
F). The experimental distribution data represents: (A) Avicel from Engel et al. [137], (B)
α-cellulose and (C) HCC from Nag et al. [85]. The probable distributions were predicted
for: (D) Avicel hydrolysis data in Bezerra et al. [87], Bezerra and Dias [89], and Medve
et al. [86], (E) α-cellulose and (F) HCC hydrolysis data in Nag et al. [85].
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can be revealed given that the reliability of SEC/GPC remains elusive. Additionally,

this strategy also divulges the possible arrangement of cellulose chains in the particles for

various celluloses.

The predicted distributions of celluloses for various experimental hydrolysis data are

shown in Figure 4.2D — F, where the mass concentration densities are normalized by

the total mass of the celluloses. Here, the predicted distributions of Avicel across three

different sources [86,87,89] are similar (Figure 4.2D), owing to only minor differences in the

estimated parameter values that govern the cellulose distribution, further corroborating

the viability of the ML-PBM.

4.3.2 Prediction of Rate Slowdown and Effective Enzyme

Footprints

The values of the model parameters used to generate the simulation results shown in

this work are collated in Table 4.2. The model parameters are divided into three major

classes — (1) kinetic parameters comprising the complexation/decomplexation and the

hydrolysis rate constants, (2) enzyme-centric parameters including adsorption/desorption

rate constants and enzyme footprints and finally, (3) substrate-centric parameters that

determine the cellulose particle structures and cellulose chain distributions. The ensuing

simulation results are presented as follows.

The transients of cellobiose concentration, conversion and surface-adsorbed enzymes

for the fitted models and experimental data [86] are shown in Figure 4.3. Some interesting

observations could be gleaned. As far as the ML-PBM is concerned, the hydrolysis of the

celluloses in the penetration zone aptly traced the initial rapid phase and the migration
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Table 4.2: Parameter values used in ML-PBM predictions in this study.

Parameters Unit
Experimental Data Source

Medve et
al. [86]

Bezerra et
al. [87]

Bezerra and
Dias [89]

Nag et
al. [85]

Eriksson et
al. [127]

Cellulose – Avicel Avicel Avicel α-cellulose,
HCC

SPS

Enzyme – CBH I, EG II CBH I CBH I CBH I, EG I,
BG

CBH I

Kinetic parameters

kCBH
h 1/s 4.491 2.367 9.966 0.025 1.001

kCBH
e /kCBH

p,f mol L−1 DP−1 2.31×10−4 3.19×10−4 1.00×10−4 7.58×10−9 9.13×10−5

kEG
p,h DP/s 21 n.a.∗ n.a. 3.619 n.a.

kEG
h′ L mol−1 s−1 3 n.a. n.a. 3 n.a.

kEG
e /kEG

p,f mol L−1 DP−1 2.50×10−4 n.a. n.a. 1.00×10−8 n.a.

kBG
h′ L mol−1 s−1 n.a. n.a. n.a. 3.26×103 n.a.

Enzyme-centric parameters

kCBH
d /kCBH

a mol/L 1.36×10−8 1.36×10−8 1.36×10−8 1.36×10−8 1.36×10−8

σCBH mol/m2 2.22×10−8

(6.80×10−9)†
2.22×10−8 2.22×10−8 2.22×10−8

(6.80×10−9)†
2.22×10−8

kEG
d /kEG

a mol/L 1.41×10−8 n.a. n.a. 1.41×10−8 n.a.

σEG mol/m2 (8.04×10−8)† n.a. n.a. (8.04×10−8)† n.a.

Substrate-centric parameters

Pzone – 1 1 1 1 (30)‡ 2

rmass,P % 2.80 2.77
(18.84)§

3.13
(14.00)§

16.00
(27.02)‡

4.10

R(0) nm 71 72 (11)§ 64 (14)§ 13 (222)‡ 98

M̄n, M̄w DP 93, 154 93, 154
(71, 136)§

92, 153
(76, 141)§

1143, 7038
(79, 505)‡

90, 152

∗n.a. - not applicable.
†Parameter values when both CBH and EG co-exist in the reaction medium.
‡Parameter values associated with HCC.
§Parameter values when cellulose is added in a very minute amount to the reaction medium (2.5 g/L).
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Figure 4.3: Model fitting to cellobiose concentration and surface-adsorbed enzyme con-
centration for: (A) Avicel hydrolysis by CBH and (B) Avicel hydrolysis by CBH and
EG. For both cases, the Avicel loading is 10 g/L, CBH loading is 11.2 mg/g cellulose, and
EG loading is 7.7 mg/g cellulose. Enzyme-centric variables are evaluated from this fitting
and used for subsequent predictions. The ML-PBM is represented by the solid lines and
the experimental data from Medve et al. [86] are represented by the markers. The rest
are the results of the simplified homogeneous model, where dashed lines (−−−) represent
the prediction with the same set of kinetic parameters from ML-PBM, dotted lines (· · ·)
represent the prediction with recalibrated kinetic parameters to the entire data set and
dash-dotted line (− · −) represent prediction with recalibrated kinetic parameters to the
initial data points only. The overall initial cellulose distribution is common for all cases.

of the enzymatic action into the internal zone resulted in an adequate rate slowdown.

Although the ML-PBM fit for the Avicel hydrolysis by CBH is decent, the fit is less than

satisfactory when the EG action was included. One can infer that this disparity stems

from the fact that EG II was employed in the experiments, where Medve et al. [86] inferred

that the enzyme may have the tendency to be processive in action and has a preference

towards the chain-ends. This was later confirmed by Cohen et al. [140] as EG II was found

to produce mainly cellobiose as the soluble product. Understandably, the ML-PBM does
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not trace the mode of action of EG II as the endoglucanases in this model are strictly

assumed to carry out non-processive random cleaving.

On the contrary, the ML-PBM fit to the transients of the surface-adsorbed enzymes

is qualitatively and quantitatively (< 10% error margin) acceptable for both cases of hy-

drolysis by CBH alone and by both CBH and EG (Figure 4.3). Here, the crowding effect

is included in the ML-PBM, where the adsorbed enzymes occupy spaces and reduce the

available surface area for further adsorption of free enzymes [43,82,84]. The surface cover-

age of the enzymes, which is governed by the physical structure of the enzymes, is reflected

through the enzyme footprints, σm, where m = CBH and EG (cf. Appendix B.2). From

the model fitting, the enzyme footprint for CBH alone is 2.22×10−8 mol/m2, equivalent to

299 glucan units (assuming that each glucan unit spans 0.25 nm2 [84]), whereas the enzyme

footprints of CBH and EG together are 6.80× 10−9 and 8.04× 10−8 mol/m2, equivalent

to 977 and 82 glucan units, respectively. Generally, the footprints of CBH gathered from

the ML-PBM are greater than the values predicted by the random sequential adsorption

model of Levine et al. [84]. Although physical structure is not assumed for the enzymes,

the ML-PBM traces the effective enzyme footprints. The arrangement of the adsorbed

enzymes on the cellulose surface could be regarded as a “structured packing” when only

one type of enzyme is present or as a “random packing” when more than one type of en-

zyme co-exist. This explains the sharp increase in the effective footprint of CBH when it

is present together with EG. In addition, the larger CBH footprint could be attributed to

its elaborate and developed structure comprising a separate carbohydrate-binding module

and tunnel-shaped catalytic domain conjoined by a linker [69]. The estimated enzyme-

centric parameters for CBH and EG were used for the calibration and validation with

subsequent experimental data, provided that the experimental conditions are similar.
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Here, it is assumed that the enzyme-centric parameters of EG II could be extended to

EG I as both have relatively similar molecular weights and protein structures [69].

4.3.3 Cellulose Heterogeneity: A Key Modelling Component

for Predicting Slowdown

To demonstrate the role of heterogeneity in cellulose properties in the ML-PBM, here the

performance of the ML-PBM is benchmarked against a homogenous model by discounting

the heterogeneity of cellulose properties in the structural layers of the cellulose particles.

The homogeneous model assumes that the bimodality of cellulose distribution is uniformly

dispersed throughout the cellulose particles, negating the need for multi-layers as well

as the distinct penetration and internal zones. Generally, the homogeneous model (cf.

Appendix B.5) is analogous to all the preceding modelling attempts that do not account

for the heterogeneity of cellulose properties.

Figure 4.3 shows that the homogeneous models pale in comparison against the ML-

PBM. As the homogeneous model generally lacks the slowdown “bend” in the predictions

of the hydrolysis profiles, the fits to the full experimental transient are always inadequate

— regardless of whether the kinetic parameters are retained from the ML-PBM or re-

calibrated. Although the homogeneous model can be selectively fitted adequately to the

initial data points, the over-prediction at the later stages is disastrous. The disparities

in the model fitting between the homogeneous model and the ML-PBM are notably sub-

stantial despite them sharing the same overall initial cellulose distribution. Therefore,

the selective deposition of cellulose chains at different regions in the cellulose particles,

i.e., heterogeneity in cellulose properties across the structural layers of cellulose particles,
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becomes a potential enzymatic hydrolysis rate slowdown mechanism. The inclusion of

this critical element in the ML-PBM provides a fresh perspective into the slowdown of

enzymatic hydrolysis of celluloses, possibly allowing one to manipulate and control the

rate-limiting phenomenon.

4.3.4 Further Validations of the ML-PBM and Morphological

Interpretations

To substantiate the predictive capabilities of the ML-PBM, the model is calibrated and

validated to multiple data sets for Avicel hydrolysis by CBH [87, 89] as shown in Figure

4.4. The model validations are performed by retaining the same parameter values from

prior calibrations to showcase the predictive capability of the ML-PBM over a range of

operating conditions. The ML-PBM shows reasonable agreement with all experimental

data sets except when the initial substrate concentration is very minute (2.5 g/L Avicel,

blue-dotted lines in Figure 4.4). There has been a report of substrate concentrations

imposing apparent influence on model parameters [141], but from the modelling point of

view, the estimated model parameters (kinetic and enzyme-centric parameters) should

be global and should validate multiple data sets, at least from the same source. In this

regard, one can infer that there must have been a variation in the consistency of cellulose

distribution or structure when the initial cellulose concentration is very small, such that

it prevents the mechanistic model from validating the data set. By merely re-fitting

the substrate-centric parameters while retaining the rest of the model parameters (blue-

dashed lines in Figure 4.4), the ML-PBM correctly predicts the experimental transient.

This suggests that the reported influence of dilute substrate concentrations on hydrolysis
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Figure 4.4: ML-PBM calibration and validation to cellobiose concentration for Avicel
hydrolysis by CBH. In (A), the ML-PBM is calibrated with 50 g/L Avicel and CBH
loading of 0.84 mg/g cellulose, and subsequently, validated with the other two data sets,
where the experimental data are obtained from Bezerra et al. [87]. Similarly in (B), the
ML-PBM is calibrated with 50 g/L Avicel and CBH loading of 0.2 mg/g cellulose and
validated with the remaining data sets, where the experimental data are from Bezerra
and Dias [89]. The solid lines are the fitted ML-PBM, dashed lines are the predictions
and the markers are experimental data. For Avicel loading of 2.5 g/L, the model predicts
poorly (blue-dotted lines) but the prediction improved when substrate-centric parameters
are re-fitted while retaining other parameters (cf. parameter values in Table 4.2). Av in
the legend refers to Avicel.

profile may not be due to the changes in the underlying hydrolysis mechanism, but rather

due to the variations of cellulose distribution and structure as a result of inconsistent
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sampling from the bulk at dilute loadings.

To further extend the ML-PBM to the hydrolysis of different types of celluloses, the

model is calibrated and validated to multiple data sets from Nag et al. [85] that demon-

strates the hydrolysis of α-cellulose and highly crystalline cellulose (HCC) by CBH+BG

and CBH+BG+EG enzyme cocktails, as shown in Figure 4.5. All the model parameters

except the substrate-centric parameters that differentiate the α-cellulose and HCC, were

maintained for all data sets in this series. The ML-PBM generally shows excellent agree-

ment to experimental data for CBH+BG enzyme cocktails, but a minor overestimation in

conversion is observed at large times when EG is included in the enzyme cocktail. Never-

theless, the ML-PBM traces the rate slowdown adequately and captured the increase in

rate and conversion due to synergism when EG is included in the enzyme cocktail. The

minor overestimation may be the result of oversimplification of the EG mode of action,

where EG might have the tendency to perform a “mixed” mode of scission, as opposed

to a pure non-processive random cleaving [142]. Alternatively, the implicit relationship

between the hydrolysis and complexation rates with the crystallinity via cellulose DP may

not be valid at large times or inadequate to represent the intrinsic relationship between

the rates and the crystallinity. The decline in cellulose chain lengths over time would

indicate that the crystallinity is declining as well according to the scheme proposed in

this study, but in reality, crystallinity showed no appreciable change over the course of

hydrolysis [85,133]. Thus, it is understandable that the ML-PBM registers a slight over-

estimation in conversion over a supposed decrease in the crystallinity, in contrast to the

experimental data. These areas are worthy of further study and may assist in further

enhancing the viability of the ML-PBM in the future.

The cellulose morphology is also expounded by the ML-PBM. The predicted initial
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Figure 4.5: ML-PBM calibration and validation to conversion for: (A) α-cellulose hy-
drolysed by CBH+BG and CBH+BG+EG enzyme mixtures, and (B) HCC hydrolysed
by CBH+BG and CBH+BG+EG enzyme mixtures. The loadings for α-cellulose and
HCC are 20.13 g/L and 24.19 g/L, respectively. Enzyme loadings for CBH+BG mixture
are 30 mg/g cellulose and 2 mg/g cellulose, respectively, whereas enzyme loadings for
CBH+BG+EG mixture are 25 mg/g cellulose, 2 mg/g cellulose and 5 mg/g cellulose,
respectively. The lines are ML-PBM predictions while the markers denote experimental
data from Nag et al. [85]. The parameter values are consistent over all four cases.

particle radius (see Table 4.2) for each cellulose is such that α-cellulose < Avicel < HCC.

Understandably, α-cellulose with the least degree of crystallinity on average is predicted to

form the smallest particles suggesting that the microfibrils are loosely aggregated (Case 1

of Figure 4.1D). Conversely, HCC which has the highest degree of crystallinity expectedly

forms the largest particles indicating that the microfibrils are densely aggregated (Case
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2 of Figure 4.1D). Avicel, a microcrystalline cellulose, conforms to an intermediary point

in between the two extreme cases. The ability of the ML-PBM to sensibly infer the

substrate morphologies according to the cellulose types with minimal data inputs (base-

fitted cellulose distribution and hydrolysis data only) is certainly a remarkable feat.

4.3.5 Effect of Heterogeneous Cellulose Properties on

Cellulose Distribution During Enzymatic Hydrolysis

To understand the intrinsic mechanisms of the ML-PBM, here, the evolution of some of the

important properties that accompany the hydrolysis of cellulose are divulged. The ML-

PBM restricts the enzymatic hydrolysis to a layer-by-layer attack on the cellulose chains,

often dubbed as a slow surface ablation process [3,20]. Ultimately, the ML-PBM effectively

replicates the recalcitrant nature of celluloses, where enzyme accessibility is often limited

to the surface of the cellulose particles. The insoluble celluloses beneath the surface

are only made accessible as the surface celluloses are progressively “peeled” off by the

enzymes. Figure 4.6 clearly demonstrates this mechanism where the average DPs of the

insoluble celluloses show a sharp increase (as opposed to the expected decrease due to the

chain cleaving) during the solubilization of celluloses in the penetration zone as the longer

chains remain untouched in the internal zone. Once the enzymatic hydrolysis reaches the

internal zone as indicated by the decrease in the particle radius, the number-average

DPs level off and subsequently decrease as it should at large times (results not shown).

The decrease in the number-average DP of HCC is more pronounced as it generally has

a smaller average DP, leading to a faster formation of shorter chains. Conversely, the

weight-average DP of α-cellulose continues to rise while for HCC, it plateaus indefinitely.
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Figure 4.6: Temporal evolution of number-average DP (M̄n), weight-average DP
(M̄w) and particle radius of insoluble celluloses for hydrolysis of: (A) α-cellulose by
CBH+BG+EG mixture and (B) HCC by CBH+BG+EG mixture. ML-PBM predictions
are for the cases presented in Figure 4.5. The ML-PBM demonstrates an initial increase
in mean DPs during the hydrolysis of the penetration zone due to the solubilization of
shorter chains while preserving the longer chains underneath in the internal zone. The
mean DPs level off and subsequently decreases when the hydrolysis advances into the
internal zone.

The changes in the average DPs showed here are reflected by the evolution of the insoluble

cellulose distributions shown in Figure 4.7. The insoluble cellulose distributions broaden

and shift towards the larger DP as time progresses.

The ML-PBM predictions shown in Figure 4.6 and 4.7 are in close agreement with

the findings of Levi and Sellen [132], where the authors studied the changes in the average

DPs in cellulose fibre layers by decaying preferential regions using a fungal species. Similar
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Figure 4.7: Temporal evolution of insoluble cellulose distributions for hydrolysis of:
(A) α-cellulose by CBH+BG+EG mixture, and (B) HCC by CBH+BG+EG mixture.
ML-PBM predictions are for the cases presented in Figure 4.5. The mass concentration
densities for DP < 7 are not shown as it represents soluble oligomers liberated into
the reaction medium. The distributions generally shift towards the larger DP and the
polydispersity increases over the course of the hydrolysis.

to the ML-PBM predictions, the study reported that the long chains were untouched until

the very advanced stages of decay, indicating that the larger DPs are isolated in the inner

regions. The study also showed an increase in the breadth of the distribution and a shift

towards the larger DP over the course of the decay, induced by the increase in the weight-

average DP and the decrease in the number-average DP. Provided that the majority of

the residual insoluble celluloses consist mainly of large molecules and the weight of the



4.3. Results and Discussion 83

small molecules is sufficiently small, the weight-average DP increases. Conversely, the

number-average DP is highly sensitive to the number of molecules and tends to decrease

as a large portion of small molecules are lost to degradation [132]. Nevertheless, the ML-

PBM predictions shown in Figure 4.6 and 4.7 are contradictory to the temporal evolution

of the experimental molecular weight distributions reported by Nag et al. [85], where

the reported experimental distributions remained relatively unchanged over the course

of hydrolysis. This discrepancy is attributed to the shortcomings associated with the

SEC/GPC. Thus, tracing the temporal evolution of cellulose molecular weight distribution

via the conventional SEC/GPC systems is not ideal and the advent of an alternative

reliable method remains to be seen.

4.3.6 ML-PBM Predicts the Enzyme Tunnelling Effect

Reactive surface area available to enzymes has always been regarded as one of the major

determinants of cellulose hydrolysis [71, 72, 82, 84]. By avoiding the rapid equilibrium

assumption, ML-PBM traces the dynamic interactions between the enzymes and the

cellulose particles with the use of physically sound enzyme footprints to characterize the

area coverage. Noticing that the enzyme-centric parameters are not sensitive to hydrolysis

profile, model was fitted with both hydrolysis and adsorption data for a sensible parameter

estimation. The enzyme-centric parameters are also retained for both penetration and

internal zones as the enzyme properties are dictated by its genetic imprint and should not

be governed by external factors. With the above, the unrealistic conventions that have

limited earlier efforts in representing the enzyme adsorption kinetics are avoided. Here,

the ML-PBM clearly demonstrates the enzyme crowding effect governed by the cellulose

surface area available to enzyme binding and the corresponding enzyme footprints in
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Figure 4.8.

Given that the ML-PBM predicts the enzyme footprints and the substrate mor-

phology (i.e., cellulose particle radius), finding the enzyme concentration that induces

the enzyme crowding effect is straightforward (see Appendix B.2). Any enzyme con-

centrations that are below or above this saturation point signify enzyme-limiting and

Figure 4.8: Demonstration of the effect of enzyme crowding on the surface of celluloses
for hydrolysis of: (A) α-cellulose by CBH+BG, and (B) HCC by CBH+BG. In both
cases, the loading of CBH is increased from enzyme-limiting condition to saturation point
(onset of enzyme crowding effect) and finally to substrate-limiting condition (in excess
of enzymes). BG loading is maintained at 2 mg/g cellulose for all cases. ML-PBM
predictions are represented by the lines and the markers denote experimental data from
Nag et al. [85].
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substrate-limiting conditions, respectively. Figure 4.8A shows that for relatively small α-

cellulose particles (R(0) = 13 nm), the saturation point is attained at CBH concentration

of 160 mg/g cellulose and any increase in enzyme concentration beyond this value do not

present any improvement over the conversion or the rate. On the contrary, Figure 4.8B

indicates that for large HCC particles (R(0) = 222 nm), the saturation point is achieved

at a mere CBH concentration of 10 mg/g cellulose. Unexpectedly, the ML-PBM predicts

a substantial increase in the initial rate when the CBH concentration is increased beyond

the saturation point, despite without a significant increase in conversion. Upon further

scrutiny, the ML-PBM is describing a phenomenon which is termed “enzyme tunnelling

effect” in this work, where the surface-adsorbed enzymes continue to complex with the

newly exposed cellulose chains from the successive underlying layers, effectively freeing

up the cellulose surface area and allowing more free enzymes to adsorb to the cellulose

surface (see Figure 4.9). However, the enzyme tunnelling effect is only observable in the

penetration zone as the rate of solubilization and the corresponding rate of exposure of

underlying celluloses are relatively slower in the internal zone where the large molecules

are prevalent. This also explains the reason for the lack of enzyme tunnelling effect on α-

cellulose which is predicted to only have a single layer in its penetration zone as compared

Figure 4.9: Illustration of enzyme tunnelling effect.
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to 30 layers for HCC in this study.

Although enzyme tunnelling effect is yet to be corroborated with experimental find-

ings, Grethlein [71], Luterbacher et al. [72] and Tanaka et al. [73] have explored the possi-

bility of enzymes diffusing through the pores in the cellulose particles and hydrolysing the

internal polymers. Though porous structure was not assumed for the cellulose particles

in this study, the ability of the ML-PBM to trace analogous phenomena demonstrates the

robustness of this model and expands the prospect of future model development.

4.3.7 ML-PBM Predicts the Dynamics of Fed-Batch

Hydrolysis

In order to extend the relevance of the ML-PBM to industrial practices, the performance

of the model is assessed in handling fed-batch hydrolysis. Figure 4.10 demonstrates the

performance of the ML-PBM in predicting a fed-batch hydrolysis of steam-pre-treated

spruce (SPS) cellulose by CBH. The ML-PBM rationally predicts the increase in product

concentration when fresh SPS was instantaneously added at the 24th h mark. Remark-

ably, the ML-PBM predicts a reduced rate with the addition of fresh SPS as compared

to the rapid initial rate at the beginning of hydrolysis. The ML-PBM reveals that the

decomplexation of CBH from old cellulose particles becomes limiting when fresh SPS

was added to the existing reaction broth. As almost all CBH remained adsorbed to the

substrate or remained complexed with cellulose chains after 24 h of hydrolysis, a sudden

addition of fresh substrate poses an enzyme-limiting condition to the new cellulose pop-

ulations because the existing CBH enzymes have to decomplex, desorb and subsequently

re-adsorb to the newly added substrate.
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Figure 4.10: ML-PBM prediction of glucose and cellobiose concentrations for fed-batch
hydrolysis of SPS by CBH. Initial loadings of SPS and CBH are 10 g/L and 9.53 mg/g,
respectively. The ML-PBM was calibrated with the fully batch data and validated with
the fed-batch data. The solid line is the fitted ML-PBM, dashed lines are the predictions
and the markers are experimental data from Eriksson et al. [127].

The encouraging results imply that the ML-PBM can be potentially used for model-

based optimizations and design of control systems for industrial scale processes which often

employ fed-batch as an economical process scheme [95]. Although the main thrust of this

work is fundamental, the ML-PBM serves as a future basis to model more challenging

hydrolysis conditions encountered in the industry with high solid cellulose loadings and

concomitant mass transfer limitations. Readers are referred to the studies by Pino et

al. [143, 144] on the effect of bioreactor design and operation as well as the studies by

Chakraborty et al. [145], Gaikwad [146], Gaikwad and Chakraborty [147] on the effects

of mixing on enzymatic hydrolysis of celluloses under high solid loadings.
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4.4 Concluding Remarks

When a population of cellulose particles is subjected to enzymatic hydrolysis, the feasi-

bility of achieving rapid and efficient breakdown to valuable monomeric raw materials is

frequently impeded by the significant slowdown of rates after the short-lived initial rapid

phase. The proposed ML-PBM framework that has the capacity to account for hetero-

geneity in cellulose properties (cellulose crystallinity and DP) across structural layers of

cellulose particles, is explored to potentially explain the underlying reason for this rate

slowdown. Benchmarked against the homogenous model, the ML-PBM demonstrates far

superior prediction where the full transient of enzymatic hydrolysis process including the

rate slowdown phenomenon can be successfully traced using a global parameter set. This

shows that the slowdown phenomenon in enzymatic hydrolysis of cellulose is potentially

attributed to structural heterogeneity and knowing this allows one to rationally steer the

process between the enzyme and substrate limiting regions. In addition, by accounting

for the structural differences across the cellulose cross-section through the concept of pen-

etration and internal zones, coupled with cellulose morphology, a notable merit of the

ML-PBM is the ability to predict the extent of microfibril aggregation, and the probable

arrangement of the cellulose chain distribution from limited data. Possible applications

of this modelling tool include, but not limited to: (a) exploring the effects of existing

pre-treatment methods on substrate-centric properties, (b) exploring new alternative pre-

treatment methods that maximize the hydrolysis yield/rate, (c) exploring new techniques

to produce commercial celluloses or biosynthesis of celluloses for various applications, and

more. The introduction of the ML-PBM for a reasonable modelling of enzymatic hy-

drolysis of cellulose here fulfils the second research objective and sets the stage for the
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subsequent development of CBP model by integrating modelling of metabolic systems,

which is explored in the following chapter.





Chapter 5

Unified Cybernetic-Population

Balance Model Predicts the

Dynamics of Consolidated

Bioprocessing of Cellulose

5.1 Preface

As indicated in Section 2.2.3, this chapter introduces the Unified Cybernetic-Population

Balance Model (UC-PBM) to simulate CBP of cellulose. The UC-PBM features a closed-

loop system that integrates the ML-PBM [100] developed in the previous chapter and the

L-HCM developed by Song and Ramkrishna [36–38]. This chapter presents a thorough

91
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examination on the metabolism of Clostridium thermocellum as a case study to showcase

the effectiveness of the UC-PBM. The contents of this chapter are part of a manuscript

in preparation for publication under the following designation:

• F. Ahamed, H.-S. Song, Y.K. Ho. 2020. Modelling Coordinated Enzymatic Con-

trol of Saccharification and Fermentation by Clostridium thermocellum During Con-

solidated Bioprocessing of Cellulose

5.2 Model Framework

5.2.1 Conceptual Description of Modelling Scheme

As cellulose is a non-permeating precursory substrate, CBP leads with the saccharification

to produce fermentable sugars (Figure 5.1A). Commonly, cellulolytic microorganisms se-

crete basal levels of constitutive cellulases for initial degradation of celluloses to produce a

small amount of permeable sugars that act as inducers to trigger the metabolism [148–150].

Consequently, the cellulases are produced at an adequate level (Figure 5.1B) to facilitate

the saccharification of cellulose to maintain a constant supply of fermentable nutrients

for the cells. The metabolic fluxes of the ingested nutrients are distributed to metabolic

reactions spanning across vast metabolic networks (Figure 5.1C), where individual key

intracellular enzymes catalyse the reactions. As saccharification and fermentation reac-

tions are enzymatic reactions catalysed by extracellular and intracellular enzymes that

are energetically expensive to synthesize, microorganisms optimally control the allocation

of finite internal cellular resources among these two metabolic options to optimize their

metabolic objective in varying environments. Finite cellular resources are allocated to reg-
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Figure 5.1: Illustration of CBP of cellulose as conceptualized by the UC-PBM. Here, the
utilization of cellulose by C. thermocellum is shown as an example, where the UC-PBM can
be similarly adapted for any other cellulolytic microorganisms. The blue arrows display
a closed-loop system that includes the intracellular and the extracellular regulations that
govern the CBP. The individual stages (A — D) of CBP are detailed in the text.

ulate the key intracellular enzymes (i.e., regulation at transcription and translation level,

as well as the catalytic activity), which in turn governs the metabolic flux distribution.

In general, the combined saccharification and fermentation process proceeds through

a closed-loop regulation, where CBP strains rely on extracellular cellulase regulation to

produce an adequate amount of fermentable nutrients from the saccharification of cellulose

to sustain the metabolism and in return, the extracellular cellulase regulation is governed

by the intracellular flux distribution. Thus, a modelling framework that features a closed-

loop system is crucial to portray the interdependent dynamics of CBP. In the formulation

of the UC-PBM, the enzymatic saccharification of cellulose is modelled using the ML-
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PBM and the intracellular flux distribution is defined by the L-HCM, where the latter

dynamically allocates the cellular resources to families of basic elementary metabolic

pathways consisting of a minimal sequence of metabolic reactions (Figure 5.1D) [26,36–38].

Ultimately, the coupling of the ML-PBM and the L-HCM features a closed-loop system

via the extracellular cellulase secretion (Figure 5.1B) and the fermentable nutrient uptake

pathways (Figure 5.1C) to describe the CBP.

5.2.2 General Formulation of Model Equations

In the foregoing section, a conceptual description of the CBP of cellulose as accounted

for in the UC-PBM is provided. Here, the mathematical linkage between the ML-PBM

and the L-HCM in the generalized UC-PBM formulation is demonstrated. The linkage is

expressed through the balances of fermentable sugars, enzymes, metabolites and biomass

as follows:

dN
dt

= f(kγ,S,E ,C, R)︸ ︷︷ ︸
Saccharification of

bulk cellulose
(ML−PBM)

− g(kλ,K, e,V,Z,N ,P , X)︸ ︷︷ ︸
Microbial uptake of
fermentable sugars

(L−HCM)

(5.1)

d

dt


E

P

X

 = h(kλ,K, e,V,Z,N ,P , X)︸ ︷︷ ︸
Secretion of cellulases,

metabolites, and biomass
growth (L−HCM)

(5.2)

Here, S is the vector of all polymer species extending from monomer to polymer with

maximum DP, N ⊆ S is the vector of fermentable sugars, E is the vector of extracellular

cellulase species, C is the vector of enzyme-polymer complexes, e is the vector of intra-

cellular enzymes that catalyse the families of elementary metabolic pathways, P is the

vector of metabolites of interest secreted by the microorganisms and X is the biomass.
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Subsequently, the model parameter k is the vector of rate coefficients, where the sub-

scripts γ and λ are used to distinguish between the coefficients for the ML-PBM and the

L-HCM, respectively, R is the average radius of cellulose particles, K is the vector of

MM-type saturation constants, V is the vector of cybernetic variables that control the

activities of the enzymes e, and matrix Z supplies the stoichiometric information of the

metabolic reactions. Except for k, K and Z, all variables are functions of time.

The first term in Eq. (5.1) is directly adopted from the ML-PBM, where it depicts the

saccharification of parent polymer chains which produces soluble sugars, and the second

term is added to account for the consumption of the soluble sugars by microorganisms. On

the other hand, Eq. (5.2), given by the L-HCM, expresses the balances of the extracellular

cellulases, metabolites and biomass. Note that Eq. (5.1) is dependent on E and the

whole of second term, both of which are defined by the L-HCM, whereas Eq. (5.2) is

a function of N defined by the ML-PBM, thus, an interdependent closed-loop system

is established. Readers are referred to Chapter 4/Appendix B and to the studies by

Song and Ramkrishna [36–38] for the conceptualization, derivation and solution of the

ML-PBM and the L-HCM, respectively.

The generalized UC-PBM formulation presented here is amenable to suit various

scenarios. For example, the UC-PBM can be used to model the metabolism of any cel-

lulolytic microorganisms provided that adequate biological information (i.e., metabolic

network, exometabolomic data, etc.) exists. Moreover, modelling of the metabolism of

co-cultures with competing/complementing affinity over common fermentable sugars is

also a possibility. SSF process with exogenous cellulase addition also can be modelled by

eliminating the cellulase secretion by microorganism and limiting the extracellular cellu-

lase species E to a time-independent total concentration, where the closed-loop system
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ceases to exist. Lastly, various cellulosic substrates (e.g., Avicel, α-cellulose) and cellu-

lases (endo- and/or exo-acting enzymes) can be modelled by varying substrate-centric and

enzyme-centric parameters of the ML-PBM accordingly.

5.3 Case Study

5.3.1 Motivations to Examine Cellulose Utilization by

Clostridium thermocellum

Using the generalized expressions in the preceding section, the UC-PBM is formulated

for cellulose utilization by Clostridium thermocellum as a case study. C. thermocellum

is an attractive anaerobic and thermophilic bacterium for CBP owing to its high ef-

ficiency in consuming recalcitrant celluloses [11, 109, 148, 151]. Supramolecular multi-

enzyme protein complexes, called cellulosomes, are able to degrade cellulose to mainly

fermentable cellobiose [151–153] with high efficiency, which is then consumed to produce

various end metabolites including ethanol, lactate, formate, acetate, hydrogen and carbon

dioxide [148].

The primary goal in strain development efforts of C. thermocellum is the maximiza-

tion of fermentation capacity to produce target biochemicals at industrially relevant levels

without compromising the rapid cell growth and cellulolytic ability needed to utilize cel-

lulose efficiently. Despite extensive research, the complete physiology of C. thermocellum

remains elusive as most computational studies are limited to steady-state constraint-based

approaches [109,154–156] and simplified unstructured kinetics [157–160]. Therefore, it is
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incumbent upon this research to employ the UC-PBM to examine the role and significance

of cellulosome-secreting metabolic pathways in the overall metabolism of C. thermocel-

lum. However, cellulosome is simply an intermediate pseudo-metabolite that solubilizes

cellulose into fermentable cellobiose, whereas the microorganism ultimately steers the

metabolism towards ensuring survival, i.e., biomass growth. Hence, the relative impor-

tance and contention for cellular resources between cellulosome-secreting and growth-

coupled pathways is examined in this work. Ultimately, the role of the diverse metabolic

pathways of C. thermocellum under varying environmental conditions and the character-

istics of the in-built cellular regulatory mechanism in navigating the diverse metabolic

pathways is investigated. To this end, the structured UC-PBM that actively accounts

for the dynamics, cellular regulation, and closed-loop system will certainly be beneficial

to corroborate the existing inferences and to uncover possible unrecognized metabolic

diversity.

5.3.2 Abstraction of Core Metabolism from Genome-Scale

Metabolic Network

The core metabolic network of C. thermocellum is extracted from the genome-scale metabolic

network (iAT601) developed by Thompson et al. [155] to avoid losing the crucial cellu-

losome secretion pathways, which are often omitted in central metabolic networks of the

microorganism in the literature [109]. To avoid the combinatorial explosion of the num-

ber of elementary metabolic pathways due to the sheer size of the genome-scale metabolic

network, a network reduction algorithm called the NetworkReducer [161] is utilized to

condense the genome-scale network into a meaningful core network encompassing the
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cellulosome secretion, the fermentation capacity and the biomass growth. All essential

metabolites and reactions in the genome-scale network that also occur in the core net-

work [109] are flagged as protected to retain them in the reduced network, in addition to

the cellulosome and cellulosome-secreting reactions. The full set of participating reactions

and metabolites in the reduced network are given in Appendix C.1. The resulting core

network is used for subsequent enumeration of elementary metabolic pathways.

Thompson et al. [155] present two separate metabolic networks for C. thermocellum

by varying cellulosome fractions in the abiotic phase to 20% and 2% of the dry cell weight

when grown on cellulose and cellobiose, respectively, based on empirical observation from

the study by Zhang and Lynd [162, 163]. As both syntheses of cellulosome and cell mass

proteins share the same amino acids, the basis of fixing only 20% (or 2%) of the total

cellulosomes as extracellular secretion compared to 100% of cell mass for biomass growth

is unclear. Moreover, Zhang and Lynd [162,163] made clear distinctions between cellulase

and non-cellulase protein in their testing protocol using enzyme-linked immunosorbent

assay (ELISA), thus, one can infer that the total cellulase that made up to 20% (or 2%)

of total cell mass is pure cellulase exclusive of non-cellulase components of cellulosomes.

Due to the inconsistencies, the whole of cellulosomes is treated as an enabling extracellular

pseudo-metabolite in this work, and the distinction between cellulase and non-cellulase

components of cellulosome is made based on the cellulosomal compositions reported in

the literature [151,152]. Accordingly, the yields of biomass are calculated by discounting

the cellulase component from the yields of dry cell weights obtained from the metabolic

network, i.e.,

YbiomωDW = YDW [ωbiom + ωcsm(1− ωcls)] (5.3)

where Ybiom is the yield of biomass discounting the cellulase proteins, YDW is the yield of
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dry cell weights inclusive of cell mass and cellulosome derived directly from the metabolic

networks, and the mass fractions of dry cell weight, biomass, cellulosome and cellulase are

[ωDW, ωbiom, ωcsm, ωcls] = [1.20, 1.00, 0.20, 0.50] or [1.02, 1.00, 0.02, 0.39] when C. thermo-

cellum is grown on cellulose or cellobiose, respectively. In subsequent texts, the metabolic

networks for C. thermocellum grown on cellulose and cellobiose are referred to as N20%

and N2%, respectively, and the former are primarily used as the main focus is the CBP of

cellulose in this work.

5.3.3 Potential Trade-Offs between Cellulosome-Secreting and

Growth-Coupled Metabolic Pathways

Cybernetic models typically use elementary flux modes (EFMs) to describe the metabolic

pathways, where the EFMs form unbounded flux cone through homogenous constraints

arising from the assumption of steady-state concentrations for internal metabolites and re-

action irreversibilities [164]. While the EFM analysis is a powerful tool to study metabolic

networks, the study on metabolic engineering interventions, such as rate/yield maximiza-

tions are futile, as the solutions are unbounded maximums [165]. In this work, elementary

flux vectors (EFVs) are utilized instead, where a bounded polyhedron is formed by impos-

ing maximum cellobiose uptake rate (13 mmol/gDW/h) [154] and non-negative fluxes for

extracellular metabolite-secreting reactions as additional inhomogeneous constraints. The

EFVs are enumerated using efmtool [166] included in CellNetAnalyzer toolbox [167,168].

The distributions of lengths of the enumerated EFVs in Figure 5.2 show that the

cellulosome secretion imposes a significant metabolic burden on the metabolism of the

C. thermocellum, as the length of an EFV directly corresponds to the demand of cellular
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Figure 5.2: Distributions of EFV lengths of C. thermocellum for different groups clas-
sified according to secretion of representative products. The length refers to the number
of participating metabolic reactions in each individual EFV. Here, N20% is used for the
enumeration of the EFVs.

resources to instil metabolic flux along the pathway [169]. Moreover, the distributions of

the EFVs show multiple peaks, which indicate multiple essential pathways around which

metabolic deviations can occur. The estimation of ATP requirements in C. thermocel-

lum (57 mmol ATP/g cellulosome/h vs. 13.5 mmol ATP/gDW/h) also indicates that

the synthesis of cellulosome is more energy-intensive than biomass growth [155]. As C.

thermocellum is known to also down-regulate the expression of cellulases in the adequate

presence of fermentable cellobiose [151, 163], at this point, one can infer that there are

potential metabolic trade-offs in investing internal resources for cellulosome secretion and

biomass growth. However, all growth-coupled EFVs also co-secrete cellulosomes (Figure

5.2), albeit at lower yields. Such an overlap in the metabolic functions in the EFVs is

counter-intuitive, and the roles of the EFVs on the metabolism of C. thermocellum is

investigated by modelling with the UC-PBM.

To study the nature of the in-built regulatory mechanism of C. thermocellum in

steering the metabolic fluxes and to account for the potential contention of finite cellu-
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Table 5.1: Number of EFVs enumerated from reduced metabolic network (N20%) of
C. thermocellum. Thermodynamically infeasible EFVs with no substrate uptakes are
omitted.

EFV family
Representative

product

Cellulosome-
& ATP-

producing
EFVs, nz1

Biomass- &
ATP-

producing
EFVs, nz2B

ATP-
producing

EFVs, nz2A

Total EFVs

FI Cellulosome 57,030 - - 57,030

FII Biomass - 53,184 8,481 61,665

Total EFVs, nz 118,695

lar resources between the inherent energy-intensive functions of the microorganism, the

EFVs are grouped into two principal families, namely FI that represents growth-decoupled

cellulosome secretion and FII which contributes to biomass growth and growth-coupled

constitutive cellulosome secretion. As a result of this grouping strategy, production of

other metabolites of interest are shared between both families. Following the protocol

of the L-HCM [37], the FII is further split into biomass- and ATP-producing (FB
II) and

only ATP-producing (FA
II) sub-groups. Similar classification is not performed to FI as all

EFVs in the family co-produces cellulosomes and ATP. The summary of the number of

EFVs in each family and sub-group is presented in Table 5.1.

5.3.4 EFV Lumping Scheme in the UC-PBM

The procedures employed to lump the EFVs in the UC-PBM are illustrated in Figure 5.3.

While the cellular resources (and by extension, the metabolic fluxes) to the two EFV fam-

ilies are regulated according to the environmental conditions and the competing metabolic

functions of the microorganism, the subsequent flux distribution to the individual EFVs

is solely based on the stoichiometry. The latter is reflected in the lumping of the EFVs
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Figure 5.3: A flowchart depicting the extraction of essential biological information for
implementation of the UC-PBM. Here, a meaningful core metabolic network encompassing
the secretion of cellulosomes, metabolites of interest and the biomass growth is obtained
from the genome-scale metabolic network of C. thermocellum (iAT601) [155]. EFVs are
classified into two principal families – FI that contributes to inducive secretion of cellu-
losomes and FII that allows biomass growth and growth-associated cellulosome secretion.
Both families contribute to the secretion of all metabolites of interest.
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by taking a weighted-average (Eq. (T1) – (T3) in Figure 5.3). The EFV lumping scheme

based on the concept of the L-HCM is detailed in Appendix C.2.

5.3.5 Model Equations

The preceding sections deliberated the aim of the study, special considerations made to

model the metabolism of C. thermocellum as well as the enumeration, classification and

lumping of the metabolic pathways. Here, the key UC-PBM equations that trace the

cellulose utilization by C. thermocellum are presented in Table 5.2.

Table 5.2: Key UC-PBM equations.

Cellobiose:

dCcb

dt
= f(kγ,S,E ,C, R)−X

∑
J

rJ (5.4)

Intracellular enzymes:

de

dt
= α+ D(U)rkin

e − [D(β) + µI]e (5.5)

Cellobiose uptake fluxes:

r = Verelrkin (5.6)

Metabolites and biomass:

d

dt

[
X Ceth Clac Cform Cace

]T

= XYr (5.7)

Cellulosome:

dCcsm

dt
= αcsmX +X

∑
J

Ycsm,JrJ − βcsmCcsm (5.8)
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First, the balance for the fermentable cellobiose in Eq. (5.4) is obtained by re-

writing the general Eq. (5.1), where rJ represents the cellobiose uptake flux through the

J-th EFV family. For brevity and to avoid clutter, the first term of Eq. (5.4) which

originates from the ML-PBM formulation is given in the general form. The full set of

the ML-PBM equations are given in Appendix C.3.1. Although uptake of long-chained

cellodextrins (DP 3 to 6) by C. thermocellum is also suggested in the literature [101,148],

the extent of their assimilation relative to cellobiose remains unclear. Moreover, as the

hydrolysis of cellodextrins is rapid in the presence of adequate cellulases, cellodextrins

do not accumulate and cellobiose is often the only product of hydrolysis available for cell

uptake. While there is the possibility of contention for cellodextrins for cell uptake as well

as for subsequent hydrolysis to cellobiose, the metabolic strategy of the microorganism in

choosing the growth substrate remains elusive, though it is generally thought to be highly

dependent on the environmental conditions [101]. Therefore, due to the lack of definitive

evidence on cellodextrins uptake, this study assumes complete hydrolysis of cellulose to

cellobiose as the sole intermediate product of hydrolysis available for subsequent cell

uptake. Next, the balances of intracellular enzymes and cellobiose uptake fluxes in Eqs.

(5.5) and (5.6), respectively, are based on the concept of the L-HCM [36–38], which are

detailed in Appendix C.3.2. Subsequently, the balances of the biomass and metabolites

of interests are presented in Eq. (5.7), where Y is the matrix of model-estimated lumped

yields (Eq. (T4) in Figure 5.3) with the configuration Yi,J (i = biom, eth, lac, form, ace;

J = I, II).

Lastly, the balance of cellulosome secretion is given separately in Eq. (5.8). Out

of the total cellulosome secretions, the cellulases are assumed to make up about 50 wt%

and 39 wt% when grown on cellulose and cellobiose, respectively, based on the cellu-
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losomal compositions [151, 152]. Moreover, the cellulosomes of C. thermocellum consist

of a multitude of catalytic units, thus, accounting for their catalytic actions individu-

ally in the model will lead to overparameterization. Therefore, the enzymatic actions of

the catalytic units are consolidated into exo- and endo-acting enzyme groups performing

chain-end dimeric and random scission, respectively. Although the molar ratio of exo-

to endo-enzymes in the cellulosome can be discerned from the literature [151, 152], the

ratio is suspected to be higher in actuality, as some endo-acting catalytic units are found

to adapt to the hydrolytic mechanism of exo-acting catalytic units due to evolutionary

implications [170]. To identify the most probable composition, the molar ratio is empir-

ically adjusted while maintaining the total moles until the production ratio of cellobiose

to glucose matched the reported values in the literature. As a result, the total molar

concentrations of exo- and endo-enzymes used in this work are presented as follows:

Cexo
T (t) =

{
10.97

[
Ccsm(t)

/
Mcsm

]
; when C. thermocellum grown on cellulose

9.39
[
Ccsm(t)

/
Mcsm

]
; when C. thermocellum grown on cellobiose

Cendo
T (t) =

{
0.11

[
Ccsm(t)

/
Mcsm

]
; when C. thermocellum grown on cellulose

0.09
[
Ccsm(t)

/
Mcsm

]
; when C. thermocellum grown on cellobiose

(5.9)

where, Mcsm ≈ 1.73 MDa and 1.89 MDa are the molecular weights of the cellulosomes

when C. thermocellum is grown on cellulose and cellobiose, respectively [151,152].

Additionally, the complexed cellulase system of C. thermocellum modelled here for

CBP is fundamentally different from the non-complex fungal cellulases (CBH, EG and

BG) used for the design of the ML-PBM framework in Chapter 4. Although the complexed

cellulase system differs in interactions against bulk celluloses, they share similar modes of

enzymatic scissions with their non-complex counterparts. Moreover, a substantial portion

of the catalytic units from cellulosomes are found disassociated and non-complexed in
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reaction broth as CBP proceeds [163]. Given the certain degree of similarities between

the two cellulase systems, the original design of the ML-PBM is amenable for both CBP

by complexed cellulases and enzymatic hydrolysis by non-complex cellulases with minor

adjustments, as detailed in Appendix C.6.

5.3.6 Metabolic Objective of C. thermocellum

Here, the postulation on the metabolic objective of C. thermocellum is presented, where

the objective binds the allocation of cybernetic variables U and V in Eqs. (5.5) and (5.6),

respectively. As alluded to in the previous sections, one can posit that C. thermocellum

bears multiple contending metabolic functions that allow efficient cellulose utilization

alongside rapid biomass growth [151]. Unlike simpler microorganisms, C. thermocellum

not only safeguards its survival through biomass growth but also ensures a constant

and adequate supply of fermentable nutrients by secreting cellulosomes to break down

cellulose. The foregoing metabolic functions are reflected in the classification of the EFVs

employed in this work (cf. Figure 5.3 and Section 5.3.3). Given that cellulosome secretion

and biomass growth are both energy-intensive, the two metabolic functions are potentially

tailored for different environmental conditions and cannot be optimized simultaneously.

Essentially, the flux distribution is manoeuvred towards optimizing the metabolic

objective of the microorganisms. The common postulates for the metabolic objectives are

the maximization of the biomass growth rate or the substrate uptake rate, where both

are pertinent to the survival of the microorganisms [27, 36, 171]. Although maximization

of the biomass growth rate and substrate uptake rate are used as metabolic objective

interchangeably in the metabolic models of simple microorganisms in the past, the same
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cannot be assumed for CBP strains as the substrates can be consumed for other purposes

than the biomass growth (such as growth-independent cellulosome secretion). Motivated

by the above, maximization of cellobiose uptake rate is selected as the metabolic objective

of C. thermocellum and the dynamic allocation of the cybernetic variables U and V are

established through the Matching and Proportional Laws [171], respectively:

U =
Φ

‖Φ‖1

; V =
Φ

‖Φ‖∞
(5.10)

where Φ = erelrkin is the return-on-investments (ROIs) of cellular resources which repre-

sent the cellobiose uptake rate through the EFV families.

Based on the generalized cybernetic laws, the control above implies that the microor-

ganism immediately reaps the benefit of the imposed control actions [19,26,171], i.e., max-

imization of cellobiose uptake rate. However, the hydrolysis of cellulose is rate-limiting

in CBP and the production of cellobiose is not instantaneous following the secretion of

cellulosomes. Nevertheless, typical CBP by C. thermocellum entails a condition where the

cellobiose concentration is maintained sufficiently low [172] and the estimated saturation

constant of cellobiose is adequately small such that the quasi-instantaneous attainment

of the ROI can be established [171].
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5.4 Results and Discussion

5.4.1 UC-PBM Predicts Coupled Dynamics of Saccharification

and Fermentation Regulated by C. thermocellum

The values of model parameters used to generate simulation results in this work are

collated in Table 5.3. Here, the model parameters that display poor sensitivity or iden-

tifiability (not shown) following the methodology outlined by Brun et al. [173] are either

fixed to values estimated for the ML-PBM, obtained from the literature or set to a reason-

able order of magnitude. All endo-enzyme-related parameters fall in this category as they

only make up a small portion of the total cellulases. Substrate-centric parameter values

(Pzone and rmass,P) are directly adopted from Chapter 4, where the values were consistent

and universal for Avicel across multiple data sets. The ensuing simulation results are

presented as follows.

Figure 5.4 and 5.5 show quantitatively decent model fits and predictions of the

metabolism of C. thermocellum with Avicel as the sole carbon source. Notably, by only

using the transient data sets of residual Avicel (denoted by solid markers) for parameter

estimation, the UC-PBM predicts other crucial descriptors (denoted by open markers)

such as biomass growth, cellulase and metabolite secretions. This is only possible with

the UC-PBM that features a closed-loop system, where the rate of hydrolysis of Avicel

dictates the production of fermentable cellobiose and the consumption of the cellobiose

controls the cellulosome (cellulase) secretion, which in turn ultimately limits the rate of

hydrolysis. The only exception to the decent predictions is the overprediction observed
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Table 5.3: Values of model parameters used in this study. Conceptualization of the
ML-PBM parameters are presented in Chapter 4/Appendix B.

Parameters Unit Value Remarks

ML-PBM

kexoh 1/s 2.15 Fitted to data.

kexoe /kexop,f mol L−1 DP−1 3.33×10−7 Fitted to data.

σexo mol/m2 2.22×10−8 Estimated value from Chapter 4 for exo-enzyme.

kexod /kexoa mol/L 1.36×10−8 Estimated value from Chapter 4 for exo-enzyme.

kendoh 1/s 4.00 Estimated value from Chapter 4 for endo-enzyme.

kendoh′ L mol−1 s−1 3.00 Estimated value from Chapter 4 for endo-enzyme.

kendoe /kendof mol/L 1.00×10−8 Estimated value from Chapter 4 for endo-enzyme.

σendo mol/m2 8.04×10−9 Estimated value from Chapter 4 for endo-enzyme.

kendod /kendoa mol/L 1.41×10−8 Estimated value from Chapter 4 for endo-enzyme.

Pzone – 1 Estimated value from Chapter 4 for Avicel.

rmass,P % 2.80 Estimated value from Chapter 4 for Avicel.

L-HCM

αI = αII 1/s 2.78×10−5 Following Song and Ramkrishna [36].

βI = βII 1/s 5.56×10−5 Following Song and Ramkrishna [36].

ke,I = ke,II 1/s 2.78×10−4 Following Song and Ramkrishna [36].

Ke,I mol/L 1.00×10−6 Assumed equal to KI for simplicity.

Ke,II mol/L 9.00×10−6 Assumed equal to KII for simplicity.

kmax
I mol gDW−1 s−1 1.30×10−6 Fitted to data.

kmax
II mol gDW−1 s−1 1.90×10−6 Fitted to data.

KI mol/L 1.00×10−6 Fitted to data.

KII mol/L 9.00×10−6 Fitted to data.

Kinh−eth mol/L 1.74 Value reported by Hogsett et al. [174] for 50% inhibition
by ethanol.

Kinh−glu mol/L 1.22×10−3 Value reported by Hogsett [175] for 50% inhibition by
glucose.

αcsm g gDW−1 s−1 3.00×10−7 Set sufficiently small to avoid haphazard accumulation of
cellulosomes.

for the steady-state secretion of acetate in Figure 5.5. Unlike other metabolites, acetate

is consumed in vivo for the production of the highly versatile acetyl-CoA, which is the
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Figure 5.4: Model prediction of metabolism of C. thermocellum ATCC 27405 grown on
10.67 g/L Avicel as the sole carbon source. The markers represent experimental data from
Zhang and Lynd [163] and the lines are model predictions. The solid markers represent
data used for parameter estimation, while the model predicts the data represented by
open markers. The grey-shaded regions denote periods of severe famine conditions and the
drop-down arrow indicates the time for complete cellulose solubilization. The fractions
of cellulase secreted through FI and FII are given in the figure, where the remaining
fraction is contributed by the constitutive secretion. The total cellobiose uptakes through
the respective EFV families are 7.9% and 92.1%. Here, N20% is used to demonstrate the
metabolism.

starting metabolite for many major metabolic pathways, including the TCA cycle and

biosynthesis of fatty acids [176]. Therefore, the complex metabolic pathways involving

acetate may be haphazardly truncated during the metabolic network reduction routine.

Apart from the quantitative fit to the experimental data, some interesting qualitative

observations could be gleaned from the UC-PBM outputs. In the beginning of the CBP,

where the concentration of cellobiose is minimal, erel
I is swiftly induced to allow majority
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Figure 5.5: Model prediction of metabolism of C. thermocellum ATCC 27405 grown
on 4.59 g/L Avicel (5.10 g glu eq/L) as the sole carbon source. The lines are model
predictions and the markers are experimental data from Holwerda et al. [172]. Solid
markers represent data used for parameter estimation, while the model predicts the data
represented by open markers. The biomass growth is expressed in terms of biosynthate
dry weight that constitutes cell mass, as well as cell-bound and supernatant protein (i.e.,
cellulosomes), whereas residual Avicel is presented in glucose equivalents following the
data source. The grey-shaded regions denote periods of severe famine conditions and the
drop-down arrows indicate the time for complete cellulose solubilization. The fractions of
metabolites secreted through FI and FII are given in the figure, whereas the total cellobiose
uptakes through the respective EFV families are 12.7% and 87.3%. The residual fraction
of cellulase is contributed by the constitutive secretion. Here, N20% is used to demonstrate
the metabolism.
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of the fluxes to flow through FI. This can be viewed as a pragmatic strategy that C.

thermocellum adopts for rapid secretion of cellulosomes at high yield (Ycsm,I > 2Ycsm,II, cf.

Table C.3 in Appendix C.2) to promote the production of additional fermentable cellobiose

without apportioning limited cellular resources and energy for biomass growth. Once

cellobiose accumulates to an adequate level, erel
I is repressed and erel

II is instead induced to

direct the fluxes through FII to promote biomass growth. Evidently, the metabolic shift

from FI to FII marks the transition from the initial lag phase to exponential growth phase.

The model predictions suggest that the growth-decoupled cellulosome-secreting pathways

(FI) are devoted for famine environments, whereas the growth-coupled pathways (FII)

dictate the metabolism in feast environments. The secretion of other metabolites such as

ethanol, lactate, formate and acetate are, however, shared between FI and FI, albeit at

different rates and yields.

The foregoing model predictions concur with the inferences that cellulosome secre-

tions are biomass growth rate-dependent and/or regulated by the amount of available cel-

lobiose through catabolite repression [151,163,177–179]. Moreover, the model also closely

agrees with the rationale that C. thermocellum synchronizes cellobiose uptake with hydrol-

ysis, where cellulosome secretion is quickly slowed down by shifting the metabolic fluxes

to FII before cellobiose accumulates to a level that can inhibit cellulase activity [153]. In

all cases examined in this work, cellobiose does not accumulate significantly and is main-

tained at a concentration of at least an order of magnitude lower than 2% which induces

near-complete inhibition of cellulases [175,180–182].
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5.4.2 Cellulose Loading is a Major Driving Force of CBP

The UC-PBM demonstrates that the starting cellulose concentration is a major driving

force for the metabolism of C. thermocellum during the CBP. Comparing the metabolism

shown in Figure 5.4 and 5.5, where the starting Avicel concentrations are 10.67 g/L and

4.59 g/L, respectively, the former secretes more than double the amount of cellulase over

the same period and achieves complete cellulose solubilization 30% faster than the latter,

despite starting with a greater amount of cellulose. The UC-PBM predictions here are

in close agreement with the findings of Holwerda et al. [183], where the rate of cellulose

solubilization reportedly increases almost linearly with the cellulose loadings.

Moreover, cellulose loading also plays an important but indirect role in dictating

the flux distributions in C. thermocellum. When the starting cellulose concentration is

abundant, the amount of cellulosomes secreted is adequate to sustain hydrolysis until com-

plete cellulose solubilization before famine environment sets, which induces the stationary

phase of metabolism (Figure 5.4). Conversely, when the starting cellulose concentration

is sufficiently small, famine condition sets in before complete cellulose solubilization as

the cellulosome secretion is inadequate to provide a constant supply of cellobiose (Figure

5.5). The UC-PBM predicts that C. thermocellum responds by re-inducing erel
I to pro-

mote rapid secretion of cellulosomes to drive hydrolysis to complete solubilization. This

flux re-distribution closely predicts the premature cessation of biomass growth before to-

tal cellulose consumption in the experimental data [172]. The flux re-distribution in the

late stage of CBP evidently results in a much greater fraction of cellobiose uptake and

metabolite secretion through the growth-decoupled cellulosome-secreting pathways.

While the premature cessations of biomass growth prior to total consumption of
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cellulose under low solid loadings [184, 185] are often attributed to reduced accessible

surface area of cellulose particles at extended stages of hydrolysis [172], the UC-PBM

suggests the possibility that growth stops due to flux re-distribution to induce growth-

decoupled cellulosome secretion. The reasoning is, in part, supported by the findings of

Kothari et al. [117], where the cellulose utilization by C. thermocellum is unaffected by

cellulose accessibility and often attains complete cellulose solubilization with little to no

hindrances. Under high solid loadings, although overflow metabolism is believed to cause

the premature halt in biomass growth [183], the possibility of flux re-distributions to

growth-decoupled cellulosome-secreting pathways, the induction of famine environments

and mass transfer limitations due to high solid loadings should not be overlooked. To this

end, the UC-PBM is methodologically ideal for future extension to study the metabolism

of C. thermocellum under high solid loadings.

5.4.3 Growth-Coupled Pathways Dominate the Metabolism of

C. thermocellum

Overall, the contribution of growth-decoupled cellulosome-secreting pathways is inferior to

growth-coupled metabolism in C. thermocellum during CBP (Figure 5.4 and 5.5), which

is expected given that the latter also constitutively secretes cellulosomes, albeit at lower

yields. If the starting cellulose loading is sufficiently high, the majority of metabolism

will be dictated by the growth-coupled pathways (except during the initial lag phase) as

the growth-coupled cellulosome secretion is adequate to drive CBP to completion. This

is indicative of the capability of C. thermocellum to retain its fermentation capacity and

cellulolytic ability even if the growth-decoupled cellulosome-secreting pathways are elimi-
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nated. However, it remains to be seen if the growth-decoupled cellulosome-secreting path-

ways are associated with other vital metabolic functionalities, which may be detrimental

to the overall metabolism of C. thermocellum if removed. Herein lies a major question: If

the cellulosome secretion and biomass growth are heavily coupled, how does C. thermo-

cellum down-regulate the expression of cellulase independently of biomass growth under

nutrient-rich conditions? This is discussed in the following section.

5.4.4 UC-PBM Suggests Possible Cellulosome-Decoupled

Growth Metabolic Diversity

To further substantiate the predictive capabilities of the UC-PBM, the model is validated

by predicting the metabolism of C. thermocellum on pure cellobiose as the sole carbon

source by retaining the same parameter values from the previous cases. Figure 5.6 clearly

shows that the model prediction closely matches the residual cellobiose and the biomass

growth, but the cellulase secretion is vastly overestimated by the N20% metabolism, which

is meant for C. thermocellum grown on cellulose. While it is not ideal, switching to

N2% metabolism that caters to C. thermocellum grown on cellobiose greatly improves the

prediction of the cellulase secretion and no considerable changes are seen in the prediction

of residual cellobiose or biomass growth. The improvement in the cellulase secretion

is possible due to the drastic change in the cellulosome-biomass yield space when the

metabolic networks are switched (Figure 5.7), while the rest of the yield spaces remain

relatively unchanged. Here, much lower yields of cellulosomes are possible for the same

biomass yields as before because the lower boundary of cellulosome-biomass yield space

is closer to the horizontal axis. In spite of that, a slight degree of overestimation persists
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in the cellulase secretion (Figure 5.6).

Figure 5.6: Model prediction of metabolism of C. thermocellum ATCC 27405 grown
on 10 g/L pure cellobiose as the sole carbon source. The lines are model predictions
and the markers are experimental data from Zhang and Lynd [163]. Estimated model
parameter values from previous cases are used for predictions in this case. The fractions of
metabolites secreted through FI and FII are given in the figure, whereas the total cellobiose
uptakes through the respective EFV families are 1.3% and 98.7%. Here, both N20% and
N2% metabolisms are compared, where the grey-shaded region for famine conditions, the
fractions of cellulase secretion and cellobiose uptakes as well as the relative intracellular
enzyme levels in the bottom-right panel are provided for the latter.

The growth-decoupled cellulosome-secreting pathways are primarily repressed, but

the growth-coupled cellulosome secretion is, nonetheless, unrestrained (Figure 5.6). There-

fore, the extent of growth-coupled cellulosome secretion is hypothesized to be much

lower in actuality, which indicates the possibility of previously unrecognized cellulosome-

decoupled growth metabolic pathways. The cellulosome and biomass are heavily coupled

in the metabolic network [155] as the syntheses of both share the same amino acids. If

the contribution of protein synthesis to cellulosomes and biomass growth can be distin-

guished, hypothetical cellulosome-biomass yield space as shown in the inset of the third

panel in Figure 5.7 will be obtained, if indeed cellulosome-decoupled growth pathways
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Figure 5.7: Projections of three-dimensional convex hull of ethanol, cellulosome and
biomass yields of C. thermocellum onto two-dimensional surfaces. The dots represent the
yield points of individual EFVs that span the entirety of the convex hull, whereas the
red lines denote the metabolic trajectories that the microorganism adopts to respond to
perturbations in the environmental conditions as predicted by the UC-PBM. The EFVs
are also classified into the individual families, where the vertical axes obscures the FI

EFVs (with zero biomass yields) in the last two panels. The change in the cellulosome-
biomass yield space when N2% is imposed is shown in the last panel. The inset in the last
panel depicts a hypothetical yield space, should a new unrecognized group of cellulosome-
decoupled growth pathways be considered. The yields are presented in mole basis of
cellobiose.

existed. In the case where the metabolic network of C. thermocellum comprises of growth-

decoupled cellulosome-secreting pathways, growth-coupled pathways and cellulosome-

decoupled growth pathways, it may certainly be possible to model the metabolism under

cellulose- and cellobiose-rich conditions without manually switching metabolic networks.

Further investigation into this area should not be overlooked, given the prospect of exam-

ining the metabolic system of C. thermocellum under different substrate conditions with

a consolidated metabolic network.

Nevertheless, multiple experimental metabolic data sets [163,172] are predicted using

a single set of global parameter values (cf. Table 5.3) even though the metabolism of the

microorganism is often affected by several factors including culture methods, properties
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and the amount of substrate used. This observation is attributed to the tractability

of the UC-PBM in independently accounting for various crucial mechanistic features of

the CBP and the robustness of C. thermocellum that remains relatively impervious to

the properties of the imposed substrates [117] and operating conditions. Lastly, as the

UC-PBM predicts the metabolism of C. thermocellum across different settings without

extensive preconditioning of the metabolic network structure, the identified biological

nuances are, to a certain extent, the result of the evolutionary development of regulatory

mechanism necessary for the survival of the microorganism.

5.4.5 UC-PBM Guides to Metabolic Engineering

Here, some of the potential uses of the UC-PBM in metabolic engineering are explored.

First, metabolic interventions like gene deletions can be targeted to a specific metabolic

function based on the EFV classifications performed in the UC-PBM. However, care must

be taken to ensure that the deletion of certain EFVs specific to a metabolic function does

not impair other associated crucial metabolic functions of the microorganism. Second, in

this work, the role of cellulosome-secreting and growth-coupled pathways of C. thermocel-

lum is examined by accordingly classifying the EFVs, and similarly, one can modify the

classification of the EFVs to study other crucial metabolic functions of microorganisms.

Furthermore, the analysis of yield spaces of essential metabolites is highly useful

in aiding alterations to metabolic networks for strain designs. Unlike the conventional

representation of the yield spaces using the steady-state constraint-based approaches, the

UC-PBM discerns the underlying nature of the EFVs that form the yield spaces. Figure

5.7 demonstrates the yield spaces formed between two essential metabolites of C. ther-
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mocellum — cellulosome and biomass, as well as ethanol, a most abundantly produced

fermentation commodity from renewable biomass [176]. For metabolic interventions that

rely on the visual cues of the yield spaces of the native strains, such as the yield optimiza-

tions and maximizations, the UC-PBM provides a more focused approach as it discerns

the areas of yield spaces populated by EFVs of specific metabolic functions.

While the FBA demonstrates stationary optimal flux state of a microorganism under

a prescribed environmental condition, the UC-PBM depicts the possible trajectories that

the microorganism may utilize to navigate the metabolism across dynamic changes in

the environmental conditions. The metabolic trajectories are represented by the red lines

that connect the areas densely populated by EFVs of distinct metabolic functions (Figure

5.7). The metabolic trajectories are essentially the result of the dynamic distribution of

fluxes to the two EFV families, and in extension, to the individual EFVs in the families,

where the slope of the trajectories is determined by the EFV lumping scheme.

Lastly, detailed analysis of the metabolic network of C. thermocellum to optimize

the ethanol-cellulosome-biomass yields would be interesting, but it is beyond the scope of

this work that serves as a proof of concept of the UC-PBM and to showcase its potential

applications. Nevertheless, some interesting observations could be gleaned. In general,

the ethanol-associated yield spaces of C. thermocellum in Figure 5.7 form Pareto front

curves that indicate the possibility of improving ethanol yield without equivalent penalty

in cellulosome or biomass yield. Although the convex hulls extend to a large yield range

of ethanol, the ethanol yield maximization to these high levels is principally difficult as

the majority of the EFVs lie in the lower yield range, and it remains to be seen if it is

constrained by other critical metabolites.
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5.5 Concluding Remarks

When a cellulolytic microorganism is subjected to CBP of cellulose, an interdependent

relationship between the dynamics of the saccharification and the cellular metabolism

emerges. Using the proposed UC-PBM framework, which has the capacity to account for

the interdependency through a closed-loop control mechanism between the global regu-

lation of extracellular cellulases and local intracellular regulation of fermentation at the

network level, this work explores the nature of the flux regulation that gives the cellulolytic

microorganism the excellent CBP capabilities. Through a case study on C. thermocellum,

the UC-PBM reveals that the growth-coupled pathways govern the overall metabolism,

while growth-decoupled cellulosome-secreting pathways are only activated in famine con-

ditions. Although cellulose is a non-permeating precursory substrate, the UC-PBM shows

that the cellulose loadings strongly influence the flux distribution, where C. thermocellum

reciprocates to changes in the environment to steer off famine conditions, and know-

ing this allows one to rationally guide the metabolism by manipulating the famine/feast

settings. Moreover, this study reckons the existence of cellulosome-decoupled growth

pathways, which not only explains the growth-independent down-regulation of cellulases

under nutrient-rich conditions, but also could eliminate the need for separate metabolic

networks to account for metabolism of C. thermocellum under different carbon sources

(cellulose and cellobiose). The realization of modelling and prediction of the metabolic be-

haviours of a cellulolytic microorganism utilizing cellulose via the UC-PBM concludes the

third and the last research objective. The outcome of this research undoubtedly paves the

way forward for a more exhaustive analysis of the potentials of cellulose bioprocessing.
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Conclusions and Future Scopes

6.1 Conclusions and Contributions of the Research

This research presents a new theory-based framework, named the Unified Cybernetic-

Population Balance Model (UC-PBM), to simulate CBP of cellulose to biochemicals. The

framework couples the tenets of the well-known population balances and cybernetic mod-

els, to simulate the concurrent enzymatic saccharification of distributed-heterogeneous

polymeric cellulose and fermentation of soluble sugars via cellular metabolism, respec-

tively.

To arrive at the ultimate aim of this research, a series of objectives were formulated

and fulfilled. First, to tailor solution strategy to solve depolymerization population bal-

ances, a set of sectional techniques were implemented over a hybridized discrete-continuous

mesh and assessed across various performance indicators. Fixed Pivot Technique (FPT)

121
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was identified as the best pick for subsequent model development for enzymatic saccha-

rification. Second, in efforts to appease to the complexities associated with the enzy-

matic saccharification of cellulose, a new framework is formed, termed the Multi-Layered

Population Balance Model (ML-PBM), which not only delivers various mechanistic in-

sights regarding the process, but also reasons that the heterogeneity in cellulose properties

across the structural layers of cellulose particles to cause the rate slowdown. Third, the

ML-PBM, coupled with the metabolic network-based Lumped Hybrid Cybernetic Model

(L-HCM), delivers the UC-PBM that minutely accounts for the interplay between the

saccharification at the macroscopic level and the fermentation via cellular metabolism at

the metabolic network-level.

The overall framework features critical process factors such as tracing of complete

cellulose chain distribution, a hierarchical scheme to account for non-uniform distribu-

tions of cellulose chain lengths and crystallinity across the structural layers of cellulose

particles, cellulose particle morphologies, multiple elementary steps in enzyme-substrate

interactions, distinct modes of enzymatic scission, classification of elementary metabolic

pathways based on a priori knowledge of metabolic functions, and regulation of internal

cellular resources and metabolic flux distributions to aid distinct metabolic functions ac-

cording to the changes in the environment subject to the metabolic burden. Overall, the

UC-PBM provides a robust framework for prediction of cellular metabolism of cellulolytic

microorganisms across diverse conditions.

In the grand scheme of things, this study reveals the necessity for a closed-loop control

mechanism across multiple scales of critical process features to represent the dynamics

of CBP of cellulose at an adequate resolution to benefit bioprocess and microbial strain

designs and optimizations, which is only possible through the coupling of population
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balances and cybernetic models as elucidated in this work. Thus, this confirms the thesis

of this research.

6.2 Future Scopes

Significant contributions of this research aside, there is much more to explore ahead.

Several areas that are worthy of further study are explored here.

Firstly, high cellulose (solids) loadings greatly transform the process dynamics of the

enzymatic hydrolysis due to the elevated fluid viscosity, which introduces significant mass

transfer limitations. While the ML-PBM in this research alludes to the heterogeneity in

cellulose properties as the rate-limiting phenomenon under dilute cellulose concentrations,

the same may not be true at high solid loadings. The implication of the mass transfer

limitations requires the account of both spatial and temporal changes in the process

dynamics with special consideration of the concomitant effects of mixing and hydrody-

namics. Therefore, the extension of the ML-PBM with the inclusion of computational

fluid dynamics to investigate the enzymatic hydrolysis at industrially relevant high cellu-

lose concentrations is an absolute necessity. Moreover, the extension of the UC-PBM for

high solid loadings will also benefit the study of unresolved metabolic behaviour such as

overflow metabolism and premature growth halt in C. thermocellum.

Second, although this work does not consider the evolution of particle size distribu-

tion and assumes that the cellulose particles are monodispersed at an average size, the

unique ML-PBM framework that includes heterogeneity in cellulose properties serves as

an important foundation that must not be ignored in future extensions to study the effects
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of particle size distribution on the process dynamics and to model particle breakage due

to hydrodynamic shear during mixing (i.e., each cellulose particle should possess hetero-

geneous properties that affects the degree of tendency to undergo physical breakage or

enzymatic degradation). Another possible future extension of this work is model-based

optimizations of operating conditions (e.g., enzyme/cellulose loadings, enzyme cocktail

compositions, enzyme/cellulose dosing strategy) to maximize the productivity of the pro-

cess. Moreover, the current ML-PBM and UC-PBM is only designed for batch and, at

most, fed-batch processes, thus, extensions to accommodate chemostat processes is also

a strong possibility.

Lastly, the use of the UC-PBM to predict the dynamic metabolic behaviour of en-

gineered strains using metabolic data of the respective parent strains, without extensive

post-conditioning of the framework, remains to be seen. Furthermore, the use of co-

cultures to combine the biological functionalities of multiple strains to attain efficient

CBP of cellulose is an attractive alternative to metabolic engineering, and so, the use of

the UC-PBM to study the synergistic/competitive interactions between multiple strains

will also be interesting.

These foregoing aspects, which expand the toolset for more in-depth fundamental in-

vestigations of cellulose bioprocessing, should be the focus of future studies. Nevertheless,

it is expected that the subsequent model developments would be built on the key concepts

proposed in the ML-PBM and the closed-loop system instituted in the UC-PBM.
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Appendix A

Solution of Depolymerization

Population Balances

A.1 Fully Discrete (Exact) ODEs for

Depolymerization Population Balances

The final set of ODEs for the fully discrete solutions of bond-breakage process of depoly-

merization is given as follows.

Chain-End Monomer Scission:

Following Kostoglou [68], the fully discrete equations for chain-end scission for the case

of depolymerization are:
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dc1

dt
= 2kγ2c2 +

N∑
j=3

kγj cj (A.1)

dci
dt

= kγi+1ci+1 − kγi ci; i = 2, 3, . . . , N − 1 (A.2)

dcN
dt

= −kγNcN (A.3)

Random Scission:

Based on the studies by Ziff and McGrady [41] as well as by Kumar and Ramkrishna [55],

the fully discrete equations for random scission for the case of depolymerization are:

dc1

dt
=

N∑
j=2

(
2

j − 1

)
kαj cj (A.4)

dci
dt

=
N∑

j=i+1

(
2

j − 1

)
kαj cj − kαi ci; i = 2, 3, . . . , N − 1 (A.5)

dcN
dt

= −kαNcN (A.6)

Here, ci = Ci for the fully discrete solution.

A.2 FPT ODEs for Depolymerization Population

Balances

The final set of ODEs for the FPT solutions of depolymerization population balances over

a discrete-continuous mesh is as follows.
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Chain-End Monomer Scission:

dC1

dt
= 2kγ2C2 +

p+q∑
j=3

kγjCj (A.7)

dCi
dt

= kγi+1Ci+1 − kγi Ci; i = 2, 3, . . . , p (A.8)

dCp+1

dt
=

(
vm

xp+2 − xp+1

)
kγp+2Cp+2 − kγp+1Cp+1 (A.9)

dCi
dt

=

(
1− vm

xi − xi−1

)
kγi Ci +

(
vm

xi+1 − xi

)
kγi+1Ci+1 − kγi Ci;

i = p+ 2, p+ 3, . . . , p+ q − 1

(A.10)

dCp+q
dt

=

(
1− vm

xp+q − xp+q−1

)
kγp+qCp+q − k

γ
p+qCp+q (A.11)

The alternative meshing strategy is used here to alleviate the discrepancy at the discrete-

continuous boundary (see Section 3.3.4).

Random Scission:

dC1

dt
=

p+q∑
j=2

(
2

xj−1

)
kαj Cj (A.12)

dCi
dt

=

p+q∑
j=i+1

(
2

xj−1

)
kαj Cj − kαi Ci; i = 2, 3, . . . , p (A.13)

dCi
dt

=

p+q∑
j=i+1

(
xi+1 − xi−1

xj−1

)
kαj Cj − kαi Ci; i = p+ 1, p+ 2, . . . , p+ q − 1 (A.14)

dCp+q
dt

= −kαp+qCp+q (A.15)
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A.3 CAT ODEs for Depolymerization Population

Balances

The final set of ODEs for the CAT solutions of depolymerization population balances over

a discrete-continuous mesh is given as follows.

Chain-End Monomer Scission:

Final ODEs of the CAT are identical to the FPT for chain-end scission. Refer to Appendix

A.2.

Random Scission:

dC1

dt
=

p+q∑
j=2

(
2

xj−1

)
kαj Cj (A.16)

dCi
dt

=

p+q∑
j=i−1

[
2(xi+1/2 − xi−1/2)

xj−1

](
v̄i−1 − xi−1

xi − xi−1

)
H(v̄i−1 − xi−1)kαj Cj

+

p+q∑
j=i

[
2(xi+1/2 − xi−1/2)

xj−1

] [
v̄i − xi−1

xi − xi−1

H(xi − v̄i) +
v̄i − xi+1

xi − xi+1

H(v̄i − xi)
]
kαj Cj

+

p+q∑
j=i+1

[
2(xi+1/2 − xi−1/2)

xj−1

](
v̄i+1 − xi+1

xi − xi+1

)
H(xi+1 − v̄i+1)kαj Cj

− kαi Ci; i = 2, 3, . . . , p+ q − 1

(A.17)

dCp+q
dt

= −kαp+qCp+q (A.18)

For Eq. (A.17), the average particle size is v̄i = (xi+1/2 + xi−1/2)
/

2.
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A.4 Failure of the FVS for Chain-End Scission

To direct future efforts in refining the FVS for solving depolymerization PBEs, the failure

of the FVS for chain-end scission is clarified here. For breakage, the final discretized form

of the FVS is given as:

dCi
dt

=
I∑
j=i

ωb
j p

(0)
ij k

γ
jCj −

(
ωb
i

xi

i∑
j=1

xjp
(0)
ji

)
kγi Ci (A.19)

where p
(0)
ij =

∫ mi
j

xi−1/2
δ (v − [xj − vm]) dv for chain-end monomer scission. As the FVS does

not distribute the birth of daughter polymers to adjoining pivot points like the FPT and

the CAT, the FVS simply does not have the resolution required to distinguish between the

size of the resulting daughter polymers (xj − 1) from the parent polymers (xj), especially

when the size of parent polymers are large. This is clearly illustrated in Figure A.1(a).

In the discrete region, where all the grid points are spaced one monomer unit apart,

p
(0)
ii = 0, p

(0)
i,i+1 = 1, and p

(0)
ij = 0, ∀ j | j > i + 1. This holds true in general when a

non-uniform mesh is employed for the continuous region, where p
(0)
i,i+1 = 1 (Region 1 in

Figure A.1(a)). However, as the width of each section increases with the DP, the re-

moval of monomers from the parent polymers will result in daughter polymers with a

size that falls within the same section as the parent polymers, i.e., p
(0)
ii = 1, p

(0)
i,i+1 = 0

and p
(0)
ij = 0,∀ j | j > i+ 1 (Region 2 in Figure A.1(a)). The transition from the former

to the latter results in zero-birth contribution to a single section that falls in the inter-

mediary, i.e., p
(0)
ij = 0,∀ j (shaded in Figure A.1(a)). This occurs when the inequality

xi+1 − vm > xi+1/2 is fulfilled at the first instance. In addition, with a geometric mesh,

one can establish that xi+1 = rxi, xi+1/2 = (xi + xi+1)
/

2 and xi = xp+1r
i−(p+1). Substi-
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Figure A.1: Illustration of (a) failure in FVS formulation in polymer birth allocation
during chain-end scission, and (b) alternative polymer birth allocations based on the FPT
and the CAT formulations for chain-end scission.

tuting these into the inequality, the i-th section that has zero birth contribution can be

found as:

i =

⌈{[
ln

(
2vm
r − 1

)
− ln (p+ 1)

]/
ln (r)

}
+ p+ 1

⌉
; r ≤ 1.02 (A.20)

where the ceiling operator dZe denotes the nearest higher integer to Z. For r > 1.02, this

“loss of information” occurs at the first section in the continuous region. For the polymer

case examined in this work with a mesh configuration of [p, q] = [100, 500] and r = 1.0109,

this loss of information occurs at ∆x157. Theoretically, if the bulk of the initial polymer



A.5. CAT and FPT Solutions are Identical for Chain-End Scission 157

mass lies at regions below this zero-birth interval, this loss of information can be minimized

for the case of pure depolymerization. For an arbitrary initial polymer distribution,

theoretically this will require the i-th section that experiences the loss of information to

fulfil i→∞ in order for the bulk of the initial polymer mass to be adequately contained.

With the current FVS formulation, this is impractical as the condition i→∞ requires r

to approach unity, i.e., lim
r→1

i =∞. In this case, the FVS has no computational advantage

over the fully discrete solution.

A.5 CAT and FPT Solutions are Identical for

Chain-End Scission

This section shows that the CAT and the FPT yield an identical set of final equations for

chain-end scission. Recall that the polymer allocation function for the CAT is expressed

as:

ηCAT
ij =



p
(0)
i−1,j

(
v̄i−1 − xi−1

xi − xi−1

)
H(v̄i−1 − xi−1); for a = i− 1

p
(0)
ij

[(
v̄i − xi−1

xi − xi−1

)
H(xi − v̄i) +

(
v̄i − xi+1

xi − xi+1

)
H(v̄i − xi)

]
; for a = i

p
(0)
i+1,j

(
v̄i+1 − xi+1

xi − xi+1

)
H(xi+1 − v̄i+1); for a = i+ 1

(A.21)

In addition, the average polymer size that enters the i-th section is computed as:

v̄i =
Mi

Vi
=

I∑
j=i

p
(1)
ij

p
(0)
ij

(A.22)
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where p
(s)
ij =

∫ mi
j

xi−1/2
vsδ (v − [xj − vm]) dv for chain-end scission. In the discrete region,

where all the grid points are spaced one monomer unit apart, p
(0)
ii = 0, p

(0)
i,i+1 = 1 and

p
(0)
ij = 0, ∀ j | j > i+1, whereas p

(1)
ii = 0, p

(1)
i,i+1 = xi and p

(1)
ij = 0, ∀ j | j > i+1. Therefore,

this renders the average polymer size, v̄i = xi. Similarly, v̄i−1 = xi−1 and v̄i+1 = xi+1.

Imposing these average polymer sizes to Eq. (A.21), the polymer allocation function

reduces to ηCAT
ij = p

(0)
ij for a = i. It is known that p

(0)
i,i+1 = 1 and is zero for every other

values of j and consequently, the final ODE for the discrete region becomes:

dCi
dt

= kγi+1Ci+1 − kγi Ci; i = 2, 3, . . . , p (A.23)

Similarly, for the continuous region with a logical constraint that the grid points are

spaced more than vm units apart, the average polymer sizes can be computed following the

approach shown above as v̄i−1 = xi − vm, v̄i = xi+1 − vm and v̄i+1 = xi+2 − vm. Following

this, the polymer allocation function assumes the following form:

ηCAT
ij =


p

(0)
i−1,j

(
1− vm

xi − xi−1

)
; for a = i− 1

p
(0)
ij

(
vm

xi+1 − xi

)
; for a = i

(A.24)

Here, the p
(0)
i−1,i = 1, p

(0)
i,i+1 = 1 and are zero for every other values of j. Eventually, the

final ODE for the continuous region is given by the following expression:

dCi
dt

=

(
1− vm

xi − xi−1

)
kγi Ci +

(
vm

xi+1 − xi

)
kγi+1Ci+1 − kγi Ci;

i = p+ 2, p+ 3, . . . , p+ q − 1

(A.25)

For the last section of the discretized DP domain, the final ODE in Eq. (A.25) reduces
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to:

dCp+q
dt

=

(
1− vm

xp+q − xp+q−1

)
kγp+qCp+q − k

γ
p+qCp+q (A.26)

The final set of ODEs for the CAT for chain-end scission presented above in Eqs. (A.23),

(A.25), and (A.26) are identical to that of the FPT as presented in Appendix A.2. The

monomer equation is solved separately and is identical across all techniques, as given in

Eq. (3.3).

A.6 FVS and FPT Solutions are Identical for

Random Scission

As alluded to in Section 3.3.6, the FVS and the FPT yield identical set of equations for

random scission using a modified stoichiometric kernel that is a continuous analogue of

the discrete bond-breaking process, i.e., bα2 (v, xj) = 2/xj−1. Here, the proof is presented.

For the FVS, in conjunction with the new kernel, the intra-interval terms (i.e., i = j) are

eliminated and thus, the final form of the discretized FVS reduces to:

dCi
dt

=
I∑

j=i+1

ωb
j p

(0)
ij k

α
j Cj − ϕFVS

i kαi Ci; i = 2, 3, . . . , I (A.27)

where the birth weight allocation is:

ωb
j =

xj

(
j−1∑
i=1

p
(0)
ij − 1

)
j−1∑
i=1

(xj − xi)p(0)
ij

(A.28)
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Here, p
(0)
ij =

∫ xi+1/2

xi−1/2
2
/
xj−1 dv. Further, it can be showed that:

j−1∑
i=1

p
(0)
ij =

j−1∑
i=1

xi+1/2∫
xi−1/2

2
/
xj−1 dv

=

x(j−1)+1/2∫
x1−1/2

2
/
xj−1 dv

= 2

(
x(j−1)+1/2 − x1−1/2

xj−1

)
≈ 2

(A.29)

In arriving at the final form of Eq. (A.29), for the discrete region, x(j−1)+1/2 − x1−1/2 =

xj−1, whereas for the continuous region, the terms x(j−1)+1/2/xj−1 ≈ 1 and x1−1/2/xj−1 ≈

0. By the same reasoning, it is possible to write the following:

j−1∑
i=1

xip
(0)
ij =

j−1∑
i=1

xi

xi+1/2∫
xi−1/2

2
/
xj−1 dv

=

x(j−1)+1/2∫
x1−1/2

2v
/
xj−1 dv

= x(j−1)+1/2

(
x(j−1)+1/2

xj−1

)
− x1−1/2

(
x1−1/2

xj−1

)
≈ x(j−1)+1/2

(A.30)

Substituting the results from Eqs. (A.29) and (A.30) into Eq. (A.28), it can be shown

that for any values of j, the following holds:
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ωb
j =

xj
2xj − x(j−1)+1/2

=
1

2− x(j−1)+1/2/xj
≈ 1; ∵ (x(j−1)+1/2/xj ≈ 1)

(A.31)

Similarly, the death weight allocation also collapses to 1 for any values of i:

ϕFVS
i =

ωb
i

xi

i∑
j=1

xjp
(0)
ji

≈ 1

xi
(xi+1/2) ≈ 1

(A.32)

From the above, it follows that the final form of the discretized FVS is:

dCi
dt

=
I∑

j=i+1

p
(0)
ij k

α
j Cj − kαi Ci; i = 2, 3, . . . , I (A.33)

Written for the discrete and the continuous region and invoking p
(0)
ij =

∫ xi+1/2

xi−1/2
2
/
xj−1 dv =

2(xi+1/2 − xi−1/2)
/
xj−1, the final equations (excluding the monomer case) become:

dCi
dt

=

p+q∑
j=i+1

(
2

xj−1

)
kαj Cj − kαi Ci; i = 2, 3, . . . , p (A.34)

dCi
dt

=

p+q∑
j=i+1

2

xj−1

[
xi+1/2 − xi−1/2

]
kαj Cj − kαi Ci

=

p+q∑
j=i+1

2

xj−1

[
xi + xi+1

2
− xi−1 + xi

2

]
kαj Cj − kαi Ci

=

p+q∑
j=i+1

[
xi+1 + xi−1

xj−1

]
kαj Cj − kαi Ci;

i = p+ 1, p+ 2, . . . , p+ q − 1

(A.35)
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dCp+q
dt

= −kαp+qCp+q (A.36)

The final set of ODEs presented above is identical to the FPT as given in Appendix A.2.

The monomer equation is solved separately and is identical across all techniques, as given

in Eq. (3.4).



Appendix B

Formulation of Multi-Layered

Population Balance Model

B.1 Formulation of Multi-Layered Distributed

Cellulose Hydrolysis

As alluded to in Section 4.2.1, the particle size decreases as the cellulose polymers on the

surface are solubilized by the enzymes. At the same time, the cellulose polymers in the

adjacent layer are exposed to enzymes for hydrolysis. The rate of exposure of underlying

polymers and the rate of loss of polymers on the surface are interrelated through the

surface area across which the mass transfer occurs, i.e.,

r
(1)
exp,i(t)

r
(1)
loss,i(t)

=
A2(t)

A1(t)
(B.1)
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Figure B.1: Illustration of multi-layered cellulose ultrastructure undergoing progressive
hydrolysis.

where r
(1)
exp,i(t) is the total mass rate of exposure of underlying polymers and r

(1)
loss,i(t) is the

total mass rate of loss of polymers on the surface, whereas A1(t) and A2(t) are the surface

areas as represented in Figure B.1. Given the above, the total mass rate of exposure of

underlying polymers is:

r
(1)
exp,i(t) = −

[
R(t)−R0

R(t)

]
r

(1)
loss,i(t) (B.2)

In the above, the negative sign is added to reverse the sign of r
(1)
loss,i(t) in order to represent

the mass leaching into the surface layer from the underlying layer. Subsequently, Eq. (B.2)

can be re-written to express the molar rate of exposure of individual polymer species with

DP i as follows:

rexp,i(t) = −
[
R(t)−R0

R(t)

]
r

(1)
loss,i(t)ψi (B.3)

where ψi is the ratio of initial molar concentration of polymer species with DP i to the

total initial mass of polymers in the underlying layer. If the cellulose polymers are evenly

distributed across the layers, the ψi is taken as a time-independent constant. However,

in the case of heterogenous cellulose distributions across the layers (i.e., penetration and

internal zones), the ψi is formulated as a piecewise function of layers, l, which in turn is
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a function of the particle radius, R(t). The formulation of the ψi is further explored in

Appendix B.3 and B.5.

B.2 Sterically Hindered Competitive Enzyme

Adsorption

Provided that the adsorption/desorption of enzymes can be expressed in its elementary

form as:

Em
F + ϑ′

km
a←→
km

d

ϑ; m = CBH,EG (B.4)

where ϑ and ϑ′ are the fraction of occupied and unoccupied surface area, respectively, the

material balance for the fraction of occupied surface area is:

dϑ

dt
= km

a (1− ϑ)Cm
F − km

d ϑ; m = CBH,EG (B.5)

Here, Cm
F is the molar concentration of free enzymes, km

a and km
d are the adsorption

and desorption rate constants, respectively. The molar concentration of surface-adsorbed

enzymes can be derived as Cm
S (t) = σmϑ(t)S(t), where S(t) = 2nπLR(t) is the total

specific surface area of cellulose particles. Following this, Eq. (B.5) can be re-written to

express the mole balance of surface-adsorbed enzymes as:

dCm
S

dt
= km

a C
m
F [σmS(t)− Cm

S ]− km
d C

m
S ; m = CBH,EG (B.6)

With the above, the ML-PBM portrays the effect of enzyme crowding when the enzyme

loading exceeds the available surface area. Accordingly, the enzyme saturation concen-
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tration that induces enzyme crowding can be expressed in mg/g cellulose as:

Cm
sat =

S(t)σmMm

MT

; m = CBH,EG (B.7)

where Mm are the molecular weights of the enzymes. Similarly, Eq. (B.6) also portrays

the effect of competitive adsorption when more than one type of enzyme is employed with

differing footprints and adsorption rate constants.

B.3 Fixed Pivot Discretization of ML-PBM

Equations

As discussed in Chapter 3, FPT is employed to discretize the PBEs over a discrete-

continuous mesh. In the discrete-continuous domain implementation, p and q represents

the number of discrete and continuous points, respectively, producing a total of p + q

FPT-discretized breakage PBEs as follows:

dCi
dt

=

p+q∑
j=i

ηm
ijk

m
j Cj − km

i Ci; m = CBH,EG;

i = 1, 2, . . . , p, p+ 1, p+ 2, . . . , p+ q

(B.8)

where

ηm
ij =

xi+1∫
xi

(
xi+1 − v
xi+1 − xi

)
bm(v, xj) dv +

xi∫
xi−1

(
v − xi−1

xi − xi−1

)
bm(v, xj) dv;

m = CBH,EG

(B.9)
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Following Eq. (3.21), for the chain-end cellobiose scission of CBH, the stoichiometric

kernel is:

bCBH(v, xj) =

{
δ(v − 2); for DP = 2

δ(v − [xj − 2]); for DP > 2
(B.10)

Similarly, for the action of the EG, the random scission stoichiometric kernel, as defined

in Section 3.3.6, is:

bEG(v, xj) =
2

xj−1

(B.11)

In the discrete region, the grid points are spaced one monomer unit apart where x1 = 1

is the DP of a monomer and the last grid point in the continuous region, xp+q = N . In

this work, non-uniform geometric grids with a common ratio of r = (xp+q/xp+1)1/(q−1) are

employed for the continuous region to cater to a broad distribution of DP. In order to

have a smooth transition between the discrete and the continuous region, the choice of q

was constrained to:

q =

⌊
1 +

{
ln

(
N

p+ vm

)/
ln

(
1 +

vm
p+ vm

)}⌋
(B.12)

where the floor function bZc denotes the nearest lower integer to Z. Throughout this

work, p = 20 was used, where the total number of grids did not exceed p+q = 217 needed

for the largest N = 2 × 105 for α-cellulose. Accounting for all the species traced in the

ML-PBM, the total number of equations was no more than 5(p+ q)− 15 = 1070 ODEs.

Further information on the breakage PBM, derivation of FPT solutions and discrete-

continuous meshing convention are given by Ho et al. [54, 58, 59], as well as in Chapter

3/Appendix A. Here, the final implementable form of ML-PBM equations is presented:
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Soluble products:

dC1

dt
= kCBH

h CCBH
B,3 +

p+q∑
j=7

(
2

xj−1

)
kEG

h,j C
EG
B,j +

p+q∑
j=4

(
2

xj−1

)
kEG

h,j C
EG−CBH
B,j

+
6∑
j=3

(
2

xj−1

)
kEG

h′ C
EG
F Cj + 2kBG

h′ C
BG
F C2

(B.13)

dC2

dt
= kCBH

h CCBH
B,3 + 2kCBH

h CCBH
B,4 +

p+q∑
5

kCBH
h CCBH

B,j +

p+q∑
j=7

(
2

xj−1

)
kEG

h,j C
EG
B,j

+

p+q∑
j=4

(
2

xj−1

)
kEG

h,j C
EG−CBH
B,j +

6∑
j=3

(
2

xj−1

)
kEG

h′ C
EG
F Cj − kBG

h′ C
BG
F C2

(B.14)

dCi
dt

=

p+q∑
j=7

(
2

xj−1

)
kEG

h,j C
EG
B,j +

p+q∑
j=i+1

(
2

xj−1

)
kEG

h,j C
EG−CBH
B,j

+
6∑

j=i+1

(
2

xj−1

)
kEG

h′ C
EG
F Cj − kEG

h′ C
EG
F Ci; i = 3, 4, 5

(B.15)

dC6

dt
=

p+q∑
j=7

(
2

xj−1

)
kEG

h,j C
EG
B,j +

p+q∑
j=7

(
2

xj−1

)
kEG

h,j C
EG−CBH
B,j − kEG

h′ C
EG
F C6 (B.16)

CBH-polymer complex species:

dCCBH
B,3

dt
= kCBH

h CCBH
B,5 − kCBH

h CCBH
B,3 (B.17)

dCCBH
B,i

dt
= kCBH

h CCBH
B,i+2 + kEG

e CEG−CBH
B,i − kCBH

h CCBH
B,i − kEG

f,i C
EG
S CCBH

B,i ;

i = 4, 5, 6

(B.18)

dCCBH
B,i

dt
= kCBH

h CCBH
B,i+2 + kEG

e CEG−CBH
B,i + kCBH

f,i CCBH
S CS,i − kCBH

h CCBH
B,i

− kCBH
e CCBH

B,i − kEG
f,i C

EG
S CCBH

B,i ; i = 7, 8, . . . , p− 1

(B.19)



B.3. Fixed Pivot Discretization of ML-PBM Equations 169

dCCBH
B,i

dt
=

p+q∑
j=i

ηCBH
ij kCBH

h CCBH
B,j + kEG

e CEG−CBH
B,i + kCBH

f,i CCBH
S CS,i − kCBH

h CCBH
B,i

− kCBH
e CCBH

B,i − kEG
f,i C

EG
S CCBH

B,i ; i = p, p+ 1, . . . , p+ q

(B.20)

EG-polymer complex species:

dCEG
B,i

dt
= kEG

f,i C
EG
S CS,i − kEG

e CEG
B,i − kEG

h,i C
EG
B,i ; i = 7, 8, . . . , p+ q (B.21)

EG-CBH-polymer complex species:

dCEG−CBH
B,i

dt
= kEG

f,i C
EG
S CCBH

B,i − kEG
e CEG−CBH

B,i − kEG
h,i C

EG−CBH
B,i ; i = 4, 5, . . . , p+ q (B.22)

Surface-accessible polymers:

dCS,i

dt
= Closs,i + rexp,i; i = 7, 8, . . . , p+ q (B.23)

where

Closs,i (t) =

p+q∑
j=i+1

(
2

xj−1

)
kEG

h,j C
EG
B,j +

p+q∑
j=i+1

(
2

xj−1

)
kEG

h,j C
EG−CBH
B,j + kCBH

e CCBH
B,i

+ kEG
e CEG

B,i − kCBH
f,i CCBH

S CS,i − kEG
f,i C

EG
S CS,i; i = 7, 8, . . . , p

(B.24)

Closs,i (t) =

p+q∑
j=i+1

ηEG
ij k

EG
h,j C

EG
B,j +

p+q∑
j=i+1

ηEG
ij k

EG
h,j C

EG−CBH
B,j + kCBH

e CCBH
B,i + kEG

e CEG
B,i

− kCBH
f,i CCBH

S CS,i − kEG
f,i C

EG
S CS,i; i = p+ 1, p+ 2, . . . , p+ q

(B.25)
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rexp,i (t) = −
[
R (t)−R0

R (t)

][p+q∑
j=1

(162xj + 18) rloss,j (t)

]
ψi (l) ;

i = 7, 8, . . . , p+ q; l = 1, 2, . . . , lmax − 1; R (t) ≥ R0

(B.26)

rloss,i (t) = Closs,i +
dCCBH

B,i

dt
+
dCEG

B,i

dt
+
dCEG−CBH

B,i

dt
; i = 3, 4, . . . , p+ q (B.27)

ψi (l) =
Cint,il (0)∑p+q

j=1 (162xj + 18)Cint,jl (0)
;

i = 7, 8, . . . , p+ q; l = 1, 2, . . . , lmax − 1

(B.28)

Here, rexp,i(t) = 0 for R(t) < R0. For Eq. (B.26) and (B.28), the l =
⌈
R(t)

/
R0

⌉
− 1 where

the ceiling operator dZe denotes the nearest higher integer to Z.

Internal polymers:

dCint,i

dt
= rexp,i; i = 7, 8, . . . , p+ q (B.29)

Surface-adsorbed enzymes:

dCCBH
S

dt
= kCBH

a CCBH
F

(
σCBHS (t)− CCBH

S

)
+

p+q∑
i=7

kCBH
e CCBH

B,i − kCBH
d CCBH

S

−
p+q∑
i=7

kCBH
f,i CCBH

S CS,i

(B.30)

dCEG
S

dt
= kEG

a CEG
F

(
σEGS (t)− CEG

S

)
+

p+q∑
i=7

kEG
e CEG

B,i +

p+q∑
i=4

kEG
e CEG−CBH

B,i

− kEG
d CEG

S −
p+q∑
i=7

kEG
f,i C

EG
S CS,i −

p+q∑
i=4

kEG
f,i C

EG
S CCBH

B,i

(B.31)

CCBH
T = CCBH

F + CCBH
S +

p+q∑
i=3

CCBH
B,i +

p+q∑
i=7

CEG−CBH
B,i (B.32)
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CEG
T = CEG

F + CEG
S +

p+q∑
i=7

CEG
B,i +

p+q∑
i=7

CEG−CBH
B,i (B.33)

CBG
T = CBG

F (B.34)

For Eq. (B.25), the simplified form of the particle allocation function is given as ηEG
ij =

(xi+1− xi−1)
/
xj−1. Here, the molar concentrations of all the species are traced, where Ci

are the soluble oligomers, CCBH
B,i are the CBH-enzyme complexes, CEG

B,i are the EG-enzyme

complexes, CEG−CBH
B,i are the EG-CBH-enzyme complexes, CS,i are the surface polymers,

Cint,i are the total internal polymers beneath the surface, Cint,il are the internal polymers

in individual layers (specified by l) beneath the surface, rloss,i is the rate of loss of surface

polymers due to solubilization and rexp,i is the rate of exposure of internal polymers to the

surface. Subsequently, Cm
S are the surface-adsorbed enzymes, Cm

F are the free enzymes

in the solution and Cm
T are the total enzymes fed to the system, where m = CBH, EG

or BG. As alluded to in Section 4.2.1, during hydrolysis, the particle radius reduces with

time as the insoluble cellulose particle mass is lost through solubilization by the enzymes.

The ML-PBM equations above are conveniently associated with the cellulose structure

as:

R(t) =

√
MT −

∑N
i=1(162xi + 18)Ci(t)

nρπL
(B.35)

The rate coefficients in the equations above and the corresponding power law form as-

sumed in this work are summarized in Table B.1.
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Table B.1: Summary of rate coefficients and corresponding power law form.

Rate coefficients Power law form Remarks

kma , k
m
d Constant m = CBH, EG

kCBH
f kCBH

f (v) = kCBH
p,f /v Longer time is needed to locate the chain-ends of

longer chains [43].

kCBH
h Constant Subsite theory may not be applicable to the

hydrolysis of celluloses [186]. Also, there is a lack
of definitive evidence relating the intrinsic rate of
hydrolysis to the cellulose DP.

kEG
f

kEG
h

kEG
f (v) = kEG

p,f /v

kEG
h (v) = kEG

p,h/v

An implicit attempt to relate the rate coefficients
to the crystallinity via cellulose DP.

kmh′ Constant m = EG, BG

B.4 Modelling Initial Conditions

The ML-PBM equations collated in the preceding section in the form of ODEs can be

easily solved using appropriate commercial ODE solvers, given the appropriate initial

conditions. For ease of readability, the gamma distribution to represent the molar con-

centration density for each layer l is reproduced here:

cl(v, 0) =
κlΩ(v)∫ N

1
Ω(v) [(162v + 18)] dv

; Ω(v) =
vλ−1 exp (−v/φ)

φλΓ(λ)
(B.36)

where λ = M̄n

/
(M̄w − M̄n) and φ = M̄w − M̄n. The mass concentration of celluloses in

the individual layers is given as:

κl = nρπL[(2l − 1)R2
0]; l = 1, 2, . . . , lmax (B.37)

For surface polymers expressed by Eq. (B.23), the initial distribution is computed for

l = lmax and the parameters λ and φ follow the distribution of celluloses in the penetration
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zone. Likewise, for internal polymers expressed by Eq. (B.29), the initial distribution is

the sum of distribution of all the remaining layers in the penetration and the internal zone,

i.e.,
∑lmax−1

l=1 cl(v, 0). Here, the parameters λ and φ follow the distribution of celluloses

in the zone of the respective layers. The molar concentration density given here are

easily converted to molar concentration for use with the ODEs in the previous section by

applying the mean value theorem, i.e., Ci(t) =
∫ xi+1/2

xi−1/2
c(v, t) dv, where Ci(t) = ci(t) in the

discrete region.

B.5 Modelling Simplified Homogeneous Model

Appropriate changes can be made to the ML-PBM equations to form a simplified homo-

geneous model. First, Eq. (B.26) is altered to:

rexp,i (t) = −
[
R (t)−R0

R (t)

][p+q∑
j=1

(162xj + 18) rloss,j (t)

]
ψi;

i = 7, 8, . . . , p+ q; l = 1, 2, . . . , lmax − 1; R (t) ≥ R0

(B.38)

Unlike the ML-PBM, here ψi is no longer a function of l, but instead a time-independent

constant is assumed, given by:

ψi =
Cint,i (0)∑p+q

j=1 (162xj + 18)Cint,j (0)
; i = 7, 8, . . . , p+ q (B.39)

In tandem with the changes above in the model equations, the overall bimodal initial

distribution (obtained by superimposing two gamma distribution) is uniformly dispersed

throughout the cellulose particles. The initial mass concentration of the surface poly-

mers (Eq. (B.23)) and internal polymers (Eq. (B.29)) is derived from the geometry as
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MS = 2nρπLR0R(0) and MI = MT −MS, respectively.

B.6 Sensitivity Analysis and Parameter

Identifiability

Sensitivity and parameter identifiability analyses were done prior to parameter estimation.

Specifically, the methodology outlined by Brun et al. [173] was employed in this work.

Sensitivity analysis enables the rating of the parameters in the order of importance in

influencing the model outputs, whereas the collinearity indices (index of 20 or lower was

considered identifiable) were then used to narrow down the identifiable parameter subsets

with respect to the available data to avoid the effects of confounding parameters during

model calibration. Based on the two calculations, the model parameters with the least

sensitivities and poor identifiability were omitted from the model calibration exercise with

rational assumptions. This approach was also recommended by Sin et al. [187].

Figure B.2 shows the relative sensitivities of ML-PBM outputs to perturbation of

model parameters for different celluloses and enzyme cocktails. Specifically, cellobiose

concentration and overall conversion were chosen for this analysis as they are the most

common enzymatic hydrolysis descriptors in the literature. Throughout this work, the

conversion was evaluated based on the remaining amount of insoluble celluloses. In all

cases examined, rmass,P and Pzone significantly dictate the model outputs in addition to

the kinetic parameters. Obviously, the idea of a multi-layered cellulose structure with

distinct regions of different distributions and properties play a major role in influencing

the trend of enzymatic hydrolysis. In general, an increase in rmass,P positively affects
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Figure B.2: Relative sensitivities of ML-PBM outputs (cellobiose production and con-
version) to various parameters. The sensitivities are evaluated for hydrolysis of: (A)
Avicel by CBH based on the data given in Medve et al. [86], (B) α-cellulose by CBH and
BG, and (C) α-cellulose by CBH, BG and EG based on the data given in Nag et al. [85].
For (C), the EG-related parameters were evaluated whilst fixing the CBH and BG-related
parameters. A +20% perturbation was enforced for all parameters except for Pzone, where
an increment of 1 was employed. For case (A), results for the conversion have a similar
trend to that of cellobiose production.
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the rate and the extent of hydrolysis, whereas an increase in Pzone reduces the rate and

extent of hydrolysis. An increase in rmass,P indicates that the portion of short-chained and

more amorphous cellulose polymers is larger in the penetration zone where the enzymatic

actions are rapid, thus, leading to a faster and greater overall hydrolysis conversion.

The foregoing observation is also best explained in tandem with Eq. (4.17). A larger

rmass,P also indicates that the particle size is smaller resulting in numerous particles in the

reaction medium to account for the same mass, offering ample surface area for enzymatic

adsorption. Conversely, the increase in Pzone renders an increase in the initial particle size,

indicating a greater degree of microfibril aggregation (see Figure 4.1D), which effectively

reduces the surface area for enzymatic adsorption. The effect of the increase in Pzone on

conversion is only noticeable in later stages of the process after all the available surface

area has been crowded by the surface-adsorbed enzymes and the rate of exposure of new

polymers from the layers underneath is slower. On the contrary, when BG is included in

the enzyme cocktails, the effect of the increase in Pzone on cellobiose production is more

prominent at the peak of the cellobiose concentration profile.

Also in Figure B.2, km
I1,f

and km
I2,f

are the forward inhibition rate constants, whereas

km
I1,r

and km
I2,r

are the reverse inhibition rate constants for glucose and cellobiose, respec-

tively, where m = CBH, EG or BG. Well-known studies by Eriksson et al. [127] and Zhang

et al. [128] rejected product inhibition as the main reason for the drastic rate slowdown.

The enzymatic hydrolysis rate was observed to precipitously decline even when the strong

cellobiose inhibition was eliminated by adding excess BG enzymes [21,101,128,129]. Desai

and Converse [188] also observed that the enzymatic hydrolysis rate continued to decline

in the absence of product inhibition where hydrolysis was interrupted multiple times and

restarted with fresh buffer free from any soluble products from before. Therefore, one can
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deduce that product inhibition could not possibly be the main rate-limiting phenomenon

during enzymatic hydrolysis of celluloses. Here, the inhibition constants were included in

the analysis to show that they do not play a major role in dictating the model outputs.

The glucose inhibition on BG characterized by kBG
I1,f

and kBG
I1,r

are the exception, where a

considerable influence on cellobiose production is observed. However, the lack of transient

data for cellobiose in the literature [85] renders the inhibition rate constants poorly iden-

tifiable and thus, they were set to zero when calibrating against the overall conversion.

As the experimental data used in this study displays either hydrolysis with less than 10%

conversion (Figure 4.3, Figure 4.4, Figure 4.10) or hydrolysis without strong cellobiose

inhibition (by adding BG, Figure 4.5), the assumption to neglect product inhibition is

rationalized. In order to improve the identifiability of the inhibition rate constants in the

future, the model is best calibrated with experimental data of specific inhibition studies

with varying initial product concentrations in the reaction medium.

Similarly, enzyme-centric parameters (σm, km
a and km

d , where m = CBH, EG) have

little to no influence on the cellobiose concentration or conversion but their effect is

more noticeable in the concentration profile of surface-adsorbed enzymes at larger per-

turbations (not shown). The enzyme-centric parameters of CBH and EG were estimated

by calibrating the ML-PBM to the experimental adsorption data provided by Medve et

al. [86], where the estimated parameter values were retained for the rest of the ML-PBM

predictions with similar experimental conditions in this work.
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B.7 Model Parameter Estimation

Parameter estimation was performed systematically in stages. Enzyme-centric parameters

were estimated once with the hydrolysis data that comes equipped with enzyme adsorption

data such as in Figure 4.3. Here, the enzyme adsorption data is crucial for the estima-

tion of the enzyme-centric parameters as they are not sensitive to other model outputs

such as cellobiose concentration or overall conversion. Following this, the enzyme-centric

parameter values obtained were retained for other experimental cases without re-fitting.

Provided that the experimental conditions are similar, enzyme-centric parameters such

as enzyme footprints and adsorption/desorption rate constants should be global across

various data sets as they refer to the general structure of the enzymes and their adsorption

kinetics. On the other hand, when multiple data sets with different enzyme cocktails are

present, parameter estimation and validation was also done in stages.

First, the ML-PBM was calibrated to the experimental data from Bezerra et al. [87],

Bezerra and Dias [89], and Medve et al. [86], Nag et al. [85] and Eriksson et al. [127].

Subsequently, in order to demonstrate the predictive capability, the ML-PBM was vali-

dated against multiple data sets from the same literature with different initial cellulose

and enzyme loadings or with different types of celluloses. Cross-literature validation was

not performed as the physical properties of the commercial celluloses may vary between

different sources and batches [92]. The enzyme activities are also found to greatly vary

according to the source, degree and method of purification employed [189]. As for the

data provided by Nag et al. [85], the ML-PBM was first calibrated to the hydrolysis of

α-cellulose by CBH+BG enzyme cocktail. Subsequently, for the hydrolysis of α-cellulose

by CBH+BG+EG enzyme cocktail, only the EG-related parameters were calibrated while
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retaining the previously estimated parameters. Similarly, for the hydrolysis of HCC by

both enzyme cocktails above, only the substrate-related parameters of HCC were cali-

brated while fixing all the previously estimated parameters. For the results in Section

4.3.7, the ML-PBM was calibrated with the fully batch data from Eriksson et al. [127]

and validated with the fed-batch data from the same source. In general, a large number

of ML-PBM parameters were calibrated, validated and evaluated systematically in stages,

with one identifiable parameter subset at a time, leaving very little room for doubt on the

parameter compensation or confounding effects.

For clarity, the inputs and outputs for the ML-PBM calibration are summarized in

Figure B.3. The parameters were estimated by minimizing the objective function in the

Figure B.3: Overview of inputs and outputs for ML-PBM calibration.
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form of a weighted sum of squares of residuals, given as:

Jopt =
∑
i

Wi

{
(ŷi − yi)

T (ŷi − yi)
}

(B.40)

where i = cellobiose concentration, conversion and/or surface-adsorbed enzyme concen-

tration, ŷi is the vector of predicted model output, yi is the vector of experimental data

and Wi is the weight allocated to different model outputs. The minimization of the ob-

jective function was performed using the Genetic Algorithm of MATLAB® R2016a on a

workstation equipped with an Intel® Core™ i5-7200U processor with a clock speed of 2.50

GHz and 16 GB of installed memory (RAM). The ODEs are solved using the “ode15s”

sub-routine over a time span that covers the experimental data.



Appendix C

Formulation of Unified

Cybernetic-Population Balance

Model

C.1 Reduced Core Metabolic Network of C.

thermocellum

The genome-scale metabolic network of C. thermocellum provided by Thompson et al.

[155] is reduced to a manageable core network while retaining the crucial cellulosome

secretion component. The list of participating metabolic reactions and metabolites in the

reduced network are given in the following tables.

181
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Table C.1: List of participating reactions in reduced core metabolic network of C.
thermocellum under anaerobic conditions.

No. Reaction ID Equation∗ Lower
bound
flux†

Upper
bound
flux†

Subsystem

1 R R00004 c 2 Orthophosphate[C c] + 2 H+[C e] =>H2O[C c] + Diphosphate[C c] + 2
H+[C c]

0 1000 -

2 R R00014 c Pyruvate[C c] + Thiamin diphosphate[C c] + 2 H+[C c] =>CO2[C c] +
2-(alpha-Hydroxyethyl)thiamine diphosphate[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

3 R R00019 c 2 H+[C c] + 2 Reduced ferredoxin[C c] =>2 Oxidized ferredoxin[C c] +
Hydrogen[C c]

0 1000 Redox
metabolism

4 R R00206 c Diphosphate[C c] + AMP[C c] + Phosphoenolpyruvate[C c] =>ATP[C c] +
Orthophosphate[C c] + Pyruvate[C c] + H+[C c]

0 1000 Pyruvate
metabolism

5 R R00212 c CoA[C c] + Pyruvate[C c] =>Acetyl-CoA[C c] + Formate[C c] 0 1000 Pyruvate
metabolism

6 R R00216 c NADP+[C c] + (S)-Malate[C c] =>NADPH[C c] + CO2[C c] + Pyruvate[C c] 0 1000 Pyruvate
metabolism

7 R R00217 c Oxaloacetate[C c] + H+[C c] =>CO2[C c] + Pyruvate[C c] 0 1000 Pyruvate
metabolism

8 R R00228 c NADH[C c] + Acetyl-CoA[C c] + H+[C c] =>NAD+[C c] + CoA[C c] +
Acetaldehyde[C c]

0 1000 Pyruvate
Metabolism

9 R R00235 c ATP[C c] + CoA[C c] + Acetate[C c] =>Diphosphate[C c] + AMP[C c] +
Acetyl-CoA[C c]

0 1000 Pyruvate
Metabolism

10 R R00236 c AMP[C c] + Acetyl-CoA[C c] + H+[C c] =>CoA[C c] + Acetyl
adenylate[C c]

0 1000 Pyruvate
metabolism

11 R R00267 c NADP+[C c] + Isocitrate[C c] =>NADPH[C c] + CO2[C c] +
2-Oxoglutarate[C c] + H+[C c]

0 1000 Citrate
cycle
(TCA
cycle)

12 R R00268 c H+[C c] + Oxalosuccinate[C c] =>CO2[C c] + 2-Oxoglutarate[C c] 0 1000 Citrate
cycle
(TCA
cycle)

13 R R00315 c ADP[C c] + Acetyl phosphate[C c] =>ATP[C c] + Acetate[C c] 0 1000 Pyruvate
Metabolism

14 R R00316 c Diphosphate[C c] + Acetyl adenylate[C c] =>ATP[C c] + Acetate[C c] +
H+[C c]

0 1000 Pyruvate
metabolism

15 R R00344 c ATP[C c] + CO2[C c] + Pyruvate[C c] =>ADP[C c] + Orthophosphate[C c]
+ Oxaloacetate[C c] + H+[C c]

0 1000 Citrate
cycle
(TCA
cycle)

16 R R00351 c H2O[C c] + Acetyl-CoA[C c] + Oxaloacetate[C c] =>CoA[C c] + H+[C c] +
Citrate[C c]

0 1000 Citrate
cycle
(TCA
cycle)

17 R R00431 c CO2[C c] + GDP[C c] + Phosphoenolpyruvate[C c] =>Oxaloacetate[C c] +
GTP[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

18 R R00451 c H+[C c] + meso-2,6-Diaminoheptanedioate[C c] =>CO2[C c] + L-Lysine[C c] 0 1000 Lysine
biosynthe-
sis

19 R R00658 c 2-Phospho-D-glycerate[C c] <=>H2O[C c] + Phosphoenolpyruvate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

20 R R00703 c NADH[C c] + Pyruvate[C c] + H+[C c] =>NAD+[C c] + (S)-Lactate[C c] 0 1000 Glycolysis
/ Gluco-
neogenesis

21 R R00710 c H2O[C c] + NAD+[C c] + Acetaldehyde[C c] =>NADH[C c] + Acetate[C c]
+ H+[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

22 R R00711 c H2O[C c] + NADP+[C c] + Acetaldehyde[C c] =>NADPH[C c] +
Acetate[C c] + H+[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

23 R R00754 c NADH[C c] + H+[C c] + Acetaldehyde[C c] =>NAD+[C c] + Ethanol[C c] 0 1000 Glycolysis
/ Gluco-
neogenesis

Continued on next page
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Table C.1 – (continued)

No. Reaction ID Equation Lower
bound
flux

Upper
bound
flux

Subsystem

24 R R00948 c ATP[C c] + H+[C c] + D-Glucose 1-phosphate[C c] =>Diphosphate[C c] +
ADP-glucose[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

25 R R00952 c Orthophosphate[C c] + Cellobiose[C c] =>D-Glucose[C c] + D-Glucose
1-phosphate[C c]

0 1000 Cellulose
Metabolism

26 R R00959 c D-Glucose 1-phosphate[C c] <=>alpha-D-Glucose 6-phosphate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

27 R R01015 c D-Glyceraldehyde 3-phosphate[C c] <=>Glycerone phosphate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

28 R R01049 c ATP[C c] + D-Ribose 5-phosphate[C c] =>AMP[C c] + H+[C c] +
5-Phospho-alpha-D-ribose 1-diphosphate[C c]

0 1000 Pentose
phosphate
pathway

29 R R01056 c D-Ribose 5-phosphate[C c] <=>D-Ribulose 5-phosphate[C c] -1000 1000 Pentose
phosphate
pathway

30 R R01057 c alpha-D-Ribose 1-phosphate[C c] <=>D-Ribose 5-phosphate[C c] -1000 1000 Pentose
phosphate
pathway

31 R R01061 c NAD+[C c] + Orthophosphate[C c] + D-Glyceraldehyde 3-phosphate[C c]
<=>NADH[C c] + H+[C c] + 3-Phospho-D-glyceroyl phosphate[C c]

-1000 1000 Glycolysis
/ Gluco-
neogenesis

32 R R01082 c (S)-Malate[C c] <=>H2O[C c] + Fumarate[C c] -1000 1000 Citrate
cycle
(TCA
cycle)

33 R R01196 c CoA[C c] + Pyruvate[C c] + 2 Oxidized ferredoxin[C c] =>CO2[C c] +
Acetyl-CoA[C c] + 2 H+[C c] + 2 Reduced ferredoxin[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

34 R R01197 c CoA[C c] + 2-Oxoglutarate[C c] + 2 Oxidized ferredoxin[C c] =>CO2[C c] +
2 H+[C c] + Succinyl-CoA[C c] + 2 Reduced ferredoxin[C c]

0 1000 Citrate
cycle
(TCA
cycle)

35 R R01324 c Citrate[C c] <=>Isocitrate[C c] -1000 1000 -

36 R R01512 c ATP[C c] + 3-Phospho-D-glycerate[C c] =>ADP[C c] +
3-Phospho-D-glyceroyl phosphate[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

37 R R01518 c 2-Phospho-D-glycerate[C c] <=>3-Phospho-D-glycerate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

38 R R01529 c D-Ribulose 5-phosphate[C c] <=>D-Xylulose 5-phosphate[C c] -1000 1000 Pentose
phosphate
pathway

39 R R01600 c GTP[C c] + beta-D-Glucose[C c] =>GDP[C c] + beta-D-Glucose
6-phosphate[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

40 R R01899 c NADP+[C c] + Isocitrate[C c] =>NADPH[C c] + H+[C c] +
Oxalosuccinate[C c]

0 1000 Citrate
cycle
(TCA
cycle)

41 R R02073 c Diphosphate[C c] + beta-D-Fructose 6-phosphate[C c]
=>Orthophosphate[C c] + beta-D-Fructose 1,6-bisphosphate[C c]

0 1000 Fructose
and
mannose
metabolism

42 R R02739 c alpha-D-Glucose 6-phosphate[C c] <=>beta-D-Glucose 6-phosphate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

43 R R02740 c alpha-D-Glucose 6-phosphate[C c] =>beta-D-Fructose 6-phosphate[C c] 0 1000 Glycolysis
/ Gluco-
neogenesis

44 R R03321 c beta-D-Glucose 6-phosphate[C c] <=>beta-D-Fructose 6-phosphate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

45 R R04779 c ATP[C c] + beta-D-Fructose 6-phosphate[C c] =>ADP[C c] +
beta-D-Fructose 1,6-bisphosphate[C c]

0 1000 Glycolysis
/ Gluco-
neogenesis

Continued on next page
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Table C.1 – (continued)

No. Reaction ID Equation Lower
bound
flux

Upper
bound
flux

Subsystem

46 R R08572 c ATP[C c] + D-Glycerate[C c] =>ADP[C c] + 2-Phospho-D-glycerate[C c] 0 1000 Pentose
phosphate
pathway

47 R R05875 c NAD+[C c] + H+[C c] + 2 Reduced ferredoxin[C c] <=>NADH[C c] + 2
Oxidized ferredoxin[C c]

-1000 1000 Redox
metabolism

48 R R07181 c NADP+[C c] + Hydrogen[C c] <=>NADPH[C c] + H+[C c] -1000 1000 Redox
metabolism

49 R R09508 c NADH[C c] + 5 H+[C c] + 2 Reduced ferredoxin[C c] <=>NAD+[C c] + 2
Oxidized ferredoxin[C c] + 2 Hydrogen[C c]

-1000 1000 Redox
metabolism

50 R R OPM9r NADH[C c] + 2 NADP+[C c] + 2 Reduced ferredoxin[C c] <=>NAD+[C c]
+ 2 NADPH[C c] + 2 Oxidized ferredoxin[C c]

-1000 1000 Redox
metabolism

51 R R01070 c beta-D-Fructose 1,6-bisphosphate[C c] <=>Glycerone phosphate[C c] +
D-Glyceraldehyde 3-phosphate[C c]

-1000 1000 Glycolysis
/ Gluco-
neogenesis

52 R R00342 c NAD+[C c] + (S)-Malate[C c] <=>NADH[C c] + Oxaloacetate[C c] -1000 1000 Glycolysis
/ Gluco-
neogenesis

53 R R01517 c GTP[C c] + 3-Phospho-D-glycerate[C c] =>GDP[C c] +
3-Phospho-D-glyceroyl phosphate[C c]

-1000 1000 Glycolysis
/ Gluco-
neogenesis

54 R R01641 c D-Ribose 5-phosphate[C c] + D-Xylulose 5-phosphate[C c]
<=>D-Glyceraldehyde 3-phosphate[C c] + Sedoheptulose 7-phosphate[C c]

-1000 1000 Glycolysis
/ Gluco-
neogenesis

55 R R01829 c Sedoheptulose 7-phosphate[C c] <=>Glycerone phosphate[C c] +
D-Erythrose 4-phosphate[C c]

-1000 1000 -

56 R R01830 c D-Xylulose 5-phosphate[C c] + D-Erythrose 4-phosphate[C c]
<=>D-Glyceraldehyde 3-phosphate[C c] + beta-D-Fructose 6-phosphate[C c]

-1000 1000 -

57 R Glycogen Cycle 1 ADP-glucose[C c] =>ADP[C c] + H+[C c] + Glycogen[C c] 0 1000 -

58 R R DCW 0.5285 Protein[C c] + 0.026 DNA[C c] + 0.0655 RNA[C c] + 0.076 Lipid[C c]
+ 0.2242 Cell Wall[C c] + 0.00494 Solute Pool[C c] + 0.0304 Total LTA[C c]
+ 0.2 Cellulosome term[C c] =>Cell Dry Weight no GAM[C c]

0‡ 1000‡ Biomass
+ Protein
(no ATP)

59 R R BIO H2O[C c] + ATP[C c] + Cell Dry Weight no GAM[C c] =>ADP[C c] +
Orthophosphate[C c] + Biomass[C c]

0‡ 1000‡ Biomass
+ Protein
(w ATP)

60 R R MAINT H2O[C c] + ATP[C c] =>ADP[C c] + Orthophosphate[C c] + H+[C c] 3.27 3.27 Maintenance

61 R R Cellulosome 43.78 H2O[C c] + 43.78 ATP[C c] + 0.4317 L-Glutamate[C c] + 0.6373
Glycine[C c] + 0.5581 L-Alanine[C c] + 0.441 L-Lysine[C c] + 0.5523
L-Aspartate[C c] + 0.2365 L-Arginine[C c] + 0.1871 L-Glutamine[C c] +
0.4942 L-Serine[C c] + 0.1469 L-Methionine[C c] + 0.1718 L-Tryptophan[C c]
+ 0.2851 L-Phenylalanine[C c] + 0.3235 L-Tyrosine[C c] + 0.0665
L-Cysteine[C c] + 0.5329 L-Leucine[C c] + 0.1099 L-Histidine[C c] + 0.4823
L-Proline[C c] + 0.5523 L-Asparagine[C c] + 0.506 L-Valine[C c] + 0.5572
L-Threonine[C c] + 0.4739 L-Isoleucine[C c] =>43.78 ADP[C c] + 43.78
Orthophosphate[C c] + Cellulosome term[C c]

0§ 1000§ Cellulosome
Secretion

62 T c to e C00011 c CO2[C c] <=>CO2[C e] -1000 1000 CO2 out

63 T e to c C00185 c H2O[C c] + ATP[C c] + Cellobiose[C e] =>ADP[C c] + Orthophosphate[C c]
+ Cellobiose[C c]

0 1000 Cellobiose
in

64 T c to e C00469 c H+[C c] + Ethanol[C c] <=>Ethanol[C e] + H+[C e] -1000 1000 Ethanol
out

65 T c to e C00033 c Acetate[C c] + H+[C c] <=>Acetate[C e] + H+[C e] -1000 1000 Acetate
out

66 T c to e C00058 c Formate[C c] + H+[C c] <=>Formate[C e] + H+[C e] -1000 1000 Formate
out

67 T c to e C00186 c H+[C c] + (S)-Lactate[C c] <=>(S)-Lactate[C e] + H+[C e] -1000 1000 Lactate
out

68 T c to e C00282 c Hydrogen[C c] <=>Hydrogen[C e] -1000 1000 H2 out

69 T c to e C00022 c Pyruvate[C c] + H+[C c] <=>Pyruvate[C e] + H+[C e] -1000 1000 Pyruvate
out

70 T c to e C00042 c Succinate[C c] + H+[C c] <=>Succinate[C e] + H+[C e] -1000 1000 Succinate
out

71 T c to e m85 Biomass[C c] =>Biomass[C e] 0 1000 Biomass
+ Protein
out

72 T c to e C14710 c Isobutanol[C c] <=>Isobutanol[C e] -1000 1000 Isobutanol
out

73 R EXC OUT m90 Cellulosome term[C c] => 0 1000 Cellulosome
out

Continued on next page
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Table C.1 – (continued)

No. Reaction ID Equation Lower
bound
flux

Upper
bound
flux

Subsystem

74¶ R Lumped 1 H2O[C c] + ATP[C c] + NADH[C c] + NADPH[C c] + NH3[C c] +
Acetyl-CoA[C c] + Glycine[C c] + L-Alanine[C c] + GTP[C c] +
L-Lysine[C c] + L-Aspartate[C c] + L-Arginine[C c] + L-Glutamine[C c] +
L-Serine[C c] + L-Methionine[C c] + Phosphoenolpyruvate[C c] +
L-Tryptophan[C c] + L-Phenylalanine[C c] + H+[C c] + L-Tyrosine[C c] +
L-Cysteine[C c] + D-Glucose 1-phosphate[C c] + Glycerone phosphate[C c] +
5-Phospho-alpha-D-ribose 1-diphosphate[C c] + L-Leucine[C c] +
L-Histidine[C c] + Oxidized ferredoxin[C c] + 3-Methyl-2-oxobutanoic
acid[C c] + L-Proline[C c] + L-Asparagine[C c] + L-Valine[C c] +
L-Threonine[C c] + L-Isoleucine[C c] + meso-2,6-Diaminoheptanedioate[C c]
+ beta-D-Fructose 6-phosphate[C c] + Ca2+[C e] + Mg2+[C e] + K+[C e] +
Orthophosphate[C e] + Fe3+[C e] + Nicotinate D-ribonucleotide[C e]
=>NAD+[C c] + NADP+[C c] + ADP[C c] + Orthophosphate[C c] +
CoA[C c] + CO2[C c] + Diphosphate[C c] + AMP[C c] + L-Glutamate[C c]
+ GDP[C c] + Fumarate[C c] + Reduced ferredoxin[C c] + Protein[C c] +
DNA[C c] + RNA[C c] + Lipid[C c] + Cell Wall[C c] + Solute Pool[C c] +
Total LTA[C c]

0 1000 -

75 T c to e C00183 c H+[C c] + L-Valine[C c] <=>L-Valine[C e] + H+[C e] -1000 1000 Transport
between c
and e

76 T c to e C00082 c H+[C c] + L-Tyrosine[C c] <=>L-Tyrosine[C e] + H+[C e] -1000 1000 Transport
between c
and e

77 T c to e C00078 c L-Tryptophan[C c] + H+[C c] <=>L-Tryptophan[C e] + H+[C e] -1000 1000 Transport
between c
and e

78 T c to e C00188 c H+[C c] + L-Threonine[C c] <=>L-Threonine[C e] + H+[C e] -1000 1000 Transport
between c
and e

79 T c to e C00065 c L-Serine[C c] + H+[C c] <=>L-Serine[C e] + H+[C e] -1000 1000 Transport
between c
and e

80 T c to e C00148 c H+[C c] + L-Proline[C c] <=>L-Proline[C e] + H+[C e] -1000 1000 Transport
between c
and e

81 T c to e C00079 c L-Phenylalanine[C c] + H+[C c] <=>L-Phenylalanine[C e] + H+[C e] -1000 1000 Transport
between c
and e

82 T c to e C00073 c L-Methionine[C c] + H+[C c] <=>L-Methionine[C e] + H+[C e] -1000 1000 Transport
between c
and e

83 T c to e C00123 c H+[C c] + L-Leucine[C c] <=>L-Leucine[C e] + H+[C e] -1000 1000 Transport
between c
and e

84 T c to e C00135 c H+[C c] + L-Histidine[C c] <=>L-Histidine[C e] + H+[C e] -1000 1000 Transport
between c
and e

85 T c to e C00037 c Glycine[C c] + H+[C c] <=>Glycine[C e] + H+[C e] -1000 1000 Transport
between c
and e

86 T c to e C00064 c L-Glutamine[C c] + H+[C c] <=>L-Glutamine[C e] + H+[C e] -1000 1000 Transport
between c
and e

87 T c to e C00097 c H+[C c] + L-Cysteine[C c] <=>L-Cysteine[C e] + H+[C e] -1000 1000 Transport
between c
and e

88 T c to e C00049 c L-Aspartate[C c] + H+[C c] <=>L-Aspartate[C e] + H+[C e] -1000 1000 Transport
between c
and e

89 T c to e C00152 c H+[C c] + L-Asparagine[C c] <=>L-Asparagine[C e] + H+[C e] -1000 1000 Transport
between c
and e

90 T c to e C00062 c L-Arginine[C c] + H+[C c] <=>L-Arginine[C e] + H+[C e] -1000 1000 Transport
between c
and e

91 T c to e C00014 c H2O[C c] + ATP[C c] + NH3[C e] <=>ADP[C c] + Orthophosphate[C c] +
NH3[C c]

-1000 1000 Transport
between c
and e

92 R Glycogen Cycle 2 Orthophosphate[C c] + Glycogen[C c] =>D-Glucose 1-phosphate[C c] 0 1000 -

Continued on next page



186 Appendix C. Formulation of Unified Cybernetic-Population Balance Model

Table C.1 – (continued)

No. Reaction ID Equation Lower
bound
flux

Upper
bound
flux

Subsystem

93¶ R Lumped 2 NADPH[C c] + H+[C c] + Oxidized ferredoxin[C c] +
3-Methyl-2-oxobutanoic acid[C c] =>NADP+[C c] + CO2[C c] + Reduced
ferredoxin[C c] + Isobutanol[C c]

0 1000 -

94¶ R Lumped 3 NADH[C c] + Pyruvate[C c] + L-Serine[C c] + H+[C c] =>NAD+[C c] +
L-Alanine[C c] + D-Glycerate[C c]

-1000 1000 -

95¶ R Lumped 4 NADPH[C c] + Pyruvate[C c] + L-Glutamate[C c] + H+[C c] + L-Aspartate
4-semialdehyde[C c] =>H2O[C c] + NADP+[C c] + 2-Oxoglutarate[C c] +
meso-2,6-Diaminoheptanedioate[C c]

0 1000 -

96¶ R Lumped 5 NADPH[C c] + L-Glutamate[C c] + H+[C c] + Succinyl-CoA[C c] +
L-Aspartate 4-semialdehyde[C c] + 2-(alpha-Hydroxyethyl)thiamine
diphosphate[C c] =>NADP+[C c] + CoA[C c] + NH3[C c] +
2-Oxoglutarate[C c] + Succinate[C c] + Thiamin diphosphate[C c] +
L-Isoleucine[C c]

0 1000 -

97¶ R Lumped 6 H2O[C c] + ATP[C c] + 5-Phospho-alpha-D-ribose 1-diphosphate[C c]
=>ADP[C c] + Orthophosphate[C c] + Diphosphate[C c] + alpha-D-Ribose
1-phosphate[C c]

0 1000 -

98¶ R Lumped 7 ATP[C c] + NADPH[C c] + L-Aspartate[C c] + H+[C c] =>NADP+[C c] +
ADP[C c] + Orthophosphate[C c] + L-Aspartate 4-semialdehyde[C c]

0 1000 -

99 R R01214 c 2-Oxoglutarate[C c] + L-Valine[C c] <=>L-Glutamate[C c] +
3-Methyl-2-oxobutanoic acid[C c]

-1000 1000 Valine,
leucine
and
isoleucine
degrada-
tion

100 R R00230 c Orthophosphate[C c] + Acetyl-CoA[C c] <=>CoA[C c] + Acetyl
phosphate[C c]

-1000 1000 Taurine
and hy-
potaurine
metabolism

Table C.2: List of participating metabolites in reduced core metabolic network of C.
thermocellum under anaerobic conditions.

No. Metabolites Compartment∗ No.Metabolites Compartment∗

1 H2O C c 67 D-Erythrose 4-phosphate C c

2 ATP C c 68 Hydrogen C c

3 NAD+ C c 69 Isocitrate C c

4 NADH C c 70 L-Isoleucine C c

5 NADPH C c 71 L-Aspartate 4-semialdehyde C c

6 NADP+ C c 72 Ethanol C c

7 ADP C c 73 ADP-glucose C c

8 Orthophosphate C c 74 alpha-D-Ribose 1-phosphate C c

9 CoA C c 75 2-Phospho-D-glycerate C c

10 CO2 C c 76 alpha-D-Glucose 6-phosphate C c

11 Diphosphate C c 77 meso-2,6-Diaminoheptanedioate C c

12 NH3 C c 78 beta-D-Glucose 6-phosphate C c

13 AMP C c 79 2-(alpha-Hydroxyethyl)thiamine
diphosphate

C c

14 Pyruvate C c 80 beta-D-Fructose 6-phosphate C c

15 Acetyl-CoA C c 81 beta-D-Fructose 1,6-bisphosphate C c

16 L-Glutamate C c 82 Oxalosuccinate C c

17 2-Oxoglutarate C c 83 Acetyl adenylate C c

18 Acetate C c 84 Isobutanol C c

Continued on next page

∗Compartments: [C c] = Intracellular (cytosol), [C e] = Extracellular
†Flux (mmol gDW−1 h−1)
‡Biomass growth rate (1/h)
§Cellulosome secretion rate (g gDW−1 h−1)
¶Lumped reactions generated by NetworkReducer [161]
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Table C.2 – (continued)

No. Metabolites Compartment No.Metabolites Compartment

19 GDP C c 85 Sedoheptulose 7-phosphate C c

20 Oxaloacetate C c 86 Protein C c

21 Glycine C c 87 DNA C c

22 L-Alanine C c 88 RNA C c

23 Succinate C c 89 Lipid C c

24 GTP C c 90 Cell Wall C c

25 L-Lysine C c 91 Solute Pool C c

26 L-Aspartate C c 92 Biomass C c

27 Formate C c 93 Cell Dry Weight no GAM C c

28 L-Arginine C c 94 Total LTA C c

29 L-Glutamine C c 95 Cellulosome term C c

30 L-Serine C c 96 Glycogen C c

31 Thiamin diphosphate C c 97 NH3 C e

32 L-Methionine C c 98 CO2 C e

33 Phosphoenolpyruvate C c 99 Cellobiose C e

34 L-Tryptophan C c 100 Ca2+ C e

35 L-Phenylalanine C c 101 Mg2+ C e

36 H+ C c 102 K+ C e

37 L-Tyrosine C c 103 Orthophosphate C e

38 Acetaldehyde C c 104 Fe3+ C e

39 Succinyl-CoA C c 105 Nicotinate D-ribonucleotide C e

40 L-Cysteine C c 106 L-Arginine C e

41 D-Glucose 1-phosphate C c 107 L-Asparagine C e

42 Glycerone phosphate C c 108 L-Aspartate C e

43 D-Ribose 5-phosphate C c 109 L-Cysteine C e

44 D-Glyceraldehyde 3-phosphate C c 110 L-Glutamine C e

45 5-Phospho-alpha-D-ribose
1-diphosphate

C c 111 Glycine C e

46 Fumarate C c 112 L-Histidine C e

47 L-Leucine C c 113 L-Leucine C e

48 L-Histidine C c 114 L-Methionine C e

49 Reduced ferredoxin C c 115 L-Phenylalanine C e

50 Oxidized ferredoxin C c 116 L-Proline C e

51 3-Methyl-2-oxobutanoic acid C c 117 L-Serine C e

52 L-Proline C c 118 L-Threonine C e

53 (S)-Malate C c 119 L-Tryptophan C e

54 L-Asparagine C c 120 L-Tyrosine C e

55 Citrate C c 121 L-Valine C e

56 L-Valine C c 122 Ethanol C e

57 Cellobiose C c 123 Acetate C e

58 (S)-Lactate C c 124 Formate C e

59 L-Threonine C c 125 (S)-Lactate C e

60 3-Phospho-D-glycerate C c 126 Hydrogen C e

61 D-Ribulose 5-phosphate C c 127 Pyruvate C e

62 beta-D-Glucose C c 128 Succinate C e

63 Acetyl phosphate C c 129 Biomass C e

64 D-Xylulose 5-phosphate C c 130 Isobutanol C e

65 3-Phospho-D-glyceroyl phosphate C c 131 H+ C e

66 D-Glycerate C c
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C.2 EFV Lumping Scheme

The EFVs are lumped into primary EFV families by taking a weighted-average, where

the weightage is given as [37]:

(
Yi,j + εJ

j

)3neta
; i = csm, biom, atp; J = I, II (C.1)

Here, the indexes j and J are used to denote the individual EFVs and the principal

families of EFVs, respectively, and Yi,j is the yield of i-th metabolite of the j-th EFV.

The weightage prioritizes the EFVs with greater yield of reference product in the final

average, where the reference products for FI, FB
II and FA

II are the cellulosome, biomass and

ATP, respectively, on the basis of the grouping. The εJ
j is the correction factor to adjust

the flux distribution to the individual EFVs, whereas the neta controls the sensitivity of

the adjustment. In this work, the neta is set to the default value of unity (cf. Eq. (T1) –

(T3) in Figure 5.3) as there was adequate sensitivity to the adjustments. The correction

factor is given as [37]:

εJ
j =

∑
i

aJ
iYi,j; i = eth, lac, form, ace; J = I, II (C.2)

Here, aJi are the tuning coefficients for metabolites of interest (i = ethanol, lactate,

formate and acetate) that are estimated by minimizing the error between the model-

estimated lumped yields (Eq. (T4) in Figure 5.3) and the steady-state experimental yield

data from the literature. Table C.3 presents the optimal values of the tuning coefficients

estimated in this work.
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Table C.3: Estimated values of tuning coefficients, aJ
i (i = eth, lac, form, ace; J = I,

II) and the corresponding model-estimated lumped yields (Yi,J) of metabolites secreted
by C. thermocellum compared with experimental steady-state yield data. The yields
are presented in mole basis of cellobiose. Here, the yields of biomass are evaluated by
discounting the cellulase component from the yields of dry cell weights from the metabolic
networks.

EFV family
Metabolites, i

eth† lac† form† ace† biom‡ csm‡

FI(N20%) aIi –1.5441 1.5699 4.7301 −8.0586 n.a.∗ n.a.

Yi,I 1.2267 0.0269 0.5948 6.3832 0 51.8544

FII(N20%) aIIi –0.0020 –0.0079 −0.0091 0.0058 n.a. n.a.

Yi,II 0.5995 0.0239 0.6224 2.3739 21.8979 19.2621

FI(N2%) aIi –4.4672 4.5776 13.7881 –23.7054 n.a. n.a.

Yi,I 1.1855 0.0223 0.6044 6.3454 0 50.6977

FII(N2%) aIIi 3.6440 –2.6866 –9.4710 13.0979 n.a. n.a.

Yi,II 1.3920 0.0222 0.4708 5.9060 22.1441 7.9861

exp§ Y exp
i 0.7040 0.0239 0.5424 1.4517 20.9276¶

18.7429
2.3987¶

13.1085

C.3 UC-PBM Equations

C.3.1 ML-PBM Equations

In the ML-PBM, the FPT is employed to discretize the PBEs over a discrete-continuous

mesh. In this work, for Avicel cellulose population of relatively short polymer chains,

p = 20 was used and q was constrained to a function dependent on p and N . Detailed

∗n.a. - not applicable.
†Metabolites for which the tuning parameters are fitted to experimental yields.
‡Yields of biomass and cellulosome are expressed as g/mol, while the rest are mol/mol.
§Experimental steady-state yields are extracted from Holwerda et al. [172] and Zhang and Lynd [163].
¶Experimental steady-state yield when cellobiose is the sole carbon source.



190 Appendix C. Formulation of Unified Cybernetic-Population Balance Model

information on the solution technique and the ML-PBM can be found elsewhere (Chapter

3/Appendix A and Chapter 4/Appendix B). The final implementable form of the ML-

PBM equations are given here:

Soluble products:

dC1

dt
= kexo

h Cexo
B,3 +

p+q∑
j=7

(
2

xj−1

)
kendo

h Cendo
B,j +

p+q∑
j=4

(
2

xj−1

)
kendo

h Cendo−exo
B,j

+
6∑
j=3

(
2

xj−1

)
kendo

h′ Cendo
F Cj

(C.3)

dC2

dt
= kexo

h Cexo
B,3 + 2kexo

h Cexo
B,4 +

p+q∑
5

kexo
h Cexo

B,j +

p+q∑
j=7

(
2

xj−1

)
kendo

h Cendo
B,j

+

p+q∑
j=4

(
2

xj−1

)
kendo

h Cendo−exo
B,j +

6∑
j=3

(
2

xj−1

)
kendo

h′ Cendo
F Cj −X

∑
J

rJ

(C.4)

Here, the molar concentrations of glucose and cellobiose are represented by C1 = Cglu and

C2 = Ccb, respectively.

dCi
dt

=

p+q∑
j=7

(
2

xj−1

)
kendo

h Cendo
B,j +

p+q∑
j=i+1

(
2

xj−1

)
kendo

h Cendo−exo
B,j

+
6∑

j=i+1

(
2

xj−1

)
kendo

h′ Cendo
F Cj − kendo

h′ Cendo
F Ci; i = 3, 4, 5

(C.5)

dC6

dt
=

p+q∑
j=7

(
2

xj−1

)
kendo

h Cendo
B,j +

p+q∑
j=7

(
2

xj−1

)
kendo

h Cendo−exo
B,j − kendo

h′ Cendo
F C6 (C.6)

Exo-enzyme-polymer complex species:

dCexo
B,3

dt
= kexo

h Cexo
B,5 − kexo

h Cexo
B,3 (C.7)
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dCexo
B,i

dt
= kexo

h Cexo
B,i+2 + kendo

e Cendo−exo
B,i − kexo

h Cexo
B,i − kendo

f Cendo
S Cendo

B,i ; i = 4, 5, 6 (C.8)

dCexo
B,i

dt
= kexo

h Cexo
B,i+2 + kendo

e Cendo−exo
B,i + kexo

f,i C
exo
S CS,i − kexo

h Cexo
B,i − kexo

e Cexo
B,i

− kendo
f Cendo

S Cexo
B,i ; i = 7, 8, . . . , p− 1

(C.9)

dCexo
B,i

dt
=

p+q∑
j=i

ηexo
ij k

exo
h Cexo

B,j + kendo
e Cendo−exo

B,i + kexo
f,i C

exo
S CS,i − kexo

h Cexo
B,i − kexo

e Cexo
B,i

− kendo
f Cendo

S Cexo
B,i ; i = p, p+ 1, . . . , p+ q

(C.10)

Endo-enzyme-polymer complex species:

dCendo
B,i

dt
= kendo

f Cendo
S CS,i − kendo

e Cendo
B,i − kendo

h Cendo
B,i ; i = 7, 8, . . . , p+ q (C.11)

Endo-exo-enzyme-polymer complex species:

dCendo−exo
B,i

dt
= kendo

f Cendo
S Cexo

B,i −kendo
e Cendo−exo

B,i −kendo
h Cendo−exo

B,i ; i = 4, 5, . . . , p+q (C.12)

Surface-accessible polymers:

dCS,i

dt
= Closs,i + rexp,i; i = 7, 8, . . . , p+ q (C.13)

where

Closs,i(t) =

p+q∑
j=i+1

(
2

xj−1

)
kendo

h Cendo
B,j +

p+q∑
j=i+1

(
2

xj−1

)
kendo

h Cendo−exo
B,j + kexo

e Cexo
B,i

+ kendo
e Cendo

B,i − kexo
f,i C

exo
S CS,i − kendo

f Cendo
S CS,i; i = 7, 8, . . . , p

(C.14)
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Closs,i(t) =

p+q∑
j=i+1

ηendo
ij kendo

h Cendo
B,j +

p+q∑
j=i+1

ηendo
ij kendo

h Cendo−exo
B,j + kexo

e Cexo
B,i

+ kendo
e Cendo

B,i − kexo
f,i C

exo
S CS,i − kendo

f Cendo
S CS,i;

i = p+ 1, p+ 2, . . . , p+ q

(C.15)

rexp,i(t) = −
[
R(t)−R0

R(t)

] [p+q∑
j=1

(162xj + 18) rloss,j(t)

]
ψi(l);

i = 7, 8, . . . , p+ q; l = 1, 2, . . . , lmax − 1; R(t) ≥ R0

(C.16)

rloss,i(t) = Closs,i +
dCexo

B,i

dt
+
dCendo

B,i

dt
+
dCendo−exo

B,i

dt
; i = 3, 4, . . . , p+ q (C.17)

ψi(l) =
Cint,il(0)∑p+q

j=1 (162xj + 18)Cint,jl(0)
; i = 7, 8, . . . , p+ q; l = 1, 2, . . . , lmax − 1 (C.18)

Here, rexp,i(t) = 0 for R(t) < R0. For Eq. (C.16) and (C.18), the l =
⌈
R(t)

/
R0

⌉
− 1 where

the ceiling operator dZe denotes the nearest higher integer to Z

Internal polymers:

dCint,i

dt
= rexp,i; i = 7, 8, . . . , p+ q (C.19)

Surface-adsorbed enzymes:

dCexo
S

dt
= kexo

a Cexo
F (σexoS(t)− Cexo

S ) +

p+q∑
i=7

kexo
e Cexo

B,i − kexo
d Cexo

S −
p+q∑
i=7

kexo
f,i C

exo
S CS,i (C.20)

dCendo
S

dt
= kendo

a Cendo
F

(
σendoS(t)− Cendo

S

)
+

p+q∑
i=7

kendo
e Cendo

B,i +

p+q∑
i=4

kendo
e Cendo−exo

B,i

− kendo
d Cendo

S −
p+q∑
i=7

kendo
f Cendo

S CS,i −
p+q∑
i=4

kendo
f Cendo

S Cexo
B,i

(C.21)
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where S(t) = 2nπLR(t) and R(t) =

{[
MT −

N∑
i=1

(162xi + 18)Ci(t)

]/
nρπL

}1/2

.

Free enzymes:

Cexo
F = Cexo

T − Cexo
S −

p+q∑
i=3

Cexo
B,i −

p+q∑
i=7

Cendo−exo
B,i (C.22)

Cendo
F = Cendo

T − Cendo
S −

p+q∑
i=7

Cendo
B,i −

p+q∑
i=7

Cendo−exo
B,i (C.23)

Total enzymes:

Cexo
T (t) =

{
10.97Ccsm(t)

/
Mcsm; when C. thermocellum grown on cellulose

9.39Ccsm(t)
/
Mcsm; when C. thermocellum grown on cellobiose

Cendo
T (t) =

{
0.11Ccsm(t)

/
Mcsm; when C. thermocellum grown on cellulose

0.09Ccsm(t)
/
Mcsm; when C. thermocellum grown on cellobiose

(C.24)

where, Mcsm ≈ 1.73 MDa and 1.89 MDa are the molecular weights of the cellulosomes

when C. thermocellum is grown on cellulose and cellobiose, respectively.

C.3.2 L-HCM Equations

Intracellular enzymes:

deJ

dt
= αJ + UJr

kin
e,J − (βJ + µ) eJ; J = I, II (C.25)

Cellobiose uptake fluxes:

rJ = VJe
rel
J r

kin
J ; J = I, II (C.26)
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Metabolites:

dCi
dt

= X
II∑

J=I

Yi,JrJ; i = eth, lac, form, ace; J = I, II (C.27)

Biomass:

dX

dt
= Ybiom,IIrIIX (C.28)

Cellulosome:

dCcsm

dt
= αcsmX +X

∑
J

Ycsm,JrJ − βcsmCcsm (C.29)

Here, the balance of intracellular enzymes that catalyse the uptake of cellobiose to each

EFV family is given in Eq. (C.25), where αJ are the constitutive intracellular enzyme

synthesis rates, UJ are the cybernetic variables that control the levels of eJ, rkin
e,J are the

unregulated inducive intracellular enzyme synthesis rates and βJ are the enzyme decay

rates. The biomass growth rate is given as µ = Ybiom,IIrII considering only FII contributes

to biomass growth. Subsequently, the cellobiose uptake fluxes through the EFV families,

facilitated by the enzymes eJ is expressed in Eq. (C.26), where erel
J = eJ

/
emax

J are the

relative intracellular enzyme levels, emax
J are the maximum intracellular enzyme levels and

rkin
J are the unregulated cellobiose uptake fluxes. The derivation of the unregulated rkin

e,J

and rkin
J rates, as well as the derivation of the initial and maximum intracellular enzyme

levels necessary for implementation of the equations above are provided in Appendix C.4

and Appendix C.5, respectively.
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C.4 Cellobiose Phosphorylation Kinetics

The unregulated rates of cellobiose uptake and inducive intracellular enzyme synthesis

are derived using MM equation. Supported by vast majority of experimental findings in

the literature [148,174,175,190], the inhibitions of cellobiose phosphorylation by ethanol

and glucose are also included:

rkin
J = kmax

J

(
Ccb

KJ + Ccb

)(
1

1 + Cglu/Kinh−glu

)(
1

1 + Ceth/Kinh−eth

)
; J = I, II (C.30)

rkin
e,J = ke,J

(
Ccb

Ke,J + Ccb

)(
1

1 + Cglu/Kinh−glu

)(
1

1 + Ceth/Kinh−eth

)
; J = I, II (C.31)

Here, kmax
J and ke,J are the maximum cellobiose uptake and enzyme synthesis rates, re-

spectively, Ke,J and KJ are the MM-type saturation constants, Kinh−glu is the glucose

inhibition constant, and Kinh−eth is the ethanol inhibition constant. As ke,J and Ke,J ex-

hibit minimal sensitivity to the model outputs in the parametric analysis, it is assumed

that ke,I = ke,II and Ke,J = KJ for simplicity.

C.5 Initial and Maximum Intracellular Enzyme

Levels

For ease of readability, the intracellular enzyme level balance is reproduced here:

de

dt
= α+ D(U)rkin

e − [D(β) + µI]e (C.32)
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The maximum intracellular enzyme levels are derived by imposing a steady-state con-

dition over Eq. (C.32), where UJ is at maximum value of unity, the carbon source is

abundant (Ccb � Ke,J), inhibiting products are at the minimal level (Cglu � Kinh−glu,

Ceth � Kinh−eth), and the biomass growth rate is solely contributed by the J-th family

(µ = µJ). Imposing the above, rkin
e,J ≈ ke,J, and thus:

emax
J =

αJ + ke,J

βJ + µJ

; J = I, II (C.33)

Here, µI = 0 as FI does not contribute to biomass growth and µII = Ybiom,IIrII ≈ Ybiom,IIk
max
II .

Subsequently, the initial intracellular enzyme levels are calculated based on the pre-

culture history of the microorganism. Again, a steady-state condition is imposed over Eq.

(C.32), where no species other than the pre-culture carbon source exists:

eJ(0) =

αJ + UJke,J

(
Ccb−pc

Ke,J + Ccb−pc

)
βJ + µJ

; J = I, II (C.34)

Here, µI = 0, whereas µII = Ybiom,IIrII ≈ Ybiom,IIk
max
II (Ccb−pc

/
KII + Ccb−pc), Ccb−pc is the

pre-culture molar concentration of cellobiose and the cybernetic variable UJ is chosen

according to the pre-culture history:

U =

{
[1, 0]; if pre− culture substrate is pure cellulose

[0, 1]; if pre− culture substrate is pure cellobiose
(C.35)

Assuming that the pre-culture is at the incipient log phase, the condition above is schemed

such that the FI is fully activated in the presence of pure cellulose to allow rapid secretion

of cellulosomes to facilitate the saccharification or such that FII is fully activated to allow

direct biomass growth in the presence of pure fermentable cellobiose. All the experimental
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data employed in this study [163, 172] uses pure cellulose (Avicel) as the pre-culture

substrate for C. thermocellum.

C.6 Summary of Power Law Forms of the ML-PBM

Rate Coefficients

Power law form for the ML-PBM rate coefficients representing various enzyme-substrate

interactions should be chosen according to the characteristics of the specific cellulases in

question. As the complexed cellulase concoction secreted by C. thermocellum is vastly

different than the non-complex fungal cellulases (which was used as the basis for the ML-

PBM development), the power law form of the ML-PBM rate coefficients are modified

accordingly, as shown in Table C.4.

Table C.4: Summary of rate coefficients and corresponding power law form.

Rate coefficients Power law form Remarks

kma , k
m
d Constant m = exo, endo

kexof kexof (v) = kexop,f /v Longer time is needed to locate the chain-ends of
longer chains [43].

kexoh

kendof

kendoh

kendoh′

Constant Unlike fungal enzymes, hydrolysis of cellulose by
cellulases of C. thermocellum is unaffected by
cellulose structural properties like cellulose DP,
crystallinity and accessible surface area [117].
Also, C. thermocellum is observed to completely
solubilize various cellulosic substrates with little
to no hindrance [148,163,172].
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C.7 Model Parameter Estimation

The model parameters were estimated by minimizing the objective function in the form

of a weighted sum of squares of residuals:

Jopt =
∑
i

Wi

{
(ŷi − yi)

T (ŷi − yi)
}

(C.36)

Here, i denotes the data sets, ŷi is the vector of model-predicted output, yi is the vector

of experimental data and Wi is the weightage allocated to each data set. The sum of

squares of residuals are normalized by setting the weightage Wi to the inverse of the order

of magnitude formed at the initial setting. The minimization of the objective function was

performed using the Genetic Algorithm of MATLAB® R2016a on a workstation equipped

with an Intel® Core™ i5-7200U processor with a clock speed of 2.50 GHz and 16 GB of

installed memory (RAM). The ODEs are solved using the “ode15s” sub-routine over a

time span that covers the experimental data.
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MATLAB Codes

D.1 Simulation of Chain-End Monomer Scission

Main file:

1 close all; clear all; clc;

2

3 % General pre−simulation preparations

4

5 % Distribution settings

6

7 N = 22496; % Max DP

8 Ms t0 = 10; % Initial mass concentration, g/L

9 Mn = 4100; % Number−average DP

10 Mw = 5430; % Weight−average DP

11 alpha = Mn/(Mw−Mn);
12 beta = Mw−Mn;
13

14 vm = 1; % Size of monomer

15

16 % Discrete−continuous mesh

17

18 p = 100; % No. of pivots in discrete region

19 qmax = 1+(log(N/(p+1))/log(1+(vm/(p+1))));

199
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20 q = floor(qmax); % No. of pivots in continuous region

21 ratio = (N/(p+1))ˆ(1/(q−1)); % Ratio of geometric progression

22 % ratio = (N−(p+1))/(q−1); % Common diff of arithmetic progression

23

24 % Pivots for discrete−continuous mesh

25

26 x piv = zeros(p+q,1);

27

28 x piv(1:p) = 1:p;

29

30 for i = p+1:p+q

31 x piv(i) = (p+1)*ratioˆ(i−(p+1)); % Geometric mesh

32 % x piv(i) = (p+1)+(ratio*(i−(p+1))); % Arithmetic mesh

33 end

34

35 % Boundary points for discrete−continuous mesh

36

37 x bound = zeros(p+q+1,1);

38

39 x bound(1) = 0.5;

40

41 for i=2:p+q

42 x bound(i) = (x piv(i)+x piv(i−1))/2;
43 end

44

45 x bound(p+q+1)=x piv(p+q)+(x piv(p+q)−x bound(p+q));

46

47 % Fully discrete mesh

48

49 DP = 1:N;

50

51 % Initial distribution

52

53 P = @(x) ((((x−1)./beta).ˆ(alpha−1)).*exp(−(x−1)./beta))...
54 ./(beta*gamma(alpha)).*(((x.*162)+18)−180);
55

56 denom = integral(P,1,N);

57

58 c in = @(x) (Ms t0*((((x−1)./beta).ˆ(alpha−1)).*exp(−(x−1)./beta))...
59 ./(beta*gamma(alpha)))./denom;

60

61 % Initial molar concentrations − sectional techniques

62

63 C in mol = zeros(p+q,1);

64

65 for i=1:p+q

66 C in mol(i) = c in(x piv(i))*(x bound(i+1)−x bound(i));

67 end

68

69 % Initial molar concentrations − fully discrete

70

71 c in mol disc = zeros(N,1);

72

73 for i = 1:N;

74 c in mol disc(i) = c in(i);

75 end

76

77 % Rate kernel

78
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79 kp = 1; % Rate constant

80 m = 1; % m = 0 (constant), m = 1 (linear), m = 2 (quadratic)

81 k sec = kp*(x piv.ˆm);

82 k disc = kp*(DP'.ˆm);

83

84 % Solving ODEs

85

86 tstart = 0;

87 tfinal = 20;

88 tstep = 0.1;

89 tgrid = tstart:tstep:tfinal;

90

91 [t,C fpt,C cat,C fvs,c disc] = ChainEnd...

92 (p,q,N,vm,x piv,x bound,k sec,k disc,C in mol,c in mol disc,tgrid);

93

94 % Post−processing
95

96 % Molar concentration density

97

98 c fpt = zeros(size(C fpt));

99 c fvs = zeros(size(C fvs));

100 c cat = zeros(size(C cat));

101

102 for j = 1:length(x piv)

103 c fpt(:,j) = C fpt(:,j)/(x bound(j+1)−x bound(j));

104 c cat(:,j) = C cat(:,j)/(x bound(j+1)−x bound(j));

105 c fvs(:,j) = C fvs(:,j)/(x bound(j+1)−x bound(j));

106 end

107

108 % Moments

109

110 mom0 fpt = zeros(length(t),1);

111 mom0 cat = zeros(length(t),1);

112 mom0 fvs = zeros(length(t),1);

113 mom0 disc = zeros(length(t),1);

114

115 mom1 fpt = zeros(length(t),1);

116 mom1 cat = zeros(length(t),1);

117 mom1 fvs = zeros(length(t),1);

118 mom1 disc = zeros(length(t),1);

119

120 mom2 fpt = zeros(length(t),1);

121 mom2 cat = zeros(length(t),1);

122 mom2 fvs = zeros(length(t),1);

123 mom2 disc = zeros(length(t),1);

124

125 for i = 1:length(t)

126 mom0 fpt(i) = sum(C fpt(i,:));

127 mom1 fpt(i) = sum(x piv.*C fpt(i,:)');

128 mom2 fpt(i) = sum((x piv.ˆ2).*C fpt(i,:)');

129

130 mom0 cat(i) = sum(C cat(i,:));

131 mom1 cat(i) = sum(x piv.*C cat(i,:)');

132 mom2 cat(i) = sum((x piv.ˆ2).*C cat(i,:)');

133

134 mom0 fvs(i) = sum(C fvs(i,:));

135 mom1 fvs(i) = sum(x piv.*C fvs(i,:)');

136 mom2 fvs(i) = sum((x piv.ˆ2).*C fvs(i,:)');

137
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138 mom0 disc(i) = sum(c disc(i,:));

139 mom1 disc(i) = sum(DP'.*c disc(i,:)');

140 mom2 disc(i) = sum((DP'.ˆ2).*c disc(i,:)');

141 end

142

143 % Normalized moments

144

145 norm mom0 fpt = mom0 fpt./sum(C fpt(1,:));

146 norm mom0 cat = mom0 cat./sum(C cat(1,:));

147 norm mom0 fvs = mom0 fvs./sum(C fvs(1,:));

148 norm mom0 disc = mom0 disc./sum(c disc(1,:));

149

150 norm mom1 fpt = mom1 fpt./sum(x piv.*C fpt(1,:)');

151 norm mom1 cat = mom1 cat./sum(x piv.*C cat(1,:)');

152 norm mom1 fvs = mom1 fvs./sum(x piv.*C fvs(1,:)');

153 norm mom1 disc = mom1 disc./sum(DP'.*c disc(1,:)');

154

155 norm mom2 fpt = mom2 fpt./sum((x piv.ˆ2).*C fpt(1,:)');

156 norm mom2 cat = mom2 cat./sum((x piv.ˆ2).*C cat(1,:)');

157 norm mom2 fvs = mom2 fvs./sum((x piv.ˆ2).*C fvs(1,:)');

158 norm mom2 disc = mom2 disc./sum((DP'.ˆ2).*c disc(1,:)');

159

160 % Moments error

161

162 error mom0 fpt = zeros(length(t),1);

163 error mom1 fpt = zeros(length(t),1);

164 error mom2 fpt = zeros(length(t),1);

165

166 error mom0 cat = zeros(length(t),1);

167 error mom1 cat = zeros(length(t),1);

168 error mom2 cat = zeros(length(t),1);

169

170 error mom0 fvs = zeros(length(t),1);

171 error mom1 fvs = zeros(length(t),1);

172 error mom2 fvs = zeros(length(t),1);

173

174 for i = 1:length(t)

175 error mom0 fpt(i) = max(abs((mom0 disc(i)−mom0 fpt(i))/mom0 disc(i)));

176 error mom1 fpt(i) = max(abs((mom1 disc(i)−mom1 fpt(i))/mom1 disc(i)));

177 error mom2 fpt(i) = max(abs((mom2 disc(i)−mom2 fpt(i))/mom2 disc(i)));

178

179 error mom0 cat(i) = max(abs((mom0 disc(i)−mom0 cat(i))/mom0 disc(i)));

180 error mom1 cat(i) = max(abs((mom1 disc(i)−mom1 cat(i))/mom1 disc(i)));

181 error mom2 cat(i) = max(abs((mom2 disc(i)−mom2 cat(i))/mom2 disc(i)));

182

183 error mom0 fvs(i) = max(abs((mom0 disc(i)−mom0 fvs(i))/mom0 disc(i)));

184 error mom1 fvs(i) = max(abs((mom1 disc(i)−mom1 fvs(i))/mom1 disc(i)));

185 error mom2 fvs(i) = max(abs((mom2 disc(i)−mom2 fvs(i))/mom2 disc(i)));

186 end

187

188 % Error in initial mass due to discretization

189

190 E d = (sum(C in mol.*((162*x piv)+18))−Ms t0)/Ms t0;

191

192 % Non−dimensionalization
193

194 % ft = find(round(c disc(:,1),3)==round(0.99*max(c disc(:,1)),3));

195 % t99 = t(ft(1)); % Time when monomer reaches 99% of total monomers

196 t99 = 5;
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197 td = t./t99; % Dimensionless time

198

199 N0 = sum(c in mol disc);

200 x0 = sum(c in mol disc.*DP')/sum(c in mol disc);

201

202 c fpt d = c fpt.*(x0/N0); % Dimensionless population density

203 c cat d = c cat.*(x0/N0);

204 c fvs d = c fvs.*(x0/N0);

205 c disc d = c disc.*(x0/N0);

Function file:

1 function [t,C fpt,C cat,C fvs,c disc] = ChainEnd...

2 (p,q,N,vm,x piv,x bound,k sec,k disc,C in mol,c in mol disc,tgrid)

3

4 [t,C fpt] = fpt chain end(p,q,vm,x piv,x bound,k sec,C in mol,tgrid);

5 [t,C cat] = cat chain end(p,q,vm,x piv,x bound,k sec,C in mol,tgrid);

6 [t,C fvs] = fvs chain end(p,q,x piv,x bound,k sec,C in mol,tgrid);

7 [t,c disc] = disc chain end(N,k disc,c in mol disc,tgrid);

8

9 end

10

11 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12

13 function [t,C fpt] = fpt chain end(p,q,vm,x piv,x bound,k sec,C in mol,...

14 tgrid)

15

16 % Fixed pivot technique

17

18 % Particle allocation function

19

20 n = zeros(p+q,p+q);

21

22 n(1,2) = 2; n(1,3:end) = 1;

23

24 for i = 2:p+q

25 for j = i:p+q

26 if j==i && x piv(i)−vm>x piv(i−1)
27 n(i,j) = 1−(vm/(x piv(i)−x piv(i−1)));
28 elseif j==i && x piv(i)−vm==x piv(i−1)
29 n(i,j) = 0;

30 elseif j6=i && x piv(j)−vm>x piv(i) && x piv(j)−vm<x piv(i+1)

31 n(i,j) = vm/(x piv(i+1)−x piv(i));

32 elseif j6=i && x piv(j)−vm==x piv(i)

33 n(i,j) = 1;

34 end

35 end

36 n(i,i) = n(i,i)−1;
37 end

38

39 % ODE Solver

40

41 tic;

42
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43 options sec = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:(p+q),...
44 'Refine',8);

45

46 [t,C fpt] = ode15s(@(t,C) fpt ce ode(p,q,k sec,n,C),...

47 tgrid,C in mol,options sec);

48

49 time sim = '\nTotal time elapsed for FPT simulation is %.1f seconds.\n';
50

51 fprintf(time sim,toc)

52

53 end

54

55 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56

57 function diff func = fpt ce ode(p,q,k,n,C)

58

59 dCdt = zeros(length(n(:,1)),1);

60

61 dCdt(1) = n(1,2)*k(2)*C(2)+sum(n(1,3:end)'.*k(3:(end)).*C(3:(end)));

62

63 for i=2:p+q;

64 dCdt(i) = sum(n(i,:)'.*k.*C);

65 end

66

67 % Output

68

69 diff func = dCdt;

70

71 end

72

73 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74

75 function [t,C cat] = cat chain end(p,q,vm,x piv,x bound,k sec,C in mol,...

76 tgrid)

77

78 % Cell average technique

79

80 % Bi matrix − number of particles entering i

81

82 Bi = zeros(p+q,p+q);

83 Bi(1,2) = 2; Bi(1,3:end) = 1;

84

85 for i = 2:p+q−1
86 for j = i+1:p+q

87 if x piv(i)−vm>x bound(i)

88 Bi(i,i) = 1;

89 end

90 if x piv(j)−1>x bound(i) && x piv(j)−1<x bound(i+1)

91 Bi(i,j) = 1;

92 end

93 end

94 end

95

96 if x piv(p+q)−vm>x bound(p+q)

97 Bi(p+q,p+q) = 1;

98 end

99

100 % Vi matrix − mass of particles entering i

101
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102 Vi = zeros(p+q,p+q);

103

104 for i = 2:p+q−1
105 for j = i+1:p+q

106 if x piv(i)−vm>x bound(i)

107 Vi(i,i) = x piv(i)−vm;
108 end

109 if x piv(j)−vm>x bound(i) && x piv(j)−vm<x bound(i+1)

110 Vi(i,j) = x piv(j)−vm;
111 end

112 end

113 end

114

115 if x piv(p+q)−vm>x bound(p+q)

116 Vi(p+q,p+q) = x piv(p+q)−1;
117 end

118

119 % Average volume, v i

120

121 v i = zeros(p+q,1);

122

123 for i = 1:p+q

124 if sum(Bi(i,:))==0||sum(Vi(i,:))==0
125 v i(i) = 0;

126 else

127 v i(i) = sum(Vi(i,:))/sum(Bi(i,:));

128 end

129 end

130

131 % ODE Solver

132

133 tic;

134

135 options sec = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:(p+q),...
136 'Refine',8);

137

138 [t,C cat] = ode15s(@(t,C) cat ce ode(p,q,Bi,v i,k sec,C,x piv),...

139 tgrid,C in mol,options sec);

140

141 time sim = '\nTotal time elapsed for CAT simulation is %.1f seconds.\n';
142

143 fprintf(time sim,toc)

144

145 end

146

147 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
148

149 function diff func = cat ce ode(p,q,Bi,v i,k sec,C,x piv)

150

151 dCdt = zeros(p+q,1);

152

153 dCdt(1) = 2*k sec(2)*C(2)+sum(k sec(3:end).*C(3:end));

154

155 for i = 2:p−1
156 dCdt(i) = sum(Bi(i−1,:)'.*k sec.*C).*(forw(v i(i−1),x piv,i)...

157 *heav(v i(i−1),x piv(i−1)))+...
158 sum(Bi(i,:)'.*k sec.*C).*(forw(v i(i),x piv,i)...

159 *heav(x piv(i),v i(i)))+...

160 sum(Bi(i,:)'.*k sec.*C).*(back(v i(i),x piv,i)...
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161 *heav(v i(i),x piv(i)))+...

162 sum(Bi(i+1,:)'.*k sec.*C).*(back(v i(i+1),x piv,i)...

163 *heav(x piv(i+1),v i(i+1)))−...
164 k sec(i)*C(i);

165 end

166

167 for i = p

168 dCdt(i) = sum(Bi(i−1,:)'.*k sec.*C).*(forw(v i(i−1),x piv,i)...

169 *heav(v i(i−1),x piv(i−1)))+...
170 sum(Bi(i,:)'.*k sec.*C).*(forw(v i(i),x piv,i)...

171 *heav(x piv(i),v i(i)))+...

172 sum(Bi(i,:)'.*k sec.*C).*(back(v i(i),x piv,i)...

173 *heav(v i(i),x piv(i)))+...

174 sum(Bi(i+1,:)'.*k sec.*C).*(back(v i(i+1),x piv,i)...

175 *heav(x piv(i+1),v i(i+1)))−...
176 k sec(i)*C(i);

177 end

178

179 for i = p+1

180 dCdt(i) = sum(Bi(i−1,:)'.*k sec.*C).*(forw(v i(i−1),x piv,i)...

181 *heav(v i(i−1),x piv(i−1)))+...
182 sum(Bi(i,:)'.*k sec.*C).*(forw(v i(i),x piv,i)...

183 *heav(x piv(i),v i(i)))+...

184 sum(Bi(i,:)'.*k sec.*C).*(back(v i(i),x piv,i)...

185 *heav(v i(i),x piv(i)))+...

186 sum(Bi(i+1,:)'.*k sec.*C).*(back(v i(i+1),x piv,i)...

187 *heav(x piv(i+1),v i(i+1)))−...
188 k sec(i)*C(i);

189 end

190

191 for i = p+2:p+q−1
192 dCdt(i) = sum(Bi(i−1,:)'.*k sec.*C).*(forw(v i(i−1),x piv,i)...

193 *heav(v i(i−1),x piv(i−1)))+...
194 sum(Bi(i,:)'.*k sec.*C).*(forw(v i(i),x piv,i)...

195 *heav(x piv(i),v i(i)))+...

196 sum(Bi(i,:)'.*k sec.*C).*(back(v i(i),x piv,i)...

197 *heav(v i(i),x piv(i)))+...

198 sum(Bi(i+1,:)'.*k sec.*C).*(back(v i(i+1),x piv,i)...

199 *heav(x piv(i+1),v i(i+1)))−...
200 k sec(i)*C(i);

201 end

202

203 dCdt(p+q) = sum(Bi(p+q−1,:)'.*k sec.*C).*(forw(v i(p+q−1),x piv,p+q)...

204 *heav(v i(p+q−1),x piv(p+q−1)))+...
205 sum(Bi(p+q,:)'.*k sec.*C).*(forw(v i(p+q),x piv,p+q)...

206 *heav(x piv(p+q),v i(p+q)))−...
207 k sec(p+q)*C(p+q);

208

209 % Output

210

211 diff func = dCdt;

212

213 end

214

215 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
216

217 function heav func = heav(v,x)

218

219 if v−x > 0
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220 output = 1;

221 elseif v−x == 0

222 output = 0.5;

223 else

224 output = 0;

225 end

226

227 % Output

228

229 heav func = output;

230

231 end

232

233 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
234

235 function forward = forw(v,x,i)

236

237 % Output

238

239 forward = (v−x(i−1))/(x(i)−x(i−1));
240

241 end

242

243 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
244

245 function backward = back(v,x,i)

246

247 % Output

248

249 backward = (v−x(i+1))/(x(i)−x(i+1));
250

251 end

252

253 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
254

255 function [t,C fvs] = fvs chain end(p,q,x piv,x bound,k sec,C in mol,tgrid)

256

257 % Finite volume scheme

258

259 % Integrals, p ij = p ji

260

261 int 1 = zeros(p+q,p+q);

262 int 1(1,2:end) = 1;

263

264 for i = 1:p+q

265 for j = i:p+q

266 if i==j

267 if x piv(i)−1>x bound(i)

268 int 1(i,j) = 1;

269 end

270 else

271 if x piv(j)−1>x bound(i) && x piv(j)−1<x bound(i+1)

272 int 1(i,j) = 1;

273 end

274 end

275 end

276 end

277

278 % Birth weight
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279

280 w b = zeros(p+q,1);

281

282 for i = 1:p+q

283 j = 1:i;

284 mat = int 1(1:i,i);

285 xxi = zeros(length(j),1); xxi(:) = x piv(i);

286 w b(i) = (x piv(i)*(sum(mat(:))−1))/sum((xxi−x piv(j))'*mat);

287 end

288

289 % Death weight

290

291 w d = zeros(p+q,1);

292

293 for i = 1:p+q

294 j = 1:i;

295 mat = int 1(1:i,i);

296 w d(i) = (w b(i)*sum(x piv(j)'*mat))/x piv(i);

297 end

298

299 w b(1) = 0; w d(1) = 0;

300

301 % ODE solver

302

303 tic;

304

305 options sec = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:(p+q),...
306 'Refine',8);

307

308 [t,C fvs] = ode15s(@(t,C) fvs ce ode(p,q,k sec,C,w b,int 1,w d),...

309 tgrid,C in mol,options sec);

310

311 time sim = '\nTotal time elapsed for FVS simulation is %.1f seconds.\n';
312

313 fprintf(time sim,toc)

314

315 end

316

317 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
318

319 function diff func = fvs ce ode(p,q,k sec,C,w b,int 1,w d)

320

321 dCdt = zeros(p+q,1);

322

323 dCdt(1) = 2*k sec(2)*C(2)+sum(k sec(3:end).*C(3:end));

324

325 for i = 2:p+q

326 dCdt(i) = sum(w b(i:end).*k sec(i:end).*C(i:end).*int 1(i,i:end)')...

327 −w d(i)*k sec(i)*C(i);

328 end

329

330 % Output

331

332 diff func = dCdt;

333

334 end

335

336 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
337
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338 function [t,c disc] = disc chain end(N,k disc,c in mol disc,tgrid)

339

340 % Fully discrete solution

341

342 % Jacobian matrix

343

344 jacobian = zeros(N,N);

345 jacobian(1,2) = 2*k disc(2);

346 jacobian(1,3:end) = k disc(3:end);

347 jacobian(end,end) = −k disc(N);

348

349 for i = 2:N−1
350 jacobian(i,i) = −k disc(i);

351 jacobian(i,i+1) = k disc(i+1);

352 end

353

354 jacobian = sparse(jacobian);

355

356 % ODE solver

357

358 tic;

359

360 options disc = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:N,...
361 'Refine',8,'jacobian',jacobian);

362

363 [t,c disc] = ode15s(@(t,C) disc ce ode(N,C,k disc),tgrid,...

364 c in mol disc,options disc);

365

366 time sim =...

367 '\nTotal time elapsed for fully discrete simulation is %.1f seconds.\n';
368

369 fprintf(time sim,toc)

370

371 end

372

373 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
374

375 function diff func = disc ce ode(N,C,k disc)

376

377 dCdt = zeros(N,1);

378

379 dCdt(1)= 2*k disc(2)*C(2)+sum(k disc(3:N).*C(3:N));

380

381 for i = 2:(N−1);
382 dCdt(i) = k disc(i+1)*C(i+1)−k disc(i)*C(i);

383 end

384

385 dCdt(N) = −k disc(N)*C(N);

386

387 % Output

388 diff func = dCdt;

389

390 end
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D.2 Simulation of Random Scission

Main file:

1 close all; clear all; clc;

2

3 % General pre−simulation preparations

4

5 % Distribution settings

6

7 N = 22496; % Max DP

8 Ms t0 = 10; % Initial mass concentration in g/L

9 Mn = 4100; % Number−average DP

10 Mw = 5430; % Weight−average DP

11 alpha = Mn/(Mw−Mn);
12 beta = Mw−Mn;
13

14 % Discrete−continuous mesh

15

16 p = 10; % No. of pivots in discrete region

17 q = 50; % No. of pivots in continuous region

18 ratio = (N/(p+1))ˆ(1/(q−1)); % Ratio of geometric progression

19 % ratio = (N−(p+1))/(q−1); % Common diff of arithmetic progression

20

21 vm = 1; % Size of monomer

22

23 % Pivots for discrete−continuous mesh

24

25 x piv = zeros(p+q,1);

26

27 x piv(1:p) = 1:p;

28

29 for i = p+1:p+q

30 x piv(i) = (p+1)*ratioˆ(i−(p+1)); % Geometric mesh

31 % x piv(i) = (p+1)+(ratio*(i−(p+1))); % Arithmetic mesh

32 end

33

34 % Boundary points for discrete−continuous mesh

35

36 x bound = zeros(p+q+1,1);

37

38 x bound(1) = 0.5;

39

40 for i=2:p+q

41 x bound(i) = (x piv(i)+x piv(i−1))/2;
42 end

43

44 x bound(p+q+1)=x piv(p+q)+(x piv(p+q)−x bound(p+q));

45

46 % Fully discrete mesh

47

48 DP = 1:N;
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49

50 % Initial distribution

51

52 P = @(x) ((((x−1)./beta).ˆ(alpha−1)).*exp(−(x−1)./beta))...
53 ./(beta*gamma(alpha)).*(((x.*162)+18)−180);
54

55 denom = integral(P,1,N);

56

57 c in = @(x) (Ms t0*((((x−1)./beta).ˆ(alpha−1)).*exp(−(x−1)./beta))...
58 ./(beta*gamma(alpha)))./denom;

59

60 % Initial molar concentrations − sectional techniques

61

62 C in mol = zeros(p+q,1);

63

64 for i=1:p+q

65 C in mol(i) = c in(x piv(i))*(x bound(i+1)−x bound(i));

66 end

67

68 % Initial molar concentrations − fully discrete

69

70 c in mol disc = zeros(N,1);

71

72 for i = 1:N;

73 c in mol disc(i) = c in(i);

74 end

75

76 % Rate kernel

77

78 kp = 1; % Rate constant

79 m = 1; % m = 0 (constant), m = 1 (linear), m = 2 (quadratic)

80 k sec = kp*(x piv.ˆm);

81 k disc = kp*(DP'.ˆm);

82

83 % Solving ODEs

84

85 tstart = 0;

86 tfinal = 10;

87 tstep = 0.1;

88 tgrid = tstart:tstep:tfinal;

89

90 [t,C fpt,C cat,C fvs,c disc] = RandomScission...

91 (p,q,N,x piv,x bound,k sec,k disc,C in mol,c in mol disc,tgrid);

92

93 % Post−processing
94

95 % Molar concentration density

96

97 c fpt = zeros(size(C fpt));

98 c fvs = zeros(size(C fvs));

99 c cat = zeros(size(C cat));

100

101 for j = 1:length(x piv)

102 c fpt(:,j) = C fpt(:,j)/(x bound(j+1)−x bound(j));

103 c cat(:,j) = C cat(:,j)/(x bound(j+1)−x bound(j));

104 c fvs(:,j) = C fvs(:,j)/(x bound(j+1)−x bound(j));

105 end

106

107 % Moments
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108

109 mom0 fpt = zeros(length(t),1);

110 mom0 cat = zeros(length(t),1);

111 mom0 fvs = zeros(length(t),1);

112 mom0 disc = zeros(length(t),1);

113

114 mom1 fpt = zeros(length(t),1);

115 mom1 cat = zeros(length(t),1);

116 mom1 fvs = zeros(length(t),1);

117 mom1 disc = zeros(length(t),1);

118

119 mom2 fpt = zeros(length(t),1);

120 mom2 cat = zeros(length(t),1);

121 mom2 fvs = zeros(length(t),1);

122 mom2 disc = zeros(length(t),1);

123

124 for i = 1:length(t)

125 mom0 fpt(i) = sum(C fpt(i,:));

126 mom1 fpt(i) = sum(x piv.*C fpt(i,:)');

127 mom2 fpt(i) = sum((x piv.ˆ2).*C fpt(i,:)');

128

129 mom0 cat(i) = sum(C cat(i,:));

130 mom1 cat(i) = sum(x piv.*C cat(i,:)');

131 mom2 cat(i) = sum((x piv.ˆ2).*C cat(i,:)');

132

133 mom0 fvs(i) = sum(C fvs(i,:));

134 mom1 fvs(i) = sum(x piv.*C fvs(i,:)');

135 mom2 fvs(i) = sum((x piv.ˆ2).*C fvs(i,:)');

136

137 mom0 disc(i) = sum(c disc(i,:));

138 mom1 disc(i) = sum(DP'.*c disc(i,:)');

139 mom2 disc(i) = sum((DP'.ˆ2).*c disc(i,:)');

140 end

141

142 % Normalized moments

143

144 norm mom0 fpt = mom0 fpt./sum(C fpt(1,:));

145 norm mom0 cat = mom0 cat./sum(C cat(1,:));

146 norm mom0 fvs = mom0 fvs./sum(C fvs(1,:));

147 norm mom0 disc = mom0 disc./sum(c disc(1,:));

148

149 norm mom1 fpt = mom1 fpt./sum(x piv.*C fpt(1,:)');

150 norm mom1 cat = mom1 cat./sum(x piv.*C cat(1,:)');

151 norm mom1 fvs = mom1 fvs./sum(x piv.*C fvs(1,:)');

152 norm mom1 disc = mom1 disc./sum(DP'.*c disc(1,:)');

153

154 norm mom2 fpt = mom2 fpt./sum((x piv.ˆ2).*C fpt(1,:)');

155 norm mom2 cat = mom2 cat./sum((x piv.ˆ2).*C cat(1,:)');

156 norm mom2 fvs = mom2 fvs./sum((x piv.ˆ2).*C fvs(1,:)');

157 norm mom2 disc = mom2 disc./sum((DP'.ˆ2).*c disc(1,:)');

158

159 % Moments error

160

161 error mom0 fpt = zeros(length(t),1);

162 error mom1 fpt = zeros(length(t),1);

163 error mom2 fpt = zeros(length(t),1);

164

165 error mom0 cat = zeros(length(t),1);

166 error mom1 cat = zeros(length(t),1);



D.2. Simulation of Random Scission 213

167 error mom2 cat = zeros(length(t),1);

168

169 error mom0 fvs = zeros(length(t),1);

170 error mom1 fvs = zeros(length(t),1);

171 error mom2 fvs = zeros(length(t),1);

172

173 for i = 1:length(t)

174 error mom0 fpt(i) = max(abs((mom0 disc(i)−mom0 fpt(i))/mom0 disc(i)));

175 error mom1 fpt(i) = max(abs((mom1 disc(i)−mom1 fpt(i))/mom1 disc(i)));

176 error mom2 fpt(i) = max(abs((mom2 disc(i)−mom2 fpt(i))/mom2 disc(i)));

177

178 error mom0 cat(i) = max(abs((mom0 disc(i)−mom0 cat(i))/mom0 disc(i)));

179 error mom1 cat(i) = max(abs((mom1 disc(i)−mom1 cat(i))/mom1 disc(i)));

180 error mom2 cat(i) = max(abs((mom2 disc(i)−mom2 cat(i))/mom2 disc(i)));

181

182 error mom0 fvs(i) = max(abs((mom0 disc(i)−mom0 fvs(i))/mom0 disc(i)));

183 error mom1 fvs(i) = max(abs((mom1 disc(i)−mom1 fvs(i))/mom1 disc(i)));

184 error mom2 fvs(i) = max(abs((mom2 disc(i)−mom2 fvs(i))/mom2 disc(i)));

185 end

186

187 % Error in initial mass due to discretization

188

189 E d = (sum(C in mol.*((162*x piv)+18))−Ms t0)/Ms t0;

190

191 % Non−dimensionalization
192

193 % ft = find(round(c disc(:,1),3)==round(0.99*max(c disc(:,1)),3));

194 % t99 = t(ft(1)); % Time when monomer reaches 99% of total monomers

195 t99 = 3.1;

196 td = t./t99; % Dimensionless time

197

198 N0 = sum(c in mol disc);

199 x0 = sum(c in mol disc.*DP')/sum(c in mol disc);

200

201 c fpt d = c fpt.*(x0/N0); % Dimensionless population density

202 c cat d = c cat.*(x0/N0);

203 c fvs d = c fvs.*(x0/N0);

204 c disc d = c disc.*(x0/N0);

Function file:

1 function [t,C fpt,C cat,C fvs,c disc] = RandomScission...

2 (p,q,N,x piv,x bound,k sec,k disc,C in mol,c in mol disc,tgrid)

3

4 [t,C fpt] = fpt rand(p,q,x piv,k sec,C in mol,tgrid);

5 [t,C cat] = cat rand(p,q,x piv,x bound,k sec,C in mol,tgrid);

6 [t,C fvs] = fvs rand(p,q,x piv,x bound,k sec,C in mol,tgrid);

7 [t,c disc] = disc rand(N,k disc,c in mol disc,tgrid);

8

9 end

10

11 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12

13 function [t,C fpt] = fpt rand(p,q,x piv,k sec,C in mol,tgrid)
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14

15 % Fixed pivot technique

16

17 % Particle allocation function

18

19 n = zeros(p+q,p+q);

20

21 for j = 2:p+q

22 n(1,j) = 2/(x piv(j−1));
23 end

24

25 for i = 2:p

26 for j = i+1:p+q

27 n(i,i) = −1;
28 n(i,j) = 2/(x piv(j−1));
29 end

30 end

31

32 for i = p+1:p+q

33 for j = i+1:p+q

34 n(i,j) = (x piv(i+1)−x piv(i−1))/(x piv(j−1));
35 end

36 n(i,i) = −1;
37 end

38

39 % ODE Solver

40

41 tic;

42

43 options sec = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:(p+q),...
44 'Refine',8);

45

46 [t,C fpt] = ode15s(@(t,C) fpt rand ode(p,q,k sec,n,C),...

47 tgrid,C in mol,options sec);

48

49 time sim = '\nTotal time elapsed for FPT simulation is %.1f seconds.\n';
50

51 fprintf(time sim,toc)

52

53 end

54

55 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56

57 function diff func = fpt rand ode(p,q,k sec,n,C)

58

59 dCdt = zeros(length(n(:,1)),1);

60

61 for i = 1:p+q;

62 dCdt(i) = sum(n(i,:)'.*k sec(:).*C(:));

63 end

64

65 % Output

66

67 diff func = dCdt;

68

69 end

70

71 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72
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73 function [t,C cat] = cat rand(p,q,x piv,x bound,k sec,C in mol,tgrid)

74

75 % Cell average technique

76

77 % Bi matrix − number of particles entering i

78

79 Bi = zeros(p+q,p+q);

80

81 for i = 1:p

82 for j = i+1:p+q

83 Bi(i,j) = 2/(x piv(j−1));
84 end

85 end

86

87 for i = p+1:p+q

88 for j = i+1:p+q

89 Bi(i,j) = (2/(x piv(j−1)))*(x bound(i+1)−x bound(i));

90 end

91 end

92

93 % Vi matrix − mass of particles entering i

94

95 Vi = zeros(p+q,p+q);

96

97 for i = 1:p

98 for j = i+1:p+q

99 Vi(i,j) = (2*x piv(i))/(x piv(j−1));
100 end

101 end

102

103 for i = p+1:p+q

104 for j = i+1:p+q

105 Vi(i,j) = ((x bound(i+1)ˆ2)−(x bound(i)ˆ2))/(x piv(j−1));
106 end

107 end

108

109 % Average volume, v i

110

111 v i = zeros(p+q,1);

112

113 for i = 1:p+q

114 if sum(Vi(i,:))==0||sum(Bi(i,:))==0
115 v i(i) = 0;

116 else

117 v i(i) = sum(Vi(i,:))/sum(Bi(i,:));

118 end

119 end

120

121 % ODE Solver

122

123 tic;

124

125 options sec = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:(p+q),...
126 'Refine',8);

127

128 [t,C cat] = ode15s(@(t,C) cat rand ode(p,q,Bi,v i,k sec,C,x piv),...

129 tgrid,C in mol,options sec);

130

131 time sim = '\nTotal time elapsed for CAT simulation is %.1f seconds.\n';
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132

133 fprintf(time sim,toc)

134

135 end

136

137 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
138

139 function diff func = cat rand ode(p,q,Bi,v i,k sec,C,x piv)

140

141 dCdt = zeros(p+q,1);

142

143 for i = 1

144 dCdt(1) = sum(Bi(i,:)'.*k sec.*C);

145 end

146

147 for i = 2:p+q−1
148 dCdt(i) = sum(Bi(i−1,:)'.*k sec.*C).*(forw(v i(i−1),x piv,i)...

149 *heav(v i(i−1),x piv(i−1)))+...
150 sum(Bi(i,:)'.*k sec.*C).*(forw(v i(i),x piv,i)...

151 *heav(x piv(i),v i(i)))+...

152 sum(Bi(i,:)'.*k sec.*C).*(back(v i(i),x piv,i)...

153 *heav(v i(i),x piv(i)))+...

154 sum(Bi(i+1,:)'.*k sec.*C).*(back(v i(i+1),x piv,i)...

155 *heav(x piv(i+1),v i(i+1)))−...
156 k sec(i)*C(i);

157 end

158

159 dCdt(p+q) = sum(Bi(p+q−1,:)'.*k sec.*C).*(forw(v i(p+q−1),x piv,p+q)...

160 *heav(v i(p+q−1),x piv(p+q−1)))+...
161 sum(Bi(p+q,:)'.*k sec.*C).*(forw(v i(p+q),x piv,p+q)...

162 *heav(x piv(p+q),v i(p+q)))−...
163 k sec(p+q)*C(p+q);

164

165 % Output

166

167 diff func = dCdt;

168

169 end

170

171 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
172

173 function heav func = heav(v,x)

174

175 if v−x > 0

176 output = 1;

177 elseif v−x == 0

178 output = 0.5;

179 else

180 output = 0;

181 end

182

183 % Output

184

185 heav func = output;

186

187 end

188

189 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
190
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191 function forward = forw(v,x,i)

192

193 % Output

194

195 forward = (v−x(i−1))/(x(i)−x(i−1));
196

197 end

198

199 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
200

201 function backward = back(v,x,i)

202

203 % Output

204

205 backward = (v−x(i+1))/(x(i)−x(i+1));
206

207 end

208

209 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
210

211 function [t,C fvs] = fvs rand(p,q,x piv,x bound,k sec,C in mol,tgrid)

212

213 % Finite volume scheme

214

215 % Integrals, p ij = p ji

216

217 int 1 = zeros(p+q,p+q);

218

219 for i = 1:p

220 for j = i+1:p+q

221 int 1(i,j) = 2/(x piv(j−1));
222 end

223 end

224

225 for i = p+1:p+q

226 for j = i+1:p+q

227 int 1(i,j) = (2*(x bound(i+1)−x bound(i)))/(x piv(j−1));
228 end

229 end

230

231 int 1(1,1) = 0;

232

233 % Birth weight

234

235 w b = zeros(p+q,1);

236

237 for i = 1:p+q

238 j = 1:i;

239 mat = int 1(1:i,i);

240 xxi = zeros(length(j),1); xxi(:) = x piv(i);

241 w b(i) = (x piv(i)*(sum(mat(:))−1))/sum((xxi−x piv(j))'*mat);

242 end

243

244 % Death weight

245

246 w d = zeros(p+q,1);

247

248 for i = 1:p+q

249 j = 1:i;
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250 mat = int 1(1:i,i);

251 w d(i) = (w b(i)*sum(x piv(j)'*mat))/x piv(i);

252 end

253

254 w b(1) = 0; w d(1) = 0;

255

256 % Particle allocation function for discrete region

257

258 n = zeros(p+q,p+q);

259

260 for j = 2:p+q

261 n(1,j) = 2/(x piv(j−1));
262 end

263

264 for i = 2:p

265 for j = i+1:p+q

266 n(i,j) = 2/(x piv(j−1));
267 n(i,i) = −1;
268 end

269 end

270

271 % ODE solver

272

273 tic;

274

275 options sec = odeset('AbsTol',1e−16,'RelTol',1e−6,'NonNegative',1:(p+q),...
276 'Refine',8);

277

278 [t,C fvs] = ode15s(@(t,C) fvs rand ode(p,q,n,k sec,C,w b,int 1,w d),...

279 tgrid,C in mol,options sec);

280

281 time sim = '\nTotal time elapsed for FVS simulation is %.1f seconds.\n';
282

283 fprintf(time sim,toc)

284

285 end

286

287 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
288

289 function diff func = fvs rand ode(p,q,n,k sec,C,w b,int 1,w d)

290

291 dCdt = zeros(p+q,1);

292

293 dCdt(1) = sum(n(1,:)'.*k sec.*C);

294

295 for i = 2:p+q;

296 dCdt(i) = sum(w b(i:end).*k sec(i:end).*C(i:end).*int 1(i,i:end)')...

297 −w d(i)*k sec(i)*C(i);

298 end

299

300 % Output

301

302 diff func = dCdt;

303

304 end

305

306 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
307

308 function [t,c disc] = disc rand(N,k disc,c in mol disc,tgrid)
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309

310 % Fully discrete solution

311

312 % Partitioning of matrices for solving large ODE system

313

314 n = zeros(N,N);

315

316 for j = 2:N

317 n(1,j) = (2/(j−1))*k disc(j);

318 end

319

320 for i = 2:N−1
321 for j = i+1:N

322 n(i,i) = −k disc(i);

323 n(i,j) = (2/(j−1))*k disc(j);

324 end

325 end

326

327 n(end,end) = −k disc(N);

328

329 div = 19; % No. of sub−matrices
330 mat = N/div; % Square matrix size = 1184

331

332 G = cell(div,div);

333

334 for i = 1:div

335 G{i,i} = zeros(mat,mat);

336 end

337

338 G{1,1} = n(1:mat,1:mat);

339

340 for i = 2:div

341 ix = (i−1)*mat+1;
342 G{i,i} = n(ix:ix+mat−1,ix:ix+mat−1);
343 end

344

345 F = cell(div,div);

346

347 for i = 1:div

348 for j = i+1:div

349 ix = (i−1)*mat+1;
350 ij = (j−1)*mat+1;
351 F{i,j} = zeros(mat,mat);

352 F{i,j} = n(ix:ix+mat−1,ij:ij+mat−1);
353 end

354 end

355

356 % Jpattern

357

358 jp = triu(ones(mat,mat));

359

360 % ODE solver

361

362 tt = [];

363 c = [];

364

365 tic;

366

367 options disc = odeset('RelTol',1e−6,'AbsTol',1e−16,'NonNegative',1:mat,...
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368 'Refine',8,'jpattern',jp);

369

370 for i = 1:div

371 ii = div−(i−1);
372 low end = N−(mat*i)+1;
373 high end = low end+mat−1;
374

375 FF = [];

376 if ii<div;

377 for k = ii+1:div;

378 FF = [FF F{ii,k}];
379 end

380 end

381

382 [t2,c exact] = ode15s(@(t2,c exact) disc rand ode(G{ii,ii},FF,c,...
383 c exact,mat,tt,t2,ii,div),[tgrid(1) tgrid(end)],...

384 c in mol disc(low end:high end),options disc);

385

386 tt{ii} = t2;

387 c{ii} = c exact;

388 end

389

390 % Overall number density

391

392 c disc = [];

393

394 for ii = 1:div

395 cc = interp1(tt{ii},c{ii},tgrid,'pchip');
396 c disc = [c disc cc];

397 end

398

399 t = tgrid;

400

401 time sim =...

402 '\nTotal time elapsed for fully discrete simulation is %.1f seconds.\n';
403

404 fprintf(time sim,toc)

405

406 end

407

408 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
409

410 function diff func = disc rand ode(G,FF,c,c exact,mat,tt,t2,ii,div)

411

412 dCdt = zeros(mat,1);

413

414 if ii<div

415 c exact full = [];

416

417 for i = ii+1:div

418 c exact int = interp1(tt{i},c{i},t2,'linear');
419 c exact full = [c exact full c exact int];

420 end

421

422 dCdt = G*c exact+FF*c exact full';

423 else

424 dCdt = G*c exact;

425 end

426
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427 % Output

428

429 diff func = dCdt;

430

431 end

D.3 Simulation of Enzymatic Hydrolysis of

Cellulose (ML-PBM)

Main file:

1 close all; clear all; clc;

2

3 % Setting input parameters

4

5 % Cellulose and enzymes

6

7 mss = 10; % Initial concentration of cellulose, g/L

8

9 L CBH = 11.2; % CBH concentration, mg enzyme/g cellulose

10 L EG = 0; % EG concentration, mg enzyme/g cellulose

11 L BG = 0; % BG concentration, mg enzyme/g cellulose

12

13 MW CBHi = 70000; % CBH molecular weight, g/mol

14 MW EGi = 50000; % EG molecular weight, g/mol

15 MW BGi = 135000; % BG molecular weight, g/mol

16

17 % Mesh setting

18

19 p = 20; % Number of discrete pivots

20

21 % Time span

22

23 t end = 1.8e5; % Time span of simulation, seconds

24

25 % Initial distribution − Base fitted cellulose distribution.

26

27 load('Raw Avicel calibrated initialDist Engel 2012 final','MnL','MwL',...

28 'MnH','MwH','N','r massL');

29

30 % List of model paramaters

31

32 % CBH−related parameters

33

34 % 1 kp h CBH − Rate contant of CBH hydrolysis, 1/s

35 % 2 kp f CBH − Rate constant of CBH complexation, DP.L/mol.s
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36 % 3 kp e CBH − Rate constant of CBH decomplexation, 1/s

37 % 4 tau CBH − CBH enzyme footprint/area coverage, mol/m2

38 % 5 k ads CBH − Rate constant of CBH adsorption, L/mol.s

39 % 6 k des CBH − Rate constant of CBH desoprtion, 1/s

40 % 7 k If CBH(1) − Forward glucose inhibition rate constant, L/mol.s

41 % 8 k If CBH(2) − Forward cellobiose inhibition rate constant, L/mol.s

42 % 9 k Ir CBH(1) − Reverse glucose inhibition rate constant, 1/s

43 % 10 k Ir CBH(2) − Reverse cellobiose inhibition rate constant, 1/s

44

45 % Substrate−related parameters

46

47 % 11 pnt zone − number of layers in penetration zone

48 % 12 r massL − mass ratio of cellulose in penetration zone

49

50 % BG−related parameters

51

52 % 13 k h BG − Rate constant of BG hydrolysis, L/mol.s

53 % 14 k If BG − Forward glucose inhibition rate constant, L/mol.s

54 % 15 k Ir BG − Reverse glucose inhibition rate constant, 1/s

55

56 % EG−related parameters

57

58 % 16 kp h EG − Rate constant of EG hydrolysis (insoluble cellulose), DP/s

59 % 17 kp hs EG − Rate constant of EG hydrolysis (soluble cellulose), L/mol.s

60 % 18 kp f EG − Rate constant of EG complexation, DP.L/mol.s

61 % 19 kp e EG − Rate constant of EG decomplexation, 1/s

62 % 20 tau EG − EG enzyme footprint/area coverage, mol/m2

63 % 21 k ads EG − Rate constant of EG adsorption, L/mol.s

64 % 22 k des EG − Rate constant of EG desorption, 1/s

65 % 23 k If EG(1) − Forward glucose inhibition rate constant, L/mol.s

66 % 24 k If EG(2) − Forward cellobiose inhibition rate constant, L/mol.s

67 % 25 k Ir EG(1) − Reverse glucose inhibition rate constant, 1/s

68 % 26 k Ir EG(2) − Reverse cellobiose inhibition rate constant, 1/s

69

70 % Input the values for model parameters below:

71

72 prm(1) = 4.491;

73 prm(2) = 4.32e4;

74 prm(3) = 10;

75 prm(4) = 2.22e−8;
76 prm(5) = 7.3722e5;

77 prm(6) = 0.01;

78 prm(7) = 0;

79 prm(8) = 0;

80 prm(9) = 0;

81 prm(10) = 0;

82

83 prm(11) = 1;

84 prm(12) = 0.028;

85

86 prm(13) = 3550;

87 prm(14) = 0;

88 prm(15) = 0;

89

90 prm(16) = 21;

91 prm(17) = 3;

92 prm(18) = 4e5;

93 prm(19) = 10;

94 prm(20) = 8.04e−9;
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95 prm(21) = 7.11e5;

96 prm(22) = 0.01;

97 prm(23) = 0;

98 prm(24) = 0;

99 prm(25) = 0;

100 prm(26) = 0;

101

102 % Run simulation

103

104 [x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,C,CXS,CNS,CNXS,CFS,CS,CI,...

105 CT,CC,E S EG,E S CBH,E F EG,E F CBH,E F BG,R,conv rem,t] = MLPBM...

106 (N,p,prm,mss,MnL,MwL,MnH,MwH,L CBH,L EG,L BG,MW CBHi,MW EGi,MW BGi,...

107 t end);

108

109 % List of Outputs

110

111 % x piv % DP mesh

112 % R in % Initial particle radius

113 % layers % Total no. of layers in cellulose particles

114 % C T % Total initial cellulose distribution

115 % C S % Surface initial cellulose distribution, mol/L

116 % C INT % Internal initial cellulose distribution, mol/L

117 % MnT % Overall initial number−average DP

118 % MwT % Overall initial weight−average DP

119 % pdiT % Overall initial polydispersity index

120

121 % t % Time, s

122

123 % Time,DP−dependent variables

124

125 % C % Soluble products, mol/L

126 % CXS % CBH−bound complex, mol/L

127 % CNS % EG−bound complex, mol/L

128 % CNXS % CBH−EG−bound complex, mol/L

129 % CFS % Free un−bound surface polymers, mol/L

130 % CS % Total surface polymers, mol/L

131 % CI % Internal polymers, mol/L

132 % CT % Total polymers, mol/L

133 % CC % Insoluble polymers, mol/L

134

135 % Time−dependent variables

136

137 % E S EG % Surface−adsorbed EG, mol/L

138 % E S CBH % Surface−adsorbed CBH, mol/L

139 % E F EG % Free EG, mol/L

140 % E F CBH % Free CBH, mol/L

141 % E F BG % Free BG, mol/L

142

143 % R % Transient of particle radius, m

144

145 % conv rem % Overall conversion
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Function file:

1 function [x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,C,CXS,CNS,CNXS,...

2 CFS,CS,CI,CT,CC,E S EG,E S CBH,E F EG,E F CBH,E F BG,R,conv rem,t]...

3 = MLPBM(N,p,prm,mss,MnL,MwL,MnH,MwH,L CBH,L EG,L BG,MW CBHi,MW EGi,...

4 MW BGi,t end)

5

6 [x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,q,vm,R0,ro,L,n,exp ratio,...

7 E T CBH,E T EG,E T BG] = MLPBM setting(p,N,prm,mss,MnL,MwL,MnH,MwH,...

8 L CBH,L EG,L BG,MW CBHi,MW EGi,MW BGi);

9

10 [t,y] = ODE setting(p,q,C S,C INT,prm,x piv,vm,t end,E T EG,E T CBH,...

11 E T BG,R0,ro,L,n,exp ratio);

12

13 [C,CXS,CNS,CNXS,CFS,CS,CI,CT,CC,E S EG,E S CBH,E F EG,E F CBH,E F BG,R,...

14 conv rem] = post processing(t,y,p,q,x piv,ro,L,n,mss,E T EG,E T CBH,...

15 E T BG);

16

17 end

18

19 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20

21 function [x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,q,vm,R0,ro,L,n,...

22 exp ratio,E T CBH,E T EG,E T BG] = MLPBM setting(p,N,prm,mss,MnL,MwL,...

23 MnH,MwH,L CBH,L EG,L BG,MW CBHi,MW EGi,MW BGi)

24

25 % General settings

26

27 vm = 1; % Size of monomer

28

29 qmax = 1+(log(N/(p+1))/log(1+(vm/(p+1)))); % Maximum pivots in cont region

30 q = floor(qmax); % No. of pivots in cont region

31 ratio = (N/(p+1))ˆ(1/(q−1)); % Ratio of geometric progr

32

33 % Pivots for discrete−continuous mesh

34

35 x piv = zeros(p+q,1);

36 x piv(1:p) = 1:p;

37

38 for i = p+1:p+q

39 x piv(i) = (p+1)*ratioˆ(i−(p+1)); % Geometric mesh

40 end

41

42 % Boundary points for discrete−continuous mesh

43

44 x bound = zeros(p+q+1,1);

45 x bound(1) = 0.5;

46

47 for i=2:p+q

48 x bound(i) = (x piv(i)+x piv(i−1))/2;
49 end

50

51 x bound(p+q+1) = x piv(end);

52

53 % Initial distribution

54
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55 c in = @(x,alpha,beta,pin) pin*gampdf(x,alpha,beta); % Gamma distribution

56

57 % Physical properties

58

59 layers = round(2/(((mss*prm(12))/prm(11))/mss)); % Total no. of layers

60 ro = 1500; % Cellulose density, g/L

61 L = (N/2)*10.38e−10; % Length of microfibril, m

62 R0 = 1e−9; % Width of single layer, m

63 R in = layers*R0; % Total radius of particle, m

64 n = mss/(ro*pi*(R inˆ2)*L); % No. of particles per unit vol, 1/m3

65 p zone = prm(11); % No. of layers in penetration zone

66 i zone = (R in/R0)−p zone; % No. of layers in internal zone

67

68 % Radiuses of discrete layers

69

70 R set = sort(0:R0:R in,'descend')';

71

72 % Mass of polymers in each layer

73

74 mass l = zeros(length(R set)−1,1);
75

76 for i = 2:length(R set)

77 mass l(i−1) = (n*ro*pi*(R set(i−1)ˆ2)*L)−(n*ro*pi*(R set(i)ˆ2)*L);

78 end

79

80 % Initial cellulose distribution in each layer

81

82 pin l = zeros(length(mass l),1);

83 c in tl = zeros(length(mass l),p+q); % Molar concentration density

84 C in tl = zeros(length(mass l),p+q); % Molar concentration

85

86 optionsfmincon = optimoptions('fsolve','display','none');

87

88 for i = 1:p zone

89 pin l(i) = fsolve(@(x) sum(c in(x piv,MnL/(MwL−MnL),MwL−MnL,x)...
90 .*(x bound(2:end)−x bound(1:p+q)).*(162*x piv+18))−mass l(i),0,...

91 optionsfmincon);

92 c in tl(i,:) = c in(x piv,MnL/(MwL−MnL),MwL−MnL,pin l(i));

93 end

94

95 for i = p zone+1:p zone+i zone

96 pin l(i) = fsolve(@(x) sum(c in(x piv,MnH/(MwH−MnH),MwH−MnH,x)...
97 .*(x bound(2:end)−x bound(1:p+q)).*(162*x piv+18))−mass l(i),0,...

98 optionsfmincon);

99 c in tl(i,:) = c in(x piv,MnH/(MwH−MnH),MwH−MnH,pin l(i));

100 end

101

102 for i = 1:p+q

103 C in tl(:,i) = c in tl(:,i).*(x bound(i+1)−x bound(i));

104 end

105

106 % Overall initial cellulose distribution

107

108 C T = zeros(p+q,1);

109

110 for i = 1:p+q

111 C T(i) = sum(C in tl(:,i));

112 end

113
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114 % Surface initial cellulose distribution

115

116 C S = zeros(p+q,1);

117

118 for i = 1:p+q

119 C S(i) = sum(C in tl(1,i));

120 end

121

122 % Internal initial cellulose distribution

123

124 C INT = zeros(p+q,1);

125

126 for i = 1:p+q

127 C INT(i) = sum(C in tl(2:end,i));

128 end

129

130 % Ratio of molar concentration to total mass in each layer

131

132 C ratio = zeros(length(R set)−1,p+q);
133

134 for i = 1:length(R set)−1
135 for j = 1:p+q

136 C ratio(i,j) = C in tl(i,j)/sum(C in tl(i,:)'.*(162*x piv+18));

137 end

138 end

139

140 % Piece−wise function for ratio of molar concentration to total mass as a

141 % function of particle radius

142

143 exp ratio = cell(p+q,1);

144

145 for i = 1:p+q

146 exp ratio{i} = mkpp(flipud(R set),flipud(C ratio(:,i)));

147 end

148

149 % General properties of initial cellulose distribution

150

151 MnT = sum(C T.*x piv)/sum(C T); % Overall number−averaged DP

152 MwT = sum(C T.*(x piv.ˆ2))/sum(C T.*x piv); % Overall mass−averaged DP

153 pdiT = MwT/MnT; % Overall poly−dispersity index

154

155 % Enzyme loadings, mol/L

156

157 E T CBH = ((L CBH/1000)*sum(C T.*(162*x piv+18)))/MW CBHi;

158 E T EG = ((L EG/1000)*sum(C T.*(162*x piv+18)))/MW EGi;

159 E T BG = ((L BG/1000)*sum(C T.*(162*x piv+18)))/MW BGi;

160

161 end

162

163 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164

165 function [t,y] = ODE setting(p,q,C S,C INT,prm,x piv,vm,t end,E T EG,...

166 E T CBH,E T BG,R0,ro,L,n,exp ratio)

167

168 % Initial conditions

169

170 init = zeros(6*p+6*q+9,1);

171 init(1:p+q) = 0; % 1 to p+q −−> free liberated polymers

172 init(p+q+1:2*p+2*q) = 0; % p+q+1 to 2p+2q −−> CBH−bound polymers
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173 init(2*p+2*q+1:3*p+3*q) = 0; % 2p+2q+1 to 3p+3q −−> EG−bound polymers

174 init(3*p+3*q+1:4*p+4*q) = 0; % 3p+3q+1 to 4p+4q −−> EG−CBH−bound polymers

175 init(4*p+4*q+1:5*p+5*q) = C S; % 4p+4q+1 to 5p+5q −−> surface−accessible polymer

176 init(5*p+5*q+1:6*p+6*q) = C INT; % 5p+5q+1 to 6p+6q −−> internal inaccessible polymer

177 init(6*p+6*q+1) = 0; % 6p+6q+1 −−> surface adsorbed EG

178 init(6*p+6*q+2) = 0; % 6p+6q+2 −−> surface adsorbed CBH

179 init(6*p+6*q+3:6*p+6*q+4) = 0; % 6p+6q+3 to 6p+6q+4 −−> inhibited EG

180 init(6*p+6*q+5:6*p+6*q+6) = 0; % 6p+6q+5 to 6p+6q+6 −−> inhibited free CBH

181 init(6*p+6*q+7:6*p+6*q+8) = 0; % 6p+6q+7 to 6p+6q+8 −−> inhibited adsorbed CBH

182 init(6*p+6*q+9) = 0; % 6p+6q+9 −−> inhibited BG

183

184 % Rate kernels

185

186 % CBH

187

188 kp h CBH = prm(1); % Rate constant of hydrolysis, 1/s

189 m h CBH = 0;

190 k h CBH = kp h CBH*(x piv.ˆm h CBH); % Rate coefficients of hydrolysis, 1/s

191

192 kp f CBH = prm(2); % Rate constant of complexation, DP.L/mol.s

193 m f CBH = −1;
194 k f CBH = kp f CBH*(x piv.ˆm f CBH); % Rate coefficients of complexation (L/mol.s)

195

196 kp e CBH = prm(3); % Rate constant of decomplexation, 1/s

197 m e CBH = 0;

198 k e CBH = kp e CBH*(x piv.ˆm e CBH); % Rate coefficients of decomplexation, 1/s

199

200 tau CBH = prm(4); % Enzyme footprint, mol/m2

201 k ads CBH = prm(5); % Adsorption rate constant, L/mol.s

202 k des CBH = prm(6); % Desorption rate constant, 1/s

203

204 k If CBH = [prm(7) prm(8)]; % Forward glucose/cellobiose inhibition, L/mol.s

205 k Ir CBH = [prm(9) prm(10)]; % Reverse glucose/cellobiose inhibition, 1/s

206

207 % EG

208

209 kp h EG = prm(16); % Rate constant of hydrolysis (insoluble cellulose), DP/s

210 m h EG = −1;
211 k h EG = kp h EG*(x piv.ˆm h EG); % Rate coefficients of hydrolysis (insoluble cellulose),1/s

212

213 kp hs EG = prm(17); % Rate constant of hydrolysis (soluble), L/mol.s

214 m hs EG = 0;

215 k hs EG = kp hs EG*(x piv.ˆm hs EG); % Rate coefficients of hydrolysis (soluble), L/mol.s

216 k hs EG(2) = 0; % EG unable to hydrolyze cellobiose

217

218 kp f EG = prm(18); % Rate constant of complexation, DP.L/mol.s

219 m f EG = −1;
220 k f EG = kp f EG*(x piv.ˆm f EG); % Rate coefficients of complexation, L/mol.s

221

222 kp e EG = prm(19); % Rate constant of decomplexation, 1/s

223 m e EG = 0;

224 k e EG = kp e EG*(x piv.ˆm e EG); % Rate coefficients of decomplexation, 1/s

225

226 tau EG = prm(20); % Enzyme footprint, mol/m2

227 k ads EG = prm(21); % Adsorption rate constant, L/mol.s

228 k des EG = prm(22); % Desorption rate constant, 1/s

229

230 k If EG = [prm(23) prm(24)]; % Forward glucose/cellobiose inhibition, L/mol.s

231 k Ir EG = [prm(25) prm(26)]; % Reverse glucose/cellobiose inhibition, 1/s
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232

233 % BG

234

235 k h BG = prm(13); % Rate constant of hydrolysis, L/mol.s

236

237 k If BG = prm(14); % Forward glucose inhibition, L/mol.s

238 k Ir BG = prm(15); % Reverse glucose inhibition, 1/s

239

240 % Fixed pivot technique

241

242 [n exo,n endo] = fp(p,q,vm,x piv); % Particle allocation functions

243

244 % ODE solver

245

246 tstart = 0;

247 tfinal = t end;

248

249 tic;

250

251 options = odeset('AbsTol',1e−8,'RelTol',1e−6,...
252 'NonNegative',1:(6*p+6*q+9));

253

254 [t,y] = ode15s(@(t,y) MLPBM ode(p,q,n exo,n endo,E T EG,...

255 E T CBH,E T BG,k h CBH,k h EG,k hs EG,k h BG,k f CBH,k f EG,k e CBH,...

256 k e EG,k ads EG,k des EG,k ads CBH,k des CBH,tau EG,tau CBH,k If CBH,...

257 k Ir CBH,k If EG,k Ir EG,k If BG,k Ir BG,x piv,R0,ro,L,n,...

258 exp ratio,y,t),[tstart tfinal],init,options);

259

260 time fp sim =...

261 '\nTotal time elapsed for ML−PBM simulation is %.1f seconds.\n';
262

263 fprintf(time fp sim,toc)

264

265 end

266

267 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
268

269 function [n exo,n endo] = fp(p,q,vm,x piv)

270

271 % Particle allocation function − fixed pivot technique

272

273 % Chain−end dimer scission

274

275 n exo = zeros(p+q,p+q);

276 n exo(1,3) = 1;

277 n exo(2,3) = 1; n exo(2,4) = 2; n exo(2,5:end) = 1;

278

279 for i = 3:p+q

280 for j = i:p+q

281 if j==i && x piv(j)−2*vm>x piv(i−1)
282 n exo(i,j) = ((x piv(j)−2*vm)−x piv(i−1))/(x piv(i)−x piv(i−1));
283 elseif j==i && x piv(j)−2*vm==x piv(i−1)
284 n exo(i,j) = 0;

285 elseif j6=i && x piv(j)−2*vm>x piv(i−1) && x piv(j)−2*vm<x piv(i)

286 n exo(i,j) = ((x piv(j)−2*vm)−x piv(i−1))/(x piv(i)−x piv(i−1));
287 elseif j6=i && x piv(j)−2*vm>x piv(i) && x piv(j)−2*vm<x piv(i+1)

288 n exo(i,j) = (x piv(i+1)−(x piv(j)−2*vm))/(x piv(i+1)−x piv(i));

289 elseif j6=i && x piv(j)−2*vm==x piv(i)

290 n exo(i,j) = 1;
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291 elseif j6=i && x piv(j)−2*vm==x piv(i−1)
292 n exo(i,j) = 0;

293 else

294 n exo(i,j) = 0;

295 end

296 end

297 n exo(i,i) = n exo(i,i)−1;
298 end

299

300 % Random scission

301

302 n endo = zeros(p+q,p+q);

303

304 for j = 2:p+q

305 n endo(1,j) = 2/(x piv(j−1));
306 end

307

308 for i = 2:p

309 for j = i+1:p+q

310 n endo(i,i) = −1;
311 n endo(i,j) = 2/(x piv(j−1));
312 end

313 end

314

315 for i = p+1:p+q

316 for j = i+1:p+q

317 n endo(i,j) = (x piv(i+1)−x piv(i−1))/(x piv(j−1));
318 end

319 n endo(i,i) = −1;
320 end

321

322 end

323

324 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
325

326 function ode = MLPBM ode(p,q,n exo,n endo,E T EG,E T CBH,...

327 E T BG,k h CBH,k h EG,k hs EG,k h BG,k f CBH,k f EG,k e CBH,k e EG,...

328 k ads EG,k des EG,k ads CBH,k des CBH,tau EG,tau CBH,k If CBH,...

329 k Ir CBH,k If EG,k Ir EG,k If BG,k Ir BG,x piv,R0,ro,L,n,...

330 exp ratio,y,t)

331

332 dydt = zeros(6*p+6*q+9,1);

333

334 % Enzymes

335

336 E F EG = E T EG−y(6*p+6*q+1)−sum(y(2*p+2*q+1:4*p+4*q))...
337 −sum(y(6*p+6*q+3:6*p+6*q+4));
338 E F CBH = E T CBH−y(6*p+6*q+2)−sum(y(p+q+1:2*p+2*q))...
339 −sum(y(3*p+3*q+1:4*p+4*q))−sum(y(6*p+6*q+5:6*p+6*q+8));
340 E F BG = E T BG − y(6*p+6*q+9);

341

342 % Particle radius

343

344 x3 = [x piv;x piv;x piv];

345 x5 = [x piv;x piv;x piv;x piv;x piv];

346 R = sqrt(sum(y(p+q+1:6*p+6*q).*(162*x5+18))/(ro*pi*L*n));

347

348 if R−R0≤0;
349 R ratio = 0;
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350 else

351 R ratio = (R−R0)/R;
352 end

353

354 % Total surface area

355

356 As = (n*2*pi*R*L)/1000;

357

358 % Soluble polymers

359

360 dydt(1) = sum(n exo(1,:)'.*k h CBH.*y(p+q+1:2*p+2*q))...

361 +sum(n endo(1,7:end)'.*k h EG(7:end).*y(2*p+2*q+7:3*p+3*q))...

362 +sum(n endo(1,4:end)'.*k h EG(4:end).*y(3*p+3*q+4:4*p+4*q))...

363 +sum(E F EG*n endo(1,2:6)'.*k hs EG(2:6).*y(2:6))...

364 +2*k h BG*E F BG*y(2)+k Ir CBH(1)*y(6*p+6*q+5)+k Ir CBH(1)*y(6*p+6*q+7)...

365 +k Ir EG(1)*y(6*p+6*q+3)+k Ir BG*y(6*p+6*q+9)...

366 −k If CBH(1)*E F CBH*y(1)−k If CBH(1)*y(6*p+6*q+2)*y(1)...

367 −k If EG(1)*E F EG*y(1)−k If BG*E F BG*y(1);

368

369 dydt(2) = sum(n exo(2,:)'.*k h CBH.*y(p+q+1:2*p+2*q))...

370 +sum(n endo(2,7:end)'.*k h EG(7:end).*y(2*p+2*q+7:3*p+3*q))...

371 +sum(n endo(2,4:end)'.*k h EG(4:end).*y(3*p+3*q+4:4*p+4*q))...

372 +sum(E F EG*n endo(2,3:6)'.*k hs EG(3:6).*y(3:6))...

373 −k hs EG(2)*E F EG*y(2)−k h BG*E F BG*y(2)...

374 +k Ir CBH(2)*y(6*p+6*q+6)+k Ir CBH(2)*y(6*p+6*q+8)+k Ir EG(2)*y(6*p+6*q+4)...

375 −k If CBH(2)*E F CBH*y(2)−k If CBH(2)*y(6*p+6*q+2)*y(2)...

376 −k If EG(2)*E F EG*y(2);

377

378 for i = 3:5;

379 dydt(i) = sum(n endo(i,7:end)'.*k h EG(7:end).*y(2*p+2*q+7:3*p+3*q))...

380 +sum(n endo(i,i+1:end)'.*k h EG(i+1:end).*y(3*p+3*q+i+1:4*p+4*q))...

381 +sum(E F EG*n endo(i,i+1:6)'.*k hs EG(i+1:6).*y(i+1:6))...

382 −k hs EG(i)*E F EG*y(i);

383 end

384

385 for i = 6;

386 dydt(i) = sum(n endo(i,i+1:end)'.*k h EG(i+1:end).*y(2*p+2*q+i+1:3*p+3*q))...

387 +sum(n endo(i,i+1:end)'.*k h EG(i+1:end).*y(3*p+3*q+i+1:4*p+4*q))...

388 −k hs EG(i)*E F EG*y(i);

389 end

390

391 % CBH−bound surface polymers

392

393 dydt(p+q+3) = sum(n exo(3,3:end)'.*k h CBH(3:end).*y(p+q+3:2*p+2*q));

394

395

396 for i = p+q+4:p+q+6;

397 dydt(i) = sum(n exo(i−p−q,:)'.*k h CBH.*y(p+q+1:2*p+2*q))...

398 −(k f EG(i−p−q)*y(6*p+6*q+1)*y(i))...
399 +(k e EG(i−p−q)*y(i−p−q+3*p+3*q));
400

401 end

402

403 for i = p+q+7:2*p+2*q−1;
404 dydt(i) = sum(n exo(i−p−q,:)'.*k h CBH.*y(p+q+1:2*p+2*q))...

405 +(y(6*p+6*q+2)*k f CBH(i−p−q)*y(i−p−q+4*p+4*q))...
406 −(k e CBH(i−p−q)*y(i))...
407 −(k f EG(i−p−q)*y(6*p+6*q+1)*y(i))...
408 +(k e EG(i−p−q)*y(i−p−q+3*p+3*q));
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409

410 end

411

412 for i = 2*p+2*q;

413 dydt(i) = sum(n exo(i−p−q,:)'.*k h CBH.*y(p+q+1:2*p+2*q))...

414 +(y(6*p+6*q+2)*k f CBH(i−p−q)*y(i−p−q+4*p+4*q))...
415 −(k e CBH(i−p−q)*y(i))...
416 −(k f EG(i−p−q)*y(6*p+6*q+1)*y(i))...
417 +(k e EG(i−p−q)*y(i−p−q+3*p+3*q));
418 end

419

420 % EG−bound surface polymers

421

422 for i = 2*p+2*q+7:3*p+3*q;

423 dydt(i) = (k f EG(i−2*p−2*q)*y(6*p+6*q+1)*y(i−2*p−2*q+4*p+4*q))...
424 −(k e EG(i−2*p−2*q)*y(i))...
425 −(k h EG(i−2*p−2*q)*y(i));
426 end

427

428 % CBH−EG−bound surface polymers

429

430 for i = 3*p+3*q+4:4*p+4*q;

431 dydt(i) = (k f EG(i−3*p−3*q)*y(6*p+6*q+1)*y(i−3*p−3*q+p+q))...
432 −(k e EG(i−3*p−3*q)*y(i))...
433 −(k h EG(i−3*p−3*q)*y(i));
434 end

435

436 % Surface polymers

437

438 m = zeros(p+q,1);

439

440 for i = 4*p+4*q+7:5*p+5*q−1;
441 m(i−4*p−4*q) = ...

442 (sum(n endo(i−4*p−4*q,i−4*p−4*q+1:end)'.*k h EG(i−4*p−4*q+1:end)...
443 .*y(i−4*p−4*q+2*p+2*q+1:3*p+3*q))...
444 +sum(n endo(i−4*p−4*q,i−4*p−4*q+1:end)'.*k h EG(i−4*p−4*q+1:end)...
445 .*y(i−4*p−4*q+1+3*p+3*q:4*p+4*q))...
446 −(k f CBH(i−4*p−4*q)*y(6*p+6*q+2)*y(i))...
447 +(k e CBH(i−4*p−4*q)*y(i−4*p−4*q+p+q))...
448 −(k f EG(i−4*p−4*q)*y(6*p+6*q+1)*y(i))...
449 +(k e EG(i−4*p−4*q)*y(i−4*p−4*q+2*p+2*q)));
450 end

451

452 m(p+q) = (−(k f CBH(p+q)*y(6*p+6*q+2)*y(5*p+5*q))...

453 +(k e CBH(p+q)*y(2*p+2*q))...

454 −(k f EG(p+q)*y(6*p+6*q+1)*y(5*p+5*q))...

455 +(k e EG(p+q)*y(3*p+3*q)));

456

457 for i = 4*p+4*q+7:5*p+5*q;

458 dydt(i) = m(i−4*p−4*q)...
459 −(sum(m.*(162*x piv+18))+sum(dydt(p+q+1:4*p+4*q).*(162*x3+18)))...

460 *R ratio*ppval(exp ratio{i−4*p−4*q},R−R0);
461 end

462

463 % Internal inaccessible polymer

464

465 for i = 5*p+5*q+7:6*p+6*q;

466 dydt(i) = (sum(m.*(162*x piv+18))+sum(dydt(p+q+1:4*p+4*q)...

467 .*(162*x3+18)))*R ratio*ppval(exp ratio{i−5*p−5*q},R−R0);
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468 end

469

470 % Surface−adsorbed EG

471

472 dydt(6*p+6*q+1) = (k ads EG*E F EG*(As*tau EG−y(6*p+6*q+1)))...
473 −(k des EG*y(6*p+6*q+1))...

474 −sum(y(6*p+6*q+1)*k f EG(7:end).*y(4*p+4*q+7:5*p+5*q))...

475 +sum(k e EG(7:end).*y(2*p+2*q+7:3*p+3*q))...

476 −sum(y(6*p+6*q+1)*k f EG(4:end).*y(p+q+4:2*p+2*q))...

477 +sum(k e EG(4:end).*y(3*p+3*q+4:4*p+4*q));

478

479 % Surface−adsorbed CBH

480

481 dydt(6*p+6*q+2) = (k ads CBH*E F CBH*(As*tau CBH−y(6*p+6*q+2)))...
482 −(k des CBH*y(6*p+6*q+2))...

483 −sum(y(6*p+6*q+2)*k f CBH(7:end).*y(4*p+4*q+7:5*p+5*q))...

484 +sum(k e CBH(7:end).*y(p+q+7:2*p+2*q))...

485 +k Ir CBH(1)*y(6*p+6*q+7)+k Ir CBH(2)*y(6*p+6*q+8)...

486 −y(6*p+6*q+2)*sum(k If CBH'.*y(1:2));

487

488 % Inhibited EG

489

490 for i = 6*p+6*q+3:6*p+6*q+4;

491 dydt(i) = k If EG(i−6*p−6*q−3+1)*E F EG*y(i−6*p−6*q−3+1)...
492 −k Ir EG(i−6*p−6*q−3+1)*y(i);
493 end

494

495 % Inhibited CBH

496

497 for i = 6*p+6*q+5:6*p+6*q+6;

498 dydt(i) = k If CBH(i−6*p−6*q−5+1)*E F CBH*y(i−6*p−6*q−5+1)...
499 −k Ir CBH(i−6*p−6*q−5+1)*y(i);
500 end

501

502 for i = 6*p+6*q+7:6*p+6*q+8;

503 dydt(i) = k If CBH(i−6*p−6*q−7+1)*y(6*p+6*q+2)*y(i−6*p−6*q−7+1)...
504 −k Ir CBH(i−6*p−6*q−7+1)*y(i);
505 end

506

507 % Inhibited BG

508

509 for i = 6*p+6*q+9;

510 dydt(i) = k If BG*E F BG*y(i−6*p−6*q−9+1)...
511 −k Ir BG*y(i);

512 end

513

514 % Output

515

516 ode = dydt;

517

518 end

519

520 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
521

522 function [C,CXS,CNS,CNXS,CFS,CS,CI,CT,CC,E S EG,E S CBH,E F EG,E F CBH,...

523 E F BG,R,conv rem] = post processing(t,y,p,q,x piv,ro,L,n,mss,E T EG,...

524 E T CBH,E T BG)

525

526 % Molar concentrations, mol/L
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527

528 C = y(:,1:p+q); % Soluble products

529 CXS = y(:,p+q+1:2*p+2*q); % CBH−bound complex

530 CNS = y(:,2*p+2*q+1:3*p+3*q); % EG−bound complex

531 CNXS = y(:,3*p+3*q+1:4*p+4*q); % CBH−EG−bound complex

532 CFS = y(:,4*p+4*q+1:5*p+5*q); % Free un−bound surface polymers

533 CS = CXS+CNS+CNXS+CFS; % Total surface polymers

534 CI = y(:,5*p+5*q+1:6*p+6*q); % Internal polymers

535 CT = C+CS+CI; % Total polymers

536 CC = CS+CI; % Insoluble polymers

537

538 E S EG = y(:,6*p+6*q+1); % Surface−adsorbed EG

539 E S CBH = y(:,6*p+6*q+2); % Surface−adsorbed CBH

540

541 CNI(:,1) = y(:,6*p+6*q+3); % Inhibited EG

542 CNI(:,2) = y(:,6*p+6*q+4);

543

544 CXI(:,1) = y(:,6*p+6*q+5)+y(:,6*p+6*q+7); % Inhibited CBH

545 CXI(:,2) = y(:,6*p+6*q+6)+y(:,6*p+6*q+8);

546

547 CBI = y(:,6*p+6*q+9); % Inhibited BG

548

549 E F EG = zeros(length(t),1); % Free EG

550 E F CBH = zeros(length(t),1); % Free CBH

551 E F BG = zeros(length(t),1); % Free BG

552

553 for i = 1:length(t)

554 E F EG(i) = E T EG−E S EG(i)−sum(CNS(i,:))−sum(CNXS(i,:))−sum(CNI(i,:));
555 E F CBH(i) = E T CBH−E S CBH(i)−sum(CXS(i,:))−sum(CXI(i,:))−sum(CNXS(i,:));
556 E F BG(i) = E T BG−sum(CBI(i));
557 end

558

559 % Transient particle radius, m

560

561 R = zeros(length(t),1);

562

563 for i = 1:length(t)

564 R(i) = sqrt(sum(CC(i,:)'.*(162*x piv+18))/(ro*pi*L*n));

565 end

566

567 % Mass of insoluble polymers, g/L

568

569 mss CC = zeros(length(t),1);

570

571 for i = 1:length(t)

572 mss CC(i) = sum(CC(i,:)'.*(162*x piv+18));

573 end

574

575 % Conversion

576

577 conv rem = zeros(length(t),1);

578

579 for i = 1:length(t)

580 conv rem(i) = (mss−mss CC(i))/mss;

581 end

582

583 end
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D.4 Simulation of Consolidated Bioprocessing of

Cellulose (UC-PBM)

Main file:

1 close all; clear all; clc;

2

3 % Setting input parameters

4

5 % Cellulose, cellobiose, biomass loadings

6

7 mss = 4.59; % Initial concentration of cellulose, g/L

8 cellobiose = 1e−4; % Initial concentration of cellobiose, g/L

9 biomass = 0.04; % Initial concentration of biomass, g/L

10

11 Av pc = 10; % Pre−culture Avicel concentration, g/L

12 CB pc = 0; % Pre−culture Cellobiose concentration, g/L

13

14 % Cellulosome, cellulase, biomass settings (if biomass grown on cellulose)

15

16 MW cellome = 1.73e6; % Molecular weight of cellulosomes, g/mol

17 mass frac cellulase = 0.50; % Fraction of cellulase in cellulosome

18 mol exo = 11.08*0.99; % Moles of exo−enzymes per mole of cellulosome

19 mol endo = 11.08−mol exo; % Moles of endo−enzymes per mol of cellulosome

20 biom DCW prtn = 1/1.2; % Fraction of biomass in DW (N20%)

21

22 % Cellulosome, cellulase, biomass settings (if biomass grown on cellobiose)

23

24 % MW cellome = 1.89e6;

25 % mass frac cellulase = 0.39;

26 % mol exo = 9.48*0.99;

27 % mol endo = 9.48−mol exo;

28 % biom DCW prtn = 1/1.02; % (N2%)

29

30 % Mesh setting

31

32 p = 20; % Number of discrete pivots

33

34 % Time Span

35

36 t end = 1.62e5; % Time span of simulation, seconds

37

38 % Initial Distribution − base fitted cellulose distribution

39

40 load('Raw Avicel calibrated initialDist Engel 2012 final','MnL','MwL',...

41 'MnH','MwH','N','r massL');

42

43 % EFVs from metabolic network

44

45 load EFM NewReduced9aa CTh DSM1313 iAT601 Thompson 2016.mat; % (N20%)
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46 % load EFM NewReduced10 CTh DSM1313 iAT601 Thompson 2016.mat; % (N2%)

47

48 % List of Model Paramaters

49

50 % ML−PBM parameters

51

52 % Exo−enzyme−related parameters

53

54 % 1 kp h exo − Rate contant of exo−enzyme hydrolysis, 1/s

55 % 2 kp f exo − Rate constant of exo−enzyme complexation, DP.L/mol.s

56 % 3 kp e exo − Rate constant of exo−enzyme decomplexation, 1/s

57 % 4 tau exo − Exo−enzyme footprint/area coverage, mol/m2

58 % 5 k ads exo − Rate constant of exo−enzyme adsorption, L/mol.s

59 % 6 k des exo − Rate constant of exo−enzyme desoprtion, 1/s

60 % 7 k If exo(1) − Forward glucose inhibition rate constant (exo−enzyme), L/mol.s

61 % 8 k If exo(2) − Forward cellobiose inhibition rate constant(exo−enzyme), L/mol.s

62 % 9 k Ir exo(1) − Reverse glucose inhibition rate constant(exo−enzyme), 1/s

63 % 10 k Ir exo(2) − Reverse cellobiose inhibition rate constant(exo−enzyme), 1/s

64

65 % Substrate−related parameters

66

67 % 11 pnt zone − Number of layers in penetration zone

68 % 12 r massL − Mass ratio of cellulose in penetration zone

69

70 % Endo−enzyme−related parameters

71

72 % 13 kp h endo − Rate constant of endo−enzyme hydrolysis (insoluble cellulose), DP/s

73 % 14 kp hs endo − Rate constant of endo−enzyme hydrolysis (soluble cellulose), L/mol.s

74 % 15 kp f endo − Rate constant of endo−enzyme complexation, DP.L/mol.s

75 % 16 kp e endo − Rate constant of endo−enzyme decomplexation, 1/s

76 % 17 tau endo − Endo−enzyme enzyme footprint/area coverage, mol/m2

77 % 18 k ads endo − Rate constant of endo−enzyme adsorption, L/mol.s

78 % 19 k des endo − Rate constant of endo−enzyme desorption, 1/s

79 % 20 k If endo(1) − Forward glucose inhibition rate constant (endo−enzyme), L/mol.s

80 % 21 k If endo(2) − Forward cellobiose inhibition rate constant (endo−enzyme), L/mol.s

81 % 22 k Ir endo(1) − Reverse glucose inhibition rate constant (endo−enzyme), 1/s

82 % 23 k Ir endo(2) − Reverse cellobiose inhibition rate constant (endo−enzyme), 1/s

83

84 % L−HCM parameters

85

86 % 24 aF(1) − Constitutive intracellular enzyme synthesis rate (F1), 1/s

87 % 25 aF(2) − Constitutive intracellular enzyme synthesis rate (F2), 1/s

88 % 26 bF(1) − Intracellular enzyme decay rate (F1),1/s

89 % 27 bF(2) − Intracellular enzyme decay rate (F2),1/s

90 % 28 kE(1) − Inducive intracellular enzyme synthesis rate (F1), 1/s

91 % 29 kE(2) − Inducive intracellular enzyme synthesis rate (F2), 1/s

92 % 30 KE(1) − MM constant for intracellular enzyme synthesis (F1), mol/L

93 % 31 KE(2) − MM constant for intracellular enzyme synthesis (F2), mol/L

94 % 32 k inh G − Glucose inhibition constant, mol/L

95 % 33 k inh etoh − Ethanol inhibition constant, mol/L

96 % 34 kmax(1) − Maximum substrate uptake rate (F1), mol/g−biom.s
97 % 35 kmax(2) − Maximum substrate uptake rate (F2), mol/g−biom.s
98 % 36 K(1) − MM constant for substrate uptake (F1), mol/L

99 % 37 K(2) − MM constant for substrate uptake (F2), mol/L

100 % 38 aE − Constitutive cellulase synthesis rate, g/g−biom.s
101

102 % Input the values for model parameters below:

103

104 prm(1) = 2.15;
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105 prm(2) = 3e7;

106 prm(3) = 10;

107 prm(4) = 2.22e−8;
108 prm(5) = 7.3722e5;

109 prm(6) = 0.01;

110 prm(7) = 0;

111 prm(8) = 0;

112 prm(9) = 0;

113 prm(10) = 0;

114

115 prm(11) = 1;

116 prm(12) = 0.028;

117

118 prm(13) = 4;

119 prm(14) = 3;

120 prm(15) = 1e9;

121 prm(16) = 10;

122 prm(17) = 8.04e−9;
123 prm(18) = 7.11e5;

124 prm(19) = 0.01;

125 prm(20) = 0;

126 prm(21) = 0;

127 prm(22) = 0;

128 prm(23) = 0;

129

130 prm(24) = 0.1/3600;

131 prm(25) = 0.1/3600;

132 prm(26) = 0.2/3600;

133 prm(27) = 0.2/3600;

134 prm(28) = 1/3600;

135 prm(29) = 1/3600;

136 prm(32) = 1.22e−3;
137 prm(33) = 1.74;

138 prm(34) = 1.3e−6;
139 prm(35) = 1.9e−6;
140 prm(36) = 1e−6;
141 prm(37) = 9e−6;
142 prm(30) = prm(36);

143 prm(31) = prm(37);

144 prm(38) = 3e−7;
145

146 % Run simulation

147

148 [Z,idx cb,idx atp,idx csm,idx biom,idx etoh,idx lac,idx form,idx ace,...

149 F1,F1A,F1C,F2,F2A,F2B,idx met,ZF1,ZF2,Y1 met lump,Y2 met lump,Y1 E,...

150 Y2 E,Y2 B,x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,t,C,CXS,CNS,...

151 CNXS,CFS,CS,CI,CT,CC,E T exo,E T endo,CB,etoh,lac,form,ace,cellome,...

152 biom,cellulase tot,cellu,cell gluc eq,eF rel,R,conv rem,conv cb,uF,vF,...

153 r up,mu] = UCPBM(p,N,prm,mss,MnL,MwL,MnH,MwH,t end,CB pc,cellobiose,...

154 biomass,MW cellome,mol exo,mol endo,biom DCW prtn,ems,ems idx,reac,...

155 mass frac cellulase);

156

157 % List of outputs

158

159 % x piv % DP mesh

160 % R in % Initial particle radius

161 % layers % Total no. of layers in cellulose particles

162 % C T % Total initial cellulose distribution

163 % C S % Surface initial cellulose distribution
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164 % C INT % Internal initial cellulose distribution

165 % MnT % Overall initial number−average DP

166 % MwT % Overall initial weight−average DP

167 % pdiT % Overall initial polydispersity index

168

169 % Indexes of key metabolic rxns

170

171 % idx cb,idx atp,idx csm,idx biom,idx etoh,idx lac,idx form,idx ace

172

173 % Metabolic information

174

175 % Z % EFV matrix

176 % F1,F1A,F1C,F2,F2A,F2B % Number of EFVs in EFV families

177 % ZF1,ZF2 % Lumped EFV families

178 % Y1 met lump,Y2 met lump,Y1 E,Y2 E,Y2 B % Lumped yields

179

180 % t % Time, s

181

182 % Time,DP−dependent variables

183

184 % C % Soluble products, mol/L

185 % CXS % CBH−bound complex, mol/L

186 % CNS % EG−bound complex, mol/L

187 % CNXS % CBH−EG−bound complex, mol/L

188 % CFS % Free un−bound surface polymers, mol/L

189 % CS % Total surface polymers, mol/L

190 % CI % Internal polymers, mol/L

191 % CT % Total polymers, mol/L

192 % CC % Insoluble polymers, mol/L

193

194 % Time−dependent variables

195

196 % E T endo % Total endo−enzymes, mol/L

197 % E T exo % Total exo−enzymes, mol/L

198 % CB % Cellobiose, g/L

199 % etoh % Ethanol, g/L

200 % lac % Lactate, g/L

201 % form % Formate, g/L

202 % ace % Acetate, g/L

203 % cellome % Cellulosome, g/L

204 % biom % Biomass, g/L

205 % cellulase tot % Total cellulase, g/L

206 % cellu % Remaining insoluble cellulose, g/L

207 % cell gluc eq % Remaining insoluble cellulose, g glu/L

208 % eF rel % Relative intracellular enzyme levels

209 % R % Transient of particle radius, m

210 % conv rem % Overall cellulose conversion

211 % conv cb % Overall cellobiose conversion

212 % uF,vF % Cybernetic variables

213 % r up % Uptake fluxes through EFV families, mol/g−biom.s
214 % mu % Specific biomass growth rate, 1/s
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Function file:

1 function [Z,idx cb,idx atp,idx csm,idx biom,idx etoh,idx lac,idx form,...

2 idx ace,F1,F1A,F1C,F2,F2A,F2B,idx met,ZF1,ZF2,Y1 met lump,...

3 Y2 met lump,Y1 E,Y2 E,Y2 B,x piv,R in,layers,C T,C S,C INT,MnT,MwT,...

4 pdiT,t,C,CXS,CNS,CNXS,CFS,CS,CI,CT,CC,E T exo,E T endo,CB,etoh,lac,...

5 form,ace,cellome,biom,cellulase tot,cellu,cell gluc eq,eF rel,R,...

6 conv rem,conv cb,uF,vF,r up,mu] = UCPBM(p,N,prm,mss,MnL,MwL,MnH,MwH,...

7 t end,CB pc,cellobiose,biomass,MW cellome,mol exo,mol endo,...

8 biom DCW prtn,ems,ems idx,reac,mass frac cellulase)

9

10 [Z,idx cb,idx atp,idx csm,idx biom,idx etoh,idx lac,idx form,idx ace,F1,...

11 F1A,F1C,F2,F2A,F2B,idx met,ZF1,ZF2,Y1 met lump,Y2 met lump,Y1 E,...

12 Y2 E,Y2 B] = EFV setting(ems,ems idx,biom DCW prtn,reac);

13

14 [x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,q,vm,R0,ro,L,n,exp ratio]...

15 = MLPBM setting(p,N,prm,mss,MnL,MwL,MnH,MwH);

16

17 [t,y,eF max,kmax,K,K inh G,K inh etoh] = ODE setting(p,q,C S,C INT,prm,...

18 x piv,vm,t end,Y1 met lump,Y2 met lump,Y1 E,Y2 E,Y2 B,CB pc,...

19 cellobiose,biomass,MW cellome,mol exo,mol endo,R0,ro,L,n,exp ratio);

20

21 [C,CXS,CNS,CNXS,CFS,CS,CI,CT,CC,E T exo,E T endo,CB,etoh,lac,form,ace,...

22 cellome,biom,cellulase tot,cellu,cell gluc eq,eF rel,R,conv rem,...

23 conv cb,uF,vF,r up,mu] = post processing(t,y,p,q,MW cellome,mol endo,...

24 mol exo,mass frac cellulase,x piv,eF max,ro,L,n,mss,cellobiose,kmax,...

25 K,K inh G,K inh etoh,Y2 B);

26

27 end

28

29 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30

31 function [Z,idx cb,idx atp,idx csm,idx biom,idx etoh,idx lac,idx form,...

32 idx ace,F1,F1A,F1C,F2,F2A,F2B,idx met,ZF1,ZF2,Y1 met lump,...

33 Y2 met lump,Y1 E,Y2 E,Y2 B] = EFV setting(ems,ems idx,biom DCW prtn,...

34 reac)

35

36 % EFV setting

37

38 n eta = 1; % Sensitivity setting to tuning parameters

39

40 % Tuning parameters for N20%

41

42 a tune1 = [−1.544065229170075 1.569902586838220...

43 4.730079923633626 −8.058648461794135];
44 a tune2 = [−0.002019303084171 −0.007859218375312...
45 −0.009091575956450 0.005826206931968];

46

47 % Tuning parameters for N2%

48

49 % a tune1 = [−4.467191370597475 4.577593783957661...

50 % 13.788127542564130 −23.705397747646195];
51 % a tune2 = [3.644003789716016 −2.686629088044898...
52 % −9.470963287592038 13.097851990509195];

53

54 Z = ems'; % EFV matrix, Z
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55 rxn = reac(ems idx); % List of metabolic rxns

56

57 % Indexes for key metabolic rxns

58

59 idx cb = find(¬cellfun(@isempty,strfind(rxn,'T e to c C00185 c')));

60 idx atp = find(¬cellfun(@isempty,strfind(rxn,'R R MAINT')));

61 idx biom = find(¬cellfun(@isempty,strfind(rxn,'T c to e m85')));

62 idx csm = find(¬cellfun(@isempty,strfind(rxn,'R EXC OUT m90')));

63 idx etoh = find(¬cellfun(@isempty,strfind(rxn,'T c to e C00469 c')));

64 idx lac = find(¬cellfun(@isempty,strfind(rxn,'T c to e C00186 c')));

65 idx form = find(¬cellfun(@isempty,strfind(rxn,'T c to e C00058 c')));

66 idx ace = find(¬cellfun(@isempty,strfind(rxn,'T c to e C00033 c')));

67

68 % Classification of EFV families

69

70 F = find(Z(idx cb,:)6=0)';
71 F1 = intersect(F,setdiff(find(Z(idx csm,:)6=0),find(Z(idx biom,:)6=0)));
72 F2 = setdiff(F,F1);

73

74 e1C = intersect(F1,find(Z(idx csm,:)6=0));
75 e1A = intersect(F1,find(Z(idx atp,:)6=0));
76

77 e2B = intersect(F2,find(Z(idx biom,:)6=0));
78 e2A = intersect(F2,find(Z(idx atp,:)6=0));
79

80 F1C = e1C;

81 F1A = setdiff(e1A,e1C);

82 F1 = unique([F1C;F1A]);

83

84 F2B = e2B;

85 F2A = setdiff(e2A,e2B);

86 F2 = unique([F2B;F2A]);

87

88 z1C = Z(:,F1C); % z−matrix of F1

89 z2B = Z(:,F2B); % z−matrix of F2,biom

90 z2A = Z(:,F2A); % z−matrix of F2,atp

91

92 % Yields of metabolites in individual EFVs before lumping

93

94 Y1C csm = (z1C(idx csm,:)./z1C(idx cb,:));

95 Y1C etoh = z1C(idx etoh,:)./z1C(idx cb,:);

96 Y1C lac = z1C(idx lac,:)./z1C(idx cb,:);

97 Y1C form = z1C(idx form,:)./z1C(idx cb,:);

98 Y1C ace = z1C(idx ace,:)./z1C(idx cb,:);

99

100 Y2B biom = (z2B(idx biom,:)./z2B(idx cb,:));

101 Y2B etoh = z2B(idx etoh,:)./z2B(idx cb,:);

102 Y2B lac = z2B(idx lac,:)./z2B(idx cb,:);

103 Y2B form = z2B(idx form,:)./z2B(idx cb,:);

104 Y2B ace = z2B(idx ace,:)./z2B(idx cb,:);

105

106 Y2A atp = (z2A(idx atp,:)./z2A(idx cb,:));

107 Y2A etoh = z2A(idx etoh,:)./z2A(idx cb,:);

108 Y2A lac = z2A(idx lac,:)./z2A(idx cb,:);

109 Y2A form = z2A(idx form,:)./z2A(idx cb,:);

110 Y2A ace = z2A(idx ace,:)./z2A(idx cb,:);

111

112 % Metabolite order: eth,lac,form,ace

113
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114 idx met = [idx etoh;idx lac;idx form;idx ace]; % Index of metabolite secreting rxns

115

116 Y1C met = [Y1C etoh;Y1C lac;Y1C form;Y1C ace];

117 Y2B met = [Y2B etoh;Y2B lac;Y2B form;Y2B ace];

118 Y2A met = [Y2A etoh;Y2A lac;Y2A form;Y2A ace];

119

120 % EFV lumping scheme

121

122 wt = 1; % Arbitrary weightage

123

124 eta1C = zeros(length(F1C),1);

125

126 for i = 1:length(F1C)

127 eta1C(i) = wt*(Y1C csm(i)+sum(a tune1'.*Y1C met(:,i)));

128 end

129

130 eta2B = zeros(length(F2B),1);

131

132 for i = 1:length(F2B)

133 eta2B(i) = wt*(Y2B biom(i)+sum(a tune2'.*Y2B met(:,i)));

134 end

135

136 eta2A = zeros(length(F2A),1);

137

138 for i = 1:length(F2A)

139 eta2A(i) = wt*(Y2A atp(i)+sum(a tune2'.*Y2A met(:,i)));

140 end

141

142 % Lumped EFV matrices

143

144 ZF1C = zeros(length(rxn),1);

145 ZF2B = zeros(length(rxn),1);

146 ZF2A = zeros(length(rxn),1);

147

148 for i = 1:length(rxn)

149 ZF1C(i) = sum(z1C(i,:)'.*(eta1C.ˆ(3*n eta)))/sum(eta1C.ˆ(3*n eta));

150 ZF2B(i) = sum(z2B(i,:)'.*(eta2B.ˆ(3*n eta)))/sum(eta2B.ˆ(3*n eta));

151 ZF2A(i) = sum(z2A(i,:)'.*(eta2A.ˆ(3*n eta)))/sum(eta2A.ˆ(3*n eta));

152 end

153

154 ZF1 = ZF1C;

155 ZF2 = ZF2B+ZF2A;

156

157 % Final yields of metabolites after EFV lumping

158

159 Y1 met lump = zeros(length(idx met),1); % mol/mol

160 Y2 met lump = zeros(length(idx met),1);

161

162 for i = 1:length(idx met)

163 Y1 met lump(i) = (ZF1(idx met(i))/ZF1(idx cb));

164 Y2 met lump(i) = (ZF2(idx met(i))/ZF2(idx cb));

165 end

166

167 Y1 E = (ZF1(idx csm)/ZF1(idx cb))*1000; % g/mol

168 Y2 E = (ZF2(idx csm)/ZF2(idx cb))*1000;

169

170 Y2 B = biom DCW prtn*(ZF2(idx biom)/ZF2(idx cb))*1000; % g/mol

171

172 end
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173

174 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175

176 function [x piv,R in,layers,C T,C S,C INT,MnT,MwT,pdiT,q,vm,R0,ro,L,n,...

177 exp ratio] = MLPBM setting(p,N,prm,mss,MnL,MwL,MnH,MwH)

178

179 % General settings

180

181 vm = 1; % Size of monomer

182

183 qmax = 1+(log(N/(p+1))/log(1+(vm/(p+1)))); % Maximum pivots in cont region

184 q = floor(qmax); % No. of pivots in cont region

185 ratio = (N/(p+1))ˆ(1/(q−1)); % Ratio of geometric progr

186

187 % Pivots for discrete−continuous mesh

188

189 x piv = zeros(p+q,1);

190 x piv(1:p) = 1:p;

191

192 for i = p+1:p+q

193 x piv(i) = (p+1)*ratioˆ(i−(p+1)); % Geometric mesh

194 end

195

196 % Boundary points for discrete−continuous mesh

197

198 x bound = zeros(p+q+1,1);

199 x bound(1) = 0.5;

200

201 for i=2:p+q

202 x bound(i) = (x piv(i)+x piv(i−1))/2;
203 end

204

205 x bound(p+q+1) = x piv(end);

206

207 % Initial distribution

208

209 c in = @(x,alpha,beta,pin) pin*gampdf(x,alpha,beta); % Gamma distribution

210

211 % Physical properties

212

213 layers = round(2/(((mss*prm(12))/prm(11))/mss)); % Total no. of layers

214 ro = 1500; % Cellulose density, g/L

215 L = (N/2)*10.38e−10; % Length of microfibril, m

216 R0 = 1e−9; % Width of single layer, m

217 R in = layers*R0; % Total radius of particle, m

218 n = mss/(ro*pi*(R inˆ2)*L); % No. of particles per unit vol, 1/m3

219 p zone = prm(11); % No. of layers in penetration zone

220 i zone = (R in/R0)−p zone; % No. of layers in internal zone

221

222 % Radiuses of discrete layers

223

224 R set = sort(0:R0:R in,'descend')';

225

226 % Mass of polymers in each layer

227

228 mass l = zeros(length(R set)−1,1);
229

230 for i = 2:length(R set)

231 mass l(i−1) = (n*ro*pi*(R set(i−1)ˆ2)*L)−(n*ro*pi*(R set(i)ˆ2)*L);
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232 end

233

234 % Initial cellulose distribution in each layer

235

236 pin l = zeros(length(mass l),1);

237 c in tl = zeros(length(mass l),p+q); % Molar concentration density

238 C in tl = zeros(length(mass l),p+q); % Molar concentration

239

240 optionsfmincon = optimoptions('fsolve','display','none');

241

242 for i = 1:p zone

243 pin l(i) = fsolve(@(x) sum(c in(x piv,MnL/(MwL−MnL),MwL−MnL,x)...
244 .*(x bound(2:end)−x bound(1:p+q)).*(162*x piv+18))−mass l(i),0,...

245 optionsfmincon);

246 c in tl(i,:) = c in(x piv,MnL/(MwL−MnL),MwL−MnL,pin l(i));

247 end

248

249 for i = p zone+1:p zone+i zone

250 pin l(i) = fsolve(@(x) sum(c in(x piv,MnH/(MwH−MnH),MwH−MnH,x)...
251 .*(x bound(2:end)−x bound(1:p+q)).*(162*x piv+18))−mass l(i),0,...

252 optionsfmincon);

253 c in tl(i,:) = c in(x piv,MnH/(MwH−MnH),MwH−MnH,pin l(i));

254 end

255

256 for i = 1:p+q

257 C in tl(:,i) = c in tl(:,i).*(x bound(i+1)−x bound(i));

258 end

259

260 % Overall initial cellulose distribution

261

262 C T = zeros(p+q,1);

263

264 for i = 1:p+q

265 C T(i) = sum(C in tl(:,i));

266 end

267

268 % Surface initial cellulose distribution

269

270 C S = zeros(p+q,1);

271

272 for i = 1:p+q

273 C S(i) = sum(C in tl(1,i));

274 end

275

276 % Internal initial cellulose distribution

277

278 C INT = zeros(p+q,1);

279

280 for i = 1:p+q

281 C INT(i) = sum(C in tl(2:end,i));

282 end

283

284 % Ratio of molar concentration to total mass in each layer

285

286 C ratio = zeros(length(R set)−1,p+q);
287

288 for i = 1:length(R set)−1
289 for j = 1:p+q

290 C ratio(i,j) = C in tl(i,j)/sum(C in tl(i,:)'.*(162*x piv+18));
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291 end

292 end

293

294 % Piece−wise function for ratio of molar concentration to total mass as a

295 % function of particle radius

296

297 exp ratio = cell(p+q,1);

298

299 for i = 1:p+q

300 exp ratio{i} = mkpp(flipud(R set),flipud(C ratio(:,i)));

301 end

302

303 % General properties of initial cellulose distribution

304

305 MnT = sum(C T.*x piv)/sum(C T);

306 MwT = sum(C T.*(x piv.ˆ2))/sum(C T.*x piv);

307 pdiT = MwT/MnT;

308

309 end

310

311 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
312

313 function [t,y,eF max,kmax,K,K inh G,K inh etoh] = ODE setting(p,q,C S,...

314 C INT,prm,x piv,vm,t end,Y1 met lump,Y2 met lump,Y1 E,Y2 E,Y2 B,...

315 CB pc,cellobiose,biomass,MW cellome,mol exo,mol endo,R0,ro,L,n,...

316 exp ratio)

317

318 % Parameter setting

319

320 % ML−PBM parameters

321

322 % Exo−enzyme−related parameters

323

324 kp h exo = prm(1); % Rate constant of hydrolysis, 1/s

325 m h exo = 0;

326 k h exo = kp h exo*(x piv.ˆm h exo); % Rate coefficients of hydrolysis, 1/s

327

328 kp f exo = prm(2); % Rate constant of complexation, DP.L/mol.s

329 m f exo = −1;
330 k f exo = kp f exo*(x piv.ˆm f exo); % Rate coefficients of complexation, L/mol.s

331

332 kp e exo = prm(3); % Rate constant of decomplexation, 1/s

333 m e exo = 0;

334 k e exo = kp e exo*(x piv.ˆm e exo); % Rate coefficients of decomplexation, 1/s

335

336 tau exo = prm(4); % Enzyme footprint, mol/m2

337 k ads exo = prm(5); % Adsorption constant, L/mol.s

338 k des exo = prm(6); % Desorption constant, 1/s

339

340 k If exo = [prm(7) prm(8)]; % Forward glucose/cellobiose inhibition, L/mol.s

341 k Ir exo = [prm(9) prm(10)]; % Reverse glucose/cellobiose inhibition, 1/s

342

343 % Endo−enzyme−related parameters

344

345 kp h endo = prm(13); % Rate constant of hydrolysis (insoluble cellulose), 1/s

346 m h endo = 0; % Endo−enzymes in C.th unaffected by crystallinity

347 k h endo = kp h endo*(x piv.ˆm h endo); % Rate coefficients of hydrolysis(insoluble cellulose), 1/s

348

349 kp hs endo = prm(14); % Rate constant of hydrolysis (soluble cellulose), 1/s
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350 m hs endo = 0;

351 k hs endo = kp hs endo*(x piv.ˆm hs endo);

352 k hs endo(2) = 0; % Rate coefficients of hydrolysis (soluble cellulose), L/mol.s

353 % Endo−enzymes in C.th do not hydrolyze cellobiose

354

355 kp f endo = prm(15); % Rate constant of complexation, L/mol.s

356 m f endo = 0; % Endo−enzymes in C.th unaffected by crystallinity

357 k f endo = kp f endo*(x piv.ˆm f endo); % Rate coefficients of complexation, L/mol.s

358

359 kp e endo = prm(16); % Rate constant of decomplexation, 1/s

360 m e endo = 0;

361 k e endo = kp e endo*(x piv.ˆm e endo); % Rate coefficients of decomplexation, 1/s

362

363 tau endo = prm(17); % Enzyme footprint, mol/m2

364 k ads endo = prm(18); % Adsorption constant, L/mol.s

365 k des endo = prm(19); % Desorption constant, 1/s

366

367 k If endo = [prm(20) prm(21)]; % Forward glucose/cellobiose inhibition, L/mol.s

368 k Ir endo = [prm(22) prm(23)]; % Reverse glucose/cellobiose inhibition, 1/s

369

370 % L−HCM parameters

371

372 aF(1) = prm(24); % Constitutive intracellular enzyme synthesis rate (F1), 1/s

373 aF(2) = prm(25); % Constitutive intracellular enzyme synthesis rate (F2), 1/s

374 bF(1) = prm(26); % Intracellular enzyme decay rate (F1),1/s

375 bF(2) = prm(27); % Intracellular enzyme decay rate (F2),1/s

376 kE(1) = prm(28); % Inducive intracellular enzyme synthesis rate (F1), 1/s

377 kE(2) = prm(29); % Inducive intracellular enzyme synthesis rate (F2), 1/s

378 KE(1) = prm(30); % MM constant for intracellular enzyme synthesis (F1), mol/L

379 KE(2) = prm(31); % MM constant for intracellular enzyme synthesis (F2), mol/L

380 K inh G = prm(32); % Glucose inhibition constant, mol/L

381 K inh etoh = prm(33); % Ethanol inhibition constant, mol/L

382 kmax(1) = prm(34); % Maximum substrate uptake rate (F1), mol/g−biom.s
383 kmax(2) = prm(35); % Maximum substrate uptake rate (F2), mol/g−biom.s
384 K(1) = prm(36); % MM constant for substrate uptake (F1), mol/L

385 K(2) = prm(37); % MM constant for substrate uptake (F2), mol/L

386 aE = prm(38); % Constitutive cellulase synthesis rate, g/g−biom.s
387

388 % Maximum intracellular enzyme levels

389

390 eF max(1) = (aF(1)+kE(1))/bF(1);

391 eF max(2) = (aF(2)+kE(2))/(bF(2)+(Y2 B*kmax(2)));

392

393 % Initial intracellular enzyme levels

394

395 [init e] = int enz(aF,kE,bF,Y2 B,kmax,CB pc,K,KE);

396

397 % Fixed pivot technique

398

399 [n exo,n endo] = fp(p,q,vm,x piv); % Particle allocation functions

400

401 % Initial conditions

402

403 init = zeros(6*p+6*q+17,1);

404 init(1:p+q) = 0; % 1 to p+q −−> free liberated polymers

405 init(2) = cellobiose/342; % 2 −−> cellobiose

406 init(p+q+1:2*p+2*q) = 0; % p+q+1 to 2p+2q −−> CBH−bound polymers

407 init(2*p+2*q+1:3*p+3*q) = 0; % 2p+2q+1 to 3p+3q −−> EG−bound polymers

408 init(3*p+3*q+1:4*p+4*q) = 0; % 3p+3q+1 to 4p+4q −−> EG−CBH−bound polymers



D.4. Simulation of Consolidated Bioprocessing of Cellulose (UC-PBM) 245

409 init(4*p+4*q+1:5*p+5*q) = C S; % 4p+4q+1 to 5p+5q −−> surface−accessible polymer

410 init(5*p+5*q+1:6*p+6*q) = C INT; % 5p+5q+1 to 6p+6q −−> internal inaccessible polymer

411 init(6*p+6*q+1) = 0; % 6p+6q+1 −−> surface adsorbed EG

412 init(6*p+6*q+2) = 0; % 6p+6q+2 −−> surface adsorbed CBH

413 init(6*p+6*q+3:6*p+6*q+4) = 0; % 6p+6q+3 to 6p+6q+4 −−> inhibited EG

414 init(6*p+6*q+5:6*p+6*q+6) = 0; % 6p+6q+5 to 6p+6q+6 −−> inhibited free CBH

415 init(6*p+6*q+7:6*p+6*q+8) = 0; % 6p+6q+7 to 6p+6q+8 −−> inhibited adsorbed CBH

416 init(6*p+6*q+9) = 0; % 6p+6q+9 −−> inhibited BG (placeholder for future ...

extension)

417 init(6*p+6*q+10) = init e(1)*eF max(1); % 6p+6q+10 −−> intracellular enzyme (F1)

418 init(6*p+6*q+11) = init e(2)*eF max(2); % 6p+6q+11 −−> intracellular enzyme (F2)

419 init(6*p+6*q+12) = 0; % 6p+6q+12 −−> etoh

420 init(6*p+6*q+13) = 0; % 6p+6q+13 −−> lac

421 init(6*p+6*q+14) = 0; % 6p+6q+14 −−> form

422 init(6*p+6*q+15) = 0; % 6p+6q+15 −−> ace

423 init(6*p+6*q+16) = 0; % 6p+6q+16 −−> cellome

424 init(6*p+6*q+17) = biomass; % 6p+6q+17 −−> biomass

425

426 % ODE solver

427

428 tstart = 0;

429 tfinal = t end;

430

431 tic;

432

433 options = odeset('AbsTol',1e−10,'RelTol',1e−10,'NonNegative',1:(6*p+6*q+17));
434

435 [t,y] = ode15s(@(t,y) UCPBM ode(p,q,n exo,n endo,k h exo,k h endo,k hs endo,...

436 k f exo,k f endo,k e exo,k e endo,k ads endo,k des endo,k ads exo,...

437 k des exo,tau endo,tau exo,k If exo,k Ir exo,k If endo,k Ir endo,...

438 x piv,R0,ro,L,n,exp ratio,kmax,K,kE,K inh G,K inh etoh,eF max,...

439 Y2 B,aF,bF,Y1 met lump,Y2 met lump,aE,Y1 E,...

440 Y2 E,MW cellome,mol exo,mol endo,y,t),[tstart tfinal],init,options);

441

442 time fp sim = '\nTotal time elapsed for UC−PBM simulation is %.1f seconds.\n';
443

444 fprintf(time fp sim,toc)

445

446 end

447

448 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
449

450 function [init e] = int enz(aF,kE,bF,Y2 B,kmax,CB pc,K,KE)

451

452 e rel lb(1) = aF(1)/(aF(1)+kE(1));

453 e rel lb(2) = (aF(2)/(bF(2)+Y2 B*kmax(2)*((CB pc/342)/(K(2)+(CB pc/342)))))*...

454 ((bF(2)+Y2 B*kmax(2))/(aF(2)+kE(2)));

455 e rel ub(1) = (aF(1)+kE(1)*((CB pc/342)/(KE(1)+(CB pc/342))))/(aF(1)+kE(1));

456 e rel ub(2) = ((aF(2)+kE(2)*((CB pc/342)/(KE(2)+(CB pc/342))))/...

457 (bF(2)+Y2 B*kmax(2)*((CB pc/342)/(K(2)+(CB pc/342)))))*...

458 ((bF(2)+Y2 B*kmax(2))/(aF(2)+kE(2)));

459

460 if CB pc == 0

461 init e(1) = e rel ub(1);

462 init e(2) = e rel lb(2);

463 else

464 init e(1) = e rel lb(1);

465 init e(2) = e rel ub(2);

466 end
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467

468 end

469

470 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
471

472 function [n exo,n endo] = fp(p,q,vm,x piv)

473

474 % Particle allocation function − fixed pivot technique

475

476 % Chain−end dimer scission

477

478 n exo = zeros(p+q,p+q);

479 n exo(1,3) = 1;

480 n exo(2,3) = 1; n exo(2,4) = 2; n exo(2,5:end) = 1;

481

482 for i = 3:p+q

483 for j = i:p+q

484 if j==i && x piv(j)−2*vm>x piv(i−1)
485 n exo(i,j) = ((x piv(j)−2*vm)−x piv(i−1))/(x piv(i)−x piv(i−1));
486 elseif j==i && x piv(j)−2*vm==x piv(i−1)
487 n exo(i,j) = 0;

488 elseif j6=i && x piv(j)−2*vm>x piv(i−1) && x piv(j)−2*vm<x piv(i)

489 n exo(i,j) = ((x piv(j)−2*vm)−x piv(i−1))/(x piv(i)−x piv(i−1));
490 elseif j6=i && x piv(j)−2*vm>x piv(i) && x piv(j)−2*vm<x piv(i+1)

491 n exo(i,j) = (x piv(i+1)−(x piv(j)−2*vm))/(x piv(i+1)−x piv(i));

492 elseif j6=i && x piv(j)−2*vm==x piv(i)

493 n exo(i,j) = 1;

494 elseif j6=i && x piv(j)−2*vm==x piv(i−1)
495 n exo(i,j) = 0;

496 else

497 n exo(i,j) = 0;

498 end

499 end

500 n exo(i,i) = n exo(i,i)−1;
501 end

502

503 % Random scission

504

505 n endo = zeros(p+q,p+q);

506

507 for j = 2:p+q

508 n endo(1,j) = 2/(x piv(j−1));
509 end

510

511 for i = 2:p

512 for j = i+1:p+q

513 n endo(i,i) = −1;
514 n endo(i,j) = 2/(x piv(j−1));
515 end

516 end

517

518 for i = p+1:p+q

519 for j = i+1:p+q

520 n endo(i,j) = (x piv(i+1)−x piv(i−1))/(x piv(j−1));
521 end

522 n endo(i,i) = −1;
523 end

524

525 end
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526

527 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
528

529 function ode = UCPBM ode(p,q,n exo,n endo,k h exo,k h endo,k hs endo,...

530 k f exo,k f endo,k e exo,k e endo,k ads endo,k des endo,k ads exo,...

531 k des exo,tau endo,tau exo,k If exo,k Ir exo,k If endo,k Ir endo,...

532 x piv,R0,ro,L,n,exp ratio,kmax,K,kE,K inh G,K inh etoh,eF max,...

533 Y2 B,aF,bF,Y1 met lump,Y2 met lump,aE,Y1 E,...

534 Y2 E,MW cellome,mol exo,mol endo,y,t)

535

536 dydt = zeros(6*p+6*q+17,1);

537

538 % Enzymes

539

540 E T endo = mol endo*(y(6*p+6*q+16)/MW cellome);

541 E T exo = mol exo*(y(6*p+6*q+16)/MW cellome);

542

543 E F endo = E T endo−y(6*p+6*q+1)−sum(y(2*p+2*q+1:4*p+4*q))...
544 −sum(y(6*p+6*q+3:6*p+6*q+4));
545 E F exo = E T exo−y(6*p+6*q+2)−sum(y(p+q+1:2*p+2*q))...
546 −sum(y(3*p+3*q+1:4*p+4*q))−sum(y(6*p+6*q+5:6*p+6*q+8));
547

548 E F BG = 0; k h BG = 0; k If BG = 0; k Ir BG = 0; % Placeholder for future extension

549

550 % Particle radius

551

552 x3 = [x piv;x piv;x piv];

553 x5 = [x piv;x piv;x piv;x piv;x piv];

554 R = sqrt(sum(y(p+q+1:6*p+6*q).*(162*x5+18))/(ro*pi*L*n));

555

556 % Total surface area

557

558 As = (n*2*pi*R*L)/1000;

559

560 if R−R0≤0
561 R ratio = 0;

562 else

563 R ratio = (R−R0)/R;
564 end

565

566 % L−HCM
567

568 rF kin = zeros(2,1); % Unregulated cellobiose uptake flux, mol/g−biom.s
569 rFE kin = zeros(2,1); % Unregulated inducive intracellular enzyme synthesis rates, 1/s

570 eF rel = zeros(2,1); % Relative intracellular enzyme levels

571 ROI = zeros(2,1); % ROIs

572

573 for i = 1:2

574 rF kin(i) = kmax(i)*(y(2)/(K(i)+y(2)))*(1/(1+(y(1)/K inh G)))...

575 *(1/(1+(y(6*p+6*q+12)/K inh etoh)));

576 rFE kin(i) = kE(i)*(y(2)/(K(i)+y(2)))*(1/(1+(y(1)/K inh G)))...

577 *(1/(1+(y(6*p+6*q+12)/K inh etoh)));

578 eF rel(i) = y(i+6*p+6*q+10−1)/eF max(i);

579 ROI(i) = eF rel(i)*rF kin(i);

580 end

581

582 uF = zeros(2,1); % Cybernetic variables

583 vF = zeros(2,1); % Cybernetic variables

584 rF = zeros(2,1); % Regulated cellobiose uptake flux, mol/g−biom.s
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585

586 for i = 1:2

587 uF(i) = ROI(i)/sum(ROI);

588 vF(i) = ROI(i)/max(ROI);

589 rF(i) = vF(i)*eF rel(i)*rF kin(i);

590 end

591

592 mu = Y2 B*rF(2); % Specific biomass growth rate, 1/s

593

594 % Soluble polymers

595

596 dydt(1) = sum(n exo(1,:)'.*k h exo.*y(p+q+1:2*p+2*q))...

597 +sum(n endo(1,7:end)'.*k h endo(7:end).*y(2*p+2*q+7:3*p+3*q))...

598 +sum(n endo(1,4:end)'.*k h endo(4:end).*y(3*p+3*q+4:4*p+4*q))...

599 +sum(E F endo*n endo(1,2:6)'.*k hs endo(2:6).*y(2:6))...

600 +2*k h BG*E F BG*y(2)+k Ir exo(1)*y(6*p+6*q+5)+k Ir exo(1)*y(6*p+6*q+7)...

601 +k Ir endo(1)*y(6*p+6*q+3)+k Ir BG*y(6*p+6*q+9)...

602 −k If exo(1)*E F exo*y(1)−k If exo(1)*y(6*p+6*q+2)*y(1)...

603 −k If endo(1)*E F endo*y(1)−k If BG*E F BG*y(1);

604

605 dydt(2) = sum(n exo(2,:)'.*k h exo.*y(p+q+1:2*p+2*q))...

606 +sum(n endo(2,7:end)'.*k h endo(7:end).*y(2*p+2*q+7:3*p+3*q))...

607 +sum(n endo(2,4:end)'.*k h endo(4:end).*y(3*p+3*q+4:4*p+4*q))...

608 +sum(E F endo*n endo(2,3:6)'.*k hs endo(3:6).*y(3:6))...

609 −k hs endo(2)*E F endo*y(2)−k h BG*E F BG*y(2)...

610 +k Ir exo(2)*y(6*p+6*q+6)+k Ir exo(2)*y(6*p+6*q+8)+k Ir endo(2)*y(6*p+6*q+4)...

611 −k If exo(2)*E F exo*y(2)−k If exo(2)*y(6*p+6*q+2)*y(2)−k If endo(2)*E F endo*y(2)...

612 −sum(rF)*y(6*p+6*q+17);
613

614 for i = 3:5

615 dydt(i) = sum(n endo(i,7:end)'.*k h endo(7:end).*y(2*p+2*q+7:3*p+3*q))...

616 +sum(n endo(i,i+1:end)'.*k h endo(i+1:end).*y(3*p+3*q+i+1:4*p+4*q))...

617 +sum(E F endo*n endo(i,i+1:6)'.*k hs endo(i+1:6).*y(i+1:6))...

618 −k hs endo(i)*E F endo*y(i);

619 end

620

621 for i = 6

622 dydt(i) = sum(n endo(i,i+1:end)'.*k h endo(i+1:end).*y(2*p+2*q+i+1:3*p+3*q))...

623 +sum(n endo(i,i+1:end)'.*k h endo(i+1:end).*y(3*p+3*q+i+1:4*p+4*q))...

624 −k hs endo(i)*E F endo*y(i);

625 end

626

627 % Exo−enzyme−bound surface polymers

628

629 dydt(p+q+3) = sum(n exo(3,3:end)'.*k h exo(3:end).*y(p+q+3:2*p+2*q));

630

631 for i = p+q+4:p+q+6

632 dydt(i) = sum(n exo(i−p−q,:)'.*k h exo.*y(p+q+1:2*p+2*q))...

633 −(k f endo(i−p−q)*y(6*p+6*q+1)*y(i))...
634 +(k e endo(i−p−q)*y(i−p−q+3*p+3*q));
635 end

636

637 for i = p+q+7:2*p+2*q−1
638 dydt(i) = sum(n exo(i−p−q,:)'.*k h exo.*y(p+q+1:2*p+2*q))...

639 +(y(6*p+6*q+2)*k f exo(i−p−q)*y(i−p−q+4*p+4*q))...
640 −(k e exo(i−p−q)*y(i))...
641 −(k f endo(i−p−q)*y(6*p+6*q+1)*y(i))...
642 +(k e endo(i−p−q)*y(i−p−q+3*p+3*q));
643
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644 end

645

646 for i = 2*p+2*q

647 dydt(i) = sum(n exo(i−p−q,:)'.*k h exo.*y(p+q+1:2*p+2*q))...

648 +(y(6*p+6*q+2)*k f exo(i−p−q)*y(i−p−q+4*p+4*q))...
649 −(k e exo(i−p−q)*y(i))...
650 −(k f endo(i−p−q)*y(6*p+6*q+1)*y(i))...
651 +(k e endo(i−p−q)*y(i−p−q+3*p+3*q));
652 end

653

654 % Endo−enzyme−bound surface polymers

655

656 for i = 2*p+2*q+7:3*p+3*q

657 dydt(i) = (k f endo(i−2*p−2*q)*y(6*p+6*q+1)*y(i−2*p−2*q+4*p+4*q))...
658 −(k e endo(i−2*p−2*q)*y(i))...
659 −(k h endo(i−2*p−2*q)*y(i));
660 end

661

662 % Exo−endo−bound surface polymers

663

664 for i = 3*p+3*q+4:4*p+4*q

665 dydt(i) = (k f endo(i−3*p−3*q)*y(6*p+6*q+1)*y(i−3*p−3*q+p+q))...
666 −(k e endo(i−3*p−3*q)*y(i))...
667 −(k h endo(i−3*p−3*q)*y(i));
668 end

669

670 % Surface polymers

671

672 m = zeros(p+q,1);

673

674 for i = 4*p+4*q+7:5*p+5*q−1
675 m(i−4*p−4*q) = (sum(n endo(i−4*p−4*q,i−4*p−4*q+1:end)'...
676 .*k h endo(i−4*p−4*q+1:end).*y(i−4*p−4*q+2*p+2*q+1:3*p+3*q))...
677 +sum(n endo(i−4*p−4*q,i−4*p−4*q+1:end)'...
678 .*k h endo(i−4*p−4*q+1:end).*y(i−4*p−4*q+1+3*p+3*q:4*p+4*q))...
679 −(k f exo(i−4*p−4*q)*y(6*p+6*q+2)*y(i))...
680 +(k e exo(i−4*p−4*q)*y(i−4*p−4*q+p+q))...
681 −(k f endo(i−4*p−4*q)*y(6*p+6*q+1)*y(i))...
682 +(k e endo(i−4*p−4*q)*y(i−4*p−4*q+2*p+2*q)));
683 end

684

685 m(p+q) = (−(k f exo(p+q)*y(6*p+6*q+2)*y(5*p+5*q))...

686 +(k e exo(p+q)*y(2*p+2*q))...

687 −(k f endo(p+q)*y(6*p+6*q+1)*y(5*p+5*q))...

688 +(k e endo(p+q)*y(3*p+3*q)));

689

690 for i = 4*p+4*q+7:5*p+5*q

691 dydt(i) = m(i−4*p−4*q)−(sum(m.*(162*x piv+18))...

692 +sum(dydt(p+q+1:4*p+4*q).*(162*x3+18)))*R ratio...

693 *ppval(exp ratio{i−4*p−4*q},R−R0);
694 end

695

696 % Internal inaccessible polymer

697

698 for i = 5*p+5*q+7:6*p+6*q

699 dydt(i) = (sum(m.*(162*x piv+18))...

700 +sum(dydt(p+q+1:4*p+4*q).*(162*x3+18)))*R ratio...

701 *ppval(exp ratio{i−5*p−5*q},R−R0);
702 end
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703

704 % Surface−adsorbed endo−enzymes
705

706 dydt(6*p+6*q+1) = (k ads endo*E F endo*(As*tau endo−y(6*p+6*q+1)))...
707 −(k des endo*y(6*p+6*q+1))...

708 −sum(y(6*p+6*q+1)*k f endo(7:end).*y(4*p+4*q+7:5*p+5*q))...

709 +sum(k e endo(7:end).*y(2*p+2*q+7:3*p+3*q))...

710 −sum(y(6*p+6*q+1)*k f endo(4:end).*y(p+q+4:2*p+2*q))...

711 +sum(k e endo(4:end).*y(3*p+3*q+4:4*p+4*q));

712

713 % Surface−adsorbed exo−enzymes
714

715 dydt(6*p+6*q+2) = (k ads exo*E F exo*(As*tau exo−y(6*p+6*q+2)))...
716 −(k des exo*y(6*p+6*q+2))...

717 −sum(y(6*p+6*q+2)*k f exo(7:end).*y(4*p+4*q+7:5*p+5*q))...

718 +sum(k e exo(7:end).*y(p+q+7:2*p+2*q))...

719 +k Ir exo(1)*y(6*p+6*q+7)+k Ir exo(2)*y(6*p+6*q+8)...

720 −y(6*p+6*q+2)*sum(k If exo'.*y(1:2));

721

722 % Inhibited endo−enzymes
723

724 for i = 6*p+6*q+3:6*p+6*q+4

725 dydt(i) = k If endo(i−6*p−6*q−3+1)*E F endo*y(i−6*p−6*q−3+1)...
726 −k Ir endo(i−6*p−6*q−3+1)*y(i);
727 end

728

729 % Inhibited exo−enzymes
730

731 for i = 6*p+6*q+5:6*p+6*q+6

732 dydt(i) = k If exo(i−6*p−6*q−5+1)*E F exo*y(i−6*p−6*q−5+1)...
733 −k Ir exo(i−6*p−6*q−5+1)*y(i);
734 end

735

736 for i = 6*p+6*q+7:6*p+6*q+8

737 dydt(i) = k If exo(i−6*p−6*q−7+1)*y(6*p+6*q+2)*y(i−6*p−6*q−7+1)...
738 −k Ir exo(i−6*p−6*q−7+1)*y(i);
739 end

740

741 % Inhibited BG (placeholder for future extension)

742

743 for i = 6*p+6*q+9;

744 dydt(i) = k If BG*E F BG*y(i−6*p−6*q−9+1)...
745 −k Ir BG*y(i);

746 end

747

748 % Intracellular enzymes

749

750 for i = 6*p+6*q+10:6*p+6*q+11

751 dydt(i) = aF(i−6*p−6*q−10+1)+uF(i−6*p−6*q−10+1)...
752 *rFE kin(i−6*p−6*q−10+1)−bF(i−6*p−6*q−10+1)*y(i)−mu*y(i);
753 end

754

755 % Metabolites

756

757 for i = 6*p+6*q+12:6*p+6*q+15

758 dydt(i) = (Y1 met lump(i−6*p−6*q−12+1)*rF(1)...
759 +Y2 met lump(i−6*p−6*q−12+1)*rF(2))*y(6*p+6*q+17);
760 end

761
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762 % Cellulosome

763

764 dydt(6*p+6*q+16) = aE*y(6*p+6*q+17)+((Y1 E*rF(1)+Y2 E*rF(2))*y(6*p+6*q+17));

765

766 % Biomass

767

768 dydt(6*p+6*q+17) = mu*y(6*p+6*q+17);

769

770 % Output

771

772 ode = dydt;

773

774 end

775

776 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
777

778 function [C,CXS,CNS,CNXS,CFS,CS,CI,CT,CC,E T exo,E T endo,CB,etoh,lac,...

779 form,ace,cellome,biom,cellulase tot,cellu,cell gluc eq,eF rel,R,...

780 conv rem,conv cb,uF,vF,r up,mu] = post processing(t,y,p,q,MW cellome,...

781 mol endo,mol exo,mass frac cellulase,x piv,eF max,ro,L,n,mss,...

782 cellobiose,kmax,K,K inh G,K inh etoh,Y2 B)

783

784 % Molar concentrations, mol/L

785

786 C = y(:,1:p+q); % Soluble products

787 CXS = y(:,p+q+1:2*p+2*q); % CBH−bound complex

788 CNS = y(:,2*p+2*q+1:3*p+3*q); % EG−bound complex

789 CNXS = y(:,3*p+3*q+1:4*p+4*q); % CBH−EG−bound complex

790 CFS = y(:,4*p+4*q+1:5*p+5*q); % Free un−bound surface polymers

791 CS = CXS+CNS+CNXS+CFS; % Total surface polymers

792 CI = y(:,5*p+5*q+1:6*p+6*q); % Internal polymers

793 CT = C+CS+CI; % Total polymers

794 CC = CS+CI; % Insoluble polymers

795

796 E T endo = mol endo*(y(:,6*p+6*q+16)/MW cellome); % Total endo−enzymes
797 E T exo = mol exo*(y(:,6*p+6*q+16)/MW cellome); % Total exo−enzymes
798

799 E S endo = y(:,6*p+6*q+1); % Surface−adsorbed endo−enzymes
800 E S exo = y(:,6*p+6*q+2); % Surface−adsorbed exo−enzymes
801

802 CNI(:,1) = y(:,6*p+6*q+3); % Inhibited endo−enzymes
803 CNI(:,2) = y(:,6*p+6*q+4);

804

805 CXI(:,1) = y(:,6*p+6*q+5)+y(:,6*p+6*q+7); % Inhibited exo−enzymes
806 CXI(:,2) = y(:,6*p+6*q+6)+y(:,6*p+6*q+8);

807

808 E F endo = zeros(length(t),1); % Free endo−enzymes
809 E F exo = zeros(length(t),1); % Free exo−enzymes
810

811 for i = 1:length(t)

812 E F endo(i) = E T endo(i)−E S endo(i)−sum(CNS(i,:))−sum(CNXS(i,:))−sum(CNI(i,:));
813 E F exo(i) = E T exo(i)−E S exo(i)−sum(CXS(i,:))−sum(CXI(i,:))−sum(CNXS(i,:));
814 end

815

816 % Molecular weight of metabolites, g/mol

817

818 mw met = [46.07;90.08;45.017;59.044];

819

820 % Mass Concentrations, g/L
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821

822 CB = y(:,2).*342; % Cellobiose

823 cellome = y(:,6*p+6*q+16); % Cellulosome

824 biom = y(:,6*p+6*q+17); % Biomass

825 etoh = y(:,6*p+6*q+12).*mw met(1); % Ethanol

826 lac = y(:,6*p+6*q+13).*mw met(2); % Lactate

827 form = y(:,6*p+6*q+14).*mw met(3); % Formate

828 ace = y(:,6*p+6*q+15).*mw met(4); % Acetate

829

830 cellulase tot = y(:,6*p+6*q+16).*mass frac cellulase; % Total cellulase

831

832 cellu = zeros(length(t),1); % Remaining insoluble cellulose

833

834 for i = 1:length(t)

835 cellu(i) = sum(CC(i,:)'.*(162*x piv+18));

836 end

837

838 cell gluc eq = cellu.*(180/162); % Remaining insoluble cellulose (g gluc/L)

839

840 % Relative intracellular enzyme levels

841

842 eF rel(:,1) = y(:,6*p+6*q+10)/eF max(1);

843 eF rel(:,2) = y(:,6*p+6*q+11)/eF max(2);

844

845 % Transient particle radius, m

846

847 R = zeros(length(t),1);

848

849 for i = 1:length(t)

850 R(i) = sqrt(sum(CC(i,:)'.*(162*x piv+18))/(ro*pi*L*n));

851 end

852

853 % Conversion

854

855 conv rem = zeros(length(t),1); % Conversion of cellulose

856

857 for i = 1:length(t)

858 conv rem(i) = (mss−cellu(i))/mss;
859 end

860

861 conv cb = zeros(length(t),1); % Conversion of cellobiose

862 for i = 1:length(t);

863 conv cb(i) = (cellobiose−CB(i))/cellobiose;
864 end

865

866 % Metabolic regulations

867

868 ROI = zeros(length(t),2); % ROIs

869 rF kin = zeros(length(t),2); % Unregulated cellobiose uptake flux, mol/g−biom.s
870

871 for i = 1:length(t)

872 rF kin(i,1) = (kmax(1)*(y(i,2)/(K(1)+y(i,2)))...

873 *(1/(1+(y(i,1)/K inh G)))*(1/(1+(y(i,6*p+6*q+12)/K inh etoh))));

874 rF kin(i,2) = (kmax(2)*(y(i,2)/(K(2)+y(i,2)))...

875 *(1/(1+(y(i,1)/K inh G)))*(1/(1+(y(i,6*p+6*q+12)/K inh etoh))));

876 ROI(i,1) = eF rel(i,1)*rF kin(i,1);

877 ROI(i,2) = eF rel(i,2)*rF kin(i,2);

878 end

879
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880 uF = zeros(length(t),2); % Cybernetic variables

881 vF = zeros(length(t),2);

882

883 for i = 1:length(t)

884 uF(i,1) = ROI(i,1)/sum(ROI(i,:));

885 uF(i,2) = ROI(i,2)/sum(ROI(i,:));

886 vF(i,1) = ROI(i,1)/max(ROI(i,:));

887 vF(i,2) = ROI(i,2)/max(ROI(i,:));

888 end

889

890 r up = zeros(length(t),2); % Regulated cellobiose uptake/fluxes, mol/g−biom.s
891

892 for i = 1:length(t)

893 r up(i,1) = vF(i,1)*eF rel(i,1)*rF kin(i,1);

894 r up(i,2) = vF(i,2)*eF rel(i,2)*rF kin(i,2);

895 end

896

897 mu = Y2 B.*r up(:,2); % Specific biomass growth rate, 1/s

898

899 end
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