
Faculty of Information Technology
Monash University

Probability Estimation for Bayesian
Network Classifiers and Decision Trees

A thesis submitted for the degree of Doctor of Philosophy

at Monash University in 2020

He ZHANG

Supervisor: Wray Buntine, Franç̧ois Petitjean

March 2020

Copyright notice

c© He Zhang (2020).
I certify that I have made all reasonable efforts to secure copyright permis-

sions for third-party content included in this thesis and have not knowingly
added copyright content to my work without the owner’s permission.

ii

Abstract

For many practical applications, it is more important for classifiers to output
accurate class probability estimates than class labels, because knowing the
probabilities that a test sample belongs to each class not only gives us
an idea of the reliability of the prediction but also helps domain experts
make better decisions. Unfortunately, due to the data sparsity problem,
Bayesian network classifiers and decision trees cannot provide accurate class
probability estimates when the observed class frequencies are used as the
estimates. This fact has led to the use of simple probability smoothing
techniques for classifiers, such as Laplace smoothing and M-estimation, to
make the class probability estimates less extreme by adding some prior
probabilities. A more sophisticated technique is the hierarchical probability
smoothing method, which assumes that the class probability of the current
node in a hierarchical tree-structured model depends on the probabilities
of its parent nodes in some hierarchy. The recent Hierarchical Dirichlet
Process (HDP) smoothing method provides the most advanced parameter
estimation for Bayesian network classifiers and language models. However,
it is computation-intensive and has not yet been introduced to decision
trees. Another commonly used technique for improving the class probability
estimates of classifiers is to combine the results of multiple classifiers using
ensemble learning techniques. This thesis aims to improve the class probability
estimation of Bayesian network classifiers and decision trees by using advanced
hierarchical probability smoothing and ensemble learning techniques. The
main contributions are as follows. First, a new ensemble algorithm ESKDB
(Ensemble SKDB) has been proposed to improve the performance of Bayesian
network classifiers, which can handle both categorical and numerical attributes.
ESKDB, together with the HDP smoothing, completely surpasses the Random
Forest and achieves similar results to the XGBoost algorithm; Second, we

iii

proposed the HGS (Hierarchical Gradient Smoothing) algorithm that can
effectively improve the probability estimation of decision trees, making a
single tree achieve similar performance to a Random Forest of ten trees;
Last, we made the HDP smoothing much faster by adding a new appropriate
gamma prior. In summary, this project not only makes the Bayesian network
classifiers and decision tree obtain the best class probability estimates in their
respective fields but also further improves the development of hierarchical
probability smoothing techniques.

Declaration

This thesis is an original work of my research and contains no material which
has been accepted for the award of any other degree or diploma at any
university or equivalent institution and that, to the best of my knowledge
and belief, this thesis contains no material previously published or written by
another person, except where due reference is made in the text of the thesis.

Print Name: He ZHANG

Date: 23/06/2020

v

Publications During Enrolment

Large portions of this thesis have been submitted in the form of journal and
conference papers. This applies to:

• Chapter 3 was presented in:
Bayesian Network Classifiers using Ensembles and Smoothing. He
Zhang, Wray Buntine, François Petitjean. Accepted by the journal of
KAIS (Knowledge and Information System) (Q1 journal) (Zhang et al.,
2020a).

• Chapter 4 was presented in:
Hierarchical Gradient Smoothing for Probability Estimation Trees. He
Zhang, Wray Buntine, François Petitjean. Accepted by the PAKDD
2020 conference (‘A’-ranked conference) (Zhang et al., 2020b).

vi

Acknowledgements

It is not my effort alone to complete the doctoral study because there are
many people behind me to support and encourage me. Please allow me to
take this opportunity to express my sincere appreciation to them. First and
foremost, I would like to thank my two supervisors: Prof. Wray Buntine and
Dr François Petitjean.

I was deeply impressed by Wray’s enthusiasm for scientific research and
his strong support for his students. He always has a lot of new ideas that
inspire me, and I can see the light in his eyes when we discuss techniques. He
has a solid knowledge of statistics that can express complex ideas in simple
mathematical language. When he answers my questions, he often deduces
formulas for me on papers, which is amazing to me. Although he is busy,
he always has time for his students, including attending weekly meetings,
supporting award applications and helping students revise their papers. Wray
is also very supportive of me attending academic conferences to learn about
the latest hot research topics. As a great professor, he is always willing to
help his students and devote himself to training good researchers for the
future in the field of machine learning. In short, he is a great professor and
supervisor.

I was touched by François’s patience with his students, his attention to
detail and his fancy professional skills. When I started my PhD, I did not
have the skills to be an independent researcher, but he gave me enough time
to learn and master these skills little by little. He always knows how to
explain a complicated idea to me in the simplest way. He would patiently
help me write down the details of the algorithms on paper. He showed me
how to make plans and the importance of them. He taught me how to
write academic papers, no matter which language I use. He helped me run
experiments on clusters when I was struggling with large datasets. When my

vii

paper was rejected, he encouraged me that my research was a high standard
of work. Whenever I am at a loss about practical problems, he always helps
me solve them easily. He just showed me an excellent example of a patient
supervisor, and if I have the chance to supervise any students in the future, I
must be more patient like him.

I was so lucky to have them as my supervisors. Their enthusiasm for new
knowledge, patience and support for students, and pursuit of excellence all
set a good example for me to continue to engage in scientific research in the
future. Their love for their work makes me think they are working for the
advancement of human technology, not just for personal benefit. They are
real researchers.

Second, I want to thank my husband, Pengyu Li, for his sacrifice to our
family and his support for my studies. During my PhD study, our daughter
was born. In order to let me concentrate more on my study, he suspended
his career to helping me take care of our daughter and take on more family
responsibilities. I also want to thank my little girl Hannah Li. She always
likes to show me her magic, which gives me infinite joy.

I would also like to thank Julie Holden, who gave me much help in
preparing the milestone presentations. Thanks to Dr Shirui Pan and Dr
Ming Liu for encouraging me to be a teaching tutor during the PhD study.
Thank my “adopted” sister, Yien Duan, who always encourage me when I
lose confidence.

The person I want to thank most is myself. The doctoral study is not
only the stage of learning to do scientific research but also the period of
continually knowing the true self. I met many difficulties in this process, but
instead of giving up, I have been trying hard to overcome them and step out
of my comfort zone. Thank me for trying to balance life and study, even
though it is not easy. The study and life experience during the doctoral study
period made me a stronger person and a dedicated researcher.

Contents

1 Introduction 9
1.1 Research Motivation by Examples 9
1.2 Research Problem . 11
1.3 Research Gaps, Questions and Methods 13

1.3.1 Gap 1: Building A Diverse Ensemble Model of SKDB 13
1.3.2 Gap 2: Strengthen ESKDB for Handling Numerical Data 15
1.3.3 Gap 3: Better Probability Smoothing for Trees 16
1.3.4 Gap 4: Smoothing on Ensemble Models 17

1.4 Research Purpose and Contribution 17
1.5 Thesis Structure . 18

2 Literature Review on Improving Probability Estimation 20
2.1 The Bias-Variance Analysis of Classifiers 20

2.1.1 The Bias-Variance Tradeoff 21
2.1.2 The Bias-Variance Decomposition of the Squared Loss 21
2.1.3 Ways to Control Variance 23

2.2 Probability Smoothing . 23
2.2.1 Maximum Likelihood Estimation 23
2.2.2 Maximum A Posteriori Estimation 25
2.2.3 Smoothing with Dirichlet Priors 26

2.3 Hierarchical Smoothing . 28
2.3.1 Hierarchical Smoothing: Low Variance and Low Bias . 28
2.3.2 M-branch Smoothing 29
2.3.3 HDP Smoothing . 30

2.4 Ensemble Learning . 33
2.4.1 Background Knowledge 33
2.4.2 Base Learning Algorithm Selection 34

1

2.4.3 Combination Methods 34
2.4.4 The Secret of Good Ensemble Models: Diversity . . . 36
2.4.5 Existing Ensemble Models and Their Diversity 38
2.4.6 Summary . 39

2.5 Scoring Rules for Evaluating Probability Estimation 39
2.5.1 Least-Squared Error Scores 39
2.5.2 Entropy-Based Scores 41
2.5.3 Summary . 43

2.6 Sign Test on Win-Draw-Loss Statistics 43
2.7 Discretization of Continuous Features 44

2.7.1 Unsupervised Discretization 45
2.7.2 Supervised Discretization 47
2.7.3 Summary . 48

2.8 Leave-One-Out Cross-Validation 48
2.9 Summary . 49

3 Literature Review on Bayesian Network Classifiers and De-
cision Trees 50
3.1 Bayesian Network Classifiers 50

3.1.1 Background Knowledge 50
3.1.2 The Bias-Variance of Bayesian Network Classifiers . . 51
3.1.3 Existing Bayesian Network Classifiers 51
3.1.4 Summary . 60

3.2 Decision Trees . 60
3.2.1 Background Knowledge: C4.5 Algorithm 60
3.2.2 The Bias-Variance of Decision Trees 62
3.2.3 Existing Works on Improving Tree Estimates 62
3.2.4 Summary . 65

4 ESKDB Algorithm for Bayesian Network Classifiers 66
4.1 Introduction . 66
4.2 ESKDB Algorithm . 69

4.2.1 Randomized Discretization 70
4.2.2 Randomized Attribute Ordering 72
4.2.3 Randomized Parent Ordering 72
4.2.4 Parameter Learning 74
4.2.5 Improved HDP Smoothing 75

2

4.2.6 Testing Algorithm . 75
4.3 Experiment Results . 76

4.3.1 Experiment Design and Setting 77
4.3.2 ESKDB is better than existing BNCs 79
4.3.3 The benefits of the two stochasticities in ESKDB . . . 79
4.3.4 The ensemble size of ESKDB 82
4.3.5 Improved HDP . 83
4.3.6 HDP compared with M-estimation for ESKDB 83
4.3.7 ESKDB compared with XGBoost and RF 84
4.3.8 ESKDB on the fully discretized data 87
4.3.9 Running Time . 88

4.4 Summary . 89

5 HGS Smoothing Algorithm for Decision Trees 91
5.1 Motivation . 91
5.2 HGS Algorithm . 93

5.2.1 Working with LOOCV 94
5.2.2 Parameter Learning for HGS 95
5.2.3 Algorithm Description 95

5.3 Experiment Results . 98
5.3.1 Experiment Design and Setting 98
5.3.2 HDP Parameter Tuning 101
5.3.3 HGS Parameter Tuning 102
5.3.4 HGS vs. Single Layer Smoothing Methods 102
5.3.5 HGS vs. Hierarchical Smoothing Methods 104
5.3.6 Smoothing vs. Data Size 107
5.3.7 HGS vs. Validation . 108
5.3.8 Running Time vs. Data Size 109
5.3.9 Smoothing vs. Pruning 109
5.3.10 HGS on Random Forest 110

5.4 Summary . 111

6 Conclusion and Future Work 112
6.1 Conclusion . 112

6.1.1 Conclusion for ESKDB 112
6.1.2 Conclusion for HGS 113

6.2 Future Work . 114

3

6.2.1 Apply HGS smoothing to ESKDB 114
6.2.2 Cost-sensitive Learning Decision Trees 114

References 115

4

List of Algorithms

1 learnTAN(T) . 54
2 learnKDB(T ,K) . 55
3 learnStructure(T) . 56
4 learnParameters(T ,G) . 56
5 learnSKDB(T ,K) . 58
6 KDF: attribute order learning 59
7 KDF: parent order learning . 59
8 C4.5(root,T) . 61

9 learnESKDB(T , E,K) . 70
10 learnDiscretizer(T) . 71
11 randomSampleCutPoints(P, firstF lag) 73
12 randomSampleForOrders(T) 74
13 learnParameters(G, T) . 75
14 sampleConcentration(α, nodes, priorShape, priorRate) 76
15 testESKDB(test, B) . 76

16 HGS(T , b, v) . 96
17 gradientDescent(T , α, b, ε) . 96
18 calculateGradientsAndCost(T , α) 97

5

List of Figures

1 The figure of bias-variance tradeoff with the model complexity
(Fortmann-Roe, 2012). 21

2 The tree structure for the medical dataset. 29
3 An HDP model tree. If each node in the tree is associated

with a DP, the whole tree can be turned into an HDP model.
The drawn distribution from the parent DP serves as the base
distribution of its children. Specifically, the base distribution
of the root node DP is uniform U . Each node in the tree
contains a group of data that shares the same K classes. . . . 31

4 A common ensemble learning architecture. 34

5 The NB structure for the Iris dataset. 52
6 The TAN structure for the Iris dataset. The blue edges are

the extra parents added by TAN for the NB structure. . . . 53
7 The KDB-2 structure for the Iris dataset. 55
8 The SKDB-2 structure for the Iris dataset. 57

9 The blue curve is the RMSE for NB, TAN, KDB, SKDB, KDF,
AODE and our proposed ESKDB with 10 SKDB classifiers.
The red curve is the corresponding 0/1 loss. All the values are
averaged over all the datasets listed in Table 3. 80

10 Scatter plot of ESKDB with ESKDB_randomO. 81
11 Scatter plot of ESKDB with ESKDB_randomCP. 82
12 Scatter plot of ESKDB_sameO compared with ESKDB_sameP. 82
13 The RMSE and 0/1 Loss changes as the increasing of the

ensemble size. 83
14 The HDP smoothing using different tying strategies and the

new prior. 84

6

15 Scatter plot of ESKDBHDP with XGBoostdefault and
XGBoosttuned on RMSE . 87

16 Scatter plot of discretization on only training set and the whole
dataset. 88

17 The difference between HGS, HDP, and M-branch. HGS is
represented by red, HDP and M-branch by blue and green,
respectively. 94

18 HGS vs. MLE. 104
19 HGS vs. Laplace. 104
20 HGS vs. M-estimation. 105
21 HGS vs. HDP. 106
22 HGS vs. M-branch. 106
23 HDP vs. M-branch. 107
24 Compare the probability estimates of HGS with HDP and

M-branch. The X-axis represents the datasets arranged from
large to small in terms of data size. The Y-axis represents the
RMSE difference between each method and HGS, which is the
lower, the better. First, the majority of the points are below
the line y = 0, which means HGS performs better on most of
the datasets. Second, for the top 20 large datasets HDP is
better than M-branch and HGS. 108

25 Training time comparison according to log data size. 109
26 HGS Smoothing on Random Forest in RMSE. 110

List of Tables

1 Attribute order and parent orders for the Iris datasets. 55
2 A full KDB-4 model is composed of many sub-models. 56

3 Datasets for ESKDB. 78
4 List of parameters. 79

7

5 Win-Draw-Loss for the ESKDB compared with existing BNCs.
The value in boldface is statistically significant better tested
by a one-tailed binomial sign test. A difference is considered
to be significant if p ≤ 0.05. 80

6 Win-Draw-Loss for the ESKDB using HDP and M-estimation.
The value in boldface is statistically significant better tested
by a one- tailed binomial sign test. A difference is considered
to be significant if p ≤ 0.05 85

7 Averaged performance of ESKDB using HDP and M-estimation. 85
8 ESKDB compared with RF and XGBoost 86
9 WDL of ESKDB compared with XGBoost and RF. The value

in boldface is statistically significantly better. 86
10 ESKDB compared with RF and XGBoost without ”tic-tac-toe"

dataset . 87
11 ESKDB compared with ESKDB learned on the fully discretized

data. 88
12 Averaged training time (seconds) for all the datasets 89

13 Datasets for decision tree smoothing. 99
14 Averaged results of the four tying strategies. 102
15 Averaged results of the two iterations. 102
16 WDL of HGS compared with MLE, Laplace and M-estimation

(Stat. sig. p < 0.05 results are depicted in boldface). 103
17 Averaged results of all the methods. 103
18 WDL of HGS compared with M-branch and HDP (Stat. sig.

p < 0.05 results are depicted in boldface). 105
19 Averaged results of HGS and the hierarchical smoothing methods.105
20 Averaged results of HGS and the validation method. 108
21 WDL for smoothing compared with pruning (Stat. sig. p <

0.05 results are depicted in boldface). 110

8

Chapter 1

Introduction

This chapter aims to stress the importance and feasibility of this study. First,
we show the motivation of this research by giving some practical examples
seeking to answer the question of why class probability estimation is essential.
Second, we define the research problem by narrowing down the motivation in
a more formal perspective. Third, we show the feasibility of this research by
reviewing and evaluating relevant literature, defining the research gap that
needs to be filled and the research questions that need to be answered. The
research method for each of the research questions is proposed and discussed.
Fourth, we clearly define the research purpose and the contribution of this
study. The last section lists the structure for the rest of the thesis.

1.1 Research Motivation by Examples

In recent years, machine learning classification techniques have achieved great
success in many interdisciplinary areas, such as medical diagnosis (Erick-
son et al., 2017), spam detection (Crawford et al., 2015), traffic prediction
(Rzeszótko and Nguyen, 2012), recommendation systems (Singhal et al., 2017),
bioinformatics (Li et al., 2020) and political elections (Ramteke et al., 2016).
To naturally propose the research motivation of this paper, we first give a
few specific real-world examples as follows.

Example 1: Early Bushfire Detection. Australia is currently suffer-
ing from devastating bushfires across the country that have captured the
world’s attention. The massive fires, which lasted from 2019 to early 2020,
killed at least 33 people, destroyed more than 2,700 homes and killed an

9

estimated 1.25 billion native animals. These fires are a threat to both humans
and wildlife.

Early estimates of future bushfire hotspots can help authorities better
manage risks, allocate resources and reduce losses. Nowadays, while patrols,
monitoring towers and satellites have long been used, a surging number of
researchers rely on machine learning classification algorithms to improve the
detection rate by analysing weather and satellite data. More formally, this
example can be defined as a typical binary classification problem in machine
learning field to predict whether a location will be a hotspot or not.

However, knowing how likely a hotspot is to burn in the future is much
more important than just predicting whether it is a hotspot or not, because
based on these probabilities, we can allocate more resources and attention to
places with higher probabilities when resources are limited and time is urgent.
To conclude, for many binary classification tasks, we need to accurately
predict how likely a test sample is to be positive.

Example 2: Political Election Prediction. During the 45th U.S.
presidential election in 2016, many research institutes relied on machine
learning techniques to predict whether Hillary Clinton or Donald Trump
would win. Although Clinton won several major states in the election and
was widely predicted to win, the world was shocked after the result was
announced. An Indian firm called MogIA shot to fame after predicting Mr
Trump’s victory (Post, 2016).

MogIA owes much of its success to the 20 million data points it collected
from various online social network platforms such as Google, YouTube and
Twitter, including comments, news, ads and videos, to make predictions.
These data points require sentiment analysis, which is the process of deter-
mining the attitude or opinion of the speaker or writer. In machine learning,
it is usually defined as a classification problem where a classifier is fed with a
text and returns a corresponding label, e.g. positive, neutral or negative.

Traditional sentiment analysis classifiers classify posts into three categories,
but in reality, apart from some posts with obvious opinions, it is difficult
to determine whether they are absolutely positive or negative, and the
classification of neutrality varies according to the classifier. Only outputting
the prediction category ignores the more detailed information hidden in
the data. It is more appropriate to replace the predicted category with a
probability value that belongs to the positive, as this probability can show

10

how reliable the predicted category is.
Research Motivation. The similarity between these two examples is

that they can both be represented as classification tasks, and the predicted
class probability estimates are more important than the most likely class
labels because they can display more information about the prediction and
allow domain experts to make better decisions.

This fact also applies to a variety of practical applications. For example,
the weather forecast says that there is a “30% chance of rain” conveys more
information than merely saying “It might rain tomorrow” (Gigerenzer et al.,
2005). For HIV diagnosis, knowing a patient’s chance of getting HIV can
help doctors make better treatment because even when the probability is
as low as 20%, we cannot assert that the patient is safe enough (Kéri et al.,
2002; Jahanshahi et al., 2010). For an advertisement recommendation system,
knowing the probability of customers’ interest on an item can better decide
whether to recommend the product or not (Chen and Canny, 2017; Li
et al., 2005). For cost-sensitive classification tasks, accurate class probability
estimates are particularly critical to minimise the total misclassification cost
(Margineantu, 2002; Elkan, 2001).

The motivation of this thesis is to improve the class probability estimation
of classifiers with proper machine learning techniques. We believe that based
on the accurate class probability estimates, domain experts can make better
decisions. The improved class probability estimation for classifiers can benefit
many fields requiring predictive data analysis. In the following section, we
will give a more formal definition of the research problem.

1.2 Research Problem

Although accurate class probability estimation is desired in many practical
applications, not all classification models are naturally probabilistic to provide
accurate class probability estimates. There are two main reasons. First, they
are designed to generate accurate predictions of class categories rather than
probability estimates. For example, the explicit goal of the decision tree
classifier is to generate homogeneous (pure) leaves with probabilities close
to zero or one cause the estimates are highly biased. Second, probability
estimates are unreliable because of the data sparsity problem. For example,
the zero probability problem frequently occurs in Bayesian network classifiers.

11

The number of parameters that need to be estimated increases significantly
with the complexity of the network structure, while the amount of data used
to estimate each parameter is small, resulting in high variance. In the extreme
case, the class probability is likely to be zero because it is the product of many
conditional probabilities. If any of them have no data, then the frequency
result is also zero.

More sophisticated techniques are needed to improve the class probability
estimation of classifiers. Ensemble learning is an effective way to get better
probability estimates. The most notable benefit of ensemble learning is
to reduce the variance of probability estimates without increasing bias by
training a set of diverse learners to solve the same problem and averaging
over them (Zhou, 2012, 2015; Arias et al., 2018). Just as Chawla (2006)
pointed out, ensembles of decision trees, such as Bagging (Breiman, 1996)
and Random Forest (Breiman, 2001; Genuer, 2012), significantly improve
the quality of the probability estimates produced at the decision tree leaves.
There are also some ensemble models build on Bayesian network classifiers
proposed (Webb et al., 2005; Duan and Wang, 2017; Arias et al., 2018), but
their performance is inferior to that of random forest.

As discussed by Provost and Domingos (2003) and others, another pop-
ular way of improving the probability estimates is to make these estimates
smoother, i.e. to adjust them to be less extreme by probability smoothing
techniques (Zadrozny and Elkan, 2001b). Smoothing is a technique used
to better estimate probabilities when there is insufficient data to estimate
probabilities (Wang et al., 2003). Not only do smoothing methods generally
prevent zero probabilities, but they also attempt to improve the accuracy of
the models as a whole (Zhai and Lafferty, 2004). Laplace smoothing (Provost
and Domingos, 2003) and M-estimation (Zadrozny and Elkan, 2001b), as the
two most popular and simple methods, have long been used to improve the
estimates of Bayesian network classifiers Jiang et al. (2007); Burge and Lane
(2007); Cherian and Bindu (2017) and decision trees (Zadrozny and Elkan,
2001b; Chawla and Cieslak, 2006; Chawla, 2005).

Until recently, a few recent studies show that hierarchical probability
smoothing methods are more suitable for hierarchical tree structural classifiers
that need to improve the probability estimation of leaf nodes, such as for
n-grams (Shareghi et al., 2017b), decision trees (Ferri et al., 2003) and
Bayesian network classifiers where the conditional probability of an attribute

12

can be represented by a tree (Petitjean et al., 2018). Unlike Laplace and
M-estimation smoothing, the hierarchical approaches incorporate the parent
nodes’ estimates into the calculation of the leaf nodes’ estimates, rather
than based solely on the observations at leaf nodes locally. The intuition
behind this is that the observations on leaves are continuous partitions of the
entire data from the root, so probability estimates on leaves should not be
independent, but should somehow correlate their parents and siblings.

Research Problem. To summarise, the class probability estimation
of Bayesian network classifiers and decision trees are vital, but naturally
unreliable and need improvement. Many studies adopted ensemble learning
and probability smoothing techniques to improve the probability estimation
of Bayesian network classifiers and decision trees. Recent studies found out
that hierarchical probability smoothing techniques are more suitable for these
two classifiers because of their hierarchical tree structure. How to improve the
class probability estimation of Bayesian network classifiers and decision trees
by more efficiently adopting ensemble learning and hierarchical probability
smoothing techniques is the research problem of this thesis.

1.3 Research Gaps, Questions and Methods

As we have discussed above, class probability estimation of Bayesian network
classifiers and decision trees needs to be improved, and hierarchical smoothing
and ensemble learning techniques have been shown to help improve the class
probability estimation of classifiers. Although some research has been done,
there is still much room for improvement. In this section, we analyse the
shortcomings of existing research and define research gaps we can fill to
improve the probability estimation of these two classifiers further. The
gaps, associated research questions and methods for both Bayesian network
classifiers and decision trees are defined as follows.

1.3.1 Gap 1: Building A Diverse Ensemble Model of SKDB

Research Gap. It is necessary to propose a powerful ensemble model of
Bayesian network classifiers for three reasons. First, Random forest is an
ensemble model of decision trees and have got success in many fields, but
we do not have an ensemble model on Bayesian network classifiers that can
compete with Random Forest. Second, Bayesian network classifiers can

13

analyse large datasets with a small computer because of their out-or-core
nature, i.e. no need to save data in main memory. They only need to go
through the data some times to collect sufficient statistics, but Random
Forest needs to hold all the data in the main memory for analysing. Last,
SKDB is the latest single Bayesian network classifier with good classification
accuracy and efficiency. Although there are some ensemble models of Bayesian
network classifiers, such as AODE, AnDE, and KDF, none of them is built
on the SKDB model. To conclude, it would be interesting to build a powerful
ensemble model on SKDB (ESKDB) to compete with Random Forest and
XGBoost with the ability to deal with both categorical and numerical data.

Research Question. Therefore, the research question is how would
one build a robust ESKDB (ensemble model of multiple SKDB classifiers)
model that can compete with Random Forest and the default XGBoost.
Based on our knowledge, the secret of a good ensemble model is its diversity,
which means the base classifiers should have low correlation and should be as
different as possible. Thus, the research question can be narrowed down to
how to increase the diversity of the ESKDB model to encourage each SKDB
classifier to have its own network structure.

Research Method. In ensemble learning, one of the key techniques to
increase diversity is to introduce randomness. The Random Forest algorithm
is a powerful ensemble model because of its two sources of randomness: the
use of Bagging technique to randomly generate training samples and the
random selection of split attributes for each internal node. Inspired by random
forest, we considered two sources of randomness when building ESKDB.

• Method 1: Building ESKDB by sampling attribute orders.
The SKDB algorithm determines the attribute order of the network
structure by first calculating the mutual information (MI) between each
attribute and the target and then sorting them in descending order.
The order is unique and the best. Instead of using a unique order, we
can try to get different orders and then build an SKDB classifier for each
of them, where different orders can be generated by first normalising
the MI values into a multinomial distribution and then sampling at
random multiple times.

• Method 2: Building ESKDB by sampling parent orders. The
parent order for each attribute in the network structure of SKDB is

14

decided by calculating the conditional mutual information (CMI) for
each pair of attributes with the class. Similarly to the above method,
we can try randomly select the parent orders for each attribute by
normalising the CMI into a distribution and sample from it.

1.3.2 Gap 2: Strengthen ESKDB for Handling Numerical
Data

Research Gap. Although SKDB is a good Bayesian network classifier, it
cannot handle data with numerical attributes that need to be discretised
before learning classifiers. The ESKDB model we proposed is an ensemble
model composed of many different SKDB classifiers with their own network
structures, which cannot process numerical data either. Therefore, both
SKDB and ESKDB need to extend their ability to handle continuous at-
tributes. Thus, there is no need for discretisation prior to learning, and users
do not have to bother about the data format.

Research Question. The research question is how to embed the existing
attribute discretisation method into the learning process of ESKDB so that
ESKDB can deal with both discrete and numerical data. An extended research
question is whether this discretisation process can further increase the diversity
of each SKDB classifier in ESKDB, so as to improve the performance of
ESKDB further.

Research Method. The general idea of numeric attribute discretisation
is to find the point with the maximum information gain among all intermediate
points satisfying certain conditions as the optimal cutting point. These
intermediate points are obtained by arranging attribute values in ascending
order and calculating the average values between each pair of two adjacent
points. Based on the comparison of the other points with this optimal point,
divide the points into two subsets and for each subset repeat the above
procedure until some stop condition is met. Merely executing this process
before learning the network structure of the SKDB classifier makes it easier
to enable SKDB with the ability to handle continuous attributes.

We can make full use of the data discretisation process of numerical
attributes to further increase the diversity of different SKDB classifiers in the
ESKDB model by making each SKDB classifier have its own cut point for
numerical attributes. In particular, instead of choosing the optimal point with
the maximum information gain, we can normalise the information gain values

15

for the points that satisfy particular condition into a probability distribution
and randomly sample for cut points from the distribution. This is another
source of randomness, which makes the ESKDB algorithms more diversified
and can further improve the classification performance of ESKDB.

1.3.3 Gap 3: Better Probability Smoothing for Trees

The improvement of both the decision tree and the Bayesian network classifier
can be regarded as the improvement of the tree structure classifier because the
conditional probability of each attribute in the Bayesian network structure
can be represented by a tree with the depth as the number of parent attributes.
This part analyses the research gap of probability smoothing for tree classifiers
and defines the research questions and methods accordingly.

Research Gaps. HDP has been shown to help Bayesian network classi-
fiers achieve state-of-the-art estimates, but this approach has not yet been
introduced into decision trees. The first gap is to analyse whether HDP can
also help the decision tree improve probability estimation, but before that, it
is necessary to fill the gap of improving the efficiency of HDP, since Petitjean
et al. (2018) points out that HDP is computation-intensive. The third gap is
to propose new and more efficient hierarchical smoothing methods inspired
by existing studies.

Research Question. In this part, the main research question is how
to get a better probability smoothing method for a tree classifier, which is
divided into the following three sub-questions. First, how would one improve
the efficiency of HDP smoothing? Second, compared with the standard
smoothing and pruning methods, does HDP smoothing work well for decision
trees and why? Third, can we propose another hierarchical smoothing method
for decision trees that is faster than HDP but does not lose accuracy?

Research Methods. The research methods are listed as follows.

• Method 3.1: Optimisation of HDP. The primary purpose of HDP
smoothing is to optimise the concentration parameters, which can be
sped up by using a better prior to the concentration parameters.

• Method 3.2: HDP smoothing on decision trees. In this method,
we first apply the improved HDP smoothing technique to decision trees,
then conduct experiments to compare the probability estimation of

16

HDP with Laplace correction and M-estimation. Probability pruning
and random forest could be compared with the HDP estimates.

• Method 3.3: Novel smoothing algorithm for trees. HDP
smooths the leaf estimates to the upper parent node recursively un-
til reaching the root node. Compared with HDP, a new method can
smooth the leaf estimates to all the ancestor nodes along the branch
that containing the leaf and the root. Discovering proper loss function
and conducting gradient descent on this loss for the new algorithm is
essential.

1.3.4 Gap 4: Smoothing on Ensemble Models

Research Gap. As an ensemble model of decision trees, the Random Forest
algorithm can improve the probability estimates of a single tree significantly.
Although some previous studies discovered that ensemble models do not need
any smoothing (Boström, 2012), it would be of interest to know whether the
newly proposed ESKDB model needs smoothing and the reason behind it.
An in-depth analysis of guidance on applying smoothing to ensemble models
is critical for future studies.

Research Question. How would one make the newly proposed ESKDB
model more accurate? Does Random Forest need smoothing and why? What
is the guidance of applying smoothing to ensemble models?

Research Method. The proposed method to fill this gap is to apply the
current and newly proposed probability smoothing techniques to the Random
Forest and ESKDB classifiers, compare the experiment results of ensemble
models with and without smoothing techniques, and analyse the impact and
give guidance of introducing probability smoothing techniques to ensemble
models.

1.4 Research Purpose and Contribution

The purpose of this study is to investigate machine learning techniques
that can be used to improve the class probability estimation of Bayesian
network classifiers and decision trees. We also want to examine the impact of
applying probability smoothing methods to ensemble models. The hypothesis
is that hierarchical probability smoothing techniques are more suitable for

17

hierarchically structured classifiers, such as Bayesian network classifiers and
decision trees, and together with ensemble learning techniques the variance
of the probability estimates of classifiers could be significantly reduced.

Therefore, we expect to propose new ensemble models and hierarchical
smoothing algorithms that can achieve the research purpose, provide insights
for establishing powerful ensemble models, and give guidance on applying
smoothing to ensemble models. We believe this study will be a significant
contribution to applications that require highly accurate estimates of class
probabilities, such as cost-sensitive classification, outlier detection, ranking
and recommendation systems.

1.5 Thesis Structure

In this section, we provide an outline of the rest of the thesis. The outline
and summary of each chapter are as follows:

• Chapter 2: Literature Review on Improving Probability Esti-
mation. This chapter provides a thorough overview of the foundations
for the research described in this thesis, including the bias-variance
analysis of classifiers and the ways to control the variance of classifiers,
such as probability smoothing and ensembling techniques. Proper scores
for evaluating the accuracy of probability estimates are also introduced,
such as RMSE, Brier score, cross-entropy and KL divergence. We
also shed light on the significance test on Win-Draw-Loss results, the
Leave-One-Out Cross-Validation technique and the numerical attribute
discretisation methods used in this research.

• Chapter 3: Literature Review on Bayesian Network Classi-
fiers and Decision Trees. This chapter introduces the background
knowledge of Bayesian network classifiers and decision trees, as well as
the existing Bayesian network classifiers and the works on improving
class probability estimation of decision trees. We also illustrate common
metrics used to measure the performance of classification algorithms

• Chapter 4: ESKDB Algorithm. In this chapter, we present our
ESKDB algorithm, which is a novel ensemble model of Bayesian net-
work classifiers with better parameter estimation incorporated with
both ensembling and hierarchical probability smoothing techniques.

18

ESKDB combines three main components: (1) an effective strategy
to vary the networks that are built by single classifiers (to make it an
ensemble), (2) a stochastic discretization method which allows to both
tackle numerical data as well as further increases the variance between
different components of our ensemble and (3) a superior probability
smoothing technique to ensure proper calibration of ESKDB’s probabil-
ities. We report experimental results on 72 datasets showing ESKDB’s
competitiveness with state of the art.

• Chapter 5: HGS Algorithm. In this chapter, we introduce the
HGS algorithm proposed by us aiming to improve the class probability
estimation of decision trees. We first apply a recent advanced smooth-
ing method called Hierarchical Dirichlet Process (HDP) to trees, and
then propose a novel hierarchical smoothing approach called Hierar-
chical Gradient Smoothing (HGS) as an alternative. HGS smooths
leaf nodes up to all the ancestors, instead of recursively smoothing to
the parent used by HDP. HGS is made faster by efficiently optimising
the Leave-One-Out Cross-Validation (LOOCV) loss measure using gra-
dient descent, instead of sampling used in HDP. An extensive set of
experiments conducted on 143 datasets are reported in this chapter
showing that our HGS estimates are not only more accurate but also
do so within a fraction of HDP time. Besides, HGS makes a single tree
almost as good as a Random Forest with ten trees. For applications
that require more interpretability and efficiency, a single decision tree
plus HGS is more preferred than Random Forest.

• Chapter 6: Conclusions and Future Work. This chapter sum-
marises the main conclusions in this thesis and highlights the potential
directions for future work.

19

Chapter 2

Literature Review on
Improving Probability
Estimation

In this chapter, we review the existing techniques used to improve the
probability estimation of classifiers and the reasons. First, we introduce the
fundamental bias-variance tradeoff of classifiers and explain why decision trees
and Bayesian network classifiers need to control the variance. Second, simple
and advanced hierarchical probability smoothing techniques are introduced
as the primary method to control variance. Third, the ensembling technique,
another way to reduce the classifier variance, is introduced. Fourth, we
introduce the proper scores for evaluating the accuracy of the class probability
estimates of classifiers. Finally, we introduce significance testing, cross-
validation and discretisation techniques because they play a vital role in the
new variance control algorithms we proposed in this thesis.

2.1 The Bias-Variance Analysis of Classifiers

In this section, we first introduce the bias-variance tradeoff of classifiers.
After that, we analyse the bias and variance of decision trees and Bayesian
network classifiers and propose the necessity of controlling the variance for
them. Finally, the mainstream techniques that can control the variance of
these classifiers are summarised.

20

2.1.1 The Bias-Variance Tradeoff

The bias-variance tradeoff (Geman et al., 1992), also known as the bias-
variance dilemma or the bias-variance problem, is a well-known problem in
statistics and machine learning. It means that the bias and variance of the
model’s parameter estimation cannot be minimised at the same time. A
low-biased model tends to have high variance, and vice versa.

The bias-variance tradeoff is an important concept for analysing the
performance of learning algorithms. Figure 1 shows the tradeoff between
bias, variance and model complexity. It can be seen from this figure that when
the model is simple (learned on limited data), the model tends to have low
variance and high bias. In contrast, as the model becomes more complicated
(fitted with more training data), the model tends to be high-variance and
low-bias. The sweet spot for any model is the optimum model complexity at
which the increase in bias is equivalent to the reduction in variance, and the
total error is minimised.

Figure 1: The figure of bias-variance tradeoff with the model complexity
(Fortmann-Roe, 2012).

2.1.2 The Bias-Variance Decomposition of the Squared Loss

Assuming that we have a dataset X with
#»

X being the predictive attributes
and Y being the target. For regression tasks, the target Y is a numerical
value. We want to find the true mapping function f from

#»

X to Y such that

Y = f(
#»

X) + ε, (1)

21

where ε is the noise term. Now we want to learn a model h(
#»

X) such that it
approximates f(

#»

X) as well as possible. If the “as well as possible” is measured
by squared loss, it means we want (Y − h(

#»

X))2 to be minimal both for the
training data and any unseen test examples. The expected squared error
between the true target value and the prediction is

Err(
#»

X) = E[
(
Y − h

(
#»

X
))2

]

= E[(f(
#»

X) + ε− h(
#»

X))2]

= (E[h(
#»

X)]− f(
#»

X))2 + E[(h(
#»

X)− E[h(
#»

X)])2] + σ2

= bias2 + variance+ irreducible error.

(2)

We can see from this formula (James et al., 2013) that the expected error
is decomposed into three parts: bias2, variance and irreducible error. The
bias error measures the difference between the correct value f(

#»

X) which
we are trying to predict and the average prediction of the learned model
E[h(

#»

X)]. It depends on the choice of the learning algorithm among enormous
hypotheses. Variance is the variability of the model prediction for a given
test example. It is only related to the learning algorithm h(

#»

X) itself and not
to the true function f(

#»

X). Irreducible error measures the noise in our data.
Regardless of which algorithm we choose or how good the model is, the term
cannot be reduced or eliminated. To minimise the expected error, both bias
and variance should be minimised. Unfortunately, it is impossible to do both
simultaneously.

A similar decomposition has been also derived for classification (Geurts,
2009; Pedro, 2000). Classifiers, such as Decision trees and Bayesian network
classifiers, have been mentioned in many studies to suffer from high variance
problem (Han, 2011; Boström, 2012; Petitjean et al., 2018). The main reason
is the data sparsity problem, a term used to describe the phenomenon of
not observing enough data to learn a parameter. If the amount of data used
to estimate the parameter is small, then the calculated probability estimate
is unreliable and cannot represent the real data distribution. This problem
often occurs even in big data classification tasks, because big data tends to
produce more complex models, resulting in a large number of parameters that
need to be estimated, but for each parameter the amount of data is small.

To conclude, the probability estimation of classifiers, such as decision
tree and Bayesian network classifier, is not reliable and need improvement.

22

Usually, if we can get enough data, we can improve the probability estimates.
But in reality, we run into the problem of data sparsity problem. Other
machine methods are needed to solve the problem, which will be introduced
in the next section.

2.1.3 Ways to Control Variance

There are two effective methods to help reduce the variance of probability
estimation for classifiers. Probability smoothing techniques reduce variance by
adding appropriate priors to the observed relative frequencies, thus making
the estimates “smoother”. The ensemble learning techniques reduce the
variance by building many high-variance base classifiers and averaging them.
In the next sections, we will review each of these learning techniques in detail.

2.2 Probability Smoothing

In this section, we describe the probability smoothing techniques commonly
used to improve the parameter estimation of classifiers. First, we introduce the
Maximum Likelihood Estimation (MLE) method, which produces unreliable
estimates by taking the observed relative frequencies as probability estimates.
The idea of smoothing is to make the MLE estimates “smoother” by adding
an appropriate prior probability. After summarising the existing smoothing
methods, we find that they all use the Dirichlet distribution as the prior
probability, but with different parameters for the distribution. Therefore,
before introducing the existing methods, we add an introduction to the
Dirichlet distribution.

2.2.1 Maximum Likelihood Estimation

Suppose we have a set of N data points X = {(# »x1, y1), (# »x2, y2), ..., (# »xn, yn)}
belonging to K different classes, and n1, n2, ...nK are the counts for each of
class in X , then the joint distribution of X is a multinomial distribution. The
joint probability mass function is

P (X| #»θ) = P (n1, ..., nk|θ1, ..., θk)

=
N !∏K
k=1 nk!

K∏
k=1

θnkk ,
(3)

23

where
#»

θ is the probability vector with
∑K

k=1 θk = 1, among which θk is the
probability of class k. N is the total count and equals to

∑K
k=1 nk.

In the case of discrete distributions, the likelihood is a synonym for the
joint probability of the data so that L(

#»

θ |X) = P (X| #»θ). For different values
of parameters, the likelihood of the data will be different. If the correct
parameter estimates are obtained, the likelihood should be maximised in the
limit of infinite data. The procedure of getting these optimum parameter esti-
mates is called Maximum Likelihood Estimation (MLE). The MLE estimate
is defined as

#»

θMLE = argmax
#»
θ

P (X| #»θ)

= argmax
#»
θ

N !∏K
k=1 nk!

K∏
k=1

θnkk .

(4)

This equation is a product of many probability numbers, each of which
is a value between 0 and 1. In practice, a log-likelihood function is often
used by taking the natural logarithm of the likelihood function. Therefore,
Equation 4 is equal to maximizing the logarithm of the joint probability
mass function, as shown in Equation 5.

#»

θMLE = argmax
#»
θ

logP (X| #»θ)

= argmax
#»
θ

log

(
N !∏K
k=1 nk!

K∏
k=1

θnkk

)

= argmax
#»
θ

log
K∏
k=1

θnkk

= argmax
#»
θ

K∑
k=1

nk log θk.

(5)

Equation 5 is maximized when for each class k, it has

θk =
nk
N
. (6)

The MLE may result in a zero probability estimate when the count nk
equals 0. For a Bayesian network classifier, the joint probability is zero when
any term in the product is zero. For the decision tree, any test example
that falls into a leaf node with an estimated class probability of zero will

24

receive a zero score. Even if the nk count is small, this problem can decrease
the classifier’s accuracy and ranking performance. We should not use MLE
directly to obtain parameter estimates. Probability smoothing technique can
be used to solve the zero probability problem. Maximum posterior (MAP)
estimation, as the basis for smoothing, is covered in the next section.

2.2.2 Maximum A Posteriori Estimation

In Bayesian statistics, a maximum a posteriori (MAP) estimate is an estimate
of a parameter of a model using the MAP estimation. MAP is a regularisation
method of MLE with a prior over the parameters. It maximises the posterior
distribution based on Bayes rule.

P (
#»

θ |X) =
P (X| #»θ)P (

#»

θ)

P (X)
, (7)

where P (X| #»θ) is the likelihood and P (
#»

θ) is the prior probability over
#»

θ .
P (X) is a normalizing constant value, and can be eliminated. The MAP
estimate in log domain becomes

#»

θMAP = argmax
#»
θ

{
log

P (X| #»θ)P (
#»

θ)

P (X)

}
= argmax

#»
θ

{
logP (X| #»θ)P (

#»

θ)
}

= argmax
#»
θ

{
logP (X| #»θ) + logP (

#»

θ)
}
.

(8)

The only difference between
#»

θMAP and
#»

θMLE is that there is a prior term
P (

#»

θ) in
#»

θMAP , otherwise they are identical. It means the likelihood is now
weighted with some weight coming from the prior.

When the prior probability is uniformly distributed, MAP and MLE are
identical because the term logP (

#»

θ) in the above equation becomes a constant.
The probability estimates of MAP varies with the selection of different prior
probabilities. How to select the proper prior probability is critical. In the
following section, we will introduce the Dirichlet prior and the probability
smoothing techniques derived from it.

25

2.2.3 Smoothing with Dirichlet Priors

In probability and statistics, the Dirichlet distribution, often denoted Dir(#»c),
is a family of continuous multivariate probability distributions parameterised
by a vector #»c of positive reals. It is a multivariate generalisation of the beta
distribution. Dirichlet distributions are commonly used as prior distributions
in Bayesian statistics (Blei et al., 2003; Saputro et al., 2017). The probability
density function is

P (
#»

θ | #»c) =
1

B(#»c)

K∏
k=1

θck−1
k , (9)

where
∑K

k=1 θk = 1 and 0 ≤ θk ≤ 1 for k ∈ K. The normalizing constant
B(#»c) is the multivariate beta function, which can be expressed in terms of
the gamma function:

B(#»c) =

∏K
k=1 Γ(ck)

Γ(
∑K

k=1 ck)
. (10)

The mean of a Dir(#»c) is

E(θk|ck) =
ck∑K
k=1 ck

. (11)

A common special case is the symmetric Dirichlet distribution, where
all of the elements in the vector #»c have the same value. The symmetric
case might be useful, for example, when a Dirichlet prior over components
is called for, but there is no prior knowledge favouring one component over
another. Since all elements of the parameter vector have the same value, the
symmetric Dirichlet distribution can be parametrised by a single scalar value
c, called the concentration parameter. In terms of c, the density function has
the form

P (
#»

θ |c) =
Γ(cK)

Γ(c)K

K∏
k=1

θc−1
k , (12)

In fact the Dirichlet distribution is the conjugate prior of the categorical
distribution and multinomial distribution. Assuming the likelihood P (X| #»θ)

is a multinomial distribution and the parameters
#»

θ have a Dir(c) prior, the

26

posterior probability of
#»

θ given data X and c is

P (
#»

θ |X , c) =
P (X| #»θ) · P (

#»

θ |c)
P (X)

∝ P (X| #»θ) · P (
#»

θ |c)

=
N !∏K
k=1 nk!

K∏
k=1

θnkk ·
Γ(cK)

Γ(c)K

K∏
k=1

θc−1
k

∝
K∏
k=1

θnk+c−1
k .

(13)

In other words, the posterior is also a Dirichlet distribution, which means
that the Dirichlet distribution is a conjugate distribution to the multinomial
distribution. The mean for the new Dirichlet distribution Dir(nk + c) is

E(θk) =
nk + c

N +Kc
. (14)

2.2.3.1 Laplace Smoothing: Dir(1) Prior

Laplace smoothing (Provost and Domingos, 2003) is a basic and simple
smoothing method that could improve probability estimates. It smoothes the
likelihood by adding a Dirichlet distribution prior with c = 1. According to
Equation 14, the expected estimate for θk becomes

θLapk =
nk + 1

N +K
. (15)

It can also be explained by adding one data point to each class to make the
estimates less extreme. In addition, the zero probabilities will be turned into
non-zero ones. However, in practice adding one to each class count may cause
over-smoothing of the probability estimates, especially when the two classes
are far from equiprobable (Zadrozny and Elkan, 2001a).

2.2.3.2 M-estimation: Dir(mK) Prior

M-estimation (Zadrozny and Elkan, 2001b) is another smoothing method
of the Dirichlet prior with c = m

K . The estimation formula of Equation 14
then becomes to

θM−estik =
nk +m · 1

K

N +m
, (16)

27

where 1
K is a uniform base rate and m is a parameter that controls how

much scores are shifted towards uniform distribution. Usually m is optimized
by conducting a cross validation experiment on the validation set. Laplace
smoothing is a special case of M-estimation with the m = K.

2.3 Hierarchical Smoothing

Hierarchical smoothing methods also use a Dirichlet prior to smooth the
probability estimates of a leaf node, except that the prior comes from the
probability distribution of the parent node, which is a Dirichlet distribution.
It assumes that the probability estimates on a leaf node depend on the
parent node’s estimates. In this section, we first emphasise the advantages of
hierarchical smoothing methods over simple methods such as Laplace and M-
estimation. Then we introduce the existing hierarchical smoothing methods
for decision trees and Bayesian network classifiers, including M-branch and
HDP.

2.3.1 Hierarchical Smoothing: Low Variance and Low Bias

Hierarchical smoothing methods allows better control of variance while re-
taining the low bias compared with single-layer methods, such as Laplace and
M-estimation, who calculate the estimates on the leaf nodes locally. Figure 2
is a decision tree model for disease diagnosis, knowing that this disease is
related to some rare gene G and sex, and it is more prevalent for females.
Now we want to predict the probability of p(disease|hasgene&male). There
is only one patient without disease at this leaf node. The probability estimate
based on the observed relative frequency is 0, which means that male has
the gene is unlikely to be sick, but this fails to consider the fact that 90.9%
(calculated by 10

(10+1)) of people who carry the gene are diagnosed with the
disease (the parent estimate). This estimate also did not consider that there
are only about 10% (calculated by 100

(100+901)) people have the disease in our
limited training data (the root estimate).

Single-layer smoothing methods, including Laplace and M-estimation,
can improve the probability from 0% to 33% and 25% respectively, but they
are still quite far away from 90.9%. They did not consider the parent nodes’
class distribution. These estimates have high variance and low bias.

28

Figure 2: The tree structure for the medical dataset.

Compared with the single-layer smoothing methods, hierarchical smooth-
ing methods can better control the variance of the estimates at leaves. Since
the class probability estimate of the parent and ancestor nodes have a lower
variance than those of the leaf nodes, and hierarchical methods take the
parents and ancestors’ estimates into consideration when calculating the class
probability estimates at leaves, hierarchical smoothing is a better smoothing
idea for tree-structured models than single-layer methods.

2.3.2 M-branch Smoothing

The M-branch smoothing method (Ferri et al., 2003) was first introduced to
decision trees. It considers each leaf is a subsample of the upper parent, and
parent also makes a subsample of the upper node, until the root is reached.
This means that the sample used to obtain the probability estimates in a leaf
is the result of many sampling steps, as many as the depth of the leaf. Then
it is natural to consider all the history of samples when trying to obtain the
probability estimates of a leaf.

Let #»v =< vl, vl−1, ..., v2, v1 > represents all the nodes on the branch that
contains the leaf node vl, where vl−1 is the parent node of l and v1 is the
root. Let nl,k denote the observed count of class k at node vl, and Nl is the
total count. Let θ̂l,k represent the class probability estimate for class k of
node vl. The M-branch method smoothes the leaf node estimate θ̂l,k to its

29

parent node θ̂l−1,k using the M-estimation method in the following way,

θ̂Mbranch
l,k =

nl,k +ml · θ̂Mbranch
l−1,k

Nl +ml
. (17)

Here the base rate of M-estimation is the parent estimate θ̂Mbranch
l−1,k , which

also needs to be smoothed to the parent node at a higher level θ̂Mbranch
l−2,k .

Repeating these steps recursively to a higher parent node until the root node
v1 reached. The root node v1 is smoothed to a uniform probability θ̂0,k = 1

K .
M-branch smoothing is a generalisation of M-estimation, with the base

rate for each node being the immediate parent estimate. The mi parameter
for each node controls the degree of smoothness to its parent. mi is assumed
to be bigger when the node is closer to the leaf. mi is defined as a function
of the node height in the tree, and the overall training data size N . Let
h = d+ 1− j represents the node height, where d is the depth of the branch
and j the depth of the node. The normalised height of a node is defined as
∆ = 1− 1/h in order to make the correction bigger the closer to the root. So
for leaves, the height is 1, and the normalised height is 0. From here, the mi

value for parent node i is defined as

mi = M ·
(

1 + ∆i ·
√
N
)
. (18)

Here M is a user-supplied constant value as in the M-estimation, which is
set to be 4 in (Ferri et al., 2003). N is the size of the training data.

2.3.3 HDP Smoothing

In the M-branch smoothing method, the parameters are defined as a function
based on node height h, the size of the training data N and a user-supplied
count M . The purpose of this function is to ensure that the parameter is
larger when the node is closer to the leaf node. We think this method of
setting parameters is not well justified. Its starting point is to achieve a goal
by assuming a specific relationship between parameters. This hypothesis
is just a guess without solid theoretical support. There should be a more
principled way for setting parameters. The HDP smoothing method uses the
Dirichlet Process (DP) theory to set the parameters, which is described in
detail below.

A Dirichlet Process DP (c,G) is specified by a base distribution G and a

30

concentration parameter c (Teh, 2010). G is the expectation of the process,
i.e., the DP draws distributions around the base distribution the way a normal
distribution draws real numbers around its mean. c is a positive real number
that controls how similar the sampled distribution is to the base distribution.
A larger c means they should be more similar. The DP can also be seen as
the infinite-dimensional generalisation of the Dirichlet distribution.

The Hierarchical Dirichlet Process (HDP) is a nonparametric Bayesian
approach to clustering grouped data (Teh and Jordan, 2010). It uses a DP for
each group of data, with the DPs for all groups sharing a base distribution
which is itself drawn from a DP. The clusters at the base distribution are
shared across all the groups. HDP models can be applied to decision trees,
as shown in Figure 3.

G0 ~ DP0(c0,U)

DP1(c1,G0)

DP2(c2,G1) DP3(c3,G1)leaf

leaf leaf leaf leaf

G1 ~ DP1(c1,G0)

G2 ~ DP2(c2,G1) G3 ~ DP3(c3,G1)

Figure 3: An HDP model tree. If each node in the tree is associated with a
DP, the whole tree can be turned into an HDP model. The drawn
distribution from the parent DP serves as the base distribution
of its children. Specifically, the base distribution of the root node
DP is uniform U . Each node in the tree contains a group of data
that shares the same K classes.

Unlike single-layer smoothing methods that only smooth the probability
at the leaves, HDP smoothing assumes that the conditional distribution of
a leaf node in the hierarchical model is similar to its parent node and the
sibling nodes who share the common parent to it. This is achieved using a
hierarchical Dirichlet prior to all the parameters in the tree.

Unlike M-branch, HDP assumes that only leaf nodes have data and all
the internal nodes are empty, but each leaf passes some “imagined” data to
its parent conceptually. The passage of data goes higher recursively until
the root node is reached. This is not actual data but prior counts for the

31

purpose of inference. The imagined data is generated during the sampling
algorithm (Petitjean et al., 2018).

Suppose tu,k is the number of “imagined data with class k” that node u
passes up to its parent node φ. These “imagined data” is a subset of the
data at node u so it must meet the constrain of tu,k ≤ nu,k. The data for the
parent node φ is collected from all its children so that nφ,k =

∑
u∈child(φ) tu,k

where u ∈ child(φ) means u is the child of φ.
The HDP smoothing formula for node u and class k is defined recursively

as follows

θ̂HDPu,k =
nu,k + cφ · θ̂HDPφ,k

Nu + cφ
. (19)

Here θ̂HDPφ,k is the parent estimate which also needs to be smoothed from its
parent. The concentration cφ affects how much data passes up to the φ, i.e.
tu,k. If we expect θ̂u,k to be very similar to θ̂φ,k, then choose a bigger cφ that
makes most of the data pass up and the parent probability contribute more
to the estimate. If cφ is small, the parent probability contributes less to the
estimate.

The HDP smoothing for HDP model tree is in a top-down manner from
the root to the leaves. It starts by smoothing the root node to a uniform
distribution, where each class has the same probability estimate. It then
smoothes the children nodes of the root using the root estimates as their
priors. Repeat this process until all nodes are smoothed. Thus, when reaches
the leaves, the probability estimates are already properly smoothed.

Equation 19 can also be explained by the Hierarchical Chinese Restau-
rant Process (CRP) (Teh and Jordan, 2010). The whole tree is like a multilevel
restaurant offering the same K dishes. Data at leaf l with class k is like a
customer in restaurant l choosing dish k. nl,k is the number of customers
eating dish k in this restaurant and Nl is the total customers in the restaurant.
Then a new customer comes in and can sit in an existing table serving dish k
with probability nl,k

Nl+cφ
, or choose to eat upstairs with probability cφ

Nl+cφ
θ̂HDPφ,k .

cφ corresponds to the restaurant’s attraction to the new customer. The
customer can continually choose a restaurant upstairs until reaching the
highest level, i.e. the root node.

Note that all the concentration parameters need to be sampled rather
than using Equation 18 as in M-branch. The sampling procedure aims
to reconstruct the posterior distribution if enough sampling iteration is

32

permitted, but sampling takes time. HDP works better if the sibling nodes
are more similar because it allows sharing across the siblings.

The two most critical parameters for the HDP smoothing in Bayesian
network classifiers (Petitjean et al., 2018) are iteration and tying. iteration is
the cycles that Gibbs sampling needs to sample the concentration parameters.
tying strategy is to tie some nodes together to share the same concentration
parameter to reduce the number of parameters that need to be sampled. Big
trees using HDP tend to be very slow because there are many parameters
to be sampled. In Petitjean et al. (2018), it shows that tying some nodes
to make them share the same parameter value is more efficient. There are
four types of tying. SINGLE means tying all the nodes. LEV EL means
the nodes on the same depth are tied together. PARENT means tying the
sibling nodes under one parent. NONE means no tying. The number of
parameters is increasing for these four strategies.

HDP has proven to be very useful for language model smoothing (Shareghi
et al., 2017a) and BNCs (Petitjean et al., 2018) recently. Please refer to
(Petitjean et al., 2018) for more detail about HDP smoothing on BNCs.
Moreover, the HDP smoothing package in Java is available on Github 1.

2.4 Ensemble Learning

Ensemble learning, as another popular way to reduce variance, is introduced
in this section, including the background knowledge, ensemble techniques,
existing ensemble models and the bias-variance decomposition of ensembles.

2.4.1 Background Knowledge

Ensemble learning, also known as multiple classifier systems, is a way to
improve the performance of single learners by training a set of learners to
solve the same problem and combining the performance of them to make
predictions (Zhou, 2012). Figure 4 shows a common ensemble architecture.
Each learneri, i ∈ {1, 2, ..., E} in the ensemble model is called a base learner.

An ensemble is much stronger than a single learner for several reasons.
First, ensemble methods can apply different information from the training
data by combining some equally performing single learners. Second, ensembles

1https://github.com/fpetitjean/HDP

33

https://github.com/fpetitjean/HDP

Figure 4: A common ensemble learning architecture.

are more likely to include a better hypothesis than a single learner. Third,
ensembles can give better approximations to the real target function than
single ones (Zhou, 2015).

An ensemble model can be learned in two steps in general. The first step
is to select the base learning algorithms to learn the base learners, and the
second step is to combine the performance of the base learners as an ensemble
model.

2.4.2 Base Learning Algorithm Selection

For the first step, the base learning algorithms can be decision trees, Bayesian
network classifiers, neural networks and other classification algorithms. The
choice of base learning algorithms can be the one unique algorithm or a
combination of different algorithms. The former is called homogeneous
ensembles, and the latter is called heterogeneous ensembles (Zhou, 2015).

To build a good ensemble model, the base learners should be as accurate
as possible and as diverse as possible. “As diverse as possible” means that
the base classifiers should have low correlation and as different as possible
so that they can give different output predictions. The reason is related
to the bias-variance-decomposition of ensembles, which will be covered in
Section 2.4.4.

2.4.3 Combination Methods

For the second step, instead of choosing the best single learner, ensemble
models combine the performance of all the base learners to achieve a strong

34

generalisation ability. It has been confirmed by many empirical studies that
combination can reduce the variance as well as the bias of the base learning
algorithms (Xu et al., 1992; Bauer and Kohavi, 1999). This point will be
further discussed in Section 2.4.4.

The combination methods can be divided into two categories, i.e. aver-
aging and voting. Averaging is the most popular combination method for
numeric outputs, while voting is the most popular combination method for
nominal outputs.

2.4.3.1 Averaging

Suppose we have an ensemble model composed of T individual learners
H =< h1, h2, ..., hT >. The output of example #»x given by learner hi is hi(#»x).
The result of simply averaging is

H(#»x) =
1

T

T∑
i=1

hi(
#»x). (20)

The weighted averaging method is an extension of the simple averaging
method. It assumes that the importance of different base learners in the
ensemble model is different. A weight parameter wi is used for each base
learner to indicate the importance of the learner. The output of an ensemble
calculated by the weighted averaging method is

H(#»x) =
1

T

T∑
i=1

wihi(
#»x), (21)

where wi ≥ 0 and
∑T

i=1wi = 1. It is easy to see that the averaging method
is a special case of the weighted averaging method with all the individual
learners taking equal weights.

2.4.3.2 Voting

The voting combination methods are used for nominal classification, in which
case the ensemble output is a predicted class label c among all the K possible
classes {c1, c2, ...cK}, or a predicted class probability estimate among all the
class estimates. Given an example, the prediction of the base learner hi is
assumed to be a K dimensional vector < h1

i (
#»x), h2

i (
#»x), ..., hKi (#»x) >, where

35

hki (
#»x) is the output of hi for class k. For class label prediction tasks, hki (

#»x)

takes value one if hi predicts class k as the class label and zero otherwise. For
class probability estimates prediction tasks, hki (

#»x) ∈ [0, 1] can be regarded
as an estimate of the posterior probability P (ck| #»x).

Majority voting is the most popular used voting method. Every base
learner votes for one class label, and the class label that receives more than
half of the votes is selected as the final output of the ensemble. If none of the
class labels has more than half of the votes, the ensemble takes no predictions.
The prediction is

H(#»x) =

cj , if
T∑
i=1

hji (
#»x) > 1

2

K∑
k=1

T∑
i=1

hki (
#»x).

rejection, otherwise.
(22)

Plurality voting is an extension of the majoring voting method without
the rejection mechanism. It takes the class received the largest number of
votes as the output, which is defined as

H(#»x) = c
argmaxj

∑T
i=1 h

j
i (

#»x)
. (23)

Weighted voting deals with the case that the individual learners are not
equally important. A bigger weight can be given to the learners that are
more important. The output of the ensemble is defined as

H(#»x) = c
argmaxj

∑T
i=1 wih

j
i (

#»x)
. (24)

Soft voting is applicable to ensembles that produce class probability
estimates. The predicted class probability estimate for class cj by an ensemble
model is

Hj(#»x) =

T∑
i=1

wih
j
i (

#»x). (25)

For base learners that are equally important, take wi = 1
T .

2.4.4 The Secret of Good Ensemble Models: Diversity

The bias-variance decomposition of a single model is discussed in Sec-
tion 2.3.1. In this part, we discuss the bias-variance-covariance decom-
position of ensemble models. This decomposition can give us insight into how

36

to build a good ensemble model.
For an ensemble of T learners H =< h1, ...hT >, the well known bias-

variance decomposition can be further expanded, yielding the bias-variance-
covariance decomposition of ensembles (Zhou, 2012). Suppose that the
individual learners are combined with equal weights. The averaged bias and
averaged variance are defined respectively as

bias(H) =
1

T

T∑
i=1

(E[hi]− f), variance(H) =
1

T

T∑
i=1

E[(hi − E[hi])
2].

The averaged covariance for a pair of learners in the ensemble is defined as

covariance(H) =
1

T (T − 1)

T∑
i=1

T∑
j=1,j 6=i

E(hi − E[hi])E(hj − E[hj]).

The bias-variance-covariance decomposition of the squared error of the
ensemble is

MSE(H) = bias(H)2 +
1

T
variance(H) + (1− 1

T
)covariance(H). (26)

The first term in this equation requires the individual learners have a low
bias on average and the final term requires they have low covariance.

The decomposition of this bias-variance-covariance formula shows that the
secret of a well-constructed ensemble mode is that the base learners should
have low correlation (or, high diversity), i.e. they should be as different
as possible. A common technique for increasing diversity is to introduce
randomness into the learning process, which can be reflected in data sample
manipulation and input feature manipulation (Zhou and Liu, 2010).

Data sample manipulation is the most popular way to inject randomness
to the learning process by generating multiple different training data samples
based on sampling methods, and then the base learners can be learned
from different data samples. Instead of constructing base learners based on
different training subsets, input feature manipulation is another popular way
to increase diversity by constructing the based learners trained from different
feature subsets. The base learners are usually diverse because different feature
subsets provide different views on the data.

37

2.4.5 Existing Ensemble Models and Their Diversity

The two most popular ensemble methods are Bagging and Boosting, both of
which use the data sample manipulation method to train diverse base learners.
Bagging (Breiman, 1996) constructs an ensemble by learning multiple base
learners on different sub-training sets in a parallel way. These sub-training
sets are sampled with replacement from the original training dataset, where
the sizes of these subsets are the same as the whole training set. Boosting
(Freund and Schapire, 1995) is another kind of ensemble technique that builds
individual models in a sequential way. Each individual model learns from
mistakes made by the previous one by altering the distribution of the training
dataset and forcing learners to focus on misclassification errors. It finishes
learning when no further improvements can be made.

Random Forest (Breiman, 2001) is an example of adopting both the data
sample manipulation and input feature manipulation. It further increases the
diversity of Bagging by adding the split feature random selection mechanism
for learning each individual decision trees in the forest. Random Forest
generates a random subset of the splitting features for every internal node
and then selects the best attribute from it, whereas a standard decision tree
selects the most important of all possible attributes. The size of the random
subset is usually set to be

√
M , where M is the total number of attributes

in the training data. Compared with Bagging, Random Forest has more
diversity and is more competitive.

XGBoost (Chen and Guestrin, 2016), short for eXtreme Gradient Boosting,
is an implementation of a generalised gradient boosting algorithm that has
recently been dominating in machine learning competitions for structured
and tabular data. This is due to its excellent predictive performance, highly
optimised multi-core and distributed machine implementation and the ability
to handle sparse data. Despite good performance relative to existing gradient
boosting implementations, XGBoost can be very time consuming to run.
Common tasks can take hours or even days to complete. Building highly
accurate models using gradient boosting also requires extensive parameter
tuning (Mitchell and Frank, 2017).

38

2.4.6 Summary

The two sources of diversity in Random Forest makes it a highly diverse
ensemble model of decision trees. This inspires us to build a powerful ensemble
model of Bayesian network classifiers in this research project. Details of the
ensemble model are discussed in Section 4.2.

2.5 Scoring Rules for Evaluating Probability Esti-
mation

For classification tasks in which predictions must assign probability estimates
to a set of mutually exclusive classes, the probability estimates must sum
to one, where each probability is in the range of 0 and 1. Scoring rules for
measuring the prediction accuracy of the class probabilities are preferred
compared with classification accuracy or error rate.

In decision theory, a scoring rule (Gneiting and Raftery, 2007), measures
the accuracy of probabilistic predictions. RMSE and KL divergence are
proper scoring rules, which means minimising them leads to well calibrated
learners in the limit of large data. In this section, we will discuss the
commonly used scores for estimating the accuracy of the class probability
estimation of classifiers. These scores can be divided into two categories:
least-squared error-based scores and entropy-based scores. Before introducing
these methods, let’s make some general definitions.

Given a dataset D containing N examples and K classes {c1, c2, ..., cK},
the true class probability estimates for one of the example 〈 #»x , y〉 is #»p =<

p1, p2, ..., pK >, where only pk is equal to 1 if y = ck and everything else is
0. Let #»q =< q̂1, q̂2, ..., q̂K > denote the predicted class probability estimates
produced by a probabilistic classifier for this test example.

2.5.1 Least-Squared Error Scores

One commonly employed measure of the accuracy of predicted class proba-
bilities is called squared error. Squared error measures the distance between
the true probability distribution #»p and the predicted probability distribution

39

#»q . The squared error for this specific example is then defined as

SE =
K∑
k=1

(pk − qk)2, (27)

where pk the actual class probability for class ck, while qk is the predicted
probability for class ck. Squared error is the summation over all the classes.

2.5.1.1 Brier Score (MSE)

Brier score (Brier, 1950), named for Glenn Brier, is a proper score function
that measures the accuracy of the probability predictions. Brier score is the
same with mean squared error (MSE) in discrete context. The performance
of a model measured by the Brier score can be summarized as the average
squared error across all classes predicted for a test dataset of N examples,
which is defined as

BS =
1

N

N∑
i=1

K∑
k=1

(pik − qik)2, (28)

where pik is the true probability estimate for example i with class k, and qik
is the estimate of predicting the example i as class k. The value of the Brier
score is in the range of 0 and 1. The lower the Brier score is, the better the
predictions are estimated.

2.5.1.2 RMSE

Root Mean Squared Error (RMSE) (Barnston, 1992) is simply the square
root of the MSE (Brier score), which is defined as

RMSE =
√
BS

=

√√√√ 1

N

N∑
i=1

K∑
k=1

(pi,k − p̂i,k)2,
(29)

Since RMSE is an extension of Brier score, it can also be used to measure
the accuracy of the probabilistic predictions.

40

2.5.2 Entropy-Based Scores

In information theory, entropy (Shannon, 1948) measures the uncertainty
of the distribution of a random variable. For a random variable X with
distribution #»p , the entropy is defined as

H(#»p)
∆
= −

K∑
k=1

pk log2 pk, (30)

where K is the number of states for the random variable X and pk is the
probability for state k. In a binary case where K = 2 and X ∈ {0, 1}, the
equation becomes

H(#»p)
∆
= − [p0 log p0 + p1 log p1]

∆
= − [θ log2 θ + (1− θ) log2 (1− θ)] ,

(31)

where p0 = θ and p1 = 1− θ. This is called binary entropy function and can
be denoted by H(θ).

When #»p is a uniform distribution, i.e., for any k ∈ K, pk = 1
K , the

entropy is maximized to log2K. Take the binary entropy as an example, the
maximum entropy 1 occurs when θ = 0.5. In this case, the random variable
X with distribution p has the greatest uncertainty. In contrast, when #»p is
any delta-function that puts all of its mass to just one state, i.e., pk = 1

for states k while for other states the probabilities are zeros, the entropy is
minimized to 0. Such distribution has no uncertainty.

2.5.2.1 Cross-Entropy

Cross-entropy (De Boer et al., 2005) has been used as an alternative to
squared error to measure the distance between two probability distributions
given a random variable. The intuition of the cross-entropy score comes if
we consider a true probability distribution #»p and a prediction distribution
#»q , then the cross-entropy of #»q from #»p , denoted by H(#»p , #»q), is the number
of bits to represent an event using #»q instead of #»p . The cross-entropy of #»q

from #»p is defined as

H(#»p , #»q)
∆
= −

K∑
k=1

pk log2 qk. (32)

41

Cross-entropy is a positive value measured in bits, and smaller values indicate
better predictions. The cross-entropy heavily penalizes predicted probabilities
that are far away from their expected value. When the two distributions
are identical, the cross-entropy reduces to the entropy of #»p , i.e., H(#»p , #»q) =

H(#»p , #»p) = H(#»p). On the contrary, when the difference between the two
distributions is large, the cross-entropy is large.

Cross-entropy is not log loss, but they calculate the same quantity when
used as loss functions for classification problems and can be used interchange-
ably.

2.5.2.2 KL divergence

The other way to measure the dissimilarity between two probability distri-
bution is the Kullback-Leibler divergence (KL divergence) or the relative
entropy (Kullback and Leibler, 1951). The KL divergence of distribution #»q

from #»p is defined as

KL(#»p || #»q)
∆
=

K∑
k=1

pk log
pk
qk
, (33)

where K is number of classes. It can be decomposed into

KL(#»p || #»q)
∆
=

K∑
k=1

pk log pk −
K∑
k=1

pk log qk

∆
= −H(#»p) + H(#»p , #»q)

∆
= H(#»p , #»q)−H(#»p , #»p),

(34)

where H(#»p , #»q) is the cross-entropy of #»q from #»p , and H(#»p) = H(#»p , #»p) is
the entropy of the distribution #»p .

The above equation indicates that the KL divergence KL(#»p || #»q) can be
decomposed into the difference between the cross-entropy of #»q from #»p and
the entropy of #»p . When #»p is a delta-function that puts all of its mass to
just one class, the entropy of #»p is zero, then the KL divergence is equal
to the cross-entropy, i.e., KL(#»p || #»q) = H(#»p , #»q) when H(#»p) = 0. The KL
divergence is a measure of the additional bits of information needed when #»q

is used to approximate #»p instead of #»p .
Although KL divergence measures the distance between two probability

42

distribution, but it is not a distance measure. KL divergence is non-symmetric,
which means that the KL divergence of #»q from #»p is different from the KL
divergence of #»p from #»q when #»p 6= #»q , i.e., KL(#»p || #»q) 6= KL(#»q || #»p).

2.5.3 Summary

In this section, we covered scores that are commonly used to evaluate proba-
bility estimation, including least-squared scores and entropy-based scores.

Least-squared scores, such as Brier score and RMSE, have a long history
of being used in measuring the quality of class probability estimates. They
work well when we do not have extreme probabilities. However, for cases
with extreme probabilities, such as in Natural Language Processing (NLP)
applications, relative probabilities are needed and entropy-based scores, such
as cross-entropy and KL divergence, work better.

In this research, we focus on improving the class probability estimation
of Bayesian network classifiers and decision trees. We use RMSE as the score
to evaluate the class probability estimation because we do not have extreme
probabilities.

2.6 Sign Test on Win-Draw-Loss Statistics

When comparing the performance of two different models, the Win-Draw-Loss
is used. “Win” refers to the number of datasets with better performance of
the newly proposed model compared with the existing model, while “Loss”
refers to the number of data sets with the poor performance of the new model.
“Draw” is the number of data sets they perform the same. If the “Win” is
greater than the “Loss”, then the new model is better than the existing one.

To test whether the new model is significantly better than the existing
one, sign test technique is used. Sign test is a statistical method to test for
consistent differences between pairs of observations (Wikipedia contributors,
2020). The paired observations may be designated x and y. For comparisons
of paired observations (x, y), the sign test is most useful if comparisons
can only be expressed as x > y (win), x = y (draw), or x < y (loss). In
Win-Draw-Loss statistics, the pair of observations is the RMSE or 0-1 loss
of two different models on the same dataset. Given pairs of observations for
each subject, the sign test determines if one member of the pair tends to be
greater than (or less than) the other member of the pair.

43

There are two different ways to do the sign test: two-sided and one-sided.
For two-sided sign test, the null hypothesis is that there is no difference
between “Win” and “Loss”, and the alternative hypothesis is “Win” may be
either greater than or less than “Loss”. A one-sided sign test could be “Win”
is greater than “Loss” so that the difference can only be in one direction
(greater than).

In this thesis, we adopt the one-sided sign test to test whether a newly
proposed model is significantly better than an existing model. The null
hypothesis is that the new model is not better than the other model. The
alternative hypothesis is that the new model is better than the other one. A
difference is considered to be significant if the p-value is less than or equal to
an α value.

The “Win” and “Loss” can be regarded as the two outcomes of a binomial
trial, so we can calculate the p-value using the probability mass function of
the binomial distribution, which is defined as

p− value =

(
N

k

)
pWin(1− p)Loss, (35)

where N = Win + Loss is the total number of trials. p = 0.5 because if
the none hypothesis holds, there should be no difference between “Win” and
“Loss”, the probability of winning and losing are equally to be 0.5. After
calculating the p-value, we compare it with the α value, which is set to be
0.05 in this thesis. If the p-value is smaller than or equal to α, then reject
the null hypothesis and say the new model is better. Otherwise, accept the
null hypothesis and say the new model is not better than the other model.

2.7 Discretization of Continuous Features

Many Machine Learning algorithms can only be applied to data described by
discrete features, such as most of the Bayesian network classifiers. For these
algorithms, discretization algorithm should be used to transform continuous
features into discrete ones before learning the model.

Discretization is the process of partitioning continuous features into many
intervals by finding a set of cut points (Kotsiantis and Kanellopoulos, 2006).
“Cut point” refers to a real value within the range of the continuous feature.
It divides the range into two intervals, one less than or equal to the cut point

44

and the other greater than the cut point.
A typical discretization process generally consists of four steps: (a) sorting

the values of the continuous feature in ascending or descending order, (b)
evaluating a cut-point for splitting or adjacent intervals for merging, (c)
according to some criterion, splitting or merging intervals of continuous value,
and (d) finally stopping at some point (Kotsiantis and Kanellopoulos, 2006;
Dash et al., 2011).

There are many discretization methods available. These discretization
methods can be divided into two categories: unsupervised and supervised.
The difference between the two is whether the class membership information
is used during the process of discretization. Unsupervised methods do not use
class information for discretization. In contrast, supervised methods bring
class information into the discretization process. Previous research indicated
that supervised are better than unsupervised methods (Dougherty et al.,
1995; Kotsiantis and Kanellopoulos, 2006). In the following sections, we will
describe their common methods.

2.7.1 Unsupervised Discretization

Unsupervised discretization methods do not make use of class membership
information during the discretization process. Some representative algorithms
of unsupervised methods are the equal-width method, equal-frequency method
and K-means clustering method.

2.7.1.1 Equal-Width Discretization

The equal-width discretization algorithm determines the minimum and max-
imum values of the discretized attribute and then divides the range into a
user-defined number N of equal-width intervals. The width is calculated by

width =
maximum value−minimum value

N
. (36)

The obvious weakness of the equal-width method is that in cases where the
outcome observations are not distributed evenly, a large amount of important
information can be lost after the discretization process.

45

2.7.1.2 Equal-Frequency Discretization

The equal-frequency algorithm determines the minimum and maximum values
of the discretized attribute, sorts all values in ascending order, and divides the
range into a user-defined number of intervals so that every interval contains
the same number of sorted values.

The weakness of equal-frequency is that many occurrences of a continuous
value could cause the occurrences to be assigned into different bins. One
improvement can be after continuous values are assigned into bins, boundaries
of every pair of neighbouring bins are adjusted so that duplicate values should
belong to one bin only Kotsiantis and Kanellopoulos (2006).

2.7.1.3 K-Means Discretization

K-means (MacQueen et al., 1967), as one of the most popular clustering
method, is also suitable for discretization. K-means aims to partition n

observations into K clusters in which each observation belongs to the cluster
with the nearest mean (cluster centers). When used for discretization, the
intervals are the clusters identified by the k-means algorithm. The number
of clusters (K) is defined by the user. In fact, discretization by k-means is
equivalent to a 1-dimensional k-means, where only the continuous feature we
want to discretize is used.

Initially, the algorithm assigns K data points to be the so-called centers
(or centroids) of the clusters randomly. Then each data point of the given set
is associated with the closest center resulting in the initial distribution of the
clusters. After this initial step, the next two steps are performed until the
convergence is obtained:

• Recompute the centers of the clusters as the average of all values in
each cluster.

• Each data point is assigned to the closest center. The clusters are
formed again.

The algorithm stops when there is no data point that needs to be reassigned,
or the number of data point’s reassignments is less than a given small number
(Dash et al., 2011).

46

2.7.2 Supervised Discretization

Supervised discretization methods make use of the class information when
doing discretization for continuous features. In the following sections, two
examples of supervised discretization methods, the Minimum Description
Length Principle and the decision tree discretization methods, are introduced.

2.7.2.1 Minimum Description Length Principle

The Minimum Description Length Principle (MDLP) (Fayyad and Irani, 1992)
is a top-down discretization method. It considers one big interval containing
all known values of a continuous feature and then partitions this interval
into smaller and smaller sub-intervals until the Minimum Description Length
stopping criterion is achieved.

The MDLP method first sorts all the values of a continuous feature in
ascending order and calculates the midpoint for each pair of values. These
midpoints are the candidate cut points that need to be evaluated. For each
candidate, it splits the data into two intervals, and the resulting information
gain and the minimum description length of the cut are calculated. The cut
point with the maximum information gain of all candidate cutting points
is selected as the best cut point. If the information gain of the best cut
point is greater than the minimal description length of the cut, the partition
induced by the cut point is accepted. Otherwise, it is rejected. This binary
discretization is applied recursively until the gain is lower than the minimal
description length of the best cut.

A partition induced by a cut point T of feature A for a data set S of N
examples is accepted if and only if

Gain(A, T, S) >
log2(N − 1)

N
+

∆(A, T, S)

N
. (37)

∆(A, T, S) is calculated by

∆(A, T, S) = log2(3k−2)−[kEntropy(S)−k1Entropy(S1)−k2Entropy(S2],

(38)
where k is the number of classes in S, k1 and k2 are the number of classes
the two partitions S1 and S2, respectively. k1 and k2 are subsets of k.

To summarize, the key idea of MDLP is to divide the range of the
continuous features into intervals that maximize the information, measures

47

by entropy. However, the number of intervals should not be too many to
avoid overfitting. That is why the MDL stopping criterion is adopted.

2.7.2.2 Decision Tree Discretization

Decision tree can also be used as a discretization method (Kohavi and Sahami,
1996). It consists of two steps:

• Step 1: Train a complete binary tree with limited depth (2, 3 or 4)
using the continuous feature A we want to discretize to predict the class.
The method selects the value of A that has the minimum entropy as a
split-point, and recursively partitions the resulting intervals to arrive
at a hierarchical discretization. The values fall into the same terminal
node are grouped as an interval. For a tree with depth n, the tree gets
2n terminal nodes.

• Step 2: Apply train pruning to find an appropriate number of terminal
nodes (i.e. the number of discretization intervals) in a bottom-up way.

Decision trees find the number of intervals and the cut points automatically.
However, it may cause overfitting and the parameters (i.e., maximum depth
and the minimum number of samples in one terminal node) tuning is time-
consuming.

2.7.3 Summary

In this section, we introduced commonly used discretization methods for
continuous features, including unsupervised methods and supervised ones.
Previous studies show that supervised discretization methods are better than
unsupervised ones.

2.8 Leave-One-Out Cross-Validation

In the SKDB algorithm mentioned in this chapter, the Leave-One-Out Cross-
Validation (LOOCV) method is used to tune the hyperparameter to get
the optimum network structure. In the HGS algorithm we proposed in
Chapter 5, we proposed a cost function for decision trees based on the
idea of LOOCV. Therefore, it is necessary to give a brief introduction to the
LOOCV approach in this section.

48

K-Fold Cross-Validation is mainly used for hyperparameter tuning of
predictive models conducted on a validation set. It first divides the whole
data set into K equal partitions randomly. Then for each partition, use it as
the testing data to test a model, and combined other partitions together as
the training data to learn a model. This procedure is repeated K times, and
the final result is the average over the K performances. The variance of the
resulting estimate is reduced as K is increased.

LOOCV is a special case of the K-fold cross-validation where K is max-
imised by the number of instances N in the data. The variance of the
estimates is the lowest compared to other K values. In each fold, nearly all
the data except for a single observation are used for training, and the model
is tested on that single observation.

The evaluation given by LOOCV is accurate, but it seems expensive to
compute because it rebuilds the model from scratch for each fold. However,
LOOCV could be sped up by using incremental LOOCV (Kohavi, 1995;
Joulani et al., 2015) method for any algorithms that support for incremental
learning, such as decision trees. The idea is instead of training a model during
each fold of the cross-validation, first, train a model on the full dataset, then
delete the one example that is left out, test on that example, then insert it
into the model again. This delete-test-insert phase is repeated for each of
the N folds. Incremental LOOCV can be conducted on any algorithm that
supports incremental learning, allowing for dynamically adding or removing
examples from the model. Note incremental LOOCV means the model
structure remains unchanged.

2.9 Summary

In this chapter, we reviewed a number of techniques related to the research
topic, including the bias-variance analysis of classifiers, variance reduction
methods, scoring rules for evaluating probability estimates, a significant
testing technique of Win-Draw-Loss statistics, discretization of continuous
features, and the leave-one-out cross-validation method.

49

Chapter 3

Literature Review on Bayesian
Network Classifiers and
Decision Trees

3.1 Bayesian Network Classifiers

Bayesian network classifier, as one of the primary classifiers in this study,
will be introduced in detail in this section, including the basic framework,
existing classification models and the current work to improve parameter
estimation. A brief summary will be given at the end of this section.

3.1.1 Background Knowledge

Let capital letters X = (X1, X2, ...Xn) represent n attributes in a dataset.
Lower case letters x = (x1, x2, ..., xn) represents specific data values taken by
these attributes. Specifically, Y is the class variable, and y is the possible
class labels that data x belongs. The basic task of a classification problem is
to compute the conditional class probability distribution P (y|x) over all the
possible classes and assign the class to x most suited given the context, for
instance depending on the tradeoff between recall and precision desired.

A Bayesian Network (BN) B = 〈G,Θ〉 is characterized by two parameters
G and Θ. G is a directed acyclic graph whose nodes and edges represent ran-
dom variables X1, X2, ...Xn and direct dependencies between those variables,
respectively. We say Xi is the parent of Xj if Xi is pointing directly to Xj

via a single edge. Another parameter Θ quantifies the network structure

50

with a set of parameters θxi|Πi(x) = PB(xi|Πxi) for each possible value xi of
Xi, and Πxi of ΠXi , where ΠXi denotes the set of parents of Xi in G. A BN
defines the joint probability distribution over x given by

PB(x) =
n∏
i=1

PB(xi|Πxi) =
n∏
i=0

θxi|Πxi . (39)

When using a Bayesian Network as a classifier, the precision of posterior
estimates PB(y|x) matters rather than the precision of PB(y,x). As a result,
it is usually important to ensure that all variables in the class’ Markov
blanket are connected directly to the class, which means that Y should be
the common parent for all the random variables in the network structure of
a BNC. The conditional class probability of a BNC can then be written as

PB(y|x) =
PB(y,x)

PB(x)
=

θy
∏n
i=1 θxi|y,Πxi∑

y′∈Y θy′
∏n
i=1 θxi|y′,Πxi

∝ θy
n∏
i=0

θxi|y,Πxi . (40)

3.1.2 The Bias-Variance of Bayesian Network Classifiers

Bayesian network classifiers are good models for analysing large datasets
because they are out-of-core learners, i.e., without the need to save the data in
the main memory. The bias-variance tradeoff of Bayesian network classifiers
can easily be tuned by putting a limit on the maximum number of parents
that a node can have. With k parents, the model then looks at all possible
combinations of the (k + 1) nodes connected with each other. The higher
the value of k, the lower the bias of the algorithm (and usually the higher
the variance as well). For large datasets, a higher complexity or low-biased
model is preferable because it allows the model to capture fine detail in data
more precisely. But this low bias model has more parameters and potentially
higher variance, leading to poorer predictions. As a result, more data is
usually needed (or a superior parameter estimation technique).

3.1.3 Existing Bayesian Network Classifiers

Some existing BNCs have been developed and gained popularity, including
single BNCs and ensemble BNCs. Single BNCs only consists of one classifier,
including NB, TAN, KDB and the most recently SKDB. Ensemble BNCs

51

improve the probability estimates by building multiple single BNCs and
averaging the results of them. AODE and KDF are introduced as examples
of ensemble BNCs.

In this section, we take the Iris dataset from the UCI repository (Lichman,
2013) as an example to train a Naive Bayes, TAN, KDB and SKDB classifier
respectively. This dataset predicts the iris class by the length and width of
sepal and petal. The class Y has three values, which are Iris Setosa, Iris
Versicolour and Iris Virginica.

3.1.3.1 Naive Bayes

NB (Lewis, 1998) is the simplest BNC with a strong unrealistic independence
assumption that each attribute is conditionally independent of every other
attribute given the class label. This makes the class the parent of all other
attributes and includes no other edges. Although this assumption is unrealistic
in many practical applications, NB is computationally efficient, especially
when the number of attributes is small. Figure 5 shows the NB structure
for the Iris dataset, where the Iris class is the common and unique parent of
the predictive features, and they are independent of each other.

sepal
length

sepal
width

petal
length

petal
width

Iris
class

Figure 5: The NB structure for the Iris dataset.

3.1.3.2 Tree-Augmented Bayesian Network Classifier

TAN (Friedman et al., 1997) relaxes the strong independence assumption
of NB by adding an extra single parent to each non-class feature. For the
Iris dataset, the sepal length attribute is chosen to be the parent for other
attributes, as shown in Figure 6.

The key problem of learning a TAN classifier is how to learn the single
parent for each non-class feature. Chow and Liu (1968) equates this problem

52

sepal
length

sepal
width

petal
length

petal
width

Iris
class

Figure 6: The TAN structure for the Iris dataset. The blue edges are the
extra parents added by TAN for the NB structure.

to the problem of how to build the maximum weighted spanning tree from a
complete undirected graph. The problem of finding such a tree is to select a
subset of edges from the complete undirected graph such that the selected
edges constitute a tree and the sum of weights attached to the selected edges
is maximised. Chou and Liu use the Mutual Information (MI) MI(Xi, Xj)

as the weight of the edge between them, which is defined as follows

MI(Xi;Xj) =
∑
xi,xj

P (xi, xj) log
p(xi, xj)

p(xi) · p(xj)
. (41)

Roughly speaking, this function measures how much information Xj provides
about Xi.

Unlike Chou and Liu’s method, the TAN algorithm uses the Conditional
Mutual Information (CMI) CMI(Xi;Xj |Y) as the weight value between Xi

and Xj to generate the maximum weight spanning tree, which is defined as
follows

CMI(Xi;Xj |Y) =
∑
xi,xj ,y

p (xi, xj |y) log
p(xi, xj |y)

p(xi|y) · p(xj |y)
. (42)

Roughly speaking, CMI(Xi;Xj |Y) measures the information that Xj pro-
vides about Xi when the value of class Y is known. Algorithm 1 shows
how to learn a TAN classifier given training data T .

3.1.3.3 K-dependence Bayesian Network Classifier

KDB (Sahami, 1996) further relaxes the independence assumption of NB
and TAN by allowing each non-class attribute to have up to K parents,

53

Algorithm 1: learnTAN(T)
Input :A training set T with |X| features and |Y | classes
Output :A TAN model B

1 // structure learning
2 Compute class conditional mutual information CMI(Xi;Xj |Y)

between each pair of features Xi and Xj given Y , where i 6= j.
3 Let G be a complete undirected graph in which the vertices are the

features and the weight of an edge between Xi and Xj is
CMI(Xi;Xj |Y).

4 Build a maximum weighted spanning tree.
5 Transform the resulting undirected tree to a directed one by choosing a

root variable and setting the direction of all edges to be outward from
the it.

6 Construct a TAN model by adding a vertex labeled by Y and adding
an arc from Y to each Xi.

7 // parameter learning
8 Compute the conditional probability tables Θ inferred by the structure

of G by using counts from T .
9 Let B = 〈G,Θ〉.

10 return B.

where K is a user-defined value. The network structure of a KDB classifier is
determined by the attribute order and parent order. Attribute order is
the importance of the attributes ranked from largest to smallest by their MI
value. An attribute that ranks higher in the order provides more information
for classification of the class and has priority to be chosen as the parent of
the other attributes. The parent order for each attribute is the parent nodes
in order of CMI values from largest to smallest.

Figure 7 is the structure of KDB model with K = 2 for the Iris dataset
with each attribute has up to two parents. As it can be seen from Figure 7,
the attribute order is petal width, petal length, sepal length and sepal width.
This ordering demonstrates that petal information is more important for
predicting iris categories than sepal. The parent order for each attribute is
listed in Table 1.

Algorithm 2 is the training algorithm of KDB. It takes a training
dataset T and a user-supplied K as inputs, and returns a KDB model B as
output. The learning method consists of two parts: structural learning and
parametric learning. Algorithm 3 learns the KDB structure by first sorting
the attributes on MI with the class and the CMI for each pair of attributes

54

petal
width

petal
length

sepal
length

sepal
width

Iris
class

Figure 7: The KDB-2 structure for the Iris dataset.

Table 1: Attribute order and parent orders for the Iris datasets.

Attribute order (↓) Parent orders (→)
petal width Iris class
petal length Iris class, petal width
sepal length Iris class, petal width, petal length
sepal width Iris class, petal length, sepal length

given the class. Each attribute Xi is assigned the K parent attributes that
maximise CMI out of those attributes with higher MI. Algorithm 4 learns
the parameters by compute the Conditional Probability Table (CPT) from
T . The last step returns a KDB model B.

Algorithm 2: learnKDB(T ,K)
Input :A training set T with features X and classes Y
Input :Number of parents allowed for each feature K
Output :A KDB model B

1 Let G be a directed graph G = (V, E), in which V is a set of vertices
and E is a set of edges.

2 G = learnStructure(T). // Algorithm 3
3 Θ = learnParameters(T ,G). // Algorithm 4
4 Let B = 〈G,Θ〉.
5 return B.

3.1.3.4 Selective KDB

SKDB (Martınez et al., 2016) is an extension of KDB with a smaller network
structure but better performance. SKDB considers a complete KDB model

55

Algorithm 3: learnStructure(T)
Input :A training set T
Output :A KDB structure G

1 Calculate MI(Xi;Y) from T for all attributes Xi ∈ X.
2 Calculate MI(Xi;Xj |Y) from T for each pair of attributes (i 6= j).
3 Let L be a list of all Xi in decreasing order of MI(Xi;Y).
4 V = {Y }; E = ∅.
5 for i = 1→ L.size do
6 V = V ∪ Li.
7 E = E ∪ (Y,Li).
8 vk = min(i− 1, k).
9 while vk > 0 do

10 m = argmaxj{MI(Li;Lj |Y)|1 ≤ j < i ∧ (Li,Lj) /∈ E}.
11 E = E ∪ (Lj ,Li).
12 vk = vk − 1.
13 end
14 end
15 return G.

Algorithm 4: learnParameters(T ,G)
Input :Training set T and G
Output :Θ

1 Initialize Θ to structure G.
2 Compute the CPTs for Theta from T .
3 return Θ.

is composed of K × n sub-models learned from a dataset with n predictive
attributes. It compares the performance of all the sub-models and selects
the best one as the final selected KDB (SKDB) model. Table 2 shows all
the sub-models for a full KDB-4 model build from 4 attributes, where Mi,j

means KDB with K = i using attributes from 1 to j.

Table 2: A full KDB-4 model is composed of many sub-models.

K Attributes (ordered by MI)
X1 X2 X3 X4

1 M1,1 M1,2 M1,3 M1,4

2 M2,1 M2,2 M2,3 M2,4

3 M3,1 M3,2 M3,3 M3,4

4 M4,1 M4,2 M4,3 M4,4

56

Figure 8 is the SKDB network structure of the Iris datasets. Compared
with the KDB structure, SKDB only selects the petal width and the petal
length as the two predictive attributes and the non-class parents for these
two attributes are all discarded.

petal
width

petal
length

sepal
length

sepal
width

Iris
class

Figure 8: The SKDB-2 structure for the Iris dataset.

Algorithm 5 shows the detail of learning an SKDB model. It firstly
learns the structure and the parameters of a complete KDB model. Secondly,
it requires one additional pass through the training data to select the best
sub-model using the Leave-One-Out Cross-Validation (LOOCV) (Step 7 -
14).

3.1.3.5 AODE

AODE (Webb et al., 2005) is an augmentation of NB that relaxes the strong
independence assumption of NB by averaging over several One-Dependence
Estimators (ODEs). In each of these estimators, a different attribute is set
to be the parent of all other attributes. Then, at prediction time, class
probability estimates from the different ODEs are averaged. AODE is an
efficient ensemble Bayesian Network classifier with the same simplicity of NB.

3.1.3.6 KDB Forest

KDF (Duan and Wang, 2017) is an ensemble model combining multiple KDBs
by changing the predictive attribute orders. The ensemble size of KDF is
equal to the number of attributes in the dataset. Each of these base KDB
estimators uses a different first attribute. The other attributes are ordered
according to the conditional mutual information with the previous attributes

57

Algorithm 5: learnSKDB(T ,K)
Input :A training set T with |X| features and |Y | classes
Input :A maximum number of parents value K
Output :A SKDB model B

1 G = learnStructure(T)
2 Θ = learnParameters(T ,G)
3 Let L be a list of all Xi in decreasing order of MI(Xi;Y).
4 Let P be a k × a matrix of posterior probabilities.
5 Let LF be a matrix of LOOCV results (of length k × a) initialized

with zeros.
6 Let Θ↓x be the B Θ with example x discounted from its CPTs.
7 for k′ = 1→ K do
8 P[k

′
][y∗] = p̂Θ↓x (y∗|x) ,∀y∗ ∈ Y .

9 for l = 1→ L.size do
10 Xmax = L.nextElement.

11 P[k
′
][y∗] = P[k

′
][y∗] · p̂Θ↓x

(
xmax|pak

′

xmax , y
∗
)
, ∀y∗ ∈ ΩY , where

pak
′

xmax are the k′ first parent-values of Xmax in x.
12 LF [k

′
][l] = LF [k

′
][l] + LossFunction(P[k

′
], yx), where P[k

′
] is

the vector of posterior probabilities considering the top l
attributes by MI.

13 end
14 end
15 Select b and k indexes with best LF .
16 Truncate Θ to attribute subset {1...b} and maximum number of

parents k.
17 Let B = 〈G,Θ〉.
18 return B.

already been chosen. KDF considers not only the mutual information between
attribute and the class, but also the conditional mutual information between
prior selected attributes, which they demonstrate makes an improvement to
performance. The classification accuracy of KDF outperforms single BNCs
and AODE.

Algorithm 6 shows the detail of how KDF learns the multiple attribute
order. Algorithm 7 shows the detail of how KDF learns the parent orders
for a given attribute order.

58

Algorithm 6: KDF: attribute order learning
Input :A training set T with attributes {X1, ..., Xn}
Output : Sequences {S1, ..., Sn}

1 for sequence Si, i ∈ {1, ..., n} do
2 Let Si be empty.
3 Let predictive attribute Xi be the root node.
4 Add the root node to Si.
5 while Si.size < n do
6 Compute Sum_CMIj for the predictive attribute Xj(j 6= i),

which is not in Si.
7 Select Xmax, which has the maximum value of Sum_CMIj .
8 Add Xmax to Si.
9 end

10 end

Algorithm 7: KDF: parent order learning
Input :A training set T with attributes X1, ..., Xn

Input : Sequences {S1, ..., Sn}
Output :A KDF classifier KDF

1 Compute CMI(Xi;Xj |Y), for each pair of attributes Xi and Xj ,
where i 6= j.

2 for sequence Si, i ∈ {1, ..., n} do
3 Let KDFi being constructed begin with a single class node, Y .
4 while KDFi.size < n do
5 Select the attribute Xfirst, which is the first attribute in Si and

not in KDFi.
6 Add a node to KDFi representing Xfirst.
7 Add an arc from Y to Xfirst in KDFi.
8 Select Xj , which is in KDFi and has the largest value of

CMI(Xfirst;Xj |Y), as the first parent of Xfirst.
9 Select other b− 1 parents from ancestor attributes of Xj by

comparing the value of CMI(Xfirst;Xp|Y), where Xp is one
of the ancestor attributes of Xj , b = min(d,K) and d is the
number of ancestor attributes of Xj .

10 end
11 Compute the conditional probability tables inferred by the

structure of KDFi by using counts from T .
12 KDF.add(KDFi).
13 end
14 return KDF .

59

3.1.4 Summary

In this section, we reviewed the existing Bayesian network classifiers, including
single classifiers NB, TAN, KDB and SKDB and ensemble classifiers AODE
and KDF. AODE and KDF are ensemble models build on TAN and KDB,
respectively. In Section 4.2, we show the details of how to build an ensemble
model of SKDB.

3.2 Decision Trees

In this section, the C4.5 algorithm is introduced first as a typical example of
decision tree learning algorithms. Then the bias and variance of the decision
tree are analyzed. The poor class probability estimates of decision trees and
the corresponding methods in recent years are then analysed. A summary is
provided at the end.

3.2.1 Background Knowledge: C4.5 Algorithm

C4.5 is a decision tree learning algorithm proposed by Quinlan (1993). This
algorithm is viral and ranks first among the top ten algorithms of data mining
(Wu et al., 2008). In 2011, authors of the Weka machine learning software
described the C4.5 algorithm as a “landmark decision tree program that is
probably the machine learning workhorse most widely used in practice to
date” (Garner et al., 1995).

Algorithm 8 shows the pseudo-code of building a decision tree classifier.
Given a training dataset T with attributes X and class Y , it first checks if
all the examples in T belong to the same class or T is small. If that is the
case, return the tree with a single leaf node labelled with the most frequent
class in T . Otherwise, select the attribute with the maximum information
gain Xbest as the splitting attribute of the root and create one child node for
each outcome value of the attribute. Partition T into corresponding subsets
T1, T2, ..., Tv according to the attribute outcome for each example. Then for
each child node, apply the same procedure recursively until all the nodes stop
growing.

Decision tree uses entropy (Shannon, 1948) to measure the homogeneity
of a sample. If the sample is completely homogeneous, the entropy is zero. If
the sample is equally divided into different classes, then it has entropy of logb

60

(entropy equals to one when b = 2). The entropy of a sample D is defined as

Entropy(D) = −
K∑
k=1

pk log pk, (43)

where pk = |Dk|
|D| is the probability of class k in the sample.

The information gain (Quinlan, 1986) is the decrease in entropy after a
sample is split on an attribute. Splitting on the attribute with the highest
information gain produce the most homogeneous branches. The information
gain for the sample D and attribute A is defined as

IG(D, A) = Entropy(D)−
|A|∑
i=1

|Di|
|D|

Entropy(Di), (44)

where |A| is the number of values of attribute A. Entropy(D) is the entropy
before splitting. Entropy(Di) is the entropy for the ith value of attribute A
after splitting. |Di||D| is the weight for the ith partition by splitting on A.

Algorithm 8: C4.5(root,T)
Input :A root node associated with dataset T with attributes

{X1, ..., Xn}
Output :A C4.5 Tree

1 if T is pure or other stopping criteria met then
2 return a tree with root labelled with the most frequent class.
3 end
4 for Xi ∈ {X1, ..., Xn} do
5 Compute information gain of splitting on Xi.
6 end
7 Let Xbest be the attribute with the largest information gain.
8 Create a root node split on Xbest.
9 Create children nodes Children and split data T to the children nodes.

10 for childv ∈ Children do
11 Treev = C4.5(childv, Tv,)
12 Attach Treev to the corresponding branch of Tree.
13 end
14 return Tree

61

3.2.2 The Bias-Variance of Decision Trees

A decision tree cannot produce accurate class probability estimates because
it aims to build small trees with accurate class label predictions rather than
accurate class probability estimates. Tree pruning techniques are used to
make decision trees more accurate by removing the nodes and branches at
the bottom of the tree that fitted to noise data. However, they are focused
on accuracy maximisation that is therefore not suited to estimate class
probabilities, especially for datasets with an unbalanced class distribution
because they tend to prune the decision tree down to a single node if all
classes except one are rare (Zadrozny and Elkan, 2001b).

The class probability estimates on the leaf nodes are usually calculated
by the observed relative frequencies. However, this method may lead to
unreliable estimates with high bias and high variance (Zadrozny and Elkan,
2001a). First, decision tree growing methods try to make leaves homogeneous,
so the observed relative frequencies are systematically shifted towards zero
and one. This leads to high bias estimates. Second, when the number of
training examples associated with a leaf is small, observed relative frequencies
are not statistically reliable, which leads to high variance estimates. To
conclude, the probability estimation of a decision tree is not reliable and
needs to be improved by proper machine learning techniques.

3.2.3 Existing Works on Improving Tree Estimates

The probability estimation of decision trees can be improved in many ways,
including smoothing, curtailment, ensemble and calibration. In this section,
we introduce these techniques one by one.

3.2.3.1 Tree Smoothing

Research suggests that when using decision trees to estimate class probabilities,
it is preferable to do no pruning, but use smoothed probabilities instead
(Zadrozny and Elkan, 2001b). Provost and Domingos (2003) believe that a
thorough study of what are the best smoothing methods (and why) for PETs
would be a useful contribution to machine learning research. Probability
smoothing techniques, including Laplace correction and M-estimation, has
been used for PETs in many research works and get improved probabilities
than MLE.

62

3.2.3.2 Tree Curtailment

Tree curtailment method is based on the idea that if the parent of a small leaf,
i.e. a leaf with few training examples, contains enough examples to induce a
statistically reliable probability estimate, then assigning this estimate to a test
example associated with the small leaf may be more accurate than smoothed
estimates. When classifying an example, curtailment stops searching the
decision tree as soon as it reaches a node that has less than v examples, where
v is a parameter of the method. Their experiments show that v between
100 and 400 give similar results. Zadrozny and Elkan (2001b) recommend
to combine curtailment with smoothing to produce relatively small and
hence understandable decision trees, while still giving high-resolution, well-
calibrated probability estimates.

3.2.3.3 Tree Ensemble

Zadrozny and Elkan (2001a) suggest that Bagging does not give probability
estimates that are unbiased and well-calibrated, whether or not the base
learning method is stable. However, Chawla and Cieslak (2006) and Provost
and Domingos (2000) show that Bagging substantially improves probability
estimates even for large and unbalanced datasets. They recommend Bagging
or other ensemble generation methods with decision trees for improving the
calibration of the probability estimates of decision trees. Bagging can reduce
the variance and bias in estimation effectively.

Smoothing and ensembles both can improve the probability estimates
of decision trees, but smoothing does not help much for ensemble models.
Chawla (2006) show that the prior smoothing at the leaves using Laplace
smoothing does not offer much gain with ensembles. Besides, Bostrom (2007)
has investigated Laplace correction, M-estimation into the random forest, but
each of them has its limitations. Then in 2008, he applied calibration methods
to RF, Platt scaling and Isotonic regression, which has been proved successful
in other applications but less beneficial for RF (Boström, 2008). Further,
Boström (2012) focuses on improving the probability estimates performance
of forests by introducing four types of forest: a forest of classification trees,
a forest of PETs using relative frequency, a forest of PETs using Laplace
estimate and a forest of PETs using the M-estimation. He concluded that
Laplace and m-estimate have a similar performance compared to the forest

63

of classification trees and forest of PETs. He demonstrated that probability
correction should only be employed in small forests of PETs and that for
larger forests, classification trees and PETs are equally good alternatives.

3.2.3.4 Tree Calibration

Probability calibration methods are a similar way to smoothing to help
improve the probabilities. Platt scaling (Platt et al., 1999) is a probability
calibration method proposed by Platt for support vector machines (SVMs).
In this method, predictions in the range [−∞,+∞] are passed through a
sigmoid function to produce probability estimates in the range [0, 1] . The
sigmoid function is fitted with logistic regression. It produces probability
estimates

P (y = 1|x) =
1

1 + exp(Af(x) +B)
.

i.e. a logistic transformation of the classifier score f(x), where A and B

are two scalar parameters that are learned by the algorithm. Note the
prediction can now be made according to y = 1 iff P (y = 1|x) > 1/2; if
B 6= 0, the probability estimates contain a correction compared to the old
decision function. The parameters A and B are estimated using a maximum
likelihood method that optimises on the same training set as that for the
original classifier f . To avoid overfitting to this set, a held-out calibration set
or cross-validation can be used, but Platt additionally suggests transforming
the labels y to target probabilities

y+ =
N+ + 1

N+ + 2
, y− =

1

N− + 2
.

HereN+ andN− are the number of positive and negative samples, respectively.
This transformation follows by applying Bayes’s rule to a model of out-of-
sample data that has a uniform prior over the labels. Platt scaling has been
shown to be effective for SVMs as well as other types of classification models,
including boosted models and even naive Bayes classifiers.

An alternative approach to probability calibration is to fit an Isotonic
regression model to an ill-calibrated probability model. Isotonic regression
is more general than Platt scaling because no assumptions are made about
the form of the mapping function, other than it needs to be monotonically
increasing (isotonic). This has been shown to work better than Platt scaling,

64

in particular, when enough training data is available.
Niculescu-Mizil and Caruana (2005) experimented with calibration meth-

ods, including Platt Scaling and Isotonic Regression, to correct the poor
probability estimates predicted by decision tree classifiers. Both of Platt
scaling and Isotonic regression can only be used for binary classification
problems when a one-vs-rest method (Rifkin and Klautau, 2004) used for
multiclass classification. Furthermore, Rüping (2006) shows that both of them
are greatly affected by outliers in the probability space. In their research,
Platt scaling is modified using methods from robust statistics to make the
calibration less sensitive to outliers. Jiang et al. (2011) proposes to construct
a smooth, monotonically increasing spline that interpolates between a series
of representative points chosen from an isotonic regression function. Zhong
and Kwok (2013) incorporates manifold regularisation into isotonic regression
to make the function smooth, and adapt the technique to be better suited to
calibrating the probabilities produced by an ensemble of classifiers, rather
than a single classifier.

Leathart et al. (2017) proposed a probability calibration tree model, a
modification of logistic model trees that identifies regions of the input space
in which different probability calibration models are learned to improve per-
formance. They compare their model to Platt scaling and Isotonic regression
and show that their model results in lower root mean squared error on average
than both methods, for estimates produced by a variety of base learners.

3.2.4 Summary

In this section, we introduced the C4.5 decision tree learning algorithm,
analysed the bias and variance of decision trees and reviewed the existing
works on improving the class probability estimation of decision trees. In
Chapter 5, we propose a new hierarchical smoothing method HGS and
compare it with the existing methods listed in this section.

65

Chapter 4

ESKDB Algorithm for
Bayesian Network Classifiers

As we have discussed in Section 1.3, building the ESKDB (Ensemble model
of SKDB) model is important. First, we know that Random Forest is a
very successful ensemble model of decision trees, but we do not have an
ensemble model of Bayesian network classifiers (BNCs) that can compete
with Random Forest. Second, Bayesian network classifiers can analyse larger
datasets because they can be learnt out-of-core, while Random Forest is an
in-core learner. Third, SKDB can only deal with categorical data, but we
would like to build an ensemble model that can deal with both categorical
and numerical data. In this chapter, we show the details of building the
ESKDB model and conduct an extensive set of experiments to compare it
with existing models.

4.1 Introduction

With the rapid development of Web technologies in the last decades, large
datasets are created everywhere, such as in social media, E-commerce and
health care. In-core algorithms, e.g. Random Forest (RF) (Breiman, 2001)
and Support Vector Machines (SVM) (Hearst, 1998), are less suited to large
amounts of data because they require the data to be stored in main memory.
Out-of-core learners – i.e. algorithms that can learn from a dataset without
holding it fully in the main memory – appear to be more suited to large
quantities of data because of their ability to scale. Bayesian network classifiers

66

are out-of-core learners and thus show great potential; instances of this class
of classifiers include the famous Naïve Bayes (NB) (Lewis, 1998) algorithm,
Tree Augmented Naïve Bayes (TAN) (Friedman et al., 1997), K-Dependence
Bayes (KDB) (Sahami, 1996), as well as Selective KDB (SKDB) (Martınez
et al., 2016). Note, SKDB was shown to be competitive to RF on categorical
data.

A BNC is a directed acyclic graph whose nodes represent the variables of
the dataset and edges indicate the direct dependencies between those variables.
Generally the target or class variable is a parent of all other variables, with
several additional connections existing between the other variables. The
bias/variance trade-off of BNCs can be easily tuned by putting a limit on
the maximum number of parents that a node can have. With k parents, the
model then looks at all possible combinations of the (k + 1) nodes connected
with each other. The higher the value of k, the lower the bias of the algorithm
(and usually the higher the variance as well).

SKDB is a highly scalable BNC that achieves a good trade-off between
structural complexity and classification performance by efficiently choosing
the value of the maximum number of parents (maxK). For large datasets,
a higher complexity or low-biased model is preferable because it allows the
model to capture fine detail in data more precisely. But this low bias model
has more parameters and potentially higher variance, leading to poorer
predictions. As a result, more data is usually needed (or a superior parameter
estimation technique, as we will see later).

In this chapter, we propose to ensemble the SKDB algorithm to both
increase its accuracy as well as to make it applicable to numerical data. There
are two broad frameworks for ensembling, Bayesian model averaging (Hoeting
et al., 1999), first implemented for Bayesian networks in (Madigan et al.,
1995), and the more frequentist style commonly associated with ensembles
(Zhou, 2012) best illustrated by Random Forest (Breiman, 2001). We use the
second broad framework because it is more suited to larger amounts of data.

The difficulty in creating an ensemble of a base classifier lies in varying the
results of the original classifier without raising the bias of the base classifier,
and while keeping the covariance between the (varied) classifiers low. To
do this, we combine two sources of stochasticity: (1) we vary the order
in which the variables are considered, which controls what combination of
attributes will be considered and (2) we vary the discretisation for numerical

67

attributes, which allows different ‘elemental’ classifiers of the ensemble to
consider different cut-points. We will detail in Section 4.2 how these
stochasticities are defined to obtain both high accuracy and diversity of
the elemental classifiers composing the ensemble. Finally, we add a third
component to ESKDB in using an advanced smoothing technique based on
Hierarchical Dirichlet Processes (HDP): it allows to control the variance of
ESKDB further and, as we will show, substantially improves accuracy and
probability calibration.

We carry out an extensive set of experiments on 72 datasets with data
quantity up to 5M examples. We start by performing a large sensitivity
analysis to show the influence of each of the three contributions on our final
ESKDB algorithm (varying the attribute order, varying the discretisation and
advanced smoothing). Having shown that all three components indeed bring
significant improvement to the classifier, we then proceed by showing how it
compares with the state of the art methods. We start by comparing ESKDB
to existing Bayesian network classifiers – NB, TAN, KDB, KDF, AODE
and SKDB. We show that ESKDB significantly outperforms state-of-the-art
BNCs. We then proceed to compare ESKDB to non-BNCs. Our results show
that ESKDB significantly outperforms both XGBoost (Chen and Guestrin,
2016) with default parameterisation and Random Forest (Breiman, 2001) and
that its performance is not significantly different from XGBoost with highly
tuned parameters. We believe these are strong results because ESKDB can
handle both numerical and categorical data while being able to perform with
a limited number of passes over the data (and hence not needing to load
the data in main memory such as RF and XGBoost). We finally complete
our experiments section by studying the running time of ESKDB and give
guidance on using different smoothing methods on ESKDB.
The main contributions of this chapter are as follows:

• A novel ensembling method for Bayesian network classifiers – ESKDB –
with two novel elements:

– we vary the attribute order over the variables by sampling orders
following the mutual information with the class;

– we vary the number of cut-points for the discretisation of each nu-
merical attribute by sampling the information gain (and combined
with the MDL stopping criterion).

68

• An improved probability estimation technique: we add a prior to
existing Hierarchical Dirichlet Process smoothing techniques. The result
is a sampler that requires only 10% percent of the samples compared
to the state-of-the-art one proposed in (Petitjean et al., 2018).

Put together, these three components make ESKDB become the most accu-
rate Bayesian Network Classifier to date. It achieves better accuracy, better
probability calibration, can handle numerical attributes and does all these
much faster than the state-of-the-art BNC – SKDB-HDP (Petitjean et al.,
2018). We show that our classifier runs virtually parameter-free and signif-
icantly outperforms Random Forest and scores just behind a highly-tuned
XGBoost algorithm.

4.2 ESKDB Algorithm

Like most other Bayesian network classifiers, the learning process for ES-
KDB consists of two steps: structure learning and parameter learning. The
structure learning process is achieved by constructing E different SKDB clas-
sifiers, while the parameter learning process is to apply probability smoothing
techniques to each SKDB classifier.

Algorithm 9 is the learning algorithm of ESKDB: it takes as inputs a
training set T and an user-supplied ensemble size E. It returns an ensemble
model B that consists of E different SKDB classifiers. The algorithm first
initialises B to be an empty set (line 1). Then in the second step, it learns E
different SKDB classifiers one by one and adds them into B (line 2-10). Last,
it returns the ensemble model B (line 11).

The second step of learning the ESKDB model is to learn different SKDB
classifiers one by one in the ensemble. To enable ESKDB to work with
numeric attributes and further increase the diversity of ESKDB, ESKDB first
learns the different cut points for numerical attributes before learning the
structure and parameters of each SKDB classifier. The cut points cutPointsi
for classifier Gi are learned by Algorithm 10, which will be explained in
detail in the next section. The training data T is then discretized into Ti
according to the cutPointsi. The attribute order Oi for classifier Gi is learned
by Algorithm 11, which will be described in detail in Section 4.2.2. After
the cut points and attribute order are learnt, it then learns a standard SKDB
classifier learnSKDB(Oi, T ,K) except that the attribute order Oi is given.

69

Last, it learns the parameters by applying probability smoothing methods,
such as M-estimation and HDP, to improve the parameter estimates. Then
complete the ith SKDB classifier Bi by combining the Gi and Θi together.

Algorithm 9: learnESKDB(T , E,K)
Input : A training set T
Input : an ensemble size E
Input : The maximum number of parents allowed in SKDB K
Output :An ESKDB model B

1 Let B ← ∅.
2 for i← 1 to E do
3 cutPointsi ← learnDiscretizer(T). // Section 4.2.1
4 Ti ← discretize(T , cutPointsi)
5 Oi ← randomSampleForOrders(Ti). // Algorithm 12
6 Gi ← learnSKDB(Oi, Ti,K). // (Martınez et al., 2016)
7 Θi ← learnParameters(Gi, Ti). // build CPTs and smooth
8 Bi ← (Gi,Θi, cutPointsi).
9 B ← B ∪ Bi.

10 end
11 return B.

4.2.1 Randomized Discretization

The first source of stochasticity to make ESKDB more diverse is to make each
classifier in the ensemble have its own cut points for continuous attributes.
We achieve this by proposing a new randomised discretisation method for
continuous attributes based on the method of MDLP (Fayyad and Irani,
1993).

Algorithm 10 is called in the ESKDB algorithm to learn the cut points
for each classifier. For each of the numerical attribute in the training data, it
first calculates all the candidate cut points. As done in the MDLP method,
the candidate cut points are all the midpoint values PA for each pair of
adjacent attribute values after the example are sorted with the attribute
value in ascending order. Second, it randomly selects cut points from PA

using Algorithm 11. Third, it gathers the selected cut points PSA to the set
cutPoints and returns.

The MDLP method calculates the entropy and the MDLP threshold for
each cut point. The difference between the entropy and the threshold can
be easily calculated. The points with a positive difference satisfy the MDLP

70

Algorithm 10: learnDiscretizer(T)
Input : A dataset T
Output :A set cutPoints containing the selected cut points for each

continuous attribute
1 Let cutPoints← ∅
2 for each attribute A ∈ T do
3 if A is numerical then
4 PA ← allPossibleCutPoints(A)// First, arrange all the

values of A from smallest to largest, then
calculate the middle value of every two values as
one of the possible cut points of A. To make
ESKDB model out-of-core, we only select a subset
of T to calculate the possible cut points.

5 PSA ← randomSampleCutPoints(PA, true) // Algorithm 11
6 cutPoints← cutPoints ∪ PSA
7 end
8 end
9 return cutPoints.

criteria and can be accepted. The cut point with the largest difference is
selected as the best cut point. Then the same process is conducted recursively
for the left subset and the right subset. The selection will be stopped when
none of the points in the current set can meet the MDL criteria.

In our method, instead of selecting the best cut point, we pick one at
random from all the points that satisfy the MDLP criteria. The random
sampling can be done by first building a probability vector over all the cut
points and then normalizing it into a probability distribution. The value in
the vector is the difference between the entropy of each cut point and the
MDLP threshold. Points with negative difference value will have probability
set to 0 to guarantee that they are not selected. After randomly selecting a cut
point from this distribution, the selection process can be applied recursively
to the left and right subset (as in the deterministic case) until none of the
points meets the MDLP criteria.

In the extreme case that all points do not meet the MDLP metric the first
time a random selection is performed, the selection will be stopped with no
point being selected.. This is not appropriate for an ensemble model because
it greatly reduces ensemble diversity. To allow for more diversity, we return
at least one cut point in this case, selected by normalising the entropy into a

71

probability distribution and sampling from it.
Algorithm 11 shows how to randomly sample cut points. The algorithm

is easier to understand with the above ideas explained. The input is a set
of possible cut points P and a flag firstF lag. The output is a set of the
selected cut points Ps. The algorithm starts by calculating the entropy vector
IG and the difference vector IGt (line 3-14). If the extreme case occurs,
i.e. the

∑|IGt|
i=1 IGti = 0 and firstF lag = true, normalize the entropy vector

IG, samples a cut point and return it (line 16-26), otherwise, sample a cut
point from the normalized IGt and recursively selects point for the left subset
Pl = {p ∈ P|p < ps} and the right subset Pl = {p ∈ P|p > ps} (line 28-35).

4.2.2 Randomized Attribute Ordering

The second source of stochasticity to ensure ESKDB has more diversity is
sampling the attribute order for each SKDB classifier in our ESKDB model.
As discussed in Section 3.1, the attribute order determines the dependencies
between the attributes. The top selected attribute is more likely to be selected
as the parent of another attribute. SKDB and KDB both calculate the Mutual
Information MI(Ai;Y) to measure the correlation between attributes Ai and
the class Y . The attribute order is decided by sorting the attributes with the
MI in descending order.

We know from experience that the larger the MI value, the more likely
the attribute is to be chosen first in the attribute order. This motivated us to
normalise the MI into a probability distribution to do the attribute sampling.
The method returns O a sampled attribute order to build an SKDB classifier.

4.2.3 Randomized Parent Ordering

The parent order of each attribute is the parent nodes in order of CMI
values from largest to smallest. Instead of choosing the best parent order
for each attribute, we can also increase ESKDB’s diversity by ensembling
on the parent order of the SKDB classifier. However, the results of this
approach have not improved the performance of ESKDB much. It can be
better explained by an example. Assume that the parent order for attribute
X3 is (X1, X2) and we would like to estimate the probability P (X3|X1, X2).
However, the difference between P (X3|X1, X2) and P (X3|X2, X1) is not
big. If we learn the probability using single-layer methods, such as MLE,

72

Algorithm 11: randomSampleCutPoints(P, firstF lag)

Input : possible cut points P
Input : firstF lag ← true if this is the first time this method been called

to ensure we have at least 1 cut point
Output : the selected cut points Ps

1 Ps ← ∅
2 /* we sample cut points by building a probability distribution

over all the possible cut points. */
3 Let IG be a vector of the information gain for all the cut points in P
4 Let IGt be a vector of the information gain minus the MDL threshold.
5 for each cut point p ∈ P do
6 IGp ← InformationGain(p)
7 thresholdp ←MDL(p)
8 // refer to
9 IGt

p ← IGp − thresholdp
10 if IGt

p < 0 then
11 // if p doesn’t meet the MDL criterion, then p will not

be selected
12 IGt

p ← 0

13 end
14 end
15 /* if all the cut points do not meet the MDL criterion and

firstF lag = true , we assume that we get at least 1 cut point
*/

16 if
∑
IGt = 0 then

17 if firstF lag then
18 Normalize IG into a probability distribution.
19 if

∑
IG 6= 0 then

20 ps ∼ IG
21 Ps ← Ps ∪ {ps}
22 return Ps

23 end
24 end
25 return ∅
26 end
27 /* Otherwise, at least one cut point meet the MDL criterion */
28 Normalize IGt into a probability distribution.
29 ps ∼ IGt

30 Ps ← Ps ∪ {ps}
31 /* recursively calling the left and right of ps */
32 Pl ← {p ∈ P|p < ps}
33 Pr ← {p ∈ P|p > ps}
34 Ps ← Ps ∪ randomSampleCutPoints(Pl, false)
35 Ps ← Ps ∪ randomSampleCutPoints(Pr, false)
36 return Ps

73

Algorithm 12: randomSampleForOrders(T)
Input :A training set T with attributes A
Output :Orders O

1 n← |A|
2 MI← {MIi ← 0, i = 1, ..., n}
3 for each Ai ∈ A do
4 MIi ← mutualInformation(Ai;Y)
5 end
6 Sort MI in decreasing order.
7 Reorder A corresponding to the sorted MI.
8 Let O ← ∅.
9 while |O| < n do

10 MI ← normalize(MI) // normalize MI into a probability
distribution

11 z ∼MI // random sample from MI
12 O ← O ∪Az.
13 MIz ← 0. // make sure Az will not be selected again
14 end
15 return O

Laplace smoothing or M-estimation, the results are the same. Only with
the hierarchical probabilistic smoothing method does the result change a bit.
In consideration of increasing the diversity of SKDB classifiers in ESKDB,
we do not consider working on parent order in building the final ESKDB
model. In fact, the parent order is heavily influenced by the attribute order,
because only attributes that are sorted earlier than the current attribute can
be selected as its parent.

4.2.4 Parameter Learning

The two sources of stochasticity mentioned above are to make each SKDB
classifier in the ESKDB model have a different network structure. After
the structures are learnt, parameter learning is required for each classifier.
Algorithm 13 shows the details of learning the parameters for each SKDB
classifier in ESKDB. Instead of using frequencies calculated by MLE, proba-
bility smoothing techniques, such as HDP smoothing and M-estimation, can
be applied to improve the probability estimates of the parameters in this
step.

74

Algorithm 13: learnParameters(G, T)
Input :Training set T and classifier G
Output : parameter Θ

1 Configure Θ for structure G.
2 Collect the Conditional Probability Tables for Θ by going through T .
3 Apply HDP smoothing or M-estimation for each of the conditional tree.
4 return Θ

4.2.5 Improved HDP Smoothing

A critical issue for HDP estimation shown in (Petitjean et al., 2018) is its
computational complexity. They show that the Gibbs sampler with 50,000
iterations gives the most accurate probability estimates, and they believe
that even more iterations could further improve accuracy. The training
time complexity increases linearly with the number of iterations, and 50,000
iterations make HDP extremely slow.

In this section, we show how to improve this dramatically. In our new
method, only 1,000 iterations could give very accurate estimates. We achieve
this by adding more carefully thought out priors on the concentration param-
eter. Algorithm 14 describes the sampling for concentration parameters in
the tree, taken from (Buntine and Mishra, 2014). In the experiments, we
use a Gamma(2, 1) prior instead of the uniform prior of (Petitjean et al.,
2018), which corresponds to having priorShape = 2 and priorRate = 1 in
Algorithm 14. This makes α have a prior mean of 2 and a prior standard de-
viation of 1.4, and this is a default prior reported to work well with advanced
topic models (Buntine and Mishra, 2014).

4.2.6 Testing Algorithm

Given a test sample, ESKDB USES each SKDB classifier to test the sample
and simply averages all the predictions as the final prediction. A very
important point in the test algorithm is that since each SKDB Bi has its
own cut points Bi.cutPoints for numerical attributes, the test sample needs
to be discretized with the cut points of each SKDB classifier before making
predictions. Algorithm 15 shows the details of the testESKDB algorithm.

75

Algorithm 14: sampleConcentration(α, nodes, priorShape,
priorRate)
Input :α: concentration to sample
Input :nodes: nodes sharing this concentration parameter (tying)
Input : priorRate: prior on rate
Input : priorShape: prior on shape

1 rate← priorRate
2 sumTk ← 0
3 for each node ∈ nodes do
4 q ∼ Beta(α, node.n)
5 rate← rate− log(q)
6 sumTk ← sumTk + node.t

7 end
8 α ∼ Gamma (sumTk + priorShape , rate)
9 for each node ∈ nodes do

10 node.α← α
11 end

Algorithm 15: testESKDB(test, B)
Input :A test example test
Input : an ESKDB classifier B with E classifiers and K classes
Output :A predicted probability distribution res

1 for i← 1 to E do
2 testi ← discretizeExample(test,Bi.cutPoints)
3 resi ← testSKDB(testi,Bi)
4 res← res ∪ resi
5 end
6 return normalize(res).

4.3 Experiment Results

The aim of this section is to compare the performance of our ESKDB model
with out-of-core BNCs (NB, TAN, KDB, SKDB, AODE and KDF) in Sec-
tion 4.3.2. The advantages of the two sources of stochasticity in ESKDB
is demonstrated in Section 4.3.3. The ensemble size is learned in Sec-
tion 4.3.4. The parameters of HDP smoothing is learned in Section 4.3.5.
Different probability smoothing techniques, such as HDP smoothing and
M-estimation, are compared in Section 4.3.6. XGBoost and RF, as the two
most powerful tree ensemble models, are also compared in Section 4.3.7.
We compare ESKDB with the fully discretized data in Section 4.3.8. Last,

76

we compare the running time of ESKDB and other models in Section 4.3.9.
In Section 4.3.1, we give the general settings for our experiments.

4.3.1 Experiment Design and Setting

Design: An extensive set of experiments are conducted on 72 standard
datasets, where most of them are from the UCI archive (Lichman, 2013), but
some larger datasets are also included from (Martınez et al., 2016). Table 3
summarizes the characteristics of 72 datasets, including the dataset name, size
and number of attributes. A missing value is treated as a separate attribute
value.

Evaluation Measure: We use 5 times 2-fold cross-validation for all the
methods because it has lower variance than 10-fold cross-validation. Although,
for the six largest datasets in Table 3, only a single run of 2-fold cross-
validation is required because the test set is sufficiently large. The results
are assessed by RMSE and 0-1 Loss. Win-Draw-Loss (WDL) is used when
comparing two different models. A one-tail binomial sign test is used to
determine the significance of the results, using p ≤ 0.05. RMSE is the square
root of the Brier score in discrete contexts, which is used to measure how
well-calibrated the probability estimates are. We use RMSE as the most
important measure because the main research goal of this paper is to improve
the probability estimates, a reasonable proxy for a variety of other decision
contexts.

Software: To ensure reproducibility of our work and allow other researchers
to build on our research easily, we have made our source code for ESKDB
available on Github 1.

Compared models and parameters: In our experiment, we use BNCs
including NB, TAN, KDB, SKDB, AODE, KDF and ESKDB, and tree-based
ensemble models including RF and XGBoost. We compare HDP and M-
estimation as the smoothing techniques for them. Here M-estimation is used
with a backoff strategy, which means when the leaf node has no data, back
off the probability estimates to its nearest non-empty ancestor. The list of
parameter settings is shown in Table 4.

1https://github.com/icesky0125/ESKDB-on-numerical-data

77

https://github.com/icesky0125/ESKDB-on-numerical-data

Table 3: Datasets for ESKDB.

Domain Case Att
Donation 5,749,132 12
Poker-hand 1,025,010 11
Census 299,285 42
Skin-Segment 245,057 4
Localization 164,860 6
Diabetes 101,766 47
Connect-4 67,557 43
Shuttle 58,000 10
Adult 48,842 15
Letter Recognition 20,000 17
Magic 19,020 11
Nursery 12,960 9
Sign 12,546 9
Pen Digits 10,992 17
Thyroid 9,169 30
Mushrooms 8,124 23
Musk2 6,598 167
Satellite 6,435 37
Optical Digits 5,620 49
Texture 5500 41
Page Blocks 5,473 11
Wall-following 5,456 25
Nettalk(Phoneme) 5,438 8
Waveform-5000 5,000 41
Spambase 4,601 58
Abalone 4,177 9
Hypothyroid 3,772 30
Sick 3,772 30
Kr vs. kp 3,196 37
Splice-C4.5 3,190 62
Segment 2,310 20
Car 1,728 8
Yeast 1,484 9
Contraceptive-mc 1,473 10
German 1,000 21
LED 1,000 8

Domain Case Att
Vowel 990 14
Tic-Tac-Toe 958 10
Anneal 898 39
Vehicle 846 19
PIndiansDiabetes 768 9
BreastCancer-w 699 10
Credit Screening 690 16
Balance Scale 625 5
Syncon 600 61
Chess 551 40
Cylinder 540 40
Musk1 476 167
House Votes84 435 17
Horse Colic 368 22
Dermatology 366 35
Ionosphere 351 35
Primary Tumor 339 18
Heart Disease-c 303 14
Hungarian 294 14
Audiology 226 70
New-Thyroid 215 6
Glass-id 214 10
Sonar 208 61
Autos 205 26
Wine 178 14
Hepatitis 155 20
Teaching Assistant 151 6
Iris 150 5
Lymphography 148 19
Echocardiogram 131 7
Promoters 106 58
Zoo 101 17
Post-operative 90 9
Labor 57 17
Lung Cancer 32 57
Contact-lenses 24 5

78

Table 4: List of parameters.

Methods Parameters

BNCs K = 5 (Number of maximum parents allowed for each feature)
E = 10 (ensemble size for ESKDB)

HDP
Iteration = 1000 (Gibbs sampling iteration)
BurnIn = 100 (Collect counts after sampling for 100 times)
Tying (tying some nodes to share the same concentration)

M-estimation M = 1/C (the value for calculating M-estimation,
C is the number of class labels)

RF F = 100 (number of trees in random forest)
Atts = log2(n) + 1 (number of splitting attributes allowed)

XGBoost
objective = softprob (softmax objective)
rounds = 100 (the number of rounds for boosting)
others = default

4.3.2 ESKDB is better than existing BNCs

In this section, we compare several single BNCs, including NB, TAN, KDB
and SKDB with our proposed ensemble model ESKDB using M-estimation.
This is to show the benefit of ensembling of our model. Besides, we also
compare ESKDB with two other existing ensemble models of BNCs, including
AODE and KDF. This is to show our ensembling technique is better than
the others. The ensemble size of ESKDB is set to be 10 in this part.

Figure 9 shows the averaged RMSE and 0/1 Loss over all the datasets
for each model mentioned above, which are represented by blue curve and red
curve respectively. It clearly shows that our ESKDB with only 10 classifiers
gets much better performance than other models both on RMSE and 0/1
loss.

Table 5 shows the Win-Draw-Loss result of comparing ESKDB with the
existing BNC models. Values in boldface are statistically significant tested
by a one-tailed binomial sign test. A difference is considered to be significant
if p ≤ 0.05. It can be seen from this table that ESKDB is significant better
than all of the existing Bayesian network classifiers both on RMSE and error
rate.

4.3.3 The benefits of the two stochasticities in ESKDB

In this section, we show the benefit of the two stochasticities in our ESKDB
model. The first one is that the cut points are randomly selected for each

79

NB TAN KDB KDF AODE SKDB ESKDB
Bayesian Network Classifiers

0.22

0.23

0.24

0.25

0.26

0.27

0.28
R

M
S

E

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

E
rr

or
 r

at
e

RMSE
Error Rate

Figure 9: The blue curve is the RMSE for NB, TAN, KDB, SKDB, KDF,
AODE and our proposed ESKDB with 10 SKDB classifiers. The
red curve is the corresponding 0/1 loss. All the values are averaged
over all the datasets listed in Table 3.

.

Table 5: Win-Draw-Loss for the ESKDB compared with existing BNCs.
The value in boldface is statistically significant better tested by
a one-tailed binomial sign test. A difference is considered to be
significant if p ≤ 0.05.

ESKDB vs. RMSE 0/1 Loss
NB 63-0-9 60-1-11
TAN 64-0-8 57-2-13
KDB 64-0-8 61-2-9
KDF 71-0-1 67-2-3
AODE 62-1-9 60-0-12
SKDB 60-0-12 59-3-10

SKDB classifier in the ensemble. The second one is that the attribute order
of each SKDB is randomly selected.

First, to show the benefits of the first stochasticity, we compare ES-
KDB with ESKEB_randomO, which represents ESKDB with stochasticity
on attribute orders only. Figure 10 is the scatter plot ESKDB with ES-
KDB_randomO on both RMSE and 0/1 Loss. The dots above the diagonal
line represent ESKDB performs better on these datasets, and the dots be-
low the diagonal line represent the other model is better. It can be seen

80

from this figure that the random selection of the cut points makes ES-
KDB perform better both on RMSE and 0/1 Loss compared with same cut
points in ESKDB_randomO. The averaged RMSE value of ESKDB and
ESKDB_randomO are 0.2248± 0.016 and 0.2326± 0.017, respectively. This
means that the random selection of cut points makes an ensemble model have
more diversity.

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

RMSE

Here ESKDB wins

Here ESKDB_randomO wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

0/1 Loss

Here ESKDB wins

Here ESKDB_randomO wins

Figure 10: Scatter plot of ESKDB with ESKDB_randomO.

Second, to show the benefits of the random selection of the attribute order
for each SKDB classifier, we compare ESKDB with ESKDB_randomCP,
which represents ESKDB but where the attribute orders are not sampled.
Figure 11 is the scatter plot of ESKDB and ESKDB_randomCP. It can
be seen from this figure that ESKDB performs slightly better than ES-
KDB_randomCP, which indicates that the second stochasticity of the at-
tribute orders can also make our ESKDB model have more diversity and get
better results.

Two compare the importance of these two randomnesses, we show the
scatter plot of ESKDB_randomCP with ESKDB_randomO, as shown in
Figure 12. It can be seen from this figure that the two versions of ES-
KDB have a quite similar effect on ESKDB. The averaged RMSE value
of ESKDB_randomO and ESKDB_randomCP are 0.2326 ± 0.017 and
0.2312± 0.017, respectively. This indicates that the randomness of the cut
points makes ESKDB slightly better than the randomness of the attribute

81

orders.

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
C

P

RMSE

Here ESKDB wins

Here ESKDB_randomCP wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
C

P

0/1 Loss

Here ESKDB wins

Here ESKDB_randomCP wins

Figure 11: Scatter plot of ESKDB with ESKDB_randomCP.

0 0.1 0.2 0.3 0.4 0.5
ESKDB_randomCP

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

RMSE

Here ESKDB_randomCP wins

Here ESKDB_randomO wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB_randomCP

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

0/1 Loss

Here ESKDB_randomCP wins

Here ESKDB_randomO wins

Figure 12: Scatter plot of ESKDB_sameO compared with ESKDB_sameP.

4.3.4 The ensemble size of ESKDB

In this part of the experiment results, we show how ESKDB performs with
different ensemble sizes, including 1, 10, 20, and 30. Figure 13 shows that

82

both RMSE and 0/1 Loss has a big improvement when ensembling on 10
SKDB classifiers compared with one single classifier. However, we increase
the ensemble to 20 and 30, but further improvement is not as big. This
indicates that our ESKDB with only 10 classifiers already gives good results.
In the following experiments, 10 is used for ESKDB.

1 10 20 30
Ensemble Size

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
RMSE
0/1 Loss

Figure 13: The RMSE and 0/1 Loss changes as the increasing of the en-
semble size.

4.3.5 Improved HDP

In this part of the experiment results, we test the four different tying strategies
of HDP smoothing on ESKDB and the benefit of the new Gamma prior, as
was discussed in Chapter 2. Figure 14 shows the RMSE of HDP smoothing
using four different tying strategies and two different priors. It can be seen
from this figure that no matter which tying strategy HDP used, the result of
the new Gamma(2,1) is always better than the uniform prior. Besides, the
Level strategy gets the best performance among all the four tying strategies.
The Level tying strategy and the Gamma(2, 1) are used in the following
experiments.

4.3.6 HDP compared with M-estimation for ESKDB

HDP has been shown for single Bayesian network classifiers to achieve more
accurate parameter estimates compared with M-estimation. Here we aim

83

None Parent Level Single
Tying Strategies

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25
RMSE

Gamma(2,1)
No Prior

Figure 14: The HDP smoothing using different tying strategies and the new
prior.

to verify that HDP could also improve the performance of ensemble models.
Note that for decision trees, conventional wisdom is that no smoothing leads
to superior results with ensembles, but we need to check the case for Bayesian
network classifiers.

Table 6 is the WDL of HDP compared with M-estimation applied to
ESKDB. We can see from this table that HDP outperforms M-estimation on
ESKDB both on RMSE and on 0/1 Loss. This indicates that HDP smoothing
is helpful both to single and ensemble models. The averaged performance
for HDP and M-estimation are shown in Table 7. HDP makes the RMSE
improve from 0.2252 to 0.2227 with a cost of 7 times longer training time.

Both M-estimation and HDP can get good estimates, but they have
advantages and shortcomings. M-estimation on ESKDB gets good results
compared with the state-of-the-art classifiers with only a limited learning
time. HDP achieves better performance but with a cost of computation. We
recommend the use of HDP for ESKDB and use that configuration in the
remainder of this paper.

4.3.7 ESKDB compared with XGBoost and RF

In this section, we compare our ESKDB model with the two state-of-the-art
ensemble classifiers: Random Forest (RF) and XGBoost. RF is built with 100

84

Table 6: Win-Draw-Loss for the ESKDB using HDP and M-estimation. The
value in boldface is statistically significant better tested by a one-
tailed binomial sign test. A difference is considered to be significant
if p ≤ 0.05

Classifiers RMSE 0/1-loss
ESKDB_HDP vs ESKDB_M 48-1-23 38-7-27

Table 7: Averaged performance of ESKDB using HDP and M-estimation.

Smoothing RMSE 0/1-loss Time (s)
M-estimation 0.2252± 0.016 0.1559± 0.017 25
HDP 0.2227± 0.016 0.1536± 0.017 190

trees, to pure leaves, and with the number of randomly selected features to
be atts = log2(|A|) + 1 where |A| is the total number of attributes. XGboost
is an advanced implementation of gradient boosting algorithm. We present
two versions of XGBoost: XGBoostdefault, which uses default parameters
(max_depth = 6 and num_rounds = 100); and XGBoosttuned, for which we
tune max_depth and num_rounds using 10-fold cross-validation (we use
values {10, 50, 100} for num_rounds and {2, 4, 6, 8} for max_depth).

Our ESKDB method runs basically parameter-free, with the only param-
eter controlling the maximum depth of our trees – maxK – which we set to
5. Note that the higher maxK, the higher the accuracy as the actual value
of K is cross-validated internally with a fast leave-one-out cross-validation in
SKDB.

Tables 8 gives the average classification performance over all the datasets
listed in Table 3. We can observe from Table 8 that, compared to RF,
ESKDB has similar error rate but much better probabilities. This result also
holds when compared to XGBoost ran with default parameters. Performing
a grid-search for the best XGBoost parameters allows it to move ahead of
the competition. It is important to remember here that the aim of this paper
is not to show that ESKDB should now replace any other algorithm ‘on
the market’, but rather that it is possible to obtain very accurate classifiers
based on Bayesian network classifiers. Also, note that our algorithm runs
completely out-of-core while XGBoost does require large amounts of data to

85

Table 8: ESKDB compared with RF and XGBoost

Classifier RMSE 0/1 Loss Time (s)
RF 0.2314± 0.016 0.1563± 0.018 6.8
XGBoostdefault 0.2288± 0.018 0.1565± 0.018 2.7
ESKDBM 0.2252± 0.016 0.1559± 0.017 25
ESKDBHDP 0.2227± 0.016 0.1536± 0.017 190
XGBoosttuned 0.2179± 0.017 0.1496± 0.017 60

Table 9: WDL of ESKDB compared with XGBoost and RF. The value in
boldface is statistically significantly better.

Classifier RMSE 0/1 Loss
ESKDBM vs. RF 40-0-32 30-2-40
ESKDBM vs. XGBoostdefault 38-1-33 30-3-39
ESKDBM vs. XGBoosttuned 27-0-45 26-2-44
ESKDBHDP vs. RF 42-0-30 36-2-34
ESKDBHDP vs. XGBoostdefault 44-0-28 36-1-35
ESKDBHDP vs. XGBoosttuned 33-1-38 29-2-41

be stored in memory and on-disk. Table 9 gives a similar story with ESKDB
finishing just behind a tuned version of XGBoost.

Figure 15 shows the comparison between ESKDBHDP with
XGBoostdefault and XGBoosttuned in detail (ESKDBHDP wins above the
diagonal line). This plot is interesting in that it shows the diversity of results
obtained by XGBoost and ESKDB, with the results quite spread on either
side of the diagonal line. This tends to indicate that there is some important
benefit in having ESKDB available because even if the average RMSE is
better for a tuned version of XGBoost, there are still many datasets for which
ESKDB obtains a significant improvement over it. One point stands out
particularly on the right scatter plot with XGBoosttuned obtaining almost
a 0.2 improvement over ESKDBHDP , which corresponds to the “tic-tac-toe”
datasets. This toy dataset is very particular as it contains all the end-game
boards of a ‘tic-tac-toe’ game, and only a single instance for each one (9
attributes, with 3 possible values – empty, cross or circle). It requires deep
structures to represent it, with many combinations of 3 attributes to represent
all combinations of aligned crosses. Unfortunately, for this dataset, SKDB

86

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

X
G

B
oo

st
_d

ef
au

lt

RMSE

Here ESKDB wins

Here XGBoost_default wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

X
G

B
oo

st
_t

un
ed

RMSE

Here ESKDB wins

Here XGBoost_tuned wins

Figure 15: Scatter plot of ESKDBHDP with XGBoostdefault and
XGBoosttuned on RMSE

Table 10: ESKDB compared with RF and XGBoost without ”tic-tac-toe"
dataset

Classifier RMSE 0/1 Loss
RF 0.2304± 0.016 0.1573± 0.018
XGBoostdefault 0.2303± 0.018 0.1584± 0.018
ESKDBHDP 0.2210± 0.016 0.1535± 0.017
XGBoosttuned 0.2191± 0.017 0.1517± 0.017

chooses to use k = 2, making it impossible to obtain accurate estimates of
the probabilities. If we remove that particular synthetic data, ESKDBHDP
gets extremely close to XGBoosttuned – see Table 10 – which shows the high
relevance of our proposed approach.

4.3.8 ESKDB on the fully discretized data

Strictly speaking, attribute discretisation should only use the training dataset.
However, in many cases, data are discretised before training, that is, discreti-
sation also uses the information of test data to find the cut points. Now
we compare the difference between these two approaches for ESKDB. Fig-
ure 16 is the scatter plot of ESKDB compared with ESKDB_whole, which

87

is discretisation on the whole dataset. As shown in Table 11, the averaged
RMSE of ESKDB and ESKDB_whole are 0.2248 and 0.2204, respectively.
Even though discretisation on the whole dataset gives a slightly better result,
but it is a kind of cheating of using the test. Although no information about
the test is used in ESKDB, it has little difference from ESKDB_whole.

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_w

ho
le

RMSE

Here ESKDB wins

Here ESKDB_whole wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_w

ho
le

0/1 Loss

Here ESKDB wins

Here ESKDB_whole wins

Figure 16: Scatter plot of discretization on only training set and the whole
dataset.

Table 11: ESKDB compared with ESKDB learned on the fully discretized
data.

Classifier RMSE 0/1-loss
ESKDB 0.2248± 0.016 0.1565± 0.018
ESKDB_whole 0.2204± 0.016 0.1552± 0.017

4.3.9 Running Time

In this section, we compare the training times for classifiers mentioned in
the experiment part of ESKDB. Table 12 lists the averaged results over all
the datasets. As can be seen from this table, it takes less than 5 seconds
for NB, KDB, AODE and the default version of XGBoost to be learned.
Both of TAN and KDF need 5.7 seconds, and RF needs 6.8 seconds to be

88

Table 12: Averaged training time (seconds) for all the datasets

Classifier RMSE 0/1 Loss Time (s)
XGBoostdefault 0.2288 0.1565 2.7
NB 0.2753 0.2074 3
KDB 0.2557 0.1851 3.6
AODE 0.2498 0.1821 5
TAN 0.2568 0.1858 5.7
KDF 0.2512 0.1858 5.7
RF 0.2314 0.1563 6.8
SKDB 0.2418 0.1706 13.7
ESKDBM 0.2252 0.1565 25
XGBoosttuned 0.2179 0.1496 60
ESKDBHDP 0.2227 0.1536 190

learned. The parameter-tuned XGBoost needs 60 seconds to be learned,
which is around 22 times longer than XGBoostdefault. This indicates that
the parameter tuning for XGBoost is time-consuming. ESKDBM with 10
SKDBs needs 25 seconds, which is 1.8 times longer than SKDB. HDP makes
ESKDB 7.6 times longer than M-estimation because of the 1,000 iterations
of Gibbs sampling used. It can be seen from this table that ESKDB_M
is 2.4 times faster than XGBoost_tuned and ESKDB_HDP is 3x slower
than XGBoost_tuned, which we regard as a good result given the amount of
engineering that went into that classifier. However, like RF, ESKDB scales
linearly with the ensemble size (10 used here).

4.4 Summary

In this chapter, we described the details of the ESKDB algorithm, including
the motivation, the algorithm details and the experiment results. Experimen-
tal results show that ESKDB clearly outperforms all existing BNC algorithms
(including ensembles such as KDF and AODE) both in terms of accuracy,
probability estimation and functionally, as being able to handle numerical
attributes. We then show that ESKDB obtains better-smoothed probabilities
than Random Forest, which is critical for situations where the confidence in
the predictions is important. We finish by showing that ESKDB performs
competitively to XGBoost, depending on how much time is used to tune

89

XGBoost’s hyper-parameters.
Our ESKDB algorithm can be used either with simple Laplace-type

smoothing (such as Laplace and M-estimation) or with our improved HDP
estimator. This choice mostly trades off running time vs quality of the
estimates: ESKDBHDP runs approximately 8x slower than ESKDBM but is
able to have significantly better RMSE than an untuned XGBoost. It is also
important here to underline that both versions of ESKDB can run without
having to load the whole dataset in memory, in contrast to RF and XGBoost.

90

Chapter 5

HGS Smoothing Algorithm for
Decision Trees

As we discussed in Chapter 1, many classification tasks require accurate
class probability estimates rather than class labels. We also mentioned
in Chapter 2 the reasons why decision trees cannot provide accurate class
probability estimates and introduced the existing methods. In this chapter, we
propose a new and more efficient hierarchical probability smoothing algorithm
called Hierarchical Gradient Smoothing (HGS) for decision trees.

5.1 Motivation

One might ask why would one need a decision tree when the Random Forest
model is much better than a decision tree for many areas. Decision trees are
still seeing use in online, non-stationary and embedded contexts, as well as
for interpretability. More recently, with the advent of many more learning
tasks, such as online learning, or learning where the inference system have
low computational resources, a single decision tree is seeing a resurgence.
Extremely fast decision trees are one of the top performers for high-data-
throughput contexts (Manapragada et al., 2018). Random forests and gradient
boosted trees have relatively high computational demands in inference, and
thus may not be suitable for wearable or embedded IOT (Internet of Things)
applications. So, the problem of making a single tree perform well in inference
arises, and one can ask does a single decision tree beat a random forest with
10 trees. Moreover, trees also serve as one of the few global models considered

91

to be interpretable, an increasingly important requirement in applications
(Murdoch et al., 2019). Thus, quality single decision tree built efficiently have
many uses.

The Probability Estimation Tree (PET) is a generalisation of a single
decision tree by taking the observed relative frequencies at a leaf node as
the class probability estimates for any test examples that fall into this leaf.
However, this method may lead to unreliable estimates when the number of
training examples associated in a leaf is small (Zadrozny and Elkan, 2001a).

Simple probability smoothing techniques, such as Laplace smoothing
and M-estimation, have long been used to improve PETs’ class probability
estimates by making the estimates at the leaves less extreme. However, they
ignore the broader context of any leaf node, especially crucial in cases where
the datasets are imbalanced.

Hierarchical smoothing has gained attention in the community in recent
years. It assumes that the class probability of the leaf node depends on the
probabilities of its parents in some hierarchy. To our knowledge, M-branch
smoothing (Ferri et al., 2003) is the first and only one hierarchical method
for PETs. It smooths the leaf node to its direct parent using M-estimation,
with the parent also been smoothed recursively until the root node reached.
The results demonstrate that M-branch performs better than M-estimation.
Hierarchical Dirichlet Process (HDP) (Petitjean et al., 2018) can also be used
to smooth the probability at the leaves with its parent, partially mimicking
what is done in M-branch, but it uses fully Bayesian inference. A decision
tree can be turned into an HDP model tree with each node in the tree
associated with a Dirichlet Process (DP). Similar HDP smoothing methods
allow Bayesian network classifiers (Petitjean et al., 2018) and language models
(Shareghi et al., 2017a) to get state-of-the-art probability estimates, but this
has not been applied to decision trees.

Provost and Domingos (2003) believe that a thorough study of what
are the best smoothing methods for decision trees would be a successful
contribution to machine learning research, which is also the main aim of
this research. In this chapter, we first apply the advanced HDP smoothing
method of (Petitjean et al., 2018) to decision trees and then propose a novel
hierarchical smoothing approach called Hierarchical Gradient Smoothing
(HGS) as an alternative. HGS smooths leaf nodes up to all the ancestors,
instead of recursively smoothing to the parent used by HDP. HGS is made

92

faster by efficiently optimising the Leave-One-Out Cross-Validation (LOOCV)
loss measure using gradient descent, instead of sampling used in HDP. An
extensive set of experiments are conducted on 143 datasets showing that our
HGS estimates are not only more accurate but also do so within a fraction of
HDP time. Besides, HGS makes a single tree almost as good as a Random
Forest with 10 trees. For applications that require more interpretability and
efficiency, a single decision tree plus HGS is more preferred.

5.2 HGS Algorithm

Like all other hierarchical smoothing methods, HGS considers that the class
probability estimate of a leaf node is related to the probability estimates of
all parent nodes on the branch that contains the leaf. Each parent node has
a weight parameter to control the degree to which the probability estimates
are backed off to the parent. However, unlike HDP and M-branch smoothing,
HGS smooths the leaf node to all the ancestor nodes at one time, rather than
smoothing to the direct parent node recursively. This makes HGS faster than
HDP and M-branch and also allows global optimisation of hyper-parameters.

HGS is different from HDP and M-branch. Figure 17 can more intuitively
express the differences between them. It can be seen from this figure that
HDP and M-branch both smooth the leaf node (node 4) to an upper parent
node (node 2), then the parent node (node 2) also needs to be smoothed
to a higher node (node 1) until the root node is reached. Each node has
a concentration parameter to control the smoothness, which is c for HDP
and m for M-branch. However, unlike HDP and M-branch smoothing, HGS
smooths the class probability estimate on a leaf node (node 7) to all ancestor
nodes on the branch (node 3 and node 1) at one time, instead of only to the
nearest parent node recursively. Each parent node has a weight parameter α
to control the degree to which the probability estimates are backed off to the
parent. The one-time smoothing makes HGS faster than HDP and M-branch
and also allows global optimisation of hyper-parameters.

The probability smoothing formula for leaf l and class k using HGS is as
follows,

θ̂HGSl,k =
nl,k +

∑
p∈anc(l) αpθ̂p,k

nl,· +
∑

p∈anc(l) αp
, (45)

where nl,k is the data count for class k at node l and nl,· is the total count.

93

1

2 3

4 5 6 7

c2

α1

α3

c1

m2

m1

HGS
HDP

M‐branch

Figure 17: The difference between HGS, HDP, and M-branch. HGS is
represented by red, HDP and M-branch by blue and green,
respectively.

anc(l) represents all the parent nodes on the branch containing the leaf node l,
which are called ancestors of l. αp is the weight parameter for ancestor node
p and the probability estimate of p is θ̂p,k =

np,k
np,·

. The term
∑

p∈anc(l) αpθ̂p,k

in the numerator is the weighted combined probability of all the ancestors.
The term

∑
p∈anc(l) αp in the denominator is their sum.

5.2.1 Working with LOOCV

Let α denote the vector that contains all the weight parameter αs with the
size being the number of internal nodes in the tree. How can one set the α
properly, for instance, how should it be optimised?

Before going into the details of how to set α, it is worth briefly introducing
LOOCV and incremental LOOCV. LOOCV is a special case of k folds cross-
validation, where k equals to the number of training examples N . In each
fold of the cross-validation, an example will be treated as a test example
while the others are the training examples. LOOCV could be sped up using
incremental LOOCV (Kohavi, 1995). The idea is instead of training a model
during each fold of the cross-validation, first, train a model on the full dataset,
then delete the one example that is left out, test on that example, then insert
it into the model again. This delete-test-insert phase is repeated for each of
the N folds. Incremental LOOCV can be conducted on any algorithm that
supports incremental learning, allowing for dynamically adding or removing
examples from the model. Decision tree learning is such an algorithm. Note
incremental LOOCV means the model structure remains unchanged.

If one looks at a cross-validation in LOOCV, a test example at leaf l
with true class k should be left out from the tree, which means the data
count of both l and anc(l) should be reduced by 1. The total count becomes

94

nl,. = nl,. − 1. This Leave-One-Out (LOO) probability estimate for this test
with class k becomes

θLOOl,k =
nl,k − 1 +

∑
p∈anc(l) αpθ

LOO
p,k

nl,· − 1 +
∑

p∈anc(l) αp
. (46)

Here θLOOp,k =
np,k−1
np,·−1 . nl,k ≥ 1 must be satisfied so that there is at least

one example to moved out. For other classes c ∈ K, c 6= k, the probability
estimate is formed without subtracting one in the numerator.

If one performs an incremental LOOCV on the tree, the examples in every
leaf l ∈ L with every class k ∈ K need to be left out once. The LOOCV
measure using log loss of all the examples in the tree becomes

LOOCV (α) =
1

N

∑
l∈L

∑
k∈K

nl,k · log

(
1

θLOOl,k

)
. (47)

and note we have also tested a squared error loss (1− θLOOl,k)2 yielding similar
results. For more information about loss functions please refer to (Shen,
2005).

5.2.2 Parameter Learning for HGS

Now a Gradient Descent algorithm can be performed on the LOOCV (α) cost
to optimize the parameters α. The gradient of each αp is

∂

∂αp
LOOCV (α) =

1

N ln 2

∑
l∈des(p)

∑
k∈K

βl,k, (48)

where βl,k is referred to

βl,k =
nl,k ·

(
θLOOl,k − θLOOp,k

)
(
nl,. − 1 +

∑
p∈anc(l) αp

)
· θLOOl,k

. (49)

des(p) represents the descendent leaves under p.

5.2.3 Algorithm Description

The HGS algorithm HGS(T , b, v) (Algorithm 16) takes a decision tree T ,
a learning rate b and a precision parameter ε as inputs, and a HGS smoothed

95

tree as output. It has three steps in total. First, initialise α to be the vector
of parameters with the length to be the number of internal nodes and all the
values to be 1. Second, conduct a standard gradient descent algorithm to get
the optimised parameters α. Last, traverse the tree top-down in level-order
to calculate the HGS smoothed probability estimates θ̂HGSl,k for all the leaves.
The top-down traverse method used here is the same as the first tree top-down
traverse method in Algorithm 18 (line 1–13), except that the probability
estimates are calculated using Equation 45 in line 9.

Algorithm 16: HGS(T , b, v)

Input : a tree T with a set of leaves L
Input : a learning rate b
Input : a precision parameter ε
Output : a smoothed tree T s

1 Initialize α to be a vector with all values to be 1;
2 αbest ← gradientDescent(T , α, b, ε);
3 T s ← traverseTreeTopDown(T , αbest);
4 return T s

Algorithm 17: gradientDescent(T , α, b, ε)
Input : a decision tree T , an initialized vector α, a learning rate b, a

cost difference threshold ε
Output : an optimized vector α

1 cost← calculateGradientsAndCost(T , α);
2 costDiff = Double.max;
3 while costDiff > ε do
4 for each node p ∈ T and p /∈ L do
5 // internal nodes
6 αp := αp − b ∂

∂αp
LOOCV (α);

7 end
8 cost

′ ← calculateGradientsAndCost(T , α) ;
9 costDiff ← cost− cost′ ;

10 cost← cost
′ ;

11 end
12 return α.

The second step in the HGS algorithm uses a standard gradient descent
algorithm to optimise the parameters, as shown in Algorithm 17. Gradient
descent needs many iterations to reduce the cost until the cost difference

96

between two iterations is less than a given ε. Algorithm 18 is called in
every iteration to calculate the cost and gradients by going through the tree
twice. First, traverse the tree top-down to calculate the LOO estimate θLOOp,k

using Equation 46 and the cost LOOCV (α) using Equation 47 (line 1–13).
α∗p =

∑
i αi and θ

∗
p,k =

∑
i αiθ

LOO
i,k . Second, traverse the tree bottom-up to

calculate the gradients for each internal node level by level (line 14–24). Last,
return the cost.

Algorithm 18: calculateGradientsAndCost(T , α)

Input : a tree T with depth d and leaves L
Input : a vector α
Output : cost

1 /* Traverse 1: Calculate cost top-down. */
2 cost← 0;
3 for h← 0 to d do
4 for each node p in level h and each class k ∈ K do
5 if p /∈ L then
6 calculate θLOOp,k , αpθLOOp,k , α∗p and θ∗p,k;
7 else
8 calculate θLOOp,k using Equation 46;
9 cost← cost+ np,k · log 1

θLOOp,k

;

10 end
11 end
12 end
13 /* Traverse 2: update gradients bottom-up. */
14 for h← d to 0 do
15 for each node p in level h and each class k ∈ K do
16 if p /∈ L then
17 Calculate ∂

∂αp
LOOCV (α) using Equation 48;

18 else
19 Calculate βp,k using Equation 49;
20 end
21 end
22 end
23 return cost← cost

N ·In2

The complexity of HGS smoothing on a decision tree is O(I ·S ·K), where
S is the total number of nodes and K is the number of classes. We call I the
number of iterations for gradient descent. In practice, we use the standard
stopping criterion corresponding to an improvement of less than ε. Each

97

iteration of gradient descent has a complexity that is linear to the size of the
tree S (total number of nodes).

5.3 Experiment Results

The aim of this section is to show the performance of HGS smoothing
compared with other existing smoothing methods for decision trees. Sec-
tion 5.3.1 gives the general experimental settings. The remaining sections
then detail individual experiments.

5.3.1 Experiment Design and Setting

Design: An extensive set of experiments are conducted on 143 standard
datasets from the UCI archive (Lichman, 2013), where 20 datasets have
more than 10,000 instances, 52 datasets have between 1,000 and 10,000,
and 71 datasets have less than 1,000 instances. Table 13 summarises the
characteristics of each dataset, including the name, number of instances and
attributes. Numerical datasets do not need to be discretised. A missing
value is treated as a separate attribute value. The datasets can be found and
downloaded from Github 1.

Evaluation Measure: The results are assessed by RMSE and error rate,
among which RMSE is the most important measure because it measures how
well-calibrated the probability estimates are. RMSE is the square root of the
Brier score in discrete contexts, which is used to measure how well-calibrated
the probability estimates are. The error rate is not our focus compared to
RMSE. For both RMSE and error rate, the smaller, the better. Win-Draw-
Loss (WDL) is reported when comparing the RMSE and error rate of two
models. A one-tail binomial sign test is used to determine the significance of
the results. A difference is considered to be significant if p ≤ 0.05.

Software: To ensure reproducibility of our work and allow other researchers
to build on our research easily, we have made our source code for HGS
smoothing on decision trees available on Github 2.

Compared models and parameters: In our experiment, different probability
smoothing methods are compared for C4.5 decision trees without pruning,
including Laplace smoothing, M-estimation, M-branch, HDP and HGS. Here

1https://github.com/icesky0125/dataset-and-raw-results-for-HGS-paper
2https://github.com/icesky0125/DecisionTreeSmoothing

98

https://github.com/icesky0125/dataset-and-raw-results-for-HGS-paper
https://github.com/icesky0125/DecisionTreeSmoothing

M-estimation is used with a back-off strategy, which means when the leaf
node has no data, back off the probability estimates to its nearest non-empty
ancestor. The validation method is also included with 50% of the data to
learn the tree structure and the remaining to learn the parameters. All the
methods are conducted using 10-fold cross-validation.

Table 13: Datasets for decision tree smoothing.

Domain Case Att Domain Case Att
skin-segmentation 245,057 3 vowel 990 13
localization 164,860 7 mammographic 961 5
ipums 88,443 60 tic-tac-toe 958 9
OneBig 68,000 20 annealing 898 38
connect-4 67,557 42 vehicle 846 18
shuttle 58,000 9 energy 768 8
adult 48,842 14 pid 768 8
tamilnadu-electri 45,781 3 blood 748 4
bank-marketing 45,211 16 breast-cancer-w 699 9
nomao 34,465 118 credit-approval 690 15
kr-vs-k 28,056 6 balance-scale 625 4
letter-recog 20,000 16 syscon 600 60
magic 19,020 10 indianLiverPatient 583 10
eeg-eye-state 14,980 14 wdbc 569 30
gas-drift 13,910 128 chess 551 39
nursery 12,960 8 climateSimulation 540 20
sign 12,546 8 cylinder-bands 540 39
pendigits 10,992 16 spectrometer 531 101
HumanActivity 10,299 561 meta-data 528 21
artificial-character 10,218 7 dresses-sales 500 12
thyroid 9,169 29 thoracic-surgery 470 16
pioneer 9,150 36 saheart 462 9
mushroom 8,124 22 arrhythmia 452 262
ringnorm 7,400 20 wholesaleChannel 440 7
twonorm 7,400 20 wholesaleRegion 440 7
musk 6,598 167 house-votes-84 435 16
satellite 6,435 36 user-knowledge 403 5

continued . . .

99

. . . continued
Domain Case Att Domain Case Att
first-order-theorem 6,118 51 horse-colic 368 21
turkiye-student 5,820 32 dermatology 366 34
optdigits 5,620 64 movement-libras 360 90
texture 5,500 40 ionosphere 351 34
page-blocks 5,473 10 spectf-heart 349 44
wall-following 5,456 24 bupa 345 6
phoneme 5,438 7 leaf 340 15
banana 5,300 2 primaryTumor 339 17
waveform-5000 5,000 40 ecoli 336 7
wineQualityWhite 4,898 11 soybean-large 307 35
wilt 4,839 5 habermans 306 3
spambase 4,601 57 cleveland 303 13
abalone 4,177 8 hungarian 294 13
sick 3,772 29 statlog-heart 270 13
kr-vs-kp 3,196 36 spect-heart 267 22
splice 3,190 60 bankruptcy 250 6
splice-c4 3,177 60 Audiology 226 69
hypothyroid 3,163 25 new-thyroid 215 5
madelon 2,600 500 glass 214 9
seismic-bumps 2,584 18 seeds 210 7
ozone-onehr 2,536 72 sonar 208 60
image-segment 2,310 19 autos 205 25
cardiotocography 2,126 35 wpbc 198 33
mfeat-fourier 2,000 76 parkinsons 195 22
mfeat-mor 2,000 6 flags-colour 194 29
multiple-features 2,000 649 flags-religion 194 29
steel-plates-faults 1,941 33 planning-relax 182 12
car-evaluation 1,728 6 robotFailureLp5 164 90
leaves-margin 1,600 64 hayes-roth 160 4
leaves-shape 1,600 64 hepatitis 155 19
leaves-texture 1,599 64 teaching-assistant 151 5
wine-quality-red 1,599 11 iris 150 4
semeion 1,593 256 lymphography 148 18

continued . . .

100

. . . continued
Domain Case Att Domain Case Att
volcanoes 1,520 3 echocardio 131 6
amazon 1,500 10000 voice 126 310
yeast 1,484 8 inflammations 120 6
cmc 1,473 9 robot-failure-lp4 117 90
flare 1,389 12 appendicitis 106 7
banknote 1,372 4 breast-tissue 106 9
hill-valley 1,212 100 promotor 106 57
cnae-9 1,080 856 zoo 101 16
qsar-bio 1,055 41 blogger 100 5
german 1,000 20 fertility-diagnosis 100 9
led 1,000 7 leukemia-haslinger 100 50
german-credit 1,000 24

5.3.2 HDP Parameter Tuning

This section tunes the parameters of HDP on decision trees. As we have
discussed in Section 2.3.3, the two most critical parameters of HDP smooth-
ing for tree-structured classifiers in (Petitjean et al., 2018) are iteration
and tying. iteration is the cycles that Gibbs sampling needs to sample the
parameters. The sampling process can be accelerated by tying some nodes
together to share the same parameter value. tying is the parameter used to
control which nodes are tied together.

Table 14 is the averaged results on 143 datasets using the four strategies
with iteration = 1000. The error bars of these four strategies are all the
same, which are 0.012 on RMSE and 0.015 on error rate respectively. As can
be seen from this table that SINGLE and LEV EL give very similar results.
The variance is relatively low when the number of parameters is small.

Table 15 tests the iteration parameter with the tying fixed to SINGLE.
1,000 iterations achieves better average RMSE results and is about 3.5 times
faster than 5,000 iterations. In the following experiments, we set HDP using
iteration = 1, 000 and tying = SINGLE.

101

Table 14: Averaged results of the four tying strategies.

tying RMSE Error Rate Runtime (s)
SINGLE 0.2436 0.2078 4.9
LEVEL 0.2493 0.2087 4.7
PARENT 0.2525 0.2090 5.2
NONE 0.2533 0.2091 6.7

Table 15: Averaged results of the two iterations.

iteration RMSE Error Rate Runtime (s)
1000 0.2436 0.2078 4.9
5000 0.2450 0.2074 17.6

5.3.3 HGS Parameter Tuning

HGS is basically a parameterless algorithm. The only two parameters are
the learning rate b and the minimum cost difference threshold ε between
two iterations needed in the gradient descent algorithm (Ruder, 2016). The
learning rate controls how big the steps of the gradient descent. With a high
learning rate, we can cover more ground each step, but we risk overshooting
the lowest point since the slope of the hill is constantly changing. A lower
learning rate is more precise, but calculating the gradient is time-consuming,
so it takes a long time to get to the bottom. In this experiment, we tried
different values b = 0.01, 0.001 and ε = 0.001, 0.0001 and found that their
results were all the same with only slight differences in training time. The
RMSE is 0.2410, and the error rate is 0.2059. Based on these results, in
the following experiment we choose the standard values of b = 0.01 and
ε = 0.0001.

5.3.4 HGS vs. Single Layer Smoothing Methods

This part of the experiment is to evaluate the advantages of HGS smoothing
over other single-layer smoothing methods (including MLE, Laplace smooth-
ing, and M-estimation), whose class probability estimation depends only on
leaf nodes.

Table 16 shows the Win-Draw-Loss between HGS and MLE, Laplace
and M-estimation, from which it can be seen that in 143 datasets, HGS
is superior to all other methods in error rate, and is significantly better
than other methods in RMSE. Meanwhile, it can be seen that M-estimation

102

gets better RMSE than MLE and Laplace, but the classification accuracy
measured by the error rate is not as good as them.

Table 16: WDL of HGS compared with MLE, Laplace and M-estimation
(Stat. sig. p < 0.05 results are depicted in boldface).

Method RMSE Error Rate
HGS vs. MLE 108-2-33 69-22-52
HGS vs. Laplace 111-4-28 68-22-53
HGS vs. M-estimation 98-4-41 66-23-54

Table 17 lists the averaged results on 143 datasets for HGS, MLE,
Laplace and M-estimation. The error bars of all these models are 0.012 on
RMSE and 0.015 on error rate, respectively. The standard deviation of them
on RMSE are 0.150, 0.133, 0.142 and 0.132, respectively. It can be seen from
this table that HGS achieved the best RMSE and error rate, which means
HGS makes decision trees get both very accurate probability estimates and
classification accuracy. It can also be seen that even HGS is a hierarchical
smoothing method, but it has the same learning time as the single-layer
methods, indicating the high efficiency of HGS.

Table 17: Averaged results of all the methods.

Methods RMSE Error Rate Runtime (s)
MLE 0.2596 0.2093 1.1
Laplace 0.2499 0.2093 1.1
M-estimation 0.2485 0.2068 1.1
HGS 0.2410 0.2059 1.1

To show the comparison between HGS and other methods more intuitively,
we present the scatter plots of these methods on both RMSE and error rate.
The circles on the diagonal indicate that HGS is superior on these datasets.
As can be seen from Figure 18, HGS works better than MLE for data sets
with higher RMSE, and MLE works better for data sets with smaller RMSE.
This can be explained by the fact that generally, larger data sets tend to have
smaller RMSE values. Simple MLE methods can yield better results when the
data volume is large enough, but for small datasets, probability smoothing can
effectively improve probability estimates. Figure 19 and Figure 20 are the
scatter plots of HGS compared with Laplace and M-estimation, respectively.

103

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

M
LE

RMSE

Here HGS wins

Here MLE wins

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

M
LE

Error Rate

Here HGS wins

Here MLE wins

Figure 18: HGS vs. MLE.

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

La
pl

ac
e

RMSE

Here HGS wins

Here Laplace wins

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

La
pl

ac
e

Error Rate

Here HGS wins

Here Laplace wins

Figure 19: HGS vs. Laplace.

5.3.5 HGS vs. Hierarchical Smoothing Methods

This part of the experiment is to evaluate the advantages of HGS smoothing
for decision trees compared with other hierarchical probability smoothing
methods, including HDP and M-branch.

Table 18 shows the Win-Draw-Loss between HGS and M-branch and
HDP. It can be seen from this table that HGS is significantly better than
HDP and M-branch in RMSE. HGS makes more than 90 out of 143 datasets

104

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

M
-e

st
im

at
io

n

RMSE

Here HGS wins

Here M-estimaton wins

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

M
-e

st
im

at
io

n

Error Rate

Here HGS wins

Here M-estimaton wins

Figure 20: HGS vs. M-estimation.

better than them.

Table 18: WDL of HGS compared with M-branch and HDP (Stat. sig.
p < 0.05 results are depicted in boldface).

Method RMSE Error Rate
HGS vs. M-branch 96-3-44 59-32-52
HGS vs. HDP 92-1-50 64-21-58

Table 19 shows the averaged RMSE and error rate of HGS, M-branch
and HDP on 143 datasets. HGS obtained the best performance but was 5
times faster than M-branch and 9 times faster than HDP. Although Petitjean
et al. (2018) suggested that the HDP estimate might be more accurate if
more samples were taken, it would also mean longer times.

Table 19: Averaged results of HGS and the hierarchical smoothing methods.

Methods RMSE Error Rate Runtime (s)
HDP 0.2436 0.2078 4.9
M-branch 0.2428 0.2062 9.3
HGS 0.2410 0.2059 1.1

Figure 21 and Figure 22 are the scatter plots of HGS versus HDP
and M-branch smoothing on RMSE and error rate. These plots show that
HGS gets good improvement over HDP and M-branch. Figure 23 shows the
comparison of HDP with M-branch. The result of M-branch and HDP are

105

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

H
D

P

RMSE

Here HGS wins

Here HDP wins

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

H
D

P

Error Rate

Here HGS wins

Here HDP wins

Figure 21: HGS vs. HDP.

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

M
-b

ra
nc

h

RMSE

Here HGS wins

Here M-branch wins

0 0.1 0.2 0.3 0.4 0.5
HGS

0

0.1

0.2

0.3

0.4

0.5

M
-b

ra
nc

h

Error Rate

Here HGS wins

Here M-branch wins

Figure 22: HGS vs. M-branch.

similar since M-branch and HDP is actually hierarchical M-estimation with
each base rate to be the parent probability estimate.

To compare the three hierarchical smoothing methods more intuitively, we
take the RMSE of HGS as the benchmark for each dataset and subtract RMSE
of M-branch and HDP, and drew Figure 24. The datasets are arranged in
descending order of their sizes from left to right. The points in the grey area
represent the datasets that perform better with HGS. The lower the point
is, the stronger the advantage of HGS is. The following conclusions can be

106

0 0.1 0.2 0.3 0.4 0.5
HDP

0

0.1

0.2

0.3

0.4

0.5

M
-b

ra
nc

h

RMSE

Here HDP wins

Here M-branch wins

0 0.1 0.2 0.3 0.4 0.5
HDP

0

0.1

0.2

0.3

0.4

0.5

M
-b

ra
nc

h

Error Rate

Here HDP wins

Here M-branch wins

Figure 23: HDP vs. M-branch.

drawn. First, there are more points in the grey area, which indicates that
HGS makes the majority of the datasets with better estimates. Second, the
"stars" points are mostly centred around the line y = 0, while o points are
more diffuse. This means HDP has high variance compared with M-branch.
Last, among the top 20 largest datasets with more than 10,000 examples
on the far left of the figure, HDP makes 14 out of them performs better
than HGS and Mbranch. This indicates that HDP is more helpful on large
datasets.

5.3.6 Smoothing vs. Data Size

Based on the intuition that large datasets tend to fit well and have smaller
RMSE, people can get the following guidance on smoothing and data sizes.
MLE does not work well on small datasets because of data sparsity problem
(See Figure 18). Laplace makes small datasets better but large datasets
worse (See Figure 19). M-estimation makes RMSE more stable no matter
how big the dataset is (See Figure 20). HDP is particular better on large
datasets but worse on small ones (See Figure 21). M-branch and HGS have
little relation with data size (See Figure 22).

107

0 20 40 60 80 100 120 140
Dataset

0

0.1

R
M

S
E

 D
iff

er
en

ce

HGS - M-branch
HGS - HDP

In this area HGS is better

 Large data ---------------------------------> Small data

Figure 24: Compare the probability estimates of HGS with HDP and M-
branch. The X-axis represents the datasets arranged from large
to small in terms of data size. The Y-axis represents the RMSE
difference between each method and HGS, which is the lower,
the better. First, the majority of the points are below the
line y = 0, which means HGS performs better on most of the
datasets. Second, for the top 20 large datasets HDP is better
than M-branch and HGS.

5.3.7 HGS vs. Validation

In this section, we compare HGS smoothing with the validation method,
where 50% of the training data are used to build the decision tree model
and the remaining 50% of the data are used to learn the class probability
estimates at leaves using frequencies. Table 20 shows the averaged results
over 143 datasets in RMSE and error rate. As can be seen from the table,
HGS smoothing performs better in the decision tree than the validation
method.

Table 20: Averaged results of HGS and the validation method.

Methods RMSE Error Rate Runtime (s)
Validation 0.2653 0.2353 0.7
HGS 0.2410 0.2059 1.1

108

5.3.8 Running Time vs. Data Size

One of the most important motivations of HGS is its efficiency, i.e. running
time. It is interesting to investigate the running times based on different data
size. Figure 25 is the running time versus data sizes plot for HGS and HDP
evaluated on all the datasets. We take the log of both the data sizes and
the running times to make the figure more intuitive. It is evident that the
blue ∗ are almost always lower than the red circles, which indicates that the
training time of HGS on datasets of different sizes is basically shorter than
that of HDP.

2 2.5 3 3.5 4 4.5 5 5.5
Log Data Size

-1

0

1

2

3

4

5

6

Lo
g

R
un

ni
ng

 T
im

e

HGS
HDP

Figure 25: Training time comparison according to log data size.

5.3.9 Smoothing vs. Pruning

Many studies suggest to skip the pruning process and apply probability
smoothing techniques to decision trees to obtain better probability estimates
(Elkan, 2001; Han, 2011; Zadrozny and Elkan, 2001b). This part of the
experiment is to verify this conclusion further. Reduced Error Pruning (REP)
is used after the tree grew, then use MLE to get the probability estimates.
Table 21 is the WDL of above mentioned smoothing methods compared
with pruning. First, pruning does not help on probability estimation because
its aim is to improve the classification accuracy rather than the probability
estimates. Pruning with MLE does not improve the estimate compared to
using MLE alone. Laplace, M-estimation and HDP obtain similar error rate

109

versus pruning, but the RMSE has improved a lot. HGS makes trees improved
significantly compared with pruning both on RMSE and error rate.

Table 21: WDL for smoothing compared with pruning (Stat. sig. p < 0.05
results are depicted in boldface).

vs. pruning+MLE RMSE Error Rate
MLE 70-4-69 84-11-48
Laplace 92-1-50 84-11-48
M-estimation 92-2-49 84-11-48
HDP 93-2-48 84-9-50
M-branch 120-1-22 92-11-40
HGS 123-1-19 95-12-36

1 2 3 4 5 6 7 8 9 10 20 50
Forest Size

0.2

0.22

0.24
0.25

0.3

0.35

R
M

S
E

RF
RF_HGS
C4.5_HGS

Figure 26: HGS Smoothing on Random Forest in RMSE.

5.3.10 HGS on Random Forest

We sought to determine how many trees are needed in RF to beat HGS on
a single tree, and the impact of smoothing with RF. Previously, Bostrom
(2007) suggested that a non-corrected probability estimate should be used in
RF. Figure 26 shows the RMSE changing with the forest size. RF_HGS
represents random forest using HGS smoothing, while RF means no smoothing.
C4.5 with HGS smoothing is represented by line y = 0.24. This figure shows
that HGS makes RF worse after three trees because smoothing can reduce
the diversity of RF. A single C4.5 tree using HGS yields RMSE better or

110

close to RF with 7 trees and comparatively for 10 trees. While single trees
with HGS smoothing cannot beat RF, a single tree is preferred if one is more
interested in interpretability.

5.4 Summary

In this chapter, we present the hierarchical probability smoothing method
HGS for decision trees. This algorithm enables the class probability estimation
of the decision tree to be more accurate and efficient than existing single-layer
probabilistic smoothing methods (including MLE, Laplace, and m-estimation)
and hierarchical methods (including HDP and M-branch). In addition, a
single tree plus HGS smoothing performs comparably with a Random Forest
with seven trees, but it can be learned and tested much faster and with higher
interpretability.

111

Chapter 6

Conclusion and Future Work

6.1 Conclusion

6.1.1 Conclusion for ESKDB

The ESKDB algorithm is a novel ensemble method for SKDB, where different
BNCs are generated by changing the attribute orders and by sampling
a discretization. Ablation experiments demonstrated that both sources
of stochasticity are needed. This method produces more accurate class
probability estimates than the existing BNCs both on RMSE and on 0/1
loss using M-estimation for smoothing. The HDP method of smoothing
Petitjean et al. (2018) can be used as well, and unlike early Chinese restaurant
implementations of HDP, this has no dynamic memory requirements so scales
well. We also developed an improvement for HDP smoothing that is both far
faster and more accurate, but it is still a few times slower than M-estimation.

The ensembling strategy used shows interesting departures from well
known techniques like RF. First, better smoothing is used in the base classi-
fiers, and we conjecture this is because the base SKDB is itself a combination
of simpler classifiers (which are smoothed) using Bayes rule. Second, only
10 ensembles perform well, which we conjecture is due to the reduction of
variance already achieved by better smoothing.

The experimental results give guidance on using smoothing and ensem-
bling:

• Single SKDB with HDP smoothing yields more explainable models, and
is comparable in performance to default versions of RFs and XGBoost.

112

• Due to comparative results reported in Duan and Wang (2017), this
also means single SKDB with HDP smoothing beats KDF.

• For more efficient and accurate probability estimates, ensembling
SKDBs with M-estimation is preferred, and can easily be run out-
of-core.

• For best probability estimates, ensembling SKDBs with HDP is recom-
mended.

The diversity needed for ensembles could be further increased by using
attribute selection and data re-sampling using bagging. Also, SKDB could be
modified to integrate better with ensembling or HDP smoothing, or modified
to introduce the conditional mutual information as done for KDF. Thus while
our best method, ESKDB with HDP smoothing did not outperform XGBoost
on the larger datasets, there is considerable room for improvement, so we
view the advances presented here as an important step in developing superior,
high performance, scalable classification methods.

6.1.2 Conclusion for HGS

It is well known that probability smoothing beats pruning, and M-branch
showed us that hierarchical smoothing can improve again. This thesis,
however, develops a new hierarchical algorithm, HGS, and tests out a recent
algorithm, HDP smoothing on trees for the first time. The originality of
HGS is in removing recursive smoothing and efficient pre-computation of key
statistics, which also allow better optimization of hyper-parameters. This
experimental evaluation demonstrates three significant contributions.

1. HDP smoothing developed in Petitjean et al. (2018) is shown to be
comparable to M-branch, and evidence suggests it is the superior
algorithm for large data sets.

2. HGS is an order of magnitude faster than M-branch and HDP smoothing,
and significantly better in RMSE.

3. HGS is generally as good as or superior to a random forest with 7
trees and almost as good with 10 trees. This makes HGS a single tree
alternative to a random forest with 10 trees or less, and thus suitable
in online contexts Manapragada et al. (2018).

113

6.2 Future Work

6.2.1 Apply HGS smoothing to ESKDB

HDP smoothing has been shown to get the most accurate parameter estimates
for Bayesian network classifiers, but it is computationally intensive. Besides,
HDP works less effective than HGS on decision trees. Therefore, it would
be of interest to apply HGS smoothing to the ESKDB model to see whether
HGS could make Bayesian network classifiers get better parameter estimates.
Although both decision trees and Bayesian network classifiers can be repre-
sented by tree structures, their mechanisms are different. Split attributes of
decision trees are more diverse, while each layer of a conditional probability
tree of Bayesian network classifier splits on the same parent attribute. This
may result in a difference in the application of the HGS algorithm to the
Bayesian network classifiers.

6.2.2 Cost-sensitive Learning Decision Trees

Cost-sensitive learning techniques believe a different misclassification error
has a different cost. In disease diagnosis, for example, if we misdiagnose a
healthy person as a patient, the cost may be some treatment. Whereas, if
we misdiagnose a patient as a healthy person, the cost is much higher, it
may be the patient’s life. Accurate class probability estimation is the key
to reduce the misclassification cost in cost-sensitive learning. Probability
smoothing techniques, such as Laplace smoothing and M-estimation, have
long been used for cost-sensitive decision trees. Now that we have a more
efficient probability estimation method for decision trees, the HGS algorithm,
applying HGS algorithm to cost-sensitive decision trees will be significant
progress in the cost-sensitive learning field.

114

References

Jacinto Arias, José A Gámez, and José M Puerta. Bayesian network clas-
sifiers under the ensemble perspective. In International Conference on
Probabilistic Graphical Models, pages 1–12, 2018.

Anthony G Barnston. Correspondence among the correlation, rmse, and hei-
dke forecast verification measures; refinement of the heidke score. Weather
and Forecasting, 7(4):699–709, 1992.

Eric Bauer and Ron Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine learning, 36(1-2):
105–139, 1999.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

Henrik Bostrom. Estimating class probabilities in random forests. In Ma-
chine Learning and Applications, 2007. ICMLA 2007. Sixth International
Conference on, pages 211–216. IEEE, 2007.

Henrik Boström. Calibrating random forests. In Machine Learning and
Applications, 2008. ICMLA’08. Seventh International Conference on, pages
121–126. IEEE, 2008.

Henrik Boström. Forests of probability estimation trees. International journal
of pattern recognition and artificial intelligence, 26(02):1251001, 2012.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Glenn W Brier. Verification of forecasts expressed in terms of probability.
Monthly weather review, 78(1):1–3, 1950.

115

Wray L Buntine and Swapnil Mishra. Experiments with non-parametric topic
models. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 881–890. ACM, 2014.

John Burge and Terran Lane. Shrinkage estimator for Bayesian network
parameters. In European Conference on Machine Learning, pages 67–78.
Springer, 2007.

Nitesh V Chawla. Many are better than one: improving probabilistic estimates
from decision trees. InMachine Learning Challenges Workshop, pages 41–55.
Springer, 2005.

Nitesh V Chawla. Many are better than one: Improving probabilistic esti-
mates from decision trees. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification, and Recognising Tec-
tual Entailment, pages 41–55. Springer, 2006.

Nitesh V Chawla and David A Cieslak. Evaluating probability estimates from
decision trees. In American Association for Artificial Intelligence, 2006.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SigKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016.

Ye Chen and John Canny. Probabilistic recommendation of an item, Septem-
ber 12 2017. US Patent 9,760,802.

Vincy Cherian and MS Bindu. Heart disease prediction using naive Bayes
algorithm and Laplace smoothing technique. International Journal of
Computer Science Trends and Technology (IJCST), 5(2), 2017.

C Chow and Cong Liu. Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory, 14(3):
462–467, 1968.

Michael Crawford, Taghi M Khoshgoftaar, Joseph D Prusa, Aaron N Richter,
and Hamzah Al Najada. Survey of review spam detection using machine
learning techniques. Journal of Big Data, 2(1):23, 2015.

Rajashree Dash, Rajib Lochan Paramguru, and Rasmita Dash. Compar-
ative analysis of supervised and unsupervised discretization techniques.

116

International Journal of Advances in Science and Technology, 2(3):29–37,
2011.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein.
A tutorial on the cross-entropy method. Annals of operations research, 134
(1):19–67, 2005.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and un-
supervised discretization of continuous features. In Machine Learning
Proceedings 1995, pages 194–202. Elsevier, 1995.

Zhiyi Duan and Limin Wang. K-dependence Bayesian classifier ensemble.
Entropy, 19(12):651, 2017.

Charles Elkan. The foundations of cost-sensitive learning. In Interna-
tional joint conference on artificial intelligence, volume 17, pages 973–978.
Lawrence Erlbaum Associates Ltd, 2001.

Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L
Kline. Machine learning for medical imaging. Radiographics, 37(2):505–515,
2017.

U Fayyad and K Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In 13th International Joint Conference
on Artificial Intelligence, volume 2, pages 1022–1027, 1993.

Usama M. Fayyad and Keki B. Irani. On the handling of continuous-valued
attributes in decision tree generation. Machine Learning, 8(1):87–102,
January 1992.

C Ferri, P Flach, and J Hernández-Orallo. Decision trees for ranking: effect of
new smoothing methods, new splitting criteria and simple pruning methods.
Technical report, DSIC 2003, 2003.

S Fortmann-Roe. Understanding the bias-variance trade-off.[online] available:
http://scott. fortmann-roe. com/docs. BiasVariance. html [2018, May 22],
2012.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of
on-line learning and an application to boosting. In European conference on
computational learning theory, pages 23–37. Springer, 1995.

117

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classi-
fiers. Machine learning, 29(2-3):131–163, 1997.

Stephen R Garner et al. Weka: The waikato environment for knowledge
analysis. In Proceedings of the New Zealand computer science research
students conference, pages 57–64, 1995.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and
the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

Robin Genuer. Variance reduction in purely random forests. Journal of
Nonparametric Statistics, 24(3):543–562, 2012.

Pierre Geurts. Bias vs variance decomposition for regression and classification.
In Data mining and knowledge discovery handbook, pages 733–746. Springer,
2009.

Gerd Gigerenzer, Ralph Hertwig, Eva Van Den Broek, Barbara Fasolo, and
Konstantinos V Katsikopoulos. “a 30% chance of rain tomorrow”: How
does the public understand probabilistic weather forecasts? Risk Analysis:
An International Journal, 25(3):623–629, 2005.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules,
prediction, and estimation. Journal of the American statistical Association,
102(477):359–378, 2007.

Zhimeng Han. Smoothing in Probability Estimation Trees. PhD thesis,
University of Waikato, 2011.

Marti A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):
18–28, July 1998.

Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.
Bayesian model averaging: a tutorial (with comments by M. Clyde, David
Draper and E. I. George, and a rejoinder by the authors). Statistical
Science, 14(4):382–417, 11 1999.

Marjan Jahanshahi, Leonora Wilkinson, Harpreet Gahir, Angeline Dharminda,
and David A Lagnado. Medication impairs probabilistic classification
learning in parkinson’s disease. Neuropsychologia, 48(4):1096–1103, 2010.

118

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

Liangxiao Jiang, Dianhong Wang, and Zhihua Cai. Scaling up the accuracy
of Bayesian network classifiers by m-estimate. In International Conference
on Intelligent Computing, pages 475–484. Springer, 2007.

Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. Smooth
isotonic regression: A new method to calibrate predictive models. AMIA
Summits on Translational Science Proceedings, 2011:16, 2011.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Fast cross-validation
for incremental learning. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015.

Szabolcs Kéri, Csaba Szlobodnyik, György Benedek, Zoltán Janka, and
Júlia Gádoros. Probabilistic classification learning in tourette syndrome.
Neuropsychologia, 40(8):1356–1362, 2002.

Ron Kohavi. The power of decision tables. In European conference on machine
learning, pages 174–189. Springer, 1995.

Ron Kohavi and Mehran Sahami. Error-based and entropy-based discretiza-
tion of continuous features. In KDD, pages 114–119, 1996.

Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization techniques: A
recent survey. GESTS International Transactions on Computer Science
and Engineering, 32(1):47–58, 2006.

Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

Tim Leathart, Eibe Frank, Geoffrey Holmes, and Bernhard Pfahringer. Prob-
ability calibration trees. In ACML 2017, pages 145–160, 2017.

David D. Lewis. Naive Bayes at forty: The independence assumption in
information retrieval, pages 4–15. Springer, 1998.

Pengyu Li, He Zhang, Xuyang Zhao, Cangzhi Jia, Fuyi Li, and Jiangning Song.
Pippin: A random forest-based method for identifying presynaptic and
postsynaptic neurotoxins. Journal of Bioinformatics and Computational
Biology, page 2050008, 2020.

119

Qing Li, Sung Hyon Myaeng, Dong Hai Guan, and Byeong Man Kim. A
probabilistic model for music recommendation considering audio features.
In Asia Information Retrieval Symposium, pages 72–83. Springer, 2005.

M. Lichman. UCI machine learning repository. http://archive.ics.uci.
edu/ml, 2013.

James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA, 1967.

David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models
for discrete data. International Statistical Review/Revue Internationale de
Statistique, pages 215–232, 1995.

Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi. Extremely
fast decision tree. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, pages
1953–1962, New York, USA, 2018. ACM. ISBN 978-1-4503-5552-0.

Dragos D Margineantu. Class probability estimation and cost-sensitive
classification decisions. In European Conference on Machine Learning,
pages 270–281. Springer, 2002.

Ana M Martınez, Geoffrey I Webb, Shenglei Chen, and Nayyar A Zaidi.
Scalable learning of Bayesian network classifiers. Journal of Machine
Learning Research, 17:1–35, 2016.

Rory Mitchell and Eibe Frank. Accelerating the xgboost algorithm using gpu
computing. PeerJ Computer Science, 3:e127, 2017.

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and
Bin Yu. Definitions, methods, and applications in interpretable machine
learning. Proceedings of the National Academy of Sciences, 116(44):22071–
22080, 2019. ISSN 0027-8424.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabili-
ties with supervised learning. In Proceedings of the 22nd international
conference on Machine learning, pages 625–632. ACM, 2005.

120

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Domingos Pedro. A unified bias-variance decomposition and its applications.
In 17th International Conference on Machine Learning, pages 231–238,
2000.

François Petitjean, Wray Buntine, Geoffrey I Webb, and Nayyar Zaidi. Accu-
rate parameter estimation for Bayesian network classifiers using hierarchical
Dirichlet processes. Machine Learning, 107(8-10):1303–1331, 2018.

John Platt et al. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin
classifiers, 10(3):61–74, 1999.

New York Post. Reliable AI system predicts Trump
will win, 2016. URL https://nypost.com/2016/10/28/

reliable-ai-system-predicts-trump-will-win/.

Foster Provost and Pedro Domingos. Well-trained PETs: Improving proba-
bility estimation trees. CDER WorkingPaper, Stern School of Business.
New York, NY: New York University, 2000.

Foster Provost and Pedro Domingos. Tree induction for probability-based
ranking. Machine learning, 52(3):199–215, 2003.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

J Ross Quinlan. C4.5: Programs for machine learning. The Morgan Kaufmann
Series in Machine Learning, San Mateo, CA: Morgan Kaufmann,| c1993,
1993.

Jyoti Ramteke, Samarth Shah, Darshan Godhia, and Aadil Shaikh. Election
result prediction using twitter sentiment analysis. In 2016 international
conference on inventive computation technologies (ICICT), volume 1, pages
1–5. IEEE, 2016.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification.
Journal of Machine Learning Research, 5:101–141, 2004.

Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

121

https://nypost.com/2016/10/28/reliable-ai-system-predicts-trump-will-win/
https://nypost.com/2016/10/28/reliable-ai-system-predicts-trump-will-win/

Stefan Rüping. Robust probabilistic calibration. In European Conference on
Machine Learning, pages 743–750. Springer, 2006.

Jarosław Rzeszótko and Sinh Hoa Nguyen. Machine learning for traffic
prediction. Fundamenta Informaticae, 119(3-4):407–420, 2012.

Mehran Sahami. Learning limited dependence Bayesian classifiers. In KDD,
volume 96, pages 335–338, 1996.

Dewi Retno Sari Saputro, Purnami Widyaningsih, Feri Handayani, and
Nughthoh Arfawi Kurdhi. Prior and posterior Dirichlet distributions on
Bayesian networks (bns). In AIP Conference Proceedings, volume 1827,
page 020036. AIP Publishing LLC, 2017.

Claude E Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948.

Ehsan Shareghi, Gholamreza Haffari, and Trevor Cohn. Compressed non-
parametric language modelling. In Proc. of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, pages 2701–2707, 2017a.

Ehsan Shareghi, Gholamreza Haffari, and Trevor Cohn. Compressed nonpara-
metric language modelling. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages 2701–2707,
2017b.

Yi Shen. Loss functions for binary classification and class probability estima-
tion. PhD thesis, University of Pennsylvania, 2005.

Ayush Singhal, Pradeep Sinha, and Rakesh Pant. Use of deep learning in
modern recommendation system: A summary of recent works. arXiv
preprint arXiv:1712.07525, 2017.

Yee Whye Teh. Dirichlet process. Encyclopedia of machine learning, pages
280–287, 2010.

Yee Whye Teh and Michael I Jordan. Hierarchical Bayesian nonparametric
models with applications. Bayesian nonparametrics, 1, 2010.

Yong Wang, Julia Hodges, and Bo Tang. Classification of web documents
using a naive bayes method. In Proceedings. 15th IEEE International

122

Conference on Tools with Artificial Intelligence, pages 560–564. IEEE,
2003.

Geoffrey I. Webb, Janice R. Boughton, and Zhihai Wang. Not so naive Bayes:
Aggregating one-dependence estimators. Machine Learning, 58(1):5–24,
January 2005.

Wikipedia contributors. Sign test — Wikipedia, the free encyclope-
dia, 2020. URL https://en.wikipedia.org/w/index.php?title=Sign_

test&oldid=956142528. [Online; accessed 1-June-2020].

Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip,
et al. Top 10 algorithms in data mining. Knowledge and information
systems, 14(1):1–37, 2008.

Lei Xu, Adam Krzyzak, and Ching Y Suen. Methods of combining multi-
ple classifiers and their applications to handwriting recognition. IEEE
transactions on systems, man, and cybernetics, 22(3):418–435, 1992.

Bianca Zadrozny and Charles Elkan. Learning and making decisions when
costs and probabilities are both unknown. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 204–213. ACM, 2001a.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability esti-
mates from decision trees and naive Bayesian classifiers. In ICML, volume 1,
pages 609–616. Citeseer, 2001b.

Chengxiang Zhai and John Lafferty. A study of smoothing methods for
language models applied to information retrieval. ACM Transactions on
Information Systems (TOIS), 22(2):179–214, 2004.

He Zhang, François Petitjean, and Wray Buntine. Bayesian network classifiers
using ensembles and smoothing. Knowledge and Information Systems, pages
1–24, 2020a.

He Zhang, François Petitjean, and Wray Buntine. Hierarchical gradient
smoothing for probability estimation trees. In Advances in Knowledge
Discovery and Data Mining, pages 222–234, Cham, 2020b. Springer Inter-
national Publishing. ISBN 978-3-030-47426-3.

123

https://en.wikipedia.org/w/index.php?title=Sign_test&oldid=956142528
https://en.wikipedia.org/w/index.php?title=Sign_test&oldid=956142528

Wenliang Zhong and James T Kwok. Accurate probability calibration for
multiple classifiers. In IJCAI, pages 1939–1945, 2013.

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman
and Hall/CRC, 1st edition, 2012.

Zhi-Hua Zhou. Ensemble Learning, pages 411–416. Springer US, Boston, MA,
2015.

Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-sensitive learning.
Computational Intelligence, 26(3):232–257, 2010.

124

	1 Introduction
	1.1 Research Motivation by Examples
	1.2 Research Problem
	1.3 Research Gaps, Questions and Methods
	1.3.1 Gap 1: Building A Diverse Ensemble Model of SKDB
	1.3.2 Gap 2: Strengthen ESKDB for Handling Numerical Data
	1.3.3 Gap 3: Better Probability Smoothing for Trees
	1.3.4 Gap 4: Smoothing on Ensemble Models

	1.4 Research Purpose and Contribution
	1.5 Thesis Structure

	2 Literature Review on Improving Probability Estimation
	2.1 The Bias-Variance Analysis of Classifiers
	2.1.1 The Bias-Variance Tradeoff
	2.1.2 The Bias-Variance Decomposition of the Squared Loss
	2.1.3 Ways to Control Variance

	2.2 Probability Smoothing
	2.2.1 Maximum Likelihood Estimation
	2.2.2 Maximum A Posteriori Estimation
	2.2.3 Smoothing with Dirichlet Priors

	2.3 Hierarchical Smoothing
	2.3.1 Hierarchical Smoothing: Low Variance and Low Bias
	2.3.2 M-branch Smoothing
	2.3.3 HDP Smoothing

	2.4 Ensemble Learning
	2.4.1 Background Knowledge
	2.4.2 Base Learning Algorithm Selection
	2.4.3 Combination Methods
	2.4.4 The Secret of Good Ensemble Models: Diversity
	2.4.5 Existing Ensemble Models and Their Diversity
	2.4.6 Summary

	2.5 Scoring Rules for Evaluating Probability Estimation
	2.5.1 Least-Squared Error Scores
	2.5.2 Entropy-Based Scores
	2.5.3 Summary

	2.6 Sign Test on Win-Draw-Loss Statistics
	2.7 Discretization of Continuous Features
	2.7.1 Unsupervised Discretization
	2.7.2 Supervised Discretization
	2.7.3 Summary

	2.8 Leave-One-Out Cross-Validation
	2.9 Summary

	3 Literature Review on Bayesian Network Classifiers and Decision Trees
	3.1 Bayesian Network Classifiers
	3.1.1 Background Knowledge
	3.1.2 The Bias-Variance of Bayesian Network Classifiers
	3.1.3 Existing Bayesian Network Classifiers
	3.1.4 Summary

	3.2 Decision Trees
	3.2.1 Background Knowledge: C4.5 Algorithm
	3.2.2 The Bias-Variance of Decision Trees
	3.2.3 Existing Works on Improving Tree Estimates
	3.2.4 Summary

	4 ESKDB Algorithm for Bayesian Network Classifiers
	4.1 Introduction
	4.2 ESKDB Algorithm
	4.2.1 Randomized Discretization
	4.2.2 Randomized Attribute Ordering
	4.2.3 Randomized Parent Ordering
	4.2.4 Parameter Learning
	4.2.5 Improved HDP Smoothing
	4.2.6 Testing Algorithm

	4.3 Experiment Results
	4.3.1 Experiment Design and Setting
	4.3.2 ESKDB is better than existing BNCs
	4.3.3 The benefits of the two stochasticities in ESKDB
	4.3.4 The ensemble size of ESKDB
	4.3.5 Improved HDP
	4.3.6 HDP compared with M-estimation for ESKDB
	4.3.7 ESKDB compared with XGBoost and RF
	4.3.8 ESKDB on the fully discretized data
	4.3.9 Running Time

	4.4 Summary

	5 HGS Smoothing Algorithm for Decision Trees
	5.1 Motivation
	5.2 HGS Algorithm
	5.2.1 Working with LOOCV
	5.2.2 Parameter Learning for HGS
	5.2.3 Algorithm Description

	5.3 Experiment Results
	5.3.1 Experiment Design and Setting
	5.3.2 HDP Parameter Tuning
	5.3.3 HGS Parameter Tuning
	5.3.4 HGS vs. Single Layer Smoothing Methods
	5.3.5 HGS vs. Hierarchical Smoothing Methods
	5.3.6 Smoothing vs. Data Size
	5.3.7 HGS vs. Validation
	5.3.8 Running Time vs. Data Size
	5.3.9 Smoothing vs. Pruning
	5.3.10 HGS on Random Forest

	5.4 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.1.1 Conclusion for ESKDB
	6.1.2 Conclusion for HGS

	6.2 Future Work
	6.2.1 Apply HGS smoothing to ESKDB
	6.2.2 Cost-sensitive Learning Decision Trees

	References

