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INTRODUCTION )
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We hypothesised that to study
complex phenotypes such as
COVID-19, integrating multi-omics data
would reveal signals that were not
possible by single-omics data alone.

To test our hypothesis, we used a
medically relevant multi-omics dataset.
Comparing single-omics and multi-
omics data showed that data integration
performed better than single-omics
analyses (data not shown).
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Figure 1: Structure of the SARS-Cov-2
genome

(

DATA )

We obtained time-series data for
proteome and translatome?’.

A CaCo-2 cell line was grown in vitro as
three separate batches, for a total of
n=3 per treatment condition.

Cells were sampled at four timepoints
for proteome and translatome data.
6381 features were present in the
original proteome data and 2715
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We identified 55 potential drug
and target combinations. One of
the drugs is already in clinical
trials (etiposide). We also report 5
new drugs that are not currently
under investigation (aspartic acid,
asulacrine, carubicin,
daunorubicinol, intoplicine).
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( METHODS AND RESULTS )

* Missing values and a batch effect were
observed.

* We corrected for this by filtering and
imputing* values followed by a
multilevel decomposition®.

* 59% (1595 data points) of the data
remained for translatome. Proteome
data was not significantly affected.
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Figure 3: Principal component analysis
sample plot before and after

multilevel decomposition for

(a) translatome and (b) proteome.

features were present in the original
translatome data.

. Figure 5: Using a component-based multivariate ap-
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Figure 2: Infected CaCo-2 cells were
sampled for proteome and translatome
data at 2/6/10/24 hours post-infection.
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between low-level features are highlighted in red
and strong negative correlations between Ilow-level
features are highlighted in blue. Within this set, we iden-
tified drug targets using DrugCentral® and two drug
targets are highlighted.

Figure 4: Pathway enrichment analysis
using Reactome® and StringDB’" with
correlated proteome and translatome
data.

The top 10 most enriched pathways
iIncluded: Metabolism of RNA, Infec-
tious disease, Peptide chain elonga-
tion, Eukaryotic Translation, Influ-
enza Life Cycle and Infection, Viral
MRNA Translation, Metabolism, In-
fluenza Viral RNA Transcription and
Replication.

FUTURE DIRECTIONS J

Although single-omics information is useful, we
demonstrate that resolution improves with muilti-
omics approach on this small test case.

* We will perform similar integrative analyses for two
additional matched datasets: [proteome,
transcriptome] and [epitranscriptome, transcriptome]

* We will assess the reproducibility of our results.
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