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Abstract

This thesis primarily studies one-point invariants and topological recursion for enumerative
problems. To make the document reasonably self-contained, we include the background material
required to understand our results in the opening chapters. The thesis is the culmination of
several research projects, some completed and some ongoing. Each of the following paragraphs
provides a brief description of the results obtained from one of these projects.

Harer and Zagier proved a recursion to enumerate gluings of a 2d-gon that result in an orientable
genus g surface, in their work on Euler characteristics of moduli spaces of curves. Analogous
results have been discovered for other enumerative problems, so it is natural to pose the following
question: How large is the family of problems for which these so-called 1-point recursions exist?
We prove the existence of 1-point recursions for a class of enumerative problems that have Schur
function expansions. In particular, we recover the Harer–Zagier recursion, but our methodology
also applies to the enumeration of dessins d’enfant, Bousquet-Mélou–Schaeffer numbers, monotone
Hurwitz numbers, and more.

Do and Norbury initiated the enumeration of lattice points in the Deligne–Mumford compactifi-
cations of moduli spaces of curves. They showed that the enumeration may be expressed in terms
of polynomials, whose top and bottom degree coefficients store psi-class intersection numbers
and orbifold Euler characteristics of Mg,n, respectively. Furthermore, they ask whether the
enumeration is governed by the topological recursion and whether the intermediate coefficients
also store algebro-geometric information. We prove that the enumeration does indeed satisfy the
topological recursion, although with a modification to the initial spectral curve data. Thus, one
can consider this to be one of few known instances of a natural enumerative problem governed
by the local topological recursion.

Gromov–Witten theory deals with the enumeration of maps from complex algebraic curves into
a complex variety. This theory was motivated by theoretical physics, acting as a mathematical
interpretation for certain models of string theory. In the case that the target variety is a
non-singular curve, Okounkov and Pandharipande relate Gromov–Witten invariants to classical
Hurwitz numbers, giving an explicit way to compute them. We introduce a conjecture that
states that certain relative Gromov–Witten invariants of CP1 are governed by the topological
recursion. This conjecture can be seen as a vast generalisation of the Bouchard–Mariño conjecture
relating simple Hurwitz numbers with topological recursion. We use the Gromov–Witten/Hurwitz
correspondence to deduce a quantum curve for the enumerative problem under consideration.
This can be considered strong evidence towards the conjecture.

We conclude the thesis with some results on monotone Hurwitz numbers. First, we give some
initial calculations showing how the Kontsevich–Soibelman topological recursion formalism can
be used to derive Virasoro constraints for monotone Hurwitz numbers. Such calculations may
lead to a better understanding of the relation between the Virasoro algebra and topological
recursion more generally. We also prove an identity concerning monotone Hurwitz numbers,
which first appeared in the recent work of Cunden, Dahlqvist and O’Connell. Our proof has a
very different flavour to their matrix model analysis and instead uses holonomic tools.
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Statement of contribution

To make the thesis reasonably self-contained, we include the background material required to
understand our results and this appears in Chapters 11 to 33. Among the results in these chapters,
only Proposition 3.4.13.4.1 and Theorem 3.4.23.4.2 are novel and provide an example of deriving quantum
curves for enumerative problems.

Chapter 44 is joint work with Norman Do and describes the results contained in our preprint
Generalisations of the Harer–Zagier recursion for 1-point functions [2222]. However, most of
Section 4.64.6 on degree and order bounds for one-point recursions is my own new work and does
not appear in the preprint.

Chapter 55 is joint work with Norman Do and Ellena Moskovsky and describes the results
contained in our preprint Local topological recursion governs the enumeration of lattice points in
Mg,n [88]. However, Section 5.35.3 on the asymmetric combinatorial recursion for the enumeration
of stable fatgraphs is my own new work and does not appear in the preprint.

Chapter 66 describes work in progress towards the topological recursion for Gromov–Witten
invariants of CP1. We state a new explicit conjecture relating Gromov–Witten invariants of CP1

to topological recursion, which vastly generalises the Bouchard–Mariño conjecture. The main
result of the chapter is Theorem 6.3.26.3.2, in which we derive the quantum curve for the enumerative
problem. The work contained in this chapter does not yet appear elsewhere in the literature.

Chapter 77 describes some initial calculations towards understanding the relation between
Kontsevich–Soibelman topological recursion and Virasoro constraints for enumerative prob-
lems, as well as an alternative proof of the Cunden–Dahlqvist–O’Connell identity for monotone
Hurwitz numbers via the language of holonomic functions. The work contained in this chapter
does not yet appear elsewhere in the literature.
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Chapter 1

Problems in enumerative
combinatorics

This thesis primarily deals with structures underlying enumerative problems that lie at or near
the interface of the combinatorics of permutations and the geometry of surfaces. In this chapter,
we discuss various problems in enumerative combinatorics that illuminate these structures, such
as the calculation of Bousquet-Mélou–Schaeffer numbers, Hurwitz numbers, monotone Hurwitz
numbers and fatgraph counts (Sections 1.11.1 to 1.41.4). These problems motivate many of the results
in this thesis, particularly those contained in Chapter 44 on one-point recursions. For each case,
we define the enumeration in both connected and disconnected forms and relate the latter to
a character formula. Such character formulas may be used to derive so-called quantum curves
for these enumerations, thus relating them to topological recursion. One of the goals of these
opening chapters to the thesis is to motivate the study of topological recursion by enumerative
problems. We end this chapter by discussing weighted Hurwitz numbers, which capture a large
class of enumerative problems including those discussed above.

1.1 Bousquet-Mélou–Schaeffer numbers

Let m be a positive integer and let σ0 be a permutation in the symmetric group Sd with cycle
type µ = (µ1, . . . , µn). We want to count the number of ways σ0 can be written as a product of
m permutations. However, we add certain restrictions on these permutations that encode the
fact that we are counting degree d maps from a Riemann surface of particular genus to CP1 with
m+ 1 ramification points.

Definition 1.1.1. The Bousquet-Mélou–Schaeffer number B
(m)
g,n (µ1, µ2, . . . , µn) is 1

d! multiplied
by the number of tuples (ρ1, ρ2, . . . , ρm) of permutations in Sd such that

the product ρ1 ◦ ρ2 ◦ · · · ◦ ρm has n labelled cycles with lengths µ1, µ2, . . . , µn;∑m
i=1(d− `(ρi)) = 2g − 2 + n+ d, where `(ρi) denotes the number of cycles in ρi; and

the group 〈ρ1, ρ2, . . . , ρm〉 generated by the permutations is a transitive subgroup of Sd.

For brevity, we shall often refer to these as BMS numbers.

Example 1.1.2. Let us compute the number B
(2)
1,1(3). So we count tuples (ρ1, ρ2) of permutations

in the group S3 such that ρ1 ◦ ρ2 is a 3-cycle and

(3− `(ρ1)) + (3− `(ρ2)) = 2× 1− 2 + 1 + 3 ⇒ `(ρ1) + `(ρ2) = 2.

1



2 Chapter 1. Enumerative combinatorics

This equation implies that we have `(ρ1) = `(ρ2) = 1. The only possibilities are

(ρ1, ρ2) = ((1 2 3), (1 2 3)) and (ρ1, ρ2) = ((1 3 2), (1 3 2)).

Hence, B2
1,1(3) = 2

3! = 1
3 .

By the Riemann existence theorem, one can equivalently consider B
(m)
g,n (µ1, . . . , µn) to be the

weighted count of connected genus g branched covers f : (Σ; p1, . . . , pn)→ (CP1;∞) such that

ramification can only occur over ∞ or the mth roots of unity; and

f−1(∞) = µ1p1 + · · ·+ µnpn.

Here, the weight of a branched cover is given by 1
|Aut(f)| , where Aut(f) is the group of automor-

phisms of the branched cover.

An automorphism of a branched cover f : Σ→ CP1 is an automorphism g : Σ→ Σ such that
f ◦ g = f . Note that the first condition in Definition 1.1.11.1.1 corresponds to having ramification
profile µ over ∞, the second encodes the genus of the branched cover via the Riemann–Hurwitz
formula, and the third guarantees that the branched cover is connected.

We note that there is an alternative pictorial description of BMS numbers via the notion of an
m-constellation. Let us recall that a map is a 2-cell decomposition of an oriented surface into
vertices, edges and faces. The degree of a vertex (or a face) is the number of edges incident
to this vertex (or face), counted with multiplicity. Two maps are isomorphic if there exists an
orientation-preserving homeomorphism of the underlying surfaces that bijectively maps cells
of one map to cells of the other, while preserving dimensions of cells and incidences. We shall
always consider maps up to isomorphism.

Definition 1.1.3. For an integer m ≥ 2, a m-constellation is a map whose faces are coloured
black and white in such a way that

any face adjacent to a white face is black, and vice versa,

the degree of any black face is m,

the degree of any white face is a multiple of m.

The black faces of a constellation are called polygons or m-gons. There exists a bijective
correspondence between the tuples of permutations in Definition 1.1.11.1.1 and m-constellations.
Counting planar constellations is carried out in genus zero in [2020].

Example 1.1.4. Let us compute the number B
(2)
1,1(3) from Example 1.1.21.1.2 again. In Figure 1.11.1

below, the genus 1 surface is obtained by gluing together edges carrying the same number of
arrows. We label the red vertex 1 and the blue vertex 2. This is the only constellation that
contributes to the enumeration and it has three automorphisms given by rotations of multiples

of 120◦ around the central vertex. Therefore, we again see that B
(2)
1,1(3) = 1

3 .

Figure 1.1: The unique 2-constellation contributing to B2
1,1(3).



1.1. Bousquet-Mélou–Schaeffer numbers 3

Definition 1.1.5. Define the double Bousquet-Mélou–Schaeffer number B
(m)
g,n (µ1, . . . , µn) to be

the weighted count of genus g connected branched covers f : (Σ; p1, . . . , pn) → (CP1;∞) such
that

ramification can only occur over 0, ∞ or the mth roots of unity; and

f−1(∞) = µ1p1 + · · ·+ µnpn.

Let q1, q2, q3, . . . be commuting variables and set the weight of a branched cover with ramification
profile (λ1, λ2, . . . , λ`) over 0 to be

qλ1
qλ2
···qλ`

|Aut(f)| .

One can get the BMS-number B
(m)
g,n (µ1, . . . , µn) by choosing the weights of qi = 1.

One can remove the transitivity condition of Definition 1.1.11.1.1 to produce the notion of disconnected

Bousquet-Mélou–Schaeffer numbers, which we denote by B
(m)•
g,n (µ1, . . . , µn). To define these

numbers via branched covers, we introduce the concept of the genus of a disconnected surface.
Define the genus of an oriented surface Σ = tni=1Σi with n connected components to be∑n

i=1 gi − (n− 1), where gi is the usual genus of Σi.

Definition 1.1.6. Define B
(m)•
g,n (µ1, . . . , µn) to be the weighted count of possibly disconnected

genus g branched covers f : (Σ; p1, . . . , pn)→ (CP1;∞) such that

ramification can only occur over 0,∞ or the mth roots of unity; and

f−1(∞) = µ1p1 + · · ·+ µnpn.

As before, set the weight of a branched cover with ramification profile (λ1, λ2, . . . , λ`) over 0 to
be

qλ1
qλ2
···qλ`

|Aut(f)| . Also, observe that the genus can be negative here.

The reason we introduce this disconnected version is that the enumeration is in some sense easier
and, in particular, can be expressed using characters of symmetric groups. The connected and
disconnected counts are in some sense equivalent, since they can be obtained from each other by

inclusion-exclusion. For example, one can express B
(m)
1,2 (µ1, µ2) in terms of disconnected BMS

numbers in the following way.

B
(m)
1,2 (µ1, µ2) = B

(m)•
1,2 (µ1, µ2)−B(m)•

1,1 (µ1)B
(m)•
1,1 (µ2)−B(m)•

2,1 (µ1)B
(m)•
0,1 (µ2)−B(m)•

2,1 (µ2)B
(m)•
0,1 (µ1)

In the next proposition, we express disconnected BMS numbers using the representation theory
of symmetric groups. Calculations such as this form the model for deriving character formulas
for other enumerative problems. We assume that the reader is familiar with this material, but
refer the reader to the literature for more information [9292].

Presently, we set some notation that will be used throughout the thesis. The conjugacy classes of
symmetric groups naturally correspond to partitions, which describe the cycle type of permutations
in the conjugacy class. Note that the irreducible representations of symmetric groups also
naturally correspond to partitions. A partition λ = (λ1, λ2, . . .) is a weakly decreasing sequence
of non-negative integers such that its length `(λ) := |{i ≥ 1 | λi > 0}| is finite. We often identify
λ with its Young diagram

Y (λ) := {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}.

If � = (i, j) ∈ Y (λ), we say that � is a box of λ and write � ∈ λ for short. The content of
� = (i, j) ∈ Y (λ) is defined to be c(�) := j − i. If λ is a partition of d, then we denote this by
λ ` d.



4 Chapter 1. Enumerative combinatorics

Proposition 1.1.7. Let P (d) denote the set of partitions of d. Let χνµ denote the character of
the symmetric group Sd labelled by ν ∈ P (d) evaluated on a permutation of cycle type µ ∈ P (d).
Let c(�) denote the content of the box � in a Young diagram and use the notation [~k]F (~) to
denote the coefficient of ~k in the series expansion for F (~). Then for d =

∑
i µi, we have

B(m)•
g,n (µ1, . . . , µn) =

1

d!
∏
µi

[~2g−2+n+d]
∑

ν∈P (d)

χνµ dim(ν)
∏
�∈ν

(1 + c(�)~)m.

Proof. The proof is based on the interplay between two important bases for the centre of the
symmetric group algebra ZC[Sd]. The first is the conjugacy class basis denoted by Cα =

∑
σ,

where the summation is over σ of cycle type α. The second is the orthogonal idempotent basis
denoted by Eχ = χ(1)

d!

∑
g∈Sd χ(g)g−1, where the summation is over χ an irreducible character

of Sd.

By definition, the BMS numbers arise as the identity coefficient of a product of conjugacy
classes, as follows, where Aut(µ) denotes the number of permutations of the tuple µ that leave it
invariant.

B(m)•
g,n (µ1, . . . , µn) =

Aut(µ)

d!
[Id]

∑
λ1,λ2,...,λm∈P (d)∑m

i=1(d−`(λi))=2g−2+n+d

Cλ1Cλ2 · · ·CλmCµ

Now we change from the conjugacy class basis to the orthogonal idempotent basis via the equation

Cα =
∑

χ
χ(Cα)
χ(1) Eχ. Using the fact that Eχ1Eχ2 = δχ1,χ2Eχ1 and [Id]Eχ = dim(χ)2

d! , we have the
following.

B(m)•
g,n (µ1, . . . , µn) =

Aut(µ)

d!

∑
λ1,λ2,...,λm∈P (d)∑m

i=1(d−`(λi))=2g−2+n+d

∑
ν∈P (d)

m∏
i=1

|Cλi |
dim(ν)

χνλi ×
|Cµ|

dim(ν)
χνµ

dim(ν)2

d!

Now interchanging the order of summation, we have the following equation.

B(m)•
g,n (µ1, . . . , µn) =

Aut(µ)

(d!)2
|Cµ|

∑
ν∈P (d)

χνµ
dim(ν)m−1

∑
λ1,λ2,...,λm∈P (d)∑m

i=1(d−`(λi))=2g−2+n+d

m∏
i=1

|Cλi |χνλi

Let us write `(λi) = ki and let P (d, k) denote the set of partitions of d into k parts. We use the
fact that |Cµ| = d!

Aut(µ)
∏n
i=1 µi

to write the above equation as follows.

B(m)•
g,n (µ1, . . . , µn) =

1

d!
∏n
i=1 µi

∑
ν∈P (d)

χνµ
dim(ν)m−1

∑
k1,k2,...,km∑m

i=1(d−ki)=2g−2+n+d

∑
λ1∈P (d,k1)

...
λm∈P (d,km)

m∏
i=1

|Cλi |χνλi

Now interchange the product and sum appearing in the above equation.

B(m)•
g,n (µ1, . . . , µn) =

1

d!
∏n
i=1 µi

∑
ν∈P (d)

χνµ
dim(ν)m−1

∑
k1,k2,...,km∑m

i=1(d−ki)=2g−2+n+d

m∏
i=1

∑
λi∈P (d,ki)

|Cλi |χνλi

We proceed to use the following fact without proof and refer the interested reader to [9898].∑
λ∈P (d,k)

|Cλ|χνλ = [~d−k] dim(ν)
∏
�∈ν

(1 + c(�)~)
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Using this fact, we obtain the following.

B(m)•
g,n (µ1, . . . , µn) =

1

d!
∏n
i=1 µi

∑
ν∈P (d)

χνµ dim(ν)
∑

k1,k2,...,km∑m
i=1(d−ki)=2g−2+n+d

m∏
i=1

[~d−ki ]
∏
�∈ν

(1 + c(�)~)

=
1

d!
∏n
i=1 µi

[~2g−2+n+d]
∑

ν∈P (d)

χνµ dim(ν)
∏
�∈ν

(1 + c(�)~)m

This concludes the proof.

1.2 Hurwitz numbers

In this section, we study Hurwitz numbers from a combinatorial viewpoint. We provide some
motivation behind considering this enumeration and use monodromy to express them via the
representation theory of symmetric groups.

Definition 1.2.1. The simple Hurwitz number Hg,n(µ1, µ2 . . . , µn) is the weighted count of
genus g connected branched covers f : (Σ; p1, . . . , pn)→ (CP1;∞) such that

f−1(∞) = µ1p1 + · · ·+ µnpn; and

the only other ramification is simple and occurs at the mth roots of unity.

The weight of a branched cover f is 1
m!|Aut(f)| , where d =

∑
µi and we have m = 2g − 2 + n+ d

from the Riemann–Hurwitz formula.

Given a branched cover f : Σ→ CP1 as in the definition above, let B denote the set of branch
points in CP1 and pick a point y0 that is not a branch point. We label its preimages y1, y2, . . . , yd
in some way. Then by the general theory of covering spaces, one can naturally define a group
homomorphism

φf : π1(CP1 \B, y0)→ Sd.

For each i = 1, 2, . . . , d, the permutation φf (γ) sends i to j, where γ̃i(1) = yj and γ̃i is the
lift of γ satisfying γi(0) = yi. This homomorphism is called the monodromy representation. A
different choice of labelling of the preimage of y0 corresponds to composing φf with an inner
automorphism of Sd. If γ ∈ π1(CP1 \ B, y0) is a simple loop winding once around the branch
point with ramification profile η, then φf (γ) is a permutation of cycle type η.

Given a monodromy representation, the Riemann existence theorem guarantees that we have
enough information to recover the branched cover. This lead to the following alternative definition
of simple Hurwitz numbers.

Proposition 1.2.2. The simple Hurwitz number Hg,n(µ1, µ2, . . . , µn) is 1
m! d! multiplied by the

number of tuples (ρ1, ρ2, . . . , ρm) of transpositions in Sd such that

the product ρ1 ◦ ρ2 ◦ · · · ◦ ρm has n labelled cycles with lengths µ1, µ2, . . . µn;

m = 2g − 2 + n+ d; and

the group 〈ρ1, ρ2, . . . , ρm〉 generated by the transpositions is a transitive subgroup of Sd.

If we relax the condition of transitivity in Proposition 1.2.21.2.2, we obtain disconnected Hurwitz
numbers, which we denote by H•g,n(µ1, µ2 . . . , µn). As discussed in Section 1.11.1, we can express
the disconnected Hurwitz numbers using characters of the symmetric group using the following
approach.
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For many of the enumerative problems we are interested in, we would like to calculate the
coefficient of the identity in the product CµCνB for some B ∈ C[Sn]. In the case of simple
Hurwitz numbers, we take ν = (1d) and B = Cm

(2,1d−2)
. The action of B ∈ Z(C[Sn]) in the

irreducible representation λ is given by multiplication by some eigenvalue egvλ(B). For the
conjugacy class Cα, we have

egvλ(Cα) :=
|Cα|χλα
dim(λ)

.

So define f2(λ) :=
|C

(2,1d−2)
|χλ

(2,1d−2)

dim(λ) and let z(µ) denote the number of elements in the centraliser
of the conjugacy class µ. Then we have the following proposition resulting from the above
discussion.

Proposition 1.2.3.

H•g,n(µ1, µ2 . . . , µn) =
1

d! z(µ)

∑
λ`d

χλµ dim(λ) f2(λ)m

Notice that in the definition of simple Hurwitz numbers, we keep the ramification profile over
the point 0 to be (1, 1, . . . , 1). We can more generally allow arbitrary ramification over 0 and
keep track of this ramification with appropriate weights, as in the following definitnion. We
call the resulting objects double Hurwitz numbers, using the terminology of Do and Karev [2828].
The following definition is a bit different to the definition of double Hurwitz number appearing
elsewhere in the literature.

Definition 1.2.4. The double Hurwitz number Hg,n(d1, d2, . . . , dn) is the weighted count of
genus g connected branched covers f : (Σ; p1, . . . , pn)→ (CP1;∞) such that

f−1(∞) = µ1p1 + · · ·+ µnpn;

the ramification profile over 0 is arbitrary; and

the only other ramification is simple and occurs at the mth roots of unity.

The weight of a branched cover f with ramification profile (λ1, λ2, . . . , λ`) over 0 is
qλ1

qλ2
···qλ`

m! |Aut(f)| ,
where q1, q2, . . . are commuting variables.

1.3 Monotone Hurwitz numbers

Monotone Hurwitz numbers first appeared in a series of papers by Goulden, Guay-Paquet
and Novak, in which they arose as coefficients in the large N asymptotic expansions of the
Harish-Chandra–Itzykson–Zuber matrix integral over the unitary group U(N) [5454, 5555, 5656]. Their
definition resembles that of Hurwitz numbers, but with a monotonicity constraint imposed on
the transpositions. The monotonicity condition is rather natural from the standpoint of the
Jucys–Murphy elements in the symmetric group algebra C[Sd].

Definition 1.3.1. The monotone Hurwitz number Mg,n(µ1, µ2 . . . , µn) is 1
d! multiplied by the

number of tuples (τ1, τ2, . . . , τm) of transpositions in Sd such that

the product τ1 ◦ τ2 ◦ · · · ◦ τm has n labelled cycles with lengths µ1, µ2, . . . , µn;

m = 2g − 2 + n+ d;

the group 〈τ1, τ2, . . . , τm〉 generated by the transpositions is a transitive subgroup of Sd;
and

if τi = (ai, bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤ bm.
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Example 1.3.2. To calculate M0,2(2, 1), we first deduce that m = 3. Hence, we count all triples
of transpositions in S3 such that the product is a permutation of cycle type (2, 1) satisfying the
monotonicity condition. There are 27 triples of transpositions, but only 12 of them are monotone.

(1 2) ◦ (1 2) ◦ (1 3) (1 2) ◦ (1 3) ◦ (2 3) (1 3) ◦ (1 3) ◦ (2 3) (23) ◦ (1 3) ◦ (1 3)
(1 2) ◦ (1 2) ◦ (2 3) (1 2) ◦ (2 3) ◦ (1 3) (1 3) ◦ (2 3) ◦ (1 3) (23) ◦ (1 3) ◦ (2 3)
(1 2) ◦ (1 3) ◦ (2 3) (1 2) ◦ (2 3) ◦ (2 3) (1 3) ◦ (2 3) ◦ (2 3) (23) ◦ (2 3) ◦ (1 3)

So M0,2(2, 1) = 12
3! = 2.

If we relax the condition of transitivity in Definition 1.3.11.3.1, we obtain disconnected monotone
Hurwitz numbers, which we denote by M•g,n(µ1, µ2 . . . , µn). As discussed in Section 1.21.2, we can
compute these using characters of the symmetric group.

We introduce the Jucys–Murphy elements Jk ∈ C[Sd] for k = 1, 2, . . . , d, defined as

Jk := (1 k) + (2 k) + · · ·+ (k − 1 k) (1.1)

Jucys studied these elements and showed that they commute [6666]. It follows that symmetric
polynomials in J1,J2, . . . ,Jd are central elements in C[Sd]. For a given symmetric function F ,
it is natural to ask for the expression of F (J1,J ,2 . . . ,Jd) in terms of the conjugacy class basis
of Z(C[Sd]). This would lead us to the character formula for monotone Hurwitz numbers.

Let us introduce the basic families of symmetric functions, which share a close relationship with
the representation theory of symmetric groups. We let x = (x1, x2, . . .) be an infinite sequence of
commuting variables and consider the algebra of symmetric functions with complex coefficients
in these variables. Given a partition λ = (λ1, λ2, . . . , λ`), the monomial symmetric function is
defined by

mλ(x) =
∑
α∼λ

xα1
1 xα2

2 xα3
3 · · · ,

where the summation is over all infinite sequences α of non-negative integers whose non-zero
entries form a permutation of λ.

Denote by ek, hk, pk the elementary, complete homogeneous and power-sum symmetric functions,
respectively. Namely, for k a positive integer, we define

ek(x) = m(1k)(x) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik ,

hk(x) =
∑
λ`k

mλ(x) =
∑

i1≤i2≤···≤ik

xi1xi2 · · ·xik ,

pk(x) = m(k)(x) = xk1 + xk2 + xk3 + · · · .

We also set eλ(x) =
∏`(λ)
i=1 ei(x), hλ(x) =

∏`(λ)
i=1 hi(x) and pλ(x) =

∏`(λ)
i=1 pi(x) for a non-empty

partition λ and take m∅(x) = e∅(x) = h∅(x) = 1.

We are in a position now to write M•g,n(µ1, µ2, . . . , µn) in terms of the representation theory of
symmetric groups. From Definition 1.3.11.3.1, we get

M•g,n(µ1, µ2, . . . , µn) =
|Aut(µ)|

d!
[Id]Cµhm(J1,J2, . . . ,Jd).

For F (x1, x2, . . . , xd) a symmetric polynomial and a partition λ ` d, Jucys obtained the for-
mula [6666] ∑

µ`d
χλµ F (J1,J2, . . . ,Jd)Cµ =

∑
µ`d

χλµ F (Aλ)Cµ,
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where Aλ = {c(�) | � ∈ λ} is the multiset of contents of the partition λ. Combining this with
orthogonality of characters allows us to deduce that

M•(µ1, µ2, . . . , µn) =
1

d! z(µ)

∑
λ

χλµ hm(Aλ) dim(λ).

Again, one can consider the generalisation of this enumerative problem to its double counterpart.

Definition 1.3.3. The double monotone Hurwitz number Mg,n(µ1, µ2, . . . , µn) is the weighted
count of tuples (σ, τ1, τ2, . . . , τm) of permutations in Sd such that

τ1τ2, . . . , τm are transpositions such that, if τi = (ai, bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤
bm;

the product σ ◦ τ1 ◦ τ2 ◦ · · · ◦ τm has n labelled cycles with lengths µ1, µ2, . . . , µn;

m = 2g − 2 + n+ `(σ); and

the group 〈σ, τ1, τ2, . . . , τm〉 generated by the permutations is a transitive subgroup of Sd.

The weight of such a tuple with σ of cycle type (λ1, λ2, . . . , λ`) is
qλ1

qλ2
···qλ`

d! .

In Definition 1.3.11.3.1, if we strengthen the inequalities to be strict, so that b1 < b2 < · · · < bm, then
we obtain strictly monotone Hurwitz numbers. The following gives a formal definition.

Definition 1.3.4. The strictly monotone Hurwitz number Rg,n(µ1, µ2 . . . , µn) is 1
d! multiplied

by the number of tuples (τ1, τ2, . . . , τm) of transpositions in Sd such that

the product τ1 ◦ τ2 ◦ · · · ◦ τm has n labelled cycles with lengths µ1, µ2, . . . , µn;

m = 2g − 2 + n+ d;

the group 〈τ1, τ2, . . . , τm〉 generated by the permutations is a transitive subgroup of Sd; and

if τi = (ai, bi) with ai < bi, then b1 < b2 < · · · < bm.

Example 1.3.5. To calculate R0,1(3), we first deduce that m = 2. Hence, we count all pairs of
transpositions in S3 such that the product is a 3-cycle satisfying the strict monotonicity condition.
There are 9 pairs of transpositions, but only 2 of them are strictly monotone: namely, (1 2) ◦ (1 3)
and (1 2) ◦ (2 3). So R0,1(3) = 2

3! = 1
3 .

If we relax the condition of transitivity in Definition 1.3.41.3.4, we obtain disconnected strictly
monotone Hurwitz numbers, which we denote by R•g,n(µ1, µ2 . . . , µn). As for the weakly monotone
case, we can compute these using characters of the symmetric group as follows.

R•(µ1, µ2, . . . , µn) =
1

d! z(µ)

∑
λ

χλµ em(Aλ) dim(λ)

1.4 Fatgraphs, hypermaps and dessins d’enfant

A fatgraph — also known as a map, embedded graph or ribbon graph — can be thought of as
the 1-skeleton of a cell decomposition of an oriented compact surface. Fatgraphs arise in various
area of mathematics, including topological graph theory, moduli spaces of Riemann surfaces and
matrix models [7373].

Definition 1.4.1. A fatgraph is a connected graph Γ endowed with a cyclic ordering of the
half-edges adjacent to each vertex. A fatgraph is uniquely determined by the triple (X, τ0, τ1),
where X is the set of half-edges of Γ, τ0 : X → X is the permutation that rotates half-edges
anticlockwise about their adjacent vertex, τ1 : X → X is the fixed-point free involution that
swaps the two half-edges belonging to the same edge.
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Observe that under the permutation model for a fatgraph Γ,

the set of vertices is in natural bijection with X0 = X/τ0,

the set of edges is in natural bijection with X1 = X/τ1, and

the set of faces is in natural bijection with X2 = X/τ2, where τ2 is defined by τ0τ1τ2 = id.

A fatgraph structure allows one to uniquely thicken the underlying graph to a surface with
boundary. In particular, it acquires a type (g, n) where g denotes the genus of the surface and n
the number of boundary components.

Figure 1.2: By identifying the opposite edges of the hexagon above in pairs, one obtains a genus
1 fatgraph.

An automorphism of a fatgraph Γ is a permutation φ : X → X that commutes with τ0 and τ1.
An automorphism descends to an automorphism of the underlying graph. The group generated
by τ0 and τ1 acts transitively on X, so an automorphism that fixes an oriented edge is necessarily
trivial since φ(X) = X implies φ(τ0X) = τ0X and φ(τ1X) = τ1X. A labelled fatgraph is a
fatgraph whose boundary components are labelled from 1 up to n. An automorphism of a labelled
fatgraph is a permutation φ : X → X that commutes with τ0 and τ1 and act trivially on X2.

A natural generalisation of the above definition of fatgraph is obtained by changing the cycle
type of τ1 in Definition 1.4.11.4.1 to (m,m, . . . ,m) for some fixed m. The resulting objects are called
m-hypermaps. For more information on these, we refer the reader to [7373].

Definition 1.4.2. Define the fatgraph enumeration Fg,n(µ1, µ2, . . . , µn) to be the weighted count
of fatgraphs of genus g with n labelled faces of degrees µ1, µ2, . . . , µn. The weight of a fatgraph Γ
is 1
|Aut(Γ)| , where Aut(Γ) denotes the group face-preserving automorphisms. Furthermore, we

analogously define Fmg,n(µ1, µ2, . . . , µn) to be the weighted count of m-hypermaps of genus g with
n labelled faces of degrees µ1, µ2, . . . , µn.

We now discuss a variation of fatgraphs known as dessins d’enfant. These were originally named
by Grothendieck, who introduced them as an approach to the inverse Galois problem via the
study of Belyi functions [6060].

Definition 1.4.3. A meromorphic function f : X → CP1 from a compact Riemann surface that
is unramified outside {0, 1,∞} ⊂ CP1 is called a Belyi function.

Take the segment [0, 1] ⊂ CP1. Consider the point 0 to be red (•) and consider the point 1 to be
blue (•). The preimage H = f−1([0, 1]) ⊂ X is a fatgraph in the Riemann surface X, with each
edge joining a red vertex and a blue vertex. This representation of a Belyi function is called a
dessin d’enfant.

Definition 1.4.4. A dessin d’enfant is a fatgraph whose vertices are coloured red and blue
such that each edge is adjacent to one vertex of each colour. An isomorphism between two
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dessins d’enfant is an isomorphism between their underlying fatgraphs that preserves the vertex
colouring.

The set of dessins d’enfant in which every blue vertex has degree two is in natural one-to-one
correspondence with the set of fatgraphs. One simply removes the degree two blue vertices and
amalgamates the two adjacent edges into a single edge. Similarly, the set of dessins d’enfant in
which every blue vertex has degree m is in natural one-to-one correspondence with the set of
m-hypermaps.

Definition 1.4.5. Define the dessin d’enfant enumeration Bg,n(µ1, µ2, . . . , µn) to be the weighted
count of dessins d’enfant of genus g with n labelled faces of degrees 2µ1, 2µ2, . . . , 2µn. The
weight of a dessin d’enfant Γ is 1

|Aut(Γ)| , where Aut(Γ) denotes the group of face-preserving
automorphisms.

More generally, one can refine the enumeration withs weights that record the degrees of the blue
vertices.

Definition 1.4.6. Define the double dessin d’enfant enumeration Bg,n(µ1, µ2, . . . , µn) to be the
analogous weighted count of dessins d’enfant, where the weight of a dessin d’enfant Γ with blue
vertices of degrees λ1, λ2, . . . , λ` is

qλ1
qλ2
···qλ`

|Aut(Γ)| .

1.5 Weighted Hurwitz numbers

Our work presented in Chapter 44 is motivated by the Harer–Zagier formula for the enumeration
of fatgraphs with one face [6262], as well as the analogue for the enumeration of dessins d’enfant
with one face [3636]. Apart from the obvious combinatorial similarities between these problems,
they both also arise from double Schur function expansions. Thus, we propose to study a broad
class of “enumerative problems” stored in expansions of the general form

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)Fλ(~). (1.2)

Here, P denotes the set of all partitions (including the empty partition), sλ(p1, p2, . . .) denotes the
Schur function expressed in terms of power-sum symmetric functions, and Fλ(~) is a formal power
series in ~ for each partition λ. We use the shorthand p = (p1, p2, p3, . . .) and q = (q1, q2, q3, . . .)
throughout the section. Following the mathematical physics literature, we will refer to such
power series as partition functions, although we note that this name does not refer to the integer
partitions that appear in the equation above.

One may ask why such double Schur functions are considered and a natural answer is that they
encompass a variety of problems, such as enumeration of fatgraphs and dessins d’enfant, as well
as Hurwitz numbers of various types. In this section, we give a different perspective coming
from integrability, following the work of Alexandrov, Chapuy, Eynard and Harnad on weighted
Hurwitz numbers [22]. We briefly discuss how the partition functions defined above arise as KP
tau functions when Fλ(~) takes on the so-called content-product form.

Recall that a KP tau function τ(t, s) is a function of infinite sets of flow variables t = (t1, t2, . . .)
and s = (s1, s2, . . .) satisfying the infinite system of Hirota bilinear equations, which can be
expressed as

Res
z=0

(
ψ+(z, t)ψ−(z, s)

)
= 0.

Here the Baker–Akhiezer function ψ+(z, t) and its dual ψ−(z, t) are defined by the Sato formula

ψ±(z, t) := exp

( ∞∑
i=1

tiz
i

)
τ(t∓ [z−1])

τ(t)
,
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where we use the notation [z−1] = (1
z ,

1
2z2 ,

1
3z3 , . . .).

The Hirota bilinear equations can be understood geometrically as equivalent to Plücker relations
for a certain infinite-dimensional Grassmannian. This connects KP tau functions with the infinite
wedge space, which we will briefly describe. Furthermore, we will require calculations with the
infinite wedge space in our work on Gromov–Witten invariants in Chapter 66.

Let V be a vector space with orthonormal basis {ei | i ∈ Z} and consider it as the direct sum

V = V+ ⊕ V−,

where V+ = span{e−i}i∈N and V− = span{ei}i∈N+ . Introduce the notion of the infinite wedge
space F := ∧∞/2V , which is spanned by elements |λ;N〉, where λ is a partition and N ∈ Z.

|λ;N〉 := {e`1 ∧ e`2 ∧ e`3 ∧ · · · | `i := λi − i+N}

Since a partition λ := λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 ≥ 0 ≥ · · · is eventually zero, the sequence
`1, `2, . . . contains all but finitely many negative integers. Let us denote the subset of lattice
coordinates {`1, `2, . . .} appearing in the basis element | λ;N〉 as Sλ(N). Note that F =

⊕
FN

has a natural Z-grading by the integer N , known as the charge.

We are mostly interested in F0 as other states can be obtained by translating F0. A special basis
element of F0 called the vacuum |∅; 0〉 is given by the empty partition and N = 0. Let us define
the fermionic operator ψk for k ∈ Z by giving its action on the basis element |λ;N〉 as follows.

ψk(|λ;N〉) =

{
ek ∧ |λ;N〉, for k /∈ Sλ(N),

0, for k ∈ Sλ(N).

Similarly, we define the adjoint operator ψ∗k to be as follows, where êk denotes the removal of the
wedge factor.

ψ∗k(|λ;N〉) =

{
êk ∧ |λ;N〉, for k ∈ Sλ(N),

0, for k /∈ Sλ(N).

These fermionic operators satisfy anti-commutation relations

[ψi, ψ
∗
j ]+ = δij , [ψi, ψj ]+ = 0, and [ψ∗i , ψ

∗
j ]+ = 0.

Define the normally ordered operator : ψiψj : on F0 to be ψiψj if j > 0 and −ψjψi if j ≤
0. We consider the infinite-dimensional Lie algebra gl∞ spanned by the operators : ψiψj :.
Exponentiating elements of gl∞, we obtain elements of the Lie group GL∞, consisting of
invertible endomorphisms having well-defined determinants [9494]. A typical element of GL∞ can
be represented by

ĝ = exp

(∑
ij

Aij : ψiψj :

)
.

We use the fermionic operators to define the bosonic operators

αn :=
∑

k∈Z+ 1
2

: ψk−nψ
∗
k :, for n ∈ Z \ {0}.

The adjoint of αn is given by

α∗n =

(∑
: ψk−nψ

∗
k :

)∗
=
∑

: ψkψ
∗
k−n :=

∑
: ψk+nψ

∗
k := α−n.
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The bosonic operators satisfy commutation relations

[αm, αn] = mδm+n,0.

There is a natural map F → C[t] given by

|λ;N〉 7→ 〈∅;N | exp

( ∞∑
i=1

tiαi

)
|λ;N〉

where 〈∅;N | denotes the covacuum, which returns the coefficient of |∅;N〉. More generally, given
an element ĝ ∈ GL∞, we call the value of 〈∅;N | ĝ |∅;N〉 the vacuum expectation of the operator
ĝ. For example, we have the result

〈∅; 0| exp

( ∞∑
i=1

tiαi

)
|λ; 0〉 = sλ(t),

where sλ denotes a Schur function expressed in terms of power-sum symmetric functions p1, p2, . . .
and we set ti := pi

i . Let us define the vertex operators

γ̂+(t) := exp

( ∞∑
i=1

tiαi

)
and γ̂−(t) := exp

( ∞∑
i=1

tiα−i

)
.

With this notation, we can construct a large family of tau functions of the forms

τg(N, t) := 〈0;N |γ̂+(t)ĝ|0;N〉, (1.3)

τg(N, t, s) := 〈0;N |γ̂+(t)ĝγ̂−(s)|0;N〉. (1.4)

We consider a special subfamily of tau functions for which the group element ĝ is given by

ĝ := exp

(∑
i∈Z

Ti : ψiψ
∗
i :

)
,

whose action is diagonal with respect to the basis |λ;N〉. Such tau functions are called hypergeo-
metric tau functions in the literature [8989].

The eigenvalues rλ(N, g) of ĝ can be written in the content-product form [8989]

rλ(N, g) := r0(N, g)
∏

(i,j)∈λ

rN+j−i(g), ri(g) := exp(Ti − Ti−1),

where

r0(N, g) :=


∏N−1
i=0 exp(Ti), if N > 0,

1, if N = 0,∏−1
i=N exp(−Ti), if N < 0.

Then the hypergeometric tau functions of equation (1.41.4) have double Schur function expansions
of the form

τg(N, t, s) =
∑
λ

rλ(N, g)sλ(t)sλ(s).

Let c1, c2, . . . be an infinite sequence of parameters and let

G(z) :=
∞∏
i=1

(1 + ciz) .
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For now, we are not concerned with G(z) being convergent and treat it formally. Let us recall
the notation Eλ for the orthogonal idempotent basis of the centre of the symmetric group algebra
and Jk for the Jucys–Murphy elements. We let J denote the entire collection of these elements,
as defined in Section 1.31.3. Then

Gn(z,J )Eλ :=
n∏
i=1

G(zJi)Eλ =
∏

(i,j)∈λ

G(z(j − i))Eλ.

Similarly, we can define the dual generating function

G̃(z) :=
1

G(−z)
=
∞∏
i=1

(1− ciz)−1.

Now choose Tj depending on G(z) so that

TGj =

j∑
k=1

logG(zk), T
G(z)
0 (z) = 0, T

G(z)
−j (z) = −

j−1∑
k=0

logG(−kz), for j > 0.

In this case,

ĝ := exp

(∑
i∈Z

TGi : ψiψ
∗
i :

)
,

and it follows that
rj(g) := r

G(z)
j = G(jz).

We have
ĝ|λ;N〉 = r

G(z)
λ (N)|λ;N〉,

with eigenvalues

r
G(z)
λ (N) := r

G(z)
0 (N)

∏
�∈λ

G(z(N + j − i)),

where

r
G(z)
0 (N) =

N∏
j=1

G((N − j)z)j , r0(0) = 1, r
G(z)
0 (−N) =

N∏
j=1

G((j −N)z)−j , for N > 1.

Similarly, for the dual generating function G̃(z), we have

r
G̃(z)
λ (N) := r

G̃(z)
0 (N)

∏
�∈λ

G̃(z(N + j − i)).

The work of Alexandrov, Chapuy, Eynard and Harnad explains that the coefficients of these
particular hypergeometric tau functions in the power-sum symmetric function basis enumerate
weighted branched covers or equivalently, weighted paths in the Cayley graph of symmetric
groups or weighted constellations [22, 6464]. As such, they are termed weighted Hurwitz numbers.
These give a vast family of enumerative problems that encompass the ones mentioned previously
in this chapter, such as enumeration of fatgraphs and hypermaps, BMS numbers, simple and
monotone Hurwitz numbers. The class of weighted Hurwitz numbers and their associated tau
functions forms the basis for some of our work on one-point recursions in Chapter 44.
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Chapter 2

Problems in enumerative geometry

Enumerative geometry is a branch of algebraic geometry concerned with counting geometric
objects that satisfy certain constraints, mainly by means of intersection theory. In this chapter,
we discuss some problems from enumerative geometry that are relevant to the remainder of the
thesis — namely, intersection theory on moduli spaces of curves (Section 2.12.1), the enumeration of
lattice points in moduli spaces of curves (Section 2.22.2), and Gromov–Witten theory (Section 2.32.3).
These enumerative problems are all closely related to the more general notion of cohomological
field theory, whose definition concludes the chapter. Cohomological field theories have a close
relation to topological recursion, which is an underlying theme of this thesis.

2.1 Moduli spaces of curves

Consider a genus g smooth complex curve C with n ≥ 0 distinct points on it. We always
suppose that the curve is compact and that the points are labelled x1, x2, . . . , xn. Considered
up to isomorphisms preserving the marked points, such a curve determines a point in the
moduli space of curves Mg,n. We denote this point by (C;x1, . . . , xn). If 2g − 2 + n ≥ 0, then
the curve only admits finitely many automorphisms and is called stable. For the remaining
cases (g, n) = (0, 0), (0, 1), (0, 2) and (1, 0), such an unstable curve admits infinitely many
automorphisms, in which case there is no good moduli space of curves.

Example 2.1.1. All smooth genus 0 curves with 3 marked points are isomorphic, so M0,3

consists of a single point. A smooth genus 0 curve with 4 marked points is isomorphic to
(CP1; 0, 1,∞, λ) for some λ ∈ C \ {0, 1}. SoM0,4 can be naturally identified with CP1 \ {0, 1,∞}.

Example 2.1.2. Every elliptic curve is isomorphic to the quotient of C by a rank 2 lattice, so
M1,1 = {rank 2 lattices}/C∗. Here, the single marked point corresponds to the points of the
lattice. Consider a basis (z1, z2) of a lattice Λ. Multiplying Λ by 1

z1
or 1

z2
, we obtain a lattice

with basis (1, τ), where τ lies in the upper half-plane H. Choosing another basis of the same
lattice, we obtain another point τ ′ ∈ H. Thus, the group SL(2,Z) of base changes in a lattice
acts on H via Möbius transformations, given by[

a b
c d

]
τ =

aτ + b

cτ + d
.

Hence, we have M1,1 = H/SL(2,Z).

For 2g−2+n > 0, the moduli spaceMg,n possesses the structure of a smooth complex (3g−3+n)-
dimensional orbifold. Alternatively, one can consider it as a smooth (3g − 3 + n)-dimensional
Deligne–Mumford stack. As we can see from the examples above,Mg,n is not compact in general.

15
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We compactify it by adding points that correspond to nodal curves satisfying a stability condition,
thereby arriving at the Deligne–Mumford compactification.

Example 2.1.3. What will happen as λ→ 0 in the example of M0,4 above? At first sight, we
will simply obtain a curve with four marked points, two of which coincide: x1 = x4. However,
such an approach is unfair with respect to the points x1 and x4. Indeed, without changing the
curve Cλ, we can change its local coordinate via the map x→ x/λ and obtain the curve

(C, x1, x2, x3, x4) ' (CP1, 0, 1/λ,∞, 1).

What we see now in the limit is that x1 and x4 do not glue together any longer, but this time x2

and x3 do tend to the same point. Since there is no reason to prefer one local coordinate to the
other, neither of the pictures is better than the other one. The right thing to do is to include
both limit curves in the description of the limit.

One component corresponds to the initial local coordinate x, while the other component corre-
sponds to the local coordinate x/λ. To make this more visual, consider the following example.
Let xy = λz2 be a family of curves in CP2 parametrised by λ. On each of these curves, we mark
the following points:

[x1, y1, z1] = [0 : 1 : 0], [x2, y2, z2] = [1 : λ : 1], [x3, y3, z3] = [1 : 0 : 0], [x2, y2, z2] = [λ : 1 : 1].

Then, for λ 6= 0, the curve is isomorphic to CP1 with four marked points, while for λ = 0 it
degenerates into a curve composed of two spheres meeting nodally, with two marked points on
each sphere.

The following figure gives a combinatorial model. We have a sphere marked with four points
p1, p2, p3, p4. It degenerates to two spheres glued at the red point having two marked points each.
The red point denotes the nodal singularity.

Figure 2.1: On the left, we depict an element ofM0,4 and on the right, an element ofM0,4\M0,4.

Example 2.1.4. In the case of M1,1 if we let τ → ∞, we can identify the limit as the torus
with a marked point denoted by p1 and a pinched cycle that creates a nodal point. This can be
constructed from a sphere with three marked points, with two of them glued together at a node.

Figure 2.2: On the left, we depict an element ofM1,1 and on the right, an element ofM1,1\M1,1.
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Compactifying the moduli space of curves Mg,n requires us to consider non-smooth curves,
but with only mild singularities. In particular, we only allow simple nodes, which are those
singularities that locally look like the curve given by the equation xy = 0 at the origin. The
neighbourhood of a node is diffeomorphic to two disks with identified centres. We say that a node
is normalised if the two disks with identified centres that form its neighbourhood are unplugged
and then replaced by disjoint disks.

Definition 2.1.5. A stable curve is a complex algebraic curve C with n ≥ 0 marked points
x1, x2, . . . , xn ∈ C, satisfying the following conditions.

The only singularities of C are nodes.

The marked points are distinct and do not coincide with nodes.

The curve has finitely many automorphisms that preserve the marked points.

Unless stated otherwise, stable curves are assumed to be connected. The genus of a stable
curve C is considered to be the arithmetic genus of the curve. Furthermore, observe that the
finite automorphisms condition is satisfied if and only if each irreducible component X satisfies
2g(X)− 2 + n(X) > 0, where g(X) denotes the genus of the component and n(X) the number
of marked points or branches of a node on the component.

As an example, see Figure 2.32.3, which shows a stable curve of genus 4, with three nodes and
one marked point. The middle hole surrounded by the three nodes gives rise to an extra genus
beyond that contributed by the irreducible components.

Figure 2.3: A stable curve of genus 4 with one marked point.

Theorem 2.1.6. There exists a smooth compact complex (3g−3+n)-dimensional orbifold Mg,n,
a smooth complex (3g − 2 + n)-dimensional orbifold Cg,n and a map p : Cg,n →Mg,n such that

Mg,n ⊂Mg,n is an open dense sub-orbifold and Cg,n ⊂ Cg,n its preimage under p;

the fibres of p are stable curves of genus g with n marked points;

each stable curve is isomorphic to exactly one fibre;

the stabiliser of a point t ∈ Mg,n is isomorphic to the automorphism group of the corre-
sponding stable curve Ct.

Definition 2.1.7. The space Mg,n is called the Deligne–Mumford compactification of the
moduli space of curves Mg,n. The family p : Cg,n →Mg,n is called the universal curve. The set
Mg,n \Mg,n parametrising singular stable curves is called the boundary of Mg,n.
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Example 2.1.8. We have M0,3 =M0,3, both of which consist of a single point. Indeed, the
unique stable genus 0 curve with 3 marked points is smooth. We have M0,4 = CP1, with the
three singular stable genus 0 curves with 4 marked points corresponding to λ ∈ {0, 1,∞}, as in
Example 2.1.12.1.1.

Example 2.1.9. The moduli spaceM1,1 is obtained fromM1,1 by adding one point correspond-
ing to the unique singular stable genus 1 curve with 1 marked point.

2.2 Lattice points in moduli spaces of curves

The geometry of moduli spaces of curves Mg,n is proved to be intimately related to the space of
graphs embedded in surfaces. Embedded graphs are used to enumerate cells in a certain cell
decomposition of decorated moduli spaces. A decorated moduli space is simply a product of the
usual moduli space Mg,n by the real positive octant Rn+. Decorated moduli spaces are no longer
complex orbifolds and they carry only real orbifold structures. The moduli space Mg,n has real
dimension 6g − 6 + 2n, so the decorated moduli space has real dimension 6g − 6 + 3n.

The decorated moduli space has a cell decomposition

Mg,n × Rn+ ∼=

( ⊔
Γ∈Fatg,n

PΓ

)
/ ∼, (2.1)

where the indexing set Fatg,n is the set of labelled fatgraphs of genus g with n boundary
components, in which each vertex has degree at least three [6363]. The notion of a fatgraph
was described earlier in Section 1.41.4. The cell PΓ is the set of metrics on the fatgraph Γ — in
other words, the assignment of a positive real number to each edge. So it naturally satisfies

PΓ
∼= Re(Γ)

+ where e(Γ) denotes the number of edges of the fatgraph Γ. The right side of
equation (2.12.1) is known as the combinatorial moduli space and we write it as Mcomb

g,n . For each

(b1, . . . , bn) ∈ Rn+, there is a natural projection π :Mcomb
g,n → Rn+, which allows us to define the

natural homeomorphism

Mcomb
g,n (b1, . . . , bn) := π−1(b1, . . . , bn) ∼=Mg,n.

Definition 2.2.1. Define the set of all metrics on the labelled fatgraph Γ with fixed boundary
lengths b = (b1, . . . , bn) ∈ Rn+ to be

PΓ(b1, . . . , bn) := PΓ ∩ π−1(b1, . . . , bn).

In particular, we can consider equation (2.12.1) at the level of fibres in the following way.

Mcomb
g,n (b1, . . . , bn) =

( ⊔
Γ∈Fatg,n

PΓ(b1, . . . , bn)

)
/ ∼

These cell decompositions are fundamental in Kontsevich’s proof of Witten’s conjecture, which
proceeds by calculation of the volume of the moduli space with respect to a particular symplectic
structure [6969]. This is closely related to Mirzakhani’s calculation of the Weil–Petersson volumes
of moduli spaces of hyperbolic surfaces and indeed, arises as a particular limit of it [2727, 7777].
Norbury proposed to discretise the volume calculation, by restricting to positive integer values
of b1, b2, . . . , bn and counting lattice points in the resulting integral polytopes PΓ(b1, b2, . . . , bn).
These correspond to metric fatgraphs with vertex degrees at least three and integral edge
lengths or equivalently, fatgraphs with vertex degrees at least two. Thus, we have the notion
of lattice points in Mg,n and the associated enumeration possesses a variety of interesting
properties [55, 66, 8181, 8282].
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We now briefly discuss convex polytopes, their volumes and lattice point enumerations. A convex
polytope P ⊂ Rn is a bounded convex set whose closure is the convex hull of a finite set of vertices
in Rn. Given a linear map A : RN → Rn and b ∈ Rn,

PA(b) := {x ∈ RN+ | Ax = b}

defines a convex set and it is a convex polytope if A has non-negative entries and non-zero
columns. If the matrix A is defined over the integers — that is, A : ZN → Zn and A has
non-negative entries and non-zero columns — then for b ∈ Zn, PA(b) is a rational convex polytope,
meaning that its vertices lie in Qn. One can count integral solutions to Ax = b by defining

NPA(b) := #

{
x ∈ ZN+ | Ax = b

}
.

The following example appears in [8484].

Example 2.2.2. Consider the matrix

A =

[
1 2 2
1 0 0

]
.

By solving for x, we have

NPA(b1, b2) =


0, b1 − b2 odd,

0, b1 − b2 even and b1 ≤ b2,
1
2(b1 − b2)− 1, b1 − b2 even and b1 > b2.

Next, we discuss the relationship between convex polytopes and fatgraphs. Given a fatgraph Γ
of type (g, n), its incidence matrix AΓ is defined by

AΓ : Re(Γ) → Rn

edge→ incident boundary components.

Example 2.2.3. Let Γ and Γ′ be the genus 0 and genus 1 fatgraphs in the diagram below.

Figure 2.4: On the left, we show the genus 0 fatgraph Γ and on the right, we show the genus 1
fatgraph Γ′.

Then their respective incidence matrices have rows indexed by the faces of the fatgraph and
columns indexed by the edges.

AΓ =

1 1 0
1 0 1
0 1 1

 AΓ′ =
[
2 2 2

]
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For a fatgraph Γ and integers b1, . . . , bn, denote the number of lattice points in the rational
convex polytope PΓ(b1, . . . , bn) by

NΓ(b1, . . . , bn) := NPΓ
(b1, . . . , bn) = #

{
PΓ(b1, . . . , bn) ∩ Ze(Γ)

+

}
.

The number of lattice points in Mcomb
g,n (b1, . . . , bn), as defined in [8181], is the weighted sum of NΓ

over the finite set of labelled fatgraphs of genus g with n boundary components, in which each
vertex has degree at least three.

Definition 2.2.4. For g ≥ 0, n ≥ 1 and positive integers b1, . . . , bn, define

Ng,n(b1, . . . , bn) =
∑

Γ∈Fatg,n

1

|Aut(Γ)|
NΓ(b1, . . . , bn).

In the following, we use the term quasi-polynomial to refer to functions g : Zn+ → R for which
there exists a positive integer m and polynomials p0, p1, . . . , pm−1 ∈ R[t] such that

g(t) = pi(t), for t ≡ i (mod m).

Theorem 2.2.5 (Norbury [8181]). The number of lattice points Ng,n(b1, . . . , bn) is a symmetric
quasi-polynomial of degree 3g− 3 +n in b21, . . . , b

2
n in the sense that it is polynomial on each coset

of the sublattice 2Zn ⊂ Zn.

By symmetry, we can represent the underlying 2n polynomials corresponding to the quasi-

polynomial Ng,n(b1, . . . , bn) by the n+ 1 polynomials N
(k)
g,n(b1, . . . , bn) for k = 0, 1, . . . , n, corre-

sponding to the first k variables being odd and the remaining variables even. Observe that if k is

odd, then N
(k)
g,n(b1, . . . , bn) = 0. The following table gives some examples of these polynomials in

low genus.

g n k N
(k)
g,n(b1, b2, . . . , bn)

0 3 0 1

0 3 2 1

1 1 0 1
48(b21 − 4)

0 4 0 1
4(b21 + b22 + b23 + b24 − 4)

0 4 2 1
4(b21 + b22 + b23 + b24 + 2)

0 4 4 1
4(b21 + b22 + b23 + b24 + 8)

1 2 0 1
384(b21 + b22 − 4)(b21 + b22 − 8)

1 2 2 1
384(b41 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 84)

The lattice point count Ng,n(b1, . . . , bn) satisfies a recursion that uniquely determines the polyno-
mials from a finite number of base cases. Moreover, this recursion implies the Witten–Kontsevich
theorem when restricted to the top degree terms of the quasi-polynomials.

Theorem 2.2.6 (Norbury [8181]). The lattice count Ng,n(b1, . . . , bn) satisfies the following recursion
relation, which determines the polynomials uniquely from N0,3(b1, b2, b3) and N1,1(b1). For
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2g − 2 + n ≥ 2 and b1, b2, . . . , bn > 0, we have the following equation, where S = {1, 2, . . . , n}
and bI = (bi1 , bi2 , . . . , bik) for I = {i1, i2, . . . , ik}.(

n∑
i=1

bi

)
Ng,n(bS) =

∑
i<j

∑
p+q=bi+bj
q even

pq Ng,n−1(p,bS\{i,j})

+
1

2

∑
i

∑
p+q+r=bi
r even

pqr

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]

The word stable over the final summation denotes that we exclude all terms with N0,1 or N0,2.

Do and Norbury introduced the related count of lattice points in Mg,n, the Deligne–Mumford
compactification of the moduli space of curves [2929]. For positive integers b1, b2, . . . , bn, they
defined

Zg,n(b1, b2, . . . , bn) ⊂Mg,n

to be the set of stable curves Σ with labelled points (p1, p2, . . . , pn) such that there exists a
morphism f : Σ→ CP1 satisfying the following three conditions.

(C1) The morphism f has degree b1 + b2 + · · ·+ bn and is regular over CP1 \ {0, 1,∞}.
(C2) The ramification profile over 1 ∈ CP1 is of the form (2, 2, . . . , 2) and the ramification profile

over ∞ ∈ CP1 is of the form (b1, b2, . . . , bn), with ramification order bk occurring at the
point pk ∈ Σ.

(C3) Each point over 0 ∈ CP1 has ramification order at least two or is a node of Σ.

The set Zg,n(b1, b2, . . . , bn) typically comprises a finite set of discrete points in Mg,n, along with
higher-dimensional components that are products of uncompactified moduli spaces of curves. The
latter arise from maps f : Σ→ CP1 that have so-called ghost components — that is, irreducible
components of Σ that map entirely to 0 ∈ CP1. To properly “count” points in Zg,n(b1, b2, . . . , bn),
one needs to account for the orbifold nature ofMg,n and the existence of these ghost components.
This can be conveniently expressed via the orbifold Euler characteristic as follows.

Definition 2.2.7. For positive integers b1, b2, . . . , bn, define

Ng,n(b1, b2, . . . , bn) = χ
(
Zg,n(b1, b2, . . . , bn)

)
,

where χ
(
Zg,n(b1, b2, . . . , bn)

)
is the orbifold Euler characteristic of Zg,n(b1, b2, . . . , bn).

One can associate a combinatorial structure that is called a stable fatgraph to any morphism
from a stable curve f : Σ→ CP1 satisfying the conditions (C1), (C2) and (C3) above as follows.
Let Γ′ = f−1[0, 1] \ {nodes, ghost components} ⊂ Σ. Define Γ to be the closure of Γ′ in the
normalisation of Σ — that is, add vertices to non-compact ends of Γ′. Let S = Γ \ Γ′ and
define two vertices in S to be equivalent if they coincide in Σ/ ∼, where ∼ identifies points
on the same ghost component. The genus h of an equivalence class in S is the genus of the
corresponding collapsed components or zero if there is no corresponding collapsed component,
which corresponds to a node. Thus, we obtain the following definition.

Definition 2.2.8. A stable fatgraph is a fatgraph endowed with the extra structure of

a set S of distinguished vertices;

an equivalence relation ∼ on S;

a genus function h : S/ ∼→ N such that h(S0) > 0 for any equivalence class S0 ⊂ S with
|S0| = 1.
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We consider a stable fatgraph to be connected if it is connected after identification of vertices by
the equivalence relation ∼. We define the genus of a connected stable fatgraph Γ to be the sum
of the genera of the components, plus the sum of the values of the genus function h, plus the
first Betti number of the dual graph of Γ. This is precisely to ensure that the enumeration of
stable fatgraphs by degree recovers Ng,n(b1, . . . , bn) as described below. Isomorphisms between
stable fatgraphs are isomorphisms of fatgraphs that respect the extra structure — that is, they
leave S invariant and preserve h.

Definition 2.2.9. For (b1, b2, . . . , bn) ∈ Zn+, define Fatstable
g,n (b1, b2, . . . , bn) to be the set of

isomorphism classes of labelled stable fatgraphs, connected after identification of vertices by ∼,
of genus g with n boundary components of lengths (b1, b2, . . . , bn), with all vertices of valence 1
contained in S.

The construction above defines a map

Zg,n(b1, b2, . . . , bn)→ Fatstable
g,n (b1, b2, . . . , bn),

which is no longer one-to-one in general since fibres can be infinite. Nevertheless,

Ng,n(b1, b2, . . . , bn) =
∑

Γ∈Fatstable
g,n (bS)

w(Γ), (2.2)

for weights w(Γ) defined as a product of orbifold Euler characteristics of compactified moduli
spaces. More explicitly, we take

w(Γ) =
1

Aut(Γ)

∏
v∈S/∼

χ(Mh(v),n(v))

where we have defined n(S0) = |S0| for any equivalent class S0 ⊂ S and we set χ(M0,2) = 1 to
simplify the notation.

Example 2.2.10. As an example of the enumeration, we consider the value N1,1(2) = 1
4 . In the

case of the uncompactified lattice point count, we have N1,1(2) = 0. The contribution in the
compactified count comes from the following figure, which shows the pullback of the interval
[0, 1] under a stable map from the pinched torus to CP1.

Figure 2.5: The construction of the unique stable fatgraph that contributes to N1,1(2) = 1
4 .

The compactified lattice point count Ng,n(b1, b2, . . . , bn) has a particularly nice structure, analo-
gous to Theorem 2.2.52.2.5.
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Theorem 2.2.11 (Do and Norbury [2929]).

The compactified lattice point count Ng,n(b1, b2, . . . , bn) is a symmetric quasi-polynomial
in b21, b

2
1, . . . , b

2
n of degree 3g − 3 + n in the sense that it is polynomial on each coset of the

sublattice 2Zn ⊂ Zn.

For
∑n

i=1 αi = 3g − 3 + n, the coefficient of b2α1
1 b2α2

2 · · · b2αnn in Ng,n(b1, b2, . . . , bn) is the
following intersection number of psi-classes ψ1, ψ2, . . . , ψn ∈ H2(Mg,n;Q).

1

25g−6+2nα1!α2! · · · αn!

∫
Mg,n

ψα1
1 ψα2

2 · · ·ψ
αn
n

The constant coefficient of Ng,n(b1, b2, . . . , bn) is the orbifold Euler characteristics of Mg,n.

Ng,n(0, 0, . . . , 0) = χ(Mg,n)

The following recursive formula can be used to effectively compute Ng,n(b1, b2, . . . , bn) from the
base cases N0,3(b1, b2, b3) and N1,1(b1).

Theorem 2.2.12 (Do and Norbury [2929]). For 2g− 2 + n ≥ 2 and b1, b2, . . . , bn ≥ 0, we have the
following equation, where S = {1, 2, . . . , n} and bI = (bi1 , bi2 , . . . , bik) for I = {i1, i2, . . . , ik}.(

n∑
i=1

bi

)
Ng,n(bS) =

∑
i<j

∑
p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j})

+
1

2

∑
i

∑
p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]

In the summations, p, q, r vary over all non-negative integers and we use the notation [p] = p for
p positive and [0] = 1. The word stable over the final summation denotes that we exclude all
terms with N0,1 or N0,2.

2.3 Gromov–Witten theory

Gromov–Witten theory morally counts maps from curves to a target variety satisfying certain
conditions. The theory crucially relies on the construction of the moduli space of stable maps
and its virtual fundamental class.

Definition 2.3.1. Let X be a complex variety and fix a class β ∈ H2(X;Z). The moduli space
of stable maps Mg,n(X,β) parametrises stable morphisms

f : (C;x1, x2, . . . , xn)→ X,

where (C;x1, x2, . . . , xn) is a nodal curve with marked points and f∗[C] = β. The morphism
is stable if each genus 0 irreducible component of C that maps to a point of X has at least
three special points and each genus 1 irreducible component of C that maps to a point of X
has at least one special point. A special point is either a marked point or a branch of a node.
We consider two such morphisms f1 : C1 → X and f2 : C2 → X to be equivalent if there is an
isomorphism φ : C1 → C2 that preserves the marked points and satisfies f1 = f2 ◦ φ.

Example 2.3.2. One of the simplest non-trivial examples is given by the moduli space of stable
maps M0,0(CP2, 1). Here, we use the identification H2(CP2;Z) ∼= Z to express the homology
class as an integer. This moduli space essentially parametrises maps CP1 → CP2.
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Although the moduli space Mg,n(X,β) is proper, it is often neither smooth nor even equi-
dimensional. The enumerative geometry of stable maps requires integrating over this moduli
space, which is made possible due to the construction of the so-called virtual fundamental
class [8787], which we denote by [Mg,n(X,β)]vir. It is a homology class whose dimension is given
by the formula

dim[Mg,n(X,β)]vir = (dimX − 3)(1− g) +

∫
β
c1(TX) + n

Example 2.3.3. Let us consider the moduli space M1,0(CP2, 1), which demonstrates that the
virtual dimension does not match the highest dimensional components of the moduli spaces. This
space is the compactification of the moduli space of genus 1 maps to CP2 of degree 1. Notice
that the open locus of smooth curves is empty as all genus 1 curves must have degree at least 3.
However, there are non-smooth maps obtained in the following way. Consider a genus 0 curve
connected to a genus 1 curve at a node. We can map it to CP2 by mapping the genus 0 curve
onto a line and by collapsing the genus 1 curve to a point. The dimension of this space is 4,
coming from 2 for the line, 1 for the point on the line and 1 for the genus 1 curve. However, the
virtual dimension given by the above formula is 3.

For i = 1, 2, . . . , n, there is a natural evaluation map

evi :Mg,n(X,β)→ X

defined by
[f : (C;x1, x2, . . . , xn)→ X] 7→ f(xi).

Now suppose that we have subvarieties W1,W2, . . . ,Wn of X and wish to enumerate stable maps
that send the ith marked point to Wi. The homology class associated to Wi has a Poincaré dual
γi ∈ H∗(X), so we can consider the cohomology class ev∗i γi. The Poincaré dual of this class in
some sense represents stable maps that send xi to a point in Wi. Moreover, since cup product is
dual to intersection, the Poincaré dual of the class

ev∗1γ1 ∪ · · · ∪ ev∗nγn

in some sense represents stable maps that send xi to a point in Wi for i = 1, 2, . . . , n. If the set
of such maps is finite, at least morally, then the number of them is captured by the integral∫

Mg,n(X,β)
ev∗1γ1 ∪ · · · ∪ ev∗nγn.

More generally, let Li be the ith cotangent line bundle overMg,n(X,β), whose fibre over a point
in Mg,n(X,β) is the cotangent line T ∗piC at the marked point pi in the domain curve C. Define

ψi ∈ H2(Mg,n(X,β);Q) to be the first Chern class of Li. For i = 1, 2, . . . , n, one can consider
descendent classes

τbi(γ) = ψbii ev∗i (γ),

and these can also be integrated against the virtual fundamental class.

Definition 2.3.4. For γ1, γ2, . . . , γn ∈ H∗(X;Z), we define the Gromov–Witten invariant

〈τb1(γ1)τb2(γ2) · · · τbn(γn)〉X,βg,n =

∫
[Mg,n(X,β)]vir

ev∗1(γ1)ψb11 ∪ · · · ∪ ev∗n(γ1)ψbnn .

Example 2.3.5. Let pt denote the class of a point in CP2. Then the Gromov–Witten invariant

〈τ0(pt), . . . , τ0(pt)〉CP
2,d

0,3d−1

is the number of degree d rational curves in CP2 passing through 3d− 1 points.
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For the remainder of this section, we consider the special case when the algebraic variety is
X = CP1, which is of particular interest to us. Let ω ∈ H2(CP1;Q) be the Poincaré dual class of
a point and let 1 ∈ H0(CP1;Q) the Poincaré dual of the fundamental class. We consider the
connected Gromov–Witten invariants〈∏̀

i=1

τbi(1)
n∏

i=`+1

τbi(ω)
〉CP1,d

g,n
. (2.3)

These are defined to be zero unless the dimension condition
∑
bi = 2g − 2 + 2d+ ` is satisfied.

We collect here a few properties of Gromov–Witten invariants of CP1, as they appear in [8787].

Divisor equation

〈τ0(ω)τb1(γ1) · · · τbn(γn)〉dg,n+1 = d 〈τb1(γ1) · · · τbn(γn)〉dg,n

+

n∑
i=1

〈τb1(γ1) · · · τbi−1(γi ∪ ω) · · · τbn(γn)〉dg,n.
(2.4)

String equation

〈τ0(1)τb1(γ1) · · · τbn(γn)〉g,n+1 =

n∑
i=1

〈τb1(γ1) · · · τbi−1(γi) · · · τbn(γn)〉g,n. (2.5)

Dilaton equation

〈τ1(1)τb1(γ1) · · · τbn(γn)〉g,n+1 = (2g − 2 + n) 〈τb1(γ1) · · · τbn(γn)〉g,n (2.6)

Topological recursion relations. Define the following generating function for descendent
classes.

F = exp

( ∞∑
b=0

tbτb(ω) + sbτb(1)

)
For γi ∈ {1, ω}, the genus zero topological recursion relation is

〈τb1(γ1)τb2(γ2)τb3(γ3)F 〉0 = 〈τ0(1)τb1−1(γ1)F 〉0 〈τ0(ω)τb2(γ2)τb3(γ3)F 〉0
+ 〈τ0(ω)τb1−1(γ1)F 〉0 〈τ0(1)τb2(γ2)τb3(γ3)F 〉0,

and the genus one topological recursion relation is

〈τb1(γ1)F 〉1 = 〈τ0(1)τb1−1(γ1)F 〉0 〈τ0(ω)F 〉1
+ 〈τ0(ω)τb1−1(γ1)F 〉0 〈τ0(1)τ0(ω)τb1−1(γ1)F 〉0.

2.4 Cohomological field theories

Kontsevich and Manin [7070] introduced the notion of a cohomological field theory, which generalises
Gromov–Witten theory by substituting the cohomology of the target space with a vector space
equipped with a nonlinear bilinear form, along with other data. As usual, we letMg,n denote the
Deligne–Mumford compactification of the moduli space of genus g curves with n marked points.

Definition 2.4.1. A cohomological field theory (or CohFT) is a collection of data

V, η, 1, {αg,n ∈ H∗(Mg,n;Q)⊗ (V ∗)⊗n | 2g − 2 + n > 0},

where V is a vector space over Q with a choice of basis e1, e2, . . . , eN , η is a nondegenerate
bilinear form, and 1 is an element in V that we refer to as the identity. We require all of the
data to satisfy the following conditions, where ηij := η(ei, ej) and ηij denotes the inverse matrix.
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Permutation of marked points
A permutation σ ∈ Sn acts on Mg,n by permuting the marked points, which then defines
a map σm : H∗(Mg,n;Q)→ H∗(Mg,n;Q). A permutation σ ∈ Sn also acts on (V ∗)⊗n by
permuting the tensor factors, which then defines a map σv : (V ∗)⊗n → (V ∗)⊗n. We can
view each αg,n as a map

V ⊗n → H∗(Mg,n;Q)

and we require this map to form a commutative square with σm and σv.

Gluing maps
Let gl1 denote the gluing map which takes the two marked points labelled n+ 1 and n+ 2
on Mg,n+2 and glues them together in a node. Then

gl1 :Mg,n+2 →Mg+1,n

induces a map gl∗1 : H∗(Mg+1,n;Q)→ H∗(Mg,n+2;Q). We then require for v1, . . . , vn ∈ V ,

gl∗1αg,n(v1 ⊗ · · · ⊗ vn) =
N∑

i,j=1

ηi,jαg,n+2(v1 ⊗ · · · ⊗ vn ⊗ ei ⊗ ej).

Similarly, let denote the gluing map which takes the last marked point on two distinct
curves and glues them together in a node. Then

gl2 :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

induces a map gl∗2 : H∗(Mg1+g2,n1+n2 ;Q) → H∗(Mg1,n1+1;Q) ⊗ H∗(Mg2,n2+1;Q). We
then require for v1, . . . , vn1 , w1, . . . , wn2 ∈ V ,

gl∗2αg1+g2,n1+n2(v1 ⊗ · · · ⊗ vn1 ⊗ w1 ⊗ · · · ⊗ wn2)

=

N∑
i,j=1

ηi,jαg1,n1+1(v1 ⊗ · · · ⊗ vn1 ⊗ ei)⊗ αg2,n2+1(w1, . . . wn2 ⊗ ej).

Forgetful map
Let p :Mg,n+1 →Mg,n denote the map that forgets the last marked point. We require for
all v1, . . . , vn ∈ V ,

p∗αg,n(v1 ⊗ · · · ⊗ vn) = αg,n+1(v1 ⊗ · · · ⊗ vn ⊗ 1), (2.7)

α0,3(v1 ⊗ v2 ⊗ 1) = η(v1, v2). (2.8)

In certain circumstances, it is convenient to remove the conditions of equation (2.72.7) and equa-
tion (2.82.8), in which case we refer to the resulting structure as a CohFT without unit.

It is known that there is a close relation between CohFTs and the notion of topological recursion.
In particular, the work of Dunin-Barkowski, Orantin, Shadrin and Spitz demonstrates that under
certain conditions, the correlation differentials that are output by topological recursion store
correlators for a CohFT [4242]. This allows for one to relate topological recursion to moduli spaces
of curves. We will discuss topological recursion in more detail in the next chapter.



Chapter 3

Topological recursion

In this chapter, we give some brief motivation for topological recursion before describing its original
formulation, along with some subsequent generalisations. First, we describe the topological
recursion, as it was originally discovered by Chekhov, Eynard and Orantin. Next, we describe the
local topological recursion, which no longer requires the spectral curve to come from a compact
Riemann surface. Finally, we discuss the more recent formulation of topological recursion by
Kontsevich and Soibelman, involving the notion of quantum Airy structures. We conclude
the chapter with a discussion of the related concept of quantum curves and give an example
calculation in the context of BMS numbers.

3.1 Motivation

Topological recursion is a recursive process to compute certain correlation differentials based on
the initial data of a spectral curve. The recursive mechanism is based on cutting pairs of pants
from a surface with boundary. It was initially discovered by Chekhov, Eynard and Orantin in the
context of matrix models [2323, 4747]. After the work of Mirzakhani [7777, 7878] computing the volumes
of moduli spaces of hyperbolic surfaces with geodesic boundaries, Eynard and Orantin noticed
that those same quantities could be obtained through topological recursion. The discovery of
the topological recursion in various other settings around that time helped to establish it as a
universal theory independent of matrix models.

In this section, we describe some motivation for topological recursion, using Mirzakhani’s work
as the basis. To initiate our study, we require a brief discussion of Teichmüller theory.

Definition 3.1.1. Let Sg,n denote a connected orientable smooth surface of genus g with n
labelled boundary components. For L1, . . . , Ln ∈ R+, the Teichmüller space is defined as

Tg,n(L1, . . . , Ln) =

{
(X, f)

∣∣∣∣∣
X is a hyperbolic surface with labelled geodesic
boundary components of lengths L1, . . . , Ln and
f : Sg,n → X is a diffeomorphism

}
/ ∼,

where the equivalence relation is given by (X, f) ∼ (Y, g) if and only if there is an isometry
φ : X → Y such that φ ◦ f is isotopic to g.

Let Modg,n be the mapping class group of Sg,n — that is, the group of isotopy classes of
orientation-preserving homeomorphisms Sg,n → Sg,n leaving boundary components fixed set wise.
The mapping class group acts on Tg,n(L1, . . . , Ln) by changing the marking f of a pair (X, f).
The quotient space

Mg,n(L1, . . . , Ln) := Tg,n(L1, . . . , Ln)/Modg,n

27
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is the moduli space of hyperbolic surfaces of genus g with n boundary components of lengths
L1, . . . , Ln.

Fix a pair of pants decomposition of Sg,n and observe that it must comprise 3g−3+n simple closed
curves, which we order from 1 up to 3g− 3 +n. Then for each element (X, f) ∈ Tg,n(L1, . . . , Ln),
one can assign the positive real number lengths `1(X, f), . . . , `3g−3+n(X, f) describing the lengths
of the closed curves as well as real number twist parameters τ1(X, f), . . . , τ3g−3+n(X, f). This
defines a homeomorphism

Mg,n(L1, . . . , Ln) ∼= R3g−3+n
+ × R3g−3+n.

These are known as the Fenchel–Nielsen coordinates and the interested reader is referred to the
literature for more information [9090].

The Weil–Petersson symplectic form on Teichmüller space is given by ωg,n =
∑3g−3+n

i=1 d`i ∧ dτi
and it is invariant under the mapping class group [5353]. Thus, it descends to a symplectic form
on the moduli space Mg,n(L1, . . . , Ln). Hence, we may define the volume of the moduli space of
hyperbolic surfaces to be

Vg,n(L1, . . . , Ln) =

∫
Mg,n(L1,...,Ln)

ω3g−3+n
g,n

(3g − 3 + n)!
. (3.1)

Since hyperbolic structures on surfaces with geodesic boundary require negative Euler charac-
teristic, we restrict attention to the pairs (g, n) satisfying 2g − 2 + n > 0. Some examples of
Vg,n(L1, . . . , Ln) are given below.

V0,3(L1, L2, L3) = 1

V1,1(L1) =
1

48

(
L2

1 + 4π2
)

V0,4(L1, L2, L3, L4) =
1

2
(L2

1 + L2
2 + L2

3 + L2
4 + 4π2)

Observe that these are polynomials, a fact that was demonstrated in general by Mirzakhani [7878].
She furthermore established a recursion for these polynomials and interpreted their coefficients as
intersection numbers on Deligne–Mumford compactifications of moduli spaces of curves [7777, 7878].

To make connection with topological recursion, we take the Laplace transform of the volume
Vg,n(L1, . . . , Ln) and define

Wg,n(z1, . . . , zn) :=

∫ ∞
0
· · ·
∫ ∞

0
L1e

−z1L1 · · ·Lne−znLn Vg,n(L1, . . . , Ln) dL1 · · · dLn. (3.2)

Some examples of Wg,n(z1, . . . , zn) are given below.

W0,3(z1, z2, z3) =
1

z2
1z

2
2z

2
3

W1,1(z1) =
1

24

(
3

z4
1

+
2π2

z2
1

)
W0,4(z1, z2, z3, z4) =

1

z2
1z

2
2z

2
3z

2
4

(
3

4∑
i=1

1

z2
i

+ 2π2

)

The following theorem rewrites Mirzakhani’s recursion for Vg,n in terms of the Laplace transforms
Wg,n and is due to Eynard and Orantin [4747].
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Theorem 3.1.2. Let Wg,n(z1, . . . , zn) be as above and define W0,2 = 1
(z1−z2)2 . Then for 2g− 2 +

n > 0,

Wg,n(z1 . . . , zn) = Res
z=0

dz

z2
1 − z2

2π

sin(2πz)

[
Wg−1,n+1(z,−z, z2, . . . , zn)

+
∑

g1+g2=g
I1tI2={z2,...,zn}

Wg1,|I1|+1(z, I1)Wg1,|I1|+1(−z, I2)

]
. (3.3)

Example 3.1.3. Let us use the theorem above to compute W1,1(z1).

W1,1(z1) = Res
z=0

dz

(z2
1 − z2)

π

sin(2πz)
W0,2(z,−z)

= Res
z=0

dz

(z2
1 − z2)

π

sin(2πz)

1

4z2

=
1

4
Res
z=0

dz

z2

( 1

z2
1

+
z2

z4
1

+O(z4)
)( 1

2z
+
π2z

3
+

7π4z3

45
+O

(
z4
) )

=
1

8
Res
z=0

dz

z

( 1

z2
1

+
z2

z4
1

+O(z4)
)(

1 +
2π2z2

3
+

14π4z4

45
+O

(
z4
) )

=
1

24

( 3

z4
1

+
2π2

z2
1

)
Now the question is what can be generalised from formula equation (3.33.3) that can then be applied
to other enumerative problems.

One would like the calculation to be invariant under change of coordinates Wg,n(z1, . . . , zn).
Furthermore, the recursion involves taking a residue, so it is natural to define

ωg,n(z1, . . . , zn) := Wg,n(z1, . . . , zn) dz1 ⊗ · · · ⊗ dzn.

This is a symmetric multidifferential on Cn. In this language, equation (3.33.3) leads to a
recursive equation for ωg,n as follows.

ωg,n = Res
z=0

dz1

(z2
1 − z2) d(−z)

2π

sin(2πz)

[
ωg,n(z,−z, z2, . . . , zn)

+
∑

g1+g2=g
I1tI2={z2,...,zn}

ωg1,I1(z, I1)ωg2,I2(−z, I2)

]
. (3.4)

Now we observe the following and use it to substitute into the right side of the previous
equation. ∫ z

z′=−z
ω0,2(z1, z

′) = dz1

[
1

z1 − z
− 1

z1 + z

]
=

2z dz1

z2
1 − z2

Hence, we can write

ωg,n = Res
z=0

∫ z
z′=−z ω0,2(z1, z

′)

2z d(−z)
2π

2z sin(2πz)

[
ωg,n(z,−z, z2, . . . , zn)

+
∑

g1+g2=g
I1tI2={z2,...,zn}

ωg1,I1(z, I1)ωg2,I2(−z, I2)

]
. (3.5)
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In the next section, we define the spectral curve that forms the input to the topological recursion
and allows us to generalise the above equations to other settings. A natural question to keep
in mind is how one may guess or derive the spectral curve for a given enumerative geometry
problem. We discuss this further in later sections.

3.2 Topological recursion

Original definition

In general, the topological recursion takes as input a spectral curve and produces multidifferentials
ωg,n for integers g ≥ 0 and n ≥ 1, which we refered to as correlation differentials. If the underlying
Riemann surface of the spectral curve is C, then ωg,n is a symmetric meromorphic section of the
line bundle π∗1(T ∗C)⊗ π∗2(T ∗C)⊗ · · · ⊗ π∗n(T ∗C) on the Cartesian product Cn, where πi : Cn → C
denotes projection onto the ith factor. An explicit definition of topological recursion follows.

Initial data. A spectral curve is a tuple (C, x, y, T ), where C is a compact Riemann surface,
x and y are meromorphic functions on C, and T is a Torelli marking on C — that is, a
choice of symplectic basis for H1(C;Z). We furthermore require the zeroes of dx to be
simple and disjoint from the zeroes and poles of dy.

Base cases. Let ω0,1(z1) = −y(z1) dx(z1). Let ω0,2(z1, z2) be the unique meromorphic
bi-differential on C that has double poles without residue along the diagonal z1 = z2, is
holomorphic away from the diagonal, and is normalised on the A-cycles of the Torelli
marking via the equation∮

Ai
ω0,2(z1, z2) = 0, for i = 1, 2, . . . , genus(C).

Recursion. For 2g − 2 + n > 0, the multi-differentials ωg,n(z1, z2, . . . , zn) are defined
recursively by the following equation, where S = {2, 3, . . . , n} and zI = (zi1 , zi2 , . . . , zik)
for I = {i1, i2, . . . , ik}.

ωg,n(z1, zS) =
∑
α

Res
z=α

K(z1, z)

[
ωg−1,n+1 (z, s(z), zS)

+
◦∑

g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(s(z), zJ)

]
(3.6)

The outer summation is over the zeroes α of dx, while the symbol ◦ over the inner
summation denotes that we exclude all terms with ω0,1. The function s(z) is the unique
non-identity holomorphic map defined in a neighbourhood of the simple ramification point
α ∈ C satisfying x(s(z)) = x(z). Finally, the kernel K(z1, z) is defined by

K(z1, z) = −
∫ z
o ω0,2(z1, · )

[y(z)− y(s(z))] dx(z)
,

where o can be taken to be an arbitrary point on the spectral curve.

Notice that the (g′, n′) appearing in the right side of the above recursion satisfy 2g′ − 2 + n′ <
2g − 2 + n. The following schematic diagram demonstrates the point mentioned earlier that this
recursive mechanism is based on cutting pairs of pants from a surface with boundary.
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Figure 3.1: Schematic diagram for topological recursion.

As mentioned in the previous section, the topological recursion recovers Mirzakhani’s volume
polynomials. The spectral curve in that case is(

CP1, x(z) = z2, y(z) =
− sin(2πz)

4π
, ω0,2 =

dz1 dz2

(z1 − z2)2

)
.

For another example, consider the Bouchard–Mariño conjecture [1919], which states that simple
Hurwitz numbers, as defined in Section 1.21.2, satisfy the topological recursion formalism applied
to the spectral curve(

CP1, x(z) = −1− z + log(1 + z), y(z) = z + 1, ω0,2 =
dz1 dz2

(z1 − z2)2

)
.

To do the computation we need to analyse the spectral curve. This case is unusual in the sense
that x(z) is not meromorphic. The usual topological recursion formulas still apply though, or
alternatively, it can be understood by truncating the Taylor series for x(z). The Bouchard–Mariño
conjecture was proved by Eynard, Mulase and Safnuk [5050]. The diversity of these two enumerative
problems mentioned gives some mild indication of the breadth of topological recursion in terms
of its applicability.

Properties of topological recursion

The invariants ωg,n produced by topological recursion share some interesting properties. We
briefly give a list of the main ones.

Symmetry. The correlation differentials ωg,n(z1, . . . , zn) produced by topological recursion
are symmetric under permutation of the variables z1, . . . , zn. This property is not obvious
from the definition of topological recursion [4747].

Homogeneity. The correlation differentials ωg,n(z1, . . . , zn) produced by topological recur-
sion are homogeneous under the transformation ω0,1 7→ λω0,1 for λ ∈ C∗ in the sense that
they transform as ωg,n 7→ λ2−2g−nωg,n for 2g − 2 + n > 0.

Pole structure. For 2g − 2 + n > 0, the correlation differential ωg,n is a meromorphic
multidifferential on the spectral curve, with poles only at the ramification points and zero
residues at those poles.

String and dilaton equations. For 2g − 2 + n > 0, we have the following string and dilaton
equations, where each left side is a summation over the zeroes α of dx, S denotes the set
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{1, 2, . . . , n}, and Φ(z) is any function satisfying dΦ(z) = y(z) dx(z).

∑
α

Res
z=α

y(z)ωg,n+1(z, zS) = −
n∑
k=1

dzk
∂

∂zk

(
ωg,n(zS)

dx(zk)

)
∑
α

Res
z=α

Φ(z)ωg,n+1(z, zS) = (2g − 2 + n)ωg,n(zS)

Since its discovery, topological recursion is now known or conjectured to govern many different
problems, providing a universal framework for their understanding. A few such are listed in the
following table, along with their associated spectral curves.

Enumerative problem Spectral curve

Intersection theory on moduli spaces of curves [4747] x(z) = 1
2z

2 y(z) = z

Enumeration of fatgraphs [8585, 3838] x(z) = z + 1
z y(z) = z

Enumeration of hypermaps [3535] x(z) = za−1 + 1
z y(z) = z

Weil–Petersson volumes of moduli spaces [5151] x(z) = z2 y(z) = sin(2πz)
2π

Simple and orbifold Hurwitz numbers [3434] x(z) = z exp(−za) y(z) = za

Spin Hurwitz numbers [7979] x(z) = z exp(−zr) y(z) = z

Stationary Gromov–Witten theory of CP1 [4343] x(z) = z + 1
z y(z) = log(z)

Asymptotics of coloured Jones polynomials of knots [1111] A-polynomials

The spectral curves introduced above have the technical assumption that the zeroes of dx must
be simple and disjoint from the zeroes and poles of dy [4747].There are two possible generalisations
of this fact that aim to relax this assumption. Do and Norbury [3636] studied spectral curves
where zeroes of dx and poles of dy intersect. They call such a spectral curve irregular and show
that in some cases these can be handled by the usual topological recursion formula. Bouchard
and Eynard [1616] studied spectral curves with non-simple zeroes of dx but disjoint from zeroes
of dy. The computation of correlation differentials ωg,n becomes more complex in this case.
However, since it will not arise in the problems that we study, we do not present this generalised
topological recursion here.

Topological recursion and graphs

Given a spectral curve, let R denote the set of ramification points of x(z) at which dx vanishes.
At such a ramification point a ∈ R, which is assumed to be simple, we have the natural local
coordinate ζa(z) that satisfies (ζa(z))

2/2 = x(z) − x(a). Let the following denote the series
expansion of ω0,1(z) around the ramification point a, with respect to the local coordinate ζa(z).

ω0,1(z) =
∑
k

ta,kζa(z)
k dζa

For ramification points a1, a2 ∈ R let the following denote the series expansion of ω0,2(z1, z2)
with respect to the local coordinates ζa1(z1) and ζa2(z2).

ω0,2(z1, z2) =
δa1,a2 dζa1(z1) dζa2(z2)

(ζa1(z1)− ζa2(z2))2
+
∑
k1,k2

B(a1,k1),(a2,k2)ζa1(z1)k1−1ζa2(z2)k2−1 dζa1(z1) dζa2(z2)



3.2. Topological recursion 33

Let us also introduce the meromorphic 1-forms

ξa,`(z) = Res
z′=a

(∫ z′

a
ω0,2( · , z)

)
dζ(z′)

ζ(z′)`+1
.

The following theorem [4747] expresses the correlation differential ωg,n(z1, z2, . . . , zn) as a polynomial
in the basis ξa,k(z).

Theorem 3.2.1. For 2g − 2 + n > 0, there exists a unique decomposition

ωg,n(z1, . . . , zn) = 23g−3+n
∑

a1,a2,...,an
d1,d2...,dn

Fg,n((a1, d1), . . . , (an, dn))

n∏
i=1

ξai,di(zi),

where Fg,n((a1, d1), . . . , (an, dn)) is a polynomial in the ta,k and the B(a1,k1),(a2,k2). Moreover, the
sum is finite and only terms with d1 + · · ·+ dn ≤ 3g − 3 + n contribute.

We remark that the coefficient Fg,n((a1, d1), . . . , (an, dn)) has a nice description as a sum over
coloured dual graphs, with contributions coming from intersection numbers on the moduli space
of curves [4646].

Local topological recursion

One can observe that the topological recursion actually only requires the local information of the
meromorphic functions x, y and the bidifferential ω0,2 at the ramification points of the spectral
curve, in order to produce the correlation differentials. Thus, one can more generally define
topological recursion on spectral curves comprising isolated local germs of x, y and ω0,2, without
requiring the existence of a global compact Riemann surface on which this data can be defined.
In particular, the local topological recursion requires ω0,2 to become part of the spectral curve
data. This viewpoint was promoted by Dunin-Barkowksi, Orantin, Shadrin, and Spitz in their
work relating topological recursion to Givental’s approach to cohomological field theory [4343].

More explicitly, we briefly reproduce the formulas required to apply the local topological recursion.
The local spectral curve input consists of

N families of complex numbers hik for 1 ≤ i ≤ N and k ∈ N;

N ×N infinite families of complex numbers Bij
k` for 1 ≤ i, j ≤ N and k, ` ∈ N; and

N distinct canonical coordinates ai for 1 ≤ i ≤ N .

We consider a small open neighbourhood of 0 ∈ C and define on it the following analytic functions
for 1 ≤ i, j ≤ N .

xi(z) = z2 + ai, yi(z) =
∞∑
k=0

hikz
k, Bij(z, z′) =

[
δij

(z − z′)2
+

∞∑
k,`=0

Bij
k`z

kz′`

]
dzdz′

The base cases of the recursion are given by

ωi0,1(z) = 0, ωij0,2(z, z′) = Bij(z, z′).
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The recursion formula is then given by

ωi0i1···ing,n+1 (z0, zS) =
N∑
j=1

Res
z=0

∫ z
−z B

i0j(z0, · )
2(yj(z)− yj(−z)) dxj(z)

[
ωjji1···ing−1,n+2(z,−z, zS)

+
∑

g1+g2=g
ItJ=S

ωj,iIg1,|I|+1(z, zI)ω
j,iJ
g2,|J |+1(z, zJ)

]
. (3.7)

It should be clear from these definitions how the local topological recursion agrees with the usual
topological recursion by taking xi and yi and Bij to be the local expansions of x, y and ω0,2

around the ith and jth ramification points, in the local coordinates under which the involution
is given by negation.

3.3 Kontsevich–Soibelman topological recursion

Topological recursion as described in Section 3.23.2 produces multidifferentials ωg,n as well as scalars
Fg = ωg,0, which enjoy the mysterious property of symplectic invariance in many cases and
conjecturally in all cases [4949]. Recently, Kontsevich and Soibelman [7171] proposed a new point of
view that generalises the topological recursion of Chekhov, Eynard and Orantin [2323, 4747]. The
starting point for this so-called KS topological recursion is a quantisation of the classical Airy
structure, which is a quadratic differential equation in a symplectic vector space. A quantum
Airy structure can be described explicitly in terms of four tensors A,B,C,D which must satisfy
certain relations, given below in equations (3.123.12) to (3.163.16). In this section, we briefly explain the
notion of classical and quantum Airy structures, as well as how the tensors A,B,C,D give the
topological recursion formalism.

Let V be a vector space of finite or countable dimension over C. Let n denote the dimension of
V and define the index set I = {1, 2, . . . , n}, where we possibly take n to infinity. Let us choose
an ordered basis for V and denote it by x1, x2, . . . , xn. Denote by y1, y2, . . . , yn the dual basis
for V ∗. The vector space W := T ∗(V ) = V ⊕ V ∗ has a standard symplectic structure and the
corresponding Possion bracket is given by

{xi, yj} = δij , {xi, xj} = 0, {yi, yj} = 0.

We denote by Sym≤2(W ) the Lie algebra Sym0(W ) ⊕ Sym1(W ) ⊕ Sym2(W ) of polynomial
functions on W of degree at most 2, endowed with the natural Lie algebra structure induced by
the above Poisson bracket.

Definition 3.3.1. A classical Airy structure on V is a collection of {Li}i∈I ⊆ Sym≤2(W ) of the
form

Li = yi − 1

2

∑
j,k

Aijkxjxk −
∑
j,k

Bij
k y

kxj −
1

2

∑
j,k

Cijky
jyk,

such that the vector space spanC{Li}i∈I is closed under the Poisson bracket.

Let us consider some consequences of the definition above. By the closure property, we know
that there exist constants fmi1,i2 ∈ C such that

{Li1 , Li2} =

n∑
m=1

fmi1,i2 Lm.

Using the definition of Li and the Poisson bracket relation, we get

{Li1 , Li2} =
∑
m

(Bi1i2
m −Bi2i1

m )ym + · · · ,
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which implies that
fmi1,i2 = (Bi1i2

m −Bi2i1
m ). (3.8)

We define an associative C-algebra Symquant(W ) generated by 1, ~, xi and ~∂i such that 1 and ~
are central, and subject to the relation [~∂i, xj ] = δij~. We define Symquant

≤2 (W ) as the vector

subspace of Symquant(W ) spanned by

{1, ~, xi, ~∂i, xixj , ~xi∂j + ~∂jxi, ~2∂i∂j | i, j ∈ I}.

Definition 3.3.2. A quantisation of a classical Airy structure is a monomorphism V ∗ →
Symquant

≤2 (W ) such that modulo ~, it coincides with the monomorphism V ∗ → Sym≤2(W ). We
call the former monomorphism a quantum Airy structure.

We write the quantum Airy structure as

L̂i := ~∂i − 1

2

∑
j,k

Aijkxjxk −
∑
j,k

~Bik
j ∂

kxj −
1

2

∑
j,k

~2Cijk∂
j∂k − ~Di, (3.9)

for i ∈ I. By the closure property of the classical Airy structure, we have

[
Li, Lj

]
=

n∑
m=1

~fmi,j Lm (3.10)

Kontsevich and Soibelman [7171] prove that for any quantum Airy structure, there exists a unique
solution ZKS to the collection of constraints L̂iZKS = 0 for i ∈ I of the form

ZKS = exp
( ∑

2g−2+n>0

~g−1

n!

∑
k1,...,kn∈I

Fg,n[k1, . . . , kn]xk1 · · ·xkn
)
. (3.11)

Here, the Fg,n[k1, . . . , kn] are scalars and are invariant under permutation of k1, . . . , kn. It is not
in general clear what kind of enumerative invariants these coefficients store; this depends on the
choice of the quantum Airy structure. The differential constraints provide a recursive structure
to the coefficients Fg,n[k1, . . . , kn].

The closure properties of the differential operators give rise to a number of quadratic equation
that the tensors A,B,C,D must satisfy and we describe these below. They are expressed in terms
of the coefficients of equation (3.93.9), by forcing them to satisfy equation (3.103.10) and comparing
coefficients of

xc, ~xc∂d, ~2∂c∂c, xcxd, for c, d ∈ I.

Equating coefficients of xc on both sides of equation (3.103.10), we notice that the following
terms are the only ones on the left side that contribute.

[~∂i,−1
2A

jabxaxb] + [−1
2A

iabxa′xb′ , ~∂j ]

So the left side contributes (Ajic−Aijc), while the right side contributes zero, so we obtain

Ajic = Aijc for all i, j, c.

Similarly, it can be shown that

Ajic = Ajci for all i, j, c. (3.12)

Hence, Aijc is symmetric in all three indices.
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Equating coefficients of ~xc∂d on both sides of equation (3.103.10), we notice that the following
terms are the only ones on the left side that contribute.[

1
2A

iabxaxb
1
2~

2Cja′,b′∂
a′∂b

′]
+
[

1
2~

2Cia,b∂
a∂b, 1

2A
ja′b′xaxb

]
+
[
~Bia

b xa∂
b, ~Bja′

b′ xa′∂
b′
]

Using equation (3.83.8), we get

1

4
AicbCjbd −

1

4
AjcbCibd +Bic

b B
jb
d −B

jc
b B

ib
d = fmij B

cm
d

1

4
AicbCjbd −

1

4
AjcbCibd +Bic

b B
jb
d −B

jc
b B

ib
d = −(Bij

m −Bji
m)Bcm

d

Bij
mB

cm
d +

1

4
AicbCjbd +Bic

b B
jb
d = Bji

mB
cm
d +

1

4
AjcbCibd +Bjc

b B
jb
d (3.13)

Equating coefficients of ~2∂c∂d on both sides of equation (3.103.10), we notice that the following
terms are the only ones on the left side that contribute.[

~Bia
b xa∂

b, 1
2~

2Cja′,b′∂
a′∂b

′]
+
[

1
2~

2Ciab∂
a′∂b

′
, ~Bja′

b′ xa′∂
b′
]

Using equation (3.83.8), we get

1
2B

ib
c C

j
bd −

1
2B

jb
c C

i
bd + 1

2C
j
caB

ia
d − 1

2C
i
caB

ja
d = fmij C

m
cd

1
2B

ib
c C

j
bd −

1
2B

jb
c C

i
bd + 1

2C
j
caB

ia
d − 1

2C
i
caB

ja
d = −(Bij

m −Bji
m)Cmcd

Bij
mC

m
cd + 1

2B
ib
c C

j
bd + 1

2C
j
caB

ia
d = Bji

mC
m
cd + 1

2B
jb
c C

i
bd + 1

2C
i
caB

ja
d (3.14)

Equating coefficients of xcxd on both sides of equation (3.103.10), we notice that the following
terms are the only ones on the left side that contribute.[

~Bia
b xa∂

b, 1
2A

jbdxbxd
]

+
[
~Bja

b xa∂
b, 1

2A
ibdxbxd

]
Using equation (3.83.8), we get

1
2B

ic
b A

jbd − 1
2B

jc
b A

ibd + 1
2B

ib
d A

jcb − 1
2B

jb
d A

icb = fmij A
m
cd

1
2B

ic
b A

jbd − 1
2B

jc
b A

ibd + 1
2B

ib
d A

jcb − 1
2B

jb
d A

icb = −(Bij
m −Bji

m)Amcd

Bij
mA

mcd + 1
2B

ic
b A

jbd + 1
2B

ib
d A

jcb = 1
2B

jc
b A

ibd + 1
2B

jb
d A

icb +Bji
mA

mcd (3.15)

Equating coefficients of ~2 on both sides of equation (3.103.10), we notice that the following
terms are the only ones on the left side that contribute.[

1
2A

iabxbxd,
1
2~

2Cja′,b′∂
a′∂b

′]
+
[

1
2~

2Cia′b′∂
a′∂b

′
, 1

2A
ia′b′xbxd

]
Using equation (3.83.8), we get

1

4
AiabCjab −

1

4
AjabCiab = fmij D

m

1

4
AiabCjab −

1

4
AjabCiab = −(Bij

m −Bji
m)Dm

1

4
AiabCjab +Bij

mD
m =

1

4
AjabCiab +Bji

mD
m (3.16)

We now discuss the relation between the topological recursion discussed in previous sections
and the Kontsevich–Soibelman formulation of topological recursion. Given a spectral curve as
defined in Section 3.23.2, let z(p) denote the local coordinate around the ramification point p. For
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the sake of this discussion, let us assume that the spectral curve has only one ramification point.
Eynard [4646] showed that ωg,n can be written as a polynomial

ωg,n(z1, z2, . . . , zn) =
∑

k1,...,kn∈I
Wg,n[k1, . . . , kn] ξk1(z1) · · · ξkn(zn),

in the basis

ξk(z0) := Res
z=p

∫ p

ω0,2(z0, · )
(2k + 1) dz

z2k+2
.

Let us also define the dual basis

ξ∗k(z0) =
z2k+1

2k + 1
,

and the function

θ(p) :=
2

ω0,1(p)− ω0,1(s(p))
.

It was shown that Wg,n[k1, . . . , kn] = Fg,n[k1, . . . , kn], where the Fg,n arise from a quantum
Airy structure [77, 7171].Given an enumerative problem governed by topological recursion, one can
calculate the associated quantum Airy structure. To demonstrate this procedure, let us carry out
an example in the simple case of the Witten–Kontsevich theorem, which is related to topological
recursion on the Airy curve.

Kontsevich–Soibelman topological recursion for the Airy curve

One of the landmark results concerning the intersection theory on moduli spaces of curves
is the Witten–Kontsevich theorem. In his foundational paper [103103], Witten conjectured that
a particular generating function for psi-class intersection numbers satisfies the Korteweg–de
Vries hierarchy, which is often abbreviated to KdV hierarchy. The proof was subsequently
provided by Kontsevich [6969], and there are now many proofs in the literature. It is well-known
as the prototypical example of an exactly solvable model, whose soliton solutions have attracted
tremendous mathematical interest over the past few decades. A thorough analysis of the KdV
hierarchy allows Witten’s conjecture to be stated in the following alternative way. Let pi be
formal variables and set ∂k = ∂

∂pk
. Define the sequence of Virasoro operators by

L−1 = −1

~
∂1 +

1

2
p2

1 +
∞∑
i=1

(2i+ 1)p2i+3∂2i+1, (3.17)

L0 = −3

~
∂3 +

∞∑
i=1

(2i+ 1)p2i+1∂2i+1 +
1

8
, (3.18)

and for n ≥ 1,

Ln = −2n+ 3

~
∂2n+3 +

∞∑
i=0

(2i+ 2n+ 1)p2i+1∂2i+2n+1 +
1

2

n−1∑
i=0

(2i− 1)(2n− 2i− 1)∂2i+1∂2n−2i−1.

(3.19)

It is straightforward to check that these operators satisfy the relation [Lm, Ln] = (m− n)Lm+n

for all m,n ≥ −1. Thus, they provide a representation of a subalgebra of the Virasoro Lie algebra.
One can state the Witten–Kontsevich theorem in terms of these Virasoro operators.

Theorem 3.3.3 (Witten–Kontsevich theorem, Virasoro version). For every integer n ≥ −1,

LnZ = 0,
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where

Z(p1, p2, . . . ; ~) = exp

[ ∞∑
g=0

∞∑
n=1

~2g−2+n

n!

∞∑
a1,...,an=0

∫
Mg,n

ψa1
1 · · ·ψ

an
n

n∏
i=1

(2ai + 1)!! p2ai+1

]
.

The Virasoro operators described above give an example of a quantum Airy structure. Fur-
thermore, the partition function Z(p1, p2, . . . ; ~) is known to arise from the usual topological
recursion. We now show how to obtain the tensors A,B,C,D in this particular case. The Airy
spectral curve underlying the problem is given by(

C, x(z) = 1
2z

2, y(z) = z, ω0,2 =
dz1 dz2

(z1 − z2)2

)
(3.20)

We need the following series expansion to calculate the tensors.

ω0,2(z, z2) =

(
1

z2
2

+ 2
z

z2
3

+ 3
z2

z2
4

+ 4
z3

z2
5

+ 5
z4

z2
6

+ 6
z5

z2
7

+ · · ·
)

dz dz2 (3.21)

The spectral curve has a ramification point at z = 0.We use the notation from Section 9 of the
paper [77] for the calculation of A,B,C,D. As the spectral curve of equation (3.203.20) has only one
ramification point, we can simplify their notation using Ak1k2k3 := A(k1,0),(k2,0),(k3,0) and similarly
for the other tensors B,C,D. The equations for deriving the tensors are as follows.

Ak1k2k3 = Res
z=0

ξ∗k1
(z) dξ∗k2

(z) dξ∗k3
(z) θ(z)

= Res
z=0

z2k1+1

2k1 + 1
z2k2dz z2k3dz

1

z2 dz

= Res
z=0

dz

z

z2k1+2k2+2k3

(2k1 + 1)
(3.22)

Bk1k2
k3

= Res
z=0

ξ∗k1
(z) dξ∗k2

(z) ξk3(z) θ(z)

= Res
z=0

z2k1+1

2k1 + 1
z2k2 dz

(2k3 + 1) dz

z(2k3+2)

1

z2 dz

= Res
z=0

dz

z

(2k3 + 1)

(2k1 + 1)
z2k1+2k2−2k3−2 (3.23)

Ck1
k2k3

= Res
z=0

ξ∗k1
(z) ξk2(z) ξk3(z) θ(z)

= Res
z=0

z2k1+1

2k1 + 1

(2k2 + 1) dz

z(2k2+2)

(2k3 + 1) dz

z(2k3+2)

1

z2 dz

= Res
z=0

dz

z

(2k2 + 1)(2k3 + 1)

(2k1 + 1)
z2k1−2k2−2k3−4 (3.24)

Dk1 = δk1,0
1

8
(3.25)

The tensors computed above will give us the quantum Airy structure for the Witten–Konstevich
intersection numbers and reproduce the Virasoro operators from equations (3.173.17) to (3.193.19).

Kontsevich–Soibelman topological recursion for the Bessel curve

We now consider Kontsevich–Soibelman topological recursion for the invariants produced by the
Bessel spectral curve [3737]. It is given by(

C, x(z) = 1
2z

2, y(z) =
1

z
, ω0,2 =

dz1 dz2

(z1 − z2)2

)
(3.26)
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Some examples of correlation differentials produced by the topological recursion applied to the
Bessel curve are provided below.

ω0,1(z1) = −dz1 ω1,2(z1, z2) =
dz1 dz2

8z2
2z1

2

ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2
ω1,3(z1, z2, z3) = −dz1 dz2 dz3

4z2
1z

2
2z

2
3

ω0,3(z1, z2, z3) = 0 ω1,4(z1, z2, z3, z4) =
3 dz1 dz2 dz3 dz4

4z2
1z

2
2z

2
3z

2
4

ω1,1(z1) = −dz1

8z2
1

ω2,1(z1) = − 9 dz1

128z14

For 2g − 2 + n > 0 and positive integers µ1, . . . , µn, define the numbers Ug,n(µ1, . . . , µn) via the
expansion

ωg,n(z1, z2, . . . , zn) =
∞∑

µ1,...,µn=1

Ug,n(µ1, . . . , µn)
n∏
i=1

µi
zµii + 1

.

Do and Norbury [3737] give the following cut-and-join type recursion for these numbers, where
S = {2, 3, . . . , n}.

µ1Ug,n(µ1, µS) =
n∑
k=2

Ug,n−1(µ1 + µk − 1, µS\{k})

+
1

2

∑
α+β=µ1−1
α,β odd

αβ

[
Ug−1,n+1(α, β, µS) +

∑
g1+g2=g
I∪J=S

Ug1(α, µI)Ug2(β, µJ)

]
(3.27)

All of the numbers Ug,n(µ1, . . . , µn) can be calculated using this recursion from the base cases
U0,1(µ) = 0 and U0,2(µ1, µ2) = 0 for all µ1 and µ2, and U1,1(1) = 1

8 . The spectral curve has one
ramification point at z = 0, so the general theory of topological recursion allows us to write

ωg,n(z1, . . . , zn) =
∑

k1+···+kn≤3g−3+n

Fg,n[k1, . . . , kn] ξk1(z1) · · · ξkn(zn).

Here, we take ξk(z) = (2k+1) dz
z2k+1 and denote the symplectic dual by ξ∗k(z) = z2k+1

2k+1 . These enter
into the calculations of the tensors A,B,C,D, along with the following expression for θ(z).

θ(z) =
2

(y(z)− y(s(z))) dx(z)
=

2

(1
z + 1

z ) z dz
=

1

dz
(3.28)

Using the same equations as above for the Airy case, we derive the tensors A,B,C,D in the
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Bessel case.

Ak1k2k3 = Res
z=0

ξ∗k1
(z) dξ∗k2

(z) dξ∗k3
(z) θ(z)

= Res
z=0

dz

z
z2k1+2k2+2k3+2

= 0, for all k1, k2, k3. (3.29)

Bk1k2
k3

= Res
z=0

ξ∗k1
(z) dξ∗k2

(z) ξk3(z) θ(z)

= Res
z=0

dz

z

(2k3 + 1)

(2k1 + 1)
z2k1+2k2−2k3

=

{
2k3+1
2k1+1 , k1 + k2 = k3,

0, otherwise.
(3.30)

Ck1
k2k3

= Res
z=0

ξ∗k1
(z) ξk2(z) ξk3(z) θ(z)

= Res
z=0

dz

z

(2k3 + 1)(2k2 + 1)

(2k1 + 1)
z2k1−2k2−2k3−2

=

{
(2k2+1)(2k3+1)

2k1+1 , k1 = k2 + k3 + 1,

0, otherwise.
(3.31)

Dk1 = δk1,0
1

8
(3.32)

This leads to the differential operators Ln for n ≥ 0, defined by

Ln = −n+ 1/2

~
∂2n+1 +

1

2

∞∑
i=0

(2i+ 2n+ 1)p2i+1∂2i+2n+1

+
1

4

n−1∑
i=0

(2i− 1)(2n− 2i− 1)∂2i+1∂2n−2i−1 +
1

16
δn,0 (3.33)

These form a representation of a subalgebra of the Virasoro algebra. They furthermore annihilate
the partition function for the Bessel curve, which is a tau function of the KdV hierarchy known
in the literature as the Brézin–Gross–Witten tau function.

Konstevich and Soibelman [7171] prove the following recursion, where 2g− 2 +n ≥ 2, i1, . . . , in ∈ I
and J = {i2, . . . , in}.

Fg,n
[
i1, . . . , in

]
=

n∑
m=2

∑
a

Bi1im
a Fg,n−1

[
a, J \ {im}

]
+

1

2

∑
ab

Ci1a,b

(
Fg−1,n+1

[
a, b, J

]
+

∑
g1+g2=g
KtL=J

Fg1,|K|+1

[
a,K

]
Fg1,|L|+1

[
b, L
])

(3.34)

First, we notice that the initial conditions for the recursion in equation (3.273.27) and equation (3.343.34)
agree. That is, U0,1(i) = F0,1[i] = 0, U0,2(i, j) = F0,2(i, j) = 0 and F0,3[i, j, k] = Aijk =
U0,3(i, j, k) = 0 for all i, j, k, as well as the fact that F1,1[0] = D0 = U1,1(1) = 1

8 . We can
substitute the calculations of the tensors A,B,C,D above into the equation above to obtain the
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following explicit recursion.

Fg,n
[
i1, . . . , in

]
=

n∑
m=2

2(i1 + im) + 1

2i1 + 1
Fg,n−1

[
i1 + im, J \ {im}

]
+

1

2

∑
a+b=i1−1

(2a+ 1)(2b+ 1)

(2i1 + 1)

(
Fg−1,n+1

[
a, b, J

]
+

∑
g1+g2=g
J ′∪J ′′=I

Fg1,1+|J ′|
[
a, J ′

]
Fg1,1+|J ′|

[
b, J ′′

])
(3.35)

At this stage, we simply notice the similarity between the recursions of equations (3.273.27) and (3.353.35).
The only difference is the transformation of the arguments involved in the recursion. Hence, we
have proved by induction the fact that

Ug,n(2k1 + 1, 2k2 + 1, . . . , 2kn + 1) = Fg,n[k1, k2, . . . , kn].

Our calculations demonstrate how one can derive a recursion of cut-and-join type from the
Kontsevich–Soibelman topological recursion. A similar analysis is performed in Section 7.17.1 for
the context of monotone Hurwitz numbers.

3.4 Quantum curves

In this section, we discuss the notion of quantum curves and their relation with topological
recursion. A quantum curve is an object that we associate to a plane curve

C =
{

(x, y) ∈ C2 | P (x, y) = 0
}

and is a Schrödinger-type differential equation

P̂ (x̂, ŷ)ψ(p, ~) = 0, (3.36)

where p ∈ C, ~ is a formal parameter, and P̂ (x̂, ŷ) is a differential operator-valued non-
commutative quantisation of the plane curve with x̂ = x and ŷ = ~ ∂

∂x . Observe that these
operators satisfy the commutation relation

[x̂, ŷ] = −~. (3.37)

For example, a quantisation of P (x, y) = y2 − x is the operator P̂ (x̂, ŷ) = ŷ2 − x̂ = ~2 ∂2

∂x2 − x.
equation (3.363.36) is understood via the WKB method. In other words, we require ψ(p, ~) to be of
the form

ψ(p, ~) = exp
(
~−1F0(p) + F1(p) + ~F2(p) + ~2F3(p) + · · ·

)
, (3.38)

and the Fk(p) are calculated recursively via equation (3.363.36). A simple consequence of equa-
tion (3.363.36) is that the Fk(p) are meromorphic functions of C, where F0(p) =

∫ p
y dx may be

multi-valued. A fundamental question is whether Fk(p) can be defined directly from the plane
curve without using the WKB approximation to produce a natural choice of P̂ (x̂, ŷ). A conjectural
answer in the case that the plane curve C has genus zero is given by

Fk(p) =
∑

2g−1+n=k

1

n!

∫ p

a

∫ p

a
· · ·
∫ p

a
ωg,n(p1, . . . , pn), (3.39)

where ωg,n(p1, . . . , pn) are defined by the topological recursion on the spectral curve given by the
plane curve C and a is a base point for the integration, which should be chosen to be a pole of
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x [1717]. This conjecture is addressed by Gukov and Su lkowski in [6161], together with the related
issue of constructing P̂ (x̂, ŷ) algorithmically from the wave function.

The path from the quantum curve to the plane curve is well-defined. It is a little deeper than
simple substitution x̂ → x and ŷ → y into P̂ (x̂, ŷ), since we deduced that equation (3.363.36) is
satisfied only on the plane curve P (x, y) = 0. This is achieved via the semi-classical limit ~→ 0,
where the differential operator P̂ (x̂, ŷ) reduces to a multiplication operator that vanishes precisely
on the plane curve. The action of ~ ∂

∂x on

ψ0(p, ~) = exp

(
~−1

∫ p

y dx

)
is multiplication by y, so

P̂ (x̂, ŷ)ψ(p, ~) = [P (x, y) +O(~)]ψ(p, ~),

and in the ~→ 0 limit, ŷ = ~ ∂
∂x in P̂ (x̂, ŷ) gets replaced by its symbol y. Higher order corrections

in ~ are required since (~ ∂
∂x)2 → y2 +O(~) under its action on ψ0(x, ~).

On the other hand, constructing the quantum curve from the plane curve is far from canonical.
The main issues lie in the construction of the wave function ψ(p, ~) and the ambiguity in ordering
the non-commuting operators x̂ and ŷ in P̂ . The conjectural formula of equation (3.393.39) is one
attempt to remedy this. Such a wave function is enough to reconstruct the operator P̂ (x̂, ŷ).
Every P̂ (x̂, ŷ) can be expressed as:

P̂ (x̂, ŷ) = P (x̂, ŷ) + ~P1(x̂, ŷ) + ~2P2(x̂, ŷ) + · · · , (3.40)

where each Pk(x̂, ŷ) is a normal ordered operator-valued polynomial. So in Pk(x̂, ŷ), all ŷ terms
in a monomial are placed to the right of x̂ terms and there is no explicit ~ dependence. Then
these polynomials can be reconstructed recursively from the wave function.

The differential operator P̂ (x̂, ŷ) generates a principal ideal in the algebra D of differential
operators which act on C[x]. The quotient D/〈P̂ 〉 of the algebra D by the principal ideal
〈P̂ 〉 = DP̂ is a D-module which gives a way to study P̂ (x̂, ŷ) intrinsically. The wave function
ψ(p, ~) can be retrieved via the D-module homomorphisms it defines.

D/〈P̂ 〉 → C[[x±1, h±1]]

equation (3.393.39) relates quantum curves to topological recursion. The plane curve obtained from
the quantum curve forms the essential input data for topological recursion. We briefly discuss
two properties shared by quantum curves and topological recursion that further demonstrate the
relationship between these objects.

Invariance under isomorphism
Consider the following isomorphism between plane curves

(x, y)→ (x, y + d
dxg(x)), (3.41)

for any polynomial g(x). So their defining polynomials P (x, y) = 0 and Q(x, y) = 0 are
related by Q(x, y) = P (x, y − d

dxg(x)). Now

P̂ (x̂, ŷ)ψ(p, ~) = 0 ⇒ Q̂(x̂, ŷ) exp(~−1g(x))ψ(p, ~) = 0,

for P (x(p), y(p)) = 0 and Q(x(p), y(p) + d
dxg(x(p))) = 0, where Q̂(x̂, ŷ) has to be defined

carefully as follows: replace each operator ŷ in P̂ (x̂, ŷ) with the operator ŷ − d
dxg(x) and

do not apply normal ordering.
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The isomorphism equation (3.413.41) preserves the underlying curve, not its embedding, together
with the function x defined on the curve. The change in wave function for curves related
by such an isomorphism only effects the ~−1 term in the exponent of ψ(p, ~) and all Fk(p)
for p > 0 are unchanged under the isomorphism. So we see that Fk(p) for k > 0 are in
some sense intrinsic to the underlying curve equipped with the functions x and y. One can
also observe that the ωg,n generated by the topological recursion are also unchanged under
the isomorphism.

Local factorisation
The quantum curves for fundamental cases like the Airy curve 1

2y
2−x = 0 and Bessel curve

xy2 − 1
2 = 0 satisfy equation (3.393.39). For an arbitrary spectral curve, these give a model

for the quantum curve near a simple ramification point. The Airy and Bessel quantum
curves then annihilate the part of the wave function related to the Airy and Bessel spectral
curves, respectively.

The quantum curve often helps us to predict whether an enumerative problem is guided by
topological recursion and, if so, it provides the initial data of the spectral curve. Note that
topological recursion produces correlation differentials, which store information by some genus g
and tuple (µ1, . . . , µn). On the other hand, the quantum curve controls the wave function, which
stores information only by the Euler characteristic 2g − 2 + n and the degree d =

∑
µi.

Below is a brief list of enumerative problems discussed in previous chapters, along with their
associated quantum curves. In many cases, the derivation of the quantum curve led to a conjecture
at the deeper level of topological recursion.

Enumerative problem Quantum curve

Orbifold Hurwitz numbers [7979] ŷ −
(

exp( q−1
2 ŷ)x̂ exp(−(q−1)

2 ŷ)
)q

exp(qŷ)

Spin Hurwitz numbers [7979] ŷ − x
3
2 exp

(
1
r+1

∑r
i=0 x̂

−1ŷix̂ŷr−i
)
x−

1
2

Spin orbifold Hurwitz numbers [7979] ŷ − xq+
1
2 exp

( q
r+1

∑r
i=0 x̂

−qŷix̂qŷr−1
)
x−

1
2

Monotone orbifold Hurwitz numbers [2828] x̂a−1 +
∏a−1
j=0(1 + x̂ŷ + j~)ŷ

Enumeration of m-hypermaps [3535] ŷm − x̂ŷ + 1

The following diagram shows the relations between the various objects at play, which allows one
to calculate quantum curves and conjecture spectral curves for given enumerative problems.

spectral
curve

P (x, y) = 0

correlation
differentials

ωg,n

free
energies
Fg,n

partition
function
Z(p; ~)

Schrödinger
equation
P̂ ψ = 0

quantum
curve
P̂ (x̂, ŷ)

Figure 3.2: Flowchart describing the quantisation of the spectral curve.
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Quantum curve for Bousquet-Mélou–Schaeffer numbers

We now give an example of an enumerative problem for which we derive the associated quantum
curve — namely, Bousquet-Mélou–Schaeffer numbers. We start with the partition function
for the problem, form the principal specialisation to obtain the wave function, then derive the
quantum curve equation, following the path along the bottom of the diagram above. A crucial
tool is the character formula obtained in Proposition 1.1.71.1.7. We note that this demonstrates a
technique that works more generally for similar enumerative problems.

For a fixed positive integer m, the partition function for the BMS numbers is defined as follows.

Z(p1, p2, . . . ; ~) := exp

[ ∞∑
g=0

∞∑
n=1

~2g−2+n

n!

∞∑
µ1,...,µn=1

B(m)
g,n (µ1, . . . , µn) pµ1 · · · pµn

]
The wave function for the BMS numbers is formed by taking the principal specialisation of the
partition function — in other words, by replacing pi with x−i in Z(p1, p2, . . . ; ~).

ψ(x, ~) = Z(p1, p2, . . . ; ~) := exp

[ ∞∑
g=0

∞∑
n=1

~2g−2+n

n!

∞∑
µ1,...,µn=1

B(m)
g,n (µ1, . . . , µn)x−(µ1+···+µn)

]
It will be useful to interpret p1, p2, . . . as the power-sum symmetric functions of some infinite
sequence of variables.

Proposition 3.4.1. The wave function for BMS numbers can be expressed as

ψ(x, ~) =

∞∑
d=0

1

~d
1

d!

d−1∏
i=1

(1 + i~)mx−d.

Proof. The exponential appearing in the partition function passes from the connected enumeration
to the disconnected enumeration. So we can express the partition function in the following way,
noting that the genus can be negative, as discussed in Section 1.11.1.

Z(p1, p2, . . . ; ~) = 1 +

∞∑
g=−∞

∞∑
n=1

~2g−2+n

n!

∞∑
µ1,...,µn=1

B(m)•
g,n (µ1, . . . , µn) pµ1 · · · pµn

= 1 +

∞∑
g=−∞

∞∑
n=1

~2g−2+n

n!

∞∑
µ1,...,µn=1

∏
pµi

d!
∏
µi

[~2g−2+n]
∑
ν`d

χνµ
~d

dim(ν)
∏
�∈ν

(1 + c(�)~)m

To obtain the second line, we have substituted the character formula for BMS numbers of Propo-
sition 1.1.71.1.7.

We are extracting a coefficient of ~2g−2+n and then replacing it, so one can remove these operations
along with the sum over g.

Z(p1, p2, . . . ; ~) = 1 +
∞∑
n=1

1

n!

∞∑
µ1,...,µn=1

∏
pµi

d!
∏
µi

∑
ν`d

χνµ
~d

dim(ν)
∏
�∈ν

(1 + c(�)~)m

Express this now as a sum over degree d and over partitions µ, rather than tuples.

Z(p1, p2, . . . ; ~) = 1 +

∞∑
d=1

1

~d
1

d!

∑
µ`d

∏
pµi

|Aut(µ)|
∏
µi

∑
ν`d

χνµ dim(ν)
∏
�∈ν

(1 + c(�)~)m

= 1 +
∞∑
d=1

1

~d
1

d!

∑
ν`d

dim(ν)
∏
�∈ν

(1 + c(�)~)m
∑
µ`d

χνµ
|Aut(µ)|

∏
µi

∏
pµi
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Here, we have interchanged the order of summation over µ and ν. Now we use the change of

basis between Schur functions and power-sum symmetric functions sν =
∑

µ
χνµ

|Aut(µ)|
∏
µi

∏
pµi

to write the partition function as follows.

Z(p1, p2, . . . ; ~) =
∞∑
d=0

1

~d
1

d!

∑
ν`d

sν dim(ν)
∏
�∈ν

(1 + c(�)~)m

Now we use the standard fact [7676]

sν(t1, t2, t3, . . .) =

{
td, if ν = (d, 0, 0, . . .) for some d,

0, otherwise.

Substituting this into previous expression for the partition function, we have

ψ(x, ~) = Z(p1, p2, . . . ; ~)|pi=x−i

=
∞∑
d=0

1

~d
1

d!

∑
ν`d

sν(x−1, x−2, x−3, . . .) dim(ν)
∏
�∈ν

(1 + c(�)~)m

=

∞∑
d=0

1

~d
1

d!

d−1∏
i=1

(1 + i~)mx−d

Theorem 3.4.2 (Quantum curve for BMS numbers). Let ψ(x, ~) = x−1/~ψ(x, ~). Then for
x̂ = x and ŷ = ~ ∂

∂x , we have[
ŷ(x̂ŷ)m−1 + (−1)m(x̂ŷ + 1)

]
ψ(x, ~) = 0.

Proof. In order to interpret the statement of this theorem, we need to make precise what we
mean, given that the ~-expansion of ψ(x, ~) is not well-defined, due to the x−1/~ prefactor. We
do this by conjugating the operator to instead prove that

x1/~ [ŷ(x̂ŷ)m−1 + (−1)m(x̂ŷ + 1)
]
x−1/~ψ(x, ~) = 0.

This gives a well-defined differential operator acting on ψ(x, ~) ∈ Q[~±1][x−1].

Start by writing Proposition 3.4.13.4.1 as

ψ(x, ~) =
∞∑
d=0

ad(~)x−d with ad(~) =
1

~d
1

d!

d−1∏
i=1

(1 + i~)m.

We compare two consecutive coefficients of ψ(x, ~) to obtain

ad+1(~)

ad(~)
=

(1 + ~d)m

~(d+ 1)
.

Cross-multiply this equation, multiply both sides by x−d, and then sum over all non-negative
integers d to obtain the following equation.

∞∑
d=0

~(d+ 1)ad+1(~)x−d =

∞∑
d=0

(1 + ~d)mad(~)x−d

This can then be expressed as

−x̂2ŷψ(x, ~) = (1− x̂ŷ)mψ(x, ~) ⇒
[
x̂2ŷ + (1− x̂ŷ)m

]
ψ(x, ~) = 0.
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To obtain the operator that annihilates ψ(x, ~), we conjugate the operator appearing in the
previous equation using the fact that x−1/~x̂ŷx1/~ = x̂ŷ + 1. This gives us

[x̂(x̂ŷ + 1) + (−x̂ŷ)m]ψ(x, ~) = 0.

By applying x̂−1 on the left and rearranging, we obtain the desired result.

Remark 3.4.3. The modified wave function ψ(x, ~) = x−1/~ψ(x, ~) may seem unusual, but is
consistent with other derivations of quantum curves [6161]. It in some sense corresponds to the

trivial BMS number B
(m)
0,1 (0) = 1. We observe that up to a sign convention in the choice of

polarisation, the previous theorem specialises in the case m = 2 to the known quantum curve for
the enumeration of dessins d’enfant [3636]. This class of spectral curves falls into the general class
of admissible spectral curves studied by Bouchard and Eynard [1717], so one can also invoke their
result to show that topological recursion applied to the spectral curve does indeed reconstruct
the WKB expansion attached to the quantum curve.



Chapter 4

One-point recursions

Harer and Zagier proved a recursion to enumerate gluings of a 2d-gon that result in an orientable
genus g surface, in their work on Euler characteristics of moduli spaces of curves. Analogous
results have been discovered for other enumerative problems, so it is natural to pose the following
question: How large is the family of problems for which these so-called 1-point recursions exist?

In this chapter, we prove the existence of 1-point recursions for a class of enumerative problems
that have Schur function expansions. In particular, we recover the Harer–Zagier recursion, but
our methodology also applies to Bousquet-Mélou–Schaeffer numbers, monotone Hurwitz numbers,
the enumeration of dessins d’enfant, and more. On the other hand, we prove that there is no
1-point recursion that governs simple Hurwitz numbers. Our results are effective in the sense that
one can explicitly compute particular instances of 1-point recursions. We conclude the chapter
with a brief discussion of relations between 1-point recursions and the theory of topological
recursion.

4.1 Motivation

The connection between map enumeration and matrix integrals was first established by ’t
Hooft [9999]. This technique was later reinvented by Harer and Zagier [6262] for their computation
of the Euler characteristics of moduli spaces of curves. In their work, they define ag(d) to be the
number of ways to glue the edges of a 2d-gon in pairs to obtain an orientable genus g surface. We
recall that the data of gluing polygons together to make surface is often referred to as a fatgraph,
as discussed in detail in Section 1.41.4. One consequence of Harer and Zagier’s calculation is the
fact that the numbers ag(d) satisfy the following recursion [6262].

(d+ 1) ag(d) = 2(2d− 1) ag(d− 1) + (2d− 1)(d− 1)(2d− 3) ag−1(d− 2) (4.1)

Despite the simple appearance of this formula, Zagier later stated in [7373] that “No combinatorial
interpretation of the recursion. . . is known.” The Harer–Zagier recursion has since attracted
a great deal of interest, and there now exist several proofs, some of them combinatorial in
nature [11, 2121, 5959, 9191].

A similar three-term recursion involving the enumeration of dessins d’enfant was obtained in
the work of Do and Norbury [3636], as well as the subsequent work of Chekhov [2525]. Let bg(d)
denote the number of ways to glue the edges of a 2d-gon, whose vertices are alternately coloured
red and blue, in pairs to obtain an orientable genus g surface. The vertices may only be glued
together if they have the same colour. Then the three-term recursion for the enumeration of
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dessins d’enfant takes the following form.

(d+ 1) bg(d) = 2(2d− 1) bg(d− 1) + (d− 1)2(d− 2) bg−1(d− 2) (4.2)

The more general enumeration of gluings of n polygons with prescribed perimeters to obtain
a surface of genus g was studied by Tutte [100100] in the case of genus zero and by Walsh and
Lehman for arbitrary genus [102102]. They produce an effective recursion for the enumeration and
the mechanism for this recursion comes from analysing the result of removing an edge from a
fatgraph. The recursion necessarily mixes together the enumeration for various values of n, in
contrast to the Harer–Zagier recursion, which only involves terms with n = 1.

There are various instances of recursions analogous to those expressed in equation (4.14.1) and
equation (4.24.2), though in other settings. For example, Ledoux gives a recursion for the moments
of the Gaussian orthogonal ensemble, which is analogous to the Harer–Zagier recursion [7474]. In
general, it is not true that these recursions involve three terms and indeed, the recursion of Ledoux
requires five terms. In the context of enumerative geometry and mathematical physics, the
analogues of ag(d) and bg(d) are known as 1-point invariants, since they arise as the coefficients
of 1-point functions. More generally, the enumeration of gluings of n polygons with prescribed
perimeters to obtain a surface of genus g produces numbers known as n-point invariants. The
previous discussion motivates us to make the following definition.

Definition 4.1.1. We say that the collection of numbers ng(d) ∈ C for g = 0, 1, 2, . . . and
d = 1, 2, 3, . . . satisfies a 1-point recursion if there exist integers imax and jmax and polynomials
pij(z) ∈ C[z], not all equal to zero, such that

imax∑
i=0

jmax∑
j=0

pij(d)ng−i(d− j) = 0, (4.3)

for all g and d for which all terms in the equation are defined.

The current work is motivated by the following interrelated questions.

What unified proofs of 1-point recursions exist, which encompass both equations (4.14.1)
and (4.24.2)?

How universal is the the notion of a 1-point recursion?

We partially answer these questions by first observing that the enumeration of both fatgraphs
and dessins d’enfant can be expressed in terms of Schur functions. This suggests that 1-point
recursions may exist more generally for problems that may be defined in an analogous way.

Thus, we consider double Schur function expansions of the following form.

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

G(c(�)~)

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
(4.4)

The precise meaning of all terms appearing in the first line of this equation will be discussed
in Section 4.24.2. It currently suffices to observe that the “enumerative problem” is stored in the
numbers Ng,n(d1, d2, . . . , dn) appearing in the second line. These numbers have been recently
studied in the work of Alexandov, Chapuy, Eynard and Harnad [22], where they are given
a combinatorial interpretation and referred to as weighted Hurwitz numbers, as described in
Section 1.51.5.
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The primary contribution of this chapter is an approach to proving 1-point recursions for such
“enumerative problems”. In particular, our main result is the following.

Theorem 4.1.2. Let G(z) ∈ C(z) be a rational function with G(0) = 1 and suppose that finitely
many terms of the sequence q1, q2, q3, . . . are non-zero. Then the numbers ng(d) = dNg,1(d)
defined by equation (4.44.4) satisfy a 1-point recursion.

The proof of this theorem will be taken up in Section 4.54.5, where we use the theory and language
of holonomic sequences and functions. The basic observation is Lemma 4.4.14.4.1, which states that
a 1-point recursion exists for ng(d) if and only if the sequence nd =

∑
g ng(d) ~2g−1 is holonomic

over C(~).

One of the features of holonomic sequences and functions is that there are readily available
algorithms to carry out computations, such as those found in the gfun package for Maple [9393] or
the HolonomicFunctions package for Mathematica [7272].

After proving the existence of 1-point recursions in Section 4.54.5, we give bounds on the degree
and order of the recursion in Section 4.64.6, in terms of the degree of the rational function G(z)
and the number of non-zero weights q1, q2, . . . , qr. We explain how such bounds on the degree
and order can be used to effectively derive 1-point recursions explicitly.

Example 4.1.3. If we take G(z) = 1 + z and q = (0, 1, 0, 0, . . .) in equation (4.44.4), then we
recover the enumeration of fatgraphs introduced earlier. In other words, we have ng(d) = ag(d),
so Theorem 4.1.24.1.2 asserts the existence of a 1-point recursion for the numbers ag(d).

Analogously, if we take G(z) = (1 + z)2 and q = (1, 0, 0, . . .) in equation (4.44.4), then we recover
the enumeration of dessins d’enfant introduced earlier. In other words, we have ng(d) = bg(d),
so Theorem 4.1.24.1.2 asserts the existence of a 1-point recursion for the numbers bg(d).

The topological recursion discussed in Chapter 33 provides a way to calculate n-point invariants,
giving a vast generalisation of the Walsh–Lehman recursion for the enumeration of fatgraphs.
Of course, any method to calculate n-point invariants in general may also be used to calculate
1-point invariants in particular. However, 1-point recursions appear to be far more efficient from
a computational viewpoint and can give direct information regarding the structure of 1-point
invariants that is not apparent from the topological recursion.

4.2 One-point enumerative problems

Our work is primarily motivated by the Harer–Zagier recursion for the enumeration of fatgraphs
with one face [6262], as well as the Do–Norbury recursion for the enumeration of dessins d’enfant
with one face [3636], appearing in equations (4.14.1) and (4.24.2). Apart from the obvious similarities
between these two problems, they also both arise from double Schur function expansions. So
we propose to study the broad class of “enumerative problems” stored in double Schur function
expansions of the general form

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)Fλ(~).

Here, P denotes the set of all partitions (including the empty partition), sλ(p1, p2, . . .) denotes the
Schur function expressed in terms of power sum symmetric functions, and Fλ(~) is a formal power
series in ~ for each partition λ. We use the shorthand p = (p1, p2, p3, . . .) and q = (q1, q2, q3, . . .)
throughout the chapter. Following the mathematical physics literature, we will refer to such
power series as partition functions, although we note that this name does not refer to the integer
partitions that appear in the equation above.
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For our applications, we will take Fλ(~) to have the so-called content product form

Fλ(~) =
∏
�∈λ

G(c(�)~).

Here, the product is over the boxes in the Young diagram for λ, G(z) ∈ C[[z]] is a formal power
series normalised to have constant term 1, and c(�) denotes the content of the box. Recall that
the content of a box in row i and column j of a Young diagram is the integer i− j.

The partition function can be expressed as

Z(p; q; ~) = exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
, (4.5)

where Ng,n(d1, d2, . . . , dn) ∈ C[q1, q2, . . .]. For various natural choices of the formal power
series G(z) and the weights q1, q2, q3, . . ., the quantity Ng,n(d1, d2, . . . , dn) enumerates objects of
combinatorial interest. We will be primarily concerned with the 1-point invariants that arise
when n = 1. In particular, we consider the numbers

ng(d) = dNg,1(d),

with the goal of determining whether or not there exists a 1-point recursion governing these
numbers.

We now proceed to examine four classes of combinatorial problems that arise from double Schur
function expansions. These were all defined previously in Chapter 11, although we now focus our
attention on their expression via Schur functions and their corresponding 1-point enumerative
problems.

Fatgraphs and dessins d’enfant

We discussed the enumeration of fatgraphs and dessins d’enfant in Section 1.41.4 and now proceed
to define the associated 1-point enumerations by ag(d) := dAg,1(d), āg(d) := dĀg,1(d), bg(d) :=
dBg,1(d) and b̄g(d) := dB̄g,1(d).

Lemma 4.2.1. The double dessin d’enfant numbers arise from taking q = (q1, q2, q3, . . .) and
G(z) = 1 + z in equation (4.44.4). In other words, we have

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

(1 + c(�)~)

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Bg,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
.

One obtains the usual dessin d’enfant enumeration by setting q = (1, 1, 1, . . .) in the double
dessin d’enfant enumeration.

Z(p; q; ~) = exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Bg,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
=
∑
λ∈P

sλ(p1, p2, . . .) sλ(1
~ ,

1
~ ,

1
~ , . . .)

∏
�∈λ

(1 + c(�)~)

=
∑
λ∈P

sλ(p1, p2, . . .) sλ(1
~ , 0, 0, . . .)

∏
�∈λ

(1 + c(�)~)2
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The second equality here relies on the fact that sλ(1
~ ,

1
~ ,

1
~ , . . .) = sλ(1

~ , 0, 0, . . .)
∏

(1 + c(�)~),
which is a direct corollary of the hook-length and the hook-content formulas — see equation (4.74.7).

d g ag(d) bg(d)

1 0 1 q1

2 0 2 q2 + q2
1

2 1 1 0

3 0 5 q3 + 3q2q1 + q3
1

3 1 10 q3

4 0 14 q4 + 4q3q1 + 2q2
2 + 6q2q

2
1 + q4

1

4 1 70 5q4 + 4q3q1 + q2
2

4 2 21 0

5 0 42 q5 + 5q4q1 + 5q3q2 + 10q3q
2
1 + 10q2

2q1 + 10q2q
3
1 + q5

1

5 1 420 15q5 + 25q4q1 + 15q3q2 + 10q3q
2
1 + 5q2

2q1

5 2 483 8q5

6 0 132 q6 +6q5q1 +6q4q2 +15q4q
2
1 +3q2

3 +30q3q2q1 +20q3q
3
1 +5q3

2 +30q2
2q

2
1 +15q2q

4
1 +q6

1

6 1 2310 35q6 + 90q5q1 + 60q4q2 + 75q4q
2
1 + 25q2

3 + 90q3q2q1 + 20q3q
3
1 + 10q3

2 + 15q2
2q

2
1

6 2 6468 84q6 + 48q5q1 + 24q4q2 + 12q2
3

6 3 1485 0

Bousquet-Mélou–Schaeffer numbers

We defined Bousquet-Mélou–Schaeffer numbers in Section 1.11.1 and now define the associated

1-point enumerations via b
(m)
g (d) := dB

(m)
g,1 (d) and b̄

(m)
g (d) := dB̄

(m)
g,1 (d) .

Lemma 4.2.2. The m-BMS numbers arise from taking q = (1, 0, 0, . . .) and G(z) = (1 + z)m in
equation (4.44.4). In other words, we have

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ(1
~ , 0, 0, . . .)

∏
�∈λ

(1 + c(�)~)m

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

B(m)
g,n (d1, d2, . . . , dn)

~2g−2+n

n!
pd1pd2 · · · pdn

]
.

The double Bousquet-Mélou–Schaeffer numbers arises taking q = (q1, q2, q3, . . .) and G(z) =
(1 + z)m−1 in equation (4.44.4).
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d g b
(3)
g (d)

1 0 q1

2 0 q2 + 2q2
1

2 1 q2

3 0 q3 + 6q2q1 + 5q3
1

3 1 8q3 + 12q2q1 + q3
1

3 2 3q3

4 0 q4 + 8q3q1 + 4q2
2 + 28q2q

2
1 + 14q4

1

4 1 30q4 + 96q3q1 + 34q2
2 + 100q2q

2
1 + 10q4

1

4 2 93q4 + 88q3q1 + 34q2
2 + 16q2q

2
1

4 3 20q4

5 0 q5 + 10q4q1 + 10q3q2 + 45q3q
2
1 + 45q2

2q1 + 120q2q
3
1 + 42q5

1

5 1 80q5 + 400q4q1 + 280q3q2 + 770q3q
2
1 + 560q2

2q1 + 700q2q
3
1 + 70q5

1

5 2 901q5 + 1990q4q1 + 1290q3q2 + 1405q3q
2
1 + 1055q2

2q1 + 380q2q
3
1 + 8q5

1

5 3 1650q5 + 1200q4q1 + 820q3q2 + 180q3q
2
1 + 140q2

2q1

5 4 248q5

Simple Hurwitz numbers

We defined Hurwitz numbers in Section 1.21.2 and now define the associated one-point enumerations
by hg(d) := dHg,1(d) and h̄g(d) := dH̄g,1(d).

Lemma 4.2.3. The simple Hurwitz numbers arise from taking q = (1, 0, 0, . . .) and G(z) = exp(z)
in equation (4.44.4). In other words, we have

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ(1
~ , 0, 0, . . .)

∏
�∈λ

exp(c(�)~)

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Hg,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
.

Lemma 4.2.4. The double Hurwitz numbers arise from taking q = (q1, q2, q3, . . .) and G(z) =
exp(z) in equation (4.44.4). In other words, we have

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

exp(c(�)~)

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Hg,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
.
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d g hg(d) hg(d)

1 0 1 q1

1 1 0 0

1 2 0 0

2 0 1 q2 + q2
1

2 1 1
6

1
2q2 + 1

6q
2
1

2 2 1
120

1
24q2 + 1

120q
2
1

3 0 3
2 q3 + 3q2q1 + 3

2q
3
1

3 1 9
8 3q3 + 9

2q2q1 + 9
8q

3
1

3 2 27
80

9
4q3 + 81

40q2q1 + 27
80q

3
1

4 0 8
3 q4 + 4q3q1 + 2q2

2 + 8q2q
2
1 + 8

3q
4
1

4 1 16
3 10q4 + 24q3q1 + 28

3 q
2
2 + 80

3 q2q
2
1 + 16

3 q
4
1

4 2 208
45

82
3 q4 + 216

5 q3q1 + 244
15 q

2
2 + 1456

45 q2q
2
1 + 208

45 q
4
1

5 0 125
24 q5 + 5q4q1 + 5q3q2 + 25

2 q3q
2
1 + 25

2 q
2
2q1 + 125

6 q2q
3
1 + 125

24 q
5
1

5 1 3125
144 25q5 + 250

3 q4q1 + 125
2 q3q2 + 3125

24 q3q
2
1 + 625

6 q2
2q1 + 3125

24 q2q
3
1 + 3125

144 q
5
1

5 2 15625
384

2125
12 q5 + 1250

3 q4q1 + 6875
24 q3q2 + 21875

48 q3q
2
1 + 3125

9 q2
2q1 + 15625

48 q2q
3
1 + 15625

384 q5
1

Monotone Hurwitz numbers

We defined monotone Hurwitz numbers in Definition 1.3.11.3.1 and now define the associated one-point
enumerations by mg(d) := dMg,1(d) and m̄g(d) := dM̄g,1(d).

Lemma 4.2.5. The monotone Hurwitz numbers arise from taking q = (1, 0, 0, . . .) and G(z) =
1

1−z in equation (4.44.4). In other words, we have

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ(1
~ , 0, 0, . . .)

∏
�∈λ

1

1− c(�)~

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Mg,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
.

Lemma 4.2.6. The double monotone Hurwitz numbers arise from taking q = (q1, q2, q3, . . .) and
G(z) = 1

1−z in equation (4.44.4). In other words, we have

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

1

1− c(�)~

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Mg,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]
.
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d g mg(d) mg(d)

1 0 1 q1

1 1 1 0

1 2 1 0

2 0 1 q2 + q2
1

2 1 1 q2 + q2
1

2 2 1 q2 + q2
1

3 0 2 q3 + 3q2q1 + 2q3
1

3 1 10 5q3 + 15q2q1 + 10q3
1

3 2 42 21q3 + 63q2q1 + 42q3
1

4 0 5 q4 + 4q3q1 + 2q2
2 + 10q2q

2
1 + 5q4

1

4 1 70 15q4 + 60q3q1 + 25q2
2 + 140q2q

2
1 + 70q4

1

4 2 735 161q4 + 644q3q1 + 252q2
2 + 1470q2q

2
1 + 735q4

1

5 0 14 q5 + 5q4q1 + 5q3q2 + 15q3q
2
1 + 15q2

2q1 + 35q2q
3
1 + 14q5

1

5 1 420 35q5 + 175q4q1 + 140q3q2 + 490q3q
2
1 + 420q2

2q1 + 1050q2q
3
1 + 420q5

1

5 2 8778 777q5 + 3885q4q1 + 2835q3q2 + 10605q3q
2
1 + 8505q2

2q1 + 21945q2q
3
1 + 8778q5

1

4.3 Schur function evaluations

In the previous section, we discussed certain enumerative problems of geometric interest that are
stored in the following partition function for different choices of the power series G(z) and the
parameters q1, q2, . . ..

Z(p; q; ~) =
∑
λ∈P

sλ(p1, p2, . . .) sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

G(c(�)~)

= exp

[ ∞∑
g=0

∞∑
n=1

∞∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
~2g−2+n

n!
pd1pd2 · · · pdn

]

The coefficients Ng,n(d1, d2, . . . , dn) ∈ C[q1, q2, . . .] are essentially the weighted Hurwitz numbers
appearing in the work of Alexandrov, Chapuy, Eynard and Harnad [22].

We consider in particular the 1-point invariants

ng(d) = dNg,1(d)

stored in the partition function.11 In order to obtain information about these numbers, we deform
the partition function via a parameter s that keeps track of the unweighted degree in p1, p2, p3, . . .

1The extra factor of d in the definition of ng(d) will have little bearing on our results, but is introduced here
for consistency with the original Harer–Zagier recursion and other results in the literature. We remark that
the 1-point recursions are generally simpler with this normalisation, as can be witnessed from equations (4.14.1)
and (4.24.2).
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and then extract the 1-point invariants by differentiation.[
∂

∂s
Z(sp; q; ~)

]
s=0

=
∑
λ∈P

[
∂

∂s
sλ(sp1, sp2, . . .)

]
s=0

sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

G(c(�)~)

=
∞∑
g=0

∞∑
d=1

Ng,1(d) ~2g−1 pd

At this stage, it is natural to introduce the so-called principal specialisation pd = xd to record
the degree via the single variable x.[
∂

∂s
Z(sx, sx2, sx3, . . . ; q; ~)

]
s=0

=
∑
λ∈P

[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]
s=0

sλ( q1~ ,
q2
~ , . . .)

∏
�∈λ

G(c(�)~)

=

∞∑
g=0

∞∑
d=1

Ng,1(d) ~2g−1 xd (4.6)

In this section, we deduce some facts about Schur functions that will be required at a later stage.
We begin with the crucial observation that the evaluation of the Schur function appearing in
equation (4.64.6) is zero unless λ is a hook partition. Here, and throughout the chapter, a hook
partition refers to a partition of the form (k, 1d−k), where 1 ≤ k ≤ d.

Lemma 4.3.1.[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]
s=0

=

{
(−1)d−k x

d

d , if λ = (k, 1d−k) is a hook partition,

0, otherwise.

Proof. The lemma follows from the hook-content formula [7676], which states that

sλ(s, s, s, . . .) =
∏
�∈Λ

s+ c(�)

h(�)
, (4.7)

where c(�) and h(�) denote the content and hook-length of a box in the Young diagram for λ,
respectively. Recall that the hook-length of a box in a Young diagram is the number of boxes that
lie to the right in the same row, or lie below in the same column, and including the box itself.

If λ is a non-empty partition that is not a hook, then its Young diagram contains at least two
boxes with content 0. So the hook-content formula implies that sλ(s, s, s, . . .) is a polynomial
divisible by s2 and it follows that[

∂

∂s
sλ(sx, sx2, sx3, . . .)

]
s=0

= 0.

If λ = (k, 1d−k) is a hook partition, then its hook-lengths are given by the multiset

{1, 2, . . . , k − 1} ∪ {1, 2, . . . , d− k} ∪ {d},

while its contents are given by

{1, 2, . . . , k − 1} ∪ {−1,−2, . . . ,−(d− k)} ∪ {0}.

Thus, we obtain

sλ(s, s, s, . . .) = (−1)d−k
(s+ k − 1)(s+ k − 2) · · · (s+ k − d)

d(k − 1)!(d− k)!
.
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By directly differentiating with respect to s and evaluating at s = 0, we obtain[
∂

∂s
sλ(s, s, . . .)

]
s=0

=
(−1)d−k

d
.

The powers of x appearing in the statement of the lemma can be reinstated, using the fact that
Schur functions are weighted homogeneous.

Now use Lemma 4.3.14.3.1 in equation (4.64.6) to obtain the following.

[
∂

∂s
Z(sx, sx2, sx3, . . . ; q; ~)

]
s=0

=

∞∑
g=0

∞∑
d=1

Ng,1(d)~2g−1xd

=
∞∑
d=1

d∑
k=1

(−1)d−k
xd

d
s(k,1d−k)(

q1
~ ,

q2
~ , . . .)

d∏
i=1

G((k − i)~)

Extracting the xd coefficient yields the following result.

Lemma 4.3.2. The 1-point invariants ng(d) = dNg,1(d) defined by equation (4.54.5) satisfy

∞∑
g=0

ng(d) ~2g−1 =
d∑

k=1

(−1)d−k s(k,1d−k)(
q1
~ ,

q2
~ , . . .)

d∏
i=1

G((k − i)~),

for every positive integer d.

We will later be interested in setting the parameter qi = 0 for i sufficiently large. In this case,
we write sλ( q1~ ,

q2
~ , . . . ,

qr
~ ) to mean the Schur function sλ( q1~ ,

q2
~ , . . .) evaluated at qr+1 = qr+2 =

· · · = 0.

We end this section with the following lemma, which will be used in the following sections [7676].

Lemma 4.3.3. The Schur function indexed by the hook (k, 1d−k) can be written as

sk,1d−k(q) =

k∑
j=1

(−1)j+1hk−j(q) ed−k+j(q),

where hn and en are the complete homogeneous and elementary symmetric functions, respectively.
These can be expressed in terms of power-sum symmetric functions as

∞∑
n=0

hn(q)xn = exp

[ ∞∑
k=1

qk
k
xk
]

and
∞∑
n=0

en(q)xn = exp

[ ∞∑
k=1

(−1)k−1 qk
k
xk
]
.

In the case q = (q, 0, 0, . . .), the above expression evaluates to the following.

Corollary 4.3.4.

s(k,1d−k)(q, 0, 0, . . .) =

(
d− 1

k − 1

)
qd

d!
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4.4 Holonomic sequences and functions

Recall that a sequence {ai}i≥N is said to be holonomic over K if the terms satisfy a non-zero
linear difference equation of the form

pr(d) ad+r + pr−1(d) ad+r−1 + · · ·+ p1(d) ad+1 + p0(d) ad = 0, (4.8)

where p0, p1, . . . , pr are polynomials over K. Similarly, recall that the formal power series

A(x) =

∞∑
d=0

ad x
d is said to be holonomic over K if it satisfies a non-zero linear differential

equation of the form[
Pr(x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1
+ · · ·+ P1(x)

∂

∂x
+ P0(x)

]
A(x) = 0, (4.9)

where P0, P1, . . . , Pr are polynomials over K.

The dual use of the term “holonomic” is due to the elementary fact that the sequence a0, a1, a2, . . .
is holonomic over K if and only if the formal power series a0 + a1x+ a2x

2 + · · · is holonomic
over K. For our applications, we will use the ground field K = C(~).

Lemma 4.4.1. A 1-point recursion exists for the numbers ng(d) in the sense of Definition 4.1.14.1.1
if and only if the formal power series

F (x, ~) =
∞∑
d=1

∞∑
g=0

ng(d) ~2g−1 xd

is holonomic over C(~).

Proof. If F (x, ~) is holonomic over C(~), then there exist polynomials P0, P1, . . . , Pr with coeffi-
cients in C(~) such that[

Pr(x)
∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1
+ · · ·+ P1(x)

∂

∂x
+ P0(x)

]
F (x, ~) = 0.

One can assume that the coefficients of P0, P1, . . . , Pr actually lie in C[~], by clearing denominators
in the equation above. Thus, the equation has the form finite∑

i,j,k=0

Cijk ~ixj
∂k

∂xk

F (x, ~) = 0, (4.10)

for some complex constants Cijk. Applying Cijk ~ixj ∂
k

∂xk
to a term ng(d) ~2g−1 xd in the expansion

for F (x, ~) has the effect of shifting the powers of ~ and x, while possibly introducing a factor that
is polynomial in d. So after collecting terms in the resulting equation, one obtains an expression
of the form of equation (4.34.3). Therefore, there exists a 1-point recursion for the numbers ng(d).

Conversely, suppose that there exists a 1-point recursion for the numbers ng(d), so there exists an
expression of the form of equation (4.34.3). After multiplying both sides by ~2g−1 xd, and summing
over g and d yields

∞∑
d=1

∞∑
g=0

imax∑
i=0

jmax∑
j=0

pij(d)ng−i(d− j)~2g−1xd = 0

Now replace pij(d)xd with pij(x
∂
∂x)xd and reindex the summations over d and g to obtain

∞∑
d=1

∞∑
g=0

imax∑
i=0

jmax∑
j=0

pij(x
∂

∂x
xdng(d)~2ixj~2g−1xd = 0⇒

imax∑
i=0

jmax∑
j=0

[
pij(x

∂

∂x
xdng(d)~2ixj

]
= 0
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This final equation can be expressed in the form of equation (4.104.10) by applying the commutation
relation [ ∂∂x , x] = 1. It then follows that F (x, ~) is holonomic over C(~).

The following series of elementary results provide standard tools to prove holonomicity of
sequences and generating functions [6767].

Theorem 4.4.2. Let K be a field and let a(z) =
∞∑
d=0

ad z
d ∈ K[[z]] and b(z) =

∞∑
d=0

bd z
d ∈ K[[z]]

be holonomic power series. Then

(a) αa(z) + βb(z) is holonomic for all α, β ∈ K;
(b) the Cauchy product a(z) b(z) and the Hadamard product

(
anbn

)
n=0,1,2,...

are holonomic;

(c) the derivative a′(z) and the forward shift
(
an+1

)
n=0,1,2,...

are holonomic;

(d) the integral
∫ z
a(z) and the indefinite sum

(∑n
k=0 ak

)
n=0,1,2,...

are holonomic;

(e) if b(z) is algebraic with b(0) = 0, then a(b(z)) is holonomic; and
(f)

(
abun+vc

)
n=0,1,2,...

is holonomic for all non-negative rationals u and v.

Definition 4.4.3. We define the order and degree of the difference operator of equation (4.84.8)
to be r and max{deg p0, deg p1, . . . ,deg pr}, respectively. Similarly, we define the order and
degree of the differential operator of equation (4.94.9) to be r and max{degP0, degP1, . . . ,degPr},
respectively.

Remark . Note that for a fixed holonomic sequence or function, there are difference or differential
operators of many possible orders and degrees that annihilate it. Furthermore, it is not generally
true that there exists such an operator that simultaneously minimises both the order and the
degree. Thus, one does not usually refer to the order and degree of a holonomic sequence or
function itself, but to the order and degree of a particular operator.

The notion of one-variable holonomic sequences functions can be generalised to multivariable
sequences and functions in a couple of natural ways [104104]. For our present purposes, we use the
rather down-to-earth notion of D-finiteness introduced by Stanley [9797]. Let x = (x1, . . . , xn) and
let D denote the ring of all linear partial differential operators in ∂

∂x1
, . . . , ∂

∂xn
with coefficients

in K[x1, . . . , xn]. We say that an element f of a D-module M is D-finite or differentiably finite if
it satisfies a system of the form[

aini(x)
( ∂

∂xi

)ni
+ aini−1(x)

( ∂

∂xi

)ni−1
+ · · ·+ ai0(x)

]
f = 0, for i = 1, . . . , n, (4.11)

where aij(x) ∈ K[x]. For our purposes, we take the D-module M to be K[[x]] for K = C, with the
natural action of differential operators on formal power series. Equivalently, f ∈ K[[x]] is D-finite
if the set of derivatives ( ∂

∂x1
)i1 . . . ( ∂

∂xn
)inf for (i1, . . . , in) ∈ Nn generate a finite-dimensional

vector space over the rational function field K(x1, . . . , xn).

Next, we define the primitive diagonal of f ∈ K[[x]].

Definition 4.4.4. For f =
∑
ai1,...,in x

i1
1 . . . x

in
n ∈ K[[x]] and integers 1 ≤ k < ` ≤ n, define the

primitive diagonal

Ik`(f) :=
∑

ai1,...ik,...,ik,...in x
i1
1 · · ·x

ik
k · · · x̂

i`
` · · ·x

in
n ,

where the hat denotes the omission of the term involving x`.

For example, if we take k = 1 and ` = 2, then

I12(f) =
∑

ai1i1i3...in x
i1
1 x

i3
3 . . . x

in
n .
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Many of the closure properties of one-variable holonomic functions from Theorem 4.4.24.4.2 carry
over to the notion of D-finiteness for multivariable power series in a straightforward manner. We
additionally require the following two results, which we state without proof, since they can be
found in various references [9797, 7575].

Theorem 4.4.5. If f ∈ K[[x]] is D-finite, and 1 ≤ k < ` ≤ n, then Ik`(f) is D-finite.

Lemma 4.4.6. If f =
∑
aνx

ν and g =
∑
bνx

ν are D-finite functions of n variables, then the
Hadamard product

f ? g :=
∑

aνbνx
ν

is also D-finite.

The previous result may now be used to deduce the following lemma, that will later prove useful.

Lemma 4.4.7. If f(x) =
∑

m1,...,mn
f(m1, . . . ,mn)xm1

1 . . . xmnn is D-finite and S ⊂ Nn is defined
by a finite set of inequalities of the form

∑
i aimi + b ≥ 0 where ai, b ∈ Z, then

h(x) :=
∑

(m1,...,mn)∈S

f(m1, . . . ,mn)xm1
1 . . . xmnn

is also D-finite.

Proof. Note that it is sufficient to prove the statement when S is defined by only one inequality,
since we can iterate over the set of inequalities to prove the general statement. Without loss of
generality, write the inequality as

k∑
i=1

αimi + α0 ≥
n∑

i=k+1

βimi,

where αi, βi ∈ N. Now define the power series

g1(x1, . . . , xn, s, t) := sα0

k∏
i=1

1

1− xisαi

n∏
i=k+1

1

1− xitβi
,

g2(x1, . . . , xn, s, t) :=
1

1− s
1

1− st

n∏
i=1

1

1− xi
.

Observe that g1(x1, . . . , xn, s, t) and g2(x1, . . . , xn, s, t) are all D-finite, due to their definition as
rational functions. Now let us define the Hadamard product

g(x1, . . . , xn, s, t) := (g1 ? g2)(x1, . . . , xn, s, t).

By Lemma 4.4.64.4.6, g(x1, . . . , xn) is D-finite and if we substitute s = t = 1, we obtain that

g̃(x1, . . . , xn) := g(x1, . . . , xn, 1, 1) =
∑

(m1,...,mn)∈S

xm1
1 . . . xmnn

is also D-finite. We complete the proof by noticing that h(x1, . . . , xn) = f(x1, . . . , xn) ?
g̃(x1, . . . , xn) and using Lemma 4.4.64.4.6 once again.
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4.5 Existence of one-point recursions

As in equation (4.44.4), we begin with a choice of formal power series G(z) and a series q1, q2, q3, . . .
of complex constants. We begin by examining the simplified case in which q = (1, 0, 0, . . .).

Theorem 4.5.1. Let G(z) ∈ C(z) be a rational function and let q = (1, 0, 0, . . .). Define the num-
bers ng(d) = dNg,1(d) via equation (4.54.5). Then the generating function

∑∞
d=1

∑∞
g=0 ng(d) ~2g−1 xd

is holonomic over C(~) and it follows that the numbers ng(d) satisfy a 1-point recursion.

Proof. Consider the following generating function for the numbers ng(d).

nd(~) =
∞∑
g=0

ng(d) ~2g−1

=
d∑

k=1

(−1)d−k s(k,1d−k)(
1
~ , 0, 0, . . .)

d∏
i=1

G((k − i)~)

=
1

d! ~d
d∑

k=1

(−1)d−k
(
d− 1

k − 1

) d∏
i=1

G((k − i)~)

=
1

d ~d
d∑

k=1

(−1)d−k
1

(k − 1)! (d− k)!

d∏
i=1

G((k − i)~) (4.12)

Define the sequences

uk =
1

(k − 1)! ~k
k∏
i=1

G((i− 1)~) and vk =
(−1)k

k! ~k
k∏
i=1

G(−i~).

These are holonomic over C(~) since the ratios
uk+1

uk
= G(k~)

k~ and
vk+1

vk
= −G(−(k+1)~)

(k+1)~ are rational

functions of k with coefficients from C(~). So Theorem 4.4.24.4.2 implies that the sequence

nd(~) =
1

d

d∑
k=0

uk vd−k

is holonomic. Then use Lemma 4.4.14.4.1 to deduce that the numbers ng(d) satisfy a 1-point
recursion.

Next, we consider the more general case that q = (q1, q2, . . . , qr) for some fixed positive integer r.
This requires a little more setup with holonomic functions. Let an, bn, cn, dn be holonomic
sequences and use them to define the following D-finite functions.

F (x1, x2) :=

∞∑
n=0

cn(x1x2)n

G(x1) :=

∞∑
n=1

dnx
n
1

I(x3) :=

∞∑
n=1

anx
n
3

J(x4) :=

∞∑
n=0

bnx
n
4
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From the closure properties of D-finite functions, we know that

H(x1, x2) :=
1

1− x2
F (x1, x2)G(x1)

is D-finite. The general coefficient of the series H(x1, x2) is given by

C(n, k) := [xn1x
k
2]H(x1, x2) =

k−1∑
`=0

c`dn−`.

Apply Lemma 4.4.74.4.7 with the inequality n− k ≥ 0 to obtain the fact that

H̃(x1, x2) :=
∑
k≤n

Cn,kx
n
1x− 2k

is D-finite.

Lemma 4.5.2. The series given by

∞∑
n=1

( n∑
k=1

akbn−k

k−1∑
`=0

c`dn−`

)
zn

is D-finite.

Proof. Using the notation x = (x1, x2, x3, x4), we have

L(x) := H̃(x1, x2)I(x3)J(x4) =
∑
i,j,n,k
k≤n

aibjC(n, k) xn1x
k
2x

i
3x
j
4

is D-finite by the closure properties of D-finite functions. Theorem 4.4.54.4.5 allows us to deduce
that the primitive diagonal

I24(L(x)) =
∑
i,n,k
k≤n

aibkC(n, k)xn1x
k
2x

i
3

is also D-finite. Now use Lemma 4.4.74.4.7 with the inequalities i+ k ≥ n and i+ k ≤ n to obtain
the fact that

L̃(x) :=
∑
i,k,n
i+k=n

aibkC(n, k)xn1x
k
2x

i
3

is D-finite. By substituting x1 = z, x2 = 1 and x3 = 1, we obtain the desired result.

We are now ready to prove the main result of this chapter.

Theorem 4.5.3. Let G(z) ∈ C(z) be a rational function and let q = (q1, q2, . . . , qr, 0, 0, . . .).
Then the generating function

∑∞
d=1

∑∞
g=0 ng(d) ~2g−1 xd is holonomic in x with coefficients in

C(~, q1, . . . , qr). It follows that the numbers ng(d) satisfy a 1-point recursion.
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Proof. Consider the following generating function for the numbers ng(d).

∞∑
d=1

∞∑
g=0

ng(d) ~2g−1 xd =
∞∑
d=1

nd(~)xd

=
∞∑
d=1

d∑
k=1

(−1)d−k s(k,1d−k)(
q1
~ ,

q2
~ , . . . ,

qr
~ )

d∏
i=1

G((k − i)~)xd ( Lemma 4.3.24.3.2)

=

∞∑
d=1

d∑
k=1

(−1)d−k
d∏
i=1

G((k − i)~)

k∑
i=1

(−1)i+1 h(k−i)(
q1
~ ,

q2
~ , . . . ,

qr
~ ) e(d−k+i)(

q1
~ ,

q2
~ , . . . ,

qr
~ )xd

=

∞∑
d=1

d∑
k=1

d∏
i=1

G((k − i)~)

k−1∑
`=0

(−1)d−`+1h`(
q1
~ ,

q2
~ , . . . ,

qr
~ ) e(d−`)(

q1
~ ,

q2
~ , . . . ,

qr
~ )xd

=

∞∑
d=1

d∑
k=1

k∏
i=1

G(i~)

d−k∏
i=1

G(−i~)

k−1∑
`=0

(−1)d−`+1h`(
q1
~ ,

q2
~ , . . . ,

qr
~ ) e(d−`)(

q1
~ ,

q2
~ , . . . ,

qr
~ )xd

This last line will help us to identify that the generating function is D-finite from the closure
properties of D-finite functions. We simply define the sequences

an :=
n∏
i=1

G(i~), bn :=
n∏
i=1

G(−i~), cn := hn( q1~ ,
q2
~ , . . . ,

qr
~ ), dn := (−1)n+1en( q1~ ,

q2
~ , . . . ,

qr
~ ).

The first two are holonomic over C(~) since the ratios an+1

an
= G(n~) and bn+1

bn
= G(−(n+ 1)~)

are rational functions of n with coefficients from C(~). The last two sequences are also holonomic
over C(~) since Lemma 4.3.34.3.3 allows us to deduce that[

~
∂

∂x
−

r∑
k=1

qkx
k−1

]( ∞∑
n=0

cnx
n

)
= 0 and

[
~
∂

∂x
+

r∑
k=1

(−1)kqkx
k−1

]( ∞∑
n=0

dnx
n

)
= 0.

Hence, Lemma 4.5.24.5.2 implies that the sequence

nd(~) =

d∑
k=1

akbd−k

k−1∑
`=0

c`dd−`

is holonomic over C(~). It then follows from Lemma 4.4.14.4.1 that there exists a 1-point recursion
for the numbers ng(d).

4.6 Algorithms for one-point recursions

One of the features of the theory of D-finite functions is that the theoretical results can often
be turned into effective algorithms [7272]. In Theorem 4.5.34.5.3, we assert the existence of one-point
recursions for a broad class of problems. We further claim that the existence proof can be
converted into an algorithm to calculate them from the initial data of the rational function G(z)
and the positive integer r that records the number of non-zero weights q = (q1, q2, . . . , qr). For
example, a naive though feasible approach would be to express the putative 1-point recursions as

D∑
i=0

R∑
j=0

aij d
i n(d− j) = 0,

and treat this a linear system in the (D + 1)(R+ 1) variables aij ∈ C(~). One obtains a linear
constraint for each positive integer d, so a finite number of these allows for the computation of the
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1-point recursions. In order to implement this approach, one requires explicit and simultaneous
bounds on the degree D and the order R of such a recursion. In this section, we produce such
bounds in terms of the degree of G(z) and the positive integer r.

First, we begin with the operators that annihilate the generating function for the sequences
an, bn, cn, dn that appear in the proof of Theorem 4.5.34.5.3. Then, we use known bounds for the
degree and order of operators that annihilates functions obtained by the holonomicity closure
properties used in the proof — namely, Cauchy product, taking primitive diagonals, restricting
summations, and evaluation.

Let us review the proof of the fact that the diagonal of a D-finite function is D-finite [7575]. We
exhibit the full proof here, as the steps involved are required to give us effective degree and order
bounds. Let f ∈ K[x1, . . . , xn] satisfy equation (4.114.11) and introduce a new variable s. Let

F (s, x1, x3, . . . , xn) :=
1

s
f(s, x1/s, . . . , xn).

Note that F (s, x1, . . . , xn) is not a formal power series in s, x1, . . . , xn but an element of the
K[s, x1, x3, . . . , xn]-module M′ generated by elements of the form

G =
∑
j∈Z

i2,...,in∈N
j+i2≥−k

aji2...,ins
jxi21 x

i3
3 . . . x

in
n .

Also, note that [s−1]F (s, x1, . . . , xn) = I12(f). Later, we shall need the following lemma.

Lemma 4.6.1. If 0 6= p ∈ K[s, x1, . . . , xn] and G ∈M′ satisfies pG = 0, then G = 0.

Proof. For suitable k, skG ∈ K[[s, x1, . . . , xn]]. So use the substitution x1 = su, for u a new
variable, to get p(s, su, x3, . . . , xn)skG(s, u, x3, . . . , xn) = 0. Now as

p(s, su, x3, . . . , xn)skG(s, u, x3, . . . , xn) ∈ K[[s, x1, . . . , xn]],

and the substitution x1 = su forms an injective map, the conclusion follows.

The function F (s, x1, x3, . . . , xn) is a D-finite function in the variables s, x1, x3, . . . xn. This
follows from the fact that f is D-finite and by applying the chain rule. Hence, there exist
differential operators with polynomial coefficients

A
(
s, x1, . . . , xn,

∂

∂s

)
= L(s, x1, x3, . . . , xn)

( ∂
∂s

)m
+ lower-order terms in

∂

∂s

Bi

(
s, x1, . . . , xn,

∂

∂xi

)
= Li(s, x1, x3, . . . , xn)

( ∂

∂xi

)mi
+ lower-order terms in

∂

∂xi

for i ∈ {1, 3, . . . , n}, such that

AF = 0, (4.13)

BiF = 0, for all i ∈ {1, 3, . . . , n}. (4.14)

Lemma 4.6.2. There are non-zero linear partial differential operators Pi(x1, x3, . . . , xn,
∂
∂s ,

∂
∂xi

),
for i ∈ {1, 3 . . . , n} with coefficients from K[x1, x3, . . . , xn], with Pi containing only derivatives
of the form ( ∂∂s)

β( ∂
∂xi

)γ, such that

Pi

(
x1, x3, . . . ,

∂

∂s
,
∂

∂xi

)
F = 0, for all i ∈ {1, 3, . . . , n}.
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Proof. Let us begin our proof by showing that there exists P1(x1, x3, . . . , xn,
∂
∂s ,

∂
∂x1

) such that

P1

(
x1, x3, . . . , xn,

∂

∂s
,
∂

∂x1

)
F = 0.

Without loss of generality, we may assume that A and Bi in equation (4.134.13) have the same
leading terms and denote Li(s, x1, x3, . . . , xn) = L(s, x1, x3, . . . , xn) = L for i ∈ {1, 3, . . . , n}. Let
all the coefficients in A and Bi have total degree bound by d. Hence, by using A,Bi we have

L
( ∂
∂s

)m
F =

m−1∑
i=0

Qi(s, x1, x3, . . . , xn)
( ∂
∂s

)i
, (4.15)

L
( ∂
∂s

)m1

F =

m1−1∑
i=0

Ri(s, x1, x3, . . . , xn)(
∂

∂s
)i, (4.16)

where Qi(s, x1, x3, . . . , xn), Ri(s, x1, x3, . . . , xn) ∈ K[s, x1, x3, . . . , xn] of degree bound by d.

It is tempting to conclude that any element of the form
{
L( ∂∂s)

kF |k > m
}

can be written as a

linear combination of {( ∂∂s)
iF}mi=0 over the ring K[s, x1, x3, . . . , xn] but this is not true. So the

important observation is that {LN ( ∂∂s)k| k > m, N ≥ k−1} can be written as a linear combination

of {( ∂∂s)iF}mi=0 over the ring K[s, x1, x3, . . . , xn]. Similarly, {LN ( ∂
∂x1

)k| k > m1, N ≥ k − 1} can

be written as a linear combination of {( ∂
∂x1

)iF}m1
i=0 over the ring K[s, x1, x3, . . . , xn]. Hence, we

notice that if k1 + k2 ≤ N ,

LN
( ∂

∂x1

)k1
( ∂
∂s

)k2

F =
∑
δ

TδDδ, (4.17)

where δ = (δ1, δ2) and Dδ = ( ∂
∂x1

)δ1( ∂∂s)
δ2 and the sum is over δ1 < m1, δ2 < m. The degree

bound d for the set of equations in equation (4.134.13) puts a degree bound on the coefficient Tδ —
that is, the degree of Tδ is bound by Nd.

Now let

D := xα1
1 xα3

3 · · ·x
αn
n

( ∂

∂x1

)k1
( ∂
∂s

)k2

.

Note that if
∑

i αi + k1 + k2 ≤ N , then

LNDF =
∑
δ

T δDδ (4.18)

where δ = (δ1, δ2) and Dδ = ( ∂
∂x1

)δ1( ∂∂s)
δ2 and the sum is over δ1 < m1, δ2 < m. The total

degree of T δ is bound by N(d+ 1). This follows from the above discussion. The dimension of
the vector space, say V, generated by monomials of the form T δDδ over the field K that appear
on the right side of equation (4.184.18) is mm1

(
N(d+1)+n

n

)
. We obtain this by observing that the

number of monomials in s, x1, x3, . . . , xn of degree at most Nd+ 1 is
(
N(d+1)+n

n

)
and the number

of ( ∂
∂x1

)δ1( ∂∂s)
δ2 is mm1. On the other hand, the number of D appearing in equation (4.184.18) is(

N+n+1
n+1

)
. This is also obtained by a similar count to the one made above.

We have mm1

(
(Nd+1)+n

n

)
≤ c1N

n, where c1 is a constant depending on d, n,m,m1. Similarly,(
N+n+1
n+1

)
> Nn+1, where this inequality is obtained by using the fact that (N+n+1

n+1 )(n+1) ≤
(
n
k

)
.

This implies that for N large enough, the number of terms on the left side will be more than the
dimension of V. Hence, there is a linear dependence for large enough N . So, there are enough
aα1α3...αnk1k2 such that

LN
∑

α1+α3...+αn+k1+k2≤N
aα1α3...αnk1k2x

α1
1 xα3

3 . . . xαnn

( ∂

∂x1

)k1
( ∂
∂s

)k2

F = 0.
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Let

P1 :=
∑

α1+α3...+αn+k1+k2≤N
aα1α3...αnk1k2x

α1
1 xα3

3 . . . xαnn

( ∂

∂x1

)k1
( ∂
∂s

)k2

.

Using Lemma 4.6.14.6.1, we have P1F = 0. We can find the other P3, . . . Pn simlarly by using
B3, . . . , Bn and this completes the proof.

Before we prove the fact that the diagonal of a D-finite function is D-finite, we want to say
a few words as to why we define F (s, x1, x3, . . . , xn) with the 1

s factor. This factor makes

I12(f) = [s−1]F (s, x1, x3, . . . , xn) so, under the action of ( ∂∂s)
α for α a positive integer on

F (s, x1, x3, . . . , xn), I12(f) still survives as a coefficient of s(−α+1) in F (s, x1, x3, . . . , xn). If 1
s

was not introduced, we could lose I12(f) under the action.

Theorem 4.6.3. If f ∈ K[[x]] is D-finite, and 1 ≤ i < j ≤ n, then Iij(f) is D-finite.

Proof. Without the loss of generality, we take i = 1 and j = 2. Now let Pi be as in Lemma 4.6.24.6.2
and write Pi =

∑βi
j=αi

Pij(x1, x3, . . . , xn,
∂
∂xi

)( ∂∂s)
j with Piαi 6= 0. Observe that the coefficient of

1
sα+1 in PiF is (−1)αi(αi)!PiαiI12(f). Hence, I12(f) satisfies the equations

Piαi

(
x1, x3, . . . , xn,

∂

∂xi

)
I12(f) = 0 for all i ∈ {1, 3, . . . , n}.

Hence, I12(f) is D-finite.

The next three lemmas, Lemmas 4.6.44.6.4 to 4.6.64.6.6, give bounds on the differential equation we used in
the process of proving Theorem 4.6.34.6.3, all of which are crucial for the proof of our Theorem 4.6.74.6.7.

Lemma 4.6.4. Let f(x1, . . . , xn) ∈ C[[x1, . . . xn]] be a D-finite function. Let x = (x1, . . . , xn)
and suppose that we have{

aimi(x)(
∂

∂xi
)mi + aimi−1(x)(

∂

∂xi
)mi−1 + . . .+ ai0(x)

}
f(x) = 0, for i ∈ {1, . . . , n}, (4.19)

where aij(x) ∈ K[x]. Furthermore, assume that the total degree of aij(x) appears in the equations
bound by a positive integer d and that nmax = max{m1,m2}. Then, there exist differential
operators Pi(x,

∂
∂xi

) such that

Pi

(
x,

∂

∂xi

)
I12(f(x)) = 0, for all i ∈ {1, 3, . . . , n},

satisfying

ord(P1) + deg(P1) <
nmaxm2(dnmax + 1)n − (n+ 1)2

n+ 1
+ 1, (4.20)

ord(Pi) + deg(Pi) <
nmaxmi(d

nmax + 1)n − (n+ 1)2

n+ 1
+ 1, for all i ∈ {3, . . . , n}. (4.21)

Proof. As we see in Theorem 4.6.34.6.3, I12(f(x)) is D-finite. In the proof, we worked with the
function F (s, x1, x3, . . . , xn). By Lemma 4.6.54.6.5, it satisfies the differential equations{

b1nmax(s, x)
( ∂
∂s

)nmax + b1nmax−1(x)
( ∂
∂s

)nmax−1
+ · · ·+ b10(x)

}
F (s, x) = 0, (4.22)
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b2m2(s, x)

( ∂

∂x1

)m2

+ b2m2−1(s, x)
( ∂
∂s

)m2−1
+ · · ·+ b20(s, x)

}
F (s, x) = 0, (4.23)

{
bimi(s, x)

( ∂

∂x1

)mi
+ bimi−1(x)

( ∂
∂s

)mi−1
+ · · ·+ bi0(s, x)

}
F (s, x) = 0, for i = {3, . . . , n}.

(4.24)
Here, the total degree of bij(s, x) is bound by dnmax . Now we use

P1 :=
∑

α1+α3···+αn+k1+k2≤N
aα1α3···αnk1k2x

α1
1 xα3

3 · · ·x
αn
n

( ∂

∂x1

)k1
( ∂
∂s

)k2

.

We derive the above equation by claiming that for large enough N

nmaxm2

(
N(dnmax + 1) + n

n

)
<

(
N + n+ 1

n+ 1

)
. (4.25)

Hence, there is a linear dependence on the left side of the equation. We want to find N in terms
of m1,m2, d, n such that equation (4.254.25) holds true. Let us write m1m2

(
N(dnmax+1)+n

n

)
as

nmaxm2

(
N(dnmax + 1) + n

n

)
(4.26)

= nmaxm2
(N(dnmax + 1) + n) · · · (N(dnmax + 1) + 1)

n!
(4.27)

= nmaxm2(dnmax + 1)n
(N + n/(dnmax + 1)) · · · (N + 1/(dnmax + 1))

n!
. (4.28)

Similarly, let us write
(
N+n+1
n+1

)
as(

N + n+ 1

n+ 1

)
=

(N + n+ 1) · · · (N + 1)

(n+ 1)!
=

(N + n+ 1) · · · (N + 1)

(n+ 1)n!
(4.29)

Now note that equation (4.264.26) has n terms of the form {(N+i/(dnmax+1))}ni=1 and equation (4.294.29)
have n+ 1 terms of the form {(N + i)}n+1

i=1 . As

N + i > N +
i

(dnmax + 1)
,

we can make equation (4.254.25) true by finding N such that

N + n+ 1 >
nmaxm2(dnmax + 1)n

n+ 1
.

Hence, we need

N >
nmaxm2(dnmax + 1)n

n+ 1
− (n+ 1) =

nmaxm2(dnmax + 1)n − (n+ 1)2

n+ 1

So let us take N = nmaxm2(dnmax+1)n−(n+1)2

n+1 + 1. Similarly we could take Pi for i ∈ {3, . . . , n} as
in Theorem 4.6.34.6.3 and with the same arguments as above, we would obtain a bound on the order
and degree of the differential equations P (xi,

∂
∂xi

) for i ∈ {3, . . . , n}.

The above exhibits how to find a bound on the order and the degree of differential equations that
annihilate I12(f(x)). However, we have assumed that we are given a set of differential equations
that annihilates F (s, x1, x3, . . . , xn) when in practice we are only given a set of differential
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equations that annihilates f(x1, x2, . . . , xn). So suppose that f(x1, x2, . . . , xn) is a D-finite
function and that[

aini(x)
( ∂

∂xi

)ni
+ aini−1(x)

( ∂

∂xi

)ni−1
+ · · ·+ ai0(x)

]
f = 0, for i ∈ {1, . . . , n}, (4.30)

where aij(x) ∈ K[x]. Let d be a bound on the total degree of aij(x). These equations imply that

any derivatives

{
∂kf(x)
∂xi
| k ≥ ni

}
can be written in terms of

〈
∂jf(x)
∂xi
| 0 < j < ni

〉
over the field

K(x).

Lemma 4.6.5. Let f(x1, . . . , xn) ∈ C[[x1, . . . xn]] be a D-finite function, with{
aimi(x)

( ∂

∂xi

)mi
+ aimi−1(x)

( ∂

∂xi

)mi−1
+ . . .+ ai0(x)

}
f(x) = 0, for i ∈ {1, . . . , n}, (4.31)

where aij(x) ∈ K[x]. Also let d denote the bound on the total degree of aij(x).Define

F (s, x1, x3, . . . , xn) :=
1

s
f(s, x1/s, x3, . . . , xn),

and let nmax = max(m1, . . . ,mn). Then there exist differential equations{
b1nmax(s, x)

( ∂
∂s

)nmax
+ b1nmax−1(x)

( ∂
∂s

)nmax−1
+ · · ·+ b10(x)

}
F (s, x) = 0, (4.32)

{
b2m2(s, x)

( ∂

∂x1

)m2

+ b2m2−1(s, x)
( ∂
∂s

)m2−1
+ · · ·+ b20(s, x)

}
F (s, x) = 0, (4.33)

{
bimi(s, x)

( ∂

∂x1

)mi
+ bimi−1(x)

( ∂
∂s

)mi−1
+ · · ·+ bi0(s, x)

}
F (s, x) = 0, for i ∈ {3, . . . , n},

(4.34)
where the total degree of bij(s, x) is bound by dnmax.

Proof. Our aim is to find a bound on the differential operator that annihilates F (s, x1, x3, . . . , xn)
in terms of ni for all i ∈ {1, 2, . . . , n} and d. By the chain rule, we have the following.

s
∂F (s, x1, x3, . . . , xn)

∂s
= −1/sf(s, x1/s, x3, . . . , xn) +

∂f(s, x1/s, x3, . . . , xn)

∂x1
(4.35)

− x1/s
2∂f(s, x1/s, x3, . . . , xn)

∂x2
(4.36)

s
∂F (s, x1, x3, . . . , xn)

∂x1
=

1

s

∂f(s, x1/s, x3, . . . , xn)

∂x2
(4.37)

s
∂F (s, x1, x3, . . . , xn)

∂xj
=

1

s

∂f(s, x1/s, x3, . . . , xn)

∂xj
for j ∈ {3, . . . , n}. (4.38)

This above equation implies that there would be a bound on the order of ∂kF (s,x1,x3,...,xn)
∂s by

nmax = max(m1, . . . ,mn) and a bound on the order of ∂kF (s,x1,x3,...,xn)
∂x1

by n2 and a bound on the

order of ∂kF (s,x1,x3,...,xn)
∂xj

by nj . Now to find the bound on the degree of the differential equations

annihilating F (s, x1, x3, . . . , xn), we look for an equation of the type(
t0 + t1

∂

∂s
+ · · ·+ tn

∂nmax

∂s

)
F (s, x1, x3, . . . , xn) = 0.
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We replace the derivative of ∂kF (s,x1,x3,...,xn)
∂s by equation (4.354.35). Using Cramer’s rule, we can

solve for ti and see that if the bound on the degree of equation (4.114.11) is given by d, then the
bound on the degree of the equations annihilating F (s, x1, x3, . . . , xn) is given by dnmax .

Lemma 4.6.6. Let G(z) denote a rational function of degree a. Let

U(x) = 1 +
∑
k=1

1

k!

k∏
j=1

G(i~)xk ∈ C(~)[[x]].

Then there exists a linear differential operator D of order a and degree a such that DU(x) = 0.

Proof. To construct a differential equation that annihilates U(x) we consider [xk]U(x) and denote
it as pk.

pk+1

pk
=
G((k + 1)~)

(k + 1)
(4.39)

(k + 1)pk+1 = G((k + 1)~)pk (4.40)

Multiply both sides of the above equation by xk+1 and sum over all values of k. Then use the
fact that (x ∂

∂x)mxk = kmxk to create a differential operator that annihilates U(x), with the order
of the differential operator comeing from the degree of G(z).

Theorem 4.6.7. Let G(z) ∈ C(z) be a rational function of degree a and let q = (q1, q2, . . . , qr).
Then the generating function

∑∞
i=1

∑∞
g=0 ng(d) ~2g−1 xi is holonomic in x with coefficients in

C(~, q1, . . . , qr). Furthermore, there exists a differential operator P that annihilates the expression∑∞
i=1

∑∞
g=0 ng(d) ~2g−1 xi such that

ord(P ) + deg(P ) <
(d+ 1)4 − 25

5
+ 1, (4.41)

where d = max(a, (9r)4, (2r2)4).

Proof. As the degree of G(z) is a, Lemma 4.6.64.6.6 guarantees that there exists a differential equation
of order a and degree a that annihilates 1 +

∑
k=1

1
k!

∏k
j=1G(ih)xk. With similar reasoning, we

have a differential equation or degree a and order a that annihilates
∑

k=1
1
k!

∏k
j=1G(ih)xk.

With our assumption that qr+1 = qr+2 = · · · = 0, we have

∞∑
i=0

s(i)(q)xi = exp

( r∑
m=1

qm
xm

m

)
.

It is clear there exists a differential equation of order 1 and degree r that annihilates this
expression. The same is true for

∑∞
i=0 e(i)(q)xi, since

∞∑
i=0

e(i)(q)xi = exp

( ∞∑
m=1

qm
(−x)m

m

)
.

Now we want to find a bound for the differential equation in ∂
∂x3

and ∂
∂x4

that annihilates

H(x1, x2) =
1

(1− x2)
F (x1, x2)G(x1),

where we refer back to Section 4.54.5 for the definitions. There exists a differential equation of
order 1 and degree 1 in x2 that annihilates 1

1−x2
. As the definition for F (x1, x2) is obtained
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by replacing x1 by x1x2, it is annihilated by a differential operator of order 1 in ∂
∂x1

and total

degree bound by 2r. Similarly, it is annihilated by a differential operator of order 1 in ∂
∂x2

and
total degree bound by 2r. Finally, we note that G(x1) is annihilated by a differential operator of
order 1 in ∂

∂x1
and degree bound by r.

Hence, using the above three differential equations, we can calculate the bound on the order and
the degree of the differential equation in ∂

∂x1
and ∂

∂x2
that annihilates H(x1, x2). By the closure

property, there exists a differential equation of order 3 in ∂
∂x1

that is of the form

u+ u0H(x1, x2) + u1
∂H(x1, x2)

∂x1
+ u2

∂H(x1, x2)

∂x1

2

+ u3
∂H(x1, x2)

∂x1

3

= 0.

Solving for u, ui gives us the bound (9r)4 on the degree. Similarly, by the closure property, there
exists a differential equation of order 3 in ∂

∂x4
that is of the form

v + v0H(x1, x2) + v1
∂H(x1, x2)

∂x2
+ v2

∂2H(x1, x2)

∂x2
+ v3

∂3H(x1, x2)

∂x2
= 0.

Solving for v, vi gives us the bound on the degree (2r2)4.

Finally, I24(L(x1, x2, x3, x4)) is holonomic by Theorem 4.6.34.6.3, so there exist P1(x1,
∂
∂x1

), P2(x2,
∂
∂x2

)

and P3(x3,
∂
∂x3

) that annihilate I24(L(x1, x2, x3, x4)). So for d = max(a, (9r)4, (2r2)4),

ord(Pi) + deg(Pi) <
(d+ 1)4 − 25

5
+ 1.

Now evaluation at x2 = x3 = 1 cannot increase these degree and order bounds, so we have
obtained the desired result.

The bounds proven above could theoretically be turned into an algorithm to find one-point
recursions, as mentioned at the start of the section. However, the existing software for calculating
with holonomic functions provides a more effective approach. Let us give an example how
the gfun package for computing with holonomic functions in Maple can be used to calculate a
one-point recursion for monotone Hurwitz numbers [9393].

Example 4.6.8. The proof of Theorem 4.5.34.5.3 implies that monotone Hurwitz numbers satisfy
the relation

m(d) =

∞∑
g=0

mg(d)~2g−1 =
1

d

d∑
k=1

ukvd−k

where
uk+1

uk
= G(k~)

k~ and
vk+1

vk
= G(−(k+1)~)

(k+1)~ . So the sequence m(d) can be obtained by taking
the Cauchy product of uk and vk, and then taking the Hadamard product of the result and the
sequence 1

k .

Based on this observation, the following shows several lines of hopefully self-explanatory Maple
code that produce a 1-point recursion for monotone Hurwitz numbers.

> with(gfun):

> G(z) := 1
1−z:

> rec1:={d*m(d+1)-G(d*hh)*m(d)=0, m(0)=0, m(1)=1}:
> rec2:={(d+1)*m(d+1)+G(-(d+1)*hh)*m(d)=0, m(1)=-G(-hh)}:
> rec3:={(d+1)*m(d+1)-d*m(d)=0, m(1)=1}:
> recprod:={cauchyproduct(rec1, rec2, m(d)) = 0}:
> finalrec:=‘rec*rec‘(recprod, rec3, m(d));
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{(−2 ∗hh+ 4 ∗ d ∗hh) ∗m(d) + (−d− 1 +hh2 ∗ d3 +hh2 ∗ d2) ∗m(d+ 1),m(0) = 0,m(1) = C[0]}

The output asserts that

(−2~ + 4d~)m(d) + (−d− 1 + ~2d3 + ~2d2)m(d+ 1) = 0.

By collecting the coefficient of ~2g−1 and shifting the index, we obtain the 1-point recursion

dmg(d) = 2(2d− 3)mg(d− 1) + d(d− 1)2mg−1(d). (4.42)

4.7 Examples and applications

In this section, we return our attention to the enumerative problems introduced in Section 4.24.2.
In particular, we apply the methodology developed in Section 4.44.4 to deduce 1-point recursions
for the enumeration of fatgraphs and dessins d’enfant, as well as for Bousquet-Mélou–Schaeffer
numbers and monotone Hurwitz numbers. For the case of simple Hurwitz numbers, the weight
generating function G(z) is not a rational function, so Theorem 4.1.24.1.2 ceases to apply. As a
partial converse to this theorem, we show that simple Hurwitz numbers do not satisfy a 1-point
recursion. Throughout the section, we demonstrate how our calculations may yield explicit
formulas and polynomial structure results for 1-point invariants.

Hypermaps and Bousquet-Mélou–Schaeffer numbers

The methodology of Section 4.44.4 allows one to recover the Harer–Zagier and Do–Norbury 1-
point recursions for the enumeration of fatgraphs and dessins d’enfant, stated as equation (4.14.1)
and equation (4.24.2), respectively. Recall that these two examples inspired the current work. It is
possible to use the methodology of Section 4.44.4 to deduce other 1-point recursions, although the
results are often rather lengthy to state. We provide the following two examples to demonstrate.

Proposition 4.7.1. The enumeration of 3-hypermaps defined in Section 1.41.4 satisfies the following
1-point recursion.

2d(2d+ 1) a3
g(d) =3(3d− 1)(3d− 2) a3

g(d− 1)− (3d− 1)(3d− 2)(9d2 − 8d+ 2) a3
g−1(d− 1)

+ (d− 1)(3d− 1)(3d− 2)(3d− 4)(3d− 5)(6d− 7) a3
g−2(d− 2)

− (d− 1)(d− 2)(3d− 1)(3d− 2)(3d− 4)(3d− 5)(3d− 7)(3d− 8) a3
g−3(d− 3)

The Bousquet-Mélou–Schaeffer numbers with m = 3 defined in Section 1.11.1 satisfy the following
1-point recursion.

2d(2d+ 1)(3d− 1)b3g(d)

= 3(3d− 1)(3d− 2)(3d− 4)b3g(d− 1) + (d− 1)(3d+ 1)(9d3 − 22d2 + 14d− 2)b3g−1(d− 1)

− (d− 1)2(d− 2)(18d4 − 93d3 + 172d2 − 127d+ 26)b3g−2(d− 2)

+ (d− 1)2(d− 2)5(d− 3)(3d− 1)b3g−3(d− 3)

Hurwitz numbers

Observe that Theorem 4.1.24.1.2 does not apply in the case of Hurwitz numbers, since the weight
generating function G(z) = exp(z) is not rational. As a partial converse to our main theorem,
we now demonstrate that the simple Hurwitz numbers do not satisfy a 1-point recursion.
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Proposition 4.7.2. The simple Hurwitz numbers do not satisfy a 1-point recursion.

Proof. By Lemma 4.4.14.4.1, we know that the simple Hurwitz numbers satisfy a 1-point recursion if
and only if the sequence

hd(~) =
1

d! ~d
d∑

k=1

(−1)d−k
(
d− 1

k − 1

)
exp(d(2k − d− 1)~/2)

=
1

d! ~d
exp(−d(d+ 1)~/2) (exp(d~)− 1)d−1

is holonomic over C(~). However, if this were the case, then we would have that the sequence

hd(1) =
1

d!
exp(−d(d+ 1)/2) (exp(d)− 1)d−1

is holonomic over C.

It is known that holonomic sequences a1, a2, a3, . . . over C must satisfy the asymptotic growth
condition hd = O(d!α) for some constant α. On the other hand, we have

hd(1) =
1

d!
exp(−d(d+ 1)/2) (exp(d)− 1)d−1

∼ 1

d!
exp(−d(d+ 1)/2) exp(d(d− 1)) =

1

d!
exp(d(d− 3)/2).

Applying Stirling’s formula, we see that this grows too fast for hd(1) to be holonomic. So it
follows that the simple Hurwitz numbers do not satisfy a 1-point recursion.

The formula of equation (4.124.12) still applies to this case though, so the 1-part Hurwitz numbers
satisfy

∞∑
g=0

hg(d) ~2g−1 =
1

d!hd

d∑
k=1

(−1)d−k
(
d− 1

k − 1

) d∏
j=1

exp((k − j)~)

=
1

d! ~d
d∑

k=1

(−1)d−k
(
d− 1

k − 1

)
exp

(
1
2d~(2k − d− 1)

)
.

By extracting coefficients of ~ on both sides, we recover the following formula for 1-part simple
Hurwitz numbers.

Proposition 4.7.3. The 1-part simple Hurwitz numbers satisfy the equation

hg(d) =
(d/2)d+2g−1

(d+ 2g − 1)!

d−1∑
k=0

(−1)k
(
d− 1

k

)
(d− 1− 2k)d+2g−1.

In particular, we have the structure theorem hg(d) = dd

d! pg(d), where pg is a polynomial of degree
3g − 1. One can make sense of this statement in the case g = 0 by taking p0(d) = 1

d .

Remark 4.7.4. We remark that the polynomial structure derived here is a direct corollary of the
more general polynomial structure for simple Hurwitz numbers with any number of parts. This
in turn follows from the ELSV formula, which relates simple Hurwitz numbers to intersection
theory on moduli spaces of curves [4444]. The formula of Proposition 4.7.34.7.3 is not new either, but
appeared in the work of Shapiro, Shapiro and Vainshtein [9595]. The results and proof here may
generalise to other settings, as we will observe in the context of monotone Hurwitz numbers.
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Monotone Hurwitz numbers

In Section 4.64.6, we observed that the following 1-point recursion for monotone Hurwitz numbers
could be deduced from several lines of Maple code. As with the Harer–Zagier recursion, it would
be of interest to have an independent and purely combinatorial proof of this statement.

Proposition 4.7.5. The 1-part monotone Hurwitz numbers satisfy the 1-point recursion

dmg(d) = 2(2d− 3)mg(d− 1) + d(d− 1)2mg−1(d).

The 1-point function F (x, ~) =
∑∞

d=1

∑∞
g=0mg(d)~2g−1xd satisfies[

2 + (1− 4x)∂ − ~2x∂2 − ~2x2∂3
]
F (x, ~) = 0.

In the context of monotone Hurwitz numbers, equation (4.124.12) implies that

∞∑
g=0

mg(d) ~2g−1 =
1

d!hd

d∑
k=1

(−1)d−k
(
d− 1

k − 1

) d∏
j=1

1

1− (k − j)~

=
(2d− 2)!

d! (d− 1)!

d−1∏
k=−d+1

1

1− k~
.

The identity that leads to the second equality can be established by considering the residue at
~ = 1

k for −d+ 1 ≤ k ≤ d− 1.

By extracting coefficients of ~ on both sides, we recover the following formula for 1-part monotone
Hurwitz numbers.

Corollary 4.7.6. The 1-part monotone Hurwitz numbers satisfy the equation

mg(d) =
(2d− 2)!

d!(d− 1)!

∑
k1+···+kd−1=g

d−1∏
i=1

i2ki

=
(2d− 2)!

d!(d− 1)!

∑
1≤m1≤m2≤···≤mg≤d−1

(m1m2 · · ·mg)
2.

The latter summation is a polynomial in d of degree 3g that is divisible by 2d− 1, so we have the
structure theorem mg(d) =

(
2d
d

)
p̃g(d), where p̃g is a polynomial of degree 3g − 1. One can make

sense of this statement in the case g = 0 by taking p̃0(d) = 1
d .

This is a particular case of the more general result of Goulden et al., who prove a structure
theorem for monotone Hurwitz numbers [5555].

Mg,n(d1, d2, . . . , dn) =

n∏
i=1

(
2di
di

)
× Pg,n(d1, d2, . . . , dn),

where Pg,n is a polynomial of degree 3g − 3 + n. One wonders whether the techniques of this
paper can be used to prove the more general structure theorem of Goulden et al.

4.8 Relations to topological recursion and quantum curves

In this section, we aim to address the question: how universal is the notion of a 1-point recursion?
Thus, one seeks a natural class of enumerative problems for which 1-point recursions exist. Such
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a class should include not only the fatgraph and dessin d’enfant enumerations, but also those
families of problems encompassed by Theorem 4.5.34.5.3 — namely, those arising from the double
Schur function expansion of equation (4.44.4) with q = (q1, q2, . . . , qr, 0, 0, . . .) and a rational weight
generating function G(z). We claim that a natural candidate is the class of problems governed
by topological recursion.

Topological recursion can be thought of as a vast generalisation of Tutte’s recursion for the
enumeration of fatgraphs. It calculates n-point functions in a recursive manner, starting from
the input data of a spectral curve, as described in Chapter 33. The following result asserts that
the weighted Hurwitz numbers — essentially, the Ng,n(d1, d2, . . . , dn) defined by equations (4.44.4)
and (4.54.5) — are governed by the topological recursion.

Theorem 4.8.1 (Alexandrov, Chapuy, Eynard and Harnad [22]). The spectral curve given by(
CP1, x(z) =

z

G(Q(z))
, y(z) =

Q(z)

z
G(Q(z)), ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2

)
with Q(z) = q1z + q2z

2 + . . .+ qrz
r, produces correlation differentials that satisfy

ωg,n =
∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
n∏
i=1

dix
di−1
i dxi.

This lends credence to the following conjecture, which states that 1-point recursions exist for
rational spectral curves in general.

Conjecture 4.8.2. Let (CP1, x, y, ω0,2) be a spectral curve with x and y rational functions. Let
ωg,n denote the correlation differentials produced by the topological recursion applied to this
spectral curve.

ωg,n =
∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
n∏
i=1

dix
di−1
i dxi

The the numbers ng(d) = dNg,1(d) satisfy a 1-point recursion.

We conclude this section with an example of a problem that is governed by topological recursion
and satisfies a 1-point recursion, but does not satisfy the conditions of Theorem 4.5.34.5.3. Thus, one
can consider this as further evidence towards the conjecture above.

Example 4.8.3. Chekhov and Norbury [2424] consider topological recursion applied to the spectral
curve x2y2 − 4y2 − 1 = 0, given by the rational parametrisation

x(z) = z +
1

z
and y(z) =

z

z2 − 1

The resulting correlation differentials can be expressed as

ωg,n =
∞∑

d1,...,dn=1

Jg,n(d1, d2, . . . , dn)
n∏
i=1

diz
di−1
i dzi.

These are derivatives of the correlation functions for the Legendre ensemble, which arise from a
particular Hermitian matrix model, as well as related models from conformal field theory. In
the latter context, Gaberdiel, Klemm and Runkel use null vectors for Virasoro highest weight
representations to deduce an equation [5252, equation (4.18)] that is equivalent to a 1-point recursion
for the numbers jd = dJg,1(d). In summary, the 1-point invariants produced by the topological
recursion on the rational spectral curve above satisfy a 1-point recursion.
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Recall that the notion of quantum curves is closely related to that of topological recursion,
as discussed in Section 3.43.4. In short, they are non-commutative deformations of the spectral
curves that are used as the input to the topological recursion. Under a certain polarisation,
they become differential operators that should annihilate the wave function, defined to be the
principal specialisation of the partition function. Although it is not currently clear when they
exist, the quantum curve phenomenon has been proved or observed in many instances of the
topological recursion.

In the context of the double Schur function expansions considered in this paper, the principal
specialisation of the partition function is given by

ψ(x, ~) =
∑
λ∈P

sλ(x, x2, x3, . . .)sλ

(q1

~
,
q2

~
, . . .

) ∏
�∈λ

G(c(�)~).

As in Section 4.34.3, the hook-content formula stated in Lemma 4.3.14.3.1 may be invoked to simplify
the expression to obtain

ψ(x, ~) =
∑
λ∈P

xdsλ

(q1

~
,
q2

~
, . . .

) d−1∏
k=1

G(k~) =

∞∑
d=0

xd
d−1∏
k=1

G(k~)[yd] exp

( r∑
k=1

qk
k~
yk
)
,

where [yd] denotes extraction of the coefficient of yd. The quantum curve may then be calculated
from this expression, and the result appears in the work of Alexandrov, Chapuy, Eynard and
Harnad [22].

Our calculation of 1-point invariants from the partition function in Section 4.34.3 bears a strong
resemblance to the calculation of the quantum curve form the partition function [22, 33, 8080]. In
the former case, the partition function reduces to a sum over hook partitions, while in the latter
case it reduces to a sum over 1-part partitions. One may wonder whether there may be a deeper
connection here.



Chapter 5

Topological recursion for lattice
points in Mg,n

Do and Norbury initiated the enumeration of lattice points in the Deligne–Mumford compactifi-
cations of moduli spaces of curves. They showed that the enumeration may be expressed in terms
of polynomials, whose top and bottom degree coefficients store psi-class intersection numbers
and orbifold Euler characteristics of Mg,n, respectively. Furthermore, they ask whether the
enumeration is governed by the topological recursion and whether the intermediate coefficients
also store algebro-geometric information. In this chapter, we prove that the enumeration does
indeed satisfy the topological recursion, although with a modification to the initial spectral curve
data. Thus, one can consider this to be one of few known instances of a natural enumerative
problem governed by the so-called local topological recursion. Combining the present work with
the known relation between local topological recursion and cohomological field theory should
uncover the geometric meaning of the intermediate coefficients of the aforementioned polynomials.

5.1 Motivation

Norbury proved that a certain count of lattice points in the moduli space of curves Mg,n stores
information about its intersection theory and orbifold Euler characteristic [8181]. He furthermore
showed that the enumeration is governed by the topological recursion of Chekhov, Eynard and
Orantin [2323, 4747, 8282]. More recently, Andersen, Chekhov, Norbury and Penner use the general
theory that identifies topological recursion with the Givental formalism to relate this enumeration
to cohomological field theory [55, 66, 4343].

Do and Norbury introduced the related count of lattice points in Mg,n, the Deligne–Mumford
compactification of the moduli space of curves [2929]. For positive integers b1, b2, . . . , bn, they define
the subset

Zg,n(b1, b2, . . . , bn) ⊂Mg,n,

as discussed in Section 2.22.2. The set Zg,n(b1, b2, . . . , bn) is typically the union of a finite set of
discrete points in Mg,n with higher-dimensional components that are naturally products of
moduli spaces of curves. The latter arise from maps f : Σ→ CP1 that have ghost components —
that is, irreducible components of Σ that map entirely to 0 ∈ CP1. To properly ”count” points in
Zg,n(b1, b2, . . . , bn), one needs to account for both the orbifold nature ofMg,n and the existence of
these ghost components. This can be conveniently expressed via the orbifold Euler characteristic
as follows.

75
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Definition 5.1.1. For positive integers b1, b2, . . . , bn, define

Ng,n(b1, b2, . . . , bn) = χ
(
Zg,n(b1, b2, . . . , bn)

)
.

The enumeration Ng,n enjoys the following properties, which can be found in the existing
literature [2929] and are explained in greater detail in Section 2.22.2.

Quasi-polynomiality. For (g, n) 6= (0, 1) or (0, 2), Ng,n(b1, b2, . . . , bn) is a symmetric
quasi-polynomial in b21, b

2
2, . . . , b

2
n of degree dimCMg,n = 3g − 3 + n. We use the term

quasi-polynomial to refer to a function on Zn+ that is polynomial on each fixed parity class.
Observe that this allows us to extend Ng,n(b1, b2, . . . , bn) to evaluation at bi = 0.

Combinatorial recursion. The enumeration Ng,n(b1, b2, . . . , bn) can be interpreted as a
weighted count of combinatorial objects known as stable fatgraphs. From this interpretation,
one can deduce an effective recursion to calculate Ng,n(b1, b2, . . . , bn).

Psi-class intersection numbers. The top degree coefficients of the quasi-polynomial Ng,n

store psi-class intersection numbers on Mg,n.

Orbifold Euler characteristics. The quasi-polynomial Ng,n satisfies Ng,n(0, 0, . . . , 0) =
χ(Mg,n).

We previously mentioned that the enumeration of lattice points in the uncompactified moduli
space of curves Mg,n is governed by the topological recursion and consequently, related to
cohomological field theory. It is certainly natural to seek analogous results in the context of the
compactified enumeration Ng,n. In this regard, Do and Norbury originally state the following.

(a) “It would be interesting to know whether the compactified lattice point polynomials can be
used to define multidifferentials which also satisfy a topological recursion.” [2929, p. 2343]

(b) “We remark that it is currently unknown whether or not the intermediate coefficients of
Ng,n(b) store topological information about Mg,n.” [2929, p. 2323]

In Section 5.25.2, we settle problem (a) above by proving that the enumeration Ng,n is indeed
governed by the topological recursion, although with a modification to the initial spectral curve
data that is explained below. Although problem (b) above remains unresolved, our main theorem
should allow one to invoke the general theory that identifies topological recursion with the
Givental formalism to yield a connection to cohomological field theory [4343]. This would then
provide a relation between the intermediate coefficients of Ng,n(b1, b2, . . . , bn) and the intersection
theory of Mg,n. We aim to report on this work in the future.

The main result of the present chapter is the following.

Theorem 5.1.2. Topological recursion applied to the local spectral curve C∗ equipped with
the data

x(z) = z +
1

z
, y(z) = z and ω0,2(z1, z2) =

dz1 ⊗ dz2

(z1 − z2)2
+

dz1 ⊗ dz2

z1z2
(5.1)

produces multidifferentials whose expansions at zi = 0 satisfy

ωg,n(z1, z2, . . . , zn) =
∞∑

b1,b2,...,bn=0

Ng,n(b1, b2, . . . , bn)
n∏
i=1

[bi]z
bi−1
i dzi, for (g, n) 6= (0, 1) or (0, 2).

Here, we use the notation [b] = b for b positive and [0] = 1.

The most notable aspect of the theorem is the nature of the spectral curve involved, which can
be considered local rather than global, in the sense discussed in Section 3.23.2. The following is a
short summary of the difference between the global and local topological recursion.
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Global topological recursion.11 In the foundational literature on topological recursion, a
spectral curve is defined to be the data (C, x, y, T ), where C is a compact Riemann surface,
x and y are meromorphic functions on C, and T is a Torelli marking on C — that is, a choice
of symplectic basis for H1(C;Z) [4747, 4848]. One usually also imposes some mild regularity
conditions on this data, although they play no role in the present discussion. The global
topological recursion then recursively produces so-called correlation differentials ωg,n for
integers g ≥ 0 and n ≥ 1. In particular, ω0,2(z1, z2) is defined implicitly by the fact that it
has double poles without residue along the diagonal z1 = z2, is holomorphic away from the
diagonal, and is normalised on the A-cycles of the Torelli marking via the equation∮

Ai
ω0,2(z1, z2) = 0, for i = 1, 2, . . . , genus(C).

The compact nature of C ensures that ω0,2 is uniquely defined from the spectral curve data.
A consequence of the global topological recursion is that for (g, n) 6= (0, 1) or (0, 2), the
correlation differentials ωg,n have poles only at the ramification points of the spectral curve,
where dx vanishes.

Local topological recursion. One can observe that the global topological recursion actually
only requires the local information of the meromorphic functions x, y and the bidifferential
ω0,2 at the ramification points of the spectral curve, in order to produce the correlation
differentials. Thus, one can more generally define topological recursion on spectral curves
comprising isolated local germs of x, y and ω0,2, without requiring the existence of a
global compact Riemann surface on which this data can be defined. In particular, the
local topological recursion requires ω0,2 to become part of the spectral curve data. This
viewpoint was promoted by Dunin-Barkowksi, Orantin, Shadrin and Spitz in their work
relating topological recursion to Givental’s approach to cohomological field theory [4343].

The spectral curve of Theorem 5.1.25.1.2 is local in the sense that the data cannot be extended to
CP1 such that ω0,2 satisfies the conditions of the global topological recursion. The simple poles
of ω0,2 at z1 = 0 and z2 = 0 lead to the correlation differentials ωg,n(z1, z2, . . . , zn) having simple
poles at zi = 0 more generally. This departs from the usual behaviour exhibited by the global
topological recursion, in which the poles appear only at the ramification points of the spectral
curve, which correspond to zi = ±1 in our case. Although we do not take this approach here,
the spectral curve could alternatively have been presented more abstractly as the disjoint union
of two small disks, corresponding to the two ramification points.

It was previously unclear whether there were benefits to using the local version of the topological
recursion beyond the more general viewpoint it afforded. Indeed, Dunin-Barkowski [3939] states
that “local topological recursion (to the moment) lacks interesting applications or profound
meaning separate from what originates from ordinary (global) spectral curve topological recursion”.
Theorem 5.1.25.1.2 above provides an instance of the local topological recursion applied to a natural
enumerative problem. It is one of a number of known examples of local topological recursion
in which ω0,2 is deformed away from its usual global form. These include: the enumeration
of maps with self-avoiding loops in the critical regime [1010]; the Chern–Simons invariants of
S3/Γ for certain non-abelian Γ [1212]; random tensor models governed by the blobbed topological
recursion [99, 1313]; and recent work on Masur–Veech volumes [44].

The proof of Theorem 5.1.25.1.2 adopts a general strategy that has been previously employed to
show that topological recursion governs enumerative problems, such as counting lattice points in
Mg,n [8282] and several variants of Hurwitz numbers [1515, 3131, 3434, 5050]. Minor technical difficulties

1We use the expression global topological recursion to contrast it with its local counterpart. However, this is not to
be confused with the global version of topological recursion introduced by Bouchard and Eynard [1616].
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arise from the modification to ω0,2, which introduces logarithmic terms into the topological
recursion kernel.

The general theory of topological recursion allows one to calculate so-called symplectic invariants
Fg ∈ C for g = 0, 1, 2, . . . and to deduce relations known as string and dilaton equations. Thus,
we have the following immediate consequence of our main result, which previously appeared in
the literature with an alternative proof [2929].

Corollary 5.1.3. The string and dilaton equations for the topological recursion imply the
following known relations, respectively, for (g, n) 6= (0, 1) or (0, 2) and b1, b2, . . . , bn ≥ 0. The hat
over bk in the first equation denotes the fact that we omit it as an argument.

Ng,n+1(1, b1, b2, . . . , bn) =
n∑
k=1

bk−1∑
a=0

[a]Ng,n(a, b1, . . . , b̂k, . . . , bn)

Ng,n+1(2, b1, b2, . . . , bn)−Ng,n+1(0, b1, b2, . . . , bn) = (2g − 2 + n)Ng,n(b1, b2, . . . , bn)

One potential application of the present work is to give an explicit relation between the enumera-
tion Ng,n and the algebraic geometry of Mg,n. A priori, one might expect such a relation due
to the definition of Ng,n(b1, b2, . . . , bn) as a virtual count of the set Zg,n(b1, b2, . . . , bn) ⊂Mg,n.
Furthermore, we note that Zg,n(b1, b2, . . . , bn) may alternatively be interpreted as a subset of
Mg,n(CP1;

∑
bi), the moduli space of stable maps, making a connection with the Gromov–Witten

theory of the sphere. Theorem 5.1.25.1.2 now provides a promising pathway towards the ultimate
proof of a relation between the enumeration Ng,n and the intersection theory of Mg,n via the
identification of topological recursion with Givental’s formula [4343].

Example 5.1.4. Recall that the local spectral curve of Theorem 5.1.25.1.2 is C∗ equipped with the
data

x(z) = z +
1

z
, y(z) = z and ω0,2(z1, z2) =

dz1 ⊗ dz2

(z1 − z2)2
+

dz1 ⊗ dz2

z1z2
.

The ramification points are the zeroes of dx — namely, z = 1 and z = −1. At both of these
ramification points, the local involution s(z) is given by s(z) = 1

z . Thus, the recursion kernel can
be taken to be

K(z1, z) = −
∫ z
o ω0,2(z1, · )

[y(z)− y(s(z))] dx(z)

= −

∫ z
∞

dz1 dt
(z1−t)2 +

∫ z
1

dz1 dt
z1 t

[y(z)− y(s(z))] dx(z)
= −

[
1

z1 − z
+

log(z)

z1

]
z3

(1− z2)2

dz1

dz
.

In the equation above, we split the integral into two and integrate the contributions with two
different base points. Note that this is justified as the extra term will not contribute to the
residue.
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The recursion produces the following formulas in the cases (g, n) = (0, 3) and (1, 1).

ω0,3(z1, z2, z3)

dz1 dz2 dz3

=
∑
α=±1

Res
z=α

K(z1, z)

dz1 dz2 dz3

[
ω0,2(z, z2)ω0,2(1

z , z3) + ω0,2(z, z3)ω0,2(1
z , z2)

]
=
∑
α=±1

Res
z=α

[
1

z1 − z
+

log(z)

z1

]
z3

(1− z2)2

[
dz

(z − z2)2 (1− zz3)2
+

dz

(z − z3)2 (1− zz2)2

]

=
1

2z1z2z3

[ 3∏
i=1

z2
i − zi + 1

(zi − 1)2
+

3∏
i=1

z2
i + zi + 1

(zi + 1)2

]
ω1,1(z1)

dz1
=
∑
α=±1

Res
z=α

K(z1, z)

dz1
ω0,2(z, 1

z )

=
∑
α=±1

Res
z=α

[
1

z1 − z
+

log(z)

z1

]
z3

(1− z2)2

(
1

(z2 − 1)2
+ 1

)
dz

=
5z8

1 − 8z6
1 + 18z4

1 − 8z2
1 + 5

12z1(z2
1 − 1)4

5.2 Proof of the main theorem

For the proof of Theorem 5.1.25.1.2, we adopt a general strategy that has been previously used to
prove the topological recursion for enumerative problems, such as counting lattice points in
uncompactified moduli spaces of curves [8282] and various kinds of Hurwitz numbers [5050, 1515, 3434, 3131].
The modification to ω0,2 in our result adds minor technical difficulties, since logarithmic terms
are introduced into the topological recursion kernel. We break down the proof into the following
parts.

1. Define natural multidifferentials Ωg,n(z1, z2, . . . , zn) for the enumerative problem and use
the quasi-polynomiality of Theorem 2.2.122.2.12 to deduce analytic and symmetry properties for
Ωg,n(z1, z2, . . . , zn) (Proposition 5.2.45.2.4).

2. Express the combinatorial recursion of Theorem 2.2.122.2.12 in terms of the aforementioned
multidifferentials Ωg,n(z1, z2, . . . , zn) (Proposition 5.2.65.2.6).

3. Break the natural symmetry of the recursion for Ωg,n(z1, z2, . . . , zn) by taking the symmet-
ric part with respect to z1, using the symmetry properties of Proposition 5.2.45.2.4 (Proposi-
tion 5.2.75.2.7).

4. Use the fact that a rational differential form is equal to the sum of its principal parts,
where the principal part of Ω(z1) at z1 = α may be defined by

Res
z=α

dz1

z1 − z
Ω(z). (5.2)

Finally, match the resulting recursion for the multidifferentials Ωg,n(z1, z2, . . . , zn) with the
topological recursion for the correlation differentials ωg,n(z1, z2, . . . , zn).

These four steps are carried out in the following four subsections, respectively.
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Structure of the enumeration

From the enumeration Ng,n(b1, b2, . . . , bn) of Definition 5.1.15.1.1, we define the following formal
multidifferentials.

Ωg,n(z1, z2, . . . , zn) =

∞∑
b1,b2,...,bn=0

Ng,n(b1, b2, . . . , bn)

n∏
i=1

[bi]z
bi−1
i dzi (5.3)

Theorem 5.1.25.1.2 is essentially the statement that the correlation differentials produced by the
topological recursion applied to the spectral curve of equation (5.15.1) satisfy

Ωg,n(z1, z2, . . . , zn) = ωg,n(z1, z2, . . . , zn), for (g, n) 6= (0, 1) or (0, 2).

The primary aim is to understand the structure of Ωg,n(z1, z2, . . . , zn), which will play a cru-
cial role in the proof of Theorem 5.1.25.1.2. The quasi-polynomiality of Ng,n(b1, b2, . . . , bn) stated
in Theorem 2.2.122.2.12 is equivalent to the fact that for (g, n) 6= (0, 1) or (0, 2),

Ωg,n(z1, z2, . . . , zn) ∈ V (z1)⊗ V (z2)⊗ · · · ⊗ V (zn), (5.4)

where we define the vector space V (z) as follows.

Definition 5.2.1. Define the complex vector space of differential forms

V (z) =

{ ∞∑
b=0

[b]Q(b)zb−1 dz
∣∣∣ Q(b) is a quasi-polynomial in b2

}
.

Lemma 5.2.2. The vector space V (z) has the basis
{
ξeven
k (z), ξodd

k (z)
}

, where k ≥ 0 and

ξeven
k (z) =

d

dz

(
z

d

dz

)2k z2

1− z2
dz +

δk,0
z

dz and ξodd
k (z) =

d

dz

(
z

d

dz

)2k z

1− z2
dz.

Proof. Begin by observing that a quasi-polynomial is a unique linear combination of monomials,
acting on either even or odd arguments. So we have the following basis for V (z), as k varies over
the non-negative integers.

ξeven
k (z) =

∑
b≥0
b even

[b] · b2kzb−1 dz ξodd
k (z) =

∑
b≥0
b odd

[b] · b2kzb−1 dz

=
d

dz

(
z

d

dz

)2k ∑
b>0
b even

zb dz +
δk,0
z

dz =
d

dz

(
z

d

dz

)2k ∑
b>0
b odd

zb dz

=
d

dz

(
z

d

dz

)2k z2

1− z2
dz +

δk,0
z

dz =
d

dz

(
z

d

dz

)2k z

1− z2
dz

Example 5.2.3. It was previously shown that [2929]

N0,3(b1, b2, b3) =

{
1, b1 + b2 + b3 even,

0, b1 + b2 + b3 odd,
and N1,1(b1) =

{
1
48(b21 + 20), b1 even,

0, b1 odd.

Hence, we can express the corresponding generating differentials in terms of the basis elements
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of Lemma 5.2.25.2.2.

Ω0,3(z1, z2, z3) = ζeven
0 (z1) ζeven

0 (z2) ζeven
0 (z3) + ζeven

0 (z1) ζodd
0 (z2) ζodd

0 (z3)

+ ζodd
0 (z1) ζeven

0 (z2) ζodd
0 (z3) + ζodd

0 (z1) ζodd
0 (z2) ζeven

0 (z3)

=
dz1 dz2 dz3

2z1z2z3

[ 3∏
i=1

z2
i − zi + 1

(zi − 1)2
+

3∏
i=1

z2
i + zi + 1

(zi + 1)2

]
Ω1,1(z1) =

1

48
(ζeven

1 (z1) + 20 ζeven
0 (z1))

=
dz1

12z1

5z8
1 − 8z6

1 + 18z4
1 − 8z2

1 + 5

(z2
1 − 1)4

A consequence of Lemma 5.2.25.2.2 is that elements of V (z) are rational differential forms. The next
result reveals that they possess interesting pole structure and symmetry.

Proposition 5.2.4. For all Ω(z) ∈ V (z),

Ω(z) has poles only at z = 1, z = −1 and z = 0, with only simple poles occurring at z = 0;
and

Ω(z) + Ω(1
z ) = 0.

Proof. The first statement is immediate from Lemma 5.2.25.2.2, since the operator d
dz (z ·) cannot

introduce new poles on CP1. The second statement can be verified on the basis elements ξeven
k (z)

and ξodd
k (z), then deduced for all Ω(z) ∈ V (z) by linearity. The verification on basis elements is

as follows, using the observation that 1
z

d
d(1/z) = −z d

dz .

ξeven
k (z) + ξeven

k (1
z ) = d

[(
z

d

dz

)2k z2

1− z2
+ δk,0 log(z)

]
+ d

[(
− z d

dz

)2k (1
z )2

1− (1
z )2

+ δk,0 log(1
z )

]
= d

[(
z

d

dz

)2k( z2

1− z2
+

1

z2 − 1

)
+ δk,0

(
log(z) + log(1

z )
)]

= 0

ξodd
k (z) + ξodd

k (1
z ) = d

[(
z

d

dz

)2k z

1− z2

]
+ d

[(
− z d

dz

)2k 1
z

1− (1
z )2

]
= d

[(
z

d

dz

)2k( z

1− z2
+

z

z2 − 1

)]
= 0

We next state a lemma concerning V (z) that will be necessary for the subsequent proof of Theo-
rem 5.1.25.1.2.

Lemma 5.2.5. For all Ω(z) ∈ V (z),∑
α=±1

Res
z=α

Ω(z) log(z) = Res
z=0

Ω(z). (5.5)

Proof. We simply verify the equation for the basis elements ξeven
k (z) and ξodd

k (z), then deduce it
for all Ω(z) ∈ V (z) by linearity. Note that the residue on the right side is 0 for each basis element,
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apart from ξeven
0 (z). So let us first suppose that k ≥ 1 and verify the equation for ξeven

k (z).

∑
α=±1

Res
z=α

ξeven
k (z) log(z) = −

∑
α=±1

Res
z=α

[ ∫
ξeven
k (z)

]
d log(z) = −

∑
α=±1

Res
z=α

[(
z

d

dz

)2k z2

1− z2

]
dz

z

= −
∑
α=±1

Res
z=α

[(
z

d

dz

)2k 1

1− z2

]
dz

z

= Res
z=0

[
d

dz

(
z

d

dz

)2k−1 1

1− z2

]
dz

The first line uses the fact that a function F (z) that is meromorphic at z = α satisfies Res
z=α

dF = 0.

It follows that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z) and g(z) that are meromorphic

at z = α. The second line uses the fact that k is positive. The third line uses the fact that the
sum of the residues of a rational differential form is equal to 0. It is clear that the final expression
obtained is equal to 0, since the argument is holomorphic at z = 0. This completes the proof in
this case.

The analogous calculation for ξodd
k (z) and k ≥ 0 is almost identical to the previous and is omitted

for brevity. It remains to treat the case ξeven
0 (z), in which case the residue on the right side of

the equation is evidently equal to 1. We calculate the left side as follows.

∑
α=±1

Res
z=α

ξeven
0 (z) log(z)

=
∑
α=±1

Res
z=α

[
d

dz

z2

1− z2
dz +

dz

z

]
log(z) =

∑
α=±1

Res
z=α

[
d

dz

z2

1− z2
dz

]
log(z)

= −
∑
α=±1

Res
z=α

[
z2

1− z2

]
dz

z
= −

∑
α=±1

Res
z=α

z

1− z2
dz

The first line uses the definition of ξeven
0 (z) and removes a summand that is clearly holomorphic

at z = ±1. The second line uses the fact that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z)

and g(z) that are meromorphic at z = α. It is then straightforward to calculate that the final
expression obtained is equal to 1. This completes the proof in this case.

Combinatorial recursion

We now express the combinatorial recursion of Theorem 2.2.122.2.12 in terms of natural generating
functions. Rather than using the multidifferentials Ωg,n(z1, z2, . . . , zn) defined earlier, it will be
convenient to work with the closely related generating functions

Wg,n(z1, z2, . . . , zn) =
Ωg,n(z1, z2, . . . , zn)

dz1 dz2 · · · dzn
=

∞∑
b1,b2,...,bn=0

Ng,n(b1, b2, . . . , bn)

n∏
i=1

[bi]z
bi−1
i .

Proposition 5.2.6. For 2g− 2 +n ≥ 2, we have the following equation, where S = {1, 2, . . . , n}
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and zI = (zi1 , zi2 , . . . , zik) for I = {i1, i2, . . . , ik}.

n∑
i=1

∂

∂zi
ziWg,n(zS) =

∑
i<j

(
∂

∂zi

[
2

zj

z3
i

(1− z2
i )2

Wg,n−1(zS\{j})

]
+

∂

∂zj

[
2

zi

z3
j

(1− z2
j )2

Wg,n−1(zS\{i})

]

+ 2
∂

∂zi

∂

∂zj

[
zj

zi − zj
z3
i

(1− z2
i )2

Wg,n−1(zS\{j})−
zi

zi − zj
z3
j

(1− z2
j )2

Wg,n−1(zS\{i})

])

+
n∑
i=1

∂

∂zi

z4
i

(1− z2
i )2

[
Wg−1,n+1(zi, zi, zS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Wg1,|I|+1(zi, zI)Wg2,|J |+1(zi, zJ)

]

Proof. The combinatorial recursion of Theorem 2.2.122.2.12 states that for 2g − 2 + n ≥ 2 and
b1, b2, . . . , bn ≥ 0, we have the following equation.

(
n∑
i=1

bi

)
Ng,n(bS) =

∑
i<j

∑
p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j})

+
1

2

∑
i

∑
p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]

Let us define the operators

O =
∞∑

b1,b2,...,bn=0

[ · ]
n∏
i=1

[bi]z
bi−1
i and OJ =

∞∑
bi=0:i/∈J

[ · ]
∏
i/∈J

[bi]z
bi−1
i .

The result arises from applying the operator O to both sides of the combinatorial recursion. The
left side becomes

∞∑
b1,b2,...,bn=0

(
n∑
i=1

bi

)
Ng,n(bS)

n∏
i=1

[bi]z
bi−1
i =

n∑
i=1

∞∑
b1,b2,...,bn=0

∂

∂zi
zi

(
Ng,n(bS)

n∏
i=1

[bi]z
bi−1
i

)

=

n∑
i=1

∂

∂zi
ziWg,n(zS). (∗)

Applying the operator O to the (i, j)th summand in the first term on the right side of the
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combinatorial recursion yields

∞∑
b1,b2,...,bn=0

∑
p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j})
n∏
i=1

[bi]z
bi−1
i

= Oi,j
∞∑

bi,bj=0

∑
p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j}) [bi] [bj ]z
bi−1
i z

bj−1
j

= Oi,j
∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})

p+q∑
k=0

[k] [p+ q − k]zk−1
i zp+q−k−1

j

= Oi,j
∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})

[
∂

∂zi
zp+qi z−1

j +
∂

∂zj
z−1
i zp+qj

]

+Oi,j
∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})
∂

∂zi

∂

∂zj

(
zp+q−1
i z1

j + zp+q−2
i z2

j + · · ·+ z1
i z
p+q−1
j

)
.

Consider the first of the two terms in this last expression and use
∑

q even
qzq = 2z2

(1−z2)2 to obtain

the following.

Oi,j
∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})

[
∂

∂zi
zp+qi z−1

j +
∂

∂zj
z−1
i zp+qj

]

= Oi,j
∂

∂zi
z−1
j zi

∞∑
q=0
q even

qzqi

∞∑
p=0

[p]Ng,n−1(p,bS\{i,j}) z
p−1
i

+Oi,j
∂

∂zj
z−1
i zj

∞∑
q=0
q even

qzqj

∞∑
p=0

[p]Ng,n−1(p,bS\{i,j}) z
p−1
j

=
∂

∂zi

[
2

zj

z3
i

(1− z2
i )2

Wg,n−1(zS\{j})

]
+

∂

∂zj

[
2

zi

z3
j

(1− z2
j )2

Wg,n−1(zS\{i})

]
(∗)

Now consider the second term in a similar fashion to obtain the following.

Oi,j
∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})
∂

∂zi

∂

∂zj

(
zp+q−1
i z1

j + zp+q−2
i z2

j + · · ·+ z1
i z
p+q−1
j

)

= Oi,j
∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})
∂

∂zi

∂

∂zj

zp+qi zj − zizp+qj

zi − zj

= Oi,j
∂

∂zi

∂

∂zj

[
1

zi − zj

∞∑
p,q=0

[p]q Ng,n−1(p,bS\{i,j})
(
zp+qi zj − zizp+qj

)]

= 2
∂

∂zi

∂

∂zj

[
zj

zi − zj
z3
i

(1− z2
i )2

Wg,n−1(zS\{j})−
zi

zi − zj
z3
j

(1− z2
j )2

Wg,n−1(zS\{i})

]
(∗)

Applying the operator O to twice the ith summand in the second term on the right side of the
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combinatorial recursion yields

∞∑
b1,b2,...,bn=0
p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]
n∏
i=1

[bi]z
bi−1
i

= Oi
∑
bi=0

p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]
[bi]z

bi−1
i

= Oi
∂

∂zi
zi

∞∑
p,q,r=0
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i})

+

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]
zp+q+r−1
i

=
∂

∂zi

2z4
i

(1− z2
i )2

[
Wg−1,n+1(zi, zi, zS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Wg1,|I|+1(zi, zI)Wg2,|J |+1(zi, zJ)

]
(∗)

Finally, combine all of the contributions from the expressions marked by (∗) to obtain the desired
result.

Breaking the symmetry

A feature of the topological recursion is that it produces symmetric meromorphic multidifferentials
from a recursion that is manifestly asymmetric, with a special role played by the variable z1. We
break the symmetry in the recursion of Proposition 5.2.65.2.6 by applying the operator

F (z1) 7→ F (z1)− 1

z2
1

F ( 1
z1

)

to every term appearing. In a precise sense, this amounts to taking the symmetric part with
respect to the involution s(z) = 1

z appearing in the topological recursion, stated at the level of
functions rather than differentials.

Recall that equation (5.45.4) combined with Proposition 5.2.45.2.4 assert that

Ωg,n(z1, z2, . . . , zn) + Ωg,n( 1
z1
, z2, . . . , zn) = 0.

At the level of generating functions, this translates to the property

Wg,n(z1, z2, . . . , zn)− 1

z2
1

Wg,n( 1
z1
, z2, . . . , zn) = 0, (5.6)

which will be useful in subsequent calculations.

Proposition 5.2.7. For 2g− 2 +n ≥ 2, we have the following equation, where S = {2, 3, . . . , n}
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and zI = (zi1 , zi2 , . . . , zik) for I = {i1, i2, . . . , ik}.

Wg,n(z1, zS)− Res
p=0

Wg,n(p, zS) dp

z1

=
n∑
j=2

(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Wg,n−1(z1, zS\{j})

−
n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(zS)

]

+
z3

1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, zI)Wg2,|J |+1(z1, zJ)

]

Proof. As mentioned above, we apply the operator F (z1) 7→ F (z1) − 1
z2
1
F ( 1

z1
) to all terms

appearing in the recursion of Proposition 5.2.65.2.6. The left side becomes
n∑
i=1

∂

∂zi
ziWg,n(z1, zS)− 1

z2
1

[ n∑
i=1

∂

∂zi
ziWg,n(z1, zS)

]
z1 7→ 1

z1

=
∂

∂z1
z1Wg,n(z1, zS)− 1

z2
1

∂

∂( 1
z1

)

1

z1
Wg,n( 1

z1
, zS) +

n∑
i=2

∂

∂zi
zi

[
Wg,n(z1, zS)− 1

z2
1

Wg,n( 1
z1
, zS)

]
= 2

∂

∂z1
z1Wg,n(z1, zS). (∗∗)

Here, we have used the symmetry property of equation (5.65.6) to deduce that the summands with
2 ≤ i ≤ n are equal to 0 and to express Wg,n( 1

z1
, zS) in terms of Wg,n(z1, zS).

In the summation over i < j on the right side, the symmetry property of equation (5.65.6) ensures
that a non-zero contribution arises only for the summands with i = 1 and j = 2, 3, . . . , n. For
such a summand, the first line on the right side contributes

∂

∂z1

[
2

zj

z3
1

(1− z2
1)2

Wg,n−1(zS\{j})

]
− 1

z2
1

∂

∂( 1
z1

)

[
2

zj

1
z3
1

(1− 1
z2
1
)2
Wg,n−1( 1

z1
, zS\{1,j})

]

+
∂

∂zj

[
1

z1

z3
j

(1− z2
j )2

Wg,n−1(zS)

]
− 1

z2
1

∂

∂zj

[
z1

z3
j

(1− z2
j )2

Wg,n−1(zS)

]
= 2

∂

∂z1

[
2

zj

z3
1

(1− z2
1)2

Wg,n−1(zS\{j})

]
. (∗∗)

The second line on the right side contributes

2
∂

∂z1

∂

∂zj

[
1

z1 − zj
z3

1zj
(1− z2

1)2
Wg,n−1(z1, zS\{j})

]

− 2
1

z2
1

∂

∂( 1
z1

)

∂

∂zj

[
1

1
z1
− zj

1
z3
1
zj

(1− 1
z2
1
)2
Wg,n−1( 1

z1
, zS\{j})

]

− 2
∂

∂z1

∂

∂zj

[
1

z1 − zj
z1z

3
j

(1− z2
j )2

Wg,n−1(zS)

]
+ 2

1

z2
1

∂

∂( 1
z1

)

∂

∂zj

[
1

1
z1
− zj

1
z1
z3
j

(1− z2
j )2

Wg,n−1(zS)

]
= 2

∂

∂z1

∂

∂zj

[(
zj

z1 − zj
+

z1zj
1− z1zj

)
z3

1

(1− z2
1)2

Wg,n−1(z1, zS\{j})

]
− 2

∂

∂z1

∂

∂zj

[(
z1

z1 − zj
+

1

1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(zS)

]
. (∗∗)
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In the summation over i on the right side, the symmetry property of equation (5.65.6) ensures that
a non-zero contribution arises only for the summands with i = 1. So the third line on the right
side contributes

∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, zI)Wg2,|J |+1(z1, zJ)

]

− 1

z2
1

∂

∂( 1
z1

)

1
z4
1

(1− 1
z2
1
)2

[
Wg−1,n+1( 1

z1
, 1
z1
, zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1( 1
z1
, zI)Wg2,|J |+1( 1

z1
, zJ)

]

= 2
∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, zI)Wg2,|J |+1(z1, zJ)

]
. (∗∗)

Gather together all of the terms marked by (∗∗) and perform some mild algebraic simplification
to obtain the following.

∂

∂z1
z1Wg,n(z1, zS) =

n∑
j=2

∂

∂z1

[
z1

(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Wg,n−1(z1, zS\{j})

]

−
n∑
j=2

∂

∂z1

∂

∂zj

[
z1

(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(zS)

]

+
∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, zI)Wg2,|J |+1(z1, zJ)

]

One can remove the operator ∂
∂z1

z1 from every term to recover an equality of the following form,
where [correction] is independent of z1.

Wg,n(z1, zS) +
[correction]

z1

=

n∑
j=2

[(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Wg,n−1(z1, zS\{j})

]

−
n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(zS)

]

+
z3

1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, zI)Wg2,|J |+1(z1, zJ)

]

Finally, recall that Wg,n(z1, z2, . . . , zn) has at worst a simple pole at z1 = 0. It follows that the
right side of this equation has no pole at z1 = 0, so the correction term is given by

[correction] = −Res
p=0

Wg,n(p, zS) dp,

and this completes the proof.

Proof of the main theorem

We now have all of the pieces in place to prove our main result.
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Proof of Theorem 5.1.25.1.2. Recall that we wish to prove that Ωg,n = ωg,n for all (g, n) 6= (0, 1) or
(0, 2), where the former is defined via the enumeration Ng,n(b1, b2, . . . , bn) and equation (5.35.3),
while the latter is defined via the topological recursion applied to the local spectral curve
of equation (5.15.1). We use an inductive approach with base cases (g, n) = (0, 3) and (1, 1).
One may verify directly that Ω0,3 = ω0,3 and Ω1,1 = ω1,1 by comparing the calculations
of Example 5.1.45.1.4 and Example 5.2.35.2.3. So the theorem is true whenever 2g − 2 + n = 1. Now
consider (g, n) satisfying 2g − 2 + n ≥ 2 and assume the inductive hypothesis that Ωg′,n′ = ωg′,n′

whenever 1 ≤ 2g′ − 2 + n′ < 2g − 2 + n and (g′, n′) 6= (0, 1) or (0, 2).

We begin by rewriting Proposition 5.2.75.2.7 in terms of multidifferentials by multiplying by dz1 · · · dzn.

Ωg,n(z1, zS)− dz1

z1
Res
p=0

Ωg,n(p, zS) (5.7)

=
n∑
j=2

(
2 dzj
z1zj

+
dzj

(z1 − zj)2
+

dzj
(1− z1zj)2

)
z3

1

(1− z2
1)2

Ωg,n−1(z1, zS\{j})

−
n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(zS)

]
dz1 dz2 · · · dzn

+
z3

1

(1− z2
1)2

1

dz1

[
Ωg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Ωg1,|I|+1(z1, zI) Ωg2,|J |+1(z1, zJ)

]
(5.8)

By Proposition 5.2.45.2.4, Ωg,n(z1, zS) has at worst a simple pole at z1 = 0 and poles at z1 = 1 and
z1 = −1. Hence, the left side of the previous equation only has poles at z1 = 1 and z1 = −1.
Now use the fact that a rational differential is equal to the sum of its principal parts, each of
which may be expressed by equation (5.25.2), to obtain the following.z

Ωg,n(z1, zS)− dz1

z1
Res
p=0

Ωg,n(p, zS) =
∑
α=±1

Res
z=α

dz1

z1 − z

[
Ωg,n(z, zS)− dz

z
Res
p=0

Ωg,n(p, zS)

]

Substituting equation (5.75.7) into the right side of the previous equation yields the following.

Ωg,n(z1, zS)− dz1

z1
Res
p=0

Ωg,n(p, zS)

=
∑
α=±1

Res
z=α

1

z1 − z
z3

(1− z2)2

dz1

dz

[
n∑
j=2

(
2 dz dzj
zzj

+
dz dzj

(z − zj)2
+

dz dzj
(1− zzj)2

)
ωg,n−1(z, zS\{j})

+ ωg−1,n+1(z, z, zS) +

stable∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(z, zJ)

]
(5.9)

Since the entire second line on the right side of equation (5.75.7) is evidently analytic at z1 = α
for all α ∈ C, we may omit it from this equation. Furthermore, we have invoked the induction
hypothesis to replace each Ωg′,n′ on the right side with ωg′,n′ .

Recalling the definition of ω0,2, we have

ω0,2(z, z2) =
dz dz2

(z − z2)2
+

dz dz2

z z2
⇒ ω0,2(z, z2)−ω0,2(1

z , z2) =
2 dz dz2

z z2
+

dz dz2

(z − z2)2
+

dz dz2

(1− zz2)2
.

Therefore, equation (5.95.9) above can be written equivalently as follows, where we have also used
the induction hypothesis and Proposition 5.2.45.2.4 to deduce that ωg′,n′(z, z) = −ωg′,n′(1

z , z) for
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various terms on the right side.

Ωg,n(z1, zS)

=
dz1

z1
Res
p=0

Ωg,n(p, zS) +
∑
α=±1

Res
z=α

−1

z1 − z
z3

(1− z2)2

dz1

dz

[
n∑
j=2

ω0,2(z, z2)ωg,n−1(1
z , zS\{j})

+
n∑
j=2

ω0,2(1
z , z2)ωg,n−1(z, zS\{j}) + ωg−1,n+1(z, 1

z , zS) +
stable∑

g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(1
z , zJ)

]
,

Now absorb the terms in the two summations over j into the summation over g1 + g2 and
I t J = S. Recall that the symbol ◦ over the inner summation denotes that we exclude all terms
with ω0,1.

Ωg,n(z1, zS) =
dz1

z1
Res
p=0

Ωg,n(p, zS) +
∑
α=±1

Res
z=α

−1

z1 − z
z3

(1− z2)2

dz1

dz

[
ωg−1,n+1(z, 1

z , zS)

+
◦∑

g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(1
z , zJ)

]
. (5.10)

By construction we have Ωg,n(p, zS) ∈ V (p)⊗ V (z2)⊗ · · · ⊗ V (zn), so Lemma 5.2.55.2.5 asserts that

Res
p=0

Ωg,n(p, zS) =
∑
α=±1

Res
z=α

Ωg,n(z, zS) log(z).

Multiply both sides of this equation by dz1
z1

and use equation (5.75.7) to substitute for Ωg,n(z, zS)
on the right side. Observing that the terms

dz1

z1
Res
p=0

Ωg,n(p, zS) and

n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(zS)

]

are analytic at z1 = 1 and z1 = −1, we obtain the following.

dz1

z1
Res
p=0

Ωg,n(p, zS)

=
∑
α=±1

Res
z=α

Ωg,n(z, zS)
log(z)

z1
dz1

=
∑
α=±1

Res
z=α

log(z)

z1

z3

(1− z2)2

dz1

dz

[
n∑
j=2

(
2 dz dzj
zzj

+
dz dzj

(z − zj)2
+

dz dzj
(1− zzj)2

)
Ωg,n−1(z, zS\{j})

+ Ωg−1,n+1(z1, z1, zS) +

stable∑
g1+g2=g
ItJ=S

Ωg1,|I|+1(z1, zI) Ωg2,|J |+1(z1, zJ)

]

=
∑
α=±1

Res
z=α

− log(z)

dz

z3

(1− z2)2

dz1

dz

[
ωg−1,n+1(z, 1

z , zS) +

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(1
z , zJ)

]

Here, we have used the induction hypothesis and the same algebraic trickery that was used
previously to deduce equation (5.105.10) from equation (5.95.9).
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Substituting the previous equation into equation (5.105.10) results in

Ωg,n(z1, zS) =
∑
α=±1

Res
z=α

K(z1, z)

[
ωg−1,n+1(z, 1

z , zS) +
◦∑

g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(1
z , zJ)

]
,

where we have recognised the recursion kernel K(z1, z) calculated in Example 5.1.45.1.4. The right
side of this equation coincides precisely with the topological recursion as defined in Section 3.23.2,
so we have finally deduced that Ωg,n = ωg,n. By induction, we conclude that Ωg,n = ωg,n for all
(g, n) 6= (0, 1) or (0, 2).

5.3 Asymmetric combinatorial recursion for stable fatgraphs

In the previous section, we proved Theorem 5.1.25.1.2 by using the symmetric combinatorial recursion
of Theorem 2.2.122.2.12 to derive a recursion at the level of generating functions. We then proceeded
to break the symmetry to obtain an equation in Proposition 5.2.75.2.7 that is asymmetric in the sense
that the variable z1 does not appear in the same way as the remaining variables z2, . . . , zn. In
this section, we observe that one could instead derive an asymmetric combinatorial recursion in
order to lead directly to Proposition 5.2.75.2.7. This asymmetric combinatorial recursion is stated
and proved below.

Proposition 5.3.1. For 2g − 2 + n ≥ 2 and b1, b2, . . . , bn ≥ 0, we have the following equation,
where S = {2, 3, . . . , n} and bI = (bi1 , bi2 , . . . , bik) for I = {i1, i2, . . . , ik}.

2b1Ng,n(b1, bS)

=
n∑
j=2

[ ∑
p+q=b1+bj
q even

[p]q Ng,n−1(p,bS\{j}) + sgn(b1 − bj)
∑

p+q=|b1−bj |
q even

[p]q Ng,n−1(p,bS\{j})

]

+
∑

p+q+r=b1
r even

[p][q]r

[
Ng−1,n+1(p, q,bS) +

stable∑
g1+g2=g
ItJ=S

Ng1,|I|+1(p,bI)Ng2,|J |+1(q,bJ)

]
(5.11)

Proof. We use the notation and ideas of the previous work of Norbury [8181]. First, we notice that

Sm(k) :=
∑
p+q=k
q even

[p]2m+1q (5.12)

is an odd polynomial in k of degree 2m+ 3, which follows directly from Lemma 1 of [8181].

The recursion of Theorem 2.2.122.2.12 can be used to produce the numbers Ng,n(b1, . . . , bn) from the
base cases N0,3(b1, b2, b3) and N1,1(b1). Suppose that the recursion of Proposition 5.3.15.3.1 produces

the numbers N
′
g,n(b1, . . . , bn) from the base cases. If we then show that N

′
g,n(b1, . . . , bn) also

satisfy the recursion of Theorem 2.2.122.2.12, then we are done.

Using equation (5.115.11), we calculate biN
′
g,n(b1, . . . , bn) for i = 1, 2, . . . , n and then add them
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together to obtain the following equation.

( n∑
i=1

bi

)
N
′
g,n(b1, b2, . . . , bn) =

1

2

∑
i 6=j

[ ∑
p+q=b1+bj
q even

[p]qN
′
g,n−1(p, b1, . . . b̂i, . . . , b̂j , . . . , bn)

+ sgn(bi − bj)
∑

p+q=|b1−bj |
q even

[p]qN
′
g,n−1(p, b1, . . . , bi, . . . , b̂j , . . . , bn)

]

+
1

2

∑
p+q+r=b1
r even

[p][q]r

[
N ′g−1,n+1

(
p, q, b2, . . . , bn

)
+

stable∑
g1+g2=g
ItJ=S

N
′
g1,|I|+1

(
p, bI

)
Ng2,|J |+1

(
q, bJ

)]

Now the contribution from the second line of this equation satisfies

1

2

∑
i<j

( ∑
p+q=b1+bj
q even

+sgn(bi − bj)
∑

p+q=|b1−bj |
q even

)
[p]qN

′
g,n−1(p, b1, . . . , b̂i, . . . , bj . . . . , bn) = 0.

This is since Sm(k) is an odd polynomial, which implies that Sm(bi − bj) = −Sm(bj − bi).

Therefore, the numbers N
′
g,n(b1, . . . , bn) do indeed satisfy the recursion of Theorem 2.2.122.2.12, so we

have

N
′
g,n(b1, . . . , bn) = Ng,n(b1, . . . , bn),

and this completes the proof.

We conclude the section by remarking that the generating function form of the recursion of
Proposition 5.3.15.3.1 is essentially equivalent to the statement of Proposition 5.2.75.2.7.

5.4 Applications and remarks

String and dilaton equations

The correlation differentials produced by the topological recursion satisfy string and dilaton
equations [4747].

∑
α

Res
z=α

y(z)ωg,n+1(z, zS) = −
n∑
k=1

dzk
∂

∂zk

(
ωg,n(zS)

dx(zk)

)
(5.13)∑

α

Res
z=α

Φ(z)ωg,n+1(z, zS) = (2g − 2 + n)ωg,n(zS) (5.14)

Each left side is a summation over the zeroes α of dx, S denotes the set {1, 2, . . . , n}, and Φ(z)
is any function satisfying dΦ(z) = y(z) dx(z). Although these were originally proven in the
context of global topological recursion, we show below that they also hold for the spectral curve
of Theorem 5.1.25.1.2. In that case, we immediately obtain the relations of Corollary 5.1.35.1.3, which are
known due to the previous work of Do and Norbury [2929].

Proof of Corollary 5.1.35.1.3. First, we deal with the string equation. Consider the left side of equa-
tion (5.135.13) and use the fact that the sum of the residues at the poles of y(z)ωg,n+1(z, zS) is 0.
Multiplying ωg,n+1(z, zS) by y(z) = z removes the simple pole and introduces a pole at z =∞.
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So using Proposition 5.2.45.2.4, we have∑
α=±1

Res
z=α

y(z)ωg,n+1(z, zS)

= − Res
z=∞

z ωg,n+1(z, zS) = −Res
z=0

1

z
ωg,n+1(1

z , zS) = Res
z=0

1

z
ωg,n+1(z, zS)

=

∞∑
b1,b2,...,bn=0

Ng,n+1(1, zbS)

n∏
i=1

[bi]z
bi−1
i dzi.

Next, consider the kth summand of the right side of equation (5.135.13).

− dzk
∂

∂zk

(
ωg,n(zS)

dx(zk)

)
= dzk

∂

∂zk

(
1

dzk

z2
k

1− z2
k

∞∑
b1,b2,...,bn=0

Ng,n(zbS)

n∏
i=1

[bi]z
bi−1
i dzi

)

= dzk

∞∑
a=0

∞∑
m=1

∞∑
b1,...,̂bk,...,bn=0

Ng,n(a, zbS\{k}) [a](a+ 2m− 1)za+2m−2
i

∏
i∈S\{k}

[bi]z
bi−1
i dzi

Hence, extracting the coefficient of
∏n
i=1[bi] z

bi−1
i dzi from the two sides of equation (5.135.13) leads

to the first relation of Corollary 5.1.35.1.3.

Ng,n+1(1, b1, b2, . . . , bn) =
n∑
k=1

bk∑
a=0

[a]Ng,n(a, b1, . . . , b̂k, . . . , bn)

Next, we deal with the dilaton equation, in which case we take Φ(z) = 1
2z

2− log(z). Consider the
left side of equation (5.145.14) and use Lemma 5.2.55.2.5 to deal with the logarithmic term that arises.∑

α=±1

Res
z=α

Φ(z)ωg,n+1(z, zS) =
∑
α=±1

Res
z=α

1

2
z2ωg,n+1(z, zS)−

∑
α=±1

Res
z=α

log(z)ωg,n+1(z, zS)

= − Res
z=∞

1

2
z2ωg,n+1(z, zS)− Res

z=0
ωg,n+1(z, zS)

= Res
z=0

1

2z2
ωg,n+1(z, zS)− Res

z=0
ωg,n+1(z, zS)

=
∞∑

b1,b2,...,bn=0

[
Ng,n+1(2, zbS)−Ng,n+1(0, zbS)

] n∏
i=1

[bi]z
bi−1
i dzi

So extracting the coefficient of of
∏n
i=1 [bi]z

bi−1
i dzi from the two sides of equation (5.145.14) leads to

the second relation of Corollary 5.1.35.1.3.

Ng,n+1(2, b1, b2, . . . , bn)−Ng,n+1(0, b1, b2, . . . , bn) = (2g − 2 + n)Ng,n(b1, b2, . . . , bn)

Quantum curves

The notion of topological recursion is closely related to the notion of quantum curve [8383]. Briefly
speaking, one integrates the correlation differentials and stores them in the following so-called
wave function.

ψ(x, ~) = exp

 ∞∑
g=0

∞∑
n=1

~2g−2+n

n!

∫ x

a

∫ x

a
· · ·
∫ x

a
ωg,n(z1, z2, . . . , zn)
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Different choices of the base point a for integration may result in different quantum curves,
though the base point should in general be a pole of x(z).

The wave function satisfies differential equations of the form

P̂ (x̂, ŷ)ψ(x, ~) = 0,

where x̂ = x, ŷ = −~ ∂
∂x and P̂ is a non-commutative polynomial. It has been empirically observed

and proved in a variety of contexts that there is natural choice of P̂ (x̂, ŷ) whose semi-classical
limit P (x, y) = 0 recovers the underlying spectral curve for the topological recursion. Of course,
this phenomenon most naturally applies to the case of global spectral curves. As an example,
it is known that the enumeration of lattice points in Mg,n is governed by the global rational
spectral curve x(z) = z + 1

z and y(z) = z and that the corresponding quantum curve is given by

the following operator P̂ (x̂, ŷ) = ŷ2 − x̂ŷ + 1 [3535].

It would be interesting to construct a natural wave function for the topological recursion
of Theorem 5.1.25.1.2 and to find a quantum curve operator that annihilates it. Although the spectral
curve is not global in the usual sense, it has the same underlying algebraic curve as for the
enumeration of lattice points inMg,n. Thus, one might expect a different quantum curve operator
to the one above, which still recovers y2− xy+ 1 = 0 in the semi-classical limit. Examples of this
nature may help to shed further light on the still mysterious phenomenon of quantum curves.

Where did the spectral curve come from?

It is natural to ask where the spectral curve of Theorem 5.1.25.1.2 came from. In particular, it would
be useful to be able to identify other problems that are governed by local topological recursion,
perhaps with a modified ω0,2 as in the case here. Typically, one can speculate the form of a
global spectral curve attached to an enumerative problem from the case (g, n) = (0, 1), given
that ω0,1(z1) = −y(z1) dx(z1). The enumeration of lattice points in Mg,n for (g, n) = (0, 1) and
(0, 2) matches the enumeration of lattice points in Mg,n, which indicates using the same x(z)
and y(z) in the spectral curve data.22

The spectral curve of Theorem 5.1.25.1.2 arises from a modification to ω0,2 for the enumeration of
lattice points inMg,n. One moves to the compactified version of the count by allowing nodes and
there is a sense in which nodes correspond to (0, 2) information. For example, the stabilisation
of a nodal curve contracts (0, 2) components — that is, components with genus zero and two
nodal points — to nodes. Alternatively, consider the graphical interpretation of topological
recursion, which expresses each correlation differential ωg,n as a weighted sum over decorated
graphs [4343, 4747]. For each such graph, the vertices are weighted by intersection numbers on Mg,n

and the edges by so-called jumps, which are essentially the coefficients of ω0,2. These decorated
graphs bear a close relation to the graphs arising from the stratification of Mg,n, so that edges
correspond to nodes. So again, we see that ω0,2 controls nodal behaviour and it should come as
less of a surprise that the enumeration of lattice points in Mg,n requires a modification to ω0,2.
That the extra contribution to ω0,2 is of the form dz1 dz2

z1z2
corresponds to the fact that we should

take N0,2(0, 0) = 1.

It would be interesting to take standard enumerative problems governed by global topological
recursion — such as the psi-class intersection numbers on Mg,n, simple Hurwitz numbers and

2This statement is somewhat subtle, since the natural definitions would lead to N0,1(b) = 0 for b > 0. Instead,
consider the enumeration of lattice points in Mg,n and Mg,n as the enumeration of ordinary and stable fatgraphs,
in which all vertices have degree at least two. One can pass to the analogous problems in which this degree
condition is relaxed using the pruning correspondence [3030]. The resulting problems are stored in the same
correlation differentials, but as coefficients in the expansion at x = ∞, rather than at z = 0. It is the alignment of
these problems for (g, n) = (0, 1) and (0, 2) that suggests using the same x(z) and y(z) in the spectral curve data.
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the Gromov–Witten theory of CP1 — and consider the effect of a modification to ω0,2 on the
associated correlation differentials.

Data and positivity conjecture

Theorem 2.2.122.2.12 asserts that Ng,n(b1, b2, . . . , bn) is a symmetric quasi-polynomial that is non-
zero only when b1 + b2 + · · · + bn is even. Hence, Ng,n(b1, b2, . . . , bn) can be described by the

underlying polynomials N
(k)
g,n(b1, b2, . . . , bn) that determine it in the case b1, b2, . . . , bk are odd

and bk+1, bk+2, . . . , bn are even, where we may restrict to k even. The following table is replicated
from the literature [2929] and stores this information for some small values of g and n.

The data provides strong evidence towards the following conjecture, which also supports the
speculation that the coefficients of Ng,n store algebro-geometric content.

Conjecture 5.4.1. The polynomials underlying the quasi-polynomial Ng,n have positive coeffi-
cients.

g n k N
(k)
g,n(b1, b2, . . . , bn)

0 3 0 1

0 3 2 1

1 1 0 1
48(b21 + 20)

0 4 0 1
4(b21 + b22 + b23 + b24 + 8)

0 4 2 1
4(b21 + b22 + b23 + b24 + 2)

0 4 4 1
4(b21 + b22 + b23 + b24 + 8)

1 2 0 1
384(b41 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 192)

1 2 2 1
384(b41 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 84)

0 5 0 1
32

∑
b4i + 1

8

∑
b2i b

2
j + 7

8

∑
b2i + 7

0 5 2 1
32

∑
b4i + 1

8

∑
b2i b

2
j + 5

16(b21 + b22) + 1
8(b23 + b24 + b25) + 19

16

0 5 4 1
32

∑
b4i + 1

8

∑
b2i b

2
j + 5

16(b21 + b22 + b23 + b24) + 7
8b

2
5 + 7

8

1 3 0 1
4608

∑
b6i + 1

768

∑
b4i b

2
j + 1

384b
2
1b

2
2b

2
3 + 13

1152

∑
b4i + 1

24

∑
b2i b

2
j + 29

144

∑
b2i + 17

12

1 3 2 1
4608

∑
b6i + 1

768

∑
b4i b

2
j + 1

384b
2
1b

2
2b

2
3 + 43

4608

∑
b4i + 1

24

∑
b2i b

2
j + 277

4608

∑
b2i + 1

512b
4
3 +

1
1536b

2
3 + 81

256

2 1 0 1
1769472b

8
1 + 3

40960b
6
1 + 133

61440b
4
1 + 1087

34560b
2
1 + 247

1440

0 6 0 1
384

∑
b6i + 3

28

∑
b4i b

2
j + 3

32

∑
b2i b

2
jb

2
k + 1

6

∑
b4i + 9

6

∑
b2i b

2
j + 109

24 b
2
i + 34



Chapter 6

Towards the topological recursion for
Gromov–Witten invariants of CP1

Gromov–Witten theory deals with the enumeration of maps from complex algebraic curves into
a complex variety. This theory was motivated by theoretical physics, acting as a mathematical
interpretation for certain models of string theory. In the case that the target variety is a
non-singular curve, Okounkov and Pandharipande relate Gromov–Witten invariants to classical
Hurwitz numbers, giving an explicit way to compute them. In this chapter, we introduce a
conjecture that states that certain relative Gromov–Witten invariants of CP1 are governed by
the topological recursion. This conjecture can be seen as a vast generalisation of the Bouchard–
Mariño conjecture relating simple Hurwitz numbers with topological recursion. After stating the
conjecture and its motivation, we discuss the Gromov–Witten/Hurwitz correspondence, which is
then used to deduce a quantum curve for the enumerative problem under consideration. This
can be considered strong evidence towards the conjecture.

6.1 Conjecture

The main goal of this chapter is to state and give evidence towards a new conjecture — Conjec-
ture 6.1.26.1.2 — which asserts that certain relative Gromov–Witten invariants of CP1 are governed by
topological recursion. The main inspiration behind this conjecture is the ongoing series of results
concerning simple Hurwitz numbers and their generalisations. The study of Hurwitz numbers
dates back to the nineteenth century, yet their remarkably rich structure only became apparent
towards the end of the twentieth century. Goulden, Jackson and Vainshtein observed certain
polynomiality structure underlying simple Hurwitz numbers and brought attention back to their
study [5757]. Loosely speaking, simple Hurwitz numbers enumerated branched covers of CP1 with
prescribed ramification over ∞ ∈ CP1 and simple branching elsewhere. This polynomiality of
simple Hurwitz numbers was later proved by Ekedahl, Lando, Shapiro and Vainshtein, who
showed that simple Hurwitz numbers are equal to Hodge integrals over the Deligne–Mumford
compactification of the moduli space of curves [4444]. Their so-called ELSV formula not only
makes the polynomial structure of Hurwitz numbers apparent, but also connects them to the
realms of enumerative geometry and mathematical physics. More recently, work motivated by
topological string theory led Bouchard and Mariño to conjecture that simple Hurwitz numbers
are governed by topological recursion [1919]. This was subsequently proved by Eynard, Mulase and
Safnuk [5050] and it has furthermore been demonstrated that the ELSV formula and the Bouchard
Mariño conjecture are in some sense equivalent [4040].

Simple Hurwitz numbers have been generalised in a variety of ways, and we consider two of

95
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them here. One generalisation is to consider branched covers whose ramification over 0 has
profile (a, a, . . . , a) and the resulting counts are known as orbifold Hurwitz numbers. These
are essentially Gromov–Witten invariants relative to the partition (a, a, . . . , a) over 0. Orbifold
Hurwitz numbers are known to satisfy an ELSV-type formula [6565] and topological recursion [1818, 3434].
Another generalisation is to consider branched covers, where the simple branching is changed
to order r branching using completed (r + 1)-cycles and the resulting counts are known as spin
Hurwitz numbers. These are essentially Gromov–Witten invariants with τr insertions rather
than τ1 insertions. Spin Hurwitz numbers are also known to satisfy an ELSV-type formula
and topological recursion, both of which were recently proved as the culmination of a series of
papers [4141].

Double Hurwitz numbers enumerate branched covers of the Riemann sphere with specified genus,
prescribed ramification over both zero and infinity, and simple branching elsewhere. They possess
a piecewise polynomial structure and are conjectured to relate to intersection theory on moduli
spaces [5858]. Do and Karev package double Hurwitz numbers in a particular way, recording the
branching over 0 via certain monomial weights [3333]. They conjectured that they too satisfied
topological recursion, a conjecture that was recently proved by Borot, Do, Karev, Lewański
and Moskovsky [1414]. Our Conjecture 6.1.26.1.2 takes this idea and applies it also to the insertions,
allowing them to be of arbitrary order and storing them in a separate system of weights. So we
are interested in Gromov–Witten invariants of CP1 of the form

〈 ν | τλ1(ω)τλ2(ω) · · · τλm(ω) | µ 〉g,m,

where µ and ν are arbitrary partitions of the same size and λ1, λ2, . . . , λm are arbitrary positive
integers such that the degree condition

∑
λi = 2g− 2 + `(µ) + `(ν) is satisfied. We package these

Gromov–Witten invariants in the following way.

Definition 6.1.1. For q1, q2, . . ., w1, w2, . . . complex parameters and µ1, µ2, . . . , µn positive
integers with sum d, we define

GWg,n(µ1, . . . , µn) = |Aut(µ)|
∑
ν`d

λ`2g−2+n+`(ν)

〈 ν | τλ1(ω)τλ2(ω) · · · τλm(ω) | µ 〉g,m
qν wλ
|Aut(λ)|

,

GW •g,n(µ1, . . . , µn) = |Aut(µ)|
∑
ν`d

λ`2g−2+n+`(ν)

〈 ν | τλ1(ω)τλ2(ω) · · · τλm(ω) | µ 〉•g,m
qν wλ
|Aut(λ)|

.

Here, qν = qν1qν2 · · · qν`(ν)
and wλ = wλ1wλ2 · · ·wλ`(λ)

.

Observe that GWg,n(µ1, . . . , µn) and GW •g,n(µ1, . . . , µn) are both polynomials in q1, q2, . . . and
w1, w2, . . .. In the following, we assume that qd+1 = qd+2 = · · · = 0 and wk+1 = wk+2 = · · · = 0
in order to guarantee that they both in fact belong to Q[q1, q2, . . . qd;w1, w2, . . . , wk].

Conjecture 6.1.2. Let Q(z) = q1z + q2z
2 + · · ·+ qdz

d and W (z) = w1z +w2z
2 + · · ·+wkz

k be
complex polynomials. The correlation differentials obtained by topological recursion applied to the
spectral curve(

CP1, x(z) = −W (Q(z)) + log(z), y(z) = Q(z), ω0,2 =
dz1 dz2

(z1 − z2)2

)
satisfy, for (g, n) 6= (0, 2),

ωg,n(z1, . . . , zn) = d1 · · · dn
∞∑

µ1,...,µn=1

GWg,n(µ1, . . . , µn) eµ1x(z1) · · · eµnx(zn).
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To obtain an unparametrised description of the spectral curve, observe that

ex = ze−W (y) ⇒ z = ex+W (y) ⇒ y = Q(ex+W (y)). (6.1)

For basic evidence that supports Conjecture 6.1.26.1.2, we show the existence of a quantum curve
in Theorem 6.3.26.3.2. One can also calculate rather explicitly with the topological recursion in
low genus and verify that the series expansions of the correlation differentials store relative
Gromov–Witten invariants of CP1. For example, using

ω0,1(z) = y(z) dx(z) = d
∞∑
µ=1

GW0,1(µ) eµx(z) =
∞∑
µ=1

µGW0,1(µ) eµx(z) dx(z)

one can then extract coefficients by taking appropriate residues, which leads to the following
data. The coefficients appearing here are all relative Gromov–Witten invariants of CP1 and can
be calculated using the Gromov–Witten/Hurwitz correspondence. The numbers match, which
provides evidence towards Conjecture 6.1.26.1.2.

GW0,1(1) = q1

GW0,1(2) = 1
2q2 + 1

2w1q
2
1

GW0,1(3) = 1
3q3 + w1q2q1 + (1

2w
2
1 + 1

3w2)q3
1

GW0,1(4) = 1
4q4 + w1q3q1 + 1

2w1q
2
2 + (w2 + 2w2

1)q2q
2
1 + (1

4w3 + w2w1 + 2
3w

3
1)q1

4

GW0,1(5) = 1
5q5 + w1q4q1 + w1q3q2 + (w2 + 5

2w
2
1)q3q

2
1 + (w2 + 5

2w
2
1)q2

2q1

+ (w3 + 5w2w1 + 25
6 w

3
1)q2q

3
1 + (1

5w4 + w3w1 + 1
2w

2
2 + 5

2w2w
2
1 + 5

4w
4
1)q5

1

GW0,1(6) = 1
6q6 + w1q5q1 + w1q4q2 + (w2 + 3w2

1)q4q
2
1 + 1

2w1q
2
3 + (2w2 + 6w2

1)q3q2q1

+ (w3 + 6w2w1 + 6w3
1)q3q

3
1 + (1

3w2 + w2
1)q3

2 + (3
2w3 + 9w2w1 + 9w3

1)q2
2q

2
1

+ (w4 + 6w3w1 + 3w2
2 + 18w2w

2
1 + 9w4

1)q2q
4
1

+ (1
6w5 + w4w1 + w3w2 + 3w3w

2
1 + 3w2

2w1 + 6w2w
3
1 + 9

5w
5
1)q6

1

The following table gives a summary of the various types of Hurwitz numbers along with the
corresponding spectral curves. The shaded entries refer to known results in which the spectral
curve does indeed govern the enumeration, while the unshaded entries are conjectural. Each entry
in the table is a generalisation of those entries above or to the left of it. The original Bouchard–
Mariño conjecture lies in the top-left entry while Conjecture 6.1.26.1.2 lies in the bottom-right
entry.

It is worth mentioning the conjecture of Norbury and Scott, which states that stationary Gromov–
Witten invariants of CP1 are governed by topological recursion [8686]. This was later proved by
Dunin-Barkowski, Orantin, Shadrin and Spitz in their work relating topological recursion to
cohomological field theories [4343]. The result states that the correlation differentials obtained by
topological recursion applied to the spectral curve(

CP1, x(z) = z +
1

z
, y(z) = log(z), ω0,2 =

dz1 dz2

(z1 − z2)2

)
satisfy, for (g, n) 6= (0, 2),

ωg,n(z1, . . . , zn) = d1 · · · dn
∞∑

µ1,...,µn=1

〈τµ1−1(ω) · · · τµn−1(ω)〉g,n
(µ1 − 1)!

x(z1)µ1
· · · (µn − 1)!

x(zn)µn
.

The Gromov–Witten invariants appearing here are simply the stationary Gromov–Witten invari-
ants of CP1, all of which arise in Conjecture 6.1.26.1.2. However, our conjecture does not appear to
be a direct generalisation of the Norbury–Scott conjecture.
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unramified over 0 (a, a, . . . , a) over 0 any ramification over 0
si

m
p

le
r-

sp
in

in
se

rt
io

n
s

simple
x(z) = z exp(−z)

y(z) = z

orbifold
x(z) = z exp(−za)

y(z) = za

double
x(z) = z exp(−Q(z))

y(z) = Q(z)

spin
x(z) = z exp(−zr)

y(z) = z

spin orbifold
x(z) = z exp(−zar)

y(z) = za

spin double
x(z) = z exp(−Q(z)r)

y(z) = Q(z)

every spin
x(z) = z exp(−W (z))

y(z) = z

every spin orbifold
x(z) = z exp(−W (za))

y(z) = za

every spin double
x(z) = z exp(−W (Q(z)))

y(z) = Q(z)

6.2 Gromov–Witten/Hurwitz correspondence

Hurwitz theory

The work in this chapter relies crucially on the Gromov–Witten/Hurwitz correspondence of
Okounkov and Pandharipande [8787]. We begin by discussing general Hurwitz theory, which counts
branched covers over a curve X with specified ramification. Let d be a positive integer and
let η1, . . . , ηm be partitions of d, which we assign to m fixed points q1, . . . , qm ∈ X. A genus g
Hurwitz cover of X of degree d, with monodromy ηi at qi, is a morphism f : C → X satisfying

C is a smooth genus g curve;

f has ramification profile ηi over qi; and

f is unramified over X \ {q1, . . . , qm}.

Hurwitz covers exist for connected or disconnected domains, as discussed in Section 1.11.1. Two
covers f : C → X and f ′ : C ′ → X are equivalent if there exists an isomorphism of curves
φ : C → C ′ satisfying f ′ ◦φ = f . Up to equivalence, there are only finitely many genus g Hurwitz
covers of X of degree d, with monodromy ηi at qi. Each such cover f has a finite group of
automorphism, which we denote by Aut(f). The Hurwitz number

HX
d (η1, . . . , ηm)

is defined to be the weighted count of possibly disconnected Hurwitz covers of degree d, with
monodromy ηi at qi. The weight of such a cover is defined to by 1

|Aut(f)| . Observe that the genus
of such a map is recovered by the Riemann–Hurwitz formula from the other data.

The above definition of Hurwitz number HX
d (η1, . . . , ηm) can be seen as a function on tuples of

partitions of d. We extend the definition of HX
d (η1, . . . , ηm) to arbitrary tuples of partitions with

the following rules.

We set HX
d (∅, . . . , ∅) = 1, where ∅ denotes the empty partition.

If |ηi| > d for some i, then the Hurwitz number vanishes.

If |ηi| ≤ d for all i, then we set

HX
d (η1, . . . , ηm) =

m∏
i=1

(
m1(ηi)

m1(ηi)

)
HX
d (η1, . . . ,ηm), (6.2)
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where mi(η) denotes the multiplicity of the part i and η is the partition of size d obtained
from η by adding d− |η| parts of size 1.

In Section 1.21.2, we discussed the simple Hurwitz numbers over CP1 and its relation to monodromy
representations and the character theory of symmetric groups. In particular, we defined the
function f2(λ) in Proposition 1.2.31.2.3 and we can extend this idea to handle the more general
Hurwitz numbers defined above. First, we state the monodromy representation interpretation of
Hurwitz numbers over CP1.

Proposition 6.2.1. The number HCP1

d (η1, η2 . . . , ηm) is 1
d! multiplied by the number of tuples

(ρ1, ρ2, . . . , ρm) of permutations in Sd such that

ρi has cycle type ηi; and

the product ρ1 ◦ ρ2 ◦ · · · ◦ ρm is the identity.

For λ a partition of d and η an arbitrary partition, let us define

fη(λ) =

(
|λ|
|η|

)
|Cη|

χλη
dim(λ)

. (6.3)

Note that for |η| > |λ|, the binomial coefficient in equation (6.36.3) vanishes. In the case η = ∅, we
interpret the formula as f∅(λ) = 1.

As in Section 1.21.2, we have a character formula as follows.

HCP1

d (η1, . . . , ηm) =
∑
|λ|=d

dim(λ)2

d!

m∏
i=1

fηi(λ) (6.4)

In fact, this can be extended to a target curve X of any genus, although we won’t be concerned
about such targets. The interested reader can see the discussion in the original paper of Okounkov
and Pandharipande [8787].

Shifted symmetric functions and completed cycles

The Gromov–Witten/Hurwitz correspondence passes through the algebra of shifted symmetric
functions in order to define the notion of completed cycles. We begin by recalling the definition
of Λ, the algebra of symmetric functions. Let Λ(n) denote the algebra of symmetric polynomials
in x1, x2, . . . , xn. The specialisation xn+1 = 0 is a morphism of graded algebras

Λ(n+ 1)→ Λ(n), (6.5)

and we define Λ to be the projective limit as follows.

Definition 6.2.2. Let

Λ := lim←−
n→∞

Λ(n),

taken in the category of graded algebras with respect to the morphisms of equation (6.56.5). An
element f ∈ Λ is by definition a sequence f1, f2, f3, . . . such that

fn ∈ Λ(n) for n = 1, 2, 3, . . .,

fn+1(x1, . . . , xn, 0) = fn(x1, . . . , xn), and

supn deg fn <∞.
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Now let us denote by Λ∗(n) the algebra of polynomials in x1, x2, . . . , xn that become symmetric
in the new variables

x′i = xi − i+ c, for i = 1, 2, . . . , n.

Here, c is an arbitrary fixed number and the definition does not depend on its choice. We call
such polynomials shifted symmetric. The algebra Λ∗(n) is filtered by polynomial degree and the
specialisation xn+1 = 0 is a morphism of filtered algebras

Λ∗(n+ 1)→ Λ∗(n). (6.6)

Definition 6.2.3. Let

Λ∗ := lim←−
n→∞

Λ∗(n),

taken in the category of filtered algebras with respect to the morphisms of equation (6.36.3). We
call Λ∗ the algebra of shifted symmetric functions.

The algebra Λ∗ is filtered by degree and the associated graded algebra gr Λ∗ is canonically
isomorphic to the Λ, the usual algebra of symmetric functions.

Define

pk(λ) =
∞∑
i=1

[(
λi − i+ 1

2

)k − (− i+ 1
2

)k]
+ (1− 2−k)ζ(−k), (6.7)

where (1 − 2−k)ζ(−k) is a regularisation term. Then pk is shifted symmetric and we refer to
it as the power-sum shifted symmetric function. The canonical isomorphism between Λ∗ and Λ
sends pk to the power-sum symmetric function pk. As the power-sum symmetric functions are
free commutative generators of Λ, we conclude that

Λ∗ = Q[p1,p2, . . .].

Due to a deep result of Kerov and Olshanki [6868], the functions fµ define earlier are shifted
symmetric and form a vector space basis for the algebra of shifted symmetric functions. We
define a map from

φ :
∞⊕
d=0

Z(C[Sd])→ Λ∗

By a theorem of Kerov and Vershik [101101], the highest degree term of fµ can be identified with
pµ∏
µi

, where pµ :=
∏

pµi . Following [8787], we can define the completed conjugacy classes by

Cµ =
1∏
µi
φ−1(pµ) ∈

|µ|⊕
d=0

Z(C[Sd]).

As the basis pµ is multiplicative, a special role is played by the classes

(k) := C(k), k = 1, 2, . . . ,

which are called completed cycles in [8787].

Consider the series expansions

S(z) =
sinh(z/2)

z/2
=
∞∑
k=0

z2k

22k(2k + 1)!
and

1

S(z)
=
∞∑
k=0

ckz
k,
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the latter of which defines the coefficients c0, c1, c2, . . .. The generating function for pk is given
by

exp(λ, z) =

∞∑
i=0

ez(λi−i+
1
2

) =

∞∑
k=0

pk(λ) zk.

that pk(λ) appear as the coefficient of zk in the series expansion of the meromorphic function
exp(λ, z) at z = 0.

The completed cycle can be expressed in terms of conjugacy classes via

(k) =
∑
µ

ρk,µCµ,

where ρk,∅ = (k − 1)!ck+1 and for µ 6= ∅,

ρk,µ = (k − 1)!

∏
µi
|µ|!

[zk+1−|µ|−`(µ)]S(z)|µ|−1
∏
S(µiz).

Gromov–Witten/Hurwitz correspondence

In the work of Eskin and Okounkov on asymptotics of the enumeration of certain branched covers
of the torus [4545], it was understood that shifted symmetric functions play a role in accounting
for degenerations of Hurwitz covers. In particular, this connection uses the interplay between
two natural bases for Λ∗, the space of shifted symmetric functions Λ∗, given by {fµ} and {pµ}.
equation (6.46.4) gives a formula for classical Hurwitz numbers over CP1 in terms of the shifted
symmetric functions fµ. Replacing them with pµ then produces a formula for Gromov–Witten
invariants of CP1 that we state explicitly below. The Gromov–Witten/Hurwitz correspondence
explicitly describes this relationship and furthermore, explains the geometric meaning of the
completed cycles as as contributions from the boundary of the moduli space of stable maps.

Proposition 1.1 of the paper of Okounkov and Pandharipande [8787] explains that( n∏
i=1

ki!ψ
ki
i ev∗i (ω)

)
∩ [Mg,n(X, d)]

is represented by the locus of covers enumerated by HX
d ((k1 + 1), . . . , (kn + 1)). This result

shows a connection between descendent classes on open moduli space of stable maps and the
enumeration of classical Hurwitz covers. One then expects a geometric formuala

〈τk1(ω), · · · τknω)〉Xd =
HX
d ((k1 + 1), . . . , (kn + 1))∏

ki!
+ ∆,

where ∆ denotes the correction terms coming from the boundary

Mg,n(X, d) \Mg,n(X, d).

To understand the Gromov–Witten invariants arising in this manner, it is necessary to consider
the richer context of relative Gromov–Witten theory. We thus consider the moduli space of stable
maps, relative to η1, . . . , ηm, which are partitions of some positive integer d. It is denoted by

Mg,n(X, η1, . . . , ηm)

and parametrises stable maps f : C → X from a genus g curve with n marked points, with
ramification profile ηi over the fixed point qi ∈ X for i = 1, 2, . . . ,m. Note that we drop the class
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d from the notation, since we can recover it from the partitions η1, . . . , ηm. The Gromov–Witten
invariants that we are interested in are the integrals of descendents of ω ∈ H2(X;Q), the Poincaré
dual of the point class, relative to points q1, . . . , qm ∈ X.〈 n∏

i=1

τbi(ω) | η1, . . . , ηm

〉X
g,n

=

∫
[Mg,n(X,η1,...,ηm)]vir

n∏
i=1

ψkii ev∗i (ω), (6.8)

The Gromov–Witten/Hurwitz correspondence may then be stated as follows.

Theorem 6.2.4 (Gromov–Witten/Hurwitz correspondence [8787]). The disconnected stationary
Gromov–Witten invariants of a non-singular target curve X relative to m points are given by the
following formula.〈 n∏

i=1

τbi(ω) | η1, . . . , ηm

〉•X
g,n

=
1∏
ki!
HX
d

(
(k1 + 1), . . . , (kn + 1), η1, . . . , ηm

)
One is required to interpret the right side by linearity, after expressing the completed cycles as
linear combinations of conjugacy classes.

We will be particularly interested in the Gromov–Witten theory of CP1 relative to two points.
Let µ, ν be partitions of d, prescribing the ramification profiles over 0,∞ ∈ CP1. In the following,
we will use the notations

〈µ | τk1(ω) · · · τkn(ω) | ν〉g,n and 〈µ | τk1(ω) · · · τkn(ω) | ν〉•g,n (6.9)

for the connected and disconnected relative Gromov–Witten invariants of CP1, respectively.

6.3 A quantum curve for the relative Gromov–Witten invariants
of CP1

Infinite wedge space and character formula for the partition function

Before deriving the quantum curve for the enumerative problem GWg,n(µ1, . . . , µn), we write
the associated partition function in a form that is easier to work with, based on the Gromov–
Witten/Hurwitz correspondence and the character theory of symmetric groups. The primary
tool for this is the infinite wedge space.

As usual, we define the partition function for the enumerative problem GWg,n(µ1, . . . , µn) defined
earlier in the following way.

Z(p1, p2, . . . ; ~) = exp

[ ∞∑
g=0

∞∑
n=1

∞∑
µ1,...,µn=1

GWg,n(µ1, . . . , µn)
~2g−2+n

n!
pµ1 · · · pµn

]

= 1 +

∞∑
g=−∞

∞∑
n=1

∞∑
µ1,...,µn=1

GW •g,n(µ1, . . . , µn)
~2g−2+n

n!
pµ1 · · · pµn

The partition function can be expressed naturally in terms of a vacuum expectation on the infinite
wedge space. Some of the notation for the infinite wedge space was introduced in Section 1.51.5
and we refer the reader to the literature for further details [8787, 9696]. The following result requires
the operator on the infinite wedge space defined by

Fr+1 =
∑

k∈Z+ 1
2

kr+1

(r + 1)!
: ψkψ

∗
k : .
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Proposition 6.3.1.

Z(p1, p2, . . . ; ~) =

〈
exp

( ∞∑
m=1

qmαm
m~

)
exp

( ∞∑
r=1

wr~rFr+1

)
exp

( ∞∑
m=1

pmα−m
m

)〉

Proof. For integers g and n and a partition µ, the coefficient of pµ~2g−2+n of the partition
function is

[pµ~2g−2+n]Z(p1, p2, . . . ; ~) =
GW •g,n(µ1, µ2, . . . , µn)

|Aut(µ)|
.

We now proceed to calculate the coefficient of pµ~2g−2+n in the vacuum expectation above
and verify that it is indeed equal to this expression. The rightmost operator in the vacuum
expectation can be rewritten as follows, where µ represents the partition (1k1 , 2k2 , 3k3 , . . .) of
some non-negative integer d.

exp

( ∞∑
m=1

pmα−m
m

)
=
∞∏
m=1

exp

(
pmα−m
m

)
=
∞∏
m=1

( ∞∑
k=0

pkmα
k
−m

mk k!

)

=
∑

k1,k2,...

pk1
1 p

k2
2 p

k3
3 · · ·α

k1
−1α

k2
−2α

k3
−3 · · ·

1k12k23k3 · · · k1!k2!k3! · · ·

=
∑
µ

pµ
∏
α−µi

|Aut(µ)|
∏
µi

Using the same process, we can rewrite the other two operators in the vacuum expectation as
sums over partitions as well.

exp

( ∞∑
r=1

wr~rFr+1

)
=
∑
λ

wλ~|λ|
∏
Fλi+1

|Aut(λ)|

exp

( ∞∑
m=1

qmαm
m~

)
=
∑
ν

qν
∏
ανi

|Aut(ν)| ~`(ν)
∏
νi

Therefore, we have〈
exp

( ∞∑
m=1

qmαm
m~

)
exp

( ∞∑
r=1

wr~rFr+1

)
exp

( ∞∑
m=1

pmα−m
m

)〉
=

〈∑
ν

qν
∏
ανi

|Aut(ν)| ~`(ν)
∏
νi

∑
λ

wλ~|λ|
∏
Fλi+1

|Aut(λ)|
∑
µ

pµ
∏
α−µi

|Aut(µ)|
∏
µi

〉

=
∑
ν,λ,µ

qνwλpµ~|λ|−`(|ν)

|Aut(ν)| |Aut(λ)| |Aut(µ)|
∏
νi
∏
µi

〈∏
ανi
∏
Fλi+1

∏
α−µi

〉
.

Consider now the vacuum expectation in this last expression and apply first the rightmost
operator to the vacuum vector and the leftmost operator to the covacuum vector. By the
Murnaghan–Nakayama rule [9292], we have〈∏

ανi
∏
Fλi+1

∏
α−µiv∅

〉
=

∑
|σ|=|ρ|=|µ|

χσνχ
ρ
µ

〈
σ

∣∣∣∣ ∏Fλi+1

∣∣∣∣ ρ〉.
Next, we use the fact that

Fr+1vλ =
pr+1(λ)

(r + 1)!
vλ,
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where pr+1 denotes the power-sum shifted symmetric function. In particular, Fr+1 acts diagonally
and the vacuum expectation reduces to

〈∏
ανi
∏
Fλi+1

∏
α−µiv∅

〉
=
∑
|ρ|=|µ|

χρνχ
ρ
µ

∏ pλi+1(ρ)

(λi + 1)!
=

d!2

|Cµ| |Cν |
〈ν | τλ1(ω) · · · τλ`(λ)

(ω) | µ〉•.

The second equality here is precisely the Gromov–Witten/Hurwitz correspondence.

So extracting the coefficient of pµ~2g−2+n in the entire vacuum expectation gives us the following.

[pµ~2g−2+n]
∑
ν,λ,µ

qνwλpµ~|λ|−`(|ν)

|Aut(ν)| |Aut(λ)| |Aut(µ)|
∏
νi
∏
µi

d!2

|Cµ| |Cν |
〈ν | τλ1(ω) · · · τλ`(λ)

(ω) | µ〉•

=
1

|Aut(µ)|
∏
µi

d!2

|Cµ| |Cν |
∑
ν`d

λ`2g−2+n+`(ν)

qνwλ

|Aut(ν)| |Aut(λ)|
∏
νi
〈ν | τλ1(ω) · · · τλ`(λ)

(ω) | µ〉•

=
∑
ν`d

λ`2g−2+n+`(ν)

qνwλ

|Aut(λ)|
〈ν | τλ1(ω) · · · τλ`(λ)

(ω) | µ〉•

=
GW •g,n(µ1, . . . , µn)

|Aut(µ)|

This concludes the proof.

Quantum curve

We are now in a position to derive the quantum curve underlying the Gromov–Witten invariants
GWg,n(µ1, . . . , µn). As we did earlier, assume that we only have non-zero parmaters q1, q2, . . . , qd
and w1, w2, . . . , wk.

Theorem 6.3.2. Let x̂ = x and ŷ = ~x ∂
∂x . The wave function ψ(x, ~) = Z(p1, p2, . . . ; ~)|pi=xi

satisfies the quantum curve equation[
ŷ − (q1x̂A1 + q2x̂

2A2 + · · ·+ qdx̂
dAd)

]
ψ(x, ~) = 0,

where

Am := x
1
2 exp

(
m

k∑
r=1

wr
r + 1

r∑
i=0

x̂−mŷix̂mŷr−i
)
x̂−

1
2 .

Proof. We first take the infinite wedge expression for the partition function of Proposition 6.3.16.3.1
and express it as a double Schur function expansion. This uses the fact that the outer operators
are vertex operators while the middle operator is diagonal. In particular, the outer operators are
examples of vertex operators and produce Schur functions on the vacuum and covacuum [8888].
Thus, we obtain

Z(p1, p2, . . . ; ~) =

〈
exp

( d∑
m=1

qmαm
m~

)
exp

( k∑
r=1

wr~rFr+1

)
exp

( ∞∑
m=1

pmα−m
m

)〉
=
∑
λ

sλ( q1~ ,
q2
~ , . . .)fλ(w1, w2, . . . ; ~)sλ(p1, p2, . . .).



6.3. Quantum curve 105

Here, sλ denotes the Schur function expressed in terms of the power-sum symmetric functions
and fλ(w1, w2, . . . ; ~) denotes the eigenvalue of the operator

exp

( k∑
r=1

wr~rFr+1

)

acting on the basis vector vλ of the infinite wedge space.

Perform the principal specialisation pi 7→ xi and use the result that

sλ(p1, p2, . . .)|pi=xi =

{
x`, if λ = (`),

0, otherwise.

This reduces the wave function ψ(x, ~) to the following sum over non-negative integers, rather
than a sum over partitions.

ψ(x, ~) = Z(p1, p2, . . . ; ~)
∣∣
pi=xi

=
∞∑
`=0

s(`)(
q1
~ ,

q2
~ , . . . ,

qd
~ )f(`)(w1, w2, . . . , wk; ~)x`

Furthermore, we have the following expression for the eigenvalue fλ(w1, w2, . . . ; ~) for the case
that λ = (`), since the operator Fr+1 acts diagonally with eigenvalue the shifted power-sum

symmetric function pr+1(λ)
r+1 acting on the basis vector vλ.

f(`)(w1, w2, . . . ; ~) = exp

( k∑
r=1

wr~r
(`− 1

2)r+1 − (−1
2)r+1

r + 1

)

So we obtain the following expression for the wave function.

ψ(x, ~) =
∞∑
`=0

s(`)(
q1
~ ,

q2
~ , . . . ,

qd
~ ) exp

( k∑
r=1

wr~r
(
`− 1

2

)r+1 −
(
− 1

2

)r+1

r + 1

)
x`

Now let us consider the action of the operator ŷ = ~x ∂
∂x on ψ(x, ~).

ŷψ(x, ~) =
∞∑
`=0

~`s(`)(
q1
~ ,

q2
~ , . . . ,

qd
~ ) exp

( k∑
r=1

wr~r
(
`− 1

2

)r+1 −
(
− 1

2

)r+1

r + 1

)
x`

=
∞∑
`=0

~
( d∑
m=1

qm
~ s(`−m)(

q1
~ ,

q2
~ , . . . ,

qd
~ )

)
exp

( k∑
r=1

wr~r
(
`− 1

2

)r+1 −
(
− 1

2

)r+1

r + 1

)
x`

=
d∑

m=1

∞∑
`=0

qms(`)(
q1
~ ,

q2
~ , . . . ,

qd
~ ) exp

( k∑
r=1

wr~r
(
`+m− 1

2

)r+1 −
(
− 1

2

)r+1

r + 1

)
x`+m

The second equality here uses a standard relation between the completely homogeneous symmetric
function s(`) and the power-sum symmetric functions.
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Consider now the action of the operator Am on a monomial x`.

Amx` = x
1
2 exp

(
m

k∑
r=1

wr
r + 1

r∑
i=0

x̂−mŷix̂mŷr−i
)
x̂−

1
2x`

= x
1
2 exp

(
m

k∑
r=1

wr
r + 1

r∑
i=0

x̂−mŷix̂mŷr−i
)
x`−

1
2

= x
1
2 exp

(
m

k∑
r=1

wr~r

r + 1

r∑
i=0

(`+m− 1
2)i(`− 1

2)r−i
)
x`−

1
2

= exp

( k∑
r=1

wr~r
(`+m− 1

2)r+1 − (`− 1
2)r+1

r + 1

)
x`

Now use this to calculate the action of the operator

(∑d
m=1 qmx̂

mAm
)

on the wave function as

follows.( d∑
m=1

qmx̂
mAm

)
ψ(x, ~)

=

( d∑
m=1

qmx̂
mAm

)( ∞∑
`=0

s(`)(
q1
~ ,

q2
~ , . . . ,

qd
~ ) exp

( k∑
r=1

wr~r
(
`− 1

2

)r+1 −
(
− 1

2

)r+1

r + 1

)
x`
)

=
d∑

m=1

∞∑
`=0

qms(`)(
q1
~ ,

q2
~ , . . . ,

qd
~ ) exp

( k∑
r=1

wr~r
(
`+m− 1

2

)r+1 −
(
− 1

2

)r+1

r + 1

)
x`+m

Since this matches the expression derived earlier for ŷψ(x, ~), this concludes the proof.



Chapter 7

Further results on monotone
Hurwitz numbers

In this final chapter of the thesis, we discuss some further results on monotone Hurwitz numbers.
The first section involves a derivation of the quantum Airy structure for monotone Hurwitz
numbers, starting from the result of Do, Dyer and Mathews that proves they are governed by
the usual topological recursion. We derive Virasoro constraints for monotone Hurwitz numbers,
which highlights the interplay between topological recursion and the Virasoro algebra. The second
section involves a certain identity involving weakly and strictly monotone Hurwitz numbers, which
was recently proved by Cunden, Dahlqvist and O’Connell in the context of random matrices. We
rederive their result using the holonomic tools introduced earlier in the thesis.

7.1 Kontsevich–Soibelman topological recursion for monotone
Hurwitz numbers

It was shown by Do, Dyer and Mathews [3232] that monotone Hurwitz numbers are governed by
the usual topological recursion, described in Section 3.23.2. In this case, the spectral curve is given
by

(
CP1, x(z) = z(1− z), y(z) =

1

z − 1
, ω0,2 =

dz1 dz2

(z1 − z2)2

)
. (7.1)

We need the following series expansion of ω0,2 at z = 0.

ω0,2(z, z2) =

(
1

z2
2

+ 2
z

z2
3

+ 3
z2

z2
4

+ 4
z3

z2
5

+ 5
z4

z2
6

+ 6
z5

z2
7

+ · · ·
)

dz dz2 (7.2)

The spectral curve has one ramification point at z = 1
2 , so we send it to 0 for convenience,

using the coordinate change z 7→ z − 1
2 .Now using the notation of Section 9 from the paper [77],

we calculate the tensors A,B,C,D involved in Kontsevich–Soibelman topological recursion, as
carried out for the Airy and Bessel curves in Section 3.33.3.

107



108 Chapter 7. Monotone Hurwitz numbers

Ak1k2k3 = Res
z=0

ξ∗k1
(z) dξ∗k2

(z) dξ∗k3
(z) θ(z)

= Res
z=0

dz

z
z2k1+2k2+2k3+2 (−1

2 + 1
8z
−2) (7.3)

Bk1k2
k3

= Res
z=0

ξ∗k1
(z) dξ∗k2

(z) ξk3(z) θ(z)

= Res
z=0

dz

z

2k3 + 1

2k1 + 1
z2k1+2k2−2k3 (−1

2 + 1
8z
−2) (7.4)

Ck1
k2k3

= Res
z=0

ξ∗k1
(z) ξk2(z) ξk3(z) θ(z)

= Res
z=0

dz

z

(2k3 + 1)(2k2 + 1)

2k1 + 1
z2k1−2k2−2k3−2 (−1

2 + 1
8z
−2) (7.5)

Dk1 = −
δk1,0

16
+
δk1,1

192
(7.6)

The tensors A,B,C,D derived above allow us to write down the following operators for i =
0, 1, 2, . . ., which annihilate the partition function for monotone Hurwitz numbers.

Li = ~∂i −
∑
j≥0

1

8
δij,0xixj +

∑
j≥0

~
2

2i+ 2j + 1

2i+ 1
xi∂i+j −

∑
j≥0

~
8

2i+ 2j + 1

2i+ 1
xj∂i+j−1

+
∑
j≥0

~2

4

(2j + 1)(2i− 2j − 1)

2i+ 1
∂j∂i−j−1−

∑
j≥0

~2

8

(2j + 1)(2i− 2j − 3)

2i+ 1
∂i∂i−j−2+

~
16
δi,0−

~
192

δi,1

Next, we describe how these operators lead to Virasoro constraints under a suitable change of
basis. By this, we mean that there exist operators {Vi} that annihilate the partition function
defined equation (3.113.11) and satisfy the Virasoro commutation relation

[Vm, Vn] = (m− n)Vm+n.

In this section, we provide an example of the relation between Virasoro constraints and topological
recursion, but the techniques used apply more generally.

One can directly compute the commutator of two of the operators above to obtain

[Li, Lj ] =
1

4

(2i+ 2j − 1)(j − i)
(2j + 1)(2i+ 1)

Li+j−1 −
(2i+ 2j + 1)(j − i)

(2j + 1)(2i+ 1)
Li+j .

Under the obvious rescaling L̃i = (2i+ 1)Li, we obtain the commutation relation

[L̃i, L̃j ] = (i− j)
(
L̃i+j − 1

4 L̃i+j−1

)
.

We proceed to show that these operators span a Lie subalgebra of the Virasoro algebra. Let us
start by asking for a change of basis

Vn =

n∑
k=0

an,kL̃k

and impose the Virasoro commutation relation to determine the coefficients an,k. For example,
consider the following calculation, where we assume a0,0 = 1 and set λ = 1

4 .

[V3, V0] = 3V3

[a3,0L̃0 + a3,1L̃1 + a3,2L̃2 + a3,3L̃3, L̃0] = 3(a3,0L̃0 + a3,1L̃1 + a3,2L̃2 + a3,3L̃3)

a3,1(L̃1 − λL̃0) + 2a3,2(L̃2 − λL̃1) + 3a3,3(L̃3 − λL̃2) = 3a3,0L̃0 + 3a3,1L̃1 + 3a3,2L̃2 + 3a3,3L̃3
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Hence, we obtain the following constraints on an,k by comparing the coefficients of L̃i.

a3,3 = a3,3

a3,2 = −3λa3,3

a3,1 = 3λ2a3,3

a3,0 = −λ3a3,3

More generally, the same analysis for [Vn, V0] = nVn leads to an,k =
(
n
k

)
(−λ)n−kan,n. We can set

an,n = 1 and check in general that taking

an,k =

(
n

k

)(
− 1

4

)n−k
produces operators that satisfy the general Virasoro commutation relation [Vm, Vn] = (m−n)Vm+n,
as a result of Vandermonde’s identity for binomial coefficients. Thus, we obtain the following.

Proposition 7.1.1. For n = 0, 1, 2, . . ., the operators

Vn =

n∑
k=0

(
n

k

)(
− 1

4

)n−k
(2k + 1)Lk

annihilate the partition function for monotone Hurwitz numbers and satisfy the Virasoro commu-
tation relation.

7.2 Cunden–Dahlqvist–O’Connell identity for monotone Hur-
witz numbers

Monotone Hurwitz numbers appeared in the recent work of Cunden, Dahlqvist and O’Connell in
their recent work on integer moments of complex Wishart matrices [2626]. In particular, their matrix
model analysis led to an interesting identity relating weakly monotone Hurwitz numbers with
strictly monotone Hurwitz numbers, which appears below as equation (7.77.7). Cunden, Dahlqvist
and O’Connell ask for a combinatorial proof for this identity. In this section, we give a different
proof of the identity, though not particularly combinatorial, using the holonomic techniques of
Chapter 44. In ongoing work, we have made some steps towards a purely combinatorial proof in
low genus although we do not report on that work in this thesis.

First, we introduce an enumeration for monotone Hurwitz numbers that is different, but related
to, the one defined in Section 1.31.3.

Definition 7.2.1. Let H≤g (n, k) denote the number of tuples (τ1, τ2, . . . , τm) of transpositions
in Sn such that

the product (1 2 · · · n) ◦ τ1 ◦ τ2 ◦ · · · ◦ τm has k cycles;

m = k − 1 + 2g; and

if τi = (ai, bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤ bm.

We define H<
g (n, k) similarly, but using the strict inequalities b1 < b2 ≤ · · · ≤ bm.

We package these numbers into the following generating functions.

H≤g (n;x) =
n∑
k=1

H≤g (n, k)x−k

H<
g (n;x) =

n∑
k=1

H<
g (n, k)x−k
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Theorem 7.2.2 (Cunden–Dahlqvist–O’Connell identity [2626]). The generating functions for
weakly and strictly monotone Hurwitz numbers satisfy the following, where hm(12, 22, . . . , n2)
denotes the complete homogeneous symmetric function in 12, 22, . . . , n2.

(x− 1

x

)n+1
H≤g (n+ 1;x− 1) = n

g∑
j=0

(x− 1

x

)2j
hg−j(1

2, 22, . . . , n2)H<
j (n;x) (7.7)

Proof. The techniques of Section 4.34.3 allow us to write down generating functions for these
monotone Hurwitz numbers, where we include a variable ~ to keep track of genus in the following
way. These equations follow from the expressions for monotone Hurwitz numbers in terms of
Schur functions, along with the hook-content formula of equation (4.74.7).

∞∑
g=0

H≤g (n;x) ~2g−1 =

n∑
k=1

(−1)n−k (n− 1)!

n (k − 1)! (n− k)!

n∏
i=1

(
1
~x + (k − i)

) n∏
i=1

1

1− (k − i)~
∞∑
g=0

H<
g (n;x) ~2g−1 =

n∑
k=1

(−1)n−k (n− 1)!

n (k − 1)! (n− k)!

n∏
i=1

(
1
~x + (k − i)

) n∏
i=1

(1 + (k − i)~)

Now let us multiply equation (7.77.7) by ~2g−1 and sum over all non-negative integers g. The left
side then takes the following form.

∞∑
g=0

H≤g (n+ 1;x− 1) ~2g−1

=
(x− 1

x

)n+1
n+1∑
k=1

(−1)n+1−k n!

(n+ 1) (k − 1)! (n+ 1− k)!

n+1∏
i=1

( 1

~(x− 1)
+ (k − i)

) n+1∏
i=1

1

(1− (k − i)~)

The right side then takes the following form, where we use the generating function for the
complete homogeneous symmetric functions.

∞∑
g=0

n

g∑
j=0

(x− 1

x

)2j
hg−j(1

2, 22, . . . , n2)H<
j (n;x) ~2g−1

= n
(x− 1

x

)[ ∞∑
j=0

H<
j (n;x)

(~(x− 1)

x

)2j−1
]
×

[ ∞∑
`=0

h`(1
2, 22, . . . , n2) ~2`

]

= n
(x− 1

x

)[ n∑
k=1

(−1)n−k (n− 1)!

n (k − 1)! (n− k)!

n∏
i=1

( 1

~(x− 1)
+ (k − i)

) n∏
i=1

(
1 + (k − i)~x− 1

x

)]

×

[
n∏

i=−n

1

(1 + i~)

]
.

Equating these two expressions, we see that the desired result is equivalent to the following.

n (x− 1)n

n+ 1

n+1∑
k=1

(−1)n+1−k

(k − 1)! (n+ 1− k)!

n+1∏
i=1

( 1

~(x− 1)
+ (k − i)

) n∏
j=k

(1− j~)
n∏

`=n−k+2

(1 + `~)

= xn
n∑
k=1

(−1)n−k

(k − 1)! (n− k)!

n∏
i=1

( 1

~(x− 1)
+ (k − i)

) n∏
i=1

(
1 + (k − i)~x− 1

x

)
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Write a = 1
~(x−1) and b = −1

~ , and retain the usual notation
(
x
n

)
= x(x−1)···(x−n+1)

n! for real x.
Then some straightforward algebraic manipulations allow us to express the above equation as

Fn(a, a− b) = (−1)n+1

(
2n+ 1

n

)(
b+ n

2n+ 1

)
Gn+1(a, b), (7.8)

where we define the functions

Fn(a, b) =

n−1∑
k=0

(−1)k
(
n− 1

k

)(
a+ k

n

)(
b+ k

n

)
,

Gn(a, b) =
n−1∑
k=0

(−1)k
(
n− 1

k

)(
a+ k

n

)/(b+ k

n

)
.

The result then follows once we prove equation (7.87.8). We use Zeilberger’s algorithm, which finds
a polynomial recursion for hypergeometric-type functions such as Fn and Gn defined above. The
Zb command in the Fast Zeilberger Mathematica package produces the following recursion for Fn.

n(a− b− n− 1)(a− b+ n+ 1)Fn(a, b) + (n+ 1)(2n+ 3)(a+ b)Fn+1(a, b)

+ (n+ 1)(n+ 2)(n+ 3)Fn+2(a, b) = 0 (7.9)

It also produces the following recursion for Gn.

(n− 1)(n+ 1)Gn(a, b) + (2n+ 1)(b− 2a)Gn+1(a, b)

− (b− n− 1)(b+ n+ 1)Gn+2(a, b) = 0 (7.10)

To finish the proof, we substitute Ln(a, b) = Fn(a, a−b) in equation (7.97.9) to obtain a recursion for
the left side of equation (7.87.8). Similarly, we substitute Rn(a, b) = (−1)n+1

(
2n+1
n

)(
b+n

2n+1

)
Gn+1(a, b)

in equation (7.107.10) to obtain a recursion for the right side of equation (7.87.8). It turns out that these
two recursions are identical. Since once can check that L1(a, b) = R1(a, b) and L2(a, b) = R2(a, b)
explicitly, it follows by induction that Ln(a, b) = Rn(a, b) for all positive integers n. Therefore,
equation (7.87.8) holds and this completes the proof.
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