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Abstract 
 

Herbicides are used globally in agricultural systems in order to reduce competition of desired 

crops with unwanted weed and other plant life, in order to increase yields. As the world 

population grows and there is a need to increase agricultural production in order to feed this 

growing population, reliance on these chemicals is likely to increase. However, there are 

concern around both the environmental and health impacts of herbicide usage, along with the 

possibility of persistence leading to herbicide injury in later rotations, and thus economic impact 

for agronomic land holders.  

One of the major processes controlling herbicide mobility and bioavailabilty, and thus leaching 

and persistence, is soil adsorption. As such, a greater understanding of the processes driving 

adsorption would allow for improvements in management strategies for herbicide usage. 

Similarly, adsorption can vary greatly between soils, leading to a need for more spatially explicit 

management strategies than the climatic regions used currently in herbicide labelling. However, 

determining adsorption  behaviour in a given soil requires expensive and time consuming HPLC 

or 14C labelling experiments. As such, a predictive model of adsorption based on more routine 

or rapid agronomic tests would allow for a wider adoption of this spatially explicit management. 

Glyphosate is the most widely used herbicide in both Australia and globally. While it has 

traditionally been considered of low ecological impact due to its rapid breakdown rate and high 

adsorption capacity in soil, recent studies have shown that the frequency and dosage rate of 

glyphosate usage can outweigh the breakdown rate, leading to longer persistence. This makes 

it an ideal candidate for adsorption mechanism exploration, and predictive modelling. 

The first four experimental chapters of this thesis (Chapters 2-5) explore the development of 

predictive models for glyphosate adsorption in soil, and the mechanisms driving this process. A 

predictive model based on routinely measured soil physico-chemical properties was developed 
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using a database of 90 soils with widely varying properties and verified using an additional set 

of 7 external soil samples, not used for the intial model development (Chapter 2). This led to a 

model using only pH and phosphorus buffering index to predict adsorption behaviour (in the 

form of Freundlich constants), with an R2 of 0.967 (for Kf), and an average prediction error of 

26% across Freundlich constants (both Kf and nf) of the validation set. A second model was built 

using a data base of the same size (n = 90), but with MIR spectra as the criteria for prediction, 

and model validation done by venetian blinds methodology, rather than an external validation 

set (Chapter 3). This led to a final model with a cross-validated R2 of 0.839 and a cross-validated 

real mean squared error (RMSECV) of 17.338 for Kf predictions. 

In order to explore the adsorption/desorption mechanisms of glyphosate from individual 

components of soil, 6 soil minerals were chosen, and a series of adsorption experiments 

conducted (Chapter 4). This led to a comparison of the Langmuir and Frumkin-Fowler-

Guggenheim isotherms and the physical information that can be drawn from them. High levels 

of lateral interactions between the glyphosate adsorbate molecules were seen with increasing 

pH, along with a decreased attraction to the adsorbate surface, particularly for variable charge 

metal oxides. Following this, the desorption of glyphosate from these surfaces under variety of 

conditions, and in particular, the competition of glyphosate and phosphate ions, was tested 

(Chapter 5). This showed that glyphosate likely binds to the surface of these minerals at 2 

distinct energy levels, the lower level of which may be disrupted by columbic screening due to 

salt solutions. This suggests a bilayer adsorption system, or significant edge effects due to 

surface topology. Along with this, phosphate and glyphosate ions adsorb via the same binding 

sites, leading to significant competition. However, phosphate ions will preferentially bind to 

empty sites prior to removing pre-adsorbed glyphosate. This has significant implications for the 

release of glyphosate in soil following phosphorus fertilisation, and thus the possibility of 

herbicide injury. 
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The final section experimental chapter of this thesis deals with the development of a test for 

“plant-available” herbicide in soil using diffusive gradient thin film (DGT) technology (Chapter 

6). Most current forms of herbicide content testing is based on total extraction of the soil, and 

does not given information on the amount of herbicide available for plant uptake. The benefits 

of DGT sampling include the passive nature, which mimics plant root uptake, and the sheltered 

adsorbent which prevents degradation of the analyte post-sampling. Imazamox was chosen as 

the test herbicide for the development of this method, due its long halflife in soil (106-295 days 

under laboratory conditions). The uptake of imazamox from four agricultural soils by DGT 

samplers was compared to uptake by two varieties of rapeseed (one sensitive and one resistant 

to imazamox). This showed DGT uptake to be a better predictor of plant uptake than any 

individual soil property, lending credence to DGT as a measure of plant-available herbicide in 

soil. 
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1. Introduction 

1.1 Herbicide Usage and Impacts 

Pesticides are used frequently in modern agriculture, with a specific pesticide chosen to leave 

the desired crop unaffected, while improving productivity by preventing crop damage by insects, 

competition from weeds, and diseases caused by various bacteria and fungi1-2. Herbicides are a 

class of pesticide used to kill or prevent the growth of one or several classes of plants.  The Weed 

Science Society of America currently recognises 29 classes of herbicides3, whereas Croplife 

Australia recognises 194. Both divide these classes by their chemistry and mode of action5 (eg. 

synthetic auxins, mitosis inhibitors). Recently, the use of herbicide resistant crops paired with 

non-selective herbicides (such as glyphosate) has been more frequently employed, particularly 

where weed resistance to herbicides has become prevalent. 

Because of the increase in herbicide use worldwide, the potential impacts of herbicides on the 

surrounding environment has been of increasing concern, with studies on impacts of leaching 

into ground water6, runoff from highways7, toxicity to wildlife8, soil health effects9-10 and even 

appearance/transport of herbicides in the atmosphere11. Human health has also been a high 

priority, with significant investment of resources being put into the study of herbicide residues 

in foods and any impacts these may have on consumers12, as well as impacts on the health of 

farmers caused by exposure during the application of herbicides13-14. 

The need to assess and mitigate potential impacts has led to the development of quick tests for 

herbicides to rapidly assess any contamination of food or animal feedstock, as well as soil 

contamination prior to the planting of crops. Further to these tests, research into the behaviour 

of herbicides in soil, particularly sorption15 and degradation16, have been undertaken to develop 

better herbicide fate models and management methods to mitigate any damage the herbicides 

may cause to the environment or future agricultural pursuits. 
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Of major interest in this thesis are the herbicides glyphosate and imazamox, the structures of 

which can be seen in Figure 1. The reason for the focus on these two chemicals is due to their 

common usage, and potential for persistence and leaching after application. 

Glyphosate (N-(phosphonomethyl)glycine), sold most commonly under the tradename 

RoundUpTM, is the most widely used herbicide both in Australia and globally, with 125,384 

tonnes sold in the US alone in 201417. Glyphosate is a systemic 5-enolpyruvylshikimate-3-

phosphate synthase enzyme (EPSPS) inhibitor contact herbicide, that is applied post emergence 

for control of broad leaf flora. Its popularity is primarily derived from its low cost and broad 

spectrum (non-selective) nature, and the high availability of glyphosate resistant crop varieties17. 

While glyphosate has previously been considered to be have a relatively low ecological risk 

profile18, owing to its high levels of adsorption leading to low mobility19, rapid breakdown rate, 

and low toxicity to non-target organisms10. However, recent studies have shown glyphosate to 

be “pseudo-persistent” due to the rate of application outweighing the rate of breakdown, 

leading to accumulation in the soil20. This is particularly of concern due to recent work showing 

the possibility of release of previously adsorbed residues of glyphosate upon phosphorus 

fertilisation21. This is a concern both for increased risk of herbicide injury in later crop rotations22, 

but also for movement of glyphosate off-site23 or non-target effects. Glyphosate has been 

detected in several environmental compartments including waterways6, soil24, dust25, 

sediment26 and rainwater27. Glyphosate resistant crops are widely adopted due to glyphosate’s 

broad spectrum nature, and the general lack of drawbacks of glyphosate resistant crops when 

compared to non-resistant varieties in terms of similar nutrient uptake and disease resistance28. 

However, recent works have shown that aminomethylphosphonic acid (AMPA), the main 

degradation product of glyphosate, has phytotoxic properties29, and may even lead to herbicide 

injury in glyphosate resistant crops30. 
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Figure 1: Structure of glyphosate (left) and imazamox (right) 

 While the bulk of the work presented in this thesis focuses on the glyphosate, there was an 

additional focus on the herbicide imazamox (2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin2-

yl]-5-methoxymethylnicotinic acid). Commonly sold under the tradename Raptor®, imazamox  

is a systemic group 2 (Acetolactate Synthase inhibitor) herbicide that may be applied either pre- 

or post- emergence for the control of broad leaf weeds in several cropping systems31-32. It may 

exist as a zwitterion in the soil, and has pKa’s of 2.3, 3.3 and 10.833. It has been shown to have a 

relatively long persistence, producing herbicide injury in crops planted one year post application 

in some sites34, and is metabolised slower under acidic conditions35. Imazamox may also form 

complexes with metal ions such as Fe3+ 36, resulting in increased adsorption and thus persistence. 

It was developed by BASF and is part of the “Clearfield” system, which partners imidazole 

herbicides with crops which have been bred specifically to have resistance to these herbicides. 

Imazamox is degraded aerobically in the soil, with no known herbicidal metabolites produced37. 

It may also undergo photo degradation, through cleavage of the C-O, C-N and C=N bonds38.  

1.2 Adsorption 

1.2.1 Adsorption Isotherms. Use and Differences 

Adsorption is the phenomena by which a molecule (adsorbate) binds to the surface of a 

secondary material (adsorbent). The mechanism of this adsorption and level to which it occurs 

has impacts on solubility of compound, and thus its concentration. In soil science in particular, 

this translates to soil pore water concentration, and thus availability of herbicide for plant 

uptake and microbial metabolism. Isotherms are a common way of describing adsorption in a 
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given bulk system. While they do not necessarily describe the mechanism of this binding itself, 

depending on the isotherm, they can give information on the process at an individual molecular 

scale. To develop an isotherm, the target adsorbate is plotted as a function of equilibrium 

solution concentration. Data is then fitted against  a known isotherm equation, such as the 

Freundlich isotherm39. Isotherm equations are chosen based on the assumptions involved, and 

theoretical knowledge of the system. Some isotherms are empirical (Freundlich), whereas 

others are based on a solid theoretical footing (e.g. Volmer40, Langmuir41). For example, based 

on the thermodynamic premises in its derivation, a Langmuir isotherm assumes a smooth 

homogeneous surface, for a rough surface, a Freundlich may provide a better fit, despite 

providing no physical information. 

The three adsorption isotherm equations explored in this thesis are the Freundlich, Langmuir 

and Frumkin-Fowler-Guggenheim (FFG)42-43 isotherms. A Freundlich isotherm takes the form of 

Equation (1), where q  is the concentration of adsorbate adsorbed to the surface (µg g-1), C is 

the concentration of adsorbate in solution (µg ml-1) Kf and nf are arbitrary fitting variables, 

determined based on the data. While interlinked, the main role of Kf is to describe how readily 

the adsorbate will bind to the surface, an empirical measure of the affinity of the adsorbate for 

the interface and nf describes the saturation point of the system (though due to the nature of 

the equation, a true “saturation” point does not exist). Due to the arbitrary nature of Kf and nf, 

no physical information about the system can be extrapolated from this fitting, although it is a 

useful way of describing and comparing adsorption data under variable conditions. The 

empirical nature of the Freundlich equation makes it useful to describe adsorption on poorly 

defined rough and heterogeneous surfaces, making it popular in soil science. 

𝑞 = 𝐾𝑓𝐶
1

𝑛𝑓  (1) 

𝜃

1 −  𝜃
 = 𝐾𝐿𝐶 (2) 
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𝜃

1 −  𝜃
 𝑒𝑏𝜃 = 𝐾𝐹𝑟𝐶 (3) 

𝜃 =  
𝑞

𝑞𝑚𝑎𝑥
 (4)  

𝐾𝑎𝑑𝑠 =  𝑒
∆𝐺
𝑅𝑇 (5) 

Langmuir isotherms are given by Equation (2), where Ө is described by Equation (4), qmax is the 

maximum adsorbed adsorbate concentration possible (µg g-1), or saturation point, and KL is the 

Langmuir constant, which is defined by the Gibbs energy of adsorption (as given in Equation (5), 

where T is temperature and R is the ideal gas constant) and  describes how stronglyy the 

adsorbate binds to the surface. Fitting of a Langmuir isotherm gives far more information about 

the chemistry of the system, including the saturation concentration of the surface. KL may also 

be used to calculate the Gibbs Free Energy of adsorption in the system. However, it is not 

without its drawbacks, as it assumes a smooth, homogeneous surface, and a constant energy of 

adsorption, irrespective of the fractional occupancy of the surface. It also assumes qmax to be 

entirely spatially defined, which suggest that as the environment in which the adsorption occurs 

changes, only the energy of adsorption should change, and that the final saturation level should 

remain constant. 

To overcome some of these drawbacks, the Frumkin –Fowler-Guggenheim isotherm equation 

was developed42-43, and is described by Equation (3). The addition of the exponential term allows 

for the lateral interaction of adsorbate molecules, and charge – charge interactions between 

the adsorbate and adsorbent surface (these interactions are described by the b term). This 

allows for a changing energy of adsorption as the surface is filled. This means that while qmax is 

still spatially defined, and will remain constant regardless of the environment in which the 

adsorption occurs, the “effective” maximum adsorption can change, as the energy of adsorption 

can increase to the point where adsorption becomes thermodynamically unfavourable unless 

the chemical potential (approximately equivalent to concentration of adsorbate in the system) 
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reaches extreme levels. This allows for much more physicochemical information about the 

system to be extracted from the fitting of results than can be determined from the other two 

isotherms explored here. It should be noted that all of the isotherms here assume single layer 

adsorption, and do not account for possible double layer effects. 

Isotherms are generally fitted to experimental data through the linearization of the appropriate 

isotherm equation (with the same transformations being performed to the experimental data), 

followed by a linear regression to determine the fitting constants. For example, Equation (1) can 

be linearised to Equation (6) by taking the natural logarithm of each side. Thus the natural 

logarithm of experimental adsorbed and solution concentration can be taken, and a linear 

regression performed (with adsorbed concentration as the independent variable and solution 

concentration as the dependent variable). The slope of this regression gives the value for one 

on nf, and the exponent of the intercept-on-slope gives Kf 

log 𝑞 =  log 𝐾𝑓 + 
1

𝑛𝑓
log 𝐶  (6) 

1.2.2 Glyphosate Adsorption Behaviour 

Biological exposure to glyphosate is regulated by its persistence, mobility and bioavailability. 

These factors are, in turn, largely regulated by its adsorption to soil. Sorption can moderate the 

efficacy of glyphosate by reducing its uptake by plants44, as well as influencing pathways for 

mobilization through the soil45-46, including its movement to waterways during a flooding event47. 

Sorption is also known to significantly affect the persistence of glyphosate in soil48, altering how 

readily it is available for microbial metabolism or co-metabolism.  

Glyphosate exists as a zwitterion in soil, with a negatively charged phosphonic acid and 

carboxylic acid group and a positively charged amine group, depending on the pH of the soil49. 

It primarily binds to amorphous soil minerals such as iron and aluminium oxides and 

hydroxides50. Soil pH and mineralogy therefore have a significant effect on binding, with 
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adsorption decreasing as pH increases51. This is mainly due to the change in surface charge on 

soil minerals, rather than the change in ionic form of glyphosate (pKa = 2, 2.6, 5.8 and 10.8, 

occurring due to protonation and deprotonation of the phosphate, amine and carboxylic acid 

groups, respectively), as glyphosate is negatively charged at pH above 2.649. Most metal oxides 

found in soil are positively charged at environmentally relevant pH, however, as pH increases, 

negatively charged sites may develop52, this would suggest an attraction of glyphosate to these 

surfaces at low pH (acidic soils), reducing as pH increases53. The binding of glyphosate to metal 

oxide surfaces has been shown to occur predominantly through the phosphonic acid functional 

group of the molecule54. Based on this binding through the phosphate head group, it might  be 

expected that glyphosate shows a high affinity for metal oxides, similar to phosphate55-56. 

 Due to the nature of glyphosate adsorption, it seems likely that competition may occur between 

glyphosate and inorganic phosphate57-58, including the remobilisation of glyphosate from 

biochar (carbonized organic matter)59. In other studies the rate of desorption of glyphosate from 

goethite was found to be independent of the competing entering ligand60, disputing the 

competitive mechanism. Regardless, multiple studies have shown a risk of soil borne residues 

of glyphosate being re-released by the addition of P fertiliser, increasing the risk of herbicide 

injury in rotational crops in some soil types21-22, 61.  

Due to the general paucity of information on the mechanisms in which glyphosate adsorbs to 

the various soil minerals, the work in this thesis study aims to develop an understanding of the 

sorption behaviour and mechanism as it relates to individual components in the soil, such as 

metal oxides and fixed charge clay minerals. Mechanistic understanding of adsorption would 

allow for the improvement of regulatory procedures, and an understanding of the impact that 

soil management, such as liming (to increase pH of acidic soils) and “claying” (clay applied to 

sandy soils to improve a range of structural and chemical properties), may have on herbicide 

behaviour in the soil. This information would also be essential as inputs for highly successful 
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predictive physicochemical models of the behaviour and fate of organic “contaminants” like 

glyphosate in soils, such as sophisticated models developed by the Dutch soil science school, 

including ORCHESTRA62.  

1.3 Predictive Modelling of Glyphosate Adsorption Behaviour 

1.3.1 Pedotransfer Rules Using Physico-chemical Properties 

Despite the factors influencing glyphosate sorption being relatively well-known63, there have 

been few attempts to formalise rapid, inexpensive, and easy to use models for estimating 

glyphosate sorption based on soil properties as an alternative to constructing soil-specific 

isotherms via batch or column sorption studies (Table 1). Paradelo et al. (2015) proposed a 

multiple linear regression model based on soil characteristics as predictors providing the best 

fit for linear adsorption of glyphosate (Kd). Glyphosate sorption was shown to increase with 

increasing clay and iron content, but to decrease with increasing pH, electrical conductivity (EC) 

and P levels. Although pH and clay content are often the best predictors of glyphosate sorption, 

there is often variation from study to study, due in part to the limited number of soils examined 

(Table 1). 
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Table 1: Overview of previous adsorption predictive modelling 

Reference # Soil 

Samples 

Parameters 

Predicted 

Type of 

Model 

R2 Predictors 

included in best 

model c 

Dollinger et al. 

(2015)64 

19-51a Kd, Kf, nf MLR Kd: 0.48 

Kf: 0.52 

nf: 0.62 

Kd: CEC, Clay 

Kf: CEC, Clay, OC 

nf: Clay, pH 

Paradelo et al. 

(2015)65 

114 (2 

fields) 

Kd MLR 0.70 (4 

variables) 

pH, EC, Clay, Sand 

(both fields) 

Sidoli et al. 

(2016)66 

17 Kf b MLR, 

exponential 

0.94 (4 

variables) 

pH, Olsen P67, Alox, 

Feox 

De Geronimo et 

al. (2018)68 

12 Kf MLR 0.994 (7 

variables) 

Clay, pH, Bray P69, 

Alin, OC, Sand, Feox 

a Depending on predicted parameter and available predictors 

b calculated using average nf value of all soils 

c Feox and Alox = oxalate extractable iron and aluminium 

dCEC = cation exchange capacity, EC = electrical conductivity, P = phosphorus, OC = organic carbon, MLR = Multiple 

linear Regression  

Kd is the slope of a linear fit of adsorption data, Kf and nf are fitting variables of adsorption derived from the 

Freundlich equation 

 

Furthermore, as acknowledged by Paradelo et al. (2015), non-linear relationships between 

predictor variables and sorption may better describe interactions (e.g. the change in surface 

charge on clay minerals at high pH). More recently, Sidoli et al. (2016) built on the previous work 

from Paradelo et al. (2015) by increasing the sample size from 2 to 17 contrasting sites, fitting a 

variety of linear and nonlinear regressions to a Freundlich isotherm derived sorption value (Kf) 

and evaluating the relevance of different measures of pH (i.e. in water, KCl and CaCl2). However, 

despite the increased number of different soil types, the use of a single sample from each site 

resulted in a total of only 17 data points. Sidoli et al. (2016) also restricted their modelling 

framework to linear and exponential relationships between the dependent and independent 
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variables, which may not adequately account for certain interactions involved in glyphosate 

binding. De Geronimo et al. (2018) conducted similar modelling using 12 Argentinian soils, 

finding seven variables to be important for predicting glyphosate adsorption (Table 1). While 

these soils had greater variation than those in the previous two studies, the relatively small 

number of data points and lack of alkaline soils limits the broader applicability of the model. 

Furthermore, despite the clear link between P and glyphosate binding51, 70-71, no previous work 

has examined whether a correlation exists between glyphosate sorption and routinely collected 

measures of the binding affinity for P, such as the P buffering index (PBI). 

1.3.2 MIR Modelling 

Mid-infrared reflectance (MIR) spectroscopy is a cheap, rapid, holistic technique that can bypass 

the need for time consuming, sometimes expensive wet chemical techniques, provided 

adequate calibration is conducted. MIR spectroscopy is based on the adsorbance of infrared 

light by molecular bonds, in the form of vibrational and rotational energies. As such, the spectra 

are impacted not only by the atomic makeup and connectivity of the substrate, but also by the 

molecular arrangement and physical properties, such as surface topology, which may impact 

intramolecular bonding and thus vibrational/rotational energy of the bonds. This allows MIR to 

provide significant information about the substrate through the use of multivariate modelling72. 

Common techniques for calibrating a MIR model from a sample data set include linear 

techniques such as principle component regression (PCR)73 and partial least squares regression 

(PLS-R)74, and non-linear techniques such as support vector machines (SVM)75.  

Infrared spectra may provide information on a wide range of soil properties, and can accurately 

predict soil texture76, mineralogy77, speciation of organic matter78 and pH79. Previous studies 

have also used MIR to produce robust predictive models for the adsorption to soil of other 

herbicides such as diuron74, 80, atrazine81, lindane and linuron82. Although Paradelo et al (2016) 

also used this technique to predict glyphosate adsorption in soils with a relatively high level of 
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success83, the calibration set only contained samples from two adjacent fields, covering a limited 

amount of soil variation. 

To address this current paucity of data on the use of MIR to predict  glyphosate adsorption , 

work in this thesis looks at the development of various predictive models of glyphosate 

adsorption in soil, using both physicochemical properties and MIR spectra as predictors. This 

bypasses the need for lengthy, difficult and expensive 14C-labelling or HPLC based adsorption 

studies, thus making adsorption data for individual soils more accessible and producing more 

spatially explicit recommendations for glyphosate management. 

1.4 Current and Emerging Methods for Herbicide Monitoring 

Due to the possible impacts of herbicides on the surrounding environment and later crop 

rotations, routine testing for herbicides in soil is important. Current soil analysis methods are 

relatively  expensive, and are generally based on an exhaustive extraction of the soil84, giving a 

value of “total” herbicide present, rather than herbicide available for uptake by plants (the 

“bioavailable” fraction), which is more useful for risk assessment85. Herbicide bioavailability is 

impacted by a wide range of factors in the soil, in particular adsorption of the herbicide to the 

soil86-87.   The development of a method which measures only the bioavailable fraction (thus 

excluding herbicide unavailable for uptake due to adsorption or other processes) would provide 

significant advantages in assessing the possibility of crop damage and leaching at sites where 

pesticide persistence is likely.  

Diffusive Gradient Thin Film (DGT) sampling has been used extensively in water sampling to 

produce an average “over-time” measurement of contamination (both organic and inorganic), 

as opposed to the “snapshot’ produced by grab sampling. The first instance of the use of DGTs, 

for assessing heavy metal contamination in waterways, was reported in 1994 by Davison and 

Zhang88, and has since seen significant research interest89-90. Due to the nature of capture 

through adsorption in a relatively sheltered environment, these passive samplers limit the 
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amount of degradation of contaminant that may occur during collection and transport91, leading 

to a more accurate result.  

DGT samplers consist of a binding layer, diffusive layer, and in some cases a porous membrane 

filter to protect the other layers from particulate matter. The diffusive and binding layers are 

hydrogels, with the binding layer including an adsorbent dispersed throughout the gel. The 

adsorbent in the binding layer is chosen specific to the analyte of interest, to increase potential 

adsorption, and thus reduce the likelihood of saturation. The construction of a standard DGT 

with protective membrane filter is shown in Figure 2. The analyte moves through the diffusive 

layer and binds to the adsorbent in binding layer removing it from solution, this leads to a 

constant concentration gradient throughout the diffusive layer, and thus a steady rate of 

diffusion and uptake92. Because of this, uptake of a given analyte by the DGT is dependent on 

the size of the exposure window, thickness of the diffusive gel layer, exposure time, and 

concentration of the analyte in the sampling media88. It is commonly assumed that lateral 

diffusion, and the thickness of the diffusive boundary layer created at the interface of solution 

and sampler due to water viscosity are negligible. This situation can be described using Fick’s 

Laws of diffusion93, resulting in Equation 6, where C is the concentration of the analyte in 

solution, D is the diffusion coefficient of the analyte, t is exposure time, A is the area of the 

exposure window, ∆g is the thickness of the diffusive gel, and m is the mass of analyte contained 

in the binding layer. 
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Figure 2: DGT Construction 

𝐶 =
𝑚 × ∆𝑔

𝑡 × 𝐷 × 𝐴
 (6) 

However, in reality, the diffusive boundary layer will not be two dimensional, and lateral 

diffusion can occur around the edges of the exposure window. In order to account for this, 

Equation (7) can be used, where kid is the lateral diffusion flux increase coefficient, Dw is the 

diffusion coefficient of the analyte in water, and δ is the thickness of the diffusive boundary 

layer. 

𝐶 =  
𝑚

𝑘𝑖𝑑𝐴𝑡
(

∆𝑔

𝐷
+

𝛿

𝐷𝑤
) (7) 

More recently, the technology has been applied in assessing heavy metal contamination in 

soils94-95, mineral and nutrient plant availability96-97, and some organic contaminants in 

waterways98 and soil99. The application of DGTs to organic contaminants in soil has been 

undertaken for a wide variety of pesticides in recent a study100. Due to the passive nature of 

uptake of contaminants by DGT, it has been suggested they mimic the uptake by plant roots and 

give a measurement of bioavailable herbicide101-102. However, to date, very few studies99 have 

compared the uptake of DGT samplers directly to uptake by a plant species in order to 
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determine its ability to mimic a root system. This comparison would add further credence to the 

use of DGTs in risk assessment scenarios, and allow a higher level of confidence in their use 

under field conditions. This would be extremely beneficial, as DGTs would allow a more rapid 

testing, due to the 24-48 hour exposure, compared to the several weeks growth time required 

for plant testing. DGT testing is also likely to be more consistent, due to both the reduction in 

breakdown of herbicide post uptake (plant roots may metabolise or compartmentalise 

herbicides removed from soil) and removing the biological variability inherent in plant trials (ie. 

damaged roots or individual variations in plant growth leading to different uptake levels). 

1.5 Study Context 

With increasing concern around the environmental, ecological, economic and health concerns 

surrounding herbicide usage, combined with a growing world population and thus reliance on 

agrochemicals for a stable food supply, a greater understanding of herbicide behaviour in soil, 

and new methods for assessing herbicide persistence and risk is needed.  

The mobility and degradation of widely used glyphosate and imazamox, chosen for this study 

are heavily dependent on their adsorption behaviour and bioavailability. This is generally not 

accounted for by herbicide labels, which focus instead on climatic conditions of a given region 

influencing their degradation rate. Thus the results of this study have the potential to greatly 

improve on-farm herbicide management strategies, by providing site (soil)-specific information 

of herbicide behaviour in soil. 
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1.6 Study Aims 

With a heightened awareness of the environmental and economic impacts of herbicide usage 

due to leaching and persistence, along with a growing population and thus increased reliance 

on these chemicals, this study aimed to increase the understanding of herbicide behaviour in 

soil, and to develop new tools (methods) that are more applicable to the assessment of risk from 

the herbicides. In brief, this can be outlined in the following research objectives 

- Develop new predictive models of glyphosate adsorption to soil based on 

physicochemical properties or MIR spectra of soil 

- Elucidate the adsorption/desorption behaviour of glyphosate to model soil minerals, 

and the impacts of pH and competitive binding of phosphate 

- Assess the ability of DGT techniques to predict the level of herbicide in soil available 

for plant uptake, by way of a comparison with the uptake of imazamox by two 

varieties of rapeseed 

From these research objectives, the following hypotheses can be derived: 

- Glyphosate adsorption in contrasting soils can be predicted more efficiently by routinely 

measured soil physicochemical properties and MIR spectroscopy than previous 

attempts (Chapter 2 and 3) 

- Glyphosate adsorption to soil minerals is dependent on surface area and ionic charge 

considerations that are better described by FFG than other historically preferred 

sorption isotherms (Chapter 4) 

- Glyphosate and phosphate compete for soil binding sites, hence  glyphosate desorption 

will occur upon addition of a phosphate source to mineral systems to which glyphosate 

is adsorbed (Chapter 5) 

- DGT samplers will be able to accurately replicate and predict levels of plant-available 

imazamox in contrasting agricultural soils (Chapter 6) 
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1.7 Thesis Outline 

This thesis outlines the development of new predictive models for glyphosate adsorption in the 

soil. Based on the results from this, further exploration of the mechanisms involved in 

glyphosate adsorption to and desorption from model soil minerals was undertaken, in particular 

assessing the role of pH and phosphorus competition, to understand the impacts of agronomic 

practices on glyphosate efficacy and release. Finally, a comparative study was performed, 

comparing a new herbicide monitoring technique (DGT) to plant uptake of imazamox, in order 

to provide further evidence of DGT as a measure of ‘available’ herbicide in the soil. 

A predictive model for glyphosate adsorption to soil based on physicochemical characteristics 

of the soil is presented in Chapter 2. A database of 90 soils is developed, with various measures 

such as pH, Colwell P, phosphorus buffering index (PBI) and soil texture. Glyphosate adsorption 

experiments were conducted, and a statistical model (GAMS) used to produce predictions of 

glyphosate adsorption affinity based on these characteristics. A further set of 7 soils outside of 

the initial model building database is used to validate the predictive capabilities of the model. 

A second predictive model of glyphosate adsorption, based on MIR spectroscopy, is presented 

in Chapter 3. This again used a modified database of 90 soils, with the same adsorption 

experiments conducted, but instead MIR spectra is used to predict this adsorption behaviour, 

and some physicochemical properties of the soils. This model is then cross validated by a 

venetian blinds methodology (discussed in detail in Chapter 3), and the loadings compared to 

MIR spectra of pure soil minerals to develop an understanding of the components of soil most 

important for glyphosate adsorption. 

Based on the results of the previous two chapters, a study of glyphosate adsorption to model 

soil minerals was conducted to elucidate the mechanisms by which this occurs. This study 

compares the binding affinity of glyphosate to various metal oxides and clays under different 

pH conditions. From this, details about the role of charge, lateral interactions between 
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adsorbate molecules and attraction of the adsorbate molecule to the adsorbent surface are 

elucidated. The results of this study are presented in Chapter 4. 

Chapter 5 is a logical extension of the adsorption study described in Chapter 4 and presents a 

study of the desorption of glyphosate from model soil minerals, and the competition that occurs 

between glyphosate and inorganic phosphate for binding sites. This study is practically relevant, 

as it highlights the impacts phosphorus fertilisation may have both on the efficacy of applied 

glyphosate, but also on the release of bound glyphosate residues in the soil. 

Adsorption is one of the many mechanisms that impact the level of herbicide available for plant 

uptake and hence the efficacy of herbicides. Diffusive gradient thin films have been presented 

as an alternative methodology for the measurement of herbicide in soils, providing a measure 

of available rather than total herbicide. In order to test the practical significance of Diffusive 

Gradient Thin Film devices, Chapter 6 of this thesis presents a comparative study of the uptake 

of imazamox from soils by DGT and by two varieties of rapeseed. Finally, Chapter 7 collates the 

key findings of the research presented in this thesis, and recommends avenues that should be 

pursued in future work. 
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2.1 Abstract 

Sorption is considered one of the most significant processes affecting the mobility and rate of 

degradation of glyphosate in soil. The ability to accurately predict glyphosate sorption using 

routinely-measured soil physico-chemical characteristics would provide an inexpensive 

alternative to lengthy and expensive adsorption experiments. Adsorption isotherms were 

developed for 90 agricultural soils (45 sites, surface and subsurface layers) from around 

Australia using radiolabelled glyphosate. Multiple Linear Regressions (MLRs) and General 

Additive Models (GAMs) were developed to predict Freundlich sorption coefficients (Kf) for 

glyphosate, based on soil physiochemical properties. Of the properties measured, soil pH and 

phosphorus buffering index (PBI) were the two most important for predicting Kf, which ranged 

from 4.6 to 186 mg kg−1 (L mg−1 )−1/nf. The predictive capability of the best model (R2 = 0.967) was 

confirmed by the characterisation of an additional seven soils with contrasting chemical 

properties, with the predicted Kf of each soil from the verification set being within 15-40% of 

the experimentally determined Kf. The development of such a tool will facilitate improved 

glyphosate risk assessment and management strategies.  
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2.2 Introduction 

Glyphosate (N-(phosphonomethyl)glycine), the most widely used herbicide worldwide, is a 

systemic 5-enolpyruvylshikimate-3-phosphate synthase enzyme (EPSPS) inhibitor. Glyphosate is 

considered to have a low-risk ecological profile compared with other commonly used herbicides, 

in part because of a low inherent toxicity to non-target organisms, a relatively rapid breakdown 

rate and high soil adsorption capacity1-3. However, glyphosate and its main breakdown product 

aminomethylphosphonic acid (AMPA) have recently been shown to be ‘pseudo-persistent’ in 

some soils due to frequency of use outweighing the rate of breakdown, potentially leading to 

periodic accumulation in soil4. Additionally, mobilisation of glyphosate and AMPA residues has 

been observed following fertilisation5-6. This is thought to be the result of superior competition 

for sorption sites by phosphate7-8. The recent evidence highlighting the persistence of 

glyphosate and mechanisms for mobilisation raise new concerns about in-field agronomic risks5 , 

off-site movement and ecological risk9. Recent surveys have frequently detected glyphosate in 

a wide variety of environments, including sediment10, water11, soil12, rainwater13 and 

groundwater14 many months after application.  

Biological exposure to glyphosate is regulated by its persistence, mobility and bioavailability. 

These factors are, in turn, largely determined by its sorption characteristics to soil. Sorption can 

moderate the efficacy of glyphosate by reducing its uptake by plants15, as well as influencing 

pathways for mobilization through the soil16-17, including its movement to waterways18. Sorption 

is also known to significantly affect the persistence of glyphosate in the soil19. Glyphosate exists 

as a zwitterion in soil, with a negatively charged phosphonic acid and carboxylic acid group and 

a positively charged amine group, depending on the pH of the soil20. It primarily binds to 

amorphous soil minerals such as iron and aluminium oxides and hydroxides21. Soil pH and 

mineralogy therefore have a significant effect on binding, with adsorption decreasing as pH 

increases22. This is mainly due to the change in surface charge on soil minerals, rather than the 

change in ionic form of glyphosate (pKa = 2, 2.6, 5.8 and 10.8, occurring due to protonation and 
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deprotonation of the phosphate, amine and carboxylic acid groups), as glyphosate is negatively 

charged at pH above 2.620. Most of these minerals are positively charged at environmentally 

relevant pH, however, as pH increases, negatively charged sites may appear23. Because the 

binding to metal oxides occurs predominantly through the phosphonic acid functional group of 

the glyphosate molecule24, competition has been shown to occur between glyphosate and 

inorganic phosphate (PO4
3-/HPO4

2-/H2PO4
-)25-26. Glyphosate may be desorbed by the addition of 

P fertiliser, increasing the risk of herbicide injury in rotational crops in some soil types5, 14, 27. 

Glyphosate has also been shown to bind to soil organic matter including soil humic substances28-

29. 

Despite the factors influencing glyphosate sorption being relatively well-known30, there have 

been few attempts to formalise rapid, inexpensive, easy to use models for estimating glyphosate 

sorption based on soil properties as an alternative to constructing soil-specific isotherms via 

laboratory  studies (Table 2). Paradelo et al. (2015) proposed a multiple linear regression model 

based on soil characteristics as linear predictors providing the best fit for linear adsorption of 

glyphosate (Kd). Glyphosate sorption was shown to increase with increasing clay and iron 

content, but decrease with increasing pH, EC and P levels. Although pH and clay content are 

often the best predictors of glyphosate sorption, there is often  variation from study to study, 

due in part to the often limited number of soils examined (Table 2). 
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Table 2: Overview of previous adsorption predictive modelling 

Reference # Soil 

Samples 

Parameters 

Predicted 

Type of 

Model 

R2 Predictors 

included in best 

model c 

Dollinger et al. 

(2015) 

19-51a Kd, Kf, nf MLR Kd: 0.48 

Kf: 0.52 

nf: 0.62 

Kd: CEC, Clay 

Kf: CEC, Clay, OC 

nf: Clay, pH 

Paradelo et al. 

(2015) 

114 (2 

fields) 

Kd MLR 0.70 (4 

variables) 

pH, EC, Clay, Sand 

(both fields) 

Sidoli et al. 

(2016) 

17 Kf b MLR, 

exponential 

0.94 (4 

variables) 

pH, Olsen P, Alox, 

Feox 

De Geronimo et 

al. (2018) 

12 Kf MLR 0.994 (7 

variables) 

Clay, pH, Bray P, 

Alin, OC, Sand, Feox 

a Depending on predicted parameter and available predictors 

b calculated using average nf value of all soils 

c Feox and Alox = oxalate extractable iron and aluminium 

dCEC = cation exchange capacity, EC = electrical conductivity, P = phosphorus, OC = organic carbon, MLR = Multiple 

linear Regression 

Kd is the slope of a linear fit of adsorption data, Kf and nf are fitting variables of adsorption derived from the 

Freundlich equation 

Furthermore, as acknowledged by Paradelo et al. (2015), non-linear relationships between 

predictor variables and sorption may better describe interactions (e.g. the change in surface 

charge on clay minerals at high pH). More recently, Sidoli et al. (2016) built on the previous work 

from Paradelo et al. (2015) by increasing the sample size from 2 to 17 contrasting sites, fitting a 

variety of linear and nonlinear regressions to a Freundlich isotherm derived sorption value (Kf) 

and evaluating the relevance of different measures of pH (i.e. in water, KCl and CaCl2). However, 

despite the increased number of different soil types, the use of a single sample from each site 

resulted in only a total of 17 data points. Sidoli et al. (2016) also restricted their modelling 

framework to linear and exponential relationships between the dependent and independent 

variables, which may not adequately account for certain interactions involved in glyphosate 
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binding. De Geronimo et al. (2018) conducted similar modelling using 12 Argentine soils, finding 

seven variables to be important for predicting glyphosate adsorption (Table 2). While these soils 

had greater variation than those in the previous two studies, the relatively small number of data 

points and lack of alkaline soils limits the broader applicability of the model. Furthermore, 

despite the clear link between P and glyphosate binding, no previous work has examined 

whether a correlation exists between glyphosate sorption and routinely collected measures of 

the binding affinity of P, such as the P buffering index (PBI). 

The aim of this work was therefore to develop a statistical model capable of predicting 

glyphosate sorption based on an expanded dataset of more than 40 contrasting farm soils from 

across Australia, divided into 2 depth profiles. The soil properties used to train the model were 

deliberately selected from those that are included in routine agronomic soil tests, to enable 

practical application of derived models. Different modelling strategies (beyond linear regression) 

were tested for their ability to increase model accuracy. The development of such a tool will 

facilitate improved glyphosate risk assessment and management decisions.   

2.3 Material and Methods 

2.3.1 Soil Samples and Characterisation 

Soils were sampled from agricultural paddocks in April-May 2015 from various locations (45 

sites) in Australia (Appendix Table 1), with sites represented by grain cropping systems 

(predominantly wheat, barley and pulses) pasture and sugarcane systems. Samples were taken 

with a 25 mm diameter stainless steel open-faced push corer to a depth of 30 cm, and were 

divided into 0-10 cm and 10-30 cm layers. At each location, 12 subsamples were randomly taken 

from a 50 m by 50 m grid in each paddock, and these were composited as a single sample. 

Samples were air-dried, crushed and sieved to < 2 mm. Samples were stored air-dried until 

analysis. An additional 7 soils were collected for use as a validation set, these soils were all 

surface soils (0-20 cm depth) and were otherwise collected analysed using the same 
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methodology. Soil pH (1:5 soil:water), EC, bicarbonate-extractable P (Colwell P) and total OC 

content were determined using methods described in Rayment and Lyons (2010)31. Phosphorus 

buffering index (PBI+ColP) was determined according to Rayment and Lyons method 9I2B (2010). 

Briefly this involves dosing soil with 100 mg P L-1 solution at a soil:solution ratio of 1:10 and 

determining the amount of P sorbed after 17 h of mixing. PBI+ColP is then calculated as the freshly 

sorbed P (mg P kg-1) plus the Colwell-P (mg kg-1), divided by the final solution P concentration 

(mg P L-1). Soil particle size distribution (clay, silt, and sand) was estimated by mid-infrared (MIR) 

analysis of pulverised soil (<200 nm) using the method and model of Robinson and Kitching 

(2016)32. MIR spectra were acquired using a PerkinElmer Spectrum One Fourier Transform MIR 

spectrometer equipped with a diffuse reflectance accessory. Background levels of glyphosate 

and AMPA in sampled soils were quantified using the method of Zhang et al. (2019). Briefly, this 

involved extraction of soil in a 1:4 (soil:solution) mixture with 0.6 M NaOH, followed by solid 

phase extraction on mixed mode exchange resin (Bond Elut Plexa Pax, 60 mg, Agilent, CA). 

Eluates (1:1 of 2.5% formic acid:methanol) were separated and analysed by liquid 

chromatography triple quadrupole mass spectrometry (Waters Quattro MicroTM Micromass, 

Milford, MA) using optimised multiple reaction monitoring conditions. 

2.3.2 Glyphosate Sorption 

14C labelled glyphosate (1.85 GBq mol-1) was purchased from American Radiolabelled Chemicals 

(Saint Louis, USA) and mixed with analytical grade glyphosate (Accustandard, New Haven, USA) 

to produce five one litre solutions of varying concentration (0.3, 1, 3, 9 and 27 mg L-1, standard 

radioactivity of ~10 nCi per sample). 

 

Figure 3: 14C Labelled Glyphosate 
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Soils were irradiated under 254 nm UV light (1 hour, <1 mm thick layer, mixed and respread 

every 20 minutes) prior to adsorption testing in order to minimise microbial degradation of the 

glyphosate. Respiration tests (headspace CO2 concentration) indicated a reduction in soil 

respiration by up to 60% due to UV exposure. Sorption trials were conducted with a 1:5 soil-to-

liquid ratio at five concentrations of glyphosate (0.3, 1, 3, 9 and 27 mg L-1) using 1 g aliquots of 

air dried soil. Soil-glyphosate mixtures were rotated on an end-over-end shaker (33 rpm) at 22 

oC for 24 hours to allow equilibration, before being centrifuged at 2600 g for 20 min (Thermo 

Scientific Megafuge 8). The supernatant was then removed and filtered through a 0.2 µm 

polyethylene (Merck) membrane to remove any remaining clay particles. Supernatant (2 mL) 

was then mixed with scintillation cocktail (18 mL, Optifluor, PerkinElmer) and glyphosate 

concentration determined by scintillation counting (Tricarb 2810, Packard). The amount of 

adsorbed glyphosate was then determined indirectly by subtracting equilibrium glyphosate 

concentration from initial glyphosate concentration. Controls conducted in the same manner 

without soil material showed negligible adsorption of glyphosate to the centrifuge tubes or 

filters. A microbial degradation control was conducted using a 0.5 M NaOH trap for CO2, these 

trials showed <1% mineralisation of glyphosate to CO2 over 24 hours. 

Sorption coefficients were calculated, where C is concentration of glyphosate in solution (µg ml-

1) and x is the concentration of glyphosate adsorbed to the soil (µg g-1). The parameters Kf and 

n of the Freundlich isotherm:  

𝑥 = 𝐾𝑓𝐶
1
𝑛 (1) 

were calculated using the full concentration range and regression of the log-transformed 

concentrations.  
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2.3.3 Statistical Analysis 

Exploratory modelling was conducted using multiple linear regression analysis within Python33-

36, comparing the Kf values for each soil to various physiochemical properties individually, and 

the pairwise products of each these variables (e.g. pH * PBI) to begin to account for interactions 

between the variables. 

𝐾𝑓 =  ∑ 𝑎𝑥𝑆𝑥

𝑛

𝑥=1
+ 𝑒 (2) 

In equation (2), S is the soil property or pairwise product, x is the soil number (sample ID), a is 

the regression coefficient relating to that soil property and e is the model error. Using this 

approach, the relative impact of each variable (individual properties and pairwise products) on 

Kf could be assessed. Models using all single variable and pairwise product, just single variable, 

and just pairwise products were produced, and the significance (p-value) of each term compared. 

In order to assess the potential for nonlinear interactions a penalised spline regression as a 

Generalised Additive Model (GAM) was also applied via the mgcv package using the software 

environment R (R Core Team, 2019)37. 

The interactions chosen in the GAM analysis were based on both the outcomes of pairwise 

products in the exploratory MLR, and also expectations based upon physical properties (e.g. pH 

and clay interactions moderate the surface charge of the clay minerals, but may also impact 

overall charge of the glyphosate molecule to result in a non-linear relationship). Model variables 

were deemed significant when p<0.05. Models were compared through various statistical tests 

(R2, AIC, and generalised cross validation (GCV) score37), and verified against a set of soils (7 in 

total) not used in the model development. 

Predictions of nf were then performed using the same models developed for Kf to determine 

their ability to predict the overall adsorption behaviour of glyphosate. These nf predictions were 

not done during the exploratory MLR modelling as Kf was considered the most important 
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variable determining glyphosate adsorption levels for environmentally relevant concentrations, 

and the use of the same model for both variables would provide significant benefits in terms of 

practicality. 

2.4 Results and Discussion 

2.4.1 Soil Properties and Glyphosate Sorption  

The experimental soils covered a wide range of soil properties, including contrasting textures, 

pH and OC content (Figure 4). Although the experimental soils covered a range of PBI values, 

72% had PBI < 100, whilst a small cluster had high PBI values, ranging from 400-800. The 

measured soil properties were generally uncorrelated across the dataset, with the exception of 

a weak relationship between PBI and OC (Appendix Table 3). Freundlich isotherms (for e.g., 

Figure 5) better described the glyphosate adsorption data than did linear sorption isotherms 

(R2 > 0.91 for all soils), with Kf values ranging between 4.61 and 186 mg kg−1 (L mg−1 )−1/nf and nf 

values between 0.94 to 1.82 (Appendix Table 1). While the Freundlich isotherms systematically 

over predicted sorption at high concentrations (due to a bias in power law fittings to smaller 

values38), they fit well for environmentally relevant concentrations (0-1 µg ml-1), producing a 

closer fit to the data points than linear isotherms over this region. 
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Figure 4: Histograms of Selected Soil Properties (all histograms divided into 20 bins) 
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Figure 5: Glyphosate adsorption to soil 6 (left) and soil 55 (right), untransformed (top) and on a log scale 

(bottom). Green triangles show experimentally determined concentrations; blue lines are Freundlich 

isotherms fit to experimental data 

Many of the soils used for this study had residual glyphosate and AMPA present prior to the 

adsorption studies, but at levels < 2mg kg-1 (data not shown). For the purpose of the predictive 

modelling, initial glyphosate and AMPA levels were treated as variables for prediction of Kf 

values, rather than being included in the calculation of isotherms, to account for any ‘aging’ in 

effects and hysteresis. 
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2.4.2 Linear Regression Models 

A number of linear regression models (LMs) were tested to explore the potential role of 

different combinations of soil physicochemical properties in explaining glyphosate sorption. Of 

the variables tested, PBI and pHH2O were found to be the only significant (P<0.05) predictors of 

glyphosate adsorption when a single variable additive model with no pairwise interactions was 

considered. Inclusion of all pairwise interactions was deemed unnecessarily complex, with 

reduced degrees of freedom and greater potential for overfitting. Instead, addition of selected 

pairwise interactions on a theoretical basis was explored – this included interactions of soil 

textural components (clay, PBI) with pH and TOC. Amongst these predictors, clay and the 

interaction of PBI with pH and OC were significant (P < 0.05), resulting in improved fits to 

glyphosate sorption (Table 3, LM3) compared with the initial model (LM1).  A more 

parsimonious model (LM2) containing only pH, PBI and their interaction was also superior to the 

initial model (i.e. excluding the interaction of pH and PBI), but had lower accuracy than LM3. 

Electrical conductivity, Colwell P, and residual glyphosate and AMPA remaining in the soil from 

previous applications were not significant (P > 0.05) in any of these models.  
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Table 3: Comparison of various linear models for predicting glyphosate sorption a set of calibration soils 
(n = 90). 

Predictor 
Variable 

LM1 LM2 LM3 

Estima
te 

Std 
Error 

p Estima
te 

Std 
Error 

p Estima
te 

Std 
Error 

p 

Intercept 83.4 6.8 <0.001 52.9 10.5 <0.001 34.5 9.4 <0.001 

PBI 0.25 0.01 <0.001 0.52 0.07 <0.001 0.43 0.07 <0.001 

pH -10.0 0.9 <0.001 -0.51 1.6 0.002 -3.5 1.4 0.01 

Clay 
      

0.69 0.12 <0.001 

PBI:pH 
   

-0.044 0.012 <0.001 -0.057 0.01 <0.001 

PBI:TOC 
      

0.033 0.00
6 

<0.001 

Model 
evaluatio
n 

         

adj R2 0.93 
  

0.94 
  

0.96 
  

RMSE 10.9 
  

10.1 
  

8.4 
  

AIC 693 
  

682 
  

653 
  

BIC 703 
  

695 
  

670 
  

ANOVA a 
   

<0.001 
  

<0.001 
  

a ANOVA for model 2 is model 1 vs model 2; ANOVA for model 3 is model 2 vs model 3 

 

2.4.3 Non-linear Models 

A wide variety of GAMs were generated based on the previous exploratory linear models. 

Initially (GAM-1), an interaction term for pH and PBI, along with an individual smooth term for 

clay was used. Individual smooth terms for both glyphosate and AMPA content were also added 

on a theoretical basis, in order to confirm or reject the findings of the linear modeling. A tensor 

interaction between pH and PBI was the most important predictor of Kf in the given soils  (GAM-

3, Table 4), supporting the results from the linear models, whilst clay was found to be non 

significant, even when allowed to interact with pH.  

The only other variable found to be significant was OC, used by itself with no interactions. 

However, the addition of OC did little to improve the predictive capacity of the model based on 

tensor interaction of PBI and pH (te(PBI,pH), R2 = 0.972), and unnecessarily increased the model 

complexity.  A model using the pH and PBI as separate smooth terms (no interaction) was very 
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similar (R2 = 0.974), however, performed worse when predicting all but one verification soil, 

despite the improved generalised cross validation (GCV) score. All of these models had similar 

Akaike information criterion (AIC), Lin’s concordance correlation coefficients (Rc), and GCV 

scores (Table 4).  

Table 4: Comparison of various generalised additive models for predicting glyphosate sorption a set of 
calibration soils (n = 90). 

Model  R2 AIC GCV Rc Significant 
Terms 

GAM-1 Kf ~ s(PBI) + s(pH) 0.974 632.3817 65.773 0.987 s(PBI), s(pH) 

GAM-2 Kf ~ te(PBI, pH) 0.967 639.5185 70.802 0.985 te(PBI, pH) 

GAM-3 Kf ~ te(PBI, pH) + 

s(OC) 

0.974 630.7767 66.821 0.989 te(PBI, pH), 

s(OC) 

GAM-4 Kf ~ te(PBI, pH) + 
s(clay) + s(AMPA) + 
s(Glyphosate) 

0.967 626.0696 62.193 0.988 te(PBI, pH) 

Notes: s denotes a smooth spline, te denotes a tensor product smooth; AIC = Akike Information criteria, GCV = 

generalized cross validation value, Rc =  Lin’s concordance correlation coefficient 

The model using only the tensor product of pH and PBI was selected as the most appropriate 

model, despite the higher AIC and GCV values, as it best predicted glyphosate sorption to an 

external validation set of seven contrasting soils, with a minimum number of input parameters. 

The model displayed negligible bias within the training set (Figure 6a), accounting for non-

linearity in the response of Kf to PBI and pH (Figure 6b). Four of the validation soils returned 

predicted Kf values within 15% of the experimentally determined Kf (Error! Reference source n

ot found.5). Soil 4, which had an experimental Kf of 104.8 (a range not well represented in the 

dataset) gave a prediction 40% lower, at a Kf of 60.2.  
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Figure 6: (a) Predicted vs Experimental Kf Values (b) Contour plot of predicted Kf values against pH and 

Phosphorus Buffering Index. Points represent soils in dataset 

When the te(PBI, pH) model (GAM-2, Table 4) was tested for its ability to predict nf, an R2 of 

0.73 was obtained. Despite a correlation between nf and Kf (Figure 7), the inclusion of a Kf term 

as an additional predictor for nf  provided no benefit to nf predictions. Predictions for nf were 

within 32% for 6 of 7 soils in the validation set, with an error of 51% for the remaining validation 

soil (Soil 2, Table 5). Given the change in adsorption produced by nf at environmentally relevant 

levels compared to the change produced by Kf, the PBI-pH tensor model maintained acceptable 
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accuracy for predicting glyphosate sorption in soil concentrations of 0-70 mg kg -1, with the 

exclusion of Soil 1 (Appendix Figure 1). This range extends beyond typical concentrations found 

in the topsoil (0-5 or 0-10 cm), which generally fall below 10 mg kg-1 4, 10, 12, 39. 

Table 5: Predictions of Kf and nf for soils in the validation set using the PBI-pH tensor model 

Soil 

ID 

PBI pH Experimental 

Kf 

Predicted 

Kf 

% 

Error 

Experimental 

nf 

Predicted 

nf 

% 

Error 

1 11 6.9 25.5 10.8 58 1.41 1.72 22 

2 15 5.8 19.4 19.6 1 1.09 1.65 51 

3 60 5.2 43.9 46.9 7 1.18 1.39 18 

4 110 6.7 104.8 60.2 43 1.05 1.39 32 

5 120 5.5 46.7 66.3 42 1.11 1.27 14 

6 130 7 56.7 65.3 15 1.12 1.39 24 

7 210 8.6 31.4 34.4 10 1.13 1.43 27 

*Additional soil details may be found in Appendix Table 2 

 

Figure 7: Plot of Kf against nf values for the calibration dataset with exponential trendline 
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2.4.4 Discussion and Implications 

The ability to accurately predict adsorption of glyphosate is not only important for 

understanding glyphosate movement and bioavailability in different soils, but can also be used 

along with other soil properties such as organic matter to predict the half-life of the herbicide40-

41. The models developed here, using a more comprehensive dataset compared to previous 

studies, show significant promise for estimating glyphosate mobility across a wide range of soil 

types.  

A key innovation in this research was the inclusion of a measure of the phosphorus binding 

capacity, in this case the PBI, as a predictor for glyphosate sorption. Although there is substantial 

literature describing the similarities of glyphosate sorption with P sorption7-8, 22, 24, 42, until now 

there has been no attempt to formalise the use of a phosphorus binding measure, such as PBI, 

for predicting glyphosate sorption. Linear regression modelling confirmed the utility of PBI as a 

predictor for glyphosate sorption compared with other variables such as clay content and pH, 

which have previously been shown to be important43-45. While our model did not explicitly 

determine the soil clay mineralogy, or quantify other chelating metals (e.g. Fe or Al) as per 

previous glyphosate sorption models44, 46, soil PBI is inherently related47, and appears to account 

for these characteristics while being more easily measured and widely available in soil quality 

databases (e.g. http://www.soilquality.org.au/). 

As with previous efforts, pH was also found to significantly contribute to the prediction of 

glyphosate sorption, primarily through an interaction with PBI. We propose that the drop in Kf 

at higher pH is due to the change in surface charge of metal oxide minerals, and possibly due to 

the presence of alkali minerals such as calcite (calcium carbonate) which may bind glyphosate 

less strongly. As previously stated, due to glyphosate’s pKa values, protonation/deprotonation 

of various functional groups on the molecule are unlikely to cause the observed changes in 

adsorption over the higher pH range of the studied soils. The apparent reduction in adsorption 

http://www.soilquality.org.au/
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below pH = 5.8 is possibly due to the protonation of the phosphonic acid group and reduction 

in overall negative charge on the glyphosate molecule, but additional soils in this pH range, along 

with more focused protonation analysis would be required to test this hypothesis. Residual 

glyphosate and AMPA remaining in the soil from previous applications were found to be 

insignificant in determining the Kf of soils in both MLR and GAMs modelling. This is likely due to 

levels being significantly lower than the quantity added for adsorption trials. 

Worth noting is the interaction of the Kf and nf terms, such that two isotherms of the same Kf, 

may be quite different due to variance in the nf term. Previous work by Sidoli et al.45 addressed 

this by taking an average of the nf value across all isotherms, and recalculating all Kf values such 

that all soils used this average nf. This was deemed inappropriate in this case due to the large 

data set and much wider variation in nf. While it would not necessarily be expected that nf would 

be predicted by the same variables as Kf, this approach was investigated in order to reduce the 

complexity of the model, and therefore increase practicality for end users. Similarly, it would be 

expected that PBI, as a measure of phosphorus saturation point in a soil, would provide a good 

indicator for nf. 

In Australia, pH and PBI are routinely assessed by landholders through commercial laboratories 

for lime and P fertiliser recommendations, respectively48-49. While other countries tend to have 

their favoured P-binding indices50-51, it is likely a similar model using these preferred indices 

would perform equally as well. The development of non-linear regressions using such indices 

offers the potential for practical management of glyphosate residues in soil, where necessary. 

Given that such indices incorporate many soil physical and chemical processes of relevance to 

glyphosate sorption there is a clear advantage to our proposed models over those requiring 

more complex and costly soil analysis for parameterisation. The works presented here 

represents a predictive model of a high goodness-of-fit (R2 = 0.967), built from a database of a 

large number of samples (n = 90) with wide variability of physico-chemical properties. This 
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model exclusively uses pH and PBI as the required predictors for glyphosate adsorption 

constants (Kf and nf).  As pH and phosphorous indices are routinely measured for agronomic 

purposes, our work provides future opportunity for spatially-explicit glyphosate monitoring and 

management strategies through the use of readily available data.  
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3.1 Abstract 

Adsorption of herbicides to soil can impact their mobility, persistence and efficacy. A method 

for predicting adsorption of herbicides that is rapid and relatively inexpensive would allow for 

more spatially explicit management of herbicide application and risk. In this study, MIR 

spectroscopy was used to develop a predictive model for glyphosate adsorption to 90 soils with 

a wide range of physico -chemical properties. Adsorption isotherms were built for glyphosate 

from 45 sites (and 2 sampling depths) across Australia, and this database used in conjunction 

with MIR spectra of the same soils to predict adsorption using a partial least squares 

methodology, with a venetian blinds cross validation. The Kf values of these soils ranged from 

4.6 to 186 mg kg−1 (L mg−1 )−1/nf, with the final model resulting in a cross-validated R2 and RMSECV 

of 0.839 and 17.34 mg kg−1 (L mg−1 )−1/nf respectively. A strong correlation was observed between 

the MIR loadings associated with phosphorus buffer index, glyphosate adsorption and certain 

soil minerals. 

3.2 Introduction 

Glyphosate is the single most widely used herbicide both in Australia and globally. While 

traditionally considered to be of low ecological risk due to its high adsorption capacity to soil 
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and rapid breakdown1-3, more recent findings have demonstrated that glyphosate can be 

“pseudo-persistent” when repeat applications occur more frequently than time required for 

complete breakdown, leading to periodic build up in some soils4. Environmental surveys have 

also detected glyphosate  in rainwater5, dust6, waterways7-8, sediment9 and air5. 

Adsorption plays an important role in the environmental fate and effect of glyphosate. 

Adsorption behaviour regulates its persistence in soil10, offsite mobility11-12 and biological 

availability in soil13. Due to glyphosate’s zwitterionic nature (pKa = 2, 2.6, 5.8 and 10.8, occurring 

due to protonation and deprotonation of the phosphonate, amine and carboxylic acid groups14) 

and the phosphonic acid group15, adsorption behaviour is largely regulated by variable charge 

clay minerals and metal oxides16. Adsorption is generally greater in acid soils due to the more 

positively charged surface of these minerals, and thus a higher level of attraction of the 

negatively charged phosphonic acid group17-18. Adsorption via the phosphonic acid head also 

leads to competition for binding sites with inorganic phosphate in soil19-20, and remobilisation 

of the glyphosate has been shown to occur upon addition of phosphorus fertiliser7, 21-22. 

While the factors influencing glyphosate adsorption in soil are relatively well known, there have 

been limited attempts to predict adsorption behaviour in a given soil. Current models have 

focused mostly on using physicochemical properties of the soil such as pH, soil texture, 

phosphorus content and mineralogy23-26. Mid-infrared reflectance (MIR) spectroscopy is an 

inexpensive, rapid, holistic technique that can bypass the need for the time consuming, 

sometimes expensive wet chemical techniques, provided adequate calibration is conducted. 

Infrared spectra provide information on a wide range of soil properties, and can accurately 

predict soil texture27, mineralogy28, speciation of organic matter29 and pH30. Previous studies 

have also used MIR to produce robust predictive models for the adsorption to soil of other 

herbicides such as diuron31-32, atrazine33, lindane and linuron34. Although Paradelo et al (2016) 

also used this technique to predict glyphosate adsorption in soils with a relatively high level of 
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success35, the calibration set only contained samples from two adjacent fields, covering a limited 

amount of variation in the soils tested.  

To address the currently limited models for glyphosate sorption to soil, MIR spectra from 

approximately 90 soils were used to produce a model capable of predicting the Kf of a given soil 

for glyphosate, along with various physico-chemical properties. We hypothesised that the 

holistic nature of MIR would allow for an accurate predictive model for glyphosate adsorption 

to these contrasting soils, ultimately providing an inexpensive, practical tool to improve the site-

specific understanding of glyphosate fate in soil. 

3.3 Material and Methods 

3.3.1 Soil and Mineral Samples and Characterisation 

Goethite, kaolinite, hematite and rutile were purchased from Sigma Aldrich (Sydney, Australia), 

calcite was purchased from Pacific Water Technology (Brisbane, Australia), and Gibbsite was 

purchased from an independent minerals distributor, sourced originally from Copper Mountains, 

Box Elder, Utah, United States. Birnessite was produced according to the amended 

Attenborough method developed by Gritter and Wallace (1959)36. All structures were confirmed 

using powder x-ray diffraction (D8 Advance Eco, Bruker Corporation). 

Agricultural soils were sampled in April-May 2015 from various locations (45 sites) in Australia 

(Appendix Table 1), with sites represented by grain cropping systems (predominantly wheat, 

barley and pulses), pasture and sugarcane systems. Samples were taken with a 25 mm diameter 

stainless steel open-faced push corer to a depth of 30 cm, and were divided into 0-10 cm and 

10-30 cm layers. At each location, 12 subsamples were randomly taken from a 50 m by 50 m 

grid in each paddock, and these were composited as a single sample. Samples were air-dried, 

crushed and sieved to < 2 mm. Samples were stored air-dried until analysis. Soil pH (1:5 

soil:water), EC, bicarbonate-extractable P (Colwell P) and total organic C content were 

determined using methods described in Rayment and Lyons (2010)37. Phosphorus buffering 
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index (PBI+ColP) was determined according to Rayment and Lyons method 9I2B (2010). Briefly 

this involves dosing soil with 100 mg P L-1 solution at a soil:solution ratio of 1:10 and determining 

the amount of P sorbed after 17 h of mixing. PBI+ColP was then calculated as the freshly sorbed P 

(mg P kg-1) plus the Colwell-P (mg kg-1), divided by the final solution P concentration (mg P L-1).  

MIR spectra were collected using powdered (<100 µm) soil and mineral samples and a Nicolet 

6700 FTIR spectrometer (Thermofisher Scientific, Waltham, MA, USA) fitted with an Auto Diff II 

autosampler (Pike Technologies, Madison, WI, USA) and a KBr beam splitter. Absorption spectra 

were collected from 400-4000 cm-1. 

3.3.2 Glyphosate Sorption 

14C labelled glyphosate (1.85 GBq mol-1) was purchased from American Radiolabelled Chemicals 

(Saint Louis, USA) and mixed with analytical grade glyphosate (Accustandard, New Haven, USA) 

to produce five one litre solutions with concentrations of 0.3, 1, 3, 9 and 27 mg L-1, and standard 

radioactivity of ~10 nCi per sample. 

 

Figure 8: 14C Labelled Glyphosate 

Soils were irradiated under 254 nm UV light (1 hour, <1 mm thick layer, mixed and respread 

every 20 minutes) prior to adsorption experiments in order to inhibit microbial degradation of 

the glyphosate. Respiration measurements (headspace CO2 concentration in a closed, analysed 

by gas chromatography) indicated a reduction in soil respiration by up to 60% due to UV 

exposure. Sorption trials were conducted with a 1:5 soil-to-liquid ratio at five concentrations of 

glyphosate (0.3, 1, 3, 9 and 27 mg L-1) using 1 g aliquots of air dried soil. Soil-glyphosate mixtures 

were mixed on an end-over-end shaker (33 rpm) at 22 oC for 24 hours to allow equilibration, 

before being centrifuged at 2600 x G for 20 min (Thermo Scientific Megafuge 8). The 
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supernatant was then removed and filtered through a 0.2 µm polyethylene (Merck) membrane 

to remove any remaining clay particles. Supernatant (2 mL) was then mixed with scintillation 

cocktail (18 mL, Optifluor, PerkinElmer) and glyphosate concentration determined by 

scintillation counting (Tricarb 2810, Packard). The amount of adsorbed glyphosate was then 

determined indirectly by subtracting equilibrium glyphosate concentration from initial 

glyphosate concentration. Controls conducted in the same manner without soil material 

showed negligible adsorption of glyphosate to the centrifuge tubes or filters. A microbial 

degradation control was conducted using a 0.5 M NaOH trap for CO2, these trials showed <1% 

mineralisation of glyphosate to CO2 over 24 hours in four contrasting soils within the calibration 

set. 

Sorption coefficients were calculated, where C is concentration of glyphosate in solution (µg ml-

1) and x is the concentration of glyphosate adsorbed to the soil (µg g-1). The parameters Kf and 

n of the Freundlich isotherm:  

𝑥 = 𝐾𝑓𝐶
1
𝑛 

were calculated using the full concentration range and regression of the log-transformed 

concentrations.  

3.3.3 Data Analysis 

MIR spectra were imported, pre-processed, and analysed using MATLAB (Natick, MA, USA) and 

PLS_Toolbox (Eigenvector Research Inc., Manson, WA, USA)38. Spectra were smoothed by the 

Savitsky-Golay39 method using 9 smoothing points and a polynomial order of 2 in a symmetric 

kernel before mean centering. Principle component analysis (PCA)40 was conducted for the set 

of spectra to identify potential outliers and the overall variation in the dataset. PCA is a 

technique by which an n x m covariance matrix is built, consisting of m spectral absorbance 

values and n spectra. Eigen vectors, or the principle components (PCs), and their associated 
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eigenvalues were then calculated from this matrix to summarise the variation in the dataset. 

Samples were ‘scored’ along these PCs and plotted in 2 to 3 dimensions, in order to visualise 

variation among samples. The loadings, or the weights of the spectral features in each PC, were 

used to identify the chemical components associated with the variation in the data.  

Predictive models of Kf and other soil physicochemical properties were subsequently developed 

via partial least squares regression (PLS-R)41, a technique which acts similarly to principle 

component analysis. However, where PCA and PCR  are unsupervised methods, PLS-R uses 

reference values to build the scores and loadings. As such, PLS-R allows for the combining and 

adjustment of principle components in order to reduce error and produce a more accurate 

prediction. As the data set was randomly ordered with respect to the reference Y responses, 

models were cross validated using venetian blinds, with 10 data splits and a single sample per 

blind. In this method, a subset containing every 10th sample of the data block was used as a 

validation set for a model built from the remaining dataset, and this process was repeated 10 

times on a subsequent subset. This was done as no additional independent set was available for 

model validation, and the use of leave-one-out alone can lead to artificially positive results due 

to over fitting of each new validation sample42. 

 

3.4 Results and Discussion 

Physico-chemical analysis of the soils used in this showed a wide variation in physical soil 

properties and glyphosate adsorption (Kf) values (Table 6, Appendix Table 1). The Kf values for 

glyphosate measured here encompass and extend the range of values previously reported in 

literature23-25. 
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Table 6: Distribution of soil properties (n=90) 

Property Min Max Mean SD Median 

pHWater 4.6 9.2 7.1 1.3 6.7 

Clay (%) 4.39 51.78 22.11 10.52 19.86 

TOC (%) 0.21 6.50 1.92 1.61 1.40 

 EC (dS/m) 0.04 0.56 0.16 0.10 0.15 

PBIColwell P  10.0 720.0 118.4 154.2 69.5 

Kf 4.56 186.11 42.19 43.16 29.37 

*SD = standard deviation, TOC = total organic carbon, EC = electrical conductivity, PBI = phosphorus buffering index 

Previous studies have shown that no single variable correlates with Kf strongly enough to 

suggest a single driving factor in glyphosate adsorption23-26. Univariate correlations of soil 

properties and respective adorption coefficients (Kf) for our dataset supported this notion 

(Appendix Table 3). However, high PBI and low pH appeared to be good predictors of an 

increased affinity for glyphosate adsorption. 

To further understand the MIR spectra and physicochemical attributes of these soils, MIR 

spectra of pure minerals commonly found in soil were also collected (Figure 9).  
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Figure 9: MIR spectra of mineral standards 

The spectral data did not reveal any obvious visual trends that could be readily assigned to 

relevant physicochemical properties or Kf values. However, inspection of the overlapped soil 

spectra (Figure 10) suggested that certain mineral components were more frequent in soils from 

particular locations, specifically kaolinite (bands around 3600-3700cm-1 region) and calcite 

(bands around 2500 cm-1) in a number of WA and SA soils, respectively.  
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Figure 10: Spectral data, normalised using standard normal variate (SNV) 

PCA models of the data revealed no spectral outliers based on a plot of Q-residuals against 

Hotelling’s T2, confirming that the entire database of 90 soils was suitable for the development 

of regression models (Figure 11).  PCA also showed some clustering along PC 3 according to the 

State from where the sample was collected, due to spectral bands associated with the 

aforementioned minerals as well as bands at 1504 cm-1 and 1346 cm-1. Although spectral bands 

associated with calcite peaks were present in a number of soils from SA, the even spread of SA 

across the PCA, implies a limited influence of calcite in describing the variation across the whole 

dataset, relative to the bands at 3695, 1346 and 1504 nm with higher loadings. . 

 

Figure 11: PCA scores plot (left) and the associated PC1 loadings (right) of the spectral database 

Kaolinite 

Goethite 

Calcite 
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Because glyphosate adsorption behaviour is strongly influenced by pH and soil mineralogy 

related to P-sorption15-18, initial modelling revolved around predicting soil pH and phosphorus 

buffer index (PBI) from MIR spectra as a “proof of concept”. These attributes were selected due 

to their role in glyphosate adsorption and previous reports demonstrating their amenability to 

MIR prediction30, 43-44. This proved successful, with pH and PBI models producing cross-validated 

R2 values of 0.824 and 0.848 respectively. These models also produced a relatively low error, 

with cross validated real mean squared error (RMSECV) scores of 0.53 for pH and 60.08 for PBI. 

By visual comparison with the spectra of the pure minerals, it appears calcite is positively 

correlated with pH, which is a helpful check, given the alkali nature of calcium carbonate. Janik 

and Skjemstad (1995)45 also reported a positive MIR loading between smectite-associate 

wavebands and pH, as well as negative MIR loadings between kaolin- and gibbsite- associated 

wavebands and pH smectite, but these relationships were not clear with our calibration set. 

Other authors have also shown that MIR predictions of pH are often related to other factors 

such as exchangeable cations, organic acids and/or carbonates (Minasny et al 200946; Reeves et 

al 201047), and these may confound any associations with standard mineral spectra. 
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Figure 12: Experimental vs predicted values (top) and PLS-R loadings (bottom) for pH predictions 

In contrast, some mineral assignments for PBI could be speculated (Figure 13) on the basis of 

additional information in additional latent variable loadings. Despite some overlap between 

mineral spectra, particularly kaolinite and gibbsite from 3500-3700 cm-1, there was a clear 

positive association of gibbsite with PBI appearing in the 3rd factor loading, and negative 

association of kaolinite in the 4th factor loading. A lack of spectral data for other minerals (e.g. 

quartz, other alumina-silicates) and various organic matter fractions prevent a more complete 

interpretation of the MIR loadings, but the seven reference minerals  included for reference 

here help to contextualise the existing knowledge of glyphosate and phosphate adsorption to 

soil minerals such as metal oxides48-51.  
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Figure 13: Experimental vs predicted values (top) and PLS-R loadings (bottom) for PBI predictions 

Based on the success of these two models (a high R2 in comparison to similar literature models30, 

43-44), a predictive model for glyphosate adsorption (Kf) was subsequently developed. A PLS-R 

based model for Kf provided good results, with cross-validated R2 and RMSECV values of 0.839 

and 17.34 mg kg−1 (L mg−1 )−1/nf respectively. These are at the higher end of previously reported 

values (E.g. r2 0.74-0.93) for similar MIR based models for prediction of herbicide adsorption25, 

31, 33. A clear gap is seen in the dataset seen between Kf values of 60 and 160, which leads to less 

reliable predictions in this region. However, the model overall is a strong proof of concept for 

the prediction of glyphosate adsorption coefficients in soil, and the framework would likely 

provide even greater results if the dataset were to be expanded to include a larger number of 

soil samples.  
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Figure 14: Predicted vs experimental values (top) and PLS-R loadings (bottom) for Kf predictions 

A particularly interesting feature of this model, is how closely the predictions and loadings 

resemble that of the PBI model. This further supports previous findings around the inherent link 

between glyphosate and phosphate adsorption in soil (Chapter 2). As with PBI, MIR loadings 

associated with soil kaolinite content (and hematite) appear negatively correlated with 

glyphosate binding. While it is possible that calcite also has a negative association with Kf, as 

appears to be the case with PBI (Figure 14), there is uncertainty due the overlap of goethite 

bands around wavelengths from 1650-1800 cm-1. There was a noticeable positive association of 

gibbsite on the loading scores of the glyphosate adsorption model, similar to the PBI models, 

evident in the 3700 and 1730 cm-1 regions. The apparent 0 loading of the peak at 1730 cm-1 is 

cause by overlap with the negatively associated goethite peak, and the overall assignment of 

gibbsite rather than montmorillonite was chosen due to the shape of the peaks at 3700 cm-1 in 

Montmorillonite 
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Hematite 

Goethite 
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combination with the presence of the peak at 1730 cm-1. Because the high Kf (Kf >150) soils used 

in this model are known to have a high gibbsite content, the model was rerun with these 

samples removed to check for any unnecessary model bias towards these soils and 

corresponding overestimation of gibbsite influence on adsorption of glyphosate. This model 

produced a cross-validated R2 of 0.567 and an RMSECV of 10.355 mg kg−1 (L mg−1 )−1/nf, and while 

there was a reduction in the magnitude of gibbsite related loading scores, they were by no 

means completely removed. This reduction in goodness-of-fit, along with apparent low level of 

biasing due to gibbsite, led to the original model including high Kf soils being considered the best 

choice. 

Finally, although no distinct bands were attributable to rutile, this may be due to a lack of rutile 

in the soils tested and/or the relative lack of features in the rutile MIR spectra. Further analysis 

of the soil database would be required to confirm this. Important bands appeared at 1485 cm-1 

in all three loadings, and 1361 cm-1 in pH, neither of which were assignable with any of the 

mineral spectra, and are likely to be due to inorganic carbonate and nitrate ions respectively52. 

The predictive model developed in this study has applications for improved management and 

risk assessment of soil glyphosate.  The rapid and inexpensive nature of MIR spectroscopy allows 

for a widespread application, including immediate sampling and analysis in the field. This in turn 

leads to far more spatially explicit development of management strategies of glyphosate usage, 

in particular around risks of leaching and persistence, providing both environmental and 

economic benefits. The model developed in this study shows improvements over similar 

previously reported models in the form of a larger database of soils, and improvements in 

goodness-of-fit. It also confirms the importance of certain minerals such as montmorillonite and 

gibbsite in the adsorption affinity of glyphosate for soils. 
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4.1 Abstract 

Adsorption of glyphosate on a series of model soil minerals, including metal oxides and fixed 

charge clay minerals, was studied in order to develop a greater understanding of the 

mechanisms controlling glyphosate adsorption, and therefore mobility, breakdown and 

bioavailability, in soils. While Langmuir isotherms described the experimental results well, 

dependency of the Langmuir maximum adsorption capacity of glyphosate on the pH of the 

system suggested sorption mechanisms beyond those assumed in the Langmuir model. A 

Frumkin-Fowler-Guggenheim adsorption model, taking into account coverage-dependent 

lateral interactions in the adsorbed phase, provided more rational assumptions and improved 

fits. A decrease in both the energy of adsorption and apparent maximum adsorption capacity 

with increasing pH across all minerals investigated suggests increasing electrostatic repulsion 

between glyphosate adsorbate molecules with pH, along with a decreasing electrostatic 

attraction for the charged surface. These results are valuable in understanding glyphosate 

behaviour in the environment, both in terms of the development of predictive models of 

glyphosate behaviour, and in understanding the impacts of various changes to agronomic soil 

procedures, such as liming and claying. 

4.2 Introduction 

Glyphosate (N-(phosphonomethyl)glycine) is the most widely used herbicide worldwide, and is 

considered to have a low-risk ecological profile compared with other commonly used herbicides. 

This is in part because of its low inherent toxicity to non-target organisms including soil biota1, 
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a relatively rapid breakdown rate, and a high adsorption affinity to soil2-4. However, glyphosate 

and its main breakdown product aminomethylphosphonic acid (AMPA) have recently been 

shown to be ‘pseudo-persistent’ in some soils due to the frequency of use outweighing the rate 

of breakdown, potentially leading to periodic accumulation in soil5. This pseudo-persistence 

may also increase the risk for off-site movement6. Recent surveys have frequently detected 

glyphosate in a wide variety of environments, including sediment7, water8, soil9, dust10 and 

rainwater11.  

Biological exposure to glyphosate is regulated by its persistence, mobility and bioavailability. 

These factors are, in turn, largely regulated by its adsorption to soil. Sorption can moderate the 

impacts of glyphosate by reducing its uptake by plants12, as well as influencing pathways for 

mobilization through the soil13-14, including its movement to waterways during a flooding event15. 

Sorption is also known to significantly affect the persistence of glyphosate in soil16.  

Glyphosate exists as a zwitterion in soil, with a negatively charged phosphonic acid and 

carboxylic acid group and a positively charged amine group, depending on the pH of the soil17. 

It primarily binds to amorphous soil minerals such as iron and aluminium oxides and 

hydroxides18. Soil pH and mineralogy therefore have a significant effect on binding, with lower 

adsorption generally observed at higher soil pH values19. This is thought to result from the 

change in surface charge on soil minerals, rather than the change in ionic form of glyphosate 

(pKa = 2, 2.6, 5.8 and 10.8, for protonation and deprotonation of the phosphate, amine and 

carboxylic acid groups, respectively), as glyphosate is negatively charged at pH above 2.617. Most 

metal oxides found in soil are positively charged at environmentally relevant pH, however, as 

pH increases, negatively charged sites may develop20. The binding of glyphosate to metal oxide 

surfaces has been shown to occur predominantly through the phosphonic acid functional group 

of the molecule21. As such, competition may occur between glyphosate and inorganic 

phosphate22-23. Soil-borne residues of glyphosate may be re-released by the addition of P 
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fertiliser, increasing the risk of herbicide injury in rotational crops in some soil types24-26, though 

previous work has suggested the rate of desorption is independent of the competing entering 

ligand27. Based on this binding through the phosphate head group, it is to be expected that 

glyphosate shows a high affinity for metal oxides, similar to phosphate28-29. 

Adsorption of anions such as glyphosate and phosphate to metal oxides has been modelled 

using a variety of isotherms, such as the Freundlich30 and Langmuir31 isotherms. However, as 

stated by Barrow (1999)32 “Neither of these is fully satisfactory because they do not apply over 

a wide sorption range and because they do not comply with the known characteristics of 

sorption”. As such, Barrow derived an equation that is functionally identical to the Frumkin-

Fowler-Guggenheim (FFG) isotherm32, as this allows for lateral interactions between adsorbate 

molecules, and for a changing energy of adsorption relative to fractional occupancy of the 

surface. All of the above isotherms work on the assumptions that adsorption occurs only in a 

monolayer on the surface, and that the surface is energetically homogeneous33. 

Due to the general paucity of information on the mechanisms in which glyphosate adsorbs to 

the various soil minerals, this study aims to develop an understanding of the sorption behaviour 

and mechanism as it relates to individual components in the soil, such as metal oxides and fixed 

charge clay minerals. Previous work conducted by the authors used a general additive model to 

predict glyphosate adsorption in soil. However, this statistical method based on empirical data 

did not allow an in-depth analysis of the physico-chemical mechanism of glyphosate interaction 

with individual components of the soil.  Mechanistic understanding of adsorption would allow 

for the improvement of regulatory procedures, and an understanding of the impact of 

agronomic soil management techniques, such as liming and “claying”, may have on herbicide 

behaviour. This information would also be essential as inputs for mechanistic models of the 

behaviour and fate of organic agrochemicals, like glyphosate in soil, based on frameworks such 

as ORCHESTRA34.  
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4.3 Materials and Methods 

4.3.1 Materials 

Goethite, kaolinite, hematite and rutile were purchased from Sigma Aldrich (Sydney, Australia), 

calcite was purchased from Pacific Water Technology (Brisbane, Australia), and Gibbsite was 

purchased from an independent minerals distributor, sourced originally from Copper Mountains, 

Box Elder, Utah, United States. All structures were confirmed using powder x-ray diffraction (D8 

Advance Eco, Bruker Corporation). 

14C labelled glyphosate (1.85 GBq mol-1) was purchased from American Radiolabelled Chemicals 

(Saint Louis, USA) and mixed with analytical grade unlabelled glyphosate (Accustandard, New 

Haven, USA) to produce seven one litre solutions of varying concentration (0.3, 1, 3, 9, 27, 100, 

500 and 1000 mg L-1; standard radioactivity of ~10 nCi per 5 ml for all concentrations). 

 

Figure 15: 14C Labelled Glyphosate 

4.3.2 Mineral Analysis 

Powder X-ray diffraction was performed using a D8 Advance Eco (Bruker Corporation), with a 

scanning angle from 5o to 70o, a step size of 0.019o (3335 steps total) and CuKα radiation. Spectra 

were compared to known database samples to confirm mineral identity. Braun-Emmett-Teller 

(BET) surface area was determined from N2 gas physisorption measurements with a 

Micromeritics 3Flex. Mineral samples were initially degassed under vacuum with moderate 

heating (50 oC) for 24-48 h then N2 gas sorption measurements conducted at 77 K at relative 

pressure (P/P0 , where p is the equilibrium pressure and P0 the saturation pressure of the dosed 

N2 at 77 K) values from ~0.07 to 0.2. BET surface area values were determined as the slope of 

the linear region of plots of 1/[Q(P0/P - 1)] vs P/P0, where Q is the amount of adsorbed N2 (mol 
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N2 g-1 sample). The mass of sample used during the physisorption measurements was 

determined using an analytical balance as the difference between the empty sample tube and 

the sample tube containing degassed sample. Surface area by methylene blue adsorption was 

conducted using the method outlined by Kipling and Wilson35 using methylene blue obtained 

from Sigma Aldrich. Scanning Electron Microscopy (SEM) was conducted using a Magellan 400 

FEGSEM. 

4.3.3 Glyphosate Adsorption 

Adsorption experiments were conducted with a 1:5 w/w soil-to-liquid ratio at seven 

concentrations of glyphosate (0.3, 1, 3, 9, 27, 500 and 1000 mg L-1) and at 3 pH values. One gram 

of mineral was placed in a 15 ml centrifuge tube, and the radiolabelled glyphosate in 0.05 M KCl 

solution (5 mL) was added. The solution was adjusted to pH 5, 7 or 9 with 0.5M KOH and HNO3. 

A KCl solution was used in order to reduce impacts of changing salt concentration during pH 

adjustment. Mineral-glyphosate mixtures were rotated end-over-end (33 rpm) at 22 oC for 24 

hours to allow equilibration, before being centrifuged at 2600 g for 20 min (Thermo Scientific 

Megafuge 8). The supernatant was removed and filtered through a 0.2 µm polyethylene (Merck) 

membrane to remove any remaining solid particles. The filtered supernatant (2 mL) was mixed 

with scintillation cocktail (18 mL, Optifluor, PerkinElmer) and the residual radioactivity 

determined by scintillation counting (Tricarb 2810, Packard). Previous experiments using CO2 

trapping had shown <1% mineralisation of glyphosate over 24 hours in the experimental 

conditions, and as such, this residual reactivity could be treated as a valid measure of glyphosate 

concentration in solution. 

The amount of adsorbed glyphosate was determined indirectly from depletion measurements 

by subtracting the equilibrium glyphosate concentration from initial glyphosate concentration. 

Controls conducted in the same manner without mineral material showed negligible (<0.1%) 

adsorption of glyphosate to the centrifuge tubes or filters.  
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Adsorption coefficients were calculated using the Langmuir isotherm (Equation 1):  

𝜃

1 −  𝜃
 = 𝐾𝐿𝐶 (1) 

where C is concentration of glyphosate in solution (µg ml-1), KL is a constant describing the 

energy of adsorption and θ is the fractional surface coverage, calculated as (Equation 2): 

𝜃 =  
𝑞

𝑞𝑚𝑎𝑥

(2) 

Where q is the concentration of glyphosate adsorbed to the mineral component (µg g-1) and 

qmax is the maximum adsorption density. 

The Frumkin-Fowler-Guggenheim (FFG) adsorption model36-37 was also used to describe and 

analyse the adsorption behaviour of glyphosate (Equation 3): 

𝜃

1 −  𝜃
 𝑒𝑏𝜃 = 𝐾𝐹𝑟𝐶 (3) 

In this equation b is a term accounting for the lateral interaction between adsorbed species, and 

KFr is a constant describing the energy of adsorption. The use of a FFG adsorption model requires 

an initial maximum adsorption to be determined before other variables (b and KFr) can be 

calculated. The maximum adsorption was therefore estimated by using the maximum 

adsorption case observed during trials (goethite, pH 3.5), an extremely high concentration of 

glyphosate (5000 µg ml-1) and solving for the Langmuir parameters (equivalent to FFG at b = 0). 

This was then determined to be reasonable based on geometric considerations shown in the 

results and discussion section.  The full concentration range was used for all calculations. 

4.4 Results and Discussion 

Adsorption trials using goethite and a 5000 ug ml-1 glyphosate solution at pH 3.5 gave a 

maximum observed adsorption of ~715 µg/m2 after normalisation based on surface area (53.1 

m2 g-1), allowing usage with all tested minerals. This spatial view of adsorption maxima may be 
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taken due to the assumed homogeneous nature of the chemical structure of the mineral 

surfaces, which would lead to the number of possible “binding sites” well exceeding the spatial 

potential for adsorption. This is equivalent to 4.23 x 10-6 mol/m2, which is equivalent to 2.55 x 

1018 molecules/m2. Thus the surface coverage area of a glyphosate molecule in the adsorbed 

state is about 40 Å2, which is similar to a theoretical total possible maximum value of 175 Å2 

calculated via geometrical considerations of the adsorbed glyphosate molecule (Appendix 

Figure 2).  

Allowing for the rotation of other bonds within the molecule, the deprotonation of the 

carboxylic acid group and the statistical likelihood of two tails being in the same place along 

the arc such that they intercept, 40 Å appears to be a realistic spacing. 

Surface area results are shown in Table 7. The observed surface area of gibbsite based on BET 

seemed exceedingly high, particularly given its relatively low adsorption of glyphosate in early 

adsorption experiments, and its surface area was determined by methylene blue adsorption 

from solution. In non-porous materials, methylene blue produces surface area measurements 

within 40% of the BET measurement, however tends to give much lower values in porous 

materials38. Scanning electron microscopy (SEM) was used to explore the discrepancy between 

the two measurements, where BET provided a surface area three times greater than that 

derived from methylene blue adsorption. This showed the gibbsite structure to be composed of 

platelets and hollow needles, with an interior diameter of 6-8 nm (Figure 16). It is unlikely that 

the charged glyphosate molecules will enter the hollow needles of the gibbsite due to both 

spatial (size of the glyphosate molecule) and entropic considerations. A similar phenomenon is 

expected to occur for the large methylene blue molecules and, as such, for further analysis, the 

methylene blue value for surface area was taken as the “effective” surface area available for 

glyphosate adsorption.  
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Table 7: Surface area of minerals by BET (all excluding gibbsite) or methylene blue adsorption (gibbsite) 

Mineral Surface Area (m2 g-1) 

Calcite 0.33 

Gibbsite 51.3 

Goethite 7.0 

Hematite 9.7 

Kaolinite 8.3 

Rutile 23.9 

 

 

Figure 16: SEM images of gibbsite surface 

Data from the adsorption experiments were fitted using the Langmuir equation, leading to close 

fits, shown in Appendix Table 4. However, this produces qmax values showing significant variation 

with pH. This change in apparent qmax is physically unrealistic, as all minerals tested (excluding 

calcite) are stable across the pH range used, and thus should not experience significant physical 

changes due to pH. This means that the geometrically determined maximum adsorption should 

remain steady, and only the energy of adsorption should show significant variation, due to 

changes in surface charge of the mineral. Thus it is expected that all isotherms at different pH 
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values would converge to the same plateau of maximum adsorption. This is however, not what 

is observed. While the Langmuir equation provides a useful tool for initial analysis of these 

results (R2 > 0.9 in most cases, Appendix Table 4), it does not account adequately for all 

interactions occurring in the adsorption process, as it assumes a consistent energy of adsorption 

independent of the level of occupancy on the surface.  

While both Langmuir and FFG isotherms allow for changes in attraction of the adsorbate to the 

adsorbent surface (in this case likely due to variations in electrostatic attraction/repulsion), the 

variation of apparent maximum adsorption with pH suggested there to be lateral interactions 

between the adsorbate molecules. This prevents a spatial saturation being reached at the 

solution concentrations investigated (spatial saturation would likely require an unachievable 

“infinite” concentration). To account for lateral interactions in the adsorbed phase, the FFG 

equation was applied. This leads to a lower “apparent” qmax with decreasing pH, while still 

allowing maximum adsorption to be spatially defined. When defining a system by the FFG 

equation, it is possible to reach a point where, due to lateral repulsion, it is increasingly 

unfavourable for further adsorption to occur despite an increasing concentration of adsorbate. 

An example of comparison of the fit of a Frumkin-Fowler-Guggenheim isotherm to the data 

against the Langmuir isotherm is shown in Figure 17. The use of a FFG isotherm shows a slower 

filling of adsorption sites, and a plateau is not reached as rapidly. It should be noted that the 

isotherms shown in Figure 17 are based on data that only takes into account adsorption for 

solution concentrations up to 1000 ug ml-1, while adsorption experiments were conducted up 

to a 5000 ug ml-1 solution concentration. As such, the plateauing of the Langmuir isotherm 

shows that it does not fit for the true potential adsorption capacity when using data that does 

not reach this point, while the FFG has already accounted for this, while allowing for the 

possibility of other phenomena leading to a different “apparent” maximum.  
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Figure 17: Langmuir and Frumkin-Fowler-Guggenheim isotherms of glyphosate adsorption on Goethite 
at pH 3.5 

The results of FFG isotherm fitting for all minerals, using this experimentally determined qmax, 

can be seen in Table 8 and Figure 18. 

Table 8: Fitted Frumkin-Fowler-Guggenheim Isotherm Values 

Mineral KFr b R2 

 Acid Neutral Basic Acid Neutral Basic Acid Neutral Basic 

Calcite* N/A 0.56 0.38 N/A 7.00 3.98 N/A 0.87 0.93 

Gibbsite N/A 0.003 0.004 N/A 66.7 85.3 N/A 0.78 0.90 

Goethite 0.023 0.034 0.029 0.81 3.40 32.6 0.26 0.97 0.99 

Hematite 0.013 0.026 0.009 23.6 53.7 102.7 0.97 0.99 0.93 

Kaolinite 0.013 0.011 0.003 25.8 31.7 38.5 0.97 0.98 0.92 

Rutile 0.007 0.008 0.006 0.45 4.88 34.9 0.09 0.85 0.99 

*Calcite adsorption not performed below pH 7 due to dissolution of calcite 
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Figure 18: Fitted Frumkin-Fowler-Guggenheim isotherms of various minerals 

A decrease in pH resulted in increased b values (Table 8) across all minerals. This is well visually 

represented in Figure 18, with higher “apparent” maximum adsorption at lower pH. Also worth 

noting is the varying scales of each set of isotherms. While the increased adsorption to rutile 

may be explained by a much larger surface area, the significantly lower adsorption to hematite 

and kaolinite when compared to goethite cannot be explained this way. Similarly, kaolinite 

shows a much smaller relative change in adsorption for changing pH than other minerals.  

This decreasing b with pH can be ascribed to an increase in electrostatic repulsive forces 

between glyphosate molecules with increasing pH, as there is an increasing level of 

deprotonation of the adsorbate molecules17, 33. Kaolinite, being a fixed charged mineral, showed 

a significantly lower change in b across the pH range when compared to the variable charge 

metal oxides. This suggests that b is related not only to lateral interactions of the adsorbate, but 

also the charge and charge adaptation of the adsorbent, as was shown to be the case for the 

adsorption of organic cations onto charged silveriodide by de Keizer and Lyklema (1980)33. Thus 
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the electrostatic component of the energy of adsorption appears determined by a balance of 

repulsion between adsorbate molecules, and attraction of the adsorbate to the adsorbent 

surface. Rutile and goethite in particular show a significant change in the b term as pH shifts 

from 7 to 9. This is likely due to a reversal of the charge sign upon passing through the point of 

zero charge of the mineral, altering the attraction of the adsorbed glyphosate molecules. In 

order to further analyse the electrostatic component of b, detailed double layer studies would 

be required39. For the present purpose, it suffices to conclude that lateral interactions in the 

adsorbed phase play a crucial role in determining the adsorbed amounts of glyphosate onto 

oxides. 

Similarly, the observed change in apparent maximum adsorption may be explained by the 

increasing repulsion between the adsorbent molecules (all negatively charged, in most cases 2-). 

As b approaches 0, there is a marked reduction in goodness-of-fit (R2) for both rutile and 

goethite. While this is mostly an artefact due to saturation not being reached in the case of rutile 

(and thus an artificially low R2, despite the good fit of the isotherm to the data), with a maximum 

adsorbed concentration of 4716 µg g-1 being reached.  This is significantly less than the 

theoretical maximum of 8613 µg g-1 (based on surface area of the sample), and as seen in Figure 

19, does not fall far outside of the linear range of adsorption. This low level of surface saturation 

is unlikely to be the reason for the poor goodness-of-fit for goethite, as the adsorbed 

concentrations reached are much closer to the assumed maximum adsorption capacity. This 

case may be ascribed to a number of factors, most likely to electronic repulsion becoming a 

negligible factor, other factors such as surface topology which influence adsorption behaviour, 

that are not accounted for by our isotherm model, become increasingly important.  A second 

possible reason is that the chosen adsorption maximum may not in fact be the “real” adsorption 

maximum (and is not close to it), and glyphosate takes up less space than assumed. The most 

likely cause of this discrepancy is the assumption that goethite at pH 3.5 represents a b = 0 

scenario. The other possible cause is that due to the impossibility of using an “infinite” 
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glyphosate concentration, a true qmax is never reached in adsorption experiments. Given its 

extremely high experimental capacity for glyphosate, in light of potential practical agricultural 

issues further investigation of the goethite-glyphosate system is warranted, particularly around 

the physical nature of the goethite sample used and its relevance for soil samples. 

 

Figure 19: Adsorption of glyphosate to rutile at pH 5.6 (unfitted) 

Calcite shows a decrease in b with decreasing pH, in contrast to the other minerals investigated. 

The reason for this likely lies in the increased solubility of calcite with decreasing pH, which 

produces a secondary effect on adsorption capacity, in the form of reduced surface area, that 

cannot be disentangled from the primary pH effect discussed above. It should also be noted that 

P-XRD experiments showed that along with (or perhaps instead of) surface adsorption, 

glyphosate and calcite react to form a calcium-glyphosate complex that is chemically similar to 

calcium phosphate. Figure 20 shows the overlap of the diffraction patterns of calcium phosphate 

and the resulting material from calcium glyphosate adsorption trials, both of which are distinct 

from the original calcite material. This suggests glyphosate-on-calcite adsorption will not follow 

the same spatially constrained adsorption rules that govern surface adsorption for the other 

minerals investigated here.  
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Figure 20: Powder X-Ray diffractogram of calcite (black), calcium phosphate (blue) and calcium 
glyphosate (red) complex 

Gibbsite presents an interesting phenomenon. While adsorption was higher at pH 5 than pH 7 

and 9 as with the other metal oxides, an FFG isotherm was not a good fit for this data at low pH. 

However, unlike rutile and goethite where this was due to saturation not being reached 

producing a low R2 despite the closeness of fit of the FFG to the data, instead gibbsite presented 

a phenomenon where the fraction of added glyphosate adsorbed increased at high 

concentrations. This is illustrated in Figure 21, where the log scale isotherms of hematite and 

gibbsite at pH 5 are both presented. The hematite isotherm shows the “typical” FFG case, where 

there is a linear region, followed by a reduction in the slope of the isotherm as saturation is 

approached. The gibbsite isotherm however, shows a slight decrease in slope, followed by a 

“second stage” where the slope once again increases. This is possibly related to the porous 

nature of the mineral, with high concentrations of glyphosate leading to higher levels of entry 

into the hollow needle structure, due to a higher chemical potential (concentration) of 

glyphosate in solution. At higher pH it is likely that due to the more negative charge of the 

mineral surface (both of the exterior and interior structure surfaces) and the glyphosate 

molecule, adsorption inside the pores is unfavourable due to electrostatic repulsion, even at 
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high concentrations. Thus leading to adsorption only occurring on the exterior of the structure, 

following a more traditional mode of adsorption. 

   

Figure 21: Adsorption of glyphosate to hematite and gibbsite at pH 5 (log10 scale) 

This study serves as an important comparison of the Langmuir and FFG isotherms as tools for 

studying these model environmental systems. Langmuir and Freundlich isotherms have been 

ubiquitous in the study of soil systems, however this study hopes to show power and utility of 

the Frumkin-Fowler-Guggenheim adsorption model, and its ability to increase our 

understanding of adsorption processes in (variably charged) systems of practical importance in 

soil chemistry. It also shows the high adsorption affinity of glyphosate for these metal oxide 

systems, and the high capacity they have for glyphosate adsorption to the surface, and how this 

may be mitigated by lateral interations of the adsorbate molecules. A lack of further work into 

the relationship of the surface charge of these minerals to pH makes it difficult to draw 

conclusions on the impacts of electrostatic interactions between the adsorbate and adsorbent 

surface. Despite this limitation, the study remains extremely useful for use in soil science for 

better understanding the behaviour of glyphosate in the field, and its impacts for agricultural 

practice. 
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5.1 Abstract 

Glyphosate has been shown to desorb from soil upon the addition of phosphorus fertiliser, 

increasing its mobility and bioavailability. Little is known about the mechanisms of glyphosate 

desorption, particularly in the presence of competing ligands. We measured the release of 

glyphosate from a series of soil minerals and observed significant hysteresis, particularly for 

glyphosate sorption to metal oxides, over a practically relevant timescale (24 hours). Coulombic 

screening of charges by salts in solution lead to greater release of glyphosate from these 

minerals than occurs in pure water. Significant competition between glyphosate and phosphate, 

which binds more strongly to these minerals, was observed. The reduced level of hysteresis 

when phosphate was introduced suggests a dynamic adsorption/desorption equilibrium of 

glyphosate to the mineral surface, which leads to a displacement of glyphosate by phosphate, 

which has a higher binding affinity adsorbent. There is also a significantly reduced level of 

glyphosate adsorption to mineral surfaces previously exposed to phosphate. This has 

implications for the management of glyphosate and fertilisation regimes, as the altered 

adsorption and release levels are likely to have impacts on the bioavailability of the herbicide, 

and present a potential cause of injury in later crop rotations in soils which have high levels of 

glyphosate persistence, or in systems where high, repeated dosages of glyphosate are used. 



82 
 

5.2 Introduction 

Glyphosate (N-(phosphonomethyl)glycine) is the most widely used herbicide both in Australia 

and globally1. It has previously been considered to have a relatively low ecological risk profile2, 

owing to its low mobility3, rapid breakdown rate, and low toxicity to non-target organisms4. 

However, recent studies have shown glyphosate to be “pseudo-persistent” due to the dose and 

frequency of application surpassingthe rate of breakdown, leading to periodic accumulation in 

the soil5. Glyphosate has been detected in several environmental compartments including 

waterways6, soil7, dust8, sediment and rainwater9. Recent work has also demonstrated the 

possibility of glyphosate release upon P fertilisation10. Remobilisation of glyphosate can lead to 

increased risk of herbicide injury in later crop rotations11 and also  movement of glyphosate off-

site12.  

Availability of glyphosate for plant uptake and microbial degradation is heavily regulated by its 

adsorption properties to soil, which in turn has impacts on the mobility of the herbicide, through 

altering uptake by plants13 and pathways for mobilization through the soil14-15. Sorption and 

availability are also known to have impacts on the persistence of glyphosate16.  

Glyphosate exists as a zwitterion in soil, with a negatively charged phosphonic acid and 

carboxylic acid group and a positively charged amine group, depending on the pH of the soil17. 

It primarily binds to amorphous soil minerals such as iron and aluminium oxides and 

hydroxides18. Soil pH and mineralogy therefore have a significant effect on binding, with 

adsorption decreasing as pH increases19. This is mainly due to the change in surface charge on 

soil minerals, rather than the change in ionic form of glyphosate (pKa = 2, 2.6, 5.8 and 10.8, 

occurring due to protonation and deprotonation of the phosphate, amine and carboxylic acid 

groups), as glyphosate is negatively charged at pH above 2.617. Most metal oxides found in soil 

are positively charged at environmentally relevant pH, however, as pH increases, negatively 

charged sites may develop20. The binding of glyphosate to metal oxide surfaces has been shown 
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to occur predominantly through the phosphonic acid functional group of the molecule21. As such, 

competition may occur between glyphosate and inorganic phosphate22-23. Soil borne residues of 

glyphosate may be re-released by the addition of P fertiliser, increasing the risk of herbicide 

injury in rotational crops in some soil types10-11, 24, though previous work has suggested the rate 

of desorption is independent of the competing entering ligand25. Based on this binding through 

the phosphate head group, it is to be expected that glyphosate shows a high affinity for metal 

oxides, similar to phosphate26-27.  

As such, a greater understanding of the effect of soil conditions, such as ionic strength and 

competition with other common soil ligands such as phosphate, is important to understanding 

the mobility and bioavailability of glyphosate in soil. This work systematically explored the 

release of glyphosate from soil minerals under various conditions. In particular, it explored the 

relationship between glyphosate and phosphate adsorption, with the aim to develop further 

understanding of the impacts of fertilisation on soils which may have high levels of glyphosate 

adsorption and persistence. 

5.3 Materials and Methods 

5.3.1 Materials 

Goethite, kaolinite, hematite and rutile were purchased from Sigma Aldrich (Castle Hill, NSW, 

Australia), calcite was purchased from Pacific Water Technology, and gibbsite was purchased 

from an independent minerals distributor, sourced originally from Copper Mountains, Box Elder, 

Utah, United States. Powder X-ray diffraction was performed using a D8 Advance Eco (Bruker 

Corporation), with a scanning angle from 5o to 70o, a step size of 0.019o (3335 steps total) and a 

CuKα radiation. Spectra of the minerals were compared to known database samples to confirm 

mineral identity.  

14C labelled glyphosate (1.85 GBq mol-1) was purchased from American Radiolabelled Chemicals 

(Saint Louis, USA) and mixed with analytical grade unlabelled glyphosate (Accustandard, New 
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Haven, USA) to produce seven one litre solutions of varying concentration (0.3, 1, 3, 9, 27, 100, 

500 and 1000 mg L-1, standard radioactivity of ~10 nCi per 5ml for all concentrations). All other 

materials were purchased from Sigma Aldrich. 

 

Figure 22: 14C Labelled Glyphosate 

5.3.2 Adsorption of Glyphosate 

Adsorption experiments were conducted with a 1:5 w/w soil-to-liquid ratio at seven 

concentrations of glyphosate (0.3, 1, 3, 9, 27, 500 and 1000 mg L-1). One gram of mineral was 

placed in a 15 ml centrifuge tube, and the radiolabelled glyphosate in DI water or 0.05 M KCl 

solution (5 g) was added and the overall mass of centrifuge tube and contents recorded. 

Mineral-glyphosate mixtures were rotated end-over-end (33 rpm) at 22 oC for 24 hours to allow 

equilibration, before being centrifuged at 2600 g for 20 min (Thermo Scientific Megafuge 8). The 

supernatant was removed and filtered through a 0.2 µm polyethylene (Merck) membrane to 

remove any remaining solid particles. An aliquot of the filtered supernatant (2 mL) was mixed 

with scintillation cocktail (18 mL, Optifluor, PerkinElmer) and the radioactivity determined by 

scintillation counting (Tricarb 2810, Packard). Previous experiments (data not shown) of trapped 

CO2 had shown <1% mineralisation of glyphosate over 24 hours in the experimental conditions, 

and as such, this residual reactivity could be treated as a valid measure of glyphosate 

concentration in solution. In this experiment, pH was measured but not altered, and followed 

that expected from prior experiments conducted in Chapter 4.  

The amount of adsorbed glyphosate was determined indirectly by subtracting the final from the 

initial glyphosate concentration. Controls conducted in the same manner without mineral 

material showed negligible (<0.1%) adsorption of glyphosate to the centrifuge tubes or filters.  
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Adsorption coefficients were calculated using the Langmuir isotherm, where C is concentration 

of glyphosate in solution (µg ml-1) and q is the concentration of glyphosate adsorbed to the 

mineral component (µg g-1),  

𝜃

1 −  𝜃
 = 𝐾𝐿𝐶 (1) 

The fractional surface coverage θ is calculated as 

𝜃 =  
𝑞

𝑞𝑚𝑎𝑥

(2) 

Where qmax is the maximum adsorption density and KL is a constant describing the energy of 

adsorption. The same experiments were also performed using soil minerals which had been pre-

saturated with phosphate by undertaking the same adsorption procedure 1 g of material in 5 g 

of K2HPO4 solution (1000 mg L-1 P).  

5.3.3 Desorption of Glyphosate 

After centrifugation and removal of supernatant, fresh deionised (DI) water, 0.05M KCl solution 

or K2HPO4 (10, 100, or 1000 mg L-1 P), was added to return the vessel to the initial recorded mass 

(4.8 ml added on average). This mixture was then vortexed to disperse the mineral material in 

solution, and then rotated end-over-end (33 rpm) at 22 oC for 24 hours. Suspensions were 

centrifuged at 2600 x g for 20 min (Thermo Scientific Megafuge 8) and the supernatant removed 

and filtered through a 0.2 µm polyethylene (Merck) membrane to remove any remaining solid 

particles. Glyphosate concentrations in the supernatant were determined by the same methods 

as for adsorption experiments. 

5.3.4 Phosphorus Analysis 

Phosphate adsorption measurements were conducted in the same manner as glyphosate 

adsorption experiments, with K2HPO4 solutions (0, 10, 100, 500 and 1000 mg L-1 P equivalent) in 

place of glyphosate. Concentration of phosphate in the supernatant after equilibration was 
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measured using a colorimetric method based on the Colwell P method as described in Rayment 

and Lyons (2010)28, with solutions being diluted in 0.5M NaHCO3 to be below 1 mg L-1 P prior to 

analysis. The mixed colour reagent was produced by the following method:  (NH4)6Mo7O24.4H2O 

(12 g) was dissolved in 400 mL H2O, and added to H2SO4 (540 mL, 4.7 M). The resulting mixture 

was cooled before addition of KSbO.C4H4O6 solution (0.267 g in 100 mL H2O). For every 100 ml 

of mixed colour reagent required, L-ascorbic acid (1.067 g) was added to 100 ml of the previous 

solution. K2HPO4 standards (0, 0.2, 0.4, 0.6, 0.8 and 1 mg P L-1) in 0.5M NaHCO3 were produced. 

All samples and standards (1 mL) were neutralised with two additions of H2SO4 (70 µL, 2M) ten 

minutes apart in an Eppendorf tube, and left open overnight. Mixed colour reagent (320 µL) was 

added and the Eppendorf tubes shaken to mix. Aliquots (162 µL) were taken and placed in a 

microwell plate before being diluted with H2O (88 µL). Readings were taken 15 minutes after 

dilution, to allow for colour development, using a Multiskan GO spectrophotometer (Thermo 

Scientific) at 650 nm. 

5.4 Results and Discussion 

5.4.1 Adsorption of Phosphate and Glyphosate 

Adsorption of phosphate to the soil minerals was similar to glyphosate adsorption (Table 9), 

with goethite and rutile producing the highest levels of adsorption and calcite the lowest. P 

sorption onto both rutile and goethite did not reach saturation, with tested concentrations 

remaining in the linear region of adsorption. Calcite and gibbsite had a higher relative maximum 

adsorption capacity for P over glyphosate than other minerals (excluding rutile and goethite), 

with 7 and 5 fold higher maximum P adsorption respectively. Adsorption to calcite by both 

adsorbates is driven by complexation reactions, leading to the conversion of calcium carbonate 

to calcium phosphate29 or calcium-glyphosate (Chapter 4). The greater adsorption of phosphate 

compared to glyphosate is likely due to a higher Gibbs free energy of this complexation reaction 

(as seen by the change in KL, Table 9), perhaps in combination with the relatively smaller size of 
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the phosphate ion, allowing it access to a greater area of the calcite for reaction. This smaller 

cross sectional size is most likely the cause of the increased adsorption on gibbsite, as phosphate 

is far more likely to be able to access the hollow needles and platelets of the gibbsite structure 

(Chapter 4), leading to a higher effective surface area for adsorption. The relative binding of 

phosphate versus glyphosate onto hematite and kaolinite was more modest (2x and 3x, 

respectively) than other minerals, again likely due to the difference in surface area occupied by 

molecules of the adsorbates. This variation in adsorption capacity differences for glyphosate 

and phosphate is consistent with similar findings from Gimsling and Borggaard (2007)30. 

However, they also showed modest changes in the adsorption energy of the reaction, with a 

~3x lower KL indicating phosphate to be more strongly bound to the mineral surface than 

glyphosate. This may be due to charge differences in the phosphate and glyphosate molecules, 

or steric considerations. Similar differences were seen in the adsorption energy for goethite and 

rutile. 

Table 9: Maximum adsorption of glyphosate and phosphate to soil minerals 

Mineral Maximum adsorption (ug/g) Binding affinity (KL or Kd) 

Glyphosate Phosphate Glyphosate Phosphate 

Calcite 196 1458 0.285 0.0479 

Gibbsite 362 1807 0.366 0.0285 

Goethite 4250 N/A* 102.9^ 239.4^ 

Hematite 696 1454 0.187 0.059 

Kaolinite 952 3056 0.067 0.0193 

Rutile 5556 N/A* 137.3^ 191.7^ 

* Saturation point not reached, thus maximum adsorption could not be determined 

^ Kd values presented due to phosphorus saturation not being reached in these experiments, thus 

producing a poor Langmuir fit  
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5.4.2 Desorption in Pure Water 

Stepwise desorption of glyphosate from the preloaded minerals varied considerably, with 

release of between 0.05 and 15% of glyphosate from the adsorbent with each addition of clean 

solution or “desorption step” as shown in Figure 23. While desorption from a mineral was 

generally within the same order of magnitude across  desorption steps, there was still a large 

variability, such as in gibbsite where a minimum release of 0.57% and a maximum release of 8.7% 

of adsorbed glyphosate was observed. The most significant hysteresis was observed in goethite 

and rutile, and the least significant in kaolinite and hematite. While there was variability in the 

desorption levels, there was not a consistent decreasing trend in the level of glyphosate 

desorbed with each fresh addition of desorption solution. This suggests variability is not due to 

altering energy levels of adsorption to the surface, which is consistent with the idea that the 

surface is homogeneous, and that any variation in the energy of adsorption is related only to 

the fractional occupancy of the surface, and not the specific binding site.  

 

Figure 23: Cumulative desorption of glyphosate from soil minerals in DI water 

5.4.3 Desorption in KCl Solution 

Experiments in a 0.05M KCl solution had limited effect on the initial adsorption of glyphosate 

compared with water, with less than 5% difference in the initial adsorbed amounts between the 

two solutions for all minerals investigated. The exception was calcite, where initial adsorption 
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was 19% lower in KCl, likely due to the greater solubility of calcite in the KCl solution as 

compared to DI water. However, these experiments produced a much less variable desorption 

over each step, when compared to DI water which can be seen in Figure 24. Calcite showed a 

significantly higher glyphosate desorption in the KCl solution, possibly due to an increased 

solubility of the calcite-glyphosate complex (as explored earlier in this chapter) in this solution. 

This increase in desorption is likely due to the effect of coulombic screening by the salt ions, 

reducing the attraction of glyphosate to the mineral surface. Goethite, rutile and gibbsite 

released a greater amount of glyphosate in the KCl solution than water, with a large initial 

desorption step, followed by much smaller levels of desorption (e.g. Goethite releases 25% of 

adsorbed glyphosate on the first addition of KCl, followed by a consistent 2% release with each 

of the next three additions; Figure 25). This suggests that, contrary to what was suggested by 

the observed DI water results, there may be two distinct energy levels at which glyphosate is 

adsorbed to these metal oxides: one loosely bound and easily released, and the other more 

strongly bound and thus more likely to experience significant hysteresis. A possible reason for 

this may be that glyphosate does not adsorb in a single monolayer, but forms a bilayer system, 

or that adsorption is not constant across the surface due to non-homogeneous topology leading 

to edge effects. It could also be that this at least in part is a kinetic effect rather than genuine 

thermodynamic hysteresis, and that given a sufficient equilibration time, larger levels of 

glyphosate would desorb from the goethite surface. However, assuming a linear release over 

time, the 24 h equilibration time means that this hysteresis is occurring on a practically relevant 

timescale. This is an important phenomenon when considering the release of previous 

glyphosate applications in soils (upon fertilisation or increased rainfall). Particularly of note is 

the impact of the KCl solution, suggesting any fertilisation (or other increase in salt 

concentration in the soil) may have some effect, not just phosphorus fertilisation. While this 

effect is unlikely to be as significant as the addition of phosphate, which is in direct competition 

for the same binding sites, it may not be negligible.  
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Figure 24: Cumulative desorption of glyphosate from soil minerals in KCl solution 

Kaolinite also shows an increase in levels of glyphosate release, however once again the 

desorption was less variable, with a consistent release of 15-20% of adsorbed glyphosate with 

each KCl addition. The outlier in this set was hematite, which saw a decrease in variability, but 

also in overall desorption. This change involved going from a variable 2-10% release with each 

step (Figure 23), to a constant 5% release (Figure 24). This is particularly interesting given the 

significant differences from the other metal oxide minerals, and in particular goethite, another 

iron oxide. 

 

Figure 25: Comparison of desorption of glyphosate from goethite (left)) in H2O and KCl 
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5.4.4 Competition between Glyphosate and Phosphate 

For desorption studies of glyphosate in a phosphate solution, a potassium phosphate (dibasic) 

solution was used with an adjusted concentration of 1000 mg/L of P. This high concentration is 

to mimic localised P concentrations in soil after banding with super phosphate fertiliser31. Under 

these conditions, release of glyphosate from all soil minerals increased significantly (Figure 26). 

In the case of hematite, the release during the initial desorption step was about 15 fold higher 

than the comparable KCl desorption (5.4% released in KCl, and 81.3% released in potassium 

phosphate solution). Given the concentration of the potassium phosphate solution is 0.032M, 

this cannot be explained solely by electrostatic screening effects. This suggests that phosphate 

ions occupy the same binding sites on these minerals as glyphosate, but with a much higher 

binding affinity. This addition of phosphate also leads to a much more consistent release of 

glyphosate, rather than the initial large release followed by much lower release steps, as 

previously observed for goethite, gibbsite and rutile. While this effect is still present, it is less 

pronounced, as illustrated by the adsorption desorption isotherm of glyphosate to goethite 

presented in Figure 27, with continued release of glyphosate, rather than the almost complete 

hysteresis seen in Figure 25. 

 

Figure 26: Cumulative desorption of glyphosate from soil minerals with potassium phosphate solution 
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Figure 27: Desorption of glyphosate from goethite in the presence of phosphate 

To demonstrate this use of the same binding sites, and probe the possibility of a “sharing” of 

the mineral surface, different concentrations of potassium phosphate solutions were added to 

minerals that had “pre-adsorbed” glyphosate, the results of which are shown in Figure 28. This 

proved extremely interesting, as it demonstrated that phosphate would preferentially adsorb 

to “open” binding sites prior to competing with glyphosate, as this is the energetically 

favourable scenario. 
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Figure 28: Desorption of glyphosate from non-saturated goethite (top) and hematite (bottom) surfaces 
in different concentrations of potassium phosphate 

The “lag” seen in the 100 mg L-1 P and 10 mg L-1 P potassium phosphate solutions prior to 

glyphosate release in goethite and hematite respectively are likely caused by this 

phenomenon, with the surface becoming saturated with P in the initial step, followed by a 

desorption of glyphosate upon the addition of a phosphate beyond this level. The lower 

concentration of phosphate required for this to occur in hematite matches with the lower 

adsorption capacity of hematite for phosphate and glyphosate 

This is further illustrated by Figure 29, which shows the desorption of glyphosate by entering 

phosphate ligands from the same goethite surface, however in this case the surface is 

completely saturated with glyphosate prior to the addition of phosphate. In this scenario, a 
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significantly lower “lag” is seen in the desorption with 100 mg L-1 P potassium phosphate 

solution, as there are almost no free adsorption sites for the phosphate to occupy prior to 

competition with glyphosate. It should be noted, that the extremely low levels of desorption in 

10 mg L-1 P phosphate solution, and the apparent acceleration of glyphosate release in the 

second addition of 100 mg L-1 suggests that the surface was not completely saturated by 

glyphosate after the initial adsorption step. 

 

Figure 29: Desorption of glyphosate from a saturated goethite surface in different concentrations of 
potassium phosphate 

This finding has implications for the continuous additions of phosphate fertiliser in soil, 

suggesting that glyphosate release may occur only after multiple rounds of fertilisation, 

depending on the levels of fertiliser applied, the glyphosate/phosphate adsorption capacity of 

the soil, and this initial rate of glyphosate application. There are also implications for the method 

of phosphorus fertilisation, due to the variation in localised concentration of P, particularly in 

practices using fertiliser “banding”, where it would be feasible to give rise to a continuous 

release of glyphosate, as the phosphate leaches from the initial point of application to the 

surrounding soil. 
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5.5 Conclusion 

The factors impacting release of glyphosate from soil minerals, including coulombic screening, 

and in particular the competition with phosphate ions, have significant implications for 

agronomic practices using banding of P fertiliser. The timing of application of both herbicide 

treatments and fertilisers, as well as the method by which phosphorus fertiliser is applied both 

have the potential to alter the rate of future release of glyphosate and the unintended 

consequences this may have for crop production or off site movement of glyphosate. The varied 

levels of hysteresis observed between the desorption in KCl solution and K2HPO4 solution 

suggest a practical risk of release of previously unavailable, bound glyphosate, and the 

possibility of herbicide injury in later crop rotations due to this. 
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6.1 Abstract 

Current assessments for herbicide residues in soil rely on total extractable herbicide, and do not 

distinguish between “bound” and “available” herbicide. This availability for plant uptake is 

dependent on a wide range of factors including solubility, adsorption and soil characteristics 

such as water holding capacity, and as such cannot be determined by any single factor. Diffusive 

Gradient Thin Films (DGT) have been recently studied as a method for determining plant 

available herbicide in soil, due to the passive nature of their uptake, mimicking plant roots. To 

date, limited studies have directly compared uptake of DGTs to the uptake of plant systems. 

This study compares the uptake of imazamox by a DGT system to two varieties of rapeseed in 

four different agricultural soils. While DGTs do not provide a perfect prediction of imazamox 

uptake by rapeseed, they provide a more reliable estimate than adsorption capacity or water 

holding capacity alone, suggesting it to be a promising method for assessing plant availability of 

soil contaminants. 
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6.2 Introduction 

Pesticides are integral part of modern agriculture, contributing significantly to the food 

production chain, improving productivity by preventing crop damage by insects, nutrient 

competition from weeds, and diseases caused by various bacteria and fungi1-2. However they 

also provide the potential for negative impacts on human3, environmental4 and animal 

wellbeing5. Herbicides can be found in soils following direct application to soil, as in the case of 

pre-emergence herbicides, and those that are applied to foliage post-emergence may still reach 

soil through rainfall washing the herbicide off the foliage, post-treatment plant matter residues 

or even transport and root exudates. Research has shown pesticides may have adverse effects 

on soil microbial community, in both diversity and activity6-7. Similarly herbicide persistence in 

the soil may lead to crop injury in later rotations8, leading to economic drawbacks for farmers. 

Residual herbicides may also be taken up by non-target flora such as later crop rotations, ending 

up in the consumables produced, with the potential for an adverse impact on human health9.  

Routine testing for herbicide is relatively expensive and is generally based on an exhaustive 

extraction of the soil, giving a value of “total” herbicide present or extractable. This produces 

the drawback of not providing a measure of herbicide available for uptake by plants or the 

“bioavailable” fraction, which is often more useful for risk assessment analyses10. This level of 

bioavailability is impacted by a wide range of factors in the soil, in particular adsorption of the 

herbicide to the soil11-12.   The development of a testing method which instead accounts for the 

bioavailable fraction would provide significant advantages in assessing the probability of crop 

damage and leaching at the field scale.  

Imazamox (2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin2-yl]-5-methoxymethylnicotinic 

acid, shown in Figure 30) is a systemic herbicide that may be applied either pre- or post- 

emergence for the control of broad leaf weeds13-14. It has been shown to have a relatively long 

persistence in soil and is metabolised slower in acidic conditions15, with a half-life under 
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laboratory conditions of 106-295 days16. Imazamox may also form complexes with metal ions 

such as Fe3+17, resulting in increased adsorption and thus persistence. These factors make 

imazamox a challenge with regards to herbicide carryover and crop injury in later rotations18, 

and therefore an ideal candidate for evaluation of testing methods for measuring the 

bioavailable fraction in soil. 

 

Figure 30: Imazamox structure 

Diffusive Gradient Thin Film (DGT) sampling is an emerging technique that has been 

demonstrated to provide an estimate of the bioavailable fraction of nutrients (such as P 

fertiliser19) and contaminants (both organic20 and inorganic21) in various environmental 

compartments. DGT samplers consist of a binding layer, diffusive layer, and in some cases a 

porous membrane filter to protect the other layers from particulate matter. The diffusive and 

binding layers are hydrogels, with the binding layer including an adsorbent dispersed 

throughout the gel. The adsorbent in the binding layer is chosen specifically to capture the 

analyte of interest with high affinity and capacity. The diffusive gel prevents concentration flux 

on the adsorbent layer, and allowing transfer from solution to the binding layer to occur solely 

through diffusion. Because of this, uptake of a given analyte by the DGT is dependent on the 

size of the exposure window, thickness of the diffusive gel, exposure time, and concentration of 

the analyte in the solution22. It is commonly assumed that lateral diffusion, and the thickness of 

diffusive boundary layer created at the interface of solution and sampler due to water viscosity 

are negligible. This situation can be described using Fick’s Laws of diffusion20, resulting in 

Equation (1), where C is the concentration of the analyte in solution, D is the diffusion coefficient 
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of the analyte, t is exposure time, A is the area of the exposure window, ∆g is the thickness of 

the diffusive gel, and m is the mass of analyte contained in the binding layer. 

𝐶 =
𝑚 × ∆𝑔

𝑡 × 𝐷 × 𝐴
 (1) 

However, in reality, the diffusive boundary layer will not be two dimensional, and lateral 

diffusion can occur around the edges of the exposure window. In order to account for this, 

Equation (2) can be used, where kid is the lateral diffusion flux increase coefficient, Dw is the 

diffusion coefficient of the analyte in water, and δ is the thickness of the diffusive boundary 

layer. 

𝐶 =  
𝑚

𝑘𝑖𝑑𝐴𝑡
(

∆𝑔

𝐷
+

𝛿

𝐷𝑤
) (2) 

DGTs were initially developed for assessing heavy metal contamination in waterways in 1994 by 

Davison and Zhang22. More recently, the technology has been applied in assessing the 

bioavailable fraction of heavy metal contamination in soil21, 23, mineral and nutrient plant 

availability19, 24, and organic contaminants in waterways25 and soil26. The application of DGTs to 

organic contaminants in soil has been undertaken for a wide variety of pesticides in recent 

studies27.  

The uptake of small organic molecules by plants is complex, though generally considered to be 

a passive process related to the transpiration of water from the soil through the plant, due to 

the movement of dissolved compounds with this water into the plant mass28-29. However, 

processes such as root exudation, which may actively transport these compounds out of the 

plant mass30, along with natural water filtering at the plant roots, the overall accumulation of 

substances from soil pore water into the plant mass may not be perfectly correlated to 

transpiration. As such, methods such as transpiration stream concentration factor (TCSF)31-32, 

and plant uptake factor (PUF)33 were developed to account for these phenomena. The major 

difference between the two measures is that TCSF treats the plant as a sink and exclusively 
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considers the quantity of compound transported to the shoots of the plant, by comparison for 

the concentration of substance in the xylem sap compared the soil pore water. In contrast, the 

PUF also considers compounds stored in the roots, by measuring the change in concentration 

of test substance in a growth media over time, making it a more appropriate method for overall 

plant uptake33. 

To date, limited studies have compared the uptake of DGT samplers directly to uptake by a plant 

species in order to determine its ability to mimic a root system, and how reliably it gives an 

estimation of contamination available for plant uptake. This comparison would add further 

credence to the use of DGTs in risk assessment scenarios, and allow a higher level of confidence 

in results produced through their use in a field setting. Such a comparison would require an 

understanding of adsorption of the contaminant to the given soils, as well as an understanding 

of contaminant uptake by individual plant species. This comparison would add further credence 

to the use of DGTs in risk assessment scenarios, and allow a higher level of confidence in results 

produced through their use in a field setting. With this in mind, this study aimed to evaluate 

DGTs for the accumulation of imazamox from four contrasting agricultural soils, comparing 

directly to two rapeseed varieties (one sensitive, and one resistant to imazmox), along with the 

adsorption of imazamox to these soils. We hypothesised that uptake by DGT systems will closely 

represent those of the rapeseed varieties, and that most variation in uptake will be attributable 

to differences in the uptake factor of the two systems. 

6.3 Material and Methods 

6.3.1 Materials 

14C labelled imazamox was provided by BASF (Ludwigshaven, Germany), and unlabelled 

analytical grade imazamox was purchased from Sigma Aldrich (Castle Hill, Australia). DGT 

housings were purchased from DGT Research (Lancaster, UK), and OASIS-HLB powder was 

purchased from Waters (Rydalmere, Australia). All other reagents were purchased from Sigma 
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Aldrich. Soils for plant growth and DGT trials, along with analysis of soil properties was provided 

by Fraunhofer IME (Schmallenberg, Germany). Two varieties of rapeseed where used as the test 

plants, one sensitive to imazamox (CWH142) and one resistant (DK Imperial CL), both provided 

by Dekalb DE (part of Bayer Crop Science, Germany). Soils were collected from four agricultural 

sites around Germany (localities listed in Table 10), to a depth of 0-20 cm and stored in open 

outdoor containers until required. These soils were then air dried, sieved to below 2 mm and 

stored in sealed containers prior to use. 

6.3.2 Adsorption Experiments 

Sorption of imazamox to soil was determined using a 1:5 soil-to-liquid ratio at four 

concentrations of imazamox (0.3, 1, 3 and 9 mg L-1) and 1 g aliquots of air dried soil. Soil-

imazamox mixtures were rotated on an end-over-end shaker (33 rpm) at 22 oC for 24 hours to 

allow equilibration, before being centrifuged at 2600 G for 20 min (Thermo Scientific Megafuge 

8). The supernatant was then removed and filtered through a 0.2 µm polyethylene (Merck) 

membrane to remove any remaining clay particles. Supernatant (1 mL) was then mixed with 

scintillation cocktail (5 mL, Optifluor, PerkinElmer) and imazamox concentration determined by 

scintillation counting (Hidex 600 SL). The amount of adsorbed imazamox was then determined 

indirectly by subtracting final imazamox concentration from initial imazamox concentration. 

Controls conducted in the same manner without soil material showed negligible adsorption of 

imazamox to the centrifuge tubes or filters (<1%). Results were then fitted to produce Kd values  

(ml g-1) using Equation (3) 

𝑥 = 𝐾𝑑𝐶 (3) 

Where x is the concentration of adsorbed imazmox in µg of imazamox per g of soil, and C is the 

concentration of imazamox in solution (µg ml-1) 
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6.3.3 Uptake by DGT Samplers 

DGT samplers were produced according to the method outlined in Challis et al. (2016)25 with 

the minor modification of samplers using TiO2 (Simga-Aldrich, Sydney, Australia) or Oasis HLB 

polymer resin (Waters, Rydalmere, Australia) powder as the adsorbent for the binding layer 

produced. The samplers were constructed from cylindrical DGT pistons (DGT Research Ltd, 

Lancaster, UK) with an exposure window of 2.54 cm2, using a polysulfone filter, 0.75 mm 

diffusion layer of 1.5% agarose gel and a 0.75 mm binding layer of 1.5% agarose gel with an 

adsorbent (either TiO2 or HLB polymer resin powder, as appropriate) dispersed throughout, as 

per the diagram shown in Figure 31. The uptake capacity of prepared DGT samplers was 

determined by suspending samplers in a solution of imazamox (20 ml, 50 µg L-1) in distilled water 

for 48 hours. The binding layer was then removed, washed lightly in distilled water and bound 

imazamox extracted three times with 0.5 M KOH (3 x 2 ml). Extracts were then mixed with 

scintillation cocktail and radiation counted.  

 

Figure 31: DGT Construction 

Uptake of imazamox from soil by DGTs was conducted using a modified method of Weng et al. 

(2018)26. Here, 6 g (dry weight equivalent) of soil was placed in a polypropylene centrifuge tube 
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cap (diameter 4 cm, depth 1.5 cm), dosed with 420 ng of 14C-labelled imazamox and water added 

to 80% moisture holding capacity. These soils were then allowed to equilibrate for 24 hours 

prior to DGT exposure. DGT samplers were pushed gently into the soil samples, and twisted 

lightly to ensure full contact and coverage of the exposure window. DGTs were deployed for 48 

hours, before collection and analysis. After removal from soil, the binding layer was removed 

and washed lightly with distilled water, before being placed in 1.5ml of 0.5M KOH to extract the 

bound imazamox. This extraction was repeated three times, and the pooled extractant was 

analysed for radiation content by LSC. 

6.3.4 Plant Uptake Factor 

Plant uptake factor (PUF) experiments were conducted by the method reported by Lamshoeft 

et al. (2018)33, with minor modifications. Germination of the two varieties of rapeseed of 

interest in perlite and water, before replacing the water with a 50% Hoagland nutrient solution 

for the early development of the seedlings. These seedlings were then transferred to vessels 

containing 300 ml of the same 50% Hoagland solution. The vessels were covered with foil to 

prevent algal growth in the nutrient solution. When the plants reach a growth stage of BBCH 13 

(a growth scale used to compare phenologically similar plants34), the growth media was 

inoculated with a radiolabelled test compound (in this case imazamox). An initial period of two 

days was allowed for the fractionation of this compound, before initial readings of volume, and 

mass of test compound present. The plants are then allowed to grow for an additional 10 days, 

and final volume and mass measurements done. Mass is measured by taking 2 ml aliquots of 

the growth media for scintillation counting, and the total radiation present related to mass in 

the aliquot, and thus the total volume. Equation (4) is then used to determine the overall PUF 

𝑃𝑈𝐹 =  
ln (

𝑚𝑓𝑖𝑛𝑎𝑙

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)

ln (
𝑣𝑓𝑖𝑛𝑎𝑙

𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)

 (4) 
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Where m is the mass of test compound, and v is the volume of solution at the initial time point 

(2 days post-test compound addition) and the final time point (10 days after initial sampling). A 

total of five replicates for each seed variety was conducted, along with two plant free controls 

to account for changes due to surface evaporation of the solution. 

6.3.5 Plant Uptake from Soil 

Uptake of imazamox by rapeseed was undertaken in 25cm diameter draining plastic pots 

containing 1 kg of soil held at 60% moisture capacity, with a commercially available NPK fertiliser 

applied prior to planting at a rate of 4 ml kg-1 (Fertiliser nutrient content: 8% N as urea and urea 

nitrate, 5% P2O5, 8% K2O). Pots were maintained in individual trays to prevent loss of radiation 

through leaching. All soils were dosed with either 1x or 0.2x field rate (70 or 14 µg kg-1, 2500 or 

500 Bq) of 14C labelled imazamox, excluding herbicide free controls, which were used to 

determine the occurrence of herbicide injury. This field rate was based on the label rate per 

hectare, assuming a soil bulk density of 1.5 kg m-3 and a herbicide penetration depth of 30 cm. 

This depth was chosen due to previous studies showing other imizadolinone herbicides to have 

the potential to leach to 40cm35, thus 30cm was chosen as a conservative estimate of leaching 

potential. Initially, five seeds were planted, and this was thinned to three plants per pot post-

emergence. Plants were grown for a 7 week period post sowing, in a climate controlled chamber 

with a 16/8 hour day night cycle, with temperature and humidity held at 22/17oC and 50/20% 

respectively. Plants were then destructively harvested and fresh weights measured, before 

drying, separating into roots and shoots, and dry masses being recorded. All plants were then 

ground and homogenised and radiation content determined by combustion with an Ox700 

Oxidiser (Zinsser Analytic), with the emitted CO2 captured by the Oxysolve C-400 (Zinsser 

Analytic) and radiation counted. 
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6.3.6 Data Analysis 

Analysis of data from the PUF and plant growth trials was conducted in SPSS (IBM, New York, 

USA)36. Dry mass and radiation data was analysed by t-test and multi-factor ANOVA; the factors 

used were soil, seed variety and imazamox dosing level. Tukey’s honestly significantly different 

(HSD, Zar 199937) analysis was used for comparison of the different soil types for both root and 

shoot radiation at the different imazamox levels. 

6.4 Results and Discussion 

Initial soil characterisation was provided by Fraunhofer IME and is summarised in Table 10. 

The soils used covered a wide range of soil texture (clay content of 6.2-25.1%), water holding 

capacity (WHC, 293-697 g/kg) and carbon and nitrogen content. While the pH range covered 

acid and neutral soils, there were no alkaline soils in the sample set. 

Table 10: Soil properties 

Soil FAO 

Classification 

Sand Silt Clay pHWater WHC Corg Ntotal CEC 

% % %  g/kg % g/kg mmol/kg 

1 Cambisol 74.0 19.8 6.2 5.7 293 0.93 0.92 16.2 

2 Luvisol 5.7 78.3 16.0 6.6 416 0.95 1.15 46.6 

3 Cambisol 22.1 52.8 25.1 6.0 697 3.02 4.42 112.8 

4 Fluvisol 33.0 46.7 20.3 4.8 666 1.74 2.28 44.5 

 

6.4.1 Adsorption 

All soils produced relatively low Kd values with a minimum of 0.92 and maximum of 1.73 ml g-1 

(Table 11). There appeared to be no direct relationship between the experimentally determined 

Kd values and the measured soil properties, such as organic matter or clay content. This is similar 

to the results of Sakaliene et al. (2007)38, who found no correlation between imazamox sorption 

(Kd, ranging from 0.19-0.42 ml g-1) and soil organic C or pH across 7 different Baltic soils. 

However, it is known that imazamox may form complexes with metal ions17 such as Fe3+, as such 
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it may be variation in the mineralogy of the soils, which was not assessed, causing the 

differences in adsorption affinities for each of the four soils. 

6.4.2 DGT Uptake 

A comparison of DGTs constructed with either a HLB or TiO2 adsorbent used in the binding layer 

showed HLB to have a significantly higher uptake of imazamox from solution. DGTs constructed 

with TiO2 as the adsorbent had an average uptake of 30±5% of imazamox from solution, while 

those with a HLB binding layer had an uptake of 66±4% of imazamox from solution. This is at the 

lower end of the range previously reported in literature for other organic contaminants (18%-

55% error in calculating solution concentration Challis et al. 201625; 74-86% total uptake of 

glyphosate on TiO2, Weng et al. 201926; uptake of >80% of six out of nine polar pesticides by HLB, 

Chen et al. 201539). However, our results for imazamox (log KOW 0.73) are similar to the relatively 

low uptake of the herbicide chloridazon (log KOW 1.14) by HLB and XAD binding layers, compared 

with other herbicides with greater KOW partition coefficients39. As with chloridazon, maximum 

uptake required >24 h and hence HLB DGTs were deployed in soil for 48 hours, as it was 

expected diffusion from soil would be even slower than that in solution.  The highest uptake 

was found to occur in soil 1, and the lowest in soil 3. The average adsorption and DGT uptake 

values for all soils are summarised in Table 11. Interestingly, the uptake in soils doped at 1x field 

rate and 0.2x field rate do not differ by a factor of 5 (excluding the case of soil 2). This is unlikely 

to be due to saturation effects based on the results of the DGT boundary experiments, but 

instead may be due to the diffusion rate of imazamox through the soil to the binding layer of 

the DGT. However further studies increasing exposure time would be required to confirm this. 
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Table 11: Adsorption Kd (ml g-1) and DGT uptake values (ng) 

Soil Kd R2 DGT Uptake 

1 x Field rate 0.2 x Field rate 

1 1.07 0.99 131 ± 22 47 ± 9 

2 1.73 0.99 106 ± 4 21 ± 5 

3 0.92 0.99 94 ± 3 31 ± 2 

4 1.51 0.98 116 ± 7 45 ± 1 

 

6.4.3 Plant Uptake Factor 

In order to produce a reference point of the uptake for imazamox from soil by the two rapeseed 

varieties studied, a plant uptake factor was determined. By growing plants in a hydroponic 

solution and allowing a pre-uptake testing window of 48 hours for partitioning of the test 

chemical, “availability” of imazamox for uptake by plants can be considered to be 100% of the 

measured initial values. The two seed varieties had similar uptake values, with both having an 

average PUF of less than 0.3 for imazamox. The imazamox resistant variety of rapeseed showed 

a slightly lower uptake of imazamox (average PUF 0.25, standard deviation 0.062) compared to 

the sensitive variety (average PUF 0.29, standard deviation 0.040), however a t-test (p-value of 

0.281) showed this difference to be statistically non-significant. Because there was negligible 

change in volume of growth media or concentration of imazamox in the plant free control 

vessels, these results can be considered free of confounding factors such as evaporation or 

degradation of the test compound. 

The PUFs for imazamox (molecular weight 306) into rapeseed derived here were similar to the 

PUF values obtained by Lamshoeft et al. (2018)33 for compounds with molecular weight > 300, 

which ranged from 0.02-0.31; whereas compounds with MW<220 all had PUFs of >0.6. These 

values indicate that less than a third of the soil-solution phase imazamox will be absorbed by 

rapeseed.  
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6.4.4 Plant Uptake from Soil 

Over the course of the seven week growth time allowed for this plant trial, significant variation 

in plant germination and growth was observed. Initial trial germinations using non-labelled 

imazamox to gauge growth conditions produced a germination index of 60-100% between pots 

across all soils (results not shown). However, during the main trial, the germination index varied 

widely from no germination to 100% germination between pots. Treatment, seed and soil type 

were all non-significant factors in this germination index. A removal of plants from those pots 

which did reach germination of more than 3/5 plants in order to prevent overcrowding and 

nutrient competition resulted in the removal of <2% of total radiation added in any given pot, 

and thus was considered to have negligible impact on the uptake of the remaining plants. No 

significant difference in fresh or dry weight of the final harvested plants was observed between 

treatments (1x field rate, 0.2x field rate or control), suggesting there was no herbicide injury 

occurring in either seed variety. The lack of significance of seed variety in uptake of imazamox 

from soil, matches up with the results of the PUF study, which showed no statistically significant 

difference in the uptake by either seed variety from hydroponic solution.  

Radiation was measured on a normalised basis per 100 mg of dry plant matter, and was divided 

into above ground, and below ground radiation. There was no significant impact of plant mass 

on normalised radiation, suggesting imazamox uptake was a constant passive process rather 

than occurring during specific stages of growth. Significantly more radiation was found in the 

above ground portion of the plant than in the roots, suggesting translocation and storage of 

imazamox through the plant, rather than uptake being adsorption of the imazamox to the plant 

roots. 

A three-way ANOVA analysis of plant uptake of imazamox showed soil type and treatment to 

be significant factors in both shoot and root radiation, with seed type being non-significant and 

no significant interactions occurring between the variables, excluding an interaction of soil and 
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treatment in root radiation. The significance values produced by this analysis are shown in Table 

12. This analysis was conducted with the radiation uptake of each plant being kept separate, 

rather than averaging the total pot uptake, due to different germination levels between pots. 

Treatment is expected to be a significant factor in the radiation level in plants, as in a higher 

treatment level, the available radiation in the soil is theoretically five-fold that in the low 

treatment. As such this functions as a useful check for errors in experimental method or data 

analysis. It should also be noted the overall uptake of radiation across a single pot was well 

below the level of radiation initially added, thus making it unlikely there were any “starvation” 

effects, where plant uptake was limited due to competition with other plants in the same pot. 

Initial addition of imazamox was equivalent to 500 or 2500 Bq for low and high treatment rates 

respectively, while the total measured combined radiation in plants removed from a given pot 

was less than 20% of initial addition in all cases.  

Table 12: Significance values from three-way ANOVA of plant uptake data 

 Soil Seed Treatment Soil/Seed Soil/ 

Treatment 

Seed/ 

Treatment 

Soil/Seed/ 

Treatment 

Shoot 

Radiation 

0.000 0.166 0.000 0.353 0.158 0.168 0.860 

Root 

Radiation 

0.000 0.328 0.000 0.324 0.000 0.529 0.661 

Shoot Dry 

Mass 

0.027 0.539 0.555 0.337 0.894 0.918 0.915 

Root Dry 

Mass 

0.000 0.956 0.127 0.244 0.297 0.707 0.580 

 

When comparing the mean uptake between soils, the highest uptake occurred in soil 1, then 

soil 2, soil 3 and the lowest in soil 4. There was a difference in average uptake between 

treatments of 40% (Field rate: 5.24 Bq/100mg, 0.2x field rate: 3.18 Bq/100mg), though this 

change is soil dependent, with comparison of soil and treatment uptake shown in Table 13. This 

variation is relatively low in comparison to the 80% decrease in added radiation between 
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treatments, suggesting the possibility of saturation effects reducing overall uptake in the higher 

treatment level. 

Table 13: Mean uptake values of 14-C imazamox (Bq/100mg) by rapeseed seperated by soil and 
treatment rate 

Soil 1x Field rate 0.2x Field Rate 

Shoots Roots Shoots Roots 

1 7.09 ± 2.86 a 4.94 ± 1.15a 4.24 ± 2.07a 1.3 ± 0.37a 

2 4.90 ± 0.76ab 3.60 ± 0.39ab 3.72 ± 1.47ab 0.72 ± 0.31a 

3 2.90 ± 1.11b 1.51 ± 0.30c 2.15 ± 0.84ab 1.05 ± 0.70a 

4 3.00 ± 0.92b 2.37 ± 2.15bc 1.88 ± 1.10b 0.68 ± 0.28a 

a,b,c
 indicative of statistically similar subsets as determined by Tukey’s HSD 

6.4.5 Comparison 

While DGT uptake performed better (was a closer fit to the plant uptake) than Kd, neither was a 

perfect predictor of imazamox availability for plant uptake, suggesting it is likely other factors 

such as water holding capacity (WHC) play a role. All experiments for uptake were performed 

at 80% water holding capacity, thus influencing the volume of pore water and thus the 

concentration of dissolved imazamox, as opposed to initial adsorption experiments which were 

conducted in a fixed water volume. A similar effect could occur in plant uptake trials with a 

larger volume of water available leading to higher level of transpiration through the plant 

(though this is unlikely to be significant, as 60% WHC is above moisture stress levels40), and thus 

higher uptake. However, soil 3 resulted in the lowest uptake of imazamox by rapeseed, and the 

second lowest by DGT, despite having the lowest adsorption capacity for imazamox. It is possible 

this is related to the fact it has the highest water holding capacity, thus leading to a lower 

concentration of dissolved imazamox. However, the calculated concentrations based on water 

holding capacity and Kd presented in Table 14 show this not to be the case, as soils 2 and 4 have 

a lower dissolved concentration. This suggests there are other factors impacting the availability 

of herbicide in soil. For example, the length of growth period may have led to the degradation 

of some of the imazamox in the soil, and as such, the soil with higher organic matter content 
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(soil 3) may have had lower imazamox concentrations over the entire growth period. This may 

help explain the lower plant uptake over this period, despite the higher theoretical 

concentration of imazamox predicted using the Kd values. Furthermore, the watering regime 

during this seven week growth period means that there was consistent drying and rewetting of 

the soils, leading to a varying amount of pore water throughout the trial, and thus a consistent 

cycle of adsorption and desorption of the imazamox to the soil. Previous studies have reported 

adsorption of an analogous herbicide, imazethapyr, to soil to increase over time41, so higher 

level of imazamox adsorption to soil may have occurred during the growth trial than in initial 

adsorption trials, influencing the plant uptake in a soil-dependent fashion. 

Table 14: Dissolved imazamox concentration in soil pore water at varying water holding capacities, with 
70 ug kg-1 imazamox 

Soil Imazamox pore water concentration (µg L-1) 

60% WHC 80% WHC 

1 58.2 53.7 

2 35.4 33.9 

3 52.3 47.4 

4 36.7 34.3 

 

A comparison of uptake of imazamox by DGTs and rapeseed shows DGT to be a promising 

technology for determining plant available levels of herbicide, and a useful tool for herbicide 

risk assessment. Direct comparison of the two is difficult due to the various confounding factors, 

including the short growth period allowed for rapeseed prior to harvest, which would lead to an 

incomplete uptake of available imazamox in the soil. The highest total uptake from a single pot 

was ~680 ng of imazamox (based on converted radiation), and occurred in a high treatment soil 

1 replicate. This is equivalent to 60 ng of imazamox taken up per 6 g of soil (the quantity of soil 

used for DGT trials), which is less than half of the amount taken up by DGTs in soil 1 at field rate 

applications. However, it is extremely likely that this uptake would have increased with a longer 

growth period, allowing the plant to reach a higher level of maturity. This can be inferred based 
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on the apparent relatively linear relationship between mass and radiation uptake in the trial (ie. 

those plants in this trial which had higher mass also had a higher total radiation content). 

Along with this, different moisture levels between experiments (80% WHC for DGT and 60% 

WHC for plant uptake) is likely to lead to slight variations in the total available herbicide in each 

case, due to varying concentrations of dissolved and adsorbed herbicide, and possible minor 

changes in plant transpiration40 (though these are unlikely to be significant). This variation in 

moisture level was due to the requirements to produce even contact across the surface of the 

DGT, and optimal germination and growth conditions for the rapeseed. However, despite these 

variations, similar trends were observed, with soil 1 producing the highest uptake at both 

treatment levels, and soil 3 the lowest uptake at 1x field rate in both systems, despite both 

having low adsorption capacity for imazamox, and relatively similar pore water concentrations 

of imazamox. There were discrepancies in the level of availability between the DGT and 

rapeseed trials across all soils, but in particular at the lower application rate, and amongst soils 

2 and 4. This may be due to variations in growth conditions between soils (with soil playing a 

significant role in plant dry mass as seen in Table 12), and in the lower treatment, discrepancies 

may be caused by a higher possible degree of error in the DGT uptake due to extremely low 

quantities measured (nanogram scale, 0-3 Bq per extraction).  

This study gives good evidence of DGT sampling being a reliable measure of available herbicide 

in soils, with a more accurate result than that based only adsorption capacity or other single soil 

properties. While some variations between DGT and plant uptake were found, and additional 

optimisation of the process may be required, initial results are promising. Given these results 

coupled with the benefits of the DGT methodology, further research into the use of DGTs for 

quantification of available herbicide in soils is warranted. 
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7. Conclusions and Future Work 

The overarching aims of this study were to increase understanding of the behaviour of 

glyphosate  in soils, develop predictive models of its adsorption, and develop a method for 

measuring “available” rather than total herbicide in soils. A number of different techniques and 

studies were undertaken to address these aims. The possible environmental and economic 

impacts of herbicide usage due to persistence and leaching are at the forefront of the public 

conscious. These issues are directly linked to herbicide adsorption and availability in the soil. 

Within this thesis, a cross-disciplinary study to better understand, quantify and predict these 

phenomena was undertaken.  This was not without its challenges due to the inherently variable 

nature of soil and biological systems, particularly within the plant trials conducted in Chapter 6.  

Much of the available data on glyphosate adsorption is from studies conducted in Europe and 

the Americas, which does not account for the significantly different soils found in Australia. 

Similarly, the wide variation found in Australia soils is well suited to the development of 

pedotransfer rules for glyphosate adsorption in soil. In order to address these knowledge gaps 

and opportunities, a large database of soil properties and glyphosate adsorption capacity for a 

variety of sampling sites around Australia was developed, and this database used to produce 

predictive models of glyphosate adsorption based on physico-chemical properties (Chapter 2) 

and mid-infrared (MIR) spectra (Chapter 3). While these models are not perfectly accurate, they 

are relatively robust, and perform as well, if not better, than those previously reported in the 

literature1-8 for glyphosate or other herbicides, and serve as a strong proof of concept. These 

models were based on a dataset comprising 50 soil sites around Australia, most sampled at two 

different depths to total 90-97 unique soils. Within this dataset, only a limited number of soils 

with a glyphosate Kf in the range of 100-400 were represented, and the inclusion of additional 

soils in this range may have served to improve the predictive capabilities of the model. 
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The predictive models produced in Chapters 2 and 3 of this thesis provide useful tools for the 

development of more spatially explicit management strategies for glyphosate usage. In 

particular this work shows a strong link between glyphosate and phosphorus adsorption to soil, 

with phosphorus buffering index (PBI) an accurate predictor of glyphosate adsorption, and the 

MIR loading for prediction of glyphosate Kf and PBI being extremely similar. However, additional 

work to expand the database on which these models are built would provide a far more robust 

and reliable output. Along with this, the measure of PBI, which is used in the physico-chemical 

model is used most commonly in Australia. As such, additional models using comparative 

measures of phosphorus adsorption affinity in soil more broadly used in other regions of the 

world would prove invaluable for the translation of this tool to those regions. 

Limited prior studies have systematically investigated the adsorption/desorption of glyphosate 

on soil components, to fundamentally understand the impacts of pH, salt and phosphate 

concentrations. This information would prove invaluable in unravelling the mechanisms of 

glyphosate adsorption and glyphosate release upon phosphorus fertiliser addition, which has 

been observed in several previous studies9-13. Chapters 4 and 5 sought to address this, firstly 

through a systematic development of adsorption isotherms of glyphosate to model soil minerals 

at various pH levels (Chapter 4). This showed the impact of electrostatic interactions between 

glyphosate and the mineral surface in all cases, with the charge of the mineral surface and lateral 

(charge) interactions between glyphosate molecules making significant contributions to the 

adsorption energy and practical saturation capacity. These results lend credence to the impacts 

of pH seen in the models produced in Chapter 2 of this thesis. Chapter 4 also examined the 

current ubiquitous nature of Langmuir isotherms and shows that  a Frumkin Fowler Guggenheim 

approach, by explicitly taking into account the aforementioned lateral interactions in the 

adsorbed phase,  is more realistic for these systems.  This study was not exhaustive, and did not 

account for all possible soil components. In particular it did not include studies of silicates or 

organic matter components such as humic substances. 
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The release of previously adsorbed glyphosate upon addition of phosphorus fertiliser poses a 

significant risk, both economically due to the possibility of herbicide injury in later crop rotation 

post fertilisation, but also environmentally due to the increased risk of glyphosate movement 

offsite. Previous studies have generally suggested this release is due to competition between 

glyphosate and phosphate13, however, it has also been suggested that glyphosate desorption 

rates are independent of the entering ligand14. Further evidence of possible competition 

between glyphosate and phosphate ions is reflected in the importance of PBI in the models 

produced in both Chapters 2 and 3 of this thesis.  

In order to further understand and clarify the mechanisms involved in glyphosate release, 

Chapter 5 involved the study of glyphosate release through desorption under different salt and 

phosphate concentrations. Coulombic screening of the surface charge of the mineral upon the 

addition of salt does have the ability to marginally increase glyphosate release from a mineral 

surface when compared to desorption in pure water. However, this increased release was 

relatively small, while the addition of phosphate (as would occur in a localised area around super 

phosphate banding) produced far more significant increases in glyphosate desorption. One of 

the most interesting findings of this work was the preference of phosphate ions to fill available 

binding sites on an unsaturated surface prior to competing for binding sites with glyphosate. 

This work has important implications for fertilisation regimes post-glyphosate application, 

however, no “whole” soil systems were studied in this thesis. 

The adsorption/desorption work conducted in Chapters 4 and 5 makes significant strides in 

elucidating the root mechanisms of glyphosate sorption behaviour in soil, particularly with 

relation to pH and phosphate competition. The implications of this work for phosphorus 

fertilisation regimes are significant, and additional work which compares the release of 

glyphosate from “whole” soil systems under different fertilisation regimes would be a logical 

next step. Similarly, a study of the response of “whole” soil systems to processes such as claying 
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and liming in terms of glyphosate adsorption to further these results to a real-world scenarios 

could provide important information which could be used by agronomists and agronomic land 

holders in soil management. 

As the need for measures of “available” herbicide in soil becomes more recognised, diffusive 

gradient thin-films (DGT) technology has emerged as a preferred option due to its passive nature, 

thus mimicking plant root systems. However, very few previous studies have directly compared 

the uptake of herbicides from soil by DGT and a model plant system. The final study in this thesis 

(Chapter 6) compared the uptake of imazamox from four different agricultural soils by DGTs and 

two varieties of rapeseed (one imazamox-sensitive, and the other imazamox-resistant). This 

showed the levels to be similar after accounting for the uptake factors of DGT and the rapeseed 

varieties, with soil type being the main factor impacting uptake of imazamox by both DGT and 

rapeseed. However, due to the variable nature of biological systems such as plants, a larger 

sample set would have allowed for a more robust statistical analysis. This study would have also 

benefited from the use of a plant system with a higher plant uptake factor (PUF) for imazamox, 

as this likely would have reduced variation between individual plants in the same soil. 

While the study performed in Chapter 6 provides a good foundation towards verifying DGTs as 

a valid method for determining the available fraction of herbicide in a soil, it covers only one 

plant type and one herbicide. Additional trials on a similar scale using herbicides with a stronger 

adsorption affinity for soil or other more complex behaviours which would reduce their 

availability in soil would serve to further solidify these results.  The uptake of imazamox by this 

particular DGT system was also slightly below the ideal range (>70%) and further optimisation 

prior to use in the field would be required. 

In conclusion, the work presented in this thesis makes significant contributions to the 

knowledge base surrounding herbicide adsorption and availability in soils. While it is by no 

means comprehensive, and there remains much more work to be done, the findings provide a 
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solid basis for ongoing research. They build on concepts previously only lightly explored in the 

literature and they help further areas of knowledge that have previously been lacking. This 

present work has the potential to help improve agronomic practices, recommendations and 

management strategies surrounding herbicide usage. 
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Appendix 
 

Appendix Table 1: Dataset Soil Properties 

ID Lat Long State Depth EC pH (H20) Colwell 
Phosphorus 

Phosphorus 
Buffer 

Index(Colwell P) 

Total 
Organic 
Carbon  

Sand Silt Clay Glyphosate 
Kf 

nf Kd (1.5-
15mg/kg) 

 
  

 
cm dS/m 

 
mg/kg 

 
% % % % 

   

1 -31.039 148.609 NSW 0-10 0.095 8.2 35 72 0.76 49.23 15.25 30.38 26.85 1.76 121.69 

2   NSW 10-30 0.21 8.9 16 100 1.1 46.21 14.83 30.36 26.85 1.63 79.40 

3 -30.693 148.481 NSW 0-10 0.13 7.3 49 55 0.77 53.06 16.21 26.56 36.14 1.72 174.04 

4   NSW 10-30 0.26 8.8 16 91 0.84 44.55 15.42 35.03 24.37 1.66 64.59 

5 -34.248 147.200 NSW 0-10 0.25 5.4 55 51 2 54.18 21.02 19.81 44.34 1.51 145.36 

6   NSW 10-30 0.087 6.5 18 57 1.1 53.45 16.29 27.62 47.91 1.54 186.64 

7 -34.289 146.950 NSW 0-10 0.11 6.2 60 43 0.95 56.43 22.30 18.61 34.62 1.71 161.19 

8   NSW 10-30 0.058 6.5 15 38 0.34 54.51 18.76 24.33 45.16 1.62 114.25 

9 -34.366 147.177 NSW 0-10 0.16 5.7 60 57 1.5 55.12 22.21 18.95 46.09 1.39 91.07 

10   NSW 10-30 0.063 6.0 18 43 0.69 52.41 24.35 21.20 28.53 1.53 40.58 

11 -34.419 147.532 NSW 0-10 0.11 6.5 50 60 1.4 52.98 17.13 26.09 42.35 1.45 81.60 

12   NSW 10-30 0.094 6.8 16 69 0.57 45.86 13.67 37.04 39.25 1.60 179.14 

13 -34.013 148.255 NSW 0-10 0.071 6.0 56 25 1.1 60.43 23.64 10.55 17.28 1.53 29.22 

14   NSW 10-30 0.047 5.4 16 18 0.21 63.18 21.60 9.58 24.22 1.71 46.99 

15 -34.613 147.763 NSW 0-10 0.24 6.5 57 74 1.4 52.04 17.18 29.14 42.85 1.57 106.37 

16   NSW 10-30 0.19 7.0 13 78 0.38 55.71 13.46 30.58 51.17 1.50 156.65 

17 -35.104 146.874 NSW 0-10 0.17 7.5 60 56 1.2 53.56 16.51 24.31 45.06 1.47 150.40 

18   NSW 10-30 0.30 7.0 17 90 0.54 37.90 11.32 46.12 26.43 1.55 45.16 

19 -34.891 147.191 NSW 0-10 0.068 6.5 59 45 1.1 56.23 19.42 21.11 25.52 1.52 44.40 

20   NSW 10-30 0.054 5.8 24 57 0.67 53.11 18.87 25.64 39.51 1.56 79.56 

21 -26.986 151.055 QLD 0-10 0.11 7.4 25 110 1.1 31.95 22.48 47.78 48.53 1.47 131.21 

22   QLD 10-30 0.12 8.0 18 110 1.1 28.38 22.77 51.78 34.01 1.59 86.22 
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23 -27.096 151.218 QLD 0-10 0.21 8.1 49 160 1.8 36.11 15.51 41.94 31.82 1.43 46.80 

24   QLD 10-30 0.27 8.6 20 210 1.8 36.57 18.08 40.17 29.29 1.47 51.83 

25 -27.097 151.218 QLD 0-10 0.17 8.4 42 180 1.8 33.02 18.30 45.21 28.53 1.54 42.47 

26   QLD 10-30 0.25 8.7 15 210 1.4 34.01 17.06 42.81 32.04 1.40 50.58 

27 -34.619 140.675 SA 0-10 0.21 8.9 28 76 2.7 61.62 17.33 11.14 13.55 1.75 15.04 

28   SA 10-30 0.23 9.0 20 95 2.9 56.09 16.69 14.13 14.22 1.59 20.79 

29 -32.991 138.203 SA 0-10 0.22 7.8 28 68 2.5 47.01 29.36 16.94 24.03 1.64 42.80 

30   SA 10-30 0.16 8.3 20 80 3 49.88 29.84 13.70 26.59 1.60 53.75 

31 -32.891 136.196 SA 0-10 0.22 8.5 38 57 1.4 63.04 10.90 18.49 14.61 1.51 13.54 

32   SA 10-30 0.34 9.0 21 79 2.6 56.98 7.01 24.43 16.42 1.56 20.12 

33 -33.240 135.543 SA 0-10 0.33 8.6 21 76 2.6 69.45 4.78 13.35 13.61 1.57 22.52 

34   SA 10-30 0.40 9.2 29 110 3 67.46 7.32 15.96 13.17 1.59 20.13 

35 -33.469 136.799 SA 0-10 0.14 8.9 22 65 3.8 65.09 7.05 5.87 13.52 1.59 27.67 

36   SA 10-30 0.12 9.0 15 83 3.5 61.75 4.43 6.93 18.06 1.63 35.88 

37 -33.089 134.754 SA 0-10 0.14 8.8 33 120 4.5 53.02 16.27 18.80 21.51 1.55 42.07 

38   SA 10-30 0.14 8.8 24 200 6.1 48.00 15.43 14.61 32.99 1.54 62.95 

39 -34.470 135.427 SA 0-10 0.11 5.8 57 75 1.8 54.08 15.00 26.29 32.16 1.55 67.20 

40   SA 10-30 0.060 5.5 30 77 1.2 54.40 11.97 28.50 37.19 1.55 92.16 

41 -35.165 140.623 SA 0-10 0.092 6.4 24 10 0.71 87.28 6.20 4.39 10.42 1.68 14.31 

42   SA 10-30 0.12 8.7 14 15 0.22 74.95 10.75 11.00 12.52 1.79 23.89 

43 -35.340 140.365 SA 0-10 0.18 8.1 57 38 1.7 68.28 16.71 10.56 15.71 1.81 32.57 

44   SA 10-30 0.22 8.9 34 120 3.5 55.10 16.49 18.25 21.08 1.64 48.54 

45 -36.294 140.841 SA 0-10 0.32 7.5 50 74 2 49.28 13.03 30.05 47.52 1.49 120.04 

46   SA 10-30 0.29 8.1 24 89 1.2 44.87 11.53 36.39 37.71 1.59 84.54 

47 -35.280 139.052 SA 0-10 0.18 8.5 42 44 2.7 71.28 12.87 8.41 10.23 1.65 12.35 

48   SA 10-30 0.21 9.0 25 150 4.9 57.13 11.07 13.63 19.47 1.60 38.99 

49 -34.388 138.587 SA 0-10 0.16 7.4 63 65 1.4 58.11 16.07 19.60 31.98 1.57 75.93 

50   SA 10-30 0.19 8.2 31 98 2.1 60.23 17.69 16.98 26.65 1.43 52.85 

51 -34.427 137.831 SA 0-10 0.22 8.6 45 160 6.1 53.01 9.36 20.28 28.32 1.50 48.45 

52   SA 10-30 0.19 8.9 19 190 5.2 49.52 7.14 20.34 29.78 1.42 50.32 

53 -34.217 138.640 SA 0-10 0.16 7.3 64 97 2 48.73 12.72 31.11 45.93 1.50 103.68 

54   SA 10-30 0.28 8.3 25 130 1.9 42.19 9.80 34.77 34.35 1.45 64.61 
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55 -33.299 138.598 SA 0-10 0.18 5.7 42 58 1.6 48.29 19.62 27.62 54.73 1.45 137.46 

56   SA 10-30 0.089 6.3 23 79 1.2 42.73 14.55 38.55 57.40 1.46 147.59 

57 -32.471 117.579 WA 0-10 0.13 6.6 19 11 0.94 76.68 14.15 7.16 4.56 1.82 3.20 

58   WA 10-30 0.070 6.3 18 14 0.5 76.42 14.02 7.55 8.73 1.63 12.53 

59 -32.592 117.672 WA 0-10 0.18 6.8 60 40 2.1 66.32 11.11 16.38 12.63 1.60 15.72 

60   WA 10-30 0.083 6.2 33 46 1.3 64.80 9.97 18.64 25.64 1.48 49.58 

61 -32.785 117.525 WA 0-10 0.52 6.0 82 39 2.6 66.99 13.54 9.88 26.36 1.54 51.59 

62   WA 10-30 0.11 5.9 57 35 1.5 60.68 23.35 10.02 32.56 1.54 81.57 

63 -32.670 117.291 WA 0-10 0.17 6.1 33 28 1.8 68.36 14.45 10.57 16.13 1.69 24.77 

64   WA 10-30 0.049 5.5 25 32 1 74.52 11.92 10.29 20.51 1.58 31.07 

65 -30.357 116.725 WA 0-10 0.093 6.6 36 52 0.82 58.23 10.00 23.72 32.80 1.56 74.90 

66   WA 10-30 0.19 7.6 24 70 0.68 51.78 7.89 31.67 29.45 1.50 77.77 

67 -30.286 116.620 WA 0-10 0.095 6.4 58 50 0.98 60.10 11.48 27.42 27.29 1.51 63.59 

68   WA 10-30 0.091 5.9 15 62 0.39 61.50 12.12 26.57 47.17 1.46 156.07 

69 -30.386 116.650 WA 0-10 0.17 5.4 49 30 0.7 64.81 14.87 19.32 26.18 1.60 68.68 

70   WA 10-30 0.087 5.3 21 38 0.29 60.65 11.59 26.87 49.49 1.40 131.32 

71 -30.353 117.071 WA 0-10 0.20 5.5 24 26 0.74 70.94 12.06 15.12 25.31 1.32 26.29 

72   WA 10-30 0.15 4.7 7.2 37 0.25 67.25 12.62 19.91 58.29 1.34 115.67 

73 -29.863 116.673 WA 0-10 0.058 6.4 36 27 0.49 66.89 15.59 16.78 22.44 1.70 43.84 

74   WA 10-30 0.037 6.8 11 36 0.21 61.65 17.85 23.46 30.25 1.64 88.20 

75 -29.895 116.006 WA 0-10 0.075 6.3 55 41 1.2 67.91 11.07 12.27 38.22 1.44 112.70 

76   WA 10-30 0.30 8.8 16 81 1.2 53.45 9.18 26.44 22.27 1.58 44.75 

77 -29.867 116.689 WA 0-10 0.079 5.8 31 23 0.46 71.40 9.86 17.33 25.61 1.76 57.87 

78   WA 10-30 0.22 7.9 11 55 0.3 62.94 10.34 26.61 24.74 1.57 60.00 

79 -29.798 116.112 WA 0-10 0.15 7.3 47 31 1.2 64.72 17.49 13.80 7.51 1.67 7.38 

80   WA 10-30 0.56 5.5 27 21 0.57 73.53 15.80 7.93 22.92 1.71 41.23 

81 -28.887 153.506 NSW 0-10 0.13 6.4 33 530 5.5 61.54 13.76 16.58 182.1 0.94 136.34 

82   NSW 10-30 0.068 6.3 13 610 4.9 66.61 10.14 14.96 164.65 0.96 152.89 

83 -28.819 153.391 NSW 0-10 0.09 6.2 19 600 5.5 64.52 12.88631 14.99874 172.14 0.96 195.57 

84   NSW 10-30 0.062 6.1 11 630 4.5 60.99 12.82063 16.81284 170.16 0.97 206.88 

85 -28.819 153.391 NSW 0-10 0.09 6.1 13 460 6.5 63.89 12.95 15.52 169.67 0.99 138.39 

86   NSW 10-30 0.045 6.3 42 720 4.7 63.84 14.02 15.53 186.11 0.94 164.88 
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Additional note on Table 1: Kd is the slope of a linear fit of adsorption data, Kf and nf are fitting variables of adsorption derived from the Freundlich equation 

 

 

Appendix Table 2: Reference Soil Characterisation 

ID Lat Long State Depth pH Phosphorus 
Buffer 

Index(Colwell P) 

Sand Silt Clay Glyphosate 
Kf 

nf 

    cm   % % %   

1 -35.088 142.277 VIC 0-20 6.9 11 105.7 0.2 3.7 25.5 1.41 
2 -30.803 116.671 WA 0-20 5.8 15 85.1 2.7 12.5 19.4 1.09 
3 -34.485 147.468 NSW 0-20 5.2 60 45.3 26.3 24.1 43.9 1.18 
4 -28.213 152.098 QLD 0-20 6.7 110 38.8 13.8 40 104.8 1.05 
5 -37.791 145.457 VIC 0-20 5.5 120 56.4 23.5 8.4 46.7 1.11 
6 -36.188 144.683 VIC 0-20 7 130 31.6 12.7 50.6 56.7 1.12 
7 -33.165 134.685 SA 0-20 8.6 210 44.9 7.8 15.4 31.4 1.13 

 

*Particle size predicted by IR, leading to some error (totals ≠ 100%), particularly in Soil 7 due to carbonate interference

87 -28.819 153.391 NSW 0-10 0.039 5.6 32 550 4.3 33.07 21.83 34.47 176.86 0.95 158.02 

88   NSW 10-30 0.052 5.6 18 560 3.2 35.48 19.91 37.04 159.53 1 138.88 

89 -38.247 145.931 VIC 0-20 0.275 5.5 25 270 4.8 54.36 9.47 23.82 99.22 1.07 117.98 

90 -38.042 145.792 VIC 0-20 0.389 4.6 160 210 4.9 36.66 25.14 27.50 83.6 1.05 94.44 
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Appendix Figure 1: Predicted Isotherms 
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Appendix Table 3: Co-linearity of predictor variables 
 

EC pH H20 Colwell P PBI OC 

EC - - - - - 

pH H20 0.0936 - - - - 

Colwell P 0.0544 0.0631 - - - 

PBI 0.0291 0.0092 0.0143 - - 

OC 0.0108 0.0415 0.0082 0.4795 - 

Clay 0.0022 0.0077 0.0028 0.0096 0.0433 

 

Appendix Table 4: Langmuir Fitting constants of glyphosate to mineral 
surfaces 

Mineral KL Qmax (ug/g) R2 

 Acid Neutral Basic Acid Neutral Basic Acid Neutral Basic 

Calcite* N/A 0.379 0.285 N/A 160.5 196.1 N/A 0.99 0.99 

Gibbsite 0.024 0.032 0.058 4158.6 2632.5 1790.7 0.99 0.99 0.99 

Goethite 0.032 0.031 0.016 4249.9 3242.1 761.2 0.99 0.99 0.99 

Hematite 0.071 0.187 0.091 1175.5 695.5 350.4 0.99 0.99 0.99 

Kaolinite 0.038 0.063 0.026 908.0 784.6 553.3 0.97 0.99 0.99 

Rutile 0.010 0.024 0.056 12715.5 5557.8 1794.4 0.65 0.98 0.99 

*Not performed due to high solubility at pH 5 
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Appendix Figure 2: Assumed spatial arrangement of an adsorbed glyphosate 

molecule 

 

  

 

Previous work has shown glyphosate to bind through the phosphate head of the molecule1. Taking the 

phosphorus-oxygen bond length to be 1.67 angstroms2 and the bond angle to be 110o, we can 

determine the area required for a phosphorus head to be 3.09 square angstroms. It needs to be 

considered that the phosphorus head is attached to a flexible tail. Working from the concept that the 

phosphorus, and thus the attached carbon, are fixed in place (excluding rotation about the P-C bond), 

the remaining tail that is free to move can be determined to be ~8 Å in length when fully extended 

(using appropriate bond angles and bond lengths). Allowing full rotation about the P-C bond, we form 

a cone with a side length of 8 Å, and an interior angle of 140o, producing a circular area of ~175 Å2, as 

per Appendix Figure 2.  

This is 3.5x larger than the experimentally derived 50 Å2, however, allowing for the rotation of other 

bonds within the molecule, the deprotonation of the carboxylic acid group and the statistical 

likelihood of two tails being in the same place along the arc such that they intercept, 40 Å appears a 

feasible spacing. 

1. Sheals, J.; Sjöberg, S.; Persson, P., Adsorption of Glyphosate on Goethite:  Molecular 
Characterization of Surface Complexes. Environmental Science & Technology 2002, 36 (14), 3090-
3095. 
2. Bartell, L. S.; Su, L.-S.; Yow, H., Lengths of phosphorus-oxygen and sulfur-oxygen bonds. Extended 
Hueckel molecular orbital examination of Cruickshank's d.pi.-p.pi. picture. Inorganic Chemistry 1970, 
9 (8), 1903-1912. 


