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Abstract

Phase-averaged blood flow dynamics in the cardiac chambers and great ves-

sels can be visualised accurately using 4D flow cardiac magnetic resonance imaging

(time-resolved blood flow). Although 4D flow MRI has proven its utility in high-

lighting the spatial (3D) and temporal (1D) evolution of three dimensional blood

flow with full coverage of any vascular or cardiac region of interest, it is restricted

by acquisition noise and limits on its spatial and temporal resolution. Furthermore,

diagnostic measures obtained solely from cardiac MRI can often be late indicators of

dysfunction. Post-processing 4D flow data to develop novel, sensitive biomarkers of

dysfunction may aid clinicians in their prognostic and diagnostic endeavours. This

thesis presents the results of two studies related to the modelling of 4D cardiac MRI

data.

The first study presents the results of post-processing the existing flow data to

obtain patient-specific residence-time distributions (RTD), a novel means of deter-

mining ventricular function. Furthermore, RTDs can provide an insight of the extent

of overall blood flow, mixing and stasis, which affect cardiac function. A quanti-

tative constant related to the RTDs was developed by tracking individual virtual

particles and calculating plane crossing times. In the left ventricle, the RTD con-

stant was compared to the left ventricular (LV) ejection fraction, global longitudinal

strain (GLS) and T1 native values. A significant difference was seen in the LV RTDc

between healthy subjects and patients reporting cardiac dysfunction(1.2 ± 0.13 vs

2.2 ± 0.80, p < 0.001). A strong negative correlation was reported between the LV

RTDc and the LVEF (R = −0.843, p < 0.001). When the RTD constant was com-

pared to the GLS, a strong correlation coefficient of R = 0.7805 was seen. A weak
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correlation was seen between the RTD constant and native T1 time (R = 0.1517).

The correlation was not as strong in the right ventricle (R = −0.7113 , p < 0.001)

or the right atrium (R = −0.4543). The results suggest that the left ventricular res-

idence time constant has the capability of distinguishing normal from dysfunctional

cardiac function.

The second study presents a computational model of the left ventricle that ex-

pands and contracts over the cardiac cycle. The volume of the computationally

obtained model related closely to MRI volumetric changes. Furthermore, the ejec-

tion fraction obtained from the model was similar to cardiac MRI measurements

(57% versus 60%). Further development of the model presented here will yield

a greater insight into the utility of computationally derived markers, such as the

vorticity, as a novel marker of cardiac dysfunction.

iv Chapter 0 A.M.Qadri



Dedication

To my parents, Dr Haneef Ahmed Qadri and Dr Rohilla Fazili, for their never-ending

love and support.

v



Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma at any university or equivalent institution and that, to the best

of my knowledge and belief, this thesis contains no material previously published or

written by another person, except where due reference is made in the text of the

thesis.

Signature:

Name: Abdul Mateen Qadri

Date: February 27, 2020

vi



Publications Relating to Thesis

Costello, B., Qadri, A.M., Price, B., Papapostolou, S., Thompson, M., Hare,

J.L., La Gerche, A., Rudman, M., Taylor, A.J. 2018, “The ventricular residence

time distribution derived from 4D flow particle tracing: a novel marker of myocar-

dial dysfunction”, The International Journal of Cardiovascular Imaging, vol.34, pg.

1927-1935

vii



Acknowledgements

This thesis covers my work for the past two years and is a culmination of my time

at Monash. I hope that I am able to do justice to all those who contributed to my

work in some way or the other in this short space.

Firstly, I would like to express my deepest gratitude to my supervisors, Prof.

Mark C. Thompson and Prof. Murray Rudman for their guidance, encouragement

and support throughout this project. Working with them has been an excellent

learning experience. I would like to thank Murray for going above and beyond in

terms of emotional support and advice during difficult times. I remember always

feeling upbeat and motivated after every meeting we individually had. I would also

like to thank Prof. Andrew Taylor for his unique insight into the clinical implications

of this project, and for invigorating my passion for this inter-disciplinary field. This

project would not have been achieved without the spectacular work of (double) Dr.

Ben Costello. I am extremely grateful for his timely inputs and help in achieving

the project outcomes. At this juncture, I would also like to thank Dr. Ooi Ean Hin

for encouraging me to start my research journey and for his helpful advice in 2019.

I would also like to extend my gratitude to Dr. Shantanu Bhat and Dr. Methma

Rajamuni for their help throughout my time at Monash. I would like to acknowl-

edge the financial support of Monash Graduate Scholarship (MGS) and Monash

International Postgraduate Scholarship (MIPRS). The administrative staff at the

Department and Faculty made life a lot easier during stressful times. For that, I

express my sincere thanks (and apologies for making their life more difficult) to

Nancy Hawe, Bev Pearce and Jacelyn Tan. My time at Monash was made con-

viii



Computational Modelling of 4D Flow MRI Data

siderably more enjoyable thanks to the friends I made at 180 Degrees Consulting.

Benjamin Prawer, Sandali Herath, Jake Gerstel, Jakub Grzelak, Zoe Yap, Mrutula

Suresh, Harith Senarath, Lauren Hamilton, Charlotte Brown, William Fan, Daniel

Vang, Isaac Choong, Jeevan Virk, Maneesh Selvarajah and Thea Zabell, thank you

all for being great colleagues and a pleasure to work with. I owe a special thanks

to my friends at Champions Academy: Dr. Nicholas Bruzzese, Fidelia Angkasa,

Xiaolin Sharon Wang, Arvin Akhavan Sabet, Piermon Schwarz, Abir Ishtiaque and

Sam Merren. Special thanks to Nicholas for engaging in my meaningless arguments

and for his support in emotionally difficult times. It was also a pleasure to work

with Deniz Altay, Rob Taylor, Andrew Matysik, Mehtap Erciyas and Asuman Al-

tay. I enjoyed the company of the Tiverton Drive/Jackson Green folks and would

like to thank them for making me feel at home: Kokab Aunty, Rawa Khan, Safi

Khan, Taishi Sueyasu, Sagar Gandhi, Isaac Tushabe Epolu and Rida Aleem Khan

(and Shubham Bachoo at Bimbi Street). I express my thanks to other friends who

helped me through this endeavor but may not have been in Melbourne: Iksheeta

Shah, Nishant Rath, Mysha Maliha, Talha Razzak, Roshan Maniam, Dharshana

Maniam, Niloofar Kavousi and Najiha binti Mahmond Saidek. I am also grateful

to the team at Melbourne Strength Culture for providing an incredibly supportive

environment and a great place to throw metal around: my coach Jamie Bouziotis

(sorry for missing my workouts!), Jamie Smith, Charlie Athanassiou, Didier Vassou

and Dr Dan Godeassi.

I am heavily indebted to my close friends for their moral support: Mustafa

Hamdan, Asif Alam, Sumaita Siddiky, Shadman Khan, Samira Imran and Rawnak

Hamid. Special thanks to Mustafa for his engaging discussion topics and for his

company on those numerous dinners at Man-O-Salwa. It would be very remiss of

me not to thank Nadira binti Mahmond Saidek with whom I shared many good

memories, who inspired me to work harder and for making me a better person.

Finally, my immense love and gratitude to my nephew, Haider Aleem Qadri, my

sister-in-law, Dr. Madiha Mustafa, my siblings, Baariah Qadri and Dr. Ubaid Ali

Chapter 0 A.M.Qadri ix



Computational Modelling of 4D Flow MRI Data

Qadri, and my parents, Dr. Haneef Ahmed Qadri and Dr. Rohilla Fazili. Special

thanks to Bhai for reading my thesis numerous times and for providing meaningful

feedback. Thank you all so much for your unconditional love, encouragement and

understanding through some very troubling times. And last but not least, to the

Almighty God for giving me this incredible opportunity. This world is filled with

uncertainties, but there is one thing I am certain of: I will never be deserving of the

opportunities you have given me. Alhamdulilah.

x Chapter 0 A.M.Qadri



Contents

1 General Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Heart physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Cardiac cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Cardiac pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Diagnostic techniques and markers . . . . . . . . . . . . . . . . . . . 7

1.7 Objective of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Computational studies . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Generic models . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Geometry-defined MRI/CFD method . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 MRI data acquisition and image processing . . . . . . . . . . . . . . . 24

3.3 RTD Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Geometry reconstruction and grid generation . . . . . . . . . . . . . . 33

xi



Computational Modelling of 4D Flow MRI Data

3.5 CFD simulation and boundary conditions . . . . . . . . . . . . . . . . 40

3.5.1 Geometry reconstruction and grid generation . . . . . . . . . . 40

3.5.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 CFD simulation and boundary conditions . . . . . . . . . . . 41

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Residence Time Distribution 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Biodata for cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Left ventricular residence time distributions . . . . . . . . . . 48

4.4.2 Further assessment of left ventricular residence time distribu-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Right ventricular residence time distributions . . . . . . . . . 64

4.4.4 Right atrial residence time distributions . . . . . . . . . . . . 66

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Computational Fluid Dynamics 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusions and Recommended Future Work 83

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Residence time distributions . . . . . . . . . . . . . . . . . . . 83

6.1.2 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . 85

6.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . 85

xii Chapter 0 A.M.Qadri



Computational Modelling of 4D Flow MRI Data

A CFD modelling of the blood flow through the left ventricle 92

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2.1 Dynamic mesh considerations . . . . . . . . . . . . . . . . . . 98

A.2.2 Modelling the effect of the Aortic and Mitral valves . . . . . . 100

A.3 Flow calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 0 A.M.Qadri xiii



List of Figures

1.1 Physiology of heart with connecting arteries and veins (Klabunde,

2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview of the Cardiac Cycle. The cardiac cycle begins with atrial

systole and progresses to ventricular systole, atrial diastole, and ven-

tricular diastole, when the cycle begins again. Correlations to the

ECG are highlighted (Biga et al., 2016). . . . . . . . . . . . . . . . . 5

1.3 Variation of pressure and volume during the cardiac cycle (Biga et al.,

2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Siemens MAGNETOM Prisma scanner (Siemens, 2015). . . . . . . . 25

3.2 Short-axis view of LV in Segment CMR. The red boundary encloses

the ventricular cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Long-axis view of the LV in Segment CMR. The red boundary signifies

the ventricular cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Heart schematic and its compartments. . . . . . . . . . . . . . . . . . 28

3.5 Planes generated in MATLAB. Yellow plane depicts the entry plane,

and the green plane is the exit plane. . . . . . . . . . . . . . . . . . . 29

3.6 Raw RTD graph shown with the various smoothed graphs. . . . . . . 29

3.7 Smoothed RTD curves comparing between 5, 10 and 15 time steps. . 30

3.8 Fraction of particles remaining in the heart over heartbeats. Expo-

nential fit to the entire data set is shown. . . . . . . . . . . . . . . . . 32

3.9 Schematic of the DICOM coordinate system. . . . . . . . . . . . . . . 34

xiv



Computational Modelling of 4D Flow MRI Data

3.10 Contour data defining the inside surface of the LV depicted by the

connected blue dots obtained from short-axis images. . . . . . . . . . 36

3.11 Interpolated schematic of the contour data to obtain a representative

point cloud of the LV. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Surface mesh obtained from Delaunay triangulation of point cloud

data. Red circles denote holes in the surface mesh. . . . . . . . . . . 38

3.13 Patient-specific volume geometry of left ventricle with aorta outlet

and atrial inlet reconstructed from 2D MRI images. . . . . . . . . . . 39

3.14 View of one angular position for one slice. . . . . . . . . . . . . . . . 42

3.15 Simulation process with re-meshing. . . . . . . . . . . . . . . . . . . . 44

4.1 Example of smoothed left ventricular residence time distribution from

a healthy patient with LVEF = 60%. . . . . . . . . . . . . . . . . . . 49

4.2 Example of smoothed left ventricular residence time distribution from

a patient with dilated cardiomyopathy & LVEF=38%. . . . . . . . . . 49

4.3 Example exponential decay curve from a healthy patient with LVEF

= 60%. Curve is fitted to the complete calculated data set. . . . . . . 51

4.4 Example exponential decay curve from a patient with ventricular dys-

function & LVEF=38%. Curve is fitted to the complete calculated

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Box plot of left ventricular residence time distribution constant amongst

group. The left and right bars indicate the minimum and maximum

values respectively. The three bars in the middle signify the first

quartile, the median and the third quartile, respectively. . . . . . . . 52

4.6 Correlation of LV ejection fraction (y-axis) with residence time dis-

tribution constant (LV RTDc, x-axis). The healthy controls are dis-

played as blue circles, patients with dilated cardiomyopathy as red

triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 0 A.M.Qadri xv



Computational Modelling of 4D Flow MRI Data

4.7 Correlation of global longitudinal strain (GLS) (y-axis) with residence

time distribution constant (LV RTDc, x-axis). The healthy controls

are displayed as blue circles, patients with dilated cardiomyopathy as

red triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Correlation of T1 native values (y-axis) with residence time distribu-

tion constant (LV RTDc, x-axis). The healthy controls are displayed

as blue circles, patients with dilated cardiomyopathy as red triangles. 56

4.9 Example exponential decay curve of Patient RC with a left ventricular

ejection fraction of 25%. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Example exponential decay curve of Patient SB with a left ventricular

ejection fraction of 25%. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Example exponential decay curve of Patient PS with a left ventricular

ejection fraction of 13%. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.12 Entry Points (Green) and Exit/End Points (Red) of particles for Pa-

tient PS. Blue plane is the exit plane. Black circles denote area where

blood collects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 Fraction of particles remaining in the left ventricle over time for four

patients (LVEF < 50%). Blue line denotes the particle fraction, black

line denotes the exponential decay fit. . . . . . . . . . . . . . . . . . . 62

4.14 Fraction of particles remaining in the left ventricle over time for four

patients (LVEF < 50%). Blue line denotes the particle fraction, black

line denotes the exponential decay fit. . . . . . . . . . . . . . . . . . . 63

4.15 Box plot of right ventricular residence time distribution constant for

the two groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 Correlation of RV ejection fraction (y-axis) with residence time dis-

tribution constant (RV RTDc, x-axis). The healthy controls are dis-

played as blue circles, patients with dilated cardiomyopathy as red

triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xvi Chapter 0 A.M.Qadri



Computational Modelling of 4D Flow MRI Data

4.17 Correlation of LV ejection fraction (y-axis) with residence time dis-

tribution constant (right atrial RTDc, x-axis). The healthy controls

are displayed as blue circles, patients with dilated cardiomyopathy as

red triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Patient-specific LV reconstructed with idealised atrial inlet and aorta

outlet. Unstructured mesh generated on surface with 27000 internal

elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Model geometry at t∗ = 0. . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Model geometries at various times through the cardiac cycle. . . . . . 76

5.4 Volume of computational left ventricle varying over cardiac cycle.

Four distinct phases are seen, (1) ventricular contraction, (2) rapid

filling, (3) slow filling, (4) final filling during atrial contraction. . . . . 77

5.5 Volumetric flow rate of computational left ventricle varying over car-

diac cycle. Four distinct phases are seen, (1) ventricular contraction,

(2) rapid filling, (3) slow filling, (4) final filling during atrial contraction. 78

5.6 Velocity Vectors at t∗ = 1. . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Velocity Vectors at t∗ = 1. A close-up view is provided to show the

fluid reaching the base and two recirculating regions, one on either

side of the inlet jet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Velocity Vectors at t∗ = 1. A close-up is provided of the large recir-

culating region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Velocity Vectors at t∗ = 1. A close-up is provided of the small recir-

culating region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Surface mesh of fluid domain for a typical time-slice. . . . . . . . . . 88

6.2 Lighted surface model of the ventricle/aorta/ventricle during the ven-

tricle expansion phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Zoomed out images of the velocity fields corresponding to time-slice

12 (maximum inflow) and (b) time-slice 4 (maximum outflow). . . . . 90

Chapter 0 A.M.Qadri xvii



Computational Modelling of 4D Flow MRI Data

A.1 Stages in generating intermediate short-axis cross-sectional meshes

used to build the 3D mesh. . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Zoomed in view of cross-sectional mesh through the ventricle showing

increased concentration towards the walls. . . . . . . . . . . . . . . . 95

A.3 Surface mesh of fluid domain for a typical time-slice. . . . . . . . . . 96

A.4 Lighted surface model of the ventricle/aorta/atrium during the ven-

tricle expansion phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.5 Treatment of the bifurcation between the ventricle, and atrium and

aorta. Initially, contours are rotated so that there is an approximately

horizontal line between the aorta and the atrium. The top section

forms the exit of the atrium into the left ventricle, and the bottom

section defines the entry into the aorta. The details of the valve

geometries are not included in this version of the model. . . . . . . . 98

A.6 Volume variation of the left ventricle over a cardiac cycle. (a) includes

the sections of the aorta and left atrium; (b) left ventricle only. The

first stage is a contraction stage that results in blood ejection into the

aorta. This is followed by an expansion phase when the left ventricle

fills, after which the expansion slows down prior to the next contraction.101

A.7 Variation of blood flow through the left ventricle during a cardiac

cycle. The velocity vectors are shown in the centre plane passing

through the aorta/left atrium as described in the text. The lighted

translucent surfaces show the surface of the fluid domain. Images

correspond to time-slices 7.5, 8.5, 9.5, etc, left to right and then top

to bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.8 Zoomed out images of the velocity fields corresponding to time-slice

12 (maximum inflow) and (b) time-slice 4 (maximum outflow). . . . . 105

xviii Chapter 0 A.M.Qadri



List of Tables

4.1 Demographics and clinical data for the RTD study. . . . . . . . . . . 47

xix



Computational Modelling of 4D Flow MRI Data

xx Chapter 0 A.M.Qadri



Chapter 1

General Introduction

1.1 Introduction

The World Health Organization’s (WHO) annual statistical report revealed that

the leading cause of death due to non-communicable diseases in 2017 was cardio-

vascular disease (CVD), accounting for 17.7 million casualties (WHO, 2017). There

are numerous types of CVDs such as high blood pressure, stroke, coronary artery

disease and arrhythmia, amongst others (Chan et al., 2013). Arrhythmia refers to

abnormalities in heartbeat cadence that reduce cardiac output, thereby decreasing

heart efficiency. A common form of arrhythmia is atrial fibrillation (AF), where

the upper two chambers of the heart (atria) experience abnormal electrical signals,

thereby preventing the heart from beating in a regular manner. As a result, blood

pools in the atria, which can cause clots to form. A vital blood vessel can be blocked

if one of the blood clots leaves the heart and travels towards the brain. Oxygen is

thus prevented from reaching the brain through the bloodstream, thereby causing a

stroke. Statistically, patients afflicted by atrial fibrillation are at five times higher

risk of stroke compared to those without AF.

Blood flow through the heart is difficult to characterise in general as it differs

based on the cardiac function and the health of the patient. Obtaining the internal

haemodynamic flow patterns of patients with arrhythmia is potentially beneficial

to physicians in providing insight into the causes leading to arrhythmias, and may

1
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assist in their diagnosis and treatment.

1.2 Motivation

The most commonly used medical test to diagnose arrhythmias are electrocardio-

grams, which capture the electrical activity of the heart, and describe the rhythm

and how fast it is beating. However, electrocardiograms are incapable of describing

how the blood flows through the heart, for example the fluid velocity and flow rate,

and any regions of stagnant or recirculating flow. Relying solely on existing diag-

nostic techniques can be detrimental as they can be late indicators of dysfunction.

Therefore, obtaining markers of cardiovascular disorder earlier in the diagnostic pro-

cess may improve health outcomes for patients.

In this capacity, the role of imaging tools such as cardiovascular magnetic res-

onance (CMR) is indisputable, and four-dimensional phase-contrast magnetic reso-

nance (4D PCMR) flow imaging has demonstrated its utility to provide information

on the spatial (3D) and temporal (1D) evolution of three dimensional blood flow

with full coverage of any vascular or cardiac region of interest (Eriksson et al., 2010;

Geiger et al., 2011; François et al., 2012; Valverde et al., 2012). However, 4D PCMR

exhibits some deficiencies as it is affected by acquisition noise and resolution limits.

Post-processing CMR data using numerical methods provide a method of deriv-

ing beneficial quantitative data from qualitative imaging. Particle tracing, which

involves seeding conceptual particles from a sequence of 4D PCMR images and

tracking these over a cardiac cycle, provides information on how long blood resides

in the cardiac chamber. Merging 4D flow MRI with computational fluid dynamics

(CFD) allows the reconstruction of reduced noise, and more spatially and tempo-

rally resolved velocity flow fields. Time-dependent flow fields can provide greater

information on the haemodynamics (blood flow) within the heart. Derived markers

such as pressure differences, quantification of vortices, energy transfer and residence

time from post-processing 4D flow MRI data may be complementary to clinicians

in differentiating between healthy and abnormal heart function. These quantitative
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measures have the potential of providing sensitive methods to detect early stages of

heart dysfunction.

It is in this role that computational analyses and CFD are potentially clinically

complementary and relevant. As the economic cost of cardiovascular diseases (and

particularly arrhythmia) remains high, it is imperative, therefore, to develop eco-

nomical, reliable and improved diagnostic methods that are non-invasive by utilizing

the fields of technology, medicine and engineering.

1.3 Heart physiology

For the purposes of understanding the current study, a brief overview of the structure

of the heart, the cardiac cycle and cardiovascular disease is first presented. A detailed

description of heart anatomy can be obtained in medical textbooks (e.g. Klabunde,

2012). The heart consists of four chambers: two ventricles and two atria as seen in

Figure 1.1. Ventricles are responsible for pumping blood to other organs in the body,

whereas the atria act as reservoirs for blood before it is pumped into the ventricles.

The inflow and outflow of blood from each ventricle is regulated by two valves.

Four pulmonary veins transport oxygenated blood from the lungs into the left

atrium (LA). The mitral valve (MV) separates the LA from the left ventricle (LV).

The aorta distributes oxygen-rich blood from the LV to the rest of the body. The

aortic valve is responsible for preventing the backflow of blood into the LV. Oxygen-

depleted blood is returned from the rest of the body to the right atrium (RA) by two

major veins - the superior and inferior vena cava. The tricuspid valve separates the

right atrium (RA) and the right ventricle (RV). The pulmonary valve, when open,

allows deoxygenated blood to flow from the RV to the lungs via the pulmonary

artery. At the lungs, a gas exchange occurs; specifically, the delivery of oxygen

into the bloodstream from the lungs and elimination of carbon dioxide from the

bloodstream to the lungs. The septum separates the right and left sections of the

heart. The LV has a thicker wall compared to the RV due to the requirement for

blood from the LV to be transported to the whole body whereas the RV expels blood
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Figure 1.1: Physiology of heart with connecting arteries and veins (Klabunde, 2007).

only to the lungs.

The heart contains four valves which are made of two or three leaflets. Papillary

muscles hold the mitral and tricuspid valve to the ventricular walls. To prevent the

flow of blood back into the atria, tension is generated on the valve leaflets during

contraction by the papillary muscles. The pulmonary and aortic valves lack papillary

muscles as they are passive structures. The opening of the leaflets is caused by fluid

flow pushing the leaflets out, whereas reverse fluid flow causes the leaflets to move

back into the ventricular passage and close.

1.4 Cardiac cycle

There are four major phases of a cardiac cycle: diastole, isovolumetric contraction

(IVC), systole and isovolumetric relaxation (IVR) as seen in Figure 1.2. Blood en-

ters the LV through the mitral valve due to ventricular dilation during the diastole

phase while the aortic valve remains closed. The diastole can be further divided
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Figure 1.2: Overview of the Cardiac Cycle. The cardiac cycle begins with atrial
systole and progresses to ventricular systole, atrial diastole, and ventricular diastole,
when the cycle begins again. Correlations to the ECG are highlighted (Biga et al.,
2016).

into three sub-phases: primarily the early filling (rapid filling), slow filling (diasta-

sis) and late filling (re-filling). As the LV begins to expand, the mitral valve opens

and blood enters into the LV due to a high pressure differential between the LA and

LV. As blood continues to fill the LV, the intraventricular pressure increases. The

pressure gradient across the mitral valve reduces and thus the rate of blood filling

falls. The atrium contracts causing the blood to accelerate in the late filling phase

into the LV. As the late filling phase ends, the mitral valve closes and the IVC phase

begins. During this phase, the volume remains constant as both valves are closed.

The intraventricular pressure increases and the LV readies itself for ejection.
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Figure 1.3: Variation of pressure and volume during the cardiac cycle (Biga et al.,
2016).

The systolic phase begins as the IVC ends. Here, the contraction of the LV

pushes blood into the ascending aorta through the aortic valve. The mitral valve

remains closed to prevent backflow into the LA and the aortic valve opens. The

systolic phase can be divided into two phases: accelerated systole (rapid ejection)

and decelerated systole (reduced ejection). Higher pressure gradients during the

accelerated systole phase result in the blood velocity being higher compared to the

reduced ejection. As the aortic valve closes, the IVR begins. Both the aortic and

mitral valve are closed and their volume remains constant. Intraventricular pressure

falls as the LV begins to relax. By the end of the IVR, one complete cardiac cycle

has occurred. A summary of how the pressure and volume changes over the cardiac

cycle is provided in Figure 1.3.

1.5 Cardiac pathology

An outline of the cardiac pathology relevant to the current study is provided.

Dilated cardiomyopathy (DCM) is a disease where the muscle of the heart (my-

ocardium) begins to dilate (stretches and becomes thinner). The thinning of the

muscle results in larger left ventricular volume, and therefore more blood is held.

As the ventricle enlarges, the muscle is unable to contract normally, and the heart is
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impaired in its blood pumping ability. DCM often goes undiagnosed because many

people afflicted fail to show any symptoms. A small number face amongst other

symptoms abnormal heart rhythms (arrhythmia). This is because dilated heart

muscle, as well as the abnormal structure of heart cells, can disrupt the normal

functioning of the heart’s electrical system, resulting in fast or irregular heartbeats.

Atrial fibrillation, a complication some experience, can also increase the risk of de-

veloping blood clots, which may dislodge and travel to the brain, causing a stroke.

1.6 Diagnostic techniques and markers

Ejection Fraction (EF) is a commonly used measure to define how well the heart

is able to pump out blood. It is calculated by taking the fraction of the volume of

blood pumped out of the chamber against the total volume of blood in the chamber.

Patients with arrhythmias are often diagnosed with reduced ejection fraction, as

revealed by medical tests. The volume of blood pumped out per contraction is

referred to as the stroke volume (SV). The total amount of blood collected in the

chamber at the end of the filling phase is the end diastolic volume (EDV). In other

words, the ejection fraction is the ratio of SV to EDV. An error of < 3% for the

measured ejection fraction can be achieved (O’Dell, 2019). The main sources of error

in the estimation of left ventricular ejection fraction are (1) inability to sample the

entire portion of the left ventricle from the mitral valve region (base) to the apex;

(2) regions where 2-dimensional short-axis MRI images lack enough detail undergo

interpolation by making geometric assumptions and (3) segmentation errors of the

endocardial (inner heart) border from 2-dimensional images.

Global longitudinal strain (GLS) is an alternative measure used by clinicians to

describe cardiac function. Specifically, GLS measures myocardial deformation. It is

calculated by taking the fraction of the change in length of cardiac tissue, as mea-

sured by echocardiography (described shortly), against the original length at the

point of peak contraction. Recent reports have suggested that the relationship be-

tween mortality and left ventricular ejection fraction is not strong; whereas reduced
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GLS has been an excellent measure to provide clinicians a suitable prognosis for

numerous heart failure-related results exclusive of LVEF (Left Ventricular Ejection

Fraction) (Kalam et al., 2014). The GLS therefore provides additional prognostic

detail and can act as a significant marker for improving risk assessment in abnormal

cardiac function (Morris et al., 2017; Park et al., 2018). Errors in assessing GLS

arise from varying values obtained when using different software packages and may

also change due to inter- and intra-observational variations (Ashish et al., 2019).

T1 mapping provides a further avenue for clinicians to non-invasively measure

changes in myocardial composition. T1 “mapping” specifically refers to information

derived from the ability of CMR to measure myocardial T1 relaxation time (how

quickly protons recover after being “flipped” by a radiofrequency pulse) on a pix-

elwise basis. The native T1 value is the exponential time constant obtained from

curve fitting the T1 relaxation time data points over the entire myocardial domain.

An error source for T1 values arise from partial volume contamination from blood,

which is more prevalent for thin-walled structures (Kellman & Hansen, 2014).

For the purposes of the current study, three diagnostic methods of the mark-

ers previously described are briefly outlined below. The state-of-the-art technology

used currently in the diagnosis of cardiac dysfunction is cardiac MRI. Magnetic

fields and radio waves are used to create cross-sectional images of the heart. Each

MR imaging data acquisition provides information on the signal magnitude and the

phase of each voxel (i.e. a small averaging volume). In conventional imaging, only

the signal magnitude of each voxel is used to construct the anatomic display (the

magnitude image). Quantitative information on blood flow can be obtained using

phase-contrast magnetic-resonance imaging (PC-MRI). In phase-contrast imaging,

the phase of each voxel is used to calculate the voxel velocity in each direction to

generate a velocity image. Thus, PC-MRI is capable of acquiring all three velocity

components of blood flow, thereby providing a three-dimensional blood velocity field

through the entire imaging volume. Important markers of dysfunction such as ejec-

tion fraction, GLS and T1 values can be obtained from cardiac MRI measurements.
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As indicated above, the most commonly used medical test to diagnose arrhyth-

mias is the electrocardiogram (ECG) that records electrical activity and describes

the rhythm and its frequency. It is a rapid, non-invasive and painless diagnostic

procedure. The electrical activity of the heart is detected by electrode sensors that

are attached to the chest. Each heart beat is triggered by electrical impulses gener-

ated by a special set of cells (pacemaker cells) in the atria. The electrocardiogram

records the duration and the strength of the signals, which are displayed as waves

on a monitor or printed on graph paper.

An alternative medical test often ordered by cardiologists is an echocardiogram

(echo). An echo test is an ultrasound study of the heart. High frequency sound

waves are emitted from a probe that is placed on the chest of a patient. A trans-

ducer records the sound waves that echo from the heart, and these are converted

into images by a computer. A cardiologist is able to thereby determine the relative

functioning of the heart and its valves, the strength of contraction of the left ventri-

cle (left ventricular ejection fraction) and the pressure within the heart. A doppler

echocardiogram (Echo doppler) allows the speed and direction of the blood flow in

the heart to be measured. Sounds wave emitted by the probe undergo a change

in pitch as they hit blood cells and echo back. The shift in pitch (Doppler shift)

allows the measurement of blood flow direction and velocity in the heart. Advances

in technology have meant that 3D echocardiography has become more widely used,

allowing the assessment of 3D blood flow velocities. There are some inherent lim-

itations with echocardiography, as eccentric and abnormal flow patterns present a

risk for misalignment of the ultrasound beam with the flow jet during the contrac-

tion phase for patients with valvular disease. 4D flow MRI is not hindered by the

eccentricity of flow, as its multidirectional velocity-encoding allows velocities to be

quantified regardless of the spatial orientation of the flow jet (Adriaans et al., 2020).
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1.7 Objective of study

The primary objective of this study is the development of novel sensitive markers

of cardiac dysfunction. To achieve this, a data-driven approach is initially utilised

to develop residence time distributions from particle tracing data. In this approach,

residence time distributions (RTDs), an innovative approach of evaluating ventric-

ular function, can be obtained by post processing flow data directly obtained from

MRI measurements. The residence time distribution was originally devised to assess

the efficiency of chemical reactors, and here reflects the cumulative distribution of

the time it takes for a blood volume to transit a cardiac chamber and exit. By cor-

relating parameters obtained from the RTDs with existing cardiac measures (such

as the ejection fraction, GLS and T1 native values), the utility of residence time

distributions in assessing cardiovascular performance can be determined, and quan-

titative markers of dysfunction potentially discovered. These markers may then be

used in a future clinical trial to assess whether they provide any additional infor-

mation over existing metrics as a tool for early diagnosis. Following on from the

data-driven approach, to quantify dysfunction, a patient-specific CFD-MRI method

was developed to investigate 3D intraventricular flow patterns in dysfunctional and

normal hearts. The results from such an approach may provide practical and useful

insights into heart function, in terms of qualitative and quantitative markers such

as pressure gradients, recirculating flows, energy loss (EL), and wall shear stress

(WSS).

1.8 Thesis outline

The thesis is organised as follows:

Chapter 2 provides a background to the current study and highlights relevant

previous works from the literature.

In Chapter 3, the methodology used in the current study is described. This in-

cludes the computational methodology to develop the residence time distributions,
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and the details of the parameters used in the computational fluid dynamics mod-

elling. Additionally, the acquisition of MRI data is described briefly followed by a

detailed account of the reconstruction of LV geometry including the atrium inlet

and aorta outlet.

Chapter 4 presents the results obtained from the residence time distributions,

in particular comparing healthy subjects and patients with dilated cardiomyopathy

(DCM). The residence time distribution constant is compared to ejection fraction,

GLS and T1 value in the LV and RA and the correlation noted. In this chapter,

we demonstrate the utility of the RTD constant as a useful tool for describing

cardiac function. The content of Chapter 4 has in part appeared in a separate

article (Costello et al., 2018), that has been published in the International Journal

of Cardiovascular Imaging.

In Chapter 5, some results from CFD analysis on the left ventricle geometry is

presented. The finite-volume method is used to solve the discretized Navier-Stokes

equations in the commercial fluid dynamics software ANSYS-Fluent. A dynamic

mesh routine that describes the expansion and the contraction of the LV chamber is

detailed. Using representative flow parameters for blood, initial results are obtained

and discussed.

Finally, Chapter 6 summarises and concludes the study, briefly recapping the

contributions it makes to understanding cardiac function. It also discusses further

work that should be performed.
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Chapter 2

Literature Review

2.1 Introduction

The heart can be considered a multiphysics organ. A number of studies have been

carried out in a effort to understand the flow dynamics in the heart. Hunter et al.

(2003) published a framework that incorporated all heart functions including car-

diac cell behaviour and structure. Linking the different functions of the heart is

challenging due to a lack of detailed knowledge, and it has not yet been possible

to achieve the goal of a comprehensive model. Studies have used different numer-

ical approaches and assumptions to simplify the geometry and flow in the heart

chambers. In this chapter, important computational works related to cardiac blood

flow will be introduced and critiqued. Experimental studies are explained initially

followed by computational approaches to simulate cardiac blood flow.

2.2 Experimental studies

Relevant experimental studies have been primarily based on phase-mapping MRI

measurements or Echo-Doppler approaches. Magnetic resonance velocity mapping

was used by Kim et al. (1995) to investigate vortex formation in the LV. They

discovered a near uniform velocity profile across the mitral valve diameter. During

the early diastole, a large counterclockwise vortex was observed at the mitral valve
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leaflets, followed by a smaller vortex during the late diastole. No vortices were

observed during the systolic phase and blood flow was directed towards the outflow

tract.

Kilner et al. (2000) carried out non-invasive measurements for a normal heart

using magnetic resonance velocity mapping. Changes in the blood flow direction

and asymmetries were captured using MR phase-velocity mapping. During the

early diastole, part of the blood flow was directed towards the aorta outlet. This

feature was thought to minimize energy dissipation in the heart, as it allowed the

momentum of the inflowing stream to be preserved.They also observed recirculating

blood flow beneath the mitral-valve leaflets, particularly around the anterior leaflet.

Ebbers et al. (2002) carried out three dimensional in-vivo velocity measurements

using phase-contrast MRI. The relative pressure in the LV was derived by solving

the Poisson equation governing the pressure field. Pressure differences between the

apical and basal (apex and base) portions of the LV were obtained during the diastole

and systole phases. They discovered similar pressure distributions during the two

phases. Pressure differentials due to convective inertia during ejection and filling

were also discussed. They concluded that pressure differences at the peak inlet and

outlet flow velocities were small, whereas maximum pressure differences were seen

at the beginning and end of the diastolic and systolic phases.

Fenster et al. (2015) carried out a preliminary study with a small group of healthy

patients and patients with pulmonary artery hypertension (PAH). They studied how

4D flow CMR could be used to evaluate right ventricular flow patterns, diastolic

function and recirculating flow. They discovered that right ventricular diastolic

dysfunction (RVDD) was associated with a decrease in spatially integrated vorticity

(13 versus 28 (s−1)) for the right atrium during the early relaxation phase. Further-

more, an increase in vorticity during the late relaxation phase was also seen (2343

versus 492 (s−1) in the right ventricle and 30 versus 9 (s−1) in the right atrium).

They hypothesized that changes in the vorticity field were detectable prior to the

onset of changes in other flow metrics for a patient, and therefore concluded that vor-
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ticity could be used as a sensitive noninvasive biomarker for ventricular dysfunction

in PAH.

Karlsen et al. (2019) investigated the reproducibility of the global longitudinal

strain (GLS) and the left ventricular ejection fraction (LVEF). An echocardiographic

examination was carried out for forty-seven patients that suffered from a reduction

of blood flow to the heart. They found that the systematic difference was lower

for GLS measurements compared to LVEF (0.21% vs 4.08%). Comparing mea-

surements obtained by an expert echocardiographer and a trainee, the intra-class

correlation coefficient was higher for GLS compared to the LVEF (0.89 vs 0.63) re-

spectively. Their findings demonstrated that GLS was a more reproducible method

for evaluation of LV function compared to the LVEF regardless of image quality and

echocardiographic training.

A number of studies have sought to demonstrate how the GLS and T1 values

can provide additional prognostic information over the ejection fraction. Morris

et al. (2017) carried out a study on 2302 controls and 2282 patients suffering from

heart failure with preserved ejection fraction (HFPEF). This is a syndrome in which

patients have some of the clinical features of heart failure (such as shortness of

breath) whilst maintaining a normal left ventricular ejection fraction (i.e. greater

than 50%). They found that the sick patients had significantly lower GLS (mean:

-15.7%, range: -12% to -18.9%) than the healthy controls (mean: -19.9%, range:

-17.1% to -21.5%). In a study on 46 controls and 92 HFPEF subjects, Weiss et al.

(2017) found that T1 times were significantly shorter in HFPEF subjects compared

to the controls (398±51 vs. 424±37 ms, p < 0.01). Clearly, GLS and T1 can provide

additional information of clinical use in instances whereby the ejection fraction does

not suggest cardiac dysfunction.

The GLS has also been shown to be a better marker for mortality compared to the

LVEF. Kalam et al. (2014) collected data from 16 published studies which comprised

5721 adults. They found that mortality was independently associated with with each

standard deviation change in the absolute value of baseline GLS and less strongly
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with LVEF. A study carried out by Park et al. (2018) found that patients with

reduced strain had significantly higher mortality compared to patients with reduced

ejection fraction. Furthermore, they found that each percentage decrease in GLS was

associated with a 5% increase in mortality risk, and that LVEF was not associated

with mortality.

The residence time distribution was originally devised to assess efficiency of chem-

ical reactors and here reflects the cumulative distribution of the time it takes for

a blood volume to transit a cardiac chamber and exit. A detailed description is

provided in Fogler (1999). Originally, RTDs were utilized to describe the mixing

and flow within chemical reactors, and to draw comparisons between the behavior

of these reactors against idealised models. Danckwerts (1953) studied how models

could be used to predict the distribution of residence times in large systems. The

utility of the distribution function was illustrated by showing how they could be

used to calculate the efficiencies of blenders and reactors. RTDs have been also

used in the pharamaceutical industry to determine the position of raw materials in

the manufacturing process. Engisch & Muzzio (2016) studied how the development

of an overall system RTD allowed the tracing of raw materials across the entire

system, from the feeder to the tablet press. Additionally, disturbances could be pre-

dictively tracked through the entire continuous system. This permits downstream

control or even removal of the affected material. Corrective action at the onset of

a disturbance is possible when coupled with a diagnostic system (i.e. fault mitiga-

tion system). Processes that are characterized by fast reaction rates, intense heat

and mass transfer and rapid catalyst deactivation require good control of residence

time (Wei & Zhu, 1996). Therefore, residence time distribution data aids in the

understanding of fluid dynamics, and are critical for plant operation, optimisation,

reactor design and scale-up. The concept of the RTD has also been used to un-

derstand the hydraulics of a wetland. When tracer particles are introduced into a

nonideal wetland (i.e. one where particles have different residence times), the out-

put tracer concentration is an RTD reflecting the dispersive nature of the system. A
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study by Koskiaho (2003) used RTD analysis to design the shape of a wetland with

the aim of reducing zones with diminished mixing, thereby optimizing the efficiency

of treatment. Ta & Brignal (1998) used RTD analysis to optimize the wetland in-

let and outlet tract position to maximize treatment efficiency. A study by Stern

et al. (2001) showed how natural flooding events in wetlands adjacent to rivers and

streams resulted in observable changes in RTD characteristics. The RTD of blood

particles in the cardiac context offers the possibility of determining features such as

atrial short-circuiting, stagnant zones and whether the cardiac process is more like

a well-stirred reactor or a plug flow with little mixing.

Although RTDs have been explored previously with artificially manufactured

left ventricles, they have not as yet been used in an existing clinical setting (Shet-

tigar et al., 1989). In their study on an artificial LV, Shettigar et al. (1989) found

that approximately 58% of particles remain in the ventricle after the first heartbeat,

22% after the second heartbeat, and 5% after the third. Whilst mixing of blood

is not a crucial component for satisfactory cardiac function, the slowing and stop-

ping of blood flow (stasis) can have significant consequences to disease and cardiac

physiology.

2.3 Computational studies

Numerical studies of predicting blood flow in the LV have made great progress in

recent years. They have been classified by Cheng et al. (2005) into three broad cat-

egories: (1) geometry-prescribed CFD methods; (2) immersed boundary methods;

and (3) fluid-structure interaction (FSI) methods. Geometry prescribed methods

use the defined movement of the boundary (i.e.the wall) as a boundary condition.

Immersed boundary and, in particular, FSI methods aim to directly model the fluid-

structure interaction. Peskin (1972) introduced the immersed boundary method for

modelling two-dimensional flow patterns around heart valves. This particular ver-

sion of the immersed boundary method simplifies the heart muscle structure as an

elastic-walled boundary immersed in, and interacting with, the fluid. This method
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was further developed in later studies for modelling blood flow within the heart

(McQueen & Peskin, 1985, 1989, 1997, 2000, 2002). FSI methods generally use

the finite-element method for modelling the heart structure and different CFD ap-

proaches for the fluid domain. These methods have been further developed in recent

years, utilising more realistic coupling methods between the fluid and structure do-

mains (Watanabe et al., 2004; Cheng et al., 2005; Krittian et al., 2010).

Geometry prescribed CFD studies can be divided into two groups: (1) those

based on generic models and, (2) those based on imaging data, i.e. Computerized

Tomography (CT) and MRI data.

2.3.1 Generic models

2D and 3D generic models have been developed and utilized in recent years to

understand LV fluid dynamics (Vierendeels et al., 2000; Baccani et al., 2002a,b,

2003; Bolzon et al., 2003; Domenichini et al., 2005; Pedrizzetti & Domenichini, 2005;

Domenichini & Pedrizzetti, 2011). Such generic models treat the LV deformation as

axisymmetric, as a segment of a partial ellipsoid (or prolate spheroid). They usually

use a symmetrical (centralised or non-centralised) circular opening.

In their study, Vierendeels et al. (2000) used a 2D axisymmetric geometry to

model diastolic flow in the LV. They obtained the velocity and pressure distributions

in the LV model and found that vortices were generated below the mitral valve

inlet during flow acceleration and were seen moving towards the apex during flow

deceleration.

Baccani et al. (2002a,b, 2003) studied LV fluid dynamics during the filling phase.

To gain a better understanding of vortices during the cardiac cycle, they initially

used a truncated prolate spheroid geometry to model the LV (Baccani et al., 2002a).

They studied the formation and separation of the vortex sheet that was generated

from the inlet edge of the mitral valve. The results were described in terms of vor-

ticity. They observed the detachment of a vortex ring from the inlet edge and a

subsequent movement of the vortex ring towards the apex. In a subsequent study,
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they studied the effects of the mitral valve on LV fluid dynamics using a generic

model for the mitral valve (Baccani et al., 2002b). A series of boundary conditions

were used to mimic the effect of the opening of the mitral valve leaflets (Baccani

et al., 2003). They showed that the vortex wake formed during the rapid diastolic

phase is more complex in the presence of new boundary conditions that treat the mi-

tral valve operation in a more complex fashion. These models utilised axisymmetric

assumptions and ignored the effects of 3D flow.

From a theoretical viewpoint, but also relevant, pulse flow in a cylindrical duct

was investigated by Bolzon et al. (2003). They studied the initial stages of devel-

opment of the 3D wake as flow entered the duct through a non-centralized circular

orifice. They discovered that a small eccentricity produced a 3D vortical wake. The

movement of the vortex ring was suggested to be a result of viscous forces and the

wall boundary layer. The model of Baccani et al. (2002a) was further extended by

Domenichini et al. (2005) to investigate 3D flow movement in a ventricular-shape

geometry. Geometry, flow and eccentricity parameters were varied, and the resulting

fluid-flow characteristics analysed. They discovered that the characteristics of the

inlet jet had a direct effect on the solution. Pedrizzetti & Domenichini (2005) used

a similar methodology to their previous studies to focus on the LV asymmetry. A

different inlet jet model of the LV cavity was used to provide the asymmetry. They

showed that in their heart, flow patterns were optimal for the minimization of energy

dissipation and vortex formation from the shear layer of the mitral valve jet. The

results obtained were validated experimentally by Domenichini et al. (2007) using

an 3D axisymmetric model of the LV.

Domenichini & Pedrizzetti (2011) subsequently studied the change in fluid char-

acteristics for an infarcted left ventricle using a similar methodology as for their

previous studies. They discovered that blood travel towards the apical area (apex

of the heart) was hindered in the presence of apical akinesia (lack of motion of LV

wall) and further restricted in dyskinesia conditions (irregular motion of LV wall).

Generic simplified models are unable to capture the full nature of fluid flow in
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the LV because they model the geometry as a portion of a prolate spheroid under

axisymmetric assumptions. Additionally, these previously mentioned studies only

investigated the blood flow in the LV during the diastolic (filling) segment. Although

they provide some insight into the complex flow patterns in the LV, they are not

realistic in their predictions of flow in an actual LV.

2.3.2 Geometry-defined MRI/CFD method

This method uses patient-specific MRI data to derive the boundary movement of the

LV wall. It therefore provides more realistic boundary conditions and left ventricular

mechanics compared to generic models. It uses an Arbitrary Lagrangian-Eulerian

(ALE) formulation of the Navier-Stokes equations which allows boundary mesh mo-

tion.

The ALE-finite volume method was used by Saber et al. (2001) to model fluid

flow in the LV. They used the commercial CFD software STAR-CD (Computational

Dynamics Ltd., London, UK). Orifices were used instead of valves and a uniform

velocity profile was applied as a boundary condition at the orifices during systole and

diastole. Circulation of blood flow below the mitral valve was seen. They further

developed and extended their previous study through a study where they appended a

portion of the ascending aorta and left atrium to the LV model (Saber et al., 2003).

During the filling phase, a small posterior and a large anterior counterclockwise

vortex were observed.

The choice of inlet boundary conditions on the resulting LV fluid dynamics was

investigated by Long et al. (2003) using CFD software CFX4 (CFX international,

AEA Technology, Harwell). Hybrid and pressure boundary conditions were applied

at the inlet, and a sensitivity analysis carried out. They discovered that flow patterns

were understandably highly sensitive to the chosen inflow boundary conditions. LV

blood flow patterns were investigated by Long et al. (2008) in a further study using

MRI data from six normal cases. A similar methodology to their previous studies

was used (Long et al., 2003). A primary counterclockwise vortex was observed
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during the relaxation phase in three cases, and a clockwise vortex seen for one of

the cases.

Four different types of mitral valve models were examined by Nakamura et al.

(2006) to assess their effects on haemodynamic flow patterns in the LV. A 3D ax-

isymmetric geometry of the LV was used. The mitral valve was modelled as a 2D

circular orifice without leaflets, and the opening area varied over the cardiac cycle.

Four different methods for opening of the mitral valve were used, and the results

demonstrated that flow patterns were different for each type of opening. This has

the potential of being important for the efficient design of artificial heart valves.

LV blood flow was simulated by Schenkel et al. (2009) in a model of the LV that

included 2D presentation of valves. The time-varying area of the opening was mod-

elled by projecting the valves’ areas onto a circular surface. The upstream regions

of the mitral and aortic valves were modelled using a more accurate interpolation

method (third-order Bezier interpolation) compared to previous studies. They con-

cluded that the asymmetric development of the initial vortex ring was due to the

asymmetric inlet flow through the mitral valve. The vorticity and velocity distri-

butions, which can be important in identifying cardiac disease, exhibit a complex

association in the formation of a thrombus (Taylor & Draney, 2004). The quantifica-

tion of certain parameters of blood flow such as pressure gradients, wall shear stress

(WSS) and energy loss (EL) can provide diagnostic and treatment assistance by

identifying unfavorable haemodynamic conditions that are indicators of disease pro-

gression (Ebbers et al., 2002; Stalder et al., 2008; Harloff et al., 2010; Donati et al.,

2015). Thereby, CFD can assist in predicting haemodynamic patterns, allowing the

early recognition of disease stages and helping to reduce patient risk.

Using computational fluid dynamics for predicting blood flow can provide us with

higher temporal and spatial resolutions compared to 3D fields from MRI, especially

in certain regions (such as near a blood-vessel wall or at valve leaflets). CFD has

been used in the past to evaluate the wall shear stress and flow energy loss for

patients afflicted with cardiovascular diseases (Itatani et al., 2009; Qian et al., 2010;
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Sughimoto et al., 2014; Koyama et al., 2016; Sughimoto et al., 2016).

Khalafvand et al. (2018) presented a new framework to simulate and analyze LV

blood flow. Five unique 4D shapes (Mean, Mode 1 ± 3SD and Mode 2 ± 3SD) of 150

subjects were derived using statistical shape modelling. This process covers general-

ized LV shape changes over the cardiac cycle. Given a population of corresponding

points from the segmentation of short axis contours over 150 patients, a mean shape

was extracted and a set of variation modes can be built. Any subsequent novel shape

from an individual can be represented as the mean shape varied by a linear weighted

combination form of the initial modes. CFD simulations were then performed using

these five shape sequences to understand the effects of shape changes on LV blood

flow dynamics. The results were validated against particle image velocimetry (PIV)

results obtained from a constructed articial model, and showed broad agreement.

However, their study was limited as it was validated against two component planar

PIV measurements rather than 3D three-component PIV. Their study also failed to

characterize or account for the underlying clinical data of the patients. Thus, varia-

tions in flow dynamics were not associated with a particular cardiac dysfunction. In

a previous study, Khalafvand et al. (2017) investigated the kinematic, dynamic and

energy characteristics of flow during the diastolic phase in a normal left ventricle

motion. They found that the total energy delivered from the ventricular wall to

blood was conserved in the ventricle during diastole, as a momentum transfer was

observed from the main flow to vortices during the end diastolic acceleration and

deceleration phase. Moreover, a large counterclockwise core vortex was formed by

the diastolic deceleration. The energy conservation and momentum transfer from

the main flow to the vortices indicates healthy cardiac function. Loss of energy due

to dissipation and shear stresses can be an indicator of cardiac dysfunction such as

aortic regurgitation, a disease where a faulty aortic valve allows blood flow from the

aorta back into the left ventricle during ventricular diastole.

Nguyen et al. (2015) developed a semi-automated method for simulating blood

flow in a patient-specific LV. Similar to other computational studies, they developed
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the geometric model from CMR images and translated the dynamic motion of the

LV walls into mesh motion. They used the semi-automated method to analyse

differences in blood flow dynamics between healthy patients and those with diastolic

dysfunction. They found that patients suffering from diastolic dysfunction had lower

vortex formation times than the healthy patients. Their study failed to validate the

results against experimental/clinical data. They also made the assumption that

the mitral and aortic valve open and close instantaneously which is physiologically

inaccurate. An earlier study by Gharib et al. (2006) showed that a healthy range

for the vortex formation time was between 3.5 - 5.5. Vortex formation times less

than 3 were associated with impaired cardiac function, and in this study seen with

patients suffering from dilated cardiomyopathy.

Su et al. (2014) recruited one patient with hypertrophic cardiomyopathy (HCM)

and one healthy volunteer, who both underwent magnetic resonance imaging scans.

Hypertrophic cardiomyopathy is a disease similar to dilated cardiomyopathy wherein

the heart function is impaired due to an alteration of the heart muscle. In HCM

however, heart muscle expands and causes the ventricular walls to thicken, poten-

tially blocking blood flow out of the left ventricle. The patient-specific geometries

were reconstructed from these, and both spatial and temporal interpolations were

applied. The results showed that the HCM patient had cirrostratus-cloud-like vor-

tex structures (generally uniform and thin in diameter) rather than a major vortex

ring that was observed in the healthy subject. This suggests that the predicted

vortex structures from computational fluid dynamics simulations have the potential

to diagnose HCM (Su et al., 2014).

Although the number of computational studies carried out are extensive, they

often lack in two aspects. First, they lack validation against experimental data

from echcocardiographic or cardiac magnetic resonance imaging data. This raises

a concern regarding the accuracy of the simulation. Second, the computational

studies rarely compare results between healthy and sick patients over a wider sample

size. Single computational studies, although valuable, are not necessarily able to
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accurately describe or predict the wider cardiac pathologies that can exist.

2.4 Summary

The LV can be modelled using three distinct methods: geometry prescribed meth-

ods, immersed boundary methods and FSI methods. Each of the different ways of

modeling the LV should be used in their own way and should not be considered as

alternatives to each other (Schenkel et al., 2009).

Two alternative geometry prescribed CFD methods were discussed. Generic

models provide an easier way to model and treat an approximate LV geometry, but

still provide some of the basic elements of LV flow dynamics, that can help to better

understand large-scale intraventricular fluid dynamic patterns.

On the other hand, the combined CFD/MRI method provides a realistic depic-

tion of the boundary motion of the LV, and the results can be validated better (Long

et al., 2008; Schenkel et al., 2009). In the present study, a combined CFD/MRI

method is developed based on a dynamic mesh routine to describe the movement of

the ventricle walls. This approach can be applied directly to patient-specific MRI

data for LV wall motion. This method has been recognized by the literature to

provide considerable potential utility for clinicians.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, the methodology underlying the residence time distribution analysis

and CFD modelling is described. First, the MRI data acquisition and processing is

explained. This is followed by an explanation of the process of obtaining residence

time distributions from particle tracing data and evaluation of the RTD constant.

This chapter concludes with an explanation of grid generation, governing equations,

dynamic mesh method and boundary conditions.

3.2 MRI data acquisition and image processing

MRI is a non-invasive diagnostic technique for assessing heart function and dysfunc-

tion. Compared to other methods such as X-ray and computed tomography (CT),

MRI is considered safer (Schenck, 2000; de González & Darby, 2004).

The availability of access to a high-resolution 3T (Tesla) Siemens MAGNETOM

Prisma MRI scanner at the Baker Institute in Melbourne for this project (see Figure

3.1) has permitted blood flow through the cardiovascular system to be captured with

greater temporal and spatial resolution than was previously available from lower

powered scanners. The Tesla rating quantifies the magnetic field strength produced

by the magnet in the scanner.
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Figure 3.1: Siemens MAGNETOM Prisma scanner (Siemens, 2015).

The majority of the existing research has been carried out on 1.5T MRI scanners.

3T scanners provide higher spatial and temporal resolution because the signal to

noise ratio (SNR) is approximately twice that of a 1.5T scanner. The improved

SNR can be utilized to improve the quality of the images and to decrease overall

scan time.

After acquiring scout images, cine-imaging (i.e. time-resolved) of the heart in

standard 4-, 3-, and 2-chamber long-axis and short-axis views (see Figures 3.2 and

3.3 for orientation) through the left ventricle was performed using a MRI pulse

sequence that has a steady state of magnetisation (also called as steady-state free

precession or its abbreviation SSFP). This sequence is known for its superiority in

its assessment of cardiac function. A stack of 15 sequential short-axis steady-state

free-precession cine images was acquired, extending from the mitral valve region to

the left ventricle (LV) apex (8-mm slice thickness, no gap), to enable volumetric

analysis of the left ventricle using the Simpson summation of disk method. This

method uses the short-axis images of the LV to obtain the LV ejection fraction

(LVEF). Borders are manually traced on each short-axis image to represent the
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Figure 3.2: Short-axis view of LV in Segment CMR. The red boundary encloses the
ventricular cavity.

LV endocardium (membrane that lines the inside of the heart chamber), thereby

obtaining the ventricular cavity area for each slice as seen in Figure 3.2. The area

enclosed by the border for each image slice was multiplied by the sum of the image

gap and slice thickness (slice interval) to provide the slice volume. The total LV

volume is then obtained by adding the volume of all slices. The shape of the LV

is determined using this method as the entire LV cavity is traced. The use of high

contrast will result in a well-defined endocardial border being obtained. It is in this

way that the LVEF can be calculated using MRI whilst not requiring the injection

of contrast material or ionizing radiation.

In-plane spatial resolution was 1.5mm. Each slice was acquired separately, and

there were 25 temporal phases per heart cycle. The complete image acquisition

process required 30 minutes. The short- and long-axis views obtained from the MRI

were used to carry out a 3D reconstruction of the LV using a customized algorithm
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Figure 3.3: Long-axis view of the LV in Segment CMR. The red boundary signifies
the ventricular cavity.

discussed below.

3.3 RTD Methodology

Post-processing of MRI 2D images using Argus Flow (a proprietary software pro-

vided by SIEMENS) produced two immediate sets of data: particle-tracking data

and the locations of planes created in the SIEMENS software. The particle-tracking

data contained the three-dimensional position and velocity for each seeded parti-

cle seeded as it was tracked through the heart. Code was developed in MATLAB

to import the particle-tracking data using text scanning methods. Each data set

ordinarily contained 1000-1300 timesteps, each of duration 0.00425 seconds, and

containing around 2000-3000 distinct particles. This data was refined to remove

particles that did not exit the chamber and to exclude particles that were being
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tracked outside the walls of the chamber. To remove non-exiting particles from the

analysis, a virtual ‘particle seeding’ plane was created in the software at the atri-

oventricular valve (in between the left atrium and left ventricle) as shown in Figure

3.4. This was defined as the entry plane. The exit plane was defined at the proximal

ascending aorta. Particles were seeded uniformly, on the portion of the entry plane

that was detected to be inside the blood flow for a short period of time relative to

the cardiac cycle time. These particles were then moved with the measured velocity

field over five complete cardiac cycles. As they passed through the heart, they were

counted as they crossed the exit plane at the ascending aorta, and their time stamp

noted. A schematic of the planes generated in MATLAB is shown in Figure 3.5

Figure 3.4: Heart schematic and its compartments.

RTD graphs were created in MATLAB using in-house code over the 5 heartbeats.

The raw RTD graph, with smoothing, is presented in Figures 3.6 and 3.7. The

residence time distribution function, E(t), is expressed as:

E(t) =
C(t)∫∞

0
C(t) dt

(3.1)

where C(t) is the calculated number of particles crossing the exit plane at time

t. The E(t) curves express the proportion of all departing particles that cross the

exit plane over sequential given specified time intervals (with time defined on the

horizontal axis).
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Figure 3.5: Planes generated in MATLAB. Yellow plane depicts the entry plane,
and the green plane is the exit plane.

Figure 3.6: Raw RTD graph shown with the various smoothed graphs.

Chapter 3 A.M.Qadri 29



Computational Modelling of 4D Flow MRI Data

Figure 3.7: Smoothed RTD curves comparing between 5, 10 and 15 time steps.
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This function describes in a quantitative manner how much time different fluid

elements have spent in the vessel. For comparisons between patients, the distribu-

tions are normalized to 5 heartbeats, which when referenced at 60 beats per minute

(bpm) is a time period of 5 seconds in length. The RTD data was smoothed be-

cause there was a considerable fluctuation between the number of particles exiting

at consecutive time points, making it difficult to interpret the data. The length of 5

time steps for smoothing was selected after testing with 5, 10 and 15 time steps as

seen in Figure 3.6 and Figure 3.7. It appears 5 time steps provided the best compro-

mise between showing the prominent peaks at each heartbeat and their approximate

height.

The data can also be plotted as a fraction of the total particles, F (t), remaining

in the ventricle as a function of heartbeats (i.e. time) as expressed by:

F (t) = 1 −
∫ t

0
C(t) dt∫∞

0
C(t) dt

(3.2)

An exponential decay function of the form y = Ae−bt was fitted to the value

of the fraction of particles remaining over time and the performance of ventricular

pumping was determined based on the time constant (RTDc = 1
b
) of the exponential

decay curve as seen in Figure 3.8. The variation of this parameter for different

patient cohorts can then be evaluated and compared to clinical markers, such as the

ejection fraction, T1 values and GLS, to determine if it is a useful predictor of heart

dysfunction.

Chapter 3 A.M.Qadri 31



Computational Modelling of 4D Flow MRI Data

Figure 3.8: Fraction of particles remaining in the heart over heartbeats. Exponential
fit to the entire data set is shown.
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3.4 Geometry reconstruction and grid generation

The positional data obtained from the short- (see Figure 3.2) and long- axis views

(see Figure 3.3) were in the voxel co-ordinate system. To use them for the 3D

reconstruction of the LV, the 2D positional data had to be transformed from the

voxel to the 3D DICOM patient co-ordinate system (DPCS).

Digital Imaging and Communications in Medicine (DICOM) is a global standard

used in medical imaging for storing, printing, handling and transmitting information.

The 3D DICOM patient-based coordinate system uses the orientation of the

patient to define the x, y and z axes. The x-axis increases to the left hand of the

patient, the y-axis increases to the posterior side of the patient and the z- axis

increases towards the head of the patient (as seen in Figure 3.9). An image slice is

stored as a single DICOM file that contains the following objects. The pixel array

contains the values of the pixels of a particular slice. In pixel coordinates, (c, r) is

the pixel in column c and row r. The positional data from the short- and long-axis

views was exported in this format. A slice also contains the Pixel Spacing attribute

(∆r,∆c). The column spacing in mm, ∆c, refers to the spacing between the centres

of adjacent columns, or the horizontal spacing. The row spacing in mm , ∆r, refers

to the distance between the centres of adjacent rows, or the vertical spacing.

In order to transform the voxel coordinates of a slice of an image to the DPCS,

two attributes are used: the Image Position and Image Orientation. The Image

Position attribute contains three values (Sx, Sy, Sz) that define the position of the

origin of the image slice in mm relative to the reference patient coordinate system.

The Image Orientation attribute defines the positive row axis that has the direction

of the last pixel in the first row from the first pixel in that row, and the positive

column axis which describes the direction of the column. The Image Orientation

attribute therefore defines two axes, which are stored as direction cosines of the axes

relative to the patient coordinate system. The row axis is stored as (Xx, Xy, Xz)

and the column axis as (Yx, Yy, Yz). Because the Image Orientation is stored as

direction cosines, Xxyz and Yxyz are the values of the cosines of the angles between the
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Figure 3.9: Schematic of the DICOM coordinate system.

three patient coordinate axes and the row and column directions respectively. Pixel

coordinates (c, r) are mapped to the patient coordinate system using the following

equation: 

Px

Py

Pz

1


=



Xx∆c Yx∆r 0 Sx

Xy∆c Yy∆r 0 Sy

Xz∆c Yz∆r 0 Sz

0 0 0 1





c

r

0

1


= A



c

r

0

1


. (3.3)

This equation defines the transformation that maps the voxels of a particular slice

from the voxel space to the DPCS. The MRI images are taken at regular intervals

along the length of the LV, and this forms a stack of images stored as DICOM images

(also called a volume in DICOM terminology). The Image Orientation attribute

is the same for each slice. Voxel coordinates can now be expressed in the form

(c, r, s) i.e. the column, row and slice indices. To map the voxels in the volume to

the DICOM patient coordinate system, a modified form of equation 3.3 is utilised.
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Values (k1, k2, k3) are added to the first three rows of the third column of the matrix

in Equation 3.3. In a volume containing N slices, slice numbers vary from 0 to

N − 1. The transformation equation can now be expressed as:



Px

Py

Pz

1


=



Xx∆c Yx∆r k1 Sx

Xy∆c Yy∆r k2 Sy

Xz∆c Yz∆r k3 Sz

0 0 0 1





c

r

s

1


= Amulti



c

r

0

1


(3.4)

where vector k can be obtained by subtracting the Image Position vector of slice 0

from that of slice N − 1.

Beyond this, an algorithm was developed and implemented that corrects for mo-

tion distortions in the MRI images. These distortions arise due to patient breathing

and motion during the MRI scan (recalling the acquisition time is 30 minutes). This

method involved manual delineation (where the closest point on a geometric shape

is computed from a given point) and registration (computing a least squared regis-

tration vector) based on a generalized, iterative closest point algorithm as developed

by Besl & McKay (1992). The algorithm uses the positional data from the long-axis

and short-axis images to minimize the sum of the squared differences between the

coordinates from the two sets of points. A constraint was put into place in the

current implementation that only translation of the points is carried out with no

rotation. It was seen that when rotation was permitted that the resulting point

cloud, although minimized the squared distances, did not appear as a representative

point cloud of the left ventricle.

This positional data was transformed using a multi-step algorithm that resulted

in a geometric surface that could be used in software such as ANSYS-Fluent to

carry out the CFD simulation. This involved: (1) interpolation of the contour data

between the contour levels as seen from Figure 3.10 to Figure 3.11, (2) development

and implementation of a Delaunay-based triangulation method for the surface re-

construction from this scattered point cloud data as seen in Figure 3.12. Although
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Figure 3.10: Contour data defining the inside surface of the LV depicted by the
connected blue dots obtained from short-axis images.

the Delaunay-based triangulation method is the preferred mode for obtaining the

surface geometry, holes may be found on the surface, as they were seen in Figure

3.12. Patching these holes requires a significant amount of time and attention to

detail. Therefore, an alternative, faster method of obtaining the surface geometry

was used. The reconstruction of the LV surface geometry for CFD simulation was

carried out using a semi-automated method. Here, the set of short-axis contours

were imported into SolidWorks. The Loft tool was used to generate the surface

geometry. The Loft feature smoothly interpolates between the short-axis contour

profiles to create the shape of the LV. It is able to do so by adding material between

the contour profiles as seen in Figure 3.13.
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Figure 3.11: Interpolated schematic of the contour data to obtain a representative
point cloud of the LV.
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Figure 3.12: Surface mesh obtained from Delaunay triangulation of point cloud data.
Red circles denote holes in the surface mesh.
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Figure 3.13: Patient-specific volume geometry of left ventricle with aorta outlet and
atrial inlet reconstructed from 2D MRI images.
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3.5 CFD simulation and boundary conditions

3.5.1 Geometry reconstruction and grid generation

For the reconstructed geometry, a set of unstructured meshes consisting of tetrahe-

dral cells for 3D modelling were generated in ANSYS-Fluent. It should be noted

that in the initial stages of the thesis program, both structured and unstructured

grids were generated to model the LV and to test the correct operation of the dy-

namic mesh routine. However, for all subsequent cases, unstructured grids were used

because most modern CFD solvers allow use of unstructured grids and accommo-

dates the complex geometrical nature of the left ventricle with atrial inlet and aorta

outlet. A grid-independence study was carried out to obtain spatial convergence of

the CFD solution. The number of grid elements were increased by a factor of 1.5

(8000, 12000, 18000, 27000 and 40500). Calculated flow velocities did not change as

the number of cells were increased from 27000 to 40500. In the range from 18000 to

27000, the changes in flow features were minor. For more accurate results, the final

number of cells chosen for the 3D modelling was 27000.

The time-spacing of 25 phases per heart beat cycle (supplied by the MRI phase-

averaging process) was not sufficient for the CFD simulation as the model experi-

enced considerable distortion, involving both translation and compression/expansion,

over the cardiac cycle. A reduced timestep was required to model the changing vol-

ume and to ensure that the Courant number remained less than unity (product

of the local fluid velocity with the ratio of time-step to mesh spacing u∆t
∆x

< 1)

(Ferziger & Perić, 1999). This is required for computational stability. The time step

and mesh spacing that were found to satisfy the Courant condition and used for the

simulations was 0.04 ms and 0.08 mm respectively.

3.5.2 Governing equations

To predict the fluid flow in the computational domain using the finite-volume method,

the arbitrary Lagrangian-Eulerian (ALE) form of the Navier-Stokes solution is used
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(Hirt et al., 1974). The three-dimensional integral form of the continuity equation

for an arbitrary volume V and surface S moving with local surface velocity of vb

(Hirt et al., 1974; Ferziger & Perić, 1999) is given by

∂

∂t

∫
V

ρ dV +

∫
S

ρ(v − vb) · n dS = 0 (3.5)

where ρ is the density of the fluid, v = (u, v, w) is the velocity vector of the fluid

in the fixed coordinate system, vb = (ub, vb, wb) is the velocity vector of the moving

boundary (boundary S of control volume V ) and n is the outward directed normal

vector to dS.

The three-dimensional integral form of the momentum equation (Hirt et al.,

1974; Ferziger & Perić, 1999) is given by:

∂

∂t

∫
V

ρv dV +

∫
S

ρv(v − vb) · n dS = −
∫
S

pn dS +

∫
S

τ · n dS (3.6)

where p is the pressure and τ is the viscous stress tensor. In Equation 3.6, the

gravitational force is included in p for a homogeneous fluid in a closed system.

Assuming blood to be an incompressible Newtonian fluid, τ is expressed as:

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

) (3.7)

Here, µ is assumed to be constant because blood flow in large vessels can be

treated approximtely as a homogeneous Newtonian fluid. The density and dynamic

viscosity used in this study are 1050 kg m−3 and 0.00316 Pa sec respectively. For

the finite-volume implementation, these equations are discretised for each cell of the

computational domain.

3.5.3 CFD simulation and boundary conditions

For the present application, two orifices (surfaces) are positioned at the top of the

LV to represent the inlet and the outlet valves. Initial boundary conditions applied

are an outflow boundary condition to the outlet (aortic valve) with a closed inlet
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(mitral valve) when the LV is contracting, and a closed outlet (aortic valve), with a

reversed outflow boundary condition applied to the inlet (mitral valve). Of course,

this does not model the dynamical fluid-structure interaction of the opening and

closing valves, but still is expected to provide a reasonable first approximation to

the flow away from the valves.

The Navier-Stokes equations for three-dimensional flow with a dynamic mesh

was solved using the finite-volume based CFD commercial solver ANSYS-Fluent

(Ansys Inc 2019). An ALE formulation together with optional re-meshing is used

by selecting the dynamic mesh option in Fluent. Fluent permits users to prescribe

boundary motion using user-defined functions (UDFs). The UDFs to describe the

LV boundary motion were programmed in C. The geometry was constructed from 15

horizontal slices from the base to the apex. To describe the motion of the boundaries,

each slice was segmented into a set of angular segments about the centre of the

slice. Boundary points could move outwards or inwards along a line of fixed angular

positions (Saber et al., 2001). A schematic of a single angular position for one slice

is shown in Figure 3.14.

Figure 3.14: View of one angular position for one slice.

The motion of the boundary for all the slices over the heart beat cycle was

defined for the solver by writing UDFs based on the raw MRI data, and the motion

of points between slices was determined using linear interpolation. To obtain the

surface velocity for the fitted grid, the difference between the former (ti−1) and
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current grids (ti) were calculated. Mesh motion occurs due to the movement of the

LV wall. To ensure the mesh could be used after the domain deformed, a mesh

quality control measure was implemented. Here, the grid quality is assessed at each

time step and the simulation halted if grid quality deteriorates to below a criterion.

In the current work, the criterion for grid quality is that the maximum value of

the face skewness must not exceed 0.9. Additionally, the spring-based smoothing

method is used for the tetrahedral mesh. As the boundary displacement becomes

much larger than the local cell size, a deterioration of cell quality can occur and

the cells may degenerate. This will invalidate the mesh (i.e. result in negative

cell volumes) and convergence problems will arise as the solution is updated to

the following time step. To prevent this from happening, re-meshing is used in

the regions where the mesh has degenerated and fallen below the acceptable grid

quality criterion (ANSYS-Fluent 19 documentation, 2019). There are a number of

different re-meshing methods that can be used depending on the problem. In the

current work, a local re-meshing method is used. Using the local re-meshing method,

Fluent marks cells based on cell skewness, minimum and maximum length scales as

well as an optional sizing function. Each cell is evaluated by Fluent and marked

for re-meshing if it satisfies the criterion. The re-meshing technique interpolates the

previous time step results to the new mesh and continues the iteration. Further

information about the different re-meshing methods is available in the ANSYS-

Fluent documentation (2019). Figure 3.15 shows a diagram of CFD solution using

a re-meshing loop. To achieve convergence and accuracy, a second-order upwind

scheme was employed. The resulting algebraic equation system was solved using

the implicit PISO (Pressure implicit with splitting of Operators) algorithm that is

suitable for time-dependent flow problems (Issa, 1986).
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Figure 3.15: Simulation process with re-meshing.
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3.6 Summary

In this chapter, MRI image acquisition and post-processing of the MRI data for

the CFD model and RTD study have been described. MRI images were segmented

and reconstructed for 25 frames in one (mean) cardiac cycle. The dynamic mesh

capability of ANSYS-Fluent could be utilised using user-defined functions (UDFs)

to describe the motion of the LV wall throughout the cardiac cycle. Smoothing and

re-meshing methods allow a high level of grid quality to be maintained. RTD graphs

generated from particle tracing data allow a time constant to be obtained by fitting

an exponential decay function to the residence time distributions. The application

of these methodologies will be examined in the following chapters. Chapter 4 will

provide a description of applying RTDs to measure cardiac function in healthy pa-

tients and patients with dilated cardiomyopathy. Furthermore, the RTD constant

will be compared to current diagnostic measures, particularly the ejection fraction,

GLS and T1 values. An initial computational fluid dynamics model is developed

and presented in Chapter 5. This model will highlight the intraventricular fluid dy-

namics, and present a detailed overview of the changing volume of the left ventricle

over the cardiac cycle.
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Residence Time Distribution

4.1 Introduction

Phase-averaged blood flow dynamics within the heart can be captured reasonably

accurately using cardiac magnetic resonance imaging. Patients with arrhythmia

demonstrate a change in blood flow, and using 4D flow MRI (time-resolved blood

flow) derived markers of cardiovascular function may aid clinicians in their diag-

nostic and prognostic endeavours. Patient-specific residence-time distributions of

blood passing through a chamber can be obtained by post processing the measured

flow data. RTDs can provide an understanding of mixing, stasis and overall blood

flow, which have effects on cardiac function. In a way, the RTD differs from ex-

isting markers, such as the ejection fraction, as it investigates blood flow directly

and contains extra information on blood “age”, rather than the global volumetric

mechanics of the cardiac cycle.

In this chapter, left and right ventricular 4D flow data from a healthy control

group and patients with impaired left ventricular function is analyzed. RTDs of

blood transiting the left and right ventricles were developed, and the relationship

between RTD parameters and ejection fraction investigated. Furthermore, the rela-

tionship between the RTD and the global longitudinal strain (tissue function) and

T1 value (tissue composition) is investigated to evaluate the ability of the RTD

technique to distinguish normal and abnormal myocardial function.
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4.2 Biodata for cases

The study involved sixteen normal subjects and sixteen patients with ventricular

dysfunction. The healthy volunteers had normal blood pressures and did not report

a history of diabetes, smoking or renal impairment. They were found to have normal

CMR results (ejection fraction, ventricular size and mass index). Patients suffering

from dilated cardiomyopathy were included in the study if they presented a history

of symptomatic heart failure and a dilated left ventricle with an ejection fraction

< 50%. A summary of the biodata is provided in Table 4.1. For the purposes

of understanding the table, the following definitions are provided. The ejection

fraction is calculated by taking the fraction of the volume of blood pumped out

of the chamber against the total volume of blood in the chamber. The volume of

blood pumped out per contraction is referred to as the stroke volume (SV). The

total amount of blood collected in the chamber at the end of the filling phase is the

end diastolic volume (EDV). In other words, the ejection fraction is the normalised

stroke volume.

Healthy Controls Dysfunctional Cases
Number 16 16

Age(years) 43 ± 11 54 ± 14
Gender 7F/9M 6F/10M

LV End-Diastolic Volume (mL) 183 ± 46 225 ± 108
LV Stroke Volume (mL) 107 ± 27 75 ± 22
LV Ejection Fraction (%) 59 ± 5 35 ± 9

RV End-Diastolic Volume (mL) 174 ± 45 147 ± 42
RV Stroke Volume (mL) 96 ± 22 62 ± 21
RV Ejection Fraction (%) 63 ± 30 43 ± 12

Table 4.1: Demographics and clinical data for the RTD study.
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4.3 Methods

The 4D flow image post processing duration (to draw and position the entry and

exit planes) varied between 6 to 12 minutes per patient. The software provided by

Siemens corrected for random noise and distortion in signal magnitude. A duration

of approximately 10 minutes of computer processing was taken to obtain the RTD

for each patient. The method used was explained in Section 3.3. The RTD time

constants obtained from the RTD analysis are compared with the other accepted

markers of cardiac performance to determine the extent (if any) of correlation be-

tween the measures. Statistical analysis of the data yields two values, R and p. R

refers to the correlation coefficient which depicts the strength of the relationship

between the relative movements of two variables. R ranges from 0 to 1, and a value

of 0.9 implies that 90% of the observed variation can be explained by the input

variables. Generally, a value greater than 0.6 is considered meaningful, although a

high R value does not necessarily imply that the model chosen is appropriate. The

p value is a measure of the probability that there is no relationship between the

variables, given the results obtained. A general mark of p < 0.05 is used for statisti-

cal significance, i.e., less than a 5% chance of getting the result given no correlation

between variables.

4.4 Results

4.4.1 Left ventricular residence time distributions

Smoothed RTD graphs accumulated over five heartbeats for a patient with a normal

heart and a heart with a reduced LVEF are shown in Figure 4.1 & Figure 4.2 respec-

tively. All healthy patients demonstrated a prominent peak at the first heartbeat.

Patients with ventricular dysfunction had the highest peak at the second heartbeat

and a greater spread across the heartbeats, although a small number (∼ 3) of 16

sick patients had the highest peak at the third heartbeat.
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Figure 4.1: Example of smoothed left ventricular residence time distribution from a
healthy patient with LVEF = 60%.

Figure 4.2: Example of smoothed left ventricular residence time distribution from a
patient with dilated cardiomyopathy & LVEF=38%.
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Exponential decay curves are shown in Figures 4.3 and 4.4. These decay curves

are fit to the fraction of particles remaining in the left ventricle for each patient.

Patients with regular LVEF demonstrate an approximate 50% drop in fraction of

particles remaining after the first heartbeat, as seen in Figure 4.3, whereas patients

with a lower LVEF have a more gradual drop in fraction of particles as seen in

Figure 4.4. This demonstrates how hearts with low LVEF are incapable of expelling

blood as efficiently. Comparing the results obtained here to the previous RTD study

carried out on artificial left ventricles (Shettigar et al., 1989), a broad agreement

between the results was seen. Shettigar et al. (1989) reported 42% of blood particles

being expelled at the end of the first ventricular contraction, 36% being expelled in

the second heartbeat, 17% being expelled in the third heartbeat, and the remaining

5% in the following heartbeats. The values obtained in Figure 4.3 are marginally

higher. This may be due to the realistic nature of the left ventricle pumping action

being captured by the decay curves as this analysis was carried out on actual left

ventricles, whereas Shettigar et al. (1989) was carried out on artificial left ventricles.
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Figure 4.3: Example exponential decay curve from a healthy patient with LVEF =
60%. Curve is fitted to the complete calculated data set.

Figure 4.4: Example exponential decay curve from a patient with ventricular dys-
function & LVEF=38%. Curve is fitted to the complete calculated data set.
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The ability of the RTD constant (LV RTDc) to characterise heart health in the

left ventricle was assessed by comparing it with the left ventricular ejection fraction.

There was a significant difference in the LV RTDc of healthy volunteers and those

with dysfunctional hearts as determined by LVEF (LV RTDc 1.2±0.13 vs 2.2±0.80,

p < 0.001 for both groups) as seen in Figure 4.5. The box plot shows that the LV

RTDc for the reduced LVEF group has a wider range than that for the normal group.

This may be an effect of the varying extent of illness and cardiac dysfunction faced

by the patients within the reduced LVEF group. From a purely discriminatory

viewpoint, our results show that the concept of the RTD can be used to distinguish

between sick and healthy patients.

Figure 4.5: Box plot of left ventricular residence time distribution constant amongst
group. The left and right bars indicate the minimum and maximum values respec-
tively. The three bars in the middle signify the first quartile, the median and the
third quartile, respectively.
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There was a strong negative correlation between the LV RTDc and LVEF (R =

−0.843, p < 0.001) as seen in Figure 4.6. Values for the normal group were clustered

closer together in a tight pattern, compared to those for unhealthy hearts which were

broadly spread with little order. The strong correlation and low p value suggests

that the LV RTDc and LVEF are closely related, and that the elevated LV RTDc

may be a sensitive measure of cardiac dysfunction.

Figure 4.6: Correlation of LV ejection fraction (y-axis) with residence time distribu-
tion constant (LV RTDc, x-axis). The healthy controls are displayed as blue circles,
patients with dilated cardiomyopathy as red triangles.
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Furthermore, when the RTDc was compared to the GLS (measuring the elasticity

of the heart muscle measured by a % change in length), a strong positive correlation

was obtained (R = 0.7805, p < 0.001) as seen in Figure 4.7. Values for the normal

group were seen to be grouped together with a smaller range of GLS and RTDc,

whereas the group with dysfunctional hearts were spread out with a wider range

of RTDc. Some patients with dilated cardiomyopathy recover a normal EF in the

future, with or without medical intervention. Recovered patients with a normal

EF however remain at a higher risk of future cardiovascular events, and 40% of

them undergo a relapse of left ventricular dysfunction (Cheng et al., 2014; Basuray

et al., 2014). This may explain why patients who appear “clinically stable” remain

susceptible to haemodynamic stress and undergo subsequent heart failure events.

The results obtained here suggest that there is a close relationship between the

myocardial strain and cardiac flow.
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Figure 4.7: Correlation of global longitudinal strain (GLS) (y-axis) with residence
time distribution constant (LV RTDc, x-axis). The healthy controls are displayed
as blue circles, patients with dilated cardiomyopathy as red triangles.

A study carried out by Adamo et al. (2017) showed that amongst a patient

group with a currently normal LVEF, those with impaired GLS (i.e. < −16%)

have 3 times the risk of undergoing a drop in LVEF after a subsequent check-up

(61.8% vs 21.4%). Furthermore, every percentage increase in GLS value increased

the likelihood of maintaining a normal range LVEF during followup by 22%. This

demonstrates the importance of using GLS as a diagnostic and prognostic tool,

particularly in cases where the ejection fraction does not describe the full extent of

cardiac dysfunction. Furthermore, it seems prudent to include some of the patients

in the current study for a future study to investigate how the GLS and LVEF values

change between check-ups, and how this relates to a change in LV RTDc.
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Another indication of cardiac dysfunction can be obtained from T1 values. Ele-

vated T1 values (i.e. > 1200 ms) can be a sign of odema (increase of water in tissue

because of inflammation) or increased interstitial space (from scarring or cardiomy-

opathy). Here, we found a weak positive correlation when the RTDc was compared

to the T1 native values (R = 0.1517, p = 0.4073). Recall, T1 native value is related

to the thickening of the heart muscle tissue. Noticeably, the values for the normal

group are more spread out and with less order than the EF and GLS comparisons.

Interestingly, a number of subjects from the sick patient group had similar native T1

values as their healthy counterparts. This suggests the lack of a strong relationship

between scarring and impairment of cardiac flow.

Figure 4.8: Correlation of T1 native values (y-axis) with residence time distribution
constant (LV RTDc, x-axis). The healthy controls are displayed as blue circles,
patients with dilated cardiomyopathy as red triangles.

56 Chapter 4 A.M.Qadri



Computational Modelling of 4D Flow MRI Data

4.4.2 Further assessment of left ventricular residence time

distributions

To understand the concept of the RTD further, three patient cases were selected,

and their RTD graphs compared. These were Patient RC (with an left ventricular

ejection fraction of 25%) presented in Figure 4.9, Patient SB (with a left ventricular

ejection fraction of 25%) presented in Figure 4.10, and Patient PS (with a left

ventricular ejection fraction of 13%) presented in Figure 4.11.

Figure 4.9: Example exponential decay curve of Patient RC with a left ventricular
ejection fraction of 25%.

From the results obtained in Figures 4.9 and 4.10, it is clear that similar ejection

fractions do not result in similar RTD graphs being obtained. Patient RC (RTD

value: 2.98) demonstrates an expelling of a negligible fraction of particles in the first

heartbeat followed by a 20% drop in the second heartbeat followed by a 40% drop

in the third heartbeat. Conversely, Patient SB (RTD value: 2.67) demonstrates a

gradual and consistent expelling of 20% of particles each heartbeat. When Patient

PS (RTD value: 4.42) was considered, no expelling of particles occurred in the first

two heartbeats, followed by a small loss of 10% in the third heartbeat, and a large

30% loss in the following two heartbeats. These results suggest that further analysis
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Figure 4.10: Example exponential decay curve of Patient SB with a left ventricular
ejection fraction of 25%.

Figure 4.11: Example exponential decay curve of Patient PS with a left ventricular
ejection fraction of 13%.

of these patients is required, and that their cardiac dysfunction differs amongst them

even though they may display similar ejection fractions. Whilst the exact nature

and extent of their dysfunction is not available, a closer analysis of Patient RC

reveals that their end-diastolic volume was more than double that for Patient SB
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(537 vs 218 mL). This indicates that Patient RC had a greater volume of blood in

the left ventricle prior to the systole (contraction). This may be due to an enlarged

chamber (i.e. dilation of the left ventricle) and may indicate that Patient RC suffers

from dilated cardiomyopathy to a greater degree than Patient SB. The end-diastolic

volume for Patient PS was elevated (374mL). End-diastolic volumes vary based on

the health, age and gender of the patient. A normal value would lay in the range of

150–200 mL.

Upon closer examination of the RTD graphs, Patient PS and RC had 2533 par-

ticles seeded by the Siemens software and only 750 (30% of the seeded particles)

actually transit the left ventricle, whereas Patient SB had double the particles tran-

sit (1500 for a total of 60% of the seeded particles transiting). This is a stark

anomaly when the general case for the rest of the patients was 85-90% of seeded

particles transiting the left ventricle. The small percentage of particles transiting is

consistent with significant “hold-up” of fluid and is likely due to slow mixing regions.

The number of particles actually transiting compared to the number seeded is an

important marker as it can reveal information on the amount of blood that fails to

transit, the condition of the patient, and may reflect the possibility of a larger risk

of thrombus formation.

The entry and end points of the particles seeded for Patient PS are displayed in

Figure 4.12. Charting the trajectory of the particles allows us to determine whether

blood pools, and if so, where in the chamber. From Figure 4.12, it is clear that a

number of particles collect and never escape in at least two distinct regions of the

chamber. This explains why the number of particles transiting the chamber was low.

It also represents the elevated risk of Patient PS suffering from thrombus formation

(stroke). There are a number of particles that were “missing” the exit plane, but

seen to exit the left ventricle. This was attributed to noise, as it was physically

impossible for particles to exit the left ventricle but not cross the exit plane.
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Figure 4.12: Entry Points (Green) and Exit/End Points (Red) of particles for Patient
PS. Blue plane is the exit plane. Black circles denote area where blood collects

Residence time distributions were developed for a further eight patients from the

reduced LVEF group, and shown in Figures 4.13 and 4.14. The results demonstrate

how residence time distributions can vary significantly despite a small change in

ejection fraction amongst patients with reduced function. A few observations were

made from the results. Firstly, there were circumstances whereby a higher ejection

fraction did not correspond to a larger fraction of particles being expelled within

the first heartbeat (see Figure 4.14b and Figure 4.14c). Patient MB (LVEF = 41%)

demonstrated a more gradual drop in fraction of particles compared to Patient

RB (LVEF = 32%). Within the first two heartbeats, less than 50% of the seeded

particles transited the left ventricle for Patient MB, whereas about 55% of particles

were expelled within the same time period for Patient RB. The difference between

the two patients becomes clearer when we consider the time period of the first

heartbeat. This conveys the notion that although Patient MB may be considered

“healthier” if ejection fraction was the sole indicator of health, blood flow through

the LV was restricted in a greater manner than for Patient RB. This warrants

other medical tests carried out to ascertain the full nature of the disease for Patient

MB. Secondly, some patients did not exhibit sharp drops of particle fraction at the
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time of ventricular contraction (particularly after the third heartbeat). This was

seen most significantly in Patient AM (see Figure 4.13b), and to a lesser extent in

Patient JL (see Figure 4.14a) and Patient RF (see Figure 4.14d). For Patient AM,

there was a gradual drop in particles from 25% remaining at the second heartbeat

for the remaining three heartbeats. This may signify the presence of some cardiac

pathology that allows blood to leave the left ventricle throughout the cardiac cycle,

or possibly a faulty aortic valve (that should be closed except during ventricular

contraction). Regardless, this suggests that the RTD has the ability to provide

more information than the ejection fraction by looking at a blood flow over a time

period (5 heartbeats).
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(a) Patient AF with LVEF = 40%.
(b) Patient AM with LVEF = 36%.

(c) Patient BR with LVEF = 32%.
(d) Patient JC with LVEF = 38%.

Figure 4.13: Fraction of particles remaining in the left ventricle over time for four
patients (LVEF < 50%). Blue line denotes the particle fraction, black line denotes
the exponential decay fit.
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(a) Patient JL with LVEF = 44%.
(b) Patient MB with LVEF = 41%.

(c) Patient RB with LVEF = 32%. (d) Patient RF with LVEF = 43%.

Figure 4.14: Fraction of particles remaining in the left ventricle over time for four
patients (LVEF < 50%). Blue line denotes the particle fraction, black line denotes
the exponential decay fit.
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4.4.3 Right ventricular residence time distributions

The RTDc was seen to correlate well with dysfunction in the LV. It seems possible

that the concept may carry over to other heart chambers. To explore this further,

residence time distributions were produced from particle tracking in the right ven-

tricle. The box plot showing the differences in RV RTDc between the two groups

is presented in Figure 4.15. The correlation of the RV RTDc to the RV ejection

fraction is shown in Figure 4.16.

Figure 4.15: Box plot of right ventricular residence time distribution constant for
the two groups.

For this study, the mean RTDc was compared between the focus groups that were

defined by the patient left ventricular ejection fraction. In the healthy focus group,

the RV RTDc was 1.5 ± 0.2 compared to 1.8 ± 0.57, p = 0.01 in the dysfunctional

heart focus group (see Figure 4.15). When the box plots are compared (Figures 4.15

and 4.5), it is seen that there is more overlap between the patient groups for the

RV. A greater number of patients in the reduced LVEF have a RV RTDc which falls

within the range of RV RTDc for the healthy patients.

The RV RTDc & RVEF are modestly negatively correlated (R = −0.7113 ,

p < 0.001) as seen in Figure 4.16. Overlap between the normal and reduced LVEF

group was seen again. The normal LVEF group are more spread out when compared
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Figure 4.16: Correlation of RV ejection fraction (y-axis) with residence time dis-
tribution constant (RV RTDc, x-axis). The healthy controls are displayed as blue
circles, patients with dilated cardiomyopathy as red triangles.

to Figure 4.6 where the patients LV RTDc were close together. Moreover, some

patients from the reduced LVEF group demonstrate RV RTDc values that could

be mistaken for the normal EF group. The correlation in the right ventricle was

not as strong as that in the left ventricle (see Figure 4.6). This may have been

due to the challenge of accurately defining the tricuspid plane (seeding plane for

the RV) as noted by the cardiologist. Particles not seeded at the position of the

tricuspid valve may be seeded in the right atrium and thereby take longer to transit

the chamber. It is possible that a different relationship exists between RTDc and

the ejection fraction of the left and right ventricle. Dilated cardiomyopathy is not

always biventricular, and the RTDc of the right ventricle may provide an insight

into the extent of involvement of the right ventricle in the disease. In a case where

the RV RTDc falls within the healthy range (0.5 to 1.7) and the LV RTDc is greater

than 1.7, a greater prevalence of the disease in the left ventricle rather than the right
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may be true. In the opposite case (i.e. where the LV RTDc falls in the healthy range

whereas the RV RTDc is elevated), a greater prevalence of the disease afflicting the

right ventricle compared to the left may be the likely cause.

4.4.4 Right atrial residence time distributions

Following on from the previous section, residence time distributions were produced

from particle tracking in the right atrium. In the right atrium, the atrial RTDc was

compared between the groups defined by the left ventricular ejection fraction. A

weak negative correlation was observed (R = −0.4543 , p = 0.009) as shown in Fig-

ure 4.17. The healthy patient group had a number of distinct clusters of data points,

and other data points more spread out. The group with reduced EF demonstrated

a wider spread of atrial RTDc (ranging from 1.2 – 4.1), with approximately half of

the patient group having an atrial RTDc less than 2, and within a similar range to

the normal EF group. The correlation in the right atrium is lower than that of the

right ventricle or left ventricle. A contributor to the lack of correlation may be due

to the noted difficulty of defining the tricuspid plane (exit plane for the RA). It may

also be due to a lack of relationship between the ejection fraction of the left ventricle

and blood flow through the right atrium, or that an alternative relationship exists.

4.5 Discussion

In this chapter, the residence time distribution has been described and determined

for 2 sets of patients, one with normal cardiac function and the other with dilated

cardiomyopathy. The RTD, produced from time-dependent MRI derived velocity

fields, is demonstrated to be a novel method of assessing cardiac function and effi-

ciency. The RTDc was found to be lower in participants with a normal functioning

LV (defined by LVEF) compared to the dysfunctional LVEF group. Healthy vol-

unteers with presumed normal cardiac function displayed a RTD constant that fell

within a narrow range (mean 1.24, range 1.0–1.45). Participants from the dysfunc-
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Figure 4.17: Correlation of LV ejection fraction (y-axis) with residence time distri-
bution constant (right atrial RTDc, x-axis). The healthy controls are displayed as
blue circles, patients with dilated cardiomyopathy as red triangles.

tional LV group had an RTDc higher than this and with a broader range (from 1.45

to 4.48).

For healthy volunteers, the largest percentage of blood was expelled in the first

cardiac cycle. Comparatively, the dysfunctional LV group demonstrated a greater

volume exiting during the latter cycles, indicating a delay in transit of blood as

seen in the difference of mean ejection fraction values from Table 4.1. This delay in

transit is a marker of inefficiency, as it indicates that the chamber transports blood

at a reduced flow rate. Furthermore, it indicates that there is a possibility that

blood pools and collects, before it transits the chamber in following heartbeats as

seen in Figure 4.12.
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Whilst ejection fraction is an effective method of analysing the left ventricular

performance, providing prognostic and functional information (Curtis et al., 2003),

low LVEF is often a late sign of dysfunction, and finding markers of dysfunction

earlier in the pathophysiologic process could improve clinical outcomes. Given that

we have demonstrated that the RTDc does distinguish clearly between healthy and

sick patients in the LV, usage of the RTD can be incorporated in the post-MRI

scan phase of the diagnostic process. The patient’s particle tracking data would

be processed, RTDc obtained and their risk for cardiac dysfunction defined before

they return to their cardiologist for their post-MRI check-up. The RTDc provides

a theoretical advantage over ejection fraction in cardiomyopathy. This is because

ejection fraction is influenced by functional mitral regurgitation (reversal of blood

flow from the left ventricle to the left atrium). The reversal of blood flow causes the

stroke volume to reduce thereby reducing the ejection fraction. This is a common

occurrence amongst patients with more advanced cardiomyopathy, which may lead

to the misestimation of cardiac function based solely on ejection fraction (Trichon

et al., 2003; Donal et al., 2009). The RTD is able to identify particles that cross the

entry plane multiple times (in the case of mitral regurgitation) and exclude them

from the analysis.

Ventricular function has been characterised beyond ejection fraction by a num-

ber of studies investigating myocardial tissue. Analysis of myocardial deformation

(GLS), tissue Doppler velocities and T1 mapping are alternative techniques looking

at myocardial factors to determine pathology, and have had the ability to identify

and classify cardiovascular disease (Iles et al., 2008; Stanton et al., 2009; Biering-

Sorensen et al., 2015). The strong correlation between the RTDc and the GLS sug-

gests that there is close relationship between the deformation of the myocardium,

efficiency of blood flow through the heart and the ejection fraction.

Bolger et al. (2007) used time-resolved MRI derived velocity fields to develop a

method of compartmentalising LV blood flow into four components based on com-

partmental origin and fate. Direct flow enters and leaves the LV in a single cardiac
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cycle; delayed ejection flow refers to blood that originates in the LV and exits during

the systolic phase; retained inflow enters the LV in the diastolic phase but does not

leave in the next systole; and the residual volume remains in the LV for at least two

complete cardiac cycles. This approach can theoretically be used to distinguish car-

diomyopathy from normal LV function if a greater proportion of ‘residual volume’

is seen. However, it is computationally intensive and not routinely available with

existing post-processing software. The RTD is a similar concept to the 4 component

model as it largely reflects the direct flow component. It has the advantage of being

a process that can be incorporated into CMR analysis in a time effective manner

and applied to all cardiac chambers. According to our results, up to 60% of blood

particles transited the LV in the first cycle in normal functioning hearts (analogous

to direct flow). Residence time distribution analysis has been used to evaluate dead

space in chemical reactors. In a similar fashion, the ‘retained flow’ component in the

cardiac cycle and the ventricular residence time distribution can provide an insight

into the conditions under which particles enter the chambers during the relaxation

phase but do not exit during the first contraction.

From the results, it appears that maintaining an efficient flow of blood as it

passes through the atrioventricular valve and into the aorta is a key indicator of

cardiac performance. Further analysis of how this translates to avoiding stasis is

warranted. Studying whether the RTD, when deployed in a clinical setting, can

detect early stages of left and right ventricular cardiac pathologies is required to

determine the value of the RTDc as an independent measure of cardiac function.

From a diagnostic perspective, it appears that the RTD is useful in a discrim-

inatory capacity. The narrow range of LV RTDc in healthy patients may increase

diagnostic sensitivity through an investigation into whether RTDc values obtained

outside of a narrow range correlate with cardiac dysfunction. Moreover, the hy-

pothesis that the RTD can provide incremental value in diagnosis and in monitoring

response to interventions over strain analysis and T1 mapping requires further in-

vestigation. This should be carried out in a clinical setting by charting treatment
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options based primarily on the RTDc.

A number of assumptions have been made in developing the RTDc. Blood flow

in the heart was assumed to achieve steady state. Blood flow and velocity was phase

averaged over the duration of the scan. In the case where an isolated event occurs

that affects blood flow within the heart over a short time frame (e.g. palpitations),

the effects of this are averaged over the entire cardiac cycle and made less ‘visible’.

Furthermore, because the group with reduced EF contains both current and recov-

ered cases, it is possible that pharmacologic treatment may have changed the flow

dynamics of individual patients within the group and confound our results. The

RTD uses particle tracing as a quantitative technique, and although the accuracy of

the data could not be directly tested, the relevance of the association between LV

ejection fraction and RTDc appears strong.

4.6 Summary

4D flow cardiac magnetic resonance (CMR) imaging allows visualisation of blood

flow and acquisition of blood velocity fields in the heart chambers and large vessels.

Post processing of the flow data allows determination of the residence time distribu-

tion (RTD), a novel means of assessing ventricular function, potentially providing

additional information beyond ejection fraction. Left and right ventricular (LV and

RV) blood flow efficiency was evaluated using RTD measurements. 16 healthy pa-

tients and 16 patients with cardiac dysfunction (as defined by LVEF < 50%) were

studied using cardiac magnetic resonance imaging including 4D flow. The RTDs

were developed computationally by seeding virtual ‘particles’ at the inlet plane in

customised post-processing software, moving these particles with the measured blood

velocity, recording and counting the number of particles that exited the chamber per

unit of time. Ventricular flow efficiency was determined from the RTDs based on

the time constant (RTDc = 1
b
) of the exponential decay fit to the particle fraction.

The RTDc was compared to the ejection fraction. There was a significant difference

between groups in LV RTDc (healthy volunteers 1.2 ± 0.13 versus systolic dysfunc-
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tion 2.2 ± 0.80, p < 0.001 ) and RV RTDc (1.5 ± 0.15 versus 1.8 ± 0.57, p = 0.013).

The LV RTDc correlated significantly with LVEF (R = −0.843, p < 0.001) and

the RV RTDc had significant correlation with RVEF (R = −0.7113, p < 0.001).

This reduced correlation might be explained by the difficulty in defining the particle

seeding plane for the RV. Furthermore, there was strong correlation between the LV

RTDc and the GLS parameter (R = 0.7805) and a weak correlation to the T1 value

(R = 0.1517). The ventricular residence time correlates with ejection fraction and

can distinguish normal from dysfunctional ventricular function, and can serve as a

biosensitive marker for myocardial dysfunction. Further assessment of this method

of assessment of chamber function and its applicability in other chambers is war-

ranted. The deployment of the RTD in a clinical setting as a tool for early diagnosis

of cardiac dysfunction is justified. Clearly, it will be of interest to follow the future

fate of patients within this study.

Chapter 4 A.M.Qadri 71



Chapter 5

Computational Fluid Dynamics

5.1 Introduction

The left ventricle (LV) and the mitral and aortic valves play a pivotal role in the

pumping of blood through the body, and the overall health of an individual. Patients

with abnormal cardiac function display altered flow dynamics. It is hypothesized

that obtaining derived markers of cardiac function from cardiac magnetic resonance

imaging data may provide clinicians an additional useful tool that could be used

for diagnosis and prognosis. A patient-specific 3D model of the LV is developed

by post-processing two-dimensional MRI images. At this stage of development of

the approach, the connections of the left ventricle to the aorta and atrium through

the aortic and mitral valves have been simplified. This modified approach was

taken because of continuing computational difficulties in producing a consistent

model involving the three moving subdomains (ventricle + aorta + atrium) within

the FLUENT ALE framework. Indeed, this was not helped by limitations within

FLUENT of interacting through UDFs and restrictions of mesh movement within

the program itself. So at this stage, tubes have been added to the top of the LV

to (weakly) represent the inlet (mitral valve) and outlet (aorta). A more realistic

model is still under development at the time of writing this thesis.

Computational flow fields obtained from the simulation can provide an insight

into the nature of mixing, stasis and the efficiency of blood flow, factors which
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affect cardiovascular function. Computationally obtained flow fields also provide an

advantage over time-resolved phase-averaged flow fields obtained from cardiac MRI

as they have the ability to provide greater temporal and spatial resolution. This

further signifies the prospect of computational fluid dynamics as an additional tool

that clinicians may rely on to provide clinically relevant data.

In this chapter, an initial computational fluid dynamics model (CFD) of the left

ventricle is developed and described. The effect of the pumping action of the left

ventricular wall on blood flow is highlighted.

5.2 Methodology

To obtain the fluid domain, the 25 frames of the endocardial LV walls were obtained

for one blood-pumping cycle from the MRI (refer to Section 3.4). The motion of

the LV wall was derived from positional data obtained during the segmentation of

the LV endocardial borders, as described in Sections 3.2 and 3.4.

A grid dependency study was carried out for 5 different grids, whereby the num-

ber of grid elements were increased by a factor of 1.5 (8000, 12000, 18000, 27000 and

40500). Calculated flow velocities did not change as the number of cells were in-

creased from 27000 to 40500. In the range from 18000 to 27000, the changes in flow

features were minor. For more accurate results, 27000 cell numbers were chosen for

the 3D modelling. An unstructured grid using tetrahedral elements was generated

as seen in Figure 5.1. Outflow boundary conditions were applied to the face of the

outlet tract.

The geometry used for the CFD simulation is shown in Figure 5.1. The wall

of the LV was assigned to expand and contract as prescribed by the UDF created.

The diameters of the mitral valve inlet and aorta outlet were approximated to be

≈ 3 times smaller than the actual diameters to ensure the dynamic mesh routine

ran. The mitral valve inlet and aorta outlet were prescribed to remain stationary

i.e. not move or expand/contract. The top and bottom were assigned to deform

based on the subsequent movement of the wall. The dynamic mesh methods used
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in FLUENT included Smoothing and Remeshing. Remeshing occurs when the face

skewness exceeded 0.9. A spring-based smoothing method was used with a spring

constant factor of 0.05 and a convergence tolerance of 0.001. This method changes

cell edge sizes from timestep to timestep as these lengths move away from their

initial lengths during the mesh movement.

Figure 5.1: Patient-specific LV reconstructed with idealised atrial inlet and aorta
outlet. Unstructured mesh generated on surface with 27000 internal elements.

74 Chapter 5 A.M.Qadri



Computational Modelling of 4D Flow MRI Data

5.3 Results and Discussion

The simulation was carried out over the cardiac cycle with a time-step of 0.04ms.

This corresponds to 1000 timesteps per MRI phase interval. A non-dimensional time

parameter, t∗ was defined as:

t∗ =
t

T0

(5.1)

where T0 was the total time for one cardiac cycle. The varying geometry of the left

ventricle is shown in Figure 5.2 and 5.3.

Figure 5.2: Model geometry at t∗ = 0.
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(a) Model geometry at t∗ = 0.
(b) Model geometry at t∗ = 0.2.

(c) Model geometry at t∗ = 0.4. (d) Model geometry at t∗ = 0.6.

(e) Model geometry at t∗ = 0.8. (f) Model geometry at t∗ = 1.

Figure 5.3: Model geometries at various times through the cardiac cycle.
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As can be seen in the above figures, the volume and shape of the left ventricle

changed dramatically over time. This is quantified by Figures 5.4 & 5.5 which depict

the change in volume, and the flow of blood into and out of the left ventricle over

the cardiac cycle. Four distinct phases were seen. Phase 1 in Figure 5.4 (duration:

0.3s) corresponded to the ejection phase where the left ventricle contracts and expels

blood. Phase 2 or the rapid inflow phase (duration: 0.28s) was the phase where the

left ventricle expands, allowing blood to enter the chamber rapidly and fill it. This

was followed by Phase 3 or the diastasis phase i.e. where the left ventricle volume

did not change dramatically (duration: 0.32s). The cardiac cycle concluded with

Phase 4 where the atrial contraction caused blood to flow into the left ventricle and

the volume to increase (duration: 0.08s). The non-dimensional volume fraction, V ∗

was defined as:

V ∗ =
V

V0

(5.2)

where V0 was the maximum LV volume during the cardiac cycle.

Figure 5.4: Volume of computational left ventricle varying over cardiac cycle. Four
distinct phases are seen, (1) ventricular contraction, (2) rapid filling, (3) slow filling,
(4) final filling during atrial contraction.
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Broad agreement between the volumetric changes of the computational LV model

and real LV were seen. When the ejection fraction was calculated from the compu-

tational model, a value of 57% was obtained which was in close agreement with the

ejection fraction as obtained from cardiac MRI measurements of 60%. There were

some discrepancies in the computational model obtained. The volume of the left

ventricle reduced slightly and increased in Phase 3 as seen in Figure 5.4, whereas

the volume should remain mostly constant with a slight increase. Furthermore,

the duration of CFD ventricular rapid inflow was shorter than actual values. This

discrepancy could be attributed to some inaccuracies during the segmentation pro-

cess of the short-axis contours for the reconstruction of the ventricular geometry.

Some inaccuracy may also result from the use of linear interpolation between the

discrete MRI cardiac phases. Alternative interpolation schemes, such as a Bezier

cubic interpolation may be more accurate, and warrant further investigation. The

stair steps seen in Figure 5.5 may be due to the linear interpolation scheme used

between consecutive time slices.

Figure 5.5: Volumetric flow rate of computational left ventricle varying over cardiac
cycle. Four distinct phases are seen, (1) ventricular contraction, (2) rapid filling, (3)
slow filling, (4) final filling during atrial contraction.
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The internal flow dynamics near the end of the atrial contraction phase are shown

in Figures 5.6–5.9. It was observed that the fluid had enough momentum to reach

the base of the left ventricle. Furthermore, two recirculating regions were seen, one

on either side of the main jet. Recirculating regions are most often seen close to the

mitral and aortic valves when modeled comprehensively with a realistic inlet and

outlet and valve leaflets. Given the lack of complexity of the current model, these

vortices were not seen near the valves. Moreover, the inflow jet had a velocity of

approximately 1.34 ms−1. This was considerably higher than the normal range of

0.3 – 0.5 ms−1 as measured by cardiac MRI or Doppler velocity measurements. This

resulted from approximating the inlet diameter to be much smaller than the actual

diameter of the mitral valve inlet so that the dynamic mesh sequence would not fail

and the simulation would run.

Figure 5.6: Velocity Vectors at t∗ = 1.
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Figure 5.7: Velocity Vectors at t∗ = 1. A close-up view is provided to show the fluid
reaching the base and two recirculating regions, one on either side of the inlet jet.
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Figure 5.8: Velocity Vectors at t∗ = 1. A close-up is provided of the large recircu-
lating region.

Figure 5.9: Velocity Vectors at t∗ = 1. A close-up is provided of the small recircu-
lating region.

The results obtained are promising as they demonstrate that the dynamic mesh

routine works when applied to the left ventricle. However, further work must be

undertaken to model the dynamic motion of the atrial inlet and the aorta outlet.
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Alternatively, an immersed boundary method may be more appropriate to model

the contraction and expansion of the endocardium. Such an approach may be more

useful, as it can accommodate complex geometries, the motion of the ventricular

wall, and fluid-tissue interaction. It is also more preferable as it allows for large grid

deformation and is noted for its efficiency.

5.4 Summary

Post processing of short-axis images of the endocardium allows the geometric re-

construction of the left ventricle. We investigated the ventricular fluid dynamics by

developing an initial computational fluid dynamics model (CFD) of the left ventri-

cle. The effect of the pumping action of the left ventricular wall on blood flow was

highlighted. It was seen that the variation of volume in the computational model

agreed well with the realistic MRI variation of volume over the cardiac cycle. Fur-

thermore, the derived ejection fraction of 57% agreed closely with the value obtained

from cardiac MRI measurements of 60%. Intraventricular vortices were unable to

be investigated in relation to the progression of cardiac disease as this required a

comprehensive modelling of the mitral valve inlet, aorta outlet and valve leaflets.

Nevertheless, a major and minor recirculating region was seen close to the base of the

left ventricle on either side of the main inlet jet at the end of the atrial contraction

phase. The framework provided here, if further developed, may be used to investi-

gate vorticity and wall-shear stress as biosensitive markers for cardiac dysfunction.

Investigating ventricular fluid dynamics over a large group of healthy patients and

those with dsyfunctional hearts will provide further strength to the applicability of

these markers.
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Chapter 6

Conclusions and Recommended

Future Work

6.1 Conclusions

In this thesis, cardiac magnetic resonance imaging data is analyzed and processed to

generate residence time distributions and produce the time-varying computational

domains for computational fluid dynamics studies. The aim is to develop alternative

novel markers for cardiac dysfunction. Review of previous studies highlighted the

novelty of using residence time distributions in a cardiovascular setting, and how

computational markers such as vorticity and wall shear stress can act as robust

noninvasive tools for investigating cardiac dysfunction. These are further explicated

in the present thesis. The investigation comprises two broad studies, the conclusions

of which are discussed below.

6.1.1 Residence time distributions

Residence time distributions were developed through the use of particle position and

time data obtained from cardiac magnetic resonance data. By tracking individual

particles and calculating plane crossing times, a quantitative constant related to the

RTDs was developed. In the left ventricle, the RTD constant was compared to the
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left ventricular (LV) ejection fraction, global longitudinal strain (GLS) and T1 native

values, as these three measures are often used as markers of cardiac dysfunction.

A significant difference was seen in the LV RTDc between healthy subjects and

patients reporting cardiac dysfunction(1.2 ± 0.13 vs 2.2 ± 0.80, p < 0.001). There

was also a strong negative correlation between the LV RTDc and the LVEF (R =

−0.843, p < 0.001). Patients reporting cardiac dysfunction were found to have a

wider range of RTD constants than healthy patients. When the RTD constant was

compared to the GLS, a strong correlation coefficient of R = 0.7805 was seen, and

the LVEF and GLS reported a strong negative correlation (R = −0.926). A weak

correlation was seen between the RTD constant and native T1 time (R = 0.1517).

Overall, it can be concluded that the left ventricular residence time constant has the

capability of distinguishing normal from dysfunctional cardiac function. Moreover, it

provides potentially useful extra information by tracking the fate of a small marked

volume of blood entering through the atrium as a function of time. The clinical

value of this may become more pronounced by tracking the outcomes of patients

over time.

In the right ventricle, the RV RTDc was 1.5 ± 0.2 for the healthy patients com-

pared to 1.8±0.57 for the group with cardiac dysfunction. There was a modest neg-

ative correlation between the RVEF and the RV RTDc (R = −0.7113 , p < 0.001)

and a wider range of RTDc values were seen in the focus group with cardiac dys-

function when compared to the LV RTDc for the same group. This suggests that

relationship between the ejection fraction of the right ventricle and the RV RTDc

may differ from that of the left ventricle and the LV RTDc.

The right atrial RTDc differed moderately between healthy volunteers and the

sick patients (1.6 ± 0.4 compared to 1.9 ± 0.7). A weak negative correlation was

seen between the atrial RTDc and the LVEF (R = −0.4543). This may suggest that

the atrial RTDc may not be an appropriate marker of cardiac dysfunction, or that

dilated cardiomyopathy and its symptoms do not present themselves extensively in

the right atrium. Overall, the use of the residence time distribution constant may
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help clinicians in distinguishing normal from abnormal cardiovascular behaviour,

and serve as a early, novel marker during diagnostic evaluation that will improve

patient outcomes through early intervention.

6.1.2 Computational Fluid Dynamics

Intraventricular fluid dynamics were visualised by developing a computational model

of the left ventricle that expands and contracts over the course of the cardiac cycle.

The movement of the endocardial walls were prescribed by the use of user-defined

functions (UDFs) in ANSYS-FLUENT. We demonstrate that the change in volume

of the computational model was similar to the actual change in volume of the left

ventricle when specific phases were considered. Computationally obtained ejection

fractions agreed well with the measured ejection fraction (57% versus 60%). When

ventricular fluid mechanics were closely investigated, two recirculating regions were

seen close to the main inlet jet. However, the ability to visualise vortices that are

representative of cardiac dysfunction was impaired by the lack of complexity of the

geometric model and the numerous simplifications made. Although the inlet jet had

a higher velocity than what was generally expected (1.4 ms−1 versus 0.3 ms−1), this

was mainly due to an approximation of the inlet diameter to be smaller than the

actual inlet diameter to ensure the dynamic mesh routine was able to continue and

the simulation successfully completed.

Overall, the model explicated here has shown its utility in describing the mo-

tion of the left ventricular walls over the cardiac cycle. Further development, if

carried out, will allow novel markers such as the vorticity and wall shear stress to

be investigated in greater detail.

6.2 Recommendations for future work

Although the present study tries to make developments in this domain, some areas

remain under-explored.
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• The current study attempted to fit the fraction of particles remaining in the

chamber to a negative exponential distribution. Further analysis into the

relationship to other distributions, and the similarities of the cardiac model

to other reactor models such as the plug flow and laminar flow reactor models

will potentially characterise other chambers more accurately. Additionally, it

is beneficial to validate the RTD results obtained computationally with RTD

results obtained from artificial heart models. Alternative metrics can also

be further investigated, such as the ratio of number of particles exiting the

chamber to the number of particles seeded. Age matching the normal subjects

and patients with cardiac dysfunction would remove a limitation on the results

obtained.

• Improving the current technique so that the particle tracking planes can be

generated more stringently will increase the accuracy of the particle tracking

data output. Furthermore, investigating the link between residence time and

the formation of clots can provide useful insight into a patient’s risk factor for

stroke.

• Currently, manual segmentation of the LV on multiple images is the stan-

dard clinical practice. It is a time-consuming task, and prone to inter and

intra-observer variability. To ameliorate this, an automated method should be

developed (possibly based on artificial intelligence approaches). This would

also allow the accurate and rapid description of left ventricle cardiac function

from short-axis MR images without any user interaction.

• The regions where the left ventricle meets the atrium and mitral valve inlet

are complex to model, and consequently their motion during the cardiac cycle

is difficult to describe. The difficulty in modelling these regions appropriately

resulted in the degeneration of the mesh to have negative cell volumes in

the current study. Towards the very end of candidature, initial success was

obtained using a hybrid approach, detailed in Sections A.2 and A.2.1.
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Views of the mesh for the fluid domain are shown in Figure 6.1, with a lighted

surface model showing the ventricle/aorta/atrium flow domain during the ex-

pansion phase in Figure 6.2.

Chapter 6 A.M.Qadri 87



Computational Modelling of 4D Flow MRI Data

X

Y

Z

X Y

Z

Figure 6.1: Surface mesh of fluid domain for a typical time-slice.
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Figure 6.2: Lighted surface model of the ventricle/aorta/ventricle during the ven-
tricle expansion phase.

Images of the blood flow in the computational domain is shown in Figure 6.3.

The images correspond to the velocity field on a plane cutting through the

centres of the aortic and left atrium inlet/outlets. The colours indicate vertical

(z) velocity. The legend is shown on the images in Figure 6.3. They show the

velocity fields at maximum inflow and outflow. Evidently blood enters through

the mitral valve at approximately 400 mm/sec and exits through the aorta at

a speed of more than 500 mm/sec. Full results of the model developed for a

single patient are shown in Section A.3.

Chapter 6 A.M.Qadri 89



Computational Modelling of 4D Flow MRI Data

(a)

(b)

Figure 6.3: Zoomed out images of the velocity fields corresponding to time-slice 12
(maximum inflow) and (b) time-slice 4 (maximum outflow).
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Further development of this model to include the motion of the valve leaflets

is warranted. Moreover, comparing results for different patients and to inves-

tigate the potentially different blood filling and emptying patterns between

different patient groups to assess the potential clinical implications of this ap-

proach would be useful. Residence time distributions can also be developed

from these results. In the future, this would allow potential markers to be

identified and compared between healthy and sick patients.
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Appendix A

CFD modelling of the blood flow

through the left ventricle

A.1 Introduction

As discussed in the methodology chapter, a variety of different approaches were tried

to implement a dynamically changing mesh suitable for the CFD flow calculation

within the framework provided by ANSYS-FLUENT. Unfortunately, this proved

to be more difficult than originally hoped. In particular, the dynamic mesh rou-

tines available within FLUENT did not cope well with the considerable distortions

involving both translation and compression/expansion. Typically, this resulted in

the breakdown of the moving mesh within a small number of timesteps (typically

∼ O(100)). This generally manifested as the development of negative cell volumes

that led to the flow calculation diverging. FLUENT allows two main approaches

for mesh movement – a spring based method, which changes cell edge sizes from

timestep to timestep as these lengths move away from their initial lengths, and a

diffusion based approach, which uses a diffusion analogy to move mesh points dur-

ing timestepping. The latter approach appeared more successful, but typically still

became unstable after a reasonably short integration time. FLUENT also imple-

ments remeshing as part of the dynamic mesh process, but this also seemed not
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to work well for this case. Other significant complicating factors were: the need to

treat the inflow and outflow through separate vessels (aorta and atrium) that needed

to be effectively treated separately but maintaining consistency with the ventricle

movement; the need to maintain a reasonable mesh point distribution, especially to

resolve the flow near the vessel walls; and approximating the effect of the flow of

the heart valves (aortic and mitral valves). Preliminary success was achieved with

the following hybrid approach.

A.2 Mesh generation

To have greater control in maintaining mesh point distribution for resolving the thin

boundary layers, an alternative approach was pursued. This was different from the

approaches described previously i.e. Delaunay triangulation of the surface mesh,

or using SolidWorks for surface generation with ANSYS-FLUENT meshing. These

previously described approaches may be useful in the future.

Centroids of each short-axis contour of the ventricle were found. Raw contour

points were interpolated onto equi-spaced points at incremental angles (typically 1

degree) relative to the centroid of the contour. This was carried out for the complete

stack of short-axis contours (15 contours). Points with similar angle relative to the

centroid were used in a cubic spline interpolation scheme to add points that defined

intermediate contours. This increased the resolution in the z (long-axis) direction.

Centroid points were also interpolated.

Next, a surface mesh was constructed for each contour. To maintain an appro-

priate resolution where the ventricular model branches into the left atrium and the

aorta, a cross-sectional mesh was used and is shown in Figure A.1. The schematic

shows the stages in constructing this cross-sectional mesh by mapping circular

meshes. This permits excellent mesh point concentration towards the walls, which

is controlled by a compression parameter, and a natural split as the ventricular

domain cross-sectional topology changes from the ventricle cross-sections to the

aorta/atrium cross-sections. A closer view of the cross-sectional mesh is provided
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in Figure A.2 that shows an the increased mesh point concentration towards the

boundaries.

Figure A.1: Stages in generating intermediate short-axis cross-sectional meshes used
to build the 3D mesh.

After this stage, the resulting cross-sectional meshes were stacked and used to

form a three-dimensional mesh built of hexahedral elements. This mesh was con-

verted into FLUENT file format msh so that it could be read into FLUENT. This

process was carried out for all time slices across the cardiac cycle.

Views of the mesh for the fluid domain are shown in Figure A.3, with a lighted

surface model showing the ventricle/aorta/atrium flow domain during the expansion

phase in Figure A.4.
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Figure A.2: Zoomed in view of cross-sectional mesh through the ventricle showing
increased concentration towards the walls.
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Figure A.3: Surface mesh of fluid domain for a typical time-slice.
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Figure A.4: Lighted surface model of the ventricle/aorta/atrium during the ventricle
expansion phase.

To model the connection of the aorta and the left atrium to the top of the

ventricle, the top contour (where splitting happens) was directly divided in half.

The upper half splits into the left atrium, whereas the lower half splits into the

aorta. This was done by firstly rotating the short axis contours so that the transition

into the aorta/atrium occurred approximately along the split. The process used is

outlined in Figure A.5.

For this model, the mesh consists of 4992 quadrilateral cells on each cross-

sectional slice. These were connected to form the 3D hexahedral mesh of the

ventricle/atrium/aorta by 70 slices in the z (long-axis) direction. Therefore, the

3D computational mesh contained approximately 350K cells, as a first attempt to

resolve the blood flow. Whilst this may likely be insufficient to fully resolve the

internal blood flow, it should provide a reasonable first approximation.

Using a process that moves the mesh points as a substep of each timestep through
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Figure A.5: Treatment of the bifurcation between the ventricle, and atrium and
aorta. Initially, contours are rotated so that there is an approximately horizontal
line between the aorta and the atrium. The top section forms the exit of the atrium
into the left ventricle, and the bottom section defines the entry into the aorta. The
details of the valve geometries are not included in this version of the model.

FLUENT’s dynamic mesh routine is computationally expensive. Unoptimised initial

simulations over the full cardiac cycle took approximately 8 hours on a 12 core

processor. However, the mesh generation is parameterised; thereby making it easier

to generate a more refined mesh and undertaking a full resolution study. This will

occur as part of the project continuing in the future.

A.2.1 Dynamic mesh considerations

Movement of the mesh during the simulation was not completely stable, and it was

prone to fail after integrating through a few of the 25 time frames. Occasionally,

it could be worse than that and not even survive the 50 timestep integration be-

tween one time slice and the next. To avoid this problem, a new, undistorted mesh

generated for the particular time using the process described above was routinely

read in. The velocity field from the current mesh was interpolated to the new mesh.

Fortunately, FLUENT has built in interpolation procedures that allow this process

to be semi-automated. Once a new mesh had been read in and the velocity field

initialised, the integration proceeded for another half a time-slice period – typically

1/50th of a cardiac cycle – before repeating the process again. This procedure was a

98 Chapter A A.M.Qadri



Computational Modelling of 4D Flow MRI Data

little messy in practice, because the boundaries were renamed when their boundary

type was changed, so initial testing was required to turn the process into a working

procedure. At present, a timestep of 0.0008 cardiac periods is chosen for the com-

putational timestep – giving 12500 timesteps per cycle. This is likely to be sufficient

to resolve the flow in time.

To move the surface points of the left ventricle, aorta and left atrium, the

dynamic mesh model requires user-supplied functions. These three routines were

constructed by matching each point supplied by FLUENT during its dynamic re-

meshing as part of each timestep with where that point should be given the required

mesh movement. This required interpolation from the surface points for each times-

lice, in time, long-axis position and angular position from the centroid. Given that

the time slices were at fixed time intervals, as were the points in z, interpolation

in these two directions was easy and relatively computationally cheap. To find

the matching point in the azimuthal direction was more complicated. After some

testing, the method used was a half interval search – a match was assumed if the sup-

plied and tested points matched to within a pre-supplied tolerance. Whilst locating

how the supplied surface mesh point moved to a new position during the timestep

was slightly computationally expensive, the dynamic mesh movement process that

FLUENT used to move internal points was much more time intensive. Note that

quadratic interpolation was used in time using the three closest timeslices. Cubic

spline interpolation was used to compute the positions of the surface mesh points in

the long-axis direction. This was supplied to the user-supplied mesh point movement

functions.

To summarise, during a timestep over which the flow solution was updated, each

surface point on the left venticle, aorta and left atrium was moved to a new position

through three user-supplied functions. Once this was done, then FLUENT moved

the internal points of the mesh based on its diffusion dynamic meshing approach,

as part of the update during a timestep. The flow solution was calculated based on

the iterative unsteady SIMPLE algorithm, which iterates from the start to the end
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of the timestep until the solution converges at the next timestep. Convergence was

tested by determining how well each of the discretised governing (3 momentum + 1

continuity) equations were satisfied by the current solutions in a relative L2 norm

sense (refer to the FLUENT reference manual for details). For the current model,

relative convergence criteria of 0.0001 was chosen for each equation. Although this

was an order of magnitude below the default, it was generally sufficient for reason-

able time-integration convergence. This should be tested/verified in future model

development. Typically 10-20 (SIMPLE) iterations were required for each timestep

to satisfy the convergence criteria, although it occassionally required more iterations

after the fluid velocity was interpolated from one mesh to the next.

A.2.2 Modelling the effect of the Aortic and Mitral valves

The current implementation did not really make an attempt to model the complex

flow associated with the dynamic geometry of the left ventricle heart valves. The

model was simplified considerably by approximating the process through inlet/outlet

pressure boundary conditions at the top of the aortic and atrial domain sections of

the mesh. Ideally, these sections would be longer; in particular, the aortic entry

was quite short and did not include any part of the aortic arch. This was because,

the sections of the aorta and left atrium were generated based on only two short-

axis contours beyond the ventricle/aorta/atrium branching cross-section. Future

developments would treat this by, at least, adding on sections to the top of the

domain to make both the inlet and outlet longer.

A.3 Flow calculation

The approximate variation of left ventricular volume including the short sections

of the aorta and left atrium is shown in Figure A.6(a). The volume was measured

by adding the approximate volumes of each computational cell in the fluid domain.

The volume that included solely the left ventricle is shown in Figure A.6(b). The
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minimum and maximum LV volume achieved over the cycle was approximately

160,000 and 320,000 mm3, giving an ejection fraction of ∼ 50%.
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Figure A.6: Volume variation of the left ventricle over a cardiac cycle. (a) includes
the sections of the aorta and left atrium; (b) left ventricle only. The first stage is
a contraction stage that results in blood ejection into the aorta. This is followed
by an expansion phase when the left ventricle fills, after which the expansion slows
down prior to the next contraction.

The simulation began from the mesh corresponding to time slice 7, which was

at the minimum overall volume. This was approximately the beginning of the ex-

pansion phase i.e. where blood enters from the left atrium into the left ventricle

as the heart muscle relaxes. During this stage, the aortic valve should be closed.
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Hence for this part of the simulation, a no-slip boundary condition was applied at

the top of the aortic section while the inlet through the atrium was set to an inlet

pressure boundary condition. This allowed flow into the domain driven by the ex-

pansion of the left ventricle. The aorta, left atrium and left ventricle surface were

defined through user-supplied functions, enabling these surfaces to move from one

timestep to the next. At the top and bottom boundaries, deforming wall boundary

conditions were used. These required the specification of the plane defining each

of these boundaries. The movement of points on these surfaces was controlled by

FLUENT’s diffusion dynamic mesh model. Motion was restricted to the specified

planes. At this stage of the model development, it was assumed that there was no

expansion along the long-axis, which was false, and should be included as the model

is developed further.

The governing equations were integrated forward in time for half a time-slice

period (1/50th of a cardiac cycle). At this stage, the velocity and pressure fields

were saved and a new mesh replaced the mesh that had been distorted as part of the

dynamic meshing procedure. The velocity and pressure fields were then interpolated

onto the new mesh, boundary conditions were checked and the calculation continued.

This process continued until the contraction phase of the cycle began at time-slice

25. At this point in the cycle, the pressure inlet boundary condition at the top of

the left atrium subdomain was changed to a no-slip condition (sealing the mitral

valve) and the no-slip boundary at the top of the aorta subdomain was switched

to a pressure outlet condition. This allowed blood to exit through the aorta as the

heart muscle underwent a rapid contraction phase. After the inlet/outlet boundary

conditions were reset, the calculation proceeded as before. After again reaching

time-slice 7 of the cycle, the boundary conditions were once again reset back to the

original conditions, and the process repeated.

Images of the blood flow over a cycle are shown in figure A.7. As indicated,

the initial time corresponded to time-slice 7. The velocity fields shown are between

time-slices, so that the first image is at time-slice 7.5. The images correspond to the
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velocity field on a plane cutting through the centres of the aortic and left atrium

inlet/outlets. The colours indicate vertical (z) velocity. The legend is shown on the

images in Figure A.8. They show the velocity fields at maximum inflow and outflow.

It appears that blood enters through the mitral valve at approximately 400 mm/sec

and exits through the aorta at a speed of more than 500 mm/sec. These values

are close to agreeing with representative velocities obtained from cardiac MRI and

Doppler measurements (0.3 – 0.5 m/s). At the phase shown in Figure A.8(b), the

outflow through the exit plane was reasonably uniform; however, this was not so

at later times (see images 24 and 25 of figure A.7). This may be an effect of the

reduced outlet length and warrants further investigation.

Overall, after entering the left ventricle, the blood appeared to undergo a rea-

sonable amount of mixing before exiting. This was indicated by reasonable flow

motion over most of the left ventricle in the long phase prior to ejection. This can

be seen through zoomed in views of the velocity vectors. In particular, there does

not appear to be any dead zones, where the blood recirculates or pools, as might

possibly be the case for a dysfunctional heart, with a low ejection fraction. Clearly,

comparing the results obtained here with a heart from the group of patients with

cardiac dysfunction would be useful but has not yet been done due to lack of time.
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Figure A.7: Variation of blood flow through the left ventricle during a cardiac cycle.
The velocity vectors are shown in the centre plane passing through the aorta/left
atrium as described in the text. The lighted translucent surfaces show the surface
of the fluid domain. Images correspond to time-slices 7.5, 8.5, 9.5, etc, left to right
and then top to bottom.
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(a)

(b)

Figure A.8: Zoomed out images of the velocity fields corresponding to time-slice 12
(maximum inflow) and (b) time-slice 4 (maximum outflow).
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