
Exact and approximate methods of sampling
from posterior distributions of parameters in

non-linear ordinary differential equations

by
Amani Alahmadi

School of Mathematics
Faculty of Sciences
Monash University

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
Tuesday 21st July, 2020





To my late daughter Leen.
My beloved husband Fahad, and my son Yazan,

Without whom none of my success would be possible.





Acknowledgements

First and foremost I would like to thank my supervisor Associate Prof. Jonathan
M.Keith for the time he spent in supporting me through the course of my doctoral
studies and for the efforts he put into sharpening my skills. I am grateful to him
for all his encouragement, patience and insightful suggestions. I am also indebted
to my associate supervisor Associate Prof. Jennifer Flegg for her enthusiasm,
motivation and her valuable contribution for supervising me with her invaluable
knowledge.

I would thank all the co-authors, Associate Prof. Christopher Drovandi, whose
experience in the field of Approximate Bayesian computation has been immense
and extremely valuable, and Davis Cochrane for his help and suggestions.

I want to thank my PhD panel members: Associate Prof. Tianhai Tian, As-
sociate Prof. Tim Garoni and Dr. Tiangang Cui for their valuable comments
and feedback. I am grateful to my sponsor, Shaqra University, for their generous
sponsorship, in funding my studies, and their unlimited support for my family
and me.

I wish to thank my friends and colleagues Farhana Sadia and Yuqin Ke for their
support and the many fruitful discussions that we shared during my research. I
would also acknowledge the support that I got from Monash University and the
administration staff in the faculty of science for all their efforts, especially, John

v



Acknowledgements

Chan for his continuous support and coordinating role throughout my PhD.

Finally, I want to thank my husband, Fahad Alrehaili for his unconditional love,
support, encouragement, understanding and optimism that allowed me to finish
this journey. A special thank you goes to my son Yazan Alrehaili who was just
one year old when I started my PhD, he made these past few years much more
enjoyable and inspirable. I would like to extend my sincere gratitude for the
generous support that I got endlessly from my parents and my siblings.

vi



Abstract

Ordinary differential equations (ODEs) are an essential tool for describing phys-
ical and biological processes. ODE models contain parameters that represent
quantities of biological and physical importance, such as kinetic rates and initial
concentrations. These parameters are often hard to measure experimentally and
have uncertainty in their values. Statistical methods are often used to perform
parameter inference, from noisy observations. However, current standard methods
suffer from some limitations and can produce inefficient results. The aim of this
thesis is to conduct an investigation of some of the limitations of these methods
and provide novel approaches that improve the efficiency of parameter estimation
in the context of ODE parameters.

Bayesian inference, which is the focus of this thesis, provides an essential method-
ology for parameter inference in ODE models. A common Bayesian approach,
Markov chain Monte Carlo (MCMC), uses pseudo-random parameter samples
from a posterior distribution to estimate relevant integrals. However, a poorly
designed MCMC method can exhibit slow mixing and poor convergence. These
problems are exacerbated when the parameter space is of high dimension, param-
eters suffer from identifiability issues, or the posterior distribution is multi-modal.
Approximate Bayesian Computation (ABC) is a likelihood-free Bayesian inference
methodology that provides an approximation to the posterior when the likelihood
is intractable or too computationally intensive to evaluate. This thesis makes
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Abstract

three main contributions to computational Bayesian methods for ODEs. Namely,
we highlight major problems due to model misspecification in current widely used
ABC methods for ODE parameter estimation, develop a novel ABC scheme based
on sequential Monte Carlo (SMC) to address such problems, and propose an al-
ternative method that explores the parameter space more efficiently than MCMC
using Quasi Monte Carlo (QMC) methods.

The first contribution of this thesis is related to the current practice of using ABC
for parameter inference in ODEs. This thesis conducted a study to demonstrate
problems caused by neglecting the simulation of random errors and illustrates for
both simple and complex epidemiological models that this can produce serious
errors in the estimated posterior distributions. The second contribution is to pro-
pose a modification to the current SMC ABC method. A summary statistic was
used to aid the construction of acceptance criteria that allow correct approxima-
tion of the posterior distribution. Including estimation of the error terms in the
inference process improves significantly the efficiency of the estimated posterior
distribution as well as the accuracy of predictions. Finally, a new method was
proposed in this thesis, which allows the exploration of the parameter space con-
ducted using low discrepancy point sets instead of random points as in MCMC.
This method improves estimation of the posterior and outperforms MCMC when
the posterior density has multiple modes. Using predetermined point sets, this
method allows the algorithm to be implemented in a parallel computing environ-
ment, and reduces the computational cost significantly. In this thesis, I highlight
the usefulness of the proposed methods for a variety of nonlinear ODEs with noisy
observations.
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Chapter 1

Introduction

1.1 Motivation

Ordinary Differential Equations (ODEs) are a popular mathematical tool for de-
scribing physical and biological processes in the real world. ODEs describe the
differential structure of dynamical variables, often in terms of some unknown pa-
rameters that must be estimated using noisy observations. The task of estimating
the unknown parameters is considered a significant statistical problem and is
sometimes referred to as the inverse problem for ODEs.

Bayesian approaches to such estimation problems are popular, not only because
they are able to quantify inherent uncertainty, but also because they have been
found to deliver excellent results for complex non-linear ODEs (see Vaart, Prangle,
and Sibly (2018); Prangle et al. (2017); Ghosh, Dasmahapatra, and Maharatna
(2017); Calderhead, Girolami, and Lawrence (2008); Dondelinger, Rogers, and
Husmeier (2013); Wang and Barber (2014); Toni, Welch, Strelkowa, Ipsen, and
Stumpf (2009) for examples). Typically, Bayesian estimation involves sampling
parameters from a posterior distribution using a computational method. However,
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some of these approaches involve integration over a subset of parameters to obtain
a marginal likelihood. Commonly, for non-linear ODE models, these integrals
are either not tractable or they are computationally expensive. Identifying the
limitations of current approaches and development of new statistical methods are
required to improve parameter inference and future predictions in the context of
ODEs.

The parameter space can be explored using pseudo-random sampling, which is
a deterministic process that generates numbers which appear to be distributed
according to a given distribution, as in Monte Carlo integration. Markov chain
Monte Carlo (MCMC) algorithms were first developed by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller (1953) and are considered one of the most important
tools to carry out statistical analyses in a Bayesian context. This class of technique
creates a Markov chain, that has the posterior distribution as its limiting distribu-
tion. In complex applications, the likelihood function can be intractable or com-
putationally very expensive to evaluate. Thus, alternative likelihood-free methods
have been developed, such as Approximate Bayesian Computation (ABC), which
first appeared in Tavaré, Balding, Griffiths, and Donnelly (1997) and Pritchard,
Seielstad, Perez-Lezaun, and Feldman (1999). The standard ABC method in-
volves comparing a summary statistic from the simulated data and the observed
data using a discrepancy function. To improve the low acceptance rate in the
basic ABC algorithm, population-based methods such as the sequential Monte
Carlo (SMC) algorithm were proposed in Sisson, Fan, and Tanaka (2007), based
on the SMC methodology developed by Del Moral, Doucet, and Jasra (2006). An
application of SMC ABC to ODE models was described in Toni et al. (2009).
However, some of the current ABC approaches fail to adequately model the error
terms associated with observed data because the acceptance probability depends
on a discrepancy function that does not take into consideration the error term.
One objective of this thesis is to address this limitation.

In this thesis, to overcome the limitations of existing ABC approaches for parame-
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ter inference within ODEs, I developed a novel modification to the standard SMC
ABC. This new approach combines the benefits of using a likelihood-free method
with a framework that is capable of accurately quantifying the uncertainty and
improving the efficiency of the estimation. This method takes observation error
into account when performing parameter inference using the SMC ABC method.

Moreover, in the case where the likelihood is tractable when performing param-
eter inference in ODEs, a poorly designed MCMC method can suffer from slow
mixing and poor convergence. This problem is particularly acute when the pa-
rameter space is of high dimension or parameters are unidentifiable. Furthermore,
many MCMC approaches explore the parameter space by making local moves
(Chumbley, Friston, Fearn, & Kiebel, 2007). Consequently, the sampler may get
stuck in some high-density region and miss exploring an area with low density,
especially in the case where the posterior distribution is multi-modal. This thesis
develops efficient and inexpensive methods that explore the parameter space from
a global point of view. This second contribution of this thesis uses low discrep-
ancy point sets to construct Quasi Monte Carlo (QMC) methods to explore the
parameter space. The results show that using QMC point sets can outperform
MCMC in terms of computational time and accuracy of estimation, especially,
when the target posterior is multi-modal. This approach is simple and easy to
apply. Additionally, statistical software is under development for this thesis and
it will be publicly available when it is finished. This software is likely to benefit
practitioners working in a wide range of fields.

1.2 Research Aim and Objectives

The overall aim of this thesis is to address some of the limitations of current
Bayesian approaches to parameter inference for ODEs and to develop new statis-
tical methods for this purpose. This overall aim can be divided into the following
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objectives:

1. Objective 1
Clarify the problems arising from model misspecification in ABC methods
for ODE parameter estimation. Addressing this issue is very important to
ensure that practitioners of such methods are extracting valid information
from observed data and applying ABC methods appropriately.

2. Objective 2
Develop an ABC SMC algorithm to overcome the current misspecification is-
sue outlined in Objective 1 above. The approach I propose uses an improved
acceptance criteria that appropriately accounts for observational error and
produces comparable accuracy to MCMC.

3. Objective 3
Propose a new approach that explores the parameter space in a more even
fashion. In this approach, instead of using random sampling as in MCMC,
I use predetermined QMC point sets. This significantly reduces the compu-
tational cost compared to MCMC, particularly when the posterior is multi-
modal.

4. Objective 4
Evaluate the proposed methods by applying them to real world research
problems in epidemiological modelling (one simple and one more complex
ODE system) and ecological modelling, using simulated data and actual
observations.

1.3 Thesis Structure and Contributions

This thesis comprises published and submitted papers; thus, the main chapters
that contribute to the thesis aim are published or submitted. The candidate is
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the corresponding author on all the articles included in the main body of the
thesis. The thesis is organised in six chapters, including the current one. The
main contributions of Chapters 2-6 are outlined as follows:

• Chapter 2, Monte Carlo Methods for Bayesian Statistics
In this chapter, I provide a brief introduction to Bayesian statistics for
inferring parameters of an ODE system and then provide a self-contained
overview of the fundamentals of MCMC, QMC and ABC methods that are
relevant to the contributions made in this thesis. There is some overlap
between this chapter and the main chapters of this thesis (Chapters 3 - 5).
These later chapters contain published or submitted journal articles.

• Chapter 3, A Comparison of Approximate Versus Exact Techniques
for Bayesian Parameter Inference in Non-linear ODE Models
In this chapter, we highlight, clarify and explore several limitations of exist-
ing ABC approaches for ODE models (Objective 1). Specifically, we argue
that some common ABC approaches fail to sufficiently quantify the un-
certainty in parameter values, which significantly reduces the accuracy of
posterior estimation and posterior predictive credible intervals. We demon-
strate this problem by applying ABC approaches to two ODE epidemiolog-
ical models with simulated data and one with real data concerning malaria
transmission in Afghanistan.

• Chapter 4, Estimating error parameters in dynamical systems mod-
els using Approximate Bayesian Computation
In this chapter, a new SMC ABC method is proposed to overcome the lim-
itation previously identified (Objective 2). In this method, we propose a
summary statistic that facilitates accurate estimation of the noise associ-
ated with observations. The new summary statistic incorporates knowledge
about the error term into the choice of the tolerance sequence, thus produc-
ing more efficient acceptance criteria. The advantages of this method are
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illustrated when applying the proposed method to several challenging test
problems.

• Chapter 5, Low Discrepancy Sequences for Bayesian Estimation in
Ordinary Differential Equations
In this chapter, a method based on using predetermined QMC point sets
is proposed. This method involves two main contributions. First, the new
method explores the parameter space of non-linear ODEs more evenly and
efficiently using QMC point sets. Second, I propose a new and easy method
to visualise posterior marginals using cumulative summation. Our results
show that QMC outperforms MCMC in terms of computational cost, ease
of implementation and the accuracy of posterior estimation, especially when
the posterior distribution has a multi-modal surface (Objective 3). Appli-
cations of the method to a Lotka-Volterra model and an epidemiological
compartmental model with real data illustrate the advantages of the pro-
posed QMC-based method.

• Chapter 6, Summary and main contributions
In this chapter, I summarise the three major contributions of this research
and discuss potential areas for future work.

1.4 Publications

1. The first contribution addressing the limitation of using ABC methods
within ODE models has been published in the following article:

Alahmadi, A. A., Flegg, J. A., Cochrane, D. G., Drovandi, C. C. & Keith,
J. M. (2020). A comparison of approximate versus exact techniques for
Bayesian parameter inference in nonlinear ordinary differential equation
models. Royal Society Open Science, 7(3), 191315.
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2. The second contribution proposing a modification to the SMC ABC method
to overcome the current limitations outlined in the first publication has been
submitted in the following article:

Alahmadi, A. A., Flegg, J. A. & Keith, J. M. Estimating error parameters
in dynamical systems models using Approximate Bayesian Computation.
Computational Statistics. Submitted 1/3/2020.

3. The third contribution proposing an approach that explores the parameter
space using QMC point sets has been submitted in the following article:

Alahmadi, A. A., Flegg, J. A. Keith, J. M. Low Discrepancy Sequences
for Bayesian Estimation in Ordinary Differential Equations. Statistics and
Computing. Submitted 31/3/2020.

4. Joint work that reviews recent progress towards solving the challenges of
influencing public health policy with data-informed mathematical models of
infectious diseases was submitted in the following article:

Alahmadi, A. A., Belet, S., Black, A., Cromer, D., Flegg, J. A., House, T.,
Jayasundara, P., Keith, J. M., McCaw, J. M., Moss, R., Ross, J., Shearer, F.
M., Tun, S. T. T., Walker, J., White, J., Whyte, J. M., Yan, W. C. Zareb-
ski, A. E. Influencing public health policy with data-informed mathemati-
cal models of infectious diseases: Recent developments and new challenges.
Epidemics. Submitted 24/11/2019.

Details of this work appear in Appendix B. This work was completed during
my candidature but is not considered a direct contribution of this thesis.
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Chapter 2

Monte Carlo Methods for
Bayesian Statistics

2.1 Introduction

Many exact and approximate Bayesian methods have been developed to sample
from a posterior distribution. In this chapter, I give a brief introduction to the
Bayesian paradigm as it applies to inferring parameters of ODE systems. Al-
though there are numerous other computational Bayesian methods, this chapter
only provides a review of the fundamentals of the MCMC, QMC and ABC meth-
ods that are used throughout this thesis.
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Figure 2.1: Summary of steps involved in making predictions from a model of a
real system. In the Bayesian framework, parameter estimation depends on the
chosen ODE model and on the noisy observations of the real system. The accuracy
of such estimation affects future predictions.

2.2 Bayesian Parameter Estimation in ODE Sys-
tems

ODEs represent one of the most widely used techniques for modeling continuous-
time, nonlinear, dynamical systems. Typically, there are two prime challenges for
researchers to deal with in this context: selecting the most appropriate model
and estimating the parameters of the selected model (see Figure 2.1). Solving
these problems is generally worthwhile since it leads to an enhanced understand-
ing of the real system and quantifies the associated uncertainty can improve the
accuracy of the predictions about future observations. Figure 2.1 illustrates these
challenges. In this thesis, the focus is on methods for estimating parameters under
a Bayesian framework.
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Consider a Q-dimensional dynamical system for the state variable vector, x(t),
described by the system of ODEs:

ẋ(t) = f(x,θ, t), (2.1)

where x is a Q×1 vector of the dependent variables and f is a Q×1 vector-valued
Lipschitz continuous function with respect to x (this condition is necessary to
guarantee the existence and uniqueness of the ODEs solution (Walter, 1998)). The
parameter vector, θ, is an M×1 vector of model parameters, t is the independent
variable (often time) and ẋ represents the derivative of x with respect to the
independent variable. Given the dynamical system in Equation (2.1), along with
values for the parameter vector θ, and the initial condition x0, the solution to the
system can be approximated numerically, for example, using Euler’s method or
Runge-Kutta methods (Atkinson, Han, & Stewart, 2011). There are many Runge-
Kutta approximation methods; however, the fourth order Runge-Kutta method
is the one used in this thesis.

I denote an experimental observation at time tk by the Q × 1 vector yk. Ex-
perimental observations are taken at K time points, with times stored in a
K × 1 vector t = (t1, t2, ..., tK)T and observations stored in the Q × K ma-
trix y = (y1,y2, ...,yK). These observations are usually associated with some
unknown noise process, characterised by one or more variance parameters, say
σ2 = (σ2

1, . . . , σ
2
Q). The (approximate) solution for the dependent variables at

time tk, given θ and x0, is denoted by the Q × 1 vector x̂(tk;θ,x0). The so-
lution for the dependent variables at times t is stored in the Q × K matrix
x̂(t;θ,x0) = (x̂(t1;θ,x0), x̂(t2;θ,x0), ..., x̂(tK ;θ,x0)). In a Bayesian setting, the
posterior distribution for θ and σ2 given y is:

p(θ,σ2,x0|y) ∝ p(y|θ,σ2,x0)p(θ)p(σ2)p(x0), (2.2)

where p(y|θ,σ2,x0) is the likelihood, and p(θ), p(σ2) and p(x0) are independent
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priors for θ, σ2 and x0, respectively.

2.2.1 Noisy Observations

Throughout the thesis I assume that each observation, yk for k = 1, . . . , K, has
an associated additive noise process, δk, such that

yk = x̂(tk;θ,x0) + δk, (2.3)

where δk is aQ×1 vector and x̂(tk;θ,x0) is the solution for the dependent variables
at time tk, given θ and x0. Under a Gaussian error model and assuming the δk
are independent of each other, yk follows a multivariate normal distribution:

yk ∼ MVN(x̂(tk;θ,x0),Σ(σ2)) (2.4)

where Σ(σ2) is a diagonal matrix with diagonal elements σ2 = (σ2
1, σ

2
2, ..., σ

2
Q)T

associated with the Q dependent variables. Hence, the likelihood function is given
by

L(y|x̂(t;θ,x0),σ2) =
K∏
k=1

MVN(Yk; x̂(tk;θ,x0),Σ(σ2)) (2.5)

and the posterior density is

p(θ,σ2,x0|y) ∝ p(θ)p(σ2)p(x0)
K∏
k=1

MVN(Yk; x̂(tk;θ,x0),Σ(σ2)). (2.6)

Although we can assume any error model depending on the specific applications
under the study, assuming a Gaussian error model is a common choice and stan-
dard in many relevant applications (see Toni et al. (2009); Silk, Filippi, and Stumpf
(2013); Vaart et al. (2018)). One reason is that a Gaussian distribution has many
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convenient analytic properties. Another reason is that noise in the data typically
does not come from just one source; it may include contributions from observa-
tional measurement error, model misspecification or a combination of both (Vaart
et al., 2018). Each of these independent sources of noise can influence the data
and, while these sources of noise may not be normally distributed in general, their
overall effect can often be modelled as a Gaussian random variable according to
the central limit theorem.

Bayesian computational techniques are generally used to sample from the poste-
rior distribution of {θ,x0,σ

2} in the case of MCMC or an approximation to the
posterior in the case of ABC methods. In the following section, I provide a brief
review of MCMC, QMC and ABC approaches.

2.3 Markov Chain Monte Carlo (MCMC)

MCMC is a general method for drawing samples from a distribution when this
distribution is not available in closed form, or is otherwise not amenable to more
direct sampling methods. In the case of inferring parameters in ODEs, Equation
(2.6) may fail to have a closed form for at least one of two main reasons: i)
the normalising constant of proportionality in Bayes’ theorem is an integral that
cannot be evaluated analytically or ii) the solution x̂(tk;θ,x0) of the ODE model
is not available in closed form. The MCMC approach combines the Monte Carlo
strategy of using a large number of random samples from a target distribution
to estimate integrals and marginal posterior distributions with a Markov chain
strategy of using each random sample to generate the next random sample based
on a transition kernel (Van Ravenzwaaij, Cassey, & Brown, 2018). Generally,
MCMC samples are correlated and equally weighted.

In Bayesian analysis, there are many popular MCMC methods. Throughout this
thesis, I have used the Metropolis-Hastings (MH) algorithm or in some cases
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Hamiltonian Monte Carlo (HMC). These are each discussed in turn below.

2.3.1 Metropolis-Hastings (MH) Algorithm

The MH algorithm generates a sequence of random samples from an arbitrary
target distribution. It is often applicable even when the dimension of the param-
eter space is large (Metropolis et al., 1953; Hastings, 1970). The MH algorithm
constructs a Markov chain for which the stationary and limiting distribution is
the target posterior distribution. After running the chain for a sufficient amount
of time, say (K iterations), and discarding the burn-in samples (θ0,θ1, . . . ,θK),
subsequent samples from the chain can be considered draws from the posterior
distribution, where transition probabilities from θt to θt+1 depend only on the
position θt rather than any past positions (θ0,θ1, . . . ,θt−1). Under certain condi-
tions, an MCMC chain converges to a unique stationary distribution, in the limit
as the number of iterations goes to infinity. This is true for any starting position
θ0, even if θ0 comes from a low-probability region. The initial burn-in samples
are usually discarded because they are highly dependent on the starting value θ0

(Gelman et al., 2014). An implementation of the Metropolis-Hastings algorithm
is given in Algorithm 2.3.1.

Algorithm 2.1. The Metropolis-Hastings Algorithm (Metropolis et al., 1953;
Hastings, 1970)

1: Initialise θ0.
2: for t = 1 to T do
3: Propose θ∗ from a proposal distribution q(θ∗|θt−1).
4: Calculate α(θt−1 → θ∗) = min

(
1, p(y|θ∗)p(θ∗)q(θt−1|θ∗)

p(y|θt−1)p(θt−1)q(θ∗|θt−1)

)
.

5: Set θt = θ∗ with probability α, else set θt = θt−1.
6: end for

In Algorithm 2.3.1 the choice of proposal distribution q(θ∗|θt−1) can greatly
impact the performance of the sampler (Roberts, Gelman, & Gilks, 1997;
Van Ravenzwaaij et al., 2018). For example, q(θ∗|θt−1) can be chosen to be
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MVN(θ∗|θt−1,Σ)-the multivariate normal distribution with mean vector θt−1 and
covariance matrix Σ. However, if the component variances of the normal proposal
distribution are very large, many proposals may fall in the low density region of
the target distribution, which results in a high rejection rate. On the other hand,
if the component variances are small, this may increase the time for an MCMC
chain to converge to the target distribution or increase the chance of getting stuck
in a local mode of the distribution (Van Ravenzwaaij et al., 2018). In practice,
there is an adaptive approach that can tune the proposals in Algorithm 2.3.1 to
maintain an acceptance rate between 0.3 and 0.5; more detail can be found in
Gelman and Rubin (1992).

2.3.2 Hamiltonian Monte Carlo (HMC)

The HMC method adapts an idea from statistical mechanics that allows an MCMC
chain to explore the parameter space more efficiently. This is achieved by intro-
ducing an auxiliary momentum variable φ for the parameter vector θ, in which
both have the same dimension, say M . Then, draws from a joint density

p(φ,θ) = p(φ|θ)p(θ) (2.7)

are sampled using a new Metropolis algorithm, where the proposal distribution
for θ is influenced by φ. In most applications of HMC, φ is considered to have a
multivariate normal distribution with zero mean and covariance matrix C, which
is commonly a diagonal matrix:

φ ∼ MVN(0,C). (2.8)

Thus, each φm is independent of the others and has a normal distribution,
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N(0,Cmm) for m = 1, . . . ,M . The joint density in Equation (2.7) can be used to
define a fictitious Hamiltonian system (Hoffman & Gelman, 2014) as follows:

H(φ,θ) = −log p(φ,θ) = −log p(φ|θ)− log p(θ) (2.9)

where θ denotes a particle’s position inM -dimensional parameter space, φ denotes
the associated momentum of that particle in Mth-dimensional space, −log p(φ|θ)
is the kinetic energy and −log p(θ) is the negative potential energy (Hoffman &
Gelman, 2014). The simulation over time of the Hamiltonian dynamics can be
performed using a leapfrog integrator, which is a numerical integration algorithm;
for more details, I refer the interested reader to Brooks, Gelman, Jones, and Meng
(2011). In this thesis I have used the software Stan (Stan Development Team,
2019) to implement the HMC algorithm. The basic steps of this implementation
are as follows (Gelman et al., 2014):

1. Specify the initial value of the parameter vector θ0.

2. Repeat steps 3-5 for (t = 1, . . . , T ) times:

3. A new momentum vector, φt−1, is sampled from a multivariate normal dis-
tribution.

4. Apply leapfrog updates to the position and momentum variables θt−1 and
φt−1 with discretization time d and number of steps L. This will generate
a new proposal for the position-momentum pair θ∗ and φ∗.

5. Apply a Metropolis acceptance step with acceptance probability

α = min(1, exp(H(φt−1,θt−1)−H(φ∗,θ∗))

to decide whether to accept or reject updating the new state to obtain
(θt,φt).
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2.3.3 Limitations of Standard MCMC

Standard MCMC algorithms, such as the random walk Metropolis-Hastings
(RWMH) sampler, explore the parameter space by making local moves using,
for example, a normal proposal density (Chumbley et al., 2007). RWMH can
converge slowly to the target posterior density when the number of parameters is
large (Sengupta, Friston, & Penny, 2016; Feng & Li, 2015). In addition, unidenti-
fiable parameters in nonlinear models may also cause slow convergence and mixing
of MCMC algorithms (Kim & Li, 2012). Such poor mixing can greatly increase
the computational burden of inference due to the need to explicitly solve the
ODEs numerically for each proposal of the parameter vector of interest (Wang
& Barber, 2014). Multimodality in the posterior distribution is often the rea-
son MCMC methods have poor convergence or even fail to converge (Neal, 1993,
2012; Celeux, Hurn, & Robert, 2000; Neal, 2001; Rudoy & Wolfe, 2006; Smin-
chisescu & Welling, 2007; Craiu, Rosenthal, & Yang, 2009). When the posterior
distribution is multi-modal, MCMC methods may fail to traverse low probabil-
ity regions between modes (Lan, Streets, & Shahbaba, 2014). HMC also suffers
from this problem because the probability of sampling a sufficiently large mo-
mentum to explore this low density region is very small (Levy, Hoffman, & Sohl-
Dickstein, 2017). Although HMC is a more efficient and sophisticated method
than MCMC, when dealing with discrete parameters, HMC dose not work. As a
result, HMC requires calculating the gradient of the posterior distribution with
respect to the parameters, which is undefined in the case of discrete parameters
(Kruschke, 2014). Regardless of the various methods that have been proposed
to tackle these problems, especially in the context of inverse problems for ODEs,
there is still a need to develop new computational methods for Bayesian inference
to address the problems of mixing and poor convergence in a broader context.
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2.4 Quasi Monte Carlo (QMC)

In this section, I give a brief overview of QMC and randomised QMC (RQMC)
methods. First, I discuss QMC integration and address some features of low-
discrepancy point sets. Second, I describe the construction of the point sets that
I have used in this thesis.

For an integrable function f : [0, 1)M → R, the basic Monte Carlo (MC) approxi-
mation to the integral over the [0, 1)M hypercube is:

I =
∫

[0,1)M
f(x)dx and ÎN = 1

N

N∑
i=1

f(xi) (2.10)

where the points xi ∼ U([0, 1)M) and U(x) are the uniform distribution. MC
methods depend on the random samples, and the error of this approximation is
O(N− 1

2 ) (Caflisch, 1998). This rate of convergence can be improved using QMC,
which involves generating a deterministic sequence (called a low-discrepancy se-
quence) x1, . . . , xN such that the corresponding summation in Equation (2.10)
converges faster than the Monte Carlo estimate. Specifically, the integration er-
ror when using QMC is bounded above by O(N−1(logN)M). The enhanced rate
of convergence is due to the fact that QMC sequences are distributed more evenly
in the hypercube than a uniform random sequence (Dick, Kuo, & Sloan, 2013).

2.4.1 Discrepancy

To measure the evenness of the spread of the points, one can use the star dis-
crepancy, which is the distance between the empirical distribution on xi and the
continuous uniform distribution on [0, 1)M calculated by the Kolmogorov-Smirnoff
statistic. The star discrepancy generalises the Kolmogorov-Smirnov distance, and
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to define it we first consider

∆(a) = Vol([0, a])− 1
N

N∑
i=1

1{xi ∈ [0, a]}

to be the local discrepancy function at a point a ∈ [0, 1)M where Vol(A) is the M -
dimensional volume of the measurable set A, [0, a] is theM -dimensional hyperrect-
angle that has a corner at the origin and an opposing corner at a = (a1, . . . , aM)
and 1{xi ∈ [0, a]} is the indicator function. Thus the volume of [0, a] is ∏M

j=1 aj.
Then, the star discrepancy of a point set PN = {x1, . . . , xN} ⊂ [0, 1)M is given by

D∗(PN) = sup
a∈[0,1)M

∣∣∣∣∣∣ 1
N

N∑
i=1

1{xi ∈ [0, a]} −
M∏
j=1

aj

∣∣∣∣∣∣ . (2.11)

When D∗ → 0, the sample mean ÎN approaches the theoretical mean I given
by the integral in Equation (2.10), by a deterministic version of the law of large
numbers that applies for QMC (Owen & Tribble, 2005). The importance of the
star discrepancy arises from the Koksma-Hlawka inequality (Hickernell, 2014),
which states that for QMC integration, if the function f has variation V (f) in
the sense of Hardy and Krause (Hardy, 1905), then

|ÎN − I| ≤ D∗(PN)V (f). (2.12)

From this it follows that the integration error of QMC is bounded above by
O(N−1(logN)M). Many examples show that QMC integration outperforms MC
integration even for a small number of points, N (Owen & Tribble, 2005; Buchholz
& Chopin, 2019).
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2.4.2 Low-Discrepancy Sequences

QMC sequences can be widely classified into two groups: digital nets and se-
quences, and lattice rules. In all numerical examples in this thesis, I have gener-
ated points using a Sobol sequence, which is a kind of digital net. One reason for
choosing to work with Sobol sequence is the availability of software (an R package
called randtoolbox) to generate such point sets.

The digital nets presented in this section are known as (t,M)-nets in base b,
where t,M and b are integer parameters and M corresponds to the dimension of
the space for a vector of points x. For b > 2, an elementary interval in base b is
a subinterval of [0, 1)M of the form

E =
M∏
j=1

[
cj
bkj
,
cj+1

bkj

)

where kj and cj are some integers satisfying kj > 0 and 0 6 cj < bkj .

Definition 2.4.1 Let m > t > 0 be integers. The sequence x1, . . . , xbm ∈
[0, 1)M is a (t,m,M)-net in base b if every elementary interval in base b of volume
bt−m contains exactly bt points of the sequence.

Definition 2.4.2 For t > 0, the infinite sequence x1, x2, · · · ∈ [0, 1)M is a
(t,M)-sequence in base b if for all k > 0 and m > t the sequence xkbm,...,(k+1)bm is
a (t,m,M)-net in base b.
The concept of a (t,M)-sequence in base b is essential in constructing Sobol se-
quences and it was shown by Niederreiter (1992) that all (t,M)-sequences are
low-discrepancy sequences.
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Sobol Sequences

Sobol (1976) was the first to introduce the construction of (t,M)-sequences, which
are now known as Sobol sequences when the base b = 2. One way to generate a
Sobol sequence is to consider the primitive polynomials p1, . . . , pM ∈ F2, where
F2 = {0, 1}, are ordered according to degree, and let

pj(x) = xq + a1,jx
q−1 + · · ·+ aq−1x+ 1

for j = 1, . . . ,M . Then, one chooses odd natural numbers 1 6 m1,j, . . . ,mq,j such
that mk,j < 2k for 1 6 k 6 q, but for all k > q define mk,j recursively by

mk,j = 2a1,jmk−1,j ⊕ · · · ⊕ 2q−1aq−1mk−q+1,j ⊕mk−q,j.

where ⊕ is the bit-by-bit operator. Then define the direction numbers as

vk,j = mk,j

2k .

After that, for n ∈ N0, where N0 = {0, 1, 2, . . . ,∞}, with base 2 expansion n =
n0 + 2n1 + · · ·+ 2r−1nr−1 we identify

xn,j = n0v1,j ⊕ n1v2,j ⊕ · · · ⊕ nr−1vr,j and xn = (xn,1, . . . , xn,s).

Then a Sobol sequence is the sequence of points (xn)n∈N0 (Leobacher & Pil-
lichshammer, 2014). As noted above, these points are defined over a unit hy-
percube, but one can use a linear transformation to define them over a hypercube
with different bounds.

21



CHAPTER 2. MONTE CARLO METHODS FOR BAYESIAN STATISTICS

2.4.3 Randomization

Using QMC sequences is inconvenient for constructing estimators because the
point construction is deterministic. However, randomness can be reintroduced
through scrambling and other related randomization methods (Chi & Mascagni,
2007; Vandewoestyne, Chi, Mascagni, & Cools, 2007). Then, these sequences
are known as randomized QMC (RQMC) sequences, and the estimator ÎN =
1
N

∑N
i=1 f(xi) is an unbiased estimate of the integral in Equation (2.10) (Buchholz

& Chopin, 2019; Wenzel, Buchholz, & Mandt, 2018). To obtain an RQMC se-
quence, we use a method called scrambled nets, which was introduced by Owen et
al. (1997) and then modified in Owen et al. (2008). In this method, for b > 2, let
Aj = aj1b

−1 + aj2b
−2 + . . . , where aj1, aj2, · · · ∈ {0, 1, . . . , b− 1} and j = 1, . . . , n.

Then, for each value of aj1, there is a permutation πaj1 of {0, 1, . . . , b−1} that can
define a second digit as πaj1(aj2). This process can be continued to define more
digits as πaj1,aj2(aj3), πaj1,aj2,aj3(aj4), . . . . Each permutation is considered to be
uniformly distributed, and they are mutually independent (Owen, 1998). Next,
let X = (X1, X2, . . . , Xn) be a (t,m,M)-net and define that Xj = ∑∞

k=1 xjkb
k,

for j = 1, . . . , n. Then, the scrambled X is obtained by taking xjk to be the
permutations of the digits aj1, aj2, . . . as follows:

xjk = πaj1,aj2,...,aj(k−1)(ajk).

2.5 Approximate Bayesian Computation (ABC)

ABC approaches give alternative parameter estimation methods when the like-
lihood is difficult or impossible to evaluate or too computationally costly. ABC
methods were first introduced by Pritchard et al. (1999) in the form of the ABC
rejection sampler. This approach involves replacing the calculation of the likeli-
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hood with a comparison between the observed data, y, and simulated data, z. The
simplest ABC algorithm involves first sampling a parameter, θ∗, from the prior,
p(θ), and then using a generative model to simulate a data set, z ∼ f(z|θ∗). Pro-
posals of the parameter θ∗ are accepted if the distance between the observation
and the simulated data sets falls below a chosen threshold, ε, where distance is
quantified using a discrepancy function ρ(z,y). This procedure is repeated until
a desired number of samples is accepted. A comprehensive reference for ABC
methods can be found in Sisson, Fan, and Beaumont (2018). The ABC rejection
algorithm is detailed in Algorithm 2.2.

Algorithm 2.2. ABC Rejection Algorithm, pre-specification of ε
1: while number of accepted θ∗ < N do
2: Draw θ∗ ∼ p(θ).
3: Simulate z∗ from model given θ∗.
4: if ρ(z∗,y) ≤ ε then
5: Accept θ∗.
6: end if
7: end while

Alternatively, ε could be specified after drawing T samples from the prior as
demonstrated in Algorithm 2.3. A constant, 0 < α < 1, defined to represent
the percentage of draws that are to be accepted, is used to set ε. Although this
scheme provides flexibility in terms of trading accuracy for speed, it can require
large storage requirements if T is large.

Algorithm 2.3. ABC Rejection Algorithm, post-determination of ε
1: for t = 1 to T do
2: Draw θt ∼ p(θ) and simulate zt from model given θt.
3: Compute discrepancy function ρt = ρ(zt,y).
4: end for
5: Sort {θt, ρt}Tt=1 into ascending order, based on ρ.
6: Keep N = αT of θt with the lowest discrepancy, hence defining ε.

ABC targets an approximate posterior (Frazier, Martin, Robert, & Rousseau,
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2018):
pε(θ, z|y) ∝ 1(ρ(z,y) ≤ ε)p(θ)f(z|θ), (2.13)

where 1 is an indicator function that takes the value one if its logical argument is
true and zero otherwise and f(z|θ) is the model that generates new simulations.
The accuracy of ABC approaches depends on choosing a suitable discrepancy
function ρ(z,y) and an appropriate tolerance ε (Marjoram, Molitor, Plagnol, &
Tavare, 2003). In practice, the discrepancy function typically compares sets of
summary statistics s(·) for the observed and simulated datasets.

2.5.1 MCMC ABC

ABC rejection sampling can suffer from extremely low acceptance rates when
the prior and posterior distributions are quite different (Marjoram et al., 2003).
To overcome this deficiency, a more efficient ABC technique based on MCMC
was developed (Marjoram et al., 2003). The implementation of an early rejection
step (Picchini & Forman, 2014) can improve the efficiency of the method since
data is only simulated under the model when necessary, as shown in Algorithm
2.4. MCMC ABC is motivated by a desire to keep proposals for θ within
non-negligible posterior regions. MCMC ABC aims to combat the heavy storage
requirements of the ABC rejection sampler, while allowing efficient exploration
of the parameter space. The approach strongly depends on the selection of the
proposal distribution q, prior distribution and ε.
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Algorithm 2.4. MCMC ABC with Early Rejection (Picchini & Forman, 2014)
1: Obtain θ0 and z0 using ABC rejection sampling.
2: for t = 1 to T do
3: Draw θ∗ ∼ q(θ∗|θt−1).
4: Compute r = p(θ∗)q(θt−1|θ∗)

p(θt−1)q(θ∗|θt−1) .
5: if U(0, 1) < r then
6: Simulate z∗ from model given θ∗.
7: if 1{ρ(z∗,y) ≤ ε} then
8: Set θt = θ∗ else, set θt = θt−1.
9: end if

10: else
11: θt = θt−1.
12: end if
13: end for

MCMC ABC tolerance

The selection of tolerance level plays an important role in the efficiency of MCMC
ABC, and choosing an appropriate ε is problematic. In this thesis, in order to
select an appropriate tolerance level, I adopted the method of Vaart et al. (2018),
which is to solve the ODE model with different proposals of the parameters from
the priors, find all the distances between these solutions and the observed data
and then choose the one that minimises this distance. Next, I used the best-fitting
solution to estimate the value of ε, and used it as a guide to manually adjust the
value of the tolerance to maintain an appropriate acceptance rate. This strategy
addresses one of the main drawbacks of MCMC ABC, which is that choosing a
very small ε increases the rejection rate, which in turn causes poor mixing of the
Markov chain (M. A. Beaumont, 2010).
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2.5.2 SMC ABC

In order to improve the low acceptance rate in the basic ABC algorithm, an SMC
ABC algorithm was proposed in Sisson et al. (2007), based on the SMC sam-
pler methodology developed by Del Moral et al. (2006). This algorithm requires
identifying a sequence of tolerance values, εt > εt+1, where t = 1, . . . , T is the
identification number of the population, instead of using a single fixed tolerance
value as in MCMC ABC. Here T represents the number of population in the SMC
ABC, not the number of draws as in previous ABC approaches. The algorithm
is a type of particle filter. Particles are sampled from the prior distribution in
the first population and then by using an acceptance criteria, these particles are
filtered throughout a series of intermediate distributions. This process can be con-
tinued until the resulting final population is considered an approximate sample of
the posterior distribution (see Figure 2.2). An implementation of the SMC ABC
algorithm is given in Algorithm 2.5.

The efficiency of the SMC ABC algorithm depends not only on the model com-
plexity and the amount of data available, but also on the choice of the decreasing
sequence of εt (the tolerances), and the choice of perturbation kernel Kt, according
to Filippi, Barnes, Cornebise, and Stumpf (2013).

Tolerance

There are various ways to construct the decreasing sequence of εt, called the
tolerance sequence, either manually or adaptively as proposed in Drovandi and
Pettitt (2011) and Del Moral, Doucet, and Jasra (2012). In the adaptive method,
the value of ε1 is chosen to be large to avoid having a low acceptance rate. Then,
each εt, for t = 2, ..., T , is selected to be the α-th quantile of the discrepancies
between the observed data and the simulated data that was generated in the
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Algorithm 2.5. SMC ABC Algorithm (Del Moral et al., 2006; Sisson et al.,
2007; Toni et al., 2009)

1: Initialise εt ≥ 0 for t = 1, ...., T where εt > εt+1 > 0.
2: for t = 0 to T do
3: for i = 1 to N do
4: if t = 0 then
5: Sample θ∗∗ from p(θ).
6: else
7: Sample θ∗ from the previous population θ(i)

t−1 with normalised
weights w(i)

t−1 and use a perturbation kernel Kt to sample
θ∗∗ ∼ Kt(·|θ∗).

8: end if
9: if p(θ∗∗) = 0 then

10: Go to line 4.
11: else
12: Simulate z∗ from model given θ∗∗.
13: end if
14: if ρ(z∗,y) ≥ εt then
15: Go to line 4.
16: else
17: Set θ(i)

t = θ∗∗ and calculate the weight for the particle θ(i)
t :

w
(i)
t =


1, if t = 0,

p(θ(i)
t )∑N

j=1 w
(j)
t−1Kt(θ(i)

t |θ
(j)
t−1)

if t > 0.
18: end if
19: end for
20: set εt+1 to be α-quantile of saved distances vector
21: Normalise the weights.
22: end for
23: Return particles θ(i)

T .
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(t−1)th population, as described in Algorithm 2.5, where 0 ≤ α ≤ 1. Throughout
this thesis, I have used the latter method of selecting the sequence of tolerance
thresholds with α = 0.1, and I have stopped the algorithm when it reached a
final εt that achieved the desired final agreement between simulated and real data
(Liepe et al., 2014).

Figure 2.2: Schematic representation of SMC ABC algorithm shows that the
probability of samples taken first from the prior is updated throughout the process
via filtering steps. The black curves represent the intermediate distribution and
the final population represents an approximation of the posterior distribution
(Toni et al., 2009).
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Stopping criteria

In practice, when implementing Algorithm 2.5, stopping criteria are required to
terminate the process. One simple way is to stop the algorithm when it reaches a
specified εT close to zero or achieves a target acceptance rate, which is calculated in
each iteration by finding the ratio of the number of accepted particles to the total
number of simulations needed (Abdessalem, Dervilis, Wagg, & Worden, 2018).
Another termination criterion is to use a specified number of total simulations as
a tuning parameter (Prangle et al., 2017).

Perturbation kernel

The choice of perturbation kernel affects the acceptance rate in SMC ABC and
the time consumed by the algorithm as explained in Filippi et al. (2013). Per-
turbation kernels can be divided into two classes: component-wise perturbation
kernels and multivariate perturbation kernels. For component-wise perturbation
kernels, one can use a uniform distribution or a univariate Gaussian distribution
to perturb the particle θ∗ sampled from the previous population {θ(i)

t−1}Ni=1. The
standard deviation of the kernel can be fixed in advance for each population,
but more recently, practitioners have been adaptively choosing the width of the
kernel. For a detailed discussion, the reader is referred to M. Beaumont, Cornuet,
Marin, and Rober (2009); Didelot, Everitt, Johansen, Lawson, et al. (2011);
Filippi et al. (2013).
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2.5.3 Limitations of SMC ABC

ABC methods have been extensively developed, since their first appearance, in
terms of their theoretical foundations and practical methodology. For example,
Barber, Voss, Webster, et al. (2015) provided a theoretical foundation for under-
standing the convergence properties of the ABC method in general and Li and
Fearnhead (2018) and Frazier et al. (2018) investigated the asymptotic behaviour
of the posterior distribution of ABC and its expectation as the number of obser-
vations increases.

According to Frazier et al. (2018), the main and most important problem of the
ABC approach is that the approximated ABC posterior is exact only when the
tolerance ε = 0, which in the case of ABC applied to ODEs is, for many existing
implementations, not practical or reasonable for reasons discussed in detail in
Chapter 3. However, appropriate handling of the error term in the ABC algorithm
may overcome this limitation, and work inspired by Wilkinson (2013) in Vaart et
al. (2018) argues that the acceptance of the proposed parameters should be with
respect to the error term rather than with respect to some tolerance level.

The SMC ABC algorithm applied to the inverse problem in non-linear ODEs was
presented in Toni and Stumpf (2009). Three different suggestions for implement-
ing the SMC ABC algorithm appeared in the thesis by Toni (2010) as below, where
in the notation of Toni (2010), σ is the standard deviation of additive, normally
distributed noise and θ is the parameter vector that needs to be inferred:

1. No noise added in the simulation step, θ is unknown parameter. This frame-
work has been introduced in Chapter 3 and used throughout this thesis.

2. Noise added in the simulation step, σ is considered known and θ unknown.

3. Noise added in the simulation step, both σ and θ are unknown.
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However, using the three approaches above leads to misspecified inference results
as follows:

1. The implementation of SMC ABC with the first suggestion above without
adding an error term leads to the data generation model being misspecified.
This occurs because the simulated data is deterministic in the sense that
it is the unique solution to a system of ODEs. Consequently, the underly-
ing likelihood distribution is a point mass concentrated at the solution of
the system as I outline in more detail in Chapter 3. Thus, this approach
fails to correctly characterise the uncertainty represented by the posterior
distribution.

2. The second suggestion is to implement the SMC ABC approach assuming
that the noise variance σ is known, as exemplified by Silk et al. (2013). In
this method, a noisy simulation ysim is generated by solving the ODEs and
then adding noise sampled from an assumed known error model. When this
assumed error model is a good approximation to the actual noisy observa-
tion process, the final approximate ABC posterior may be a good approxi-
mation. However, in real world problems, assuming a known noise variance
is unrealistic.

3. In the third suggestion above, the inference of the error term σ is carried
out by proposing values and accepting or rejecting them, exactly as for the
other parameters being estimated. Such approaches encounter two prob-
lems. First, the residual vector has high dimension, which can dramatically
reduce the acceptance probability of proposed values. In addition, it is
difficult to define the distance function ρ(yk,ysim) in such a way as to accu-
rately reflect the noise associated with the data. Appropriately accounting
for knowledge about the error terms when choosing εt remains a major chal-
lenge, which we address in Chapter 4.
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Regardless of the limitations of SMC ABC, the algorithm presented in Toni and
Stumpf (2009) gives a useful alternative to exact Bayesian methods for inference
in ODE. This likelihood-free method is simple to apply, and the sampler produces
uncorrelated samples. Furthermore, the SMC ABC algorithm does not suffer
from the poor mixing problems that cause issues for MCMC and ABC based on
MCMC.

32



Chapter 3

A comparison of approximate versus
exact techniques for Bayesian
parameter inference in nonlinear
ordinary differential equation models

Preamble

The purpose of this chapter is to investigate the ABC method that is commonly
used to estimate parameters in ODE models. We satisfy Objective 1 of this thesis
by demonstrating that several popular ABC approaches fail to adequately model
the error associated with observations that have been described by ODEs. In the
current implementation of ABC approaches, the acceptance probability depends
on the choice of the discrepancy function and the tolerance without any consid-
eration of the error term. We observe that the so-called posterior distributions
derived from such methods do not accurately reflect the epistemic uncertainties
in parameter values. Moreover, our findings confirm that these methods provide
minimal computational advantages over exact Bayesian methods. Applications
to two ODE epidemiological models with simulated data and the other with real
data contributes to Objective 4 of this thesis.
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The behaviour of many processes in science and engineering can
be accurately described by dynamical system models consisting
of a set of ordinary differential equations (ODEs). Often these
models have several unknown parameters that are difficult
to estimate from experimental data, in which case Bayesian
inference can be a useful tool. In principle, exact Bayesian
inference using Markov chain Monte Carlo (MCMC) techniques
is possible; however, in practice, such methods may suffer
from slow convergence and poor mixing. To address this
problem, several approaches based on approximate Bayesian
computation (ABC) have been introduced, including Markov
chain Monte Carlo ABC (MCMC ABC) and sequential Monte
Carlo ABC (SMC ABC). While the system of ODEs describes
the underlying process that generates the data, the observed
measurements invariably include errors. In this paper,
we argue that several popular ABC approaches fail to
adequately model these errors because the acceptance
probability depends on the choice of the discrepancy function
and the tolerance without any consideration of the error term.
We observe that the so-called posterior distributions derived
from such methods do not accurately reflect the epistemic
uncertainties in parameter values. Moreover, we demonstrate
that these methods provide minimal computational advantages
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over exact Bayesian methods when applied to two ODE epidemiological models with simulated data
and one with real data concerning malaria transmission in Afghanistan.

1. Introduction
Models of dynamical systems consisting of sets of ordinary differential equations (ODEs) are an essential
tool to describe many processes in science and engineering. ODE models contain parameters such as
kinetic rates and initial concentrations. However, these parameters often cannot be measured directly
by experiments, or there is inherent uncertainty in the parameter values. As such, these parameter
values need to be estimated using statistical techniques such as maximum likelihood estimation or
Bayesian inference. In the last decade much research has focused on estimating the unknown
parameters of ODE systems under a Bayesian framework. One reason is that the Bayesian approach
provides appropriate quantification of the uncertainty of parameters (and hence model predictions)
through the posterior distribution.

Markov chain Monte Carlo (MCMC) techniques were first developed by Metropolis et al. [1]. This class
of technique creates a Markov chain which has the posterior distribution as its limiting distribution. The
state of the chain after a number of steps is used as a sample from the posterior distribution and
the quality of this sample improves as the number of steps gets larger. The original algorithm proposed
by Metropolis was generalized by Hastings [2] to give the Metropolis–Hastings algorithm.

Exact Bayesian inference techniques have grown steadily more sophisticated over time, increasing the
efficiency and complexity of sampling schemes. The modern Bayesian toolbox now includes schemes
such as sequential Monte Carlo (SMC) [3], the Metropolis adjusted Langevin algorithm (MALA) [4]
and hybrid (Hamiltonian) Monte-Carlo (HMC) [5,6]. These schemes improve the Metropolis–Hastings
algorithm, enabling efficient sampling from high dimensional, strongly correlated posterior distributions.

However, there are many models that possess a computationally intractable likelihood function, ruling
out exact Bayesian methods. This has led to the development of approximate Bayesian computation (ABC).
The ABC methodology first appeared as the ABC rejection algorithm [7] which avoids calculation of the
likelihood function. The theory was generalized and substantiated by Beaumont et al. [8]. To obtain
samples more efficiently, a MCMC approach to ABC was formulated by Marjoram et al. [9].

In the context of dynamical systems, both approximate and exact Bayesian techniques involve
numerical solution of the set of ODEs for each proposed set of parameters in order to evaluate how
well the numerical solution matches the observed data. A desire to avoid the computational costs
associated with numerical solution of the ODEs has led to the development of Gaussian Process (GP)
models [10–12] for ODE parameter inference.

Dass et al. [13] proposed a two-step method to approximate the posterior distribution of unknown
parameters in an ODE model. In the first step, data are generated from the ODE using a numerical
method and then the second step uses the Laplace approximation to marginalize the posterior for
each parameter. This method gives a fast approach compared to a full Bayesian computational scheme.

ABC methods based on SMC have been proposed [14] and many authors have developed approaches
to improve the performance of the SMC ABC algorithm (see for example Beaumont et al. [15]). An SMC
ABC approach was developed by Toni et al. [16], with application to dynamical systems. Their algorithm
is theoretically sound, but we question the validity of the Bayesian posteriors they produce when they
apply ABC to several examples involving ODE models. The authors apply ABC where they take the
observed data as synthetically generated, where the ODE model is solved at an assumed true
parameter value and measurement error added. However, when ‘simulating’ data in their ABC
procedure, the ODE model is solved only, without generating measurement error. In this paper, we
show that such an approach generates parameter distributions that are sensitive to the ABC tolerance,
and will eventually converge onto a point mass if the tolerance is continually reduced. Thus this
approach fails to correctly characterize the uncertainty as a Bayesian approach would aim to do.

In order to ‘correctly’ apply ABC to ODE models, one must simulate from the assumed measurement
error model after solving the ODE. However, we also show in this paper that an exact Bayesian approach
is more computationally efficient than this ‘correct’ ABC implementation, questioning the need for
considering ABC in the first place when attempting to estimate the posterior distribution for ODE models.

Given that the Toni et al. [16] paper is highly cited, we are concerned that other researchers might
follow their ABC approach for calibrating ODE models. For example, Gupta et al. [17] compared the
performance of MCMC, parallel tempering (PT) and SMC ABC (using the ABC Sys-Bio package) in
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estimating parameters in ODE models. The authors analysed simulated data with measurement error
added, taken from the ABC-SysBio package. Then when applying MCMC and PT to infer model
parameters, they assumed ‘a likelihood function with 1% Gaussian error’. However, when using SMC
ABC, no noise was added to the simulated data. Consequently, not only does this make the
comparison invalid, but also the resulting approximate posterior distribution produced by SMC ABC
does not represent the uncertainty around the parameter values. In another example, Silk et al. [18]
present applications to molecular dynamical systems in which they ‘have focused on the sequential
ABC algorithm proposed by Toni et al. [16]’. Silk et al. [18] mention that they simulate the model
‘subject to some small added zero-mean Gaussian noise with covariance 0.01I’ so they have clearly
used ‘noise added in the simulation step, σ is considered known’ (option 2 from Toni’s thesis [19,
p. 154]). However, for many real problems, this is not practical and we fear that ABC users might
revert to the option of simulating without noise. Two other examples of assuming known noise are in
da Costa et al. [20] and Costa et al. [21]. The authors assumed the uncertainties to be ‘additive,
uncorrelated, Gaussian, with zero mean and’ a known standard deviation, as they stated on pages
2801 and 1295, respectively. Moreover, Barnes et al. [22] presented an implementation of ABC SMC for
ODEs (section 4.1 of their paper) and used the SysBio package. We show in our paper that using this
package with ODE models can give an incorrect approximation to the posterior when not considering
estimation of the noise. There is no explanation in Barnes et al. [22] regarding the authors’ assumption
about the noise. The same issue appeared in Toni & Stumpf [23] and Sun et al. [24]: they applied SMC
ABC for an ODE model, but there are no details regarding the authors’ assumptions about the noise.
Understanding the overall noise (uncertainty) associated with the unknown parameter values when
conducting parameter estimation using ODE models is important, especially when we aim to use
these ODE models to inform real-world applications.

The remainder of this paper is organized as follows. In §2, we introduce a simple method of exact
Bayesian inference and two methods of approximate Bayesian computation (MCMC ABC and SMC
ABC), complemented with a discussion on the approximation to a point mass that results from
SMC ABC and MCMC ABC. Application of MCMC, MCMC ABC and SMC ABC to two ODE
epidemiological models with simulated data and one with real epidemiological data are presented in §3.
Section 4 presents further discussion, comparison of the presented methods and our conclusions.

2. Bayesian techniques for ODE parameter inference
Bayesian techniques such as Markov chain Monte Carlo (MCMC) methodologies are sampling-based
methods that involves sampling the posterior density

p(ujy)/ p(yju)p(u), (2:1)

or an approximation to equation (2.1) in the case of approximate Bayesian computation (ABC)
approaches, to calculate the desired density, where y= (y1,…, yn) is the observed data, θ are the
unknown parameters, p(θ|y) is the posterior distribution, p(y|θ) is the likelihood and p(θ) is the
prior. In this section we discuss application of these Bayesian frameworks in the context of
inferring parameters for ODE models.

MCMC techniques as developed by Metropolis et al. [1] and Hastings [2] can be used to sample from
the posterior distribution in equation (2.1). The Metropolis–Hastings algorithm constructs a Markov
chain for which the stationary and limiting distribution is the posterior distribution. After running
the chain for a sufficient amount of time,1 samples from the chain can be considered draws from
the posterior distribution. An implementation of the Metropolis–Hastings algorithm is given in
appendix A. However, MCMC methods require the computation of the likelihood function, p(y|θ), in
equation (2.1). As a result, ABC methods were developed to sample from an approximation to the
posterior in cases for which the likelihood is intractable or too computationally costly to compute.
Instead of calculating the likelihood as before, a distance between the observed data, y, and simulated
data, z, is calculated and for sufficiently small distance the parameter proposals are accepted. For
more explanation see appendix A. ABC targets an approximate posterior [26]:

pe(u, zjy)/ 0(r(z, y) � e)p(u)f(zju), (2:2)

1Sufficient time in the context of MCMC can be taken to mean that the chain is close to convergence. In practice this is often assessed by
checking that multiple chains produce a Gelman–Rubin diagnostic less than 1.05 [25].
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where 0 is an indicator function that takes the value one if its logical argument is true and zero otherwise
and f (z|θ) is the model that generates simulations z giving θ. The accuracy of ABC approaches depends
on choosing a suitable discrepancy function ρ(z, y) and an appropriate tolerance e [9]. In practice, the
discrepancy function typically compares sets of summary statistics s( · ) for the observed and
simulated datasets. ABC rejection sampling is very simple to implement, though it can suffer from
extremely low acceptance rates when the prior distribution is dissimilar to the posterior distribution
[9]. To counteract this deficiency, a more efficient ABC technique based on MCMC was developed [9].
For more details see appendix A. Furthermore, in order to improve the low acceptance rate in the
basic ABC algorithm, an SMC ABC algorithm was proposed in Sisson et al. [14], based on the SMC
sampler methodology developed by Del Moral et al. [27]. The SMC ABC algorithm converges to the
approximate posterior distribution through a number of intermediate distributions with a distance
threshold that is sequentially decreased, see appendix A. The efficiency of the SMC ABC algorithm
depends not only on the model complexity and the amount of data available, but also on the choice
of the decreasing sequence of et (the tolerances), and the choice of perturbation kernel Kt, according to
Filippi et al. [28]. There are various ways to construct the decreasing sequence of et, either manually or
adaptively as proposed in Drovandi & Pettitt [29] and Del Moral et al. [30]. In the adaptive method,
the value of et is chosen to be the αth quantile of the discrepancies between the observed data and the
simulated data that was generated in the (t− 1)th population (see appendix A), where 0≤ α≤ 1. In this
paper, we used the latter method of selecting the sequence of tolerance thresholds and we stopped the
algorithm when we reached a final et that setting the desired final agreement between simulated and
real data Liepe et al. [31].

The choice of perturbation kernel affects the acceptance rate in SMC ABC and the time consumed by
the algorithm as explained in Filippi et al. [28]. Perturbation kernels can be divided into two classes:
component-wise perturbation kernels and multivariate perturbation kernels. For component-wise
perturbation kernels, one can use a uniform distribution or a univariate Gaussian distribution to
perturb the particle θ� sampled from the previous population {u(i)t�1}

N
i¼1. The standard deviation of the

kernel can be fixed in advance for each population, but more recently practitioners are adaptively
choosing the width of the kernel (Beaumont et al. [15], Didelot et al. [32], Filippi et al. [28]).

If the model parameters are correlated, a component-wise perturbation kernel can fail to capture the
structure of the true posterior, leading to a low acceptance rate. To overcome this problem, a multivariate
normal distribution with a covariance matrix Σ (t) that depends on the covariance of the previous
populations can be used to perturb the particles [28]:

S(t) ¼
XN
i¼1

XN0

k¼1

w(i)
t�1ŵ

(k)(û
(k) � u(i)t�1)(û

(k) � u(i)t�1)
T , (2:3)

where {û(k)}1�k�N0 are the particles from the previous populations for which the corresponding simulated
data z (k) satisfy ρ(z (k), y) < et (remembering et< et−1) and ŵ(k) are the associated weights.

To further improve the performance of SMC ABC, we adopted a method proposed in Prangle [33] to
adaptively update the discrepancy function, ρ(z, y). We used a weighted Euclidean distance function:

r(z, y) ¼
Xn
j¼1

�
zj � yj
zj

�2

, (2:4)

where yj is the jth observation, zj is the jth simulated observation in the simulated data z= (z1,…, zn) and ζj is
a tunable scaling factor that allows the contribution to the discrepancy function of the jth coordinate to be
normalized. The reason for normalizing the coordinates is to prevent any of them dominating the
acceptance decision in the algorithm. In non-adaptive methods, the values of ζj are determined in
advance and fixed. Fixing ζj from the first iteration in SMC ABC will not guarantee that the jth
coordinate will be normalized in later iterations because in SMC ABC after the first round we are not
sampling from the prior so the scale to normalize needs to be adapted.

To adapt the values of ζj in each iteration, Prangle [33] proposed calculating the median absolute
deviation (MAD) of the jth coordinate of the simulated data vectors from the previous iteration
(including those rejected). The value of the next et is also determined using these distances; for more
details see algorithm 4 in [33]. Note that Prangle [33] defined the discrepancy function in terms of
summary statistics for z and y, as is usual in ABC. Here we have used the coordinates of z and y
directly, following the approach of Toni et al. [16] for inference of ODE model parameters.
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Vaart et al. [34] proposed an ABC method called error-calibrated ABC that implements a general
methodology introduced by Wilkinson [35]. In their method, they incorporated the estimation of the
noise into the ABC technique by identifying an ABC acceptance probability in which the noise is
assumed to be normally distributed and independent. This results in improved estimates of the
parameter values and their uncertainty. An implementation of the error-calibrated ABC algorithm is
given in algorithm 1.

2.1. Bayesian inference for parameters in ODE models
Consider a Q-dimensional dynamical system for the state variable vector, x(t), described by the system of
ODEs:

_x(t) ¼ f(x, u, t), (2:5)

where x is a Q×1 vector of the dependent variables, f is a Q×1 vector-valued Lipschitz continuous function
with respect to x, θ is an M×1 vector of model parameters, t is the independent variable (often time) and _x
represents the derivative of x with respect to the independent variable. Given the dynamical system in
equation (2.5), along with values for the parameter vector, θ, and the initial condition, x0, the solution to the
system can be approximated numerically.

We denote an experimental observation at time tk by the Q×1 vector yk. Experimental observations
are taken at K time points; the times are stored in a K×1 vector t= (t1, t2,…, tK)

T and the observations are
stored in the Q×K matrix y= (y1, y2,…, yK). These observations are usually associated with some
unknown noise process, characterized by one or more variance parameters, say σ2. The (approximate)
solution for the dependent variables at time tk, given θ and x0, is denoted by the Q×1 vector
x̂(tk; u, x0). The solution for the dependent variables at times t is stored in the Q×K matrix
x̂(t; u, x0) ¼ (x̂(t1; u, x0), x̂(t2; u, x0), . . . , x̂(tK; u, x0)). In a Bayesian setting, the posterior distribution for
θ and σ2 given y is:

p(u, s 2jy)/ p(yju, s2)p(u)p(s2), (2:6)

where p(y|θ, σ2) is the likelihood, p(θ) and p(σ2) are independent priors for θ and σ2 respectively.

2.1.1. Observation model

In this paper, we assume that each observation, yk for k=1,…,K, has an associated additive noise process,
δk, such that

yk ¼ x̂(tk; u, x0)þ dk, (2:7)

where δk is a Q× 1 vector and x̂(tk; u, x0) is the solution for the dependent variables at time tk, given θ and
x0. Under a Gaussian error model (we assumed Gaussian model for simplicity and illustration purposes
but we can assume any kind of error model), and assuming the δk are independent of each other, yk
follows a multivariate normal distribution:

yk � MVN(x̂(tk; u, x0), S(s2)), (2:8)

Algorithm 1. Error-calibrated ABC algorithm, Vaart et al. [34].

1: Repeat n times:.

(a) Draw u� � p(u).

(b) Simulate z� from model given u�.

2: Find ẑ, the simulated value that minimizes r(z, y).

3: For each data type k, calculate l̂k , the standard deviation of all corresponding ẑn � y.

4: Accept (u�, z�) with probability px2
l
(s)s1�

1
2=c, where s ¼ Pl

j¼1

z�j � yj

l̂ k

� �2

and c is equal to the maximum

acceptance probability across all runs.
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where Σ(σ2) is a diagonal matrix with diagonal elements s2 ¼ (s2
1, s

2
2, . . . , s

2
Q)

T associated with the Q
dependent variables. Hence, the likelihood function is given by

L(yjx̂(t; u, x0), s2) ¼
YK
k¼1

MVN(Yk; x̂(tk; u, x0), S(s2)) (2:9)

and the posterior density is

p(u, s2, x0jy)/ p(u)p(s2)p(x0)
YK
k¼1

MVN(Yk; x̂(tk; u, x0), S(s2)): (2:10)

TheBayesian techniquesdiscussed inappendixAcanbeused tosample fromtheposteriordistributionof {θ,
x0, σ

2} in the case of MCMC and an approximation to the posterior in the case of ABC methods.

2.2. Model misspecification in ABC methods for ODE models
Exact Bayesian methods, such as MCMC, generate samples directly from p(θ, σ2|y) (at least in the
limiting sense), rather than from the approximate posterior pe(θ, z|y) shown in equation (2.2). This
applies in general, but in particular for the case of parameter inference in ODE models, as long as an
observational model has been defined, leading to a posterior distribution such as in equation (2.10).
Evaluating this expression requires solving a system of ODEs to obtain x̂(tk; u, x0) for a specific
collection of parameters. It is then straightforward, at least for this simple noise model, to evaluate the
likelihood and the posterior density up to a normalizing constant.

One of the major motivations for using likelihood-free methods, such as ABC, is that they are
applicable even when evaluating the likelihood is difficult or impossible. That motivation is not
present here, since solving the system of ODEs for each proposed parameter vector θ is the main
computational burden involved in evaluating equation (2.10), and this is still necessary for ABC, at
least using the method proposed by Toni et al. [16]. Their method does still have a computational
advantage, in that it avoids evaluating the density of the noise model, which may be prohibitive for
certain models. However, where the simple independent Gaussian noise model of equation (2.2) is
appropriate, or some other simple noise model applies, the contribution of these density evaluations
to the overall computational burden will be negligible.

Themethod of Toni et al. [16] actually avoids even simulating draws from the noise model. This is made
clear in the following text which appears in the thesis by Toni [19, p. 154], which is the basis of the work in
Toni et al. [16]: ‘We explore the differences between three different inference approaches:

1. No noise added in the simulation step, θ is the unknown parameter. This framework has been
introduced in Chapter 3 and used throughout this thesis.

2. Noise added in the simulation step, σ is considered known and θ unknown.
3. Noise added in the simulation step, both σ and θ are unknown.’

Since option 1 (the approach taken throughout the thesis and associated papers) avoids adding noise in
the simulation step, the method is applicable regardless of the noise model. However, this generality
comes at a cost and, as we explain in this section, results in an approximate distribution of the form
equation (2.2) that contains no information about parameter uncertainty.

Toni et al. [16] adapted the Sisson et al. [14] SMCABC algorithm and used it to infer parameters in ODE
models. However, the method they devised differs in two crucial aspects from standard practice in
implementing ABC. The first is that they do not simulate data vectors z� from the same model they assume
for the data, which is of the form shown in equation (2.9). Instead, they generate z� by merely solving the
underlying system of ODEs for each proposed value of the parameter vector θ��. The simulated data z� is
thus a deterministic function of θ��, without any added noise, and in effect the underlying
likelihood distribution model used in the resulting ABC algorithm is a point mass concentrated at the
solution of the systemofODEs. In this sense, the data generationmodel used byToni et al. [16] ismisspecified.

A second departure from standard ABC practice is that the discrepancy function used by Toni et al. [16]
directly computes a distance between the simulated and observed data, originally using Euclidean distance

r(z, y) ¼
Xn
j¼1

(zj � yj)
2, (2:11)

but they also experimented with alternative metrics. In this paper, we experiment with the more general
adaptively weighted distance function in equation (2.4). All of these discrepancy functions have in
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common that they can only take a zero value when the simulated data z� exactly corresponds to the
observed data y. In contrast, practical ABC methods more commonly use a discrepancy function based
on the distance between vectors of summary statistics s(z�) and s(y), which have much lower dimension
than the simulated and observed data vectors z� and y. In that case, the discrepancy function is zero
whenever s(z�) = s(y), which can occur even if z� ≠y. A practical reason for basing the discrepancy on a
vector of summary statistics is that this places weaker constraints on the acceptability of proposed pairs
(θ��, z�). If the summary statistics are sufficient for θ, nothing is lost by using s(y) instead of y, but more
usually the summary statistics capture much, but not all, of the information y can reveal about θ.

As a result of these two departures from standard ABC practice, it will not in general be possible for the
discrepancy ρ(z, y) in equation (2.11) to be arbitrarily small. The problem is that since the generative data
model does not include a noise term, there may be no parameter vector for which the solution to the
system of ODEs exactly corresponds to the observations y, and hence there is some minimum allowable
discrepancy e0 > 0. Consequently, ρ(z,y) will always be greater than 0, which is considered a
misspecification in ABC estimation, according to Frazier et al. [36]. Under ideal conditions, for the
function u 7!r(z(u), y) there is a unique θ0 such that ρ(z(θ0), y) = e0 > 0, where z(θ) is the unique solution
to the system of ODEs with parameter vector θ. Therefore, as e→ e0 from above, the approximate
posterior pe(θ, z|y) approaches a Dirac delta function at the point (θ0, z(θ0)).

It follows that the approximate ‘posterior’ pe(θ, z|y) targeted by the method of Toni et al. [16] contains
no information about the posterior variance of parameters. A practical demonstration of this is provided
in the results below, in which small to moderate changes in the noise model used to simulate the
observations resulted in no change in the posterior variance estimated by ABC methods. On the other
hand, changing the noise model used to simulate observations did affect the location of the posterior
and the final e that guaranteed a good acceptance rate.

However, our results presented below demonstrate that the shapes of the contours of distributions of the
form of equation (2.2) for e> e0 may resemble those of the true posterior, and we propose that it may be
possible to find some e> e0 for which pe approximates the true posterior. Finding a good way to do this is
left for future work.

3. Test problems
The ABC and MCMC techniques described in appendix A were compared against each other when
conducting parameter inference for one epidemiological compartmental model. The Bayesian
parameter inference software developed in this paper was validated using the method of posterior
quantiles [37] on a computationally inexpensive model described in §3.1, before being implemented
on a more demanding nonlinear system of ODEs describing malaria transmission in §3.2.

3.1. Test problem 1—susceptible–infected–recovered model
Susceptible–infected–recovered (SIR) models categorize hosts into one of three different compartments at
time t. Individuals are considered susceptible (S), if they are able to be infected by the pathogen, infected
(I) if currently infected with the pathogen or recovered (R) if they have successfully cleared the pathogen.
The flow of individuals between compartments in the SIR model is visualized in figure 1.

SIR models and their variants, in both deterministic and stochastic forms, are among the most
fundamental epidemiological models and have found use describing diseases as diverse as influenza,
herpes and malaria [38]. In this test problem we use the SIR model to represent the fraction of the
total population (P) in each category as follows:

s(t) ¼ S(t)
P

, i(t) ¼ I(t)
P

and r(t) ¼ R(t)
P

,

where S(t), I(t) andR(t) are the numbers of susceptible, infected and recovered individuals in the population
at time t (weeks). The deterministic, constant population, SIR model without demographics can be
described mathematically as:

ds
dt ¼ �bi(t)s(t),

di
dt ¼ bi(t)s(t)� gi(t)

and dr
dt ¼ gi(t),

9>>>=
>>>;

(3:1)

where β is the infection rate and γ is the recovery rate.
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When conducting parameter inference for this system, the observable data is y= (y1,…, yn), where
yk = i(tk) is the proportion of the population infected at time tk, for k= 1,…, n. The parameters of
interest are θ= {β, γ}.

3.1.1. Simulation results

A test dataset was generated by solving the system of equations (3.1) in the interval [0, 50] using a fourth
order Runge–Kutta method and storing the solution at weekly intervals (figure 2), using true model
parameters u ¼ (b ¼ 0:9, g ¼ 1

3 )
T . To generate observations y, normal noise N (0, s2 ¼ 0:0001) was

added to the solution. For ABC approaches, a discrepancy function ρ(z, y) was used to compare
infected proportions in the dataset y with a solution to the equations z= (z1,…, zn) for proposed
parameters as follows:

r(z, y) ¼ 1
n

Xn
i¼1

(zi � yi)
2, (3:2)

where n is the number of observed data points. The priors for β, γ and σ2 were taken to be vague:

b � U(0, 2), g � U(0, 2) and s2 � IG(1, 1) (3:3)

where U( � , � ) is the uniform distribution and IG( � , � ) is the inverse-gamma distribution. For MCMC
approach, normal proposal distributions were used with adaptive approach tuning parameters in the
algorithm to maintain an acceptance ratio between 0.3 and 0.5 [25].

Given the observations y, the parameter vector θ= {β, γ} was estimated using MCMC and SMC ABC
and the results from these methods were compared. The noise σ2 was additionally estimated when using
MCMC. As discussed in §2.2, the distributions derived using the ABC approaches are not an
approximation to the true posterior of the ODE model parameters since the noise is not estimated; we
therefore cannot use the standard deviation of the distributions from ABC approaches as a measure of
performance. Instead, we compared the CPU times, the number of iterations and the mean absolute
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Figure 2. Test data showing the proportion of population infected over time, obtained from equation (3.1) with β= 0.9, γ= 0.333,
S(0) = 1− 1.27 × 10−6, I(0) = 1.27 × 10−6 and R(0) = 0. Red line shows the continuous infection curve while the blue points are
the observations to be used to infer the model parameters.
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Figure 1. The transition of individuals between susceptible, infected and recovered states in an epidemiological compartmental
model.
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errors (MAE), although, MAE may favour over-concentrated posterior approximations. The formula used
for MAE is MAE ¼ Pn

i¼1 (jui � utruej)=n, and the θi are posterior samples for θ, for each method. We
applied the MCMC approach using appendix A, algorithm 2. Table 1 shows that MCMC chain
converged after 12 401 steps to reach convergence and this took approximately 6.58min.

We next applied SMCABCas outlined in appendix A, algorithm 6 using our own implementation in R. In
SMCABC codewe used T=11 populations, each with 1000 particles, used component-wise uniform kernels
that adapted their width from the previous particle distributions [28] and used uniform priors 2 units wide
and centred at zero for both parameters. The tolerance sequence was selected adaptively such that in
population i the new threshold ei was the 25th percentile of the distances in the previous iteration, t−1 (as
explained in §2). The algorithms terminated when we reached a challenge tolerance of e=0.067056 that
had been chosen by finding the distance between the true ODE solution and the generated observations y.

Comparing SMC ABC with MCMC, we found that SMC ABC consumed run times longer than
MCMC with 11.26min. In addition, It can be seen in figure 3b that the estimated joint posterior
resulting from the 11th population of the SMC ABC method has the smaller variance compared with
MCMC method. Table 2 shows that all the methods have achieved good point estimation for both
parameters β and γ.

Table 1. The number of iterations, computational time (min) and mean absolute error for parameter inference in the SIR model.

iterations CPU time MAE (β) MAE (γ)

MCMC 12 401 6.58 min 0.0038 0.0034

SMC ABC 141 408 11.29 min 0.0035 0.0029

0.320 0.325 0.330 0.335

MCMC joint posterior ABC SMC joint posterior

0.340 0.350

95%
75%
50%
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50%

0.345
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0.90
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(a) (b)
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0.320 0.325 0.330 0.335 0.340 0.3500.345
g

Figure 3. Scatter plot of sample draws for γ and β using MCMC (a) and SMC ABC (b). The contour lines contain the stated
proportions of sample draws from the joint posterior and are produced using the R function ‘HPDregionplot’.
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We also compared credible intervals for the solution to the system of ODEs, using MCMC and ABC. To
do this, we followed the procedure in Gelman & Rubin [25] to simulate the posterior predictive distribution
(PPD) for a future observation, yrep. This produces a PPD that has variance that depends on the posterior
uncertainty (and hence the observational noise). This was not a problem within MCMC because we take
samples from the posterior and solve the model and then simulate the noise, which has been estimated
within MCMC. However, with SMC ABC method, we take the samples from the posterior and solve the
model without simulating the noise. So, as the tolerance gets smaller and smaller the predictive intervals
will also get smaller, and do not have the correct coverage of the observed data. Figure 4 shows that the
credible intervals obtained using SMC ABC are much narrower than those obtained using MCMC,
highlighting that the variation within the sample does not contain useful information about the inferred
uncertainty of the estimates. Note that this problem is not reduced by the tunable elements of the
algorithm; for example, we tried several different perturbation kernels proposed by Filippi et al. [28],
such as component-wise perturbation kernels that adaptively choose width based on the previous
population and multivariate normal perturbation kernels that are sometimes useful when parameters are
highly correlated. The resulting credible intervals were not affected significantly by the choice of
perturbation kernel (comparison results not shown).

In addition, we used the proposed method in Prangle [33] within our R code, involving an adaptive
distance function to improve the performance of the SMC ABC method. In this algorithm, the scale
parameters ζj in the distance function (equation (2.4)) are updated in each iteration (calculated using
MAD) and are used to choose the value of the next et. In principle, it might be possible to use a variant of
this technique to choose et so that the resulting sample reflects the shape and spread of the true posterior
distribution. However, it is not clear what number of rounds of adaptation would produce such an et. In
other words, it is not clear how and when to terminate the SMC ABC algorithm. In the literature, there
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Figure 4. Plot of the posterior predictive credible intervals estimated using MCMC and SMC ABC fitted with the weekly infection
cases. The blue dots represent the noisy data. The shaded areas are created using the posterior predictive samples. It can be seen
that the result derived from MCMC covered most of the data points while the ABC derived result produces unrealistically narrow
credible intervals.

Table 2. True values of the parameters β and γ and their estimated values (each estimate is the median of the sampled
values) using MCMC and SMC ABC for SIR model example.

parameter true value MCMC SMC ABC

β 0.9 0.8968 0.8964

γ 0.3333 0.3308 0.3304
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are several methods one can use to terminate, such as when the algorithm reaches a certain value of e or a
target acceptance rate, or one can use a specified number of a total simulations as a tuning parameter and
the algorithm terminates when a further simulation is required [33]. One option that is available when
using an adaptive kernel width is to stop the algorithm when the width of the kernel becomes negligible
or when 1− (et+1/et) falls below some threshold. However, we found that none of these methods
terminate the algorithm in such a way as to produce the correct shape and spread of the posterior
distribution. Figure 5 illustrates that if we run the algorithm for 30 rounds the estimated posterior will
shrink towards a point estimate of the parameters. If we run the algorithm for six rounds, the resulting
estimate is not a good representation of the true posterior: it is too wide and hence misleading. An
estimated posterior distribution similar to what we obtain using MCMC can be somewhat artificially
generated if we run the SMC ABC algorithm for 16 rounds, but at present the algorithm lacks an
independent way of identifying this. As far as we are aware, there are as yet no clear guidelines to follow
to determine how many rounds of SMC ABC are needed when dealing with an ODE model to guarantee
that a good approximation to the true posterior of the parameters has been achieved.

3.1.2. The impact of the noise on the inference

To demonstrate the impact of the noise on the parameter inference we applied MCMC and SMC ABC to
observations y generated using different values of σ2, specifically σ2∈ {0.0001, 0.0005, 0.001}. We plot the
resulting posterior marginals for both parameters in figure 6. The variance of the estimated posterior
derived from MCMC increases as the value of σ2 increases, indicating that the variance of the posterior is
affected by the amount of noise, as expected. On the other hand, although the noise has been increased,
the variances of the estimated posteriors derived from SMC ABC are almost the same for small to
moderate amounts of noise. However, when the noise parameter is increased further, the location of the
estimated posterior is changed. This illustrates what has been discussed in §2.2 that these posteriors do
not provide valid information about the uncertainty in the parameter estimates. As a result, conducting
parameter estimation for ODE models using this ABC framework is not recommended.

3.1.3. Including the error term in the ABC algorithm

Including the error term in the ABC algorithm may overcome this limitation and work inspired by
Wilkinson [35] in Vaart et al. [34], as has been explained in §2, argued that the acceptance of the
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Figure 5. An illustration of SMC ABC for the SIR model using algorithm 4 in Prangle [33]. The red curve represents the posterior
estimate resulting from the sixth round and is clearly overdispersed (by comparison to the sample obtained using MCMC—purple
scatter points). The black curve, obtained after 16 rounds of SMC ABC, is the closest approximation to the posterior obtained using
SMC ABC. The blue curve is the posterior estimate obtained after 30 rounds of SMC ABC, and has clearly shrunk too much around the
true parameter values (dashed light blue lines).

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191315
11

CHAPTER 3. A COMPARISON OF BAYESIAN TECHNIQUES IN ODES

44



proposed parameters should be with respect to the error term rather than with respect to some tolerance
level. In their method they assumed that the error term follows a normal distribution. This method is
promising and can capture similar posterior shapes compared to the one derived from MCMC, as
figure 7 shows. A significant drawback that we found for this approach is that the acceptance rate is very
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low and a large number of simulations are needed. This leads to a longer computational time, which is
prohibitive for the case of ODE model parameter inference. The total CPU time when we applied
the Vaart et al. [34] algorithm to the first test problem to have 1000 samples is 29 h which was derived
from 2×106 simulations and this time is much larger than when we used the MCMC method for this
example (5.25min).

3.2. Example 2—nonlinear ODE model of malaria transmission
Work by White et al. [39], acknowledging the lack of reliable data in some countries where malaria
control or elimination is particularly desirable, showed the utility of a compartmental mathematical
model in predicting effects of various elimination strategies compared to the more complex models of
Gu et al. [40] and Maire et al. [41]. The model describes population dynamics using four population
compartments in the transmission of malaria:

S(t): Uninfected and non-immune.

I1(t): Infected with no prior immunity.

R(t): Uninfected with immunity.

I2(t): Infected with prior immunity.

The model comprises four ODEs that govern the temporal evolution of the population compartments.
The model is illustrated in figure 8 and can be described mathematically by the following equations:

dS
dt

¼ P
L
� lþ 1

L

� �
Sþ 1

dimm
R,

dI1
dt

¼ lS� h0p1
dtreat

þ 1� h0p1
din

þ 1
L

� �
I1,

dI2
dt

¼ lR� h0p2
dtreat

þ 1� h0p2
din

þ 1
L

� �
I2

and
dR
dt

¼ h0p1
dtreat

þ 1� h0p1
din

� �
I1 þ h0p2

dtreat
þ 1� h0p2

din

� �
I2 � lþ 1

dimm
þ 1
L

� �
R:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(3:4)

Here λ is the force of infection and is given by

l ¼ R0
1
L
þ 1
dtreat

� �
(I1 þ I2)

P
,

where R0, the average number of secondary infections arising from a single infected individual in a
susceptible population, is expressed as a function of time to incorporate the seasonal forcing
associated with malaria transmission and is of the form, R0(t) =Acos2π(t− ϕ) + r0. The model is
parametrized in terms of a number of constants as described in table 3.

The observed data, y(t), is taken to be the number of observable clinical infections, C(t) as follows:

y(t) ¼ {C1(t1), C2(t2), . . . , Cn�1(tn�1), Cn(tn)} (3:5)

and

Cn(tn) ¼ p1I1(tn)þ p2I2(tn): (3:6)

Figure 8. The flow of individuals between susceptible, infected and recovered states in the model of White et al. [39].
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For our purposes here, the parameter vector of interest is θ= (η0, din) and in the case of using MCMC,
the parameter vector of interest is θ= (η0, din, σ

2), where η0 is the percentage of individuals with clinical
infection that receive treatment, din is the average duration of an untreated sensitive infection and σ2 is the
noise associated with the data which we assumed to be normally distributed.

3.2.1. Application: malaria in Afghanistan

Afghanistan is a landlocked country located between South Asia and Central Asia. Despite the fact that
most of the country is desert, there is significant rainfall and snowfall [45], which provides a fertile
environment for mosquito-borne diseases such as malaria. We use monthly data from cases registered
nationwide across all regions of Afghanistan in the period from January 2005 to September 2015 from
Anwar et al. [46] as shown in figure 9.

In the ODE system in equation (3.4), I1 and I2 represent the number of infected individuals with no prior
immunity and prior immunity, respectively. However, in the case of the data from Afghanistan, each data
point represents the total numberofmalaria cases that arrived at hospitals in themonth. In order to calculate
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Figure 9. Plot of the posterior predictive credible intervals from MCMC and SMC ABC fitted with the monthly Afghanistan data. The
blue dots represent the data. The shaded areas are created by the posterior predictive samples. The result derived from MCMC
covered most of the data points while the ABC methods were unable to cover most of the data.

Table 3. The parameter values used in simulation of the White et al. [39] model.

parameter value source

P (people) 29 203 486 Worldometers [42]

L (years) 66.67 Maude et al. [43]

dimm (years) 0.93 Aguas et al. [44]

din (years) 0.11 assumed

dtreat0 (weeks) 2 Maude et al. [43]

p1 0.87 Aguas et al. [44]

p2 0.08 Aguas et al. [44]

A 0.67 assumed

r0 1.23 assumed

ϕ 3/12 assumed

η0 0.11 assumed
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the cumulative number of cases over time we added an extra ODE which takes the form:

dW
dt

¼ lSh0p1 þ lRh0p2, (3:7)

where W(t) is the cumulative number of observed (that is, treated) cases. To compute the number of new
cases in each month we subtract the cumulative cases from consecutive months.

The values of the model parameters used are shown in table 3 and the initial conditions are given by
the equilibrium solution of the system in equation (3.4) with the addition of W(t= 0) = 0 for the new ODE.
As with the first test problem, for the ABC approaches we used the discrepancy function in equation (3.2)
to compare the clinical infections given in the dataset y with a simulated solution x. The priors for η0, din
and σ2 were taken as follows:

p(h0)¼ B(1, 1) [ [0, 1],
p(din) ¼ GA(1, 1) [ [0, 1)

and p(s2) ¼ IG(1, 1) [ [0, 1):

9=
; (3:8)

A logistic transformation was used to transform η0∈ [0, 1] while a log transform was applied to din∈
[0, ∞) and σ2∈ [0, ∞) so that each transformed parameter had support over the real line. This step was
used to improve the acceptance rate of the proposals.

In MCMC method, zero mean normal proposal distributions were used with standard deviations
equal to (0.007, 0.07, 0.1) for the parameters (η, din, σ

2) respectively. The same proposal distributions
were used with MCMC ABC, but with standard deviations equal to (0.1, 0.1) for the parameters (η, din).

All of the methods have achieved convergence to similar values for both parameters under
investigation (η0, din), as shown in table 4. SMC ABC consumed significantly longer CPU time
compared with the other methods as shown in table 5. Also, SMC ABC needed 143 031 model
simulations to get 500 accepted values, while MCMC and MCMC ABC needed just 5838 and 4050
iterations, respectively to converge (tables 4 and 5).

Since a real dataset has been used here, the true parameter values are unknown. As a consequence,
applying MCMC ABC was difficult because this lack of information makes the choice of an appropriate e

problematic. In this paper, in order to select an appropriate tolerance level we adopted the method of
Vaart et al. [34], which is to solve the ODE model with different proposals of the parameters from the
priors, find all the distances using 3.2 between these solutions and the true data, and then choose the one
that minimizes this distance. We then used the best fitting solution to estimate the value of the MCMC
ABC tolerance which was e=116230.8. Then, we applied SMC ABC for six populations with an
adaptively chosen sequence of tolerance e= (244616.4, 244616.4, 244616.4, 176677.1, 116966.8, 100042.7).

The estimated joint posteriors of η0 and din can be seen in figure 10. All have the same shape and
similar position, but the variances are very different. Figure 9 shows that the posterior predictive
distribution from MCMC covers most of the data points; however, the predictive intervals from ABC
methods (here, showing only the SMC ABC result from the last population) are very tight and poorly

Table 4. The estimated values (the median of the posterior) of the parameters η0 and din from MCMC, MCMC ABC and SMC
ABC for the Afghanistan data.

parameter MCMC MCMC ABC SMC ABC

η0 0.0525 0.04685 0.0459

din 0.23035 0.2483 0.2453

Table 5. The number of iterations and computational time (min) for parameter inference in the malaria model, applied to the
Afghanistan data.

iterations CPU time

MCMC 5838 45.13 min

MCMC ABC 4050 39.99 min

SMC ABC 143 031 522.34 min

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191315
15

CHAPTER 3. A COMPARISON OF BAYESIAN TECHNIQUES IN ODES

48



cover the data points. The reason for this is, as the SMC ABC algorithm converges towards the point
estimate, without any consideration to the noise in the data, the tolerance gets smaller and then most
of the accepted parameter values are from a tight region around a point estimate (figure 10). Thus,
the predictive intervals from ABC methods do not enable appropriate coverage of the data, consistent
with the discussion in §2.2.

4. Discussion
Our investigation into exact and approximate methods for inferring parameters in ODE dynamical systems
under a Bayesian framework highlights some limitations of current methods. The main problem we
identified is that the observations of the system are often noisy, so when we infer the parameters for such
a system it is inappropriate to not simulate the noise process. Estimation of the noise parameter is
standard using exact Bayesian inference (MCMC), but not with the current practice with ABC-based
approaches when applying to a system of ODEs that we investigated here. The general idea when
applying the ABC-based methods considered here to a dynamical system is to compare the noisy
observations to solutions generated using the ODEs (which is a deterministic model that does not take
into consideration the noise in the observations) for each set of parameters proposed. The parameters are
accepted based on some tolerance e that also does not depend on the noise term.

To illustrate this limitation, we compared the popular methods MCMC, MCMC ABC and SMC ABC
for estimating model parameters in ODEs. We can see in the second example presented in this paper that
the computational time consumed by MCMC ABC is shorter compared to the other methods (MCMC
and SMC ABC). However, when dealing with a deterministic model, the estimated posteriors derived
from current ABC methods do not provide useful estimates of the true posteriors. In particular, they
do not contain appropriate information about the uncertainty of the parameter values. Being able to
naturally quantify uncertainty in posterior distributions is one of the main advantages of Bayesian
statistical inference over other approaches, given that the output of Bayesian inference is a probability
distribution rather than a point estimate. Here, we have shown that the ABC methods are not able to
capture the distribution, but instead converge to point estimates of the best parameter values. To

0.040

0.21

0.22

0.23

0.24d in

0.25

0.26

0.27

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.045 0.050

50%
75%
95%

(a) (b) (c)

50%
75%
95%

50%
75%
95%

MCMC joint posterior

h
0

0.055 0.060 0.040 0.045 0.050

MCMC ABC joint posterior

h
0

0.055 0.060 0.040 0.045 0.050

SMC ABC joint posterior

h
0

0.055 0.060

Figure 10. Scatter plot of posterior distribution sample draws for η0 and din obtained using MCMC (a), ABC MCMC (b) and SMC ABC
(c) for model applied to Afghanistan data. The contour lines contain the stated proportion of sample draws and they were produced
using the R function ‘HPDregionplot’.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191315
16

CHAPTER 3. A COMPARISON OF BAYESIAN TECHNIQUES IN ODES

49



demonstrate the effect of not including the noise term in the estimation we compared the results in the
first example for different noise values. It is clear that the distribution estimated using the ABC methods
is not affected by the noise values (for low to moderate amounts of noise), which illustrates that the
posterior variances estimated using ABC do not depend on the noise in the data. As a result, the
posteriors do not represent the whole probability distribution of the parameters under investigation.

In order to improve SMCABCwe tried an adaptive SMCABC on the first test problem by using several
different perturbation kernels that are proposed in Filippi et al. [28]; component-wise perturbation kernels
and multivariate normal perturbation kernels that adapt their width from the previous population in the
algorithm steps. Adapting the width of the kernels may affect the accuracy of the estimations, but
still does not capture the true posterior shape when comparing with the posterior obtained using an
MCMC method.

We also tried another adaptive SMC ABC method in this paper; an adaptive distance function as
in §2, proposed in Prangle [33]. This method did make it possible to obtain a distribution that more
closely approximates the posterior using SMC ABC, but the problem with this algorithm is that there
is no existing criteria to identify an appropriate iteration at which to terminate.

Including the error term in the ABC algorithm may improve the ABC posterior as we have seen when
we applied Vaart et al. [34] method in §2; however, the long computational times required by this
approach are considered as a remarkable drawback in the case of ODE model parameter inference.

The comparison conducted in this paper demonstrates that using exact Bayesian inference (MCMC) for
ODE parameter estimation is a practical alternative (Gelman et al. [47]), despite the difficulty involved in
calculation of the likelihood. We found that MCMC gave accurate estimation of the parameter values and
the resulting posterior gave appropriate information about the uncertainty of the parameters.
Furthermore, the variance of the MCMC posterior distribution changed as the noise in the data
changed, as one would expect. The same was not true for the ABC methods considered. The time
consumed by the MCMC algorithms was slightly larger than MCMC ABC; however, since the resulting
posteriors were more appropriate, the extra effort to calculate the likelihood is deemed worthwhile. In
addition, choosing an appropriate e when applying MCMC ABC is difficult, especially when working
with real data. With simulated data, it is possible to find an appropriate e from the distance between
the true solution of the ODE model and the noisy data, but this is not possible in a real application
where the true solution is unknown. In this case, in order to determine an acceptable tolerance level,
we adapt the work of Vaart et al. [34] to find the best fit solution and then find an appropriate e. We
found that among all the methods, applying SMC ABC is the easiest to implement, but consumes the
most computational time. Moreover, as we have observed, this method produces inappropriately
shaped posterior distributions.

The first example presented in this paper involves a likelihood function that is easy to compute, so
using a likelihood-based approach such as MCMC or an importance sampling method like SMC is
certainly to be preferred over likelihood-free methods (such as ABC). Most of the computational cost
of MCMC and SMC ABC method is consumed in solving the ODE models several times to compute
the likelihood for MCMC or to do the simulations for SMC ABC. However, in the second example
we found that more effort is needed to construct the likelihood functions when applying MCMC.
In addition, when we chose an uninformative prior for the parameters, the SMC ABC algorithm
located the appropriate region of the parameters space easily, while it was more difficult to choose
appropriate initial parameters to achieve rapid convergence with MCMC. We would currently
recommend users of ABC methods be careful when using it with ODEs, unless a sensible choice of
error model and summary statistics can be made. Deciding what are sensible choices for the ABC
algorithm is still difficult and an important topic of current and future work.
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Chapter 4

Estimating error parameters in
dynamical systems models using
Approximate Bayesian Computation

Preamble

The purpose of this chapter is to develop a new Modified SMC ABC method
to overcome the problem of estimating error parameters identified in Chapter
3. Thus, this chapter addresses Objective 2. This is achieved by proposing a
summary statistic that quantifies the noise associated with the observation. The
benefit of the Modified SMC ABC is that the new summary statistic facilitates
the use of knowledge about the error term to guide the choice of the tolerance
sequence which improves the acceptance criteria. The advantages of this method
are illustrated by applying the proposed method to several challenging examples.
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4.1 Abstract

Approximate Bayesian Computation (ABC) is a popular tool for estimating the
parameters of dynamical systems models, and in particular non-linear differential
equation models. It is a Monte Carlo method designed specifically for models in
which the likelihood is computationally intractable or expensive, but for which
data is relatively easy to simulate. One variant of ABC, known as Sequential
Monte Carlo ABC (SMC ABC), shows promise as an efficient methodology for pa-
rameter estimation, but some current implementations fail to accurately estimate
the posterior distribution of noise variance when applied to Ordinary Differential
Equation (ODE) models.

Here we present a modified SMC ABC algorithm and propose a new summary
statistic that facilitates accurate estimation of noise variance in ODE models.
These innovations also result in improved posterior predictive intervals. We apply
the proposed method to two ODE epidemiological models, and demonstrate that
it outperforms standard SMC ABC in terms of accuracy, and compares favourably
with a Markov chain Monte Carlo (MCMC) method in terms of both accuracy
and overall computational effort.

4.2 Introduction

Ordinary Differential Equations (ODEs) are a popular mathematical tool for de-
scribing physical and biological processes in the real world. These ODEs are often
characterised by some unknown parameters that must be estimated using noisy
observations yk. Bayesian approaches to such estimation problems are popular
and produce excellent results even for complex non-linear ODEs. Typically, this
kind of estimation involves sampling parameters from a posterior distribution
using a computational method. However, some of these approaches involve in-
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tegration over a subset of parameters to obtain a marginal likelihood, and these
integrals may be intractable or computationally expensive. This is often the case
for non-linear ODE models.

Approximate Bayesian Computation (ABC) is a likelihood-free method that has
been extensively studied since its first appearance in Tavaré et al. (1997) and
Pritchard et al. (1999). The method is by now well developed in terms of both
its theoretical foundations and practical implementation. Recent theoretical ad-
vances include Barber et al. (2015), which analysed the convergence properties of
the ABC method in general, and the related papers Li and Fearnhead (2018) and
Frazier et al. (2018), which investigate the asymptotic behaviour of the approxi-
mate posterior distribution on which ABC is based, as the number of observations
increases.

In the ABC approach, data is simulated under an assumed model, with the pa-
rameters of the model proposed via some mechanism. The several varieties of
ABC differ in the proposal mechanism. The simulated data is then compared to
the actual observed data, and the difference between simulated and observed data
is quantified, ideally using a metric to evaluate the distance between two vectors
of summary statistics. If the difference between the simulated and observed data
is below some threshold ε, the parameters are accepted, meaning that they are
considered to have been sampled from an approximation to the posterior distribu-
tion over parameter space, conditional on the data. Typically, the resulting ABC
approximation to the posterior distribution is exact only when ε = 0.

In widely used and highly cited applications of ABC to ODEs, such as, Toni et al.
(2009); Liepe et al. (2010); Filippi et al. (2013); Prangle et al. (2017), a numerical
solution to a system of ODEs is directly compared to the observed data, without
taking into account the noise associated with experimental data. In such cases,
ε cannot be set arbitrarily small, as the noisy observations differ from any exact
solution to the system, and the ABC approximation to the posterior distribution
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typically shrinks to a point mass as ε approaches its minimum (Frazier, Robert,
& Rousseau, 2017; Alahmadi, Flegg, Cochrane, Drovandi, & Keith, 2020). It is
therefore important to include the error term in the ABC algorithm in some way,
although how this should be done is unclear. Vaart et al. (2018) argued, in work
inspired by Wilkinson (2013), that acceptance of the proposed parameters should
be based on an estimate of the error term rather than based on some tolerance
level. In this paper, we present a new approach implementing this idea.

The method of Toni and Stumpf (2009) applies a variant of ABC based on sequen-
tial Monte Carlo (SMC) to solve inverse problems in non-linear ODEs involving
both parameter estimation and model selection. This SMC ABC approach po-
tentially provides a useful alternative to exact Bayesian methods for differential
equations. It is a likelihood-free method, meaning that at no stage does the
likelihood have to be evaluated. It is also simple to apply and produces uncorre-
lated samples. Furthermore, the SMC ABC algorithm does not suffer from “poor
mixing” problems, in which the sampler gets stuck in low probability areas for
extended periods of time, as sometimes happens in Markov chain Monte Carlo
(MCMC) and in variants of ABC based on MCMC.

Regardless of the advantages of SMC ABC, its applications to ODE parameter
inference typically suffer from at least one of three crucial defects. The first of
these defects applies to several approaches that simulate data without noise, as
noted above. In these approaches, the data generation model is mis-specified.
The simulated data is deterministic in the sense that it is the unique solution to
a system of ODEs. As a result, the underlying likelihood distribution is a point
mass concentrated at the solution of the system. Thus, this approach fails to
correctly characterise the uncertainty represented by the posterior distribution.
Our earlier work in Alahmadi et al. (2020) discusses this problem in detail.

The second defect applies to SMC ABC approaches that assume the noise variance
σ2 is known, such as Silk et al. (2013). In this approach, a noisy simulation ysim is
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generated by solving the ODEs and then adding noise drawn from a known error
model. If the error model is a good approximation to the actual noisy observation
process, the resulting approximate ABC posterior may be a good approximation.
However, this approach is unrealistic in real world problems, because the variance
associated with the residuals is typically unknown, and must be estimated.

The third defect applies to approaches in which the inference of the error term
σ2 is conducted by proposing values and accepting or rejecting them, exactly
as for the other parameters being estimated, as suggested in Toni (2010). Such
approaches encounter two problems. The residual vector has high dimension,
which can dramatically reduce the acceptance probability of proposed values. For
example, if the algorithm proposes a value of σ2 that is close to the true σ2 value,
but the simulated deterministic data are located far from the observations, this
will result in rejecting σ2. In addition, it is difficult to define the distance function
ρ(yk,ysim) in such a way as to accurately reflect the noise associated with the
data. We show in this paper that such methods tend to underestimate σ2, which
in turn reduces the accuracy of estimates of the other parameters.

The aim of this paper is to modify the standard SMC ABC, in particular by con-
trolling the threshold schedule used in Algorithm 4.1, which is crucially important
in determining which parameter values to accept and which to reject. We achieve
this by finding a summary statistic that can represent the noise associated with
the observation yk and add a new condition to standard SMC ABC that allows it
to more accurately estimate the true marginal posterior distribution of σ2. The
novelty of our proposed approach lies in that, instead of accepting proposals of σ2

with respect to a tolerance level on distance, we accept them based on the ratio
between the variance of the differences between the noisy observations and the
deterministic solution of the ODEs and the variance of the differences between
the noisy simulations and the deterministic solution, using an F-test.

The rest of the paper is organised as follows. In Section 5.3 we lay out a Bayesian
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inference framework for ODEs and the resulting posterior distrbution. Then,
in Section 5.4 we introduce the standard SMC ABC algorithm for parameter
estimation in differential equations. In Section 5.5 we introduce the modified SMC
ABC algorithm and subsequently in Section 5.6 we apply the proposed method
to two ODE epidemiological models and compare the results with MCMC and
standard SMC ABC. Discussions and summary of our innovations are presented
in Section 4.7.

4.3 Bayesian inference

We consider a continuous time Q-dimensional dynamical system described by a
set of Q ODEs

ẋ = dx
dt

= f(x,θ), (4.1)

where x = x(t) = (x1(t), ..., xQ(t)) is a vector of Q variables all dependent on
a continuous variable t (often representing time), f is a Q-dimensional smooth
function, and θ = (θ1, ..., θM) is a vector of M unknown parameters. The data
is discretized, in the sense that x is evaluated only at a finite number of obser-
vation times tk ∈ {t1, . . . , tK}. Given values for the parameter vector θ and an
initial condition x0, a solution x̂(t,θ,x0) to the system (5.1) can be approximated
numerically. Then, by adding an independent δk error term to this solution, Q-
dimensional observations yk can be constructed for each tk, such that

yk = x̂(tk;θ,x0) + δk. (4.2)

This error term is assumed to arise from a Gaussian error model, δk ∼
MVN(0,Σ(σ2)), where Σ(σ2) is a diagonal matrix with diagonal elements
σ2 = (σ2

1, . . . , σ
2
Q). Accordingly, the observations yk follow a multivariate nor-
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mal distribution:
yk ∼MVN(x̂(t,θ,x0),Σ(σ2)). (4.3)

4.3.1 Posterior computation

The full joint posterior distribution of the parameters θ, x0 and σ2 given the
noisy observations yk has the form

p(θ,x0,σ
2|yk) ∝ p(θ)p(x0)p(σ2)L(yk|x̂(t,θ,x0),σ2), (4.4)

where the likelihood is

L(yk|x̂(t,θ,x0),σ2) =
K∏
k=1

MVN(yk; x̂(t,θ,x0),Σ(σ2)) (4.5)

and p(θ), p(x0) and p(σ2) are the prior distributions over θ, x0 and σ2 respec-
tively. Here we have assumed that the priors are independent. In the Bayesian
framework, the aim is to infer this joint posterior from the noisy observations over
the parameters θ, x0 and σ2.

4.4 SMC ABC

In order to improve the low acceptance rate in the basic ABC algorithm, an SMC
ABC algorithm was proposed in Sisson et al. (2007), based on the SMC sampler
methodology developed by Del Moral et al. (2006). Toni et al. (2009) applied an
SMC ABC to estimate parameters in ODE models.

The efficiency of the SMC ABC algorithm depends not only on the model com-
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Algorithm 4.1. SMC ABC Algorithm (Del Moral et al., 2006; Sisson et al.,
2007)

1: Initialise ε0 > 0 and 0 < α < 1.
2: for t = 0 to T do
3: for i = 1 to N do
4: if t = 0 then
5: Sample θ∗∗ from p(θ).
6: else
7: Sample θ∗ from the previous population θ(i)

t−1 with normalised
weights w(i)

t−1 and use a perturbation kernel Kt to sample
θ∗∗ ∼ Kt(·|θ∗).

8: end if
9: if p(θ∗∗) = 0 then

10: Go to line 4.
11: else
12: Simulate z∗ from model given θ∗∗.
13: if ρ(z∗,y) ≥ εt then
14: Go to line 4.
15: else
16: Set θ(i)

t = θ∗∗ and calculate the weight for particle θ(i)
t :

w
(i)
t =


1, if t = 0,

p(θ(i)
t )∑N

j=1 w
(j)
t−1Kt(θ(i)

t |θ
(j)
t−1)

if t > 0.
17: end if
18: end if
19:

20: end for
21: Set εt+1 to be α-quantile of saved distances vector
22: Normalise the weights.
23: end for
24: Return particles θ(i)

T .
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plexity and the amount of data available, but also on the choice of the decreasing
sequence of εt (the tolerances), and the choice of perturbation kernel Kt, according
to Filippi et al. (2013).

There are various ways to construct the decreasing sequence of εt, either manually
or adaptively as proposed in Drovandi and Pettitt (2011); Del Moral et al. (2012);
Liepe et al. (2014). In the adaptive method, the value of ε1 is chosen to be large
to avoid having a low acceptance rate. Then, for t = 2, ..., T , the tolerance εt is
selected to be the α-th quantile of the discrepancies between the observed data
and the simulated data that was generated in the (t − 1)th population, where
0 ≤ α ≤ 1. The resulting method is summarised in Algorithm 4.1. Throughout
this paper, we used this method of selecting the sequence of tolerance thresholds
with α = 0.1 and we stopped the Algorithm when we reached a final εt that
achieved the desired agreement between simulated and real data. The choice of
perturbation kernel Kt affects the acceptance rate in SMC ABC and the time
consumed by the algorithm as explained in Filippi et al. (2013). Perturbation
kernels can be divided into two classes: component-wise perturbation kernels and
multivariate perturbation kernels. For component-wise perturbation kernels, one
can use a uniform distribution or a univariate Gaussian distribution to perturb
a particle θ∗ sampled from the previous population {θ(i)

t−1}Ni=1, where N is the
number of particles in population t − 1. The standard deviation of the kernel
can be fixed in advance for each population, but more recently practitioners are
adaptively choosing the width of the kernel. For a detailed discussion, the reader
is referred to M. Beaumont et al. (2009); Didelot et al. (2011); Filippi et al. (2013).

In practice when implementing Algorithm 4.1, a stopping criterion is required to
terminate the process. One simple approach is to stop the algorithm when it
reaches a specified εT close to zero or target acceptance rate that is calculated
in each iteration by finding the ratio of the number of accepted particles to the
total number of simulations produced (Abdessalem et al., 2018). An alternative
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stopping criterion is to use a specified number of total simulations as a tuning
parameter (Prangle et al., 2017).

4.5 Modified SMC ABC Algorithm

This paper concentrates on improving the estimation procedure when using SMC
ABC to estimate ODE parameters. We propose a novel method to estimate the
noise within the SMC ABC approach when the scale σ2 is unknown and needs
to be inferred. Using this new method we accurately estimate the true joint
posterior distribution of the parameters including the noise. The new method is a
modification to the standard SMC ABC algorithm summarised in Algorithm 4.1.
In particular, we have added a new condition to improve the handling of the
proposed noise parameters.

In our modified SMC ABC approach, we use a new summary statistic that rep-
resents the noise associated with the observation yk. In Equation (5.2), the
noisy observations are the sum of the deterministic solution to the ODE model
with parameter θ (which we want to infer) and some additive normal noise
δk ∼ MVN(0,Σ(σ2)). Given yk, we aim to approximately sample the poste-
rior distribution for θ and σ2. Therefore, given proposals of the parameter values
θ̂ and σ̂2 from their prior distributions we can generate noisy simulated data ysim
as:

ysim = z(t; θ̂,x0) + δsim, (4.6)

where z(t; θ̂,x0) is the deterministic simulation generated by the ODE model
and δsim is the additive normal noise generated by using a proposal value of σ̂2

. In the standard SMC ABC method, the proposed θ̂ and σ̂2 are accepted if
ρ(yk,ysim) < ε, for a chosen ε > 0. However, our modified SMC ABC algorithm
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Algorithm 4.2. Modified SMC ABC Algorithm
1: Initialise ε0¿0 and 0 < α < 1.
2: for t = 0 to T do
3: for i = 1 to N do
4: if t = 0 then
5: Sample θ∗∗ and σ2∗∗ from p(θ) and p(σ2), respectively.
6: else
7: Sample θ∗ and σ2∗ from the previous populations θ(i)

t−1 and σ2(i)
t−1,

respectively, with their corresponding normalised weights w(i)
t−1 and

use a perturbation kernel Kt to sample θ∗∗ ∼ Kt(·|θ∗) and σ2∗∗ ∼
Kt(·|σ2∗).

8: end if
9: if p(θ∗∗)× p(σ2∗∗) = 0 then

10: Go to line 4.
11: else
12: Simulate z∗ from model given θ∗∗, then generate noisy simulation

ysim by adding normal noise δsim ∼MVN(0,Σ(σ2∗∗)) to the
simulation z∗.

13: Find δdiff by calculating the difference between z∗ and yk, then
find the sample variance σ2

diff of δdiff .
14: Calculate F-score by finding the ratio between σ2∗∗ and σ2

diff and
find the associated p-value.

15: if p-value ≥ 0.05 then
16: if ρ(ysim,yk) < εt then
17: Accept σ2∗∗ and Set θ(i)

t = θ∗∗ and calculate the weight for
the particle θ(i)

t and σ2∗∗ :

w
(i)
t =


1, if t = 0,

p(θ(i)
t )∑N

j=1 w
(j)
t−1Kt(θ(i)

t |θ
(j)
t−1)

if t > 0.
18: else
19: Go to line 4.
20: end if
21: end if
22: end if
23: end for
24: Set εt+1 to be α-quantile of saved distances vector
25: Normalise the weights.
26: end for
27: Return particles θ(i)

T and all accepted σ2∗∗.
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decides whether to accept or reject the proposed θ̂ and σ̂2 using a new summary
statistic that compares the distribution of the differences between the observations
and z(t; θ̂,x0),

δdiff = yk − z(t; θ̂,x0), (4.7)

to the distribution of δsim. If the two distributions are similar, then the proposed
value σ̂2 has generated a similar pattern of noise to the true value associated with
the observations. In the proposed approach, we use an F-test as a way to accept
or reject the proposed σ̂2. One reason to choose an F-test is our assumption
that the additive noise is independent and normally distributed, in which case
the variance ratio of δsim and δdiff has a Fisher–Snedecor F-distribution (Forbes,
Evans, Hastings, & Peacock, 2011). It is important to mention that in all the
examples used in this paper we calculate the sample variance of δsim and δdiff
under the assumption that the mean of the additive noise is known and equal to
the zero vector.

The new acceptance criteria is based on the associated p-value: the Algorithm
rejects proposals of the parameters and σ̂2 when the p-value is less than or equal
to 0.05 and ρ(yk,ysim) < ε. By repeating the process thousands of times with
different parameters and σ̂2 values for t populations, we generate samples that
approximate the joint posterior distribution of the parameters, including the noise
parameter. Algorithm 4.2 describes the overall procedure, which we refer to as
Modified SMC ABC.

4.6 Illustrations of the Algorithm

To test this new Modified SMC ABC, we applied it to two ODE epidemiological
models with simulated data. In each case, we compared its results to MCMC
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and the standard SMC ABC method and highlighted the benefits of using our
proposed method.

4.6.1 Test Problem 1 — SIR Model

The SIR model is an ODE system that describes the spread of an infectious
disease in a large population. The SIR model assumes the population consists
of three types of individual: susceptible, infected and recovered. The number
of susceptible individuals is S, the number of infected individuals is I and the
number of recovered or removed individuals is R, where P = S+I+R is the total
population. In this test problem, we use the SIR model to represent the fraction
of the total population (P ) in each category as follows:

s(t) = S(t)
P

, i(t) = I(t)
P

and r(t) = R(t)
P

.

The SIR system, with constant population, is given by

ds

dt
= −βs(t)I(t)

di

dt
= (βs(t)− γ)i(t)

dr

dt
= γi(t)

(4.8)

where β > 0 is the disease transmission rate and γ > 0 is the recovery rate.

Simulation Results

We generated a test data set by solving the system Equation (4.8) over the time
interval [0, 50] (weeks) using a 4th order Runge-Kutta method and storing the
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Figure 4.1: Estimated marginal posterior distributions for β, γ and σ2 produced
using MCMC (red) SMC ABC (green) and Modified SMC ABC (blue).

solution at weekly intervals, using true model parameters θ = (β = 0.9, γ = 1
3)T .

The K = 50 observations yk, (k = 1, . . . , K), were constructed by adding normal
noise N (0, σ2 = 0.001) to the proportion of the population infected at time tk. For
ABC approaches, we used a discrepancy function ρ(ysim,yk) to compare infected
proportions in the data set yk with a noisy simulation ysim = (y1

sim, . . . , y
K
sim) for

proposed parameters as follows:

ρ(ysim,yk) = 1
K

K∑
k=1

(yksim − yk)2 (4.9)

where n is the number of observed data points. The priors for β, γ and σ2 were
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taken to be:
β ∼ U(0, 2)

γ ∼ U(0, 2)

σ2 ∼ U(0, 1)

(4.10)

where U(·, ·) is the Uniform distribution.

Given the observations yk, the parameter vector θ = {β, γ, σ2} was estimated
using MCMC, standard SMC ABC and Modified SMC ABC. When applying
the MCMC approach, normal proposal distributions were used with an adaptive
approach that tuned parameters in the algorithm to maintain an appropriate
acceptance ratio between 0.3 and 0.5, as suggested by Gelman and Rubin (1992).

Then, we performed the standard SMC ABC for T = 5 populations. Following
Line 5 in Algorithm 4.1, we sampled β∗, γ∗ and σ2∗ from their priors and then
we used σ2∗ to add normal noise N(0, σ2∗) to the simulation generated by solv-
ing Equation (4.8), using the samples (β∗, γ∗) as values for the ODE parameters.
Consequently, we obtain a noisy simulation ysim instead of a deterministic simu-
lation. Then we compute the distance between ysim and yk using a discrepancy
function ρ(ysim,yk), as in Equation (4.9). At Line 13 of Algorithm 4.1 we accept
the samples (β∗, γ∗, σ2∗) that make ρ(ysim,yk) ≤ εt. The tolerances were chosen
adaptively as discussed in Section 5.4 to be ε = (0.927, 0.500, 0.339, 0.277, 0.250).

We applied the Modified SMC ABC, also for T = 5. Samples of β∗, γ∗and σ2∗

were accepted when they passed the conditions on Lines 15 and 16 in Al-
gorithm 4.2. The adaptive tolerance sequence for modified SMC ABC was
ε = (0.923, 0.498, 0.339, 0.282, 0.255).

Results obtained using the standard SMC ABC and the Modified SMC ABC were
compared with results derived from an MCMC approach: see Figure 4.1. The im-
proved handling of the noise in the modified SMC ABC approach has improved
the accuracy of the approximation to the marginal posterior for β and γ and pro-
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True value MCMC Modified SMC ABC SMC ABC
Median β 0.9 0.893 0.897 0.895

γ 0.333 0.327 0.331 0.330
σ2 0.001 0.0011 0.0011 0.00016

95% CI β (0.87, 0.92) (0.87, 0.93) (0.87, 0.92)
γ (0.31, 0.35) (0.30, 0.36) (0.30, 0.36)
σ2 (0.0008, 0.0018) (0.0007, 0.0019) (6× 10−6, 9× 10−4)

CPU time 1.69 mins 126.55 mins 106.70 mins
Iterations 8759 626040 532979

Table 4.1: Posterior median and 95% credible intervals for all parameters in the
SIR model, number of iterations and computational times for MCMC, Modified
SMC ABC and SMC ABC.

duced results similar to those derived from MCMC. All the methods should ideally
sample approximately the same posterior distribution; however, the approximate
posterior distribution of σ2 derived from the standard SMC ABC is noticeably
different from those obtained using MCMC or Modified SMC ABC and the high
density region does not even contain the true σ2. This poor approximation also af-
fected the posterior predictive distribution for the standard SMC ABC, as shown
in Figure 4.2. The posterior predictive distribution derived from standard SMC
ABC is narrower than the others and does not cover the appropriate number of
observations. By contrast, the posterior predictive plots obtained using MCMC
and Modified SMC ABC covers almost all the observations.

Table 4.1 shows that the ODE parameters were estimated accurately and all
methods have produced similar credible intervals. However, the standard SMC
ABC failed to approximate the true value of σ2, while the values estimated by
MCMC and Modified SMC ABC are accurate. Both SMC ABC and the Modified
SMC ABC consumed more time (106.7, 126.55, respectively), compered to MCMC
(1.69), because of the need to perform a large number of iterations in the SMC
ABC process.
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Figure 4.2: Posterior predictive 95% credible intervals estimated using MCMC,
SMC ABC and Modified SMC ABC plotted with the weekly number of infected
cases. The black dots represent the noisy data. The shaded areas are created
using posterior predictive samples. It can be seen that the result derived from
MCMC and Modified SMC ABC cover most of the data points while the SMC
ABC result produces unrealistically narrow credible intervals.

4.6.2 Test Problem 2 — Non-Linear ODE Model of
Malaria Transmission

Work by White, Maude, Pongtavornpinyo, et al. (2009), acknowledging the lack
of reliable data in some countries where malaria control or elimination is partic-
ularly desirable, showed the utility of a compartmental model in predicting the
effects of various elimination strategies compared to more complex models of Gu,
Killeen, Mbogo, et al. (2003) and Maire, Tediosi, Ross, and Smith (2006). The
model describes population dynamics using four population compartments in the
transmission of malaria:
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S(t): Uninfected and non-immune,
I1(t): Infected with no-prior immunity,
R(t): Uninfected with immunity,
I2(t): Infected with prior immunity.

The model comprises 4 ODEs that govern the temporal evolution of the population
compartments. The model can be described mathematically by the following
equations:

dS

dt
= P

L
−
(
λ+ 1

L

)
S + 1

dimm
R

dI1

dt
= λS −

(
η0p1

dtreat
+ 1− η0p1

din
+ 1
L

)
I1

dI2

dt
= λR−

(
η0p2

dtreat
+ 1− η0p2

din
+ 1
L

)
I2

dR

dt
=
(
η0p1

dtreat
+ 1− η0p1

din

)
I1 +

(
η0p2

dtreat

+ 1− η0p2

din
I2 −

(
λ+ 1

dimm
+ 1
L

)
R

(4.11)

Here λ is the force of infection and is given by

λ = R0

( 1
L

+ 1
dtreat

) (I1 + I2)
P

.

The model is parameterised in terms of a number of constants as described in
Table A.1.

The simulated data, y, is taken to be the number of observable clinical infections

Ck = p1I1(tk) + p2I2(tk). (4.12)
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To construct the data yk, we added normal noise, N(0, 109), to the clinical infec-
tions in Equation (4.12). Here, the parameter vector of interest is θ = (η0, din, σ

2),
where η0 is the percentage of individuals with clinical infection that receive treat-
ment, din is the average duration of an untreated infection and σ2 is the noise
associated with the data.

Figure 4.3: Estimated marginal posterior distributions for η0, din and σ2 produced
using MCMC (red) SMC ABC (green) and modified SMC ABC (blue).

Simulation Results

A data set of 121 simulated points was generated by solving Equations (4.11) in
the interval [0− 10] years using a 4th order Runge-Kutta method. The values of
the model parameters used are shown in Table A.1 and the initial conditions are
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given by the equilibrium solution of the system in Equation (4.11).

parameter value source
P [People] 3.2× 106 Assumed
L [Years] 66.67 Maude, Pongtavornpinyo, et al. (2009)
dimm [Years] 0.93 Aguas, White, Snow, and Gomes (2008)
din [Years] 0.2 Assumed
dtreat0 [Weeks] 2 Maude et al. (2009)
p1 0.87 Aguas et al. (2008)
p2 0.08 Aguas et al. (2008)
η0 0.05 Assumed

Table 4.2: The parameter values used in simulation of the White et al. (2009)
model.

As with the first test problem, for the ABC approaches we used the discrepancy
function in Equation 4.9 to compare the clinical infections given in the data set
yk with the noisy simulations ysim. The priors for η0, din and σ2 were taken as
follows:

p(η0) = B(1, 1) ∈ [0, 1],

p(din) = GA(1, 1) ∈ [0,∞),

p(σ2) = IG(1, 1) ∈ [0,∞).

(4.13)

For the MCMC approach, a logistic transformation was used to transform η0 ∈
[0, 1] while a log transform was applied to din ∈ [0,∞) and σ2 ∈ [0,∞), so that
each transformed parameter had support over the real line.

We first applied the MCMC method to estimate θ = (η0, din, σ
2). We ran the

sampler until the chain converged, which needed 32349 iterations and approxi-
mately 68.25 minutes. The convergence was assessed using MCMC convergence
diagnostics described in Gelman et al. (2014). The median of the sampled values
for each parameter is shown in Table 4.3.

We applied standard SMC ABC as described in Algorithm 4.1 for T = 4 with
adaptive tolerances, ε = (2106083.6, 432384.4, 372201.2, 356149.6). In order to get
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True value MCMC Modified SMC ABC SMC ABC
Median η0 0.05 0.054 0.055 0.055

din 0.205 0.193 0.192 0.193
σ2 109 109 9× 108 5× 107

95% CI η0 (0.048, 0.062) (0.048, 0.068) (0.048, 0.062)
din (0.177, 0.212) (0.167, 0.222) (0.178, 0.208)
σ2 (83× 107, 13× 108) (67× 107, 12× 108) (18× 105, 25× 107)

CPU time 68.25 mins 300.71 mins 261.43 mins
Iterations 32349 155759 143003

Table 4.3: Posterior median and 95% credible intervals (CIs) for parameters in
the malaria model, number of iterations and computation times for MCMC, SMC
ABC and Modified SMC ABC.

1000 accepted values we needed 143003 simulations, which took 261.43 minutes
to produce.

Finally, we applied our Modified SMC ABC for T = 4 populations and gen-
erated 1000 accepted particles. This required 300.71 minutes and 155759
simulations. The algorithm adapted the values of the tolerances as ε =
(2106083.6, 472757.5, 419652.1, 393456.2).

As in the first example, MCMC and Modified SMC ABC produced good approx-
imations to all parameters. However, standard SMC ABC failed to estimate the
σ2 value accurately, as shown in Table 4.3 and Figure 4.3. In this example, the
effect of misspecifing the noise model is clearer, given that the noise associated
with the observation is large and thus the approximate posterior predictive dis-
tribution generated by standard SMC ABC is unrealistically narrow compared to
results obtained using MCMC and Modified SMC ABC, as shown in Figure 4.4.

73



CHAPTER 4. MODIFIED SMC ABC

Figure 4.4: Plot of the posterior predictive 95% credible intervals estimated using
MCMC, SMC ABC and Modified SMC ABC fitted with the weekly infection
cases. The black dots represent the noisy data. The shaded areas are created
using the posterior predictive samples. It can be seen that the result derived from
MCMC and modified SMC ABC covered most of the data points while the SMC
ABC derived result produces unrealistically narrow credible intervals.

4.7 Discussion

In this paper we have proposed a method to significantly improve the approxima-
tion of the posterior distribution of the ODE parameters and especially the noise
parameter when using an SMC ABC approach.

We achieve this by introducing a new summary statistic that guides the acceptance
of the noise parameter proposed when applying the SMC ABC algorithm. This
new summary statistic increases the probability that only samples from the true
posterior distribution of the noise can be accepted. The key idea behind our
method lies in deciding whether the distribution of the differences between the
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noisy observations and the deterministic solution of the ODEs is likely to be
similar to the distribution of the differences between the noisy simulations and
the deterministic solution, using an F-test. For the two examples presented in
this paper, the Modified SMC ABC has improved posterior accuracy for both
the ODE parameters and the noise parameter, and gives results comparable to
MCMC. The posterior predictive checks show that both methods - modified SMC
ABC and MCMC - cover an appropriate number of observations. Interestingly, the
presence of the noise in the standard SMC ABC approach does allow the standard
SMC ABC algorithm to achieve an approximation to the parameter posterior
distribution similar to that generated using MCMC. However, it fails to give an
accurate estimate of the posterior distribution of the noise, which significantly
affects the posterior predictive distribution, especially when the noise is large as
in Test Problem 2. The new SMC ABC approach that we have presented in
this paper is promising for researchers who would prefer to use ABC methods for
parameter inference in ODE models.
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Chapter 5

Low Discrepancy Sequences for
Bayesian Estimation in Ordinary
Differential Equations

Preamble

The purpose of this chapter is to develop a new method for exploring the param-
eter space of non-linear ODEs more efficiently using Quasi Monte Carlo (QMC)
point sets. Our results show that the QMC method out-performs Markov chain
Monte Carlo (MCMC) in terms of computational time and accuracy of estima-
tion, particularly when the posterior distribution is multi-modal. Furthermore, it
is easy to implement relative to MCMC. In this way, we have satisfied Objective
3. The proposed method is tested on low-dimensional parameter spaces, 3-5 pa-
rameters, in a Lotka-Volterra model and an epidemiological compartmental model
which contributes to Objective 4.
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5.1 Abstract

Ordinary differential equations (ODEs) are a popular mathematical tool for mod-
elling dynamic processes. Typically, ODEs are associated with parameters that
need to be estimated, often based on noisy data. Bayesian approaches to such
estimation problems often involve sampling parameters from a posterior distribu-
tion using a computational method such as Markov chain Monte Carlo (MCMC).
However, a poorly designed MCMC method can suffer from slow mixing and poor
convergence. This problem is exacerbated when the parameter space is of high
dimension, parameters are unidentifiable or the posterior distribution is multi-
modal. In this paper, we propose a new method that has two contributions.
First, we explore the parameter space of non-linear ODEs more efficiently using
Quasi Monte Carlo (QMC) point sets. Second, we propose a new and easy method
to visualise posterior marginals using cumulative summation. Our results show
that the QMC method outperforms MCMC in terms of computational time, ac-
curacy of estimation (particularly when the posterior distribution is multi-modal)
and ease of implementation relative to MCMC. The proposed method is tested
on low-dimensional parameter spaces (3-5 parameters) in a Lotka-Volterra model
and an epidemiological compartmental model.

5.2 Introduction

In many fields, modelling by ordinary differential equations (ODEs) is an impor-
tant method for building a better understanding of a physical system and for
accurately predicting its future behaviour. Some parameters of differential equa-
tions can be directly measured; many others, however, must be inferred from data.
Thus, unknown parameter values need to be estimated via statistical approaches.
This inverse problem in ODEs is computationally challenging and time-consuming
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because many current approaches involve explicitly solving the ODEs many times
for different sets of candidate parameters. This problem is a feature of the method
of maximum likelihood (a non-Bayesian approach) and of Bayesian approaches in-
volving Markov chain Monte Carlo (MCMC) methods (such as Gibbs sampling,
Metropolis-Hastings and Hamiltonian MCMC).

A common approach to estimating ODE parameters is to use least squares to
minimise the differences between the observations and the numerical solution of
the ODEs Macdonald, Higham, and Husmeier (2015). On the other hand, some
approaches avoid solving the ODEs numerically to reduce computational time,
using a Gaussian process to model the trajectory of state variables. In the next
section we review recent methodologies for parameter inference in ODE models.

5.2.1 Statistical parameter estimation in ODE models

Varah (1982) suggested a two-stage method. In the first stage, least squares re-
gression is used to fit the given data using cubic spline functions with fixed knots.
The resulting model is then differentiated with respect to time. In the next step,
the unknown parameters are estimated by minimising the difference between the
ODE model and the estimated derivative of the solution. This technique has been
developed by Ramsay (2006) and Qi and Zhao (2010) to iterate between smooth-
ing the data and estimating the ODE parameters under investigation. Ramsay
(1996) proposed a method known as principal differential analysis (PDA) for es-
timation of dynamic parameters. This technique works by fitting discrete data
using a spline model; then the estimated values are substituted into an ODE,
and the differential equation parameters are estimated with a simple least squares
procedure.

Ramsay, Hooker, Campbell, and Cao (2007) proposed a generalised profiling ap-
proach to estimate ODE parameters. The computational burden is considerably
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lower than other methods as it does not involve the computational cost of finding
a numerical ODE solution. Qi and Zhao (2010) explored the statistical properties
of this approach, such as consistency and asymptotic normality. Campbell and
Steele (2012) proposed a new population MCMC method for posterior estimation
of a parameter vector using the parallel tempering algorithm and a generalized
profiling approach, calling this the smooth functional tempering approach. Peng,
Li, Yang, and Wang (2009) established a novel approach based on integration
theory which used the idea that the solution to the ODE system is constrained to
a particular function with parameters to be estimated.

Calderhead, Girolami, and Lawrence (2009) fitted a Gaussian Process (GP) with
hyperparameters to the data before estimating the parameters of the ODEs. This
method is based on the product of experts approach and marginalisation over
the state derivatives. The advantage of this method is that all parameters can
be estimated from the data; however, the estimation accuracy of the GP hy-
perparameters relies only on the data without feedback from the ODE system
Wang and Barber (2014). To improve this method, Dondelinger et al. (2013)
introduced a bidirectional link between the ODE and GP parameters. Wang and
Barber (2014) improved these two approaches, establishing a simpler generative
model (GP-ODE) that connects the state derivatives to the system’s observations
directly using a GP. Currently, there are issues related to the efficiency of the
existing GP-ODE approach. To simplify the method, the authors of the GP-
ODE approach have been equating the elimination of the state variable with its
marginalisation. As a consequence, their method suffers from identifiability prob-
lems, especially when data are systematically missing, as Macdonald et al. (2015)
pointed out.

Bhaumik, Ghosal, et al. (2015) proposed a two-step Bayesian method of param-
eter estimation. In this approach, the posterior distribution of parameters is
approximated using a restricted random series based on B-spline basis functions.
The parameters are approximated by minimising the distance between the non-
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parametrically estimated derivative and the derivative proposed by the ODE. This
method has been extended to a higher order ODE model Bhaumik and Ghosal
(2015).

Dass, Lee, Lee, and Park (2016) proposed a two-step method to approximate the
posterior distribution of the unknown parameters. In the first step, data are gen-
erated from the ODE using a numerical method and then the second step uses
the Laplace approximation to marginalise the posterior for each parameter. This
method gives a fast approximate approach compared to a full Bayesian computa-
tional scheme.

In most current methods the hyperparameter space is explored using either a
pseudo-random set of points or a deterministic grid of points. The problem with
using pseudo-random points is that the points are not evenly distributed through-
out the parameter space and tend to form clusters and gaps. To improve the ap-
proximation accuracy, a large number of random points is needed. Each additional
point increases the computational time required to solve the ODEs numerically.
On the other hand, point sets generated based on a grid suffer from three critical
problems. The first problem is that the choice of grid matrix can be a complex
task Joshi and Wilson (2011). For example, if we use the approach of Rue, Mar-
tino, and Chopin (2009) to choose a grid set, we have to find the posterior mode
and then find a support interval around it, but in real world problems usually
the mode of the posterior is unknown. It is true that the posterior mode can be
identified using numerical methods; however, in some applications, these methods
can increase the computational burden, particularly when the number of param-
eters is large. The second problem is that even if we can determine the support
interval, evaluating the marginal posterior on the grid points can fail to capture
the shape of the true posterior distribution when the distribution is multi-modal
or skewed Joshi, Brown, and Joe (2016). The third issue is that the number of
grid points increases exponentially with the number of parameters that need to
be estimated.
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Standard MCMC algorithms such as the random walk Metropolis-Hastings
(RWMH) sampler explore the parameter space by making local moves Chumbley
et al. (2007). However, RWMH can converge slowly to the target posterior den-
sity when the number of parameters is large Sengupta et al. (2016); Feng and Li
(2015). In addition, unidentifiable parameters in nonlinear models may also cause
slow convergence and mixing of MCMC algorithms Kim and Li (2012). Such
poor mixing can greatly increase the computational burden, due to the need to
explicitly solve the ODE numerically for each proposal of the parameter of in-
terest Wang and Barber (2014). Multimodality in the posterior distribution is
often the reason MCMC methods have poor convergence or even fail to converge
Neal (1993, 2012); Celeux et al. (2000); Neal (2001); Rudoy and Wolfe (2006);
Sminchisescu and Welling (2007); Craiu et al. (2009). When the posterior dis-
tribution is multi-modal, MCMC methods may fail to traverse low probability
regions between modes Lan et al. (2014).

For most practitioners aiming to solve inverse problem in ODEs using Bayesian
computation, methods based on MCMC appear to be the default. However, in
this paper we argue that QMC is a more appropriate default method for such
problems and can outperform MCMC in many aspects.

QMC methods have previously been used in solving the forward problem in dif-
ferential equation models. For example, Coulibaly and Lécot (1999); Lécot and
Koudiraty (2001) generalized the Runge-Kutta Monte Carlo algorithm to apply to
ODEs and in addition they used the Runge-Kutta (quasi) Monte Carlo method.
In the context of partial differential equations (PDEs), Dick, Gantner, Le Gia, and
Schwab (2019) used higher order QMC methods to improve convergence rates re-
gardless of the dimension of the parameter space, and performed a mathematical
analysis of the resulting algorithm, but, instead of addressing the problem of lo-
cating the high density region in the parameter space, the authors assumed it as
pre-specified. However, work by Schillings and Schwab (2016) used Quasi-Newton
methods to identify computationally the high concentration of the posterior, then,
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applied dimension-adaptive Smolyak quadratures on PDEs. A survey of QMC
methods in computational statistics is provided in Shaw (1988).

The aim of this paper is to explore the use of the QMC approach to improve
Bayesian analysis of inverse problems in ODEs. We view this as a numerical
integration problem. Several numerical integration or approximation methods,
such as those in Smith, Skene, Shaw, Naylor, and Dransfield (1985); Tierney and
Kadane (1986); Smith, Skene, Shaw, and Naylor (1987), require careful choices
of likelihood and prior in order for the evaluation of such integrals to be possible
Smith and Gelfand (1992). Here we propose an easily implemented two-stage
approach that first identifies an interval of the parameter space containing the
highest posterior density interval. Our method is in contrast with Schillings and
Schwab (2016), in which the uncertainty around the marginal posterior distribu-
tions is first identified using predetermined points generated using low discrepancy
sequences (LDS) and then numerical integration is applied over that interval. The
advantage of our proposed method is that we need fewer points to accurately ap-
proximate the posterior than MCMC methods. Moreover, using a pre-determined
point set allows parallel evaluation of the posterior. Consequently, we signifi-
cantly reduce the time spent iteratively solving the ODE numerically compared
to MCMC or grid-based approaches. The accuracy achieved using LDS is compa-
rable to that obtained using either random points or grid points. Furthermore, we
propose to use the cumulative summation of the normalised posterior generated
using QMC points in Stage 2 to visualize the marginal posteriors. This produces
remarkably similar posterior approximations to those that result from an MCMC
approach.

The rest of the paper is organised as follows. In Section 5.3 a brief introduction to
Bayesian inference and Quasi Monte Carlo are provided. In Section 5.4 the pro-
posed methodology and the posterior computation are described in further detail.
In Section 5.5 we examine the quality of the proposed method using simulated
data sets in the Lotka-Volterra model and real data within an epidemiological
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compartmental model. Discussions are presented in Section 5.6.

5.3 Mathematical background

5.3.1 Bayesian inference

We consider a continuous time Q-dimensional dynamical system described by the
equation

ẋ = dx

dt
= f(x, θ) (5.1)

where x = x(t) = (x1(t), ..., xQ(t)) is a vector containing Q variables all dependent
on a continuous variable t (often representing time), f is a Q-dimensional smooth
function, and θ = (θ1, ..., θM) is a vector of M unknown parameters. The system is
discretized, in the sense that x is evaluated only at a finite number of observation
times tk ∈ {t1, . . . , tK}. An approximate solution x̂(t, θ, x0) to the system (5.1)
can be calculated numerically given values for the parameter vector θ and an initial
condition x0. Then Q-dimensional observations yk for each tk can be obtained
from this solution by adding an independent δk noise, such that

yk = x̂(t, θ, x0) + δk. (5.2)

Under a Gaussian error model, δk ∼ MVN(0,Σ), where Σ is a diagonal matrix
with diagonal elements σ2 = (σ2

1, . . . , σ
2
Q). Thus yk follows a multivariate normal

distribution:
yk ∼MVN(x̂(t, θ, x0),Σ). (5.3)

In a Bayesian setting, given these noisy observations, the aim is to infer a joint
posterior distribution over the parameters θ, x0 and σ2 if the latter is unknown,
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such as

p(θ, x0, σ
2|yk) ∝ p(θ)p(x0)p(σ2)L(yk|x̂(t, θ, x0), σ2) (5.4)

where the likelihood is

L(yk|x̂(t, θ, x0), σ2) =
K∏
k=1

MVN(yk; x̂(t, θ, x0),Σ)) (5.5)

and p(θ), p(x0) and p(σ2) are the prior distributions over θ, x0 and σ2 respectively.

Samples from the posterior can be drawn using Bayesian techniques such as
MCMC.

5.3.2 Quasi-Monte Carlo

In this section we give a brief overview of quasi-Monte Carlo (QMC) and ran-
domized QMC (RQMC) methods. For a full exposition, see Lemieux (2009);
Leobacher and Pillichshammer (2014).

For an integrable function f : [0, 1)M → R, the basic Monte Carlo (MC) approxi-
mation to the integral over the [0, 1)M hypercube is:

I =
∫

[0,1)M
f(x)dx and ÎN = 1

N

N∑
i=1

f(xi) (5.6)

where the points xi ∼ U([0, 1)M). The error of this approximation using MC is
O(N− 1

2 ) Caflisch (1998). This rate of convergence can be improved using QMC,
which involves generating a deterministic sequence (called a low-discrepancy se-
quence) x1, . . . , xN such that the sum in (5.6) converges faster than the Monte
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Figure 5.1: Left: uniformly random Monte Carlo (MC) points in the unit square.
Centre: Sobol quasi-Monte Carlo (QMC) points. Right: Scrambled or randomized
Sobol (RQMC) points. Each sequence contains 256 points generated on [0, 1]2.
Note that QMC and RQMC points are distributed more evenly than a uniform
random sequence.

Carlo estimate, as a result of which the QMC method has recently become pop-
ular. Specifically, the integration error when using QMC is bounded above by
O(N−1(logN)M). The enhanced rate of convergence is due to the fact that QMC
sequences are distributed more evenly in the hypercube than a uniform random
sequence Dick et al. (2013). See Figure 5.1 for a comparison of MC and QMC
sequences on a unit square.

One way to quantify the evenness of the spread of the points is using star discrep-
ancy, which is the distance between the discrete uniform distribution on xi and
the continuous uniform distribution on [0, 1)M under a suitable metric. The star
discrepancy generalises the Kolmogorov-Smirnov distance, and to define it we first
consider ∆(a) = V ol([0, a]) − 1

N

∑N
i=1 1{xi ∈ [0, a]} to be the local discrepancy

function at a point a ∈ [0, 1)M where V ol(A) is the M-dimensional volume of the
measurable set A, [0, a] is the M-dimensional hyperrectangle that has a corner at
the origin and an opposing corner at a = (a1, . . . , aM) and 1{xi ∈ [0, a]} is the in-
dicator function. Thus the volume of [0, a] is ∏M

j=1 aj. Then, the star discrepancy
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of a point set PN = {x1, . . . , xN} ⊂ [0, 1)M is given by

D∗(PN) = sup
a∈[0,1)M

∣∣∣∣∣∣ 1
N

N∑
i=1

1{xi ∈ [0, a]} −
M∏
j=1

aj

∣∣∣∣∣∣ . (5.7)

When D∗ → 0, the sample mean ÎN approaches the theoretical mean I given
by the integral in (5.6), by a deterministic version of the law of large numbers
that applies for QMC Owen and Tribble (2005). The importance of the star
discrepancy arises from the Koksma-Hlawka inequality Hickernell (2014), which
states that for QMC integration, if the function f has variation V (f) in the sense
of Hardy and Krause Hardy (1905), then

|ÎN − I| ≤ D∗(PN)V (f). (5.8)

From this it follows that the integration error of QMC is bounded above by
O(N−1(logN)M). Many examples show that QMC integration outperforms MC
integration even for small N Owen and Tribble (2005); Buchholz and Chopin
(2019).

Using QMC sequences is inconvenient for constructing estimators because the
point construction is deterministic, however, one can reintroduce randomness and
preserve the same structure of the sequence by using randomized QMC (RQMC)
sequences. Then, the estimator ÎN = 1

N

∑N
i=1 f(xi) is an unbiased estimate of the

integral in (5.6) Buchholz and Chopin (2019); Wenzel et al. (2018). To obtain an
RQMC sequence we used a method called scrambled nets which was introduced
by Owen et al. (1997) and then modified in Owen et al. (2008).

QMC sequences can be widely classified into two groups: lattice rules, and digital
nets and sequences. In all numerical examples in this paper we have generated
points using a Sobol sequence, which is a kind of digital net. We generated RQMC
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Sobol points using an R package called randtoolbox. As noted above, QMC points
are defined over a unit hypercube, but one can use a linear transformation to define
them over a hypercube with different bounds. In the following section we demon-
strate how to use RQMC sequences to approximate the posterior distribution and
visualise posterior marginals.

5.4 Methodology

5.4.1 Approximation to the posterior using deterministic
point sets

As mentinoned in Section 5.2.1, MCMC methods may suffer from slow conver-
gence when the number of parameters is large, if one or more parameters are
unidentifiable, or if the posterior distribution has a multi-modal topology. Thus
it may be necessary to run an MCMC chain for a long time to guarantee that
the chain has reached stationarity, incurring a high computational burden. This
problem is particularly acute when inferring the parameters of ODEs, due to the
need to solve the ODE system for many proposed parameters.

In this paper, inspired by the work of Brown (2019) in which they explored some
standard posterior distributions using deterministic point sets generated from a
low discrepancy sequence, we propose a two stage LDS-based method for Bayesian
inference to sample from a posterior distribution of the parameters of a non-linear
ODE system. In the first stage, the algorithm locates the posterior high density
region instead of assuming that the posterior mode is known. Then, in the second
stage we use the resulting normalised posterior as weights to approximate the
marginals instead of fitting a least-squares polynomial as in Brown (2019). We
compared our results in all examples with standard MCMC methods.
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5.4.2 Posterior approximation

The full joint posterior of θ = (θ1, . . . , θM), x0 and σ2 = (σ2
1, . . . , σ

2
Q) given mul-

tivariate normal observations Yk ∼ N (x̂k, σ2IQ), where k = 1, . . . , K, Yk and x̂k

have dimension Q, σ2 is the noise associated with the data types and IQ is the
Q×Q identity matrix, is:

p(θ, x0, σ
2|Y ) = L(Y |θ, x0, σ

2)p(θ1, θ2, . . . , θM)p(x0)p(σ2)
p(Y ) . (5.9)

Here L(Y |θ, x0, σ
2) is the likelihood of the observations Y = (Y1, . . . , YK) given

θ, x0 and σ2, p(θ1, θ2, . . . , θM) is any joint prior distribution on the unknown
parameter vector θ, p(x0) is the prior distribution of the state initial values and
p(σ2) is the prior distribution on σ2. In this paper, to simplify the notation, we
consider from now on that σ2 and x0 are a part of the parameter vector θ to be
estimated. The denominator p(Y ) may be regarded as the normalising constant
for the posterior distribution.

Computing the denominator of (5.9) may not be possible analytically, and is
not necessary when using MCMC. However, we show how p(Y ) can be used to
normalise the posterior and use this normalization as weights to approximate the
posterior marginals for each parameter.

In this paper we view the approximation of the unnormalised joint posterior
p̂(θ|Y ) = L(Y |θ)p(θ) as a numerical integration problem. That is, we calculate
the M dimensional integral:

∫∏M

m=1 [am,bm)
p̂(θ|Y )dθ ≈

∫∏M

m=1 [am,bm)
L(Y |θ)p(θ)dθ, (5.10)
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where am = (a1, . . . , aM) ∈ RM , bm = (b1, . . . , bM) ∈ RM are left and right limits
respectively of the parameter intervals for each component of the θ vector. The
integral in (5.10) is also hard to obtain explicitly. Hence, we use the following
approximation for each data type Q:

∫∏M

m=1 [am,bm)
p̂(θ|Y )dθ ≈

∏M
m=1(bm − am)

N

N∑
s=1

p̂(θs|Y ) (5.11)

where θs ∈ PN , s = 1, . . . , N, is the sth approximated value of each θ in the set
of points PN = {(θ1

1, . . . , θ
N
1 ), . . . , (θ1

M , . . . , θ
N
M)}. The term ∏M

m=1(bm − am) is
necessary since we transformed the parameter space from the unit hypercube to
[a, b)M . There are many approaches to determine PN . In the method proposed
here we used a Sobol sequence to generate a low discrepancy set of points in
[a, b) ⊂ RM . To compute the approximation (5.11), we evaluate the unnormalised
joint posterior:

p̂(θs|Y ) ∝ L(Y |θs)p(θs) (5.12)

on all θs ∈ PN and normalise by dividing by the sum of these values.

If there is some prior information about the parameter values, one can generate
a low discrepancy point set and then use, for example, a linear transformation to
map the point set from the M dimensional unit hypercube [0, 1)M to a suitable
hypercube [am, bm). However, in many cases we lack such prior information. In
order to overcome this problem and identify an appropriate bounded region in
the parameter space, we run the algorithm in two stages. First, we choose values
of am and bm to explore the parameter space conservatively and locate a region
with high posterior density. For instance, in Example 5.5.1 we use the maximum
posterior value resulting from stage 1 to approximate the posterior mode and
then the new parameters intervals limits, [am, bm], are determined to be around
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this mode, for example, twice the posterior mode value. However, when the
posterior has multi-modal shape as in Example 5.5.2 we cannot use this approach,
so instead we choose parameter values (using predetermined thresholds) from the
resulting posterior marginals in Stage 1 for each parameter to be the new bounds
of the interval [am, bm]. Second, we reapply the algorithm to a smaller hypercube
containing the high-density region. As the examples below demonstrate, this
second stage substantially improves the accuracy of estimation at the cost of
doubling the number of times the ODE system must be solved numerically.

The manner in which QMC point sets are distributed in parameter space allows
this approach to explore the parameter space from a global point of view, whereas
MCMC methods explore the space in a local and sequential manner. This is
particularly advantageous when the posterior distribution is multi-modal, as we
demonstrate in Example 5.5.2.

The proposed approach is summarised in the following procedure.

Algorithm 5.1. QMC Algorithm
Stage one

1: Identify an initial interval Im for each paramter containing the high density
region of the marginal prior distribution for each parameter m = 1, . . . ,M .

2: Generate a low discrepancy set of points PN ⊂ Im = [I1 × . . .× IM ].
3: for each θs ∈ PN do
4: Solve the ODE using numerical integration.
5: Using the solution of the ODE, the observations Y and the priors, evaluate

the joint posterior p̂(θs, |Y ) in (5.10).
6: end for

Stage two
7: Construct a smaller hypercube I ′m containing those points obtained by thresh-

olding (at level d = 0.999) cumulative summations of the posterior density
evaluated in Step 5.

8: Repeat Steps 2-5 for this smaller hypercube.
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5.4.3 The estimation of the marginal posterior

The resulting joint posterior vector produced from Stage 2 in Algorithm 5.1 con-
tains the evaluation of the posterior at the proposed parameter values. Some of
these values represent high density regions and some are negligible or low. In
this thesis, we propose using the cumulative summations of the normalised pos-
terior evaluations vector to identify the high density region of the posterior in
the following manner. Sort the normalized posterior vector into descending order
of density and then calculate the cumulative summations and store them in a
vector denoted cumsum. Since the posterior vector is normalized, the cumula-
tive summations vector cumsum has an upper bound 1, so the cumulative sum
gradually increases until it comes close to this upper bound. The low posterior
values have a very small effect on the increasing sum. Therefore, elements of the
posterior vector corresponding to cumulative sums greater than some threshold
d ∈ [0, 1] are discarded. In all numerical examples presented in this paper, we
found that using d = 0.999 gives satisfactory results. To visualize the marginal
posterior distribution, we plot the weighted density of these points (weighted by
the corresponding posterior value) as in Figures 5.3, 5.8, 5.9 and 5.10.

5.5 Comparison with existing methods

This section compares the performance of our method with that of Stan: a state-
of-the-art Hamiltonian Monte Carlo (HMC) sampler. As test cases, we have used
the Lotka-Volterra model and an epidemiological compartmental model.
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5.5.1 Lotka-Volterra

The Lotka-Volterra model is a well-known model of ecological systems comprised
of two non-linear differential equations describing the interaction between two
species, a predator species W and a prey species S:

dS

dt
= S(α− βW )

dW

dt
= −W (γ − δS)

(5.13)

where θ = [α, β, γ, δ] are the parameters of interest. We first generated data by
solving the system (5.13) numerically over the time interval [0, 2] with step size
0.1, θ = [α = 2, β = 1, γ = 4, δ = 1] and initial values of the state variable
x(0) = [S(0) = 5,W (0) = 3]. Then, to generate an observation vector Y , normal
noise N (0, σ2 = 0.2) was added to the solution, as shown in Figure 5.2.

Weakly informative priors were used for all the parameters. We chose a Gamma
prior distribution, G(4, 0.5), for each of α, β, γ and δ, and an inverse Gamma,
IG(1, 1), prior for σ2.

For comparison to our method, the posterior distribution was sampled using Stan
Stan Development Team (2019). Five chains were run with 65536 iterations each,
of which the first 5000 were discarded as burn-in. To check for adequate conver-
gence and mixing we reviewed the R̂ statistics and the effective sample sizes for
each chain Gelman et al. (2013). The R̂ statistics were all close to 1, which is
consistent with all chains having converged. The effective sample size estimates
for each parameter were (75370, 73197, 71248, 74350, 142843) for the parameters
[α, β, γ, δ, σ], respectively.

QMC analysis was performed using Algorithm 5.1. A total of 216 RQMC points
distributed over the interval [0, 10] for each parameter were used in Stage 1 of

93



CHAPTER 5. QMC SEQUENCES FOR BAYESIAN ESTIMATION IN ODES

Figure 5.2: Simulated trajectories of predator (green) and prey (blue) popula-
tions, obtained as solutions of the Lotka-Volterra model (5.13) with α = 2, β =
1, γ = 4, δ = 1, S(0) = 5 and W (0) = 3. Curves show the continuous population
trajectories, while scatter points represent simulated observations to be used to
infer the model parameters.

the algorithm to locate the high density region of the posterior distribution. In
Stage 2 we used the resulting modes as a guide to generate 218 RQMC points in
the high density region.

One great feature of RQMC points is that once determined the function evalu-
ations can be performed in parallel to speed up computation. For example, in
this test case we used three cores to perform parallel posterior evaluations. In
contrast, MCMC methods are necessarily serial. One can run multiple MCMC
chains in parallel, as we have done here, but each chain has to converge separately.

In this example, the QMC method implemented on three cores ran in 19.56 min-
utes, compared to 22.56 minutes per chain for Stan. Figure 5.3 shows the marginal
posteriors estimated using MCMC and QMC. Both methods have similar outputs,
however, the QMC method produces more accurate estimates of the parameters
(γ, δ), as shown in Table 5.1. Table 5.1 also demonstrates that Algorithm 5.1
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Figure 5.3: Marginal posteriors for α, β, γ, δ and σ from model in (5.13). Stan
(red) and QMC (green) produced similar approximations to the posterior distri-
bution. The dashed lines represent the true values of each parameter.

produces wider credible intervals than Stan for all parameters. We suggest that
the more systematic and global approach to covering the parameter space used
by QMC does a better job of exploring the tails of the distribution efficiently.
MCMC methods like Stan make sequential local moves and consequently expend
more computational effort exploring high density regions, resulting in relatively
poor characterisation of the posterior tails. In other respects, Stan and QMC
produced similar results. Figures 5.4 and 5.5 show that both methods produce
similar pairwise marginal posterior distributions and similar posterior predictive
results, respectively.
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Figure 5.4: Scatterplots and contours of the bivariate posterior marginal distri-
butions for each pair of parameters in the Lotka-Volterra model using Stan (first
row) and QMC (second row). The red, blue and green contours contain respec-
tively the proportions 0.95, 0.75 and 0.5 of samples drawn from the joint posterior
distribution. Contours were produced using the R function ”HPDregionplot”.
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MCMC QMC
Mode α 2.105 2.286

β 1.029 1.139
γ 3.377 3.610
δ 0.861 0.906
σ2 0.542 0.514

95% CI α (1.467, 3.069) (1.021, 4.390)
β (0.7442, 1.444) (0.591, 2.0261)
γ (2.117, 5.398) (1.197, 6.579)
δ (0.502, 1.406) (0.198, 1.707)
σ2 (0.423, 0.827) (0.401, 0.802)

Computing time 22.56 mins per chain 19.56 mins
Iterations 65536× 5 327680
Software R and C++ R

Table 5.1: Posterior modes and credible intervals (CIs) for all parameters in the
Lotka-Volterra model, number of iterations and computation times for Stan and
QMC.

5.5.2 SIR model

The SIR model is an ODE system that describes the spread of an infectious disease
in a large population. The SIR model assumes the population consists of three
types of individuals: the number of susceptibles S, the number of infecteds I and
the number of recovered or removed individuals R, and N = S+I+R is the total
population. The ODE system is given by

dS

dt
= −βS(t)I(t)

dI

dt
= (βS(t)− γ)I(t)

dR

dt
= γI(t)

(5.14)

where β > 0 is the the disease transmission rate and γ > 0 is the recovery rate.
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Figure 5.5: Posterior predictive simulations based on parameters estimated by
Stan (red) and QMC (green) given the noisy data (blue dots). Panel (a) shows
posterior predictive simulations for the prey species S and (b) shows the same for
the predator species W .

Figure 5.6: Accumulated number of deaths during the second black plague out-
break in the village of Eyam, UK during the 136 days during the period from
June 19, 1666 to November 1, 1666 with only 83 surviving villagers.
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We use cumulative daily deaths, yt, recorded during the second black plague
outbreak in the village of Eyam, UK in the period from June 19, 1666 to November
1, 1666 Massad, Coutinho, Burattini, and Lopez (2004). Figure 5.6 shows the
accumulated number of deaths at times t ∈ {t1, ...tn} corresponding to n = 136
consecutive days. Since the village decided to seal themselves off from other
surrounding villages to avoid spreading the disease, the total population is fixed
at N = 261 with only 83 surviving villagers. The number of removed individuals,
R(t), is equivalent to the number of deaths up to time t since there was no
recovery from the disease under the model Campbell and Lele (2014); Golchi and
Campbell (2016). The initial number of removed individuals is R(0) = 0 and thus
S(0) = N − I(0), but the initial number of infected individuals I(0) is unknown.
We therefore consider I(0) a parameter to be estimated, so that θ = (β, γ, I(0)).

The only observed data is Y = (y1, . . . , yn), the cumulative deaths on each day.
However, the number of infected individuals at the end of the epidemic is 0, and as
there was only one death on the final day of the epidemic as appeared in the Eyam
data, the number of infected individuals at time n − 1 is 1 Campbell and Lele
(2014); Jonoska Stojkova (2017). Hence, following the approach of Jonoska Sto-
jkova (2017), there are two additional data points xn−1 = 1 and xn = 0 represent-
ing the number of infected individuals at times n− 1 and n respectively.

Following Jonoska Stojkova (2017), we modelled each yt as having a Binomial
distribution with mean R(β,γ,I(0))(t) obtained by solving the system in (5.14).
Likewise, we modelled xn−1 and xn as each having a Binomial distribution with
mean I(β,γ,I(0))(t)) obtained by solving the system in (5.14). Thus, the likelihood
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takes the form:

p(Y |β, γ, I(0)) =
n∏
i=1

Binomial
(
yi|N,

R(β,γ,I(0))(ti)
N

)
×

n∏
i=n−1

Binomial
(
xi|N,

I(β,γ,I(0))(ti)
N

)
.

(5.15)

This model has a significant defect in that the likelihood assigns positive proba-
bility to the set of trajectories Y in which yt > yt−1 for some t. A better model
without this defect could certainly be devised, but this published model is ade-
quate for our present purposes.

Figure 5.7: Trajectories of MCMC samples for γ and β in the SIR model for three
different MCMC chains.

Again following Jonoska Stojkova (2017), we set vague priors for β and γ to
be G(1, 1) and the prior distribution for I(0) to be Binomial(N, 5/N). We
also experimented with a Binomial(N, 7/N) prior for I(0), noting that Raggett
(1982) estimated I(0) to be 7. These two prior distributions for I(0) produced
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indistinguishable output; the results presented below are for an expected I(0)
value of 5).

Figure 5.8: Marginal (diagonal) and joint (off-diagonal) posterior distributions of
γ, β and I(0) in the SIR model using MCMC.

For this example we cannot compare to Stan because the parameter I(0) is discrete
and Stan does not currently support discrete parameters. Instead we coded a
simple Metropolis-Hastings MCMC algorithm in R to sample θ = [β, γ, I(0)].

Multimodality of the posterior distribution is often a cause of poor mixing when
using MCMC, but for this model we were able to obtain useful results in feasible
run times (although there were some modes not sampled as discussed below).
Three chains were run from different starting points for both β and γ equal to
(0.05, 0.1, 0.15) and for I(0) = (3, 5, 7). For the discrete parameter I(0) we set the
proposal to be a normal distribution with standard deviation equal to one. For
β and γ we chose normal proposals that randomly choose the standard deviation
from [0.001, 0.01, 0.1] in each iteration. This variability of scale in the proposal
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Figure 5.9: Marginal (diagonal) and joint (off-diagonal) posterior distributions of
γ, β and I(0) in the SIR model using QMC.

distribution may help the MCMC sampler to traverse between modes. Figure 5.7
shows the trajectories of β and γ for the three chains, illustrating how different
chains have explored the posterior results. One chain has found three modes, but
two other chains failed to discover a third mode. Taking all the samples from all
the chains we can see three distinct modes of the posterior distribution, as shown
in Figure 5.8. This indicates all three chains have not converged, and need to
be run for a longer time, ideally until all modes have been sampled by all chains.
However, we chose to stop the chain when it reached the same number of posterior
evaluations as used in QMC for the sake of fair comparison.

The QMC method in Algorithm 5.1 was also used to estimate the parameters
θ = [β, γ, I(0)]. A total of 216 RQMC points distributed on the hypercube [0, 1]3

were used in Stage 1 of the Algorithm. For the continuous parameters [β, γ],
we did not apply a transformation. For the discrete parameter I(0) we did not
use RQMC points - instead we assigned equal numbers of points to the values
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1 to 7. Using the maximum and minimum values identified in Stage 1 for each
parameter, a new set of RQMC points were generated in the high density region
of the posterior distribution, to use in Stage 2 of Algorithm 5.1.

The QMC method produced sensible marginal distributions for each parameter
and was more efficient than MCMC in terms of the computational time and ex-
ploration of the modes of the posterior distribution. For fair comparison, we
run the same number of posterior evaluations for both methods. Whereas the
QMC approach required 7.63 minutes, involving 216 posterior density evaluations
in Stage 1 and 217 evaluations in Stage 2, the MCMC consumed nearly 10 minutes
per chain for an average of 65536 iterations.

MCMC QMC
Modes γ − 0.083

0.089 0.089
0.096 0.096
0.105 0.105
− 0.117

β − 0.141
0.151 0.150
0.161 0.161
0.175 0.175
− 0.191

Table 5.2: Posterior modes for all parameters in the SIR model for MCMC (3
modes identified) and QMC (5 modes identified).

Figure 5.8 presents the results obtained using the MCMC sampler, in particular
showing that only three initial state values I(0) = {4, 5, 6} were sampled by any
of the chains. Figure 5.9 presents the results obtained using RQMC, showing
that 5 different initial state values I(0) = {3, 4, 5, 6, 7} were identified as having
non-neglible marginal posterior probabilities as shown in Figure 5.10. The two
plots in Figure 5.10 show the corresponding marginal distributions of the two
continuous parameters γ and β, which have multiple modes corresponding to
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Figure 5.10: Samples from the marginal posterior distribution of β (top) and γ
(bottom) from the SIR model example, showing five modes identified using QMC.

different numbers of initially infected individuals.

The MCMC algorithm is clearly sub-optimal, and needs to be run for longer to
sample the low probability modes, since the three chains sampled only the three
modes with higher density and neglected the two with low density as shown in
Table 5.2 and Figure 5.10. Nevertheless, both methods appear to be adequate
for prediction purposes. Figure 5.11 shows posterior predictive results for 1000
simulations using posterior samples from MCMC (red) and QMC (green). Both
methods produced prediction plots that covered the data points, in spite of the
fact that the MCMC sampler failed to sample all posterior modes.

5.6 Discussion

In this paper, we proposed a method using point sets constructed using LDS to es-
timate marginal distributions of parameters in low-dimensional systems of ODEs.
Moreover, we proposed a new method to visualise the marginal posterior using
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Figure 5.11: Posterior predictive distribution (90% credible interval) estimated
using MCMC (red) and QMC (green) using the noisy data (black line).

cumulative summation. There are five important advantages of our approach.
First, QMC points provide a direct global picture of the posterior distribution,
whereas MCMC relies on local exploration to sequentially explore the parameter
space. This advantage is particularly important when the posterior density has
multiple modes. Second, given that QMC points are predetermined, posterior
evaluations can be done independently in parallel. Third, Algorithm 5.1 does not
suffer from the slow mixing problems to which MCMC methods are prone. Fourth,
QMC methods are generic, easy to understand and implement, whereas efficient
proposal distributions for MCMC algorithms can be problem-specific and difficult
to design. Fifth, the cumulative summation procedure assesses the contribution
of each positive posterior value resulting from a pair of proposed parameters and
provides a quick and easy method to determine whether this contribution is neg-
ligible (when proposed parameters fall in a low posterior probability region) or
significant (when these proposed parameters are located in a high density region).
This provides a useful way to visualise the marginal posteriors.

105



CHAPTER 5. QMC SEQUENCES FOR BAYESIAN ESTIMATION IN ODES

In the illustrative examples presented here, the QMC method outperformed
MCMC in both computational time and accuracy of estimation. In particular, the
second example illustrates the advantages of the QMC method when the posterior
distribution has multiple modes.

Here we have applied QMC to parameter spaces of up to five dimensions. In
higher dimensions, QMC becomes infeasible, and other methods may become
preferable. Practical guidelines for determining whether QMC is preferable for a
specific problem are not currently available. Such guidelines would be of use to
practitioners and are an important topic for future work.
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Chapter 6

Summary and main contribution

The first section of this Chapter summarises how I achieved the research objec-
tives and contributed to fulfilling the overall aim of addressing some of the current
Bayesian approach limitations when used within ODEs and developed statistical
methods that overcome these limitations. Brief descriptions of the four research
objectives are provided. The second part of this Chapter summarises the limita-
tions of this work and possible future directions.

6.1 Summary

The overall aim of this thesis is to investigate the crucial limitations of the current
Bayesian approach when applied to ODE models and then to develop new methods
to conquer such problems. For convenience, I have summarised the four research
objectives as follows:

1. Demonstrate the problem of misspecification in ABC methods for ODE
parameter estimation.

2. Develop a solution for SMC ABC to overcome the current misspecification
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issue.

3. Propose a new approach that explores the parameter space more efficiently,
significantly reduces computational cost, and outperforms MCMC in the
case of a multi-modal posterior.

4. Evaluate the proposed methods for high impact, real world, research prob-
lems.

Objective 1 was achieved in Chapter 3 of this thesis. Deep investigations were
conducted on various ABC algorithms that could be applied to estimate param-
eters in ODEs. These investigations highlighted the danger of neglecting the
simulation of random errors, which are commonly associated with observations,
and demonstrated that doing so can produce serious errors in the results. Appli-
cations to simple and complex ODE models illustrated that approximation to the
Bayesian posterior became severely over-concentrated when ABC methods were
applied without consideration of the noise in the observations.

A modification to the current SMC ABC method was developed in Chapter 4,
satisfying Objective 2. A summary statistic was proposed to aid the construction
of acceptance criteria that correctly approximate the error posterior. Moreover,
including the error term in the estimation affected the process of choosing the
tolerance sequence, which consequently improves the efficiency of estimation in
terms of producing true parameter posteriors and improves the quality of the pos-
terior predictive intervals.

A new method was proposed in Chapter 5 that allows the efficient exploration
of the parameter space, conducted using evenly distributed point sets instead of
random points as in MCMC, which satisfies Objective 3. This method enables one
to sample from the parameter space from a global point of view, which improves

108



CHAPTER 6. SUMMARY AND MAIN CONTRIBUTION

the parameter estimation, particularly when the posterior density has multiple
modes. Given the fact that these point sets are predetermined, this allows the al-
gorithm to work independently in parallel, which reduces the computational cost
significantly. Furthermore, this method does not suffer from poor mixing, which
is a common problem for MCMC. In addition, we proposed a simple method that
approximates the marginal posterior using the cumulative summation of the nor-
malized posterior.

Various ODEs were used throughout the thesis, ranging from a simple SIR model
to more complex models such as the malaria model developed by White et al.
(2009), which appeared in Chapter 3 with real data and in Chapter 4 with simu-
lated data. The method proposed in Chapter 4 improved remarkably the estima-
tion efficiency compared with using the standard SMC ABC and produced results
that are similar to the results derived from MCMC.

An SIR model was used in Chapters 3, 4 and 5; however, in Chapter 5 true data
were used and a multi-modal posterior was approximated. Results from applying
the method proposed in Chapter 4 to the SIR model demonstrates how the approx-
imation of the posterior improved in terms of the accurate estimation of posterior
credible intervals. Moreover, the results obtained by applying the method pro-
posed in Chapter 5 to the SIR model outperformed the standard MCMC. Estima-
tion of the parameters conducted in this thesis was in low-dimensional parameter
spaces: three parameters for the malaria and SIR models and five parameters
for the Lotka-Volterra model. Applying the proposed methods to different ODE
models improves the accessibility of such methods and illustrated the capabilities
of the new approaches, which fulfils Objective 4.
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6.2 Future work

In this section, I will outline some of the future research directions for investigating
the usage of an adaptive QMC method to approximate the posterior distribution
using a multivariate normal distribution. Then, I will outline the current progress
in the development of an R package implementing the method proposed in Chapter
5, for which the candidate will be the corresponding author. Moreover, I will
illustrate some of the possible future directions for extending the Modified SMC
ABC.

6.2.1 Adaptive QMC method

Using the QMC method improves the computational efficiency of parameter in-
ference for ODEs. The good scaling properties of the QMC approach create the
possibility of using QMC point sets with a higher parameter dimension. These
properties, such as the promising results that we have seen in Chapter 5 when the
posterior distribution has multiple modes and the ability to run the estimator in
parallel, would in the case of ODEs reduce the computational burden.

We have seen in Chapter 5 that QMC methods can be used to approximate
the integral of a function f : [0, 1)M → R, defined on the M -dimensional unit
cube as in Equation (5.6). QMC methods can be used to compute expected
values of functions on RM . For example, suppose X = (X1, . . . , XM) is a random
vector comprised of independent random variables, each with a standard normal
distribution, and consider h : RM → R. Then

E[h(X)] =
∫
RM

h(X)φ(X)dX (6.1)
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where φ is the standard normal density. Let X = Φ−1(t), where t = t1, . . . , tM

and Φ is the standard normal cumulative distribution function. Then, using the
transformation

dX = 1
Φ′(Φ−1(t))dt

φ(X) = φ(Φ−1(t)),

the integral in Equation (6.1) has the form

E[h(X)] =
∫

[0,1)M
h(Φ−1(t1), . . . ,Φ−1(tM))φ(Φ−1(t)) 1

Φ′(Φ−1(t))dt

=
∫

[0,1)M
h(Φ−1(t1), . . . ,Φ−1(tM)))dt ≈ 1

n

n∑
i=1

f(ti)
(6.2)

and
f(t1, . . . , tM) = h(Φ−1(t1), . . . ,Φ−1(tM)).

Here we have used the change of variables ti = Φ(xi) for i = 1, . . . ,M .

Now suppose that Y is a random vector on RM with a multivariate normal
distribution having mean vector µ and positive definite covariance matrix Σ =
LLT where L is a lower triangular matrix (that is, a Cholesky factor). Then
X = L−1(Y − µ) has independent standard normal components. Consider g :
Rd → R, then E[g(Y )] = E[g(µ + LX)] can be approximated as above with
h(X) = g(µ+ LX).

Next consider a random vector Z having a density that is a weighted average of
multivariate normal densities. That is, the density of Z is ∑d

j=1 πjN(z;µj,Σj),
where π1, . . . , πd ∈ [0, 1], ∑d

j=1 πj = 1 and N(z;µj,Σj) is the multivariate normal
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density with mean µj and positive definite covariance matrix Σj for j = 1, . . . , d.
Given n ∈ N, define nj = [πjn] (that is, the nearest integer to πjn) and construct
Sobol sequences tj1, . . . , tjnj

for j = 1, . . . , d. Then

E[g(Z)] =
d∑
j=1

πjE[g(Yj)]

where Yj ∼ N(µj,Σj). Thus

E[g(Z)] ≈
d∑
j=1

πj
1
nj

nj∑
i=1

fj(tji) ≈
1
n

d∑
j=1

nj∑
i=1

fj(tji) (6.3)

where fj(t1, . . . , tM) = hj(Φ−1(t1), . . . ,Φ−1(tM)) and hj(X) = g(µj + LjX) with
LjL

T
j being the Cholesky factorisation of Σj.

Then, consider a random vector W with a continuous density p over RM . We
aim to approximate the density of W using a weighted average of d multivariate
normal densities. Specifically, we want to find q(w) = ∑d

j=1 πjN(w;µj,Σj) to
minimise the Kullback-Liebler (KL) divergence:

D(q, p) = −
∫
RM

q(w) log
(
p(w)
q(w)

)
dw = −E

[
log

(
p(W )
q(W )

)]
.

Then we propose to approximate D(p, q) as above, so that

D(q, p) ≈ 1
n

d∑
j=1

nj∑
i=1

fj(tji) (6.4)

where the values of nj and tji and the functions fj are determined as above for
given values of (πj, µj,Σj) for j = 1, . . . , d with g(w) = − log(p(w)/q(w)). The
problem is, to determine nj, tji and fj we need to know (πj, µj,Σj) for j = 1, . . . , d,
but we want to find values of these parameters that will minimise D(q, p). We
therefore suggest an iterative algorithm:
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Algorithm 6.1. Adaptive QMC
1: Initialize N=0, πj, µj and Σj, for j = 1, ...,m.
2: Compute lower triangular Cholesky factor L for each Σj.
3: Repeat N times.
4: Determine nj, tji and fj for j = 1, . . . ,m to use in 6.3.
5: Given nj, tji and fj, find (πj, µj,Σj) for j = 1, . . . ,m to minimise the approx-

imation to Kullback-Liebler divergence given by 6.4.

Then, once q has been determined, we can use importance sampling to evaluate
expectations of the form

E[k(W )] =
∫
RM

k(w)p(w)
q(w)q(w)dw ≈ 1

n

d∑
j=1

nj∑
i=1

fj(tji)

where we have redefined fj using g(w) = k(w)(p(w)/q(w)) for an arbitrary func-
tion k on RM .

In future work, this algorithm should be investigated using empirical studies and
explorations of its theoretical properties. For example, a key theoretical question
is under what conditions Algorithm 6.1 converges. Another important theoretical
question is whether the approach finds the minimizer of KL divergence as n→∞.

6.2.2 qmcposterior: An R package for the estimation of
parameters in ODEs:

’qmcposterior’ is an R package providing a toolkit to estimate parameter values
in ODEs, using the QMC method I have developed during the course of my
candidature. It is 50% complete, and it will be released to CRAN when it is
finished. This package has functions that evaluate the posterior distribution value
over QMC point sets. Then, by using cumulative summation of the joint posterior
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vector, marginal posteriors can be visualized. Given that QMC point sets are
predetermined, all computations can be performed independently over multiple
cores, which reduces the computational time significantly.

6.2.3 Modified SMC ABC

One of the main objectives of this thesis is to improve the SMC ABC method.
The Modified SMC ABC method introduced in Chapter 4 has been shown to
produce more efficient results than the standard SMC ABC, but still there are
some limitations that need to be addressed.

To increase the efficiency of the estimation when using SMC ABC, a large number
of samples have to be drawn, which makes this method computationally expensive
due to the need to solve the ODEs with each parameter sample for a number of
populations. Although the modification to SMC ABC proposed in this thesis
improves the approximated posterior distribution for both the parameters within
ODEs and the noise parameter, the method is still time-consuming compared
with MCMC. Ghosh et al. (2017) proposed a modification to SMC ABC that
sped up the estimation process; however, there are some challenges that need to
be addressed such as the choice of the prior distribution. Choosing narrow priors
can lead to population degeneracy and choosing wider priors can cause a low
acceptance rate.

In Chapter 4, experimental evidence has illustrated how Modified SMC ABC could
give more accurate results than the standard SMC ABC. It would be of interest
to investigate the theoretical properties of the proposed method, for example, to
study the form that the new ABC posterior approximation would have after using
the proposed modification. Moreover, conducting a mathematical argument that
generalized this finding would make the new acceptance criterion for updating
the noise parameter stronger. Conducting such an investigation is left for further
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research.

6.3 Concluding Remarks

This thesis has addressed some of the limitations of current methods that are used
to estimate parameters of ODEs and developed novel and efficient methods in this
context. These methods facilitate inference by tackling some of the challenges
that appear when conducting estimation for ODEs, such as computational time,
multimodality and quantification of the uncertainty in parameter values.
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Appendix Chapter 3

A.1 Software Validation

This section summarizes the method that has been used to validate the software in
Chapter 3. To validate our software for the MCMC approach we used the method
of Cook, Gelman, and Rubin (2006). This method is based on the idea that
posterior quantiles corresponding to true parameter values should be uniformly
distributed in the interval [0, 1]. For example, the 95th percentile of the marginal
posterior distribution for a given parameter should contain the true parameter
value with 0.95 probability, and similarly for any other quantile. In this paper,
we implemented Cook’s simulation-based validation method as follows: First, we
perform a simulation for Nrep = 100 replications to validate the MCMC software.
For each replication, we generated a sample of L = 5000 draws from the posterior
distribution of the parameters θ. Then we calculated the following statistic for
each posterior quantile qi for each θi:

X2
θ =

Nrep∑
i=1

(Φ−1(qi))2, (A.1)
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where Φ−1(qi) is the inverse of the standard normal Cumulative Distribution
Function (CDF) evaluated at qi. For correct software, the statistic in Equation
(A.1) should follow a χ2 distribution with Nrep degrees of freedom. To determine
whether the posterior quantiles deviate from uniformity, we calculated the associ-
ated pθ values for each X2

θ and then we transformed the pθ values into zθ statistics,
where zθ = Φ−1(pθ), and plotted the absolute values of the zθ statistics. Any ex-
treme value of zθ (i.e. |zθ| > 2) suggests an error in the software (Cook et al.,
2006). Figure A.1 shows the absolute values of zθ statistics from this simulation
for each parameter in the first test problem. All the zθ statistics are less than 2
which provides evidence that the software has been written correctly.

−2 −1 0 1 2

z

γ

β

σ
2

Figure A.1: The absolute values of the zθ statistics for the validation of the MCMC
algorithm implementation for the first test problem.
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A.2 Non-Linear ODE Model of Malaria Trans-
mission

This section shows the results of applying MCMC, MCMC ABC and SMC ABC
on the malaria model that appeared in Chapter 3 with simulated data.

A.2.1 Simulation Results

A data set of 360 simulated data points was generated by solving Equation (4.11)
in the interval [0, 30 (years)] using a 4th order Runge-Kutta method. The values
of the model parameters used are shown in Table A.1 and the initial conditions are
given by the equilibrium solution of the system in Equation (4.11). Observations,

parameter value source
P [People] 3.2× 106 Assumed
L [Years] 66.67 (Maude et al., 2009)
dimm [Years] 0.93 (Aguas et al., 2008)
din [Years] 0.2 Assumed
dtreat0 [Weeks] 2 (Maude et al., 2009)
p1 0.87 (Aguas et al., 2008)
p2 0.08 (Aguas et al., 2008)
η0 0.05 Assumed

Table A.1: The parameter values used in simulation of the White et al. (2009)
model.

y, were constructed by adding normal noise N (0, 1 × 109) to the simulated data
points. As with the first test problem, for the ABC approaches we used the
discrepancy function in Equation (4.9) to compare the clinical infections given in
the data set y with a simulated solution x. The priors for η0, din and σ2 were
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taken as follows:
p(η0) = B(1, 1) ∈ [0, 1],

p(din) = GA(1, 1) ∈ [0,∞),

p(σ2) = IG(1, 1) ∈ [0,∞).

(A.2)

A logistic transformation was used to transform η0 ∈ [0, 1] while a log transform
was applied to din ∈ [0,∞) and σ2 ∈ [0,∞) so that each transformed parameter
had support over the real line.

Iterations Time
MCMC 6183 26.91 mins
MCMC ABC 4264 18.87 mins
SMC ABC 108020 316.2 mins

Table A.2: The number of iterations and computational time (mins) for parameter
inference in the malaria simulation model.

We first applied the MCMC method to estimate θ = (η0, din, σ
2). We ran the sam-

pler for 6183 iterations to get 1000 accepted values, which took approximately 26
minutes. Then we applied MCMC ABC as described in Algorithm 2.4. In order
to get 1000 accepted values we only needed to generate 4264 simulations. The re-
sult was similar to that for the MCMC approach, with slightly less computational
time.

Parameter True value MCMC MCMC ABC SMC ABC
η0 0.05 0.0504 0.0503 0.0506
din 0.2055 0.2040 0.2041 0.2032

Table A.3: True values of the parameters η0 and din with their estimated values
(median) from MCMC, MCMC ABC and SMC ABC.

In applying SMC ABC we took perturbation kernels for both parameters to be
uniform (Kt = U(−0.005, 0.005)) and to achieve good convergence for all the pa-
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rameters we ran the algorithm for T = 10 populations, where each one has 1000
particles and the Algorithm adapted the values of the tolerance as ε =(2189977.9,
1553143.8, 1096850.5, 686344.1, 417953.8, 285161.4, 236941.6, 211657.7, 202114.8,
199320.0). When applying SMC ABC, although the parameter medians are com-
parable to those achieved using the other methods, the number of data generation
steps required was considerably large and as a result the computational time was
also large (Table A.2).

It can be seen in Table A.3 that both parameters achieved good estimation (The
median of the sampled values) to their true values with all three approaches.
Figure A.2 shows that the joint posterior estimated using MCMC ABC is the
least dispersed. Figure A.3 shows that the posterior predictive intervals for the
ABC methods fail to cover the observed data, while the MCMC method produces
posterior predictive intervals that cover the majority of the data. This finding is
consistent with the first example.
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Figure A.2: Scatter plot of posterior distribution sample draws for η0 and din from
MCMC (left), ABC MCMC (middle) and SMC ABC (right). The contour lines
contain the stated proportion of sample draws and they are produced using the
R function ”HPDregionplot”.
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Figure A.3: Plot of the posterior predictive credible intervals from MCMC and
SMC ABC fitted with the monthly malaria cases. The blue dots represent the
noisy data. The shaded areas are created by the posterior predictive samples.
The result derived from MCMC covered most of the data points while the ABC
methods were unable to.
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Appendix B

Influencing public health policy with
data-informed mathematical models
of infectious diseases: Recent
developments and new challenges

Preamble

This appendix contains a joint paper that discusses the recent progress in some
of the challenges that appear when dealing with parameter inference within dy-
namic disease models. Addressing these challenges will help in enhancing models’
usefulness in prediction and policy.
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Abstract 
 

Modern data and computational resources, coupled with algorithmic and theoretical advances 
to exploit these, allow disease dynamic models to be parameterised with increasing detail and 
accuracy. While this enhances models’ usefulness in prediction and policy, major challenges 
remain. In particular, lack of identifiability of a model’s parameters may limit the usefulness 
of the model. While lack of parameter identifiability may be resolved through incorporation 
into an inference procedure of prior knowledge, formulating such knowledge is often difficult. 
Furthermore, there are practical challenges associated with acquiring data of sufficient quantity 
and quality. Here, we discuss recent progress on these issues. 
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1. Introduction 
 
Despite progress on many fronts, infectious diseases remain a key threat to human health 
worldwide [HEA15]. From 1-12 July 2019, we participated in the workshop “Influencing 
public health policy with data-informed mathematical models of infectious diseases” at the 
MATRIX institute in Victoria, Australia [MAT19]. Much of the discussion and scientific 
work at this event concerned the challenges identified five years ago following the Infectious 
Disease Dynamics 2013 programme at the Isaac Newton Institute, particularly those related 
to the integration of multiple datasets [DeA15]. In this paper, we return to several of the 
challenges identified by [DeA15] and consider both recent progress and perspectives for this 
rapidly developing field. 
 
One key challenge relates to the structure of the underlying assumed mechanistic model and 
the observed data; in particular, whether the model parameters can be estimated given the 
model and the observations, and whether we can obtain analytical insights into “parameter 
identifiability”, a property of a model that must be satisfied for precise parameter inference to 
be possible.  If parameter identifiability is an issue, then can/should the model be 
reparametrized, and how should this be done? A natural question that arises here is whether 
we can measure something else in the process (included in the model yet or not) that can help 
resolve the issue, or build in existing (that is, prior) knowledge in a structured manner. For 
identifiable models, particularly if these are very complicated, there is a question of what we 
can reasonably do with current inference methods, for example Markov chain Monte Carlo 
(MCMC) or Maximum Likelihood estimation.  
 
In this paper, we focus mainly on a Bayesian approach to parameter inference, which has 
been commonly adopted in the infectious disease modelling field since the work of O’Neill 
and Roberts [ONE99]. This approach has proliferated for various reasons. One is the 
difficulty in interpreting an epidemic in terms of frequentist statistical theory, as a small 
sample from a larger population, making the Bayesian approach to parameter estimation 
more philosophically natural [McK03]. Another advantage of Bayesian methods is their 
ability to accommodate incomplete observations of the epidemic [ONE99], by treating 
missing data as latent variables. Bayesian methods facilitate data assimilation and uncertainty 
quantification in a natural and unified framework [DeA15]. Finally, computational methods 
are rapidly advancing in this space (see Section 5) making application of those methods to 
real-world data sets increasingly feasible. 
 
In Bayesian inference, parameters	𝜃 are considered as random variables and the aim of the 
inference is to estimate their distribution. The posterior distribution, 𝑝(𝜃|𝑦), is derived from 
the likelihood, 𝑝(𝑦|𝜃), which comes from a probability model for the observed data	𝑦, and 
the prior, 𝑝(𝜃), which encodes knowledge available before the current data was observed: 
 

𝑝(𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) 
 
The essence of Bayesian inference is to update what you believe about the parameters 
through the observation of data. This then poses another major challenge: how do we use 
prior knowledge in a consistent and convenient way within models of infectious disease? 
Within a Bayesian setting, it is natural to specify priors on the model parameters themselves. 
However, experts typically cannot easily quantify their beliefs about the parameters directly; 
rather they will have knowledge of (and so be able to construct a prior on) observables 
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associated with the underlying process, such as the expected peak prevalence or the duration 
of the outbreak. 
 
Statistical inference based on data generated by a single type of observation process is 
routine, but challenges remain when performing inference based on multiple observation 
processes, and/or different types of data from a variety of sources.  Another challenge relates 
to issues around data and specifically how multiple types of data, drawn from alternative 
sources, can be included in the modelling framework. For example, when modelling a 
nascent epidemic, we might have access to case notification data, special studies (such as 
First Few Hundred studies), and phylogenetic data. Statistical models that integrate multiple 
data sources are beginning to gain traction in infectious disease modelling [DEM18, 
CAM19].  
 
There is a need across all of the above issues to develop computational algorithms that can 
help end users to automate some of these processes. With increased volumes of and access to 
data (from multiple sources), algorithms need to be efficient and make use of recent 
advancements in computational hardware. However, there is still an important place for 
expert human input to gain mechanistic model insight (rather than relying, say, on machine 
learning techniques only, which also have their place, but are not a focus of this paper). This 
insight will be enhanced by addressing each of the challenges we have focused on, including 
considerations of parameter identifiability, the construction of priors around process 
observables, and the integration of data from multiple sources. 
 
Finally, the field of mathematical epidemiology is intimately tied to the life sciences, 
epidemiology, and the practice of public health itself. To make an impact, that is to contribute 
to policy with the purpose of reducing the burden of disease and saving lives, mathematical 
epidemiologists need to consider the context in which their work exists. Towards the end of 
the article, we provide some commentary on this broader context, and how it may influence 
our practice. 
  
 
2. Identifiability 
 
The mere ability to fit a model to data does not guarantee that the model’s parameters can be 
uniquely determined; parameters may not be identifiable.  As an example, consider the well-
known deterministic SIR model:  
 

𝑑𝑆
𝑑𝑡 = −

𝛽𝑆𝐼
𝑁 , 

𝑑𝐼
𝑑𝑡 =

𝛽𝑆𝐼
𝑁 − 𝛾𝐼, 

𝑑𝑅
𝑑𝑡 = 𝛾𝐼. 

…(1) 
 
At the start of the epidemic, we can make the approximation that susceptibles are not 
depleted (𝑆(0) ≈ 𝑁), which results in an approximation described by: 
 

𝐼(𝑡) ≈ exp((𝛽 − 𝛾)𝑡). 
…(2) 
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By inspection we see that the function 𝐼(𝑡) does not change if 𝛽 and 𝛾 are changed, provided 
the difference 𝑟 = 𝛽 − 𝛾 remains the same. Consequently, even if 𝐼(𝑡)	is perfectly observed, 
only the value of 𝑟 can be inferred, not the values of 𝛽 and 𝛾 themselves. Given observation 
of prevalence then, 𝛽 and 𝛾 are considered unidentifiable, while 𝑟 is considered to be 
identifiable. For non-trivial models, identifiability analysis – using analytic and/or 
simulation-based techniques – is required to determine which model parameters are 
identifiable. 
 
There are two main aspects to identifiability. “Structural identifiability” [BEL70, WHY13] 
concerns whether different parameter vectors produce different probability distributions of 
observed data. Structural identifiability ensures true parameter values can be inferred under 
idealised conditions: that the model is an exact representation of the system under study, and 
that the observations uniquely determine the probability distribution of the data. (This latter 
condition is only possible given an infinite number of observations.) Structural identifiability 
is thus a property of the model, not the specific data observed. For example, a continuous-
time deterministic compartmental model can only be structurally identifiable if different 
parameter vectors generate distinct output trajectories, regardless of how precisely those 
trajectories are determined by a specific data set.  A continuous-time stochastic 
compartmental model is structurally identifiable if different parameter vectors result in 
different probability distributions for the observables. 
 
On the other hand, “practical identifiability” [GOD83] concerns whether or not parameter 
values can be uniquely, precisely and accurately determined for realistic measurement 
frequencies, quantity and quality, and in light of discrepancies between the model and the 
real-world process under study. Practical identifiability is thus less rigorously defined, and 
dependent on the specific data observed. For example, when applying likelihood-based 
inference methods to a continuous-time deterministic compartmental model with stochasticity 
in the observation process only, the model is practically identifiable if one set of parameter 
values maximises the likelihood, given measurements for a realistic number of measurement 
time points (and replicates where relevant).  
 
Structural identifiability is typically assessed using analytic or numerical methods, whereas 
practical identifiability analysis is often assessed by undertaking a simulation/re-estimation 
study. In such a study, one selects a particular parameter vector, uses it to simulate data from 
the model subject to noise, conducts parameter inference, and then investigates the features of 
parameter estimates to determine if estimates adequately approximate assumed values.  
 
Within structural identifiability, a distinction is made between global identifiability, whereby 
a unique parameter vector in the whole parameter space can be determined, versus local 
identifiability, where a unique parameter set can be determined in the neighbourhood of the 
true parameter set.  Within practical identifiability, there is the distinction between a priori 
identifiability – where the results of identifiability analysis apply to all realistic data sets – 
and identifiability given a particular data set. 
 
It may be taken as given that unidentifiability of some number of model parameters will 
greatly reduce the insight that can be drawn from fitting a model to data, and this is indeed 
often the case. However, the situation is more nuanced. One must consider whether the 
desired scientific insight rests upon the values of parameters themselves (“are the parameter 
values of intrinsic interest?”); or lies in use of the model to make predictions; or in testing 
competing mechanistic hypotheses. For these latter situations, non-identifiability is not 
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necessarily as significant an issue. We now discuss two types of challenges associated with 
identifiability.  First, what challenges lie in determining a priori which parameters may be 
identifiable given a data collection process? And second, what challenges are faced when 
interpreting the results of fitting an unidentifiable model to data? 
 
Challenges in determining identifiability 
 
Identifiability analysis has not yet seen widespread uptake in biological system modelling, as 
described by Nguyen et al. [NGU16]. The authors noted that (Page 2): “ … the booming 
works on mathematical models in biological and medical research over the last years have 
been accompanied with a disproportionately low amount of assessments on parameter 
validity …”. They drew this conclusion by interrogating publication records in PubMed 
Central from 1990 to 2015. The authors noted that publications featuring models composed 
of ordinary differential equations were much more common than those which also listed 
keywords relating to some form of identifiability. See [NGU16, Figure 1] and its associated 
supplementary text for details. 
 
Part of the challenge in increasing the uptake of identifiability analysis is raising awareness of 
the many pitfalls that can occur in the absence of such analysis, and thus the necessity of 
performing such an analysis. We note that some authors in the field have recognised the value 
of analytical or numerical methods of scrutinising models, and have advocated for their 
inclusion in modelling practice (see [BOI15] for a relatively recent example).  Many studies 
use simulation/re-estimation methods as described above to determine whether model 
parameters can be estimated, but do not explicitly describe this as identifiability analysis. The 
clear labelling of identifiability analyses as such, and references to established methods, 
would raise awareness of the benefits of identifiability analysis and change community 
perceptions both regarding the need to conduct such analyses, and the ease of doing so. 
 
However, even where researchers are aware of the importance of identifiability analysis, 
several practical problems can arise. First, ideally, a model should be practically identifiable 
a priori, but this is difficult to establish.  Instead, most methods assess practical identifiability 
for a given (simulated or actual) data set or a given set of ‘true’ parameter values [RAU09, 
YAN19]. On the other hand, there is a proliferation of methods to assess structural 
identifiability (as reviewed by [CHI11]), but structural identifiability is necessary but not 
sufficient for practical identifiability. A challenge arises then in either improving methods for 
a priori practical identifiability analysis and/or making them more accessible, or developing 
methods to combine the results of structural and practical identifiability analyses for selected 
data sets. 
 
Identifiability analysis presents a major technical barrier, especially to the non-specialist. The 
barrier is perceived to be particularly high for structural identifiability analysis, as it involves 
manipulation of model equations rather than simulation and parameter estimation, the latter 
of which are more readily accessible skills, already used in fitting models to data. A 
challenge for the field is to promote the use of automated tools for structural identifiability 
analysis. Many tools have already been developed in the context of systems biology [BEL07, 
CHI11, MES14, KAR12], but awareness of their utility in the epidemiological community 
remains low, and these are often implemented in proprietary software, limiting their 
accessibility. 
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Difficulties of structural identifiability analysis have encouraged the alternative of practical 
identifiability analysis using numerical methods, although as discussed above, structural and 
practical identifiability analyses serve slightly different purposes and are not strictly 
interchangeable. The simulation and estimation processes for practical identifiability analysis 
are relatively straightforward (although may be time-consuming), but automated tools would 
still lower the barrier for their application. More importantly, decisions on how to conduct 
such a study and interpret results are not straightforward, and there may remain issues with 
convincing journals, editors and reviewers that simulation/re-estimation studies are worthy of 
publication in and of themselves and indeed required before data analyses are undertaken and 
reported.   
 
Returning to the actual conduct of practical identifiability, a number of questions arise. For 
example, what parameter values should be used to simulate data? How many parameter 
vectors should be used to provide confidence that results can be considered general? When 
interpreting parameter confidence intervals or posterior distributions, how narrow do they 
have to be for us to claim that a parameter is identifiable? Proposing robust numerical 
methods to provide insight into undesirable model features, and guide their remediation, 
remains a challenge for the community. 
 
A review of structural identifiability analysis methods and their suitability for different model 
structures in infectious disease modelling would help guide practitioners in their choice of 
methods, as has been conducted for systems biology models [CHI11].  Although the 
suitability of analysis methods is obviously independent of the physical interpretation of 
model equations, a similar review for common model structures in infectious disease 
modelling would enable easier comparison between reviewed models and a particular model 
of interest. 
 
Challenges in interpreting the results of fitting an unidentifiable model to data 
 
If a model is unidentifiable, obtaining meaningful results from fitting to data and interpreting 
these results can be extremely challenging. Appropriate interpretation begins with an 
acknowledgment that the adequacy of the inference depends on how the model is to be used. 
 
If the aim of fitting the model to data is to determine values of parameters that are of intrinsic 
interest, then one can examine whether it is possible (or likely) that changes to the model or 
to planned data collection will remedy any lack of identifiability. For example, does holding 
some parameters constant (or imposing strong priors on some parameters in the Bayesian 
context) or acquiring additional data result in an identifiable model? Reparameterisation is 
unlikely to help in this situation, as the reparameterised model may be identifiable, but the 
original unidentifiable parameters of interest will no longer appear in the model. However, 
information on identifiable parameters can guide reparameterization, enabling one to make 
stronger claims about the values of the new parameters, the biological interpretation of which 
can then be investigated.  One advantage of testing a model for global structural 
identifiability is that it can reveal the parameter combinations (“observational parameters” 
[JAC85]) which can be determined uniquely under the idealised conditions of the test. Used 
with a method appropriate for the model class (e.g. one employing the notion of “structural 
equivalence” for linear state-space models [VAJ84]), knowledge of these combinations can 
guide the reparameterization of the model into one that is globally identifiable.  
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On the other hand, if the aim of parameter inference is to make model predictions – either for 
the unperturbed system or in the context of an intervention – we may seek to propagate 
parameter uncertainty through our model so as to produce a range of predictions, allowing us 
to quantify prediction uncertainty. It is possible that although parameters are not individually 
identifiable, parameter sets consistent with observations make similar (or identical) 
predictions, or that the quantitative behaviour of certain subsets or functions of parameters 
are well determined despite lack of parameter-level identifiability (e.g. [YAN19]). However, 
if interventions act by changing the values of unidentifiable parameters or unidentifiable 
combinations thereof, predictions are unlikely to be consistent.  For example, consider the 
SIR model and suppose that there exists an intervention which halves 𝛽 for all time after the 
intervention is applied to System (2). Figure 1 shows that alternative values of  (𝛽/2, 𝛾) lead 
to a wide range of predictions for I over this post-intervention time period. As such, 
uncertainty over the true values of 𝛽 and 𝛾 creates doubt over the benefit of the proposed 
intervention. Additional data collection and/or fixing model parameters may be required, as 
discussed above.  Reparameterisation is unlikely to be helpful in this context, as the new 
parameters will be identifiable but not linked directly to the intervention (for example, 
reparameterising system (2) as 𝐼(𝑡) = 𝐼(0)exp(𝑟𝑡), removing β).  An exception is if new 
parameters are subject to stronger priors than the original parameters, enabling more precise 
inference of the values of the original parameters. 
 
In summary, addressing the challenges associated with identifiability will provide the disease 
modelling community with a systematic means of comparing models and evaluating their 
usefulness. In turn, we expect this to enable progress on the discipline’s fundamental 
challenges, in using models to direct resources towards ensuring better health outcomes. 
 
3. Incorporating prior knowledge 
 
The ability to identify parameters, or at least to have distributions on parameters which 
capture our full knowledge of the disease process, is dependent upon use of prior knowledge. 
When analysing a (new) data set within the Bayesian framework, we must specify a prior 
distribution on the parameters of the model. This provides a natural way to incorporate 
existing information (obtained from the literature, past experience etc.) about plausible values 
for the parameters. The prior distribution also offers a way to incorporate information about 
observable quantities (i.e., properties of the system that can be measured and expressed as a 
function of model parameters). This requires a clear distinction between knowledge of the 
real-world system (and our understanding of it) and knowledge of the model we are using to 
represent it [GEL17, CRA97]. 
 
The Bernstein-Von-Mises theorem tells us the likelihood will (asymptotically) come to 
dominate over the prior as the amount of data increases provided relatively mild technical 
conditions are met [KLE12]. However, one should not use this as an excuse to neglect the 
choice of prior distribution. In cases where data is limited, there is a risk of a (potentially 
incorrect) prior dominating the analysis; the result of the analysis will not reflect the data 
(and desired distribution over parameters of interest) but rather the (potentially incorrect) 
prior information.  
 
Furthermore, when analysing infectious disease data, it is unusual to have large amounts of 
high-quality data, and hence it is very attractive to supplement our data with prior knowledge. 
A weakly informative prior can assist with some of the statistical identifiability issues 
discussed in the section above on Identifiability, but if the prior distribution is poorly 
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specified (even if a non-informative prior is used) it can lead to misleading results [GEL17]. 
A desirable solution is to select a prior distribution that concentrates prior probability on 
plausible parameter values but does not dominate the posterior distribution, i.e. it allows the 
information in the data to determine the outcome of the inference. But doing so may be 
difficult. 
 
Mechanistic models of infectious disease dynamics are often expressed in terms of 
parameters far removed from the aspects of the process that are observed. It is arguably rare 
for scientists to have good knowledge of model parameters; rather, they have, or could 
construct, an informed view of various system observables. To make explicit the difference 
between model parameters and observables, consider a mathematical model of influenza 
infection within a host. A priori, one may not know plausible orders of magnitude for the rate 
parameters (of the mathematical model), but likely they will know that an influenza infection 
resolves in days, rather than hours or months. 
 
Given that scientists often have a better grasp on the value of observable quantities rather 
than the model parameters themselves, it makes more sense to articulate our prior belief in 
terms of these observable quantities. But of course, we then have a task to translate between 
the two. This challenge is not universal across models. Consider logistic growth describing 
the size of a population through time, N(t), with the following differential equation: 
 

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 =1 −

𝑁
𝐾@. 

 
It is simple to parameterise this model in terms of the growth rate, r, and the carrying 
capacity, K, both of which are natural quantities to observe. Consequently, if one were 
interested in developing a prior distribution for this model, one would only need to specify 
the distribution of plausible values to observe for these quantities. Considering the alternative 
equation 

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 − 𝑐𝑁B, 

 
the observable consequences of different values of the parameter c are less obvious, and 
hence it is unclear what plausible values may be. This situation is common in mathematical 
epidemiology: the observable quantities are themselves a function of the solution to the 
model, and most disease dynamic models do not have any closed analytic form for these 
quantities. Consequently, it is infeasible to develop a clearly interpretable parameterisation – 
in terms of writing down a prior based on past observations – of these models. 
 
The problem extends beyond just the parameterisation used. It is tempting to think that it is 
sufficient to use published estimates of individual, model-inferred parameters to construct a 
prior distribution. However, even when this is possible, issues will still arise. Reported 
parameter estimates are model dependent. The quintessential example being use of an SIR or 
an SEIR model, whereby inference may lead to the same estimates of the basic reproduction 
number but different estimates of the rates of infection and recovery. Understanding the 
marginal distributions of parameters is insufficient to construct a plausible prior distribution 
when correlations determine model behaviour. 
 
If we are serious about incorporating prior knowledge into future analyses, then it seems 
sensible that we should turn to fields where this has already successfully been implemented. 
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Priors informed by expert opinion (obtained via expert elicitation) or the results of previous 
studies have proved popular in the field of ecological where they have found diverse 
applications [HEM17, LOW09]. However, the use of expert elicitation to inform priors has 
become much more popular among ecologists over the past decade [DRE13]. Using expert 
opinion in conjunction with Bayesian inference is an attractive option for researchers in 
ecology, where the types of data collected are likely to involve a high degree of uncertainty 
[KUH10, MAR05], or are difficult or expensive to collect [OHA98, MAR12]. 
 
Martin et al. [MAR05] solicited expert opinion for a study regarding the effect of livestock 
grazing on various Australian birds. In cases where experts agreed with each other, the 
resulting credible sets for parameters are typically tightened, this can be an effective and cost-
effective way to improve estimates. This improvement was particularly noticeable in 
situations where existing data was weak but the precision, or agreement, between expert 
information was high. Just as important is the case of incorporating expert knowledge where 
there was noticeable disagreement between experts; in this situation, results did not differ 
significantly from analysis where expert opinion was not used. 
 
Expert opinion can also improve confidence in parameter estimates obtained from analysing 
these data, although care should be taken to ensure the elicitation of this information is 
carried out correctly [MAR05,MOR13]. There is a need to be rigorous in the selection of 
experts and the execution of the elicitation [DRE13]. Kadane and Wolfson [KAD98] and 
Chaloner et al. [CHA83] have developed methodology which abstracts much of the 
mathematical detail, simplifying the elicitation process. However, these methodologies only 
cover certain types of models, and are limited in scope and the degree to which they scale 
with the complexity of the model being considered. We believe it would be beneficial for the 
modelling community to extend this work, and develop statistical methodology that enables 
“automatic elicitation” for a wider range of models. 
 
While peer-reviewed literature provides a rich source of 'prior knowledge' and would 
typically form the basis for determination of the prior, caution should be exercised due to 
potential systematic effects in publication practice that can make it difficult to reliably source 
and account for all (published) primary sources [REI11]. In that paper, Reich et al. 
demonstrated that, due to publication and referencing practices, so called 'medical facts' can 
become enshrined as truth in the absence of strong and sufficient empirical evidence. This 
strongly suggests that when using the peer-reviewed literature to establish a prior, one must 
proceed carefully, being sure to establish a process to identify relevant primary source 
literature and avoid the pitfalls identified by Reich et al. 
 
Given the importance of the prior distribution and that there may be substantial amounts of 
knowledge about observable quantities of the process being modelled, how might one go 
about using this knowledge to specify a prior distribution? An idealised work-flow to utilise 
prior knowledge may consist of the following steps: (1) determine a set of relevant 
observable quantities which characterise the system and for which there is some quantitative 
understanding; (2) construct a prior distribution on the parameters of the model which reflects 
this understanding; and (3) carry out the remainder of the inference process as normal. There 
are three aspects to this work-flow which are challenging: (1) determining appropriate 
observable quantities; (2) representing this information in the prior distribution of parameters 
for an arbitrary model; and (3) devising a way to do this which is not prohibitively 
computationally expensive. We now expand on these three challenges. 
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(1) Which observable quantities? The first aspect is the most specific to the particular 
application, in that it requires some knowledge of the system being modelled to know what 
observable quantities of the process characterise it. When multiple observable quantities are 
being used, strong correlations between the quantities leads to redundancy; ideally 
independent observable quantities would be used. Above, the time required to resolve an 
influenza infection was given as an example of an observed quantity. This quantity may be 
expressed in terms of the solution to a particular model, even if it is not one of the parameters 
of the model. For example, if one were modelling the number of people hospitalised with 
influenza during an epidemic, one might use the total number of patients hospitalised as an 
observable quantity. Historical records of hospitalisation could be used to estimate, a 
distribution for this for previous epidemics. In the SIR model, the final size is determined by 
the initial condition and basic reproduction number, hence information about the final size 
can constrain the prior distribution for these parameters [MIL12]. 
 
(2) How to represent prior knowledge? The second aspect involves the process of taking a 
representation of the uncertainty in, potentially several, observable quantities, and translating 
this into a prior distribution over the parameters of a model. This is a non-trivial task, even 
when the distributions on the observable quantities are self-consistent (and it is easy to 
construct examples where this is not the case). Moreover, when there are correlations 
between observable quantities this can further complicate matters if one is not content to 
assume a joint distribution with independent components. 
 
(3) Can choosing a prior distribution be made easier? Finally, the third aspect involves 
finding a way to efficiently choose a prior distribution. As discussed above, extensive 
research from the field of psychology suggests that eliciting information from experts in a 
defensible way is labour-intensive. However, there are alternatives to obtaining information 
from domain experts. With the rise of “big data” there will be an increasing amount of data to 
be mined to inform prior distributions. The use of additional data sources brings its own 
challenges, e.g., accounting for correlations between the data sets as discussed further in the 
subsequent section on Data Challenges. 
 
While solutions to these problems would improve our ability to carry out inference, there is 
another equally important conceptual contribution from this work-flow. Decoupling prior 
knowledge of observable quantities and prior distributions from specific mathematical 
models allows us to create prior distributions which can be shared between models and 
capture the same information, independent of how that information translates into a 
distribution on the parameters of that particular model. This itself is a powerful idea, as it 
increases the portability of parameter estimates as they are no longer attached to the particular 
model with which they were obtained. For example, suppose models X and Y share 
observable quantities but do not have the same set of parameters; it is possible to use 
parameter estimates obtained with X to construct an equivalent prior for Y, where 
"equivalent" refers to having the same distribution on observable quantities. Moreover, since 
such observable quantities will often involve a combination of the model parameters, even if 
the prior distributions of the observable quantities are independent, the prior distribution they 
enforce on the parameters may have a rich correlation structure. 
 
Spending considerable effort on choosing a prior distribution can seem indulgent and, 
provided there is sufficient data, it will often have only a small effect on the results. Debate 
over the choice of prior has inspired many developments in Bayesian statistics, and there are 
cases where it has a strong effect on the inferences drawn [MOSS19]. In this section we have 
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described some open problems regarding the practical application of informative prior 
distributions while attempting to motivate why, despite these difficulties, they can still be 
very beneficial. In the words of Judea Pearl, "It is plain silly to ignore what we know" 
[PE01], however this comes with the caveat that it relies on this knowledge being appropriate 
and accurate. 
 
4. Challenges posed by data 
 
As discussed by De Angelis et al. [DeA15], precise and accurate model inference relies on 
the volume and quality of data, with quality encompassing both variability and bias.  If the 
observation process is well-characterised, parameter estimation can still be performed, 
although the precision of these estimates will be limited by the quality of the data. Combining 
data from multiple sources can increase the precision and accuracy of estimates but presents 
its own challenges. In this section we will first discuss challenges in characterising the 
observation process for a single epidemiological data set, before moving on to those for 
combining multiple data sets. 
 
Challenges within a single epidemiological data set 
 
When data measuring one quantity is used as a proxy for another quantity, the relationships 
involved should be well-characterised to reduce bias in inferred quantities.  For example, the 
proportion of individuals reporting influenza-like illness (ILI) in a weekly community survey 
can be used as a proxy for influenza prevalence in the general population [ADL14, CAR10].  
Here, ILI is used as a proxy for influenza virus infection; however, influenza infection 
prevalence may be overestimated due to ILI caused by non-influenza pathogens, or 
underestimated due to asymptomatic infections.  Moreover, prevalence in the survey 
population is used as a proxy for prevalence in the general population, but demographics of 
the survey population may not reflect that of the general population.  To reduce bias during 
inference, the relationship between reported ILI and influenza virus infection, and between 
the survey and general population, should be explicit in the observation process.  For 
example, the former can be achieved by specifying a reporting probability conditional on 
influenza infection, and a background observation probability due to illnesses other than 
influenza that may vary over time. 
 
The biases which are likely to affect inference, and are thus important to model, are likely to 
differ by both situation and data type.  For example, when performing inference during 
outbreak scenarios, if lags in data collection are either ignored or mis-specified, inference 
may be poorly affected [AZM14, MOSS19].  However, even for the same data type (such as 
incidence data), such lags may not drastically affect inference in endemic scenarios.  
Reporting rates are also more likely to vary during the course of an outbreak, as indicated by 
Flutracking data [CAR10].  Many studies calculating time-varying effective reproduction 
numbers (e.g. [ROS15]) are not robust to time-dependent reporting rates, so if these methods 
are used, time-dependent reporting rates should be included in the observation process. 
 
Where available, data sources covering the same timeframe as the primary data should be 
used to inform biases.  For example, community survey data can be used to infer changes in 
healthcare seeking behaviours and testing practices over the course of an epidemic, which can 
then be used to improve epidemic forecasts using a different data source [PEP17, MOSS19a].  
In other situations, sensible observation models and/or parameter values can be obtained 
using historical data.  For example, observation noise can be estimated for previous 
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epidemics, and resampled from when proposing parameters to fit to data from a new 
epidemic [ERT18]. Where the relationship between historical and current observation 
processes is unclear, rather than assuming that the historical and current observation 
processes are the same, a better approach may be to use historical parameter values to inform 
values of the current observation process. For example, different outbreaks of the same 
pathogen may occur in different locations and in different populations, and it is unclear how 
observation biases translate across outbreaks. When we know the direction in which a 
parameter will change but not by how much – for example, assuming that testing rates will 
increase in a pandemic – a historical parameter value could be used as the lower bound for a 
prior distribution on the testing rate or, more conservatively, to construct a prior distribution 
where only a small proportion of probability mass is below this value. Another example is 
when an intervention increases the testing probability. This scenario requires particular care, 
as increased testing may increase observed prevalence even when an intervention is effective, 
and inference ignoring increased testing may incorrectly conclude that the intervention 
increases prevalence [ALI15]. Conversely, increased testing (motivated, say, with the aim of 
ascertaining every case possible) could decrease test-positivity, if specimens are collected 
indiscriminately and testing denominators are unavailable, and this could lead to under-
estimates of prevalence. 
 
When inference is conducted on “incidentally available” data rather than data collected for 
the particular inference study, extra attention has to be paid to modelling of the observation 
process. This is especially an issue in outbreaks, as surveillance protocols are developed 
alongside the unfolding of the outbreak.  Hay et al. [HAY18] documented that case 
definitions for microcephaly became more stringent as the Zika outbreak in 2015-2016 
developed, and that many cases were reclassified. Either a combination of behavioural 
change and overreporting of cases under early definitions, or increased Zika surveillance 
between the two epidemic waves, were required to explain changes in reported microcephaly 
incidence. Communication between field workers, policymakers and modellers becomes 
especially important in this context, and local modellers have the opportunity to inform the 
data collection process (see Policy and Communication section). 
 
On the other hand, closer ties between designers of data collection protocols and developers 
of inference methods have enabled the collection of data sets designed to infer particular 
model parameters, as identifiability of model parameters may depend on the study design (see 
Identifiability section).  For example, in the 2009 influenza pandemic, first few hundred 
(FF100) studies were conducted specifically to understand the transmissibility and severity of 
the disease during the early stages of the epidemic [McL10]. Since the collection of this 
dataset, model-based inference methods have been developed to infer hospitalisation rates 
and within-household transmission in real time [BLA17].   
 
Challenges when using multiple epidemiological datasets 
 
When modelling transmission of an infectious disease there are often multiple different 
epidemiological data types available with which to infer model parameters. For example, 
when inferring key characteristics of a nascent epidemic, we might have access to confirmed 
case counts, syndromic surveillance data and special studies (such as FF100), but each carries 
its own underlying biases and there is no guarantee that they provide a self-consistent view of 
disease activity [e.g. THO15]. While there are established approaches to performing 
inference with each of these types of data, we rarely use methods that can simultaneously 
consider all available data although there are notable exceptions [COR19]. Consequently, 
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typically the result is either multiple competing parameter estimates – which leads to obvious 
challenges for decision-makers – or a single estimate that ignores some of the available 
information.  The alternative is to analyse all available, relevant data using a single joint 
model. Ideally, the joint model is able to integrate the different data sources in a way that 
retains the strengths of each, without losing information. De Angelis et al. [DeA15] note that 
the motivation to combine information from multiple data sources arises from both a 
perception that this will produce more `defendable’, robust outputs and a recognition that 
comprehensive outbreak analysis requires multiple data types. Here we will focus on data-
integrating models for multiple epidemiological time series data but note that models for 
integrating these and other epidemiological data types and/or phylogenetic datasets have 
recently gained traction in outbreak analysis [DEM18, CAM19].   
 
Integrating multiple different datasets can increase the precision and accuracy of parameter 
estimates and enable a greater range of relevant (unobservable) quantities to be estimated 
[BIR18]. For example, sharing information across abundant, low-quality surveillance data 
(i.e., high volume, but unknown or poorly characterised observation processes) and a subset 
of high-quality surveillance data (i.e., well-characterised observation processes, but low 
volume) can enable the estimation of nuisance parameters, like reporting biases. This 
approach has previously been demonstrated in ecology [FIT15], where data structures are not 
dissimilar to disease data. Another advantage of joint inference is the automatic weighting of 
information from different data sources. When writing out a joint model, explicitly describing 
the observation models for each data type (including parameters for reporting biases) 
provides an objective way to weight their respective utility. 
 
An important challenge when constructing a joint model is the handling of dependencies 
between data sources. Here we separate these dependencies into two types: 1) data sources 
observe the same underlying epidemiological process, and 2) observation processes 
themselves are dependent (for example, individuals may be captured by two or more 
surveillance systems). 
 
Understanding dependencies in the observation process will require close collaboration with 
data collectors and public health policy-makers [MUS17, DOM18]. In order to understand 
the magnitude of dependencies in the observation processes between outbreak surveillance 
datasets, it is important to know precisely how each dataset is assembled and to map out all 
possible research and health system pathways that could lead to an individual being counted 
in one or more dataset(s). For example, during an influenza pandemic, households 
participating in FF100 studies are likely to be recruited from routine case notification systems 
and would therefore be counted in both FF100 data and case notifications. Further, if we 
wanted to add information from community survey data such as from Flutracking [CAR10, 
MOSS19a], we must consider how duplications of these data may arise in FF100 studies 
and/or case notification datasets.  
 
While it may be possible to write out a single model that links all available datasets, there 
could be practical hurdles to performing inference for such models. It is important to consider 
whether inferring parameters from multiple datasets simultaneously, and thus adding 
substantial model complexity, is worthwhile from both a computational and a decision-
making perspective, particularly if supporting decision-making in real-time is a goal. For 
example, Shubin and colleagues [SHU16] made simultaneous use of data from community 
and hospital surveillance systems in their transmission model of pandemic A(H1N1)pdm09 
influenza, but the computation time for inference is reported in months, which is not practical 
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for real-time use (note that this was not the goal of their analysis). Moreover, if the goal of 
such modelling studies is to inform public policy (in real-time or otherwise), the model 
structure and appropriate interpretation of its outputs will need to be clearly communicated to 
decision-makers, and more complicated models may be more difficult to translate (see 
Section 6).  
 
It should also be noted that integrating multiple, low-quality data sources with a single high-
quality dataset, will not necessarily provide benefit over analysing the high-quality dataset 
alone. For example, Moss and colleagues [MOSS17] found that simultaneously using data 
from three different surveillance systems only improved retrospective seasonal influenza 
forecasts under certain circumstances, and could even reduce forecasting performance, when 
compared to forecasts generated using a single data source. They hypothesised that the 
synthesis of data from multiple surveillance systems may only provide benefit if each data 
source captures distinct, but complementary, aspects of the epidemiological or observation 
process.   
 
 
5. Computational methodology 
 
In common with other areas of mathematical biology, methods for fitting complex epidemic 
models have progressed a lot recently, driven by advances in Bayesian computational 
statistics [GRE18]. These methods can be classified in a number of ways and our taxonomy 
reflects our personal biases and preference for mechanistic, stochastic, models. While non-
mechanistic models are useful for some forecasting problems where relatively large amount 
of historical data are available [BRO18], small data sets, as would be available in the event of 
an outbreak, can only be interpreted in a mechanistic setting, and likewise the testing and 
forecasting of various intervention strategies.  A fundamental difficulty with inference from 
outbreak data is that most of the underlying process is unobservable, hence the need to infer 
or integrate over a large amount of missing data to sample from the parameter posterior. One 
way of classifying existing algorithms is according to which part of the calculation handles 
the missing data. This impacts how suitable they are to be parallelised and hence handle 
larger problems as well as incorporate other evidence, including multiple datasets [BRO11, 
BIR18]. 
 
For models of small, closed populations such as households, continuous-time Markov chain 
(CTMC) models have found success, due to the size of the state-space being small enough to 
leverage numerical solutions for calculating the likelihood [BLA17]. For most models, in 
larger populations, these methods break down due to the increased size of the state space. The 
oldest methods for exact inference are so called data-augmented (or auxiliary variable) 
MCMC (DA-MCMC) [ONE99]. These typically infer the missing data as well as the 
parameters as a single Markov chain from which an expression for the likelihood is trivial to 
evaluate. Samplers are also easy to construct using a combination of Gibbs and Metropolis-
Hastings steps. Data-augmented methods are highly flexible, allowing the use of non-
Markovian models, non-homogeneous mixing and detailed spatial information [TOU18], 
[STO17]. The downsides are common difficulties with convergence and mixing that get 
worse as the amount of missing data to be inferred grows [McK14]. Efficient use is reliant 
upon conjugate priors (allowing the posterior to be specified explicitly), so incorporating 
more general, informative priors (as discussed earlier) can be challenging. Finally, DA-
MCMC is fundamentally a serial algorithm, so its use on large datasets becomes slow and 
parallelism is not easily exploited, beyond running multiple chains.  

APPENDIX B. INFLUENCING PUBLIC HEALTH POLICY

139



 
Although almost all useful epidemic models are analytically intractable, they are typically 
very simple to simulate. Approximate Bayesian computation (ABC) uses simulations for 
fitting models where the likelihood is intractable [KYP17], but where the simulated data can 
be compared with summary statistics. This is probably the most simply implemented method 
in this class but comes at the cost of introducing some approximation into the posterior. Other 
methods are exact in that they use an estimate of the likelihood, but still target the correct 
posterior. The use of sequential Monte Carlo (SMC) methods (which perform estimation 
sequentially through data) in epidemic modelling is very natural due to the prevalence of time 
series data and the need to fit dynamical models [DOU01]. Pseudo-Marginal methods such as 
particle marginal Metropolis-Hastings exploit the unbiased likelihood estimate obtained from 
a particle filter to also perform inference for the underlying parameters [AND10, BRO15]. In 
comparison with data-augmented methods, these methods can be seen as integrating over the 
missing data in the estimation of the likelihood, so the Markov chain targeting the parameter 
posterior is greatly simplified.  
 
The key to the efficient operation of these pseudo-marginal algorithms is keeping the 
variance of the likelihood estimate within tight bounds [DOU15, SHE15], otherwise the 
mixing of the Markov chain targeting the posterior can become very poor. An advantage of 
pseudo-marginal methods is that they are parallelised quite naturally, so modern computing 
hardware can be leveraged to reduce the variance in the likelihood estimate by simply using 
larger numbers of particles of averaging the estimates of independent particles. Although 
these methods represent the current state of the art in this area, there are still challenges to be 
overcome. They are not ‘online’ in that the computational expense (and hence run-time) 
increases as the length of the time series increases [KAN15]. Non-Markovian models remain 
challenging and the overall efficacy is restricted by the ability to produce simulations that are 
in some way close to the observed data. Current research employs variance reduction 
techniques to reduce the variance of the likelihood estimate, and in particular importance 
sampling has been used to produce realisations that match data closely [BLA18, McK14]. In 
the case where the model is not strictly non-identifiable, but there is a complex posterior 
distribution over the parameters, then MCMC methods based on Riemannian geometry can 
be used [HOU16]. 
 
Model Selection 
 
Using data to accurately infer parameters of epidemic models is an important step for 
informing public health policy, forecasting and understanding the dynamics of diseases. 
However, if the models are inappropriate these tools generate misinformation. Information 
criteria such as AIC, BIC, DIC are the most common method for deciding on the best model. 
These information criteria are used widely by both frequentists and Bayesians due to their 
asymptotic properties and their often ease of calculation. However, in cases where there is 
little data and reasonable prior understanding of the epidemic process, these criteria may fall 
short. Simply put, this is because AIC, BIC, and DIC are intrinsically non-Bayesian as their 
formulations do not account for prior knowledge of model parameters.  
 
The gold standard for selecting between models while accounting for prior information is to 
either calculate Bayes factors or the model evidence [KAS95]. These approaches are 
sometimes avoided due to their computational difficulty; they either require calculation of the 
normalising constant of the posterior distribution, or calculation of a ratio of normalising 
constants. Although this problem is difficult via classic methods such as reversible-jump 
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MCMC [GRE95], there are increasingly efficient methods for performing this kind of model 
selection. One approach is SMC2 [DRO16, CHO13], which allows for model selection to be 
performed during the inference process. Although this is an attractive and efficient method, 
the stochastic error in model selection estimates is not well understood. An alternative is 
importance sampling-based methods [GEL94, TOU18], which give unbiased estimates for 
model selection along with estimates of error. While these methods are computationally 
intensive, they are made efficient if parameter inference is performed a priori. Further, they 
are embarrassingly (i.e. trivially) parallelisable, that is, they are able to take advantage of 
modern computational architecture. 
 
Another recent approach to model selection has been through the use of classification 
methods, and in particular Random Forests [PUD16]. This approach has the benefit of 
needing only to simulate from the model, and efficiency of the classification algorithms 
themselves. This is particularly important if one is to consider the optimal design for model 
selection [HAI18], a particularly computationally-expensive pursuit, and for which heuristics 
based upon the Random Forest approach have been proposed recently [COP19]. 
 
6. Policy and communication 
 
Until now, we have concerned ourselves with some of the key technical challenges in modern 
day mathematical epidemiology. But for our work to contribute to public health policy, we 
must consider the broader scientific, social and political environment in which it exists. This 
is a broad topic and one not unique to health, for example ecology provides a highly-relevant 
exemplar discipline in which modelling has had a sustained and meaningful impact on 
decision making [e.g. BAL09]. A central tenet of the approach in that field is that we must 
distinguish, from the outset, between science for knowledge and discovery’s sake, and 
science for the express purpose of contributing to the decision-making process. Within this 
context, we make the following observations. 
 
Mathematical models are developed by researchers from a broad range of backgrounds, many 
of whom do not necessarily have the knowledge required to translate the intricacies of 
structural identifiability analysis and Bayesian approaches to parameter estimation into 
practice. In general, more complex models tend to be favoured by policy makers as they are 
perceived as being more “realistic”, and indeed such models likely have more internal 
validity. Yet they are, in all likelihood, less general and have weaker external validity, in 
terms of providing unbiased predictions for other related scenarios or situations. Complexity 
can be a desired quality of a model even if the data are not available to support the model 
structure. Thus, there is a tension between transparency (which correlates with 
incompleteness but also with generality) and realism (which correlates with complexity and 
opacity, but also completeness and lack of generality). Highly complex models are in danger 
of projecting a false sense of accuracy, with the portrayed accuracy enhancing their 
attractiveness to policymaking stakeholders, but with untenable policy recommendations as a 
potential outcome of this cycle [COO06]. And even if accurate for the scenario at hand, 
findings drawn from them will be less generalisable (because they are more specific). Clearer 
communication of the pitfalls of the “unconscious use of a non-identifiable model” [SIE12] 
will help to avoid this trap.  
 
As the epidemiological modelling discipline globalises and nascent modelling groups form in 
countries previously lacking this capacity, our community should consider not only training 
modellers to model, but also explore how models are used in the policy environment. It is 
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important to  acknowledge that this environment will differ, and in strong ways, across 
different social, economic and political contexts. We propose that such topics are included in 
future training activities offered by established groups. We encourage success stories of 
models influencing public health policy (or otherwise) be published. The practice of 
modelling goes far beyond the technical details of the mathematics, statistics and biology.  
 
Policy makers are not the only ones with whom the modellers need to communicate 
effectively. During the lifecycle of the model development, we need to understand the 
intricacies of the problem, the available data and the existing views on reasonable values for 
parameters. Therefore, communicating and involving the experts in the respective biological, 
medical and health fields should lead to better calibrated and validated models. 
 
Effective interactions among these three key groups (modellers, researchers from other 
disciplines and policymakers) relies on effective communication, with several themes and 
foci for improvement (Figure 2). 
 
Developing a shared understanding of the problem 
 
Modelling that strives to inform policy is best conducted in consultation with policymakers. 
Such engagement enables modellers and policymakers to gain a mutual understanding of the 
policy question to be addressed and define specific modelling objectives. It is also an 
opportunity to improve modeller understanding of the policy context and stakeholder 
understanding of the capabilities and limitations of mathematical models within this context. 
Examples of productive engagement between policymakers and modellers exist in many 
fields, including infectious disease epidemiology [LEE13, PRO16, KNI16, QUA17, 
MOSS19]. Recently, researchers have explored the use of participatory approaches to 
modelling, where policymakers and modellers “co-develop” models and applications 
[GAY19]. These examples suggest that a variety of approaches to stakeholder engagement, 
e.g., in terms of the frequency and timing of consultations within the cycle of model 
development, can lead to successful outcomes. Modelling conducted in the absence of 
stakeholder engagement is at risk of being underused, mis-used or inappropriate for 
addressing a specific policy question [GLA11, MUS17, DOM18].    
 
 
Understanding the available data 
 
Data is required to calibrate, validate or fit the mathematical models. As part of the planning 
phase of the model development, knowledge of what data are or will become available is 
essential. If the data is not publicly available, it is essential that communications are made 
with the proprietor of the data and have prior agreement with them on data usage.  
 
Modellers have to interact with researchers from other disciplines such as biology, medicine, 
pharmacology etc. to make more sense of the available data. In these instances, improved 
communication of modelling ideas to a non-mathematical audience would allow for better 
discussion on whether the important biological aspects are captured from the model and how 
the data can be used to estimate the model parameters. 
 
If multiple datasets are available, the use of all datasets in a single data-integrating model 
may be appealing to both modellers and policymakers – under the assumption that more data 
will result in greater precision. As discussed earlier, a data-integrating model may not provide 
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benefit over the use of any single dataset unless each data source captures distinct, but 
complementary, aspects of the epidemiological or observation process [MOSS17]. When 
deciding whether data integration is an appropriate and feasible approach to addressing a 
specific policy question, it is important for modellers to understand how datasets may be 
dependant and/or complementary. This process will be most insightful when done in close 
consultation with data-collectors and data-users.  
 
 
Prior distributions informed by experts 
 
Constructing models to aid decision making in public health requires striking an appropriate 
balance between accurately representing the system being modelled, and making simplifying 
assumptions. It is often helpful to construct these models using domain knowledge. The 
Bayesian framework, with its concept of a prior distribution, provides a natural way to 
incorporate this information [GEL04]. However, representing this knowledge into parameter 
values is not always straight-forward [KUH10]. The process of comprehensively eliciting 
prior knowledge requires substantial effort from both the elicitor and the responder. However, 
as seen in the field of ecology, this can be a worthwhile approach [KUH05, MAR05, 
CHO09]. Care must be taken to mitigate the impact of psychological biases such as 
‘anchoring’ and the ‘conjunction fallacy’ which can lead to poor representation of prior 
knowledge [KYN08, KUH10]. Moreover, if the responder is unfamiliar with probabilistic 
concepts this can also hamper the elicitation process [MOR13]. Substantial effort in the fields 
of both statistics and psychology has produced a number of guidelines to assist in carrying 
out successful elicitations [SPE75, KYN08, CHO09, KUH10, MOR13, OHA19]. 
 
As discussed in Section 3 above, there are also technical issues relating to the incorporation 
of the elicited information. 
 
Sharable methodologies and best-practice for open and transparent modelling 
 
To prevent reinventing previous work, modellers can provide adaptable, user-friendly 
routines or packages with worked examples supported by published theory and community-
wide consensus. Reproducible methodologies and model source code can be shared on freely 
available code repositories such as GitHub [https://github.com/], Bitbucket 
[https://bitbucket.org], et cetera. There should be sufficient documentation provided with the 
source code in order to ensure reproducibility. Anonymised or simulated data could also be 
shared if necessary. Knowledge on the various types of licenses that are available to protect 
intellectual property while maintaining reproducibility is essential for modellers.      
 
Model predictions could be shared through interactive web-applications such as Shiny apps 
[http://www.rstudio.com/shiny/] and plotly/Dash apps [https://plot.ly]. These web-
applications can also help during the iterative process of communicating the model to 
policymakers and end-users, and improving the model based on their feedback. 
Computationally expensive models may not be able to run in real-time. In such cases, results 
could be pre-generated and stored as data which can then be retrieved for a specific scenario. 
Examples of some shiny apps based on models, together with their source code can be found 
here [TUN17, CEL19]. 
  
Communicating model predictions in policymaking 
 

APPENDIX B. INFLUENCING PUBLIC HEALTH POLICY

143



When communicating model-based insights to policymakers, it is important to present those 
results in scientific and statistically rigorous language but also in a clear and transparent way 
to a non-technical audience. Ideally, results should be presented in a way that policymakers 
and stakeholders can quickly understand to assist their decisions. Various types of 
communication such as written briefings, informal meetings, and technical interfaces could 
be used as necessary. Uncertainty in the predictions should also be communicated adequately. 
The key to successful communication in this context however is to recall that policy 
development is primarily concerned with decision-making, rather than scientific discovery 
per se. With this in mind, scientific findings can be presented in a way that focuses on the 
decision to be made, providing the scientific evidence as the (rigorous and transparent) basis 
on which advice is provided. 
 
 
7. Conclusions 
 
From the very earliest attempts to represent disease dynamics mathematically, the 
relationship between epidemic models and data has been both of clear importance and a 
major challenge [ABB52]. Herein we have focused on key challenges with a particular focus 
on using modelling to inform public health policy:  

(i) Model parameters may not be able to be identified uniquely, either in general or 
for the specific data available in an application. Awareness of this is critical to 
ensure that robust policy conclusions are drawn from models; 

(ii) Prior knowledge can be highly valuable, but it must pertain appropriately to the 
disease dynamics of current interest. Specification of prior knowledge on disease 
process observables assists in consistent and readily-interpretable specification; 
and, 

(iii) Data must be modelled appropriately accounting for the observation process. 
Increasingly we have access, and computational resources, to exploit multiple 
datasets. However, the dependencies that arise through the underlying 
epidemiological system and in the sampling process in the observation models 
must be accounted for to draw robust conclusions. 

 
We have discussed recent progress and new perspectives on each of these challenges, along 
with recent computational advances in methods with a particular focus on inference. Each of 
these areas remain active research topics, where advances are critical to improve the 
robustness, appropriateness and sophistication of model-based, policy-relevant outputs. 
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Figure 1. Solutions of Equation (1) giving the number of infectious people, with an 
intervention at Time = 1 that halves the pre-intervention 𝛽 for the post-intervention period. 
Multiple parameter pairs reproduce the pre-intervention data (black line), yet distinct 
parameter pairs (𝛽, 𝛾) produce differing post-intervention predictions. 
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Figure 2. Essential communications between three key groups in the model development and 
outcome dissemination. 
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