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Abstract

The electricity industry is collecting large volumes of data from various sources. From

regional grid demand to individual sensor readings in buildings, there is a wide range

of disaggregated data sources requiring new techniques for forecasting and inference.

A better understanding of how electricity is being used by consumers has the potential

to increase energy efficiency and improve grid planning and management. This thesis

presents several novel approaches to understanding these varied data sources. Two

published papers and another two working papers are included.

Our first contribution is to present a methodology for creating coherent probabilistic

forecasts in hierarchical settings. We find that our approach improves forecast performance

compared to an appropriate benchmark model when assessed using the pinball loss

scoring function. The effectiveness of the methodology is demonstrated using electricity

consumption data from eight bottom-level zones and two aggregated zones in New

England.

The second contribution of this thesis is to present an approach to understanding the

effects of commercial office building attributes on electricity demand. We use smart meter

data and mixed effects models to estimate each building characteristic’s effect size and

statistical significance throughout the day. This allows for the creation of demand impact

profiles which clearly show how each attribute increases or decreases electricity demand.

Our third contribution focuses on using mixed models to improve point forecast accuracy

for commercial office building electricity demand. Several benchmark models are assessed

against various mixed effects models. We find that our proposed subject-specific curves

model produces the best one-day ahead forecasts based on a variety of forecast accuracy
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metrics. Furthermore, we demonstrate how such a model can be used to conduct scenario

analyses by varying which attributes are present in a building.

The fourth and final contribution of this thesis focuses on visualising building management

system sensor readings. Commercial buildings are often fitted with thousands of sensors

that collect various readings for equipment operation and indoor environment quality.

Interpreting this data is challenging due to the scale of data collection. We propose

extracting time series and metadata features which are then transformed by several

different dimensionality reduction techniques. We demonstrate how this approach can be

used to detect anomalies in building operation.

In addition to the contributions listed above, all code for published papers has been made

available publicly to help encourage future research in this area.
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Chapter 1

Introduction

1.1 Overview

Due to the finite nature of electricity generation, the planning and usage of electricity

networks is critical to a well functioning society (Esteves et al., 2015). The energy sector

collects large volumes of data that can be used to help accomplish this (Pérez-Chacón

et al., 2018; Yu et al., 2015). Network operators, distributors and private companies

collect data that includes grid demand, individual building demand via smart meters and

building management system (BMS) sensor readings. These data sources and the time

series techniques used to analyse them are continually being explored and refined.

Grid demand is often recorded by zones, such as states or large regions, and represents

the total demand in each. It is often used to forecast electricity demand which is in turn

used for planning and grid management. Smart meters record electricity demand for

individual households and businesses. As smart meters gather data for individual homes

and buildings they allow for more fine-grain understanding of usage characteristics and

trends. They are being installed in large numbers across many major economies. In

the US there are an estimated 87 million installed smart meters as of 2018 (U.S. Energy

Information Administration, 2018); China’s state grid has finished their roll-out of electric

smart meters (Research in China, 2019); and in Australia there are an estimated 2.8

million smart meters in Victoria alone (The State of Victoria Department of Environment,
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CHAPTER 1. INTRODUCTION

Land, Water and Planning, 2016) while the national number is set to increase with the

enforcement of a rule change by the Australian Energy Market Commission ensuring

all new and replacement meters should be smart or advanced (Chan and Boddington,

2019; Australian Energy Market Commission, 2015). As smart meters typically record

electricity demand at 15 or 30 minute intervals, they produce a large number of time

series that can be used for inference and forecasting. BMS’s are typically installed in

large commercial buildings and are implemented to control heating, ventilation and air-

conditioning (HVAC) systems and other equipment. These BMS systems are comprised of

many sensors spread throughout each building collecting data on indoor environment

quality, equipment status and electricity usage of individual items.

Some of the intended goals of data collection at such a large scale is to improve short and

long-term forecasts for better grid planning; disaggregating consumption to appliances

or equipment; and detecting anomalies in building performance and load management

(Wang et al., 2018). In this thesis we explore each of these data sources and focus on two

key goals:

1. To improve the performance of existing forecasting procedures.

2. To allow decision makers to better understand energy usage within buildings.

New methodologies are introduced in each chapter, each of which addresses one of these

goals.

Expectations around the requirements for adequate energy demand forecasts have evolved

in recent years. Where once point forecasts produced using univariate techniques were

adequate (Taylor, Menezes, and McSharry, 2006); now probabilistic forecasts are expected

(Hong et al., 2016; Hong, Xie, and Black, 2019) which allow us to assess both the anticipated

demand and the uncertainty surrounding it. In fact, several recent reviews on electricity

demand forecasting methodologies did not focus on probabilistic or quantile forecasts

(Suganthi and Samuel, 2012; Yildiz, Bilbao, and Sproul, 2017; Singh et al., 2012), which

highlights the rapid development that has occurred in recent years. Another recent review

by Hong and Fan (2016) discussed the shift in focus towards probabilistic forecasting.

Quantifying the uncertainty of forecasts through quantiles or density functions is of

2



CHAPTER 1. INTRODUCTION

paramount importance when producing peak demand forecasts where the peaks between

years can vary dramatically, and is now common practice for some grid operators when

producing peak demand forecasts (Australian Energy Market Operator, 2019).

A recent development in load forecasting makes use of the hierarchical structure of

forecasts to improve accuracy. In cases where forecasts are to be produced for all levels of

a hierarchy, we want to ensure that the forecasts at each level are consistent. By consistent,

we mean all child nodes of the hierarchy sum to their parent nodes. Consistency not only

produces sensible forecasts, but also results in better accuracy. While producing consistent

hierarchical point forecasts is a relatively simple process, producing consistent probabilistic

forecasts is a more challenging and less explored area. Addressing this research topic was

the focus of the Global Energy Forecasting Competition 2017 (Hong, Xie, and Black, 2019)

which produced the material contained in Chapter 2.

The above considerations apply equally to smart meter demand. Several studies have

begun to focus on producing probabilistic forecasts at the building level (Ben Taieb,

Taylor, and Hyndman, 2020; Ben Taieb et al., 2016; Arora and Taylor, 2016; Hong and

Fan, 2016). While much of the existing smart meter analytics research has focused on

improving forecasting performance, there are further uses for the data when combined

with supplementary data sets. This is sometimes referred to as data fusion. Wang et al.

(2018) discuss multivariate data fusion and state that in relation to smart meter data,

“Very few papers consider weather data, survey data from consumers, or some other

data. Integrating more external data. . . may reveal more information.” Furthermore,

they highlight that appropriate visualisation approaches to express the importance of

various components is an overlooked area in need of exploration. A true boon for energy

analytics is the ability to disaggregate demand by appliance or building characteristic

and proceeding with a data fusion approach is a possible path forward. In Chapter 3 we

attempt this by modelling smart meter data in combination with building characteristic

data using mixed effects models. In Chapter 4 we also explore using the inherent similarity

between commercial buildings to improve point forecast accuracy, again using mixed

effects models. This has the added benefit of allowing for scenario analyses by varying the

values of predictors such as the type of chiller system being used or distribution system.

3



CHAPTER 1. INTRODUCTION

While load forecasting has been the main focus of smart meter data (Wang et al., 2018), it

has also been used to understand how buildings are working. Examples include clustering

time series using mean load profiles, where each observation time of the day is a feature,

before applying a suitable clustering algorithm such as k-means (Pérez-Chacón et al.,

2018; Flath et al., 2012; Räsänen and Kolehmainen, 2009); or by engineering features based

on the observed time series values before applying clustering (Haben, Singleton, and

Grindrod, 2016). These unsupervised learning approaches allow us to group users into

different categories which can then be used for customer segmentation. However, they

fail to clarify how energy is being used by consumers. Clustering does not reveal how

equipment or building characteristics affect electricity demand. Furthermore, approaches

that rely on regular time series readings are not applicable in those cases where irregular

time series intervals are present. Notably, we observe this in Chapter 5 when working

with BMS sensor data. Here, irregular time series are present due to sensors being polled

sequentially and at different rates. So while the aforementioned clustering approaches

are useful, they can be further improved by allowing for irregular time series and the

addition of complementary data sets. Understanding underlying behaviour of buildings

using smart meter and BMS sensor data are the focus of Chapters 3 and 5, respectively.

Data collected by BMS systems can be used to improve energy efficiency. BMS systems

are typically comprised of thousands of sensors throughout a commercial building each

of which collects time series data on qualities such as equipment status, air temperature,

damper position and electricity demand. Early efforts to leverage these point sensors

to save energy relied on hard coded thresholds or rules that would raise alarms if they

were violated. Lately, efforts have been made to explore and summarise the data in more

effective ways to better enable facility managers to understand how their building is

working. Research is still maturing in this field due to the difficulty of obtaining data from

multiple buildings.

1.2 Challenges

Reliable forecasting is of paramount importance for grid management. Planning for

adequate transmission capabilities to ensure supply and demand balance is a critical
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CHAPTER 1. INTRODUCTION

component of a stable grid. Point forecasts alone fail to address this need due to the

volatility of electricity demand. Instead, probabilistic forecasts that give a distribution

of values are preferred. Management decisions can be based on the known probability

of different demand levels. Some grid operators now incorporate probability into their

demand forecasts. For example, the Australian Energy Market Operator produces demand

forecasts at different probability of exceedance (PoE) levels, where a PoE of α is simply the

1 − α quantile of a density forecast (Australian Energy Market Operator, 2019).

Typically, a grid will be arranged in various zones each of which may require a demand

forecast. Yet there may also be a need for estimates of total demand to ensure generation

across interconnected zones can meet demand. In cases where demand at multiple

levels of a hierarchy are required we can improve the overall forecast accuracy by using

hierarchical forecasting techniques (Hyndman et al., 2011; Hyndman, Lee, and Wang, 2016;

Wickramasuriya, Athanasopoulos, Hyndman, et al., 2015). Ensuring consistent forecasts is

trivial for point forecasts as we can simply ensure the sum of bottom level zones is equal

to any parent zone. Combining probabilistic forecasts in a hierarchical setting is more

complicated and is a little researched field. We can not simply add the densities of bottom

level zones to obtain a consistent top-level zone. In Chapter 2 we present an approach that

produces consistent probabilistic forecasts across hierarchical zones while also showing

that we can improve forecast accuracy during the hierarchical reconciliation step.

Unfortunately, there is a lack of work that explores drawing inferences from smart meter

data. This is possibly due to a lack of suitable data sets. While some smart meter data sets

are available publicly, these rarely contain attribute data. By highlighting the possibilities

of combining smart meter data sets with building attribute data sets we hope to encourage

the collection of complementary data sets that can be used with smart meter data. Chapters

3 and 4 show two applications of combining different data sets in both inference and

forecasting settings. Chapter 3 fits mixed effects models to observe how different building

characteristics influence demand at different times of the day and year. Demand impact

profiles are produced which offer a clear visualisation of each attribute’s importance

throughout the day. Chapter 4 shows that using mixed effects models can improve

forecast accuracy. Adding fixed effects for building characteristics allows for scenario
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CHAPTER 1. INTRODUCTION

analysis, whereby we can create time series of expected electricity demand for different

building configurations.

Many buildings have configuration issues. Incorrectly configured BMS’s can result in a

large wastage of energy. Stuck dampers for instance can result in heating and cooling

occurring in the same room. Overly narrow dead bands can cause short-cycling and

hunting. As there are often hundreds or thousands of sensors in a single building, it can

be difficult to detect and diagnose anomalies in the system’s operation. To help make

this task easier for facility managers, we propose a dimensionality reduction approach for

anomaly detection. We discuss this in detail in Chapter 5.

1.2.1 Open data

One difficulty of conducting research in this area is the scarcity of open-source smart meter

and BMS data. Due to privacy and security issues, distributors and private companies

are often reluctant to release data publicly (Wang et al., 2018). In order to conduct this

research, I worked with Buildings Alive, a building performance company focusing on

energy efficiency through rapid response. The smart meter data, building characteristics

and BMS readings used in Chapters 3, 4 and 5 were made available by them. These data

were not released publicly due to privacy concerns.

Electricity demand data at a more aggregated level is easier to come by. Electricity demand

for eight zones in the New England electricity network was made available by ISO New

England for the Global Energy Forecasting Competition 2017. These data were used for the

research contained in Chapter 2 and were released publicly in an R package (see Section

1.3.3).

1.3 Contributions

This thesis was completed by publication. Four papers are included. Two have been

published in peer-reviewed journals and one is currently under review. A fourth working

paper will soon be submitted to a peer-reviewed journal.
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CHAPTER 1. INTRODUCTION

1.3.1 Publications and Conferences

The material in Chapter 2 has been published in the International Journal of Forecasting.

Results from this chapter were also presented in the International Symposium on Forecasting

held in Cairns, Australia, in June 2017.

The contribution in Chapter 3 of this thesis has been published in the journal Energy and

Buildings.

Chapter 4 was submitted for publication to the Journal of Forecasting.

Material in Chapter 5 was presented at the 2018 Summer Study on Energy Efficiency in

Buildings held in Pacific Grove, USA, in August 2018 by the American Council for an

Energy-Efficient Economy. Preliminary work was also presented at an invited talk for

the Melbourne Data Science Meetup held in Melbourne, Australia in November 2019. This

chapter has been submitted for publication to the journal Energy and Buildings.

1.3.2 Other research activities

Throughout my thesis I have collaborated with the building energy efficiency company

Buildings Alive. Additional research not presented here was conducted and included

studies on classifying BMS sensor types using neural networks. Long short-term memory

networks were used to classify what piece of equipment (e.g. air-handling unit, pump, etc.)

or measurement type (e.g. on/off status, supply air temperature, return air temperature)

each sensor belonged to using metadata that gave the name of each sensor. Unfortunately,

when tested against a random forest trained off bigrams and trigrams of the name metadata

we found that the simple benchmark was just as effective and so further research was

postponed.

1.3.3 Software and open data

The code used to produce each of the papers is stored in dedicated GitHub repositories.

Each repository contains functions and documentation that should make replicating these

analyses possible. The R programming language (R Core Team, 2019) was the main

language used for most papers, though Python’s Scikit-learn library (Pedregosa et al.,
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2011) was utilised for dimension reduction in Chapter 5. Code for the production of each

accepted paper has been made available as dedicated GitHub repositories in the following

locations:

• Chapter 2: https://github.com/camroach87/1701-gefcom

• Chapter 3: https://github.com/camroach87/1801-mmme.

As the raw data files used in Chapter 2 were only available in Excel spreadsheets, a tidied

version of the data were released as an R package at https://github.com/camroach87/

gefcom2017data. The R processing scripts, raw data and a tidy data set are contained in

the repository.

Code for chapters that are still to be accepted by a journal will be made available upon

acceptance at:

• Chapter 4: https://github.com/camroach87/1901-sscts

• Chapter 5: https://github.com/camroach87/1802-ufd.
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Chapter 2

Reconciled boosted models for

GEFCom2017 hierarchical proba-

bilistic load forecasting

The following paper was published in the International Journal of Forecasting Volume 35,

Issue 4, October–December 2019, Pages 1439-1450.

All code to reproduce the paper was made available at https://github.com/

camroach87/1701-gefcom.
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Reconciled boosted models for GEFCom2017 hierarchical
probabilistic load forecasting
Cameron Roach
Department of Econometrics & Business Statistics, Monash University, Australia

a b s t r a c t

When forecasting time series in a hierarchical configuration, it is necessary to ensure that the forecasts reconcile at all levels. The
2017 Global Energy Forecasting Competition (GEFCom2017) focused on addressing this topic. Quantile forecasts for eight zones and
two aggregated zones in New England were required for every hour of a future month. This paper presents a new methodology for
forecasting quantiles in a hierarchy which outperforms a commonly-used benchmark model. A simulation-based approach was used
to generate demand forecasts. Adjustments were made to each of the demand simulations to ensure that all zonal forecasts reconciled
appropriately, and aweighted reconciliation approachwas implemented to ensure that the bottom-level zonal forecasts summed correctly
to the aggregated zonal forecasts. We show that reconciling in this manner improves the forecast accuracy. A discussion of the results and
modelling performances is presented, and brief reviews of hierarchical time series forecasting and gradient boosting are also included.

© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Hierarchical time series forecasting occurs in situations
where a dependent variable of interest can be disaggre-
gated across the nodes of a hierarchy. Examples include
forecasting the sales of a product bothwithin towns and by
state; forecasting economic indicatorswithin states and for
an entire country; or, in this case, forecasting the demand
in both bottom-level and aggregated zones of an electricity
network. When forecasting hierarchical time series, the
base forecasts typically do not reconcile as one would
expect; that is, the forecasts of the electricity demand in
the bottom-level zones may not sum up to the forecasts of
the aggregated zones. Hence, it is often necessary to carry
out a reconciliation step to adjust these base forecasts.

This paper proposes a methodology for the hierarchical
forecasting of electricity demand across eight zones in New
England. In addition to the eight bottom-level zones, elec-
tricity demands for two aggregated zones are also forecast.
This methodology was used in GEFCom2017 in the defined
data track. Electricity and weather data were supplied by
ISO New England. As this was the defined data track, only
the electricity demand, dew point temperature, dry bulb
temperature and calendar data were allowed as model

E-mail address: cameron.roach@monash.edu.

inputs. We were presented with an ex-ante forecasting
problem requiring forecasts of the 10th, 20th, . . . and 90th
quantiles of the demand distribution for every hour of a
future month for all zones.

Quantile forecasts for demand are produced by simulat-
ingweather scenarios for every zone in the forecastmonth.
A demand model is then used to predict the demand for
every zone and hour over the forecast horizon. Residuals
are also simulated and added, which produces simula-
tions of the actual demand rather than just the conditional
mean. The zonal forecasts are then adjusted to ensure that
they reconcile appropriately within each simulation, and
quantiles are calculated for each hour using the reconciled
demand simulations.

The boosted demand model is fitted using the XGBoost
algorithm (Chen & Guestrin, 2016). Regularization with L1
and L2 penalties is applied in order to avoid over-fitting.

Recent work on hierarchical reconciliation has focused
on adjusting the base forecasts to obtain reconciled
forecasts with an improved accuracy (Hyndman, Ahmed,
Athanasopoulos, & Shang, 2011; Wickramasuriya, Athana-
sopoulos, & Hyndman, 2015; Hyndman, Lee, and Wang,
2016). Thesemethods focus only on adjusting the forecasts
of the conditional mean. Despite the energy industry’s
shift towards probabilistic forecasting (Hong, Pinson, Fan,
Zareipour, Troccoli, & Hyndman, 2016), the literature on

https://doi.org/10.1016/j.ijforecast.2018.09.009
0169-2070/© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.



1440 C. Roach / International Journal of Forecasting 35 (2019) 1439–1450

reconciling probabilistic forecasts in a hierarchical setting
remains limited. To the best of the author’s knowledge, the
only relevant paper is that by Ben Taieb, Taylor, and Hynd-
man (2017), which proposes a methodology for producing
coherent hierarchical probabilistic forecasts of smartmeter
demand. One contribution of the present paper is to enrich
the literature on quantile forecasting for hierarchical elec-
tricity demand.

The paper has the following structure: Section 2 pro-
vides concise reviews of the relevant literature on hi-
erarchical energy forecasting and gradient boosting. The
competition’s data and methodology are described in Sec-
tions 3 and 4. Section 5 discusses themodelling results, and
concluding remarks are provided in Section 6.

2. Background theory

2.1. Hierarchical forecasting

When several time series exist in a hierarchy, it is nec-
essary to ensure that the forecasts at each level of the
hierarchy reconcile in a sensiblemanner.When time series
exist in a hierarchy, they can be expressed in terms of a
summing matrix S (Hyndman et al., 2011). This summing
matrix allows all nodes to be expressed in terms of the
bottom-level nodes. For an observation that occurs at time
t ,

yt = Sybt , (1)

where yt gives the observed values for all aggregated and
bottom-level nodes and ybt gives the observed values for
only the bottom-level nodes.

Hyndman et al. (2011) showed that the base forecasts
can be reconciled using only the summing matrix S. At
forecast horizon h,

ỹh = S(S′S)−1S′ŷh, (2)

where ỹh are the reconciled forecasts and ŷh are the base
forecasts. This is referred to as ordinary least squares (OLS)
reconciliation, andwas shown to outperform both bottom-
up and top-down reconciliation approaches for both simu-
lated and real-world data.

Subsequent studies byHyndman et al. (2016) andWick-
ramasuriya et al. (2015) showed that reconciliation could
be improved by incorporating a matrix of weights. A gen-
eralized least squares (GLS) approach is given by

ỹh = S(S′Σ †
hS)

−1S′Σ †
hŷh, (3)

whereΣ h is the covariancematrix of the residuals for fore-
cast horizon h and Σ †

h is the Moore–Penrose generalized
inverse. It is often difficult to calculateΣ h, so an alternative
weighted least squares (WLS) method can be used instead.
If we let W be a diagonal matrix with elements that serve
as the weights, the WLS approach is

ỹh = S(S′WS)−1S′Wŷh. (4)

Hyndman et al. (2016) suggested that the diagonal ele-
ments ofW could be equal to the inverse of the h-step fore-
cast variances. When using an ARIMA time series model,
the h-step-ahead forecast variances can be approximated
as proportional to the one-step-ahead forecast variances.

Furthermore, since each fitted value is effectively a one-
step-ahead forecast, residuals can be used to calculate
these variances, making Eq. (4) a practical means of recon-
ciliation. However, this approach is not necessarily feasible
when dealing with other model types that do not produce
one-step-ahead forecasts when fitted to historical values.
Given this, Section 4.4.1 proposes two alternative weight
matrices that can be constructed easily for any model.

2.2. Gradient boosting

Gradient boosting has been used with good results
in many machine learning challenges (see for example
Ben Taieb & Hyndman, 2014, and Koren, 2009). Gradient
boosting was first proposed by Schapire (1990), and rig-
orous statistical overviews of boosting were carried out
by Friedman, Hastie, and Tibshirani (2000) and Friedman
(2001). Chen and Guestrin (2016) proposed the extreme
gradient boosting (XGBoost) algorithm, which allowed for
easy scaling while using less computational resources.

Essentially, boosting works by training an ensemble of
weak learners that can thenprovide better predictions than
a single model would be able to. Suppose that we are given
a data setwith n observations and p predictors, {(xi, yi)}ni=1,
where xi ∈ Rp and yi ∈ R. Then, the predictions are given
by

ŷi = φ (xi) =

K∑
k=1

νfk (xi) , fk ∈ F,

where K is the number of weak learners used, ν is a shrink-
age parameter that controls the learning rate, and F is
the model space of the weak learners. Each fk(xi) is fitted
in a stage-wise manner to the residuals ri of the previous
fit. Initially, the residuals are set equal to the observed
response, ri = yi for all i. Then, a weak learner fk is fitted
to the data set {(xi, ri)}ni=1 for each step k, and the residuals
are updated according to ri = ri − νfk (xi).

The weak learner is fitted by minimising the objective
function

L (φ) =

∑
i

l
(
r̂i, ri

)
+

∑
k

Ω (fk) ,

where l is a loss function and Ω is a penalty function that
helps avoid over-fitting. The terms for L1 and L2 regular-
ization are included within Ω , so the penalty function can
carry out the lasso, ridge and elastic net types of penalisa-
tion effectively.

3. Data

We now present a brief overview of the data and the
forecasting problem. A detailed discussion of the GEF-
Com2017 data is provided by Hong, Xie, and Black (2019).
Hourly electricity data for eight zones spanning New Eng-
land were made available by ISO New England, and hourly
weather data comprising both the dry bulb and dew point
temperatures were also provided. This analysis uses data
from January 2005 to April 2017. When training a model
for forecasting for a particular month, I used data from
January 2005 up to two months prior to the start of the
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Fig. 1. Load forecasting hierarchy for GEFCom2017. There are two aggregated zones and eight bottom-level zones.

Fig. 2. Electricity demand for both the total of all zones and the bottom-level zone Vermont. Strong seasonality and volatility are observed for both the
total and the bottom-level zone.

forecast period. For example, when forecasting April 2017,
only data from January 2005 to January 2017 are used
for training.1 Public holiday data were also allowed in
the competition. Massachusetts (MASS) consists of three
bottom-level zones: Southeast Massachusetts (SEMASS),
Western/Central Massachusetts (WCMASS) and Northeast
Massachusetts (NEMASSBOST). The remaining bottom-level
zones are Maine (ME), Connecticut (CT), New Hampshire
(NH), Rhode Island (RI) and Vermont (VT). The sum of
all eight bottom-level zones is designated ‘‘TOTAL’’. Fig. 1
shows the structure of the hierarchy.

1 This two-month gap is generally consistent with how data arrived
during the competition. To be clear, I do not expect that a two-month gap
between the endof the training period and the start of the forecast horizon
will improve forecasts; it is used only to ensure reasonable consistency
with the competition proceedings.

3.1. Electricity demand

Fig. 2 shows the time series data for one top-level zone
(Total) and one bottom-level zone (Vermont). Daylight sav-
ing time (DST) hours have been omitted, as they either
contain a reading of 0MW or are the sum of two periods.

3.2. Weather variables

The defined data track of GEFCom2017 allows only the
dry bulb and dew point temperatures to be used as model
predictors. Scatter plots of the demand and these two tem-
perature variables for Maine are shown in Fig. 3. Note that
similar relationships are present in all other zones. Fig. 4
shows that the two variables are strongly correlated ex-
cept at higher temperatures. It seems reasonable to expect
improvements in predictive power from including both
temperature variables in the model.
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Fig. 3. Scatter plots of the demand and temperature variables in Maine.

Fig. 4. Correlation between the dry bulb temperature and the dew point temperature in Maine. A non-linear relationship is evident in this scatter plot.

Each bottom-level zone has data from one weather sta-
tion for each of these temperature variables. Naturally, ag-
gregated zones have several stations available. All weather
stations that belonged to a given aggregated zone were
averaged to obtain the temperature variables. Using all
weather variables separately was tested against this ap-

proach, but averaged temperature values were found to
perform similarly when validating on a test data set.

3.3. Hierarchy structure

The hierarchy consists of eight bottom-level nodes and
two aggregated nodes. It is an unbalanced hierarchy, with
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three of the bottom-level nodes combining to form Mas-
sachusetts and the remaining bottom-level nodes andMas-
sachusetts aggregating to form the total. A visualisation of
this structure is provided in Fig. 1.

Fig. 1 can be represented in matrix notation using
the summing matrix S from Eq. (1). Expressing the
GEFCom2017 hierarchy in the form of Eq. (1) gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTOTAL,t
yME,t
yNH,t
yVT ,t
yCT ,t
yRI,t

yMASS,t
ySEMASS,t
yWCMASS,t

yNEMASSBOST ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yME,t
yNH,t
yVT ,t
yCT ,t
yRI,t

ySEMASS,t
yWCMASS,t

yNEMASSBOST ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where yk,t is the demand for zone k at time t .

4. Methodology

The following sections provide a detailed description of
the forecasting methodology.2 For a given month, I fitted
a separate model for each zone using a gradient boosting
algorithm. I then assessed the performances of L1 and L2
regularization using cross-validation. After selecting the
regularization parameters that performed best, I forecast
the demand for each zone over the forecast horizon using
weather and residual simulations. This created demand
simulations for each zone. Each demand simulation was
reconciled so as to ensure that the sum of the child nodes
was equal to their parent nodes. The final step involved
calculating quantiles of the demand simulations for each
hour of the forecast horizon.

4.1. Training and test data sets

Each month between June 2016 and April 2017 (the
final month of the competition) was used as a test data
set. While only four test sets (January 2017 to April 2017)
were assessed in the competition, this paper expands on
this in order to compare the baseline (Vanilla) and boosted
models across each month of an entire year.

The models were trained using data from January 2005
to two months prior to the start of the forecast period. In
general, this gap is consistent with how data arrived on
the ISO New England website3 during the competition, as

2 A tutorial with R code is available from https://camroach87.github.
io/post/2018-09-28-gefcom2017-tut-1/.
3 https://www.iso-ne.com/isoexpress/web/reports/load-and-

demand/-/tree/zone-info.

there was usually a two-month processing time for new
data. As was discussed in Section 3.1, daylight saving time
(DST) hours were omitted. The training data set was used
when carrying out parameter tuning via five-fold cross-
validation. Residuals were calculated for the training set
and were later used during the residual simulation step
(see Section 4.3.2).

4.2. Model specification

4.2.1. Boosted model
I used a linearly boosted model from the XGBoost li-

brary (Chen, He, Benesty, Khotilovich, & Tang, 2017). The
models were fitted in R (R Core Team, 2017) using the
caret package (Kuhn, 2017) to carry out cross-validation
and parameter tuning. A linear booster was chosen over a
tree booster as the two gave similar results but the linear
booster typically ran faster. Five-fold cross-validation was
used when tuning, as this offered an acceptable compro-
mise between the computational burden and variation in
the folds.

An approach similar to that of Ziel and Liu (2016) was
used when choosing predictors. For zone k, the following
model was used:

ykt = ck (t) + fk (wkt) + ϵkt , (5)

where at time t ,

• ykt is the demand;
• ck (t) is a linear function that models the effects of

calendar variables;
• fk (wkt) is a linear function that models the effects of

weather variables;
• wkt is a vector containing all weather and lagged

weather variables; and
• ϵkt is the model error.

Eq. (5) is of the form discussed in Section 2.2. The calen-
dar variables in ck (t) include

• public holidays;
• hour of day;
• day of week;
• day of year; and
• a trend term which is a natural number ordering the

observations.

The weather variables inwkt include

• current dry bulb and dew point temperatures;
• 72 hourly lags for dry bulb temperature; and
• 72 hourly lags for dew point temperature.

The choice of 72 hourly lags was made somewhat arbi-
trarily. Themain goalwas to include temperature data from
the previous three days in order to capture any thermal
inertia effects in buildings. This is an important factor in
energy demand (Ben Taieb & Hyndman, 2014). More lags
could well be added, but this would increase the computa-
tion time and Iwished to avoid that. There are a total of 156
predictors. Note that the predictorswere not scaled prior to
fitting the models.
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Fig. 5. Five-fold cross-validation RMSE scores. The x-axis gives the magnitude of the penalty size for both the L1 and L2 regularizations. Results are shown
for one aggregated zone and one bottom-level zone, but similar results are observed for all other zones.

4.2.2. Vanilla model
For zone k, Tao’s Vanilla model (Hong, 2010) is

ykt = α0k +

11∑
m=1

α1kmMmt +

6∑
d=1

α2kdDdt

+

23∑
h=1

α3khHht +

6∑
d=1

23∑
h=1

α4kdhDdtHht

+ α5kTrendk + fk(Tkt ) + ϵkt ,

where at time t ,

• Tkt is the dry bulb temperature;
• fk(Tkt ) models temperature effects;
• Mmt is a dummy variable for month m ∈ {1, 2,

. . . , 11};
• Ddt is a dummy variable for day of the week d ∈

{1, 2, . . . , 6};
• Hht is a dummy variable for hour h ∈ {1, 2, . . . , 23};

and
• Trendk is a natural number that orders the observa-

tions.

The temperature effects are modelled by

fk(Tkt ) = β1kTkt + β2kT 2
kt + β3kT 3

kt

+

11∑
m=1

(β4kmTkt + β5kmT 2
kt + β6kmT 3

kt )Mmt

+

23∑
h=1

(β7khTkt + β8khT 2
kt + β9khT 3

kt )Hht .

Weather simulations for the models are constructed by
shuffling historical weather data backward and forward by
a maximum of four days. Each historical year and shuffled

time series within serves as a simulation. As I was attempt-
ing to simulate the actual demand values, I also simulated
residuals using variable-length block bootstrapping. Resid-
uals were not simulated in the Vanilla model, which was
consistent with the benchmark method of GEFCom2017.

4.2.3. Regularization
Due to the high dimensionality of our model, there

was a risk of over-fitting to the training data. To manage
this risk, I fitted several models with L1 and L2 regular-
ization and different penalty values, then performed five-
fold cross validation on the training data in order to select
the best model. These regularized models were also tested
against a baseline model. The baseline model chosen was
Tao’s Vanilla model (Hong, 2010), which has been used
previously as a benchmark model (Hong, Pinson, & Fan,
2014) and was also used in GEFCom2017.

The change in root mean square errors (RMSEs) during
five-fold cross-validation is shown in Fig. 5. Both the L1 and
L2 regularized models outperformed the Vanilla model.
With a sufficiently large penalty, the L1model gave the best
RMSE results.

4.3. Simulating in a hierarchy

The challenge requires competitors to forecast nine
quantiles (10th, 20th, . . . and 90th) for every hour in a
future month. This is an ex-ante forecasting problem, as
we do not have any data for predictors in this situation. To
forecast a demand distribution, I first simulated weather
scenarios. Residualswere simulated by sampling fromdays
with similar calendar characteristics.

As the New England zones form a hierarchy, it is nec-
essary to preserve the correlations between them. For ex-
ample, the weather in one zone will be correlated closely
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Fig. 6. Residual variance for each hourly period of the day. The variances have been calculated using residuals from all 12 training data sets. Results for one
aggregated zone and one bottom-level zone are shown, though similar residual variance behaviours are observed in all other zones. The residual variance
is highest during the middle of the day and lowest close to midnight.

with that an adjacent zone. Hence, the simulations need
to reflect this. Correlations between zones are also present
for residuals (Fig. 7), so care was taken when simulating
residuals as well.

4.3.1. Weather simulations
Weather simulations were produced using the shifted-

date method (Xie & Hong, 2018). Historical weather time
series were shifted backward and forward by a maximum
of four days each way, resulting in nine weather scenarios
for each year. Eleven years of historical weather data were
used, giving a total of 99 weather scenarios. This approach
has the advantage of ensuring that realistic weather simu-
lations are produced, as well as preserving weather corre-
lation between zones.

A double seasonal block bootstrap approach similar to
that of Hyndman and Fan (2010) was tested against this
shifting approach but was found to perform worse. This is
most likely to be due to the unrealistic discontinuities that
are introduced at block boundaries during the bootstrap-
ping process. This was not an issue for their paper’s goal of
predicting the maximum demand, but is a problem here.

4.3.2. Residual resampling
When predicting the demand for simulated weather

data, the fitted model returns only a conditional mean. The
error term in Eq. (5) also needs to be accounted for. To
do this, I sampled from the historical residuals and added
this sample to the predicted demand. This combination of
the conditional mean and residuals produced a realistic
demand simulation. The historical residuals were calcu-
lated by predicting the demand on the training data set
and taking the difference between the predicted and actual
demand.

When simulating the residuals, I sampled a sequence of
historical residuals in order to preserve the correlation be-
tween adjacent observations in the time series. A variable-
length block bootstrapping approach similar to that of

Hyndman and Fan (2010) was used. A block of variable
length was sampled from historical years at close to the
same point of the year. The day of year that the block
started fromwas allowed to vary by as much as seven days
from the day of the year for which I required residuals,
and the length of the block was distributed uniformly
between 14 and 21 days. These numbers were somewhat
arbitrary and can be varied, but produced reasonably re-
alistic autocorrelation functions (ACFs) when compared to
the actual (see Fig. 8 for an example). The correlations in
the simulated residuals tend to be lower than those in
the actuals due to discontinuities that are introduced at
the borders of the blocks. To try to reduce the magnitude
of the discontinuities, these block boundaries occurred at
midnight when the variance of the residuals was usually
lowest (Fig. 6).

It was also important to make sure that whatever dates
were chosen when resampling were consistent between
zones. Sampling different historical dates for each zone
would lead to a breakdown in the inter-zone residual cor-
relation, resulting in less realistic simulations. The residual
correlations between zones are shown in Fig. 7.

I checked that the sampled residuals form a realistic
time series by comparing their ACFs against those of the
historical data (Fig. 8). The simulated residuals appear to
have similar ACFs to the actuals. The ACFs of the simulated
residuals are lower than those of the actuals, as expected,
but to an acceptable degree.

4.4. Hierarchical reconciliation

Once a demand simulation has been created, it is nec-
essary to reconcile all of the time series in the hierarchy.
Here, I test several methods of accomplishing this.

4.4.1. Choosing weights for reconciliation
Threemethods for reconciling thehierarchywere tested.

The first involved using only the summing matrix S, as
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Fig. 7. Correlations of zone residuals based on 1000 points sampled from the hierarchy. Positive correlations are observed between all zones.

per Eq. (2), while the other two were based on specifying
different weight matrices in Eq. (4).

As has been mentioned, the entities of W can be calcu-
lated based on the variances of ϵh. This works well with
time series models where each fitted value is already a
one-step-ahead forecast, such as ARIMA and exponential
smoothing, but this is not the case for our model. Comput-
ing one-step ahead forecasts for the historical data would
require the model to be refitted at each step, which is
computationally prohibitive. As an alternative, I propose
two different weight matrices: the first based on the mean
values of each zone’s demand and the second calculated
from the variance of the residuals. The inversematrices are

specified as

W−1
mean =

1∑
k ȳk

· diag
(
{ȳk}Kk=1

)
,

W−1
var = diag

({
σ 2
k

}K
k=1

)
,

where diag
(
{xk}Kk=1

)
represents a diagonal matrix with

elements x1, x2, . . . , xK ;K is the total number of zones; and
σ 2
k is the variance of the residuals for zone k.
The intuition behind these weights follows from our

goal of shifting the more accurate forecasts less than the
inaccurate forecasts when reconciling. In the absence of
one-step-ahead forecasts, the variance of residuals should
serve as a useful proxy. Since residuals and demand are
correlated, the mean weight matrix may also prove useful.
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Fig. 8. Autocorrelation functions for historical residuals and simulated residuals in February 2017 for one aggregated zone and one bottom-level zone.

5. Discussion

5.1. Reconciliation results

Monthly RMSE scores for each hierarchical reconcilia-
tion method are shown in Fig. 9 and Table 1. All 12 test
data sets have been used to produce these results. Overall,
the WLS approach using Wvar gives the best performance,
while the WLS approach using Wmean performed slightly
worse. The OLS approach performed the worst of the three
reconciliation methods.

We investigate why the OLS approach performs worse
than the WLS approaches by comparing the forecasts.
Fig. 10 shows the base demand forecasts and reconciled
forecasts of one of the simulations for one day in the
forecast period. While the aggregated zone’s reconciled
forecasts look reasonable, the bottom-level forecast has
severe variance introduced by the use of the OLS method-
ology. This variance appears in bottom-level zones that
have only one parent zone (Total). It so happens that OLS
adjustments made to the base forecasts for these bottom-
level zones are of a magnitude comparable to that of
the adjustments made to the Massachusetts aggregated
zone, whereas the bottom-level zones that make up Mas-
sachusetts receive significantly smaller adjustments. This
discrepancy in adjustments appears to be caused by the
unbalanced structure of the hierarchy.

Given these results, the WLS reconciliation method us-
ing Wvar as the weight matrix was chosen for reconciling
the base forecasts.

5.2. Quantile forecast results

Quantile forecasts were produced based on the WLS
reconciliation approach using Wvar weights and
L1-regularization, as this model appeared to perform best.

Table 1
RMSE scores for each reconciliation method, averaged across all zones.
Month Unreconciled OLS WLS

(mean)
WLS (residual
variance)

May 2016 178.1 170.6 138.8 124.5
June 2016 175.4 165.7 135.5 127.9
July 2016 238.0 226.4 188.8 178.7
August 2016 204.0 191.6 160.4 154.7
September 2016 171.6 164.7 144.5 139.8

October 2016 117.5 111.0 107.2 115.0
November 2016 133.4 125.2 113.2 114.4
December 2016 204.4 199.2 178.5 170.7
January 2017 140.6 132.0 114.7 112.0
February 2017 150.5 144.8 131.3 128.0

March 2017 178.1 172.3 165.6 169.4
April 2017 166.5 158.8 160.3 171.1

Examples of the quantile forecasts for one aggregated zone
and one bottom-level zone are shown in Fig. 11. An in-
spection suggests that the quantile forecasts capture the
variance in the actuals well. Benchmarking is carried out
against the Vanilla model to improve our understand of
how well the model is performing.

5.3. Benchmarking against the Vanilla model

The pinball loss scoring function can be used to assess
quantile forecasts (Gneiting, 2011). For a given probability
level τ , the pinball loss function is defined as

Lτ (y, qτ ) =

{
τ (y − qτ ) for y ≥ qτ ,

(1 − τ )(qτ − y) for qτ > y.

A lower expected pinball loss score indicates better
performance. The expected pinball loss for eachmodel and
zone can be estimated by taking the mean of all observed
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Fig. 9. Hierarchical reconciliation results. The RMSEs for each forecast month fromMay 2016 to April 2017 are plotted. The contoured lines are violin plots,
and represent the density. Similar results are observed in all other zones.

Fig. 10. Original and reconciled forecasts using different weights. Note that I have deliberately chosen a day where over-forecasting occurs in order to
better show how the OLS reconciliation method introduces variance.

Lτ (ykt , qktτ ), where qktτ is the quantile forecast at proba-
bility level τ for zone k at time t .

A comparison of the Vanilla and boosted4 models is
provided in Tables 2 and 3. The boosted model almost
always outperforms the Vanilla model. The only exception

4 WLS reconciliation approach using Wvar weights and L1-
regularization.

is for August 2016, when both models appear to perform
poorly relative to other months.

5.4. Future research

The performance of the boosted algorithm has been
explored here in one context. However, it could potentially
be interesting to see how such a model might perform
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Fig. 11. Actuals and quantile forecasts in the first week of January 2017. The shaded areas show the maximum and minimum simulated demand values.

Table 2
Expected pinball loss scores for each zone averaged across all 12 test sets.
Lower values indicate better performances.
Zone Boosted Vanilla Percentage improvement

CT 99.9 108.3 7.8%
MASS 159.6 185.9 14.2%
ME 19.8 22.7 12.6%
NEMASSBOST 69.6 81.6 14.7%
NH 30.8 32.6 5.5%

RI 25.2 27.5 8.4%
SEMASS 47.9 55.4 13.5%
TOTAL 330.5 375.2 11.9%
VT 15.0 18.6 19.4%
WCMASS 48.3 55.0 12.1%

Table 3
Expected pinball loss scores for each forecast month averaged across all
zones. Lower values indicate better performances.
Month Vanilla Boosted Percentage improvement

May 2016 74.3 53.5 28.1%
June 2016 75.8 72.7 4.2%
July 2016 160.5 149.2 7.1%
August 2016 168.0 175.2 −4.3%
September 2016 128.7 119.3 7.3%

October 2016 47.4 33.5 29.2%
November 2016 62.8 39.1 37.8%
December 2016 77.3 66.4 14.1%
January 2017 102.4 87.3 14.8%
February 2017 101.8 83.5 18.0%

March 2017 94.9 84.8 10.7%
April 2017 60.0 49.6 17.3%

when forecasting over different horizons. Another area
that might be of interest is focusing on other methods for
dealing with unbalanced hierarchies, for example adding

artificial nodes to balance the hierarchy. Both of these
topics are left for future research.

6. Conclusion

This paper has presented a methodology for producing
probabilistic hierarchical forecasts. A demandmodel based
on linear gradient boosting has been shown to outperform
a commonly-used benchmark model. In addition, both L1
and L2 regularization have been found to improve the
model fit. The best performance was observed using a
sufficiently large L1 penalty.

Weather simulations were produced by shifting the
weather history back and forth by up to four days. Resid-
ual simulations used a variable-length block bootstrapping
approach. Forecast reconciliation between nodes of the
hierarchy was carried out using several different methods,
and it was found that using a weight matrix based on the
variance of residuals performed best. The advantages of
this approach are that the bottom-level zonal forecasts sum
correctly to the aggregated zonal forecasts and the forecast
accuracy is improved compared to unreconciled models.

Finally, the quantile forecasts produced by the gradient
boosted model outperformed those of a commonly-used
baseline model. Quantile forecasts were assessed using
the pinball loss function. The gradient boosted model per-
formed better in all zones in the hierarchy over a year of
monthly forecasts.
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a b s t r a c t 

Understanding the impact of building characteristics on electricity demand is important for policy and 

management decision making. Certain building characteristics and equipment may increase or decrease 

electricity consumption. Due to different operating practices, these impacts on electricity consumption 

may vary both across the day and across seasons. Quantifying the magnitude and statistical significance 

of these impacts will help managers and policy makers make better informed decisions. Here we present 

a mixed effects model to assess the importance of several variables on building electricity consumption. 

We use smart meter and building attribute data for 129 commercial office buildings. Our building at- 

tribute data includes information on installed equipment and meter characteristics of each building. To 

account for uncertainty in both variable significance and model selection we follow a multimodel in- 

ference approach. Demand impact profiles that show the expected change in electricity demand when 

a characteristic is absent or present are produced for each season. A discussion of the commercial of- 

fice building characteristics we use and their impact on the daily profile of electricity demand is pre- 

sented. Our approach has the advantage of only requiring building level demand and characteristic data. 

No equipment level sub-metering is required. Furthermore, our approach can also be used to quantify 

changes in electricity consumption caused by other factors that do not directly draw electricity from the 

grid, such as management decisions or occupant behaviour. We conclude with a discussion of applications 

for our methodology and future research directions. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

There is an increasing need to focus on the composition of elec- 

tricity demand. Whereas in the past aggregated demand was suf- 

ficient for decision making, we are now often required to delve 

deeper and understand what underlying factors influence demand. 

Doing so can give a clearer picture of which building character- 

istics, occupant behaviours and policies are best able to reduce 

electricity consumption. For example, at a state or country level 

we may be interested in measuring the impact of solar or battery 

power on a typical power demand profile. At a building level fa- 

cility managers may be interested in which equipment or building 

characteristics improve energy efficiency and at what points of the 

day they typically draw demand. Policies with the greatest efficacy 

can be identified and further promoted. Equipment and building 

management practices that are most efficient can help guide man- 

agement and retrofitting decisions. 

∗ Corresponding author. 

E-mail address: cameron.roach@monash.edu 

In this paper we focus on estimating the impact of several 

building characteristics on daily electricity demand. Electricity de- 

mand behaviour is typically presented in the form of power de- 

mand profiles which show the expected demand across a day. We 

define demand impact profiles as the observed change in power de- 

mand profiles when a particular characteristic is or isn’t present. 

Demand impact profiles show how a characteristic increases or de- 

creases demand over an entire day. Separate profiles are produced 

for each season due to the strong seasonality of some characteris- 

tics (e.g. heating and cooling equipment). Our models are trained 

on smart meter data from commercial office buildings across Aus- 

tralia and building characteristic data which describes which char- 

acteristics are present for each building. As we only require time 

series data and metadata on individual buildings our methodology 

can be repeated for any scenario where similar data is available. 

All code and a walk-through have been made available online to 

allow for easy implementation (see Section 3.5 ). 

Several approaches to disaggregating smart meter data and 

quantifying the consumption of appliances exist. Most of these 

approaches differ to ours. They attempt to reconstruct time se- 

ries for the integrants making up total metered demand whereas 

https://doi.org/10.1016/j.enbuild.2019.109686 

0378-7788/© 2020 Elsevier B.V. All rights reserved. 
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we attempt to understand the average impact across the day dur- 

ing a particular season. Dinesh et al. [9] use Karhunen Loeve ex- 

pansion to decompose low frequency smart meter measurements 

into the appliance level electricity demand. Kalluri et al. [15] ex- 

amine time series subsequences to study appliance loads. Rein- 

hardt et al. [27] and Weiss et al. [32] use several classification ap- 

proaches that focus on identifying different appliances at a resi- 

dential level. Disaggregation of household smart meter data to air- 

conditioning loads is explored by Perez et al. [24] and validated 

on 19 buildings. Load disaggregation using supervised classification 

techniques are explored in Chahine et al. [7] and Liao et al. [17] . 

Guo et al. [13] propose an algorithm for modelling appliance level 

consumption when only aggregated data is present and validate on 

a synthetic dataset. A load disaggregation approach for commercial 

buildings is proposed by Norford and Leeb [23] . 

A drawback of these approaches is they can only assess the im- 

pact of equipment that draw electricity directly from the grid. They 

cannot assess other factors such as solar energy generation or the 

impact of building facade properties such as glazing. Behavioural 

factors can not be quantified either. Furthermore, uncertainty can 

not be assessed whereas we construct confidence intervals for our 

coefficient estimates. 

A key advantage of other approaches is that some can cre- 

ate demand time series for certain loads, but we do not focus on 

achieving the same goal with our method. Our goal is to produce 

power demand profiles for characteristics and equipment of inter- 

est. We feel this is a reasonable aim. A decision maker is not inter- 

ested in individual time series from a large number of buildings. 

Rather, they require a summary that clearly communicates how 

a characteristic of interest influences demand. Sub-metering may 

play a role in automating systems and diagnosing problems with 

individual pieces of equipment, but a statistical approach allows us 

to circumnavigate the time and costs associated with sub-metering 

to arrive at the same destination - a summary of how electricity 

usage is typically affected. In fact, the statistical approach goes fur- 

ther by allowing us to assign a degree of uncertainty to our find- 

ings. We can obtain an estimate for the expected change in elec- 

tricity demand and a measure of confidence with which we can 

accept or reject our findings. In cases where inference is to be 

conducted we propose our multimodel inference approach using 

mixed models over traditional frequency analysis approaches. 

Some papers have focused on calculating power demand pro- 

files for building equipment. Gunay et al. [12] and Mahdavi et al. 

[19] used a data driven approach to calculate power demand pro- 

files for office equipment. Plug loads were recorded for several 

pieces of office equipment and a predictive model was then trained 

off this metered data. A similar approach was used by Christiansen 

et al. [8] to assess the energy consumption of medical equipment 

in hospitals. Menezes et al. [20] offered two approaches to cre- 

ating power demand profiles. The first relies on sampling from a 

database of monitored loads for equipment of interest. While it 

does allow for the calculation of confidence intervals, a drawback 

is its dependence on the quality of the metered data for each piece 

of equipment. Another matter is that it can only assess plug loads 

that have previously been recorded in a database. A second ap- 

proach that did not rely on a database of metered data was also 

proposed, but was dependent on knowing or assuming the oper- 

ational schedules of small office equipment which can sometimes 

be difficult. Our methodology has a similar aim to these studies, 

but can produce estimated power demand profiles without relying 

on a database of metered data for equipment or assuming opera- 

tional schedules of equipment. 

There are many building characteristics and items of equipment 

that can affect electricity demand. To avoid a naive data dredging 

analysis we approached building engineers to identify factors they 

suspected were influencing demand or were of interest to them. 

Our data included building attributes such as the type of electric 

equipment installed, building use and building meter characteris- 

tics (did the metered demand contain tenant usage?). The charac- 

teristics they identified are discussed in more detail in Section 2.2 . 

We then used multimodel inference to test if these were statisti- 

cally significant predictors and estimate how they influenced elec- 

tricity demand over the day. 

Multimodel inference is an information theoretic approach to 

model selection that relies on fitting multiple models with differ- 

ent combinations of predictors and then averaging the best per- 

forming models based on a suitable weight metric [5] . It is com- 

monly used in ecology [30] but is not often used in the energy 

sector. To our knowledge the only example is So and Richman 

[29] which used multimodel inference to create candidate models 

for the disaggregation of combined meter data for university cam- 

pus buildings. It is a standard approach when there is no model 

specification that clearly outperforms others or when there is some 

uncertainty around which predictors to include. In our case it was 

necessary as using an all subset approach failed to produce a 

clear best model. Furthermore, simply picking the best performing 

model after an all subset analysis fails to take into account model 

selection uncertainty and often leads to inflated p -values [5] . Mul- 

timodel inference allows us to account for both model selection 

and parameter estimation uncertainty, thereby giving more reliable 

estimates of variable importance. 

Electricity meter data is correlated within buildings. Some 

buildings will consistently have high demand, and others low. 

Mixed effects models allow us to account for this within-subject 

correlation by treating each building as a random effect. The ran- 

dom effect size indicates how much the mean of each individ- 

ual’s response variable differs from the sample population’s mean. 

By modelling each building as a random effect, each building is 

treated as a random sample from a population of buildings with 

a specific distribution. Instead of model residuals being the only 

random component of our model, the random building selection 

is also taken into account. Mixed effects models also include fixed 

effects which are non-random quantities. In our case, fixed effects 

are the different building characteristics that we wish to create de- 

mand impact profiles for. 

The main contribution of this paper is a methodology for gen- 

erating demand impact profiles of various building characteristics 

at different times of the year. In addition to estimating the condi- 

tional mean we show how to calculate confidence intervals for our 

coefficient estimates that include both model and parameter selec- 

tion uncertainty. We apply our approach to a real world dataset 

consisting of 129 commercial office buildings. In summary, the key 

advantages of our proposed methodology are: 

• Only smart meter and building characteristic data are required 

to create demand impact profiles. 
• Confidence intervals that include both parameter estimation 

and model selection uncertainty are produced. 
• The impact of building characteristics other than plug loads can 

be quantified. 

The paper is structured as follows. Section 2 discusses the time 

series data and metadata that motivates our research. Our mixed 

effects model and the multimodel inference approach are intro- 

duced in Section 3 . Section 4 presents our estimates for building 

characteristic demand impact profiles and discusses applications 

and future research. Concluding remarks are made in Section 5 . 

2. Data 

Data has been provided by Buildings Alive. Metered electricity 

consumption and building characteristic data is available for 129 

buildings across Australia. Several years of data are available for 
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Fig. 1. Histogram of normalised electricity consumption (Wh/m 

2 ) for all commercial office buildings. A sample of 5% of meter readings at four different times of the day are 

shown. The readings are positive and right-skewed. Similar distributions occur for the remaining hours of the day. 

each building. In general, data is available from 1 March, 2015 to 

1 March, 2018 for most buildings, although some buildings have 

slightly less data. Only working days are included when fitting 

our model as electricity usage is dramatically different on non- 

working days (weekends and public-holidays). Electricity consump- 

tion tends to be significantly lower on non-working days due to 

equipment not being in use. 

2.1. Time series data 

We have 15-min electricity consumption data available for each 

building. Time series plots of the raw data is shown for several 

buildings in Fig. 3 . In our analysis we divide the 15-min electricity 

consumption values by each building’s net lettable area to obtain 

normalised electricity consumption. These values are always posi- 

tive and right-skewed ( Fig. 1 ) suggesting the use of a log-transform 

when modelling. 

2.1.1. Hourly grouping 

In our analysis we group the 15-min interval readings into 

hours. While this reduces the granularity of the profile somewhat, 

it still allows us to assess the overall behaviour across a day while 

reducing the amount of variance in our coefficient estimates. It 

also means that each model can be fit to more data than would be 

available if 15-min models were used. Working with 15-min mod- 

els or other temporal groupings, such as business and non-business 

hours, is also possible and can be chosen based on an analyst’s 

needs. For our paper we prefer hourly models as they provided 

useful demand profile visualisations while also allowing sufficient 

training data for each model. 

2.1.2. Outlier filtering 

Smart meter data from buildings can be very noisy and typ- 

ically contain outliers as seen in Figs. 2 and 3 . To avoid having 

our results adversely impacted by outliers we removed them from 

our analysis using a simple approach. For each hour, season and 

building the bottom (1st) quantile and top (99th) quantile were 

trimmed before fitting models. While this may have resulted in 

some valid values being excluded, it offered a quick way to remove 

the worst outliers. 

2.2. Building attributes 

We were motivated in our research by engineers that wished 

to statistically assess the relevance and importance of different 

building characteristics on electricity demand. Several characteris- 

tics were available but, to avoid overfitting and missing value is- 

sues, we limited ourselves to a subset that was of interest to their 

company and had high data quality. Our main research goal was 

to understand how each of these selected characteristics affected 

electricity demand. This is one of the contributions of our method- 

ology - it allows us to assess the statistical significance and effect 

size of whatever characteristics we are presented with using only 

smart meter data and attribute data. 

Three characteristic types are considered. Direct characteristics 

consume electricity and include items such as cooling equipment 

and electric heating equipment. Behavioural characteristics include 

tenant and management practices. Indirect characteristics are those 

that affect electricity demand but do not themselves use electricity. 

Examples can include glazing, insulation and gas heating equip- 

ment. 

The variables we consider for modelling are described below. 
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Fig. 2. Hourly boxplots of normalised electricity consumption for building BID0212. Outliers are shown by circles. We see that there have been periods of low occupancy 

during business hours which result in outliers. 

Table 1 

Building attributes for six of the 129 buildings. 

Building 

Attribute BID0045 BID0061 BID0123 BID0210 BID0717 BID0720 

Central Dist FALSE TRUE TRUE TRUE FALSE FALSE 

DXSystem FALSE FALSE FALSE TRUE FALSE TRUE 

Electric Element Heating FALSE FALSE TRUE FALSE TRUE TRUE 

Gas Fired Boiler TRUE TRUE FALSE TRUE FALSE FALSE 

Tenant Feed FALSE FALSE TRUE FALSE FALSE FALSE 

Water Cooled Condenser TRUE TRUE TRUE TRUE TRUE FALSE 

2.2.1. Tenant feed 

(behavioural) Some metered data only included electricity de- 

mand from the base building and excluded tenant usage. This vari- 

able identified if tenant consumption was included in the metered 

demand. Tenant data may include electricity demand from plug 

loads (e.g. computers, air conditioning) and lighting. 

2.2.2. Water cooled condenser 

(direct) A water cooled condenser discharges heat by transfer- 

ring stored heat energy from a refrigerant to running water. The 

heated water may then be cooled in a cooling tower. 

2.2.3. DX system 

(direct) Direct expansion (DX) systems cool air. We were ini- 

tially presented with two variables, DX system and chiller sys- 

tem, that had strong negative correlation. In other words, buildings 

would typically be equipped with one or the other. DX systems 

cool air whereas chiller systems cool water. We chose to work with 

DX system as one of our variables, though the choice was some- 

what arbitrary as the main goal was to avoid multicollinearity. Re- 

verse DX was another available variable, however this was omit- 

ted as only five buildings had reverse DX and there was obviously 

strong correlation with the DX system variable. 

2.2.4. Gas fired boiler 

(indirect) Gas fired boilers provide heating. They are fuelled by 

natural gas or propane and do not directly impact electricity de- 

mand. If a gas boiler is installed there will be no need to use elec- 

tric heating to warm the building. Hence, they have an indirect ef- 

fect as they offset the electricity that would otherwise have been 

required by an electric system. 

2.2.5. Electric element heating 

(direct) These heating systems are powered by an electrical 

source. A current is passed through metallic heating elements 

causing the elements to heat due to their resistance. 

2.2.6. Centralised distribution 

(direct) We were initially provided with centralised distribution 

and per-floor distribution variables. These had strong negative cor- 

relation (buildings typically had one or the other) and so we chose 

to use only centralised distribution in our model. Centralised dis- 

tribution systems generate all cooling from one location and rely 
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Fig. 3. Time series plots of commercial office building smart-meter data for six of the 129 buildings. Each building has distinct business hour and non-business hour 

behaviour. The shape and volatility of the readings differ between each building. It is difficult to observe a clear relationship between the attributes listed in Table 1 and 

electricity demand using these visualisations alone. This motivates the development of our proposed approach that allows us to statistically test and quantify the relationship 

of each attribute and electricity demand. 

Fig. 4. Flowchart of the proposed methodology for a given season. 

on ductwork for air distribution whereas per-floor distribution has 

cooling units on each floor. 

Examples of the building attributes for six buildings are shown 

in Table 1 . It is difficult to observe a relationship between each of 

these attributes and normalised consumption by simply comparing 

them to the electricity consumption plots in Fig. 3 . High volatility 

in each time series, coupled with the large number of buildings 

and the variation between buildings makes the attribute and de- 

mand relationship unclear. This motivates our research into finding 

an appropriate model to quantify their impact on demand. 

3. Methodology 

Fig. 4 shows a flowchart of our proposed methodology. All of 

the available electricity and attribute datasets for each building are 

combined into one and then split by hour of day. Multimodel in- 

ference, parameter estimation and the estimation of proportional 

impacts is carried out separately for each hour (and season). The fi- 

nal step involves combining these hourly proportional impact esti- 

mates to produce a demand profile showing the estimated change 

in demand when an attribute is or isn’t present. A simulation study 

that examines the capability of our proposed methodology is pro- 

vided in Appendix B . 

3.1. Mixed effects model 

We use a linear mixed effects model to describe the rela- 

tionship between building attributes and electricity consumption. 

Mixed effects models can capture within-subject correlation which 

allows us to estimate parameters common to an entire popula- 
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tion (fixed effects) and subject-specific parameters (random ef- 

fects) [25] . If we consider each building as a subject we have 

within-subject correlation in the electricity meter readings. Hence, 

we treat each building as a random effect. Building characteristics 

can be interpreted as population parameters and so they are mod- 

elled as fixed effects. 

We create separate models for each season and hour of the day 

to allow for changes in building behaviour that typically occur over 

the course of the day and year. For instance, non-business hours 

will often have significantly less consumption than business hours. 

Peaks can occur in the morning due to pre-heating or pre-cooling. 

Heating equipment will be more important in winter and cooling 

equipment in summer. Distinct models for each hour and season 

allow for a comparison of their estimated fixed effect coefficients 

at different times. Plotting these estimates and their confidence in- 

tervals provide a clear overview of how each attribute’s impact on 

demand evolves. 

For a particular season and hour of the day the electricity con- 

sumption over 15-min intervals, y ij , for building j and observation 

i ∈ 

{
1 , 2 , . . . n j 

}
is given below. The Boolean variables x hij are equal 

to one if the h th building attribute is present and zero otherwise. 

We use a log-transform on the consumption data as it is positive 

and right-skewed (see Fig. 1 ). The mixed model is 

log y i j = β0 + 

∑ p 

h =1 
βh x hi j + u 0 j + u 1 j t i j + εi j , [

u 0 j 

u 1 j 

]
∼ N(0 , �u ) , �u = 

[
σ 2 

u 0 σu 01 

σu 01 σ 2 
u 1 

]
, 

εi j ∼ N(0 , σ 2 
ε ) , 

(1) 

where βh is the coefficient for attribute indicator x hij , u 0 j is the 

random intercept for building j, u 1 j is the random slope coeffi- 

cient for year t ij and ε ij are the residuals. This linear mixed effects 

model allows the intercept to vary with each building. A random 

slope for year has been added to capture any trends in building 

performance. We include a covariance term σ u 01 in the variance- 

covariance matrix to allow for correlation between the random in- 

tercept and random slope. This is chosen as we tend to observe 

negative correlation between the random intercept and slope. 

We also attempted to model residuals using an autoregressive 

correlation structure of order 1. While this did reduce autocorrela- 

tion in the standardised residuals [25] it had almost no impact on 

our final fixed effect coefficient estimates and confidence intervals. 

Furthermore, the AR (1) correlation structure resulted in a consid- 

erable increase in computation time and occasionally convergence 

issues. Given this, we chose to model residuals as in Eq. (1) . 

3.2. AIC for mixed effects models 

A means to assess each model for goodness of fit and com- 

plexity is required when conducting model selection. Complicated 

models may fit data better, but fail to generalise to new datasets. 

This is indicative of over-fitting rather than a well specified model. 

Information criteria such as the Akaike information criteria (AIC; 

Akaike [1] ) and Bayesian information criteria (BIC; Schwarz [28] ) 

score models on how well they fit data while also penalising them 

for complexity. Choosing a suitable information criteria for a linear 

mixed effects model is typically more complicated than in linear 

regression due to issues arising from the selection of covariance 

structures and positive semidefinite constraints on the covariance 

matrix [21] . 

For our model selection we use the marginal AIC (mAIC) which 

is the most widely used information criteria for mixed effects 

models. Vaida and Blanchard [31] define the mAIC as 

mAIC = −2 � 

(
ˆ β
)

+ 2(p + q ) , (2) 

where � 

(
ˆ β
)

is our log-likelihood function, p is the number of fixed 

effects, q is the number of random effects. We choose this crite- 

rion as it is both simple to understand and has been used in many 

studies [21] . 

3.3. Multimodel inference 

Despite the effort taken to carefully determine appropriate 

building characteristics for our model there is still uncertainty re- 

garding the importance of each proposed variable. Multimodel in- 

ference allows us to incorporate this model selection uncertainty 

into our parameter estimates. Instead of simply conducting step- 

wise variable selection or best subset selection and then choosing 

the best model, we instead use a candidate set of models on which 

we base our inference. This model averaging approach has merit 

as sometimes the best model will only offer a small improvement 

over other models based on a quality score such as AIC. Had a 

different dataset sample been present it may have resulted in an- 

other model being selected as the best [5] . Furthermore, different 

models will sometimes show the same variable being significant 

or insignificant [30] . The overall conclusion is that model selection 

uncertainty needs to be taken into account when conducting in- 

ference in situations such as ours. If we only focus on parameter 

estimation uncertainty without considering model selection uncer- 

tainty we will likely underestimate the size of our confidence in- 

tervals. 

Multimodel inference focuses on selecting a subset of models 

on which to base inference. Note that effort should be taken to 

avoid data dredging (where the computer is left to select the best 

variables with no prior hypothesis on the researcher’s part). Burn- 

ham and Anderson [5] suggest using prior knowledge of the situa- 

tion to determine suitable predictors. Fitting only a subset of all 

possible models is a sensible approach because fitting all possi- 

ble models can quickly result in a large computational burden if 

the number of predictors is large 1 . As discussed in Section 2.2 we 

have narrowed all available predictors down to a reasonable subset 

based on advice from domain experts. 

Given our subset of predictors, multimodel inference fits a sep- 

arate mixed effects model to every combination of predictor vari- 

ables. This gives 2 p models each with an mAIC score. The best per- 

forming models form our candidate set on which we conduct in- 

ference. 

3.3.1. Candidate sets 

To construct our candidate set we must first determine the 

probability of each candidate model. To do so we use Akaike 

weights. Given R candidate models the Akaike weight for model 

g i is 

w i = 

L ( g i | x ) ∑ R 
r=1 L ( g r | x ) 

= 

e −
1 
2 �i ∑ R 

r=1 e 
− 1 

2 �r 

, (3) 

where L ( g i | x ) is the likelihood of model g i given data x and �i = 

mAI C i − mAI C min is referred to as the AIC difference. We use mAIC 

in our analysis as we are dealing with mixed effects models. Other 

information criteria for mixed effects models such as the condi- 

tional AIC [11,31] may also be used. 

We can use the AIC differences and Akaike weights to select 

a subset of models for inference. We refer to this subset as the 

candidate set. For our analysis we use the common practice of se- 

lecting models with the highest weights such that their cumulative 

sum is just above 95%. As the weights serve as model probabilities 

we can refer to this as a 95% confidence set. 

1 Given p predictors we would require 2 p models to be fitted. 
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3.3.2. Parameter estimates 

Parameters are estimated by “averaging” the models in our con- 

fidence set. There are two common approaches to model averaging. 

Natural-model averaging averages over all candidate models where 

a parameter of interest occurs. Full-model averaging considers all 

candidate models. If a variable is not selected in one of the candi- 

date models, full-model averaging sets its estimate to zero. Hence, 

full-model averaging takes into account when a variable has not 

been selected whereas natural-model averaging does not. Further- 

more, simulation studies have found that full-model averaging can 

help to reduce problems caused by model selection bias towards 

overly complex models [18] . We use full-model averaging for this 

reason. 

Given a candidate set of R models our full-model averaged co- 

efficients βh are estimated by 

ˆ β̄h = 

R ∑ 

i =1 

w i ̂
 βhi , (4) 

where ˆ βhi is the estimate of βh based on model g i . If βh is not 

chosen in model g i then 

ˆ βhi is defined to equal zero in the above 

formula. 

3.3.3. Unconditional confidence intervals 

Once a set of candidate models has been identified we can con- 

struct confidence intervals that reflect both parameter and model 

selection uncertainty. The ( 1 − α) 100% unconditional confidence 

intervals for the a model averaged coefficient ˆ β̄h is given by 

ˆ β̄h ± z 1 −α/ 2 ̂  ase 

(
ˆ β̄h 

)
, (5) 

where ̂ ase 

(
ˆ β̄h 

)
is the adjusted standard error from Burnham and 

White [6] . It is given by 

̂ ase 

(
ˆ β̄h 

)
= 

R ∑ 

i =1 

w i 

√ (
t df i , 1 −α/ 2 

z 1 −α/ 2 

)2 ̂ var 

(
ˆ βhi | g i 

)
+ 

(
ˆ βhi − ˆ β̄h 

)2 

, (6) 

where β̄h is the model averaged estimator of βh , ̂ var 

(
ˆ βhi | g i 

)
is 

the estimated variance of parameter βhi in model g i , and w i are 

weights. The calculation of ̂ var 

(
ˆ βhi | g i 

)
for mixed effects models is 

reasonably complex and is omitted (see Bates et al. [3] for a dis- 

cussion). 

3.4. Estimating power demand profiles 

In Eq. (1) we have modelled the log-transform of electricity 

consumption over 15-min intervals as our response. We use the 

estimator proposed by Kennedy [16] to calculate the proportional 

impact, p h , of X hij on the dependent variable Y ij . Kennedy’s estima- 

tor is consistent and almost unbiased [10] . For a dummy variable 

changing from zero to one the estimator is given by 

ˆ p h = e 
ˆ β̄h −0 . 5 ̂  ase 

(
ˆ β̄h 

)2 

− 1 , (7) 

where we have replaced the coefficient estimate and variance of 

Kennedy’s original estimator with our full-model averaged counter- 

parts. As this is the proportional impact we can rewrite the above 

expression in terms of our response variable to obtain 

Y ∗i j = e 
ˆ β̄h −0 . 5 ̂  ase 

(
ˆ β̄h 

)2 

E 

[
Y i j | X hi j = 0 

]
, (8) 

where Y ∗
i j 

is the new consumption value after our Boolean vari- 

able has changed from false to true. Calculating Y ∗
i j 

using this for- 

mula for each hour of the day gives our power demand profiles. 

Taking the difference between Y ∗
i j 

and E 

[
Y i j | X hi j = 0 

]
gives our es- 

timate of the demand impact profiles. Note that we have cho- 

sen to base our profiles off E 

[
Y i j | X hi j = 0 

]
rather than an uncon- 

ditional mean or median because we are working with propor- 

tional impacts. Since we show the impact of a variable switching 

from false to true it seems reasonable to apply the proportional 

impact to the mean demand that we observe when an attribute 

isn’t present, hence the use of the conditional expectation. Sim- 

ply using the mean or median may exaggerate the demand impact 

profiles. 

3.5. Fitting models 

We fit our models using the R statistical programming language 

[26] . The lme4 package is used to fit our mixed effects model and 

calculate mAIC scores [4] . Multimodel inference is carried out us- 

ing the MuMIn package [2] . 

All code used to produce this analysis has been made available 

at https://github.com/camroach87/1801-MMME https://github. 

com/camroach87/1801-MMME https://github.com/camroach87/ 

1801-MMME . 

4. Discussion 

In this section we apply our methodology to assess the impact 

of building characteristics on electricity demand across the day. We 

also examine how well our models fit the data and comment on 

the limitations of our statistical methodology. Several future re- 

search directions are put forward. 

To validate our approach a simulation study was also conducted 

using simulated time series data designed to mimic electricity de- 

mand in commercial buildings. We found that after simulating 

electricity consumption for 129 buildings our methodology was 

able to estimate the coefficients acceptably, with most estimates 

falling within the 90% confidence intervals. Details of the simula- 

tion study are provided in Appendix B . 

4.1. Goodness of fit 

Prior to analysis of our results it is important to assess if our 

models actually fit the data acceptably. We use marginal and con- 

ditional R 

2 values for each season and hourly model to assess 

the goodness of fit. Adapting the specification of Nakagawa and 

Schielzeth [22] to our case, the conditional R 

2 calculates the pro- 

portion of the variance explained by both fixed and random effects 

and is given by 

R 

2 
c = 

σ 2 
f 

+ σ 2 
u 

σ 2 
f 

+ σ 2 
u + σ 2 

ε

, (9) 

where σ 2 
f 

= var 
(∑ p 

h =1 
βh x hi j 

)
is the variance of the fixed effects, 

σ 2 
u is the variance of random effects and σ 2 

ε is the residual vari- 

ance. As we are working with a random slope model the random 

effect variance is calculated as described in Johnson [14] . Marginal 

R 

2 considers only fixed effects and is defined as 

R 

2 
m 

= 

σ 2 
f 

σ 2 
f 

+ σ 2 
u + σ 2 

ε

. (10) 

The goodness of fit statistics are shown in Table 2 and Fig. 5 . Over- 

all, it appears that our model formulation gives reasonable fits 

with the conditional R 

2 values averaging close to 0.9. Models close 

to the start and end of business hours show the worst fits due to 

the noisiness of data during these times. This likely reflects the dif- 

ferent operating schedules for different buildings at these times of 

the day. Another point to note is our marginal R 

2 values are con- 

sistently higher during winter business hours compared to other 
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Fig. 5. Conditional and marginal R 2 values for each hour and season’s best model after all-subsets selection. The marginal R 2 value represents the variance explained by 

fixed effects whereas the conditional R 2 value is the variance explained by both fixed and random effects. When we plot these goodness of fit values we see a drop during 

the working hours which is expected due to the more volatile nature of demand during these times. 

Table 2 

Conditional and marginal R 2 values for each hour and season’s best model 

after all-subsets selection. 

Summer Autumn Winter Spring 

Hour R 2 c R 2 m R 2 c R 2 m R 2 c R 2 m R 2 c R 2 m 

0 0.94 0.44 0.95 0.44 0.96 0.45 0.96 0.46 

1 0.94 0.45 0.95 0.45 0.96 0.46 0.96 0.47 

2 0.94 0.45 0.95 0.43 0.96 0.46 0.96 0.47 

3 0.94 0.45 0.95 0.45 0.96 0.46 0.96 0.47 

4 0.92 0.47 0.95 0.45 0.95 0.48 0.95 0.51 

5 0.84 0.44 0.90 0.47 0.91 0.50 0.91 0.53 

6 0.74 0.34 0.80 0.41 0.87 0.42 0.83 0.45 

7 0.75 0.25 0.76 0.33 0.91 0.42 0.82 0.37 

8 0.80 0.21 0.79 0.31 0.96 0.42 0.85 0.34 

9 0.82 0.22 0.80 0.30 0.96 0.42 0.85 0.33 

10 0.82 0.22 0.80 0.29 0.96 0.43 0.84 0.31 

11 0.83 0.22 0.80 0.28 0.96 0.42 0.84 0.30 

12 0.83 0.21 0.79 0.26 0.96 0.40 0.85 0.29 

13 0.84 0.21 0.80 0.26 0.96 0.40 0.84 0.29 

14 0.81 0.21 0.79 0.26 0.96 0.40 0.84 0.29 

15 0.81 0.20 0.78 0.25 0.96 0.41 0.84 0.29 

16 0.83 0.21 0.77 0.25 0.96 0.40 0.83 0.29 

17 0.77 0.15 0.77 0.26 0.95 0.39 0.82 0.27 

18 0.81 0.21 0.85 0.30 0.92 0.39 0.85 0.31 

19 0.86 0.30 0.90 0.36 0.95 0.43 0.91 0.39 

20 0.89 0.35 0.89 0.36 0.93 0.42 0.92 0.41 

21 0.90 0.38 0.92 0.37 0.95 0.44 0.94 0.42 

22 0.92 0.41 0.93 0.39 0.96 0.44 0.95 0.44 

23 0.93 0.43 0.95 0.43 0.96 0.45 0.96 0.45 

seasons. This indicates that the chosen building attributes are bet- 

ter at modelling heating loads than cooling loads. 

Marginal R 

2 only includes the impact of fixed effects allowing 

us to assess how much of the variance in electricity consumption 

is explained by them. This lets us examine the goodness of fit 

when using building attribute variables only. If fixed effects do not 

explain any variation in the data our marginal R 

2 values will be 

close to zero. In our case we see marginal R 

2 values range between 

0.25 and 0.5 whereas the conditional R 

2 values range between 

0.8 and 0.95. To be able to explain 25–50% of the variance in the 

data with only a handful of attributes is encouraging and shows 

that at least some of the building characteristics we are working 

with have explanatory power. For reference, 0.25-0.5 is not an 

unreasonable range 2 when compared with ecology studies [22] . 

Given the building attributes alone are able to account for some of 

the variation in the data suggests that they do improve the model 

fit. Once inter-building differences are accounted for by including 

the random effects we see subjectively good fits based on the 

conditional R 

2 . It is recommended that future smart-meter studies 

using mixed effects models should include both marginal and 

conditional R 

2 values to allow for a discussion on how well their 

fixed effects model the data. Being able to examine how much 

variance the fixed effects capture is important to consider and 

provides interesting information [22] . Should marginal R 

2 values 

ever be close to zero applying our methodology will not prove 

particularly useful even if high conditional R 

2 values are observed, 

and so it is important to include this information. 

We also examined quantile-quantile (QQ) plots to check if 

model residuals were normally distributed. For the most part 

the residuals did appear to be normally distributed, though there 

was some evidence of heavy tails. This was largely due to some 

remaining outliers in the time series data - sometimes caused by 

erratic spikes and unexpected drops in demand. Extreme weather 

2 More studies using mixed effects models on smart-meter data need to be con- 

ducted before it is fair to conclude that the values presented here are low or high. 
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Fig. 6. Profile plots of tenant feed impact. This is an example of a behavioural aspect of electricity demand. Here we can directly assess how tenants typically use electricity 

during each of the seasons. One notable feature of the plots is the large spike at 6:00 a.m. during summer mornings, possibly caused by precooling of offices. We can not 

know this for sure without collecting further attribute data on tenant cooling equipment, but does serve to motivate further investigation. 

and unmarked local holidays in the data could each be respon- 

sible for some of the noise. Including the relationship between 

temperature and electricity demand would likely improve our fits. 

However, due to the added complexity 3 and a desire to keep our 

mixed effects model clear for explanatory purposes we leave this 

for future research. Considering the noisiness of the data we were 

satisfied that the residuals were close enough to being normally 

distributed for our analysis. 

4.2. Demand impact profiles 

Plots of the power demand profiles and demand impact profiles 

for tenant consumption, electric element heating and DX systems 

are shown in Figs. 6–8 , respectively. Power demand profiles with 

and without the attribute in question are shown in the top pan- 

els; whereas the bottom panels show the demand impact profiles. 

These three plots show examples of behaviour impact, caused by 

occupants; and equipment impact, caused by equipment that di- 

rectly draws electricity demand. Note that normalised consump- 

tion over 15-min intervals was used as the response variable in 

our mixed effects model. To aid in interpretation of results the 

fixed effect estimates are converted from units of energy to units 

of power 4 when plotting. 

3 The electricity temperature relationship in each building can be quite nonlinear 

and varies across the day. 
4 This is a simple matter of dimensional analysis where 1 Wh of energy con- 

sumed over a duration of 15-min is equivalent to 4 W: 

1 Wh 

15 min 
= 

1 Wh 

1 / 4 h 
= 4 W . 

As we have data for buildings with and without tenant con- 

sumption data we can estimate the expected behaviour of tenants 

( Fig. 6 ). This is an example of assessing occupant behaviour with 

our model. As expected we see a large contribution to electricity 

demand by tenants, ranging from 6 to 15 W/m 

2 across all sea- 

sons. Of particular interest is the large morning spike we see at 

6:00 a.m. in summer, possibly caused by tenants attempting to 

pre-cool their offices to ensure occupant comfort over the course 

of the day. Observing tenant behaviour allows us to quantify and 

view when demand from tenants is occurring. This provides some 

guidance on how much potential savings there might be (as an 

upper bound), or how the shape of the profile might be modified 

through intervention. One useful application of this is to assess 

if a demand management initiative is successful. Including it as a 

fixed effect will allow for demand impact profiles to be created. 

Decision makers may then assess statistically if said initiative was 

successful or not. 

Profiles for electric element heating are shown in Fig. 7 . Here 

we assess a building characteristic that directly uses electricity and 

where the behaviour is known. As would be expected with heating 

equipment we see only a small change in demand during summer. 

Slightly higher demand is seen in autumn and spring, likely due 

to cold days during the months that border winter. Winter sees a 

large increase in electricity demand due to heating required during 

business hours. 

As a final example, the subplots in Fig. 8 highlight that build- 

ings with DX systems tend to use more electricity than those with- 

out. Given there was a strong negative correlation with chiller sys- 

tems (see Section 2.2 ) it seems reasonable to conclude that chiller 

systems offers a more energy efficient alternative based on this 

dataset. However, this conclusion should be tempered by inspect- 

ing the confidence intervals in Fig. 9 . The coefficient estimates are, 
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Fig. 7. Profile plots of electric element heating impact. As expected the heating demand mainly plays a role in winter. The demand in autumn and spring is likely caused by 

cold days during the shoulder months of winter. 

for the most part, only significant ( α = 0 . 1 ) during winter. It is 

possible that this result captures the impact of reverse DX systems 

being used for heating during winter months. 

Centralised distribution and gas fired boilers did not show sta- 

tistically significant ( α = 0 . 1 ) effects at any time of the year. Wa- 

ter cooled condensers were, for the most part, not statistically sig- 

nificant. Only one model for water cooled condensers (autumn at 

5:00 p.m.) had a statistically significant impact, but did not provide 

any useful or interesting conclusions. For reference, a discussion of 

the coefficients and confidence intervals of all attributes and sea- 

sons is provided in Appendix A . 

In summary, for our building stock we can conclude that: 

• We do not observe a statistically significant difference between 

centralised and per-floor distribution systems. Hence, we can 

not conclude that one is more or less efficient than the other 

based on this dataset and controlling for the variables we have 

chosen to model. 
• We observe DX systems use more energy than chiller systems 

during winter, though this is possibly due to reverse DX sys- 

tems being used for heating. 
• Electric element heating increases the expected electricity de- 

mand by as much as 6 W/m 

2 during the winter. The largest 

draw occurs in the morning between 7:00 a.m. and 9:00 a.m. 
• Gas fired boilers did not make a statistically significant im- 

pact on electricity demand. There was an expectation that their 

presence may result in offsetting electricity demand, but this 

did not show in the final results. This could perhaps indicate 

issues with data or building operation. 
• Unsurprisingly, tenant feed had a significant impact for all sea- 

sons and at all times of the year. Large increases in tenant de- 

mand of approximately 8 W/m 

2 are seen between the hours 

of 6:00 a.m. to 4:00 p.m. Tenant demand gently tapers off af- 

ter 4:00 p.m.during autumn, winter and spring, but has a sharp 

drop after 4:00 p.m.in summer. There is a large spike in tenant 

electricity demand at 6:00 a.m. in summer which indicates that 

there may be opportunities within our building stock to spread 

out demand at this time to reduce peaks. 
• The presence of water cooled condensers in buildings does not 

appear to have a significant impact on electricity demand. 

Note that these findings only apply to our building stock when 

controlling for the variables we have used in our model. Each con- 

clusion is subject to idiosyncrasies in the data or perhaps be in- 

dicative of unusual building behaviour. 

Determining the expected consumption of tenants in buildings 

may allow for targeted energy saving measures. For example, if 

there are large peaks at certain times of the day, facility man- 

agers may make tenants aware of the need to reduce demand dur- 

ing these times. The early morning spike we observe in summer 

could be deemed one such time. This peak possibly corresponds 

to early morning cooling to ensure indoor environments are com- 

fortable when tenants arrive. If this was automated to spread cool- 

ing across a longer period the peak could be reduced. While this 

wouldn’t necessarily decrease the overall consumption, the lower 

peak may reduce costs for peak power consumption 

5 and be use- 

ful in grid management. 

Using these results, the company that provided data were able 

to determine which attributes were important and how heavily 

they should be weighted when assessing building similarity for 

electricity demand. This allowed for benchmarking and target set- 

5 Especially if time of use tariffs are in place and we observe peaks during ex- 

pensive times of the day. 
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Fig. 8. Profile plots of DX system impact. Buildings fitted with DX systems use more electricity during winter months, which may be representative of reverse DX systems 

being used for heating. Confidence intervals for the estimated coefficients show the winter results are statistically significant during business hours. 

ting for facility managers based not only on a single building’s his- 

torical demand, but also on other buildings with similar character- 

istics. 

4.3. Modelling limitations 

As with any statistical approach there are certain limitations. 

While we may find that some variables are statistically significant 

we can not necessarily comment on causality. Confounding vari- 

ables and idiosyncrasies of a given dataset may be responsible for 

some results. Furthermore, if a large number of fixed effects are 

being explored then it is important to have a large number of 

buildings in the dataset to avoid the curse of dimensionality. De- 

spite these matters, it is still useful to conduct analyses such as 

this to better understand underlying behaviour and identify possi- 

ble anomalies that are worthy of further investigation. 

One difficulty of drawing conclusions from mixed effects mod- 

els is that technical data describing installed equipment is con- 

flated with operational practice. For instance, our centralised dis- 

tribution variable merely indicated if a building had centralised 

distribution and not the model, size or how it is typically oper- 

ated. Larger systems tend to be more efficient than smaller ones 

and centralised systems tend to have lower cooling loads then 

per-floor systems as they cannot be influenced (easily) by tenants. 

While it is theoretically possible to work around this by adding 

new attribute variables, it quickly increases the dimensionality of 

the model which then requires more buildings when fitting. More 

building data and detailed attribute descriptions are required to fa- 

cilitate fine-grain analysis such as this. 

When using statistical models any analysis is limited by the 

quality and breadth of the available data. Survey results or building 

characteristics are needed for multiple buildings before any models 

can be fit. It is important to be aware that when statistical findings 

do not match with expected behaviour further investigation should 

be carried out. 

4.4. Further research 

Including more buildings will allow for more confident conclu- 

sions to be reached and more characteristics to be investigated. 

Of particular interest could be applying our approach to the res- 

idential sector to quantify the impact of solar generation, batter- 

ies or other household items. Given the prevalence of smart meter 

data available to both government and distributors, only a survey 

of household goods would be required. One interesting research di- 

rection involves assessing the impact of policies on electricity con- 

sumption. If separate models are fit for each year, we can observe 

how the demand impact profiles are changing between each yearly 

model. If a policy is introduced to reduce demand for a particu- 

lar building attribute, we should see a decrease in the profiles be- 

tween the yearly models. This may help us to determine if polices 

are proving to be effective or not. 

Our mixed effects approach may also be adapted to estimate 

demand profiles for other building portfolios or energy sources. As 

long as appropriate goodness of fit measures are calculated and the 

statistical significance of variables are tested, most modelling pit- 

falls and erroneous conclusions should be avoided. Different set- 

tings will require consideration of which building characteristics to 

include and possible modifications to the formula we presented. 

However, the key idea of splitting data into buckets across the day 

(hours in our case) and fitting mixed effects models to each should 
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Fig. 9. Coefficient profile plots for DX system coefficients. The solid line shows the estimated coefficients, βh , for each hourly model described in Eq. (1) . The 80% and 90% 

confidence intervals are indicated by the shaded ribbons. Coefficient estimates for winter business hours are significant. 

still be applicable. Doing so is beyond the scope of this paper and 

is left as a future research direction. 

Including the relationship between demand and weather vari- 

ables may offer further improvements to our mixed effects mod- 

elling. Despite pursuing a simple formulation throughout our anal- 

ysis and only adding a trend term to capture yearly changes in 

climate, we do expect including weather variables would further 

improve model fits. Doing so also removes them as potential con- 

founding variables. 

5. Conclusion 

This paper presents an approach to estimating the impact dif- 

ferent building characteristics may have on electricity demand of 

commercial office buildings. Our approach only requires that smart 

meter data and attribute data is available for several buildings. The 

impact that each building characteristic has on energy demand can 

be presented in the form of demand impact profiles which show 

the expected change in demand should a characteristic be absent 

or present. Key advantages of this approach are that it does not re- 

quire equipment sub-metering and that it can be used to estimate 

the impact of indirect and behavioural factors. 

In addition to providing demand impact profiles, our methodol- 

ogy also produces confidence intervals based on a statistical frame- 

work. This allows us to assess the statistical significance of each 

building characteristic. Mixed effects models are used to account 

for the correlation within each building’s meter readings. A multi- 

model inference approach, which fits multiple models and weights 

coefficient estimates by the strength of each model fit, allows us 

to take both parameter estimation and model selection uncertainty 

into account when calculating confidence intervals. Hence, we can 

produce estimates of the effect size and the statistical significance 

of each characteristic’s effect on electricity demand. 

To justify the validity of our approach we have conducted a 

simulation study which shows our model estimates latent variables 

well. Furthermore, we also describe a case study using 129 com- 

mercial office buildings from across Australia. We were provided 

with several building attributes that engineers wished to assess 

statistically. Applying our methodology allowed us to understand 

how tenant behaviour and equipment behaviour affected electric- 

ity demand across the day at different times of the year. Further- 

more, it also highlighted that some characteristics did not appear 

to have a statistically significant impact on energy demand. 

It is our hope that this approach will open the door to further 

research in this area. Combining smart meter data from multiple 

buildings with additional descriptive data sources will allow us to 

quantify electricity consumption patterns. This has potential ap- 

plications in benchmarking and assessing the efficacy of demand 

management programs. Such research can play a role in helping us 

understand the potential of energy efficient practices by highlight- 

ing which equipment or design choices result in lower demand. 

This in turn may help managers and policy makers to enact better, 

data-driven decisions. 
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Fig. 10. Coefficient profile plots for all attribute coefficients. The solid line shows the estimated coefficients, βh , for each hourly model described in Eq. (1) . The 80% and 90% 

confidence intervals are indicated by the shaded ribbons. 
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Appendix A. Profiles of all attributes 

Hourly coefficient profiles for each attribute discussed in 

Section 2.2 are shown in Fig. 10 . These are produced using 

Eq. (1) and the multimodel inference approach. The coefficients 

represent the proportional change in demand when an attribute 

is or isn’t present. Unconditional confidence intervals are also 

shown which allow us to gauge how statistically significant each 

attribute’s impact is. Note that these coefficients and confidence 

intervals are calculated separately for each hour of the day to take 

the changing building dynamics into account. 

We can draw several conclusions from Fig. 10 . For example, 

some of the attributes only have a statistically significant impact 

at certain times of the year. For example, electric element heat- 

ing is not significant during summer, but does have a statistically 

significant impact during business hours in winter. A similar re- 

sult is observed for DX systems. Interestingly, centralised distribu- 

tion does not appear to be statistically significant at any time of 

the year. This indicates that in the buildings used in our analysis, 

the normalised demand does not appear to be affected by whether 

centralised or per-floor distribution is present. Water cooled con- 

denser and gas fired boiler variables do not appear to play any sta- 

tistically significant role in energy demand during any of the sea- 

sons. We can always see significant coefficient estimates for tenant 

feed, which is unsurprising given the amount of energy tenants are 

using. 

Appendix B. Simulation results 

To validate our approach we conduct a simulation with known 

fixed effect coefficient values. If we assume that each of the es- 

timated coefficients shown in Fig. 10 are correct, we can simulate 

time series for multiple buildings and test if our proposed method- 

ology can correctly estimate these effect sizes. 

Using the estimated winter coefficients shown in Fig. 10 we 

simulate demand for building j at time t using 

log y t j = 

∑ 

a 

X ja A ah + εt j , εt j ∼ ARMA (1 , 1) , (11) 

where 

• A ah ~ N( a ah , σ a ) is the assumed known impact of attribute a 

during hour h , 
• a ah is the estimated coefficient, 
• σ a is the standard error of the fixed effect coefficients, and 

• X ja ~ Bernoulli( p a ) is a random variable indicating if attribute a 

is present for building j . 

The probabilities that an attribute was present for a building, 

p a , were chosen based on the relative frequency of attributes in 

the 129 commercial office buildings. The expected impact of an at- 

tribute is a ah and is assumed to be equal to the estimates we pro- 

duced in our analysis using real data. The variance σ a allows for 

the impact of attribute a to vary between buildings and is chosen 

to be close to the estimated standard error for the fixed effects. 

Most fixed effects had standard error close to 0.3 and so for sim- 

plicity we chose σa = 0.3 for all attributes. As we are working with 

time series data we allow for autocorrelation in the model errors 

by treating them as an ARMA (1, 1) process with φ1 = 0.6, θ1 = 0.6 

and σε = 0.05. Doing so produced residuals with similar standard 

Fig. 11. Time series plots of simulated smart-meter data for six of the 150 simulations. As observed with the real data, each building has distinct business hour and non- 

business hour behaviour and the load profiles differ between each building. 
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Fig. 12. Coefficient profile plots based on simulated data for all attribute coefficients. The solid line shows the estimated coefficients for each hourly model and the dashed 

line shows the known fixed effect values that were chosen. 80% and 90% confidence intervals are indicated by the shaded ribbons. We see that our methodology is able to 

provide good estimates of the fixed effects. 

deviation to those observed in the real data. As a final check, we 

plotted the simulated time series as shown in Fig. 11 to ensure 

that they looked reasonable. The simulated time series appear to 

be realistic when compared to the time series in Fig. 3 . 

We simulated 90 days of 15-min demand data for 150 build- 

ings using the estimated profiles from winter. Applying our mixed 

effects multimodel inf erence approach to this data produced the 

fixed effect estimates and confidence intervals shown in Fig. 12 . 

We see that our estimates and confidence intervals perform quite 

well in estimating the actual values. 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.enbuild.2019.109686 . 
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Abstract

Buildings are typically equipped with smart meters to measure electricity demand at regular

intervals. Smart meter data for a single building have many uses, such as forecasting and

assessing overall building performance. However, when data are available from multiple

buildings, there are additional applications that are rarely explored. For instance, we can explore

how different building characteristics influence energy demand. If each building is treated as a

random effect and building characteristics are handled as fixed effects, a mixed effects model

can be used to estimate how characteristics affect energy usage. In this paper we demonstrate

that producing one-day ahead demand predictions for 123 commercial office buildings using

mixed models can improve forecasting accuracy. We experiment with random intercept, random

intercept and slope, and subject-specific curve mixed models. The predictive performance of the

mixed effects models are tested against naive, linear and nonlinear benchmark models fitted to

each building separately. Having justified the use of a mixed model framework, we provide an

example showing how mixed model frameworks can, when combined with smart meter data

and building attributes, be used to carry out scenario analysis. We demonstrate how expected

electricity consumption may increase or decrease given a change in building attributes. This

research justifies using mixed models to improve forecasting accuracy and to quantify changes

in energy consumption under different building configuration scenarios.

Keywords: time series forecasting, mixed-effects models, smart meters, energy, electricity

1 Introduction

Several papers have examined forecasting electricity demand for buildings by fitting separate

models to each building (Ghofrani et al. 2011; Gajowniczek & Ząbkowski 2014; Arora & Taylor

2016; Ben Taieb et al. 2016). While some have attempted to improve forecasts by leveraging the

hierarchical nature of electricity demand (Ben Taieb, Taylor & Hyndman 2020; Ben Taieb et al.

2
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2017) few, if any, have explored improving forecast accuracy using a mixed effects framework. If

buildings behave in a similar manner a well-specified mixed model may produce more accurate

forecasts than individual models. Furthermore, a mixed-model framework allows us to quantify

differences between buildings which would not otherwise be possible when using a “building-

specific” modelling approach. A mixed effects approach opens the door to scenario analyses

by allowing us to estimate how demand might change under different equipment or usage

scenarios.

This paper explores how electricity forecasting accuracy can be improved by using mixed effects

models. We examine if mixed models can produce forecasts as accurately as separate models fit

for each subject. We approach the problem in the context of producing one-day ahead forecasts

of electricity demand for 123 commercial office buildings in Australia. When working with

mixed effects models, each building is treated as a random effect and building characteristics are

treated as fixed effects. We attempt to model the relationship between temperature and demand

using both linear and spline based methods.

To the author’s knowledge few papers have explored using mixed models in an electricity

demand forecasting role. Brabec et al. (2008) appears to be closest to this area. In their paper, a

nonlinear mixed effects model (NLME) was used to forecast daily gas demand for individual

customers. Predictors such as day of week and temperature were treated as random effects.

Their NLME model was benchmarked against ARIMAX and ARX approaches. The paper

concluded by saying there was no clear winner between the NLME and benchmark models and

that both potentially have strengths and weaknesses. Unfortunately, there are few other papers

within the energy field that use mixed effects models1 for forecasting.

Moving away from the energy sector there are more papers to draw from. Ibrahim & L’Ecuyer

(2013) compared the performance of fixed effects and mixed effects models when forecasting

call center arrivals. Making use of correlation structures within the data was shown to improve

forecast accuracy when tested against several benchmark models on real-world data sets. Frees

& Miller (2004) explored lottery sales forecasting by postcode using a linear mixed model

applied to longitudinal data. They derived best linear unbiased predictors for what they termed

longitudinal data mixed models. Random effects were incorporated for each subject and,

separately, each time period. When compared against an ordinary regression model (with

common intercept between all subjects) and a basic fixed effects model (with a different intercept

for each subject), both with AR(1) error structures, the mixed model that used both time and

1Some papers claim to use mixed models. However, this term is often applied to cases where a combination of
models have been used which is different to mixed effects models in the statistical sense.

Roach, Hyndman, Taieb: 6 April 2020 3
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subject random effects (two-way error model) was found to be inferior when forecasting on an

out-of-sample test set. However, another one-way error components model that only included

treated subjects as random effects was found to produce the best forecasts overall. This suggests

that mixed models can compete with ordinary pooled regression models. However, the question

remains as to how well a mixed model would perform when compared to ordinary regression

models fit separately to each subject. Another paper that focused on call center forecasting

(Aldor-Noiman, Feigin & Mandelbaum 2009) used a mixed Poisson process to estimate future

arrival counts. Soyer & Tarimcilar (2008) had a similar aim and showed that a Bayesian approach

incorporating random effects was superior to a fixed effects model.

These papers all point to the viability of using mixed effects models for forecasting. None

explored the possibility of conducting scenario analysis by varying the fixed effects within a

model. This is surprising as quantifying the impact of different characteristics between subjects

is one of the obvious advantages of moving to a mixed effects framework. Our paper gives a

simple illustration of how this may be done.

Few papers have attempted to assess the impact of differences in building characteristics using

statistical methods and smart meter data. To the author’s knowledge, only a previous paper

by Roach (2020) has looked into this using mixed effects models. Whereas that paper focused

on estimating demand impact profiles for building attributes at different times of the year, this

paper focuses on improving forecast accuracy and producing scenario analyses by estimating

the expected change in time series conditional on the building attributes.

Several papers have shown the relationship between electricity demand and temperature are

well modelled using nonparametric components such as cubic splines (Hyndman & Fan 2010;

Fan & Hyndman 2012). This paper uses a similar approach within a mixed model framework.

Other papers that explore semiparametric mixed models include Grajeda et al. (2016); Ugarte

et al. (2009); and Durbán et al. (2005). Durbán et al. (2005) is of particular note as it introduces the

concept of subject-specific curves using piecewise linear splines for longitudinal data. We build

on the idea of subject-specific curves by applying them to time series data and incorporating

natural splines.

The main contribution of this paper is to present an approach to forecasting electricity demand

for individual buildings using a mixed effects framework. Furthermore, we show how such

a model can be used to conduct scenario analysis allowing us to quantify expected energy

savings given changes in building attributes. Finally, this paper serves to enrich the literature on

forecasting with mixed effects models and smart meter data.

Roach, Hyndman, Taieb: 6 April 2020 4
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The paper is structured as follows. Section 2 describes the data we are working with. Section 3

gives a detailed description of the models formulations and how they are assessed. Forecasting

results and a scenario analysis example are presented in Section 4. Concluding remarks are

given in Section 5.

2 Data

We have time series and attribute data for 123 commercial office buildings located across

Australia. We focus on business days in our analysis as these are significantly more important

than non-business days for energy management. Non-business days typically have far less

demand than business days as equipment is non-operational. Note that our approach can be

applied to non-business days as well.

2.1 Time series data

Smart meter data recorded at 15-minute intervals for 123 buildings are used when training and

validating our models. The electricity demand is normalised by each building’s net lettable

area (NLA) to ensure demand is comparable between buildings. An example of a day of smart

meter readings from six buildings is shown in Figure 1. Temperature data recorded at 15-minute

intervals from the closest available weather station are also available for each building.

The relationship between current temperature and electricity demand is shown in Figure 2 for

two buildings at midday and midnight. There is a clear difference in this relationship between

the business and non-business periods. Furthermore, this relationship varies between each

building. Note that when splines are fitted independently for each building they can be very

sensitive to outliers or data at domain extremes. This partly motivates our use of mixed effects

models where data from multiple buildings can be used to fit these relationships resulting in

models that are more robust to outliers or sparse data at extremes.

One issue that arises from only including business days is the gap between Friday and Monday

in our demand time series. As we are including one-day lagged demand as one of our predictors,

observed values on Monday will use Friday demand values as their one-day lagged demand

(and similarly for two-day lagged demand variables). If this weren’t done and we instead used

non-working days, a very different relationship between Monday’s lagged demand variables

and current demand would be observed compared to other weekdays.

Roach, Hyndman, Taieb: 6 April 2020 5
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Unlike lagged demand variables, which are used to capture operational changes in a building,

lagged temperature variables are used to capture thermal inertia. Thermal inertia is residual

heat energy that remains in a building after a run of warm weather (or conversely for cold

weather). For example, if several warm days occur sequentially, the expected demand can

increase as more cooling is typically required to maintain indoor environment quality. Hence,

lagged temperature variables are based off all days - not just working days. Monday’s lagged

temperature variables will include temperatures observed over the weekend.
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Figure 1: Normalised electricity demand of six commercial office buildings in Australia on 9 January,
2017. Only one day of data is shown although it is enough to see clear differences in the demand
profiles. Both the magnitude and volatility of demand varies greatly between buildings.

2.2 Attribute data

Building attribute data describes different characteristics of each building. The data are Boolean

and indicate if a particular attribute is absent or present. A previous paper (Roach 2020) that

examined important drivers of commercial office building demand identified the following

attributes as relevant:

• tenant feed

• DX system

• electric element heating

• centralised distribution.
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Figure 2: Relationship between temperature and normalised electricity demand at midday and midnight
for two Australian office buildings during Summer. Logged values are shown as we use these
as our response variable when fitting models to enforce a positivity constraint. The relationship
between temperature and demand is different both between buildings and at different times of
the day.

For a more detailed discussion of each of these attributes refer to Roach (2020).

2.3 Modelling the temperature electricity relationship

The relationship between temperature and electricity demand is shown in Figure 3. The relation-

ship is modelled using three approaches: a linear spline, cubic spline and natural spline. All are

fitted with three degrees of freedom. We can see that using the linear spline doesn’t capture the

smooth sigmoid like curve of the relationship whereas the cubic spline appears to extrapolate

in an unrealistic manner at the extreme temperatures. The natural spline has less pronounced

movement near the extremes due to the linearity constraint and so it is preferred over the other

two methods. Hence, each weather variable and lagged weather variable is modelled using a

natural spline with three degrees of freedom. Knots were placed at the 33rd and 67th quantiles.

3 Methodology

Several linear and mixed effects models were tested to determine which produced the most

accurate forecasts conditional on selected features. Here we describe the various benchmarking

Roach, Hyndman, Taieb: 6 April 2020 7
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Figure 3: Linear and cubic splines with three degrees of freedom fit to one building’s demand data during
Summer at 11:45 am. We observe that the linear spline results in severe kinks in the relationship
which seems unrealistic. The cubic spline gives a much smoother fit and appears to be the more
reasonable option. The natural spline is better again as it does not have the dramatic dip in
predicted demand that the cubic spline has for high temperatures.

and mixed effects models and their formulations. All analysis was produced using the R

statistical programming language (R Core Team 2019). Mixed effects models were fit using the

lme4 package for mixed effects models (Bates et al. 2019).

3.1 Model formulation

To justify our final model that we use for scenario analysis we test several models that can be

thought of as simpler versions. Each model has a change introduced and the improvement in

performance is used as justification for each. As a starting benchmark, we fit a naive model

that uses the previous day’s observed values. The second model fit individual linear regression

models to each building. The third model also involves fitting a set of individual models but

incorporate natural splines to model the temperature and demand relationships. The fourth

model is the first to be trained using data from all the buildings and treats each building as a

dummy variable. The fifth, sixth and seventh models are random intercept, random slope and

subject-specific curve models. Finally, the eighth model is a subject-specific curve model that

includes building attributes as fixed effects. This is summarised in Table 1.

Roach, Hyndman, Taieb: 6 April 2020 8
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Table 1: Model descriptions

Model Abbreviation Description Predictor Variables

Naive Naive Naive forecasting
model

Previous day’s
demand

Individual linear
regression

ILR Linear regression
models fit to each
building

Current temperature

Individual natural
splines

INS Natural spline
models fit to each
building

Current temperature

Pooled regression PR Regression model.
Used for feature
selection

Current temperature,
selected features

Random intercept RI Mixed effects model
with random
intercept

Current temperature,
selected features

Random intercept
and slope

RIS Mixed effects model
with random
intercept and slope

Current temperature,
selected features

Subject-specific
curves

SSC Mixed effects model
with subject-specific
curves

Current temperature,
selected features

Subject-specific
curves with
attributes

SSCATTR SSC with building
attributes included
as fixed effects

Current temperature,
selected features

Due to the evolving nature of energy demand across the day we fit separate models for each

15-minute period of the day. This gives 96 models for each building when fitting individual

model formulations and 96 models for each mixed effects formulation.

Throughout our modelling we use natural splines to model the relationship between predictor

variables and demand. This differs somewhat from other studies on semiparametric mixed

effects models which use piecewise linear splines to model variable relationships (Durbán et al.

2005). However, when we inspect Figure 3 we see that a natural spline gives a more reasonable

fit at the sparsely populated extremes when dealing with temperature data.

Predictors are centered and scaled prior to training models. The exact features that are used for

models are determined through our feature selection approach (Section 3.2). Models are fit by

maximising the log-likelihood criterion.

3.1.1 Individual models

Individual models serve as benchmark models to determine if moving to a mixed models

framework improves prediction accuracy. Separate models are fit for each building. Note that a

subscript for building has been omitted from each of these individual models to improve clarity.

Roach, Hyndman, Taieb: 6 April 2020 9
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Naive forecast model The simplest benchmark is a naive forecasting model, where the previ-

ous day’s values are used. This is often a surprisingly effective forecasting approach (Hyndman

& Athanasopoulos 2018). The demand of a building at time t is given by

yt = yt−24 hours + εt, εt ∼ N(0, σ2).

Note that since we have restricted ourselves to business days, t− 24 hours is a slight abuse of

notation and is used to represent the observed values from the last business day. So a forecast for

Monday will use observed values from the previous Friday. Using observed values from Sunday

would produce a much weaker benchmark due to different demand dynamics on working and

non-working days.

Individual linear regression model A simple benchmark model is created by fitting a linear

regression model to each building and period of the day. The demand of a building at time t is

given by

log yt = β0,p + β1,pw0,t + εt, εt ∼ N(0, σ2
p),

where p is the 15-minute period of the day at time t, w0,t is the scaled temperature experienced2

at time t and εt is the residual. We call these our “Individual Linear Regression” (ILR) models.

Individual natural spline model A linear relationship between temperature and electricity

demand may not be sufficient to adequately capture the relationship between the two. Nat-

ural cubic splines allow a more flexible relationship between predictors and the response. In

this model the log demand of each building is modelled separately using natural splines. A

building’s demand based on temperature and other selected predictors is given by

log yt = fp(w0,t) + εt, εt ∼ N(0, σ2
p),

fp(x) =
K

∑
k=1

βp,k(x− κk)
3
+,

where fp is a smooth function modelling the relationship between w0,t and the logged demand

for period p. We refer to this set of models as the “Individual Natural Spline” (INS) models.

We use natural splines with three degrees of freedom as our smooth functions. Knot positions

κk are calculated based on quantiles of the data. Natural splines are chosen over other types

as they enforce the constraint of linearity beyond the boundary points, which seems a fair

assumption when considering the behaviour of electricity demand consumption in relation to

2The 0 subscript denotes no lag and is consistent with Table 2 with the building subscript dropped.

Roach, Hyndman, Taieb: 6 April 2020 10
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Table 2: Predictor variables evaluated during feature selection when determining Pt.

Variable xb,i,t Lag (15-minute periods) Description

wb,0,t 0 Scaled current temperature.
wb,12,t 12 Scaled temperature lagged by 3 hours.
wb,24,t 24 Scaled temperature lagged by 6 hours.
wb,48,t 48 Scaled temperature lagged by 12 hours.
wb,96,t 96 Scaled temperature lagged by 24 hours.
wb,192,t 192 Scaled temperature lagged by 2 days.
wb,288,t 288 Scaled temperature lagged by 3 days.
w+

b,t Maximum scaled temperature over last 24 hours.
w−b,t Minimum scaled temperature over last 24 hours.
w̄b,t Average scaled temperature over last 3 days.
yb,96,t 96 Scaled actual demand lagged by 1 day.
yb,192,t 192 Scaled actual demand lagged by 2 days.
yb,672,t 672 Scaled actual demand lagged by 1 week.

extreme temperatures (see Figure 3 for an illustration). We wish to create a parsimonious model

and assuming anything beyond a linear relationship in the extremes seems contrary to that aim.

Failing to enforce the linearity constraint may result in unusual relationships being predicted if

extrapolating beyond the training data.

3.1.2 Pooled regression model

Our pooled regression model is fit using data from all buildings. One model is fit for each

15-minute period of the day which is then used to predict demand of each building b at time

t. Note that since all buildings are included in the model, we introduce the b subscript for

buildings.

Additional predictor variables are introduced in this model, such as lagged temperature vari-

ables; maximum, minimum and average temperatures; and lagged demand. A description of

each predictor is presented in Table 2. We denote this set of predictor variables as Pt, which

contains the selected variables for the 15-minute period of day and month at time t. The exact

combination of variables is chosen via our feature selection methodology described in Section

3.2. This model is used when selecting features as it is much faster to train than a mixed effects

model.
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The demand of building b at time t is given by

log yb,t = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + αb,p + εb,t, εb,t ∼ N(0, σ2
p),

fi,p(x) =
K

∑
k=1

βi,p,k(x− κk)
3
+,

where xb,i,t is the value of building b’s ith predictor variable at time t and fi,p is a smooth function

modelling the relationship between xb,i,t and the logged demand for period p. A dummy

variable αb,p has been added to account for differences in each building’s consumption. We call

this our “Pooled Regression” (PR) model.

We do not estimate a separate smooth relationship between weather variables and demand for

each building in the pooled model. Instead, we estimate the population’s relationship. So, for

the ith predictor we construct a smooth function fi,p for all buildings instead of a set of smooth

functions fb,i,p for each building.

3.1.3 Mixed models

Having specified our framework for fitting separate models to each building it is now time

to explore fitting mixed models. In each mixed effects model that follows, all buildings are

included by treating each as a random effect. In section 4.2 we show that mixed models improve

prediction accuracy and have the added benefit of allowing us to quantify the impact of building

attributes on electricity demand.

Originally, random effects were incorporated into each of the lagged weather variables, but this

resulted in very poor fits presumably due to the high dimensionality. Instead, as with the PR

model, we model the population relationship for all selected predictor variables and allow for

subject-specific differences using random intercepts, random slopes and subject-specific curves

(based on current temperature).

As with the PR model, we include subscripts b to denote each building. Unlike the individual

formulations, which had separate models fit to each building, all buildings are used when

training the mixed effects models and so we include an additional subscript to denote this.

Again, to capture changing demand characteristics across the day, separate models are fit for

each 15-minute period of the day giving 96 models for each mixed effects formulation.
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Random intercept model The simplest mixed effects model is a random intercept (RI) model.

We model the log of the demand by

log yb,t = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + ub,p + εb,t,

fi,p(x) =
K

∑
k=1

βi,p,k(x− κk)
3
+,

εb,t ∼ N(0, σ2
ε,p), ub,p ∼ N(0, σ2

u,p),

where ub,p is a random effect that controls the intercept of the model. This is similar in form to

the pooled regression model, with the dummy variable αb,p replaced by the random intercept

ub,p. We don’t use this model for feature selection in Section 3.2 as it takes much longer to fit

than the pooled regression model.

Random intercept and slope model Expanding on this is the random intercept and slope (RIS)

model which has a random effect for both the intercept and slope of the model. We model

demand by

log ybt = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + ub,p,1 + ub,p,2wb,0,t + εb,t,

fi,p(x) =
K

∑
k=1

βi,p,k(x− κk)
3
+,

εb,t ∼ N(0, σ2
ε,p), (ub,p,1, ub,p,2)

T ∼ N(0, Σ), Σ =


 σ2

u,1 σu,1,2

σu,1,2 σ2
u,2


 .

Here we have included a random slope based on scaled current temperature, wb,0,t. The random

effects ub,p,1 and ub,p,2 control the subject-specific differences for intercept and slope, respectively.

The matrix Σ is a variance-covariance matrix for the random effects. It includes terms for the

variance of intercepts (σ2
u,1), the variance of slopes (σ2

u,2) and the covariance between intercepts

and slopes (σu,1,2).

Subject-specific curves model As the relationship between demand and temperature can be

quite non-linear we also explore modelling the subject-specific differences in the temperature

and energy relationship using splines. We call this model the subject-specific curve (SSC) model

in keeping with Durbán et al. (2005). Note that we have modified their model to work with

natural cubic splines as this gives a better fit when modelling the temperature and electricity
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relationship compared to penalized linear splines (Figure 3). It is given by

log ybt = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + gb,p(wb,0,t) + εb,t,

fi,p(x) =
K

∑
k=1

βi,p,k(x− κk)
3
+, gb,p(x) =

K

∑
k=1

ub,p,k(x− κk)
3
+,

εb,t ∼ N(0, σ2
ε,p), ub,p,k ∼ N(0, σ2

u,p).

As with our other models we use natural cubic splines with three degrees of freedom for both

fi,p and gb,p. This model allows us to capture separate temperature and electricity relationships

for each building while also including the population relationships between electricity demand

and other selected predictors.

Subject-specific curves with attributes model As we wish to carry out scenario analysis we

introduce several new variables into our model. These variables are the set of building attributes

discussed in Section 2.2 which we denote by A. We treat each of these attributes as a fixed effect.

We refer to this model as the subject-specific curves with attributes (SSCATTR) model.

Our model for scenario analysis is given below

log ybt = ∑
xb,i,t∈Pt

fi,p(xb,i,t) + gb,p(wb,0,t) + ∑
a∈A

βaxb,a + εb,t,

fi,p(x) =
K

∑
k=1

βi,p,k(x− κk)
3
+, gb,p(x) =

K

∑
k=1

ub,p,k(x− κk)
3
+,

εb,t ∼ N(0, σ2
ε,p), ub,p,k ∼ N(0, σ2

u,p).

This is the same as our SSC model apart from the addition of the building attributes. The fixed

effect xb,a is a Boolean variable that indicates if attribute a is present for building b.

3.2 Feature selection

Carrying out feature selection for such a wide range of models was a difficult problem to

approach. We take the view that it is best to keep features consistent between each of the models

in order to fairly compare each during the validation stage. Hence, each model’s performance

is conditional on the same set of predictor variables. As we don’t expect the most important

predictors to be changing rapidly throughout the year we only conduct feature selection for

the first business day of each month. The selected predictors are then used for all business day

forecasts in the month.
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Table 2 shows a list of demand variables that were considered for our modelling. Lagged

temperature variables are used to model the impact of thermal inertia in buildings. For example,

high overnight temperatures in summer may result in high demand on the following day due

to the increased cooling loads required to maintain suitable indoor environment quality. The

maximum and minimum temperatures from the last 24 hours are also considered, as well as the

mean temperature over the previous three days. Lagged demand values of 1, 2 and 7 days are

included to capture any serial correlation in the observed demand time series.

Numerous studies have already shown the link between electricity demand and current temper-

ature (Ben Taieb et al. 2016; Fan & Hyndman 2012; Roach 2019; Hong et al. 2016; Hong, Xie &

Black 2019). Hence, we chose to conduct feature selection conditional on the current temperature

being included. There were several reasons for this:

• Much of the literature on load forecasting already identifies the importance of current

temperature in forecasting demand and we can see clear nonlinear relationships in Figure

2.

• As temperature is strongly correlated with recent values there were occasions when

the current temperature would not be selected but a slightly lagged variable would be.

This seemed unrealistic and was likely caused by noise in the data rather than a lagged

temperature being a better predictor than actual temperature.

• Forcing current temperature to be included reduced the number of feature combinations

to search through by a factor of 2.

We use the pooled linear regression model for feature selection as it is quick to fit using OLS

and allows us to model buildings by using a dummy variable for each. Using a linear model

also has the advantage of allowing us to efficiently compute the leave-one-out cross-validation

(LOOCV) scores using (Seber & Lee 2012)

CV =
1
n

n

∑
i=1

(
ei

1− hi

)2

,

where ei are the residuals of the model and hi are the diagonal elements of the hat-matrix

H = X (X′X)−1 X′.

Training data are comprised of business days within a window of 120 days prior to the month

we wish to select variables for. As our experimental setup for the validation phase involves

one-day ahead forecasts, this variable selection prevents us from using any data from the future.
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For example, when forecasting for any date in January, only data from the months preceding

January would have been used to select predictors.

We use best subset selection during feature selection. Given p predictors we choose the com-

bination of these that produce the best R2 scores. Once the best model based on R2 has been

determined for each set of p predictors, we use the LOOCV score to determine the overall best.

The LOOCV score is chosen as it gives an estimate of the out of sample performance of our

models. Figure 4 shows the LOOCV scores for each predictor set of size p. During feature

selection we chose to avoid greedy approaches such as forward or backward stepwise selection;

or approaches that work systematically through lagged weather variables (Hyndman & Fan

2010). Naturally, greedy methods have computational benefits, but it is interesting to observe

which features are chosen when all possible predictor combinations are assessed.

A key point to note is that feature selection was done on the weather variables and not the spline

basis functions. Doing so would destroy the properties of a spline if only a subset of its basis

functions were to be selected.
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Figure 4: LOOCV scores (log scale) for each month. In general, the LOOCV errors initially decrease as
variables are added, but begin to increase slightly at a certain point for each period.

It should be noted that feature selection could be further improved for the mixed effects models

by proceeding with a step-wise selection process after the above process has completed for the

pooled model. Features can be added or removed based on if an appropriate out of sample
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accuracy score improves. This allows us to benefit from the relative speed of fitting via OLS

before further fine-tuning with a greedy selection algorithm.

3.3 Validation

3.3.1 Rolling origin 1-day ahead forecasts

We used a historical training period comprised of recent observations for each building. Business

days from a sliding window of length 120 days were selected as training data for each model.

Using recent observations allows recent operational changes or trends to be captured in each

model.

If, for a given 1-day ahead forecast, a building had less than 40 days of training data present then

it was removed from the forecast. This was done to accommodate buildings that had recently

been included in the data set or where the data had been censored. Training a building with less

than 40 days of data sometimes resulted in severe overfitting.

3.3.2 Error measures

To assess the forecasting accuracy of each of our models we use four common error metrics.

1. Mean absolute error: MAE = mean (|yt − ŷt|).
2. Mean absolute percentage error: MAPE = mean

(∣∣∣ 100(yt−ŷt)
yt

∣∣∣
)

.

3. Symmetric mean absolute percentage error: sMAPE = mean
(

200|yt−ŷt|
yt+ŷt

)
.

4. Mean absolute scaled error: MASE = mean
(∣∣∣ yt−ŷt

mean(|yt−yt−1|)

∣∣∣
)

.

These are all well established forecasting metrics. Advantages and disadvantages of each are

described in Hyndman & Koehler (2006).

When comparing these metrics in Section 4.2, we find that the SSC and SSCATTR models

produce the best point forecasts. To establish that this result is statistically significant we also

carry out Diebold-Mariano tests against the ILR model in Section 4.3.

4 Results

In order to build a better understanding of how a mixed model framework improves upon

fitting individual models to each building we need to assess each model’s performance. To

do so, we create one-day ahead ex-post forecasts and calculate the MAE, MAPE, sMAPE and
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MASE for each. We focus on ex-post forecasting as we wish to examine error caused by model

specification and ignore errors caused by incorrect weather forecasts, as would be the case in an

ex-ante forecasting scenario.

4.1 Variables chosen via feature selection

Figure 5 show the number of times each variable is selected for all months of the year. There

is a lot of variation in the selected predictors, even between adjacent 15-minute periods. By

overlaying all of the months we do observe some structure. Perhaps the most noticeable

characteristic is that temperature variables are selected more often during business hours,

which shows the influence temperature has on demand during the day and how temperature

influences occupant behaviour. Outside of these hours we see fewer temperature variables

selected. Another point of interest is that during business hours, lagged demand variables are

selected less often than for non-business hours. It would appear as though serial correlation in

the demand time series is a more useful predictor during non-business hours than temperature.

Thermal inertia does not appear to influence demand as much during non-business hours.

4.2 Forecasting accuracy

Table 3 shows the MAE, MAPE, sMAPE and MASE for each model across the entire day, during

business hours (7:00 am to 7:00 pm) and during non-business hours (7:00 pm to 7:00 am).

The Naive model has the worst forecasting accuracy. All of the benchmark and mixed effects

models outperform it. Overall, the best performing model is the SSC model, closely followed

by the SSCATTR model. These two models consistently outperform others across all metrics.

Figure 6 shows an example of forecasts produced from the SSC model. The actual demand

values and previous day’s demand values (Naive model) are also plotted. We can see that the

SSC model tends to track the general shape of each profile well and does not predict erratic

spikes in demand.

Given the SSC and SSCATTR models outperform each of our benchmarks it seems reasonable

to conclude that forecasting with mixed effects models is a reasonable practice that should be

encouraged when data are available for similar subjects.

4.3 Diebold-Mariano test

Here we perform a one-sided Diebold-Mariano test (Diebold & Mariano 2002) to determine if

our final model (SSCATTR) is more accurate than the baseline model (ILR). We perform a test
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Figure 5: Feature selection for all months. The number of times a variable has been selected across all
12 months is indicated by the transparency of each tile for a given period. In general, weather
features are selected more often during business hours. During non-business hours, weather
features are selected less often, but lagged demand variables are almost always selected.

for each period of the day (Table 4). When the test is applied to each period of the day we see

that our SSCATTR model produces forecasts that are significantly better than the ILR model.

4.4 Scenario analysis

Having confirmed that our mixed models produce satisfactory predictions compared to individ-

ual models provides us with justification for using them for scenario analysis. We can assess

how changing certain variable values increases or decreases energy demand in buildings.

We will now show an example of producing scenario analysis for one of our buildings using this

model. Building BID0010 has the attributes listed in Table 5. If any of the attribute values are

modified and then the expected energy consumption is recalculated, we can take the difference

between the original predictions to estimate how energy demand will change. Figure 7 shows

how expected demand changes when we vary building attributes for several days in January.

Figure 8 shows the cumulative change in energy consumption if the building were to switch

away from using a DX system. These normalised energy savings (or increases) can then be
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Table 3: Forecasting accuracy measures for each model across the entire day, business hours (7:00 am to
7:00 pm) and non-business hours (7:00 pm to 7:00 am).

Model MAE MAPE sMAPE MASE

All hours
ILR 0.420 14.8 13.2 0.946
INS 0.401 14.5 12.8 0.902
Naive 0.444 15.3 13.4 1.000
PR 0.415 13.9 12.5 0.936
RI 0.413 13.9 12.4 0.930
RIS 0.384 13.3 11.8 0.865
SSC 0.374 13.1 11.6 0.843
SSCATTR 0.375 13.1 11.6 0.844

Business hours
ILR 0.637 16.8 14.0 0.920
INS 0.601 16.2 13.4 0.869
Naive 0.692 17.9 15.3 1.000
PR 0.652 16.8 14.3 0.942
RI 0.648 16.7 14.2 0.937
RIS 0.595 15.8 13.2 0.860
SSC 0.576 15.4 12.9 0.833
SSCATTR 0.578 15.4 12.9 0.835

Non-business hours
ILR 0.204 12.8 12.3 1.040
INS 0.201 12.7 12.2 1.020
Naive 0.196 12.7 11.5 1.000
PR 0.179 11.1 10.7 0.914
RI 0.178 11.0 10.6 0.907
RIS 0.174 10.8 10.4 0.885
SSC 0.172 10.7 10.4 0.877
SSCATTR 0.172 10.7 10.4 0.876

converted to a dollar figure by simply multiplying by the net lettable area of the building and

the appropriate electricity tariffs. Such an approach allows us to quantify the expected savings,

both financially and in terms of energy consumption, allowing for better decision making when

it comes to building management and retrofits.

5 Conclusion

This paper explores the possibility of using mixed effects models in a forecasting role. We first

specified several different models. A best subset selection approach was proposed to determine

which predictor variables should be used. Feature selection was carried out for each month of

the year and 15-minute period of the day, which allowed us to observe how the importance of

lagged temperature and demand variables changed throughout the day.
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Figure 6: One-day ahead forecasts for 23 August, 2017. The Naive (yesterday’s actuals) and SSC models
are shown. The naive model often includes erratic spikes whereas the SSC model tends to
produce a smoother profile.
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Figure 7: Expected normalised electricity consumption for three days in January, 2017 for building
BID0010. The grey line shows the actual demand that was observed on each day. The expected
demand of the existing building is shown (“Original building”), as well as four scenarios each
of which involves the modification of one attribute.
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Table 4: Diebold-Mariano test to compare forecast accuracy of ILR and SSCATTR models. Alternative
hypothesis is SSCATTR model is more accurate than ILR model. All periods tested separately.
Only every fourth model falling on the hour is shown for legibility.

Period DM statistic p-value Significance

4 1.062 0.144
8 -0.371 0.645

12 -0.109 0.543
16 -0.733 0.768
20 -0.548 0.708

24 2.872 0.002 **
28 3.123 < 0.001 ***
32 1.513 0.065 .
36 1.040 0.149
40 4.281 < 0.001 ***

44 3.580 < 0.001 ***
48 2.982 0.001 **
52 3.422 < 0.001 ***
56 3.163 < 0.001 ***
60 4.203 < 0.001 ***

64 4.742 < 0.001 ***
68 7.260 < 0.001 ***
72 7.913 < 0.001 ***
76 14.236 < 0.001 ***
80 9.641 < 0.001 ***

84 10.593 < 0.001 ***
88 9.196 < 0.001 ***
92 7.242 < 0.001 ***
96 4.443 < 0.001 ***

Table 5: Building attributes for Building BID0010.

Attribute Present

basebldngfeedonly TRUE
dxsystem TRUE
electricelementheating FALSE
centraldist TRUE

We fit models to 123 buildings across Australia. Separate models for each building were fitted

as a benchmark. The overall predictive power of several mixed effects models were assessed

against this benchmark. One-day ahead forecasts were produced for business days over a year

using all forecast methods. Based on the MAE, MAPE, sMAPE and MASE scores of each model

the SSC and SSCATTR models performed best. We concluded that predicting demand using

mixed effects model could improve forecast accuracy and had the additional advantage of

allowing us to conduct scenario analyses.
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Figure 8: Cumulative energy impact after removing DX system. We can see that the cumulative change
in energy consumption steadily decreases indicating buildings without DX systems are more
efficient.

Finally, we included an example of using the SSCATTR model for scenario analysis for one of

the buildings in our data set. The expected change in electricity demand was plotted when

several of the attributes were varied. The expected change in consumption over the course of

one workweek when a building moved away from using a DX system allowed us to quantify the

potential savings in energy. Analyses such as these have applications for decision makers and

facility managers that wish to understand the effectiveness of changes in building management

or potential retrofits of equipment.
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Abstract

Building Management Systems (BMSs) are used to control HVAC equipment, lighting and other

devices in commercial buildings. These systems can generate significant volumes of data with a

single building typically containing tens of thousands of sensors. Due to the large volumes of

data it is difficult for facility managers to quickly assess if a building is performing as expected or

if faulty sensors are present. Furthermore, the data that is collected can often be difficult to deal

with. Irregular time intervals, missing values, outliers and inconsistent sensor labelling all add

complexity and introduce new problems that need to be addressed if accurate fault detection

is to be carried out. This paper explores using unsupervised machine learning methodologies

to allow end users to quickly assess if BMS points are behaving as expected. To deal with the

inherent complexity of the time series data and metadata we engineer simple but useful features

to improve our analysis. We test several dimensionality reduction techniques that allow us to

visualise data easily. Two examples are provided to show how our approach can lend itself to

quickly detecting faults or unusual behaviour. Applications of this methodology include fault

detection and improving our understanding of BMS data. We also discuss further applications

of our dimensionality reduction approach such as the possibility of comparing behaviour across

multiple buildings.

Keywords: time series, anomaly detection, BMS data, dimensionality reduction, t-SNE

1 Introduction

Fault detection in buildings management systems (BMSs) can prevent energy wastage and help

improve occupant comfort. Many methods exist for fault detection and diagnostics and can be

broadly grouped into three main categories. Quantitative methods include physical models that

attempt to emulate the behaviour of a correctly calibrated and functioning system. Qualitative

methods rely on set rules which when violated indicate a fault. The third and more distinct

2
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category is that which relies on historical data to diagnose faults. Fault detection methods

that fall into this category include those that rely on statistical or machine learning techniques.

An advantage of using historical data to detect sensor faults is that modelling is typically less

complicated than for quantitative and qualitative approaches (Katipamula & Brambley 2005).

In this paper we present a data focused approach to fault detection. We extract time series and

metadata features from historical sensor data before applying several dimensionality reduction

approaches to identify outliers. Engineering time series features rather than using raw data

is advantageous as working with raw data requires regular sampling intervals so that each

period of the day can be treated as a feature. When sensors are recorded at different frequencies

or times this is no longer possible and so other suitable features that describe the time series

need be engineered. Metadata contains useful information that can help identify sensor types.

Typical sensor names will contain abbreviations of the sensor type. Naming conventions are

often inconsistent both within a building and across different buildings which makes it difficult

for building engineers to process the metadata and extract useful information. To work around

this issue we create n-grams for each sensor name which are then used alongside the time series

features during our analysis.

We take an unsupervised learning approach to our outlier detection. Hence our algorithm does

not classify sensors or days as behaving erratically, but presents the data in such a way that an

end user may easily determine if a sensor is unusual compared to similar sensor types. Our

focus is on presenting the data in such a way that an end user may explore the data interactively

in a quick and easy manner. Figure 1 shows our intended work flow. Note that this approach

may be useful for supervised learning as it allows a user to quickly tag multiple points that can

then be used as training data for a suitable classification model.

Figure 1: Intended work flow for anomaly detection.

We focus on producing a fault detection approach using unsupervised learning techniques as

we do not require labelled data to begin diagnosing faults. Typically, in a supervised learning

scenario a data set containing sensors and historical time series will be labelled as faulty or

normal. However, producing a labelled data set can be both challenging and time consuming.

Furthermore, each of these data sets may be domain specific. Hence, if a new building is

encountered an entirely new labelled data set may be required to train a new fault detection
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model. In contrast, unsupervised learning algorithms can immediately be applied to new and

unlabelled datasets. While this paper focuses on exploring different unsupervised learning

techniques to help improve our analysis of data our eventual goal is to move to a supervised

learning approach whereby an algorithm can automatically classify anomalies.

Some papers have focused on unsupervised fault detection. Costa, Angelov & Guedes (2014)

and Costa, Angelov & Guedes (2015) explore unsupervised fault detection using recursive

density estimation and data clouds, which are similar to clusters but do not have a specific shape

or boundary. They test their methodology on a pilot plant for industrial process control. Theirs

is a two stage process that first conducts recursive density1 estimation in the feature space before

applying an evolving fuzzyrule-based classifier. A recent framework by Ardakani et al. (2016)

uses a combination of clustering approaches and multivariate dynamic metamodels to identify

faults in a simulation case study for a three tank system. They attempt to detect leaking and

plugging within the system.

Our unsupervised approach allows for easy identification of unusual behaviour in sensors and

does not require any a priori knowledge of a building’s properties or physics underpinning

its behaviour. It can easily be extended to examine different buildings or multiple buildings

simultaneously. We can detect anomalies for AHUs, chillers, pumps and any other unit since we

are simply using historical time series and metadata. We aim to be able to detect both hard faults

(sensor/actuator issues) and explore soft faults (controls programming issues).

Many studies on fault detection utilise either simulated datasets with artificially introduced

faults or small case studies of real data, both of which have drawbacks. Simulated datasets

rely on assumptions by researchers on the characteristics of faults whereas real world studies

tend to only have a small set of fault examples and assume that all faulty data is correctly

labelled (Gunay, Shen & Yang 2017). In our paper we use a real world data set based off several

buildings. We do not rely on manual tagging of faulty or normal operation and instead focus on

producing a methodology that can allow us to identify system faults at a glance if particular

sensors are behaving erratically. Gunay, Shen & Yang (2017) also point to the need for fault

detection methods that can be adapted to different types of buildings with minimal tuning and

configuration.

The paper is structured as follows. We first discuss the data and the different BMS points

in Section 2. Suitable time series and metadata features are proposed in Section 3. Section 4

discusses several popular dimensionality reduction methods. These methods are then assessed
1Note that their definition of density is not the same as the standard statistical definition of a probability density

function.
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Table 1: Number of points for each measurement type.

Measure BID0025 BID0126 BID1701

Cooling control valve (CCV) 20 33 6
Economy cycle dampers (ECD) 18 33 6
Enabled (ENB) 22 34 8
Return air temperature (RAT) 1 32 2
Supply air pressure (SAPR) 16 30 8

Supply air pressure setpoint (SAPRSP) 16 29 8
Supply air temperature (SAT) 20 32 8
Supply air temperature setpoint (SATSP) 16 32 6
Speed (SPD) 16 30 8
Status (STS) 20 33 8

VAV damper position max (VAVDM) 16 30 0

in Section 5 and an implementation of our preferred algorithm is presented alongside two

examples. Limitations and future research directions are also considered. Concluding remarks

are provided in Section 6.

2 Data

Three separate buildings are examined in this study. We focus on identifying sensor types for

AHUs. Table 1 shows counts of each AHU measure type across the three buildings. Measure

type is the type of measurement being recorded and for AHUs may include points such as room

temperature, temperature set point, supply air pressure and so on. We only examine those

sensors that have already been manually labelled which allows us to assess which dimension

reduction algorithms appear to behave best. Naturally, this is only a small subset of the available

sensors, but it is adequate for our testing purposes. We use two weeks of sensor reading data

during January 2017. Raw data observations occur approximately every 15 minutes for most

sensors, with some recorded approximately every hour. The observations do not occur on the

15-minute marks of each hour as each point in the BMS is polled sequentially, resulting in slight

time offsets.

Figure 2 provides some motivation for finding a suitable way to visualise sensor readings. Time

series plots can be easily interpreted and compared when working with only a few sensors.

However, as more sensors are examined this approach becomes unsuitable. The plot with 100

sensors is unreadable and does not allow a user to quickly explore the data. Plotting each

sensor separately is also problematic due to the large number of plots that would be created.

Roach: 17 March 2020 5
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Instead, we require a means to adequately represent each sensor in two-dimensional space while

capturing temporal and metadata features that characterise each.

3 Feature engineering

We engineer time series features based off the sensor data. We use a similar approach to that of

Hyndman, Wang & Laptev (2015), but adapt the feature space to that of our domain. Manually

creating time series features is somewhat subjective. Here we opt for a simple set of time series

features primarily based on lower and higher order statistics, which is appropriate given the

sensor data we focus on appears to be stationary conditional on time of day. Using a simple set

of features allows for easy implementation in languages such as R or Python as no language

specific packages are required to calculate more sophisticated time series features. Note that

more advanced features may improve dimensionality reduction performance, but we show

that our simple set of features appears to provide useful results in this domain. All time series

features used are listed in Table 2. Each feature is normalised so that all values lie between 0

and 1. An advantage of using features based on statistical properties of the time series is that it

does not matter if recordings do not fall exactly on the 15 minute marks of each hour. Hence,

we are not required to carry out any interpolation which would potentially degrade the data

quality and mask faults. Figure 3 shows an example of converting raw time series readings for

three sensors to statistical features (without normalisation). We can observe that each time series

has a dramatically different shape and is sampled at different times and intervals to the others.

Despite this, the statistical features can still be calculated and capture differences between each

time series.

In addition to time series features we also explore using text features derived from the metadata

(Table 3). We explore using character level bigrams and trigrams. Punctuation and numeric char-

acters are cleaned from the metadata to ensure we only focus on using alphanumeric characters.

As an example, if a sensor contains the name VAV-L2-PN2-SupAirDmpr:present-value in its

metadata, its first three character bigrams will be va, av and vl; and its first three trigrams will

be vav, avl and vlp. Naturally, not all of these will be useful, but looking further along we can

see that trigrams such as sup, air and dmp will also be produced which are more descriptive.

This allows us to incorporate useful sections from the metadata that may contain clues about

the sensor type.

Roach: 17 March 2020 6
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Figure 2: Plots of time series for 1, 10 and 100 (scaled) BMS points. Attempting to identify anomalous
behaviour using raw time series plots quickly becomes unwieldy even with such small sample
sizes. We present a better approach to visualising these time series which can also make use of
included metadata.
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Table 2: Time series features for sensor data.

Feature Description

Number Unique Number of unique values.
Mean Mean value.
Max Maximum value.
Min Minimum value.
SD Standard deviation.

Skewness Asymmetry of distribution.
Kurtosis Tail weight of distribution.
Max change Maximum change in value between readings.
Min change Minimum change in value between readings.
Mean crossings Number of times the sensor readings cross the mean value.

Table 3: Text features for sensor metadata.

Feature Description

Bigrams Character level bigrams of sensor name excluding punctuation and numeric values.
Trigrams Character level trigrams of sensor name excluding punctuation and numeric values.
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Aug 29 Aug 31 Sep 02 Sep 04

22.0

22.5

23.0

23.5

24.0

0

20

40

60

0

200

400

600

Date

V
al

ue

Raw data

analog−value:97:CH−R−2−kWr:present−value

analog−value:6:VAV−L2−PN2−SupAirDmpr:present−value

analog−input:3:VAV−L1−PE2−RmTemp:present−value

0 100 200 300

Kurtosis

Max change

Mean

Mean crossings

Min change

Skewness

Standard deviation

Kurtosis

Max change

Mean

Mean crossings

Min change

Skewness

Standard deviation

Kurtosis

Max change

Mean

Mean crossings

Min change

Skewness

Standard deviation

Value

Features

Figure 3: Feature extraction for time series data. Note that time series are recorded irregularly as
indicated by the rug plots. The extracted features are plotted on the right for each time series
allowing for comparison on a common feature space.
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4 Unsupervised learning

In this section we provide brief introductions to each of the unsupervised learning techniques

we explore in this paper. Each of these are tested and commented on. We do not focus on the

mathematics that underpin each of these algorithms but instead give justifications for why they

may be appropriate. Suitable references are provided for those wishing to explore the more

technical details.

4.1 Dimensionality reduction

Dimensionality reduction allows us to project a high dimensional feature space into a low

dimensional space for easy visualisation. Many approaches are available. Here we focus on

principal component analysis (PCA), sparse PCA, isometric mapping (Isomap), t-distributed

stochastic neighbor embedding (t-SME) and spectral embedding.

Principal component analysis. PCA is an unsupervised learning technique that has been used

in various fault detection approaches (Kim & Katipamula 2018). Despite its popularity it does

have some drawbacks that need to be considered. PCA focuses on producing orthogonal

components that capture as much variation in the data as possible. It does not focus on

preserving proximity relationships between points and neighbourhoods. Good introductions to

PCA are available in Friedman, Hastie & Tibshirani (2001) and Murphy (2012).

Sparse principal component analysis. Sparse PCA (Zou, Hastie & Tibshirani 2006) is similar to

traditional PCA but does not use all features to construct the principal components. Instead, it

uses the lasso penalty to ensure some features receive a weight of zero and do not contribute to

the principal components making it useful when working with high-dimensional feature spaces.

This allows for a more easily interpretable representation with a clear distinction between

features that do and do not contribute to differences in the data samples. Sparse PCA was

chosen to help work with the large number of features produced when computing n-grams.

Isometric mapping. Isomap constructs a neighbourhood graph over all data points. This

neighbourhood graph is then used to calculate geodesic distances between all points. Multidi-

mensional scaling is then applied to the matrix of graph distances to create a low dimensional

space. Further information can be found in Tenenbaum, Silva & Langford (2000).

t-SNE. T-SNE maps each data point to a location in a two or three dimensional space. It is well

suited to visualising high dimensional spaces in two or three dimensions as it plots similar

objects nearby and dissimilar objects far away with high probability. For certain tasks it has

Roach: 17 March 2020 9
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been shown to perform better than other dimension reduction approaches such as Isomap and

Locally Linear Embedding (Maaten & Hinton 2008).

Spectral embedding. Spectral embedding is designed to preserve proximity relations (Saul

et al. 2006; Brand & Huang 2003). In other words, it attempts ensure that sensors that are

different to others in a high dimensional feature space also appear far apart when viewed in a

low dimensional space. This is different to PCA which only attempts to find components along

which variance in the data is maximised. Spectral embedding constructs a weighted graph using

an affinity matrix. This weight matrix is then used to construct a graph Laplacian on which

eigenvalue decomposition is carried out. The eigenvectors form our low dimensional space. We

test spectral embedding using both nearest neighbours and radial basis functions for our affinity

matrix.

5 Discussion

5.1 Comparing dimensionality reduction methods

We compare the performance of the dimensionality reduction techniques discussed in Section

4.1. The projection of the time series and n-gram features onto two dimensions is shown in

Figure 4.

Of all the approaches, t-SNE appears to show the best separation between measure types. Some

measure types are grouped together (e.g. supply air pressure and supply air pressure set point).

However, this is common to each of the dimensionality reduction methods and to be expected

given the similarity in sensor names and time series readings.

PCA performs reasonably well and it is easy enough to see the different measure types. However,

the separation between each class is not as clear as for t-SNE, especially in the center of the plot

where sensors from several measure types overlap. The remaining algorithms are reasonable,

but again none appear to outperform t-SNE.

5.2 Features for multiple buildings

It is important to comment on the impact that different naming conventions between buildings

can have on the dimensionality reduction step. Figure 5 shows how multiple buildings can affect

dimensionality reduction. One of the buildings uses a different naming convention for sensors

and so points that are taken from this building are pushed far away from the other buildings.

Roach: 17 March 2020 10
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Figure 4: Dimension reduction on AHU sensors using time series and metadata features. Each point
represents a sensor. The output from each approach has been scaled to fall between 0 and 1 for
easy comparison. A small amount of jitter has been added to separate points that fall on top of
each other.
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Hence, the resulting dimensionality reduction doesn’t so much show the different meter types

present, but instead the different buildings. As such it seems sensible to only apply dimension

reduction to buildings with similar naming conventions if text features are to be used2. It should

be noted that Figure 4 only uses the two buildings with similar naming conventions to avoid

this issue.

One promising point is that dimensionality reduction appears to work reasonably well for all

three buildings when using only the time series features. Better separation between classes does

occur when n-grams are incorporated, but as mentioned only if naming conventions between

buildings are similar. If all buildings are to be included it may be best to only look at time series

features.

5.3 Implementation and example

In essence, our methodology then becomes a matter of feature generation, dimensionality

reduction and exploration by a domain expert. Interactive visualisations should be used to

identify anomalous points. An example implementation is shown in Figures 6 and 7. Users can

quickly observe all sensors of interest in a low-dimensional space and then select those that

appear to be far away from others of the same type. In Figure 6 we notice that one of the CCV

points is far from the others. After selecting it we can clearly see short cycling is occurring when

we inspect the raw time series values. The CCV is repeatedly opening and closing resulting

in wasted energy usage. Another example is shown in Figure 7. In this case we can see that

the CCV point is only opening for two hours each day, which may indicate faulty behaviour.

However, while unusual, this would need further investigation to decide if it is in fact a fault.

5.4 Limitations and future research

A potential shortcoming of our methodology is that due to its reliance on historical data it

may project certain faulty and normal sensors to similar regions of the low dimensional space.

For instance, a stuck damper and a damper that is supposed to be closed all the time will

have very similar features. Any fault classification that follows will incorrectly include the

intentionally closed damper with the stuck damper if they are classified as faulty. However,

false positives such as these are a common shortcoming and we leave it as a topic for future

research. Considering other variables and how they interact, such as if the supply air fan is

running or shut off, may help to address this issue.
2Learning methods such as correspondence analysis may allow us to determine which text features are actually

useful for distinguishing different measures. However this relies on using the sensor labels and so is not an
unsupervised technique and falls beyond the scope of this paper.
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Figure 5: Dimension reduction using t-SNE on AHU sensors for multiple buildings. The top row shows
clear separation between measure types when only time series features are used (left), but poor
separation when using metadata features are included (right). The bottom row makes the cause
of this clear. Building BID0126 has a different naming convention to the others. Points appear
to be separated by building rather than measure types.

Another limitation of our methodology is that it focuses only on fault detection and does not

attempt to diagnose the causes. However, there are already many supervised diagnosis methods

available (Frank et al. 2016) and are mainly dependent on a comprehensive data set of fault-

symptom relationships being available (Gunay, Shen & Yang 2017). Our paper’s focus is on

developing a suitable methodology to make it easier to develop such a data set which might

apply to multiple buildings.

Analysing sensor behaviour between buildings is a difficult task as it does not suffice to sim-

ply compare the raw time series data from one sensor to that of an identical sensor type in

another building. Other factors such as temperature set points, outside weather conditions

Roach: 17 March 2020 13



Exploring unusual sensor behaviour in buildings using BMS data and unsupervised learning
techniques

Figure 6: Control valve short cycling. One of the CCV points (red) is far from the others. Selecting this
point quickly reveals short cycling occurring in the anomalous point. Another point from the
main cluster has been selected to illustrate what CCV readings from a normal point should
look like.

Figure 7: Cooling control valve only open for two hours. Again, another CCV point is far from the main
cluster. In this case we have quickly identified unusual behaviour that may indicate a fault, but
needs further investigation.

Roach: 17 March 2020 14



Exploring unusual sensor behaviour in buildings using BMS data and unsupervised learning
techniques

and occupancy should all be accounted for in order to create a fair comparison. Incorporating

environmental factors each building is subject to could potentially improve separation between

functioning and faulty points.

6 Conclusion

In this paper we have presented a methodology for detecting anomalous sensor behaviour

within multiple buildings. We engineer various features based on time series from sensor

readings and sensor metadata. Several dimensionality reduction algorithms are tested with

t-SNE appearing to give the most useful two dimensional representation. Our low dimensional

space allows users to easily identify anomalous points.

Future directions for this data set have been outlined with the most promising direction being

improving comparisons of sensor behaviour between buildings. An implementation and ex-

ample using the proposed methodology was also presented which allows a domain expert to

quickly inspect many different equipment and measurement points for unusual behaviour.
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Chapter 6

Conclusion

Electricity analytics is rapidly moving towards more sophisticated techniques to better

analyse the large amounts of data being collected. Regional grid data, smart-meter data

and building sensor data all have important roles to play in reducing energy consumption

and ensuring a stable grid, and so determining effective ways to analyse these large vol-

umes of data is critical. Accurate demand forecasting and quantifying drivers of demand

will help decision makers plan appropriate grid developments. There are many useful

tools available to the statistician that allows them to play a role interpreting these vast

data resources. Supervised machine learning techniques allow for accurate forecasting.

Unsupervised dimension reduction algorithms allow for exploration of the data in a man-

ageable fashion. Statistically significant conclusions can be reached by fitting interpretable

statistical models.

The primary aim of this thesis was to improve electricity forecasting procedures and to

better understand energy usage within buildings. Each of the data sources mentioned

above have been analysed and used to produce new methodologies for both forecasting

and inference. Techniques including gradient boosting, hierarchical reconciliation, mixed

effects models, multi-model inference and dimension reduction have been used to reach

important conclusions about the data or achieve improved forecasting performance.
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6.1 Summary of research and contributions

Each of the main chapters of this thesis is a self-contained paper. In this section we

summarise the main contributions of each piece of research.

Probabilistic forecasting within hierarchies is a common task when working with electricity

demand. In Chapter 2, an approach for producing consistent probabilistic forecasts in a

hierarchical setting is presented. The resulting forecasts improve when the hierarchical

reconciliation stage is conducted, with the best results occurring when model residuals

were used in the weight matrix. Our model showed superior forecasting performance

when compared against Tao’s Vanilla Model (Hong, 2010) which has been used in each

global energy forecasting competition as a benchmark (Hong, Pinson, and Fan, 2014; Hong

et al., 2016; Hong, Xie, and Black, 2019).

In Chapters 3 and 4 we focus on analysing smart meter data. Chapter 3 explores con-

ducting inference on building characteristics using mixed effects models. Despite the

importance of energy disaggregation, few papers have attempted to approach this prob-

lem in a statistical manner. In this chapter we presented an approach to produce demand

impact profiles, that showed how each building characteristic increased or decreased

demand when an attribute was either added or removed. Furthermore, the statistical

significance could be evaluated for each attribute at different times of the day and year.

Chapter 4 explores using mixed effects models to improve forecast accuracy. Several

papers have discussed forecasting smart-meter demand (Ben Taieb, Taylor, and Hyndman,

2020; Ben Taieb et al., 2017a, 2016; Arora and Taylor, 2016; Gajowniczek and Ząbkowski,

2014; Yildiz et al., 2017), though none have utilised mixed effects. One day ahead forecasts

are tested using various model formulations. We find that our subject-specific curve

formulation that incorporates an AR(1) error structure improves point forecast accuracy.

Finally, Chapter 5 examines approaches to visualising and understanding building sensors

in BMS systems. We discuss feature extraction for time series made up of sensor readings.

We also explore including text-based features from sensor metadata and the impact it has

on clustering. Having generated appropriate features, we show that t-SNE provides a

sensible way of visualising each sensor in a 2-dimensional space. We provide examples
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of how a facility manager can use this low-dimensional data to quickly identify unusual

sensor behaviour and faults.

6.2 Limitations and future research

In Chapter 2 we proposed a method to construct hierarchically consistent probabilistic

forecasts. Our approach relied on constructing simulations of demand and then hierar-

chically reconciling each simulation. Quantiles could then be calculated based on the

reconciled simulations. This makes our approach suitable for cases when forecasts for

each level of a hierarchy are all produced together. However, there may be occasions when

probabilistic forecasts for different levels of a hierarchy are produced independently by

different teams. In this case our methodology can not be used for reconciliation. Since

the publication of our paper several others addressing this issue have been put forth

(Ben Taieb, Taylor, Hyndman, et al., 2017b; Ben Taieb, Taylor, and Hyndman, 2020).

Chapter 3 highlights the potential of combining complementary data sets with smart

meter demand data. To the best of my knowledge this was the first paper to attempt this

using mixed effects models, and so I focused on producing a relatively simple formulation

that would be easy to understand. There is no doubt that more sophisticated models could

capture extra information in the data. In fact, we go on to show in Chapter 4 that including

temperature variables improves forecasting accuracy at different times of the day. Future

research can focus on extending the model we presented for other complementary data

sets.

As discussed, probabilistic forecasting for electricity demand is important due to its

inherently stochastic nature. Point forecasts alone are inadequate for decision making

as they fail to capture the risk of unexpected spikes or drops in demand. In Chapter

4 we focused on improving point forecasts for smart-meter data using mixed effects

models. This was adequate for conducting scenario analysis and improving point forecast

accuracy. A follow up paper discussing probabilistic forecasting using mixed effects

models could provide useful methodological contributions. Constructing prediction

intervals and assessing their pinball-loss scores against suitable benchmark models (Ben

Taieb et al., 2016) would be an interesting empirical study.

87



CHAPTER 6. CONCLUSION

Chapter 5 examined different approaches to dimensionality reduction applied to BMS

point data. Future research could include more sophisticated text and time series feature

extraction which may provide better separation between normal and faulty points in

low dimensions. Presenting more real-world BMS fault detection case studies using this

approach could also provide some benefit.

6.3 Reproducibility

All code to reproduce published papers has been made available in dedicated GitHub

repositories in an effort to aid reproducibility. A tidied data set for the GEFCom2017

competition has been released as an R package on GitHub.
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