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Abstract 
 

Soil bacteria are the most abundant and phylogenetically diverse cellular organisms. 

They underpin the health of the soil biosphere and mediate critical ecosystem services 

such as turnover of nutrients, carbon fixation and biogeochemical cycling of 

atmospheric gases. Most of these organisms lack cultured representatives and are not 

represented in existing genomic databases. This limitation has hindered the predictive 

power of microbial biodiversity studies and our understanding of their physiological 

functions and roles.  

This thesis addresses three gaps in our understanding of soil microbial biodiversity: (i) 

‘what drives microbial biogeographic patterns across environmental and distance 

gradients?’, (ii) ‘what processes support microbial primary production and energy 

generation across environmental gradients?’ and (iii) ‘how do these processes vary in 

abundance and activity across different ecosystem types?’. This was achieved 

primarily by combining ecogenomic approaches with biogeochemical measurements. 

While studies have shown that soil microorganisms are biogeographically distributed, 

the patterns observed are typically much weaker than those observed for animals and 

plants. The first results chapter addresses whether this observation is a biological 

phenomenon or reflects methodological limitations. To do so, I performed soil 

microbial surveys across an aridity gradient in Israel and leveraged innovations in 

sampling design, sequence processing and diversity analysis. A key finding is that 

microbial communities exhibit stronger biogeographic patterns than previously 

reported. Moreover, it is shown that existing methods such as clustering and/or filter 

sequencing data underestimate spatial turnover of microorganisms. Concordant 

findings were made using local, regional and global datasets. 

The second results chapter reports what energy sources support the microbial 

communities across this aridity gradient. Metagenomic and biogeochemical 

techniques were used to disentangle the relative importance of sunlight, organic 

compounds, and inorganic compounds as energy sources. These analyses 

demonstrated that biocrust and topsoil microbial communities harbour diverse 

metabolic capabilities. Whereas photosynthesis is a dominant primary production 

process in sub-humid and semi-arid soils, trace gases such as molecular hydrogen 



are major energy sources for arid and hyper-arid soils. The most dominant taxa in 

these environments have the flexibility to use both organic carbon and trace gases to 

meet energy and carbon needs. Thus, multiple energy sources support desert 

microbial communities depending on resource availability. 

Extending these findings, the third results chapter reveals the relationships between 

community composition and function across four different ecosystems. An in depth 

analysis of soil profiles across forest, wetland, grassland and dryland sites within 

Australia was conducted. Among these findings, I provide evidence from genome-

resolved metagenomics that over 70% of the community have the potential to oxidise 

the trace gases molecular hydrogen and carbon monoxide. Various phyla were also 

shown to harbour the genetic capacity for atmospheric hydrogen, carbon monoxide, 

and methane oxidation for the first time. These findings are supported by in situ flux 

and ex situ activity measurements. In combination, this suggests that trace gas 

oxidisers are dominant, active, and widespread members of soil microbial 

communities. 

This work presents a comprehensive advance in our understanding of soil microbial 

biodiversity and function. It highlights how current methodologies insufficiently capture 

microbial biogeographic distributions and advocate advances for future studies. 

Functional studies developed recent findings highlighting the importance of trace gas 

metabolism in energy conservation, while demonstrating the ecological significance of 

this processes across diverse ecosystems and along environmental gradients. The 

implications of these findings confirm that trace gases such as atmospheric H2 and 

CO support the biodiversity of soil microorganisms and highlight how these overlooked 

energy inputs are important components of ecosystem services and function. 
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1.1. Soil microbial communities 
 
1.1.1. Soil structure 
 

The pedosphere is Earth’s outmost envelope where soils occur and soil forming 

processes are active 1,2 . Soil formation is driven by the underlying geological parent 

material, climate and organisms, as well as topographic features including elevation, 

slope and orientation. Along their profiles, soils comprise all three states of matter 1,3. 

The solid phase comprises inorganic primary and weathered minerals, which account 

for the majority of soil dry weight, as well as organic matter that supports soil fertility  
4–6. The gaseous phase consists of atmospheric gases diffusing and interacting with 

the air spaces within and between soil aggregates, pore spaces and rock fractures 7. 

The liquid phase consists of surface and pore water that regulates gaseous exchange 

and contains dissolved gases, minerals and organic matter. 8. All three phases interact 

and provide the medium which supports all terrestrial life on earth and provide 

numerous services for humanity 1. Soils and the functions that they provide are 

nevertheless highly vulnerable to anthropogenic pressures. These include the effects 

of local change, such as intense agricultural practices, and global change such as 

increasing frequency of drought events leading to desertification 9.  

 

1.1.2. Community structure 
 

Microorganisms are critical for the formation, structure, and function of soils. They play 

key roles in various ecosystem functions, which support the delivery of important 

ecosystem services 10,11. Their functions control fluxes of energy, nutrients, and 

organic matter through the environment, while also supporting animal and plant life 

through symbiotic, trophic, and other interactions 12–15. Soil microbial ecosystem 

services primarily fall within three types: (i) Supporting services such as primary 

production, nutrient cycling and plant symbiosis 16–18, (ii) Regulating services including 

disease control, biodegradation of pollutants and biogeochemical cycling 19–23 and (iii) 

Provisioning services which include products directly obtainable from ecosystems 

such as antibiotic production and genetic resources 12,13,24–28. Links between microbial 

biodiversity and ecosystem functions are increasingly demonstrated, such as positive 
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relationships with ecosystem multi-functionality, terrestrial ecosystem productivity, 

nutrient cycling and litter decomposition 24,29–33.  

 

Soil microorganisms include members from all three domains of life: bacteria, archaea 

and eukaryotes 34. Global and regional surveys show that soil ecosystems are 

dominated by nine bacterial phyla namely the Proteobacteria, Actinobacteriota, 

Acidobacteriota, Planctomycetota, Chloroflexota, Verrucomicrobiota, Bacteroidota, 

Gemmatimonadota and Firmicutes 35–37. Actinobacteriota are a particularly dominant 

group in soil ecosystems and are well known for their high stress tolerance and 

prevalence across many different habitats, including oligotrophic ecosystems such as 

deserts 38–41. Archaea are generally less abundant, but can have critical roles; most 

notably, ammonia oxidising archaea such as Nitrososphaera viennensis belonging to 

Crenarchaeota play an important role in nitrification 42 and have been reported in many 

temperate soils 37,43. The third domain of soil microorganisms are eukaryotes, which 

include fungi, protists, and microalgae. Fungi are particularly abundant soil 

microorganisms 44 with diverse roles as decomposers, mutualists, and pathogens. 

Each gram of soil can harbour up to 1010 bacterial cells, which range in richness 

between 103-104 taxa 45. However, not all taxa are equally distributed. Just like higher 

animal and plant communities, microbial communities show positively skewed 

occupancy frequency distributions. This means that in most ecosystems a low number 

of dominant taxa occupy the majority of sites and co-exist alongside a high number of 

taxa that have low occupancy, i.e. they are members of the community 46–48.  

 

1.1.3. Methodologies 
 

Pure culture studies of microorganisms are responsible for most of what we know 

about the structure, function, and diversity of soil microorganisms. However, the vast 

majority of soil bacteria are challenging to culture using growth media. Relying on 

cultured organisms alone thus limit our perspectives. Advances in culture-independent 

methods, including 16S rRNA gene amplicon sequencing and shotgun metagenomic 

sequencing, have transformed our capacity to profile the taxonomic and functional 

composition of soil microorganisms 49.  
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A mainstay of taxonomic studies has been sequencing of hyper-variable regions (V1-

V9) along the 16S ribosomal rRNA gene sequence 50,51. This gene encodes the RNA 

component of the 30S subunit of the bacterial and archaeal ribosome and provides a 

suitable phylogenetic marker, given it is universally distributed and relatively 

conserved over evolutionary time 52. The 16S rRNA gene sequence can therefore be 

used to infer the taxonomic composition and evolutionary relationships of microbial 

communities. Following 16S rRNA gene sequencing on Illumina platforms, PCR-

amplified 16S sequence variants contain low frequency errors (~0.1% per nucleotide), 

which obscure taxonomic assignments 53. Traditionally this has been addressed by 

clustering sequences based on an arbitrary identify threshold (95-99%) into 

operational taxonomic units (OTUs), which serve as a proxy for species-level 

classification 54. Following this step, OTUs are often further processed by removing 

those with low relative abundances, usually ≤ 0.05%. The main limitation of clustering 

sequences into OTUs is the trade-off between reducing error frequency at the cost of 

losing phylogenetic resolution. Recent advances in 16S sequence processing tools 

are able to overcome this limitation. Instead of clustering based on sequence similarity, 

each 16S sequence variant is profiled using sophisticated error-models to discriminate 

between many million reads that differ by as little as one nucleotide across the gene 

sequences 55,56.  

 

In shotgun metagenomics, all community DNA in a sample is sequenced 57. This can 

reveal the entire genetic repertoire of the community, allowing inference of the 

metabolic potential and other traits of community members 57. Metagenomic 

sequences from short-read Illumina technologies consist of multiple short fragments 

(shotgun sequences) of the total community DNA. Overlapping regions of these 

sequence fragments can be computationally assembled into larger consensus regions 

of DNA called contigs. These contigs can then be grouped into phylogenetic bins and 

assembled into metagenome-assembled genomes (MAGs). Metagenomic analysis 

can be gene-centric by focusing on the short unassembled reads, which provides a 

means of estimating the relative abundance of specific genes of interest. Alternatively,  

a genome-centric perspective gives insights into the physiology and metabolic 

potential of specific organisms by interrogating MAGs. Since it was first used to 

describe the simple communities of biofilms 58 and seawater 59, millions of taxa and 

microbial genes have been described which have reshaped understanding of the 
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evolution and ecology of prokaryotes 34,60. Metatranscriptomic derivatives of this 

approach using reverse transcribed RNA sequences are also frequently used to study 

gene expression of microbial communities 61.  

 

The ongoing development of cultivation-independent technologies such as 16S rRNA 

gene amplicon, metagenomic and metatranscriptomic sequencing continues to 

transform our understanding of microbial communities but a more integrated 

methodological approach is needed to validate active metabolic functions 62. While 

molecular sequence data provide a robust means of inferring functions likely to be 

involved in various pathways and processes, biochemical measurements are need to 

establish proof that they are active in the community. For example, radioactive carbon 

isotope studies can be used to trace the assimilation of inorganic carbon dioxide (CO2) 

through biochemical reactions and confirm metabolic functions such as photosynthetic 

and chemosynthetic carbon fixation. 14C studies were first developed to measure 

photosynthetic primary production in marine phytoplankton 63,64. Since then, this 

approach has been widely used to highlight the importance of bacteria and archaea in 

global carbon cycling 65. For example, this is exemplified by culture-based and culture-

independent work demonstrating the capacity for hydrogenotrophic growth of 

Actinobacteriota 6667. Likewise, gas chromatography studies can be used to confirm 

the activity of soil microbial mediated uptake of atmospheric gases such as molecular 

hydrogen (H2), carbon monoxide (CO) and methane (CH4). This method has been 

used to complement physiological and genomic studies confirming the upregulation, 

activity and kinetics of  enzymes mediating the uptake of H2 and CO 68–72. Gas 

chromatography has also  been used to validate metagenomic field studies by 

validating that the inferred metabolic potential to oxidise trace gases was active in soils 
28. Increasingly sensitive field measurements are also able to detect these 

biogeochemical processes in situ and can be used to confirm observations from ex 

situ laboratory studies.  For example, static flux chamber methods have be widely used 

to measure local fluxes of the microbial soil sink of H2, CO and CH4 and estimate 

global trace gas budgets 73–75.  

 

An integrated approach coupling molecular techniques with biochemical activity 

measurements provides a powerful basis of validating sequence data and confirming 

the functional basis of microbial biodiversity. Cultivation-dependent approaches also 
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remain extremely valuable and have recently been used to gain a deeper 

understanding of microbial lineages first identified through cultivation-dependent 

approaches 76–78. In the following section 1.2. I introduce the ecological processes that 

shape microbial community assembly and the conceptual framework I utilise to refer 

to these drivers throughout this thesis. 
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1.2. Community structure  
 
1.2.1. Biogeographic patterns 
 

A central aim in microbial ecology is to understand the ecological processes that 

determine community assembly. Biogeography measures the spatiotemporal variation 

of communities across geographic space and geological time and can reflect 

underlying community assembly processes 79. The first law of geography states that 

“everything is related to everything else, but near things are more closely related than 

distant things” 80. The decline in similarity between communities or taxa, as the 

distance between them increases, is known as the distance decay relationship and is 

a fundamental biogeographic pattern observed across all domains of life 81. Distance 

decay patterns can reveal differences in community composition but also highlights 

how these differences are autocorrelated with spatial distance. Another universal 

biogeographic pattern is the taxon-area relationship, which describes the area of a 

habitat and the number of species it harbours, with larger areas generally containing 

a greater species richness 82,83.  

 

It is now well established that soil bacteria and archaea display non-random 

biogeography at local, regional and global scales 10,81,84–89. This realisation has led to 

the questions of what ecological processes underpin microbial community assembly 

processes. Historically, niche theory has been used as the dominant framework to 

describe how communities of macroorganisms and microorganisms assemble 79,81,90–

92. An ecological niche describes the spatiotemporal position a population or species 

can occupy under a certain set or resources and conditions 93,94. Niche theory predicts 

that distinct species can co-exist because of their functional trait differences. In turn 

these differences govern specialization for different fundamental and realized niches 

that allow species to co-exist 94. Niche theory describes the interactions between 

species and their environment (e.g. temperature, pH, organic carbon), and other 

species (e.g. predation, competition, and symbiosis) in relation to species’ traits (e.g. 

metabolism, morphology and life history characteristics) 95.  
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Ecologists have also recognised that some changes in community structure are 

independent of species traits and inherently stochastic. Hubbel’s neutral theory 

proposed that trophically similar species are ecologically equivalent in terms of birth, 

death, speciation and extinction rates, as well as dispersal limitation and colonization 
96. Thus, ecological processes which structure communities are predicted to be 

indistinguishable from those that arise by chance such as dispersal, speciation, 

extinction and drift 96. Despite its fundamental challenge to the importance of niche-

based processes, neutral theory has been widely used to describe some fundamental 

ecological processes structuring communities 86,97. It is now recognised that the 

deterministic (non-random) processes described by niche theory and the stochastic 

(random) processes described by neutral theory are not mutually exclusive, but are 

intertwined and co-responsible for microbial community assembly processes 81,86,98–

103.  

 

More recently, these inherently different theories have been unified by Vellend into a 

framework of four high order ecological processes which structure communities: 

selection, diversification, drift and dispersal (Fig. 1a) 95,104. Here I adopt Vellend’s 

framework when referring to the deterministic and stochastic processes that structure 

microbial communities and briefly describe each process within its ecological context 

and its effect on biogeographic patterns such as distance decay (Fig. 1a-b). 
 

1.2.2. Selection 
 

Selection generally occurs when individuals in a population vary due to fitness 

differences 95. In ecological selection, differential growth or survival of microorganisms 

due to deterministic abiotic (e.g. pH, salinity, temperature, water content) and biotic 

(e.g. competition, predation, commensalism, mutualism) factors structures 

communities 95. The strength of ecological selection is also predicted to co-vary with 

environmental heterogeneity (both abiotic and biotic) 95,105. The strength of selection 

can be differentiated into ‘homogeneous’ and ‘variable’ selection 105. Homogeneous 

selection generally occurs under conditions where there is little spatiotemporal 

environmental heterogeneity, therefore the selective pressure is constant and 

compositional turnover is predicted to be low 105,81,100. Under this scenario, distance 



9 
 

decay relationships of soil microbial communities are expected to be weak (Fig. 1b). 
In contrast, variable selection occurs under conditions where high environmental 

heterogeneity causes variation in selective pressures among taxa with fitness 

differences 81,95,100,105. This is predicted to cause high rates of compositional turnover 

and increase the rate of distance decay (Fig. 1b). The majority of studies to date have 

found that environmental selection is the dominant force structuring soil microbial 

communities 81,86. This is unsurprising given that soils are highly heterogeneous in 

their physicochemistry with gradients in pH, organic carbon content, soil redox status, 

moisture availability, salinity and temperature. These gradients have been shown to 

structure microbial communities at the microscale extending to large distances across 

local, regional and global scales 106–111.  

 

1.2.3. Drift  
 

Ecological drift causes random fluctuations in species composition and abundances, 

because rates of birth, death and reproduction are inherently stochastic 95,96. Under 

neutral theory and the absence of deterministic selection, demographically equivalent 

species are predicted to drift to extinction, with the exception of one dominant species 
95. Assuming that deterministic and stochastic processes interact and the 

environmental effect is strong, the effects of drift are generally expected to be 

outweighed by selection 86,95. However, empirical evidence suggests that when 

microbial communities are under weak selection, such as during the early stages of 

colonisation, ecological drift could be an important determinant of community structure 
81,95,100,112–114. Similarly, rare taxa which generally make up the majority of the 

community are also predicted to be particularly vulnerable to stochastic changes in 

demographics 104, as well as stochastic changes in environmental conditions 115. Like 

selection, drift is expected to structure microbial communities across spatial distance 

(Fig. 1b).  
 

1.2.4. Dispersal 
 
Dispersal generally refers to the movement and successful establishment of taxa 

across space and time 81,116. It is a means of connecting local, regional and global 
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communities and has the capacity to alter community diversity and composition 95. 

Dispersal can be active, whereby soil bacteria propel themselves, or passive such as 

through aeolian or hydration controlled processes 117–119. While active dispersal is 

thought to make a greater contribution to microbial community composition in aquatic 

ecosystems, this process is predicted to play a minor role in terrestrial ecosystems. 

However, both active and passive modes can result in dispersal limitation which can 

influence microbial community structure 95. Dispersal limitation generally occurs when 

the movement or successful establishment of taxa is impeded 86. These limiting effects 

can be due to physical constraints (e.g. spatial configuration of habitats, weak aeolian 

and aquatic processes), abiotic filters (e.g. pH, salinity, and moisture), biotic effects 

(e.g. cell morphology, metabolic strategy) as well as priority effects, whereby the first 

colonizers to a new habitat affect the successful establishment of taxa arriving at a 

later stage 100,120. While passive aeolian dispersal might be seen as a stochastic 

process, differences in fitness traits might favour certain taxa to withstand selective 

pressures in the atmosphere such as lack of nutrients and radiation 118,121. Thus 

dispersal encompasses both stochastic and deterministic components 122. Dispersal 

interacts with selection and drift by weakening their effect 81. As microbial dispersal 

increases, communities increasingly reflect the composition of the new colonizers 

rather than those shaped by selection and drift over time. Thus, in habitats undergoing 

high rates of dispersal, compositional differences are predicted to decline, slowing 

turnover and leading to a shallowing in the distance decay relationship (Fig. 1b). Given 

the inherently different characteristics of prokaryotes when compared to higher 

eukaryotes such as size, generation time and abundance, processes such as 

dispersal are poorly understood and difficult to quantify.  

 

1.2.5. Diversification 
 

Despite the prominent role of bacteria in evolutionary history, relatively little is known 

about the dynamics by which their diversity arose in the first place. Diversification 

refers to the evolutionary processes that generate new genetic variation through 

mutations and balance the rates of speciation and extinction 86. Diversification leaves 

phylogenomic footprints which can be used to infer past extinction and diversification 

rates 89,123. However, estimates of speciation and extinction rates across evolutionary 
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time remain understudied in microbial organisms 86. Studies examining the effects of 

diversification on community composition are also hampered by the fact many 

lineages are short-lived relative to geological timescales, which makes it difficult to 

estimate rates of past extinction and diversification events. Recent work suggests that, 

over the past billion years, bacterial diversity has been continuously increasing with a 

small fraction of bacteria that ever existed present in contemporary populations 124. 

However, it remains difficult to estimate the effects of diversification on contemporary 

soil microbial community structure. Unlike selection and drift, which increase the rate 

of distance decay and dispersal which counteract it, diversification is theoretically 

predicted to modify its magnitude (Fig. 1b). This is because mutations are predicted 

to affect all taxa and thus do not autocorrelate with distance.  

 

Following the discussion about high order ecological drivers underpinning soil 

microbial community assembly, I will move towards introducing the functional 

capabilities of microorganisms, focusing on their modes of energy conservation and 

carbon acquisition strategies in section 1.3. 
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Figure 1. Adapted schematic showing the conceptual interaction between the four 

ecological processes structuring microbial communities (a) 95 and the biogeographic 

pattern of distance decay (b) 81. These four high order ecological processes are not 

mutually exclusive but are thought to interact simultaneously in shaping microbial 

community structure. 
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1.3. Metabolic diversity  
 
1.3.1. Microbial metabolism 
 

Through metabolism, microorganisms convert chemical or light energy from the 

environment into usable cellular forms. Cells allocate this energy into growth, 

reproduction, and cellular maintenance processes, such as macromolecular repair, 

metabolite transport and membrane potential generation 125. The major source of 

chemical energy within cells is the energy storage molecule ATP 126. In most 

organisms the vast majority of ATP is generated by enzyme complexes bound to 

energy-converting membranes 127. Energy-converting membranes are found across 

all domains of life and include the plasma membrane of bacteria and archaea, the 

inner membrane of mitochondria and the thylakoid of chloroplasts 127. In respiratory 

organisms, electrons are generally transferred from reducing equivalents along an 

electron transport chain to acceptors such as oxygen. This energy transfer is coupled 

to proton translocation, leading to the generation of an electrochemical gradient 

(proton-motive force) 126. This gradient is then used to power ATP synthase to 

synthesize ADP to ATP through a chemiosmotic mechanism 126. Most animals are 

relatively metabolically inflexible, because the energy-transducing membranes of their 

mitochondria require electrons derived from organic substrates to be transferred to the 

electron acceptor O2 127. However, bacteria and archaea are highly flexible in their 

metabolic strategies; they are able to use a variety of organic and inorganic electron 

donors, which can be transferred to various aerobic and anaerobic electron acceptors. 

 

Reflecting this flexibility, microorganisms adopt a range of trophic strategies in nature. 

Organisms differ in how they acquire carbon for synthesis of biomass (autotrophy, 

heterotrophy), reducing equivalents for energy conservation or biosynthesis 

(lithotrophy, organotrophy) and energy for growth (chemotrophy, phototrophy) 126. To 

determine the metabolic strategies of various microbial taxa, these trophic descriptors 

can be used combinatorially. For example, autotrophic organisms have the capacity 

to fix CO2 but are differentiated in how they obtain energy from either light 

(photoautotrophy) or from inorganic compounds (chemoautotrophy). The same 

principle applies to heterotrophic organisms which rely on organic compounds. 
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Photoheterotrophs use light as energy sources, but require organic carbon rather than 

CO2 as their carbon source, whereas chemoheterotrophs use chemical energy 

sources and organic carbon sources. A third distinction is whether reducing 

equivalents are obtained from either organic (organotrophy) or inorganic (lithotrophy) 

compounds.  

 

1.3.2. Photosynthetic strategies 
 

Phototrophs carry out one of the most fundamental biological processes, the 

conversion of light to chemical energy 128. Photosynthesis relies on light-harvesting 

pigments such as chlorophylls, which absorb light at various wavelengths. The derived 

energy is transferred to photosynthetic reaction centres that produce a proton-motive 

force to energise ATP production 129. Common photoautotrophs in the eukaryotic 

domain include green plants, mosses, lichens, and diverse algae. In addition, bacteria 

have evolved diverse modes of photosynthesis 26,130. Cyanobacteria are the only 

phylum which carry out photosynthesis using an internal thylakoid membrane system 

in a similar manner to green plants 131,132. All chloroplast organelles found in 

contemporary photoautotrophs are thought to originate from an ancient 

endosymbiosis event whereby a cyanobacterium was engulfed by a eukaryote 133. In 

this mode of photoautotrophy, both ATP production and CO2 reduction into organic 

compounds is driven using light as energy source and water (H2O) as the reducing 

agent. This mode is known as oxygenic photosynthesis as the by-product of these 

reactions is oxygen (O2). In soil microbial communities, Cyanobacteria play important 

roles in supporting primary production through photosynthetic carbon fixation and 

forming biological soil crusts through extracellular secretions 134–138.  

 

Other photosynthetic bacteria obtain reducing power from inorganic sources such as 

sulfide, iron, or hydrogen to carry out this process. They lack the ability to use water 

as an electron donor and, because no O2 is produced, this mode is known as 

anoxygenic photosynthesis 26. These organisms are further differentiated from 

Cyanobacteria in that they use bacteriochlorophylls, which capture a longer 

wavelength than the plant-like chlorophyll a. Anoxygenic phototrophs have been found 

in various aquatic ecosystems but are generally minor members in terrestrial soils 132. 
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Unlike oxygenic photosynthesis which is only found in Cyanobacteria, anoxygenic 

photosynthesis has been found in various phyla, namely some Acidobacteriota, 

Chloroflexota, Bacteroidota, Gemmatimonadota, Firmicutes, and Proteobacteria 
139,140. It is likely that oxygenic photosynthesis arose from anoxygenic precursors that 

supported the Archaean ecosystems 26,132. Cyanobacteria are predicted to have 

played a key role in the great oxidation event ~2.4 billion years ago, which changed 

earth atmosphere from a reduced to an oxygenated environment.  

 

Both oxygenic and anoxygenic photosynthesis rely on photochemical reaction centres 

to transduce light energy into ATP synthesis. However, other photoheterotrophic 

bacteria employ a minimalistic form of light energy capture by using retinal-binding 

proteins called rhodopsins 26. These can be differentiated into multiple groups, 

including energy-conserving transmembrane proton pumps, transmembrane chloride 

pumps, and light sensors 141–143. Bacteriorhodopsins and proteorhodopsins are light-

driven proton pumps which generate an ion-motive force to drive ATP synthesis. The 

ecological significance and role of these processes is well-established in marine 

ecosystems, but their roles in soils is poorly understood. However, metagenomic 

analysis of marine communities at the global scale suggest that the genes for 

rhodopsin-based light harvesting are widespread 144. There is also evidence that these 

genes are abundant in the oligotrophic dry valleys of Antarctica, where they may 

enable energy generation during long-term survival 145. 

 

1.3.3. Chemosynthetic strategies 
 

In the absence of light harvesting mechanisms, some bacteria and archaea are able 

to obtain reducing equivalents for energy conservation and growth by using inorganic 

electron donors from a variety anthropogenic, geological and biological sources 146. 

These include trace gases such as hydrogen (H2) and carbon monoxide (CO), as well 

reduced sulfur compounds (e.g. sulfide, thiosulfate), nitrogen compounds (e.g. 

ammonium, nitrite), and metals (e.g. iron(II)) 147,148. Obligate lithotrophs, for example 

most nitrifying bacteria and archaea, have a highly specialized metabolism for a 

particular substrate and entirely depend on autotrophic carbon fixation for growth 
146,148. In contrast, facultative lithotrophs are typically preferential organoheterotrophs 
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that can grow mixotrophically, for example by using electrons derived from H2 and CO 

to drive aerobic respiration and sometimes carbon fixation 149. Despite their broad 

phylogenetic and ecological diversity, many lithotrophs have the metabolic capacity to 

chemosynthetically assimilate CO2. In aerobic ecosystems, most lithotrophs fix CO2 

using type I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) via the 

Calvin-Benson-Bassham pathway 146,149–151. 

 

In soil ecosystems, obligate and facultative lithotrophs play an important role in driving 

key biogeochemical processes such as nitrogen, carbon and trace gas cycling. 

Obligate lithotrophs have primarily studied for their role in mediating nitrification 152,153 

such as the gammaproteobacterium Nitrosomonas europea 154–156 and crenarchaeote 

Nitrososphaera viennensis 42,43, which derive their energy for growth from ammonium 

oxidation. Other model examples include the gammaproteobacterium Acidithiobacillus 

ferrooxidans, which derives its energy from the oxidation of iron, sulfur, or hydrogen in 

acidic soils 157–159. However, much less is known about the role of facultative 

lithotrophs, for example those mediating H2 and CO oxidation 149,150,160. Recent 

culture-based and culture-independent studies have identified bacteria within several 

dominant soil phyla that are surprisingly metabolically flexible. They are capable of 

switching from heterotrophic growth to lithotrophic H2 and CO scavenging to obtain 

reducing equivalents for energy conservation, biosynthesis and in some cases growth 
67,70,72,161–163.  In the following section 1.4., I will introduce trace gas metabolism, the 

enzymes mediating this process, and their role in energy conservation and carbon 

acquisition. 
 

1.4. Atmospheric trace gases 
 
1.4.1. Trace gas metabolism 
 

Atmospheric trace gases are globally ubiquitous and permeate the aerated layer of 

most surface soils. In the lower troposphere, hydrogen (H2), carbon monoxide (CO) 

and methane (CH4) occur in trace amounts at average global concentrations of 0.53 

and 0.10 and 1.85 parts per million (ppm) respectively (Fig. 2) 164–166. The turnover of 

these gases is driven by biological, geochemical and anthropogenic processes. Soil 
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microorganisms play a major role in the consumption, modification and production of 

atmospheric trace gases 20,167. However, with the exception of CH4, anthropogenic 

and biogeochemical sources of these gases are counterbalanced by sinks of similar 

magnitude 165,166,168. Soil microorganisms are a major sink of all three gases (Fig. 2), 
accounting for approximately 76% of annual losses for H2, 10% for CO and 5% for 

CH4 20,165,168. The remaining losses of trace gases are due to photochemical oxidising 

reactions 169. Overall, we have a relative strong understanding of the processes and 

organisms responsible for CH4 cycling. In contrast, while it has long been recognised 

that soils mediate H2 and CO oxidation 170,171, the microorganisms and enzymatic 

processes responsible for the uptake of H2 and CO are a relatively recent discovery.  

 

The microbial oxidation of H2 is catalysed by hydrogenase enzymes. Based on the 

metallic core of their active site the enzyme can be classified into three distinct groups, 

namely the [NiFe], [FeFe] and [Fe]-hydrogenases 160,172. These metalloenzymes 

catalyse the interconversion of H2 to protons and electrons in a reversible reaction H2 

⇌ 2H+ + 2e- 160. The direction of this reaction is dependent on the reduction potential 

of the component interacting with the enzyme. Thus hydrogenases can oxidise H2 and 

input the derived electrons into aerobic or anaerobic respiratory chains when 

respiratory electron acceptors are available. Alternatively, evolve H2 through the 

reduction of protons to disperse excess reductants generated during fermentation 173.  

 

Historically, H2 metabolism was thought to primarily occur in anaerobic hydrogen-rich 

environments such as marine sediments, gastrointestinal tracts, and hydrothermal 

systems 160,167,174. However, since the isolation of the Streptomyces sp. PCB7, the first 

organisms demonstrating high affinity uptake of  H2 175, evidence is growing that H2 is 

a universal energy source even in aerated ecosystems. Recent studies have 

demonstrated that soil bacteria can aerobically respire hydrogen at atmospheric 

concentrations to provide electrons for respiration and carbon fixation. H2 is a highly 

desirable electron donor for soil microorganisms given its low redox potential, low 

activation energy, and high diffusivity across cellular membranes 19,176. The underlying 

kinetics by which soils oxidise H2 was discovered  using gas chromatography and 

tritium exchange assays demonstrating the biphasic kinetics of H2 in the upper soil 

layer via fast acting low affinity (Km > 1000 nM ppmv) and slow acting high affinity (Km 

< 10-70 nM ppmv) activity 177,178.   
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To harness energy from this trace gas, bacteria express high-affinity, oxygen-tolerant 

[NiFe]-hydrogenases that associate with the cell membrane. These enzymes 

comprise a large subunit containing the bi-metallic nickel-iron catalytic site and a small 

subunit made of three iron-sulphur clusters 179 Four phylogenetically divergent groups 

of these enzymes have been shown to oxidise atmospheric H2, namely the group 1h, 

1l, 1f, and 2a [NiFe]-hydrogenases 180–182. These enzymes input H2-derived electrons 

into the aerobic respiratory chain and are biochemically adapted to function in the 

presence of O2. Studies on Actinobacteriota 163, Acidobacteriota 70 and Chloroflexota 
72 pure cultures have shown that atmospheric H2 oxidation is induced under carbon 

starvation; these organisms switch from organotrophic growth to mixotrophic 

persistence, by upregulating a group 1h [NiFe]-hydrogenases (HhyLS)  that support 

maintenance needs 182,183. Other aerobic bacteria, for example Ralstonia eutropha, 

can grow lithoautotrophically using H2 and CO2 as the sole energy and carbon source; 

however, this metabolism is restricted to H2-enriched environments and depends on a 

distinct hydrogenase (group 1d [NiFe]-hydrogenases) 184–186. 

 

A range of aerobic bacteria and archaea are also able to use CO as an energy source 

for growth and persistence 187,188. These organisms possess a carbon monoxide 

dehydrogenases (CODH) that catalyse the reaction CO + H2O → CO2 + 2 H+ + 2e− 
189.  In aerobic CO oxidising bacteria this uptake is mediated by type I [MoCu]-CO-

dehydrogenases, which are trimeric enzymes (CoxLSM) of the molybdenum-

containing hydroxylase superfamily 190,191. Two groups of CO oxidising bacteria have 

been identified based on their physiology. Carboxydotrophs, such as Oligotropha 

carboxydivorans, can grow chemolithoautotrophically using CO as the sole carbon and 

energy source 192–194. In contrast, carboxydovores adopt a mixotrophic metabolic 

strategy; they rely on organic substrates as carbon sources, but can oxidise CO at 

atmospheric concentrations to enhance growth or survival 187. Two recent pure culture 

studies have shown that atmospheric CO oxidation supported bacterial survival under 

carbon starvation in two dominant soil phyla Actinobacteria 161 and Chloroflexi 72. 

There is now evidence that at least four soil phyla are able to aerobically scavenge 

carbon monoxide: Actinobacteriota 71,195, Chloroflexota 72,196, Proteobacteria 191,197 

and Euryarchaeota 198. 

 



19 
 

The potent greenhouse gas CH4 can be consumed by aerobic methanotrophic 

bacteria and anaerobic methanotrophic archaea. These use CH4 as both an energy 

source and, with exception of the chemoorganoautotrophic verrucomicrobial 

methanotrophs, carbon source. In aerated soil ecosystems, methanotrophic bacteria 

mainly affiliate with various genera within the Alphaproteobacteria and 

Gammaproteobacteria 199–202, 203. Two other phyla are also known to mediate CH4 

oxidation in specific soils, namely Verrucomicrobiota in acidic soils and Candidatus 

Methylomirabilota (NC10) in anoxic soils 204. The key enzyme mediating the uptake of 

CH4 is a methane monooxygenase which catalyses the initial conversion step of 

methane to methanol. Two distinct form of this enzyme have been identified, a soluble 

cytosolic methane monooxygenase which uses a diiron active site (sMMO) and a 

particulate membrane-associated form with a catalytic copper centre (pMMO) 205. 

While particulate methane monooxygenases are present among the majority of 

aerobic methanotrophs 204, soluble methane monooxygenases are more variable in 

their distribution among methanotrophs 206. While methanotrophs are of global 

significance given their role in the CH4 cycle, they generally have a low abundance 

and phylogenetic diversity in many soil ecosystems 166,199. Other organic trace gases 

are also known to be used as energy sources by microorganisms, for example 

isoprene and short-chain alkanes 207,208. 
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Figure 2. Schematic showing the main anthropogenic and natural sources and sinks 

of the three atmospheric trace gases H2, CO and CH4. Global average tropospheric 

mixing ratios are shown in parts per million (ppm) 164–166. 

 

1.4.2. Physiological significance 
 

It is well established that the majority of bacteria and archaea persist in various states 

of dormancy 209,210. Only a small fraction (1-10%) are predicted to be actively growing 

in most soils 209. Dormancy is a reversible survival strategy used by bacteria to avoid 

starvation and is thought to be induced under sustained energy limitation. To ensure 

survival, microorganisms rely on maintenance energy which is the sum of energetic 

costs of activities that do not involve reproduction 209. This energy can then be used 

to carry out vital cellular functions such as biomolecular repair. Historically, dormancy 
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has been associated with ‘inactivity’, but recent studies suggest a more prominent role 

of microorganisms in this state in contributing to important ecosystem services such 

as biogeochemical cycling, antibiotic production, and biodiversity maintenance 
62,163,211,212.  

 

Metabolic flexibility enables dormant bacteria to survive in environments in which 

resources are limited. Metabolically flexible organoheterotrophs can switch from 

growth on organic carbon to persistence on atmospheric trace gases such as H2 to 

enhance their chances of survival. For example, under carbon starvation, the model 

strain Mycobacterium smegmatis upregulates the expression of two high-affinity 

hydrogenases and persists by oxidising H2 below atmospheric levels. Mutant strains, 

lacking the genes that encode the structural subunits of the group 1h [NiFe]-

hydrogenase, have a 40% reduction in survival in carbon-limited batch and continuous 

cultures 69,163. Similar observations have been made in Acidobacteriota and 

Chloroflexota cultures. Following the transition from exponential to stationary phase 

due to carbon starvation, Pyrinomonas methylaliphatogenes, Thermomicrobium 

roseum and the sporulator Thermogemmatispora T81 all upregulate the expression of 

group 1h [NiFe]-hydrogenases and mediate atmospheric H2 oxidation 70,72. Similarly 

to the upregulation of the [NiFe]-hydrogenase, the aerobic respiration of carbon 

monoxide is induced during carbon starvation. This has been demonstrated in two 

recent pure culture studies which have shown that atmospheric CO oxidation 

supported bacterial survival under carbon starvation in two dominant soil phyla 

Actinobacteriota 71 and Chloroflexota 72. It is also known that this atmospheric CO can 

be oxidised by Chloroflexota 72, Proteobacteria 191,197 and Euryarchaeota 198 in a 

possible persistence-linked process. 

 

1.4.3. Ecological significance 
 

Evidence from physiological, biochemical and genomic studies has increasingly 

shown that bacteria can survive carbon starvation by trace gas scavenging 70–72,163,182. 

Genomic and metagenomic studies highlight that a considerable phylogenetic 

diversity of bacterial taxa can carry out this function 161,182. Given the ubiquity of 

atmospheric trace gases and their suitability for microbial uptake, trace gas 
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scavenging is a form of resource generalism which provides a competitive advantage 

in resource-limited ecosystems. Besides ensuring the survival of carbon starvation in 

energy limited environments, dormancy is also predicted to counteract stochastic 

processes such as drift 213. This is because dormant microorganisms are not affected 

by stochastic changes in birth, death or reproduction rates. Thus, in line with the 

principles of seed banks observed in plant communities, dormancy is predicted to 

maintain or increase the genetic diversity in a population 214. Entering dormant states 

under these conditions is therefore predicted to be advantageous 213. While some have 

considered the cues that determine microbial dormancy stochastic 215, it is generally 

thought that microorganisms sense environmental conditions such as carbon 

availability and enter dormant states when conditions are unfavourable for growth 216.  

 

Trace gas metabolism may play a particularly important role in oligotrophic 

ecosystems where organic carbon substrates are limited. Deserts represent one of the 

largest biomes and can be found from the tropics to the poles 217. These are extreme 

environments with steep aridity gradients, limited organic substrates, and elevated pH, 

salinity and radiation 9,41. Despite these pressures, 16S rRNA gene soil surveys have 

repeatedly found that both hot and cold desert ecosystems harbour diverse microbial 

communities 9,41. At the phylum level, these communities are often similar in 

composition to temperate soils, with a dominance of Actinobacteriota, Proteobacteria 

and Chloroflexota 35,36. The majority of these taxa are predicted to be preferential 

heterotrophs which rely on organic substrates for growth. However, due to the abiotic 

extremes of arid and hyper arid deserts, photosynthetic organisms are primarily 

restricted to lithic niches and biological soil crusts 138,218–222. Photoautotrophs such as 

cyanobacteria and some algae occupy these environmental refugia and in presence 

of moisture can provide sufficient carbon inputs to maintain diverse heterotrophic 

communities 223,224. However, these phototrophic communities are increasingly sparse 

and spatially fragmented as aridity increases 218,222,225,226. They are therefore unlikely 

to account for the diverse microbial communities found in the interior of many arid and 

hyper-arid deserts. A longstanding enigma has been how these communities sustain 

themselves and maintain their diversity under these extreme energy-limiting 

conditions. Through recent studies, we have provided evidence that some desert 

surface soil communities are structured by a minimalistic mode of primary production, 

where atmospheric gases, not sunlight, serve as the main energy source 67.  
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We analysed the surface soil microbial communities in two coastal ice-free desert sites 

in Antarctica 67. Soils had limited capacity for photosynthesis and were extremely low 

in organic carbon content. Despite this, they harboured diverse communities of 

bacteria belonging to the superphylum Terrabacteria, including Actinobacteriota, 

Chloroflexota, Candidatus Eremiobacterota and Candidatus Dormibacterota. 

Metagenomic analysis revealed that genes supporting energy conservation were 

widespread, with the majority of the bacteria encoding high-affinity lineages of the 

enzymes [NiFe]-hydrogenase and a carbon monoxide dehydrogenase 67. The capacity 

to oxidise these trace gases to below atmospheric concentrations was confirmed using 

gas chromatography measurements. Furthermore, we detected that Actinobacteriota, 

Candidatus Eremiobacterota, and Candidatus Dormibacterota clades encoded the 

genes for autotrophic CO2 fixation via the Calvin Benson-Bassham (CBB) cycle 67. 

They encoded and expressed the type IE RuBisCO enzyme, a recently discovered 

clade of the CO2-fixing enzyme that supports hydrogenotrophic growth in some 

Actinobacteriota but is absent from phototrophs 227,228. The co-occurrence of these 

genes with high-affinity hydrogenases and carbon monoxide dehydrogenases 

suggested that these communities were able to fix CO2 into biomass using 

atmospheric trace gases, rather than solely relying on exogenous inputs from 

photosynthetic organisms. This was validated by tracing assimilation of 14C-labelled 

CO2 using microcosm experiments. We were able to demonstrate that, under H2-

enriched conditions, chemosynthetic CO2 fixation increased up to tenfold. In contrast, 

no significant stimulation was observed following light illumination 67.  

 

Based on these findings, we propose that, in desert ecosystems where photosynthetic 

organisms are often excluded due to aridity, dormant bacterial communities are 

sustained by atmospheric chemosynthesis. Community members may maintain 

energy and carbon needs by aerobically respiring atmospheric H2 and CO and, in 

some cases, using these gases to fix CO2 into biomass. We hypothesise that these 

metabolic strategies are differentiated along aridity gradients traversing humid to 

hyper-arid climates, with this switch being driven by the availability of organic carbon 

in the environment (Fig. 3). Given the prevalence of dormant soil microorganisms in 

temperate soils, we also hypothesise that a significant proportion of community 

members may be capable of atmospheric H2 and CO oxidation even in more organic 

soils. 
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Figure 3. Schematic showing the predicted interactions between photosynthetic and 

chemosynthetic primary production strategies along an aridity gradient. As aridity 

increases, photosynthetic primary producers become less abundant relative to 

specialised bacteria that use atmospheric trace gases to generate biomass 229.  

 

1.5. Thesis aims  
 

Following our findings that atmospheric trace gases support primary production in 

Antarctica, the central aim of this thesis is to determine how soil microbial communities 

are spatially structured and what functional traits form the basis of soil microbial 

biodiversity. To address this aim, I use an integrated approach utilizing culture 

independent molecular technologies with biochemical measurements and statistical 

models. Three results chapters will address the following questions: 

 

1. Determine what environmental and spatial drivers structure the biogeography 

of soil microbial communities. 

2. Identify which metabolic processes support microbial primary production and 

energy conservation with increasing aridity. 

3. Elucidate how primary production and energy conservation strategies vary in 

abundance and activity across different ecosystems.
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2.1. Abstract 
 

Bacteria have been inferred to exhibit relatively weak biogeographic patterns. To what 

extent such findings reflect true biological phenomena or methodological artefacts 

remains unclear. Here, we addressed this question by analysing the turnover of soil 

bacterial communities from three datasets. We applied three methodological 

innovations: (i) design of a hierarchical sampling scheme to disentangle environmental 

from spatial factors driving turnover; (ii) resolution of 16S rRNA gene amplicon 

sequence variants to enable higher resolution community profiling; and (iii) application 

of the new metric zeta diversity to analyze multisite turnover and drivers. At fine 

taxonomic resolution, rapid compositional turnover was observed across multiple 

spatial scales. Turnover was overwhelmingly driven by deterministic processes and 

influenced by the rare biosphere. The communities also exhibited strong distance 

decay patterns and taxon-area relationships, with z values within the interquartile 

range reported for macroorganisms. These biogeographical patterns were weakened 

upon applying two standard approaches to process community sequencing data: 

clustering sequences at 97% identity threshold and/or filtering the rare biosphere 

(sequences lower than 0.05% relative abundance). Comparable findings were made 

across local, regional, and global datasets and when using shotgun metagenomic 

markers. Altogether, these findings suggest that bacteria exhibit strong biogeographic 

patterns, but these signals can be obscured by methodological limitations. We 

advocate various innovations, including using zeta diversity, to advance the study of 

microbial biogeography. 
 

2.2. Introduction 
 

A central goal of microbial ecology is to link microbial distribution patterns to underlying 

ecological processes. Developing such links is important both for fundamental science 

and applied outcomes, for example to make accurate global biodiversity assessments 

and prioritize management goals in the face of both local and global change 230,231. 

However, achieving this critically depends on our abilities to adequately characterise 

biodiversity at the first stage, with various methodological and theoretical challenges 
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limiting our understanding of microbial distribution patterns and their underlying 

ecological drivers.  

 

Several principles have nevertheless become established in soil microbial ecology 

through cultivation-independent studies over the last two decades. First, it is 

appreciated that most soils harbour rich and abundant bacterial communities 
106,110,232,233. In most soils, a small number of taxa are abundant and prevalent, while 

the remaining taxa have low abundance and frequency (the ‘rare’ biosphere) 35,37 . In 

common with macroorganisms 234, four key ecological processes control microbial 

assembly across space and time: environmental selection, diversification, dispersal, 

and drift 81,86,104. While much work has emphasized the role of deterministic 

environmental selection in driving bacterial niche differentiation, especially edaphic 

factors such as pH 235–239, some studies have also inferred stochastic patterns of 

community structure, for example due to dispersal limitation or historical diversification 
102,239–242. The relative strength of these factors can vary across time, for example with 

dispersal controlling recruitment and selection affecting retention during initial stages 

of primary succession 239,243–245. As is also the case in the field of macroecology, the 

relative importance of deterministic and stochastic processes in shaping contemporary 

distributions of microorganisms continues to be debated and there is a large body of 

often divergent literature in this area. A major methodological challenge is to perform 

sampling and analysis that sufficiently disentangles the autocorrelation between 

environmental and spatial factors in soil ecosystems 81,246–248.  

 

Also controversial is the extent to which microbial communities vary across space. Soil 

bacteria are generally thought to exhibit weaker biogeographic patterns than 

macroorganisms 237,249. Most empirical studies have reported low exponents for taxa-

area relationships 237,250–253 and low regression coefficients in distance decay curves 
249,253–256, though exceptions have been reported 33,257–259. Several hypotheses have 

been put forward to explain these observations 28,260. Primarily, bacteria are thought 

to be able to maintain wide geographic ranges in the face of environmental variation 

by entering dormant states 28,62, leading to limited geographic turnover and shallow 

taxon-area curves 237,249,261. However, methodological artifacts may also account for 

some observations of weak spatial differences 249. Microbial biogeographic patterns 

are known to be sensitive to various factors, including spatial scale 262,263, sampling 
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effort 82,249,264,265, and taxonomic resolution 82,237,249,266–268. Communities are inherently 

prone to being undersampled, whether through insufficient sampling effort, low 

sequencing depth, or rarefying data 269,270. In addition, the processing of 16S rRNA 

gene amplicon sequencing data typically used to profile communities can reduce 

dataset resolution; reads are usually clustered into operational taxonomic units (OTUs) 

based on an arbitrary identity threshold (usually 97%) and the rare biosphere is 

regularly removed 54,271. Compounding these issues, the pairwise analyses generally 

used to quantify community turnover inadequately partition variation from all 

community members: incidence-based measures are highly sensitive to the rare 

biosphere and abundance-based measures focus on the common few 272,273. 

 

In this study, we employed three methodological innovations to address these 

common limitations of microbial biogeographic surveys and reassess patterns of 

bacterial community turnover. Firstly, we adopted a hierarchical sampling scheme 

commonly used in macroecological surveys 274,275; this enabled us to detect changes 

in community structure across multiple spatial scales and, in light of controversies in 

the literature, better distinguish the contributions of environmental and spatial drivers 

to community assembly processes 248. Secondly, we profiled community composition 

using high-resolution 16S rRNA gene amplicon sequence variants (ASVs), leveraging 

a new generation of processing tools 53,56,276. We compared the effects of the 

commonly used approaches of filtering and clustering sequences on calculated 

community turnover; this is important given that clustering sequences reduces 

taxonomic resolution and thus may increase the overall similarity of the community, 

thereby weakening biogeographic patterns 258,268. Finally, we used the multi-site 

diversity metric zeta diversity to analyze spatial community turnover and predict the 

strength of underlying deterministic and stochastic drivers 273. Unlike the commonly 

used beta diversity that is calculated from pairwise comparisons, zeta diversity 

describes the number of taxa shared across multiple sites. As a result, this parameter 

can discriminate diversity patterns across the spectrum of common, intermediate, and 

rare taxa 273,277–279, and infer deterministic and stochastic drivers of community 

assembly. On this basis, we provide evidence that at the level of exact sequence 

variants, biogeographic patterns of microorganisms are exceptionally stronger than 

previously reported. 

 



29 
 

2.3. Materials and Methods 
 

2.3.1. Soil survey design 
 

Topsoil samples were collected along perpendicular latitudinal and longitudinal 

transects in the Judea Hills and Negev Desert regions, Israel. The latitudinal transect, 

which was designed to capture a high level of environmental heterogeneity, extended 

for 160 km in a north/south direction along a steep aridity gradient. This transect 

traversed four climatic zones that were differentiated by mean annual precipitation 

patterns: sub-humid shrubland (300-400 mm/yr), semi-arid grassland (~200-250 

mm/yr), arid desert (~50-90 mm/yr), and hyper-arid desert (<20 mm/yr). The 

longitudinal transect, sampled within the arid zone across a relatively homogenous 

climate, extended perpendicular to the latitudinal transect for 20 km in an east/west 

direction.  

 

A hierarchical sampling scheme was used to capture biogeographic patterns across 

multiple spatial scales and provide sufficient spatial resolution to cover the majority of 

distance classes between sites (Fig. S3). Three spatial hierarchies were within each 

climatic zone: (i) site level (two representative sites of ~1000 m2), (ii) plot level (three 

representative plots of ~100 m2) and (iii) sample level (random triplicates of ~100 cm2) 

(Fig. S2). Site selection was based on four criteria: (i) soil type (wind-deposited loessic 

soils in the sub-humid, semi-arid, and arid zone, and gypsic soils in the hyper-arid 

zone), (ii) presence of soil crust to indicate no recent disturbance, (iii) vegetation-free 

soil to minimise a vegetation effect, and (iv) a buffer of 100 m to roads, slopes, and 

seasonal run-off water channels. No statistical methods were used to predetermine 

sample size. 

 

2.3.2. Soil sampling and analysis 
 

In total, 99 topsoil samples were collected across both transects over a ten-day period 

in May 2017. Prior to sampling, GPS coordinates and site metadata were recorded. 

Soil samples of approximately 50 g were collected in triplicate, using sterile 

techniques, by removing the soil crust (0 – 2 cm depth) and then sampling the 
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underlying topsoil (2 – 10 cm depth). Samples were placed into individual 50 mL screw 

top falcon tubes and stored at 4°C until downstream analysis. Within 24 hours of 

sampling, all soils were homogenized by sieving (500 μm) and soil water content (%) 

was measured gravimetrically in duplicate. All samples were then shipped to 

quarantine approved facilities at the School of Biological Sciences, Monash University. 

For soil chemistry analysis, samples were pooled to form one representative sample 

per plot and sent to the Environmental Analysis Laboratory, Southern Cross 

University. In total, 21 separate soil chemical parameters were selected for analysis, 

based on commonly reported drivers of soil microbial communities globally and those 

reported by previous studies in the Judea Hills and Negev Desert 280,281. These 

included: soil acidity (pH), electrical conductivity (EC), effective cation exchange 

capacity (ECEC), total organic carbon, total nitrogen, sodium (Na), sulfur (S), 

phosphate (P), potassium (K), nitrate (NO3-), and ammonium (NH4+), as well as 

bioavailable minerals including manganese (Mn), copper (Cu), zinc (Zn), boron (B), 

aluminium (Al), iron (Fe), and silicon (Si). Each chemical parameter was calculated 

following Rayment and Lyons methods 282. Aridity data for each site was obtained from 

a global geospatial dataset 283 mapping the aridity index (MAP/PET, where MAP = 

mean annual precipitation, and PET = potential evapotranspiration) at a resolution of 

90 arcseconds (approximately 1 km at the equator) using a climatic time series from 

1950 to 2000 284. 

 

2.3.3. Community DNA extraction and sequencing 
 

For all samples, total community DNA was extracted from 0.25 g of soil using the 

modified Griffiths’ protocol 285. We confirmed the DNA yield, purity, and integrity for 

each extraction using a Qubit Fluorometer, Nanodrop 1000 Spectrophotometer, and 

agarose gel electrophoresis. For each sample 286, the hypervariable V4 region of the 

16S rRNA gene was amplified using the universal Earth Microbiome Project primer 

pairs F515 and R806 287. The amplicons were subject to Illumina paired-end 

sequencing at the Australian Centre for Ecogenomics, University of Queensland. 

Twelve samples were also subject to shotgun metagenomics sequencing (SH.1.A3, 

SH.1.C2, SH.1.C3, SA.2.B3, SA.1.C3, SA.1.B1, AR.2.A3, AR.2.A1, AR.1.C2, 

HA.2.C2, HA.1.B1, HA.1.C2). DNA was extracted from 0.25 g of soil using the MoBio 
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PowerSoil Isolation Kit according to the manufacturer’s instructions. Metagenomic 

shotgun libraries were prepared for the 12 samples using the Nextera XT DNA Sample 

Preparation Kit (Illumina Inc., San Diego, CA, USA). Sequencing was performed on 

an Illumina NextSeq500 platform with 2 × 150 bp High Output run chemistry. For 

analysis of the previously published global dataset 35, the raw 16S rRNA gene 

amplicon sequences were downloaded from Figshare (https:// 

figshare.com/s/82a2d3f5d38ace925492). This includes samples from six continents, 

Africa, Europe, Asia, Australia, North America, and South America. 

 

2.3.4. Amplicon-based community profiling  
 

Raw sequences from the Israel and global datasets were processed on the QIIME 2 

platform 288 using the deblur pipeline 276 to resolve exact amplicon sequence variants 

(ASV). In contrast to operational taxonomic unit (OTU)-based approaches that cluster 

sequences to a fixed identity threshold (usually 97%), deblur controls error rates 

(typically 0.1% per nucleotide) to resolve single-nucleotide differences over the 

sequenced gene region 276. Paired-end raw reads were demultiplexed and adapter 

sequences were trimmed, yielding 3,989,659 reads across all samples. Forward and 

reverse reads were joined using the q2-vsearch plugin 289. A quality filtering step was 

applied using a sliding window of four bases with an average base call accuracy of 

99% (Phred score 20). Low quality reads were removed and sequences were 

truncated at 250 base pairs before de-noising using deblur 276. For downstream 

analysis, three samples with low read counts (<1000 reads) were excluded (SH.1.B2, 

AR.1.B1, AR.1.B2). In addition, singletons missed by deblur were manually removed, 

resulting in the loss of 414 ASVs. The final dataset contained 96 samples and 11,335 

ASVs (Table S1). In order to compare biogeographic patterns across different 

taxonomic resolutions, a second dataset was created by clustering the ASVs at a 97% 

identity threshold using open reference OTU picking via q2-vsearch 289. The third and 

fourth datasets were created by removing reads with lower than 0.05% relative 

abundance from the 100% and 97% identity threshold datasets using the Phyloseq 

filter_taxa function. Taxonomic assignment was performed as per a previously 

described approach (https://osf.io/25djp/wiki/home/). Briefly, all reference reads that 

matched the 515F/806R primer pair were extracted from the Genome Taxonomy 
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Database (GTDB) 290 and used to train a naïve Bayes classifier 291 by using the fit-

classifier-naive-bayes function with default parameters. The classifier was then used 

to assign the taxonomy to the ASV feature table. Representative sequences were 

aligned using the multiple sequence alignment program MAFFT 292 and a phylogenetic 

tree was constructed using the fast-tree method in QIIME 2. 

 

2.3.5. Metagenome-based community profiling 
 

The 16S rRNA gene amplicon sequence is commonly used as a marker to profile 

microbial communities. However, a major limitation of this approach is the 

intragenomic and intergenomic variation in copy number of the 16S rRNA gene 293,294. 

We conducted a comparative metagenomic analysis on a subset of 12 samples 

(biological triplicate from within each climatic zone) along the latitudinal transect using 

a single copy ribosomal marker, in order to test whether our observations of 

community turnover by 16S rRNA gene amplicon sequencing were affected by this 

variation. Raw sequence reads in each sample were stripped of adapter and barcode 

sequences, then contaminating PhiX sequences were identified and removed using 

the BBDuk function of BBTools v. 36.92 (https://sourceforge.net/projects/bbmap/) with 

a kmer size of 31 and hamming distance of 1. Retained read pairs were then quality 

trimmed using BBDuk with Q >20. A total of 318,420,199 reads were obtained from 

metagenomic sequencing across the 12 samples. In contrast, the read counts for the 

negative controls were 6,547 (extraction control) and 1,360 (library preparation 

control). We then used SingleM 295, which uses hidden Markov models (HMMs) 

searches of single copy ribosomal markers, to generate de novo operational 

taxonomic units (OTUs). In total, 28 HMM searches were performed against 14 single 

ribosomal single copy marker genes. GraftM was used for taxonomic annotation of 

OTUs by searching sequences using hmmsearch (HMMER) 296. For downstream 

analysis, one single copy marker gene was used for comparison, encoding ribosomal 

protein L16/L10E (rplP). This marker was previously identified as a robust means of 

distinguishing between both closely and distantly related genomes 297. Sequences 

were then clustered de novo into OTUs using a sequence identity threshold of 97%. 

Taxonomic assignment was carried out using the GTDB taxonomy. Due to large 

differences in sequence depth between the single copy ribosomal marker and 16S 
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sequence, the amplicon and metagenomic sequences analyzed were both rarefied at 

300, which was the minimum number of sequences observed for rplP. Rarefied 

datasets were only used in the supplementary analysis shown in Figure S15, whereas 

the rest of the study used unrarefied datasets. 

 

2.3.6. Richness analysis 
 

Statistical analysis and visualizations were performed in R version 3.4.4 (2018-03-15) 

using the packages ggplot2 298, phyloseq 299, vegan 300 and zetadiv 273. Occupancy 

frequency distributions 301 were used to visualize the distributions of the numbers of 

taxa occupying different numbers of areas and examine the distributional shifts at 

lower identity thresholds and after filtering rare taxa. Taxa accumulation curves were 

used to compare alpha diversity properties between sites and confirm adequate 

sampling of the microbial community. A sample-based rarefaction method was used 

to find the expected curve, namely the Mao Tau estimate, and a moment-based 

standard deviation was estimated from the extrapolated number of ASVs surveyed 

(gamma diversity) using the ‘exact’ method of the specaccum function [Vegan | R] 300. 

Observed richness and estimated richness (Chao1 and ACE methods) were 

calculated using the estimate_richness function [Phyloseq | R] 299. To test for 

significant differences in the mean observed and estimated richness at the site level, 

an analysis of variance (ANOVA) with a Shapiro-Wilk test to confirm normality was 

used (Table S2).  

 

2.3.7. Turnover analysis 
 

The multi-site diversity metric zeta diversity (ζ) was used [Zetadiv | R] 273 to examine 

incidence-based turnover in community composition (Fig. S10). Pairwise metrics of 

incidence-based turnover (e.g. Jaccard, Simpson index) are biased towards detecting 

turnover that is driven predominantly by the loss and addition of taxa from the rare 

biosphere, as by definition rare taxa are not shared by many sites. Zeta diversity 

overcomes this limitation by enabling discrimination between turnover of rare, 

intermediate, and common taxa. With increasing orders of zeta, the average number 

of taxa shared between sites declines and the contribution of increasingly more 
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common taxa to the value of zeta diversity increases. Variation in the rate and form of 

zeta decline provides information on community structure and inference of the 

processes driving community assembly. If the zeta decline follows an exponential form 

(the ratio between ζi and ζi-1 is constant), there is a similar probability of finding a 

common or rare taxon with the addition of a site, suggesting that turnover is 

predominantly stochastic or dispersal limited. However, if zeta decline follows a power-

law form (the ratio between ζi and ζi-1 increases at higher orders), then the chance of 

detecting a common taxon is greater than detecting a rare one with increasing orders, 

demonstrating structure in the community and suggesting that turnover is driven 

primarily by deterministic processes such as selection due to edaphic or climatic 

factors 273. Zeta decline using Monte Carlo sampling was calculated via the 

zeta.decline.mc function [Zetadiv | R] 273. Zeta diversity was calculated on non-

weighted presence-absence data for ζ orders ζ1 – ζ6; this captured the extent at which 

the community was structured across each transect, as ζ values within each dataset 

approached zero. To account for differences in richness between sites, all ζi values 

were normalized by using a Jaccard normalization with subsampling set to 1000 

permutations for each analysis. Power-law and exponential models were fitted to ζi 

decline curves and Akaike Information Criterion (AIC) were used to estimate the 

likelihood of either exponential or power-law model describing the relationship 

between ζ diversity and order i.  

 

2.3.8. Biogeographic analysis 
 

We calculated the distance decay of similarity across both transects to quantify the 

number of shared ASVs over geographic distance and to explore turnover within the 

context of geographic distance. Pairwise distance decay was calculated using 

normalised ζ2, with sampling set to 1000 using the function zeta.ddecay [Zetadiv | R] 
273. To quantify the contribution of rare and common ASVs to turnover, distance decay 

was calculated for orders ζ1 – ζ6 by using the mean distances between pairs of n sites 

via the zeta.decays function [Zetadiv | R] 273. Spatially explicit taxa-area relationships 
302 were calculated by estimating richness as a function of the sample, plot and site 

level spatial hierarchies (Fig. S2) using the specnumber function [Vegan | R] 300. The 

taxa-area curve was fitted using the Arrhenius model with the expression kAz, where 
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k is the average number of taxa, A is the area (spatial hierarchy), and z is the 

steepness of the curve. For comparison, turnover rates from this this study were 

compared against a total of 655 datasets including bacteria (Table S7) and higher 

eukaryotes 303. 

 

2.3.9. Community structure analysis 
 

Principal coordinate analyses (PCoA) were used on both weighted and unweighted 

distance matrices. Read counts were normalized to relative abundance and a square 

root transformation was applied prior to calculating distances between samples using 

Bray Curtis. For non-weighted analysis, read counts were transformed to incidence 

(presence-absence) and distances were calculated using the Jaccard index. A 

multivariate model-based framework was used to test for significant differences in 

community structure among spatial hierarchies and identify the subset of 

environmental drivers that best explain spatial patterns in community structure 

[MVAbund | R] 304. Microbial abundance and incidence data typically show a mean-

variance relationship, which standard approaches such as PERMANOVA, ANOSIM 

and RDA fail to account for. Instead they rely on pairwise distance-matrices which 

convert multivariate datasets to univariate ones which has been shown to reduce 

statistical power. MVAbund solves this problem for non-normal data by fitting a single 

generalized linear model (GLM) to each ASV separately and performing re-sampling 

of p values to determine significance of a shared predictor variable. In this study, ASV 

incidence data were modelled using generalized linear models. Mean variance-

relationships of the data were confirmed by visually inspecting scatterplots showing 

mean variance as a function of ASV incidence. Model assumptions were validated by 

inspecting Dunn-Smyth residuals as a function of each predictor variable and 

significance was established using a likelihood ratio test (LRT) with PIT-trap 

bootstrapping 305. To obtain the subset of predictor variables which best explain a 

multivariate response, significant predictor variables were passed through a forward 

selection in a multivariate linear model using the top ten independent variables with 

the highest average R2. A variation partitioning analysis was performed to disentangle 

the autocorrelation between environmental and geographic distance and partition 

variation in community structure into its spatial and environmental components. Multi-
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site generalized dissimilarity modelling (MS-GDM) was used to identify the importance 

of correlates of turnover, by regressing ζ2 against the sub-set of identified predictor 

variables for each plot and each taxonomic resolution using zeta.msgdm function 

[Zetadiv | R] 273. Then a variation partitioning analysis was performed using the 

zeta.varpart function [ZetadivR] 273, which partitioned the variation into (a) variation 

explained by distance alone, (b) variation explained by either distance or environment, 

(c) variation explained by environment alone, and (d) unexplained variation. 
 

2.4. Results 
 

2.4.1. Most community members have a low to moderate occupancy 

across soil transects 
 

We analyzed 96 topsoil samples along two perpendicular transects (Fig. S1): a 160 

km latitudinal transect (north/south) spanning four climatic zones (sub-humid, semi-

arid, arid, hyper-arid; 69 samples) and a 20 km longitudinal transect (east/west) in the 

arid zone (27 samples). Within each transect, samples were collected according to a 

hierarchical design (2 sites per zone × 3 plots per site × 3 samples per plot) (Fig. S2). 
This sampling scheme was designed to enable the analysis of microbial community 

turnover at multiple spatial scales, capture a wide spectrum of distance classes (Fig. 
S3), and discriminate underlying spatial and environmental drivers. The bacterial and 

archaeal communities in each sample were profiled using both new and standard 

approaches for processing 16S rRNA gene amplicon sequencing data. Rarefaction 

curves (Fig. S4 & S5) and richness estimators (Fig. S6; Table S2 & S3) confirmed 

that sequencing and sampling efforts sufficiently captured the diversity of taxa within 

and across samples. A high-resolution community profile was generated by 

processing reads using the deblur pipeline 276 to resolve 16S amplicon sequence 

variants (ASVs) at the single-nucleotide level (singletons removed) (Table S1; Fig. S7 
& S8). Most sequences were from the nine dominant soil phyla 35, especially 

Actinobacteriota, Chloroflexota, and Proteobacteria, as well as putatively ammonia-

oxidizing archaea (Fig. S8). The occupancy frequency distribution 301 of the 11,335 

taxa (ASVs) detected was positively skewed; ~67% of 7602 taxa were detected in 

fewer than 10% of samples (Fig. 1a; Fig. S7).  
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Figure 1. Occupancy frequency distribution of amplicon sequence variants at 
different taxonomic resolutions. The Kernel-smoothed density plot shows the 

number of sites that each taxon (amplicon sequence variants, ASVs) was detected in 

across the dataset. (a) Effect of clustering taxa at either 100% or 97% identity 

threshold. (b) Effect of either including or removing taxa with lower than 0.05% relative 

abundance. Vertical dotted lines show distribution means. Stacked histograms 

representing this data are shown in Figure S7.  

 
We then compared the effects of applying two standard approaches used to process 

sequencing data into OTUs: (i) clustering, i.e. combining sequences with an identity 

threshold of 97%, and (ii) filtering, i.e. removing sequences with lower than 0.05% 

relative abundance. There was a sharp decrease in the number of taxa retained (2943 

clustered, 222 filtered, 403 clustered then filtered). Though clustering inevitably 

reduced richness (Fig. S6), as well as the frequency of intermediate taxa, it did not 

affect the skew of the occupancy frequency distribution (Fig. 1a). However, when less 

abundant taxa were filtered from the datasets, occupancy frequency shifted from a 

positive skew to a modal distribution (Fig. 1b). These findings suggest that the 

prevalence of most community members is low to moderate; standard clustering and 

filtering approaches not only affect the ‘rare’ biosphere, but a large percentage of 

community members with moderate range sizes. In turn, changing occupancy 

properties may underestimate ecological heterogeneity and markedly bias 

biogeographic interpretations. 
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2.4.2. Deterministic factors drive differences in community composition 

between soil samples 
 

We subsequently used pairwise metrics (beta diversity) to analyze community 

composition between samples. We detected significant differences in community 

structure down to the plot level (Fig. S8 & S9). The extent of compositional differences 

observed between sites depended on both the community property used (incidence 

vs abundance, taxonomic vs phylogenetic) and the taxonomic resolution of the 

dataset. MDS ordinations showed prominent “V” patterns (Fig. S9); this pattern, also 

known as the horseshoe effect, has been shown to indicate the presence of niche 

differentiation along environmental gradients 306. In line with the high environmental 

heterogeneity along the latitudinal transect, differentiation was more pronounced for 

the latitudinal than longitudinal transect (Fig. S9).  
 

A variation partitioning analysis was used to delineate the measured environmental 

and spatial predictor variables that account for the greatest amount of variation in 

pairwise community structure. Across the latitudinal gradient, 45% of the community 

variation of the high-resolution dataset was explained by measured edaphic factors 

(Fig. S11) with pH, C:N ratio, aridity, and salinity explaining the greatest amount of 

variation (Table S4). These results broadly reflect other studies in the Negev region 

and along aridity gradients globally 107,280,307. Less variation was explained for the more 

homogeneous longitudinal transect (35%) (Fig. S11). Altogether, these results 

suggest environmental effects predominate over distance effects in driving community 

composition. In common with other biogeographic studies 253,308,309, a large proportion 

of variation was unexplained by the measured variables. A combination of factors 

could contribute to this unexplained variation, including deterministic processes driven 

by unmeasured abiotic and biotic factors, as well as neutral ecological drift and 

potentially sampling effects. In both the MDS and variation partitioning analyses, less 

variation in community composition could be explained and partitioned for the high-

resolution dataset compared to filtered ones (Fig. S9 & S11). The rank importance 

and weight of environmental predictors also shifted depending on taxonomic resolution 

for both transects (Table S5 & S6). In support of recent findings 111, these results 

suggest that different environmental drivers structure common and rare microbial taxa. 
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2.4.3. Soil microbial communities exhibit rapid deterministically-driven 

multisite turnover 
 

We also analyzed spatial turnover in the community using the recently developed 

metric zeta diversity. As depicted in the infographic in Fig. S10, zeta diversity 

describes the number of taxa shared by multiple combinations of sites; whereas beta 

diversity (which it encompasses) is predisposed to detecting turnover of rare taxa, zeta 

diversity discriminates patterns and drivers of turnover across the spectrum of 

common, intermediate, and rare taxa 273,277. For the high-resolution dataset, zeta 

diversity rapidly declined towards zero within four orders in the latitudinal transect (ζ4 

= 0.0068) (Fig. 2a). This means that the average number of taxa shared across any 

four plots was 0.68% of 10,826, indicating very rapid turnover. Similar patterns were 

observed across both transects and within each climatic zone; somewhat lower 

turnover was observed along the longitudinal transect (ζ4 = 0.010) and hyper-arid 

samples (Fig. S12). Reducing taxonomic resolution markedly slowed compositional 

turnover (Fig. 2a); for the clustered and filtered dataset, up to 30% of the community 

were shared across any four plots (ζ4 = 0.18 and 0.30 for the latitudinal and longitudinal 

transects respectively). Such findings reflect that, given common, intermediate, and 

rare community members show different distribution patterns, lowering taxonomic 

resolution distorts detection of microbial turnover and underlying drivers.  

 

Derivations show that zeta decline most often follows either a power-law or an 

exponential form, which are respectively associated with either deterministic or 

stochastic community assembly processes 273. Zeta decline much better fitted a 

power-law form for both transects and within each climatic zone (Fig. 2c & Fig. S12), 
suggesting deterministic processes drive turnover. While power-law support was 

overwhelming for the high-resolution dataset, there was some support for exponential 

models in the low-resolution datasets; filtering microbial datasets, by obscuring 

biogeographic structure, may therefore cause false signals of stochastic assembly 

processes (Fig. S13). 
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Figure 2. Community turnover and assembly processes along the latitudinal 
transect at different taxonomic resolutions. Zeta decline (a), showing how the 

number of shared taxa (ASVs) decline with the addition of sites to the comparison 

(Order). The taxon retention rate using the zeta diversity ratio (b), which demonstrates 

the probability of retaining common over rare taxa at any particular order with the 

addition of an extra site. In all cases, the decline followed a power law form (c), which 

is associated with deterministic processes driving structure in the community (versus 

an exponential form). However, the relative support for the power law form varies and 

depended on the taxonomic resolution (d).  
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2.4.4. Soil microbial communities exhibit strong distance decay and 

taxon-area relationships 
 

We subsequently measured distance decay using a combination of pairwise (beta 

decay) and multisite (zeta decay) metrics. Based on pairwise comparisons, a strong 

decay of shared taxa was also detected across transects (p < 0.0001) (Fig. 3a & 3b; 
Table S6). Lowering taxonomic resolution caused a large increase in community 

similarity, a steeper distance decay coefficient, and a lower rate of community turnover 

overall; across the 160 km latitudinal transect, there was a 82% reduction in 

community similarity for the high-resolution dataset compared to 50% to 60% 

reductions for the clustered and/or filtered datasets. Given the concordant support for 

deterministic drivers, based on the zeta diversity (Fig. 2), variation partitioning analysis 

(Fig. S12), and MDS analysis (Fig. S9), these decay patterns likely reflect 

environmental filtering rather than dispersal limitation.  

 

To quantify how distance decay compares between rare, intermediate, and common 

taxa, distance decay was calculated for up to six zeta orders by using the mean 

distance between pairs for up to six plots. For both transects at high-resolution, the 

gradient of the distance decay curve rapidly and significantly decreased with 

increasing zeta order (Fig. 3b & Fig. S14). This provides additional evidence that 

these microbial communities are highly structured and that turnover is driven by loss 

of rare to intermediate members. In contrast, there were no significant changes in 

distance decay rates with zeta order for the less resolved datasets, further 

demonstrating that clustering and/or filtering obscures biogeographic patterns. 

 

Given these outcomes, we revisited the controversial taxa-area relationship for 

bacterial communities 82,237 using these datasets. This universal relationship in 

ecology describes the increase in taxon richness with area sampled, i.e. S = cAz 

(where S is number of species, A is area sampled, c and z are fitted constants), and 

its exponent z is a normalized measure of turnover rates that can be compared 

between organismal groups 237. A strong taxa-area relationship was also observed for 

both transects (p < 0.001) (Fig. 3c; Fig. S14; Table S7). The z exponents were 0.39 

(latitudinal transect) and 0.4 (longitudinal transect) for the original high-resolution 
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datasets, and decreased to 0.13 and 0.09 in the clustered then filtered datasets (Table 
S7). Such z exponents greatly exceed those reported for bacterial communities in 

most previous studies (median 0.04), but are congruent with four studies 257–259,310, 

two of which also performed hierarchical sampling. These exponents are of the same 

order of magnitude to those previously reported for animal and plant datasets (median 

0.27) (Fig. 3d & Table S7), indicating biogeographic patterns of bacteria and 

macroorganisms may not profoundly differ. However, more broad and detailed side-

by-side sampling is required to compare scaling relationships between bacteria and 

macroorganisms. 
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Figure 3. Distance decay in community similarity and the taxa-area relationship 
at different taxonomic resolutions. (a) Zeta distance decay relationship showing 

community turnover with increasing geographic distance based on pairwise 

comparisons (ζ2) of sites along the latitudinal transect. (b) Differences in the slope 

(coefficient) of distance decay between pairwise and higher orders of zeta (>2) using 

the average distance between sites. (c) Taxa-area relationships of the increase in 

richness with area sampled along the latitudinal transect, both showing clear 

consequences of taxonomic resolution for understanding how compositional 

heterogeneity scales with distance. (d) Violin plots showing the density-distribution 

and interquartile range of the exponent z of the taxa-area slope reported here with 

those from other studies for bacteria and eukaryotes (Table S7). Results are 

compared at four different taxonomic resolutions, whereby (i) taxa were clustered at 

either 100% or 97% identity threshold and (ii) taxa with lower than 0.05% relative 

abundance were either included or removed. 

 

2.4.5. Similar biogeographic patterns are observed using metagenomic 

sequences and global datasets 
 

This study relies on 16S rRNA gene amplicon sequencing to profile the soil microbial 

communities. This approach remains standard practice for biogeographic studies, 

given the alternative of metagenomic profiling requires much higher sequencing 

depths and yields either less information-rich short reads or more error-prone long 

reads 311. However, limitations of 16S rRNA gene sequencing include potential for 

amplification and sequencing errors, biases in the primer sets, and genome variability 

in 16S copy number 294. While it is possible that the dataset includes some spurious 

sequences introduced through this approach, these are unlikely to account for the 

surprising observations made here. First, a range of accuracy measures suggest 

deblur efficiently denoises sequencing data and that a 100% identity threshold 

resolved using the deblur denoising pipeline is optimal for community profiling with the 

V4 region 53,276. Secondly, similar but weaker patterns of rapid deterministically-driven 

community turnover was observed for the clustered (but not filtered) datasets, in which 

most spurious sequences should be removed (Fig. 1a, 2, 3).  
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To test the reproducibility of our findings, we performed short-read metagenomic 

sequencing of a subset of 12 samples across the latitudinal transect and analyzed a 

single-copy ribosomal marker gene (L10e/L16). Similar to the 16S amplicon data, 

samples showed a high estimated richness, comparable taxonomic composition, and 

rapid community turnover (Fig. S15). Zeta decline approached zero after three orders 

(ζ3 = 0.06) using a rarefied dataset (Fig. S15). In combination, this suggests that 16S 

ASVs are sufficient to estimate community turnover, whereas standard methods of 

clustering and filtering data obscure biogeographic patterns and inflate signals of taxon 

commonness.  

 

Having detected these patterns at local and regional scales, we analyzed whether 

similar patterns were observable at the continental scale. To do so, we analysed a 

previously published 16S profiles of 237 soil samples collected from six continents 35. 

As with our original dataset, we processed the 16S rRNA amplicon sequencing data 

into ASVs and analyzed the effects of clustering and/or filtering. The occupancy 

frequency distribution of the taxa showed a similar skew to the Israel dataset (Fig. 
S16). Concordant with our previous observations, zeta diversity rapidly declined 

across the first few orders and followed a power-law relationship with strong model 

support (Fig. S16). Clustering and filtering altered the occupancy frequency 

distribution, resulting in ~10% to 30% of taxa being retained at six zeta orders (Fig. 
S16). Thus, our key result that soil bacterial communities exhibit strong biogeographic 

patterns are reproducible in datasets at local (longitudinal transect), regional 

(latitudinal transect), and global scales.  

 

2.5. Discussion 
 

In this study, we analyze patterns and drivers of soil microbial composition across 

multiple scales. We overcame common limitations in microbial biogeographical 

studies by leveraging innovations in sampling design, amplicon processing, and 

diversity metrics. We found that (i) soil bacterial communities exhibit strong 

biogeographic patterns, (ii) spatial turnover is rapid as most taxa have low to moderate 

levels of occupancy, and (iii) community structure is influenced more by niche 

differentiation due to environmental variation rather than dispersal limitation. Our 
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findings agree with previous literature that reported the uneven distribution of bacteria 

across communities and the strong influence of deterministic drivers 81,106. However, 

we observed much stronger spatial turnover than reported in most, though not all, 

previous literature 237,249,253. This is reflected by the concordant findings of four 

independent analyses using the original high-resolution dataset. Occupancy 

frequency distributions revealed most taxa were shared across less than 10% of 

samples (Fig. 1). Through zeta decline analysis, we detected a logarithmic decrease 

in the number of taxa shared as number of sites increased (Fig. 2). In addition, we 

observed strong distance decay (Fig. 3a) and taxon-area relationships (Fig. 3c), with 

z values one to two orders of magnitude higher than most previous observations 
250,253,257–259. 

 

Multiple factors may explain why we observed high environmentally-driven turnover. 

These potentially include the choices of sampling site, sampling scheme, sequence 

processing, and downstream analyses. It is notable that our desert sampling sites 

contained loessial soils that facilitate dispersal and the regional transect contained 

high environmental heterogeneity, which is known to be associated with increased 

bacterial turnover 252,280,308; however, this is unlikely to primarily account for most 

discrepancies with previous literature, given rapid turnover was also observed in the 

local transect where physicochemical variation was lower and similar findings were 

also made in the global analysis. A more significant factor may be that our study 

adopted a hierarchical sampling design in order to quantify microbial variation across 

multiple spatial scales. In this regard, it is well-recognised that sampling design and 

sample size are critical determinants of taxa-area relationships 82,302; this reflects that 

the detection of rare taxa largely determine species evenness and spatial structure, 

which in turn affects the exponent z 258. Methodological advances that improve the 

detection and inclusion of rare taxa are therefore predicted to align microbial z values 

more closely with those reported for animal and plant communities 82,267. it is notable 

that other studies reporting high taxon-area exponents also used spatially explicit 

hierarchical designs 257,312. 

 

However, the biggest factor likely underlying these discrepancies is the treatment of 

sequencing data. A pervasive feature of 16S rRNA amplicon gene surveys is the 

clustering of similar sequences to remove potential ‘noise’ and, less commonly, the 
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filtering or undersampling of low frequency sequences that constitute the rare 

biosphere. As summarised in Fig. 4, this greatly reduces and distorts the information 

in datasets, obscuring patterns in occupancy, turnover, and drivers. We avoided such 

downfalls by using a recently developed denoising algorithm to resolve sequence 

variants 276, while confirming through rarefaction curves that our sequencing efforts 

captured most rare taxa within and between samples. Through simulating sequencing 

processing, we observed major differences in occupancy frequency, zeta diversity, 

distance decay, and taxon-area relationships upon filtering rare taxa and, to a lesser 

extent, clustering similar sequences (Fig. 4). It should be noted that these 

observations may appear to conflict with those of a recent study that reported 

clustering did not “change the rate of microbial taxonomic turnover” 249. However, this 

may be an issue of interpretation of distance decay curves. In common with this study 
249, we also observed that the distance decay coefficient of bacteria and archaea 

remains similar between taxonomic resolutions, reflecting similar observations 

reported in fungal 313 and plant 314 communities. However, as the community similarity 

(y-intercept) is lower at higher resolution, a higher proportion of taxa are lost overall in 

unclustered compared to clustered datasets. Thus, it is reasonable to conclude that 

clustering masks microbial taxonomic turnover and broader biogeographic patterns.  
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Figure 4. Summary of biogeographic patterns of soil microbial communities at 
different taxonomic resolutions. (a) Principle of how zeta diversity encompasses 

turnover of rare, intermediate, and common community members. (b) Comparison of 

patterns of occupancy frequency, zeta decline, and distance decay for rare, 

intermediate, and common community members. In addition, the figure demonstrates 

how the common approaches of clustering and filtering can bias biogeographic 

interpretations of microbial communities. 
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This study also highlights the different patterns and drivers of community turnover 

between rare, common, and intermediate community members. As demonstrated by 

the occupancy frequency distribution, filtering sequences removes most rare species 

and retains most common ones. Based on the beta diversity analysis, we observed 

significant differences in the proportion of variation assigned to environmental, spatial, 

shared, or unexplained components at different taxonomic resolutions. This agrees 

with recent reports that environmental and spatial drivers differentially act on common 

and rare taxa 47,315. Abundant generalists and rare specialists have been shown to 

differentially respond to environmental change, reflecting differences in niche breadth 
86,316,317. Beyond these pairwise observations, we used zeta diversity to demonstrate 

that the turnover patterns reflect those typically observed in deterministically structured 

communities. Zeta decline consistently follows a power-law, which indicates that 

communities are non-randomly structured such as those with clear niche or range 

differentiation. However, upon lowering taxonomic resolution, these patterns degrade 

and increasingly resemble stochastic patterns such as seen in habitats with strong 

aeolian or aquatic flows (Fig. 4). These findings suggest that at lower taxonomic 

resolutions 268 or when rare taxa are removed 258, the community structure becomes 

more similar and thus predicted assembly processes switch from deterministic to 

stochastic. Through incorporating a multi-site distance decay model, significant 

differences in the spatial structure of rare, intermediate, and common taxa could also 

be detected.  

 

Looking forward, this work demonstrates how microbial biogeography can be 

advanced using readily implementable approaches. There is scope to use the 

methodological and theoretical innovations shown here to investigate these patterns 

across a broader range of environments, and temporal scales. Detailed studies are 

needed to better capture the biotic and abiotic subsets of drivers responsible for 

changes in community turnover across all occupancy classes; this has been achieved 

in plant ecology 277,318, but remains understudied in the microbial literature. Likewise, 

it is critical to compare the patterns and drivers of community turnover in parallel for 

microorganisms and macroorganisms. Indeed, a key observation of our study is that 

z exponent for the taxon-area relationships microbial communities falls within the 

interquartile range of higher animal and plant communities, suggesting 

microorganisms and macroorganisms exhibit similarly strong spatial structure. 
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However, given these exponents are highly sensitive to factors such as sampling 

design, sample size, and taxonomic resolution 82,302, a rigorous comparison of turnover 

between domains requires side-by-side sampling. Finally, emerging advances in long-

read 16S rRNA gene amplicon sequencing and processing may enable resolution of 

biogeographic patterns of microorganisms at both the species and strain levels 293.  
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3.1. Abstract  
 

Desert soils harbor diverse communities of heterotrophic bacteria despite lacking 

organic carbon inputs from vegetation. A major question is therefore how these 

communities maintain biodiversity and biomass in such resource-limited soils. We 

addressed this question by investigating desert topsoils and biological soil crusts 

collected along an aridity gradient traversing four climatic regions (sub-humid, semi-

arid, arid and hyper-arid). Metagenomic analysis showed that these communities 

harbored a variable potential to utilize sunlight, organic compounds, and inorganic 

compounds as energy sources. Thermoleophilia and Actinobacteria were the most 

abundant and prevalent classes across the aridity gradient; genome-resolved analysis 

suggested these taxa are metabolically flexible, capable of mediating aerobic 

organoheterotrophic growth, as well as conserving energy and fixing carbon using 

atmospheric H2 as an energy source. In contrast, the abundance of Cyanobacteria 

was variable and often low across the aridity gradient. We subsequently performed 

biogeochemical measurements to measure how two key metabolic processes interact 

with aridity: (i) chemosynthetic H2 oxidation and (ii) photosynthetic CO2 fixation. Gas 

chromatography analysis revealed biomass-normalized rates of H2 consumption 

increased 500-fold along the aridity gradient, correlating with increased abundance of 

high-affinity hydrogenases. Radiolabelled carbon fixation assays confirmed that 

photosynthetic processes exhibited the inverse relationship, with reduced 

photosynthetic capacity in arid and hyper-arid soils. Altogether, this suggests that the 

dominant bacterial lineages inhabiting hot deserts use different strategies for energy 

and carbon acquisition depending on resource availability. Moreover, these findings 

suggest trace gases are critical energy sources supporting the productivity and 

resilience of desert biocrust and topsoil communities. 

 

3.2. Introduction 
 

Photosynthetic primary producers are in low abundance in the desert and dryland 

ecosystems that span 40% of the earth’s surface 319. Whereas most terrestrial 

ecosystems are driven by plant-derived organic matter, plant biomass declines with 

aridity and flora is particularly sparse in arid and hyper-arid deserts 217. Some 
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cyanobacteria and microalgae are nevertheless able to persist even in hyper-arid 

deserts by retreating to environmental refugia such as biological soil crusts (biocrusts) 

and lithic niches 138,218–222; such environments provide desiccation buffers, physical 

stability, and protection from ultraviolet radiation 222,320–323. As oxygenic phototrophs, 

these microorganisms use photosystems to capture light and transduce energy, and 

use either type IA or IB RuBisCO (ribulose 1,5-bisphosphate carboxylase / oxygenase) 

to fix carbon dioxide (CO2) into organic carbon 223,224. In the interior of arid and hyper-

arid deserts, the abundance of phototrophic communities become increasingly rare 

and spatially fragmented 218,222,225,226. Nevertheless, diverse communities of 

microorganisms can be found in open desert soils and must survive the cumulative 

pressures of low water and carbon availability, elevated temperatures, salinity, and 

ultraviolet radiation 9,41,324,325. The most abundant microorganisms in these 

environments are members of dominant bacterial soil phyla such as Actinobacteriota, 

Proteobacteria and Chloroflexota, most of which are thought to be aerobic 

organoheterotrophs 9,41,326. A major question is how these bacteria maintain their 

energy and carbon needs in these environments given their multiple physicochemical 

pressures and the dearth of photosynthetic primary producers.  

 

It is thought that bacteria reduce their energy requirements in desert ecosystems by 

entering dormant states 209,210. Dormancy is a life history strategy in which cells enter 

a reversible state of reduced metabolic activity and increased environmental resilience 

in response to pressures such as resource limitation 210. Dormant bacterial seed 

banks, by allowing bacteria to persist under conditions which favour survival over 

growth, have in turn been shown to act as reservoirs of microbial biodiversity 211,261,327. 

While the energy needs of dormant cells are usually three orders of magnitude lower 

than growing cells, some energy expenditure is nevertheless required for cells to 

maintain basic functions, allowing an eventual return to active states 209,210. It is 

generally thought that desert bacteria primarily survive in dormant states by using 

macromolecular reserves, which are synthesized when organic carbon becomes 

transiently available following hydration events 328,329. However, recent culture-based 

studies have demonstrated that some aerobic organoheterotrophs can in fact broaden 

their repertoire of exogenous substrates during carbon starvation. Most notably, 

various bacterial isolates are known to use the atmospheric trace gases hydrogen (H2) 

and carbon monoxide (CO) as alternative electron donors to sustain aerobic 
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respiration 70–72,330,331. Genetic studies focused on Actinobacteriota have shown that 

trace gas oxidation significantly increases long-term survival under energy starvation 
332–335. Although these studies did not focus on desert isolates, it is plausible that 

Actinobacteriota and other taxa in desert ecosystems also meet their energy needs by 

scavenging trace gases in their dormant states. 

 

In this regard, atmospheric H2 may be a particularly important energy source driving 

aerobic respiration and carbon fixation in desert environments. This gas is thought to 

be highly dependable for bacteria for four key reasons: (i) it is ubiquitous throughout 

the earth’s lower atmosphere (mixing ratio 0.53 ppmv), (ii) it readily diffuses through 

cell membranes, (iii) it has a low activation energy, and (iv) its combustion yields a 

high amount of free energy 19,176,336. Bacteria oxidize atmospheric H2 using high-

affinity, oxygen-tolerant [NiFe]-hydrogenases; these bacteria transfer electrons 

derived from H2 through the quinone pool to terminal oxidases, resulting in the 

generation of proton-motive force 185,331,337. Various hydrogenase lineages are known 

to support aerobic H2 oxidation, including the group 1h, 1d, 1f, 1l, and 2a [NiFe]-

hydrogenases 162,179,180,331,338,339, the first of which seems to be principally responsible 

for atmospheric H2 oxidation in soil ecosystems 330,331,340. Some aerobic bacteria can 

use electrons derived from H2 to fix CO2 into biomass 160,228,341. It was conventionally 

thought that aerobic hydrogenotrophic growth was restricted to H2-enriched 

environments such as root nodules and geothermal systems 160. However, our recent 

studies suggested that Actinobacteriota in Antarctic desert soils can use atmospheric 

H2 as an energy source to support carbon fixation. Genome-resolved metagenomic 

analysis demonstrated that bacteria from phyla, including Actinobacteriota, co-

encoded a group 1h [NiFe]-hydrogenase together with a type IE RuBisCO linked to 

the Calvin-Benson-Bassham cycle 28. Consistently, microbial communities within 

these desert soils rapidly oxidised atmospheric H2 and fixed CO2 into biomass 28. This 

minimalistic mode of primary production may be critical for maintaining energy and 

carbon levels in extreme desert environments 229,326. 

 

In this study, we used metagenomic and biogeochemical approaches to determine 

how primary production strategies vary along an aridity gradient. Based on the above 

findings, we predicted that oxygenic photosynthesis would predominate in more moist 

soils, whereas trace gas oxidation would be most active in drier soils. To test this, we 
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investigated topsoils and biocrusts sampled along a steep aridity gradient in the Negev 

Desert, Israel traversing sub-humid, semi-arid, arid and hyper-arid climates. We show 

that, while photosynthetic primary production strategies are dominant processes in 

semi-arid soils, oxidation of H2 to conserve energy may be a dominant strategy in arid 

and hyper-arid soils where photosynthesis is inhibited by water availability. In turn, 

these findings add to growing evidence that hidden metabolic flexibility of bacteria 

contributes to the resilience and productivity of oligotrophic ecosystems. 

 

3.3. Materials and Methods 
 

3.3.1. Field sampling 
 

The sampling transect extended for 160 km in a north/south direction across the Judea 

Hills and Negev Desert regions of Israel. Samples were collected from four climatic 

zones differentiated by mean annual precipitation patterns and soil physicochemical 

properties: sub-humid shrubland (300-400 mm yr-1), semi-arid grassland (~200-250 

mm yr-1), arid desert (~50-90 mm yr-1), and hyper-arid desert (<20 mm yr-1) 342. 

Samples were collected according to a previously described hierarchical sampling 

design (4 zones × 2 sites × 3 plots × 3 subsamples) 342. To minimise the effects of 

non-climatic variables, sampling was restricted to wind-deposited loessic soils in the 

sub-humid, semi-arid and arid zone, and gypsic soils in the hyper-arid zone. In 

addition, all samples were colected with a minimum 2 m buffer to vegetation, contained 

visible biocrusts, and were at least 100 m from roads and slopes. Biocrust samples 

(~1-2cm) were extracted whole using a stainless steel spatula to separate the biocrust 

layer from the underlying soil. Crusts varied in their physical appearance and colour 

along the gradient. Reflecting high organic matter and carbon content, sub-humid sites 

harboured dark brown crusts, which were replaced by lighter colours with increasing 

aridity. In semi-arid and arid sites some crusts had dark brown speckles, indicating the 

dominance of phototrophic communities dominated by Cyanobacteria. Samples were 

transferred to a petri dish padded with cotton wool and sealed using parafilm. 

Underlying topsoils (~2-10 cm) were also sampled, processed, and subject to 

physicochemical analysis as previously described 342. Sampling was conducted over 

a 10 day period in May 2017. 
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3.3.2. Community DNA extraction  
 

Total community DNA was extracted from 24 samples (12 topsoil, 12 biocrust) 

representing a biological triplicate from each climatic zone. DNA was extracted from 

0.25 g of sample using the MoBio PowerSoil Isolation kit according to the 

manufacturer’s instructions. Samples were eluted in DNase- and RNase-free 

UltraPure Water (ThermoFisher). A sample-free negative control was also run. Nucleic 

acid purity and yield were confirmed using a Nanodrop 1000 and Qubit Fluorometer. 

All DNA extractions were performed within two weeks of completing the sampling 

campaign.  

 

3.3.3. Quantitative PCR 
 

Quantitative polymerase chain reactions (qPCR) were used to estimate total bacterial 

and archaeal biomass of biocrust and topsoil samples. The 16S rRNA gene was 

amplified using the degenerate primer pair (515F 5’-154 

GTGYCAGCMGCCGCGGTAA-3’ and 806R 5’-GGACTACNVGGGTWTCTAAT-3’). A 

synthetic E. coli 16S rRNA gene sequence in a pUC-like cloning vector (pMA plasmid; 

GeneArt, ThermoFisher Scientific) was used as a standard. PCR reactions were set 

up in each well of a 96-well plate using LightCycler® 480 SYBR Green I Master Mix. 

Each sample was run in triplicate and standards in duplicate on a LightCycler® 480 

Instrument II (Roche). The qPCR conditions were as follows: pre-incubation at 95°C 

for 3 min and 45 cycles of denaturation 95°C for 30 s, annealing at 54°C for 30 s, and 

extension at 72°C for 24 s. 16S rRNA gene copy numbers were calculated based on 

a standard curve constructed by plotting average Cp values of a serial dilution of the 

plasmid-borne standard against their copy numbers.  

 

3.3.4. Metagenome sequencing  
 

Metagenomic shotgun libraries were prepared for 12 biocrust samples using the 

Nextera XT DNA Sample Preparation Kit (Illumina Inc., San Diego, CA, USA). 

Sequencing was performed on an Illumina NextSeq500 platform with 2 × 150 bp High 

Output run chemistry. Raw sequence reads in each sample were stripped of adapter 
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and barcode sequences, then contaminating PhiX sequences were identified and 

removed using the BBDuk function of BBTools v. 36.92 

(https://sourceforge.net/projects/bbmap/) with a kmer size of 31 and hamming 

distance of 1. Retained read pairs were then quality trimmed using BBDuk with Q >20. 

After quality filtering and trimming, 283,218,293 paired and 17,363,732 unpaired reads 

were obtained across the 12 samples. 96% of original sequences passed quality 

control. Metagenomic sequencing of the 12 topsoil samples was conducted as 

previously described 342.  

 

3.3.5. Assembly, and binning  
 

Metagenomes were normalised using BBTools (default parameter; bbnorm.sh) and co-

assembled using SPAdes v3.13.0 343 metagenomic mode (--meta) with error correction 

disabled (--only-assembler). Each assembly was binned using BamM to map reads 

and MetaBAT2 344 to produce bins using default parameters. Completeness, 

contamination, and heterogeneity of each bin were estimated using CheckM 345, with 

medium- and high-quality bins (completeness >50%, contamination <10%) 346 retained 

for further analysis. After dereplication, a total of 13 metagenome-assembled genomes 

(MAGs) were obtained. Each bin was taxonomically assigned according to the 

Genome Taxonomy Database (GTDB) 290 using GTDB-tk 347.  

 

3.3.6. Community profiling 
 

Community composition profiles were obtained by retrieving single copy ribosomal 

marker genes from the biocrust and topsoil metagenomes using SingleM 295. The tool 

uses Hidden Markov Models (HMMs) searches against unassembled metagenomic 

reads to generate de novo operational taxonomic units. In total, 28 HMM searches 

were performed against 14 single ribosomal single copy marker genes. The single 

copy marker gene rplP was selected for downstream analysis. This marker was 

previously identified as a robust means of distinguishing between both closely and 

distantly related genomes 297. Sequences were then clustered de novo into operational 

taxonomic units (OTUs) using a sequence identity threshold of 97%. Taxonomic 

assignment was assigned based on the Genome Taxonomy Database (GTDB) 348. 
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Community richness and beta diversity was calculated using Phyloseq 299 and R 

package VEGAN 349. To account for differences in richness between samples, all 

sequences were rarefied to the minimum sequencing depth. Observed richness and 

abundance-based estimated richness (Chao1) were  calculated. A permutational 

analysis of variance (PERMANOVA) was performed to test for significant differences 

in community structure between soil types and climatic zones. Beta diversity (Bray-

Curtis dissimilarity) was calculated and visualised using a multidimensional scaling 

ordination (MDS) and beta dispersion tests (PERMDISP) were used to ascertain if 

observed differences were influenced by dispersion. 

 

3.3.7. Metagenomic contig annotation 
 

Functional annotation of metagenomic unbinned contigs and assembled genomes 

was performed using a combined approach of homology-based searches against 

custom protein databases and HMM searches. Open reading frames (ORFs) were first 

predicted using Prodigal v.2.6.3 350. Homology-based searches were performed 

against 29 manually curated protein databases. These encompassed the genes 

encoding ATP-citrate lyase (AclB), acetyl-CoA synthase (AcsB), ammonia 

monooxygenase (AmoA), anaerobic sulfite reductase (AsrA), anaerobic carbon 

monoxide dehydrogenase (CooS), aerobic carbon monoxide dehydrogenases (CoxL), 

dissimilatory sulfite reductase (DsrA), flavocytochrome c sulfide dehydrogenase 

(FCC), 4-hydroxybutyryl-CoA synthase of Crenarchaeota (HbsC), 4-hydroxybutyryl-

CoA synthase of Thaumarchaeota (HbsT), hydrazine synthase (HzsA), malonyl-CoA 

reductase of Chloroflexi (Mcr), methyl/alkyl-CoM reductase (McrA), soluble methane 

monooxygenase (MmoA), periplasmic nitrate reductase (NapA), dissimilatory nitrate 

reductase (NarG), nitrogenase (NifH), copper-containing nitrite reductase (NirK), 

cytochrome cd1 nitrite reductase (NirS), nitrous oxide reductase (NosZ), ammonia-

forming nitrite reductase (NrfA), nitrite oxidoreductase (NxrA), particulate methane 

monooxygenase (PmoA), ribulose 1,5-bisphosphate carboxylase/oxygenase (RbcL), 

succinate dehydrogenase / fumarate reductase (SdhA / FrdA), sulfur 

oxygenase/reductase (Sor), thiosulfohydrolase (SoxB), sulfide-quinone 

oxidoreductase (Sqr), and three hydrogenase classes (NiFe-hydrogenase large 

subunit, FeFe-hydrogenase catalytic domain, Fe-hydrogenase). DIAMOND mapping 
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was performed with a query coverage threshold of 80% for all databases, and a 

percentage identity threshold of 60% (AmoA, PmoA, MmoX, CoxL, HbsT, NxrA, RbcL) 

or 50% (all other databases) and e-value thresholds of 10-20. HMM searches were 

performed against Pfam and Tigrfam databases using the annotate function of 

EnrichM v.0.5.0 (https://github.com/geronimp/enrichM), with domain noise-cut-off 

scores as previously described 351. Eleven genes encoding subunits of ATP synthase 

(AtpA), two NADH dehydrogenases (NuoF, NqrF), four terminal oxidases (CcoN, 

CoxA, CydA, CyoA), two photosystems (PsaA, PsbA), formate dehydrogenase 

(FdhA), and reductive dehalogenase (RdhA) were searched.  

 

3.3.8. Metagenomic short read annotation 
 

For the functional annotation of short reads, paired-end reads in each sample were 

stripped of adapter and barcode sequences, then contaminating PhiX and low quality 

sequences were removed (minimum quality score 20) using the BBDuk function of 

BBTools v. 36.92 (https://sourceforge.net/projects/bbmap/). Resultant quality-filtered 

forward reads with lengths of at least 100 bp were searched for the presence of the 

43 metabolic marker genes described above using DIAMOND blastx algorithm 352. 

Specifically, reads were searched against the 32 custom-made reference databases 

and hits from the 11 HMM searches, using a query coverage of 80% and an identity 

threshold of either 60% (AmoA, PmoA, MmoX, CoxL, HbsT, NxrA, RbcL) or 50% (all 

other databases) and a maximum e-value threshold of 10-10. Read counts were 

normalized to reads per kilobase per million (RPKM) and further normalised against a 

mean RPKM value estimated from 14 single copy ribosomal marker genes to infer the 

percentage of the community encoding the gene. 

 

3.3.9. Phylogenetic analysis 
 

Maximum-likelihood phylogenetic trees were constructed to visualize the evolutionary 

relationships of unbinned and binned contigs of the catalytic subunits of [NiFe]-

hydrogenase and RuBisCO (RbcL) compared to reference sequences. Retrieved 

sequences were aligned to custom databases using ClustalW in MEGA7 353. For 

phylogenetic tree construction, initial trees for the heuristic search were obtained 
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automatically by applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using a JTT model, and then selecting the topology with superior 

log likelihood value. All residues were used and trees were bootstrapped with 50 

replicates. 

 

3.3.10. Soil wetting 
 

We simulated rainfall conditions to determine the effects of soil moisture on H2 

oxidation and photosynthetic carbon fixation rates. To do this, we used a custom 

Perspex collar fitted with a water-draining stainless steel woven mesh (0.17 mm) and 

a water-catching tray. Collars were sterilised using ethanol. Topsoil and biocrust 

samples of 5 g were placed in the centre of the mesh surface. Soils were then watered 

until fully saturated by repeated addition of 1 mL MilliQ water. Once fully saturated, 

each collar was sealed at the top using cling film to avoid evaporation and left to drain 

for 24 hrs in the dark.  

 

3.3.11.  Gas chromatography 
 

Rates of atmospheric H2 oxidation by biocrusts and topsoils was measured by gas 

chromatography. Samples of 5 g were suspended in 120 mL serum vials and left to 

equilibrate with ambient air (12 h). Vials were then sealed with a butyl rubber septum 

and amended with H2 (via 1% v/v H2 in N2 gas cylinder, 99.999% pure) to achieve 

headspace concentrations of ~10 ppmv. Sampling commenced immediately after 

sealing the vial to measure the initial uptake rates. Headspace H2 mixing ratios in 

samples were measured by gas chromatography using a pulsed discharge helium 

ionization detector (model TGA-6791-W-4U-2, Valco Instruments Company Inc.) as 

previously described 72. Rates of uptake were measured for all 72 biocrust and 72 

topsoil subsamples under both dry and wet conditions. Heat killed samples (two 

autoclave cycles at 120°C) and blank measurements (empty serum vials) were used 

as controls to confirm that oxidation occurred due to biotic processes. Concentrations 

of H2 in each sample were regularly calibrated against ultra-pure gas standards of 

known concentrations. 
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3.3.12. 14C isotope labelling  
 

A radiolabelled carbon dioxide (14CO2) incubation assay was used to measure the 

photosynthetic capacity of biocrusts and topsoils (dry and wetted). Six biological 

replicates were pooled for each climatic zone and technical triplicates of 0.25 g were 

weighed and transferred to 4 ml glass vials sealed with rubber septum lids. For each 

replicate, a heat killed control (two autoclave cycles at 120°C) was used. Gaseous 
14CO2 (1% mol.) gas stocks were generated by adding 75 µl of sodium bicarbonate 

solution (NaH14CO3, Perkin Elmer, 53.1 mCi nmol-1) to 75 µl of 10% hydrochloric acid 

(HCl) solution inside a 4 ml glass vial, which was sealed with a rubber septum lid and 

incubated for two hours at room temperature. 160 µl of 14CO2 gas (1% v/v) was added 

to each biocrust or topsoil sample using a 1 ml gas tight syringe (SGE Analytical 

Science), obtaining initial headspace mixing ratios of 400 ppmv 14CO2. Both treatment 

groups were then incubated under either light (40 µmol photons m-2 s-1 under constant 

illumination) or dark conditions (covered in aluminium foil) for 96 hours at ~20 °C. To 

remove any unfixed 14CO2, incubated soils were transferred to 12 ml scintillation vials 

and suspended in 2 ml of 1 M HCl and left to dry in an oven at 50°C. Once dried, 10 

ml of scintillation cocktail (EcoLume TM) was added and radioisotope analysis was 

carried out using a liquid scintillation spectrometer (Tri-Carb 2810 TR, Perkin Elmer 

precisely) operating at ~95% efficiency. Background luminescence and 

chemiluminescence were corrected through internal calibration standards. 

 

3.3.13. Statistical analysis 
 

All statistical analysis was carried out in R-studio v3.5.3. Data manipulation and 

visualization was carried out using the package Tidyverse 354. For H2 and 14C oxidation 

rates, normality of the distribution was confirmed using Shapiro-Wilk test. For normally 

distributed data, ANOVAs were used to test for significant differences of rates between 

climatic zones followed by Tukey post-hoc tests to determine significant pairs. A non-

parametric Wilcox signed rank test was used to determine differences between dark 

and light CO2 fixation rates. To identify significant predictors of H2 oxidation, a 

Pearson’s correlation matrix was calculated against all H2 oxidation rates and 

visualised using a heatmap. Significant predictor variables were selected for the final 
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model and tested for co-linearity using a variance inflation factor cut-off of 10. Collinear 

predictors were removed to determine the final subset.
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3.4. Results 
 

3.4.1. Biocrusts and topsoils harbour diverse microbial communities 

which are structured by aridity 
 

We analyzed biocrusts and previously reported topsoils 342 sampled along a 160 km 

aridity gradient in a north-south direction in Israel. Soil physicochemical analysis 

confirmed expected environmental variation along the transect, with soil water and 

organic carbon content respectively dropping from an average of 8.2% and 3.4% in 

the sub-humid northern zones to 1.1% and 0.11% in the hyper-arid southern zones 
342. We profiled the abundance, richness, and composition of the sampled microbial 

communities using quantitative PCR and metagenomic sequencing. Bacterial and 

archaeal cell numbers (estimated from copy numbers of the 16S rRNA gene) sharply 

decreased across the aridity gradient, with a 200-fold higher cell count in sub-humid 

compared to hyper-arid samples (Table S1). In contrast, richness (Chao1 based on 

the single-copy ribosomal marker gene rplP) between sites was variable as indicated 

by the coefficient of variation (CV = 46.39%; Soil % CV= 45.67%), but did not 

significantly decline with aridity (Fig. S1; Table S1). Beta diversity (measured by non-

metric multidimensional scaling analysis of Bray-Curtis distances) revealed that 

communities were significantly differentially structure between climatic zones (F = 

1.16, p < 0.001), but did not significantly differ between biocrusts and topsoils (Fig. 
S1; Table S1). Altogether, this suggests that aridity significantly influences the 

abundance and composition of microbial communities in desert ecosystems, but 

diverse microbial communities can co-exist even in the most arid sites. 

 

At the phylum-level, the microbial community composition of the samples was similar 

to that described in most other desert soils 41,326. Most sequences affiliated with 

Actinobacteriota (59%), particularly classes Thermoleophilia, Actinobacteria, 

Acidimicrobiia, and Rubrobacteria, with significant proportions of Proteobacteria 

(13%), Chloroflexota (7%), Bacteroidota (3%), and Planctomycetota (2%) also 

detected (Fig. 1a; Table S1). Most of these bacteria are likely to be aerobic 

chemoheterotrophs, but may also harbour hidden metabolic flexibility 67. Archaea were 

less abundant (1.1%) and were primarily affiliated with the ammonia-oxidizing 
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thaumarchaeota Nitrosocosmicus 355. Cyanobacteria were twofold more abundant in 

biocrusts (1.7%) compared to topsoils (0.6%) and achieved abundances above 3% in 

specific biocrust samples from in the semi-arid, arid, and hyper-arid zones (most 

notably SA.1.B1, 8.1%). Whereas biocrust cyanobacterial communities were 

dominated by oxygenic cyanobacteria (Oxyphotobacteria), including cosmopolitan 

biocrust genus Microcoleus 321,356, approximately half of the cyanobacterial community 

in topsoils affiliated with the recently discovered heterotrophic class Melainabacteria 
357,358 (Fig. S2; Table S1). In contrast to the other zones, grasses were abundant in 

the sub-humid zone and are likely to predominate primary production. 

 

3.4.2. Genes encoding chemosynthetic and photosynthetic enzymes are 

differentially distributed along the aridity  
 

We performed homology-based searches of metagenomes to determine the 

abundance of different energy and carbon acquisition processes across the desert 

samples. Consistent with our inferences from the community composition profile, most 

of the bacteria are predicted to be aerobic organoheterotrophs; reflecting this, NADH 

dehydrogenases, succinate dehydrogenase, and terminal oxidases were highly 

abundant (Fig. 2). A large proportion of the community were also predicted to oxidize 

atmospheric trace gases, with an average of 66% and 30% of community members 

encoding uptake hydrogenases and carbon monoxide dehydrogenases respectively 

across the aridity gradient. The abundance of these genes remained relatively 

consistent between biocrusts and topsoils, suggesting that the potential for these 

processes is dominant throughout the upper 10 cm of these soils (Table S2). By 

contrast, fewer microorganisms were predicted to oxidize sulfide (6.5%), thiosulfate 

(2.2%), ammonia (1.4%), nitrite (0.80%), or methane (0.38%). A significant proportion 

of the community were also capable of using nitrate as an electron acceptor (12%), 

whereas capacities for other anaerobic respiration or fermentation processes were 

negligible (Fig. 1b; Table S2). 
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Figure 1. Community composition and metabolic capabilities of biocrust and 
topsoil microbial communities sampled along the aridity gradient. (a) Stacked 

barchart showing phylum-level bacterial and archaeal community composition. 

Taxonomic classification is based on the relative abundance of the single-copy 

ribosomal marker gene rplP and follows GTDB taxonomy. Results are shown for each 

of biological triplicate samples collected per zone. (b) Heatmap showing the 

abundance of genes in the metagenomic short reads. Community percentages were 

calculated by dividing reads per kilobase millions (RPKM) of metabolic genes to those 

of single-copy ribosomal protein marker genes. Results are averaged for the biological 

triplicate samples collected per zone. Undetected genes included those associated 

with methanogenesis (McrA), anammox (HzsA), Wood-Ljundahl pathway (AcsB), and 

reductive TCA cycle (AclB). 

 

Of the 38 genes surveyed, those encoding hydrogenases and RuBisCO exhibited the 

greatest variations in relative abundance across the aridity gradient. All four 

hydrogenase subgroups known to support atmospheric H2 oxidation were detected, 

namely the group 1h, 1l, 2a, and 1f [NiFe]-hydrogenases (Fig. 1b; Table S2), with the 

first two most abundant. The group 1h enzymes, which are the main clade thought to 

mediate atmospheric H2 oxidation in global soils 19,330,331, were abundant in all climatic 

zones and were encoded by an average of 22% of community members. However, in 

common with recent observations made in the Mackay Glacier ecotone 339, the 
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recently discovered group 1l [NiFe]-hydrogenase was the most abundant lineage in 

oligotrophic soils. Its relative abundance increased between climatic zones (sub-

humid 5.9%, semi-arid 30.8%, arid 75.9%, hyper-arid 61.0%), with most bacteria in 

the arid and hyper-arid zones predicted to encode it. There was also a concomitant 

increase in the relative abundance of two RuBisCO lineages, Type IA (sub-humid 

0.63%, semi-arid 5.4%, arid 17.8%, hyper-arid 17.9%) and Type IE (sub-humid 3.8%, 

semi-arid 8.0%, arid 16.9%, hyper-arid 12.0%), with the hits from both top genes most 

closely related to actinobacterial lineages known to encode high-affinity hydrogenases 
162,359. The hydrogenase and RuBisCO results together suggest that, in common with 

Antarctic desert soils 28, Negev desert bacteria also use electrons derived from 

atmospheric H2 to catalyse CO2 fixation. The abundance of CO dehydrogenases 

showed the opposite trend, declining from 48% in the sub-humid zones to 19% in the 

hyper-arid zone, in agreement with previous studies showing CO oxidation rates are 

strongly correlated with soil organic content 360,361 (Fig. 1b, Table S3). 
 

Genes encoding photosystems and RuBisCO lineages associated with oxygenic 

photosynthesis were also detected in the metagenomes. Most notably, various type 

IB RuBisCO lineages were detected that are homologous to cyanobacteria 

(Microcoleus spp., Leptolyngbya spp.), chlorophytes (Myrmecia israeliensis), and 

bryophytes (Pseudocrossidium spp.) known to be abundant in Israel desert biocrusts 
362–364. Reflecting observed cyanobacterial distributions (Fig. 1a), type IB RuBisCO 

was in moderate abundance across all climatic zones (1.8%) and enriched in biocrusts 

(2.3%) compared to topsoils (1%) (Fig. 1b; Table S3). Isolated increases in 

abundance of 3.1% and 9.1% corresponded to sites with a high count of 

cyanobacterial sequences (AR1.C2 and SA1.B1) in the arid and semi-arid zone, 

respectively (Fig. S2; Table S1). Together with the community analysis, these results 

highlight that there is some potential for photosynthesis even in arid and hyper-arid 

regions, but phototrophs have a lower and more variable distribution than 

hydrogenotrophs. 

 

3.4.3. Actinobacteria encode diverse uptake hydrogenase and RuBisCO 

enzymes across the aridity gradient 
 



66 
 

To gain a more detailed perspective of the mediators of photosynthesis and 

chemosynthesis, we co-assembled and binned the metagenomes of the biocrusts and 

topsoils sequenced from each climatic zone. This resulted in the recovery of 13 

medium-quality 346 metagenome-assembled genomes (MAGs) that affiliated with the 

phyla Actinobacteriota (8), Cyanobacteria (3), Proteobacteria (1), and 

Thermoplasmatota (1) (Table S3). In line with expectations, genome annotations 

suggested that the actinobacterial and proteobacterial MAGs are capable of aerobic 

organotrophic respiration, whereas the cyanobacterial MAGs are oxygenic 

phototrophs. Three MAGs from the arid zone, from classes Actinobacteria and 

Thermoleophila, encoded a group 1l [NiFe]-hydrogenase; one of these MAGs (bin001) 

recovered from the arid zone co-encoded this hydrogenase with a type IE RubisCO, 

suggesting it can mediate hydrogenotrophic carbon fixation. Photosynthetic type IB 

RuBisCO was also detected in a MAG (bin007) from a Microcoleus species recovered 

from the sub-humid zone (Table S3). In a further indication of the metabolic versatility 

of desert actinobacteria, we recovered a Mycobacterium MAG (bin003) from the semi-

arid zone that encoded a key enzyme for aerobic sulfide oxidation (sulfide-quinone 

oxidoreductase).  

 

Maximum-likelihood phylogenetic trees were constructed of contigs encoding catalytic 

subunit sequences of [NiFe]-hydrogenase (Fig. 2a) and RuBisCO (Fig. 2b). Across 

the metagenomes, large subunit genes encoding 24 group 1h and 87 group 1l [NiFe]-

hydrogenases were recovered from the unbinned and binned contigs (Fig. 2a). Most 

of these sequences were most closely related to actinobacterial reference genomes, 

though three of the five major clades of the group 1l [NiFe]-hydrogenases encoded in 

the metagenomes lacked any pure culture relatives; one of these clades was 

represented by a Thermophilia MAG (bin004) and hence likely originates from the 

most abundant class-level lineage in the Negev desert (Table S1), whereas two other 

deep-branching clades were most closely related to halotolerant archaea and are of 

uncertain affiliation (Fig. 2a). Altogether, this adds further evidence that the 

actinobacterial majority in Negev desert soils and biocrusts are capable of H2 

oxidation. Other hydrogenase groups associated with aerobic uptake (group 2a), 

sensing (group 2c), and carbon fixation (group 3d) were sparsely represented with a 

single sequence each. 
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Figure 2. Maximum likelihood radial phylogenetic trees showing sequence diversity and taxonomic distribution of enzymes 
responsible for H2 oxidation and carbon fixation. (a) Phylogenetic tree of [NiFe]-hydrogenases, with a focus on the group 1h and 

1l high-affinity uptake hydrogenases to which most binned and unbinned sequences affiliated with. (b) Phylogenetic tree of RuBisCO, 

with a focus on the Type IB (phototroph-type) and Type IE (lithotroph-type) enzymes that the majority of binned and unbinned 
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sequences affiliated with. Trees show hits to genome bins (red) and unbinned contigs (black) relative to reference amino acid 

sequences (grey). 
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 The RuBisCO phylogenetic tree confirmed the presence of unbinned sequences 

related to actinobacterial type IE sequences and cyanobacterial, microalgal, and plant 

type IB sequences (Fig. 2b). Relatively few type IA RuBisCO sequences were 

detected in the assembled reads compared to unassembled reads, and all were 

closely related (88-95% sequence identity) to reference sequences from the 

facultatively hydrogenotrophic genus Pseudonocardia 365. Altogether, these findings 

suggest that phototrophs and hydrogenotrophs are the dominant primary producers 

across the aridity gradient. 

 

3.4.4. Differential activities of chemosynthetic and photosynthetic 

microorganisms across the aridity gradient 
 

Having confirmed the metabolic potential for atmospheric H2 oxidation via the group 

1h and 1l [NiFe]-hydrogenase and photosynthetic carbon fixation, we used two 

biogeochemical measurements to validate that microorganisms mediate these 

processes in biocrusts and topsoils: (i) gas chromatography to measure H2 oxidation 

and (ii) 14C incorporation to measure CO2 fixation rates. These rates were measured 

under dry conditions (soils as collected) and wet conditions (24 hours after simulated 

rainfall).  

 

All biocrust and topsoil samples consumed H2 to sub-atmospheric levels (Fig. S3; 
Table S4). This occurred at relatively slow rates under dry conditions and increased 

45-fold upon hydration (Fig. 3a & 3b). H2 oxidation rates per gram of sample 

significantly increased across the aridity gradient for biocrust samples, but were more 

variable for topsoil samples (Fig. 3a & 3b). Given the large decrease in microbial 

biomass across the aridity gradient, oxidation rates were subsequently normalised to 

16S rRNA gene copy number (Table S1). Biomass-normalized H2 oxidation rates 

increased by 500-fold across the aridity gradient for both biocrusts (F = 3.14, p < 

0.0001) and topsoils (F = 55.58, p < 0.0001) (Table S4, Fig. S4). Simulated rainfall 

conditions amplified this response. On average, oxidation rates increased from 1.3 

and 1.4 nmol hr-1 g-1 16S copies-1 for crusts and topsoils respectively under dry 

conditions, to 31.6 and 30.0 nmol hr-1 g-1 under wet conditions. Linear models were 

used to determine the relationships between edaphic characteristics and H2 oxidation 
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rates. After accounting for co-linearity, a subset of predictor variables included the 

aridity index, total organic carbon, carbon / nitrogen ratio, and sodium concentration 

(Fig. S5). The relationship between H2 oxidation rate and total organic carbon content 

was especially strong (crust R2 = 0.80, topsoil R2 = 0.55; Fig. S5). 
 

We additionally measured CO2 fixation rates of both crust and topsoil under light and 

dark conditions. We found that both light and dark CO2 fixation was virtually absent 

under dry conditions (Fig. 3c & 3d; Table S5). Following simulated rainfall, light and 

dark CO2 fixation was observed across all samples. On average, CO2 fixation occurred 

at significantly higher rates under light compared to dark conditions (p < 0.001 for 

crusts, p < 0.01 for soils), and photosynthetic capacity of crusts was approximately 12-

fold higher (0.23 nmol g-1 day-1) than topsoils (0.0015 nmol g-1 day-1) (Fig. 3c & 3d; 
Fig. S4). There was a significant decline in topsoil photosynthetic CO2 fixation rates 

with increasing aridity (F = 71.04, p < 0.0001) from sub-humid (0.04 nmol g-1 day-1) to 

semi-arid (0.01 nmol g-1 day-1), arid (0.005 nmol g-1 day-1) and hyper-arid (0.002 nmol 

g-1 day-1) (Fig. 3d). In contrast, biocrust CO2 fixation rates did not consistently vary 

with aridity and peaked in the semi-arid zone (0.62 nmol g-1 day-1) (Table S5). This 

likely reflects the patchy distribution of Cyanobacteria in crust samples inferred from 

the metagenomic analyses of community composition and function (Fig. 1).  
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Figure 3. Rates of chemosynthetic and photosynthetic processes of biocrusts 
and topsoils collected along the aridity gradient. (a & b) Rates of H2 oxidation 

measured by gas chromatography. (c & d) Rates of carbon fixation measured by 

incorporation of 14C-labelled CO2. Activities were measured in ex situ microcosms 

under dry and wet conditions. Centre values show median, boxes upper and lower 

quartiles and whiskers minimum and maximum values. Panel a-b represent biological 

triplicates from two sites per climatic zone and panel b-c are technical triplicates from 

a pooled sample from each zone. Biomass-normalized rates are shown in Figure S5. 
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3.5. Discussion 
 

In this work we demonstrate how two key microbial energy conservation strategies, 

photosynthesis and chemosynthesis, interact with aridity. Building on previous findings 

in Antarctic deserts 28,339, we combine metagenomic evidence and biogeochemical 

measurements to demonstrate that atmospheric H2 oxidation is a key microbial 

process mediated by dominant taxa in hot desert soils. We found that the determinants 

of atmospheric chemosynthesis were widespread across the aridity gradient and were 

particularly abundant in the oligotrophic interior of arid and hyper-arid regions. This is 

evident from the abundance and diversity of genes associated with aerobic H2 

oxidation (group 1h and 1l [NiFe]-hydrogenases) and chemosynthetic carbon fixation 

(type IA and IE RuBisCO genes). We provide phylogenetic evidence that the most 

dominant bacterial classes in desert soils, Thermoleophilia and Actinobacteria, 

encode these genes. Biogeochemical studies confirmed that these communities 

actively consume atmospheric H2, with biomass-normalised rates greatly increasing 

across the aridity gradient. Measurable activity occurred even under dry conditions, 

though hydration accelerated rates. Altogether, this suggests that atmospheric H2 

oxidation is a critical trait mediated by the dominant bacteria in oligotrophic desert 

ecosystems.  

 

Metagenomic and biogeochemical measurements revealed some potential for 

oxygenic photosynthesis across the aridity gradient. In line with expectations 222,366, 

various cyanobacteria were detected, such as the keystone crust-forming taxon 

Microcoleus, with abundance peaking in biocrust samples particularly from the semi-

arid zone 222,367. Correlating with their presence were genes supporting the light 

reactions (photosystems) and dark reactions (type IB RuBisCO) of photosynthesis. 

However, radiolabelling studies confirmed that photosynthetic processes are virtually 

absent under dry conditions and are only activated once the electron donor water is 

introduced. Thus, in contrast to the hydrogenotrophic community, it is likely that these 

primary producers only become active when the desert is hydrated. Moisture is 

provided in the Negev desert on a regular basis by dewfall and more occasionally from 

rainfall 368,369. The significance of dewfall in activating photosynthesis is unclear; 

studies on cyanobacterial biocrusts suggest that photosystem II is only activated by 
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heavy fog events, which account for ~5% of the total annual dewfall events in the 

region 356,370. However, our studies agree with a large body work showing simulated 

rainfall greatly stimulates activities of phototrophs in biocrusts and topsoils alike 356,370. 

Altogether, these findings suggest that phototroph abundance and activity in the 

Negev desert is highly variable across spatial and temporal scales. 

 

These findings have unexpected ramifications for understanding the microbial 

composition and function of biological soil crusts. It is generally thought that the 

dominant primary producers in biocrusts are cyanobacteria and phototrophic 

eukaryotes, which supply organic carbon to organoheterotrophs. However, we show 

here that the abundance of these phototrophs and their functional genes is variable 

and often low, in contrast to the consistently abundant hydrogenotrophic 

actinobacteria. Reflecting this, the exclusive chemosynthetic type IE RuBisCO was on 

average 3.9-fold more abundant in the biocrusts than the exclusively photosynthetic 

type IB RuBisCO. Moreover, contrary to the paradigm that only biocrusts are only 

active when wet 321,366, we observed substantial levels of H2 oxidation but not 

photosynthesis even in dry biocrusts. It should be noted that the abundance of the 

cyanobacterial community is much lower than in many previously reported biocrusts 
371–373. This reflects that the dry loess soils of the Negev arid and hyper-arid zones are 

covered by biocrusts that are relatively thin and lightly hued compared to other regions. 

Nevertheless, Actinobacteriota generally have high abundances in desert biocrusts 

and are also the dominant taxa in certain Mojave and Tengger biocrusts 374–376. 

Altogether, these novel findings justify further studies to resolve the relative 

contributions of photosynthetic and chemosynthetic microorganisms in the 

establishment, maintenance, and productivity of biocrusts.  

 

Integrating these considerations, our findings metabolic flexibility underlies the 

dominance of the actinobacterial lineages in desert biocrusts and topsoils. These 

organoheterotrophs also take advantage of transient hydration events, likely using 

exudates released by phototrophs and necromass released through osmotic shock to 

increase respiration rates and accumulate macromolecular stores 377–383. However, 

their capacity to conserve energy through trace gas oxidation independently of organic 

inputs will confer a survival advantage during subsequent desiccation and starvation. 

While atmospheric H2 is likely to be the main energy source sustaining these bacteria, 
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our metagenomic analysis indicates carbon monoxide and sulfur compounds could 

also be significant energy sources. These inferences are well-supported by pure 

culture studies showing sporulating and non-sporulating actinobacterial species alike 

can survive carbon starvation by utilising atmospheric trace gases 71,330–332,334,384. 

Moreover, the capacity to use trace gases to fix CO2 is likely to enable cells to maintain 

biomass levels and even potentially sustain slow growth. Altogether, it can be inferred 

that trace gas oxidation confers a selective advantage for metabolically flexible 

organoheterotrophs, by providing means of acquiring alternative energy donors to 

sustain basal energy requirements during dormancy and in some cases a mixotrophic 

means of acquiring biomass. Given the widespread taxonomic distribution of this 

metabolism 70–72,162,191,202, it is likely that other bacterial and archaeal lineages in these 

desert soils also possess hidden metabolic flexibility. 
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4.1. Abstract 
 

Soil microorganisms globally are thought to be sustained primarily by organic carbon 

sources 106. Certain bacteria also consume inorganic energy sources such as trace 

gases 72,191,330,385, but they are presumed to be rare community members 361,386,387, 

except within extreme desert ecosystems 28,388. Here we combined metagenomic, 

biogeochemical, and modelling approaches to determine how soil microbial 

communities conserve energy and acquire carbon. Analysis of 40 metagenomes and 

757 derived genomes indicated over 70% of soil bacterial taxa can consume inorganic 

energy sources. Bacteria from 19 phyla encoded enzymes to aerobically respire the 

trace gases hydrogen and carbon monoxide. We validated in situ and ex situ that 

communities within soil profiles from diverse biomes rapidly oxidized both gases below 

atmospheric concentrations. Thermodynamic modelling indicated that bacteria 

consume trace gases at sufficient rates to meet their maintenance needs, with a 

diverse subset also capable of autotrophic growth. In a further demonstration of the 

hidden diversity of trace gas oxidizers, we also identified a fourth phylum 204,389 

capable of aerobic methanotrophy (Gemmatimonadota). Trace gas oxidation confers 

a selective advantage in soil ecosystems, where availability of preferred organic 

substrates limits microbial growth 13. The observation that inorganic energy sources 

sustain most soil bacteria has broad implications for understanding atmospheric 

chemistry and microbial biodiversity in a changing world. 
 

4.2. Introduction 
 

Bacteria mediate key supporting and regulatory services in soil ecosystems worldwide 
106,390. Culture-independent surveys have shown that soils harbour abundant and 

diverse bacterial communities 10,35, with most cells thought to be in dormant states due 

to pressures such as resource limitation 210,211. Most soil bacteria use organic carbon 

derived from vegetation and other inputs as energy and carbon sources 106; reflecting 

this, some isolates from all nine of the most abundant phyla in soils are aerobic 

organotrophs 36,391. However, various bacteria have been characterised that use 

inorganic energy sources, including molecular hydrogen (H2), carbon monoxide (CO), 

sulfide, thiosulfate, ammonia, and nitrite 173,392. Such organisms use electrons derived 
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from these compounds to support aerobic respiration and, in the case of autotrophs, 

carbon dioxide (CO2) fixation through various pathways. While these lithotrophs are 

ecologically and biogeochemically important 106,393, they are generally thought to be 

minor community members compared to organotrophs 106,386. 

 

Emerging evidence suggests that the trace gases H2 and CO are particularly important 

energy sources for bacterial growth and persistence. Both gases are ubiquitously 

available in the atmosphere at average global concentrations of 0.53 and 0.10 parts 

per million (ppmv) respectively, with local CO levels greatly varying due to natural and 

anthropogenic processes 165,394,395. These compounds are also produced within soils: 

H2 through biological nitrogen fixation and fermentation 335,395,396, CO primarily through 

abiotic thermal and photochemical processes 394,397. Microorganisms have evolved 

specialised metalloenzymes, called hydrogenases and carbon monoxide 

dehydrogenases, to oxidize these gases, including below atmospheric concentrations 
71,330,331. Some bacteria sustain autotrophic or mixotrophic growth by using electrons 

derived from H2 and CO to drive aerobic respiration and carbon fixation 76,162,398. In 

addition, bacterial cultures from four phyla (Actinobacteria, Proteobacteria, 

Acidobacteria, Chloroflexi) have been shown to switch from growth on organic carbon 

to persistence on these trace gases in response to carbon starvation 71,72,191,330,331,385. 

This metabolic flexibility is advantageous in environments where resource availability 

is low or variable 71,72,331,335.  

 

Previous soil surveys reported that atmospheric H2 and CO oxidizers are members of 

the rare biosphere, each comprising just 1% in abundance of the total bacterial 

community, similarly to methane-oxidizing bacteria (methanotrophs) 361,386,387. 

Extreme environments, such as Antarctic deserts, are notable exceptions where trace 

gas oxidisers are major primary producers in soils with otherwise low photosynthetic 

input 28,388,399. However, a holistic understanding of how global soil communities meet 

energy and carbon needs is lacking 62. Here, we combined metagenomic, 

biogeochemical, and modelling approaches to understand the metabolic adaptations 

of soil bacteria, including the role of different strategies for energy conservation 

(organotrophy, lithotrophy, phototrophy) and carbon acquisition (heterotrophy vs 

autotrophy). We hypothesise that, unlike specialist processes such as methanotrophy, 
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aerobic H2 and CO metabolism is a broad metabolic strategy utilised by much of the 

community.  

 

4.3. Materials and Methods 
 

4.3.1. Site description and sampling 
 
Soil sampling was conducted in four sites within Australia that differed in climate, 

vegetation cover and soil type: (i) wetland (-37.908°, 145.139°; Jock Marshall Reserve, 

Clayton, VIC; JMR), (ii) forest (-37.446°, 144.470°; Wombat State Forest, VIC; WSF), 

(iii) grassland (-37.927°, 145.313°; Don Bosco Grassland, Lysterfield, VIC; DBG), and 

(iv) dryland (-23.874°, 133.967°; 25.5 km south of Alice Springs, NT; ASD). The sites 

were sampled on December 19 2018, January 5 2019, January 21 2019, and January 

29 2019 respectively. At each site (~100 m2), four sampling plots (~1 m2) were selected 

with ~50m buffers to structures such as roads and foot paths. At each plot, in situ 

depth-resolved gas concentrations profiles and soil-atmosphere fluxes were 

measured. In addition, a core was used to collect soil samples at four depths (0-5, 5-

10, 15-20, and 25-30 cm) for ex situ oxidation measurements, physicochemical 

analysis, and DNA extractions to perform quantitative polymerase chain reactions 

(qPCR) and metagenomic sequencing. All sampling occurred during daylight hours, 

gas samples were processed within 48 h of collection, and soil samples were incubated 

for ex situ oxidation measurements within 24 h of collection.  

 

4.3.2. Sampling and measurement of soil gas profiles 
 
Depth-resolved in situ gas concentrations of H2, CO, and CH4 were measured using 

stainless steel capillaries fitted with a Luer Lock and Discofix three-way Stopcock. Prior 

to sampling, each capillary was inserted into the soil at depth intervals of 2, 4, 6, 8, 10, 

and 16 cm. All samplers were installed simultaneously, arranged in a hexagonal grid 

(diameter ~20 cm), and left to equilibrate for ~30 min. A gas sample was also collected 

at the soil-atmosphere interface (0 cm). All gas samples were stored in evacuated 12 

mL glass exetainers sealed with rubber septum lids and analyzed using gas 

chromatography. Gas concentrations in samples were measured by gas 
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chromatography using a pulsed discharge helium ionization detector (model TGA-

6791-W-4U-2, Valco Instruments Company Inc.) as previously described 72. Samples 

were calibrated against H2, CO and CH4 standards which were prepared using ultra-

pure concentrations of each gas (1% in N2 gas cylinder, 99.999% pure, Air Liquide 

Australia) down to the limit of quantification (H2 20 ppbv, CO 90 ppbv, CH4 500 ppbv. 

Pressurized air (Air Liquide Australia) with known trace gas concentrations was used 

as an internal reference standard.  

 

4.3.3. Measurement of soil-atmosphere gas fluxes 
 
In situ soil-atmosphere fluxes of H2, CO, and CH4 were measured using static flux 

chambers. The chamber consisted of a 20 × 15 cm polyvinylchloride (PVC) pipe with 

a threaded access cap. The cap was fitted with a gastight O-ring, two butyl rubber 

septa (one for air sampling and one for a thermometer), and an axial fan on the inside 

to promote internal mixing. At each plot, a 10 × 14.8 cm PVC base collar was inserted 

~5 cm into the soil and left to equilibrate for ~30 minutes prior to sampling to reduce 

lateral gas fluxes. Once the chamber was fitted over the collar, the cap was closed and 

the axial fan was started. Three consecutive gas measurements were taken at 

approximately one-minute intervals, followed by either four or five measurements at 

approximately five-minute intervals. For each measurement, 15 mL of gas was 

collected using a gas tight 5 mL Terumo Syringe fitted with a Luer Lock and Discofix 

three-way Stopcock and measured by gas chromatography as described above. 

Control gas measurements of ambient air were taken directly before, during, and after 

sampling. The temperature of the chamber, ambient air, and soil were monitored 

throughout. Concentrations were then converted to nmol m-3 at ambient pressure and 

temperature using the ideal gas law. Atmospheric flux (Jatm) was calculated from the 

concentration gradient at chamber deployment using a linear and an exponential model 

fit 400 for each chamber measurement; the best model was chosen according to the 

lower Akaike information criterion (AIC). Conservative flux detection limits 

incorporating errors of sample handling and storage were calculated using mean and 

standard deviation of air samples 401. 

 

4.3.4. Soil sampling and physicochemical analysis 
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Four soil cores of 30 cm depth were collected from each site (16 total). Cores (diameter 

= 5cm) were carefully extracted and immediately segmented at 5 cm depth intervals 

before being transferred into 50 mL Falcon tubes. At four different depth intervals (0-

5, 5-10, 15-20, 25-30 cm), a subset of 10 g of soil was frozen at -20°C for community 

DNA extraction and a subset of 5 g was used within 24 hours for gas chromatography 

studies. Additional surface soil was collected using a 10 × 5 cm bulk density ring to 

estimate bulk density and soil water content, which was measured gravimetrically using 

a drying oven at 140°C. For soil chemistry analysis, surface soils samples (0-5 cm) 

from each plot were pooled to form one representative composite sample per site and 

sent to the Environmental Analysis Laboratory, Southern Cross University. In total, 21 

separate soil chemical parameters were selected for analysis, based on commonly 

reported drivers of soil microbial composition globally. These included: soil acidity (pH), 

electrical conductivity (EC), effective cation exchange capacity (ECEC), total organic 

carbon, total nitrogen, sodium (Na), sulfur (S), phosphate (P), potassium (K), nitrate 

(NO3-), and ammonium (NH4+), as well as bioavailable manganese (Mn), copper (Cu), 

zinc (Zn), boron (B), aluminium (Al), iron (Fe), and silicon (Si). In addition, particle size 

analysis by hydrometry was performed to estimate the percentage of gravel, sand, silt, 

loam, and clay (Table S1). Each chemical parameter was calculated following 

Rayment and Lyons methods 282.  

 

4.3.5. Ex situ oxidation rates 
 

To determine the capacity of the soils to oxidise atmospheric trace gases, 5 g soil from 

the four depth intervals (0-5, 5-10, 15-20, 25-30 cm) were placed in 120 mL serum 

vials. The headspace was repeatedly flushed with air from a pressurized cylinder (Air 

Liquide, Australia) to achieve headspace mixing ratios reflecting atmospheric levels 

(~0.5 ppmv H2, ~0.6 ppmv CO, ~1.8 ppmv CH4). Sampling commenced immediately 

after sealing the vial and headspace samples of 2 mL were taken at 10 min intervals 

for 40 minutes. While this timecourse sufficiently capture oxidation rates for most 

samples, additional gas samples were collected every 24 hrs for up to nine days to 

capture oxidation rates of soils that mediated slow gas consumption. Gas 

concentrations were measured by gas chromatography as described above. Heat 

killed soils (two 30-minute autoclave cycles at 121°C) and blank measurements (empty 

serum vials) were used as controls, confirming trace gas oxidation occurred due to 
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biotic processes. Given the low capacity of dryland soils to oxidize atmospheric trace 

gases, we simulated a rainfall event to determine whether soil hydration enhances 

activity. To do this, we used a custom Perspex collar fitted with a water-draining 

stainless steel woven mesh (0.17 mm) and a water-catching tray. Collars were 

sterilised using ethanol and soils (5 g) were placed in the centre of the mesh surface. 

Soils were watered until fully saturated by repeated addition of MilliQ water. Once fully 

saturated, each collar was sealed at the top using clingfilm to avoid evaporation and 

left to drain for 24 hrs in the dark. Once drained, soil samples were transferred using 

sterile techniques into a 120 mL serum vial and gas oxidation was measured as 

described in the previous section. Rates were calculated as described above using the 

initial four times points of each measurement. The data was tested for normality using 

a Shapiro-Wilk test. To test for significant difference in oxidation rates between 

ecosystems and depths, a non-parametric Kruskal-Wallis test was used. This was 

followed by a pairwise Wilcox Rank Sum test to test significant relationships between 

pairs. 

 

4.3.6. Community DNA extraction 
 
At each soil depth sampled per site, soils from the four plots were pooled together. For 

each of the 16 resultant samples, total community DNA was extracted using 0.25 g 

soil. Extractions were performed using the MoBio PowerSoil Isolation kit according to 

the manufacturer’s instructions. Samples were eluted in DNase- and RNase-free 

UltraPure Water (ThermoFisher). A sample-free negative control was also run. Nucleic 

acid purity and yield were measured using a NanoDrop ND-1000 spectrophotometer 

and a Qubit Fluorometer 2.0.  

 

4.3.7. Quantitative PCR 
 

Quantitative polymerase chain reactions (qPCR) were used to estimate total bacterial 

and archaeal biomass. The 16S rRNA gene was amplified using the degenerate primer 

pairs 515F (GTGYCAGCMGCCGCGGTAA) and 806R 

(GGACTACNVGGGTWTCTAAT) 402. A synthetic E. coli 16S rRNA gene sequence in 

a pUC-like cloning vector (pMA plasmid; GeneArt, ThermoFisher Scientific) was used 

as a standard. PCR reactions were set up in each well of a 96-well plate using a 
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LightCycler 480 SYBR Green I Master Mix. Each sample was run in triplicate and 

standards in duplicate on a LightCycler 480 Instrument II (Roche). The qPCR 

conditions were as follows: pre-incubation at 95°C for 3 min and 45 cycles of 

denaturation 95°C for 30 s, annealing at 54°C for 30 s, and extension at 72°C for 24 s. 

16S rRNA gene copy numbers were calculated based on a standard curve constructed 

by plotting average Cp values of a serial dilution of the plasmid-borne standard against 

their copy numbers.  

 

4.3.8. Sequencing, assembly, and binning of Australian metagenomes 
 
Metagenomic shotgun libraries were prepared for the 16 samples using the Nextera 

XT DNA Sample Preparation Kit (Illumina Inc., San Diego, CA, USA). Sequencing was 

performed on an Illumina NextSeq500 platform with a 2 × 150 bp High Output run. Raw 

reads derived from the 16 metagenome libraries were quality-controlled by clipping off 

primers and adapters then filtering out artifacts and low-quality reads using Read_QC 

module within the metaWRAP pipeline 403. For each ecosystem, the four quality-

controlled metagenomes were co-assembled using MEGAHIT v1.1.3 404 (default 

parameters) and individually assembled using SPAdes v3.13.0 343 (metaSPAdes 

mode, default parameters), producing five assemblies for each ecosystem. Short 

contigs (<1000 bp) were removed. Each assembly was binned using the binning 

module within the metaWRAP 403 pipeline (MetaBAT 405, MetaBAT2 344 and MaxBin2 
406). For each assembly, the three bin sets were then consolidated into a final bin set 

with the bin_refinement module of metaWRAP 403. For each ecosystem, the final bin 

sets were aggregated and de-replicated using dRep 407 (-comp 50 -con 10 options). 

Completeness, contamination, and heterogeneity of each bin were estimated using 

CheckM 345, with medium- and high-quality bins (completeness >50%, contamination 

<10%) 346 retained for further analysis. After dereplication, a total of 93 metagenome-

assembled genomes (MAGs) were obtained for the four ecosystems. Each bin was 

taxonomically assigned according to the Genome Taxonomy Database (GTDB; 

release 04-RS89) 290 using GTDB-tk 347.  
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4.3.9. Assembly and binning of global public soil metagenomes 
 

A total of 24 previously sequenced metagenomes from eight different soil ecosystems 

(three metagenomes each ecosystem) (Table S2) were downloaded from the 

Integrated Microbial Genomes database 408 and the NCBI Sequence Read Archive 

(SRA) 409. These comprised: Barrow Environmental Observatory site, Barrow, Alaska, 

USA (Arctic Tundra, BEO); St. Claude, Quebec, Canada (Agricultural Land – Crop 

Rotation, SCQ); Kellogg Biological Station, Michigan, USA (Agricultural Land – 

Switchgrass, KBS); Algoma, Ontario, Canada (Coniferous Forest, ALO); Anza Borrego 

Desert, California, USA (Hot Desert, ABD); Department of Meta, Colombia (Tropical 

Peatland, DMC); National Park of Serra do Cipo, Brazil (Rupestrian Grassland, NPS); 

and Luquillo Experimental Forest, Rio Grande, Puerto Rico (Tropical Rainforest, LEF). 

This cohort of metagenomes was chosen to capture a diverse range of ecosystem 

types and land use classes. Raw reads derived from the 24 metagenome libraries were 

quality-controlled by clipping off primers and adapters and filtering out artefacts and 

low-quality reads using Read_QC module in the metaWRAP pipeline 403. For each 

ecosystem, the three quality-controlled metagenomes were both co-assembled and 

individually assembled using MEGAHIT v1.1.3 404, producing four assemblies for each 

ecosystem. For the assembly process, all of them used default parameters except co-

assembly of metagenomes for Kellogg Biological Station (--k-min 27). Short contigs 

(<1000 bp) were removed. Each assembly was binned using the binning module within 

the metaWRAP 403 options (MetaBAT 405, MetaBAT2 344 and MaxBin2 406) except 

assemblies derived from Kellogg Biological Station and Luquillo Experimental Forest 

where only MetaBAT2 344 was used. Dereplication and quality-control of produced bins 

were performed as above. After dereplication, a total of 664 high- or medium-quality 

MAGs were obtained for the eight ecosystems. Each bin was taxonomically assigned 

as above.  

 

4.3.10. Functional annotation of binned and unbinned contigs 
 
The sequences of 43 marker genes representing energy conservation and carbon 

acquisition processes were retrieved from binned and unbinned contigs. Open reading 

frames (ORFs) were first predicted using Prodigal v.2.6.3 350 and genes were 

annotated using a combination of homology-based searches and hidden Markov 
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model (HMM) searches. For homology-based searches, predicted ORFs were 

searched using DIAMOND blastp 410 against 32 custom protein databases described 

below. These encompassed the genes encoding ATP-citrate lyase (AclB), acetyl-CoA 

synthase (AcsB), ammonia monooxygenase (AmoA), anaerobic sulfite reductase 

(AsrA), anaerobic carbon monoxide dehydrogenase (CooS), aerobic carbon monoxide 

dehydrogenase (CoxL), dissimilatory sulfite reductase (DsrA), flavocytochrome c 

sulfide dehydrogenase (FCC), 4-hydroxybutyryl-CoA synthase of Crenarchaeota 

(HbsC), 4-hydroxybutyryl-CoA synthase of Thaumarchaeota (HbsT), hydrazine 

synthase (HzsA), malonyl-CoA reductase of Chloroflexota (Mcr), methyl/alkyl-CoM 

reductase (McrA), soluble methane monooxygenase (MmoX), periplasmic nitrate 

reductase (NapA), dissimilatory nitrate reductase (NarG), nitrogenase (NifH), copper-

containing nitrite reductase (NirK), cytochrome cd1 nitrite reductase (NirS), nitrous 

oxide reductase (NosZ), ammonia-forming nitrite reductase (NrfA), nitrite 

oxidoreductase (NxrA), particulate methane monooxygenase (PmoA), ribulose 1,5-

bisphosphate carboxylase/oxygenase (RbcL), succinate dehydrogenase / fumarate 

reductase (SdhA / FrdA), sulfur oxygenase/reductase (Sor), thiosulfohydrolase 

(SoxB), sulfide-quinone oxidoreductase (Sqr), and three hydrogenase classes (NiFe-

hydrogenase large subunit, FeFe-hydrogenase catalytic domain, Fe-hydrogenase). 

DIAMOND mapping was performed with a query coverage threshold of 80% for all 

databases, and a percentage identity threshold of 60% (AmoA, PmoA, MmoX, CoxL, 

HbsT, NxrA, RbcL) or 50% (all other databases) and e-value thresholds of 10-20. HMM 

searches were performed against Pfam and Tigrfam databases using the annotate 

function of EnrichM v.0.5.0 (https://github.com/geronimp/enrichM), with domain noise-

cut-off scores as previously described 351. Eleven genes encoding subunits of ATP 

synthase (AtpA), two NADH dehydrogenases (NuoF, NqrF), four terminal oxidases 

(CcoN, CoxA, CydA, CyoA), two photosystems (PsaA, PsbA), formate dehydrogenase 

(FdhA), and reductive dehalogenase (RdhA) were searched.  

 

4.3.11. Phylogenetic analysis 
 
Phylogenetic trees were constructed to understand the distribution and diversity of 

bacteria and archaea consuming inorganic energy sources. Trees were constructed 

for the group 1 and 2 [NiFe]-hydrogenase large subunits, group 3 [NiFe]-hydrogenase 

large subunits, CoxL, PmoA, RbcL, AmoA, NxrA, Sqr, SoxB, and DsrA. In all cases, 
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protein sequences retrieved from the MAGs reads by homology-based searches were 

aligned against a subset of reference sequences from the custom protein databases 

using ClustalW in MEGA7 353. Evolutionary relationships were visualised by 

constructing a maximum-likelihood phylogenetic tree; specifically, initial trees for the 

heuristic search were obtained automatically by applying Neighbour-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using a JTT model, and then 

selecting the topology with superior log likelihood value. All residues were used and 

trees were bootstrapped with 50 replicates. To further visualize the diversity of trace 

gas oxidizers, neighbor-joining trees were constructed using the binned and unbinned 

sequences for group 1 and 2 [NiFe]-hydrogenase large subunits and CoxL; these trees 

were constructed using the Poisson model with gaps treated with pairwise deletion 

and bootstrapped with 50 replicates. 

 

4.3.12. Analysis of community composition and diversity 
 
Bacterial and archaeal community composition was determined from the pre-

processed metagenomic reads with SingleM v0.12.1 

(https://github.com/wwood/singlem). In total, 28 HMM searches were performed 

against 14 single-copy ribosomal marker genes. The gene for single-copy ribosomal 

protein L16/L10E (rplP) was selected for downstream analysis and sequences were 

clustered de novo into operational taxonomic units at a sequence identity threshold of 

97%. Taxonomic assignment was carried out using the Genome Taxonomy Database 
290. Community richness and beta diversity were calculated using the phyloseq 299 and 

R package VEGAN 349. To account for differences in richness between samples, all 

sequences were rarefied to within 90% of the minimum sequence count. Observed 

richness and estimated richness (Chao1) were calculated. First, beta diversity (Bray-

Curtis) was calculated and visualised using a multidimensional scaling ordination 

(MDS), then significance testing was carried out using a permutational analysis of 

variance (PERMANOVA) to test for significant differences in community structure 

between ecosystems and between depth profiles. A beta dispersion test (PERMDISP) 

was used to ascertain if significant differences in community structure were due to data 

dispersion. 
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4.3.13. Metabolic analysis of short reads 
 
For the functional annotation of short reads, paired-end reads in each sample were 

stripped of adapter and barcode sequences, then contaminating PhiX and low quality 

sequences were removed (minimum quality score 20) using the BBDuk function of 

BBTools v. 36.92 (https://sourceforge.net/projects/bbmap/). Resultant quality-filtered 

forward reads with lengths of at least 100 bp were searched for the presence of the 43 

metabolic marker genes described above using DIAMOND blastx algorithm 352. 

Specifically, reads were searched against the 32 custom-made reference databases 

and hits from the 11 HMM searches, using a query coverage of 80% and an identity 

threshold of either 60% (AmoA, PmoA, MmoX, CoxL, HbsT, NxrA, RbcL) or 50% (all 

other databases) and a maximum e-value threshold of 10-10. Read counts were 

normalized to reads per kilobase per million (RPKM) and further normalised against a 

mean RPKM value estimated from 14 single copy ribosomal marker genes to infer the 

percentage of the community encoding the gene. 
 

4.3.14. Thermodynamic modelling 
 
Cell-specific power was calculated (i.e. Gibbs energy per unit time per microbial cell), 

P (W) according to: 

𝑃𝑃 =
𝑟𝑟 ∙ Δ𝐺𝐺𝑟𝑟
𝐵𝐵

 

          (EQ. 1) 

 

where r denotes the rate of reaction (mol s-1 gdry soil-1), ΔGr represents the Gibbs energy 

of the reaction (J mol-1), and B (cells cm-3) is the number of microbial cells carrying out 

each of the following the reactions: 2 H2 + O2 → 2 H2O (dihydrogen oxidation); 2 CO 

+ O2 → CO2 + 2 H2O (carbon monoxide oxidation); CH4 + 2 O2 → CO2 +2 H2O 

(methane oxidation).Values of ΔGr are calculated using: 

 

Δ𝐺𝐺𝑟𝑟 =  Δ𝐺𝐺𝑟𝑟0 + 𝑅𝑅𝑅𝑅 ln𝑄𝑄𝑟𝑟 

          (EQ. 2) 

where ΔGr0 and Qr refer to the standard Gibbs energy and the reaction quotient of the 

indicated reaction, respectively, R represents the gas constant, and T denotes 
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temperature in Kelvin. Values of ΔGr0 were calculated using the revised-HKF 

equations of state 411–413, the SUPCRT92 software package 414, and thermodynamic 

data taken from refs 415–419. 

 

Values of Qr are calculated for each reaction using: 

 

𝑄𝑄𝑟𝑟 =  ∏ 𝑎𝑎𝑔𝑔
𝑣𝑣𝑖𝑖 

          (EQ. 3) 

where ai stands for the activity of the ith species and vi corresponds to the 

stoichiometric coefficient of the ith species in the reaction of interest. Activities of gas-

phase compounds, ag, were calculated using: 

𝑎𝑎𝑔𝑔 =  𝑓𝑓𝑔𝑔
𝑓𝑓𝑔𝑔0

    (EQ. 4) 

where𝑓𝑓𝑔𝑔and 𝑓𝑓𝑔𝑔0 designate the fugacity and standard state fugacity of the respective 

gas. Due to the low temperatures and pressures of soil ecosystems, fugacity 

coefficients for all gases are one (see 420). Therefore, partial pressures are equivalent 

to fugacity since 𝑓𝑓𝑔𝑔0 was taken to be 1 bar. Gibbs energy calculations were carried out 

at 20°C and 1 bar. The concentrations of reactants in the catabolic reactions and 

reaction rates were measured by gas chromatography as described above.  

 

Estimates of the number of microbial cells carrying out each reaction (B) were obtained 

by calculating the proportion of cells performing a specific catabolic reaction in our 16S 

rRNA gene copy number dataset, assuming all cells to be active. The proportion of a 

specific functional community was retrieved from the relative abundance of the 

individual biomarker genes (encoding the large subunits of group 1c, 1d, 1f, 1h, 2a 

[NiFe]-hydrogenase, carbon monoxide dehydrogenase (CoxL), particulate methane 

monooxygenase (PmoA), and soluble methane monooxygenase (MmoX) in our 

metagenomics dataset. An average of 4.2 16S rRNA copies per cell was assumed for 

cell number estimation 294.
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4.4. Results 
 

4.4.1. Diverse bacterial phyla are capable of oxidising H2, CO, and 

CH4 in soil ecosystems 
 
First, we sequenced metagenomes from depth profiles of four Australian soil biomes 

(wetland, grassland, forest, dryland) (Table S1 & S2) and analyzed metagenomes 

from eight further global sites (Table S2). Assembly and binning yielded 757 high- or 

medium-quality metagenome-assembled genomes (MAGs) spanning 27 bacterial and 

three archaeal phyla (Table S3). Consistent with the community composition of the 

sites (Fig. S1; Table S4), half of the genomes affiliate with globally dominant soil phyla 

Actinobacteriota, Proteobacteria, and Acidobacteriota 35. We used comprehensive 

reference databases to search key metabolic genes in metagenomic short reads and 

derived genomes (Fig. 1; Table S5 & S6). In agreement with established paradigms 
106, most bacterial MAGs in this study have the capability to generate energy through 

aerobic respiration of organic compounds. More surprisingly, many of these bacteria 

also encoded the key enzymes (uptake hydrogenases and CO dehydrogenases) to 

consume trace gases H2 and CO: an average of 39% and 47% of bacteria based on 

short reads, and 31% and 26% of assembled genomes. Also widespread was the 

capacity for sulfide (28% reads / 22% genomes) and thiosulfate (6.3% / 11%) 

oxidation, whereas nitrite (4.9% / 3.7%), ammonia (1.4% / 2.4%), and methane (1.1% 

/ 0.37%) oxidation and photosynthesis (1.3% / 1.5%) were more restricted traits (Fig. 
1). Altogether, on average 72% of bacterial genomes were predicted to consume 

inorganic energy sources. For electron acceptor utilization, most bacteria encoded 

terminal oxidases for aerobic respiration and many were predicted to conserve energy 

by nitrate reduction (25% / 14%), nitrite reduction (21% / 21%), and hydrogenogenic 

fermentation (29% / 21%) (Fig. 1).  
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Fig. 1. Energy conservation and carbon acquisition strategies of global soil 
bacteria. Homology-based searches were used to detect marker genes for key 

metabolic processes in the metagenomic short reads and metagenome-assembled 

genomes. (a) Heatmaps showing the abundance of each gene in the metagenomic 

short reads of the four Australian depth profiles and eight global sites. The percentage 

of the total community predicted to encode at least one of each gene for a process is 

shown, based on normalization to single-copy marker genes. The genes detected are 

usually present in single copies in genomes and, where genes performing similar 

functions are collapsed together, the values are summed up to 100%. (b) Dot plot 

showing the metabolic potential of the 757 metagenome-assembled genomes 

(MAGs). The size of each point represents the number of genomes in each phylum 

that encode the gene of interest and the shading represents the average genome 

completeness. Taxonomy assignment is based on the Genome Taxonomy Database 

(GTDB) 290. 
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To gain insight into phylogenetic diversity of trace gas oxidizers, we generated 

phylogenetic trees of the uptake hydrogenases and CO dehydrogenases from binned 

and unbinned assembled sequences (Table S7). 19 phyla encoded one or both 

enzymes, including all nine dominant soil phyla (Acidobacteriota, Actinobacteriota, 

Bacteroidota, Chloroflexota, Firmicutes, Gemmatimonadota, Planctomycetota, 

Proteobacteria, Verrucomicrobiota) and six candidate phyla (Binatota, 

Dormibacterota, Eremiobacterota, Methylomirabilota, Tectomicrobia, UBP7). Among 

the uptake hydrogenases, 49% of the 1522 hits affiliated with group 1h [NiFe]-

hydrogenases. This relatively recently discovered high-affinity enzyme supports 

persistence of organotrophic bacteria by oxidizing atmospheric H2 72,162,330,331,385,421. 

The phylogenetic tree revealed an unprecedented sequence diversity and broad 

taxonomic distribution of this subgroup, with sequences affiliated with 13 phyla (Fig. 
2a; Fig. S2). Also widespread were various radiations within the group 1d (8.9%), 1f 

(19%), and 2a (3.6%) [NiFe]-hydrogenases known to support aerobic hydrogen 

oxidation 162,180,331,422, as well as a novel subclade of the group 1c hydrogenases (13%) 

encoded by Acidobacteriota, Planctomycetota, and Gemmatimonadota (Fig. 2a; Fig. 
S3 & S4). CO dehydrogenases were similarly prevalent. The tree shows large 

actinobacterial and proteobacterial clades flanking a central mixed clade containing 

sequences from 11 different phyla (Fig. 2b; Fig. S5). In line with previous inferences 
71,162, both trees suggest enzymes for trace gas oxidation were horizontally 

disseminated across soil bacteria on multiple occasions.  
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Fig. 2. Radial maximum-likelihood phylogenetic trees showing the sequence 
diversity and taxonomic distribution of key enzymes associated with trace gas 
oxidation. The trees show the amino acid sequences of (a) group 1 and 2 [NiFe]-

hydrogenase large subunits and (b) carbon monoxide dehydrogenase (CoxL). Binned 

reads (taxa names colored by phylum) are shown alongside reference amino acid 

sequences (taxa names shown in grey). The hydrogenase subgroups and carbon 

monoxide dehydrogenase clades predicted to support trace gas oxidation in the 

sampled soils are highlighted. Both trees were constructed using the JTT matrix-based 

model, used all sites, and were bootstrapped with 50 replicates.  

 

Phylogenetic analysis also validated the presence and affiliations of sulfide, 

thiosulfate, ammonia, nitrite, and methane oxidizers (Figs. S6 to S12). These included 

the first genomes of soil comammox bacteria 423,424 and a potential nitrite-oxidizing 

bacterium within recently reported candidate phylum Eremiobacterota 28. A major 

finding was the recovery of a high-quality Gemmatimonadota bin predicted to use 

methane, hydrogen, and acetate as energy sources (Fig. S13). Its particulate methane 

monooxygenase is distantly related to those of sequenced methanotrophs and instead 

affiliates with an uncultivated methanotrophic lineage (Tropical Upland Soil Cluster, 

TUSC) that has been detected by amplicon sequencing in diverse soils worldwide 

(Fig. S12). These results suggest Gemmatimonadota is a fourth phylum 204,389 capable 

of aerobic methanotrophy, though cultivation studies are required to confirm activity. 

We propose this bacterium is named Candidatus Methylotropicum kingii 

(Etymological Information). 
 

4.4.2. Trace gas oxidizers are active across soil types and depths 
 

Reflecting their abundance and diversity, we confirmed that trace gas oxidizers are 

highly active in soil communities. In situ concentrations and soil-atmosphere fluxes of 

H2, CO, and, as a well-studied reference gas, CH4 were measured across the four 

Australian biomes in biological quadruplicate using an ultra-sensitive gas 

chromatograph (Table S8). All three gases were present within typical mixing ratios 
394,395,425 at the soil-atmosphere interface and top 20 cm of each soil (av. 0.84 ± 0.46 

ppmv H2, 0.91 ± 0.33 ppmv CO, 1.67 ± 0.17 ppmv CH4) (Fig. 3a); gas concentrations 
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decreased with depth at some sites (Fig. S14), indicating microbial consumption, 

whereas H2 concentrations were elevated in deeper wetland soils likely due to activity 

of the numerous hydrogenogenic fermenters (33% reads / 32% genomes; Fig. S15) 

in hypoxic zones 335. In line with the dominance of H2 oxidizers, net in situ H2 uptake 

was observed at all sites and consumption was particularly rapid at the grassland, 

forest, and wetland (exceeding 20 nmol m-2 s-1) (Fig. 3b); most ambient H2 in the flux 

chambers was oxidized by underlying soil within two minutes. In contrast, no 

significant fluxes of CO were observed; the high rates of photochemical CO production 

known to occur under daylight potentially obscured underlying microbial consumption 
397. Reflecting global patterns 426, CH4 fluxes were low with the exception of forest 

sites. 

 

We subsequently measured ex situ oxidation rates by incubating samples from soil 

depth profiles in serum vials containing ambient air headspaces (Table S8). Under 

these conditions, biological gas consumption could be accurately quantified given no 

significant abiotic production of these gases was detected (Fig. S16). Atmospheric H2 

and CO were both rapidly oxidized by forest, grassland, and wetland soils. Rates were 

significantly higher for topsoils (0-5 and 5-10 cm) compared to deeper soils (15-20 and 

25-30 cm) (Table S9). However, cell-specific rates (normalized to 16S rRNA gene 

copy number; Fig. S17) did not significantly vary with depth (Fig. 3c; Table S9). 
Atmospheric CH4 oxidation occurred at 60-fold lower rates than H2 and CO on 

average, with most rapid consumption again occurring at the forest site. Such 

observations are consistent with the much higher levels of uptake hydrogenases and 

CO dehydrogenases compared to methane monooxygenases in the metagenomes 

and derived genomes. In line with the in situ observations, trace gas oxidation was 

slowest for dryland soils. This possibly reflects, in line with previous laboratory studies, 

that low water content inhibits trace gas uptake 427,428. Contrary to the pattern observed 

for other biomes, deeper dryland soils consumed trace gases more rapidly, perhaps 

reflecting their higher measured water content (Table S1). Experimentally wetting 

dryland soils, in order to simulate rainfall events, enhanced rates by six-fold (Fig. 3c; 
Fig. S16). Overall, these in situ and ex situ measurements complement the 

metagenomic analysis by confirming soil communities contain highly active H2 and CO 

oxidizers. 
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Fig. 3. Measurement of oxidation of the trace gases H2, CO, and CH4 across four 
Australian biomes. (a) Depth-resolved in situ gas concentrations from 0 to 16 cm 

depth. (b) In situ soil-atmosphere gas fluxes (Jatm; positive values indicate net gas 

production, negative values indicate net gas consumption). For a and b, 

measurements were performed in four separate soils per biome and error bars 

showing standard deviations. (c) Depth-resolved ex situ oxidation rates for each 

ecosystem using core samples from four different depths (0-5, 5-10, 15-20, 25-30 cm). 

Measurements were performed with four separate soils per biome and values are 

normalized to biomass based on 16S rRNA gene counts. Dashed lines represent 

simulated flux detection limits. (d) Amount of power per cell derived from the oxidation 

of each trace gas. These were calculated using thermodynamic models based on ex 

situ rates measured across the four depths per biome, with the dotted line showing the 

minimal maintenance energy requirements measured for aerobic heterotroph pure 

cultures (4.9 × 10-14 W per cell) 429. For c and d, boxplots show means, lower and 

upper quartile, and minimum and maximum values. 
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4.4.3. Trace gas oxidation can theoretically sustain maintenance of 

entire community and growth of some autotrophs 
 

It is probable that trace gas oxidation primarily supports persistence of organotrophic 

bacteria. Most sequenced soil bacteria encoded uptake hydrogenases and CO 

dehydrogenases together with the genes for organotrophy. Based on observations 

from pure culture studies, bacteria consume trace gases to conserve energy for 

cellular maintenance when organic carbon supplies are limiting for growth 72,330,331,385. 

We used thermodynamic modelling to predict the amount of power per cell (Table 
S10) that could be generated based on the ex situ oxidation rates (Fig. S16) and the 

number of trace gas oxidizers detected per gram of soil (Fig. 1 & Fig. S17). On 

average, oxidation rates were sufficient to generate 3.3 × 10-13 W per H2-oxidizing cell, 

2.4 × 10-13 W per CO-oxidizing cell, and 1.0 × 10-12 W per CH4-oxidizing cell, and 

trends were similar across biomes and depths with the exception of the dryland soils 

(Fig. 3d). Such values are higher than the minimal maintenance energy requirements 

measured for aerobic heterotroph pure cultures (4.9 × 10-14 W per cell) 429 and greatly 

exceed the requirements calculated for highly energy-limited ecosystems (10-17 to 10-

19 W per cell) 430,431. Thus, trace gases can theoretically sustain the persistence of the 

entire gas-consuming community.  

 

Trace gases are also likely to sustain autotrophic growth of a significant proportion of 

bacteria across these soil biomes. Our analysis indicates that most community 

members, including trace gas oxidisers can acquire carbon heterotrophically. 

However, some bacteria (13% reads / 12% genomes) encoded the capacity to 

assimilate CO2 through the Calvin-Benson cycle (Fig. 1). Genome-resolved analysis 

indicated most of these autotrophs were capable of oxidising H2 (79%) and/or CO 

(63%), with some mediating sulfide oxidation (32%), thiosulfate oxidation (17%), or 

photosynthesis (11%) (Table S6). Putative autotrophic H2 and CO oxidizers were 

patchily distributed among seven dominant soil phyla and candidate phylum 

Dormibacterota, suggesting autotrophy has been acquired multiple times (Fig. 1). 
Consistently, phylogenetic analysis showed that the 93% of the binned ribulose 1,5-

bisphosphate carboxylase (RuBisCO / RbcL) hits were from clades known to support 

chemosynthesis rather than photosynthesis (Fig. S18). Reads for other CO2 fixation 
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pathways were also detected, but with exception of the peatland sample, were 

encoded by less than 1% of the total community (Fig. 1). The above power calculations 

suggest that sufficient energy is generated from trace gas oxidation for a subset of 

bacteria to allocate to growth in addition to maintenance at some sites. Autotrophic 

growth may be particularly favorable in environments where there are significant rates 

of edaphic gas production, for example due to hydrogenogenic fermentation (Fig. S15) 
during hypoxia 335. Remarkably, this suggests that the process of atmospheric 

chemosynthesis recently discovered in Antarctic deserts 28 extends to other biomes. 

 

4.5. Discussion 
 

Overall, bacteria with the metabolic flexibility to use both organic and inorganic energy 

sources are likely to have a selective advantage in soil environments. In most soils, 

organic carbon is the main factor limiting microbial growth 432,433; this reflects the 

inherent spatiotemporal variability in organic carbon availability of soils, together with 

the recalcitrance of many organic polymers and the intense competition for more 

degradable compounds 106. Thus, the ability to consume alternative energy sources is 

likely to be critical for adaptation and resilience of many taxa. H2 and CO are ideal 

compounds in this regard given they are readily available from both atmospheric and 

edaphic sources; likewise, their high energy content, low activation energy, and 

diffusibility into microbial cells make these gases dependable for survival 71,176.  

 

Consistently, our findings suggest that oxidation of these trace gases is a generalist 

process, rather than a specialist one as previously suggested 386. We provide multiple 

lines of evidence that H2 and CO oxidizers are abundant, diverse, and active across 

different soil biomes and depths. These findings strikingly contrast with previous 

reports that trace gas oxidizers comprise just 1% of the community. Such 

discrepancies reflect that previous work on atmospheric H2 oxidizers relied on non-

degenerate quantitative PCR primers that only capture a small proportion of the total 

diversity of soil uptake hydrogenases; indeed, we observed high proportions of high-

affinity hydrogenases (30% reads / 40% genomes) in the Canadian cropland 

metagenome where H2 oxidizers were previously inferred to be minor community 

members 386,387. Moreover, while previous genome surveys indicate Actinobacteriota 
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predominantly mediate atmospheric H2 oxidation 162,421, our analysis indicates all 

major bacterial soil phyla can mediate this process. These metabolically flexible 

generalists co-exist with more specialist taxa that use niche substrates, including 

methane, ammonia, and nitrite. The finding that some Gemmatimonadota are inferred 

to be capable of aerobic methane oxidation further highlights the diversity of trace gas 

oxidizers in soils. Our results also reveal an unexpected diversity and abundance of 

chemoautotrophs in soils, while hinting at roles for sulfur-based compounds as further 

supplementary energy sources.  

 

More broadly, the extensive soil-atmosphere interaction described here appears to be 

a key regulator of soil biodiversity and atmospheric chemistry. It is well-established 

that dormancy contributes to the maintenance of microbial biodiversity and the 

resilience of soil communities 211; given trace gases are major energy sources 

sustaining the dormant soil majority, their oxidation will in turn influence wider 

community ecology. Biogeochemically, soil bacteria are major sinks of trace gases, 

accounting for the net loss of approximately 75% atmospheric H2 (70 megatonnes per 

year) 395,396 and 10% atmospheric CO (250 megatonnes per year) 165,394. The 

observation that the bacteria responsible are more numerous and diverse than 

previously thought suggests these sinks are relatively resilient; this may explain why, 

despite high anthropogenic emissions of H2, global mixing ratios have remained stable 
395. Nevertheless, various human activities could undermine this soil-atmosphere 

interaction, for example through changing soil properties (e.g. via agricultural practices 

and desertification) and atmospheric composition (e.g. through urban pollution or a 

hydrogen economy 434), with potential ecological and biogeochemical ramifications. 

Further studies are required to understand what physicochemical factors influence the 

abundance and activities of trace gas oxidizers, and how they respond to local and 

global change. 
 

4.6. Footnotes 
 

Etymological Information: Candidatus Methylotropicum (Me.thy.lo.tro'pi.cum.) N.L. 

n. methylum (from French méthyle back-formation from French méthylène, coined 

from Gr. n. methu, wine and Gr. n. hulê, wood), the methyl group; N.L. pref. methylo-, 

pertaining to the methyl radical; L. masc. adj. tropicus pertaining to tropical zone of the 
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Earth; N.L. neut. n. Methylotropicum referring to a methyl-using bacterium from the 

tropics. Candidatus Methylotropicum kingii (ki'ngi.i.) N.L. gen. n. kingii in honour of 

Prof. Gary King, who has pioneered research into the microbial oxidation of methane, 

CO, and H2. 
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Chapter 5 
Discussion and Outlook 
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5.1. Summary 
 
5.1.1. Community composition  

 

The biogeographic analysis presented in chapter two suggests that the spatial 

turnover in soil bacterial and archaeal communities is higher than previously 

recognised. Our 16S soil survey, covering local and regional scales in the Negev 

region, found that the majority of taxa are members of the rare biosphere and only a 

small minority are cosmopolitan. This was highlighted in the positively skewed 

occupancy frequency distribution, which showed the full spectrum of occupancy 

classes, extending from highly frequent rare members to intermediate members to a 

long tail of low frequency common members. While these findings broadly agree with 

the occupancy frequency distribution of microbial taxa across the majority of terrestrial 

ecosystems 35,48, our findings suggest that the magnitude in frequency should be 

higher, given the positive correlation between taxonomic resolution and observed 

richness. The occupancy trends observed in our analysis are of global relevance, 

given similar observations were made using a previously published global scale 

dataset 35.  

 

Our findings also shed new light on how aridity influences the richness, abundance, 

and composition of microbial communities. We found that, with increasing aridity, 

community abundance decreased, whereas richness was variable but remained 

relatively constant between climatic regions. This was evident from the similar alpha 

diversity observed between sub-humid and hyper-arid regions. In the Negev aridity 

transect, the dominant phyla detected were Actinobacteriota, Acidobacteriota, 

Chloroflexota and Proteobacteria. These phyla are among the nine dominant soil phyla 

frequently cited in global and regional scale soil surveys 35–37 and are known to thrive 

in desert environments326. Compositional profiling at the phylum levels revealed that 

the relative abundance and diversity of these taxa was similar between climatic zones. 

This suggests that a broad range of taxa have the metabolic capacity to acquire carbon 

and energy, even in hyper-arid soils, thereby enabling them to withstand aridity-

associated environmental filters and maintain structured communities. In contrast, 

there were major variations in the abundance of Cyanobacteria between topsoils and 
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biocrusts, as well as between specific samples, suggesting there are relatively 

sensitive to variations in water availability and other physicochemical composition. The 

four above-mentioned phyla were also observed to be the most abundant across 

metagenomes from Australian and global soils, though metagenome-assembled 

genomes were also recovered for a wide variety of other cultured and candidate phyla. 

 

5.1.2. Community turnover 
 

Increasingly studies have shown that deterministic and stochastic assembly 

processes variably interact to structure soil microbial communities 98,99,102,103,244. Beta 

diversity studies, using both abundance- and incidence-based metrics, showed that 

the taxonomic and phylogenetic composition of the Negev desert soil communities 

was significantly different between soils in different plots and zones. To determine the 

underlying drivers of this variation, we used a variation partitioning analysis. This 

enabled us to parse the relative contribution of drivers associated with abiotic 

environmental conditions, and spatial drivers which are independent of environmental 

heterogeneity. The analysis revealed that the majority of explained variation could be 

attributed to abiotic drivers associated with increasing aridity such as soil water 

content, organic carbon, pH and salinity. This suggests that deterministic 

environmental drivers are major determinants of microbial community structure along 

aridity gradients, with spatial effects playing a minor role. Nevertheless, we observed 

a marginal increase in the proportion of spatial effects along our local transect, which 

extended along a single climatic region and had much weaker environmental 

heterogeneity. It is therefore likely that spatial effects play a greater role under 

conditions where environmental selection is predicted to be weak, in agreement with 

other biogeographic studies 86,98,100,435. Overall, these findings concur with the majority 

of studies examining environmental and spatial drivers, which report that 

environmental not spatial effects are the most important determinants of contemporary 

community structure 81,86.  

 

Beyond examining a particular subset of environmental and spatial drivers to predict 

drivers of community assembly, we measured the contribution of rare, intermediate 

and common taxa to turnover. Using the multi-site diversity metric zeta, this analysis 
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enables a statistical prediction to ascertain if community structure follows stochastic 

or deterministic assembly processes 273,278. Zeta decline revealed that the proportion 

of compositional change in community structure was typical of deterministic niche 

differentiation and overwhelmingly driven by rare taxa. Concordant observations were 

made using the pairwise and multi-site distance decay models of zeta, which 

confirmed high compositional turnover along the regional transect. Furthermore, it 

confirmed that the majority of turnover was driven by rare taxa, which are known to be 

important determinants of community structure 46,48,278. Given that microbial 

community turnover rates were much higher than anticipated, taxa area curves were 

constructed and compared against the wider microbial and eukaryotic literature. This 

analysis enabled comparison of turnover rates between bacteria and higher animals 

and plants, which revealed that turnover of soil bacteria and archaea exceeded the 

majority of previous estimates by one to two orders of magnitude 250,253,257–259. These 

findings support an increasing body of work demonstrating that biodiversity estimates 

and biogeographic patterns are significantly degraded when rare taxa are excluded 
46,48,436. They also demonstrate that universal distribution hypothesis of 

microorganisms are outdated and highlight that commonly used methods are likely to 

underestimate microbial community turnover and biogeographic patterns in general 
249,261,437,438.  

 

Our results are concordant with previous literature suggesting dormancy increases 

richness of microbial communities, but suggest the role of this trait in reducing 

community turnover may have been overestimated. Broadly, dormancy is predicted to 

buffer microbial communities against environmental filters such as energy limitation 

and adverse biotic effects such as competition 67,260,439. Metabolic strategies such as 

dormancy have been shown to sustain the minimum energy requirements of bacteria, 

allowing them to survive under conditions which favour survival over growth 210. These 

effects could lead to overlapping generations as well as facilitating the persistence of 

competitors that would otherwise not coexist via processes such as the ‘storage effect’ 
440. This has led to the assumption that microbial community structure is much weaker 

than those observed in animal and plant communities 249,327,441. For example, recent 

studies comparing active and dormant microbial communities suggest that distance 

decay slopes are moderately shallower in dormant communities, because the 

selective effects of environmental filtering are weakened 261. Indeed, our findings 
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suggest that the relative consistent alpha diversity between climatic regions is likely to 

be maintained by processes such as dormancy. However, we also found that, despite 

increasing aridity, community structure and turnover remained high and was predicted 

to be driven by environmental niche processes. This suggests that environmental 

pressures such as carbon and water limitation continue to select for metabolic 

strategies which sustain the energy and carbon requirements of these dormant 

communities. We therefore predict that metabolic strategies supporting the energy and 

carbon requirements of dormant soil microorganisms play a key role in maintaining 

community structure along aridity gradients.  

 

5.1.3. Metabolic function 
 

The metagenomic and biochemical analysis presented in chapters three and four 

suggest that most soil bacteria are mixotrophs. They can grow 

organoheterotrophically, utilise various inorganic electron donors to support cellular 

maintenance, and in some cases, potentially fix CO2 to maintain carbon requirements 

or potentially sustain growth. Consistent with the aerated niche of surface soils and 

established paradigms of soil microbial metabolism 110, the majority of the community 

were inferred to be capable of aerobic respiration of organic compounds. More 

surprisingly, most taxa encoded genes supporting inorganic energy acquisition, 

including through trace gas metabolism of H2 and CO via uptake hydrogenases and 

CO dehydrogenases. Based on short read averages, the proportion of communities 

capable of consuming atmospheric H2 and CO was: 38% and 47 % in Australian soils, 

40% and 46% in Global soils and 43% and 29% in the Negev region soils. The high 

abundance of these genes coincided with high rates of trace gas uptake across 

various ecosystems. Strong correlations were observed between H2 oxidation rates, 

increasing aridity and the abundance of H2 uptake hydrogenases (group 1h and 1l 

[NiFe]-hydrogenase) along the aridity gradient in the Negev. In situ flux, and ex situ 

measurements confirmed similar biomass-normalised rates with depth in wetland, 

grassland and forest soils. Here H2 and CO were rapidly oxidised to below atmospheric 

levels. This suggests that the metabolic capacity to utilize inorganic electron donors 

such as H2 and CO confers a major selective advantage for soil bacteria. These 

findings are supported by an increasing body of culture-based genetic and biochemical 
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studies suggesting that these atmospheric trace gases serve as an ubiquitous and 

reliable energy sources for dormant soil bacteria 70–72,163,182.  

 

The analysis of 757 MAGs presented in chapter four further demonstrate the 

prevalence of trace gas oxidation in surface soils. While the dominant soil phylum 

Actinobacteriota was primarily thought to mediate H2 scavenging 162,421, we provide 

evidence from metagenomic and biochemical studies showing that diverse soil 

bacteria can mediate this process. Phylogenetic analysis revealed that 17 phyla 

including all nine dominant soil phyla and six candidate phyla encoded the capacity to 

oxidise H2 via uptake hydrogenases. Furthermore, phylogenetic trees showed a 

previously unrecognised sequence diversity of these enzymes, with various lineages 

of group 1h, 1d, 1f, 1l, 2a, and 1c [NiFe]-hydrogenases distributed among soil bacteria. 

This suggests that, beyond the well-studied persistence-supporting 1h and growth-

supporting 1d hydrogenases, other understudied lineages are also important 

mediators of aerobic hydrogen metabolism. Similarly, CO dehydrogenases were found 

to be diverse and distributed across 11 phyla. Overall, these trees suggest that the 

enzymes supporting H2 and CO oxidation were most likely horizontally disseminated, 

over multiple occasions 72,182. Given the co-occurrence of genes supporting aerobic 

respiration of organic compounds and trace gas metabolism, it is likely that 

atmospheric trace gases serve as a reliable energy source to sustain energy 

acquisition during dormancy, when organic substrates are insufficiently available to 

support growth 161,163,385. To further understand whether trace gas metabolism 

releases sufficient energy to sustain dormancy, we used a thermodynamic model to 

predict the amount of power per cell generated by the oxidation of H2, CO and CH4. 

Based on ex situ oxidation rate measurements presented in chapter four, average 

oxidation rates of all three gases were found to exceed the theoretical minimal 

maintenance energy requirements predicted for aerobic heterotroph pure cultures and 

oligotrophic ecosystems 429–431. This is further evidence that trace gas metabolism is 

likely to sustain the majority of dormant soil bacteria.  

 

Our results suggest that, whereas oxidation of H2 and CO oxidation are broad and 

generalist processes, other traits like CH4 are relatively specialised ones. However, 

while results broadly concur with previous studies suggesting that aerobic CH4 

metabolism is a relatively rare trait in soil microbial communities 361,386,387, they 
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nevertheless show that this process may be more broadly distributed than previously 

recognized. This was evident given our discovery of a potential novel methanotroph 

belonging to the phylum Gemmatimonadota, which encoded a particular methane 

monooxygenase affiliated with an uncultivated methanotrophic lineage (Tropical 

Upland Soil Cluster, TUSC). Given that all three atmospheric gases are ubiquitous, 

diffusible, and yield sufficient energy, a major question is why there are such large 

discrepancies in the prevalence of CH4 metabolism compared to H2 and CO 

metabolism. It is likely CH4 metabolism is a more specialist process because it requires 

a high amount of activation energy, additional oxygen expenditure, and requires 

organisms to carry out a complex metabolic balancing act given the requirements for 

oxygen, reductant, and substrate 341. 

 

5.1.4. Primary production 
  

Our findings suggest that atmospheric H2 and CO may also support primary production 

in global soil ecosystems. Our metagenomic analysis presented in chapter three 

shows that genes encoding ribulose 1,5-bisphosphate carboxylase (RuBisCO) which 

support CO2 fixation via the Calvin Benson-Bassam cycle (CBB) were encoded by an 

average of ~10% of the community throughout the aridity gradient, though this 

proportion was higher in arid and hyper-arid zones. While RuBisCO lineages 

associated with Cyanobacteria and phototrophic eukaryotes were found along the 

aridity gradient, the most widespread RuBisCO variants were type IA and IE that were 

affiliated with hydrogenotrophs 228,442. These variants were an order of magnitude 

more abundant than the photosynthetic type IB RuBisCO and correlated with 

increasing aridity, suggesting that in arid and hyper-arid some members assimilate 

CO2 via using atmospheric reduced gases as energy sources. Similar observations 

were made in our global analysis presented in chapter four, which found that ~12% of 

the community had the capacity for autotrophic CO2 assimilation via the CBB cycle. 

Binned RuBisCO hits showed that 93% were affiliated with chemosynthetic rather than 

photosynthetic microorganisms. Our thermodynamic models revealed that the energy 

yields acquired by trace gas oxidation exceed the minimum energy required for 

maintenance. Given the prevalence of type IE RuBisCO in these soils, it is likely that 



107 
 

some residual energy remaining from cellular maintenance is allocated to 

chemoautotrophic growth by some members of the gas-scavenging community. 

 

These findings are further supported by biochemical radiolabeling and gas 

chromatography studies presented in chapter three. These demonstrate 

photosynthetic processes are highly dependent on soil moisture and gradually 

inhibited with increasing aridity. In contrast, the positive correlation between H2 

oxidation and aridity suggest that chemosynthetic processes increasingly replace 

photosynthetic energy and carbon acquisition along aridity gradients. Nevertheless, 

as highlighted by the relatively low oxidation rates observed in Australian drylands, 

low water content does inhibit trace gas uptake albeit not as much as photosynthesis 
427,428. Reflecting this, we show how photosynthetic and chemosynthetic process are 

not mutually exclusive but co-occur when sufficient moisture is available. The high 

prevalence of genes supporting atmospheric chemosynthesis in soil biomes globally 

suggests that chemosynthesis provides an alternative metabolic strategy for cells, 

given intense competition from more competitive polysaccharide degraders or to 

sustain maintenance following the switch from growth to persistence. These findings 

are of global significance given they suggest that the atmospheric chemosynthesis, 

which has been shown to support a minimalistic mode of microbial primary production 

in Antarctic deserts 67, is also prevalent in other soil biomes. 

 

The realization that many taxa are involved in the consumption of atmospheric H2 and 

CO also has biogeochemical implications. Soils are a major biogeochemical sink for 

H2 and CO produced by anthropogenic and natural processes, with 75% of 

atmospheric H2 and 10% of atmospheric CO consumed by soil bacteria 164,165. While 

it was previously thought that these losses are driven by <1% of the community, which 

is consistent with the abundance of methanotrophs 361,386,387, our findings suggest that 

the majority of taxa mediate the atmospheric turnover of these gases. This further 

highlights that the biogeochemical sink of H2 and CO is highly resilient to changes in 

the atmospheric composition, which might explain why atmospheric mixing ratios of 

H2 have remained stable despite increasing anthropogenic emissions 395. 
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5.2. Outlook 
 

5.2.1. Integrating turnover of macro and micro organisms 
 
Our findings add to a growing body of work suggesting that the similarities in the 

biogeographic scaling relationships between macro and microbial communities are 

likely to exceed any fundamental differences 234. Universal biogeographic patterns can 

be defined as an equivalent process underpinning the same pattern regardless of the 

domain. Universal distribution patterns are usefully because the same frameworks, 

tools and metrics can be utilised to predict and extract meaningful results 95. In turn 

these can be used in an applied or managed response to address challenges posed 

by global change such as biodiversity assessments of habitats, measuring the effects 

of disturbance or assessing the impact of biological invasion. Here we have taken 

some of the latest innovations to demonstrate how compositional turnover is more 

similar to higher animals and plant communities than previously recognised. 

Additionally, we have advanced methodologies and provided evidence on how 

microbial turnover patterns can be used to predict underlying niche and neutral 

assembly processes.  

 

To adequately detect compositional changes in community structure and make 

predictions about underlying assembly processes, the contribution across the whole 

spectrum of occupancy classes is required 273. Biases in counting individuals is not an 

exclusive issue for microbial studies. Arbitrary decisions to include or exclude 

individuals are also prevalent in field studies of higher animals and plants. Tree 

surveys exclude individuals that fall below a certain diameter, benthic communities are 

sieved using various mesh sizes and variable decisions are made when to start 

counting bird species returning from annual migrations 443–446. Uncertainty in 

estimating richness and diversity is arguably inherent to all ecological studies, 

regardless the domain or size of the individual.  

 

Future studies should incorporate multi-site diversity metrics to address differences in 

turnover and underlying assembly processes between macro and microbial 

communities using side-by-side sampling protocols 273,318. These differences could be 

teased out by addressing some of the following questions: “Are there differences in 
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turnover between domains and their occupancy classes”? “Do deterministic and 

stochastic processes differentially influence community assembly between domains”? 

“If deterministic niche based processes dominate, which subset of abiotic drivers 

contribute to turnover”? “How do drivers differ between occupancy classes”? These 

questions should be tested across multiple spatial and temporal scales and use 

sampling designs which specifically capture spatial and environmental transects. 

Disentangling these interdomain relationships and assembly processes would aid our 

understanding of the relationship between microbial biodiversity and ecosystem 

function by differentiating the contribution to diversity between different trophic levels. 

 

5.2.2. Drivers of trace gas metabolism 
 
All ecosystems are exposed to various press and pulse dynamics which determine the 

spatiotemporal trajectory of environmental parameters 447. While press changes such 

as anthropogenic climate change, desertification and eutrophication act in the long 

term, pulse changes such as rainfall, bushfires can rapidly change the 

physicochemical structure of soils in the short term. Both press and pulse dynamics 

are predicted to influence community composition and structure as well as the extent 

to which trace gas scavengers interact with the atmosphere. In this work we have 

shown how the activity and abundance of trace gas scavengers is sensitive to aridity 

gradients and differentiated across various ecosystems. Beyond that, we have also 

demonstrated that trace gas metabolism of H2 and CO are active and dominant 

processes across the majority of the community and do not present a niche process 

like aerobic CH4 oxidation. However, it is now important to determine how these 

metabolic strategies respond to different press and pulse changes in the environment 

and which physicochemical drivers determine the abundance and activity of these 

organisms. 

 

In chapter two we have shown that with increasing aridity, chemosynthetic processes 

are increasingly important and photosynthetic processes generally cease to function. 

However, biochemical measurements of dryland soils in chapter three showed that 

trace gas oxidation was generally higher at lower depths and influenced by soil water 

content. Simulated precipitation pulses were not only found to amplify this trend but 

also initiated photosynthesis. This suggests that when water is available these 
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processes operate in unison and only become differentiated as soils dry up and 

communities become energy limited. Studies are now needed to address (i) how these 

processes operate on temporal scales, for example during and after precipitation 

events in desert ecosystems, and (ii) along aridity gradients capturing soils ranging 

from fully saturated (~30% soil water content) to completely dry (<1%). This is 

important because previous studies have described variable optima for trace gas 

uptake in soils ranging from 1.7% 448 to 10 % 427 for H2 and 10 - 20% for CO 360. This 

could be addressed by determining at which soil saturation level H2 and CO oxidation 

rates peak and photoautotrophic / chemoautotrophic CO2 fixation is activated and 

deceived. These finer scale measurements would provide answers under which 

environmental conditions microbial communities initiate a ‘switch’ between photo and 

chemosynthetic metabolic strategies or mixotrophically function to obtain carbon and 

energy. 

 

These question could be extended to other parameters such as soil organic carbon 

content soil temperature and pH, which have also been shown to influence the activity 

of microbial H2 and CO fluxes 360,448. For example, the high abundance of genes 

supporting aerobic CO oxidation in forest soils and relative low abundance in deserts 

and dryland coincides with previous laboratory and field studies showing strong 

relationships between soil organic carbon and aerobic CO oxidation rates 190,360,361. 

However, a major issue of in situ studies remain the strong CO emissions from photo 

and thermal degradation of organic compounds 397,449. These emissions are 

particularly high in organic soils and they increase exponentially with temperature 
448,449. Given we observed high in situ CO emissions, which obscured our flux 

measurements, it will be important to accurately partition this abiotic contribution to 

ascertain the true microbial sink dynamics for CO. This would provide a more 

meaningful comparisons of in situ H2 and CO fluxes to accurately quantify these 

important biogeochemical ecosystem services and their contribution to microbial 

energetics. 

 

 

 

 



111 
 

5.2.3. Environmental gradients  
 

To determine the environmental conditions under which trace gas metabolisms is 

important, field studies should look towards ecosystems and environmental gradients 

which are predicted to select for traits supporting these processes. For example, aridity 

gradients described in this work provide a natural system to test hypotheses about the 

differentiation of photo and chemosynthetic processes. Similar gradients have been 

previously described in microbial soil surveys including the Negev desert 280 Atacama 

desert 450 and Namib desert 451, which potentially provide equivalent study systems. 

Future studies should include soils in humid and sub-humid climates alongside the 

semi-arid, arid and hyper-arid climates in order to capture wider range parameters 

such as organic carbon and soil water content. This would provide further evidence of 

how these processes are differentiated along various aridity gradients and provide 

answers about how microbial communities remain energised following desertification 

 

Studies are also needed to examine the role of atmospheric trace gases in supporting 

the energy requirements of soil microbial communities during primary succession, to 

ascertain if trace gas oxidisers can be considered first colonizers. This could include 

natural systems which have been shown to harbour diverse microbial communities 

including glacial forefields, volcanic flows and meteorites 452,453 as well as 

anthropogenic systems such as open-pit mine tailings 454–456. Following succession, 

microbial community assembly processes have been shown to differ over time 103,244. 

Initially, communities are predicted to stochastically assemble showing little 

community structure due to weak competition and selection 86,114. This should favour 

habitat generalists which can utilize a wide range of energy sources. Given our 

observation that trace gases such as H2 and CO serve as a ubiquitous and dependable 

energy source for the majority of the community it is likely that metabolically flexible 

taxa are dominant during the initial stages of succession. It can also be predicted that 

in newly colonized habitats these organisms play a key role in the priority effect, 

whereby they change the abiotic environment to suit other taxa including those that 

are rare and highly specialised taxa 101. Answers to these questions could provide 

further evidence that trace gas metabolism plays an important role in maintaining 

biodiversity and resilience of soil microbial communities.  
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Finally, an often overlooked terrestrial ecosystem are karst landforms or cave systems, 

which cover 10-20 % of terrestrial ecosystems and form as acidic water flows dissolve 

limestone rock 457. Other processes such as volcanic lava flows and tidal erosion are 

among other processes driving cave formation 458. These ecosystems provide a 

conduit between the atmosphere and a vast surface area of below ground chambers, 

tunnels and rock fractures. Studies have found that caves harbour diverse microbial 

communities which at the phylum level reflect those found in soils, dominated by 

Actinobacteriota, Acidobacteria and Proteobacteria 459,460. They inhabit carbon poor 

mineral soils as well as form biofilms along mineral surfaces. Given complete absence 

of light energy, oxygenic photosynthesis is inhibited and communities have to rely on 

inorganic energy sources. Studies have found that genes supporting all six known CO2 

fixation pathways are widespread, including the chemosynthetic type IE RuBisCO 

implicated in the CBB cycle 67,227,460. However, more recently studies suggest that 

caves in fact are a major sink for atmospheric trace gases such as CH4 461. Given that 

many caves have similar atmospheric compositions to those above ground, these 

ecosystems could be an overlooked microbial sink for atmospheric trace gases such 

as H2 and CO. Indeed, these gases may support the energy requirement for survival 

and growth in these permanently dark conditions and communities may harbour as of 

yet undiscovered lineages of genes supporting these processes.  

 

5.2.4. Isolation of trace gas oxidisers 
 
Following the isolation of the first high affinity H2 oxidiser Streptomyces sp PCB7  175, 

the determinant for aerobic H2 scavenging have become much clearer. Subsequent 

pure culture studies of other model organisms capable of this process have resolved 

many physiological, phylogenetic and enzymatic questions and demonstrated that this 

trait is widespread among dominant soil phyla 70,72,163. Further isolation studies are 

needed to address this growing realization. Recent discoveries, based on culture 

independent approaches, have identified new H2 and CO trace gas oxidisers in 

Antarctic soils such as  the phyla Candidatus Dormibacterota and Candidatus 

Eremibacterota. Similarly, this work has described a putative methanotroph 

Candidatus Methylotropicum kingii from the phylum Gemmatimonadota, which 

highlights the need for isolation of these organisms. However, the isolation of many 

trace gas oxidisers may not be trivial, given that they are likely to grow mixotrophically, 
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by using electrons derived from H2 and CO to drive aerobic respiration and in some 

cases carbon fixation 149. In addition to some of the approaches described previously 

for H2 oxidisers such as dynamic microcosm chamber which enriched for high affinity 

H2 oxidisers 175 and methanotrophs 76,  techniques based on cell size fractionation and 

minimal agar media have also shown promise 462,463.  Future studies are needed to 

develop techniques to enrich for and isolate such organisms into pure culture, which 

will no doubt advance our understanding about their physiology, metabolism and 

ecological significance.
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6.1.1. Supplementary Figures 
 
Figure S1. Study site in the Judea Hills and Negev region of Israel. The top left 

panel shows the study site (blue enclosed circle) within a world map shaded by the 

aridity index. The right panel shows the locations of the sampling sites. Samples were 

collected across a 160 km latitudinal (north/south) transect and a 20 km longitudinal 

(east/west) transect. The latitudinal transect occurred along a steep aridity gradient 

and samples were collected from climatic zones (sub-humid, semi-arid, arid, hyper-

arid). The photographs on the right were taken during the sampling campaign, showing 

typical vegetation and geographic features of each climatic zone. For the longitudinal 

transect, all samples were collected in the arid zone.  
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Figure S2. Details of the hierarchically nested sampling design. Samples were 

collected from four climatic zones along the aridity gradient (sub-humid, semi-arid, 

arid, hyper-arid). There were three hierarchies of spatial sampling within each climatic 

zone: (i) two sites were sampled at each zone (Site 1, Site 2); (ii) three different plots 

were sampled at each site (Plot A, Plot B, Plot C); and (iii) three random soil samples 

were collected from each plot (Sample 1, Sample 2, Sample 3).  
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Figure S3. Frequency distribution of sampling distances between the 96 
sampling sites. Pairwise distances are showed at a resolution of 10 km intervals. This 

analysis confirms that most distance classes were represented (unrepresented bins: 

110 km and 140 km) across the study site and that all represented distance classes 

were associated with >100 site pairs (min = zero, 1st q = 24.6 km, median = 42.5 km, 

mean = 50.5 km, 3rd q = 68.8 km, max = 155.5 km). 
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Figure S4. Sample-based alpha rarefaction curves. The curves show number of 

taxa (ASVs) detected relative to number of sequencing reads at identity thresholds of 

100% (a) and 97% (b). 
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Figure S5. Taxa accumulation curve showing number of taxa (ASVs) detected 
across all sites. Points show cumulative sample richness and error-bars show the 

estimated standard deviation at identity thresholds of 100% and 97%. 
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Figure S6. Observed and estimated community richness. The site-level (1 – 2) 

observed and estimated richness of taxa (ASVs) is shown across four climatic zone, 

sub-humid (SH), semi-arid (SA), arid (AR), hyper-arid (HA) and three sites along the 

longitudinal transet (LO 1-3). Estimated richness was calculated using the Chao1 

method and abundance coverage estimate (ACE). Box plots show the median, upper 

and lower quartiles at two taxonomic resolutions. Table S2 summarizes analysis of 

variance (ANOVA) results testing for significant differences among site means.  
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Figure S7. Histograms showing occupancy frequency distribution of taxa. 
Stacked histograms show the number of sites that each taxa (ASV) was detected in 

across the dataset, with (a) effect of clustering taxa at either 100% or 97% identity 

threshold and (b) effect of either including or removing taxa with lower than 0.05% 

relative abundance. This data was used to produce the Kernel-smoothed density plots 

shown in Figure 1. 
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Figure S8. Phylum-level community structure. Bars represent relative abundance 

of bacteria and archaea detected by amplicon sequencing of 16S rRNA genes (100% 

ASVs). Sample identity are given along with corresponding climatic zone and sampling 

transect (for climate zones and sampling transect refer to Figure S1). Sequences were 

assigned based on Genome Taxonomy Database (GTDB) taxonomy.  
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Figure S9. Multidimensional scaling visualizing taxonomic and phylogenetic 
pairwise incidence and abundance dissimilarity of microbial communities. 
Results are shown across the latitudinal transect (a) and longitudinal transect (b). 
Each data point shows an individual sample. The axes show the explained variation 

of taxa (ASVs) between samples using four different dissimilarity metrics: Jaccard 

(taxonomic incidence-based) and Bray-Curtis (taxonomic abundance-based) and 

unweighted Unifrac (phylogenetic incidence-based) and weighted Unifrac 

(phylogenetic abundance-based). The MDS ordination is compared at four different 

taxonomic resolutions (taxa clustered at 100% or 97% identity; taxa with <0.05% 

relative abundance included or removed). Statistical tests showing significant 

differences in community composition at the zone, site, and plot levels are shown in 

Table S3. 
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Figure S10. Infographic describing zeta diversity. This shows how zeta diversity, 

unlike beta diversity, can provide information on the contribution of rare, intermediate 

and common taxa to community turnover. A complementary infographic showing the 

effects of clustering and filtering on zeta decline and zeta distance decay, within the 

context of this study, is shown in Figure 4.  
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Figure S11. Variation partitioning analysis delineating the relative contributions 
of environmental and spatial sources of variation on microbial community 
structure. The analysis shows the proportion of variation in microbial incidence 

between sample pairs (zeta 2) as explained by environmental, spatial, overlapping, 

and unexplained sources of variation. These analyses were performed using data from 

each plot in the (a) latitudinal transect and (b) longitudinal transect. Results are 

compared at four different taxonomic resolutions (taxa clustered at 100% or 97% 

identity; taxa with <0.05% relative abundance included or removed). Table S4 and 

Table S5 summarize the environmental variables that best explain the variation along 

the two transects. 
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Figure S12. Normalised zeta diversity decline showing the compositional 
turnover in taxa (ASVs) across sites at different taxonomic resolutions. Zeta 

decline (a, d, g, j) quantifies how the number of shared taxa declines with increasing 

orders of zeta (number of sites included in the calculate of zeta). The functional decline 

frequently follows either an exponential (equal probability of taxa occurrence across 

sites) or a power law form (unequal probability of taxa occurrence across sites), which 

reflects turnover being driven largely by either stochastic (exponential) and 

deterministic (power-law) community assembly processes. In all cases, the decline 

followed a power law form (b, e, h, k), though the goodness of fit varied depending on 

taxonomic resolution (Fig. S13). The taxa retention rate using zeta ratio (c, f, i, l) 
quantifies the probability of retaining common over rare taxa at any particular order 

with the addition an extra site.  
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Figure S13. Statistical support for power law and exponential model fits of zeta 
diversity decline. The bar plots show AIC values of power law and exponential 

general linear model fits for the two transects (latitudinal and longitudinal) and four 

climatic zones (from sub-humid to hyper-arid). Results are compared at four different 

taxonomic resolutions (taxa clustered at 100% or 97% identity; taxa with <0.05% 

relative abundance included or removed).  
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Figure S14. Measurement of distance decay relationship and taxa-area 
relationship at different taxonomic resolutions for longitudinal transect. 
Distance decay relationship showing (a) community turnover with increasing 

geographic distance based on pairwise comparisons and (b) differences in the slope 

(coefficient) of distance decay when moving from pairwise comparisons to higher 

orders of zeta (>2) using the average distance between higher orders of zeta. (c) Taxa-

area relationship showing increase in richness with area sampled. 
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Figure S15. Comparison of community diversity, composition, and turnover 
based on amplicon and metagenomic sequencing. The bacterial and archaeal 

community composition of 12 sites across the latitudinal gradient was determined by 

either amplicon sequencing of the multi-copy 16S rRNA gene V4 region or shotgun 

metagenomic sequencing of the single-copy ribosomal protein gene L10e/L16. (a) 
Observed and estimated richness. Estimated richness was calculated using the Chao1 

method and abundance coverage estimate (ACE). Box plots show the median, upper 

and lower quartiles at two taxonomic resolutions. (b) Phylum-level community 

composition across the sites for 16S and L10e/L16. Taxonomic assignment is based 

on the Genome Taxonomy Database (GTDB). (c) Normalized zeta diversity decline 

showing compositional turnover in taxa from 16S ASVs at two identity thresholds 

(100%, and 97%) and the single copy ribosomal marker gene L10e/L16 rpsP clustered 

at 97%.  
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Figure S16. Compositional turnover analysis at the continental scale. (a-b) 
Global scale occupancy frequency at two identity thresholds (100% and 97%). Taxa 

(ASVs) with lower than 0.05% relative abundance were retained in a and removed in 

b. (c) Normalized zeta decline at the continental scale across two identity thresholds 

(100% and 97%) and with rare variants removed (0.05%). (d) AIC values for 

exponential and power-law model fits. 



132 
 

6.1.2. Supplementary Tables 
 

Table S1 is available on the Google Drive folder under Chapter 2:  

https://drive.google.com/open?id=16UnlZtajRSBZ_vSvJzw3PI_XraDWUNV2 
 

Table S1 (xlsx). Amplicon sequence variants detected in each sample. The sequences and read counts for each amplicon 

sequence variant detected is shown per sample. 
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Table S2. One-way ANOVA results. Showing between site differences (Figure S6) for observed and estimated alpha diversity at 

two taxonomic resolutions.  

 

    Factor Df SS MS F-Value P-value Significance 
  Observed Between sites 10 6.507E+06 6.507E+05 3.764 3.220E-04 *** 

    Within sites 85 1.470E+07 1.729E+05       

                  

100% Chao1 Between sites 10 7.023E+06 7.023E+05 3.687 3.990E-04 *** 

    Within sites 85 1.619E+07 1.905E+05       

                  

  ACE Between sites 10 7.647E+06 7.647E+05 3.767 3.200E-04 *** 

    Within sites 85 1.726E+07 2.030E+05       

                  

  Observed Between sites 10 1.485E+06 1.485E+05 4.077 1.350E-04 *** 

    Within sites 85 3.096E+06 3.642E+04       

                  

97% Chao1 Between sites 10 1.497E+06 1.497E+05 4.07 1.380E-04 *** 

    Within sites 85 3.126E+06 3.677E+04       

                  

  ACE Between sites 10 1.533E+06 1.533E+05 4.061 1.410E-04 *** 

    Within sites 85 3.208E+06 3.774E+04       
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Table S3. One-way ANOVA results. Showing between zone, site, plot and samples differences in community structure at four 

taxonomic resolutions using likelihood ratio test (LRT).  
  100%     100% (0.05)     97%     97% (0.05)     
Factor LRT P-value Sig. LRT P-value Sig. LRT P-value Sig. LRT P-value Sig. 
Latitudinal transect             

Between zones 87986 0.001 *** 3315 0.001 *** 32587 0.001 *** 7254 0.001 *** 

Between sites 117500 0.001 *** 6796 0.001 *** 44150 0.001 *** 10679 0.001 *** 

Between plots 140616 0.001 *** 19792 0.001 *** 70455 0.001 *** 19792 0.001 *** 

Between samples 142019 0.368 ns 9837 0.337 ns 146414 0.188 ns 32794 0.341 ns 

Longitudinal transect             

Between sites 9442 0.004 ** 892 0.003 *** 9442 0.003 ** 1840 0.002 ** 

Between plots 23106 0.001 *** 2737 0.005 ** 23106 0.001 *** 4992 0.001 *** 

Between samples 16375 0.078 ns 6712 0.048 * 54934 0.055 ns 10689 0.206 ns 
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Table S4. Subset of independent variables that best explain community variation along the latitudinal transect. Showing total 

R2 obtained from a forward selection in a multivariate linear model. The results are shown for models of each of the four taxonomic 

resolutions. 
100% 

 
100% (0.05) 

 
97% 

 
97% (0.05) 

 
Predictor R2 Predictor R2 Predictor R2 Predictor R2 
pH 0.05 Aridity (Aridity Index) 0.11 Soil water content (%) 0.16 Conductivity (dS/m) 0.15 

Carbon/Nitrogen (ratio) 0.09 Conductivity (dS m-1) 0.20 pH 0.17 pH 0.25 

Aridity (Aridity Index) 0.12 Soil water content (%) 0.24 Sodium (mg Kg-1) 0.20 Soil water content (%) 0.29 

Conductivity (dS m-1) 0.14 Iron (mg Kg-1) 0.28 Iron (mg Kg-1) 0.22 Carbon/Nitrogen (ratio) 0.33 

Total nitrogen (%) 0.16 Phosphate (mg Kg-1) 0.30 Total organic carbon (%) 0.25 Aridity (Aridity Index) 0.36 

Boron (mg Kg-1) 0.18 Sodium (mg Kg-1) 0.34 Aridity (Aridity Index) 0.27 Total organic carbon (%) 0.38 

Cation Exchange  

Capacity (cmol+ Kg-1) 0.20 Sulphate (mg Kg-1) 0.36 Boron (mg Kg-1) 0.29 Manganese (mg Kg-1) 0.41 

Copper (mg Kg-1) 0.22 Total organic carbon (%) 0.37 

Cation Exchange Capacity 

(cmol+/Kg) 0.31 P (mg Kg-1) 0.43 

Calcium/Magnesium (ratio) 0.24 Manganese (mg Kg-1) 0.38 Potassium (mg Kg-1) 0.33 Ammonium (mg Kg-1) 0.45 

Magnesium (mg Kg-1) 0.25 pH 0.40 Zink (mg Kg-1) 0.35 Nitrogen (mg Kg-1) 0.46 
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Table S5. Subset of independent variables that best explain community variation along the longitudinal transect. Results 

show total R2 obtained from a forward selection in a multivariate linear model. The results are shown for models of each of the four 

taxonomic resolutions. 
100% 

 
100% (0.05) 

 
97% 

 
97% (0.05) 

 
Predictor R2 Predictor R2 Predictor R2 Predictor R2 

Manganese (mg Kg-1) 0.24 Soil water content (%) 0.14 Ammonium (mg Kg-1) 0.30 Ammonium (mg Kg-1) 0.16 

Carbon/Nitrogen (ratio) 0.29 Manganese (mg Kg-1) 0.20 Manganese (mg Kg-1) 0.35 Soil Water Content (%) 0.24 

pH 0.33 Nitrate (mg Kg-1) 0.25 Nitrate (mg Kg-1) 0.39 Iron (mg Kg-1) 0.29 

Total Nitrogen (%) 0.37 Silicon (mg Kg-1) 0.29 Iron (mg Kg-1) 0.43 Total Nitrogen (%) 0.34 

Zinc (mg Kg-1) 0.41 Ammonium (mg Kg-1) 0.33 Soil Water Content (%) 0.46 Aluminum (mg Kg-1) 0.37 

Conductivity (dS m-1) 0.44 Total Nitrogen (%) 0.35 Copper (mg Kg-1) 0.49 Silicon (mg Kg-1) 0.41 

Potassium (mg Kg-1) 0.47 - 
 

Calcium (mg Kg-1) 0.52 Calcium (mg Kg-1) 0.44 

Total Organic Carbon (%) 0.49 - 
 

Total Organic Carbon (%) 0.54 Conductivity (dS m-1) 0.47 

Ammonium (mg Kg-1) 0.50 - 
 

Sodium (mg Kg-1) 0.55 Manganese (mg Kg-1) 0.47 

Nitrate (mg Kg-1) 0.50 -   pH 0.55 Nitrate- (mg Kg-1) 0.51 
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Table S6. Summary statistics of general linear models of zeta diversity distance decay. Results are shown for the latitudinal 

and longitudinal transect for each of the four taxonomic resolutions. 

Taxonomic resolution Transect Zeta order Model coeff. SE R2 t Pr(>|t|) Significance 
100% Latitudinal ζ2 -5.51E-04 3.53E-05 0.196 -15.62 <2e-16 *** 

100% Longitudinal ζ2 -1.87E-03 4.51E-04 0.044 -4.15 4.23E-05 *** 

97% Latitudinal ζ2 -9.67E-04 7.24E-05 0.151 -13.37 <2e-16 *** 

97% Longitudinal ζ2 -3.06E-03 9.16E-04 0.028 -3.35 9.08E-04 *** 

100% (0.05) Latitudinal ζ2 -1.00E-03 9.30E-05 0.103 -10.75 <2e-16 *** 

100% (0.05) Longitudinal ζ2 -2.55E-03 8.27E-04 0.023 -3.08 2.24E-03 ** 

97% (0.05) Latitudinal ζ2 -1.46E-03 1.20E-04 0.129 -12.19 <2e-16 *** 

97% (0.05) Longitudinal ζ2 -3.33E-03 1.26E-03 0.016 -2.64 8.71E-03 ** 
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Table S7. Comparative analysis of values for exponent z of the species-area relationship previously reported for both 
eukaryotic and prokaryotic communities in comparison to this study. Studies ranked by z value. 
z value Community Identity (%) Habitat Method Contiguous? Study Significance R2 
0.39 Bacteria 100 Desert 16S Seq. N This study (lat.) *** 0.4 

0.4 Bacteria 100 Desert 16S Seq. N This study (long.) **** 0.7 

0.47 Bacteria  
 

Rainforest  T-RFLP Y 257   

0.4 Bacteria  Sediment 16S Seq. Y 258   

0.27 Bacteria 97 Desert 16S Seq. N This study (lat.) *** 0.3 

0.21 Bacteria 97 Desert 16S Seq. N This study (long.) **** 0.5 

0.26 Bacteria  Tree hole DGGE N 250   

0.19 Bacteria 100 (0.05) Desert 16S Seq. N This study (lat.) *** 0.3 

0.15 Bacteria 100 (0.05) Desert 16S Seq. N This study (long.) **** 0.7 

0.13 Bacteria 97 (0.05) Desert 16S Seq. N This study (lat.) *** 0.3 

0.09 Bacteria 97 (0.05) Desert 16S Seq. N This study (long.) **** 0.4 

0.16 Bacteria  Lake DGGE N 259   

0.062 Bacteria  Soil DGGE Y 251   

0.04 Bacteria 99 Salt-marsh  16S Seq. Y 237   

0.03 Bacteria 
 

Various T-RFLP N 253   

0.02 Bacteria 97 Salt-marsh  16S Seq. Y 237   

0.009 Bacteria 
 

Lake  T-RFLP Y 254   

0.008 Bacteria  95 Salt-marsh 16S Seq. Y 237   

0.006 Bacteria  Soil T-RFLP N 252   
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Table S8. Geographic and chemical characteristics of soils collected along the latitudinal and longitudinal transects 

Plot Zone Transect Latitude  Longitude  Aridity Index 
Calcium  
(mg Kg-1) 

Magnesium   
(mg Kg-1) 

Potassium   
(mg Kg-1) 

Phosphate   
(mg Kg-1) 

 
SH.1.A Sub-humid Latitudinal 31.642 34.935 0.287 8964.000 303.430 96.580 67.560 

 
SH.1.B Sub-humid Latitudinal 31.642 34.934 0.287 0.000 283.530 34.180 25.280 

 
SH.1.C Sub-humid Latitudinal 31.642 34.933 0.287 9216.000 304.950 178.630 84.950 

 
SH.2.A Sub-humid Latitudinal 31.630 34.916 0.287 9184.500 249.470 117.680 102.230 

 
SH.2.B Sub-humid Latitudinal 31.630 34.916 0.287 9198.000 250.230 73.830 71.230 

 
SH.2.C Sub-humid Latitudinal 31.630 34.915 0.287 9292.500 240.640 103.430 57.520 

 
SA.1.A Semi-arid Latitudinal 31.346 34.915 0.234 8500.500 320.390 78.130 28.860 

 
SA.1.B Semi-arid Latitudinal 31.349 34.913 0.234 8703.000 199.120 68.380 5.020 

 
SA.1.C Semi-arid Latitudinal 31.346 34.913 0.234 8586.000 318.060 145.980 36.240 

 
SA.2.A Semi-arid Latitudinal 31.255 34.751 0.234 8599.500 0.000 106.130 27.290 

 
SA.2.B Semi-arid Latitudinal 31.253 34.753 0.234 8338.500 324.950 108.080 30.430 

 
SA.2.C Semi-arid Latitudinal 31.254 34.752 0.234 8311.500 345.470 190.630 29.880 

 
AR.1.A Arid Latitudinal 30.786 34.767 0.068 8311.500 313.930 131.880 1.410 

 
AR.1.B Arid Latitudinal 30.787 34.766 0.068 10926.000 351.980 148.280 1.770 

 
AR.1.C Arid Latitudinal 30.785 34.767 0.068 8550.000 247.480 150.830 1.580 

 
AR.2.A Arid Latitudinal 30.609 34.746 0.068 8563.500 265.760 152.930 1.650 

 
AR.2.B Arid Latitudinal 30.609 34.747 0.068 8464.500 293.220 189.980 1.900 

 
AR.2.C Arid Latitudinal 30.608 34.745 0.068 8689.500 302.530 144.580 1.880 

 
HA.1.A Hyper-arid Latitudinal 30.406 34.951 0.031 9319.500 409.020 76.430 1.880 

 
HA.1.B Hyper-arid Latitudinal 30.406 34.951 0.031 9396.000 464.840 54.380 1.710 

 
HA.1.C Hyper-arid Latitudinal 30.405 34.949 0.031 8550.000 209.240 113.480 1.770 

 
HA.2.A Hyper-arid Latitudinal 29.941 34.976 0.025 9702.000 411.020 99.280 1.830 
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HA.2.B Hyper-arid Latitudinal 29.941 34.975 0.025 8806.500 284.530 125.230 1.610 
 

HA.2.C Hyper-arid Latitudinal 29.942 34.975 0.025 11142.000 456.620 96.680 1.740 
 

LO.1.A Arid Longitudinal 30.926 34.852 0.080 8392.500 428.400 105.580 1.610 
 

LO.1.B Arid Longitudinal 30.925 34.852 0.080 8185.500 359.150 115.130 54.650 
 

LO.1.C Arid Longitudinal 30.927 34.854 0.080 8415.000 403.470 91.880 41.150 
 

LO.2.A Arid Longitudinal 30.988 34.774 0.070 8473.500 473.910 100.230 1.290 
 

LO.2.B Arid Longitudinal 30.987 34.774 0.070 8329.500 357.340 177.580 1.910 
 

LO.2.C Arid Longitudinal 30.987 34.773 0.070 8280.000 320.060 169.130 1.840 
 

LO.3.A Arid Longitudinal 30.951 34.691 0.070 8433.000 377.860 166.580 2.040 
 

LO.3.B Arid Longitudinal 30.950 34.693 0.070 8388.000 304.430 113.780 2.030 
 

LO.3.C Arid Longitudinal 30.952 34.692 0.070 8194.500 398.720 172.280 1.740 
 

           

Plot 
Nitrate  
(mg Kg-1) 

Ammonium  
(mg Kg-1) 

Sulfate   
(mg Kg-1) pH 

Conductivity  
(ds m-1) 

Sodium 
(mg Kg-1) 

Aluminum  
(mg Kg-1) 

Cation 
Exchange 
Capacity  
(cmol+ Kg1) 

Calcium/ 
Magnesium 
ratio 

Zink  
(mg Kg-1) 

SH.1.A 3.060 11.750 13.560 7.900 0.190 44.330 2.330 53.970 12.880 0.860 

SH.1.B 2.110 9.630 11.010 8.070 0.160 42.000 1.730 51.780 13.880 0.270 

SH.1.C 8.740 17.610 19.900 7.740 0.260 40.660 2.360 65.660 17.540 1.820 

SH.2.A 2.460 11.190 19.410 7.960 0.200 41.670 1.560 45.670 14.110 0.670 

SH.2.B 2.370 12.240 20.570 7.960 0.200 38.370 1.450 47.500 15.400 0.560 

SH.2.C 2.630 10.530 17.870 8.000 0.200 39.510 1.600 43.800 14.490 0.440 

SA.1.A 1.050 3.400 10.660 8.550 0.130 52.570 1.420 33.620 9.000 0.140 

SA.1.B 2.350 5.260 5.210 8.770 0.090 20.090 0.900 23.840 14.050 0.550 

SA.1.C 6.690 4.800 22.710 8.490 0.200 106.300 1.520 32.720 8.760 0.340 

SA.2.A 1.180 2.620 4.180 8.830 0.100 62.130 1.110 28.040 6.980 0.050 
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SA.2.B 1.150 2.340 6.470 8.800 0.110 59.410 0.840 27.720 8.360 0.060 

SA.2.C 1.280 2.940 4.260 8.790 0.110 61.860 0.170 29.000 8.080 0.110 

AR.1.A 2.450 1.940 8.620 8.740 0.120 54.890 0.250 28.260 8.380 0.150 

AR.1.B 56.140 0.510 0.000 8.040 3.050 938.800 0.570 145.580 46.660 0.050 

AR.1.C 38.320 1.140 85.000 8.850 1.370 1747.000 0.190 33.560 10.870 0.110 

AR.2.A 16.670 1.750 28.270 8.900 0.550 696.100 0.200 33.790 11.270 0.140 

AR.2.B 7.510 2.300 24.540 8.770 0.340 374.100 0.280 30.420 9.120 0.210 

AR.2.C 4.480 3.090 9.570 8.870 0.180 194.900 0.260 29.100 8.710 0.170 

HA.1.A 138.950 1.120 214.220 8.180 3.410 2799.000 0.260 44.250 6.780 0.230 

HA.1.B 132.490 0.690 270.020 8.160 2.460 1884.000 0.180 41.290 6.020 0.230 

HA.1.C 4.080 1.800 13.320 8.930 0.100 93.850 0.130 26.550 12.020 0.150 

HA.2.A 158.930 1.670 63.650 8.070 1.920 467.900 0.200 33.640 6.890 0.300 

HA.2.B 61.270 0.930 50.260 8.430 2.230 2261.000 0.120 37.430 9.420 0.260 

HA.2.C 285.500 1.870 1445.920 7.920 3.590 626.200 0.320 46.040 9.170 0.460 

LO.1.A 5.730 1.270 35.990 9.050 0.170 273.300 0.260 31.190 6.270 0.070 

LO.1.B 12.210 1.430 16.340 8.960 0.620 891.700 0.250 32.520 7.450 0.290 

LO.1.C 32.140 1.200 28.160 8.590 1.490 1775.000 0.190 36.570 6.690 0.040 

LO.2.A 44.480 1.690 123.320 8.360 1.760 1604.000 0.280 36.970 5.690 0.130 

LO.2.B 3.230 1.470 9.590 8.920 0.160 214.900 0.240 29.900 7.730 0.120 

LO.2.C 3.370 1.620 14.390 8.960 0.240 306.900 0.330 29.670 8.290 0.080 

LO.3.A 62.180 1.660 21.500 8.620 0.490 462.800 0.320 32.320 6.990 0.230 

LO.3.B 76.650 2.910 43.290 8.470 1.500 1473.000 0.250 33.450 8.700 0.140 

LO.3.C 3.520 1.080 9.560 8.870 0.130 154.800 0.390 30.740 6.310 0.100 

           

Plot 
Manganese 
(mg Kg-1) 

Iron  
(mg Kg-1) 

Copper  
(mg Kg-1) 

Boron  
(mg Kg-1) 

Silicon   
(mg Kg-1) 

Total 
Nitrogen (%) 

Total  
Carbon (%) 

Carbon/ 
Nitrogen 

Total 
Organic 

Soil Water 
Content (%) 
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ratio Carbon (%) 

SH.1.A 30.440 5.370 1.040 1.090 37.600 0.340 7.160 20.870 3.950 4.000 

SH.1.B 24.700 4.830 1.180 2.390 72.600 0.190 4.040 20.820 3.950 26.280 

SH.1.C 32.160 7.070 0.560 1.240 58.280 0.650 18.300 28.240 3.950 8.068 

SH.2.A 20.240 7.830 1.020 0.000 0.000 0.230 4.870 21.170 2.860 2.591 

SH.2.B 23.280 7.220 0.780 0.000 0.000 0.310 5.490 17.480 2.860 4.970 

SH.2.C 25.120 5.470 1.230 0.830 25.600 0.230 4.800 20.960 2.860 3.269 

SA.1.A 18.240 2.360 0.460 0.610 19.400 0.070 3.310 48.680 0.690 1.714 

SA.1.B 7.150 1.970 5.810 0.500 23.200 0.020 2.300 104.550 0.690 0.655 

SA.1.C 17.750 2.510 6.090 0.560 18.920 0.080 3.110 37.470 0.690 2.780 

SA.2.A 12.510 0.000 0.310 0.580 20.600 0.020 2.480 103.330 0.380 1.379 

SA.2.B 12.190 1.410 2.380 0.620 17.640 0.030 2.410 92.690 0.380 2.514 

SA.2.C 12.480 1.420 0.340 1.000 17.500 0.010 2.970 270.000 0.380 1.270 

AR.1.A 12.010 1.600 0.380 1.000 20.400 0.040 4.600 112.200 0.461 8.408 

AR.1.B 4.180 0.920 1.510 13.070 36.200 0.040 0.000 112.200 0.460 3.018 

AR.1.C 3.050 0.980 0.390 5.950 32.000 0.010 4.300 358.330 0.460 0.973 

AR.2.A 5.620 1.280 1.040 2.470 23.200 0.020 4.970 331.330 0.540 0.705 

AR.2.B 7.610 1.670 0.820 1.700 21.400 0.040 5.360 127.620 0.540 1.709 

AR.2.C 7.190 1.650 0.990 1.110 21.600 0.020 5.140 214.170 0.540 0.960 

HA.1.A 1.170 0.970 0.290 3.060 24.200 0.020 7.170 478.000 0.090 1.324 

HA.1.B 0.510 0.860 0.220 2.070 20.800 0.010 7.550 943.750 0.090 1.442 

HA.1.C 3.060 1.220 0.240 0.920 29.200 0.020 8.850 465.790 0.090 0.896 

HA.2.A 1.230 1.010 0.440 1.370 26.200 0.020 6.880 458.670 0.120 0.753 

HA.2.B 1.670 0.990 0.320 1.480 24.000 0.010 6.340 528.330 0.120 1.123 

HA.2.C 1.160 0.850 1.090 2.090 20.400 0.020 6.280 299.050 0.120 0.924 
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LO.1.A 7.000 1.290 0.320 0.990 36.000 0.010 3.190 245.380 0.270 0.855 

LO.1.B 7.400 1.220 0.430 1.540 32.400 0.020 3.010 125.420 0.270 0.855 

LO.1.C 5.020 0.890 0.780 1.190 27.400 0.020 2.720 181.330 0.270 0.855 

LO.2.A 3.530 1.190 0.420 6.140 24.400 0.000 3.490 0.000 0.280 1.005 

LO.2.B 6.460 1.340 0.530 1.570 24.800 0.000 3.230 3230.000 0.280 1.005 

LO.2.C 8.210 1.160 0.530 1.370 25.000 0.030 3.110 124.400 0.280 1.005 

LO.3.A 6.710 1.350 0.480 2.680 28.000 0.030 3.290 96.760 0.280 1.473 

LO.3.B 3.540 0.970 0.420 1.270 20.400 0.020 2.370 118.500 0.280 1.473 

LO.3.C 13.840 1.170 0.530 1.080 24.200 0.020 4.190 279.330 0.280 1.473 
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6.2.1. Supplementary Figures 
 

Figure S1. Alpha and beta diversity of biocrust and topsoil samples. (a) Boxplot 

showing estimated richness (Chao1). (b) Nonmetric multidimensional scaling plot 

showing Bray-Curtis community dissimilarity. Community profiling is based on the 

single copy marker rplP.  
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Figure S2. Stacked barchart showing the relative abundance of photosynthetic and 

non-photosynthetic Cyanobacteriota classes Melainabacteria and Oxyphotobacteria 

in crusts and topsoils.  
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Figure S3. Headspace H2 mixing ratios during dry and wet microcosm 
incubations of crust and soils. Error bars represent one standard deviation and the 

blue line indicates atmospheric H2 concentrations. 
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Figure S5. Biomass-normalized rates of chemosynthetic and photosynthetic 
processes of biocrusts and topsoils collected along the aridity gradient. (a & b) 
Rates of H2 oxidation measured by gas chromatography. (c & d) Rates of carbon 

fixation measured by incorporation of 14C-labelled CO2. Activities were measured in 

ex situ microcosms under dry and wet conditions. Centre values show median, boxes 

upper and lower quartiles and whiskers minimum and maximum values. Panel a-b 

represent biological triplicates from two sites per climatic zone and panel b-c are 

technical triplicates from a pooled sample from each zone. 
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Figure S6. Linear models of predicted subset of edaphic drivers showing significant 
correlation with H2 oxidation rates. Shaded ribbons represent standard error (95% 

confidence).  
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6.2.2. Supplementary Tables 
 

Tables S1 – S5 are available on the Google Drive folder under Chapter 3:  

https://drive.google.com/open?id=16UnlZtajRSBZ_vSvJzw3PI_XraDWUNV2 
 

Table S1 (xlsx). Abundance, diversity, and composition of microbial communities in 

sampled biocrusts and topsoils. 

 
Table S2 (xlsx). Relative abundance of genes in metagenomic short reads. 

 

Table S3 (xlsx). Assembly statistics, taxonomic classification, and metabolic traits of 

metagenome-assembled genomes. 

 

Table S4 (xlsx). H2 oxidation rates for biocrusts and topsoils under both dry and wet 

conditions, and associated statistical tests. 

 

Table S5 (xlsx). 14C fixation rates for biocrusts and topsoil under both dry and wet 

conditions, and associated statistical tests. 
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6.3.1. Supplementary Figures 
 

Figure S1. Composition of the bacterial and archaeal communities sequenced in each 
soil metagenome. Stacked barcharts showing the relative abundance of different phyla in 

(a) Australian soils and (b) global soils based on reads for single-copy ribosomal protein 

gene rplP. Alpha and beta diversity of (c) Australian soils and (d) global soils. For alpha 

diversity, observed richness and estimated richness (Chao1) are shown. For beta diversity, 

abundance-based Bray-Curtis diversity is visualized on a a multidimensional scaling plot.  
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Figure S2. Neighbor-joining tree of amino acid sequences of group 1h [NiFe]-
hydrogenase large subunits, a marker for atmospheric H2 oxidation. The tree shows 

sequences from soil metagenome-assembled genomes (blue) and unbinned contigs (red) 

alongside representative reference sequences (black). The tree was constructed using the 

Poisson model with gaps treated with pairwise deletion, was bootstrapped with 50 replicates, 

and was rooted with group 1k [NiFe]-hydrogenase sequences (not shown). To enable 

neighbor-joining, all sequences shorter than 350 amino acids were omitted.  
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Figure S3. Neighbor-joining tree of amino acid sequences of other group 1 [NiFe]-
hydrogenase large subunits. The tree shows sequences from soil metagenome-

assembled genomes (blue) and unbinned contigs (red) alongside representative reference 

sequences (black). The subgroup of each reference sequence is denoted according to the 

HydDB classification scheme. Subgroups 1c, 1d, and 1f are predicted to support aerobic 

respiration, whereas the other subgroups primarily support anaerobic respiration. The tree 

was constructed using the Poisson model with gaps treated with pairwise deletion, was 

bootstrapped with 50 replicates, and was rooted with group 1k [NiFe]-hydrogenase 

sequences. To enable neighbour-joining, all sequences shorter than 350 amino acids were 

omitted.  
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Figure S4. Neighbor-joining tree of amino acid sequences of group 2 [NiFe]-
hydrogenase large subunits. The tree shows sequences from soil metagenome-

assembled genomes (blue) and unbinned contigs (red) alongside representative reference 

sequences (black). The subgroup of each reference sequence is denoted according to the 

HydDB classification scheme, with subgroup 2a predicted to support aerobic respiration and 

subgroups 2b and 2c predicted to support hydrogen sensing. The tree was constructed 

using the Poisson model with gaps treated with pairwise deletion, was bootstrapped with 50 

replicates, and was was rooted with group 1k [NiFe]-hydrogenase sequences. To enable 

neighbour-joining, all sequences shorter than 350 amino acids were omitted.  
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Figure S5. Neighbor-joining tree of amino acid sequences of carbon monoxide 
dehydrogenase large subunit (CoxL), a marker for aerobic carbon monoxide 
oxidation. The tree shows sequences from soil metagenome-assembled genomes (blue) 

and unbinned contigs (red) alongside representative reference sequences (black). The tree 

was constructed using the Poisson model with gaps treated with pairwise deletion, was 

bootstrapped with 50 replicates, and was midpoint-rooted. To enable neighbor-joining, all 

hits shorter than 500 amino acids were omitted. 
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Figure S6. Maximum-likelihood tree of amino acid sequences of sulfide-quinone 
oxidoreductase (Sqr), a marker for aerobic sulfide oxidation. The tree shows sequences 

from soil metagenome-assembled genomes (blue) and unbinned contigs (red) alongside 

representative reference sequences (black). The tree was constructed using the JTT matrix-

based model, used all sites, and was bootstrapped with 50 replicates and midpoint-rooted. 
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Figure S7. Maximum-likelihood tree of amino acid sequences of flavocytochrome c 
sulfide dehydrogenase (FCC), a marker for aerobic sulfide oxidation. The tree shows 

sequences from soil metagenome-assembled genomes (blue) and unbinned contigs (red) 

alongside representative reference sequences (black). The tree was constructed using the 

JTT matrix-based model, used all sites, and was bootstrapped with 50 replicates and 

midpoint-rooted. 
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Figure S8. Maximum-likelihood tree of amino acid sequences of dissimilatory sulfite 
reductase A subunit (DsrA). The tree shows sequences from soil metagenome-assembled 

genomes (blue) alongside representative reference sequences (black). This enzyme is a 

marker for dissimilatory sulfite reduction (reductive and ancestral clades; Nitrospirota and 

Desulfobacterota bins) and sulfide oxidation (oxidative clade, r-DsrA; Proteobacteria bin). 

The tree was constructed using the JTT matrix-based model, used all sites, and was 

bootstrapped with 50 replicates and midpoint-rooted. 
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Figure S9. Maximum-likelihood tree of amino acid sequences of thiosulfohydrolase 
(SoxB), a marker for thiosulfate oxidation. The tree shows sequences from soil 

metagenome-assembled genomes (blue) and unbinned contigs (red) alongside 

representative reference sequences (black). The tree was constructed using the JTT matrix-

based model, used all sites, and was bootstrapped with 50 replicates and midpoint-rooted. 
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Figure S10. Maximum-likelihood tree of amino acid sequences of ammonia 
monooxygenase A subunit (AmoA), a marker for ammonia oxidation during 
nitrification. The tree shows sequences from soil metagenome-assembled genomes (blue) 

alongside representative reference sequences (black). The tree was constructed using the 

JTT matrix-based model, used all sites, and was bootstrapped with 50 replicates and 

midpoint-rooted. 
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Figure S11. Maximum-likelihood tree of amino acid sequences of nitrite 
oxidoreductase A subunit (NxrA), a marker for nitrite oxidation during nitrification. 

The tree shows sequences from soil metagenome-assembled genomes (blue) alongside 

representative reference sequences (black). The tree was constructed using the JTT matrix-

based model, used all sites, and was bootstrapped with 50 replicates and midpoint-rooted. 
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Figure S12. Maximum-likelihood tree of amino acid sequences of particulate methane 
monooxygenase A subunit (PmoA), a marker for aerobic methane oxidation. The tree 

shows sequences from soil metagenome-assembled genomes (blue) and unbinned contigs 

(red) alongside representative reference sequences (black). The tree shows the affiliation 

of the PmoA from Candidatus Methylotropicum kingii with those of amplicons of the tropical 

upland soil cluster (TUSC). The tree was constructed using the JTT matrix-based model, 

used all sites, and was bootstrapped with 50 replicates and midpoint-rooted.  
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Figure S13. Metabolic reconstruction of the putative novel methanotroph Candidatus 
Methylotropicum kingii. The core pathways associated with energy conservation and 

carbon acquisition are shown, with genes detected shown in italics. The bacterium is 

predicted to use methane, methanol, and acetate as energy and carbon sources. In addition, 

it can use molecular hydrogen as an electron donor via a group 1f [NiFe]-hydrogenase. The 

bacterium is predicted to use the electron acceptors oxygen via a cytochrome c oxidase and 

nitrous oxide via a nitrous oxide reductase. Its particulate methane monooxygenase forms 

a distinct phylogenetic lineage with amplicons from the Tropical Upland Soil Cluster (TUSC), 

whereas its methanol dehydrogenase is closely related to those in previously sequenced 

Gemmatimonadota MAGs inferred to be methylotrophic. The genome encodes key 

enzymes for the serine cycle for assimilation of one-carbon sources. Abbreviations: H4F = 

tetrahydrofolate; Hyd = group 1f [NiFe]; pMMO = particulate methane monooxygenase; 

MDH = methanol dehydrogenase; PQQ = pyrroloquinoline quinone; I = NADH 

dehydrogenase (complex I); complex II = succinate dehydrogenase; IV = cytochrome aa3 

oxidase. Dashed black lines indicate diffusion. Dashed gray lines indicate unknown 

regulation mechanism/not detected genes. 
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Figure S14. Mean soil-gas profiles normalized to the respective ambient air 
concentration (dashed line) for each Australian biomes. Note that the different gases 

were sampled at identical depths, but points are plotted slightly offset on the y-axis for better 

visibility of error bars. 
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Figure S15. Maximum-likelihood tree of amino acid sequences of group 3 [NiFe]-
hydrogenase large subunits, a marker for hydrogen production during fermentation 
processes. The tree shows sequences from the soil metagenome-assembled genomes 

(blue) alongside representative reference sequences (black). The subgroup of each 

reference sequence is denoted according to the HydDB classification scheme 359. The tree 

was constructed using the JTT matrix-based model, used all sites, and was bootstrapped 

with 50 replicates and midpoint-rooted. All sequences shorter than 350 amino acids were 

omitted. 
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Figure S16. Rates of ex situ trace gas consumption of soils. Depicted are the oxidation 

of (a) atmospheric H2, (b) atmospheric CO, and (c) atmospheric CH4 by soils at each depth 

compared to heat-killed controls. For (d), oxidation of the three gases was also measured 

in the dryland soils following hydration. Error bars represent standard deviations of four 

biological replicates. 
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Figure S17. Copy number of the 16S rRNA gene per gram of soil dry weight in the soil samples 

at each depth. 
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Figure S18. Maximum-likelihood tree of amino acid sequences of ribulose 1,5-
bisphosphate carboxylase/oxygenase (RbcL), a marker for carbon fixation through 
the Calvin-Benson cycle. The tree shows sequences from soil metagenome-assembled 

genomes (blue) alongside representative reference sequences (black). The subtype of each 

reference sequence is denoted. The tree was constructed using the JTT matrix-based 

model, used all sites, and was bootstrapped with 50 replicates and midpoint-rooted. 
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6.3.2. Supplementary Tables 
 
Table S1 – S10 are available on the Google Drive folder under Chapter 4:  
https://drive.google.com/open?id=16UnlZtajRSBZ_vSvJzw3PI_XraDWUNV2 

 
Table S1 (xlsx). Physicochemical properties of the Australian soil sampled. The particle size 

and nutrient content is shown for soil samples from each depth.  

 
Table S2 (xlsx). Metadata and sequencing statistics on the Australian soil metagenomes 

sequenced and global soil metagenomes analyzed. 

 

Table S3 (xlsx). Quality statistics and taxonomy information of the 757 metagenome-

assembled genomes from the Australian and global metagenomes.  

 

Table S4 (xlsx). Statistical testing of differences in community composition of the samples. 

PERMANOVA and BETADISPERSION were used to test significant differences of beta 

diversity between ecosystem types and soil depths. 

 

Table S5 (xlsx). Relative abundance of metabolic marker genes in metagenomic short reads 

expressed as percentage of total community (%) and reads per kilobase million (RPKM). 

 

Table S6 (xlsx). Summary of metabolic marker genes detected in the metagenome-

assembled genomes.  

 

Table S7 (xlsx). Amino acid sequences of hydrogenase, CoxL, PmoA, AmoA, Sqr, FCC, 

DsrA, SoxB, and RbcL in the binned and unbinned contigs of the metagenomes.  

 

Table S8 (xlsx). Soil gas concentrations, in situ gas fluxes, and ex situ oxidation rates 

measured for the four Australian soils. 

 

Table S9 (xlsx). Significance testing of differences in ex situ oxidation rates between 

ecosystem type and soil depth. 

 

Table S10 (xlsx). Thermodynamic modelling of power obtained per cell based on in situ and 

ex situ rates of trace gas oxidation.  
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