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ABSTRACT

Neutron stars are the most dense astrophysical objects where electromagnetic radiation
from the surface can still reach a remote observer. It makes them unique astrophysical
laboratories that provide means to study nuclear matter under extreme conditions. Rapid

rotation and strong magnetic fields make some neutron stars to appear as pulsars, beacons of
electromagnetic radiation visible in our Galaxy. In fact, the most rapidly rotating pulsars reach
periods of a few milliseconds and become promising tools to search for nanohertz-frequency
gravitational waves, perturbations of space-time propagating at the speed of light, emitted by
supermassive black hole binaries in the universe. Experiments that perform long-term monitoring
of pulse arrival times from millisecond pulsars are called pulsar timing arrays. On time scales
on the order of years to decades, spin period of millisecond pulsars fluctuates, introducing the
so-called spin noise in pulsar timing experiments. While limiting the sensitivity of pulsar timing
arrays to the gravitational-wave background, spin noise provides an opportunity to probe neutron
star physics. Additionally, at some level, neutron stars are predicted to deform themselves into a
spherically-asymmetric shape. This will inevitably make neutron stars sources of gravitational
waves on their own. These gravitational waves, searched for with ground-based interferometers,
will carry otherwise-inaccessible information about neutron star interiors. In this thesis, we
contribute to world’s efforts to probe neutron stars with ground-based interferometers and pulsar
timing arrays, as well as to improve the precision of searches for nanohertz gravitational waves.

Firstly, we improve the radiometer, the method to search for gravitational waves from
spherically-asymmetric spinning neutron stars. The radiometer method complements continuous-
wave searches, which aim to model time evolution of a gravitational-wave frequency, i.e. due to
binary companion or intrinsic spin-down. The main advantage of the radiometer is its robustness,
which can be helpful when detecting sources that might be missed by the dedicated continuous-
wave techniques. Whereas previously radiometer has only been used to search for gravitational
waves across the observing band from a few selected sky locations, in this work we extend the
radiometer to all sky locations through developing the appropriate detection statistic. We built
our method upon the previous work by Ain et al. (2015) and Thrane et al. (2015), where sidereal
data folding was suggested to reduce computational and data-storage costs. We also developed
the technique to remove non-stationary noise present in the real data.

Secondly, with pulsar timing arrays, we perform model selection for stochastic spin noise,
associated with pulsar rotational irregularities. Pulsar spin noise power spectrum is usually
modeled with the phenomenological power-law model. Sometimes the power-law model is supplied
with a corner frequency parameter, below which the spin noise power spectrum plateaus. The
corner frequency was introduced to account for the effects of data handling and there was no
confirmed evidence for its existence in real data. Recently, a physical model of pulsar spin noise
has been suggested by Melatos and Link (2014), with nearly power-law spectrum and a corner
frequency. The model suggests that the superluid turbulence in a neutron star core is the origin of
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spin noise. In our work, we perform Bayesian model selection for pulsar spin noise and we find no
evidence of a spectral turnover. Our analysis also shows that the data from pulsars J1939+2134,
J1024−0719 and J1713+0747 prefers the power-law model to the superfluid turbulence model.

Finally, we characterize time-correlated noise processes in the second data release of the
Parkes Pulsar Timing Array. We identify and discuss new sources of noise with amplitude that
depends on radio-frequency, we find steep spectra of spin noise and we discover new exponential
events that we attribute to magnetospheric disturbances. Additionally, we outline a methodology
to complement Bayesian inference with an independent metric to evaluate the performance of
noise models and to characterize previously-unknown signals.
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1
INTRODUCTION

We provide background information about neutron stars and pulsars and emphasise

their importance in gravitational-wave astronomy. While doing this, we explain how

our work fits into the global efforts to better understand the physics of neutron stars

and to detect new sources of gravitational waves.

1.1 Neutron stars and pulsars: an overview

Shortly after the discovery of a neutron by Chadwick (1932), Baade and Zwicky (1934) proposed

the existence of neutron stars as remnants of the cosmic supernovae explosions. Around the same

time, Landau (1932) suggested that high stellar densities can cause atomic nuclei of a star to form

one giant nucleus, which summarizes the basic idea of a neutron star. Eventually, it became clear

that neutron stars are collapsed cores of stellar remnants, in the state of equilibrium between the

repulsive strong force and self-gravitation. Stellar cores may also collapse into two other remnant

equilibrium states, known as the white dwarf and the black hole.

The fate of a stellar core will depend primarily on its mass. For masses lower than ≈ 1.4 M¯,

the self gravity of a collapsed remnant will remain in equilibrium with the electron degeneracy

pressure. This state is known as the white dwarf. Initial calculations for the maximum mass of

white dwarfs, known as the Chandrasekhar limit, were performed in the framework of degenerate

Fermi gas by Anderson (1929, 0.7 M¯), Stoner (1930, 1.1 M¯), Chandrasekhar (1931, 0.9 M¯)

and Landau (1932, 1.5 M¯). For non-rotating masses higher than ≈ 2.3 M¯, the self gravity of

a stellar core will surpass the repulsive strong force, prompting a collapse into a black hole.

Following the work by Tolman (1939) on static solutions of Einstein’s field equations for spheres

of fluid, Oppenheimer and Volkoff (1939) were first to calculate the maximum mass of nonrotating

neutron stars in the framework of degenerate Fermi gas, obtaining the value of 0.7 M¯. The
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CHAPTER 1. INTRODUCTION

Tolman-Oppenheimer-Volkoff limit has later been pushed above ≥ 2.0 M¯ by taking the strong

nuclear force into account (see e.g. Cameron, 1959, 1970). The maximum nonrotating neutron

star mass depends on the equation of state of nuclear matter, which remains the subject of active

research.

As stellar cores collapse, their rotational velocities increase, according to the law of conserva-

tion of angular momentum. From conservation of the magnetic field flux, Woltjer (1964) estimated

that neutron stars can contain magnetic fields with enormous strengths up to 1014 −1016 G.

Shortly after it has been predicted by Pacini (1967) that spinning neutron stars with strong

magnetic fields will emit electromagnetic radiation, Hewish et al. (1968) discovered the first

pulsating radio source in the sky. From the stable pulse period of 1.3 s, they identified the source

of radio emission as a neutron star. Gold (1968) argued in favor of this hypothesis, suggesting that

the observed neutron star emits electromagnetic radiation, powered by rotation, which brings

the plasma in the magnetosphere up to relativistic velocities. The relativistic plasma directs

electromagnetic radiation away from a neutron star along its magnetic field axis. The misalign-

ment between the rotational axis and the magnetic field axis is what makes radio emission to be

seen as a pulsating “lighthouse beam”. Neutron stars that are observed in this way are called

pulsars. A year earlier, Shklovsky (1967) substantiated that the origin of the X-ray emission

from Scorpius-X1, the brightest source of such emission in the sky after the Sun, is accretion

of matter onto a neutron star. These and following discoveries transformed neutron stars from

purely theoretical entities to real astronomical objects that can be observed and studied.

1.1.1 Population of galactic neutron stars

Although several galactic neutron stars are observed as non-pulsating sources of electromagnetic

radiation (see e.g. Klochkov et al., 2013; Viganò and Pons, 2012), most of the galactic neutron stars

observed by today are pulsars. The ATNF pulsar catalogue (Manchester et al., 2005) contains

more than 2800 pulsars. To discuss the evolution of pulsars, it is convenient to present the data

from the pulsar catalogue on the so-called “P - Ṗ” diagram, where P is the pulsar spin period and

Ṗ is its time-derivative. We show this diagram in Figure 1.1. The characteristic age of a pulsar is

estimated as in Lorimer and Kramer (2004):

(1.1) τc ≡ P
2Ṗ

,

assuming that the pulsar spin period at birth was much lower than the present spin period and

that the spin down mechanism is purely a magnetic dipole radiation. The magnetic field strength

on the surface of a pulsar is given by Lorimer and Kramer (2004) as:

(1.2) BS =
√

3c3

8π2
I

R6 sin2α
PṖ ,

where R is the radius of a neutron star and α is the angle between the magnetic field axis and

the rotational axis. As a pulsar gets older, the magnetic field becomes weaker and the spin period

2



1.1. NEUTRON STARS AND PULSARS: AN OVERVIEW
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FIGURE 1.1. The “P - Ṗ” diagram for pulsars from the ATNF Pulsar Catalogue (Manch-
ester et al., 2005). For each pulsar, denoted by a grey dot, the diagram provides
the spin period (horizontal axis) and its time-derivative (vertical axis). The orange
shaded region represents the pulsar “graveyard”, according to Equation 4 in Zhang
et al. (2000), where radio emission is expected to stop due to inability of pulsar’s
inner magnetosphere to generate electron-positron pairs. SGR stands for “soft
gamma repeaters”, AXP stands for “anomalous X-ray pulsar”, IR stands for “in-
frared”, RRAT stands for “rotating radio transient sources” (intermittent pulsars),
“SNR” stands for “supernovae remnants”. Dashed lines represent characteristic
ages, dotted lines represent estimates of surface magnetic fields. The plotting code
is developed by Pitkin (2018).
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becomes longer. This is demonstrated in Figure 1.1. Pulsars are expected to exhaust their energy

up to the point where the electromagnetic emission mechanism stops. At this point, a neutron

star is no longer a pulsar. It will appear in the bottom-right orange-shaded region in Figure 1.1,

referred to as the graveyard. The border of the graveyard is referred to as the death line. In the

P - Ṗ diagram in Figure 1.1, the graveyard is represented by Equation 4 from Zhang et al. (2000).

It determines the case where the electromagnetic field in the inner magnetosphere of a pulsar is

no longer strong enough to support the vacuum gap, the region where electron-positron pairs

are born, with a size larger than the mean electron free path. Electrons are an essential fuel for

the electromagnetic emission. The fact that some pulsars are still observed within the graveyard

on Figure 1.1 demonstrates that determination of pulsar emission mechanisms remains as one

of the goals of pulsar astronomy. One of the interesting phenomena in pulsar observations is

nulling, which has been first observed by Backer (1970). During nulling, pulse energy significantly

decreases. Coincidentally, nulling is more likely to occur in pulsars near the graveyard (Ritchings,

1976). Given the life span of an average pulsar of around a billion years, in ∼ 1010 year old

Universe the vast majority of neutron stars are not expected to emit electromagnetic pulses.

Pulsars in the P - Ṗ diagram appear to be concentrated in three areas. The first area,

with estimated surface magnetic fields around 1010 - 1013 G, contains normal pulsars. Pulsars

clustered around the second area, with estimated surface magnetic fields around 1013 - 1015 G,

are called magnetars. Duncan and Thompson (1992) suggested that they are neutron stars where

the seed helical magnetic field has been amplified under dynamo action. The third area, with

surface magnetic fields below 1010 G, contains recycled pulsars, which have been spun up by

accretion from their binary companions (Bisnovatyi-Kogan and Komberg, 1974). They are also

referred to as millisecond pulsars, as their spin periods can be as low as ∼ 1 ms. At very high

rotation rates, centrifugal force is expected to break neutron stars apart. The breakup rotation

period depends on the equation of state of nuclear matter, but estimated to be on the order

of 0.1 ms (Haensel et al., 1999). The most rapidly rotating pulsars known today do not reach

these limits. PSR J1748−2446ad has the lowest observed spin period of 1.4 ms (Hessels et al.,

2006). Among pulsars, which are known to accrete matter, IGR J00291+5934 has the lowest spin

period of 1.7 ms (Patruno and Watts, 2012). Wagoner (1984) proposed that accreting neutron

stars will eventually acquire enough angular momentum to become unstable to the emission

of gravitational waves. Later, Bildsten (1998) suggested that for rapidly rotating neutron stars

with the highest spin frequencies, angular momentum acquired by accretion is lost through the

emission of gravitational waves. This is known as the torque-balance hypothesis. It provides a

motivation to search for gravitational radiation from neutron star interiors.

1.1.2 Pulsar timing

The clock-like nature of pulsar electromagnetic emission enables studies of every physical aspect

that affects its generation and propagation. In Section 1.1.1 we discussed that measurements of
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1.1. NEUTRON STARS AND PULSARS: AN OVERVIEW

pulse arrival times allow us to calculate pulsar spin period and its time-derivative and hence to

estimate the pulsar age and its surface magnetic field. This is only the tip of the iceberg of pulsar

timing array science. Here we will mostly discuss applications relevant to this thesis. For more

information, please refer to Lorimer and Kramer (2004); Lyne and Graham-Smith (2012).

The first step in measuring the pulse time of arrival is de-dispersion, the process of correct-

ing for time delays at different radio-frequencies caused by dispersion of a radio pulse in the

interstellar medium (Lorimer and Kramer, 2004). Dispersion induces time delays ∆tDM ∼ ν−2,

where ν is a radio frequency. Inhomogeneities in the interstellar medium cause pulse multi-

path scattering and scintillation. Pulse scattering broadens the observed pulse shape, which

causes non-stationary time delays ∆tSC ∼ ν−4 (Lyne and Graham-Smith, 2012, Equation 3.9).

Scintillation appears as non-stationary pulse intensity variations.

Pulsar timing also provides unique opportunities to study the dynamics of binary systems.

The delay in light travel times between astronomical objects, associated with a change in position

of these objects due to orbital motion, is called the Roemer delay. The Roemer delay includes the

effect of Doppler shifting of the pulse train due to the binary motion. It allows us to constrain Kep-

lerian parameters of the binary: the orbital period, the eccentricity, the projected semi-major axis,

the longitude of periastron, the epoch of periastron, the longitude of the accending node. Yet pul-

sar timing goes beyond the classical Newtonian formalism. Like many other binary systems with

pulsars, the first one discovered by (Hulse and Taylor, 1975), PSR B1913+16 (PSR J1915+1606),

is highly relativistic. The period of the binary system is only ∼ 8 hr. Stellar masses in such tight

orbits with high velocities enable precise tests of General Relativity. The Roemer delay for a

binary is modified for the relativistic case, to account for relativistic deformations of the orbit.

Additionally, the Einstein delay is introduced to account for redshift and time dilation in strong

gravitational fields and the Shapiro delay is introduced to account for time delays along the

curved path of null geodesic between the pulsar and the observer. Most importantly, general

relativity predicts the evolution of Keplerian parameters in time. In particular, the advance

of periastron and the orbital decay due to the emission of gravitational waves. By observing

PSR J1915+1606, Taylor and Weisberg (1982) reported that the orbital decay is consistent with

the emission of gravitational waves, predicted by general theory of relativity. This discovery

has significantly increased the overall confidence in the existence of gravitational radiation in

nature, providing more motivation to directly detect it. Relativistic frame dragging around a

rapidly-rotating massive object, known as the Lense-Thirring precession, is another general

relativistic effect that has been observed by Krishnan et al. (2020) in a binary system that

contains the white dwarf and the neutron star PSR J1141−6545.

It has also been pointed out by Detweiler (1979); Sazhin (1978) that pulsar timing can be

employed to search for nanohertz gravitational waves from supermassive black hole binaries. To

achieve this, Foster and Backer (1990b) proposed to establish pulsar timing arrays that would

look for quadrupole spatial correlations between millisecond pulsars, expected from the nanohertz
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stochastic gravitational-wave background (Hellings and Downs, 1983). Millisecond pulsars are

best suited for this purpose because they provide the best timing precision. For example, in the

second data release of the Parkes Pulsar Timing Array (Kerr et al., 2020), the timing precision

achieved with PSR J2241−5236 over an 8-year period is 270 ns. Current upper limits on the

amplitude of the nanohertz stochastic background from pulsar timing arrays are already in

tension with some theoretical models (Shannon et al., 2015). According to Zhu et al. (2019),

current limits are consistent with the supermassive black hole number density inferred from

electromagnetic observations. Taylor et al. (2016) predicts that the detection can be made within

the next decade of observations, even considering the scenarios where supermassive black hole

binary evolution stalls.

Pulsar timing precision is limited by various stochastic processes. On the time scales of under

a week, the uncertainty of a pulse arrival time is mostly affected by pulse shape variability,

known as the jitter noise, and instrumental measurement errors, known as the radiometer noise.

On the longer time scales, normal pulsars experience the timing noise, which includes glitches

and spin noise. Spin noise manifests as ever-lasting stochastic drift of pulse arrival times. A glitch

is a sudden change in the rotation period of a pulsar, usually followed by an exponential recovery.

An example of a pulsar that is known to glitch a lot is the Vela pulsar PSR B0833−45 (McCulloch

et al., 1983). Analyses of the data from high time resolution observations of Vela glitches indicated

that there is a presence of additional rotational frequency “overshoot” (Dodson et al., 2001) and

possibly the precursor slow down (Ashton et al., 2019b). Both the glitches and the timing noise

provide exciting prospects of studying neutron star physics, which we will discuss in more

details in Section 1.3 and in Chapter 3. For millisecond pulsars, timing noise levels significantly

drop (Parthasarathy et al., 2019), which is the main reason why millisecond pulsar timing is so

precise. Overall noise properties of millisecond pulsars will be discussed in Chapter 4.

1.1.3 Neutron stars in gravitational-wave astronomy

Albert Einstein discovered that the field equations in the general theory of relativity contain ra-

diative solutions, predicting the existence of gravitational waves, space-time metric perturbations

h propagating at the speed of light. The gravitational wave can be represented as a combination of

two modes, the plus polarization (h+) and the cross polarization (h×), which can be interchanged

by the 45-degree rotation around the propagation axis. Einstein calculated the Newtonian-limit

approximation for the luminosity of an isolated source of gravitational waves (Camenzind, 2007,

Equation 2.332):

(1.3) − dE
dt

= G
5c5

3∑
i, j=1

d3Q i j

dT3

d3Q i j

dT3 ,
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where G is the gravitational constant, c is the speed of light, (x,T) is the coordinate system in

the frame of a source, and

(1.4) Q i j(t)=
∫
ρ(x, t)

(
xix j − 1

3
δi jx2

)
d3x

is the observed quadrupole moment of inertia of a source, with ρ(x, t), the Newtonian mass density.

Non-zero quadrupole moment is thus the main requirement and “fuel” for the gravitational-wave

emission. It is clearly seen from the above two equations that the energy carried away from the

source by gravitational radiation is a factor of G/c5, which is very small. So, in order to produce

measurable gravitational radiation, astrophysical sources have to compensate that factor by large

masses and rapid rotation. Inspiraling compact objects, black holes, neutron stars and white

dwarfs, were put forward as the most promising targets for gravitational wave detection. For

binaries with masses M1 and M2, in orbits with semi-major axis a and eccentricity e, treated as

point particles, gravitational-wave luminosity of the binary is (Peters and Mathews, 1963):

(1.5) − dE
dt

= 32
5

G4M2
1 M2

2(M1 +M2)

a5c5(1− e2)7/2

(
1+ 73

24
e2 + 37

96
e4

)
.

The luminosity depends on a−5, which means that the amount of energy drawn from the binary

orbit into the gravitational radiation keeps increasing until the collision. This results in a so-

called “chirp” signal, as both the intensity and the frequency of a gravitational-wave signal keeps

increasing as the binary inspirals and reaches its maximum at the moment of collision. The

observer can measure the gravitational-wave strain, the relative displacement of massless free

falling point particles, as a gravitational wave passes by. The strain amplitude of gravitational

waves from binary neutron star system is (Press and Thorne, 1972):

(1.6) h(t)≈ 10−23
(
µ

M¯

)(
M
M¯

)2/3(
R

30 Mpc

)−1(
P

1 s

)−2/3 1
(1− e2)7/2

(
1+ 73

24
e2 + 37

96
e4

)
,

where M¯ is the mass of the Sun, M = M1 +M2 is the total mass, µ= M1M2/M is the reduced

mass, P is the orbital period, R is the distance from the observer.

Unlike white dwarfs and black holes, neutron stars are predicted to produce measurable

gravitational radiation as they spin due to axial asymmetry. The physical mechanisms are

discussed in Section 1.2. Within the order of magnitude, gravitational-wave luminosity of an

asymmetric neutron star is (Press and Thorne, 1972):

(1.7) − dE
dt

∼ G
c5 ε

2I2
zzν

6.

Parameter ε is the non-axisymmetric fraction of the moment of intertia, also known as the

ellipticity. The moment of interia along the rotational axis is Izz. The rotation frequency of a

neutron star is ν. The measured gravitational-wave strain is (Becker et al., 2009, Equation 24.9):

(1.8) h(t)∼ 10−25
(

ε

10−6

)(
Izz

1038 kg m2

)(
ν

100 Hz

)2(
100 pc

R

)
.

7



CHAPTER 1. INTRODUCTION

The values for R, ε, Izz and ν in Equation 1.6 and Equation 1.8 are the values that a theorist

would expect to occur in nature. Whereas pulsar timing provides some estimates on Izz, the value

of ε remains purely theoretical. Still, the main point here is that the gravitational-wave strain

produced by asymmetric neutron stars in our Galaxy is several orders of magnitude smaller than

the strain produced by extragalactic inspiraling binary neutron stars.

The current and proposed gravitational-wave detectors are interferometer-based. They can

be attributed to three classes, based on gravitational wave frequencies they are most sensitive

to. The first class of experiments are ground-based interferometers, which are most sensitive

at ∼ 10−1000 Hz, the domain of asymmetric neutron stars and stellar-mass compact object

mergers. The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO,

Harry et al., 2010) was the first one to directly detect gravitational waves. It was a binary black

hole merger signal (Abbott et al., 2016b). The fourth such signal (Abbott et al., 2017d) has been

simultaneously detected by the Advanced LIGO and the Advanced Virgo detectors (Acernese

et al., 2014). The second class are space-based experiments (Amaro-Seoane et al., 2012), which

are proposed for the future and designed to be sensitive to gravitational-wave frequencies around

0.1−100 mHz, where massive black holes merge and stellar-mass binaries coalesce. The third

class of experiments are pulsar timing arrays (Hobbs et al., 2010a), operating in the nHz band,

where supermassive binary black holes emit gravitational waves. Pulsar timing arrays are

galactic-scale interferometers, with arms stretching from the Solar System to the pulsars in the

Milky Way. Among other kinds of compact objects in gravitational-wave astronomy, neutron stars

are unique. They are not only sources of gravitational waves, but also a part of the nature-built

detector. We explore both sides of this duality in our work.

1.2 Gravitational-wave emission from neutron stars

Gravitational wave emission from neutron stars would provide a unique observational perspective

to these astronomical objects. Several physical mechanisms have been proposed to be respon-

sible for the development of axial asymmetry in neutron stars, required for the gravitational

wave emission. We only provide a short summary of the theory of the generation of persistent

gravitational waves and discuss the cases for which the long observation time can outweigh the

relatively small strain amplitudes experienced by an observer. For more details, please refer

to Lasky (2015); Riles (2017); Sieniawska and Bejger (2019).

1.2.1 Theoretical perspective

In addition to the surface poloidal magnetic field, which is responsible for pulsar emission mech-

anism, it is predicted that a neutron star contains even stronger internal toroidal magnetic

field (Bransgrove et al., 2018). It has been predicted that the internal magnetic field can deform

a neutron star, causing a non-zero ellipticity (Haskell et al., 2008). The gravitational-wave fre-
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quency will be emitted at twice the rotational frequency of a neutron star. This mechanism is

expected to deform magnetars the most because of their extreme magnetic fields. However, due

to low rotational frequencies of magnetars of / 1 Hz, gravitational waves from these sources

are below the observing band of ground-based interferometers. Thus, the hopes of detecting

gravitational waves from these pulsars with LIGO and Virgo instruments lie mostly on normal

young pulsars. The good news is that if a neutron star contains matter in the colour super-

conductor state, which is expected, the colour-magnetic interaction is expected to increase the

star’s ellipticity (Glampedakis et al., 2012). Neutron star ellipticity can also develop through

unstable oscillation modes. The most prominent example are r-modes, caused by the Coriolis force.

Andersson and Kokkotas (2001) found that r-modes of rotating neutron stars can be unstable to

gravitational radiation, providing another possible channel for an emission of gravitational waves.

The frequency of gravitational waves from r-modes is 4/3 of the star’s rotational frequency (Riles,

2017). R-mode oscillations can be supported through the accretion (Lasky, 2015). Furthermore,

following the structure of an external magnetic field, the matter accreted by neutron stars can

form magnetically-confined mountains (Melatos and Payne, 2005b), providing a non-zero elliptic-

ity. In fact, the quadrupole moment developed though this process is expected to be larger than

the quadrupole moment from the deformations of non-accreting neutron star’s toroidal magnetic

field (Vigelius and Melatos, 2009). Moreover, Bildsten (1998) showed that temperature gradients

in the crust of a neutron star can also sustain a non-zero quadrupole moment. This mechanism

is also referred to as the elastic deformations. It is worth noting that the quadrupole moment

of an asymmetric neutron star can also be developed through the precession (Alpar and Pines,

1985). The gravitational-wave signal is then emitted at frequencies of 2ν and ν+νP, where ν is

the rotation frequency and νP << ν is the precession frequency (Sieniawska and Bejger, 2019).

Pinned superfluid in the neutron star core also causes a gravitational wave emission at ν (Jones,

2010). The variety of theoretical scenarios and observational signatures, even in terms of a

gravitational-wave frequency, would provide extremely valuable information about the neutron

star physics, once gravitational waves from neutron stars are detected.

1.2.2 Observational perspective

Electromagnetic observations of neutron stars, including pulsar timing, provide opportunities to

directly or indirectly estimate the loss of their rotational energy. We discuss the three models,

which provide limiting-case empirical estimates on the gravitational-wave strain expected from

pulsars. Firstly, we can place a theoretical upper limit on the gravitational-wave strain from

neutron stars, if we assume that all energy that is lost during the pulsar spin down is emitted as

gravitational waves. This way, we obtain (Riles, 2017):

(1.9) hSD = 2.5×10−25
(1 kpc

R

)√(1 kHz
ν

)( −ν̇
10−10 Hz/s

)( Izz

1038 kg m2

)
.
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Similarly, Wette et al. (2008) derived a theoretical upper limit on the gravitational-wave strain

based on the neutron star age TNS, for the case when the spin period and the spin down rate are

unknown:

(1.10) hAGE = 2.2×10−24
(1 kpc

R

)( Izz

1038 kg m2

)(1000 yr
TNS

)
.

In the third model, we assume that the extra angular momentum from an accretion in millisecond

pulsars is radiated away only in a form of gravitational waves. For this case, when the observed

accretion-driven X-ray flux is FX-ray, Bildsten (1998) obtained:

(1.11) hTB = 3.5×10−27

√(600 Hz
ν

)( FX-ray

10−8 erg/cm2s

)
.

Whereas the gravitational-wave emission from the inspiral of compact binaries is more theoreti-

cally straightforward to calculate and observe indirectly (Hulse and Taylor, 1975), the situation

with neutron stars is much less certain. Nevertheless, the detection of a gravitational-wave signal

from a neutron star would be rewarding. The searches for long-lasting gravitational-wave signals

are called the continuous-wave searches. In general, the continuous-wave searches aim to detect

long-lasting signals from neutron stars, buried within the noise of a ground-based interferometer.

Their aim is to model frequency evolution and Doppler modulation of a signal. This becomes

a harder problem when the search involves neutron stars in binaries with unknown orbital

parameters. Theoretical unknowns, such as irregularities in neutron star rotation (Ashton et al.,

2017), observed in the field of pulsar timing, introduce even more uncertainty to modelling the

gravitational-wave emission. This motivated the development of the radiometer method (Ballmer,

2006), which is designed to be robust, only assuming the signal is persistent and approximately

monochromatic. Thus, searches for gravitational waves using the radiometer are referred to as

searches for persistent gravitational waves, in order to distinguish them from continuous-wave

searches. Previous narrowband radiometer searches (Abadie et al., 2011; Abbott et al., 2017b,

2019) targeted specific directions on the sky. In Chapter 2, we demonstrate the techniques that

allow to perform the radiometer search over all sky locations.

1.3 Timing irregularities of pulsars

The smooth time evolution of pulsar rotation is often affected by the two stochastic processes,

known as the glitch and the spin noise. These processes are considered to be intrinsic to pulsars

and provide interesting opportunities to study neutron star physics.

1.3.1 Pulsar glitches

Pulsar glitches appear as sudden boosts δν of pulsar spin frequency ν. Melatos et al. (2008) sug-

gested that glitches are examples of scale-invariant self-organized critical systems, as described
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by Jensen (1998), with power-law probability distribution for δν/ν. This process can be thought

of as self-adjustments of a neutron star, following changes in the equilibrium state, analogous

to sand pile avalanches occurring as more sand is added on the top. The frequency of glitch

appearance follows a Poisson distribution. The standard glitch model is based on the superfluid

nature of the neutron star core, coupled to the neutron star crust where the magnetic field is

produced (Alpar et al., 1981). It is believed that the sudden change in pulsar rotational frequency,

through the moment of intertia, can be related to the sudden change in the ellipticity due to the

sudden cracking of the solid crust (Lyne and Graham-Smith, 2012). The superfluid cooper-paired

neutron fluid rotates only in the form of vortices, angular momentum quanta (Ruderman et al.,

1998). The standard glitch model, proposed by Anderson and Itoh (1975), states that the glitch

happens when the vortices, pinned to the core, get unpinned, move outward and transfer the

angular momentum from the core to the crust, which is what we observe through electormagnetic

radiation. The pinning-breaking Magnus force develops through the differential rotation inside

a star. Unless the neutron star is observed in gravitational waves, neutron star core remains

hidden from the observer, revealing itself only indirectly, through its influence on the crust.

1.3.2 Pulsar spin noise

Pulsar spin noise appears as a slow drift of pulse arrival over years of observations, with

amplitude of that drift diminishing as pulsar becomes older (Hobbs et al., 2010b). The old

population of millisecond pulsars eventually ends up with little or no spin noise, which makes

their timing so precise. The observation-driven hypothesis for pulsar spin noise, brought up

by Lyne et al. (2010), links the origin of the noise to the switching between the two spin down

rates in pulsars. Timokhin (2010) proposed that each spin down rate corresponds to the certain

quasi-stable state of the pulsar magnetosphere. Observations also suggest that spin noise can

the result of micro-glitches (Cordes and Downs, 1985; D’Alessandro et al., 1995) and post-glitch

recoveries (Johnston and Galloway, 1999b). From the theoretical point of view, pulsar spin noise

is expected to be the effect of the same neutron star physics that gives rise to glitches. Melatos

and Link (2013) suggested that the superfluid turbulence in neutron star cores can exert torque

on the crust, which results in the stochastic rotational irregularities. In this thesis, we perform

the first statistically-rigorous observational test of this model.

Various external effects, including the influence of planets and asteroids, can affect the non-

zero ν̈ and hence to appear as spin noise. These effects, as well as various stochastic processes

that depend on a radio frequency (i.e., variations in electron column density towards the line of

sight to a pulsar), have to be taken into account to properly model spin noise. It is also important

to correctly characterize all these systematic effects in millisecond pulsars to carry out searches

for the nanohertz-frequency stochastic gravitational-wave background. We perform this analysis

in Chapter 4 and discover new effects that appear as the stochastic time of arrival fluctuations

and the sudden changes in pulse arrival times, with some or no dependence on radio frequency.
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ALL-SKY RADIOMETER FOR NARROWBAND GRAVITATIONAL WAVES

USING FOLDED DATA

Published as:
Goncharov, B., & Thrane, E. (2018). Physical Review D, 98(6), 064018.

We demonstrate an all-sky search for persistent, narrowband gravitational waves using

mock data. The search employs radiometry to sidereal-folded data in order to uncover

persistent sources of gravitational waves with minimal assumptions about the signal

model. The method complements continuous-wave searches, which are finely tuned to search for

gravitational waves from rotating neutron stars, while providing a means of detecting more exotic

sources that might be missed by dedicated continuous-wave techniques. We apply the algorithm

to simulated Gaussian noise. We project the strain amplitude sensitivity assuming circularly

polarized signals for the LIGO network in the first observing run to be h0 ≈ 1.2×10−24 (1% false

alarm probability, 10% false dismissal probability). We include a treatment of instrumental lines

and detector artifacts using time-shifted LIGO data from the first observing run.

2.1 Introduction

With the first observations of a binary neutron star inspiral GW170817 (Abbott et al., 2017e) and

multiple black hole mergers (Abbott et al., 2016a,b, 2017d,g,h) by Advanced LIGO (Harry et al.,

2010) and Advanced Virgo (Acernese et al., 2014), it is clear that nature provides us with a unique

way to study electromagnetically invisible processes using gravitational radiation. The discovery
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of persistent gravitational-wave emission remains an interesting prospect for gravitational-wave

astronomy. In this work, we develop a method for detecting quasi-monochromatic (narrowband),

persistent gravitational waves from unknown sources using data from advanced detectors.

Searches for continuous gravitational waves are designed to be as sensitive as possible to

rotating neutron stars. However, to achieve this, they employ a highly tuned signal model. If

neutron stars emit gravitational waves in a way that does not match standard models, or if

there are exotic sources of persistent gravitational waves, the signal could be missed by current

continuous-wave searches. The radiometer (Abadie et al., 2011; Abbott et al., 2007d, 2017b;

Ballmer, 2006; Thrane et al., 2009) provides a solution. By cross-correlating data from two or

more detectors, it is possible to discover weak signals without a model for the signal phase

evolution. Due to computational limitations, previous radiometer searches were either targeted

(pointing in one direction) and narrowband (considering many different frequencies) or all-sky

(looking in all directions) but broadband (averaging over all frequencies). Since it seems unlikely

that point sources of persistent gravitational waves would be broadband, it is desirable to carry

out an all-sky narrowband search1. In (Thrane et al., 2015b) it was pointed out that sidereal

folded data (Ain et al., 2015) can be used to carry out a computationally cheap search that is

both all-sky and narrowband. In this paper, we employ the method from (Thrane et al., 2015b)

to demonstrate the technique on an end-to-end study of Monte-Carlo noise. Using limited data

from LIGO’s first observing run (O1), we show how vetoes can be used to manage instrumental

artifacts found in real data.

The rest of the paper is organized as follows. Section 2.2 provides the motivation for a search

for unmodeled persistent sources. In Section 2.3, we provide an overview of the narrowband

radiometer with folded data. Section 2.4 describes how we handle instrumental artefacts and

other data quality issues. In section 2.5, we demonstrate the detection of simulated signals. In

Section 2.6, we calculate the sensitivity of the search.

2.2 Motivation

2.2.1 Astrophysical sources

Accreting neutron stars in binaries are considered to be promising candidate sources of persis-

tent gravitational waves. Optimistic models predict for such systems to have an asymmetrical

quadrupole moment of inertia Q i j(t) (Equation 1.4) due to either deformation of the stellar inte-

rior (Melatos and Payne, 2005a) or localized mass accumulation (Vigelius and Melatos, 2009). In

either scenario, the quadrupole moment of inertia evolves through accretion and the influence of

the neutron star magnetic field. The quadrupole moment may be sustained even when accretion

1After this paper was submitted for publication, a preprint appeared proposing gravitational waves from networks
of primordial black holes connected by strings (Vilenkin et al., 2018). It seems possible to us that such a network could
produce broadband point sources.
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has abated. Gravitational-wave driven instabilities of r-mode oscillations are another source

of a quadrupole moment (Reisenegger and Bonačić, 2003; Ushomirsky, 2001). If accretion is

persistent, and neglecting torque from gravitational waves emission, neutron stars are expected

to eventually spin up to their break up frequency f ≈ 1400 Hz (Chakrabarty et al., 2003). However,

the highest yet observed frequency is f ≈ 716 Hz for a millisecond pulsar (Hessels et al., 2006)

and f ≈ 600 Hz for an accreting millisecond pulsar (Patruno and Watts, 2012), which is consistent

with a hypothesis that emission of persistent gravitational waves prevents further spin up of

neutron stars. This is known as the torque balance hypothesis (Bildsten, 1998; Wagoner, 1984).

Searches for continuous gravitational waves specifically target neutron stars. However, in

certain circumstances these searches can be sub-optimal. For example, when a neutron star

is in a binary system, it is computationally challenging to search the full signal parameter

space. Another example is a neutron star glitch, a sudden increase in the rotation frequency, a

phenomenon observed in the timing of many radio pulsars (Espinoza et al., 2011). It has been

shown that neutron star glitches can cause a loss of a substantial fraction of a signal-to-noise

ratio in continuous wave searches (Ashton et al., 2017).

Another motivation for the method discussed here is to explore the possibility of unknown

persistent and narrowband signals. One such theoretical scenario is gravitational waves from

super-radiance of massive clouds of ultralight axions around a Kerr black hole (East and Pretorius,

2017). The frequency of gravitational waves from this long-lived resonance depends on the mass

of a hypothetical axion particle. Thus, a narrowband emission is expected. Axions with a mass of

∼ 10−11 −10−14 eV could possibly be detected by Advanced LIGO (Brito et al., 2017).

2.2.2 Searches for persistent gravitational waves

Currently there are several methods for persistent gravitational wave searches. In this section of

the paper, we outline what niche the narrowband radiometer search occupies. A comprehensive

overview of current searches for persistent gravitational waves can be found in (Riles, 2017).

One of the main difficulties in searches for persistent gravitational wave is the amount of

computational resources that are required to probe the parameter space of possible gravitational-

wave frequencies and their time derivatives. Searches have to account for Doppler modulations of

the gravitational-wave signal due to motion of the Earth. Moreover, torque exerted on a neutron

star by accretion from a companion star may change with time, resulting in wandering of the

neutron star spin frequency (Ghosh and Lamb, 1979).

Knowing orbital parameters for some sources of persistent gravitational wave emission

eliminates the problem of searching over gravitational-wave frequencies and their derivatives.

Using the data from radio and gamma-ray observations, recent searches placed upper limits

on gravitational-wave strain from 200 known pulsars (Abbott et al., 2017a). If the target is an

accreting neutron star in a binary system, it may be possible to narrow down a parameter space

by looking at X-ray pulsations (Galloway et al., 2013).
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There are three kinds of searches. Searches for neutron stars with known sky position and

known frequency are referred to as targeted searches. Directed searches target specific sky

locations without assumptions about the gravitational wave frequency. All-sky searches employ

no assumptions for either sky location or frequency. Targeted searches can employ matched

filtering (Jaranowski, 1998), a Bayesian approach (Dupuis and Woan, 2005), and the “Five-vector”

method (Astone et al., 2010).

In a directional search one faces a problem of exploring a vast parameter space of frequency

and its derivatives. Fully coherent searches are too computationally expensive for all-sky searches,

and are adapted to limited observation time and/or specific sky directions (Dhurandhar et al.,

2008; Wette et al., 2008). In semi-coherent searches one instead sums results from coherent

analysis over much shorter time intervals, for longer observation time (Wette, 2015). Semi-

coherent methods are less computationally expensive than fully coherent ones, and sometimes

they are used for all-sky searches. TwoSpect is an example of a template-based semi-coherent

all-sky search, which tracks Earth’s rotation-induced modulations of gravitational waves in

doubly Fourier transformed data (Goetz and Riles, 2011). Polynomial algorithm uses a bank of

frequency polynomials for matched filters (van der Putten et al., 2010). Hidden Markov model

tracking method using a Viterbi algorithm (Suvorova et al., 2016) for matched filtering. Other

semi-coherent searches include “Stack Slide” (Brady et al., 1998), the Hough approach (An-

tonucci et al., 2008; Hough, 1959; Krishnan et al., 2004), Powerflux (Dergachev, 2010), and

Einstein@Home (Abbott et al., 2009), a volunteer-distributed computing project. These semi-

coherent search strategies rely on signal models of gravitational-wave emission from neutron

stars. They are in some sense limited by computational resources.

A different approach to the problem of a frequency modulated signal is to formulate a

model-independent search. The radiometer technique is used to identify signals with the cross-

correlation of Fourier-transformed strain from two or more gravitational wave detectors (Ballmer,

2006), and it underpins the method described in this paper. Cross-correlation contains information

about the source sky location. The radiometer works with minimum assumptions about a signal,

only presuming it is persistent and narrowband.

Scorpius X-1 is the second brightest persistent X-ray source in the sky (Giacconi et al., 1962).

It is believed to be an accreting neutron star. According to the torque balance hypothesis, this

system is a source of persistent gravitational waves. Using simulated Scorpius X-1 signals, it

has been estimated that the targeted radiometer algorithm has less sensitivity than CrossCorr, a

comparable sensitivity to TwoSpect, while at the same time it uses less than 1% of computational

resources of these pipelines (Messenger et al., 2015). It has been demonstrated that a lossless

data compression technique called folding can complement the narrowband radiometer, further

reducing a computational cost and solving a data storage problem (Thrane et al., 2015b). By com-

bining folding with radiometry, we seek to extend the radiometer to carry out a computationally

efficient all-sky search.
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2.3 Method

In this section we describe a procedure of transforming a gravitational wave strain s1,2(t) mea-

sured by two interferometers into the radiometer signal-to-noise ratio, which will serve as the

basis for our detection statistic. In subsection 2.3.1 we explain the process of cross-correlation.

Subsection 2.3.2 describes an implementation of data folding. In subsection 2.3.3 we apply the

directional narrowband radiometer on a folded dataset.

2.3.1 Cross-correlation

Following the procedure from (Thrane et al., 2015b), we divide the data into discrete segments

indexed by start time t2. There are important considerations that determine a suitable choice of

segment duration. On one hand, longer time segments lead to a better frequency resolution. On

the other hand longer segment duration decreases search sensitivity at high frequencies due to

the rotation of the Earth; see Eq. 12 and the surrounding discussion in (Thrane et al., 2015a).

The overall range of frequencies we consider is between 20 Hz and 1800 Hz. In this analysis we

pick a segment duration time for the Fourier transformation to be 32 s. This choice guarantees

< 5% decrease in the signal to noise ratio at 1800 Hz due to the rotation of the Earth.

For each segment, we calculate the Fourier transform of the strain time series s̃1,2(t, f ).

The subscript refers to the detector number. Noise power spectral densities for each individual

detector P1,2 are calculated for the background estimation using adjacent time segments. Next,

complex-valued estimators υ(t, f ) and σ(t, f ) are computed for each sidereal day of the observation:

(2.1) υ(t, f )≡ 1
N

s̃1
∗(t, f )s̃2(t, f ) ∈C

(2.2) σ(t, f )≡ 1
2

√
P ′

1(t, f )P ′
2(t, f ) ∈R

(2.3) ρ(t, f )≡ υ(t, f )
σ(t, f )

∈C

The relative difference between the real and the complex part of υ(t, f ) represents the signal

phase information, the absolute value of υ(t, f ) is the signal strength. Because the background

changes with time, υ(t, f ) is divided by σ(t, f ) in Equation 2.3.

In Eq 2.1, N is a normalization constant defined in (Ballmer, 2006). It is introduced so that

υ(t, f ) has units of power spectral density. Note that υ(t, f ) is equivalent to Y in (Thrane et al.,

2015b).

2We use the variable t to denote both segment start time and sampling time. The meaning of any particular t
should be clear by context.
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Next, we apply a coarse-graining operation (Thrane et al., 2015a) by combining neighboring

frequency-domain points of υ(t, f ) and P
′
1,2:

(2.4) υ(t, fCG)= 1
q

p+q−1∑
i=p

υ(t, f i)

(2.5) P
′
1,2(t, fCG)= 1

q

p+q−1∑
i=p

P
′
1,2(t, f i),

where

fCG = 1
2

(
f i + f i+q−1

)
.(2.6)

Choosing the degree of coarse-graining is a balancing act like choosing the segment duration. If

we make the coarse-grained bins too wide, we needlessly add noise on top of the signal. If the

coarse-grained bins are too small, the signal may wander outside of the bin. In this analysis, we

coarse-grain power spectra from an intrinsic frequency resolution of 1/32 Hz to 1 Hz. When we

assume that the signal is narrowband, we mean that the size of the frequency bin is wider than

the signal spectrum over the observation time. Spectrum broadening may be caused by Doppler

modulation from relative motion of a source of gravitational waves with respect to an observer.

Following Dhurandhar and Vecchio (2001), a Doppler shift associated with an orbital motion can

be expressed as:

(2.7) ∆ fD ≈ 2πasin ι
cP

f0,

where f0 is the gravitational-wave frequency of a source, ι is the orbit inclination angle, a is

the semi-major axis, P is the orbital period, c is the speed of light. The Doppler shift associated

with sidereal motion of the Earth is then ∆ fD ∼ 10−6 f0 and the Doppler shift associated with the

motion of the Earth around the Sun is ∆ fD ∼ 10−4 f0. For a neutron star PSR J0636+5129 with a

short orbital period of 96 minutes, the data from Manchester et al. (2005) yields ∆ fD ∼ 10−6 f0.

Even for the highest frequency in our analysis f0 = 1800 Hz, ∆ fD discussed above are smaller

than the chosen width of the frequency bin of 1 Hz. Spectrum broadening may also be caused by

the drift of a gravitational-wave frequency over time. One example is pulsar spin down. Crab

pulsar is a neutron star that formed following a supernova that went off back in the year 1024.

It has one of the largest measured spin downs ḟ of −3.8×10−10 Hz/s. The gravitational-wave

frequency will shift by around 10−2 Hz over the year, which is still smaller than the frequency

bin width. Varying the coarse-grained resolution to consider a variety of scenarios is possible, but

this lies outside our present scope.

2.3.2 Data folding

Due to the rotation of the Earth, the expectation value of ρ(t| f ) for a persistent narrowband

signal at a frequency f is a periodic function, with a period equal to one sidereal day. Folding is
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FIGURE 2.1. An illustration of how LIGO data is arranged into segments prior to the
folding operation.

a data compression technique that uses this symmetry to transform any dataset into only one

sidereal day of data (Ain et al., 2015).

First, we select a GPS time that corresponds to sidereal time = 0 for the first sidereal day.

We define an array of evenly-spaced, 32 s segments starting from this zero time. Segments that

overlap between sidereal days are removed. The first complete segment in a sidereal day becomes

the first segment of that day.

Fragments of data that do not fit into the new time segments are truncated (Figure 2.1).

Interferometer lock segments shorter than 700 seconds are removed as well. Applying these cuts

to data from LIGO’s first observing run, approximately 6% of the data is removed.

Next, following (Thrane et al., 2015b), we sum over sidereal days k in order to fold the data

into just one sidereal day ρfold( f , t|k), using σ( f , t) as weight coefficients:

(2.8) υfold(t, f |k)=
∑

k υk(t, f )σ−2
k (t, f )∑

kσ
−2
k (t, f )

(2.9) σfold(t, f |k)= (
∑
k
σ−2

k (t, f ))−
1
2

(2.10) ρfold(t, f |k)≡ υfold(t, f )
σfold(t, f )

2.3.3 Radiometry

Gravitational-wave radiometry (Ballmer, 2006) has been used in searches for persistent grav-

itational waves (Abadie et al., 2011; Abbott et al., 2007c, 2017b). The first LIGO radiometer
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FIGURE 2.2. Representation of data folding. Each element of the helix with a fixed
radius represents a real part of the ρfold(t| f ) data set at a fixed frequency, while
each revolution of the helix represents one sidereal day of observations. The ring
below the helix represents a folded dataset ρfold(t, f |k), where each element is
calculated on a basis of the above cells of the helix.

analysis was carried out in 2007 (Abbott et al., 2007c). Narrowband radiometry provides us with

a spectrum of a gravitational wave strain data at each sky location. Following (Ballmer, 2006;

Thrane et al., 2015b), the signal-to-noise ratio is given by:

(2.11) SNR( f |Ω̂)=
∑

t Re(ρfold(t; f )e2πi f Ω̂·∆~x(t)/c)ε12(t|Ω̂)√∑
t ε

2
12(t|Ω̂)

Here Ω̂ is the unit vector pointing to the sky position of the source, ∆~x(t) is the separation vector

of detectors, c is the speed of light, and ε12(t|Ω̂) is the sidereal-time-dependent efficiency factor.

(2.12) ε12(t|Ω̂)≡ 1
2

∑
A

F A
1 (t|Ω̂)F A

2 (t|Ω̂)

Here F A
1,2(t|Ω̂) are antennae factors (Hawking and Israel, 1989) for two interferometers; A = [+,×]

are polarization states. The exponential part in Equation 2.11 and ε12(t|Ω̂) are periodic functions

of time with a period of one sidereal day.

Previous studies using Monte-Carlo data showed that radiometry with 20 days of folded data

can be used to recover persistent gravitational wave signal with a strain amplitude h0 = 1.5×10−24

at 600 Hz at the LIGO design sensitivity using two detectors with SNR≈ 50 (Thrane et al., 2015b).
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2.3.4 Simulated signals

To test the sensitivity of the algorithm, we simulate persistent gravitational waves. Our simulated

signals are circularly polarized with a fixed strain amplitude and a sinusoidally evolving phase.

The amplitude of the strain measured in each detector is modulated by the antenna factors, which

change over the course of the sidereal day due to the rotation of the Earth; see, e.g., (Thrane

et al., 2015b). Injections are performed at an arbitrary fixed sky position (ra,dec)= (21 hr, 9◦).
According to Figure 7b from (Thrane et al., 2009), the radiometer sensitivity to strain power,

averaged over a sidereal day, varies by about 40% depending on the sky location. Therefore

we expect strain amplitude sensitivity to vary by about 20% for different sky locations. The

simulated signals are injected into Gaussian noise corresponding to Advanced LIGO at design

sensitivity (Harry et al., 2010). Technically, in order to simulate a signal with the characteristics

of a continuous wave source in a binary, one ought to include time-dependent Doppler modulation.

However, we ignore this effect in our simulation since our frequency bins are typically much

wider than the expected Doppler modulation from binary motion.

2.4 Data quality

Advanced LIGO comprises two detectors at Hanford and Livingston in the USA, and its first

observing run (O1) took place between September 12, 2015 and January 19, 2016. It is necessary

to remove instrumental lines to avoid false positives. We provide a three-step technique to remove

noise artifacts without accidentally removing an astrophysical signal.

The first step is to remove known instrumental lines from the frequency domain. We em-

ploy a list of lines from the recent directed search for persistent gravitational waves using

radiometry (Abbott et al., 2017b).

The second step is to remove times associated with non-stationary noise (glitches). Since we

are looking for a weak, persistent signal, we employ a relatively robust time-domain cut without

fear of throwing out the signal. Our time-domain cut eliminates any times that contain Nρ = 6

or more ρ(t, f )−spectrogram pixels with ρ > (ρmax = 7). This cut removes on average 0.5% of O1

data (Figure 2.6(a)) and none of Monte-Carlo data.

While the first cut eliminates known lines (instrumental artifacts with known origins), there

are additional “unknown” lines that we remove because they do not match our signal model.

The next step is to remove these unknown lines. We apply an additional cut that eliminates any

ρ(t, f )−spectrogram pixels with ρ > ρmax. This cut removes on average 0.3% of the remaining

O1 data and 0.1% of the remaining Monte-Carlo data. The values of Nρ and ρmax are chosen to

produce real-data distributions of ρ(t, f ) that are comparable to distributions generated from

Gaussian noise.
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Next, we look at the standard deviation of ρfold(t| f ,k) with respect to sidereal time,

stdt[ρfold(t| f ,k)].(2.13)

While high values of ρfold can be evidence of a signal, large scatter in the values of ρ(t, f ) is

more likely to be due to a detector artifact. We calculate the standard deviation in for each

frequency bin as per Eq. 2.13. Using injection studies, we set a maximum threshold on the

standard deviation, which we denote σcrit. We determine that σcrit = 1.7 is a suitable choice

for vetoing instrumental artifacts while preserving signals. This is illustrated in Fig. 2.3 and

Fig. 2.6(b). We plot the signal-to-noise ratio, maximized over all sky directions

(2.14) SNR( f )=max
Ω̂

SNR( f |Ω̂),

versus the standard deviation of ρfold defined in Eq. 2.13. Dots represent data from different

frequency bins. Red represents time-shifted O1 data, blue represents Monte-Carlo noise, and

green represents injected signals in Monte-Carlo noise. The time-shifted data is obtained by

assuming the measurements from the Livingston detector took place 1 second later than in reality.

This way, we capture features of real noise processes in the data, while removing any information

about astrophysical signals that may be present. If the data falls into the red zone on the plot, it

gets vetoed.

In addition to the above veto test using circularly-polarized signals, we perform an additional

veto test using a linearly-polarized signal with an inclination angle of ι= 90◦ and a polarization

angle of ψ= 0◦. By varying the integration time, we recover the signal multiple times with an

SNR between 4 and 50 at the injection frequency and sky location. The veto threshold σcrit for

the linearly-polarized signal is not exceeded.

2.5 Detection statistic

The goal of this section is to design a statistic for identifying the brightest point source on the sky

and determining the associated statistical significance.

First, we find the brightest patch in the sky for all frequency bins, which we denoted SNR( f ).

In this work we probe 360 equally-spaced azimuthal components of angle Ω̂ times 180 equally-

spaced polar components for a a total of 64800 sky locations.

Next, we look for the frequency bin with the most significant SNR( f ). Naively, one might

expect that this is accomplished by choosing the maximum of SNR( f ) over all frequencies.

However, this naive method for finding the loudest frequency bins presumes that the noise

distribution of SNR( f ) is independent of frequency. In reality, the distribution changes as a

function of frequency due to the fact that the diffraction limited resolution δθ is a function of

frequency:

(2.15) δθ ≈ c
f

1
∆~x(t)

≈
(1000 Hz

f

)
5◦

22



2.5. DETECTION STATISTIC

std(;fold)
0 1 2 3 4

S
N

R
(f

)

0

5

10

15

Veto zone

Time-shifted O1
Monte-Carlo noise (MC)
Injected signals in MC

FIGURE 2.3. The standard deviation of ρfold(t| f ,k) on the x-axis is used to veto
frequency-domain data. The signal-to-noise ratio SNR( f ) on the y-axis quanti-
fies significance. Some frequency bins in the time-shifted O1 data (red) with a high
ρfold(t| f ,k) in the veto zone of the plot would provide a great SNR( f |Ω̂) if the veto
were not applied.

At high frequencies, there is a relatively higher number of effective sky locations. Since there

are more effective sky locations, fluctuations in the noise lead to greater SNR( f ) due to a trial

factor effect. We therefore must define a new statistic in order to avoid a preference for higher

frequency signals.

Our solution is to define a new statistic λ( f ), which rescales SNR( f ) to take into account the

frequency dependence of the diffraction limited resolution:

(2.16) λ( f )≡ maxΩ̂SNR( f ,Ω̂)−µfit( f )
σfit( f )

.

The functions σfit( f ) and µfit( f ) are measured empirically with simulations so that λ( f ) is

approximately flat in frequency when we analyze noise. The final detection statistic is

λ≡max
f

λ( f ).(2.17)

To assign a statistical significance to λ, we perform background simulations to generate a

distribution of {λi}. For each realization, we simulate an array of folded data ρ i
fold(t, f ). Every

(t, f ) pixel is drawn from a normal distribution with mean=zero and with a variance determined

from time-shifted data. While individual segments of data are known to exhibit non-Gaussian

noise, we expect that folded data to be nearly Gaussian distributed due to the central limit

theorem. This assumption is supported by previous cross-correlation analyses, e.g., (Aasi et al.,
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FIGURE 2.4. Signal-to-noise ratio at the sky location where the signal was injected as a
function of the effective injected signal to noise ratio.

2014; Abadie et al., 2011, 2012; Abbott et al., 2004, 2007a,d, 2017b,c). We carry out Nsim = 105

background realizations. The false alarm probability (FAP) of λ is given by:

(2.18) FAP(λ)= N(λi ≥λ)
Nsim

,

where N(λi ≥λ) is the number of simulated backgrounds that exceed λ (the measured detection

statistic). In the remainder of the paper, we set FAP= 1% as a fiducial threshold for identification

of a statistically interesting signal. We find that FAP = 1% corresponds to a lambda value of

λ0 = 7.6.

2.6 Sensitivity calculation

In this section, we estimate the gravitational-wave strain amplitude h0( f ) that we can detect

with false alarm probability FAP = 1% and false dismissal probability FDP = 10%. Our simulated

signals are described in Section 2.3.4. For each frequency bin, we vary h0 and determine the

value such that we exceed the FAP= 1% threshold λ0 at least 1−FDP= 90% of the time.

In Figure 2.4, we plot the recovered signal-to-noise ratio SNR( f |Ω̂0) as a function of the

effective injected signal-to-noise ratio h2
0( f )/P( f ). The recovered signal-to-noise ratio is linearly

proportional to the injected signal-to-noise ratio:

(2.19) SNRm( f )= a
h2

0( f )
P( f )

,
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FIGURE 2.5. Sensitivity to the strain amplitude h0( f ) for 2 folded days of the Monte-
Carlo background ρfold(t, f |k) for LIGO at design sensitivity. We assume 1% FAP
and 10% FDP.

where a depends on details of the windowing procedure, but for our choice of parameters, a = 74.9.

For a fixed injected signal-to-noise ratio, there is a distribution of recovered signal-to-noise ratios,

the width of which is indicated in Fig. 2.4 by the yellow-orange band. The requirement that the

false dismissal probability is FDP = 10% can be visualized using the green line, below which

10% of the injections are recovered for a fixed value of h2
0/P. We define ∆ as the vertical distance

between the yellow and green lines; it is the difference in SNR required to go from FDP= 50% to

FDP= 10%. The strain amplitude sensitivity is

(2.20) h0 =
√

P( f )
a

(
SNR0( f )−∆

)
,

where SNR0( f ) is the threshold for a statistically significant signal-to-noise ratio given λ0. That

is,

SNR0( f )=σfit( f )λ0 +µfit.(2.21)

Our results are summarized in Fig. 2.5. At the most sensitive frequency bin, corresponding to

f = 245Hz, the strain amplitude sensitivity is h0 = 1.3×10−24. For the current analysis with ≈ 2

sidereal days of Monte-Carlo noise at the level of LIGO design sensitivity we used a total of 4650

time segments 32 seconds long. The signal-to-noise ratio scales like SNR( f |Ω̂)∝p
tobs (Thrane

et al., 2015b). At f = 600Hz we project the strain amplitude sensitivity h0 ≈ 3.9×10−25, for a two-

detector network operating at the level of LIGO design sensitivity for one year. This prediction is

the same order of magnitude as in (Thrane et al., 2015b) (h0 ≈ 2×10−25). For analysis of LIGO’s
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O1 run we project a strain amplitude sensitivity h0 ≈ 1.2×10−24 at f = 245 Hz. The expected

sensitivity for linearly-polarized signals is expected to be worse by a factor of approximately

2.6 (Messenger, 2010).

We compare this result to upper limits from recent searches for continuous and persistent grav-

itational radiation with LIGO’s O1 data. All-sky searches for continuous, nearly-monochromatic

circularly-polarized gravitational waves in the 20-475 Hz band reported 95% confidence upper

limits that reach h0 ≈ 1.5×10−25 in the 150 - 250 Hz region (Abbott et al., 2017f). Directional

radiometer search using LIGO’s O1 data provides 90% confidence upper limits on persistent

gravitational waves, reaching h0 ≈ 4.0×10−25 (Abbott et al., 2017b).

2.7 Conclusion

We apply an all-sky radiometer algorithm to simulated Gaussian noise, which has been com-

pressed using sidereal-day folding. The data are cleaned using a data-quality procedure developed

with time-shifted data from LIGO’s first observing run. We project that the algorithm achieves

a strain amplitude sensitivity of ≈ 1.2×10−24 (1% false alarm probability, 10% false dismissal

probability) for a two-detector network operating at design sensitivity for the time of the LIGO

first observing run O1. This corresponds to a sensitivity to neutron star ellipticity of (Abbott

et al., 2007b)

(2.22) ε≈ 6×10−5
(0.4
β

)(1045 g cm2

I

)( r
10 kpc

)(600 Hz
f

)2
,

where β is an orientation factor, G is the gravitational constant, r is the distance to the source,

and I is the moment of inertia. Because the radiometer works with a simplified signal model with

no regard to distance parameters, binary parameters and neutron star spin frequency derivatives,

it is always less sensitive to classical continuous-wave signals than matched-filter searches. On

the other hand, it is not clear to what extent these theoretical models represent real neutron-star

gravitational waves.

At some point in the future, the amount of collected data will make even the directional ra-

diometer computationally challenging. So, data folding may be the only convenient way to perform

these searches. Data folding can also be applied to searches for the stochastic gravitational-wave

background. With that, several improvements for narrowband searches with folded data can be

implemented in the future. Varying the coarse-grained frequency bin width can be used to achieve

an optimal sensitivity for simulated signals. Computational improvements for data folding have

been suggested (Ain et al., 2018) as well.
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FIGURE 2.6. Figure 2.6(a) represents amounts of data removed from 14 days of time-
shifted LIGO O1 data on the second data quality cut, described in Section 2.4,
that removes time segments. Figure 2.6(b) represents the standard deviation of
ρfold(t| f ,k) for time-shifted data from LIGO’s O1 run.
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Pulsar timing arrays provide a unique means to detect nanohertz gravitational waves

through long-term measurements of pulse arrival times from an ensemble of millisecond

pulsars. After years of observations, some timing array pulsars have been shown to be

dominated by low-frequency red noise, including spin noise that might be associated with pulsar

rotational irregularities. The power spectral density of pulsar timing red noise is usually modeled

with a power law or a power law with a turnover frequency below which the noise power spectrum

plateaus. If there is a turnover in the spin noise of millisecond pulsars, residing within the

observation band of current and/or future pulsar timing measurements, it may be easier than

projected to resolve the gravitational-wave background from supermassive binary black holes.

Additionally, the spectral turnover can provide valuable insights on neutron star physics. In

the recent study by Melatos and Link, the authors provided a derivation of the model for power

spectral density of spin noise from superfluid turbulence in the core of a neutron star, from first

principles. The model features a spectral turnover, which depends on the dynamical response

time of the superfluid and the steady-state angular velocity lag between the crust and the core of

the star. In this work, we search for a spectral turnover in spin noise using the first data release

of the International Pulsar Timing Array. Through Bayesian model selection, we find no evidence
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of a spectral turnover. Our analysis also shows that data from pulsars J1939+2134, J1024−0719

and J1713+0747 prefers the power-law model to the superfluid turbulence model.

3.1 Introduction

It has long been proposed that pulsars can be used to detect gravitational waves in the nHz band

(Detweiler, 1979; Hellings and Downs, 1983; Sazhin, 1978). Millisecond pulsars, first discovered

in 1982 (Backer et al., 1982), provide promising prospects for gravitational wave detection thanks

to their exceptional rotational stability. The concept of a pulsar timing array (PTA), long-term

monitoring of pulse arrival times from a spatial array of millisecond pulsars, was conceived three

decades ago (Foster and Backer, 1990a; Romani, 1989). Currently, several collaborations are

conducting PTA observations, including the Parkes Pulsar Timing Array (PPTA) (Manchester

et al., 2013), the European Pulsar Timing Array (EPTA) (Kramer and Champion, 2013) and the

North American Nanohertz Observatory for Gravitational Waves (NANOGrav) (McLaughlin,

2013a). A consortium of these collaborations is called the International Pulsar Timing Array

(IPTA) (Hobbs et al., 2010a; Perera et al., 2019).

The first gravitational-wave signal detected with PTAs is likely to be a stochastic gravitational-

wave background, formed by a cosmic population of supermassive binary black holes (Rosado

et al., 2015). Apart from the detection of gravitational waves, PTAs also offer the opportunity to

establish a pulsar-based time standard (Hobbs et al., 2012), to study the Solar System (Caballero

et al., 2018), the interstellar medium (Coles et al., 2015) and the Solar wind (Madison et al.,

2019), and to constrain ultralight dark matter candidates (Porayko et al., 2018).

The science output of PTA data relies on how well we model noise. Incorrect noise models can

also lead to false detection in gravitational-wave searches (Arzoumanian et al., 2018a; Hazboun

et al., 2020). At low frequencies, where we are most sensitive to the stochastic gravitational-wave

background, some millisecond pulsars, primarily studied in the PTA context, have measureable

levels of red noise (Arzoumanian et al., 2015a, 2018b; Caballero et al., 2016; Coles et al., 2011;

Lentati et al., 2016; Reardon et al., 2016). The red noise power spectrum is modelled by either

a power law, or the broken power law, which introduces a corner frequency below which the

noise power spectrum plateaus. Additional opportunities also include the free spectral model

(see, e.g., Lentati et al., 2013) and the power-law model with deviations at each frequency bin

(Caballero et al., 2016). One particular source of red noise is the spin noise, which might be

associated with pulsar rotational irregularities (see, e.g., Shannon and Cordes, 2010). While some

young pulsars show hints of a spectral turnover at low frequencies (Parthasarathy et al., 2019),

it has not yet been found for millisecond pulsars. If the typical time scale of a spectral turnover

for millisecond pulsars is on the order of years or shorter, it reduces the red noise in the most

sensitive frequency band of PTAs, yielding a faster detection of a stochastic gravitational-wave

background. Implications of how a spectral turnover will affect times to detection of a stochastic
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background were discussed in Lasky et al. (2015). One of the conclusions of Lasky et al. (2015) is

that the gravitational wave power spectrum will only surpass the steeper timing noise spectrum

if the latter flattens below some frequency.

Moreover, pulsar timing red noise provides interesting prospects for studying neutron star

physics. A range of mechanisms have been proposed to explain pulsar red noise, including

switching between two different spin-down rates (Lyne et al., 2010), recovery from a glitch – a

sudden increase in the rotational frequency (Johnston and Galloway, 1999a), a cumulative effect

of frequent micro-glitches (Cordes and Downs, 1985; D’Alessandro et al., 1995; Melatos et al.,

2008), variable coupling between the crust and liquid interior (Alpar et al., 1986; Jones, 1990),

influence of planets (Cordes, 1993) and asteroids (Shannon et al., 2013). Nevertheless, there are

not many models that link power spectral density model parameters to physical features. One

such model by Melatos and Link (2013), which we explore in this paper, predicts a superfluid

turbulence in neutron star interiors as the origin of red noise. The turbulent process exerts a

torque on the star’s crust, where the external magnetic field of the star is produced. The model

features a spectral turnover.

In this work we employ Bayesian inference to search for evidence of spectral turnover in

pulsar spin noise in the first data release (DR1) of the IPTA (Verbiest et al., 2016). We discuss

our data analysis methods in Section 3.2. Our simulation study is presented in Section 3.3. We

describe the noise processes of the first IPTA data release in Section 3.4. We present the results

in Section 3.5, and discuss our conclusions in Section 3.6.

3.2 Method

3.2.1 Bayesian methodology in pulsar timing

First, following Van Haasteren et al. (2009), we assume a multivariate Gaussian likelihood

function to describe pulsar timing residuals δtδtδt after fitting for the timing model:

(3.1)

L (δtδtδt|θθθ,ξξξ)= 1√
(2π)ndet(CCC)

exp
(
− 1

2
(δtδtδt−sss−MξMξMξ)TCCC−1(δtδtδt−sss−MξMξMξ)

)
.

Stochastic signals are modeled using a covariance matrix CCC, while sss is a deterministic signal

vector. For n pulse times of arrival, sss has dimensions of 1× n and CCC has dimensions of n× n.

Thus, values of sss are expected amplitudes of a signal in seconds at observation times. Values

of CCC effectively represent stochastic process amplitudes at different time scales. Parameters of

our models are θθθ. The vector ξξξ contains timing model parameters and MMM is a design matrix,

describing the contribution of m timing model parameters to n times of arrivals (ToA). Among

timing model parameters are pulsar barycentric rotation frequency (F0) and its time derivatives

31



CHAPTER 3. IS THERE A SPECTRAL TURNOVER IN THE SPIN NOISE OF MILLISECOND
PULSARS?

(F1, F2), dispersion measure (DM) and its time derivative (DM1), distance parameters and binary

parameters, if pulsar is in a binary system. Timing model parameters are obtained with least-

squares fitting prior to the analysis. Estimates of timing model parameters are contained in data

files with .par extension. Pulse times of arrival at the observatory are contained in data files

with extension .tim. Throughout our study, we work with ToAs and residuals, referenced to the

Solar System Barycenter. Assuming uniform prior on timing model parameters, the likelihood is

marginalized over these parameters (Van Haasteren et al., 2009):

(3.2)
L (δtδtδt|θθθ)=

√
det(MMMTCCC−1MMM)−1√
(2π)n−mdet(CCC)

exp
(
− 1

2
(δtδtδt−sss)TCCC′(δtδtδt−sss)

)
,

where we have defined

(3.3) CCC′ =CCC−1 −CCC−1MMM(MMMTCCC−1MMM)−1MMMTCCC−1 .

To speed up the calculation, we employ the singular value decomposition of the design matrix in

the form MMM =USVUSVUSV∗, where SSS contains singular values of MMM, UUU and VVV are unitary matrices with

dimensions n×n and m×m respectively. Then we obtain the likelihood function in a form (van

Haasteren and Levin, 2013)

(3.4)

L (δtδtδt|θθθ)= 1√
(2π)n−mdet(GGGTCCCGGG)

exp
(
− 1

2
(δtδtδt−sss)TGGG(GGGTCCCGGG)−1GGGT (δtδtδt−sss)

)
,

so that UUU =U1U1U1GGG with U1U1U1 and GGG consisting of the first m and remaining n−m columns of UUU .

Some timing model processes are covariant with red noise. In particular, in analyses by Coles

et al. (2011) and Reardon et al. (2016), the least-squares timing model fit absorbs some red noise.

This absorption of power causes an apparent visible turnover in the measured spectra of red post-

fit residuals, which is why the model with the broken power law was used for these analyses. In

Caballero et al. (2016), the regular power-law was used, as the effects of timing model fitting were

taken into account. In our analysis, we employ analytical marginalization over the uncertainty of

timing model parameters in Equation 3.4, which is equivalent to the simultaneous fitting of the

timing model parameters and the red noise parameters, under the assumption that non-linear

dependencies of the likelihood on the timing model parameters are negligible. This avoids the

problem of detecting a spectral turnover that is actually due to the timing model fit, and makes it

possible to target the spectral turnover in the spin noise itself. During marginalization, one loses

sensitivity at low frequencies, especially at frequencies ≤ 1/Tobs, due to taking the uncertainty of

the timing model into account.

Our prior probability distribution is π(θθθ). The integral of the likelihood times the prior over

the prior parameter range is the Bayesian evidence for our model:

(3.5) Z (δtδtδt)=
∫

L (δtδtδt|θθθ)π(θθθ)dθθθ.
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To infer our model parameters θθθ, given observational data, we employ the Bayes’ theorem:

(3.6) P (θθθ|δtδtδt)= L (δtδtδt|θθθ)π(θθθ)
Z (δtδtδt)

.

Using two different models A and B with parameters θθθA and θθθB, we employ the Bayes factor as a

measure of which model better fits the data:

(3.7) BB
A,i =

Z B
i (δtδtδt)

Z A
i (δtδtδt)

, i ∈ [1, Npsr] ,

where Npsr is the number of pulsars. In Bayesian model selection, it is advised to use the posterior

odds ratio as the decisive criterion for model comparison. Posterior odds ratio is equal to the

Bayes factor times the prior odds ratio. In our model selection, we do not know a-priori whether

the spectral turnover will ever be detected in millisecond pulsars. So, we choose prior odds to be

equal to one. Thus, the posterior odds ratio is equal to the Bayes factor. For simulation studies,

we calculate the Bayes factors from evidence, which is obtained with nested sampling (Skilling,

2004). To save on computational cost, we adopt the product-space sampling method (Carlin and

Chib, 1995; Hee et al., 2015) to calculate Bayes factors for the real data1. Both methods are

mathematically equivalent. Assuming timing data for each pulsar are independent measurements,

we combine all available data:

(3.8) BB
A =

Npsr∏
i=1

BB
A,i ,

which provides a metric to determine whether the spectral turnover is a real physical feature

of millisecond pulsar spin noise. For a discussion of how Bayes factors are combined through

multiplication, see, for example, Zimmerman et al. (2019). The authors argued that this approach

is a limiting case of the inference of hyper-parameters that characterize the underlying distribu-

tions of parameters of individual events (pulsars), under the assumption that measurements of

these parameters are independent. We interpret Bayes Factors, as in Kass and Raftery (1995),

where 0≤ logB < 1 is not worth more than a bare mention, 1≤ logB < 3 is positive, 3≤ logB < 5

is strong, and logB ≥ 5 is very strong.

3.2.2 Modelling stochastic processes

We model stochastic red noise processes as a power-law power spectral density P( f ). We include

P( f ) in our likelihood function using the Fourier-sum method from Lentati et al. (2013), described

briefly below. We represent the covariance matrix as CCC =NNN +KKK , where NNN is a diagonal matrix for

white noise component, and KKK is a red noise component. A Woodbury lemma is used to simplify

1The technical inconvenience of this method - one has to choose the set of compared models before the sampling
starts - is the main reason to adopt nested sampling for our simulation studies.
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the inversion of a covariance matrix, decomposed into NNN and KKK (Hager, 1989; van Haasteren and

Vallisneri, 2014). We define a Fourier basis FFF with elements:

Fi, j =


κ j ai sin

(
2π f i∆t j

)
, i is even ;

κ j bi cos
(
2π f i∆t j

)
, i is odd ;

i ∈ [1,2NF], j ∈ [1, NToA] .

(3.9)

The parameter κ is a constant, which we reserve to model chromatic red noise that depends on a

radio frequency. For spin noise, κ is equal to one. The multiplicative factors ai and bi are Fourier

coefficients which follow the standard Gaussian distribution. Each ∆t j = (t j − t1) is the difference

between the first ToA and the jth ToA. The elements f i are components of a frequency vector that

depend on the total observation span Tobs. They are defined as

(3.10) f i =


i+1
2T , i is odd ;
i

2T , i is even .

The variable NF determines the number of Fourier basis components in the frequency domain,

with a minimum of 1/Tobs and spacing ∆ f = 1/Tobs. Next, we obtain a diagonal matrix ΦΦΦ(θθθred)

with elements Φi = P( f i), which depends on our red noise model with parameters θθθred. Note, the

minimum f i is sometimes referred to as the low-frequency cut-off, although it is not necessarily

assumed that there is no red noise power below this frequency. Essentially, the data are just not

analyzed below f i. In principle, the low-frequency cut-off can become a free parameter of our

model (see, e.g., Lentati et al., 2014). This approach could potentially reveal the sudden drop of

power at low frequencies. The red noise component in our likelihood function, marginalized over

Fourier coefficients ai and bi (van Haasteren and Vallisneri, 2014), is

(3.11) KKK =FΦFFΦFFΦFT ∆ f .

The white-noise covariance matrix NNN is diagonal with elements

(3.12) σ2
j = (EFAC σToA

j )2 +EQUAD2 ,

where EFAC and EQUAD are factors to account for the excess of white noise, in addition to ToA

error bars, σToA
j . When σToA

j represent white noise well, EFAC is one and EQUAD is zero.

3.2.3 Red noise models

Some millisecond pulsars in real data do not show evidence of red noise (e.g., Lentati et al.,

2016). We refer to the model without red noise as “Model ∅”. Next, we employ the two following

phenomenological models for red noise. The power-law model

(3.13) PPL( f )= A2

12π2 yr3( f yr)−γ,
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which we refer to as the “Model PL”. And the broken power-law model

(3.14) PBPL( f )= A2

12π2 yr3(
√

f 2 + f 2
c yr)−γ,

which we refer to as “Model BPL”. In the above two equations, model parameters are: the red

noise amplitude A, the slope γ, the corner frequency fc.

We also study the superfluid turbulence model from (Melatos and Link, 2013)

(3.15) PM( f )= 15p2

8πλ2η(R−1)

∫ ∞

2π

x4 +3x2 +9

[ 2π f
η(R−1) ]

2 + x4/3
x−31/3dx,

which we refer to as “Model M”. The model depends on parameters η(R−1) and λ. Our Equa-

tion 3.15 is obtained by multiplying the power spectral density defined in Equation 16 of Melatos

and Link (2013) with pulsar spin period squared p2. This way, we obtain the power spectral

density in units of [s3], to be consistent with Equations 3.13 and 3.14. Parameter λ is a non-

condensate fraction of the moment of inertia, which affects the amplitude of red noise. Parameter

η(R−1) is a decorrelation frequency, which determines the spectral turnover. Whereas theory pro-

vides some predictions for λ (see, e.g., Van Eysden and Melatos, 2010), η(R−1) is poorly understood.

Thus, the amplitude of spin noise remains very loosely constrained by theory. For convenience,

we reparametrize Equation 3.15, in the form of parameters M and tc, using Equation A.1. The

integral in Equation 3.15 yields an analytical solution, given by Equation A.2. It is possible that

only certain values of the (λ, η(R−1)) parameters are allowed by neutron star physics, which

could motivate a different prior for (λ, η(R−1)) in future work.

In Figure 3.1, we plot examples of models of spin noise power spectral density. Note, at

high frequencies, Model M with two parameters asymptotically approaches Model PL with

fixed γ = 2 and only one free parameter (amplitude), so parameters η(R−1) and λ of Model M

become degenerate. In order to break this degeneracy, and to distinguish models PL and M, one

must observe a spectral turnover. This conclusion will be important later when we find pulsars

that prefer Model M over Model PL, but realize that at the current stage of observations the

performance of Model M is largely determined by the consistency of Model PL’s estimate of γ with

2.

In our analysis, we model NF = 30 Fourier components of red noise processes. For power-law

P( f ), the fraction of the signal power above 1/Tobs that is fit with NF components is equal to

1−N1−γ
F when γ> 1. As an example, for a typical γ= 3, with 30 Fourier components we take into

account 99.9% of the red noise power above 1/Tobs. Below γ= 1.5, where 30 Fourier components

take into account 81.7% of the red noise power above 1/Tobs, it is better to use more Fourier

components. In reality, after we calculate this fraction for the power up to the sampling frequency,

this fraction will be greater. Nevertheless, for pulsar J2145−0750, where in Lentati et al. (2016)

it has been estimated that γ= 0.6±0.2, we use 100 Fourier components (107 components were

used in Lentati et al. (2016)). We model remaining pulsars with 30 Fourier components, which is
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FIGURE 3.1. Models for pulsar red noise power spectral density. The blue solid line
represents Model PL (Equation 3.13) and the orange dashed line represents Model
BPL (Equation 3.14). For both of them we chose A = 2×10−13 and γ= 2. For the
orange dashed line fc = 0.5 yr−1. The green dotted line represents Model 3.15
(Equation 3.15) with η(R−1)= 0.5 yr−1, λ= 0.5, assuming pulsar spin period of 1
ms.

a reasonable and computationally-cheap approximation. More comments on the consequences of

this choice are provided in Section 3.5.

3.2.4 Software

We estimate the design matrix using the designmatrix plugin in TEMPO2 (Hobbs et al., 2006). We

simulate data and access TEMPO2 using libstempo (Vallisneri, 2013). We construct our models

and likelihood, and do parameter estimation using Enterprise (Ellis et al., 2019). We perform

likelihood sampling using the PTMCMCSampler (Ellis and van Haasteren, 2017) for IPTA DR1

data. For simulations we use a nested sampler Dynesty (Speagle and Barbary, 2018), and we use

Bilby (Ashton et al., 2019a) to access the Dynesty sampler.

3.3 Simulation study

We perform a simulation study to demonstrate our ability to do Bayesian model selection. We also

demonstrate some potential subtleties in recovering a low-frequency turnover. We simulate ToAs,

ToA errors, and timing residuals for the pulsar J0711−6830, using ephemerides from the ATNF

Pulsar Catalogue (Manchester et al., 2005). We simulate ToAs evenly sampled once every 30 days
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between MJD 53000 and 56650, which is roughly consistent with the average cadence of a typical

IPTA observatory (see Verbiest et al., 2016, Table 1). We assume ToA errors to be 0.5 µs, which is

within the range of ToA errors as found in the first data release of the IPTA. These parameters

are applied to all simulations described in this section of the paper. In our noise simulations we

only assume one observing system, one observed radio frequency, and only red and white noise.

The red noise parameters chosen for simulations are described in the following subsections. We

choose them, so that they are approximately consistent with noise parameters of the real data

(see, e.g., Lentati et al., 2016, Table 6). The parameter values recovered from simulations in this

section have been confirmed to be consistent with injected values.

3.3.1 Red noise in an ensemble of pulsars

We simulate 50 mock pulsars with different random realisations of Model PL red noise and white

noise. Then we perform model selection between Model PL and Model BPL. The simulated white

noise parameters throughout the subsection are EFAC = 1 and EQUAD = 0.1 µs. According to

Section 3.3 of Verbiest et al. (2016), these are the typical EFAC and EQUAD values found in

IPTA DR1. The simulated red noise amplitude is different for the three cases we describe in this

subsection, while the priors for red noise power-law index and corner frequency are π(γ)=U (2,5)

and π( fc)= log10 U (10−10,10−6). Here U stands for a uniform distribution, and log10 U stands

for a uniform in log10 distribution. We use the same red noise priors for A and γ for models PL

and BPL, for both injection and recovery.

First, we simulate Model PL with a prior π(A) = log10 U (10−14,10−11). The prior range for

noise amplitude is chosen such that red noise is overall stronger than white noise. As a result,

with all simulated pulsars, we obtain logBBPL
PL =−30.8. Hence, Model PL is correctly preferred

over Model BPL.

Second, we demonstrate that we do not prefer the wrong model if the red noise is overall

much weaker than white noise. The prior for simulation and recovery of red noise amplitude is

reduced to π(A) = log10 U (10−17,10−14). Now, logBBPL
PL = 1.0. Therefore, if the red noise is too

weak, we cannot distinguish between two models, as expected.

Finally, we demonstrate that, when the data from multiple pulsars are injected with Model

BPL, our algorithm prefers Model BPL over Model PL. To do this, we use the following prior on

red noise amplitude π(A) = log10 U (10−14,10−11). Now we obtain logBBPL
PL = 96 favouring the

correct model. Our results for this subsection are summarized in Table 3.1. All injected signals

were successfully recovered.

3.3.2 Prior mismatch in simulations

Most of the IPTA pulsars from DR1 are dominated by white noise Lentati et al. (2016). In this

subsection, we perform simulations that demonstrate that model selection for red noise in data,

dominated by white noise, can lead to the false detection of a spectral turnover, if we do not
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FIGURE 3.2. The demonstration of the effect of sample variance on the recovery of a
spectral turnover. Each point represents logBBPL

PL,i . The top plot with blue points
is for different realisations of a power law, Model PL (Equation 3.13), while the
bottom plot with orange points is for different realisations of a broken power law,
Model BPL (Equation 3.14). The injection parameters, except red noise injection
amplitude A (horizontal axes), are the same for both plots. As the amplitude of the
red noise is increased, the evidence in favour (bottom plot) and against (top plot) the
spectral turnover plateaus. Red lines are mean values for every 200 simulations.

carefully choose our prior. We perform simulations of only white noise with EFAC = 1 and EQUAD

= 0.1 µs. We perform model selection between models BPL and PL. We observe that evidence for

the absence of red noise (Model ∅) is always the strongest, while either Model PL or BPL may be

preferred, depending on our prior on fc parameter. As we allow our prior on fc to include only

low values less than around 1/Tobs, we can not distinguish models PL and BPL. As we allow our

prior on fc to include only frequencies higher than our sampling frequency, we cannot distinguish

between models BPL and ∅, and model selection between PL and BPL prefers BPL. This is not

surprising, as white noise and Model PL are limiting cases of Model BPL. Therefore, for the

case of the DR1 analysis, when the true distribution of spin noise parameters is unknown, we

propose to account for this effect by including in Equation 3.8 only pulsars having log BPL
∅,i ≥ 5
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Table 3.1: Priors for the injection study in Section 3.3.1. Here U stands for a uniform distribution,
and log10 U stands for a uniform in log10 distribution.

Injected
model

π(A) logBBPL
PL

Preferred
model

PL log10 U ( 10−14,10−12) −30.8 PL
PL log10 U ( 10−17,10−14) 1.0 N/A
BPL log10 U ( 10−14,10−12) 95.6 BPL

or log BBPL
∅,i ≥ 5. This way we exclude pulsars with no evidence of any spin noise and do not

obtain false positives in favor of either a spectral turnover or its absence. Another solution to this

problem is to fit the priors using the hierarchical inference (MacKay, 2003), which we defer to a

future work.

3.3.3 The effect of sample variance in recovery of high amplitude red noise

In this subsection we find that with a PTA observation time of 10 years, we are unlikely to resolve

a turnover in the red noise process of any particular pulsar, assuming a fiducial fc = 10 nHz. This

is because factors ai and bi in Equation 3.9 become a source of noise themselves, and we do not

have a data span long enough to effectively probe residuals spectra at frequencies around the

turnover.

To demonstrate this, we simulate 1000 pulsars with red noise Model PL amplitude π(A)=
log10 U (10−15;10−11) and γ= 3, and simulate additional 1000 pulsars with red noise Model BPL

with the same parameters and a corner frequency fc = 10 nHz. As the amplitude of the red noise

in the set of simulated pulsars increases, the average logBi in favor of the correct model plateaus.

This is demonstrated in Figure 3.2. We can see that, at some point, increasing logB( f ) starts

slightly favouring the correct model, but then saturates, so that increasing the amplitude of the

red noise does not help to resolve a low-frequency turnover. In this medium-to-strong red noise

regime, some realisations of Model PL may favour the Model BPL hypothesis, and vice versa.

However, the mean logBBPL
PL,i (red line in Figure 3.2) favours the correct model.

3.4 Sources of noise in the first IPTA data release

In this Section, we describe sources of noise in the IPTA DR1 dataset. We use Lentati et al. (2016)

as a guide for choosing what noise terms to include in our model. In Table 3.2, we list the prior

distributions for parameters used in our models. Then we perform Bayesian inference of these

parameters and model selection for millisecond pulsar spin noise.
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Table 3.2: Priors used for model selection analyses between models PL (Equation 3.13) and BPL
(Equation 3.14), and between models PL and M (Equation 3.15). Column 2 indicates whether the
prior has been used in all model comparison analyses, or in model comparison between specific
models.

Parameter θθθ Model comparison Prior π(θθθ)

EFAC all U (0,10)
EQUAD [s] all log10 U (10−10,10−4)
ECORR [s] all log10 U (10−10,10−4)
ASN PL-BPL log10 U (10−20,10−8)

PL-M log10 U (10−17,10−10)
γSN all U (0,10)
fc [Hz] PL-BPL log10 U (10−12,10−6)
MSN PL-M log10 U (10−1,106)
tc [s] PL-M log10 U (2π×108,1022)
ADM all log10 U (10−20,10−8)
γDM all U (0,10)
ABS all log10 U (10−16,10−10)
γBS all U (0,10)
AE all log10 U (10−10,10−2)
tE [MJD] all U (54500,54900)
τE [MJD] all log10 U (5,100)
AG all log10 U (10−6,10−1)
tG [MJD] all U (53710,54070)
σG [MJD] all U (20,140)

3.4.1 White noise

IPTA pulsars are often monitored by several radio observatories. The raw voltages from each

telescope are processed by different hardware. Each observing system has different measurement

errors, contributing to measured white noise. Noise parameter EFAC, introduced in Equation 3.12,

accounts for ToA uncertainty, associated with errors during the process of cross-correlation of

pulse profile templates with observed pulse profiles. Parameter EQUAD is introduced to account

for stochastic variations in both phase and amplitude of radio pulse profiles. These variations

are called “pulse jitter” (Osłowski et al., 2011a; Shannon et al., 2014). Parameters EFAC and

EQUAD are introduced for each backend system that processes raw telescope data, in accordance

with Equation 3.12. In NANOGrav data, one epoch of observations with wide-band receivers

is split into multiple ToAs, corresponding to different radio-frequencies, or sub-bands. Thus,

for NANOGrav data, ECORR parameters are introduced to account for correlations between

sub-banded ToAs at each epoch (Arzoumanian et al., 2018a).
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3.4.2 DM noise

Dispersion measure (DM) is the electron column density, integrated along the line of sight to a

pulsar. Stochastic variations in dispersion measure result in DM noise. We model DM noise as a

power law with ADM and γDM, where κ j = K2ν−2
j in Equation 3.9. So, both κ j and Fi, j depend

on the radio frequency ν j (Hz) of the j’th ToA. A constant K = 1400 MHz can be thought of as a

reference radio frequency. We account for DM variations for every pulsar in IPTA analysis.

3.4.3 Band noise and system noise

Lentati et al. (2016) found that specific IPTA pulsars show evidence of band noise and system

noise, which introduces additional red noise in some observing systems and radio frequency bands.

Lentati et al. (2016) suggested polarization calibration errors as a possible origin for system noise.

Radio-frequency interference and the interstellar medium were proposed as possible origins of

band noise. In order to separate band noise and system noise from spin noise, we add a separate

power law with ABS and γBS on specific radio frequency bands and systems for specific pulsars

where band and system noise for IPTA data release 1 has been found (see Table 4 in Lentati

et al., 2016, for details).

3.4.4 Spin noise

We model spin noise as a common red noise process between all observing systems and radio

frequencies. Model PL depends on parameters ASN and γSN, Model BPL depends on an additional

parameter fc. We refer to a hypothesis that no spin noise is present in the data, as to Model ∅. In

this work, we are mostly interested in resolving a spectral turnover in spin noise, characterized

by the parameter fc in Model BPL. We are also interested in Model M with parameters MSN

and tc. As always, one must exercise caution when choosing suitable priors, as the Bayes factor

depends on the choice of prior (Kass and Raftery, 1995). When carrying out model selection

between Model M and Model PL, we chose our prior on Model PL amplitude A to match the range

of spin noise amplitudes that is allowed by our priors for η(R−1) and λ in Model M. Otherwise,

the model with a wider prior range on spin noise amplitude would be incorrectly penalized when

calculating a Bayes factor.

3.4.5 Transient noise events

Pulsars J1713+0747 and J1603−7202 show evidence of a sudden change in dispersion measure

(Coles et al., 2015; Desvignes et al., 2016; Keith et al., 2013; Zhu et al., 2015). We take these

events into account using the same empirical models that were used in Lentati et al. (2016).

For J1713+0747 we model the event as a frequency-dependent sudden decrease followed by an

exponential increase in timing residuals:
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Table 3.3: Results for IPTA DR1 pulsars where we found log BBPL
∅,i > 0 and log BPL

∅,i > 0. Columns 3
(ASN) and 4 (γSN) are the red noise parameter estimates for Model PL. Columns 5 (logBPL

∅,i) and 6
(logBBPL

∅,i ) show whether pulsar data favours Models BPL (Equation 3.14) and PL (Equation 3.13)
against no spin noise. Columns 7 (logBBPL

PL,i ) and 8 (logBM
PL,i) show how specific pulsars favors

Models BPL and M (Equation 3.15) over Model PL. The exact values of Bayes factors for some
pulsars were hard to calculate using the product-space sampling method, so we only provided
lower limits. Here we assume a Solar System ephemeris model DE421, which is a default option
for IPTA DR1.

Pulsar Tobs (yr) log10 ASN γSN logBPL
∅,i logBBPL

∅,i logBBPL
PL,i logBM

PL,i

J0613−0200 13.7 −14.62+0.60
−1.20 4.70+2.88

−0.92 10.7 10.2 −0.5 −2.0
J0621+1002 14.3 −12.10+0.12

−0.13 2.50+0.72
−0.43 4.6 6.5 1.9 1.5

J1713+0747 21.2 −14.81+0.39
−0.83 4.55+1.90

−0.69 >11.7 >11.6 −0.2 −4.8
J1824−2452A 5.8 −12.80+0.56

−3.05 2.30+4.44
−0.32 19.0 18.8 −0.2 1.3

J1939+2134 27.1 −14.33+0.24
−0.40 6.31+0.80

−0.54 >12.5 >11.4 −1.1 −109.8
J2145-0750 17.5 −13.03+0.09

−0.06 0.44+0.57
−0.14 >11.6 >12.5 0.8 −2.0

J1024−0719 ∗ 15.9 −13.94+0.22
−0.41 5.41+1.00

−0.53 >12.4 >11.8 −0.6 −29.0

(3.16) sE(t|AE, tE,τE)= K2ν−2

0, t < tE ;

AE e−
t−tE
τE , t ≥ tE ;

where ν is a radio frequency, and K = 1400 MHz is the same reference frequency as we use to

model DM noise. We model the DM event in pulsar J1603−7202 as a Gaussian function in the

time domain:

(3.17) sG(t|AG, tG,σG)= K2ν−2 AG e
− (t−tG)2

2σ2
G .

DM event models in Equation 3.16 and Equation 3.17 are added to the signal vector sss in the

likelihood. Event sG corresponds to an overdensity in the interstellar medium, whereas sE

corresponds to an underdense region in the interstellar medium.

3.5 Results

We perform parameter estimation and model selection for pulsars from the first IPTA data

release. A summary of our analysis for individual pulsars is given in Table 3.3. The first column

contains pulsar names and the second column contains observation spans. The next two columns,

log10 ASN and γSN, represent parameter estimates for Model PL with errors, based on 16% and

84% levels of marginalized posteriors. The last two columns contain the results of spin noise

model selection. From the seventh column, we see that specific pulsars do not show support in

favour of a spectral turnover because | logBBPL
PL,i | < 2 for all pulsars.
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Next, we employ Equation 3.8, in order to use all available data for model selection. We

perform our analysis with five different Solar System ephemeris models, as it has been found that

errors in Solar System ephemerides contribute to pulsar red noise (Arzoumanian et al., 2018a;

Caballero et al., 2018; Guo et al., 2019). We find that data favours neither Model PL, nor Model

BPL. This result is summarized in Table 3.4.

Note, Tables 3.3 and 3.4 contain only results from seven pulsars where logBPL
∅ > 5 or

logBBPL
∅ > 5. In Table 6 in Lentati et al. (2016), authors present eight pulsars that show evi-

dence for spin noise in their analysis. Seven of them can be found in our Table 3.4: J0613−0200,

J0621+1002, J1713+0747, J1824−2452A, J1939+2134, J2145−0750 and J1024−0719. In the re-

maining pulsar J1012+5307 we did find some evidence of spin noise, log BPL
∅,i = 4.3, assuming the

default Solar System ephemeris DE421. However, J1012+5307 did not satisfy our formal criteria

to be included in Table 3.4. It is worth noting that in Lentati et al. (2016) pulsar J2145−0750

is found to have the most shallow power-law index γSN = 0.6±0.2. For the reasons discussed in

Section 3.2.3, J1012+5307 only showed evidence of spin noise in our analysis after we changed a

number of Fourier components NF from 30 to 100 for this pulsar. Pulsar J1024−0719 is marked

with a star for the following reason. It has been suggested that the spin noise in J1024−0719

originates from a companion star in a long-period binary system (Kaplan et al., 2016). After we

take binary motion into account, by adding a second spin frequency derivative into the timing

model, we see no evidence for spin noise in J1024−0719.

The last column in Table 3.3, logBM
PL,i, presents log Bayes factors in favour of Model M

over Model PL. We find that no pulsars show a strong support for Model M. However, pulsars

J1939+2134, J1024−0719 and J1713+0747 disfavour Model M with logBM
PL,i <−4.

We also consider that our data may contain a mixture of pulsars from two models. For this

case, we define a likelihood:

(3.18) L A
B (ξ)=

Npsr∏
i=1

(
ξZ A

i + (1−ξ)Z B
i

)
,

where ξ is a hyper-parameter that determines the fraction of pulsars that are described by model

A. The prior for ξ is U (0,1). The rest of the pulsars are described by model B. Using Equation 3.18,

we estimate the fraction of pulsars that are consistent with a superfluid turbulence origin and

a spectral turnover. The results are summarized in Figure 3.3. We estimate that the fraction

of pulsars with the spectral turnover is consistent with any number between 0 and 1, while

the fraction of pulsars where Model M is favored over Model PL is mostly consistent with zero.

Since no spectral turnover is detected, pulsars J0621+1002 and J1824−2452A could get positive

preference for Model M over Model PL because their power-law index γ is consistent with 2.
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Table 3.4: The overall logBBPL
PL in favour of Model BPL (Equation 3.14) over Model PL (Equa-

tion 3.13), using all available IPTA data, for different Solar System ephemeris models.

Ephemeris logBBPL
PL logBBPL

PL (without J1024−0719)

DE405 −0.4 0.3
DE418 −1.0 −0.3
DE421 0.2 0.8
DE430 −0.1 0.7
DE435 −0.8 −0.1
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FIGURE 3.3. Hyper-posteriors P (ξ) for DR1 pulsars. Orange lines are posteriors
P BPL

PL (ξ) for the fraction of pulsars that are described by Model BPL (Equation 3.14),
assuming other pulsars are described by Model PL (Equation 3.13). Green lines
are posteriors P M

PL(ξ) for a fraction of pulsars that are described by Model M (Equa-
tion 3.15), assuming other pulsars are described by Model PL. For solid lines, we
assume that spin noise in J1024−0719 is intrinsic to the pulsar. For dashed lines,
we assume that the apparent spin noise in J1024−0719 is caused by the second
spin frequency derivative of the pulsar induced by gravitational interaction of
J1024−0719 with a binary companion star (Kaplan et al., 2016).

3.6 Conclusions

We perform Bayesian model selection to search for a spectral turnover in pulsar spin noise using

the first data release of the IPTA. We find support, with a log Bayes factor above 4, for spin noise

in eight pulsars, which is consistent with Lentati et al. (2016). However, we find no evidence for a
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spectral turnover either in individual pulsar data or by combining different pulsars. We also fit

the data to the superfluid turbulence model proposed by Melatos and Link (2013). Our results

show that whereas this model is indistinguishable from the power-law model for most pulsars, it

is strongly disfavored by three pulsars, especially PSR J1939+2134 with a log Bayes factor of 110.

Based on a range of simulations, we find that one is unlikely to resolve a spectral turnover

with a fiducial corner frequency of 10 nHz in any pulsar with ≈ 10 years of observations. Longer

data spans are required to increase the detection confidence of a spectral turnover in individual

pulsars, while a larger number of pulsars with red noise can help to resolve the presence of

a spectral turnover in a population of pulsars. A follow-up study using longer data sets and a

larger sample of pulsars, e.g., the IPTA second data release (?), will prove useful in not only

understanding the nature of red noise in millisecond pulsars but also in evaluating the realistic

prospect of gravitational-wave detection. A more detailed simulation study is required to explore

pulsar timing array configurations that would resolve spectral turnover in the individual pulsars.

Whereas our simulation study assumed a pulsar with observation span of 10 years, two pulsars

from the first data release of the IPTA have observations spans above 25 years. At the same

time, next-generation pulsar timing arrays based on MeerKat, FAST, SKA, will have a reduced

radiometer noise. Both greater observation spans and reduced white noise levels will increase the

sensitivity of a pulsar timing array to the spectral turnover, and the future study could help to

estimate by how much. Simulations that attempt to provide a precise answer to these questions

for the real data ought to include all other noise sources (i.e., DM noise, band noise), multiple

observing backends with realistic observation cadences. Another interesting future simulation

study would determine whether the broken power-law model would be favored over the power-law

model when the superfluid turbulence model is simulated.
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Pulsar timing array projects measure the pulse arrival times of millisecond pulsars for

the primary purpose of detecting nanohertz-frequency gravitational waves. The measure-

ments include contributions from a number of astrophysical and instrumental processes,

which can either be deterministic or stochastic. It is necessary to develop robust statistical and

physical models for these noise processes because incorrect models diminish sensitivity and may

cause a spurious gravitational wave detection. Here we characterise noise processes for the 26

pulsars in the second data release of the Parkes Pulsar Timing Array using Bayesian inference.

In addition to well-studied noise sources found previously in pulsar timing array data sets such

as achromatic timing noise and dispersion measure variations, we identify new noise sources

including time-correlated chromatic noise that we attribute to variations in pulse scattering.

We also identify “exponential dip” events in four pulsars, which we attribute to magnetospheric

effects as evidenced by pulse profile shape changes observed for three of the pulsars. This includes

an event in PSR J1713+0747, which had previously been attributed to interstellar propagation.

We present noise models to be used in searches for gravitational waves. We outline a robust
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methodology to evaluate the performance of noise models and identify unknown signals in the

data. The detection of variations in pulse profiles highlights the need to develop efficient profile

domain timing methods.

4.1 Introduction

Pulsar Timing Arrays (PTA) perform measurements of pulse arrival times from millisecond

pulsars over the time scales on the order of years (Foster and Backer, 1990b). Benefiting from

the long-term timing stability of millisecond pulsars, the arrays are the most sensitive detectors

of nanohertz gravitational waves. Taylor et al. (2016) predicts that a stochastic gravitational

wave background from supermassive black hole binaries will be detected and studied with pulsar

timing arrays in the following decade. The background would manifest as a red noise process that

is correlated between pulsars (Rajagopal and Romani, 1994). In addition to gravitational waves,

pulsar timing arrays are sensitive to other correlated signals, including errors in terrestrial

time standards (Hobbs et al., 2020a, 2012) and solar system ephemerides (Caballero et al., 2018;

Champion et al., 2010; Vallisneri et al., 2020), and, potentially, ultralight dark matter (Porayko

et al., 2018). Data from pulsar timing arrays are used to study a wide range of astrophysical

topics including: neutron-star interiors (Lam et al., 2016; Shannon and Cordes, 2010) and

magnetospheres (Shannon et al., 2016), the interstellar medium (Coles et al., 2015; Levin et al.,

2016), and the solar wind (Madison et al., 2019; You et al., 2007).

There are a number of pulsar timing array projects underway, utilising the most sensitive

metre- and centimetre-wavelength radio telescopes. The Parkes Pulsar Timing Array (Manchester

et al., 2013) utilises the 64-m Parkes telescope in Australia to monitor 24 millisecond pulsars.

The first data release of the Parkes Pulsar Timing Array (DR1) has been described in Manchester

et al. (2013), while timing properties of DR1 pulsars have been described in Reardon et al. (2016).

The first data release comprises observations between 1994 and 2011. The project has recently

completed a second data release (DR2, Kerr et al., 2020), which extends beyond DR1 by 7 years.

Other timing array projects include the European Pulsar Timing Array (EPTA, Kramer and

Champion, 2013) and North-American Nanohertz Gravitational-wave observatory (NANOGrav,

McLaughlin, 2013b). Together, PPTA, EPTA and NANOGrav form the International Pulsar

Timing Array (IPTA, Hobbs et al., 2010a).

In order to effectively search for spatially correlated signals, it is necessary to provide complete

models for the arrival time variations of the pulsars. This includes both deterministic processes

encapsulated in the pulsar ephemerides, and stochastic processes. Otherwise, the estimate of

the gravitational-wave signal or other correlated signal could absorb unaccounted features in

pulsar noise. In Shannon et al. (2016), it was found that a dip in timing residuals in J1643−1224,

when not modelled, affects upper limits on the stochastic gravitational-wave background with 4

years of data by an order of magnitude. The dip itself is associated with a sudden change of pulse
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profile. Moreover, Hazboun et al. (2020) and Tiburzi et al. (2016) studied cases where incorrect

noise models led to false positives in gravitational wave searches.

Deterministic processes include the non-linear change in the relative distance between the

pulsar and the Earth and relativistic propagation effects in the solar system or binary (if the

pulsar has a companion) (Edwards et al., 2006). Stochastic terms can be divided phenomenologi-

cally into two classes: temporally uncorrelated or correlated processes. The two classes are often

referred to respectively as white noise and red noise, reflecting the shape of their Fourier spectra.

On short time scales (at high fluctuation frequency), pulsar timing observations are dominated

by white noise. The main sources of white noise are radiometer noise and pulse-to-pulse varia-

tions of profile shape, referred to as pulse jitter. Shannon et al. (2014) found that the brightest

observations of the brightest PPTA pulsars are dominated by jitter noise. In Lam et al. (2016)

jitter was studied in the context of pulse phase and amplitude, and it has also been found that

jitter noise evolves with radio frequency.

On longer time scales (lower fluctuation frequencies), pulsar timing arrays are dominated

by time-correlated red noise. Achromatic red noise, which is not dependent on radio frequency,

is referred to as timing noise or spin noise because it is thought to largely be associated with

irregularities in the rotation of the neutron star. Shannon and Cordes (2010) suggested that

more millisecond pulsars are expected to be dominated by spin noise when observed over longer

observing spans, and that scaling relations for spin noise in millisecond pulsars are consistent

with those for regular pulsars. Later, Caballero et al. (2016) estimated power law parameters

of the timing noise in the first data release of the EPTA and found that timing noise reduces

the sensitivity of the EPTA to stochastic gravitational waves by a factor of > 9. Low-frequency

turnover in the power-law timing noise could potentially stop the deterioration of timing precision

on long time scales. Although marginal evidence for the low-frequency turnover has been found

in a power-law spectrum of canonical pulsars (Parthasarathy et al., 2019), no presence of a

spectral turnover has been found in 49 millisecond pulsars from the first data release of the

IPTA (Goncharov et al., 2019).

There is also evidence for chromatic red noise processes in pulsars. The strongest red noise

source is thought to be dispersion-measure variations (Keith et al., 2013), a manifestation

of changing column density of ionised plasma along the pulsar-Earth line of sight. However,

other forms of chromatic noise have been identified. In the first data release of the IPTA,

Lentati et al. (2016) identified new band-dependent and system-dependent red noise processes.

Ignoring these components resulted in 60% less stringent upper limits on the gravitational-wave

background. The origins of these components are unclear, and were speculated to be either related

to propagation effects in the interstellar medium or instrument-based systematic errors (Cordes

and Shannon, 2010; Shannon and Cordes, 2017).

The PPTA DR2 data set comprises observations for as long as 15 years from 26 pulsars (Kerr

et al., 2020). At each epoch (with epochs typically having a three-week cadence) the pulsars
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were usually observed in three bands: the 10-cm, 20-cm, and either the 40-cm or 50-cm. The

central radio frequencies of the observations in these bands were close to 3100 MHz, 1370 MHz,

730 MHz and 680 MHz, respectively. Before mid-2009, the low frequency observations were

conducted at 680 MHz (50-cm band). However the presence of digital television necessitated

adjusting the observations to shorter-wavelength 40-cm band. Additionally, each observation has

been performed with one of the following observing processing systems (referred to as backends):

CASPSR, CPSR2, PDFB1, PDFB2, PDFB3, PDFB4, and WBCORR. The most notable difference between

DR1 and DR2 is the presence of sub-banded arrival times. Pulse arrival times are provided

not only averaged across each band, but also for between 2 and 32 dynamically-chosen sub-

bands, with the level of sub-banding determined by the signal to noise ratio of the observation.

The sub-banding allows us to account for profile evolution, which is known to bias arrival time

measurements (Demorest et al., 2012). It also allows us to examine chromatic processes in greater

detail.

In this work, we characterise sources of noise in the second data release of the PPTA. We

outline the Bayesian approach to analysis of the data in Section 4.2. In Section 4.3, we describe

noise models in our analysis. We present our results in Section 4.4 and our conclusions in

Section 4.5.

4.2 Bayesian inference

Our methods follow those described in sections 2.1 and 2.2 of Goncharov et al. (2019). We assume

that the data is represented by contributions from deterministic signals, included in the timing

model, and Gaussian stochastic processes. We Taylor-expand the timing model for each time

of arrival (ToA), keeping the linear term MξMξMξ and assuming non-linear terms to be negligible.

Here, ξξξ is the vector of timing model parameters and MMM is the design matrix, which represents

contribution of the timing model to each measured ToA. Following van Haasteren and Levin

(2013); Van Haasteren et al. (2009), we employ the Gaussian likelihood function of the form,

(4.1)

L (δtδtδt|θθθ)= 1√
(2π)n−mdet(GGGTCCCGGG)

exp
(
− 1

2
(δtδtδt−sss)TGGG(GGGTCCCGGG)−1GGGT (δtδtδt−sss)

)
,

where δtδtδt is the vector of timing residuals, CCC is the covariance matrix to describe stochastic signals

and sss is the deterministic signal vector. We perform a singular value decomposition of the design

matrix MMM, so that MMM =USVUSVUSV∗, where SSS contains singular values of MMM, UUU and VVV are unitary

matrices with dimensions n×n and m×m respectively. Terms UUU =U1U1U1GGG with U1U1U1 and GGG consisting

of the first m and remaining n−m columns of UUU .

We use the Bayes factor to select which of two given models (A and B), with parameters θθθA
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and θθθB, better explains the data:

(4.2) BB
A,i =

Z B
i (δtδtδt)

Z A
i (δtδtδt)

, i ∈ [1, Npsr] ,

where Npsr is the number of pulsars, and the function Z (θθθ,δtδtδt) is the Bayesian evidence for the

model,

(4.3) Z (δtδtδt)=
∫

L (δtδtδt|θθθ)π(θθθ)dθθθ.

It is an integral over the prior volume of the product of the likelihood and the prior probability.

We perform parameter estimation using Markov-chain Monte-Carlo methods. To calculate

the Bayesian evidence for a given model, we perform nested sampling (Skilling et al., 2006) using

PolychordLite (Handley et al., 2015a,b). For parameter estimation, we sample the likelihood

function using PTMCMCSampler (Ellis and van Haasteren, 2017). We employ TEMPO2 (Edwards

et al., 2006) to fit the deterministic timing model parameters and use Enterprise (Ellis et al.,

2019) and Libstempo (Vallisneri, 2013) to perform likelihood evaluations. The Bilby package

(Ashton et al., 2019a) is used to access PolychordLite. The ChainConsumer package, developed

by Hinton (2016), is used to plot posterior distributions.

4.3 Signal models

In the following subsections, we describe families of signal models we considered. The empirical

prior distributions are listed in Table A.1.

4.3.1 White noise

We model white noise to be diagonal components σ j of the covariance matrix CCC, which contains

known contributions from ToA uncertainties σToA
j and unknown contributions that we take into

account by introducing parameters EFAC and EQUAD. The parameter EFAC modifies the TOA

uncertainty while EQUAD adds in quadrature an extra term that is independent of the formal

TOA uncertainty. The modified white noise component to the timing noise is then

(4.4) σ2
j = (EFAC σToA

j )2 +EQUAD2 .

As these values are expected to be signal-processor- and band-dependent, we assume different

white noise terms for each band and all backends. The exception is for PDFB2, PDFB3, and PDFB4,

which have similar hardware architectures (digital polyphase filter banks); for these we assume

to have the same white noise properties within a band.
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4.3.2 Red noise

We implement frequency-domain models of time-correlated stochastic proceses in the time-domain

likelihood function, using a Fourier-sum approach, described in Lentati et al. (2013). The red

noise component of the covariance matrix CCC is represented in a reduced order as

(4.5) KKK =FΦFFΦFFΦFT ∆ f ,

where Φi = P( f i) is the power spectral density model of the red noise for each frequency f i that we

include in our model, FFF is the Fourier basis, the matrix that Fourier-transforms frequency-domain

power spectral density model into the time domain covariance. The size of a frequency bin, ∆ f ,

is equal to the inverse of the total observation time for a given pulsar. The exact form of FFF that

we use can be found in Equation 9 in Goncharov et al. (2019). A Woodbury lemma is then used

to simplify the inversion of a covariance matrix, decomposed into NNN and KKK (Hager, 1989; van

Haasteren and Vallisneri, 2014). We use the frequency-domain model for pulsar red noise with

power spectral density following a power law in units of [s3]:

(4.6) PPL( f |A,γ)= A2

12π2

(
f

yr−1

)−γ
yr3,

where A quantifies the amplitude1 of the power-law, γ is the slope of the power-law and yr is the

number of seconds in a year. We discuss three subsets of red noise in this work:

• Achromatic spin noise (SN)

• Frequency-dependent dispersion measure (DM) noise

• Achromatic band noise (BN) and system (“group”) noise (GN)

• Frequency-dependent chromatic noise (CN)

For each pulsar, the spin noise is a common red-noise process in all observing systems and

bands, across all radio-frequencies. There are several potential origins for spin noise. Some

studies suggest spin noise to be the consequence of the interaction between the crust and the

superfluid core of a neutron star (Alpar et al., 1986; Jones, 1990). A model that links power-law

parameters of a spin noise to physical parameters of such systems has been derived in Melatos

and Link (2013). Other studies attempt to link spin noise and pulsar glitches, sudden jumps in

rotational frequency of pulsars (Cordes and Downs, 1985; D’Alessandro et al., 1995; Johnston

and Galloway, 1999a; Melatos et al., 2008). In Lyne et al. (2010), the authors suggested switching

between two different spin-down rates as the origin of spin noise. Some models suggest that the

influence of planets (Cordes, 1993), asteroids (Shannon et al., 2013) and possibly unmodeled

binary motion (Bassa et al., 2016; Kaplan et al., 2016). We denote spin noise parameters ASN

1The scaling for A is chosen such that it represents the amplitude of the strain spectrum of a stochastic gravita-
tional wave background, measured a frequency of 1 yr−1.
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and γSN. We do not attempt to model uncertainties in the solar system ephemeris, which are

known to contribute red noise to pulsar timing data sets. It is likely to affect red noise in the

most stable pulsars. In particular, some of the red noise in PSR J1909−3744 can be attributed to

this, as discussed below.

Stochastic variations in DM (Phillips and Wolszczan, 1991) are another source of red noise. We

model DM noise as a power-law with parameters ADM and γDM, with Fourier basis components

FFF ∝ κ j, where κ j = K2ν−2
j is introduced to model the dependency of DM noise amplitude on

the radio frequency ν j of ToA j. We choose K = 1400 MHz to be the reference frequency. A

Kolmogorov spectrum for turbulence in a neutral gas is used as a standard model to describe DM

variations, DM(t), in the interstellar medium. In the case of Kolmogorov turbulence, we would

expect γDM = 8/3 (Rickett, 1990).

We also search for a more general form of red noise which we refer to as chromatic red

noise. In this case, we have κ j = Kχν
−χ
j , where χ is a value other than 2. We may refer to

χ as the chromaticity of a red process. Numerous astrophysical mechanisms can potentially

introduce chromatic red noise. Scattering variations in the interstellar medium change widths

of radio pulses by ∆ν∝ ν4 (Lyne and Graham-Smith, 2012). While a template for pulse profiles

does not account for this, the arrival times would temporal variations that would scale with

radio frequency proportional to ν−4. Shannon and Cordes (2017) show through simulation how

refractive propagation effects can potentially introduce correlations in arrival times which can

have frequency dependencies as steep as ν−6.4. Simulations of scattering of pulsar radio emission

by the interstellar plasma have also been performed by Coles et al. (2010).

Band noise and system noise are separate red noise processes in a given band or system.

Both were introduced and discussed in modelling of the first IPTA data release (Lentati et al.,

2016). System noise is attributed to instrumental artifacts, including polarisation calibration

errors. Band noise could potentially be produced by processes incoherent between bands in

the interstellar medium, such as frequency dependent dispersion measure variations (Cordes

et al., 2016), frequency-dependent calibration errors (Van Straten, 2013), or radio frequency

interference.

4.3.3 Deterministic signals

To fully model the data we identified new deterministic signals in the timing model. We describe

these in the following subsections.

4.3.3.1 Chromatic exponential dips

Some pulsars show evidence of frequency-dependent events in timing residuals on time scales

of a few months. Some events have been identified as a sudden advancement in apparent pulse

arrival time, followed by an exponential relaxation. PSR J1713+0747 shows an exponential

discontinuity in timing residuals at around MJD 54757, which has been attributed to the sudden
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drop in dispersion measure (Coles et al., 2015; Desvignes et al., 2016; Lentati et al., 2016). In Lam

et al. (2018), a second exponential event in PSR J1713+0747 was reported and also attributed to

the interstellar medium. In Shannon et al. (2016), an exponential timing event in J1643−1224

was reported, which had the most pronounced effect at high radio frequency. This event was

connected with a sudden change in the pulse profile.

We model exponential events in the time domain to be

(4.7) sE(t|AE, tE,τE,χE)= Kχν−χ
0, t < tE ;

AE e−
t−tE
τE , t ≥ tE ;

where AE is the amplitude of the event in seconds, tE is the time of the event, τE is the charac-

teristic relaxation time. The radio-frequency dependence, as for the case of chromatic noise, is

treated by the parameter χ, and the amplitude of the event is at a frequency of 1400 MHz.

4.3.3.2 Extreme scattering events

Extreme scattering events (ESEs) have been observed in the direction of a number of pulsars. The

events are manifested as increase in the electron density along the line of sight and diffractive

scattering strength. This suggests that the line of sight to the pulsar passed through an over-

dense region of the interstellar medium (Coles et al., 2015; Keith et al., 2013). In our sample

PSR J1603−7202 has been observed to have experienced an ESE (Coles et al., 2015). We model

the dispersion measure variations associated with the event using a Gaussian function:

(4.8) sG(t|AG, tG,σG)= K2ν−2 AG e
− (t−tG)2

2σ2
G ,

where AG is the amplitude of the Gaussian in seconds at K = 1400 MHz, tG is the time of

the event, σG is the width. There are no measurable arrival time variations from diffractive

scintillation during this event.

4.3.3.3 Annual dispersion measure variations

In case there is a strong gradient in electron column density between the pulsar and the Earth,

the motion of the Earth around the sun will cause the gradient to manifest as annual DM

variations. In Keith et al. (2013) a clear annual modulation in DM was identified for J0613−0200.

We model this effect by including the deterministic yearly sinusoids:

(4.9) sY(t|AY,φY)= AYK2ν−2 sin(2πt×yr+φY),

with amplitude AY in seconds at K = 1400 MHz and dimensionless phase φY. The strength of

annual DM variations will depend on the two main factors. The first is the persistence of the

annual gradient over time scales much longer than a year. The second is the mutual orientation

of the gradient and the velocity of a pulsar. The orthogonal orientation of the velocity of the
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pulsar with respect to the gradient provide the strongest annual DM signal, while the parallel

orientation will diminish the signal. Additionally, contributions to DM from the heliosphere could

potentially show up in annual DM.

4.3.3.4 System dependent profile evolution

In PPTA-DR2, arrival times were measured using standard techniques. While different standards

were used for each band and most subsystems (see Kerr et al., 2020, for more information),

the templates themselves were one-dimensional. This necessitated the use of FD parameters

described above. For one pulsar, J0437−4715, we noticed that the profile evolution depended on

system. The exceptional brightness of PSR J0437−4715 biases estimates of the pulse arrival

times, due to profile templates not being tailored enough for each radio frequency. To account for

pulse profile evolution, six FD parameters (Arzoumanian et al., 2015b) are introduced to the timing

model of PSR J0437−4715, where each parameter represents a log-polynomial term of radio-

frequency-dependence of timing residuals for the whole data span. Up to two FD parameters are

included in timing models of the remaining DR2 pulsars. Additionally, in DR2, the dependence of

timing residuals on radio-frequency for PSR J0437-4715 has been subtracted using the model with

three FD parameters for specific systems and sub-systems: CPSR2_50CM, CPSR2_20CM above 1370

MHz, CPSR2_20CM below 1370 MHz, PDFB1_1433, PDFB1_10CM, PDFB1_early_10CM, CPSR2_10CM

between 2970 MHz and 3030 MHz, CPSR2_10CM between 3100 MHz and 3160 MHz, CPSR2_10CM

between 3230 MHz and 3290 MHz, 20CM_H-OH_PDFB1, 20CM_MULTI_PDFB1, WBCORR_10CM with

512 MHz bandwidth, WBCORR_10CM with 1024 MHz bandwidth.

We model this evolution using a linear function:

(4.10) sF(ν|α)=α(ν− ν̃),

where α determines the tilt in timing residuals in the radio frequency domain, while ν̃ is

the median radio frequency in the given system. More details and examples are provided in

Section 4.4.

4.4 Results

We perform our analysis in three steps. For each pulsar, we first establish a base model, which

contains white noise, spin noise (common red noise process in all observing bands and systems)

and DM noise, and perform parameter estimation for the noise processes while marginalising

over the timing model. In the second step, we start with the base model but perform model

selection for the possible additional band/system noise components described in Section 4.3.

Model selection for red noise in all possible bands and systems is computationally expensive, so

we fixed white noise parameters at maximum-posterior values that we obtained in the first step.

In the third step, after finding the most probable band/system noise combination, we perform
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Table 4.1: Preferred models for the PPTA DR2 pulsars. For PSR J1024−0719, we present two
models. The “+” symbol is used identify a model where second spin frequency derivative is
included into the timing model to account for the influence of a possible companion star (Bassa
et al., 2016; Kaplan et al., 2016). Parameters with asterisks are estimated from the median
marginalized posterior values, while other parameter estimates are calculated from the maximum-
posterior values. Symbol “Ö” means that that the spin noise can not be distinguished from
band-dependent red noise; see Section 4.4.1 for more details.

Pulsar logB
DM,SN
∅ logBDM

∅ logBSN
∅ SN log10 ASN γSN DM log10 ADM γDM Tobs [yr] nc

J0437−4715 - - - 3 −14.01+0.05
−0.05 1.78+0.18

−0.16 3 −13.52+0.05
−0.04 2.76+0.16

−0.19 15.0 91

J0613−0200 57.3 52.5 57.6 3 −14.25+0.27
−2.08 3.99+3.92

−0.39 7 14.2 85

J0711−6830 75.6 64.6 68.3 3 −13.04+0.07
−0.07 1.04+0.39

−0.22 3 −15.85∗+1.76
−1.45 6.31∗+2.59

−3.16 14.2 86

J1017−7156 -0.7 -0.4 -0.2 7 7 7.8 46

J1022+1001 52.1 49.1 46.0 3 −16.51+2.10
−0.53 7.02∗+2.11

−2.73 3 −13.40∗+0.08
−0.09 0.40+0.59

−0.21 14.2 85

J1024−0719 474.0 259.1 435.1 3 −14.62+0.43
−0.95 6.39+2.16

−0.71 3 −13.98+0.17
−1.50 4.04+2.99

−0.51 14.1 85

J1024−0719+ 45.9 46.1 1.9 7 3 −13.94+0.07
−1.94 3.85+3.73

−0.29

J1045−4509 -1.0 -0.1 -1.2 7 7 14.2 85

J1125−6014 170.9 171.3 124.2 7 3 −13.02+0.08
−0.14 2.83+0.52

−0.32 12.3 74

J1446−4701 3.1 2.8 2.5 Ö −13.06+0.14
−5.17 0.80+5.79

−0.24 3 −13.25+0.16
−4.33 1.00+3.88

−0.23 7.4 44

J1545−4550 31.3 31.6 20.6 7 3 −13.29+0.14
−0.45 3.03+2.10

−0.34 7.0 41

J1600−3053 58.5 52.5 32.3 Ö −13.90+0.13
−1.27 3.60+2.38

−0.78 3 −13.56+0.04
−2.81 3.48+5.28

−0.25 14.2 86

J1603−7202 457.7 458.0 341.7 7 3 −13.19+0.09
−0.10 2.30+0.47

−0.19 14.2 86

J1643−1224 275.4 260.6 235.2 3 −12.86+0.08
−0.05 1.01+0.28

−0.24 3 −13.24+0.17
−0.32 2.97+1.28

−0.27 14.2 85

J1713+0747 34.8 34.8 6.3 7 3 −13.70+0.06
−0.05 1.45+0.26

−0.19 14.2 86

J1730−2304 73.7 74.2 34.2 7 3 −13.53+0.13
−0.78 2.38+2.28

−0.09 14.2 86

J1732−5049 2.8 3.2 1.4 7 3 −12.66+0.08
−1.90 2.69∗+4.71

−2.02 7.2 43

J1744−1134 161.4 161.8 118.0 7 3 −13.58+0.06
−0.05 1.51+0.30

−0.13 14.2 86

J1824−2452A 4328.9 3859.5 4204.2 3 −13.26+0.17
−0.47 4.97+1.31

−0.34 3 −12.50+0.06
−0.04 2.75+0.27

−0.29 13.8 83

J1832−0836 36.7 36.7 29.8 7 3 −12.93+0.06
−1.41 2.74+4.54

−0.01 5.4 32

J1857+0943 65.7 48.0 42.6 3 −15.99∗+1.30
−0.97 7.51∗+1.72

−2.36 3 −13.40+0.14
−0.22 2.56+0.76

−0.45 14.2 86

J1909−3744 121.4 113.4 9.2 3 −15.32+0.62
−1.08 5.20+2.33

−1.45 3 −13.72+0.05
−0.03 1.37+0.21

−0.14 14.2 85

J1939+2134 3834.5 3263.1 2507.9 3 −14.26+0.34
−0.25 5.16+1.07

−0.61 3 −12.93+0.04
−0.02 2.52+0.11

−0.14 14.1 85

J2124−3358 4.1 4.3 2.5 7 3 −13.49+0.11
−0.32 1.41+1.23

−0.18 14.2 85

J2129−5721 43.2 43.7 35.5 7 3 −13.45+0.07
−0.11 1.68+0.51

−0.33 13.9 83

J2145−0750 98.3 82.0 91.0 Ö −13.18+0.09
−0.05 0.50+0.31

−0.25 3 −13.63+0.15
−0.19 1.00+0.94

−0.31 14.1 85

J2241−5236 104.7 103.4 88.4 7 3 −13.82+0.06
−0.06 1.05+0.32

−0.24 8.2 49
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FIGURE 4.1. Strength and spectral index for red noise processes in the 26 PPTA DR2
pulsars. Left panel: spin noise (SN), band noise (BN) and system noise (GN). Right
panel: DM noise and chromatic noise (CN) with strength referenced to K = 1400
MHz. The main feature of the left panel is the clustering of red noise parameters
around two areas of the parameter space: where γ is between 2 and 10 (mostly
spin noise), and where γ is between 0 and 2 (mostly band noise and system noise).
For some pulsars, we found only marginal preference to choose between competing
noise models with band and system noise, see Section 4.4.1 for more details. This
is the reason for steep band/system noise and shallow spin noise in the figure. The
red dashed line (GW) highlights the spectral index γ = 13/3, predicted for a red
noise process induced by the stochastic gravitational-wave background. The green
dashed line highlights γ= 8/3, predicted for the standard model of DM variations
from Kolmogorov turbulence.

model selection for spin noise and DM noise in all pulsars, with free white noise parameters.

Including white noise in parameter estimation increases the computation time by the order of

magnitude. Similarly, if frequency-dependent index χ for chromatic red noise is a free parameter,

the calculation takes by one order of magnitude more time than when χ is fixed. In the third step

we fix χ at the maximum-posterior values.

We chose to incorporate additional terms if the more complicated model resulted in an increase

in the lnB of 3. Then, we perform model selection for spin noise and DM noise. All posteriors for

red noise power-law parameters are presented in Figure 4.1. The DM and spin noise processes

are described Table 4.1. Band-dependent and system-dependent red noise processes are described

in Table 4.2. Chromatic noise processes are described in Table 4.3. We clarify that, although the
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noise models presented in the above tables are valid for use in gravitational-wave searches, some

of the red processes are only attributed to a certain class (i.e., spin noise or system noise) due to a

marginal preference over competing hypotheses. We provide more details and explain the caveats

below.

Additionally, we provide maximum-likelihood realisations of red noise processes in pulsars.

We obtain them in two steps. Firstly, we perform red noise power-law parameter estimation,

marginalizing over Fourier coefficients that determine the time evolution of red noise (van

Haasteren and Vallisneri, 2014). Secondly, with TEMPO2, we estimate maximum-likelihood values

of Fourier coefficients and hence the time evolution of red noise. We provide maximum-likelihood

noise realisations for pulsars with chromatic noise in figures 4.2, 4.3, 4.4. The maximum-likelihood

noise realisations for the remaining pulsars are shown in Figure A.2 in the Appendix.

4.4.1 Spin noise

We identify an increased sample of millisecond pulsars showing evidence for red noise. Longer

datasets are more sensitive to low-frequency red noise. For example, for PSR J1909−3744 we find

evidence for steep spin noise with γSN ≈ 5 in PPTA DR2, while in Shannon et al. (2015), with an

11 year dataset, there was no evidence for red noise. In DR2, we find evidence for spin noise in 11

pulsars, while Lentati et al. (2016) found spin noise only in 6 PPTA DR1 pulsars. In two of these

six pulsars, J0613−0200 and PSR J1939+2134, we measure spin noise parameters consistent

with Lentati et al. (2016). For PSR J1024−0719, when we do not model ν̈, our measurement of

ASN is consistent with Lentati et al. (2016), while for γSN only 1-σ uncertainties overlap, so that

the values are approximately within 2-σ agreement. For PSR J2145−0750, our measurement

of γSN is consistent with Lentati et al. (2016), while values of ASN are approximately within

2-σ agreement. For PSR J1824−2452A, we find evidence for steep spin noise, as in Lentati et al.

(2016), although our measurements of spin noise parameters are not consistent. Lentati et al.

(2016) finds stronger and more shallow spin noise. However, additional shallow band noise we

identify in PSR J1824−2452A could be the reason for discrepancy. Similarly, for PSR J0613−0200

and PSR J1024−0719, where we find no evidence of band noise, spin noise parameters that we

measure are consistent with red timing noise parameters in Caballero et al. (2016) within 1-2 σ

credible levels. Since Caballero et al. (2016) do not model band noise and system noise, in other

pulsars they identify examples of shallow red noise. Additionally, the sixth pulsar with spin noise

in Lentati et al. (2016) is PSR J1713+0747, which is discussed below.

In 4 pulsars, marked with “Ö” in Table 4.1, high radio frequency band noise is only marginally

preferred (lnB of less than 3) over achromatic noise alone. Three of these pulsars show evidence

for a very shallow spin noise (low γ), which is more consistent for what we find for band and

system noise (Table 4.2). For the fourth pulsar, PSR J1600−3053, the power-law index of 3.60+2.38
−0.78

is relatively steep, although still not uncommon for observed band and system noise.

Similarly, some pulsars with band and system noise have only marginal evidence in favour
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Table 4.2: Results for band noise and system noise parameter estimation and model selection. The
second column contains flags and the corresponding flag values to select pulse times of arrival,
which are affected by the red noise. The third and the fourth columns contain red noise power-law
parameters. The fifth column is the ln Bayes factor in favour of the band/system noise in addition
to white noise, spin noise and DM noise, against the same model without the band/system noise
term. The last column represents the number of Fourier components, explained in Section 4.3.2.

Pulsar Flag and value log10 A γ logB nc

J0437−4715 -group CPSR2_10CM −13.41+0.06
−0.11 0.68+0.53

−0.22 156.9 36

-group CPSR2_20CM −13.01+0.07
−0.06 0.75+0.25

−0.29 284.9 39

-group WBCORR_10CM −13.26+0.13
−0.08 0.31+0.37

−0.20 85.9 10

-group CPSR2_50CM −12.92+0.07
−0.10 1.48+0.31

−0.34 323.6 36

-B 40CM and -B 50CM −13.51+0.13
−0.44 1.90+1.75

−0.17 356.8 90

-B 20CM −13.73+0.07
−0.06 1.80+0.20

−0.27 353.8 90

J1017−7156 -B 20CM −13.26+0.08
−0.06 0.50+0.35

−0.18 13.3 46

J1022+1001 -group CPSR2_50CM −12.38+0.07
−0.07 0.22∗+0.25

−0.16 9.6 31

-B 20CM −12.81+0.04
−0.04 0.08∗+0.11

−0.06 45.2 85

-group PDFB_10CM −12.35+0.05
−0.04 0.13∗+0.14

−0.09 109.3 64

J1125−6014 -B 20CM −12.85+0.07
−0.09 0.45+0.38

−0.27 18.4 74

-B 10CM −12.99+0.12
−0.11 0.14+0.75

−0.00 7.3 21

J1600−3053 -B 20CM −13.29+0.08
−0.10 0.61+0.37

−0.33 26.8 85

-B 40CM and -B 50CM −12.58+0.11
−0.03 1.65+0.33

−0.19 27.9 86

J1603−7202 -group CPSR2_50CM −12.47+0.15
−0.11 0.60+0.57

−0.35 5.7 31

-B 20CM −12.96+0.06
−0.04 0.09∗+0.13

−0.07 14.3 85

J1643−1224 -B 40CM and -B 50CM −12.06+0.04
−0.04 2.33+0.29

−0.19 105.4 85

J1713+0747 -group CPSR2_50CM −12.85+0.02
−1.59 3.78∗+3.33

−2.32 8.1 31

-B 10CM and -B 20CM −14.94+0.57
−0.61 4.01+2.16

−0.46 4.4 86

-group CPSR2_20CM −13.43+0.13
−0.25 1.93+1.23

−0.33 21.9 36

J1744−1134 -group CPSR2_50CM −12.78+0.13
−0.06 0.24∗+0.28

−0.17 19.9 31

-B 10CM and -B 20CM −13.36+0.07
−0.04 0.74+0.22

−0.22 12.7 86

J1824−2452A -group PDFB_20CM −12.67+0.09
−0.08 0.39+0.43

−0.17 79.1 64

-B 40CM and -B 50CM −12.10+0.09
−0.06 0.87+0.32

−0.24 78.2 83

J1909−3744 -B 10CM and -B 20CM −14.18+0.17
−0.04 0.20+0.75

−0.03 23.5 85

-B 40CM and -B 50CM −13.25+0.07
−0.05 0.68+0.23

−0.24 62.3 85

-group CPSR2_20CM −14.31+0.24
−1.72 4.64+3.83

−1.63 8.5 36

J1939+2134 -B 40CM and -B 50CM −12.74+0.06
−0.04 0.29+0.26

−0.12 135.1 84

J2124−3358 -B 20CM −16.74+2.45
−0.19 8.21+0.77

−4.02 1.9 84

J2145−0750 -group CPSR2_50CM −12.35+0.09
−0.08 0.53+0.31

−0.22 16.9 31

-group PDFB_20CM −13.05+0.05
−0.09 0.65+0.40

−0.17 3.4 65

J2241−5236 -B 20CM −13.47+0.05
−0.06 0.65+0.25

−0.18 6.3 49
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Table 4.3: Results for chromatic noise parameter estimation and model selection. The second
column is the chromaticity of the red process, the third and the fourth columns are parameters of
the power-law spectrum. The last column is the ln Bayes factor in favor of chromatic noise over
the hypothesis of just white noise, spin noise and DM noise.

Pulsar χ log10 A γ logB

J0437−4715 4 −14.36+0.07
−0.13 2.35+0.56

−0.29 286.5

J0613−0200 4 −13.98+0.06
−0.04 1.90+0.20

−0.17 11.1

J1017−7156 2.39 −12.96+0.07
−0.02 2.63+0.29

−0.22 3.9

J1045−4509 1.82 −12.37+0.05
−0.03 2.88+0.20

−0.25 3.2

J1939+2134 4 −14.32+0.10
−1.51 3.25∗+2.14

−1.20 4.7

of a hypothesis that excludes spin noise. For example, in PSR J1713+0747, with steep band

noise in 10 cm and 20 cm data (γ ≈ 4), the current model is preferred over a model with spin

noise and 40-cm band noise with only a lnB of 2. Generally speaking, if one is interested in

studying spin noise to infer inner the workings of neutron stars, we recommend strengthening

the requirement for the evidence in favour of the absence of chromaticity of the red process, while

also assuming that band and system noise could contain the missing spin noise just because

some other marginally-preferred term is not in the noise model. Otherwise, the noise might

not be intrinsic to the pulsar. For example, one could require a minimum threshold on Bayes

factor in favour of spin noise over each band noise component. Another suggestion would be to

choose different priors for spin noise and band noise, as well as to fine-tune model selection by

establishing prior odds. At the same time, for the purpose of gravitational-wave searches, it is

justified to use Table 4.1 as a guide on whether to include spin noise in pulsar noise models.

We also find that spin noise processes in PSR J0711−6830 and PSR J1643−1224 have γSN ≈ 1,

although there is a significant evidence that this noise process is not band-specific.

For the remaining pulsars with spin noise, we find evidence for steep red spectra, with

power-law indices between 4 and 10. For example, we measure γSN consistent with 7 for

PSR J1857+0943. Similarly, for young pulsars, Parthasarathy et al. (2019) measured steep

red noise with power-law indices between 2 and 10. In the timing analysis of the NANOGrav 11

year data set Arzoumanian et al. (2018b), the spectral index of observed red noise slope ranged

between 1 and 3, which is why the authors suggested that the physical process is distinct from

spin noise. According to Lentati et al. (2016), these results could be influenced by the absence of

band-specific and system-specific red noise processes in pulsar noise models.

4.4.2 Dispersion measure variations

We find evidence for stochastic DM noise in 23 of the pulsars. PSR J1017−7156 and PSR J1045−4059

favour chromatic noise with a frequency-dependent index χ ≈ 2, the value expected from DM
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noise. More details will be provided in Section 4.4.8 below. In PSR J0613−0200, we do not find

evidence with lnB > 3 in favour of stochastic DM noise. We do find evidence of annual DM

variations in PSR J0613−0200, which is consistent with previous studies by Keith et al. (2013).

Moreover, in PSR J0613−0200 we find evidence for chromatic noise with χ= 4, which we attribute

to scattering variations in the interstellar medium. Given that the chromatic index χ has not been

widely explored as a free parameter in the past, we suspect that DM noise previously observed in

PSR J0613−0200 (i.e., in Lentati et al. 2016), had been, in fact, a chromatic noise. Moreover, the

spectral index, γDM, for PSR J0613−0200, found in Lentati et al. (2016), is consistent with γCN

for PSR J0613−0200 in our work.

In PSR J1939+2134 and PSR J0437−4715, we find evidence for both stochastic DM noise and

chromatic noise. Chromatic noise for these pulsars will be discussed in more detail the following

subsections.

In the NANOGrav 11-year timing analysis by Arzoumanian et al. (2018b), DM variations were

modeled by independently measuring dispersion for each epoch. We defer a comparison of these

DM time series to our maximum-likelihood DM noise reconstructions to future work. Annual DM

variations of PSR J0613−0200, low-frequency band noise in PSR J1939+2134 (PSR B1937+21),

and a DM event for PSR J1713+0747 are all clearly seen in the dispersion measure time series

presented in Arzoumanian et al. (2018b).

In addition to DM variations, DR2 pulsar timing models include first and second time-

derivatives of dispersion measure (DM1 and DM2), which absorb long-term variations in disper-

sion measure. We measure significant DM1 values ∼ 10−3 [cm−3 pc yr−1] in PSRs J0613−0200,

J1017−7156, J1045−4509, J1643−1224 and J1824−2452A, and significant DM2 values on the

order of ∼ 10−4 [cm−3 pc yr−2] in PSRs J1732−5049 and J1832−0836. For PSR J1824−2452A we

measure the highest value of DM and the highest amplitude of stochastic DM variations.

4.4.3 Band noise and system noise

In an analysis of IPTA DR1, Lentati et al. (2016) found evidence for band and system noise

terms. We also find evidence for these processes in PPTA DR2. Our measurements of band

noise are provided in Table 4.2. In particular, Lentati et al. (2016) found that PSRs J0437−4715,

J1600−3053, J1643−1224 and J1939+2134 have band noise processes at low frequencies, which

we also see in PPTA DR2. Unlike Lentati et al. (2016), we do not find evidence for band noise

in 10-cm band and system noise in CPSR2_20CM for PSR J1939+2134; however, we observe new

chromatic noise in this pulsar, as discussed below. We observe that PSR J1600−3053 has band

noise in 20-cm data. In PPTA DR2, we also find more pulsars to show evidence of band and

system noise. Unlike spin noise, in most band and system noise cases, the processes are found to

have very shallow (nearly white) power-law spectra, as seen in Figure 4.1. Of the 27 measured

power-law indices for band and system noise, 17 pulsars possess an index γ< 1.

There are a few potential sources of systematic error that may contribute to this noise. It is
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possible that it arises from polarisation calibration. Highly polarised pulsars are more susceptible

to this form of noise. Radio frequency interference is another possible origin. PSR J1022+1001

has been known to have errors in polarisation calibration (Kramer et al., 1999), resulting in

so-called ToA drop-outs, which result in outlying residual arrival times in the 10-cm and 20-cm

observations. We suggest that the high-frequency noise in these bands to possible polarisation

calibration errors. One possible origin for the high-frequency system noise in CPSR2_50CM, is

residual radio-frequency interference.

Additionally, the solar wind is known to contribute to pulsar timing noise (Madison et al.,

2019; You et al., 2007). PSR J1022+1001 lies close to the ecliptic plane, which is where density

of the solar wind along the line of sight to the pulsar is higher. Given the time scale on which

angle between the line of sight to the pulsar and the Sun changes, some contributions to high-

frequency band and system noise could be influenced by the solar wind if DM is not properly

modeled. Stochasticity in the solar wind unaccounted for in noise noise models (Tiburzi et al.,

2019) introduces another potential source of noise.

4.4.4 PSR J1643–1224: profile event, band noise

The DM (≈ 62.4 pc cm−3) makes PSR J1643−1224 one of the more susceptible to noise introduced

by propagation effects. However the most unusual feature in its arrival time is unlikely to have

originated in the interstellar medium. Between 2015 and 2016, PSR J1643−1224 exhibited a

sudden change in pulse shape (Shannon et al., 2016), which caused the same evolution of timing

residuals. Interestingly, the event was most pronounced at high radio frequency. Shannon et al.

(2016) suggested that this event originated in the pulsar magnetosphere, because the spectral

properties were inconsistent with being a propagation effect, and the presence in multiple bands

and instruments made it inconsistent with being a telescope dependent effect. In our work, we

estimate the chromaticity of the event to be χ=−0.99+0.10
−0.11, consistent with the inverted spectrum

noted by Shannon et al. (2016). In this work, we find that the profile event in PSR J1643−1224

must be taken into account, in order not to be confused with a red process in 10-cm and 20-cm

data. The event was also identified in the NANOGrav 11-year data set. However because of

their lower frequency data and dual-frequency observations, they were unable to establish its

chromaticity (Brook et al., 2018). Additionally, we find that J1643−1224 shows evidence of red

noise process in 40-cm and 50-cm observations.

4.4.5 PSR J1713+0747: DM event, profile event, system noise, band noise

Previous studies have found that PSR J1713+0747 has shown two exponential events. The

first event, which started at approximately MJD 54750, was observed as a sudden decrease in

dispersion measure by Keith et al. (2013), and discussed in detail in Coles et al. (2015); Desvignes

et al. (2016); Jones et al. (2017). A second event, at approximately MJD 57510, has been reported

in Lam et al. (2018). It shows deviations from χ= 2, which is the index for DM-related radio pulse
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(a) PSR J0613−0200: red noise reconstruction
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(b) PSR J0613−0200: chromatic noise
parameters
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(c) PSR J1939+2134: red noise reconstruction
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(d) PSR J1939+2134: chromatic noise
parameters
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FIGURE 4.2. Noise models for pulsars with chromatic red noise with χ ≈ 4. Noise
with this chromatic index would be expected from scattering variations in the
interstellar medium. On the left two panels (4.2(a) and 4.2(c)) we present maximum-
likelihood realization of spin noise (red), band and system noise (yellow), DM noise
(green), chromatic noise (turquoise) and annual DM noise on top of the first and the
second time derivatives of the dispersion measure (brown). We do not find evidence
with ln Bayes factor of above three for stochastic DM noise in J0613−0200, but we
do find evidence of annual DM variations in this pulsar. On the right two panels
(4.2(b) and 4.2(d)) we present posterior distributions for chromatic noise power-law
parameters AC ∝ ν−χC and γC, where ν is a radio frequency.

63



CHAPTER 4. IDENTIFYING AND MITIGATING NOISE SOURCES IN PRECISION PULSAR
TIMING DATA SETS

time delays. We include both of these events into the noise model of PSR J1713+0747. We found

the chromatic index of the second event to be χ= 1.15+0.18
−0.19. This, and the observation of a pulse

shape change at the time of the event (Figure 4.5(c)), points to the magnetospheric origin. We do

not find evidence for pulse shape changes for PSR J1713+0747 at the time of the first exponential

event. In addition to exponential events, we find evidence of system noise in CPSR2_20CM and

CPSR2_50CM. We also find evidence of band noise in 10-cm and 20-cm data.

4.4.6 PSR J0613–0200: scattering variations, annual dispersion measure
variations

In PSR J0613−0200, we find evidence of scattering variations in the interstellar medium, as a red

process, with an amplitude roughly proportional to radio-frequency to the power of −4: AC ∝ ν−4.

We also find evidence of the annual DM signal, described by Equation 4.9. The detection of annual

DM variations is consistent with Keith et al. (2013). We do not find any additional evidence

for stochastic DM variations in PSR J0613−0200, suggesting the DM(t) is well modelled by

the annual and quadratic terms. Reconstruction of the red noise in PSR J0613−0200 using the

maximum-likelihood method is provided in Figure 4.2(a). Posterior distribution for chromatic

noise parameters is in Figure 4.2(b).

4.4.7 PSR J1939+2134: scattering variations, band noise

Pulsar PSR J1939+2134 is known as a pulsar with strong DM variations and spin noise. In this

study, we find that PSR J1939+2134, like PSR J0613−0200, exhibits chromatic noise with an

amplitude: AC ∝ ν−4. This, again, suggests the cause may be scattering variations towards the

line of sight to the pulsar. With a narrow pulse profile and high dispersion, the pulsar is expected

to show multipath propagation effects (Ramachandran et al., 2006). Posterior distribution for

chromatic noise parameters is presented in Figure 4.2(d). Additionally, we find evidence of band

noise in 40-cm and 50-cm observations. We reconstruct red noise processes in PSR J1939+2134

in Figure 4.2(c).

4.4.8 PSR J1017−7156 and PSR J1045−4509: chromatic noise, dominated by
DM variations

In PSR J1017−7156, we find a chromatic noise with χ= 2.39, which is close to what we expect

from DM variations. Additionally, for PSR J1017−7156, we find the presence of band noise in

20-cm data. In PSR J1045−4509 we also find a similar chromatic noise with χ = 1.82. When

chromatic noise is included in the noise model, we find no evidence of DM noise in these two

pulsars. We find lnB in favour of excess chromatic noise in addition to DM are 3.9 and 3.2

for PSR J1017−7156 and PSR J1045−4509, respectively. We interpret these noise processes,

as dispersion measure variations on a similar time scale as scattering of radio pulses in the
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(a) PSR J1017−7156: red noise reconstruction
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(b) PSR J1017−7156: chromatic noise
parameters
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(c) PSR J1045−4509: red noise reconstruction
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(d) PSR J1045−4509: chromatic noise
parameters

1.
6

1.
7

1.
8

1.
9

χ
C

2.
4

2.
8

3.
2

3.
6

γC

−1
2.
48−1

2.
40−1

2.
32−1

2.
24

lo
g

1
0
A

C

1.
6

1.
7

1.
8

1.
9

χC −1
2.
48

−1
2.
40

−1
2.
32

−1
2.
24

log10 AC

FIGURE 4.3. In this figure, we present our results for two pulsars, J1017−7156 and
J1045−4509, where we find chromatic noise (turquoise), with the chromaticity
close to what is expected for dispersion measure variations. Noise realizations
are displayed on the left two panels (4.3(a), 4.3(c)), posterior distributions for
chromatic noise parameters are on the right two panels (4.3(b), 4.3(d)). J1017−7156
additionally has evidence for band noise in 20-cm data (yellow).

interstellar medium. In Figure 4.3, we provide maximum-likelihood reconstructions of the

chromatic noise in PSR J1017−7156 and PSR J1045−4509, as well as posterior distributions for

chromatic noise parameters.

4.4.9 PSR J2145–0750: an achromatic exponential dip

The initial maximum-likelihood red noise realisation of PSR J2145−0750 contained a dip in

timing residuals, like the ones found in PSRs J0437−4715, J1713+0747 and J1643−1224. We

found lnB ≈ 30 in favour of the exponential dip on top of known red noise in PSR J2145−0750.
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Results of parameter estimation for exponential dip parameters are presented in Figure 4.4(e).

Unlike the other exponential dip events, the chromatic index χ for the one in PSR J2145−0750 is

mostly consistent with zero. Additionally, we do not see any significant pulse profile residuals for

PSR J2145−0750 at around the time of the event, which we show in Figure 4.5(a). The absence of

pulse profile residuals could be either the consequence of its relatively slow spin period (16 ms) or

a different origin of the exponential dip. In addition to the exponential dip, we find DM noise and

high-frequency spin noise and system noise in the pulsar.

4.4.10 PSR J0437–4715: profile evolution, profile events, scattering
variations, band and system noise

PSR J0437−4715 is by far the brightest millisecond pulsar at metre and centimetre wavelengths.

Its short term timing is severely limited by pulse jitter and self noise effects (Osłowski et al.,

2011b). The pulsar is also susceptible to additional instrumental noise, introduced through pulse

profile distortions. Because of its brightness, the profile can experience distortions, particularly

when observed with the early backends which had low bit depth. The level of the distortions

would depend on both frequency and date as the pulsar is subject to diffractive and refractive

scintillation. The polarisation shows rapid changes in time in the region of pulse phase close to

the peak of the pulse profile (Dai et al., 2015).

In PPTA-DR2, PSR J0437−4715 has the longest data span because of the availability of early

CPSR2 data. The timing data contains two main important features that we present and try to

account for.

The first one is related to the evolution of pulse profiles. After least-squares fitting of the

data to the timing model of DR2, we identified a clear linear dependence of timing residuals on

radio-frequency for observing systems, as well as sub-systems, described in Section 4.3.3.4.

We conclude that regular FD parameters in the timing model for PSR J0437−4715 do not

allow this effect to be properly taken into account, and we introduced the linear residual-

frequency model in Equation 4.10 to serve this purpose. Before performing model selection

for band and system noise, we perform model selection for system-specific frequency depen-

dence. We find evidence for linear dependence of residuals on radio frequency in these sys-

tems: PDFB_20CM, CPSR2_50CM, CASPSR_40CM, PDFB1_early_20CM, WBCORR_10CM, PDFB1_1433,

PDFB1_10CM, PDFB_40CM, CPSR2_10CM, WBCORR_10CM with 512 MHz bandwidth. Therefore, we

include linear dependence of timing residuals on radio frequency for the above systems into the

noise model of PSR J0437−4715.

The second feature is the sudden change in the timing residuals of PSR J0437−4715 around

MJD 57070, which is correlated with a change in the pulse profile. In Figure 4.5, we plot the

evolution of timing residuals and profile residuals, to demonstrate the clear connection between

the two. In our model selection, we include profile event, modelled by Equation 4.7. Otherwise,

the profile event will be absorbed in stochastic component of the noise. We find the chromaticity
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(a) PSR J0437−4715: red noise reconstruction

53000 54000 55000 56000 57000 58000
MJD

−4

−3

−2

−1

0

1

2

3

δt
R

N
,
µ

s

BN/GN

SN

BN/GN-1σ

SN-1σ

−4

−2

0

2

4

δt
D

M
/
C

N
(1
.4

G
H

z
ν

)χ
,
µ

s

DM

CN

DM-1σ

CN-1σ

2004 2007 2009 2012 2015 2018
Year

(b) PSR J0437−4715: chromatic noise para-
meters
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FIGURE 4.4. On the left panel (4.4(a)) we present maximum-likelihood realization of

spin noise (red), band and system noise (yellow), chromatic noise (turquoise) and
DM noise (green) for PSR J0437−4715. On the right panel (4.4(b)) we present
posterior distribution for chromatic noise power-law parameters AC and γC. Due to
the largest amount of data and the most complicated noise model for J0437−4715
in DR2, it is computationally challenging to produce a posterior distribution that
would include the chromatic index χ. We found χ consistent with 4 for this pulsar
empirically.

of the event to be consistent with zero. In Figure 4.5(a) we added an additional observation for

J0437−4715 at around the time of the event, which was initially flagged as an RFI and looks

like a hint of a yellow dot behind the red line. Later we found that this observation causes an

advance in pulse arrival time across all three radio bands, which is not consistent with a typical

RFI. The timing residuals for this observation also line up with the exponential event. Thus,

there is a reason to consider this observation the earliest observation of the exponential dip,

associated with the profile event. The additional observation, which took place at MJD 57073,

also separates exponential events for J0437−4715 and J1643−1224 in time. Initially, errors

for event time estimates were overlapping, which may seem like a spurious coincidence. The

additional observation for J0437−4715 narrows down the uncertainty, whereas MJD 57073 is

ruled out by the data from PSR J1643−1224.

Compared to the other PPTA pulsars, PSR J0437−4715 shows the largest number of red noise

processes. In the IPTA DR1 data set, Lentati et al. (2016) found evidence of band noise in all

bands and system noise in CPSR2_20CM. In PPTA-DR2, consistent with Lentati et al. (2016), we

find evidence of red noise in CPSR2_20CM system, and we also find red noise in three additional

systems: WBCORR_10CM, CPSR2_10CM, CPSR2_50CM. We also find evidence of band noise in both

20-cm and joint 40-50-cm data. On top of that, we find excess chromatic noise with χ consistent

with 4. Maximum-likelihood reconstruction of the red noise in PSR J0437−4715, as well as the

posterior distribution for power-law parameters of the chromatic noise, are provided in Figure 4.4.
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PSR J0437−4715 has the lowest DM in the PPTA data set. It is surprising to identify chromatic

noise with a chromactic index close to what would be expected from scattering variations. However

this frequency scaling is consistent with what would be predicted from angle of arrival variations

(Cordes and Shannon, 2010; Romani et al., 1986). An alternative possible origin of the chromatic

noise could be in the evolution of pulse profile. Our red noise analysis was conducted after fitting

for a second derivative of pulsar spin frequency, F2.

Given its high timing precision, PSR J0437−4715 provides great sensitivity to gravitational

waves. Future improvements to the noise model for PSR J0437−4715 and profile-domain timing

analyses would provide further answers about the origin of chromatic noise in this pulsar.

4.4.11 Evaluating the performance of the noise models

We can further test our models by analyzing the distribution of timing residuals after the

subtraction of maximum-likelihood realisations of red noise. We normalise timing residuals

by dividing them by the corresponding ToA errors. If the models well describe the data we

would expect these residuals to be consistent with Gaussian distribution with zero mean and

unit variance. We perform three tests to determine how Gaussian, uncorrelated and variance-

stationary are whitened residuals of PPTA-DR2 pulsars. The results are summarized in Table 4.4.

We carry out the Anderson and Darling (1952) test to determine if the distribution of timing

residuals is consistent with Gaussian distribution with zero mean and unit variance. We find

significant non-Gaussianity only for PSR J0437−4715, which has a probability of whitened

timing residuals being drawn from such distribution of less than 1%. The distribution of whitened

residuals of PSR J0437−4715 has a mean of 0.05 and standard deviation of 1.12. The increased

standard deviation could mean that EFAC and EQUAD parameters are insufficient to describe

the white noise in PSR J0437−4715. We also test how white are the actual whitened timing

residuals with the help of the statistic derived by Ljung and Box (1978). Nine PSRs, J0437−4715,

J1017−7156, J1022+1001, J1125−6014, J1744−1134, J1824−2452A, J1909−3744, J2124−3358,

J2241−5236, have a probability of being uncorrelated in time of less than 1%. Moreover, with

the Breusch and Pagan (1979) test, we find that whitened residuals for PSRs J0437−4715 and

J2241−5236 have a probability of having temporally stationary variance2 of less than 1%. Overall,

nine pulsars did not pass the three tests we discussed in this paragraph. Eight of these pulsars

have band or system noise, described in Table 4.2 and Section 4.4.3, with γ< 0.5. This is not a

coincidence, as nearly flat power spectrum indicates that a power law might not be the best model

to describe these noise processes. For the ninth pulsar, PSR J2124−3358, we found evidence for

band noise in 20-cm data with γ ≈ 8, although we do not rule out that this low-frequency red

noise is pulsar spin noise (see discussion in Section 4.4.1). We defer the further improvement of

noise models for the above nine pulsars to future work.

2homoskedasticity
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Table 4.4: Tests of the noise models. The second column shows Anderson-Darling statistic
(ADS), with the null hypothesis that the whitened timing residuals are described by a Gaussian
distribution with zero mean and unit variance. Values smaller than 2.5 are within 95-% confidence
intervals and values smaller than 3.9 are within 99-% confidence intervals (Stephens, 1974). Only
PSR J0437−4715 has the statistic value greater than 3.9. The third column shows Ljung–Box
statistic (LBS), with the null hypothesis that the whitened timing residuals are uncorrelated in
time. The fourth column reports the p-values (LBp) that correspond to the Ljung–Box statistic
values. We choose a number of Ljung–Box lags to be equal to nc, listed in Table 4.1. For nine
PPTA PSRs we obtain a probability of whitened residuals of being uncorrelated in time of
less than 1%: J0437−4715, J1017−7156, J1022+1001, J1125−6014, J1744−1134, J1824−2452A,
J1909−3744, J2124−3358, J2241−5236. The last two columns contain Breusch-Pagan statistic
and corresponding p-values, with the null hypothesis that variance of the whitened timing
residuals is constant in time. Only two PSRs, J0437−4715 and J2241−5236, have a statistically-
significant probability of having non-stationary excess variance.

PSR ADS LBS LBp BPS BPp

J0437−4715 15.4 24042 ≈ 0 26.1 3×10−7

J0613−0200 0.2 93 3×10−1 0.0 8×10−1

J0711−6830 0.4 82 6×10−1 0.0 9×10−1

J1017−7156 1.2 139 5×10−11 2.2 1×10−1

J1022+1001 1.5 527 1×10−64 0.0 8×10−1

J1024−0719 0.2 113 2×10−2 0.0 9×10−1

J1045−4509 1.2 83 6×10−1 0.2 7×10−1

J1125−6014 0.7 204 8×10−14 4.3 4×10−2

J1446−4701 0.4 67 1×10−2 0.1 7×10−1

J1545−4550 0.4 41 5×10−1 0.7 4×10−1

J1600−3053 0.6 83 6×10−1 0.0 8×10−1

J1603−7202 0.3 109 5×10−2 4.4 4×10−2

J1643−1224 0.4 99 2×10−1 0.7 4×10−1

J1713+0747 0.5 121 8×10−3 0.2 7×10−1

J1730−2304 0.5 86 5×10−1 0.7 4×10−1

J1732−5049 0.9 46 4×10−1 0.6 4×10−1

J1744−1134 1.7 179 2×10−8 0.4 5×10−1

J1824−2452A 0.2 151 8×10−6 0.4 5×10−1

J1832−0836 0.3 50 2×10−2 0.0 9×10−1

J1857+0943 1.3 83 6×10−1 0.2 7×10−1

J1909−3744 0.9 142 1×10−4 0.3 6×10−1

J1939+2134 1.1 132 8×10−4 1.2 3×10−1

J2124−3358 3.7 192 5×10−10 0.1 8×10−1

J2129−5721 0.3 55 1×100 2.0 2×10−1

J2145−0750 2.2 109 4×10−2 3.8 5×10−2

J2241−5236 0.7 145 2×10−11 18.7 2×10−5
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4.5 Conclusion

We have robustly determined noise models for the PPTA DR2 pulsars, which include models

for red noise processes (Tables 4.3, 4.1, and 4.2) and specific models for deterministic signals,

described throughout Section 4.4. These models can be used in timing analyses of the pulsars.

In our analysis we considered each pulsar independently. Therefore, our red noise models may

have absorbed spatially correlated signals, such as the gravitational-wave background or errors in

Solar System ephemeris. For example, the low fluctuation frequency red noise observed in PSRs

J1713+0747 and J1909−3744 can possibly be attributed to this. Although the processes could

still be detected with our noise models, either because of the fact that they are correlated between

pulsars or because of the non-power-law model, some of our red noise terms may decrease the

sensitivity to these signals one is interested in studying. This effect can be mitigated by the

additional model comparison between the desired signal and such red noise terms in our noise

models that are likely to be co-variant with the signal.

Due to the exceptional brightness and hence the high individual pulse signal-to-noise ratio

of J0437−0715, pulse profile evolution becomes a significant noise component. We expect this

source of noise will become even more important for data from high-sensitivity radio telescopes.

An effective way to account for this noise is to perform profile-domain timing. The methodology

has been outlined in Lentati et al. (2017).

We measured some band and system noise power-law indices to be nearly zero, which indicates

that the power-law model might not be the best one to describe these noise processes.

Maximum-likelihood noise reconstructions and the tests, described in Table 4.4, complement

Bayesian inference and provide an opportunity to validate noise models for current (Perera et al.,

2019) and future IPTA data releases.

Chromatic effects will become more apparent with the deployment of future wide-band

receiver systems. At Parkes, pulsar timing array observations are being undertaken with the

ultrawide-band (low) receiver at Parkes (Hobbs et al., 2020b), which records data over a contiguous

band from 700 MHz to 4.2 GHz. The MeerTime project (Bailes et al., PASA, submitted) is currently

conducting sensitive observations of millisecond pulsars over an octave bandwidth. Wide-band

systems are planned or proposed for many additional telescopes as well.
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FIGURE 4.5. Exponential dips and profile shape events. Top panel (4.5(a)): profile resid-
uals (colour) as a function of pulse phase (φ) and year from PDFB4 observations
for PSRs J0437−4715 (10 cm), J1713+0747 (20 cm), and J1643−1224 (10 cm). Red
vertical lines correspond to the 1-σ credible intervals of inferred start times of
chromatic exponential dips in the timing residuals. We also include J2145−0750,
where we identified an apparent exponential dip with χ consistent with zero. In
panels below (4.5(b),4.5(c),4.4(d),4.4(e)), we provide posterior distributions for in-
ferred exponential dip parameters: the time of the event t, the chromatic index χ,
the duration τ, the amplitude A [s].
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SUMMARY

The work outlined in this Ph.D. thesis provided a pathway to new searches for gravitational

waves with both ground-based laser interferometers and pulsar timing arrays. The

radiometer method can now be applied to the data from ground-based interferometers to

search for persistent gravitational waves over all sky directions and frequencies. We performed

the analysis of millisecond pulsar spin noise in the first data release of the International Pulsar

Timing Array and found that the superfluid turbulence model for spin noise, derived by Melatos

and Link, is not sufficient to describe spin noise in all pulsars. We also found no evidence

for a hypothesised low-frequency turnover in millisecond pulsar spin noise power spectrum.

Additionally, we identified noise properties of the second data release of the Parkes Pulsar

Timing Array. The future work will use our noise models to perform nanohertz gravitational

wave searches with the data set. Furthermore, we developed new methods to characterize timing

properties of millisecond pulsars and unknown signals in the data. We identified new timing

noise processes in pulsar timing arrays and discussed possible origins of these processes.

We propose the further development of the all-sky radiometer to become fully Bayesian as a

subject of future work. The Bayesian implementation will make the radiometer a useful tool to

ask astrophysically interesting questions about the nature of galactic neutron stars. Data folding,

which enabled the all-sky radiometer, can also be applied to isotropic radiometer and spherical

harmonic decomposion methods to search for gravitational-wave backgrounds.

During the analysis of the Parkes Pulsar Timing Array data, we found that in some pulsars

one can not confidently determine whether the red noise is spin noise or band- or system-

dependent process. It is also expected that some of the red noise is caused by errors in Solar

System ephemerides. Thus, future spin noise studies will need to take that into account. Ad-

ditionally, we propose to consider more physical models of spin noise in future work. Better
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understanding of spin noise will be beneficial for gravitational-wave searches and will help to

infer the dynamical processes in neutron star interiors.

We expect the new chromatic noise we found in the Parkes data to become more apparent

in the upcoming wide-band data sets. This noise can potentially be mitigated using the profile-

domain timing techniques, which provides means to use more tailored pulse profiles, to model

interstallar propagation effects, such as scattering, as well as to better model pulse shape

variability. This research will enable even more sensitive nanohertz gravitational-wave searches

in the future.
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A.1 Explicit form of Model M power spectral density

The definite integral in Equation 3.15 yields an analytical solution. First, we reparametrize

Equation 3.15:

(A.1)

M = 15
(4πλ)2 ;

tc = 2π
η(R−1) .

Next, we obtain the analytical solution in a form:

(A.2)
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4tc f 2
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A.2 Posterior probability distribution examples

In Figure A.1 we demonstrate posterior distributions for spin noise parameters of two pul-

sars, J0621+1002 and J1939+2134, where the highest and the lowest logB
BPL,i
PL are found (see

Table 3.3 for details).
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FIGURE A.1. Figure A.1 represents posterior distributions for spin noise parameters
for J0621+1002 (left, A.1(a)) and J1939+2134 (right, A.1(b)). Vertical dashed lines
represent 1/Tobs. For J1939+2134, with least evidence for the spectral turnover in
Table 3.3, measurement of fc does not affect the measurement of the amplitude
and the slope of spin noise. However, for J0621+1002, with the highest evidence
for the spectral turnover in Table 3.3, measurement of fc does affect measurement
of the power-law index.
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A.3 Prior probability distributions for the PPTA DR2 noise
model selection

Table A.1: Priors used for our model selection study. In the top five rows of the table we list
priors for stochastic signals, described in Section 4.3.2. In the remaining rows, we list priors for
deterministic signals, described in Section 4.3.3.

Parameter θθθ [unit] Pulsar Prior π(θθθ)

EFAC all U (0.01,10)

EQUAD [s] all log10 U (10−8.5,10−5)

A all log10 U (10−20,10−8)

γ all U (0,10)

χ all U (0,6)

AE [s] all log10 U (10−10,10−2)

tE [MJD] J1713+0747 (1) U (54500,54900)

J1713+0747 (2) U (57500,57520)

J1643−1224 U (57050,57150)

J0437−4715 U (57050,57150)

J2145−0750 U (56100,56500)

χE all U (−7,7)

log10 τE [MJD] J1713+0747 (1) U (log10 5,3)

all U (log10 5,2)

AG [s] J1603−7202 log10 U (10−6,10−1)

tG [MJD] J1603−7202 U (53710,54070)

σG [MJD] J1603−7202 U (20,140)

AY [s] all log10 U (10−10,10−2)

φY all U (0,2π)
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A.4 Red noise reconstruction for the remaining PPTA DR2
pulsars
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(g) J1600−3053
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FIGURE A.2. Maximum-likelihood realizations of time-correlated stochastic noise in
pulsars. SN is the spin noise, BN is the band noise, GN is the system noise
(group noise), DM is the stochastic dispersion measure variations, and CN is the
chromatic noise. Horizontal axes determine pulse arrival time in years (top) and
MJD (bottom), vertical axes determine timing residuals in µs (left) with reference
to 1400 MHz (right).
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