
The role of PPARγ mediated regulation of peroxisomal phospholipid metabolism 

in tumour lipidomic reprogramming and chemoresistance

By Spencer Greatorex

Bachelor of Science (Honours in Biochemistry)

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2019

Monash Biomedical Discovery Institute 

Monash University, Clayton 

Faculty of Medicine, Nursing & Health Sciences



Copyright notice 

© Spencer Greatorex (2019). 

I certify that I have made all reasonable efforts to secure copyright permissions for 

third-party content included in this thesis and have not knowingly added copyright 

content to my work without the owner's permission. 



Contents 
Declaration ............................................................................................................................... I
List of Abbreviations ................................................................................................................ II
Publications ............................................................................................................................. V
Acknowledgements ................................................................................................................ VI
Thesis Preface ...................................................................................................................... VII
Abstract ................................................................................................................................ VIII
List of Figures and Tables ....................................................................................................... X
Chapter 1 – Introduction ......................................................................................................... 1

1.1.  Cancer as a genetic disease: The genetic revolution .................................................. 1
1.2. The role of β-catenin and RAS/RAF in epithelial derived cancers ................................ 2

1.2.1. The oncogenic β-Catenin signalling pathway ........................................................ 2
1.2.2 Oncogenic RAS/RAF and dysregulation of MAPK signalling pathways ................. 4
1.2.3.  Molecular interactions between RAS and β-catenin driven tumours .................... 8

1.3. Metabolic regulation of tumorigenesis: The metabolic hallmark of cancer ................... 9
1.4. Tumour metabolic reprogramming ............................................................................. 10

1.4.1. Alterations in glycolysis in cancer: The Warburg effect ....................................... 11
1.4.2. Alterations in glutamine metabolism in cancer .................................................... 12
1.4.3. Alterations in lipid metabolism in cancer .............................................................. 13

1.5. Transcriptional regulation of lipogenic pathways ........................................................ 16
1.5.1. Signalling through the PPAR subfamily of nuclear receptors .............................. 16
1.5.2. The canonical/non-canonical SREBF1 pathways ................................................ 18
1.5.3. PPAR and SREBF1 signalling in tumour progression and metabolism ............... 21

1.6. Regulation of lipogenesis by the AMPK/mTOR (energy sensory) signalling pathways
.......................................................................................................................................... 24

1.6.1. The AMPK complex: The guardian of cellular energetics .................................... 24
1.6.2. AMPK mediated regulation of lipogenesis ........................................................... 25
1.6.3. AMPK and mTOR crosstalk, autophagy and cancer ........................................... 27

1.7. Lipogenesis and the hallmarks of cancer ................................................................... 29
1.7.1. Lipogenic reprogramming & cancer stem cells .................................................... 29
1.7.2. Lipogenic reprogramming and drug resistance ................................................... 31

1.8. Mass-spectrometry, CRISPR/Cas9 and next-generation sequencing as tool to dissect
the metabolic genome ....................................................................................................... 33

1.8.1. HPLC and high throughput untargeted lipidomics ............................................... 34
1.8.2. CRISPR/Cas9, pooled screening and next-generation sequencing .................... 35

1.9. Hypothesis and Aims .................................................................................................. 38
Chapter 2 – Materials & Methods ......................................................................................... 39

2.1. Bioinformatic analysis of the TCGA & Depmap datasets ........................................... 39
2.1.1. Data normalisation and acquisition ...................................................................... 39
2.1.2. Gene set enrichment and determination of metabolic signature ......................... 39



2.1.4. Correlation analysis ............................................................................................. 41
2.1.5. Survival analysis .................................................................................................. 42

2.2. Cell culture ................................................................................................................. 43
2.2.1. Sub-passaging and experimental cell models ..................................................... 43
2.2.2. Drug treatments ................................................................................................... 43

2.3. Lentiviral generation and transduction ....................................................................... 44
2.3.1. Vectors/Plasmids ................................................................................................. 44
2.3.2. Lentiviral generation, transduction & stable cell generation ................................ 46

2.4. CRISPR/Cas9 cell knockout generation .......................................... .......................... 46
2.5. Western Blot Analysis ................................................................................................ 47
2.8. Immunohistochemistry/Immunofluorescence ............................................................. 48
2.9. Cell growth and cytotoxic assays ............................................................................... 49
2.10. Lipid droplet analysis ................................................................................................ 50
2.11. Cell based promoter assay ....................................................................................... 50
2.12. Fluorescence associated cell sorting (FACS) .......................................................... 51
2.14. Quantitative PCR, Nanostring analysis and RNAseq analysis ................................. 51
2.15. Mass spectrometry ................................................................................................... 52

Chapter 3 - Linear Predictive Metabolic Mapping define PPARγ and SREBF1 Signatures 
Associated with Colorectal Tumours ..................................................................................... 56

3.1 Introduction .................................................................................................................. 57
3.2 Metabolic mapping in human tumours ........................................................................ 59

3.2.1 Data analysis and processing ............................................................................... 59
3.2.2. Geneset Enrichment Analysis of human tumours based on differential gene
expression ..................................................................................................................... 62
3.2.3. The impacts of T-statistic based normalisation on GSEA .................................... 64

3.3 Identification of metabolically distinct subtypes of colorectal tumours ........................ 67
3.4 HIF1A associated colorectal metabolic tumours are associated with low PPARγ 
signatures and high SREBF1 signatures .......................................................................... 70
3.5 Discussion ................................................................................................................... 76

Chapter 4 - PPARγ-dependent lipid reprogramming by peroxisomal lipids in BRAFV600E colon
tumours ................................................................................................................................. 80

4.1 Introduction .................................................................................................................. 81
4.2. BRAFV600E driven tumours display lipogenic reprogramming through suppression of
PPAR signalling networks ................................................................................................ 83
4.3. BRAFV600E drives a hyperlipidemic phenotype through suppression of PPARγ ......... 87
4.4. Downregulation of peroxisomal phospholipid metabolism drives BRAFV600E dependent
lipid reprogramming ........................................................................................................... 91
4.5. Peroxisomal phospholipid biosynthesis is critical for membrane fluidity and controls a
complex PPARγ-SREBF1-AMPK signalling axis .............................................................. 96
4.6. Discussion ................................................................................................................ 104

Chapter 5 – Reverse genomic approaches reveal peroxisomal lipid metabolism as a key
regulator of chemoresistance and cancer stemness .......................................................... 108



5.1. Introduction ............................................................................................................... 109
5.2. Tumour mutational load positively correlates with gene set dysregulation but not with
phenotypic outcome ........................................................................................................ 111
5.3. Implementation of the multi-dimensional reverse genetics-based approach for
lipidomic phenotype prediction. ....................................................................................... 116
5.4. Saturation Index regulates tumour chemoresistance through regulation of cancer
stemness phenotype. ...................................................................................................... 124
5.5. Transcriptional networks and lipid remodelling in human tumour cell lines by the
PPARδ/γ nuclear receptors ............................................................................................. 126
5.6. Targeting PPARγ mediated tumour lipid metabolism to reverse PPL induced 
chemoresistance ............................................................................................................. 133
5.7. Discussion ................................................................................................................ 141

Chapter 6 – General Discussion ......................................................................................... 148
6.1. General Discussion and Conclusions ....................................................................... 149
6.2. Conclusion and future directions .............................................................................. 158

References .......................................................................................................................... 161
Appendix A. Publications .................................................................................................... 180



Page | I 

Declaration 

I hereby declare that this thesis contains no material which has been accepted for 

the award of any other degree or diploma at any university or equivalent institution 

and that, to the best of my knowledge and belief, this thesis contains no material 

previously published or written by another person, except where due reference is 

made in the text of the thesis. 

Signature: ……………………

Print Name: Spencer Greatorex

Date: 3/12/2019



Page | II 

List of Abbreviations 

5FU 5-Fluorouracil

AA Amino Acid 

ACC Acetyl-CoA Carboxylase 

ACL ATP-citrate Synthetase 

ADP Adenosine Diphosphate 

AMP Adenosine Monophosphate 

AMPK AMP-activated Protein Kinase 

APC Adenomatous Polyposis Coli 

BMP Bismonoacylglycerophosphate 

BRAF v-Raf Murine Sarcoma Viral Oncogene B

CCLE Cancer Cell Line Encyclopedia 

CE Cholesterol Ester 

Cer Ceramide 

CK1α Casein Kinase 1α 

CSC Cancer Stem Cell 

cSRC Chicken SRC 

DAG Diglyceride 

DHAP Dihydroxyacetone Phosphate 

DHRS7B Dehydrogenase/Reductase Family Member 7B 

DNA Deoxyribonucleic Acid 

DR Direct Repeat 

DVL Dishevelled 

EMT Epithelial to Mesenchymal Transition 

ER Endoplasmic Reticulum 

FA Fatty Acid 

FAHFA Fatty Acid Ester of Hydroxyl Fatty Acid 



Page | III 

FASN 

FOX 

FZD 

GM3 

GPCR 

GRB2 

GSEA 

GSK3β 

HBMP 

HexCer  

HIF1A 

HMGCR 

HMGCS 

KRAS 

LDH 

LPC 

LPE 

LPI 

LPL 

LXRA 

MS 

mTOR 

NKκB 

NGS 

Oxa 

OxPHOS 

PA 

PAK 

Fatty Acid Synthetase 

5-Fluorouracil & Oxaliplatin

Frizzled 

Ganglioside GM3 

G-protein Coupled Receptor

Growth Factor Receptor-binding protein 2 

Geneset Enrichment Analysis 

Glycogen Synthetase Kinase 3β 

Hemibismonoacylglycerophosphate 

Hexosylceramide 

Hypoxia Inducible Factor 1 Alpha 

HMG-CoA Reductase 

HMG-CoA Synthase 

Kristen Rat Sarcoma 

Lactate Dehydrogenase 

Lysophosphocholine 

Lysophosphoethanolamine 

Lysophosphoinositol 

Lysophospholipid 

Liver X Receptor Alpha 

Mass Spectrometry 

Mammalian Target of Rapamycin 

Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells

Normalised Enrichment Score

Next Generation Sequencing 

Oxaliplatin 

Oxidative Phosphorylation 

Phosphatidic Acid 

p21-activated Protein Kinase 

NES 

spenc
Highlight

spenc
Highlight



Page | IV 

PC Phosphocholine 

PE Phosphoethanolamine 

PI Phosphoinositol 

PL Phospholipid 

PPARα Peroxisomal Proliferator-activated Receptor Alpha 

PPARδ Peroxisomal Proliferator-activated Receptor Delta 

PPARγ Peroxisomal Proliferator-activated Receptor Gamma 

PPL Peroxisomal Phospholipid 

PPRE Peroxisomal Proliferator-activated Receptor Response Element 

PS Phosphoserine 

PUFA Polyunsaturated Fatty Acid 

PUPL Polyunsaturated Phospholipid 

RNA Ribonucleic Acid 

RNAseq Ribonucleic Acid Sequencing 

Ros Rosiglitazone 

RTK Receptor Tyrosine Kinase 

SCAP SREBP Cleavage Activating Protein 

SFA Saturated Fatty Acid 

SM Sphingomyelin 

SOS Son of Sevenless 

SPL Saturated Phospholipid 

SRE Sterol Response Element 

SREBF1 Sterol Regulatory Element-binding Protein 1 

SREBF2 Sterol Regulatory Element-binding Protein 2 

TAG Triglyceride 

TCGA The Cancer Genome Atlas 

Vem Vemurafenib 

vSRC Viral SRC 



Page | V 

Publications 

Bird A.D, Greatorex S*, Reser R, Lavery G.G & Cole T. J., Hydroxysteroid Dehydrogenase 

HSD1L is localised to the pituitary-gonadal axis of primates. Endocrine Connections, 2017. 

6(7): p. 489-499. Doi: 10.1530/EC-17-0119 

* A. D Bird and S. Greatorex contributed equally



Page | VI 

Acknowledgements 

I would like to take the time to thank the great support base that I have had the privilege of working 

alongside in the last three years. To my supervisor, Assoc. Prof.  Tim Cole, thank you for your open-

door policy and the time you take out of your day to always make you feel welcome with something as 

simple as a good morning or a quick chat about the weekends footy news. To Kelly Short and Bennet 

Seow, thank you for morning coffee runs and the casual light-hearted joking around that made the long 

strange working hours barrable. To Judy Ng, thank you for your kind heart and your eagerness to help 

your fellow lab members. Without all of your daily input I have no doubt my experiences would have 

been all the worse for it. 

To my panel members, Assoc. Prof. Jackie, Dr Morag, Dr Lisa Ooms and my co-supervisor Pro. Peter 

Fuller, thank you for taking time out of your busy work schedules to meet with me at my yearly reviews. 

You feedback was helpful, and your expertise has helped develop me into the scientist I am today.  To 

Dr Birunthi Niranjan, thank you for all your help and expertise you helped pass onto me in the art of 

cell culture. Even though I was not in your lab and you always had so many people at the will of your 

knowledge, you were always willing to help me when I needed. To Dr. Chris Barlow, thank you for 

taking me through the complicated field of lipidomics, without your input and guidance on some of my 

experiments they would never have been finished and I may not have been her writing my 

acknowledgments. 

Finally, I would like to thank my friends and family. Without your undivided support over the last three 

years this would not have been possible. To my girlfriend Kye Li, I want to especially thank you for 

your support and patients over the last three years without you and our Sunday morning brunches I 

probably would have lost my mind or had done nothing but work 7 days a week. I am looking forward 

to the future and what it might hold and hope to repay my gratitude in whatever way necessary. 



Page | VII 

Thesis Preface 

The work presented in this thesis contains writings based on original work in requirement of the degree 

of the Doctor of Philosophy. Chapter 1 contains a current literature review relevant to the findings and 

topic of this thesis. Chapter 2 contains materials and methods for the experiments performed and 

discussed in this thesis. Chapters 3-5 contain writings based on the original work that was prepared as 

required for the degree of the Doctor of Philosophy. Chapter 5 is a general discussion and overview of 

the results presented in this thesis detailed relevant conclusion and future directions of this work. This 

thesis if fewer than 100, 000 words in length, exclusive of tables, figures, bibliography and appendices. 



Page | VIII 

Abstract 

Human  tumours  undergo a variety of  metabolic  transformations  that  regulate many  aspects 

of  tumour  biology  including  survival,  proliferation and stress responses. Metabolic 

reprogramming has been one of the key targets of oncology research in recent decades while altered 

cellular energetics has been identified as one of the key new additions to the hallmarks of cancer. The 

mechanism that drive tumour metabolism are vast and varied while understanding how tumours 

manipulate metabolism to gain survival advantages is still unclear. Mutation dependent metabolic 

reprogramming has been identified in many human tumours while common changes in key lipogenic 

transcriptional regulatory pathways have been extensively associated with human tumours, disease 

progression and patient survival outcomes.                                            .  

In this study, a systematic approach targeting tumour metabolic rewiring was investigated using high-

throughput   transcriptomic datasets such as the The Cancer Genome Atlas (TCGA). Transcriptome 

analysis of metabolic associated genesets utilising frequency distribution data normalisation methods 

showed an altered tumour landscape compared to conventional Geneset Enrichment Analysis (GSEA) 

methods. Furthermore, metabolic mapping of human colorectal cancer transcriptomes showed the 

existence of two distinct metabolic colorectal tumour subtypes based on HIF1A signatures while two 

key lipogenic transcription factors were also shown to harbour key differences within the two tumour 

subtypes. Significant changes in key transcriptional regulators of fatty acid metabolism were shown 

through upregulation of SREBF1 pathway while this coincided with downregulation of PPARγ 

signatures. Loss of PPARγ signalling was shown to be associated with increased tumour mutation 

burden and more specifically BRAFV600E oncogenic mutations. Further investigations utilising cell 

culture models of BRAFV600E driven tumours confirmed loss of PPARγ  signalling leading to 

hyperlipidemic phenotype driven through loss of associated Peroxisomal Phospholipid (PPL) 

metabolic pathways allowing for sustained SREBF1 transcriptional activity. CRISPR/Cas9 mediated 

PPL biosynthesis knockout models through loss of the terminal enzyme DHRS7B was shown to mimic 

BRAFV600E   tumours, primarily through loss of efficient AMPK signal transduction through decreased
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polyunsaturated phospholipid biosynthesis. Lipid based metabolic tumour associated perturbations, a 

high fidelity lipidome was generated targeting 22 lipid classes across 15 human cancer cell lines. The 

tumour lipidome showed significant correlation based on lipid saturation while associations between 

lipidomic readouts was shown to be independent of tissue of origin, cell growth and mutation 

landscape. Finally, high throughput mass spectrometry analysis of human tumour cells revealed 

characteristic changes in polyunsaturated phospholipid ratios in many tumour cell lines. This ratio 

was associated with resistance to 5-FU mediated by protection of cells to pro-apoptotic signalling via 

hyperactivation of ER stress responses. 

The implications of tumour metabolism in recent years have been highlighted as a key area of 

interest in oncology. The associations between changes in metabolism and pro-oncogenic outcomes is 

of concern, while our understanding of these pathways remains poor. This study provides a systematic 

approach to targeting PPARγ signalling in the context of tumour phospholipid metabolism.  Our 

findings suggest that PPARγ plays a key role in tumour differentiation through regulation of 

phospholipid composition mediated through regulation of peroxisomal lipid metabolism. 

Furthermore, utilising well characterised PPARγ agonists in addition to Cas9 mediated targeting of 

peroxisomal phospholipid biosynthesis pathways provide an interesting clinical target for regulation 

of chemoresistance in drug resistant human tumours. Targeting peroxisomal phospholipid 

metabolism as a potential tumour theraputic is an interesting aspect that requires further in vivo 

analysis for better understanding of how this signalling pathway operates in more complex biological 

systems.
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Chapter 1 – Introduction 

1.1.  Cancer as a genetic disease: The genetic revolution 

Cancer at its most simplistic level is a genetic disease. The discovery of the DNA code in the 1960’s 

gave insight into the cellular mechanisms of hereditary information. Studies leading to the discovery 

of the first oncogenes including viral SRC (vSRC) played pivotal roles in the notion of cancer as a 

genetic disease. One of the first such experiments showed that through the use of 

radiolabelled probes researchers could show the presence of the SRC gene in both Rous sarcoma 

virus infected cells and non-infected cells. Despite the presence of SRC in both infected and non-

infected cells only infected cells exhibited oncogenic transformation, while unknown at the time there 

were some small differences between the vSRC and chicken SRC (cSRC), and these differences 

were enough to transform virally infected cells into oncogenic cells while the presence of cSRC in 

normal cells was not sufficient for tumour transformation. The idea of a protooncogene was formed 

and to this day is defined as the key transformation required in oncogenesis and tumour formation 

[1]. Further observations in later years consolidated the idea that the potential of normal cells to be 

transformed into tumorigenic cells lay within the cells own genetic code [2, 3]. In the same 

decade studies using the Harvey and Kirsten sarcoma viruses were isolated as potent oncogenic 

inducing retrovirus in the 1960’s [4, 5]. These studies eventually led to the discovery of the 

protooncogene RAS.                             . 

However, it wasn’t until the early 1980’s that these virally transformed genes were identified 

through, at the time, novel DNA sequencing techniques [6, 7]. Opposing oncogenes at the other 

end of the spectrum are the tumour suppressors. The most commonly mutated tumour 

suppressor gene and probably most well characterised is TP53, otherwise known as the ‘guardian of 

the genome’. Loss of TP53 results in ineffective DNA repair mechanisms leading to an 

accelerated accumulation of tumorigenic mutations [8]. Tumours derived from mutant forms of 

tumour suppressor genes have been described in the literature as early as the 1800’s. TP53 and 

another tumour suppressor gene RB were 
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both initially brought to researchers’ attention in the 1970’s. However, like RAS and SRC, they were 

not identified until the early 1980’s and in subsequent years finally cloned and characterised [9, 10]. 

We now know the existence of dozens of protooncogenes, including MYC [11] and ERBB [12] in 

addition to many other tumour suppressors including PTEN [13]and APC [14]. The availability of large 

scale high-throughput DNA sequencing methods has allowed us to dive deeply into the genetic basis of 

tumour biology. Common cellular mutations can be found in many key cellular regulators in every 

tumour and this is fundamentally required for oncogenic transformation. 

1.2. The role of β-catenin and RAS/RAF in epithelial derived cancers 

Epithelial derived tumours account for most solid tumours in humans, and their cancer genetics are 

extremely complex and diverse depending on tumour subtype and tissue of origin. However, similarities 

can be derived, and common to many solid tumours is dysregulation of key pro-survival signalling 

pathways such as WNT/β-catenin and RAS mediated regulation of MAPK signalling. β-catenin driven 

tumours are the most common oncogenic perturbation found in colorectal cancer but somatic mutations 

affecting the status of β-catenin signalling has been observed in many other tumours including 

hepatocellular carcinoma and ovarian cancers [15, 16]. Furthermore, dysregulated MAPK signalling 

can be considered among the most commonly observed altered signalling pathway together with loss 

of TP53 signalling. Dysregulation of MAPK signalling through genetic changes in the RAS/RAF 

GTPases/kinases has been shown to be a key driver in the dysregulation of growth, survival and 

proliferation of colorectal cancers, melanomas, lung adenomas and thyroid cancers [17, 18].    

1.2.1. The oncogenic β-Catenin signalling pathway 

Wnt/β-catenin signalling in cells is crucial for many normal developmental processes. For example, it 

has been identified as a key regulator of stem cell maintenance in the colon epithelial crypt. 

Furthermore, dysregulation of β-catenin signalling accounts for as much as 80% of human intestinal 
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tumours [19]. Under normal physiological conditions β-catenin activity is primarily controlled by the 

biological activity of a family of 19 secreted glycoproteins, the WNT protein family [20]. WNT proteins 

illicit a range of physiological responses including proliferation, growth and chemotaxis, and do so 

through actions between mature circulating WNT proteins acting through a group of 10 G-protein 

couple receptors (GPCR), the Frizzled (FZD) GPCR family. In the absence of WNT ligand, the β-

catenin destruction complex composed of adenomatous polyposis coli (APC), AXIN, casein kinase 1α 

(CK1α) and glycogen synthase kinase 3β (GSK3β) are able to form a stable complex with cytoplasmic 

β-catenin leading to sequential phosphorylation of β-catenin at Ser45 by CK1α. Further phosphorylation 

events at Thr41, Ser37 and Ser33 mediated by GSK3β are important in the regulation and recruitment 

of ubiquitin ligase complexes allowing for polyubiquitination of β-catenin and proteasomal-mediated 

degradation. The presence of WNT alone is insufficient for complete and robust β-catenin activation, 

and cell surface interaction between FZD, WNT and LRP-5/6 is required for cell surface localisation of 

Dishevelled (DVL) to the FZD receptor which is phosphorylated by CK2 [21, 22]. Activation and 

localisation of DVL leads to inhibition of GSK3β leading to accumulation of unphosphorylated 

stabilised forms of β-catenin. Accumulation of β-catenin allows for nuclear translocation and 

interactions with transcription factors such as members of the TCF/LEF family. This process is crucial 

in the stem cell zone of the gastrointestinal tract where high levels of WNT ligands secreted by localised 

crypt Paneth cells leads to high levels of β-catenin activity and generation of key regulators of 

proliferation and cell stemness including, c-MYC, c-JUN, CD44, LGR5 and CCND1 (Fig. 1.1). 

As mentioned previously alterations in WNT/β-catenin are observed in many solid tumours, and 

colorectal and gastrointestinal tumours account for most β-catenin driven tumours. By far the most 

common alteration associated with dysregulated β-catenin is truncation of APC, and is the major cause 

of hereditary forms of colorectal cancer but also accounts for a large proportion of sporadic colon 

tumours [23]. APC truncation, most commonly formed through nonsense and frameshift mutations, 

aberrates the biological function and formation of the β-catenin destruction complex. Loss of wild type 

APC is closely associated with accumulation of nuclear β-catenin, driving proliferation, growth and 

survival in early colorectal adenomas. Furthermore, mutations to β-catenin itself accounts for fewer 

solid tumours, approximately 5% in colorectal cancers and is significantly more common in liver and 
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ovarian tumours [23-25]. However, the phenotypic readout is much the same. Mutations to GSK3β 

and CK1α phosphorylation sites such as at Ser33 and Ser45 led to inefficient ubiquitin-

mediated proteasomal degradation of β-catenin, allowing increased nuclear accumulation of β-

catenin, while APC and β-catenin mutations account for most β-catenin driven solid tumours, recent 

development of deep genomic sequencing techniques has allowed researchers to carefully probe the 

very heterogenous tumour biological landscape. Other key genes including TCF7L2, a key 

transcription factor involved in β-catenin mediated transcription, have shown to be mutated in a low 

percentage of colorectal tumours. VTI1A-TCF7L2 fusions account for a small cohort of 3% of 

colorectal tumours sequenced, however the biological consequence of this mutation remains unclear, 

while some recent research has shown that it can act in a dominant negative fashion, inhibiting WNT 

mediated transcription while transcriptionally allowing for genetic regulation by CDX2 [26, 27].  

1.2.2 Oncogenic RAS/RAF and dysregulation of MAPK signalling pathways 

The MAPK signalling pathway forms an incredibly versatile and diverse family of kinases responsible 

for transcriptional regulation of many key transcription factors that include cMYC and cJUN. The 

upstream regulation of MAPK signalling is strict and crucial for maintenance of homeostatic cellular 

behaviour. Most commonly, MAPK signalling cascades are downstream of growth factor dependent 

receptor tyrosine kinases (RTKs). For example, EGF and in turn subfamilies including the VEGF and 

FGF families of secreted growth factors bind to their respective RTK’s. Upon growth factor binding, 

RTK’s dimerise leading to autophosphorylation of key Tyr residues and conformational changes 

allowing for protein-protein interactions mediated through SH2 domains that allow for binding of 

adaptor proteins, including growth factor receptor-binding protein 2 (GRB2). GRB2 further interacts 

with Son of Sevenless (SOS) which is a guanine nucleotide exchange factor allowing the generation of 

the active form of RASGTP [28, 29]. The Human genome encodes three RAS family members, KRAS, 

HRAS and NRAS all of which are implicated in tumorigenesis (Fig. 1.2).  
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Figure 1.1. The WNT/β-catenin signalling pathway. (a) In the absence of WNT ligand, Levels of active 
nuclear and cytoplasmic β-catenin remain low due to phosphorylation of key regulatory residues on β-catenin 
mediated by GSK3β and CK1 kinase subunits forming the destruction complex along with scaffold subunits 
APC and AXIN1 responsible for protein-protein interactions. (b) Binding of WNT ligand to its receptor 
Frizzled, LRP5/6 forms a complex and recruits the destruction complex to the plasma membrane. DVL 
interacts with GSK3β and inhibits kinase activity allowing for unphosphorylated β-catenin to accumulate 
leading to nuclear translocation and transcriptional regulation through members of the TCF family of 
transcription factors. Adopted from [30].  

Downstream to RAS GTPases is the family of RAF kinases. RAF kinases directly target MAPK 

activation through phosphorylation cascades. Again, three family members of RAF kinases are 

encoded in the human genome, where cRAF is the best understood family member. 

Phosphorylation of two crucial residues, Thr491 and Ser 494, are key to downstream 

activation of cRAF [31]. Phosphorylation events are key to activation it seems that protein 

localisation plays at least some part in the regulation of RAF. The RAF kinase bound to RASGTP is 

required for full RAF activation leading to phosphorylation at Ser338 of cRAF and the priming 

of RAF for heterodimerisation [32]. Furthermore, signal crosstalk mediated through key 

signalling transducers from converging pathways have been shown to be involved in RAF activation 

that include p21-activated protein kinase (PAK) and 
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SRC kinase, that target cRAF at Ser338 and Tyr341 respectively [33, 34]. BRAF phosphorylation at 

Ser364, Ser428 and Thr439 have all been shown to be crucial in BRAF activation while BRAF specific 

phosphorylation of residues Ser428 and Thr439 have been shown to negatively regulate BRAF activity 

[35]. Furthermore, phosphorylation of cRAF by AKT and AMPK have been shown to inhibit 14-3-3 

binding leading to protein stabilisation and these residues have been shown to be conserved across all 

RAF members [36]. Activation of RAF kinases are crucial for further downstream MAPK signalling 

mediated through MEK1/2 which further phosphorylate and activate ERK1/2. ERK1/2 is the key 

member involved in biological and phenotypic alterations in response to activation of the MAPK 

pathway. ERK1/2 has a diverse array of protein targets and can regulate transcriptional activity through 

phosphorylation dependent regulation of transcription factors such as cFOS and cMYC, or inhibition 

through phosphorylation of the pro-apoptotic transducer proteins MCL1 and BIM, that can inhibit 

apoptotic signalling.  

The roles that RAS and RAF family members play in tumorigenesis are relatively straight forward. Key 

mutations are crucial for RAS/RAF driven tumours. The KRASG12D mutation is commonly found in 

colorectal, breast and lung adenomas accounting for approximately 20-30% of tumours, while in 

pancreatic cancers this accounts for upwards of 40% of tumours [37-39]. The KRASG12D mutant leads 

to ineffective GTP to GDP exchange allowing for KRAS signalling to remain stronger and sustained 

for longer periods of time. The G12 residue is highly conserved across all family members with the 

same mutations observed in other RAS family members. Both HRAS and NRAS have been shown to 

exhibit G12X mutations, many of which are phenotypically identical. Mutations of HRAS have been 

shown to be sporadic in many bladder cancers while further attributing to Costello Syndrome [40]. 

NRAS is far less commonly mutated and is significant in only a few human solid tumours including 

oral cavity tumours and hepatocellular carcinomas. The BRAFV600E mutation, similar to RAS mutants, 

leads to ineffective downregulation of BRAF mediated signalling allowing for constitutive BRAF-

mediated phosphorylation of MEK1/2 and subsequent downstream pro-survival signalling [41].  ARAF 

and cRAF on the other hand are rarely mutated in human tumours. Some mutations were identified 

in the Depmap project however the phenotypic consequence of these mutations is largely 

unknown. Recently, the cRAF R391W mutation was described as an oncogenic driver gene in a small 
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of melanomas while a large proportion of melanomas were BRAF driven. CRAF R391W 

overexpression was shown to increase soft agar colony formation while knockdown of 

mutant CRAF was shown to be important for the M375 mutant melanoma cell line but had limited 

effects on cRAFWT. 

Figure 1.2. The oncogenic RAS-RAF-ERK signalling pathway. The RAS-RAF-ERK signalling pathway acks 
downstream to mediated extracellular signals from RTK’s. RAS is a GTPase that regulates RAF activity 
while RAF kinases regulate ERK activity through direct phosphorylation. Several well characterised oncogenic 
mutations occur that leads to hyperactivation of the RAS-RAF-ERK pathway. BRAF V600E mutations 
shown here led to hyperactive mutant forms of BRAF and increased ERK signalling while similar mutations 
are found in RAS family members such as the G12X KRAS mutations leading to ineffective GTP:GDP cycling 
and increase KRAS activity. Many drugs have been developed to target this pathway and are currently used 
to treat human tumours such as melanomas. Adopted from [18].  
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1.2.3.  Molecular interactions between RAS and β-catenin driven tumours 

While mutations play integral roles in the initiation of tumour formation many years of research has 

highlighted the importance of a multi-hit mutation hypothesis. In most cases single mutations alone are 

insufficient to induce complete malignant tumour transformation. Early studies looking at the functions 

of RAS/β-catenin showed that sporadic tumour formation in APCMIN/+ mice was increased in mice 

that also had hyperactive oncogenic RAS signalling [42]. Furthermore, hepatocellular carcinoma 

models using a floxed β-catenin exon 3 which was permissive to form a stabilised mutant form of 

β-catenin was shown to form sporadic tumours at 100% penetrance when coupled with HRAS 

mutations, while β-catenin or HRAS alone was insufficient for tumour formation [43].  Direct 

molecular interactions between MAPK and WNT/β-catenin have been observed and there seems to 

be significant levels of cross talk between the MAPK and β-catenin signalling pathways. For 

example, WNT3A stimulation of NIH3T3 cells was shown to increase levels of ERK1/2 activation 

while siRNA knockdown of EGFR inhibited this mechanism, and led to decreased proliferation rates 

indicating that both MAPK and WNT signalling were somewhat dependent on one another [44]. 

Furthermore, APC knockout mouse embryonic fibroblasts have been shown to have increased levels 

of ERK activity while further analysis into β-catenin involvement using siRNA knockout showed 

that this mechanism was β-catenin dependent. In addition, they also showed that activation of ERK 

was critical for the prevention of the formation of a dominant negative form of TCF4 [45]. Other 

groups in the context of developmental biology have brought further attention to possible 

cooperative signalling between RAS/RAF and β-catenin. EGF signalling was shown to maintain 

and regulate proliferation of intestinal stem cells in Drosophila while immunofluorescence has 

shown that phosphorylated ERK1/2 is confined to the intestinal stem cell and proliferating 

compartment of the intestinal crypt [46, 47]. Furthermore, analysis of both RAS and β-catenin protein 

stability showed that RAS interacted with β-catenin at the GSK3β phosphorylation interface while 

GSK3β inhibition and targeting of β-catenin for proteasomal degradation was crucial for RAS 

co-degradation [48]. 
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In melanomas, BRAF has also been shown to work in opposing directions through inhibition of WNT/β-

catenin signalling. BRAFV600E melanoma mutants were shown to have low β-catenin activity, while 

reactivation of β-catenin was required for the BRAF inhibitor PLX4720 to induced apoptosis. Β-catenin 

has also been shown to be a good prognosis marker of melanoma [49]. Furthermore, BRAFV600E in 

mouse intestinal models was shown to induce intestinal differentiation and loss of stemness indicating 

opposing actions to β-catenin,  while BRAF appears to play roles in negative regulation of β-

catenin it should be noted that BRAFV600E alone was insufficient to induce sporadic tumours in the 

mouse intestine [50]. Clearly the roles of RAS/RAF and β-catenin crosstalk are seemingly isoform 

dependent with BRAF largely associated with inhibition of β-catenin while others upstream of RAF, 

KRAS and HRAS both have been shown to amplify oncogenic behaviour of β-catenin. This could be 

through alternative divergent pathways. However, this does not explain the observations of seemingly 

synergistic signalling observed in intestinal stem cells clearly indicating that further research is required 

to identify a robust molecular mechanism. 

1.3. Metabolic regulation of tumorigenesis: The metabolic hallmark of 

cancer 

Metabolic rewiring is undoubtedly an important cancer hallmark and a rate limiting step involved in 

tumorigenesis. The vast divergent mechanisms that tumours can employ to manipulate cellular 

energetics in order to sustain prolonged periods of cellular growth, proliferation and ultimately 

metastasis border on the unsurmountable. One of the first key associations between cancer genetics and 

tumour metabolic reprogramming was the identification of cMYC-mediated regulation of lactate 

dehydrogenase (LDH) activity. Activation of increased LDH expression and activity resulted in 

increased lactate production leading to what is now known as the Warburg effect (discussed in detail in 

the next section) [51, 52]. Further studies revealed that TP53, one of the most mutated genes in cancer 

also played a pivotal role in the regulation of glycolysis.  
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From this point forward, the race to understand tumour metabolism led to decades of astonishing 

discoveries that provided an alternative angle to study tumour progression. Previously well 

characterised and understood signalling pathway were once again suddenly under careful observation, 

this time looking for genetic changes to cellular metabolism. PI3K/AKT signalling was shown to 

somewhat dependent on lipid reprogramming in order to illicit key changes in cellular energetics while 

PTEN mutations were seen to have similar metabolic phenotypes [53-55]. Furthermore, key studies into 

PI3K/AKT signalling revealed that successful signalling was completely dependent on 

secondary lipid mediators including diglycerides and phosphatidic acid generation through 

enzymatic modification of phosphatidylinositol [56]. In recent decades, our understanding of 

metabolic reprogramming in cancer has increased dramatically and advanced well past the early 

observations of Warburg.  It has become increasingly obvious that almost all major genetic changes 

that are crucial for tumorigeneses have in some way been associated with major changes in cellular 

energetics through either direct or indirect mechanisms. A key question to ask is whether tumours 

arise from loss of regulation of the classic hallmarks including proliferation and uncontrollable 

growth or is the key player a dysregulation of cellular metabolism and then consequential 

dysregulation of cellular proliferation and growth.  

1.4. Tumour metabolic reprogramming 

Tumour metabolism is a complex and multistep process that in its most fundamental state drives tumour 

progression and all the key hallmarks of cancer. The ability of tumours to override the normal control 

of metabolic wiring within the cell is important for every aspect of tumour biology. Key genetic 

mutations have been associated with diverse and adverse changes in metabolism while several key 

regulators of important metabolic pathways including HIF1A have been shown to be key pathways that 

tumours hijack in order to drive processes such as neo-angiogenesis and metastasis. 
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1.4.1. Alterations in glycolysis in cancer: The Warburg effect 

Under normal physiological conditions in most tissues glucose in the presence of oxygen undergoes 

aerobic respiration to produce pyruvate and then further enter the mitochondria to drive adenosine 

triphosphate (ATP) production. However, mammalian tissues do have cellular machinery that allows 

anaerobic respiration in which pyruvate undergoes fermentation to produce lactate and ethanol as a by-

product in a much less energy efficient process. Lactate can be used to synthesize glucose in the liver 

through the enzymatic actions of lactate dehydrogenase but requires ATP input further increasing the 

discrepancies of the energy efficiency between aerobic and anaerobic respiration. Despite the energy 

efficiency of aerobic respiration, as opposed to anaerobic respiration, the later has been shown to be the 

primary pathway utilised in tumours. This is a well understood metabolic alteration in cancer and is 

known as the Warburg effect [57]. Logically, mitochondrial defects were initially thought to explain 

this outcome, however further research has shown fully functional aerobic respiratory systems are in 

place across many tumour samples indicating that alternative mechanisms are responsible.  

Although the exact mechanism that underpins this phenomenon is unknown possible explanations have 

been suggested in recent years. For example, tumours favouring anaerobic respiration result in a far less 

proportion of the tumour tissue suffering from anoxic environments causing a considerable decrease in 

necrotic tissue. By reducing the oxygen consumption by cells near blood vessels, increased oxygen 

penetration is achieved in the tumour reducing the proportion of cells suffering from hypoxia. Another 

explanation may reside in the hostility of the tumour microenvironment where carbon sources are scarce 

and deviations towards anerobic respiration may provide a survival advantage. However, given that 

rapidly dividing cells also demonstrate this behaviour in energy rich environments this is unlikely to be 

a major reason [51]. The consequences of elevated oxidative phosphorylation result in increased levels 

of reactive oxygen species and perturbations in the ATP: adenosine diphosphate (ADP) ratios. Elevated 

ATP levels have been shown to negatively affect cell growth and survival with aerobic cells showing 

high ATP:ADP ratios while perturbations in these ratios can led to cell cycle arrest and elevated levels 

of catabolic metabolism [58, 59]. Furthermore, adenylated kinase proteins are associated with poor 
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prognosis while being shown to increase growth, metastatic behaviour and drug sensitivity [60-62]. 

Increased expression of adenylate kinases results in a survival advantage in cancer cells circumventing 

negative growth aspects when ATP levels reach critical levels in which normal tissues will undergo 

apoptosis. Similar mechanisms are in place for skewed ADP levels in ATP:ADP ratios. LKB1 is a 

known tumour suppressor gene responsible for cellular responses to elevated levels of ADP.  Elevated 

levels of ADP activate members of the AMP-activated protein kinases leading to activation of LKB1 

which leads to phosphorylation and activation of protein targets involved in energy exchange.  Loss of 

ADP sensory mechanisms and ADP induced cell cycle arrest and apoptosis would allow cancer cells to 

survive in harsh competitive environments such as the tumour microenvironment allowing cancer cells 

to thrive where normal tissue would die out [63].  

1.4.2. Alterations in glutamine metabolism in cancer 

Another key alteration observed in tumours is changes associated with glutamine metabolism. Fatty 

acid (FA) synthesis is dependent on citrate input generated primarily through glycolysis in normal 

cells. Glutamine provides an alternative method for citrate production and is associated with 

increased FA biosynthesis. Mammals can produce a large repertoire of FA derivatives with varied 

roles in many cellular processes. However, de novo synthesis of FAs is highly dependent on acetyl-

CoA synthesis via conversion of citrate by ATP-citrate lyase (ACL). Logically, due to the association 

with the Warburg effect and oncogenesis, one might think that in cancer FA pools would decrease 

because of these metabolic alterations. However observations have shown the opposite is true with 

tumours harbouring large FA pools and elevated levels of FA-derived growth factors [64]. 

Furthermore, the highly specific and ordered synthesis of FA derivatives in normal tissues are 

tissue specific while FA derivatives involved in signalling act as endocrine hormones as opposed 

to an autocrine or paracrine action. Exogenous sources of FA however are limited and 

furthermore many types of cancer show elevated expression levels of important metabolic enzymes 

involved in FA synthesis pathways including FASN, indicating that FA synthesis is a local process 

and produced endogenously [65, 66]. A lterations in glucose metabolism opposes this theory given 
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that the skew towards anaerobic respiration does not produce citrate that is vital for de novo FA 

synthesis. 

Glutamine metabolism is a major energy source in mammals, feeding into the TCA cycle producing 

the products that include citrate. An elevation in glutamine metabolism is commonly observed in 

cancer and provides an alternative route in which cancer cells can synthesize FA derivatives critical 

to tumour progression. Increased levels of glutamine metabolism led to an increase in citrate levels 

that are then used to generate acetyl-CoA and chain elongation in FA synthesis. Again, these 

features align with observations seen in normal rapidly dividing cells however in the case of cancer, 

somatic evolutionary processes and the accumulation of somatic mutations results in a failure to 

employ proper regulatory mechanism to regulate changes in metabolism leading to an 

uncontrollable positive feedback loop resulting in pro-survival and growth outcomes. 

Increased glutamine metabolism could explain how cancer cells survive by altering their 

carbon source. Glutamine catabolism however requires oxygen, much the same as aerobic 

respiration, with elevated levels of glutamine metabolism most likely feeding into FA synthesis. 

Observations including elevated levels of citrate/isocitrate carrier protein have been observed in 

many forms of cancer while possibly being linked as a transcriptional target of mutated p53 

support these claims [67, 68]. Furthermore, loss of citrate/isocitrate carrier protein expression 

results in inhibition of tumour growth and progression further stimulating the idea that endogenous 

FA production and their downstream pathways are crucial for later stages of tumour development 

[68].  1.4.3. Alterations in lipid metabolism in cancer 

Alterations in glucose and glutamine metabolism are often observed in many types of cancer. The 

alterations in normal metabolic processes can partially explain the changes of cellular FA pools and the 

key metabolic pathways utilised and manipulated in many tumours. Citrate is a key molecule that feeds 

through the TCA cycle driving oxidative phosphorylation in the lumen of the mitochondria. In normal 

cellular metabolism citrate is primarily used for oxidative phosphorylation however under the guidance 

of the correct cellular signals mitochondrial citrate/isocitrate carrier proteins shuttle citrate from the 
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mitochondrial lumen to the cytoplasm. In the cytoplasm citrate undergoes a different process and is the 

primary input in the FA synthesis pathway. In addition, in cancer alterations in citrate metabolism 

coincides with an upregulation of many key metabolic enzymes involved in FA synthesis resulting in 

elevated levels of de novo FA synthesis that is key to tumour progression. ATP citrate lyase (ACL) 

forms the earliest step in FA synthesis converting citrate to oxaloacetate and acetyl-CoA in a reversible 

enzymatic reaction. ACL is extensively upregulated in many cancers while knockdown of ACL has 

been shown to inhibit tumour growth in vitro and inhibit tumour grafts in xenograft mouse models 

[69-71]. Furthermore, high levels of ACL expression have been shown to have a negative correlation 

with survival rates in advance stage tumours [77]. 

Acetyl-CoA carboxylase (ACC) 1 and 2 are responsible for the synthesis of malonyl-CoA and 

marks the commitment of acetyl-CoA to FA synthesis. ACC is positively regulated by citrate and 

glutamate through AMP-activated kinase signalling pathways. Normally expression of ACC is typically 

restricted to specialised tissues such as adipose where ACC1 is highly expressed, while ACC2 is 

important in high energy demanding tissues such as skeletal muscle. In cancer, both ACC 1 and 2 

have both been shown to be upregulated in prostate, breast and colon tumours. Furthermore, 

knockdown of ACC in several types of cancer showed increased levels of apoptosis while 

soraphen-mediated inhibition showed similar outcomes [73-75].  Malonyl-CoA decarboxylase is 

essential in driving the reverse reaction of ACC reverting malonyl-CoA to acetyl-CoA. Interestingly, 

knockdown of MCD showed similar results leading to increased levels of apoptosis in breast 

cancer [76]. Bioactive FAs further undergo modifications by members of the acetyl-CoA 

synthetase (ACS) and Fatty acid synthase (FASN) families. Several isoforms of ACS including 

ACLS4 has been shown to be upregulated in breast, prostate and colorectal cancer, promoting 

cell survival by the attenuation of lipid driven apoptotic signals while in breast and prostate cancer 

it was shown to be correlated with castration of sex steroids [77, 78]. Chemical inhibition of ACSL1, 

2 and 4 has been shown to increase apoptosis in lung, breast and CRC [79].  FASN is important in the 

generation of the cellular pool of FA. C16 chain FAs generated from acetyl-CoA and malonyl-CoA are 

further converted to palmitic acid which forms the major cellular and circulating pools of FAs in 

mammals. FASN dysregulation has been shown to be crucial for cancer progression, driving tumour 

survival with FASN overexpression highly correlated 
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with a poor prognosis and decreased patient survival rates [80, 81].  Furthermore, chemically 

induced suppression of FASN in CRC HT29 and LoVo cell lines showed decreased malignancy 

through down regulation of mTOR signalling pathways while other groups have shown similar 

results in tumour xenograft models via attenuation of CD44 associated signalling pathways [82, 83]. 

Furthermore, FASN has been shown to promote angiogenesis through activation of VEGF-A 

and downregulation of metalloproteinase 9 in CRC associated endothelial cells [84]. 

HMG-CoA synthase (HMGCS) and the highly conserved cousin HMG-CoA reductase (HMGCR) 

form one of the earliest steps in cholesterol synthesis from acetyl-CoA. c-MYC driven cancers 

have been shown to have downregulated levels of HMGCS2 [85]. Furthermore, HMGCS2 has been 

shown to be a rate limiting step involved in the formation of ketone bodies providing alternative energy 

sources in CRC and increased cell survival and growth rates [86]. HMGCR has been shown to be 

differentially regulated in CRC. In a study performing immunostaining of 535 colon cancer tumours, 

positive staining of HMGCR showed a strong correlation with non-metastatic disease and an overall 

improved outcome [87]. Conversely, detrimental consequences of elevated expression and mutated 

variants of HMGCR in HepG2 cells led to an increase in cell growth rates and colony formation 

[88]. The CYP family members form a group of enzymes responsible for many of the 

synthesis steps in sterol/steroid formation from cholesterol precursors.  Expression of CYP family 

members are primarily restricted to endocrine tissues including the adrenal gland and gonads, 

however expression and polymorphisms of CYP1A2, CYP1B1, CYP11A1, CYP3A4/5 and 

CYP19A1 have all been associated with endometrial and CRC [89, 90]. Furthermore, knockdown of 

the intracellular nuclear receptor LRH-1 has been shown to regulate proliferative rates in CRC through 

downregulation of CYP family members CYP11A1 and CYP11B1 [91]. 
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1.5. Transcriptional regulation of lipogenic pathways 

Lipid metabolism is a complex and multi-faceted process. Regulation of lipogenic pathways is 

incredibly diverse and tissue specific, leading to the tissue and indeed tumour specific utilisation of 

lipids. Transcriptional regulation is key to regulating lipid utilisation and is controlled by two crucial 

transcriptional regulators of lipogenic pathways, the PPAR subfamily of intracellular nuclear receptors 

and the sterol regulatory element-binding proteins (SREBF). Both respond to the presence of specific 

lipid biproducts through divergent mechanisms allowing for the transcriptional control of key metabolic 

enzymes and pathways that in turn dictate the outcome of how lipids are metabolised, stored and 

utilised.  

1.5.1. Signalling through the PPAR subfamily of nuclear receptors 

The PPAR receptors are a subfamily of three (PPARα (NR1C1), PPARβ/δ (NR1C2) & PPARγ 

(NR1C3)) highly conserved ligand dependent intracellular nuclear receptors which form a much 

larger family of predominantly ligand dependent transcription factors. Other examples include the 

retinoic acid receptors and steroid hormone receptors that include the androgen and estrogen 

receptors. All nuclear receptors and in turn PPAR’s are characterised by a modular structure defined 

by five major protein domains. The N-terminal A/B domain consists of the AF-1 or ligand 

independent region, a C-terminal AF-2 or ligand dependent region, a central DNA binding domain, a 

ligand binding domain and finally a D domain or hinge region. All these protein domains are critical 

for correct receptor function and play integral roles in the regulation of PPAR-mediated transcription.  

PPARα was originally cloned from cDNA libraries of mouse liver in the early 1990’s and identified as 

a nuclear receptor family member responsible for biological responses to a series of hepatocarcinogens 

[92]. Since then great advances in PPAR research has revealed a lot of the biological roles and 

mechanism that PPAR’s are responsible for. All three members of the PPAR’s, in addition to several 

other nuclear receptor members, are known as RXR dependent heterodimers. Like other nuclear 

receptors, in the absence of ligand the PPAR’s can form protein complexes with heat shock proteins 

spenc
Highlight



Page | 17 

which function to limit availability to nuclear localisation signals and regulate PPAR protein 

levels through proteasome regulation [93]. In response to ligand such as unsaturated fatty 

acids and prostaglandins, PPAR’s form obligate heterodimers with RXR nuclear receptors in 

response to their biological relevant ligand 9-cis-retinoic acid. Ligand binding allows for 

appropriate protein conformational changes allowing for access of importins to the conserved 

nuclear localisation signals found in the hinge region and AF-1 domains [94]. On translocation 

to the nucleus PPAR/RXR heterodimers bind to directly repeated DNA sequences (AGGTCA) 

known as the peroxisome proliferator response element (PPRE), or the direct repeat (DR1/2) sites. 

The hinge region forms key interactions with other regulatory DNA sequences further upstream [95]. 

Nuclear protein interactions between the active PPAR/RXR heterodimer are immensely complex and 

varied. Inactive PPAR/RXR heterodimers in the nucleus are most commonly found in complex with 

the nuclear receptor corepressor complex through direct protein-protein interactions with both SMRT 

and NCoR [96]. SMRT and other corepressor complex proteins such as NRIP1, recruit and form 

further protein complexes with histone deacetylases blocking access to gene promoter elements. 

Upon ligand binding recruitment of the coactivator complex replaces the corepressor complex 

leading the acetylation and transcriptional activation of PPAR regulated target genes. The 

coactivator complex is much more complex than the corepressor complex and includes the 

histone acetyltransferases SRC-1/2, coactivators such as PPARGC1A/B [97, 98].            . 

In addition to complex protein-protein interactions, PPAR’s can be post-transcriptionally modulated 

through the actions of several kinases and acetylases. Key phosphorylation sites found predominantly 

in the AF-1 domain are key to kinase mediated regulation. P38-MAPK has been shown to 

phosphorylate PPARα at Ser6, 12 and 20 and is thought to enhance activity by priming protein 

complex formation with coactivators such as PPARGC1A [99]. Furthermore, p38-MAPK has been 

shown to have similar responses in the regulation of PPARγ transcriptional activity [100]. Similarly, 

ERK activity has been shown to directly phosphorylate PPARα at Ser12/20 and again was responsible 

for an increase in transcriptional activity [101, 102]. ERK can also phosphorylate PPARγ at Ser112 

however unlike PPARα this is known to regulate PPAR protein stability, while it has been shown that 

this phosphorylation site is key to regulation of PPARγ that is mediated by other protein kinases 

including 

spenc
Highlight



Page | 18 

JNK1 [103-105]. Furthermore, mutational studies have shown that this residue is key to the repressive 

action of MAPK dependent growth factor signalling pathways that include PDGF, while PPARγ 

activation is also known to negatively regulate MAPK signalling [106, 107]. PKA has also been shown 

to phosphorylate all members of the PPAR family. PPARδ is phosphorylated by PKA, while the exact 

function of this remains elusive, it is believed to regulate the protein complex formation between 

NCoR and SMRT [108, 109]. Phosphorylation has been shown to regulate PPAR’s in both 

positive and negative feedback loops. Furthermore, other forms of post transcriptional modification 

have also been shown to regulate PPAR activity. Acetylation of PPARγ by sirtuin-1 at Lys268/293 

has been shown to be crucial for regulation of PPARγ activity through forcing PPAR into a 

repressor state through increased affinity of PPARγ with corepressor proteins NCoR and SMRT 

[110, 111]. Furthermore, ligand dependent regulation of PPARγ protein levels have also been 

observed [112]. NEDD4 and TRIM25 have been identified as a E3 ubiquitin ligases that regulate 

PPARγ stability in a concentration dependent mechanism, while ligase dependent regulation of 

PPARγ activity through regulation of protein stability and proteasomal degradation has been 

observed in several other biological systems [113 - 116] (Fig. 1.3). 

1.5.2. The canonical/non-canonical SREBF1 pathways 

SREBF proteins form a second major transcription regulator of FA biosynthesis. SREBF transcription 

factors in an inactive state are resident heterodimeric membrane bound endoplasmic reticulum proteins 

that form dimers with SREBP cleavage activating protein (SCAP) through a C-terminal cytoplasmic 

WD40 repeat domain. In response to low lipid levels, including low membrane cholesterol 

concentrations, the SREBF/SCAP heterodimer shuttles into the Golgi apparatus leading to SREBF 

protein cleavage/maturation. Cleaved/mature SREBF can shuttle to the nucleus and form transcriptional 

complexes at sterol-response elements (SRE) found near the promoter regions of certain genes. The 

function of SCAP is crucial at the activation loop of SREBF. SCAP plays roles in both protein stability 
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Figure 1.3. PPAR structure and ligand induced transcriptional complex formation. A. The human PPAR 
family of ligand activated transcriptional factors contains three members each consisting of 5 conserved protein 
domains. The most conserved domains are the C and E domain consisting of the DNA-binding domain and the 
ligand binding domains. The AF1, N-terminal domains is largely responsible for post transcriptional 
modifications of PPAR’s regulating transcriptional activity. The AF2 domain forms an evolutionarily divergent 
area of PPAR’s while D domain contains the hinge region responsible for protein conformational changes 
allowing for nuclear transport and activator/repressor complex formation. B. PPAR’s are responsive to a 
number of both synthetic and natural ligands such as prostaglandins of unsaturated FA’s. Ligand activation is a 
series of response that occur after ligand bind in the LBD region of a PPAR. Under ligand starvation PPAR’s 
are often found in complexes with co-repressor proteins such as NCoR/SMRT which inhibits formation of 
further complexes with activators and transcriptional machinery. Upon ligand binding conformations changes 
allow for PPAR’s to disassociated with co-repressor complex and form complex with co-activators such as 
SRC1 and CBP/p300 which allows for further formation of transcriptional complexes leading to changes in 
PPAR regulated gene expression. Adopted from [117] 
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and in ER to Golgi transport. SCAP knockout studies have revealed that induced monomeric forms of 

SREBF led to rapid degradation and reduction in transcription of SREBF target genes [118]. 

Furthermore, this mechanism of protein stability was recently identified as a HSP90 dependent process. 

HSP90 inhibition led to decreased SCAP/SREBF protein stability while HSP90 was shown to directly 

interact with SCAP through C-terminal protein-protein interactions [119]. SREBF transport into the 

Golgi is required and again is mediated through a SCAP dependent mechanism. Interactions between a 

SCAP hexapeptide (MELADL) sequence was found to be crucial for SCAP mediated SREBF Golgi 

transport via direct interaction with COPII-coated transport vesicles [120]. In a low cholesterol 

environment conformation changes led to interactions between large ER luminal loop regions and 

allow for SCAP/COPPII interactions [121]. Furthermore, N-glycosylation of SCAP appears to play an 

important role in the regulation of SCAP-mediated SREBF transport [122]. Two additional ER resident 

proteins INSIG1/2 are crucial for inhibition of SREBF Golgi transport. INSIG1 binds to SCAP at the 

sterol sensing domain in a complex with oxysterols and inhibits the conformation required for SCAP to 

interact with COPII vesicles. High cholesterol levels led to stabilisation of INSIG while cholesterol 

depletion inhibits this interaction, and therefore allows for COPII mediated Golgi transport [123-125]. 

Furthermore, INSIG1 can play roles in the regulation of SREBF1 protein stability through recruitment 

of multiple E3 ligases, such as GP78 and TRC8, while other groups have described a PKA dependent 

phosphorylation of RNF20 that is important for decreased SREBF1 protein stability [126-128].     

Under low cholesterol conditions as discussed previously, INSIG1 is destabilised leading to 

conformational changes through inhibition of INSIG/SCAP protein-protein interactions. 

SCAP/SREBF1 complexes are then allowed to interact with COPII coated vesicles allowing for 

SREBF1 Golgi transport. Once in the Golgi, SREBF1 cytoplasmic loops are cleaved by S1P and again 

this has been demonstrated to be a SCAP dependent mechanism through C-terminal protein-protein 

interactions [129, 130]. S1P mediated cleavage released a protein product roughly half the size of the 

full length SREBF1. Further cleavage mediated post transcriptional regulation of mature SREBF1 is 

mediated by a close relative to S1P, called S2P. Structural analysis has hypothesised that S1P cleavage 

is required for conformational changes that are required for access to the S2P enzyme however, this has 

remained elusive and needs to be experimentally confirmed. As mentioned previously cholesterol levels 
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are a key regulator of SREBF1-mediated protein trafficking and post transcriptional processing. 

Furthermore, recent evidence suggests the existence of a non-canonical activation pathway of SREBF1. 

Polyunsaturated fatty acids (PUFA) and phosphocholines have in recent years been highlighted as key 

regulators of SREBF1 activation and transcription. Although the primary mechanism for PUFA 

mediated SREBF1 regulation appears to be a mechanism at the transcriptional levels, other groups have 

shown alterations in protein localisation and cleavage products. PUFA acting through the PUFA sensory 

protein UBXD8, act to inhibit UBXD8/INSIG protein-protein interactions leading to ER membrane 

stabilised INSIG1 and decreased ubiquitylation dependent proteasomal degradation, therefore 

inhibiting SREBF1 mediated transport to the Golgi [131, 132] (Fig. 1.4).  

1.5.3. PPAR and SREBF1 signalling in tumour progression and metabolism 

Lipids acting as endocrine hormones are crucial for regulation of cellular metabolism. The 

transcriptional networks that regulated intracellular stores of lipid mediators are complex and deeply 

interwoven. This statement holds consistent in both normal untransformed cells in addition to neoplastic 

tissue. The roles of SREBF1 and the PPAR’s in human cancers are well documented and add weight to 

the notion of tumour metabolic centric models showing that they not only regulate tumour metabolism, 

but this extends to virtually all facets of tumour biology. PPARα is associated with poor prognosis in 

breast while use of synthetic ligands targeting PPARα including fenofibrates have been explored to 

supress cellular proliferation and inhibiting pro-oncogenic NFκB signalling [133-135]. PPARδ plays 

roles in regulation and maintenance of stemness across a variety of tissue types [136]. In the colon 

PPARδ plays roles in cooperation with WNT/β-catenin signalling maintaining crypt stem cells [137, 

138]. Despite this several researchers have shown the PPARδ is a negative regulator of colon 

carcinogenesis. APCMIN/+ mice, a common mouse model of sporadic colorectal tumour formation 

showed that PPARδ-/-:APCMIC/+ mice led to an increase in colon polyp formation [139, 140]. 

Conversely, other groups have shown the exact opposite where PPARδ cooperation with WNT/β-

catenin signalling led to an increase in carcinogenesis, while PPARδ is known to be an APC 
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Figure 1.4. SREBP regulatory protein modification and processing pathway. SREBP proteins in the 
presence of high membrane associated cholesterol, SCAP/SREBP complex is stabilised in the ER. Ubiquitylation 
of INSIG in response to low cholesterol levels led to rapid degradation of INSIG allowing for protein 
translocation of the SCAP/SREBP complex to the golgi apparatus. Resident proteases, S1P/S2P in the golgi led 
to protein modification of SREBP forming membrane associated SREBP fragment and a N-terminal mSREBP 
fragment. SREBP2 is strongly sterol regulated while ratios of PUPL are also thought to regulate SREBF1. 
mSREBP is able to shuttle into the nucleus and form transcriptional complexes targeting target genes such as 
FASN or SCD1. Adopted from [142]. 

regulated target and is degraded in a similar manner to excess β-catenin levels in the colon epithelia 

while PPARδ overexpression correlates with β-catenin overexpression in colorectal cancer [141, 143].  

The relationship of PPARγ with human tumours is much the same as PPARδ, convoluted and 

inconclusive. Some groups have described potentiation of PPARγ signalling using APCMIN/+ mouse 

models [144]. Overexpression of PPARγ correlated with increase β-catenin while increased β-catenin 

levels were also observed in HT-29 cells treated with a PPARγ agonist [145]. PPARγ is a known target 

of β-catenin transcriptional activity so it is possible that PPARγ expression is increased due to an over 

expression of β-catenin while this research did not show a functional relationship [146]. In addition, 

PPARγ has been shown to induce β-catenin proteasomal degradation in a similar manner as to APC 

[147]. Furthermore, as discussed earlier PPARγ agonist in HT-29 cells showed increase β-catenin 
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protein stability. The clinical relevance of these findings are questionable given that HT-29 is largely 

a BRAF-ERK driven tumour cell, known to be a driver of poor differentiation while β-catenin driven 

tumours largely represent colon stem cell like phenotypes [148, 149]. Several researchers have also 

shown an opposing result regarding PPARγ and colon polyp formation. PPARγ activity was shown to 

negatively regulate TCF/LEF transcriptional activity and inhibit tumour growth [150].Similar 

observations have been made regarding tumour inflammation. PPARγ agonism was shown to 

negatively regulate tumour growth and survival through inhibition of NFκB signalling, while clinical 

associations show that PPARγ expression is associated with favourable clinical outcomes. [151, 152]. 

On the other end of the spectrum, SREBF1 is associated with many tumours subtypes and generally 

associated with pro-oncogenic processes. PPARγ and SREBF1 have known interplay with one 

another with SREBF1 mediated lipogenesis associated with increased PPARγ activity through 

generation of known PPAR ligands while this action has been shown to negatively regulate SREBF1 

transcriptional activity [153, 154]. Despite this most of the relevant data suggests SREBF1 as a 

potential metabolic oncogene. Downregulation of  SREBF1  in  colorectal  cancer  has  been 

demonstrated to negatively regulate tumour progression and cell proliferation [155]  While several 

observation have been made regarding SREBF1 activity and its implication in drug resistance to a 

variety of cytotoxic antitumour drugs. Sustained SREBF1 transcriptional activity was shown to drive 

BRAF targeted therapeutic resistance in melanomas [156]. In addition, SREBF1 transcription 

regulation of lipogenesis is commonly associated with late stage metastatic skin cancer [157]. Similar 

observations were made in colorectal cancer where SREBF1 was associated with increased MMP7 

expression due to amplification of the NFκB signalling pathway [158]. In addition, a second group 

observed similar results with EMT induction mediated through cooperation of SREBF1 with cMYC, 

while keratin remodelling in invasive breast cancers were also shown to be dependent on 

SREBF1 activity [159, 160]. Furthermore, several studies have shown sustained lipogenesis 

mediated through SREBF1 transcriptional activity to be a key feature in rapidly growing energy 

dense tumours in a variety of models including liver, glioblastoma and melanomas [54, 157, 161, 

162]. 
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1.6. Regulation of lipogenesis by the AMPK/mTOR (energy sensory) 

signalling pathways 

Maintenance of cellular energetics is a crucial process that falls primarily to the responses of two major 

energy sensory protein kinases, mTOR and AMPK. Both of which play pivotal roles in metabolic 

feedback of key cellular survival and proliferative mechanisms. AMPK primarily responds to cellular 

energetically induced stress such as low ADP:ATP ratios and is primarily responsible for fine tuning 

mitochondrial metabolism to maintain or restore metabolic homeostasis. mTOR can be considered a 

beneficiary of AMPKs hard work, relaying pro-survival and growth signalling into the cell nucleus in 

response to energetically favourable conditions. 

1.6.1. The AMPK complex: The guardian of cellular energetics 

Like many protein kinases, AMPK consists of a heterotrimeric protein complex containing a 

catalytic subunit (α-subunit) and two additional regulatory subunits (β & γ subunits). The α 

subunit contains the catalytic kinase domain and kinase function is regulated by a series of 

phosphorylation events (Fig. 1.5). The Thr172 site is considered to the be the crucial phosphorylation 

event for AMPK activation and is required for AMPK kinase activity. Thr172 is often used to 

measure AMPK activity within a cellular system however it is not always a reliable method. Two 

additional phosphorylation sites in the α-subunit have been described and form the catalytic triad that 

are crucial for full AMPK activation [163]. The regulatory domains form a structural based 

inhibitory mechanism through the implementation of highly conserved protein domains. The β-

subunit contains a carbohydrate-binding module allowing for glycogen sensing whiles a 

secondary C-terminal domain facilitates trimer formation and is the interface for direct protein-

protein interactions between the α/γ subunits [164]. The second regulatory subunit, the γ-subunit has a 

series of cystathionine β-synthase repeats, all of which play a role in binding to ATP, ADP and 

AMP in a competitive manner allowing for competitive modulation of AMPK activity. The 

activation loop sites at this interface generate proximal localisation 
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of key activating phosphorylation groups and nucleotide binding allowing for rapid and responsive 

protein conformational changes. One of the key roles of AMPK is the sensing of AMP:ADP:ATP ratios. 

High AMP:ATP ratios is often a sign of metabolic stress while competitive binding of AMP/ADP to 

the γ-subunit is an important mechanism of AMPK phosphorylation at Thr172 downstream by either 

LKB1 or CAMKKβ. Furthermore, important conformational changes in response to AMP/ADP binding 

allows for protective protein conformations leading to sustained AMPK activity. Without binding of 

AMP/ADP, phosphorylated AMPK Thr172 is quickly dephosphorylated. LKB1 functions similarly to 

AMPK, as a trimeric protein complex between LKB1, STRAD and M025,  while both STRAD and 

M025 play important roles in protein-protein interactions with the AMPK complex, LKB1 is considered 

to be the catalytic activator, directly phosphorylating AMPK at Thr172 with knockout studies showing 

the importance of LKB1 in response to mitochondrial dysfunction or poorly energetically favourable 

conditions [58, 165, 166]. Furthermore, CAMKK2 is a Ca2+ activated protein kinase and is generally 

responsive to intracellular levels of Ca2+ released from the endoplasmic reticulum in response to DAG-

mediated protein signalling events. Studies have also revealed that CAMKK2 is an important regulator 

of AMPK activity while also phosphorylating AMPK at Thr172 [167]. 

1.6.2. AMPK mediated regulation of lipogenesis  

In response to energetic crisis, AMPK is activated through mechanisms that we described in detail in 

the previous section. Active AMPK has many downstream targets, all of which in some facet 

regulate metabolism. Both ACC1/2, responsible for de novo acetyl-CoA biosynthesis, were 

identified originally as key direct targets of AMPK [168]. Both ACC1/2 have three major 

phosphorylation sites all of which play roles in the regulation of enzymatic activity. 

Phosphorylation of ACC at Ser79 by AMPK leads to enzymatic inhibition of de novo lipogenesis 

[169, 170].  PKA has also shown to phosphorylate ACC at Ser1200 however, further studies have 

shown that only one phosphorylation is required to effectively regulate de novo lipogenesis [171]. 

Furthermore, other observations have shown that AMPK can regulate later stages of de novo 

lipogenesis through inhibition of the key regulatory enzymes responsible 
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for generation of cholesterol esters. Phosphorylation of HMG-CoA reductase, responsible for the 

rate limiting step in cholesterol biosynthesis, leads similarly to ACC, enzymatic inhibition [172]. 

Complementary to the inhibition of key regulatory enzymes involved in de novo lipogenesis, 

AMPK can also target lipogenesis at the transcriptional level through regulation of SREBF1-

mediated transcriptional pathways. Phosphorylation of SREBF1 leads to destabilisation of mature 

SREBF1 and proteasomal degradation resulting in the reduction of the levels of key 

lipogenesis enzymes. Phosphorylation of SREBF1 at Ser372 has been shown to inhibit Golgi 

translocation and lipid depleted dependent SREBF1 cleavage also leading to inhibition of lipogenic 

transcriptional activity [173]. Well characterised gene targets of SREBF1 including FASN, ACC, 

ACLY and HMGCR have all been shown to be downregulated as a result of AMPK while converse to 

this, inhibition of mTOR has been shown to inhibit SREBF1 nuclear translocation [174]. 

Furthermore, AMPK was recently shown to regulate a close relative to SREBF1, ChREBP. S568D 

ChREBP mutants mimicking the phosphorylated state of ChREBP showed reduced lipid sensing 

dependent DNA binding while phosphor-deficient mutants showed the converse outcome. This 

corresponded with overexpression of active forms of AMPK inhibiting lipid dependent DNA 

binding of ChREBP [175]. AMPK can directly alter circadian rhythms of energy homeostasis via 

phosphorylation of the circadian transcription factor CRY1. Phosphorylation of CRY1 at Ser71 leads 

to protein destabilisation through ubiquitin-mediated proteasomal degradation thereby decreasing 

circadian transcriptional activity of several metabolic pathways including lipogenic pathways [176]. 

Similar observations have also been shown for other metabolic transcriptional regulators 

including HNF4A and TR4-mediated SCD1 transcription [177, 178]. Finally, AMPK has been 

shown to induce mitochondrial respiration. PPARGC1A, a key regulator of mitochondrial 

biosynthesis and fatty acid oxidation has been identified as a direct target of AMPK and showed that 

PPARGC1A activation and transcriptional regulation of mitochondrial activity is dependent of 

AMPK activity [179]. Furthermore, AMPK has recently been highlighted a key regulator of adipose 

browning and thermogenesis. Both processes are highlighted by increased fatty acid oxidation 

and increased mitochondrial turn-over and PPARGC1A transcriptional activity [180]. 
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Figure 1.5. Regulation of trimeric AMPK through chemical and cellular processes. AMPK is a trimeric 
protein complex consisting of three AMPK subunits, α, β and γ. The primary roles of AMPK are regulation of 
cellular energetic through AMP binding events targeted to the regulatory γ subunit. Binding of AMP is required 
for AMPK activation while several AMP mimetics drugs and allosteric activators are also used for AMPK 
activation. AMPK targets a variety of downstream pathways including Autophagy stimulation, glycolysis, β-
oxidation and FA biosynthesis inhibition all with the primary goal to regulate cellular energetics 
towards homeostatic behaviour. Adopted from [181]. 

1.6.3. AMPK and mTOR crosstalk, autophagy and cancer 

Another crucial regulatory network involved in energy sensing mechanisms is the mammalian target of 

rapamycin (mTOR) kinase complex. Phosphorylation is crucial for activation of mTOR signalling and 

is primarily mediated through activation of the PI3K/AKT signalling pathway. The mTOR kinase 

complex consisting of RPTOR, DEPTOR, mLST8 and PRAS40 functions as an ATP/amino 

acid sensor responsive to conditions where energetics is favourable. Phosphorylation of mTOR at 

Ser2448 seems to be the crucial regulatory residue leading to downstream activation of key protein 

complexes such as the S6 kinase, a key regulator of protein translation, inhibition of the 

translational repressor 4E-BP1 and activation of SREBF-mediated lipogenic pathways, while the 

mechanisms discussed previously highlighted AMPK as the key regulator of low energy cellular 

states, mTOR and AMPK work together in order to orchestrate short term signal transduction 

responsible for energetic 
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homeostasis. One of the key pathways co-regulated by both MTOR and AMPK are the catabolic 

autophagy pathways in response to poor energetic cellular conditions. AMPK is the guardian of 

pro-autophagic processes, mTOR works against AMPK in energetic rich conditions to inhibit 

autophagy. Here we focus only on AMPK/mTOR mediated autophagy stimulation of ULK1. A 

complete review of autophagy stimulation, nucleation and clearance can be found here [182]. Although 

the large majority of downstream phosphorylation targets of AMPK and mTOR differ there are a few 

key targets that converge. The critical autophagy activating kinase ULK1 is one these crucial targets. 

mTOR-mediated phosphorylation of ULK1 at Ser757 is responsible for post transcriptional negative 

regulation of autophagy initiation. Phosphorylation of ULK at Ser757 leads to destabilisation of 

AMPK/ULK1 complex leading to ineffective AMPK-mediated stimulation of autophagy [183]. In 

response to low energy environments, phosphatases dephosphorylate ULK1, while decreased levels of 

PI3K/AKT-mediated phosphorylation of mTOR, due to lack of upstream growth signalling, leads to 

proteasomal degradation of the mTOR signalling complex. Consequently, converse accumulation of 

active forms of AMPK leads to increased ULK1/AMPK stable complexes and subsequent 

phosphorylation of ULK1 at Ser555, which is a crucial phosphorylation event for ULK1 activation and 

kinase activity. Furthermore, activation of AMPK can also directly inhibit mTOR activity through direct 

phosphorylation of the critical mTOR regulator RPTOR at Ser792 leading to ubiquitylation and 

proteasomal degradation [184, 185]. Finally, phosphorylation and activation of TSC2 at Ser1387 by 

AMPK inhibits GTPase mediated mTOR activation by RheB [186]. As mentioned previously, under 

sufficient nutrient conditions mTOR interacts with and phosphorylates ULK1, disrupting complex 

formation with AMPK. In nutrient poor conditions AMPK/ULK1 protein complexes are stabilized 

while AMPK mediated phosphorylation of ULK1 on Ser555 primes ULK1 for kinase activity. The 

active form of ULK1 can target several downstream protein targets, many of which are 

directly involved in autophagosome nucleation. Actively phosphorylated ULK1 forms a protein 

complex with ATG13, ATG101 and FIP200 with both ATG13 and FIP200 being directly 

phosphorylated by ULK1. Both ATG13 and FIP200 are essential for ULK1-mediated autophagy 

however research shows that they can act in the absence of ULK1 but ULK1 cannot act without 

ATG13 or FIP200, indicating that phosphorylation by ULK1 is not essential [187]. However, 

formation of ULK1 complex with heatshock proteins showed that phosphorylated ATG13  
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and FIP200 were required for complete autophagosome clearance in the context of stress induced 

mitophagy [188]. Other crucial targets of ULK1 include BECLIN1 and ATG14 both of which form an 

additional pro-autophagosome forming class III PI3K complex together with two addition proteins 

VPS34 and VPS15 [182, 189, 190]. Phosphorylation of BECLIN1 is essential for activation of the 

VPS34 lipid kinase activity responsible for local accumulation of phospholipids required for 

autophagosome formation [191]. Furthermore, phosphorylation of ATG14 by ULK1 has similar effects 

responsible for activation of the PI3K complex leading to autophagosome formation and 

nucleation [191, 192]. 

1.7. Lipogenesis and the hallmarks of cancer 

Originally defined as a set of six key characteristics of tumorigenesis, the hallmarks of cancer define 

the major cellular process that are dysregulated in aggressive forms of human tumours [193]. Originally 

the focus was mainly on proliferation and evasion of apoptosis while in recent years the focus has 

broadened the hallmarks to include features such as immune evasion and dysregulation of cellular 

energetics [194]. While a mutational centric model has led to many cancer discoveries, a large amount 

research is currently taking a different approach and considering the effects of metabolism as a direct 

mediator of the effects on cancer cellular growth. While changes in metabolism have been shown 

to regulate all hallmarks, I will primarily focus on two key features, the regulation of cancer stem 

cells (CSC) through metabolic alterations and how these metabolic alterations provide survival 

advantages in harsh cellular environments including responses to cytotoxic drugs. 

1.7.1. Lipogenic reprogramming & cancer stem cells 

The identification of niche populations of cells that were responsible for tumour regeneration has 

been relatively recent. In the late 1990’s, identification of a distinct tumour cell type CD34+/

CD38- tumour cells were shown to be required for tumour initiation in leukemia immunodeficient 

mouse models and 
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brought forward the idea of a progenitor stem-like cell responsible for tumour formation [195]. Since 

then CSC have been identified in many solid tumours including CD44+/CD24- in breast, CD44+/

EpCam+/CD166+ in colon and CD44+/EPCAM+/CD24+ in pancreatic tumours [196, 197]. The 

original static tumour-based model describing a mutational based hypothesis stating tumour behaving 

as monoclonal populations of cells brought about by key oncogenic mutations was breaking in vivo. In 

vivo analysis of multiple genetic induced tumours in addition to xenograft tumour models showed the 

tendency of tumour cells to undergo levels of differentiation as normal tissue would. Changes in the 

metabolic landscape of CSC compared to the majority of the tumour population has also been 

observed. Despite a large body of research in this field in recent years there is still conjecture over what 

the metabolic state of these cells are. As discussed previously a key genetic feature of tumour cells is 

apparent switching of aerobic respiration to the energetically unfavourable anerobic respiration. Induced 

or pluripotent stem cells, primarily utilise anerobic respiration much alike what is observed in tumours 

cell exhibiting features of the Warburg effect [198]. On the other hand, terminally differentiated cells 

rely heavily on oxidative phosphorylation for ATP production, and CSC have been shown to be similar 

in nature. Loss of FBP1 in breast CSC-like cells was shown to regulate glycolysis while inhibiting 

oxygen consumption through suppression of mitochondrial complex I, thereby pushing the cells 

towards anerobic respiration [199]. Similar observations can be seen in other CSC populations from 

colon, ovarian cancer and glioblastoma [200-202].  cMYC has been identified as a critical regulator of 

this process while in normal stem cells again similar observations have been observed [203, 204]. 

Interestingly, and in contrast, the exact opposite has been defined for many CSC populations showing 

a complete dependence on oxidative phosphorylation. Oxidative phosphorylation dependent lung 

tumours, glioblastoma and leukemic cells have all been identified and described [205-208]. 

Lipogenesis is another key metabolic pathway that has been highlighted as a key pathway dysregulated 

in human cancer. In line with glycolysis and OxPHOS, lipid reprogramming has also been associated 

with a CSC phenotype. Interactions between PML and PPARδ in hematopoietic stem cells was shown 

to drive mitochondrial fatty acid oxidation while loss of either PML or PPARδ led to differentiation and 

loss of stemness [136].  Chemo-resistant Leukemic stem cells were shown to be dependent on lipolysis
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and fatty acid oxidation. Oxidative cells were significantly more chemoresistant, through 

upregulation of CD36 provided increase lipid efflux into the cell [209]. Furthermore, 

NANOG-induced inhibition of OxPHOS in hepatocellular carcinoma CSC showing increased 

levels of fatty acid oxidation driving ATP production while colon CD133+ CSC’s sorted for high/low 

lipid content showed that high lipid content cells were more effective in tumour formation [210, 

211]. The key lipogenic gene SCD, responsible for production of PUFA and a key target of 

SREBF1, was shown to regulate lung cancer stemness through stabilisation of nuclear YAP/TAZ 

complexes [212, 213]. In colorectal cancer COX2 a key regulator of the actions of highly PUFAs 

including arachidonic acid showed transcriptional repression of FOXP3 leading to a reduced 

CSC phenotype [214]. Tumour-associated adipocytes have been shown to be important for 

tumour maintenance and metabolic reprogramming allowing for rapid tumour growth and 

development [215]. In addition, PUFA have also been highlighted as important stress regulatory 

endocrine hormones playing roles in many aspect of tumour progression [216]. Lipid desaturases in 

ovarian cancer spheroids was shown to regulate formation of ovarian spheroids, while loss of 

lipid desaturases inhibited CSC formation through downregulation of NFkB signalling 

[217]. Furthermore, divergent lipogenic biosynthetic pathways including mevalonate 

metabolism and cholesterol biosynthesis have also been associated with a CSC phenotype. 

c-MYC-dependent regulation of HMGCOA in brain tumour initiator cells was shown to

be crucial for maintenance of a CSC like phenotype through attenuation of RAS/ERK 

signal transduction [218]. The same pathway has also been shown to regulate YAP/TAZ 

signalling in a similar mechanism as PUFA, with loss of HMGCOA mediated biosynthetic 

pathways leading to reduction and destabilisation of nuclear YAP/TAZ [219].  

1.7.2. Lipogenic reprogramming and drug resistance 

Tumour metabolism is a complex process that leads to fundamental changes in the way tumours 

behave biologically. One of the key aspects of tumour metabolism and particular tumour lipid 

metabolism is the associated made the association between lipid metabolic reprogramming and 

cytotoxic drug resistance. Many groups have highlighted the importance of metabolic changes in
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gaining mutation independent resistance to commonly prescribed cytotoxic drugs. Focus on 

manipulation of tumour metabolic pathways has been under dissection as a possible interventional 

method for regulated drug resistance responses in tumours.

Fatty acid oxidation is one of the key changes observed in tumour metabolism. Changes in key 

regulatory genes has been shown in many tumours including PPARGC1A as discussed previously. 

Knockdown of an enzymatic regulator of mitochondrial fatty acid oxidation, CPT2 was shown to 

induce cisplatin resistance in hepatocellular carcinoma cells. Furthermore, it was shown that 

reduction of mitochondrial fatty acid oxidation led to increased levels of  PUFA through increased 

expression of SCD [220]. Downregulation of CPT2 was also shown to induce a hyperlipidemic 

cellular environment in both wild type and HCC tissues in mice models [221]. While high levels of 

mitochondrial cholesterol has been shown to induce chemoresistance through inhibition of 

mitochondrial permeabilization and resistant cytochrome c release, also in HCC models [222]. 

Interestingly, CPT1, a homologue of CPT2, was shown to have contrasting results where knockdown 

led to a severe reduction in cell proliferation and altered mitochondrial morphology, however it was 

revealed that this mechanism was independent of fatty acid oxidation [223]. Furthermore, 

tumours grown in adipocyte positive tumour microenvironments have shown to be resistant to 

anti-angiogenic drugs. These drugs were shown to induce hypoxic responses while tumours in high 

fat content environments were able to rewire to FAO and remained viable [224]. There is a clear gap 

in our knowledge regarding fatty acid oxidation and its effects on tumour growth and promotion 

where it appears to be entirely contextual. Lipid rich environments have been shown to induce 

drug resistance in many other solid tumours. HIF2A in renal cancer was shown to induce de novo fatty 

acid biosynthesis, correlating with high levels of PLIN2 expression. Furthermore, HIF2A 

associated lipogenesis was associated with ER homeostasis and ER stress resistance [225]. Tumours 

cells with high levels of de novo fatty acid biosynthesis were also shown to have reduced 

adverse effects from free radicals and was shown to drive resistance to doxorubicin [226]. 

Other research looking at commonly prescribed chemotherapeutics including 5-fluorouracil and 

oxaliplatin showed that chemo-induced lipogenesis was associated with chemoresistance 
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while inhibition of a key lipogenic enzyme LPCAT2 sensitized cells to chemo-induced cell death 

through inhibition of lipid droplet accumulation [227]. A recent paper focusing of 

Vemurafenib resistant melanomas showed that pooling of lipids was due to sustained lipogenesis 

mediated through increase SREBF1 transcriptional activity [156].                . 

Targeting lipogenesis in the treatment of cancer has been explored too. COX2 inhibitors are probably 

the earliest examples of targeting lipogenesis to treat tumours through downregulation of 

VEGF signalling pathways. The COX2 inhibitor, Celecoxib is currently used as an anti-metastatic 

inhibitor in colorectal, prostate, bladder, [228]head-neck and breast cancers [229-231]. The FASN 

inhibitor Orlistat, currently under investigation in clinical trials, has shown promise in regulating 

tumour growth. FASN was identified as a key regulation of tumour growth in many topological 

tumours including colorectal and breast tumours [81, 232]. Similarly, ACLY inhibitors including 

SB-204990 have shown novel promise in treatment of lung cancers with antiproliferative effects, 

while several synthesis inhibitors such as hydroxycitrate has been shown to inhibit cholesterol 

biosynthesis in HEPG2 cells [233]. Inhibition of the SREBF maturation proteases S1P and S2P 

through treatment with Nelfinavir showed decreased levels of cellular fatty acids leading to ER stress 

associated apoptosis in both liposarcoma and prostate cancer cells and is currently in clinical trials 

for myeloma, glioblastoma, pancreatic and lung cancers [234-236].   

1.8. Mass-spectrometry, CRISPR/Cas9 and next-generation sequencing 

as tools to dissect the metabolic genome 

Alterations in lipid metabolism is commonly observed in many solid tumours. This leads to the 

possibility of utilising the tumour metabolic landscape as an exploitable means for developing tumour 

therapeutics and use for prognosis/biomarkers. The invention of modern-day chromatographic 

methodology has further developed metabolomics as a useful tool for diagnostic purposes. 

Current modern high throughput high performance mass-spectrometry and gas chromatography 

mass-spectrometry allow researchers to identify and quantify thousands of metabolic molecules 

within a single biological system.  
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1.8.1. HPLC and high throughput untargeted lipidomics 

Predictions place the diversity of lipid species in biological systems from anywhere between ten to 

hundreds of thousands distinct molecular species. We can define this accumulation of total lipids found 

within a biological sample as the ‘lipidome’. Analytical methods to measure lipids within biological 

samples in previous decades relied on time-consuming biochemical techniques through the use of 

exploitable lipid-specific chemical traits. For example, exploiting the process of lipolysis through 

conversion of glycerolipids to free fatty acids and using the fact that they react with free oxidised 

glycerol allowed researchers to measure triglyceride levels through colourimetric methods. However, 

the limitations of these applications became obvious in response to the implementation of high-

throughput mass spectrometry in order to quantify and identify lipid species. In addition, to being time 

consuming and expensive research has highlighted the diversity of lipid storage in many different cell 

types. Furthermore, the inability to distinguish between similar lipid groups including phospholipids 

and triglycerides gives the inability to accurately measure any given lipid species in a biological system. 

Early methodology to measure lipids using MS techniques dates to the early 1990’s using electron spray 

ionisation in order to measure phospholipid composition of human erythrocytes [237]. Although pivotal 

to modern day methodologies, throughput in early applications were relativity low due to mainly 

instrument sensitivity and limited mass spectrum of known lipid species. High throughput lipidomic 

methodology was further developed in the early 2000’s applying MS techniques to identify and quantify 

lipid species in biological samples while the some of the first cases of using lipidomic analysis to 

identify biological markers for human disease were implemented [238-240]. The principles of LCMS 

are relatively straight forward. Large complex pools of biomolecules can be sorted based on 

biochemical principles such as pH and hydrophobicity prior MS analysis while identification of 

biomolecules through MS can be made based on two major properties, their ionisation state and 

molecular mass. 
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1.8.2. CRISPR/Cas9, pooled screening and next-generation sequencing 

Prior to next-generation sequencing techniques, DNA sequencing was achieved primarily though 

Sangar and pyrosequencing methods. While, advancement in implementation of capillary 

separation and modern-day microscopy methods have vastly increased the accuracy and 

throughput of such methods, they still lacked the throughput of current modern NGS technologies. 

Introduction of truly next-generation platforms in the mid 2000’s has led to increasingly dramatic 

reduction in sequencing costs while further increasing the throughput through implementation 

of barcoding libraries allowing for multiplexing. These days it is very much possible to 

sequence the human genome for as little as $1000 USD while multiplexing allows generated 

readouts of global gene expression for the same price as qPCR experiments. Illumina is by far 

the most popular platform and dominates the next generation sequencing world. 

Fluorescently labeled nucleotides are used to generate short DNA reads of between 50-150bp while 

super high-resolution digital images of the fluorescent probes are used to image the DNA 

fragments and image analysis tools can be used to automatically make base calls based on 

fluorescent properties. Further advancements in DNA sequencing led to the use of paired 

end sequencing techniques. While previous iterations of Illumina based sequencing used 

single end reads, paired end reads as predicted given the name, makes reads from both ends 

of the DNA strands. This provides increased sensitivity through production of 

overlapping reading frames, increasing fidelity and allowing for longer 

read length.  A more recent development in the world of genomics was the implementation of 

bacterial based DNA editing enzymes, Cas proteins. The most common form is known as the 

Cas9 system and using biologically active RNA molecules containing a scaffold RNA 

sequence and a ~20nt gRNA, clustered regularly interspaced short palindromic repeats (CRISPR) 

allows biologists to make DNA indels with incredible efficiency and accuracy. RNA 

interference was previously used in order to alter gene expression of specific genes however 

this was not without its limitations. 
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Given the editing is post transcriptional this means that the effects are short lived. 

Furthermore, protein stability can greatly alter the effectiveness of RNAi as a genomic tool as this 

method targets the RNA and not the proteins directly. While DNA transfection methods can 

greatly affect the efficiency of RNA knockdown. This was somewhat rectified through use of 

lentiviral technology allowing for constitutive expression of siRNA fragments however, many 

biological systems can silence vector-based expression systems providing another hurdle to 

overcome. CRISPR/Cas9 has the advantage of targeting DNA and therefor creating hereditary 

changes while incredible versatility regarding the applications of the CRISPR/Cas9 system allow 

this method to be useful in almost all biological contexts. By far most commonly adopted protocols 

for CRISPR/Cas9 is lentiviral mediated overexpression of the Cas9 protein. Antibiotic selection 

markers can be used to overcome gene silencing and remove non-Cas9 expressing cells. However, the 

Cas9 system is not without its flaws. Different gRNA can be shown to have varied genome editing 

efficiency supporting the need for monoclonal populations to generate true knockout 

models, which can be both a lengthy and often impossible task depending on the model 

system. Since the first initial implementation of the Cas9 system, many great strides have 

been made including introduction of nuclease deficient Cas9 (KRABCas9). This defective Cas9 

allows for siRNA like uses. gRNA targeting specific genes can be used to disrupt gene expression 

while further implementation of techniques such as doxycycline inducible expression can allow 

for RNA mediated editing with great control and efficiency. Furthermore, other Cas9 variants 

including Cas9-VPS34 or otherwise known as CRISPRa has provided a more biologically 

relevant tool for analysis of gene overexpression. Conventional gene overexpression techniques 

often place genes downstream of a constitutive gene promoter often leading to vastly 

biologically irrelevant expression levels. CRISPRa has been shown to allow for gene 

overexpression however in a more biological relevant context with overexpression raising to the 

5-10-fold compared to potentially more than 100 fold increases in expression.  In conjunction with

both NGS and Cas9 implementation was the implementation of pooled screening methods. Large 

pools targeting in many cases genome-wide pools of gRNA can be used to answer many biological 

questions. For example, one of the first paper describing such techniques looked at targeting drug 
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resistence to a commonly prescribed BRAF inhibitor Vemurafenib [241]. NGS sequencing techniques 

targeted to lentiviral elements in cells transduced with pooled lentivirus gRNA libraries allowed for 

positive selection methods based on the assumption that genes with negative effects towards in this 

case drug resistance, would be enriched when pressure was applied, while negative screening 

assumption including genes that were required for drug resistance would either be depleted or 

lowly expressed. Multiplexing gRNA targeting the same gene allows for high confidence readouts of 

genes associated with many biological questions and pooled screens are currently being ever 

increasingly used to answer biological questions with similar approaches being used for CRISPRi and 

CRISPRa libraries. 
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1.9. Hypothesis and Aims 

Metabolic rewiring in human tumours allows for the manipulation of metabolic pathways to generate 

survival advantages in otherwise harsh and adverse cellular environments. The PPAR family of 

transcription factors are relatively well characterised in normal metabolic homeostasis. The role that 

PPARγ plays as a lipid regulator in tumours is relatively uncharacterised where the primary focus has 

been on the function of PPARγ in regulation of proliferation and apoptosis. The transcriptional 

pathways that regulate metabolic processes such as PPARγ are still poorly uncharacterised and are 

central to many tumours. I hypothesise that regulation of tumour progression through metabolism is 

in part mediated by PPARγ signalling roles in regulation of the tumour lipidomic landscape. 

To address this hypothesis, this study is aimed to: 

1 – Explore the metabolic landscape of human tumour biology through transcriptomic 

analysis of tumours based on changes observed between normal:tumour samples and high:low 

survival patient samples utilising novel bioinformatic analysis of 50 manually curated metabolic 

pathways. 

2 – Investigation of the associations between BRAFV600E driven tumours and the loss of 

PPARγ signalling and ether lipid metabolism in colorectal cancer.

3 – Investigate the human lipidome utilising high-throughput mass spectrometry approaches 

to identify risk factors associated with transcriptional regulation of lipid metabolism in solid 

human tumours. 
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Chapter 2 – Materials & Methods 

2.1. Bioinformatic analysis of the TCGA & Depmap datasets 

2.1.1. Data normalisation and acquisition 

Raw mapped mRNA reads from 18 tumours subtypes defined by tissue of origin with 

normal patient tissue samples were downloaded from The Cancer Genome Atlas 

(TCGA) data portal (https://portal.gdc.cancer.gov/projects). For the metabolic pathway 

analysis raw datasets were trimmed down to a small subset of 3,033 metabolic associated 

genes. For differential expression analysis data was normalised using DESeq2 and was 

performed on complete datasets consisting of 56, 318 mapped RNA transcripts [242]. All 

data analysis was performed using MATLAB R2019a (https://

au.mathworks.com/downloads/). The subset of 3,065 metabolic related genes were further 

trimmed to 2,065 genes that were constitutively expressed across all topological tumour 

subtypes corresponding to an average raw read count of greater than 5. CCLE 

metabolomics and transcriptome RNAseq datasets were downloaded from the DepMAP data 

portal (https://depmap.org/portal/download/). Metabolomic dataset was not subjected 

to further data manipulation [243]. The cancer cell line encyclopedia (CCLE) dataset looking 

at the mRNA expression levels across 1271 human cancer cell lines through NGS based RNAseq was 

used as described previously utilizing the TCGA RNAseq dataset.

2.1.2. Geneset enrichment and determination of metabolic signature 

Gene set enrichment analysis was used to analyse the changes in tumour metabolic pathways through the 

analysis of gene pathway enrichment scoring of differentially expressed genes from both the TCGA 

and CCLE datasets. GSEA software was obtained from the GSEA webserver (http://

software.broadinstitute.org/gsea/downloads.jsp). GSEA was either run using tumour versus 

normal samples or high verse low survival tumour groups using ranked t-statistics and modified 

versions of the KEGG and Reactome to incorporate positive/negative pathway regulation (http://

software.broadinstitute.org/gsea/)) datasets [249, 394].       .

. 
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Metabolic pathway enrichment for each tumour types were averaged to look for commonly 

enriched genesets above threshold and FDR parameters. Genescoring and pathway enrichment was 

performed looking at the normalised gene t-scores derived from the following four equations to 

look at ranked gene enrichment of each molecular pathway: 

µ =  
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

 

Equation 1.1 represents µ as the sum of all elements of x divided by the number of elements in 

x (population mean, deviation of gene expression across each tumour subtype).  

�̅�𝑥 =  
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

Equation 1.2 represents  as the sum of all elements of x divided by the number of elements in x 

(Sample mean, deviation or ranked expression levels of each gene in a given sample (frequency 

distribution)).  

𝑠𝑠 =  
1

𝑛𝑛 − 1
 �(𝑥𝑥𝑖𝑖 −  �̅�𝑥)
𝑛𝑛

𝑖𝑖=1

 

Equation 1.3 represents the sum of the sample mean minus each element of x divided by the number 

of elements in the set x minus 1 (Standard deviation). Therefore the equation for t s statistics becomes: 

𝑡𝑡𝑖𝑖 =  
µ −  �̅�𝑥
𝑠𝑠
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Equation 1.4. represents the t score of each gene represented in the element of each patient sample. 

We can further transform this into normalised values looking at the impact of ranked gene expression 

of each gene on the expression of all genes within a set defined by biological function:  

𝑡𝑡𝑀𝑀 =
∑ 𝑒𝑒𝑖𝑖𝑖𝑖=1
𝑛𝑛

 

Equation 1.5 describing tM is the result of equation 1.4, where tM the sum of each element 

represented by a pathway defined by the KEGG/Reactome datasets, divided by the number of the 

elements in each set. 

2.1.4. Correlation analysis 

All correlation analysis was performed using either-Pearson’s ranked correlation for parametric 

normally distributed data while for non-parametric skewed data, Spearman ranked correlation 

was used. Statistical significance was measured using a standard student's two-tailed t-test. 

Correlation between molecular signatures generated and explained in the previous section were 

used to generate a ranked correlation matrix defining metabolic signatures and tumour metabolic 

subtypes represented by equation 2.5 below:    

Low Survival Group 

High Survival Group 

Figure 2.1. Example of the survival-based patient grouping using colorectal adenoma TCGA dataset. 
The 75th percentile of both patient groups corresponding to patient with longest measure survival rates 
in days compared to the patients with the lowest survival rates were subdivided as indicated above.  
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 Equation 1.6 

𝜌𝜌(𝑥𝑥,𝑦𝑦) =  
∑ (𝑥𝑥𝑖𝑖 −  �̅�𝑥)(𝑦𝑦𝑖𝑖 −  𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 −  �̅�𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

Both �̅�𝑥 𝑎𝑎𝑛𝑛𝑎𝑎 𝑦𝑦� are represented in equation 1.2 but are either projected in the x or y direction where y 

represents the sample correlation and x represents the Pearson’s correlation. For Spearman ranked 

correlation analysis the following equation 1.7 was used: 

𝜌𝜌 (𝑥𝑥,𝑦𝑦) =  
1
𝑛𝑛∑ (𝑥𝑥𝑖𝑖 −  �̅�𝑥)(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑛𝑛

𝑖𝑖=1 )

�(1
𝑛𝑛∑ (𝑥𝑥𝑖𝑖 −  �̅�𝑥)2)(1

𝑛𝑛∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�)2)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

2.1.5. Survival analysis 

To investigate the links between molecular signatures and tumour metabolic subtypes survival analysis 

was integrated into the data analysis pipeline. Based on overall survival rates the top 75th percentile of 

both high and low survival was taken as per figure 2.2. Patients with survival time of less than or equal 

to 0 were ignored. Downstream data analysis was as per previous described in the previous sections. 

Differential expression analysis and GSEA was used to identified enriched molecular pathways based 

on ranked t-statistic methodology using manually curated datasets generated through differential 

analysis of high and low survival groups represented in each topological tumour normalised as per 

previously discussed to normal tissue mRNA expression levels. 
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2.2. Cell culture 

2.2.1. Passaging and experimental cell models

Most cells were maintained in either Roswell Park Memorial Institute (RPMI)-1640 medium or 

Dulbecco’s modified Eagles (DMEM) medium. L-glutamine was added to a final concentration of 

4mM along with 5-10% fetal bovine serum (FBS) and either with/without 10U/mL of Penicillin-

Streptomycin. All cells were maintained at 37°C and 5% CO2. Media was changed every 3-4 days and 

passaging was performed using TrypLE (Life Technologies cat. no. 12563-011), detached cells were 

centrifuged at 500xg, resuspended in appropriate media and plated at 10% confluency as required 

(Table 2.1). All experiments were performed during passages 10-20. 

2.2.2. Drug treatments 

All drug treatments were performed 16 hours post cell seeding in all experiments presented in the thesis 

and treatment time is stated in the appropriate figure legends. All treatments were performed at 5µM 

unless otherwise stated in the figure legend as with co-treatment groups (See figure legend for detailed 

description of all drug concentrations). All treatment groups were compared to a control using a 

equvilant base solvent as control. All drugs stock solutions were  made up in dimethyl sulfoxide 

(DMSO) except for 3-methyadenine and Chloroquine that were dissolved in H2O. The table above 

contains the list of drugs, the most commonly used concentration and manufacturer information:  
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2.3. Lentiviral generation and transduction 

2.3.1. Vectors/Plasmids 

Lentiviral packaging vectors pMD2.G and psPAX2 were a gift from Didier Trono (Addgene cat. no. 

12259 & 12260). lentiCRISPR-V2-Blast was a gift from Mohan Babu (Addgene cat. no. 83480) 

[244]. dsDNA fragments corresponding to gRNA sequences were cloned into plentiCRISPR using the 

BsmBI restriction site. 1ug of lentiCRISPR-V2-Blast was incubated at 37°C for 1hour  with BsmBI 

and cut fragments were run on a 2% agarose gel. The required fragment corresponding to ~12.7kb was 

excised from the gel and isolated using the QIAquick gel extraction kit (Qiagen, USA). DNA primers 

corresponding to the gRNA fragment with required 5'-CACC overhang for sequence complementarity 

were incubated with complimentary DNA primer and phosphorylated using T4 polynucleotide kinase 

(NEB, USA) at 37°C for 30 minutes followed by incubation at 95°C for 5 minutes for enzyme 

inactivation and then temperatures were ramped down to room temperature at 1°C per minute for 

DNA annealing.  For DHRS7B-mCherry or DHRS7B-T2A-eGFP vectors dsDNA gene fragments 

corresponding to either mCherry or T2A-eGFP (idtDNA, gBlock gene fragments) were cloned into 

pcDNA3.1(+)-Neomycin using EcoRI/XbaI cloning sites starting with 1ug of plasmid. Digested 

pcDNA3.1(+) plasmid was isolated as per the protocol used for lentiCRISPR-V2-Bst.  Full length 

human DHRS7B was PCR amplified from wild type human colon RNA samples using primers 

corresponding to human DHRS7B (Forward 5’ – 

TCGTTGGATCCGCCACCATGGTCTCTCCGGCTACCAG, reverse 5’ – CTGCCGAATTCGGAG 

TTCTTGGATTTTCCGC) and cloned into either pcDNA3.1(+) using BamHI/EcoRI restriction sites. 

All ligation reactions were performed at 4°C for 16 hours using T4 DNA ligase (NEB, Cat. # M020) 

and transformed into alpha select chemically competent E.coli (Bioline, USA) and were selected 

using agar plates at 37°C for 16hours using the appropriate selection antibiotic. Luciferase Dual 

reporter pGreenFire lentiviral system (System Biology Cat. #. TR101PA-P) was used to measure 

transcription activity of PPARγ and PPARδ
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2.3.2. Lentiviral generation, transduction & stable cell generation 

Lentiviral particles were generated using the second-generation packaging plasmids pMD2.G and 

psPAX2 as described in the previous section. plentiCRISPR-V2-Blast transfer plasmid was used 

to generate Cas9 stable cells and was used to deliver gRNA, and pGreenFire-PPRE ORE vectors 

were used to measure transcriptional activity. Packaging plasmids and the appropriate transfer plasmid 

were transfected into 293T cells seeded onto 10cm cell culture dishes at ~50% and left to adhere 

overnight. The following day 293T cells were washed twice with PBS and replenished with 4mL 

of DMEM (10% FBS, 4mM L-glutamine) and 2mL transfection buffer (Opti-MEM (Gibco cat. no. 

31985-070) up to 2mL, 24µL of Lipofectamine 2000 (Invitrogen cat. no. 11668030) 1.3pmol 

psPAX2, 0.72pmol pMD2.G & 1.64pmol of transfer plasmid) and left for a further 24 hours. H293T 

cells were transferred into standard DMEM with no penicillin/streptomycin and media was collected 

every 24 hours for 96 hours. Media containing virus was spun down at 500xg for 5 minutes to remove 

cellular debris and passed through a 0.2µm PES filter (Sigma Aldrich cat. no.GPWP047). To generate 

stable cells, the cell line of interest was seeded at 40% confluency in a 10cm dish and left to adhere 

overnight. The following day media was replaced with 1:1 ratio of viral supernatant and standard 

culture media without penicillin/streptomycin and 10µg/mL of polybrene (Merck cat. no. H9268-5G). 

Cells were selected with 1-2µg for most cell types of puromycin or blasticidin (Sapphire Biosciences 

cat. no. 13884 & 14499) for 72-96 hours and between 500-1500µg/mL of Geneticin (Life 

Technologies cat. no. 10131035) for 7-10 days. Stable cells were maintained on 50% of the 

selection antibiotic required for successful selection for all downstream applications i.e. growth 

assays, cells were taken off selection media for the length of the subsequent experiments. 

2.4. CRISPR/Cas9 knockout cell generation 

Constitutive Cas9 overexpressing cells were used to generate knockout cell lines. lentiCRISPR-V2-Bst 

with the appropriate gRNA cloned were used to generate lentiviral particles as described in the previous 
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section. lentiCRISPR-V2-Bst package lentiviral particles were used to infect cell line of interest at a 

MOI of less than 1. Successfully transduced cells were selected using blasticidin at 1-2ug/mL for most 

cell lines and were either used as polyclonal populations or serially diluted to generate monoclonal null 

cell lines. All CRISPR/Cas9 cell lines were validated through western blot analysis targeted towards 

protein of interest. 

2.5. Western Blot Analysis 

Total protein was extracted using a modified RIPA buffer (150mM sodium chloride, 1% Triton x-100, 

0.5% cholic acid, 0.1% sodium dodecyl sulfate & 50mM Tris pH 8.8) at 4°C for 2hrs with gentle 

agitation. One tablet of Complete mini protease inhibitor cocktail (Roche cat. No. 11836170001) and 

PhosSTOP phosphatase inhibitor cocktail (Roche cat. No. 4906845001) were added per 15mL of RIPA 

buffer. Protein was heated to 95°C for 5 min in the presence of 1x sample buffer (416.7mM Tris-HCl, 

pH 6.8, 66.6% glycerol (v/v) 6.6% sodium dodecyl sulphate 0.03% bromophenol blue). Protein 

loading was first normalised to total protein colorimetrically using TGX Fast-Cast stain-free gel 

system (Bio-Rad cat. no. 1610173). Protein was then further normalised to total levels of beta-actin. 

For non-normalising gels standard polyacrylamide was used at between 7.5-15% (Bio-Rad cat. no. 

1610146) and run using Tris-glycine running buffer (25mM Tris, 192mM glycine & 0.1% sodium 

dodecyl sulfate pH 8.5) at 100V for 2 hours. Protein was transferred from polyacrylamide gels onto 

either 0.44μm Immobilon-P (Sigma-Aldrich cat. no. P2938-1ROL) or 0.2um (Bio-Rad cat. no. 

1620177) PVDF membrane using Tris-glycine transfer buffer (25mM Tris, 192mM glycine & 10% 

methanol) at 30V for 16 hours at 4°C. Membranes were blocked using 5% bovine serum albumin 

(Sigma Aldrich cat. no. A9648-50G) dilluted in 1xTBST for 30 min at room temperature. All 

primary antibodies were diluted in block buffer at 1:1000 dilution and incubated for 16 hours at 4°C. 

A list of antibodies used can be found in Table 2.3. Primary antibody was washed away in 

five changes of 1x TBST. Secondary antibody incubation was performed at room temperature 

for 1 hour using either anti-rabbit IgG (Cell Signalling, cat. no. 7074) or anti-mouse 

IgG(Invitrogen cat. no. 31430) horse radish peroxidase conjugated antibodies diluted in block 

buffer at 
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1:10000 dilution. All western blots were developed using x-ray film methodology (Fujifilm cat. no. 

497690). Developed X-ray film was scanned into digital files and images were produced using Image 

J software (https:// imagej.net/Fiji/Downloads). 

2.8. Immunohistochemistry/Immunofluorescence 

All mouse tissue was fixed overnight at room temperature in 4% paraformaldehyde (PFA) dissolved in 

ddH2O and washed three times in 1xPBS and a further three times in 70% ethanol. Tissue was 

infused and embedded in paraffin. Tissue sections were cut and prepared at 4μm. Cells were seeded 

into either 24/48 well dishes or chamber slides at the appropriated confluency. Tissue sections 

were dewaxed in three changes of xylene for three minutes and then hydrated in five graded ethanol 

washes followed by two final washes in dH2O for three minutes each. Antigen retrieval was performed 

using 1mM EDTA, pH8.0 antigen retrieval buffer and brought to boil in a microwave oven, and 

then left to boil for a further 20 minutes. Sections/cells were blocked and permeabilised in 

immuno block buffer (5% bovine serum & 0.1% tween 20, dilluted in 1xPBS) for 30 

minutes at room temperature. Rabbit anti-DHRS7B was used at 1:200, Goat anti-Rabbit IgG-

Biotin (Invitro, Cat # 31820) and Streptavoden-HRP (Thermo Scientific, Cat. #N100) were both used 

at 1:1000 all were diluted in immuno blockbuffer. Primary antibodies were incubated overnight 

at 4C while secondary antibodies were incubated at room temperature for 1h. For 

immunohistochemistry, slides were developed using chromogenic methods (Dako cat. no. 

GV82511-2) and counter stained using haematoxylin and coverslips were 

mounted using DPX. DAPI dilluted in 1xPBS 1:10000 from a 5mg/mL stock was used as a 

counter-stain for immunofluerescence (Molecular Probes cat. no D1306) and mounted 

using ProLong Gold mountant (Molecular Probes cat. no. P36934). All imaging was 

performed using the Olympus IX71 coupled with the camera system. Image 

analysis was performed using Fiji image analysis software [398]. 
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For Brd-U incorperation assay, cells were plated into 24 well plates at approximately 1x105 cells/

well and left to adhere overnight. Post treatment cells were incubated in the presence of 10uM 

BrdU for 2h and fixed in 2% PFA for 20 min at 4°C. Cells were incubated with anti-BrdU 

antibody dilluted in immuno block buffer 1:1000 (Abcam, Cat. # ab8955) overnight at 4°C and 

a donkey anti-mouse IgG Alexa 488 secondary antibody (Invitro, Cat. # R37114)  at 

RT for 1h and then counterstained with DAPI for 5 min. Blocking was performed using 

adult bovine serum and all antibody staining was performed in the presence block buffer. 5 

FOV per well were collected with all treatments performed in triplicates from three 

indipendent experiments                               .
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2.9. Cell growth and cytotoxic assays 
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and the average was taken relative to DAPI positive cells. MTT based or luciferase RealTime-Glo (Promega, cat. 

# G9711, G3582) assay was performed as per manufacturer’s instructions over a period of 72 hours. 

Approximately 1,000 cells were plated into 96 well luminescent white TC treated plates and left to adhere 

overnight. Nanoluc luminescence was measured using a Clariostar spectrophotometer at 480nm. 

2.10. Lipid droplet analysis 

Cells were seeded into either 48 well dishes at 20% confluency. After the appropriate treatments 

were performed cells were incubated in 250μM Nile Red (Sigma Aldrich cat. no. N3013-100MG) for 

10 minutes diluted in 1xPBS, washed three times and then fixed using 2% PFA diluted in growth 

media for 20 minutes in the dark at 4°C. Cells were counter stained with DAPI (Molecular Probes 

cat. no D1306) and mounted using ProLong Gold mountant reagent (Molecular Probes cat. no. 

P36934). All imaging was performed using the Olympus IX71 microscope coupled with a 

camera system. 6-8 fields of view were taken, and 300 cells were counted per 

replicate. Analysis was repeated three separate times and all image analysis was performed using 

Fiji image analysis software. 

2.11. Cell based promoter assay 

Cells were seeded in 96 well plates at 20, 000 cells per well and left to adhere overnight. Cells were 

transferred into 5% serum media with the appropriate treatments and left for a further 24 hours. Cells 

were lysed using 60μL of 1x passive lysis buffer (Promega cat. no. E1941) for 20 minutes at 4°C with 

gentle agitation.  20μL of lysate was transferred onto luminescent plates (Thermo Scientific cat. no. 

136101) and luminescence was measure using the Firefly luciferase assay system (Promega cat. 

no. E1501). 5μL of protein lysate was used to measure total protein concentration using the 

detergent compatible protein quantification kit (Bio-Rad cat. no. 5000111) and luminescence was 

normalised to total protein. 
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2.12. Fluorescence associated cell sorting (FACS) 

Cells were seeded at the appropriate confluency and left to adhere overnight. After appropriate 

treatments cells were washed three times with PBS and detached using TrypLE (Gibco cat. no. 12563-

011). Cells were spun down at 200xg for 5 minutes and resuspended into RPMI-1640 (no phenol red, 

10% FBS & 100mM EDTA) at between 5-10 x 106 cells/ml. Cells were sorted for either eGFP or 

mCherry into fresh standard growth media or for RNA collection directly into RNAlater stabilisation 

buffer (Invitrogen cat. no. AM7020). Propidium iodine (PI) was used as a viability dye at 1μg/mL 

(Molecular Probes cat. no. P3566).   

2.14. Quantitative PCR, Nanostring analysis and RNAseq analysis 

Total RNA was extracted using either TriZol reagent (Life Technologies cat. no. 15596-026) or the 

RNeasy mini kit (Qiagen cat. no. 74104) following manufacturer’s instructions. 1μg of total RNA 

was reverse transcribed to cDNA using the QuantiTect reverse transcriptase kit (Qiagen cat. no. 

205311) as per manufacturer’s instructions and dilluted 1:20 with RNAse free H2O, and Realtime 

qPCR was performed using the QuantiNova SYBR qPCR master mix (Qiagen cat. no. 208252). All 

primers used for qPCR analysis were ordered through Sigma Aldrich and were used at a final 

concentration of 250nM. 1ug of cDNA was used per reaction assuming a 1:1 RNA:cDNA and all 

reactions were performed in triplicates with between three to six biological replicates. Thermal cycling 

was performed using the CFX384 Realtime thermal cycler (Bio-Rad) and data analysis was performed 

using the ΔΔCt method using either RPS29 or GAPDH as a housekeeping gene [397]. The sequences 

of all primers used in this study can be found in Table 2.3 below. For Nanostring analysis, 120ng of 

total unamplified RNA was used. RNA was mixed with hybridisation/codeset master mix (3µL 

reporter codeset, 5µL hybridisation buffer, 2µL capture probe & 120ng of RNA made into 5µL of 

ddH2O). Hybridisation was performed at 65°C for 16 hours and then ramped down to 4°C at 1°C per/

minute. 15µL of hybridized probes and RNA mixture was loaded into a Nanostring cartridge and run 

on the Nanostring SPRINT system. All data analysis was performed using Nanostring in house 

software 
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nSolver (https://www.nanostring.com/products/analysis-software/nsolver). For DHRS7B 

overexpressing GFP sorted cell lines, the PanCancer progression panel was used and for the 

LIM1215/2405 DHRS7B knockout cells lines the PanCancer pathways panel was used. For 

RNAsequencing, standard polyA library preparation was used and sequencing was performed on an 

illumina platform. Short read alignment was performed using Hisat2 [399]. Differential 

expression analysis was performed using DeSeq2 using raw read counts obtained from previous step. 

2.15. Mass spectrometry 

Cells were seeded into a 60mm TC treated cell culture dish. Post appropriate treatment cells were 

washed three times in ice cold 1xTBS and then disassociated using TrypLE as per section 2.2.1. Cells 

were spun down at 500xg for 5min and then resuspended into ~500uL of ice-cold TBS and 

counted using trypan blue. Approximately 2.5x106 cells were transferred to a sterile 2ml Eppendorf 

tube spun down again at 500xg for 5min and supernatant was removed and snap frozen. For lipid 

extraction cell pellet was thawed on ice and resuspended in 125uL of TBS, 25uL of cell suspension 

was transferred for protein quantification and refrozen while 100uL (~2x106 cells) was used for 

non-polar lipid extraction. Cell suspension was sonicated for 5 seconds and repeated three times and 

then transferred into a 4mL glass vial and 2mL of chloroform:methanol 2:1 (v/v) was added. Samples 

were agitated for 10min and then left to stand for a further 50min. 0.4mL of LCMS grade water was 

added and samples were agitated for 10min and left to stand for a further 1hour. The lower 

hydrophobic phase was transferred into clean 2mL glass vials and chloroform was evaporated 

under nitrogen gas and resuspended into 160uL of chloroform:methanol and transferred into a 

200uL glass insert and dried down again. Upon mass spectrometry samples were resuspended into 

1:1 butanol:methanol and 10uL of each sample was used as a pooled QC sample. Samples were 

separated on a C8, 100 x 2.1mm, 1.8um particles (Agilent 858750-906, USA) using a Dionex 

Ultimate 3000 Rapid seperation liquid chromotography system and mass spectrometry was 

performed using QExactive system (Thermo Scientific, USA). Lipid identification was 

performed using a concentrated pooled QC sample using the LipidBlast v10 dataset and 

normalised to internal SPLASH MS lipid class standards (Avanti Polar Lipids, USA). For 

saturation index, each lipid species 

https://www.nanostring.com/products/analysis-software/nsolver
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associated with a lipid class were grouped based on total number of unsaturated carbon atoms across 

all lipid chains. Each lipid species was used to generate an average species fold change across the 

geometric mean of the individual lipid species (average fold change according to row geomean) 

(equation 2.8 below). 

𝐿𝐿𝑀𝑀 = 𝐿𝐿𝐿𝐿𝐿𝐿2 (
𝑥𝑥𝑖𝑖
�̅�𝑥

) 

Where �̅�𝑥 represents the geometric means of each row vector represented by a finite n x n matrix where 

each row in the n x n matrix represents a mass spectrometry read out of individual lipid species in each 

sample. 

Figure 2.2. Linear regression model of membrane associated lipid unsaturation patterns. Idealised xy plot 

of linear regression model of the saturation index based on the ratio of unsaturated lipid species in a sample. 

No. Unsaturations 

L M
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Xy plot of the average lipid fold change as per equation 2.6 is plotted against the number of 

unsaturations in each lipid species. Saturation index is calculated by (equation 2.9 below). 

𝑆𝑆𝑆𝑆 = 𝑀𝑀 ∗ 𝑟𝑟 

Where r is represented by the Pearson’s coefficient (equation 2.10, below) and M is the slope of the line 

of best fit. 
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Chapter 3 - Linear Predictive Metabolic Mapping define PPARγ 

and SREBF1 Signatures Associated with Colorectal Tumours 
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3.1 Introduction 

Metabolic rewiring of cancer cells is a crucial process highlighted by early landmark studies looking at 

changes in anerobic/aerobic metabolism in tumours known as the Warburg effect [245]. Despite the 

importance of such research and the ever-increasing interest in tumour metabolism as a potential 

therapeutic target, much is still unknown about tumour metabolism. The classical genetic centric 

model of tumour progression is slowly starting to incorporate a metabolic centric model of 

tumorigenesis. This is not surprising when you consider the interest in tumour metabolism has shed 

light on metabolic mediated regulation of all the tumorigenic hallmarks. Meta-analysis of large cohort 

datasets looking at metabolism based on transcriptome analysis has been used to identify many 

important aspects of tumour metabolism. For example, Negative bilinear gene expression models 

based on the TCGA dataset showed downregulation of oxidative phosphorylation as a key 

metabolic change in both metastatic melanomas but was also associated with patients exhibiting 

poor clinical prognosis correlating with increase epithelial to mesenchymal transition (EMT) 

potential [246].                     . 

One of the problems with modelling of phenotypic outcomes in tumour metabolism is if the association 

defined by genomic analysis correlates to metabolic output. For example, targeted analysis of 

microarray mRNA expression profiles of human tumour colorectal tumours compared to normal 

untransformed tissue samples showed dysregulation of glycolysis. Further analysis utilising modern 

high-throughput mass spectrometry analysis was implemented for pathway validation and correlated 

with transcriptome analysis [247]. One of the major difficulties when utilising transcriptomic data to 

investigate associations with defined signalling pathways or metabolism is deciding how to approach 

gene expression as a geneset rather than an individual gene expression change. Geneset Enrichment 

Analysis (GSEA), originally developed by a group working at the broad institute has been extensively 

utilised across many fields including oncology [248, 249]. GSEA ranks genes based usually on fold 

change or pvalue in order to address gene enrichments associated with a predicted phenotype by scoring 

enriched genesets based on two major factors. The enrichment scores are based upon a random walk 

algorithm. Significant results indicate overrepresentations associated with the edges of the data 
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distribution. A second metric, the leading edge represents the directionality of the data and is simply a 

measurement of the distance from the beginning of the random walk to reach its maximum height. A 

short leading edge represents a positive enrichment score where the majority of genes associated within 

any given set are enriched at the far left of the ranked gene list while a long leading edge represents a 

negative enrichment score with the majority of associated genes with a geneset found at the far right of 

the ranked gene list assuming high to low ranking based on expression. Data representation and analysis 

is often complicated and required large volumes of computing power and expertise. Differential 

expression based models have been developed for RNAseq technologies and provide an effective 

computational method to identify differentially expressed genes when using well defined controls [250]. 

However, it was not ideally developed for looking at complex transcriptomes such as the varied and 

distorted transcriptomes found in human tumours. These models have been utilised to performed large 

scale pan cancer pathway enrichment analysis [246]. Other normalisation and data analysis methods 

have been employed to look complex disordered tumour samples such as transcripts per million (TPM) 

or RPKM (Reads Per Kilobase Million) [242, 251, 252]. 

In this chapter I look at the tumour metabolic transcriptome of a subgroup of 2,065 constitutively 

expressed metabolic associated genes from an original pool of 3,033 genes. T-statistical (read count 

frequency distribution model) ranked transcriptomics normalisation methods were used in place of 

negative binomial differential expression models normalised to normal tissue sample. Pathway analysis 

of 50 modified metabolic genesets were considered and were corrected for promiscuous genes across 

18 tumour subtypes and 8036 tumour samples. Finally, machine learning methods were implemented 

to investigate metabolic patterns associated with tumorigenesis. Tumour metabolic pathways showed 

either well defined metabolic associated signatures based on tissue of origin or poorly defined 

metabolic tumours subtypes that were largely independent of tumour tissue of origin. Further analysis 

of gastrointestinal tumours revealed two major colorectal cancer associated metabolic clusters 

associated with HIF1A signatures while further analysis revealed two similar transcription factors 

responsible for the regulation of FA metabolism, SREBF1 and PPARγ led to drastically different 

transcriptomic analysis regulating crucial pathways associated with tumour immunity and EMT. 
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3.2 Metabolic mapping in human tumours 

3.2.1 Data analysis and processing 

Transcriptomic based metabolic mapping in human cancer was performed on 18 solid human tumour 

subtypes. Raw RNA sequencing data from the TCGA data portal was used to generate a sub-pool of 

3,033 metabolic enriched genes defined by genes associated with enzymativ activity, solute 

transporters and transcriptional regulation of metabolic enzynmes across 8038 tumour samples 

normalised to tissue of origin with 762 normal tissue samples (Table 3.1) [395]. For 

differential expression analysis and data normalisation, DeSeq2 algorithm was used while 

all data processing was performed using the MATLAB 2019a software suite [250]. The dataset 

was further curated by removing tissue specifically expressed genes or genes with a geometric mean 

read count of less than 5 across all tumour samples giving a sub-pool of 2,065 constitutively 

expressed metabolic associated genes. A t-statistical model based on gene read count frequency 

distribution across a set of samples was used with preference over the raw read counts and DEseq2 

based differential expression analysis. This methodology allows for identification of genes based on 

percentile distribution across samples comparing frequency distribution as opposed to average 

fold change and minimizing the effects that processes such as library size and distribution have on 

other bilinear based normalisation models [253, 254]. T-statistics or z-scores were based and 

normalised to normal tissue gene distribution with 2,065 genes across 8038 tumour samples 

generating a ranked order read distribution dataset (Fig. 3.1). 
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Figure 3.1. Data pipeline for linear based transcriptome-based z-score metabolic pathway analysis. A. Raw RNA mapped reads can be 
used in further analysis based on t-statistical population distribution model. B. Raw RNA reads are used to generate a z-score (z) 
corresponding to a ranked order distribution of RNA transcripts in any given sample based on frequency distribution and standard 
deviations generated through control population samples refer to methods section 2.1. C. Ranked order gene expression models can be used 
to look at pattern of percentile genes rather than Raw or normalised read counts. D. Geneset analysis is performed by looking at a group of 
gene sets with associated phenotypes while only concentrating on genesets associated with single phenotypes (gene promiscuity correction). E. 
gene set scores corresponding to the sum of all z-score of associated gene set A that does not correspond to genes associated with gene set b or 
c. Downstream data analysis pipelines such as linear statistical models and machine learning can be applied to identify patterned clusters based 
on metabolic genetic signatures. Refer to methods section 2.1.
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3.2.2. Geneset Enrichment Analysis of human tumours based on differential 

gene expression 

In order to generate a base line for the analysis used, whole transcriptome differential expression 

analysis was used using a standard Deseq2 based differential expression model. GSEA was performed 

on differentially expressed normalised transcriptomic data using two commonly implemented gene set 

datasets, KEGG and REACTOME. Datasets were limited to characterised signalling pathways and 

metabolic pathways. A heatmap representing the 18 tumour subtypes analysed showing statistically 

downregulated pathways in blue, statistically significant upregulated pathways in red and either none 

enriched or not significant pathways in white. Pearson’s-based hierarchical clustering was performed 

showing three major metabolic cancer subtypes based signatures associated with 50 metabolic 

pathways with closely related tumour subtypes including colorectal and colon adenomas showing 

similar metabolic outputs (Fig. 3.2A). To get a better understanding of dysregulated pathways across 

multiple tumours a volcano plot was generated using the average pathway enrichment score compared 

to the average p-value, based on both KEGG and REACTOME genesets. KEGG based genesets 

showed only two upregulated pathways across all tumour subtypes being involved in nucleotide 

metabolism, while nitric oxide response, DAG/IP3 signalling and phospholipase C cascades were 

shown to be downregulated across most tumour subtypes (Fig. 3.2B). The REACTOME dataset 

showed significant differences in dysregulated pathways. Additional dysregulated pathways were 

observed to be associated with AA metabolism, and ether lipid metabolism was shown to be 

downregulated, while tyrosine metabolism, VEGF signalling and WNT/β-catenin signalling was all 

significantly upregulated (Fig. 3.2C).  
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Figure 3.2. Genesets Enrichment analysis of 18 human cancers subtypes based on whole transcriptome sequencing. A. Heat map representation 
of significantly differentially expressed pathways utilising differential expression analysis based on normal tissue normalised tumour samples. Red 
corresponds to upregulated enriched pathways; blue cells correspond to downregulated enriched pathways and white cells correspond to undetected 
enrichment or no statistical significance. B. Volcano plot representation of the average enrichment score of each pathway represented in the KEGG 
dataset against -log10 (FDR) and C. same but using the REACTOME dataset. All differential expression analysis was done using the DeSeq2 
algorithm and data analysis was performed using Matlab 2019a. Raw RNAseq read counts for 18 human tumour subtypes were downloaded from the 
TCGA data portal (See materials and methods).                                                                                  .
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3.2.3. The impacts of T-statistic based normalisation on GSEA 

One common problem associated with GSEA based approaches is association of several genes with 

multiple genesets (gene promiscuity). The KEGG and REACTOME datasets are not immune to this 

problem, with many genes associated with multiple pathways while the literature does not always back 

up this association [246]. Furthermore, lowly expressed genes can also play a role to heavily skew data 

analysis. To tackle these issues and gather a better understanding of metabolic dysregulation in human 

tumours a smaller curated dataset of 2,065 constitutively expressed metabolically associated genes was 

generated as described earlier. Manually curated genesets associated with cellular metabolism were 

generated based on the KEGG dataset, while genes that were associated with multiple pathways were 

removed to limit the impact of gene promiscuity. Analysis of 50 KEGG based curated gene sets across 

18 human cancer subtypes showed significant alterations compared to standard KEGG-based GSEA 

approaches described in the previous section. Looking at the average z-scores of genes associated with 

various metabolic pathways showed most genes were associated with a slightly positive or negative 

skew, while several genes had consistently higher t-scores indicating that they existed in the top 

percentiles across most tumour samples (Fig. 3.3A). I then performed the same data analysis this time 

comparing genesets based on patient survival rates. The bottom 75th percentile of high survival groups 

was compared to the top 75th percentile of low survival patient groups while patients with clinical 

survival data indicating survival of either zero or below zero were removed and not further addressed 

in the analysis (Fig. 2.1). The average pathway z-score was compared to the average p-value across 18 

tumour subtypes. Among the top upregulated pathways associated with poor prognosis was the 

metastatic associated HIF1A signature. Furthermore, closely associated pathways including glycolysis 

were also upregulate in poor survival tumours. Conversely, FA-CoA biosynthesis and sterol 

biosynthesis were among the most commonly dysregulated pathways associated with high 

survival patient groups (Fig. 3.3B).  To validate the transcriptomic based model, I looked at using the 

Depmap dataset looking at 888 human cancer cell lines with matched metabolic mass spectrometry 

data [255, 256]. The same data pipeline was applied to the Depmap dataset looking at the same 2,065 
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Figure 3.3. Generation of manually curated KEGG based Genesets for dissection of tumour metabolic reprogramming. A. Aligned dot 
plot representing the average t-score of each gene associated with 50 designated metabolic pathways across 18 human cancer subtypes with the 
median represented by a blue line. B. Volcano plot representation of the average pathway score of 50 manually curated genesets of normal tissue 
normalised samples looking at the changes of pathway score associated with poor prognosis. All data analysis was performed using Matlab 
2019a. Raw RNAseq read counts for 18 human tumour subtypes were downloaded from the TCGA data portal (See materials and 
methods).                                                                                                                             .
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Figure 3.4. Metabolic association of predicted pathway score using the CCLE dataset. The CCLE metabolomics dataset was used in 
conjunction with match RNA transcriptomic datasets. Pathway analysis using manually curated metabolic associated pathways were used to 
generate pathway scores in 888 human cancer cell lines. Pearson’s correlation was used to assess the correlation by means of Pearson’s 
correlation coefficient value and was plotted as a U-plot against -log10 (pValue). Blue dots represent metabolites associated with the 
metabolic pathway, while orange dots represent metabolites not associated. This was performed for pathways with measure metabolite 
levels, triacylglycerides, purines, phospholipids, cholesterol esters, metabolites associated with glycolysis and FA derivates derived from 
fatty acid oxidation. All data was downloaded from the Depmap data portal (See materials and methods). All data analysis was performed 
using Matlab 2019a and as described with the TCGA dataset.                                                            .  d. . .
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constitutively expressed metabolically associated genes. In order to gain an insight of the associations 

between the pathways and their associated metabolic phenotype, spearman ranked correlation 

coefficients were calculated between each metabolic pathway and each of the 231 metabolites that were 

identified across all 888 cell lines in the Depmap metabolomic dataset. I focused primarily on lipids, 

nucleotides and glycolysis associated genesets. Purine, TAG biosynthesis and glycolysis were shown 

to be on average positively associated with metabolites associated with those pathways. CE 

biosynthesis pathway was negatively correlated with CE metabolites, while mitochondrial FAO 

showed a n  overall positively correlated with pathway associated metabolites (Fig. 3.4).  

3.3 Identification of metabolically distinct subtypes of colorectal tumours 

Unsupervised clustering methods for analysis of tumour transcriptomes has been commonly used to 

look at patterns in tumour gene expression. Tumours largely cluster based on tissue of origin due to the 

commonality of tissue types in relation to epigenetics and active cell signalling pathways. To better 

understand how human tumours, regulate metabolism I applied modern unsupervised clustering 

methodologies using the pathway enrichment scores calculated in Section 3.1. Spearman ranked 

correlation of metabolic pathways were calculated and used to generate a correlation matrix. Metabolic 

pathways generate three related metabolic clusters. Close associations between CE, TAG biosynthesis 

and SREBF1 signature genesets were identified in cluster 1. A larger second cluster showed more 

divergence in the similarities between metabolic pathways with pathways such as HIF1A signature, and 

glycolysis the most closely related with the third cluster was largely associated with PL metabolism, 

biosynthesis and more exotic lipid metabolism (Fig. 3.5A). 

T-distributed stochastic neighbourhood joining (t-SNE) is an unsupervised clustering method based on

the principles of machine learning [257]. t-SNE was used to generate clustering based on pathway 

signature scores and was colour coded according to tumour tissue of origin. seven major clusters were 

identified using this method with tumours isolated from liver, kidney, breast and prostate showing 

significant divergence in their relationship between other tumour types indicating they are metabolically 
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distinct (Fig 3.5B). Other tumour types such as lung and gastric tumours were primarily found in a 

much larger central cluster showing small signatures based on tissue of origin, and these tumour 

samples were associated with mostly similar metabolic phenotypes. One exception was observed in 

this second larger cluster (Fig. 3.5B).  Analysis of the standard deviation of pathways associated in 

colorectal cancers compared to all other tumours showed that colorectal tumours had significant 

divergence in pathways associated with oxidative phosphorylation, PPARγ signalling and AMPK-

mediated fatty acid oxidation. The highest divergent pathways associated with non-colorectal tumours 

were AA interconversion, and pathways associated with HDL and lipid mobilisation (Fig. 3.5C). 

Looking at the clustering of just gastrointestinal cancers showed three major patient associated 

clusters. Gastric and oesophageal tumours showed to largely cluster into one group while several 

metabolically divergent samples were also observed and did show correlation with most samples. 

Interestingly, colorectal tumours were shown to cluster into two major patient associated clusters (Fig. 

3.5D, left panel). Finally, to determine the pathways that were responsible for these two distinct 

colorectal tumours subtypes the average fold change of the geneset scores were determined across the 

two patient clusters. HIF1A signalling together with glycolysis were shown to be primarily 

responsible for this metabolic signature where the upper cluster was associated with high HIF1A 

signature compared to the lower cluster which was associated with low HIF1A signatures (Fig. 3.5D, 

right panel).  As discussed previously, among the most divergent metabolic pathway associated with 

colorectal cancer was PPARγ-mediated signalling. To further address the roles of PPARγ signalling 

and closely related signalling pathways in the context of the two identified colorectal cancer subtypes 

we looked to measure PPARy signatures utilising our previously defined methodology. As mentioned 

previously, I showed that these two clusters were largely divergent based on a HIF1A signature. Given 

the close relationship between lipid metabolic transcription factors such as PPARγ and SREBF1, the 

associations between the two related signalling pathways was assessed. Analysis of the top 10th and 

90th percentile of PPARγ and SREBF1 signature scores for human colorectal cancers showed that high 

SREBF1 tumours were largely associated with the HIF1A active top colorectal signature, while the 

opposite was true for PPARγ showing mainly more upregulation in the lower larger metabolic cluster 

(Fig. 3.6B). Analysis of the association between the PPARγ and SREBF1 signature indicated that                                                              
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Figure 3.5. Machine learning based on metabolic pathway enrichment of human tumour samples reveal two metabolic subtypes of 
colorectal cancer. A. Spearman ranked correlation analysis of 50 manually curated genesets in 8034 human tumour samples based on 18 
different tumour subtypes. Correlation matrix was performed assessing the dependency relation of metabolic pathway in human cancer. B. T 
distributed stochastic neighbourhood joining based clustering methods were used to generate unsupervised clusters of human tumour 
relationships based on metabolic pathway enrichment scores. C. x, y plot of the standard deviation of each of the 50 metabolic pathways in 
colorectal cancer plotted against the standard deviation of metabolic pathways in all tumour subtypes. D, left panel. Same as B but only 
looking at gastric intestinal tumours, with two distinct gastrointestinal cancer subtypes highlighted as K1 and K2 right panel, Same D left 
panel but only looking at colorectal tumours colour coordinated based on tumour sample HIF1A signature scores. All data analysis 
was performed using Matlab 2019a. Raw RNAseq read counts for 18 human 
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the two pathways were co-regulated in the lower cluster however, this  relationship was not present 

in the upper cluster. Differential gene expression analysis of the two metabolic tumour subtypes 

showed significant changes in gene expression associated with not surprisingly HIF1A 

signalling, but also showed upregulation of FA metabolism and oxidative phosphorylation. 

Finally, gene sets associated with the larger bottom cluster showed upregulation of 

WNT signalling and interestingly EMT associated genes (Fig. 3.6D & E).  

3.4 HIF1A associated colorectal metabolic tumours are associated with low 

PPARγ signatures and high SREBF1 signatures 

In the previous section a close relationship was described between PPARγ and SREBF1 signalling in 

colorectal cancer patient data sets. Colorectal tumours were broadly defined into two clusters and a 

lower cluster with strong correlation between a SREBF1 and PPARγ signature. While a second cluster 

that contained with a HIF1A signature was more associated with a high SREBF1 signature but a low 

PPARγ signature. Given the controversial role that PPARγ may play in negative regulation of 

colorectal tumorigenesis I investigated the transcriptome of these two distinct tumour classes. I 

analysed four tumour subclasses based on the predicted PPARγ and SREBF2 signatures (Class 

1; High SREBF1/Low PPARγ, Class 2; High PPARγ/Low SREBF1, Class 3; Low PPARγ/low 

SREBF1 & Class 4; High PPARγ/high SREBF1) (Fig. 3.7A, bottom panel). Mutational analysis of 

the 10th percentile of patients associated with each group showed that Class 1, associated with both 

high SREBF1 and PPARγ, was also associated with the lowest mutational load while the highest 

mutational load on average was associated with the low PPARγ signature and high SREBF1 

signature (Fig. 3.7A, top panel). APC mutants were relatively consistent across clusters 2-4 while 

only three patients were associated with APC truncation mutations in class 1 (Fig. 3.7B). Oncogenic 

BRAF mutations were also observed in a higher frequency in patients associated with low PPARγ 

signatures (Fig. 3.7B). Differential expression analysis of the four clusters based on SREBF1 and 

PPARγ signatures showed significant divergence in expression patterns (Fig. 3.7C). GSEA 

analysis of the different clusters showed differential expression of several oncogenic associated 

genetic pathways. Class 1, associated 
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Figure 3.6. SREBF1 and PPARγ are differentially regulated in HIF1A active colorectal tumours. A. t-SNE analysis of human colorectal 
tumour clusters based on 50 metabolic pathway signatures showing the existences of two distinct tumour metabolic cluster types. High HIF1A 
signature shown in orange and Low HIF1A signature shown in blue B. same as A but colour according to SREBF1 signature scores. Up/
downregulated SREBF1 signatures are based on the 10th and 90th percentile groups (left panel), and same but for PPARG signature scores (right 
panel). C. x, y plot of PPARG signature scores plotted against SREBF1 signature scores across the two colorectal metabolic clusters and their 
corresponding Pearson’s correlation coefficient value. D. Heat map representation of the top 500 differential expression genes in the two distinct 
colorectal tumour subtypes. E. GSEA analysis performed using KEGG and Hallmarks datasets using differential expression analysis from panel D. 
All differential expression analysis was performed using the DeSeq2 algorithm and data analysis was performed using Matlab 2019a. Raw 
RNAseq read counts for human colorectal tumours were downloaded from the TCGA data portal (See materials and methods).
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Figure 3.7. Pathway analysis of PPARγ and SREBF1 associated tumour phenotypes in colorectal cancer. A. Average mutation frequency 
calculated in each of the patient samples defined by PPARG and SREBF1 signature scores (Top panel). and PPARG and SREBF1 signature 
scores of each of the four identified clusters (Bottom panel). B. Mutation analysis of commonly mutated genes involved with colorectal cancer 
progression. C. Heatmap representation of the top 50 upregulated genes associated with each of the four clusters derived from PPARG and 
SREBF signatures. D. GSEA analysis of each of the four identified clusters looking at 18 different oncogenic associated pathways using 
RNAseq data from 52 colorectal cancer patients and grouped into 4 signatures defined by PPARG and SREBF1 signature scores. All differential 
expression analysis was performed using the DeSeq2 algorithm and data analysis was performed using Matlab 2019a. Raw RNAseq read counts 
for colorectal tumours were obtained from the TCGA dataportal.                    .
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with high SREBF1 signatures but low PPARγ signatures, showed downregulation of peroxisomal 

genes in addition to PPAR signalling and adipogenesis associated genes, while the highest 

upregulated pathways were EMT, IL6 & NFkB signalling. Class 3, the second cluster associated with 

low PPARγ signalling, showed similar results with downregulation of PPAR signalling and 

peroxisomal associated pathways while cholesterol homeostasis was downregulated in class 3 but 

upregulated in class 1 which was expected given the loss of the SREBF1 signature in class 3. EMT 

and IL6 signalling associated pathways were again among the most upregulated pathways.  Class 2 

and 4, that were associated with low SREBF1 signatures and were somewhat more divergent. High 

PPARγ signatures and low SREBF1 signatures were associated with low cholesterol homeostasis, 

oxidative phosphorylation and immune associated signalling pathways, while increased levels of 

peroxisomal associated pathways and FA metabolism were among the most upregulated pathways. 

Class 4, associated with upregulation of both PPARγ and SREBF1, again was associated with 

immune associated signalling pathways in addition to well characterised SREBF1 targets 

including SCD1, while low levels of HIF1A signalling was also observed, while interestingly 

cholesterol homeostasis and c-MYC targets were observed to be the most upregulated 

pathways (Fig. 3.7C & D).                                   .  

As discussed previously, one of the major oncogenic mutations associated with a low PPARγ 

signature was oncogenic BRAF mutations. BRAF missense mutations were associated with both class 

1 and 3 that were both associated with low PPARγ signatures (Fig. 3.7B). To further investigate this 

finding, without the limitations and interference of SREBF1 signatures scores, looking at the top and 

bottom 50 patient samples based on PPARγ signature score I investigated the simple average mutation 

frequency in colorectal tumours (3.8A, top panel). PPARγ high signatures was associated with an 

overall lower mutation load while the opposite was true for the PPARγ low signature tumours. 

Interestingly, this frequency was not observed in the most commonly mutated genes in colorectal 

cancers. While this did confirm that low PPARγ signatures were associated with high frequencies of 

oncogenic BRAF mutations, this also coincided with decreased APC truncation mutations but 

increased frame shift mutations (Fig. 3.8A, bottom panel). Finally, I classified the metabolic 

pathways associated with the most commonly mutated oncogenes associated with colorectal 

tumorigenesis. Analysis of the manually curated metabolic associated 
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genesets (characterised earlier in this chapter) was calculated on the average genesets score while 

patient samples were distributed according to genes associated with oncogenic mutations. BRAF 

mutants were classified as either oncogenic BRAFV600E mutants or uncharacterised BRAF mutants and 

I also looked at the pathway enrichment in BRAF wild type tumours. APC mutants were either 

characterised by truncation or wild type and CTNNB1 were either S33, S37, T41 or S45X mutants 

corresponding to proteasomal resistant oncogenic CTNNB1 mutations. KRAS was defined either as 

G12X or wild type while SMAD4 and PIK3CA were defined as either wild type or missense 

mutants. Spearman ranked hierarchical clustering was performed on the 8 different mutation 

signatures and 50 metabolically associate gene sets. CTNNB1, KRAS, SMAD4 and PIK3CA 

showed a largely similar metabolic phenotype with decreased AMPK DAO and associated PL 

biosynthesis pathways while showed increase PPAR signatures and associated peroxisomal 

FAO and unsaturated FA biosynthesis. BRAFV600E tumours were largely metabolically 

divergent to other tumour subtypes. Importanately, PPAR associated signatures were 

downregulated while this also correlated with decreased TAG biosynthesis and was also 

associated with increased AMPK FAO, PL metabolism and autophagy associated pathways (Fig. 

3.8B).  
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Figure 3.8. A Low PPARG signature is associated with oncogenic BRAF mutilations in colorectal cancer. A. Mutational frequency in 
the 10th and 90th percentile of patient samples associated with the PPARG signature (top panel). Mutation analysis of the same tumour 
samples based on PPARG signature (bottom panel). B. Heatmap representation of 50 manually curated metabolic associated pathway scores 
across patient samples associated with the most commonly mutated genes associated with colorectal cancer. All differential expression 
analysis was performed using the DeSeq2 algorithm and data analysis was performed using Matlab 2019a. Raw RNAseq read counts for 18 
human tumour subtypes were downloaded from the TCGA data portal (See materials and methods).                                                      .
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3.5 Discussion 

This Chapter has presented a systematic approach towards data normalisation and the identification of 

dysregulated metabolic and signalling pathways utilising complex and large-scale clinical tumour 

datasets from the TCGA and DepMAP patient tumour databases. Analysis of 18 human tumour 

subtypes revealed two major forms of cancers. Epithelial derived tumours metabolically were 

relatively similar while analysis of kidney, pancreatic and liver tumours were shown to be 

metabolically distinct. Metabolic associated transcriptome changes have been analysed and found 

to be strongly associated with tumour progression.  Analysis of 22 human tumour types showed 

frequent upregulation of pathways that included glycolysis and nucleotide biosynthesis, while 

changes associated with the OxPHOS pathway was more tumour specific. Furthermore, reports 

were also made showing the importance of overexpression of glycolytic enzymes were able to 

mimic the effects of metabolic mutations such IDH1/2 [247]. Other groups have described the 

importance of changes in metabolic pathways such as downregulation of OxPHOS and its 

association with metastatic disease [246]. This was in line with observations I made regarding 

associations between HIF1A signalling and closely associated glycolysis pathways. Identified 

differences in colorectal metabolism revealed two major metabolic subtypes of colorectal cancer 

based on HIF1A activity and glycolysis. In addition, co-expression analysis associated with 

metastatic tumour samples showed consistent dysregulation of known HNF4A target genes in 

clear cell kidney tumours while further analysis across other tumour types showed this process to 

be importance in regulation of mitochondrial dysfunction in advance tumour progression [258]. 

Other groups back up claims with varied biological responses shown to be responsible, including 

epigenetic changes in alcohol dehydrogenases [259]. Mass spectrometry approaches in targeting 

tumour metabolism looking matched normal and tumour samples from 8 tissues of origin have also 

showed gross metabolic alterations in tumour tissue. Breast cancer samples were shown to 

upregulate almost all metabolites investigates while several lipid species were also shown to be 

high upregulated across multi tumour types including breast, bladder and prostate [260]. 

Furthermore, mass spec analysis of 
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2181 metabolites in 54 human cancer cell lines looking at transcriptional responses associated 

with transcription factor activity profiles based on transcriptomic readouts revealed a highly 

interconnect transcriptomics and transcriptional associations with metabolic readouts [255].  

One of the key findings in this chapter was the identification of two distinct metabolic colorectal 

tumour subtypes. The major discerning factor associated with these two colorectal tumour subtypes 

was the level of HIF1A activity. Other groups have shown a close association of HIF1A with 

metabolic pathways including glycolysis [396]. Recent research outlined the importance of HIF1A in 

regulation of glycolysis driven migration while also outlined an important role in OxPHOS associated 

immunosuppressive functions in glioblastomas [261]. Similar observations regarding HIF1A 

mediated control of glycolytic processes have been observed in several other tumour types including 

cutaneous squamous cell carcinoma, pancreatic, invasive breast and hepatocellular carcinomas 

[262-264]. Other groups have also recently associated HIF1A in tumour metabolism regarding the 

Warburg effect [265]. One of the major dysregulated pathways associated with human tumours are 

aberrant changes in lipid metabolism. Recent dissection of 32 human cancer subtypes showed the 

significance of lipid metabolism in tumorigenesis. Lipid metabolism was shown to be the top 

dysregulated associated pathway across many of the 32 human tumour types. Interestingly, this 

correlates with glycolysis associated processing and amino acid metabolism. Tumours with 

perturbations associated with metabolic genes were also shown to be associated with tumour 

aggressiveness  [266]. One of the key changes among the HIF1A associated colorectal cancer 

subgroup was changes in lipid transcriptional regulatory networks. PPARγ, largely considered tumour 

suppressive in colorectal cancers was largely shown to be inactive in this metabolic cluster. A second 

major player in transcriptional regulation of cellular lipid metabolism, SREBF1, was shown to oppose 

this notion where high SREBF1 tumour cells were largely associated with a HIF1A driven tumour 

metabolic phenotype. Pathway cross talk associated with HIF1A and PPARγ are well characterised in 

the context of cellular metabolism in normal tissues and with immune responses. However, this is 

poorly characterised in the context of tumour metabolism. The PPARγ/HIF1A axis has been 

described as a key regulator of glycolysis and lipid anabolism in a largely cooperative manner leading 

to increase lipid uptake and generation of glycerolipids [267]. Furthermore, PPARγ has been 

demonstrated to be a key hypoxia-associated HIF1A target gene in 
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HepG2 cells [268]. Conversely, HIF1A has also been shown to negatively regulate PPARγ activity in 

adipogenesis, inhibiting PPARγ activity in response to hypoxic conditions [269]. SREBF1 has also 

shown to work in synergy with HIF1A. Both SREBF1 transcriptional regulation of lipogenesis and 

HIF1A activity has been shown to act downstream of active mTOR [270]. While upregulation of 

FASN, a well characterised SREBF1 target gene, in response to AKT-mediated activation of SREBF1, 

has also be observed to be dependent on hypoxic conditions in mouse xenograft tumour models and 

in human mesenchymal stem cells [271, 272]. Conversely, opposing responses to HIF1A signalling 

have been observed in alcoholic fatty liver disease models where HIF1A induced activity led to 

suppression of excessive lipid accumulation. SREBF1 and subsequent target genes were shown to 

negatively correlate with HIF1A activity [273]. The interplay between SREBF1 and PPARγ is also 

convoluted and relatively poorly characterised. SREBF1 mediated lipogenesis has been shown to be a 

key process involved in PPARγ stimulation and adipogenesis [153]. While both PPARα and PPARγ 

have been shown to inhibition SREBF1 promoter activity induced by LXR [274]. Similar 

observations were shown in rat hepatoma cells with activation of PPARα and PPARγ leading to 

reduced TAG biosynthesis through reduction of nuclear mSREBF1 [154].  

Associations between low and high PPARγ signature tumours reveals that PPARγ low tumours were 

associated with increased immunogenic associated signalling such as the pro-oncogenic IL6 

responses. Furthermore, low PPARγ signatures were associated with poorly differentiated tumours 

and particularly with BRAFV600E tumours. PPARγ is a known phosphorylation target of MEK/ERK1 

leading to PPARγ mediated proteasomal degradation [275]. Both ERK1/MEK1 are downstream of 

BRAF and are associated clinically with BRAF mutant tumours [276]. Conversely, SREBF1 has been 

shown to be important in therapy resistant BRAFV600E melanomas leading to sustained lipogenesis and 

PUPL mediated Vemurafenib resistance [156]. Furthermore, inhibition of SCD1 has been shown to 

reduce cancer stem cell associated therapeutic resistance in oncogenic driven BRAF melanomas [277]. 

This is interesting given that SCD1 is a well characterised target gene of SREBF1. Furthermore, I 

showed that SCD1 was one of the most significant upregulated genes associated with both high 

PPARγ and high SREBF1 transcriptional activity in colorectal cancer. In addition, HMGCA1 and 

HMGCL again both well characterised target gene of SREBF1 has also been shown to have genetic 
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dependencies in BRAFV600E tumours [278, 279]. Oncogenic BRAF inhibition has also been shown to 

increase OxPHOS gene expression and mitochondrial biogenesis mediated through MITF 

regulation of PPARGC1A [280]. I also looked at the general overview of common mutation 

associated with colorectal cancers including APC, CTNNB1, KRAS and BRAF. Colorectal cancers 

were largely metabolically associated with one another. Overall pathway regulation clustered 

consistently with one another except for BRAF mutant tumours. They formed a metabolically 

distinct tumour that was opposed to other colorectal tumours. Loss of PPARγ signalling was further 

associated with upregulation of several lipid metabolic pathways including PL and ether linked 

phospholipid metabolism, glycolysis, Autophagy and AMPK mediated FAO. This was opposed to 

other lipid associated metabolic pathways including peroxisomal machinery and peroxisomal FAO. 

While as discussed above, there is significant evidence to suggest that oncogenic BRAF is a key 

regulator of cellular energetic process it is limited. Further research is required to investigate the 

association between dysregulation of key lipogenic pathway signatures and the apparent loss of a 

PAPRG signature which has been associated with poor clinical outcomes across many colorectal 

cancer patient datasets [152]. 
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Chapter 4 - PPARγ-dependent lipid reprogramming by 

peroxisomal lipids in BRAFV600E colon tumours 
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4.1 Introduction 

One of the major findings from Chapter 3 was the association with a loss of PPARγ signatures in human 

tumours containing oncogenic BRAF mutations. PPARγ signalling in many tumour subtypes is 

complex and a clear consensus on the role of PPARγ in tumorigenesis is still unclear. Investigation in 

the use of PPARγ agonists as potential cancer therapeutics has been extensively studied despite the 

controversial and contradicting research. Furthermore, given the roles that PPARγ plays as a regulator 

of differentiation, proliferation and apoptosis in addition to the vast roles PPARγ plays in the regulation 

of lipid metabolism I looked to further investigate the roles of PPARγ in colorectal cancer tumour 

metabolic reprogramming. Furthermore, I looked to validate the findings from chapter 3 and further 

investigate the roles that oncogenic BRAF mutations might play in downregulation of PPARγ signalling 

pathways and the consequences associated with loss of PPARγ signatures. 

Oncogenic RAS mutations account for approximately 30-40% of colorectal tumours. Downstream to 

RAS kinases is the RAF kinase superfamily [281, 282]. More commonly mutated in thyroid and 

melanomas they account for approximately 10-15% of colorectal cancers and often represent a 

particularly fast growing and aggressive tumour [18]. Recent advances in BRAF targeted therapy has 

led to significant increases in patient survival rates. However, like many tumours drug resistance has 

become a challenging obstacle and can render high effective and specific target therapeutics ineffective. 

The roles of BRAF in tumour metabolic reprogramming have primarily focused on oxidative 

phosphorylation and glycolysis, however recent research has shown that gross lipogenic changes are 

associated with progressive disease in chemotherapy resistant tumours [156, 280, 283]. Interestingly, 

little research is available looking at metabolic alterations to lipogenic pathways despite known links 

between PPAR signalling and downstream MAPK cascades. PPARγ is a known target of ERK1/MEK 

and is directly downstream of BRAF and indeed all RAF kinases. Furthermore, direct phosphorylation 

of PPARγ by ERK1/MEK has been shown to inhibit PPARγ transcriptional activity and drive 

proteasomal degradation [105, 269, 275]. While PPARγ is thought to be an important negative regulator 

of β-catenin and PPARδ mediated stemness in the intestinal crypt and thus is thought to drive terminal 
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differentiation and intestinal epithelial turn-over [150, 284, 285]. Mutations in the PPARγ gene are 

rare, however loss of PPARγ mRNA/protein expression is a common alteration in human tumours 

while PPARγ expression is associated with poor clinical outcome many tumour types including 

colorectal cancer. Many groups have associated these alterations of PPARγ expression to epigenetic 

changes but little research has focused on the oncogenic mutations that drive loss of PPARγ 

expression [286, 287]. In this chapter I have investigated the effects of oncogenic BRAF mutations 

and BRAFV600E targeted therapy through the use of the mutant specific BRAF inhibitor Vemurafenib 

(Vem) on PPARγ signaling. Furthermore, given the known roles of PPARγ in lipid regulation, I 

investigated the effects of PPARγ activation through use of the PPARγ agonist, Rosiglitazone and 

compared this the lipidomic readout associated with BRAF inhibition. Both BRAF targeted therapy 

and PPARγ agonists showed similar whole-cell lipidomic readouts. Furthermore, downregulation of 

peroxisomal phospholipid (PPL) biosynthetic pathways was identified as a key change in BRAFV600E 

mutant cells. The PPL biosynthesis pathway was shown to be a key regulator of unsaturated 

phospholipid biosynthesis and targeting the PPL biosynthesis pathway was shown to be a useful cell 

model mimicking oncogenic BRAF alteration in lipogenic pathways. In addition, the roles that loss of 

PPL biosynthesis played in BRAFV600E driven metabolic reprogramming was more that superficial. 

Identification of a complex multimeric signaling axis involving sustained SREBF1 

transcriptional activity. Loss of polyunsaturated PL species through CRISPR/Caas9 PPL knockout 

models targeting the terminal enzyme, DHRS7B was shown to be required for effective AMPK pro-

autophagy signaling in response to Rosiglitazone and serum starvation. Downregulation of PPL 

biosynthesis pathway drives sustained SREBF1 activity through loss of AMPK signaling which is a 

known negative regulator of SREBF1 transcriptional activity leading to uncontrolled 

hyperlipidemic phenotype driven by BRAFV600E oncogenic mutations [173]. 
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4.2. BRAFV600E driven tumours display lipogenic reprogramming through 

suppression of PPARγ signalling networks 

To investigate the role that PPARγ dysregulation plays in colorectal cancers we used a custom TCGA-

COADREAD dataset looking at the mRNA expression levels of 4034 potentially PPARγ regulated 

target genes identified by high throughput ChIPseq analysis (CHEA). K-means clustering was used to 

identify genetic signatures across a cohort of 601 tumour and 51 normal mucosa tissue samples. We 

identified 5 subgroups based on PPARγ target genes expression analysis while one cluster corresponded 

to normal colon mucosa samples while a further four clusters were associated with tumour samples 

(Fig. 4.1A & B). Mutational analysis across the four tumour related subgroups showed high levels of 

TP53 mutations associated with subgroup 1 and 4 while subgroup 2 was shown to be associated BRAF 

mutations (Fig. 4.1A). Survival analysis of tumours expressing high verse low PPARγ mRNA levels 

showed that low PPARγ expression was associated with a poor prognosis, while analysis of patient 

survival rate clustering patterns, identified by K-means clustering, showed that clusters 1 and 2 were 

associated with poor survival rates compared to clusters 3 and 4 (Fig. 4.1C & D). Furthermore, looking 

at PPARγ mRNA expression levels across the four subgroups compared to normal mucosa controls 

showed that PPARγ was significantly downregulated in cluster 2 (BRAFMut cluster) compared to other 

subgroups and normal mucosa, while this expression pattern was identical when assessing BRAFV600E 

verse BRAFWT tumours and validated previous associations made looking at PPARγ predicted genetic 

signatures in colorectal tumours (Fig. 4.1E & F). Furthermore, well characterized PPARγ target genes 

LPL, HMGCS2, ACSL5, PCK1 and CEBPA were all significantly downregulated in 

BRAFV600E tumours (Fig. 4.1F).  

To further investigate the association of PPARγ expression in BRAFV600E tumours I assessed colorectal 

cancer cells that were either wild type for BRAF or heterozygous for the BRAFV600E mutation. Cells 

were assessed for cytotoxicity in response to the PPARγ agonist Rosiglitazone. BRAFV600E tumours 

cells were found to be ten-fold more resistant compared to BRAFWT cells to Rosiglitazone mediated 

cellular cytotoxicity (Fig. 4.2A). Co-treatment of BRAFV600E mutants with 0.5 µM Vemurafenib and  
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Figure 4.1. BRAFV600E mutation downregulates PPARGγ RNA and transcriptional networks. A. Heatmap representation of TCGA-
COADREAD RNAseq data of CHIPseq identified PPARγ target genes associated with lipid metabolism clustered base on supervised K means 
clustering. B. Similarity matrix of K means clustering. C. Kaplan meier survival curve of patients based on K means supervised clustering. D. PPARγ 
mRNA expression levels in transcripts per million (TPM) across K means supervised clustering compared to normal mucosa adjacent controls. E. 
PPARγ mRNA expression levels across normal mucosa controls compared to BRAFMut and BRAFWt tumour samples. F. Expression of well 
characterized PPARγ transcriptional target genes in BRAFWt and BRAFV600E tumour samples. All experiments were performed at n=3 regardless if 
biological replicates were used. All error bars represent S.E.M and two tailed students t-test was used to test for statistical significance (*p < 0.05, **p 
< 0.01, ***p < 0.001 & ****p< 0.0001). K means were validated looking at iteration stabilization and validation of centroids and distance to 
centroids. All analysis was performed using Matlab 2019b.
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increasing concentrations of Rosiglitazone led to a ten-fold increase in Rosiglitazone sensitivity 

returning to levels comparable to BRAFWT cells (Fig. 4.2B). Luciferase based real time cell growth 

monitoring showed that BRAFWT cells were significantly more sensitive to Rosiglitazone mediated 

cellular growth arrest compared to BRAFV600E tumour cells which showed only a small but non-

significant change in cell growth (Fig. 4.2C). Furthermore, I also performed the assay as per previous 

discussed co-treating LIM2405 BRAFV600E colorectal tumour cells with Rosiglitazone in conjunction 

with 0.5μM of Vemurafenib. Again, Rosiglitazone showed little response across all four time points in 

BRAFV600E tumours cells with non-significant small decreases in cell growth while BRAFWT cells 

showed approximately 2 fold decrease in cell growth. Vemurafenib alone showed a one-fold reduction 

in cell growth in BRAFV600E cells while co-treatment with Rosiglitazone showed a ten-fold decrease in 

cell growth in BRAFV600E colorectal cancer cells (Fig. 4.2D). To further address the association of 

Rosiglitazone on cell proliferation and growth I performed a similar experiment using BrdU 

incorporation. The changes observed in cellular growth were shown to be cell proliferation 

dependent. BRAFWT tumour cells showed an approximated ~2-fold decrease in cellular proliferation. 

BRAFWT cells were unresponsive to Vemurafenib with no significant change in proliferation with 

Vemurafenib alone while co-treatment groups showed no change compared to Rosiglitazone alone. 

BRAFV600E tumour cells showed the exact opposite in single treatment groups with little response to 

Rosiglitazone alone, an approximately 2-fold decrease in cellular proliferation with Vemurafenib 

alone and an approximately 2-fold further decrease to cellular proliferation when treated with both 

Rosiglitazone and Vemurafenib (Fig. 4.2E). We further investigated cell growth signals and stress 

mediated pathways associated with apoptosis in response to Rosiglitazone, Vemurafenib or co-

treatment of cells. Phospho-ERK/MEK was used as a marker for BRAF activity and was shown to be 

significantly decreased in BRAFV600E mutants but not BRAFWT cells in response to Vemurafenib 

treatment. Co-treatment of Rosiglitazone and Vemurafenib in BRAFV600E cells showed an increase in 

phosphorylation in stress activated MAPK p38 pathway and downstream targets MAPKAPK2 and JNK 

correlating with the late stage apoptosis marker, cleaved PARP in comparison to Rosiglitazone and 

Vemurafenib treatments on their own (Fig. 4.2F). PPARγ transcriptional activity was measured using 

a luciferase reporter under the control of a consensus PPRE promoter. BRAFV600E RKO and  
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Figure 4.2. BRAFV600E mutants are resistant to Rosiglitazone mediated cellular cytotoxicity. A. IC50 determination of 3 BRAFWT (LIM1215, 
SW620 & SW480) and 3 BRAFV600E (RKO, LIM2405 & HT-29) cell cytotoxicity in response to Rosiglitazone. B. IC50 determination of BRAFWT 
and BRAFV600E cells in response to Rosiglitazone in the presence of 0.5μM of Vemurafenib measured 48hrs post treatment. C. Luciferase based 
proliferation/viability assay of BRAFWT and BRAFV600E cells in response to Rosiglitazone alone or D. BRAFV600E (RKO,LIM2405 & HT-29) in 
the presence of 0.5μM of Vemurafenib. E. BrdU incorporation assay of BRAFWT and BRAFV600E cells in response to either Rosiglitazone or 
Vemurafenib alone, or treated with both Rosiglitazone and Vemurafenib. F. Western blot analysis of key cell stress and apoptotic markers in response 
to either Rosiglitazone or Vemurafenib alone, or Rosiglitazone and Vemurafenib, 48hrs post treatment. G. PPRE-luc X4 reporter assay of BRAFWT 
and BRAFV600E cells treated with either DMSO, Rosiglitazone or Rosiglitazone and Retinoic acid. All experiments were performed as n=3 
regardless if biological replicates were used or not. Vemurafenib treatments were performed at 0.5uM while all other treatments were performed at 
5uM unless otherwise stated. All error bars represent S.E.M and two tailed students t-test was used to test for statistical significance except for D, 
E & G where a oneway ANOVA was performed (*p < 0.05, **p < 0.01, ***p < 0.001 & ****p< 0.0001). Each experiment was 
repeated 3 times and averages were taken of each  replicate  . .

RKO SW480

8h 24h     48h      72h

spenc
Highlight

spenc
Highlight

spenc
Highlight

spenc
Highlight

spenc
Rectangle

spenc
Highlight

spenc
Highlight

spenc
Highlight

spenc
Rectangle



Page | 87 

BRAFWT LIM1215 cells were transduced with a lentivirus containing a PPRE-eGFP-Luciferase reporter 

construct. The cells were selected for 96hours with puromycin, while the remaining stable cells were 

counted and transferred into luminescent tissue culture plates at ~20, 000 cells per well. Treatment 

with either DMSO, Rosiglitazone alone or in conjunction with retinoic acid (RA) was shown to 

induce a strong transcriptional response in BRAFWT LIM1215 cells (Fig. 4.2G, top panel). 

While RKO BRAFV600E cell showed no significant induction of PPARγ transcriptional activity in 

response to either Rosiglitazone alone or co-treated with both Rosiglitazone and RA (Fig. 4.2G, 

bottom panel).  

4.3. BRAFV600E drives a hyperlipidemic phenotype through suppression of 

PPARγ 

Given the roles of PPARγ in lipid metabolism I was interested to investigate the alterations in lipid 

metabolic pathways in BRAFV600E driven cancers. Untargeted high throughput lipidomic/mass 

spectrometry approach was used to analyse the lipidomic profile of lipids across 22 lipid classes. 

BRAFV600E colorectal tumour cells were shown to have increased levels of almost all major lipid storage 

forms except for TAG’s which remained unchanged and ether linked PL’s which were downregulated. 

(Fig. 4.3A & F). Analysis of lipid partitioning and storage through immunofluorescent analysis of 

lipid bodies showed a similar result with BRAFV600E cell lines having an increase in total lipid droplet 

levels measure per cell while this was negatively correlated with PPARγ mRNA expression levels 

across six human colorectal cancer cell lines (Fig. 4.3B & C). Total lipid levels showed a consistent 

change with an overall increased level of total lipids (Fig. 4.3E). Changes in phospholipid 

composition in general followed this same trend with overall increases in most phospholipid classes 

except for ether-linked phospholipids (PLe) indicating potential changes in peroxisomal lipid 

metabolism (Fig. 4.3D). Analysis of the profile of phospholipid levels when separated by number 

of unsaturation in fatty acid chains showed an interesting pattern. BRAFWT cells showed a 

lower average level of saturated and monounsaturated PL levels while the opposite was true 

for BRAFV600E mutant cells (Fig. 4.3G). Furthermore, a similar pattern was observed for ether 

linked PL’s with the number of unsaturation’s  
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Figure 4.3. The BRAF V600E mutation drives a hyperlipidemic phenotype and is negatively correlated with PPARγ expression. A. Schematic 
representation of lipid species changes between BRAFV600E and BRAFWT cell lines; measured changes are represented with * and their direction 
of change is indicated by colors (Red, upregulated) and (Blue, Downregulated). B. PPARγ mRNA levels measured in 6 human colorectal cancer cell 
lines and normal colon mucosa by qPCR using RPS29 as a reference gene. C. Quantification of Nile Red positive vesicles per cell for 6 colorectal 
cancer cell lines. D. Relative lipid levels normalized to BRAFWT cells measuring total changes of phospholipid levels in cells dependent on their 
BRAF gene status measure by mass spectrometry. E. Mass spectrometry measurement of total lipid levels according to cells BRAF gene status F. 
heatmap representation of total lipid levels of 22 different lipid species in the four cell lines measured. G. Mass spectrometry measured average non-
ether-linked phospholipid level separated by number of unsaturation’s found in the phospholipid fatty acid chain. H. Mass spectrometry measured 
average ether-linked phospholipid level separated by number of unsaturation’s found in the phospholipid fatty acid chain. All experiments were 
performed at n=3. Vemurafenib treatments were performed at 0.5uM while all other treatments were performed at 5uM unless otherwise stated. All 
error bars represent S.E.M, except for G & H where they represent SD and two tailed students t-test was used to test for statistical significance (*p < 
0.05, **p < 0.01, ***p < 0.001 & ****p< 0.0001). For lipid droplet counts 300 individual cells were counted and the experiment was repeated 
3 times and averages were taken of each replicate.                                                                                .
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showing a positive slope with high levels of PUPL’s and lower levels of SPL’s or MUPL’s in BRAFWT 

cells while the opposite help true in BRAFV600E colorectal cancer cells (Fig. 4.3H). 

To investigate the effects of PPARγ chemical activation and BRAFV600E selective inhibition on 

intracellular lipid profiles untargeted high throughput mass spectrometry was used to measure the 

changes of total lipid levels for 22 individual lipid classes in response to either Rosiglitazone or 

Vemurafenib treatment for 24hours. Total lipid levels were unchanged in response to Rosiglitazone 

in both BRAFWT and BRAFV600E cells (Fig. 4.4A). Interestingly, analysis of lipid droplet levels 

showed a significant change in lipid partitioning despite no loss of total lipids. Rosiglitazone led to a 

decrease in total lipid droplet number in both BRAFWT and BRAFV600E cells, while inhibition of 

PPARγ with the antagonist, GW9669 showed the reverse effect, increasing total lipid droplet numbers 

per cell (Fig. 4.4B). It is worth noting that in conjunction with the previous data regarding BRAFV600E 

induced resistance to Rosiglitazone, BRAFV600E cells showed significantly reduced responses to 

Rosiglitazone and GW9669 compared to BRAFWT cells. Changes in lipid droplet levels, but not total 

intracellular lipid levels, indicate there are changes in lipid mobilisation and metabolism rather than 

lipid degradation. Realtime qPCR analysis was used to look at several key lipogenic regulators 

involved with de novo lipid metabolism at various metabolic checkpoints. Expression changes 

resulting from both Vemurafenib and Rosiglitazone are coloured coded (Red for an increase in 

expression, blue for a decrease in expression and black indicating opposing changes in expression). 

Several genes were significantly changed in response to both Rosiglitazone and Vemurafenib 

including DGAT1, involved in TAG biosynthesis, while the TAG lipolysis enzyme LIPC was 

downregulated. Furthermore, upregulation of key enzymes involved in FA-CoA biosynthesis 

including FASN and GPAT were both upregulated, and increased expression levels of genes involved 

in beta-oxidation were also upregulated in response to both Vemurafenib and Rosiglitazone (Fig. 

4.4C & D). Analysis of the major lipid storage forms by lipidomic mass spectrometry showed that 

both Rosiglitazone in BRAFWT cells and Vemurafenib in BRAFV600E cells had a significant effect on 

TAG biosynthesis and this confirmed the observed changes in key TAG biosynthesis enzyme levels 

in addition to enzymes involved in DAG metabolism (Fig. 4.4E-G). The overall response to 

Rosiglitazone in BRAFV600E cells again showed a similar result however the increase in TAG levels 

was significantly attenuated (Fig. 4.4h). The top  
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Figure 4.4: Vemurafenib inhibition of BRAF drives reactivation of PPARγ signalling converging on TAG 
metabolism. A. Total lipid levels measured through mass spectrometry of BRAFWT (SW620 & LIM1215) and 
BRAFV600E (LIM2405 & RKO) cell lines treated with either DMSO or Rosiglitazone. B. Quantification of Nile Red 
positive vesicles using 6 cell lines (BRAFWT (SW620, SW480 & LIM1215) and BRAFV600E (LIM2405, HT29 & 
RKO). separated according to their BRAF gene mutation status in response to either DMSO, Rosiglitazone or 
GW9669. Graphs are representative of group mean and SEM. C. Schematic representation of total lipid metabolic 
changes and the key regulatory enzymes involved in lipid metabolism between BRAFV600E treated cells with 
either Vemurafenib or Rosiglitazone compared to a DMSO control. Measured changes are represented with * 
and their direction of change is indicated by colours (Red, upregulated) and (Blue, Downregulated). D. Heatmap 
representation of qPCR analysis of LIM2405 cells treated with either DMSO, Rosiglitazone or Vemurafenib and 
measurement of key lipid regulatory enzyme genes involved in lipid metabolism at various stages. 
E. Mass spectrometry measurement of TAG’s (as a heatmap) in response to Rosiglitazone in SW620 and
LIM1215 BRAFWT cell lines, & F. RKO cells in response to Vemurafenib and LIM2405 BRAFV600E cells in
response to either Rosiglitazone or Vemurafenib. G. Mass spectrometry measurement of average levels of major
lipid storage forms in response to Rosiglitazone in BRAFWT cells and Vemurafenib in BRAFV600E cells. H.
LIM2405 (BRAFV600E) cells treated with either Rosiglitazone or Vemurafenib. All experiments were performed as n=3.
Vemurafenib treatments were performed at 0.5uM while all other treatments were performed at 5uM unless otherwise
stated. All error bars represent S.E.M and two tailed students t-test was used to test for statistical significance.
For lipid droplet counts 300 individual cells were counted and the experiment was repeated 3 times and averages were
taken of each replicate.

upregulated TAG lipid species are shown in a heatmap and both Rosiglitazone and Vemurafenib 

showed no specificity for unsaturation levels or fatty acid chain length (Fig. 4.4E & F). 

4.4. Downregulation of peroxisomal phospholipid metabolism 

drives BRAFV600E dependent lipid reprogramming 

Increased levels of almost all major lipid classes were observed in the lipidomic profile of BRAFV600E 

driven tumours. with the exception of two major lipid classes, TAGs and ether-linked phospholipids. 

PPARγ has well established roles in TAG metabolism while the result shown in Section 4.3 validated 

this with the majority of lipidomic changes associated with Rosiglitazone treatments were shown to be 

TAG species while a significant level of overlap was seen in Vemurafenib treated cells to. A second 

major difference was downregulation of ether-linked phospholipid. Ether linked phospholipids are 

primarily produced through the PPL biosynthesis pathway or the DHAP pathway. The PPL biosynthesis 

pathway can be used to generate ether linked PL or can be sent through the ER for salvage to generate 

non-ether linked phospholipid (Fig. 4.5C) [288]. Furthermore, ether linked lipids have been shown to 

be a ligand for the PPAR family [289]. We therefore investigated peroxisomal PL pathways in 

BRAFV600E tumour cells. We first measured mRNA expression levels of various peroxisomal lipogenic 

pathways using RNAseq data of 6 BRAFV600E, 12 KRASG12X and 18 BRAFWT derived colorectal cell 

lines. Four major peroxisomal lipogenic pathways were investigated. Peroxisomal lipid metabolism and 
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the PPL biosynthesis pathways were both downregulated in BRAFV600E derived tumour while FA 

transport and oxidation remained unchanged (Fig. 4.5A). To further validate this observation, I looked 

key enzymes involved in lipid metabolism in both BRAFV600E tumour cells compared to BRAFWT and 

further addressed this observation in the closely related oncogenic KRAS cells. As with the pathway 

enrichment analysis, significant changes were observed in several peroxisomal associated lipogenic 

enzymes. The lipid transporter ABCD1 and 4 were upregulated in both BRAFV600E and oncogenic 

KRAS mutant colorectal cancer cell lines while several enzymes associated with peroxisomal lipid 

metabolism was differentially expressed with ACAA1, downregulated in both oncogenic BRAF and 

KRAS while ALDH3A1 and 2 were downregulated in BRAFV600E cells but upregulated in 

oncogenic KRAS cell lines. Furthermore, key enzymes involved in the PPL biosynthesis pathway, 

DHRS7B and FAR2 were shown to be downregulated in BRAFV600E tumour cells and correlated 

with the previous observation that ether linked PL were downregulated in BRAFV600E tumour cells 

(Fig. 4.5B).  To address the effects of Vemurafenib and Rosiglitazone treatment on PLe biosynthesis I 

again looked to investigate cellular lipid profiles through use of high-throughput untargeted mass 

spectrometry. Total PL levels were shown to be unchanged in response to both Vemurafenib and 

Rosiglitazone, sorting PL by class showed that both Rosiglitazone and Vemurafenib treatments led to 

marked increases in the levels of both ether-linked PC and PE phospholipids (Fig. 4.5D & E). Another 

major change observed between BRAFV600E and BRAFWT cell lipid profiles was the ratio between 

saturated/monounsaturated PLs compared to polyunsaturated PL levels. BRAFV600E tumour cells 

had high levels of saturated/monounsaturated PL but low levels of high order polyunsaturated PL 

giving an overall negative slope, while the opposite was true for BRAFWT tumour cells (Fig. 45F 

&G). Interestingly, both Vemurafenib and Rosiglitazone treatment of BRAFV600E cells induced 

major changes in the PL profile when assessing the number of unsaturation’s per lipid class leading to 

a reversion of this negative slope to give a positive slope similar to BRAFWT cells. Furthermore, this 

coincided with an increase in peroxisomal PL biosynthesis indicating a role for BRAF signalling in the 

regulation of peroxisomal lipogenic pathways and membrane saturation (Fig 4.5F & G). Furthermore, 

the same held true with ether-linked lipid species showing a similar profile in response to both 

Rosiglitazone and Vemurafenib (Fig. 4.5H & I). 



Figure 4.5. The BRAFV600E mutation downregulates peroxisomal phospholipid biosynthesis pathways. A. Gene signature scores of different 
peroxisomal lipid metabolic pathways based on gene signature of cell lines partitions based on BRAF gene mutation status B. heatmap representation 
of the average gene expression of key regulatory genes in different peroxisomal lipogenic pathways of cell lines either with wild type BRAF and 
KRAS mutation or KRASG12X and BRAFV600E cell lines C. Schematic representation of key lipogenic pathways utilized by the peroxisome in 
cells with gene expression changes indicated by colours (Red, upregulated) and (Blue, Downregulated) and are shown for BRAFV600E mutant cells 
compared to BRAFWT/KRASWT colorectal cancer cells. D. Total levels of non-ether linked phospholipid levels in BRAFWT cells treated with 
Rosiglitazone and BRAFV600E cells treated with Vemurafenib normalized to a DMSO control, and measured using mass spectrometry & E. the same 
for ether-linked phospholipid levels. F. Non ether-linked phospholipid levels separated by number of unsaturation’s with BRAFWT cells treated with 
Rosiglitazone (Left panel) and BRAFV600E cells treated with Vemurafenib (Right panel) compared to a DMSO control & G. LIM2405 cells treated 
with either Vemurafenib or Rosiglitazone compared to DMSO control represented by a doted line. H. Ether-linked phospholipid levels separated by 
number of unsaturation’s from BRAFWT cells treated with Rosiglitazone (Left panel) and BRAFFV600E cells treated with Vemurafenib (Right 
panel) compared to DMSO control & I. LIM2405 cells treated with either Vemurafenib or Rosiglitazone compared to DMSO control represented by a 
dotted line. J. Heatmap representation of the top upregulated ether-linked phospholipids in response to either Rosiglitazone or Vemurafenib compared 
to a DMSO control. All experiments were performed as n=3. Vemurafenib treatments were performed at 0.5uM while all other treatments were 
performed at 5uM unless otherwise stated. All error bars represent S.E.M and two tailed students t-test was used to test for statistical significance (*p 
< 0.05, **p < 0.01, ***p < 0.001 & ****p< 0.0001).                                                                                                                                                        . 
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In addition, looking at the effects of Rosiglitazone and Vemurafenib on ether linked phospholipid 

species showed that the majority of significantly upregulated ether linked PL’s in BRAFV600E 

colorectal tumour cells were polyunsaturated species while the monounsaturated/saturated ether 

linked PL levels were largely downregulated, while this was more obvious in RKO cell compared to 

LIM2405 (Fig.4.5J). BRAFWT cells as discussed previously showed little change in polyunsaturated 

PL levels with the average level remaining unchanged. Looking at individual ether linked PL species 

did show alterations in the content of individual ether linked species however this was largely 

monounsaturated and saturated PL species. Interestingly, LIM1215 cells were largely unresponsive in 

the PL content in response to Rosiglitazone, while the KRASG12V mutant, SW620 cells did show a 

significant change in some ether linked PUPL levels, however this was not further addressed (Fig. 

4.5J). 

To further investigate the roles that PPL biosynthesis plays in regulation of tumour lipidomic 

reprogramming a null cell line was generated using CRISPR/CAS9 gene-editing targeting the terminal 

metabolic enzyme in the peroxisomal PL pathway, DHRS7B (DH7B) in both LIM1215 (BRAFWT) 

and LIM2405 (BRAFV600E) colorectal tumour cells [290]. Clonal populations were generated and 

expanded from stable cells overexpressing gRNA’s targeting DHRS7B and Cas9 while knockout 

clones were validated through western blot analysis (Fig. 4.6A) Nanostring gene expression arrays 

were used to investigate cellular mRNA changes between BRAFV600E LIM2405 cells, and 

LIM1215WT/DH7B-KO cells. BRAFV600E cells showed 278 dysregulated genes >1.5-fold change with 

primarily EMT-associated genes upregulated and cancer stem-cell/β-catenin target genes 

downregulated. This was consistent with the genomics of the cell lines used with LIM1215 cells high 

in β-catenin activity mediated through a β-catenin S49A mutation leading to a proteasomal resistant β-

catenin mutant. Furthermore, loss of DHRS7B in LIM1215 cells showed 306 dysregulated genes, 144 

of which overlapped with the dysregulated genes associated with LIM2405 BRAFV600E cell line (Fig. 

4.6B). The top 25 up/downregulated genes based on pValue and log2 fold change are shown as a 

heatmap representation (Fig. 4.6C). Analysis of lipid levels through quantification of lipid droplets 

per cell showed again that loss of DHRS7B led to a BRAFV600E like phenotype with a 3-fold 

increase in lipid droplets per cell, while no change was observed in the LIM2405 DHRS7B null 

cell lines (Fig. 4.6D). High-throughput untargeted mass  
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Figure 4.6. Alterations in peroxisomal phospholipid biosynthesis mimics BRAFV600E hyperlipidemic 
phenotype. A. Western blot analysis of Crispr/Cas9 DH7B null monoclonal cell populations normalised to total 
protein electrophoresis. B. Venn diagram of differentially expressed genes measured through ‘Nanostring’ analysis 
of BRAFV600E LIM2405 cells compared to BRAFWT LIM1215 cells, and CRISPR/CAS9-generated DHRS7B-
null LIM1215 cells. C. Heatmap representation of the top 50 similarly differentially regulated genes. D. 
Quantification of Nile Red positive vesicles in DHRS7B knockout/null LIM2405 and LIM1215 cells compared to 
non-targeting gRNA control cells. E. Total lipid levels of DHRS7B LIM2405 and LIM1215 knockout/null cell 
lines compared to non-targeting gRNA controls measured by mass spectrometry F. Quantification of total 
phospholipid levels grouped by phospholipid class in the DHRS7B LIM2405 knockout/null cell line compared to 
the non-targeting gRNA control. G. Non-ether-linked phospholipid levels grouped by number of unsaturation’s in 
DHRS7B knockout/null cells compared to non-targeting gRNA controls & H. Ether-linked phospholipid levels 
separated by number of unsaturation’s. I. Schematic representation of qPCR analysis of differentially expressed 
lipogenic enzyme genes in LIM2405 WT compared to DHRS7B knockout/null LIM2405 cells. All experiments 
were performed as n=3. All error bars represent S.E.M and two tailed students t-test was used to test for statistical 
significance (*p < 0.05, **p < 0.01, ***p < 0.001 & ****p< 0.0001). 
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spectrometry approaches showed similar results with a 1-fold increase in total lipid levels associated 

with DH7B null LIM1215 cells while no change was observed in DH7B null LIM2405 cells (Fig. 4.6E). 

The total levels of PLs in DHRS7B null cells showed a small decrease in most PL subclasses while PC 

and PS levels were significantly reduced (Fig. 4.6F). Analysis of the levels of PLs when they were 

separated according to number of unsaturation’s showed again a strikingly similar phenotype compared 

to the BRAFV600E cells, with large reductions in polyunsaturated fatty acid-containing PLs, which was 

observed in both ether linked and non-ether linked PLs (Fig. 4.6G & H). Finally, analysis of the changes 

for all lipids and changes in the major lipogenic pathways showed an increased activity of 

lipogenic pathways and de novo lipogenesis (Fig. 4.6I). This is likely due to blocking PL synthesis 

(by loss of DHRS7B) and with an emphasis on polyunsaturated PL levels leading to the cell 

attempting to remodel lipogenic pathways to increase PL biosynthesis.  

4.5. Peroxisomal phospholipid biosynthesis is critical for membrane 
fluidity and controls a complex PPARγ-SREBF1-AMPK signalling axis

As previously discussed, loss of PPL through Cas9 mediated DH7B knockout cell lines was a useful 

cell model to investigate the lipidomic changes seen in BRAFV600E tumour cells. Genomic 

downregulation of key members of the PPL pathway was a key attribute leading to a hyperlipidemic 

phenotype. Therefore I was interested in the changes associated with Rosiglitazone treatment in DH7B 

null lines. Realtime qPCR analysis of key lipogenic genes in response to Rosiglitazone in LIM2405 

wild type and DH7B null cell lines was used to measure the changes in response to Rosiglitazone. 

Interestingly, the DHRS7B-null DMSO control mirrored many of the responses that wild type cells had 

towards Rosiglitazone, except for SCD and DGAT2, while furthermore, the responses of DHRS7B loss 

to Rosiglitazone led to a large array of unresponsive lipogenic genes where both Rosiglitazone and 

DMSO treated DH7B null cells lines largely mimicked the effects of Rosiglitazone of LIM2405 wild 

type cells treated with Rosiglitazone (Fig. 4.7A). Nile red immunofluorescence was used to measure 

cellular levels of lipid droplets in DH7B null cell lines in response to Rosiglitazone. As discussed in 

section 4.6, DH7B null LIM1215 BRAFWT cells showed a 2-fold increase in lipid droplets, this was  
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Figure 4.7. Altered peroxisomal phospholipid biosynthesis mimics a BRAFV600E hyperlipidemic phenotype. A. Heatmap representation of 
DHRS7B-null LIM2405 cells or LIM2405 WT cell in response to Rosiglitazone for 6 hours. B. Quantification of Nile Red positive vesicles in DHRS7B 
null LIM1215 cells compared to non-targeting gRNA controls in response to Rosiglitazone compared to a DMSO control & C. LIM2405 DHRS7B null 
and WT cells (Right). D. Non-ether linked phospholipid levels separated by number of unsaturations in response to Rosiglitazone in DHRS7B null 
LIM2405 cells. E. qPCR analysis of lipogenic pathway transcriptional regulators in DHRS7B null LIM2405 cells compared to WT control. F. Total lipid 
levels of 22 lipid species in response to Rosiglitazone treatment compared to DMSO control in LIM1215 WT and DHRS7B null cells & G. LIM2405 
WT and DHRS7B null cells. H. Western blot analysis of genes associated with SREBF1 transcriptional activity in LIM2405 WT and LIM2405 DHRS7B 
null cells. I. Western blot analysis of genes associated with SREBF1 transcriptional activity in three additional colon cancer cell lines. All experiments 
were performed as n=3 regardless if biological replicates were used or not. All treatments were performed at 5uM unless otherwise stated. All error bars 
represent S.E.M and two tailed students t-test was used to test for statistical significance. For lipid droplet counts 300 individual cells were counted and 
the experiment was repeated 3 times and averages were taken of each replicate.                                                                 . 
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further shown to increase in response to Rosiglitazone treatment (Fig. 4.7B). Furthermore, BRAFV600E 

LIM2405 cells had little or no change in total lipid droplet number in DH7B null cells compared to 

wild type cells while a 1-fold increase in total lipid droplet numbers was observed in response to 

Rosiglitazone (Fig. 4.7C). This is an important distinction between what was addressed earlier in 

section 4.3 where Rosiglitazone was shown to decrease the lipid droplet levels in wild type cells. 

Furthermore, both Vemurafenib and Rosiglitazone were shown to target several PUPL species leading 

to an increase in the ratio of unsaturated to saturated PL’s through actions mediated by PPARγ. 

Furthermore, in the previous section I showed that DH7B null cells were almost identical in lipidomic 

profile with the exception of higher order PUPL species. I was interested in the response in PUPL 

levels in DH7B null cells. Untargeted mass spectrometry was used to measure lipid levels in DH7B 

null and wild LIM2405 cells in response to Rosiglitazone treatment. DH7B null cells were  unable to 

pool PUPL level in response Rosiglitazone (Fig. 4.7D). Furthermore, loss of DHRS7B led to a large 

increase in almost all lipid classes measured in response to Rosiglitazone, again opposing what we 

previously showed where rosiglitazone had little effect on total lipid levels, but changed the dynamics 

of lipid present in the cell leading to mobilization of lipid droplets and cellular lipid reshuffling (Fig. 

4.7F & G). To further understand the changes in PPARγ-mediated cross talk we analysed the 

expression of several crucial lipid pathway transcriptional regulators in response to loss DHRS7B in 

cells. The total mRNA levels of full length and truncated forms of PPARγ were increased in DHRS7B 

null cells while a key transcriptional dimer partner of PPARγ, RXRG was downregulated. 

Furthermore, an important key regulator of lipogenic pathways, SREBF1 was upregulated 

significantly while mRNA levels of all other transcriptional regulators were unchanged (Fig. 4.7E). 

Changes in the SREBF1 pathway was then assessed by western blot analysis of LIM2405 cells treated 

with Rosiglitazone. In wild type cells Rosiglitazone was shown to negatively regulate SREBF1 

expression, with both 24hr and 48hr responses to Rosiglitazone leading to a loss of mSREBF1 (its 

transcriptionally active form). Furthermore, Rosiglitazone led to a slight change in both isoforms of 

DHRS7B protein levels (and a significant reduction in key targets of SREBF1 including FASN. 

This was reversed in DHRS7B null cells leading to sustained mSREBF1 levels in both DMSO and 
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Rosiglitazone treatment groups, while FASN protein levels were increased  in response to 

Rosiglitazone in DHRS7B null cells indicating increased capacity for de novo fatty acid synthesis 

(Fig. 4.7H). We further verified these results in three additional cell lines with all three 

showing similar responses indicating a broad level of redundancy, while interestingly 

as predicted BRAFV600E cells showed reduced protein levels of DHRS7B (Fig. 4.7I). 

Identification of sustained SREBF1 mediated transcriptional activity was shown to be responsible for 

PPARγ mediated regulation of lipid homeostasis while it is known that in addition to cholesterol a 

non-canonical PUFA PL regulated SREBF1 pathway is active in mammals. We hypothesise that 

upregulation of lipolysis genes in response to Rosiglitazone is only partially responsible for the 

observed PPARγ dependent reduction in total lipid levels. Furthermore, we attributed the PPARγ 

mediated regulation of lipid compartmentalisation was largely regulated through key autophagy 

pathways. To investigate the association of PPARγ mediated lipolysis of intracellular lipid droplets I 

looked at the response of LIM2405 cells treated with either Rosiglitazone alone as previously 

described or with 3methyadenine (3MA) (Autophagosome formation inhibitor). Nile red analysis of 

lipid body formation in response to Rosiglitazone led to a reduction in total lipid droplet numbers per 

cell as previous shown while 3MA alone was shown to led to an increase in lipid droplet levels. Co-

treatment of Rosiglitazone with 3MA led to a similar increase in lipid droplet numbers indicating that 

Autophagy was a key regulator of lipid droplet levels (Fig. 4.8B). To investigate Rosiglitazone/

PPARγ mediated regulation of lipophagy we analysed major autophagy initiator pathways focusing 

primarily on AMPK due to its relationship with the regulation of lipogenesis (Fig. 4.8A). 

Rosiglitazone was shown to increase levels of phospho-AMPK between 8-24hours post treatment 

while direct AMPK targets, including phospho ULK1 (Ser555), correlated with the increase in 

phospho-AMPK levels (Fig. 4.8D). Again, we further confirmed these observations in three additional 

cancer cell lines looking at the active form of AMPK and well characterised targets of AMPK 

signalling 16hrs post treatment. A similar response to Rosiglitazone mediated AMPK activation was 

observed with increased levels of active phospho-AMPK (Thr172) and increased levels of its 

downstream targets including phospho-PRTOR (Ser792) and phospho-ULK1 (Ser555) while 

reduction in the levels of the inhibitory phosphor-ULK (Ser757) form were observed (a known 
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Figure 4.8. Rosiglitazone mediated AMPK signalling networks control intracellular lipid droplets through lipophagy. A. Schematic 
representation of the AMPK autophagy stimulation pathway. B. Quantification of Nile Red positive vesicles in response to either 3-methyadenin, 
Rosiglitazone or both co-treated compared to a DMSO control. C. Time-course analysis of LIM2405 cells treated with either Rosiglitazone or 
DMSO vehicle using western blot analysis. D. Western blot analysis of key autophagy signaling proteins in SW480, SW620 and HT-29 cells in 
response to either Rosiglitazone or DMSO vehicle control. E. Time-course immunofluorescence analysis of LIM2405 cell expressing an eGFP 
tagged LC3 gene. F. Western blot analysis of LIM2405 WT or LIM2405 DHRS7B null cells in response to either Rosiglitazone or DMSO vehicle 
control. G. Realtime qPCR analysis of key autophagy regulatory genes in response to Rosiglitazone treatment compared to DMSO vehicle 
controls in LIM2405 cells.H. Quantification of LC3 ‘punta’ in response to serum starvation in LIM2405 DHRS7B null cells compared to 
LIM2405 WT cells. All experiments were performed as n=3 regardless if biological replicates were used or not. Vemurafenib treatments were 
performed at 0.5uM while all other treatments were performed at 5uM unless otherwise stated. All error bars represent S.E.M and two 
tailed students t-test was used to test for statistical significance, except for 4.8B where a two way ANOVA was used (*p < 0.05, **p < 0.01, 
***p < 0.001 & ****p< 0.0001). For lipid droplet counts 300 individual cells were counted and the experiment was repeated 3 times and averages 
were taken of each replicate.                                        . 
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mTOR target) (Fig. 4.8C). Polyunsaturated free fatty acids have been shown to activate AMPK while 

monounsaturated free fatty acids play an inhibitory role in AMPK activation. It would seem possible 

that loss of DH7B and PPL biosynthesis is a key link between fatty acid metabolism and AMPK 

dependent lipophagy. Western blot analysis of LIM2405 WT and DH7B null LIM2405 cells treated 

with either a DMSO or 5µM of Rosiglitazone for 16h showed significant changes in pro-autophagic 

signalling. Although, levels of phosphor-AMPK were unchanged between the WT and DH7B null 

LIM2405 cells, downstream targets of AMPK were shown to be significantly downregulated. Levels 

of phospho-ULK1 (Ser555) were and phospho-RPTOR (Ser792) were downregulated in the 

null cell line while loss of the inhibitor ULK1 (Ser792) was only observed in the WT cells and not in 

null cells indicating sustained mTOR activity and inhibition of autophagy (Fig. 4.8D). We further 

investigate the impact of DHRS7B aberration on autophagy through alternative methods utilising 

autophagy induction by low serum media (LSM) or complete serum starvation (SS). One of the key 

autophagy nucleation processes involved sequestration of LC3B into the autophagosome membrane. 

To investigate this process, I used a eGFP tagged LC3A/B construct and transfected it into LIM2405 

WT and DH7B null cell lines. Under normal serum rich conditions autophagy is inhibited and 

remain cytoplasmic in localisation, upon autophagy stimulation LC3A/B is cleaved to the LC3B 

form and conjugated with PE at the autophagosome membrane where the GFP signal becomes 

membrane bound to intracellular vesicles. DH7B null LIM2405 cells were transfected with the 

LC3A/B-eGFP construct and showed reduced levels of LC3 puncta formation compared to wild type 

controls across all time points except 24h under LSM conditions, indicating delay in autophagy 

stimulation (Fig. 4.8E). Quantification of LC3B autophagosome accumulation showed similar 

results under complete SS conditions with wild type LIM2405 cells showing a rapid 

accumulation of LC3 punta from 1hour onwards approximately 4-fold greater than under normal 

serum conditions. DH7B null cells were significantly delayed and ineffective in generation of LC3 

punta where DH7B null LIM2405 cells only showing similar levels of LC3 punta after 4hours of 

serum starvations (Fig. 4.8H).  Furthermore, Rosiglitazone treatment was shown to induce mRNA 

levels of autophagy regulatory proteins including several ATG family proteins and other crucial 

autophagy initiator signalling complexes that included mTOR, AMPK (PRKAA1) and ULK1 (Fig. 

4.8G).  



DH7B was shown to be critical in regulation of AMPK mediated activation of autophagy pathways in 

response to Rosiglitazone while autophagy was shown to be a key regulator of Rosiglitazone 

mediated lipid remodelling. Overexpression of an mCherry tagged DHRS7B expression cassette 

in LIM2405 cells co-stained with Nile red for lipid droplets showed limited vesicle 

localisation of DHRS7B with lipid bodies under basal conditions (Fig. 4.9A, left panel). 

Complete SS conditions led to a mark increase in co-localisation of DHRS7B with lipid bodies 

(Fig.9A, middle panel), while SS in conjunction with chloroquine (an inhibitor of 

autophagosome/lysosome fusion) showed complete co-localisation of DHRS7B with lipid 

bodies (Fig. 4.9A, right panel). Western blot analysis of key markers of autophagosome 

nucleation, ATG12/7 (autophagosome associated product) and LC3B were all shown to be 

downregulated in DH7B null cells compared to wild type controls under both LSM and SS 

induced autophagy (Fig. 4.9C & D). While similar observations were seen in AMPK-

dependent autophagy signalling pathways in response to LSM or complete 

SS, showing reduction in phosphorylated AMPK and loss of downstream 

phosphorylation targets, such as ULK1 (Ser555) and RPTOR (Ser792) (Fig. 4.9B). We 

further verified this response in the LIM1215 DHRS7B null cell line. Both nucleation 

markers for autophagosome formation were downregulated in DH7B null LIM1215 

cells compared to wild controls in response to Rosiglitazone and LSM while LC3B was not 

shown in response to complete SS in LIM1215 wild types cells but low levels were observed in 

DH7B null cells (Fig. 4.9E). Similar results were shown in LIM1215 wild type and DH7B null cells 

regarding AMPK signalling pathways. Phospho-AMPK was reduced in LIM1215 DH7B null cells 

compared to wild type controls across all treatments while reduced levels of AMPK targets 

phosphor-ULK1(Ser555) and RPTOR (Ser792) were observed in DH7B null LIM1215 cells 

in response to Rosiglitazone and complete SS. Furthermore, the inhibitory phosphor-ULK1 

(Ser792) was shown to be present across all treatment with LIM1215 DH7B null cells 

but was only present in DMSO vehicle and small amounts in complete SS treatments 

were seen in LIM1215 WT (Fig. 4.9F). These changes in autophagy pathways also were 

shown to correlate with increase DHRS7B induced upregulation of members of the 

phospholipase C family (Fig. 4.9G). Page | 102 
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Figure 4.9. DH7B regulates starvation induced lipophagy through impairment of AMPK phosphorylation of ULK1. A. 
mmunofluorescence analysis of mCherry tagged DHRS7B RKO cells either unstarved or starved of growth factors and with either chloroquine or 
without. B. Time-course western blot analyses of key autophagy signaling proteins in response to low serum media in LIM2405 WT or DHRS7B 
knockout tumour cells. C. Time-course western blot analyses of key autophagy nucleation proteins in response to low serum media in LIM2405 
WT or DHRS7B knockout tumour cells. D. Time-course western blot analyses of key autophagy nucleation proteins in response to HBSS induced 
serum starvation in LIM2405 WT or DHRS7B knockout tumour cells. E. Western blot analysis of DHRS7B knockout LIM1215 cell compared to 
LIM1215 WT cells of proteins involved with autophagosome some nucleation. F. Western blot analysis of DHRS7B knockout LIM1215 cell 
compared to LIM1215 WT cells of AMPK autophagy initiation signaling pathway. G. Nanostring analysis of gene expression in LIM2405 cells 
overexpressing either eGFP or DHRS7B-T2A-eGFP construct looking at PUFA specific phospholipases. All experiments were performed as n=3 
regardless if biological replicates were used or not. Vemurafenib treatments were performed at 0.5uM while all other treatments were performed 
at 5uM unless otherwise stated. All error bars represent S.E.M and two tailed students t-test was used to test for statistical significance (*p < 0.05, 
**p < 0.01, ***p < 0.001 & ****p< 0.0001). 
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4.6. Discussion 

Several studies have identified the RAS/RAF signalling pathway as a crucial regulator of cellular 

energetics in both the context of normal non-transformed cell systems and in tumorigenic cells. BRAF 

in melanoma is one of the principle mutations that drives this disease and many observations have 

shown that indicate melanoma cells have altered metabolic states.  Oncogenic BRAF has been shown 

to down regulate mitochondrial turnover and density leading to down regulation of oxidative 

phosphorylation, while increased levels of glycolysis led to elevated utilization of the pentose pathway 

and ketoses [279, 280, 291, 292]. The literature has largely ignored the major lipogenic changes that 

are driven by BRAF mutations which is surprising given the aggressiveness and high proliferation 

rate that many RAS/RAF mutated cancers display and the ever-increasing roles of fatty acid 

metabolism and feedback for cell growth and survival. In this chapter I have investigated the 

interactions between the PPARγ signalling pathway and key lipogenic regulatory pathways, and how 

they can be used to manipulate tumour metabolic reprogramming to gain cell growth and survival 

advantages. We have shown that BRAFV600E tumours were able to reprogram cellular energetics 

through changes in lipogenic pathways leading to an almost global increase in cellular lipid levels. 

Downregulation of PPARγ-mediated signalling in BRAFV600E tumours was also shown to be a 

primary contributor to BRAFV600E dependent lipogenic reprogramming. We have highlighted the 

importance of PPARγ signalling for regulation of lipid homeostasis but also how important PPARγ 

signalling is for induction of other key lipogenic pathways including SREBF1-mediated lipogenesis 

and AMPK-stimulated autophagy. One of the major changes observed in BRAFV600E tumour cells was 

a large alteration in the total pool of PLs and their level of unsaturation. BRAFV600E tumour cells 

showed very low levels of PUFA PL levels but had large pools of saturated and monounsaturated PL 

species. Other groups have shown similar observations looking at genomic insights into Vemurafenib 

resistant BRAFV600E melanoma cells. SREBF1 mediated lipogenesis was identified as a potential target 

for BRAFV600E targeted therapy leading to increased polyunsaturated PL levels as a key response to 

Vemurafenib, in both Vemurafenib resistant and sensitive tumour cells [156]. Vemurafenib treatment 

was shown to inhibit mSREBF1 accumulation while resistant cell lines showed sustained SREBF1 

activity even in the presence of 



Page | 105 

Vemurafenib. Although other research has highlighted that MEK1/ERK1 phosphorylation of SREBF1 

at Ser-117 is required for efficient SREBF1 signalling, suggesting that sustained SREBF1 activity may 

have been a consequence to Vemurafenib resistance rather than the driving force, given that 

Vemurafenib resistant cells also had sustained MER1/ERK1 activity [293]. We have also shown similar 

responses to Vemurafenib in non-resistant colorectal BRAFV600E driven tumour cells, while PPARγ 

agonist treatment had a similar response leading to a pooling of polyunsaturated PL levels and a 

reduction of saturated PL levels. While sustained SREBF1 activity was likely to be a key driver of 

sustained lipogenesis in BRAFV600E tumours this could be reversed by Rosiglitazone treatment and 

PPARγ activation. PPARγ activity is known to be regulated by unsaturated free fatty acid levels which 

could explain why increased SREBF1 activity was observed in BRAFV600E tumour cells. Furthermore, 

given that Rosiglitazone leads to decreased mSREBF1 levels through increased AMPK activity 

provides insight into an interesting feedback mechanism that could maintain fatty acid homeostasis. We 

have shown that loss of PPARγ signalling in BRAFV600E tumours is an important regulatory mechanism 

that must be overcome in order to maintain high levels of lipogenic activity driven by sustained SREBF1 

activation. This mechanism has been highlighted in adipogenesis models where elevated levels of 

SREBF1 activity leads to increased levels of PPARγ activity and was hypothesised to be a driving force 

of adipocyte differentiation [153]. Although they failed to show the effects of increased PPARγ activity 

on SREBF1 activity and while the similarities between SREBF1 and PPARγ target genes can often 

make it difficult to make any conclusions on the effects of PPARγ on SREBF1 activity through 

expression-based analysis alone, some groups have identified PPARγ inhibition of SREBF1 through 

restriction of LXR access to the SREBF1 promoter [274].  

This highlights the importance of membrane lipid metabolic feedback and its role in the maintenance 

of a healthy metabolic balance in cellular energetics and the identification of non-canonical cholesterol 

independent SREBF1 pathways highlights the importance of PL regulation of lipogenesis [131, 132]. 

SREBF1 has been shown to be regulated by intracellular PC levels in metazoans and drosophila while 

ER PL composition has been shown to be critically important for SREBF1 activity in mice  [294-296]. 

We have shown that BRAFV600E and KRASG12X tumours to a lesser extent were able to break this 

lipidomic balance leading to greatly increased cellular lipid levels through downregulation of 
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peroxisomal PL metabolism leading to increased expression of genes involved in beta oxidation. This 

change in the balance of fatty acid metabolism present in the peroxisome led to changes in metabolic 

feedback leading to altered peroxisome function. We showed that you could model this peroxisomal 

BRAFV600E phenotype in BRAFWT cells through blocking peroxisomal PL biosynthesis by 

CRISPR/Cas9-mediated ablation of the SDR enzyme DHRS7B.  Loss of DHRS7B led to a 2-3-fold 

increase in intracellular lipid droplet content while mass spectrometry lipidomic analysis showed a 

similar increase in total lipid levels. Disruption of peroxisomal PL biosynthesis also mimicked the effect 

of the BRAFV600E mutation on the ratio of intracellular PUFA: SFA levels. Other groups have described 

similar results looking at peroxisomal deficient or defective models. One group that modelled 

peroxisomal defects by introducing a mutation in the Pex5 gene, leading to a PTS-1 peroxisomal 

targeting signal defective model, showed that removal of the PTS-1 dependent protein targeting to the 

peroxisome, led to significant changes in peroxisomal lipid metabolism and more importantly altered 

membrane fluidity [297]. Furthermore, mutational analysis of PL biosynthesis pathways in yeast 

peroxisomes showed a similar reduction in membrane fluidity while modelling of peroxisomal 

biogenesis defects in Drosophila showed similar results highlighting the importance of peroxisomes in 

the regeneration of membrane fluidity and maintenance of higher order PUFA PL levels [298, 299]. 

Ether linked PL biosynthesis and peroxisomal lipid metabolism and their roles in tumour metabolism 

have been explored in recent years. Investigation of cells with high tumorigenicity compared to parental 

cells showed increased levels of ether linked lipids that correlated with a 1000-fold increase in colony 

formation while other groups have shown significant changes in ether linked lipid levels are associated 

with changes in growth and proliferation [300-302].  

The mechanisms in which tumour cells disrupt cellular energetics is incredibly diverse and present an 

overwhelming hurdle for tumour biologists to overcome in order to effectively treat cancer as a 

metabolic disease. We have identified a novel and deeply embedded signalling axis that interconnects 

three major lipogenic pathways, PPARγ, SREBF1 and the AMPK pathways. PPARγ was shown to be 

the critical regulator and loss of PPARγ signalling in cellular models such as BRAFV600E tumours led to 

a severe disruption of this axis. Loss of PPARγ signalling led to sustained SREBF1 transcriptional 

activity while loss of peroxisomal PL synthesis (via loss of DHRS7B expression) mimicked this effect 
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even in the presence of PPARγ activity. We showed that this change in signalling outcome was largely 

dependent on AMPK activity which was further shown to be dependent on DHRS7B-

controlled peroxisomal feedback. Loss of DHRS7B led to inefficient AMPK activity, loss of 

lipophagy and sustained SREBF1 transcriptional activity. This is consistent and correlates across 

species with the yeast homologue Ayr1p having been shown to be important in autophagosome 

formation, however the signalling mechanism underlying this phenotype is unclear [303]. 

Furthermore, SREBF1 is a known target of AMPK whereby AMPK regulates the stability of 

truncated SREBF1 protein levels. AMPK phosphorylates SREBF1 at Ser372 which has been shown 

to inhibit Golgi translocation and thus further inhibits SREBF1 processing leading to protein 

stabilisation in the ER and downregulation of SREBF1 target genes [173, 174]. As shown previously, 

loss of DHRS7B leads to ineffective AMPK activation and leading to sustained SREBF1 

transcriptional activity driving lipogenic pathways and inhibiting lipid homeostasis through 

autophagy resistance. Furthermore, we showed that Rosiglitazone to be a potent activator of 

AMPK and an inhibitor of mSREBF1 stability, while loss of DHRS7B led to a loss of Rosiglitazone 

mediated SREBF1 inhibition through loss of AMPK signalling. This accounts for sustained 

SREBF1-mediated lipogenesis and can account for the hyperlipidemic phenotype. 

Interestingly, autophagy pathways have been shown to be strongly induced in response to 

BRAF inhibitors and further sensitizes cells to BRAF targeted therapy [304, 305]. Furthermore, 

several groups have shown the importance of peroxisomes in autophagy feedback mechanisms. PEX5 

depletion has been shown to regulate TSC2 expression levels which in turn regulates autophagy 

induction through inhibition of mTORC1 [306].  Increased levels of PUFA free FAs have been 

shown as a potent stimulator of AMPK activity in many different cellular models while saturated 

FA’s such as palmitate has been shown to inhibit AMPK activity [307-309]. This is compelling given 

the low levels of PUFA PLs in both DHRS7B null cells and BRAFV600E cells.  
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Chapter 5 – Reverse genomic approaches reveal peroxisomal lipid 

metabolism as a key regulator of chemoresistance and cancer 

stemness 
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5.1. Introduction 

Diagnostic biomarkers are an important tool in interventional medicine. Identification of reliable 

marker genes or metabolites associated with disorganised tumour metabolism provides a tool to 

distinguish between normal and tumorigenic metabolic states. Tumour metabolism has provided an 

intriguing link between tumorigenic metabolic networks and classical cancer hallmarks. 

Furthermore, increasing evidence suggests that metabolic reprogramming is a key process that 

drives tumour drug resistance and progression under unfavourable cellular environments. Modern 

NGS techniques have provided a reliable and relativity cheap method for implementation of 

designer therapeutics. However, there is still much work to be performed in this space with ever 

increasing cellular mechanism driving key oncogenic process such as chemoresistance and rapid 

tumour progression.                                   .   

In chapter 3 I highlighted the use of a linear GSEA base on whole tumour mRNA transcriptomes to 

dissect tumour metabolism. Identification of BRAFV600E mutations as a driver of a hyperlipidemic 

phenotype through downregulation of PPARγ regulated PPL biosynthetic pathways was shown to be a 

key driver of lipid metabolic reprogramming. Despite utilising these techniques to accurately predict 

PPARγ signalling and unravelling a complex multi-oganelle signalling network regulating 

intracellular lipid stores, prediction of metabolic states based solely on snapshot mRNA 

transcriptomics provided inconsistencies depending on a number of factors. This highlights a 

challenging problem for accurate prediction of cellular metabolic states and ultimately associated 

tumour dependencies. Transcriptional based prediction is based upon a key assumption that for 

example if geneset x is associated with TAG biosynthesis and is upregulated/downregulated then the 

associated phenotype or intracellular levels of TAG must reciprocate. To a degree this must be true 

and can be a good starting point in any scientific investigation [249, 310]. However, it fails to account 

for many aspects of cellular biology such as overlapping signal transduction and the phospho-

proteome. For example, AMPK has been shown to inhibit fatty acid biosynthesis through direct 

phosphorylation of ACC at Ser79 [170]. Furthermore, a key process in regulating intracellular lipid 

storage is mediated through lipophagy in which it is also regulated through signalling mechanisms 
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governed by AMPK [311]. While AMPK is also known to  phosphorylate and inhibit a key lipogenic 

transcription factor SREBF1, these are key examples of how lipogenesis can be regulated through 

non-transcriptional processes. Furthermore, I have shown that PPARγ is an important regulator of 

lipophagy in colorectal tumour cells. Despite upregulation and validation of many key lipogenic 

enzymes through PPARγ transcriptional pathways, lipid levels were shown to be ultimately 

unchanged while lipid compartmentalisation showed reduced levels of lipid droplets though 

activation of AMPK-mediated lipophagy.                                            .  

This highlights a problem where transcriptomics can led to misleading conclusions. Genetic signatures 

are often based solely on idealised experimental models such as treating cells with high concentrations 

of agonists to induce transcriptional changes of a particular pathway. The reality is that in normal 

conditions this creates artificial bias and while this can be helpful in controlled settings looking at 

aspects such as tumour metabolism it is impractical/unethical to treat patients with high levels of 

Rosiglitazone prior to diagnostic screening to evaluate the impact of PPARγ signalling in 

tumorigenesis. Recent advances with computation biology has allowed for screening of large 

volumes of data through semi-curated biological datasets through use of categorical language [312]. 

This approach provides solutions to some problems by looking at commonalities between different 

datasets but still ignores the faults of previous GSEA based approaches.  Furthermore, recent 

advances in parallel/single cell sequencing and CRISPR/Cas9 has proven to be a valuable tool for 

identification of true target genes through implementation of multi guide libraries [313-316]. Despite 

this, the use of reserve based genetic approaches to predict tumour metabolism and identify associated 

susceptibilities is largely unexplored. In this chapter I have investigated a reverse based genomic 

approach to dissect the lipid metabolome and explore the possibilities of using lipid biomarkers to 

identify tumour susceptibilities. I identified a high confidence genomic readout through integration of 

multi-dimensional and layered biological datasets, utilising previously discussed cellular models of 

PPL biosynthetic pathways. The predictive signature was far more effective for the prediction of 

phenotypic outcome compared to current GSEA based approaches such as KEGG. PPL associated 

genetic signatures were used to identify key roles that PUPL’s play in chemoresistance through 

regulation of ER stress responses. Furthermore, given the role that PPARγ played in regulation of 
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membrane saturation I further investigated PPAR signalling utilising unobtrusive molecular biology 

approaches to get a better idea for the roles that PPAR’s play in tumour metabolism. PPAR active cells 

where shown to have reduced levels of OxPHOS related genes and were shown to correlate with 

markers of G2/M phase transitional cells. Furthermore, changes in cellular metabolism and key 

genes associated with small molecule transport and differentiation was shown to reverse PUPL 

associated chemoresistance by targeting JNK mediated ER stress responses leading to increase 

apoptosis induction. 

5.2. Tumour mutational load positively correlates with gene set 

dysregulation but not with phenotypic outcome 

In Chapter 3 I discussed methodology to utilise current high throughput large scale transcriptomic 

analysis in order to predict tumour metabolic states. Normalisation and transformation of large cohorts 

of patient RNAseq data using t statistics showed its use in complex data analysis across heterogeneous 

biological datasets. Another notion that was investigated was the idea of gene promiscuity. Removal of 

promiscuous genes across datasets allowed more standardised data analysis while avoiding issues that 

low expression genes and tissue specific genes may cause leading to false positives. As discussed 

previously, Geneset enrichment analysis fails to consider fundamental biological processes including 

non-transcriptional regulatory networks. All these fundamental biological processes in addition to many 

others not mentioned complicate data analysis leading to higher incidences of false positives and false 

negatives. The notion of linear based models in which the assumption that x = y is not always correct, 

and oversimplification of tumour metabolism can result in poor accuracy in final cellular based models 

(Fig. 5.1). To further investigate the issues associated with linear based predictive models I looked at a 

small subset of 9 metabolic pathways previously described in Chapter 3. I used a modified CCLE 

RNAseq dataset with matched cell line samples for polar metabolomics. Supervised k-means based 

clustering of the manually curated gene sets identified six distinct lipid associated cancer phenotypes. 

Cholesterol ester biosynthesis was shown to be upregulated in cluster 1 along with PUFA biosynthesis. 



Figure 5.1. Data pipeline for linear based predictor scores and the shortcomings of linear based predictive models. A. Gene set enrichment 
data analysis based on correction for gene promiscuity where gene set A is the summation of average t-score (Ps) of genes that are not a part of 
gene set B and C. B. Ps is represented as a pathway score matrix of gene set scores segmented by tissue samples looking at the average effects of 
gene expression signature with a predicted phenotypical output. C. Pathway score matrix can be used as a predictor for phenotypic output with the 
assumption that is patient A has enriched pathway B therefor patient A must over express metabolite B. D. Actual phenotypical output however 
often reads significantly different to predicted phenotype due to the multiple dimensions of complexity in biological systems.
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The CE biosynthesis associated geneset scores were downregulated in both cluster 2 and 6. Cluster 

3 was associated with upregulate levels of with peroxisomal PL and FA-CoA biosynthesis genesets, 

while phospholipid metabolism and TAG biosynthesis gene sets were ubiquitously expressed across 

all cell lines (Fig. 5.2A). To further address the poor correlation that some gene sets showed 

with phenotypic output we looked at the effects of mutational load on gene set dysregulation. A 

ranked order list of 9 different lipid metabolic gene sets were measured across 888 tumour cell lines 

matched with polar metabolomics (Fig. 5.2B, bottom panel). Mutation load was identified in the 90th 

percentile group of cell lines in 9 different lipid metabolic pathways upregulated compared to 

cell lines with no differential gene set regulation, except for two metabolic pathways, FA-CoA and 

PL biosynthesis (Fig. 5.2B, top panel). Furthermore, the average levels of CE, PL and TAG’s 

across the six clusters, identified by supervised clustering based on gene set scores, showed loose 

association between CE and CE biosynthesis pathway scores, while PL correlated with PL 

biosynthesis gene set scores. We did identify that the distribution of PL biosynthesis gene set scores, 

along with TAG biosynthesis gene set scores, to be linear rather than logarithmic indicating little 

dysregulation across the population (Fig. 5.2C). To further address the association between GSEA 

based techniques and tumour mutation load I looked at the correlation and association between 

different metabolic pathway scores and number of tumour mutations. For this analysis I limited the 

samples to solid tumour derived cancer cells and excluded myeloid/leukemia derived tumour cells. 

Positive correlation was found to be associated with all tested genesets with ether lipid metabolism 

and PPARγ signature genesets associated with the highest correlation. (Fig. 5.2D, E & I). I 

performed the same linear based analysis this time looking at the z-scores calculated for each 

metabolite across the Depmap metabolomics datasets again limiting the analysis to solid tumour 

derived cancer cell lines. Both TAG’s and CE’s showed no correlation between metabolite level and 

mutation load (Fig. 5.2F). This is not surprising given the vast array of genomic independent 

mechanism that regulate tumour metabolism. Furthermore, Pearson’s correlation coefficients 

were calculated between geneset scores and metabolite levels. TAG levels correlated strongly 

with TAG biosynthesis gene set scores while PL biosynthesis gene set scores showed no 

association with PL levels indicating that GSEA based approaches are not always appropriate (Fig. 

5.2H).  
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Figure 5.2. Linear based prediction models correlate with tumour mutation load but not always with predicted metabolite. A. Linear based 
gene expression gene set prediction scores were calculated for 9 gene sets in 888 cell lines and were subjected to spearman based supervised 
clustering identifying 6 gene set signatures with the sample score of each gene set shown as a bar chart. B. Average mutation load of the top 10th 
percentile and middle 10th percentile of tumour samples based on gene set scores, top panel. Ranked gene set scores of 888 cell lines based on gene 
expression t-statistic base data normalisation, bottom panel. C. Average metabolite levels of CE, PL’s and TAG’s across 6 gene set clusters based on 
888 cell lines. D. correlation between average gene set scores of ether lipid metabolism (left panel) and PPARG signature (right panel) and the 
average mutation load of 699 cell lines derived from solid tumour masses neglecting hematopoietic derived cells. E. linear regression model based on 
the correlation levels between 9 gene sets and mutation load in 699 solid tumour derived cell lines. F. Correlation between mass spectrometry 
measured metabolite level and gene set score of TAG’s (left panel) and CE (right panel) in 699 solid tumour derived cell lines. H. Spearman based 
correlation between 229 polar metabolites and log10 (pvalue) of TAG biosynthesis (left panel) PL biosynthesis (middle panel) and CE biosynthesis 
(right panel) in 699 solid tumour derived cell lines. I. Table showing the correlation, p value and slope of 9 gene sets compared to average mutation 
load in 699 solid tumour derived cell lines. Error bars on boxplots represent the 10th and 90th percentile while boxplot represents the median, 25th 
and 75th percentile. For linear regression analysis the line of best fit represents the slope while the dotted lines represent the 95th confidence interval. 
All data used in the analysis is available through the DeepMAP project data download portal (https://depmap.org/portal/download/) and all data 
analysis was performed in MATLAB 2019b.



To better understand the cellular lipid metabolome, I investigated major lipid species across 15 different 

tumour cells derived from 7 topological tumour tissue types (Table 2.1). The limitations of the 

CCLE metabolomic dataset is that very limited number of lipid species are identified. Our own 

methodologies in high throughput non-polar metabolomics allowed for the identification of ~950 

lipid species across 22 different lipid classes. Spearman ranked correlation was used to generate a 

correlation matrix to identify lipidome similarities across cancer cell lines. Correlation analysis of 

tumour cells based on cellular lipidome showed that tumours do not cluster according to tissue of 

origin as they would with genomic based approaches (Fig. 5.3A). tSNE clustering was used to 

identify associated cell lines based on lipidomic readouts. While supervised k means cluster was used 

in conjunctions to validate the tSNE cluster. k means clustering was projected onto the tSNE cluster 

but grouping the k means results as colours onto the tSNE cluster showing well defined cluster 

margins associated with k integer values (Fig. 5.3B). Initially, I looked at the lipidomic profile based 

on tissue of origin. However, this analysis was limited since I only had multiple biological 

replicates from breast and colorectal derived tumorigenic cells. Despite this, analysis of the two 

major forms of intracellular lipid stores showed that tissues that primarily had high levels of CE’s 

had low levels of TAG’s and vice versa. For example, ovary and prostate showed elevated CE levels 

but lower levels of TAG’s (Fig. 5.3C). I further addressed mutational based analysis of the 15 most 

prevalent mutated genes. KRAS and BRAF mutations were largely associated with colorectal cancers 

while as expected the highest incidence of mutation was seen in TP53. However, no association 

between common oncogenic mutations and lipid metabolites were observed (Fig. 5.3D). Analysis 

of the total lipidomic profile of all cells arranged by tissue of origin showed somewhat tissue-

specific lipidomic profiles in both breast and colorectal derived tumours (Fig. 5.3E). However, when 

considering supervised based clustering methods, the cells in the main did not cluster based on tissue 

of origin and with the exception of TAG levels most clusters showed a fairly high level of error 

between cell lines, and total lipid class levels of 9 major lipid classes included PL and ether linked 

PL levels (Fig. 5.3G). Interestingly analysis of lipid species associated with tissue of origin showed 

some interesting potential biomarkers. Saturated forms of LPE were highly enriched in intestinal 

colorectal derived tumour cells while monounsaturated forms of SM lipid classes were elevated 

in breast derived tumour cells (Fig. 5.3H). I also investigated any potential associations 
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between lipidomic profile and tumour cell growth rates using metadata collected from several sources 

(https://web.expasy.org/cellosaurus/). However, no associations between cell proliferation rate and 

lipidomic profile were observed and again k-means clustering did not show significant levels of 

clustering that correlated with cell growth rate (Fig. 5.3F & G). Finally, I looked at the transcriptome 

of the four lipidomic based clusters searching for similarities that the clustered cells might portray. A 

transcriptionally associated signature was generated and GSEA was used to look at up/downregulated 

genes associated with key oncogenic pathways utilising the Hallmarks, and KEGG datasets. 22 

commonly dysregulated pathways were identified between the four clusters. Cluster 1 was found to 

downregulate almost all oncogenic associate pathways, cluster 2 upregulated a large proportion 

including a hypoxia associate HIF1A signature, EMT associated genes and a NFkB signature. 

Furthermore, the top 50 upregulated genes identified in each metabolic cluster was determined and 

represented as a heatmap with the top 5 genes ID’s listed according to p-value (Fig. 5.3I & J). 

5.3. Implementation of the multi-dimensional reverse genetics-based 

approach for lipidomic phenotype prediction. 

In the previous section I introduced a high throughput lipidomic dataset based on the lipid profiles 

from 15 human cancer cell lines derived from 7  tumour subtypes with a varied mutation 

landscape. Analysis showed that tumour topography, growth rate and mutation load largely had little 

impact on the associations of cell lipid profiles. Therefor I was interested in the lipid-based patterns that 

regulated cell lipidome clustering. To further address this I developed a simple method is quantification 

of the ratio between saturated and unsaturated lipid levels through linear based regression models (a 

Saturation Index. Focusing on TAG metabolites for the majority of this analysis I looked at the total 

lipid levels, and lipid levels of each TAG associated lipid species across all 15 human cancer cell lines 

arranged according to the k means cluster performed in the previous section. TAG species levels were 

largely correlated with total lipid levels (Fig 5.4A, Top & middle panel). Adjusting for total lipid 

levels, TAG levels by species were shown to largely be homogeneous across all cell lines (Fig. 5.4A,  
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Figure 5.3. The lipidomic landscape of 15 human cancer cell lines. A. Spearman based correlation of nonpolar high throughput metabolomic 
readouts of 15 human cancer cell lines organised into a similarity matrix. B. T-distributed stochastic neighbourhood joining method showing the 
four clustered based on supervised k means clustering of 15 cancer cell line lipidomic readouts. C. Log2 average fold change of CE (Top panel) 
and TAG (Bottom panel) lipid species identified through nonpolar mass spectrometry organised according to cell tissue of origin. D. Mutational 
analysis of 15 cancer cell lines of organised based on tissue of origin looking at 14 commonly mutated oncogene/tumour suppressor. E. Total 
lipidomic read out measured through nonpolar mass spectrometry of 15 human cancer cell lines organised by tumour cell tissue of origin. F. 
Average doubling time of 15 human cancer cell lines organised by tissue of origin. G. Log2 average metabolite level of 9 lipid classes across four 
identified clusters based on nonpolar lipidomic readouts in 15 human cancer cell lines. H. Top three dysregulate lipid species according to tissue of 
origin in breast cancer (left panel) and colorectal derived cells (Right panel). I. Heatmap representation of the top 50 upregulated genes identified 
through Deseq2 differential gene expression in each metabolic kmeans cluster. J. Radial bar chart showing the GSEA scores of each lipid 
metabolic cluster of 22 commonly dysregulated enriched pathways across 4 k means clusters (outer circle) with imposed chord diagram of the level 
of total overlap between identified dysregulated pathways measured by GSEA (inner circle). Error bars on boxplots represent the 10th and 90th 
percentile while boxplot represents the median, 25th and 75th percentile. Nonpolar metabolomics were normalised to total cell number and protein 
levels and all data analysis including differential expression, supervised and unsupervised machine learning based analysis was performed using 
Matlab 2019b. 
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bottom panel). Again, this is unsurprising when you consider that TAG’s are the major storage form 

of intracellular lipids and it would seem likely that TAG levels correlate strongly with total lipids. 

Furthermore, this indicated that the lipid cluster was largely independent of total lipid. This same 

positive correlation between lipid species levels was observed in PC’s. PC levels showed to strongly 

correlate with total lipid levels (Fig. 5.4D, right panel). Interestingly, the opposite held true for CE’s 

where a negative association between CE levels and total lipid levels was observed (Fig. 5.4D, left 

panel). To further address the lipidome pattern associated with the k means cluster I looked at the 

levels of TAG order by chain length and then ordered by number of unsaturation’s. When TAG was 

ordered according to chain length and unsaturation number the clusters were largely homeostatic in 

appearance across all four k means clusters (Fig. 5.4B & C). To address this pattern of cell based on 

the lipid chain length and saturation level I developed a simple linear regression-based model to dissect 

the ratio of saturated compared to unsaturated intracellular lipid species (Saturation index, section 2.15. 

SI was calculated across all cell lines tested based on either TAG lipid species or PC lipid species. TAG 

SI showed a negative correlation between total lipid levels and TAG SI scores where PC SI score 

showed no correlation with total lipid levels (Fig. 5.4E). I further looked to address the genetic 

association with SI and total lipid levels. Pearson’s correlation coefficients were calculated for total 

lipid level and SI compared to gene mRNA read counts for the cell lines used in the lipidomic dataset. 

Positive correlated genes with TAG based SI was compared to genes that were negatively correlated 

total lipid levels (Fig. 5.4F, left panel). Furthermore, genes that positively correlated with TL levels 

but negatively correlated with TAG SI were also calculated (Fig. 5.4F, right panel) Geneset overlap 

was calculated between these two groups of correlating genes with total lipid level and TAG SI. TAG 

SI was shown to positively correlate with genes associated with EMT, NFkB and WNT signalling. 

While FA oxidation, MYC signalling, mitochondrial biogenesis and respiration were largely associated 

with high total lipid but low TAG SI, indicating that high TAG SI is associated with later metastatic-

associated phenotypes, and provides an interesting prospect for measuring tumour aggressiveness (Fig. 

5.4G, left panel). I further addressed the same analysis utilising SI calculations based on PL’s. 

Interestingly, the PL based SI showed an opposing signature with positive correlation between FA 

metabolism and WNT signalling, while it also showed upregulation in NFkB, HIF1A signalling and  
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Figure 5.4. Clustering of tumour lipidome is based on lipid saturation patterns and is predictive of a progressive tumour phenotype. A. 
Relative total lipid level measured by mass spectrometry of 15 human derived cancer cell lines, top panel. Log2 average fold change of TAG 
species measured by mass spectrometry, middle panel. Log2 average fold change of TAG species  normalised to total lipid level, bottom panel. B. 
Heatmap representation of the average fold change of TAG species organised by carbon chain length and number of unsaturation’s measured by 
mass spectrometry. C. Zoomed in heatmap representation of panel. b looking at the average fold change of TAG species in 15 human cancer cell 
lines each represented as an average of three individual replicates. D. Pearson’s correlation of mass spectrometry measured total lipid levels per 
mg/protein compared to the average level of CE’s, left panel and TAG’s, right panel. E. Pearson’s correlation of mass spectrometry measured total 
lipid levels per mg/protein compared to the average saturation index score of TAG’s, left panel and PL, right panel. F. Spearman correlation of top 
genes positively correlated with total lipid level and genes negatively correlated with TAG saturation index, left panel and genes negatively 
correlated with total lipid level and genes positively correlated with TAG saturation index, right panel based on RNAseq gene expression. G. Gene 
set enrichment analysis of genes identified through spearman correlation in panel. g utilising KEGG and Hallmarks curated genesets showing the 
top ten dysregulated pathways based on correlation of total lipid levels with TAG SI, left panel and PL SI, right panel. Nonpolar metabolomics 
were normalised to total cell number and protein levels and performed in triplicate. All data is represented by the mean and error bars represent the 
SEM unless otherwise stated. All correlative data analysis was performed using Matlab 2019b.
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EMT processes. Finally, downregulation of TP53 signatures was observed in addition to small molecule 

transport and genes involved in GPCR-based signal transduction (Fig. 5.4I).  

Given the associations between SI and key oncogenic processes such as tumour metabolism, EMT and 

key signalling pathways involved in the regulation of these processes, I looked to further address the 

impact of SI on tumour progression and survival. In order to better investigate SI, the use of 

CRISPR/Cas9 based technologies was employed. In the previous chapter I looked at targeting 

peroxisomal PL biosynthesis pathways in the regulation of lipid metabolism in BRAFV600E tumours. I 

decided to further these approaches to generate a molecular signature that could be used to investigate 

and probe pre-existing transcriptome-based datasets. A data analysis pipeline was developed whereby a 

CRISPR-based screening methodology could be used to determine a desired phenotype based on high 

throughput mass spectrometry analysis. A second dimension can be generated using transcriptomics 

utilising NGS based technologies. From the implementation of NGS from multiple experiments I can 

better control for nonspecific changes in the transcriptome and identify high confidence genes that can be 

further used to correlate and predict metabolic phenotypes in patient datasets (Fig. 5.5). To 

investigate the possibilities of implementation of complex biological datasets to better predict metabolic 

phenotype I began by analysing the previously characterised lipidomic readout of 15 human cancer cell 

lines. In the previous section I identified that cell line lipidomic readouts were largely correlated with SI 

score as opposed to other metrics including total lipid levels or lipid classes. Grouping PL species based 

on the number of unsaturation’s present in the FA chain showed that SI largely did not correlate with 

total lipid level and thus also not with total PL level (Fig. 5.6A & B). Cluster 2 was associated with 

cells carrying high SI scores while cluster 3 showed cells with low SI scores (Fig. 5.6B, left panel & C). 

This together with the TAG SI score which I had previously showed negatively correlated with total lipid 

levels, while PL SI scores did not show correlation with total lipid levels (Fig. 5.4F). Transcriptomics of 

each lipid cluster was performed using the TCGA dataset and was presented previously above (Fig. 5.3I 

& J). To further investigate that transcriptome-based changes associated with SI scores I used the 

previously characterised PPL null models targeting the terminal enzyme in this lipid pathway, 

DHRS7B. DHRS7B was shown in the previous chapter to regulate intracellular polyunsaturated PL 

levels. DHRS7B null cells showed a reduced SI score and were unable to pool polyunsaturated PL’s in 



Figure 5.5. Data analysis pipeline of reverse genetics based integrated signature identification. A. Data analysis pipeline of reverse genetics-
based strategy for identification of high confidence genes associated with metabolic phenotypes. Screening methods based on CRISPR/Cas9 
technology can be performed using library or targeted screening methods. High throughput mass spectrometry is used to identify metabolic 
phenotypes in cohorts while mass spectrometry-based identification of genes associated with matched phenotypes can be processed for 
transcriptomic analysis and gene signature identification. B. Post transcriptomic analysis utilises multiple experimental models to better identify 
real gene targets. T-statistics based data analysis pipeline allows more effective identification of genetic signatures-based population distribution 
rather than raw or normalised read counts. C. Spearman based correlation algorithms allow for predictive probability of a sample’s likelihood of a 
predicted phenotype. D. Predicted phenotype can be used to identify pathways associated with commonly used oncogenic metrics such as drug 
therapy prediction and survival analysis.                                                  .
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response to stimuli (Fig. 5.6B, right panel). Nanostring transcriptomic analysis was performed on two 

separate CRISPR/Cas9 models using LIM2405 and LIM1215 backgrounds and were compared to 

untargeted CRISPR/Cas9 control cell lines. Furthermore, DHRS7B overexpression analysis was 

performed again using Nanostring technologies on RNA extracted from eGFP sorted LIM2405 cells 

either overexpressing eGFP alone or a DHRS7B-T2A-eGFP construct. Pearson’s correlation was used 

to generate a gene list of top correlated genes with SI scores and all models were investigated for gene 

set overlap. Significant levels of overlap were observed particularly with high correlated genes and 

cluster 2 based transcriptomic analysis. Furthermore, significant levels of overlap were seen between 

both DHRS7B knockout models and the DHRS7B overexpressing LIM2405 cells (Fig. 5.6F). From 

each of the normalised gene sets a list of 88 genes were identified with two or more of the cell models 

showing significant and homeostatic changes in mRNA transcription levels (Fig. 5.6D). Spearman 

ranked correlation of normalised CCLE datasets showed unsupervised clustering of the 888-cell line 

dataset into 5 major clusters. The first cluster was associated with SI and held all four cell lines that 

were measure with positive SI scores (Fig. 5.6G). I further investigated the validity of the genetic 

signature utilising the previously discussed polar metabolomics dataset. 888 cell lines were ranked 

according to signature score and mutational analysis was performed looking for enriched mutations 

associated with a high SI probability or a low SI probability. NRAS and JAG2 showed enriched 

mutation levels in high SI probability cells while ACACB and KEAP1 showed enriched mutations in 

cells with high probability towards low SI scores (Fig. 5.6H, bottom panel). In addition, unlike 

traditional gene set enrichment methods, discussed in Fig 5.2, the PUPL signature score was not 

associated with increased mutational load (Fig. 5.6H, top panel). Furthermore, polar lipidomic analysis 

of 888 cell lines using the CCLE metabolomic dataset with cell lines ranked by SI score probability and 

metabolite species subjected to unsupervised Pearson based hierarchical clustering showed that 

polyunsaturated FA clustered with one another while the same was true for monounsaturated and 

saturated FA’s. Furthermore, polyunsaturated FA’s were enriched in high SI probability cell lines while 

fold change analysis of the top 10th percentile of high verse low SI probability cell liens showed that a 

large percentage of polyunsaturated PL’s were upregulated significantly in high SI probability cells 

(Fig. 5.6E & I).  Finally, gene set enrichment analysis of different cell models targeting PPL  



Figure 5.6. Identification of a gene signature associated with membrane associated lipid saturation level. A. Relative total lipid level 
measured by mass spectrometry of 15 human derived cancer cell lines, top panel. Log2 average fold change of PL species normalised by number of 
unsaturation’s in fatty acid chain, bottom panel. B. Linear regression based on Log2 average fold change of PL levels normalised to number of 
unsaturations in the fatty acid chain in each of the four lipidomic clusters identified previously, left panel and the average linear regression of the 
two PPL biosynthesis null cell lines used, right panel.  Table showing the linear regression, correlation and calculated average SI score of all 15 
measrure human derive cancer cell lines. C. Table representing the slope and pearson's coefficient value of each cell line used in the analysis with a 
associated SI score. D. Identification of a group of 88 genes identified to be dysregulated in 2 or more experimental models associated with SI 
score. E. Volcano plot of 231 metabolites measure through polar mass spectrometry of the top correlated cell lines based on spearman ranked 
correlation of the PUPL signature identified in panel. c. F. Chord diagram representing the level of overlap between the 6 different cell models used 
to generate the PUPL signature in panel. c. G. Spearman based correlation matrix of 888 cell lines based on the PUPL genetic signature identified 
in panel c. H. Average mutational load of 888 cell lines in ranked order of correlation with PUPL genetic signature, top panel and the 5 
heterogeneously mutated genes, NRAS and JAG associated with PUPL and ACACB, KEAP1 associated with SPL, bottom panel. I. Heatmap 
representation of 231 polar metabolites in 888 cell lines organised according to correlation with PUPL signature with rows hierarchical cluster 
using spearman-based correlation methods. J. Gene set enrichment analysis of 12 oncogenic associated signalling pathways based on differential 
expression analysis of three PPL knockin/out cell models. Nonpolar metabolomics were normalised to total cell number and protein levels and 
performed in triplicate. All data is represented by the mean and error bars represent the SEM unless otherwise stated. All correlative data analysis 
and differential expression analysis was performed using Matlab 2019b.   
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biosynthesis showed significant changes. HIF1A and NFKB responses were associated with all models 

used while other commonly dysregulated pathways in oncogenic tumours were shown to be differential 

regulated (Fig. 5.6J).   

5.4. Saturation Index regulates tumour chemoresistance through 
regulation of cancer stemness phenotype. 

Given the association between SI and several key signalling pathways associated with a progressive 

tumour phenotype I investigated the consequence of SI on key prognostic factors including disease 

progression and responsiveness to common place clinical treatment options. To investigate the clinical 

relevance of our PUPL associated signature we assessed the correlation between tumours normalised 

to tissue of origin based on t-statistics in 15 tumour subtypes utilising the TCGA datasets. The 90th and 

10th percentile of each tumour subtype were investigated for average patient survival. High correlating 

tumours indicating a predicted high SI phenotype predicted poor overall clinical survival, with 9 tumour 

subtypes investigated having a significance of less 0.05 (Fig. 5.7A). One key prognostic factor that has 

been under investigation in recent years is the association between lipid biosynthesis and drug 

resistance. I therefore investigated the roles that PUPL may play in drug resistance primarily focusing 

on colorectal cancer and commonly prescribed chemotherapy drugs. The CCLE dataset clustered 

according to correlation with a PUPL signature that was cross referenced with cell lines that also were 

found in the Drug sensitivity dataset, and was further modified to remove oncogenic mutations to TP53 

to remove interference with genomic-based drug resistance mechanism (Fig. 5.6G & H). Average 

drug IC50 fold change of the top 10th and 90th percentile of peroxisomal PL signature correlating 

tumour cells was plotted against p-value showing an increased level of drug resistance in cell lines 

correlating with the PUPL signature, including the commonly prescribed chemotherapeutic 5-

Fluorouracil (5FU) (Fig. 5.7B). I further validated this observation utilising SI score measured 

with my high throughput lipidomic dataset in 15 parental cell lines, in addition to our characterised 

DHRS7B peroxisomal PL biosynthesis knockout/in cell lines. The 
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average 5FU IC50 was shown to correlate strongly with SI scores with a Pearson’s coefficient of 0.78 

(Fig. 5.7C). To further address this mechanism, I further looked at the lipidomic landscape in response 

to 5FU, Oxaliplatin and combinational therapy 5-Fluorouracil/Oxaliplatin (FOX) in both wild type and 

DHRS7B null cell lines for the LIM1215 and LIM2405 background parental cells. Nile red labelling of 

lipid bodies was used to quantify lipid body formation and numbers in cells treated with either 5FU,  

Oxa or FOX. All treatments were shown to significantly increase lipid body number in both DHRS7B 

wild type and null cell lines in both LIM1215 and LIM2405 as background parental cell lines (Fig. 

5.7F). Furthermore, this observation was validated using high through lipidomic analysis in LIM2405 

wild type and DHRS7B null cells. Measurement of major lipid storage forms CE, PL and TAG were 

shown to increase in response to 5FU in both wild type and null cells and while null cells had reduced 

overall levels, the fold increase was consistent (Fig. 5.7G). Perhaps most importantly, a significant 

increase in both ether-linked and non-ether linked membrane associated SI score was observed in 

response to 5FU in LIM2405 wild type cells (Fig. 5.7D). While this observation was also true for most 

other major forms of unsaturated lipid species, including increased unsaturation, in addition to total 

levels of DAG’s, TAG’s and LPL’s (Fig. 5.7J). Given the increase in unsaturated lipid levels in 

response to chemotherapy I further investigated the role of membrane associated fluidity utilising the 

DHRS7B null cell lines as a model of inhibited peroxisomal PL biosynthesis. As described in the 

previous chapter DHRS7B null cells are defective in the terminal steps of peroxisomal PL biosynthesis, 

and these cells are unable to increase cellular stores of n:3-5 unsaturated PL species. I was interested in 

the responses to 5FU in DHRS7B null cells given the large increase in PUPL levels, and indeed other 

lipid species. DHRS7B null cells were treated with either DMSO or 5FU for 48hrs and subjected to 

high through untargeted whole cell lipidomic analysis. 5FU as discussed previously led to a sharp 

increase in SI score in LIM2405 wild type cells. However, loss of DHRS7B was again shown to block 

the production of PUPL with only a small increase from -0.1359 to -0.0733 in response to 5FU in 

DHRS7B null LIM2405 cells with a small increase measured in ether linked PL levels (Fig. 5.7K). This 

blockade in PUPL biosynthesis corresponded to an approximately 2.5-fold increase in 5FU sensitivity 

in the two DHRS7B null cell models (Fig. 5.7L). To investigate potential molecular pathways involved 

in the PUPL-mediated chemo-response mechanism we investigated transcriptional changes in DHRS7B 
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null cells. The Nanostring cancer progression panel was used to investigate genes associated with key 

stages of cancer development. 80 differentially expressed genes were identified in LIM2405 null cells 

while LIM1215 null cells had 180 differentially expressed genes. These results reflected what was 

previously shown regarding BRAFV600E dependent downregulation of the PPL pathway leading to 

sustained lipogenesis and therefore loss of DHRS7B in LIM2405 cells had less impact to cellular 

identity and expression profiles. I identified 25 genes that were co-regulated in both LIM1215 and 

LIM2405 cell lines. Co-downregulated genes showed a decrease in the expression of stem cell like 

genes and genes associated with beta catenin transcriptional activity while upregulated genes were 

primarily associated with NFkB signalling and EMT indicating loss of epithelial identity and cancer 

stem cell properties (Fig. 5.7E). Furthermore, there were also a significant number of genes that were 

differentially expressed in LIM1215 cells compared to LIM2405 cells. Increased levels of hypoxia and 

HIF1A targets involved in cellular oxidative stress such as NOS3 and HMOX1 were upregulated in 

LIM2405 DHRS7B null cells but were downregulated in LIM1215 cells while LIM1215 DHRS7B null 

cells upregulated HIF1A targets associated with glycolysis such as PGK, LDHA and PFKFB4 (Fig. 

5.7H). Gene set enrichment also showed a significant level of divergence in response to DHRS7B loss 

in LIM1215 and LIM2405 cells. Most pathway enrichment showed opposing differential expression in 

many pathways including HIF1A, cancer stem cell and cell cycle, which is likely a result of gene 

essential differences as a consequence of the oncogenic mutational landscape. 

5.5. Transcriptional networks and lipid remodelling in human tumour cell 

lines by the PPARδ/γ nuclear receptors 

In the previous chapter I dissected a complex signalling network regulated through the actions of 

intracellular PUPL levels and PPAR mediated transcriptional responses and activity. DHRS7B, 

together with other members of the PPL biosynthetic pathway and PPARγ, were downregulated in 

BRAFV600E tumours. This loss of PUPL levels drove sustained SREBF1 transcriptional 

activity and led to a hyper-lipidomic phenotype associated BRAFV600E driven cancers.  
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Figure 5.7. A polyunsaturated phospholipid genetic signature is associated with tumour survival and chemo/drug-resistance. A. 
Patient survival analysis in 15 human cancer subtypes based on previously identified PUPL signature. B. Log2 of the fold change of drug 
sensitivity in top and middle 10th percentile of cell lines associated with PUPL signature. C. Linear regression model of average IC50 and SI 
score of 15 human derived tumour cells. D. Linear regression model of PL species average fold change of PL by number of unsaturation in 
fatty acid chain of LIM2405 cells treated with 5uM of 5FU for 24 hours compared to DMSO vehicle control of non-ether linked PL, left panel 
and ether linked PL, right panel. E. Heatmap representation of the top homogeneously differentially expressed genes in two separate PPL 
biosynthesis null cell line models measure by Nanostring technology. F. Quantification of Nile red immunofluorescence of the average fold 
change of LIM2405 and LIM1215 wild type and DHRS7B knockout cell line models in response to 5FU, left panel, Oxaliplatin, middle panel 
and combination therapy FOX, right panel. G. Nonpolar mass spectrometry LIM2405 cells treated with either DMSO or 5uM of 5FU for 
24hours of TAG’s, left panel PL’s, middle panel and CE, right panel. H. Heatmap representation of the top heterogeneously differentially 
expressed genes in two separate PPL biosynthesis null cell line models measure by Nanostring technology. I. Log2 fold change of gene set 
enrichment analysis of KEGG based curated gene sets of oncogenic cellular processor/signalling pathways in PPL biosynthesis null LIM1215/
LIM2405 null cell models compared to untargeted control cells. J. Heatmap representation of Log2 average fold change of lipid species 
measure by mass spectrometry ordered according to species, chain length and number of unsaturation’s treated with either DMSO 5FU. K. 
Linear regression model of PL species average fold change of PL by number of unsaturation in fatty acid chain of PPL biosynthesis numb 
LIM2405 cells treated with 5uM of 5FU for 24 hours compared to DMSO vehicle control of non-ether linked PL, left panel and ether linked 
PL, right panel. L. Average IC50 value of PPL biosynthesis LIM1215/LIM2405 null cell treated with 5FU for 48hours compared to 
untargeted wild type controls. Nonpolar metabolomics were normalised to total cell number and protein levels and performed in triplicate. All 
data is represented by the mean and error bars represent the SEM unless otherwise stated. All treatments were performed at 5uM and 24 hours 
unless otherwise stated. All correlative data analysis and differential expression analysis was performed using Matlab 2019b.   
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Given the importance of PPARγ for the regulation of intracellular lipid metabolic pathways I further 

investigated the roles of PPAR signalling utilising the previously characterised lipidomic datasets and 

discussed earlier in this chapter. I initially quantified the transcriptional activity of the PPAR family of 

transcription factors in the various cell-based models. Lentiviral dual-reporter cassettes with a 

destabilised (ds) GFP-T2A-Luciferase open reading frame under the control of four consecutive 

consensus PPRE’s downstream of a puromycin selectable marker under the control of a EIF2A 

promoter was constructed and used to generate a stable PPRE reporter cell lines used in the lipidomic 

analysis  presented  in  Fig. 5.2.  A cut-off of 100 arbitrary luciferase units (approximately 5 times the 

background) was set to distinguish between cells with induced PPAR activity compared to cells with 

little or no PPAR activity. Transfected cells were selected with 1-2ug/ml of puromycin for 96 hours and 

then 20,000 cells were plated in white luminescent 96well tissue culture treated plates and left to adhere 

overnight in normal cell culture media. The following day the media was changed to a low serum media 

(2% FBS) to minimise the effects of serum on PPRE activity, and treated with either DMSO, 

Rosiglitazone of GW501516 (PPARδ agonist) and left for an additional 24 hours followed by cell lysis 

and luciferase/protein quantification. Seven cell lines were shown to be below the PPRE activity cut-

off and were determined to be PPAR inactive cells while an additional 8 cell lines were shown to be 

above the cutoff and deemed to be PPRE active cell lines (Fig. 5.8A & C). Furthermore, to address the 

which PPAR family members were active in each cell line, cells were treated with either Rosiglitazone 

or GW501516 for 24 hours and measured for changes in luciferase activity compared to DMSO vehicle 

controls. BRAFV600E tumour cell lines, RKO and LIM2405 were shown to be PPAR active but were 

unresponsive to Rosiglitazone but were GW501516 Responsive while a third BRAFV600E tumour cell 

HT-29 were not PPRE active. SW480 and SW620 cells were Rosiglitazone responsive but did not 

respond to GW501516 while LIM1215, U2OS, HS578T and MDAMB231 were both Rosiglitazone and 

GW501516 responsive (Fig. 5.8B & C). Analysis of the previously characterised lipidomic datasets 

consisting of 15 human cancer cell lines was used to address the lipid association of PPAR active 

compared to inactive cells. Cells were cluster according to PPRE activity as either PPAR active or 

PPAR inactive and then were further clustered according to agonist response. Cluster 1 corresponded 

to GW501516 responsive PPRE active cells, cluster 2 was Rosiglitazone responsive PPRE active cells, 
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cluster 3 was Rosiglitazone/GW501516 responsive PPRE active cells and cluster 4 corresponded to 

PPRE inactive cells. Relative levels normalised to total protein of major lipid species within these 

clusters showed no major differences in lipidomic profiles with the exception of cluster 4 which was 

associated with no PPRE activity having increased lipid levels across all lipid classes with the exception 

of CE’s which as discussed previously was negatively correlated with total lipid levels (Fig. 5.8D). 

Unsupervised Pearson’s based hierarchical clustering analysis was performed on each of the four 

clusters. Cluster 4 showed significant divergence in the lipidomic profile while cluster 2 and 3 showed 

a very similar lipidomic profile across all cell lines found in this group and the same was observed in 

cluster 1 which was not similar to cluster 2 and 3 but both RKO and LIM2405 cells had similar 

lipidomic profiles (Fig. 5.8E). Pearson’s correlation of individual lipid species associated with PPARγ 

mRNA levels compared to PPRE reporter activity in 15 human cancer cell lines showed an interesting 

correlation with lipid classes. All lipid species compared to PPRE activity and mRNA expression levels 

showed an overall positive correlation while ether linked PL’s were shown to weakly correlated with 

both PPARγ expression and PPRE reporter activity (Fig. 5.8F). Looking at the top correlated lipid 

species with both PPARγ expression and PPRE activity showed that this group consisted primarily of 

ether linked  PL  with  higher ordered numbers of unsaturation (Fig. 5.8G). Similarly, negatively 

correlating lipid species showed largely monosaturated/saturated ether linked PL’s or short chain ether-

linked PL species (Fig. 5.8H). I performed the same analysis this time looking at the PPARδ mRNA 

expression levels. The associations were far less consistent with several lipid classes and species 

associated strongly with PPARδ expression and PPRE activity consisting of ether-linked PL’s, PG, LPL 

and SM species (Fig. 5.8I). Looking at the top three upregulated lipid species identified in each cluster 

based on PPRE activity and response showed that PPARγ and PPARδ responsive cells showed 

increased levels of higher order polyunsaturated ether linked PL’s species. PPARδ associated cells 

showed increased levels of Myelin sheath lipids while PPAR inactive cells showed increased levels of 

phosphoglycerates (Fig. 5.8J). Finally, differential expression analysis on untreated RNAseq 

transcriptomes based on clusters associated with PPRE activity and agonist response as discussed 

previously was used to identify associated alterations in oncogenic pathways associated with PPAR 

signalling. Gene set enrichment analysis of the transcriptomics of the 15 cell lines based on PPRE  
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Figure 5.8. Opposing roles of PPARδ/PPARγ activity in human tumour cell reveals a metabolic signature of transcriptional activity. A. 
PPRE luciferase reporter activity measures in 15 human cancer cell lines. B. PPRE luciferase reporter activity measured in cells in response to 
either DMSO, GW501516 or Rosiglitazone normalised to DMSO vehicle control and clustered according to reporter activity. C. Table corresponds 
to average PPRE luciferase activity and the response to Rosiglitazone and GW501516. -, non-responsive, + 2-3 fold increase, ++ 3-4 fold increase 
and +++ >5 fold increase in luciferase activity. D. Non polar lipidomic analysis of 15 human cancer cells clustered according to PPRE activity, 
cluster 1 cell that only response to GW501516, cluster 2 are cells that only respond to Rosiglitazone, cluster3 are cells that respond to both 
Rosiglitazone and GW501516 and cluster 4 are cell that do not have significant PPRE activity (PPAR inactive). E. Heatmap representation of non 
polar lipidomics analysis clustered according to PPRE activity and agonist response. F. Pearson correlation of PPARγ mRNA expression level and 
lipid species level compared to PPRE activity and lipid species level & G. zoomed in of lipid species correlation between PPARγ expression level 
and PPRE activity with a coefficient greater than 0 or H. less than zero. I. Pearson’s correlation of PPARD mRNA expression level and lipid 
species level with a pearson coefficient greater than 0. J. Log2 average fold change of lipid species associated with each cluster depending on PPRE 
activity and response. K. Gene set enrichment analysis of commonly dysregulated oncogenic pathways associated with each cell cluster based on 
PPRE activity and response. L. Heatmap representation of the top 50 genes upregulated in each cell cluster based on PPRE activity and response. 
All data presented is representative of three independent experiments. Nonpolar metabolomics were normalised to total cell number and protein 
levels and performed in triplicate. All data is represented by the mean and error bars represent the SEM unless otherwise stated. Two tailed students 
t-test was used to test for statistical significance ((*p < 0.05, **p < 0.01, ***p < 0.001 & ****p< 0.0001). All treatments were performed at 5uM
and 24 hours unless otherwise stated. All correlative data analysis and differential expression analysis was performed using Matlab 2019b.
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activity and response showed distinct changes in several oncogenic associated pathways. PPARγ largely 

showed downregulation of many oncogenic pathways including HIF1A, WNT and OxPHOS while 

PPARδ associated cell lines showed a largely contradictive profile opposing PPARγ mediated 

influences (Fig. 5.8K & L). Interestingly, the pathway analysis was shown to also largely mimic the 

effects of DHRS7B which follows what was previously shown regarding the PPL/PPARγ axis 

highlighted in the previous chapter (Fig. 5.8K & Fig. 5.6J).  

To further address the roles of PPAR signalling in human tumour lipidomic reprogramming I looked to 

characterise the PPAR responsive cell populations associated in human cancer cell lines using 

fluorescent activated cell sorting compared to unsorted cell populations. The role of PPAR signalling 

in human cancer is rather complicated to dissect. Artificial stimulation of PPAR receptors has been an 

important tool in looking at their functions but amplifies experimental bias but forcing cells into 

unnatural cellular states. Furthermore, I showed throughout this thesis the pathway cross talk even small 

quantities of potent agonists such as Rosiglitazone have on cellular signalling networks including 

autophagy, apoptosis and stress responses. Again, highlights experiment bias within the system. 

Furthermore, one of the key issues with linear based transcriptome analysis was gene-set overlap. This 

is highlighted when looking at a group of closely related transcription factors associated with lipid 

metabolism. ChIPseq analysis of LXRA, PPARδ, PPARγ and SREBF1 highlights the level of overlap 

between the converging pathways. Transcription factor recruitment to promoter regions of specific 

genes showed significant levels of redundancy between PPARγ and PPARδ, shown to be co-recruited 

to over 1000 different gene promoters, while significant levels of redundancy with SREBF1, PPARγ 

and PPARδ was observed too, with 229 and 85 co-recruitments to gene promoters respectively. LXRA 

had significantly less redundancy compared to PPARδ, PPARγ and SREBF1 (Fig. 5.9C). Furthermore, 

this is highlighted by looking at predicted PPAR activity utilising GSEA based methods compared to 

experimental analysis of PPRE reporter activity in a group of 15 human cancer cell lines. No correlation 

was observed between PPRE reporter activity and predicted PPAR signature scores (Fig. 5.9E). The 

reasons become clear when you look at the genes associated with PPARγ signatures, largely consisting 

of key metabolic enzymes that overlap with several other well characterised transcriptional gene 



signatures including SREBF1. Furthermore, given the survival advantages of sustained SREBF1 

activity in addition to the negative effects of PPARγ activity on tumour growth and survival it is easy 

to see were false conclusion can be made. To better understand the cellular mechanism of PPAR 

activity in the context of tumour metabolism I looked to further investigate PPRE active cell 

populations compared to unsorted cell populations utilising the previously described lentiviral 

reporter system. Cells with high PPRE promoter activity were FACS sorted using a destabilised GFP 

construct separated from the luciferase construct through means of a T2A peptide sequence (Fig. 

5.9A). Lentiviruses packaged with the duel reported transfer vector were used to generate stable cells 

with a PPRE-dsGFP-Luciferase construct. Post cell selection cell populations were either sorted for 

GFP or re-plated. Finally, cell was left to grow for a further 96hours, and samples were taken for 

luciferase measurement or lipid and RNA isolation (Fig. 5.9B). Luciferase activity was measured in 

two of the sorted cell populations. dsGFP sorted and unsorted PPRE reporter cells were plated at 

20,000 cells/well in white luminescent 96 well tissue treated culture plates were left to adhere 

overnight. Cells were transferred onto low serum media (2% FBS) for a further 24 hours and then 

lysed for luminescence/protein quantification. dsGFP sorted cells showed between a 10-15-fold 

increase in luciferase activity compared to the unsorted populations (Fig. 5.9D). RNAseq analysis of 

dsGFP sorted cells compared to unsorted cell populations showed several major changes in the mRNA 

profile. Interestingly, many of the upregulated and downregulated genes in GFP sorted cell 

populations compared to unsorted populations were not PPAR target genes. PPARγ associated cells 

showed decreased expression of oxidative stress associated genes including PRDX2, NOS2 and GPX1 

while both groups upregulated various solute and lipid transporters (Fig. 5.9F & G). PPARγ 

associated sorted cells did not show significant enrichment of genes associated with lipid metabolism 

however, PPARδ associated sorted cells showed upregulated levels of key lipid metabolic genes such 

as LPIN1, SCD and well characterised PPAR targets genes including PCK2, LDLR and FABP6 (Fig. 

5.9G). Finally looking at the changes in major lipid stores between GFP sorted and unsorted cell 

populations showed patterns. U2OS, RKO, SW620 and SW480 GFP sorted cell showed significant 

increases in TAG levels while this correlated with increase in DAG levels in SW620 and SW480 cell 

but not RKO cells. This was as descried earlier in relation to Rosiglitazone treated colorectal cancer 

cells. Furthermore, a second major lipid class that showed significant changes was Page | 132 
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increased levels shown in ether linked PL’s shown in SW480 and LIM2405 cells again similar 

to previous observations (Fig. 5.9H & K) This was shown to correlate with SI as per previously 

shown when utilising Rosiglitazone treatment. RKO, SW620 and U2OS were all shown to have 

increase SI scores compared to unsorted cell populations (Fig. 5.9H & I).  

5.6. Targeting PPARγ mediated tumour lipid metabolism to reverse PPL 
induced chemoresistance 

As previously shown, PPARγ is a key regulator of peroxisomal PL biosynthesis. PPARγ activation is 

associated with increased ether lipid production, saturation index stabilisation and downregulates key 

enzymes through transcriptional regulation. Lipid content in tumour cells has previously been shown to 

influence chemoresistance (227), so I therefore investigated the effects that PPARγ agonists had on 

tumour cell chemoresistance. Firstly, I measure the correlation between PPRE reporter activity and 5FU 

resistance but found no association (Fig. 5.10A). However, the effects of the co-treatment of 

Rosiglitazone with 5-FU showed a 2.5-fold increase in 5FU cytotoxicity compared to 5FU alone, while 

this effect was shown only to be effective in DHRS7B WT cells with no significant change in 5FU 

sensitivity in DHRS7B null cells, indicating that Rosiglitazone was potentially working through the 

regulation of peroxisomal PL biosynthesis (Fig. 5.10B). One of the key findings from section 5.3 was 

the association between 5FU and chemo induced lipogenesis. 5FU treatment resulted in a sharp increase 

in lipid droplet formation that was shown to regulate the levels of PUPL leading to chemoresistance. 

Rosiglitazone was shown to negatively regulate this phenotype with co-treatment of Rosiglitazone with 

5FU or Oxa showing no increase in SI or lipid droplet formation. I therefore investigated the effects of 

Rosiglitazone co-treatment with 5FU on lipid compartmentalisation and storage via Nile red 

quantification of intracellular lipid bodies. As previously discussed above, chemo-induced lipogenesis 

was a key alteration in cellular lipid metabolism in response to chemotherapy. Co-treatment of cells 

with both Rosiglitazone and 5FU relieved cells of chemo-induced lipogenesis in DHRS7B WT cells 

and coincided with reduced 5FU resistance, while DHRS7B null cells followed the previously described 

trend and resulted in a large significant increase in lipid droplet number when co-treated with 5FU and 

Rosiglitazone (Fig. 5.10C). High throughput untargeted lipidomic analysis verified these observations 
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Figure 5.9. Non-invasive dissection of PPAR signalling in human tumours shows subpopulation of cells associated with changes in TAG 
metabolism and saturationindex. A. Cartoon schematic of the duel reporter lentiviral transfer vector used in this study with a firefly luciferase in 
addition to destabilised GFP open reading frame under the control of a consensus PPRE motif. B. experimental design associated with generating 
non-invasive methods to study tumour PPAR transcriptional networks by generating PPRE-GFP reporter stable cell lines and measuring 
phenotypical readouts including high throughput untargeted mass spectrometry and next-generation sequencing of untreated sorted cells and 
unsorted control cells. C. Network diagram representing overlaps in transcriptional networks of 4 closely related transcription factors, PPARγ, 
PPARD, LXRA and SREBF1. D. Luciferase activity in PPAR active U2OS and LIM2405 cells either left unsorted or sorted for GFP positive cells. 
E. Linear regression analysis based on Pearson’s algorithms of measured PPRE luciferase activity and predicted PPAR activity based on
transcriptomics of manually curated gene sets in 15 human cancer cell lines. F. Heatmap representation of RNAseq analysis of the top dysregulted 
genes associated with cell lines (LIM1215, SW620, RKO & LIM2405) that were responsive to PPARγ activation and G. Same as F but for PPARD
activation. H. Mass spectrometry measure lipid levels of 5 major forms of intracellular lipid species of GFP sorted cells compared to appropriate 
unsorted control cells. I. SI score of PPAR active cell lines in GFP sorted cell populations compared to unsorted control populations. J. heatmap 
representation of high throughput untargeted mass spectrometry of PPAR active GFP sorted unsorted control cell populations of TAG’s. K. Zoomed 
in representation of panel J. All data is representative of three independent experiments and are representative of the mean and SD unless otherwise 
stated.  Nonpolar metabolomics were normalised to total cell number and protein levels and performed in triplicate. GFP and unsorted cell
populations were sorted and left to grow for an addition 96 hours before RNA/lipid extraction while for luciferase activity 20,000 were plated into
96 well plates and left for an addition 48hours. Two tailed students t-test was used to test for statistical significance ((*p < 0.05, **p < 0.01, ***p <
0.001 & ****p< 0.0001).
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with DHRS7B WT cells showing large increases in major lipid storage forms in response to 

chemotherapy while no significant change was observed when co-treated with Rosiglitazone. DHRS7B 

null cells showed a similar pattern but co-treated groups showed a large increase in all major lipid 

storage forms confirming the observations made in relation to increased lipid body formation (Fig. 

5.10E). Furthermore, as previously described, key to chemo-induced lipogenesis was the formation of 

PUPL with DHRS7B null cells unable to pool PUPL and this led to a corresponding decrease in 

chemoresistance. Co-treatment with rosiglitazone in LIM2405 DHRS7B WT cell showed that 5FU 

alone led to an increase in saturation index score while co-treatment with Rosiglitazone inhibited the 

cells ability to pool PUPL. This corresponded to DHRS7B null cells where neither 5FU alone or co-

treated with Rosiglitazone were able to pool PUPL’s and may explain why DHRS7B null cells showed 

no marked increase in cytotoxicity in response to both Rosiglitazone and 5FU (Fig. 5.10H). One of 

the key functions of 5FU induced lipogenesis leading to increase in lipid droplet levels is thought to be 

a protective role against chemo-induced ER stress responses. To further investigate the pathways that 

are involved in the regulation of PL dependent chemoresistance I used western blotting techniques to 

investigate the activity of key signalling proteins involved in the regulation of ER stress. LIM1215 cells 

were treated with 5FU, Oxa(platin) and Rosiglitazone in combination or alone for 24 and 48hrs. I 

assessed key members of the ER-related stress response pathway and showed that both Rosiglitazone 

and co-treatment with chemotherapeutic drugs produced a marked increase in ER stress associated 

markers including increased phosphorylated eIF2A (at Ser63) and a transcriptional target involved in 

protein chaperone and folding functions, BiP. Furthermore, increased levels of phosphorylated 

SAPK/JNK1 were observed in response to 5FU alone in addition to Rosiglitazone, and co-treated cells 

with Rosiglitazone, at both 24 and 48hrs. Active SAPK/JNK is key to driving cell undergoing the UPR 

toward apoptotic pathways rather than protective and reparative cellular mechanism (Fig. 5.10D). 

Similar results were observed in other colorectal cancer cell lines with ER stress markers phosphor 

eIF2a and BiP shown to be increased in chemo drug treated cells while this corresponded to an increase 

in the terminal apoptotic marker, cleaved PARP, with co-treated groups showing a greater fidelity 

towards pro-apoptotic responses as a result of UPR activation (Fig. 5.10G). Stabile RKO cells 

overexpressing either DHRS7B-T2A-eGFP ORF or eGFP were generated through transfection. 
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Positively transfected cells were selected with GFP through FAS and were further maintained on 

geneticin allowing for cells with integrated expression cassettes to propagate. RKO-DH7B 

overexpression cells showed a significant increase in 5FU resistance while GFP alone showed similar 

IC50 value compared to RKO transfected WT cells (Fig. 5.10F, left panel). LIM2405 5FU resistant 

cell lines were generated through clonal expansion of 5FU resistant clones. LIM2405 5FUR cell were 

validated for 5FU resistance by determining the IC50 value of 5FU. LIM2405-5FUR cells were 

approximately 4-fold more resistant to 5FU cellular cytotoxicity compared to parental LIM2405 cells 

(Fig. 5.10F, middle panel). Co-treatment of LIM2405R cells with Rosiglitazone lead to a 3-fold 

increase in 5FU sensitivity showing similar results in wild type and 5FU insensitive cell lines (Fig. 

5.10F, right panel). However, the lipidomic profile of these cells were not assessed. To further 

investigate the direct cellular responses to overexpression of DHRS7B in RKO cell I investigated ER 

stress pathways by western blot analysis. RKO control-GFP transfected cells showed similar results to 

other BRAFV600E tumour cell lines with cells being largely unresponsive to Rosiglitazone alone but co-

treated cell groups showed increased cleaved PARP that corresponded with increased levels of the UPR 

in response to co-treatment of cells with Rosiglitazone. Furthermore, an RKO-DHRS7B stably 

overexpressing cell line were generated through transfections of wild RKO cells with a DH7B-T2A-

eGFP cassette with a geneticin selectable marker. RKO-DH7B cells were selected through the GFP 

marker and were further maintained on geneticin. Overexpression of DH7B in RKO cells was shown 

to protect cells from UPR with decreased levels of total and phosphorylated-eIF2a, in addition to 

downstream UPR transcriptional targets such as BiP, while decreased levels of cleaved PARP were 

observed in 5FU treated cells but returned to basal levels when co-treated with Rosiglitazone (Fig. 

5.10I). One key transcription factor acting downstream of the UPR driving cells towards survival is 

NFkB. Overexpression of DHRS7B in LIM2405 cells showed increased transcriptional levels of many 

well characterised NFkB target genes including several interleukins, TNF, MMP9 and NKFBIA/Z. 

Furthermore, other upregulated genes in response to DHRS7B overexpression included key genes 

involved in stress responses in addition to genes associated with chemoresistance and cancer stem cells 

(Fig. 5.10J). 



Figure 5.10. Rosiglitazone counteracts peroxisomal phospholipid mediated chemoresistance by driving ER stress induced apoptosis. A. 
Linear regression analysis using Pearsons based algorthms comparing PPRE-luciferase reporter activity and average IC50 of 5FU. B. Average 
relative IC50 values of LIM2405 and LIM1215 cells treated with increasing concentrations of 5FU and 1uM of Rosiglitazone, left panel and 
LIM1215/LIM2405 DHRS7B knockout cell models, right panel. C. Quantification of Nile red immunofluorescence measuring average lipid 
droplet fold change per cell in response to 5FU/Rosiglitazone combination treatment in LIM2405 wild type and DHRS7B null cell lines. D. 
Representative western blot analysis of LIM1215 wild type cells treated with 5FU, Oxa, FOX or R/5FU for 24 and 48hours looking a key marker 
associated with ER stress activation and late stage apoptosis. E. Mass spectrometry lipidomic analysis of LIM2405 wild and DHRS7B null cells 
lines in response to Rosiglitazone or 5FU alone or in combination of TAG’s, left panel, PL’s. meddle panel and CE’s, right panel. Error bars 
represent the 5th and 95th percentile and box represents the median and the 25th and 75th percentile F. 5FU average IC50 values of Stable RKO 
cell lines overexpressing either eGFP along of DHRS7B-T2A-eGFP constructs, left panel. 5FU average IC50 values of LIM2405 wild compared 
to 5FU resistant LIM2405 cells, middle panel. Average IC50 values of LIM2405 5FU resistant cells treated with 5FU alone or in combination 
with a 1uM of Rosiglitazone. G. Representative western blot analysis of key markers of ER stress activation and apoptosis in HT29, and SW480 
cells treated with either Rosiglitazone or 5FU along or in combination 24 hours post treatment. H. Linear regression analysis of Log2 average 
fold change of PL species organised according to number of unsaturation’s per lipid chain in response to 5FU alone or in combination with 
Rosiglitazone in LIM2405 wild type cells, left panel and LIM2405 DHRS7B null cell, right panel. I. Representative analysis of RKO eGFP or 
RKO DHRS7B-T2A-eGFP stable cells treated with either Rosiglitazone or 5FU along or in combination or key markers associated with ER 
stress and late stage apoptosis 24 hours post treatment. J. Nanostring analysis of GFP sorted LIM2405 cells either over expressing eGFP alone or 
DHRS7B-T2A-eGFP construct with top upregulated genes sorted according to gene ontology associated with chemoresistance, stress responses, 
NFkB targets and cancer stem cell associated genes (n=6). K. Representative western blot analysis of LIM2405/LIM1215 wild type or DHRS7B 
null cell lines looking at key genes associated with ER stress activation and late stage apoptosis. All data is representative of three independent 
experiments and are representative of the mean and SEM unless otherwise stated. All treatments were performed at 5uM and 24 hours unless 
otherwise stated. All correlative data analysis and differential expression analysis was performed using Matlab 2019b. Two tailed students t-test 
was used to test for statistical significance ((*p < 0.05, **p < 0.01, ***p < 0.001 & ****p< 0.0001).   
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To further confirm these observations, I also analysed the changes in ER stress responses in 

DHRS7B null cells. DHRS7B null cells showed markedly increased levels of key ER stress 

markers such as phosphorylated-eIF2a and BiP while this also increased the levels of pro-

apoptotic regulatory JNK pathway which correlated with cleaved-PARP levels in both 

LIM1215 and LIM2405 background DH7B null cells (Fig. 5.10K). Transcriptionally, DH7B 

null cells showed decreased levels of cancer stem cell associated genes while NFkB targets 

were both up and downregulated, upregulated genes were largely pro-inflammatory/pro-

apoptotic associated. PPRE-GFP sorted cell populations also showed significant changes to 

solute transporters, in addition to reduced NFkB target genes showing that DHRS7B is a key 

regulator of pro-survival stress responses. PPARγ activation transcriptionally regulates 

peroxisomal activity through both pro-autophagic responses and transcriptional downregulation 

of peroxisomal PL biogenesis allowing for pro-apoptotic JNK signalling in response to stress 

driving cells down pro-apoptotic pathways in response to chemotherapeutics (Fig. 5.10l). 

In the previous section I described and investigated signalling networks that were governed by 

PUPL levels within colon tumour cell lines. Membrane associated lipid  s a t u r a t i o n  

l e v e l s  w e r e  s h o w n  t o  regulate PPARG signalling outcome through an AMPK dependent

signalling mechanism that ultimately led to sustained SREBF1 activity and thus drove 

sustained lipogenesis. Furthermore, I have shown that PUPL levels are important for 

metabolic dependent chemoresistance. To further investigate the cellular processes that play a 

role in the regulation of chemoresistance to 5FU in the context of PPAR signalling and 

colorectal cancer I again made use of the TCGA datasets for clinically relevant mRNA 

expression data. Analysis of differential expression of colorectal tumours divided into two 

sub-group dependent on tumour expression levels of DHRS7B into the top 10th a n d  9 0 th

percentile showed a significant proportion of genes associated with oxidative 

phosphorylation were upregulated in DHRS7BHi tumour samples while the opposite was

true for PPRE-GFP sorted cells described in previously (Fig. 5.11B). DHRS7BHi tumours
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were shown to also downregulate HIF1A signatures and predominantly opposed the signature 

observed in the PPRE-GFP sorted cells (Fig. 5.11A & B). Looking at the average expression of 

OxPHOS associated genes in DHRS7BHi vs DHRS7BLo tumours showed that OxPHOS 

associated genes were mostly upregulated in DHRS7BHi tumours (Fig. 5.11C, left panel). The 

opposite held true for PPRE-GFP sorted cells associated with PPARG, with OxPHOS  

associated genes primarily downregulated while PPARD associated genes showed no significant 

change in average expression compared to unsorted controls (Fig. 5.11C, right panel).  To 

further validate these observations, I used previously described DHRS7B overexpression and 

null cell models. Overexpression of DH7B led to upregulation of key transcriptional regulators 

of mitochondrial biogenesis an OxPHOS that included PPARGC1A, PML and NUR77 (Fig. 

5.11H). Furthermore, in the context of oxidative stress, several key targets of HIF1A were 

shown to be differentially regulated in response to loss of DHRS7B. Metastatic and stress 

associated genes were mostly upregulated in DHRS7B null cells while changes in key 

glycolysis genes were shown to be dependent on cellular genotype with BRAFWT cells often

showing opposing differential expression compared to BRAFV600E cells (Fig. 5.11 H-K).

Interestingly, these changes in oxidative phosphorylation together with subsequent HIF1A 

responses correlated with changes in cell survival. Colorectal tumours either expressing high 

levels of OxPHOS associated genes or lowly expressing OxPHOS genes showed no significant 

change in patient survival. However, looking at colorectal tumours overexpressing both OxPHOS 

associated genes an DHRS7B showed that DHRS7B correlated with OxPHOS related gene expression 

in addition to poor patient survival (Fig. 5.11E). Furthermore, analysis of patient-matched tumour 

samples showed that DHRS7B was overexpressed in most stage IV colorectal tumours compared to 

adjected normal mucosa controls (Fig. 5.11D, left panel). Conversely, DHRS7B was downregulated 

in metastatic disease showing a reduction in mRNA expression levels in liver metastasis compared to 

stage IV tumour controls (Fig. 5.11D, right panel). This in conjunction with DHRS7B transcriptomic 

analysis indicates DHRS7B is required for cellular stress responses but is a negative regulator of 

metastatic disease through protection of cells from HIF1A activation. 



Figure 5.11. DHRS7B and PPARG are associated with oxidative phosphorylation, HIF1A signalling signatures and poor prognosis in 
colorectal cancer. A. Gene set enrichment analysis of RNAseq transcriptomics of PPARG associated cell, left panel and PPARD associated cells, 
right panel. B. MA plot of differential expression analysis of colorectal tumours with the 90th percentile of DHRS7B compared to the 10th 
percentile. C. Average gene expression of OxPHOS associated genes in high survival and low survival patient groups, left panel. Analysis of 
OxPHOS associated gene expression of DHRS7B hi expressing tumour compared DHRS7B low expression colorectal tumours, middle panel. 
RNAseq analysis of OxPHOS associated genes of PPARG associated sorted cell compared to unsorted wild type controls, right panel. D. RNAseq 
analysis of DHRS7B expression levels in patient matched normal and tumour tissue samples, left panel. RNAseq analysis of DHRS7B expression 
levels in patient matched stage IV colorectal tumours and liver metastasise. E. Patient survival levels of tumours overexpressing OxPHOS 
associated genes, top panel. Patient survival analysis of tumours overexpressing OxPHOS associated genes that also overexpress DHRS7B, bottom 
panel. F. Heatmap representation of OXPHOS associated genes measured by RNAseq analysis of PPARG associated GFP sorted cells compared to 
unsorted control cells. G. Heatmap representation of dysregulated OxPHOS associated genes from panel. g in DHRS7B high verse DHRS7B low 
expression colorectal tumours. H. Nanostring analysis of mRNA expression of key transcription factors involved in mitochondrial turnover and 
oxidative phosphorylation in LIM2405 GFP or DHRS7B-T2A-eGFP sorted cells. Nanostring analysis of mRNA levels of well characterised 
HIF1A genes associated with Metastasis, I., Metabolism, J. and Stress, K. in LIM1215/LIM2405 DHRS7B null cells normalised to untargeted 
control cells. All data is representative of three independent experiments and are representative of the mean and SEM unless otherwise stated. All 
treatments were performed at 5uM and 24 hours unless otherwise stated. All correlative data analysis and differential expression analysis was 
performed using Matlab 2019b.   
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5.7. Discussion 

GSEA based tools are widely implemented and common place in the bioinformatics data pipeline. The 

idea as an approach interpret often daunting and complex datasets such as NGS based 

transcriptomics by grouping ranked ordered gene lists by either p value or fold change into enriched 

pathway scores and easily digestible datasets while reducing the amount of many hours required to 

process. However, we have shown throughout this chapter and the previous chapters that GSEA is often 

not a useful tool for prediction of tumour metabolic states, particularly in metabolic disease 

models such as cancer. In this chapter, I presented a data analysis pipeline based on reverse genetics to 

better dissect high confidences genetic readouts associated with metabolic phenotypes in 

human tumours. Other groups have in recent years attempted to outperform classical GSEA based 

approaches first developed by the Broad institute. For example, high throughput data mining-based 

approaches such as the Hallmarks data set generates gene sets based on experimental 

annotations. However, this methodology still targets genes with functional similarities and 

fails to take into account confidence and promiscuity of gene sets [312]. A more recent methods to 

target geneset enrichment looked at slightly modified algorithms of standard GSEA. GSEA is 

similar to standard GSEA by looking at the ranked list of genes based on metrics including 

pValue or fold change i n  o r d e r  to rank genes in the given population sample, NGSEA 

looks at the ranked orders network based score [317]. While classical GSEA does take into 

account network size and the proportion of gene overlap the authors claim the NGSEA 

outperforms standard GSEA significantly. Other datasets such as PID and Biocarta do take into 

account experimental data analysis targeting primarily growth factor induced transcriptome changes 

in addition to looking at the effects of oncogenic mutations into various disease models 

[318]. Interestingly, reverse genetic based approaches are among the earliest developed and 

while the experimental procedures of targeting these pathways are often rather intrusive, they 

provide well curated targeted datasets with high confidence.  

One of the major problems I identified in chapter 3 was the poor association that some metabolic 

phenotypes had with targeted functional based GSEA. Part of the issues that hinder accurate 

prediction of genetic signatures is a numbers game, where small datasets often targeted in small cellular 
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subpopulations show alterations that are either cell type specific or nonspecific. The notion of FDR was 

introduced into transcriptomics analysis based on complications introduced into t-tests when looking 

at very large datasets. For example, looking at the changes across two transcriptomic datasets based 

on similar or even the same samples, t-test introduce the possibility that 5% of the dataset could 

be differentially regulated based solely on probability. This makes it hard to distinguish between 

true positives and false positives [319]. Small datasets are particularly susceptible to false discovery. 

Using multiple biological replicates can significantly increase the fidelity of accurate prediction 

of true positives and this is an issue that many genetic signatures do not consider. Furthermore, 

multiple biological datasets can also somewhat circumvent or diminish the impact of the complexity of 

biological systems including changes in signalling mechanism across multiple cell-based models 

accounting for changes in transcriptomics and other cellular process such as epigenetics.  

In this chapter I highlighted the effects of mutational load on GSEA based approaches to 

identified dysregulated metabolic pathways in human cancer. GSEA based approaches on 

ranked order transcriptomic datasets revealed that genetic pattern in human cancer cell lines were 

either linear and parametric in nature or skewed non-linear logarithmic in nature. Linear based gene 

sets such as what we observed in TAG biosynthesis was parametric in nature in relation to its 

population distribution while mutational load had no impact on signature scores. Furthermore, they 

were shown to often be relatively good predictors of phenotypical outcome such as TAG’s 

biosynthesis where gene set scores correlated highly with TAG metabolite levels. Logarithmic based 

gene sets often showed little or no correlation and sometimes even negative correlation such as with 

CE’s where high gene set scores was a predictor of low cholesterol levels. Furthermore, 

logarithmic defined gene set patterns showed positive correlation with tumour mutation load. 

This notion is not surprising given the principle of individualism is based on small nucleotide 

polymorphisms. For example, identification of 280, 843 somatic mutations associated with 36 

different non-cancerous tissue sites from 547 samples showed significant associations of mutational 

landscape with age and race. Furthermore, C>T mutations associated with Caucasian sun exposure 

showed significant levels of pathway enrichment dysregulation which was further associated with 

chromatin state [320]. Other groups describe non-cancerous copy number aberrations of 

NOTCH1 associated with human skin leading to oncogenic signature in tumour free 
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tissues [321]. Furthermore, similar somatic impacts on cellular transcriptomics of normal human tissue has 

been observed in many tissues including GI tract [322-324] and brain [323, 325]. While the 

influence of oncogenic signatures has not been extensively investigated, cancer is fundamentally a 

genetic disease and it is not hard to see why these rules not only apply to normal tissue but tumorigenic 

tissue as well. Tumour heterogeneity is another concept that follows these principles. The idea that 

tumours are a mass of identical cells is not only flawed, it is not correct. Even in cell populations in 

controlled environments such as laboratories genetic changes are observed in monoclonal 

cell populations. I showed this with dissection of PPAR signalling networks. Cell sorted based on 

PPAR responsive cells compared to unsorted populations showed significant changes in 

transcriptomics of genes associated with small molecule transport, cell cycle checkpoints and oxidative 

phosphorylation. While this is based on transcriptional changes the principle is the same and provides a 

schematic of a complex interconnect biological system. Single cell sequencing is a more commonly 

implemented tool in oncology research. It gives the ability to investigate changes in given populations on a 

transcriptome level. Single cell sequencing to dissect tumour cell populations has been used to 

investigate tumours including melanomas and gliomas [326, 327]. Furthermore, SCS to dissect 

transcriptional changes associated with drug resistance in human breast cancer cell lines has also been 

explored validating the notion of tumour heterogeneity is no only a in vivo observation [328]. Furthermore, 

recent advances in CRISPR technology has allowed scientists to replicate heterogeneity in vitro 

utilising techniques including perturb-seq [314,315].                                            . 

Given the issues associated with using GSEA based prediction on metabolic phenotyping I looked to 

better predict previously targeting metabolic phenotypes. I identified a genetic signature associated with 

PUPL levels using a simple method for quantification of the ratio of unsaturated fatty acids compared to 

saturated PL levels based on simple linear regression model. Correlation analysis of my genetic 

signature was shown to predict high:low ratio of unsaturation:saturated PL to a high 

degree. Furthermore, I was able show that that associated genetic signature was 

associated with chemoresistance while further demonstrating that this association was causative. 

Previous analysis of membrane saturation in relation to drug resistance was suggestive that saturated PL 

were important in regulation of cellular stress however the conclusions in regards to PL and drug 

resistance were largely 



speculative rather than causational [329]. Investigation into the long-chain fatty acid receptor, GRP120 

showed that chemo induced upregulation of GRP120 led to increased production of de novo fatty acid 

synthesis while also supporting increase expression of peroxisomal ABC fatty acid transporters through 

actions of NFkB [330]. In addition, ABC fatty acid transporters are currently under investigation in 

their potential use as a chemosensitizer [331, 332]. I saw similar biological response in our various PPL 

biosynthesis models. Overexpression DHRS7B led to increase expression of key NFkB target genes 

while downregulation of peroxisomal PL biosynthesis pathway in BRAFV600E tumour cells also 

correlated with decreased 5FU resistance compared to BRAFWT cells correlating with SI. Furthermore, 

other groups has associated fatty acid desaturation as a key marker of cancer stem cells while I showed 

similar observations in colorectal cancer cells with loss of DHRS7B leading to loss of stem-like 

phenotype leading to a mesenchymal phenotype [217, 333]. SCD1, the gene that is thought to be a key 

promoter of lipid desaturation has also been associated with similar tumorigenic features. SCD1 has 

been associated with chemoresistance and stem-like phenotypes in hepatocellular carcinoma and lung 

carcinoma in addition to breast, colorectal and prostate [212, 213, 334, 335]. Furthermore, as observed 

with my PPL models a clear distinction was observed in pushing ER stress responses towards pro-

apoptotic JNK signalling activation which was not observed in DHRS7B overexpressing cells and wild 

type cells under moderate selection. Several other groups have shown the importance of unsaturated 

FA in protective roles in ER stress responses [161, 336, 337]. While links between chemoresistance and 

lipid body formation have also been formed I found that loss of PUPL’s didn’t impact the formation of 

lipid droplets but did directly impact the ability of cells to survive in chemo-enriched media [227]. 

Despite the overwhelming evidence to support the roles of polyunsaturated fatty acids levels in tumours 

as key regulators of stem-like cell phenotype and chemoresistance several studies have shown opposing 

results. Omega 3 unsaturated fatty acids have been investigated as chemo-sensitising agents in many 

clinical studies and were meet with varied results (see review, [338]).  Other groups showed that co-

treatment of COLO320 DM cells with eicosapentaenoic acid (EPA) or steric acid (SA) in conjunction 

with Oxaliplatin  and 5Fluouracil led to the reduction of IC50 values with EPA but not SA in total cell 

populations but this effect was not evident in stem-like cell populations [339]. Similar results were 

shown in a study co-treating human cancer cell lines with docosahexaenoic acid and doxorubicin using 
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two glioblastoma cell lines, A172 and U87MG while two additional lung cancer cell lines, A427 and 

SK-LU-1  showed no increase in doxorubicin toxicity while in vivo analysis of MDAMB231 based 

xenograft models showed an increase in response to doxorubicin [340, 341]. In the previous chapter I 

showed that PUPL levels were a crucial regulator of PPARγ signalling while, PPARγ was shown to 

regulate PPL biosynthesis positively and increase membrane associated PL unsaturation. One of the 

key features associated with chemotherapeutics at a cellular level is ER stress associated lipogenesis or 

chemotherapeutic lipogenesis. Although the function of this cellular response is not fully known some 

groups have attributed the large influx of lipid storage as a protective role against chemotherapeutics 

driving chemoresistance and cell survival pathways [227, 342, 343]. While the effects of chemo 

induced lipogenesis and lipid body formation was attributed as the primary driven of 

chemoresistance, I showed that chemoresistance was largely independent of lipid droplet levels. 

While discrepancies in chemoresistance of some cell lines used across labs were significant. HT-29 

cells were shown to harbour large number of lipid bodies per cell, my results reflected this observation 

where HT-29 cells had the highest lipid body levels across all the colorectal cancer cells used, I 

showed that HT-29 cells were very sensitive to 5-FU while groups describing that lipid body 

formation as a key driver of chemoresistance showed a 100 fold increase in 5-FU resistance to what 

was measured in our lab and in the Broad institute [227, 344, 345]. DHRS7B null cell lines also 

exhibited marked increase in chemo-sensitivity. Looking at the saturation index of PL in these cells 

showed a strong positive correlation with high PUPL ratios with 5-FU resistance and indeed many 

other cytotoxic drugs. I validated these findings using our lipidomic dataset. There is little in the 

literature addressing the associations of phospholipid metabolism and tumorigenesis. Looking at high 

and low risk patients with Hepatocellular carcinomas showed that saturated species of LPL taken from 

plasma samples were associated with low risk patients. However, the depth of the lipidomic analysis 

was not great and given the vast number of lipid species and variations there was an overall poor 

coverage of the human lipidome [346]. Phospholipid phosphatases, important for the generation of 

DAG’s from PA have been extensively associated with tumorigenesis. PLPP4 was demonstrated to be 

overexpressed in 8 paired lung cancer tumours and correlated strongly with clinicopathological 

features including tumour grade and prognosis [347]. While mediators of the PPL biosynthesis 
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pathway upstream of DHRS7B have been shown to regulate tumour progression. GNPAT 

overexpression in hepatocellular carcinoma through cMYC was associated with poor clinical 

prognosis and stabilised USP30 leading to stabilisation of lipid metabolism and mitochondrial stability 

[348]. Furthermore, AGPS knockout studies showed that loss of PPL biosynthesis pathways led to 

reduced cell viability and decrease tumour growth in breast cancer [302]. While inhibitors of PPL 

pathway through targeting AGPS have been explored and show promise as an anti-tumour therapeutic 

[349].   

While one of the key features of DHRS7B knockout cell lines was decreased PUPL levels driving 

chemosensitivity. This was also associated with other anti-oncogenic features. DHRS7B was shown to 

regulate pro-survival signalling pathways protecting cells from chemo-induced ER-stress and driving 

chemoresistance. One the other spectrum loss of DHRS7B was associated with increased a HIF1A 

signature and ultimately increase metastatic potential. Loss of DHRS7B in LIM1215 cells showed 

increased transcriptional levels of key regulators of EMT including members of the SNAIL family in 

addition to marker genes associated with EMT such as vimentin. While the phenotypical output was 

not validated through use of migration assays this does provide an insight into the possible issues with 

targeting PPL pathway as a therapeutic. Other groups have shown similar results while looking at 

upstream enzymes of DHRS7B. AGPC knockdown was shown to drive loss of CSC and epithelial 

phenotypes through downregulation of CD44 and E-Cadherin while this coincided with an increase in 

TWIST and SNAIL in HEPG2 and U87 cells [350]. Similarly, PPARγ has been shown to regulate 

facets of EMT and is part of the reason why is association with cancer as a tumour suppressor is 

conflicting. While its function in the regulation of EMT is contradicting itself. For example, PPARγ 

agonism was shown to promote EMT through Rho GTPase activation of ERK1/2 [351]. Other groups 

have described the exact opposite where targeting PPARγ inhibited EMT through SMAD3 

antagonism [352]. Clearly the roles that PPARγ plays in regulation of EMT appear to circumstantial. 

The fact that PPARγ regulated chemoresistance through regulation of PUPL levels makes it an 

interesting possibility to target chemoresistance. While some of the literature suggests that PPARγ 

plays a role in regulating EMT and given the result presented here it is likely this is a consequence of 

downregulation of the PPL pathway. In addition, restoration of PPARγ signalling in ovarian tumours 
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was shown to have similar effects. Constitutive activation of NFκB regulation of XIAP expression 

was shown to drive downregulation of PPARγ signalling while combined therapy through PPARγ 

agonists and XIAP inhibitors was shown to effectively induce cellular apoptosis [353]. Peroxisomal 

biogenesis pathways have also shown to be involved in EMT. TGF induced downregulation of 

PEX13 was shown to be important in driving EMT and decreased numbers of peroxisomes [354]. 

Given the associations made between targeting PL biosynthesis and regulating chemotherapy 

resistance, DHRS7B is a possible therapeutic target. However, as discussed, the difficulties lie in the 

associations made between loss of DHRS7B and EMT while utilising PPARγ to regulate this pathway 

other groups have shown that a metastatic response is possible. Development of DHR7B inhibitors 

and linvestigating PPARγ signalling in the context of EMT and conjunction with metastatic inhibitors 

would provide an interesting next step in evaluating the use of PPARγ agonists targeting PPL pathway 

for cancer therapeutics.  
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Chapter 6 – General Discussion 



6.1. General discussion and conclusions 

High throughput computing capabilities are integral for many aspects of modern biology including 

data processing of complex tasks such as transcript mapping of NGS data that would take many 

lifetimes to process manually. Computers have the ability to perform relatively simple tasks in rapid 

succession and process many factors more accurately and efficiently than manual processing. One 

of the challenges that allude researchers is the ability to accurately model biological system for 

predictive capabilities and risk association with diseases. Tumour metabolism is a relatively 

complicated topic that in recent years has shed light on how tumour proliferate uncontrollably and 

develop mechanism that led to drug desensitisation. Several recent papers have highlighted the 

importance of lipid metabolism in drug resistance while key oncogenic driver mutations have also 

been shown to be dependent on the metabolic rearrangements that are consequential to these 

mutations [156, 227, 280, 283]. However, targeting metabolism is often difficult due to 

significant levels of pathway redundancies and the inherent similarities between normal and 

oncogenic transformed cells. Targeted cell therapy against mutant forms of IDH1/2 are among the 

more common and successful methods targeting oncogenic metabolism. IDH1/2 mutations are 

commonly found in Glioblastoma and acute myeloid leukemias while mutant forms of IDH1/2 are 

responsible for abnormal and increased levels of D-2-hydroxygluterate leading to aberrant changes in 

the cellular epigenetics often resulting in oncogenic transformations [355]. Two mutant specific 

inhibitors have been developed AG- 120 (Ivosidenib) and AG-221 (Enasidenib). Both of which have 

been used to treat AML in xenograft mice models in addition to human clinical trials with both 

having been approved for use to treat AML [356-359]. Despite IDH1/2 accounting for 6-18% of AML 

and significantly more frequent in gliomas, accounting for ~50% of lower-grade gliomas and more 

than 80% of recurrent secondary gliomas, IDH1/2 mutants are far less common in other solid 

tumours [360, 361]. Targeting lipogenesis as a therapeutic has been explored with some success. 

COX2 inhibitors are currently in use targeting familial adenomatous polyposis (FAP) and 

have been investigated for potential use in breast cancer [362]. Other investigated targets 

include ACSS2, ACLY and FASN all targeting de novo lipogenesis [69, 72, 232, 363]. More recent 

research has shown interest targeting 
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lipid metabolism through lipid transporters such as CD36 [55]. Metabolic reprogramming in other solid 

tumours including epithelial derived gastrointestinal and breast cancers that were largely described in 

this thesis are somewhat more complex. Oncogenic mutations can often perturb the metabolic balance 

in a certain direction while metabolic lipid reprogramming has been described as a key feature observed 

in many tumorigenic processes such as drug resistance and cancer stem cell-like phenotypes [205, 217]. 

A recent metanalysis of the TCGA datasets has shown associations between downregulation of 

oxidative phosphorylation genes as a key process required in primary to metastatic tumour transitions. 

TCGA datasets were analysed using computational geneset pathway analysis of solid human tumour 

transcriptomes, in much the same as I have described in chapter 3 [246]. This data was in line with the 

observations that I showed regarding targeting peroxisomal phospholipid biosynthesis pathways 

originally in BRAFV600E tumours, in addition utilising this as a model to mimic BRAFV600E induce lipid 

remodelling. Consequentially, cells lacking peroxisomal phospholipid biosynthesis had high 

saturation:unsaturated phospholipid ratios leading to sustained SREBF1 transcriptional activity through 

loss of PPARγ signalling which was shown to negatively regulate mSREBF1 accumulation through 

stimulation of the AMPK pathway.  

BRAF mutant tumours are not the only tumour subtypes that have aberrant metabolic reprogramming. 

Despite showing that BRAFV600E tumours cells held much higher proportions of lipid droplets, 

coinciding with increase cellular lipid levels in almost all lipid species except for triglyceride’s and 

Cholesterol ester’s, comparison of BRAFV600E tumours cells against additional human cancer cell lines 

showed that BRAFV600E colorectal cancer cells had significantly reduced lipid levels compared to other 

tumour cell lines investigated. This indicates the existence of several transcription pathways in which a 

tumour cells can manipulate and exploit to gain control over cellular metabolism. Metabolic profiling 

of solid human tumours revealed significant redundancy among grouping of tumours. Tumour subtypes 

such as pancreatic, liver and kidney tumours showed largely defined groups based on metabolic 

signatures while most other tumour groups were randomly clustered in a super cluster associated with 

several different topological tumour subtypes. Colorectal cancer was somewhat more interesting with 

two major clusters defined by a HIF1A signature identified. Tumour with high SREBF1 signature were 

spenc
Highlight



largely defined to a smaller HIF1A active tumour subtype and this coincided with tumours with a low 

PPARγ subtype. This is a common observation, and SREBF1 has been associated with oncogenic 

features in colorectal such as drug resistance [156, 161, 376], proliferation and survival [155, 161] 

and metastasis [158, 159]. Furthermore, SREBF1 is known to have similar pro-oncogenic effects in 

other tumours including melanoma, glioblastoma and breast [157, 160, 162]. Loss of PPARγ as 

shown in chapter 4 is a key attribute to sustained SREBF1 activity. Induced PPAR activation led to a 

reduction of mature forms of SREBF1 to undetectable levels 24 hours post treatment while the same 

observation was made where Rosiglitazone induced AMPK phosphorylation and autophagy. 

Furthermore, this process was shown to be critical for Rosiglitazone induced lipophagy where 

inhibition of autophagy through pre-treatment of colorectal cancer cells with 3MA or chloroquine 

led to an inhibition of Rosiglitazone mediated lipolysis. In addition, DHRS7B was shown to a be a 

player in the regulation of this process. Loss of DHRS7B and thus loss of polyunsaturated 

phospholipid’s was shown to be a key driver of SREBF1 sustained activity and was observed in both 

BRAFV600E and BRAFWT colorectal tumour cells and correlated with autophagy resistance. Loss of 

DHRS7B led to the inability of AMPK to target downstream effectors and consequentially loss of 

effective autophagosome formation. This is interesting because AMPK is a known regulator of 

mSREBF1 transcriptional stability. Phosphorylation of SREBF1 by AMPK at Ser372 is a critical 

regulator of mSREBF1 transcriptional activity while further phosphorylation events at Ser430 and 

Thr426 are thought to regulate protein stability [173, 377, 378]. Furthermore, polyunsaturated free 

fatty acids are also known to regulate SREBF1 transcriptional activity through AMPK dependent 

mechanism while other groups have described phosphocholine/free polyunsaturated phospholipid 

regulated SREBF1 non-canonical pathways [296, 379-381]. While the roles of DHRS7B until now 

have been relatively unclear other than its enzymatic activity in the peroxisomal phospholipid 

biosynthesis pathway protein homologues in S. Cerevisiae has shown similar result presented in this 

thesis [290]. The yeast homologue to DHRS7B, Ayr1p was shown to regulate lipid droplet formation 

in addition to efficient autophagosome formation although the signalling mechanism were not 

addressed while another group demonstrated that loss of Ayr1p was associated with increase 

triglyceride levels however they associated this with Ayr1p associated triglyceride lipase activity 

[303, 382]. In addition, polyunsaturated phospholipid levels have also been associated with Page | 
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autophagy induction. Phospholipase groups A and D have been shown be involved in nutrient depletion 

dependent autophagy mechanism while docosahexaenoic acid was shown to induce AMPK/mTOR 

dependent autophagy in p53 wild type human tumour cells [383-386]. DHRS7B was shown to a be a 

key regulator of AMPK regulated tumour lipogenesis and a schematic of the proposed mechanism can 

be found in (Fig. 6.1). 

One of the major shortcomings of the Depmap is limited in the number lipid species identified. Five 

lipid classes (CE, PL, LPL, SM, TAG) are identified with each class only representing between 5-20 

lipid species. This is not surprising given the major aim of this study was to investigate polar 

metabolomics in many cancer cell lines. My dataset utilising high throughput non-polar lipidomics. To 

address this issue, lipid enrichment targeting 22 different lipid classes and more than 950 lipid species 

were identified across all 15 human cancer cell lines. This allowed for a much more thorough view of 

the lipidomic profile. A recent study looking at transcription factor profiling utilising computational 

identification of transcriptional networks identified by matched polar, non-polar metabolomics and 

RNA transcriptomes was developed to analyse a large cohort of human cancer cell lines [255]. 

Metabolic profiling of 54 tumour cell lines from 8 different tissues of origin matched with 

transcriptomic analysis was used to generate transcriptional signatures associated with transcription 

factor networks. Much of the analysis was based on GSEA based approaches and thus was still confined 

by the limitation of GSEA based network associations. HIF1A signalling was investigates and validated 

by siRNA-based methods to confirm the associations made in the models [255]. However, HIF1A and 

glycolytic processes were one of few biological processes that behaved in a linear fashion with 

transcriptional regulation. Lipid metabolism was largely not discussed in detail nor was it 

experimentally validated. The limitations of GSEA based approaches in relation to tumour metabolism 

highlighted in chapter 5 most likely applies to this dataset. One of the key findings of chapter 5 was the 

association that mutational load played on pathway dysregulation in a phenotypical independent 

manner. Pathway signature correlated strongly with non-parametrically skewed datasets (logarithmic) 

while did not always correlate with predicted phenotypic outcome. Furthermore, changes in metabolites 

from the analysis I performed was largely mutation independent while the genetic signatures 
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investigated related to phospholipid saturation was independent of mutational load but predicted 

saturation index accurately across multiple tumour tissues of origin. Other groups have studied patient 

tumour samples normalised to normal non transformed tissue samples targeting the polar metabolome 

and showed a largely mutation independent change in metabolism in colorectal cancer. Changes in 

metabolites in all stages of colorectal cancer was shown to correlate with MYC, MET mRNA 

expression, in addition to several interleukins indicating a consequential relationship between 

metabolism and tumorigenesis [387]. MYC expression levels were shown to be dysregulated in both 

DHRS7B null and overexpressing cell models but was not investigated further, however this paper 

largely ignored lipid metabolism.  

The non-polar lipidomic dataset presented in chapter 5 showed no significant pattern displaying 

mutational dependence or tissue of origin affecting the lipidomic profile. However, several lipid classes 

were highly upregulated more frequently in some topological tumour subtypes compared to other. For 

example, breast cancer cell lines showed upregulation of several sphingomyelin lipid species that were 

not observed in other tumours from different tissues of origin. While myelin sheath lipids are primarily 

associated with neuronal tissue, they are found in several other tissue types including breast cancer cell 

lines while analysis looking at the levels of lipids compared to normal untransformed cells has shown 

that upregulation of sphingomyelin is a common attribute in breast tumours. While use of 

sphingomyelin as a biomarker in brain tumours has been explored, the roles that sphingomyelin play in 

tumour metabolism is controversial with conflicting evidence [388-391]. Furthermore, in the context of 

colorectal cancer several lysophosphoethanolamine species were significantly upregulated compared to 

other tumours from different tissues of origin. This has also been described previously, with 

lysophosphoethanolamine associated with cell survival in nutrient starvation conditions [392]. While 

the TCGA and CCLE datasets provide a useful tool for transcriptomics and tumour metabolism, recent 

advances in next-generation sequencing technology has made single-cell sequencing a relatively routine 

application available for researchers. Much of this technology has been used to identify cell populations 

in mouse tumour or xenograft models primarily focusing on immune cell populations and tumour 

associated fibroblasts. A recent paper has used this technology to dissect tumour metabolism across 
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multiple cells types. Overexpression of the TCA cycle and OxPHOS was observed in several 

malignancies while other metabolic associated pathways such as fatty acid metabolism and amino acid 

metabolism were overexpressed in a small percentage of malignancies [393]. Despite this, 

computational approaches looking at tumour metabolism continue to primarily focus on data mining-

based approaches, while this is highly efficient the associations made through these applications remain 

circumstantial. Tumour metabolism is an ever-increasing research topic as the roles it plays in so many 

aspects of tumour biology are critical for successful therapeutic intervention. It remains clear that 

tumour metabolism remains convoluted and more work is required to gather a better understanding of 

the mechanisms at play and for a better understanding of crucial processes in tumours such as drug 

resistance and metastasis.   

One of the key processes regarding tumorigenesis is late stage epithelial to mesenchymal transition 

associated with metastatic disease. BRAFV600E and CRISPR/Cas9 generated DHRS7B null cell models 

also showed a more mesenchymal cellular phenotype compared to wild type controls, while this 

coincided with dysregulated HIF1A signalling and high levels of OxPHOS associated gene expression 

that correlated with DHRS7B expression in a clinical setting. Transcriptomic analysis of PPARγ 

responsive GFP sorted cell populations compared to unsorted control populations revealed that PPARγ 

active cells downregulated ~33% of OxPHOS complex genes. Furthermore, co-treatment of tumour 

cells with the chemotherapeutic 5FU and Rosiglitazone led to a 2-4-fold increase in 5FU sensitivity. 

PPARγ and its roles in tumorigenesis has had a complex and conflicting history despite showing great 

efficacy for anti-proliferative effects in many solid tumours [107, 151]. Early studies in both in vivo 

and in vitro showed contrasting results in the context of gastrointestinal cancers. Some groups 

showed that PPARγ was anti-oncogenic leading to G1 cell cycle arrest while other groups showed 

that ligand dependent activation of PPARγ in APCMin/+ mice led to enhancement of polyp formation 

[144, 145, 364, 365]. However, considering the results presented in this thesis it is likely that while 

PPARγ influences cell proliferation it also coincides with increased metastatic potential making its 

use as a therapeutic potentially more complex. The roles of PPARγ in relation to cell motility 

has been documented in the intestinal mucosa with PPARγ associated with terminal differentiation 

and epithelial 
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motility [366]. Furthermore, much of the anti-oncogenic response attributed to PPARγ is through 

inhibition of GSK-3B dependent activation of NFkB signalling [151]. NFkB has been associated with 

chemoresistance in many solid tumours including intestinal, ovarian and pancreatic while PPARγ 

together with several other nuclear receptors are known inhibitors of NFkB [353, 367-370] 

Interestingly, I also described a small population of BRAFV600E tumours that were PPARγ signalling 

deficient but still had high expression levels of DHRS7B and were associated with increased expression 

of OxPHOS related genes and were subsequently associated with poor prognosis. Overexpression 

of DHRS7B in BRAFV600E tumour cells led to a 10-fold increase in 5FU resistance. 

Furthermore, overexpression of DHRS7B in BRAFV600E tumour cells also coincided with increased 

expression of well characterised NFkB target genes.  

Despite the contradictory history that PPARγ signalling has with human tumorigenesis use of PPARγ 

agonists has been targeted as a therapeutic possibility with varying levels of success. Rosiglitazone 

together with other Thiazolidinedione’s targeting the PPAR’s are used to treat a variety of human 

diseases including type II diabetes [371]. Furthermore, natural ligands of PPAR including 

prostaglandins are known to have anti-tumorigenic effects. However, much of the confusion 

surrounding PPARγ can be attributed at least in some part towards pathway cross talk with other PPAR 

members. For example, all PPAR’s are known to respond to polyunsaturated FA, and this is an issue 

given the differences in the responses observed across family members. PPARγ as mentioned 

previously is associated with terminal differentiation and cell cycle arrest while other groups have 

described that PPARδ plays a cooperative role in the proliferative WNT/β-catenin signalling pathway 

both in normal colon mucosa and in CTNNB1 driven colorectal cancers [137, 138]. The role of 

phospholipid metabolism as a key player in regulation of PPARγ signalling was described throughout 

much of this thesis. The peroxisomal phospholipid biosynthesis pathway was shown to regulate many 

of the processes regarding fatty acid metabolism and PPARγ signalling in tumours. PPARγ mediated 

sensitisation of tumour cells to chemotherapeutics was shown largely to be related to DHRS7B activity. 

Loss of DHRS7B in colorectal cancer cells showed IC50 values almost identical to wild type cells co-

treated with Rosiglitazone and 5FU while DHRS7B null colorectal cancer cells showed no increase in 
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5FU sensitivity when co-treated with Rosiglitazone. 5FU was shown to positively regulate saturated 

membrane lipids. Loss of DHRS7B leading to the inability of phospholipid desaturation correlated with 

a marked increase in 5FU sensitivity. Rosiglitazone had a similar effect by limiting the availability of 

polyunsaturated phospholipid’s in response to 5FU and again was meet with a correlative increase in 

5FU resistance. The association of polyunsaturated phospholipid’s with drug resistance has been 

identified in relation of BRAFV600E melanomas [156]. Sustained SREBF1 activity in response to 

prolonged exposure to Vemurafenib in resistant melanoma cell lines was a key alteration observed while 

this correlated with increase polyunsaturated phospholipid levels [156]. However, the status of PPARγ 

expression or activity was not addressed but SREBF1 was shown to be a key driver of colorectal 

BRAFV600E hyperlipidaemia. Other groups have associated membrane lipid saturation to protection 

against oxidative stress while our results suggested that loss of DHRS7B led to increased HIF1A 

transcriptional activity in addition to increased stress responses in the form of UPR [329]. Furthermore, 

other key enzymes regulating the production of phospholipid’s including LPCAT2 was shown to 

regulate lipid droplet levels while this correlated with chemoresistance and ER stress protection in 

response to chemotherapeutics in colorectal cancer [227]. In addition, LXR mediated expression of 

LPCAT3 was shown to have a similar effect on ER stress under inflammatory conditions leading to 

phospholipid desaturation protecting cells from ER stress activation and apoptosis [372]. Other groups 

have also explored the importance of phospholipid desaturation on regulation of ER stress responses 

and apoptosis protections [161, 336, 337]. Conversely, forcible saturation of phospholipid ER 

composition through palmitate treatment in hepatic cells promoted increased ER stress levels [373]. 

PPARγ has been implicated in agonist induced ER stress activation in pancreatic beta cells while 

cooperation of C/EBP and NFkB signalling activated through repression of PPARγ signalling has also 

been attributed to ER stress activation in response to chronic inflammation [374, 375]. Furthermore, 

SREBF1 mediated lipid synthesis was shown to be a key regulator of ER stress associated lipogenesis 

and played a key protective role in ER stress associated cell survival in U87 human glioblastoma cells 

[161]. Given the roles showed here that PPARγ plays in the regulation of SREBF1, PPARγ induced ER 

stress is likely attributed to regulation of phospholipid biosynthesis through sustained inhibition of 

SREBF1 transcriptional activity.  
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Figure 6.1. Pathway schematic of the research presented. Top panel. PPARγ mediated regulation of lipid droplets 
through phospholipid membrane associated lipid remodelling targets AMPK activating that drives lipophagy and 
negative regulation of lipogenic transcription through inhibition of mSREBF1. Bottom panel. Loss of DHRS7B 
activity replicates BRAFV600E mutants, where low levels of PUFA phospholipids led to decreased AMPK activity. 
Loss of polyunsaturated phospholipid dependent activation of AMPK leads to sustained SREBF1 transcriptional 
activity prolonged lipogenesis and decreased PPARγ activity. 
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6.2. Conclusion and future directions 

Therapeutic targeting lipid metabolism in the context of tumour biology is difficult and the complex 

level of contradicting information available reinforces how much there is left to learn about this topic. 

Large scale transcriptomic datasets provide a useful tool to analyse the metabolic state of tumours. In 

this thesis I developed a different approach utilising well developed GSEA based approaches looking 

at tumour metabolism. From this data analysis pipeline, I was able to further investigate the lipid 

metabolome of colorectal cancer identifying a risk factor associated with loss of PPARγ signalling and 

the peroxisomal phospholipid biosynthesis pathway in BRAFV600E driven tumours. The subsequent loss 

of peroxisomal phospholipid biosynthesis was a key feature driving the hyperlipidemic phenotype 

observed in BRAFV600E tumour cells. CRISPR/Cas9 DHRS7B knockouts were resistant to PPARγ 

mediated autophagy initiation in addition to SREBF1 inhibition. This study provided an insight into a 

complex signalling and feedback mechanism driving lipogenesis in tumour cells while PPARG was 

shown to a be a critical regulator of this pathway. Loss of PPARG signalling such as what I observed 

in BRAFV600E tumours showed complete unregulated lipogenesis pathways while AMPK mediated 

autophagy stimulation was required for effective lipolysis and was shown to be regulated by PPARγ. 

Furthermore, loss of DHRS7B and thus polyunsaturated phospholipids was shown to be crucial in 

AMPK signalling and autophagy stimulation. Decreased polyunsaturated phospholipid levels 

associated with BRAFV600E tumours or CRISPR/Cas9 DHRS7B null cell models showed autophagy 

resistance and were more susceptible to starvation induced apoptosis in addition to stress induced 

apoptosis from cytotoxic drug therapy. Conversely, loss of effective AMPK stimulation was shown 

to led to sustained SREBF1 activity driving the unregulated BRAFV600E lipogenic phenotype. 

This coincided with increased metastatic potential but also correlated with increased sensitivity 

towards cytotoxic drugs while overexpression of DHRS7B led to decreased sensitivity 

towards chemotherapeutics.   

The nature of all the experiments performed in this study were all in vitro. Future in vivo studies will 

be crucial to further investigate these results in the context of more biological complex and relevant 
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systems. The development of both DHRS7B tissue/cell specific null mice lines utilising CRISPR or Cre 

recombinase-based technologies will better address the biological functions of DHRS7B and 

more importantly verify the findings made in vitro. 3D cell culture application could also be utilised to 

further investigate this signalling pathway given the associations made with DHRS7B 

overexpression and NFkB activation, it would be interesting to assess the effects of 

DHRS7B on the tumour microenvironment particularly on macrophage polarisation. 

Furthermore, given the efficiency of targeting PPARG in regulating PL dependent drug resistance 

presented here, development of DHRS7B inhibitors would be required to further assess the 

possibilities of exploiting this pathway for use in a clinical setting. In relation to further pathway 

analysis, it remains unclear whether the responses of polyunsaturated phospholipids towards 

AMPK are a result from direct actions or indirect signalling mechanism. Further analysis including 

AMPK binding assays or signalling pathway screening could be used to address this short coming. 

Furthermore, CRISPR/Cas9 implementation using current knockout models with library-based 

screening methods targeting phospholipases could be used to investigate the roles of membrane 

signalling feedback through the action of phospholipase type C mechanism.     

In Chapter 5 I looked to better address our understanding of the lipid metabolome through 

implementation of high throughput lipidomic screening using 15 human cancer derived cell lines. 

From this data along with RNAseq transcriptomic analysis I was able to predict the levels of 

membrane associated saturation. This was shown to correlate with chemoresistance while I verified 

this association using already characterised DHRS7B null cell models. PPARγ activation was shown 

to desensitize cells that were resistant to 5FU through regulation of membrane associated lipid 

saturation levels. While this was associated with metabolic reprogramming. PPARγ active cells were 

shown to downregulate OxPHOS associated genes while the opposite was true regarding DHRS7B. 

Consequentially, loss of DHRS7B led to increased HIF1A associated transcriptional activity and 

increased metastatic potential. This was clinically relevant in colorectal cancer where DHRS7B is 

shown to be upregulated in most stage IV colorectal cancers using matched adjacent patient controls. 

In contrast to this DHRS7B was shown to be downregulated in metastatic liver tumours compared to 

stage IV colorectal tumours.  The major downfall of this chapter was purely biological replicates and 

over representation of certain 
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topological tumour derived cell types. Breast and colorectal cancer derived cells were the only two cells 

to have multiple biological replicates for similar tissues with four breast cancer cell lines and six 

colorectal cancer cell lines tested. The rest of the dataset was made up of single cell lines. Furthermore, 

this was true with the transcriptional assay where PPAR responsive cell transcriptomes were analysed 

compared to unsorted cell populations. This was performed entirely in colorectal derived cancer cell 

lines. To get a better and more accurate overview of transcriptional regulation of lipogenesis in human 

tumours we need to address large amounts of biological data. High throughput analysis of the lipidomic 

profile generating a large dataset will increase the flexibility of the dataset. Furthermore, I addressed 

the issue regarding transcriptomic analysis of lipogenic transcription factors. High throughput ChIP 

analysis showed significant levels of overlap between promoter occupancy of transcription factors such 

as the PPAR’s, SREBF1 and LXRA. Development of similar lentiviral-based PPRE reporter cell lines 

in more cell types in addition to targeting more lipogenic transcription factors would add more 

complexity and versatility to the dataset presented while development of duel reporter cell lines would 

allow to further analyse cross-talk between pathways including PPARγ and SREBF1 reporter in this 

thesis. Furthermore, recent implementation of CRISPR/Cas9 and single cell sequencing technology 

allowing for the development of data analysis such as Perturb-seq, a single cell sequencing based 

method targeting small group of target genes with matched gRNA and single cell RNA libraries 

allowing for analysis of transcriptional perturbation across multiple gene knockout models using 

CRISPR/Cas9. Perturb-seq would be a useful tool in addressing the similarities of converging pathways 

allowing for fast efficient and cost effect data analysis targeting multiple pathways including PPARγ 

and SREBF1 in the same experiment without the requirement to general multiple cell lines.   
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Abstract

Steroid hormones play clinically important and specific regulatory roles in the 

development, growth, metabolism, reproduction and brain function in human. The type 

1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles

in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of 

blood pressure, control of systemic fluid and electrolyte homeostasis and modulation 

of integrated metabolism and brain function. Although the activity and function of 

11β-HSDs is thought to be understood, there exists an open reading frame for a distinct

11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep,

pig and many other higher organisms, whereas an orthologue is absent in the genomes 

of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as 

encoded by 9 exons and analysis of EST library transcripts indicated the use of two 

alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively 

strong HSD11B1L gene expression was detected in human, non-human primate and 

sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates 

and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm 

of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior 

pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed 

HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that 

similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD

enzyme remains elusive with localisation and expression data suggesting a reproductive 

hormone as a likely substrate.

Introduction

The short-chain alcohol dehydrogenase/reductase 
enzymes 11βHSD1 and 11βHSD2 play important
intracellular roles in mammals, regulating tissue 
availability of physiologically relevant glucocorticoid 
(1, 2). They are members of the large short-chain 

dehydrogenase/reductase (SDR) family of enzymes that 
are NAD+ or NADP+ dependent oxidoreductases, typically 
250–350 amino acids in length (3). SDR enzymes have 
a wide range of substrates including steroids, aromatic 
compounds and xenobiotics. The human genome 
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encodes up to 63 different SDR enzymes with many 
uncharacterised for substrate and function in vivo (4). 
All SDR family members share a residue homology of only 
20–40%. They have two conserved motifs, a ‘GXXXGXG’ 
nucleotide cofactor (NAD+/NADP+) binding domain and 
an ‘YXXXK’ catalytic active site domain (4).

11βHSD1 and 11βHSD2 carry out largely opposing
roles in the preceptor modification of corticosteroids. 
11βHSD1, encoded by the HSD11B1 gene and located
on chromosome 1q32–41 in humans, is a bidirectional 
enzyme but normally acts as an oxidoreductase in vivo 
to drive formation of the active glucocorticoid cortisol. 
Located in the endoplasmic reticulum (ER) membrane, 
it requires NADPH provided by the enzyme hexose-6-
phosphate dehydrogenase (H6PDH) for activity. 11βHSD1
is expressed widely in metabolic tissues such as liver, 
muscle, adipose and kidney, and also in many specific 
regions of the brain (5). In contrast, 11βHSD2, encoded by
the HSD11B2 gene and located on chromosome 16q22.1 
in humans, is a unidirectional dehydrogenase producing 
the inactive 11-keto metabolite cortisone from cortisol 
(5). 11βHSD2 has a more restricted expression pattern,
and is detected predominantly in aldosterone target 
tissues where it prevents inappropriate activation of the 
mineralocorticoid receptor (MR) by glucocorticoids by 
efficiently converting cortisol to inactive cortisone (6, 7).

Inappropriate 11βHSD1 expression and activity is
implicated in human disease such as obesity, insulin 
resistance and metabolic syndrome. Several 11βHSD1
selective inhibitors have been developed by the 
pharmaceutical industry and are currently being tested in 
Phase II trials to treat type-2 diabetes and obesity (8, 9).

A search of the annotated human genome for other 
potential SDR family members detected an 11βHSD1-
like gene termed HSD11B1L on human chromosome 
19p13.3. HSD11B1L is composed of 9 exons, stretching 
over 7.5 kb and analysis of EST library transcripts 
indicates the use of two alternate ATG start sites in 
exons 2 and 3, and alternative RNA splicing in exon 9. 
HSD11B1L has also been referred to as SCDR10B, and 
an SDR enzyme family member, and showed that it 
was highly expressed in the brain, with evidence that 
the when expressed in vitro the enzyme possesses very 
weak dehydrogenase activity in inactivate glucocorticoid 
(10). Surprisingly phylogenetic analysis of this gene in 
other mammalian genomes revealed that it is completely 
absent from all rodent genomes and also the rabbit 
genome (11). From an increasingly more detailed 
annotation of mammalian genomes the number of 
primate-specific or primate-restricted genes is growing 

(12, 13, 14). The lack of paralogues in the common 
laboratory rodent models makes characterisation of 
these new genes much more difficult and loss-of-
functional analysis almost impossible. We have therefore 
extended our understanding of HSD11B1L expression, 
and tissue and cell localisation by analysis in the non-
human primate marmoset and in the sheep. We reveal 
strong levels of expression in the pituitary gland and the 
ovary, with moderate-to-low expression in other organs, 
including the testis. Immunohistochemistry using a 
polyclonal antibody to human HSD1L localised protein 
to gonadotroph cells in the anterior pituitary and the 
granulosa cells of the ovary.

Materials and methods

Animals, tissue samples and cell lines

Collection of non-human primate, sheep and mouse 
tissues were approved in advance by the Monash 
University Animal Ethics Committee, and conformed 
to the Australian National Health and Medical Research 
Council Guide for Care and Use of Laboratory Animals, 
which strongly encourages use of archived and scavenged 
tissues. Tissue samples were collected from adult and 
foetal sheep, the non-human primate marmoset and 
macaque, and from mice, then they were snap frozen 
for RNA isolation or fixed in 4% paraformaldehyde 
(PFA) overnight at 4°C for histology and analysis by 
immunohistochemistry. Human HEK293 cells were 
maintained in culture in DMEM/high glucose medium 
with 2 mM glutamine, 10% FCS.

Bioinformatics and protein structure modelling

Sequence alignment of human HSD11B1L and 11βHSD1
were performed using the Clustral Omega (EMBL-EBI, 
http://www.ebi.ac.uk/Tool/msa/clustalo) software
package. Amino acid sequences were obtained from the 
NCBI database for human HSD11B1L (NM_198706) and 
11βHSD1 (NP_005516.1). Signal peptide prediction for
human HSD11B1L was determined with the SignalIP4.1 
software package (http://www.cbs.dtu.dk/services/
SignalIP/). Three-dimensional modelling was performed 
using the Phyre2 software package to predict the 3D 
structure of human HSD11B1L (286 amino acid form) 
and was compared to the solved 3D structure of human 
11βHSD1 that was obtained from the protein database
(http://www.rcsb.org/pdb/), 11βHSD1 identifier 1XU9.
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RNA extraction, cDNA synthesis and analysis by qPCR 
and droplet-digital PCR

Total RNA was isolated from tissue samples using TRIzol 
reagent (Invitrogen) as per the manufacturer’s instructions. 
cDNA was then synthesised from total RNA using the 
QuantiTect reverse transcriptase kit (Qiagen) as per the 
manufacturer’s instructions. Expression levels of mRNA 
in adult sheep and human tissue or cell samples were 
analysed using a Rotor-Gene 3000 PCR (Qiagen), with each 
biological replicate assayed in triplicate using SYBR Green 
qPCR SuperMix (Invitrogen). Rps29 and 18S-rRNA levels 
were used as a normalising RNA control. Dissociation 
curves were performed for each qPCR experiment to 
ensure that a single PCR product had been amplified per 
primer set and PCR products were also sequenced to verify 
fragment identity. Differential expression was determined 
using the comparative delta-delta CT method (15). 
Foetal sheep gene expression levels were analysed using 
the QX-200 droplet-digital PCR system (Biorad). For all 
PCR-based analyses, primers corresponding to mRNAs of 
interest were designed to overlap exon–exon boundaries 
and therefore prevent amplification of genomic DNA.

Immunohistochemistry and immunofluorescence

Marmoset, macaque and sheep tissue samples were 
immersion-fixed in 4% paraformaldehyde overnight at 
4°C, then processed and embedded into paraffin. Paraffin 
sections with a thickness of 5 μm were cut and mounted
on slides, blocked with an appropriate animal serum (5%), 
then immunostained with donkey anti-HSD1L (sc-1004, 
Santa Cruz) primary antibodies overnight at 4°C. 
Supplementary Table  1 (see section on supplementary 
data given at the end of this article) provides details of 
all antibodies used in this study. Primary antibodies were 
then detected by subsequent application of biotinylated 
secondary antibodies, Streptavidin-HRP (Invitrogen), and 
DAB (3,3′-diaminobenzidine) solution (Dakocytomation,
Glostrup, Denmark). All immunohistochemistry images 
were obtained using the Olympus brightfield microscopy. 
For immunofluorescence, 5 μm thick paraffin sections were 
cut and mounted on slides blocked with an appropriate 
animal serum (5%), then immunostained with primary 
antibodies (donkey anti-HSD1L; rabbit anti-FoxL2, LH 
and Cyclin D2 antibodies) overnight at 4°C. Sections were 
washed and stained with fluorescent secondary antibodies 
(goat anti-donkey 488 and donkey anti-rabbit 555, Life 
Technologies). Sections were counterstained with Hoechst 
33342 (Sigma), then mounted in fluorescent mounting 

medium (Dako). All fluorescent images were taken using 
an Olympus fluorescent microscope (IX71) and images 
were prepared using ImageJ software.

Intracellular localisation

HEK293 cells were grown at 37°C and 5% CO2 in 
DMEM High Glucose: F12 supplemented with 10% 
FBS, 2 mM glutamine and 1% penicillin–streptomycin. 
Once confluent, cells were detached using trypsin and 
resuspended in pre-warmed media to a cell density of 
2 × 105 cells/mL, then plated out in a 6-well dish with 
1 mL per well. Cells were left overnight to re-attach and 
reach approximately 80–90% confluency, then washed 
and treated with 1 µg of either pc-DNA6B-HSD11B1L, 
pcDNA6B-HSD11B1L/mCherry or control pcDNA6B (No 
insert) DNA in 8 µL of lipofectamine 2000 diluted in 
500 µL of serum-free media, then incubated overnight. 
Cells were then fixed in 2% PFA, permeabilised using 1% 
SDS and then immunostained with primary antibodies 
(rabbit anti-GRP78 and a mouse anti-HSD1L monoclonal 
antibody produced in the laboratory to a hHSD1L 
peptide), then washed and detected with secondary 
antibodies (anti-rabbit IgG alexa-488 and anti-mouse 
IgG2a alexa-555 (Life Technologies)). Cells were then 
counterstained with Heochst 33342 and mounted using 
DAKO fluorescent mounting media. All cells were imaged 
using the Olympus IX71 fluorescent microscope.

Statistical analysis

GraphPad Prism software was used to analyse the results 
of all experiments. The statistical significance from qPCR 
analyses was determined using a two-tailed unpaired 
Student’s t-test. For all analyses, the statistical significance 
was set at P < 0.05, with all error bars depicting standard 
error of the mean (s.e.m.).

Results

Analysis of the putative human SDR enzyme 
encoded by the HSD11B1L gene

A bioinformatics search of the annotated human genome 
for members of the SDR enzyme superfamily related to 
11βHSD1 identified an 11βHSD1-like annotated gene on
human chromosome 19p13.3 termed HSD11B1L. This 
gene was composed of 9 exons, covering 7.5 kb of genomic 
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DNA and analysis of EST library transcripts indicated 
the use of two alternate ATG translation start sites in 
exons 2 and 3, respectively. Furthermore, alternate RNA 
splicing in exon 9 generated two isoforms, an A and B 
form that encode variable C-terminal ends (Fig. 1A). One 
publication exists on the analysis of this gene, referred 
to as SCDR10B, an SDR enzyme family member, which 
suggested the human gene was highly expressed in the 
brain and weakly expressed in other organs (10). Analysis 
was, however, very limited, and also suggested that the 
enzyme may have a very weak substrate dehydrogenase 
activity for the steroid cortisol in vitro. Phylogenetic 
analysis of this gene in other genomes revealed that it is 
completely absent from all rodent genomes and is also 
absent in the rabbit genome (11). It has an orthologue in 
all primate, cow, ovine and dog genomes, and two similar 
genes exist in the zebrafish genome. The syntenic region 
of human chromosome 19p13.3 in the mouse genome 

(located on chromosome 17) has the same surrounding 
cluster of genes (SAFB2, SAFB, RPL36, LONP1) but 
remarkably is completely missing an annotated HSD11B1L 
gene between SAFB and RPL36. Comparison of the amino 
acid sequence of the encoded protein for the HSD11B1L 
gene to human 11βHSD1 and 11βHSD2 showed a striking
level of homology and the strong conservation of the 
NAD+/NADP+ nucleotide binding and dehydrogenase/
reductase catalytic site domains. HSD11B1L is most 
similar in sequence to human 11βHSD1 (Fig.  1B) with
an approximate 40% amino acid identity and a strong 
conservation of the key catalytic enzyme domain and 
cofactor binding site (Fig. 1B). These analyses imply that 
HSD11B1L represents a species-restricted member of the 
SDR superfamily that is absent in all rodent genomes, 
and in humans, it may play a critical role in modulating 
availability of an as yet unidentified substrate in vivo. The 
sequence of the 286 amino acid HSD1L9A isoform was 
used with the ‘Pymol’ molecular modelling programme 
(PyMOL Molecular Graphics System, Version 1.8 
Schrödinger, LLC) to compare a predicted 3D structure 
of human HSD1L to the known structures of human 
11βHSD1 and predicted structure of 11βHSD2 (Fig.  2A,
B and C). Predicted α-helices and the β-sheet ‘Rossmann’
fold, a common feature of all SDR enzymes (4), were very 
similar to the determined structure of murine 11βHSD1
(16) and somewhat similar to that for predicted 11βHSD2
structure (Fig. 2A, B and C, shown in magenta and red). 
Positioning of residues important at the catalytic site 
was also very similar between 11βHSD1 and HSD1L9A
(Fig. 2, panels B and C, shown in dark blue). HSD1L also 
contained a putative ER localisation signal sequence at 
the N-terminus (Fig.  2C in light blue). Charged amino 
acids at Tyr-178 and Lys-182 were found in the predicted 
catalytic domain (Fig. 2D, arrow 1), orientated in such a 
way that their side chains pointed towards the predicted 
cofactor binding motif (Fig.  2D, arrow 2). Analysis of 
HSD1L hydrophobicity using a surface map (Fig. 2E red 
residues) showed that the charged amino acids pointed 
towards a hydrophobic pocket (Fig. 2E arrow).

HSD11B1L mRNA is expressed in the pituitary, ovary, 
lung and gastrointestinal tract

Previous studies indicated that human HSD11B1L mRNAs 
were strongly expressed in the brain and weakly in other 
organs (10). We assessed human HSD11B1L expression 
in total RNA from various human tissues and cells by 
RT-PCR (Fig. 3A). Using PCR primers from exons 6 and 8 

9A/B85 6 73 421

ATG ATG Stop StopCofactor
Domain

Active
Site

HSD1L/9A - 286 aa1 3 4 5 6 7 8 9A

ATG

1   62 3 4 5 7 8 9B

ATG

HSD1L/9B - 315 aa

1   2 3 64 5 7 8 9A

ATG

HSD1L/9A - 333 aa

hHSD1   18 NEEFRPEMLQGKKVIVTGASKGIGREMAYHLAKMGAHVVVTARSKETLQKVVSHCLELGA  77
++ F P  LQG +V++TGA+ G+G E+AYH A++G+H+V+TA ++  LQKVV +C +LGA

hHSD1L  19 DDNFDPASLQGARVLLTGANAGVGEELAYHYARLGSHLVLTAHTEALLQKVVGNCRKLGA  78

hHSD1 78 ASAHYIAGTMEDMTFAEQFVAQAGKLMGGLDMLILNHITNTSLNLFHDDIHHVRKSMEVN  137
YIA  M      E  V  A   +GGLD L+LNHI               R  M+VN

hHSD1L 79 PKVFYIAADMASPEAPESVVQFALDKLGGLDYLVLNHIGGAPAGTRARSPQATRWLMQVN  138

hHSD1 138 FLSYVVLTVAALPMLKQSNGSIVVVSSLAGKVAYPMVAAYSASKFALDGFFSSIRKEYSV  197
F+SYV LT  ALP L  S GS+VVVSSL G+V       YSA+KFALDGFF S+R+E  V

hHSD1L 139 FVSYVQLTSRALPSLTDSKGSLVVVSSLLGRVPTSFSTPYSAAKFALDGFFGSLRRELDV  198

hHSD1 198 SRVNVSITLCVLGLIDTETAMKAV  221
VNV+IT+CVLGL D  +A +AV

hHSD1L 199 QDVNVAITMCVLGLRDRASAAEAV  222

Ac�ve Site

Cofactor Binding

A

B

Figure 1
The exon/intron structure of the human HSD11B1L gene and the amino 
acid sequence comparison of human 11βHSD1 and HSD1L. (A) The exon/
intron structure of the human HSD11B1L gene on chromosome 19p33.3. 
Positions of two alternate ATG start sites, the cofactor binding domain 
and active site are indicated above exons. Alternate splicing of exons is 
able to generate three major protein isoforms of 286, 315 and 333 amino 
acids. (B) Amino acid sequence comparison of human 11βHSD1 and 
HSD1L showing the known positions of the NAD/NADP binding and 
active sites for 11βHSD1 and HSD1L (boxed). Conserved and similar (+) 
residues across the two sequences are also indicated.
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of the hHSD1L gene we detected moderate expression in 
total RNA from whole brain in agreement with previous 
reports (10). We detected stronger bands for HSD11B1L 
transcripts in the ovary, testis and lung, and weaker 
expression in total RNA from human kidney (Fig.  3A). 
We then compared mRNA levels of hHSD1L to h11βHSD1
and h11βHSD2 in total RNA from human colon. 11βHSD2
mRNA levels were as expected very high, with hHSD1L and 
11βHSD1 almost undetectable (Fig. 3B). A similar analysis
in total RNA from human brain and ovary showed similar 
levels of expression in the ovary, and similar mRNA levels 
for 11βHSD1 and hHSD1L in the brain (Fig. 3C). To allow
a broader assessment of the expression of HSD1L in the 
mammalian body, we measured mRNA levels in total RNA 
from various organs of the sheep. Total RNA was prepared 
from the major organs of the foetal sheep (female, day 
150, just prior to birth) and mRNA levels compared for 
HSD1L, 11βHSD1 and 11βHSD2 using droplet-digital qPCR 
(Fig. 4A). Highest levels of HSD1L mRNA were detected in 

ovary, pituitary, colon and lung, with lower levels detected 
in other organs analysed. In the adult female sheep, much 
higher levels of HSD1L mRNA were detected in pituitary 
and ovary compared to the lung (Fig. 4C).

Localisation of HSD1L protein in the ovary

The cellular localisation of HSD1L was assessed in the 
ovary and testis of the non-human primate marmoset by 
immunohistochemistry using a commercial anti-human 
HSD1L polyclonal antibody. Strong immunostaining for 
HSD1L was detected in developing follicles of the ovary 
at all stages of ovarian follicle development (Fig. 5A and 
D). Also shown are negative controls with no primary 
antibody (panel B) and an immunizing peptide, pre-
incubation control (panel C). The mouse ovary, that 
should not express a HSD1L protein, was used as an 
additional negative control for immunostaining and 
showed no specific staining in the mouse ovary above 

Figure 2
Structural modeling of the open reading frame of the human HSD11B1L gene with its closest homologues 11βHSD1 and 11βHSD2. The three-dimensional 
structure of 11β-HSD1 (IXU9), 11β-HSD2 (NM_000196) and HSD1L (NM_198706). All imaging was performed using the programme ‘Pymol’ and coloured 
as described unless stated otherwise. Predicted structures of 11βHSD2 and 11βHSD1L were produced using the Phyre2 software suite. (A) The predicted 
3D structure of 11βHSD2 produced using Phyre2 at >90% confidence in 74% of residues. (B) Depicts the solved structure of 11βHSD1. (C) The predicted 
3D structure of HSD1L produced using Phyre2 at >90% confidence in 74% of residues. (D) Shows the predicted substrate binding site of 11βHSD1L with 
both catalytic residues represented as stick diagrams. (E) Shows a hydrophobicity surface structure of the predicted HSD1L structure. Red regions indicate 
hydrophobic areas whereas white indicated hydrophilic regions. Both the catalytic and cofactor binding domains are shown in green and the respective 
side chains are represented as stick diagrams.
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background (Fig. 5E and F). Staining within the marmoset 
ovary was specific for the granulosa cell layer of the 
follicle and interestingly also for the oocyte within the 
follicle (arrow, Fig. 5D). An identical staining pattern was 
also observed in the ovary from the adult sheep (data 
not shown). Immunohistochemistry with sections of the 
marmoset testis was also analysed and detected staining in 
cells resembling Leydig cells (Fig. 5, panel G and negative 
control, panel H). To positively identify the cell type 
specifically labelled in the marmoset ovary, we performed 
double-immunofluorescence for HSD1L with two known 
granulosa cell markers, cyclin D2 and FoxL2 (Fig.  6). 
Immunostaining for HSD1L was co-localised in granulosa 
cells with both cyclin D2 (Fig. 6A, B and C) and FoxL2 
(Fig. 6D, E and F), clearly identifying HSD1L expression 
specifically to the cytoplasm of ovarian granulosa cells.

Localisation of HSD1L protein within the 
anterior pituitary

The cellular localisation of HSD1L in the pituitary was 
also assessed by immunohistochemistry in the marmoset. 
Immunostaining was detected in a small subset of cells 
and only in anterior pituitary (Fig.  7). No staining was 
detected in regions of the posterior pituitary (data not 
shown). In the anterior pituitary, strong cytoplasmic 
staining was observed in scattered cells throughout the 
anterior lobe (Fig.  7A and D). To identify the particular 
cell type stained for HSD1L double-immunofluorescence 
was performed with antibody markers specific for 
pituitary somatotrophs (growth hormone), lactotrophs 
(prolactin), gonadotrophs (luteinizing hormone (LH)) and 
corticotrophs (melanocyte-stimulating hormone) (Fig. 7E, 

Figure 3
Detection of HSD11B1L mRNA in total RNA from human tissues and cell 
lines. (A) Detection of HSD11B1L mRNA by RT-PCR in cDNA from human 
kidney (lane 1), lung (lane 2), ovary (lanes 3 and 5), testis (lanes 4 and 6) 
and whole brain (lanes 7–9). (B) Relative mRNA levels of 11βHSD1, 
11βHSD2 and HSD1L determined by qPCR in total RNA from human ovary, 
brain and the HEK293 cell line (n = 3). RNA levels of HSD1L compared to 
11βHSD2 in brain cortex, *P < 0.05.

Figure 4
Levels of Sheep 11βHSD1, 11βHSD2 and HSD1L 
mRNA in total RNA isolated from female foetal 
(156 day old) and female adult sheep tissues 
determined by drop-digital PCR (n = 3). Values 
shown are absolute relative transcripts/10 ng total 
RNA for (A) foetal liver, kidney, colon, small 
intestine, adrenal and lung. (B) Foetal ovary, 
pituitary, heart, thymus, spleen and brain cortex. 
(C) Adult ovary, pituitary and lung. Error bars are 
s.e.m., n = 3. RNA levels of HSD1L compared to 
11βHSD1 in liver, *P < 0.01, RNA levels of HSD1L 
compared to 11βHSD2 in kidney and adrenal, 
*P < 0.01, RNA levels of HSD1L compared to 
11βHSD1 in ovary, *P < 0.05, and RNA levels of 
HSD1L compared to 11βHSD1 and 11βHSD2 in 
pituitary, *P < 0.01.
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F, G and H). There was no co-localisation of HSD1L (green 
colour) with markers for somatotrophs, corticotrophs or 
lactotrophs (red colour), but remarkably there was close to 

100% co-localization of HSD1L with LH (panel H, merged 
yellow colour), marking these HSD1L-specific cells as 
pituitary gonadotrophs.

Figure 5
Localisation of HSD1L by immunohistochemistry in the ovary and testis from the non-human primate adult marmoset. (A) HSD1L in marmoset ovary 
(N16 HSD1L peptide polyclonal antibody) ×10. (B) Marmoset ovary no primary antibody control. (C) Marmoset ovary immunising peptide pre-incubation-
negative control. (D) HSD1L in Marmoset ovary (N16 HSD1L peptide polyclonal antibody) ×40. (E) Mouse ovary (N16 HSD1L peptide polyclonal antibody) 
×10. (F) C Marmoset ovary no primary antibody negative control. (G) HSD1L in Marmoset testis (N16 HSD1L peptide polyclonal antibody) ×10. 
(H) Marmoset testis no primary antibody control.

Figure 6
Localisation of HSD11B1L protein to granulosa cells of the adult marmoset ovary by double-immunofluorescence. (A, B and C) Double-
Immunofluorescence for HSD1L (green) and cyclinD2 (red) in the adult marmoset ovary. CyclinD2 was used a marker of follicle granulosa cells and shows 
co-localisation with HSD1L to the cytoplasm of granulosa cells (C; yellow, Merge). (D, E and F) Double-immunofluorescence for HSD1L (green) and FoxL2 
(red) in the adult marmoset ovary. FoxL2 was used a nuclear marker of follicle granulosa cells. HSD1L and FoxL2 were strongly co-localised to the 
cytoplasm and nucleus, respectively of follicle granulosa cells (F; Merge). Scale bars: A, B, C, D, E and F: 80 µm.
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HSD1L protein is localised to the cytoplasmic 
endoplasmic reticulum

The level of conservation between HSD11B1 and HSD11B1L 
on a protein level is exceptionally high particularly in amino 
acid sequences that form the secondary structure involved 
in the Rossmann fold. Further levels of conservation are 

observed at the N-terminal end of HSD11B1L showing a 
string of hydrophobic amino acids that suggested the 
possibility of a localisation signal and/or transmembrane 
domain. Analysis of the HSD1L amino acid sequence using 

Figure 7
Localisation of HSD11B1L by immunohistochemistry and double-immunofluorescence in the anterior pituitary of non-human primate adult marmoset. 
(A, B, C and D) Immunohistochemistry for HSD1L (DAB, brown stain) in the adult marmoset anterior pituitary. (A) HSD1L N16 primary antibody 
(SC-244840) 20×. (B) no primary antibody (N16-SC) control. (C) Immunising peptide (SC-244840) pre-incubation (before primary antibody) control. 
(D) 11βHSD1L N16 primary antibody 40×. (E, F, G and H) Double-immunofluorescence for HSD1L (green fluorescence) with either growth hormone 
(panel E, GH – red), αMSH (panel F, MSH – red), prolactin (panel G, PRL – red) or Luteinizing hormone (panel H, LH – red). Co-localisation is shown as 
yellow fluorescence.

Figure 8
Intracellular localisation of HSD1L to the 
endoplasmic reticulum in transfected human 
HEK293 cells. (A) Predicted signal peptide score 
for the first 40 amino acids of human HSD1L 
(286 isoform) using SignalIP4.1 software. C-Score 
(raw cleavage site score): S-Score (signal peptide 
score), Y-Score (combined cleavage site score). 
(B) Fluorescent image of C-terminal DS-red-
tagged human HSD11B1L9A transfected in 
HEK293 cells. (C) Full length human HSD11B1L 
transfected into HEK293 cells and then 
immunostained with an in-house mouse 
monoclonal anti-human HSD11B1L antibody and 
also anti-IgG alexa555 to stain nuclei. (D and G) 
Indirect immunofluorescence (green) for the 
known ER-localised protein GRP78. (E and H) 
Indirect immunofluorescence (red) for transfected 
human HSD1L in HEK293 cells using the mouse 
monoclonal anti-human HSD11B1L antibody. 
(F and I) Merged double-immunofluorescence 
(yellow) for transfected HSD1L (red) and 
endogenous GRP78 (green) in HEK293 cells.
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SignalIP 4.1 revealed a predicted N-terminal hydrophobic 
ER localisation signal with a cleavage site predicted to reside 
between residues 15 and 16 of the protein (Fig.  8A). To 
further investigate the potential intracellular localisation of 
HSD1L to the ER, transfection experiments were performed 
in human HEK293 cells. Transfection of cells with 
HSD1L tagged with mCherry at the C-terminus showed 
a cytoplasmic localisation reminiscent of localisation 
to the ER (Fig.  8B). Indirect immunofluorescence of 
untagged HSD1L transfected into HEK293 cells using an 
anti-human HSD1L antibody showed a similar pattern of 
localisation (Fig. 8C). Finally, indirect immunofluorescence 
was performed for HSD1L and the ER marker GRP-78 in 
HEK393 cells transfected with HSD1L, and showed specific 
co-localisation of HSD1L to the cytoplasmic ER (Fig.  8, 
panels F and I, merged yellow fluorescence).

Discussion

The protein HSD1L has been identified as a member of 
the SDR superfamily of oxidoreductase enzymes with a 
high level of homology at the amino acid level to the very 
well characterised glucocorticoid steroid metabolising 
enzymes 11βHSD1 and 11βHSD2. We have further
characterised HSD1L as a species-restricted member of 
the SDR superfamily strikingly absent from the majority 
of rodent genomes. We have compared the mRNA 
expression patterns of all three HSD-like SDR family 
members and identified cell type specific localization 
of HSD1L protein in a subset of specific tissues. Protein 
localization was cell type specific and was primarily 
localised to well characterised endocrine cells including 
gonadotrophs within the anterior pituitary and the 
steroid producing granulosa cells surrounding ovarian 
follicles. Further analysis in HSD1L transfected HEK293 
cells showed that like the other family members, HSD1L 
is indeed an ER cytoplasmic localised protein. Recently 
published evidence have shown that HSD1L is unlikely to 
be involved in interconversion of cortisol and cortisone, 
nor metabolism of 11-keto or 11-hydroxy-testosterone 
(17), but given the high levels of sequence homology 
and tissue localisation, a steroid-based substrate is a likely 
target and will be the focus of future studies.

The presence of a third potential 11βHSD enzyme
in the sheep kidney was proposed in 1997 by Gomez-
Sanchez and coworkers (18) and was referred to as  
11β-HSD3 (18). Gomez-Sanchez and coworkers (18) isolated 
intact kidney microsomes and showed the presence of 
unidirectional conversion of cortisone/corticosterone 

that was NADP+ dependent with a Km for corticosterone 
of 1.3 nM (18), a 100-fold increase in activity compared 
to 11βHSD1 in liver and other papers at the time that
had described kinetics of 11βHSD1 from purified rat liver
microsomes (19). However, this study was lacking in 
viable controls for the experiment with no confirmation 
that cortisol to cortisone reduction was not a result of 
11βHSD2 activity given the well characterised high levels
of 11βHSD2 in the sheep kidney. This is especially true for
11βHSD1 with specificity for cortisone both in vitro and
in vivo relatively low, with some groups providing data 
to suggest that 11βHSD1 has a higher affinity for cortisol
over cortisone (19, 20, 21). Other studies have shown that 
the specificity of 11βHSD1 towards cortisone is the result
of co-expression of Hexose-6-Phosphate Dehydrogenase 
(H6PD) with 11βHSD1 in the ER (22). The co-expression
and localisation of HSD1L with H6PD has so far not been 
explored. A recent study has characterised a novel and 
potentially third 11βHSD activity in human liver nuclei
that had lower Km values for corticosterone, was NADP+ 
dependent and blocked by HSD1 inhibitors (23). This is 
however very unlikely to be HSD1L as we have shown 
that human HSD1L is not nuclear localised and has a very 
low level of expression in the sheep liver.

A more recent study by Ohno and coworkers (24) 
described HSD1L in the pig as a third HSD11B isozyme 
expressed in the neonatal pig testis (24). They showed 
by semi-quantitative PCR that a HSD1L mRNA was 
expressed in the neonatal pig testis and brain at lower 
levels compared to 11βHSD1 and 11βHSD2. The HSD1L
activity in the testis was not inhibited by glycyrrhetinic 
acid, a strong inhibitor of 11βHSD1. These results are in
agreement with our study that shows high expression of 
HSD1L in the brain and testis of non-human primates and 
sheep, with localised expression of marmoset HSD1L to 
testicular Leydig cells. Both 11βHSD1 and 11βHSD2 have
been characterised in the Leydig cells surrounding the 
seminiferous tubules in the testis of rats and opens up the 
question of the additional role of HSD1L that may play in 
the functioning of Leydig cell (25).

The results published by Huang and coworkers 
(10), further defined the expression and role of human 
HSD1L, termed SCDR10B, a member of the SDR enzyme 
family (10). They defined the intron/exon structure of 
the human HSD1L gene, showed strong expression in 
brain RNA by northern blot analysis and a very weak 
expression in other organs were analysed. Using expressed 
and purified HSD1L protein they demonstrated in vitro a 
very weak 11β-HSD dehydrogenase activity. Interestingly
immunohistochemistry using an in-house polyclonal 
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antibody to human HSD1L indicated elevated expression 
in lung cancer biopsies and in various areas of the brain 
such as the hippocampus. We have found some evidence 
of elevated mRNA levels of human HSD1L in various 
cancer cell lines (unpublished results), but these results 
need to be explored in more detail to define a potential 
role for this enzyme in cancer cell proliferation. We 
have confirmed high expression of HSD1L in total RNA 
of the brain and show strong specific expression in the 
pituitary gland where HSD1L is localised specifically to 
gonadotrophs within the anterior pituitary. There are 
lower levels of expression in other regions of the non-
human primate and sheep brain, yet the specific cell types 
expressing HSD1L are yet to be defined. In comparison to 
11βHSD1 and 11βHSD2 in the foetal sheep, we also detect
similar yet lower levels of HSD1L mRNA in the kidney, 
lung, adrenal and gastrointestinal tract.

Expression of HSD1L both at the mRNA and protein 
level in tissues of the hypothalamic–pituitary–gonadal 
(HPG) axis is striking and suggests a potential role for the 
enzyme in regulating aspects of reproduction. Expression 
of HSD1L in the anterior pituitary was shown to co-localise 
to gonadotroph cells through double labelling with LH, a 
well characterised cell marker of gonadotrophs. A major 
role of gonadotrophs in females is the cyclic release of 
LH and FSH, which in turn stimulates receptors on the 
surface of granulosa cells surrounding ovarian follicles. We 
intend to explore HSD1L-mediated regulation of LH and 
FSH production and release from pituitary gonadotrophs. 
This process is very important in the maintenance of 
reproductive homeostasis in both females and males and 
the expression of HSD1L in both ovarian granulosa cells 
and gonadotrophs provides evidence for a novel regulatory 
loop potentially regulated by HSD1L. This observation 
is also important with respect to its substrate given the 
importance role of granulosa cells for steroid production. 
Granulosa cells have been shown to upregulate important 
genes involved in steroid production including p450 
aromatases, StAR and 17β-HSD in response to LH and
FSH (26, 27). Increased levels of LH and FSH mediate 
stimulation of granulosa cells to increase serum levels of 
testosterone that are important substrates for aromatase 
enzymes present within theca cells responsible for the 
conversion of androgens to estradiol (28). Interestingly, 
the androgen receptor has been shown to be selectively 
expressed in rat granulosa cells acting as a mediator 
of positive feedback mechanisms (29). Furthermore, 
11βHSD1 has been shown to bind and metabolise several
androgenic derivatives (30, 31). This substrate promiscuity 
of 11βHSD1 may provide potential clues to the substrate

of HSD1L given the high levels of sequence homology at a 
protein level. 11βHSDs are also able to metabolise 11-oxy
androgens, such as 11-keto- and 11-hydroxy-testosterone 
(32, 33). A very recent study has investigated the steroids 
as substrates for HSD1L in zebrafish but showed absence 
of 11-ketosteroid reduction in zebrafish, with both human 
HSD1L (11βHSD3) and the two zebrafish homologues
were unable to convert cortisone or 11-keto-testosterone 
to their 11 hydroxy metabolites (17). The identity of the 
physiological substrate for HSD1L/11βHSD3 is therefore
elusive and may be an as yet uncharacterised reproductive 
steroid metabolite.

In summary, we have further characterised a novel 
species-restricted SDR hydroxysteroid dehydrogenase 
enzyme called HSD1L that is localised primarily to tissues 
of the pituitary–gonadal axis. The in vivo substrate for this 
enzyme is as yet unknown and given its level of expression 
in pituitary gonadatropes and the ovary, may serve as a 
modulator of reproductive function.
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