
An Application of Business Rule Optimisation – Alan Roy Dormer – August 2020 

 

 

 

 

 

 

 

 

 

 

An Application of Business Rule Optimisation 

Alan Roy Dormer 

BSc. MSc. Tech 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at 

Monash University in 2020 

Faculty of Information Technology 

  



An Application of Business Rule Optimisation – Alan Roy Dormer – August 2020 

 

 

Copyright notice 

 

© Alan Roy Dormer (2020).  
 
  



 

 

Abstract 

Business rules are intended to assert business structure or to control or influence 

the behaviour of a business. They are used widely throughout the services sector.  

They ensure compliance with statutory requirements and company policies, and 

provide consistency, allowing complex transactions to be processed automatically 

or by guiding relatively unskilled staff. 

The focus of this thesis is a class of business rules categorised as computation, 

reasoning, and allocation (CRA) rules (Packt, 2009) as applied to a set of service 

business problems with common characteristics. These rules act on situational 

information to calculate additional quantities, process multiple inputs, and 

determine the path of the customer through a process. The rules are not mandatory, 

and there is scope for a business to change them to improve outcomes such as 

profit and customer service.  These types of tasks have traditionally required 

human decision makers, but more commonly, business rules are used to automate 

and deskill the process. 

  While there is a large body of research on the construction, deployment, and 

operation of business rules, there are some areas that have not been addressed. 

Firstly, business rules can have an impact on the financial performance of an 

organisation.  Secondly, merely replacing a human decision maker with a set of 

rules executed automatically may not always be the best option. Thirdly, rather 

than designing rules that emulate the human decision maker (and all their biases 

and faults), it may be better to build the rules to achieve the best outcome for the 

organisation. And finally, information is not necessarily free, and there is a need 

to balance the cost of gaining and processing information against its value in terms 

of better decisions.  

This thesis considers a range of service business processes that result in a decision 

and applies business rule optimisation to a classical case study, that of credit 

approval, using real data. The application considers all relevant factors such as the 

potential profit, examination costs, the accuracy of the human expert and the rule 

system, and transaction abandonment. The case study demonstrates that business 

rule optimisation can be practical, useful, and beneficial in this context.  

The contributions of this thesis include a practical method to build and optimise 

business rules that include human experts in the decision-making business 
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process. This research has developed theory and a framework that can be applied 

to create business rules in a recognisable format that can be understood by the 

user. The framework also includes a model of transaction abandonment and 

incorporates this into the feature selection and optimisation process. Finally, it 

enables the process to request further information, if required, and adjusts the rules 

to maintain maximum efficiency should the case-mix or caseload change.
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1 INTRODUCTION 

Business rules are widely used in the services sector (Gartner, 2012). They 

provide consistency and allow relatively unskilled staff to process complex 

transactions correctly. But there are many examples where the rules themselves 

have an impact on the costs and profits of an organisation. Financial services, 

transport, and human services are areas where the rules themselves can 

predictably impact the bottom line. This situation creates an opportunity to find 

methods that can build a set of rules (or sets of rules) that will maximise profit, 

performance, or customer service, or any other key performance indicators. The 

manufacturing, energy and process industries have embraced mathematical 

optimisation techniques to improve efficiency, increase production, and reduce 

costs (Tiwari et al., 2015).  

 Importance of Business Rules 

A business rule is a statement that defines or constrains some aspect of the 

business. It is intended to assert business structure or to control or influence the 

behaviour of the business (Hay et al., 2000). Business rules in the services sector 

are about guiding or making decisions. As information is processed, decisions are 

made, and further information is generated. For example, a customer enters a bank 

and asks for a loan. Information is gathered about the customer and what they 

want, and the result of analysing that information other information is generated, 

e.g., the customer is accepted for a loan of a particular value with a specific 

repayment profile. The correct application of rules enables consistency and 



Chapter 1: Introduction 

20  Alan Roy Dormer - August 2020 

management by exception. For example, a skilled and experienced person need 

not be present at every consultation; he/she only needs to engage where their 

judgement and approval is essential.   

Business rules are essential to the services sector: customers and their 

requirements can differ significantly (for example their health or financial 

situation), and rules ensure that decisions that are made are consistent with 

company policies and contribute to overall company success. In the latter years of 

the 20th century, there was an increase in computer power that enables not only 

consistency, but monitoring, enforcement, and flexibility (Andreescu, 2008) and 

this process has continued (Schulte, 2018). These software systems, called 

business rules engines, enable organisations to build and maintain sophisticated 

sets of rules that can control and monitor many thousands of staff and millions of 

transactions, in real-time. They also allow rules to be changed to reflect changes 

in business circumstances. But while business rules deliver consistency, they do 

not automatically deliver efficiency or maximise customer service or revenue 

(Ross, 2016). 

 Business Rules and Business Processes 

Business processes are important to both the services and manufacturing sectors. 

They are essential in manufacturing as this consists almost entirely of carrying out 

a series of tasks, in a specific order, in a repeatable way (Harmon, 2008). The 

human resources and physical resources which are used both cost money. The 

requirement to reduce costs has naturally led to the concept of business process 

optimisation where the sequencing of tasks and allocation of tasks to machines 

are planned to minimise costs or maximise revenue (Vergidis, 2008 & 2012). 

Indeed, manufacturing often goes a lot further and uses optimisation and 

forecasting techniques to maximise profit based on variable demand and 

anticipated demand in quite sophisticated ways (Tiwari et al., 2015). The main 

difference between manufacturing and services is that to be efficient 

manufacturing generally strives for repetition (i.e., to make large quantities of the 

same thing). However, there are manufacturing operations that deliver 

personalised products (either individually or mass customised). This 

‘manufacturing a service’ or agile manufacturing segment bears some 

resemblance to the services sector in which the requirement is to manage different 
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types of customer and deliver personalisation (Chaston, 2017). Effective 

management necessitates: 

• correctness, that is, we implement the company policy and rules as designed and 

intended, and,  

• consistency, that is, for each situation where a set of rules is to be applied, we use 

the same rules each time, every time. 

Optimisation in the services sector is not so well advanced. Business rules are 

fundamentally designed for correctness and consistency, but not for optimised 

efficiency (Taylor, 2011). Two notable exceptions are staff rostering (Ernst et al., 

2004) and supply chain optimisation (Hall et al., 2001). Rostering is widely used 

to have the right number of people (and no more than is necessary) with the right 

skills, in the right place at the right time. Cost reduction is motivation because 

people costs are dominant in the services sector. Supply chain optimisation is 

about activities, such as supply, storage and distribution, the allocation of 

resources to tasks, and task scheduling. 

So, although an organisation may have the people required, with the right skills, 

all doing the same thing (in the same situation) using the same business rules, the 

challenge of doing better, with fewer people, at a lower cost remains. This 

challenge is the essence of the problem. 

 Context 

Manufacturing productivity is generally defined as the value of outputs divided 

by the cost of inputs. It is further broken down into capital productivity 

(production per machine or factory) and labour productivity (hours of labour 

required to make a car). In services, measures such as added value, profit or 

revenue per employee are standard. Productivity improves with increases to the 

numerator (value of outputs), decreases to the denominator (cost of inputs), or 

both. Put another way; it is not just about reducing costs; increasing value has a 

similar impact. The latter is particularly important where the value of a transaction 

is variable. 

Significant productivity improvements in manufacturing have been achieved 

through technologies such as automation, computer aided design and business 

process optimisation. There are a few vital objectives: mass production to reduce 
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per unit costs of design and engineering; repeatability to increase quality and 

reduce rework; and continuous improvement to reduce the time taken, costs of 

labour and raw materials. 

There are two sorts of services. Low values services, such as telecommunications 

and low-end catering and retail, resemble manufacturing insofar as scale and 

repeatability drive costs lower and increase productivity. High value or 

knowledge intensive services such as financial services and high end retail and 

hospitality are fundamentally different from manufacturing in two key respects; 

Firstly, customers are all different. Secondly, the service provided, the perceived 

value and the outcome of the service, depends on the information supplied by the 

customer. 

Therefore, the question arises as to how to provide repeatability for low value 

services and responsiveness to customer information in high value services. One 

extraordinarily successful technology is business rules (Gartner, 2012). Business 

rules grew out of an earlier technology known as expert systems (Liao, 2005) 

where the idea was to capture or elicit expertise from an expert and create a rule 

base that would emulate the expert either automatically or in the hands of a non-

expert. Expert systems developed into business rules which were more about 

consistency and repeatability. In principle, business rules do not supplant experts; 

they allow non-experts to deal with customers and issues and prompt them to seek 

guidance from experts when circumstances dictate. 

Business rules are important to achieve good outcomes and thereby increase 

productivity. For example, in a sales situation information is gathered from the 

customer, and the salesperson processes this information correctly and reacts 

accordingly. The salesperson must understand what the customer wants (or 

needs), such as what they are prepared to pay, what flexibility they have, how 

sensitive they are to price, quality or delivery. For low value services, repeatability 

is essential as staff members are less qualified or experienced, and there is limited 

scope to personalise and a need to control the operation precisely. For example, 

in a fast food restaurant personalisation is limited to something simple like a 

special offer (such as upsizing) with a meal. In knowledge intensive service, much 

more information is elicited, and there is always the option, or necessity, to bring 

in an expert (such as an underwriter or sommelier) to deal with complex issues. 
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So, in these examples, business rules increase productivity and reduce costs by: 

• empowering less qualified/less experienced and less expensive staff 

• using more highly paid, expert staff, to improve service or increase revenue when 

the potential benefit justifies the cost 

 Motivation  

Services account for most economic activity and employment in the developed 

world. For example, in Australia, services account for approximately 75% of GDP 

and 80% of employment (ABS, 2012).  

The dominance of services represents a fundamental shift and creates a challenge 

for economies and organisations that have become accustomed to annual increases 

in productivity and standards of living that have, for the last 150 years or so, been 

driven by productivity increases in manufacturing. The new productivity 

challenge is how to increase productivity within services, and that of the 

knowledge workers that work within the sector (Drucker, 2018). 

 Research Strategy, Scope, and Outputs 

1.5.1 Introduction 

This thesis aims to contribute to the area of business rules research by defining 

and exploring a specific problem - that of Business Rule Optimisation – and 

creating a framework for its application to a broad class of problems. This chapter 

provides more detail on the aims, scope, objectives, and methodology employed. 

As an area of research, BRO is potentially as wide as BPO, which is the subject 

of over 400 research papers. It is therefore unreasonable to completely cover this 

area in a PhD thesis, so we: 

•  focus on a class of problems that includes many examples, 

• consider types of rules that practical and recognisable to industry, and, 

•  use a case study methodology that delivers results that are meaningful and 

capable of supporting or catalysing further research.  

This research is somewhat different form traditional research (Dawson, 2019) in 

two aspects: 
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i. It identifies a real business problem and seeks practical methods to find a solution. 

ii. It is interdisciplinary, and the solution may include elements of machine learning, 

mathematical programming, probability, and draws on some research in 

psychology. 

This thesis considers the broader question and then focus on a set of conventional 

business processes where the objective is, ultimately, to make a binary decision 

such as accept or reject, approve or not, or proceed, or not, for example. The 

concepts are then applied and proven on a representative case study involving 

credit approval. The research aims, objectives, questions and contributions 

presented should be read in this context. 

1.5.2 Research Aim 

This research aims to explore the concept of business rule optimisation and 

develop a framework for creating optimal business rules for a broad class of 

service business problems where the objective is to make decisions. The 

framework should be capable of representing the business process in a 

quantitative way and include essential factors that influence the quality of the 

decision and economic drivers. It should also include the human decision maker 

in the process and provide for their input when that is beneficial. 

1.5.3 Research Objective 

Business rule optimisation if a potentially broad area of research. The critical 

elements of this research are identified below: 

1.5.3.1 Optimisation 

i. To define what we mean by business rule optimisation and how that fits in with 

business optimisation and business process optimisation and other approaches that 

assist decision making in the process sector 

ii. To define and understand the nature of the optimisation problem in terms of the 

objective function, degrees of freedom and constraints 

iii. To identify practical methods of building optimal rules for the chosen class of 

problems 

iv. To formulate the optimisation problem to include the factors that impact the 

objective function 



Chapter 1: Introduction 

Alan Roy Dormer - August 2020   25 

1.5.3.2 Practical Implementation 

i. To apply the theory to a case study example 

ii. To develop a practical framework to create optimal rules for service business 

processes that result in decisions 

1.5.3.3 Explore the impact of the research on applications 

i. To identify the importance and potential of this approach by way of examples 

ii. To identify a class of problems with similar characteristics for further analysis 

iii. To test the framework on a different case to demonstrate effectiveness and 

applicability 

1.5.4 Research Strategy 

Robson (2002) defines two types of research strategies: 

• Fixed design strategies that require specification before data collection; also 

known as quantitative strategies 

• Flexible design strategies that evolve during data collection; generally referred to 

as qualitative strategies 

Quantitative research is usually considered to be the traditional scientific research 

approach. It is an experimental model of enquiry, characterised by objectivity, 

reliability, and prediction. Much of the data collected and used is digital, and most 

of this research is done in a laboratory, where the environment and experimental 

conditions can be created and controlled. The key strengths of the quantitative 

approach are precision and control. Control is achieved through sampling and 

design; accuracy is achieved through quantitative and reliable measurement. The 

main limitation, concerning the real world, is that human beings are far more 

complex than a narrow view imposed by a quantitative approach (Burns, 2000).   

Qualitative research is primarily based on an investigative approach, where much 

of the data collected is through interviews, surveys, and observation, and is in the 

form of words (Robson, 2002). Qualitative researchers tend to be involved in their 

study. As a result, the research questions and design tend to evolve, as more 

information is collected. Sociologists, psychologists, anthropologists, and more 

recently, business and industry, tend to use a qualitative research approach 

(Gummesson, 1991). The main strengths of the qualitative research approach are 
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the insights gained from an inside view of the world under investigation and the 

researcher’s involvement. These insights enable the researcher to derive 

unexpected observations from further examination. The main limitations and 

criticisms are validity and reliability. Data collection methods are time 

consuming, subjective, and prone to interpretation bias. The presence of the 

researcher causes bias during the collection of data. It is difficult to replicate 

studies; furthermore, it is difficult to make generalisations from the research 

findings.  

This research is quantitative even when we include the human within the decision-

making loop, and the optimisation process may be based on a forecast or 

inaccurate or incomplete historical data. 

Besides, while defining and exploring a potentially large area, we are employing 

the Case Studies approach (Robson 2002) on an example of a class of problems 

with characteristics in common with many other types of service business 

processes. 

1.5.5 Research Methodology 

As identified above, this research is quantitative in and uses a pre-defined 

approach to analyse the available data. The main elements are: 

i. Definition 

The concept of business rule optimisation is introduced and put into context within 

the services sector.  

ii. Literature Review 

The objective of the review is to identify what has been done in business rules and 

related research, such as business process optimisation and re-engineering. 

iii. Application 

Some example service business problems are explored to assess the applicability 

and relevance of the approach and to determine the existence of a genuine 

optimisation problem.  

iv. Categorisation 
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We identify a wide range of problems with common characteristics for further, 

more detailed analysis, including problem formulation and consideration of all the 

relevant aspects that impact the objective function. 

v. Methodology 

We identify practical methods, tools and techniques that can be used to address 

the business rule optimisation problem. By practical, we mean proven, accessible 

methods that can be used to create business rules in a format recognisable to the 

business operator or manager. 

vi. Case Study 

From the chosen category, we take a case study that has the relevant 

characteristics of our category and, using real data, prove the concept and identify 

potential benefits. 

vii. Framework 

Using the insights from the case study, we develop a practical framework for 

optimisation of similar problems.  

viii. Validation 

The final stage is to take a different example and apply the framework to confirm 

its effectiveness 

1.5.6 Research Scope 

A business rule is a statement that defines or constrains some aspect of the 

business. It is intended to control or influence the behaviour of the business, and 

the objective of a business process is to produce the desired result. In other words, 

business processes deliver results for the business, and business rules influence 

the business processes. Therefore, we can conclude that business rules influence 

business results. We can further conclude that, unless all business rules give the 

same results, there will be a set (not necessarily unique) of business rules that will 

deliver the best results. Finding that set of rules is an optimisation problem, and 

this is a different problem than the traditional optimisation approach where a 

specific situation is optimised. For example, in manufacturing, we can optimise 

production based on the orders received in a day, week or month (Tiwari et al., 
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2015). Furthermore, if we look at the definition of optimisation, we see two 

distinct meanings (Dictionaries, C. 2009)  

1. To optimise a situation or opportunity means to get as much advantage or benefit 

from it as you can. For example, see Mousavi et al. (2019) 

2. To optimise a plan, system, or machine means to arrange or design it so that it 

operates as smoothly and efficiently as possible. For example, see Osman et al. 

(2018) 

Another way to look at this is: 

1. Data driven, automatic or on-line optimisation where the optimal actions are 

determined based on the current situation 

2. Static or off-line optimisation where the best action for each foreseeable situation 

is determined in advance 

In this research, the main objective is to consider the second type of optimisation, 

that is, to optimise the system (that is the business rules) so that the business 

processes operate in such a way that the best results are obtained over all 

anticipated situations, not just in one. In this context, of an ongoing process, the 

results are never complete, so we can only target the best expected results. 

Therefore, we optimise expected values using some sort of forecast, or historical 

data, or a combination of both. However, we also recognise that there are 

requirements for situational optimisation should the actual differ from the 

expected, and we need to have a way to modify the rules. This adjustment can be 

on-line when we have more, or, less, or different customers to that anticipated and 

applying the same rules may lead to long queues or under-utilisation of resources. 

Or for the long term when we determine that a change in customer requirements 

or characteristics means that we need to revise the rules. The latter is effectively 

a repeat of the off-line optimisation using more recent (or additional) data on 

customer transactions. 

A potential downside of an optimised rule set is one of specialisation: the 

organisation becomes very adept at (and profitable from) servicing the customers 

it had or expects. Without adjustment, a change in customers could have a much 

more marked impact than if the rules had never been optimised. Failure to 

recognise this could potentially lead to failure of an organisation. 

https://www.collinsdictionary.com/dictionary/english/opportunity
https://www.collinsdictionary.com/dictionary/english/get
https://www.collinsdictionary.com/dictionary/english/benefit
https://www.collinsdictionary.com/dictionary/english/arrange
https://www.collinsdictionary.com/dictionary/english/possible
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As we shall see in Chapter 2, business rules include those around constraints and 

policies, that are non-negotiable, and computation, reasoning, and allocation 

(CRA) rules. CRA rules may be changed to improve business performance in 

terms of profit, revenue, or customer service. 

1.5.7 Case Study 

There are many examples of CRA business rules, and we have identified an 

example problem – Loan Approvals - to test the ideas, develop a process, and 

illustrate its application:   

i. Where decisions can be made by the rules, and experts, or both 

ii. Would typically (or could) use CRA rules 

iii. Where we can obtain data on judgements and outcomes 

Experts typically make loan approval decisions, so there is scope for at least some 

to be made by rules. The approval process typically uses computation rules (for 

example calculating loan/valuation or loan/salary), reasoning rules (determining 

acceptance), and allocation rules where the path of the customer through the 

process is determined by the information provided.  We also need to calculate how 

many experts are required based on the expected caseload and case-mix. Finally, 

we need a way to modify the rules so that we make the best use of the available 

experts when the caseload or case-mix varies from that the expected.  

There is a large, publicly available data set (Kaggle, 2020) that includes data on 

judgements and outcomes. This data will enable us to model the current decision-

making process (the expert), develop rules based on outcomes, compare the 

accuracy of both, and then decide which is the best option on a case-by-case basis. 

 Research Questions 

Business rules can be applied to a wide range of businesses, and the questions and 

hypotheses below are relevant to all business processes. 

However, in this thesis, we limit our scope as follows: 

iv. We consider a wide range of service business processes with common 

characteristics – but not every service business process - and then identify a 

representative case study to prove the concept 
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v. We want to find practical methods of implementation that use reliable, widely 

accessible tools 

vi. The rules we build should be of a form that is recognisable by industry 

vii. The rules should be such that their conclusions are traceable and capable of being 

understood 

The questions, hypotheses, and contributions, below, should be read in this 

context. 

We have used data on judgement and outcomes, including the potential for a 

human decision maker to work with the rules, and the impact of gathering 

information on the customer. 

In this context, the overarching research question is: 

How can business rules and be designed for best business results? 

The underlying hypothesis is that there are real-world examples where this can be 

done. 

To further understand this overarching question, several subsidiary questions are 

generated: 

RQ1 How is the optimisation problem to be defined? 

We identify a model of an example of a set of service business processes, 

an objective function, constraints, and degrees of freedom. 

RQ2 How should the rules be built and optimised? 

We investigate the processes and procedures that are capable of creating 

and optimising business rules and determine the best options for our 

example. 

RQ3 What information should be requested initially and subsequently? 

We determine the cost of obtaining and processing the information and 

balance these against the potential benefits of having more information 

upon which to base decisions. 

RQ4 How should business rules be built using data on expert decisions and 

outcomes? 
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In our case study application, data on decisions is more readily available; 

outcome data may take years to collect and is much rarer (at least in the 

public domain) and is only available for cases that have been accepted. 

However, when we have data on outcomes, we need a way to use it to best 

effect. 

RQ5 How should we incorporate a human decision maker (expert) to best effect? 

Business rules are designed to reach a conclusion or decision that will be 

implemented. How do we build, and optimise, rules that have the 

additional option to refer to an expert that will reach a conclusion or 

decision?  

RQ6 On a case by case basis, how should we decide when to refer the decision to 

a human? 

Each case may have different attributes that are used by the rules to decide. 

But they may also have other characteristics that impact the economic 

optimum.  

RQ7 How can the rules be adapted to maintain maximum efficiency in changing 

circumstances? 

We propose to create a set of business rules that will be optimal for an 

anticipated range of scenarios. Still, in practice, there will be short- and 

medium-term differences between actual and expected. We find a method 

that enables the rules to adapt to a new situation and take advantage of that 

opportunity to do better (than they otherwise would have done). 

These research questions imply the existence of a set of optimal business rules 

that support the business process. Besides, the last question suggests that some 

operational adjustment is possible to maintain optimality as circumstances 

change. 

H1 The underlying hypothesis is that it is possible to optimise business rules in 

the sense that they give the best results over a defined range of situations (either 

determined by analysis of historical data or forecasts) considering: 

• Data on outcomes and judgements 

• The potential to refer decisions to experts 
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• The costs of asking for further information 

• The impact of further information 

H2 A secondary hypothesis is that business rules can be adapted in an operational 

sense to take account of circumstances that differ from those already experienced 

or anticipated. 

 Research Contribution 

The contribution of this work is an analysis of the factors that should drive the 

design of business rules that maximise productivity, efficiency, and profitability 

of an organisation. Previous research is limited to single disciplines (for example, 

machine learning, psychology), and can be characterised as bottom up (extension 

and addition), and necessarily fragmented. This thesis: 

RC1. Introduces the concept of business rule optimisation problem and identifies 

ways to solve the problem examples from the services sector. 

RC2. Creates an extended version of the LENS model (Brunswik, 1985) where 

we have outcomes, the expert decision and, now, additionally, the rules decision. 

RC3. Creates a model of transaction abandonment as a function of time using the 

Weibull distribution (Evans et al., 2000), and incorporates this model into the 

feature selection (Hall et al., 2013) and rule building problems.  

RC4. Applies business rule optimisation to a representative example in the 

services sector problem (that includes potential profits, losses, costs, and 

transaction abandonment) demonstrates that it can be feasible and useful. 

RC5. Creates a framework and guide for building rules for the general problem of 

customer selection and acceptance that is applicable for credit approval and 

similar classification problems. 

Some of this work has been published: 

Dormer, A. (2012). Optimising business rules in the services sector. Int. J. Soc. 

Behav. Educ. Econ. Bus. Ind. Eng, 6(10), 2580-2584. 

This paper introduces the concepts and ideas and uses examples from the 

services sector (credit approval, debt recovery and transport) to define the 
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optimisation problem in each, and show that there is a mathematical 

optimum, even in simple examples. 

Dormer, A. (2017). A Framework for Optimising Business Rules. In International 

Conference on Business Information Systems (pp. 5-17). Springer. 

This paper applies machine learning to the initial assessment stage of the 

Lending Club problem, defines the optimisation problem (RC1), and 

creates a method to combine business rules and human experts, and 

demonstrates potential benefits (RC4). 

Dormer, A. (2018). Cyborganisation: Machines and Humans Make Optimal 

Decisions Together. In Third International Congress on Information and 

Communication Technology: ICICT 2018, London (Vol. 797, pp. 487-497). 

Springer. 

In this, we introduce the extended LENS model (RC2) and use it to 

combine rules and experts. We use data from Lending Club to demonstrate 

that the approach is feasible and potentially beneficial.  

Dormer, A. (2018). Business Rule Optimisation: Problem Definition, Proof-of-

Concept and Application Areas. In International Conference on Business 

Information Systems (pp. 51-62). Springer. 

This paper combines the results of the previous papers to define the more 

general problem and identifies other areas of application. We also 

recognise methods to deal with transaction abandonment, feature selection 

and rule adaptation (RC5). 

 Research Outputs 

The critical research output is a framework for optimising business rules that 

support a business process that incorporates several important features. These are 

common to a class of service business problems that result in a decision, ordinarily 

binary, such as approval (or not), acceptance (or not), act (or not), etc. The 

framework supports several key elements: 

• Creating a model of the human decision maker 

• Creating a set of rules that can be understood and implemented in a practical way 
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• Modelling the cost of processing information as a function of the amount 

requested 

• Modelling the tendency for transactions to be abandoned as more information is 

requested 

• Optimising the interaction between the rules and human decision makers 

• Optimising the operation of the rules when caseloads or the case-mix vary from 

the anticipated or historical situation 

 Summary 

This chapter sets out the research aims and strategy appropriate to the BPO 

problem. BPO is a potentially large field of quantitative research, and we employ 

a methodology that defines the broader problem, with examples. We then identify 

a category of problem that is broad yet representative upon which to develop the 

theory. The case study approach (Robson, 2002) proves the concepts and enables 

the development of a framework.  

 Thesis Overview 

This thesis consists of five parts: 

i. Chapters 2 introduces the problem of business rule optimisation explores previous 

research concerning business rules and other relevant areas. Chapter 3 explores 

some simple examples of business rule optimisation in loan approval, debt 

recovery and transport. These are selected to highlight the trade-offs and potential 

for optimisation, even in the simplest of situations. 

ii. Chapters 4-7 set out the theoretical basis and contribution of this thesis in the 

context of CRA rules applied to common business processes and the case study 

example. They include rule scope, customer categorisation, through interaction, 

adaptive information gathering and minimising customer abandonment, and the 

constructs used in the business rules themselves. 

iii. Chapters 8-10 include a description of the case study and uses real data to assess 

the proposed approach. They consider the impact of human judgement and 

abandonment and classify rejected customers. The last chapter presents an 

adaptation strategy to account for differences in caseload and case mix. 
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iv. Chapter 11 sets out a practical framework and step-by-step process to apply the 

findings of this research to a real-world business problem. 

v. Chapter 12 consists of conclusions, limitations of this research, and areas for 

future work. 
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2 LITERATURE REVIEW 

 Introduction 

This literature review explores previous work related to business rule 

optimisation. By business rule optimisation we mean the process of building 

business rules that will maximise or minimise the expected value of a quantity 

(such as profit cost) when they are applied to the customer orders or enquiries that 

we forecast or expect to receive. 

We first explore the various definitions of business rules to understand the key 

concepts and how business rules are related to business processes and how they 

influence business outcomes. Then we review research in business rules, business 

process optimisation, and other relevant areas such as human decision making to 

determine what has been done. Finally, we identify the research gaps and potential 

areas of research. 

  Business Rules 

2.2.1 Definitions 

There are many definitions of business rules, generally from a business or 

information technology (IT) perspective, the latter deriving from the requirement 

to program rules as part of enterprise systems. 

• Business rules are declarations of policy or conditions that must be satisfied 

(Martin et al., 1998) 

• The core notion of a business rule, common to all sources, is that it is a constraint 

on the behaviour of an enterprise; it specifies what is allowable and what isn’t. 

(Liete, 1998) 

• A business rule is a statement that defines or constrains some aspect of the 

business. It is intended to assert business structure or to control or influence the 

behaviour of the business. (Hay et al., 2000) 



Chapter 2: literature review 

Alan Roy Dormer - August 2020   37 

• Business rules represent projections of organisations' constraints and ways of 

working on their supporting information systems (Kardasis, 2004)  

• A business rule is a rule that can be interpreted by computers, that defines or 

restricts some aspects of a business, introducing obligations or needs, according 

to organisational policies and rules (Kamada et al., 2007) 

• A “business rule” is a directive of a domain which controls the conduct of a 

business activity of that domain. Its goal is to structure a business activity (policy, 

know-how) to control or influence the conduct of a business activity of the domain 

in question, in view of achieving an expected result (Roger et al., 2010) 

The common theme in all these definitions are notions of obligation and 

constraints, which is not surprising given that rules in real life are about what we 

should do and what we should not do. In an optimisation context we can relate 

these to feasible (allowable or valid) and infeasible (not allowable or invalid) 

solutions (where the term constraint, unfortunately, has a different meaning). For 

example, we may be obliged to provide telecommunication service to customers 

from the whole country, but we are not permitted to offer a discount for city 

dwellers. To a lesser extent, there is the notion of expected results and needs, that 

is, what outcome(s) or effect (s) do we want to achieve, that is, business rules are 

a means to an end. So clearly rules have a direct impact on the operation, results 

and outcomes of a business.  

For example: 

• External rules and regulations, such as minimum wages or opening hours for a 

business, have direct impacts on costs and revenue 

• Internal rules, such as acceptance or rejection of customer orders, how to process 

complaints, etc., impact revenue and risks 

In this thesis, we will use the definition that rules are a framework within which a 

business operates, but they do not define what operations are performed.  

There are standards for the expression of business rules such as SVBR, (Object 

Management Group, 2011) or Rulespeak, (Ross, 2006) which can be used to 

express examples consistently. According to Packt (2009), rules can be 

categorised as follows: 
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Business Policies: These are rules associated with general business policies of a 

company, for example, loan approval policies, escalation policies, and so on. 

Constraints: These are the rules which business must include, and work within 

the scope of while going about their operations. Rules associated with regulatory 

requirements will fall under this category. Another term for this is compliance; 

rules must enforce compliance and avoid non-compliance; compliance is a given. 

Computation: These are the rules associated with decisions involving any 

calculations, for example, discounting rules, premium adjustments, and so on. 

Reasoning capabilities: These are the rules that apply logic and inference course 

of actions based on multiple criteria. For example, there may be rules governing 

the up-sell or cross-sell of products based on the customer profile. 

Allocation Rules: Some rules are applicable in terms of determining the course 

of action for the process, based on information from the previous tasks. They also 

include rules that manage the receiving, assignment, routing, and tracking of 

work. 

The problem that we are dealing with in this research includes rules from these 

categories. Business policies and constraints (or more generally compliance) may 

be considered first as we assume compliance to be a given. For example, in loan 

approval, there are regulatory and policy considerations around the age of a 

borrower. From a compliance perspective, we disqualify a potential customer who 

is too young or too old, for example, before we get to the point of assessment. 

Business rules deal with variability and uncertainty. Customers are different; 

outcomes are often uncertain. Yet we need consistency in our business processes. 

For example, if two customers have the same attributes, it is not acceptable (or 

indeed sensible) to treat them differently. As identified in Section 1.1, there has 

been an increase in computerisation that enables not only consistency but 

monitoring, enforcement, and flexibility. These software systems, called business 

rules engines, allow organisations to build and maintain sophisticated sets of rules 

that can control and monitor many thousands of staff and millions of transactions, 

in real-time. They also enable rules to be changed to reflect changes in business 

circumstances. But while business rules deliver consistency, they do not 

automatically deliver efficiency or maximise customer service or revenue (Ross, 

2016). 
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 Business Rules Ontology 

To understand the anatomy of a business rule, we can divide a business rule 

primarily into the following four blocks (Kay et al., 2000): 

Definitions of Terms: This helps in providing a vocabulary for expressing 

the rules. Defining a term acts as the category for the rules. For example, 

customer, car, claims, and so on identify the entities for the business. 

Facts: These are used to relate terms in definitions with each other. For 

example, a customer may apply for a claim. 

Constraints: These are the constraints, limitations, or controls on how an 

organisation wants to use and update the data. For example, for opening 

an account, a customer's passport details, or social security details are 

required.  

Inference: This applies to logical assertions such as 'if X, then Y' to a fact, 

and infers new facts. For example, we have a single account validation 

rule (if an applicant is a defaulter, then the applicant is high-risk). And we 

know that Harry (the applicant) has defaulted earlier on his payments for 

other bank services, we can infer that Harry is a high-risk customer. 

Based on the above definitions and categorisations, there are three essential 

characteristics that we should be concerned about with rules:  

i. Rules can define constraints, such as statutory constraints (e.g., maximum 

working hours) or business policies (e.g., acceptance criteria for new customers).  

ii. They are controlling the flow of the business process between tasks and resources. 

For example, IF (condition) do Y or go to A, ELSE do X or go to B. These are 

examples of CRA rules. 

iii. They are enforcing actions such as the it_is_necessary_that constraint. For 

example, to make progress a claim it_is_necessary_that the claim form has been 

received; essentially preconditions for a response to become applicable. 

We want to optimise the rules, but we do not want to change rules that should not 

be altered or cannot be changed. So, there appears little point in adding in rules of 

type iii into our rules set, as we cannot make any changes to them. We can assume 

that they have already been applied. 
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 Business Rule Optimisation 

An organisation may have the right number of people, with the right skills, all 

doing the same thing (in the same situation) by using the same business rules. This 

study is seeking ways to change the business rules so that the organisation using 

such rules could be more profitable, serve more customers, or serve its customers 

better. 

Business rule optimisation is a relatively new area of research and the definition 

used in this thesis is: Business rules optimisation (BRO) is about finding that set 

of business rules that maximises the expected net contribution to the organisation 

that uses them.  

Hence, we are concerned with the structure and the parameters within the 

business rules as far as they impact business performance. We are not interested, 

for example, in: 

• The efficient construction of business rules from expert knowledge (Sneed, 1996), 

(Gottesdeiner, 1999) or other data sources (Shao, 1996),  

• The creation (Chikofsky, 1990), (Chisholm, 2004), organisation (Kardasis, 2004), 

deployment (Rosca, 2002), or integration of business rules (Cibrán, 2003). 

• How they enforce policies (Leonardi, 1998) 

Taylor (2011) covers rules and optimisation, but in the context of rules working 

with optimisation (with techniques such linear programming) to provide decision 

support; each case or situation is dealt with by rules and optimisation with a 

separate optimisation calculation carried out each time. We are looking at the 

ability to optimise the rules (in advance) so that they get the best expected 

outcome, without further optimisation being required. This process is an example 

of off-line or static optimisation. While this approach will not provide an optimal 

outcome for each situation, it removes complexity from the operation where 

business rules are more straightforward, quicker, and generally more reliable than 

an optimisation calculation for each new situation.  

We define situational (or online) optimisation as choosing that set of inputs 

(usually real, binary or integer variables) that optimise an objective (or objectives) 

such as profit, productivity or revenue for a specific set of circumstances (such as 

customer orders, available staff and equipment, etc.). There are many methods to 
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solve the situational optimisation problem, including gradient methods, constraint 

programming and genetic algorithms, for example. Rule optimisation is different 

as we are optimising over the domain of all potential business rules that could be 

applied. The general problem is one of optimising a functional (a function of a 

function) with the first function being the objective (which is fixed), and the 

second function being the rules (with an infinite range of candidates).  

If we limit the rules to a given structure, then we can reduce this problem to one 

of identifying which rules to apply (binary or integer) and their parameters (real). 

In this way, we can solve the rule optimisation problem with the same proven 

techniques that address the situational problem. This problem is explored further 

in Chapter 5 with references for, and examples of, static/offline optimisation 

(5.2.1) and situational/online optimisation (5.2.2). 

Research on BRO is limited. A search revealed two US patent applications which 

relate to the interactions between participants in a communication channel (such 

as telephone calls or social media) (Gupta, 2011, Gupta, 2013). Optimising 

business rules for fraud prevention is described in (Liu, 2014). Optimising rules 

for configuration studied in (Jandir, 2009), and (Begunov, 2008) is about the 

simulation of social-economic systems within a city. None of these studies 

addresses or considers the concept of maximising expected value, which is 

fundamental in our research. Besides, Čubrilo et al. (2016) and Wang et al. (2014) 

identify gaps and shortcomings concerning business rules and the integration of 

business rules and business processes. 

To relate our work to previous research in business rules, that is not explicitly 

referred to as optimisation; we categorise as follows: 

• Recognition that business rules have an impact on organisational performance 

• The ability to modify rules to change performance 

• Dealing with uncertainty and variability 

• The combination of business rules and human experts 

2.4.1 Impact of Business Rules 

There is research that recognises that business rules have an impact on an 

organisation. These studies focus on issues such as flexibility (Van Eijndhoven, 
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2008), consistency, (Gottesdiener, 1997), the effect of change and change 

management (Bajec et al., 2005) and compliance (Kruk et al., 2003). Antonius et 

al. (2014) consider how business rules should be managed and maintained to 

minimise resource utilisation and costs. Wei et al. (2017) examine the relationship 

between business rules and business processes from the perspective of whether it 

is better to integrate or to keep them separated. Wang (2017) proposes a way to 

integrate business rules and business process models to create a complete 

representation for business process modelling. He refers to optimisation, but of 

the business process, not the rules, and the rules are considered as constraints 

rather than potential opportunities. None of these studies addresses the broader 

issues of the impact on a business and how to achieve the best expected outcome. 

2.4.2 Changing Business Outcomes by Changing Rules 

To date, several studies have investigated the means whereby rules can be changed 

to achieve specific outcomes or Key Performance Indicators (KPI’s). Kunz et al. 

(2015) address the optimality of retail pricing and the impact of the constraints 

imposed by business rules. Different business rule sets have been analysed to 

improve the balance between inventory and operational effectiveness in supply 

chain logistics (Oswald, 2013). Rules can also be used in a matching algorithm to 

allocate work to a range of human decision makers based on their skill levels and 

availabilities (Quinzaños et al., 2014). In a similar vein, Yan et al. (2015) examine 

the use of business rules for service selection.  

All the above are examples of business rule manipulation to achieve a single 

objective such as pricing, inventory or resource allocation. They do not have an 

overall objective, nor do they optimise expected values. 

2.4.3 Uncertainty, Variability and Unpredictability 

Cuzzocrea et al. (2014) consider the issues of uncertainty and scalability in 

business rule applications. Hegazi (2015) utilises fuzzy logic in business rules to 

deal with uncertainty and ambiguity. In BRO, as we have defined it, there is 

variability and unpredictability, as we are optimising expected values using a set 

of historical or forecast data. Also, in the case study and similar business 

processes, there is a degree of uncertainty as decisions are never always correct. 
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2.4.4 Integration with Experts 

Ninan et al. (2014) apply planning and business rules to the health sector for 

optimal caseload allocation based on requirements and skills. Wang et al. (2016) 

consider the problem of how business rules can be modelled and manipulated to 

meet a single KPI; in this case, the percentage of banking customers accepted.  

This paper is like our case study, as in that research, there is a consideration of 

what cases should be referred based on an assumed distribution of customers. Still, 

there is no consideration of the accuracy of the rules or the experts. By integration 

with experts, we mean integration at the execution stage, that is when the rules are 

working. There is another form of integration called Human-in-the-Loop 

AI/Machine Learning (Xin et al., 2018); this is fundamentally different and 

concerned with integration at the learning or validation stage. There are also 

applications where the human is part of the decision process, for example 

overseeing an algorithm and helping it learn (Subramania et al., 2011), providing 

data to an algorithm (Pinto et al., 2013) or being part of every decision (Cao et al., 

2010). Amgoud (2009) presents a qualitative approach to decision making with 

both upside and downside that is relevant, but for rule optimisation, we also need 

a quantitative method. For the selected rule optimisation problem, we require to 

understand the relative merits (in terms of financial or customer outcomes) of the 

business rules or human expert making the final decision. 

2.4.5 Conclusion 

In summary, however, none of the previous business rules research: 

• Model the accuracy of the rule decision or the expert decision 

• Investigate the combination of automated and human decision-making in 

the context where the resources deployed must be balanced against their 

impact on the outcome 

• Optimise the rules against their overall impact on the bottom line, 

combining all three business rule optimisations summarised above 

Čubrilo et al. (2016) make the case that business rules are not fulfilling their true 

potential. According to Čubrilo: 

In the context of business processes and rules, their modelling and 

effective application to business practices, there is a paradox of the 

existence of highly developed theories which would enable quality 
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practices, and a whole array of individual, very proficient practical 

solutions (implementations of business rules) on the one side, but no 

universal and generally accepted methodology for modelling business 

rules as a service for business processes and information systems to 

support them on the other side.  

Also, Wang et al. (2014), identifies similar problems.  

While we sense an increasing argument in literature for business process 

and business rule integration, we observe a gap in the body of knowledge 

whereby the benefits, current approaches and maturity of existing research 

have not been consolidated and is thus not well understood  

  Business Processes 

Business rules set the framework, but things need to be done to achieve the 

objectives and desired outcomes. This collection of tasks is often referred to as 

business processes. 

In common with business rules, there are many definitions of business processes.  

For example:  

• A business process is a set of linked activities that takes an input, and it transforms 

it to create an output. It should add value to the input and generate an output that 

is more useful and effective to the recipient (Johanson et al.,1993) 

• A business process is defined as the chain of activities whose final aim is the 

production of a specific output for a customer or market (Davenport 1993). 

• A business process is a set of one or more linked procedures or activities that 

collectively realise a business objective or policy goal, normally within the 

context of an organisational structure defining functional roles and relationships. 

(Fan, 2001), and (Shen et al., 2004)  

• The term business process is used to denote a set of activities that collectively 

achieve a certain business goal. Examples of these processes are the hiring of a 

new employee or the processing of an order (Castellanos et al., 2004). 

• A business process is the combination of a set of activities within an enterprise 

with a structure describing their logical order and dependence whose objective is 

to produce the desired result. (Aguilar-Saven, 2004) 
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• A business process is a set of partially ordered activities, which produce a specific 

product or service that adds value for a customer. (Ratkowski, 2012) 

All of these refer to tasks or activities towards a goal or desired outcome. There 

are also references to linkages (between activities) and ordering or sequencing.  

In this thesis, we can view business processes living within business rules (the 

constraints and obligations) towards the outcomes and results we require, and we 

can also have business rules within tasks and activities. But this is not a simple 

relationship as rules may apply to tasks, activities (collections of tasks) or business 

functions. 

  Business Process Re-Engineering and Optimisation 

2.6.1 Business Process Re-engineering 

These techniques are generally all about ways to cut costs, improve quality, 

improve throughput, etc. For example, Six Sigma is used to reduce variability and 

improve quality, (Weiner et al., 2004) and the Theory of Constraints (Tulasi, 

2012) is used to increase throughput by removing bottlenecks.  

Business Process Reengineering (BPR) involves the radical redesign of core 

business processes to achieve improvements in productivity, cycle times and 

quality. In BPR, companies start with a blank sheet of paper and rethink existing 

processes to deliver more value to the customer. They typically adopt a new value 

system that places increased emphasis on customer needs. Companies reduce 

organisational layers and eliminate unproductive activities in two key areas. First, 

they redesign functional organisations into cross-functional teams. Second, they 

use technology to improve data dissemination and decision making. BPR can be 

regarded as a precursor to the more rigorous approach of business process 

optimisation (Vergidis, 2008). 

2.6.2 Optimisation 

Mathematical optimisation consists of finding the maximum (or minimum) of a 

function (the objective function). The objective is a function of one or more 

variables (degrees of freedom) that are typically real, binary or integer. Some 

constraints must be respected, and the constraints also depend on the degrees of 

freedom. Methods to solve an optimisation vary depending on the nature of the 
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objective function, constraints, and the variables (Yang, 2008). If we confine our 

attention to real variables we have: 

Linear programming is the oldest method and is used when the objective and 

constraints are linear functions (Dantzig, 1998) 

Quadratic programming is also very reliable and requires the objective function 

to be quadratic, with the constraints generally remaining linear (Wolfe, 1959) 

Non-linear programming covers all other problems, and the difficulty and 

applicable solution methods depend crucially on the nature of the objective 

function and the constraints. Key issues include convexity, continuity, and 

differentiability (Dorn, 1963). 

Binary or integer variables (so-called combinatorial problems) are much more 

challenging to solve and may never solve, even for small linear problems. 

Different approaches are taken. With classical mathematical programming, the 

idea of relaxation is used where the binary and integer variables assume real 

values, and then systematically fixed until an integer, or binary solution is 

obtained. New solutions are then tried that either result in further integer solutions 

or rejection by comparison with the best solution so far (Beale, 1979). Direct 

search methods – that only use the value of the objective function – explore 

solutions using just binary or integer variables (Wright, 1996). Many of these 

employ ideas from the natural world such as simulated annealing, ant colony or 

evolutionary computing. 

As identified in 2.4, the general business rule optimisation problem is optimising 

a functional with infinite dimensions. Even if we can identify all the potential 

rules we still have a combinatorial problem (the existence of a rule) with real 

variables (parameters employed in the rules) a non-linear objective (made up of 

economic, statistical and/or empirical elements). 

2.6.3 Business Process Optimisation 

Business process optimisation has grown up as a branch of industrial engineering 

which has been extensively applied to production processes and concerned with 

issues such as quality and efficiency. Provided that quality is maintained, the key 

issues are time and cost, which are functions of resource, labour, and equipment 
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utilisation. Efficiency and quality in a production process are critically dependent 

on repeatability. 

Business Process Optimisation (BPO) is the problem of finding or constructing 

that set of business processes that are: 

• feasible concerning any constraints imposed (in the broader sense of what we have 

to do, and what we should not do), and 

• maximise or minimise the desired objective(s) such as profit, revenue or time. 

Laguna et al. (2005) explore modelling, simulation and design of business 

processes, with a simple example of optimisation using evolutionary computing. 

There is a large body of research on BPO. BPO research focusses predominately 

on the processes required to produce an outcome at minimum time or cost, and 

the way that tasks and activities are structured (such as ordering, linkage). In 

almost all cases in the literature, rules (where cases or components are directed 

one way or the other) are not considered.  

Vergidis (2008) provides a literature survey of business process optimisation and 

applies multi-criteria, evolutionary optimisation to the general problem of 

selecting, ordering, and linking business processes to create an optimal set. 

His conclusions at that time were:  

• The current trend in business process modelling is the use of diagrammatic models 

that visualise the business process but do not provide the necessary quantitative 

constructs for performance analysis and optimisation.  

• The proposed classification demonstrated a lack of support by most business 

process modelling techniques for structured process improvement  

• The few business process optimisation approaches reported in the literature are 

highly complicated and yet address only simple sequential business processes.  

• The author notes that business processes are more than just scheduling and include 

business rules. Still, business rules per se are not considered in either the 

modelling or the optimisation problem. 

More recent research (Vysockis, 2018), for example, still refers to this framework 

and focuses on solving more complicated, stochastic, problems. Business rules 
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are considered, but while the rules themselves are part of the model, they are not 

considered the subject of optimisation.  

Vergidis (2008), examines business processes modelling methods such as 

diagrammatic representations and formal mathematical models, and their 

suitability as a basis for optimisation, and uses evolutionary computing and a 

multi-criteria objective function. But the problem is still simplified, and research 

focuses on representations and business processes represented as nodes without 

consideration of changing the contents of the nodes, for example, the rules. 

Stelling (2006) and (2009) describes a method of expressing business processes 

as chromosomes and then applies an evolutionary computation-based technique 

to optimise the selection and connections between functions, activities, and tasks. 

The essence of evolutionary computing (or genetic algorithms) is to create a 

process that emulates evolution. Initial candidate solutions are produced and then 

a process of combination and mutation is applied, with the best solutions retailed 

and remainder discarded. To do this effectively, we require a coding scheme (like 

the genome) that supports combination and mutation. In BPO applications the 

procedure may consist of creating a taxonomy of activities, tasks, links, and 

resources, and then assigning integer codes to each to create a representation of 

any process. This methodology has the potential to optimise business rules. To do 

that we represent the rules as processes with outcomes dependent on their inputs. 

But the BPO problems solved are quite limited, mostly looking at substituting or 

adding a couple of tasks. Table 1 and Table 2 show a classification scheme for 

business processes from domains (the highest level) down to sub-transactions (the 

lowest level). As identified above, this enables the application of evolutionary 

computing to solve the optimisation problem.  
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CODE LEVEL NAME 

1  DOMAIN L1  HUMAN RESOURCES 

2 DOMAIN L1  CUSTOMER SERVICE 

3  DOMAIN L1  FINANCE 

4  DOMAIN L1  INFORMATION TECHNOLOGY 

1  DOMAIN L2  PROFESSIONAL SERVICES 

2  DOMAIN L2  ASSURANCE 

3  DOMAIN L2  CONTACT 

4  DOMAIN L2  FULFILMENT 

5  DOMAIN L2  BILLING 

6  DOMAIN L2  GENERAL 

01  DOMAIN L3  SERVICE ESTABLISHMENT 

02  DOMAIN L3  QUOTES 

03  DOMAIN L3  ORDERS 

04  DOMAIN L3  FAULTS 

05  DOMAIN L3  FIND PRODUCT 

06  DOMAIN L3  COMPLAINTS 

01  ACTIVITY  PLACE ORDER (TELEPHONE) 

02  ACTIVITY  PLACE ORDER (ONLINE) 

03  ACTIVITY  TRACK ORDER 

04  ACTIVITY  MODIFY ORDER 

05  ACTIVITY  CREDIT APPLICATION (LOW) 

06  ACTIVITY  CREDIT APPLICATION (HIGH) 

01  TRANSACTION  RETRIEVE CUSTOMER 

DETAILS 

02 TRANSACTION RETRIEVE ORDER DETAILS 

03 TRANSACTION EMAIL ORDER STATUS 

Table 1 Taxonomy Coding System (Steen, 2010) 
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CODE NAME 
NO. 

DIGITS 
EXAMPLE/EXPLANATION 

Domain Level 1  1 1=Human Resources 

Domain Level 2  1 5=Billing 

Domain Level 3  2 04=Faults 

Activity  2 03=Track Order 

Transaction  2 03=Order Product 

Sub-Transaction  2 03=Check Postal Code 

Input 1 5 Up to 3 possible alternative inputs of 5 

digits E.G.002050020600000=Placed 

Order or Placed Delivery 

Output  15 Up to 3 possible alternative outputs of 

5 digits E.G. 

002030020400000=Pending Order or 

Pending Delivery 

Constraint  9 Up to 3 constraints of 3 digits E.G. 

001003000=Must be first step AND 

must be linked to next step 

Resource  3 001=Internal Customer RDB 

Flows In  10 Up to 5 incoming flows of 2 digits per 

flow (normally 1 except for join 

(AND-Join) & merging (OR-Join) 

process steps). E.G. 0101000000=2 

incoming normal flows 

Flows Out except for 

fork (AND-Split) & 

decision (OR-Split) 

process steps) E.G. 

0109010000=1 

outgoing normal flow, 

1 sequence flow loop, 

1 outgoing normal 

flow 

10 Up to 5 outgoing flows of 2 digits per 

flow (normally 1 

Previous Step  50 Allows for up to 5 steps of 10 digits 

(Domain L1, Domain L2, Domain L3, 

Activity, Transaction, Sub-transaction) 

Next Step  50 Allows for up to 5 steps of 10 digits 

(Domain L1, Domain 

L2, Domain L3, 

Activity, Transaction 

  

Table 2 Coding Details (Steen, 2010) 
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Steen (2010) describes a method of generating optimal business processes from a 

set of business rules. He describes a four-step approach of rules creation (from the 

specification of the rules), process creation, optimising the process and then 

creating the final business process model. But the rules are an input, not subject 

to any optimisation process. And the optimisation of the processes is around 

resource allocation, performance, and costs, which is the typical objective in BPO. 

Vergidis (2012) presents an optimisation framework for generating optimised 

business processes with diverse designs by ordering and linking tasks allowing 

parallel activities and branching. But again, there is no reference to business rules. 

Kamrani et al. (2012) explores business process optimisation by considering the 

assignment of agents to tasks. 

A missing theme in BPO research is consideration of differences between 

customers or externalities and the impact that these have on the process and the 

objective function. There is no reference to the probability distributions of the 

‘inputs’. The objective(s) are not expected values or values associated with 

alternative scenarios, or indeed probability distributions like the inputs, which 

would be the case if we were optimising a set of business processes that 

specifically deal with variations. Even though examples are drawn from the 

services sector, these are mechanical processes such as order processing. Gibillini 

(2008) identifies some of the shortcomings of BPO as applied to the underwriting 

function of the insurance sector, which is an excellent example of optimising a 

process for more than just speed or cost. She identifies form validation as one of 

the top five obstacles: 

These key decision points carry liability when either the timeline is missed 

or an opportunity to validate need is lost. Further, time constraints foster 

"approve-or-deny" practices, affecting the quality of case management 

and restricting the time available to engage in validation activity.  

Aghdasi (2010) explores the impact of business rules on business process 

optimisation and explores the concept and a simple example in the dairy industry. 

It makes the point that most research in BPO considers only time and cost and 

does not consider business goals which can be expressed through business rules. 

It also identifies that work is required to explore the ordering and creation of 
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business rules. In the example, a rules-based approach is used to optimise 

parameters of rules, and there are outcomes including acceptance, sampling* and 

acceptance. 

* In this case ‘sampling’ is the same as referral, that is we cannot decide at this 

point, and something else must happen before a decision is made around 

acceptance or rejection.  

The optimisation criteria adopted are expressed as alignment with business goals. 

We (2012), give examples within the services sector, including transport and 

financial services where optimisation of the rules is to maximise expected overall 

profits.  The author makes the point that business rules optimisation must consider 

expected values. Even Aghdasi (2010), which is concerned with rules and 

optimisation, the concept of expected values is absent. 

These discuss how (1) rules influence business outcomes, (2) we can change 

(and even optimise) business outcomes by either modify existing rules or 

creating new ones. But in both cases, the examples are deliberately simplified. 

 Knowledge Engineering & Expert Systems 

Business rules evolved from early attempts to emulate experts in so-called expert 

systems (Gottesdiener, 1997). The requirement to elicit, codify and manage the 

necessary expert knowledge led to the field of knowledge engineering (Schreiber 

et al., 2000). An expert system consists of a knowledge base and a rule engine, 

like present day business rules. Still, the challenge with genuine experts was the 

extent of their knowledge and the difficulty of explaining what knowledge was 

used and how individual decisions were made. Not knowing what knowledge or 

reasoning was used to decide makes it hard to build the knowledge base or rule 

engine, respectively. 

TechTarget (2017) gives a good summary: 

Knowledge engineering is a field of artificial intelligence (AI) that tries to 

emulate the judgment and behaviour of a human expert in a field. 

Knowledge engineering is the technology behind the creation of expert 

systems to assist with issues related to their programmed field of 

knowledge. Expert systems involve a large and expandable knowledge 

base integrated with a rules engine that specifies how to apply information 
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in the knowledge base to each situation. The systems may also incorporate 

machine learning so that they can learn from experience in the same way 

that humans do. Expert systems are used in various fields including 

healthcare, customer service, financial services, manufacturing, and the 

law. Using algorithms to emulate the thought patterns of a subject matter 

expert, knowledge engineering tries to take on questions and issues as a 

human expert would. Looking at the structure of a task or decision, 

knowledge engineering studies how the conclusion is reached. A library 

of problem-solving methods and a body of collateral knowledge are used 

to approach the issue or question. The amount of collateral knowledge can 

be large. Depending on the task and the knowledge that is drawn on, the 

virtual expert may assist with troubleshooting, solving issues, assisting a 

human or acting as a virtual agent. Scientists originally attempted 

knowledge engineering by trying to emulate real experts. Using the virtual 

expert was supposed to get you the same answer as you would get from a 

human expert. This approach was called the transfer approach. However, 

the expertise that a specialist required to answer questions or respond to 

issues posed to it needed too much collateral knowledge: information that 

is not central to the given issue but still applied to make judgments. A 

surprising amount of collateral knowledge is required to enable analogous 

reasoning and nonlinear thought. Currently, a modelling approach is used 

where the same knowledge and process need not necessarily be used to 

reach the same conclusion for a given question or issue. Eventually, it is 

expected that knowledge engineering will produce a specialist that 

surpasses the abilities of its human counterparts. 

Knowledge engineering can be applied to business rule development as it 

considers business processes, the tasks, agents and specifically the knowledge and 

reasoning used by the agents to carry out their functions.  

One of the significant challenges with business rule optimisation is that the search 

space consists of all potential rule engines and items of knowledge that could be 

utilised for any business problem. This problem is like the challenge of expert 

systems where it is difficult to determine how decisions are made and what 

knowledge is used. However, we can sensibly delimit our ambitions around 

optimisation if we use the methods such as knowledge engineering to determine 
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the knowledge base and the first cut of a rules engine. We then seek to improve 

by tuning the existing rules of adding new ones using optimisation and machine 

learning. 

For example, in our case study on loan approval, we already know: 

• The customer information that is used to make a decision 

• Typical calculations – such as ratios - that are made using this information 

• The extent of the knowledge base (all historical application, 

determinations, and outcomes) 

Given the data we have available, the optimisation problem is one of identifying 

a subset of the information and a set of rules that maximises the profit function.  

In the wider context, the problem can be decomposed into: 

• Determining the extent of the knowledge base that could be used 

• Creating the set of rules – that act on the knowledge base – that gives the 

optimal outcome 

 Job shop scheduling 

Business processes can be viewed as a series of tasks that make up an activity. 

Enough of these tasks need to be completed in an order that results in the desired 

outcome, and task must be assigned to resources. In the manufacturing and 

engineering sector, there is a problem that consists of scheduling tasks (such as 

machining or assembly) that require specific resources (such as CNC machines or 

robotic welding) in such a way that costs or production are minimised or 

throughput is maximised. There are similarities to the allocation rules problem 

(the machines required for each workpiece in order). 

According to Schauer (2013), the general JSS problem can be expressed as: 

There are m machines M1, . . . , Mm and k jobs J1, . . . , Jk given. Each job Ji consists 

of ni operations Oi, j ( j ∈   1, . . . , ni ). Every operation Oi, j has to be performed 

pi, j time units on a dedicated machine μi, j. Also, the order of the operations of 

every job is prescribed, 

i.e. we have precedence constraints of the form of chains. Oi, j → Oi, j+1 means that 

operation Oi, j has to be finished before Oi, j+1 can start.  
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An essential consideration in JSS is the make-span. Make-span is defined as the 

total time taken from the beginning of processing to completion for any item. It is 

closely related to other criteria such as productivity and overall production 

capacity. 

Flexible Job Shop Scheduling (FJSS) is an extension of JSS as it allows an 

operation to be processed by any machine out of a set of available machines, with 

allowable performance differences in the time taken to carry out each operation.  

As identified above, this is equivalent to a business process. We have elements of 

an allocation problem (choosing the machine there are multi-purpose machines, 

and choosing the order that these operations occur) where we want to maximise 

production, avoid under-utilisation and stay within the capacity limits of the 

machines. 

JSS problems can be solved using integer programming, Baker et al. (2009). 

Subsequently, these problems have been solved by Genetic Algorithms (Agrawal, 

2012) and Tabu Search, (Saidi-Mehrabad, 2007), and other methods that deal with 

an integer expression of the problem 

FJSS has been extended and developed, and problems have been formulated and 

solved considering costs, start-up costs and the efficiencies of different machines, 

(Talbi et al., 2001). In this paper, he uses an evolutionary, multi-criteria 

optimisation approach. 

FJSS considers the possibility of variability insofar as different jobs require 

different operations, but there are differences between FJSS and the research 

problem identified: 

• The objective process all the jobs within a batch, or queue, at minimum time or 

cost 

• All jobs are processed; they are not accepted or rejected 

 Queuing 

Another critical concept in BPO is how to handle queues. Customers do not arrive 

at regular intervals, and the service proposition must consider queue length (the 

number of customers in the system) and waiting time (the time between arriving 

and completion of the service) (Bhat, 2015). Conversely, the organisation is 

interested in efficiency, and this is represented by the busy period, which is the 
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time that a server is active. Note that we can consider any machine processing 

differently to human agents as: 

• The marginal cost of processing is zero 

• For all but the most complex transactions, time is virtually zero 

• Any number of tasks can be carried out in parallel 

Human agents are different; they take a finite time, cost money and are not 

scalable. Also, not all customers are happy to wait, and their tolerance for waiting 

is not uniform, so in any optimisation, we must consider waiting time. Customers 

may not join a long queue (balking) or may leave a queue (reneging) and 

depending on the circumstances, failure to serve a customer will have an adverse 

impact on an organisation. 

These concepts are the domain of queuing theory and this will be required to 

ensure that any solution proposed to the business rule optimisation problem is 

workable. So, as well as looking to limit waiting time and queue length, we must 

also consider queue management, or at least the rules around queue management.  

Laguna (2013) considers these issues in some detail. 

This presents an opportunity for an element of triage by the rules where a queue 

of potential customers can be managed such that we make optimal use of the 

human resources, subject to some safeguards that any customer will emerge from 

the queue within a given time, even if the optimisation algorithm might keep them 

at the back of the queue.  

This would consist of: 

• Identifying those customers who can pass through without human intervention 

• Ordering the remainder so that the busy period for all levels of staff is maximised 

• Making sure that no customer gets forgotten in the queue 
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 Human Decision Making and Decision Support 

2.10.1 Decision Making Process 

When dealing with human agents we need to consider human decision making 

and the accuracy of human judgement. 

In terms of the decision-making process, Harte (2001) summarises ideas that can 

be used to explain human decision making. Here we explore those methods that 

support a classification process. 

The linear additive strategy is a linear combination of the attributes, with suitably 

chosen weights, and decisions are based on the overall sum. 

With the conjunctive strategy the attribute values are compared to some thresholds 

for each attribute. If the attribute values of an alternative do not meet these 

thresholds, the alternative is rejected. If this strategy does not result in the desired 

number of remaining alternatives, the thresholds must be adjusted, and the 

procedure has to be repeated. Effectively, we require all attributes to meet the 

threshold assigned to it. 

If the disjunctive strategy is applied, the alternatives are also evaluated one by one 

by comparing the attribute values with some thresholds. But, contrary to 

evaluation using the conjunctive strategy, an alternative is selected if at least one 

of the attribute values exceeds or equals the threshold. Here we require only one 

attribute to meet the threshold assigned to it. 

The linear additive strategy is very commonly used, in credit scoring, for example, 

and is easily suited to categorisation. But it requires weights and limits to be 

determined. 

The conjunctive and disjunctive strategies may have threshold values for each 

attribute. As such, they can be used for categorisation. The conjunctive strategy 

(testing each attribute against an attribute specific limit) is typically employed for 

screening by a computer. 
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2.10.2 The LENS Model 

According to Kaufmann (2013), the LENS model identifies multiple components 

of judgment accuracy. In a typical LENS model study, a ‘judge’ must make 

decisions based on different pieces of information (‘cues’). Judgmental 

achievement is measured by the extent to which the judge’s judgment matches 

(i.e., correlates) with an indicator of the actual outcome or situation (‘criterion’). 

The LENS model is the basis for the LENS model equation that mathematically 

describes judgmental achievement (ra, i.e., the correlation between a person’s 

judgments and a criterion) in terms of four components. Namely, the judgmental 

achievement is equal to a linear knowledge term (G) multiplied by task 

predictability term (Re) term multiplied by a consistency term (Rs) plus a non-

linear knowledge term (C). 

The linear knowledge component (G) refers to the correlation between the 

predicted human judgment and the predicted criterion. Task predictability (Re) 

refers to the multiple correlations of the cues with the criterion, Consistency (Rs) 

refers to the reliability of judgments, that is, the extent to which a judge reliably 

reaches the same decision based on the same pieces of information. The non-linear 

knowledge component (C) represents the correlation between the variance not 

captured by the environmental predictability component or the consistency 

component. 

Previous research has revealed that the non-linear knowledge component is 

generally quite small. The definitions of the single components are: 

ra = the achievement index (i.e., the correlation between a person’s judgments and 

the criterion), 

Re= the task predictability index (i.e., the multiple correlations of the cues with 

the criterion), 

Rs =consistency (i.e., the multiple correlations of the cues with a judge’s estimate), 

G = a knowledge index that reflects achievement (i.e., the correlation between the 

predicted levels of the criterion and the predicted judgments), and 

C = an un-modelled knowledge component that signifies the correlation between 

the variance not captured by the environmental predictability component or the 
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consistency component (i.e., the correlation between the residuals from the above 

predictions). 

Figure 1 shows the components of the LENS model with reality on the left-hand 

side and judgements on the right. 

 

 

Figure 1 LENS Model (Karelaia et al, 2008) 

The LME is: 

𝑟𝑎 = 𝐺𝑅𝑠𝑅𝑒 + 𝐶√1 − 𝑅𝑠
2√1 − 𝑅𝑒

2 

In essence, if we ignore C as generally small, the model determines that 

achievement (accuracy) of judgement increases linearly with knowledge, 

predictability and consistency. 

The LENS model is useful in modelling human decision making, but when we 

introduce business rules, we have another dimension. We potentially have three 

outcomes: the human decision, the rules decision and real outcome. We can 

replace the human decision maker by the rules and have a LENS model that 

consists of rules decision and outcomes, or better still, have add an extra 

dimension and have all 3 in one model. The question then is to determine which 

decision to choose. Whilst the LENS model gives us information about the overall 
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accuracy of either decision on a specific case, it does not give any indication on a 

case-by-case basis. As such, we must extend the formulation such that: 

i. We add the business rules as an extra dimension to the model and create a 3-

Dimensional LENS mode 

ii. We include a case-by-case calculation of the accuracy of the human decision 

maker and the rules to facilitate choice between the two  

As final point, in the case where the decision is binary or integer, linear regression 

may not be the most effective method of modelling and we may need to consider 

other methods. 

2.10.3 Decision Support Systems (DSS) 

Computers can be used to help or support the human decision-making process. 

These are primarily concerned with data into actionable information (extraction, 

synthesis, calculation, and presentation). They can also assist human decision 

makers with further data, analysis and ‘what-happens-if’ analyses. For example, 

taking a company’s order book and sales prospects across different divisions, 

combining that with a projection of costs to calculate profit and revenue 

projections under different scenarios. The human decision maker can then use 

their judgment to decide on the most likely scenario(s) and associated outcome(s)  

and make decisions accordingly.  

According to Sprague (1980), the characteristics of a DSS are: 

i. DSS tends to be aimed at the less well structured, underspecified problem that 

upper level managers typically face. 

ii. DSS attempts to combine the use of models or analytic techniques with traditional 

data access and retrieval functions. 

iii. DSS specifically focuses on features which make them easy to use by non-

computer-proficient people in an interactive mode; and 

iv. DSS emphasizes flexibility and adaptability to accommodate changes in the 

environment and the decision-making approach of the user. 

Decision support is a mature technology and has become business as usual in 

many sectors (Alter, 2004). More sophisticated systems support multiple criteria 

decisions (Wallenius, 1992) that involve financial, societal, and environmental 

considerations.  
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Decision support systems use a knowledge base (as in 2.7) and models to process 

situational information, forecasts or scenarios (inputs) and create outputs, such 

recommendations or options with implications such as costs, resources, or 

customer impacts, for example. 

There is a degree of overlap between business rules and a DSS. For example: 

• A DSS may consist wholly, or in part, of rules 

• Business rules may provide inputs to, or act on the outputs of, a DSS. For example, 

there may be a rule that requires decisions with specific implications to be 

approved by more senior staff. Or there may be rules that mandate or limit the use 

of DSS certain situations 

• DSS may provide qualitative or quantitative information on the reliability or 

accuracy of its outputs or advice. However, there is no indication that current DSS 

platforms include models of the human decision maker, or the relative merits of 

human versus DSS decisions. These models may be a useful capability and use 

some of the ideas from this thesis. 

• DSS may incorporate optimisation technology (Wallace, 2020). This is typically 

situational optimisation (2.4) as in many other optimisation applications. 

There is nothing to prevent optimisation of the rules within a DSS. The value of 

the economic or other outcomes over a range of historical or expected situations 

can be maximised by choosing the best set of rules. On the contrary, a collection 

of optimised business rules that incorporates the human decision maker could be 

viewed as a DSS. 

 Cost of Information 

There is a cost of obtaining and processing information. This cost has been 

incorporated in extensions to decision tree learning (Lomax et al., 2013). There is 

also a cost in terms of transaction abandonment (or cart abandonment with on-

line transactions) where there is a tendency for customers to give up as the amount 

of information requested, or the time taken, increases. Most of the research 

focuses on causes (Xu et al., 2015) and prevention (Zimmerman et al., 2016), and 

concentrates on the overall rate (van der Geest et al., 2016). 
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To support our analysis of the process, we require to model the relationship 

between the time or amount of information requested and the proportion of 

customers that give up or abandon the transaction. This relationship is an area that 

has been neglected.  

 Parallels with Manufacturing and other Non-Service Industry 

As previously stated, manufacturing has typically focussed in business processes 

rather than business rules per se. Take up of optimisation techniques is widespread 

with critical elements (Lawler et al., 1993): 

2.12.1 Long- and short-term demand forecasting 

Demand forecasting is a vital element of any forward-looking optimisation of 

decision support. Techniques have been developed to combine stochastic and 

deterministic variations in demand that could be applied to the services sector 

(Aburto et al., 2017). 

2.12.2 Optimisation 

There are three basic levels (Bilgen et al, 2004).  

• Strategic optimisation: process design and investment in resources.  

The key issue here is to match equipment capacity to the anticipated long-term 

demand. This level includes investment and capacity planning.  

• Tactical optimisation: production planning and resource allocation.  

At this stage, the rates of production are decided, and production is allocated to 

the most appropriate, efficient capital and human resources.  

• Operational optimisation: production scheduling.  

This deals with short-term variations in demand and schedules production to meet 

current and short-term anticipated demand. 

The provision of services consists of a series of related tasks that are carried out 

to satisfy the needs of a customer (or customers). We can draw some similarities 

between these issues and the services sector. There are even some more profound 

similarities. For example, in manufacturing, there is the so-called lot-sizing 

problem which is to determine the optimal production run considering start-
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up/changeover cost and the cost of holding stock. If lots are too small, then start-

up/changeover costs are too high; too large and more stock is produced, and the 

inventory cost is too high. There is a similar problem in the services sector where 

the same customer service staff can serve customers, act in the call centre and 

process paperwork in the back office. Demands for all three can vary and to be 

efficient staff allocation is based on demand or expected demand. There are also 

changeover costs as staff shut down one activity and start another. This problem 

is like lot-sizing; shorter periods enable maximum flexibility and higher overall 

efficiency but make them too short, and changeover costs become unacceptably 

high. 

The transport problem, which is a case of disruption management, is typically 

solved by using optimisation techniques to determine a new schedule. This 

process is complicated and expensive and, like any optimisation problem, heavily 

dependent on the availability of large amounts of accurate data. Rule-based 

approaches have been used in timetable generation, particularly for conflict 

resolution, and these could be developed further to inform the rules that transport 

system controllers (implicitly) use to resolve disruptions to create greater 

consistency. The simple example could be used as a way to manage delays in the 

system. 

 Research gap  

Business rules can be viewed as constraints around a process (such as health and 

safety legislation, company rules, etc.) but they are also embedded in activities 

and tasks (what to do next with an insurance claim form with a particular set of 

attributes). A typical BPO approach would be to model the insurance claim 

process would have a node called assess the claim and maybe three outputs: reject, 

refer or approve. A further assumption would be the proportion of claims that 

progress to each of the three nodes. This process can be optimised by having only 

the essential tasks in each activity, having the minimum number of claims 

processors and underwriters so that claims are processed in the required time, 

queues are manageable, and costs are contained. But a significant consideration 

in insurance is to pay only those claims that are valid, that is; not to pay when you 

don’t have to/more than you have to, and not to reject valid claims that would 

upset customers and damage the brand. Ideally, every claim would be scrutinised 
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in detail by an underwriter, but this is overkill and too expensive. So, we need 

rules that determined which direction each claim takes through the system. To 

properly optimise the process, we must optimise these rules. 

BRO, therefore, can be considered an essential part of BPO whenever there is 

variation in inputs or externalities that impact on costs or profits. The simple 

example, above, demonstrates that it is not always possible to optimise the process 

first and then the rules. BPO has to make assumptions about the proportion of 

claims that require underwriting; optimising the rules may results in a different 

proportion, invalidating one the key assumptions. 

Waiting time (queueing and servicing time) is another consideration. The rules 

optimisation problem must include waiting time and the cost and availability of 

resources. A subsidiary issue is how to manage a queue; what rules do we apply 

when selecting the next customer or case to service. 

Several issues suggest that there is a significant research gap that needs to be 

bridged if we are to address the business rules optimisation problem that has been 

identified. The current state of the art is: 

i. Optimising business processes without considering rules 

ii. Rules that seek to emulate or replace the human expert 

iii. Scheduling manufacturing tasks to minimise make-span 

iv. Queuing without considering business rules 

There is a requirement to bring these together to maximise the opportunity to 

optimise rules around processes, classification AND queue management, and 

there are some other issues around the application to the services sector. 

While consistency is valuable in the services sector, it is a matter of experience 

that all customers are different, and there are some types of interactions that are 

missing from the manufacturing scenario. For example, we have complex tasks 

such as: 

i. choosing a product or service for a customer 

ii. qualifying and accepting a customer for a loan or insurance policy 

iii. dealing with complaints 
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In each of these, as in every business activity, cost and time are essential. But so 

is getting the right result, such as accepting all the customers we should for 

insurance cover at a reasonable price; spending enough time and money (but not 

too much) to keep or win back an unhappy customer. 

Table 3 summarises the known gaps in the relevant fields of research. 

 

 

Research Area 

Requirement 

Business 

Process 

Optimisation 

Business 

Rules 

Flexible 

Job Shop 

Scheduling 

Considers how much 

information (input) is 

required 

No No No 

Considers decisions about 

each customer/task 

No Yes No 

Considers how individual 

customer cases flow through 

a process 

No Yes No 

Considers the quality and 

cost of decisions 

No No No 

Considers queues and their 

impact 

Yes No Yes 

Manages queues Yes No Yes 

Optimises queue 

management 

No No Yes 

Considers judgement and 

levels of expertise 

No No No 

Table 3 Research Gaps 

There is an additional optimisation problem that can be posed. Once we have 

optimised the rules (for a population of customers), we can still optimise other 

issues dynamically. These include: 

For a given resource allocation, we develop ways to adjust the rules, dynamically, 

so that we will make the best use of them. 

Methods to manage the queue of cases such that we have a sufficiently large 

sample to make meaningful rule adjustments without causing undue waiting time. 
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 Summary  

There are two ways to view previous research: 

i. The research has addressed some of our research questions 

ii. The research provides useful tools to address the broader questions 

BPO addresses the wider question of creating optimal business processes, but 

largely ignores business rules. When it does allow for them, it models their impact 

but does not identify rules as a candidate for optimisation. 

Business rules research covers many aspects from creation, operation, 

maintenance and impact. About impact, there is a recognition that rules impact 

key performance indicators, and they can be used to optimise research allocation. 

But there is no attempt to optimise the expected value of profit, revenue or some 

such other financial measure. While there is the consideration of allocation of 

work to humans, it is not in the context of the comparative advantage of the rules 

or the human making the decision. 

Job shop scheduling, or FJSS, is like the allocation rules problem but is largely 

driven by efficiency or time improvement; quality of decision relating to the 

handling of different tasks is not a consideration. 

The LENS model was developed to understand human judgement and has been 

widely applied. In our research we need to extend it to include the decisions made 

by human experts and rule systems. 

It is interesting to note that human decision making can be considered as a set of 

logical tests – such as comparing attributes to limits – and weighting the attributes 

and testing the sum (or score) against a certain threshold. At the same time, the 

LENS model using linear regression. Both methods have the advantage of being 

easy to understand. As such, building rules that consist of logical tests or 

regression is a sensible starting point for application. These sorts of rules are also 

common within commercial and industrial implementations of business rules. 

In conclusion, each of the areas above provides useful building blocks and tools 

to address the current research questions, but of themselves, do not address the 

issues directly. 
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3 SIMPLE EXAMPLES 

 Introduction 

In this section, we look at some (deliberately simplified) examples of service 

business processes that are (or could be) controlled by business rules. We choose 

an objective function in each instance and an example rule and show how the choice 

of a parameter, such as an upper or lower limit, is an optimisation problem. We also 

relate these simple examples to some of the research questions and hypotheses. The 

objective of this section is to show that, even in the most simplified of situations, 

there are opportunities and potential benefits of business rule optimisation. 

The service business processes are credit approval (the case study), debt recovery 

and transport management. In the first two examples, the objective function is 

related to profit and can include the option to refer the case to a human decision 

maker. In the third example, the objective is customer satisfaction. As such, they 

illustrate the point that optimisation can deliver more than just financial benefits. 

The essential learning is the importance of expressing the expected value of profit 

or revenue (or indeed, customer satisfaction) as a function of the parameters within 

the rules. This expected value is the objective function of the optimisation problem, 

and the parameters are the optimisation variables. 

 Business rules in the services sector 

Business rules in the services sector are about guiding decisions. As information 

is processed, decisions are made, and further information is generated. For 

example, a customer enters a bank and asks for a loan. Information is gathered 

about the customer and what they want, and the result of analysing that 

information other information is generated, e.g., the customer is accepted for a 

loan of a particular value with specific repayment profile, etc. The correct 

application of rules enables consistency and management by exception. For 

example, a skilled and experienced person is not required to be present at every 

consultation; he/she only needs to engage where their judgment or approval is 

essential. 
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 Research Questions & Hypotheses 

We have created simple problems to illustrate some of the research questions and 

one hypothesis. These also set the scene for the rest of the thesis, 

We have: 

RQ1 How is the optimisation problem to be defined? 

RQ2 How should the rules be optimised? 

RQ5 How can we incorporate the human expert to best effect? 

H1 The underlying hypothesis is that it is possible to optimise any set of business 

rules in the sense that they give the best results over a defined range of situations 

(either determined by analysis of historical data or forecasts). 

In these examples, we illustrate that if we have information on the following,  

• Gains from making a correct decision 

• Losses from making an incorrect decision 

• Probabilities that decisions are right and outcomes are good 

we can create a set of rules that maximise the expected value. 

 Loan Application Example 

In many situations in the service sector, actions are based on information. This 

information is either already available or can be elicited from a customer as part 

of the interaction. A simple example is requesting a loan. The customer can choose 

from several options (length, secured or unsecured, interest only period, etc.). On 

initial application, some decisions can be automatically made either by an 

unskilled worker or the back end of a website using business rules. The possible 

outcomes are decline, refer (to a more skilled and experienced staff member) or 

approve. The business rules will use information (such as the customer's income 

and credit history), combinations of information (such as the ratio of loan to the 

customer's income) to decide in which category the customer should be. Figure 3 

is a simple diagram which considers two factors: loan amount and customer 

income. The rules have an impact on the business in several ways. Consider the 

decline/refer interface. If the rule is too conservative, then more customers are 

turned down leading to a loss of business and customer unhappiness; if the rules 

are more aggressive, then more customers are referred (which costs money) and 
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may ultimately be declined. Similar considerations apply to the refer/accept 

interface. So even in this simple case, there are trade-offs and an optimisation 

problem to be solved. 

 

Figure 2 BUSINESS RULES FOR LOAN APPLICATIONS 

The business rule illustrated in Figure 1 may be stated as follows: 

IF (loan/income) < x1 (accept limit) THEN approve = true 

ELSE IF (loan/income) < x2 (refer limit) THEN refer = true 

ELSE decline = true 

To treat the loan acceptance problem as an optimisation problem, we need some 

further information such as: 

• the probability of default as a function of loan value/income (x) 

• the losses associated with default. For example, loss of interest or capital and cost 

of foreclosure 

• the additional cost of referring an application 

• the value of a customer to the organisation, that is, expected profit 

• the distribution of income/loan value across all customers 

Let us assume (and these are straightforward assumptions for the sake of 

illustrating the point and obtaining an analytic solution) that: 

• Cost of default per customer = D 

• Cost of referral per customer = R 

• Potential value of customer = V  
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• x is the loan/income ratio, and x is distributed uniformly (for the sake of 

simplicity) over [0, 10]. For a mortgage, the loan is generally greater than income 

and a typical value is between 3 and 5 

• P(default) = x2 / 100 (probability of default increases to unity with x = 10). Note, 

in practice the probability of default would be more complex (and be related to 

the normal distribution, for example), but we choose this for computational 

convenience.  

• Referral reduces the rate of default by 75% and rejects 50% of applications. Again, 

this is a simplification; referral will reject applicants, and the remainder should be 

less likely to default. 

• The objective is to maximise revenue. 

We have to choose parameters, x1 and x2, for the interfaces between rejection and 

referral. The cost function is made up as follows: 

First, we calculate the expected value of customers automatically accepted (since 

we are assuming a uniform distribution). This is the fraction with loan to income 

ratio less than 𝑥1multiplied by the value 

    𝑣𝐴 = 𝑉.
𝑥1

10⁄  

Now we calculate the expected value of customers accepted after a referral 

process that rejects 50%. This is the fraction of customers with a loan to income 

ratio between 𝑥1and 𝑥2 multiplied by the net value 𝑉 − 𝑅 and the 50% acceptance 

rate. 

  𝑣𝐵 = (𝑉 − 𝑅). 1
2⁄ .

(𝑥2 − 𝑥1)
10⁄  

Finally, we calculate the expected cost of defaults (based on our assumed default 

probability relationship and the reduction in default rate of the cases referred). 

This is the default cost 𝐷 multiplied by the expected faction of defaults between 

0 and 𝑥1 using the original probability of x2 / 100 and the expected fraction of 

defaults between 𝑥1and 𝑥2 using the probability that has been reduced by 75% (x2 

/ 400). 

 𝑐 = 𝐷 {∫ 𝑥2/100
𝑥1

0
𝑑𝑥 + ∫ 𝑥2

400⁄ 𝑑𝑥
𝑥2

𝑥1
}  

We then calculate total value minus costs 

  𝐹 = 𝑣𝐴 + 𝑣𝑏 − 𝑐 
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=  𝑉.
𝑥1

10⁄ + 𝑣𝐵 + (𝑉 − 𝑅). 1
2⁄ .

(𝑥2 − 𝑥1)
10⁄

−  𝐷 {∫ 𝑥2/100
𝑥1

0

𝑑𝑥 + ∫ 𝑥2

400⁄ 𝑑𝑥
𝑥2

𝑥1

} 

𝐷𝐹

𝑑𝑥1
=

𝑉

10
−

𝑉 − 𝑅

20
− 𝐷(

𝑥1
2

100
−

𝑥1
2

400
)  

𝐷𝐹

𝑑𝑥2
=

𝑉 − 𝑅

20
− 𝐷𝑥2

2/400 

 

With the derivatives set to zero, the location of a stationary point is given by 

the equations: 

 𝑥1
2 = 20(𝑉 + 𝑅)

3𝐷⁄  

 𝑥2
2 = 20(𝑉 − 𝑅)

𝐷⁄  

Intuitively these make sense. If the value of D increases, both parameter values 

go down; if V increases, both parameter values go up, and if R increases the gap 

between them decreases to the point where there is no gap when R = V/2. With V 

= 15, R = 1 and D = 10, the maximum value is achieved when 𝑥1 = 3.27 and 𝑥1 =

 5.29 

This simple example illustrates the general approach of finding the measure of 

system performance as a function of the parameters within the rules, then finding 

the best values for these parameters. 

 Debt Waiver Example 

Another example that creates an optimisation problem is one of debt waiver. Data 

usually is available on the recovery rates of debts of various sizes and the cost of 

their recovery (administration, legal fees, etc.), at the intersection of this line and 

the recovery cost, we can read off the value of the smallest debt that is economical 

to enforce. This minimum level is then the point, below which, debts would not 

be pursued; they would be waived. 
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Figure 3 DEBT WAIVER 

We can also incorporate the human decision maker in this example by adding an 

extra step. If the estimated amount recovered is higher than the cost of recovery 

by only a small margin, the case may be reviewed (by a human expert) before we 

proceed. The criterion for review would be determined by the difference between 

the probability that the debt would not be recovered (even if we pursued it) 

multiplied by the cost of recovery compared to the cost of a review. This criterion 

implicitly assumes that the expert is always right. Still, we can allow for that, and 

consider the probability that the expert is correct, or incorrect, in his or her 

judgement.  

 Transport Rules 

It is quite common in transportation systems to have rules governing disruptions, 

e.g., a train is late or disabled, or conflict, e.g., two trains requiring the same track 

at the same time (D'Ariano, 2004). A typical problem is what to do when train A 

is late, and there is a connection to another train, B. Typically B waits for up to a 

maximum cut-off (c) for A where 0 < c < f, where f is the time until the departure 

of the next train. 

The trade-off in choosing c is the inconvenience to passengers in train B, for 

waiting, against the inconvenience of passengers in train A for having to wait for 

the next train. 
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Figure 4 Transport Rules 

If we wish to be fair to passengers in A and B, then the best value for c depends 

on the distribution of delays to A and the interval between trains, f. If we assume 

that the distribution of delays is uniform between [0, d], we have the following 

equations. 

The expected additional wait for passengers in A when they have to wait for the 

next train is the probability that the delay exceeds cut-off times the wait for the 

next train. 

Expected (additional delay A) = 𝑓 . (𝑑 − 𝑐)/𝑑  

The probability that the delay is up to the cut off is 𝑐/𝑑, and the expected value 

of such a delay is 𝑐/2. Therefore: 

Expected (additional delay B) = 1 2⁄ . 𝑐2

𝑑⁄  

For equal inconvenience, we have: 

 (𝑑 − 𝑐). 𝑓 = 𝑐2

2⁄ ⇒  

𝑐2 + 2𝑐𝑑 − 𝑑𝑓 = 0 

This is a quadratic equation and can be solved for c. For example, when d = 10 

mins and f = 20 mins, c = 8.33 mins, close to the maximum delay anticipated.  

Also, there may be benefits to considering the number of passengers in trains A 

and B to make the rule genuinely fair. 

In this example, the role of the human decision maker is somewhat different. It 

may be limited to making a decision only when the ratio of A to B is outside some 

set limits and requires an element of judgement.  
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 Other Examples 

There are many other examples of rules that affect the performance of an 

organisation. For example, in public services, we have the concept of triage where 

cases come in, and the problem is to determine the urgent cases. This idea is 

particularly important in health and social service, such as child protection. For 

example: 

• In health, there are limited resources, and the arrival of cases is not uniform. As 

such, if each case were attended to as they arrive (first come, first served), the 

waiting time would vary – sometimes significantly. Extended wait times could be 

harmful or indeed fatal for some cases. 

• Child protection and social services (such as domestic violence) are similar. Cases 

that are considered to be high risk need identification quickly so that that action 

can be taken promptly. Otherwise, we create an unacceptable probability of harm, 

which is related to both risk and time exposed to it. 

But a good definition of urgent requires a rule and parameters. These can be 

determined from historical data (or forecasts) of queueing times and the 

proportion of cases that are exposed to risk by waiting. Still, risk reduction must 

be balanced against the additional resources required to triage each case, even 

though a large proportion may go back into the queue and require processing later. 

Also, we must limit the number of cases that are classified as urgent if that would 

overwhelm the available resources. 

There is also the issue of fluctuating demand. Rules must remain relevant even 

when demand is changing. 

 

3.7.1 The Additional Optimisation Challenge 

As mentioned above, work has been done in business process optimisation. That 

involves the structure and order of tasks to minimise time, minimise cost or 

maximise throughput. The critical feature in the examples above is probability. In 

the first, it is the probability that a customer, if pursued, pays up. In the second, it 

is the probability of default, and in the third, it is the probability of delay. Where 

there is a range of customers, or requirements, or external factors that impact the 

business problem needs to be considered in the optimisation of rules. Later, in 
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Chapter 5, we consider optimisation of expected values, and in Chapter 8, we 

apply this to a real problem with real data. 

3.7.2 Real Life Problems 

Real life problems are more complicated. For example: 

In the loan example, there will be more than one criterion. Credit history or value 

of the security may also be considered (FDCI, 2007). The interest rate may vary 

with the customer’s credit rating or size of the loan, affecting affordability.  

With debt waiver, there may be additional rules (also subject to optimisation) that 

govern recovery and affect the cost. For example, it is not unusual for debts above 

a specific size to be subject to mandatory legal action 

In transport, there are additional complications. People travel in both directions, 

there are knock-on effects of delays around the network, and the concept of 

fairness may be difficult to sell to customers (Visentini, 2014). 

The order in which rules are applied is also important. For example, servicing 

customers costs money so finding out sooner rather than later that a customer does 

not qualify for a loan is an advantage 

The rules that need to be applied to minimise cost or maximise profit may not be 

evident or apparent. If we have not explored every possible rule, in every possible 

combination, then we cannot be sure that we have the best set. However, what can 

do is optimise the following variables that make up the CRA rules: 

• The choice of attributes that we use 

• Choice of operators and constants in any calculations 

• The choice of logical tests, and their application to the attributes (reasoning) 

• The allocation decisions 

3.7.3 Generalisation 

These examples do illustrate some crucial issues for rule optimisation: 

• Modelling the impact of (changing) a rule on revenue, costs or customer 

experience 



Chapter 3: Simple Examples 

76  Alan Roy Dormer - August 2020 

• Optimise the expected value of the objective function. This value can be based on 

probability distributions (as in loan approval) or historical information (as in debt 

waiver).  

• The existence of, and a solution for, an optimisation problem, even simple 

examples 

• The concept of rules that can decide or that can refer, and the cost and impact 

making the decision using a rule versus the consequences of referral, a different 

quality of decision and associated cost 

 Summary 

We have presented some simplified (but real world) examples where the choice 

of business rules has a real impact on the financial or customer service 

performance of an organisation. In all cases, there is an optimisation problem 

where we are maximising an expected value; and probability is a key element. 

The rules must work over a range of inputs and responses, and when we optimise 

them, it must include probability distributions. The example problems relate to 

some of the research questions, and we have shown that in each case: 

• There is an optimisation problem (RQ1) 

• There is a solution (RQ2) 

• We can optimise a set of rules (RH1) 

Also, in the case of the credit approval problem: 

• We can incorporate the idea of referral to a human expert that has an additional 

cost and the ability to decide between applicants (as in the loan approval example) 
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4 SERVICE BUSINESS 

PROCESSES 

 Introduction 

In this chapter, we identify a wide range of service business processes that would 

use CRA rules, and to which our proposed problem statement and solution 

methodology will apply. We recognise the opportunities for rules, executed by a 

machine, and the judgement of human experts to work together in a framework 

and determine that four problems arise when considering business rules and 

human decision makers. These are: 

i. The optimal quantity of information to be collected, and in what order (the feature 

selection problem) 

ii. The CRA problem – finding that set of rules that makes calculations, reasons and 

then direct the cases to the machine or human expert for the best outcome 

iii. Resource determination – methods to determine the right number of experts for 

any given caseload and case-mix 

iv. Operational adjustment – methods to dynamically modify the rules when the 

caseload or case-mix changes 

We first look at a range of service business processes that make decisions based 

on information provided by individuals (such as customers, patients and 

claimants). Based on this, we create a set of key concepts and a model of the 

process that includes the benefits of making correct decisions, the costs of making 

bad decisions and the cost of gathering and processing information. 

 Example Business Processes 

We begin by analysing the characteristics of service sector processes that would 

use CRA rules. These include: 

• Loan/insurance application 
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• Insurance claim 

• Making an investment 

• Entering a contract  

• Deciding on a merger or acquisition 

• Staff recruitment 

• Diagnosis 

• Fault finding 

• Sales 

• Child protection 

• Fraud detection 

• Visa application 

We need to find a way to express the essential elements of each process so that 

we can build a model process that will serve as a framework for business rules 

optimisation.  

There are common elements:  

4.2.1 Actors 

i. The applicant (or promoter). This is the person (or organisation) who (that) 

provides the information in the first place. He/she/it may also be responsible for 

providing further information. 

ii. The decision maker(s), which are essentially agents (machines and people) that 

follow rules and processes, and make judgements 

iii. The agents involved. An underlying assumption here is that agents may be 

machines or humans. In machines we can implement any form of AI; in humans 

we must characterise their decision making. Still, we cannot replace it with a 

machine (otherwise we would, on the grounds of cost saving and consistency). 
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4.2.2 Financial 

i. The upside: the benefit (or saving) when a decision to proceed results in a good 

outcome. For example, the other party keeps to the terms of the contract; 

customers pay on time, in full; customers do not defraud, etc. This could also be 

expressed in non-monetary terms, such as a person gets better or returns to work. 

ii. The risk, which reflects the reality that at the point of making a decision, we don’t 

know how things will turn out 

iii. The downside, which is the cost of a decision to proceed that results in a bad 

outcome. 

iv. Information cost.  For providing or acquiring information, that can be incurred by 

the applicant, the decision makers, or both.  

v. The processing cost, which is generally incurred by the decision makers in paying 

for people to read and assess the information. 

4.2.3 Information 

i. The information set that supports the decision. This is made up of attributes that 

fall into categories or are ordered (real, continuous).  It can be safely assumed that 

this can be digitised and machine readable, and it is not required that the 

information is completely accurate.  

ii. Historical data on decisions, and good and bad outcomes, which can be used as a 

training set or to determine the joint probability distribution of good and bad 

outcomes. This can also be used to characterise the ability of humans. 

4.2.4 The Decision 

i. The decision itself, which is often ultimately binary (accept or reject) but the rules 

themselves determine choices such as accept, reject, refer and request more 

information. Some business decisions require clear choices to be made. Medical 

diagnosis and fault finding requires a clinician (or technician) to choose tests (or 

investigations) based on the symptoms. There is another slant which is to 

accept/proceed with a condition. For example, we would buy at another price; we 

would hire at another salary. This is a dual problem as far as we find the highest 

purchase price/salary that results in a decision to accept (see Chapter 16 for an 

explanation). 
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Tables 4-7 below show service business processes, the characteristics of which 

have been elicited from industry professionals based on their knowledge and 

experience. We have performed a process mapping (Hunt, 1996) on these 

processes. The objective is to understand the similarities between the case study 

example (loan application) and a range of other business processes that may 

appear different but do, in fact, have the same characteristics. 

 

Service 
Business 
Process 

Loan/Insurance 
Application 

Insurance Claim 
Purchase or 
Investment 

Decision 
Applicant Customer Policy holder Internal champion 
Decision Maker Underwriting Loss adjuster Management 
Upside Margin from new 

business 
Pay claim and make 
customer happy 

Financial benefit of 
making purchase 

Risk Customer does not 
behave as expected 

Policy holder does 
not behave as 
required or expected 

Purchase does not 
deliver on 
expectations 

Downside Cost of default or 
fraud 

Paying unnecessary 
claim 

Cost of 
item/service 

Decision Accept/reject Pay/decline Proceed/don’t 
proceed 

Agents Customer service 
Agent 
Underwriter 

Customer service 
Agent 
Loss adjuster 

Purchasing Agent 
Purchasing 
executive 

Information  Application form Claim form Business case 
Information cost Customer time 

Customer may give 
up 

Customer may not 
provide information 
diligently 

Time to prepare a 
case 
Champion may be 
put off/give up 

Processing cost Reading application 
form 

Reading claim form Reading business 
case 

Historical data Past cases of 
customers accepted 
with outcomes 

Claims made and 
accepted/rejected 

History of purchase 
decisions with 
outcomes 

Source Head of Risk Secured 
Lending 
ANZ Bank 

Chief Risk Officer 
AIA Insurance 
Australia 

Partner  
Access Capital 
Advisers 

Table 4 Loan, Insurance and Purchasing 
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Service Business 
Process 

Entering into a 
Contract 

Merger or 
Acquisition 

Recruitment 

Applicant Salesman Internal champion Interviewee 
Decision maker Contract approval Board Interview panel 
Upside Proceeds of sale Increased revenue 

and profit 
More effective team 

Risk Contract fails to 
deliver as expected 

M&A fails to 
perform as 
expected 

Employee does not 
perform as expected  

Downside Up to full contract 
value 

Up to full 
acquisition cost 

Salary and training 
costs 

Decision Proceed/do not 
proceed 

Proceed/do not 
proceed 

Hire/do not hire 

Agents Contract manager 
Sales manager 

CEO 
Board 

HR 
Senior manager 

Information Contract terms and 
conditions: 
expected margin 

Due diligence 
Market information 

Application form 
Interview 

Information cost Preparing summary 
of key terms 
Opportunity cost 
may be too high 

Preparing summary 
of key terms 
Opportunity cost 
may be too high 

Too many questions 
may put off 
potential applicants 

Processing cost Reading briefing 
documents 

Reading briefing 
documents 

Reading application 
Conducting 
interviews 

Historical data Past performance of 
investments 

Past performance of 
M&A 

Experience with 
hiring new 
employees 

Source Head of 
Procurement 
Hitachi 

Chairman 
Australian Venture 
Capital Association 

Manager 
Hays Specialist 
Recruitment 

Table 5 Investment, M&A and Recruitment 
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Service 
Business 
Process 

Medical 
Diagnosis 

Fault Finding Sales 

Applicant Patient Equipment or system Salesman 
Decision maker Health provider Maintenance 

company 
Buyer 

Upside Patient lives a full 
life 

Machine works well Make a sale 

Risk Patient does not 
respond as expected 

Fault cannot be fixed Product offered 
does not meet 
customer needs or 
is not competitive 

Downside Patient lives an 
impaired life/dies 

Machine inefficient or 
ineffective 

Sale is not made 

Decision Patient has 
condition/doesn’t 
have condition. 

Fault yes/no Buy/not buy 

Agents Doctor 
Specialist 

Diagnostic computer 
Technician 
Engineer 

Pricing 
software/price list 
Salesman 
Sales manager 

Information Symptoms 
Answers to 
questions 
Tests 

Sounds 
Smells 
Visuals 
Measurements 

Customer 
information 
Dialogue 
Body language 

Information cost Patient/clinician 
time 
Cost of tests 
Side effects 

Technician/engineer 
time 

Time to meet 
customer 
Creating proposals 

Processing cost Clinician time Technician/engineer 
time 

Meetings 
Reading proposals 

Historical data Patient/hospital 
records 

Manufacturers data 
Machine history 

Sales records 
Dealings with 
potential customer 

Source Chief Medical Officer 
Monash Health 

Asset Manager 
Goulburn Valley 
Water 

Manager 
Hays Sales and 
Marketing 

Table 6 Medical Diagnosis, Fault Finding and Sales 
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Service Business 
Process 

Child Protection Fraud Detection Border Control 

Applicant Social worker (on 
behalf of the child) 

Transaction 
processor 

Visa applicant 

Decision maker Child protection 
agency 

Service provider Immigration 
authority 

Upside Child is safe Fraud is prevented Visa is issued to 
traveller with no 
adverse 
consequence 

Risk Child may be 
subject to harm 

Fraud or intention 
to defraud 

Traveller intends to 
break the rules 

Downside Child is harmed Fraud occurs Traveller breaks 
the rules 

Decision Further action? Is there a fraud? Issue visa or refuse 
Agents Social worker 

Allied health 
professionals 

Computer program 
Fraud assessor 

Computer program 
Immigration 
officials 

Information Case notes 
Interviews 

Transactions Application form 
 

Information cost Visits 
Interviews 

Automatically 
generated 

Interviews 
 

Processing cost Meetings 
Case conferences 

Checking Processing 
applications 

Historical data Previous cases Payment history 
Buying patterns 

Case histories 

Source Research Director 
Dept Education and 
Early Childhood 
Development 
Victoria 

EGM Privacy, 
Identity and Cyber 
Commonwealth 
Bank Australia 

Director 
Dept Immigration 
and Citizenship 
Australian 
Government 

Table 7 Child Protection, Fraud and Border Protection 

Looking at this list, we can draw some conclusions: 

i. The final decision may be binary or integer. A decision to proceed, or not, is 

binary. A diagnosis may be a choice from several options. 

ii. Integer decisions are still within the scope of CRA rules as the rules can consist 

of multiple paths and reach numerous conclusions. 

iii. It is difficult to define an objective function when the upside and downside are 

not in the same units. For example, upside may be health, downside maybe illness 

but diagnosis costs are in $. 

iv. The practical difficulties that occur when primary inputs are not digital or easily 

digitised. These are particularly important with information collection. For 
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example, responses to open ended questions are more difficult to process and can 

be replaced by options or closed questions.  

Choosing that set of business rules to maximise the profit of an organisation that 

is processing cases, with each requiring a decision, needs an understanding of the 

business and its business processes. We assume that the cases are processed 

manually by staff of different costs levels, and levels of expertise. The result of 

the optimisation will include the rules, anticipated profit and resource profile of 

the organisation. 

In the case study, we confine our attention to business problems where the 

decision is binary (that is, at the end of the process, there are only two options). 

There are, however, many paths that can be taken, for example decisions made by 

different means or actors. This is for two key reasons: 

• The description and analysis of the problem is more straightforward yet 

extensible by virtue of (i) and (ii) above 

• The data set that we have is one where the final decisions are binary so 

that we can test our ideas fully on this data. 

 Key Concepts 

We have focussed on CRA business rules that are commonly used in the services 

sector to make decisions or process cases. We have selected a case study in loan 

approval to realise the problem definition and use real data to demonstrate 

practicality and benefits. 

To better understand the business rule optimisation problem, we give an overview 

of important concepts: 

i. We have an organisation that is processing cases that require decisions to be made 

around acceptance and rejection. A set of information characterises each case. 

Acceptance enables the organisation to enter some sort of arrangement that 

includes the opportunity to make a profit or a loss. At the time of entering the 

arrangement, it is not known whether a profit or a loss will result. For example, 

an insurance company can accept a customer that will pay premiums, but that may 

also make a claim. An engineering contractor may approve a design that leads to 

payment, but that design may have a flaw that results in liability later. 
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ii. While the overall process may appear straightforward - a case comes in and is 

either rejected or accepted - there are different actors in the process and different 

paths through the process. The routes through the process are determined by 

business rules and by the actors applying both rules and judgment. The rules and 

judgments are applied to information provided with a case which may be complete 

or incomplete. For example, an insurance company will have a website that 

applies some rules and underwriters who can use their judgment (again within an 

area determined by the rules). In an engineering company, the sign-off level for a 

design may be determined by rules acting on the size or nature of a contract. 

iii. The optimisation questions concern design of the process. This includes the logic, 

limits, and parameters in the rules, the extent of automation, and the application 

of the rules. The objective is to use all the variables (decisions) at our disposal to 

maximise the anticipated net profit which is the profit less the anticipated losses 

or claims associated with the approval process and the cost of the approval process 

itself. 

 Credit Approval 

We now turn our attention to the specific problem in our case study, credit 

approval, create a model business process to support rule-based and human 

decision making. We conclude that the general problem, and that of our case 

study, consists of four sub-problems: information required, rule-building, 

interaction with human decision makers and operational adjustment. The first 

three are examples of off-line optimisation where we decide upon information, 

create, and optimise the rules and human interaction using historical or forecast 

data. An operational adjustment is a form of on-line optimisation where the rules 

are adjusted based on the situation. 

There are four basic problems: 

i. The optimal quantity of information to be collected, and in what order (the feature 

selection problem). With no information, we have grounds upon which to decide, 

so we can say – up to a point – that the information we have, the better decision 

can be made. However, if we have humans processing information, they need time 

to digest and assess, and this costs money. In addition, potential customers may 

find it intrusive and tiresome if we ask for too much and may decide to discontinue 

or abandon the transaction. This is a personal characteristic and not predictable on 
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a case by case basis, so we should be mindful of the likelihood that this will 

happen, and that we will lose a potentially good customer. 

ii. The CRA rules problem – finding that set of rules that direct the cases to the 

machine or human expert for the best outcome. The underlying classification 

problem for credit application has been widely researched, and there are tried and 

tested methods when we use the rules as the only means to decide. It gets 

interesting when we have the option to refer some instances to human decision 

makers. The rules have two functions; firstly, to decide on referral and secondly, 

to decide on the cases that are not referred. In this process, we determine the 

number of experts for any given caseload and case-mix. 

iii. The dynamic interaction of machines (processing rules) and human experts. We 

may have identified the optimal information set for the anticipated case mix, but 

there will be cases where the optimal amount of information is case dependent. 

For example, a highly paid individual with a perfect credit rating should require 

less scrutiny (and therefore fewer attributes) before a positive decision is made 

than a less clear-cut applicant.  

iv. The operational problem – finding methods to dynamically modify the rules when 

the caseload or case-mix changes. If the resultant change means that we need more 

experts, the processing rate will reduce, and the queue will increase. Not only will 

this reduce revenue in the short-term, in the medium-term customers may get tired 

of waiting. Conversely, if there is insufficient work for the experts, it would be 

better to give them additional cases if it is expected that they would get a better 

result than the rules. 

4.4.1 Problem Definition 

To maximise the financial benefit from a set of customer enquiries, the business 

rules that control the process must be designed so that the decisions are correct as 

far as possible, given the information available. Besides, the quantity and type of 

information gathered must be chosen carefully to strike the right balance between 

the value of the information and the cost of gathering and processing it.  

The outcomes of the customer categorisation process are; (1) a set of customers 

accepted (2) a set of customers who withdraw from the process (3) a total net 

benefit from the customers served, and (4) an opportunity cost associated with the 
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customers who are not served either because they dropped out, or because they 

were not selected.  The process also has a cost (5) arising from the resources 

consumed in its component activities. 

If the benefits (3) and the costs (4) and (5) can be quantified, the process is 

optimised when (3) – ((4) +(5)) has been maximised. In all cases, we need to 

classify the customer (or case) as accurately as possible while minimising the cost 

of classification, the opportunity cost of rejecting a customer that we should 

accept and the liability of accepting a customer we should not have accepted. 

There is also consideration around abandoned transactions; making the customer 

experience more onerous by asking for too much information can result in 

otherwise potentially valuable customer giving upon the process. Also, we must 

recognise that financial services providers have levels of engagement including 

on-line, customer service agents and experts, such as underwriters, each of which 

brings different costs and expertise to the problems. 

 

Figure 5 Business Process Flowchart 

Figure 5 shows the business process, where the rounded squares are actions and 

the diamonds are decisions. The on-line assessment refers to automated business 

rules. As the customer enquiries (cases) progress through the workflow decisions 

are made based on the information with each case. There is an initial set of 

information and based on that information the rules decide whether to accept, 

reject, request further information, or refer to the expert. Also, a proportion of 

customers may give up as more and more information is requested. 
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Let {xi:  є I} be the set of I cases.  The complete information about a case is 

specified in terms of a fixed set of attributes {Aj: j є 1...m}.  For a case xp the value 

of its qth attribute Aq is written apq. 

The potential value g(i) of a case xi is a function of its attribute values: g(i) = g 

(ai1, ai2, …,aim).  If g(i) > 0 this is a good case, and if g(i) <0, it’s is a bad case.  

Good or bad is the classification of the case. The value of g(i) depends on two 

factors; firstly, whether the case is good or bad, and secondly, the potential profit 

(from a good case) or the potential loss (from a bad case). 

We write info(i) to denote the set of attribute values currently known about case 

i.  The process of extracting information about a case xi (task “Extract attribute 

values”) is formalised as an update to info(i).  If the value for attribute Aj is 

extracted for case xi we write: 

info(i) := info(i)  {Aj = aij} 

We can formalise the choice of which attributes to ask about as a function of the 

case, i, and the current information, info(i): 

ask (i, info(i)) 

Thus, the result of the task Extract attribute values is formalised as: 

info(i) := info(i)  ask(i,info(i)) 

If we denote by exp the current load and competence of the expert, then we can 

formalize the “Assess online” decision as a function 

Assess (exp, info(i)) 

which returns one of the values {accept, reject, unknown}. 

Similarly, the “Need more info” decision can be formalized as a function from exp 

and info(i)  

need_info (exp, info (i)) 

which returns one of the results {yes, no}. 

The outcomes of the task “Expert Assessment” cannot be optimised, but its 

performance can be monitored to set and reset, the value of exp as necessary.  The 

cost of the experts is also an outcome of the task “Expert Assessment”.  Let us 

represent it as exp_cost. 
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If the set of customer enquiries is I, the set of customers who give up is U, the set 

of customer accepted is A and the set of customers rejected is R (so that I = U  

A  R), the quality of the whole process is representable as the following 

expression: 

sum(g(i): i є A) – sum(g(i): i є U  R) – exp_cost 

Naturally, when optimising the business rules defining “assess” and “need more 

info”, as well as the behaviour of “Extract attribute values”, the aim is to 

maximise the above objective function.  In our formal setting, the optimisation is 

achieved by optimally specifying the functions “assess” and “need_info”. 

A similar problem that can be addressed in the same way is one of approvals, 

particularly for purchases or commencement of a contract, where different levels 

of staff have different approval levels. If a purchase/project is above a threshold 

level, it needs to go to a more senior member of staff.  

In the case of loan approval, the customers are represented by {xi:i є I} and the 

attributes {Aj: j є 1..m} are characteristics such as income, amount of loan, current 

debt level, credit score, home ownership status, etc. The outcomes g(i) are the 

expected net profit from accepting this customer. If the customer defaults, then 

g(i)<0 and the loan is considered bad, if not, g(i) > 0 and the loan is good. The 

values of g are dependent on each case, but they can be estimated based on 

experience and historical data. For example, we can calculate the potential profit 

from a loan given the amount of loan and the interest rate. Similarly, we need the 

potential cost of a default, this time considering the amount, timing, interest rate 

and security. 

The first decision we need to make is how much information we ask for at the 

initial application process, which gives us ask (i, info(i)) and info(i). We then 

consider the capability and capacity of the expert to determine the on-line 

assessment, which will be one of {accept, reject, unknown}. In the case of accept 

or reject the case is closed. In the case of unknown, the case is referred to the 

expert who may decide he needs more information based on the attributes of the 

case. In this process, we have a proportion of customers, U, who may give up 

during the process. 

 The process itself is capable of repetition whilst there is a net benefit of incurring 

more cost, either in the information gathering (where a proportion of – potentially 
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good – customers give up) or in the information processing and decision making 

by the expert. Information that is known to be very helpful might be more onerous 

for the customer to supply and hence more likely to cause a customer to drop out. 

We do not have data that covers all of these elements. Still, the tendency for 

customers to drop out of on-line transactions is understood (Mägi, 2016), 

reproduced below, shows the tendency of customers to give up due to the time 

required to complete an on-line transaction, for example. Data specific to loan 

applications, and similar activities, is not published. We only have data regarding 

general on-line transactions and the impact of waiting time. All we can say is that 

the more we ask for, the longer it will take and make some limited deductions. A 

business would be able to collect further information relating the nature of the 

questions themselves to the rate of abandonment. Figure 6 shows the impact of 

waiting time on transaction abandonment based on a large number of different 

types of transaction. 

 

Figure 6 On-Line Customer Behaviour 

The essential optimisation problem is to maximise expected benefit (good 

applications – those we wrongly reject – those that give up) against the expected 

cost (bad loans that we mistakenly accept + the cost of the expert). 
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4.4.2 Structure 

The objective of the business process is to make decisions around cases. These 

decisions typically include accept (enter into a contract of some sort), reject (do 

not enter into a contract) or refer, which also identifies a destination resource, i.e. 

refer (destination). 

In many cases, we have three types of resource: 

• The machine, which follows the rules to the letter 

• The agent, who has a limited amount of expertise and exercises a limited amount 

of judgement (for example a claims agent),  

• The expert, who has the highest level of expertise and exercises complete 

judgement (for example, an underwriter) 

There is no reason the expert level could not be further refined, as in the case of a 

major decision where a board of directors or even a shareholder vote may be 

required. But for this exercise, all potential actors are either agents or experts, and 

this structure is enough. Therefore, we need no more layers or resource categories, 

and this representation will generalise 

However, as we shall see in Chapter 8, we only have data for one level of human 

interaction on which to test our theory. But if data were available, there would be 

value in including a lower cost human resource. To see this, we can extrapolate. 

Assume that the machine is free, and the expert costs are positive. We have: 

Expected net benefit of processing by machine (rules) = 𝑅𝑔𝑎𝑖𝑛 

Expected net benefit of processing by expert = 𝐸𝑔𝑎𝑖𝑛 

Then is 

𝐸𝑔𝑎𝑖𝑛 −  𝑅𝑔𝑎𝑖𝑛 > 𝐸𝑐𝑜𝑠𝑡 

We process by the expert 

Else process by the rules 

If 𝑐𝑜𝑠𝑡 > 0 we just need to find another human agent such that 

𝐴𝑔𝑎𝑖𝑛 − 𝑅𝑔𝑎𝑖𝑛 > 𝐴𝑐𝑜𝑠𝑡 

For at least some of the cases. 
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4.4.3 Agent and Expert 

The most straightforward process (without automation) is shown below. 

Customers (cases) are held in a queue and processed on a First In, First Out (FIFO) 

basis. 

The agent processes every case and the cases divide into those that he must refer 

(based on a set of rules) to the expert and those that he can decide upon himself. 

Of these cases, he can accept, reject or refer.  There is an apparent inefficiency 

here as cases that must be referred as handled twice, and each time a case is 

touched two sorts of costs are incurred: familiarisation and processing. 

  

Figure 7 Basic Business Process 

The next scenario is to add automatic (i.e. computerised) pre-processing to 

improve the performance of the organisation and reduce costs. The pre-processing 

is assumed to have a zero marginal cost to execute and can make decisions itself 

or direct cases to staff as appropriate. 

Initial processing is done by a machine/computer that interprets any rule literally 

but at (effectively) zero cost and zero time. The rules that are applied lead to 

rejection, acceptance, or referral. The diagram is simplified as, in effect, it would 

be possible for: 

• The computer refers a case directly to an expert (based on the rules) 

• The agent can refer cases before they are entirely processed 

• Cases could be referred to the agent by the expert 
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Figure 8 Machine, Agent and Expert 

The triage process, shown below, can process cases in the queue. 

 

Figure 9 Augmented Business Process 

 

This process takes advantage of the fact that computer processing is zero cost and 

enables the characteristics of a queue of cases (or customers) to be determined. In 

that case, it is possible to select cases from the queue in such a way we keep the 

agent and experts busy, reducing idle time and queue length. The computer 

processes the case immediately and at zero cost, and the rules can be adjusted such 

that the rate of referral precisely matches the expert resources available. 

The objective here is to reduce the average waiting time and processing time, 

given a resource profile of agents and experts, with a proviso that no case should 

stay in the queue beyond a maximum time limit. 

One of the questions is to what extent can we improve on the alternative situation 

where cases are sent immediately to sub-queues that wait for the attention of 

agents and experts. 

4.4.4 Proposed Representation Approach 

We can start with the assumption that the rules are applied to information supplied 

by the customer. For example, salary, age, etc. Real and integer values can be 
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compared to maximum and minimum limits. Figure 10 below shows how a 

computer might be set up to do an initial screening process. The idea is to set 

limits wide enough such that only those cases where there is some doubt are 

referred for further consideration. The decision to reject or accept is made in the 

knowledge that it is correct, as far as possible. 

 

Figure 10 Initial Screening 

The next stage is to refer cases, first to the agent. The agent is empowered to 

consider cases within specified limits. If a case exceeds a limit for one or more 

parameters, then the case must be referred to an expert. Note that these parameters 

could be binary (a claim in the last five years) and a positive response would mean 

that the Agent or expert would need to assess the case. 

 

Figure 11 Subdivision of Limits 

The problem above is essentially a classification problem. We have to derive 

limits such that we capture enough of the customers that we should accept without 

accepting too many that we should not be.  

Thi process works at three levels: 

i. At the machine level, the rules are simply interpreted 

ii. At the agent level, the rules are relaxed such that some judgment (which is not 

necessarily infallible) can be brought to bear 
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iii. At the expert level, there are no rules, but judgement can be supposed to be more 

accurate, but still not necessarily infallible. 

We need to represent: 

• The rules 

• The ability for agents and experts to make judgements 

We first confine the problem to the following, generic, example: 

• Customers are all different, and we required to maximise potential revenue while 

minimising cost and risk.  

• Maximising revenue means that we offer the right level of service to each 

customer 

• Minimising cost means we deal with customers efficiently and do not over-service 

them 

• Minimising risk means we do not transact with customers where the costs, or 

expected costs, exceed the revenue 

4.4.5 Attributes 

The attributes are the information that is gathered for each case. 

4.4.5.1 Real 

Real attributes can take any number such as age, income or loan value. 

4.4.5.2 Logical 

Logical variables are either TRUE or FALSE. For example, if there has been a 

claim or credit default in the last five years. Logical attributes are a special case 

of nominal attributes. 

4.4.5.3 Nominal 

These include items like marital status (e.g., married, single, divorced), the highest 

level of education, employment status (employed or not), homeownership 

(renting, buying, own). 

4.4.5.4 Ordinal 

This is a class of nominal attributes where we have some order, because they are 

integers (number of children) or because some sort of order is implied. 
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It is common to treat nominal variables as ordinal, which can simplify the 

problem, especially where there is a positive correlation between the attribute and 

the outcome. For example, if we have education or housing status, we can 

logically order these as: 

• High School (1), University Degree (2), Master’s Degree (3), Doctorate 

(4) or  

• Rent (1), Buy (2), Own (3) 

4.4.5.5 Logical Operations 

There are also tests that we need to carry out: 

.EQ. Equal to 

.LE. Less than or equal to 

.GE. Greater than or equal to 

4.4.5.6 Parameters 

For logical variables, parameters are not required, but for Real and Integer we 

need limits. For example: 

IF (Attribute. GE. Maximum Limit) 

IF (Age. GE. 60) 

For choice variables, we have to test against the allowable choices (usually a 

checkbox). For example: 

IF (Attribute. EQ. Choice 3) 

IF(Marital Status. EQ. Divorced) 

4.4.5.7 Combination 

These individual tests must be combined using logical Agents AND  and OR to 

create rules that can be coded. 

4.4.5.8 Representing Judgement 

The machine has no judgement and implements the rules literally. 

The agent and expert have judgement, and we need to represent that. The 

underlying assumptions are: 

• The machine gives the agent a sample of cases, 
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• The expert receives cases from the machine and agent 

• The role of the agent is to accept, reject or refer 

• The agent decides, input by input, whether to accept, reject or refer 

We need to create a representation of the judgement of the Agent and expert 

For the agent, the task is to accept, reject or refer (to the expert). The task of the 

expert is to accept or reject.  As the problem for the expert is more straightforward 

(no referral), we can concentrate on the agent. 

There are two potential simple approaches: 

The agent misclassifies a fixed proportion wrongly and refers a fixed percentage 

of cases: For example: 

• 20% of cases are referred to the expert 

• 5% of cases that should be accepted are classified as reject 

• 5% of cases that should be rejected are classified as accept 

• The remainder, 70% of cases are correctly classified 

The actual percentages could be derived from historical data, and these would map 

well onto KPI’s for correctness (getting the classification right) and efficiency 

(creating work for the expert). But given that one of the questions is how many 

cases to send to the agent, and how many to send directly to the expert, we may 

not assume that these percentages are fixed. The other problem with this approach 

is that we do not know which cases to get right. That is, if the correct proportion 

is 10% of cases, the next question is which 10%. 

Another approach is to consider the attributes of a case as a whole. This is an 

example of a multi-attribute evaluation problem (Harte, 2001) and one way that 

we can model the decision is to create a linear combination of the attributes ai, 

weights, wi, and derive limits (this is very similar to the LENS model which is 

based on linear regression) 

We choose limits, Lreject and Laccept , and weights, wi, acting the attributes, ai, such 

that: 

∑aiwi < Lreject   THEN reject 

Lreject < ∑aiwi < Laccept THEN refer 
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   ∑aiwi > Laccept  THEN accept 

The same model could be used for the expert, but with only the choice to reject or 

accept. 

The weights themselves can be determined by comparison with actual decisions 

made by the agent over time. But they are not important at this stage, and we can 

assume that we assign sensible weights (or use scale the inputs) and adjust the 

threshold accordingly.  

There are many other ways of modelling human judgement that could be 

considered later, but the valuable addition is to overlay judgement.   

We must represent the fact that the expert has better judgement than the agent. 

We can use the same weights but different thresholds (on the basis that the expert 

has only two choices: accept and reject over a narrower range) or change the 

weights to get a more accurate answer. 

There is, however, a problem with this approach. If we can accurately model the 

judgement of the agent and expert, why not just code that up in the machine and 

dispense with them? There are two reasons why not: 

In a practical sense, information is often not of a form that can be processed by a 

machine. For example, for an insurance claim, we may ask about previous claims, 

and if the answer is yes, we invite the claimant to provide further information in 

free text. For insurance cover, we may ask about previous claims, convictions, etc. 

Similar considerations apply for a loan application. 

There are factors that the agent and expert may consider that may not be presented 

on the claim form, such as the length of the relationship with the customer, 

previous dealings, or the expectation that a customer will complain. 

For these reasons, a simple model of the agent and expert, where they get a 

percentage wrong, not only deals with these issues but these percentages could be 

determined by analysis of performance. 

We can also investigate the impact of coding a weighted-sum criterion on the 

machine. 

There are two other important considerations: 
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The first is the availability of information (that is, missing values). There is a 

relationship between the number of attributes and the quality of the decision. If 

no attributes are available the choice is uniformed and essentially random. As 

more attributes become available, this percentage can only increase. The question 

is one of determining the relationship between the available attributes and 

accuracy 

This relationship could be derived from experience or data analysis. We can 

determine the prediction capability of each variable using the impurity criterion 

when that attribute, and only that attribute, is tested against its optimal limit. 

For a real attribute a, we find that value of c such that maximises the purity 

function (based on the presence or absence of members that default) as follows: 

max(Σ𝑝2) =  𝑝1
2   +  𝑝2

2  

𝑝1𝑎𝑛𝑑 𝑝2  are the proportion of cases correctly classified in each of the sets 

defined by the classification criterion. The maximum value is when 𝑝1 = 𝑝2 = 1 

p1 = (
|{𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒} 𝑤𝑖𝑡ℎ 𝑎 ≤ 𝑐|

|𝑡𝑜𝑡𝑎𝑙 𝑎 ≤ 𝑐 |
) 

𝑎𝑛𝑑 𝑝2 =  (
|{𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑓𝑎𝑙𝑠𝑒} 𝑤𝑖𝑡ℎ 𝑎 > 𝑐|

|𝑡𝑜𝑡𝑎𝑙 𝑎 > 𝑐 |
)  

Similarly, for a choice variable we have 

p1 = (
|{𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒} 𝑤𝑖𝑡ℎ 𝑎 = 𝑐ℎ𝑜𝑖𝑐𝑒1|

|𝑡𝑜𝑡𝑎𝑙 𝑎 = 𝑐ℎ𝑜𝑖𝑐𝑒1|
)  

𝑎𝑛𝑑 p2 = (
|{𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑓𝑎𝑙𝑠𝑒} 𝑤𝑖𝑡ℎ 𝑎 = 𝑐ℎ𝑜𝑖𝑐𝑒2|

|𝑡𝑜𝑡𝑎𝑙 𝑎 = 𝑐ℎ𝑜𝑖𝑐𝑒2|
) 

 

The next issue is how to implement this approach. There are two basic options: 

• We ask the same information from every customer 

• We have a basic set, and then ask for more depending on the information already 

collected 

Note that ‘already collected’ could be in the context of the current transaction or 

based on profile information already available. 
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 Summary 

In this chapter, we have investigated some service business processes that are, or 

could be, governed by business rules. In such cases, the quality of decisions and 

subsequent outcomes are influenced by the nature of the business rules. Decisions 

can be binary (logical) or integer (choice), but for reasons of simplicity and 

availability of real data, we focus on binary decisions. We have also analysed the 

specific problem of credit approval from the perspective of business rule 

optimisation. 



Chapter 5: Optimisation 

Alan Roy Dormer - August 2020   101 

5  OPTIMISATION  

 Introduction 

In this chapter, we define the optimisation problem in terms of the objective 

function, degrees of freedom and constraints. The objective function usually is the 

profit of the organisation, or, more correctly, expected profit as we are building 

rules in the anticipation that their application will maximise profit in the future. 

This profit function will be derived from past data. It will consist of probabilities 

and potential benefits (from accepting good cases), losses (from accepting bad 

cases), costs of processing information and the impact of abandoned transactions. 

The degrees of freedom are the choices we make regarding rules. These include 

the attributes we choose, the logical tests we apply, and any parameters used 

within the criteria (such as maximum or minimum limits). For CRA rules 

optimisation problem, there are no constraints. In the operational problem, we 

assume that the number of experts employed has been determined as a by-product 

of rule optimisation, and the objective is to adjust the rules to make the best use 

of them. 

First, we define and formulate the business rule optimisation problem. We then 

determine the nature of the objective function, which will influence the choice of 

optimisation methods. Finally, we consider the choice of attributes and the 

interaction of the rules and human experts. 

 General Forms of Optimisation 

As previously discussed, there are two types of optimisation (Ponstein, 2004). The 

most common form is on-line, or data driven where each situation is optimised 

individually. The other is off-line or static where we optimise rules, response or 

procedures that are then applied in every situation. The base case for BRO is 

primarily off-line; the objective is to find the optimal set of rules over any given 

historical or forecastable period. While we also investigate the ability of rules to 

adapt or adjust, we would argue that this is different to on-line optimisation – 
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where a new optimisation problem is solved for each situation - and should not be 

confused with it. 

5.2.1 Off-line or Static 

The off-line (static) optimisation problem is to create an invariant function that 

acts on the inputs to control a process to create an optimum set of outcomes over 

a given set of scenarios. There is no suggestion that each situation will be 

optimised, per se, but that overall, the set of outcomes will be optimal. An example 

of static optimisation is determining the allocation of tasks to resources based on 

rules on location (of the task) and geographical areas (assigned to resources). For 

example, see Maciejewski (2014): 

Maximise the expected value of 𝑓(𝑦, 𝑥, 𝑢): 𝑐(𝑥, 𝑢) 𝑎𝑛𝑑 𝑦 = 𝑟(𝑢) W.R.T. r 

Where:  

f = the economic or financial outcome of interest. For example, profit or revenue 

u = input variables that are given for any situation. For example, customer 

characteristics or weather 

y = control or decision variables. For example, choice of customer, price of goods. 

Essentially, the response to the situation 

x = dependent (outcome) variables. For example, quality and service levels 

c = customer service and compliance (with statutory instruments and prescribed 

business rules) constraints.  

r = invariant (CRA) business rules function 

The CRA rules consist of a set of parameters, operators and logic and the choice 

of these is the off-line optimisation problem. This is a potentially large 

optimisation problem, and a practical approach to its solution is: 

• Start from the data (knowledge base) and rules and calculations that the business 

currently uses 

• Identify the operators and parameters in the rules and calculations that could be 

optimised or added 

• Determine the objective function and express that as a function of the parameters 

and choices (above) 
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• Formulate and solve the optimisation problem over a set of the historical or 

expected set of inputs 

In the case study, for example, we already had the baseline from the accepted 

cases and outcomes, the additional rules were around the allocation of cases to the 

experts, and the parameters were the threshold values in those rules. 

5.2.2 On-line or Data Driven 

This form of optimisation is more common, and it is useful to make the 

comparison here. For each situation (set of inputs) algorithm creates the optimal 

control or decision that maximises the value of the single outcome. While in 5.2.1, 

there would be (invariant) rules around the allocation of jobs and resources based 

on geography, the situational optimum would allocate jobs to resources based 

purely on factors such as capability and efficiency. For example, see Bubeck 

(2011) and Jaillet et al. (2010).). The general form of an on-line optimisation 

where we optimise each situation independently is given by: 

Maximise 𝑓(𝑦, 𝑥, 𝑢): 𝑐(𝑥, 𝑢) = 0 W.R.T. y 

With the same variable definitions as the previous section. Online optimisation 

has some advantages as each situation can be optimised. However, there are 

disadvantages, such as: 

• The requirement for most – if not all – of the input data to be correct 

• It can difficult to understand how the answer was arrived at (mainly when 

constraints interact) 

• There may not be enough time to complete the necessary calculations 

The significant difference between the two forms of optimisation is that the 

control variables, y, are calculated directly from the inputs, u, using the business 

rules. This calculation is straightforward, faster, and more reliable. And, if the 

rules are constructed using methods such as weighted sums or logical tests, then 

the results will be easy to understand. 

 Definition 

For simplicity and clarity, the discussion below applies to the process of loan or 

credit application, but the basic structure applies to similar problems identified in 
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Chapter 5. It is also worth pointing out that even though the final outcome may be 

binary, this is not just a classification problem as we have to decide, for each case, 

whether to refer and this depends on the expected quality of the decision of the 

rules, the performance of the expert, and the cost of the expert. We also have the 

option to curtail the process and decide with less than the full data set, should the 

expected costs outweigh the expected benefits. 

Let {xi:  є I} be the set of I cases.  The complete information about a case is 

specified in terms of a fixed set of attributes {Aj: j є 1...m}.  For a case xp the value 

of its qth attribute Aq is written apq , and the set of attributes for case p is written 

Ap. 

The potential value g(i) of a case xi is a function of its attribute values: g(i) = g 

(ai1, ai2, …,aim).  If g(i) > 0 this is a good case, and if g(i) <0, it is a bad case.  Good 

or bad is the classification of the case. The value of g(i) depends on two factors; 

firstly, whether the case is good or bad, and secondly, the potential profit (from a 

good case) or the potential loss (from a bad case). 

We also have two types of determination for 𝑥𝑖. The determination made by the 

rules: 

𝑟𝑑𝑖  ∈  𝑅𝐷 =  {𝐴𝐶𝐶𝐸𝑃𝑇, 𝑅𝐸𝐽𝐸𝐶𝑇, 𝑅𝐸𝐹𝐸𝑅}. 

and the determination made by the human: 

ℎ𝑑𝑖  ∈   𝐻𝐷 = {𝑁𝑂𝑁𝐸, 𝐴𝐶𝐶𝐸𝑃𝑇, 𝑅𝐸𝐽𝐸𝐶𝑇}  

We represent the business rule by a function 𝑟𝑑: 𝐴 →  𝑅𝐷 with 𝑟𝑑(𝑖) = 𝑟𝑑(𝐴𝑖) 

and similarly, we represent the human decision making by a function ℎ𝑑: 𝐴 →

 𝐻𝐷 with ℎ𝑑(𝑖) = ℎ𝑑(𝐴𝑖) 

 We also have: 

𝑒𝑥𝑝_𝑐𝑜𝑠𝑡 = the expense of the human processing the case 

We can this determine the expected economic value of a case and its determination 

denoted by 𝑝(𝑖) = 𝑝(𝑔(𝑖), 𝑟𝑑(𝑖), ℎ𝑑(𝑖), 𝑒𝑥𝑝_𝑐𝑜𝑠𝑡). 

In conclusion, we are seeking to find that set of rules that maximises the objective, 

P, for the n cases in the data set of interest with respect to the rules function: 

𝑃𝑚𝑎𝑥 = max
𝑟𝑑𝑖

∑ 𝑝(𝑖)

𝐼
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For example, suppose one of the rules is the minimum income level at which we 

accept an applicant for a loan, ILOWER. We then have a series of values for G as a 

function of ILOWER. When ILOWER = 0 we accept all applicants and the value of G 

is the outcomes we would expect if we accept every case. As ILOWER increases, we 

would expect the value of G to increase as we remove applicants on a low income 

that have a higher proportion of bad outcomes in the data set. With a very high 

value of ILOWER we have fewer and fewer applicants approved, and G starts to 

decrease. As such, there is a value for ILOWER at which G is maximised. 

 Problem Formulation 

To formulate this as an optimisation problem we need to determine what we are 

maximising (such as the financial contribution to the organisation) and how we 

are going to do it (choosing the information we request and the parameters of the 

business rules). The former is the objective function and the latter are the degrees 

of freedom. 

5.4.1 Degrees of Freedom 

In the context of the problem defined above, we have two essential sets of choices: 

i. The optimal attributes we require (the elements of A in 5.3) 

ii. The optimal business rules (the function rd in 5.3)   

Typically, some attributes are already known to make a difference to the outcome. 

This knowledge enables us to make decisions, and the issue is one of attribute 

selection. 

We could choose any function for the rules, but in standard business practice 

allocation and reasoning business rules are expressed as a chain of IF-THEN-

ELSE logic (like a decision tree) with logical tests based on the numerical value 

or category of the attributes (Gottesdiener, 1997). In some cases, there is value in 

including functions of attributes or derived attributes as additional inputs to the 

rules; these are the computation rules. Examples include the ratio of loan: income 

in the case of mortgage applications, or the number of standard deviations from 

the mean, in case of quality control.  
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5.4.2 Objective Function 

Earlier, we identified that the objective could be multicriteria with profit and 

customer satisfaction as typical quantities of interest. Such multicriteria problems 

are typically addressed by a weighted sum to create one overall objective function. 

If we take this approach, we are looking to maximise the expected value of the 

objective function which can be expressed as the expected values of: 

Gains from good cases accepted      

 ∑ 𝑔𝑖𝑔(𝑖)>0 𝑎𝑛𝑑 (𝑟𝑑𝑖 𝑂𝑅 ℎ𝑑𝑖)=𝐴𝐶𝐶𝐸𝑃𝑇  

- losses from bad case accepted     

 ∑ 𝑔(𝑖)g(i)<0 𝑎𝑛𝑑 𝑟𝑑𝑖 𝑂𝑅 ℎ𝑑𝑖=𝐴𝐶𝐶𝐸𝑃𝑇  

 - cost of processing information    

 ∑ 𝑒𝑥𝑝_𝑐𝑜𝑠𝑡ℎ𝑑𝑖=𝐴𝐶𝐶𝐸𝑃𝑇 𝑂𝑅 𝑅𝐸𝐽𝐸𝐶𝑇  

-  abandoned transactions                 

𝑎𝑡(𝑚) ∑ 𝑔(𝑖)𝑔(𝑖)>0𝑐  

Where (for each case i) that is accepted we have: 

gi = potential profit or loss 

exp_cost = cost of expert assessment 

hdi = expert decision 

rdi = rules decision 

𝑎𝑡(𝑚) is a function that estimates the probability that a customer will abandon 

the transaction as the process requests more information. This function can only 

be an approximation because we do not know which customers or whether we 

would have accepted them or not, but for economic and customer satisfaction 

reasons, we need to be mindful of the number of attributes we request.  

In the general case, the objective function is to maximise the expected value of 

profit. Using the training set we optimise the value across the training set. 

The nature of the function determines the optimisation techniques that can be 

applied. For example, to use gradient methods (linear programming or non-linear 

programming), we require it to be continuously differentiable. And there are 
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certain functions, such as linear and quadratic, that amenable to more specialised 

methods that can be easier to solve that others. 

We have a variable, x, such as income (in the case of a loan) or size of claim (in 

the case of an insurance claim) that has an impact on the probability of a good or 

bad outcome. 

For any interval (a1, a2) or category, a, we need to determine the probability of 

default and the attribute, x, belongs to a: 

 𝑑(𝑎) = 𝑝(𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑎𝑛𝑑 𝑥 ∈ 𝑎) = 𝑝(𝑑𝑒𝑓𝑎𝑢𝑙𝑡|𝑥 ∈ 𝑎) 𝑝(𝑥 ∈ 𝑎) 

The explanation of this is: the probability of default in any category or interval, a, 

is the proportion of defaults in the population as a whole, multiplied by the 

proportion of default cases that are in the interval divided by the proportion of all 

cases in the interval. This calculation also gives us an efficient way of determining 

these probabilities from a training set or past data. Table 8 shows the probabilities 

of default for each of the eight categories. 

 

Category 1 2 3 4 5 6 7 8 Total 

Default 0 1 2 5 8 10 12 12 50 

Not default 15 14 8 6 3 2 1 1 50 

𝑝(𝑥 ∈ 𝑎) 0.15 0.15 0.10 0.11 0.11 0.12 0.13 0.13 1 

𝑝(𝑥 ∈ 𝑎|𝑑𝑒𝑓𝑎𝑢𝑙𝑡) 0 .02 .04 .10 .16 .20 .24 .24 1 

𝑝(𝑑𝑒𝑓𝑎𝑢𝑙𝑡|𝑥 ∈ 𝑎) 0.00 .067 .20 .46 .73 .83 .92 .92 N/A 

Table 8 Conditional Probabilities of Default 

The probability of default in any one category is the proportion of default cases. 

The important part is that we can use the formula when we are dealing with 

intervals, rather than categories.  

We have  

𝑓(𝑎) = 𝑝(𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑎) = 𝑝(𝑑𝑒𝑓𝑎𝑢𝑙𝑡|𝑥 ∈ 𝑎)𝑝(𝑥 ∈ 𝑎) 

There are alternative ways to look at the problem: 

• We have a population, and for each attribute, good and bad outcomes each have a 

known probability. For n attributes, we will have n+1 distributions: the base 

variable and probability of default for each of n attributes 
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• We have two populations, representing good and bad outcomes, and we have n 

probability distributions concerning the n attributes  

In the first case we have: 

𝑝𝑟𝑜𝑏(𝑑𝑒𝑓𝑎𝑢𝑙𝑡)𝑎 ≤ 𝑥 ≤ 𝑏 = ∫ 𝑓(𝑢)𝑑𝑢
𝑏

𝑎

 

Where 𝑓(𝑢) is the probability density function as above. 

We also have profit and loss as functions of x: 

𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑝 (from cases that do not default) 

𝑙𝑜𝑠𝑠 = 𝑙 (from cases that default) 

𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑑(𝑥) = 1 𝑓𝑜𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑜𝑟 𝑑(𝑥) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑛𝑝(𝑥) = (1 − 𝑑(𝑥)) ∗  𝑝(𝑥) −  𝑑(𝑥) ∗ 𝑙(𝑥) 

𝑛𝑒𝑡𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑛𝑝 (the net result of profits and losses) 

In the second case we have: 

𝑝𝑟𝑜𝑏(𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑎𝑛𝑑 𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ ℎ(𝑢)𝑑𝑢
𝑏

𝑎

 

Where ℎ(𝑢) is the probability density function for bad outcomes, and: 

𝑝𝑟𝑜𝑏(𝑛𝑜𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑎𝑛𝑑 𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑔(𝑢)𝑑𝑢
𝑏

𝑎

 

Where 𝑔(𝑢) is the probability density function for good outcomes. 

We will use this second representation in the rest of this chapter. 

5.4.3 Nature of the Objective Function 

The nature of the objective function has an impact on our choice of optimisation 

methods. For example, if the function is differentiable, we can use gradient based 

methods; if not, we are restricted to methods that only use function values, and so 

on. 

Let us consider a simple rule on a single attribute. Suppose we have a rule based 

on a single value c, such that  

𝐼𝑓 (𝑥 ≤ 𝑐)   
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we accept the customer (and any potential profit and loss) then 

𝑛𝑝(𝑥) =  𝑔(𝑥)𝑝(𝑥) − ℎ(𝑥)𝑙(𝑥) 

And if 

𝐼𝑓(𝑥 ≥ 𝑐)  

we reject the customer, then 

𝑛𝑝(𝑥) =  0  

The profit function is given by the expected value of the gains (from good 

customers that we accept) minus the losses (from bad customers we accept): 

𝐸𝑥𝑝((𝑛𝑝)(𝑐)) =   ∫ 𝑔(𝑢) 𝑝(𝑢) − ℎ(𝑢)𝑙(𝑢)𝑑𝑢
c

−∞

 

So 𝐸𝑥𝑝(𝑛𝑝)(𝑐)) is the expected value of net profit as a function of the cutoff, c.  

We can differentiate w.r.t c: 

𝑑

𝑑𝑐
𝐸𝑥𝑝(𝑛𝑝)(𝑐) = 𝑔(𝑐)𝑝(𝑐) − ℎ(𝑐)𝑙(𝑐)  

And we have a stationary point when 

𝑔(𝑐)𝑝(𝑐) − ℎ(𝑐)𝑙(𝑐) = 0 

And this will be a maximum/minimum when 

𝑑

𝑑𝑐
(𝑔(𝑐)𝑝(𝑐) − ℎ(𝑐)𝑙(𝑐)) < 0 /> 0 

For example, if g and h follow the normal distribution: 

𝑓(𝑥) =
1

𝜎√2 
exp

−1

2
[
𝑥 − 𝜇

𝜎
]

2

  

If we set the standard deviation of both to unity and have the mean of g equal to 

zero and the mean of h equal to unity, we would expect a good separation at a 

point between 0 and 1. Let us also assume that p and l are equal to unity. 

Using the formula above we have a stationary point at c where: 

1

√2 
exp

−1

2
𝑐2 −

1

√2 
exp

−1

2
(𝑐 − 1)2 = 0 ⇒ 

𝑐2 = (𝑐 − 1)2  ⇒ 𝑐 = 1/2 

This point is a maximum that implies ½ should be the maximum cut-off point. 
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For the multi-dimensional case (where we have n attributes) we can apply the 

same logic, with h(x) being the joint probability density function: 

𝑝𝑟𝑜𝑏(𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑎𝑛𝑑 𝑎1 ≤ 𝑥1 ≤ 𝑏1, … , 𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛)  = ∫ …
𝑏1

𝑎1

∫ ℎ(𝑢)𝑑𝑢
𝑏𝑛

𝑎𝑛

 

𝐸𝑥𝑝((𝑛𝑝)(𝑐)) =   ∫ . .
𝑐1

−∞

∫ 𝑔(𝑢)𝑝(𝑢) − ℎ(𝑢)𝑙(𝑢)𝜕𝑢1 . . 𝜕𝑢𝑛

𝑐𝑛

−∞

 

And in this case, we have: 

∇(𝐸𝑥𝑝(𝑛𝑝)(𝑐))𝑖 = ∫ . . ∫ (𝑔(𝑐𝑖, �̅�)𝑝(𝑐𝑖, �̅�) − ℎ(𝑐𝑖, �̅�)𝑙(𝑐𝑖, �̅�))𝜕𝑢𝑗  . . 𝜕𝑢𝑘

𝑐𝑘

−∞

𝑐𝑗

−∞

 

Where 0 ≤ 𝑗 < 𝑘 ≤ 𝑛 𝑎𝑛𝑑 𝑗 ≠ 𝑖, 𝑘 ≠ 𝑖, �̅� = (𝑢1, … 𝑢𝑛) − 𝑢𝑖  

The function has a stationary point when ∇(𝐸𝑥𝑝(𝑛𝑝)(𝑐)) = 𝟎  and this is a 

maximum/minimum when ∇2(𝐸𝑥𝑝(𝑛𝑝)(𝑐))  is negative semi-definite/positive 

semi-definite. 

In the case above, we are looking at the vector, c, that divides the n-dimensional 

space to maximise the profit function. This calculation applies to the rule that 

states that all the cases must satisfy the condition (the AND rule). 

We express more complex rules, such as combinations of AND and OR rules in a 

similar form. For example, we can convert OR rules into a series of AND rules 

and so on. Similarly, we can have different cut off values depending on which 

side of each cut-off the attributes lie. The resulting set of rules are like those of a 

decision tree as we shall see in Chapter 7. 

This analysis is very much a theoretical exercise because determining a joint 

probability density function is very difficult without making assumptions around 

independence. If we assume independence and the same potential profit and loss 

from each case, we have: 

𝑝𝑟𝑜𝑏(𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑎𝑛𝑑 𝑎1 ≤ 𝑥1 ≤ 𝑏1, … , 𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛) =  ∏ ∫ ℎ𝑙(𝑢)𝑑𝑢
𝑏𝑙

𝑎𝑙

𝑛

𝑙=1

 

And so 

𝐸𝑥𝑝((𝑛𝑝)(𝑐)) =   𝑝 ∏ ∫ 𝑔𝑙(𝑢)𝑑𝑢
𝑐𝑙

−∞

𝑛

𝑙=1

− 𝑙 ∏ ∫ ℎ𝑙(𝑢)𝑑𝑢
𝑐𝑙

−∞

𝑛

𝑙=1

 

And 
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∇(𝐸𝑥𝑝(𝑛𝑝)(𝑐))𝑖 = 𝑝𝑔𝑖(𝑐𝑖) ∏ ∫ 𝑔𝑙(𝑢𝑙)𝑑𝑢
𝑐𝑙

−∞

𝑘

𝑙=𝑗

− 𝑙ℎ𝑖(𝑐𝑖) ∏ ∫ ℎ𝑙(𝑢𝑙)𝑑𝑢
𝑐𝑙

−∞

𝑘

𝑙=𝑗

 

Where 0 ≤ 𝑗 < 𝑘 ≤ 𝑛 𝑎𝑛𝑑 𝑗 ≠ 𝑖, 𝑘 ≠ 𝑖 

And the same considerations apply for stationary points, and maxima and minima. 

To apply this approach, we only need the probability distribution of each attribute 

which is a much more realistic prospect when we have a large data set. 

However, we can conclude that the objective function is differentiable. Also, the 

derivative is the combination of probability density functions (which are normally 

continuous and, at worst, right continuous), and cost functions. So, if the cost 

functions are continuous, we have a differentiable objective function, and the 

derivative is right continuous. This means that efficient, gradient-based, 

optimisation methods may be suitable, but we cannot be certain. 

5.4.4 Data Requirements 

To create optimal business rules, we need a data set of cases, determinations, and 

outcomes. It is important to note that we are not just interested in determinations 

as these will not necessarily be accurate, as humans make mistakes. Data on 

outcomes may be harder to find. For example, borrowers may default later; 

diseases may be misdiagnosed and eventuate later, children can be returned to 

their parents and subsequently abused. Also, if we are considering the place of 

human experts in any optimised system, we need to know how well they perform. 

5.4.5 Choice of Attributes 

The classical feature selection problem considers the performance of the rules 

with different attributes. However, in our case, we are not incurring costs for every 

attribute we might have at our disposal, we are incurring costs for the attributes 

that we ask for and use. At some point, the expected benefit of asking another 

question will be exceeded by the costs of information processing and the 

probability that the transaction will be abandoned. 

So, if we ask for attributes as the rules need them, there is no feature selection 

problem in the classical sense; we simply stop asking for more information when 

its value is outweighed by the associated costs. 
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5.4.6 Incorporating Human Experts 

One of the potential decisions of the business rules is to refer the case to a human 

expert. In this case, we need to know whether it is worth incurring the additional 

cost of the human expert. The LENS model provides a framework to model and 

understand the accuracy of the rules and the accuracy of the human expert (true 

positives, false positives, etc.). Essentially, we need to know the probability that 

a case is good and the probability that a case is good if it is deemed to be by a 

human expert, and the expected benefits and costs for each.  

As originally developed, the LENS model considers the (judgements of) the 

human decision maker and reality. It uses linear regression to model judgements 

and actual and computes the overall (average) accuracy of the models and the 

judgements. To decide on referral, we need to extend the model to calculate the 

expected accuracy of the human on a case-by-case basis and add the rules as an 

additional method of determining a judgement. We also need to calculate the 

expected accuracy of the rules. Given that the outcome of this exercise is 

ultimately Accept or Reject (binary) we substitute logistic regression for linear 

regression and add an extra dimension in the form of the rules acting on the 

attributes to produce an additional judgement. We also utilise the ability of logistic 

regression to calculate the probability that (a) the expert (or the rules) determine 

that a case should be accepted and (b) the probability that this judgement is correct 

or otherwise. 

Note that it is important to compare the cases where the rules accept and reject as 

in either case a human decision may be cost-effective, for example, if the rules 

cannot effectively decide. 

 Summary 

In this chapter we have defined the optimisation problem in terms of objective 

function, degrees of freedom and constraint. We have also introduced the concept 

of business rules working with human decision makers and explored the nature of 

the functions that make up the objective. We conclude that the objective function 

is continuous and differentiable. However, the derivative is only right continuous 

which means that optimisation methods that rely on the objective being 

continuously differentiable may not be effective. 
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6  INFORMATION 

 Introduction 

In this chapter, we examine the issue of information in terms of attribute selection 

and the impact of the amount of information we request on the potential 

customers. There is a real optimisation problem here as: 

• The more information we have, up to a point, the more accurate can the 

assessment be, and thus potential profits will be higher 

• The more information we ask for, the more likely it is that a potential customer 

will abandon the transaction 

W then analyse data on transaction abandonment and show that there is a good fit 

with the Weibull distribution, which is often used to model survival processes. 

Finally, we address the problem of missing data; whilst we may have data on 

expert judgements and outcomes, we will not have data on outcomes for cases that 

are rejected. 

 Attribute Selection 

An important question when business rules use information to make decisions is 

the amount of information that is needed/requested. 

Clearly, with no information we are unable to decide (apart from an arbitrary one) 

and thus add value. For example, if we have several people who want a bank loan, 

having no information would not enable us to choose a subset that is any better 

than all the applicants, or any arbitrary subset. 

At the other end of the scale, asking for a large amount of information has 

disadvantages: 

• There are costs associated with gathering information, for example interviewing 

face-to-face or following up when errors are made on forms 

• There are costs associated with processing information, for example information 

needs to be read and assimilated for any decisions that are made by humans 



Chapter 6: Information 

114  Alan Roy Dormer - August 2020 

• Asking for too much information may put customers off and/or they may abandon 

a transaction. This is particularly true in life insurance (some policies do not 

require a medical) or mortgages (some lenders require less documentation that 

others – so-called low doc mortgages) where asking for less information is 

considered a competitive advantage and presented as a benefit to the customer. 

We can express this as: 

Profit = value of good outcomes – cost of bad outcomes – loss of good customers 

- processing costs – net value of abandoned transactions 

And 

Expected profit = expected value of the RHS above 

Where: 

• Value of good outcomes = profit from customers where we make a good decision 

(that is, we judge a good customer as good and accept them) 

• Cost of bad outcomes = loss from customers where we make a bad decision (that 

is, we judge a bad customer as good and accept them) 

• Loss of good customers = lost profit from good customers that we reject in error 

(that is, we judge a good customer as bad and reject them) 

• Processing costs = costs we (the business) incur from evaluating information 

• Abandoned transactions = net profit that we lose when customers do not proceed. 

Note that abandoned transactions can include customers that would have turned 

out to be bad, so we consider the net profit 

There may also be customers who are put off and do not even start the process. We 

choose to ignore this on the following grounds: 

• We can measure abandoned transactions; we do not know who did not even start 

• In an on-line application, it is often not obvious how long the process is before 

you start. 

• With a paper form, the complexity and difficulty can sometimes be determined, 

and the process abandoned without the business finding out (and/or recording the 

event systematically), but as paper forms are in terminal decline, this will become 

less significant 
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This creates some interesting issues: 

• The (marginal) cost of processing information on a computer is negligible (UK 

Cabinet Office, 2012), so once we decide what information to ask for, the 

computer may as well process it all 

• The main task of the computer is to decide whether to accept, reject or refer a 

case. On referral the expert or agent can review all the information, at which point 

we incur their costs which, we may assume, is related to the amount of 

information. We could, of course, make this more sophisticated and consider an 

initial cost, independent of the amount of information to reflect familiarisation, 

and then have individual additional costs arrived at via data analysis. In addition, 

the accuracy or their decision may be related to the amount and type of 

information available. It follows that processing costs should only be considered 

for those cases that require a determination of the agent or expert 

• The most we know about potential customers who abandon transactions is the 

information that they have input up the point they cease. The likelihood that they 

do may be a function of the type of customer (which may be revealed by the 

information gathered up to the point of abandonment depending on the order of 

the questions), the amount of information required, and/or the perceived difficulty 

or time taken to gather and input it. If we had a more sophisticated understanding 

about customers and their propensity to abandon, there is potential to treat them 

differently. For example, we may refer early (as we gather more information and 

make the assessment) and engage directly in the anticipation that this will reduce 

the likelihood that the customer does not proceed. We do not have the required 

data, but it may be an interesting area for further study. 

• Let us assume for simplicity that (a) there is no material difference between 

customers who abandon and those that do not and (b) that the likelihood of an 

abandoned transaction is a function of the amount of information 

required/requested. 

In many customer interactions, the business requires customers to provide 

information. Transactions such as approval for credit, insurance claims, and 

entering into lease agreements are typical examples. Similar considerations apply 

to medical diagnosis and selecting people for employment. In these situations, 

there will be a best set of information and we need to find a way to determine that.  
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So, let us define best as that subset that maximises the expected net benefits to the 

organisations that is dealing with the customer. Let us suppose that we have 

identified n possible pieces of information that we could ask for. Denote this by 

In. 

In the case of credit checking we may have: 

𝐼1 = income 

𝐼2 = loan value 

𝐼3 = credit score 

Etc 

Now suppose that we can identify: 

• The potential value of good customers 

• The expected loss from the bad customers 

• The costs of processing the information that we have collected 

• The impact of customers deciding not to proceed, or abandoning the process 

At the highest level we have: 

𝑃𝑟𝑜𝑓𝑖𝑡, 𝑝(𝐼𝑖)  

=  𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 

−  𝐿𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑏𝑎𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡

−  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

− 𝑁𝑒𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑤ℎ𝑜 𝑎𝑏𝑎𝑛𝑑𝑜𝑛 

𝑊ℎ𝑒𝑟𝑒 𝐼𝑖   ⊂   𝐼𝑛 𝑎𝑛𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠   

What we are looking for is the subset 𝐼𝑖 of all potential information inputs 𝐼𝑛 that 

maximises p. 

For example, if we have 100 customers, (50 good and 50 bad) and we ask for 5 

pieces of information we might have: 

• 20% of customers decide not to proceed (assume good and bad are in the same 

proportion as the overall population) 

• We accept 37 out of the potential 40 good customers, that give us a profit of $500 

each 
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• We also accept 4 bad customers out of a total of 40 that will create a loss of $200 

each 

• We incur processing costs of $25 per customer ($5 per piece of information) 

In this case, total net profit is equal to: 

$(37 ∗ 500 − 4 ∗ 200 − 80 ∗ 25) = $16,500 

Note that a simplifying assumption has been made around transaction 

abandonment. Without further information we have assumed that customers who 

do not proceed reflect the overall population (good and bad in the subset are in 

the same proportion as the population). If this is the case, a simple reduction on 

the net return calculation is all that is required. The data required to do any better 

is purely hypothetical; we do not have an outcome for customers that do not 

proceed. One potential method is to use a logistic regression model to calculate 

the probability that the customer would have been good (or bad) on the limited 

data (reduced set of attributes) that they have input in the process up to point they 

decide not to proceed. This method of predicting probabilities using logistic 

regression on a reduced set of attributes is derived and discussed further in Chapter 

11. We do not have any data on the that we can find – it probably exists in 

proprietary data sets only – but not publicly available.  

6.2.1 Solution Methods 

There are a several ways to determine the optimal set of features, but unfortunately 

there is not any research that includes transaction abandonment. The choices are: 

• Wrapper methods (Hall et al, 2013) where we select attributes on their merit as 

determined by the overall objective function that we are interested in. In effect, 

we select the attributes and carry out a complete optimisation to determine the 

profit or benefit, considering all the elements 

• A filter method (Hall et al, 2013), where we use other metrics, such as information 

gain, to select the best subset of attributes 

In our situation, for reasons of practicality, we will opt, if possible, for a solution 

which is reliable and not compute intensive. In addition, it is difficult to see how 

we could factor in the impact of transaction abandonment in the filter method. As 

such, the wrapper method is preferable, at least as first choice. 
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The other issue is the algorithm itself. 

• Forward selection (Ververidis, 2005) consists of evaluating the profit function for 

each attribute, choosing the best, and then repeating the process until the profit 

function stops increasing, or increases by only a small amount. 

• Backward elimination (Koller et al, 1996) is the opposite; staring with all the 

attributes and eliminating the least significant first until such time as the profit 

function starts to decrease. 

 The advantage of forward selection is efficiency and speed. The method is 

efficient as it does not need to evaluate the objective function after the process has 

terminated, often without including all the attributes. And with the wrapper 

method it is much faster as it is solving a much smaller optimisation problem, 

initially with one optimisation variable, then two, then three and so on. The 

disadvantage is that it may prematurely stop as the incremental value of the 

additional attributes, on their own, may be small or zero BUT when taken together 

the incremental value of two or more may not be. Figure 12 shows an example: 

when we split on two (real) attributes, 1 or 2, individually we get poor separation. 

Splitting on both gives good separation and information. 

 

 

Figure 12 Problem for Forward Selection 

Backward elimination avoids this problem as, initially, all the attributes are 

included and then eliminated one-by-one. The disadvantage, at least with the 
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wrapper method, is that the initial optimisation problem has all the attributes as 

optimisation variables and is much more compute intensive. 

Correlation-based feature selection (CFS) (Hall, 1999 and Hall, 2000) has been 

developed to address this problem. It identifies attributes (referred to as features 

in machine learning) that are strongly correlated to the classification, and the least 

correlated to the others.  The results in a merit function that is used to create 

subsets, which are then selected using forward selection. Effectively we are 

grouping those attributes where the whole is greater than the sum of the parts. 

• CFS uses a merit function to measure each subset, defined by: 

• 𝑀𝑒𝑟𝑖𝑡 =  𝑘𝑟𝑐𝑓
̂ /√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓�̂� 

• Where: 

• 𝑘 is the number of attributes 

• 𝑟𝑐�̂� is the average class: feature correlation and 

• 𝑟𝑐𝑓 is the average feature: feature correlation 

 Transaction Abandonment 

According to Technopedia (2011): 

Abandonment is an e-commerce term that refers to a situation when a 

visitor accesses a website but terminates any actions by leaving the page. 

The abandoned activities the Web host desires may include purchasing a 

product or service or completing an online survey. 

Whilst it as an e-commerce term, it is reasonable to apply the same idea to any 

form of interaction where data is requested from a potential customer. However, 

until now it has not been possible to get large amounts of objective data on the 

phenomenon. Whilst people could be asked about their behaviour when using 

other means, such as paper forms, it is only now that we can measure every 

customer interaction in the on-line situation.  

Whilst abandoning a purchase may be more likely than abandoning a loan 

application, the amount of information involved in deciding a loan application is 

much greater than that for a purchase, and indeed customers are happy to give 

more information.  However having scaled up the quantities of information, it is 
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our best assumption that the data about the rate of abandonment scales up for loan 

applications as well – there is no other openly available data that contradicts this 

assumption, as far as we know.  

There is a lot of analysis on why on-line transactions are abandoned, as this is a 

major cause of concern for on-line retailers and has been addressed a marketing 

or social behaviour problem. For example, see Rajamma et al (2009), Van de 

Geest (2016), and Xu et al (2015). However, transaction abandonment has not 

been addressed specifically as a problem in human computer interaction which is 

rather surprising.  This could be because there is little publicly available data about 

the relationship between time and abandonment.  

In the research that has been done, time taken is typically the third most important 

reason for a transaction to be abandoned. This is shown in Figure 13.  

  

Figure 13 Reasons for Abandonment 

Other research has been carried out in related areas, such as video viewing (Adage, 

2019): 

The research yielded some compelling findings, including surprisingly 

high levels of initial viewer abandonment. For instance, our sample 

showed that, on average, nearly 20% of the audience that starts watching 

a given video clip will abandon it within the first 10 seconds of playback. 
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So, if your online video campaign has 10 million viewers, 2 million of 

them saw less than 10 seconds of it.  

In general, viewer abandonment appears to be a function of time spent 

in-stream and follows a relatively predictable trajectory. 

Below is a graph that summarizes average video abandonment by time 

spent viewing, which shows a consistent rate of viewer drop-off. Within 

the first 30 seconds of a video, you can expect to lose 33% of your viewers. 

At 60 seconds, 44% of the audience that started viewing the clip will have 

left. And so on. 

 

 

Figure 14 Graph of Viewing Abandonment v Time 

The research by Mägi (2016) is more general and looks at 500 websites with some 

5 Billion interactions. Whenever a user aborted an operation, it triggered a specific 

event captured by Plumbr, a software product that captures web interactions. 

Based on these events, the author aggregated, cleaned and clustered the data.  

To interpret the data visualized in the chart above, let us look at the 

following examples: 



Chapter 6: Information 

122  Alan Roy Dormer - August 2020 

• With response times less than 2 seconds, 3% of the users abandoned such 

operations. 

• With operations taking from 2 up to 4 seconds, the number of users 

aborting the transactions grew to 6%. 

• When the user-initiated operation took more than 32 seconds to complete, 

34% of the users just gave up. 

 

 

Figure 15 Graph of Website Abandonment v Time 

Duration of a transaction Likelihood to abandon  

< 2 seconds 3.15%  

2 – 4 seconds 6.78%  

4 – 8 seconds 9.84%  

8 – 16 seconds 14.07%  

16 – 32 seconds 18.37%  

> 32 seconds 33.91%  
 

Table 9 Tabular Data for Figure 14 

The two graphs are different as they represent behaviours in different contexts. 

The first one is viewing on-line videos and the second on is on-line transactions.  

This can be factored in the analysis with a couple of important observations: 
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If our application process is on-line, then the information requested can be context 

sensitive and depend on the responses thus far. Only when a new piece of 

information is required, do we ask another question and bear the risk that a good 

customer abandons the transaction. If the rules require to reuse the same 

information, previously provided, that takes no appreciable time and we do not 

ask the customer for it again. For example, in the Lending Club decision tree we 

use FICO (a credit score invented by Fair Isaac and Company) several times, but 

only need ask once. This also impacts the decision to refer to the expert. If the 

potential abandonment costs of asking for more information, to feed another rule, 

is factored in, it may be better to refer prematurely if the net benefits of referring 

the decision are greater. 

We have a similar situation on abandoned transactions as we do not know if they 

are good or bad. But we do know where they are in the rules and using the same 

process as above, we can estimate the probability that they are good and act 

accordingly. 

The impact on the process is straightforward. We know the proportion of 

abandoned transactions as a function of the time (which we can relate to the 

number of questions we ask).  

We can postulate that the abandonment process is the same as the survival process. 

It has infant mortality (where many people give up at the beginning), normal life 

(where the rate of abandonment is constant), and old age (where ultimately the 

process must end). This can be represented by the Weibull distribution (Cooray, 

2006) with a probability density function (f) given by:  

𝑓(𝑡) =  
𝛽

𝜆
(

𝑡

𝜆
)

𝛽−1

𝑒𝑥𝑝− (
𝑡

𝜆
)

𝛽

       𝑡 ≥ 0  

𝑓(𝑡) = 0                                            𝑡 < 0 

And the proportion that abandon in the interval of time [a, b] is given by: 

𝑝𝑟𝑜𝑏(𝑎 < 𝑥 < 𝑏) =  ∫ 𝑓(𝑢)𝑑𝑢
𝑏

𝑎

 𝑏 ≥ 𝑎 ≥ 0 

And the cumulative density function (the proportion that have abandoned at time 

t) is given by: 

𝐹(𝑡) =  𝑝𝑟𝑜𝑏(0 < 𝑥 < 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

𝑜

 𝑡 ≥ 0  
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𝐹(𝑡) = 0                                                           𝑡 < 0 

 

 

Integrating we get: 

𝑭(𝒕) = 𝟏 − 𝐞𝐱𝐩 − (
𝒕

𝝀
)

𝜷 

      Equation 1 

 

= Abandonment Rate (AR) 

 

Where we have: 

• Abandonment Rate is the proportion that have abandoned at time t 

• β is the shape parameter the distribution. β<1 denotes that the occurrence of events 

is decreasing in frequency: β=1 denotes a steady state and β>1 indicates that the 

occurrence of events is increasing 

• λ is the scale factor and is the mean value of t 

If take rearrange and take the natural log of Equation 1 we get: 

ln(1 − 𝐹) =  − (
𝑡

𝜆
)

𝛽

 ⇒ 

ln (ln(1 − 𝐹)) =  𝛽(ln 𝑡 − ln 𝜆) = 𝛽 ln 𝑡 − 𝛽 ln 𝜆 

If we plot ln (− ln(1 − 𝐹)) (vertical access) against ln 𝑡 we can see the fit. In 

Figures 16 and 17 the straight line indicates a good fit, the slope of the line is equal 

to 𝛽, and the intercept is −ln 𝛽𝜆. 
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Figure 16 Weibull Plot of Video Abandonment 

 

 

Figure 17 Weibull Plot of Website Abandonment 

In both cases, there is a good fit with values of β and λ of 0.58 and 200, and 0.55 

and 250. We would expect β to be less than unity which indicates that the rate of 

abandonment is decreasing at the beginning. Given that this is the only data we 

could find, it is surprisingly similar. That suggests that we could use the Weibull 

distribution to model transaction abandonment with parameters of 0.55 and 200 

as a first estimate. 

ln
(-

ln
(A

R
))

ln(time)

Video Viewing Abandonment

ln
(-

ln
(A

R
))

ln(time)

Transaction Abandonment
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The final step is to substitute the number of attributes requested for time (t) in 

Equation 1. Assuming we have the data, we can calculate the time as a function 

of the number of attributes in the same way that we calculate the cost of referral. 

𝑡 = 𝑡𝐼 + 𝑘𝑡𝐴 

Where  

t = total transaction time 

tI = initialisation of the process 

tA = time to respond to each request for information 
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 Missing Data 

We may have data on expert judgements and outcomes. This will allow us to fit 

logical regression models to predict 𝑝(𝐸𝑔) – the probability that the expert judges 

a case to be good - and 𝑃(𝑔𝑜𝑜𝑑|𝐸𝑔) – the probability that a case that is judged to 

be good is, in fact, good - to the data and then calculate these quantities to each 

case. In the first case, we have the data on cases that are accepted and rejected.  

For the second case, we have data on the outcomes of cases, but only for those 

accepted. We do not have any data on the outcomes of the rejected cases. In the 

confusion matrix shown in Table 10 we have: 

 Judged Good Judged Bad 

Good a b 

Bad c d 

Table 10 Confusion Matrix 

We know a, c and b+d, but we do not know b or d because we don’t have outcomes 

for cases that are rejected (judged bad). Setting b = 0 is somewhat optimistic as it 

assumes that every rejected case is bad. It is more reasonable to assume something 

like: 

𝑐

𝑎 + 𝑐
=

𝑏

𝑏 + 𝑑
 

This equation accords with the idea that a judge will be equally wrong when 

judging a c. For example, if we have 60% of good cases and the judge gets 10% 

wrong, the results are shown in Table 11. 

 

 Judged Good Judged Bad 

Good 54% 4% 

Bad 6% 36% 

Table 11 Error Model: a/(a+c) = b/(b+d) 

If we take this approach, we have 4 equations for 4 unknowns, and we can solve 

them. We have: 
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𝑑 = 𝑐
(1 − 𝑎 − 𝑐)

(𝑎 + 𝑐)
 

⟹ 𝑑 = (1 − 𝑎 − 𝑐)/(1 +
𝑐

𝑎
) 

There is an issue when 𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔) is small and 𝑐/𝑎 becomes large, resulting in 

a small value for d a disproportionately large value of b. We are not interested in 

such cases, we just need to classify them as bad. Therefore, we modify the 

calculation to: 

𝑑 = (1 − 𝑎 − 𝑐)/(1 + min (
𝑐

𝑎
, 1)) 

The results are quite reasonable and work well with the data set. 

We could also assume: 

𝑏

𝑎 + 𝑏
=

𝑐

𝑐 + 𝑑
 

 

The rationale her is that an equal proportion of good and bad cases will be judged 

wrongly. Using the equation above, we would have the situation in Table 12. 

 

 Judged Good Judged Bad 

Good 54% 6% 

Bad 4% 36% 

Table 12 Error Model: b/(a+b) = c/(c+d) 

In this case we have: 

𝑏 =
𝑎𝑐

𝑑
 

⟹ 𝑑 +
𝑎𝑐

𝑑
= (1 − 𝑎 − 𝑐) 

This gives a quadratic equation for d: 

𝑑2 − (1 − 𝑎 − 𝑐)𝑑 + 𝑎𝑐 = 0 

Finally, we could set 𝑏 = 𝑐 and have the results in Table 13. 



Chapter 6: Information 

Alan Roy Dormer - August 2020   129 

 

 Judged Good Judged Bad 

Good 54% 5% 

Bad 5% 36% 

Table 13 Error Model: b=c 

The first model is simple and is easy to solve, and reliable insofar as we know a 

and c and as long as 𝑎 + 𝑐 < 1 we can always find a solution. The second is more 

complicated and won’t always solve. The solution relies on (1 − 𝑎 − 𝑐)2 being 

greater than or equal to 4𝑎𝑐. This is not always true. If 𝑎 = 0.4 𝑎𝑛𝑑 𝑐 = 0.4 we 

have (1 − 𝑎 − 𝑐)2 = 0.04 𝑎𝑛𝑑 4𝑎𝑐 =  0.64 

The third is unreliable as there is no solution if 1 − 𝑎 > 2𝑐. 

The results of the first model are shown in Table 14: 

 

Table 14 Performance of Selected Error Model 

 Summary 

There are several options for attribute selection but given the objective of a 

practical and reliable approach, the wrapper method should be preferable. 

Depending on the method we choose for rule building, dependent attributes may 

have been eliminated. If they remain, backward selection or feature correlated 

selection is an option. 

P(Eg) P(good|Eg) a b c d P(good)

0.9 0.9 0.81 0.01 0.09 0.09 0.82

0.8 0.9 0.72 0.02 0.08 0.18 0.74

0.9 0.9 0.81 0.01 0.09 0.09 0.82

0.8 0.7 0.56 0.06 0.24 0.14 0.62

0.7 0.8 0.56 0.06 0.14 0.24 0.62

0.7 0.6 0.42 0.12 0.28 0.18 0.54

0.6 0.7 0.42 0.12 0.18 0.28 0.54

0.6 0.5 0.3 0.2 0.3 0.2 0.5

0.5 0.6 0.3 0.2 0.2 0.3 0.5

0.5 0.5 0.25 0.25 0.25 0.25 0.5

0.4 0.5 0.2 0.3 0.2 0.3 0.5

0.5 0.4 0.2 0.25 0.3 0.25 0.45

0.4 0.4 0.16 0.3 0.24 0.3 0.46
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With data on the outcomes of rejected cases missing, we must make assumptions 

on the ratio of good and bad outcomes for the rejected cases. Of the three intuitive 

methods, there is one method that works for all data sets, and we will use that later 

with the data in Chapter 8. But in the absence of data, there is no way to validate 

it. 

In the two example data sets (or points) that we have found, transaction 

abandonment is a significant problem and should be factored into any attribute 

selection or rule building exercise.  
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7 RULE BUILDING 

 Introduction 

In this chapter, we examine options for building rules that can be used for that set 

of problems that includes loan applications. The business problem has been 

described in Chapter 4, and the objectives of the rule system include: 

• Getting the best financial outcome for the service business 

• Identifying if it would be better to refer a decision to the expert 

This requires a degree of self-awareness in the sense that the rules need to 

calculate the probability that the decision they have reached is correct. The rule 

system needs a model of the expert to assess the likelihood that he will make a 

better decision and one that justifies the additional cost of his involvement. The 

final choice of rule building must also consider performance (accuracy), degree 

of optimality achieved, and complexity. 

We first revisit the objective function that we are attempting to maximise with the 

choices we make for the rules and make some observations around the benefits of 

reliability and simplicity that are useful in any practical method. Then we examine 

several potential ways to build the rules. We first propose a method to determine 

the optimal set of IF-THEN-ELSE rules from first principles. Then we examine 

the pros and cons of machine learning (decision trees and rule learning). Finally, 

we investigate the use of logistic regression and decision trees. We conclude that 

decision trees and logistic regression have some advantages in terms of simplicity, 

reliability, and practicality. 

 Objective Function 

It is worth restating the objective function. We are aiming to build a set of rules 

that, when applied to the anticipate population, maximise the expected benefit (or 

profit) of good cases accepted, minus the expected cost (or loss) of any bad cases 

accepted in error. There are also costs incurred related to the amount of 

information requested and received, in terms of transaction abandonment and the 
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human effort of processing information and making decisions. We can ignore the 

latter for the time being and concentrate on the potential methods to create rules. 

As already stated, the rules that we are at liberty to vary are the CRA rules: 

computation, reasoning, and allocation. There are other rules, such as compliance, 

that do not have a bearing on our objective. For example, if it is against the law or 

a company rule to accept a class of customer, this customer will not be considered 

against any financial objective, they will be disqualified.  

We have also observed that logical rules and regression have been identified as 

mechanisms used in human decision making, and they also have the advantage of 

simplicity and comprehensibility. As such, they represent a good model to work 

with. Other, more complex, techniques could be used, especially if they provide 

greater accuracy, but it may be impossible, or difficult, to understand why a 

decision was made. 

 Solution Architecture 

The basic architecture is shown in Figure 18 and consists of a set of rules that 

decide whether a case should be accepted, rejected, or referred. We assume for 

now that we have data on expert judgement and the outcomes as in the LENS 

model. There are several ways we can create the rules that optimise the outcome 

for the organisation. 

i. First principles; we use the training data and an optimisation algorithm to 

determine the tests within the rules and the outcomes. 

ii. Identify those cases that would be better processed by the expert, identify them as 

such in the training set and then use machine learning to classify the cases as 

accept, reject, or refer 

iii. Use logistical regression to model the expert and calculate the relative expected 

values of processing by the rules or the expert 

We have also adopted the approach that, for a practical application framework, 

we restrict our attention to techniques that are available and as far as possible 

simple. 

 First Principles 

Let us assume that we have a rule structure, and we need to determine: 
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•  the parameters (such as the upper and lower limits in the logical tests and 

constants in any calculations) and  

• choices (which rule do we use and potentially which logical or arithmetical 

operators do we use).  

We can pose this as an optimisation problem where the objective function is the 

profit and the degrees of freedom are the parameters.  

 

Figure 18 Rule Optimisation Algorithm 

CRA rules include the value of parameters and logic within the rules. These pose 

an integer programming problem that is potentially non-linear as the objective 

function consists of calculations around profits and costs, and cumulative 

distribution functions (CDF) as identified in Chapter 5. For the type of problem 

we are interested in, CDFs are almost always non-linear. 

Below we have a small example to illustrate the point which is a subset of a typical 

credit application problem where gender and income are two attributes of interest 

in the process: 

𝐼𝐹 ( 𝑥1 =   𝑝13 )  𝑇𝐻𝐸𝑁 

    𝐼𝐹 ( 𝑥2 ≥   𝑙12 )  𝑇𝐻𝐸𝑁 

        𝐼𝐹 ( 𝑥3 ≥   𝑙13 )  𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑙123 

        𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑙𝑎123 
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    𝐼𝐹 ( 𝑥2 <   𝑢12 )  𝑇𝐻𝐸𝑁 

        𝐼𝐹 ( 𝑥3 <   𝑢31 )  𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑢123 

       𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑢123 

𝐸𝐿𝑆𝐸 𝐼𝐹 ( 𝑥1 =   𝑝12 )  𝑇𝐻𝐸𝑁 

      𝐼𝐹 ( 𝑥2 ≥   𝑙22 )  𝑇𝐻𝐸𝑁 

        𝐼𝐹 ( 𝑥3 ≥   𝑙23 )  𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑙223 

        𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑙223 

    𝐼𝐹 ( 𝑥2 <   𝑢22 )  𝑇𝐻𝐸𝑁 

        𝐼𝐹 ( 𝑥3 <   𝑢23 )  𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑢223 

       𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑢223 

𝐸𝐿𝑆𝐸 𝐼𝐹 ( 𝑥1 =   𝑝13 )  𝑇𝐻𝐸𝑁 

      𝐼𝐹 ( 𝑥2 ≥   𝑙32 )  𝑇𝐻𝐸𝑁 

        𝐼𝐹 ( 𝑥3 ≥   𝑙33 )  𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑙323 

        𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎323 

    𝐼𝐹 ( 𝑥2 <   𝑢32 )  𝑇𝐻𝐸𝑁 

        𝐼𝐹 ( 𝑥3 <   𝑢33 )  𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑢323 

       𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎323 

Where: 

𝑥1   𝑖𝑠 𝑎 𝑐ℎ𝑜𝑖𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡ℎ𝑎𝑡 𝑡𝑎𝑘𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠  𝑝11 , 𝑝13 𝑎𝑛𝑑 𝑝13   

𝑥2  𝑎𝑛𝑑 𝑥3 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

 𝑙𝑖𝑗    𝑎𝑛𝑑    𝑢𝑖𝑗   𝑎𝑟𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡𝑠     

  𝑎𝑙𝑖𝑗𝑘  
, 𝑛𝑎𝑙𝑖𝑗𝑘, 𝑎𝑢𝑖𝑗𝑘, 𝑛𝑎𝑢𝑖𝑗𝑘   𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑅𝐸𝐽𝐸𝐶𝑇, 𝑅𝐸𝐹𝐸𝑅 𝑜𝑟 𝐴𝐶𝐶𝐸𝑃𝑇    

The degrees of freedom for the optimisation problem are those listed above, and 

the objective function is the profit arising when the rules are applied to a data set 

containing past or expected cases.  We have given some simple examples of this 

approach in Chapter 4, but to illustrate the point further assume that we have a 

customer i and the variables are: 
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𝑥𝑖1 𝑖𝑠 𝑔𝑒𝑛𝑑𝑒𝑟 𝑎𝑛𝑑 𝑡𝑎𝑘𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑚𝑎𝑙𝑒 𝑎𝑛𝑑 𝑓𝑒𝑚𝑎𝑙𝑒 

𝑥𝑖2 𝑖𝑠 𝑖𝑛𝑐𝑜𝑚𝑒 𝑎𝑛𝑑 𝑖𝑠 𝑎 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑥𝑖3 𝑖𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑎𝑛𝑑 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑔𝑜𝑜𝑑 𝑎𝑛𝑑 𝑏𝑎𝑑 

𝑥𝑖4 𝑖𝑠 𝑛𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 

𝑚 𝑎𝑛𝑑 𝑓 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

 𝑎𝑚, 𝑛𝑎𝑚, 𝑎𝑓, 𝑛𝑎𝑓  𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑅𝐸𝐽𝐸𝐶𝑇 𝑜𝑟 𝐴𝐶𝐶𝐸𝑃𝑇    

We build a model of the expected profit of the business as a function of the rule 

parameters and select values for the independent variables, populate the rules, take 

a set of cases and calculate the good and bad outcomes, and hence the profit, for 

the rules based on those variables. 

Case No Gender Income Outcome 
Profit/ 

Loss 

1 M 20,000 Good 40,000 

2 M 25,000 Bad -50,000 

3 M 40,000 Good 70,000 

4 M 45,000 Good 80,000 

5 M 50,000 Good 90,000 

6 F 20,000 Good 40,000 

7 F 25,000 Good 50,000 

8 F 40,000 Bad -50,000 

9 F 45,000 Good 80,000 

10 F 50,000 Good 90,000 

Table 15 Dataset of Cases 

Table 15 is a simplified data set of historical cases and actual outcomes. We use 

this to evaluate the profit that would be generated had we used the proposed set 

of rules.  

We then have a set of rules that look like: 



Chapter 7: Rule Building 

136  Alan Roy Dormer - August 2020 

𝐼𝐹(𝑥𝑖1 =  𝑀𝐴𝐿𝐸) 𝑇𝐻𝐸𝑁 

𝐼𝐹(𝑥𝑖2 >  𝑚) 𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑚 

𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑚  

𝐼𝐹(𝑥𝑖1 =  𝑀𝐴𝐿𝐸) 𝑇𝐻𝐸𝑁 

𝐼𝐹(𝑥𝑖2 ≤ m) 𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑙𝑚 

𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑙𝑚 

 

𝐼𝐹(𝑥𝑖1 =  𝐹𝐸𝑀𝐴𝐿𝐸) 𝑇𝐻𝐸𝑁 

𝐼𝐹(𝑥𝑖2 >  f) 𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑓  

𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑓 

𝐼𝐹(𝑥𝑖1 =  𝐹𝐸𝑀𝐴𝐿𝐸) 𝑇𝐻𝐸𝑁 

𝐼𝐹(𝑥𝑖2 ≤  𝑓) 𝑇𝐻𝐸𝑁 𝐴𝐶𝑇𝐼𝑂𝑁 𝑎𝑙𝑓 

𝐸𝐿𝑆𝐸 𝐴𝐶𝑇𝐼𝑂𝑁 𝑛𝑎𝑙𝑓 

So each time we set values for the independent variables: the real 

variables:  𝑚 𝑎𝑛𝑑 𝑓  and the binary variables: 

𝑎𝑚, 𝑛𝑎𝑚, 𝑎𝑙𝑚, 𝑛𝑎𝑙𝑚, 𝑎𝑓, 𝑛𝑎𝑓, 𝑎𝑙𝑓, 𝑛𝑎𝑙𝑓 we have a different value of the 

objective function when these rules are applied to the data set. For example, the 

objective function (as a function of the variables above) looks remarkably like the 

rules: 

𝑝 = 0 (𝑠𝑒𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑜𝑓𝑖𝑡 𝑡𝑜 𝑧𝑒𝑟𝑜) 

𝐹𝑂𝑅 𝑖 = 1, 5: 

𝐼𝐹((𝑥𝑖1 = 𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 > 𝑚) 𝐴𝑁𝐷 (𝑎𝑚 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 

𝐼𝐹((𝑥𝑖1 = 𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 ≤ 𝑚) 𝐴𝑁𝐷 (𝑛𝑎𝑚 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 

𝐼𝐹((𝑥1 = 𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 ≤ 𝑚) 𝐴𝑁𝐷 (𝑎𝑙𝑚 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 
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𝐼𝐹((𝑥1 = 𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 > 𝑚) 𝐴𝑁𝐷 (𝑛𝑎𝑙𝑚 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 

𝐼𝐹((𝑥𝑖1 = 𝐹𝐸𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 > 𝑓) 𝐴𝑁𝐷 (𝑎𝑓 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 

𝐼𝐹((𝑥𝑖1 = 𝐹𝐸𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 ≤ 𝑓) 𝐴𝑁𝐷 (𝑛𝑎 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 

𝐼𝐹((𝑥1 = 𝐹𝐸𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 ≤ 𝑓) 𝐴𝑁𝐷 (𝑎𝑙𝑓 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝

= 𝑝 +  𝑥𝑖4 

𝐼𝐹((𝑥1 = 𝐹𝐸𝑀𝐴𝐿𝐸) 𝐴𝑁𝐷 (𝑥𝑖2 > 𝑓) 𝐴𝑁𝐷 (𝑛𝑎𝑙 = 𝐴𝐶𝐶𝐸𝑃𝑇)) 𝑇𝐻𝐸𝑁 𝑝 

= 𝑝 +  𝑥𝑖4 

 𝑅𝐸𝑃𝐸𝐴𝑇 

Note that we are only concerned with actions that result in acceptance. Erroneous 

acceptance (of a bad customer) and rejection (of a good customer) will both reduce 

the profit function by including an unnecessary loss or missing out on a potential 

profit. 

We can then maximise this objective by manipulating the independent variables. 

The resulting ruleset is: 

𝐼𝐹(𝑥𝑖1 = 𝑀𝐴𝐿𝐸   ( 𝑥𝑖2 > 30,000) 

  𝐼𝐹(𝑥𝑖2 > 30,000) 𝐴𝐶𝐶𝐸𝑃𝑇 

𝐸𝐿𝑆𝐸 𝐼𝐹(𝑥𝑖1 = 𝐹𝐸𝑀𝐴𝐿𝐸) 

  𝐼𝐹(𝑥𝑖2 < 30,000) 𝐴𝐶𝐶𝐸𝑃𝑇 

  𝐼𝐹(𝑥𝑖2 > 40,000) 𝐴𝐶𝐶𝐸𝑃𝑇 

 𝐸𝐿𝑆𝐸 𝑅𝐸𝐽𝐸𝐶𝑇 

In this simple case, the objective function is not continuous; for example, if all 

other variables are equal and 𝑚 → 25,000  or 𝑚 → 40,000  we get a 

discontinuity. In a larger data set this would be moderated, but discontinuities 

would remain. The optimisation method to identify which rules to use and the 

limits on the attributes depends on the nature of the objective function and 

constraints. A linear problem may be solved by Linear Programming (Guéret et 

al, 2000). For non-linear problems there are a range of methods including direct 
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search, gradient methods and methods that utilise information about second 

derivatives, such as Sequential Quadratic Programming (SQP) (Gill et al. 2005). 

There are also binary and integer variables (choices) to determine which require 

special consideration and these can be addressed with mixed-integer form of 

linear and non-linear programming, constraint programming (Apt, 2003) or 

evolutionary computing (Eiben et al., 2003). The choice between these methods 

depends very much on the nature of the objective function. Gradient methods are 

efficient, but they require the function to be continuously differentiable as a 

minimum; direct search is less efficient but imposes fewer conditions on the 

objective (Ali et al., 1997). Different methods may be appropriate depending on 

the rules and the underlying objective function relating to the business.  

We can model any form of linear or non-linear functions and dependent variables, 

but with our problem, there are some serious difficulties: 

i. The objective function will be differentiable as it is derived from cumulative 

distribution functions, provided that the cost functions are differentiable 

ii. The theoretical objective function is differentiable, but the derivative is only right 

continuous (as identified in 5.4.3). That limits the application of methods that 

require gradient calculations.  

iii. In practice, as identified above, the objective function would not be continuous 

iv. Unless the objective is linear or convex, there is always a possibility of a local 

minimum (or minima).  

v. There will be choice (integer) variables. There is no guarantee that non-linear 

integer programming problem will solve in a reasonable time, if ever (Schrijver, 

1998). 

Our objective is to create something useful and practical, and, for these reasons, 

we cannot rely on the first principles method. We can simplify the problem by 

linearisation, for example. But that step alone requires expertise that will limit its 

application. 

 Machine Learning 

Business rules within the services sector are frequently concerned with making 

decisions that depend on the information provided (the characteristics or 
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attributes) of an individual customer. In our case, we are making decisions about 

each customer on acceptance, rejection, or referral. As such, this is a classification 

problem. 

There are many ways to solve a classification problem (decision trees, random 

forests, rule learning, clustering, and support vector machines, for example).  

Business rules are typically a series of logical tests on the available data – like a 

simple form of decision tree or the result of rule learning - or some form of a 

weighted scoring system. These have the distinct advantage of enabling the user 

to understand the process by which the rules decide. With more sophisticated 

methods (for example random forest or clustering) it is difficult – if not impossible 

– to understand why a decision was made. The other advantage with rules and 

decision trees is their ability to reach a decision without using all the data available 

in a context-sensitive manner. This is a significant advantage in our application 

over other types of machine learning that need all the data before a decision. 

As such, we focus our attention – in this section – on decision trees and rule 

learning. In 7.7 we consider classification methods based on weighted scores. 

According to the survey paper by Kotsiantis (2013), decision trees are sequential 

models, which logically combine a sequence of simple tests; each test compares 

a numeric attribute against a threshold value or a nominal attribute against a set 

of possible values. Given a population with various attributes that are known, 

decision trees can be used to classify members to determine attributes that are 

unknown. Each object belongs to a class and we can measure certain attributes, 

but we do not know the class, and when we know the class we can determine 

further attributes that we cannot measure. Rule learning is very similar. 

For example, in medicine, there are things we can measure or know, such as age, 

sex, pulse rate and blood pressure but we want to determine the incidence of heart 

disease which cannot be readily determined. And, knowing that an individual is 

in a high-risk category for heart disease, we can determine other attributes, such 

as life expectancy. In a business situation, we do not know whether a customer 

will honour his obligations or how much he is prepared to pay; we must rely on 

information such as credit history, income, assets, etc. 
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Decision trees and rule learning are classification methods that are similar to 

business rules as they perform a sequence of logical tests on the attributes to arrive 

at a classification. They have some common features: 

i. They both select the best attribute to branch on and then calculate a split based on 

a criterion such as maximising information gain or purity. 

ii. They are robust and solve quickly, and there is publicly available software to train 

and analyse results 

iii. Care must be taken with training to avoid overtraining and significant imbalance 

of the training set 

iv. There are methods to cope with unequal misclassification costs which is relevant 

to the situation where the loss due to a false negative (rejecting a good customer) 

if not the same as a false positive (accepting a bad customer). 

v. They cope well with non-linearity and can deal with situations where the value of 

an attribute can influence the impact of another attribute on the classification.  

7.5.1 Decision Trees 

Decision trees have typically used a set of members for which we know both class 

and attributes as a way of determining members for which we only know the 

attributes. We call this a training set, and the key assumption is that the 

relationships between class and attributes will not change. In essence, the past is 

a good guide to the future, or a sample is representative of the whole population. 

Decision trees have some essential elements: 

7.5.1.1 Optimising the Tests 

Decision trees generally use an impurity criterion to choose the optimal test 

criteria, or in other words, which attribute to branch on next. (Timoveev, 2004). 

One impurity measure of a set, t, is the Gini impurity, defined as: 

𝐼(𝑡)  =  1 −  ∑ 𝑝𝑖
2

𝑛

𝑖=1

  

Where 𝑝𝑖  is the proportion of class k in each of the n sub-divisions. This is 

maximised when objects of the same class are evenly distributed (𝑝𝑘 =
1

𝑛
, 1 ≤

𝑖 ≤ 𝑛) and minimised (i.e., zero) when all the objects of class k are in subdivision 

k (𝑝𝑘 =1 and 𝑝𝑖 = 0, 𝑖 ≠ 𝑘 1 ≤ 𝑖 ≤ 𝑛). 
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7.5.1.2 Pruning the Tree 

Decisions trees should be as simple as possible. For example increased complexity 

can result in overtraining and poor prediction on new data sets. (Bramer, 2007).  

A pruning scheme is necessary which can be based on a minimum size for each 

node, either in absolute or relative (a percentage of the original set) terms. 

We can also use cross-validation. This minimises a combination of the size of the 

tree and the misclassification error on randomly selected data sets. (Timofeev, 

2004). In our case study we use this approach applied, for example to the J48 

decision tree in Weka (Quinlan, 1993) 

7.5.2 Rule Learning 

This approach is similar in concept to decision trees (Fürnkranz, 2012). The idea 

is to classify elements based on a training set by constructing rules of the type: 

 𝐼𝐹 (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)𝑇𝐻𝐸𝑁 𝑐,  

where c is the class label 

As in decision trees, variables can be discrete or real/continuous. This is like the 

categorical and ordered variables in decision trees, although integer variables are 

in essence both. The rule structure (Janssen, et al, 2010) created by rule learning 

is like that employed by business rules and is like this: 

𝐼𝐹𝑓1 𝐴𝑁𝐷 𝑓2 𝐴𝑁𝐷 … . 𝑓𝐿 𝑇𝐻𝐸𝑁 𝐶𝑙𝑎𝑠𝑠 =  𝑐𝑖 

Where feature fk, is a test that checks whether the element that we are classifying 

has the specified property or not. Examples of such features are: 

𝐼𝐹(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑘  ∈ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖) or 

𝐼𝐹(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑘  ≤ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖) 

The distinguishing feature of rule learning is the rule structure, which is like 

decision trees and business rules that could be used for allocation and reasoning.  

𝐼𝐹 (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖  ) 𝐴𝑁𝐷 𝐼𝐹 (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑗) 𝑇𝐻𝐸𝑁 𝑎𝑐𝑡𝑖𝑜𝑛 

𝐼𝐹 ( 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖) 𝑂𝑅 𝐼𝐹 (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑗) 𝑇𝐻𝐸𝑁 𝑎𝑐𝑡𝑖𝑜𝑛 

Rule learning is a vast field of research (Bundy, 1985), and we are more concerned 

with the form of the output (above) that resembles business rules. In the case study 

application, we apply propositional rule learning (Cohen, 1995). 
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7.5.3 Considerations with Machine Learning 

7.5.3.1 Misclassification Costs 

In many applications, there is a requirement to classify correctly. Still, the costs 

of misclassification may not be the same, and the cost of a false negative is 

different from that of a false positive. There are ways to compensate, for example, 

by weighting the training set in one direction or the other. This may appear to be 

crude, but with a two-class problem, the Gini impurity (Breiman et al., 1984) is 

insensitive to any modification. If we use the optimisation criteria instead of 

impurity, there is a potential for degeneration. It is also possible to modify the 

splitting criteria at the leaves. 

7.5.3.2 Probabilities 

Decision trees and rule learning algorithms do not directly calculate or estimate 

the probability of a case, or set of cases, being good (Kotsiantis, 2007), The only 

method is to inspect the leaf of the tree that contains the case. This can be prone 

to error, especially when there are few cases in a leaf. For example, if there are 5 

cases in a leaf, a random change of +/- 1 case will give a 40% error in the estimate. 

Recent research into rule learning has proposed methods to calculate probabilities 

(Kimmig et al., 2010). However, the authors concede probabilities are expensive 

to calculate and potentially infeasible. 

7.5.3.3 Non-Linearity 

Decision trees deal well with non-linear behaviour as they use a univariate search. 

Properly conducted, this will deliver the best split on a node by node basis. (Lin 

et al, 2014) 

7.5.3.4 Dependency Between Attributes (Dependent Attributes) 

There are situations where the category or value of an attribute influences the 

classification of another. A classic example is suicide in men that are classified as 

young and old, doctor and non-doctor, young men generally have higher rates of 

suicide, but if the man is a doctor, the situation is reversed. (Schernhammer, 2005) 

and (Gunnell, et al, 2003). With a decision tree, the branching on the subsequent 

variable takes this into account, and we can observe the reversal in the next layer. 

See Fig 19, below, for the behaviour in this case. 
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Figure 19 Behaviour of Decision Trees 

7.5.3.5 Uncertain Classification  

When the classification is unknown, we can eliminate those elements from 

calculations regarding impurity and then assign a classification based on the final 

node that contains them (Breiman et al., 1984). However, as we shall see in our 

case study data set, we need to be careful applying this approach to a whole 

distribution – for example, outcomes for accepted and rejected cases – when we 

only have a classification for the accepted cases. 

7.5.4 Computation 

Where classification is better on an axis other than the measured variables there 

is merit in using linear combinations of variables. This can be achieved during the 

test construction process and is commonly used in credit rating, through credit 

scoring. Computation rules can also be applied, such as ratios. For example, the 

ratios of loan to salary, or loan to valuation, are commonly used in mortgage 

applications. 

7.5.5 Costs 

Costs including execution costs, costs of tests and the potential (or expected) costs 

of misclassification can be included. There is also the notion of delayed costs (for 
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example, tests that take time to carry out and where it would be impractical to wait 

for them). For example, in medical diagnosis, a doctor must be paid for a 

consultation, he may carry out additional tests (at additional costs) during the 

examination, and he may take blood samples for subsequent analysis. But when a 

blood sample is taken, it may make sense to gather further information, even 

though there may be information in the blood test result that may prompt further 

tests or action. This sort of problem involves balancing the cost of getting 

information and the accuracy of the classification. This has been considered by 

Turney (1995) and more recently, Freitas (2007).  Chen (2009) takes this further 

and considers the problem of building a decision tree that deals with multiple 

attributes with an overall maximum cost, given by decision costs, test costs and 

the costs of misclassification.  

Decision trees have also been applied to credit applications (Bensic, 2005) and 

(Galindo, 2000). In this research, the focus is the correctness of classification and 

how a decision tree can replace a human decision maker. 

 Application of Machine Learning 

Decision trees and rule learning are classification methods that identify the next 

best attribute to branch on and use information gain (Gini impurity or entropy) to 

prevent degeneracy. They work well with non-linear functions and where there is 

a dependency between attributes. The main objective is to classify each case 

correctly. To apply these methods in our situation, we need to identify which cases 

should be referred. That requires the probabilities that either the rule or expert 

judgment is correct. With machine learning, we can calculate these probabilities 

using the numbers of good and bad cases in each node when we apply the decision 

tree or rules to a test set. We do not use any cases in the test set to create the tree 

or rules in the first place. The relative probabilities (will allow us to identify which 

cases should be referred. The remainder of the cases are left as good and bad, and 

we have three classes: accept, reject and refer. 

For the cases that we accept and reject, there can be different misclassification 

costs. This is an example of cost-sensitive learning (Zadrozny et al., 2014) and in 

a two-class problem we would compensate by changing the proportion of good 

and bad outcomes in the training data. This change has the effect of moving the 

classification in favour of the class with a higher proportion. However, in our 
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problem, we have three classes, and the misclassification is between reject and 

refer, or between refer and accept. We label a case in the training set for referral 

(as refer) based on the overall expected profits and costs (including 

misclassification costs). As such, for the final classification, we just require 

accuracy. 

Finally, a major disadvantage of machine learning is that the identification of the 

case to refer (and hence the training data) will be dependent on the cost of the 

expert, and we will not be able to adjust this cost without repeating the learning 

process.  

 Logistic Regression 

Logistic regression is a regression method that provides an estimate of the 

probability of an item belonging to one of the classes; as such, it can be used as a 

classifier. (Hosmer et al, 2013)). This is a major advantage over other forms of 

simple and multiple regression that simply produce a real number or integer 

without an estimate of probability. Such probabilities enable us to classify and 

calculate the probability that the classification is, indeed, correct. 

Suppose we are classifying elements 𝑥𝑖  1 ≤ 𝑖 ≤ 𝑛 into two classes; good and bad, 

and each element has attributes 𝑎𝑖𝑗  𝑤𝑖𝑡ℎ 1 ≤ 𝑗 ≤ 𝑚. 

We fit a linear regression model and for each element 𝑥𝑖 we have an expression 

for the logarithm of the odds ratio as a function of its attributes: 

𝑙(𝑥𝑖) = ln 𝑝((𝑥𝑖 = 𝑔𝑜𝑜𝑑)/(1 − 𝑝(𝑥𝑖 = 𝑔𝑜𝑜𝑑)) 

𝑙(𝑥𝑖) = 𝑏0 +  ∑ 𝑎𝑖𝑗𝑏𝑗

𝑚

𝑗=1

 

And  

𝑝(𝑥𝑖 = 𝑔𝑜𝑜𝑑) = 1/(1 + exp(−𝑙)) 

The main features of logistic regression is a direct calculation of probabilities (that 

an element is good or bad) on a case by case basis. This differs from using 

inference – from the results of application to the test set - with decision tree or 

rules. Direect calculation of probability is a significant advantage over decision 

trees and rule learning.  



Chapter 7: Rule Building 

146  Alan Roy Dormer - August 2020 

However, there are some other advantages and disadvantages: 

7.7.1 Non-Linearity 

Logistic regression is a linear method when we have real variables. Still, if we 

discretise the real variables, we can remove this limitation as each subset can have 

a different co-efficient. Methods such as Equal Width (of the bin) or Equal 

Frequency (of elements in the bin) are simple. Supervised methods are more 

complex, but Entropy Based Discretisation produces good results and is easy to 

implement (Mark et al, 2011). Essentially, we are looking subsets of the data 

(bins) with the lowest entropy subject to a stopping criterion based on Maximum 

Description Length. 

For example, if we have two variables, 𝑥𝑖  0 ≤ 𝑖 ≤ 2 and we perform logistic 

regression we get an equation like: 

log
𝑝

1−𝑝
=  𝑏2𝑥2 + 𝑏1𝑥1 + 𝑏0  

Which is linear in 𝑥1, 𝑥2 

But if we discretise and form 𝑥11, 𝑥12, … 𝑥1𝑛 and 𝑥21, 𝑥22, … 𝑥2𝑛 we get 

log
𝑝

1 − 𝑝
=  ∑ 𝑏2𝑖𝑥2𝑖

𝑛

𝑖=1

+ ∑ 𝑏1𝑖𝑥1𝑖

𝑛

𝑖=1

+ 𝑏0 

Which is not linear 𝑥1, 𝑥2 

The method estimates the probability that an element belongs to a class. As such, 

the results can be used for any objective function that depends on classification. 

7.7.2 Dependent Variables 

Logistic regression cannot represent the impact that one attribute has another in 

terms of the classification as each co-efficient is fixed and independent of the other 

attributes. Unlike decisions trees, it cannot split and then re-optimise the split 

again. This is an issue if we have such dependent attributes. It can be overcome 

by creating composite attributes, but this relies on them being identified, for 

example, by training a decision tree and looking for reversals. 

By dependent variables, we mean that the value of one attribute influences the 

relationship between another attribute and the classification. For example, the risk 

of suicide in men is higher in young men, unless they are doctors in which case it 
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is the reverse (see 7.5.3.4). If this is known, we can introduce a different 

discretisation scheme where we mix attributes. So instead of having: 

𝐴𝑘 = ⋃ 𝐴𝑘𝑗

𝑚

𝑗=1

 𝑎𝑛𝑑 𝐴𝑙 = ⋃ 𝐴𝑙𝑗

𝑚

𝑗=1

 

As the discretisation of 2 dependent attributes we form a new discretisation such 

as: 

𝐴𝑘 ∪ 𝐴𝑙 = ⋃ 𝐴𝑘𝑖

𝑚

𝑖,𝑗=1

∩ 𝐴𝑙𝑗   

In the example above, we might have age in decades from 20 up until 60 (five 

categories) and doctor/non-doctor (two categories). Now we have ten categories: 

 

20/D 30/D 40/D 50/D 60/D 

20/ND 30/ND 40/ND 50/ND 60/ND 

Table 16 Composite Attribute to Deal with Dependency 

This enables logistical regression to apply the appropriate – higher – weighting to 

the shaded categories. 

We group the cases within the union of one or more of the intersections defined 

by the discretisation process. To see this, let  

• 𝐴𝑖𝑗 be the jth discretisation of the attribute variable 𝑥𝑖 𝑤𝑖𝑡ℎ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 

• Then the leaves or resultants of applying the rules mean that we create subsets: 

• 𝐴𝑖𝑗 ∩ 𝐴𝑖𝑘 … .∩ 𝐴𝑖𝑙   for  1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗, 𝑘, 𝑙 ≤ m 

As previously identified, we compensate for unequal misclassification costs by 

optimising the cut off value for 𝑝(𝑔𝑜𝑜𝑑). Methods have been developed by 

(Bahnsen et al., 2014) for more complex credit scoring cost models, but this is not 

our focus for this research. 

7.7.3 Efficiency 

Logistic regression can support an efficient execution approach that consists of 

two elements: 
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i. Identify the optimal number of attributes required using feature selection (as 

discussed in 6.2) 

ii. Identify the optimal order in which to process the information, potentially on a 

case-by-case basis 

Note that, if we discretise the attributes, we have different coefficients in the 

expression for the log odds, and, as such, the order may differ.  

7.7.4 Unequal Misclassification Costs and Sample Size 

Strictly speaking, logistic regression is not a classifier. It produces (the logarithm 

of) the probability that a case is of a class. In our application, we only need two 

classes (good and bad, for example), but it can be applied to more than two. 

Logistic regression can made a classifier by applying a cut-off value which can be 

tuned to maximise the separation or reduce the misclassification rate. For these 

reasons, logistic regression is less sensitive (although not immune) to unequal 

sample size, and we can compensate for unequal misclassification costs by tuning 

the cut-off. For example, when the sample size and misclassification costs are 

equal, the cut-off is approximately 0.5. There is no formula to adjust this when we 

do not have equality, that is dependent on the nature of the data set.  

7.7.5 Previous Applications 

Logistic regression has been applied to credit scoring (Bahnsen et al., 2014), for 

example, which includes unequal classification costs. Like machine learning 

research, the focus is on replacing, rather than augmenting, the human.  

His paper is somewhat unusual as it uses data on outcomes explicitly. However, 

it does not make the link with judgements, nor does it consider the outcomes for 

cases that were rejected.   

 Application of Logistic Regression 

Applying logistic regression is like the application of machine learning. The 

regression produces an estimate of 𝑝(𝑔𝑜𝑜𝑑) and we can choose a cut-off that 

creates a classification function. Also, we can vary the cost of the expert as the 

calculation of the expected net benefit is embedded with the process of deciding 

which cases to refer, which cases are good, and which cases are bad. This is a 
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significant advantage for the operations problem when the marginal cost of the 

experts is zero. 

 Conclusions 

7.9.1 First Principles 

The complexity and unreliability of non-linear optimisation is the main problem. 

The theoretical objective may be differentiable, but not continuously so, but is 

more likely to be discontinuous in practice. There is also no guarantee of a unique 

minimum, or absence of a local minimum. However, there are some advantages: 

• The problem, if it solves, is the best possible solution. Decision trees and rule 

learning work attribute by attribute which may be sub-optimal 

• In more complex cases, the participants and operators within the calculations may 

be included as optimisation variables. This negates the need for calculations to be 

pre-defined 

• The existence – or otherwise – of rules can also be optimisation variables. This is 

another way to do feature selection; if the rule that uses an attribute is not required, 

neither is the attribute 

Although the rules created may look like a decision tree there are differences: 

• Decision tree building consists of a series of univariate optimisation problems, 

attribute by attribute, and uses an information gain or entropy objective function. 

The first principles approach uses the objective function that we are interested in, 

such as profit or revenue. 

• Decision trees create different tests for each branch. First principals will only 

create values for tests that are in the proposed structure 

• Constants and choice of logical or arithmetic operators are out of scope with 

decision trees which only choose the tests 

7.9.2 Machine Learning 

The main issues with decision trees and rule learning are the requirements to 

identify referral cases, a priori, and then build the tree or rules. If the costs change, 

the referrals change, and we must rebuild. In addition, determination of the purity 

(or quality) in each leaf by inspection is subject to error. However, the structure 
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is easy to understand; the process naturally elicits the most important information 

first and can reach a decision without using all the available data, and can deal 

with dependencies. 

7.9.3 Logistic Regression 

There are some disadvantages compared to machine learning; we must discretise 

to deal with non-linearities and be careful with dependent variables. However, the 

process is simpler as we only have one step, we can vary the costs without having 

to repeat the regression, and we can calculate probabilities directly on a case by 

case basis. 

 Summary 

We can rule out first principles on the grounds of complexity and unreliability. 

Machine learning deals naturally with non-linearity and dependent variables. It 

also processes the most important data first and can reach a decision without all 

the data. It is, therefore, a good choice for the business rules. 

Logistic regression requires some care and thought if we have non-linearity and 

dependent variables, but the process of application is simpler, and we can adjust 

the cost of the expert ‘on the fly’. It can, therefore, be used to build the rules and 

has the advantage of calculating probabilities directly. As such, it also a good 

choice for modelling the performance of the human expert. 

In practice, we also consider the accuracy of classification, which is problem 

dependent with each technology. Subject to this, we conclude that machine 

learning and logistic regression can be used for the rules, and that the human 

expert is best modelled using logistic regression. 
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Table 17 summarises the key points of this argument.  

Method 
First 

Principles 

Decision 

Trees 

Rule 

Learning 

Logistic 

Regression 

Simplicity No Yes Yes Yes 

Speed Slow Fast Fast Fast 

Non-linear Yes Yes Yes 
With 

discretisation 

Affected by 

imbalanced 

data sets 

No Yes Yes Partly 

Objective Economic Purity Entropy Error 

Output Rules Tree Rules Probability 

Deals with 

differing 

costs 

Yes Not well Not well Yes 

Dependent 

attributes 
Yes Yes Yes No 

Case by case 

costs 
No No No Yes 

Calculates 

probabilities 
Indirectly Indirectly Indirectly Directly 

Context 

sensitive 
Yes Yes Yes Possible 

Table 17 Comparison of Rule Building Techniques 
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8 LENDING CLUB 

 Introduction 

To test the theory and methods that have been developed requires real data. We 

need datasets with attributes, judgements and outcomes of a size that enables 

optimisation or machine learning and independent validation. There is little 

publicly available data of this nature; Lending Club is an exception, and it has 

published large data sets containing this information.  

In this section, we describe the current process used by Lending Club and the 

nature of the data used for determining whether a loan should be accepted or 

rejected, and the subsequent results data. We also identify where there is scope 

for introducing business rules and automation to augment the current process. We 

assume but do not know that the current process will have some rules, and we can 

deduce some of them. But in any event, having data on judgements and outcomes, 

we can test out hypotheses on real data. 

Lending Club no longer makes the data publicly available on the site, but the data 

can be found on Kaggle (2020). 

 Process 

The Lending Club data consists of two types of file: 

rejected applications with data including: 

• State 

• First three numbers of the Zip Code 

• Amount of loan ($) 

• Credit Score (originally FICO and later on Vantage) 

• Debt to income ratio (for existing loans excluding mortgage) DTI 

• Employment length in years 

Loan statistics with additional information, 
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• Loan status information 

o Application approved or not 

o Fully paid, current or charged off (charged off means delinquent and 

unlikely to be repaid) 

• Annual income 

• Interest rate 

• Purpose 

Unfortunately, the data sets do not match the application process. The initial 

application process requires the following information. 

• Name 

• Address 

• Income 

• Amount 

• Purpose 

Applicants are then screened and a large number of rejected. Those that make it 

through are then asked for more information, and some are subsequently rejected, 

and the rest are set up with an interest rate that is directly related to their credit 

score. 

Note that FICO and DTI are significant in so far as they both contain information 

about the potential borrower’s credit experience. FICO derives the score by 

considering factors such as credit history. This includes how much was borrowed 

and whether all repayments were made, in full, on time. It is proprietary, but the 

general idea is disclosed. DTI is defined as current monthly debt repayments 

divided by gross monthly income. This explains the upper limit of 30% as 

typically lenders do not approve applications when debt levels are already high. 

There are effectively three parts to this process that could be modelled. 

• The Initial Screening 

• The more detailed screening (document and credit checks) 

• The loans that subsequently that are either completed or charged off 
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Some rules are employed in the initial screening. For example, some potential 

customers are automatically rejected: 

• Applicants for loans in excess of $40,000 

• Applicants with a DTI greater than 30 

• Applicants with a work status of n/a (assumed not working) 

 Data Preparation 

In both data files, there is some data that is obviously wrong or not helpful. 

• Work status n/a appears in the application data. If this is assumed to be not 

working and the applicant would be rejected, so these were removed. 

• Residence reported as NONE. There is currently OWN, MORTGAGE, RENT and 

OTHER (assumed to be living with parents, relatives). There are a few NONE and 

these have been removed as during the analysis they gave rise to a very high co-

efficient, reflecting the characteristics of the few loans with that label. 

• High values of DTI have been combined into one set as they are clearly erroneous 

(the loan would not have been accepted in the first place).  

• Information on working status in the loan data is assumed to be the status at the 

time of application. For example, if working status was 1 year at the time of 

application it would be 3 years after 2 years of the loan (assuming no change of 

job). 

• There is information in finance blogs (Lend Academy, 2011) about how Lending 

Club reduce borrowers’ credit score for larger loans. This is contradicted in the 

loan status data (where there are large loans with credit score A). As this cannot 

be substantiated, it has been ignored. 

We decided to focus on the loan status data, which refers to the final approval 

stage because we have data on outcomes rather than judgements.  There are 

approximately 45,000 loans in the data set, and we have data on accepted and 

rejected, and outcome data for the accepted loans.  

Analysing this should give some insights into the ability to decide on the 

application automatically and/or to refer the decision to the expert 
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8.3.1 Data Analysis 

The data set of accepted and rejected applicants (in total 45,000) that we used is 

analysed in Table 18: 

Item 
Loan 

Value 

Loan 

Term 

FICO 

Score 

Employment 

Length 
Income DTI 

Min 4800 36 633 0 1440000 5.34 

Max 35000 60 990 15 2000 29.9 

Range 30200 24 357 15 1438000 24.56 

Average 11000 41 804 5.9 76400 13 

Table 18 Data Analysis 

Also, we had: 

• 48% of applicants had a mortgage 

• 45% were renting 

• 7% owned their home outright 

• 29% of applicants were rejected 

• 15% of accepted applicants eventually defaulted 

 Initial Screening Application 

The first part of the Lending Club process is an initial screen of applicants using 

a limited number of attributes. 

We examined the CRA problem, which is how many cases should be given to the 

human expert. We assume, initially, that the expert is 100% accurate as we have 

no data on outcomes, but in the next section – where we do have data on outcomes 

– we will model the competence of the expert. We also assume that the potential 

profit (of taking on a good customer) and loss (from taking on a bad customer) 

are equal to 50% of the average loan value. We do not have the exact numbers, 

and these are reasonable considering the level of interest rates (around 10%), the 

term (36 or 60 months) and that defaults can occur at any time. These numbers 

are simple inputs and can easily be varied.  
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Initial feature selection showed that the address attributes (State and Postcode) 

and Loan Amount were of no value to the classification. We use the wrapper 

method and greedy stepwise algorithms in WEKA (Eibe et al., 2016).  

Weka provides access to visualisation tools and algorithms for data analysis and 

predictive modelling, together with graphical user interfaces for easy access to 

these functions. Weka has typical data mining tasks, such as extraction, data pre-

processing, clustering, classification, regression, visualization, and feature 

selection.  

The specifications for feature selection (taken from Weka) are: 

WrapperSubsetEval: 

Evaluates attribute sets by using a learning scheme. Cross-validation is used to 

estimate the accuracy of the learning scheme for a set of attributes. 

For more information see Kohavi et al., (1997). 

GreedyStepwise: 

Performs a greedy forward or backward search through the space of attribute 

subsets. May start with no/all attributes or from an arbitrary point in the space. 

Stops when the addition/deletion of any remaining attributes results in a decrease 

in evaluation. Can also produce a ranked list of attributes by traversing the space 

from one side to the other and recording the order that attributes are selected. 

A simple 5 level decision tree was built using the WEKA Workbench with the 

remainder of the attributes.  

The specification for the decision tree is: 

weka.classifiers.trees.J48 

Class for generating a pruned or unpruned C4.5 decision tree. For more 

information, see Quinlan (1993). 
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The attributes are shown in Table 19 (below): 

Attribute Description 

FICO 
Credit score from Fair Isaac and 

Corporation 

DTI 
Debt to income ratio (%) for existing loans 

(excluding mortgage) 

EMP 
Number of complete years with current 

employer 

Table 19 Attributes for Initial Selection 

This decision tree is shown in Figure 20.  
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FICO < 802.5    

|   EMP < 0.75 : 0 (236800/649) [118014/306] 

|   EMP >= 0.75    

|   |   DTI < 24.99    

|   |   |   DTI < 4.05 : 0 (25206/344) [12687/190] 

|   |   |   DTI >= 4.05    

|   |   |   |   FICO < 751.5 : 0 (44825/4009) [22450/1906] 

|   |   |   |   FICO >= 751.5   

|   |   |   |   |   FICO < 752.5 : 1 (520/126) [256/49] 

|   |   |   |   |   FICO >= 752.5 : 0 (3716/911) [1760/445] 

|   |   DTI >= 24.99 : 0 (30260/28) [15403/26] 

FICO >= 802.5    

|   FICO < 819.5    

|   |   FICO < 803.5    

|   |   |   DTI < 2.54    

|   |   |   |   DTI < 0.39 : 0 (17/2) [9/4]  

|   |   |   |   DTI >= 0.39 : 1 (60/27) [30/11]  

|   |   |   DTI >= 2.54    

|   |   |   |   DTI < 30.02 : 1 (905/27) [486/27] 

|   |   |   |   DTI >= 30.02 : 0 (14/0) [8/0]  

|   |   FICO >= 803.5 : 0 (864/0) [429/0]  

|   FICO >= 819.5    

|   |   FICO < 835    

|   |   |   FICO < 820.5 : 1 (952/23) [508/6]  

|   |   |   FICO >= 820.5 : 0 (40/0) [25/0]  

|   |   FICO >= 835 : 1 (10491/2) [5271/2] 

Figure 20 Decision Tree for Initial Screening  
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At each (of the fourteen) leaves of the decision tree we have information on the 

type of node (0= bad, 1 = good) and the composition (#correct, #incorrect).  The 

numbers in square brackets are the cross-validation set implemented 

automatically by Weka. For example, on the first leaf we test for FICO < 802.5 

and then EMP < 0.75. We determine that the node is bad with 236800 correctly 

classified (as bad) and 649 incorrectly classified. The problem now is to determine 

whether it is worth giving these cases to a human judge, and incurring a cost, or 

simply rejecting all of them automatically and accepting the cost of rejecting a 

relatively small number of good cases. 

If we set the cost of an initial determination at 0.5% of the average loan, we find 

that it is optimal to assign 77% of the cases to the rules engine, and the gross profit 

increases by 1.8% over that obtained by using the human judge on all cases 

(shown in Table 20 below). With a determination cost of 0.25% of the average 

loan value, the allocation remains the same, with an increase in gross profit of 

0.6%. The break-even point is reached when the cost of a determination is 0.134% 

of the average loan value. The profit figures below are $1,000’s. 
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OPTIMAL CASE LOAD PROFIT 

Leaf Machine Human Increase 

1 355769 0 15616 

2 0 38427 0 

3 0 73190 0 

4 0 951 0 

5 0 6832 0 

6 45717 0 2419 

7 0 32 0 

8 0 128 0 

9 0 1445 0 

10 22 0 1 

11 1293 0 78 

12 0 1489 0 

13 65 0 4 

14 15768 0 910 

Total 418634 122494 19028 

 
77.36% 22.64% 1.81% 

Table 20 Results for Initial Screening 

 

The diagram shows that if we take the machine determination for leaf one, the net 

saving over giving the cases to the human judge is $15,616,000. The same applies 

to leaves six, ten, eleven, thirteen and fourteen. For the remainder, it is better to 

give the case to the human, with no net saving. 
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 Final Selection Process 

Credit application checking has been extensively researched in many areas, 

particularly artificial intelligence (AI) with decision trees and rule learning 

(Lahsasna, 2010). By and large, the emphasis is to be as good as (or better) than 

the human decision maker. We have chosen this example purely because we can 

establish some realistic data on judgements AND outcomes. 

This is an example of the LENS model (Brunswik, 1985) where models are built 

of judgements and actual outcomes. These models use multiple linear regression. 

The estimates of the outcome and judgment are linear combinations of the 

attributes With some mild assumptions around independence, it is possible to 

relate the various correlation coefficients into an elegant equation so that the 

performance of the human judge can be estimated across a collection of cases. 

Unfortunately for us, this is not sufficient as we require accuracy on a case by case 

basis. We need to estimate the probability that the human judge will determine 

that a case is good (or bad) and the probability that this is, indeed, correct.  Logistic 

regression was chosen in this case as it produces an estimate of these probabilities. 

We have used the Weka package (Eibe, 2016) for analysis. 

We use the same technique to estimate the probability that a case is good or bad. 

We need this to calculate the probability that the expert is correct; the probability 

that a case is good or bad given that the expert judges it to be so. Therefore, the 

rules are based on probabilities and expected values derived from logistic 

regression. But provided we can estimate the accuracy of the expert judgement on 

any case as a function of what we know about that case (that is, the attributes) 

there is no limitation to the type of rules that are employed.  We make the 

conditional decision that a case is good or bad and then decide whether that 

decision should be implemented directly or that there is greater expected value in 

referring that to an expert. 

To address the problem, we need to work out the difference between accepting 

the decision of any automatic decision mechanism, for example, a decision tree, 

and that of giving the decision to a human. For example, we may anticipate a 

better (more accurate) decision, if we give this to the expert, but we must balance 

the cost. We recognise that there are many potential models of decision support, 

and this could include help and advice, provided interactively. Such systems have 
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a place, but the focus (and novelty) in our approach is that we are calculating the 

probability that the rules and the expert will be correct (or wrong) in their 

assessment. This is then used to calculate the expected benefit of implementing 

either decision, if the expert decision is better, the difference in expected benefit 

should exceed the cost of the expert. 

8.5.1 The Selection Process 

The initial screening process has already been analysed using a decision tree to 

determine how much could be automated. The results indicate that about 80% of 

assessments could be automated with a net benefit; the overall expected profit 

would go up slightly. We used a decision tree as did not need to estimate the 

accuracy of the expert; the assumption was that the expert had perfect judgement. 

This was not an unreasonable assumption for the purposes of that exercise, but in 

this section we use data on judgements and outcomes We could have used any 

method to create the rules, but we chose logistic regression because of simplicity, 

and their unique ability to calculate the probability that a case is good or bad, on 

a case by case basis and the probability that a rule outcome or judgement is correct 

or incorrect, again on a case by case basis. To use to use other types of rule, for 

example decision trees, we can use the contents of the leaves of the tree to estimate 

probabilities. This is more complicated and potentially prone to error when there 

are few cases in a leaf. 

Analysis of the detailed, loan status, data shows that the expert is not entirely 

accurate and that our previous assumption of complete accuracy would not reflect 

reality. Some 15% of loans become delinquent and were either late or charged-off 

(assumed never to be repaid). This is a considerable cost, and we cannot, therefore, 

assume that passing the decision to the expert will result in an accurate 

assessment. 

The continuous data were discretised as follows: 

• Loan amount in $2,500 steps up to $40,000 and above 

• Income in $25,000 steps up to $300,000 and above 

• DTI in increments of 2.5 up to 30 and above 

These increments were arrived at by gradually reducing the increments until there 

was no improvement in classification accuracy. 
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Using the utility in Weka, we randomly chose 2/3 of the data to fit regression 

models of the expert and outcomes, leaving 1/3 for a test set. We do not need a 

validation set as Weka supports cross-validation automatically by partitioning the 

training set into 5 or 10 subsets and using all but one to train and one to validate. 

The process is then repeated by removing another subset and training and 

validating again. 

We can model the human or expert using the confusion matrix shown in Table 21. 

 

 Judged Good Judged Bad 

Actual Good a b 

Actual Bad b d 

Table 21 Confusion Matrox 

And given any sample size, S, we have: 

𝑎 + 𝑏 = 𝑆𝑝(𝑔𝑜𝑜𝑑) 

𝑐 + 𝑑 = 𝑆𝑝(𝑏𝑎𝑑) 

𝑎 + 𝑐 = 𝑆𝑝(𝐸𝑔) 

𝑎 + 𝑏 = 𝑆𝑝(𝐸𝑏) 

Where  

𝐸𝑔 and 𝐸𝑏 denotes when expert classifies the case as good or bad 

Firstly, we carry out a logistic regression on the decision of the expert. This will 

give us an estimate for p(Eg), the probability that the expert decides an applicant 

is good.  

     Logistic regression works quite well for the accepted cases but works less well 

for the rejected cases. This is not surprising as the rejected cases in this set are 

somewhat borderline, given that there has already been a first-round rejection. 

This also suggests that there may be other factors influencing the final acceptance 

decision; the expert manages to distinguish between cases that present as similar 

based on the data available. 
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We then carry out a logistic regression on the good and bad outcomes for those 

loans in the data set (the accepted loans). This should give us an estimate of the 

probability of default given that the loan was accepted p(good|Eg). Note that this 

is a conditional probability and is NOT the same as p(good).  

 Here, unlike most previous research, classification accuracy is not the objective. 

We are looking for a way to determine which cases can be automatically classified 

and which ones could be given to the expert. 

  To test the efficacy of this approach we have applied the following process to 

the test set to determine what the decision would be, and then calculate the costs 

and benefits. This first analysis was to determine if there was any merit in this 

approach, not necessarily to fine-tune the process. Nor are we checking the 

accuracy of the regression; this has already been determined by cross-validation. 

What we are doing is running through a process on past data to indicate how well 

it could work in practice.  

There is further potential to fine-tune and validate with other data. However, at 

this stage, we are more interested in whether it works at all. 

The procedure is outlined below. Essentially, the machine branches on whether it 

calculates the case to be good or bad, based on the estimate of p(good). It then 

calculates the expected value (outcome and processing costs) of passing the case 

onto the expert.  

For each case: 

Calculate 𝑝(𝐸𝑔 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑) and 𝑝(𝑅𝑔 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑) using the logistic regression 

parameters for each case 

Calculate 𝑝(𝐸𝑔 𝑎𝑛𝑑 𝑏𝑎𝑑) and 𝑝(𝑅𝑔 𝑎𝑛𝑑 𝑏𝑎𝑑) in the same way 

Calculate the net gain for the rules and expert 

Expected gain from using the rules decision: 

𝑅𝑔𝑎𝑖𝑛 = 𝑝(𝑔𝑜𝑜𝑑 𝑎𝑛𝑑  𝑅𝑔). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑏𝑎𝑑 𝑎𝑛𝑑 𝑅𝑔). 𝑙𝑜𝑠𝑠 

Expected gain from referral: 

𝐸𝑔𝑎𝑖𝑛 = 𝑝(𝑔𝑜𝑜𝑑 𝑎𝑛𝑑 𝐸𝑔). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑏𝑎𝑑 𝑎𝑛𝑑 𝐸𝑔). 𝑙𝑜𝑠𝑠 − 𝑐𝑜𝑠𝑡  

For this analysis we assumed that potential profit and potential loss are equal to 

the size of the loan, which results in the cut off parameter for the machine being 
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set to 0. If the profit and loss were not equal, this imbalance would be reflected in 

a different cut off value. The processing costs are a function of the amount of 

information, for example, a familiarisation time and a time proportional to the 

amount of information. We estimated this cost to be 5% of the loan value.  

 

 

Figure 21 Proposed Rule Execution Flowchart 

There are several potential sophistications possible: 

• Potential profit and loss are different: 

The potential profit is a function of the size of loan, terms and interest 

rate 

The potential loss is a function of size, term, interest rate and estimated 

(weighted average) time of default 

• We allow for customers that drop out based on the quantity of information initially 

or subsequently requested 

• We allow for improved processing and judgement accuracy based on additional 

information 

• Experts have different costs and judgement accuracy 

We decided that these were not possible with data available to us, but that this sort 

of data would be available to an organisation in the business of credit approval.  



Chapter 8: Lending Club 

166  Alan Roy Dormer - August 2020 

The other problem that can be addressed with this approach is the operational 

problem. This is distinct from the design problem where we decide on the overall 

proportion of cases that need expert assessment and, hence, the number of experts. 

Once we have employed a specific number of experts, we can modify the rules to 

make the best use of the experts that are now available. 

Applying the rules that were developed to a subset of the data that was not used 

to create them yielded some interesting results About 30% of the cases were 

deemed better given to the expert, the remaining 70% left to the machine. The 

overall benefit, as a percentage of the loan book, was between 4%. This is like the 

previous result that assumed that the expert was perfect. It sent 80% of the cases 

to the machine and made a 2% improvement. The cases with unknown outcomes 

impacted the benefit of this approach. We had to assume that, if the machine 

accepted a case that the expert had rejected, then the outcome would have been 

bad. That’s not necessarily the case, and it does rather reduce the benefit. Even 

so, this approach (under the assumptions made) has some benefit. Overall, there 

were potential benefits equivalent to about 4% of the loan book, which given that 

Lending Club is now at about $24Bn, is worth at least further analysis. 

 Another point to note is the significance of labour cost saving.  Relying on expert 

labour is a risk for any business, there is always variability that needs to be 

managed, and the business is not scalable. If we can automate a large proportion 

of transactions and understand the trade-off between labour costs and net loan 

value, variations in applications (up and down) can be better accommodated.  

 Note that the assumption that the case with an unknown outcome is pessimistic, 

particularly that this data set does not include applications that are rejected without 

further analysis. If we assumed that only half of these cases are bad, with the other 

half being good, the benefit increases to 7%. We could legitimately say that the 

potential benefit is between 4% (no unknown cases are good) and 10% (all 

unknown cases are good). Note that there are no unknown cases when they are 

passed to the expert; we know already that his or her judgement is to reject.  

Table 22 below shows the first results of applying this approach to the data set, 

with all amounts in 1,000’s. 
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Table 22 Results of Optimisation (Dormer, 2018)  

Other researchers have used Lending Club data. For example, (Emekter et al, 

2014) analyses the outcomes and concludes that loans with lower credit grade and 

longer duration are associated with high mortality rate. Serrano-Cinca develops a 

logistic regression model to predict defaults. The grade assigned by the lending 

site is the most predictive factor of default. Still, the accuracy of the model is 

improved by adding other information, especially the borrower’s debt level. 

Chang et al. (2015) conclude that results on data from Lending Club (LC) indicate 

the random forest-based method outperforms the FICO credit scores as well as 

LC grades in the identification of good borrowers. Increases in investment returns 

from better classification are estimated at 50%. This is comparable with our figure 

of 3.78% when investment returns are around 7.5%. 

These research results are broadly in line with our calculations and conclusions 

that decision trees and logistic regression using the available data are better than 

FICO for predicting default. This research does not explore the combination of 

rules with the current decision making process. 

 Summary 

The results indicate that there is potential benefit in combining business rules with 

human decision makers/experts. The results are better than either rules or experts 

alone. For the initial screening we chose to use a decision tree. For the final 

selection, we have used logistic regression to categories cases and to estimate the 

 
EXPERT MACHINE EXPERT 

 
ONLY 

  

CASES 100% 68% 32% 

GOOD $123,849 $95,291 $27,872 

BAD $22,207 $15,829 $5,997 

UNKNOWN 
 

$1,480 
 

EXPENSES $7,302 
 

$1,958 

NET $94,340 $77,982 $19,918 

TOTAL $94,340 $97,900 
 

SAVING 
 

$3,561 3.78% 
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accuracy of the expert. We could have used a decision tree for the initial screening, 

but getting a similar result using a different approach is encouraging. This is even 

more significant when we consider the limitations of the data, and that only 

accepted cases have a known outcome. 

This business process has some extraordinary features.  Firstly, it processes 

people, and the different characteristics of those people are fundamental to the 

process.  The differences in the applicants cannot be abstracted away to allow us 

to deal with “average” people.  Indeed, on any given day, the set of customers 

who request to be served may be quite different in their characteristics.   Secondly, 

the benefit from those customers chosen to be served is not a function of the 

number of chosen customers but is intimately linked to the process by which they 

are chosen.   Thirdly increasing the resources allocated to the process will increase 

cost but may not yield an increase in the number of customers chosen to be served. 

The method we have created works best when we have data on outcomes, as the 

rules can be built using this data. In this case, we should expect benefits from 

efficiency (reducing the cost of human effort) and accuracy (reducing the impact 

of human errors and bias). If we do not have data on outcomes, there is still scope 

for improved efficiency, noting that the rules can emulate the human expert and 

therefore reduce cost. If we have information on the average accuracy of the 

expert, this can also be included easily. 

We have demonstrated and quantified a practical method for optimising the rules 

and determining the number of cases that are processed automatically and by the 

human expert, based on a historical data set with some simplifications and a fixed 

set of attributes. The method essentially looks at the value that can be obtained by 

stopping at any stage and accepting the decision that would have been made or 

progressing to the next stage and accepting an additional cost in return for a higher 

expected value. 
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9 VARIATIONS AND 

EXTENSIONS 

 Introduction 

In this chapter, we extend some of the initial ideas to cover the situation where the 

data requested, or the order that the data is requested, can vary based on the utility 

of that data and the responses obtained to previous requests. In the first instance, 

we examine the two-stage approach where a limited amount of data is requested 

and then decisions are made on what to do next. Lending Club use this approach 

and there is good reason for this: 

• The data suggests that a high percentage of transactions are abandoned, even after 

a short time 

• More data may make the evaluation more accurate, but with high levels of 

applications (that do not qualify) the costs are higher 

In this chapter, we investigate the situation where a limited amount of information 

is requested initially – like the Lending Club process. The rules use this to decide 

what to do next. 

The options are: 

• Decide without further information 

• Request further information 

• Refer to the expert 

The working assumption is that once referred, the expert decides whether to 

decide or request further information.  

If the rules decide to request further information, there is then the option for the 

rule to decide or to refer. This has been explored previously in Chapter 8. We now 

focus on the performance of the rules and the expert on a reduced set of 

information. 
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We show that there are benefits to this approach, due mainly to the impact of 

transaction abandonment. This impact can be a reduction in potential customers 

of 25% or more, and the losses can outweigh the benefits of additional information 

in a large proportion of cases. There are different approaches to this issue; we can 

request a block of information and then decide whether we ask for another block, 

or we can identify the best option and end point on a case by case basis. Also, we 

can order the collection of attributes for all cases, or on a case by case basis. 

In this chapter, we build up the problem, adding complexity step by step. First, 

we limit the problem to two sets of attributes, an initial set and then an optional 

additional set. The rules are configured to decide, on a case-by-case basis: 

• whether one or both sets of attributes are required, and, 

• whether the rules or the expert makes the final decision.  

We then allow the rules to request attributes, one-by-one, again on a case-by-case 

basis, with the option for rule-based or expert decision making. Finally, we allow 

the rules to determine the next best attribute on a case-by-case basis, with decision 

making as above. This is the most complex situation with the maximum freedom 

and potential benefit.  

 Data Selection 

The selection of the initial variables is more complex than a typical feature 

selection problem. We can use Weka feature selection (using the filter, wrapper, 

or correlation-based filter methods) to determine the optimal set of attributes. We 

can also use Weka to determine the ranking, and, alternatively, find the largest 

weights in the logistic regression expression. Unfortunately, none of these uses 

the objective function that we are interested in, which is the net profit after 

allowance for transaction abandonment. The correct method is to use the wrapper 

with the objective function specific to the problem.  

For any set of rules, we are required to model additional paths and costs, 

including: 

• The loss from applicants that abandon (which is a function of the number of data 

items requested) 
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• The profit from applicants that are correctly approved – the loss from applicants 

that are incorrectly approved 

• The cost of processing (assumed to be a function of the number of data items 

requested) 

Using this method, we find that the best subset is the first 6 attributes: 

FICO (credit score) 

Verification (whether documents have been provided and checked) 

Home Ownership  

DTI (debt to income ratio) 

Purpose (of the loan) 

Income 

The benefit of further attributes is effectively cancelled out by transaction 

abandonment so the most logical first set of attributes for the rules to work on are 

these. We can then look at the potential for referral after that. 

 Variations of the Problem 

There are several variations, with increasing levels of computational complexity. 

At the simplest level we have: 

• A predetermined subset of attributes is requested/collected. These are the same 

for all cases and would generally be determined by feature selection or some form 

of ranking exercise 

• The system decides to adopt the decision of the rules, continue with the rules or 

refer to the expert 

• If the decision is to continue, the remaining attributes are collected in one block 

and processed by the rules 

• If the decision is to refer, the expert decides whether to decide or request the 

remaining attributes 

The process can be made more sophisticated by removing the limitations and 

assumptions above. 
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• On a case by case basis and as each attribute is collected, we can choose to accept 

(the rule), continue or refer. 

• Obtaining additional information on an attribute by attribute basis, rather than in 

a fixed block 

• We can vary the order that attributes are collected on a case by case basis 

 Re-estimating Expert Performance 

When we reduce (or consider reducing) the number of attributes we assume that 

we have data on the attributes and associated judgements and outcomes for the 

complete data set. We then work out a new set of rules on the reduced set. That is 

not a serious problem as we just refit and validate. The expert judgement is a bit 

more difficult as we need to simulate what the expert would have decided on the 

reduced attribute set. This illustrates another benefit of using logistic regression 

to model the expert. If we reduce the number of attributes, we can effectively 

model the impact on the expert judgement by eliminating that attribute from the 

expression and modifying the intercept to make up for the removal of the attribute 

from the overall expression. 

When we restrict the number of attributes we collect, the outcomes are the same, 

we just need to refit the rules using the reduced set of attributes. Previously we 

had the logistic regression function  

𝑙𝑂𝑈𝑇(𝑥𝑖) =  ∑ 𝑎𝑖𝑗𝑏𝑗 +  𝑏0

𝑚

𝑗=1

 

Where 𝑙𝑂𝑈𝑇(𝑥𝑖) =  ln 𝑝/(1 − 𝑝) 

and  𝑝 = 𝑝(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑥𝑖 = 𝑔𝑜𝑜𝑑) 

We just refit outcomes with m-k attributes and get 

𝑙(𝑥𝑖) =  ∑ 𝑎𝑖𝑗𝑏𝑗 +  𝑏0

𝑘

𝑗=1

 

However, we cannot use this process for the expert. His judgements were formed 

using the complete set and, unlike the outcomes, we anticipate that his judgement 

would differ with fewer attributes. Effectively we need to model the impact of 

using only the information contained in the k attributes that remain. In this case, 
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we fit the original judgements against the original data (where l is the log odds 

function): 

𝑙𝐴𝐶𝐶(𝑥𝑖) =  ∑ 𝑎𝑖𝑗𝑏𝑗 +  𝑏0

𝑚

𝑗=1

 

Where 𝑙𝐴𝐶𝐶(𝑥𝑖) =  ln 𝑝/(1 − 𝑝) 

and  𝑝 = 𝑝(𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 𝑥𝑖 = 𝑔𝑜𝑜𝑑) 

We separate the expression: 

𝑙𝐴𝐶𝐶(𝑥𝑖) =  ∑ 𝑎𝑖𝑗𝑏𝑗 +  ∑ 𝑎𝑖𝑗𝑏𝑗 + 

𝑚

𝑗=𝑘+1

𝑏0

𝑘

𝑗=1

 

We then reset the constant term to reflect removal of the attributes and their 

overall contribution across the population, summing across all the elements of 

𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛. In this way, we are effectively removing the individual contribution 

of each element and then adding back the average contribution. Just removing the 

relevant terms in the equation above would bias the judgement one way or the 

other, unless their sum across the whole population was zero. 

We have: 

∑ 𝑙𝐴𝐶𝐶(𝑥𝑖)

𝑛

𝑖=1

=  ∑ ∑ 𝑎𝑖𝑗𝑏𝑗

𝑘

𝑗=1

+ ∑ ∑ 𝑎𝑖𝑗𝑏𝑗

𝑚

𝑗=𝑘+1

+  𝑛𝑏0

𝑛

𝑖=1

𝑛

𝑖=1

 

To keep the LHS the same we set: 

�́�0  =  𝑏0 + ∑ ∑ 𝑎𝑖𝑗𝑏𝑗

𝑚

𝑗=𝑘+1

𝑛

𝑖=1

/𝑛 

then we have 

𝑙𝐴𝐶𝐶(𝑥𝑖) =  ∑ 𝑎𝑖𝑗𝑏𝑗 +  �́�0

𝑘

𝑗=1

 

To do this, we need to create several models: 

• A model of the outcomes, using a reduced set of attributes 

• A model of the correct acceptances – p (judged good AND good) - using all the 

attributes and then modify it only to include the reduced set 
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• A model of the incorrect acceptances – p (bad AND judged good) using all the 

attributes and modified as above 

• Fit the Weibull distribution for abandoned transactions using data on the current 

data set (n data items) and calculate the value for the reduced set (k data items). 

Note that the Weibull distribution requires two parameters, and we may only have 

one data point (based on the current operation). If this is the case, we can use a 

default value for β of 0.5 and calculate λ. If this is somewhat arbitrary, we could 

simply use linear interpolation. 

The method can be described as follows: 

For each case we calculate: 

𝑝(𝑔𝑜𝑜𝑑 𝐴𝑁𝐷 𝐸𝑔|𝑘) 

𝑝(𝑏𝑎𝑑 𝐴𝑁𝐷 𝐸𝑔|𝑘) 

𝑝(𝑔𝑜𝑜𝑑 𝐴𝑁𝐷 𝑅𝑔|𝑘) 

𝑝(𝑏𝑎𝑑 𝐴𝑁𝐷 𝑅𝑔|𝑘) 

We also calculate abandonment rate, R, and the cost C, as a function of the number 

of attributes 

𝑅 = 𝑊(𝑘) 

𝐶𝑜𝑠𝑡(𝑘) = 𝑐𝑘 + 𝑓 

Where f is a fixed cost for the expert to open a case and c is an additional cost for 

each attribute. The form of this function does not need to be simple if further data 

on costs were available. We could also allow for differences between experts in 

costs (speed) as we could for other areas of performance, such as accuracy if we 

had sufficient data. 

We then calculate expected net benefits (gain) given the first k attributes: 

Expected gain from using the rules decision: 

𝑅𝑔𝑎𝑖𝑛 = 𝑊(𝑘)[𝑝(𝑔𝑜𝑜𝑑 𝐴𝑁𝐷 𝑅𝑔|𝑘). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑏𝑎𝑑 𝐴𝑁𝐷 𝑅𝑔|𝑘). 𝑙𝑜𝑠𝑠] 

Expected gain from referral: 

𝐸𝑔𝑎𝑖𝑛 = 𝑊(𝑘)[𝑝(𝑔𝑜𝑜𝑑 𝐴𝑁𝐷 𝐸𝑔|𝑘). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑏𝑎𝑑 𝐴𝑁𝐷 𝐸𝑔|𝑘). 𝑙𝑜𝑠𝑠

− 𝑐𝑜𝑠𝑡(𝑘)]  
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We then need to calculate the benefit of additional information (either by the rules 

or the expert). This can take 3 forms: 

i. We request a predetermined set of attributes and have the option to request the 

remainder 

ii. Fixed order, where we ask for additional attributes in a predetermined order, but 

we have the option to request additional attributes, one by one 

iii. Variable order, where we calculate the next best attribute based on the increase in 

the net benefit, starting from one attribute that has been determined by feature 

selection and ranking 

The last method is the most appealing (on the basis that an increase in the degrees 

of freedom can only equal or improve the result of an optimisation problem). Still, 

there is the complication that the gain from the rules and expert will not be the 

same for one or more of the attributes. To deal with this issue, we need to add 

each additional attribute to the equations above and identify the best attribute to 

ask for next, for both rules and expert. We then repeat the process until the gains 

of having all the attributes, in the best order (for rules and experts). We also 

observe that the first referral incurs the fixed cost element. This means that the 

case will stay with the expert unless the marginal benefit of using the rules for 

subsequent attributes is greater than that of the expert. 

9.4.1 Attributes Processed in Two Blocks 

In this situation, we have two sets of information. We decide on a pre-determined 

set that is initially requested based on, for example, a feature selection exercise or 

experience. Each case comes with that information and the rules are required to 

decide whether to accept or reject (using the initial information), to request further 

information or to refer. If a case is referred, the expert has the option to decide or 

to request further information. We use the model of the expert to predict his 

behaviour. We are not concerned at present with the order of the attributes as they 

grouped, and the initial and additional attributes are assumed to be and processed 

as a package. 

Using the notation above, we have a set of k attributes that we request initially 

and the option to request another m-k.  

We can calculate: 
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𝑅𝑔𝑎𝑖𝑛(𝑘): the expected net gain of using the rules with k attributes 

𝑅𝑔𝑎𝑖𝑛(𝑛): the expected net gain of using the rules with n attributes 

𝐸𝑔𝑎𝑖𝑛(𝑘): the expected net gain of referral with k attributes 

 𝐸𝑔𝑎𝑖𝑛(𝑛): the expected net gain of referral with n attributes  

And then, for each case we have the following logic: 

𝐼𝐹 𝑅𝑔𝑎𝑖𝑛(𝑘) ≥ 𝑅𝑔𝑎𝑖𝑛(𝑚) 𝐴𝑁𝐷 

 𝑅𝑔𝑎𝑖𝑛(𝑘) ≥ 𝐸𝑔𝑎𝑖𝑛(𝑘) 𝐴𝑁𝐷 

𝑅𝑔𝑎𝑖𝑛(𝑘) ≥ 𝐸𝑔𝑎𝑖𝑛(𝑚)  

Denoted in shorthand by: 

𝐼𝐹 𝑅𝑔𝑎𝑖𝑛(𝑘) ≥ 𝑅𝑔𝑎𝑖𝑛(𝑚), 𝐸𝑔𝑎𝑖𝑛(𝑘), 𝐸𝑔𝑎𝑖𝑛(𝑚) 

Then the expected net gain from using the rules with k attributes is greater than 

the other options and use the decision of the rules and stop. However (using the 

same shorthand notation): 

𝐼𝐹 𝑅𝑔𝑎𝑖𝑛(𝑚) ≥ 𝑅𝑔𝑎𝑖𝑛(𝑘), 𝐸𝑔𝑎𝑖𝑛(𝑘), 𝐸𝑔𝑎𝑖𝑛(𝑚) 

It is better to continue with the rules and request a further block of attributes to a 

total of m. Then: 

𝐼𝐹 𝐸𝑔𝑎𝑖𝑛(𝑘) ≥ 𝑅𝑔𝑎𝑖𝑛(𝑚), 𝑅𝑔𝑎𝑖𝑛(𝑘), 𝐸𝑔𝑎𝑖𝑛(𝑚) 

We refer to the expert with k attributes in the expectation that he decides without 

further information. We could also, of course, advise him that he ought to do this. 

Finally: 

𝐼𝐹 𝐸𝑔𝑎𝑖𝑛(𝑚) ≥ 𝑅𝑔𝑎𝑖𝑛(𝑚), 𝑅𝑔𝑎𝑖𝑛(𝑘), 𝐸𝑔𝑎𝑖𝑛(𝑘) 

We refer to the expert in the expectation that he decides with further information. 

We could also, of course, advise him that he ought to do this. 

9.4.2 One by One Attributes/Fixed Order 

In this scenario, we have the option to request further information on an attribute 

by attribute basis. Using the notation that we have defined, we need to consider: 

𝐺𝑅 =  max
𝑖

𝑅𝑔𝑎𝑖𝑛(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘 

𝐺𝐸 =  max
𝑖

𝐸𝑔𝑎𝑖𝑛(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑘 
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Then we can deduce: 

𝐼𝐹(𝐺𝑅 ≥ 𝐺𝐸)𝑎𝑛𝑑 𝐺𝑅 = 𝑅𝑔𝑎𝑖𝑛(𝑘) 

we stop and use the rule decision 

𝐼𝐹(𝐺𝑅 ≥ 𝐺𝐸)𝑎𝑛𝑑 𝐺𝑅 = 𝑅𝑔𝑎𝑖𝑛(𝑚) 𝑤𝑖𝑡ℎ 𝑚 > 𝑘  

We continue with the rules 

𝐼𝐹(𝐺𝐸 > 𝐺𝑅) 

We refer to the expert 

It is important that we calculate the gains all the way to the end of the process as 

the optimal order of asking for information for the rules will be different to that 

for the expert. 

9.4.3 One by One Attributes/Optimal Order 

As previously noted, decision trees and rule learning naturally organise the tests 

in an optimal order and can reach a decision without using all the available 

attributes. Then, at each node, we can determine whether the rules or the expert is 

the best choice for the decision. With logistic regression, this is more complex, 

and we need to calculate the gains and compare. 

To address this problem, we form an ordered set for the gains for the rules and the 

expert. For each remaining attribute, we calculate the gain and select the attribute 

with the highest gain as the next one. This process is repeated until all the 

attributes are used. The optimal (attribute) order may be different for the rules and 

the expert and will differ between cases. Given the computer power available now 

it is quite realistic to calculate this as the cases arrive. Still, if we categorise the 

real attributes, there will be a finite number of combinations and we could pre-

compute and simply look up the appropriate values. For example, if we have n 

attributes and a maximum of m categories for each, we have a maximum of 2𝑚𝑛! 

calculations (since we could have different values for the rules and expert). 

𝑅𝑔𝑎𝑖𝑛(𝑖) 𝑓𝑜𝑟 𝑘 ≤ 𝑖 ≤ 𝑛 to be the gain from the rules for the (optimal) rule using 

the attribute in position i 

𝐸𝑔𝑎𝑖𝑛(𝑖) 𝑓𝑜𝑟 𝑘 ≤ 𝑖 ≤ 𝑛 to be the gain from the rules for the (optimal) rule using 

the attribute in position i 
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We then set: 

𝐺𝑅 = max
𝑖

𝑟𝑔𝑎𝑖𝑛(𝑖) 𝑓𝑜𝑟 𝑘 ≤ 𝑖 ≤ 𝑛 and 

𝐺𝐸 = max
𝑖

𝑒𝑔𝑎𝑖𝑛(𝑖) 𝑓𝑜𝑟 𝑘 ≤ 𝑖 ≤ 𝑛  

 Results 

9.5.1 Test Set 

We select a set of cases at random from the validation set to evaluate the methods 

that we have developed. The data set was heavily skewed towards acceptance, so 

we removed some accepted cases using bagging to even up the data set to have an 

equal number of good and bad outcomes. This is consistent with a symmetrical 

cost of misclassification and creates a better model. The test set, therefore, was 

consequently smaller. There are approximately 4,500 cases in the evaluation and 

validation set from an original data set of 45,000. For the accepted cases we have 

data on outcomes, for all other cases we estimate the probability using the method 

in 6.3 and assign an outcome as good when the probability is greater than or equal 

to 0.5. Otherwise we assign a bad outcome. 

9.5.2 Lending Club Base Case 

For the base case we use all the attributes and categorise the outcomes of the 

rejected cases. We use the model to decide whether to accept, reject or refer. For 

those that the rules accept, we use the actual outcome. For those that are referred, 

we use the actual expert decision. In this way, we calculate the anticipated net 

benefit of the system. Below we show the original situation, with the expert alone, 

and the new situation, with rules and expert, combined. We see that about 80% of 

the cases can be decided by the rules alone, with an increase in net benefit using 

the cost ratio  
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VALUE GOOD BAD COST NET 

ORIG 1722 293 224 1205 

NEW 1831 383 50 1398 

     

CASES EXPERT RULES   

ORIG 4498 0   

NEW 1000 3498   

Table 23 Benefits of Referral 

Table 23 gives the results. The ORIG line is with the expert processing all the 

cases, and the NEW line is with the expert and the rules. GOOD refers to the value 

of good cases accepted, and BAD refers to the cost of bad cases accepted. COST 

is the referral cost (which for the rules is zero). NET is GOOD-BAD-COST, the 

overall benefit to the organisation. 

This shows that there is a better net result of 1,398 if we combine the rules with 

an expert. Previously the expert achieved a net profit of 1,205 by accepting 1,722 

good cases and 293 bad cases, and with a processing cost of 224. The combined 

result reduces processing cost to 50, accepting 1,831 good cases and 383 bad 

cases.  

9.5.3 Blocked Attributes 

In this case, we select a subset of attributes that we use first and then another 

subset next.  

We have applied the process identified above where we request 6 attributes, and 

then decide whether to: 

i. Ask for more data and continue with the rules 

ii. Refer to the expert (with the model suggesting that he will ask for more data) 

iii. Use the current determination of the rules 

iv. Refer to the expert (with the model suggesting that he will use the current data) 
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To solve this, we set up an initial problem, using nine attributes (based on the 

earlier feature selection exercise using Weka in 9.2), estimating the outcome of 

the unknown cases (those that were rejected) and allowing for abandoned 

transactions. We then remove the contributions of the three removed variables (to 

get back to the minimum number of six attributes that were calculated using the 

wrapper method and the specific objective function, again in 9.2) and add back 

the average value to the constant term in the expression for the log odds. We then 

compare the maximum values of 𝑟𝑔𝑎𝑖𝑛  and 𝑒𝑔𝑎𝑖𝑛  for the two cases (six 

attributes and nine attributes), and we also allow for the abandonment factor and 

cost factor (both of which increases with the number of attributes requested). We 

identify the maximum value and its location to determine whether the case should 

be decided: 

• After six attributes by the rules 

• After six attributes by the expert (referral now) 

• After nine attributes by the rules (continue with rules) 

• After nine attributes by the expert (refer and recommend to seek more 

data) 

This process showed a significant improvement in the objective. The 

improvement came from cost reduction and a more accurate estimation of the 

expected outcome for the unknown cases. The data above values each case at unity 

(for potential profit and loss) with an expense ratio of 5%. If we then reduce the 

number of attributes to 6, taking away the lowest ranked attributes (employment, 

income, and existing debt to income) we get this result. 

 

 ATTRIBUTES GOOD BAD COST NET 

Rules 6 0 0 0  

Expert 6 0 0 0  

Rules 9 1380 104 0 1276 

Expert 9 451 279 50 122 

Total  1831 383 50 1398 

Table 24 Nine Attributes Requested 
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Table 24 shows the results of asking for nine attributes with either an accept, reject or 

referral at the end of the process. The final row is the same as in table 23. 

 

 ATTRIBUTES GOOD BAD COST NET 

Rules 6 1105 194 0 911 

Expert 6 913 200 63 650 

Rules 9 0 0 0 0 

Expert 9 0 0 0 0 

Total  2018 394 63 1561 

Table 25 Six Attributes Requested 

Table 25 shows that the results of asking for only six attributes is much better due to the 

reduction in transaction abandonment. Note that we had already determined this using the 

wrapper method of feature selection in 9.2 using the full objective function and allowance 

for transaction abandonment. 

 

 ATTRIBUTES GOOD BAD COST NET 

Rules 6 699 162 0 537 

Expert 6 588 135 40 413 

Rules 9 390 35 0 355 

Expert 9 319 136 31 152 

  1996 468 71 1557 

Table 26 Option of Six or Nine Attributes 

Table 26 shows the impact of asking for either 6 or 9 attributes on a case by case 

basis. The three additional attributes do not add any value overall to the profit 

function. 

This is not an interesting result and, as we will show later, the reasons are: 

• Assuming equal misclassification costs is probably not what happens in practice 
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• The impact of transaction abandonment effectively blunts the utility of further 

data 

• The three least significant attributes add very little value 

To illustrate the point, we can remove transaction abandonment and repeat the 

process. Table 27 shows the results of asking for six attributes, and Table 28 shows 

the results of asking for nine. 

 

 ATTRIBUTES GOOD BAD COST NET 

Rules 6 1105 97 0 973 

Expert 6 913 100 63 750 

Rules 9 0 0 0 0 

Expert 9 0 0 0 0 

Total  2018 197 63 1723 

Table 27 Six Attributes Without Abandonment 

 

 

 ATTRIBUTES GOOD BAD COST NET 

Rules 6 0 0 0  

Expert 6 0 0 0  

Rules 9 1725 130 0 1595 

Expert 9 564 349 62 153 

Total  2289 479 62 1748 

Table 28 Nine Attributes Without Abandonment 

If we now choose, for each attribute, the best option of current, refer or continue, 

we get the results in Table 29: 
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 ATTRIBUTES GOOD BAD COST NET 

Rules 6 699 81 0 618 

Expert 6 588 68 40 480 

Rules 9 490 17 0 473 

Expert 9 319 68 31 220 

     1791 

Table 29 Option for Six or Nine Without Abandonment 

Most of the incremental benefits (over the previous results adjusted for cart 

abandonment) can be explained when we look at the abandonment rate. We have 

used a mean of 200 seconds and beta value of 0.55. This distribution is rather 

pessimistic, but it is consistent with the public data. There is other evidence that 

transaction abandonment levels can be around 27% (Tarasofsky, 2008). In our 

data set, using the current determination, rather than accept the additional cost of 

cart abandonment, was a definite advantage. Table 30 show transaction 

abandonment as predicted by the Weibull distribution. 

 

Table 30 Transaction Abandonment following Weibull 

9.5.4 Attribute by Attribute 

In this case, we remove all but one of the attributes and then add back in the order 

of significance. The most significant attribute is the FICO score. This is not 

unreasonable as this is a composite attribute based on factors including how well 

previous loans have been serviced. That is of some considerable interest here. For 

each case we calculate the maximum value of 𝐸𝑔𝑎𝑖𝑛 and 𝑅𝑔𝑎𝑖𝑛 and determine 

the optimal position and decision-making process, considering transaction 

abandonment. 

Data Item 1 2 3 4 5 6 7 8 9

Time 3 6 9 12 15 18 21 24 27

Remain 91% 86% 83% 81% 79% 77% 75% 73% N/A
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For this problem, we start with the most significant attribute and make the 

calculations of 𝐸𝑔𝑎𝑖𝑛 and 𝑅𝑔𝑎𝑖𝑛 for each, for all the attributes in the set order of 

calculation. We identify the maximum value, and that determines the decision 

maker (rules or expert) and the number of attributes that we collect for that case. 

We factor in the abandonment rate and information processing costs, as above. 

 

 FICO VER HOME DTI PURP INCOME ALL 

Good 2043 2068 2058 2006 2034 2018 1831 

Bad 517 527 520 473 442 394 383 

Costs 14 25 31 33 47 63 50 

Objective 1512 1516 1507 1500 1545 1561 1398 

 

Table 31 Feature Selection 

Table 31 show the progress of the feature selection as attributes are added. The 

objective stays around 1500 and the increases to a maximum of 1561. The 

decrease at the point where we use all the attributes is due to the impact of 

additional costs of processing and transaction abandonment. 

9.5.5 Optimal Order, Position and Decision Maker 

This is the final refinement of the method that considers order as well as position 

and decision maker. We start with the most significant attribute – in this case, 

FICO – and then determine the next best attribute based on the increase of the 

maximum value of 𝐸𝑔𝑎𝑖𝑛 and 𝑅𝑔𝑎𝑖𝑛. This is done for each case until we have 

used all the attributes. The benefit of more attributes should be a better decision; 

the disbenefit is the reduction in the probability that a case will complete the 

transaction. 

We use a forward selection approach to the problem for two reasons. Firstly, we 

include all the attributes; there are no stopping criteria that would be affected by 

dependent attributes (which is the reason that forward selection fails). Secondly, 

the working assumption is that dependent attributes have been identified and steps 

taken to reformulate the problem to make it more amenable to logistic regression. 
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Note that, if this has been done the attributes in question will be considered together, as 

pairs, with associated abandonment and information processing costs. Starting with the 

most significant attribute we add each remaining one, in turn, using the criteria of the best 

overall organisational outcome (generally profit, but it could be revenue) generated by 

using that pair of attributes.  

The results are shown below. Transaction abandonment has been set to zero to illustrate 

the process better. Otherwise, as shown above, most of the decisions will be made using 

only the first attribute. 

 

Table 32 Attribute by Attribute Feature Selection 

Table 32 shows the optimal distribution of the decisions between rules and experts 

based on the maximum value of expected net gain. For example, the first column 

shows that 387 cases are best sent to the rules and 924 cases are best referred, both 

with just FICO as a data point. 

  Summary 

There are 3 variations on the interactive optimisation problem: 

• Consider attributes in 2 (or more) blocks 

• Consider attributes one-by-one, in a fixed order 

• Consider attributes, one-by-one, in an optimised order 

With the Lending Club Data, each refinement creates a better solution, and each 

refinement is better than the previous method that used every attribute. 

These results are essentially due to the high impact of transaction abandonment. 

The model suggest a peak at around 25% with nine attributes requested. This 

accords with measured data. It is worth remarking that transaction abandonment 

is not a loss, per se, more a lost opportunity. As such it is easier to ignore than a 

loss that is crystallised, such as an unpaid loan. 

The data, and relationships, point to a much more considered approach where 

opportunity cost is compared to loss when we decide how much information is 

required. The model suggests that, in many cases, a decision can be made on much 
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less data and that any subsequent loss due to a loan going bad cane be 

compensated for by additional good customers who would otherwise abandon. 
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10 OPERATIONAL 

OPTIMISATION 

 Introduction 

Up to now, we have been solving the business rule optimisation problem, and the 

result is a set of rules that determines how each case should be processed.  A by-

product is the optimal number of experts that are required, and the proportion of 

cases should be allocated to the rules, and the proportion allocated to experts given 

the caseload and case-mix that we anticipate. In an ideal world, caseload would 

be constant, and case-mix would reflect the training data. In practice, this would 

not happen, and experts would be, at different times, idle or overcommitted. If we 

go to the trouble of business rule optimisation, we should have a way to make 

maximum use of available resources which the organisation pays for them 

whether they are used or not. 

There is also the possibility that the relationships between the attributes and the 

outcomes change. For example, if interest rates rise, different people may ask for 

loans and/or more loans will default.  

This chapter develops a method to adjust the rules so that we can give the experts 

the cases that will be most advantageous to the organisation, and avoid giving 

them so much work that the system slows down and queues build up. We also 

consider the medium to long term problem of retraining or re-optimising the rules 

as the case-mix changes. 

 Expert Resource Requirements 

There are two reasons why we may have an excess or shortfall of experts for any 

situation: 

• We may have a different caseload 

• We may have a different case-mix 
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In any event, we need a strategy to adjust the rules to make the best use of the 

experts that we have allocated to the task. During the initial optimisation phase, 

we did not limit the number of experts, we just solved the optimisation problem, 

and the optimal cost (that included the cost of the expert intervention) was one of 

the results. That cost translates to a resource. Now we have that resource we have 

an issue of allocation; what cases do we allocate within the limits of the available 

resources. 

10.2.1 Solving the Problem 

We have a queue of cases that are processed through the rules and, at each point 

we have (or calculate) whether the rule decision should be accepted, we should 

refer or ask for further information. 

Previously we have assumed no limit on the number or input of the experts. 

Indeed, the objective was to use as many as we needed, provided their input was 

cost-effective. Now – by implication – we have decided that, on average, a certain 

percentage of cases will be referred.  

The nature of the problem is such that we have incurred the cost for the experts 

employed and marginal cost of their input is now effectively zero. So, where we 

would have deducted a cost for expert judgement, it is now free but now, we have 

a fixed number of experts that can process, at most, a fixed number of cases. 

In the previous chapter, we had this solution for the nine-attribute problem. Table 

33 shows the results. 

 

VALUE GOOD BAD COST NET 

ORIG 1722 293 224 1205 

NEW 1831 383 50 1398 

     

CASES EXPERT RULES   

ORIG 4498 0   

NEW 1000 3498   

Table 33 Nine Attribute Problem 
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Let assume that an expert can process twenty cases per day and the figures above 

represent a week’s worth of cases. As such, we require ten experts to process a 

thousand cases, and the weekly cost of an expert is five.  

We recalculate 𝐸𝑔𝑎𝑖𝑛 and 𝑅𝑔𝑎𝑖𝑛 without the costs and denote these as 𝐸𝑚𝑔𝑎𝑖𝑛 

and 𝑅𝑚𝑔𝑎𝑖𝑛 to signify we are using marginal costing. By marginal costing we 

mean the cost varies (typically as a function of work to be done) rather than the 

cost that is incurred regardless: the so-called fixed cost. For example, in a transport 

problem a salaried driver and owned vehicle are fixed costs; we incur them 

regardless of how much work we need to do. Conversely, the cost of a rented 

vehicle with a casually employed driver is marginal; we can rent more or fewer 

vehicles and employ more or fewer drivers depending on how much work we have 

to do. In our case, if we assume that the experts are salaried employees, their cost 

is fixed and not a function of the caseload or the case-mix. So, we can ignore their 

cost in the operational sense and just focus on the expected benefit of allocating 

cases to either the rules or the experts. 

Expected gain from using the rules decision using k attributes: 

𝑅𝑚𝑔𝑎𝑖𝑛 = 𝑊(𝑘)[𝑝(𝑔𝑜𝑜𝑑 𝐴𝑁𝐷 𝑅𝑔|𝑘). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑏𝑎𝑑 𝐴𝑁𝐷 𝑅𝑔|𝑘). 𝑙𝑜𝑠𝑠] 

And expected gain from referral: 

   𝐸𝑚𝑔𝑎𝑖𝑛 = 𝑊(𝑘)[𝑝(𝑔𝑜𝑜𝑑 𝐴𝑁𝐷 𝐸𝑔|𝑘). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑏𝑎𝑑 𝐴𝑁𝐷 𝐸𝑔|𝑘). 𝑙𝑜𝑠𝑠] 

For each case we rework the calculations in Chapter 10 using these formulae. For 

cases where it would have been best to use the expert, this will still apply as we 

just have a higher value for 𝐸𝑔𝑎𝑖𝑛 (it increases by 𝑊(𝑘). 𝑐𝑜𝑠𝑡(𝑘)). But for the 

other cases, some of them may result in a referral. And for all cases, we calculate 

the highest possible value of 

 𝑁𝑒𝑡 𝑔𝑎𝑖𝑛 = max
𝑘

(𝐸𝑚𝑔𝑎𝑖𝑛 −  𝑅𝑚𝑔𝑎𝑖𝑛) 

For each case 

Once we have identified all these cases, we order 𝑁𝑒𝑡 𝑔𝑎𝑖𝑛 , with the highest first. 

Then we take as many cases that the experts can process. 

For example: 
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• If the caseload reduces, the expenses stay the same and the efficiency of the 

operation reduces. The optimal response is to allocate more cases to experts where 

𝐸𝑚𝑔𝑎𝑖𝑛 > 𝑅𝑚𝑔𝑎𝑖𝑛 but previously, we had 𝑅𝑔𝑎𝑖𝑛 ≥ 𝐸𝑔𝑎𝑖𝑛.  

• If the caseload increases, the available experts stays the same, and we risk losing 

the capacity to process the cases at the correct rate. More cases will be allocated 

to the experts than we anticipate, and a queue will build up that reduces the 

number of cases that will be approved. We have already identified time as a cause 

of transaction abandonment in the application process; it is logically a factor in 

the approval process where, if we take too long, the customer loses interest or goes 

elsewhere. The optimal response is to take some cases away from the experts that 

have the least impact on profitability. These are the cases where 𝐸𝑚𝑔𝑎𝑖𝑛 −

𝑅𝑚𝑔𝑎𝑖𝑛 is the smallest. 

• If the case-mix changes, we follow a more general procedure, which applies 

equally well to the situations above. We take a batch of cases and determine those 

that, ordinarily, would require expert judgement. We compare that number to the 

expected number (the expected proportion times the number of cases in the batch), 

and we either have a de facto increase or decrease in workload. We then apply 

one of the two methods above. 

10.2.2 Lot-Sizing & Queuing 

The lot-sizing problem (Sox et al, 1999) is common in manufacturing where larger 

lot sizes have lower manufacturing cost but higher inventory requirements. The 

same thinking can be applied to the service sector, and Deb et al. (1973) 

investigate the batch servicing problem where costs are weighed against the size 

of the queue time or waiting time. In our case study, we have the same 

considerations around the size of the queue. However, if the queue is small, the 

proportion of cases requiring an expert will be more variable and adjusting the 

rules with a smaller number of cases will be more difficult. Also, the queue will 

build up if the caseload, or case mix, requires more experts and reduce, and 

disappear when there is too little work for experts. In this case, we can change the 

rules to reduce the expert workload, as above. If the opposite occurs, and we have 

experts with nothing to do and no queue, we categorise the cases as: 

• 𝐸𝑚𝑔𝑎𝑖𝑛 > 𝑅𝑔𝑎𝑖𝑛 – allocate the case to the next available expert 
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• 𝑅𝑚𝑔𝑎𝑖𝑛 ≥ 𝐸𝑚𝑔𝑎𝑖𝑛  - no benefits in allocating to the expert 

We do not have any data on the impact of waiting time for a decision from the 

expert or request for further information on customer behaviour. A reasonable 

assumption would be that there is an impact.  

The lot-sizing problem here is more complicated than service optimisation, where 

the aim is to serve the customers within a given time when the arrival times are 

not constant but represented by a Poisson process. This is the classical queueing 

problem. Here we have that problem, but we also have another factor which is the 

ability to allocate the most appropriate cases (i.e., the ones with the most marginal 

benefit from expert assessment) to the experts. 

For the queuing problem, Deb et al. (1973) propose that when the queue length, 

x, exceeds a certain maximum, M, we serve min (x, S) customers where S is the 

service capacity. M and S depend on a range of cost and service time factors. Due 

to lack of data, there is no point computing M and S; suffice to say it cis possible. 

Also, we are only interested in the number of cases in the queue where Emgain > 

Rmgain, and their arrival rate. So, to provide a given service level and waiting 

time, the number of experts must be the maximum of the optimal number E (from 

the rule optimisation) and S (from service optimisation). 

For the lot-sizing problem, we need to know the distribution of Emgain. We have 

(since Emgain > 0 for the cases in question): 

𝑝𝑟𝑜𝑏(𝐸𝑚𝑔𝑎𝑖𝑛 < 𝑥) =  ∫ 𝑒𝑚(𝑢)𝑑𝑢 = 𝑒𝑚𝑙
𝑥

𝑜

 

𝑝𝑟𝑜𝑏(𝐸𝑚𝑔𝑎𝑖𝑛 > 𝑥) =  ∫ 𝑒𝑚(𝑢)𝑑𝑢
∞

𝑥

= 𝑒𝑚ℎ 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡(𝐸𝑚𝑔𝑎𝑖𝑛 > 𝑥) = ∫ 𝑒𝑚(𝑢)𝑢𝑑𝑢 = 𝑝(𝑥)
∞

𝑥

 

Where em is the probability density function of Emgain. 

So, to give the cases that earn us at least x to the experts, we need a queue of size 

𝑸 ≥ 𝑬/𝒆𝒎𝒉 to create a profit 𝒑(𝒙)        Equation 2 

To see this, suppose 10% of cases have a profit of x or more. To be able to allocate 

these to 5 experts, we would require at least 50 cases in the queue on average.  
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Equation 2 enables us to relate queue length (and waiting time) to overall profit, 

allowing the optimal queue length to be calculated. 

So, to calculate the optimal number of experts and queue length. 

• We choose the number of experts as the maximum of S and E and thus calculate 

the number of experts required, EACT = max(S, E) and the maximum queue length 

M 

• Using EACT and Equation 2 optimise queue length (Q) W.R.T profit and waiting 

time with the (service) constraint that Q<M 

The analysis below is necessarily simplified due to lack of data. But an 

organisation could quite easily collect the data required and carry out the 

optimisation based on these principles. 

10.2.3 Results 

We tested these procedures on a batch of 200 cases and calculated the number that 

required expert judgement. We used the simple process where we requested all 9 

attributes, rather than adding further complexity, but the same approach will work 

with any level of complexity. 

We selected 900 cases at random (a day’s worth of cases) from the test set and 

calculated how the expert and rules would best decide the cases. This caseload, 

optimally, would require 200 expert decisions at a daily cost of 10. We assume 

that the budget is 10, for ten experts.  

We then assume that the budget is reduced by 50% redirect those cases where the 

impact of the expert is the least useful (in terms of the expected gain) as shown in 

Table 33. We apply the process identified above and order the cases by the first 

column, below, shows the cases and the optimal expert allocation. The second 

column shows the impact of not addressing 100 cases and the resulting reduction 

in the net figure. The final column shows the impact of allocating only 100 cases 

to the expert and the rest to the rules. The rules themselves do not make as good 

a decision, but overall, the net benefit is better – as we would expect – but the 

capacity is maintained. The results are given in Table 34. 
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 Expected Actual Optimal 

Cases processed 900 800 900 

Good 366 315 365 

Bad 77 50 74 

Cases referred to 

expert 
200 100 100 

Cost 10 5 5 

Objective 279 260 286 

Table 34 Impact of Reducing Experts Available 

 

Table 34 shows the impact of reducing the number of experts. There are 100 cases 

left over for referral, reducing the number of cases processed from 900 to 800. If 

we now modify the rules, we process 800 cases using the rules and the other 100 

by the experts. Unlike the previous situation where there were an arbitrary 100 

cases not processed, we now have the 100 cases that contribute the greatest value 

when processed by an expert. 

If, on the other hand, we have a budget of 20 for the experts, we can allocate more 

cases to them provided that the expected marginal gain from the expert exceeds 

the expected marginal gain from the rules. This directs more cases to the experts, 

and the objective function recovers somewhat, but it cannot exceed the expected 

as that is in itself an optimum as we have not changed the case-mix. The results 

are shown in Table 35. 
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 Expected Actual Optimal 

Cases 900 900 900 

Good 366 366 368 

Bad 77 77 71 

Cases referred to 

the expert 
200 400 400 

Cost 10 20 20 

Objective 279 269 277 

Table 35 Impact of More Experts 

  Changes in Relationships 

We only have the one data set to work with, but it is possible, over time, that 

relationships between the attributes and outcomes change. Dealing with this 

presents quite a challenge: 

• There can be a significant time between acceptance and outcome, meaning 

that any change in outcomes reflects the nature of the applicants, perhaps 

even years ago. 

• The current framework (necessarily) side steps this problem by using 

outcome data (on old cases) to create rules for the current cases 

• While we are estimating probabilities that cases will turn out to be good, or 

bad, we are not estimating when a case will turn bad. To make any sensible 

adjustment, we would have to wait until loans are repaid for any given 

cohort, in the case of Lending Club that can be 36 or 60 months. 

As with transaction abandonment, we could model the relationship between the 

number (or proportion) of loans that go bad as a function of time and use that to 

inform the necessity to revisit the underlying models and rules. The training data 

would then consist of the most up-to-date outcomes (for loans that have run their 

course), with the oldest data being removed. 
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 Summary 

The framework we have created can deal with the situation where the number of 

experts is fixed and the caseload, or case-mix, changes. We solve this problem by 

increasing or reducing the number of cases that are processed by the experts in 

order of their marginal increased contribution to the profit function. If we have 

too many cases, we look for those with the lowest marginal contribution when 

they are directed to the experts. When we have too few, we look for the next 

highest. 
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11 FRAMEWORK 

 Introduction 

Here, we present and describe one of the key research outputs, the framework and 

procedure to build a set of rules to optimise the credit assessment process and 

other similar processes that result in decisions. The framework is designed for the 

credit approval process but, based on the analysis in 5.2, it applies to a wide range 

of similar service business processes. 

This framework includes: 

• Computation, reasoning and allocation rules to determine how the cases are 

directed through the process with initial acceptance and rejection, requesting 

further information, with or without referral to the expert 

• The determination of the number of experts required for any given caseload and 

case mix 

• Operational optimisation, where we adjust the rules to make the best use of the 

available experts 

A useful framework will use reliable methods that are widely accessible. The 

objective is to use methods that are practical, widely available and easy to use. 

The framework must also cope with practical difficulties, such as unequal sample 

sizes, discretisation, feature selection and missing data (such as outcome data for 

rejected cases). Finally, creating business rules in a familiar format, such as logical 

rules or weighted scores that reflect current business practices, are preferred over 

black-box methods that are difficult to interpret or understand how an answer was 

obtained. 

First, we cover the assumptions and prerequisites for the framework. Then we 

describe the process of data preparation, modelling and estimating outcomes for 

the rejected cases. Finally, we identify how the rules should be built and applied. 
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 Pre-Requisites 

We assume that we have the following historical data available: 

• A set of applicants (cases) 

• For each case we have attribute values, such as credit rating, income 

• A subset of cases that have been accepted 

• Outcomes for accepted cases 

• A subset of cases that have been rejected (with unknown outcomes) 

• A means to estimate the potential profit from a good case, and the potential 

loss from a bad case 

• The cost of processing each case (where applicable) by an expert 

• Data around transaction abandonment to fit the Weibull distribution 

We use historical data to fit models for the accuracy of the expert and the 

relationships between attributes, outcomes, and transaction abandonment. We can 

later combine that with forecast data to determine resource levels. 

 Data Preparation 

The historical datasets we have can be viewed in Table 36: 

Set Attributes Judgement Outcome 

Rejected (R) Known Reject Unknown 

Good cases (G) Known Accept Good 

Bad cases (B) Known Accept Bad 

Table 36 Data Sets 

We have a data set of all the cases that are to be determined, and their attributes. 

Some of the cases are accepted and others are rejected in the normal course of 

business, and we know which these are. For those cases that are accepted, we have 

outcomes, but not for those cases that are rejected. We also know how many 

transactions were abandoned. 

We have several tasks: 

• Discretise, if necessary, the real attributes. This is required to overcome the 

inability of logistic regression to model non-linear behaviour 
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• Create a training/validation and test set to model the human expert. This consists 

of the cases that are accepted and rejected by the human expert  

• Fill in the missing data for outcomes for rejected cases as we do not have outcome 

data for the rejected cases 

• Create a training and validation set for the classification rules to determine the 

outcome. This consists of accepted and rejected cases, outcomes for the accepted 

cases and calculated outcomes for the rejected cases. 

• Create a cost model for profit, loss and referral costs. Profit – from a good outcome 

– and loss – from a bad outcome – can be related to the attributes of the case—for 

example, loan amount. The referral cost model may include a fixed element and 

a cost related to the number of attributes. 

11.3.1 Discretisation 

We have determined that logistic regression is a good method to model the 

behaviour of the expert and the probability that the expert is correct. However, if 

there are non-linearities in the relationships, we need to discretise any real 

variables within the attributes. To keep this simple and practical, we can use 

unsupervised methods such as Equal Width (of the bin) or Equal Frequency (of 

elements in the bin). Supervised methods are more complex, but Entropy Based 

Discretisation produces good results and is easy to implement (Mark et al., 2011).  

11.3.2 Training Set for Judgements 

We need to create a model of the human expert to determine 𝑃(𝐸𝑔) , the 

probability that the expert will judge a case to be good. For this, we only need the 

accepted cases (G and B in Table 36) and the associated judgements. If we are 

using cross-validation, we need a training/validation set and a test set. A typical 

split is between 70:30 and 90:10. The main consideration is an imbalance. If the 

proportion of either class is less than 10% in either case, we should consider 

bagging or boosting to better balance the data set. 

We also need a training/validation and test set to estimate 𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔) which is 

the probability that a case is good when the expert says so. For this, we use the 

accepted cases and their outcomes. Similar considerations on split and imbalance 

apply. 
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The two quantities, 𝑝(𝑔𝑜𝑜𝑑|𝐸𝐺) and 𝑝(𝐸𝐺) allow us to calculate the probability 

that the expert judges the case to be good, and that it is, indeed good: 

𝑝(𝑔𝑜𝑜𝑑 𝑎𝑛𝑑 𝐸𝑔) = 𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔)𝑝(𝐸𝑔) 

And 

𝑝(𝑏𝑎𝑑 𝑎𝑛𝑑 𝐸𝑔) = (1 − 𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔))𝑝(𝐸𝑔) 

11.3.3 Initial Feature Selection 

At this stage, it is worth eliminating any attributes that do not add value. We do 

not yet have the full objective function, but we can use a filter method to remove 

attributes that are closely correlated or redundant. This can be done using the 

training set of attributes and judgments before we fit any models of the human 

expert. Note that there is a potential element of iteration in this process as to fill 

in the missing data for outcome of rejected cases we use the models that we build 

using the attributes that we select. So, we cannot use outcome data for feature 

selection at the beginning. Note that we can only assess attributes for which are 

included in the data set, and hence our only option is removal. Attributes can, of 

course, be added, data collected and then assessed, and that would be possible 

within this framework. 

11.3.4 Missing Data 

Unfortunately, we do not have outcome data for rejected cases. Still, we can use 

the method in 6.4 to estimate the probability that a rejected case is good or bad 

and use that probability to classify the case as good or bad. 

We use the confusion matrix where the elements a, b, c and d are the relevant 

probabilities. For each case in we have 𝑝(𝐸𝑔) and for the accepted cases we have 

𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔). To recap, Table 37 gives the confusion matrix. 

 

 Judged good Judged Bad 

Good a b 

Bad c d 

Table 37 Confusion Matrix for Missing Data 
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We have: 

𝑎 + 𝑐 = 𝑝(𝐸𝑔) 

𝑎

𝑎 + 𝑐
= 𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔) 

⟹ 𝑎 = 𝑝(𝐸𝑔). 𝑝(𝑔𝑜𝑜𝑑|𝐸𝑔) 

To ensure 𝑐 ≥ 0 (in case we have some noise in the calculation of 𝑝(𝐸𝑔)) we set 

𝑐 = max ((𝑝(𝐸𝑔) − 𝑎), 0) 

As in 6.4 then calculate the other variables assuming: 

𝑎

(𝑎 + 𝑐)
=

𝑏

(𝑏 + 𝑑)
 

We would expect that the proportion of unknown cases that are good to be similar 

to the proportion of accepted cases that are bad. If not, we should check our 

calculation or look for some explanation. 

11.3.5 Cost Models 

There are 3 cost models for this and similar service business processes to which it 

can apply. 

11.3.5.1 Profit and Loss 

The potential profit is the upside; how much money can we expect to make if 

things go well and our judgement is correct. The loss function is the opposite; we 

lose money if our judgement is to accept, and then, it proves to be incorrect. This 

can only really be determined on an application by application basis. For credit 

approval, we need data on issues such as: 

• Profit: gross interest, financing costs and expense ratios 

• Loss: mean time to default, net debt recovery and recovery costs 

11.3.5.2 Referral Costs 

We can assume that this consists of two elements: 

• Fixed familiarisation cost (the same for each case) 

• Additional (on a per attribute basis) 
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Referral can also be expressed relative to the size of the loan if this is more 

representative. For the initial rules optimisation problem, it makes sense to use 

referral cost, as the objective is to optimise profit. When we move to operational 

optimisation, it may be better to use the time taken and then compare that to the 

time available for referral based on the number of experts available. 

For the sake of simplicity (and in the absence of any data), we can assume that 

each attribute takes the same time and we have: 

𝑡(𝑘) = (𝑡𝐼 + 𝑘𝑡𝐴) 

Where  

t = total referral time 

tI = initialisation of the process 

tA = time to assess each attribute 

h= hourly cost of an expert 

11.3.5.3 Transaction Abandonment 

The relationship between the number of attributes requested and the proportion of 

transactions abandoned has been identified in 8.3. For any new problem, we need 

to fit the values of β and λ. This can be done using the Weibull plot where we plot 

ln (− ln(1 − 𝐹))  (vertical access) against ln 𝑡  where F is the proportion that 

abandon and t is the time. The straight line indicates a good fit, the slope of the 

line is equal to 𝛽, and the intercept is −ln 𝛽𝜆. 

We then have the proportion of transactions abandoned as a function of time given 

by: 

𝐹(𝑡) = 1 − exp − (
𝑡

𝜆
)

𝛽 

 

Where 

𝑡(𝑘) = 𝑡𝐼 + 𝑘𝑡𝐴 

Where  

t = total transaction time 

tI = initialisation of the process 
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tA = time to respond to each request for information (assumed to be the same for 

each) 

k = number of attributes 

 Business Rule Creation 

11.4.1 Referral 

To decide whether the rules or the expert determines a case, we look at: 

𝐸𝑔𝑎𝑖𝑛 = 𝑝(𝐸𝑔 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝐸𝑔 𝑎𝑛𝑑 𝑏𝑎𝑑). 𝑙𝑜𝑠𝑠 − 𝑐𝑜𝑠𝑡 

𝑅𝑔𝑎𝑖𝑛 = 𝑝(𝑅𝑔 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑅𝑔 𝑎𝑛𝑑 𝑏𝑎𝑑). 𝑙𝑜𝑠𝑠 

And if 

𝐸𝑔𝑎𝑖𝑛 − 𝑅𝑔𝑎𝑖𝑛 < 𝑐𝑜𝑠𝑡 

We allocate the case to the expert. Otherwise, it is allocated to the rules.  

The decision process is given to the rules or the expert depending on the direction 

above. We incorporate this logic into the rules in the next section. 

11.4.2 Classification 

The data to create the rules consists of rejected (R), good (G) and bad (B) case 

data. In the case study, we assumed that misclassification costs were equal, but in 

general, this will not be the case. To overcome this problem, we need to create a 

training/validation set that has the right proportion of good and bad cases to match 

the unequal misclassification costs. For example, if the profit from a good case is 

twice the loss from a bad case, we need twice as many bad cases in the 

training/validation set to compensate. We can do this with bagging (removing 

excess data) or boosting (creating additional data). The choice of rule building 

(decision trees, regression, etc.) is determined by performance (on the given data 

set) and the desired simplicity of the final rules. 

We also require the performance of the rules in terms of 𝑝(𝑔𝑜𝑜𝑑 𝑎𝑛𝑑 𝑅𝑔). This 

can be determined directly from 𝑝(𝑔𝑜𝑜𝑑) should we use logistic regression or by 

inspection of each leaf of the decision tree when it is applied to the test set. 

Similarly, we can estimate 𝑝(𝑏𝑎𝑑 𝑎𝑛𝑑 𝑅𝑔) from the number of bad cases in the 

leaves of the decision tree. 
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11.4.3 Combined Business Rules 

The referral logic and classification are combined to create the business rules 

using the expected net gain given the attributes we have (which can be all of them 

or a selected subset) of the rule decision or expert assessment. This creates the 

rule sets that are necessary to carry out feature selection properly. 

 Feature Selection 

This is an important step as redundant attributes are expensive as they increase 

transaction abandonment. 

As identified in Chapter 7, the wrapper method requires the complete set of rules 

and costs to be incorporated to determine the objective function. For reasons of 

efficiency, it is worth setting up a process where attributes can be added or 

removed that drives the steps above.  

Note that we have already created a model of the expert and classified the rejected 

cases into good and bad. We do not need to do that again. 

Once we have selected a subset of attributes, we carry out these steps: 

• Calculate referral costs, profit and loss, and transaction abandonment as in 

13.3 for the chosen attributes 

• Modify the expert model as per section 11.4. This re-estimates the 

accuracy of the expert based on a reduced set of attributes. 

• Calculate 𝑝(𝑔𝑜𝑜𝑑 𝑎𝑛𝑑 𝐸𝐺), 𝑝(𝑏𝑎𝑑 𝑎𝑛𝑑 𝐸𝑔). This is the new model of 

the expert. 

• Re-train the classification rules using the new attributes. 

• Calculate 𝑝(𝑔𝑜𝑜𝑑 𝑎𝑛𝑑 𝑅𝐺) 𝑎𝑛𝑑  𝑝(𝑏𝑎𝑑 𝑎𝑛𝑑 𝑅𝑔). If we use a decision 

tree or rule learning, these are obtained from the contents of the leaves on 

application to the test set. For logistic regression, we calculate 

probabilities directly, and we use 𝑝(𝑔𝑜𝑜𝑑) 𝑎𝑛𝑑 𝑝(𝑏𝑎𝑑) 

• Calculate 𝑅𝑔𝑎𝑖𝑛, 𝐸𝑔𝑎𝑖𝑛 as 13.4.1. This determines the accept, reject or 

refer rules for each case. 

• Evaluate the new rules on the test set 

• Calculate net profit 
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 Interactive Integration  

11.6.1 Introduction 

This process is somewhat different from a typical classification process as we 

effectively have three options after processing a subset of attributes: 

• Decide 

• Refer 

• Request more information 

The attributes can be requested in blocks – as in an initial screening process – or 

one-by-one, in which case the decision to request also specifies the next attribute. 

There are two options, as identified previously: 

• Logistic regression to mode the expert and performing the classification 

• Logistic regression to model the expert and a decision tree for 

classification 

The key difference is that logistic regression calculates 𝑅𝑔𝑎𝑖𝑛 directly on a case 

by case basis. If we use a decision tree, we apply the tree to the test set and 

determine 𝑅𝑔𝑎𝑖𝑛 from the contents of each leaf. The following sections apply to 

both but we can exploit the property of a decision tree that effectively determines 

the best order to request attributes and terminate when nothing further can be 

gained rather than apply the process in 13.6.3. 

11.6.2 Blocks 

Interactive integration consists of finding a block of attributes that are initially 

requested and then having the option to decide (using the rules), request for further 

information or refer to the expert. To create an interactive integration, we must: 

i. Rank the attributes in descending importance (in terms of their contribution to the 

overall objective function) 

ii. Decide how many attributes to request initially.  

Let us suppose that we have the k highest ranked attributes. Using our model, we 

can then calculate 𝑅𝑔𝑎𝑖𝑛(𝑘) and 𝐸𝑔𝑎𝑖𝑛(𝑘) for any case and any value of k. Then 

we apply the following algorithm for each value of k. Note that when the attributes 
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are requested, we must allow for the potential to ask for more information (the 

remaining attributes) or refer to the expert, or both. 

With n cases and m attributes, the objective (as a function of k) is given by the 

following expression 

∑ max (𝑅𝑔𝑎𝑖𝑛𝑖(𝑘), 𝐸𝑔𝑎𝑖𝑛𝑖(𝑘), 𝑅𝑔𝑎𝑖𝑛𝑖(𝑚), 𝐸𝑔𝑎𝑖𝑛𝑖(𝑚))

𝑛

𝑖=1

 

Where 

 𝑅𝑔𝑎𝑖𝑛𝑖(𝑘) is the expected gain using k attributes on case i using the rules (decide 

now)  

𝐸𝑔𝑎𝑖𝑛𝑖(𝑘) is the expected gain using k attributes on case i using the expert (refer). 

 𝑅𝑔𝑎𝑖𝑛𝑖(𝑘) is the expected gain using k attributes on case i using the rules (decide 

now)  

𝐸𝑔𝑎𝑖𝑛𝑖(𝑘) is the expected gain using k attributes on case i using the expert (refer).  

𝑅𝑔𝑎𝑖𝑛𝑖(𝑚) is the expected gain using k attributes on case i using the rules (decide 

with more information)  

𝐸𝑔𝑎𝑖𝑛𝑖(𝑚) is the expected gain using k attributes on case i using the expert (refer 

and then decide with more information) 

11.6.3  Individual 

The attributes can also be ordered and processed individually. In this instance, we 

can use concepts from feature selection to identify the order, taking into account 

subsequent options for a decision, referral or additional information. Dropping the 

suffix i for clarity we have: 

𝐺𝑎𝑖𝑛(1) =  max
𝑗

(𝑅𝑔𝑎𝑖𝑛(𝑗), 𝐸𝑔𝑎𝑖𝑛(𝑗)) = max(𝑅𝑔𝑎𝑖𝑛(𝑗1), 𝐸𝑔𝑎𝑖𝑛(𝑗1)) 

And then 

𝐺𝑎𝑖𝑛(2) =  max
𝑗≠𝑗1

(𝑅𝑔𝑎𝑖𝑛(𝑗), 𝐸𝑔𝑎𝑖𝑛(𝑗)) 

𝐺𝑎𝑖𝑛(𝑚) =  max
𝑗≠(𝑗1,𝑗2,𝑗𝑚−1)

(𝑅𝑔𝑎𝑖𝑛(𝑗), 𝐸𝑔𝑎𝑖𝑛(𝑗)) 
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Then, to identify the optimal point to decide or refer, we choose the highest value. 

Note that we are still working out the optimal referral scheme and, as such, 

optimising the number of experts required for a given caseload. 

 Operational Optimisation 

This problem differs to the preceding ones in three critical ways: 

i. The number of experts has been determined and is fixed 

ii. The cases are arriving in real-time, and the caseload and case-mix is unknown 

(although we can expect them to resemble the training set) 

iii. The objective is to maximise profit and minimise (or avoid) queueing 

Previously we have used the net gain functions (𝐸𝑔𝑎𝑖𝑛(𝑘)𝑎𝑛𝑑 𝑅𝑔𝑎𝑖𝑛(𝑘)) as the 

basis of our decision making and optimisation. We now form different quantities 

(𝑅𝑚𝑔𝑎𝑖𝑛(𝑘) 𝑎𝑛𝑑 𝐸𝑚𝑔𝑎𝑖𝑛(𝑘)) that represent the marginal gain from processing 

cases using k attributes. 

𝐸𝑚𝑔𝑎𝑖𝑛(𝑘) = (𝑝(𝐸𝑔 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝐸𝑔 𝑎𝑛𝑑 𝑏𝑎𝑑). 𝑙𝑜𝑠𝑠)(𝑘) 

𝑅𝑚𝑔𝑎𝑖𝑛(𝑘) = 𝑅𝑔𝑎𝑖𝑛(𝑘)

= (𝑝(𝑅𝑔 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑). 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑝(𝑅𝑔 𝑎𝑛𝑑 𝑏𝑎𝑑). 𝑙𝑜𝑠𝑠)(𝑘) 

The reasoning is this: expert numbers are fixed, and the cost is incurred regardless 

of the number of cases referred. As such, the cost is independent and can be 

ignored. We are therefore interested in the cases that will deliver the most (gross) 

profit, which is represented by the 𝐸𝑚𝑔𝑎𝑖𝑛 and 𝑅𝑚𝑔𝑎𝑖𝑛 functions. 

At the simplest level, where we request and process all the attributes, we have 

𝑀𝑔𝑎𝑖𝑛𝑖 = max (𝑅𝑚𝑔𝑎𝑖𝑛𝑖, 𝐸𝑚𝑔𝑎𝑖𝑛𝑖) 

𝑅𝑒𝑓𝑒𝑟𝑖 =  𝑡(𝑚) 𝑖𝑓 𝐸𝑚𝑔𝑎𝑖𝑛 > 𝑅𝑚𝑔𝑎𝑖𝑛 

Where 𝑡(𝑚) is the time required to process a case with m attributes. 

We order 𝑀𝑔𝑎𝑖𝑛 in descending order and stop when ∑ 𝑅𝑒𝑓𝑒𝑟𝑖 = 𝑇 where T is the 

total time available to the experts. In this way, we utilise the time available to 

process the cases that deliver the greatest gain. 

We can extend this idea to any level of complexity (blocked attributes or 

individual case optimisation) by  
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• substituting 𝐸𝑚𝑔𝑎𝑖𝑛 for 𝐸𝑔𝑎𝑖𝑛 

• Calculate 𝑀𝑔𝑎𝑖𝑛𝑖 for each case 

• take the cases with the largest value of 𝑀𝑔𝑎𝑖𝑛 subject to ∑ 𝑡𝑖
𝑛
𝑖=1 ≤ 𝑇 

 Application 

We now apply this framework to a different, but similar problem: that of credit 

card approval. We use the Australian Credit Approval Database (Dua et al., 2019) 

that contains 690 records of successful and unsuccessful credit card applications. 

In common with many other such datasets, this only contains one of either 

judgements or outcomes (in this case judgements). To make this usable, we 

introduce random differences between judgements and outcomes so that about 

15% of successful applicants are deemed to be bad customers, and 15% of 

unsuccessful applicants are deemed to be good customers, turned down in error. 

This is consistent with the Lending Club experience, but in practice, any 

percentage could be used. The Auscredit database is not labelled – for reasons of 

confidentiality - and is scaled from -1 to +1, as shown in Table 38. 
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Attributes Min Max Average 

X1 -1 1 0.3565 

X2 -1 1 -0.4641 

X3 -1 1 -0.6601 

X4 -1 1 -0.2333 

X5 -1 1 -0.01962 

X6 -1 1 -0.07681 

X7 -1 1 -0.08406 

X8 -1 1 0.04638 

X9 -1 1 -0.1440 

X10 -1 1 -0.9284 

X11 -1 1 -0.08406 

X12 -1 1 -0.07101 

X13 -1 1 -0.8160 

X14 -1 1 -0.9797 

 

Table 38 Auscredit Database 

11.8.1 Assumptions 

In the absence of data on classification and misclassification costs, we assume that 

the benefit of a good case and the cost of a bad case are both unity, and the cost 

of classification (by the expert) is 0.05 (5%). This is consistent with the analysis 

of the Lending Club data. 

11.8.2 Modelling & Rule Building 

The dataset has only 690 elements, so we use 10-fold cross-validation for training 

and validation purposes. We also take a sample (using the sampling without 

replacement function in Weka) of 1/3 to test and evaluate the rules that we build. 
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Experiments on the training set with Weka show that decision trees outperform 

rule building and logistic regression. Classification accuracy for decision trees is 

between 70 and 80%, with the other methods between 60 and 70%. The best 

method is random forest at 77%, but this does not produce a decision tree 

resembling typical business rules, so we choose the J48 tree (Quinlan, 1993). In 

this case, we have ensured that the classification accuracy of the expert is 85% 

(because of the 15% error rate randomly introduced), so we expect at least some 

of the cases would be directed towards the expert. 

For modelling the instance by instance performance of the expert and the rules, 

we use logistic regression. The creates four models: 

• P(good and Eg) probability that the expert accepts and the case is good 

• P(bad and Eg) probability that the expert accepts and the case is bad 

• P(good and Rg) probability that the rules accept and the case is good 

• P(bad and Rg) probability that the rules accept and the case is bad 

Using these quantities, we can express Egain and Rgain for each instance and then 

decide on the best way to classify each instance. The final step is to integrate the 

rules and the expert. For this we could fit a decision tree – the final set of rules – 

based on the Accept, Reject or Refer status. In this set of data, the classification 

error is nearer 50% with poor performance on the good cases. The alternative is 

to use logistic regression as a classifier, but we have already noted poor 

performance, so the pragmatic approach is to use the J48 tree and determined 

referral on a node-by-node basis. This does have the potential disadvantage that 

the calculation of the ‘goodness’ of a node may be inaccurate.  Still, we can err 

on the safe side and refer if in doubt. Another advantage of using the decision tree 

in this way is that we can see how many data items are requested and create a 

similar map of the number of items required and when the decision is made. Figure 

22 shows a portion of the tree and the ACCEPT, REJECT or REFER decisions. It 

also shows the ability of a decision tree to reach a conclusion with only part of the 

data. 

At the end of each leaf, we calculate the merits of: 

• Accept, where we get the net gain (all cases in the leaf whether they are good or 

bad).  

• Reject, where we nothing. 
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•  Refer, where we get the expected benefit of expert assessment.  

This method is preferable to identifying accept, reject and refer, and the 

reclassifying as classification accuracy for the 3-class problem is much worse than 

for the 2-class problem. Also, fixing the tree structure makes it possible to adjust 

the costs without refitting the tree. 

J48 pruned tree 

X4 <= -1 

|   X1 <= -1 

|   |   X7 <= -0.947368 

|   |   |   X8 <= -1: Y (4.0) ACCEPT after 4 data items 

|   |   |   X8 > -1 

|   |   |   |   X2 <= -0.719399: Y (2.0) ACCEPT after 6 data items 

|   |   |   |   X2 > -0.719399: N (2.0) REJECT after 6 data items 

|   |   X7 > -0.947368: N (5.0) REJECT after 3 data items 

|   X1 > -1: N (45.0/11.0) REFER after 2 data items 

X4 > -1 

|   X8 <= -1 

|   |   X6 <= -0.75 

|   |   |   X11 <= -1 

|   |   |   |   X2 <= -0.142857: N (2.0) REJECT after 5 data items 

|   |   |   |   X2 > -0.142857: Y (3.0) ACCEPT after 5 data items 

|   |   |   X11 > -1: Y (2.0) ACCEPT after 4 data items 

|   |   X6 > -0.75 

|   |   |   X1 <= -1 

|   |   |   |   X3 <= -0.166786 

|   |   |   |   |   X11 <= -1 

|   |   |   |   |   |   X2 <= -0.451128: Y (6.0/1.0) REFER after 7 data items 

Figure 22 Using Tree to Determine Referral 
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This method removes the key disadvantages of decision trees and enables one of 

the critical advantages of context-sensitive decision making using only the 

minimum number of attributes. While this can be done with logistic regression, it 

requires more steps and a degree of complexity. 

11.8.3 Results 

The results in Table 39 show an even split between the rules and the expert. Just 

over 50% compared to the previous results of 80% and 70%. 

 

 

Table 39 Benefits of Referral  

The ORIG line is with the expert processing all the cases and the NEW line is 

with the expert and the rules. GOOD refers to the value of good cases accepted 

and BAD refers to the cost of bad cases accepted COST is the referral cost (which 

for the rules is zero). NET is GOOD-BAD-COST, the overall benefit to the 

organisation. 

This shows that there is a better net result of 73.4 if we combine the rules with an 

expert. Previously the expert achieved a net profit of 65.5 by accepting 91 good 

cases and 14 bad cases, and with a processing cost of 111.5. The combined result 

reduces processing cost to 5.6, accepting 102 good cases and 23 bad cases.  

11.8.4 Feature Selection 

Unlike Lending Club, Auscredit has enough attributes (14) to carry out feature 

selection. Using the wrapper method in Weka (Kohavi et al., 1997) we get: 

VALUE GOOD BAD COST NET 

ORIG 91 14 11.5 65.5 

NEW 102 23 5.6 73.4 

     

CASES EXPERT RULES   

ORIG 230 0   

NEW 112 118   
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 Selected attributes: 1,2,3,4,6,7,8,10,11,12 : 10 

We can refit the models and rebuild the rules using these attributes. The results 

are similar, with more cases going to the rules. This can be explained since the 

feature selection uses the J48 tree and as such, avoids degradation. However, with 

the expert, we model the reduction in Egain by taking terms out of the logistic 

regression and rebasing the function. 

We can estimate the potential gain of reducing the attributes from 14 to 10 using 

our model of transaction abandonment. With ten attributes, we get another 8% of 

potential customers completing the process. All other things being equal, that 

gives an increase in the net benefit of 6.3 to 72.8. However, further reduction in 

the number of attributes reduces the classification accuracy by more than the 

increase in customer retention. Table 40 gives the results. 

 

Table 40 Results with 10 Attributes 

We can see the impact of transaction abandonment for attributes 10 to 14 in Table 

41, below. 

 

Table 41 Abandonment 10-14 Attributes 

 

VALUE GOOD BAD COST NET 

ORIG 97 15 12 70 

NEW 107 24 5.5 77.5 

     

CASES EXPERT RULES   

ORIG 243 0   

NEW 110 133   
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11.8.5 Rule Adjustment 

The final aspect of the framework is the ability to adjust the rules should the 

caseload (or case-mix) change. In the test set (above), we had 104 referrals for 

230 cases which is a referral rate of 45%.  

If we take a random sample of 200 cases, we see that the optimal referral rate – 

for these cases – is 51.5% on the assumption that referral costs 0.05 per case. We 

can optimise and reduce this back to 45%, and we get the results in Table 42 

 

VALUE GOOD BAD COST NET 

ORIG 86 20 5.15 60.85 

NEW 84 26 4.5 53.5 

     

CASES EXPERT RULES   

ORIG 103 97   

NEW 90 110   

 

Table 42 Impact of Reducing Referral Rates 

If, on the other hand, we could make more experts available, for example, enough to 

refer 60% of the case we would have the results in Table 43: 

 

VALUE GOOD BAD COST NET 

ORIG 86 20 5.15 60.85 

NEW 88 19 6.00 63.00 

     

CASES EXPERT RULES   

ORIG 103 97   

NEW 120 80   

Table 43 Impact of Increasing Number of Experts 
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 Results 

The application of the framework has demonstrated that better result can be 

obtained by using rules and experts together. This is due to some critical factors: 

i. Rules can be trained on outcomes that are different from expert judgments. They 

can also be retrained when circumstances change. 

ii. There is a cost, generally per transaction, of expert assessments and this cost can 

outweigh the benefit of referral 

iii. When rules are trained on outcomes, their performance is comparable to the expert 

and can be used on the majority of cases 

The overall benefit of a few percentage points increase in revenue is significant in 

terms of profitability. 

The results also show the impact of transaction abandonment and the importance 

of curtailing the application process as soon as possible, potentially in a context 

sensitive manner where the next question depends on the response to the last. This 

is different from the typical approach to feature selection where an attribute is 

either present or not present (and incurs cost or does not). In our situation, 

attributes are available but not necessarily utilised, and only incur a cost if they 

are used. 

We have also observed the importance of on-line adjustment. If the caseload 

changes (or the number of experts) changes then the rules must change to send the 

right number of cases for referral. Too many cases can create a bottleneck, and 

two few means that valuable resources are idle. 

In terms of method, we have used logistic regression to model the expert and either 

logistic regression or decision trees to create the rules. Logistic regression has the 

advantage of calculating probabilities directly and is preferable for modelling the 

expert. For the rules themselves, both methods can create a context-sensitive set 

(where the question depends on the answer to the last) that terminate when there 

is no benefit in asking for further information. We anticipated a disadvantage with 

decision trees with the requirement to rebuild should misclassification or referral 

costs change. However, we have found a pragmatic solution to the problem by 

classifying each leaf in a binary tree rather than having three classes within the 

tree. 
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The method that we created to estimate the outcome for cases that were not 

accepted cannot be tested against any data. However, the results are reasonable as 

its application resulted in a similar percentage of (estimated) false negatives as 

there were false positives judgements.  

The are other considerations that can be included, such as differences in expert 

costs and performance, more complex misclassification and referral cost models. 

The same considerations apply to transaction abandonment; with more data, more 

elaborate models can be built and tested. 

 Application to other Service Business Processes 

In Chapter 4, we identified service business processes with similar characteristics 

to credit approval. In each case, we want to make a binary decision such as 

accept/reject, proceed/do not proceed, fraudulent/honest, problem/no problem, 

etc. The basis of this determination is what is known, or can be discovered about 

the situation, and rules or human experts can make the decision. 

These include: 

• Loan/insurance application 

The objective is to maximise the number of applicants we accept and minimise 

the amount that default. The application process consists of providing information 

in a set format, with follow up documentation.  

• Insurance claim 

We need to determine which claims are valid (there is a policy in force, and the 

type of claim is covered) and not fraudulent. Information is derived from the case 

and the characteristics of the claimant. The objective is to minimise any fraudulent 

claims that are accepted – in error – and avoid customer dissatisfaction when 

honest claims are referred and questioned. 

• Making an investment 

The rules around investment are generally one of compliance (are we allowed to 

invest in this asset as a policy) and the CRA rules act on the anticipated return and 

risk information. 

• Entering into a contract  
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These rules are like those for investment, and the considerations are ones of 

capability, expected return and risk. There is typically a set of rules based on 

contract value and the seniority of the final decision maker. 

• Deciding on a merger or acquisition 

Rules around mergers and acquisitions consider expected returns (from synergies, 

efficiencies and market position), costs (rationalisation and change), and risks in 

terms of cost and time overruns or failure to achieve the expected returns. Like 

contracts, there will be limits on the level of deal that staff can sign off on. 

• Staff recruitment 

Recruitment is like credit approval. Each applicant provides information that can 

be tested against criteria such as qualifications, years of experience, previous 

salary, etc. One of the main objectives – like credit approval – is to avoid a mistake 

that later becomes apparent. 

• Diagnosis 

Simple diagnosis, such as whether a patient has a condition or not, fits within this 

list of binary decisions. Triage is the same and fits into our model well. In both 

cases, we have measurements or responses that can trigger a set of rules. 

Identifying condition – from a list – is an integer problem and more complex. 

• Fault finding 

Fault finding can be binary, but more often integer. It is the same as a diagnosis. 

• Sales 

Like diagnosis and fault-finding, the sales problem can be integer (what to offer 

the customer) or binary (should we make the offer).  

• Child protection 

The binary decision for child protection is in the triage process; urgent or not. 

Further on, there is a question of what sort of intervention, if any. Like insurance 

claims, there is data on the case and the participants. 

• Fraud detection 

Fraud detection is binary, and the rules use information like credit application. 

The amount of money involved, what was purchased, on-line or in person, etc. 
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• Visa application 

This process is like fraud detection, and we are attempting to identify fraudulent 

applications in both substance (the facts are wrong) and intent (the applicant 

intends to use the visa for another purpose. 

 Summary 

Here we have presented a process to build a set of rules based on a familiar 

situation: 

i. A defined objective function for the business 

ii. A set of cases with attributes that are useful for making a decision 

iii. A set of accepted cases with outcomes 

iv. A set of rejected cases without outcomes 

v. Data on transaction abandonment 

From these data, we have developed a method to build a set of rules that: 

i. Processes the cases, asking for attributes in the most effective order 

ii. Deciding, at each point, whether to accept, reject, continue or refer to the human 

expert 

iii. Can adjust when the caseload or case-mix diverges from that expected 

The framework is designed to be robust and easy for a non-expert to apply using 

tools such as Weka and tried and tested methods. Based on our previous analysis, 

the framework is applicable to a range of service business processes that share the 

characteristics of credit approval. These include processing insurance claims, 

investment appraisal, recruitment, and medical diagnosis. 
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12 CONCLUSIONS 

 Introduction 

Business rules are pervasive within the services sector. They provide consistency 

and allow relatively unskilled staff to process complex transactions correctly. But 

the rules may also have an impact on the costs and profits of an organisation. 

Financial services, transport and human services are areas where the rules 

themselves can predictably impact the bottom line. This thesis has identified and 

applied methods from machine learning and mathematical optimisation that can 

build a set of rules that will maximise profit, performance or customer service, or 

any other key performance indicators. The manufacturing, energy and process 

industries have embraced mathematical optimisation techniques to improve 

efficiency, increase productivity and reduce costs. The different nature of 

services, where customers are different and require individual attention, makes 

business rule optimisation attractive, beneficial and because of this research, 

practical. 

There is recognition in previous research that business rules impact the 

performance of an organisation. What is missing is the link between the business 

rule choices and the profitability of the organisation, and the potential for rules to 

augment instead of just replacing the human decision maker. Addressing this has 

enabled us to frame and solve a business rule optimisation problem. 

As business rules have been applied to a wide range of processes, this research 

has focussed on a specific class (CRA rules) and developed theory around framing 

the optimisation problem, the nature of the objective function and methods to find 

the optimal set of rules. The research applied the theory to a case study with the 

necessary data set. In this way, it tested the concepts and demonstrated that there 

is potential value. A practical framework was also developed that could be applied 

in any business process where decisions need to be made, and where there is 

potential merit in combining automated business rules with human experts. 

This thesis has considered the broader question and then focussed on a set of 

reasonably common problems where the objective is, ultimately, to make a binary 
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decision such as accept or reject, approve or not, or proceed, or not, for example. 

Limitations were placed on the methods we use to build the rules, the form of the 

rules, and the ability to understand how the rules reach a decision. The concepts 

were then applied and proven in two representative case study examples. The 

research question and contributions should, therefore, be read in this context. 

 Research Questions 

The overarching research question concerns building rules that provide the best 

expected outcome for an organisation.  

How can business rules and the process of their application be designed for better 

business results? 

The thesis investigated whether business rules and the process of their application 

could be designed for better business results for a set of service business processes 

that have the same characteristics as credit approval. The theory was tested using 

real data for two completely different examples of credit approval utilising the 

case study approach. As such, we have created a methodology and framework that 

is applicable to the family of rules that address classification problems and shown 

that they can deliver better business results using a representative case study and 

different data sets. 

12.2.1 RQ1  

How is the optimisation problem to be defined? 

The problem is to choose that set of rules, to act upon information that we must 

maximise the expected profit over an anticipated caseload. The optimisation 

variables are the choice and characteristics of the rules. The objective function is 

the expected profit over a set of historical cases, or anticipated cases. The output 

includes the rules themselves and economic consequences in terms of profit (from 

a good decision), a loss (from a bad decision) and the cost of collecting and 

processing information. Other business rules are proscribed, such as legal or 

statutory rules, but these are not constraints in the rule building optimisation 

problem, but of course, they are constraints in operation. 

12.2.2 RQ2  

How should the rules be built and optimised? 
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We deliberately limited our choice of rules to standard industry formats: IF-

THEN-ELSE and weighted sums, but with the explicit option to refer to a human 

expert should that be the optimal choice, based on all the relevant cost factors. 

With this limitation, the research has identified two practical and reliable methods 

to build such rules: decision trees and logistic regression. The choice of method 

is problem-dependent; how well the classifiers work and whether there are non-

linearities and dependent variables, for example. Problems can also be addressed 

using a hybrid method consisting of decision trees and logistic regression. Rule 

building can be found in Chapter 7. 

12.2.3 RQ3 

What information should be requested initially and subsequently? 

Models have been created of the costs and risks associated with obtaining 

information and created a method to balance the benefits, the costs and risks of 

obtaining more information and deciding whether the decision should be made by 

the rules or the expert. 

The information required can be determined as part of the design a decision can 

be made whether to obtain more within the rule structure. 

12.2.4 RQ4  

How to incorporate data on judgements (decisions) and outcomes? 

The essential idea is one of conditional probability and the set of accepted cases, 

and their outcomes are used to determine the probability that a case is good (or 

bad) when the expert has judged it to be good. Data on accepted and rejected cases 

is used to determine the probability that an expert will judge a case to be good (or 

bad). This allows the calculation of the expected gain of an expert making the 

decision on any given case. Lending Club data on outcomes have been used to 

build the rules and determine the probability that a case will be a good outcome.  

12.2.5 RQ5 

How to incorporate a human decision maker (expert) to best effect? 

The option of referral has been included within the rules and uses the expert if the 

net benefit is greater than using the rules. This is covered in Chapter 7 and then 

developed in Chapters 10-12. The analysis has assumed that communication with 
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a customer consists of requests for specific information. It has not, for example, 

admitted the explicit potential for an expert in communicating directly (by 

telephone or email for example). Still, if that occurs in practice, communication 

will impact the expert’s judgement accuracy, and this will could be captured and 

modelled.  

12.2.6 RQ6  

On a case by case basis, how to decide between the outcome of the rules and the 

potential to refer to the human? 

Logistic regression has been employed to model the decision of the expert and the 

outcomes. This calculates the probabilities that the rules and expert decide that 

the case is good and the conditional probabilities that the case will be good 

GIVEN the rules or the expert so do. This enables us to calculate the expected 

benefits (net of cost) of the two options. Probabilities and costs can be calculated 

on a case by case basis. This is explained in Chapter 8.  

12.2.7 RQ7  

How can the rules be adapted to maintain maximum efficiency in changing 

circumstances?  

The off-line optimisation problem – including information, rule building and 

interaction with experts - has no constraints one of the outcomes is the optimal 

number of experts required. When the caseload or case-mix varies, there is a new 

constraint (the number of capacity of the experts) but the marginal cost of referral 

is zero because they are employed (and paid) regardless of the actual number of 

cases that should be referred. Similarly, we could decide to work them overtime 

by weighing the cost of overtime versus the benefit. This problem has been solved 

by taking the rules in order of their gross contribution. This is covered in Chapter 

10. Note that the research has not addressed adaption to long-run trends in 

customer behaviour. This would include detection – that the model is degrading - 

as well as adaption. Detection would require some form of goodness-of-fit or 

significance testing.  
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 Contribution 

The contributions of this thesis to the field of business rules, and the application 

of machine learning and mathematical programming are five-fold. They address 

the problems inherent in the construction of business rules that optimise expected 

net profit for a specific class of service business processes that result in a decision 

(as identified in 4.2). The contribution includes methods to build the rules, 

integration of business rules with human decision makers, a model of transaction 

abandonment and its integration with the rules, a proof of concept using real data 

on judgements, outcomes and transaction abandonment, and a framework for 

implementation. 

12.3.1 RC1 

An analysis of the characteristics of rule building methods and identification of 

the strengths and weaknesses from the perspectives of reliability, complexity, 

flexibility and utility. 

The following methods have been analysed in Chapter 7: first 

principle, rule learning, decision trees and (logistic) regression. 

First principles method is complex and potentially unreliable. The 

other three have advantages and disadvantages, depending on the 

nature of the problem. A hybrid approach – using logistic 

regression to model the human expert – and a modified decision 

tree to execute the rules has advantages of performance and 

elegance. 

12.3.2 RC2 

An extended version of the LENS model (Brunswik, 1985) using logistic 

regression with outcomes, the expert decision and, now, additionally the rules 

decision. 

The original LENS model is two dimensional and based on linear 

regression. This research has created an extended version using 

logistic regression that is better suited to binary decisions than 

linear regression. Logistic regression deals better with non-

linearities and provides a case by case estimate of the probability 

that a case is good or bad, and the probability that the conclusion 
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of the expert judgement and/or the rules are indeed correct. This is 

explained further in Chapter 7. 

12.3.3 RC3 

Incorporating a model of transaction abandonment using the Weibull distribution 

(Weibull, 1951). 

Chapter 6 has shown that the Weibull distribution is a good fit for 

openly available collected data in two domains around transaction 

abandonment. The estimated parameters of the distribution accord 

with the infant mortality phase. this would be expected from a large 

data set which is essentially a survival process. The publicly 

available data only consists of time and transaction abandonment 

and does not enable any analysis of the type of question on it. There 

is, however, a link between the amount of information requested 

and the time taken. Determining the optimal amount of information 

in this context is an application of machine learning with feature 

selection where the cost of information increases as the process 

unfolds. If we had more specific data, question by question, we 

could modify our approach and assign each question a time 

weighted value or abandonment factor. This is a potential area for 

future research. 

12.3.4 RC4 

A proof of concept that optimises business rules in the wider context and 

demonstrates that this is feasible and useful on an example with real data 

Using real data from Lending Club, we have optimised rules for the initial 

selection, final selection and operation phases. This is covered further in 

Chapter 8 for the design of the static system and Chapter 9 for the 

interactive system. We also describe the operational implementation in 

Chapter 10. The business rules are optimised considering the accuracy of 

the human expert’s decision on any particular case, the cost of human 

intervention, the potential for transaction abandonment as we ask for more 

data, and the relative merits of the rules making the decision, or deciding 

to refer to the expert. The resultant rules have been tested on a validation 
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set and found to be better than the human expert or completely automated 

system.  

12.3.5 RC5 

A framework and guide for building rules that optimises the general problem of 

customer selection and acceptance 

This framework and guidelines are the realisations of a novel, and mission 

directed research exercise (including elements of machine learning, 

modelling, logistic regression and probability) that will enable users to 

build their own application using easily accessible tools and minimal data 

manipulation. This is given in Chapter 11. 

 Research Hypotheses 

12.4.1 H1  

The basic hypothesis is that it is possible to optimise business rules in the sense 

that they give the best results over a defined range of situations (either determined 

by analysis of historical data or forecasts) considering: 

• Data on outcomes and judgements 

• The potential to refer decisions to experts 

• The costs of asking for further information 

• The impact of further information 

Chapters 8 and 9 validate this hypothesis for the case study, which is 

representative of many common service business processes and includes all the 

elements above. We can conclude that – subject to limitations on the types of rules 

- an optimal (but not necessarily unique) set will exist for CRA problems based 

on the theory developed in Chapter 5. If this were not true, the results would 

always be the same for each potential set of rules, which themselves would 

provide (non-unique) optimal results. However, there is no guarantee that we will 

always find the optimum given the nature of mixed-integer optimisation 

problems. 
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12.4.2 H2  

A secondary hypothesis is that business rules can be adapted to take account of 

circumstances that differ from those already experienced or anticipated. 

Chapter 10 developed and proved a method to adapt the rules to account for a 

change in caseload or case-mix using the data from the case study. It concludes 

that that (by definition) CRA rules have an impact on resource requirements. This 

is a new optimisation problem with the same objective but with an additional 

constraint which is that the resources are equal to those that are available. 

 Limitations and Future Research 

12.5.1 Limitations 

Business rule optimisation is a new area of research and has the potential to 

develop into a completely new field. The research in this thesis has been – 

necessarily – confined to class of problems in the service sector that require a 

decision to be made based on data available where we have the opportunity to use 

a set of rules – evaluated automatically – and a set of experts. The rules have 

several options, decide positively, decide negatively, refer or request more 

information. The final decision of the process, however, is binary; positive or 

negative. Based on processing mapping, we have shown that many processes in 

the service sector share the same characteristics in terms of the type of decision, 

the cost of gathering and processing information and the option to decide or refer 

to a human expert. These include processes within the financial, health and social 

services sectors. 

We envisage a variety of ways in which this research can be extended: 

• In the interests of clarity, simplicity, and practicality, we have limited the 

form of the rules to that which is familiar to the services sector and 

classification techniques that are widely accessible in standard packages. 

There are much more complex rule sets and classifiers. So, if anything, 

better results will be obtained with more sophisticated methods. 

• Not all business rules resolve to a binary decision; there can be more than 

one choice. This quickly gets complicated; for example, with only three 

choices, we need potentially sic different values for misclassification 

costs. The methods we have employed (logistic regression and decision 
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trees) are not limited to two classes, and the probability that the decision 

is correct would have to reflect that. For example, calculate the probability 

of disease A, B or C being present when the doctor diagnoses disease A, 

etc. Also, within the process there is a range of options including decide, 

refer and request more information. 

• While we do not have access to relevant data, human experts will differ 

and there is the potential to build rules that recognise this and direct cases 

to the expert that will add the most value and, in the operational sense, the 

expert who is also available or working on other cases that add less value 

• Not all service business processes are about making decisions. Rules may 

guide how to proceed or how to do something. Provided that we can 

quantify the financial or customer service impacts of different guidance, 

these sorts of rules should be amenable to optimisation. 

• Different forms of rules may be used in other sectors. For example, in 

roadside assist or transport, we may need to calculate driving distances 

and travel times to make decisions. In this case, different optimisation 

techniques will be required, such as non-linear mixed-integer 

optimisation, constraint programming or evolutionary computing. 

• The real, unaddressed, problem is this: given a business problem and data, 

how do we build a set of rules that could conceivably be any function 

defined on the attributes or other situational information. This problem is 

like optimal control (Kirk, 2004) that addresses the problem of finding 

functions that control dynamic systems to minimise cost and maximise 

returns. There are similarities to BRO, and optimal control also 

(necessarily) limits the functions to certain forms, such as linear quadratic 

functions. Similarly, in this thesis the rule functions have been limited to 

decision trees and weighted sums and the problem is to identify the 

optimal parameters and coefficients. 

12.5.2 Future Work 

Business rule optimisation is a potentially large area for research. In this research, 

we have only explored CRA and operational rules in a generic services business 

problem with a binary decision; accept or reject. Also, due to availability of datit 

has focussed on the customer selection example, with Lending Club as a source 



Chapter 12: Conclusions 

Alan Roy Dormer - August 2020   227 

of data. There will be other data that, while not currently openly available, that 

could be used to populate and further develop the framework for other CRA rule 

problems. This includes problems where the decisions are integer and real in 

nature, as well as binary. 

There is also scope to apply other methods for rule building, such as evolutionary 

computing, that are capable of solving a more general problem in the services 

sector. This opens the possibility to develop rule systems that, whist mostly static, 

can react to different circumstances in the short term, and adapt in the medium to 

long term to maintain peak organisational effectiveness and efficiency. 

Finally, the framework developed for the case study is capable of extension and 

improvement to cover other service business processes. And the essential idea that 

the decision should be given to the decision maker that is expected to get the most 

positive outcome for the organisation (not just making the right decision) could 

be applied to many decision-making situations. 

 Summary 

The design and operation of business rules is a suitable subject for optimisation, 

and this has been applied this to a case study with CRA rules and operational 

adjustment. This takes account of the cost of obtaining information, the cost of 

processing, the profit from a good decision, and the loss from a bad decision. 

Internally there are three options: accept, reject, refer, request more information, 

but outwardly the process is binary where the final decision is to accept or reject). 

Rules should be trained on outcomes rather than decisions to avoid expert bias 

and other sources of error. In this way, systems that include rules and experts can 

get better results than rules or experts alone. This system requires two levels of 

sophistication; the first level directs to cases through the rules, the second level 

decides on whether the case can be determined, requires further processing, or 

should be referred to an expert 

The most effective technologies for good results, simplicity and reliability are 

decision trees, rule learning and logistic regression. Logistic regression has the 

advantage of estimating probabilities directly and dealing with complex cost 

structures and is a good technology as far as ways can be devised to deal with its 

shortcomings. However, some situations would use a hybrid approach where 
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decision trees (or rule learning) create the business rules, and logistic regression 

is used to model the performance of the expert. Using both, we can calculate the 

most effective decide/continue/refer decision. 

The framework devised has been created and tested using data from the financial 

services sector, but applies to many situations where: 

• Decisions are based on data 

• Rules, experts, or both can make decisions 

• There is a cost in obtaining and processing that data 

• Asking for too much data (of taking too long) results in lost opportunity 

• There is a profit from the right decision and a loss from the wrong one 

Finally, there are some limitations to this research insofar as it has (necessarily) 

focussed on one class of problems and case study examples. There are more 

problems, with more complexity that can be addressed. 
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14 APPENDICES 

 Context 

In 5.2.4 we discussed the problem of hiring a person to do a job. We could address 

this problem in two ways: offer a salary and then choose an applicant or choose 

an applicant and the adjust the salary to attract the desired applicants (or 

applicants). The problem changes from a choice decision (binary or integer – who 

to accept) to real decision (how much to offer). This is essentially a dual 

optimisation problem. 

 Primal and Dual Problems 

The classical expression of the dual problem is that of maximising the contribution 

of a set of resources given a constraint on the overall cost of engagement 

(Matousek et al, 2007). 

Suppose we have a set of resources (people) 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑛 and we can express 

their economic contribution as 𝑐𝑇𝑥 and the cost of their employment as 𝐴𝑥 where 

c is an n-vector and A is a n x m matrix. We have limits on the cost of employment 

defined by 𝑏𝑗 1 ≤ 𝑗 ≤ 𝑚 . Costs could include salaries of each employee and 

overheads. 

The resource allocation problem is defined as: maximise the economic 

contribution with an overall limit on the cost. This can be expressed as: 

max
𝑥

𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 𝑜 

We can then form the dual problem based on the dual variable 𝑦𝑗 1 ≤ 𝑗 ≤ 𝑚 and 

we have: 

min
𝑦

𝑏𝑇𝑦: 𝐴𝑇𝑦 ≥ 𝑐 

This is the resource valuation problem and the interpretation is:  minimise the cost 

whilst spending enough to achieve the economic outcome. 

   


