
Hyper-heuristic Learning for Swarm

Robots

Shuang Yu

Faculty of Information Technology

Monash University

A thesis submitted for the degree of

Doctor of Philosophy

2019

ii

© Shuang Yu 2019

I certify that I have made all reasonable efforts to secure copyright permissions for

third-party content included in this thesis and have not knowingly added copyright content to

my work without the owner’s permission.

For Daniel

Declaration

This thesis is an original work of my research and contains no material which has been

accepted for the award of any other degree or diploma at any university or equivalent

institution and that, to the best of my knowledge and belief, this thesis contains no material

previously published or written by another person, except where due reference is made in the

text of the thesis.

Shuang Yu

2019

Acknowledgements

I am truly lucky to have my two supervisors, Aldeida Aleti and Andy Song. They have

always been the most supportive people, and without their amazing supervision I could not

have finished this research. Aldeida and Andy have not only been my advisers, mentors and

friends, I am most grateful that they are both someone I can always look up to as role models.

Aldeida is an amazingly competent female researcher in a male-dominated field, and her

determination have always given me the strength to go on. Andy has always impressed me

with his professionalism, wide range of knowledge and patience. He is a great teacher and

has never run out of good advice to give me.

I am very grateful to Bernd Meyer, Alan Dorin, Minyi Li, Bala Srinivasan, Julian Garcia,

Jan Carlo Barca, Ray Chen and Thomas Bochynek for their help and advice for my project.

I enjoyed so much working and spending my PhD life with my lab mates at the former

Monash Swarm Robotics Lab. I would like to thank Apurva Joshi, Han Duy Phan, Mostafa

Rizk, Phillip Smith, and Yathindu Rangana for all the laughs and positive energy they gave

me throughout my PhD.

Finally I would like to thank my family for their unconditional love and support.

This research was supported by an Australian Government Research Training Program

(RTP) Scholarship.

Abstract

As robots are increasingly used to assist in tasks undesirable for humans to do, the demand

for robotic solutions to more large-scale and complex tasks similarly increases. These tasks

are often well-suited to robot swarms, and therefore coordination of groups of robots is of

growing importance. However, controlling a swarm of robots is challenging, as complexity

and uncertainty of the environment often makes manually programming robot behaviours

impractical. We address this problem by proposing a novel hyper-heuristic approach to enable

decentralised coordination of robot swarms. It allows robots to create suitable sequences

of actions from a collection of low-level heuristics, where each heuristic is a behavioural

element. These heuristics are manually developed algorithms for compositing robot actions,

and are stored in a heuristic repository in each robot. In the proposed framework, there is no

centralised controller; each robot selects and applies heuristics, then performs actions found

by the selected heuristics. The heuristics are evaluated by each robot individually, using an

objective function that measures the contribution they have made towards the common goal

of the swarm. This selection-execution-evaluation process is iterative, and robots can learn

through experience acquired during the process to select better heuristics over time.

To evaluate the effectiveness of the proposed framework, we task robots with cleaning

building surfaces where multiple separate surfaces exist, and complete information of the

surfaces is difficult to obtain. This complex task not only requires robots to clean efficiently

by distributing themselves on the surface, but also to self-assemble a bridging structure to

safely move between surfaces. Several environments that are unknown to the robots are used

x

for experiments, including surfaces with dynamically positioned obstacles, surfaces with

gaps, and combinations of the two.

The proposed framework firstly introduces a Multi-Armed Bandit (MAB) based online-

learning implementation to validate the feasibility of our hyper-heuristic approach. We verify

through experiments that the proposed approach effectively learns good cleaning behaviours

for the robot swarm. Furthermore, the method is robust under different types of environmental

setups. To further investigate and improve the effectiveness of the proposed framework,

we adopted Q-learning as the learning mechanism, allowing each robot to develop its own

policy of heuristic selection, according to its own experience and local observations. Superior

performance and adaptability in unknown and dynamic environments can be demonstrated

when compared with action-based swarm robot learning.

We improve the framework further by adding group learning mechanisms. Without these,

swarm robots learn heuristics individually and make less informed collective decisions using

probabilistic voting. With these mechanisms, robots improve learning efficiency by sharing

knowledge with the group. Our experiments show such mechanisms are effective for both

MAB-based and Q-learning based hyper-heuristics.

Finally, a state-of-the-art learning method, deep Q-learning, is incorporated into the

proposed framework. It also demonstrates superior performance on heuristic learning ver-

sus action based learning, further supporting the effectiveness of the proposed framework.

Additionally, deep Q-learning based hyper-heuristic outperforms other alternatives.

We conclude that the proposed decentralised hyper-heuristic learning method is effective

and is suited to complex and dynamic swarm robotic tasks.

Table of contents

List of figures xv

List of tables xxi

Nomenclature xxiii

1 Introduction 1

1.1 Research Questions . 3

1.2 Thesis Structure . 6

1.3 Research Output . 7

1.3.1 Publications . 7

1.3.2 Contributions . 7

2 Related Work 9

2.1 Heuristics . 9

2.2 Hyper-heuristics . 11

2.3 Hyper-heuristics Learning . 14

2.4 Swarm Robot Coordination . 17

2.4.1 Behaviour-based Methods . 21

2.4.2 Surface Cleaning Robots . 24

2.4.3 Self-assembling Robots . 27

xii Table of contents

2.5 Reinforcement Learning . 32

2.6 Deep Reinforcement Learning . 37

2.7 Summary . 42

3 Swarm Robot Environment 43

3.1 Simulator . 43

3.2 The Self-assembling Robots . 44

3.2.1 Robot Locomotion . 45

3.2.2 Robot Sensing . 49

3.2.3 Robot Communication . 50

3.2.4 Interaction with Environment . 51

3.3 Environments . 52

3.4 Summary . 54

4 The Hyper-heuristic Swarm Robot Framework 55

4.1 Methodology . 56

4.2 Multi-Armed Bandit Based Online-learning 58

4.2.1 Initialisation . 59

4.2.2 Generating Actions . 59

4.2.3 Heuristic Evaluation . 60

4.2.4 Heuristic Construction and Update 60

4.2.5 Problem Domain . 65

4.3 The Heuristic Repository . 66

4.3.1 Sweeping . 69

4.3.2 Bridging (horizontal and vertical) 71

4.3.3 Exploring . 73

4.3.4 Circling . 75

Table of contents xiii

4.3.5 Flocking . 76

4.3.6 Raster Scan (Horizontal and Vertical) 78

4.3.7 Neighbourhood Search . 78

4.4 Group Learning of Heuristics . 80

4.4.1 Methodology of Group Learning with Knowledge Sharing 81

4.4.2 Implementation with Swarm Robots 82

4.5 Experiments and Results . 84

4.5.1 Robustness In Different Environments 85

4.5.2 Comparison of Heuristic Selection Methods 87

4.5.3 Learning Comparing to No Learning 88

4.5.4 Comparison of Group Learning Strategies 89

4.6 Summary . 93

5 Learning Heuristics with Q-Learning 97

5.1 Action Based Learning . 101

5.2 Heuristics Based Learning . 103

5.3 Group Learning with Advising . 106

5.4 The Updated Heuristic Repository . 109

5.4.1 Sweeping . 110

5.4.2 Bridging (Horizontal and Vertical) 112

5.5 Experiments and Results . 115

5.5.1 Comparing Learning Heuristics to Learning Actions 117

5.5.2 With and Without Group Learning 122

5.5.3 Comparing MAB-based Learning and Q-Learning 126

5.6 Summary . 129

6 Learning Heuristics with Deep Reinforcement Learning 131

xiv Table of contents

6.1 Methodology . 131

6.2 Experiments . 135

6.2.1 Comparing Learning Heuristics to Learning Actions 137

6.2.2 Comparing Deep Q-learning with Q-learning 140

6.2.3 Dynamically Changing Environments 143

6.3 Summary . 147

7 Analysis and Discussion 149

7.1 Explainable Policies . 149

7.1.1 The MAB-based Hyper-heuristics 150

7.1.2 The Q-learning Method . 153

7.2 Scalability . 159

7.2.1 The MAB hyper-heuristic . 160

7.2.2 Q-learning hyper-heuristic . 160

7.3 Summary . 164

8 Conclusions 167

8.1 Future Works . 168

References 171

Appendix A Source Code 183

List of figures

2.1 The hyper-heuristic layer and the problem domain layer [36] 13

2.2 “SkyScraper-I” [46] . 25

2.3 REPLICATOR Robot finite state machine (FSM) for autonomous morpho-

genesis controller. Conditions causing state transitions: 1 – docking message

received; 2 – collision, or no docking message received; 3 – docking beacon

signals detected; 4 – aligned and ready to dock; 5 – disassembly required; 6

– undocking completed; 7 – expelling message received, or docking signals

lost; 8 – docking completed; 9 – recruitment required; 10 – recruitment

completed [71] . 29

2.4 Two REPLICATOR modes [64] . 30

2.5 The swarm-bots [32] . 31

2.6 The agent-environment interaction in reinforcement learning [126] 33

2.7 Deep Reinforcement Learning [4] . 37

3.1 The self-assembling robot state representation 45

3.2 The Self-assembling Robots . 45

3.3 (a) Differential drive: two wheels and a caster (b) The distance sensors . . 46

3.4 Reaching a target position . 48

3.5 Dirt camera sensing area and gap sensor locations 49

3.6 Robot sensors . 50

xvi List of figures

3.7 The simulated visual feedback for cleaned area 51

3.8 The environments . 53

4.1 Overview of the hyper-heuristic methodology for swarm robots. 57

4.2 Implementation of evaluation and group decision making. 63

4.3 The sweeping heuristic: 1 - connection points located; 2 – aligned and ready

to dock; 3 – docking completed; 4 - no obstacle/gap/clean area in front of the

robot; 5 – no obstacle/gap/clean area behind the robot; 6 – front obstacle/gap

detected; 7 – back obstacle/gap detected; 8 – disconnected 69

4.4 The sweeping heuristic . 70

4.5 The bridging heuristic: 1 – connection points located 2 - aligned and ready to

dock 3 - docking completed 4 - move signal received/sent 5 - crossing a gap

6 - crossing completed 7 - front obstacle detected 8 - back obstacle detected 72

4.6 The bridging heuristic . 73

4.7 The exploring heuristic . 74

4.8 The circling heuristic . 75

4.9 The flocking heuristic . 76

4.10 The raster scan heuristic . 78

4.11 The neighbourhood search heuristic . 79

4.12 Implementation of Group Decision Making. 83

4.13 Cleaning progress of the swarm at 5, 25 and 50 iterations in four types of

environmental layouts: (a) flat empty surface, (b) surface with obstacles

(indicated by red blobs), (c) five surfaces separated by gaps (black stripes),

and (d) five separated surfaces with obstacles. 86

4.14 Comparing mean performance of online learning and no learning over 50

experimental runs . 86

List of figures xvii

4.15 Comparing three hyper-heuristic selection methods: Roulette Wheel, Greedy

and Simple Random over four types of environments. 87

4.16 Performance difference for every iteration between online learning hyper-

heuristics and no learning. 89

4.17 Cleaning progress of the swarm at 5, 25 and 50 iterations in four types of

environmental layouts: (a) flat empty surface, (b) surface with obstacles

(indicated by red blobs), (c) five surfaces separated by gaps (black stripes),

and (d) five separated surfaces with obstacles. 90

4.18 Comparing mean performance of MAX-SUM, MAX-MIN and the bench-

mark method over 30 experimental runs 92

4.19 No-learning vs. MAX-SUM and MAX-MIN on four scenarios. 94

5.1 The self-assembling robot state representation 99

5.2 The framework of decentralised multi-robot learning on heuristics 103

5.3 The framework of multi-robot learning with importance advising 107

5.4 The sweeping heuristic . 111

5.5 The sweeping heuristic . 111

5.6 The bridging heuristic . 113

5.7 The bridging heuristic: 1 - Obstacle detected; 2 - Oriented away from

the obstacle; 3 - bridging robot detected - connection location reached; 4

- connection points located; 5 - aligned and ready to dock; 6 - docking

completed; 7 - all nearby bridging robots connected; 8 - crossing a gap; 9 -

crossing completed; 10 - front obstacle detected; 11 - back obstacle detected 114

5.8 Environments . 117

5.9 Empty environment: team reward with Q-learning 118

5.10 Obstacle environment: team reward with Q-learning 119

5.11 Gaps environment: team reward with Q-learning 120

xviii List of figures

5.12 Comparing the learned heuristic-based policy and the action-based policy . 121

5.13 Comparing with and without the importance advising mechanism: Empty

environment . 122

5.14 Comparing with and without the importance advising mechanism: Obstacle

environment . 123

5.15 Comparing with and without the importance advising mechanism: Gaps

environment . 124

5.16 Comparing hyper-heuristic methods in the empty environment 126

5.17 Comparing hyper-heuristic methods in the dynamic obstacles environment . 127

5.18 Comparing hyper-heuristic methods in the gaps environment 128

6.1 The neural network architecture for DDQN learning 135

6.2 Empty environment: team reward . 137

6.3 Obstacle environment: team reward . 138

6.4 Gaps environment: team reward . 139

6.5 Comparing the learned heuristic-based policy and the action-based policy . 140

6.6 Comparing hyper-heuristic methods in the empty environment 141

6.7 Comparing hyper-heuristic methods in the dynamic obstacles environment . 142

6.8 Comparing hyper-heuristic methods in the gaps environment 143

6.9 Comparing the learned policies using Deep Q-learning, Q-learning and

MAB-based learning . 144

6.10 Total rewards in Environment I: changing environments 144

6.11 Total rewards in Environment II: random environments 145

7.1 Comparing heuristic distributions using a set of 9 and 5 heuristics 151

7.2 Used heuristics by deep Q-learning hyper-heuristic in empty environment . 154

7.3 Used heuristics by Q-learning hyper-heuristic in empty environment 155

7.4 Used heuristics by MAB-based hyper-heuristic in empty environment . . . 155

List of figures xix

7.5 Used heuristics by the deep Q-learning hyper-heuristic in obstacle environment156

7.6 Used heuristics by the Q-learning hyper-heuristic in obstacle environment . 156

7.7 Used heuristics by MAB-based hyper-heuristic in obstacle environment . . 157

7.8 Used heuristics by deep Q-learning based hyper-heuristic in gaps environment157

7.9 Used heuristics by Q-learning based hyper-heuristic in gaps environment . . 158

7.10 Used heuristics by MAB-based hyper-heuristic in gaps environment 158

7.11 Five experienced robots + five new robots in empty environment: learning

from other robots (knowledge sharing) and learning by themselves 161

7.12 Five experienced robots + five new robots in obstacles environment: learning

from other robots (knowledge sharing) and learning by themselves 162

7.13 Five experienced robots + five new robots in gaps environment: learning

from other robots (knowledge sharing) and learning by themselves 163

List of tables

3.1 The robot configurations . 47

3.2 Robot Wireless Message Formats . 51

4.1 Robot Parameters . 67

4.2 Tuned values of hyper-parameters and controller parameters. 85

4.3 Comparing Mean and Std MAX-SUM, MAX-MIN with Voting in surface

cleaning over 30 runs . 91

5.1 Feature representation for Q-learning hyper-heuristics 116

5.2 Parameters for Q-learning hyper-heuristics 118

6.1 Parameters for Q-learning hyper-heuristics 136

7.1 Heuristic Percentage . 154

7.2 Q-learning Heuristic Percentage . 159

7.3 Comparing the time to reach consensus in the collective decision making . . 160

Nomenclature

Acronyms / Abbreviations

SGD Stochastic Gradient Descent

CF Choice Function

CHeSC Cross-domain Heuristic Search Challenge

GP Genetic Programming

GR Greedy

HH Hyper-heuristic

MAB Multi-armed Bandit

RD Random Descent

SA Simulated Annealing

SR Simple Random

UCB Upper Confidence Bound

DDQN Double Deep Q-Network

DQN Deep Q-Network

xxiv Nomenclature

DRL Deep Reinforcement Learning

MDP Markov Decision Process

RL Reinforcement Learning

FSM Finite State Machine

MRS Multi-robot System

ODE Open Dynamics Engine

SR Swarm Robotics

Chapter 1

Introduction

Robotics is a fast growing area due to the explosive development in Artificial Intelligence.

For many years, robots have automated many tasks that are considered risky and undesirable

for humans. Particularly, having multiple cooperative robots to tackle a problem has made

robots capable of accomplishing tasks considered too difficult and large-scale not only for

humans but also for single robots. A reliable and capable robot swarm can gain significant

advantage in various domains such as mining, agriculture, smart cities and even military

applications. This thesis focuses on swarm robots, where many robots, typically small

droids, can collaborate and behave cohesively in one accord to achieve tasks that are difficult

or expensive such as large scaled navigation and coverage. In a robot swarm, collective

behaviours emerge from local control rules and local interactions. Due to this decentralised

nature of swarm robotic systems, they have the benefits of being robust, scalable and

flexible [12].

In order to enjoy the benefits of swarm robotic systems, all robots need to operate collabo-

ratively to achieve a common goal. Manually developing control strategies for each robot can

be feasible for simple tasks and small groups, but quickly becomes difficult and ineffective

when the task becomes complex or the group becomes large. Control strategies can also be

automatically generated, for instance, using evolutionary computing and reinforcement learn-

2 Introduction

ing, and are able to tackle complex problems such as multi-robot foraging [79]. However,

these methods are not able to deal with dynamic or unknown environments, which are usually

what robots encounter in real-world missions [89]. Moreover, these algorithms need to be

re-designed and re-tuned when the task or operating environment changes. Alternatively,

swarm robots can utilise a set of behavioural elements where each element by itself may not

solve the problem, but appropriate compositions of elements can. This idea aligns with the

hyper-heuristic approach that automatically constructs a strategy from a set of heuristics to

solve a problem, rather than manually developing strategies that search directly for solutions.

In literature, the hyper-heuristic approach has been shown to be more adaptive and generalises

better for a range of applications [82].

Therefore in this thesis we explore how to use the hyper-heuristic approach in decen-

tralised multi-robot systems, in order to allow robots to better cope with unknown and

dynamic environments. This question is primarily addressed in Chapter 4, where a novel

swarm robot hyper-heuristic framework is proposed for automatically sequencing behaviours

to fulfil task objectives in unknown and dynamic environments. It allows robots to create

suitable actions based on a set of low-level heuristics, where each heuristic is a behavioural

element. With online learning, the robot behaviours can be improved during execution by

autonomous heuristic adjustment.

The proposed algorithm is verified in the application of building facade cleaning where

multiple surfaces exist, and no map of the surfaces is available. Self-assembling robots

have great advantage in this scenario, because they have the flexibility to assemble into a

larger structure which can move between different surfaces, and then scatter on the desti-

nation surface to clean efficiently without human intervention. However, self-assembling

behaviours are complex and hard to learn. Existing coordination and control algorithms for

self-assembling robots are not able to deal with this complex scenario [28, 96]. Our proposed

1.1 Research Questions 3

hyper-heuristic algorithm fills this gap, and as verified from real-physics 3D simulations and

experiments, the effectiveness and robustness in the application has been demonstrated.

The hyper-heuristic framework [36] is extended to facilitate group learning through local

robot communications. Comparisons of various approaches including collective decision

making and advising, etc. are conducted in Chapter 4, and the pros and cons of the methods

are also described. An adaptable hyper-heuristic framework for swarm robots should accom-

modate a variety of learning algorithms in order to improve the construction of heuristics over

time, for example, reinforcement learning algorithms, which are widely used in multi-robot

systems and are the state-of-the-art for many applications. Novel hyper-heuristic algorithms

that integrate the reinforcement learning and deep reinforcement learning of heuristics are

proposed in Chapters 5 and 6 respectively, and the simulations show the significant improve-

ment of performance over time, as well as the advantages over the conventional action-based

reinforcement learning.

1.1 Research Questions

In decentralised multi-robot systems, a robot’s control commands are generated by the robot’s

onboard controller. Control actions, such as move with a given velocity, turn for a given

period of time and slow down, are determined by the robot controller at every time step, and

the actions are given to the corresponding hardware to execute. Robot control algorithms

exist to select actions according to certain heuristics [77]. Robots receive feedback from

local sensor readings and local communication messages between robots. Heuristics generate

actions according to that feedback and allow a group of robots to exhibit collective behaviours.

For instance, the classic flocking rules for artificial agents [107] make up a heuristic, which

allows a swarm of agents to collectively perform the flocking behaviour seen in a flock of

migrating birds and a travelling school of fish.

4 Introduction

When robots are required to perform complex tasks in unknown or dynamic environments,

multiple behaviours may be needed to achieve the task objective. While one can manually

design robot control algorithms that generate a sequence of actions to solve a problem, an

alternative approach is to search for appropriate heuristics that in turn generate a sequence of

actions to solve the problem. This is the concept of the hyper-heuristic approach.

This thesis focuses on the utilisation of the hyper-heuristic approach in swarm robot

control and coordination, and aims to answer the following questions:

1. How can hyper-heuristic approaches be formulated to coordinate swarm robots

without centralised control, so swarm robots can better cope with unknown or

dynamic environments?

To further explain, hyper-heuristic methods rely on a repository of basic heuristics,

which in this thesis is denoted as H. Through iteratively selecting the heuristic to

be applied, hyper-heuristic algorithms aim to construct a sequence of heuristics that

solves given problems. On the other hand, given a task T , a group of decentralised

robots U are required to cooperate and fulfil the task in environments that are unknown

and can be dynamic while the robots undertake the task. Unknown environments are

the ones without a map given before performing the task, and the environments that

may change in condition or layout are considered dynamic. Robots receive feedback

from onboard sensors, and an objective function f (t) measures the quality of how well

the task has been solved. Existing swarm robot control methods cannot automatically

construct effective decentralised strategies for robots to achieve complex objectives

in the dynamic environments defined above. This thesis aims to develop a hyper-

heuristic approach that allows a swarm of robots operating in unknown and dynamic

environments to autonomously construct a sequence of heuristics from H that maximise

the objective f (t).

1.1 Research Questions 5

2. How can the learning of heuristics be improved by introducing different learning

strategies?

The hyper-heuristic approach for swarm robots needs to be able to accommodate

learning of heuristics, because it is beneficial for dealing with unknown and dynamic

environments.

Robots in a decentralised swarm can learn to construct a sequence of heuristics inde-

pendently using local observations and feedback. Unlike single robot systems, there is

a lot of redundancy in terms of observations and functionality in the group, as well as

different knowledge learned by different robots. Communication of knowledge with

reachable robots might further improve the group performance. This leads us to the

sub-question: How does the hyper-heuristic framework facilitate group learning and

improve the swarm performance? It should also be noted that the communication ca-

pacity between robots is not unlimited, the communication range is not infinitely wide,

and communication is not instant. These constraints makes any means of emulating a

centralised learning strategy through massively sharing knowledge and experience an

infeasible solution.

Additionally, different learning approaches can benefit the hyper-heuristic framework

in different aspects, such as learning speed, task performance, scalability, etc. One

of the most widely used methods in robotics is reinforcement learning, where robots

iteratively learn to effectively improve their policy of selecting actions [3], and it has

not been applied on selecting heuristics for robots. We therefore also seek to address

the sub-question: How can the hyper-heuristic framework integrate reinforcement

learning of heuristics to further improve the swarm task performance in a decentralised

manner?

3. How can state-of-the-art deep Q-learning be integrated to further improve the

hyper-heuristic learning?

6 Introduction

In recent years, deep learning has become one of the most widely used methods in

many applications [144, 70, 67], because they are effective function approximators.

Deep learning would be beneficial for researchers if the hyper-heuristic framework can

integrate the method and use it to improve the learning performance of swarm robots.

Deep Q-learning has achieved state-of-the-art performance in various fields such as

robotics, board games (chess and Go) and video gaming. How can deep Q-learning be

used to improve the learning of heuristics?

1.2 Thesis Structure

The rest of the thesis is organised as follows.

Chapter 2 introduces hyper-heuristic methods and decentralised multi-robot systems,

which are the focus of this thesis. We identify the gap in knowledge which hyper-heuristic

methods can address in swarm robot coordination and control. Machine learning in hyper-

heuristics is also discussed to provide background for proposed methods in addressing

research questions.

Chapter 3 introduces the simulation platform and the decentralised robots used for

verifying the proposed algorithms.

Chapter 4 answers the core research question of how the hyper-heuristic methodology

can be used to coordinate swarm robots by proposing a novel decentralised multi-robot

hyper-heuristic framework. A multi-armed bandit based online learning implementation is

proposed and validated through simulations.

This chapter also discusses how robot group learning strategies that utilise local robot

communication can be improvements to the proposed MAB-based hyper-heuristic framework.

Chapter 5 introduces a Q-learning hyper-heuristic approach to further improve upon the

MAB-based hyper-heuristic framework.

1.3 Research Output 7

Chapter 6 shows that the deep Q-learning can also be incorporated under the proposed

hyper-heuristic framework and improve the learning of heuristics.

Chapter 7 gives further analysis of the hyper-heuristic algorithms, from the aspects of the

explainable policies and scalability.

Chapter 8 gives a summary of contributions and future directions.

1.3 Research Output

This section lists the publications produced in this research, and the list of contributions to

knowledge.

1.3.1 Publications

The publications are listed below:

1. Yu, Shuang, Aldeida Aleti, Jan Carlo Barca, and Andy Song. “Hyper-heuristic online

learning for self-assembling swarm robots.” In International Conference on Computa-

tional Science, pp. 167-180. Springer, Cham, 2018.

2. Yu, Shuang, Andy Song, and Aldeida Aleti. “Collective Hyper-heuristics for Self-

assembling Robot Behaviours.” In Pacific Rim International Conference on Artificial

Intelligence, pp. 499-507. Springer, Cham, 2018.

3. Yu, Shuang, Andy Song, and Aldeida Aleti. "A Study on Online Hyper-heuristic

Learning for Swarm Robots." In 2019 IEEE Congress on Evolutionary Computation

(CEC), pp. 2721-2728. IEEE, 2019.

1.3.2 Contributions

These are the contributions to knowledge produced in this research:

8 Introduction

1. We proposed a novel hyper-heuristic framework for decentralised multi-robot systems.

We instantiated the framework incorporating online-learning of heuristics through

a variety of mechanisms. Through experiments we showed that the framework is

effective in coordinating robots in unknown and dynamic environments of different

scenarios. Our study has shown learning heuristics to be more effective than learning

actions in robot swarm coordination. So the hyper-heuristic framework is beneficial.

In addition, the framework can provide solutions that are more explainable. The

framework can also be scalable for tasks of different sizes.

2. We proposed a novel integration of MAB-based learning, Q-learning and deep Q-

learning into the hyper-heuristic framework, which allows for reinforcement learning

of heuristics for use with decentralised swarm robots. Through comparing the per-

formance with traditional reinforcement learning in decentralised multi-robot control,

the results demonstrated the effectiveness and advantages of the learning of heuristics

using reinforcement learning.

3. We proposed multiple group learning strategies and integrated them into the swarm

robot hyper-heuristic framework. This includes a voting-based group decision making

strategy, a MAX-SUM-based strategy and a MAX-MIN-based strategy for the online

hyper-heuristic; and an importance advising mechanism for the Q-learning hyper-

heuristic framework. Through simulations and comparative study of the different

strategies, we demonstrated the benefit of group learning and collaboration in robot

swarms through local communication between robots.

Chapter 2

Related Work

The aim of this thesis is to establish a hyper-heuristic framework for decentralised robot

swarm coordination. Hence we review the most relevant fields which are the foundation of

this thesis: heuristics and hyper-heuristics; robots and multi-robot coordination; learning in

hyper-heuristics, reinforcement learning and deep reinforcement learning. The latter three are

the basis of our learning mechanism for the proposed framework. There are many relevant

fields that are connected to this study, including swarm intelligence, optimisation, prediction

etc., but these are not the focus of our research, however details of these fields that are

relevant to our research can be found in the references [49, 6, 60].

2.1 Heuristics

The term “heuristic” as it is commonly used can be traced to a paper written in the French

language in 1960, where the word itself is derived from the Greek language and means “to

find or discover” [105]. In more modern usage, heuristics are “simple algorithmic process

models” which have often been described as “rule[s] of thumb” [44], or educated guesses.

They are usually estimates, and may not be the exact descriptions of the problem or solution,

but they utilise information and knowledge in the problem domain. Using heuristics can help

10 Related Work

to quickly find satisfactory solutions when the problem is too complex for exact optimal

solutions to be found [125]. In solving real-world problems, heuristic methods are especially

advantageous because what we are truly optimising is a model of the real-world, and many

would prefer approximate solutions of superior models than exact solutions of inferior

ones [105], and heuristics make it possible for satisfactory solutions of many complex

models to be found.

Heuristics have been widely used in search, decision making, planning etc., and have

been a crucial part of AI since a very early stage. A classic example of the use of heuristics

in search is the A∗ search algorithm. It finds the optimal path using an evaluation function

f = g+h where g is the current actual minimum cost of the path from the starting node and h

is a heuristic to estimate the cost of the optimal path to the goal node. The heuristic estimation

can be the Euclidean distance from the current node to the goal node, the Manhattan distance

from the current node to the goal node, or other estimations according to the specific problem

and scenario. These estimations are not guaranteed to exactly describe the actual cost, but

are both informed approximations built upon prior knowledge of the problem, which can

help the algorithm to yield satisfactory results. Local search is another heuristic search

method, where the heuristic is that a solution can be iteratively improved by searching the

neighbourhood of a current solution. The method was first created to solve the Travelling

Salesman Problem (TSP) (the details of this problem are described in [2]), and has been

generalised to solve a wide range of optimisation problems. Local search starts from an

initial solution, and at each step evaluates solution(s) that can be reached by making a move

from the current solution using an evaluation function. Hill-climbing in local search always

selects the neighbouring solution that has been determined to be the best by the evaluation

function, and this neighbouring solution will become the current solution [104]. This Greedy

heuristic is the assumption that the global optima can be found by always choosing the local

optima. However this is not always the case: greedy search can become trapped at local

2.2 Hyper-heuristics 11

optima where it will be unable to find the global optima. This can be solved by adding

randomness in the heuristic, where if a candidate solution is better than the current one, it

will only be selected with a probability [21].

Some researchers use the term “meta-heuristics” to refer to a collection of sophisticated

heuristic methods, including Simulated Annealing (SA), Genetic Algorithms (GA) and

Ant Colony Optimisation (ACO) [111]. Meta-heuristic methods are originally defined as

“solution methods that orchestrate an interaction between local improvement procedures

and higher level strategies to create a process capable of escaping from local optima and

performing a robust search of a solution space” [38]. For example, the heuristic of genetic

algorithms is that solutions can be improved by applying the GA operators such as crossover,

mutation and selection.

Heuristics in heuristic search and meta-heuristic search are often manually developed

from experience and require domain knowledge. Heuristics can be implemented as algorithms

to be applied to solve problems.

2.2 Hyper-heuristics

Hyper-heuristics are “heuristics to choose heuristics” [111]. Hyper-heuristics can also refer

to constructing heuristics (generative hyper-heuristics), where a typical example is genetic

programming as the hyper-heuristic [14], but that is not the focus of our study. This study

focuses on the selection of heuristics.

This study discusses the search for heuristics, not heuristic search. In heuristic search, a

heuristic is used to assist in the search for solutions, and is usually manually constructed. In

hyper-heuristics, we automatically construct and select heuristics.

Hyper-heuristics differ from meta-heuristics in the sense that meta-heuristics search in

the solution space, while hyper-heuristics operate on a higher level and search in the space of

12 Related Work

heuristics. Hyper-heuristics can employ meta-heuristic methods as options for generating

solutions.

To date, hyper-heuristics have been successfully applied in a large number of software

problem domains, for example educational timetabling [17, 16, 100], bin-packing [112, 73],

production scheduling [109], vehicle routing [37] and general video game playing [11],

etc. In solving these complex problems, hyper-heuristic methods have shown advantages in

generality and efficiency in algorithm design.

Burke et al. [13] defined a hyper-heuristic as “an automated methodology for selecting or

generating heuristics to solve computational search problems”. The term “hyper-heuristics”

was first introduced in [22] as an approach to manage the choice of “lower-level” heuristics

at each decision point. They pointed out that heuristics and meta-heuristics are developed for

particular problems and are not generalisable to other problems, or even other instances of

the same or similar problems. However, hyper-heuristics operate at a higher abstraction level,

and use little or no domain-knowledge - only a performance measure as feedback, therefore

are able to handle a wider range of problems than heuristics and meta-heuristics. Another

advantage is that while heuristics and meta-heuristics tend to be knowledge-rich, and require

expertise in the problem domain to find good solutions, therefore are hard to implement,

hyper-heuristics only require simple, easy-to-implement, and knowledge-poor heuristics [22].

Through a complex scheduling problem, Cowling et al. [22] demonstrated and compared a

few hyper-heuristic methods for iteratively selecting low-level heuristics and results show

that the hyper-heuristic solutions can be better than those generated from knowledge-rich

heuristics.

A template for hyper-heuristic algorithms has been given in Cross-domain Heuristic

Search Challenge (CHeSC) [95], a competition for hyper-heuristic algorithms. Figure

2.1 shows the elements and workflow of a hyper-heuristic algorithm. For a given problem

domain, the set of low level heuristics {H1,H2...Hn} is predefined. The set of heuristics

2.2 Hyper-heuristics 13

Fig. 2.1 The hyper-heuristic layer and the problem domain layer [36]

can be different for different problem domains. At each time interval, the applied heuristic

generates a solution, and it is evaluated with the evaluation function f (Sk) where k is where

the solution is stored in the list of solutions. Hyper-heuristic algorithms are placed at the top

layer of the graph in Figure 2.1, because it is a high level strategy for the book-keeping and

decision making of heuristics, and remains the same for all problem domains. The hyper-

heuristic algorithm only receives the objective function value f (Sk) and the applied heuristics

as feedback. Though the logic of hyper-heuristic algorithms varies, they all output three

values: the selected heuristic to be applied in the next time interval i, the solution generated

by the applied heuristic j and the place to store the solution k. Since the hyper-heuristic

layer incorporates no domain knowledge, this property of hyper-heuristic algorithms allows

them to break the domain barrier. When switching from one problem domain to another,

only the bottom layer in Figure 2.1 needs to be replaced, and the core layer, which is the

hyper-heuristic layer, is still functional without the need to change.

14 Related Work

Hyper-heuristic algorithms can involve multiple search processes which are distributed

in a complex setting, for example, a multi-agent environment. Biazzini et al. [7] presented

distributed hyper-heuristics where all the heuristics in the repository are population-based

algorithms and the hyper-heuristic layer algorithms are laws to choose the heuristics to

be applied to the problem. Their proposed hyper-heuristics were successfully applied to

a range of real parameter optimisation scenarios in a distributed environment. Another

hyper-heuristic framework that involves multiple agents is mentioned in [98] where there

are multiple “Low-level Heuristic Agents” and a “Hyper-Heuristic Agent”. The “Low-level

Heuristic Agents” searches cooperatively in the solution space and the “Hyper-Heuristic

Agent” is in charge of selecting the low level heuristic to be applied at the next decision point.

This has been verified on a flow shop scheduling problem. Ozcan et al. [99] have shown that

using group decision making strategies such as voting as the move acceptance mechanism

can improve the overall performance of heuristic selection. We will expand on the learning

aspect of heuristics in the next section.

2.3 Hyper-heuristics Learning

Learning has been widely used in hyper-heuristics, where the previous performance of the

heuristics is used as feedback to select and generate heuristics. Both online and offline

learning have been used in hyper-heuristic methods, particularly selection perturbative hyper-

heuristics, where low-level heuristics are applied iteratively to improve the initial solution to

a problem [101]. Online learning hyper-heuristics learn as the problem is being solved, and

offline learning hyper-heuristics learn from training data and generalise to unseen problem

instances.

Many hyper-heuristic algorithms use online learning because it makes the algorithm

suited to a range of problems and scenarios, especially problems with unseen and dynamic

environments. A typical online learning hyper-heuristic method comprises two phases:

2.3 Hyper-heuristics Learning 15

heuristic selection and move acceptance, as identified in [8]. At each step or decision

point, the hyper-heuristic controller uses a heuristic selection method to choose and apply

a heuristic from the given set of heuristics, then the second phase of hyper-heuristic uses

a “move acceptance” criteria to determine if the move should be accepted. If the move is

accepted, the problem is advanced to the state where chosen the heuristic has been applied,

and if the move is rejected, the problem gets reversed to the state before the heuristic was

applied. The heuristic selection method in hyper-heuristic algorithms can be Simple Random

(SR) selection, where at each decision point a heuristic is randomly selected from the set

until the termination criteria is met; in other words, until the solution is “good enough”.

Random Descent (RD) selection method randomly chooses a heuristic, and it is applied until

no improvement in the objective function is observed. Greedy (GR) selection is an approach

where the heuristic with the best improvement in objective value will always be selected [22].

Tabu search has also been used to select heuristics, as mentioned in [29, 48], where a tabu

list is kept to store heuristics that are prohibited for a predetermined number of iterations.

By forcing exploration, this method allows the hyper-heuristic to avoid cycling between

small sets of solutions and getting trapped at local optima. A Dynamic Multi-armed Bandit

selection mechanism is used to select heuristic at each iteration in [116], where the likelihood

of selecting a heuristic is proportional to its average reward obtained so far and inversely

proportional to the number of times the heuristic has been applied. The method has been

verified on exam timetabling and dynamic vehicle routing problems.

Choice function selection method has been found to have superior performance in many

problem domains, for example, nurse scheduling [120], scheduling a sales summit [22] and

timetabling [103]. This method iteratively ranks the heuristics by giving each of them a score.

In [103], a choice function is as calculated as:

f = ∑(α f1 +β f2 + γ f3) (2.1)

16 Related Work

where f1 is the individual performance of each heuristic, f2 is the joint performance of pairs of

heuristics, and f3 is the amount of time elapsed since each heuristic was last applied. At each

decision point, the heuristic with the highest score is chosen. α , β and γ are parameters to be

tuned, and [23] proposed a parameter-free choice function which utilised substantial domain

knowledge. Both tabu search and choice function have been combined with reinforcement

learning. [15] introduced a simple reward and punishment reinforcement learning component

to determine the rank of each heuristic, as well as which heuristic will be include in the tabu

list. The method was verified on a nurse timetabling and scheduling problem. [92] applied

positive and negative reinforcement on heuristic utility values to find the expected benefit

of choosing a heuristic, and at each decision point, a softmax choice function is used for

selection, where the probability of selecting a heuristic is proportional to its utility value.

There are also offline learning hyper-heuristics, and a widely used technique is Genetic

Programming (GP) [110, 14], which is used to generate new heuristics for a problem. This

approach has achieved good results in a range of problems such as the Boolean satisfiability

problem and bin-packing. However, the drawback is that the heuristic generated by each

Genetic Programming run is different, and it requires a few runs to determine the quality

of the heuristics the GP hyper-heuristic can produce. Moreover, a framework for evolving

heuristics needs to be developed for the problem, and different frameworks yield different

results. This lack of robustness means that it would take a long training process to make the

generated heuristic reliable for robotic systems.

Learning of heuristics has shown advantage in dealing with complex problems and

dynamic environments. Tavares et al. [129] has demonstrated through both theory and

experiments that learning over heuristics is faster, and can give superior performance when

the space and action spaces are large, when compared with using the same learning method

over actions. Although in the long run, learning over actions can achieve optimal results,

but learning over heuristics can give sub-optimal solutions within a reasonable amount of

2.4 Swarm Robot Coordination 17

time, which is typical for complex problems [75]. Uludag et al. [133] uses online learning to

assist hybridising Estimation Distribution Algorithms, and has shown that the hyper-heuristic

method has superior performance in dynamic and cyclic environments.

2.4 Swarm Robot Coordination

The aim of the thesis is to propose a hyper-heuristic robotics coordination mechanism,

therefore the relevant literature is reviewed here. Single robot control, multi-robot systems

etc. are wide areas but not the focus of this study. Therefore we review studies relevant

to swarm robots which are decentralised multi-robot systems. These types of systems are

suitable for complex environments where centralised control is not possible or difficult.

In [12], the characteristics of swarm robots are described as follows:

• Robots make local observations and communications,

• No robot has access to centralised control or global knowledge,

• Robots are fully cooperative, and

• Robots are fully autonomous, with no human intervention at any stage of performing

the task.

We explain these traits by comparing decentralised controlled robots to centralised con-

trolled ones. A centralised multi-robot control approach requires a control station or a single

robot that holds the global knowledge, makes control decisions and gives commands to all

robots. Examples of such systems include the centralised formation control framework in

[52], centralised sensing and control for robots with no on-board processing capability [54],

and the centralised multi-robot path planning algorithm in [76] which guarantees complete-

ness of solutions. Although centralised control of multi-robot systems has the advantage of

allowing individual robots to have very simple hardware, and can find complete solutions

18 Related Work

for problems because the global knowledge is accessible, in practice decentralised control

approaches have proven much more favourable for multi-robot systems. In a decentralised

multi-robot system, no robot controls the whole system. Most multi-robot systems use

decentralised control because it allows them to be robust and scalable. Unlike centralised

systems where the failure of the central controller will cause the whole system to fail, the loss

or failure of individuals is often not devastating for a decentralised robot system, therefore it

is robust [117]. Centralised control is not a scalable method because the complexity of the

control algorithm can grow massively with the size of the group, and control algorithms for

large groups could become too hard for humans to design. On the other hand, decentralised

robot systems are modular, and the group behaviour emerges from local control laws. This

allows decentralised robot control algorithms to remain simple and easy to design for robot

groups of different scales [12]. Another deciding factor for choosing decentralised control

in multi-robot applications is that in many real-world tasks, global knowledge is too hard

or impossible to obtain for any robot or control centre. For instance, in the application of

multi-surface facade cleaning on a large and obstructed building surface, not all robots are

accessible for control and communication, each robot only observes from its local sensor

readings, thus centralised control and coordination are unfeasible and costly. In these scenar-

ios, each robot is required to be able to act on its own, and more importantly learn on its own

in order to deal with the dynamic and unknown environments. In summary, to solve some

problems in the real-world scenarios, in particular multi-surface cleaning, a decentralised

multi-robot system is required.

To coordinate and control decentralised multi-robot systems, there are holistic approaches,

which involve manually designing and synthesising more sophisticated local control laws to

solve more complex problems; and behaviour-based approaches, where complex problems

are solved by compositing behavioural elements.

2.4 Swarm Robot Coordination 19

Holistic approaches rely on humans to design local control laws for every robot which

give rise to overall system dynamics, and allow the robot group to exhibit desired swarm

behaviours [89]. The design of swarm behaviours usually takes inspiration from biological

systems in nature and laws of physics [12]. For instance, rule-based algorithms allow complex

and collective behaviours to emerge from local behavioural rules. A well-known rule-based

swarm behaviour is flocking [107], which roughly imitates the group flight behaviour of birds

in nature. Since each bird cannot pay attention to every other flockmate, a simulated boid is

similarly constrained, and follows a set of local rules in order of decreasing precedence:

1. Collision avoidance: avoid collisions with nearby flockmates.

2. Velocity matching: attempt to match velocity with nearby flockmates.

3. Flock centring: attempt to stay close to nearby flockmates.

With each boid practising these rules, they flock as a scalable flock, and split apart to go

around an obstacle. Werkel et al. [138] designed sets of movement rules from observation

of the motions of mound-building termites. When the rules are executed by each robot in

a decentralised manner, the group collectively constructs buildings of desired structures

like ants. Apart from rule-based algorithms, Finite State Machine (FSM) is also a way

to design swarm robot controllers, for example, Soysal and Sahin [121] designed a FSM

with probabilistic transitions between four states which allows swarm robots to display

the aggregation behaviour observed in social insects and mammals. Physics-based control

methods for swarm robots are inspired from natural physics laws that utilise virtual forces,

potential fields etc. [53, 122]. These methods allow robots to avoid collision and collectively

form patterns. Either inspired from biological or physical systems in nature, the design of

such swarm robot control methods require long times of observing natural systems, followed

by manual and iterative development and modification to the algorithm to achieve the desired

behaviours.

20 Related Work

These rule-based methods or manually developed methods are good for simple tasks, but

can become too difficult for humans to design and tune for complex problems. There are

holistic approaches that can automatically generate a control strategy for a problem, and they

can be classified into two categories: evolutionary robotics and multi-robot reinforcement

learning [12].

Evolutionary robotics [94] uses evolutionary computing techniques to iteratively evolve

the parameters of the controllers, for example, to evolve parameters for virtual force law

based controllers [41] and to evolve parameters for neural networks that act as controllers

[1, 31, 123]. These evolutionary algorithms allow robots to generate desired behaviours, such

as obstacle avoidance [41], pattern formation [31] and self-assembly [1]. The evolutionary

methods have a few drawbacks: they are essentially black-boxes and the generated controllers

are difficult to understand; they are computationally intense and require a large number of

iterations in simulation to generate behaviours, and the complexity of the resulting behaviours

can often be achieved by designing them by hand [12].

Multi-robot reinforcement learning has achieved a lot of success in developing good

policies to solve problems, however most of the the work has been focused on centralised

multi-robot systems [27], robots with shared memory or observations [140], or systems

where there exists an “observer” that has access to the global states [45]. These methods are

not applicable to decentralised multi-robot systems. For completely decentralised robotic

systems, reinforcement learning states are representations of the local sensor observations,

rewards for reinforcement learning are local rewards obtained by each robot, and the action

space is made up of individual robot control actions instead of the joint action space for all

robots. However, most existing multi-robot reinforcement learning algorithms are not fully

decentralised, instead using the “centralised training, decentralised execution” paradigm [72].

However, in real-world robotics applications, the simulation model or platform is not always

available for centralised training.

2.4 Swarm Robot Coordination 21

On top of not having much success with generating complex behaviours, the automatic

methods are specifically evolved or trained for a particular task and environment. They

cannot deal with change in the environment and fail to generalise to unseen scenarios.

In summary, holistic approaches for multiple robots do not deal well with increasing

complexity of the task, especially with unknown or dynamic environments. Designing

such algorithms can become too hard for humans. On the other hand, with behaviour-

based methodologies, different robot behaviours can contribute to solving different problems

or different parts of a problem. When the problem becomes complex, one can construct

strategies from compositing behaviours instead of manually developing more and more

complex control strategies.

In the next section, we will review methods that achieve objectives by selecting from a

set of behaviours and sequencing them to solve problems.

2.4.1 Behaviour-based Methods

Behaviour-based methods are often built on a set of already established robot behaviours,

especially the behaviours that contain rich domain knowledge.

For a single robot, there are approaches that use behaviour tree [78], behaviour net-

work [93] etc. to solve complex problems by sequencing simple behaviours. With online

learning, these algorithms can solve problems in dynamic environments, but they are tailor-

designed for each problem, not directly transferable to other tasks or multiple robots.

Hoff et al. [43] compared a gradient-based foraging behaviour, an area-sweeping foraging

behaviour, and a behaviour switching algorithm that adaptively switches between the two

foraging behaviours. All three behaviours are on a colony level which means that all robots

collectively exhibit a behaviour, and the behaviour switching is done by keeping track of a

decreasing value synchronised through broadcasting. Although the individual behaviours

have shown advantages in some scenarios, the behaviour switching algorithm has the highest

22 Related Work

overall success rates across a range of environmental layouts. This shows that compositing

two foraging behaviours makes the swarm more adaptive and the control method more

generalisable. In [89] Nagavalli et al. proposed the problem of swarm behaviour sequencing,

which aims to find the sequence of swarm behaviours for robots to collectively perform that

would maximise the objective function value. A best-first search method has been shown

to autonomously generate behaviour sequences for a human operator to execute in a known

and static environment. When the environment changes, it relies on the human to manually

update the algorithm with new environmental information and calculate new solutions, and

lacks the ability to automatically adapt to changes in the environment.

Behaviour-based methods have been widely used in self-reconfigurable robot systems.

For example, CONRO used a hormone based approach, which propagates hormone messages

that contain its current behaviour and path. When a module receives a hormone message, it

checks through a set of decision rules to select a behaviour. Since a module’s behaviour is

only selected according to its neighbour’s behaviour, this method is robust to configuration

changes. It is also scalable up to large systems because there are no global identifiers [118].

The rule-based algorithms are limited however by not being adaptive. CONRO robots are not

able to deal with navigation in a dynamic or unknown environment, unless the rule set can be

updated or evolved, and shared with the whole swarm. A more adaptive hormone-inspired

behaviour switching method is described in [62], which allows a self-reconfigurable swarm

to autonomously switch between ”swarming” behaviour and ”modular robot”. This work

uses the concentration of a virtual “hormone” inside a robot to switch the behaviour of a

robot, for instance, the high level of a hormone called ”impatience” in a robot would result

in it trying to assemble into a ”Snakebot” to climb across the wall to explore another area.

Similarly, low level of “impatience” will trigger a behaviour to disassemble and individually

explore the space. The hormone level in a robot is influenced by the environment and physical

constraints. In this project, the authors used XML-based Genetic Programming to evolve the

2.4 Swarm Robot Coordination 23

selection of the impatience value. The algorithm successfully assembled the swarm into a

larger organism that was capable of climbing over obstacles, however the research has found

that the disassembly process could not be handled well by the hormone method. Moreover,

the hormone method with “impatience” can only be applied to exploration tasks, and is not

generalisable to other tasks.

While the above attempts have been made to construct a strategy on the basis of be-

havioural elements, they all lack the ability to adapt in unknown and dynamic environments.

Moreover, these approaches are all manually developed and tailored to specific applications.

Hyper-heuristics, on the other hand, makes it possible to automatically construct a sequence

of heuristics to solve a problem instead of manually designing algorithms for the given task.

In the context of swarm robotics, this design approach can be used to automatically construct

a sequence of behaviours to solve a given problem.

Current literature suggests numerous advantages the hyper-heuristic approach can bring

to decentralised robot systems. Tavares et al. [129] proved in theory and experiments that

selecting heuristics may not find the optimal solution, while given enough time, action

learning methods can. However, learning to choose heuristics has shown advantage in

dynamic environments and large-scale problems because it finds sub-optimal but satisfactory

solutions much faster than methods that learn on actions. Multi-robot systems have a large

action space and/or state space, and the learning speed can be the bottleneck for the feasibility

of a robot system. This is because robots act in real-time and cannot afford potentially

thousands of iterations of training. Training time is also associated with consumed energy and

cost. Any reduction in training time can be a great benefit to multi-robot groups, especially

when the number of robots is large. Hyper-heuristics have also shown effectiveness in

tracking changes in the environment and can adapt quickly, as suggested by Kiraz et al. [56]

in addressing dynamic optimisation issues. Furthermore, hyper-heuristic algorithms are

more transparent in terms of the internal mechanics of the strategy comparing to other

24 Related Work

automatically generated strategies, because the logic of their heuristics are fully known. This

can make the hyper-heuristic generated behaviours easier to explain.

Therefore, this thesis will explore how the hyper-heuristic approach can be used to solve

swarm robot problems by sequencing swarm robot behaviours, so that the swarm robotic

coordination and control methods can enjoy the benefits of hyper-heuristics, in particular the

automatic generation of heuristic sequences, and the generality to apply to unseen scenarios,

because they enable robots to perform tasks in unknown and dynamic environments.

2.4.2 Surface Cleaning Robots

The swarm robotic application area for verifying the use of hyper-heuristics is cleaning the

outer surface of buildings where multiple surfaces exist. This application is chosen because

such environments are complex, and require self-assembling behaviours which have been

particularly difficult for decentralised robots to perform.

Surface cleaning robots have already existed for more than a decade, however none of

them have earned more popularity than human cleaners. This is because the existing robotic

systems are able to clean individual surfaces, such as a window or a wall segment, but with

serious limitations, which make them impractical in many real-world multi-surface cleaning

applications.

The world’s first facade cleaning robotic system was proposed in [10], and was specifically

designed for the central building of Leipzig Trade Fair, Germany. It cleans the surface while

hanging on the vertical surface through a trolley installed on the roof. There are elevators on

both sides of the trolley to move the robot up and down in order for it to perform cleaning

actions. A similar design for a semiautomatic SkyScraper facade cleaning robot is proposed

in [9], where the robot is held by a wire rope and has vacuum suction legs to maintain contact

with the facade surface. The robot is able to perform automatic cleaning but a human operator

is needed to control and adjust the robot movement. Following these early explorations,

2.4 Swarm Robot Coordination 25

(a) Whole Windows Cleaning Robot (b) Robot movement

Fig. 2.2 “SkyScraper-I” [46]

autonomous facade cleaning robots were proposed. Figure 2.2(a) shows an autonomous

whole-window cleaning robot that clamps onto the window frames. There are two rollers

installed on the roof of the building to adjust the length of the supporting rope, and as the

robot moves from one window to another, a squeegee moves up and down along the central

rod to clean the window, as shown in Figure 2.2(b) [46].

Sky Cleaner 3 has a similar design, it operates on a hanging cable and a ground supporting

unit, and by following a boustrophedon motion, it is able to clean glass walls with brushes and

water [145]. All these robots are able to move on multiple surfaces with the help of tethering

cables, so that they are able to clean the whole building. However there are serious limitations

that make them impractical in cases such as tall buildings and irregularly shaped surfaces.

This is because some buildings with unusual shapes require frequent repositioning of the

cabling system, which can be cost-intensive and time-consuming. The cables also caused

another problem, which is scalability. The existing facade cleaning robots are applicable

for cleaning small building facades, but not efficient for skyscrapers, because a single robot

would take too much time to clean them. The tethering system and power cables prevent the

26 Related Work

existing facade cleaning robots from working in groups, as their support cables obstruct one

another.

There are cable-free robots, usually small in size and for domestic use [69, 47, 85, 20].

They all use vacuum suction cups to adhere to window surfaces, because controlling the

vacuum level only needs a simple PID controller with a pressure sensor. Rotating micro-fibre

cleaning pads with no cleaning fluid are often used in these robots too, so they don’t need

water or drying process. A dirt sensor is also proposed in [47], an array of pairing LEDs

and phototransistors are installed on the bottom of the robot. By measuring the voltage

drop on the phototransistors, they can tell clean glass from dirty glass, which will reflect

more IR. However it should be noted that this method does not always work because if

posters or other non-transparent objects are attached to the inner surface of the window, the

voltage would still drop, and cause a dirty region to be detected where there is none. These

vacuum window cleaning robots are commercially successful and are popular for domestic

use. HOBOT-188, for example, uses rotating micro-fibre cleaning pads to clean the glass

surface. Its two cleaning pads also act as legs so that HOBOT-188 is able to move forward on

a vertical surface through alternate motion of the two legs [42]. Windoro is another window

cleaning robot pair that is able to clean both sides of a window since the inner and outer units

are magnetic [19].

In summary, large surface cleaning robots can clean multiple surfaces autonomously, with

limited feasibility on irregular shaped buildings and surfaces, while small surface cleaning

robots can fit in a wider range of surfaces, but are likewise limited because they cannot move

from one surface to another by themselves. To date, no surface cleaning robotics system has

utilised self-assembling robots for the task.

2.4 Swarm Robot Coordination 27

2.4.3 Self-assembling Robots

“Self-assembling is the autonomous organization of components into pattern or structures

without human intervention” [139]. There are many instances of self-assembling behaviours

that exist in nature, for example, molecules self-assemble into bilayers, bacteria self-assemble

colonies with different patterns, and fire ants self-assemble into rafts to survive floods [86].

The idea of self-assembly has been adapted to robotics: the first self-organising robotic

system was built in 1990, named CEBOT [35]. They are modular robots with a hooking

mechanism and are built to work inside tanks because of their structural flexibility. PolyBot,

as described in [142], was created using similar concepts but was the first system that

demonstrated a heterogeneous self-reconfigurable swarm. It is composed of two types of

modules, one called a segment which has 1 DOF and 2 connection ports, and one called

a node which is rigid and has 6 connection ports. PolyBot is able to self-assemble into

a “snake”, a rolling track, a four-legged “spider”, etc. and perform the corresponding

locomotion. As a benefit of having this heterogeneity, PolyBot allows for more types of

topological configurations than CEBOT. Homogenous modular robots also have the potential

to form heterogeneous swarms if different topological configurations are allowed. CONRO,

which was built in 2004, is a chain-type homogeneous robot system that has a distributed

control system. A CONRO robot has two degrees of freedom, a yaw of 60° left and 60° right,

and a pitch of 90° downwards and 30° upwards. It carries two batteries, one STAMP II-SX

micro-controller, two servomotors and four docking connectors. Each connector has a pair

of infrared transmitters/receivers to support communication as well as docking guidance.

With this hardware setup, various configurations can be formed by CONRO robots, such as a

quadruped, and each of them can perform the corresponding gait control through a centralised

controller on a remote host using a master-slave approach. Kilobots are self-assembling

thousand-robot swarm robots that are designed to auto-generate any given complex shapes in

a distributed manner [114]. While the target shape is given to all Kilobots in the form of a

28 Related Work

bitmap, this research proposed an edge-following algorithm that each robot follows to find

and move to their own location. This collective behaviour allows the swarm to form any given

shape, but the shape needs to be determined by a human operator or other controllers. [91]

approaches the shape generation problem by seeking inspiration from chemical reactions,

where stochastic robots with different connection point layouts move randomly and robots

only connect with the matching ones.

M-TRAN III are distributed modular robots that run pre-determined and open-loop

programs in parallel [61]. An M-TRAN module comprises two blocks and a link which

allows them to rotate ±90° about their axes. The two blocks have the same shape but different

gender. A female block can allow three of its surfaces to mechanically connect to counterparts

of a male block. By following a set of predefined commands such as “rotate link motors” and

“remote connection”, the robots change their configuration in a distributed way and are able

to climb steps. Until this point, research in self-assembling robots is focused on hardware

concepts and implementation, while the control aspects are simple, deterministic, and only

work in certain static and known environments.

The REPLICATOR project presented in [64] has shown robots with a more sophisticated

sensory system and control algorithms compared to the previous self-assembling robot sys-

tems. REPLICATOR robots can perform laser-based exploration to detect other robots, and

use camera based object recognition to align with each other. Control-wise, REPLICATOR

robots cycle through a series control phases, which allow robots to switch between the

“swarm mode” and the “organism mode”. The aim of the robots is to reach a goal point,

specifically a power source. When in “swarm mode”, as shown in Figure 2.4(a), the robots

perform a random walk individually, map the environment and aim to detect power sources.

If there is a power source that is not within reach of individual robots, the robots will make

the decision to assemble and perform 3D locomotion as shown in Figure 2.4(b) to reach the

power source. [71] has introduced a behaviour-based control algorithm for REPLICATOR

2.4 Swarm Robot Coordination 29

Fig. 2.3 REPLICATOR Robot finite state machine (FSM) for autonomous morphogenesis
controller. Conditions causing state transitions: 1 – docking message received; 2 – collision,
or no docking message received; 3 – docking beacon signals detected; 4 – aligned and ready
to dock; 5 – disassembly required; 6 – undocking completed; 7 – expelling message received,
or docking signals lost; 8 – docking completed; 9 – recruitment required; 10 – recruitment
completed [71]

robots, and the behaviours are selected using a finite state machine (FSM). As shown in

Figure 2.3, states are behaviours that facilitate assembling and disassembling of the robots,

and the decision-making process for transitions 1 and 5 (to dock and to disassemble) is not

autonomous. The aim of the algorithm is to assemble robots into a pre-defined configuration.

The limitations of this FSM-based control are: 1. the behaviours are more like “phases” in

the self-assembling process than what are commonly known as “swarm behaviours”. Swarm

behaviours are collective behaviours which are usually more complex and flexible; 2. robots

can not autonomously choose which configuration to morph into, or when to morph, which

makes the swarm limited to simple static tasks. [50, 51] summarised the REPLICATOR

project, showing that in the development of this self-assembling swarm, hormone-based

systems and gene-based evolutionary algorithms were used to generate pre-defined target

robot configurations, sensor-motor coordination and fusion formed the basis of the modular

30 Related Work

(a) Swarm mode (b) Organism mode

Fig. 2.4 Two REPLICATOR modes [64]

robotic cognitive system, and a distributed software framework was designed to achieve

distributed control. The project ended with a focus on hardware assembly and locomotion

control, leaving open questions, especially if modular robots can adaptively select which

configuration to morph into according to the given environments and tasks.

The Swarmanoid project has partially answered that question by using behaviour net-

works, while the low level control and locomotion are evolved using evolutionary algorithms

and neural networks. [32] first presented the hardware design and the self-assembling mecha-

nism of a robot swarm, “swarm-bots”. As shown in Figure 2.5(b), the robots are differential

wheeled robots with grippers to connect to other robots. Figure 2.5(a) shows the concept

design of swarm-bots connecting into a line and bridging across a gap. [31] proposed a

neural-network approach to evolve robot controllers together so they cooperatively move

forward as a connected organism, such as a “snake”, while avoiding obstacles. [30] presented

a heterogeneous swarm where foot-bots are ground-moving differential wheeled robots,

hand-bots have grippers for fetching objectives and eye-bots have cameras for navigation and

mapping. Figure 2.5(c) demonstrates a behavioural network that switches between different

robot behaviours to achieve a book-fetching task. As can be seen, this method works even

2.4 Swarm Robot Coordination 31

(a) swarm-bot (b) bridge

(c) search-and-retrieval behavioural control

Fig. 2.5 The swarm-bots [32]

if the target objects and obstacles are moved, or are placed in unknown positions. This is

because network conditions allow eye-bots to continuously locate the shelf and the book, so

the other robots can adaptively adjust their behaviours.

In the scope of self-assembling robotic research, autonomous docking and moving as an

assembled entity are well-researched problems. However, all the existing systems require

manual input, such as a human operator or a control station, to determine and inform the

robots when to start assembling/disassembling and what behaviour to perform for different

32 Related Work

problems and scenarios. This gap opens the opportunity for hyper-heuristic approach to be

used to automate the process.

2.5 Reinforcement Learning

Our study utilise reinforcement learning for heuristics learning, hence relevant literature

is reviewed in this section. Reinforcement learning learns through interacting with the

environment. A policy is to be learned for finding the maximum long term reward [126].

A learning agent in reinforcement learning is guided by a reward signal, which defines

the goal of the problem. The agent interacts with the environment to receive rewards, and

the amount of reward received by the agent is influenced by the actions the agent takes.

The goal of the reinforcement learning agent is to maximise the long term reward. Many

reinforcement learning problems have been successfully modelled by Markov Decision

Process (MDP), which has been the standard formalism for learning sequential decision

making [135]. The elements of MDP include states, actions, state transitions and a reward

function. The environment in reinforcement learning problems is the real-world or simulated

world the agent lives in, while a state s ∈ S represents a configuration of the environment

that the agent can sense. A state can be an exact copy of the environmental information, for

example, raw images of the Atari games used in [87], or an abstract representation of the

perceived information about the environment [108].

As shown in Figure 2.6, as an agent takes an action a ∈ A, it causes state transitions to

happen. At a given state, some actions are legal and some are illegal. By applying an action

a to state s, the system makes a transition from s to s′, the transition function is denoted as

T : S×A×S, and the transition probability is p(s′|s,a). The reward function R defines the

reward received being in a state. A policy defines how the machine learning agent takes

actions at a given state, and is denoted as π : S→ A. The optimal polity π∗ : S→ A gives the

maximum long term reward.

2.5 Reinforcement Learning 33

Fig. 2.6 The agent-environment interaction in reinforcement learning [126]

A value function is the expected return from a state by following a policy π , using the

infinite-horizon:

V π(s) = Eπ{
∞

∑
k=0

γ
krt+k|st = s} (2.2)

where γ is the discount factor. Q-learning [137] is an important model-free reinforcement

learning algorithm, which uses the state-action value function:

Qπ(s,a) = Eπ{
∞

∑
k=0

γ
krt+k|st = s,at = a} (2.3)

This algorithm does not require a model of the environment; in other words, the state

transition function can be unknown from the start. Q-learning relies on the agent exploring

the environment, interacting with the environment, and iteratively gaining a better estimate

of the state-action value function. The optimal value function is defined as:

Q∗(s,a) = E[R(s,a)+ γ max
a′

Q∗(s′,a′)] (2.4)

The optimal policy π∗(s) is defined as the policy that would give the maximum long term

reward, and can be found using the Q∗(s,a) function:

π
∗(s) = argmax

a
Q(s,a) (2.5)

34 Related Work

Bellman equation [5] gives a recursive form of the Q-function which allows the Q-learning

algorithm to iteratively find the optimal value function regardless of what policy is used in

the Q-function update. Given a MDP tuple (st , at , rt+1, st+1):

Q(st ,at)← (1−α)Q(st ,at)+α(rt+1 + γ max
a

Q(st+1,a)) (2.6)

To explore the environment and optimise the Q-function, the machine learning agent needs

to balance exploration and exploitation. A common method is using the ε-greedy algorithm

for taking actions; and the Q-learning algorithm with ε-greedy is detailed in Algorithm 1

with infinite horizon. The state-action value function Q(s,a) is first initialised arbitrarily. An

action is taken at each step, and the action is selected according to current policy (on-policy)

as shown in line 4 with probability (1-ε), otherwise the action is selected randomly. By

taking an action, the agent is brought to the next state and receives reward r. In line 9, the

Q-function is updated with the received reward and the state information. This process is

iterative and Q(s,a) becomes more and more accurate over more training iterations.

Algorithm 1 Q-learning

1: Initialise Q(s,a) arbitrarily
2: for each step do
3: if randomNumber(0,1) > ε then
4: a← argmaxa Q(s,a)
5: else
6: Choose a random action a
7: end if
8: Take action a, observe r,s′

9: Q(s,a)← Q(s,a)+α[r+ γ maxa Q(s′,a)−Q(s,a)]
10: s← s′

11: end for

Q-learning has been widely used in robotic systems, including single robots and multi-

robot systems. Most explorations and successes of Q-learning have been in the domain

of single robot control. For instance, a 7-DOF robot used reinforcement learning to flip

2.5 Reinforcement Learning 35

pancakes in the air and catch them with a frying pan [58], which showed that Q-learning is

able to cope with highly-dynamic, real-world tasks. Q-learning has also been used widely

in enabling robot mobility. [119, 57, 102] has shown that Q-learning allows legged robots

to learn gait and locomotion from scratch. [59] proposed a neural controller that uses

reinforcement learning to allow a wheeled robot to avoid collisions while navigating in an

unknown environment with obstacles. More examples of the application of reinforcement

learning on single robots include robot navigation [113, 127] and many others. However,

having success in learning for single robots does not imply that the method works for multiple

robots, therefore single robot Q-learning will not be extensively discussed.

Regarding multi-robot systems, Q-learning has been applied to a narrower range of appli-

cations than single robots. [27] presented a multi-robot Q-learning method to dynamically

adjust the team size according to the layout of obstacles. The task objective is to achieve

more coverage on a surface with obstacles, the states represent coverage efficiency, and the

three actions correspond to setting a voting parameter to three different values, where the

value of the voting parameter is the deciding factor of the team size. All robots perform a

leader-referenced flocking behaviour and move in V-shapes of different sizes. Results show

that with Q-learning for the team size, the coverage efficiency is improved by 5-10%. [72]

proposed a deep reinforcement learning method to learn collision avoidance, where robots

are trained on a shared policy with local observations. This approach follows the centralised

training, decentralised execution paradigm. [136] compared single-agent Q-learning with

Team Q-learning in a cooperative box-pushing task. The paper has shown that the total

reward is higher using single robot action space instead of a joint action space for all robots,

and each robot having its own policy gives a better performance.

In a decentralised setting, the environment is partially observable and non-stationary in

the view of each agent. [34] has shown that with the help of local communication between

robots, multilayered reinforcement learning is effective for a robot to avoid collision with

36 Related Work

obstacles in the environment and other moving robots. The multilayered reinforcement

learning approach follows a learning curriculum of four stages where the output of a previous

stage is passed into the next stage as inputs. The limitation of a multilayered curriculum

is that the curriculum and learning structure needs to be manually designed and it is only

applicable to the intended applications, in this case collision avoidance.

[97] presented a deep reinforcement learning method to allow robots to learn from local

experiences given shared rewards for all agents. Reusing knowledge in the learning process

through explicit or implicit communication is a common approach to yield shorter and

more reasonable training time in reinforcement learning. Agents learn from previous tasks,

demonstration, imitation and so on [25]. A multi-agent deep reinforcement learning method

for optimal link discovery and selection is mentioned in [140]. Each agent samples its training

data and pushes them to a mutual memory pool for mutual learning. Advising methods

work on asking other learning agents for advice, and avoid the need for shared memory,

reward sharing, state sharing as well as large amounts of data transfer [24]. Additionally, [18]

proposed a decentralised deep learning method for collision avoidance. Deep reinforcement

learning in multi-robot systems will be further discussed in detail in Section 2.6.

While all the above multi-agent reinforcement learning methods operate in the space

of actions, [141] proposed a multi-robot reinforcement approach that is based on learning

rules to segment the continuous state-space. In this paper, each rule is for classifying a

local region of the state-space into an action, and through interacting with the environment

and updating the rules according to reward, the robots learn to autonomously segment the

continuous state-space, and perform a cooperative carrying task. In this method, the robots

learn to cooperate from continuously predicting the other robots’ postures and use them as the

input for reinforcement learning. This means that the number of teamed-robots needs to be

known in advance, and the number can not change at any time of task execution. Moreover,

2.6 Deep Reinforcement Learning 37

the state-space classification method in this research is not able to handle sophisticated

cooperative behaviour in complex environments.

The assignment of rewards in a distributed robotic system is discussed in [79, 80], where

the authors find that simple local broadcasting of sensory information and reward can greatly

help distributed reinforcement learning in noisy and dynamic environments. The research

was carried out using two robots, and did not show how it scales to larger swarms.

2.6 Deep Reinforcement Learning

A recent advancement in reinforcement learning is the integration of deep learning, as deep

learning has boosted the field of machine learning, and achieved ground breaking results in

many fields such as image processing, computer vision, games and robotics. Deep learning is

a method of representation learning with multiple processing layers, typically with multilayer

neural networks, to learn representations of data with multiple levels of abstraction [63]. To

train the multiple layers of neural networks, backpropagation [115] is the common method,

where the gradient of an objective function is computed with respect to weights in each

layer, and updates weights iteratively. With sufficient data, deep neural networks are able to

automatically learn features that can be better than hand-crafted feature representations.

Fig. 2.7 Deep Reinforcement Learning [4]

Reinforcement learning greatly benefits from deep neural networks, because they are

powerful at function approximation and representation learning [4]. In traditional reinforce-

ment learning, linear function approximators are used to model the action-value function

38 Related Work

Q(s,a), while in deep reinforcement learning (DRL), deep neural networks are used as the

non-linear function approximator. They act as efficient and accurate policy approximators

in many reinforcement learning problems, making complex policies that were previously

expensive to represent tractable. Moreover, less or no feature engineering is required in deep

reinforcement learning with the use of deep neural networks because they are able to use raw

data as inputs and automatically learn useful feature representations.

The process of Deep Q-learning is shown in Figure 2.7. Similar to other reinforcement

learning, the machine learning agents learn to select actions according to the current state

based on a reward signal from the environment. The defining feature of deep reinforcement

learning is that it uses a neural network to output Q-values for actions while taking pre-

processed state representations as neural network inputs. In Q-learning, the optimal value

function is as defined in Equation 2.4, and deep reinforcement learning uses neural networks

as action-value function approximator, which is defined as:

Q(s,a;θ)≈ Q∗(s,a) (2.7)

where the function approximator Q(s,a;θ) is a neural network (Q-network) with weights

θ . The Q-network can be trained by minimising the loss function Li(θi) at each training

iteration i. The loss function is defined as:

Li(θi) = E[(yi−Q(s,a;θi))
2] (2.8)

yi = E[r+ γ max
a′

Q(s′,a′;θi−1)|s,a] (2.9)

The loss function represents the mean square error between the neural network prediction

and the target sequence yi.

Mnih et al. [87] has described a deep reinforcement learning algorithm, detailed in

Algorithm 2, where experience replay is used to stabilise and smooth training [65]. The

2.6 Deep Reinforcement Learning 39

replay memory buffer D is initialised with a fixed capacity N, and the action-value function

Q is initialised with random weights. Since the algorithm is primarily used to play Atari

games, the states are preprocessed to be a stack of 4 consecutive frames of the down-sampled

grey-scale images. The preprocessed sequence is represented as φ , and is the input to the

neural network. For episodic tasks, the actions are selected with ε-greedy exploration. Deep

Q-learning is off-policy because with probability ε , actions are randomly selected instead of

following the policy. The agent then executes the action, observes the state, preprocesses

the state and stores the tuple (φt ,at ,rt ,φt+1) into the experience replay memory D. The

optimisation starts when there is enough experience in the memory, and when the experience

exceeds the replay memory N, early experience is discarded. At each training step, a mini-

batch is randomly sampled from the replay memory and used to optimise the neural network

according to Equation 2.8. Since the neural network is supposed to predict the Q-values, the

target of the network is calculated using the reward r j received at the sampled iteration j and

the discounted future reward using the prediction from the current neural network. Loss Li is

the mean square error of the actual Q-values predicted by the current neural network and the

target yi. After a number of learning steps, the neural network becomes better at predicting

the Q-values. [88] improved the stability of learning by introducing a target network. The

target network is only used for estimating the target y j, and the weights are copied from the

online network every τ steps, but in other steps remain fixed.

Research in [134] has found that the deep Q-learning algorithm in [87, 88] suffers from

substantial over-estimations (proposed in [131]) of the value of the current policy. This

overestimation causes the learning to be unstable and the performance to drop significantly.

The solution to this is to decouple action selection and action evaluation, as [134] suggested,

where the policy is evaluated by the online network, and the Q-values are evaluated by the

40 Related Work

Algorithm 2 Deep Q-learning with Experience Replay [87]
1: Initialise replay memory D to capacity N
2: Initialise action-value function Q with random weights
3: for each episode do
4: Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
5: for t = 1,T do
6: With probability ε select a random action at
7: Otherwise select at = maxaQ∗(φ(st),a;θ)
8: Execute action at in emulator and observe reward rt and image xt+1
9: Set st+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1)

10: Store transition (φt ,at ,rt ,φt+1) in replay memory D
11: Sample random mini-batch of transitions (φ j,a j,r j,φ j+1) from D
12: if φ is terminal then
13: y j = r j
14: else
15: y j = r j + γmaxa′Q(φ j+1,a′;θ)
16: end if
17: Perform a gradient descent step on (y j−Q(φ j,a j;θ))2

18: end for
19: end for

target network. This means the target yDDQN
t :

yDDQN
i = E[r+ γQ(s′,argmax

a
Q(s′,a;θi);θi−1)|s,a] (2.10)

It has been shown in various Atari games where DQN is unable to keep improving, double

DQN is able to reduce over-estimations, stabilise the learning process, and find significantly

better policies.

In solving a range of Atari games, Deep Q-networks (DQN) are able to stably represent

complex policies, and DRL has achieved super-human performance in all Atari games

[87, 88]. In the field of robotics, although the application of DRL has only started in recent

years, it has quickly been found to be effective in many applications. [127] has shown that

deep reinforcement learning can be a mapless motion planner for robot navigation. The state

representation is a 14 dimensional vector made up of raw laser range sensor readings, the

velocity and the relative position of the target point to the robot, and the network model is a

2.6 Deep Reinforcement Learning 41

multi-layer dense neural network. This paper has verified that with the raw sensory feedback

from the robot, deep reinforcement learning allows a robot to robustly navigate to goal points

in unknown and complex environments.

Deep Q-learning has also been applied to decentralised robot control. Chen et al. [18]

discusses multi-robot collision avoidance in a decentralised and non-communication setting.

This work trains a multi-layer fully-connected network offline using perfect information of all

agents, where the neural network inputs are vectors of all robots’ observations concatenated

into “joint states”. In many real-world problems, the environment is not fully observable,

therefore the assumption of perfect information is unrealistic. This is particularly the case

in multi-robot systems, because each robot only has direct access to their own observations,

and the information exchange between robots is greatly limited by bandwidth and distance.

Under the partial observability assumption, the commonly used deep reinforcement learning

paradigm for multiple agents is centralised training, decentralised execution. An example

of this is [72], where robots are trained centrally on a shared policy from all agents’ local

observations and executed in a distributed way. During both training and performing the task

of navigation, robots only have access to local observations, and the environment is unknown

before the training. Results have shown that the trained deep neural network controller is

able to develop a stable and robust collision avoidance policy for multi-robot navigation.

Centralised training benefits from sharing experience or parameters across agents [128]. In

[33], agents share deep Q-network parameters and pass gradients across agents. In learning

communication and language, this has shown to have learned better policies or have learned

faster than independent Q-learning, where each agent learns their own network parameters

and treats the other agents as part of the environment. The disadvantage of independent

Q-learning is due to poor cooperation between agents, when other agents are treated entirely

as part of the environment, independent Q-learning agents only learn to cooperate passively

[128].

42 Related Work

In contrast to existing approaches, heuristics facilitate cooperation and communication

between robots. When Q-learning is used to learn a heuristic-based policy, robots still

cooperate and the quality of cooperation is a deciding factor of how good a heuristic is at

a given state. Therefore, the benefit of cooperation can be preserved even though the deep

Q-learning of each robot is independent.

2.7 Summary

This chapter reviewed the hyper-heuristic method in literature and introduced the design

idea of hyper-heuristics: automatically select heuristics from a pool and apply heuristics

to solve the problem iteratively. Since the multi-robot action and state space can be huge,

no existing coordination and control method allows swarm robots, especially those that can

self-assemble, to perform complex tasks in unknown and dynamic environments without

human intervention. By reviewing the behaviour-based multi-robot coordination methods in

literature, we proposed to address this gap using hyper-heuristics, which has been proved

to be effective in many applications, but not yet in multi-robot coordination. The rest of

the thesis will explore and demonstrate how the hyper-heuristic approach can be used to

select behaviours in swarm robots and benefit the task performance in unknown and dynamic

environments.

After identifying the main research questions, this chapter gave a background of the

application area, building surface cleaning, where multiple surfaces exist. There is no existing

robotic cleaning system that has used self-assembling robots to achieve sufficient flexibility

to clean in complex environments, and a coordination method for them to work on a range of

unknown surfaces with dynamic obstructions is so far missing.

A review of machine learning methods that have been used in hyper-heuristics was also

presented as background for methods that can be used in swarm robotics.

Chapter 3

Swarm Robot Environment

This section introduces the robot model used in this research, and the simulation and ex-

perimental setup. The aim of the simulations is to verify if the hyper-heuristic algorithms

proposed in this thesis are applicable in real-world swarm robotic systems. The Webots

simulator developed by Cyberbotics Ltd. [84] is chosen because it supports real-physics

3D simulation of multi-robot systems. In this chapter, we introduce the simulator, the

self-assembling robots and the environments used for experiments.

3.1 Simulator

Webots simulator was developed by Cyberbotics Ltd. in 1998, and it was built based on

the OpenGL 3D library [83]. The accurate physics simulation is achieved using the Open

Dynamics Engine (ODE) library. This allows Webots to simulate robots locomotion, sensors

and compasses etc. The common elements of constructing a robot, such as sensors and

wheels, are pre-built components that can be directly used.

The Webots simulator provides an interface for constructing worlds and robots, as well

as for programming controllers for robots and the environment. As shown in Figure 3.1,

the left window lists the components included in the simulation world. The worlds in this

44 Swarm Robot Environment

research consist of a ground with boundaries, robots and lighting. Webots provides a module

“DifferentialWheels” which has the physical simulation of two wheels and their motors.

This module can be installed on a robot model, and the locomotion can be programmed by

setting the motor speed. A robot is based on the “DifferentialWheels” module, and Webots

simulator provides sensor modules such as “DistanceSensor”, “Camera” and “GPS” that can

be installed on the robot. In the simulator, the simulated sensor readings can be read by the

robot control program, which imitates the way an equivalent real-world robot would operate.

The sensor readings are all simulated with real-world physics. A bounding box of each

object (for example, robots, ground and obstacles) can be defined, and collision is handled

by Webots’s ODE physics simulation which prevents simulated objects from intersecting

with each other. All the physics objects in this project are simulated as solids that cannot

intersect with each other.

The coordinate system in the simulator is (x,y,z) where the x and z axes forms the

horizontal plane of the world, and the y axis points vertically upwards. In this thesis, for

simplicity, if there are only two dimensions involved in the calculations, we will use x and z.

The middle window visualises the simulation environment, and the right window is

the programming window, which shows the program for robot and ground controllers.

The Webots simulator gives each robot a programmable controller which emulates the

microcontroller that would be installed on a real-world instance of the robot. This enables

each robot to operate individually and therefore allows distributed control of the swarm. The

programming language used for the robot controllers is C++.

3.2 The Self-assembling Robots

The robot model is based on the non-holonomic robots in [143], as shown in Figure 3.2,

and extended with cleaning and self-assembling capabilities. Each robot is equipped with

differential wheels, a dirt sensor, obstacle sensors, wireless communication, suction cups,

3.2 The Self-assembling Robots 45

Fig. 3.1 The self-assembling robot state representation

cleaning wipes and a gripper arm to connect to a neighbouring robot. The robot model is as

shown in Figure 3.2(a) and Figure 3.2(b). The radius of a robot is 0.3m.

(a) Robot Model (top) (b) Robot Model (side) (c) Robots Connected

Fig. 3.2 The Self-assembling Robots

3.2.1 Robot Locomotion

The robots are differential wheel robots, which means the speed of each wheel can be set

separately. As shown in Figure 3.3(a), each wheel can move forward and backwards, the

46 Swarm Robot Environment

(a) (b)

Fig. 3.3 (a) Differential drive: two wheels and a caster (b) The distance sensors

caster rotates passively, and the when both wheels move forward or backwards at the same

speed, the robot moves forward or backwards in a straight line. When the two wheels move

at different speeds, the robot steers. The relationship between the robot linear velocity v,

angular velocity ω and the robot left wheel speed vle f t , robot right wheel speed vright is:

vright =
2v+ωL

2R
(3.1)

vle f t =
2v−ωL

2R
(3.2)

where L is the distance between two wheels, and R is the radius of the wheels.

The simulated robot hardware configurations aim to emulate the robots in [143]. The

robots are designed to clean at the maximum speed of 0.0745m2 per second. The table in

Figure 3.1 contains the configuration of the simulated robots. To model cleaning in the real

world, robots collect 14.9% of the available dirt each time when travelling at the maximum

speed of 0.5m/s.

3.2 The Self-assembling Robots 47

Table 3.1 The robot configurations

Radius 0.3m

Maximum cleaning speed 0.0745m2/s

Maximum linear velocity Vmax 0.5m/s

Maximum angular velocity Ωmax 0.66rad/s

IR sensing range 0.53m

Wireless communication range 200m

Distance between two wheels L 0.4m

Radius of the wheels R 0.167m

Linear velocity multiplier Vmulti 10.0

Angular velocity multiplier Ωmulti 6.0

The robot can be controlled by setting a target, and the control algorithm calculates the

linear and angular velocity v,ω . For example, in Figure 3.4, a robot needs to reach the target

position (xtarget ,ztarget) on the right with a given target orientation, and the difference between

the target and current orientation is θtarget . The target position coordinates (xtarget ,ztarget)

are both relative to the robot’s current position. The robot calculates v and ω according to

Equations 3.3.

48 Swarm Robot Environment

Fig. 3.4 Reaching a target position

derror =
√

x2
target + z2

target

d f orward = derror cosθerror

v =

Vmax, if d f orwardVmulti ≥Vmax and derror ≥ dthreshold

d f orwardVmulti, if d f orwardVmulti <Vmax and derror ≥ dthreshold

0, otherwise

ω =

Ωmax, if θtargetΩmulti ≥Ωmax and θtarget ≥ θthreshold

θtargetΩmulti, if θtargetΩmulti < Ωmax and θtarget ≥ θthreshold

0, otherwise

(3.3)

Where Vmulti and Ωmulti are linear and angular velocity multipliers that reduce the robot’s

velocity when it moves closer to its target.

3.2 The Self-assembling Robots 49

3.2.2 Robot Sensing

The robot sensing devices are listed in Figure 3.6. There are four dirt cameras on the front,

back, left and right facing sides of the robot, measuring the dirt on the ground in a circle

of radius 0.6m extending from the centre of the robot. The sensing area of the dirt cameras

are shown in Figure 3.5, where four cone shaped areas in the front, left, back and right are

covered by the cameras.

Fig. 3.5 Dirt camera sensing area and gap sensor locations

The gap sensors are located on the underside of the robots, as shown in Figure 3.5. The

locations are indicated as g f for the front gap sensor, and gb as the back gap sensor.

A gripper camera is installed on each gripper for alignment. The camera is oriented to

detect the colour of another robot’s body LED if the other robot is properly aligned. The

LED colours indicate different stages of the alignment and connecting process, which will be

detailed in later chapters.

A GPS and compass are installed on each robot for localisation and orientation measure-

ment. The GPS gives the robot coordinates in the simulator as (x,y,z), where the x and the z

axis forms the horizontal plane and the y axis points vertically upward. Twelve IR sensors

are installed for collision avoidance, the locations of which are shown in Figure 3.3(b). The

distance sensing range is 0.53m.

50 Swarm Robot Environment

Fig. 3.6 Robot sensors

3.2.3 Robot Communication

In Webots simulator, an “Emitter” is the device that emulates a wireless transmitter, such

as an RF transmitter and a “Receiver” emulates the RF device that receives the transmitted

information. In Figure 3.6, it can be seen in the component list that two transmitter-receiver

pairs are used: the “CONTROLLER_EMITTER - CONTROLLER_RECEIVER” pair and

“HH_EMITTER - HH_RECEIVER” pair. The reason for having two pairs is to highlight the

independence of the hyper-heuristic layer and the robot control layer. The hyper-heuristic

layer messages are assigned to “HH_EMITTER - HH_RECEIVER”, and the robot control

messages are assigned to “CONTROLLER_EMITTER - CONTROLLER_RECEIVER”.

With this setup the low level robot control algorithms would still work even without the

hyper-heuristic control layer. The transmitted messages have fixed formats, which are shown

3.2 The Self-assembling Robots 51

in Figure 3.2. Voting messages, heuristic-score messages and Q-score messages are for hyper-

heuristic control, therefore are transmitted on different channels of the “HH_EMITTER -

HH_RECEIVER” device. Control messages are for robot communication in low level control

algorithms. The use of each item in the message field will be explained in chapter 4.

Table 3.2 Robot Wireless Message Formats

Message
Type

Voting
Message

Heuristic-score
Message

Q-score
Message

Control
Message

Information
Field

sender ID sender ID sender ID sender ID

is proposing is proposing state start

candidate heuristic byte count Q scores control state

accept/reject proposal heuristic scores reward forward/backwards

weight recipient (optional)

3.2.4 Interaction with Environment

Fig. 3.7 The simulated visual feedback for cleaned area

When a robot moves around the surface, it constantly collects “dirt” from the surface.

This project simulates visual feedback which highlights the cleaned area over the dirty area,

as shown in Figure 3.7. Internally, the dirt is simulated to be distributed evenly as a layer on

52 Swarm Robot Environment

the ground, and the robot collects the dirt underneath as it moves on the surface. This is to

emulate the cleaning wipers and sweeping brushes on the bottom of cleaning robots.

The collected dirt is measured by counting “dirty” pixels in the image within the area

under the robot captured by the dirt cameras. When the robot is in the middle of a gap, there

is no dirt to collect, therefore the dirt measurement of that time step is 0. The robot cleaning

efficiency f (t) can be measured from

f (t) =
∑(LtDt)

T
(3.4)

where Lt is the distance travelled since the last measurement, Dt is the percentage of “dirty”

pixels at the time of measurement t, and T is the total time of measurement.

3.3 Environments

The simulator simulates obstacles and gaps in the environment. All environments are always

large enough for the robots to clean within the time given. This is to prevent robots from

running out of space to clean and affecting the fairness of measurement in comparisons.

While the total area of environments is subject to individual experimental requirements, the

configuration of elements in the environments have four possible types, as shown in Figure

3.8:

• Empty environment: the environment is bounded by walls, and the surface is smooth

and connected. The walls are solid and can be detected by robots’ distance sensors.

• Obstacles environment: the environment is also bounded by walls, and the surface

smooth and connected. This type of environment also has obstacles distributed on the

surface. Obstacles are all cylindrical pillars with a radius of 0.67m, and can be detected

3.3 Environments 53

(a) Empty (b) Obstacles

(c) Gaps (d) Gaps and Obstacles

Fig. 3.8 The environments

by distance sensors. The number of obstacles in the environment is user-defined, and

the obstacles are approximately evenly distributed on the surface.

• Gaps environment: the environment is also bounded by walls, and the surface smooth

and connected. This type of environment also has gaps that separate the environment

into multiple surfaces. Gaps all have a width of 0.67m, which are wider than the 0.6m

width of a robot. If one robot attempts to go across the gap it will fall into the gap, but

with two or more robots connected, they will be able to move onto the surface on the

other side. The gap sensors are able to detect if there is a gap present. The number of

gaps in the environment and the distances between them are variable.

54 Swarm Robot Environment

• Gaps and Obstacles environment: the environment is also bounded by walls, and the

surface is smooth and connected. This type of environment has both obstacles and

gaps which the shapes are identical to those in the previous environment types.

3.4 Summary

This chapter introduced the robot model used in this thesis, which is a 3D simulated robot

model based on the existing non-holonomic robots in [143]. The self-assembling ability of

the robots has been demonstrated through showing the robot gripper setups. Robot sensors

including distance sensors, gap sensors and dirt cameras are set up to facilitate collision

avoidance, gap avoidance and feedback regarding cleaning progress. This chapter also

described the hardware mechanism that robots use to communicate with their neighbouring

robots.

In order to verify the algorithm’s robustness, we prepared a variety of scenarios for testing

in simulation: empty environment, obstacle environments, gaps environments, and gaps &

obstacles environment. These types of configurations cover simple environment, dynamic

environment, multiple surfaces, and complex (dynamic and multiple surfaces) environments.

Chapter 4

The Hyper-heuristic Swarm Robot

Framework

In the field of swarm robotics, manually developing control strategies can be too difficult

for complex and unknown environments. Another approach is to automatically develop

the strategy from a set of swarm robot behavioural elements, as reviewed in Chapter 2.

This chapter addresses the question of how the hyper-heuristic approach can be used to

automatically develop a strategy for swarm robots in unknown and dynamic environments.

We first introduce the methodology of our proposed hyper-heuristic framework that is

designed to coordinate decentralised swarm robot behaviours, followed by a Multi-Armed

Bandit based implementation of the framework which allows the robot group to adaptively

change behaviours, and to assemble and disassemble according to the environment.

The method is verified on the application of surface cleaning with a range of scenarios.

Through simulation and evaluations, this chapter shows that the hyper-heuristic framework is

effective in building a sequence of swarm behaviours for a given task. Online learning in the

hyper-heuristic method has also been shown to improve robot team performance over time.

56 The Hyper-heuristic Swarm Robot Framework

This chapter also introduces group learning strategies that can improve the swarm robot

task performance, which addresses the second research questions of how different learning

strategies can improve the hyper-heuristic framework.

4.1 Methodology

We first introduce the hyper-heuristic methodology that is proposed to coordinate behaviours

of swarm robots. Hyper-heuristics are built on heuristics. They treat heuristics as general

purpose building blocks to be simultaneously and iteratively applied to a problem [116].

Our proposed hyper-heuristic framework combines the idea of “using heuristics to choose

heuristics” with decentralised swarm robot control, and treats swarm behaviours as building

blocks for the hyper-heuristic controller.

The proposed hyper-heuristic controller continuously applies swarm robot control heuris-

tics intelligently to given tasks. The swarm robot hyper-heuristic framework aims to let a

group of robots automatically sequence behaviours in a distributed manner.

A heuristic hu ∈ H is stored in the heuristic repository H = {H0,H1,H2...}. Each

heuristic is a decentralised robot control algorithm that reads from sensors described in

Section 3.2.2, prepares and sends communication messages with other robots, and at each

time step outputs actions au ∈ A. At a time step t, the actions au(t) are generated by a

heuristic, au(t) = Hu(xt ,mt), where xt represents sensor readings and mt represents inter-

robot messages. Every robot u ∈U is a machine learning agent, and by executing actions au,

robots perform collective behaviours.

An overview of the framework structure is given in Figure 4.1. For n robots (u1,u2...un),

each robot first performs initialisation, where a starting heuristic is chosen. Then the robot

takes actions generated by that heuristic. If the termination criteria is satisfied, meaning

the objective is accomplished, then the process stops. Otherwise the robot behaviours are

evaluated against the objective(s) using objective functions. Based on the evaluation result,

4.1 Methodology 57

Fig. 4.1 Overview of the hyper-heuristic methodology for swarm robots.

heuristics then are selected from the pre-defined heuristic repository to construct new ones.

It should be noted that this heuristic construction process uses the selection perturbative hyper-

heuristic approach [101]. Learning can be involved at this stage, where robots remember

and utilise previous experience to collectively improve future heuristic selections. Once a

heuristic is determined for the interval, robots will make local inter-robot communications

and update their heuristics. Robots take actions then enter the next iteration of the process

unless a termination criterion is met.

The framework is designed for multiple robots to perform hyper-heuristic coordination

and learning. There is no centralised control in this framework, and no global knowledge

is required by the hyper-heuristic algorithm. The right part of the framework in Figure

4.1 is domain dependent, meaning that domain knowledge is used in these elements. The

steps on the left are domain independent, which means that they are common for different

problem domains and different heuristic repositories. Domain knowledge is needed to start

and stop the robot swarm, for example, turning on and turning off the robot motors. Domain

58 The Hyper-heuristic Swarm Robot Framework

knowledge is also used for evaluating the performance of a heuristic, since the objective

function is domain-related. In robotics, domain knowledge is usually dependent on the

available sensors and robot communication mechanisms. The heuristic repository contains a

set of low-level heuristics that has been developed from previous experience or knowledge in

the problem domain.

4.2 Multi-Armed Bandit Based Online-learning

To validate the proposed framework in Figure 4.1, we first give a Multi-Armed Bandit (MAB)

based online learning implementation. The method allows swarm robots to be adaptive to

changing environments.

The algorithm design idea follows the system architecture of cooperative multi-agent

hyper-heuristics [98], where each robot is a “Low-Level Heuristic Agent” and the hyper-

heuristic layer selects the next heuristic for robots to apply at the next decision point. All

heuristics are decentralised multi-robot control algorithms that allow robots to cooperatively

perform a task. Since all robots are fully cooperative and aim to achieve the best group

performance, a group decision making strategy is needed to determine which heuristics are

beneficial for the group and should be accepted to apply next [99].

The “Heuristic Construction and Update” part in Figure 4.1 of the proposed hyper-

heuristic methodology is the process that defines different implementations. The one we pro-

pose in this section involves the commonly used iterative heuristic selection and acceptance

combination. The selection is based on knowledge gained with an online learning method

that utilises the MAB Upper Confidence Bound (UCB) method [26] and choice-function

[103], and the acceptance method is a voting-based group decision making mechanism.

Algorithm 3 shows the pseudo-code of the process, and the rest of this section provides a

detailed explanation of the algorithm, including the method “SelectHeuristic” and the method

“GroupDecisionMaking” in Section 4.2.4.

4.2 Multi-Armed Bandit Based Online-learning 59

Algorithm 3 Multi-Armed Bandit Based Adaptive Robot Hyper-heuristic
1: Initialise heuristic scores for the heuristic repository H with k heuristics
2: Set current heuristic to the initial heuristic H0
3: while termination criteria not met do
4: for each robot do
5: Observe sensor data xt , read robot messages mt
6: Apply heuristic at

u←Hu(xt ,mt)
7: Apply action at

u, calculate reward ft
8: Update Mi

t =
√
(2log∑

k
j=1 n j)/ni

9: Update heuristic scores ĥi← θ ĥi−1 +(1−θ)(α ft +β f i j
t + γMi

t)
10: Hc← SelectHeuristic (Ĥ)
11: Hi← GroupDecisionMaking (Hc,U)
12: end for
13: end while

4.2.1 Initialisation

In our multi-armed bandit based algorithm, the initialisation involves initialising the heuristic

scores and choosing a initial heuristic. Heuristic scores are denoted as Ĥt = {ĥ1
t , ĥ

2
t ..., ĥ

k
t }

for k heuristics at time interval t. When there is no prior knowledge, heuristic scores are

initialised with random values. In some scenarios, where there is prior knowledge a heuristic

is better or worse, the initial heuristic score for that heuristic can be weighted up or down

accordingly.

Each robot needs to initialise with a starting heuristic H0 ∈ H. This initial heuristic can

be randomly selected heuristic from the repository H, or selected according to the heuristic

scores Ĥ.

4.2.2 Generating Actions

Heuristics in our system are algorithms that read the robot sensor inputs and generate actions

according to the sensed information. The detailed description of heuristics are given in

Section 4.3. By applying a selected heuristic, actions au ∈ A are generated and executed for

one time interval T .

60 The Hyper-heuristic Swarm Robot Framework

Next, the robots check if the termination criteria are satisfied, which is determined using

problem-specific information. If the task objective is accomplished, the algorithm stops.

If the termination criteria are not satisfied, the objective function is used to evaluate the

performance of the applied heuristic.

4.2.3 Heuristic Evaluation

Performance evaluation reflects reward from the environment and is used to update the

heuristic score measures to learn the “goodness” of a heuristic. The scores Ĥt are then used

to influence the heuristic selection.

At the heuristic evaluation stage, robots read from sensors and incoming communication

messages, and measure the performance of the applied heuristics according to the given

task objectives. In this thesis, the evaluation approach is using objective functions. The

objective value ft reflects how good a heuristic is during the last time interval. For the task

of surface cleaning, the objective function is a measure of collected dirt with respect to time.

(The details of how the collected dirt is measured is described in Section 3.2.4.) Since the

objective function is domain related, it changes from task to task.

4.2.4 Heuristic Construction and Update

This step constructs the sequence of heuristics in a decentralised manner. In this proposed

online learning implementation, the heuristic construction has two steps, heuristic selection

and group decision making.

As shown in Algorithm 3, heuristic selection is a method to choose a heuristic Hc from

a robot’s own experience, and in this algorithm, the experience is represented in heuristic

scores Ĥ. The algorithm is explained as follows.

4.2 Multi-Armed Bandit Based Online-learning 61

Heuristic Scores

The heuristic scoring method is inspired by Choice Function (CF) and MAB, as described

in [103] and [26, 116] respectively. Each robot calculates the score of the last action locally

for each heuristic based on the objective function.

hi
t = ∑(α ft +β f i j

t + γMi
t) (4.1)

where

• ft is the objective function value evaluated at time step t,

• f i j
t is the objective function value of heuristic i given the previous heuristic j at time

step t, and

• Mi
t is the MAB term for heuristic i at time step t.

α,β and γ are parameters that control the weight of each term on the overall score of a

heuristic. The performance of the heuristic and the joint performance of pairs of heuristics

are measured using the objective function. For instance, in the case of cleaning tasks, ft

would be the cleaning efficiency measured from robot dirt sensors. The MAB term Mi
t is

introduced as in Equation 4.2 to compensate for heuristics that are unexplored [26].

Mi
t =

√
2log∑

k
j=1 n j

ni
(4.2)

where k is the total number of heuristics and i represents the index of the current heuristic.

The MAB term is inversely proportional to how many times the current heuristic has been

used ni, and directly proportional to the total number of times the other heuristics have been

used ∑
k
j=1 n j. This ensures that unexplored heuristics are given more weight than the ones

that have been used often, which prevents the algorithm from becoming trapped in a local

optima.

62 The Hyper-heuristic Swarm Robot Framework

Online Learning

The scores Ĥt = {ĥ1
t , ĥ

2
t ..., ĥ

k
t } are updated at the end of each iteration according to previous

experience and current performance, as shown in Eq. 4.3.

ĥi
t = θhi

t +(1−θ)ĥi
t−1 (4.3)

where ĥi
t−1 is the previous score of heuristic i, and θ is the learning rate. Higher θ values

favour recent knowledge over the accumulated knowledge.

Through the following method of online learning, the robots gradually learn more accurate

heuristic performance measurements, which helps select better heuristics.

Heuristic Selection

As shown in Algorithm 3, at each time step t, a robot performs local heuristic selection based

on the heuristic scores Ĥ learned in the previous iterations. The heuristic selection method in

this implementation only uses local observations.

There are different strategies that could be used to select the local candidate heuristic,

denoted as Hc. As reviewed in Section 2.3, researchers have found effective heuristic selection

and acceptance methods for heuristic learning, which we will adapt and evaluate for our

proposed framework. In this section we will introduce three heuristic selection methods:

• Simple Random (SR): This method randomly selects a heuristic from the repository.

• Greedy (GR): This method selects the heuristic with the highest score.

Hc = argmax(Ĥ) (4.4)

4.2 Multi-Armed Bandit Based Online-learning 63

This method always uses the current best heuristic, and sub-optimal heuristics do not

get explored. Relatively worse heuristics would not be re-used even if it may lead to

better solutions when conditions changes.

• Roulette Wheel (RW): Roulette Wheel selection (RW) is described in [66]. The

probability of a heuristic i to be chosen is relative to its heuristic score ĥi:

pi =
ĥi

∑
K
k=1 ĥk

(4.5)

Since all heuristics have a chance to be selected, there is exploration outside the current

policy. A good heuristic has greater chance to participate, while sub-optimal ones also

have the chance to be selected. This gives the selection process a chance to escape

local optima.

Since the input to the “SelectHeuristic” method is only the heuristic scores Ĥ, the decision

making is only based on the robot’s own experience. In order to make sure the final heuristic

benefits the whole group, a group decision making mechanism is designed to reject the

heuristics that are only good for one or a few robots.

(a) (b)

Fig. 4.2 Implementation of evaluation and group decision making.

64 The Hyper-heuristic Swarm Robot Framework

Group Decision Making and Update

The robots communicate to reach an agreement on which heuristic to execute next. In

software optimisation problems, after a selected heuristic is applied to the problem, hyper-

heuristics use a move acceptance method to determine if the heuristic, or the “move” should

be accepted or rejected [13]. In a robotic system, once a move is performed, it can not be

reverted, because reverting means going back to the robot’s original state (position). In the

real-world this is impractical and consumes energy.

In this multi-robot hyper-heuristic implementation, although a move is always accepted,

a locally selected heuristic needs to be accepted by the whole robot group. In this section

we introduce a voting-based decentralised group decision making strategy in which robots

collectively make decisions through communication with nearby robots.

For swarm robots, decentralised systems are more robust, scalable and flexible. No single

robot possesses the entire swarm’s knowledge of the environment. Every robot can evaluate

a heuristic based on its local knowledge, and communicate the result to its neighbours.

The decentralised strategies are similar to that in [99]. A heuristic is accepted if

N

∑
n=1

dn ≥ δ (4.6)

where dn is the robot decision on acceptance, N is the number of robot decisions received,

with "accept the heuristic" as dn = 1, and reject as dn = 0. δ is the acceptance threshold.

The realisation of this strategy is shown in Figure 4.2. Using the heuristic selection

method in the last section, any robot in the group can be the one to propose a heuristic, as

long as one time interval has finished. When a robot’s time counter for the heuristic has

expired, the robot proposes its candidate heuristic Hc to the neighbouring robots to evaluate

by sending a voting message as described in Table 3.2. When proposing, the robot sends the

candidate heuristic index Hc in the “candidate heuristic” field, and its accumulated reward

4.2 Multi-Armed Bandit Based Online-learning 65

in the “weight” field. If multiple robots propose at the same time, the receiving robots will

compare the received accumulated rewards in the “weight” fields, and choose the one with

highest weight to evaluate. At the evaluate step, all neighbouring robots will perform a

heuristic selection step based on their own heuristic scores, and compare their local heuristic

to the candidate heuristic. If they are the same, it will return a decision dn = 1, meaning

“accept” in the return voting message, otherwise will return dn = 0, meaning “reject”. Within

a time frame, the proposing robot collects return voting messages from neighbouring robots,

and determines if the group will accept or reject according to Equation 4.6. If the candidate

heuristic is rejected, the robot will perform another heuristic selection iteration and propose

again until the candidate heuristic is accepted.

Once a heuristic is accepted by the group, the proposing robot sends another voting

message to inform neighbouring robots the final heuristic Hi. As shown in Algorithm 3,

the “GroupDecisionMaking” method takes the candidate heuristic Hc as input, and needs to

interact with other agents U . After the new heuristic is received by the swarm, all the robots

will update their own heuristics to be the new heuristic, and take another action.

4.2.5 Problem Domain

As shown in Figure 4.1, the domain-dependent information is on the right hand side, which

includes the starting and stopping criteria, the evaluation function for heuristics, and the

heuristic repository. In order to validate the proposed method, we need to contextualise the

domain information.

A suitable application area is proposed in Chapter 2. We identify a gap in the current

state of robot control algorithms for building surface cleaning: no existing algorithm can

coordinate self-assembling robot behaviours for building surface cleaning in a decentralised

manner, where surfaces to be cleaned are not connected, and the environmental layout is

not previously known. In this problem domain, the starting point is when the robots are

66 The Hyper-heuristic Swarm Robot Framework

deployed on the surface(s), and the task termination criteria can be custom defined case by

case. For example, we give all scenarios a fixed time frame for performing a task, therefore

the termination criteria is to terminate after n iterations.

The evaluation function in the application of surface cleaning is a measurement of how

much dirt is collected, and the feedback is given by dirt cameras on robots, as explained

in Section 3.2.4. In the heuristic repository, there are algorithms that can be helpful in the

multi-surface cleaning task. Each heuristic allows the group of robots to cooperate in a way

where each of them cleans a part of the surface or moves in the environment in a coordinated

manner. The details of the heuristic repository used for this problem domain are presented in

the next section.

4.3 The Heuristic Repository

This section introduces the heuristic control algorithms that are programmed into each robot.

Heuristics are pre-defined programs that generate actions for robots to execute. In this study,

robots with identical hardware setups are used in heuristic-based learning and action-based

learning, which means that their state space and action space are the same. In the learning

process, heuristics make use of domain knowledge and reduce the search space by searching

in a known good subset of all legal actions.

Heuristics in this repository assume a fixed group size throughout the task, and it is

assumed that the group size is known by all robots in a group.

Table 4.1 shows the robot parameters of relevance to the heuristics.

Each heuristic has mechanisms for collision avoidance and gap avoidance that are pro-

grammed into the robot. The collision avoidance algorithm applies a multiplier vmulti to

linear velocity, and another multiplier ωmulti to the robot’s angular velocity. The multipliers

4.3 The Heuristic Repository 67

Table 4.1 Robot Parameters

Maximum Linear Velocity 0.5m/s

Maximum Angular Velocity 0.66rad/s

IR Sensing Range 0.53m

Wireless Communication Range 200m

are calculated as follows:

vmulti = 1− e−
Krisedobs

Ravoid

ωmulti =

Kω(π/2−θobs), if π > θobs > 0

Kω(−π/2−θobs), otherwise

where Krise and Kω are control parameters to be tuned empirically, dmin is the distance

between obstacle and robot, and θobs is the angle between robot orientation and the obstacle.

Algorithm 4 details how the multipliers are applied to robot linear and angular speed at

each control step. The robots read from each distance sensor and find the one with shortest

distance to obstacles, as shown in line 1-6. The distance between the closest obstacle and the

robot dobs is used to calculate multiplier vmulti. The direction the sensor is facing θobs, is the

direction of the closest obstacle, and is used to calculate ωmulti in line 8. Next, in line 9-10,

the robot updates its linear and angular velocity to be applied at the next step.

The gap avoidance mechanism is described in Algorithm 5. When a gap sensor detects

a gap, the robot chooses a random angle θg between π/2 and π . The robot rotates θg and

checks if the gap is still in the way of the robot (if the front gap sensor still senses the gap). If

not, the robot moves forward, otherwise the robot rotates another random number of degrees

until the robot is no longer facing the gap.

68 The Hyper-heuristic Swarm Robot Framework

Algorithm 4 Collision Avoidance
1: for all distance sensors do
2: Observe sensor reading di
3: Store sensor reading di in D
4: Store obstacle angle θi in Θ

5: end for
6: Find sensor sobs← argmin(D)
7: Get sensor reading dobs and sensor angle/obstacle direction θobs
8: Calculate vmulti and ωmulti
9: Robot linear speed v← v× vmulti

10: Robot angular speed ω ← ω×ωmulti

Algorithm 5 Gap Avoidance
1: for all gap sensors do
2: Observe sensor reading gi
3: Store sensor reading gi in G
4: end for
5: while any g ∈ G > 0 do
6: Gap avoidance angle θg = randomNumberGenerator(π/2, π)
7: Rotates θg
8: end while
9: Move forward

4.3 The Heuristic Repository 69

4.3.1 Sweeping

Fig. 4.3 The sweeping heuristic: 1 - connection points located; 2 – aligned and ready
to dock; 3 – docking completed; 4 - no obstacle/gap/clean area in front of the robot; 5
– no obstacle/gap/clean area behind the robot; 6 – front obstacle/gap detected; 7 – back
obstacle/gap detected; 8 – disconnected

The sweeping algorithm is adapted from the finite state machine-based self-assembling

control algorithm in [71], shown in Figure 2.3, where robots have two modes, Swarm Mode

and Organism Mode. Swarm Mode includes states when the robots are not connected with

other robots, and Organism Mode includes states when robots are physically connected with

other robots and move as a combined organism on the surface. Robots in this thesis employ

different locomotion from [71], and the combined organism also moves differently.

70 The Hyper-heuristic Swarm Robot Framework

(a) Locate connection points (b) Move to align (c) Dock

(d) Move forward (e) Detected obstacle and disassemble

(f) Move backward (g) Move forward again

Fig. 4.4 The sweeping heuristic

The sweeping behaviour allows robots in a group to physically connect into a line and

move as a larger entity. In the context of cleaning, this is similar to turning a small cleaning

pad into a large cleaning pad. The FSM robot control algorithm is shown in Figure 4.3. The

aim of this FSM control algorithm is to ensure that all robots are assembled into a line and

move together.

If robots start as scattered, in “swarm mode”, they will first locate their own connection

points, and will all try to align with the centre robot. Figure 4.4(a) gives an example of the

starting positions of the robots. To move to the centre, each robot will follow the closest

robot that is vertically ahead. The centre robot stays at the same location, and rotates to the

target horizontal orientation. Once a robot reaches its target docking location and is ready

4.3 The Heuristic Repository 71

to be connected with other robots, it changes its LED colour to green. A robot will only

connect to a robot whose LED colour is green. The robots connect one by one, and since all

the robots know how many robots there are in the group, the last robot knows there are no

more robots to connect. When the last robot is connected, it means that the assembling is

complete and it will send “Control Messages” (described in Section 3.2.3) to other robots in

the organism to inform them to start moving. The last robot determines which direction to

move by checking the distance sensors, gap sensors and dirt sensors. As shown in Figure 4.3,

transition 4 and 5, if there is no obstacle or gap in front of the robot, or if the back area is

already clean, the organism will choose to move forward, otherwise it will move backward.

When in organism mode, if any robot in the organism has detected an obstacle or gap, it will

send another “Control Message” to call for disassembling (shown in Figure 4.4(e)), and to

move down to the dirty area. The robots will re-align, dock and re-connect. This time there is

an obstacle in the front, therefore the robot goes to transition 5 and moves backwards. With

this FSM controller, the robots collectively perform a back-and-forth motion as shown in

Figure 4.4(g).

4.3.2 Bridging (horizontal and vertical)

Bridging heuristic enables the swarm to connect and form a bridge structure when gaps are

encountered, as demonstrated in Figure 4.6. This algorithm is adapted from the finite state

machine-based self-assembling control algorithm in [71]. In this section, robots have two

bridging heuristics: horizontal bridging and vertical bridging, as shown in Figure 4.6(g)

and Figure 4.6(h) respectively. When there are multiple surfaces separated by gaps, single

robots cannot cross to the other side. Similar to the sweeping heuristic, the bridging control

algorithm is a Finite State Machine, and is detaled in Figure 4.5.

72 The Hyper-heuristic Swarm Robot Framework

Fig. 4.5 The bridging heuristic: 1 – connection points located 2 - aligned and ready to dock 3
- docking completed 4 - move signal received/sent 5 - crossing a gap 6 - crossing completed 7
- front obstacle detected 8 - back obstacle detected

A robot applying this heuristic will first check if it is connected to another robot, if not, it

will observe nearby robot positions and seek to align with the robot that is horizontally or

vertically ahead, depending on if it is usiing horizontal bridging or vertical bridging heuristic.

The docking process is the same as the sweeping heuristic, where the synchronisation is

achieved by LED colours. Each robot will check the connected number of robots when it

connects, and the last robot to connect will find the number of connected robots equals to the

group size. At this point, it will send “Control Messages” to connected robots and signal all

robots to move forward, as shown in Figure 4.6(d). If a gap is detected by the gap sensor,

transition 5 (Figure 4.5) brings robot a state where it will move non-stop until the gap is no

longer detected by any robot in the group. When crossing the gap is completed, the robot

returns to original move states through transition 6. When there is an obstacle encountered,

such as a wall in Figure 4.6(f), the organism changes moving direction. Once the group is

fully assembled, it does not disassemble unless the heuristic changes.

4.3 The Heuristic Repository 73

(a) Locate connection

points

(b) Move to align (c) Dock (d) Move forward

(e) Move forward non-stop (f) Move backward after hitting obstacle

(g) Bridging (horizontal) (h) Bridging (vertical)

Fig. 4.6 The bridging heuristic

4.3.3 Exploring

Exploring is a heuristic which implements random-walk with noise. It allows robots to take

actions that scatter the group in random directions. The resulting movement is as indicated

in Figure 4.7. Each robot moves in a straight line while avoiding obstacles using Algorithm

4. Since each robot is equipped with dirt sensors on the bottom, a small amount of noise is

74 The Hyper-heuristic Swarm Robot Framework

introduced for the robot to change direction if the total dirt value is below a control threshold

Tdirt .

Fig. 4.7 The exploring heuristic

This heuristic allows robots to spread out on the surface, while avoiding cleaning the

cleaned area.

Algorithm 6 Heuristic: Exploring
1: while termination criteria is met do
2: Set robot linear speed v = vexp
3: Observe dirt sensor readings
4: if Total detected dirt < Tdirt then
5: ω ← ω+ randomNoise(−0.1,1)
6: else
7: ω = 0
8: end if
9: end while

4.3 The Heuristic Repository 75

4.3.4 Circling

Fig. 4.8 The circling heuristic

Circling is a cleaning pattern that is widely used in cleaning robots, as mentioned in [40].

Robots perform a spiral motion, following with straight lines in random directions, as shown

in Figure 4.8.

Algorithm 7 Heuristic: Circling
1: while termination criteria is met do
2: Initialise vvt = v0, ωvt = ω0
3: vvt ← vvt +αvt
4: v←min(vvt ,Vmax)
5: ωvt ← ωvt−βvt
6: ω ←max(ωvt ,0)
7: end while

This heuristic as described in Algorithm 7 calculates the linear velocity v and ω . v is first

initialised to a small value v0 and ω is initialised to a relatively large value ω . A large initial

angular velocity allows the robot to move in a small circle first. At each control step, a small

value αvt is added to the linear velocity and a small ωvt is reduced from the angular velocity.

This makes the robot slowly move in a growing circle and outward, as shown in Figure 4.8.

The increasing linear velocity makes the robot slowly reach the maximum speed. When the

angular speed is reduced to 0, the robot moves in a straight line. Obstacle avoidance and gap

76 The Hyper-heuristic Swarm Robot Framework

avoidance in Algorithm 4 and Algorithm 5 are used in this heuristic, therefore in the second

stage of the heuristic, robots perform a movement in a straight line.

4.3.5 Flocking

This local controller enables robots to follow a flocking behaviour based on the behaviour

described in [107]. This heuristic commands robots to stay relatively close to each other and

avoid obstacles, while preserving some degree of random exploration.

The rules introduced for flocking are :

1. Robots avoid collisions,

2. Robots attempt to stay close to teammates, and

3. Robots attempt to match orientation with teammates.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4.9 The flocking heuristic

Unlike other heuristics where rules are somewhat directly translated into code, these rules

are more like design guides that help shape the velocity calculations. To realise the flocking

4.3 The Heuristic Repository 77

rules, each robot iteratively calculates its target relative position according to neighbour

positions and orientation as follows. Assume the position of the robot P0 = (x0,z0). To

avoid collisions, each robot calculates a repulsion vector Rrep = (xR,zR) from Dminobs =

(xminobs,zminobs), which is the direction vector of the closest obstacle detected from proximity

sensors, to let Rrep =−Dmin:

xR =−xminobs

zR =−zminobs

To make robots stay together, P(x,z) calculates the average position of nearly flocking robots,

assuming there are n flocking teammates with coordinates {(x1,z1),(x2,z2)...(xn,zn)}:

x = (
n

∑
i=1

xi)/n

z = (
n

∑
i=1

zi)/n

Robots also attempt to match orientation with teammates, and to achieve this, robots calculate

the average orientation of other flocking robots O.

o = (
n

∑
i=1

oi)/n

Each robot satisfies the three rules by summing the three vectors Rrep, P and o. At each time

step, the next position is calculated as:

x′ = x+Sx · cosO+ xR

z′ = z+Sz · sinO+ zR

where Sx = Sz = 0.5.

78 The Hyper-heuristic Swarm Robot Framework

4.3.6 Raster Scan (Horizontal and Vertical)

(a) Raster Scan (horizontal) (b) Raster Scan (vertical)

Fig. 4.10 The raster scan heuristic

This heuristic allows robots to perform a raster scan-like motion in the north-south direction,

similar to the behaviour described in [106]. The control algorithm works as follows: each

robot keeps a record of its visited locations, and at every time step, the robot checks its

surrounding in the order of north, south, east and west. If there is no obstacle or gap in that

direction or the location has not been visited, the robot will add the direction to move set M.

If M = /0, the robot will move towards a random direction, otherwise the robot will choose

the first move M(0) in the move set.

The heuristic allows robots to perform movements as shown in Figure 4.10.

4.3.7 Neighbourhood Search

This heuristic performs a neighbourhood search algorithm [39] according to the amount of

dirt detected around the robot. It periodically checks the robot dirt sensors and steers the

robot in the direction where there is the highest amount of detected reward. For every step

t, the robot determines its moving direction Dr = { f ront,right, le f t,back} from dirt sensor

4.3 The Heuristic Repository 79

Algorithm 8 Heuristic: Raster Scan
1: read the robot position sensor, initialise available move set D0, map of visited locations

M0
2: i = 0
3: while robot position changed do
4: i← i+1
5: update map Mi
6: check in the order of north, south, east, west direction:
7: if no obstacle or gap in that direction OR location has not been visited then
8: add direction to available move set Di
9: end if

10: if Di is empty then
11: move towards a random direction
12: else
13: select the first element in Di and perform that move
14: end if
15: end while

Fig. 4.11 The neighbourhood search heuristic

readings Ds

Dr(t) =

argmax(Ds(t)), if ru(t)< threshold

Dr(t−1), otherwise.

The heuristic behaviour is shown in Figure 4.11.

80 The Hyper-heuristic Swarm Robot Framework

Algorithm 9 Heuristic: Neighbourhood Search
1: for every time step do
2: if obtained reward Ri < Tneigh then
3: read from dirt sensors, update expected rewards R̂d
4: move towards the direction di← argmax R̂d
5: else
6: di← di−1
7: end if
8: end for

4.4 Group Learning of Heuristics

In the previous section of this chapter we have presented an MAB-based hyper-heuristic

method which has validated the effectiveness of the proposed hyper-heuristic framework

over a range of environments. The robots learn individually using their local observations

and rewards, and whether the group should accept a heuristic that is beneficial for the whole

group is determined through a voting-based decision making mechanism as described in

Section 4.2.4. This section discusses how other means of group decision making can improve

the learning of heuristics. While the voting mechanism in Section 4.2.4 only shares robots’

proposal and votes with other robots, which is good for systems with limited communication

capacity, this section introduces methods that makes decisions through sharing knowledge

using local robot communication.

Ozcan et al. [99] has found that group decision making strategies can act as good move

acceptance methods in hyper-heuristic algorithms where multiple moves are available. In our

proposed multi-robot hyper-heuristic framework, group decision making is used to determine

the acceptance of heuristics.

Recall in Section 4.2.4, we introduced a group voting mechanism that chooses the

heuristic that is preferred by the majority of the group. Since robots explore the environment

and continuously learn which heuristics are best from local observations and rewards, their

preference is related to their own benefit.

4.4 Group Learning of Heuristics 81

In the voting mechanism, a heuristic is accepted if

N

∑
n=1

dn ≥ δ

where dn is the robot decision on acceptance, N is the number of robot decisions received,

with “accept the heuristic” as dn = 1, and reject as dn = 0. δ is the acceptance threshold.

4.4.1 Methodology of Group Learning with Knowledge Sharing

In this section, we discuss methods that allow robots to share a part of their heuristics scores

to help other robots select heuristics. Robots iteratively learn their own heuristic score

table according to the applied heuristics’ past performances. After updating the heuristic

score table for the robot swarm, each individual robot may have a different score. Hence a

collective decision making strategy is proposed to determine the best heuristic for the whole

swarm for the next time interval. Similar to the voting mechanism, which requires each

robot to vote on a candidate heuristic, this section proposes two other strategies which are

also inspired by social decision making [124], to identify the heuristic that reflects the group

interest.

For a group of N robots and K heuristics, the heuristic score matrix of the swarm is:

Ĥ =

ĥ11 ĥ12 ĥ13 . . . ĥ1K

ĥ21 ĥ22 ĥ23 . . . ĥ2K

...
...

...

ĥN1 ĥN2 ĥN3 . . . ĥNK

82 The Hyper-heuristic Swarm Robot Framework

The first strategy calculates the sum of each heuristic score across all robots in the group,

and the heuristic with maximum total score is selected:

kselected = argmax
1≤k≤K

N

∑
n=1

ĥnk (4.7)

This strategy aims to maximise the total group performance score for the next iteration, so is

named MAX-SUM.

The second strategy is named MAX-MIN as it finds the heuristic with the best minimum

score. If the minimum score of each heuristic, and selects the heuristic that has the maximum

minimum score.

kselected = argmax
1≤k≤K

{argmin
1≤n≤N

ĥnk} (4.8)

In this way, the selection of heuristics utilises not only the preference of each robot, but

also their own evaluations of heuristics. The MAX-SUM strategy aims to maximise the

overall performance of all robots, while the MAX-MIN aims to make sure no single robots

are behaving very badly.

4.4.2 Implementation with Swarm Robots

With the proposed MAB-based hyper-heuristic algorithm in Section 4.2, robots start with

an initial heuristic, and the same score ĥi
0 for each heuristic in the repository. This is based

on the assumption that the environment is unknown, which means there is no knowledge of

which heuristic is better. The robots perform actions for a period of time guided by the initial

heuristic, and learn heuristic scores online according to the method described in Section

4.2.4.

With the voting mechanism in Section 4.2.4, any robot can propose a candidate heuristic

for the next time interval to the group, and the robots send communication messages to each

other as described the diagrams in Figure 4.2. A robot first sends a candidate heuristic to

4.4 Group Learning of Heuristics 83

neighbouring robots. The neighbouring robots then run RW selections according to their

locally kept heuristic scores and compare their selections with others. If they match, the

neighbour will inform the proposing robot of its acceptance. If the majority of the group

accepts the proposed heuristic, the group will collectively decide to accept the candidate

heuristic and will apply that heuristic for the next iteration. If the candidate heuristic is

rejected, another proposal will be made, and the process repeats until a candidate is accepted

by the group.

To integrate the knowledge sharing decision-making with the decentralised robot group,

after the heuristic scores are updated, any robot can request heuristic scores from other

robots to determine the next heuristic. In order to physically achieve the collective decision

process described in Section 4.4.1, the robots send communication messages to each other

following the diagrams in Figure 4.12. When a robot has received a request for scores, they

will send the line in their heuristic score table [ĥ1, ĥ2, ĥ3...ĥk] which indicates the score for

each heuristic after the heuristic in the last time interval has been applied. After a robot has

collected heuristic scores of neighbouring robots in the group, it uses the MAX-SUM or

MAX-MIN method to select a heuristic and update the other robots.

(a) (b)

Fig. 4.12 Implementation of Group Decision Making.

84 The Hyper-heuristic Swarm Robot Framework

4.5 Experiments and Results

This section introduces the swarm robot experiments in 3D simulation in order to verify

the effectiveness of the proposed hyper-heuristic algorithm. The application area is surface

cleaning where multiple surfaces exist. To move from surface to surface, robots need to

physically connect to move each other across surfaces. To clean the surface efficiently, robots

may sweep, crowd or scatter on the surface according to the environmental layout. No

single behaviour is able to clean multiple surfaces, so the problem requires combinations of

heuristics. In the real-world, cleaning of multiple surfaces such as the outer surfaces of a

building is often complex and large. It is usually costly to build a map of each surface for

robot cleaners. Even if a map is built, during the cleaning process, the changes caused by

windows opening/closing or decorations will make the map become outdated and inaccurate.

In such a dynamic environment, swarm behaviours need to be adaptive and decentralised.

In the experiments conducted in this section, the robots are each programmed with

the multi-armed bandit based online-learning robot hyper-heuristic algorithm described in

Section 4.2. The robot hardware, simulator and environmental setups are described in Chapter

3.

The hyper-parameter tuning for the robotic system involves two independent stages. The

heuristic parameters are tuned individually as separate control algorithm units, in order to

achieve better performance by themselves. The hyper-parameters are tuned with the whole

system integrated. In this application, the Iterated Racing (irace) tuning method is used

because it is effective and prunes the space of parameter value combinations that have to be

checked, and the details to the method can be found in [74]. The tuning results are shown in

Table 4.2, and are used as the parameters in all experiments.

4.5 Experiments and Results 85

Table 4.2 Tuned values of hyper-parameters and controller parameters.

(a) Heuristic Parameters

flocking: Sx 0.5

flocking: Sz 0.5

Krise 1.0

Kω 10.0

Ravoid 0.46m

(b) Hyper-parameters

Learning rate θ 0.29

Choice Function α 0.99

Choice Function β 0.01

Choice Function γ 0.9

Group acceptance δ 0.5

Time interval length T 40s

4.5.1 Robustness In Different Environments

Four different layouts of facade surfaces are used in the experiments as shown in Fig. 4.13.

Environment (a) is a flat surface with the dimensions 8m × 8m, bounded by four barriers;

environment (b) is the same size, with 50 obstacles; (c) has four gaps on the surface, which

single robots cannot cross; (d) has four gaps and 30 obstacles.

The positions of obstacles and gaps are randomly generated, thus different in each

experimental run. Robots have no prior knowledge about the surfaces.

Figure 4.13 shows the cleaning progress of the robots using the hyper-heuristics at 5,

25 and 50 iterations. Since the purpose of the experiments is not to show the completeness

of cleaning, but the effectiveness of behaviour sequence construction, 50 iterations are

adequate to show the characteristics of the performance curve, as detailed in the resulting

plots. Therefore the termination criteria of the algorithm is terminating after 50 iterations. It

can be seen that the robots are able to perform the cleaning task continuously and robustly for

50 iterations, as the area cleaned over the four environments is continuously increasing. In

environments (c) and (d), robots are able to automatically assemble to move across surfaces,

and disassemble on new surfaces. This shows the feasibility of the proposed hyper-heuristic

methodology on self-assembling robots, and that it can be applied in real-world applications.

86 The Hyper-heuristic Swarm Robot Framework

(a) (b) (c) (d)

Iteration
5

Iteration
25

Iteration
50

Fig. 4.13 Cleaning progress of the swarm at 5, 25 and 50 iterations in four types of environ-
mental layouts: (a) flat empty surface, (b) surface with obstacles (indicated by red blobs), (c)
five surfaces separated by gaps (black stripes), and (d) five separated surfaces with obstacles.

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n
it
 A

re
a
 C

le
a
n
e
d

Environment: Empty

No learning

Online Learning

(a)

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n
it
 A

re
a
 C

le
a
n
e
d

Environment: Obstacles

No learning

Online Learning

(b)

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n
it
 A

re
a
 C

le
a
n
e
d

Environment: Gaps

No learning

Online Learning

(c)

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n

it
 A

re
a

 C
le

a
n

e
d

Environment: Gaps and Obstacles

No learning

Online Learning

(d)

Fig. 4.14 Comparing mean performance of online learning and no learning over 50 experi-
mental runs

4.5 Experiments and Results 87

4.5.2 Comparison of Heuristic Selection Methods

In this part we compare three different heuristic selection methods as discussed in Section

4.2.4: Roulette Wheel selection, Greedy selection and Simple Random selection, which

randomly samples heuristics from the repository. The robots are simulated cleaning at the

maximum speed of 2.98m2 per time interval of 40s, which for simplicity, we define as one

unit area. Each group performs cleaning tasks for 200 runs across the four types of layouts

(Fig. 4.13). Fig. 4.15 plots the performance distribution grouped by environment types.

Fig. 4.15 Comparing three hyper-heuristic selection methods: Roulette Wheel, Greedy and
Simple Random over four types of environments.

Through Mann-Whitney U tests [81], it can be confirmed that both RW and Greedy

methods have statistically better performance than Simple Random. Greedy has the best

performance in empty and obstacles environments, while RW outperforms Greedy in envi-

ronments that have gaps. RW also gives 48.19% less variance in performance over the four

environments. This is because RW selection hyper-heuristic is quick to explore the heuristics

that have not performed the best, but could lead to better performance later, therefore is

more adaptive in complex environments. Greedy hyper-heuristic is very effective in simple

environments, such as the empty surface, but if the user requires robustness in different

environment types, RW is a better option.

88 The Hyper-heuristic Swarm Robot Framework

4.5.3 Learning Comparing to No Learning

We further investigate the performance in each environment in Figure 4.14. For comparison,

a hyper-heuristic with no learning is implemented, where heuristics are randomly sampled

from the repository at each decision point. To reach all surfaces, and move effectively in

environments with many obstacles, the swarm needs to learn the heuristics that perform

better in these scenarios. Comparison results with the baseline method shows that the online

learning hyper-heuristic is successful in finding sequences that perform better, based on the

improvement of 28.86%, 37.34%, 21.51% and 18.86% in each environment, and overall

improvement of 27.52%.

We also plot the efficiency improved by learning in each iteration:

e(t) =
∑

t
i=1(f L

i − f NL
i)

∑
t
i=1 f NL

i
,

where f L
i and f NL

i are the areas cleaned (objective values) at iteration t by the swarms with

and without learning respectively. It can be observed from the results shown in Fig. 4.16 that

in the majority of the cases, the behaviour construction with learning is superior (95% of the

points are above 0). Also the method gets better with time, as shown by the blue solid line

representing the trend, indicating that our method continuously improves at learning the best

behaviour.

4.5 Experiments and Results 89

0 10 20 30 40 50

Iteration

-0.4

-0.2

0

0.2

0.4

0.6

D
if
fe

re
n
c
e

Empty

Gaps

Obstacle

Gaps and obstacles

Fig. 4.16 Performance difference for every iteration between online learning hyper-heuristics
and no learning.

This demonstrates that without knowing each particular layout, the robots are able to

learn the suitable heuristics and autonomously clean multiple surfaces. This offers the

advantage of performing tasks without prior knowledge of the environment, and without

human supervision. It means that in a real-world scenario, human workers will only need

to transport the robot cleaners from building to building and install them on the starting

surface, without providing prior knowledge of the building facade layout. Very little or no

re-programming of the robots is required between tasks, and no human intervention is needed

during the cleaning process.

4.5.4 Comparison of Group Learning Strategies

The aim of experiments in this section is to compare the group learning strategies proposed

in Section 4.4. We first discuss the robustness of the strategies in different scenarios.

The same environments and environmental setups as used in previous sections are

used again for consistency, and five robots are used in experiments. The hyper-heuristic

implementation is tested in four types of environments shown in Fig. 4.17. To refresh,

90 The Hyper-heuristic Swarm Robot Framework

(a) (b) (c) (d)

Iteration
5

Iteration
25

Iteration
50

Fig. 4.17 Cleaning progress of the swarm at 5, 25 and 50 iterations in four types of environ-
mental layouts: (a) flat empty surface, (b) surface with obstacles (indicated by red blobs), (c)
five surfaces separated by gaps (black stripes), and (d) five separated surfaces with obstacles.

Environment (a) is a flat surface that is 8m × 8m, bounded by four barriers; environment

(b) is the same size, with 50 obstacles; (c) has four gaps on the surface, which single robots

cannot cross; (d) has four gaps and 30 obstacles. The obstacles and gaps are randomly

placed in the environment, and are different in each experimental run. Robots have no prior

knowledge of which heuristics are suitable for a specific environment.

Results from Scenarios (a) and (b) show that the robots are able to perform the cleaning

task continuously and robustly with the presence of walls and obstacles, and those from (c)

and (d) show that robots are able to move across surfaces to clean.

To show the effectiveness of the collective decision making, we compared the results

with the benchmark method in Section 4.2.4 where iterative voting is used to determine the

best heuristic over 30 runs under each experimental condition. The benchmark method uses

4.5 Experiments and Results 91

Table 4.3 Comparing Mean and Std MAX-SUM, MAX-MIN with Voting in surface cleaning
over 30 runs

Environment Strategy Iteration
5

Iteration
10

Iteration
25

Iteration
50

Std

Empty

Voting 3.5190 6.6389 16.0767 29.5652 2.6209

MAX-SUM 3.9862 ‡ 7.8382 ‡ 18.7146 ‡ 34.8393 ‡ 2.0073

MAX-MIN 3.7504⊖ 7.4416 ‡ 19.0949 ‡ 35.1158 ‡ 1.8367

Obstacles

Voting 3.2409 6.4697 15.0475 28.0052 3.1566

MAX-SUM 3.9173 ‡ 7.5398 ‡ 17.8297 ‡ 32.8875 ‡ 2.3756

MAX-MIN 3.7029 ‡ 6.7881 ⊖ 17.2879 ‡ 32.2359 ‡ 2.0985

Gaps

Voting 2.5055 4.9182 11.4324 21.9716 3.2797

MAX-SUM 3.0322 ‡ 5.9019 ‡ 14.3134 ‡ 25.3342 ‡ 2.4588

MAX-MIN 2.7628⊖ 5.8101 ‡ 12.7129 ‡ 23.8899 ‡ 2.1364

Gaps and
Obstacles

Voting 2.4350 4.8998 11.0722 19.8920 2.8743

MAX-SUM 2.5812⊖ 5.6010 ‡ 13.2607 ‡ 24.4293 ‡ 3.6064

MAX-MIN 2.5870⊖ 5.5249 ‡ 12.6025 ‡ 23.8831 ‡ 1.9721

Overall

Voting 2.9251 5.7317 13.4072 24.8585 5.0173

MAX-SUM 3.3792 ‡ 6.7203 ‡ 16.0296 ‡ 29.3726 ‡ 5.2839

MAX-MIN 3.2008 ‡ 6.3912 ‡ 15.4245 ‡ 28.7812 ‡ 5.4000

the Roulette Wheel selection method because experiments in Section 4.5.2 indicate that RW

selection with the voting algorithm has the best performance so far overall. Table 4.3 detailed

the performance increase with MAX-SUM hyper-heuristics and MAX-MIN hyper-heuristics.

The performance are measured from the total number of unit area cleaned, as mentioned

in Section 4.5.2. Mann-Whitney U tests have been performed on the results. A ‡ symbol

indicates a p value < 0.05 comparing to voting, while ⊖ indicates a p value > 0.05.

In this part we used the voting method in Section 4.2.4 as a benchmark, and compare the

two proposed group learning strategies MAX-SUM and MAX-MIN with it. The benchmark

method requires a candidate heuristic to be selected and proposed to the group, and according

92 The Hyper-heuristic Swarm Robot Framework

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

35
U

ni
t A

re
a

C
le

an
ed

Environment: Empty

MAXSUM
MAXMIN
Benchmark

(a)

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

35

U
ni

t A
re

a
C

le
an

ed

Environment: Obstacles

MAXSUM
MAXMIN
Benchmark

(b)

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

35

U
ni

t A
re

a
C

le
an

ed

Environment: Gaps

MAXSUM
MAXMIN
Benchmark

(c)

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

35

U
ni

t A
re

a
C

le
an

ed

Environment: Gaps and Obstacles

MAXSUM
MAXMIN
Benchmark

(d)

Fig. 4.18 Comparing mean performance of MAX-SUM, MAX-MIN and the benchmark
method over 30 experimental runs

to each robot’s acceptance criteria, the heuristic accepted by the majority of the swarm will

be the group heuristic.

Each group performs cleaning tasks for 30 runs under each of the four types of layouts.

Fig. 4.18 plots the mean performance of the proposed group decision making strategies

compared to benchmark for every iteration, where the objective is to maximise the area

4.6 Summary 93

cleaned by the robot swarm. Both MAX-SUM and MAX-MIN outperform the benchmark in

all four environments, overall by 18% and 15.8% respectively.

After applying Mann-Whitney U tests on MAX-SUM performances and MAX-MIN

overall performances over 30 runs, we have found that under the environment with gaps,

the p value is 0.0096 < 0.05, indicating that MAX-SUM is better than MAX-MIN. For the

three other environments there are no statistical differences between these two approaches,

although the average performances of MAX-SUM is slightly better. Therefore we conclude

that knowledge sharing group learning strategies outperform the voting-based strategy, and

MAX-SUM performs the best among the three strategies.

In Figure 4.19, we plot the performance improvements from our methods compared

with no learning during the task execution process. No learning means randomly selecting

heuristics at all decision points. The Y-axis of Figure 4.19 is the performance difference at

each iteration calculated from
∑

t
i=1(f L

i − f NL
i)

∑
t
i=1 f NL

i

where f L
i is the total area been cleaned at iteration t by the swarms with learning, and f NL

i is

without learning. It can be seen that for the majority (97%) of iterations, the differences are

greater than 0. Furthermore, the differences increase over time, as indicated by the blue line

which represents the trend. By the end of 50 iterations, both MAX-SUM and MAX-MIN

have achieved approximately 67% improvement over the no-learning counterparts.

4.6 Summary

This chapter addressed the first research question and proposed a novel hyper-heuristics

methodology combined with online learning to coordinate swarm robots, in particular,

self-assembling robots. Building surface cleaning is used as a case study to evaluate the

framework. The task was carried out on a real-physics robot simulator, and a range of

94 The Hyper-heuristic Swarm Robot Framework

0 10 20 30 40 50

Iteration

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

D
if
fe

re
n
c
e

Performance difference: MAX-SUM

Empty

Gaps

Obstacle

Gaps and obstacles

(a)

0 10 20 30 40 50
Iteration

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

D
iff

er
en

ce

Performance difference: MAX-MIN

Empty
Gaps
Obstacle
Gaps and obstacles

(b)

Fig. 4.19 No-learning vs. MAX-SUM and MAX-MIN on four scenarios.

environment types were used as test scenarios. The experiments verify that the robot swarm

can adapt in different unseen and dynamic scenarios and automatically find appropriate

actions to fulfil the given task without manual programming and centralised control. The

experiments also show that the performance of the robot swarm can be improved through

online learning of heuristic scores.

Hence we conclude that hyper-heuristics are effective and advantageous in coordinating

swarm robots in complex tasks. With the proposed approach, robots can construct and adjust

4.6 Summary 95

behaviours based on a repository of heuristics. Combined with online learning, robots can

adapt to different environments and different types of tasks. This feature is particularly

beneficial for dynamic environments and complex tasks where prior programming is often

difficult.

This chapter also integrated novel group learning of heuristics for the proposed multi-

robot hyper-heuristic framework. The group learning is achieved through local communica-

tion between robots, and the selection of heuristics is based on relevant knowledge sharing

by other robots. Through simulations and experiments, significant improvements have been

achieved across all scenarios comparing to the benchmark MAB-based hyper-heuristics in

Section 4.2.

Chapter 5

Learning Heuristics with Q-Learning

The previous chapter described the novel MAB-based hyper-heuristic approach for sequenc-

ing distributed swarm behaviours, and the enhancements achieved by adapting various group

learning strategies. The online learning method allows decentralised robot swarms to be

adaptive in dynamic and unknown environments, and demonstrated the effectiveness of the

use of the hyper-heuristic framework in coordinating swarm robots. This chapter describes

how we further improve the hyper-heuristic method with Q-learning of heuristics, which by

utilising local observations in the selection of heuristics, improves the heuristic construction

and the learning capability.

In the MAB-based hyper-heuristic algorithm in Section 4.2, the learning of heuristics

is based purely on feedback from the objective function. Although the heuristics utilise all

the sensor data and environmental information to select actions, in the selection heuristics,

no other environment-related information is involved in the decision-making. Most hyper-

heuristic algorithms have this design idea of minimising “domain knowledge” in the hyper-

heuristic layer, in order for the hyper-heuristic algorithms to be generalisable to a wider range

of problems and scenarios. In the domain of robotics, however, the sensor and communication

setup for a robot does not usually change from task to task. It can be controlled by different

heuristics or perform different tasks, but the set of sensory readings available to the robot is

98 Learning Heuristics with Q-Learning

universal for all tasks and scenarios, the only difference being some sensory information is

useful and some is not. Therefore, utilising observations of the environment should not harm

the generality of hyper-heuristics for robots. Therefore, reinforcement learning, where the

decisions are made according to “states”, which consist of observations of the environment,

can be an applicable method to further improve the hyper-heuristic framework.

Notice in the MAB-based hyper-heuristic implementation, each heuristic operates on the

swarm level, which requires the participation of all robots. This method does not accom-

modate for robots separating into sub-groups or rejoining a larger group. Reinforcement

learning, however, can fully take advantage of the fact that each robot can act as an intelligent

agent and form its own policies to act upon while maintaining cooperation with other robots

on a hyper-heuristic level.

In order to plan for each robot in a decentralised manner, multi-agent Q-learning is a

good option because the information of neighbouring robots can be embedded in the state

representations and the policy. For each robot, the policy it develops allows it to act according

to its own local observation, and the policy can be different from other robots.

Q-learning hyper-heuristics proposed in this chapter, however, allow robots that use

different heuristics to learn together and develop policies that cooperate across different

groups of robots. The cooperation comes from the self-organised teaming mechanism that

will be introduced in this chapter. The Q-learning-based hyper-heuristic makes the robot

group achieve better performance.

We consider an environment that can not be monitored or observed globally. A set of

robots U is equipped with on-board processing, sensing and communication devices for local

information. The robots aim to fulfil a collaborative task. There is no central “brain” for

all robots, thus each robot is considered an independent machine learning agent. A robot

only relies on its on-board sensors to observe its local environment, making the environment

non-stationary in the view of each robot. There is noise in robot sensor readings and the

99

inter-robot communication capacity is limited, which prohibits sharing memory or large

amounts of experience data.

Fig. 5.1 The self-assembling robot state representation

Reinforcement Learning (RL) considers tasks that can be modelled with Markov Decision

Process (MDP). Machine learning agents interact with the environment and receive rewards

from the environment. Reinforcement learning aims to maximise the long-term reward.

In action-based reinforcement learning, the choice of state representations is usually

problem-specific. For learning heuristics, abstract states are often used to make the learning

algorithm more generalisable to a range of problems. In the domain of robotics, the feedback

from the environment comes only from sensors and communication devices installed on

the robot. The hardware sensing range and communication capability constrain the state

space for each learning agent, where states are representations of features extracted from

sensor readings. Here we introduce our state, action, heuristic and reward definitions in the

Q-learning hyper-heuristic framework:

• States. In this study, the state representation is formed from raw data sampled pe-

riodically from the robot hardware. At each time step, a robot observes the local

environment state su ∈ S. The set of robot states

S = {su = (Ds,Ps,Gs,c,nr)} (5.1)

100 Learning Heuristics with Q-Learning

where Ds denotes the dirt sensing camera observations, Ps is the array of proximity

sensor readings, Gs is the gap sensor reading, c denotes the number of neighbouring

robots that are physically connected with the current robot. nr ∈ {0,1} where 0 for no

reachable robot and 1 for having at least one reachable robot around.

In this study, given self-assembling robots with sensory arrangements shown in Figure

5.1, the robot has 4 dirt sensing cameras installed, therefore Ds = {d1,d2,d3,d4}. An

array of 4 proximity sensors is equipped to face robot front, left, back and right to

avoid collision. Ps = {p1, p2, p3, p4}. Gap sensors Gs = {g f ,gb} are at the bottom

front and bottom back of the robot. The robot has two axial gripper arms and two side

arms. c ∈ {0,1}, which represents if the robot is physically connected to other robots.

• Action. The action space is defined by single robot control actions. For any robot

u ∈U , su ∈ S, the set of actions

A(su) = {au = (v,ω,m,g)|v ∈V,ω ∈Ω,m ∈M,g ∈ G} (5.2)

where v ∈ V denotes the robot linear velocity and the set of allowed velocity V ∈

[vmin,vmax]. The set of robot angular velocity Ω ∈ [ωmin,ωmax], and the set of inter-

robot messages M ∈ {m1,m2, ...} and physical robot gripper connect/disconnect action

set G ∈ {0,1,2}.

• Heuristic. The set of heuristics H is a collection of robot control algorithms. For any

hu ∈ H, hu selects an action au ∈ A given a robot local environment state su ∈ S. Let

robot u ∈U , au(t) = Hu(st
u) where Hu represents the algorithm of heuristic hu that

outputs the action au ∈ A for every t.

• Rewards. As robots interact with the environment, apart from observing the state,

they also have sensors that receive feedback about the task progress, which makes up

the reward ru in reinforcement learning. In the application of surface cleaning, robots

5.1 Action Based Learning 101

sample from the dirt sensor continuously on the bottom of the robot and calculate

collected dirt du during every time interval with length T . The reward received in each

time interval is:

ru =
T

∑
t=0

du/t (5.3)

5.1 Action Based Learning

We first give the background of commonly used multi-agent reinforcement learning, which

learns action-based policies [68]. At each time step t, in the set of agents U , agent u ∈U

observes its local environment state su ∈ S and takes an action au ∈ A to interact with

the environment and other agents, and obtains reward ru from the environment, as . The

environment advances to the next state s′u ∈ S at time t + 1, following a state transition

probability p(s′u|su,au). The policy for agent u is denoted πu : S → A. Reinforcement

learning aims to find the optimal policy π∗u : S→ A. This study considers infinite horizon,

and the state-value function is defined as

Qπ(su,au) = Eπ [
∞

∑
t=0

γ
trt

u|su = st
u,au = st

u] (5.4)

Estimates of the optimal values can be learned using Q-learning. Agents explore in the

environment and Q-values are iteratively updated by every agent using the Bellman Equation:

Q(su,au)← (1−α)∗Q(su,au)+α ∗ (ru + γ ∗max
au

Q(s′u,au)) (5.5)

where γ denotes the discount factor for future rewards and α is the learning rate, and ru is

defined in Equation 5.3.

102 Learning Heuristics with Q-Learning

To balance exploration and exploitation when agents interact with the environment, ε-

greedy algorithm controls the agent to choose a random action with probability ε , otherwise

π = argmax
au

Q(su,au).

In the domain of robotics, the state space and action space are both continuous. In this

section, we use the reinforcement learning with the bins method to transform the state and

action space respectively into discrete and finite space. All dimensions are divided into “bins”

according to the lower and upper limits, then a tabular method can be applied. The Q-table

Q(su,au).

Algorithm 10 Decentralised Reinforcement Learning over Actions
1: for ∀u ∈U do
2: Initialise Q(su,au)
3: while task is not terminated do
4: if probability > ε then
5: at

u← argmax
au

Q(st
u,au)

6: else
7: Select a random action at

u
8: end if
9: Apply action at

u
10: Observe state st+1

u , obtain reward ru
11: Q(st

u,a
t
u)← (1−α)∗Q(st

u,a
t
u)+α ∗ (ru + γ ∗max

au
Q(st+1

u ,au))

12: t← t +1
13: end while
14: end for

It is known in general that learning independent Q models proves to be inefficient in multi-

robot coordination because from the perspective of a given agent, the remaining environment

is non-stationary. In the next section, we address this problem by introducing the learning of

heuristics.

5.2 Heuristics Based Learning 103

5.2 Heuristics Based Learning

Standard reinforcement learning agents explore the environment and obtain State, Action

and Reward tuples, while this section proposes learning on State, Heuristic and Reward.

Fig. 5.2 shows the structure of the decentralised multi-robot learning framework, and the

rest of this section describes the robot-environment interaction model, policy optimisation,

self-organised teaming and rewards sharing in detail.

Fig. 5.2 The framework of decentralised multi-robot learning on heuristics

At each time step t, agent u ∈U observes the local environment state su ∈ S and obtains

reward ru from the environment. Robots choose a heuristic ht
u at each time step from the

heuristic set H, apply the heuristic to the current state and generate an action au(t) = Hu(st
u).

The robot performs the action to interact with the environment and obtains reward ru. Each

robot performs policy optimisation independently and locally. Implementation-wise, the

robot’s on-board processor is loaded with control programs that take su as input and outputs

au according to the selected heuristic. The algorithm descriptions used in this study are given

at the end of this section.

Algorithm 11 is a Q-learning implementation of the above framework. It is executed in

parallel in each robot. While the task is not finished, at each time step t, a robot selects a

heuristic. With the selected ht
u, the robot applies the corresponding heuristic and generates

104 Learning Heuristics with Q-Learning

Algorithm 11 Decentralised Reinforcement Learning over Heuristics
1: for ∀u ∈U do
2: Initialise Q(su,hu)
3: while task is not terminated do
4: if probability > ε then
5: ht

u← argmax
hu

Q(st
u,hu)

6: else
7: Select a random heuristic ht

u
8: end if
9: Apply heuristic at

u←Hu(st
u)

10: Observe state st+1
u , obtain reward ru

11: if there is collaborating robot with heuristic ht
u then

12: Send ru to collaborating neighbouring agents, receive ri from n connected neigh-
bours

13: ra← (ru +∑
n
i=1 ri)/(n+1)

14: Q(st
u,h

t
u)← (1−α)∗Q(st

u,h
t
u)+α ∗ (ra + γ ∗max

hu
Q(st+1

u ,hu))

15: else
16: Q(st

u,h
t
u)← (1−α)∗Q(st

u,h
t
u)+α ∗ (ru + γ ∗max

hu
Q(st+1

u ,hu))

17: end if
18: t← t +1
19: end while
20: end for

at
u. The environment advances to the next state after the robots have executed their actions.

Then the robots perform the following:

• Self-organised teaming In the heuristic repository, there are heuristics that requires

collaboration and communication between multiple robots, for example, the bridging

heuristic that control robots to physically connect and help each other move across gaps.

If a robot has selected a heuristic ht
u, it will seek to form a team with nearby robots

that have selected the same cooperative heuristic. A simple handshake is implemented

in which the robot broadcasts its heuristic to neighbouring robots, then it listens

for agreement messages returned from robots that have selected the same heuristic.

Robots that are self-organised into the same team share the reward. At each time step,

teamed robots broadcast their local rewards ru within the team and each robot replaces

5.2 Heuristics Based Learning 105

its reward for learning with the average team reward ra ← (ru +∑
n
i=1 ri)/(n+ 1).

The collaboration and communication mechanisms are embedded in all cooperative

heuristics. A robot automatically leaves the team when a different heuristic is selected

according to the current policy. In the scenarios where the robots are connected and

moving together, the leaving robot automatically disconnects from the team.

If there are reachable robots that are applying the same heuristic, the averaged team

reward ra is used for policy optimisation, otherwise the robot uses its raw obtained

reward ru.

• Policy optimisation To balance the exploration and exploitation, the heuristics are

selected using ε-greedy selection, as shown in Algorithm 11 lines 4-8. At every step t,

Q-values are updated from each robot’s {su,hu,r,s′u}, where r can take the value of ru

or ra as discussed above. Robot Q-function is updated iteratively as follows:

Q(su,hu)← (1−α)∗Q(su,hu)+α ∗ (ru + γ ∗max
hu

Q(s′u,hu)) (5.6)

This process is distributed without inter-robot communication. With a probability ε ,

the robot randomly selects a heuristic from H, otherwise selects the heuristic with

maximum Q(s,h).

The inter-robot communication in this process is quick and brief since it is only at the

hardware control command level. In other words, this decentralised framework does not

require sending past experience, sharing states or sharing rewards. This makes the multi-robot

system feasible in environments that can only allow for low communication capacity.

The reason for the improvement Q-learning of heuristics brings over the MAB-based

online learning is that Q-learning utilises the environmental observations in selecting heuris-

tics, while the MAB-based hyper-heuristic only uses the heuristic evaluation value. Unlike

the MAB-based adaptive hyper-heuristic algorithm which treats robots performing different

106 Learning Heuristics with Q-Learning

heuristics as part of the environment, the Q-learning hyper-heuristic method in this chapter

allows robots to cooperate and learn together with robots using different heuristics. This is

achieved through the state-heuristic learning model, which allows robots to take the status of

other robots as well as the environmental state into account in the decision making of heuris-

tics selection. On the other hand, the MAB-based adaptive hyper-heuristic algorithm treats a

robot group as a whole at all times and optimising a robot’s own reward does not equate to

optimising the group reward. The experiments comparing the two types of hyper-heuristics

are given in Section 5.5.

5.3 Group Learning with Advising

In Q-learning hyper-heuristics, each robot learns independently and maintains its own Q-table.

This section introduces a method that allows robots to learn faster through communication.

In solving both small-scale and complex problems, reinforcement learning agents are

known to take a large number of learning iterations to reach convergence in policy. When

multiple agents exist, learning independently in parallel is less efficient than sharing some

knowledge and learning collaboratively. While many approaches exist to address this, they

either need an expert in the system such as a teacher [130], or require a large amount of

communication such as episode sharing. The multi-agent advising framework [24], however,

allows multiple agents to advise each other while learning together in the same environment.

Any robot can seek advice when it is not sure about what to do, and any other robot that is

more confident can give advice.

In [24], authors have identified scenarios where the advising mechanism is useful:

1. A learning agent is in a new state, but the state has been explored by another reachable

agent.

5.3 Group Learning with Advising 107

2. A learning agent joins a system in which other agents have been learning for some

time.

3. A learning agent’s learning approach is less efficient than another reachable agent.

Since this thesis only concerns robot swarms that use the same learning algorithm, the

proposed advising method is useful in the first two scenarios.

Fig. 5.3 The framework of multi-robot learning with importance advising

Figure 5.3 shows where importance advising lies in the Q-learning hyper-heuristic

framework. After the policy optimisation step, described in lines 12-17 in Algorithm 11, the

108 Learning Heuristics with Q-Learning

Algorithm 12 Heuristic Selection with Importance Advising
1: for ∀u ∈U do
2: ...
3: Policy optimisation
4: if state st

u has never been observed then
5: Send request for advice to reachable robots
6: else
7: Calculate ask probability Pa(st

u) = (1+ v)−
√

N(st
u)

8: if probability < Pa(st
u) then

9: Send request for advice to reachable robots
10: end if
11: end if
12: if there is request sent then
13: Πa← /0
14: for all receive answers An(st

u) do
15: Πa←Πa∪An(st

u)
16: end for
17: if Πa ̸= /0 then
18: Perform ε-greedy selection on Πa
19: else
20: Perform the usual ε-greedy selection
21: end if
22: else
23: Perform the usual ε-greedy selection
24: end if
25: end for

importance advising strategy allows a robot to communicate with neighbouring robots, ask

and give advise about which heuristic to select next. The pseudo-code for the importance

advising algorithm is shown in Algorithm 12. This process happens after lines 12-17 in

Algorithm 11, for all robot learning iterations. For a robot u ∈U , if the current state observed

by the robot st
u is a new state, the robot will send robot messages to neighbouring robots

asking for advice. Otherwise, as shown in lines 6-11 of Algorithm 12, if the current state has

been observed before, the probability of asking other robots for advice is defined by

Pa(st
u) = (1+ v)−

√
N(st

u) (5.7)

5.4 The Updated Heuristic Repository 109

where N(st
u) is the number of visits of state st

u, and v is the scaling factor that controls

the probability of asking for advice. Robots send query requests to reachable robots with

probability Pa(st
u).

After the asking stage, if the robot has asked for advice, it will listen for answers from

replied robots. For all neighbouring robots that have received an advising request, they

calculate the importance I(st
u) as:

I(st
u) = maxQ(st

u,h)−minQ(st
u,hu) (5.8)

The advising robot prepares the answer An(st
u) according to the calculated I(st

u), as shown

in Equation 5.9, and transmits the answer back to the advisee.

An(st
u) =

π(st

u), if I(st
u)> threshold

/0, otherwise
(5.9)

The advisee robot u proceeds with the algorithm at line 13, where it initialises an advised

policy Πa = /0 for storing received answers. For each answer An(st
u) the robot has collected,

which can be an empty set or the policy π(st
u) given by the advising robot, it is stored in

Πa. If the advising policy Πa is not empty, the robot selects the heuristic that has found to

have the maximum expected reward for the state with a probability of 1− ε , while selecting

a random heuristic with a probability ε . If no advice has been received, or the robot has

decided not to ask for advice after line 11, the robot performs the usual ε-greedy heuristic

selection strategy on Q(st
u,hu).

5.4 The Updated Heuristic Repository

The heuristic repository in Section 4.3 is re-used here with some modifications. The sweeping

and bridging heuristics in the last chapter assume the behaviours are all on the swarm level,

110 Learning Heuristics with Q-Learning

which means all robots participate to perform the heuristic. Those heuristics determine if

assembling is completed simply by counting the number of connected robots. In this chapter,

the group size can be varied, and the previous way of determining when the self-assembling

is completed is no longer applicable.

In order to evaluate the dynamic grouping and regrouping procedure, this section updates

the original heuristic repository with new sweeping and bridging heuristics. These heuristics

are able to deal with self-assembling robots leaving or joining the group. In this repository,

the “swarm mode” heuristics are the same as the heuristics in Section 4.3: Exploring, Circling,

Flocking, Raster Scan and Neighbourhood Search.

The heuristics all include the same collision avoidance (Algorithm 4) and gap avoidance

(Algorithm 5) mechanisms as described in Section 4.3.

5.4.1 Sweeping

As shown in Figure 5.4, the sweeping heuristic controls the robot to physically connect with

other robots that are open for connection to form a vertical line. This heuristic has two parts:

the robot control algorithm for when the robot is connected to other robots, and the algorithm

when the robot is moving by itself. This heuristic utilises distributed control and robots are

coordinated only through LED signals.

5.4 The Updated Heuristic Repository 111

(a) Move in a straight line (b) Change direction

(c) Move to align (d) Align (e) Connect and move

(f) Move as a line (g) Sensed obstacle (h) Changed direction (i) Move forward

Fig. 5.4 The sweeping heuristic

Fig. 5.5 The sweeping heuristic

112 Learning Heuristics with Q-Learning

Figure 5.5 summarises the sweeping heuristic. For each robot that applies the sweeping

heuristic, it observes the gripper sensor at every control loop. If the robot is not connected to

any robot, it uses a finite-state machine controller as shown in Figure 5.5. The robot moves

in a straight line if no obstacle or gap is sensed. If the proximity sensors or gap sensors have

sensed obstacles or gaps ahead, the robot will change direction to avoid the obstacle/gap.

Once the obstacle/gap is no longer observed by sensors, the robot goes back to the “Move in

a straight line” state. From the “Move in a straight line” or “Change direction” state, when

there is a robot performing the sweeping heuristic within the detection range, the robot will

seek to assemble with it. To do so, the robot calculates the connecting position and moves

towards it, aligns the grippers and assembles.

Once the robot is connected to other robots, it uses a rule-based controller. When robots

are connected, they need to move together and coordinate their movements. In this heuristic,

the robots are connected 180o to each other, therefore if neighbouring robots’ speeds are in

opposing directions, the connected line of robots is able to move in a straight line. The robots

match neighbouring robots’ speed through robot LED colours. Since each robot has cameras

that can observe neighbouring robots’ LED colours, and sweeping heuristic rules regulate

robots to use their LED colours to indicate their movement direction, robots do not need to

use inter-robot messages to coordinate motions.

5.4.2 Bridging (Horizontal and Vertical)

The bridging heuristic algorithm is shown in Figure 5.7. When this heuristic is selected, if

the robot is not connected to any others, it moves around in a straight line, avoids obstacles

and looks for other bridging robots. The obstacle avoidance mechanism is described as

in Algorithm 4. Each bridging robot continuously broadcasts its choice of heuristic and

its location to nearby robots, while listening to other robot messages. If there is a match

5.4 The Updated Heuristic Repository 113

(a) 5 robots (b) Nearby robots as-
semble

(c) Head and
middle robots
connected

(d) All robots con-
nected

(e) Move forward non-stop (f) Move forward non-stop (g) Move forward

(h) An unconnected bridging
robot

Fig. 5.6 The bridging heuristic

in heuristic, the robots calculate their own docking locations according to the other robot

positions. For each robot with location (xi, zi), the alignment rules are:

1. Depending on if it is horizontal bridging or vertical bridging heuristic, a robot compares

its own xi or zi against its neighbours. If the robot has minimum x or z, it is the head

robot

2. If a robot has the maximum x or z, it is a tail robot

3. If a robot is neither head or tail robot, it is a middle robot

4. A head robot rotates at the same position (xh,zh) and orients itself in the horizontal or

vertical direction

114 Learning Heuristics with Q-Learning

Fig. 5.7 The bridging heuristic: 1 - Obstacle detected; 2 - Oriented away from the obstacle;
3 - bridging robot detected - connection location reached; 4 - connection points located; 5 -
aligned and ready to dock; 6 - docking completed; 7 - all nearby bridging robots connected;
8 - crossing a gap; 9 - crossing completed; 10 - front obstacle detected; 11 - back obstacle
detected

5. A middle robot or a tail robot finds its rank ri in the horizontal or vertical direction,

and calculates its target location (xh + ri ∗ddock, zh) for horizontal alignment, and (xh,

zh + ri ∗ddock) for vertical alignment

6. After its own docking has been completed, the robot sets its LED colour to green,

otherwise sets it to red

7. A robot only connects to robots with LED colour green

8. When a tail robot is docked, it sends move signals to connected robots

9. The tail robot decides whether to move forward or backwards: if there is dirt behind,

move backwards, otherwise randomly choose a moving direction

10. A robot starts to move when a move signal is received

5.5 Experiments and Results 115

When each robot executes these rules in parallel, the robots collectively connect into

a line, as shown in Figure 5.6. This connection process describes the behaviour up to the

transition 7 in Figure 5.7. When each robot moves forward or backwards with a pre-defined

fixed speed, the the new connected-robot organism moves forward or backwards together. If

a gap is encountered, condition 8 is satisfied, which means that the organism is on top of a

gap, and should not be allowed to change heuristic during this time. This condition brings the

organism to the Move forward/backwards non-stop states. In these states, the hyper-heuristic

controller is aware that the bridging heuristic should keep being re-selected. When the gap

crossing is finished (condition 9), the organism returns to move forward/backwards states.

When there is an obstacle detected in the way of the robots, as condition 10 and 11 show, the

organism changes direction.

5.5 Experiments and Results

To verify that using Q-learning to learn heuristics is more effective than learning actions,

the proposed hyper-heuristic algorithm is evaluated on multiple types of environments. The

robots and simulator are described in Chapter 3. In this section, we first compare the tabular

Q-learning on heuristics, as proposed in Section 5.2, and the tabular Q-learning on actions,

which is described in Algorithm 10 [136], Section 5.1. Then we compare performance with

and without group learning, as well as comparisons with the MAB-based hyper-heuristic

proposed in Chapter 4. For easy reference, in the rest of this section, we use the “Q-heuristic

method’ to refer to the decentralised Q-learning over heuristics in Section 5.2, and the

“Q-action method” refers to the decentralised Q-learning over actions (Algorithm 10).

The features used as inputs to the reinforcement learning algorithms are binary represen-

tations of sensor values, as shown in Table 5.1. Four bits are used to represent dirt sensor

values, as shown in Figure 5.1, the four bits correspond to whether there is dirt in region

d1,d2,d3 and d4. A “1” represents that there is dirt in the region and a “0” represents that

116 Learning Heuristics with Q-Learning

there is no dirt in the region. The obstacle and gap representations follow the same principle,

“1”s for where there are obstacles and gaps in that direction and “0”s for where there are no

obstacles or gaps. A “1” for the connection status bit indicates that the robot is in organism

mode and is connected to other robots, while a “0” means the robot is in swarm mode,

moving as an individual robot.

Table 5.1 Feature representation for Q-learning hyper-heuristics

Features Number of bits

Dirt: front, left, right, back 4

Obstacle: front, left, right, back 4

Gap: front, back 2

Connection status: organism mode, swarm mode 1

Number of neighbours : 0, 1, 2, >2 2

The experiments are conducted in three types of environments shown in Figure 5.8:

1. Empty: Single surface, static environment

2. Obstacle: Environment with obstacles that change positions every 300 iterations

3. Gap: Environment with gaps

The first environment is a simple stationary environment for the purpose of demonstrating

the trend. The second environment is dynamic, since the positions of the obstacles change

randomly. The gap environment is for demonstrating the performance on multiple surfaces

which can be difficult for the swarm. These scenarios are chosen to demonstrate the char-

acteristics of Q-learning hyper-heuristics in this section, and more complex and dynamic

scenarios and comparisons are given in later Section 6.2.3.

5.5 Experiments and Results 117

(a) Empty

(b) Gap

(c) Obstacle

Fig. 5.8 Environments

5.5.1 Comparing Learning Heuristics to Learning Actions

This section compares the decentralised Q-learning on heuristics (Algorithm 11) with the

Q-learning on actions (Algorithm 10). The termination criteria for each run is terminating

after 5880 iterations for empty environment, and 14,700 iterations for obstacle and gaps

environment. Each experiment is repeated 30 times. The figures 5.9, 5.10 and 5.11 show

the distributions of team reward collected by 5 robots. The y-axes show the area cleaned in

m2, which is the measurement taken from the robot dirt camera, and each time interval is 1

second.

The parameters for Q-learning Hyper-heuristics are shown in Table 5.2. The parameters

are preliminarily values that were tuned with pilot runs.

118 Learning Heuristics with Q-Learning

Table 5.2 Parameters for Q-learning hyper-heuristics

Learning rate α 0.01

Discount factor γ 0.7

Initial exploration factor ε 0.5

ε decay rate 0.2 per 200 iteration

(a) Tabular Q-learning on actions (b) Tabular Q-learning on heuristics

Fig. 5.9 Empty environment: team reward with Q-learning

It can be seen that in all tested scenarios, learning heuristics produces higher average

rewards than the approach of learning actions. Figure 5.9 compares the performance of the

action based Q-learning and Q-learning hyper-heuristic with the tabular implementation in

the empty environment as Figure 5.8(a). Figure 5.10 shows the comparison of Q-heuristic

method and Q-action method in the obstacle environment as Figure 5.8(c). The obstacle

locations change every 300 iterations, therefore is a dynamic environment. Figure 5.11

5.5 Experiments and Results 119

(a) Tabular Q-learning on actions (b) Tabular Q-learning on heuristics

Fig. 5.10 Obstacle environment: team reward with Q-learning

compares the Q-heuristic method and Q-action method in the gaps environment as Figure

5.8(b).

From the experimental results, it can be seen that the Q-learning method is effective for

both learning actions and heuristics in the sense that the team performances are improved over

the task iterations. However, it is also clear that learning heuristics have both better starting

performance and learned policies than learning over actions. In the empty environment,

learning on heuristics gives the multi-robot system a head start, with an average reward of

29.83 over 30 repetitions, which is 2.14 times the action-based average reward of 13.91.

In the obstacles environment, the improvement in the first 300 iterations from learning

heuristics instead of actions is 57.25%, with an average reward of 24.77 from learning actions

and average reward of 38.95 from learning heuristics. Learning over heuristics in the gaps

120 Learning Heuristics with Q-Learning

(a) Tabular Q-learning on actions (b) Tabular Q-learning on heuristics

Fig. 5.11 Gaps environment: team reward with Q-learning

environment has a starting average team reward of 13.71, and learning over actions has an

average reward of 11.63. The difference at the start is 17.93%.

In the empty environment, the Q-action learning converges to a team reward of about

23.83 over 4560 iterations, and the Q-heuristic reward converges to approximately 35.83

over 3960 iterations. In this regard, the learned heuristic policy is 50.36% better than the

learned action policy. In the obstacle environment, learning over heuristics gives a significant

improvement in the team performance. In 2700 iterations, the average robot team reward

converges to around 53.34 using Q-learning over heuristics. When learning over actions,

the average reward converges in 14700 iterations to a value of 36.95. The heuristic policy

found in the obstacle environment is improved by 44.36% from the action-based policy. It

can be seen that learning actions in this dynamic environment is not every effective, which

agrees the established knowledge that traditional Q-learning is not suitable for distributed

5.5 Experiments and Results 121

Fig. 5.12 Comparing the learned heuristic-based policy and the action-based policy

and dynamic environments. The problem of the environment being dynamic all the time

for each robot is addressed by incorporating multi-robot collaboration and coordination in

heuristics. The collective behaviours brought by the heuristics make the environment less

“dynamic” in the view of each heuristic. Therefore the learning of policy is more stable and

more effective. This can also be seen more clearly in the gaps environment, where Q-action

fails to learn to cross onto other surfaces. The initial performance of the Q-action method

is 11.63, and does not exceed an average of 12.75 over 14700 iterations. With heuristics,

the “bridging” behaviour is pre-programmed into robots, so that the test robots already know

how to cross gaps, and the learning process is for learning when and where to cross gaps. It

can be seen that within 8700 iterations the Q-heuristic method converges to an average team

reward of 16.67, and that this improvement is from cleaning multiple surfaces. We have also

performed Mann-Whitney U tests on the performances of the learned policies, comparing

122 Learning Heuristics with Q-Learning

Q-heuristic and Q-action methods, and the p-values are all approximately 0, indicating that

the advantage of learning over heuristics is statistically significant in all scenarios.

In conclusion, learning heuristics is significantly more efficient and more effective than

learning actions with Q-learning.

5.5.2 With and Without Group Learning

This section aims to explore the effectiveness of the importance advising mechanism, which

is the group learning method for Q-learning hyper-heuristics, by comparing the performance

of Q-learning with group learning described in Section 5.3 and the performance of robots

without learning from each other. The algorithm is tested on five robots in the environments

detailed in Chapter 3, and each experiment is repeated 30 times.

(a) (b)

Fig. 5.13 Comparing with and without the importance advising mechanism: Empty environ-
ment

5.5 Experiments and Results 123

(a) (b)

Fig. 5.14 Comparing with and without the importance advising mechanism: Obstacle envi-
ronment

Figure 5.13 shows the comparison of Q-learning hyper-heuristic with importance advising

and Q-learning hyper-heuristic without importance advising in the empty environment. It can

be seen that in the trained policy after 5880 iterations, the average reward over 30 repetitions

with importance advising is 37.20, which is higher than an average reward of 36.67 given

by the Q-learning hyper-heuristic without importance learning. To further confirm that the

differences are statistically significant, Mann-Whitney U test is used, and the p-value is

0.035 < 0.05. The reward obtained with importance advising in the first 300 iterations is

also higher than the reward without importance advising, with values of 29.83 > 29.12.

When performing the Mann-Whitney U test, the p-value is 0.033 < 0.05. This means that

there is 95% confidence that the importance advising mechanism improves the Q-learning

hyper-heuristic in empty environment.

124 Learning Heuristics with Q-Learning

(a) (b)

Fig. 5.15 Comparing with and without the importance advising mechanism: Gaps environ-
ment

Figure 5.14 shows the performance comparison in the environment with changing ob-

stacles, and the change cycle is every 300 iterations. The plots show that the policy with

the importance advising mechanism has greatly improved the Q-learning hyper-heuristic.

After 5880 training iterations, the average reward obtained without importance advising is

46.74, while the average reward for Q-learning hyper-heuristic with importance advising

is 54.81. After having applied the Mann-Whitney U test on the data of 30 repetitions, the

p-value is 0.01 < 0.05. At the beginning of the training, the average rewards of the first 300

iterations are 33.46 and 38.93 for Q-learning hyper-heuristic without importance advising

and with advising respectively. The p-value of the Mann-Whitney U test on the two datasets

is close to 0. The statistical tests show that the importance advising is very effective in the

environment with dynamic obstacles.

5.5 Experiments and Results 125

The results in the gaps environment are shown in Figure 5.15. After 14500 training

iterations, the average reward of the learned policy with importance advising Q-learning

hyper-heuristic is 16.46, and the reward without importance advising is 15.79. At the

beginning of the training, the average reward for the first 300 iterations is 13.62 and 13.06

for with and without importance advising respectively. However, when the Mann-Whitney U

test is performed, the p-values for the end and beginning of the training are 0.209 > 0.1 and

0.236 > 0.1. This means that although the mean reward for the importance advising method

is higher, the differences across 30 repetitions are not statistically significant.

It is worth noting that although the difference between Q-learning hyper-heuristics with

importance advising and without in the empty environment is statistically significant, it is

not very large. And in the gaps environment, although the average reward of having the

importance advising method is better, the difference is not statistically significant. On the

other hand, in the environment with dynamic obstacles, the importance advising mechanism

has dramatically improved Q-learning hyper-heuristic performance, both in terms of learning

speed and the learned policy. Both the empty and gaps environments are static, therefore

during learning, each robot’s observations are similar at any time and the learning processes

are almost in synchronisation. Advising is not very useful in these scenarios because all

robots are roughly at the same level of learning and even if advice is given to peers, they

are not substantially superior. On the other hand, when the obstacles are dynamic, the

observations from each robot can be very different because of the random distribution of

obstacles. In this case, some robots might have explored many more states than others, and

are good advisers. The results verified that the presence of these good advisers in the group

makes the advising mechanism more effective.

126 Learning Heuristics with Q-Learning

Fig. 5.16 Comparing hyper-heuristic methods in the empty environment

5.5.3 Comparing MAB-based Learning and Q-Learning

This section aims to verify that the Q-learning hyper-heuristic is an improvement from the

MAB-based adaptive hyper-heuristic method described in Chapter 4.

The Q-learning method enables robots to automatically form teams that apply the appro-

priate heuristics, collaborate across teams, and achieve better rewards. Figures 5.16, 5.17

and 5.18 show the comparisons between the Q-learning method and the MAB-based hyper-

heuristic on a swarm of five robots using the same heuristic repository and environments. For

fair comparison of the two machine learning methods, the MAB-based online learning has

been adjusted to have the same time interval length as the Q-learning hyper-heuristic and the

same reward averaging mechanism among cooperating robots. The baseline method, Simple

Random heuristic selection is also shown in the graphs.

5.5 Experiments and Results 127

Fig. 5.17 Comparing hyper-heuristic methods in the dynamic obstacles environment

In the empty environment, the baseline method gives an average total reward of 23.47,

and it can be seen in Figure 5.16, the two hyper-heuristic methods have both dramatically

increased the cleaning ability of robot cleaners. It can be seen that the Q-learning hyper-

heuristic has better performance than the MAB-based hyper-heuristic. The Q-learning

method has an average reward of approximately 35.83 by the end of the learning, and the

MAB-based hyper-heuristic gives 34.72. After performing the Mann-Whitney U test, the

p-value is 0.0001 < 0.05. Therefore the Q-learning hyper-heuristic method outperforms the

MAB-based method in empty environment.

In the environment with dynamic obstacles, the baseline reward given by Simple Random

heuristic selection is 34.94, and the hyper-heuristic methods all have much better performance.

The Q-learning hyper-heuristic and MAB-based hyper-heuristic has similar performance:

both gives total reward of approximately 53.34. After performing the Mann-Whitney U test

128 Learning Heuristics with Q-Learning

Fig. 5.18 Comparing hyper-heuristic methods in the gaps environment

on the performance of the learned policies, the p-value is 0.0901 > 0.05, indicating that

statistically, there is no significant difference at the end of the learning. This shows that

when the environment is dynamic, the MAB-based hyper-heuristic is effective because of its

adaptiveness. The MAB-based hyper-heuristic also learns faster than the tabular Q-learning

hyper-heuristic. As can be seen in Figure 5.17, it takes the MAB-based hyper-heuristic 1200

iterations to reach a reward of 53.12 while the tabular Q-learning method used 2130 iterations

to reach the same performance.

The comparison of algorithms in the gaps environment is shown in Figure 5.18. The

Simple Random heuristic selection baseline is 36.28. In this environment, the MAB-based

adaptive heuristic has better performance than the baseline, giving a reward of 43.84. The

Q-learning based methods are both significantly more effective than the MAB-based method,

achieving rewards of approximately 50.93, which is 16.17% higher than the MAB-based

5.6 Summary 129

adaptive method. The Mann-Whitney U test statistically confirms the advantage with a

p-value of 0.0001. Although results confirmed that both the MAB-based hyper-heuristics and

Q-learning hyper-heuristics outperforms the baseline methods, Q-learning hyper-heuristic

has better performance. This is because the MAB-based hyper-heuristic controller does not

take environmental conditions into account in selecting heuristics, and uses the objective

value as the single feedback. The MAB-based policy is purely adaptive. On the other hand,

the Q-learning hyper-heuristic policy is more sophisticated because the knowledge is stored

in the Q-table.

In conclusion, results across a range of environments show that the Q-learning of heuris-

tics has significantly improved the overall task performance over the MAB-based hyper-

heuristic.

5.6 Summary

This chapter answered the second research question, how can different learning strategies

improve the swarm robot hyper-heuristic method, and introduced a Q-learning based hyper-

heuristic. The Q-learning of heuristics allows robots to learn their own policies while

maintaining cooperation with other robots in the swarm. We verified that Q-learning of

heuristics can integrate well into the hyper-heuristic framework, and it is significantly more

effective than action-based Q-learning.

It has also been shown that with the group learning strategy (the importance advising

mechanism) robots can learn faster and find better policies.

Comparisons with the MAB-based hyper-heuristics have been made in simulation, and

results show that the Q-learning of heuristics has achieved a significant improvement over

MAB-based hyper-heuristics.

Chapter 6

Learning Heuristics with Deep

Reinforcement Learning

Previous chapters have shown that the hyper-heuristic framework can facilitate MAB-based

online learning and Q-learning of heuristics. In recent years, researchers have found that neu-

ral networks can boost a lot of the existing machine learning algorithms. A typical example

is Deep Q-learning, where Deep Q-Networks (DQN) are used as function approximators

for the state-action value function, and have achieved state-of-the-art performance in many

robotics applications. In this chapter, we verify if our proposed Q-learning hyper-heuristic

framework (shown in Fig. 5.3) can incorporate deep learning and further improve. Since we

have demonstrated the success in learning heuristics using Q-learning, deep Q-learning is a

good candidate to provide improvement to the framework.

6.1 Methodology

In reinforcement learning, the state space can be so large that the Q-table may not fit into

memory. Approximation methods compress the amount of space needed to represent Q,

and neural networks are universal function approximators. In this section, we demonstrate

132 Learning Heuristics with Deep Reinforcement Learning

the use of deep reinforcement learning in hyper-heuristics, compare the heuristic-based

deep reinforcement learning with action-based deep reinforcement learning and show the

advantage in learning heuristics.

We consider tasks in which reinforcement learning agents, in this case robots, interact

with the environment in a sequence of actions, observations and rewards. At each step, the

robot selects an action at from a set of legal actions A, and by applying that action, the state

of the environment changes. No robot observes the complete environment state, instead it

observes a vector of sensor readings st .

Neural networks are able to approximate non-linear functions Q(s,a)≈ Q(s,a;θ), with

the Q-network parameterised with θ .

Algorithm 13 Double Deep-Q Learning over Actions
1: for ∀u ∈U do
2: Initialise replay memory E to capacity N
3: Initialise action-value function Q with random weights
4: while task is not terminated do
5: Observe state st

u
6: Policy πu← predict using the neural network model
7: if probability > ε then
8: at

u← argmax
au

Q(st
u,au;θu)

9: else
10: Select a random action at

u
11: end if
12: Apply action at

u
13: Observe state st+1

u , obtain reward ru
14: Store transition {st

u,a
t
u,ru,st+1

u } in experience buffer E
15: Sample a mini-batch from experience buffer E
16: Calculate target for each transition yt

u = ru + γ ∗
maxa Q(St ,argmaxa Q(St+1,a;θ ′t);θu)

17: Perform one gradient descent training step on the loss function Lu(θu) = (yt
u−

Q(st
u,a

t
u;θu))

2

18: t← t +1
19: end while
20: end for

6.1 Methodology 133

Algorithm 14 Double Deep-Q Learning over Heuristics
1: for ∀u ∈U do
2: Initialise replay memory E to capacity N
3: Initialise action-value function Q with random weights
4: while task is not terminated do
5: Observe state st

u
6: Policy πu← predict using the neural network model
7: if probability > ε then
8: ht

u← argmax
hu

Q(st
u,hu;θu)

9: else
10: Select a random heuristic ht

u
11: end if
12: Apply heuristic at

u←Hu(st
u)

13: Observe state st+1
u , obtain reward ru

14: if there is collaborating robot with heuristic ht
u then

15: Send ru to collaborating neighbouring agents, receive ri from n connected neigh-
bours

16: ru← (ru +∑
n
i=1 ri)/(n+1)

17: end if
18: Store transition {st

u,h
t
u,ru,st+1

u } in experience buffer E
19: Sample a mini-batch from experience buffer E
20: Calculate target for each transition yt

u = ru + γ ∗
maxh Q(St ,argmaxh Q(St+1,h;θu);θ ′u)

21: Perform one gradient descent training step on the loss function Lu(θu) = (yt
u−

Q(st
u,h

t
u;θu))

2

22: t← t +1
23: end while
24: end for

The deep reinforcement learning hyper-heuristic algorithm is detailed in Algorithm 14.

In order to stabilise the learning process, double Q-learning is used to learn heuristics [134].

The standard deep-Q learning updates the parameters after the agent has taken an action a′

and observed the next state St+1

θt+1 = θt +α(Yt−Q(St ,At ;θt))∆θt Q(St ,At ;θt)) (6.1)

134 Learning Heuristics with Deep Reinforcement Learning

where α is the step size and the target Y is defined as

Yt ≡ Rt+1 + γ max
a

Q(St ,At ;θt)) (6.2)

With double Q-learning, the action selection and evaluation are untangled by using two

neural networks. Using the standard Q-learning, the learning process is noisy and unstable,

especially in complex environments where there are gaps in the surfaces. With double

Q-learning, the training is stabilised and robots are able to learn and improve steadily. The

target Y ddqn
t is defined as

Y ddqn
t ≡ Rt+1 + γ max

a
Q(St ,argmax

a
Q(St+1,a;θt);θ

′
t)) (6.3)

When applied to distributed robots, the algorithm is described in Algorithm 13. Each robot

trains its own neural network model locally.

To select heuristics instead of actions, the target Y ddqn
t is defined as

Y ddqn
t ≡ Rt+1 + γ max

h
Q(St ,argmax

h
Q(St+1,h;θt);θ

′
t)) (6.4)

The loss function for each robot is given as

L(θ) = E[(r+ γ maxQ(s′,a′;θ)−Q(s,a;θ))2] (6.5)

When learning heuristics, the loss function that is to be minimised is:

L(θ) = E[(r+ γ maxQ(s′,h′;θ)−Q(s,h;θ))2] (6.6)

In optimising the neural network, calculating the cost over all experience E is computationally

inefficient. Instead, the algorithm uses stochastic gradient descent (SGD), which samples

6.2 Experiments 135

mini-batches from the stored experience E and performs one gradient descent training step

per training iteration.

6.2 Experiments

With the same environmental setups in Chapter 5, this section aims to verify that deep

Q-learning can also be used with the hyper-heuristic framework, and that robots are able to

effectively use deep learning with heuristics in a decentralised setting.

Fig. 6.1 The neural network architecture for DDQN learning

136 Learning Heuristics with Deep Reinforcement Learning

Table 6.1 Parameters for Q-learning hyper-heuristics

Optimizer Adam

Learning rate α 0.001

Adam parameter β1 0.9

Adam parameter β2 0.999

Adam parameter β t
1 0.9

Adam parameter β t
2 0.999

Discount factor γ 0.99

Initial exploration factor ε 0.5

ε decay rate 0.2 per 200 iteration

Batch size 32

Maximum stored experience number 15,000

Minimum experience to start training 400

The state representation used as the input to the neural networks is the same as the tabular

method for fair comparison, and is described in Table 5.1. The output of the neural networks

is predicted Q-values of the heuristics. Through some primary tuning, the neural network

architecture is shown in Figure 6.1. Since the state representation has 13 bits, the input to the

neural network has a dimension of “13×1×1”. The input layer is connected to a hidden

layer that has 64 neurons, with ReLU activation [90]. There are four such hidden layers

with the same dimensions and activation function. The output neurons have a dimension of

“8×1×1”, which agrees with the number of heuristics in the repository.

The parameters for DDQN Hyper-heuristics are empirically tuned for best performance,

and are shown in Table 6.1. The optimizer used in the neural network training is Adam [55].

6.2 Experiments 137

(a) DDQN on actions (b) DDQN on heuristics

Fig. 6.2 Empty environment: team reward

6.2.1 Comparing Learning Heuristics to Learning Actions

Figures 6.2, 6.3 and 6.4 show the distribution of team rewards over 30 repetitions of experi-

ments. It can be seen that with DDQN, robots learn actions more effectively than learning

actions with the tabular method, however the learning heuristics still has a significant advan-

tage in all environments, especially in the environment with gaps. In the empty environment,

the action-based policy is able to achieve a reward of 33.2 and the heuristic-based policy

has a reward of 37.93 with the same number of training iterations, which has a 14.25%

improvement. The improvement in the obstacle environment is less than the empty environ-

ment, 5.9%, where the total reward gained by action-based DDQN policy is 55.95 and by

the reward of heuristic-based policy is 59.24. This is because the locations of the obstacles

changes every 300 iterations, therefore the policy is harder to learn. In the gaps environment,

the difference between heuristic-based policy and the action based policy is the largest. It

138 Learning Heuristics with Deep Reinforcement Learning

(a) DDQN on actions (b) DDQN on heuristics

Fig. 6.3 Obstacle environment: team reward

can be seen in Figure 6.4 that the action-based DDQN has learned very little, with almost

no improvement in performance. When looking into the robots’ behaviour, the action-based

policy has not learned to assemble and cross gaps in the 14400 iterations of training. On the

other hand, learning on heuristics is much more effective, which gives an average reward

of 50.59, which is 60.35% better than the reward 31.55 given by the action-based policy.

With the heuristic-based policy, it can be seen from experiments that the robots use the

bridging heuristic to move across multiple surfaces, which drastically increased the group

performance.

DDQN-based hyper-heuristics also have great advantage at the start of the training. The

average reward of the first 300 iterations of learning actions is 10.9, while learning heuristics

gives 27.45 at the start of the training. This means that without any learning, selecting

heuristics gives a reward that is 2.52 times higher than selecting actions. At the start of the

training in the obstacle environment, the average reward of the first 300 iterations is 38.47

6.2 Experiments 139

(a) DDQN on actions (b) DDQN on heuristics

Fig. 6.4 Gaps environment: team reward

for learning heuristics and 24.73 for learning actions, which means that learning heuristics

gives a head start of 55.56% more reward. In the gaps environment, the difference is the

largest, where the heuristic-based policy is already better than action-based policy in the

first 300 iterations. The average reward at the start of the training is 41.25 for learning with

heuristics, which is already higher than the best reward achieved by action-based learning

(31.55). Learning on actions gives a starting reward of 28.07. This agrees with the fact that

learning on heuristics is much more efficient in environments that have multiple surfaces.

To further compare the learning of heuristics and actions, Figure 6.5 shows the trained

neural network performance on heuristics and actions with the same number of iterations.

It can be seen that not only does the DDQN-based heuristic learning method outperform

the action-based DDQN in all three scenarios, but that the hyper-heuristic method is also

more stable than action-based DDQN. The standard deviations of heuristic-based policies are

140 Learning Heuristics with Deep Reinforcement Learning

Fig. 6.5 Comparing the learned heuristic-based policy and the action-based policy

lower than action-based policies. After performing Mann-Whitney U test on the data set, we

have found that the p value of the heuristic-based and action-based method in all scenarios

are close to zero, which confirms that the advantage of learning heuristics is statistically

significant.

6.2.2 Comparing Deep Q-learning with Q-learning

This section compares the deep Q-learning hyper-heuristic with the tabular Q-learning hyper-

heuristic method described in Chapter 5. For better comparison, we also plot the MAB-based

hyper-heuristic results in the plots. Figure 6.6, 6.7 and 6.8 show the comparison between the

deep Q-learning hyper-heuristic and the Q-learning hyper-heuristic.

In the empty environment, it can be seen that the deep Q-learning method is the best

performing method among the three, and the MAB-based hyper-heuristic is the worst. The

policy deep Q-learning has learned achieves an average performance of 37.45 after 6000

6.2 Experiments 141

Fig. 6.6 Comparing hyper-heuristic methods in the empty environment

iterations, which has improved 4.4% from the tabular Q-learning, whose reward is 35.88. In

the environment with dynamic obstacles, as shown in Figure 6.7, although tabular Q-learning

did not achieve a significant improvement on the MAB-based hyper-heuristic method, the

deep Q-learning hyper-heuristic outperforms the two. The deep Q-learning method gives

an average reward of 59.41, while the other two methods’ performance are both 53.34.

The deep Q-learning method has an improvement of 11.37% comparing to the Q-learning

hyper-heuristic and the MAB-based hyper-heuristic. The comparison of algorithms in the

gaps environment is shown in Figure 6.8. In the previous comparison in Section 5.5.3,

the Q-learning hyper-heuristic is significantly more effective than the MAB-based method.

Comparing deep Q-learning to Q-learning of heuristics, there is no significant difference.

Across all three environments, the deep Q-learning hyper-heuristic performs the best

among the three learning methods, as can be seen in Fig. 6.9, showing that the deep Q-

142 Learning Heuristics with Deep Reinforcement Learning

Fig. 6.7 Comparing hyper-heuristic methods in the dynamic obstacles environment

network is an effective function approximator of the state-heuristic value function. The deep

Q-learning method matches or improves the learning performance over Q-learning in all

scenarios, showing that deep learning of heuristics is better at finding good policies.

However, does this mean that the deep Q-learning method should always be preferred?

In real-world robotics applications, a robot may have limited computational power, and

does not support the training and evaluation of neural networks, or does them slowly. The

tabular Q-learning hyper-heuristic approach requires less computational power, and can be

performed on most commercial robot micro-controllers. Therefore, although deep Q-learning

of heuristics can yield better results, it does have higher requirements on the robot hardware,

which can increase the cost of building the robots.

6.2 Experiments 143

Fig. 6.8 Comparing hyper-heuristic methods in the gaps environment

6.2.3 Dynamically Changing Environments

This section compares the performance of the Deep Q-learning hyper-heuristic in two types of

dynamically changing environments, and for comparison we include the previously proposed

MAB-based hyper-heuristics and Q-learning heuristic. Additionally, the action-based Q-

learning is used as a baseline to show improvements of the heuristic-based methods. The aim

is to verify if Q-learning hyper-heuristics are able to perform consistently well in changing

environments.

We test the DDQN hyper-heuristic, Q-learning hyper-heuristic, and the MAB hyper-

heuristic under these environments:

• Environment I, which consists of multiple surfaces separated by gaps. Its obstacles

change positions every 600 iterations

144 Learning Heuristics with Deep Reinforcement Learning

Fig. 6.9 Comparing the learned policies using Deep Q-learning, Q-learning and MAB-based
learning

Fig. 6.10 Total rewards in Environment I: changing environments

6.2 Experiments 145

Fig. 6.11 Total rewards in Environment II: random environments

• Environment II, random environments selected from empty, obstacles and gaps

The robots have to continuously learn in these ever-changing environments, and aim to

maximise the total reward. The results obtained from 30 runs are plotted in Figures 6.10

and 6.11. Since decentralised reinforcement learning agents observe the local state, they

have the ability to transfer knowledge into new types of environments as long as some

features in the new environment have been seen before. This can be seen from the fact that

both methods are able to adapt and improve in both dynamic environments. In terms of

the total reward, heuristic-based learning robots outperform action-based learning robots in

both scenarios. This indicates that learning on heuristics is more effective in re-using and

transferring knowledge into unknown and dynamic environments.

In Environment I, the obstacle positions change every 600 iterations, and Figure 6.10

plots 14000 iterations. It can be seen that the deep Q-learning hyper-heuristic has better

performance than Q-learning and MAB-based hyper-heuristics, which agrees with the results

146 Learning Heuristics with Deep Reinforcement Learning

from previous experiments. The performance of deep Q-learning and Q-learning hyper-

heuristic learning methods are 31.0% and 28.9% better than the action-based Q-learning.

MAB-based hyper-heuristic is 18.3% better respectively than the action-based Q-learning.

Mann-Whitney U test [81] is performed on the dataset. The difference between the

deep Q-learning and tabular Q-learning hyper-heuristic is not significant, with a p value

of 0.18684. When compared with the MAB-based hyper-heuristic, the p value of deep

Q-learning is 0.01684, which is significantly better with 95% confidence. Performing the

Mann-Whitney U test on the Q-learning hyper-heuristic and MAB-based hyper-heuristic,

the p value is 0.00016, indicating that Q-learning hyper-heuristic is significantly better with

more than 99% confidence.

In Environment II, the methods all use the same random seed in the experiments. It

can be seen in Figure 6.11 that the trend is very similar to Environment I. The performance

difference between deep Q-learning and tabular Q-learning hyper-heuristics is negligible,

and they are both significantly more effective than MAB-based hyper-heuristic in random

environments.

Mann-Whitney U test [81] has been performed on the data. The p value of deep Q-

learning and Q-learning hyper-heuristics is 0.90448, which shows that the performances are

almost identical. Comparing MAB-based hyper-heuristic to deep Q-learning hyper-heuristic

and Q-learning hyper-heuristic, the p values are 0.01596 and 0.01684 respectively, showing

that there is a significant improvement with more than 95% confidence.

Results show that across all scenarios, the deep Q-learning of heuristics has either equal

or higher reward than the tabular Q-learning. In addition, both deep-Q learning and Q-

learning hyper-heuristic perform significantly better than the MAB-based hyper-heuristic in

dynamically changing environments.

6.3 Summary 147

6.3 Summary

This chapter proposed and verified the use of deep Q-learning in the learning of heuristics for

decentralised swarm robots. The deep Q-learning of heuristics has been shown in simulation

to learn more quickly than action-based deep Q-learning, and has achieved significant

improvements on task performance in various environments comparing to the methods in

previous chapters. The results from experiments in this chapter lead us to conclude that, for a

swarm robotic system, if the robots have enough on-board computational power for deep

learning, the deep Q-learning hyper-heuristic approach would yield the best performance.

If instead the robots do not have enough computational power but have a relatively large

memory, the Q-learning hyper-heuristic approach becomes the preferred option in terms of

the overall performance in complex environments. At last, if neither the computational power

nor the memory on the robot are large and the task objective is complex, the MAB-based

hyper-heuristic is recommended because it requires much less computational resources than

the Q-learning methods, and still allows robots to adapt to changes in the environment.

Therefore we answered the research question of how deep learning can further improve

the hyper-heuristic framework, and confirmed that deep Q-Networks can be integrated in

our proposed hyper-heuristic framework and can achieve the aforementioned significant

improvements.

Chapter 7

Analysis and Discussion

In the previous chapters we have shown the benefits of the hyper-heuristic framework,

especially learning heuristics versus learning actions. However, the proposed hyper-heuristic

approach has more serendipitous benefits such as explainability and scalability, which we

analyse in this chapter.

7.1 Explainable Policies

One advantage of learning heuristics is that both the learning process and the policy are easier

for humans to comprehend than learning on actions. This is because the basic heuristics are

hand-coded algorithms that have explainable logic, and the effects of parameters are very

clear. For example, the collision avoidance mechanism used in the swarm robot heuristics has

a parameter Ravoid that controls the radius of activating the collision avoidance mechanism,

and changing this parameter will directly affect how sensitive the robot responds to obstacles.

With the hyper-heuristic framework, it is easy to fine tune particular robot behaviours without

re-designing the hyper-heuristic algorithm or the other heuristics in the repository. On the

other hand, learning actions from scratch without heuristics introduces many “black boxes”

in the learned policy, especially when the learned behaviour is complex. Taking the previous

150 Analysis and Discussion

collision avoidance as an example, if the learned policy, for instance a deep Q-network based

policy, works just as intended but a human operator prefers the robots to maintain a further

safety distance, the Q-learning algorithm needs to be re-designed to suit the extra requirement.

This characteristic of the hyper-heuristic approach makes it easy to explain and potentially

analyse the learning process. The following sections demonstrate how the hyper-heuristic

learning in this thesis, namely the MAB-based adaptive hyper-heuristics and the Q-learning

based hyper-heuristics can be explained and analysed using different statistics.

7.1.1 The MAB-based Hyper-heuristics

This section analyses the MAB-based adaptive hyper-heuristic described in Chapter 4. The

common method of understanding a learned strategy is through observing the robot be-

haviours, however with hyper-heuristics, we are able to examine the policy at a lower level,

that is which heuristic or combinations of heuristics are used, and make sense of the learned

strategy. This can potentially help developers in verifying and modifying the algorithms.

To demonstrate that the MAB-based hyper-heuristic is explainable, we compare two

sets of heuristics on the same environments and experimental settings. Through examining

the times a heuristic has been used in 30 repetitions, the learning process and the learned

strategy can be easily analysed. Fig. 7.1 plots heuristics used during cleaning tasks in the four

different environments. The colour bar indicates the number of times the heuristic has been

used in that iteration. It can be seen in Fig. 7.1(a) and Fig. 7.1(b) that in empty environments

and environments with obstacles, Flocking is found to be a good heuristic to start with, but in

later explorations, Exploring and Neighbourhood Search become the better heuristics to use.

In the two environments with gaps, Flocking is quickly found to be ineffective from the start,

and quickly transitions to other heuristics. The reason behind this is that in environments

without gaps, Flocking behaviour is able to rapidly cover a large area when there is a lot

of dirt to collect, and as there is less reward in the environment, Exploring allows robots to

7.1 Explainable Policies 151

(a) Environment: Empty

(b) Environment: Obstacle

(c) Environment: Gaps

(d) Environment: Gaps and Obstacles

Fig. 7.1 Comparing heuristic distributions using a set of 9 and 5 heuristics

scatter into unexplored areas and obtain more reward. In the environments with gaps, each

152 Analysis and Discussion

surface is narrower, and since Flocking made the robots stay together, it is less efficient than

Exploring which allows robots in the group to explore different directions.

In environments (c) and (d), Bridging (horizontal) is used more frequently than in

environments without gaps, which agrees with the intuition that forming bridges is effective

in navigating unconnected surfaces. This confirms that without re-programming or re-tuning,

the same hyper-heuristic algorithm is able to pick out the better performing subsets of

heuristics in different environments.

Like all the hyper-heuristic approaches, the performance of the system is largely influ-

enced by the quality of the heuristic repository. This is because hyper-heuristic methods

search in the space of heuristics, and rely on the resulting heuristics to generate a solution. If

none of the heuristics in the given repository is effective or relevant for the given problem

or scenario, the overall algorithm will have close to no capability of generating a solution.

To show the robustness of our proposed hyper-heuristic method over different selections

of heuristic repository, we investigate the heuristics used given a repository of 9 heuristics

and a repository of 5 heuristics in Fig. 7.1. The 9 heuristics are described in Section 4.3,

and the 5 heuristics repository comprises Exploring, Simple Sweeping, Flocking, Bridging

(horizontal) and Circling. In the empty and the obstacles environment, the robots learned to

use Neighbourhood Search together with Exploring when Neighbourhood Search is available.

It is also interesting to notice that Raster Scan is not selected as much as we expected

when the behaviour is added to the repository. The behaviour as we observed requires the

robots to stop and turn 90 degrees whenever an obstacle or another robot is encountered, and

turning 90 degrees on the same spot is slow for two wheeled robots like those used in our

experiments. A similar example is in most commercial floor cleaning robots: they usually

perform Exploring like motions when cleaning a room rather than raster-scan motion because

there are too many obstacles in rooms, which could cause robots to perform slow turning

motions all the time. Without previous knowledge of how useful this heuristic is, the proposed

7.1 Explainable Policies 153

hyper-heuristic algorithm learned to automatically avoid this poorly-performing behaviour.

Another example is Bridging (vertical) and Simple Sweeping, neither of them are selected

frequently by robot cleaners, which agrees with the intuition that the gaps presented in the

experiments are horizontal so the vertical movement is not effective, and Simple Sweeping

gives too much overhead in re-positioning when obstacles and gaps are encountered.

The heuristics that are found to be inefficient in the cleaning task are still given the chance

to be explored occasionally, balancing the exploitation of learned knowledge of heuristics.

Table 7.1 gives the detailed percentage of the heuristics used after their heuristic scores

are stabilised. When the heuristic repository size is 9, heuristic H7 Neighbourhood Search is

found to be the best in environments with no gaps and slightly less used in environments with

gaps. In the environments with no gaps, H0 and H8 are used the least, both with a percentage

of less than 2, because they are designed for bridging across surfaces. In the environments

with gaps, the usage of H0 is increased to 5.6% and 5.33% because it is the relevant bridging

behaviour for the given gaps. H8 was still explored occasionally, but was used much less

than H0. This shows that the proposed method adapts to different environments by favouring

different heuristics.

7.1.2 The Q-learning Method

The policy πu as described in Chapter 5 in reinforcement learning is a probability distribution

over actions given states, while the hyper-heuristic reinforcement learning is a probability

distribution over heuristics given states. In the swarm robotics domain, state-heuristic policies

tend to be more explainable than state-action policies because heuristics represent specific

behaviours with logic and reasoning. This section analyses the learning outcome through

examining the percentage of heuristics used over a number of learning iterations. Eight

heuristics are used: Bridging, Raster Scan (horizontal and vertical), Circling, Local Search,

Flocking, Sweeping and Exploring.

154 Analysis and Discussion

Table 7.1 Heuristic Percentage

Heuristica

Environment H0 H1 H2 H3 H4 H5 H6 H7 H8

Empty: 9 heuristics 1.47 3.20 28.80 16.67 4.27 1.60 1.20 41.33 1.47

Empty: 5 heuristics 2.40 6.27 54.53 29.33 7.47 − − − −

Obstacle: 9 heuristics 1.87 1.87 26.00 18.93 6.53 2.13 2.13 38.93 1.60

Obstacle: 5 heuristics 2.40 2.67 64.40 19.60 10.93 − − − −

Gaps: 9 heuristics 5.60 2.67 34.00 14.53 11.07 1.33 1.47 26.40 2.93

Gaps: 5 heuristics 6.67 3.60 57.47 18.13 14.13 − − − −

Gaps and Obstacles: 9 heuristics 5.33 2.27 29.73 12.67 17.47 2.40 1.60 25.73 2.80

Gaps and Obstacles: 5 heuristics 9.07 5.47 47.20 20.27 18.00 − − − −
aH0: Bridging (horizontal), H1: Simple Sweeping, H2: Exploring, H3: Flocking,

H4: Circling, H5: Raster Scan (horizontal), H6: Raster Scan (vertical),

H7: Neighbourhood Search, H8: Bridging (vertical)

Fig. 7.2 Used heuristics by deep Q-learning hyper-heuristic in empty environment

Figure 7.2 plots the percentage of each heuristic used in the empty environment with

30 repetitions using the deep Q-learning hyper-heuristics, Figure 7.3 plots the same using

Q-learning hyper-heuristics, and Figure 7.4 plots the MAB-based hyper-heuristics method.

The percentage is calculated as the number of times a heuristic is used every 120 learning

7.1 Explainable Policies 155

Fig. 7.3 Used heuristics by Q-learning hyper-heuristic in empty environment

Fig. 7.4 Used heuristics by MAB-based hyper-heuristic in empty environment

iterations by 5 robots with 30 repetitions divided by 120 iterations× 5 robots× 30 repetitions

× 8 heuristics. It should be noted that the plots only show the trends and proportion, not the

exact policy. With all three methods, it can be seen that the heuristic Exploring is the most

frequently used heuristic, but all the heuristics have been used in the learned policy. With the

deep Q-learning hyper-heuristics, the algorithm found Circling and Exploring to be a good

combination to use at the start, then transited to a combination of Flocking and Exploring

with a heavy weight of 76.4% on Exploring. The Q-learning hyper-heuristic method uses the

heuristics with similar proportions at the start, and then only found Raster Scan and Circling

to be ineffective. The MAB hyper-heuristic method finds a similar combination of effective

heuristics, but with slightly different weights. The MAB-based hyper-heuristic used more

Flocking, while the Q-learning hyper-heuristic used more Sweeping than the MAB-based

156 Analysis and Discussion

hyper-heuristic. From the previous performance evaluation as plotted in Figure 6.6, it is

known that the deep Q-learning hyper-heuristic has significantly better performance than the

other two methods, and it is the result of the distinctly different policy learned by the deep

Q-learning method.

Fig. 7.5 Used heuristics by the deep Q-learning hyper-heuristic in obstacle environment

Fig. 7.6 Used heuristics by the Q-learning hyper-heuristic in obstacle environment

Figure 7.5, 7.6, 7.7 plots the heuristic percentage of the deep Q-learning hyper-heuristic,

the Q-learning hyper-heuristic and the MAB-based hyper-heuristic every 300 iterations. In

this scenario, the three algorithms all learned different strategies. With the deep Q-learning

hyper-heuristic method, the starting heuristics are Circling, Raster Scan and Exploring, and

the learned policy is a combination of Local Search at 23.02%, Flocking at 24.04% and

Exploring at 29.79%. The Q-learning hyper-heuristic method finds the same heuristics, but

7.1 Explainable Policies 157

Fig. 7.7 Used heuristics by MAB-based hyper-heuristic in obstacle environment

with different weights on each heuristic. Starting from similar weights on each heuristic, the

algorithm quickly optimises to use mainly Exploring at 24.15% together with Bridging, Local

Search, Flocking and Sweeping. As can be seen in Table 7.2, the deep Q-learning Hyper-

heuristic has used 13.2% more Exploring and 10.31% less Bridging. From the performance

plot in Figure 6.7, it is known that the deep Q-learning hyper-heuristic has a better policy,

and the fact that less Bridging leads to a better policy in obstacles environments agrees with

the intuition. The MAB-based hyper-heuristic has a similar performance with the Q-learning

hyper-heuristic in obstacles environments, and the policy composition is quite different. This

shows that different policies can have similar performance.

Fig. 7.8 Used heuristics by deep Q-learning based hyper-heuristic in gaps environment

158 Analysis and Discussion

Fig. 7.9 Used heuristics by Q-learning based hyper-heuristic in gaps environment

Fig. 7.10 Used heuristics by MAB-based hyper-heuristic in gaps environment

Figure 7.8 shows the heuristic percentage used every 600 iterations with the deep Q-

learning hyper-heuristic method. The most used heuristics are Bridging and Local Search,

which is different from the other environments, especially Bridging which is used much more,

at 24.79%. From the performance evaluation, the Q-learning hyper-heuristic has a similar

performance as the deep Q-learning hyper-heuristic. As shown in Figure 7.9, Bridging is

the most used heuristic, and the rest of the heuristics distribution is similar to the deep Q-

learning hyper-heuristic. Figure 7.10 shows the heuristics percentage using the MAB-based

hyper-heuristic. It can be seen that the learned policy is similar to the other two methods, but

7.2 Scalability 159

Bridging is used 22.25% of the time, and it is less than the other two methods, which are

24.79% and 27.46%. This lack of Bridging has been reflected in the performance evaluation,

making it the worse method in gaps environment.

Table 7.2 Q-learning Heuristic Percentage

Heuristica

Environment H0 H1 H2 H3 H4 H5 H6 H7

Empty: deep-Q HH 2.25 0.95 0.98 3.19 1.09 14.04 1.94 76.37

Empty: Q HH 18.5 1.36 2.65 20.3 1.28 15.66 14.69 26.33

Empty: MAB HH 13.72 3.46 5.18 20.84 1.79 19.54 12.47 23.83

Obstacles: deep-Q HH 11.52 0.86 1.87 23.02 1.28 24.04 7.93 29.79

Obstacles: Q HH 23.10 1.68 3.50 17.94 2.76 15.82 15.60 16.59

Obstacles: MAB HH 12.79 2.55 8.30 18.86 2.41 18.85 12.42 24.15

Gaps: deep-Q HH 24.79 1.79 4.30 26.99 2.25 12.99 9.39 17.66

Gaps: Q HH 27.46 3.59 5.27 15.44 3.30 13.90 14.32 16.90

Gaps: MAB HH 22.25 7.27 8.11 14.51 7.19 13.65 13.87 13.32
aH0: Bridging, H1: Raster Scan (horizontal), H2: Circling, H3: Neighbourhood Search,

H4: Raster Scan (vertical), H5: Flocking, H6: Sweeping, H7: Exploring

7.2 Scalability

The last section showed that the heuristic policy and learning can be explainable, and another

benefit of the hyper-heuristic framework is that it is easily scalable. More robots can be added

to the system, which makes the hyper-heuristic approach suitable for applications of different

sizes. This section discusses the issues that can arise in the MAB-based hyper-heuristic

system and the Q-learning hyper-heuristic system when there are more robots in the swarm.

160 Analysis and Discussion

7.2.1 The MAB hyper-heuristic

Table 7.3 Comparing the time to reach consensus in the collective decision making

Num of Robots MAX-SUM & MAX-MIN Voting

5 0.256s 4s

10 0.256s 32s

20 0.256s 65s

As the scale of the swarm increases, the time spent performing online learning depends

heavily on the collective decision making strategy, as the initial individual learning is

independent of other robots. We compare the time to reach consensus during the collective

decision making process. Table 7.3 shows the comparison of robot swarms with size 5, 10 and

20 robots respectively. As can be seen, using MAX-SUM and MAX-MIN, the decision time

is much faster and does not increase with the number of robots. In contrast, the time used for

voting is longer even in a small swarm and increases quite rapidly with the number of robots.

That means the complexity of voting is higher than that of MAX-SUM and MAX-MIN. For

large scale swarm robots, MAX-SUM and MAX-MIN would be advantageous.

7.2.2 Q-learning hyper-heuristic

It has been shown in the previous section that the MAB-based hyper-heuristic method can

scale to large numbers of robots, and this section demonstrates how the Q-learning hyper-

heuristics behave with more robots. Since robots with Q-learning hyper-heuristics mostly

learn by themselves without much communication, the communication latency is not a

major factor that would affect the scalability of the system. Instead, since Q-learning robots

cooperatively learn their policies, this section aims to find out if the learning is still effective

when new robots are introduced to the swarm.

7.2 Scalability 161

(a) (b)

Fig. 7.11 Five experienced robots + five new robots in empty environment: learning from
other robots (knowledge sharing) and learning by themselves

In these experiments, we introduce 5 new robots to a group of 5 robots that had been

exploring in the environment for a while, then examine if the hyper-heuristic coordination

is still effective, and if robots are still able to learn to improve the performance over time.

The first 5 robots are taken from the Q-learning hyper-heuristic experiments in Section

5.5.1, and after the good policies are found, 5 robots with no experience are placed into the

environment. Each experiment is repeated 30 times for statistical significance. In this set

of experiments, we demonstrate the performance of the Q-learning hyper-heuristic with the

importance advising mechanism in Section 5.3 as well as the scenario when new robots learn

independently (without asking and receiving knowledge from other robots).

Results of the 10 robots group performance are plotted in Figure 7.11. It can be seen that

with 10 robots in the group, they are able to continuously learn to improve their performance

162 Analysis and Discussion

(a) (b)

Fig. 7.12 Five experienced robots + five new robots in obstacles environment: learning from
other robots (knowledge sharing) and learning by themselves

both with the assistance from experienced robots and from scratch. Within 1800 iterations,

the group reward improves from 60.95 in the first 120 iterations to 64.80 and from 60.27 to

63.50 in the scenarios with and without knowledge sharing respectively. In the previous ex-

periments in Section 6.2.2 with five robots in the empty environment, the group performance

is approximately 35.83 at the end of 6000 iterations. With double the number of robots, the

total reward increased by 80%. Although the performance did not double with double the

robots, the heuristic learning is still effective because all robots started at the same place,

and when there are more robots, they are more likely to encounter obstructions which make

them waste more time dealing with collisions rather than cleaning. Comparing performance

with and without group learning (knowledge sharing between old and new robots), robots

with the importance advising mechanism learn faster than those learning independently, as

7.2 Scalability 163

(a) (b)

Fig. 7.13 Five experienced robots + five new robots in gaps environment: learning from other
robots (knowledge sharing) and learning by themselves

the reward with knowledge sharing is consistently higher in the first 600 iterations. After

600 iterations of learning, the independent learning robots catch up in performance, and

the two groups’ performance trends merge to be similar. This experiment shows that the

hyper-heuristic framework can operate normally when more robots are added to the group in

the empty environment.

Figure 7.12 shows the 10 robot hyper-heuristic learning in environment with obstacles.

With knowledge sharing, the total reward obtained by 10 robots in the first 300 iterations

is 89.14, and after 5700 iterations of training, the performance has improved to 102.28. In

the previous experiments in Section 6.2.2 with five robots in the obstacles environment, the

learning enabled the performance to rise from 39.10 to 53.34, which means that adding five

more robots, the group performance was able to improve over time and improve 91% when

the robot number is doubled. Without learning from experienced robots, the initial reward

164 Analysis and Discussion

is 88.41, and improved to be 101.17 at the end of 5700 iterations. The improvements show

that the Q-learning hyper-heuristics are effective with 5 new robots added to the group in the

obstacles environment. Furthermore, the importance advising mechanism does speed up the

learning since the performance of group learning robots is higher than independent learning

robots in the first 2400 iterations.

Similar trends can be found in the gaps environment, as shown in Figure 7.13. The

group performance in the first 300 iterations with new robots in the system is 78.30 for both

scenarios, and the learned policy has given a reward of approximately 90.8. In the previous

experiments in Section 6.2.2 with five robots in the empty environment, the learning enabled

the performance to rise from 40.49 to 50.91. This shows that with ten robots in the group,

the overall performance can be improved 78.3%. The new robots can also improve their

own policy through reinforcement learning of heuristics. When robots learn from each other

using the knowledge sharing method, it can be seen that they can learn significantly faster in

this environment. After 600 learning iterations, the robots with advising in learning reach a

group reward of 85.15, while independent learning robots have a reward of 80.05, and the

advantage stays until iteration 1500.

In summary, when new robots are added to the Q-learning hyper-heuristic group, new

robots are able to integrate with the old system and the group improves as a whole. This

makes the system scalable to larger groups of robots. The newly added robots also can

accelerate their learning by the advising mechanism described in Section 5.3.

7.3 Summary

This chapter has shown more benefits of the framework. The policies generated by learning

heuristics are explainable, and the framework is still effective with scalable group sizes.

We analysed how the policies learned by the proposed hyper-heuristic swarm robot

controllers can be explainable, and that they are more explainable than the traditional action-

7.3 Summary 165

based policies. By analysing which heuristics are used at each stage of learning, it is easy to

see how the policies evolve through hyper-heuristic online learning, and the policy can be

understood intuitively by researchers and users. This chapter also compared the performances

of different hyper-heuristic methods in ever changing environments, and has shown that the

Q-learning hyper-heuristic methods are best at finding good policies. This chapter has also

compared the benefits and drawbacks of the proposed hyper-heuristic methods in terms of

scalability.

Chapter 8

Conclusions

The central theme of this thesis has been to address the integration of the hyper-heuristic

methodology with swarm robot behaviour coordination in performing tasks in complex and

dynamic environments. Based on the research within, we hereby list the contributions and

conclude the investigation in this final chapter.

Recall the research questions posed in Section 1.1. We will summarise how our research

has addressed these questions below:

• How can hyper-heuristic approaches be formulated to coordinate swarm robots

without centralised control, so swarm robots can better cope with unknown or

dynamic environments?

Based on our study, we conclude that a hyper-heuristic framework can be established

for swarm robot coordination, and the proposed swarm robot hyper-heuristic framework

is effective across a range of unknown and dynamic environments. Our study shows

that the hyper-heuristic learning is beneficial for the task performance, in particular,

heuristic-based learning is more effective than action-based learning.

• How can the learning of heuristics be improved by introducing different learning

strategies?

168 Conclusions

Q-learning can be introduced as a heuristic learning strategy under the hyper-heuristic

framework and can improve its performance further.

Group learning, which allows robots to communicate knowledge and learn as a group,

can also be beneficial and support learning. Group learning strategies can be applied to

both MAB-based learning and Q-learning of heuristics.

• How can state-of-the-art deep Q-learning be integrated to further improve the

hyper-heuristic learning?

Our study confirmed that deep Q-learning can further improve the hyper-heuristic

learning. More importantly, it also demonstrates that learning heuristics is better than

learning actions, even when utilising deep learning.

Our study has also shown additional benefits of the proposed hyper-heuristic framework.

The solutions generated are more explainable. The framework is also scalable and continues

to perform well when more robots are integrated into the system.

Therefore, based on this study, we conclude that the hyper-heuristic learning in our frame-

work is beneficial for swarm robot coordination under complex and dynamic environments,

and the contribution of this study is significant.

This study has established a new framework and many further future work can be extended

based on this work. We believe that it can open a new research area into many directions.

8.1 Future Works

The following research directions can be further explored in the future:

• Genetic Programming is a widely used hyper-heuristic for heuristic generation [14],

and is not explored in this work. As mentioned in Chapter 2, existing methods are not

ideal for multi-robot systems because the framework for evolving heuristics needs to

8.1 Future Works 169

be redeveloped for each task. How can Genetic Programming method be integrated

into the hyper-heuristic framework in a way that is beneficial for performing swarm

robotics tasks?

• A wide range of environmental setups and scenarios in the application of cleaning

multiple surfaces with self-assembling robots have been studied, what other gaps in

multi-robot applications can be addressed with the hyper-heuristic framework?

• Chapter 6 presented a deep Q-learning based hyper-heuristic method for decentralised

swarm robots, can the performance be further improved by using different deep

reinforcement learning strategies or neural network architectures?

• Transfer learning allows machine learning agents to transfer the knowledge learned

from one problem domain to a new one [132]. Can transfer learning be used with the

hyper-heuristic framework to further improve the adaptability of the swarm robots?

References

[1] Ampatzis, C., Tuci, E., Trianni, V., Christensen, A. L., and Dorigo, M. (2009). Evolving
self-assembly in autonomous homogeneous robots: Experiments with two physical robots.
Artificial Life, 15(4):465–484.

[2] Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2006). The traveling
salesman problem: a computational study. Princeton university press.

[3] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017a). A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866.

[4] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017b). Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38.

[5] Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

[6] Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334.

[7] Biazzini, M., Bánhelyi, B., Montresor, A., and Jelasity, M. (2009). Distributed hyper-
heuristics for real parameter optimization. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pages 1339–1346. ACM.

[8] Bilgin, B., Özcan, E., and Korkmaz, E. E. (2006). An experimental study on hyper-
heuristics and exam timetabling. In International Conference on the Practice and Theory
of Automated Timetabling, pages 394–412. Springer.

[9] Bock, T., Bulgakow, A., Ashida, S., and Hergl, C. (2002). Facade cleaning robot for the
skyscraper. VDI BERICHTE, 1679:627–632.

[10] Bohme, T., Schmucker, U., Elkmann, N., and Sack, M. (1998). Service robots for
facade cleaning. In IECON’98. Proceedings of the 24th Annual Conference of the IEEE
Industrial Electronics Society (Cat. No. 98CH36200), volume 2, pages 1204–1207. IEEE.

[11] Bontrager, P., Khalifa, A., Mendes, A., and Togelius, J. (2016). Matching games
and algorithms for general video game playing. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.

[12] Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41.

172 References

[13] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S. (2003a).
Hyper-heuristics: An emerging direction in modern search technology. In Handbook of
metaheuristics, pages 457–474. Springer.

[14] Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., and Woodward, J. R.
(2009). Exploring hyper-heuristic methodologies with genetic programming. In Computa-
tional intelligence, pages 177–201. Springer.

[15] Burke, E. K., Kendall, G., and Soubeiga, E. (2003b). A tabu-search hyperheuristic for
timetabling and rostering. Journal of heuristics, 9(6):451–470.

[16] Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R. (2007). A graph-based
hyper-heuristic for educational timetabling problems. European Journal of Operational
Research, 176(1):177–192.

[17] Burke, E. K., Petrovic, S., and Qu, R. (2006). Case-based heuristic selection for
timetabling problems. Journal of Scheduling, 9(2):115–132.

[18] Chen, Y. F., Liu, M., Everett, M., and How, J. P. (2017). Decentralized non-
communicating multiagent collision avoidance with deep reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pages 285–292.
IEEE.

[19] Choi, Y.-H. and Jung, K.-M. (2011). Windoro: The world’s first commercialized
window cleaning robot for domestic use. In 2011 8th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), pages 131–136. IEEE.

[20] Choi, Y.-H., Lee, J.-Y., Lee, J.-D., and Lee, K.-E. (2012). Smart windoro v1. 0: Smart
window cleaning robot. In 2012 9th International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI), pages 116–119. IEEE.

[21] Consoli, S., Darby-Dowman, K., Mladenović, N., and Pérez, J. M. (2009). Greedy
randomized adaptive search and variable neighbourhood search for the minimum labelling
spanning tree problem. European Journal of Operational Research, 196(2):440–449.

[22] Cowling, P., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic approach to
scheduling a sales summit. In International Conference on the Practice and Theory of
Automated Timetabling, pages 176–190. Springer.

[23] Cowling, P., Kendall, G., and Soubeiga, E. (2001). A parameter-free hyperheuristic
for scheduling a sales summit. In Proceedings of the 4th Metaheuristic International
Conference, MIC, volume 2001, pages 127–131. Citeseer.

[24] Da Silva, F. L., Glatt, R., and Costa, A. H. R. (2017). Simultaneously learning and
advising in multiagent reinforcement learning. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pages 1100–1108. International Foundation
for Autonomous Agents and Multiagent Systems.

[25] Da Silva, F. L., Taylor, M. E., and Costa, A. H. R. (2018). Autonomously reusing
knowledge in multiagent reinforcement learning. In IJCAI, pages 5487–5493.

References 173

[26] DaCosta, L., Fialho, A., Schoenauer, M., and Sebag, M. (2008). Adaptive operator
selection with dynamic multi-armed bandits. In Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pages 913–920. ACM.

[27] Dasgupta, P., Cheng, K., and Banerjee, B. (2011). Adaptive multi-robot team reconfigu-
ration using a policy-reuse reinforcement learning approach. In International Conference
on Autonomous Agents and Multiagent Systems, pages 330–345. Springer.

[28] Del Dottore, E., Sadeghi, A., Mondini, A., Mattoli, V., and Mazzolai, B. (2018). Toward
growing robots: a historical evolution from cellular to plant-inspired robotics. Frontiers
in Robotics and AI, 5:16.

[29] Di Gaspero, L. and Schaerf, A. (2000). Tabu search techniques for examination
timetabling. In International Conference on the Practice and Theory of Automated
Timetabling, pages 104–117. Springer.

[30] Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T.,
Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al. (2013). Swarmanoid: a novel
concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation
Magazine, 20(4):60–71.

[31] Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi,
S., Deneubourg, J., Mondada, F., Floreano, D., et al. (2004a). Evolving self-organizing
behaviors for a swarm-bot. Autonomous Robots, 17(2-3):223–245.

[32] Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T. H., Nouyan, S., Ampatzis, C.,
Deneubourg, J., Baldassarre, G., Nolfi, S., et al. (2004b). The swarm-bots project. In
International Workshop on Swarm Robotics, pages 31–44. Springer.

[33] Foerster, J., Assael, I. A., de Freitas, N., and Whiteson, S. (2016). Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems, pages 2137–2145.

[34] Fujii, T., Arai, Y., Asama, H., and Endo, I. (1998). Multilayered reinforcement learning
for complicated collision avoidance problems. In Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat. No. 98CH36146), volume 3, pages 2186–
2191. IEEE.

[35] Fukuda, T. (1988). Self organizing robots based on cell structures-cebot. In Proc. IEEE
Int. Workshop on Intelligent Robots and Systems (IROS’88), pages 145–150.

[36] G. Ochoa and M. Hyde (2011). The hyper-heuristic framework featuring the domain
barrier, the hyper-heuristic layer and the problem domain layer. http://www.asap.cs.nott.
ac.uk/external/chesc2011/hyflex_description.html#Figure_2. [Online; accessed 5-July-
2019].

[37] Garrido, P. and Castro, C. (2009). Stable solving of cvrps using hyperheuristics. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation,
pages 255–262. ACM.

[38] Glover, F. W. and Kochenberger, G. A. (2006). Handbook of metaheuristics, volume 57.
Springer Science & Business Media.

http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_description.html#Figure_2
http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_description.html#Figure_2

174 References

[39] Hansen, P., Mladenović, N., and Pérez, J. A. M. (2008). Variable neighbourhood search:
methods and applications. 4OR, 6(4):319–360.

[40] Hasan, K. M., Reza, K. J., et al. (2014). Path planning algorithm development for
autonomous vacuum cleaner robots. In 2014 International Conference on Informatics,
Electronics & Vision (ICIEV), pages 1–6. IEEE.

[41] Hettiarachchi, S. D. (2007). Distributed evolution for swarm robotics. Citeseer.

[42] HOBOT (2015). Hobot-188. http://www.hobot.com.tw/Products_list_Window_Robot_
188.php. [Online; accessed 12-July-2019].

[43] Hoff, N., Wood, R., and Nagpal, R. (2013). Distributed colony-level algorithm switching
for robot swarm foraging. In Distributed Autonomous Robotic Systems, pages 417–430.
Springer.

[44] Hutchinson, J. M. and Gigerenzer, G. (2005). Simple heuristics and rules of thumb:
Where psychologists and behavioural biologists might meet. Behavioural processes,
69(2):97–124.

[45] Hüttenrauch, M., Adrian, S., Neumann, G., et al. (2019). Deep reinforcement learning
for swarm systems. Journal of Machine Learning Research, 20(54):1–31.

[46] Imaoka, N., Roh, S.-g., Yusuke, N., and Hirose, S. (2010). Skyscraper-i: Tethered
whole windows cleaning robot. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5460–5465. IEEE.

[47] Katsuki, Y., Ikeda, T., and Yamamoto, M. (2011). Development of a high efficiency and
high reliable glass cleaning robot with a dirt detect sensor. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5133–5138. IEEE.

[48] Kendall, G. and Hussin, N. M. (2005). An investigation of a tabu-search-based hyper-
heuristic for examination timetabling. In Multidisciplinary Scheduling: Theory and
Applications, pages 309–328. Springer.

[49] Kennedy, J. (2006). Swarm intelligence. In Handbook of nature-inspired and innovative
computing, pages 187–219. Springer.

[50] Kernbach, S., Hamann, H., Stradner, J., Thenius, R., Schmickl, T., Crailsheim, K.,
van Rossum, A. C., Sebag, M., Bredeche, N., Yao, Y., et al. (2009). On adaptive self-
organization in artificial robot organisms. In 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns, pages 33–43. IEEE.

[51] Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri,
D., Winkler, L., Schmickl, T., Thenius, R., et al. (2008). Symbiotic robot organisms:
Replicator and symbrion projects. In Proceedings of the 8th workshop on performance
metrics for intelligent systems, pages 62–69. ACM.

[52] Keshmiri, S. and Payandeh, S. (2009). A centralized framework to multi-robots forma-
tion control: Theory and application. In Collaborative Agents-Research and Development,
pages 85–98. Springer.

http://www.hobot.com.tw/Products_list_Window_Robot_188.php
http://www.hobot.com.tw/Products_list_Window_Robot_188.php

References 175

[53] Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
In Autonomous robot vehicles, pages 396–404. Springer.

[54] Khoshnevis, B. and Bekey, G. (1998). Centralized sensing and control of multiple
mobile robots. Computers & industrial engineering, 35(3-4):503–506.

[55] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

[56] Kiraz, B., Etaner-Uyar, A. Ş., and Özcan, E. (2013). Selection hyper-heuristics in
dynamic environments. Journal of the Operational Research Society, 64(12):1753–1769.

[57] Kohl, N. and Stone, P. (2004). Policy gradient reinforcement learning for fast
quadrupedal locomotion. In IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, volume 3, pages 2619–2624. IEEE.

[58] Kormushev, P., Calinon, S., and Caldwell, D. G. (2010). Robot motor skill coordination
with em-based reinforcement learning. In 2010 IEEE/RSJ international conference on
intelligent robots and systems, pages 3232–3237. IEEE.

[59] Krose, B. J. and Van Dam, J. W. (1992). Adaptive state space quantisation for reinforce-
ment learning of collision-free navigation. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 2, pages 1327–1332. IEEE.

[60] Kuhn, M. and Johnson, K. (2013). Applied predictive modeling, volume 26. Springer.

[61] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., and Murata, S. (2008).
Distributed self-reconfiguration of m-tran iii modular robotic system. The International
Journal of Robotics Research, 27(3-4):373–386.

[62] Kuyucu, T., Tanev, I., and Shimohara, K. (2013). Hormone-inspired behaviour switch-
ing for the control of collective robotic organisms. Robotics, 2(3):165–184.

[63] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

[64] Levi, P., Meister, E., Van R, A., Krajnik, T., Vonasek, V., Stepan, P., Liu, W., and
Caparrelli, F. (2014). A cognitive architecture for modular and self-reconfigurable robots.
In Systems Conference, pages 465–472. IEEE.

[65] Lin, L.-J. (1993). Reinforcement learning for robots using neural networks. Technical
report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science.

[66] Lipowski, A. and Lipowska, D. (2012). Roulette-wheel selection via stochastic accep-
tance. Physica A: Statistical Mechanics and its Applications, 391(6):2193–2196.

[67] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van
Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey on deep learning
in medical image analysis. Medical image analysis, 42:60–88.

[68] Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. In Machine learning proceedings 1994, pages 157–163. Elsevier.

176 References

[69] Liu, J., Jiang, H., Li, Z., and Hu, H. (2009). A small window-cleaning robot for domestic
use. In 2009 International Conference on Artificial Intelligence and Computational
Intelligence, volume 2, pages 262–266. IEEE.

[70] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and Pietikäinen, M.
(2020). Deep learning for generic object detection: A survey. International journal of
computer vision, 128(2):261–318.

[71] Liu, W. and Winfield, A. F. (2010). Autonomous morphogenesis in self-assembling
robots using ir-based sensing and local communications. In International Conference on
Swarm Intelligence, pages 107–118. Springer.

[72] Long, P., Fanl, T., Liao, X., Liu, W., Zhang, H., and Pan, J. (2018). Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 6252–6259.
IEEE.

[73] López-Camacho, E., Terashima-Marin, H., Ross, P., and Ochoa, G. (2014). A uni-
fied hyper-heuristic framework for solving bin packing problems. Expert Systems with
Applications, 41(15):6876–6889.

[74] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., and Stützle, T.
(2016). The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives, 3:43–58.

[75] Lu, J. J. and Zhang, M. (2013). Heuristic Search, pages 885–886. Springer New York,
New York, NY.

[76] Luna, R. and Bekris, K. E. (2011). Efficient and complete centralized multi-robot path
planning. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3268–3275. IEEE.

[77] Mac, T. T., Copot, C., Tran, D. T., and De Keyser, R. (2016). Heuristic approaches in
robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28.

[78] Marzinotto, A., Colledanchise, M., Smith, C., and Ögren, P. (2014). Towards a unified
behavior trees framework for robot control. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 5420–5427. IEEE.

[79] Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. In Robot
colonies, pages 73–83. Springer.

[80] Mataric, M. J. (1998). Using communication to reduce locality in distributed multiagent
learning. Journal of experimental & theoretical artificial intelligence, 10(3):357–369.

[81] McKnight, P. E. and Najab, J. (2010). Mann-whitney u test. Corsini Encyclopedia of
Psychology.

[82] Mendes, A., Togelius, J., and Nealen, A. (2016). Hyper-heuristic general video game
playing. In 2016 IEEE Conference on Computational Intelligence and Games (CIG),
pages 1–8. IEEE.

References 177

[83] Michel, O. (1998). Webots: Symbiosis between virtual and real mobile robots. In
International Conference on Virtual Worlds, pages 254–263. Springer.

[84] Michel, O. (2004). Cyberbotics ltd. webots™: professional mobile robot simulation.
International Journal of Advanced Robotic Systems, 1(1):5.

[85] Miyake, T., Ishihara, H., Shoji, R., and Yoshida, S. (2006). Development of small-size
window cleaning robot a traveling direction control on vertical surface using accelerometer.
In 2006 International Conference on Mechatronics and Automation, pages 1302–1307.
IEEE.

[86] Mlot, N. J., Tovey, C. A., and Hu, D. L. (2011). Fire ants self-assemble into waterproof
rafts to survive floods. Proceedings of the National Academy of Sciences, 108(19):7669–
7673.

[87] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[88] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540):529.

[89] Nagavalli, S., Chakraborty, N., and Sycara, K. (2017). Automated sequencing of swarm
behaviors for supervisory control of robotic swarms. In Robotics and Automation, IEEE
International Conference on, pages 2674–2681. IEEE.

[90] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814.

[91] Napp, N., Burden, S., and Klavins, E. (2011). Setpoint regulation for stochastically
interacting robots. Autonomous Robots, 30(1):57–71.

[92] Nareyek, A. (2003). Choosing search heuristics by non-stationary reinforcement
learning. In Metaheuristics: Computer decision-making, pages 523–544. Springer.

[93] Nicolescu, M. N. and Matarić, M. J. (2002). A hierarchical architecture for behavior-
based robots. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, pages 227–233. ACM.

[94] Nolfi, S., Floreano, D., and Floreano, D. D. (2000). Evolutionary robotics: The biology,
intelligence, and technology of self-organizing machines. MIT press.

[95] Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gendreau, M.,
Kendall, G., McCollum, B., Parkes, A. J., Petrovic, S., et al. (2012). Hyflex: A benchmark
framework for cross-domain heuristic search. In European Conference on Evolutionary
Computation in Combinatorial Optimization, pages 136–147. Springer.

[96] Oh, H., Shirazi, A. R., Sun, C., and Jin, Y. (2017). Bio-inspired self-organising
multi-robot pattern formation: A review. Robotics and Autonomous Systems, 91:83–100.

178 References

[97] Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J. (2017). Deep decentralized
multi-task multi-agent reinforcement learning under partial observability. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 2681–2690.
JMLR. org.

[98] Ouelhadj, D. and Petrovic, S. (2008). A cooperative distributed hyper-heuristic frame-
work for scheduling. In Systems, Man and Cybernetics, IEEE International Conference
on, pages 2560–2565. IEEE.

[99] Özcan, E., Mısır, M., and Kheiri, A. (2013). Group decision making hyper-heuristics
for function optimisation. In UK Workshop on Computational Intelligence, pages 327–333.
IEEE.

[100] Pillay, N. (2016). A review of hyper-heuristics for educational timetabling. Annals of
Operations Research, 239(1):3–38.

[101] Pillay, N. and Qu, R. (2018). Selection Perturbative Hyper-Heuristics, pages 17–23.
Springer International Publishing, Cham.

[102] Porta, J. M. and Celaya, E. (2001). Efficient gait generation using reinforcement
learning. In Proceedings of the Fourth International Conference on Climbing and Walking
Robots, pages 411–418.

[103] Rattadilok, P., Gaw, A., and Kwan, R. S. (2004). Distributed choice function hyper-
heuristics for timetabling and scheduling. In International Conference on the Practice
and Theory of Automated Timetabling, pages 51–67. Springer.

[104] Reeves, C. R. (1994). Genetic algorithms and neighbourhood search. In AISB
Workshop on Evolutionary Computing, pages 115–130. Springer.

[105] Reeves, C. R. (1996). Heuristic search methods: A review. Operational Research-
Keynote Papers, pages 122–149.

[106] Rekleitis, I., New, A. P., Rankin, E. S., and Choset, H. (2008). Efficient boustrophedon
multi-robot coverage: an algorithmic approach. Annals of Mathematics and Artificial
Intelligence, 52(2-4):109–142.

[107] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.
ACM SIGGRAPH computer graphics, 21(4):25–34.

[108] Riedmiller, M., Gabel, T., Hafner, R., and Lange, S. (2009). Reinforcement learning
for robot soccer. Autonomous Robots, 27(1):55–73.

[109] Rodríguez, J. V., Petrovic, S., and Salhi, A. (2007). A combined meta-heuristic
with hyper-heuristic approach to the scheduling of the hybrid flow shop with sequence
dependent setup times and uniform machines. In Proceedings of the 3rd Multidisciplinary
International Conference on Scheduling: Theory and Applications. MISTA: Paris, France,
pages 506–513.

[110] Ross, H.-L. F. P. and Corne, D. (1994). A promising hybrid ga/heuristic approach for
open-shop scheduling problems. In Proc. 11¡ sup¿ th¡/sup¿ European Conference on
Artificial Intelligence, pages 590–594.

References 179

[111] Ross, P. (2005). Hyper-heuristics. In Search methodologies, pages 529–556. Springer.

[112] Ross, P., Schulenburg, S., Marín-Bläzquez, J. G., and Hart, E. (2002). Hyper-heuristics:
learning to combine simple heuristics in bin-packing problems. In Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation, pages 942–948. Morgan
Kaufmann Publishers Inc.

[113] Ross, S., Chaib-draa, B., and Pineau, J. (2008). Bayesian reinforcement learning in
continuous pomdps with application to robot navigation. In 2008 IEEE International
Conference on Robotics and Automation, pages 2845–2851. IEEE.

[114] Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799.

[115] Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1.

[116] Sabar, N. R., Ayob, M., Kendall, G., and Qu, R. (2015). A dynamic multiarmed bandit-
gene expression programming hyper-heuristic for combinatorial optimization problems.
IEEE Transactions on Cybernetics, 45(2):217–228.

[117] Şahin, E. (2004). Swarm robotics: From sources of inspiration to domains of applica-
tion. In International workshop on swarm robotics, pages 10–20. Springer.

[118] Salemi, B. and Shen, W.-M. (2004). Distributed behavior collaboration for self-
reconfigurable robots. In IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, volume 4, pages 4178–4183. IEEE.

[119] Shen, H., Yosinski, J., Kormushev, P., Caldwell, D. G., and Lipson, H. (2012). Learning
fast quadruped robot gaits with the rl power spline parameterization. Cybernetics and
Information Technologies, 12(3):66–75.

[120] Soubeiga, E. (2003). Development and application of hyperheuristics to personnel
scheduling. PhD thesis, University of Nottingham.

[121] Soysal, O. and Sahin, E. (2005). Probabilistic aggregation strategies in swarm robotic
systems. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005.,
pages 325–332. IEEE.

[122] Spears, W. M., Spears, D. F., Hamann, J. C., and Heil, R. (2004). Distributed,
physics-based control of swarms of vehicles. Autonomous Robots, 17(2-3):137–162.

[123] Sperati, V., Trianni, V., and Nolfi, S. (2008). Evolving coordinated group behaviours
through maximisation of mean mutual information. Swarm Intelligence, 2(2-4):73–95.

[124] Spradling, M., Goldsmith, J., Liu, X., Dadi, C., and Li, Z. (2013). Roles and teams
hedonic game. In International Conference on Algorithmic DecisionTheory, pages 351–
362. Springer.

[125] Stern, R. and Lelis, L. H. (2016). What’s hot in heuristic search. In Thirtieth AAAI
Conference on Artificial Intelligence.

180 References

[126] Sutton, R. S., Barto, A. G., et al. (1998). Introduction to reinforcement learning,
volume 2. MIT press Cambridge.

[127] Tai, L., Paolo, G., and Liu, M. (2017). Virtual-to-real deep reinforcement learn-
ing: Continuous control of mobile robots for mapless navigation. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 31–36. IEEE.

[128] Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning, pages
330–337.

[129] Tavares, A. R., Anbalagan, S., Marcolino, L. S., and Chaimowicz, L. (2018). Al-
gorithms or actions? a study in large-scale reinforcement learning. In IJCAI, pages
2717–2723.

[130] Taylor, M. E., Carboni, N., Fachantidis, A., Vlahavas, I., and Torrey, L. (2014).
Reinforcement learning agents providing advice in complex video games. Connection
Science, 26(1):45–63.

[131] Thrun, S. and Schwartz, A. (1993). Issues in using function approximation for
reinforcement learning. In Proceedings of the 1993 Connectionist Models Summer School
Hillsdale, NJ. Lawrence Erlbaum.

[132] Torrey, L. and Shavlik, J. (2010). Transfer learning. In Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques, pages
242–264. IGI Global.

[133] Uludag, G., Kiraz, B., Uyar, A. E., and Özcan, E. (2012). Heuristic selection in a
multi-phase hybrid approach for dynamic environments. In Computational Intelligence
(UKCI), 2012 12th UK Workshop on, pages 1–8. IEEE.

[134] Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence.

[135] van Otterlo, M. and Wiering, M. (2012). Reinforcement learning and markov decision
processes. In Reinforcement Learning, pages 3–42. Springer.

[136] Wang, Y. and De Silva, C. W. (2006). Multi-robot box-pushing: Single-agent q-
learning vs. team q-learning. In Intelligent Robots and Systems, 2006 IEEE/RSJ Interna-
tional Conference on, pages 3694–3699. IEEE.

[137] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

[138] Werfel, J., Petersen, K., and Nagpal, R. (2014). Designing collective behavior in a
termite-inspired robot construction team. Science, 343(6172):754–758.

[139] Whitesides, G. M. and Grzybowski, B. (2002). Self-assembly at all scales. Science,
295(5564):2418–2421.

[140] Yang, B. and Liu, M. (2018). Keeping in touch with collaborative uavs: A deep
reinforcement learning approach. In IJCAI, pages 562–568.

References 181

[141] Yasuda, T. and Ohkura, K. (2008). A reinforcement learning technique with an
adaptive action generator for a multi-robot system. In International Conference on
Simulation of Adaptive Behavior, pages 250–259. Springer.

[142] Yim, M., Duff, D. G., and Roufas, K. D. (2000). Polybot: a modular reconfigurable
robot. In ICRA, pages 514–520.

[143] Yu, S. and Barca, J. C. (2015). Autonomous formation selection for ground mov-
ing multi-robot systems. In IEEE International Conference on Advanced Intelligent
Mechatronics, pages 54–59. IEEE.

[144] Zhang, C., Patras, P., and Haddadi, H. (2019). Deep learning in mobile and wireless
networking: A survey. IEEE Communications Surveys & Tutorials, 21(3):2224–2287.

[145] Zhang, H., Zhang, J., Zong, G., Wang, W., and Liu, R. (2006). Sky cleaner 3: A
real pneumatic climbing robot for glass-wall cleaning. IEEE Robotics & Automation
Magazine, 13(1):32–41.

Appendix A

Source Code

The source code of this project can be found on https://drive.google.com/open?id=1Nk-i-

mRdevmEt_6rydCnwk_0WiaNNSNL.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Research Questions
	1.2 Thesis Structure
	1.3 Research Output
	1.3.1 Publications
	1.3.2 Contributions

	2 Related Work
	2.1 Heuristics
	2.2 Hyper-heuristics
	2.3 Hyper-heuristics Learning
	2.4 Swarm Robot Coordination
	2.4.1 Behaviour-based Methods
	2.4.2 Surface Cleaning Robots
	2.4.3 Self-assembling Robots

	2.5 Reinforcement Learning
	2.6 Deep Reinforcement Learning
	2.7 Summary

	3 Swarm Robot Environment
	3.1 Simulator
	3.2 The Self-assembling Robots
	3.2.1 Robot Locomotion
	3.2.2 Robot Sensing
	3.2.3 Robot Communication
	3.2.4 Interaction with Environment

	3.3 Environments
	3.4 Summary

	4 The Hyper-heuristic Swarm Robot Framework
	4.1 Methodology
	4.2 Multi-Armed Bandit Based Online-learning
	4.2.1 Initialisation
	4.2.2 Generating Actions
	4.2.3 Heuristic Evaluation
	4.2.4 Heuristic Construction and Update
	4.2.5 Problem Domain

	4.3 The Heuristic Repository
	4.3.1 Sweeping
	4.3.2 Bridging (horizontal and vertical)
	4.3.3 Exploring
	4.3.4 Circling
	4.3.5 Flocking
	4.3.6 Raster Scan (Horizontal and Vertical)
	4.3.7 Neighbourhood Search

	4.4 Group Learning of Heuristics
	4.4.1 Methodology of Group Learning with Knowledge Sharing
	4.4.2 Implementation with Swarm Robots

	4.5 Experiments and Results
	4.5.1 Robustness In Different Environments
	4.5.2 Comparison of Heuristic Selection Methods
	4.5.3 Learning Comparing to No Learning
	4.5.4 Comparison of Group Learning Strategies

	4.6 Summary

	5 Learning Heuristics with Q-Learning
	5.1 Action Based Learning
	5.2 Heuristics Based Learning
	5.3 Group Learning with Advising
	5.4 The Updated Heuristic Repository
	5.4.1 Sweeping
	5.4.2 Bridging (Horizontal and Vertical)

	5.5 Experiments and Results
	5.5.1 Comparing Learning Heuristics to Learning Actions
	5.5.2 With and Without Group Learning
	5.5.3 Comparing MAB-based Learning and Q-Learning

	5.6 Summary

	6 Learning Heuristics with Deep Reinforcement Learning
	6.1 Methodology
	6.2 Experiments
	6.2.1 Comparing Learning Heuristics to Learning Actions
	6.2.2 Comparing Deep Q-learning with Q-learning
	6.2.3 Dynamically Changing Environments

	6.3 Summary

	7 Analysis and Discussion
	7.1 Explainable Policies
	7.1.1 The MAB-based Hyper-heuristics
	7.1.2 The Q-learning Method

	7.2 Scalability
	7.2.1 The MAB hyper-heuristic
	7.2.2 Q-learning hyper-heuristic

	7.3 Summary

	8 Conclusions
	8.1 Future Works

	References
	Appendix A Source Code

