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Preface

The original research project was to scale up causal Bayesian network structure learning

using the minimum message length principle and the Local-to-Global paradigm via Markov

blankets. Due to my background in graph theory and enthusiasm in computational complexity

theory, only parts of the original project were completed together with solutions to some

interesting and challenging problems that I discovered on my own along the PhD journey.

The preprint that proposed polynomial time algorithms for checking morality for graphs

with maximum degree at most 4 can be viewed at https://arxiv.org/pdf/1903.01707.pdf.

The algorithms were implemented in an R package with some additional functions. It

can be downloaded from https://github.com/kelvinyangli/wrsgraph. The Markov blanket

discovery algorithms were implemented in another R package and can be downloaded from

https://github.com/kelvinyangli/mbmml.

After completing a mathematics degree from the University of Melbourne in 2011, I

struggled for almost two years between doing an ordinary nine to five office job and pursuing

my dream career as a researcher in mathematics. I must confess that neither of these two

options was easy to me at that time because I was, am and always will be an average person

with relatively little interest in getting high GPA, but more interest in seeking knowledge and

challenging myself. Until the mid of 2013, I met my current PhD supervisor Kevin Korb,

who kindly offered to take me as a PhD student. After some difficulties of being officially

admitted by Monash University, I started my PhD journey in September 2014 at the Faculty

of Information Technology. A couple of weeks later, Kevin introduced me to Lloyd Allison

https://arxiv.org/pdf/1903.01707.pdf
https://github.com/kelvinyangli/wrsgraph
https://github.com/kelvinyangli/mbmml
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who then became my second supervisor and continued offering me hours of discussions

every week, especially during the tough times in life.

I admit that I had some dis-satisfactions with both of my supervisors because of their

limited support in mathematical and programming tasks, unconcern for top conference/journal

publications and short contact hours due to other businesses. Instead of proving or coding

for me, they offered me suggestions and methodologies to guide me through the morass of

research. For quite some time, I was upset about this supervising style. But today, I realised

that it is because of the way they mentored me, I have become an independent researcher

with academic integrity. Most importantly, I have become a better person, a person who

understands the meaning of education. To quote a part of the commencement speech given

by David Foster Wallace at Kenyon College on May 21, 2005.

The capital-T Truth is about life BEFORE death.

It is about the real value of a real education, which has almost nothing to do with

knowledge, and everything to do with simple awareness; awareness of what is so real and

essential, so hidden in plain sight all around us, all the time, that we have to keep reminding

ourselves over and over:

"This is water."

"This is water."

Until now, I realised how lucky I am to have Kevin and Lloyd not only as my PhD

supervisors, but as my life mentors!



Abstract

Causal discovery automates the learning of causal Bayesian networks from data and has been

of active interest from their beginning. With the sourcing of large data sets off the internet,

interest in scaling up to very large data sets has grown. One approach to this is to parallelize

search using Markov blanket discovery as a first step, followed by a process of combining

Markov blankets in a global causal model. This is also known as the Local-to-Global (LGL)

paradigm.

Markov blanket was introduced in the 1980s as the smallest informative variable set for a

target variable. Since then, it motivated a series of Markov blanket based feature selection

as well as causal discovery methods. Most Markov blanket learning methods rely on the

constraint or metric-based approaches. The majority of metric-based methods learn a regional

structure around a target node then read off its Markov blanket. The problem of applying

these regional structures to scale up structure learning is that they are likely to include

mistakes of omission (false negatives) and commission (false positives), which then lead

to discrepancies among neighbouring structures. Hence, it not only wastes computational

resources on learning the regional structures, but resources on resolving these discrepancies

in future steps.

To overcome this issue, the thesis proposes a framework to learn Markov blanket as the

best variable subset that predicts a target. The framework employs the Minimum Message

Length (MML) principle to select an optimal variable subset because MML, a Bayesian

model selection metric that obeys Occam’s Razor, proved its advantages in causal discovery
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in past literature. To calculate the message length, the framework assumes a regional structure

to enable encoding the Markov blanket candidates. In particular, the regional structure can

either be a conditional probability table, naive Bayes, or a Markov blanket polytree model.

Experimental results suggest that the proposed framework is competitive with some state-of-

the-art Markov blanket learners. In particular, the framework using the conditional probability

table model shows superior accuracy under moderate sample size.

Next, this thesis addresses the importance of moral Markov blanket and explores its

properties, some of which may have a potential effect on scaling up structure learning.

Moralization is the process of connecting non-adjacent parents for each node in the Bayesian

network and dropping all edge directions. The resulting moral graph can be alternatively

obtained by connecting the Markov blanket candidates as each target node’s neighbours.

Hence, being moral is a necessary condition for a set of Markov blankets over all variables to

be legitimate. We give rigorous definitions of moral graphs in order to explore the properties

of these graphs and prove that morality can be decided in linear and quadratic time for graphs

of restricted maximum degree 3 and 4.

The last part of the thesis studies the application of Markov blanket (with and without

morality enforced) in causal discovery. Most of the existing LGL learners resolve discrepan-

cies between overlapping regional structures in ad hoc ways which are hard to generalize

to new methods. Through experiments, we claim that probabilistic Markov blanket priors,

being encoded as approximated moral priors, can help the algorithm Causal MML (CaMML)

to produce better results when speeding up CaMML by reducing its searching and sampling

iterations in certain cases. To improve CaMML’s overall performance, however, the learned

Markov blankets need to be more accurate than a threshold, which as far as we know no

current Markov blanket method can reach.



Table of contents

List of figures xv

List of tables xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions and Contributions . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 7

2.1 Markov Blanket Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Moral Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Bayesian Network Structure Learning . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Constraint-based Learning . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Metric-based Learning . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Local-to-Global Strategy . . . . . . . . . . . . . . . . . . . . . . . 20

3 Moral graphs 23

3.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Graphical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



xii Table of contents

3.1.3 Computational Complexity Theory . . . . . . . . . . . . . . . . . 33

3.2 Morality, Weak Recursive Simpliciality and Perfect Elimination Kit . . . . 34

3.3 Complexity of Checking Morality . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Maximum Degree Three Graphs . . . . . . . . . . . . . . . . . . . 38

3.3.2 Maximum Degree Four Graphs . . . . . . . . . . . . . . . . . . . 42

3.3.3 Graphs with Larger Maximum Degrees . . . . . . . . . . . . . . . 51

3.4 Minimum and Minimal Moralizations . . . . . . . . . . . . . . . . . . . . 56

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Markov Blanket Discovery 63

4.1 Minimum Message Length . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Learning Markov Blanket using MML . . . . . . . . . . . . . . . . . . . . 70

4.2.1 MML for Conditional Probability Table Models . . . . . . . . . . . 70

4.2.2 MML for Naive Bayes Models . . . . . . . . . . . . . . . . . . . . 72

4.2.3 MML for Markov Blanket Polytree Model . . . . . . . . . . . . . . 73

4.2.4 The MBMML Algorithm . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.5 A running example . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Experiment 85

5.1 Markov Blanket Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Accuracy on Real Models . . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 Accuracy on Artificial Models . . . . . . . . . . . . . . . . . . . . 89

5.1.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.4 Algorithmic Complexity . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Improving Markov Blanket Discovery by Morality . . . . . . . . . . . . . 101

5.2.1 Moralization with Synthetic Node Orders . . . . . . . . . . . . . . 102



Table of contents xiii

5.2.2 Moralization with Approximate Node Orders . . . . . . . . . . . . 107

5.3 Structure Learning via Markov Blankets . . . . . . . . . . . . . . . . . . . 111

5.3.1 Learning Bayesian Networks with CaMML . . . . . . . . . . . . . 111

5.3.2 CaMML’s Accuracy with Approximated Moral Prior . . . . . . . . 115

5.3.3 CaMML’s Speed with Approximated Moral Prior . . . . . . . . . . 121

6 Conclusions and Future Work 127

6.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References 131

Appendix A Inapproximability of the MBPT Problem 139

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Gap-preserving reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B Optimal Moral Graph Triangulation 149

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.3 Optimal Moral Graph Triangulation . . . . . . . . . . . . . . . . . . . . . 153

B.3.1 Minimum Fill-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.3.2 Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.3.3 Total States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Appendix C More Plots on Markov Blanket Discovery 169

Glossary 177

Acronyms 179





List of figures

2.1 The MB of v3 in this faithful BN is {v5,v6,v1,v2,v4}. . . . . . . . . . . . . 8

2.2 An example of a DAG, its moral graph and a non-moral graph. . . . . . . . 13

3.1 Examples of chordal, WRS and non-WRS graphs. . . . . . . . . . . . . . . 27

3.2 An example of a WRS graph. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The MB of v3 in this BN is {v5,v6,v1,v2,v4}. . . . . . . . . . . . . . . . . 32

3.4 The moral graph of the BN in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . 32

3.5 Vertex addition and removal between DAGs and their corresponding moral

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Two cases when adding the edge uv makes the vertex x simplicial in the

corresponding elimination graph. . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Two maximum degree 3 graphs. The vertex x is simplicial with two neigh-

bours u,v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 A maximum degree 4 graph. The vertex x is simplicial with three neighbours

u,v,w. The vertices u,v have a common neighbour that is not in the closed

neighbourhood NG[x]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Examples of 3-clique paths of length 2 and 3. . . . . . . . . . . . . . . . . 44

3.10 A maximum degree 4 graph that contains a 3-clique path of length 2. . . . . 45

3.11 Two maximum degree 4 graphs. Each contains a 3-clique path of length 3 as

a subgraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



xvi List of figures

3.12 Two maximum degree 4 graphs. Each contains a K3
3 as a subgraph. The

distance d(v4,v5) ∈ [3,∞) in the subgraph G−{v1,v2,v3}− v4v5. . . . . . . 47

3.13 An example of a 3-clique path of length 5. . . . . . . . . . . . . . . . . . . 48

3.14 Two maximum degree 4 moral graphs, whose simplicial vertices are in K3
3 s.

The simplicial vertices must be removed in the order stated in Algorithm 4,

otherwise these graphs will not be recognized as moral by taking the actions

proved in the above lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.15 A variable gadget for the variable vi in a formula φ . It contains two subgraphs,

where the top corresponds to the literal vi and the bottom corresponds to the

literal v̄i. The edge v8
i v̄8

i ensures that when the vertices v0
i and v̄i

0 are not

simplicial and the elimination process starts from neither the vertex v15
i nor

v̄i
15, only one of v15

i and v̄i
15 can be eliminated. . . . . . . . . . . . . . . . 53

3.16 A clause gadget for a clause ci in a formula φ . It consists of three isomorphic

subgraphs (up to labelling), one for each literal in ci and a 4-clique to simulate

the disjunctive operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.17 Two auxiliary gadgets assist to connect all the gadgets together to obtain a

desired graph. Auxiliary gadget 2 contains m+2 vertices, where m is the

number of clauses in a formula φ for the 3CNF problem. . . . . . . . . . . 54

3.18 The reduction from a satisfiable 3-CNF (X ∨Y ∨Z)∧ (X̄ ∨Ȳ ∨Z)∧ (X̄ ∨Ȳ ∨
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Chapter 1

Introduction

Causal discovery aims to learn causal Bayesian networks by using information about condi-

tional dependencies between sets of variables gleaned from sample data. The research behind

it is coterminous with research on Bayesian networks themselves, beginning at least with

Glymour et al. [39], spurred on by the difficulty and cost of eliciting Bayesian networks from

experts. The techniques behind causal discovery have since then become more varied and

effective, expanding from the “constraint-based” learning of early efforts, which examine

conditional dependencies in isolation, to “metric-based” learning, which apply Bayesian

(or similar) metrics to causal models and data sets as a whole. Meanwhile, however, the

challenge has itself increased manyfold, in particular through the additional challenge of “big

data” driven by the expansion of the internet.

This challenge is also aggravated by the fact that causal discovery itself is NP-hard [15],

forcing the use of heuristics when learning whole causal models. An alternative to learning

causal models globally is the Local-to-Global (LGL) paradigm that first finds regional

structures within subsets of variables then unifies them into a global structure.

A promising approach to a LGL technique is to parallelize search using Markov Blanket

discovery as the first step, discovering Markov blankets centred around each variable, and

then gluing them all together.
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1.1 Motivation

Throughout this thesis, by (global) structure we mean a Bayesian network structure (i.e.,

Directed Acyclic Graph (DAG)). By a regional structure we mean a network structure

over a subset of variables. (Note that some authors use local structure to mean regional

structure.)1 As Markov blankets are sets of variables, regional structures imply (include)

Markov blankets, but include arcs and their orientations. A typical LGL structure learner

consists of the following main steps.

1. Given a data set over n variables,

(a) use a machine learning algorithm to split the set of n variables into variable

subsets (that may or may not overlap),

(b) use a structure learner to infer an optimal regional structure over each subset of

variables.

2. Merge all n regional structures to get a partially directed global structure. If conflicts

exist between neighbouring regional structures, resolve them in some way.

3. Apply a structure learner, starting from the regional structures, to obtain an optimal

global structure that is either a fully directed Bayesian network or a DAG pattern (or

pattern) that uniquely represents a Markov equivalence class of DAGs.

Sometimes Steps 1(a) and 1(b) are treated as one by learning an optimal regional structure

around a target variable, but limit the variables to being within the neighbourhood, e.g., the

Max-Min Hill-Climbing (MMHC) algorithm in [89] or Markov blanket of the target, e.g.,

the Score-based Local Learning (SLL) algorithm in [60].

There are, however, two potential issues with this standard approach. First, although

regional structures are often over relatively small subsets of variables, there is no guarantee
1We use “regional structure” in view of the fact that “local structure” is commonly used to refer to the

dependencies between parameters within the conditional probability distribution of each individual variable.
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in general that these smaller regional structures can be learned with high accuracy. False

discoveries could then lead to edge existence or direction conflicts among neighbouring

regional structures, which eventually need to be resolved at some stage. In addition, learning

regional structures could be a waste of computational resources if this step is not essential to

subsequent steps. Second, the way these conflicts are resolved in Step 2 is not generalizable.

Different learners often have specifically designed properties for resolving conflicts according

to the nature of the learner, e.g., high precision but low recall or vice versa. Therefore, it

is important to develop a LGL framework that skips learning regional structures (i.e., Step

1(b)) but still produces a global undirected or partially directed structure for subsequent steps.

More importantly, the framework should encode Markov blankets as “prior” information in

a probabilistic way that can be incorporated by a Bayesian structure learning algorithm in

order to help the scalability of such a learner while still keep a reasonable accuracy.

1.2 Research Questions and Contributions

Although the underlying motivation of this thesis is to scale up Bayesian network structure

learning using the LGL strategy, the research did not proceed far enough to demonstrate

the effectiveness of such a technique. The research questions answered in this thesis are

prerequisites to that goal, but valuable to answer in their own right:

Research Question 1: Can Markov blankets be learned effectively as purely variable

subsets, without learning the regional structures within them?

Research Question 2: What is the connection between Markov blanket consistency and

graph morality?

Research Question 3: How to efficiently check graph morality?

Research Question 4: How to use Markov blankets as “priors” in Bayesian structure

learners?
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The contributions of this thesis are stated below with respect to each of the above research

questions:

1. Developed a Markov blanket discovery framework that uses the Minimum Message

Length (MML) principle and a hypothetical regional structure, including the condi-

tional probability table, Naive Bayes and Markov blanket polytree models. This work

has been written in a journal paper that is ready for submission.

2. Proved the equivalence between Markov blanket consistency and graph morality (Re-

search Question 2). Developed linear and quadratic time algorithms for checking

morality for graphs with maximum degree 3 and 4 (Research Question 3). Demon-

strated that enforcing morality (heuristically) has the potential to increase Markov

blanket discovery accuracy. This work has been written in a paper that is ready for

submission. The preprint is available at [51].

3. Used Markov blankets as approximate moral priors for the Bayesian structure learner

Causal MML (CaMML) [61] and demonstrated their potential for increasing CaMML’s

scalibility (Research Question 4).

1.3 Structure of the Thesis

The main content of the thesis is structured in six chapters to answer the four research

questions mentioned in the previous section.

Chapter 1 introduces the general background of Bayesian network structure learning,

research questions and accomplishments and the structure of this thesis.

Chapter 2 starts by explaining some of the strategies in Markov blanket discovery, its

connection with graph morality and its application in scaling up structure learning. The

chapter draws attention to the specific problems that this thesis addresses and tries to solve.
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Chapter 3 starts by giving the definitions (in the fields of graph theory, Bayesian network

and computational complexity theory)2 that are needed for the thesis. The concept of moral

graph is formalized and its equivalence to related properties is proved. The motivations of this

chapter are to prove the equivalence of Markov blanket consistency and graph morality, and to

propose linear and quadratic time algorithms for checking morality of graphs with maximum

degrees 3 and 4. The remainder of this chapter brings closure to the problem of deciding

morality by proving the problem remains NP-complete for graphs with higher maximum

degree, which then leads to the NP-hardness of the minimum and minimal moralization

problems.

Chapter 4 focuses on developing a Markov blanket discovery algorithm using the MML

principle. The focus here is to learn Markov blankets as variable subsets, without having to

learn the regional structures within the Markov blankets. The work in this chapter assumes

three different regional structures - the conditional probability table, Naive Bayes and Markov

blanket polytree - to encode a Markov blanket without relying on any of these being strictly

correct.

Chapter 5 covers the experimental work that has been done for this thesis. The first

section includes the tests on both real and artificial data sets of the Markov blanket discovery

algorithms proposed in the previous chapter. The second section experimentally justifies the

potential of enforcing morality on learned Markov blankets in order to increase the accuracy

of a Markov blanket learner. The last section studies how Markov blankets can be used as

probabilistic priors and its potential of scaling up structure learners. In this thesis, the focus

is on the CaMML algorithm.

Chapter 6 concludes the work that has been done in the main parts of the thesis and the

theoretical and practical results achieved.

In addition to the main chapters described above, the thesis also addresses respectively

the NP-hardness of the Markov blanket polytree problem and the optimal triangulation of

2See also Glossary and Acronyms at the end of the thesis.
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moral graphs. Appendix A proves that the optimal Markov blanket polytree model cannot be

approximated within a constant factor to the optimum. Appendix B addresses an incomplete

proof of the NP-hardness of optimal triangulation.3

3The proofs state in this appendix, however, are overly complicated and be simplified to a short argument,
which was pointed out by an anonymous reviewer.



Chapter 2

Literature Review

The purpose of this chapter is to review the work that has been done on learning Markov

blankets and its applications in machine learning. The chapter starts by introducing the

concept of Markov blankets, the motivations for using this notion in Bayesian network

structure learning and feature selection, and the major approaches for learning Markov

blankets from observational data. It follows by explaining what it means for a set of Markov

blankets to be moral and why morality should be considered when learning Markov blankets,

especially for structure learning. The chapter ends with a brief introduction to Bayesian

network structure learning and how Markov blankets are brought into the stage for scaling

up that problem.

2.1 Markov Blanket Discovery

The Markov blanket of a (target) variable is the smallest subset of variables conditioning on

which renders the target independent of the remaining variables of a model.1 This implies

that other variables beyond the blanket carry no additional information about the target. In a

faithful Bayesian network, a variable’s Markov blanket contains its parents, its children and
1Originally, this is how Pearl [66] defined “Markov boundaries”, but the literature has largely migrated to

using “Markov blankets” to this minimalist sense.
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v1 v2

v3 v4

v5 v6

v7 v8

Fig. 2.1 The MB of v3 in this faithful BN is {v5,v6,v1,v2,v4}.

its spouses (i.e., the children’s other parents, see Figure 2.1). However, knowing the variables

of the Markov blanket does not tell us specifically how the target variable is connected to the

Markov blanket variables. The above definition of Markov blankets entails that in principle

Markov blankets are the optimal feature subsets for prediction. Hence, it motivated a series of

Markov blanket based feature selection work such as [45, 20, 11, 83, 53], etc. Furthermore,

since the Markov blanket “separates” the target from all other variables in the model, Markov

blankets are natural choices for “breaking” a Bayesian network down to multiple pieces, so

that structure learning tasks can be conducted on all pieces simultaneously. Some of the work

in this direction includes [57, 4, 5, 60, 68, 34].

The approaches to learning Markov blankets from data can be divided into two major cat-

egories, i.e., constraint-based and metric-based.2 A natural way of learning Markov blankets

is suggested by their definition in terms of conditional independence: testing dependencies

between a target and everything else given each possible subset of other variables, looking for

the minimum subset yielding zero dependency. Conditional independencies are often tested

by statistical hypothesis tests, such as the G-test or χ2-test. An exhaustive search of this kind

would, of course, be exponential in the size of the network. But we can try a heuristic search

instead. This was first done by Margaritis and Thrun [55]. Their work, the Growth-Shrink

(GS) algorithm, laid the foundation for a constraint-based Markov blanket discovery that

typically consists of an addition and a deletion phase as shown in Algorithm 1. We use

2These two approaches are essentially the same as the two major approaches for Bayesian network structure
learning that will be reviewed at the end of this chapter.
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X ̸ |= P Y | S and X |= P Y | S to denote that when conditioning on the set of variables S, the

random variables X and Y are dependent and independent, respectively, w.r.t. the underlying

distribution P respectively. The subscript P can be dropped if the underlying distribution P is

clear in the context.

Algorithm 1: The GS algorithm by Margaritis and Thrun [55]
Input :A data set D over a set of n variables V = (X1, . . . ,Xn). A target variable Xi
Output :A candidate Markov blanket S for Xi

1 S = /0;
2 while exists X j ∈V \{Xi} such that Xi ̸ |= X j | S do
3 S = S∪{X j} ; // addition phase
4 end
5 while exists X j ∈ S such that Xi |= X j | S\{X j} do
6 S = S\{X j} ; // deletion phase
7 end

To reduce the chance of adding false positives into the potential Markov blanket with this

heuristic approach, Tsamardinos et al. [88] added those variables to the candidate Markov

blanket having the strongest dependencies with the target in advance. The strength of

dependencies can be measured quickly by information-theoretical measures such as mutual

information. The intuition behind the re-ordering in each of the addition steps is that false

positive candidates are less likely to appear in variables who are strongly dependent to

the target, and hence reducing the chance of adding more false positives in the subsequent

steps. The proposed Incremental Association Markov Blanket (IAMB) algorithm has a worse

computational complexity, O(n2), but it is usually much faster in practice.3 Since then, the

IAMB algorithm has attracted much attention in attempts at improving its speed and accuracy

from the algorithmic perspective such as the works from Yaramakala and Margaritis [99] and

Zhang et al. [101].

While employing the same statistical tests and heuristics, another slightly different

strategy that learns the direct neighbours and spouses separately has proven superior, and
3The computational complexity for constraint-based methods are often measured in terms of the number of

conditional independence tests that need to be conducted.
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hence has been widely adopted in later constraint-based methods, including [3, 67, 31, 4,

5, 25, 52, 33], etc. The difference from the previous strategy is that the growing phase is

done in two sub-steps, where the first sub-step learns the neighbours of a target variable and

the following sub-step learns the neighbours of each variable that is in the neighbours of the

target, i.e., the distance-two neighbours of the target variable. Algorithm 2 is one of the first

algorithms of this kind, namely the Max-Min Markov Blanket (MMMB) algorithm developed

by Tsamardinos et al. [87]. It relies on the Max-Min Parents and Children (MMPC) algorithm

[87] to find the neighbours of a variable. The detail of MMPC is not presented here as it

has similar ingredients to the GS algorithm but for neighbourhood discovery. It takes two

inputs including a data set D and a target variable Xi and outputs a potential set of neighbours

MMPC(D,Xi) for Xi.

Algorithm 2: The MMMB algorithm by Tsamardinos et al. [87]
Input :A data set D over a set of n variables V = (X1, . . . ,Xn). A target variable Xi
Output :A potential set of Markov blanket S for Xi

1 Pi = MMPC(D,Xi) ; // addition phase
2 S = Pi

⋃
X j∈Pi

MMPC(D,X j);
3 for each X j ∈ S\Pi do
4 Find S′ s.t. X j |= Xi | S′ ; // deletion phase
5 for each Xk ∈ Pi do
6 if X j ̸ |= Xi | S′∪Xk then
7 Mark X j ;
8 end
9 end

10 Remove X j from S unless it is marked ;
11 end

As can be seen in the pseudo-code, the MMMB algorithm looks at the dependencies with

the target at a distance of one and two neighbours separately. Distance-two neighbours are

then taken to a filtering process (lines 3-11) to remove false positives.

Note that some of the distance-two neighbour constraint-based methods utilize the

symmetry condition to filter out false positives before the deletion phase, e.g., the Parents and
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Children based Markov Blanket (PCMB) algorithm in [67]. The symmetry condition states

that a random variable X is in the Markov blanket of a random variable Y if and only if Y is

in the Markov blanket of X . There are, however, methods that relax this condition to improve

the overall structural accuracy measured by a combined precision and recall such as [25] or

the running time such as [33]. In general, the constraint-based approach has an advantage in

scaling up to high-dimensional data sets. Recent work from Liu and Liu [53] generalized

two existing constraint-based methods to Markov blanket discovery for multi-target variables.

The constraint-based methods, however, suffer a lack of robustness under small samples and

are sensitive to the exact settings used in the statistical tests.

Metric-based learners, having proven themselves highly effective in general causal

discovery, have subsequently been applied to Markov blanket discovery. There are several

different features which distinguish between metric-based methods, such as the type of

searches or metrics used, the search space, or whether the learning is exact or approximate.

To illustrate an important motivation of this project, we group these methods into two

categories by whether or not the learning process is target-variable oriented. The non-target-

oriented methods search for the best regional structure around a target w.r.t. a metric function.

Here, a pre-determined metric is calculated over the regional structure. A good example of

this type is the Score-based Local Learning (SLL) algorithm proposed by Niinimaki and

Parviainen [60]. In contrast to metric learning of full Bayesian networks, the search space of

SLL is restricted to regional structures around a target variable without regard for unrelated

adjacencies. A few methods of this type were published earlier than SLL, such as the works

by Cooper et al. [20] and Madden [54] that are built upon the Bayesian network learner K2

[19], and the work from Acid et al. [1] that searches through a more restricted space than the

space of all valid regional structures. It is worth mentioning that SLL is an exact algorithm

that will find the optimal regional structure by using a dynamic programming exact Bayesian

network learner developed by Silander and Myllymäki [79]. Given that most real models
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are sparse, Markov blankets tend to be small, allowing exact algorithms for learning small

Bayesian networks to be applied to find optimal regional structures independently. Gao and Ji

[33] recently reduced the computational complexity of SLL by a factor of n (i.e., the number

of variables) by removing the enforcement of symmetry in SLL.

The target-oriented learners embedded potential Markov blanket candidates into fixed

machine learning classification models. An early work from Frey et al. [29] built decision

tree models to estimate Markov blanket candidates. The algorithm by Li et al. [49] learned

Markov blanket candidates of a target variable by using linear models trained with the

Least Absolute Shrinkage and Selection Operator (LASSO) method [85] for dimensionality

reduction. More recently, Strobl and Visweswaran [83] proposed to use ridge regularized

linear models to discover Markov blankets. This method has a memory limitation due to the

necessity of storing large covariance matrices and is only valid for non-singular covariance

matrices. Here, singularity is caused by colinear variables and hence is avoided in an

improved method by Yan et al. [97], who added small random noise to entries of covariance

matrices.

Some of the target-oriented metric-based methods mentioned above have limitations

because of the restricted classification models used or the amount of calculation needed for

high-dimensional data sets. There are other simple classification models that could potentially

avoid these issues. In particular, what we are interested in is how simple models, such as the

Conditional Probability Table (CPT), naive Bayes and polytree, perform in Markov blanket

discovery when using the MML metric. This is studied thoroughly in Chapter 4.

2.2 Moral Graphs

One way to conduct an exact inference on a given Bayesian network is to transform it into

a tree structure, called a junction tree, and conduct inference on that instead. The process

of obtaining a junction tree from a Bayesian network consists of moralization, triangulation
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and tree decomposition. Moralization was introduced by Lauritzen and Spiegelhalter [47]

as connecting non-adjacent parents for each node in the Bayesian network and dropping all

edge directions. Any spouse of a vertex that is neither a parent nor a child of the vertex must

be connected to the vertex during the moralization process. This implies that the Markov

blanket of each vertex in a DAG becomes the vertex’s neighbourhood in the moral graph.

Figure 2.2 contains a DAG, its moral graph and a non-moral graph of this DAG.

v2 v4

v1 v3

v5

(a) A DAG.

v2 v4

v1 v3

v5

(b) Its moral graph.

v2 v4

v1 v3

v5

(c) A non-moral graph.

Fig. 2.2 An example of a DAG, its moral graph and a non-moral graph.

Given a faithful Bayesian network, it follows that the Markov blankets must be symmetric

and consistent. Symmetry states that a variable vi is in the Markov blanket of another variable

v j if and only if v j is in the Markov blanket of vi. This is a consequence of the graphical

interpretation of Markov blankets. Consistency is defined as: there exists at least one DAG

that admits the set of Markov blankets over all variables as its set of Markov blankets. The

definition of moral graph implies that each node’s Markov blanket becomes its neighbourhood.

Given a data set over n variables, the set of all learned Markov blankets together form an

undirected graph by connecting the Markov blanket of each node as its neighbourhood.

Hence, saying a set of Markov blankets is consistent with a DAG is equivalent to saying the

undirected graph obtained is moral.

A family of learned Markov blankets, if not read off from a DAG, does not imply any

specific relations among its variables. This does not stop symmetry being quickly checked

and enforced. Previous work by Tsamardinos et al. [89], Peña et al. [67], Niinimaki and

Parviainen [60], Aliferis et al. [4, 5] enforced symmetry arbitrarily by taking the union

or intersection4 of Markov blankets. It is, however, non-trivial to check the consistency
4If vi is in the Markov blanket v j but not vice versa, taking the union will add v j into the Markov blanket of

vi whilst taking the intersection will delete vi from the Markov blanket of v j.
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criterion. Lacking consistency with a DAG, one can be certain that the Markov blankets are

incorrect, under the assumption that the generating model is a faithful Bayesian network

with no hidden variables.5 Hence, the global structure obtained from these Markov blankets,

regardless of how this is done, can never be oriented to a DAG that admits the same Markov

blankets.6 Until now, the machine learning literature has not paid attention to Markov blanket

consistency. Therefore, one of the motivations of this project is to address the importance of

this property and its potential effect on structure learning and feature selection algorithms

that use the Markov blanket approach.

2.3 Bayesian Network Structure Learning

We finish this chapter by giving a brief introduction to Bayesian network structure learning.

A lot of the results for Markov blanket discovery mentioned in the first section come from

general structure learning. Furthermore, an important underlying motivation of Markov

blanket discovery is to scale up structure learning to high-dimension problems.

Bayesian network structure learning is the process of finding an optimal model structure

for describing a data set. Here, optimality refers to a statistical metric or a set of statistical

hypothesis tests calculated from the given data set. The time complexity of the learning

problem is known to be at least super-polynomial from results published since the 1990s.

Early work on the time complexity of general structure learning in Chickering et al. [15]

proved that learning an optimal Bayesian network structure with maximum fan-in at least

2 is NP-hard, with respect to the Bayesian Dirichlet equivalent (BDe) scoring function (or

5We conducted tests of Markov blanket consistency for three learners on 10 random BNs with 30 binary
variables and maximum fan-in 5. Each Bayesian network was used to generate 10 data sets of samples of sizes
100, 1000 and 5000. On average, SLL-MB [60] produced Markov blankets with 12,0,0 percent consistency for
the three sample sizes respectively. PCMB [67] had 92,0,0 and IAMB [89] had 7,0,0. The reason PCMB had
high consistency for samples of size 100 is that it learned very few Markov blanket candidates, so the graphs
were almost as sparse as trees, which always have consistent DAGs.

6Consistency does not apply to the skeleton (of a DAG) given by a neighbourhood learning method such as
MMHC [89] and SLL+G [60]



2.3 Bayesian Network Structure Learning 15

anything equivalent) and a finite data set. This work was extended in Chickering, Heckerman,

and Meek [16] to the conclusion that even with infinite data and the same scoring function, it

is still NP-hard to learn the optimal structure with max fan-in at least 3.7 In addition to the

hardness of learning a general structure, some restricted structures are also NP-hard to learn.

For instance, the work of Dasgupta [23] shows that the optimal polytree with max fan-in

2 cannot be approximated to within a constant factor of the optimum in polynomial time.

This is in contrast with the polynomial time algorithm that learns an optimal polytree with

max fan-in 1 (a.k.a. a Chow-Liu tree) as proved by Chow and Liu [17]. Inspired by the work

of Dasgupta [23], Appendix A.1 looks into approximating a more restricted model family,

namely Markov blanket polytree. By a similar construction, it is proved in the appendix that

an optimal Markov blanket polytree with max fan-in 3 cannot be approximated in polynomial

time to within a constant factor of the optimum Markov blanket polytree.

Regardless of the computational complexity of learning the optimal Bayesian network

structure, an automated learning process is often preferred in practice due to the challenge

of manually building a structure. For this reason, various heuristic techniques have been

developed to learn good but possibly sub-optimal structures within a reasonable time limit.

As in most of the structure learning literature, we divide the most popular methods into two

categories, constraint-based and metric-based learning. As shown in Table 2.1, the structure

learning problem can also be separated into learning a global structure at once or learning a

batch of regional structures and then combining them into one global structure. The latter

strategy has become popular since the 2000s due to the curse of dimensionality impeding the

direct learning of global structures.

It follows that one approach to reducing the complexity of learning a full causal Bayesian

network is to first learn n Markov blankets and then learn the causal structures within the
7Although there is a gap for the problem of max fan-in 2 structure learning with infinite data, the authors

conjecture that the problem remains NP-hard [16].
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Table 2.1 A brief summary of common structure learning approaches.

Constraint-based Metric-based

Global
Fast, piece by piece,
lack of robustness,
no uncertainty, e.g., PC

Slow, consistent metrics,
structures can be ranked,
e.g., CaMML, GES, K2

Local-to-global
Not necessary, as global
learning usually is quite fast

Neighbourhood-based,
Markov blanket-based,
MMHC, SLL+C, SLL+G

n Markov blankets independently, which we call the regional causal structure, and finally

stitching them together. A good review of this approach is presented by Aliferis et al. [4, 5].

2.3.1 Constraint-based Learning

The constraint-based approach relies on conditional independence tests to recover a structure

piece by piece. The ideal of this approach, given unlimited time, would be to test whether or

not a pair of variables is dependent, conditioning on all possible subsets of other variables.

If they are, an edge is added to connect them and its parameters will reflect the direct

dependency. Conditional independencies are tested by statistical hypothesis tests, such

as the G-test or χ2-test. And, of course, heuristics are used to by-pass conditioning on

all possible subsets. This approach was developed in the early 1990s, utilizing the work

of Verma and Pearl [90], in the development of the well-known PC algorithm by Spirtes,

Glymour, and Scheines [82]. Since then several variations and improvements on the PC

algorithm have been proposed to either reduce the number of conditional independence

tests needed or to control the false positive rate when adding arcs. During the past few

decades, more than a dozen new constraint-based algorithms have been developed for both

general and restricted structure learning [18, 24, 82, 12]. One of the advantages of this

type of learner is its efficiency in reconstructing a structure and, hence, scalability to large

models. Although there are exponentially many subsets of variables to check when testing

the conditional independency between two variables, reasonable constraints can be imposed
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to reduce the space of possible subsets, and so improve efficiency, e.g., the PC and PC*

algorithms of Spirtes, Glymour, and Scheines [82]. A disadvantage of this approach is the

lack of robustness of statistical hypothesis tests, in particular under small samples (see Dai

et al. [22]). Another problem is the inability of quantifying structure uncertainty, which can

be essential when multiple structures are statistically equivalent to each other. Despite the

efficiency of constraint-based learners, their reconstruction accuracy is generally worse than

metric-based methods. Although it was proved by Cowell [21] that under certain conditions,

conditional independence testing is equivalent to local log scores, the latter still attracts much

interest for reasons that will be briefly described in the next section.

2.3.2 Metric-based Learning

Compared to the constraint-based approach, a metric-based approach must choose from

a large range of alternative ways of operating, including the search space, the search or

sampling algorithm, and the statistical metric. Two of the most common search spaces are

DAG space [19] and pattern space [13]; the former was proved by Robinson [70] to be

super-exponential using a recursive formula and the latter was enumerated by Gillispie and

Perlman [38] by a computer program up to 10 nodes (variables). Gillispie and Perlman [38]

concluded that the ratio between the number of labelled Markov equivalence classes and

DAGs approaches an asymptote of about 0.267, which suggests that even the equivalence

class space is super-exponential. Because of this, it is unrealistic to search the entire space for

an optimal structure, and hence quick but non-exhaustive search algorithms were proposed

in early metric-based work, such as greedy search, Tabu search, genetic algorithms and

simulated annealing. Given the increasing power of computers, some efforts have been

made to search for the exact optimal structure within the entire search space using dynamic

programming [63, 44, 80, 79]. These early works sacrifice scalability for finding the optimal

structure, and are only feasible for models contain a few dozen variables. Later we examine
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the Local-to-Global strategy which helps exact methods scale to hundreds of variables.

Note that a Bayesian approach of searching for the optimal structure is to get the posterior

distribution over all possible structures. This can be estimated by samples obtained from

Markov Chain Monte Carlo (MCMC), such as the Metropolis-Hasting (MH) algorithm.

For instance, CaMML [61] uses the MH algorithm to sample through the space of Totally

Ordered Models (TOMs) in order to estimate the posterior distribution over TOMs, which

is then aggregated to the posterior distribution over DAGs, equivalence classes and MML

equivalence classes.

Another important part of the metric-based approach is the statistical metric used by a

structure learner. Two desirable properties of a metric are consistency and decomposability.

A metric is consistent if it gives the optimal structure the best score in the limit of infinite

data. Decomposability is a useful property that allows the score of a structure to be computed

as the sum of the score for each node given its parent set. In consequence, local changes to

a structure only require updating the affected variables’ scores. Perhaps the most intuitive

metric to be used is the likelihood function that returns the likelihood of the samples given a

model structure. The risk of using maximum likelihood is that it tends to overfit, because

the fully connected Bayesian network is capable of imitating every other model of the

same size. For this reason, a more sensible solution is to penalize the model complexity by

adding some kind of regularization term. Hence, most of the metrics used nowadays contain

two parts, where one part is the likelihood of the observed data given the assumed model,

and the other part is the model complexity that is used to avoid overfitting. Although these

metrics have similar functional formats, they were developed from very different perspectives.

Bayesian statisticians (and machine learners) aimed at calculating the posterior probability of

a structure given data, which is equivalent to the joint distribution of the structure and data up

to a normalizing constant. In this vein, some of the best known metrics are K2 [19], Bayesian
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Dirichlet equivalent with uniform parameter prior (BDeu) [10]8 and the more general version

BDe [41] that is expressed as

P(Bs,D) = P(Bs)
n

∏
i=1

qi

∏
j=1

Γ(N′
i j)

Γ(N′
i j +Ni j)

ri

∏
k=1

Γ(N′
i jk +Ni jk)

Γ(N′
i jk)

, (2.1)

where P(Bs) is the user’s prior belief in the structure Bs and the rest of the terms calculate the

likelihood of the data with a Dirichlet prior N′
i jk on each of the state k of the variable i with

parent instantiation j. The value Ni jk is the actual count of this combination in the give data

set. Another way of finding the optimal structure for a given data set is to find the minimum

encoding of the structure and data based on Shannon information theory. For example, the

Minimum Message Length (MML) [93, 92] and Minimum Description Length (MDL) [69]

are two minimum-coding methods that balance the complexity of a model H with the fit of

the model to a given data set D by minimizing:

I(H,D) = I(H)+ I(D|H). (2.2)

The first part I(H) measures the message length for stating a model. The second part I(D|H)

measures how well the specified model compresses the given data set; i.e., it is the message

length for the data assuming the truth of the model. The aim in MML inference is to find

the model having the shortest two part message length, and so maximizing the posterior

probability of H given D.9 Other well known information-theoretic metrics include Akaike

Information Criteria (AIC) [2] and Bayesian Information Criteria (BIC) [76], which penalise

model complexity proportional to the number of parameters.

Beyond the two main approaches of constraint-based and metric-based learning, another

recently developed approach considers structure learning as an optimization problem and has

8A recent theoretical review of the BDeu metric by Suzuki [84] shows that the metric is biased against the
Occam’s Razor principle in certain conditions due to its uniform parameter prior.

9It is similar with MDL, however, assumptions it makes are generally not compatible with considering what
is maximized to be probability.
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also proved competitive e.g., Scanagatta, de Campos, Corani, and Zaffalon [73], Scanagatta,

Corani, de Campos, and Zaffalon [74], Scanagatta, Corani, Zaffalon, Yoo, and Kang [75].

This approach learns structures with bounded treewidth (of the moral graph). It starts by

learning a set of candidate parent sets for each variable and ranking them according to a

scoring function, such as BDeu. An integer linear programming algorithm is then conducted

on these lists of parent sets to find the optimal consistent structure that has the highest total

score.

2.3.3 Local-to-Global Strategy

All of the methods described in the previous two sections tackle the structure learning

problem as a whole. That is, given a data set with 100 variables, these methods will search

through the space of structures containing 100 variables and try to find the best one. This

section discusses the so called Local-to-Global (LGL) strategy that helps structure learners

to scale up to hundreds of variables (or even millions, as claimed by some, e.g., Ramsey,

Glymour, Sanchez-Romero, and Glymour [68]). Note that the constraint-based methods

recover a structure piece by piece by running a set of conditional independence tests, so they

are readily able to deal with structures with hundreds of variables. The problem, however, is

more challenging for metric-based methods due to the super-exponential size of the DAG

or pattern space and the relatively high computational costs of calculating a score for each

structure. For these reasons, dividing the entire structure into pieces seems promising. The

idea of applying the LGL strategy is to divide the entire n variables into “reasonable” subsets,

then learn regional structures (or substructures) within these subsets. In the end, merge all

the regional structures into a global structure as the final output.

There are two different foci on how to divide the variables into subsets. Most so far

prefer to split variables into neighbourhoods, one for each variable. A benefit of doing

so is that there is no need to learn the regional structure within a neighbourhood, since
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all neighbours are connected to the target variable directly, e.g., Tsamardinos, Brown, and

Aliferis [89], Niinimaki and Parviainen [60]. The other focus is to divide variables into

Markov blankets, one for each variable. The reason for using Markov blankets is that it is

the smallest subset of variables, conditioning on which the target becomes independent of

all other variables. A difficulty of this approach is that it is not clear how variables in the

Markov blanket ought to be connected, unless the regional structure is also learned along

with the Markov blanket. Although existing structure learners are able to learn regional

structures, the outputs are very likely to contain conflicting edges, which again need to be

dealt with carefully when moving to the global structure; see, e.g., Nägele, Dejori, and Stetter

[57], Niinimaki and Parviainen [60], Ramsey, Glymour, Sanchez-Romero, and Glymour [68].

Based upon the exact learner from Niinimaki and Parviainen [60], recently Gao et al. [35]

developed a LGL Bayesian network structure learning algorithm that saves both running

time and memory by gradually expanding a regional structure to a global structure. Gao and

Wei [34] further improved the running time of SLL-based learners by parallel learning of

regional structures using multi agents.

While existing LGL methods are continuously being improved, their deterministic ways

of resolving conflict edges between neighbouring regional structures makes them hard to

be generalized when substituting different search or metric components. Therefore, this

thesis proposes to encode learned Markov blankets as probabilistic structural priors. This

method let a user specifies the confidence of the priors, according to the nature of the search

and metric used in the pre-processing steps and allows these priors to be used by structure

learners that adopt Bayes theorem.





Chapter 3

Moral graphs

A family of Markov blankets may not be consistent with any Bayesian network due, say,

to imperfect data. Inconsistency may have harm Markov blanket-based structure learning.

This chapter examines the checking of Markov blanket consistency using graph morality.

An alternative concept of moral graph is defined in the next section - Weakly Recursively

Simplicial (WRS) - without relying on Bayesian networks. In general, deciding whether

or not an undirected graph is moral is NP-complete as proved by Verma and Pearl [91].

However, Sections 3.3.1 and 3.3.2 respectively present linear and quadratic time algorithms

for deciding morality for maximum degree 3 and 4 graphs. Also, we will see that the problem

remains NP-complete for graphs with maximum degree more than 4, hence leaving no gap

between P and NP-complete for this problem.

3.1 Definitions and Notations

This section introduces some of the graph theory and Bayesian network definitions that are

directly related to this project. They are adopted from Diestel [26], Neapolitan [58] and

Sipser [81] respectively.
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3.1.1 Graph Theory

In what follows, we refer to undirected graphs as graphs, and graphs with directions as

directed graphs (or Bayesian network structures or Directed Acyclic Graph (DAG)). The

graphs considered in this work are simple, which means there is at most one edge between a

pair of vertices.

Definition 3.1.1. A graph is a pair G = (V,E) comprising a set V of vertices (or nodes)

together with a set E of edges (or arcs).

The vertex set of a graph G is referred to as V (G), its edge set as E(G). We use u,v∈V (G)

and uv ∈ E(G) to respectively denote vertices and an edge of G. If the context is clear, the

notations V (G) and E(G) can be simplified to V and G.

Definition 3.1.2. Two vertices u and v of a graph G are adjacent, or neighbours, if uv is an

edge of G.

Definition 3.1.3. If all n vertices of a graph G = (V,E) are pairwise adjacent, then G is a

complete graph (a.k.a., clique) over V denoted by G = Kn.

Definition 3.1.4. The neighbourhood (a.k.a., set of neighbours) of a vertex u in a graph G

is the set of vertices adjacent to u in G, denoted by NG(u). The closed neighbourhood of the

vertex u denoted by NG[u] = {u}∪NG(u) is the union of {u} and its neighbourhood.

Definition 3.1.5. The degree dG(u) of a vertex u in a graph G is the number of vertices

adjacent to u in G.

Definition 3.1.6. The maximum degree ∆(G) of a graph G is the maximum degree over all

vertices in G.

Throughout this thesis, we use A ⊆ B to denote that the set A is a subset of the set B and

A ⊊ B to denote that the set A is a proper subset of the set B.
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Definition 3.1.7. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. If V ′ ⊆ V and E ′ ⊆ E,

then G′ is a subgraph of G (and G is a supergraph of G′), written as G′ ⊆ G.

Definition 3.1.8. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. If G′ is a subgraph of G

and G′ contains all the edges uv ∈ E with u,v ∈ V ′, then G′ is an induced subgraph of G,

written as G′ = G[V ′].

Definition 3.1.9. A path in a graph G is a non-empty graph P = (V,E) of the form

V = {v0,v1, . . . ,vk}, E = {v0v1,v1v2, . . . ,vk−1vk},

where the vis are all distinct. If k ≥ 3 and vk = v0, then the graph C = (V,E) is called a

cycle.

Definition 3.1.10. The length of a path is the number of edges in a path.

Definition 3.1.11. A non-empty graph G is called connected if any two of its vertices are

linked by a path in G.

Definition 3.1.12. A connected graph is called a tree if it contains no cycles.

Definition 3.1.13. A component of a graph G is a maximal connected subgraph of G.

Definition 3.1.14. A forest is a graph (not necessary connected), in which each component

is a tree.

Definition 3.1.15. A directed graph G = (V,E) is a graph, in which E is the set of ordered

pairs −→uv of distinct vertices in V .

Note that the following work involves vertex and edge removal, which could disconnect

a graph. To be clear, if a graph is connected, we operate on it directly. Otherwise, operations

take place on each of its components separately.

To distinguish from an undirected edge uv, we use −→uv to denote a directed edge from the

vertex u to the vertex v.
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Definition 3.1.16. If there is a directed path from a node u to a node v in a directed graph G,

then u is an ancestor of v and v is a descendent of u. When the directed path between u and

v has length 1, we say u is a parent of v denoted by u ∈ PaG(v) and v is a child of u denoted

by v ∈Ch(u).

We sometimes refer the number of parents and children of a vertex as its fan-in and

fan-out. A source is a vertex with fan-in zero. A sink is a vertex with fan-out zero.

Definition 3.1.17. A directed graph G = (V,E) is called a directed acyclic graph (DAG) if

it contains no directed cycles.

Definition 3.1.18. The skeleton of a directed graph G is the underlying undirected graph of

G.

Definition 3.1.19. A directed acyclic graph G is a polytree if the skeleton of G is a tree.

Definition 3.1.20. A hybrid graph is a graph that contains both directed and undirected

edges.

Some recursive definitions are given below, but first some shorthand notations. Let V and

V ′ be two sets of vertices of a graph G. For simplicity, if V ′ ⊆V then we use the arithmetic

subtraction G−V ′ to denote the induced subgraph G[V \V ′] over the vertices in V but not

V ′. If the set V ′ = V (H) consists of vertices of a subgraph H ⊆ G, then we use G−H to

emphasize the deletion of the vertices of H. This can be further simplified to G−u if the set

V ′ = {u} consists of a single vertex. Similarly, we simplify the notations for edge set. Let E

and E ′ be two sets of edges of a graph G. If E ′ ⊆ E then we use the arithmetic subtraction

G−E ′ to denote the subgraph (V,E \E ′) obtained by deleting the edge set E ′ from the graph

G. If E ′ ∩E = /0 then we use arithmetic addition G+E ′ to denote the supergraph graph

(V,E ∪E ′) obtained by adding the edge set E ′ to the graph G. The subtraction and addition

notations can be further simplified to G+ uv or G− uv if the set E ′ = {uv} is made of a

single edge.
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v1 v2

v3 v4

v5

(a) Chordal

v1 v2

v3 v4

v5

(b) WRS

v1 v2

v3 v4

v5

(c) non-WRS

Fig. 3.1 Examples of chordal, WRS and non-WRS graphs.

Definition 3.1.21. A simplicial vertex in a graph is a vertex whose neighbours form a

complete subgraph.

Definition 3.1.22. Let G = (V,E) be a graph. The deficiency of a node u in G is DG(u) =

{xy /∈ E | x,y ∈ NG(u)} the set of edges that makes the neighbours of u complete.

By the above two definitions, a vertex u of a graph G is simplicial if and only if DG(u) = /0.

That is, the neighbourhood of a simplicial vertex forms a complete subgraph of G.

Example 3.1.1. The vertex v5 in each of the three graphs of Fig. 3.1 is simplicial, because

its neighbourhood forms a clique. This is equivalent to say that its deficiency DG(v5) = /0 is

the empty set.

Definition 3.1.23. A graph G is recursively simplicial if it has a simplicial vertex x such

that the subgraph G′ = G− x is recursively simplicial.

Definition 3.1.24. An ordering of a graph G = (V,E) with n vertices is a bijection α :

{1, . . . ,n}↔V from the natural numbers to the vertex set of G.

Without loss of generality, assume the orders are from 1 to the number of vertices of

G. For simplicity, we use α = {v1, . . . ,vn} to denote the ordering α such that α(i) = vi for

i ∈ [1,n]. Given an ordering α = {v1, . . . ,vn} of a graph G, the graph can be eliminated

recursively by removing one vertex at a time starting from v1 until the graph is empty. By

convention, define α(0) = /0. The ordering α is called a perfect elimination ordering (PEO)

of G if each vertex vi is simplicial in the subgraph G−{α(0), . . . ,α(i−1)} for all i ∈ [1,n].
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Next, we introduce chordal graphs. They play an important role in computer science and

machine learning because of their unique characteristics and recursive properties stated in

Theorem 3.1.1 [32, 72].

Definition 3.1.25. A graph G is chordal (a.k.a., triangulated) if it contains no induced

cycles of length 4 or more.

Theorem 3.1.1. Let G be a graph. The following are equivalent:

1. G is chordal.

2. G is recursively simplicial.

3. G has a perfect elimination ordering.

Example 3.1.2. The graph shown in Fig. 3.1a is chordal that is equivalent to having a

perfect elimination ordering α = {v5,v4,v3,v2,v1} as well as being recursively simplicial

when removing vertices in the order of α .

The following definitions generalize the concepts of recursively simplicial and perfect

elimination ordering and are proved to be equivalent to moral graphs in the next section.

Definition 3.1.26. A graph G = (V,E) is weakly recursively simplicial if it has a simplicial

vertex x and a subset of edges E ′ ⊆ E(G[N(x)]) between the neighbours of x such that the

subgraph G′ = G− x−E ′ is weakly recursively simplicial.

Note that the subset E ′ may be empty. Also, the empty graph is weakly recursively

simplicial.

Proposition 3.1.1. If a graph is recursively simplicial then it is weakly recursively simplicial.

Proof. Recursively simplicial is a special case of weakly recursively simplicial when the

subset E ′ = /0 for each simplicial vertex x during the elimination.
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The converse of the proposition is not necessarily true as can be seen from the graph

shown in Fig. 3.1b.

Example 3.1.3. The graph shown in Fig. 3.1b is Weakly Recursively Simplicial (WRS).

It can be recursively eliminated by removing vertices and edges in the following order:

{{v5,v3v4},v4,v3,v2,v1}. Each vertex is simplicial after removing the vertices and edges

(if there are any) prior to it. Each removed edge (e.g., v3v4) is between the neighbours of

the corresponding simplicial vertex (e.g., v5). The graph shown in Fig. 3.1c, however, is not

weakly recursively simplicial because none of the remaining vertices can become simplicial

after removing the simplicial vertex v5.

The next definition generalizes the concept of perfect elimination ordering to the compo-

sition the ordering and some excessive neighbouring edges that stop a vertex being simplicial.

Definition 3.1.27. A set of excesses of a graph G = (V,E) w.r.t. an ordering α is a bijection

εα : {α(1), . . . ,α(n)}↔ {εα(α(1)), . . . ,εα(α(n))} from the ordered vertices of G to a set of

subsets of edges, in which each εα(α(i))⊆ E(G[N(α(i))]) consists of some edges between

the neighbours of the vertex α(i).

Let α = {v1, . . . ,vn} be an ordering of a graph G and εα be a set of excesses of G

w.r.t. α . The composition κ = (α,εα) of the ordering and excesses is called a kit of G. For

convenience, denote by κ(i) the ith order and excess in the kit κ of a graph G and let κ(0) = /0

by convention. Same as before, given a kit κ of a graph G, the graph can be recursively

eliminated by removing a vertex and some edges staring from the first to the last item in κ

until the graph becomes empty.

Example 3.1.4. The ordering β = {v1, . . . ,v13} and the set of empty excess εβ = { /0, . . . , /0}

form an elimination kit of the graph shown in Fig. 3.2, because the graph can be eliminated

completely by following (β ,εβ ). But the elimination kit is not perfect that will be defined

next.
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v1 v3

v4 v5

v2

v6 v7

v8 v10

v11 v12

v9

v13

Fig. 3.2 An example of a WRS graph.

Definition 3.1.28. Let G = (V,E) be a graph. A kit κ = (α,εα) of the graph G is a perfect

elimination kit if each vertex α(i) is simplicial in the subgraph G−{κ(0), . . . ,κ(i−1)}.

Given an elimination kit κ of a graph G, we can denote by Gi = G−{κ(0), . . . ,κ(i)}

the subgraph obtained from G by removing the first i−1 terms in κ . We call the resulting

subgraph Gi an elimination graph.

Example 3.1.5. The elimination kit (β ,εβ ) in Example 3.1.4 is not perfect for the graph G

shown in Fig. 3.2, because the vertex v2 is not simplicial in the elimination graph G1. A

perfect elimination kit (PEK) for G is the combination of the ordering and excesses stated in

the following:

α = {v10,v9,v8,v11,v12,v13,v1,v3,v2,v4,v5,v6,v7},

εα = {{v9v12},{v8v11}, /0, /0, /0, /0, /0, /0,{v4v5}, /0, /0, /0, /0}.

3.1.2 Graphical Model

In graphical model, a vertex (or node) in a graph represents a random variable with its

probability distribution.

Definition 3.1.29. Let P be a joint probability distribution of a set V of random variables

and G = (V,E) be a directed acyclic graph. We say < G,P > satisfies the Markov condition

if each variable x ∈V is conditionally independent of its non-descendants given its parents.
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Definition 3.1.30. Let P be a joint probability distribution of a set V of random variables

and G = (V,E) be a directed acyclic graph. We call < G,P > a Bayesian network if it

satisfies the Markov condition.

Definition 3.1.31. Let < G,P > be a Bayesian network. We say < G,P > satisfies the

faithfulness condition if G entails all and only the conditional independencies in P.

If < G,P > satisfies the faithfulness condition, we say the DAG G and the joint distri-

bution P are faithful to each other. Throughout this thesis, we focus on Bayesian networks

with discrete random variables. It was proved by Meek [56] that the set of unfaithful discrete

Bayesian networks has Lebesgue measure zero, so all the Bayesian networks considered in

this thesis are assumed to satisfy the faithfulness assumption unless it is mentioned otherwise.

Definition 3.1.32. Let < G = (V,E),P > be a Bayesian network. The Markov blanket of

a variable x ∈ V in the Bayesian network, denoted by MB(x), is the minimum subset of

variables satisfying x⊥⊥P v | MB(x) for each v ∈V \MB[x], where MB[x] = MB(x)∪{x}.

Introduced by Pearl [66] as the smallest subset of variables in a Bayesian network, given

which the target variable is conditionally independent from the rest of the variables, the

Markov blanket 1 has become popular for feature selection [45] and scaling up learning

causal models [68]. In a faithful Bayesian network, the Markov blanket of a target variable

consists of its parents, children and children’s other parents (a.k.a., spouses). For example, in

the Bayesian network shown in Fig. 3.3, the variable v3’s Markov blanket consists of v3’s

parents v5 and v6, its children v1 and v2, its spouse v4.

Definition 3.1.33. The moral graph of a directed acyclic graph G = (V,E) is the skeleton

of the hybrid graph H = (V,E ∪F), where the set of additional edges F = {uv | u,v ∈

PG(x),{−→uv,−→vu}∩E = /0,∀x ∈V} connect non-adjacent parents of each vertex x in G.

1Originally, this is how Pearl [66] defined “Markov boundaries”, but the literature has migrated “Markov
blankets” to this minimalist sense.



32 Moral graphs

v1 v2

v3 v4

v5 v6

v7 v8

Fig. 3.3 The MB of v3 in this BN is {v5,v6,v1,v2,v4}.

v1 v2

v3 v4

v5 v6

v7 v8

Fig. 3.4 The moral graph of the BN in Fig. 3.3.

The above definition implicitly states a trivial moralization process that turns a DAG

into a moral graph. That is, by joining all pairs of non-adjacent parents for each vertex

in the DAG, then dropping all the directions. The graph shown in Fig. 3.4 is the moral

graph of the Bayesian network in Fig. 3.3. It is obtained by joining the vertices v3,v4 that

are common parents of v2 and v5,v6 that are common parents of v3, then dropping all the

directions. Appendix B gives more on the background of moral graphs and its application in

belief propagation via the junction tree algorithm.

Remark 3.1.1. Let G = (V,E) be the directed acyclic graph of a Bayesian network and H

be the moral graph of G. For each vertex x ∈V , its Markov blanket in G is identical to its

neighbourhood in H. That is, MBG(x) = NH(x).

Any spouse v of x that is neither a parent nor child of x must be connected to x during

the moralization process. Therefore, the Markov blanket of each vertex x in G becomes

its neighbourhood in the moral graph H. For example, the Markov blanket MBG(v3) =
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{v1,v2,v4,v5,v6} in Fig. 3.3 is identical to the neighbourhood NG(v3) = {v1,v2,v4,v5,v6}

in Fig. 3.4.

The next definition is an alternative way, without using d-separation, to define the Markov

equivalence between two DAGs.

Definition 3.1.34. The directed acyclic graphs of two Bayesian networks are Markov equiv-

alent if and only if they entail the same conditional independencies.

The Bayesian networks that are (Markov) equivalent to each other are in the same

equivalence class. The class can be represented by a single structure, called a (DAG) pattern.

It is a hybrid graph that has the same skeleton as all the DAGs in the equivalent class and the

directed edges that are common to all the DAGs in the class.

3.1.3 Computational Complexity Theory

In this section, we briefly introduce some fundamental concepts in computational complexity

theory that will be used throughout this thesis. In particular, we only focus on the time

complexity of solving our problems in the worst case scenario that is measured by the

asymptotic notation (a.k.a., big-O-notation). We assume the readers are familiar with the

basic concepts in computational complexity theory and the complexity classes P, NP and

NP-complete.

The big-O-notation is useful when analyzing the running time of an algorithm for different

input size, because it suppresses the lower order terms in an equation that typically do not

increase as fast as the highest order term for large input size.

Definition 3.1.35. Let f and g be functions that measure the running time of an algorithm

on input of size n. We say f (n) = O(g(n)) if there exist positive integers c and n0 such that

for every n ≥ n0, they satisfy f (n)≤ cg(n).
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Next, we introduce 3SAT that is one of the fundamental problems that is known to be

NP-complete to decide [81]. In this context, we call a Boolean variable x or its negation x a

literal. A clause is a disjunction of literals written in the form ci = (x1∨x2∨·· ·∨xk). Hence,

a clause is TRUE if it contains at least one TRUE literal. A CNF-formula is a conjunction of

clauses written in the form of c1 ∧·· ·∧ cm. Hence, a CNF-formula is TRUE if all its clauses

are TRUE simultaneously. In such case, we say the formula is satisfiable.

Definition 3.1.36. The language 3SAT is the set of satisfiable 3CNF formulas.

3SAT is a decision problem which is to decide whether or not a 3CNF-formula is

satisfiable. For example, the formula (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3) is satisfiable

by assigning x1 = T RUE,x2 = FALSE and x3 = FALSE respectively.

A common way of proving the NP-completeness of a problem is by reducing a known

NP-complete problem to the problem at hand; the reduction must take polynomial time and

be such that an instance of the known NP-complete problem is TRUE if and only if the

corresponding transformed instance is TRUE.

3.2 Morality, Weak Recursive Simpliciality and Perfect Elim-

ination Kit

This section proves the equivalence of some properties to morality, initially showing that

there is a one-to-one correspondence between being weakly recursively simplicial and having

a perfect elimination kit.

Theorem 3.2.1. A graph is weakly recursively simplicial if and only if it has a perfect

elimination kit.

Proof. If a graph G = (V,E) is weakly recursively simplicial, the simplicial vertex u and

the set of edges E ′ ⊆ E(G[NG(u)]) between the neighbours of u that are removed at each
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step of the recursion form an ordering α of G and a set of excesses εα . Since each vertex

u in α is simplicial in the corresponding elimination graph, the elimination kit (α,εα) of

the graph G is perfect. The converse is also true because if G has a perfect elimination kit

κ = (α,εα), then each vertex α(i) is simplicial in the elimination graph Gi−1 obtained by

removing κ(i−1) from the previous elimination graph. Therefore, the graph G is weakly

recursively simplicial by definition.

Next, we show the equivalence between moral graphs and weakly recursively simplicial

graphs. This is proved by the following two lemmas.

Lemma 3.2.1. Let G = (V,E) be a DAG and H be the moral graph of G. Then H is weakly

recursively simplicial.

Proof. The lemma is proved by induction on the number of vertices. Let G(n) and H(n)

denote, respectively, a DAG and its moral graph over n vertices. The lemma is true for

n ≤ 3, because all graphs containing three vertices or less are chordal, so weakly recursively

simplicial. Assuming for n ≥ 3 that the moral graph H(n) of any n vertices DAG is weakly

recursively simplicial. We want to show that the moral graph H(n+1) of any DAG G(n+1)

is also weakly recursively simplicial. Each DAG contains a sink u. After the moralization

process that transforms a DAG G(n+ 1) to its moral graph H(n+ 1), the sink u becomes

a simplicial vertex in H(n+1), because its parents form a clique. By removing the sink u

from the DAG G(n+1) we obtain a subgraph G(n) that is also a DAG. In addition, the moral

graph H(n) of G(n) is a subgraph of the moral graph H(n+1). The difference between the

two moral graphs is the sink u and some edges between its parents (that do not appear in

G(n+1)). For example, Fig. 3.5. The inductive hypothesis assumes that each moral graph

H(n) is weakly recursively simplicial. Therefore, the supergraph H(n+1) is also weakly

recursively simplicial.
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v1 v2

v3 v4

v5

remove
sink v5

add sink v5

v1 v2

v3 v4

v5

(a) G(n+1) to G(n) and vice versa.

v1 v2

v3 v4

v5

remove
v5,v3v4

add
v5,v3v4

v1 v2

v3 v4

v5

(b) H(n+1) to H(n) and vice versa.

Fig. 3.5 Vertex addition and removal between DAGs and their corresponding moral graphs.

Lemma 3.2.2. Let H = (V,E) be a weakly recursively simplicial graph. Then H is the moral

graph of a DAG.

Proof. Let H(n) denote a weakly recursively simplicial graph over n vertices and G(n) as

defined above. The statement is true for n = 1, because a single node graph H(1) is a weakly

recursively simplicial graph as well as the moral graph of the DAG G(1). Assume that for

n ≥ 1 a weakly recursively simplicial graph H(n) is the moral graph of a DAG G(n), we want

to show that a weakly recursively simplicial graph H(n+1) is the moral graph of a DAG

G(n+1). By the definition, if a graph H(n+1) is weakly simplicial, it has a simplicial vertex

u and an excess ε(u) such that H(n+1)−u−ε(u) is again weakly recursively simplicial. By

the inductive assumption, any H(n) is the moral graph of a DAG G(n). Hence, connecting

the vertex u to the vertices NH(n)(u) in G(n) as a sink, we obtain a DAG G(n+1), whose

moral graph is H(n+1).

Theorem 3.2.2. Let G be a graph. The following are equivalent:

1. G is moral.



3.2 Morality, Weak Recursive Simpliciality and Perfect Elimination Kit 37

2. G is weakly recursively simplicial.

3. G has a perfect elimination kit.

Proof. The equivalence between 1 and 2 follows from Lemma 3.2.1 and 3.2.2. The equiva-

lence between 2 and 3 follows from Theorem 3.2.1.

The above theorem provides two different ways of checking morality when it is not

known whether a graph is resulted from moralizing a DAG. In general, a graph can have

more than one simplicial vertex. Hence, we prove next lemma to demonstrate that a recursive

process can start eliminating any simplicial vertex.

Lemma 3.2.3. Let H be a weakly recursively simplicial graph. For any simplicial vertex u

of H, the graph H has a perfect elimination kit κ = (α,εα) with α(1) = u.

Proof. Theorem 3.2.2 implies that there is a DAG G = (V,F), whose moral graph is H.

For any sink u in G, the subgraph G′ = G−u is also a DAG. Let H ′ be the moral graph of

G′. Hence, we have H ′ = H − u− S for a subset S ⊆ E(H[NH(u)]) of edges between the

neighbours of u. By Theorem 3.2.2, the graph H ′ has a perfect elimination kit κ ′ = (β ,εβ ).

Hence, adding u and S to the front of β and εβ gives a perfect elimination kit κ = (α,εα) of

H such that the ordering starts with the sink u i.e., α(1) = u.

Based on Theorem 3.2.2 and Lemma 3.2.3, it is possible to use a backtracking algorithm

to decide whether or not a given graph G is moral. If it is, the algorithm will return TRUE

and orient G into a hybrid graph, of which there always exist a consistent DAG extension as

proved by Dor and Tarsi [27].

The following two remarks are also made by Verma and Pearl [91]. Being necessary

conditions for a graph to be moral, they can be used to reduce the running time of the

backtracking Algorithm. In particular, Remark 3.2.1 is plays an important role in the optimal

moral graph triangulation that will be discussed in Appendix B.
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Remark 3.2.1. If a graph is moral, it has at least one simplicial vertex.

Remark 3.2.2. If a graph is moral, each cycle of length at least 4 in it shares an edge with a

k-clique for k ≥ 3.

3.3 Complexity of Checking Morality

The WRS property gives a way to check morality. However, it was proved by Verma and

Pearl [91] that deciding morality is NP-complete. This is not so surprising because first, the

number of choices of what edges to remove between a simplicial vertex’s neighbours can

grow exponentially with the degree of the vertex; second, the deletion of some edges can

stop a vertex being simplicial in a later recursive step, which cannot be anticipated at the

time of that deletion. Noting that high vertex degree can be a cause of the NP-completeness

of deciding morality, we next consider restricted maximum degrees starting with the easy

case of 3.

3.3.1 Maximum Degree Three Graphs

It is trivial to check morality for graphs with the maximum degree at most 2, because all

graphs in this case are chordal and can be recognized in polynomial time [72]. To prove

that there exists a polynomial time algorithm for maximum degree 3 graphs, we prove

the following lemmas first. We use Ex to denote the set E(G[N(x)]) of edges between the

neighbours of the vertex x. The next lemma states that if a graph is not moral, adding an edge

between non-adjacent vertices who have no common neighbours will not make it moral.

Lemma 3.3.1. Let G = (V,E) be a non-moral graph. If two vertices u,v ∈ V have no

common neighbours in G, then the supergraph H = G+uv is not moral.
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(a) F is over {u,v,w,x,y}

y w

v x

u

(b) F is over {v,w,x,y}

Fig. 3.6 Two cases when adding the edge uv makes the vertex x simplicial in the corresponding
elimination graph.

Proof. The graph G is not moral implies two possibilities. First, G has no simplicial vertex

at all. Second, G has some simplicial vertices but G cannot be fully eliminated to the empty

graph. The two cases are dealt separately.

Case 1: D(G) ̸= /0. The only chance to turn a non-simplicial vertex x in the graph G into

a simplicial vertex in the supergraph H is to add x’s deficiency to G so that its deficiency

DH(x) = /0. This requires x to be the common neighbour of the two end vertices u,v of

each added edge. Hence, the premise u,v have no common neighbour in G implies that the

supergraph H remains non-moral.

Case 2: D(G) = /0. The assumption G is non-moral but has simplicial vertices implies that

for all elimination process, there always exists a proper subgraph F ⊊ G that is non-empty.

If the supergraph H is moral, then the additional edge uv must enable a simplicial vertex x

by emptying its deficiency in the corresponding elimination graph. This is true only in the

cases where the deficiency of x in the subgraph F is DF(x) = uv or DF−xv(x) = /0 as shown

in Fig. 3.6. Both cases, however, contradict with the assumption that u,v have no common

neighbours in G. Therefore, the supergraph H remains non-moral.

The benefit of a graph having a low vertex degree is that each vertex is connected to

the rest of the graph in limited ways. Based on this, we show in the next lemma that

under a certain case, morality is preserved after removing a simplicial vertex and all of

the edges between its neighbours. Define the closed neighbourhood of a vertex x to be

N[x] = N(x)∪{x} the union of x’s neighbourhood and itself.
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Lemma 3.3.2. Let G = (V,E) be a moral graph that contains a simplicial vertex x. If each

pair of x’s neighbours have common neighbours only in the closed neighbourhood NG[x] of

x, then the subgraph G′ = G− x−Ex is moral.

Proof. Assume the subgraph G′ is not moral. The deletion of the edges in Ex implies that

every pair of x’s neighbours u,v are non-adjacent in G′. In addition, the fact that their

common neighbours NG(u)∩NG(v) ⊊ NG[x] is in the closed neighbourhood of x implies

NG′(u)∩NG′(v) = /0. By Lemma 3.3.1, no non-empty proper subset S ⊊ Ex of edges between

the neighbours of x can make the subgraph G′′ = G− x−S moral. Moreover, since u and v

have no common neighbours in G′, the graph G− x = G′+Ex has no additional simplicial

vertices than G′, hence is not moral either. Hence, for any subset ε(x)⊆ Ex of edges between

the neighbours of x, the subgraph G− x− ε(x) is non-moral. By lemma 3.2.3, the morality

of G can be checked by starting with any simplicial vertex. Therefore, G− x− ε(x) is not

moral contradicts to G being moral, so G′ must be moral.

Based on Lemma 3.3.2, we conclude that the morality of maximum degree 3 graphs

can be checked by recursively removing a simplicial vertex and all the edges between its

neighbours. This is proved in the next lemma.

Lemma 3.3.3. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 3. If G

has a simplicial vertex x, then the subgraph G′ = G− x−Ex is moral.

x
u

v

(a) u,v have one common neighbour

x
u

v
y

(b) u,v have two common neighbours

Fig. 3.7 Two maximum degree 3 graphs. The vertex x is simplicial with two neighbours u,v.

Proof. When the vertex x has degree dG(x) = 1, it is a leaf in G and can be removed without

causing any issue in the following steps. When dG(x) = 3, the closed neighbourhood NG[x]



3.3 Complexity of Checking Morality 41

of x forms a clique and each vertex in NG[x] has degree 3. The assumption that G is connected

then implies that the graph G = K4 is a complete graph over 4 vertices. When x has degree

dG(x) = 2, the neighbourhood NG(x) = {u,v} contains two vertices. If u,v have no common

neighbours besides the vertex x as shown in Fig. 3.7a, then G− x−Ex is moral by Lemma

3.3.2. If u,v have another other common neighbour y in G as shown in Fig. 3.7b, then

their degrees dG(u) = dG(v) = ∆(G) reach the maximum. Hence, the rest of the graph is

connected to the induced subgraph over {u,v,x,y} via the vertex y only. Therefore, the

subgraph G′ = G− x−Ex is moral too.

Algorithm 3: Checking morality for maximum degree 3 graphs
Input :graph G = (V,E) with maximum degree 3
Output :TRUE or FALSE

1 while exists simplicial vertex x do
2 G = G− x−Ex
3 end
4 if G = /0 then
5 return TRUE;
6 else
7 return FALSE;
8 end

Algorithm 3 presents pseudocode for checking morality of graphs with maximum de-

gree 3. At each step of the While loop the algorithm eliminates from the input graph a

simplicial vertex and all the edges between its neighbours. Once finished, the algorithm re-

turns TRUE if the graph is fully eliminated, otherwise it returns FALSE. A theorem completes

this section:

Theorem 3.3.1. The morality of maximum degree 3 graphs can be decided in linear time.

Proof. The correctness of Algorithm 3 is proved by Lemma 3.3.3 and Theorem 3.2.2 which

proves the equivalence between graph morality and weak recursive simpliciality. Assume

a graph with n vertices is represented by an adjacency list. Since each vertex’s degree is
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bounded above by 3, it takes O(1) time to check the simplicity of a vertex x. Initially, the

algorithm spends O(n) time to check simpliciality for all n vertices and store the simplicial

vertices in a queue. Due to the bounded maximum degree, not only the vertex and edge

removals take constant time, but the deletions affect the simpliciality at most a constant

number of neighbours. So the queue can be updated in constant time. Therefore, Algorithm

3 runs in O(n) time.

3.3.2 Maximum Degree Four Graphs

This section focuses on developing a polynomial time algorithm to check morality for graphs

with the maximum degree 4. Higher maximum degree allows a simplicial vertex to have

more freedom when connecting to the rest of the graph, therefore different choices of edge

removal need to be considered when removing a simplicial vertex, depending on its degree

in the corresponding elimination graph. Later in the section, we prove that in some cases,

simplicial vertices must be removed in a fixed order in terms of their degrees. Again, we use

Eu to denote the set E(G[NG(u)]) of all edges between the vertex u’s neighbours in a graph

G. First, we get rid of simplicial vertices with degrees 1,3 and 4.

x

w

u

v

y

z

Fig. 3.8 A maximum degree 4 graph. The vertex x is simplicial with three neighbours u,v,w.
The vertices u,v have a common neighbour that is not in the closed neighbourhood NG[x].

Lemma 3.3.4. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 4. If a

vertex x is simplicial in G and its degree dG(x)∈ {1,3,4}, then the subgraph G′ = G−x−Ex

is moral.
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Proof. If the vertex x has degree dG(x) = 1, then it is a leaf in G and can be removed without

causing any issues in the following steps. If dG(x) = 4, the closed neighbourhood N[x] of x

forms a clique and each vertex in N[x] has degree 4. Hence, the graph G = K5 is a complete

graph over 5 vertices because G is assumed to be a connected graph. It remains to prove the

lemma when x is a degree 3 simplicial vertex.

Suppose the neighbourhood of x is NG(x) = {u,v,w}. The fact that x is simplicial implies

that each neighbour of x has degree at least 3. The maximum degree 4 assumption of G

ensures their degree is at most 4. If each pair of x’s neighbours have common neighbours

only in NG[x], then the subgraph G′ = G− x−Ex is moral by Lemma 3.3.2. If a pair of

x’s neighbours u,v have a common neighbour y that is not in NG[x], then both u and v have

degree 4. The only chance that the subgraph G′ that is obtained by removing from G the

vertex x and the edge set Ex is not moral is when the 3-clique over {u,v,y} shares an edge

with a cycle Cm for m ≥ 4, but is broken after removing Ex. Given x is set to have degree 3

and u,v reach the maximum degree 4, such a cycle (if exists) is only adjacent to the vertices

w and y. If this is the case, the deletion of Ex will break this cycle and hence the 3-clique

over {u,v,y} can be broken too without causing any issues in the following steps. Therefore,

the subgraph G′ is moral.

Before looking into the where a simplicial vertex is of degree 2, we define another concept

that is useful for separating the case into subcases.

Definition 3.3.1. Let P = x1, . . . ,xn, Q1 = y1, . . . ,yn−1 and Q2 = z1, . . . ,zn be three non-

intersecting paths of length n, n−1 and n respectively. A 3-clique path is a graph that is

obtained either by

• adding the edges yixi and yixi+1 between P and Q1 for each i ∈ [1,n−1], or by

• adding the edges yixi, yixi+1 and ynxn between P and Q2 for each i ∈ [1,n−1].
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v1

v3 v4

v2

(a) 3-clique path of length 2.

v1 v3

v6

v4 v5

v2

(b) 3-clique path of length 3.

Fig. 3.9 Examples of 3-clique paths of length 2 and 3.

By definition, the number of vertices must satisfy n ≥ 2 for otherwise the path Q1 is an

empty graph. The length of a 3-clique path is equal to the number of distinct 3-cliques it

contains. When connecting vertices between the paths P and Q1, the 3-clique path contains

an odd number of 3-cliques and hence its length is equal to 2(n−1)−1. When connecting

vertices between the paths P and Q2, the 3-clique path contains an even number of 3-cliques

and hence its length is equal to 2(n− 1). We use Km
3 to denote a 3-clique path of length

m. That is, a 3-clique path that contains m distinct 3-cliques. Since this section focuses on

maximum degree 4 graphs, the only vertices that do not reach the maximum degree are the

two vertices (with degree 2 and 3 respectively) at each end of a 3-clique path. For example,

Fig. 3.9a is a 3-clique path of length 2, where the two paths are P = v1v2 and Q = v3v4. The

vertices v1 and v3 are at the left end of the 3-clique path K2
3 and their degrees are 2 and 3

respectively. The vertices v2 and v4 are at the right end of K2
3 and their degrees are also 2

and 3 respectively. The graph in Fig. 3.9b contains three 3-clique paths of length 3, over

the sets of vertices {v1,v2,v3,v4,v5}, {v1,v2,v4,v5,v6} and {v2,v3,v4,v5,v6} respectively.

In the induced subgraph K3
3 over {v1,v2,v3,v4,v5}, only the vertex v2 reaches the maximum

degree 4.

Definition 3.3.2. Let Km
3 be a 3-clique path of length m that is contained in a graph G as a

subgraph. It is a maximal Km
3 if it is not a proper subgraph of another 3-clique path.

For example, the 3-clique path over {v1,v2,v4,v5} in the graph shown in Fig. 3.9b

is not maximal, because it is contained as a proper subgraph of the 3-clique path over
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{v1,v2,v3,v4,v5}. The 3-clique path over {v1,v2,v3,v4,v5}, however, is maximal because

it is not a proper subgraph of any other 3-clique path. Since in most situations we only

deal with maximal cases, all the 3-clique paths considered in this section are assumed to be

maximal unless stated otherwise.

Corollary 3.3.1. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 4.

Assume G contains a 3-clique path K1
3 of length 1 as a subgraph. If a degree 2 vertex v1 ∈ K1

3

is simplicial, then the subgraph G′ = G− v1 −Ev1 is moral.

Proof. This follows from Lemma 3.3.2, because the two neighbours of v1 have no common

neighbour other than v1.

The next lemma demonstrates how morality can be preserved when deleting a degree 2

simplicial vertex that is in a 3-clique of length 2.

v1 v2

v3 v4

Fig. 3.10 A maximum degree 4 graph that contains a 3-clique path of length 2.

Lemma 3.3.5. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 4. Assume

G contains a 3-clique path K2
3 of length 2 as a subgraph. If a degree 2 vertex v1 ∈ K2

3 is

simplicial, then the subgraph G′ = G− v1 is moral.

Proof. The graph G is shown in Figure 3.10. Assume the subgraph G′ is not moral. This

implies that G′ has no perfect elimination kit. Let G′′ = G− v1 − v2v3 be another subgraph

of G that is different from G′ by the edge v2v3. By Lemma 3.2.3, the graph G is moral whilst

the subgraph G′ is not imply that G′′ must be moral. The fact that missing edge v3v4 is in
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G′′ and the assumption that the 3-clique path K2
3 is maximal ensure that the vertex v4 is not

eliminated before v2 or v3 when eliminating G′′. Therefore, either v2 or v3 will appear as a

degree 1 simplicial vertex (i.e., leaf) in the corresponding elimination graph. Let κ = (α,εα)

be a perfect elimination kit of the subgraph G′′. Assume without loss of generality that

α−1(v2) < α−1(v3). Then the same elimination kit κ is also perfect for the subgraph G′,

because the vertex v2 is also simplicial in G′ and the edge v2v3 is deleted when deleting v2.

Hence, the subgraph G′ is also moral, which contradicts with the assumption that it is not.

Therefore, G′ = G− v1 is a moral graph.

The following three lemmas consider the case when a degree 2 simplicial vertex is in

a 3-clique path of length 3. As discussed before the only vertices that do not reach the

maximum degree 4 in a 3-clique path are the two vertices on each end of the path, for

instance, the vertices v4 and v5 in the induced subgraph over {v1, . . . ,v5} in Fig. 3.11.

Due to the flexibility of these two vertices, the middle 3-clique they are in may be critical

to the following elimination steps, depending on whether the edge v4v5 is in a cycle of

length at least 4 that is not in the 3-clique path K3
3 . Without loss of generality, assume a

3-clique path of length 3 is over the set of vertices {v1, . . . ,v5} and the vertices have degrees

dK3
3
(v1) = dK3

3
(v3) = 2, dK3

3
(v4) = dK3

3
(v5) = 3 and dK3

3
(v2) = 4.

Lemma 3.3.6. Let G = (V,E) be a moral graph with maximum degree ∆(G) = 4. Assume

G contains a 3-clique path K3
3 of length 3 as a subgraph. If a degree 2 vertex v1 ∈ K3

3

is simplicial and the distance d(v4,v5) ∈ {2,∞} between the two degree 3 vertices in the

subgraph G−{v1,v2,v3}− v4v5, then the subgraph G′ = G− v1 is moral.

Proof. The graph G is shown in Fig. 3.11. Assume the subgraph G′ is not moral. Let

G′′ = G′+v2v4 be another subgraph of G that is obtained by adding to G′ the edge v2v4. The

addition of the edge guarantees a 3-clique over {v2,v4,v5} in G′′. But this clique is only

useful for producing a moral graph if it can break unbreakable cycles in G′. The degree

dG(v2) = ∆(G) implies that the edges v2v4 and v2v5 do not appear in any cycles other than
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v1 v3

v6

v4 v5

v2

(a) The distance d(v4,v5) = 2 in the subgraph G−{v1,v2,v3}− v4v5.

v1 v3

v4 v5

v2

(b) The distance d(v4,v5) = ∞ in the subgraph G−{v1,v2,v3}− v4v5.

Fig. 3.11 Two maximum degree 4 graphs. Each contains a 3-clique path of length 3 as a
subgraph.

those in K3
3 . Furthermore, the distance d(v4,v5) in the subgraph G−{v1,v2,v3}− v4v5 is

either 2 or infinity implies that the edge v4v5 is not in any cycle of length at least 4. Hence, if

the subgraph G′ is not moral the subgraph G′′ is not moral either. This contradicts to premise

that G is moral. Therefore, the subgraph G′ must be moral.

v1 v3

v4 v5

v2

v6 v7

(a) Both v1 and v3 are simplicial.

v1 v3

v4 v5

v2

v6 v7

(b) v1 is simplicial while v3 is not.

Fig. 3.12 Two maximum degree 4 graphs. Each contains a K3
3 as a subgraph. The distance

d(v4,v5) ∈ [3,∞) in the subgraph G−{v1,v2,v3}− v4v5.

Lemma 3.3.7. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 4. Assume

G contains a 3-clique path K3
3 of length 3 as a subgraph. If both degree 2 vertices v1 and

v3 are simplicial and the distance d(v4,v5) ∈ [3,∞) between the two degree 3 vertices in the

subgraph G−{v1,v2,v3}− v4v5, then the subgraph G′ = G−{v1,v3} is moral.
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Proof. The graph G is shown in Fig. 3.12a. Since the vertices v2,v4 and v5 reach the

maximum degree 4, the two 3-cliques over {v1,v2,v4} and {v2,v3,v5} do not share edges

with any cycle in G that does not contain the 3-clique {v2,v4,v5}. Assume without loss of

generality that the there is a four cycle over {v4,v5,v6,v7}. Removing the two simplicial

vertices v1,v3 renders the vertex v2 simplicial in the elimination graph, which can break the

four cycle. Therefore, if G is moral then the subgraph G′ remains moral.

Lemma 3.3.8. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 4. Assume

G contains a 3-clique path K3
3 of length 3 as a subgraph. If the vertex v1 is simplicial while

the vertex v3 is not and the distance d(v4,v5) ∈ [3,∞) between the two degree 3 vertices in

the subgraph G−{v1,v2,v3}− v4v5, then the subgraph G′ = G− v1 −Ev1 is moral.

Proof. Assume without loss of generality that there is only one simplicial vertex in the

graph G as shown in Fig. 3.12b. Removing the simplicial vertex v1 does not introduce

new simplicial vertices in the elimination graph. Hence, if G is moral, the subgraph G′ =

G− v1 − v2v4 must be moral too.

So far, we have considered the case when a degree 2 simplicial vertex is in a 3-clique

path of length at most 3. The next lemma shows how a long path of length at least 4 can be

shortened while morality is still preserved.

v1 v2 v3 v4

v5 v6 v7

Fig. 3.13 An example of a 3-clique path of length 5.

Lemma 3.3.9. Let G = (V,E) be a moral graph with the maximum degree ∆(G) = 4. Assume

G contains a 3-clique path Km
3 of length m ≥ 4 as a subgraph. If a degree 2 vertex v1 ∈ Km

3

is simplicial, then the subgraph G′ = G− v1 −Ev1 is moral.
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Proof. Assume the graph G contains a 3-clique path of length 4 as shown in Fig. 3.13. Since

the vertex v2 reaches the maximum degree 4 and v1 is simplicial, the subgraph G′ remains

moral after removing v1 from G. In addition, the length of the 3-clique path reduced by

2.

It can be seen from this lemma that after deleting a simplicial vertex, the number of

3-cliques that a path contains is reduced by 2 and consequently the length of the 3-clique path

is decreased by 2. Therefore, we always deal with a simplicial vertex that is in a long 3-clique

path first. The aim is to reduce the length of a long path to either 1,2 or 3, so that it can

then be dealt with by using the actions proved previously. Algorithm 4 is the pseudocode for

checking morality for graphs with maximum degree 4. The algorithm deals with simplicial

vertices that are in different conditions in a fixed order. Fig. 3.14 shows two examples of

moral graphs that cannot be completely eliminated if simplicial vertices are removed in a

different order.

v1 v3

v4 v5

v2

v6 v7

v8 v10

v11 v12

v9

v13

(a) Remove {v10,v9v12} before {v1,v2v4}.

v1 v3

v4 v5

v2

v6 v7

v8 v10

v11 v12

v9

v13

(b) Remove {v8,v10} before {v1,v2v4}.

Fig. 3.14 Two maximum degree 4 moral graphs, whose simplicial vertices are in K3
3 s. The

simplicial vertices must be removed in the order stated in Algorithm 4, otherwise these
graphs will not be recognized as moral by taking the actions proved in the above lemmas.

Theorem 3.3.2. The morality of maximum degree 4 graphs can be checked in quadratic time.

Proof. The correctness of Algorithm 4 can be proved by the corollary and lemmas proved in

this section.

Although this algorithm is more complicated than Algorithm 3, both algorithms run in the

same magnitude in the worst case scenario. Same as Algorithm 3, it takes an initial O(n) time
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Algorithm 4: Checking morality for maximum degree 4 graphs
Input :graph G = (V,E) with maximum degree 4
Output :TRUE or FALSE

1 while exists simplicial vertex v1 do
2 if dG(v1) = 4 then
3 return TRUE;
4 else if dG(v1) = 1 then
5 G = G− v1;
6 else if dG(v1) = 3 then
7 G = G− v1 −Ev1;
8 else
9 if v1 ∈ K4

3 then
10 G = G− v1 −Ev1;
11 else if v1 ∈ K1

3 then
12 G = G− v1 −Ev1;
13 else if v1 ∈ K2

3 then
14 G = G− v1;
15 else
16 if d(v4,v5) ∈ {2,∞} in G−{v1,v2,v3}− v4v5 then
17 G = G− v1 −Ev1 ;
18 else
19 if v3 ∈ K3

3 is also simplicial then
20 G = G−{v1,v3};
21 else
22 G = G− v1 −Ev1;
23 end
24 end
25 end
26 end
27 end
28 if G = /0 then
29 return TRUE;
30 else
31 return FALSE;
32 end
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to get a queue of simplicial vertices in the current graph. Because of the limited maximum

degree, it takes O(1) time to find a simplicial vertex’s degree, remove it and its neighbouring

edges. The worst case of this algorithm appears in the case when a simplicial vertex has

degree 2, because the algorithm needs to know the length of a 3-clique path. This process,

however, can be done in O(n) time because it is sufficient to identify the length of a path up to

4. Once a path of length 3 is discovered, it takes O(n+ e) time to run the breadth-first-search

to calculate the distance d(v4,v5) in the corresponding subgraph, where e is the number of

edges in the graph. Because of the maximum degree 4 constraint, the number of edges is

much less than the number of edges, so the running time of the breadth-first-search is O(n),

dominated by n. In the worst case, the algorithm always produces a new degree 2 simplicial

vertex that will be added into the queue. Therefore, the algorithm runs in O(n2) time in the

worst case.

It can be seen that Algorithm 4 also works for maximum degree 3 graphs. Because degree

1 and 3 simplicial vertices can be dealt with line 4 and 6 of Algorithm 4. As vertex degree is

bounded by 3, a degree 2 simplicial vertex is in a 3-clique path of length at most 2. Line 11

takes the same action as Algorithm 3. Although line 13 removes only the simplicial vertex, it

has the same effect as removing both v1 and Ev1 because both neighbours of v1 have degree

3 and consequently are not incident to the rest of the graph.

To this point, we have proved that for graphs with maximum degree 3 and 4, their morality

can be checked in polynomial time. In the next section, we focus on proving that the problem

of checking morality for graphs with higher maximum degrees remains NP-complete.

3.3.3 Graphs with Larger Maximum Degrees

It has been proved by Verma and Pearl [91] that deciding morality is an NP-complete problem.

The hardness for general graphs arises from the freedom of deleting different subset of edges

between the neighbours of a simplicial vertex, which could lead to a dead end in the following
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steps that is impossible to anticipate at the time of deletion. This is not an issue for lower

maximum degree graphs as has been demonstrated in the preceding sections. However, as

it will be shown in the next theorem that the problem remains NP-complete for maximum

degree 5 graphs, hence leaving no gap between P and NP-complete for this problem. 2

Theorem 3.3.3. The problem of deciding morality for maximum degree 5 graphs is NP-

complete.

The theorem can be straightforwardly proved by modifying the reduction in [91] to build

graphs with max degree 5 based on an input 3CNF formula φ . Denote each variable in φ by

vi and each clause by c j. The reduction starts by building a variable gadget for each variable

vi and a clause gadget for each clause c j to simulate the behaviour of a variable and clause

in the formula φ . It then builds two auxiliary gadgets to connect all the variable and clause

gadgets together to form a desired graph. We need to prove that such a reduction always

produces graphs with maximum degree 5 and the produced graph is moral if and only if the

input formula is satisfiable. Most of the work in [91] is sufficient to prove Theorem 3.3.3,

except that the auxiliary gadget and how the gadgets are connected to each other must be

modified to avoid violating the maximum degree 5 constraint. As we have introduced the

concept of weakly recursively simplicial, we will assess a graph’s morality by testing its

weakly recursively simpliciality rather than directing it to obtain a DAG (as Verma and Pearl

[91] did).

Proof. A variable in a 3CNF formula takes either TRUE or FALSE but not both values

simultaneously. Hence, a variable gadget must be a graph that looks different when taking

different values. Fig. 3.15 is the variable gadget used in [91]. It contains two isomorphic

subgraphs (but with different labels), one for the variable vi and one for its negation v̄i. Later

in the proof, this gadget is connected to other gadgets via the vertices v0
i and v̄i

0, in which

2The theorem also implies that deciding morality is not fixed-parameter tractable with respect to the
maximum degree.
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Fig. 3.15 A variable gadget for the variable vi in a formula φ . It contains two subgraphs,
where the top corresponds to the literal vi and the bottom corresponds to the literal v̄i. The
edge v8

i v̄8
i ensures that when the vertices v0

i and v̄i
0 are not simplicial and the elimination

process starts from neither the vertex v15
i nor v̄i

15, only one of v15
i and v̄i

15 can be eliminated.

case v7
i ,v

9
i and v̄i

7, v̄i
9 are the only simplicial vertices in this gadget. The purpose of the edge

v8
i v̄i

8 is to avoid the upper and lower subgraphs having the same perfect elimination kits that

result in isomorphic sub-DAGs.

A clause in a formula is either TRUE or FALSE, depending on the values of its literals.

Each clause of a 3CNF formula contains at most 3 literals. For simplicity, we only explain

here the case when each clause takes exactly 3 literals. Since a clause is a disjunction of

literals, it is TRUE when one literal is TRUE. Fig. 3.16 is the clause gadget used in [91].

Each of the three subgraphs on the left corresponds to a literal. The isomorphism (up to

labelling) of these literals indicates all of them can take the same value simultaneously. All

three subgraphs are connected to a 4-clique that simulates the disjunction operation.

The auxiliary gadgets help obtain the desired graph. The auxiliary gadget 1 shown in Fig.

3.17a is the smallest moral graph that has exactly one simplicial vertex. The auxiliary gadget

2 is a path of length m+2 that is used to connect all the clause gadgets together, where m is
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F18
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F20
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F21
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Fig. 3.16 A clause gadget for a clause ci in a formula φ . It consists of three isomorphic
subgraphs (up to labelling), one for each literal in ci and a 4-clique to simulate the disjunctive
operation.

the number of clauses in the formula φ . This is different from what is used in [91] so as to

avoid a vertex with degree m in their work.

S0
S1

S2

S3

S4

(a) Auxiliary gadget 1.

S5 S6 S7
1 S7

m

(b) Auxiliary gadget 2.

Fig. 3.17 Two auxiliary gadgets assist to connect all the gadgets together to obtain a desired
graph. Auxiliary gadget 2 contains m+2 vertices, where m is the number of clauses in a
formula φ for the 3CNF problem.

Given a 3CNF formula φ with n variables and m clauses, our construction will build a

graph with 32n+23m+7 vertices. These vertices are made of 32 vertices from each of the

n variable gadgets, 22 vertices from each of the m clause gadgets and 7+m vertices from the

two auxiliary gadgets. The gadgets are connected together to build a connected graph in the

following ways:

1. all the variable gadgets are connected together by the edges v̄0
i v0

i+1 for i ∈ [1,n−1],

2. the auxiliary gadget 1 is connected to the first variable gadget by the edge S0v0
1 and the

auxiliary gadget 2 is connected to the last variable gadget by the edge S5v̄0
n,
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3. the clause gadgets are connected together via the auxiliary gadget 2 by the edge S7
i F21

i

for each i ∈ [1,m],

4. if a literal vi appears in only one clause c j in the formula φ , then connect the cor-

responding variable and clause gadgets by the edge v15
i Fk

j when vi is the (k+ 1)th

element in the clause for k ∈ [0,2],

5. if vi appears in more than one clauses, say in clauses cr,cs,ct as their (kr +1)th,(ks +

1)th,(kt +1)th element respectively for kr,ks,kt ∈ [0,2], then connect the corresponding

clause gadgets by the edges Fkr
r Fks

s ,Fks
s Fkt

t ,Fks
s Fkr+3

r ,Fkt
t Fks+3

s and connect them to

vi’s gadget by the edge v15
i Fkr

r ,

Figure 3.18 is an example of a graph that is constructed from a satisfiable 3CNF formula.

The first two steps are as in [91]. Step 3 connects all the clause gadgets by a path of length

equal to the number of clauses in φ in order to avoid high degree vertex in auxiliary gadget

2. Steps 4 and 5 first connect all clause gadgets that contain the same literal together as a

’path’ and then connect one end of this ’path’ to the corresponding variable gadget in order to

avoid the vertices v15
i and v̄15

1 having arbitrary high degrees. According to Verma and Pearl

[91], the vertices that have degrees more than 5 are d(S7) = m, d(v15
i ) and d(v̄i

15) equals to

the number of times vi and v̄i respectively appears in the formula φ . By the construction

described above, these vertices are guaranteed to have degrees no more than 5.

The reduction from a 3CNF formula φ to the desired graph G is clearly in polynomial

time. It remains to show that φ is satisfiable if and only if G is moral. The way the gadgets

are connected implies that the graph G can only be eliminated perfectly starting from the

variable gadgets. Due to the edge v8
i v̄i

8, the elimination will go through either the vertex v15
i

or v̄i
15 but not both. Suppose it goes through v15

i , then the subgraph that corresponds to the

variable vi in each clause gadget that is connected to the vertex v15
i will be eliminated. In

such a case, we say that the clause is satisfied by the literal vi, otherwise it is satisfied by the

literal v̄i. If a formula φ is satisfiable, then every clause is satisfied by a literal. This implies
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that the 4-clique in every clause gadget in the graph G can be eliminated and consequently G

can be perfectly eliminated completely. If a formula φ is not satisfiable, then there is a clause

that cannot be satisfied by any assignments to the variables. Hence, the corresponding clause

gadget cannot be eliminated at all and consequently stops the elimination process to go back

to the variable gadgets from the vertex v̄n
0. Therefore, the graph G is not moral.

Corollary 3.3.2. The problem of deciding morality for graphs with maximum degree at least

5 is NP-complete.

Proof. The corollary follows from Theorem 3.3.3.

3.4 Minimum and Minimal Moralizations

Despite the potential value of moral graph in Markov blanket discovery and structure learning

that will be discussed in Chapter 5, if one insists on obtaining a moral graph from the current

graph, what is an optimal way of doing it? Here optimal means making the minimum number

of changes to the edge set in the original graph. The two extremes are filling in edges until

the graph is moral or removing edges until the graph is moral. In the context of chordal

graphs, extensive work has been done on filling in edges to make a graph chordal. This is

also known as triangulation (or chordal completion) [42]. An obvious reason for focusing

on edge filling is because of chordal graph’s application in efficient Gaussian elimination in

solving a system of linear equations [71]. A zero entry in a matrix could become non-zero

during the elimination process, which corresponds to a filled-in edge between two vertices

in the corresponding graph. In the context of a Bayesian network, correctly representing a

distribution’s conditional independencies is crucial in structure learning. A false positive

dependency between two variables is often preferred over a false negative. Because when a

model is set, the structure usually will not be changed, a false positive connection may be
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Fig. 3.18 The reduction from a satisfiable 3-CNF (X ∨Y ∨Z)∧ (X̄ ∨ Ȳ ∨Z)∧ (X̄ ∨ Ȳ ∨ Z̄)∧
(X̄ ∨Y ∨ Z̄) to a moral graph with maximum degree 5. From top to bottom, the variable
gadgets are for X ,Y,Z and the clause gadgets are for F1,F2,F3,F4.
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assumed extremely weak via its parameters to omit the dependency whilst a false negative

cannot be put back.

For the above reason, this section focuses on the computational complexity of turning a

graph moral by filling in the minimum number of edges.

Definition 3.4.1. A graph H = (V,E ∪F) is called a moralization of a graph G = (V,E) if

H is moral.

Assume without loss of generality that E ∩F = /0, so every edge e ∈ E ∪F is either an

edge in the original graph G or a filled-in edge in the moral graph H.

Definition 3.4.2. Let G = (V,E) be a graph, and H = (V,E ∪F) be a moral graph such that

E ∩F = /0. The graph H is a minimal moralization of G if there exists no proper subset

F ′ ⊊ F such that the graph (V,E ∪F ′) is moral. It is a minimum moralization if there exists

no edge set E ′ satisfying |E ′|< |F | such that the graph (V,E ∪E ′) is moral.

Fig. 3.19a is an example of a minimal moralization. The edge set of the original graph

is represented by the solid lines and the filled-in edges are represented by the dashed lines.

Removing either edge will result in a non-moral graph, so the graph in Fig. 3.19a is a

minimal moralization. It is, however, not the minimum, because the graph in Fig. 3.19b is

the minimum moralization of the original graph.

v1
v2

v3

v4

v5

v6

v7
v8

(a) Minimal moralization.

v1
v2

v3

v4

v5

v6

v7
v8

(b) Minimum moralization.

Fig. 3.19 Examples of minimal and minimum moralizations.

It follows from the NP-completeness of deciding morality proved by Verma and Pearl

[91] that both minimal and minimum moralizations are NP-hard optimization problems as

stated in the following theorem.
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Theorem 3.4.1. Let G be a graph. It is NP-hard to find the minimum and minimal moraliza-

tion of G.

Proof. Assuming there is an efficient algorithm to find the minimum (or minimal) moraliza-

tion of the G. Then such an algorithm can be used to decide morality in polynomial time

by testing if the minimum set of filled-in edges is empty or not. This contradicts with the

NP-completeness of deciding morality.

Due to the NP-hardness of minimal and minimum moralizations, we will look into

heuristics that efficiently produce a moral graph from a given undirected graph in Chapter 5.

The rest of this section proves the connection between minimal moralization and minimal

elimination kit that is useful for the work in Chapter 5.

Section 3.1 introduced elimination kit and proved that a graph is moral if and only if it has

a perfect elimination kit (Theorem 3.2.2). Before defining when an elimination kit is minimal,

we introduce a revised version of the Elimination Game (EG) algorithm in Algorithm 5. The

EG algorithm was originally developed in [65] for triangulating graphs. For a given graph

and a node order, the procedure follows the order and makes the node at each step simplicial.

It then removes this simplicial node and the edges incident to it. The amended version here

takes a set of excesses (i.e., a set of edges to remove when deleting a simplicial node) as an

additional input. So after making a node simplicial in the given order, the algorithm removes

this simplicial node, the edges incident to it and the excess for this node. The output of this

algorithm w.r.t. an elimination kit κ is denoted by G+
κ .

Definition 3.4.3. Let κ = (α,εα) be an elimination kit of a graph G. It is minimal if there

is no other elimination kit κ ′ such that G+
κ ′ is a proper subgraph of G+

κ .

The consequence of Theorem 3.4.2 is that finding a minimal moralization is equivalent to

finding a minimal elimination kit. It is proved by the following two lemmas that are similar

to the work in [62] for graph triangulation.
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Algorithm 5: Elimination game algorithm for graph moralization
Input :A graph G = (V,E) and an elimination kit κ = (α,εα), where

α = (v1, . . . ,vn) of V and εα = (ε1, . . . ,εn)
Output :The filled graph G+

κ

1 G0 = G ;
2 for i = 1 to n do
3 F i = DGi−1(vi) ; // Deficiency of vi

4 Gi = Gi−1 +F i − vi − εi ; // Adding F i and removing vi

5 end
6 G+

α = (V,E ∪
⋃n

i=1 F i);

Lemma 3.4.1. Let G = (V,E) be a graph and H = (V,E ∪F) be a minimal moralization of

G. Then there exists a minimal elimination kit κ such that G+
κ = H.

Proof. The graph H is moral implies it has a perfect elimination kit κ . Applying Algorithm

5 on the graph G with the kit κ will produce another moral graph G+
κ that is identical to

the graph H. Since H is minimal, by definition it has no proper subgraph that is both a

supergraph of G and moral. Therefore, the elimination kit κ is a minimal elimination kit for

G.

Lemma 3.4.2. Let κ be a minimal elimination kit of a graph G = (V,E). Then G+
κ is a

minimal moralization of G.

Proof. Assuming G+
κ = (V,E ∪E ′) is not minimal. That is, there exists another set of fill

edges F ⊊ E ′ satisfying H = (V,E ∪F) being moral. Without loss of generality, assuming H

is a minimal moralization of the graph G. Lemma 3.4.1 implies that there exists a minimal

elimination kit κ ′ for the graph H such that H = G+
κ ′ ⊊ G+

κ . It contradicts with the premise

that κ is a minimal elimination kit.

Theorem 3.4.2. A graph H is a minimal moralization of G if and only if there exists a

minimal elimination kit κ such that H = G+
κ .

Proof. The theorem follow from Lemma 3.4.1 and Lemma 3.4.2.
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3.5 Summary

In this chapter, we emphasized the importance of Markov blanket consistency for structure

learning and feature selection that use the Markov blanket approach. We drew a con-

nection between checking Markov blanket consistency and graph morality. Despite the

NP-completeness of deciding morality, we proposed a linear and quadratic time algorithms

for deciding morality for graphs with maximum degrees at most 3 and 4 respectively. The

algorithms were developed based on the notion of weakly recursively simplicial.3 We also

closed the gap between P and NP-complete for this problem by a minor modification of the

proof in [91] to always produces graphs with maximum degree 5.

Here we address two practical concerns in regards to morality. They will be experi-

mentally justified in Chapter 5. First, if the learned Markov blankets do not form a moral

graph (i.e., they are not consistent with any DAG), what is the “easiest” way of enforcing

morality? The NP-completeness of deciding morality implies that minimum (or minimal)

moralization is NP-hard. There are, however, fast ways of enforcing morality that may

produce close approximations, such as the minimum degree (or deficiency) algorithm (for

graph triangulation). Second, can a set of learned Markov blankets (with or without morality

enforced) be given as structure priors to a Bayesian structure learner and hence either improve

the reconstruction accuracy or running time?

3The way a moral graph is decomposed by the notion of weakly recursively simplicial is similar to the steps
of getting a component tree for a given Bayesian network in [100].





Chapter 4

Markov Blanket Discovery

Causal discovery automates the learning of causal Bayesian networks from data and has

been of active interest from their beginning. With the sourcing of large data sets off the

internet, interest in scaling up to very large data sets has grown. One approach to this is to

parallelize search using Markov blanket discovery as a first step, followed by a process of

combining Markov blankets in a global causal model. We develop and explore three new

methods of Markov blanket discovery using Minimum Message Length (MML) and compare

them empirically to the best existing methods, whether developed specifically as Markov

blanket discovery or as feature selection. While we did this with the ultimate goal of learning

global causal models, in this chapter we limit ourselves to the first step only, Markov blanket

discovery. Our best MML method is consistently competitive and has some advantageous

features as shown in Chapter 5.

Section 4.1 introduces the relevant concepts for MML learning and follow by introducing

three models for representing Markov blankets using MML and algorithms for learning

them in Section 4.2. The experimental work on comparing our methods against some of the

state-of-the-art methods is covered in Chapter 5.
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4.1 Minimum Message Length

Our approach to Markov blanket discovery is metric-based. In particular, we apply the

Bayesian inferential technique of Minimum Message Length (MML) coding [92]. Here is

provided a brief overview of MML and how it is used in this research.

Minimum message length (MML) was devised by Wallace and Boulton [93] as a way of

balancing the complexity of a statistical model H with the fit of the model to a given data set

D. It implements Bayes’ theorem

p(H|D) =
p(H,D)

p(D)
=

p(H)× p(D|H)

p(D)
,

where p(H) is the prior probability distribution of a model, p(D|H) is the likelihood of a

data set given this model. In addition, it conforms to Shannon’s concept of an efficient code,

satisfying

I(E) =−log(p(E))

to measure the cost or information content for stating an event of probability p(E).1 Putting

these together, the information cost of stating a model and a data set in a two-part message is

I(H,D) = I(H)+ I(D|H). (4.1)

The first part I(H) measures the message length for stating a model (i.e., its structure and

parameters for a certain precision). The second part I(D|H) measures how well the specified

model compresses the given data set. The aim in MML inference is to find the model having

the shortest two-part message length, and so maximizing the posterior probability of H.

1Throughout this thesis, we use the natural log to calculate the MML score unless stated otherwise.
Information is then measured in “nits”, rather than bits.
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A feasible approximate method for calculating the total message length is known as

MML87, from Wallace and Freeman [94]. It approximates the two parts as follows:

I(H) =−ln(p(⃗θ))+
1
2

ln(F (⃗θ))+
|⃗θ |
2

ln(κ|⃗θ |), (4.2)

I(D|H) =−ln(p(D|H))+
|⃗θ |
2
. (4.3)

For a given model with a parameter set θ⃗ of size |⃗θ |, p(⃗θ) specifies the parameter prior. The

other terms in I(H) give the precision of θ⃗ , where F (⃗θ) is the determinant of the expected

Fisher information matrix and κ|⃗θ | are lattice constants [92]. The |⃗θ |
2 term in I(D|H) is the

extra cost of using an estimate with optimal limited precision. (Note that a continuous datum,

d, can only ever be measured to limited accuracy, ± ε

2 , so it has not just a probability density,

f (d), but a proper probability, f (d) · ε , assuming that the pdf varies slowly around d.)

From equations (4.2) and (4.3), one is able to calculate the total message length if the

determinant of the expected Fisher information matrix is calculable, and, in particular, one is

interested in knowing the MML estimates of the parameters. Assuming that a data set D of N

i.i.d. samples of a random variable comes from a multi-state distribution, the total message

length to state the hypothesis and data set can be calculated efficiently by

I(H,D) =− ln
(

(N + r−1)!
(r−1)!×∏

r
i=1 ni!

)
. (4.4)

This was presented by Boulton and Wallace [9] as the factorial form of multistate MML,

where the random variable takes r states and each state appears ni times in D. Equation (4.4)

will be shorter than the MML87 message length by a constant difference of ln πe
6 for each

parameter, because it does not state the MML estimated parameters.

In this chapter, we no longer deal with graphs only. Instead, we deal with Bayesian

networks that consist of a DAG and a joint probability distribution. For this reason, we use

upper case letters (in particular X) to represent a random variable. To distinguish, we use the
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calligraphic font of upper case letters to denote the set of models or data sets. For example,

we use G to denote the set of all DAGs (over the same set of variables) and D to denote the

set of all data sets (over the same set of variables).

Definition 4.1.1. Let D be a data set of N i.i.d. records sampled from a Bayesian network

< G = (X,E),P >. A metric I : G ×D →R+ from the set of all Bayesian networks and data

sets is decomposable if it can be written as a sum of scores for each variable Xi given its

parent set πi. That is,

I(G,D) = ∑
Xi∈X

I(Xi|πi,D).

Decompability simplifies the calculation of a metric. For example, the second part of

MML corresponds to message length of sending the data set given a hypothesis. This can be

factorized into a sum of message length for each node, i.e., negative log probability for each

node given its parent set. Alternative metrics used in causal discovery, such as BDe, MDL,

K2, are also decomposable.

Here we make a few more assumptions. Besides faithfulness, we only consider Bayesian

networks with discrete variables and no hidden variables. We assume the parameters are

independent and obey a uniform distribution U(0,1) (which is generalized to the symmetric

Dirichlet distribution in the next section), so the parameter prior can be dealt with individually

for each variable. The next two definitions and propositions are adapted from Chickering

[14].

Definition 4.1.2. Let P be a joint probability distribution of the random variables in X, and

G = (X ,E) be a directed acyclic graph. We say G entails the conditional independency

Xi |= P X j | Xk for some variables Xi,X j,Xk ∈ X, if the conditional independency holds for

every joint probability distribution P such that < G,P > satisfies the Markov condition.
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Definition 4.1.3. A directed acyclic graph G is called an independence-map (or I-map) of

a joint probability distribution P, if G entails all the conditional independencies in P.

I-mapness is defined structurally, without regard to parameters. Although Markov blan-

kets, regional structures and Bayesian networks all focus on (hypothetical) structures, their

scores are calculated based on an agreed parameter estimation method. Therefore, we in-

troduce parameterized I-map, which refers to a DAG that is an I-map of a distribution and

its parameters are obtained by maximum likelihood estimation. With this concept, we can

define consistency and local consistency.

Definition 4.1.4. Let D be a data set of N i.i.d. records sampled from a joint probability

distribution P over a variable set X. Assume G1 = (X ,E1) and G2 = (X ,E2) are distinct

directed acyclic graphs. A metric I : G ×D → R+ from the set of all directed acyclic graphs

and data sets over the variable set X that measures the information content for stating a

model and the given data set is consistent if the following hold:

1. if G1 is an I-map of P and G2 is not, then lim
n→∞

I(G1,D)< lim
n→∞

I(G2,D),

2. if G1 and G2 are both parameterized I-maps of P and G1 has fewer parameters than

G2, then lim
n→∞

I(G1,D)< lim
n→∞

I(G2,D).

Definition 4.1.5. Let D be a data set of N i.i.d. records sampled from a probability distri-

bution P over a variable set X. Assume G1 = (X ,E1) and G2 = (X ,E2) are two directed

acyclic graphs such that E2 = E1 ∪{Xi → X j}. A consistent metric I : G ×D → R+ from

the set of all directed acyclic graphs and data sets over the variable set X that measures the

information content for stating a model and the given data set is locally consistent if the

following hold:

1. if Xi ̸ |= P X j | π
G1
j , then lim

n→∞
I(G2,D)< lim

n→∞
I(G1,D),

2. if Xi |= P X j | π
G1
j , then lim

n→∞
I(G1,D)< lim

n→∞
I(G2,D),
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where π
G1
j is the parent set of X j in G1.

Proposition 4.1.1. Under the assumptions made above, MML is a consistent scoring func-

tion.

Proof. Since the models considered in this paper are discrete and have no hidden variables,

they belong to the curved exponential family [37]. According to equations (4.2) and (4.3),

the total message length can be expressed as

I(H,D) =−

(
ln(p(D|H))− |⃗θ |

2
aN

)
, where

aN = 1− 2ln(p(⃗θ))

|⃗θ |
+

1

|⃗θ |
ln(F (⃗θ))+ ln(κ|⃗θ |)

The only term in aN that is a function of sample size N is the determinant of the expected

Fisher information matrix. The likelihood grows linearly with N, so the determinant of the

expected Fisher information matrix grows as N|θ |. Hence, the log of the determinant of FIM

grows as |θ | logN. Consequently, as N → ∞, the term aN → ∞ slower than N, so aN/N → 0.

From Haughton [40], it follows that MML must be a consistent scoring function.2

Using consistency and decomposability, one can prove that MML is a locally consistent

scoring function. This allows MML to find the optimal Markov blanket in the limit of infinite

data.

Proposition 4.1.2. Under the assumptions made above, MML is a locally consistent scoring

function.

2Haughton’s [1988] result for consistent scoring functions applies to both the linear and curved exponential
families. The linear exponential family contains undirected graphical models that have no hidden variables
[37]. The curved exponential family contains directed acyclic graphs, chain graphs without hidden variables
and several families of models (e.g., decision trees) that can approximate a full CPT. Geiger et al. [37]
treated graphical acyclic models with hidden variables in the stratified exponential family and emphasized that
Haughton’s [1988] argument does not extend to them because some of his assumptions are violated in this
family.
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v1 v2

v3 v4

v5 v6

v7 v8

(a) A DAG G1.

v1 v2

v3 v4

v5 v6

v7 v8

(b) A DAG G2 = G1 ∪{V4 →V3}.

v3 v4

v5 v6

(c) A DAG H1 s.t. π
H1
3 = π

G1
3 .

v3 v4

v5 v6

(d) A DAG H2 = H1 ∪{V4 →V3}.

Fig. 4.1 The score change between H1 and H2 is identical to the score change between G1
and G2 because of the decomposibility of MML.

Proof. Let D be a set of i.i.d. samples generated from a distribution P over a variable set

X . Let G1 = (X ,E1) and G2 = (X ,E1 ∪{Xi → X j}) be two DAGs different by exactly one

edge, e.g., as shown in Figure 4.1a and 4.1b. Then there is a pair of DAGs H1 = (Y,F1) and

H2 = (Y,F1 ∪{Xi → X j}) over a subset Y ⊆ X of variables such that in H1 the parent set for

the variable X j satisfies π
H1
j = π

G1
j and H2 is a complete DAG, such as shown in Figure 4.1c

and 4.1d. If Xi ̸ |= P X j | π
G1
j then Xi ̸ |= P|Y X j | π

H1
j , so H2 is an I-map of the joint distribution

P|Y restricted to the variable subset Y whilst H1 is not. By decomposability and consistency

of MML we have lim
n→∞

I(G1,D)− lim
n→∞

I(G2,D) = lim
n→∞

I(H1,D|Y)− lim
n→∞

I(H2,D|Y) = d > 0.

On the other hand, if Xi |= P X j | π
G1
j , then both H1 and H2 are parameterized I-maps of P|Y

but the former has fewer parameters than the latter. Hence, lim
n→∞

I(G1,D)− lim
n→∞

I(G2,D) =

lim
n→∞

I(H1,D|Y)− lim
n→∞

I(H2,D|Y) = d < 0.

It is worth noting that, all other things being equal, MML differentiates between DAGs in

the same Markov equivalence class, according to a prior inductive bias favouring simpler

models, where simplicity refers to fewer model parameters. Such a prior is consistent with

Occam’s Razor, which avoids models with unnecessary complexity.
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4.2 Learning Markov Blanket using MML

The problem we set ourselves was to search the space of Markov blankets for each variable

in a data set to find a complete set of Markov blankets that minimizes an MML score

(equivalently, maximizes the corresponding posterior Bayesian score). Of course, in principle

this involves searching the exponential space of all possible subsets of variables, so we used

a heuristic greedy search rather than exhaustive search. For MML to operate, we also had

to define a model space for representing the probability distribution of each target variable

given its Markov blanket. The ideal model structure would be the subgraph of the true DAG

induced by the Markov blanket, on the general principle that you can’t outdo the truth. But

since we don’t know the true causal DAG, we tried a variety of models which can plausibly do

a good job of representing that conditional probability distribution: a Conditional Probability

Table (CPT) reflecting all Markov blanket variables as parents of the target, which maximizes

the number of parameters, meaning it has maximal representational power at the expense of

requiring the most data to parameterize accurately; a Naive Bayes (NB) model that assumes

independence between all Markov blanket variables given the value of the target variable,

which minimizes the number of parameters at the expense of misrepresenting dependencies

between them; and Markov Blanket Polytrees (MBPs), which compromise between these two

extremes by representing Markov blanket variables as related to the target variable and other

Markov blanket variables via a singly connected DAG. There are many other alternative local

models discussed in the broader literature (e.g., Neil et al. [59]), but here we limit ourselves

to these three.

We now explain each of these models and their MML scores in detail.

4.2.1 MML for Conditional Probability Table Models

For any discrete variable Xi ∈ X , its probability density function conditioning on the full

joint distribution of its parents set πi can be expressed by a ri × rπi conditional probability
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table, where ri and rπi are the number of states of Xi and πi respectively (while the densities

of continuous variables can be approximated by such a table). We use a CPT model to

describe the relationship between a target and its Markov blanket variables by treating those

variables as if they are all parents, without claiming that they actually are all parents, much

as in a multiple regression model. A full CPT can capture any interactions between the

Markov blanket variables (e.g., an XOR) as long as there are enough data to support effective

parameterization; this is a requirement that grows exponentially in rπi . We use φi(S) to denote

the CPT model of Xi with a subset S ⊆ X being the hypothetical parent set of Xi.

The parent instantiations partition Xi into rs multi-state distributions. By the parameter

independence assumption, the message length of a CPT model is a sum of the message length

of each multi-state distribution over all rs partitions [93]. Assuming the parameters follow

Dirichlet distributions, multi-state MML can be applied. Hence, the total message length for

stating a CPT model φi(S) with the hypothetical parent set S and the data DXi for the target

Xi is

I(φi(S),DXi) =
rs

∑
j=1

ln
(

(n j +α0 −1)!∏
ri
k=1(αk −1)!

(α0 −1)!∏
ri
k=1(n jk +αk −1)!

)
+

rs(ri −1)
2

ln
πe
6
, (4.5)

where α⃗ = (α1, . . . ,αri) is the vector of Dirichlet’s concentration parameters for the variable

Xi. The parameter value of each of Xi’s state is controlled by the corresponding αk ∈ α⃗ and

define α0 = ∑ α⃗ . The term n jk is the count of matching data points for πi being in state j and

Xi in state k, and n j = ∑
ri
k=1 n jk. In the tested models we have no prior knowledge favoring

one state over another, so we used a symmetric Dirichlet distribution with the concentration

parameter αri = 1 for all states ri of a variable Xi. This is the same as saying that each

variable’s state parameter follows a uniform distribution, so the above equation generalizes

equation 4.4. Note since the symmetric Dirichlet distribution with concentration parameter 1

is equivalent to a uniform distribution, the rest of this thesis use the term “uniform distribution”

for simplicity, unless the concentration parameter takes a different value.
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Suppose only a learned CPT model is used to encode a data set, the next proposition

shows that the shortest MML code length in the limit is achieved when the hypothetical

parent set of Xi equals MBi.

Proposition 4.2.1. Let D be a data set with N i.i.d. records sampled from a joint probability

distribution P over variables X = {X1, . . . ,Xn}. The MML score for stating a CPT model of

Xi and the given data set satisfies the following:

lim
n→∞

I(φi(MBi),DXi)< lim
n→∞

I(φi(S),DXi),∀S ⊆ X s.t. S ̸= MBi.

Proof. Suppose the subset S =MBi∪{X j} such that the variable X j /∈MBi. Let G1 be a DAG

over {Xi,X j}∪MBi such that the parent sets π
G1
i = MBi and π

G1
k = /0 for all Xk ∈ {X j}∪MBi.

In addition, let G2 be the same as G1 but with an additional edge Xi−X j. Since X j /∈ MBi, we

have Xi |= PX j|πG1
i . By the local consistency of MML, the scores of the two models satisfy

lim
n→∞

I(G1,DG1) < lim
n→∞

I(G2,DG2). Since all variables in G1,G2 have the same parent sets

except for Xi and MML is a decomposable scoring function, we have lim
n→∞

I(φi(MBi),DXi) =

lim
n→∞

I(Xi|MBi,DXi)< lim
n→∞

I(Xi|S,DXi) = lim
n→∞

I(φi(S),DXi).

Suppose the subset S = MBi \{X j}. Similarly, define G1,G2 as above but π
G1
i = S. Since

X j ∈ MBi, it implies that Xi ̸ |= PX j|πG1
i . Then local consistency implies lim

n→∞
I(G2,DG2) <

lim
n→∞

I(G1,DG1). For the same reasons, we have lim
n→∞

I(φi(MBi),DXi)< lim
n→∞

I(φi(S),DXi).

4.2.2 MML for Naive Bayes Models

Naive Bayes (NB) models invert the structure of regressions: a central (target) variable is

treated as the parent of the other attributes, inducing a marginal dependency between every

pair (if faithful), while inducing a conditional independency between them. It is very popular

in machine learning for two reasons: it minimizes the number of parameters, making it useful

even in data poor environments and it works reasonably well on many problems, even many
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that violate the independence assumption so long as the dependencies omitted are not overly

strong. With the conditional independence assumption, naive Bayes parameters increase

linearly in the number of variables, which makes it useful for dealing with large problems.

The posterior probability of the target variable Xi given a hypothetical child set S is

p(Xi|S) =
p(Xi)∏X j∈S p(X j|Xi)

∑
ri
xi=1 p(xi)∏X j∈S p(X j|xi)

, (4.6)

where p(xi) is a short for p(Xi = xi). Each term p(Xi) and p(X j|Xi) is a single or a set of

multi-state distributions, so can be calculated using adaptive coding MML by Equation 4.5 or

Equation 4.4 if priors are assumed to come from a symmetric Dirichlet distribution. Hence,

the total message length for stating a naive Bayes model and the data for the target is

I(φi(S),DXi) =− ln p(Xi)− ∑
X j∈S

ln p(X j|Xi)+ ln
ri

∑
xi=1

p(xi) ∏
X j∈S

p(X j|xi). (4.7)

Notice that this is the message length omitting the MML estimate of the parameters. (Note

that in this thesis the main motivation of studying Markov blanket discovery is to help scale

up structure learning. Hence, the learned Markov blankets will not be used for predicting

target variables. This makes learning the parameters of the underlying models for Markov

blanket discovery unnecessary. Hence, the message length calculated in this thesis do not

contain the MML estimate of the parameters. This, however, can be changed by taking into

account the additional message length for stating the parameters which was mentioned in

Equation 4.5.)

4.2.3 MML for Markov Blanket Polytree Model

Between the extremes of a regression structure, with all attributes as independent parents

of the target, and naive Bayes models, with all attributes as isolated children, come almost

every other possible DAG structure relating Markov blanket variables with their target. The
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true model is likely to be amongst them, but as with many learning problems where the

truth is unknown, some ensembling approach suggests itself as a way of approximating

the truth. Here we use an ensembling method that samples as many local polytrees as

possible, then outputs a weighted average message length over all the samples. This way

the Markov blanket variables are encoded by a good variety of network structures, allowing

many interactions to be modelled, but is nevertheless limited, so that the number of model

parameters on average is less than that of local DAG’s.

v1v2

v3

v4

v5

(a) A MBP for v1.

v1v4

v5

v2

v3

(b) A non-MBP for v1.

v1v4

v5

v2

v3

(c) A non-MBP for v1.

Fig. 4.2 Examples of MBP and non-MBPs for the variable v1. The MB of v1 is {v2, . . . ,v5}.

We call the restricted regional structures being sampled Markov Blanket Polytrees

(MBPs). A polytree is a DAG such that its underlying undirected graph is a tree, such

as Fig. 4.2b and 4.2c.

Definition 4.2.1. Let < G = (X ,E),P > be a Bayesian network. A Markov blanket polytree

Ti of a target variable Xi is a polytree over the variables {Xi}∪MBi such that

MBTi(Xi) = MBG(Xi).

Fig. 4.2a is an example of a MBP for the variable v1, given the Markov blanket of v1

is {v2, . . . ,v5}. The other two are not MBPs, because Fig. 4.2b is not a polytree, Fig. 4.2c

entails a different Markov blanket for v1.

The next proposition presents a recursive formula for counting the number of labeled

MBPs over a set of n variables.

Proposition 4.2.2. Let Y be a variable whose Markov blanket contains n ∈ [1,∞) variables.

The number f (n) of labeled Markov blanket polytrees for Y can be computed by the following
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recursive equation

f (n) =
n

∑
i=0

(
n
i

)
+
⌊ n

2⌋
∑

m=1

n−2m+1

∑
k=1

g(n,m,k), (4.8)

g(n,m,k) =
(

n
k+1

)
(k+1)

min{k,n−k−2(m−1)}

∑
k′=1

q
m
·g(n− k−1,m−1,k′),

where q = 1 if k = k′ and m otherwise.

Proof. It is trivial to bound the number of colliders m ∈
[
0,
⌊n

2

⌋]
.

Case 1: When m = 0

MBi contains only parents and/or children. There are
(n

i

)
ways of selecting i ∈ [0,n] children

from n labeled nodes. The order of these parents or children does not matter in a polytree.

Therefore, the number of labeled MBPs when m = 0 is

n

∑
i=0

(
n
i

)
. (4.9)

Case 2: When m > 0

Each of Y ’s children and its spouses (if there are any) forms a branch. The largest branch

with k spouses can be enumerated in

(
n

k+1

)
(k+1) (4.10)

ways, where k ∈ [1,n− 2m+ 1]. There are
( n

k+1

)
ways selecting k+ 1 nodes to form the

largest branch. And each one of the k+1 nodes needs to be a common child once in order to

fully enumerate all cases. k’s upper bound is obtained if each of the other m−1 branches

contains only a collider and a spouse, in which case n−2(m−1)−1 = n−2m+1. Hence,

when m > 0 the number of MBPs can be obtained by multiplying equation (4.10) with the

total enumeration of the remaining n− k−1 nodes. The subgraph over the remaining nodes
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can be counted by the same approach. By doing this recursively, we will end up with a

subgraph in which Y has no spouse. It can then be enumerated by equation (4.9). Therefore,

the total enumeration of MBPs when m > 0 is

⌊ n
2⌋

∑
m=1

n−2m+1

∑
k=1

g(n,m,k), (4.11)

for

g(n,m,k) =
(

n
k+1

)
(k+1)

min{k,n−k−2(m−1)}

∑
k′=1

q
m
·g(n− k−1,m−1,k′), (4.12)

with q = 1 if k = k′ and m otherwise. The maximum number of spouses k′ in a subgraph is

bounded above by the minimum between the maximum number of available nodes n− k−

2(m−1) and k from its supergraph.

v1v2

v3

v4

v5

(a) Start counting with labels V2,V3.

v1v4

v5

v2

v3

(b) Start counting with labels V4,V5.

Fig. 4.3 An example when double counting the same MBP occurs for two colliders of the
same size.

As the largest branch is enumerated independently from the remaining nodes, some of

the graphs are counted multiple times. For example, to enumerate the MBPs for the variable

V1 with n = 4 Markov blanket candidates, when going through the case where there are

two colliders (i.e., m = 2), we obtain Figure 4.3a when labelling the largest branch (i.e.,

left/right) with {V 2,V 3}, and Figure 4.3b when labelling the largest branch (i.e., left/right)

with {V 4,V 5}. The resulting two labelled graphs, however, are identical, and hence we

divide the total number by 1
2 . In general, the total number needs to be divided by 1

m ; hence q
m

appears in equation (4.12).
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The total number of MBPs is dramatically reduced compared with DAGs, as shown in

Table 4.1.

Table 4.1 The number of labeled DAGs and MBPs over different number of nodes n ∈ [1,7].

# nodes # DAGs # MBPTs
1 1 1
2 3 2
3 25 6
4 543 23
5 29281 104
6 3781503 537
7 1138779265 3100

The message length for transmitting data using an MBP model is calculated as the log of

the conditional probability

p(Xi|S) =
p(Xi | π

Ti
i )∏X j∈S p(X j|πTi

j )

∑
ri
xi=1 p(xi | π

Ti
i )∏X j∈S p(X j|πTi

j )

which is factorized into a product of each variable’s probability conditioned on its parent set

in a MBP Ti as estimated using the adaptive code method. Hence, the total message length

has the form

I(φi(S),DXi) =− ln p(Xi | π
Ti
i )− ∑

X j∈S
ln p(X j|πTi

j )+ ln
ri

∑
xi=1

p(xi | π
Ti
i ) ∏

X j∈S
p(X j|πTi

j ).

(4.13)

To calculate a weighted average score, we uniformly average the conditional probabilities

p(Xi | S) over all sampled MBPs in the set Ti containing the variables {Xi}∪MBi, then take

the negative log. The uniform prior can be replaced by any reasonable prior over the possible

MBPs.
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4.2.4 The MBMML Algorithm

This section presents two MBMML algorithms in pseudocode for learning Markov blankets

using either a fixed regional structure (i.e., CPT or NB) or an ensemble of random regional

structures (i.e., MBPs).3 Both algorithms use a greedy search starting with an empty Markov

blanket and iteratively adding the highest ranked candidate for reducing the total message

length (equation 4.5 or 4.7, or 4.13). Both algorithms stop and output a learned Markov

blanket if no scores can be improved by adding a single variable to the current Markov

blanket.

Algorithm 6: MB discovery using MBMML+CPT/NB
Input :a data set D over a variable set X , a target variable Xi and a predetermined

model φi that is either CPT or NB model
Output :a set of learned MBs

1 S = X \Xi // unchecked variables
2 Z = /0 // learned MB
3 L = I(φi( /0),DXi) // empty model score
4 while S ̸= /0 do
5 Xk = argminX j

I(φi(Z ∪{X j}),DXi),∀X j ∈ S // best candidate

6 L′ = I(φi(Z ∪{Xk}),DXi) // current best score
7 if L′ < L then
8 Z = Z ∪{Xk} // admit when score reduces
9 S = S\{Xk}

10 L = L′ // update best score

11 else
12 Stop
13 end
14 end
15 Output Z

To ensure there is no conflict between the learned Markov blankets, we pass the outputs

from both MBMML+CPT/NB and MBMML+MBP algorithms to a symmetry enforcement

3In this work, when we refer to randomly generated DAGs these refer to networks generated by: uniformly
selecting a total ordering of variables; then for each node in order, uniformly select the number of its parents up
to min(# of predecessors, the maximum fan-in for the experiment); uniformly select its parents from amongst
its predecessors. In the case of MBPs in particular, any arc addition is suppressed if it would introduce an
undirected loop.
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Algorithm 7: MB discovery using MBMML+MBP
Input :a data set D over a variable set X , a target variable Xi and a MBP model φi,

the number K of randomly sampled MBPs
Output :a set of learned MBs

1 S = X \Xi // unchecked variables
2 Z = /0 // learned MB
3 L = I(φi( /0),DXi) // empty model score
4 while S ̸= /0 do
5 if f (|Z|+1)≤ K // number of MBPs by equation 4.8
6 then
7 Ti := {all MBPs over Z ∪{X j}} // all MBPs
8 else
9 Ti = {K random MBPs over Z ∪{X j}} // randomly sampled MBPs

10 end
11 Xk = argminX j

ETi(I(φi(Z ∪{X j}),DXi)),∀X j ∈ S // best candidate

12 L′ = ETi(I(φi(Z ∪{Xk}),DXi)) // current best expected score
13 if L′ < L then
14 Z = Z ∪{Xk} // admit when score reduces
15 S = S\{Xk}
16 L = L′ // update best score

17 else
18 Stop
19 end
20 end
21 Output Z
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algorithm, per §4.2. There are two simple ways of enforcing symmetry, taking either the

union or the intersection of two neighbouring Markov blankets. We used Union enforcement

for MBMML+CPT, because a CPT model’s precision converges to 1 as sample size increases.

So, its exponential increase in parameters is likely to result in more false negatives than

false positives. We used Intersection enforcement for MBMML+NB, because a naive Bayes

model will produce more false positives than a CPT model due to its lack of representational

power, but fewer false negatives. It is unclear which enforcement is a better option for

MBMML+MBP, but we took Union enforcement. 4

The process of the symmetry enforcement is shown in Algorithm 8.

Algorithm 8: Symmetry enforcement
Input :a set of learned Markov blankets {MBi},∀Xi ∈ X
Output :a set of symmetric Markov blankets

1 for each MBi do
2 for each X j ∈ MBi do
3 if Xi /∈ MB j then
4 if Union then
5 MB j = MB j ∪{Xi} ;
6 else
7 MBi = MBi \{X j} ;
8 end
9 else

10 do nothing;
11 end
12 end
13 end
14 Output {MBi}

4A recent publication by Zhao and Ho [102] proposed score-based and constraint-based methods to enforce
symmetry. That work appears to have the potential to increase the accuracy of the MML methods presented
here but is not in the scope of the current work.
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4.2.5 A running example

This subsection provides a running example to illustrate the three algorithms described in

the previous subsection. The generating model structure is shown in Figure 4.4. The model

contains 8 binary variables, whose parameters were sampled uniformly between 0 and 1.

To illustrate how the proposed algorithms in the previous section finds Markov blanket

candidates, we pick V4 as the target. All three algorithms are based on greedy search that

adds the most promising candidate into the learned Markov blanket. The scoring process

runs through all remaining nodes to calculate the message length then pick the one with

the lowest score. For example, when the MML+CPT algorithm is testing for V1 being the

Markov blanket of V4, it assumes V1 is the parent of V4. The algorithm then runs the given

data set to calculates the message length according to Equation 4.5. Assuming the algorithm

is given a data set with 1000 samples, in which the number of cases where (V4,V1) equals

(0,0),(1,0),(0,1),(1,1) is 17,1,64,918 respectively. Then the message length is

ICPT (V 4 |V1) = ln
[
((17+1)+2−1)!

(2−1)!
(2−1)!

(17+1−1)!
(2−1)!

(1+1−1)!

]
+

ln
[
((64+918)+2−1)!

(2−1)!
(2−1)!

(64+2−1)!
(2−1)!

(918+2−1)!

]
≈246.4.

Log factorial is approximated by the Lanczos approximation for fast computation.5. The

message length of every other remaining node can be calculated in the same way. This

yields ICPT (V4 | V2) = 287.6, ICPT (V4 | V3) = 287.5, ICPT (V4 | V5) = 283.9, ICPT (V4 | V6) =

281.2, ICPT (V4 |V7) = 286.3, ICPT (V4 |V8) = 286.8. Hence, the best candidate at this step is

V1. Next, the MBMML+CPT algorithm will check each of the remaining nodes {V2,V3,V5,V6,V7,V8}

and selects the best node Vi = argmin ICPT (V4 |V1,Vi) from them that gives the smallest mes-

5https://en.wikipedia.org/wiki/Lanczos_approximation

https://en.wikipedia.org/wiki/Lanczos_approximation
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Fig. 4.4 The DAG of the generating model.

sage length. The algorithm is terminated when adding nodes cannot reduce the MML score.

In this case, the MBMML+CPT algorithm learns the Markov blanket of V4 is {V1,V6}.

The MBMML+NB and MBMML+MBP algorithms are similar to the MBMML+CPT

algorithm, except that the assumed underlying model structures are not the CPT model. The

former assumes each possible Markov blanket candidate is a child of the target V4 whilst the

latter assumes each possible candidate is either a parent, child or spouse of V4, depending on

the specific Markov blanket polytree. The message length of V4 given a possible candidate for

each of these two models can be calculated according to Equation 4.7 and 4.13 respectively.

4.3 Summary

We have proposed three alternative MML methods for learning Markov blankets. The three

methods all use the multi-state MML measure, but apply them with different models, namely

a conditional probability table model, naive Bayes and an ensemble of random Markov

blanket polytrees. We proved that the MBMML+CPT algorithm will find the correct Markov

blankets given perfect data (i.e., infinite samples), although it will not be data efficient for

large Markov blankets due to the exponential number of parameters required. We looked at



4.3 Summary 83

one of the more common answers to data inefficiency in naive Bayes models, which sacrifice

the modelling of conditional dependencies for speed and simplicity. As a compromise

between the correctness but inefficiency of CPT and the efficiency but strong assumptions

of naive Bayes, we also explored an ensemble technique in MBMML+MBP, using random

polytrees within Markov blankets.

The next chapter covers tests of the three MML algorithms against three of the best

alternatives reported in recent literature, with both real data and artificial Bayesian networks

at a range of sample sizes.





Chapter 5

Experiment

This chapter includes the experimental work that has been done on testing the three Markov

blanket learners presented in Chapter 4, and the potential of graph morality to improve

Markov blanket discovery and structure learning accuracy. Section 5.1 compares the accuracy

of our Markov blanket learners with three alternatives on both real and synthetic data sets.

Section 5.2 tries to improve the quality of learned Markov blankets by enforcing morality

with node orders obtained from several methods. The last section explores a probabilistic way

of using Markov blankets in a Bayesian structure learner, namely Causal MML (CaMML).

We study the potential effect on CaMML’s accuracy and scalability by encoding learned

Markov blanket in prior probabilities for CaMML.

5.1 Markov Blanket Discovery

This section presents experimental results from testing three Markov blanket discovery meth-

ods, MBMML+CPT, MBMML+NB and MBMML+MBP against three leading alternatives:

• Incremental Association Markov Blanket (IAMB) is a constraint-based algorithm that

uses a mutual information (MI) test for candidate admission [88]. In phase 1 it adds

variables that are interdependent with the target variable when conditioning on the



86 Experiment

current candidate Markov Blanket. That is followed by a pruning phase, deleting any

variables found to be false positives.

• Parents and Children based Markov Blanket (PCMB) is another two-phase constraint-

based algorithm [67]. First, it finds the direct neighbours of the target using a condi-

tional independence test (G2 test). It then finds the neighbours of each neighbour of

the target, and prunes away false positives.

• Score-based Local Learning (SLL), by contrast with earlier Markov blanket learners,

is metric-based, using the BDeu score in a dynamic programming algorithm [60]. It

is an exact algorithm that searches through the entire space of equivalence classes

of local DAGs around the target variable, then reads off the Markov Blanket from

the optimal DAG. Niinimaki and Parviainen [60] used SLL also to scale up general

Bayesian network structure learning.

The implementation of PCMB was provided by Peña et al. [67] and IAMB came from

R’s bnlearn package [77]. The significance level α = 0.01 was set for both algorithms for

conditional independence tests, as used in [67]. We used SLL’s source code from Niinimaki

and Parviainen [60] and its default equivalent sample size 1 for BDeu. SLL reverts to the

GES algorithm [13] for learning the Markov blanket’s regional structure if it finds more

than 20 variables in the Markov blanket. The three MML methods assumed the uniform

parameter prior (i.e., symmetric Dirichlet with a single concentration parameter α = 1). The

MBMML+MBP algorithm was set to randomly sample 100 Markov Blanket polytrees from

the total polytree space. It then calculates the unweighted average probability of the data

given each polytree. This averaged probability is used to calculate an average message of the

data given each polytree.

Section 5.1.1 focuses on testing with real models (Table 5.1) and test data sets provided

by Tsamardinos et al. [89], which we identify by name. 1 These models and data sets have
1http://pages.mtu.edu/~lebrown/supplements/mmhc_paper/mmhc_index.html

http://pages.mtu.edu/~lebrown/supplements/mmhc_paper/mmhc_index.html
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Table 5.1 A summary of the tested real and artificial BNs. The artificial BNs contain 30,
50 or 80 variables with maximum fan-in 5, maximum number of states 4 per variable. The
artificial BNs’ parameters are sampled from uniform distributions.

Network # variables Max fan-in Mean MB size

CHILD 20 2 3
INSURANCE 27 3 5.19
ALARM 37 4 3.51
BARLEY 48 4 5.25
HAILFINDER 56 4 3.54
30-5-4-1 30 5 8
50-5-4-1 50 5 9.73
80-5-4-1 80 5 10.08

often been used for testing Markov Blanket and causal discovery learners. 2 Section 5.1.2

then extends the experiments to artificial Bayesian networks containing 30 or 50 variables,

with fixed maximum fan-ins and arities. For each class of model, we randomly generated 5

different Bayesian networks, each of which was then used to generate 5 different data sets

for each of the sample sizes 100, 500, 2000, 5000.

Precision, recall, and edit distance were used to evaluate the performance of the different

algorithms in finding the true Markov blankets, that is, the percentage of true positives

amongst those asserted to be in the Markov blanket (true plus false positives), the percentage

of Markov blanket variables that were found (i.e., the ratio true positives: true positives

+ false negatives), and the sum of false positives and false negatives, respectively. These

are all accuracy-oriented measures, which in a strictly methodological (non-applied) study

may be about the best we can expect to do. That is, utilities for different kinds of errors

or successes cannot be stated in the abstract, so Bayesian evaluation measures are hard to

identify. Nevertheless, we might assert some preference for precision over recall, on the

grounds that our intended purpose is to improve causal discovery, for example by feeding

the results of Markov blanket discovery into a causal discovery process. In that domain, it

2These are presumptively the true models, but were in fact built by the researchers, and hence are not
guaranteed to be the true generative models.
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seems at least plausible that false positives (reducing precision) are more damaging than

false negatives (reducing recall), since falsely asserting membership in a Markov blanket

would positively mislead subsequent causal discovery, whereas an error of omission leaves

causal discovery no worse off than not doing any Markov blanket discovery, with respect to

that variable and Markov blanket, at any rate. We do not have the temerity to try to quantify

that intuition, however, we shall consider it in interpreting our results. Edit distance is a kind

of compromise between these two accuracy measures.

Results are reported using 95% confidence intervals, in line with current APA guidelines

[7], either in the main text or appendices.

5.1.1 Accuracy on Real Models
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Fig. 5.1 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on the
CHILD network.

Figures 5.1 and 5.2 report the mean edit distance (with confidence intervals) of all

algorithms on the CHILD and BARLEY networks. 3 In most cases, the algorithms show

no statistically significant difference from each other, except that PCMB is less robust

under small samples. Both PCMB and SLL appear to converge slightly faster than the
3Note that PCMB failed to run on the BARLEY network for 1000 and 5000 sample sizes.



5.1 Markov Blanket Discovery 89

●

●

●

4

6

8

0 1000 2000 3000 4000 5000

Sample size

E
di

t d
is

ta
nc

e

Algorithm

● MBMML_CPT

MBMML_NB

MBMML_MBP

SLL

IAMB

PCMB

Fig. 5.2 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on the
BARLEY network. PCMB failed under 1000 and 5000 samples due to an unknown reason.

MML methods and IAMB. The edit distance, precision and recall on all six models are

summarized in Tables 5.2 and 5.3 in the next section. Although MBMML+MBP does not

show competitive precision, it has the highest recall in all cases with clear margins, especially

under small samples. On these real networks, SLL tends to outperform the alternative

techniques, with MML+CPT being its equal or near equal.

5.1.2 Accuracy on Artificial Models

It is also useful to test machine learning algorithms on artificial models using generated data,

where the ground truth is known. The DAGs we used tended to be more complex than the real

models above. While having similar numbers of variables, the fan-in and arity of variables

were somewhat higher (cf. Table 5.1). Their parameters were independently sampled from

a uniform distribution (i.e., symmetric Dirichlet distribution with concentration parameter

α = 1) which matched the parameter prior used in the multi-state MML metric. This could

provide an advantage to the MML methods, since they assume as much. However, as we

discuss more below, we also tested the MBMML+CPT method on models whose parameters

are sampled from symmetric Dirichlet distribution with the concentration parameter taking
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different values. The experimental results show very similar performance when the MML

method using the uniform and non-uniform priors, suggesting that MML performance does

not vary much when the parameter assumptions are approximately correct.
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Fig. 5.3 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on
artificial BNs (30-5-4-1) containing 30 variables, maximum 5 parents and maximum 4 states
for each variable.

Figure 5.3 shows how the different algorithms perform with different sample sizes from

the artificial networks. All algorithms perform similarly with very small samples (i.e., 100),

while MBMML+NB and IAMB fall away from the pack at large samples (i.e., 5000). Ignoring

MBMML+NB and IAMB, there is nothing to choose between the algorithms in terms of edit

distance at 5000 samples. For moderate sample sizes (i.e., 500 and 2000), MBMML+CPT and

MBMML+MBP show significantly lower edit distances than the others. This suggests that the

explanatory power of the CPT model is significantly improved when increasing the sample

size from small to medium. Looking at precision and recall (Table 5.3), MBMML+CPT and

MBMML+MBP have the highest recall in all cases, with MBMML+CPT’s precision being

the highest under medium and large samples. Figures 5.4 and 5.5 show similar trends as

Figure 5.3, except for the case of 100 samples where MBMML+CPT and MBMML+MBP

appear to have higher edit distance than the others. Looking at their precision and recall
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Fig. 5.4 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on
artificial BNs (50-5-4-1) containing 50 variables, maximum 5 parents and maximum 4 states
for each variable.

(Table 5.3) suggests that both models tend to underfit with 100 samples, but the problem is

fixed by feeding in more data. Note that we did not run MBMML+MBP on 80-5-4-1 due to

its high computational cost. Also, SLL’s edit distance does not drop much for 5000 samples,

suggesting difficulties with larger 80-variable Bayesian networks even given large samples.

It is worth pointing out that SLL did poorly for all 25 data sets of 5000 samples in this case,

although the program falls back to an approximate algorithm for large Markov blankets.

Figure 5.6 shows results for 50 variable networks and a fixed sample size of 500. Av-

erage Markov blanket sizes are shown on the X-axis; these were not controlled for, so the

results simply reflect a correlation between larger Markov Blankets and poorer accuracy,

which is to be expected of course. While on networks with small Markov blankets all the

algorithms perform similarly, the MBMML+CPT and MBMML+MBP algorithms are clearly

outperforming the rest when Markov blankets contain 20 or more variables.4 That is, these

MML algorithms clearly recommend themselves for dealing with more complex discovery

4It is worth noting that for these larger Markov blankets, SLL reverts to the GES algorithm.
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Fig. 5.5 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on
artificial BNs (80-5-4-1) containing 80 variables, maximum 5 parents and maximum 4 states
for each variable.

problems with moderate sample sizes. Overall, MBMML+CPT and MBMML+MBP have

the lowest edit distances, which is consistent with the ranking in Figure 5.4 for 500 samples.

Upping the sample size to 5000 (Figure 5.7), we find a somewhat different story. While

MBMML+CPT/MBP are always competitive, only occasionally being significantly worse

than the best performer per Markov blanket size (as shown by non-overlapping CIs), PCMB

and SLL (or GES) also are performing well across the board with the larger samples. IAMB

and MBMML+NB are pretty clearly underperforming at larger samples and larger Markov

blankets, while MBMML+NB does well with smaller Markov blankets and large samples.

To sum up, IAMB has clearly been superceded by subsequently developed algorithms.

PCMB and SLL show some weaknesses in small and moderate sized samples, but perform

as well or better than alternatives given larger samples. MBMML+NB does well with small

samples, while MBMML+CPT/MBP perform well across the board.
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Table 5.2 A summary of MB learners’ edit distances (with 95% confidence intervals) on both
real and artificial BNs. The best results are highlighted in pink. In real networks, SLL wins
in all cases followed by MBMML+CPT, PCMB, MBMML+NB, IAMB and MMLL+MBP.
Noted PCMB failed to run on BARLEY networks with 1000 and 5000 samples due to
unknown reasons. In artificial networks, MBMML+CPT and MBMML+MBP win most of
the times followed by SLL/PCMB and MBMML+NB/IAMB. We did not run MBMML+MBP
on 80-5-4-1 due to its high running time. Note that SLL’s edit distance is much worse on
80-5-4-1 models under 5000 samples.

Network SAMPLES
MBMML
+CPT

MBMML
+NB

MBMML
+MBP IAMB PCMB SLL

CHILD 500 0.9+-0.2 0.9+-0.2 1.3+-0.2 1.2+-0.2 1.3+-0.2 1+-0.2
1000 0.7+-0.1 0.7+-0.2 0.9+-0.1 1.1+-0.2 1+-0.2 0.8+-0.1
5000 0.5+-0.1 0.6+-0.1 0.2+-0.1 0.7+-0.2 0.1+-0 0.2+-0.1

INSURANCE 500 3.3+-0.2 3.5+-0.2 4+-0.3 3.4+-0.3 3.2+-0.2 3.1+-0.2
1000 2.9+-0.2 3.3+-0.2 3.5+-0.3 3.1+-0.3 2.9+-0.2 2.7+-0.2
5000 2.1+-0.2 2.8+-0.2 2.4+-0.2 2.7+-0.2 1.8+-0.2 2+-0.2

ALARM 500 1.4+-0.1 2.1+-0.2 3.4+-0.2 1.9+-0.2 1.5+-0.1 0.8+-0.1
1000 1+-0.1 1.8+-0.2 2.8+-0.2 1.6+-0.2 1.1+-0.1 0.6+-0.1
5000 0.5+-0.1 1.5+-0.2 1.7+-0.1 1.3+-0.2 0.3+-0.1 0.2+-0

BARLEY 500 4+-0.3 4.1+-0.3 4.4+-0.3 4.3+-0.3 9+-0.5 4.2+-0.2
1000 3.7+-0.3 3.8+-0.3 4.2+-0.3 4.1+-0.3 NA 3.8+-0.2
5000 3.4+-0.3 3.6+-0.3 3.5+-0.3 3.8+-0.3 NA 3.1+-0.2

HAILFINDER 500 4.4+-0.3 4.3+-0.2 5.2+-0.3 4.1+-0.2 7.1+-0.5 4.3+-0.3
1000 4.4+-0.3 4.3+-0.2 5+-0.3 4.1+-0.2 6.2+-0.4 4.1+-0.3
5000 4.3+-0.3 4.3+-0.2 5.1+-0.3 4.2+-0.2 3.8+-0.2 4+-0.3

30-5-4-1 100 7.5+-0.3 7.3+-0.3 7.2+-0.3 7.2+-0.3 7.3+-0.3 7.4+-0.3
500 4.5+-0.3 6.2+-0.3 4.6+-0.3 5.5+-0.3 5.8+-0.3 6.3+-0.3
2000 3.3+-0.2 5.1+-0.3 3.5+-0.2 4.2+-0.3 5.4+-0.2 4.4+-0.3
5000 2.6+-0.2 4.5+-0.2 3+-0.2 3.6+-0.3 2.7+-0.2 2.9+-0.2

50-5-4-1 100 10.66+-0.3 9.7+-0.3 10.4+-0.3 9.2+-0.3 9.5+-0.3 9.3+-0.3
500 6.4+-0.3 7.9+-0.3 6.5+-0.3 7.5+-0.3 7.6+-0.3 8+-0.3
2000 5.1+-0.2 6.8+-0.3 5.2+-0.2 6.1+-0.3 5.8+-0.2 6.2+-0.3
5000 4.2+-0.2 6+-0.2 4.5+-0.2 5.4+-0.3 4.6+-0.2 4.4+-0.2

80-5-4-1 100 12+-0.3 11.4+-0.3 NA 9.8+-0.3 10.6+-0.3 9.8+-0.3
500 7.2+-0.2 8.5+-0.3 NA 8.1+-0.3 8.1+-0.3 8.5+-0.3
2000 5.6+-0.2 7+-0.3 NA 6.7+-0.3 6.2+-0.2 6.3+-0.3
5000 4.8+-0.2 6.2+-0.2 NA 5.9+-0.3 4.7+-0.2 6.1+-0.3
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Table 5.3 A summary of MB learners’ precisions and recalls (with 95% confidence intervals) on both real and artificial BNs. The best
precisions and recalls are respectively highlighted in pink and blue. In real networks, IAMB almost always has the highest precision,
followed by SLL, MBMML+CPT/NB, PCMB and MBMML+MBP. However, MBMML+MBP has the highest recall across all cases
by significant margins. In artificial networks, MBMML+CPT has the highest precision in all medium and large sample cases, followed
by IAMB who has the highest precision in 100 samples. In terms of recall, MBMML+CPT and MBMML+MBP both win in all
cases. We did not run MBMML+MBP on 80-5-4-1 due to its high running time. SLL again shows no significant winnings in 50 and
80-variable models.

Network SAMPLES MBMML+CPT MBMML+NB MBMML+MBP IAMB PCMB SLL
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

CHILD 500 0.94+-0.03 0.8+-0.04 0.94+-0.03 0.82+-0.04 0.78+-0.04 0.89+-0.03 0.95+-0.03 0.77+-0.04 0.87+-0.04 0.77+-0.04 0.94+-0.03 0.78+-0.04
1000 0.98+-0.02 0.88+-0.03 0.97+-0.02 0.86+-0.03 0.82+-0.03 0.96+-0.01 0.95+-0.02 0.83+-0.03 0.94+-0.03 0.8+-0.04 0.97+-0.02 0.84+-0.03
5000 1+-0.01 0.91+-0.02 1+-0.01 0.89+-0.02 0.95+-0.02 1+-0 0.98+-0.01 0.9+-0.02 1+-0 0.99+-0.01 1+-0 0.97+-0.01

INSURANCE 500 0.82+-0.04 0.48+-0.03 0.8+-0.04 0.42+-0.03 0.64+-0.04 0.67+-0.03 0.9+-0.03 0.43+-0.03 0.77+-0.04 0.5+-0.03 0.83+-0.04 0.51+-0.04
1000 0.86+-0.03 0.54+-0.03 0.85+-0.04 0.45+-0.03 0.65+-0.03 0.73+-0.03 0.93+-0.03 0.5+-0.03 0.81+-0.04 0.53+-0.03 0.88+-0.03 0.58+-0.03
5000 0.95+-0.01 0.68+-0.03 0.93+-0.02 0.57+-0.03 0.78+-0.03 0.8+-0.03 0.97+-0.02 0.59+-0.03 0.94+-0.03 0.68+-0.03 0.98+-0.01 0.69+-0.03

ALARM 500 0.85+-0.03 0.77+-0.03 0.79+-0.03 0.67+-0.03 0.53+-0.03 0.92+-0.02 0.9+-0.02 0.62+-0.03 0.85+-0.03 0.7+-0.03 0.92+-0.02 0.89+-0.02
1000 0.9+-0.02 0.82+-0.03 0.86+-0.02 0.68+-0.03 0.59+-0.03 0.94+-0.02 0.96+-0.01 0.71+-0.03 0.9+-0.03 0.79+-0.03 0.94+-0.01 0.94+-0.01
5000 0.97+-0.01 0.93+-0.02 0.95+-0.02 0.7+-0.03 0.7+-0.02 0.97+-0.01 0.94+-0.02 0.79+-0.03 1+-0.01 0.95+-0.01 0.98+-0.01 0.98+-0.01

BARLEY 500 0.74+-0.03 0.37+-0.03 0.74+-0.03 0.35+-0.02 0.66+-0.03 0.51+-0.03 0.79+-0.04 0.29+-0.02 0.32+-0.02 0.56+-0.03 0.63+-0.04 0.25+-0.02
1000 0.79+-0.03 0.42+-0.03 0.79+-0.03 0.37+-0.02 0.68+-0.03 0.57+-0.03 0.8+-0.03 0.33+-0.03 NA NA 0.72+-0.04 0.35+-0.03
5000 0.8+-0.03 0.52+-0.03 0.81+-0.03 0.47+-0.02 0.72+-0.03 0.7+-0.03 0.84+-0.03 0.38+-0.03 NA NA 0.85+-0.03 0.5+-0.03

HAILFINDER 500 0.3+-0.03 0.18+-0.02 0.25+-0.03 0.12+-0.01 0.27+-0.03 0.2+-0.02 0.32+-0.03 0.18+-0.02 0.3+-0.03 0.18+-0.02 0.28+-0.03 0.14+-0.02
1000 0.31+-0.03 0.22+-0.02 0.26+-0.03 0.12+-0.01 0.29+-0.03 0.24+-0.02 0.34+-0.03 0.2+-0.02 0.34+-0.03 0.2+-0.02 0.3+-0.03 0.18+-0.02
5000 0.34+-0.03 0.26+-0.02 0.26+-0.03 0.14+-0.02 0.3+-0.03 0.27+-0.03 0.33+-0.02 0.22+-0.02 0.32+-0.03 0.21+-0.02 0.34+-0.03 0.22+-0.02

30-5-4-1 100 0.56+-0.02 0.36+-0.02 0.6+-0.03 0.23+-0.02 0.58+-0.02 0.36+-0.02 0.65+-0.03 0.21+-0.02 0.59+-0.03 0.25+-0.02 0.5+-0.03 0.17+-0.02
500 0.91+-0.02 0.56+-0.02 0.86+-0.02 0.35+-0.02 0.86+-0.02 0.56+-0.02 0.9+-0.02 0.48+-0.02 0.89+-0.02 0.38+-0.02 0.79+-0.03 0.3+-0.02
2000 0.97+-0.01 0.68+-0.02 0.94+-0.01 0.48+-0.02 0.94+-0.01 0.68+-0.02 0.95+-0.01 0.64+-0.02 0.6+-0.03 0.38+-0.03 0.94+-0.02 0.54+-0.02
5000 0.99+-0 0.76+-0.02 0.96+-0.01 0.57+-0.02 0.96+-0.01 0.73+-0.02 0.96+-0.01 0.71+-0.02 0.94+-0.01 0.77+-0.02 0.98+-0.01 0.7+-0.02

50-5-4-1 100 0.44+-0.02 0.28+-0.01 0.47+-0.02 0.19+-0.01 0.42+-0.02 0.27+-0.01 0.56+-0.03 0.17+-0.01 0.48+-0.02 0.18+-0.01 0.45+-0.03 0.12+-0.01
500 0.85+-0.02 0.46+-0.02 0.77+-0.02 0.29+-0.02 0.8+-0.02 0.46+-0.02 0.83+-0.02 0.38+-0.02 0.81+-0.02 0.3+-0.02 0.74+-0.02 0.26+-0.02
2000 0.97+-0.01 0.59+-0.02 0.91+-0.01 0.4+-0.02 0.92+-0.01 0.6+-0.02 0.93+-0.01 0.54+-0.02 0.92+-0.01 0.49+-0.02 0.9+-0.02 0.44+-0.02
5000 0.99+-0 0.68+-0.01 0.97+-0.01 0.49+-0.02 0.97+-0.01 0.67+-0.01 0.95+-0.01 0.62+-0.02 0.94+-0.01 0.63+-0.01 0.96+-0.01 0.6+-0.02

80-5-4-1 100 0.36+-0.01 0.24+-0.01 0.35+-0.01 0.2+-0.01 NA NA 0.52+-0.02 0.16+-0.01 0.39+-0.01 0.18+-0.01 0.41+-0.02 0.12+-0.01
500 0.83+-0.01 0.44+-0.01 0.74+-0.02 0.3+-0.01 NA NA 0.8+-0.01 0.38+-0.01 0.82+-0.02 0.28+-0.01 0.72+-0.02 0.24+-0.01
2000 0.97+-0.01 0.58+-0.01 0.92+-0.01 0.43+-0.02 NA NA 0.89+-0.01 0.54+-0.01 0.93+-0.01 0.49+-0.01 0.93+-0.01 0.46+-0.01
5000 0.99+-0 0.65+-0.01 0.96+-0.01 0.51+-0.01 NA NA 0.91+-0.01 0.62+-0.01 0.94+-0.01 0.64+-0.01 0.79+-0.02 0.52+-0.02



96 Experiment

There may be a concern that if the generating models had non-uniform parameter priors,

the MML methods would perform differently. We hypothesized that if the true priors are not

uniform, then using uniform priors would give noticeably worse results than using the true

prior. To be sure, performance will also depend on the quality and size of the samples. To

check the impact of using an uninformative, uniform prior, MBMML+CPT was given both

the true priors and uniform priors when tested on models (30-5-4-1) whose parameters were

sampled from a symmetric Dirichlet distribution with a non-uniform concentration parameter

α taking values from {0.1,0.4,0.7,1,10,40,70,100}. The experiments were done for 500

and 5000 samples.
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Fig. 5.8 MBMML+CPT’s edit distances (with 95% confidence intervals) using the true
prior and uniform prior on artificial BNs (30-5-4-1) with 500 samples. The X-axis is the
natural log scale of the true symmetric Dirichlet concentration parameter α taken from
{0.1,0.4,0.7,1,10,40,70,100}.

Figures 5.8 and 5.9 report no significant differences between the use of true priors and

uniform priors when the concentration parameters α ≤ 1. This is because adding small α

values to parameter estimates will have a small effect, swamped even by modest data. When

α > 1, uniform priors track the true priors until the non-uniformity begins to get extreme

(α ≥ 10, i.e., lnα > 2).
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Fig. 5.9 MBMML+CPT’s edit distances (with 95% confidence intervals) using the true
prior and uniform prior on artificial BNs (30-5-4-1) with 5000 samples. The X-axis is the
natural log scale of the true symmetric Dirichlet concentration parameter α taken from
{0.1,0.4,0.7,1,10,40,70,100}.

As α increases, the learned Markov Blankets increase in complexity. This is analogous

to the increased complexity of models learned using the BDeu metric when increasing its

equivalent sample size [78]. The MML metric for the CPT model with symmetric Dirichlet

priors is similar to the BDeu metric, although MML includes costs for the precision of

parameter estimates. But both metrics penalize model complexity using a function of α ,

which decreases as α increases. Hence, given larger α , MML methods more easily discover

larger Markov Blankets. These may contain a larger proportion of false positives, especially

with small samples. At larger samples, these differences between MML with uniform and

true priors, however, appear to be erased.

In general, we didn’t find important differences between MML-CPT with uniform and

with true priors, supporting our use of the practical, and non-informative, uniform priors.
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Table 5.4 The computational complexity of the tested MB discovery algorithms.

Algorithm Big O notation
IAMB O(n2)
MBMML+NB O(n2)
MBMML+CPT O(n2n−1)
MBMML+MBP O(n2n−1)
PCMB O(n22n−1)
SLL O(n42n)

5.1.3 Case Study

This section provides an illustrative case study to show the performance of the three MML

based Markov blanket learners on a specific Bayesian network that contains 30 variables as

shown in Figure 5.10. This model is one of the artificial models used to compare MB learners

accuracy in the previous section. For this example, we look at how each of the MBMML

learners does on finding candidates for nodes with different structural features.

Figure 5.11 plots the proportion of the edit distance (divided by the Markov blanket size)

for each node for all three methods. The x-axis are the nodes sorted in a top-down order, so

nodes near the end tend to have smaller Markov blankets due to fewer children and spouses.

It can be seen from the figure that CPT and MBP methods agree on many nodes, especially

for nodes with smaller Markov blankets. For nodes with larger Markov blankets, the CPT

method outperformed the MBP method more often than the other way around. Both methods

are superior than the NB method for most cases.

The nodes at which each of the algorithms wins are {V 1,V 5,V 8,V 10,V 19,V 23,

V 30},{V 2,V 7,V 20,V 24},{V 3,V 4,V 29} for CPT, NB and MBP respectively. Although the

pattern is not entirely clear, the winning cases rather suggest that each of the CPT, NB and

MBP methods tends to do slightly better than the other two when target nodes have more

fan-in, fan-out and spouses respectively. This is consistent with the what each of the models

assumes, i.e., CPT models fan-in exactly, NB models fan-out exactly and MBP models

spouses fairly well (nearer than the other two). To further understand in what circumstances



5.1 Markov Blanket Discovery 99

V1 V2 V3

V4

V6

V9

V13

V19

V5

V7

V20

V24

V29

V8

V22 V30

V10 V26 V11 V14

V23 V12

V15

V16

V27

V17

V18

V28

V21

V25

Fig. 5.10 A case study on an artificial Bayesian network that contains 30 variables.
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Fig. 5.11 Compare MB discovery accuracy for all three MML based methods. The x-axis are
the nodes. The y-axis is the edit distance divided by the MB size for a node.

each of the method does better than the others, more experiments need to be done as a future

research work.

5.1.4 Algorithmic Complexity

Table 5.4 orders all algorithms by ascending computational complexity. The main loop in

Algorithm 6 for MBMML+CPT/NB runs at most n− 1 times. Each time it runs through

all unchecked nodes to find the best candidate to add to the Markov blanket using the

MML metric. For a CPT model, there can be at most n− 1 parents, with the multi-state

MML summed over all 2n−1 parent instantiations. So the computational complexity of

the MBMML+CPT algorithm is O(n2n−1). For an NB model, the worst case is when all
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n− 1 nodes are children of the target, which is linear in n within the WHILE loop, and

so gives a complexity of O(n2). The worst case for MBMML+MBP is when one of the

sampled polytrees is just the full CPT model, with all Markov blanket variables parents of

the target. In general, a random polytree model is slower than a CPT by a constant factor,

which is determined by the number of sampled regional structures. But this doesn’t affect the

O-notation complexity.

For PCMB, the total time required is dominated by the process of finding the direct

neighbours of the target. This process tries to find a subset of the neighbour set, conditioning

on which the target is independent from a candidate. And such a process runs through all

variables to ensure the symmetry property holds. Hence, its complexity in the worst case

is O(n22n−1). The total time required by IAMB and SLL were published in the associated

papers, by Tsamardinos et al. [88] and Niinimaki and Parviainen [60] respectively.5

5.2 Improving Markov Blanket Discovery by Morality

This section is concerned with the potential of morality enforcement for improving the quality

of learned Markov blankets. As before, we produce an undirected graph by connecting the

Markov blanket to its target node.6 Hence, the edit distance of these Markov blankets to the

true Markov blankets is proportional to the edit distance of this graph to the moral graph of

the true model.

As discussed in Section 3.4, finding a minimal moralization of an undirected graph is

NP-hard, so heuristics are the best practical choice if one wants to add the fewest possible

edges to the given graph. By Theorem 3.4.2, optimal moralization is equivalent to finding an

optimal elimination kit that includes a node ordering and a set of edges to remove for each

5Gao and Ji [33] made significant practical gains in SLL’s performance by relaxing symmetry enforcement,
but we did not explore that here.

6The Markov blankets need to be symmetric to produce a graph. Symmetry is enforced by taking the Union
rule unless mentioned otherwise.
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node during elimination. Note that a triangulation process does not remove any edge. For

simplicity and in order to distinguish from triangulation, the moralization process stated in

this section removes the edges between each pair of a simplicial node’s neighbours.7 Hence,

the problem of optimal moralization is restricted to finding an optimal node ordering for

a given undirected graph. Before looking for good node ordering heuristics, one concerns

whether or not enforcing morality with good node orders can reduce the edit distance between

learned graphs and the truth, which is equivalent to improve the quality of learned Markov

blankets (produced by some learners). To answer this question, the following two sections

examine the effectiveness of various node orders on improving Markov blanket quality.

5.2.1 Moralization with Synthetic Node Orders

The examination of node order’s effectiveness on improving Markov blanket quality via

moralization starts with random orders that have different levels of correctness. The random

orders are given to the revised Elimination Game (EG) algorithm (Algorithm 5) to produce a

moral graph for the input graph. The excess for each node in a given order is the set of edges

between each pair of the node’s neighbours. For simplicity, we call this the full excess for

each node. The input graphs come from learned Markov blankets from data that are sampled

from randomly generated Bayesian networks with 50 variables. Each of these networks

contains a structure with a maximum of five parents per node and a set of parameters taken

from uniform distributions. To minimize random effects within a reasonable time bound,

this experiment used 40 random Bayesian networks, each of which was used to sample 10

different data sets with 400,800,1600,3200,6400 and 12800 samples. The Markov blankets

learners used in the experiments are the IAMB8, PCMB9, SLL10 and MMLCPT11 algorithms

7The problem of finding an optimal set of edges to remove for each simplicial node is marked as a future
research question.

8The bnlearn implementation in R with the significance level α = 0.01 for conditional independence test.
9The original c++ implementation used in [67].

10The original c++ implementation used in [60].
11The R implementation used in Chapter 4 with a uniform prior for the MMLCPT model.
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(details of these algorithm are explained in Chapter 4). The average performance, measured

by edit distance from a learned graph to the moral graph of the true underlying structure, is

calculated over all 400 cases for each learner.

To obtain random node orders that vary in correctness, a true node order from each

generating model12 was used and a fraction of it was held fixed while the rest was permuted

randomly. Using these orders to enforce morality on the learned Markov blankets from the

algorithms mentioned above, we get the results presented in Fig. 5.12. The plot is separated

into sections for different sample sizes. The x-axis is the percentage of nodes hold fixed

when randomly shuffling a given true order. The label “w/o” on the x-axis refers to Markov

blankets without moralization. That is, the graph produced directly from the learned Markov

blankets was used.13 The y-axis is the edit distance between the enforced moral graphs and

the true moral graph.

To get a more intuitive understanding of how edit distance changes according to the

quality of a node order, Fig. 5.12 is re-plotted in Fig. 5.13 but the x-axis is changed to one

minus the normalized Kendall Tau (KT) distance that measures the percentage of pairwise

agreements between a random order and the truth. For each pair of nodes (i, j) in a node

order, the KT distance measures the number of pairwise disagreements between a random

node order r and the true order t by

K(t,r) = |{(i, j) : i < j,(t(i)< t( j)∧ r(i)> r( j))∨ (t(i)> t( j)∧ r(i)< r( j))}|. (5.1)

This distance can be normalized by dividing the actual KT distance by the maximum KT

distance n(n−1)
2 .

12A DAG contains either exactly one total order or multiple total orders consistent with it (linear extensions).
The order used in this section and next can be any of these; we chose one linear extension arbitrarily for each
experiment. Note that its reverse is fed to Algorithm 5 as a total order; that is because each step of moralization
removes a simplicial node that corresponds to a child of at least one parent.

13Note that a set of learned Markov blankets may be moral. In practice, however, a large portion of them are
likely immoral.
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Fig. 5.12 Enforcing morality by the revised EG Algorithm on learned MBs with random
node orders and full excess for each node. The x-axis is the percentage of nodes hold fixed
when randomly shuffling a given true order. The x-axis label “w/o” (i.e., without) refers to
the immoral graph directly learned by each of the three Markov blanket learners.
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It can be seen from Fig. 5.13 that the quality of the learned Markov blankets can

be improved under some scenarios. Note that no results of SLL was shown for sample

size n ∈ {3200,6400,12800} due to its long running time and the program’s occasional

failure when dealing with complicated structures. The improvements are particularly clear

for MMLCPT’s outputs. For instance, when n ∈ {800,1600,3200,6400}, moralizing the

outputs of MMLCPT using a node order with 94% pairwise agreement (to a true order)

reduces the edit distance to lower than the immoral graph. Moralizing outputs of the same

algorithm using the same orders, however, could not produce smaller edit distance than the

immoral graphs when n ∈ {400,12800}. Despite the challenge of getting a near optimal

node order (that will be discussed in the next section), the outputs of MMLCPT among all

four learners have the greatest potential to be further improved by enforcing morality using

a high quality node order. It is worth mentioning that Markov blanket evaluation metrics

(e.g., edit distance, precision, recall, etc.) are based on set membership. That is, a node is

either in or not in the Markov blanket of a target variable. The outputs of moralizations are

sensitive to structural features such as graph density, maximum degree, number of cliques

and so on, which cannot be reflected by Markov blanket evaluation metrics. Hence, it is

not entirely unexpected to see different moralization accuracy, although applied to Markov

blanket learners who have similar Markov blanket discovery accuracy. To better understand

why MMLCPT shows the greatest potential of improving its outputs by moralizing its learned

Markov blankets, more theoretical and experimental analyses need to be done to further

understand what node (structural) features are preferred by one algorithm but not another,

hence leading to different moralization outcomes.

To further consider moralization’s potential for improving Markov blanket quality, we

applied triangulation on the same learned Markov blankets with the same node orders used

for the above moralization experiments and plotted the results in Fig. 5.14. It can be seen

from this plot that in most cases triangulation fails to reduce the edit distance of the given
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Fig. 5.13 Enforcing morality by the revised EG Algorithm on learned MBs with random
node orders and full excess for each node. The x-axis is one minus normalized KT distance
percentage. It measures the percentage of pairwise agreements between two orders. The
x-axis label “w/o” (i.e., without) refers to the immoral graph directly learned by each of the
three Markov blanket learners.
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Markov blankets even with true node orders. The contrast is more obvious for MMLCPT

given medium to large samples. This suggests that moralization does not reduce edit distance

by just randomly throwing in some edges.

5.2.2 Moralization with Approximate Node Orders

This section examines the impact on given Markov blankets of node orders that are inferred

from heuristics and machine learning methods. The previous section demonstrated that when

using objectively good node orders, the outputs of Markov blanket learners, in particular the

MMLCPT algorithm, can be dramatically improved for medium and large samples. It is,

however, not trivial to find accurate node orders in practice.

We first look at two node ordering heuristics, namely the minimum degree and minimum

deficiency algorithms. These algorithms are known for their simplicity and reasonably good

performance for triangulation, but provide no guarantee of accuracy. In triangulation, the

minimum degree algorithm selects a node with the minimum degree at each step, then makes

it simplicial (if it is not already) and removes it from the original graph. If there is a tie, the

algorithm randomly selects a node from all suitable ones. For simplicity and to distinguish

from triangulation, we also let the minimum degree algorithm remove all edges between the

neighbours of the removed simplicial node. The minimum deficiency algorithm is similar to

the minimum degree algorithm except it selects a node that has the minimum deficiency at

each step.

In addition to the heuristics, we also learn node orders from data using the maximum

weight spanning tree (MWST) [17], MMHC [89], SLL (with greedy search) and CaMML

[61] algorithms. The output of the MWST algorithm is an undirected tree, so it requires a

root node to be determined by users to order the nodes. To satisfy this, a source node from

the true DAG was given to the algorithm to produce a node order. SLL was used with its

default settings in the original implementation. Refer to Section 5.1 for more details. Due
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Fig. 5.14 Enforcing triangulation by the original EG Algorithm on learned MBs with random
node orders. The x-axis is one minus KT distance. It measures the percentage of pairwise
agreements between two orders. The x-axis label “w/o” (i.e., without) refers to the immoral
graph learned by each of the three Markov blanket learners.
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Fig. 5.15 Enforcing morality on MBs learned by MMLCPT by the revised EG Algorithm
with learned orders and full excess for each node. The x-axis is the re-scaled sample size
by log2(n/100). The y-axis is the mean edit distance. The red line marked as “Immoral”
corresponds to the immoral MBs (or undirected graph) produced by MMLCPT.

to time constraints, we restricted CaMML to sample 200∗n totally ordered models (TOMs)

instead of the default 200∗n3. More details of the CaMML algorithm will be discussed in

the following section.

As MMLCPT has been demonstrated to have the most potential to be further improved by

moralization, in the current experiment we illustrate how node orders that are inferred from

practical methods could make a difference to MMLCPT’s outputs. Fig. 5.15 shows how edit

distance of the MMLCPT’s outputs change when moralizing with the node orders inferred

by each of the methods described above. The red dashed line ("Immoral") represents the edit

distance of the given immoral Markov blankets. It is included in the plot as a baseline. Note

the confidence intervals are so tiny to be seen on the current scale.

In general, the MWST algorithm performs the worst, except at small samples n = 400

when its edit distance overlaps with MMHC and SLL. This could partially be due to the

under-representation of the true model by a tree structure and the straightforward way of

ordering nodes by directing edges away from a given root node. The minimum degree and
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minimum deficiency algorithms perform almost except for 6400 and 12800 samples where

the minimum degree algorithm is slightly (significantly) better than the minimum deficiency

algorithm. SLL and MMHC do not start well but quickly overtake the two non-machine

learning methods at n = 1600 and 3200 respectively. This under-performance of SLL and

MMHC shows their lack of robustness when learning with small smaples. 14 Notice again

that there is no result for SLL when n > 1600 due to its long running time. Comparing these

five methods with the baseline, it suggests that if one is concerned about Markov blanket

morality, then the two heuristics are better alternatives than the three machine learning

methods both in speed and accuracy. Importantly, one should keep in mind that the quality of

given Markov blankets learned under small samples may be reduced after moralization. The

CaMML algorithm, however, is way ahead of the others in terms of generating quality orders.

The only case where CaMML has no positive effect on given Markov blankets is under 400

samples. This is not unexpected, because Fig. 5.13 suggests that the 400 case has almost no

improvement at all for MMLCPT regardless of the sample size. For the other cases, the edit

distance reduction in Fig. 5.15 indicates that CaMML can get node orders with at least 90%

pairwise agreements with a true order.

To sum up, the revised Elimination Game algorithm (Algorithm 5) with the full excess is

a simple and deterministic way of moralizing a given graph. It has been empirically justified

to have the potential of improving the quality of given Markov blankets produced by a few

learners, in particular, Markov blankets produced by the MMLCPT algorithm. Nevertheless,

the improvements may only happen when moralizing with “good” node orders. Although

efficiently obtaining an accurate node order is again a challenging task, if time is not a

concern, CaMML has demonstrated its ability to produce node orders that are almost as

good as real orders when given sufficient samples. Clearly, using CaMML may not be a

14The superior of the minimum degree and minimum deficiency algorithms at small sampes may suggest that
they can be used to incorporate with the MMLCPT algorithm (or another Markov blanket learner) to efficiently
produce “good” node orders which can then be used by some structure learners, such as the K2 algorithm. This
is out of the scope of this project, but maybe worth pursuing in future.
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feasible preprocessing step for scaling up structure learning; but it does show the potential

improvement possible in such preprocessing. More practically, where time is a concern,

and one still wants to obtain moral graphs that are at least as good as the immoral ones,

the minimum degree and minimum deficiency algorithms are faster alternatives to the other

machine learning algorithms and result in performance about as good.

5.3 Structure Learning via Markov Blankets

One of the motivations for Markov blanket discovery is to scale up structure learning to

high dimensional data sets. Ideally, this can be done by first efficiently learning appropriate

variable subsets, then give those learned subsets (with or without regional structures) to a

subsequent structure learner as a starting point that is better than knowing nothing. The

potential scalability of this strategy is down to the possible parallel learning of variable

subsets and advantageous use of an initial structure that could reduce the search space of

a subsequent global structure learner. The previous chapter has discussed some strategies

of learning variable subsets, i.e., Markov blankets. This section explores the possibilities

of producing probabilistic Markov blanket priors to boost the performance of the Bayesian

structure learner CaMML. It is worth pointing out that Markov blanket priors are not genuine

prior information, because they are derived from data rather than being gathered from one’s

belief about the joint probability distribution that underlies the generating Bayesian network.

5.3.1 Learning Bayesian Networks with CaMML

To begin with, this section briefly summarizes the CaMML algorithm, which will be used as

the structure learner to test the effectiveness of probabilistic Markov blanket priors. More

theoretical details and experimental work can be found in [61].
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The CaMML algorithm samples through the space of Totally Ordered Models (TOMs)

using the Metropolis-Hasting algorithm and MML with the CPT (as well as decision tree and

first order logit) model. A TOM consists of a total node ordering and a set of edges between

pairs of nodes. When a TOM is used to express a DAG, an edge ab in the TOM (where a

comes before b in the total order) represents a directed arc a → b in the DAG. For instance,

the DAG in Fig. 5.16 has a TOM (a,b,c)∪{ac,bc}. But this is not the only TOM it has,

because a different total order (b,a,c)∪{bc,ac} is also consistent with the DAG.

a b

c

Fig. 5.16 A DAG that has two consistent TOMs.

While sampling, CaMML records the number of times each TOM is visited and aggregates

the count to get an estimate of the posterior probability of MML equivalent DAG patterns.

Aggregate counts are collected for TOMs, DAGs, clean DAGs, DAG patterns and MML

equivalent DAG patterns and accumulated in that order, since every structure in this order

has several equivalent corresponding representatives in the previous class. For example, a

DAG may have multiple consistent TOMs. To satisfy the practical need of producing fully

directed Bayesian networks, CaMML will always output a consistent extension of the best

DAG pattern.

The centre of CaMML is the MCMC sampling process, in particular, the Metropolis-

Hasting algorithm. Before going into the sampling process, however, CaMML starts with

several epochs of greedy and probabilistic searches to find the best starting TOM for the

sampling process. For a data set with n variables, the pre-sampling steps start with the

probability of an arc existing p(arc) = 0.5, then updates it by p(arc) = 0.5+|E|
1+(n

2)
using the best

TOM found at the end of each epoch, where |E| is the number of edges in the best TOM. The

pre-sampling steps are stated in the following:
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1. Start with an empty TOM (i.e., no edges) with p(arc) = 0.5, do 7∗n3 mutations, store

the best TOM and its cost, re-estimate p(arc), repeat for 1 epoch.

2. Start with a highly connected TOM (not necessarily fully connected, because CaMML

has a default maximum number of parents per node) with the updated p(arc), do 7∗n3

mutations, store the best TOM and its cost, re-estimate p(arc), repeat for 10 epochs.

3. Start with an empty TOM with the updated p(arc), do 7∗n3 mutations, store the best

TOM and its cost, re-estimate p(arc), repeat for 10 epochs.

4. Start with the best TOM found in the previous 21 epochs with the updated p(arc),

do 10 ∗ n3 mutations, if a better TOM is found, update the best TOM and its cost,

re-estimate p(arc).

These pre-sampling steps are here to make sure the sampling process starts with a good

candidate TOM, so it converges to the stable distribution relatively quicker.

CaMML has been demonstrated to be superior to some structure learners by O’Donnell

[61] (at that time). To test CaMML’s performance among recent results, we set up experiments

using both synthetic and real models. To test on synthetic models, the experiments are carried

out on 10 randomly sampled Bayesian networks with 50 binary variables with maximum

fan-in 5. The CPT parameters are sampled from a symmetric Dirichlet distribution with

concentration parameter α ∈ {0.2,1,5}. As the default MML setting in CaMML takes

uniform prior (i.e., symmetric Dirichlet concentration parameter α = 1), sampling CPT

parameters from various α values tests CaMML’s robustness on models with different

parameter priors. Each of these 10 models is then used to generate 10 different data sets with

size {300,5000} to represent small and large sample sizes. To test on real models, we use

the medium size benchmark Bayesian networks listed in Table 5.5. In particular, we focus

on testing accuracy under small samples. First, these models are used to generate 20 data

sets with 300 samples. Then we keep the model structures but vary the model parameters by
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sampling 10 sets of parameters from symmetric Dirichlet with α ∈ {0.2,1,5}. Each of these

parameter sets is then used to generate 2 data sets of size 300. The average edit distance from

the learned to the true DAGs are calculated with 95% confidence intervals. The experiments

are by no means exhaustive, but to obtain an update on CaMML’s accuracy among more

recent structure learners.

Table 5.5 A summary of the real models used for testing structure learners accuracy.

Network Number of nodes Max fan-in Number of arcs Number of parameters

Child 20 2 25 230
Insurance 27 3 52 984
Water 32 5 66 10083
Mildew 35 3 46 540150
Alarm 37 4 46 509
Barley 48 4 84 114005

The competitors in the experiments include the constraint-based PC algorithm [82], the

metric-based CaMML algorithm [61], the hybrid MMHC algorithm [89], the local-to-global

exact SLL algorithm (two versions) [60] and the exact KMAX algorithm [73]. The PC and

MMHC algorithms are available in the bnlearn package in R with hypothesis test significant

level sets to α = 0.05. The CaMML algorithm uses its default settings but 200∗n TOMs in

the sampling phase to reduce running time. Both the constraint and metric-based versions of

SLL are used with their default settings in the original C++ implementation. The KMAX

algorithm [73] is another exact algorithm but takes a different approach from SLL. It starts

with learning a few possible parent sets for each node and ranked them by a metric (e.g.,

BDeu). KMAX then uses integer programming to find the optimal parent sets for all nodes.

The program has a constraint on the learned DAG’s treewidth (of its moral graph). In these

experiments, we set it to 20. Since KMAX is a real time algorithm, the waiting time is set to

the average running time of the other algorithms for each case.

The experimental results for the artificial and real models are shown in Fig. 5.17 and

Fig. 5.18 respectively. The parameter prior α = 0.2 and 1 often produce dependencies that
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are relatively stronger than α = 5, so the learning tasks are relatively easier or require less

training data.

For the artificial models, CaMML almost always performed the best, except for the case

when n = 300 and α = 5, where it has a higher mean edit distance than MMHC but not to

a statistically significant extent. Although the tasks became more difficult as α increasing,

CaMML still outperformed the others under the same 5000 samples.

In Fig. 5.18, the value 0 on the x-axis is the case with real structures and their default

parameters and the other three cases are for real structures with artificial parameters. As

can be seen, CaMML’s performance is consistent with the results in Fig. 5.17 under 300

samples. It clearly outperformed the others for α = 0.2 and 1, but its advantage is not so clear

for the difficult case α = 5. The story, however, is different when using the default model

parameters. Although some of the learners are indistinguishable from each other, CaMML

has the highest edit distance in many cases. We suspect this is due to the MML prior of

model parameters. By default, CaMML takes uniform parameter prior. But some real world

models’ parameters may be better represented by asymmetric Dirichlet distributions with

parameters larger or smaller than 1.15

By now, we have given a high level description of the CaMML algorithm and some

non-exhaustive experiments to compare CaMML with some state-of-the-art/popular structure

learning algorithms. In the next section, CaMML will be used as a default structure learner

to test the potential of probabilistic Markov blanket prior on structure learning.

5.3.2 CaMML’s Accuracy with Approximated Moral Prior

One of the key features of CaMML is the ability to take different kinds of probabilistic

priors including directed and undirected arc priors, node order prior, ancestor prior, etc, with

a user specified confidence level for each piece of prior information. Unfortunately, the

15An interesting future research area is to let CaMML use estimated Dirichlet priors from data.
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tration parameter 0 is the case when real parameters are taken. The sample size for learning
is 300. For each case, there are 20 data sets for learning. An average edit distance is reported
with a 95% confidence interval.
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program does not directly take a Markov blanket prior.16 There is, however, an indirect

(weak) way of encoding Markov blanket prior into CaMML via the undirected arc prior. For

example, if the learned Markov blankets from a data set over three variables {a,b,c} are

MB(a) = {b,c},MB(b) = {a,c},MB(c) = {a,b}, then an undirected graph can be obtained

by connecting each Markov blanket to its target node as shown in Fig. 5.19. This graph can

then be encoded into CaMML as undirected arc priors with a real confidence taking from

[0,1] for each arc. The extreme values 0 and 1 correspond to deterministic confidence that

totally ignores and believes a given piece of information.

a b

c

Fig. 5.19 The undirected graph formed by the learned Markov blankets MB(a) =
{b,c},MB(b) = {a,c},MB(c) = {a,b}.

In what follows, this weak way of encoding Markov blanket prior is referred to as

approximated moral prior.Noticing that an approximated moral prior may or may not be

moral, depending on whether or not the used Markov blankets are moral.

Before testing CaMML with approximated moral prior, we should point out an issue that

this encoding method may cause. If an arc ab does not exist in the true DAG (Fig. 5.19),

but appears in the moral graph to connect the common parents of a child, then given a high

confidence of the arc ab will misdirect CaMML when sampling through the TOM space,

unless there are enough data to correct this mistake. Hence, even if the learned Markov

blankets are perfect, unless the parent set of each node forms a clique in the true DAG, there

always exist false positive arcs with respect to the true skeleton. In that sense, one should

not expect CaMML to output perfect DAGs when taking perfect Markov blanket priors with

absolute confidence 1, even learning under infinite samples.

16A direct way of incorporating Markov blanket prior is to get the Markov blankets from a sampled TOM and
compare these Markov blankets with those given by a user. If the sampled Markov blankets do not consistent
with the given ones, a penalty is applied to the sampled TOM. Otherwise, a reward is applied.
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We set up experiments to run CaMML with no prior information given and with approx-

imated moral priors for different confidence levels. To test the effectiveness of this weak

way of encoding Markov blankets, we randomly sample approximated moral priors with

a variety of qualities that are measured by edit distance to the true moral graphs. The way

CaMML parses a given arc probability, say an undirected edge ab with confidence 0.7 is

converting this connection into four distinct relationships a → b, b → a, a ̸→ b and b ̸→ a.

The expression a ̸→ b represents a is ahead of b in the TOM but there is no direct connection

between them. As no other information about nodes a,b is given, CaMML then treats the

first two relationships equal likely and the last two equal likely. This implies that each of

the first two relationships has probability 0.35 and each of the last two relationships has

probability 0.15 each. Although these values look small, a practical model is likely to be

sparse, hence it is not unrealistic to have small arc probability p(arc)≈ 0.1, in which case

even a prior probability of 0.15 is relatively strong.

The experiments are conducted on 5 random Bayesian networks with 50 binary variables

and maximum fan-in 5. The parameters are sampled from uniform distributions. Each of

these BNs is then used to generate 5 data sets of 300 samples. To obtain approximated moral

priors with edit distances taking from {0,10,30,50,70,90}, we randomly select pairs of

vertices from a true moral graph and toggle the existence of an edge between each pair. To

test CaMML’s reaction on taking different confidence levels, all edges in the approximated

moral priors are assigned each of the three values from {0.5,0.7,0.9} as their confidence.

Fig. 5.20 shows the edit distance of the learned structures by CaMML with and without

approximated moral priors. The black dash line in the middle of the figure corresponds to

CaMML’s mean edit distance without any prior. It is included in the results as a baseline.

The two orange dash lines represent the 95% confidence interval. The priors are taken by

CaMML with three confidence levels 0.9, 0.7, 0.5 as indicated by the three coloured lines

red, green, blue in the plot. The values on the x-axis indicate the quality of the randomly
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constructed priors from the true prior that is at the 0 value. The last three labels on the x-axis

correspond to priors inferred from MMLCPT’s outputs. The label “pri1” corresponds to

approximated moral priors learned by MMLCPT which are mostly immoral. The label “pri2”

corresponds to the outputs from MMLCPT with minimum degree moralization to ensure

morality. Both pri1 and pri2 take the pre-determined probability 0.5 for all arcs, because 0.5

confidence performed relatively better than the other two. The last label “pri3” corresponds

to the moralized priors used by the second type, but with different confidence for different

arcs. In particular, arcs correspond to the first learned Markov blanket candidate for each

node take 0.95 confidence indicating the certainty of these arcs. The rest of the arcs take 0.3

confidence indicating relatively less certainty.17

As mentioned earlier, a perfect approximated moral prior may still contain false positive

edges that do not exist in the true DAG. Hence, when taking the true moral graphs as priors,

CaMML does not produce absolute correct structures. This is consistent with the non-zero

edit distance as shown in Fig. 5.20 when x-axis is equal to 0. Moreover, the higher the arc

confidence, the larger the edit distance, because some correct information inferred from data

is largely disregarded due to high confidence false priors. The trend that 0.9 confidence

almost always has the largest edit distance across the figure suggests that the confidence is

too high to produce any useful information in practice.

The positive side of Fig. 5.20 is that lower arc confidence levels 0.5 and 0.7 greatly

increased CaMML’s reconstruction accuracy, provided approximated moral priors that are

no more than 30 edit distance away from the true moral graphs. Once the prior quality is

between 50 to 90, there is no clear distinction between CaMML’s accuracy with and without

this type of prior.

The negative side of the story is that MMLCPT (which has been proved to be superior

over others under a similar experimental setting) does not seem to have the potential to

17Our observations strongly suggest that the first learned Markov blanket variable by the MMLCPT algorithm
is a true positive. The probability of a newly added node being a true positive degrades quickly as the number
of existing nodes increasing.
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significantly reduce CaMML’s edit distance when taking no priors at all as shown by the

average edit distance at pri1. After enforcing moralization (i.e., pri2), the average edit distance

reduced to a similar level as the baseline. This again proves the potential of moralization

on improving Markov blanket quality. We observed that the first found Markov blanket

candidate by MMLCPT is highly likely to be a true positive, with a likelihood approximately

over 90%. As more candidates are included, the current added node being a true positive

decreases quickly. For this reason, we test moralized approximated moral prior with different

arc confidence. For simplicity, we start at 0.95 for the first candidate and 0.3 for the rest. The

accuracy is shown in the figure by the purple point (i.e., pri3). Although the average edit

distance is further reduced (insignificantly) and the error bar may shrink more by running

more experiments to produce statistically higher accuracy, it is unlikely that pri3 will help

CaMML to perform significantly better than the baseline.

The use of the priors pri1, pri2 and pri3 together indicate that almost no existing Markov

blanket discovery algorithm can produce good enough approximated moral priors for CaMML

right now; however, it also shows that there is a potential for improving general causal

discovery results through better Markov blanket learning.

5.3.3 CaMML’s Speed with Approximated Moral Prior

This section studies the feasibility of using approximated moral priors to scale up CaMML

to learn structures from high-dimension data sets. In particular, the focus here is on reducing

the running time of the algorithm. As discussed previously, CaMML can be made faster

by reducing the number of searching or sampling steps. This, however, could also reduce

the chance of finding an optimal structure. Hence, this section explores the possibility of

using approximated moral priors to increase CaMML’s accuracy to compensate for the loss

of accuracy due to less searching or sampling iterations.
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Fig. 5.20 CaMML’s edit distance vs. the quality of approximated moral priors. The black
and orange dash lines correspond to CaMML’s average edit distance and a 95% confidence
interval when not taking priors. X-axis measures the quality of the used approximated moral
priors with 0 being the true moral priors. The last three labels on the x-axis correspond
to approximated moral priors learned by MMLCPT (that are mostly immoral) with 0.5
confidence, pri1 with enforced moralization, and pri2 with 0.95 confidence for the first
learned Markov blanket candidate and 0.3 for the rest.
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The experiments are conducted on the same artificial models and data sets used for testing

CaMML’s reconstruction accuracy in Section 5.3.1. That is, 10 random Bayesian networks

with 50 binary variables and maximum fan-in 5. The model parameters are sampled from

uniform distributions. Each model is then used to generate 10 different data sets of size 300.

CaMML is first set to take dn3 mutations in each of the pre-sampling phases, where d is

equal to 7 and 10 corresponds to greedy and annealing searches respectively. At this setting,

the Metropolis-Hasting (MH) process is then set to take 200n3,200n2,200n and 200logn

samples respectively. To test the effectiveness of approximated moral prior, we run CaMML

with no prior, artificially constructed approximated moral priors (whose edit distance to the

true moral graph is 30) and MMLCPT produced approximated moral priors. All priors are

used at 0.3 confidence level. The experiments are then repeated with the same settings but

dn2 and d ∗1000 mutations respectively.

First, we notice in Table 5.6 that the number of mutations in the pre-sampling phases

is essential for getting small edit distance. Given that CaMML takes a large number of

mutations, there is no significant difference between the edit distance produced by the MH

algorithm for any sample size. However, when reducing the number of mutations, the

advantage of sampling more TOMS in the MH phase is quite obvious.

It is expected that artificial approximated moral priors with 30 edit distance would

produce the best results, because the previous section has shown that high quality Markov

blankets encoded in this weak way could increase CaMML’s reconstruction accuracy.

We are more interested in the case when CaMML takes MMLCPT produced Markov

blanket priors. As it can be seen in this figure, most cases when CaMML takes MMLCPT

priors the edit distance are higher than not take any priors. There are, however, two cases (i.e.,

200n2 MH samples) in less mutation situations (i.e., dn2,d ∗ 1000), where the confidence

intervals have small overlaps. To prove that the difference in average edit distances can be

significant in these two cases, we increase the number of experiments by another 100 to shrink
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the error bars. These further results are shown in the brackets next to the original results

in the table. They have shown that when using MMLCPT produced priors, CaMML can

outputs statistically significant better structures with fewer mutations and less MH samples.

Further looked into the results, in the 2-dimensional space spanned by the number of

mutations and number of MH samples, we conjecture that there is a region near less mutations

and moderate MH samples (in this case dn2 or 1000d mutations and 200n2 MH samples),

in which MMLCPT produced approximated moral prior can help CaMML to find better

structures. Although not thoroughly proved, this conjecture makes sense. Because a large

number of mutations could obtain a reasonably good starting point for the subsequent MH

sampling phase, so leaves very little chance for it to go wrong, with or without priors, unless

the priors are mistaken with high confidence. Fewer mutations gives some room for the

sampling phase to improve the current starting TOM, the final TOM, of course, depends on

the number of sampled TOMs and the priors used to guide the sampling process. Although

we conjecture such a region exists, it may be at a different location for different quality of

priors with different confidence level.

In summary, the experiments demonstrated that there are cases that approximated moral

prior could improve CaMML’s reconstruction accuracy, even though the priors do not come

from high quality learned Markov blankets. Since both improved cases appear for smaller

number of mutations and MH samples, which is essential to scale up CaMML to larger

models, it indicates that there is a possibility that CaMML could be scaled up without losing

much of its accuracy.
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Table 5.6 A summary of CaMML’s average edit distances (with 95% confidence intervals) when running with different number of
mutations in the pre-sampling phase and sampling different number of TOMs in the Metropolis-Hasting phase. For each setting,
CaMML is tested with and without synthetics and MMLCPT approximated moral priors. The constant d in the greedy and annealing
search takes value 7 and 10 respectively. CaMML with artificial priors always have the best edit distance because these priors are
generated with high quality. The MMLCPT learned priors can reduce the edit distance of CaMML (with no prior) in some cases that
are highlighted. The confidence intervals are further reduced by increasing the number of experiments to justify the significance of the
differences.

Pre-sampling mutations MH samples No prior Artificial priors MMLCPT priors
dn3 200n3 43+−2.3 32.8+−2.1 44+−2.5

200n2 41.9+−2.3 32.7+−2.1 45.2+−2.4
200n 42.1+−2.2 32.5+−2.1 44.2+−2.5
200logn 43+−2.3 32.8+−2.1 44.9+−2.6

dn2 200n3 50.2+−2.6 35.5+−2.3 47.5+−2.6
200n2 66.3+−3 (66+−1.9) 48.1+−3.3 60.6+−2.9 (61.6+−2)
200n 72.9+−2.7 61.8+−3.1 71.8+−3
200logn 72.6+−2.7 62+−2.8 71.3+−2.4

d ∗1000 200n3 47.6+−2.4 32.7+−2.1 47+−2.4
200n2 65.2+−2.9 (64.5+−1.8) 42.5+−2.6 56.6+−2.8 (56.2+−1.9)
200n 83.8+−2.7 77.8+−2.6 85.4+−2.7
200logn 82.4+−2.6 78+−2.8 85.6+−2.5





Chapter 6

Conclusions and Future Work

Learning Bayesian network structures from observational data remains a challenging problem

in machine learning. A satisfactory solution to this problem has a great potential of revealing

complex causal relations among variables that are beyond human beings’ capability of

handling. Hence, the problem is likely to keep attracting attention from researchers in a

variety of scientific fields. By now, there have been a few methods claiming to be able to

push the limit of this automated learning process to data sets containing thousands or even

millions of variables such as [75, 68]. Scalability is an attractive feature, but alone, it is

an unconvincing measure of the performance of a structure learner. Like many machine

learning tasks, the objective of learning is to find an optimal balance between metrics, e.g.,

the balance between model fit and complexity or a data analysis algorithm’s utility and

privacy in the perspective of differential privacy. In scaling up structure learning, this thesis

emphasized that the balance is between an algorithm’s scalability and its reconstruction

accuracy. Most of the work that has been done in this thesis focus on the preliminary steps of

the Local-to-Global strategy of structure learning, rather than pushing the limit of the current

state-of-the-art algorithms to the next level.
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6.1 Main Contributions

Research Question 1 (Section 1.2) concerns how to learn Markov blankets without having to

learn the regional structures within them. As an answer to this question, a general framework

using the minimum message length principle to learn Markov blankets was proposed in

Chapter 4. It predicts the target variable using either the conditional probability table, naive

Bayes or Markov blanket polytree models, with the potential Markov blanket candidates

being the predictors. The one with the shortest minimum message length is selected as the

best model, which in turns gives the best Markov blanket candidates. Although each of

the three predictive models has a fixed structure, none of these structures has to be true for

such a framework to work. The experimental work presented in Chapter 5 implies that the

framework with the conditional probability table and Markov blanket polytree models have

superior performance when comparing with other Markov blanket learners. In particular, the

conditional probability table model shows superior performance in almost all tested cases

except when the sample size is very small relative to the model complexity.

As explained in Chapter 3, a set of learned Markov blankets may not have a consistent

DAG at all. If so, one is certain that there are false findings in these Markov blankets. A

natural question to ask is how to efficiently tell whether or not a set of learned Markov

blankets is consistent with at least one DAG. This is exactly what has been asked by Research

Question 3 (Section 1.2). To answer this question, Chapter 3 stated the equivalent relation

between Markov blanket consistency and graph morality. It introduced the concept of weakly

recursively simplicial and proved that it is equivalent to being moral. Although deciding

morality is NP-complete in general, the problem can be efficiently decided for graphs with

low maximum degrees. To be precise, the morality of graphs with maximum degree 3 and

4 can be decided in linear and quadratic time respectively. The algorithms were given in

Chapter 3 together with proofs. Moreover, it was also experimentally justified in Chapter 5
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that enforcing morality using the minimum degree and minimum deficiency algorithms can

improve the Markov blanket discovery accuracy of the MMLCPT method.

One of the motivations of this project is to set up a framework that allows a Bayesian

learner to utilize the information learned in preceding steps, i.e., Markov blankets, to scale

up structure learning to high dimensional data sets (Research Question 4, Section 1.2).

To achieve this goal, this thesis studied the possibility of encoding Markov blankets as

probabilistic priors for a Bayesian learner. In particular, the proposed encoding method

is called approximated moral prior, which is a weak way of encoding the learned Markov

blankets by connecting all candidates in a Markov blanket as neighbours of the target node.

The framework was tested on the CaMML algorithm under a variety of experimental settings.

The results demonstrated that this weak way of encoding the learned Markov blankets has

the potential to scale up CaMML to larger models while retaining a similar accuracy.

6.2 Future work

Due to time constraints, there is only so much that one can do in the scope of this thesis.

Below are some of the interesting problems that arose during the investigation of the main

objectives of this project.

1. Markov blanket prior from counting the number of consistent sets of Markov blankets.

Given that moral graphs are weakly recursively simplicial, they are generalizations of

chordal graphs. Generating functions have been used by Wormald [96] to count the

number of labelled chordal graphs. Moral graphs do not have the desirable properties

that chordal graphs have, so one is not sure whether or not there could be an analyt-

ical solution to counting them. If not, an alternative is to get a useful approximate

(asymptotic) formulae for counting.
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2. A stronger encoding of Markov blankets for CaMML. The current version of CaMML

samples from the space of all Totally Ordered Models (TOMs). A stronger Markov

blanket encoding is to let CaMML take into account the learned Markov blankets, then

either penalize or reward a sampled TOM, depending on its consistency with the given

Markov blankets.

3. The experimental work in Chapter 5 mostly used a fixed confidence level for all arc

priors. In reality, this is hardly the case. A sophisticated alternative is to estimate a

confidence level for each arc, e.g., using bootstrapping [30].
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Appendix A

Inapproximability of the MBPT Problem

A.1 Introduction

Polytrees are relatively simpler graphical models (comparing to DAGs) to represent the

relationships between random variables. They are often used when one seeks fast exact

belief propagation on graphical models. Recall that a polytree is a directed acyclic graph

whose skeleton is a tree (Definition 3.1.19). Although polytrees are simpler than general

DAGs, learning the optimal maximum likelihood polytree from data is just as difficult as

learning the optimal Bayesian network, unless the polytree is a Chow-Liu tree (i.e., a polytree

with max fan-in 1) [17]. This is the consequence of the inapproximability of the optimal

polytree problem that was proved in [23]. In that work, the author drew a polynomial time

gap-preserving reduction from the MAX 3SAT-E3 problem to prove that the optimal max

fan-in 2 polytree problem is a c-gap problem, so it cannot be approximated to a better constant

factor than the size of the gap.1

This appendix studies the inapproximability of optimizing the learning of a Markov

blanket polytree that is from a more restricted model family. The following is a formal

definition of this model.
1In general, the gap c in a c-gap problem does not have to be constant. It can be a function of the input size.
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v1 v2

v3 v4

v5 v6

v7 v8

(a) DAG

v1 v2

v3 v4

v5 v6

(b) MBPT

v1 v2

v3 v4

v5 v6

(c) non-MBPT

Fig. A.1 A DAG, a MBP of the variable v3 and a non-MBP of the variable v3.

Definition A.1.1. Let < G = (V,E),P > be a Bayesian network. A Markov Blanket polytree

Ti of a target variable Xi is a polytree over the target variable and its Markov blanket such

that Xi’s Markov blanket is the same in the polytree Ti and the DAG G.

In a Markov Blanket Polytree (MBP), each of the other variables is either a parent, child

or spouse of the target variable, provided they have a common child.

Example A.1.1. Let G be the DAG as shown in Fig. A.1a. For the variable v3, the graph in

Fig. A.1b is a Markov blanket polytree of v3 whilst the graph in Fig. A.1c is not.

In practice, when the true model is unknown, the true Markov blanket is unknown. Given

a data set over the set V = (X1, . . . ,Xn) of variables, for the target variable Xi, a Markov

blanket polytree is a polytree over a possible candidate subset Bi ⊆ V that satisfies the

above definition. Assuming Xi and Bi are fixed, the aim is to find the best Markov blanket

polytree model over Bi∪{Xi} with respect to an objective function, in this case the maximum

likelihood score.

Comparing with general polytree structures, a Markov blanket polytree is more restricted

because it has to satisfy the Markov blanket condition in addition to being a polytree.

Proposition 4.2.2 states a recursive formula to compute the number of labelled Markov

blanket polytrees. The number is much smaller when compared with the number of labelled

DAGs and polytrees. Hence, one would like to know whether or not there is a polynomial

time algorithm that finds the optimal maximum likelihood Markov blanket polytree model.
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According to the Markov condition (Definition 3.1.29) and the equivalence between log

likelihood and entropy (as stated in [23]), the log likelihood of a Markov blanket polytree G

can be written as

L(G) =−
n

∑
i=1

H(Xi | Πi). (A.1)

That is the negative sum of the entropy for each random variable conditioning on its parent

set in the graph G. Therefore, finding the maximum likelihood Markov blanket polytree

model is equivalent to finding the model with the minimum total conditional entropy. The

following statement defines the problem as an optimization problem.

Maximum likelihood Markov blanket polytree (ML MBPT)

INSTANCE: A data set D that contains m observations for n random variables

(X1, . . . ,Xn), where 0 < m < ∞. A target variable Xi and its Markov blanket Bi.

QUESTION: What is the optimal maximum likelihood score in all possible Markov

blanket polytrees over Bi ∪{Xi}?

A.2 Gap-preserving reduction

The rest of this appendix proves that it is NP-hard to approximate the ML MBPT problem

within a certain constant factor. The proof is similar to the work in [23], by producing a

polynomial time gap-preserving reduction from the c-gap version of the MAX 3SAT-E3

problem to the ML MBPT problem. In addition to the proof in [23], this reduction must

guarantee the transformed graph satisfies both the Markov blanket and polytree constraints.

The MAX 3SAT-E3 problem is an optimization problem that is stated below.
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MAX 3SAT-E3

INSTANCE: A CNF formula φ such that each clause contains at most 3 literals and

each variable appears exactly 3 times.

QUESTION: What is the maximum number of clauses that can be simultaneously

satisfied?

The problem is known to be NP-hard to approximate to within a constant factor 7
8 + ε

[86]. The c-gap version of this problem is a promise problem2 that is stated below.

c-gap MAX 3SAT-E3

INSTANCE: A 3SAT-E3 formula φ with m clauses such that it is

• either a YES instance if all m clauses are satisfied

• or a NO instance if no more than m
c clauses are satisfied, for c > 1.

QUESTION: Is the formula φ a YES or NO instance?

It can be proved by gap-producing reduction from the MAX 3SAT problem to show that

the c-gap version of this problem is also NP-hard. If we can construct a polynomial time

reduction from this problem to the ML MBPT problem while still preserves the gap (not

necessarily the same magnitude), then it is equivalent to showing that our problem is also hard

to approximate to within a constant factor, because the NP-hardness of a gap problem implies

that the original problem is NP-hard to approximate to within a factor. The following theorem

is based on Markov blanket polytrees with maximum fan-in 3. The inapproximability of

larger max fan-in models follows from this result.

2A promise problem is a generalization of a decision problem, where only a subset of the entire input space
is considered. For example, instead of taking the set of all graphs as inputs, a promise problem may only
consider connected graphs. Hence, it is the union of two disjoint subsets, one contains all the YES instance
and one contains all the NO instance. If a given input does not belong to either of these two, the algorithm for
solving the promise problem can return any output or may not even halt.
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A1 = B(q), . . . ,Ak = B(q)

B1 = B(q), . . . ,Bk = B(q) C1 = B(q), . . . ,Ck = B(q)

A1 ⊗B1 ⊗C1, . . . ,Ak ⊗Bk ⊗Ck
X1 = B(1

2) X2 = B(1
2) X3 = B(1

2)

C1 = B(p) C2 = B(p) C3 = B(p)

X1

C2 ⊗C3

C1 ⊗B(P)⊗S1

X2

C2 ⊗C3

C1 ⊗B(P)⊗S2

X3

C1 ⊗C2

C3 ⊗B(P)⊗S2

S1 = B(1
2) S2 = B(1

2) S3 = B(1
2)

Fig. A.2 A MBP transformed from a 3SAT-E3 formula φ = (X1∨X2∨X3)∧ (X1∨X2∨X3)∧
(X1 ∨X2 ∨X3). The formula is satisfiable with an assignment X1 = 1,X2 = 0,X3 = 0.
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A1 = B(q), . . . ,Ak = B(q)

B1 = B(q), . . . ,Bk = B(q) C1 = B(q), . . . ,Ck = B(q)

A1 ⊗B1 ⊗C1, . . . ,Ak ⊗Bk ⊗Ck
X1 = B(1

2) X2 = B(1
2) X3 = B(1

2)

C1 = B(p) C2 = B(p) C3 = B(p) C4 = B(p)

X1

C1 ⊗C2

C4 ⊗B(P)⊗S1

X2

C1 ⊗C3

C4 ⊗B(P)⊗S2

X3

C2 ⊗C3

C4 ⊗B(P)⊗S2

S1 = B(1
2) S2 = B(1

2) S3 = B(1
2)

Fig. A.3 A MBP transformed from a 3SAT-E3 formula φ = (X1 ∨X2)∧ (X1 ∨X3)∧ (X2 ∨
X3)∧ (X1 ∨X2 ∨X3). The formula is satisfiable with an assignment X1 = 0,X2 = 1,X3 = 1.
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For simplicity, we use B(p) to denote a binary random variable with probability p ∈ (0,1)

being TRUE, and H(p) to denote the entropy of the binary random variable B(p).

Theorem A.2.1. For a constant c > 1, the problem of finding a max fan-in 3 Markov blanket

polytree whose maximum likelihood is within 1/c times the optimum is NP-hard.

Proof. The proof is based on polytrees with the minimum total conditional entropy, because

of the equivalence between the maximum likelihood and the minimum total conditional

entropy. Given a 3SAT-E3 formula φ , we first build a graph by using the following steps:

1. Clause vertex - for every clause C j, build a clause vertex V j
c that is a binary random

variable C j = B(p).

2. Variable vertex - for every variable Xi in the formula, build a variable vertex V i
x that is

a 3-tuple. The first element in the 3-tuple is a binary random variable Xi = B(1
2). The

second element is the XOR of two binary random variables C j ⊗Ck, both of which

contain the variable Xi with the same polarity (i.e., C j and Ck contain either Xi or

Xi). The third element is the XOR of three binary random variables Cl ⊗B(p)⊗ Si,

where Cl contains the variable Xi with the opposite polarity of C j and Ck, the variable

Si = B(1
2).

3. Auxiliary vertices VA,VB,VC - for constants k > 0 and 0 < q < 1
2 , make three auxiliary

vertices, each of which is a joint probability distribution of k i.i.d. binary random

variables B(q).

4. Auxiliary target vertex - build an auxiliary vertex Vt that is a (n+1)-tuple, where n is

the number of variables in the formula φ . The first element in Vt is the joint probability

distribution of k i.i.d. XOR Ai⊗Bi⊗Ci for i ∈ [1,k]. Each of the remaining n elements

is a uniform binary random variable Xi = B(1
2) that is the same as the first element in

the variable vertex V i
x for i ∈ [1,n].
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5. Auxiliary vertices Si - for each variable vertex V i
x , create an auxiliary vertex Si = B(1

2).

6. Edges - fully connect the four auxiliary vertices VA, VB, VC and Vt ; connect Vt to all

the variable vertices; connect a variable vertex to the three clause vertices, in which it

appears; connect each auxiliary vertex Si to its corresponding variable vertex V i
x .

It is clear that the graph G constructed from a given formula φ by using the above

steps contains cycles, so is not a polytree. In addition, some vertices may violate the max

fan-in 3 constraint if all edges incident to it are directed towards it. To obtain a polytree, in

particular, a max fan-in 3 Markov blanket polytree, some edges need to be removed to get rid

of the cycles and reduce some vertices’ fan-in. We argue in the following that under certain

parameter settings, if the learning objective is to find the optimal ML MBPT model, then the

choices of edge removal and orientations are deterministic.

Due to the way this graph is constructed, an edge removal can only affect the entropy

of vertices incident to it, so it is sufficient to calculate the entropy changes locally. We first

determine the edge removals and orientations among Vt ,VA,VB,VC. It is clear that the edges

among the three auxiliary vertices do not contribute to reducing the total entropy, so they

should be removed. The entropy of these vertices are as the following:

H(VA) = H(VB) = H(VC) = kH(q),

H(Vt) = kH(q3 +3q(1−q)2)+n.

The XOR implies that knowing any three from {Ai,Bi,Ci,Ai ⊗Bi ⊗Ci} can determine the

fourth value. Hence, the vertex that is chosen as the common child of the other three vertices

must reduce most of the total entropy. If Vt is the child, then the total entropy is reduced by

kH(q3 + 3q(1− q)2). If VA (or VB or VC) is the child, then the total entropy is reduced by

kH(q). In addition, since the fan-in of Vt does not reach the upper limit, it allows an extra

incoming edge from any other vertices. This can reduce its entropy by at most H(Xi) = 1 if
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the edge is from a variable vertex Xi. Hence, the total entropy reduction is kH(q)+1. The

setting of 0 < q < 1
2 entails that q < q3+3q(1−q)2 < 1

2 . So for sufficiently large k, we have

k(H(q3 +3q(1−q)2)−H(q))> 1, which implies that the optimal choice is to set Vt as the

common child of VA,VB,VC. Consequently, the rest of the edges that incident to Vt must be

directed away from Vt .

Each of the variable vertex V i
x can allow three incoming edges from the three clause

vertices, the target vertex and the auxiliary vertex Si. The choice again depends on which

three vertices give the most entropy reduction. Knowing the values of the elements in the

target vertex Vt , the entropy of each variable vertex V i
x is reduced by 1, which is the maximum

possible reduction. In addition, the element Xi is independent of the other elements in V i
x ,

so the edge from Vt to each of V i
x is always kept in the graph. Take V 1

x as an example. Let

H(p) = 1
2 and H(2p(1− p)) = 1− δ . The other vertices reduce the entropy of V 1

x as the

following:

• V 1
c : H(1

2)−H(1
2) = 0.

• V 2
c or V 3

c : H(2p(1− p))−H(p) = 1
2 −δ .

• S1: H(1
2)−H(2p(1− p)) = δ .

• S1,V 1
c : H(1

2)−H(p) = 1− 1
2 = 1

2 .

• S1,V 2
c or V 3

c : δ + 1
2 −δ = 1

2 .

• V 1
c ,V

2
c or V 3

c : 1
2 −δ .

• V 2
c ,V

3
c : H(2p(1− p)) = 1−δ .

The most entropy reduction is among 1−δ and 1
2 . However, the polytree constraint stops

V 2
c ,V

3
c being parents of V 1

x at the same time. So the best choice is S1 with one of V 1
c ,V

2
c ,V

3
c .

After all redundant edges are removed, the remaining graph is a Markov blanket polytree

with respect to the target vertex Vt . If the the graph has an edge from the clause vertex



148 Inapproximability of the MBPT Problem

V j
c to a variable vertex V i

x , then the clause Ci in the formula φ is satisfied by the variable

Xi. If the formula φ is satisfiable, then the entropy reduction on all the variable vertices is

m(1
2 −δ )+nδ . If only 1− ε fraction of the total m clauses can be satisfied, then the total

entropy reduction is m(1−ε)(1
2 −δ )+nδ . Suppose the optimal total entropy is H∗, then if at

most (1−ε)m clauses can be satisfied, then the lowest total entropy is H∗+εm(1
2 −δ )≥ cH∗,

where c depends on ε but is a constant relative to size of the input formula φ . Therefore, the

ML MBPT problem cannot be approximated to within a constant factor of the optimal value.



Appendix B

Optimal Moral Graph Triangulation

The preprint of this work is available at [50]. This work was rejected for publication because

the claims can be proved in a much easier argument. For the completeness of this thesis, the

original proofs are included in the appendix.

Moral graphs were introduced in the 1980s as an intermediate step when transforming a

Bayesian network to a junction tree, on which exact belief propagation can be efficiently done.

The moral graph of a Bayesian network can be trivially obtained by connecting non-adjacent

parents for each node in the Bayesian network and dropping the direction of each edge.

Perhaps because the moralization process looks simple, there has been little attention on

the properties of moral graphs and their impact in belief propagation on Bayesian networks.

This paper addresses the mistaken claim that it has been previously proved that optimal

moral graph triangulation with the constraints of minimum fill-in, treewidth or total states

is NP-complete. The problems are in fact NP-complete, but they have not previously been

proved. We now prove these.
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B.1 Introduction

One way to conduct an exact inference on a given Bayesian network is to transform it to

a tree-like structure, called junction tree, and conduct inference on a junction tree instead.

The process of obtaining a junction tree from a Bayesian network consists of moralization,

triangulation and tree decomposition. Moralization was introduced by Lauritzen and Spiegel-

halter [47] as connecting non-adjacent parents for each node in the Bayesian network and

dropping all the directions. Tree decomposition maps a graph G = (V,E) to a tree T , in which

each tree node t is a subset Vt of vertices in V and satisfying the following three conditions:

(1) ∪t∈TVt = V ; (2) for each edge e ∈ E there exists a tree node t ∈ T s.t. V (e) ⊆ t; (3) if

Vti ∩Vtk = I then I ⊆Vt j for each t j that appears on the path between ti and tk.

Any graph has a tree decomposition, but not all decomposed trees are junction trees. A

junction tree is a tree decomposition s.t. each tree node is a complete subgraph. To ensure

every DAG can be transformed into a junction tree, which represents a family of distributions

that contains the distribution of the given Bayesian network, it is necessary to triangulate the

DAG’s moral graph. Here, triangulation finds a set of fill-in edges, whose addition makes a

graph triangulated. When the marginal distribution of individual variables is of interest, the

junction tree algorithm sums over the other variables in a tree node. Hence, the complexity

of the junction tree algorithm is exponential in the size of a tree node.

Generally, a DAG may have more than one way of being triangulated. Then an optimal

triangulation can be defined in terms of the following three constraints:

• minimum fill-in: deciding whether a graph can be triangulated by at most λ fill in

edges 1;

• treewidth: deciding whether a graph has treewidth at most ω;

1Originally, the minimum fill-in problem for graphs was presented and proved by Yannakakis [98] as an
optimization problem. But it can be revised to a decision problem, for which the original proof also works.
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• total states: deciding whether a graph can be triangulated s.t. the total number of states

is at most δ when summing over all maximal cliques in the triangulated graph.

The minimum fill-in problem is appealing because the treewidth usually increases exponen-

tially in the number of fill-in edges. The total states problem incorporates both clique size

and the number of states per variable, so is also essential to the complexity of the junction

tree algorithm. The minimum fill-in and the treewidth problems for graphs were proved to be

NP-complete by Yannakakis [98] and Arnborg et al. [8], respectively. Each proof stated a

polynomial time reduction from a known NP-complete problem to optimally triangulating

specially constructed graphs that are not moral. These reductions are sufficient to show the

NP-completeness of the minimum fill-in and treewidth problems for graphs, but the difficulty

of these problems do not automatically carry over to moral graphs. These works, however,

were cited in [47] (Section 6 and discussion with Augustin Kong) during the discussion of

triangulating moral graphs. So it gives the impression that the minimum fill-in and treewidth

problems for moral graphs were proved to be NP-complete. Based on a similar reduction,

Wen [95] presented proof of the NP-completeness of the total states problem for moral

graphs. The proof is insufficient to support his claim, for the same reason above. Since then,

all three works have been inaccurately cited as proving the NP-completeness of optimally

triangulating moral graphs, e.g., [43, 46, 6, 28, 64, 48], etc.

This paper proves that the minimum fill-in, treewidth or total states problems for moral

graphs are indeed NP-complete. It applies an additional step to each polynomial transforma-

tion to ensure the built graphs are moral after revision. Section B.2 introduces equivalent

properties to graph morality and the necessary concepts for the proofs. Section B.3 demon-

strates why the original constructions cannot produce moral graphs and presents a fix to each

problem.



152 Optimal Moral Graph Triangulation

1

2

a

b
c

P Q

Fig. B.1 A bipartite non-chain graph with only the solid edges and a bipartite chain graph
with all edges. The node 2 is a saturated node in the chain graph.

B.2 Preliminary

Denote a bipartite graph by G = (P⊔Q,E), where P⊔Q represents the disjoint union of two

sets in vertices of G.

Definition B.2.1. A bipartite graph G = (P⊔Q,E) is chain if there is an ordering α :

{1, . . . , |P|} ↔ P s.t. the neighbours of the vertices in P form a chain NG(α(|P|)) ⊆ ·· · ⊆

NG(α(1)).

The definition is also well defined for the vertices in Q.

Definition B.2.2. Let G = (P⊔Q,E) be a bipartite graph. The partition completion of G is

a function C(·) that makes each P and Q a clique.

In particular, the partition completion CP(·) restricted to P only makes P a clique.

Definition B.2.3. A vertex in a bipartite graph is saturated if it is connected to every vertex

in the other partition.

Example B.2.1. The bipartite graph in Fig. B.1 with only the solid edges is not a chain

graph, because the neighbour sets of P’s nodes do not form a chain. But the bipartite graph

with all the edges is a chain graph, because N(1)⊆ N(2) w.r.t. the ordering α = {2,1}. In

the chain graph, the node 2 is saturated, because it is adjacent to all nodes in Q.

The following results have been proved in Chapter 3.
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Corollary B.2.1. If a graph has no simplicial node, then it is not moral.

Corollary B.2.2. If a graph is chordal, then it is moral.

Theorem B.2.1. Let G be a graph. The following are equivalent:

1. G is moral.

2. G is weakly recursively simplicial.

3. G has a perfect elimination kit.

B.3 Optimal Moral Graph Triangulation

Yannakakis [98], Arnborg et al. [8] and Wen [95] proved a polynomial reduction from a

NP-complete problem to the minimum fill-in, treewidth or total states problems for graphs,

respectively. The NP-complete problems used in these proofs are the optimal linear arrange-

ment (OLA), minimum cut linear arrangement (MCLA) and elimination degree sequence

(EDS), respectively. These problems are listed below and can be found in [36, page. 200-201].

OPTIMAL LINEAR ARRANGEMENT

INSTANCE: Graph G = (V,E), positive integer k ≤ |V |.

QUESTION: Is there an ordering α : {1, . . . , |V |}↔V s.t. c(α)=∑uv∈E |α−1(u)−α−1(v)| ≤

k?

MINIMUM CUT LINEAR ARRANGEMENT

INSTANCE: Graph G = (V,E), positive integer k ≤ |V |.

QUESTION: Is there an ordering α : {1, . . . , |V |} ↔V s.t. ∀i ∈ [1, |V |], |{uv ∈ E | α−1(u)≤

i < α−1(v)}| ≤ k?

ELIMINATION DEGREE SEQUENCE

INSTANCE: Graph G = (V,E), sequence < d1, . . . ,d|V | > of non-negative integers not

exceeding |V |−1.
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QUESTION: Is there an ordering α : {1, . . . , |V |} ↔V s.t. ∀i ∈ [1, |V |], if α−1(v) = i then

there are exactly di vertices u s.t. α−1(u)> i and uv ∈ E?

Each of the above problems asks if there exists an ordering α of a given graph s.t. a

certain constraint is satisfied. By fixing a node u ∈V at an arbitrary place in an ordering α ,

each of the OLA, MCLA and EDS problems seeks for a restricted ordering from the subset

A = {α | α(i) = u} of orderings of G to satisfy its constraint. It is easy to verify that these

restricted problems remain NP-complete. Because if there is an O(|V |k) time algorithm to

answer the question within the restricted domain A, it takes |V |×O(|V |k) time to answer the

original question in the entire set of orderings.

The motivation for creating a bipartite graph is the relation between chain graphs and

chordal graphs stated next.

Lemma B.3.1. [98]. C(G′) is chordal if and only if G′ is a bipartite chain graph.

It follows from the lemma that triangulation of the graph C(G′) is equivalent to making

G′ a chain graph. To address the matter that the original transformed graphs by Yannakakis

[98], Arnborg et al. [8] or Wen [95] are not moral, Lemma B.3.3 proves an equivalent relation

between bipartite graphs and moral graphs. In addition, it gives insights on how to revise the

transformations to get moral graphs, on which the optimal triangulation can be solved.

Lemma B.3.2. If G′ = (P⊔Q,E ′) is a bipartite graph, then Cp(G′) is triangulated.

Proof. Trivial.

Lemma B.3.3. Let G′ = (P⊔Q,E ′) be a bipartite graph. The graph C(G′) is moral if and

only if ∃u ∈ P⊔Q s.t. ∀v ∈ NG′(u), the node v is saturated.

Proof. Without loss of generality, consider a node u ∈ Q. The neighbour set NC(G′)(u) =

NG′(u)∪{Q\u}. The partition completion implies that both NG′(u) and {Q\u} are cliques

in C(G′).
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For any node in P⊔Q, if it has at least one unsaturated neighbour in the bipartite graph

G′, then ∃v ∈ NG′(u) s.t. vw /∈ E ′ for some node w ∈ {Q\u}. It then implies that NC(G′)(u)

is not a clique in C(G′), so u is not a simplicial node in C(G′). This is true for all nodes in

C(G′), so the graph has no simplicial node and by Corollary B.2.1 it is not moral.

If all neighbours of u are saturated in the bipartite graph G′, then the neighbour set

NC(G′)(u) is a clique. It follows that u is a simplicial node in C(G′). The subgraph H =

G−u−{vw | v,w ∈ Q∧ v,w ̸= u} is the same as the subgraph Cp(G−u), in which G−u is

bipartite. By Lemma B.3.2, the subgraph H is triangulated. Therefore the graph C(G′) is

moral by Corollary B.2.2 and Theorem B.2.1.

B.3.1 Minimum Fill-in

a

c b

d

e1e2

e3
e4

(a)

r1
c

(b)

r1
c

(c) (d)

Fig. B.2 B.2a a graph G; B.2b the bipartite graph G′ transformed from G by Y1-Y3; B.2c the
bipartite graph Ĝ transformed from G′ by saturating the node c using L4; B.2d the subgraph
obtained from C(Ĝ) by removing the simplicial node r1

c and its excess {vw | v,w ∈ Q∧v,w ̸=
r1

c}.
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Yannakakis [98] presented a polynomial transformation from an instance of the OLA

problem into an instance of the minimum fill-in problem for graphs. The process first takes a

graph G = (V,E) (Fig. B.2a) and transforms it into a bipartite graph G′ = (P⊔Q,E ′) (Fig.

B.2b) by the following steps:

Y1. P = {u | u ∈V},

Y2. Q = {e j | e ∈ E ∧ j ∈ {1,2}}∪{R(u) | u ∈ V}, where R(u) = {r j
u | j ∈ {1, . . . , |V |−

dG(u)}},

Y3. E ′ = {ue j | u ∈V (e)∧ e ∈ E ∧ j ∈ {1,2}}∪{uv | u ∈ P∧ v ∈ R(u)}.

It then applies the partition completion on the bipartite graph G′ to obtain the graph C(G′),

on which the minimum fill-in problem is solved. As can be seen, each edge node e j
i ∈ Q is

incident to exactly two nodes in P, so G′ has no saturated node, unless G = uv. It follows

from Lemma B.3.3 that C(G′) is not moral. The key to make C(G′) moral is to pick a node

u ∈V and apply the additional step

L4. for a given node u ∈ v, let Ê = E ′∪S(u), where S(u) = {uv /∈ E ′ | v ∈ Q}

that makes the corresponding node u ∈ P saturated in Ĝ (Fig. B.2c).

Lemma B.3.4. Let Ĝ=(P⊔Q, Ê) be the bipartite graph constructed from a graph G=(V,E)

by Y1-Y3 & L4 for a given node u ∈V . Then C(Ĝ) is moral.

Proof. The proof follows from Lemma B.3.3.

It is easy to see that the modified transformation can still be done in polynomial time,

because the number of edges added by L4 is linear to the number of nodes in Q. It remains to

show that a Yes instance of the restricted OLA problem is also a Yes instance of the minimum

fill-in problem for moral graphs and vice versa. To do so, the next lemma calculates the

difference between the cost of a graph G w.r.t. an ordering α and the number of fill-in
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edges that triangulates the corresponding moral graph C(Ĝ) w.r.t. α . And it proves that the

difference is constant for any restricted ordering α . Define the cost of an edge e = uv ∈ E

w.r.t. an ordering α to be δ (e,α) = |α−1(u)−α−1(v)|.

Lemma B.3.5. Given a graph G = (V,E) and a positive integer k ≤ |V |, for any node

w ∈ V the minimum cost is k w.r.t. an ordering α of G s.t. α−1(w) = 1 if and only if the

corresponding moral graph C(Ĝ) can be triangulated by λ = k+ |V |(|V |−1)(|V |−2)
2 −2|E|+

dG(w) fill in edges w.r.t. α .

Proof. Let Ĝ be the polynomial transformed graph from G = (V,E) using Y1-Y3 & L4.

For a given node w ∈V , define A = {α | α(1) = w} to be a subset of orderings of G. Then

any ordering α ∈ A uniquely specifies a set FĜ(α) of fill-in edges to make Ĝ a chain by the

following two steps:

(a) for each node u ∈ Q calculate σ(u) = max{i | uα(i) ∈ E},

(b) for any ordering α , define FĜ(α) = {uα( j) /∈ Ê | u ∈ Q∧ j < σ(u)}.

It is easy to see that FĜ(α) is minimal because any edge deletion from it stops the neighbour

sets of P’s nodes in Ĝ+FĜ(α) from forming a chain. Lemma B.3.1 implies C(Ĝ)+FĜ(α)

is triangulated, so FĜ(α) is a minimal triangulation of C(Ĝ). It remains to show that every

ordering α ∈ A yields a set of fill in edges with cardinality

fĜ(α) = c(α)+
|V |(|V |−1)(|V |−2)

2
−2|E|+dG(w), (B.1)

where c(α) is the total cost of G w.r.t. α . Yannakakis [98] proved that for every ordering π

(not necessarily in A), the number of fill-in edges

fG′(π) = c(π)+
|V |2(|V |−1)

2
−2|E|. (B.2)
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The following is a brief explanation of Yannakakis [98]’s proof of equation (B.2). For every

v ∈V , each x ∈ R(v) connects to π−1(v)−1 nodes in P, whose orderings are smaller than

σ(x). For any edge e = uv ∈ E, assume without loss of generality that π−1(u) < π−1(v).

Since each e j in Ĝ is adjacent to the two end nodes of the edge e, the fill in edges in FG′(α)

connect e j to π−1(v)−2 = π−1(u)+ [π−1(v)−π−1(u)]−2 = π−1(u)+δ (e,π)−2 nodes

in P. Hence, FG′(π) contains π−1(v)+π−1(u)+δ (e,π)−4 edges incident to both e1 and

e2. Therefore, the number of fill in edges w.r.t to π is calculated by

fG′(π) = ∑
v∈V

∑
x∈R(v)

[π−1(v)−1]+ ∑
e=uv∈E

[π−1(v)+π
−1(u)+δ (e,π)−4]

= ∑
v∈V

[|V |−dG(v)][π−1(v)−1]+ ∑
v∈V

dG(v)π−1(v)+ ∑
e∈E

δ (e,π)−4|E|

= ∑
v∈V

|V |[π−1(v)−1]+ ∑
v∈V

dG(v)+ c(π)−4|E|

=c(π)+
|V |2(|V |−1)

2
−2|E|,

where by definition ∑e∈E δ (e,π) = c(π) and the last equality obtains because ∑v∈V dG(v) =

2|E| and ∑v∈V (π
−1(v)−1) = |V |(|V |−1)/2. Note that the reason to make two edge nodes

and the residual nodes is to cancel the term dG(v) during the derivation of fG′(π), so that the

difference between fG′(π) and c(π) is constant, regardless of the corresponding ordering.

The size difference between the two sets of edges Ê and E ′ is

|S(w)|=2(|E|−dG(w))+
u̸=w

∑
u∈V

|R(u)|

=2(|E|−dG(w))+
u̸=w

∑
u∈V

(|V |−dG(u))

=2(|E|−dG(w))+ |V |(|V |−1)− ∑
u∈V

dG(u)+dG(w)

=|V |(|V |−1)−dG(w). (B.3)
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Since equation (B.2) is true for every ordering, it certainly holds for orderings in A. It follows

from α−1(w) = 1 that S(w) ⊆ FG′(α). Hence, equation (B.1) is obtained by subtracting

equation (B.3) from equation (B.2). If there exists an ordering α of G, w.r.t. which the

minimum cost of G is k, then α produces a set of fill-in edges that triangulates the moral

graph C(Ĝ) with λ edges. Conversely, if the moral graph C(Ĝ) can be triangulated w.r.t. an

ordering α with λ fill-in edges, α indicates the minimum cost of the graph G is k.

Theorem B.3.1. The minimum fill-in problem for moral graphs is NP-complete.

Proof. Since any set of fill-in edges that triangulates a moral graph can be verified for whether

or not it contains at most λ edges in polynomial time, the minimum fill-in problem for moral

graphs is in NP. Given a graph G can be polynomially transformed to the corresponding

moral graph C(Ĝ), Lemma B.3.5 proves the NP-hardness of the problem.

B.3.2 Treewidth

Arnborg et al. [8] reduced the MCLA problem to the decision problem of whether or not a

graph has a bounded treewidth. Below are the steps (A1 through A3) of Arnborg et al. [8]’s

polynomial transformation from a graph G = (V,E) (Fig. B.2a) that is an instance of the

MCLA problem to a bipartite graph G′ = (P⊔Q,E ′) (Fig. B.3a), w.r.t. which C(G′) is an

instance of the treewidth problem for graphs.

A1. P = {ui | u ∈V ∧ i ∈ {1, . . . ,∆(G)+1}},

A2. Q = {e j | e ∈ E ∧ j ∈ {1,2}}∪{R(u) | u ∈V}, where R(u) = {r j
u | j ∈ {1, . . . ,∆(G)+

1−dG(u)}},

A3. E ′ = {uie j | ui ∈ P∧u ∈V (e)∧ e ∈ E ∧ j ∈ {1,2}}∪{uiv | u ∈ P∧ v ∈ R(u)}.

The transformation is similar to that of [98] but produces multiple copies for the nodes in G.

The bipartite graph G′ built via the above three steps has no saturated node (unless G = uv)
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r1
c

(a)

r1
c

(b)

(c)

Fig. B.3 B.3a the bipartite graph G′ transformed from G (Fig. B.2a) by A1-A3; B.3b the
bipartite graph Ĝ transformed from G′ by saturating the nodes {c1,c2,c3,c4} using L∗4;
B.3c the subgraph obtained from C(Ĝ) by removing the simplicial node r1

c and its excess
{vw | v,w ∈ Q∧ v,w ̸= r1

c}.
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for the same reason discussed in the preceding subsection, so C(G′) is not moral by Lemma

B.3.3. To make it moral, the following step

L∗4. for a given node u ∈ V , let Ê = E ′∪{S(u j) | j ∈ [1,∆(G)+1]}, where u j ∈ P is the

corresponding node to u and S(u j) = {u jv /∈ E ′ | v ∈ Q}

is applied to each copy u j of a given node u ∈V (Fig. B.3b) to make valid of any residual

node of u being simplicial in C(Ĝ).

Lemma B.3.6. Let Ĝ=(P⊔Q, Ê) be the bipartite graph constructed from a graph G=(V,E)

by A1-A3 & L∗4 for a given node u ∈V . Then C(Ĝ) is moral.

Proof. The proof follows from Lemma B.3.3.

Although this additional step is applied to all copies of u, the polynomial time is guar-

anteed by the bounded number ∆(G)+1 of copies of u. Before proceeding, it is necessary

to draw the connection between an ordering w.r.t. which a chain graph G′ is defined and a

perfect elimination ordering (PEO) of the corresponding triangulated graph C(G′).

Lemma B.3.7. Let G′ = (P⊔Q,E ′) be a chain graph w.r.t. an ordering α of P and πP be

the reverse of α . Then for any ordering πQ of Q, the elimination ordering {πP,πQ} is perfect

for the graph C(G′).

Proof. The neighbour set NC(G′)(α(|P|)) = {P\α(|P|)}∪NG′(α(|P|)), where each of the

two subsets is a clique because of the partition completion. G′ is a chain graph implies

that for each i ∈ [1, |P|−1], NG′(α(|P|))⊆ NG′(α(i)). It follows that each α(i) is adjacent

to all nodes in NG′(α(|P|)), so α(|P|) is simplicial in C(G′). By the same argument, the

node α(|P|−1) is simplicial in the subgraph C(G′)−α(|P|). Hence, the subgraph of C(G′)

induced by P can be eliminated recursively according to πP. The remaining part is a complete

subgraph over Q. Hence, any ordering of Q appends to πP forms a PEO of C(G′).
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It has been shown that A1-A3, L∗4 and partition completion polynomially transform

an instance of the restricted MCLA problem to an instance of the treewidth problem for

moral graphs. Based on this transformation, the next lemma proves that a Yes answer to the

restricted MCLA problem is also a Yes answer to the treewidth problem for moral graphs

and vice versa. Define the linear cut value of G w.r.t. an ordering α as max1≤i<|V | |{uv ∈ E |

α(u)≤ i < α(v)}|.

Lemma B.3.8. Given a graph G = (V,E) and a positive integer k ≤ |V |, for any node v ∈V

the minimum linear cut value is k w.r.t. an ordering α of G s.t. α−1(v) = |V | if and only if

the treewidth of the corresponding moral graph C(Ĝ) is ω = (∆(G)+1)× (|V |+1)+ k.

Proof. Ĝ = (P⊔Q, Ê) is the bipartite graph constructed from G using A1-A3 & L∗4 for

a given node v ∈ V . Let πP be an ordering of P s.t. for any node ui = α(i) ∈ V , the

corresponding node u j
i ∈ P has order

π
−1
P (u j

i ) = (∆(G)+1)× i− j+1, (B.4)

where j ∈ [1,∆(G)+1]. Furthermore, let β be the reverse order of πP. Then steps (a) and (b)

in Lemma B.3.5 specify a set FĜ(β ) of fill-in edges w.r.t. β to triangulate C(Ĝ), because the

neighbour sets of P’s nodes in Ĝ+FĜ(β ) form the chain N(β (|P|)) ⊆ ·· · ⊆ N(β (1)). By

Lemma B.3.7, for any ordering πQ of Q, the ordering {πP,πQ} is a PEO of the triangulated

graph T =C(Ĝ)+FĜ(β ). For each i∈ [1,(∆(G)+1)×|V |], the node πP(i) and its neighbours

in the elimination graph T i−1 form a clique Ki. By going through {πP,πQ}, we get a list of

cliques that include all maximal cliques in T and consequently the maximum clique. Since

each v j is a saturated node in P, all maximal cliques correspond to nodes in P only.

To calculate the size of each corresponding maximal clique, consider the node u1
i in the

elimination graph w.r.t. πP by removing from T the initial (∆(G)+1)× (i−1) nodes in P.

The partition completion C(Ĝ) connects u1
i to ∆(G) nodes corresponding to ui and ∆(G)+1
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nodes corresponding to each of the remaining |V | − i nodes in V . In addition, the edge

set Ê and the fill-in edges FĜ(β ) connects u1
i to ∆(G)+1−dG(ul) residual nodes in each

R(ul) for σ(ul)≥ α−1(ui) and the two edge nodes for each edge e ∈ E for σ(e j)≥ α−1(ui).

Let e = xy ∈ E and assume without loss of generality that α−1(x) < α−1(y). Then define

E i
1 = {xy ∈ E | α−1(x)≤ i < α−1(y)} and E i

2 = {xy ∈ E | α−1(y)≤ i}. The degree of u j
i in

the corresponding elimination graph can be calculated by

d(u j
i ) =∆(G)+ [(∆(G)+1)× (|V |− i)]+

[
(∆(G)+1)× i−

i

∑
k=1

dG(uk)

]
+ 2|E i

1|+2|E i
2|

=(∆(G)+1)× (|V |+1)−1+ |E i
1|, (B.5)

because ∑
i
k=1 dG(uk) = |E i

1|+2|E i
2|. Note that the reason for having ∆(G)+1 copies of each

node in P and two edge nodes for each edge in G is to cancel the terms containing i and E i
2

in the final answer.

It is obvious that max{E i
1 | i ∈ [1, |V |]} is the linear cut value of G. If an ordering α

gives the Yes answer to the restricted MCLA problem of a graph G, the treewidth of the

corresponding moral graph C(Ĝ) is equal to ω when triangulating it w.r.t. the ordering

{πP,πQ}, where πP is generated according to α by equation (B.4). Conversely, if the

treewidth of the moral graph C(Ĝ) is ω w.r.t. the ordering {πP,πQ}, the minimum linear cut

value of G is k w.r.t. the ordering of V induced from πP.

Theorem B.3.2. The treewidth problem for moral graphs is NP-complete.

Proof. Let F be a set of fill-in edges to triangulate a moral graph G. It takes polynomial time

to find the maximum clique in G+F and test if it is at most k, so the treewidth problem is in

NP. Hence, the theorem follows from Lemma B.3.8 and the polynomial transformation from

G to C(Ĝ).
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c

(a)

r1
c

(b)

(c)

Fig. B.4 B.4a the bipartite graph G′ transformed from G (Fig. B.2a) by W1-W3; B.4b the
bipartite graph Ĝ transformed from G by W1 & L2-L4 for a given node c; B.4c the subgraph
obtained from C(Ĝ) by removing the simplicial node r1

c and its excess {vw | v,w ∈ Q∧v,w ̸=
r1

c}.

B.3.3 Total States

By considering a constraint on the number of states per variable, Wen [95] introduced the

total states problem for moral graphs and presented a proof for its difficulty by polynomially

reducing the EDS problem to it. His transformation is simpler than the previous two cases,

using one copy of the nodes in G and one edge node for each edge in G, without creating

residual nodes (Fig. B.4a). The detailed transformation from a graph G (Fig. B.2a) that is an

instance of the EDS problem to a bipartite graph G′ is given by the following steps:

W1. P = {u | u ∈V},

W2. Q = {e1 | e ∈ E},

W3. E ′ = {ue1 | u ∈V (e)∧ e ∈ E}.



B.3 Optimal Moral Graph Triangulation 165

Applying the partition completion on G′ to transform it to C(G′), yields an instance of the

total states problem for graphs but not for moral graphs by Lemma B.3.3. Therefore, Wen

[95]’s reduction does not prove that the total states problem for moral graphs is NP-complete.

To prove the EDS problem is reducible to the total states problem for moral graphs in

polynomial time, W2 and W3 need to be replaced by the following two steps

L2. Q = {e1 | e ∈ E}∪{R(u) | u ∈V}, where R(u) = {r j
u | j ∈ {1, . . . ,∆(G)+1−dG(u)}},

L3. E ′ = {ue1 | u ∈V (e)∧ e ∈ E}∪{uv | u ∈ P∧ v ∈ R(u)},

to create residual nodes before applying the same step L4 (as in Section B.3.1) for a given

node to get the bipartite graph Ĝ (Fig. B.4b).

Lemma B.3.9. Let Ĝ=(P⊔Q, Ê) be the bipartite graph constructed from a graph G=(V,E)

by W1 & L2-L4 for a given node u ∈V . Then C(Ĝ) is moral.

Proof. The proof follows from Lemma B.3.3.

For simplicity, define N(i) = |{u | uα(i) ∈ E ∧α−1(u) > i}|. Assume all variables

considered are binary, the following lemma proves the hardness of the total states problem

for moral graphs by polynomially reducing it from the restricted EDS problem.

Lemma B.3.10. Given a graph G = (V,E) and a sequence of non-negative integers <

d1, . . . ,d|V | > not exceeding |V |−1, for any node w ∈V each value in the sequence satisfies

di = N(i) w.r.t. an ordering α of G s.t. α−1(w) = |V | if and only if the corresponding moral

graph C(Ĝ) has the total number of states equal to δ = ∑
|V |
i=1 2δi , where δi = |V |+∆(G)×

i+1+∑
i
j=1[d j −dG(α( j))].

Proof. Let Ĝ = (P⊔Q, Ê) be the bipartite graph constructed from G using W1 & L2-L4. Let

β be the reverse order of α . According to steps (a) and (b) in Lemma B.3.5, β specifies a set

FĜ(β ) of fill-in edges to make Ĝ a chain graph. Hence, T =C(Ĝ)+FĜ(β ) is a triangulated

graph. By Lemma B.3.7, for any ordering αQ of Q the ordering {α,αQ} is a PEO of T . As
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stated in the proof of Lemma B.3.8, the maximal cliques of T only correspond to nodes in P,

so the rest of this proof does not consider the degrees of the nodes in Q.

For i ∈ [1, |V |], the neighbour set NT i−1(α(i)) = NP∪NQ, where NP = {u ∈ P | α−1(u)>

i} and NQ = ∪i
j=1(NT j−1(α( j))∩Q) because Ĝ+FĜ(β ) is a chain graph. The cardinality of

NP can be easily calculated by |V |− i+1. The set NQ consists of the union of the neighbours

of α( j) restricted to Q in the elimination graph T j−1 for all j ∈ [1, i]. The restricted neighbour

set NT j−1(α( j))∩Q contains N( j) edge nodes incident to α( j) because there is exactly one

edge node for each edge in G, and ∆(G)+ 1− dG(α( j)) residual nodes of α( j). So the

total size |NQ|= ∑
i
j=1 N( j)+∆(G)+1−dG(α( j)). To show NP ∪NQ forms a clique, it is

easy to see that each of these subsets is a clique because of the partition completion. For

any u ∈ NP, the condition α−1(u)> i implies β−1(u)< i. The definition of σ(·) (Lemma

B.3.5 step (a)) implies that σ(v)≥ i for any v ∈ NQ. It follows that σ(v)> β−1(u) for any

u ∈ NP and v ∈ NQ, so each node in NP is connected to each node in NQ by the edges in

FĜ(β ). Therefore, the closed neighbourhood NT i−1[α(i)] = NT i−1(α(i))∪{α(i)} is a clique

in T i−1. It is in fact a maximal clique, because the set R(α(i)) is not incident to α(i−1) for

i ∈ [2, |V |]. The size ki of the maximal clique corresponding to α(i) is thus

ki = |V |− i+1+
i

∑
j=1

[N( j)+∆(G)+1−dG(α( j))]

= |V |+∆(G)× i+1+
i

∑
j=1

[N( j)−dG(α( j))]. (B.6)

Since all variables are binary, the total number of states summing over all |V | maximal

cliques is ∑
|V |
i=1 2ki .

If there exists an ordering α of G, w.r.t. which the EDS answer is Yes, substituting N(i)

by di in equation (B.6) entails that the total states of C(Ĝ) is δ w.r.t. α . That is, α is a Yes

answer to the total states problem for the corresponding moral graph C(Ĝ). Conversely, if the

answer to the total states problem for a moral graph C(Ĝ) is Yes w.r.t. an ordering {α,αQ}, it
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follows from equation (B.6) that di = N(i), so α gives a Yes answer to the EDS problem for

the graph G.

Theorem B.3.3. The total states problem for moral graphs is NP-complete.

Proof. Since the maximal cliques of a triangulated graph can be found in polynomial time,

the total states of any triangulated graph can be verified in polynomial time to be greater than

δ or not. Hence, the problem is in NP. Given the moral graph C(Ĝ) can be transformed from

a graph G by W1 & L2-L4 in polynomial time, Lemma B.3.10 proves the NP-hardness of

the total states problem for moral graphs.

B.4 Conclusion

Optimal moral graph triangulation plays an important role in determining the computational

complexity of the junction tree algorithm for belief propagation on Bayesian networks.

The minimum number of fill-in edges is closely related to the maximum clique size of the

triangulated moral graph. The treewidth of a moral graph directly determines the efficiency

of the junction tree algorithm when computing probabilities of unobserved variables by

marginalizing out observed variables in the largest clique. The total number of states when

summing over all maximal cliques in a triangulated moral graph takes into account the

number of states per variable. The optimal moral graph triangulation with the objective of

minimizing the number of fill-in edges, the maximum clique size or the total number of states

has proved to be NP-complete in each case in this paper. Thus, we show that previous claims

that optimal moral graph triangulation is NP-complete were, in fact, correct, by supplying

the missing proofs.
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More Plots on Markov Blanket Discovery
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Fig. C.1 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on the
INSURANCE network.

●

●

●

0

1

2

3

4

0 1000 2000 3000 4000 5000

Sample size

E
di

t d
is

ta
nc

e

Algorithm

● MBMML_CPT

MBMML_NB

MBMML_MBP

SLL

IAMB

PCMB

Fig. C.2 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on the
ALARM network.
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Fig. C.3 MB learners’ edit distances (with 95% confidence intervals) vs. sample size on the
HAILFINDER network.
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Fig. C.4 MB learners’ edit distances (with 95% confidence intervals) vs. average MB size on
artificial BNs (30-5-4-1) with 100 samples.
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Fig. C.5 MB learners’ edit distances (with 95% confidence intervals) vs. average MB size on
artificial BNs (30-5-4-1) with 500 samples.
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Fig. C.6 MB learners’ edit distances (with 95% confidence intervals) vs. average MB size on
artificial BNs (30-5-4-1) with 2000 samples.
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Fig. C.7 MB learners’ edit distances (with 95% confidence intervals) vs. average MB size on
artificial BNs (30-5-4-1) with 5000 samples.
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Fig. C.8 MB learners’ edit distances (with 95% confidence intervals) vs. average MB size on
artificial BNs (50-5-4-1) with 100 samples.
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Fig. C.9 MB learners’ edit distances (with 95% confidence intervals) vs. average MB size on
artificial BNs (50-5-4-1) with 2000 samples.
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Glossary

faithful A DAG and a joint probability distribution together satisfy the faithful condition if

the DAG entails all and only the conditional independencies in the distribution. 7

junction tree A tree decomposition such that each tree node is a clique. 12

Markov blanket The Markov Blanket of a target variable is the smallest subset of variables

conditioning on which renders the target independent of the remaining variables of a

model. ix

Markov blanket consistency A set of Markov blankets over all variables must be consistent

with at least one DAG. 4

Markov blanket polytree A Markov blanket polytree of a target variable is a polytree, in

which every other variable is in the Markov blanket of the target. x

Markov equivalence class A set of all Markov equivalent DAGs. 2, 17

Minimum Message Length A way of balancing the complexity of a statistical model with

the fit of the model to a given data set. ix

moral graph The moral graph of a given DAG is the undirected graph obtained by connect-

ing all the non-adjacent parents of each node and dropping all the directions in the

DAG. x
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moralization The process of obtaining the moral graph of a given DAG. 5, 12

pattern A partially directed graph that uniquely represents a Markov equivalence class. It

has the same edges as the DAGs in the equivalence class and directed all and only the

edges common to all of the DAGs in the equivalence class. 2

regional structure A network structure over a subset of variables. 2

tree decomposition Tree decomposition maps a graph G = (V,E) to a tree T , in which

each tree node t is a subset Vt of vertices in V and satisfying the following three

conditions: (1) ∪t∈TVt = V ; (2) for each edge e ∈ E there exists a tree node t ∈ T

such that V (e) ∈ T ; (3) if Vti ∩Vtk = I then I ⊆Vt j for each t j that appears on the path

between ti and tk. 13

treewidth The minimum size of the largest clique over all triangulated graphs of a given

graph. 20

triangulation The process of making an undirected graph triangulated (or chordal). 5, 12



Acronyms

AIC Akaike Information Criteria. 19

BDe Bayesian Dirichlet equivalent. 14

BDeu Bayesian Dirichlet equivalent with uniform parameter prior. 18, 19

BIC Bayesian Information Criteria. 19

CaMML Causal MML. x, 4, 5

CPT Conditional Probability Table. 12, 70

DAG Directed Acyclic Graph. 2, 24

IAMB Incremental Association Markov Blanket. 9, 85

LASSO Least Absolute Shrinkage and Selection Operator. 12

LGL Local-to-Global. ix, x, 1–3, 20

MBPs Markov Blanket Polytrees. 70, 74

MDL Minimum Description Length. 19

MH Metropolis-Hasting. 18



180 Acronyms

MMHC Max-Min Hill-Climbing. 2

MML Minimum Message Length. ix, 4, 5, 12, 63

MMMB Max-Min Markov Blanket. 10

MMPC Max-Min Parents and Children. 10

NB Naive Bayes. 70, 72

PCMB Parents and Children based Markov Blanket. 10, 11, 86

SLL Score-based Local Learning. 2, 11, 86

TOMs Totally Ordered Models. 18, 112, 130

WRS Weakly Recursively Simplicial. 23, 29
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