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Abstract

A decade after its first launch in 2009, cryptocurrency has become a massive industry
with rapid development in its underlying technology, blockchain. Blockchain development
is not only focusing on improving its scalability, usability, and robustness, but also on
improving users’ privacy. Bitcoin, as the first cryptocurrency, proposed a new anonymity
scheme to decouple the real users’ identities with their Bitcoin addresses. However, this
scheme was proven not to provide sufficient privacy; several Bitcoin analyses managed to
deduce information about the users. Hence, demand for more anonymous payment system
increases.

Privacy-preserving cryptocurrency was introduced to cater for more anonymous financial
transaction. This type of cryptocurrency implements several privacy-preserving crypto-
graphic primitives into their protocols. Monero is one of these cryptocurrencies. In Monero,
a ring signature becomes one of the core techniques to obfuscate the identity of the sender
by adding decoys. A one-time public key (stealth address) mechanism protects the privacy
of the receiver by not allowing address reuse.

Although cryptographic primitives are available in the privacy-preserving cryptocurrency,
there are remaining identified problems at the protocol level that may affect the anonymity
of the users. This research studies Monero and its related protocols to identify and mitigate
anonymity problems. We utilise data extraction methods, data analyses, simulations, and
experimentation to explore how the cryptocurrency system works and how it impacts the
users’ anonymity.

We discover that Monero transaction protocol is potent as a tool to attack honest users’
anonymity. We also discover that a Monero protocol update that leads to a hard fork
exposes its system to anonymity and Denial of Service attack risks. Our findings also
indicate that third-party services, such as wallet service providers and mining pools, could
become threats to Monero anonymity. Our work proposes potential mitigation strategies
on each anonymity threat.
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Chapter 1

Introduction

Bitcoin, launched in early 2009, is the first decentralised virtual currency that removes
the role of a central authority. A decade after Bitcoin started, the cryptocurrency-related
businesses have become a multi-billion-dollar industry. The technology development has
progressed so fast that cryptocurrency now has become a new virtual asset class [19].
There are currently more than 2,000 cryptocurrencies available in the market. Bitcoin, the
most valuable cryptocurrency, is traded at US$9,667 per coin. The total market value of
cryptocurrencies is US$280.7billion1.

Central authorities run traditional payment systems such as banks. However, cryptocur-
rency systems employ a different approach to remove the role of a central administration.
Instead of keeping the transaction data private, cryptocurrency uses blockchain technology.
In a blockchain system, each participant can verify all transactions in the system. Although
the transparent system provides benefit to the decentralisation, it also poses new risks
to users’ privacy. Blockchain technology stores and shares all transaction data to all
participants (nodes) connected to the network. Therefore it also makes the transaction
data obtainable to the public.

The original Bitcoin blockchain construction describes that there should be no rela-
tionship between the real identities of the users and the addresses used in the system [81].
However, several analyses show that Bitcoin transactions may leak users’ anonymity [72, 95].
Based on the findings, researchers developed new transaction obfuscation methods in Bitcoin,
such as CoinJoin [67] and CoinSwap [68]. Experts also developed new privacy-preserving
cryptocurrencies that eliminate privacy problems found in Bitcoin.

1Data taken from Coinmarketcap.com on 22 February 2020
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Rather than providing add-on privacy-protection features, privacy-preserving cryptocur-
rencies, such as Monero and Zcash, apply different protocols compared to Bitcoin. Monero
exercises linkable ring signature and one-time public key to obfuscate the relationships be-
tween the senders and the receivers [108]. Zcash implements zero knowledge-proof protocol
to break the relationships between transactions [52].

Although these privacy-preserving cryptocurrencies implemented new advanced algo-
rithms, they still had privacy problems. In Monero, for example, a liquidity problem leads
to a devastating impact where more than half transactions are traceable [59, 79]. While
in Zcash, users prefer to use a transparent address rather than a shielded address due
to computational complexity, thus exposing their privacy [91]. The current system in
zero-knowledge proof requires a trusted setup to construct a public parameter [96]. The
trusted setup generates a secret key that can create new coins instantaneously without
following a proper economic process, which is not favourable to the users [52].

We focus our research on ring signature-based cryptocurrency. In a ring signature-
based system, every user can construct a ring spontaneously without any help from other
parties [64]. In this research, we take Monero as an example of a ring signature-based
cryptocurrency. Monero is one of the major cryptocurrencies in the world with 157 thousand
Reddit subscribers2 and a market value of US$1.2billion3. Monero’s market cap is far higher
than any other ring signature-based cryptocurrencies such as Boolberry and Aeon. Its
community constructed a Forum Funding System (FFS) 4 as a means to fund ideas such as
software implementation, Monero-related research, and other activities related to Monero.
The significant amount of support helps Monero developers swiftly adopt new technologies.
This research-focused cryptocurrency is a significant area to investigate, unlike other
cryptocurrencies. However, new technology adoptions can introduce anonymity risks to the
existing system.

This thesis project aims to improve the users’ anonymity when using privacy-preserving
cryptocurrency. The improvements are conducted through analyses over the real transaction
data, mitigating the problems found, and proposing new protocols to improve the anonymity
of the users. We analyse the blockchain data to extract information, formulate the problems
and mitigate the problems. We also investigate network communications in Monero systems
to discover potential threats to user anonymity.

We examine the usability of the cryptographic primitives in real-world scenarios such as
cryptocurrency transactions. The cryptographic primitives might provide security proofs,

2Data taken from https://www.reddit.com/r/Monero on 13 May 2019
3Data taken from https://coinmarketcap.com/ on 13 May 2019
4https://www.getmonero.org/forum-funding-system
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but protocol implementations that utilise those cryptographic primitives may develop
security challenges and flaws [61]. In Monero, these implementation challenges can also
introduce additional sources of protocol-level anonymity leakage. We also study the Monero
third-party services, namely wallet services and mining pool services that assist users to
participate in the system.

1.1 Privacy and Anonymity

We introduce two key terms we use in the project, namely privacy and anonymity, to
understand the context of the project better. Privacy is the ability of individuals, groups,
or institutions to control information sharing about themselves to others [88]. Privacy
must enable the information owner to withdraw it from public and makes the information
anonymous [88]. In order to achieve a state of privacy, anonymity is paramount. The
subject anonymity refers to the inability to determine the subject within a set of subjects,
which is the anonymity set [88]. The anonymity term is valid in a communication network
that consists of sender anonymity set and recipient anonymity set. Any member of the
sender anonymity set can send a message to the member of the recipient anonymity set
without being identified.

In CryptoNote protocol’s whitepaper, van Saberhagen defines anonymity by using two
adjacent forms: unlinkability and untraceability [108]. Unlinkability is related to the privacy
of the receiver, where different transactions are unidentifiable that they are payable to
the same receiver. Untraceability, on the other hand, is related to the sender’s privacy. A
system is untraceable when it is infeasible to determine the real sender of a transaction.

We also use the term k-anonymity in this project. K-anonymity is a data privacy model
where information k within a set of K is indistinguishable among other k − 1 elements
of K [102]. In a ring signature that contains more than one element, the anonymity of
each element depends on other elements such that if any elements n is removed from the
anonymity set, each remaining element has k − n anonymity. In Monero, k-anonymity
identifies the anonymity level of every input containing multiple outputs as the decoys.
The anonymity of the real input depends on the indistinguishability of each decoy and the
number of decoys used.
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1.2 Related Work

Anonymity in cryptocurrency is a subject of interest to many researchers. The pioneering
research investigated Bitcoin’s anonymity scheme that relies heavily on public-key cryptog-
raphy and digital signature scheme [72, 92]. Although the users never reveal their identities
while using Bitcoin, their transaction patterns and secondary information leak information
about their real identities [72, 92]. Privacy-preserving cryptocurrencies, such as Monero,
utilise advanced cryptography techniques to prevent transaction analyses. However, research
shows that in practice, an information leak can reveal 60-80% of all transactions [59, 73, 79].
The findings indicate that cryptography techniques are insufficient to protect transaction
anonymity in real-world use-cases. We will discuss more the background and related work
of our project in Chapter 2.

Our project extends the existing works that explore potential protocol-level attacks
and threats to transaction anonymity. Our research evaluates the Monero transaction
mechanism, the Monero protocol update mechanism, and third-party services. To the best
of our knowledge, those research subjects are understudied.

1.3 Problem Statement

The existing research mainly focuses on transaction analyses. We identify research gaps in
the area, such as potential active attacks to anonymity, security risks in Monero-specific
development style, and anonymity risks by third-party services. We define the research
gaps in our problem statement as follows.

P1. The users have the freedom to create their transactions in the cryptocurrency system.
The users can modify their wallets such that the applications may not follow the
best practices to gain the optimum anonymity level. All transaction outputs are
candidates for new transaction inputs’ decoys or mixins. An attacker can create
malicious transactions that produce bad outputs that suffer from anonymity reduction.
New inputs that select the attacker’s outputs as the decoys may also suffer anonymity
reduction.

P2. Monero has a semi-annual protocol update, in the form of hard forks. Each time
a new software version is released, all nodes must replace their old software to the
newest version. However, since the nodes belong to different parties, the protocol
update can be asynchronous. The asynchronous protocol update in Monero can result
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in anonymity reduction. Potential attacks can exploit the weaknesses caused by the
event which target the nodes and the anonymity of the transactions.

P3. In many cases, users rely on third-party services to participate in the Monero system,
for example, wallet service providers and mining pools. Third-party service providers
may exploit users’ data to reveal users’ privacy. It is also possible that the third-party
service providers deliberately publish private information for their gain.

In order to achieve the aim and solve the problems (P1, P2, and P3) that we have defined,
we propose three research questions as follows.

Q1. How can attackers exploit the Monero transaction mechanisms to reduce the anonymity
of Monero users?

Q2. What are the risks of the asynchronous protocol update in Monero to the users’
anonymity?

Q3. What are the risks of third-party services in Monero to the users’ anonymity?

1.4 Contributions

Blockchain technology is gaining in popularity. Industries and governments are finding
ways to explore the technology to develop solutions to real-world problems as well as to
improve the efficiency of business processes [112, 122, 121]. The security assumption of
the blockchain technology is more substantial than the traditional shared database in a
multi-stakeholder environment, where multiple verifiers build a more reliable data trust [122].
Governments have also started to explore the possibility of creating their cryptocurrencies
to complement the existing fiat currencies [8, 99].

A blockchain system that stores financial information needs a more reliable anonymity
guarantee to protect the users’ privacy. Ring signature could be one of the possible solutions
to provide privacy on the blockchain-based solutions. Blockchain implementation in finance
could learn from cryptocurrencies. In terms of providing anonymity, Monero could provide
lessons and experiences for future systems. Our research contributes to the research
area by analysing anonymity vulnerabilities and potential threats to privacy-preserving
cryptocurrency protocols. The details of our contributions are as follows.
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C1. We formulate new protocol-level attacks to compromise cryptocurrency users’ privacy
in the system, namely Monero Ring Attack (MRA) and its extension, Monero Ring
Attack Extended (MRAE) [116, 117]. Both attacks exploit Monero transaction creation
process, where an attacker removes his or her transaction anonymity to reduce other
users’ transaction anonymity. We also utilise the Unencrypted Payment ID (UPID)
for a traceability analysis and discover more than 300K traceable inputs. The finding
is the most significant anonymity problem after RingCT implementation in Monero.

Our analyses identify threats in Monero transaction creation functions that require
tighter security measures to provide a more reliable transaction anonymity guarantee.

C2. We formulate issues that occur during Monero protocol update. We investigate three
blockchain branches that emerged in 2018 and identify problems of key reuse [119].
We discover more than 50K traceable inputs on the main Monero branch. The number
of traceable inputs is less significant than our other analyses results. However, we
investigate external factors that can influence the scalability of the problems [119],
namely market prices and market availability. We propose mitigation strategies to
the identified issues by registering blockchain branches and transaction ring members
on each blockchain branch [119]. We explore possible Denial of Service (DoS) attack
during an asynchronous protocol update[118]. We identify that a non-updating
node is prone to a DoS attack, where the attacker floods the node’s memory with
Monero transactions. The attacker can escalate the DoS attack to target transaction
anonymity.

Our analyses identify threats during Monero protocol updates that require data
management on multiple blockchain branches.

C3. We explore third-party services in Monero ecosystem, namely wallet service providers
and mining pools. We identify risks to transaction anonymity because the nodes
can gather sufficient information from the wallets’ activities. We also investigate
information leak in mining pool-related operations. We utilise lists of won blocks and
payouts from Monero mining pools and discover more than 200K traceable inputs.
The result is the second-largest anonymity leak after RingCT implementation.

Our study shows a strong need for more dispersed third-party wallet providers. Our
results also indicate new requirements for mining pool operators to improve their
data accountability without compromising anonymity.

We expect the outcomes of our research can improve the existing systems as well as
the future systems. We believe that while blockchain technology provides improvements
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in multiple industry sectors, the privacy and anonymity issues in blockchain technology
are paramount. Without adequate privacy solutions, blockchain poses a liability to any
organisations if it leaks users’ privacy.

1.5 Relevance to Cryptocurrency or Blockchain Tech-

nology

Our project mainly investigates Monero, which represents a cryptocurrency (blockchain)
project that constantly improves its features and efficiency with the following properties.

• Rapid technology adoption and implementation, backed by extensive academic research
and financial support from the community.

• A proven and significant cryptocurrency product that has been running for more than
six years with a total market value of almost US$1billion.

• Unique characteristics such as scheduled hard forks.

We emphasise the relevance of our project to blockchain technology in general as follows.

• A theoretical cryptographic work must be adopted in a working environment with
abundant challenges and obstacles. Adjustments are necessary to deliver desirable
goals. A comprehensive approach that considers system-level problem analyses is
required. In Monero, ring signature technology relies on a good mixin selection
algorithm to produce the best results to the users. In Zcash, founders’ reward that
was intended to support continuous system development becomes a liability for system
anonymity [56].

• Standardised best-practice protocols must be enforced in open-source projects which
enable external parties to participate by developing third-party services and applica-
tions. Insecure implementations can cause damage to the system, and especially in
Monero, can impact other users’ transactions. An example of the required standardised
protocol in Monero is mixin selection.
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1.6 Thesis Organisation

We organise the rest of the thesis as follows. We provide background and related work in
Chapter 2 to better understand our research project. We include explanations about
blockchain implementation in Bitcoin and its anonymity issues that lead to privacy-
preserving technique implementations in cryptocurrency space. We also discuss related
work that identifies weaknesses in Monero that helps us to identify the research gaps.

Chapter 3 and 4 address our first research question Q1 about potential threats in
Monero’s transaction creation scheme. In Chapter 3, we propose a novel transaction-
based active attack called Monero Ring Attack (MRA). MRA exploits Monero’s transaction
creation algorithm to recreate existing attacks called zero-mixin transaction and cascade
effect. As a mitigation strategy to prevent MRA, we develop an algorithm to search the
attacker’s transactions and blacklist them.

In Chapter 4, we evaluate the weaknesses of the MRA scheme presented in the Chapter 3
and we propose an improved version called Monero Ring Attack Extended (MRAE). MRAE
is immune to the mitigation strategy that prevents MRA. We use the statistical properties of
output usage to formulate new metrics called Output Weighting (OW) and Input Weighting
(IW) to mitigate MRAE. In this chapter, we also present our UPID-based analysis that discovers
more than 300K traceable inputs. To the best of our knowledge, our UPID-based analysis
reveals the largest anonymity leak after RingCT implementation.

Chapter 5 and 6 are related to Q2, where we investigate risks that follow Monero hard
forks, especially two hard forks in 2018. In Chapter 5, we focus on anonymity risks from
spending a coin in multiple blockchain branches. Our primary data sources are Monero
transactions in multiple branches and market-related information of each cryptocurrency.
We then correlate the anonymity risks with factors such as historical market prices and
market availability. We discover that financial benefits are the leading cause of anonymity
risks of the events.

In Chapter 6, we investigate alternative attacks that exploit Monero hard forks that
occur during a protocol update. Through simulations, we prove that Denial of Service
(DoS) attacks are feasible to reduce the availability of Monero nodes that runs obsolete
software versions. Furthermore, the attacker can escalate the DoS attack into a Monero
anonymity attack by transacting the same coins multiple times in different protocols.

The topics in Chapter 7 and 8 address research question Q3, where third-party services
such as wallet providers and mining pools are of interest. In Chapter 7, we describe how
wallet service providers have enough information to de-anonymise users’ transactions. Our
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review on the available wallet providers corroborates our findings, where alternative wallets
such as smartphone-based wallets are prone to anonymity analysis.

In Chapter 8, we address our findings that mining pools leak their users’ information
and transaction anonymity. Many mining pools publish a variety of information on their
websites, such as the blocks they won and transaction payouts to their miners. We extract
information from ten mining pool websites and conduct traceability analyses. Through our
analyses, we discover more than 200K traceable inputs from our data set. The result is the
second-largest anonymity leak in Monero since RingCT implementation. We provide the
thesis conclusion and future work in Chapter 9.
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Chapter 2

Background and Related Work

This chapter outlines underlying technologies in our research field to provide context for
our project. The chapter includes a background of Bitcoin and Monero. We present the
privacy issue in Bitcoin, along with proposed solutions to mitigate the problems. We will
describe Monero technical details and Monero anonymity issues and problems that initiate
our research project.

2.1 Early Work in Anonymous Payment System

In 1983, David Chaum proposed a new cryptographic scheme called blind signature [21] to
improve existing electronic banking methods. Chaum predicted that electronic-based services
might cause privacy issues for customers [21]. Centralised parties such as banks generally
provide an electronic payment method. These parties would have all the information to
identify the individual using the payment services, such as locations, associations, and even
lifestyle [21]. In his paper, Chaum did not specifically define privacy but described personal
privacy as any information about an individual [21].

The blind signature protects the information about the payer and the payee and at the
same time proves that the payment is valid [22]. The proposed protocol was applicable
not only in the payment system but also in other areas requiring privacy protection such
as election systems [21]. The protocol emphasises the untraceability of the sender as the
subject conducting the activity [23]. Chaum’s work initiated research and development on
private electronic payment systems. Cryptocurrencies such as Bitcoin and Monero adopted
Chaum’s ideas.
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Figure 2.1: A high-level structure of a blockchain [81].

2.2 Bitcoin

Bitcoin is the first cryptocurrency and it surfaced in 2009. Satoshi Nakamoto developed
the idea and the code. A year earlier, in 2008, Nakamoto published a whitepaper outlining
the construction of the new payment system. This payment system differed from existing
payment systems as it does not rely on a central authority. Instead of using a central
authority, this new system exercises a consensus method to construct a source of truth [81].
Without any central administration, Bitcoin relies on a peer-to-peer mechanism to maintain
the transaction data and update the database whenever new transactions emerge.

Blockchain is a logical construction of chained blocks. The blocks are produced at a
specified epochs, depending on the network difficulty, computing power, and luck [3]. A
new block connects to its proceeding block by adding a hash value of the previous block
into the next block. The basic structure of a blockchain is displayed in Figure 2.1.

2.2.1 Bitcoin Transaction

The transaction scheme in Bitcoin uses an UTXO model (Unspent Transaction Output or
unspent output). The UTXO model works identical to how physical coin transaction works.
In a transaction, the payer needs to identify which coin to spend, and if the coin value is
more than the transacted value, the payer will receive a change. To spend the coins, the
owner must provide valid proofs as required by the system. The proofs are the answers to
the mathematical puzzle given by the unspent outputs. The evaluation of the mathematical
puzzle and the answers looks similar to Forth, a stack-based programming language [3].
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Figure 2.2: Bitcoin transaction visualisation [81].

A user can create a transaction with inputs to spend his or her coins. The transaction
will generate new unspent transaction outputs (UTXO). The diagram of the construction is
as in Figure 2.2.

When checking a transaction, the Bitcoin system checks the following information:

• Answers to the mathematical puzzle, as stated in the transaction outputs.

• Correctness of the transacted coins. The total number of coins in the outputs should
not exceed the total number of coins in the inputs deduced by the transaction fee.
The transaction fee is paid to the miners confirming the transaction in the blockchain.

By looking at the Figure 2.2, it can be seen that for each transaction, the coin owner
needs to spend all coins in the unspent outputs. Hence, if the total amount of coins to
transfer to the payee is less than the total amount of coins in the inputs, the change money
is payable to the payer’s address. The payer can also create a separate address to hold the
change coins.

2.2.2 Bitcoin Privacy Construction

In Bitcoin whitepaper, the privacy model is explained in Figure 2.3. Unlike traditional
banking models where all bank accounts are associated with real identities of the customers,
in Bitcoin, there is no need to prove that a user has a valid identity. The transactions are
validated by using cryptographic methods rather than authenticating the user’s identity.
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Figure 2.3: Bitcoin transaction [81].

Bitcoin uses Public Key Cryptography, where the hash value of the public key becomes the
address, and a valid digital signature determines whether the user is the rightful owner of
the fund she claims.

2.2.3 Bitcoin Privacy Problems

In this section, we discuss identified privacy problems and analyses in Bitcoin, namely public
key usage, clustering analysis, geolocation, and Know Your Customer (KYC) regulation.

2.2.3.1 Public Key Usage

Research that utilises graph analysis in Bitcoin shows that there are dynamic effects of
public keys usage towards anonymity [86]. The public keys can either increase or decrease
Bitcoin anonymity. The research focuses on the following items.

• The number of public keys increased since the start of Bitcoin trading in April 2010
and reached its peak in June and July 2011. The research mentions that Bitcoin
users start to aware of their transaction anonymity during trading activities that they
create new addresses to receive Bitcoins.

• The number of active keys impact the privacy of the users. The active keys are
sometimes active only in a certain period, and afterwards, they remain dormant. The
dormant coins reduce anonymity because they cannot be in the anonymity set.

• The transaction linkability analysis could produce false results caused by mixing
services.
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2.2.3.2 Clustering and Off-chain Data Analyses

A group of researchers created an experiment to investigate Bitcoin anonymity level. They
created multiple purchases from 26 cryptocurrency exchanges and ten wallet services [72].
They also created payments to 25 different vendors, where nine vendors use BitPay as a
payment gateway [72]. The researchers’ coins were involved in 344 transactions. From these
transactions, they discovered 832 related addresses. From the data set, they developed two
clustering heuristics.

• First clustering heuristic. If a transaction involves multiple inputs from different
addresses, then these addresses belong to the same user.

• Second clustering heuristic. The change address in a transaction belongs to the
input addresses’ owner.

By using both clustering heuristics they developed, they mapped 12 million public keys
(16% of all public keys at the time of research) into 3.3 million clusters. The indicates that
there is a linkability problem in Bitcoin that correlates different Bitcoin addresses to the
same owner.

Separate research combines real-world data with Bitcoin blockchain analysis [39]. The
researchers scraped Bitcoin addresses from Bitcointalk1 web forum by using a Python
package called Scrapy and discovered 2,322 unique users that owned 2,404 Bitcoin addresses.
The researchers were then able to investigate the activities of identified addresses on the
Bitcoin blockchain.

The result shows that the original Bitcoin anonymity model only works in isolation,
while external information is useful to uncover the relation between Bitcoin address and the
user’s identity. Furthermore, in practice, Bitcoin users must share their address to receive
coins, either for donation or payment. Although address sharing is unavoidable, it leaks
anonymity.

2.2.3.3 Geolocation

Another research project recovered 40% of Bitcoin user profiles. The recovery process
succeeded even after the users applied steps to increase their privacy [2]. The researchers
evaluated Bitcoin privacy by using two types of heuristic analyses in the first 140,000 blocks
of Bitcoin blockchain. The heuristic analyses are as follows.

1https://bitcointalk.org
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• Heuristic I Multi-Input Transactions. The same user owns input addresses of a
transaction.

• Heuristic II Shadow Address. The shadow address is the address used by a sender
to collect the payment change. The sender owns the shadow address.

In addition to the two heuristic analyses, the research also provides an insight into mapping
vendors’ locations to locate the users in specific regions. The heuristic analyses are useful
to increase accuracy. By using Heuristic I, they clustered 1,632,648 addresses into 1,069,699
Generic Addresses (GA). From Heuristic II, they decreased the number into 693,051 GA
(58% of Bitcoin addresses). The research also provided ways to evade both heuristic analyses,
as follows.

• Evading Heuristic I by the following steps.

– Minimising coin combination by recreating smaller coins.

– Combining inputs from several users.

• Evading Heuristic II by:

– Splitting the coins before sending payments, therefore, change address is not
needed.

• Evading geolocation analysis by:

– Asking vendors to provide a new address for each transaction.

2.2.3.4 Know Your Customer (KYC) Regulation

Know Your Customer (KYC) policy is mandatory in the banking and finance industry. The
KYC policy describes that every business entity must keep a record of the identities of their
customers before they use the services offered by the business entity. The United States of
America was aware that criminals might utilise this type of payment system. Thus they
enforced digital currency providers to conduct KYC protocol [80].

In many countries, business entities that provide digital currency exchange services
must conduct the KYC protocol. A user who wants to convert fiat money into any
cryptocurrencies or vice versa through the platform needs to provide a valid identity
document. Therefore, it is easy to link Bitcoin addresses to the owners’ real identity [78].
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In the United States, cryptocurrency exchanges need to register themselves to the authority
and declare their statuses as Money Service Businesses. In this case, they also need to
comply with all regulations applied to all traditional financial services [42].

2.2.3.5 Taint Analysis

Bitcoin transactions are traceable due to the transparency of the blockchain data. Everyone
can easily trace the activity of a specific address through the blockchain. An observer can
identify which addresses sent coins to the monitored address and which addresses received
coins from that monitored address. Taint analysis is an analysis over relationships between
different addresses [89, 69].

Taint analysis in Bitcoin is possible because Bitcoin implements UTXO model in its
transaction. In the UTXO model, the viewer can accurately determine the spent outputs
in a transaction. Taint analysis is a common technique to track coin movement in Bitcoin.
However, taint analysis could produce inaccurate results if Bitcoin users utilise anonymising
protocols such as CoinJoin, CoinSwap, or coin mixers.

2.2.4 Bitcoin Anonymity-Enhancing Protocol

Several protocols to increase the users’ anonymity in cryptocurrencies emerged, such as
CoinJoin, CoinSwap, the network of transactions, and stealth address. We discuss each
protocol in the following subsections.

2.2.4.1 CoinJoin

Maxwell introduced the idea of CoinJoin in 2013 [67]. CoinJoin combines inputs and outputs
from multiple transactions into a single transaction. CoinJoin mixes the outputs and the
inputs such that the taint analysis is useless against CoinJoin transactions. CoinJoin is
available as a separate system to support Bitcoin [66], as well as an additional feature on
a privacy-preserving cryptocurrency called Dash [34]. The comparison between standard
transactions and a transaction employing CoinJoin is expressed in Figure 2.4.

There are at least two main problems with CoinJoin. First, the number of coins
contained in the spent outputs must be equal. In the real world scenario, it would be
infeasible to find someone which has the same desire to use CoinJoin and at the same time
provides outputs matching the number of coins owned by other users. Second, the security
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Figure 2.4: CoinJoin scheme [9]

relies on the central authority who knows all the participants and the associated outputs.
Hence, there is a single point of failure on the CoinJoin scheme.

2.2.4.2 CoinSwap

CoinSwap is a technique to cleanse tainted coins by swapping the coins with other unrelated
coins (Maxwell, 2013b). Maxwell proposed the idea in a Bitcointalk forum post entitled
Transaction graph disjoint trustless trading. The characteristics of Coinswap are as follows.

• CoinSwap requires at least a middleman to run the protocol where there are two users
are exchanging coins.

• The protocol was designed such that no participant could cheat and run away with
the coins (trustless).

• CoinSwap is atomic; a participant can cancel the running protocol at any stage
without causing loss to other participants.

Coinswap is suitable in the Bitcoin environment. It utilises Bitcoin’s advanced scripting
language to construct a hash lock contract. All CoinSwap transactions are visible in the
blockchain. The construction of CoinSwap is as in Figure 2.5.

A given use case is as follows. Alice wants to send a bitcoin to Bob. However, Alice
does not want Bob to know any information about Alice, such as her original address, her
current balance, or her source of fund. Therefore, Alice asks Carol to mediate payment
to Bob. Alice, Carol, and Bob agree to use CoinSwap protocol. In phase 0, Alice, Carol,
and Bob construct escrow transactions that will refund their money if the protocol fails. In
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Figure 2.5: CoinSwap Protocol Diagram [68]

Phase 1, Bob generates a random value of X and computes HX = H(X), where H is a
hash function. Bob sends HX to Carol and Alice. Alice creates a transaction that pays to
Carol if Carol can supply the correct value of X, while Carol creates a similar transaction
payable to Bob with the same requirement. In Phase 2, if Bob redeems the payment from
Carol, Bob publishes the value of X to the network. Since Carol monitors the network, she
now knows the value of X that she can redeem Alice’s payment.

The protocol is also applicable in a different way. Alice takes Bob’s role to exchange
her coin with Carol’s coin. Afterwards, Alice pays the exchanged coin formerly owned by
Carol to Bob. CoinSwap improves the security of a centrally-operated traditional mixing
protocol. A mixing service user relies on the honesty of the mixing operator not to steal
the coins that the user deposits to the operator. If the operator cheats and embezzles the
coin, the user cannot retrieve the payment, since the transaction is permanent.

CoinSwap has a problem. Carol becomes a participant that knows that such operation
has occurred between Alice and Bob. Carol also knows Alice’s and Bob’s addresses. She
can leak the information that relates Alice and Bob by using information she knows for
financial benefits or under subpoena.
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Figure 2.6: Network of transactions with five middlemen. [120]

A similar idea called TumbleBit brings the swapping mechanism out of the blockchain
[45]. In TumbleBit, the participants need to create and solve a mathematical puzzle to
authenticate the ownership of the tumbled coins.

2.2.4.3 Network of Transactions

The network of transactions enhances the solution on CoinSwap and CoinJoin by replacing
a single intermediary into several intermediaries. The purpose of having multiple middlemen
is to avoid the middlemen to learn about the transactions conducted by the participants. In
the solution, no single intermediary has the full information on how the money is transferred
from the sender to the receiver, even if there are at most two collaborating intermediaries
to identify the sender and receiver [120]. The scenario is described in Figure 2.6.

There will be multiple transactions confirmed in the blockchain. Hence, it will take
more time and cost for the sender to obfuscate the source of money payable to the receiver.
Although the protocol ensures that if the protocol halts before its end, all participants will
get their coins back.

2.2.4.4 Stealth Address

Stealth address is a method to ensure that the users always use new addresses for every
transaction created in the blockchain. In the stealth address technique, the sender creates
the receiver’s addresses. The receiver sends a parent key, and then the sender will be able
to create new addresses based on the parent key and a secret parameter. Later, the receiver
needs to scan the blockchain to identify the payment from the sender by using a specific
technique.

The idea emerged in 2014 [103] and Dark Wallet became the first implementation of
stealth address technique in Bitcoin environment [104]. The protocol utilises Diffie-Hellman
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Figure 2.7: Stealth address implementation in Darkwallet [104]

key exchange mechanism to make sure that the receiver can claim the coins sent by the
sender. The Dark Wallet implements the stealth address concept in Bitcoin. The Bitcoin’s
OP RETURN opcode contains the shared parameter of the stealth address. Figure 2.7 shows
the stealth address scheme in Bitcoin.

2.3 CryptoNote

The CryptoNote protocol was proposed in 2013 [108]. The purpose of the CryptoNote
protocol is to create a privacy-preserving cryptocurrency with built-in features that will
help users to keep anonymous. However, it still preserves similarities with Bitcoin, such as
transparent transaction data (inputs, outputs, and the number of coins transacted). The
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main idea of the protocol is to employ a linkable ring signature [40, 64] to avoid the sender
from being traced. The one-time public key (stealth address) guarantees that all users
create a new address for every transaction.

By using a linkable ring signature, it is infeasible to distinguish the real output being
spent by a transaction over a set of outputs. In the linkable ring signature, the user needs
to construct a group of outputs as an input of the transaction, which is assumed to be
selected randomly over a broad set of outputs freely available on the network. The user
needs to insert her output to the set, which is the real output to be spent in the transaction.
The other outputs are the decoys that help to obfuscate the real output. The linkable ring
signature also protects the system from a double-spending attack by allowing detection if
such an attack occurs. Each public key is associated with a secret value. Its corresponding
secret value has to appear in the blockchain if the public key is an input to a transaction.
If a secret key appears more than once, it means a double-spending attempt occurs [64].

In the one-time public key mechanism, the receiver provides a set of master public keys
to the sender, which will be used by the sender to create new public keys. Hence, the
sender creates the destination of the payment, not the receiver. When receiving payments,
the receiver scans the blockchain and applies a detection algorithm to determine which
payments belong to the receiver.

CryptoNote utilises elliptic curve edDSA [108] introduced by Bernstein [10], with the
following parameters.

• q = 2255 − 19, a prime number.

• d = −121665/121666, an element of Fq.

• E,−x2 + y2 = 1 + dx2y2, an elliptic curve equation.

• G = (x,−4/5), a base point.

• l = 2252 + 27742317777372353535851937790883648493, prime order of the base point.

• Hs := {0, 1}∗ → Fq, a cryptographic hash function.

• Hp := E(Fq)→ E(Fq), a deterministic hash function.

A private elliptic curve key (private ec key) is defined as a ∈ [1, l − 1], while the public key
of a is A = aG. CryptoNote uses two public key pair, namely (a, b) associated with (A,B),
where B = bG. A special key named tracking key is defined as (a,B).
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Figure 2.8: One-time key in Monero [108]

2.3.1 One-Time Public Key

The one-time public key employed in the CryptoNote protocol is somewhat similar to the
stealth address in Bitcoin ecosystem [103]. In the scenario, the receiver sends a parent
public key to the sender. The sender then generates new child public keys by using secret
keys. The encrypted secret keys are in the transaction data [84].

The receiver scans the network for new transactions and computes the secret key of each
transaction with the parent private key she holds. If the result matches the destination
key, then she includes the transaction in her wallet as an incoming transaction. Figure 2.8
shows the mechanism of the one-time key in Monero.

By using the one-time public key, only the sender and the receiver knows the relations
between the parent public key and the child public keys involved in the transaction. At the
same time, an observer that has access to the blockchain cannot analyse the relationship
between the public key and the child keys without any additional data.

2.3.2 Linkable Ring Signature

Rivest, Shamir, and Tauman were the first to propose a ring signature to leak a secret
to public [94]. The technique guarantees that the leak originates from a reputable source
(e.g. from a company’s board of director). However, the person leaking the secret does not
want anyone to learn that he or she is the individual leaking the secret. The ring signature
enables signing information by using a private key that corresponds to a public key in a set
of public keys. Nobody will be able to determine which public key is the one signing the
transaction.
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Figure 2.9: The structure of a Monero transaction. Each input is a ring signature that
consists of multiple existing outputs (from previous transactions recorded in the blockchain.)

Figure 2.10: The ring signature in Cryptonote [108].

The ring signature construction in CryptoNote originates from previous works on linkable
ring signature [64, 63] and traceable ring signature [40]. The constructions ensure that
signatures are linkable if they use the same public key. The characteristic is vital in
cryptocurrency to avoid double-spending. Double spending is an event where a coin (or
a balance) is spent more than once during its lifetime. If double spending can occur in
any cryptocurrency, then the coins in the system are worth nothing and cannot be used
as a medium to store value [107]. Linkable ring signature limits the anonymity in a ring
signature. However, this limitation is useful in many scenarios such as e-voting [24, 124]
and cryptocurrency system [101], where a double-vote or double-spending of a coin is
undesirable.

In CryptoNote, the ring signature combines several existing outputs (called decoys or
mixins) which have the same amount of coins into a single input. These outputs must have
a real output in the transaction. A transaction might have multiple inputs and multiple
outputs, as well. The high-level structure of a Monero transaction is as in Figure 2.9, while
the design of the ring signature is shown in Figure 2.10.

The purpose of the ring signature is to reduce the possibility of an adversary to guess
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a real output over several outputs N. We denote the probability (P) of guessing the real
output in the input as P = 1

N
.

The signature scheme consists of four algorithms, namely GEN, SIG, VER, and LNK.

GEN. The signer chooses a random secret key x ∈ [1, l − 1]. The corresponding public
key P = xG and a key image I = xHp(P ).

SIG. The signer generates the one-time ring signature. A random public keys from other
users S ′ of n, own key pair (x, P ), random {qi|i = 0...n}, random {wi|i = 0...n} from (1...l).
Then, the following transformation based on [28] is applied.

Li =

{
qiG if i = s

qiG+ wiPi if i 6= s

Ri =

{
qiHp(Pi) if i = s

qiHp(Pi) + wiI if i 6= s

A non-interactive challenge is defined as

c = Hs(m,L1, ..., Ln, R1, ..., Rn)

The response is computed as

ci =


wi if i 6= s

c−
n∑

i=0

ci mod l if i = s

ri =

{
qi if i 6= s

qs − csx mod l if i = s

As the result, ring signature σ = (I, c1, ..., cn, r1, ..., rn).

VER. A verifier checks the signature by using inverse transformation as follows.{
L′i = riG+ ciPi

R′i = riHp(Pi) + ciI

Then, the verifier checks the following equation.
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Figure 2.11: Ring signature generation in CryptoNote Standard CNS002 [109].

n∑
i=0

ci
?
= Hs(m,L

′
0, ..., L

′
n, R

′
0, ..., R

′
n mod l.

LNK. The verifier checks if I has appeared before. A signature that has the same secret
key xi produces the same Ii.

2.3.3 CryptoNote Standards

CryptoNote Foundation currently maintains CryptoNote protocol. The foundation has
developed a set of documented standards2 called CryptoNote Standard (CNS). We discuss
the standards in the following subsections.

2.3.3.1 CryptoNote Signatures

CNS002 [109] describes CryptoNote signature mechanism. CNS001 replaces the obsolete
CNS001. There are two main algorithms in CNS002, namely generate signature and
verify signature. The algorithms are shown in Figure 2.11 and Figure 2.12.

2https://cryptonote.org/standards/
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Figure 2.12: Ring signature verification in CryptoNote Standard CNS002 [109].

2.3.3.2 Variable-length Encoding of Integers (Varint)

Varint encodes integers into little-endian base-128 values. The decoding process requires
scanning from the first byte to the last byte. The last byte always has a value of less
than 128, in which its binary value starts from zero. Varint is beneficial in Monero data
serialisation if the system needs to serialise arbitrary large numbers.

2.3.3.3 CryptoNote Blockchain

CNS003 entails blockchain specification in CryptoNote. A block contains three parts, namely
block header, base transaction body, and list of transaction identifiers. The specification
includes the following items.

• Block header. A block header contains the following information.

– major version. (varint)

– minor version (varint)

– timestamp (varint)

– prev id (32-byte hash)

– nonce (4 bytes).
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Note: Although CNS describes major version and minor version as varint fields, in
reality, each field only consists of one byte3.

• Base transaction. A valid block always contains one base transaction. The base
transaction in CryptoNote is equal to Bitcoin’s coinbase transaction. The base
transaction is the first transaction in the block that sends the block reward to the
miner that creates the block. A base transaction contains the following information.

– version (varint)

– unlock time (varint)

– input num (varint) denotes the number of inputs of the transaction. A base
transaction always has its value set to one.

– input type (byte), valued to 0xff in a base transaction.

– height (varint) refers to the block height.

– output num (varint) describes the number of outputs.

– outputs (array of outputs) is the array of the outputs of the transaction.

– extra size (varint) defines the size of the extra field.

– extra (array of bytes) is an additional data related to the transaction.

• List of transaction identifiers. A transaction identifier is a hash value from Keccak
hash function of the actual transaction body. A tx num (varint) informs the number
of transaction identifiers, followed by array of identifiers (array of hashes).

A block identifier is a Keccak hash value of the following fields.

• size of the next three fields (varint)

• block header

• Merkle root hash

• number of transactions (varint)

The block identifier uniquely distinguishes blocks.

CryptoNote also essentially uses a Merkle tree to verify transactions. A Merkle root
hash is the root of a binary hash from the transactions that pose as leaves. If

3Based on our experience in deserialising block header in January 2020, where the blockchain version is
12.12 or 0c0c.
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Figure 2.13: Merkle root hash algorithm based on CryptoNote Standard CNS003 [113].

• tx[i] is the i-th transaction of the block and 0 ≤ i ≤ n− 1,

• n is the number of transaction,

• tx[0] is the base transaction,

• m is the largest power of two, m ≤ m,

• H is the Keccak function.

then the algorithm to construct 2n− 1 nodes h is shown in Figure 2.13. The Merkle root
hash is indicated by h[1].

An example of CryptoNote Merkle tree is in Figure 2.14. CryptoNote uses an unbalanced
Merkle tree by adding a new layer for odd-number transactions. The approach is different
compared to Bitcoin-style blockchain, where the odd transaction is hashed with itself to
get a node.

2.3.3.4 CryptoNote Transactions

CryptoNote Standard 004 [115] defines the CryptoNote transaction specification. A
CryptoNote transaction contains two parts, namely transaction prefix and signatures.

A transaction prefix contains several fields as follows.

• version (varint)

• unlock time (varint)

• input num (varint)
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Figure 2.14: An example of a Merkle tree construction in CryptoNote Standard CNS003

[113].

• inputs (varint). There are two types of inputs, namely txin gen and txin to key.
The txin gen can only be used in a base transaction. It contains two fields as follows.

– input type (byte). A value of 0xff indicates txin gen.

– height (varint)

On the other hand, txin to key is used in other transactions. A txin to key spends
an existing txout to key. To obfuscate the real spent txout to key, a ring signature
is attached to the second part of a transaction. A txin to key contains the following
fields:

– input type (byte). A value of 0x2 indicates txin to key.

– amount (varint) is the amount of the input.

– key offset num (varint) shows the number of keys in the input.

– key offsets (array of varint) contains the offsets (global indexes) of keys involved
in the inputs, also called as mixins or decoys.
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Figure 2.15: Transaction extra field example. [114]

– key image (key image type) is the tag that prevents double spending in Linkable
Ring Signature scheme. The tag is unique; it can only appear once in its lifetime,
which indicates that one coin can only be spent once.

• output num (varint)

• outputs (array of outputs). In detail, each output contains two pieces of information
as follows.

– amount (varint) defines the amount of the output.

– ( target) (output target) that specifies how the receiver can spend the coin. In
most cases, the target is set to txout to key. The txout to key defines that
the coin is redeemable by using the owner’s private key.

• extra size (varint)

• extra (array of bytes) that contains additional information related to the transaction.
The extra field is used for one-time public key-related operations. CNS005 further
explains extra field, which consists of two parts, namely tag and data. It can also
contain size field inserted before data field if the value of the tag field is either 0x00
(transaction padding) or 0x02 (extra nonce for mining pools). If the value of the tag
is 0x01, then it has a fixed length of 32 bytes, which is the transaction public key.
Figure 2.15 shows an example of transaction extra field.
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2.3.3.5 CryptoNote One-Time Keys

The CryptoNote Standard 006 [110] defines a key generation and key recovery schemes. Let
Alice wants to send a coin S to Bob’s address (A,B). The key generation is as follows.

1. Alice generates a random integer r mod l.

2. Alice computes a tx pubkey R = r ∗G.

3. Let n as the output index (varint) in the transaction, Alice computes a one-time
public key P = H(r ∗ A||n) ∗G+B.

4. Alice puts (S, P ) in the transaction input.

5. Alice puts R in the extra field.

Bob knows the secret keys that corresponds to his address, namely (a, b). Bob needs to
recover the key by using the key recovery algorithm. Since Bob does not know which coin
was sent by Alice, Bob runs the algorithm on every output of every new transaction.

1. Bob computes P ′ = H(a ∗R||n) ∗G+B.

2. Bob compares P ′ to P . If equal, then Bob knows that the output is his.

3. Bob computes the output’s secret key x = H(a ∗R||n) + b.

Figure 2.16 illustrates the key generation and key recovery scheme in CryptoNote.

2.3.3.6 CryptoNote Keys and Addresses

The CryptoNote Standard 007 [55] uses the term keys to refer to two different meanings,
namely txout to key or one-time keys [110] and the users’ long-term keys (or permanent
keys). The long-term keys consist of two pairs of public and private keys. The wallets store
private keys (a, b). The public keys (A,B) become the address. Each CryptoNote key is
32-byte encoding of Ed25519 [10].

CryptoNote also uses two other terms to refer keys based on their purposes, namely
spend key and view key. A spend key is a pair of private keys (a, b) that corresponds to
an address or public keys (A,B) that enables its owner to sign transactions. A view key
is a combination of a private key and a public key (a,B). A view key holder can identify
incoming transactions to its corresponding address (A,B), but the holder cannot:
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Figure 2.16: Key generation and key recovery in CryptoNote [110].

• identify outgoing transactions

• compute the balance of the wallet

• sign any transactions

• spend any coins

A CryptoNote address uses Base58 as its encoding scheme. An address is a serialisation
of three parts, namely:

• Prefix (varint) to distinguish addresses of different cryptocurrency.

• Public keys (A,B)

• Checksum (4 bytes) C = H(Prefix||A||B)[0..3]

The address is formulated as follows: Address = Base58(Prefix||A||B||Checksum). The
construction is shown in Figure 2.17.
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Figure 2.17: CryptoNote address serialisation [55].

2.3.3.7 Base58

Base58 is a popular encoding scheme for cryptocurrency addresses such as Bitcoin.
CryptoNote also adopts Base58 for address encoding. It uses a set of alphanumeric
characters that will not create confusion. Base58 omits characters such as zero and letter l
(lowercase L), I (uppercase i), and O (uppercase o). The characters are as follows:

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz [55]

The encoding scheme splits the input into 8-byte blocks. If the input is not a multiple
of eight, then the last block contains less than 8 bytes. The scheme processes each block
separately by converting the block into a big-endian integer by using modulus 58 operation,
then into a Base58 character. Each block requires 11 or fewer characters.

2.4 Monero

Monero is a CryptoNote-based cryptocurrency. Its codebase is from ByteCoin source code.
Similar to other cryptocurrencies, there are applications required to run the Monero system,
namely Monero daemon and Monero wallet. A Monero daemon is the full node keeping a
full record of all transactions happening in the network, while a Monero wallet does not
need to store all transactions locally. Monero wallet helps to create new transactions by
connecting to a Monero daemon.

When creating a new transaction, the Monero wallet first sends a request to the Monero
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daemon. The purpose of the requests is to get information about potential public keys
(outputs) to be used as decoys in the ring signature construction. The wallet selects a set
of global indexes from the histogram provided by the daemon by using a random sampling
algorithm. Then the daemon provides the corresponding outputs. The index of the real
output is also in the request for two reasons: as a test whether the daemon sends the correct
outputs and to obfuscate the final ring signature from a curious daemon.

Monero developers have adopted additional protection on users’ privacy. The Confiden-
tial Transaction (CT) is added into ring signature construction to create the RingCT [83].
The confidential transaction is a Pedersen commitment to encrypting the amount of money
sent from the sender to the receiver so that they cannot be visible to the world; only the
respective participants can decrypt the amount (Maxwell, 2015). RingCT was deployed in
January 2017 and became mandatory since September 20174.

RingCT has brought a significant change on the way users create mixins. In a non-
RingCT transaction, an output can only mix with other outputs with the same amount.
Before RingCT is available, an output having an unprecedented amount of coins cannot
mix with other outputs. Hence zero-mixin transaction occurs. The zero-mixin transaction
is a transaction containing an input that does not have any mixin. RingCT encrypts the
amount of money. Therefore, a RingCT output can mix with any outputs.

2.4.1 Monero-related Applications

There are at least two applications that need to be present in the Monero system: Monero
Daemon and Monero Wallet. Monero Daemon handles the main protocols in the system:
peer-to-peer network, consensus (mining), storing data to the blockchain and retrieving
the data from the blockchain. Monero Wallet, on the other hand, poses as a client by
managing private keys owned by the user. The Monero Wallet also helps the user to create
new transactions and send the raw transactions to the Monero Daemon. Monero Wallet
also identifies new incoming transactions by retrieving the blockchain data from Monero
Daemon.

2.4.2 Monero Address

Similar to CryptoNote addressing scheme [55], Monero uses two sets of public keys [108].
The public key cryptosystem in Monero uses elliptic curve of Twisted Edwards curve

4https://getmonero.org/resources/moneropedia/ringCT.html
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Figure 2.18: The construction of Monero transaction [108].

ed25519. The private keys a and b are associated with public keys A and B respectively,
such that A = aG and B = bG, where G is a base point on the elliptic curve. The address
of Monero consists of two public keys A and B, denoted as (A,B). The receiver sends his
or her Monero address to the sender, which then the sender could generate the one-time
address for the receiver [110].

Monero also provides an audit feature called tracking key or view key, denoted as (a,B).
The tracking key is useful to determine all incoming fund to its address. However, the
tracking key cannot determine the address balance. It is also not possible to spend the
money by using the tracking key since it does not contain the private key b.

2.4.3 Monero Transaction

In Monero, the transaction is using a similar approach as in Bitcoin, which is UTXO-based
system. In such a system, a user will need to prove her ownership for each unspent output
she wants to spend. Moreover, since Monero uses a one-time public key mechanism, then
each unspent output will be associated with a different public key each time [108]. All
outputs in the blockchain become a pool of potential mixins. Users can select at random
the mixins from the pool to obfuscate their transaction inputs.

Monero transaction as in Figure 2.18 contains several information as follows.
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Figure 2.19: A sender constructs the receiver’s address [108].

Figure 2.20: The receiver computes the public key [108].

• Groups of outputs as the inputs. A group of outputs contains several public keys;
one of these public keys is the real output to be spent, while the other public keys
are the decoys.

• Key images. Each group of outputs needs to provide a key image. The key image is
the double-spending protection mechanism in Monero. If a key image appears more
than once in the blockchain, it means the same output has been double-spent.

• Outputs. These outputs are the new UTXO designated to the payee(s) or the payer
as change money.

Diffie-Hellman key exchange guarantees that the receiver can retrieve the new address
designated to the receiver. A random value r is picked by the sender, while a transaction
public key R = rG is also attached to the transaction along with a destination key
P = Hs(rA)G+B as in Figure 2.19. The receiver can calculate the P ′ = Hs(aR)G+ bG
for each transaction appearing in the blockchain. If P = P ′ then the receiver can determine
that the money is his or hers, as shown in Figure 2.20.

36



2.4.4 Monero Payment ID

In CryptoNote-based cryptocurrencies such as Monero, a sender is indistinguishable among
a set of senders [108]. However, a merchant must identify the sender of each transaction. In
Bitcoin, the merchant can create a unique address for each customer by using a deterministic
wallet [123]. However, in the past, Monero only allows one primary Monero address in a
wallet (we exclude subaddress [82] in the discussion). Therefore, metadata called Payment
ID is added into the Monero transaction to help the receiver to determine the sender of the
payment.

The Payment ID is 32 bytes data inserted into the extra field on the transaction data
that consists of 64 digits hexadecimal as appears on the Monero blockchain explorer. A new
feature named integrated address encrypts the Payment ID into the destination address,
where only the receiver can decrypt the Payment ID. The Payment ID for the integrated
address is 8 bytes long or 16 digits hexadecimal.

A new feature named integrated address encrypts the Payment ID into the destination
address, where only the receiver can decrypt the Payment ID. The Payment ID for the
integrated address is 8 bytes long or 16 digits hexadecimal. We use the term UPID to refer
to the unencrypted Payment ID and EPID to refer to the encrypted Payment ID.

2.4.5 Monero Ring Confidential Transaction

Ring Confidential Transaction (RingCT) is a feature in Monero which was first deployed in
Wolfram Warptangent (version 5) and has become a mandatory in Helium Hydra (version
6). The first block containing a RingCT Transaction is block number 1,220,517 in the
Monero blockchain. RingCT is a technique that combines Monero’s Linkable Ring Signature
and Confidential Transaction proposed by Maxwell [70]. RingCT combines Confidential
Transaction and Ring Signature [83].

RingCT mitigates liquidity problem by hiding the number of coins contained in the public
keys. The main requirement for constructing a ring signature is that each ring member
must have the same amount of coins and therefore the real one cannot be distinguished
from the decoys.

There is a problem of liquidity that the users cannot construct a transaction with
enough decoys that they employ zero-mixin transaction [85]. The zero mixin transaction
does not have any decoys. Hence, it is traceable because there is 100% chance of guessing
the real spent key in the zero-mixin transaction, unlike the ones with decoys. RingCT
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transaction outputs will appear as containing zero coins. Therefore the number of decoys
can be selected from a large pool of public keys using the same obfuscation method.

2.5 Monero Anonymity Problems

Over the past few years, there have been several studies to explore the anonymity features
of Monero. In 2014, Black Marble Attack emerged. Other attack methods such as including
zero-mixin, temporal analysis, private view key, EABE attack, and the problem of key reuse
reduce the users’ anonymity. We discuss each technique in the following subsections.

2.5.1 Black Marble Attack

The term Black Marbles Attack refers to an attack against the Monero anonymity conducted
by controlling as many outputs as possible in the Monero blockchain [85]. In the attack,
an attacker tries to control as many outputs as possible. Let all outputs of the blockchain
as black and white marbles in an urn. Black marbles are the outputs that belong to the
attacker. On the other hand, white marbles are the outputs created by honest users. The
urn is the shared ledger (the blockchain) where the black marbles (malicious outputs) and
the white marbles (honest outputs) are stored and visible to all observers.

To maximise the impact of the attack, the attacker needs to create more outputs (the
black marbles) to have more outputs than other users’ outputs (the white marbles). The
attacker creates as many transactions as possible and sends the coins to her address [65].
Since there is no information about spent outputs, the attacker needs to continually add
more outputs to increase the probability of her outputs being picked up by new transactions
as decoys.

2.5.2 Zero-mixin Transaction and Cascade Effect

In Monero, zero mixin transactions are a transaction which has at least one input using no
decoys or mixins. Zero mixin transactions do not have any anonymity feature offered by
ring signature, and therefore, any observers can immediately trace the real sender of the
transaction. The anonymity problem does not occur only for the zero mixin transactions,
but also for every other transaction that uses the same outputs as their decoys. The ring
signature is an effective method to create plausible deniability for untraceability under an
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optimum environment, namely there exist enough outputs that share identical characteristics
such as age and amount of coins contained in the outputs). Unfortunately, this environment
could not be sufficiently provided by Monero before the release of the mandatory RingCT
usage.

Although the users must split their transactions according to a specific denomination
regulation, this regulation was never strictly applied. An unprecedented amount of coins
can still be confirmed in the transaction, although it will create a liquidity problem where
the user cannot find other outputs containing the same amount of coins. For all outputs
that cannot mix with any other outputs, the users create a zero-mixin transaction: an input
contains only the real output without any mixin or decoys.

Although the zero mixin transactions have a cascade effect on the anonymity of other
transactions [85, 65], new investigations show that the impact is more significant than
expected. Based on techniques presented in the previous research, the effect is reaching the
rate of 87% [59, 79]. It means that at least more than half of all analysed inputs (before
RingCT) are distinguishable between the decoys and the real spent outputs.

2.5.3 Temporal Analysis

The zero-mixin transaction analysis also reveals that in most cases, the real outputs are the
most recent outputs [79]. The extrapolation of the gathered data mentions that 80% of the
real outputs that can be detected are the newest. The uniform mixin sampling used by the
system could not hide this characteristic.

New sampling methods, triangular distribution, were introduced to tackle the problem.
Triangular distribution protocol describes that at least 25% of all decoys must be from
recently added outputs. By using this technique, the temporal analysis becomes ineffective
because at least one in the mandatory minimum of five mixins in the version 6 of Monero
(Helium Hydra or software version 0.11.0) is aged less than five days.

2.5.4 Publishing Private View Keys

The private view key is a feature within the Monero system to provide an auditability of
the coins owned by a user. Assuming that the user provides the private view key of her
wallet to an auditor, the auditor is then able to track every coin received by the associated
address. Although the private view key enables such thing, the auditor cannot steal the
coins from the user by using the private view key. It is also impossible for the auditors
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Figure 2.21: A private viewkey determines all incoming outputs (payments) sent to the
corresponding address by scanning all transactions in the blockchain.

to determine the address balance. The high-level construction of a private view key is in
Figure 2.21.

The private view key can become a risk to Monero unlinkability. The anonymity of
a user depends on the anonymity of other users. The private view keys can distinguish
between the outputs sent to the owner of the private view keys and the outputs sent back
to the sender (the change).

The private view key is also an important feature. It is usable for use-cases that require
compliance, such as auditing and charities5. However, after the audit, it is not possible to
regain the unlinkability feature without creating a new address and move all the balance to
the new address.

2.5.5 EABE Attack

EABE attack is a scheme where the existence of cryptocurrency exchanges can disrupt the
anonymity of the user [58]. EABE is an abbreviation of Exchange-Alice-Bob-Exchange. The
scheme works as follows. Suppose Alice buys her Monero from a cryptocurrency exchange.
In order to use the exchange, Alice needs to provide her ID card to the company. Hence,
all Monero coins she buys are identifiable to her real ID.

5According to Moneroblocks’ Monero Richlist https://moneroblocks.info/richlist
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Later, she transfers her coins to Bob for payment of products she purchases from Bob.
Bob needs fiat money. Therefore he sells the Monero he receives from Alice to an exchange
(or the same exchange platform as Alice). Bob also needs to provide his ID card to the
cryptocurrency exchange company. Hence the coin is also connected to his ID. If Alice and
Bob are using the same cryptocurrency exchange, then the company will be able to trace
the transaction from the beginning to the end.

2.6 Summary

In this literature review, we first discuss fundamental blockchain technology in Bitcoin. Then,
we discuss how its privacy issues lead to the development of privacy-preserving techniques
in Bitcoin, and later, completely independent privacy-preserving cryptocurrencies such as
Monero. We discuss technical details in Monero that supports anonymous transactions
such as Linkable Ring Signature (LRS) and One-time Public Key (OTPK).

We also provide detailed explanations of various CryptoNote Standards (CNS) [113,
115, 114, 110, 55] that extends CryptoNote whitepaper [108] as the underlying Monero
protocols. We cover CryptoNote’s blockchain data structure, transaction structure, data
types, and encoding scheme. We also explain the implementation of CryptoNote’s theoretical
concepts into Monero working system and how they fit into Monero. We also discuss recent
technology development in Monero that improves transaction anonymity, most notably
Ring Confidential Transaction (RingCT), that encrypts transaction amount.

We discuss known Monero anonymity problems such as black marble attack [85], zero-
mixin transaction and cascade attack [59, 73, 79], temporal analysis [59], private view key
publication, and EABE attack [58]. The known problems become the starting point of this
project to investigate potential threats to Monero anonymity further.

2.7 Research Gaps

After conducting the literature review, we identify the research gaps in anonymity in
cryptocurrency. The privacy-preserving technique developments mainly focus on the
underlying cryptography. While the cryptographic methods are provably secure against
known attacks, cryptographic implementations into working systems are understudied.
Recent research indicates potential protocol-level vulnerabilities in Monero, one of the
privacy-preserving cryptocurrencies.
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Chapter 3

A Transaction-based Attack to
Monero Anonymity

Monero is one of the privacy-preserving cryptocurrencies employing CryptoNote protocol.
Cryptographic techniques such as linkable ring signature and one-time public key support
privacy feature in Monero. Recent studies show that the majority of Monero inputs are
traceable. However, RingCT solves the identified problem. Monero ring signature selects
current outputs in the blockchain as ring members. A user does not need an output owner’s
permission to include the output in the user’s transaction. Monero developers recommended
a set of output selection mechanisms; however, the transaction creator determines how he
or she selects the outputs for transaction decoys. Transaction anonymity depends on the
quality of the selected decoys.

This chapter is the first part of our exploration of the first research question, Q1, about
how attackers can exploit the Monero transaction mechanisms to reduce the anonymity of
Monero users. We examine past attacks in Monero and whether they are still applicable
to the current system (at the time of writing). We then review the Monero transaction
mechanism.

We propose a novel attack to reduce the anonymity of Monero transactions or even to
fully deanonymise the inputs. The proposed protocol can be launched in RingCT protocol
and enables multiple attackers to collaborate without trusting each other. Monero services
such as exchanges and wallets can implement the attack without extra fees and without
putting the users’ money at risk.

We construct this chapter based on our published paper, Monero Ring Attack: Recreating
Zero Mixin Transaction Effect [116].
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3.1 Introduction

Monero is one of the most valuable privacy-preserving cryptocurrencies in the world. It
is built based on blockchain technology where the transaction data is visible to everyone,
similar to Bitcoin [81]. However, unlike in Bitcoin, where anyone can track the flow of
money between addresses, in Monero, the observers cannot do the same. Ring signature
and one-time public key technologies are implemented as the default settings to improve
the anonymity of the transaction data. The real senders are obfuscated by adding multiple
decoys where the set of possible senders are equal and indistinguishable among each other.
The one-time public key means each output is unique and freshly created, while the real
address of the receiver never appears in the blockchain. Without any additional information,
it is infeasible to determine which addresses belong to a specific user.

Although Monero implements several privacy-preserving methodologies, there are at
least four different analyses that researchers developed to reveal hidden information in
Monero environment. These analyses were successfully conducted due to the transparency
of the blockchain data, liquidity problem, and identified users behaviour.

We propose a novel attack against the Monero untraceability. The proposed attack
can reveal the real outputs being spent in Monero transactions or at least reduce the
anonymity of the inputs. The attack scheme is available for a single attacker or multiple
attackers colluding to launch the scheme without the need of trusting each other. Each
attacker will take the benefit of others’ results. Our attack is sufficient to be conducted in
RingCT environment where an observer cannot see the transaction amount. Constructing
a malicious transaction as described in the proposed attack scheme will not cost an extra
fee if the attack is attached to an existing service.

3.1.1 Threat Model

We define the threat model in Monero as follows. Everyone can see all information stored
in Monero blockchain. The security of the confirmed transactions depends on the consensus
model of Monero. We also define two attackers, Attacker A and Attacker B. The Attacker A
has a sufficient fund to create transactions but does not have any access to coin exchanges
or wallet services software.

There exists a set of attacker A = {A1, A2, A3, . . . } colluding to attack the system, but
they do not trust each other. The attacker B has all ability owned by the Attacker A.
Attacker B can modify coin exchanges or wallet services software. There also exists a set of
Attacker B = {B1, B2, B3, . . . } colluding without trusting each other. The Attacker A and
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Attacker B can also collude to get the best result out of their efforts. Attackers conduct all
phases in the proposed method.

3.2 Our Proposed Attack

3.2.1 Overview

The proposed attack scheme utilises the leniency of the Monero daemon towards the
transaction created by the Monero wallet. Monero daemon only checks the validity of
the transactions submitted. Those transactions require correct balances and valid digital
signatures. The wallet entirely processes ring construction. Monero daemon helps the wallet
by providing public keys information based on indexes selected by the wallet.

Based on the Monero protocol as described, it is possible to construct a malicious
transaction to reduce the k-anonymity or even de-anonymise Monero transactions. We will
show that the impact of the proposed attack is similar to the cascade effect from the zero
mixin transaction.

We denote a Monero transaction Ti := Ri → Oi as an i-th transaction in Monero
blockchain B that inputs a set of rings R and outputs a set of O. A ring Rj

i ∈ Ri is a ring
signature that consists of a set of rji existing outputs {o1i , o2i , . . . }. The cardinality of Rj

i is
rji , or |Rj

i | = rji . We denote r as the system’s minimum ring size, such that r ≤ rji . In our
scheme, the ring Rj

i spends oki . The output oki is associated to a unique key image Iji , where
the association is only known to the owner. A ring in a new transaction reveals a unique
key image that has never appeared in the blockchain system B that records all known key
images as I.

Our attack’s preparation phase generates a set of r transactions τ = {Ti, Tj, . . . }, where
i, j, ... identify the transaction indexes in the blockchain B. Note that the transaction
sequence of each T ∈ τ do not matter. We assume each transaction contains one identical
ring with r ring members, namely Rl, where a ring Rm

l = Rl reveals a unique key image Iml
during the setup phase. Since there are r valid transactions, it means all ring members
are spent by the set of transactions τ . The passive attack phase observes the blockchain
B for a transaction Tv that includes q outputs in Rl, q ≤ r, in one of the rings, Ru

v . We
denote ring Ru

v suffers q anonymity reduction. In our active attack, a compromised service
constructs a malicious transaction such that q = r − 1, where observers are able to identify
that there exists exactly one ring member that satisfies owv ∈ Ru

v and owv /∈ Rl, which implies
that the key image Iuv is the secret value of owv .
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In the detailed explanation of the proposed attack, we also use the term public key to
refer to an output to avoid confusion. The phrase public key is correct in Monero, since
Monero uses one-time public key scheme, where each output represents a unique public key
that can only appear once in a lifetime.

3.2.2 The Proposed method

The proposed attack consists of three phases: preparation, setup, and attack. The attack
phase has two different approaches, the passive and active attack. The following subsections
explain each attack approach.

3.2.2.1 Preparation Phase

For each thread of attack, the attacker needs to have many unspent outputs. The number
of outputs depends on the minimum ring size r required by Monero system. For version
6 (Helium Hydra), the minimum ring size r is five and therefore the minimum number of
outputs required by the attacker is equal to that number. The purpose of the preparation
phase is to have a set of unspent outputs in which every single output is spendable in the
setup phase. If the attacker has more unspent outputs than the minimum ring size but less
than multiples of r, then the remaining outputs can be used during the attack phase.

Since the deployment of RingCT, it is not necessary to have the same amount of coins
for each output. Therefore, an attacker can use a small number of coins split across multiple
outputs. It means that an attacker can only focus on paying the transaction fees and do
not need to have extra reserved coins.

The type of attack influences the attacker’s number of threads. If the attacker intends
to launch a passive attack, then the attacker needs to create as many threads as possible.
The success of the attacker depends on the number of threads created by the attacker,
whereas in the active attack, the attacker only needs to create one thread. The outputs
are reusable in future transactions, which will not reduce the effectiveness of the attack,
although it might raise suspicion if a specific output appears too many times.

3.2.2.2 Setup Phase

In the phase, each attack thread requires exactly r inputs. It means there will be r rings
created by the attacker. Each ring will spend a transaction output owned by the attacker.
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Figure 3.1: The Setup Phase Where r = 5.

Let a set of l public keys L = {PKA, PKB, PKC , PKD, PKE, . . . } and their secret key
image pairs K = {IA, IB, IC , ID, IE, . . . }. The number of public keys in L is equal to r.
The decoys for each ring is chosen from L, as shown in Figure 3.1.

The attacker can generate one or multiple transactions to spend the inputs. However,
it is more cost-effective to have r inputs all in the same transaction. The setup phase
has a similar effect as the zero-mixin transaction, with one difference. In the zero mixin
transaction, anyone can precisely determine which input spends an output. In this setup
phase, it is infeasible to determine the exact input that spends a particular output. We
can only say that all inputs in the setup phase spend all members of L, regardless of which
input spends which output. The focus of the setup phase is to nullify the probability of
other transactions spending any member of L.

If the attacker does not create r inputs where all of the outputs are the member of L,
then the requirement to recreate the zero-mixin transaction effect is not fulfilled. Other
observers cannot detect whether the transactions spend the inputs, and therefore the attack
phase cannot be conducted.
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3.2.2.3 Attack Phase

There are two types of attack, namely, passive attack and active attack. Each attack has
different purposes and different methods. The following describes both attack types.

Passive attack. The purpose of the passive attack is to allow the outputs spent
(members of L) in the setup phase to be used by other users in multiple transactions.
If any members of L becomes a decoy, the observer can omit the public keys as setup
phase transaction already spent the public keys. According to double-spending prevention
rule, it is not possible to re-spend the public keys in any other transactions. The related
transactions suffer a reduced k-anonymity. The degree of the reduced k-anonymity depends
on the number of decoys coming from the transactions in the setup phase. The example in
Figure 3.2 depicts a case with reduced anonymity by two, according to the number of spent
public keys used as decoys.

Active attack. Let there be a malicious Monero wallet service run by Attacker B.
The purpose of the wallet is not to steal the coins owned by the users but to make the
transactions traceable. The wallet knows the public keys L and use them as decoys in the
ring signature as in Figure 3.3.

The active attack is efficient when targeting others’ outputs, primarily when a wallet
implements the attack protocol. The user might not be able to determine the malicious
behaviour of the wallet, as long as the wallet successfully creates transactions.

There are differences between the passive attack and the active attack. In the passive
attack, the attacker analyses the result of the setup phase and collects information about
other transactions which suffer reduced anonymity. In the active attack, the attacker can
altogether remove the anonymity of the inputs. In the passive attack, related services such
as coin exchanges or wallet services are not necessary to be used by the users, while in the
active attack, an attacker must compromise any related services.

3.2.3 Proof of Concept

As a proof of concept of our proposed attack, we conducted the preparation phase and setup
phase. We modify the source code of Monero to create a malicious wallet with the ability
to create transactions which comply with our scheme, in particular simplewallet.cpp and
wallet2.cpp.
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Figure 3.2: The Passive Attack.

Figure 3.3: The Active Attack.
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3.2.3.1 Preparation Phase

Instead of having a normal protocol when picking indexes from the histogram data, we pick
the indexes from the public keys stored in our wallet. Therefore, as the wallet also stores
the global index for each output, it is not necessary to create any requests to the daemon
for the data as the wallet itself can supply all requirements.

We have successfully launched the preparation phase and setup phase into the Monero
mainnet. The setup phase consists of one thread with r = 5. The transaction ID for the
preparation phase is:

b6781f2a6f5608553546442b84888346fdc3f78dd8995170180ed74081c05362.

3.2.3.2 Setup Phase

We have executed the setup phase with transaction ID of the following:

8d4a0c7eccf92542eb5e1f09e72cc0d934b180b768bc95388d33051db83194bb.

The detail of the transactions is accessible through any online Monero blockchain
explorers such as Xmrchain.net.

3.2.4 Our Proposed Attack Compared to Existing Attacks

Compared to the Black Marble Attack, our proposed attack is better in a coordinated attack
scenario of multiple attackers. Each attacker conducts the attack, and other attackers can
utilise the attack results without any additional information such as private view keys. In
our proposed attack, the transaction does not require the attacker’s address as the receiving
side. Therefore, the attack is easy to implement in existing online services such as exchanges
or wallet services. The exchanges or the wallet services do not need to spend any extra
transaction fees since they only need to implement the attack mechanism into the system
and convert their regular transactions into malicious transactions where only the anonymity
of the transactions suffers a reduction.

Our proposed attack does not rely on the existence of zero mixin transaction, which
becomes obsolete when Monero implemented RingCT protocol and mandatory minimum
number of mixins. The setup phase recreates the similar impact of the zero mixin transaction,
and the attack phase recreates the cascade effect of zero mixin transaction.

Our proposed attack is even more useful to be launched in RingCT-enabled system
because an attacker does not need to attack multiple coin denominations and only focus on
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Table 3.1: Comparing attack methods

Factors BM ZM TA PPV Ours

Collaboration between attackers X V X X V
Requires no extra fees X V V X V
RingCT resistant V X V V V
Minimum mixin resistant V X V V V
Accuracy in determining real outputs V V X V V

one denomination. Moreover, RingCT enables the attacker to use a small number of coins.
The system cannot detect the number of coins sent, and therefore even the attacker sends
zero coins, the system will still accept it.

Our attack has a higher precision rate compared to temporal analysis. The temporal
analysis depends on decoy sampling method. If the sampling algorithm is optimum, then
temporal analysis cannot determine the real output of the input. Our attack can precisely
determine the real output in the input with 100% accuracy. Table 3.1 shows the summary
of the comparison.

3.3 Conclusion and Future Work

We have proposed and demonstrated a new attack against the untraceability of Monero
system. We showed that the anonymity of Monero relies on wallet implementation and the
construction of each transaction. Our attack explores the weakness of the ring signature
assumption where the sampling algorithm for the mixins is assumed to be random.

Malicious wallets can break the users’ anonymity without necessarily stealing the money
that belongs to the users. Detecting such activities require efforts by scanning all existing
combinations of the ring construction ever existed in the blockchain, and it is unlikely that
unaware users detect such activity as long as they do not lose their money.

Based on our research, it is vital to enhance the protocol to protect the anonymity of
the users without trusting the wallet, since the wallet can construct a transaction which
will reduce or eliminate the anonymity of the transaction. Detection and blacklisting are
two alternative methods to avoid such an attack.

Our proposed attack method is also applicable in other systems that utilise a ring
signature scheme, such as electronic voting (e-voting). Such a system suffers our attack in
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the following scenario. Suppose there is an election where multiple candidates compete for
a position in the government. A candidate wants to buy votes from the voters in order to
win the election. Since the e-voting is employing a ring signature, the candidate buys the
votes in bulk. In order to do this, a vote-seller coordinator is necessary. The coordinator
lists all vote sellers and creates groups of these sellers based on the ring size n used by the
e-voting system. Each group consists of n vote seller. Then, all group members inform
their public keys that perform as decoys for other members. Each group constructs n
transactions having identical ring members to cast votes for the candidate. The transaction
construction resembles our proposed setup phase.

3.4 Chapter Summary

In this chapter, we address our first research question, Q1, that investigates Monero
transaction schemes. We propose Monero Ring Attack (MRA) as a new attack scheme at the
protocol level. Our research shows that the lack of regulation in protocol implementation
leads to anonymity threats.

In the next chapter, we present the second part of our investigation related to our
Q1. We evaluate MRA and propose a mitigation strategy to prevent the attack. We then
improve our MRA technique and propose Monero Ring Attack (MRAE) that is immune to the
mitigation strategy for MRA.

51



Chapter 4

Advanced Transaction-based and
Payment ID-based Attacks to
Monero Anonymity

Monero is one of the most valuable cryptocurrencies in the market, focusing on users’
privacy. The built-in features in Monero help users to obfuscate the information of the
senders and the receivers, hence achieve better privacy compared to other cryptocurrencies
such as Bitcoin. Previous studies discovered multiple anonymity problems within Monero
systems and based on these findings, Monero developers improved the system. However,
after the improvements, we discovered new attacks to anonymity reduction in Monero
system.

This chapter contains the second part of our investigation on our first research question,
Q1, where we propose two attacks. To construct the first attack, we revisit our MRA and
study its attack characteristics. For our second attack, we revisit our data extraction results
and discover a repetitive pattern useful for an anonymity attack.

Our first attack is an extension of a known attack called Monero Ring Attack (MRA).
We call our new attack as Monero Ring Attack Extended (MRAE). MRAE is a more robust
attack that provides identical attack results as MRA. Our new attack is immune to MRA’s
mitigation strategy by avoiding ring duplicates and utilises unique ring combinations. The
second attack exploits Unencrypted Payment ID to discover the real transaction inputs.
We find more than 332K traceable inputs. The finding is the largest traceability attack
result after RingCT implementation.

This chapter is based on our published paper, Anonymity Reduction Attacks to Monero
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[117]. In response to our findings1, Monero implements blackball2 function that prevents
our attack scheme. Monero developers also phased out Unencrypted Payment ID (UPID)
and replaced it with Encrypted Payment ID (EPID, or also called as integrated address)
and subaddress [29].

4.1 Introduction

The anonymity in Monero is based on the information obfuscation of the real senders and
the real receivers, making it hard for observers to make a direct relationship of the senders
and the receivers. The anonymity features of Monero depends on ring signature and stealth
address in the system. The privacy-protection mechanism received a further enhancement
by RingCT technology, which obfuscates the number of coins transacted.

We define an anonymity reduction attack as an effort made by a malicious user (or
an attacker) who tries to de-anonymise other users’ transaction. This attack is made by
creating transactions and breaking the attacker’s anonymity. An example of this attack is
Monero Ring Attack [116]. The attack mentioned earlier works on both pre-RingCT and
post-RingCT environment and does not rely on zero-mixin transactions [59, 79].

Contributions. We summarise our research contributions as follows.

1. We propose a mitigation strategy on a known Monero anonymity attack exploiting the
users’ freedom when creating mixins [85]. Our mitigation strategy uses a list of hash
values of existing mixins. New transactions are not allowed to use any mixins that
have existed in the system, in which their hash values are on the list. By employing
the mitigation strategy, future attacks using the same method are preventable entirely.

2. We propose an extension of Monero Ring Attack (MRA) [116]. Our new scheme
achieves the same goals of MRA but nullifies the mitigation strategy we designed.
The new scheme provides an obfuscation method when choosing the mixins. Hence
identical mixins are no longer needed.

3. We propose a solution to avoid the new attack we propose. Monero developers have
been working on a new blacklisting mechanism called blackball which will blacklist
all known corrupt outputs to mitigate an attack over key reuse3. In our solution,

1https://github.com/monero-project/monero/pull/3671
2https://github.com/monero-project/monero/pull/3428
3https://github.com/monero-project/monero/pull/3322
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we developed a new metric as a quantitative measurement towards the suspicious
level of anonymity reduction attack. The metric is useful to complement the existing
blacklisting method, either by implementing it in the Monero core soft-ware or as a
separate service.

4. We propose a novel anonymity reduction attack by utilising extra information called
Payment ID (PID) in Monero transactions. The scheme enables the attacker to trace
the real outputs spent in the transactions. We also suggest a possible countermeasure
on the attack.

Organization. The rest of the chapter is organized as follows. Section 4.2 describes previous
studies related to our research. In Section 4.3 we propose a mitigation strategy of a known
attack, while in Section 4.4 we improve the known attack by removing the weaknesses
and propose a stronger attack trait. Our security analysis, attack mode, attack variants,
detection, and mitigation method are presented in Section 4.5, 4.6, 4.7, 4.8, and 4.9
respectively. Lastly, Section 4.10 presents a novel attack related to Payment ID usage.

4.2 Related Work

In this section, we recall related work, namely zero-mixin problems and Monero Ring Attack,
that are important to help understand the ideas we present in this the chapter.

4.2.1 Monero Zero-Mixin Problems

In general, a receiver of a transaction can determine that her outputs become decoys on
other transactions. Therefore, a user may try to attack the system by creating a large
number of outputs in order to reduce the anonymity of other transactions [85]. In the
attack, the attacker needs to pay a huge amount of transaction fees. The attacker also needs
to keep creating new transactions if she wants to control a majority of the outputs available
in the network [85]. Recent studies show that zero-mixin transactions have impacted the
anonymity of other transactions. Research finds that at least 87% of the mixins up to a
point were de-anonymised [59]. Another research proposes a change in the way the Monero
wallet samples the mixins by prioritising new outputs rather than randomly picks the mixins
from all possible options [73].
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4.2.2 Monero Ring Attack

In Chapter 3, we propose a new type of attack targeting Monero anonymity called Monero
Ring Attack [116]. This attack is an improvement over the previous attack presented in
[85], where an attacker tries to dominate the available outputs in the system. In Monero
Ring Attack, several attackers can join forces to attack the system, each by crafting special
transactions [116].

If an attacker creates a malicious transaction, then other attackers can use the result of
that transaction in addition to their results. Therefore, in summary, each attacker will pay
fewer transaction fees, but with a more significant impact. During the attack, the attackers
do not need to trust each other or communicate with each other. All they need to do is
scanning the blockchain data and determine the malicious transactions created by others.

The critical point on this attack is using identical mixins on malicious transactions. Let
r as the minimum number of mixins in the system; an attacker needs to have at least r
outputs or sets of r outputs. Then, the attacker constructs the inputs by using r outputs as
the mixins. These constructions help any attackers to determine that existing transactions
spent all the outputs used in the mixins. Since double-spending is not possible, the attackers
know that the outputs are decoys.

The Monero Ring Attack has three phases: preparation phase, setup phase, and
attack phase. In the preparation phase, the attacker prepares r outputs. In the setup

phase, the attacker constructs spending transactions using identical mixins, each mixin
has r outputs as the ring members. Then, in the attack phase, the attacker expands the
outputs (active attack) and analyse the result of the attack (passive attack).

The purpose of the attack is to trace the real outputs spent by mixins or at least
reduce the k-anonymity of the transaction mixins. The attack creates multiple malicious
transactions. Then, the attacker expects that the outputs of the attack become mixins of
honest transactions.

4.3 Mitigating Monero Ring Attack

4.3.1 Overview

The setup phase in Monero Ring Attack as described in [116] has a unique characteristic
where identical mixins appear multiple times. By determining this characteristic, the attack
is detectable. The detection is done by hashing all mixins in the blockchain then search for
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any hash duplicates. If any mixin duplicates appear, then it indicates that the attack has
occurred.

4.3.2 Detection Method

We propose a method to detect whether the attack has occurred in the blockchain. Scanning
and blacklisting steps of detecting the attack are as follows.

1. For all mixins in the blockchain M = {m0,m1,m2, . . .mn}, produce a set of hash
values H = {h0, h1, h2, . . . , hn} by using hash function FH such that h0 = FH(m0).
A mixin m0 is a list of outputs mo0 = {ov, ow, ox, oy, oz, . . . } where v, w, x, y, z, . . .
are the output indexes.

2. For all mixins M , compute the corresponding ring size R = {r0, r1, r2, . . . , rn} such
that r0 is the ring size of mixin m0.

3. For all hash values hi ∈ H, compute the number of occurrence u ∈ U =
{u0, u1, u2, . . . , un} such that ui is the number of occurrence of hi.

4. For each mixin mj where 0 ≤ j ≤ n, if rj = uj then the mixin mj is considered as an
attack. All outputs in moj needs to be included in a blacklist B.

5. For each mixin mk where 0 ≤ k ≤ n, check if mok contains any outputs from B. If
yes, then add mok to the blacklist B.

The blacklist B, as the result of the detection method provided above, could then be
published. All of the outputs in the blacklist B are discouraged to be used when sampling
outputs for creating mixins.

4.3.3 Mitigation Strategy: Forbid Mixin Duplicates

The Monero Ring Attack has a characteristic of using mixin duplicates when launching the
attack. In order to countermeasure this type of attack, Monero daemon can be equipped by
a mechanism to reject new transactions having identical mixins. Furthermore, the daemon
can maintain a list of mixin hash values that have appeared in the system. New transactions
need to prove that the hash values of their mixins have never existed in the blockchain.
Considering that creating new mixins is easy, users can resubmit rejected transactions after
revising the duplicated mixins.
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Table 4.1: Comparison between the existing Monero Ring Attack and our proposed attack

Parameters MRA MRAE

Attacking untraceability and anonymity v v
Cooperation between attackers without trust v v
Undetected using hash table x v

4.4 Extending Monero Ring Attack

4.4.1 Overview

We propose an extension to the idea of using sets of transactions and creating identical
mixins in the setup phase, as explained in Section 4.2.2. Instead of using identical mixins,
our new attack uses combinations of outputs. The result of this modification is identical
to the Monero Ring Attack, but the method is harder to detect. The hashing detection
method is useless against the new attack. Table 4.1 shows the comparison between the
Monero Ring Attack (MRA) and our proposed attack.

Both attacks are useful when launched against specific targets, such as coin ex-change
users, rather than targeting random Monero users. Targeting random users requires a
massive amount of money to pay the transaction fee while targeting specific users will
reduce the attack cost. The governments or regulators can enforce business entities under
their jurisdictions to implement this scheme in order to discover the users’ activities in
Monero system secretly.

4.5 Security Model

The security model is similar to the one proposed in MRA [116]. We assume that an attacker
has read-only access to the public blockchain. The attacker might also have access to wallet
services or trading platforms in order to launch the attack without paying transaction fees.
In the mentioned services, customers pay the transaction fees.

The goal of the attack is to define the real outputs spent by other transactions or
reduce the anonymity of the transactions created by the users. The attack enables multiple
attackers to analyse the work of other attackers and aggregate the result to maximise their
efforts.
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Table 4.2: Spending six outputs in six inputs. The rasterized cells are the ones being spent.

Outputs IA IB IC ID IE IF

O1 v v v v v
O2 v v v v v
O3 v v v v v
O4 v v v v v
O5 v v v v v
O6 v v v v v

4.6 Attack Mode

Table 4.2 is an example how 6 outputs O = {O1, O2, O3, O4, O5, O6} can be spent in six
inputs I = {IA, IB, IC , ID, IE, IF}, with each input has a ring size of 5. We assume the
system’s mandatory ring size is five as in Monero fork version 6 (software version v0.11.0.0).
The rasterised cells indicate the real outputs of the inputs. The attack can be obfuscated
further by employing a large set of outputs O which will be spent by a large set of inputs I.
These inputs can be in one or many transactions.

We denote by nCr the number of possible ways of choosing a ring of size r out of a total
of n possible outputs. For example, a case where n = 80 and r = 5, we find C = 24, 040, 016
possible combinations to spend 80 outputs in 80 inputs. The calculation shows that it is
infeasible to determine the attack by using a trivial mechanism.

4.7 Collaborating with Other Attackers

The proposed attack can be a collaborated attack among multiple attackers. The attackers
do not need to trust each other to decide whether they have conducted the attack. Therefore,
trust is not needed to collaborate since the attackers can always validate all information.
The validation process is easy: if the number of outputs and inputs match, then the attack
occurs.

In order to make the validation process faster, the attackers still need to share a part of
the information related to the attacks they conduct. The information to be shared includes:

• A list of all outputs used in the attack.

• A list of all inputs involved in the attack.
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4.8 Detecting the Attack

The strategy described in Section 4.3 is not applicable to mitigate the new attack; therefore,
we define a new method. We assume that the shared information mentioned in Section 4.7
is kept secret among the attackers. We simulated this attack and determined two important
features that distinguish malicious transactions and honest transactions:

• The malicious transactions repeatedly include a subset of outputs O as the mixins.

• A subset of the outputs O has a high usage value, which might be higher than the
average usage value.

Precisely determining whether this type of attack has occurred in Monero and listing
all related transactions might be infeasible due to the number of possible combinations.
Consequently, we explore the features of this attack which will be identifiable within a set
of transactions.

The diagrams in Figure 4.1 shows information regarding the average usage per output,
the number of transactions and number of mixins aggregated for every 10,000 blocks. The
information is useful to distinguish between regular output usages and suspected output
usages. The sharp increase in diagram A is suspected to be caused by the mandatory
RingCT scheme implementation, which left the users to have limited options of outputs to
be used as their mixins. At the same time, the minimum ring size becomes five.

We then evaluated the data from the Monero blockchain up to block 1,542,882 containing
24.8 million outputs, where 4.7 million outputs are from RingCT transactions. Based on
the finding, we divide the transactions into pre-RingCT and post-RingCT transactions due
to their data characteristics. Figure 4.2 shows the related diagrams. The average output
usage for all pre-RingCT transactions is 1.96, while the average output usage for all RingCT
transactions is 3.68. Overall, the average output usage is 2.28.

The difference between pre-RingCT and post-RingCT transactions might also be affected
by a change in the mixin sampling method. The triangular distribution replaced uniform
distribution to increase the data resemblance with users behaviours as suggested by [73].
We simplify our analysis by ignoring the impact of the triangular distribution towards the
evaluated data. We define an output weight of OW as the number of inputs where an
output O perform as mixins in transactions. We also define an input weight IW as the
average value of OW for all outputs in an input. IW is defined in Equation 4.1.

IWs =

∑r
k=0OWk

r
(4.1)
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Figure 4.1: Diagram A shows the average usage per output from the blocks. Diagram B
shows the number of transactions on the blocks. Diagram C shows the number of mixins
of the transactions on the blocks. The horizontal axis shows the block height, while the
vertical axis shows the value.
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Figure 4.2: The aggregate data of all output usages with the legends describe the number
of output usage. Diagram A shows the aggregate output usage count on Non-RingCT
and RingCT transactions. Diagram B shows the same data on Non-RingCT transactions.
Diagram C shows the data on RingCT transactions. We aggregate any data less than 1%.

We scanned the blockchain and computed the value of IW for all inputs up to block
1,545,153 (timestamped on 5 April 2018). We found a total of 45,650,192 inputs on the
blockchain. The data is then aggregated and presented in Figure 4.3.

We look for standout figures on the blockchain data. We have presented the mechanism
where IW is used to weight all mixins. We discovered that IW could perform as a unique
value. Inputs that contain the same output having a high usage value are identifiable through
IW. Based on our evaluation, inputs having IW value of at least seven are suspiciously
reusing the same outputs multiple times. The total number of suspected inputs is 1,142,383
or 2% of all inputs recorded in the blockchain.

4.9 Mitigation Strategy: Input Weighting

The current triangular distribution sampling method does not guarantee that the users will
use outputs that are not a part of anonymity reduction attack. Thus, there is an urgent
need to improve the sampling protocol.

Our research shows that Monero outputs are not as fungible as claimed in [18]. Fungibility
in Monero describes that all outputs have the same value regardless of who creates the
outputs. Our results show that a subset of the outputs is potentially harming the anonymity
of the transactions than other outputs. Hence, the term fungibility can also be applied to
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Figure 4.3: Aggregated IW for all transactions (nonRingCT and RingCT). The data is
grouped based on the IW range. For example, the data marked as 1-2 means the IW is in
the range of 1 to 2.

the mixins, since they determine the level of anonymity gained by the users.

To increase the anonymity and mitigate the attack, we propose the use of Input Weight
(IW ) as one of the criteria when sampling the outputs during mixin creation. The IW
value of an output defines the probability of the output being a part of an attack.

Based on our evaluation, the current IW threshold to distinguish between normal
transactions and suspicious transactions is seven. It is also possible that the threshold is
changed due to changes in the system, primarily when the number of RingCT outputs
increases or the mandatory ring size increases. The rule for determining the threshold is
that the lower the threshold, the lower the risk would be.

4.10 Leveraging Monero UPID

4.10.1 Overview

The unencrypted Payment ID (UPID) poses an anonymity problem, where an observer can
easily collect the information from the public blockchain and decode the message. A user
investigated Monero payments associated with TheShadowBroker, a hacking group that
wanted to auction their secret information gained unlawfully. The investigation managed
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Figure 4.4: User A reusing the change money from the previous transaction in a new
transaction. Both transactions are sent to the same merchant. Note Output 1001 of TXA

from diagram A is included in Input 5001 in TXB.

to collect email addresses of TheShadowBrokers’ clients4.

By using a similar technique, we evaluated the use of UPID concerning the users’
anonymity. The UPID is optional; hence, not every user utilises UPID. A user uses the
same UPID to be included in multiple transactions when sending payments to the same
merchant. Therefore, we assume that transactions with the same UPID are repeating
payments with the same sender and receiver.

Based on the above scenario, if a user uses a UPID in a transaction and creates a second
transaction including same UPID which includes outputs from the first transaction to the
input mixins, then it is likely that the recent transaction spends these outputs. We consider
the reused outputs are the change money. The change is not transferred to the receiver and
returned to the sender’s address. The scenario is described in Figure 4.4.

4.10.2 Results

We collected the transaction data from Monero blockchain and extracted the information
into a relational database. The number of transactions using Payment ID is significant
that more than half of the transactions ever recorded in the Monero blockchain are using
Payment IDs, as shown in Figure 4.5.

From the genesis block up to block 1,535,607 (timestamped on 22 March 2018), we
found 2,584,535 non-coinbase transactions (containing 23,108,911 inputs). With-in the

4https://steemit.com/shadowbrokers/@wh1sks/theshadowbrokers-may-have-received-up-to-1500-
monero-usd66-000-from-their-june-monthly-dump-service
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Figure 4.5: The transaction percentages based on Payment ID.

result, there are 1,033,891 transactions (containing 12,383,714 inputs) using UPIDs and
420,153 transactions using EPIDs.

We further investigated the transactions using UPID and managed to cluster the data
based on the UPID reuse. There are 338,318 unique UPIDs found within the 1,033,891
transactions. There are also at least 15 UPIDs used more than 1,000 times. We then
cross-referenced the transaction data to find identical UPIDs in multiple transactions. We
discovered 332,987 traceable inputs from 165,919 different transactions using identical
UPIDs. The identified inputs are 1.6% of total inputs in transactions using 32 bytes
Payment ID.

We assume that the senders reusing the same UPID are sending money to the same
merchants. We also assume that a part of the outputs is the change money transferred
back to the senders’ addresses. When the senders want to create other transactions to the
same merchants, for example, to pay different purchases, then these senders can use the
coins contained in the change addresses from previous transactions. Hence, we conclude
that the new transactions are spending these outputs.

We investigated several cryptocurrency exchanges supporting Monero as one of their
tradeable assets, such as HitBTC, Binance, Bitfinex, Poloniex, and Kraken. Based on
information in Coinmarketcap.com, these cryptocurrency exchanges hold significant Monero
trading volumes among other trading platforms.

Table 4.3 shows that three cryptocurrency exchanges are using UPID, namely Binance,
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Table 4.3: A list of trading platforms and their Payment ID details. The information
from cryptocurrency markets was collected on 4 April 2018. The trading volume data was
taken from Coinmarketcap.com on 4 April 2018. The value of trading volume volume was
calculated by summarizing all trading pair volumes. New deposit address/PID indicates
that a user can create new deposit address or PID to deposit Monero on the cryptocurrency
exchange.

No. Platform Trading Volume Payment ID New deposit address/PID

1 HitBTC 37.68% EPID No
2 Binance 16.67% UPID No
3 Bitfinex 13.84% UPID Yes
4 Poloniex 6.56% EPID No
5 Kraken 6.23% EPID Yes
6 Livecoin 3.82% UPID No

Bitfinex, and Poloniex. We can determine that Binance and Livecoin users will always have
the same UPID for the same user, while Bitfinex is using the UPID but provides a feature
where the users can regenerate the addresses and UPID by them-selves.

Repeated transactions are likely to be created by trading platforms or cryptocurrency
exchange users. Research shows that the primary function of cryptocurrencies such as
Bitcoin nowadays are tradeable assets rather than as a payment method [41]. Repeated
deposits to the trading platforms are also possible, for example sending mining rewards
directly from a mining pool to the miners’ accounts in cryptocurrency markets.

Cryptocurrency trading platforms rely on the Payment ID to identify the customers’
deposit. Without Payment ID, it is infeasible to distinguish the correct Monero transactions
belonging to different customers. As their platforms may receive thousands of Monero
deposits per day, the Payment ID is useful to automate the identification process, which will
credit the correct customers’ accounts with the correct amount of coins they transferred.

4.10.3 Possible Countermeasure: Encrypted Payment ID

We have presented a case where using the same UPID can be harmful to the users’ anonymity,
where an attacker can determine the real outputs spent by the trans-actions. The UPID
is still widely used by cryptocurrency trading platforms. To mitigate the problem, users
should abandon the UPID. The merchants also should modify their systems to support the
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EPID, because EPID works identically to UPID. Hence there is no change in the merchants’
business process that the correct accounts can be credited based on the payments received.

4.11 Conclusion and Future Work

In this research, we propose a mitigation strategy of an existing attack in [6]. Then, we
formulate an extension of the attack, where the improvement of the new attack makes the
previous mitigation method obsolete. By using distinguishable features we found in the
transactions, we propose a simple approach yet effective as one of the considerations during
the mixin sampling protocols. We also propose a second anonymity reduction attack by
exploring the use of Payment ID. The Payment ID is a standard method being used by
Monero merchants to distinguish payments from different users. We found that transactions
having the same UPID is closely linked, such that at least 1.6% of the inputs are traceable.

For future works, we suggest the implementation of the proposed mitigation strategies
in a working system. The hardened system contains all standard anonymity features such
as traceable ring signature and one-time public key, including mitigation strategies as we
have proposed in this chapter. Then, we will analyse the impact of the newly created wallet
into the anonymity of the users and evaluate whether it is possible to construct new attack
methods.

4.12 Chapter Summary

In this chapter, we improve our transaction-based attack, Monero Ring Attack (MRA) from
the previous chapter, and propose Monero Ring Attack Extended (MRAE). Compared to
MRA, MRAE is more difficult to detect, especially in a large-scale attack, because MRAE utilises
unique combinations instead of MRA’s ring duplicates.

Both attacks demonstrate that transaction creation protocol is one of the most vulnerable
protocols in Monero system. We propose to mitigate MRA by using a search-and-blacklist
approach, while for MRAE, we propose new statistical metrics with an updateable threshold
to identify the attack.

We conclude the first part of our project. Our next two chapters explore our second
research question, Q2, that delves into Monero protocol updates.
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Chapter 5

Anonymity Problems of Monero
Protocol Updates

Monero ranked as one of the top privacy-preserving cryptocurrencies by market cap. The
developers introduced semi-annual hard fork in 2018. Although the hard fork is not an
uncommon event in the cryptocurrency industry, the two hard forks in 2018 caused an
anonymity risk to Monero where transactions became traceable due to the problem of key
reuse. This problem occurs due to the existence of multiple copies of the same coin on
different Monero blockchain branches such that the users spent the coins multiple times
without preemptive action.

In this chapter, we present the first part of our research on our second research ques-
tion, Q2, about the risks of the asynchronous protocol update in Monero to the users’
anonymity. We investigate the Monero hard fork events by analysing the transaction data
on three different branches of the Monero blockchain. We also collect secondary data from
cryptocurrency marketplaces for our analyses.

We discovered an insignificant portion of traceable inputs compared to the total available
inputs in the blockchain. However, our analyses show that the scalability of the event
depends on external factors such as market price and market availability. We propose a
cheap, easy to implement a strategy to prevent the problem of key reuse, should in the
future more durable Monero forks emerge in the market. Our published paper, On The
Unforkability of Monero, is the primary resource for this chapter.
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5.1 Introduction

Monero is one of the most successful privacy-preserving cryptocurrencies based on market
cap1. Monero is a CryptoNote-based cryptocurrency [108]. Cryptographic methods such as
Linkable Ring Signature (LRS) and one-time public key (OTPK) guarantee the untraceabil-
ity of the sender and the unlinkability of the receiver. Transactions in CryptoNote protocol
are more anonymous compared to other cryptocurrencies such as Bitcoin [108]. However,
research shows that the transactions in Monero can be traceable due to the problem of zero
mixin transactions [59, 79].

In a blockchain ecosystem, a fork is an event where the protocol changes [126]. Zamyatin
et al. [126] classified the changes into several possibilities: protocol expansion, reduction,
conflicting (bilateral), and conditionally reduction (velvet). There are generally two types
of blockchain fork, namely hard fork and soft fork. A hard fork is related to either protocol
expansion or bilateral, which results in a blockchain split or chain split. A soft fork,
including protocol reduction and velvet, does not produce any chain split [126].

Blockchain fork in the cryptocurrency setting usually benefits the users financially [93].
For example, a user had one Bitcoin before the Bitcoin Cash fork. After the forking event
happened, the same user will double his/her money: one Bitcoin in the original blockchain
and one Bitcoin Cash in the newly created blockchain branch. The price of Bitcoin was
US$2,808 (open price)2 while Bitcoin Cash was traded at the rate US$555.89 (open price)
each3, so the user received a coin worth US$555.89 for every bitcoin he/she held by doing
nothing.

As a part of the attempt to keep its system updated, Monero has scheduled semi-annual
hard fork. The hard fork of Monero mostly aims to improve privacy solutions. However,
Monero also intends to become an ASIC-proof cryptocurrency, where the software developers
discourage the development of ASIC machines for participating in Monero mining through
the existing Proof-of-Work (PoW) mechanism [108, 30]. For this purpose, on 6 April 2018
Monero updated its mining algorithm to render existing ASIC machines’ efficient computing
void. The event created a new Monero fork as Monero upgraded from protocol version six
to version seven.

The hard fork happened due to the incompatibility between two protocol versions.
The protocol version seven started from block number 1,546,0004, which was on 6 April

1The total market cap for Monero is US$1.7B according to Coinmarketcap.com on 26 October 2018
2https://coinmarketcap.com/currencies/bitcoin/historical-data/?start=20170723&end=20170723
3https://coinmarketcap.com/currencies/bitcoin-cash/historical-data/?start=20170723&end=20170723
4https://github.com/monero-project/monero
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Figure 5.1: The Monero hard fork timeline which shows two hard forks resulting in three
different chains by October 2018.

2018. Several independent parties were claiming that they still wanted to run version six
protocol. These independent parties rebranded the blockchain system running Monero
protocol version six into three different names: Monero Original (XMO), Monero 0 (Monero
Zero or ZMR), and Monero Classic (XMC)[74]. Although there have three different names,
in reality, they only have one blockchain [7]. After the Monero hard fork, another project
was also forked from the Monero version seven, called MoneroV (XMV), starting from block
number 1,564,9665 which was on 3 May 2018. MoneroV runs a modified version of protocol
seven. One of the modifications on MoneroV’s protocol from Monero version seven is the
reduction of the decimal places from 12 to 11. Hence, the value of all coins multiplied
tenfold. The fork history is as in Figure 5.1.

Similar to other blockchain fork events, the Monero users doubled their Monero coins
on each event, where they receive the same amount or even more coins in the newly created
cryptocurrencies. However, when the users decide to use the same coins without extra
caution, the anonymity of the transactions is potentially reduced.

A Monero hard fork event can compromise transaction anonymity. The hard fork event
creates new coins spendable by the pre-fork users. The problem occurs when the Monero
users spend the newly created coins. Hence, the traceability of the transaction’s sender is
deducible. We denote this as the problem of key reuse. The problem of key reuse reduces
the anonymity of a transaction because the users reuse the same keys when spending the
same coins. Monero developers acknowledged the problem of key reuse [30]. However, the
existing strategies are not sufficient to mitigate the problem completely.

Contributions. We summarise our contributions as follows.

5https://github.com/monerov/monerov
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• We investigate the impact of two Monero hard forks which occurred in 2018. We
collected the data of each blockchain branch and cross-referenced the transaction data
on all of the blockchain branches to determine traceable inputs. We discover over
55K distinct traceable inputs, where 90% of them are from two blockchain branches
running version six and seven. About 19% of all inputs in Monero version six of our
dataset are traceable. However, the percentage of the traceable inputs is insignificant
compared to the total inputs in Monero version seven (or the main branch). Unlike
existing attacks [79, 116, 125, 59, 117], the analysis on the problem of key reuse can
identify traceable inputs in Monero’s RingCT. Existing attacks cannot discover any
of the traceable inputs in our findings.

• We analyse the correlation between the identified traceable inputs and market prices
by using statistical analyses, namely correlation coefficients and linear regression. The
results on the correlation coefficients show that there is a strong correlation (0.553 to
0.761) between the two factors in Monero6, whereas we discovered a weak correlation
(0.242 to 0.32) in MoneroV. Likewise, the linear regression results show a medium
relationship in Monero6 but a small relationship in MoneroV. More significant support
from cryptocurrency exchanges to Monero6 compared to the support to MoneroV
also explains the massive gap of traceable inputs on both blockchain branches. These
findings also show that the scalability of the problem of key reuse depends on the
identified external factors.

• We propose a mitigation strategy for the problem of key reuse caused by hard forks in
Monero. Scalable Bloom Filters [1] provide an inexpensive checking mechanism of
existing key images and mixins. By adding the checking mechanism before submitting
new transactions to the network, transactions spending the same coins will maintain
the same level of anonymity. We also propose a new service node called joint node

as a part of the mitigation strategy. The node protocol is compatible with the current
Monero protocol without any significant changes.

Organisation. The organisation of this chapter is as follows. Section 5.2 contains related
work about existing anonymity attacks to Monero, an alternative strategy to a hard fork,
and replay protection. A threat model is available in Section 5.3. Section 5.4 describes our
analysis methods. Section 5.5 covers current mitigation strategies to the identified problems.
Our mitigation strategy proposal is also in this section. Section 5.6 provides discussions on
the security and the performance of the proposed mitigation strategy, while Section 5.7
concludes the findings and describes future work.
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5.2 Related Work

5.2.1 Velvet Fork

Velvet fork is a term coined by Kiayias et al. [57]. Rather than having a hard fork, the
velvet fork offers a new strategy where variables replace constant parameters when changing
the protocol. By using velvet fork, the hard fork is avoidable [126].

Although velvet fork is useful to avoid a hard fork that changes parameters, the velvet
fork is unusable when the change is in the protocol layer. If Monero adopts velvet fork
technique, then increasing ring size would be effortless by modifying a prepared variable
holding the ring size value. However, protocol layer changes such as modifying decoy
selection method, adding new signature feature [100], or changing consensus method [30]
cannot be done by using velvet fork.

5.2.2 Replay Protection

Replay protection is a mechanism to avoid a replay attack. A replay attack in cryptocurrency
refers to retransmission of a valid transaction data on a system to other compatible systems
[71]. The result of the replay attack is that the payee will get multiple payments in
different cryptocurrencies such that the payer suffers a loss. The paper by McCorry et
al. [71] describes several examples of replay protections being implemented in different
cryptocurrencies, such as Chain ID, Transaction Version, Check Block At Height, and
Sighash Enum.

Chain ID has been implemented in Ethereum since Spurious Dragon hard fork [20],
while Transaction Version, Check Block At Height, and Sighash Enum were proposed
as alternative solutions for replay protection in Bitcoin [71]. A new proposal introduced
new replay protection methods, namely Migration Input and Hardfork Oracle [71].
Migration Input was proposed to be implemented in Bitcoin protocol, where the input
hash is modified from 32 bytes to 41 bytes to accommodate extra information. By having a
different input hash scheme, the old protocol will not be able to validate the transaction,
and therefore only the new compatible protocol validates the transaction [71]. Hardfork
Oracle was proposed to be implemented as an Ethereum smart contract as an automatic
detection tool of transactions from different forks.

There is no replay protection currently being implemented in Monero protocol [90]. One
of the ways to create a transaction with built-in replay protection is to include at least one
new output in the intended chain as one of the decoys in the ring signature [105].

71



5.2.3 Attacks on Monero Protocol Update

The asynchronous protocol update or hard fork, on Monero can also lead to attacks [118].
A research discovered that the nodes that have not yet updated their applications to the
latest version (which run the latest protocol version) are prone to Denial of Service (DoS)
attack, where a large number of transactions can potentially flood the nodes’ temporary
storage txpool.

Furthermore, the DoS attack can announce the traceability of the inputs to the public by
submitting two different transactions that spend the same coins: one transaction submitted
to the old nodes (which run the old protocol) and another to the new nodes (which run
the new protocol). If the required condition of the network holds, then new transactions
in the old nodes will never be confirmed to the network. Hence the double spending will
never occur. However, since two coins appear twice in different nodes (which run different
protocols), then the real inputs of the related transactions can be deduced.

5.3 Threat Model

The untraceability in Monero requires that an observer cannot guess the real output being
spent in a ring construction R with a probability of more than 1

r
, where r is the number of

ring members. In this case, the anonymity of the real output depends on the size of r.

We define an input Ij traceable to an output oj as follows. The output oj is an output of
a blockchain B1 in a linkable ring signature R1 with a set of output O1 = {oa, . . . , oj, . . . , ol}
as its ring members and key image kj, such that R1, kj, and O1 are parts of Ij. The
same output oj appears on another blockchain B2 which is included in another linkable
ring signature R2 with a set of output O2 = {om, . . . , oj, . . . , oz} and key image kj. From
this occurrence, it can be concluded that the key image kj is associated to the output oj.
Therefore, the input Ij is traceable to the output oj, because the probability of guessing
the real output is 1. This occurrence also fulfills the linkable condition as described in
Linkable Ring Signature [64] as it can be concluded that the two ring signatures R1 and R2

are created by the same person, assuming that the secret key image kj is only known to
the owner.

Anonymity reduction occurs when q members of a ring R are deducible since they
are no longer fit as the candidate when guessing the real output. Therefore the
anonymity r is reduced by q. We define a reduced anonymity input Ii as an input of
a blockchain B1 in a linkable ring signature R3 with r as the ring size using a set of
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Figure 5.2: The inputs I1 and I3 have two common similarities: the key image k1 and the
output o4. Both inputs I1 and I3 are traceable. The inputs I2 and I4 contains the same
key image k2, however there are two identical outputs in the ring, namely o7 and o10. Both
inputs I2 and I4 suffer anonymity reduction by three.

output O3 = {ob, . . . , oe, . . . , oi, . . . , om} and key image kh. The same key image kh was
found on a ring signature R4 recorded on another blockchain B2 using a set of output
O4 = {oc, . . . , oe, . . . , oi, . . . , on} where at least two outputs {oe, oi} in R4 fulfill the following
criteria: {oe, oi} ∈ O4 and {oe, oi} ∈ O3. In this scenario, it is inconclusive whether key
image kh is associated to oe or oi. The example of a traceable output and an anonymity
reduction is shown in Figure 5.2.

We define passive attack and active attack in Monero. In the passive attack, an attacker
collects information from the public blockchain(s) and conduct traceability analyses. In
the active attack, the attacker controls dishonest nodes which return false information. By
returning false responses of key image-related requests, the dishonest nodes expect that the
client suffers anonymity reduction from the problem of key reuse, especially when a client
spends the same coins in different blockchains.

We assume that all cryptocurrency backers, including software developers, community
members, and users, desire the best privacy-preserving features for their systems. However,
there also exist some users in the system who unknowingly spend identical coins in multiple
blockchains. Therefore, related transactions become traceable. The events cause cascade
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effect, which make other transactions traceable or suffer anonymity reduction [79]. We
assume that the majority of the system nodes behave honestly by sending the correct
responses or information from any requests.

We assume that the current system can only accept small modifications which do not
substantially affect how the whole protocol runs. However, we also assume that hard forks
can occur at any given time such that the same unspent coins before the fork can be spent
multiple times on different blockchains after the fork. Conducting a hard fork is incentivised
financially as the newly created coins can be sold in the markets.

5.4 Analyses

5.4.1 Analysis on Traceable Inputs

We collected all transaction data on three different blockchains, which we called Monero6,
Monero7, and MoneroV. We use the term Monero6 to refer cryptocurrencies that are using
the Monero protocol version six: Monero Original, Monero 0, and Monero Classic. Monero7
is used to refer the Monero main blockchain which runs protocol version seven (as of October
2018). MoneroV is self-explanatory, referring to the blockchain system which runs MoneroV
protocol.

A checking algorithm is as follows.

1. We initialise an array Kres. The array will store the identified key images as the final
result.

2. For each key image, ki ∈ K do the following steps.

(a) Compute the total number of its occurrence in all three blockchains and store
the result in a variable, occ.

(b) Compute the number of unique transaction hash (txhash) and store the result
in another variable, unq.

(c) Execute a conditional statement as follows: if (occ > 1) and (unq > 1) then
Kres ← ki. The conditional statement is required to filter out key replay cases
as they do not help to identify the real output.

3. Return Kres.
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Table 5.1: The summary of traceable inputs from the problem of key reuse and the cascade
effect it caused.

Blockchain Height
Key Reuse Cascade Effect Dataset

Traceable Input Tx.Count Traceable Input Tx.Count Input Count Tx.Count

Monero6 1,675,606 52,646 3,148 278 276 274,131 44,467
Monero7 1,675,303 53,162 5,680 315 312 1,876,341 810,409
MoneroV 1,671,617 7,542 888 0 0 269,335 84,053

We have examined three blockchains by using the algorithm above on a dataset we built by
extracting non-coinbase transactions (transactions that are not block reward) confirmed on
block number 1,546,000 to 1,675,606 in Monero6 (181 days period), block number 1,546,000
to 1,675,303 in Monero7 (181 days period), and block number 1,564,966 to 1,671,617 in
MoneroV (152 days period). The cut-off period for data extraction is 4 October 2018. We
also have conducted a cascade effect analysis to determine how many traceable inputs as
the impact of the problem of key reuse on the same dataset. The result is presented in the
Table 5.1.

Based on the algorithm we developed, we discovered 52,924 traceable inputs on Monero6
(including the ones discovered using cascade effect method), 53,477 traceable inputs on
Monero7. In contrast, there are only 7,542 traceable inputs found on MoneroV. Although
there is only 29 days difference between MoneroV and both Monero6 and Monero7, the
traceable inputs found on MoneroV is only around 14% of traceable inputs found on
both Monero6 and Monero7. There is also an extreme difference in the number of non-
coinbase transactions between Monero7 and the other two cryptocurrencies. Monero7 has
810,409 transactions, where Monero6 and MoneroV only contain 5% and 10% of Monero7’s
transactions, respectively.

The traceable inputs in Monero6 are 19% of Monero6’s total number of inputs in our
dataset, whereas the traceable inputs in Monero7 and MoneroV are only 2% of their total
inputs. The result shows that the problem of key reuse has a more significant impact on
Monero6 than on Monero7 and MoneroV. Also, about 90% of all traceable inputs are found
among Monero6 and Monero7, whereas only 6% of the traceable inputs are on all three
blockchain branches. The numbers show that Monero6 is the higher source of the problem
of key reuse to Monero7 than MoneroV.
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5.4.2 Analysis on Anonymity Reduction

We also examined reduced anonymity as the side effect of the traceable inputs and cascade
effect. An input with a ring size of r suffers anonymity reduction if there are at most r − 2
spent ring members. By suffering reduced anonymity, the real output is still untraceable.
However, the probability of guessing the real output increases from 1

r
to 1

r−u , where
1 ≤ u ≤ (r − 2) and u is the number of spent outputs.

We discovered 1,848 inputs in Monero6 that suffer anonymity reduction. Likewise, 2,819
inputs in Monero7 and 264 ring signatures in MoneroV suffer anonymity reduction while
still being untraceable. Figure 5.3 shows the trend of the anonymity reduction on all three
blockchain branches. About 95% of the anonymity reductions have a reduced size of u
between 1 to 5.

The result shows that a transaction having a ring size of 5 or less is riskier than one
having a ring size of more than 5. We calculated the average ring size for the three
blockchain branches starting from the first block of the fork to the cut-off period on 4
October 2018, where Monero6, Monero7, and MoneroV have an average ring size r of 5.07,
7.56, and 7.75 respectively. Having a bigger ring size provides better protection on the
anonymity of the input. However, creating a transaction with a bigger ring size may result
in a more expensive transaction fee to be paid by a user. Determining a bigger minimum
ring size in the protocol level can also be helpful to ensure that the users have sufficient
anonymity in their transactions. While Monero6’s minimum ring size was five, Monero7
and MoneroV have a minimum ring size of seven. Based on the result, it is advisable to
have a ring size r > 5.

5.4.3 Analysis on Key Reuse and Cryptocurrency Market Price
Correlation

We collected historical prices of Monero Classic and Monero Original from Coinmarket-
cap.com (20 April 2018 to 3 October 2018), while the prices of MoneroV were from
Coingecko.com (4 July 2018 to 3 October 2018). We calculated statistical data regarding
the market prices for Monero Classic, Monero Original, and MoneroV. The summary of the
market prices is on Table 5.2. We identified that while the prices of Monero Classic and
Monero Original are in the average of US$4 (lowest at US$1 and highest at US$27), the
average price of MoneroV is meagre, which is at US$ 0.06 (lowest at US$0.02 and highest
at US$0.26). If the price of MoneroV is multiplied by ten, then the MoneroV price only
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Figure 5.3: The summary of anonymity reduction as the result of key reuse problem on
Monero6, Monero7, and MoneroV.

becomes US$0.6 on average. In contrast, the average price of Monero Classic and Monero
Original is seven times more expensive.

Based on the price information of Monero Classic (price at high, low, and close), Monero
Original (price at high, low, close), and MoneroV (price at open and close), we studied the
correlation between market prices and traceable input count as well as transaction count by
computing Kendall’s tau-b correlation coefficient and Spearman’s rho correlation
coefficient. The result is presented in Table 5.3.

Cohen as cited by Sauro and Lewis [97] provided three interpretations of correlation
coefficient r as follows: r is small when 0.1 ≤ r ≤ 0.3, medium when 0.3 ≤ r ≤ 0.5, and
large when r ≥ 0.5. Our results show that all coefficients for both Monero Classic and
Monero Original are in the range of 0.557 and 0.754, which indicates a strong correlation
between the price and key reuse in Monero Classic and Monero Original. On the other
hand, the result shows a small correlation between the price and key reuse in MoneroV,
where the coefficients are 0.242 and 0.32. Based on this information, we deduct that the
market price and the number of traceable inputs are correlated. However, the statistical
analyses cannot determine the causality between the two parameters.

Figure 5.4 shows the linear regression analysis of the dataset. The R-squared values are
0.180, 0.146, and 0.003 for Monero Classic, Monero Original, and MoneroV, respectively.
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Table 5.2: The summary of market prices of Monero Classic, Monero Original, and MoneroV.

Monero Classic Monero Original MoneroV
Open High Low Close Open High Low Close Open Close

Max.Price 21.99 27.42 18.02 21.55 21.81 24.36 14.88 20.75 0.26 0.26
Min.Price 1.20 1.29 1.04 1.20 1.25 1.29 1.22 1.23 0.02 0.02
Avg.Price 4.38 4.84 4.04 4.34 4.24 4.64 3.92 4.21 0.06 0.06

Table 5.3: Correlation between the number of traceable input and market price (open price)
of Monero Classic, Monero Original, and MoneroV

Correlation
Kendall’s Tau-b Spearman’s Rho

Monero Classic 0.561 0.755
Monero Original 0.557 0.754
MoneroV 0.242 0.32

The result shows a medium relationship between the number of traceable inputs and the
market price on both Monero Classic and Monero Original, but a small relationship among
the two variables on MoneroV.

Figure 5.4: The linear regression of the number of traceable inputs and market price of
Monero Classic (figure a), Monero Original (figure b), and MoneroV (figure c).
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5.4.4 Analysis on Key Reuse and Coin Availability

At the time of writing, cryptocurrency portal Coinmarketcap.com lists Monero Classic
(XMC) and Monero Original (XMO) as two separate coins. In reality, these two cryptocur-
rencies are in the same blockchain branch. Each of these cryptocurrencies is exchangeable
different cryptocurrency markets. Monero Classic6 is traded at:

• Gate.io (XMC/USDT pair and XMC/BTC pair)

• HitBTC (XMC/BTC pair, XMC/USDT pair, and XMC/ETH pair)

• TradeOgre (XMC/BTC pair)

Monero Original, on the other hand, is only available at HitBTC (XMO/BTC pair, XMO/
USDT pair, and XMO/ETH pair). The other Monero fork, MoneroV (XMV), is only
available at TradeOgre (XMV/BTC pair). On 4 April 2018, two days before Monero6 fork,
the top six most busy cryptocurrency exchanges serving Monero are HitBTC, Binance,
Bitfinex, Poloniex, Kraken, and Livecoin, which made 84.8% of the total daily Monero
trading volume [117]. HitBTC has the largest portion of 37.68%, while Livecoin had the
lowest portion of 3.82% among the six exchangers [117]. Although the Monero pre-fork
trading information history in TradeOgre is unavailable, it still implies that the majority
of the cryptocurrency markets did not support MoneroV. Therefore the Monero users
never received MoneroV from the cryptocurrency exchanges. On the other hand, as
Monero6 received support from big exchanges such as HitBTC, the number of Monero6
coins distributed to the users were much larger than MoneroV coins.

The market availability is likely to be one of the factors that cause the number of traceable
inputs on MoneroV is only 14.3% of Monero6’s traceable inputs. However, it is not possible
to determine how many spent coins in the traceable inputs due to the implementation of
RingCT, which obfuscates the number of coins involved in the transactions.

We also made several assumptions as follows.

1. The users will be given free coins after a hard fork, as long as they hold some coins
on the original blockchain branch before the hard fork [51, 49, 50].

2. The users prefer to get a maximum benefit by selling the coins at a high price.

6Information about Monero Classic and Monero Original is taken from Coinmarketcap.com, while
information about MoneroV is from Coingecko.com.
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3. If the users are using private wallets (either by using a computer wallet, smartphone
wallet, web wallet, or paper wallet), then the users need to set up new wallet
applications for the new chains and import the information from their old wallets.
Then, they can create transactions.

4. If the users deposit their coins to cryptocurrency exchanges’ wallets before the hard
fork, then it depends on the exchanges whether they are supporting the new coins.
Then the users will receive the new coins from the exchanges in their accounts on
those exchanges [51, 49, 50].

The assumption 1 and 2 motivate the users to redeem their new coins. Hence, the problem
of key reuse potentially occurs. However, assumption 3 becomes a barrier for the users, as
setting up new wallets by importing private keys from old wallets is not trivial and requires
technical knowledge. In assumption 4, if the cryptocurrency exchanges do not support the
forked coins, the users will not receive any new coins.

5.5 Mitigation Strategies

In this section, we discuss existing mitigation strategies for the problem of key reuse. We
also propose a new mitigation strategy.

5.5.1 Current Mitigation Strategy

5.5.1.1 Not claiming the coins

There is a suggestion for Monero users not to use the newly created coins they received for
free [98]. The number of coins received by the users varies depending on the new systems.
Monero6 provides 1:1 coin distribution, where each Monero holder receives the exact amount
of coins on the new blockchain branch. MoneroV offers 1:10 coin distribution, in which the
Monero holders receive ten times the amount of Monero they have before the fork occurs.

There are two identified problems in this method. Firstly, the method is not preferable
by the users, since they may lose potential profits by not claiming coins. The free coins are
tradeable for other cryptocurrencies or even local currencies. The suggestion is even more
unlikely to be followed by the users when the amount of profit they can get by spending the
coins is substantial. Secondly, the method can only be effective if and only if all Monero
users do not redeem their new coins. If any of the Monero users redeem the new coins, the
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redeeming transactions can potentially reduce or even altogether remove the anonymity of
other users’ transactions which make their transactions traceable.

5.5.1.2 Churning

Churning technique expands the output selection by sending the users’ coin to their addresses
multiple times [58]. By churning the coins, the number of ring members or decoys will
expand, which in turn makes it harder for an attacker to determine the real outputs
from multiple transactions created during the churning process to trace the transactions.
However, the churning technique is still prone to known attacks such as timing attack and
network attack, which deduct real outputs based on the origins of the transactions [98].
The effectiveness of churning to mitigate the key reuse problem is also questionable [98].

5.5.1.3 Blackball tool

The Monero developers created a tool called blackball. Blackball is a term originally
coming from a document that describes the first identified problem within Monero system,
where an adversary tries to add his/her outputs to the blockchain by creating as many
transactions as possible [85]. The outputs controlled by the adversary is called blackballs

or black marbles, while other outputs created by genuine users are white balls or white
marbles. Whenever the blackballs are included in a transaction t as members of the mixins,
then the adversary will be able to determine his/her blackballs as decoys and not the
real outputs. Hence the anonymity level of the affected transaction t is reduced.

The blackball application created by the Monero developers tries to blacklist known
malicious outputs; all outputs in the blacklist are discouraged from being used by the users
as mixins. The application is not mandatory. The official Monero node application and
Monero wallet did not have the blackball feature.

The problem with the blackball tool is that the users need to have a full copy of each
blockchain branch, which then the tool will compare and extract the information from the
blockchain branches. However, assuming one blockchain branch requires 50GB of storage
space, then three blockchain branches will require at least 150GB of storage space, just to
keep their anonymity level intact. The blackball cannot run on light hardware such as
smartphones, where space and computing power is limited. Hence it is unlikely that all
users can run blackball tool to make their transactions safe. Other than the blackball

tool as mentioned earlier, there are features in the default/official CLI-based Monero wallet
which can reduce the problem of key reuse.
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• To let users set the mixins/decoys themselves manually. This feature is implemented
in set ring command [106].

• To only use mixins that exist before the fork. This feature is implemented in
segregate-pre-fork-outputs command [106].

• To combine mixins from before fork and after the fork. This feature is implemented
in key-reuse-mitigation2 command [106].

Having identical mixins in transactions in multiple blockchain systems will prevent the pas-
sive attacker from tracing the transactions because the anonymity level is not compromised.
However, there is no satisfactory solution to help the users conducting the best practice in
maintaining the anonymity of their transactions.

5.5.2 Our Proposed Solution

Our proposed solution consists of three parts, namely hard fork management, key image
management, and joint nodes.

5.5.2.1 Hard Fork Management

We propose to add Chain ID information in every transaction, which will be useful for
several reasons. Firstly, the Chain ID prevents a replay attack. Secondly, the Chain ID

poses as an identifier when the users want to get information about outputs (when they
want to create new transactions) or existing key images.

To complement the Chain ID, a Fork Point information also needs to be managed. Fork
Point is the first block height of a new chain that has a different block hash compared to its
parent, which is similar to Ethereum’s FORK BLKNUM [20]. Unlike Chain ID, the Fork Point

does not need to be embedded to transaction data. The reason for not embedding the
Fork Point in the block or in the transaction is to save space from less useful information.
For this requirement, a new database called Chain Info will be created. The new database
contains both Chain ID (as the primary key) and Fork Point.

Chain Info. The proposed solution must record new chains after hard forks in a
First-Come-First-Serve basis. The Chain ID can be used to query the Fork Point from
the newly created Chain Info database. The Chain Info database is inside the node’s
blockchain database file. This approach is different compared to Ethereum’s method which
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stores the Chain ID information on a Github page [20], while Monero stored the history
information of its own hard fork by hardcoding it to the source code7. However, this
approach will be infeasible when dealing with external hard forks, where the occurrences
might not be known to the Monero developers and Monero community.

5.5.2.2 Key Image Management

We have identified several issues about key image information management, including:

1. Multiple blockchain branches having different block interval.

2. Multiple transactions submission having identical key images in a short period of
times

3. Updatability of the key image ring members (e.g. member addition).

4. New transactions with ring members that are not available in the parent chain where
the key images first appeared.

5. New chains that have smaller mandatory ring sizes compared to the parent chain.

Scalable Bloom Filter. Scalable Bloom Filters [1] can solve the identified issues.
Scalable Bloom Filters (SBF) is an extended version of the original Bloom Filter [14]
where scaling is enabled by utilising multiple Bloom Filters instead of a single filter as
in the standard Bloom Filter (BF). Therefore, the capacity in SBF can be expanded after
initialisation, contrary to BF, which cannot exceed the predefined capacity. Similar to
BF, an SBF can produce false-positive results where the filter detects that a data is in a
setting where it should not. However, SBF also inherits the characteristics of BF, where
false negative is negligible. A false negative is when the BF returns False (that the data is
not in the set) when it is supposed to be True (the data is actually in the set).

In our proposed solution, we introduce several SBFs. The first SBF is used to filter
key images, namely SBFk. Key images from related blockchains (parents, siblings, or
child chains) are inputs to compute SBFk. By constructing SBFk, new key images are
identifiable whether they have existed in any blockchains, such that when the checking
algorithm result is true, then the protocol raises a flag to avoid the problem of key reuse.
The second SBF filters hash values of key image-mixin tuples, namely SBFm. Similar to

7https://github.com/monero-project/monero/blob/master/src/cryptonote core /blockchain.cpp#L120
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SBFk, SBFm consists of key image-mixin tuples from all related blockchains. The purpose
of SBFm is to help the system to identify whether an incoming key image-mixin tuple has
existed in one or more blockchains.

Despite its scalability feature, SBF does not support data deletion. Therefore, to
mitigate different block intervals and block reorganisation where other stronger blocks
can still replace immature blocks, temporary SBFs are introduced. These temporary
SBFs, namely tSBFk and tSBFm, are associated to key images and key image-mixin
tuples respectively. By using temporary SBFs, it means new information in immature
blocks and memory pools will not go directly to the main SBFs but to tSBFs. After the
information is available in mature blocks, the protocol moves the data to the main SBFs.
SBFk and SBFm can complement each other by the following mechanism.

1. The system checks a key image value in SBFk. If it does not exist, then checking
process complete, otherwise continue. In this step, it not possible to know whether
the checking result is a false positive result or a true positive result.

2. We define t as the threshold to be satisfied by new transactions.

3. For each ring signature R with a ring size r, there will be r key image-mixin tuples.
The system checks every key image-mixin tuple if they exist in SBFm and count the
positive results p. If p = r, then there is a possibility (due to SBF’s false positive
characteristic) that the input has the same ring members as the existing input, and
this is a desirable occurrence. However, that might not always be the case. It is
possible that p < r, but as long as p can satisfy the threshold t where t > 1, then t
<= p <= r must be satisfied. Otherwise:

(a) If t = 0 then the transaction that contains the ring signature R can be accepted
as it is a false positive caused by SBFk.

(b) If t = 1 then the transaction that contains the ring signature R can be blacklisted
as it can cause traceable output.

4. To increase the probability of the new transactions using an identical set of the
existing ring members, the threshold t can be set to t = r such that t = p = r.

Blacklisting can be an option instead of rejecting the transaction, as described in the
step 3b because transaction rejection might motivate users to recreate the transaction,
which will make the new transaction traceable [76].
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False Positive. The false-positive rate is the trade-off for not using the real transaction
data in our solution, which focuses on cost-efficient by using SBFs. The error rate in the
original design of SBF is expected to be between 0.0001% to 0.1% [1]. The use of two
different SBFs, namely SBFk and SBFm greatly reduce the false positive rate in the
case of a new key image that never appears, such that the false-positive result indicates
otherwise.

We utilise a simple equation of probability of two independent events P = p1× p2 where
p1 and p2 are the probabilities of the first and the second event, respectively. By using the
equation and taking the most significant error rate of SBF , the probability of a key image
that never appears before as false positive in both checks is 0.0001%.

SBF for Multiple Blockchain Branches. An SBF consists of multiple Bloom Filters
(BF) [1] where SBF = {BF1||BF2|| . . . }, where the symbol || is a concatenation operation.
An SBF can also be constructed by concatenating multiple SBFs such that SBFresult =
{SBFa||SBFb|| . . . }. We denote Local SBFs (LSBFs) as a set of SBFs which are created by
using information from a single blockchain branch. We also denote Global SBFs (GSBFs)
as a set of SBFs which are created by concatenating all Local SBFs. The GSBFs are used to
check the existence of a related information regardless in which blockchain the information
resides, while the LSBFs are used to check information on a specific blockchain.

SBFChain. For accountability purposes of the created GSBFs, we introduce SBFChain.
SBFChain is a blockchain-like data structure which maintains metadata about the GSBFs
and tracks changes to the GSBFs. Each entry in SBFChain is numbered. An entry en in
the SBFChain connects to the entry en−1 by adding the hash value hen−1 = H(en−1) to the
entry en. An entry is created on every period of time, i.e. 4 minutes to show a gradual
process of creating the GSBFs. The structure of SBFChain is shown in Figure 5.5.

An entry en contains the following information:

• The hash value hen−1 .

• The block number n.

• A timestamp tsn.

• The hash values of the most recent GSBFs.

– hGSBFk
= H(GSBFk).

– hGSBFm = H(GSBFm).
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Figure 5.5: The structure of SBFChain.

• The metadata of all blockchain branches in which the information is added to the
most recent SBFs.

– Chain ID.

– Block Height.

– Data Count.

By referring to the most recent entry e, one can determine which information has been
added to the recent GSBFs. The entry e will also help reconstructing the GSBFs at any given
time by referring to information stored in the nearest entry e.

5.5.2.3 Joint Node

We coin the term joint node to describe a new type of node, which stores and manages
GSBFs and SBFChain. The joint node will be operated under a collaboration between
the maintainers of multiple blockchain branches. The idea of the joint node originally
came from blackball databases, where the information is collected from multiple parties
[35]. At the same time, the joint node also behaves similar to hard fork oracle [71], in
which information about multiple chain forks is manageable in one place. The joint node

collects all related information from different blockchain branches and constructs SBFs and
SBFChain.

The SBFChain synchronises SBFs maintained by different joint nodes. There exists a
simple consensus method among the joint nodes to add new entries in the SBFChain, where
every information update in the SBFChain is followed by all joint nodes as the members of
the system.
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The joint node will not cause any scalability issue to the main application of each
blockchain, especially related to providing necessary storage and computing power to process
requests and responses. Joint nodes form a new Monero subsystem. The new subsystem is
different from the primary system that consists of normal nodes running Monero protocols.
Although joint nodes and normal nodes are in different systems, there exists a mechanism
such that the nodes can exchange information.

RPC can be used as a communication scheme between normal nodes and joint nodes

as well as between joint nodes and the SPV wallets on the client-side. The P2P com-
munication scheme is necessary for the joint nodes to update new information from the
network of multiple blockchains. Figure 5.6 shows the relationship between joint nodes,
normal nodes, and SPV wallets.

The users’ wallets can also actively seek advice from the joint nodes regarding the raw
transactions the wallet create such that the problems of key reuse prevention are on early
stage. However, the normal nodes can utilise the SBFs maintained by the joint nodes to
perform a simple checking algorithm before processing the transaction.

Although the joint nodes store the GSBFs, they cannot extend any blockchains nor
modify the information inside the blockchains. All updates on the blockchains and memory
pools will be inserted into the respective LSBFs and GSBFs. We use the term service
subsystem to refer to a network of joint nodes.

5.6 Discussion

In this section, we discuss security analysis and performance analysis of our proposed
solution.

5.6.1 Security Analysis

5.6.1.1 Active Attack

We assume there exist dishonest joint nodes in the service subsystem where the majority
of the node members are behaving honestly by following the protocol correctly. When the
dishonest joint nodes receive requests from the client (either a wallet or a normal node) to
verify whether key images or key image-mixin tuples are in the current SBFs, the dishonest
joint nodes will produce incorrect responses. To mitigate the problem, the client can
send requests to multiple joint nodes in the subsystem selected at random. Assuming
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Figure 5.6: Joint nodes can assist SPV wallets as well as normal nodes of different
blockchains.

that the majority of the joint nodes in the subsystems are behaving honestly, the client
will find inconsistencies of the responses. The client then regards the results as votes to
distinguish the correct responses form the incorrect ones, where the correct responses are
likely to become the majority as honest joint nodes always return correct responses.

A dishonest joint node can also be detected by its peers. The joint nodes validate
each other’s SBFs files by confirming the hash values of the SBFs and the hash values
stored in the SBFChain. If the information does not match, any nodes returning incorrect
information can be blacklisted. All clients then publish the blacklist information. Random
requests are useful for checking mechanism to detect any dishonest joint nodes.

The normal nodes of different blockchain branches can also cooperate to verify the
correctness of the SBFs maintained by the joint nodes. However, this requires extra
computing resources by the normal nodes. The verification of the correctness of GSBFs
consists of two-stage reconstruction.

1. Stage one: intrachain reconstruction. In this stage, the normal nodes of each
blockchain branch compute Local SBFs (LSBFs) by using their own blockchain data
according to an agreed entry on the SBFChain. The reconstruction of the Local SBFs
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can start from the Fork Point of that blockchain branch instead of from the genesis
block (block number zero). The correctness of the Local SBFs (LSBFs) depends on
the honesty of the normal nodes of the blockchain. Assuming that the majority of
the nodes behave honestly, then the correct LSBFs can always be generated.

2. Stage two: interchain reconstruction. The nodes of different blockchain branches
cooperate to generate a set of Global SBFs (GSBFs). These GSBFs are created by
concatenating all LSBFs. Assuming that all LSBFs are correct, then the produced
GSBFs is also correct.

A dishonest normal node can also try to confirm transactions that have problems of
key reuse into new blocks it produces by collaborating with miners that have sufficient
computing power. In this case, other normal nodes can revalidate these transactions with
the help of joint nodes. When these transactions are proven to be malicious, then the
blocks containing these malicious transactions can be ignored. Assuming that the majority
of the nodes behave honestly, then there will be a temporary fork which will resolve after
several blocks according to the current Monero protocol. Since the miners will suffer
financial loss if the system removes their produced blocks, they are less motivated to behave
dishonestly.

5.6.1.2 Passive Attack

In the passive attack, the attacker has access to the public blockchains. The attacker
develops analytic tools to determine traceable transactions. The attack depends on the
number of traceable transactions and the portion of the traceable transactions compared to
all transactions.

Our proposed solution can prevent active and passive attacks. Passive attacks analyse
existing valid transactions in the blocks. With no addition of malicious transactions to the
blocks, then the passive attack will not produce any expected outcome, assuming that the
attacker does not receive any extra information.

5.6.2 Performance Analysis

5.6.2.1 Hard Fork Management

We conducted experiments to calculate the extra computing resource in managing the extra
information for hard fork management. The experiments used a Ubuntu 18.04 LTS virtual
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Figure 5.7: The read-write processing time for Chain Info database using LMDB.

machine equipped with 8GB RAM and maximum 2 CPU cores. We created a new table
called Chain Info using LMDB database system, which is the same database product that
stores and manages the blockchain data of the current version of Monero.

Two million Chain ID - Fork Point tuples were written to the database and then read.
We repeated the process 10,000 times. About 1.2MB storage was required to store the two
million records while writing average time was 28.37 milliseconds, and the average reading
time was 28.19 milliseconds. Figure 5.7 shows the detailed result of the experiment. The
experiment shows that the computing resource for the required operations is insignificant
such that today’s regular computers can afford it.
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5.6.2.2 Joint Node Affordability

In our proposal, a particular type of node called joint node maintains the GSBFs. The set
of GSBFs which are relevant to all existing or future Monero blockchain branches.

We experimented with calculating the time and storage needed to create a SBF. The
experiment utilises Jay Baird’s Scalable Bloom Filter Python library, pybloom8. The
experiment used a LARGE SET GROWTH setting to anticipate considerable dataset growth.
In this setting, a surge jump in storage size will happen every time the system hits its
maximum capacity. The results as in Figure 5.8 show that the time required to create a
SBF is linear to the number of the data inserted in the SBF with the average of 17.308 data
per second. The file size, however, increased significantly every time the capacity is full,
according to the LARGE SET GROWTH algorithm. Our experiment also showed that creating
a SBF with 100 million data produced 372.1MB of SBF file within around 96 minutes. Due
to the low resource requirement when creating the SBF, recalculating the SBF will not be a
problem.

5.6.3 Limitation

By mitigating the problem of key reuse, our solution can mitigate a passive attack which
utilises analyses on public blockchains. Our solution cannot prevent a passive attack on
the network level, which is one of the biggest privacy issues in cryptocurrency [46]. Our
solution is also prone to a passive attack conducted by an honest-but-curious joint node,
where the joint node can potentially trace users’ transaction given enough information.
This problem, however, is not exclusive to our proposed system, but also applies to all
Monero nodes.

5.7 Conclusion and Future Work

We investigate the problem of key reuse as an unwanted impact of Monero hard forks.
We build a dataset from three different blockchain branches and determine the traceable
inputs as the result of the key reuse problem. We also identify the cascade effect and the
reduced anonymity as the side effects of the main problem. Our analyses discover that the
scalability of the problem of key reuse correlates to the market price of the respected coins.
The support from cryptocurrency markets to new coins is also an important factor in the

8https://github.com/jaybaird/python-bloomfilter
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Figure 5.8: Part a) shows the creation time of SBF which is a positive linear to the data size.
Part b) shows the result’s file size where the file size will be increased when the capacity of
the SBF is full.
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problem of key reuse. We propose a mitigation strategy for hard fork management and key
image management, where joint nodes play an important role in the proposed strategy.

For future work, we will investigate how our solution works in different types of cryp-
tocurrency. We will also investigate different options in handling protocol-level changes
to avoid a hard fork. The new method should be able to support fundamental changes in
the system without creating a new blockchain branch. This type of solution is useful in
systems with active development such as Monero. It is also interesting to further investigate
the correlation between the cryptocurrency market price and the number of transactions
recorded in Monero blockchain to uncover the actual behaviour of Monero users. The use
of Monero in the real world is also a topic of interest.

5.8 Chapter Summary

In this chapter, we investigate the impact of Monero protocol updates that caused blockchain
hard forks in 2018. We discover that Monero becomes vulnerable to traceability attacks
during a hard fork. Our findings expose traceable transactions on each Monero blockchain
branch on two subsequent hard forks in 2018. We propose mitigation strategies that require
collaboration from system maintainers of all blockchain branches after a hard fork.

We investigate another problem during Monero protocol update in the next chapter.
We analyse how an attacker conducts a Denial of Service (DoS) attack to non-updating
nodes. We also show an escalated DoS attack into transaction anonymity attack.
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Chapter 6

Denial of Service and Traceability
Attacks on Monero Protocol Updates

A cryptocurrency protocol incorporated in a node application runs without human inter-
vention. The protocol utilises cryptographic techniques to determine the ownership of the
coins. The cryptographic techniques also enable coin ownership transfers between users.
Consensus protocols determine the source of the truth of the information contained in the
public ledger called a blockchain.

When the protocol needs to be updated, all nodes need to replace the application with
the newest release as soon as possible. However, the nodes’ update time varies since they
belong to different parties. Hence, Monero protocol update is an asynchronous event. A
Monero protocol update also causes a blockchain hard fork, where a new branch emerges.
The new branch is incompatible to the old branch because they run different sets of
protocols.

In this chapter, we continue to work on our second research question, Q2, that aims
to identify alternative threats to Monero system that exploit the Monero asynchronous
protocol update. We explore the asynchronous protocol update that creates a vulnerability
in Monero nodes which have not yet updated to the newest software version.

We show that an attacker can launch a Denial of Service attack against the nodes running
the outdated protocol, where the attack significantly reduces the system’ performance. We
also show that an attacker with sufficient access to cryptocurrency services can escalate
the Denial of Service attack to anonymity attack. We develop this chapter based on our
published paper, Risk of Asynchronous Protocol Update: Attacks to Monero Protocols
[118].
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6.1 Introduction

There are usually two main applications in a cryptocurrency systems, including Monero.
These two applications are node application (node) and wallet application (wallet). Monero
node stores and maintains the Monero blockchain. A Monero node is connected to other
nodes through a peer-to-peer network. Monero node also stores unconfirmed transac-
tions in its temporary database called transaction pool (txpool) located in the node’s
RAM. Monero’s (txpool) is identical to memory pool (mempool) in other cryptocurrencies
such as Bitcoin [5]. The unconfirmed transactions are stored in the txpool for at most
three days, or (86400*3) seconds as defined in DEFAULT TXPOOL MAX WEIGHT parameter
in src/cryptonote config.h [54].

Monero wallet (or wallet) is the application on the client-side. A wallet helps a user
manage her private keys, track remaining balance, detect incoming transactions, and create
outgoing transactions to spend coins. Monero wallet is a thin client; it does not store any
information about the blockchain. Therefore, for each operation on the Monero wallet that
requires blockchain information, the wallet will connect to a Monero node.

Monero Classic emerged as the result of Monero hard fork in April 2018. While the
Monero main chain upgraded to Monero protocol version seven, Monero Classic runs on
Monero protocol version six. On 16 October 2018, Monero Classic announced a protocol
upgrade [25]. The upgrade intended to add more features in Monero Classic system [25].
Furthermore, at the same time, Monero Classic increased the minimum ring size from
five to eight. The change in minimum ring size impacted the protocol as it caused a
protocol reduction [126], but due to its circumstances, no hard fork occurred after the
event. Protocol reduction is a type of protocol change where the new protocol reduces the
rules of the old protocol. Protocol reduction is usually followed up by a hard fork if miners
support both protocols with reasonable computing power.

In this chapter, we propose attacks to the transaction pool of Monero nodes running an
old protocol after a protocol reduction event. An attacker inflates the transaction pool size
through a Denial of Service (DoS) attack to the nodes. The attack significantly reduces the
quality of service of the nodes under attack. We also expose that the attacker can escalate
the DoS attack to reveal the users’ traceability by double-spending the same coins in two
different protocols.
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Figure 6.1: Monero hard fork in April 2018.

6.2 Background

6.2.1 Monero Hard Fork

Unlike other cryptocurrencies, which always try to avoid hard fork, Monero has scheduled
semi-annual hard forks to improve the system. Before 2018, there were already five Monero
hard forks for protocol upgrades [75]. The sixth protocol upgrade which occurred on 6
April 2018 split the Monero blockchain into two branches; the first branch ran Monero
version six (the old protocol) and the second branch ran Monero version seven (the new
protocol). While the latter branch became the main Monero branch, the other branch
running Monero protocol version six has different names: Monero Original1, Monero Classic2,
and Monero03 [74]. All of the mentioned names are less popular than the Monero main
branch (XMR). Monero Classic (XMC) and Monero Original (XMO) were tradeable in
several cryptocurrency exchanges4. Figure 6.1 shows the Monero hard fork that occurred in
April 2018.

1https://monero-original.org
2http://monero-classic.org
3https://monero0.org
4XMO was no longer available in the market as of 12 February 2019. However, the market price

history provided by Coinmarketcap.com shows that XMO were traded until 1 February 2019. Based on
Coinmarketcap.com, XMC is currently available in Gate.io, HitBTC, and TradeOgre.
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Figure 6.2: Monero protocol version 6 hard fork in October 2018.

6.2.2 Monero Classic Protocol Upgrade

We define a Monero0 Protocol XM0P as the protocol which accepts transactions with a
minimum ring size r ≥ 5. The protocol XM0P is the same protocol as Monero Protocol
version 6 before Monero Classic upgrade. We also define a Monero Classic Protocol XMCP
as the new protocol which only accepts transactions with a minimum ring size r ≥ 8. The
protocol XM0P allows a new block b’ from the protocol XMCP to be included in the blockchain
C, but the new protocol XMCP does not allow a new block b from the protocol XM0P to
be in the blockchain C’ such that C ⊃ C ′ [126]. This occurs if the block b contains any
transactions where 5 ≤ r < 8. Figure 6.2 shows how blocks created by using XMCP protocol
is still compatible with XM0P and it shows that XMCP reduces the rules of XM0P.

Monero Classic claimed to acquire the majority of the miners. Therefore the new
protocol XMCP applies to the blockchain branch running Monero protocol version six. Since
the protocol upgrade, there was no record of the transaction from protocol XM0P in the
blockchain. Although the protocol upgrade was announced prior to October 2018, the
Monero0 nodes running the protocol XM0P were still operational until the end of January
20195. As the result of the minimum ring size increase, the transactions which had a ring
size of less than eight were incompatible with new blocks. The transactions stalled in
Monero0’s nodes’ transaction pool.

From November 2018 until the end of January 2019, we discovered 115 transactions that
contain 337 inputs and 1,865 ring members that used a minimum ring size of 5 ≤ r < 8

5According to Monero0.org, the Monero0 nodes are 159.65.227.38, 167.99.96.174, 159.65.113.142.
Based on our investigation, all of these nodes were no longer accessible as of early February 2019.
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in Monero0’s temporary storage. As the result of the incompatibility between Monero0’s
protocol XM0P and Monero Classic’s protocol XMCP, these transactions were not on Monero
Classic node’s temporary storage. No miner ran the protocol XM0P. The system never
confirms the 115 transactions, and the blockchain hard fork never occurred. We also
discovered different transactions used identical inputs which contain different sets of mixins
or decoys and different ring size. From this occurrence, we discovered five traceable inputs.

6.2.3 Denial of Service Attack in Cryptocurrency

In cryptocurrency space, Denial of Service (DoS) attack is one of the challenges for
cryptocurrencies [15]. DoS attacks target several services, such as cryptocurrency exchanges,
mining pools, gambling services, financial services, wallet services, and others [111]. Not
only attacking services, but DoS attacks can also be launched on the cryptocurrency to
disrupt the system, e.g. by creating a large number of transactions, each contains dust
coins [17, 5].

A DoS attack scenario to target Monero’s txpool has been discussed in [27, 26]. In the
proposed scenario, the author described that transactions with the size of 360kB could be
created by modifying monero-wallet-rpc source codes [27, 26]. These transactions have a
low priority but contain enough transaction fee to relay. However, due to the median block
size growth protocol, the author stated that the system could not include the transactions
to the blockchain. Hence, it would be on Monero node’s txpool for a maximum allowed
time [27, 26].

The author reported the problem to Monero developers as a potential vulnerability.
The developers then acknowledged the problem and provided an optional setting to limit
the maximum txpool size6. However, when we further investigated the matter, we could
not find the related codes in the newest Monero software. In this vulnerability report, the
author did not provide detailed information on the attack, what modification made, nor
whether the attack was successful.

6https://github.com/monero-project/monero/pull/3205
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6.3 Related Work

6.3.1 Cryptocurrency Protocol Change Classification

Zamyatin et al. [126] classified four types of protocol changes from the old protocol P
associated with a blockchain C to the new protocol P’ associated with a blockchain C’.
These changes are: protocol expansion, protocol reduction, protocol confliction,
and conditional protocol reduction [126]. The protocol expansion occurs if the new
protocol P’ increases the previous protocol P ’s scope such that the set of blocks V’ of the
new protocol P’ expands the set of blocks V of the previous protocol P. On the other hand,
a protocol reduction occurs if the new protocol P’ reduces the previous protocol P ’s scope
by adding more rules. Protocol confliction occurs if the new protocol P’ is incompatible
with the previous protocol P, while the conditional protocol reduction (velvet) is a protocol
reduction on specific elements of the protocol, where no changes is supposedly to happen in
the created blocks of both protocols P and P’.

6.3.2 Key Reuse Attack in Monero

The Monero fork which occurred on 6 April 2018 has created a new attack vector called key
reuse [31]. A new traceability analysis called cross-chain analysis was developed and found
that 5.22% of the transaction inputs created between 1 April 2018 and 31 August 2018 are
traceable [47]. Although the result of the attack is insignificant compared to other attacks
such as zero mixin attack, similar events in the future can occur under a certain condition.
The Monero developers have responded the issue by implementing Shared Ringdb feature
in the default Monero wallets, including monero-wallet-cli and monero-wallet-rpc.

6.4 Threat Model

It is assumed that there exist two nodes, NodeA and NodeB, running two different protocols,
P and P’. The protocol P’ is an upgrade from P, where the upgrade is a protocol reduction
as described in [126]. It is also assumed that all miners have already updated their protocol
from P and P’ and connect to NodeB.

We propose the threat model as follows. An attacker owns sufficient funds and can create
valid transactions under P but invalid under P’. The attacker launches Denial of Service
attacks by creating a set of transactions T as many as possible such that the transactions
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T remain in the NodeA’s txpool. The attacker has access to two wallets: WalletA and
WalletB. WalletA is connected to NodeA and WalletB is connected to NodeB. The attack
is successful if the resource usage of NodeA increases significantly compared to the NodeB
as the control.

We assume that the attacker has control over a cryptocurrency-related service such as a
coin exchange. In this scenario, the attacker creates a set of transactions T ′ from the same
coins that have been spent in T to be double-spent in T ′. The purpose of this activity is to
let any observers conduct traceability analysis as described in [47] by comparing two sets of
transactions T and T ′.

6.5 Attacks to Monero Protocols

6.5.1 Overview

The attacks were developed based on the problem discovered in section 6.2.2. The attacker
increases the scale of the attack to create more severe damage to the node and the transaction
anonymity.

The attacks exploit the late update conducted by node maintainers when there is a
change in the protocol where every node should update its software to the latest version. If
the change is a protocol reduction, the old version of the protocol accepts new transactions.
However, the new version of the protocol will not be able to confirm transactions that
follow the old protocol. As a result, an old node keeps these incompatible transactions in
the txpool for at least three days.

An attacker floods the txpool with incompatible transactions which will create a denial
of service (DoS) to the nodes running the old protocol. The massive number of transaction
creation and the large transaction storage requirement will reduce the performance of the
nodes. Since the blockchain will never confirm the transactions, there will be no transaction
fee the attacker needs to pay. However, the attacker needs to have sufficient funds in as
many outputs as possible.

6.5.2 Attack Phases

The attack consists of three phases: the preparation phase, Denial of Service (DoS) Attack
phase, and traceability reveal attack phase. The attacker can conduct the last two phases
separately or subsequently.
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6.5.2.1 Preparation Phase.

In the preparation phase, the attacker first prepares enough funds. Then, the funds will be
sent to as many public keys (outputs) as possible by creating transactions to send the funds
to the attacker’s address. The transactions need to be compatible with the new protocol;
the nodes that run the old protocol will also confirm the transactions.

6.5.2.2 Denial of Service Attack (DoS) Phase.

In the attack phase, the attacker launches the attack against the old nodes. The attacker
creates as many transactions as possible, where the new protocol cannot confirm these
transactions because it follows the old protocol, which is incompatible with the new protocol.
The transactions are likely to be discarded by the new nodes. However, the old nodes will
store the transactions in the txpool. When the number of transactions is large, the txpool

size will expand significantly and affect the system.

6.5.2.3 Traceability Reveal Attack Phase.

If the attacker has control over a cryptocurrency service provider, the attacker can create
transactions to spend the same coins used in the DoS phase. Assuming that the transactions
follow the service provider’ best interest, the attacker would not need to worry about losing
money for the transaction fees, because the customers pay the transaction fees.

6.5.3 Simulation

We simulated the protocol reduction event as described in Section 6.2.2 in a private testnet
environment. The simulation scales the event to analyse the impact of a large scale attack.
Instead of using Monero Classic and Monero0 nodes, we modified Monero Beryllium Bullet
software7. The latest upgrade of Monero requires a mandatory bulletproofs feature for
every transaction to be validated in the node to reduce the transaction size significantly.
We also ran Monero blockchain explorers called Onion Monero blockchain explorer

(xmrblocks)8 to simplify the data extraction process from the nodes. The blockchain
explorers were also used to monitor the size of the txpools of the nodes. The xmrblocks

7The open-source software is available in Monero’s Github page https://github.com/monero-
project/monero.

8https://github.com/moneroexamples/onion-monero-blockchain-explorer

101



would only be run during the data extraction process at the end of the simulation to reduce
the extra workload that might affect the result.

We ran our simulations on a Ubuntu 18.04.1 LTS virtual machine with 8GB RAM and
two processor cores. We hosted the virtual machine was hosted on a physical server equipped
with two Intel R© Xeon(R) CPU X5570@2.93GHz and 72GB RAM. The virtual machine ran
two monerod as the Monero nodes and two xmrblocks applications, each connected to a
different node. We used a default RPC-based wallet, monero-wallet-rpc connected to the
target node. We wrote a Python script to automate the transaction creation with the help
of Shoupn’s moneropy library9 to connect the script to monero-wallet-rpc.

6.5.3.1 Simulation Scenario

Two nodes, denoted as NodeA and NodeB, were used to construct the Monero network.
Both nodes synchronised their data with a blockchain C. NodeA’s source code was modified
such that the node could validate any transactions with a ring size r ≥ 7, while NodeB’s
protocol mimicked the latest Monero transaction requirement with the ring size r = 11.
These two nodes imitated a situation of a protocol reduction from protocol PA to protocol
PB, where the new protocol requires a larger ring size such that rA < rB

If all miners have updated their software to follow the new protocol PB, protocol PA

does not have enough mining power to compete with the new protocol PB in creating blocks.
However, the node NodeA still follows protocol PA while the node NodeB has updated to
protocol PB.

6.5.3.2 Simulation 1

The first simulation evaluated a key reuse attack which can potentially happen in the given
scenario. Although a key reuse attack normally happens in two or more different blockchains,
the given scenario can also create two temporary blockchains, where the txpools of the
nodes pose as the temporary blockchains.

We created 9,353 transactions T1 with the ring size r = 8. Each contains 10 or 11
outputs (transactions which have 11 outputs contain one address to send the change money
back to the sender). There were a total of 18,688 inputs in transactions T1, and the total
size is 34.2MB. The transaction fee required to create all transactions T1 is 80.46XMR,
where the average transaction fee is 0.0086 per transaction. As a result, the transactions

9https://github.com/shoupn/moneropy
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Figure 6.3: Figure (A) shows the accumulated transaction size stored in txpool. Figure
(B) shows the transaction fee paid by the attacker to create the transactions.

would be validated only by the NodeA but not NodeB. The transactions T1 were stored
in NodeA’s txpool. However, none of the transactions T1 were found in NodeB’s txpool.
Figure 6.3 shows the linear relationship between txpool size and the number of transactions.
Also, we discovered a similar linear relationship between the transaction fee and the number
of transactions.

A new set of transactions T2 were created by using the protocol PB from the same
pool of coins. In this case, there is a possibility of sending the same coins in two different
transactions t1 and t2 where t1 ∈ T1 and t2 ∈ T2 and T1 6= T2, since none of the transactions
in T1 were confirmed in the blockchain. Transactions T2 were accepted and confirmed by
NodeB as the miner and then NodeA had the same information after synchronising with
NodeB.

6.5.3.3 Simulation 2

In the second simulation, we flooded the NodeA with transactions. We utilised the stan-
dard Monero RPC-based wallet, monero-wallet-rpc which was connected to NodeA to
programmatically created Monero transactions using a single thread. We ran the script si-
multaneously. We then evaluated the performance of NodeA. When the data was evaluated,
there were 64,633 transactions in NodeA’s txpool.
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6.6 Discussion

6.6.1 Shared Ringdb

During our first trial of Simulation 1, we were unable to recreate the key reuse attack.
All transactions T2 which spent the same coins as T1 used identical ring members as t1.
The transactions in T2 added other outputs to satisfy the minimum ring size of the protocol
P2. We evaluated the occurrence and discovered that the newest version of Monero default
desktop wallet took a preventive action by creating an additional database called Shared

Ringdb located in ∼/.shared-ringdb folder. The wallet can detect the difference between
two systems based on the protocols, where a transaction that tries to spend the coin that
has appeared on another blockchain needs to maintain the anonymity set by using the
identical ring members.

This result shows the effectiveness of Shared Ringdb for general users who run the
Monero default desktop wallet and deserve better anonymity in their cross-chain transactions.
However, the feature is infeasible to implement on alternative wallets such as web wallet or
smartphone wallet. An attacker can also simply remove the database in the attacker’s local
storage.

6.6.2 Traceability Analysis

An input in Monero is traceable if an observer manages to guess the real spent output over
a set of outputs in that input with the probability of one. Based on the specification given
by the Linkable Ring Signature [64], each private key has a unique tag called key image. If
a key image appears in two or more ring signatures, then it means that the same private
key signs these signatures, and the associated public key must be a ring member of both
ring signatures. Therefore, the public key has become traceable. This type of analysis has
been discussed by Hinteregger et al. [47].

After the Simulation 1 concluded, a traceability analysis followed by using an algorithm
as follows.

1. For each input in NodeA’s txpool:

(a) Identify the key image value.

(b) Find the key image in the blockchain.
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(c) If the key image is successful, proceed to the next step. Otherwise, continue to
the next input.

(d) Examine the related sets of outputs. If at most one identical output is found on
multiple sets of outputs, then the input is traceable.

(e) Otherwise, the input is not traceable. However, the effective ring size (the term
coined in [47]) is reducible to exactly the number of outputs found on both sets.

2. The result is the traceable inputs identified by the algorithm.

By using the above algorithm, we then evaluated the 9,353 transactions we created and
managed to identify 95% of the transactions’ inputs. The other 5% of the inputs suffer
reduced effective ring size to a minimum of two. The result shows the effectiveness of the
method in revealing Monero transaction’s traceability.

6.6.3 Denial of Service Analysis

We define a Quality of Service (QoS) of the cryptocurrency system (the node and the
wallet) as the number of new transactions created by the wallet and received by the node.
The QoS was measured to determine the impact of DoS attacks. We also measured the
resource usage (CPU and RAM) of both NodeA and NodeB.

6.6.3.1 NodeA’s Quality of Service Monitoring.

Figure 6.4 shows the QoS of NodeA, measured by number of new transactions per hour. It
shows that after the txpool of NodeA exceeds 7,800 transactions, the QoS sharply declines
from the peak, 3,000 transactions per hour (tph), to below 500 tph when there are at least
53,000 transactions in the node’s txpool and the total size of these transactions is 190MB.
These 53,000 transactions requires 375.6XMR as the transaction fees. However, as these
transactions will not be confirmed in the blockchain, the cost does not really incur. The
highest txpool size was 457MB.

6.6.3.2 Resource Usage Monitoring.

We also ran a simple script to capture information from Ubuntu’s top command every 60
seconds. Figure 6.6 shows the comparison of CPU usage (measured in percentage of usage
compared to the system’s CPU) between NodeA and NodeB, where NodeA was a target to

105



Figure 6.4: The Quality of Service of NodeA during the DoS attack.

Figure 6.5: The txpool size increase of NodeA during the DoS attack.
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Figure 6.6: The CPU usage comparison between NodeA and NodeB.

the DoS attack and NodeB was not. In this scenario, none of these nodes was mining new
blocks. The result demonstrates an insignificant difference between both nodes in terms of
CPU usage.

Figure 6.7 shows the comparison of RAM usage between two nodes, where NodeA’s
RAM utilisation was four times more than NodeB’s RAM utilisation. The highest RAM
size used by NodeA was near to 9% of the system’s RAM, or roughly about 720MB.

6.7 Limitation

In our experiment, we used one virtual machine to run multiple applications, such as node
applications, wallets, blockchain explorers, and the monitoring script. The low computing
resources we used could have impacted the performance of the evaluated node. The results
might differ if these applications run on separate machines. Our experiments did not utilise
the Monero version 6 source code (Monero Classic or Monero0), as we preferred to use the
latest Monero applications. The version selection may or may not impact the result, since
the transaction size would be different compared to our result, including the fee structure.
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Figure 6.7: The RAM usage comparison between NodeA and NodeB.

6.8 Conclusion and Future Work

We present attacks to txpool of nodes running an outdated protocol P when almost all
participants in the system have updated to a new protocol P’, where the protocol P’ reduces
the scope of protocol P. Through simulations, we show that this event can be exploited
by an attacker to launch a Denial of Service (DoS) attack to the nodes running protocol
P. The DoS attack reduces the Quality of Service (QoS) of the target node, where the
number of new transactions served by the target node is significantly reducible when the
txpool increases.

The attacker can escalate the event to trace users’ transactions if the attacker controls
a cryptocurrency service such as coin exchanger. It is done by double-spending the coins,
where the attacker creates two sets of transactions: each set for different nodes running the
protocol P and P’.

For future work, we suggest the investigation of other types of protocol changes and
how they impact nodes that do not update their systems to the latest versions. The result
of the investigation can help to formulate a better protocol update mechanism to protect
the nodes running on old protocols.
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6.9 Chapter Summary

In this chapter, we continue to work on our second research question, Q2, that focuses
on identifying threats to Monero system that exploit the Monero asynchronous protocol
update. The protocol update requires each Monero server to update its running Monero
software as soon as possible. However, we discover that if a server delays the software
update, it becomes vulnerable to Denial of Service (DoS) attack. We also show that the
attacker can escalate a DoS attack to anonymity attack.

This chapter concludes our second part of the project. In the next two chapters, we
work on our last part of the project. We investigate two third-party services in Monero,
specifically wallet service providers and mining pools, that can become threats to Monero
anonymity.
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Chapter 7

Anonymity Risk of Monero Wallet
Service Provider

We discuss our last research question, Q3, in two subsequent chapters. Our third research
question investigates the risks for the privacy-preserving cryptocurrency that rely on third-
party services to provide essential services for the ecosystem. We identify two critical
third-party services in Monero ecosystem, namely wallet service providers and mining pools.

In this chapter, we examine the anonymity risks of using Monero wallet service providers
when creating transactions. Cryptocurrency users are provided with wallet applications to
send or to receive coins. Wallet applications connect to cryptocurrency network through
nodes or wallet services. These nodes or wallet services provide blockchain data to the
wallets through the Internet.

We discuss how Monero wallets are prone to anonymity attacks by third-party wallet
service providers. We propose a new anonymity attack that leverage change coin spending
by Monero wallets. We analysed nine wallets that are available in the market and found
that the majority of the wallets are vulnerable to our identified attack. Our analysis shows
that a wallet service provider can guess change coins that are spent by the wallets with
high accuracy. We also propose strategies to improve the anonymity of Monero wallets
by using multiple services and connection scheduling. Our manuscript, entitled Change in
Transactions: A Side Channel Attack to Monero Anonymity, is the fundamental work for
this chapter.
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7.1 Introduction

Monero is one of the most successful cryptocurrencies in the world. At the time of writing,
Monero’s total market cap is nearly US$1.3 billion1. Monero wallet (we refer to this as a
wallet) and Monero node (we refer to this as a node) are two main applications in Monero
ecosystem. The nodes act as servers which provide information to wallets. The information
provided by the nodes is related to Monero blockchain that is maintained by the nodes.
The nodes update the blockchain data by adding new blocks or replacing previous blocks if
the block reorganisation event occurs. The nodes receive these updates from other nodes
by using a peer-to-peer network scheme.

The wallet, on the other hand, is a client-side application. The wallet does not maintain
blockchain data, and therefore, it is sometimes called a thin client or thin wallet [62].
Although the wallet does not have the blockchain data, it needs the blockchain to operate,
i.e. to update the coin balance and to create new transactions. Hence, it needs to connect
to the nodes to fetch all necessary data.

Monero community recommends users to run the node locally to provide the highest
guarantee of transaction privacy because a node can relate the transactions and the IP
addresses of the wallets that create those transactions [60]. However, running a local
Monero node requires immense Internet bandwidth, storage, and CPU. Devices with limited
resources such as smartphones usually do not run any Monero nodes; therefore, wallets
on those devices rely on wallet service providers that provide the required blockchain
information. Our survey on Monero wallets, as shown in Table 7.1 shows that the majority
of Monero smartphone-based wallets can only allow users to connect to wallet service
providers to create new transactions.

Consider the following scenario. When the coin denomination is higher than the amount
to send, the payer gets the change on the difference. Let Alice owns 1 XMR in a one-time
public key (we refer to this as a key) and Alice wants to pay Bob 0.1 XMR. The only way
for Alice to pay Bob is to spend the whole 1 XMR in a transaction. The transaction splits
the coin into two keys. Bob receives a key that contains 0.1 XMR, while Alice receives 0.9
XMR as a change coin in a new key. The change coin can be spent in Alice’s next transaction,
for example, to pay Carol 0.2 XMR. The scenario is illustrated in Figure 7.1.

Alice’s wallet service provider knows that one of its clients created transaction TX1.
The wallet service provider also knows that transaction TX1 produces two coins, namely
Coin B and Coin A’. Later, Coin A’ is input to transaction TX2 that produces Coin C and

1Based on Coinmarketcap.com as of 16 August 2019.
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Figure 7.1: Monero transaction diagram from a user’s thin wallet to Monero network
through node N .

Coin A”. In this work, we prove that the wallet service provider can accurately guess that
Coin A’ is spent either by transaction TX2 or another transaction that includes Coin A’ as
one if its mixins.

Contributions. We summary our contributions as follows.

1. We propose a new passive attack where a wallet service provider as the Attacker

guesses the spent change coins of transactions created by wallets that always connect to
the same service provider. We simulated the scenario and analysed the synthetic data
generated by our simulations. Our findings show that the wallet service provider can
accurately guess the spent change coins in those transactions with low false-positive
rates.

2. We propose several mitigation strategies to prevent the node from guessing the
spent change coins, namely Naı̈ve Multinode Wallet (NMW) and Node Scheduling

Wallet (NSW). NMW can reduce more than 98% of the guessed spent change coins by
using more than 50 different service providers, where NSW completely removes the
Attacker’s capability of correctly guess any spent keys. The number of required
nodes n for NSW is i+ 1 where i is the number of inputs in the transaction.

Organisation. The rest of the chapter is as follows. Section 7.2 describes background
knowledge about Monero. Section 7.3 mentions current work related to Monero anonymity
analyses and Monero network analyses. In Section 7.4 we present the security model that
we use in this chapter, while in Section 7.5 we present how a Monero node can guess the
spent keys of the transactions created by the wallets connected to it. Mitigation strategies
are presented in Section 7.6. Section 7.7 briefly describes the limitation of the work, and
lastly, Section 7.8 provides the conclusion and future work.
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7.2 Background

7.2.1 Monero Anonymity Features

The success of Monero lies in solving privacy issues that are experienced by Bitcoin users.
Bitcoin only offers pseudonymity construction by employing public-key cryptography, such
that the users do not need to reveal their real identity when creating transactions. However,
analyses show that the blockchain data is useful to identify the related parties of standout
transactions. [72, 95, 92].

The privacy-preserving feature in Monero, as defined in the original Crypto-Note protocol
[108], consists of two parts, namely Linkable Ring Signature (LRS) [64] and one-time public
key (OTPK). LRS prevents double-spending in Monero by allowing each key pair to create
only one signature. If the same key pair creates more than one signature, the system will
be able to detect the occurrence because those signatures will reveal an identical secret key,
namely key image. LRS provides untraceability of the sender because the real sender is
indistinguishable among a set of senders. In a Monero ring signature, the probability P of
guessing the real signer is P = 1/r, where r is the ring size or the number of ring members.

OTPK is a Diffie-Hellman key exchange protocol, where secret keys are exchanged
between two parties using an insecure communication medium [32]. OTPK provides
unlikability of the receiver. Multiple transactions are unidentifiable that they belong to the
same receiver because each address only appears once. In Monero, the receiver’s OTPK
is created by the sender by using the receiver’s master public key pairs in the form of
transaction outputs. We call these outputs as keys to avoid confusion. Each key is associated
with an amount of Monero coins (XMR).

We define a transaction T as a function to transform a set of R inputs (we will also call
these inputs as rings) into a set of O keys such that T := R→ O where R = {oi, oj, ..., om}
and O = {on, oo, ..., or}. The input R is a ring signature which consists of one or more
existing keys, where there is only one key to be spent in the ring, and the other ring
members pose as decoys or mixins. The transaction T produces one or more new keys,
which contains coins. Future transactions can spend these keys.
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7.2.2 Protocols in Monero Network

There are two types of node based on its availability: private node and public node2. A
private node can only be accessed by the person (or party) that established the node, while
a public node (or also called as a public remote node) allows incoming connections from
other users. At the time of writing, there are 2,795 Monero nodes3. Among the scanned
Monero nodes, 66 of them offer RPC connection. All nodes that provide RPC connection
are public.

Monero utilises two types of protocol in its network: peer-to-peer (P2P) protocol and
RPC protocol [16]. Monero’s P2P protocol utilises the Levin protocol created by Andrey N.
Sabelnikov [77], which was implemented as epee library4. The A node connects to other
nodes through P2P connections that create the whole Monero network. A node receives
new updates about the blockchain from other nodes it connects to through P2P connection.
Some examples of the updates are new block creation, block reorganisation, and newly
created transactions.

On the other hand, a node and a wallet establish an RPC connection. The RPC
connection provides a way for the wallet to get information about Monero blockchain
without storing the whole blockchain data. Public nodes open the RPC connection to
any wallets, while private nodes restrict the RPC connection for private use. Figure 7.2
illustrates the difference between the two communication protocols in Monero.

7.3 Related Work

7.3.1 Address Clustering

In most cryptocurrencies, the address works similar to a bank account, where a payer can
use the payee’s address as the receiver of the payments. However, unlike bank accounts,
there is no relationship between the real identity of the users and the address, as described in
Bitcoin whitepaper [81]. Address clustering is one of the methods to identify the relationship
among different cryptocurrency addresses. Known Bitcoin analyses used this technique
[72, 92]. Change address clustering is one of the methods in address clustering. It is done by

2There are different terms to denote different types of Monero nodes, for example, the one provided by
https://moneroworld.com/#nodes. However, in this chapter, we simplify the terms by only using private
node and public node.

3The data was from https://autonode.xmr.pm on 10 May 2019, 4:15 pm AEST.
4https://github.com/hyle-team/epee
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Figure 7.2: Monero network consists of two protocols: P2P network and RPC network.

identifying the change addresses on Bitcoin transactions, then putting the change addresses
to the same clusters as the originating (senders’) addresses.

7.3.2 Merge Avoidance

Merge avoidance was proposed in 2013 to address privacy leaks in Bitcoin transactions
when a user spends a large or unique amount of coins, such that the information can reveal
information about related participants (the payer and the payee) [44]. Merge avoidance
solves this problem by urging the sender to split a payment into multiple transactions,
instead of sending the payment in one transaction. Splitting the payments into smaller
amounts reduces privacy leaks.

Merge avoidance is considered an easy solution to the privacy leak. It can also effectively
reduce the use of change address. However, merge avoidance depends on the sender, which
may not be motivated to create several transactions. Furthermore, merge avoidance can
also increase the transaction fees that must be paid by the sender, which hinders its usage.
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7.3.3 Cryptocurrency Network Analyses

Network analysis is one of the underexplored areas in cryptocurrency privacy [46]. Cryp-
tocurrency developers usually try to solve the network privacy leak by integrating The Onion
Router (Tor) protocol5 [33], I2P6, or Kovri7 to their systems. However, research shows
that Tor is not a perfect solution to anonymise network connection [13, 46]. Concerning
cryptocurrency, researchers managed to reduce the role of the Tor by employing Bitcoin’s
blacklisting feature to block network packets from Tor relays [11, 12].

7.4 Security Model

We consider an Attacker that operates an honest-but-curious node. A set of wallets
connects to an honest-but-curious node through the Internet. The node provides a service
to the wallets regarding the blockchain data maintained by the node. The wallets are
allowed to send requests to the node, where the node always responses with the correct
answers. The Attacker can also be the same party that provides the wallet application to
users. However, the Attacker does not enable the wallet application to send any statistical
data related to users’ transactions.

The transmitted information in Attacker’s node is collected and analysed. The purpose
is to guess the spent keys of the transactions known by the node. Although the users
connect their wallets through an anonymous network such as Tor or Kovri, the Attacker

can still conduct the proposed analysis, because the analysis is independent of the IP
addresses of those wallets.

If the wallet connects to Attacker’s node through an anonymous or a secure network,
then the Attacker cannot read the network packets. However, the Attacker can still
get access to the requests and responses information, since the node as one of the related
parties always receives unencrypted packets; it can always decrypt the encrypted packets.
Therefore, the Attacker can still conduct the network analysis even if an anonymous or a
secure network is used by the wallet users to connect to the node.

5https://www.torproject.org
6https://geti2p.net
7https://kovri.io
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7.5 Guessing Spent Keys

7.5.1 Overview

Guessing spent keys presented in this chapter is a passive attack conducted by a public
node as the Attacker. The attack targets change coins owned by wallets that connect to
the public node, which is operated by an attacker. If the wallets always connect to the same
node and they spend the change coins, then the keys related to the change coins appear at
least twice in the same node: when the wallet creates the coin and when the wallet spends
that coin.

We denote a wallet W and a node N . The wallet W creates a transaction Ti that
produces new outputs (keys) o, such that Ti := Ri → {o0i , o1i , ..., omi } where oki ∈ Ri. It is
also assumed that oki is the change coin that belongs to the sender. Later, the wallet W
creates a new transaction Tj that spends oki such that Tj := Rj → {o0j , o1j , ..., omj } where
oki ∈ Rj and i < j. If the wallet W creates both transactions Ti and Tj while connected to
the node N , then the node N knows that the key oki is created by a wallet that connects
to it and again the same key is involved either as a mixin or a real spent key in a newer
transaction. For each transaction Tj received by node N , the Attacker checks whether
there exists a previous transaction Ti such that:

1. Ti was sent from the same wallet as Tj, and

2. a key oki of Ti is contained in one of the inputs to Tj.

If both 1 and 2 are satisfied, the Attacker concludes that oki is spent in Tj.

7.5.2 Survey on Monero Wallets

We surveyed smartphone-based Monero wallets in iOS and Android. The survey was
conducted on 10 June 2019 by installing the Monero wallets on compatible devices and
evaluating the settings on the respected wallets. Google Playstore provides the number
of downloads of Android applications. However, the Apple Appstore does not provide the
same information. Table 7.1 provides the detail of the survey. There were nine surveyed
applications from iOS and Android platforms. Seven of the surveyed wallets only support
Monero, while the other two wallets support multiple currencies. One wallet asks the users
to set up their nodes, while there is only one wallet offers auto-switch node feature with an
initial node provided by the wallet.
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Table 7.1: Node selection in smartphone-based Monero wallets.
No Platform Wallet Name Wallet Type Node Selection Detail Number of Downloads

1 iOS Cake Wallet Single currency Auto switch node
Eight nodes available
Initial node: node.xmr.pt:18081

No data

2 Android Coinomi Multi currency Default No access to node setting. 500,000+
3 iOS, Android Edge Multi currency Default No access to node setting. 100,000+ (Android)

4 iOS, Android Exa Wallet Single currency Default
No access to node setting.
(monero.exan.tech)

100+ (Android)

5 iOS, Android Monero Freewallet Single currency Default No access to node setting. 100,000+ (Android)
6 Android Monerujo Single currency No default node Node setup required 10,000+ (Android)
7 iOS MyMonero Single currency Default mymonero.com No data

8 iOS, Android WooKey Wallet Single currency Default
Four nodes available for selection.
Default: node.moneroworld.com:18089

100+ (Android)

9 iOS X Wallet Single currency Default node.moneroworld.com:18089 No data

The result of the survey shows that the majority of smartphone-based Monero wallets only
connect to specific nodes. However, it is not a trivial work to determine how many users are
prone to the proposed attack due to the lack of an accurate number of downloads, especially
for iOS applications. Furthermore, the multi-currency wallet’s number of downloads may
not precisely reflect the number of wallet usages for managing Monero because the users
can download the wallet to manage cryptocurrencies other than Monero. Nevertheless, it is
essential to note that most smartphone-based Monero wallets are prone to the proposed
passive attack, except for Cakewallet which has a feature to switch nodes automatically.
However, there is currently no sufficient documentation on the feature’s implementation.

7.5.3 Potential Cases

Let there exist four Monero users: Alice, Bob, Charlie, and Dave. Alice sends a payment
to Bob in a transaction T1 := R1 → {o01, o11}. The payment to Bob is contained in key
o11, where she also receives change coins in o01. The transaction T1 is sent to a public
node N . Node N knows that transaction T1 produces two keys: o01 and o11. All users
in our cases use wallets that always connect to the same public nodes. For any user
X ∈ {Alice, Bob, Charlie,Dave}, we say that transaction TX := RX is a transaction
created by X. Transaction TX contains a ring RX . There are four possible cases of the
above example, where one of the cases would cause false positive. The detail is as follows.

1. Alice and Charlie use wallets that connect to the same node, N .

1A. Alice creates transaction TA that spends o01 then sends transactions TA to node
N .

Node N correctly guesses that o01 is a change key and transaction TA spends o01.
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1B. Charlie creates transaction TC that uses either o01 or o11 as a mixin. Charlie then
sends transaction TC to node N . Alice does not do anything.

According to the rule, node N guesses that transaction TC spends key o01. We
call this a false-positive case.

1C. Alice creates transaction TA that spends o01. Charlie creates transaction TC that
uses o01 as a mixin. Alice and Charlie send transactions TA and TC to node N .

Node N cannot determine whether the key o01 is spent in TA or TC . Node N
guesses that the key o01 is spent in either transaction TA or TC . We call this as
an error case.

2. Alice, Bob, and Dave use wallets that connect to different nodes, namely N , M , and
Q respectively.

2A. Alice creates transaction TA that spends o01. Dave creates transaction TD that
uses o01 as a mixin. Alice sends transaction TA to node N , while Dave sends the
transaction TD to node Q.

Node N receives information about TD from node Q (or other nodes using P2P
connection). Similar to case 1A, Node N correctly guesses that the key o01 is
spent in TA.

2B. Alice creates transaction TA that spends o01, while Bob creates transaction TB that
spends o11. Alice sends transaction TA to node N , while Bob sends transaction
TB to node M .

Node N can guess that key o01 is spent by TA. However, node N cannot guess
the spent keys in TB although it receives the information about transaction TB
from node M (or other nodes) through P2P connection. In this case, node N
does not make any guess with regards to o11.

7.5.4 False Positive Case

We define a false-positive as the event of node N to incorrectly guess that a key o has
been spent in a transaction T , while the key o is unspent. We denote O as the set of all
keys in the blockchain. We denote ON as the set of all keys that were created by wallets
that connect to the node N , where ON ⊆ O. We also denote Ochange

N as keys that contains
change coins, where Ochange

N ⊂ ON . Here, to calculate Pfp, we assume an idealised model
for how a wallet chooses its set of r− 1 mixins for each transaction, namely the r− 1 mixin
keys are chosen as a uniformly random set of r − 1 keys from the set O of all keys in the
blockchain. We discuss the validity of this assumption later in the chapter.
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We formulate the probability Pfp of false positive described as case 1B in Section 7.5.3
as follows.

Pfp = 1−
(
O−ON

r−1

)(
O

r−1

)
= 1− (O −ON)!

O!
· (r − 1)! · (O − (r − 1))!

(r − 1)! · (O −ON − (r − 1))!

'
O>>ON+r

1− 1

OON
· (O − (r − 1))ON

= 1− (1− (r − 1)

O
)ON

'
r·ON<<O

(r − 1) · ON

O

(7.1)

If (r− 1) ·ON is much smaller than O, then the probability of false positive Pfp is negligible.

We define δo as the ratio between ON and O, where δo = ON

O
. To get insights on

what information can be deduced by a Monero node when δo is low, we created a set of
simulations and observed the synthetic data sets. Figure 7.3 shows that the false-positive
rates from the experiment are close to the theoretical false positive based on Equation 7.1.
When the value of δo is around 0.5%, the average false-positive rate is close to 5%. This
result shows that if δo is low, then Pfp is ten times δo. When δo is around 10%, the Pfp is
around 65%. The result also shows that the false positive rate grows almost linearly to δo.

7.5.5 Error Case

We define the error probability Perror as the event of more than one transactions Ti and
Tj to include a change key ok ∈ ON in their rings. Transaction Ti spends the key ok and
transaction Tj uses ok as a mixin. Although the creator of Ti can obviously determine
that transaction Ti spends ok and at the same time knows that ok in Tj is only a mixin,
node N is unable to distinguish the key spender. We modify Equation 7.1 to get the error
probability as follows.

Perror = 1−
(
O−Ochange

N
r−1

)(
O

r−1

)
'

r·Ochange
N <<O

(r − 1) · O
change
N

O

(7.2)
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Figure 7.3: Comparison between experimental false positive and theoretical false positive
where δo is low.
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We define δo.change as the ratio between Ochange
N and O, where δo =

Ochange
N

O
. We also define

w as number of wallets that connect to node N .

To further investigate the error rate of our attack, we tested the value of error rate on
different δo.change and the number of wallets w through simulations. For that purpose, we
created four sets of scenarios with the same number of transaction t = 10, 000 and different
number of wallets w which are 100, 1,000, 5,000, and 10,000. For a starter, each wallet
only had one key to spend. The result in Figure 7.4 shows that error rates on all scenarios
increase as δo.change increases.

Our simulation used multiple wallets that connects to the Attacker’s node. In the
simulation, the Attacker managed to guess all (100%) of the spent change keys. However,
in addition to the correct guesses, the Attacker also made wrong guesses. It is also
infeasible to distinguish between correct and wrong guesses. The wrong guesses mean that
the number of Attacker’s guesses exceeds the number of spent change keys. The ratio
between the wrong guesses and the correct guesses is the error rate.

The simulation result also shows that the number of wallets significantly impact the
error rate. The error rate for w = 10, 000 is approximately 50% when δo.change ≈ 3.5%. The
error rate for the same scenario further increases to nearly 90% when δo.change ≈ 10%. The
significant difference on each scenario with different number of wallets is observable when
δo.change ≈ 5%, where the error rate in scenarios with w of 100, 1,000, 5,000, and 10,000 are
34.8%, 36.4%, 49.9%, and 58.9% respectively. However, when δo.change ≈ 0.2%, the error
rate in those scenarios are 2.07%, 2.08%, 3.7%, and 5.3%. The results in scenarios with
w = 100 and w = 1, 000 reflect the formula given in Equation 7.2, where the false-positive
rate equals to 10 times δo.change. However, the false-positive rates on simulation scenarios
with w = 5000 and w = 10, 000 exceed the theoretical error rate. The result is likely because
the average number of transactions per wallet is low. Thus, the number of change keys
involved in the transactions is also low. In summary, the Equation 7.2 applies to scenarios
where a wallet repeatedly creates transactions, and the transactions reuse change keys in
the next transactions.

In the simulation, the number of wallets is proportional to the number of Ochange
N .

However, it is inversely proportional to the number of spent change coins in the transactions.
The result in Figure 7.4 indicates that scenarios with more wallets have a higher error rate.
The finding is consistent on any given δo.change.

The formula in Equation 7.1 shows that to get an accurate Perror, the Ochange
N needs to

be precisely defined. However, our security model does not allow the Attacker to gain extra
information from the wallet application other than the transactions that the wallet creates.
Therefore, the value of Ochange

N can only be estimated. In our simulation, we defined that
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Figure 7.4: The error rates on different δo.change values. Number of wallets also impacts the
error rate.
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each transaction follows the rule Tx := Rx → {o0x, o1x}, where one of the keys in {o0x, o1x} is
the change for the sender. In a general setting where a transaction requires a change, an
estimated value of Ochange

N is equal to the number of transactions.

7.6 Mitigation Strategies

The mitigation strategies presented in this section try to reduce the probability of a node
correctly guesses the spent keys of transactions created by the associated wallets. The
methods are either by increasing the false-positive rate or by dividing information into
several nodes. We propose three mitigation strategies, namely public node centralisation,
Naı̈ve Multinode Wallet (NMW), and Node-Scheduling Wallet (NSW).

7.6.1 Public Node Centralisation

Public node centralisation allows only one available public node for all thin wallets to
connect to Monero network. The purpose of centralising public node is to increase the
false-positive rate of node N when guessing the spent key. By forcing all thin wallets to
connect to node N , the number of keys ON may also increase. As a result, the value of δo
increases. However, since it is difficult to determine the exact number of transactions created
by the thin wallets, it is also challenging to determine the effectiveness of the mitigation
strategy. Furthermore, the decentralised nature of Monero also makes the strategy infeasible
to implement.

7.6.2 Näıve Multinode Wallet

To reduce the probability of a node successfully guessing the real spent keys which previously
appeared in the network, we propose a näıve solution by connecting to multiple nodes
instead of connecting to only one node as in a traditional Monero wallet. We call this
solution Naı̈ve Multinode Wallet (NMW). We denote n as the number of nodes that a
wallet connects to during the wallet’s lifetime. We also define a success rate as a ratio
between the correct guesses and the total number of change keys that a wallet spends. NMW
reduces the success rate by dividing transaction-related information to randomly selected
nodes.

We conducted experiments to evaluate the effectiveness of the proposed NMW with various
number of nodes. The experiments show that the success rate decreases when the number

124



Figure 7.5: The average error rate of NMW using different number of nodes.

of nodes n increases. The average success rate for n = 2 is 50.3%. For n = 5 and n = 10,
the average success rates are 20% and 10% respectively. The result in Figure 7.5 shows
that the success rate decreases for each additional node. It also shows that it requires more
than 50 nodes to reduce the success rate to 2%. However, even if 99 nodes are involved in
a transaction creation, the success rate for each node achieves up to 1%.

7.6.3 Node-Scheduling Wallet

We assume that every node has a unique identifier which we call as NodeID. The unique
identifier NodeID can be in the form of an IP address or a domain name. We also denote
an own key as a key that contains a change coin and can be spent by using its private
key. The own key can be spent in future transactions. To improve the usability of the
nodes, we propose a Node-Scheduling Wallet (NSW). In the NSW solution, the wallet
identifies the NodeID of where each transaction was sent to. Then, the wallet records the
own key-NodeID tuple.

The minimum number of nodes required for the node-scheduling wallet in a transaction
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depends on the number of distinct NodeID of the inputs created by the node, such that
nr = nd + 1 and nd ≤ ni where nr is the required number of nodes, nd is the number of
distinct NodeID of the transaction’s inputs, and ni is the number of the transaction’s input.
For example, if the transaction contains only one input, then the minimum number of nodes
is two. NSW is more efficient compared to NMW presented in Section 7.6.2 in terms of number
of nodes, where NSW only requires a small overhead of storing the NodeID for each created
transaction.

We simulated the proposed NSW solution. In our simulation, each transaction only
contains one input; therefore, the maximum number of required nodes to connect is two.
Compared to NMW with 100 nodes, NSW is more efficient because it uses less nodes when
nd + 1 < 100. In Monero mainnet, the average number of inputs ni = 5.6, therefore NSW

requires nr = 5.6 + 1 = 7.6 ≈ 8 nodes when nd = ni. NSW also reduces the success rate to
0% by utilising eight nodes, compared to 12.6% success rate in NMW with the same number
of nodes. In summary, NSW can fully mitigate the passive attack by wallet service providers.
Our result also shows that the false positive rate of NSW is similar to NMW.

7.7 Limitation

Both NMW and NSW solve the problem by distributing information to multiple nodes. However,
there is no guarantee that the nodes do not collude by sharing information between
themselves, nor whether they operate under the same Attacker that conducts the passive
attack. Assuming that the wallet users do not have any information about the colluding
nodes and avoid connecting to any of those nodes, then none of our solutions can fully
mitigate the attack.

7.8 Conclusion and Future Work

In this chapter, we demonstrate how a passive Attacker can guess the spent change keys
of the wallets connected to Attacker’s node. The spent keys have appeared as outputs
in previous transactions created by the wallets while connected to the same node. The
false-positive rate of the guess correlates to the ratio of δo = ON

O
. We also investigate the

error rate when the Attacker discovers that a key appears in multiple transactions. The
number of wallets w that connect to the Attacker’s node N impacts the number of spent
change keys, which also impacts the error rate.
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The majority of the smartphone-based Monero wallets we surveyed provide limited
options of Monero nodes to connect. This configuration exposes the wallets to the anonymity
problem we present. We also compare two potential solutions, namely Naı̈ve Multinode

Wallet (NMW) and Node-Scheduling Wallet (NSW) to mitigate the problem. NMW requires
more than 50 nodes to reduce the guessed spent keys to reducing the success rate to 2% of
the total spent keys. On the other hand, NSW requires ni + 1 nodes to reduce the success
rate to 0%, where ni is the number of the transaction’s inputs.

For future work, we recommend a redesign of the communication protocol between the
Monero wallet and Monero node. The new protocol aims to reduce the information received
by the nodes. The information received by a node should be insufficient to deduce any
information about the spent keys. We also plan to observe different implementations of
Monero wallet and how they might leak users’ privacy when communicating with Monero
nodes. Multi-currency wallets can be useful for users who own multiple cryptocurrencies.
However, the implementation of the wallets might compromise the anonymity of the users
while creating transactions of different cryptocurrencies.

7.9 Chapter Summary

In this chapter, we present our research on anonymity risks related to Monero wallet service
providers, as the first part of our last research question, Q3, about Monero third-party
services. We identify that the service providers can conduct traceability analysis, especially
on change coin spending, after collecting transaction data from their clients’ wallets. We
propose mitigation strategies to prevent the identified risks. Our proposals distributes a
wallet’s transaction data to multiple wallets to reduce the wallet service providers’ ability
to gather transaction data. The solutions show significant decline of traceable inputs.

In the next chapter, we present the second part of our third research question, Q3, that
investigates mining pools’ data publication that leaks transaction anonymity.
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Chapter 8

Monero Mining Pools Anonymity
Leaks

Monero is a cryptocurrency that provides anonymity by default to its users. Monero
transactions are infeasible to trace without additional information. Monero utilises Proof-
of-Work (PoW) as its consensus method. Miners contribute their computing power in
exchange for a financial reward. The miners can opt to join mining pools to reduce their
income variance. Mining pools coordinate the miners’ mining power in order to generate
more reward and distribute the reward based on each miner’s contribution to getting the
reward. Some mining pools publish the list of won blocks and payout transactions to the
miners to provide business transparency.

In this chapter, we present our research on mining pools. This chapter is the second
part of our last research question, Q3, that explores essential third-party services in Monero
ecosystem. We propose analyses of mining pools’ data. To achieve the goal, we collected
published data from ten mining pools’ websites and conduct traceability analyses on the
data. We discovered that 59.2% inputs of all Monero transaction inputs we recorded are
traceable. We also discovered that the age of the spent coins is between 2.5 hours and 3.3
days.

While we propose methods to improve the accountability of the published information,
it is also questionable that the mining pools keep publishing such information which reduces
the anonymity of their transactions. Our investigation shows that there is no relationship
between publishing mining-related information and the success of a mining pool. Our
manuscript, Transparency or Anonymity Leak: Monero Mining Pools Data Publication,
becomes the basis of this chapter.
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8.1 Introduction

At the time of writing, Monero is in the top 15 of the most valuable cryptocurrencies list.
Its total market value is US$851million, where each coin is worth US$47.401. Monero is
also the most successful CryptoNote-based cryptocurrencies, among other products such as
ByteCoin, Boolberry, and Aeon2. Nicolas van Saberhagen3 published CryptoNote protocol
in 2013.

Monero utilises Proof-of-Work (PoW) as its consensus method. The memory-bound
consensus algorithm called CryptoNight aims to decentralise mining activities, where small
miners can mine Monero by using commercial CPUs and GPUs. Similar to Bitcoin and
other cryptocurrencies, there are mining pools that coordinate mining powers of multiple
miners to increase their cumulative chances of winning blocks.

The current Monero mining pool lacks transparency due to the default anonymity
features in Monero transactions. A blockchain observer cannot determine how many blocks
each mining pool wins at any period. Therefore the miners are unable to evaluate the
fairness of the incentives from the computation shares they submit to the mining pools. In
order to improve the transparency, mining pools utilise their websites to publish information
related to their mining productions, such as the blocks won and payouts to miners. Although
the published information might be useful for miners to decide which mining pools they
want to join, the same information is vulnerable to anonymity leak.

Contributions. In this chapter, our contributions are as follows.

1. We identify an anonymity leak problem within the mining pools’ published information.
We consider two possible cases of traceable inputs in a mining pool M , namely Case

A and Case B, as shown in Figure 8.1.

• In Case A, mining pool M spends mining reward co1 of won block B1000 as an
input to transaction t1. Since we know that mining pool M creates block B1000

and transaction t1, there is a high probability that the input i11 spends co1, and
therefore input i11 is traceable.

• In Case B, mining pool M creates t3 as a payout to a miner and receives change
coins in either o31 or o32. Later, mining pool M creates a new payout t4 to
another miner. The transaction t4 contains o32 in its input i41. In this case,

1Data taken from Coinmarketcap on 25 November 2019
2https://cryptonote.org/coins
3Nicolas van Saberhagen is a pseudonym.
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there is a high chance that the mining pool M spends its change coins o32 in t4,
and the input i41 is considered as traceable.

2. We explore anonymity leak from mining pools’ published information. We collected
information from ten mining pools and conducted traceability analyses to the data set.
We discovered 218,957 traceable inputs. This result is the second largest anonymity
leak after Monero implements RingCT feature. Also, our second-order traceability
can identify 5,501 traceable inputs.

3. We propose possible countermeasures to the identified problem. Our solutions include
data removal and transaction obfuscation as potential countermeasures to prevent
future anonymity leak from mining pools’ published information.

4. To improve the mining pools’ accountability on the produced blocks, mining pools
can publish their tracking keys such that observers can calculate the actual block
production rate on all mining pools. We also propose the adoption of Slushpool’s
Hash Rate Proof (HRP) to improve the verifiability of mining information.

5. We analyse the top ten Monero mining pools and extract their features. We identify
that the majority of the mining pools publish their mining-related information on
their websites. Two major mining pools, Minexmr and Supportxmr, specialise in
Monero mining, while F2pool as the third-largest Monero mining pool is a multi-coin
mining pool. There is no specific feature that distinguishes the top three mining pools
from the rest of the mining pools, which indicates that removing the mining-related
information from the mining pools’ websites might not alter their popularity.

8.2 Background

8.2.1 Monero Anonymity

Monero implements privacy-preserving cryptographic techniques to achieve sender’s untrace-
ability and receiver’s unlinkability. The sender’s untraceability means that the actual sender
in a transaction is infeasible to guess over a set of senders. The receiver’s unlinkability
means that it is challenging to determine whether multiple transactions pay to the same
receiver.

Linkable Ring Signature (LRS) [64] and one-time public key (OTPK) were
implemented to support the sender’s untraceability and receiver’s unlinkability subsequently
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Figure 8.1: Possible cases of traceable inputs from mining pools’ published information.

[108]. Monero’s LRS obfuscates the real spent coins among other coins that pose as
decoys or mixins. A sender selects the mixins from outputs of recorded transactions in the
blockchain which have the same amount as the spent coins.

Confidential Transaction [70] was integrated to Monero’s ring signature to create RingCT
[83]. RingCT hides the number of coins transacted while at the same time makes sure that
the sender does not create new coins. RingCT was later improved with Bulletproofs [18] to
reduce the signature size of Monero transaction. The Confidential Transaction enables the
users to select mixins from any compatible transactions with any coin amount. Therefore
the pool of potential mixins is much greater than before the implementation of Confidential
Transaction in Monero.

A Monero transaction T consists of a set of inputs I and a set of outputs O. The
transaction T spends the inputs R and produces the outputs O such that T := I → O. An
input in a Monero transaction consists of a ring R. The members of the ring R are outputs
from existing transactions stored in Monero blockchain. For each ring, there is only one real
member to spend (the real spent key), where the other ring members are decoys (mixins),
such that the real spent coin is indistinguishable among the ring members.
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8.2.2 Monero Consensus, Mining Activities, and Mining Pools

Monero implements Proof-of-Work (PoW) as its consensus method [108]. PoW utilises
computing power to determine which party can extend the blockchain. Any parties that
dedicate computing power for PoW purposes are called miners. On each cycle, miners
compete with each other to solve a computing problem, where the miner that proposes the
best solution will add a new block to the blockchain.

There are generally two ways for a miner to mine cryptocurrencies: by mining individually
(also called as solo mining) or by joining a mining pool (also called as pool mining). A
mining pool is a mining service that allows miners to share the mining workload. The
miners that join a mining pool expect to stabilise their income from the mining activities
[37]. Mining pools pay the miners according to the miners’ contributions based on the
agreed schemes. The mining pool operator also takes a fraction of the mining profits as a
reward for the mining pool service.

8.2.3 Research on Monero Mining Activity

Monero mining activity is sometimes associated with crypto-jacking [36, 87]. Monero’s
memory-bound mining algorithm can run on commercial CPUs. Therefore specific hardware
such as ASIC machine is not required. Coinhive4 and other similar services enable website
owners to embed mining scripts inside their webpages, such that the scripts will run on
visitors’ machine and bring profits to the website owners.

A group of researchers also quantified mining activity by collecting information about
created blocks and payouts made by 18 mining pools [79]. They extracted 73,667 payouts
and 210,800 blocks from those mining pools. Based on the captured information, they
estimated that around 0.438 transactions on each Monero block are related to mining
activities. Furthermore, they discovered that the number of mining-related transactions
correlates with Monero market price [79].

4Coinhive dissolved on March 2019.
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8.3 Analyses on Mining Pool-related Information

8.3.1 Overview

We investigate the impact of mining-related data publications by mining pools towards
transaction traceability. We assume that mining pools spend both their block reward and
change coins to pay their miners that have contributed to the mining pools.

The steps of our analyses are as follows. First, we surveyed mining pools. We discovered
ten mining pools published information related to Monero mining activities. We then
collected the data from the ten mining pools as our primary data set. Then, we analysed
the data set to identify the traceability of the transactions. We defined possible scenarios
for these transactions and then adopted known traceability analyses to our data set. We
further explored our data set to discover known Monero addresses’ activities, the use of
unencrypted Payment ID (UPID), spent outputs age, and how the traceable inputs impact
other transactions’ anonymity.

8.3.2 Public Information from Mining Pools

Table 8.1 shows our survey on ten mining pools regarding information they publish on
their websites without the need of creating accounts on the mining pools’ systems. The
Block Won column shows that all mining pools publish blocks they produced. Global

Payout Data indicates whether a mining pool publishes a list of all payouts they made
to the miners. Our survey data shows that only two mining pools, Xmr.nanopool and
Minexmr, do not publish payouts data. Individual Payout Data shows whether a mining
pool provides a list of payouts for user-supplied addresses without logging in. The survey
data indicates that although Xmr.nanopool and Minexmr do not publish all payouts data,
they still provide individual payout data. It means that the payout data is available as long
as the requester knows the miners’ Monero addresses.

Bulk Payout indicates whether a mining pool sends payments to miners in bulk (many
recipients in one transaction), whereas Individual Payout indicates whether a mining
pool sends payment to miners on different transactions. Our survey shows that only
Xmr.nanopool only allows bulk payouts, whereas 2miners only supports individual payouts.
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Table 8.1: The mining pool survey result. Data marked with asterisk (*) means there is no
backdate data search. N/A means we could not find any data samples.
No Pool Name Block Won Global Payout Data Individual Payout Data Bulk Payout Individual Payout Miners’ Address

1 supportxmr.com Yes Yes Yes Yes Yes No
2 xmr.nanopool.org Yes No Yes Yes No Block Finder
3 minexmr.com Yes No Yes N/A N/A N/A
4 dwarfpool.com Yes* Yes* No Yes Yes No
5 monerohash.com Yes* Yes* No Yes Yes No
6 crypto-pool.fr Yes Yes No Yes Yes No
7 xmrpool.net Yes Yes Yes Yes Yes No
8 xmrpool.eu Yes Yes No Yes Yes No
9 2miners.com Yes Yes* No No Yes No
10 coinfoundry.com Yes Yes Yes Yes Yes Block Finder

8.3.3 Data Collection

We collected information from ten active mining pools. These mining pools provide various
information, such as the list of blocks they won, payouts, even miners’ addresses that created
the blocks they won. We identified 272,414 blocks B and 157,931 payouts (transactions)
T created by the ten mining pools5. The transactions also contain 373,559 inputs I with
2,603,108 mixins M . The blocks B contain coinbase transactions that produce new outputs,
CO. The number of CO is identical to the number of new blocks B. Transactions I contain
a total of 1,181,501 outputs O.

Figure 8.2 shows the distribution of the number of transactions we recorded. Supportxmr
has the most significant percentage, with 82.4% of all payouts, followed by Crypto-pool
which contributed 13.7% of all payouts. Xmrpool.eu and Xmrpool.net are accounted for 2.1%
and 1% of all payouts, respectively. Not every mining pool provides the same information
and in the same fashion. As a result, we could not find any payouts made by Minexmr, as
shown in Table 8.1.

Table 8.2 shows the detail of the payouts. From the data we collected, there are a total
of 851,341.8 XMR, or about US$54.49million6, paid by the mining pools to the miners. The
information also shows that although Crypto-pool has a much lower number of payouts,
its total payouts is 50% bigger than Supportxmr. There are mining pools that provide
the number of payees for each payout. However, there are also mining pools that do not
publish the number of payees information. We adjusted the empty information by using
estimation based on the number of outputs on the payouts. In average, Crypto-pool pays
2.54 XMR to each payee. Monerohash pays an average of 1.13 XMR to each payee, followed

5As of 14 November 2019.
6US$64 per XMR, according to Coingecko.com exchange rate as of 14 November 2019.
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Figure 8.2: The distribution of the captured mining pools payouts.

by XmrpoolNet and Supportxmr.

8.3.4 Traceability Analysis

We base our traceability analysis on mining pool business processes. Mining pools can use
their mining reward to pay their miners. It is also possible that the payouts to the miners
spend change coins from previous payouts. Based on these two possibilities, we constructed
our data set by using the following rules R1.

R1.1 The transaction ti1 must be from the set of transactions T

R1.1 Each mixin mi
1 ∈M in the transaction inputs is either:

(a) a coinbase transaction output where the same mining pool wins the block, or

(b) an output of a transaction created by the same mining pool.

We apply the rules R1 to our data set T , M , and I that we curated from the ten mining
pools to produce T ′, I ′, and M ′.
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Table 8.2: The details of payouts data from ten mining pools.

Mining Pools Total XMR Num.Payouts Avg. XMR/Payouts Total Payees Avg. XMR/Payee

Crypto-pool.fr 497,377.91 21,565 23.06 195,483 2.54
Supportxmr.com 333,155.12 130,097 2.56 724,373 0.46
Xmrpool.eu 13,439.87 3,292 4.08 41,442 0.32
Xmrpool.net 6,292.01 1,638 3.84 7,690 0.82
Monerohash.com 928.84 106 8.76 822 1.13
2miners.com 118.06 259 0.46 584 0.20
Coinfoundry.com 30.00 170 0.18 1,692 0.02
Xmr.nanopool.org - 500 - 3,949 -
Dwarfpool.com - 304 - 517 -

By using the rules, we identified 147,827 transactions T ′ (where T ′ ⊂ T ) with 275,499
inputs I ′ (where I ′ ⊂ I) that contain qualified 393,525 mixins M ′ (where M ′ ⊂M).

Next, we conducted traceability analysis by using the following rules R2.

R2.1 Each input ii2 ∈ I ′ contains exactly one mixin mi
2 ∈M ′, where the mixin mi

2 is from
the same mining pool as ii2.

R2.2 For an input ii2 ∈ I ′ that contains x number of mixins from the same mining pool,
rule R2.1 must identify all x− 1 mixins.

By applying rules R2 to I ′, we identified 218,957 traceable inputs I ′′, where I ′′ ⊂ I ′. The
traceable inputs are 59.2% of all inputs in I and 78.7% of all inputs in I ′. The result
is roughly 3 to 4 times more successful compared to key reuse traceability analysis after
Monero hard forks. [48, 118]. However, the number of traceable inputs from our proposed
analysis is less than the known zero mixin and cascade effect, ring usage, and Monero
unencrypted Payment ID analyses. The comparison is shown in Table 8.3.

8.3.5 Multi-Candidate Untraceable Inputs

We also discovered that our rules in Section 8.3.4 were unable to trace 56,842 inputs from
our data set I ′′. There are 586 inputs contain one ring member that fit in our rules R1
and R2. However, other inputs have spent the associated ring members of these inputs.
It is possible because of our incomplete data set. Mining pools’ transactions that are not
payouts, such as cashing out their profits are not published. Table 8.4 shows the untraceable
inputs detail.
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Table 8.3: The result of traceable inputs from known traceability analysis techniques.
Traceability Techniques Traceable Inputs

Zero mixin and cascade effect [79] 3,937,331
Ring usage [117] 1,142,383
Monero unencrypted Payment ID [117] 332,987
Mining pool payouts (our proposal) 218,957
Key reuse [48] 73,321
Key reuse [119] 53,162
Closed set [125] 3,017

Table 8.4: Multi-candidate untraceable inputs in our data set.

Num. of Qualified Ring Members Data Count Percentage

1 586 1.03
2 39,418 69.35
3 13,576 23.88
4 2,860 5.03
5 369 0.65
6 31 0.05
7 2 0.004

Almost all of the untraceable inputs have two or more qualified ring members that fit
our rules R1 and R2. These inputs are untraceable because the rules are unable to decide
which ring members are spent by the inputs. About 93% of the untraceable inputs are from
Supportxmr, while 7% of them are from Crypto-pool. This finding shows that the mining
pools tend to add their outputs as ring members when creating transactions. However,
according to the default Monero wallet’s mixin selection distribution algorithm, 50% of all
mixins must come from blocks generated in the last 1.8 days. It means large mining pools
have a higher probability of inserting its outputs as mixins in new transactions because
they frequently send payouts to miners compared to small mining pools that send payouts
less frequently.

8.3.6 Second-order Traceability Analysis

We define second-order traceability analysis by searching for unlisted transactions X 6⊂ T .
We also define a transaction tx := {i1x, i2x} → {o1x, o2x} where tx ∈ X, ix is an input to tx and
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Figure 8.3: Second-order traceability analysis to find t6 ∈ X and trace i61.

ox is an output of tx. The transaction tx includes at least one output o ∈ O in one of its
mixins MX , and at least one of its outputs omx are in M . The case diagram for second-order
traceability analysis is shown in Figure 8.3. The search back-tracks all known transactions
T to find transactions X. It exhausts all possible paths starting from the outputs to inputs
and all mixins. We define IX as all possible traceable inputs from X.

We identified 18,171 possible traceable inputs (IX) from 11,615 transactions X. However,
inputs in IX has two or more possible spent outputs. We define I ′X as a set of inputs
I ′X ∈ IX that has exactly one possible spent output that satisfies o ∈ O and o ∈MX . We
discovered 5,501 traceable inputs that satisfy the requirements.

8.3.7 Additional Analyses on Mining Pools’ Public Information

Although Monero addresses are not usually made public, Xmr.Nanopool and Coinfoundry
publish Monero addresses of miners who won the blocks for the two mining pools. We
discovered 339 Monero addresses from our data set7. We also utilised the Monero address
list published by Palo Alto Networks (PAN)8. PAN investigated cryptocurrency mining
activities ran by malware applications and discovered 2,341 Monero addresses [43].

We discovered 914 traceable inputs that spent outputs from previous transactions,
where the spending transactions and the previous transactions have the same unencrypted
Payment ID (UPID). The result shows that the method proposed by [117] is still applicable.
However, due to the limited amount of data we collected, we could not produce the same

7https://github.com/sonicskye/monero-miningpool-data/blob/master/miner-addresses
8https://github.com/pan-unit42/iocs/blob/master/cryptocurrency miners/xmr wallets.txt
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Figure 8.4: The output age of known traceable inputs.

results. The UPID feature might not be available in the future. Monero developers have
stated that they will phase out the UPID and replace it with the encrypted Payment ID
(EPID) and subaddress9.

Based on the traceable inputs we discovered in Section 8.3.4, we analysed the age of
all identified spent outputs. Monero’s current block production time is roughly one block
every two minutes10. The finding in Figure 8.4 shows that the age of around 81% of the
spent outputs is less than 300 blocks or roughly 2.5 hours. The age of the other 18% of the
known spent outputs spans from 300 blocks to 9,400 blocks, or between 2.5 hours to 3.3
days.

We also discovered 99,389 spent coinbase outputs. The age of the spent outputs from
coinbase transactions also show an identical figure to Figure 8.4. The figure shows that
the mining pools do not distinguish whether the spent outputs are from the previous
transactions or the coinbase transactions. Although the coinbase outputs cannot be spent
at least two hours (or 60 blocks), this restriction does not make much difference to the
figure.

From the traceable inputs we discovered in Section 8.3.4, we identified 1,578,094 inputs
from 1,057,833 different transactions that utilised the traceable inputs as mixins. About

9https://web.getmonero.org/2019/06/04/Long-Payment-ID-Deprecation.html
10According to https://bitinfocharts.com/comparison/monero-confirmationtime.html, the current block

production time was shifted from one block every minute to one block every two minutes end of March
2016.
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98% of the inputs only use less than three of the traceable inputs, where on average, the
transactions suffer 12% reduced anonymity or only 78% effective anonymity.

8.4 Possible Countermeasures

We propose possible countermeasures to the identified problem of a privacy leak from
the published information by Monero mining pools. Our proposals include data clean-up,
transaction obfuscation, and provable data publication.

One of the most obvious ways to avoid the identified problem of traceable inputs of
mining pools’ payouts is not to make the payout data available for the public. Instead,
related parties such as miners can receive limited information from the mining pools. To
access payout data, a miner needs to satisfy a simple authentication mechanism, for example,
by using his or her Monero address.

8.4.1 Transaction Obfuscation

8.4.1.1 Churning

Mining pools can reduce the traceability risk by churning their coins before spending them
to pay their miners. Churning [58] is done by spending the coins and send them to own
address(es). The purpose of churning is to increase the total number of mixins or possible
spent inputs and therefore improve the sender’s untraceability [58]. Churning also increases
the distance between the original outputs and the current outputs in the wallet [53].

Churning can mitigate against second-order traceability analysis (Section 8.3.6). Churn-
ing increases the difficulty of finding a mining pool’s unlisted transactions. With churning,
the number of searches s increase by the following formula: s = (i ∗ r)c, where i is the
average number of inputs per transactions, r is the average ring size, and c is the number
of churning rounds.

8.4.1.2 Own Outputs as Mixins

The analysis we conducted in Chapter 8.3.5 provides an insight into a new obfuscation
method creation. If the mining pools keep publishing blocks they won and payout transac-
tions, then their mixin selection algorithm can be improved. We suggest adding at least one
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of their outputs as mixins in the newly created transactions. Supportxmr uses this scheme.
However, it is also important not to create a closed set when creating mixins of own outputs
[125]. In order to use the method effectively, a mining pool needs to create more frequent
transactions. Setting a lower minimum payout and enabling individual payout can help to
increase the number of transactions by the mining pool.

8.4.2 Accountable Data Publication

8.4.2.1 Mining Pools’ Monero Tracking Keys

Monero provides an accountability feature called tracking key [108]. Monero uses two sets
of private and public keys, {(a,A), (b, B)} in its system. A monero address consists of
the two public keys PK = {A,B}, while a Monero private spend key consists of the two
private keys PR = {a, b}. Monero’s tracking key consists of one of the public keys and one
of the private keys TR = {a,B}. While the private spend key PR holder can spend coins,
a Monero tracking key is ineffective to spend coins. It can only detect incoming Monero
transactions.

The tracking key of each mining pool can then be published. The tracking keys of all
mining pools can identify which blocks are won by each mining pool by using the following
logic. If a mining pool’s Monero address receives a payment from a coinbase transaction
of a block that consists of mining reward and transaction fees, then it indicates that the
mining pool won the block.

Publishing Monero tracking key can weakly mitigate a malicious mining pool that falsifies
block production data (mining power or won blocks). However, tracking key publication is
voluntary. While most mining pool operators are approachable, it is infeasible to enforce
the same policy to solo miners. Unwilling miners or mining pools can also avoid tracking
by creating new addresses or subaddresses for every mining cycle.

8.4.2.2 Slushpool’s Hash Rate Proof

Slushpool, a Bitcoin and Zcash mining pool, created Hash Rate Proof (HRP)11, an algorithm
to check the correctness of the mining pool’s total hash rate. The mining pool also publishes
shares data of its miners per hour as the input for its algorithm. Each share data contains
three parts:

11https://slushpool.com/help/hashrate-proof
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• block header (80 bytes)

• coinbase transaction

• Merkle branch

The following method verifies the share data. First, the verifier computes Merkle root hash
by using the coinbase transaction and Merkle branch hashes. Then, the Merkle root hash
needs to be included in the block header’s byte number 36 to 68. Each share also contains
a unique string, ’/slush/’, in its coinbase transaction which verifies that the share was
submitted to Slushpool.

A Monero mining pool can adopt HRP to improve their mining activities transparency.
The benefit is three-fold:

1. to help identify the mining pool that wins a block; the verifier can further use the
mining pool’s tracking key TR (Section 8.4.2.1) to check whether the mining pool
receives the block’s mining reward;

2. to prove that a miner wins the block without publishing the miner’s address;

3. to prove that a miner’s shares contribute to mining the block.

A Monero miner can refer to HRP data to determine whether the payouts she receives
from the mining pool reflect her contribution to the mining pool according to the mining
pool’s reward scheme. The mining pool only needs to publish the total amount of payouts
without further details on the payouts, such as transaction IDs, amounts, and recipients’
addresses. Although HRP can mitigate incorrect block production data, its problems are
also identical to publishing tracking key.

8.5 Mining Pool Feature Analysis

In this section, we discuss possible reasons for publishing mining pool data. We also analyse
the characteristics of the top ten Monero mining pools to identify the miners’ preferences
in mining pool selection.
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8.5.1 Mining Pool Data Publication and The Lack of Verification

The root cause for traceable payout transactions is because the mining pools publish the list
of blocks they won and the list of payout transactions to the miners. The data published by
mining pools is probably for promoting their services. The mining pools would also want
to be preferable to miners by providing evidence to the miners that they are productive,
robust, and behave honestly [6].

If mining pools do not publish the related mining data, it is infeasible for the miners
to determine how many blocks the mining pools won and how many payouts are made by
the mining pools to each miner. The Monero mining-related data collection approach is
different compared to Bitcoin. In Bitcoin, the mining pools that created the blocks can be
determined based on the coinbase transactions’ destination addresses which belong to the
mining pools or the miners. However, since Monero uses the one-time public key (OTPK)
technique, the coin receivers are unlinkable.

In Monero, publishing mining information is arguably useful. There is no means to
verify the correctness of the published list of won blocks and a list of payouts. Mining
pool information portals such as Miningpoolstats.stream12 rely on mining pools’ published
information on the mining pools’ websites. A malicious mining pool can create their fake
list of won blocks that consists of blocks that they did not win. An artificial list of payouts
can also be created maliciously by creating Monero transactions that pay to their addresses.
Monero anonymity hinders the verification of the payouts and the number of coins on each
payout.

A malicious mining pool can also reduce their accumulated mining power by modifying
their published mining information. The malicious effort can be identifiable by comparing
the Monero mining difficulty level and the accumulated mining power from all known
mining pools. However, this method is ineffective to identify the malicious mining pool and
infeasible to determine how much mining power reduction, since there is a possibility of
solo miners that contribute their mining power to Monero.

12https://miningpoolstats.stream/monero
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8.5.2 Characteristics of Top Ten Monero Mining Pools and Min-
ers’ Preference

8.5.2.1 Accumulated Mining Power and Mining Pool Data Publication

Table 8.5 shows several features of the top ten Monero mining pools according to Mining-
poolstats.stream. Minexmr and Supportxmr, the top two on the list, are known to publish
their won blocks on their respective website. Both mining pools control more than 65%
of the total hashrate in the network. However, F2pool on the top three of the list does
not publish mining-related data such as won blocks and payout transactions on its website
except its accumulated mining power.

Table 8.5 also shows the reward systems adopted by the top ten Monero mining pools.
The majority of the mining pools use PPLNS as their reward system. F2pool is the only
PPS-based mining pool. Although F2pool charges more pool fee compared to other mining
pools, it accumulated enough mining power to sit in the top three of the list. The result
attests that PPS is somewhat appealing to the miners because the miners do not suffer
mining reward variation risk, assuming that the total mining power in the system does not
change.

8.5.2.2 Minimum Payout

In a pool mining activity, a miner automatically receives a payout whenever his or her
balance reaches a minimum payout. A small minimum payout means that the miner will
receive more frequent payouts than a higher minimum payout.

Table 8.5 shows that half of the mining pools offer a minimum payout of 0.1XMR to
miners. Minexmr as the most significant mining pool offers a minimum payout of 0.5XMR,
five times higher than the other five mining pools. On the other hand, Moneroocean.stream
that offers the smallest minimum payout of 0.003XMR can only attract 891 miners and
with a total hashrate of 1.6% of Monero network hashrate, which means that minimum
payout is not essential to the miners.

We define X-Factor as any observable features on a mining pool’s website that may
increase a miner’s preference to join the mining pool. Based on our observations13, Sup-
portxmr provides visual information about how many blocks the mining pool produces in a
PPLNS window and how much efforts required to win each block. F2pool.com provides

13The observation was conducted on 19 December 2019.
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Table 8.5: Monero mining pools rank list based on the pools’ hashrate compared to Monero
network total hashrate. Data was taken from Miningpoolstats.stream on 18 December 2019.
No Mining Pool Reward System Pool Fee (%) Min. Pay (XMR) Num. of Miners X-Factor Pool Hashrate (%)

1 Minexmr.com PPLNS 1 0.5 9,315 Simple mining calculator 37.1
2 Supportxmr.com PPLNS 0.6 0.1 4,697 PPLNS window visualisation 28.6
3 F2pool.com PPS 3 0.1 N/A Android/iOS monitoring app; multicoin 11
4 Xmr.nanopool.org PPLNS 1 0.1 1,931 Multicoin 8
5 Xmrpool.eu PPLNS 0.9 0.1 365 N/A 4.5
6 2miners.com SOLO 1.5 0.1 26 Multicoin 1.8
7 monerohash.com PROP 1.6 0.5 163 Simple mining calculator 1.7
8 Moneroocean.stream PPLNS 0 0.003 891 Auto switch to different coins. 1.6
9 Hashvault.pro PPLNS/SOLO 0.9 0.11 675 Multicoin 1.6
10 Miningpoolhub.com PPLNS 0.9 0.05 3,059 Auto switch to different coins. 1.1

Android and iOS applications to miners who prefer to monitor their mining performances.
Interestingly, Minexmr that controls the biggest portion of Monero mining power (37.1%
at the time of writing) does not have any noticeable X-Factor on its website other than a
simple mining calculator. Minexmr uses an open-source mining pool application provided
by Matthew Little14.

8.5.2.3 Mining Pool Age and Google Trends

Table 8.6 shows the establishment date of mining pools according to their Whois registration
and Wayback Machine records. Minexmr started to provide their service in June 2014,
several months after the launch of Monero in April 2014. Monerohash that launched Monero
mining service in February 2015 is currently only in the seventh position. Supportxmr,
Xmr.nanopool, and Xmrpool.eu that established their Monero mining service in late 2016
are in the top five of the list. It is also notable that F2pool has been involved in the
cryptocurrency mining industry before 2017 by offering Bitcoin mining service. At the time
of writing, F2pool controls 16% of total Bitcoin mining power15. The insights from our
data indicate that there is a slight correlation between mining pool age and Monero miners’
preference in selecting mining pool.

We also utilised Google Trends16 to evaluate the popularity of each mining pools. The
result of a five-year Google keyword search is in Figure 8.5. Nanopool and Miningpoolhub
show the best results among others. Both mining pools are multi-coin mining pools. Based
on the figure, Monero miners’ preference does not correlate to the popularity of the mining
pools.

14https://github.com/zone117x/node-cryptonote-pool
15Data was taken from https://www.blockchain.com/pools on 19 December 2019
16https://trends.google.com/

145



Figure 8.5: The number of Google search of mining pools in the last five years. The mining
pools’ domain names were used as keywords. Data was taken from Google Trends on 19
December 2019.

Table 8.6: Monero mining pools starting date according to Whois Registration and Wayback
Machine. Dates marked with asterisk indicate the dates the mining pools started to offer
Monero mining pool service. Xmrpool.eu does not have a Whois record due to EU General
Data Protection Regulation [38].

No Mining Pool Whois Registration Wayback Machine

1 Minexmr.com June 2014 June 2014
2 Supportxmr.com October 2016 December 2016
3 F2pool.com April 2013 December 2017*
4 Xmr.nanopool.org August 2015 August 2016
5 Xmrpool.eu N/A October 2016
6 2miners.com September 2017 December 2018*
7 monerohash.com October 2014 February 2015
8 Moneroocean.stream August 2017 January 2018
9 Hashvault.pro October 2017 October 2017
10 Miningpoolhub.com January 2014 May 2017*
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8.6 Conclusion and Future Work

In this chapter, we collect and analyse information published by ten Monero mining pools.
The published information, including the list of won blocks and payout transactions to
miners, can be utilised to trace the real outputs of the payout transactions. Our traceability
analysis shows that 59.2% of inputs are traceable. We also analyse that the output age of
known traceable inputs is between 2.5 hours to 3.3 days, regardless of whether the spent
coins are from previous transactions or mining rewards (coinbase transactions). For the
identified problems, we propose simple mitigation strategies to improve the anonymity of
Monero transactions that do not require fundamental changes to Monero protocol.

We discovered little to no correlation between publishing mining-related information
and miners’ preference for mining pools. Most mining pools publish blocks they won and
payouts to the miners, and therefore they are mostly available on the mining pools’ websites.
F2pool that does not publish the same data is currently the third-largest Monero mining
pool, which indicates that Monero miners do not consider data transparency when selecting
a mining pool to join. Therefore, Monero mining pools should remove the list of won blocks
and payouts from their websites, because the lists leak transaction anonymity and do not
provide strong business transparency to the mining pools.

We also investigated different characteristics of the top ten Monero mining pools. Our
investigation includes financial factors such as reward system, mining pool fee, and minimum
payout and external factors such as distinguishing features from other competitors, how
long the mining pools have provided their services, and popularity through Google Trends.
Each mining pool has its appeal to the miners. Miners that specialise in mining Monero
would prefer Minexmr as one of the oldest and most established Monero mining pool in
the market. Supportxmr that provides lower pool fee becomes the second-best Monero
mining pool. The mining power distribution between the major mining pools in Monero is
understandable since the community would avoid any majority mining pools and prefer a
balanced mining power distribution [4].

For future work, we focus on finding a better solution to improve the transparency of
their mining activities without leaking the privacy of their transactions. The solution may
require modifications on Monero mining protocol.

8.7 Chapter Summary

In this chapter, we discuss how mining pools’ data can reveal Monero transactions, especially
related to mining payouts. We utilise two information in our traceability analyses, namely
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won blocks and transaction payouts, and discover more than 200K traceable inputs. Our
findings show the significant impact of mining pool’s data publication to Monero transaction
anonymity.

This chapter concludes our last part of the third research question, Q3, that focuses
on investigation potential anonymity threats to third-party services, namely wallet service
providers and mining pools in Monero.
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Chapter 9

Conclusion and Future Work

This chapter concludes the thesis and recommends several directions for future work.

9.1 Conclusion

In this project, we work on Monero, a CryptoNote-based privacy-preserving cryptocurrency,
to gain insights on privacy issues in blockchain technology, specifically at the protocol
level. Cryptocurrency is one of the most successful blockchain implementations in financial
technology, while Monero is a fascinating subject to research due to its rapid privacy
technology adoption.

Our research contributes to the blockchain’s body of knowledge by exposing vulnera-
bilities and potential threats and asserting the need for more protection mechanisms on
the protocol level. Our findings also indicate the need of anonymity-focused improvements
in the current Monero implementation that may also become a reference model for future
blockchain products. To achieve our goals, we investigate three vulnerable areas in Monero
that can lead to anonymity attacks.

First, our research explores how an attacker exploits Monero’s scheme that relies on
honest users to construct a private transaction that supposedly protects the anonymity
of the sender and the receiver. We discover that an attacker could create malicious
transactions that can lower other users’ transaction anonymity. Our main contributions
are two transaction-based attack schemes that fully comply with Monero transaction
mechanisms and do not require any controls over the victims’ systems [116, 117]. We also
propose a traceability analysis that utilises Monero’s Unencrypted Payment ID (UPID),
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that results in the most significant anonymity problem after RingCT implementation [117].
These contributions answer our first research question, Q1, about vulnerabilities in Monero
transaction mechanisms.

Second, the project explores the risks of Monero hard forks as the result of Monero
protocol updates. The research direction is in line with our second research question, Q2. We
focus on two hard forks that occur in 2018, resulting in the emerging of two new branches
of Monero blockchain by the end of 2018. We discover that the hard forks are threats to
Monero transaction’s anonymity [119]. A hard fork in Monero also enables an attacker to
launch a cheap Denial-of-Service attack to nodes that do not update their software to the
latest version [118]. Our contributions in the second part of the project answer our second
research question, Q2.

Third, the project studies the use of third-party services to answer our third research
question, Q3. We find that a wallet service provider can trace its users’ change coin by
cross-referencing spent keys to previously known keys. We also discover that mining pools
that play significant roles in Monero consensus model could leak their miners’ transaction
anonymity unnecessarily, to provide business transparency to their clients (miners). We
answer our third research question by identifying potential anonymity problems from wallet
service providers and mining pools.

In general, our work benefits blockchain research by providing a rigorous study on
the impact of privacy-focused cryptographic protocol implementations. We identify how
users’ behaviors, third-party services, client-side applications, and the lack of privacy and
anonymity guarantees in system and protocol levels may significantly reduce the goals of
the privacy-preserving blockchain’s fundamental design.

9.2 Future Work

We provide a new research direction on each part of this project for future work. In the first
part, future work can provide better protection from malicious outputs by implementing a
stricter output selection criteria. We suggest a new research direction for an improvement
to the existing blacklisting mechanism by considering statistical properties of Monero
transactions.

We also suggest exploration of alternative solutions to the current Monero hard fork
mechanism to protect transaction anonymity and nodes during system migration. Regular
hard forks such as the ones in Monero increase difficulties in node management. A service
provider that maintains a node must halt the service, reinstall the new node, and wait for
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the node, if any, to make necessary updates to the blockchain structure. The work becomes
more complex if the service provider also connects the node to other applications, such as
blockchain explorer or wallet application. It is likely that a major hard fork also brings
major changes to the system, which, in turn, invalidates related applications. Hard forks
also complicate advanced protocols such as cross-chain transactions, where a blockchain
relies on oracles to provide external information to the system, such as other blockchains’
block information. A hard fork in the external blockchain, especially if the hard fork
produces multiple live branches, will require special strategies from the source blockchain
to identify the main branch. Soft fork and velvet fork [126] are two exciting options.

In the third part of our project, we discovered how third-party services could be a threat
to Monero anonymity. We suggest the development of a new thin wallet that does not
rely on any third-party services to access Monero network. We also suggest working on an
alternative solution to reduce or eliminate the use of mining pools in Monero.

The work we conducted in this thesis can also become a strong foundation for further
research on anonymity in blockchain technology applications. We brought forward fresh
approaches on identifying anonymity issues in system and protocol levels that are currently
not broadly discussed. The existing solutions rely on cryptographic primitives to provide
users anonymity. This approach, based on our findings, is not sufficient in live systems with
more complex challenges to protect against.
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