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Abstract

In the electric power industry, energy system planning addresses the need for new

capacities in generation, transmission and storage facilities. This optimisation problem

has been solved sufficiently well in the past for conventional systems with dominating fossil

fuel-based generation. However, the integration of renewable energy-based generation has

exposed new challenges in constructing optimal long-term investment planning and short-

term operational planning problems. Due to the significant electricity short-term supply

variability inherent to renewable energy-based generators, operational flexibility must also

be taken into account in addition to consideration of nominal generation and transmission

capacities, if we are to ensure supply-demand balance. This entails consideration of a

detailed operational model such as unit commitment at high resolution within a long-term

optimal investment planning approach. While such details reduces overall system costs,

they are also computationally demanding. Therefore, this thesis develops efficient solution

methods to enable operational flexibility and incorporate unit commitment model in the

planning context.

More specifically, the thesis proposes a novel decomposition framework based on an

existing scenario decomposition approach to decompose the complex energy system plan-

ning with unit commitment problem and conducts an extensive analysis to identify the

key factors that affect the performance. Based on the analysis, the thesis proposes two

extensions: grouping and branching, to increase computational efficiency and improve the

performance. In order to tackle the issue of high resolution, the thesis proposes an adap-

tive resolution approach named Sliding Window with Backtracking (SWBT). The thesis

also quantifies the impact of incorporating unit commitment in the planning context in

comparison to conventional operational models. And finally, it presents multiple test cases

that were upgraded to include investment candidate options and technical parameters re-

quired by the unit commitment model.
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Chapter 1

Introduction

1.1 Overview

Energy system planning determines the most cost-effective technology mix that should

constitute the future generation mix. Although this problem has been solved sufficiently

well in the past with conventional fossil fuel-based generation, integration of renewable

energy-based generators (e.g. wind and solar) has exposed new challenges in the prob-

lem domain. Unlike traditional thermal generators, renewable energy-based generation is

associated with inherent variability and uncertainty. Hence, to cope with these changes

and deliver the desired reliability at an affordable cost, the electricity system must be

operationally flexible. Operational strategies that utilise existing grid components (e.g.

flexible generators, energy storage systems) are capable of delivering the desired flexibil-

ity effectively, but high shares of renewable energy-based generators are likely to require

investments in flexibility provisions.

One of the major challenges in this respect is determining the required operational

flexibility within the planning context. Accurate representation of operational flexibility

requires modelling of detailed operational conditions at high resolution in chronological

order. In addition, a large number of integer variables are required to capture the status

of individual generators in each operating condition. Hence, an energy system planning

problem with a detailed operational model and 20-30 year planning horizon often results in

a large-scale mixed inter programming (MIP) problem that is computationally intractable

even for small systems. As a result, in traditional planning models, flexibility issues are

generally avoided to make the problem computationally feasible. Since ignoring flexibility

issues could lead to a future generation mix that is economically inefficient, this thesis

aims to develop solution methods to incorporate operational flexibility in energy system

planning problems.
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1.2 Energy System Planning

Power systems often demand new investments in generation and transmission facilities

to ensure continuous, reliable operation. In the past, these investments were motivated by

the necessity to expand capacity with growing demand and ageing facilities. But starting

earlier this century, under the simultaneous influences of an imperative to reduce carbon

emissions and cost reductions in renewable energy-based technologies, restructuring the

electricity grid to achieve renewable energy and emission reduction targets became one of

the major drivers for new investments. However, building new electricity provisions is a

capital intensive process that requires complex financial arrangements and long payback

periods [1]. Furthermore, these assets last for multiple decades spanning over 20-50 years

or even longer. As a consequence, to minimise the risk of financial losses and ensure

cost-effectiveness throughout their life span, rigorous planning is essential.

Energy System planning formalises this goal through careful modelling and consider-

ation of future scenarios to determine the most cost-effective set of investments that will

serve the future system requirements. A typical energy system planning problem considers

a long horizon of 20-50 years and makes investment decisions in steps of 1-5 years across

several stages to determine suitable time periods for new investments in generation and

transmission facilities [1]. Thus, an energy system planning problem is often formulated

as a large-scale optimisation problem with a large number of generation and transmission

units, multiple periods and other characteristics.

1.3 Variability vs Uncertainty

Variability and uncertainty are two closely related concepts that have gained significant

attention in recent decades with the transition towards renewable energy-based genera-

tion. Unlike traditional thermal generators, renewable energy-based generators strongly

depend on meteorological conditions such as wind speed and solar radiation. Hence, their

maximum available generation is subject to rapid fluctuations and hard to predict [2].

These two characteristics: variability and uncertainty inherent to renewable energy-based

generators are depicted in Fig. 1.1a and 1.1b respectively [2]. Fig. 1.1a illustrates the

rapid fluctuations in wind generation that occur within a short period of time. Fig. 1.1b

illustrates the uncertainty in solar generation which shows a significant difference between

the predicted and the actual solar power output.

To comply with these variations and uncertainty and ensure instantaneous generation-

load balance, other resources such as thermal generators and/or demand must be altered

[2]. For example, if the power production from solar units is lower than the expected

value, or the generation from a wind unit decreases its output rapidly, the deficiency in

generation can be mitigated through dispatchable thermal generators that are capable of

increasing their generation output at the same rate and/or by altering the demand itself.

Thus, by ensuring that the electricity system is operationally flexible, both variability and

short-term uncertainty can be mitigated to ensure supply-demand balance at all times.
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(a) Variability of a wind plant (b) Uncertainty of a solar plant

Figure 1.1: Illustration of variability and uncertainty

1.4 Operational Flexibility and Role of Unit Commitment

Operational flexibility can be defined as the power systems’ ability to withstand un-

certainty and variability in generation output and electricity demand while maintaining

desired reliability at an affordable cost [3]. In current practice, flexibility is provided

through multiple operational strategies, which are carried out mostly from the generation

aspect and fewer from the demand aspect [4].

1. Operational strategies from the generation side includes flexible units, storage sys-

tems, reserve capacity, transmission network, renewable curtailment and electric

vehicles.

2. Operational strategies from the demand side includes load shedding and demand

management.

On the generation side, flexible or fast dispatchable generators such as hydroelectric

and natural gas-fired units are designed to ramp up and down quickly with short on

and off periods [5]. They are capable of responding quickly to variations in renewable

generation and demand, to maintain short-term supply-demand balance. As a result, fast

dispatchable generators often act as the reserved capacity to ensure that the electricity grid

has an adequate number of generating units scheduled, to respond and supply generation

in sudden events such as an increase in predicted demand or reduction in renewable energy-

based generation [6].

In contrast, renewable energy-based generators can be controlled only through curtail-

ment, i.e. by deliberately reducing the generation to lower levels [5]. When renewable

generation is too volatile for thermal generators to follow, the outputs of renewable units

are reduced to lower levels than the maximum available generation. This inefficiency can

be mitigated through the installation of energy storage systems such as battery systems

and pumped hydro generators. By storing the excess generation produced by renewable

sources during off-peak times, storage systems can minimise the energy wastage. Transmis-

sion lines provide flexibility by transporting electricity from neighbouring zones. Strategic

deployment of transmission lines provides additional flexibility without installing extra

generators and storage units [7]. Such connections also allow the system to benefit from
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diversity in geographically dispersed renewable energy-based generators. Another poten-

tial flexibility provider is electric vehicles. Although electric vehicles are considered as

growing demand, their ability to discharge the stored energy when required (given some

incentives to the participants) has been recognised as a flexibility service that could be

provided by the vehicle to the grid (vehicle-to-grid services) in the future [8].

On the demand side, the most common approach to flatten the peak-load is load

shedding through direct intervention. Although heavy penalties apply for such actions,

in many cases load shedding is inevitable to safeguard the operation of the grid. Al-

ternatively, demand-side management that focuses on modifying consumers’ demand can

be employed. By lowering the price during off-peak time and/or raising the price during

peak periods, customers can be incentivised to change their daily consumption patterns [9].

Also, participants can be called upon to modify their power consumption when there are

security issues (e.g. failures) or for economic reasons (e.g. utility cost exceeds specific

pre-defined limit), where they are financially rewarded [5].

Although these operational strategies are capable of delivering desired flexibility ef-

fectively, high shares of renewable energy-based generators such as wind and solar are

likely to require new investments in flexibility provisions. However, determining the re-

quired operational flexibility increases the computational complexity of the problem. Since

modelling flexibility entails a detailed operational model and chronological demand and

renewable generation profiles with temporal dependencies, the planning problem becomes

computationally intensive even for small systems. As a consequence, operational flexibil-

ity was ignored in traditional planning problems, and economic dispatch (ED) that has

limited ability to determine the required operational flexibility was embedded. Economic

dispatch only considers instantaneous operational states and a brief set of generator con-

straints to determine the least-cost output of the generation fleet, so its ability to address

time-dependent variability is limited.

With large shares of renewable energy-based generation being integrated and recent

studies reporting that neglecting operational flexibility could lead to inefficient systems,

sophisticated operational models such as unit commitment started gaining attention in the

planning context since early this decade [10,11]. Unit commitment (UC) is typically used

for day-ahead scheduling and intra-day operations to determine the most cost-effective set

of generators that could serve the demand [12, 13]. It takes time-dependent variability

in demand and renewable generation output into account and captures the impacts of

generator’s technical limitations such as ramping limits that characterise the flexibility of

the system. Because unit commitment is capable of representing operational flexibility

accurately, it also qualifies the benefits that storage facilities and demand management

could provide to the system [14,15]. As a result, unit commitment plays a significant role

in representing operational flexibility in planning and operational simulations and ensuring

supply-demand balance.
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1.5 Motivation

Incorporating unit commitment in planning problems is computationally challenging

due to the large size of the problem. To accurately represent operational flexibility, the

short-term operational conditions must be captured at high resolution in chronological

order. Variations in renewable generation, especially wind occurs at multiple timescales

from seconds to minutes to hours. Hence, a high resolution is essential to capture quick

ramping events and determine the required flexibility. As a result, the computational

time of a planning problem with unit commitment model explodes quickly even for small

systems. For example, if one-hour resolution is considered for a period of one year, 8760

hours must be considered, where the set of decisions variables (generators and transmission

lines) is replicated for each hour. Also, it is customary to make investment decisions in

multiple periods to determine when to construct in the 20-50 year planning horizon. Such

formulation enlarges the problem further, as operational conditions of other periods also

must be taken into account. As a result, solving energy system planning problem with

unit commitment directly at full resolution (8760 hours) is computationally challenging.

In practice, large-scale optimisation problems are solved via two approaches: heuristics

and exact methods based on decomposition techniques. Heuristic methods generally utilise

meta-heuristics to determine the best solution. They do not guarantee the globally opti-

mal solution, rather provide a locally optimal solution. On the other hand, exact methods

based on decomposition techniques are capable of providing the optimal solution, but rely

on specific problem structures. For a planning problem with unit commitment, application

of conventional decomposition is limited. Unlike economic dispatch, unit commitment has

a large number of binary variables (to determine investment decisions and on-off status

of generators) and inter-temporal constraints (to represent generator’s ability to change

its output e.g. ramp up-down and minimum up-down constraints). Because the problem

comprises integer decisions in both investment and operational levels, and operational con-

ditions are linked via inter-temporal constraints, its complicated structure does not comply

easily with traditional decomposition techniques. As a consequence, incorporating unit

commitment in the energy system planning context still remain a computational challenge.

Especially, in the application of exact methods to guarantee the optimal solution.
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1.6 Research Questions

Therefore, this thesis aims to answer the following overarching question.

How can we incorporate limitations in operational flexibility, such as unit

commitment, in energy system planning problems, where we seek optimal or

near-optimal solutions?

To answer the overarching question, the following sub-questions were formed.

RQ1 How can we address the high temporal resolution in unit commitment model effi-

ciently to reduce the computational burden of the overall problem? How accurate

is the solution? How much computational time can we reduce? What are the limi-

tations?

RQ2 How can we decompose the large-scale MIP problem with integer decisions in both

investment and operational levels and inter-temporal constraints, to solve the prob-

lem within a reasonable period of time? What are the limitations? Can we extend

the framework for multi-period decision making?

RQ3 Can we make the decomposition framework computationally more efficient? What

extensions do we require? What are the limitations?
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1.7 Thesis Structure

The organisation of the thesis to answer the research questions as follows.

• Chapter 2 provides a comprehensive review on current practices in modelling and

solving energy system planning problems. In particular, the chapter reviews existing

techniques utilised to incorporate unit commitment in the planning context.

• Chapter 3 provides the detailed model for the unit commitment problem and investi-

gates its impact on planning problems compared to the traditionally used economic

dispatch model. The analysis aims to quantify the quality of the investment solu-

tions obtained from approximated operational models with respect to the exact unit

commitment.

• Chapter 4 proposes an adaptive resolution approach to answer RQ1 and aims to

mitigate the computational burden resulting from high temporal resolution in the

unit commitment model.

• Chapter 5 proposes a decomposition framework based on a scenario decomposition

approach for both single and multi-period energy system planning problems with unit

commitment. The chapter answers RQ2, which addresses the need for an efficient

decomposition framework.

• Chapter 6 proposes two extensions: grouping and branching to answer RQ3, which

aims to improve the performance of the proposed decomposition framework.

• Finally, Chapter 7 concludes the thesis by detailing the key contributions and dis-

cussing potential future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides a comprehensive review on current practices in modelling and

solving energy system planning problems. The chapter first provides a brief overview

of the energy system planning problem and introduces the two key aspects: generation

expansion planning (GEP) and transmission expansion planning (TEP). Then, the chap-

ter discusses the solving techniques that are utilised to solve large scale energy system

planning problems. In particular, the chapter discusses two methods: heuristics based on

simulations, and decomposition techniques based on mathematical programming. Lastly,

the chapter reviews the tools and techniques that have been employed to incorporate unit

commitment in the planning context and discusses their limitations and the requirement

for new approaches.

2.2 Energy System Planning as an Optimisation Problem

In the electric power industry, energy system planning is the problem of determining

the most cost-effective set of investments that is necessary to satisfy future demand and

other system requirements. This problem was first discussed in the late 1960s [16] and

was primarily formed around determining the required capacity in generation facilities.

Early energy system planning problems were formulated as deterministic or probabilistic

production cost models [17,18], and were solved using graphical methods such as screening

curves [19]. Screening methods examine the generation cost models of different candidate

options (technologies), and then match the overall least-cost model with the load duration

curve 1 graphically to determine the least cost generation mix [21]. By minimising the

capital and operational costs of generators implicitly, these methods provided the optimal

capacity mix required to serve the increasing electricity demand [22].

However, load duration curves utilised in screening methods disregard the time depen-

dencies in operations and spatial correlations between demand and generation zones. As

1Load duration curve is the curve between load and time, in which load or net-load curves are estimated
by ordering load (demand) from the greatest to the lowest considering a small number of criteria (e.g. base-
load, peak demand) [20]
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a result, the method not only lacks the ability to consider various operating conditions

and dynamics in demand and non-dispatchable units (e.g. wind and solar), but also the

ability to account for electricity transmission network. Nevertheless, the screening curve

method was sufficient at the time due to the fairly slow dynamics involved in historic loads

patterns and power was generated from controllable fossil-fuel based generators. But, with

rising complexity in current power systems and recent developments in computer hardware

and software, optimisation models based on mathematical programming techniques have

become the standard for energy system planning problems.

In the early 1970’s, Bessière [23] summarised the main features of the optimisation

model by defining the objective function and constraints. A deterministic linear program-

ming (LP) model was then introduced by Anderson [24], which was later extended to mixed

integer linear programming (MILP) problems to account for transmission grid physics and

ratings [25] and availability of power plants (require binary decisions variables) [26]. Since

then, planning problems are usually formulated as MIP optimisation problems and have

evolved to consider multiple aspects (e.g. environmental) and many operational conditions

(e.g. unit failures) to determine the most cost-effective set of generators and transmission

lines that satisfies reliability standards and other criteria (e.g. renewable energy targets).

Nevertheless, in practice, generation and transmission aspects of the electricity plan-

ning problem are carried out separately to reduce the computational intensity. First, the

generation expansion planning (GEP) is executed to determine the most cost-effective gen-

eration mix subject to system requirements [5], and then transmission expansion planning

(TEP) is executed to find the network augmentations for the agreed generation mix [27].

2.2.1 Generation Expansion Planning (GEP)

Generation expansion planning (GEP) addresses the adequacy in current generation

capacities and determines whether it is necessary to expand existing generating units

and/or build entirely new facilities [1]. Essentially, GEP determines the size of the gen-

erating unit, technology, location and when to construct in the planning horizon [5]. A

typical GEP problem is formulated with one of the two types of objectives: centralised or

market oriented. While centralised objectives such as minimising total cost or maximis-

ing social-welfare is generally used by regulators and policy makers to design electricity

grid expansion and derive new policies (e.g. renewable energy targets, carbon tax, sub-

sidy regimes), market oriented goals such as maximising expected revenue is employed by

competitive private investors to make informed decisions regarding their investments [28].

Apart from the investment objective, a GEP problem considers multiple operational

conditions to capture system states and determine capacity requirements accurately. These

conditions are generally represented by embedding economic dispatch (ED) with hourly

resolution as the operational model [29, 30]. Economic dispatch is an optimisation model

that considers instantaneous operational states to determine the least-cost output of the

generation fleet that satisfies system demand and other operational requirements [31].

Unlike production cost models based on load duration curves [17, 18], with ED, network
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constraints can be incorporated easily through an additional set of constraints. In addi-

tion, ED allows extra operational states to be integrated as another set of variables and

constraints. Thus, for many long-term planning models and operational simulations ED

serve as the base operational model [29,30].

Economic dispatch is often combined with stochastic programming and robust op-

timisation techniques to address the short-term uncertainties in demand and renewable

sources. As ED allows multiple operational states to be integrated easily, uncertainties

in input parameters are represented through different operational conditions (e.g. low

demand high renewable scenario, high renewable low demand scenario). In stochastic

programming, a weighted objective that represents the expected cost or revenue across

all the uncertain scenarios is optimised, in which the weights represent the probabilities

of operational conditions [30, 32]. In contrast, robust optimisation does not rely on any

probability distributions. Instead, it optimises over an uncertainty set to determine the

worst possible scenario and its optimal investment solution [29].

Although ED is capable of handling short-term uncertainties through stochastic pro-

gramming and robust optimisation techniques, its ability to address variability and op-

erational flexibility is limited. Economic dispatch ignores temporal dependencies and

only considers instantaneous operational states. Thus, it does not account for any time-

dependent variability, and also excludes limitations in thermal generators like ramping and

minimum up-down constraints that characterise the operational flexibility of a system.

While the effect of omitting these constraints is negligible in a system that is dominated

by thermal generators, such elimination could lead to unreliable systems with increased

penetrations of renewable energy-based generation.

Therefore, recent GEP problems utilise various forms of ED model to capture the re-

quired operation flexibility. To address operational flexibility through fast dispatchable

units, ED models include ramping requirements as an uncertainty set [33]. For demand

management, additional constraints are added to coordinate the demand at different lo-

cations [34]. In addition, iterative investment and operational simulations are utilised

to consider detailed operational models with ramping requirements and demand manage-

ment [35, 36]. Similar procedures are also followed to address the functionality of energy

storage systems (ESS), where constraints that represent charging and discharging limits

are added to the conventional ED model [37,38]. These constraints also allow GEP to be

combined with the expansion of storage systems (SEP) to reduce the investments required

in peak/flexible generators by placing storage systems strategically [39,40].

While extended ED models are capable of capturing operational flexibility approx-

imately, they have limited ability to address temporal dependencies and technical lim-

itations in thermal generators. Thus, more sophisticated operational models such as

unit commitment are utilised to ensure supply-demand balance at any given instance

[3, 6, 10, 41, 42]. Unit commitment (UC) is typically used for day-ahead scheduling and

takes time-dependent variability in demand and renewable generation output into account

through chronological profiles with hourly resolution. It is capable of capturing generator’s

technical limitations such as maximum capacity and ramping limits that characterise the
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flexibility of the generator and system accurately [3,10], and also emphasises the benefits

storage facility and demand management could provide to the system [14, 15]. Further-

more, UC allows GEP to be combined with aspects like spinning reserve 2, which plays a

significant role in the provision of operational flexibility [6].

2.2.2 Transmission Expansion Planning (TEP)

Transmission expansion planning (TEP) addresses bottlenecks in the electricity net-

work and determines whether to reinforce existing lines or build completely new connec-

tions changing the network topology [44]. The cost of transmission expansion is relatively

low compared to the cost of generation facilities, however its impact on electricity provision

is significant. In a deregulated environment, the need for transmission expansion arises

mainly due to the price differences in different nodes [45](apart from the need to con-

nect remotely located renewable energy-based generators). Since transmission congestion

prevents flow of cheap electricity from generation areas to demand nodes [1], increasing

transmission capacity could provide a non-discriminatory and competitive environment

for the stakeholders. Therefore, a typical TEP problem is formulated from a centralised

perspective with objectives such as minimisation of market risk [46], nodal prices [47],

load curtailment cost [48], transmission congestion cost [49] and maximisation of social

welfare [50,51].

For an accurate representation of the electricity network, TEP must consider the

physics of electricity flow through AC [52, 53], or DC [54] power flow equations. AC

power flow models the electricity flow accurately by including both active and reactive

power, voltage stability and power losses. However, solving AC power flow is computa-

tionally expensive due to the non-linear and non-convex terms in the formulation [55].

DC power flow approximation is more attractive, as it effectively removes the non-linear

terms in the AC power flow equations through expert knowledge, and only accounts for

active power flow. With some adjustments for line losses, DC model produces a reason-

ably accurate approximation to AC model under normal operating conditions [56]. As a

consequence, capacity expansion planning problems generally use DC approximation [29],

while network operation and control problems utilise AC models due to its great deal of

accuracy [57]. Nevertheless, continuous efforts are currently being made to integrate AC

model with planning problems to provide robust and feasible solutions with less compu-

tational effort and to extend its application to large systems (e.g. via linearisation [55,58]

and convex relaxation [53,59]).

In addition to the thermal limits enforced by AC or DC power flow equations, a typical

TEP problem often includes additional features such as line losses [58], security constraints

[60] and uncertainty [61] to model the reliability and stability of the solution. Network

losses account for power losses in the transmission network, and security constraints impose

2Spinning reserve is a reliability standard practised by system operators to ensure that the electricity
grid has an adequate number of generating units scheduled, to respond instantly and restore stability in
the event loss of a heavily loaded generating unit [43]. Since ”spinning” indicates that the units are already
“on-line” and ready to serve, unit commitment plays a significant role in determining which units should
be committed to serve as reserve capacity.
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limits to avoid overloading lines even during a transmission line failure [43]. Furthermore,

with increasing shares of excess renewable energy-based generation, recent TEP models

are integrated with storage expansion (SEP) to reduce the investments in transmission

capacities by storing the surplus and providing it later or vice versa [7, 62].

2.2.3 Generation and Transmission Expansion Planning (GTEP)

With the necessity to integrate renewable energy-based generators, combined genera-

tion and transmission expansion planning (GTEP) started appearing to provide a more

holistic investment solution that is beneficial for the entire system [1, 63]. Since the pro-

portion of prospective renewable zones are located distant from the existing transmission

network and this technological transition causes a relocation in generation capacity, con-

sideration of GEP along with network augmentations ensures that the infrastructure re-

inforcements are cost-effective. Such synergy is only beneficial for an entity that aims to

improve the operation of the electricity grid as a whole. Thus, the GTEP problem is gener-

ally carried out by a central planner such as independent system operator, and formulated

with the goal of either minimising total cost or maximising social welfare [64,65].

Given the long-term nature of electricity assets, it is a common practice to carry out

GTEP problems considering a planning horizon of 20-50 years and make investment de-

cisions at the beginning of the horizon (single-period formulation) or in steps of 1-5 years

(multi-period formulation). Single-period formulation could force investments at the be-

ginning of the horizon that are not required until the end of the planning duration leading

to overcapacity. Hence, for more realistic and accurate solutions, multi-period formulations

that make investment decisions in steps of 1-5 years are commonly used. If formulated

as a dynamic model, such formulation also allows uncertainty in long-term trends (e.g.

changes in aggregated demand, capital investment cost and fuel prices [66]) to be con-

sidered for a more robust investment solution [39]. As consideration of a long planning

horizon often can be computationally expensive, planning models with a representative

year and annualised capital cost are also utilised to make investment decisions [67]. Such

models do not specify when to construct new units in the horizon. But, they indicate

which technologies must be included in the future generation mix.

GTEP problem often takes a range of aspects into account. Some of these aspects

can be listed as environmental (e.g. carbon emissions [68]), regulatory (e.g. renewable

energy targets [69]), technical/operational (e.g. storage [70], security [71], reliability [72],

flexibility [10]), social and as well as other complementary sectors (e.g. natural gas [73,74])

[5]. Incorporation of all these aspects increases the complexity of the model and the solving

process. Hence, GTEP is extensively used to study the impact of specific features either

individually [10,75] or in combination [76,77]. In addition, multi-objective approaches are

also utilised to solve GTEP problems, particularly problems with conflicting attributes

such as cost minimisation and carbon emission reduction [78]. Nevertheless, a typical

GTEP problem often results in a complex high-dimensional optimisation problem, because

of the long planning horizon, an enormous number of model parameters and discrete

variables [79].
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2.3 Solving ESP as a Large-Scale Optimisation Problem

Solving capacity expansion planning problems have been a difficult and challenging

task since the beginning of power system planning, due to the large size of the electricity

network and the excessive number of operating conditions it must consider to ensure a

cost-effective reliable solution. Direct solving of such a large-scale optimisation model often

require a substantial amount of computational memory and processing power. Besides, the

significant number of integer variables and non-linearity in the model further complicates

the solving process. Hence, these problems are generally solved iteratively to reduce the

computational burden and achieve tractability [80]. Over the past few decades mainly

two types of iterative approaches have been employed to solve large-scale energy system

planning models; heuristic methods based on simulations, and decomposition techniques

based on mathematical programming [80].

2.3.1 Heuristic Methods

Heuristic methods utilise rules based on expertise or meta-heuristics to determine the

optimal solution. Given an initial solution, the method simulates, and then employs the

generated response to derive the next trial solution. Fig. 2.1 [81] illustrates this mech-

anism where meta-heuristic optimiser derive the trial investment solution to be assessed

by the simulation (operational) model. The simulation model then generates the response

to be utilised by the meta-heuristic optimiser for the next trial solution. Hence, heuristic

methods are applicable to wide class of problems including non-linear and non-convex

problems, as they do not depend on any problem structure [79]. Some commonly applied

meta-heuristics in large-scale energy system planning problems are expert systems, artifi-

cial neural networks, simulated annealing, particle swarm optimisation and evolutionary

algorithms [82–85]. Nevertheless, heuristic methods generally have slow convergence rates

and do not guarantee the global optimal solution. Instead, they provide feasible solutions

that are locally optimal.

2.3.2 Decomposition Techniques

Decomposition techniques divide the optimisation problem into a set of sub-problems

and solve them iteratively to obtain the best solution for the overall problem [80]. Unlike

heuristic methods, decomposition techniques are guaranteed to converge to the optimal

solution within a finite time [80]. However, their application heavily relies on the problem

structure, thus limited to only certain types of problems [79]. Nevertheless, with recent

Figure 2.1: Schematic representation of heuristic methods
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Figure 2.2: Complicating variables A Figure 2.3: Complicating constraints A

advancements in computer hardware and off-the-shelf MIP solvers (e.g. Cplex, Gurobi

etc.), decomposition techniques are applied widely to attain tractability in large-scale

optimisation problems [86].

Large-scale optimisation problems often posses a block structure that allows them to

be divided into multiple sub-problems and solved separately to find the overall optimal

solution. In general, these blocks contain information pertaining to other blocks through

binding variables and constraints. They are often referred to as complicating variables

and constraints, and must be tackled if one desire to decompose the problem. Figures 2.2

and 2.3 [86] illustrates these two concepts, where Fig. 2.2 depicts the complicating variable

set A and Fig. 2.3 presents the complicating constraints set A. In Fig. 2.2, if complicating

variable set A is fixed, rest of the problem (set E) reduces to a block structure enabling

multiple sub-problems. Similarly, if complicating constraints in Fig. 2.3 is removed, the

problem (set E) reduces to a block structure forming multiple sub-problems [86].

Decomposition methods manipulate these complicating variables and constraints and

exploit the block structure to break the large optimisation problem while bringing infor-

mation from one sub-problem to another. Some conventional decomposition techniques

that have been applied in power system optimisation context are Bender’s, Dantzig-Wolfe

and Lagrangian where the key differences lie in the method used to pass information across

sub-problems.

Bender’s Decomposition

Bender’s decomposition (BD) was originally proposed by J.F. Benders in 1962 [87] to

tackle the issue of complicating variables [86]. By extracting the complicating variables

and their associated constraints into a separate problem, Benders decomposition divide

the problem into two sub-problems: master and slave. While the master problem consists

of complicating variables, the rest of the problem in which the complicating variables are

fixed becomes the slave problem. In some instances, the remaining problem is further

decomposed to form multiple slave problems. Then the master and slave problems are

solved iteratively generating bounds and exchanging information until the optimality gap
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Figure 2.4: Schematic representation of Bender’s decomposition

is less than a pre-defined value. The schematic diagram for the Bender’s decomposition

is presented in Fig. 2.4. The master problem generates a lower bound and a solution

to be evaluated by the slave problems. Through evaluation, slave sub-problems generate

an upper bound, and provide feedback to the master problem by adding a constraint

(row). This constraint is commonly termed as “Bender’s cut” and is derived from the dual

information obtained from the slave problem. In Bender’s decomposition, for the slave

problems to extract dual information, the sub-problem must be an LP problem. Thus,

with MIP formulations, integer variables are generally extracted as the master problem to

ensure a fully LP sub-problem.

In power system context, Bender’s decomposition was first applied by J.A. Bloom

in 1983 to solve a generation capacity expansion planning problem [88]. Since then, an

enormous number of studies have utilised Bender’s decomposition to attain tractability in

both deterministic and uncertain generation and transmission expansion planning models

[89–92]. In MIP generation expansion planning with economic dispatch problems, integer

investment decisions are generally extracted as the master problem. Thus, the master

problem often becomes the investment planning problem while the slave sub-problems

become the operational economic dispatch formulation. Since economic dispatch has no

inter-temporal constraints, different operating conditions are further divided into multiple

sub-problems [29,93].

Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition [94] decomposes the problems with complicating con-

straints. By relaxing the complicating constraints in the slave-problems and accounting

for them in the master problem through a weighted objective, Dantzig-Wolfe decomposi-

tion solves the problem iteratively until the optimality gap is less than a pre-defined value.

The schematic diagram for the Dantzig-Wolfe decomposition is depicted in Fig. 2.5. The

LP master problem with the weighted objective is solved to obtain upper bound and

dual values, which are used to derive cost coefficients for the slave sub-problems. The
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Figure 2.5: Schematic representation of Dantzig-Wolfe decomposition

sub-problems are then solved to generate the lower bound, and the outcomes are utilised

to update the weighted objective in the master problem [86]. In particular, a variable

(column) is added to the master objective function, where the coefficient represents the

solutions generated by the sub-problems in the previous iteration. Thus, the master ob-

jective function gets updated in each iteration to represent the original problem more

accurately [86]. In the energy system planning context, Dantzig-Wolfe decomposition [94]

was employed by Sanghvi and Shavel [95] to solve a generation expansion planning with

demand-side investments. In addition, Singh et al. [96] utilised the method to solve mul-

tistage, stochastic generation expansion planning models.

Lagrangian Decomposition

Lagrangian decomposition or Lagrangian relaxation also handles complicating con-

straints in the optimisation problem [86]. The method separates the problem by relaxing

the complicating constraints and consider them in the objective function through penalty

factors. The penalty factors, also known as Lagrangian multipliers penalise the violation

of the relaxed constraints and get updated in each iteration according to solutions of the

sub-problems [97]. Thus, unlike Dantzig-Wolfe decomposition which adds variables in

each iteration, Lagrangian decomposition updates the Lagrangian multipliers to represent

the problem better. In practice, several methods are utilised to update the Lagrangian

multipliers. Some common approaches can be listed as subgradient method, cutting plane

method, bundle method and so on [86]. The difficulty with Lagrangian decomposition

is that the computational performance of the method is dependent on the initial esti-

mate of the Lagrangian multipliers and the method that is used to update them [97].

Nevertheless, Lagrangian relaxation has been utilised in power systems context to solve

unit commitment problems [97–100], and generation and transmission expansion planning

problems [101–103].
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Figure 2.6: Schematic representation of scenario decomposition

Scenario Decomposition

Scenario decomposition (SD) was proposed by S. Ahmed in 2013 [104] for two-stage

stochastic programs that involve binary first stage decisions. In two stage stochastic pro-

grams, the goal is to find first stage decisions that satisfy uncertainties in input parameters

represented through various scenarios. Such a problem is often formulated as individual

scenarios by making copies of first-stage decisions and forcing constraints to ensure con-

sistency across different scenarios. Scenario decomposition is derived from this scenario

formulation, where the scenario sub-problems are solved separately to generate a set of

solutions. These solutions are then evaluated against all the scenarios to check feasibility,

and eliminated from the search space via constraints to enforce consistency.

The schematic diagram for scenario decomposition is presented in Fig. 2.6, which is

consisted of two phases: (1) Candidate solution generation; and (2) Candidate solution

evaluation. In the candidate solution generation phase, the scenario sub-problems are

solved separately to generate the set of first stage decisions and a lower bound. These

binary decisions are then explored in the candidate solution evaluation phase as candidate

solutions to the overall problem. Once evaluated, the best bound (lowest) is selected as

the upper bound and the best-known solution or the “incumbent”. The explored solutions

are then eliminated from the feasible search space using “integer cuts” to raise the lower

bound and close the optimality gap [104].

Scenario decomposition approach can be viewed as an evaluate-and-cut scheme with

a master algorithm that coordinates the information across scenario sub-problems rather

than a master problem. Unlike other decomposition techniques, this method does not

depend on dual information, thus makes it ideal for a wide class of problems including

those which comprise integer variables in both investment and operational levels and non-

linearity. In addition, components of the algorithm have very little dependency on each

other enabling them to be solved simultaneously [105].
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In power system context, scenario decomposition has not been applied to capacity ex-

pansion planning problems yet. However, recent literature has employed scenario decom-

position to optimise maintenance and operations schedules of generators with unexpected

failures [106] and deployment of mobile emergency generator as a resilient response to

natural disasters [107].

2.4 Solving Energy System Planning with UC

Unit Commitment in planning context started gaining attention with the requirement

of representing operational flexibility accurately to ensure adequacy in flexibility measures.

Unlike traditional planning problems with simple economic dispatch models, consideration

of unit commitment constitutes an additional layer of complexity. Since short-term oper-

ational conditions need to be captured at high resolution (at least one hour) to represent

operational flexibility sufficiently, the number variables in the planning problem explodes

quickly even for small systems. Besides, a significant proportion of these variables are

discrete, binary to be exact, so they often result in enormous branch and bound trees in-

creasing the computational burden. In addition, the necessity to represent the operational

conditions chronologically further complicates the problem, because it enforces a large

number of inter-temporal constraints increasing the inter-dependencies between variables.

As a consequence, recent literature has utilised various tools and techniques including

both heuristics and decomposition methods to facilitate energy system planning with unit

commitment.

Integration of unit commitment with the energy system planing was fist proposed by

Palmintier and Webster [10] as a way of incorporating operational flexibility to generation

expansion planning problems. In particular, to successfully incorporate the full resolution

of one year (8760 hours) while preserving tractability of the problem, they proposed an

unit clustering approach that bundles generators based on the technical parameters (e.g.

capacity, heat rate, ramp rate, etc.) [10]. In the method, generators with similar charac-

teristics are grouped together to replace the binary commitment decisions of individual

generators with an integer commitment decision that represent the entire cluster [10]. As

a result, the method is capable of reducing the number of integer variables and the size

of the problem by a large factor. Although the reduced problem size makes the approach

computationally attractive for large-scale applications, it suffers from serious drawbacks.

Since clustering limits the ability to determine operational costs of individual genera-

tors, it induces approximation errors in overall operational costs causing sub-optimality in

investment solutions. Hence, if one desire to improve the applicability of the proposed ap-

proach, clustering must be carried out in a way that minimises the overall approximation

error. However, according to Hua et al. [6], finding an optimal clustering strategy that

minimises the error itself is a difficult combinatorial optimisation problem. On the other

hand, clustering has limited benefits with consideration of the transmission network. If

similar units are not co-located clustering will return many clusters making the approach
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ineffective. Nevertheless, due to the computationally attractive nature, unit clustering ap-

proach has been employed by multiple studies to investigate various aspects of operational

flexibility [108–110].

In contrast, to reduce the computational burden and overcome the issues related to

clustered unit commitment, Ma et al. [3] considered an integrated generation expansion

planning and unit commitment (GEP-UC) model with a selected set of representative

weeks. The study chose four representative weeks from each season to capture the seasonal

effect and another week to represent extreme conditions. In addition, an ‘offline’ index

was proposed to estimate the technical ability of the generation mix and provide required

flexibility [3]. Similar approach was followed by a number of other studies with various

model features to reduce the computational intensity in their studies [11, 41, 111, 112].

Pereira et al. [111] chose a representative day (24 hours) from each season to make the

GEP model with unit commitment, hydro and wind units tractable. With the extensions

of transmission expansion planning, renewable curtailment and pumped hydro, Sharan

et al. [11] selected representative days to solve the problem within a reasonable time.

On the other hand, Bruninx et al. [112] employed representative days to examine the

impact of Germany’s nuclear phase-out on Europe’s power generation mix. While these

studies have focused on single-period planning problems, Koltsaklis et al. [41] utilised

representative days from each month to attain tractability in their comprehensive multi-

period GEP-UC model. The model includes detailed operational limitations including

start-up type, minimum up-down time, ramping limits and system reserve requirements

with energy policy issues such as renewables penetration limits and carbon emissions

to determine the optimal capacity additions, electricity market-clearing prices, and daily

operational planning of the studied power system [41]. In contrast, Jin et al. [113] employed

scenario reduction techniques to truncate the set of samples and reduce the size of the

problem, in their stochastic GEP-UC that addresses both variability and uncertainty in

wind-energy based generation. On the other hand, Shortt et al. [114] utilised time series

with high resolution (30 minutes) but shortened horizon (1 month) to quantify the impact

of electric vehicles on capacity expansion planning decisions, relative fuel costs and electric

vehicle penetrations. Although representative days, reduced number of scenarios and

shortened horizons make the planning problem with unit commitment computationally

tractable, they could lead to highly inaccurate solutions with either over-investment or

under-investment, due to imprecise representation of renewable energy-based generation

and electricity demand.

An alternative approach that has been utilised to reduce the computational intensity

without decreasing the spatial or temporal resolution is through approximated or relaxed

model. Palmintier [115] employed a linear relaxation of unit commitment model to identify

key constraints that capture operational flexibility. In the approach, to make the GEP-UC

problem fully linear and tractable, the binary commitment decisions were relaxed to be

continuous. In addition, the linear programming (LP) relaxation was compared against

the unit clustering method, according to which LP relaxation provides larger errors com-

pared to the unit clustering approach. To reduce the error arising from LP relaxation,
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representative days and clustered unit commitment, Hua et al. [6] proposed a promising

approach based on convex relaxation of unit commitment. Similar to LP relaxation, the

method relaxes the binary commitment decisions to be continuous however, extra inequali-

ties are added to define the convex hull [6]. In fact, the embedded operational model in the

planning problem is the Lagrangian dual of the unit commitment problem. The proposed

approach is also compared against the unit clustering approach, where the authors show

that the convex relaxation approach outperforms the unit clustering approach in terms of

accuracy [6]. Nevertheless, both linearly and convexly relaxed unit commitment models

are still approximations. And, they do not quantify the quality of resulting investment

solution with respect to the solution produced by the exact unit commitment model, as

solving exact unit commitment in planning context is still computationally intractable.

The commercial software PLEXOS manages computational complexity by allowing

their users to relax unit commitment model through linear programming relaxation. If fur-

ther reductions are required, PLEXOS enable their users to employ approximated chrono-

logical curves with load blocks that are coarser in temporal resolution [116]. While coarse

resolutions limit the ability to capture rapid variations in wind output, linear programming

relaxation incur significant approximation errors. Nonetheless, by utilising capabilities of

PLEXOS and other commercial software such as TIMES, Welsch et al. [117] developed a

detailed model via soft-linking to incorporate operational flexibility. In particular, they

examined the effects of linking a long-term energy system model (TIMES) with a unit

commitment and dispatch model (PLEXOS) for the Irish system. In the TIMES model,

day, night and peak times of a single characteristic day were modelled for each of the four

seasons over the period 2005–2020 using 12 time slices. PLEXOS, on the other hand, was

set up as a chronological hourly unit commitment model. Soft-linking was implemented

by feeding the yearly (peak) demand and power plant capacity mixes produced by TIMES

model into PLEXOS. PLEXOS then assess the overall operational reliability and technical

abilities of the produced capacity mix.

In contrast to previously discussed methods that are based on mathematical relax-

ations, Hargreaves et al. [118] outlined a novel approximated model that considers eco-

nomic trade-offs and addresses cost implications of adding flexibility resources to a system.

They adapted a production simulation methodology that weighs the cost of reliability and

sub-hourly flexibility violations, against the cost of available operational flexibility solu-

tions, to develop a stochastic production simulation model, known as Renewable Energy

Flexibility (REFLEX). Essentially, the model tracks system load distribution, dispatch,

generation, outage and ramping conditions using historical data and a security-constrained

unit commitment model. Instead of simulating the entire year, the proposed method

utilises a set of randomly generated scenarios (representative days) while preserving sea-

sonal and meteorological correlations. This model is commercialised under the name

REFLEX and has been implemented on commercial production simulation platforms in-

cluding ProMaxLT and PLEXOS to improve scalability and run times in large systems,

and as well as to incorporate more advanced modelling options.
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Another long-term energy mix optimisation model called “emix” was proposed by

Wierzbowski et al. [119] to incorporate flexibility in a simplified manner. The proposed

model was derived from the conventional GTEP with UC and takes daily requirements of

power system operation (primary, secondary and tertiary reserve) and reaction to increas-

ing renewable penetration into account. Unlike the previously discussed unit clustering

approach, this model allows representing individual operation of each generating asset in

a computationally effective manner. However, both “emix” [119] and REFLEX [118] are

based on simplified unit commitment simulations, and they do not provide any bound or

quality of the solution with respect to the exact unit commitment solution. So, they can

be deemed only as heuristics.

Furthermore, a novel approach based on perturbation was proposed by Belderbos and

Delarue [120] to account for operational flexibility in power system planning. The method

obtains two initial solutions; one from a classical screening curve model, and another from

a model using mixed integer linear programming (MILP), and then perturb the initial

solutions while evaluating them using an operational UC model to validate and improve

the solution. In particular, they utilise MILP planning model with a set of representative

days to obtain the initial solution and then achieve the perturbation by first removing units

in the estimated set of generators to check any cost reductions and then adding units to

improve the solution [120]. While the method has been able to reduce the complexity

of the problem by a large factor compared to other models that serve the same purpose,

the approach may not converge to a global optimum. Since the initial solutions were

generated by approximated methods like screening curve and MILP with representative

days, and the perturbations are carried out until no further reductions in total costs, the

perturbation algorithm is likely to converge to a local optimum.

Another technique that is commonly applied to large-scale optimisation problems, and

can be applied to solve GTEP-UC problems within a reasonable period of time is decom-

position. Kamalinia et al. [121] proposed a classic Bender’s decomposition approach to

tackle the computational burden in a stochastic GEP-UC model. However, for simplicity,

the model excluded the start-up costs and minimum up and downtime constraints that

characterise the flexibility of thermal units. Since sub-problems must be linear in Bender’s

decomposition to obtain dual information, the method extracted all the integer variables

such as unit commitment states to the master problem. To reduce the size of the resulting

master problem, only a reduced set of fast response gas turbines was considered. In addi-

tion, the number of scenarios that were employed to model uncertainty was also reduced

through the application of scenario reduction techniques.

While the classic Bender’s formulation generates only one cut per iteration aggregating

dual information obtained from all the sub-problems, in the event of multiple sub-problems,

a cut can be generated and added from each sub-problem. Such Bender’s formulation is

referred to as multi-cut Bender’s, and generally outperforms the single-cut Bender’s, be-

cause it strengthens the master problem more quickly and prevents the loss of information

due to aggregation [122]. Recently, a multi-cut Bender’s decomposition was implemented

by Schwele et al. [123] to solve a network-constrained stochastic GEP-UC model. They
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utilised two-stage stochastic programming to consider uncertainty in wind power produc-

tion and followed a structure similar to Kamalinia et al. [121] to decompose the problem.

The long-term investment and short-term unit commitment decisions were solved in the

master problem as first stage decisions, while short-term dispatch decisions that accom-

modate wind deviation were solved in the sub-problems as second stage recourse decisions.

Each scenario was considered as a separate sub-problem, where a scenario represents a day

(24 hours). Similar to Kamalinia et al. [121], the approach sufferers from a huge master

problem, thus minimum up-down constraints were ignored to reduce the complexity.

To overcome the issue of massive master problem with Bender’s decomposition, An-

gela et al. [124] proposed an approach based on Dantzig–Wolfe decomposition and col-

umn generation to solve computationally intensive multi-period GEP-UC problem. As

Dantzig-Wolfe decomposition allows sub-problems to be mixed-integer (MIP) in contrast

to Benders decomposition, unit commitment is incorporated directly as the sub-problem.

However, to obtain the dual information required for cost coefficients, the master problem

is formulated as a linear model relaxing the integrality in investment decisions. If the mas-

ter problem returns fractional values for investment decisions at the end of the algorithm

convergence, a branch and price procedure is followed to obtain integer solutions. In addi-

tion, for simplicity, network constraints were excluded and the year was represented using

13 weeks (one from each month and an extreme scenario), where K-Mediods clustering

technique was employed to determine the representative weeks. They also utilised other

concepts and methods from existing literature such as unit clustering approach [10], tight

formulations of the unit commitment problem and classical screening curve method (for

the initial point of column generation approach) to reduce the computational burden fur-

ther. In addition, they demonstrated that the proposed approach based on Dantzig–Wolfe

decomposition outperforms direct application of commercial solvers, and significantly re-

duces both computational time and memory usage.

In this regard, the key methodologies applied to incorporate the unit commitment

model in energy system planning problems with reasonable fidelity and solving time can

be summarised as follow.
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Table 2.1: Key methodologies for capacity expansion planning with unit commitment

Reduction in input data Approximated operational models Decomposition techniques

Temporal Mathematical Mathematical
Scenario reduction techniques [113] Tight formulations of UC [124] Bender’s [121,123]
Shortened planning horizon [114] LP relaxation [115,116] Dantzig-Wolfe [124]
Representative days [3, 11, 41, 111,
112,125]

Convex relaxation [6]

Coarser resolution [116,125]
Clustering techniques [124,126]

Spatial Based on expertise Other
Aggregate similar units [10,108–110] REFLEX [118] Soft-linking PLEXOS and

emix [119] Times [117]
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2.5 Summary

Energy system planning problems are primarily two types: generation expansion plan-

ning (GEP) and transmission expansion planning (TEP). While GEP addresses the ade-

quacy in power generation, TEP addresses the necessary expansions in the power trans-

mission network. These problems are generally formulated with the objective of either

total cost minimisation or profit maximisation considering a number of operating con-

ditions. Economic dispatch is the most commonly used operational model. But, with

the integration of renewable energy-based generation, the sophisticated unit commitment

model has started to gain attention in the planning problem. However, solving planning

problems with unit commitment is computationally expensive because of the large size

and details in the operational model.

In general two types of methods are used to solve large scale optimisation problems:

heuristics based on simulations and decomposition methods based on mathematical pro-

gramming. While heuristic methods do not guarantee the global optimal solution, appli-

cation of decomposition techniques relies on specific problem structure. In particular, for

planning with unit commitment, Bender’s decomposition is limited in terms of the details

that can be considered because of the huge master problem. And, Dantzig-Wolfe decom-

position is integrated with other existing techniques (e.g. unit clustering, representative

days, screening curve methods) limiting the ability to understand the sole effect of the

decomposition approach.

When comparing other key methodologies that have been utilised to incorporate unit

commitment in planning problems, representative days provide highly inaccurate solutions

because of the imprecise representation of renewable energy-based generation and demand

states leading to either over-investment or under-investment. Coarse temporal resolutions

are also undesirable as rapid variations in wind output may not be captured sufficiently

well leading to imbalances in supply and demand. And, unit clustering approach limits

the ability to consider individual status of generators and the transmission network. On

the other hand, simplification of unit commitment model via convex/linear programming

relaxation and other novel techniques can be deemed only as heuristics, as they are still

approximations and do not quantify the quality of the investment solution. In this regard,

it is apparent that a complete approach to incorporate unit commitment in planning

problems at full resolution is still limited. Therefore, in this thesis, we aim to address this

gap and develop solution methods to facilitate unit commitment in the planning context

while mitigating the computational challenges.
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Chapter 3

Unit Commitment, Formulation

and Impact

3.1 Introduction

Although unit commitment plays a significant role in capturing operational flexibil-

ity, exact unit commitment at full resolution is often avoided in planning problems due

to computational limitations. Instead, conventional planning problems utilise economic

dispatch and its variants, which either ignore flexibility constraints completely or consider

them approximately. However, the quality of the resulting solution with respect to the

solution from the exact unit commitment is often not addressed, because a method that

is capable of solving planning problems with exact unit commitment at full resolution is

still unavailable.

Therefore, by employing the decomposition framework proposed in Chapter 5, this

chapter aims to investigate the impact of incorporating exact unit commitment in the

planning context with respect to the traditionally used economic dispatch model and its

variants. This chapter first introduces the unit commitment model by providing the objec-

tive function and constraints. The subsequent sections of the chapter provide the details

of other operational models: economic dispatch and economic dispatch with ramping,

and solutions methods utilised to solve the large-scale optimisation problem. Through

experimental analysis, the chapter then discusses the impact of incorporating unit com-

mitment in planning problems, and finally concludes emphasising the need for the unit

commitment model. This investigation with exact unit commitment at full resolution and

economic dispatch constitutes the key contribution of this chapter.

3.2 Unit Commitment (UC)

In power systems operation, the role of unit commitment is to schedule the most

cost-effective set of generators that meets the system requirements. For an independent

system operator (ISO), these requirements include satisfying the electricity demand with

minimum cost or maximum welfare subject to system constraints. Generator companies

(GENCOs) on the other hand have minimum desire to satisfy demand as their main focus
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is to maximise revenue subject to generator limitations. Hence, a typical UC problem is

formulated from two perspectives. ISOs use UC in a centralised environment with total

cost minimisation to clear day ahead markets and conduct intra-day operations, while

GENCOs use UC in a self-scheduling environment with profit maximisation to derive

bidding profiles [12,13].

The need for scheduling is mainly driven by the technical limitations in dispatchable

generators. A scheduled or “committed” generator implies that the unit is “turned on”,

synchronised to the electricity grid and is available to deliver power. Once committed

these generators are required to maintain a minimum generation to “remain on”, which

can be fairly expensive and economically inefficient, if the total generation in the system

is already exceeding the demand. Switching off (de-commit) units too frequently is also

disadvantageous due to techno-economic issues such as re-starting cost, ramping limits,

wear and tear etc. As a consequence, the unit commitment problem was formulated to

control the on-off states of generators and determine the optimal generator schedule.

This section presents the MIP formulation for UC problem based on the three-binary

model. Essentially, the three-binary model indicates that three binary variables are used

to capture the three states of the generator, i.e, commitment, start-up and shut down.

Although more compact formulations based on one-binary variable (for commitment de-

cision only) are available [127], multiple studies have reported that they hinder the ability

to generate strong valid inequalities for constraints that involve start-up and shut down

status (e.g start-up cost, ramping, minimum up downtimes) [12, 128]. Therefore, the UC

formulation based on three-binaries can be presented as follows [129].

Objective Function

The objective of the UC problem Eq. 3.1 is formulated from the centralised perspective

as minimisation of total operation cost, i.e. the sum of production cost, commitment cost,

start-up cost, shut-down cost and penalty cost for unsatisfied demand.

min
∑
t∈T

∑
g∈G

(Cvar∗
t,g (pt,g) + Cc

gut,g + Cu
g vt,g + Cd

gwt,g) + Cpqt

 (3.1)

where: t, g are the indices for time periods and generators respectively while T ,G are

the corresponding sets; Cvar∗(pt,g) represents the variable cost of generation which is a

function of production pt,g; Cc
g , C

u
g , C

d
g are commitment, start-up and shut-down costs; Cp

is the penalty cost for unserved demand; u, v, w are the binary commitment, start-up and

shut-down variables and finally p, q denotes continuous variables for power generation and

unserved demand.

The production cost function Cvar∗(pt,g) accounts for the cost of power generation

and depends on various factors such as generator heat rate, the generator dispatch level

and fuel prices. As shown in Fig. 3.1, the function is quadratic in nature. Thus, it is

often modelled as a quadratic function or as a set of piece-wise linear functions at the

expense of extra constraints. In planning problems, one linear function is also utilised for

simplicity [6, 92].
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Figure 3.1: Production cost function Figure 3.2: Start-up cost function

Start-up cost accounts for the energy that is not reflected in the power generation p

but must be expended to bring the unit on-line. As shown in Fig. 3.2 [127] this cost varies

depending on the duration that the unit has been “off-line”. If the unit has been switched

off for a longer period “cold-start” cost is considered, which is much expensive than the

“warm-start” cost that applies when the unit was turned off recently and still relatively

close to the operational temperatures [43].

Commitment cost or no-load cost refers to the fixed cost that incurs for being just

“on-line” even at zero generation (no-load). While the current formulation does not allow

the generation to be zero if “on-line” (Eq. 3.7), this is allowed and necessary when the UC

formulation is extended to consider spinning reserves.

Penalty cost for unserved demand accounts for loss loads and ensures reliability in

the system. In operational simulations, reliability is captured either through a global

constraint that includes unserved demand in all time periods or as part of the objective

function. When formulated as a constraint, an index such as LOLP (loss of load prob-

ability), EENS (expected energy not served) or LOLE (loss of load expectation) is used

to constrain unserved demand in the overall system. Alternatively, a penalty cost can be

added to the objective function to minimise the loss load. In this formulation, the latter

option is utilised, where unserved demand is heavily penalised in the objective function.

Such formulation permits time-based decomposition easily, as time periods are not bound

by a global constraint.

Constraints

The constraints in unit commitment represents the system requirements and generator

limitations. As the list can be exhaustively long with different systems imposing specific

rules, the most common set of constraints are presented here.

ug,t − ug,t−1 = vg,t − wg,t ∀g, t (3.2)

Eq. 3.2 captures the start-up and shut-down status of the generator using two consecu-

tive commitment decisions.1 These states are used by start-up shut down costs, minimum

generation, ramping limits and minimum up down limits to generate strong inequalities.

1Although three binaries are utilised in this model, due to the linearity in this constraint, it is only
necessary to enforce integrality on two of the three decision variables.
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t∑
i=t−TU

g +1

vg,i 6 ug,t ∀g, t (3.3)

t∑
i=t−TD

g +1

wg,i 6 1− ug,t ∀g, t (3.4)

Frequent switching on and off of thermal generators leads to issues such as unnecessary

start-up costs, wear and tear or simply impossible due to technical limitations. Hence,

on-off times must be controlled forcing the generators to be “on” for a certain period of

time if committed and “off” if de-committed. This is governed by Eq. 3.3 and 3.4 where

TU and TD denote minimum up and downtimes respectively.

pg,t − pg,t−1 6 RU
g ug,t−1 + SU

g vg,t ∀g, t (3.5)

pg,t−1 − pg,t 6 RD
g ug,t + SD

g wg,t ∀g, t (3.6)

While the generators can adjust their output (ramping) to follow the load profile, at

any two consecutive time periods the difference must be within a certain limit. This limit

depends on whether the generator is changing its output while remaining on (ramping

limits), the generator is starting up (start-up limits) or preparing to shut-down (shut-

down limits). Eq. 3.5 and 3.6 impose these ramping up and down constraints where,

R
u/d
g , S

u/d
g are the ramp-up, ramp-down limits and start-up shut-down limits respectively.

Pmin
g ug,t 6 pg,t 6 Pmax

g ug,t ∀g, t (3.7)

At a given time t, a committed generator must operate below its maximum generation

limit and above its minimum generation. Eq. 3.7 bounds the power generation p to be

within these limits or zero otherwise.

∑
g∈G

pg,t + qt = Dt ∀t (3.8)

Finally, Eq. 3.8 represents the instantaneous supply-demand balance, where D indi-

cates nodal demand and q denotes unserved demand. For reliability purposes, unserved

demand q is penalised in the objective function Eq. 3.1.

3.3 Impact of Unit Commitment in Planning Problems

As previously mentioned, the majority of the operational models embedded in plan-

ning problems either disregard operational flexibility completely, or estimate it through

approximated operational models. However, these approximations do not specify the op-

timality or quality of the solution with respect to the exact unit commitment solution,
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because a complete approach that could deal with the dimensionality of the problem is

unavailable.

To analyse the impact of operational flexibility in the planning context and quantify

the bound gap caused by approximated flexibility constraints, this section aims to solve the

planning problem with multiple operational models that contain different levels of details

regarding the operational flexibility. In particular, this section considers economic dispatch

(ED) that is traditionally embedded in planning problems, then economic dispatch with

ramping (ED+R) that considers operational flexibility partially with ramping constraints

and finally exact unit commitment with binary commitment decisions (UC) that represents

the required operational flexibility accurately. In addition, decomposition techniques are

utilised to decompose the problem into smaller sub-problems and reduce the computational

complexity. Since ED and ED+R are fully linear, planning models with ED and ED+R are

decomposed using Bender’s Decomposition. As exact unit commitment involves binary

commitment decisions, planning problem with exact UC is decomposed using scenario

decomposition framework. This approach in detail can be provided as follow.

3.3.1 Problem Formulation

The mathematical formulations for the planning problem with three operational models

can be provided as follow.

Energy System Planning

Given a set of candidate options, future demand and cost trends, and operational condi-

tions such as demand and renewable generation profiles, energy system planning problems

co-optimise the investment and operational cost to determine the most cost-effective in-

vestment solution. While planning problems are generally formulated to consider a long

planning horizon, in this formulation, a representative year with an annualised capital cost

is considered. Such formulation does not specify when to invest in the planning horizon

but indicates which investments and technologies should be part of the future generation

mix. Thus, planning problem co-optimises the annualised investment cost (CI) and op-

erational cost (Cop) represented by either ED, ED+R or UC for a period of one year at

hourly resolution (8760 hrs).

minf =
∑
i∈I

CI
i xi +

∑
t∈T

Cop
t (3.9)

st.

Operational Constraints

where I, T are the set of candidate units and time periods, and x is the binary investment

decision. For existing units, this variable is pre-defined to be 1. Moreover, the investment

cost was annualised by using Eq. 3.10, where, CT is the total capital cost, γ is the discount

rate and LS is the lifespan of the unit in years.
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CI =
γCT

1− (1 + γ)LS
(3.10)

Unit Commitment (UC)

The unit commitment formulation with investment decisions can be updated as follow.

min
∑
t∈T

(
∑
g∈G

(Cvar∗
t,g (pt,g) + Cc

gut,g + Cu
g vt,g + Cd

gwt,g) + Cpqt)

s.t.

ut,g 6 xg ∀g, t (3.11)

Eq. 3.2− Eq. 3.8

where, Eq. 3.11 limits the commitment to installed thermal units.

Economic Dispatch (ED)

Economic dispatch (ED) aims to find the least cost generation mix that meets the

demand subject to generator limitations. Unlike UC, ED does not schedule generators.

Instead, it simply assumes that all the generators provided are “on-line”. Hence, ED avoids

the necessity to use binary variables and is typically formed as a linear programming (LP)

model.

min f =
∑
t∈T

(
∑
g∈G

Cvar∗
t,g (pt,g) + Cpqt) (3.12)

s.t∑
g∈G

pg,t + qt = Dt ∀t (3.13)

0 6 pg,t 6 Pmax
g xg ∀g ∈ G, t (3.14)

In ED, the objective Eq. 3.12 minimises the generation and penalty cost, subject to

maximum generation limits (Eq. 3.14) and supply-demand balance (Eq. 3.13). Similar to

UC, Cvar∗
t,g (pt,g) can be either quadratic, piece-wise linear or linear. As one may notice,

start-up costs, shut-down costs and commitment costs are excluded. In addition, Pmin

is set to zero, as a non-zero Pmin without a binary commitment decision could force the

generator to be “on” continuously leading to unnecessary generation. Furthermore, ED

does not account for ramping limits and minimum up-down times, due to the omission of

binary commitment decisions.
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Economic Dispatch with Ramping (ED+R)

In addition to the basic economic dispatch formulation presented in Eq. 3.12 - Eq. 3.14,

economic dispatch with ramping considers operational flexibility approximately through

Eq. 3.15 and 3.16. Eq. 3.15 is the ramp-up constraint and Eq. 3.16 is the ramp-down

constraint.

pg,t − pg,t−1 6 RU
g ∀g, t (3.15)

pg,t−1 − pg,t 6 RD
g ∀g, t (3.16)

DC Power flow

As generator dispatch models such as economic dispatch (ED) and unit commitment

(UC) do not account for any limitations in the electricity network, they are generally

coupled with power flow calculations to provide feasible solutions, which could have been

infeasible otherwise due to the aggregated demand and power generation. This formulation

utilises DC approximation that accounts for active power flow to model the electricity flow.

Fmin
l xl 6 ft,l 6 Fmax

l xl ∀l, t (3.17)

fl,t = BMVABlxl(θs,t − θr,t) ∀l, t (3.18)

− θmax 6 θn,t 6 θmax ∀n, t (3.19)

θn,t = 0 n : slack ∀t (3.20)

In the formulation, fl and θn represent power flow in line l and phase angle in node

n; xl indicates the existing status of the line; Bl, B
MVA refers to susceptance (per unit)

and Base MVA (used for per unit conversions); Fmax, Fmin (−Fmax) indicate maximum

and minimum power flow limits; θmax, θmin denote maximum and minimum phase angle

limits. With that, Eq. 3.17 accounts for thermal limits (overloading) in transmission lines

which is bounded by the existing status; Eq. 3.18 restricts the power flow according to DC

approximation; Eq. 3.19 enforces phase angle limits to ensure stability in frequency2 and

finally, Eq. 3.20 sets the phase angle of the reference bus to zero. Since DC approximation

contains a non-linear expression in Eq. 3.18, it is often linearised using the big M method

as provided in Eq. 3.21 and Eq. 3.22, where M represents a large constant3.

− (1− xl)M 6 fl,t −Bl(θs,t − θr,t) ∀l, t (3.21)

(1− xl)M > fl,t −Bl(θs,t − θr,t) ∀l, t (3.22)

2In some occasions, instead of the phase angles (angle of the voltage), the angle difference between the
nodes that connect the active transmission line is bounded by pi/2 to achieve steady-state stability.

3A value just above the maximum Fmax
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Renewable units

Generation output from renewable energy-based units are generally considered as ei-

ther fixed or semi-dispatchable. In the fixed form, the output is represented through net

load by deducting it from the nodal demand. In the case of semi-dispatchable generation,

a variable is assigned to control the output of each unit according to a maximum available

generation that depends on wind speed or solar radiation. This model considers renew-

able energy-based generators as semi-dispatchable units, where generation curtailment is

allowed without a penalty.

0 6 pr,t 6 Pmax
r,t xr ∀r, t (3.23)

where r is the index for renewable unit and Pmax is the maximum available generation.

Nodal Power Balance

In this regard, power balance constraint can be updated as follows to incorporate trans-

mission lines and renewable energy-based generators, where r and s denote the receiving

and sending nodes of transmission lines.

∑
g∈G(n)

pg,t +
∑

r∈R(n)

pr,t +
∑

l∈L|r(l)=n

ft,l −
∑

l∈L|s(l)=n

ft,l + qn,t = Dt,n ∀n, t (3.24)

The summary of operational models with their ability to represent operational flexibility

is given below.

Table 3.1: Summary of operational model features

Feature ED ED+R UC

Start-up cost no no yes
Minimum generation no no yes
Ramping limits no approx. yes
Min up down no no yes

3.3.2 Solution Method

As solving planning problems with hourly resolution for a period of one year is com-

putationally expensive, in this section decomposition techniques are utilised to reduce the

computational time. More specifically, two decomposition techniques are employed, where

Bender’s decomposition [87] is utilised to decompose planning models with ED and ED+R

and scenario decomposition [104] is utilised to decompose the planning problem with exact

unit commitment. Since ED and ED+R are fully linear and investment decisions are the

only integer variables, using Bender’s decomposition the planning problem can be decom-

posed easily into master problem (investment) and sub-problems (economic dispatch). In
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contrast, exact unit commitment contains integer variables in the operational level lim-

iting the ability to apply Bender’s decomposition. Hence, for these problems, scenario

decomposition technique is utilised to mitigate the computational burden. In addition, to

analyse the actual operational cost of solutions realised by ED and ED+ R, a unit com-

mitment simulation was conducted. Details of these methods are provided in subsequent

sections.

Bender’s Decomposition (BD)

As described in Section 2.3.2, Bender’s decomposition iterates between a master and set

of sub-problems, and adds a constraint that is based on dual information at the end of each

iteration. For the Bender’s approach to extract dual information, the sub-problem must

be a fully linear problem. As a result, all the integer variables and their corresponding

constraints are generally extracted to master problem. In this formulation, investment

decisions are the only integer variables, so the investment problem becomes the master

problem while ED and ED+R become the slave sub-problems. In addition, ED and

ED+R are further divided considering each day as one sub-problem and a Bender’s cut is

added from each sub-problem resulting a multi-cut Bender’s approach. The master, slave

problems and Bender’s algorithm are provided below.

Master problem - Investment decisions

min fmas =
∑
i∈I

CI
i xi +

∑
s∈S

αs (3.25)

st.

αs > 0 ∀s (3.26)

αs > fsub(j)∗s +
∑
i∈I

λ
(j)
s,i (xi − x

(j)
i )

∀s,m > 2, j = 1....m− 1 (3.27)

where, CI
i is the annualised investment cost, xi is the investment decision, s is the index for

sub-problem, f
sub(j)∗
s are the sub-problem optimal objective values in previous iterations,

λji denotes the dual values, xji is the investment decision in the previous iteration and m

is the current iteration. In addition, Eq. 3.27 represents the Bender’s cut added to the

master problem based on the solution of the sub-problem in the previous iteration.

Sub-problem - Operational decisions

The sub-problems are either ED or ED+R, where in addition to the constraints de-

scribed previously, Eq. 3.28 is added to capture the dual prices of the investment deci-

sions, in which x(m) is the investment decision obtained from the master problem in the

current iteration m. In addition, ED+R consists inter-temporal constraints linking one

sub-problem to another. Hence, to ensure that operational decisions are consistent and

aligned with the next day, operational status at the end of the day is passed on to the
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next day as the initial status. In addition, an overlap duration of one day is considered at

the end of each sub-problem, and then operational cost and dual prices for the overlapped

duration are discarded.

xi = x
(m)
i : λi ∀i ∈ I (3.28)

Bender’s Decomposition Algorithm

1. Initialise with the iteration count m = 1

2. Solve the Master problem defined by Eq. 3.25 - Eq. 3.27, to obtain the investment

decision x(m) and the lower bound LB, where LB = fmas∗. For the first iteration,

solve the master problem without Eq. 3.27.

3. Feed the investment decisions and solve the sub-problems s ∈ S sequentially to

obtain the operational cost f sub∗s and the dual values λ.

4. Calculate the upper bound UB where,

UB =
∑

i∈I C
I
i xi +

∑
s∈S f

sub∗
s

5. If |UB − LB| 6 ε, where ε is the Bender’s gap, exit with the current solution. Else,

update the iteration count to m = m+ 1, and go to step 2.

Scenario Decomposition (SD)

In scenario decomposition, the planning problem with unit commitment is decomposed

into multiple planning sub-problems with a shorter planning horizon such as a day with

daily capital costs. Assuming that they are independent, each sub-problem is then solved

separately to generate a set of candidate investment solutions, where the summation of

individual costs provide the lower bound (LB). Then, the generated candidate investment

solutions are evaluated by solving the unit commitment model for the entire planning

horizon. This yields a series of upper bounds, and the solution with the lowest total system

cost becomes the incumbent solution and upper bound (UB). The algorithm then discards

all the evaluated solutions from the search space by means of an integer cut, forcing

candidate solution generation phase to generate a more expensive set of solutions in the

next iteration. Thus, the algorithm converges when LB exceeds UB proving optimality.

This approach is discussed elaborately in Chapter 5.

Unit Commitment Simulation

Ideally, to examine the true operating cost of a given investment solution, the unit com-

mitment model must be solved for the entire planning horizon. Solving unit commitment

problem for one year (8760 hours) is computationally tedious, because of the enormous

number of binary variables. Therefore, in this analysis commonly applied rolling horizon

technique is utilised to conduct the unit commitment simulation [6]. In the rolling hori-

zon approach, daily unit commitment problems are solved sequentially forcing operational

status at the end of one day as the initial status for the next day. In addition, an overlap

duration is considered at the end of each day to ensure intra-day consistency, and the
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Table 3.2: A summary of test cases

Feature 6-Bus 14-Bus 18-Bus 24-Bus

Number of nodes (N) 6 14 18 24

Number of thermal generators (G)* 7 11 13 18

Number of renewable generators (R)* 4 6 8 10

Number of lines (L)* 10 27 31 40
* The provided values include both candidate and existing units

Table 3.3: Model attributes for the planning problem with unit commitment

Model attributes Nodes Thermal Renewable Transmission
generators generators lines

Number of integer variables 0 G(1 + 3*T) R L
Number of continuous variables 2*N*T G*T R*T L*T
Number of equality constraints T(1+N) G*T 0 0
Number of inequality constraints 4*N*T 7*G*T 2*R*T 4*L*T

where T is the number of time periods, N is the number of nodes, G is the number of
thermal generators, R is the number of renewable energy-based generators and L is the
number of transmission lines.

operational cost and decisions for the overlap duration are discarded. As commitment

decisions have a finite duration that they continue to affect future system behaviour, if

the overlap duration is large enough accurate results can be obtained [6,130]. In practice,

this overlap duration is determined by the generator specifications, the longest minimum

up and downtime to be precise, which is typically 24 hours [6, 130].

3.4 Experimental Analysis

To investigate the impact of incorporating operational flexibility in capacity expansion

problems, four test cases: 6-bus, 14-bus, 18-bus and 24-bus systems were utilised with

hourly chronological load and renewable generation profiles obtained from AEMO (Aus-

tralian Energy Market Operator). The cost parameters and details of the test cases are

provided in Appendix A and a summary of test cases is provided in Table 3.2. In addi-

tion, a high renewable scenario, where existing renewable energy-based generators supply

around 50% of the total demand was considered for each test case, as variability becomes

significant with high shares of renewable energy-based generators. Moreover, for all test

cases, a planning period of one year was considered. Furthermore, Table 3.3 provides

the attributes of the model for planning problem with unit commitment, which briefly

indicates the size of the problem given the system parameters and the number of time

periods.

All algorithms and models were implemented and solved using Python 2.7 and Gurobi

8.0 [131] on Monash Cluster utilising eight cores clocking at 2.70GHz with a RAM memory

of 16 GB. In addition, Gurobi’s default MIP gap 1× 10−4 and a Bender’s gap of 1× 10−4

were utilised, where the thread count was set to number of cores (only MIP models). In

addition, a time limit of 22 hours was assigned to all algorithms for convergence and the

dual simplex method was chosen to obtain the dual values. Furthermore, the penalty cost

of unserved demand was set to 1000$/MWh.
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Table 3.4: Nominal

Test Case Model Gap% CI (M$) Obj.(M$) ∆%

6 Bus ED 0 46.59 153.95 1.624
ED+R 0 46.59 154.00 1.588
UC 0 46.59 156.49 NA

14 Bus ED 0 187.80 637.00 1.199
ED+R 0 187.80 637.06 1.190
UC 0 178.22 644.73 NA

18 Bus ED 0 222.01 613.71 0.400
ED+R 0 222.01 613.85 0.378
UC 1.20 222.01 616.17 NA

24 Bus ED 0 415.30 1608.65 0.530
ED+R 0 415.30 1608.67 0.528
UC 2.85 389.54 1617.22 NA

Table 3.5: High renewable

Test Case Model Gap% CI(M$) Obj.(M$) ∆%

6 Bus ED 0 50.53 103.99 8.193
ED+R 0 50.53 104.70 7.566
UC 0 50.53 113.27 NA

14 Bus ED 0 203.01 369.80 7.016
ED+R 0 203.01 370.80 6.764
UC 0.82 203.01 397.70 NA

18 Bus ED 0 167.50 406.89 5.267
ED+R 0 167.50 408.24 4.953
UC 1.24 167.50 429.52 NA

24 Bus ED 0 449.01 1121.19 7.079
ED+R 0 449.01 1127.29 6.569
UC 5.43 469.28 1206.55 NA

Table 3.4 and 3.5 illustrate the obtained results for nominal and high renewable in-

stances, where gap indicates the optimality gap at the end of the maximum time limit,

CI denotes the investment cost in M$, Obj. represents the current best objective in M$

and finally, ∆% is the cost difference with respect to the total cost provided by the exact

unit commitment solution. According to Tables 3.4 and 3.5, nominal instances show rea-

sonably small cost differences across different operational models however, high renewable

instances show considerably large differences. This performance is expected as ED and

ED+R overestimate the generator capabilities causing the power to be generated at a

lower cost than the actual, which becomes significant in high renewable instances due to

the increased ramping requirements. Besides, with ED and ED+R start-up costs and cost

for minimum generation are ignored.

For ED models, these differences can be as high as 8%, and decrease slightly with

ED+R when ramping constraints are brought into the model. This reveals that ramping

constraints only have a slight impact on the planning problem, while the significant dif-

ferences are caused by start-up costs, minimum generation and minimum up-down times.

Although, larger differences are observed in high renewable instances, interestingly, in-

vestment solutions are consistent across different operational models. On the other hand,

nominal instances that have provided relatively smaller cost differences exhibit inconsis-

tency in investment solutions, especially at 14-bus and 24-bus instances. Thus, it can
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(a) 14 Bus system (b) 24 Bus system

Figure 3.3: Installed capacity

be observed that apart from the changes in cost, the underlying problem structure also

impacts the optimality of the investment solutions when flexibility constraints are avoided

or approximated.

These changes in investment solutions are driven by either overestimation of opera-

tional flexibility (leads to under-investment) or underestimation of operational cost (leads

to over-investment). In 14-bus nominal instance, exact UC eliminated a solar unit that

was installed by ED and ED+R. This reduction in installed capacity is visible in Fig. 3.3a

which illustrates the installed capacity in 14-bus system for both nominal (N) and high

renewable (H) instances. Similar results can be observed in 24-bus nominal instance,

where exact UC replaced an OCGT (open cycle gas turbine) unit installed by ED and

ED+R with a CCGT (combined cycle gas turbine) unit that has more capacity. Also, UC

eliminated a wind unit installed by ED and ED+R and invested in extra transmission line

capacity. This increase in installed capacity is depicted in Fig. 3.3b, which illustrates the

installed capacities for 24-bus nominal (N) and high renewable instances (H).

In order to evaluate the investment solutions provided by ED and ED+R and to deter-

mine their true operational costs, unit commitment simulation was carried out. Through

the simulation, it was observed that investment solutions provided by ED and ED+R for

these instances yield higher total costs compared to the solutions provided by the exact

UC. These results are presented in Table 3.6. Although the percentage cost difference

(∆UC) between true cost of solutions provided by ED and ED+R and true cost of solu-

tions obtained from exact UC are relatively small, these results prove that approximated

operational models like ED and ED+R provide sub-optimal solutions.

In addition, for 24 bus high renewable instance, exact unit commitment has provided

slightly more expensive investment solution (-0.473% in Table 3.6). This is because of the

large optimality gap (5.43%) at the end of the maximum time limit in scenario decomposi-

tion algorithm, which indicates that high-quality solutions may have not been discovered

yet. Moreover, the consistency in investment solutions across operational models in other

instances suggest that their existing capacities are adequate to deal with the drastic ramp-

ing requirements and/or underestimation of operational cost is not significant enough to

drive a different investment solution. Thus, it is reasonable to deduce that significance

and impact of operational flexibility is specific to the characteristics of a given system.
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Table 3.6: Unit commitment simulation

Test Case Model UC Sim.(M$) ∆UC%

14 Bus N ED,ED+R 644.87 0.021
24 Bus N ED,ED+R 1620.73 0.217
24 Bus H ED,ED+R 1200.85 -0.473

When comparing the installed capacity provided in Fig. 3.3, high renewable instances

show an increase in installed capacity compared to the nominal instances. Also, high

renewable instances avoid investments in renewable energy-based generators to mitigate

the existing variability in generation. Instead, they lean more towards stable thermal gen-

erators, especially flexible generators like CCGT and OCGT, and also extra transmission

line capacity to acquire operational flexibility from neighbouring nodes. These capacities

indicate that investments in flexibility provisions become essential as the share of renew-

able energy-based generation (wind and solar) increases, and it is crucial to consider unit

commitment in the planning stage to identify the required operational flexibility accu-

rately and avoid sub-optimal solutions (ED and ED+R provide investment solutions that

are more expensive to operate).

3.5 Conclusion

This chapter provides the detailed formulation of the unit commitment problem and

investigates the impact of incorporating unit commitment in the planning problem. The

chapter considers three operational models with different details of operational flexibility,

i.e. traditionally used economic dispatch (ED), economic dispatch with ramping con-

straints (ED+R) and full unit commitment (UC) problem.

The numerical analysis shows that investments in flexibility provisions such as as flex-

ible generators (e.g. CCGT and OCGT) and transmission line capacities are becoming

crucial to ensure supply-demand balance when the percentage of renewable energy-based

generators increases in the system. In addition, this study shows that operational models

like ED and ED+R could provide sub-optimal investment solutions that are operationally

more expensive. Although the cost difference is insignificant, the analysis reveals that

the impact of incorporating UC depends on the underlying problem structure and char-

acteristics of the system. As these solutions heavily rely on multiple factors such as

network topology, existing capacity, candidates availability and other input parameters,

a constrained system with a limited number of options is more likely to be affected by

approximated or ignored flexibility constraints than a versatile system with a diverse set of

generators and numerous candidate options. Therefore, to mitigate the risk of infeasibility

and inefficiency, it is imperative to incorporate operational flexibility in the planning stage

through unit commitment constraints.
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Chapter 4

Time Resolution in Unit

Commitment

4.1 Introduction

One of the most popular and simplest ways to reduce the time complexity in unit

commitment is to adjust the temporal resolution. A coarse resolution with fixed length

can quickly decrease the required computational time by a large factor, because of the

reduced problem size. However, fixing the resolution to a specific time interval exposes

the risk of neglecting important time periods with significant variations. Since these time

periods characterise the operational flexibility in a system, the omission of them could

lead to inaccurate solutions. Therefore in this chapter, we propose an approach to obtain

coarse resolutions that are adaptive to the given data sets. The key idea is to reduce the

resolution where it can be afforded such that, the size of the problem is reduced efficiently.

The first section of this chapter provides a brief background of current practices and

the need for an adaptive time resolution. The next section presents the algorithm utilised

to achieve an adaptive resolution and the extensions required in the unit commitment

model to facilitate a variable resolution. The proposed algorithm and extensions collec-

tively form the key contribution of this chapter, and it is already published in IEEE Power

and Energy Society General Meeting 2018 as “An Efficient Method Based on Adaptive

Time Resolution for the Unit Commitment Problem”. The subsequent section evaluates

the proposed approach, where multiple criteria were considered including accuracy, com-

putational speed-up, quality of the solution, ability to capture the required operational

flexibility when a significant percentage is renewable energy-based generation and im-

provement in accuracy compared to the fixed length resolution. Finally, the last section

concludes the chapter and provides limitations of the proposed approach.

4.2 Motivation and Background

Time resolution in power system models plays a vital role in both operational and

planning context as the final decisions depend on the level of granularity considered.

Especially with large penetrations of renewable energy-based generators as their generation
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is highly variable and intermittent [132]. By increasing the temporal resolution, these

variations can be captured to provide a more realistic estimation for total generation costs.

And, the flexibility of thermal units can be determined precisely including the short cycling

and quick ramping events, which would have been invisible with a coarse resolution [133].

However, high resolutions enlarge the size of the problem substantially increasing the

computational cost or even making the problem computationally intractable.

In operational simulations, simultaneous consideration of multiple resolutions has be-

come a popular option to account for frequent variations in generation with reduced com-

putational costs [134, 135]. In these studies, a fine resolution (e.g. 5 min, 15 min) is used

for more critical tasks such as automatic generation control and contingency analysis and

a coarse resolution (e.g. hourly) is employed for other tasks such as day-ahead scheduling

and reserve requirements (unit commitment) [134,135]. In addition, a scheduling horizon

with a variable resolution is reported in [136], where early hours of the time horizon are

scheduled using a detailed model at high resolution, while remaining hours are scheduled

using a reduced model with a coarse resolution.

On the other hand, long-term capacity expansion models settle for a low resolution

that captures only seasonal, weekly and daily variations in wind and demand. Since one

year (or more) planning horizon with conventional hourly resolution is computationally

expensive even for small systems, carefully chosen representative days [3] and/or aggre-

gated time blocks [116] are generally used. For example, seasonal and weekly variations

can be expressed using two days in each month representing weekday and weekend, and

daily variations can be captured using aggregated times blocks of 4-6 hours instead of all

24 hours. In addition, if temporal dependencies in the system are ignored (e.g. economic

dispatch), similar demand and wind scenarios (hours) can be clustered using well-known

clustering techniques such as k means [137].

While representative days could produce inaccurate solutions that are far from opti-

mal, clustering techniques lose continuity in data that is essential for the treatment of

inter-temporal constraints such as ramping limitations (unless the clustering technique

is applied to cluster demand and renewable generation profiles). It limits the ability to

consider storage as a flexibility measure since continuity in data is necessary to track en-

ergy inventories. In contrast, pre-defining the coarse resolution to a fixed length (e.g. 4-6

hours) exposes the risk of neglecting important time periods with significant variations.

Since these periods characterise the flexibility in the solution, in operational problems

this could result in under-commitment. Furthermore, low resolutions could lead planning

problems to completely different investment solutions as a result of overestimation or un-

derestimation of variable renewable generation [138]. According to [139,140], models with

fixed coarse resolutions tend to invest more in base-load technologies [139], whereas mod-

els with fine resolutions tend to select diversified portfolios with renewable-energy based

generators and flexible mid-load plants providing cheaper investment solutions [140].

Therefore, a resolution that is adaptive to a given data seems to be an appealing option

to reduce the size of the problem while preserving accuracy. Such a method can be used

to improve the efficiency in operational problems and tractability in capacity expansion
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planning problems when high resolution is required. Adaptive resolution can be achieved

by aggregating consecutive time periods to form a single longer interval. As demand

and/or renewable generation profiles often contain time periods that are operationally

similar, they can be grouped into one time period replacing the fixed resolution with a

variable resolution that is adaptive to the data set. Thus, an hourly interval-based unit

commitment model with 24 hours will reduce to k intervals with variable lengths, where

k < 24 reducing the number of variables required, thus improving computational efficiency.

Alternatively, this method can be viewed as time-series segmentation as it partitions

the time series into multiple segments with similar data points. Thus, time series segment-

ing techniques can be applied to obtain adaptive resolutions, as they share the same goal.

The objective of segmenting methods is to split the time series by minimising an arbitrary

cost function that expresses the similarity within each segment [141]. For example, the

absolute error between original and approximated data point can be defined as the cost

measure, and the sum of absolute errors across all segments can be minimised to obtain

the desired segmentation.

In the literature, both exact and heuristic techniques have been utilised to minimise

the cost functions and achieve segmentation. An exact approach that is based on mixed-

integer programming (MIP) is reported recently in [142]. The method aggregates time

intervals by minimising the gradients within the grouped intervals, until the pre-specified

aggregation level is satisfied. Nevertheless, heuristic greedy approaches that produce good

but sub-optimal k-segmentation are more frequently used because of their simplicity and

reduced computational complexity [141]. Some commonly applied heuristic techniques

are Top-down, Bottom-up, Sliding-window and clustering-based methods [143,144]. Top-

down approach partitions a given time series recursively until some stopping criterion (e.g.

user-specified number of segments or error threshold) is met, by scanning the entire time

series repeatedly. On the other hand, Bottom-up method starts from the finest possible

approximation and scans the entire time series repeatedly to merge segments with the

lowest cost until some stopping criterion is met. In contrast to Top-down and Bottom-

up methods, Sliding-window approach anchors the left-most data point and increases

the segment length to the right in an online manner considering one data point at a

time, until the approximation error exceeds a predefined error threshold. Clustering-

based methods adapt well-known clustering techniques such as k means to group the time

periods while imposing a hard sequentiality constraint [144]. However, for this method,

initial boundaries need to be specified by means of another algorithm.

In this chapter, we employ a heuristic algorithm to group the successive demand levels

and approximate the demand series, because they are simple, computationally practical

and produce solutions with reasonable quality [143]. In particular, we utilise the Sliding-

window (SW) [143] algorithm. Unlike Top-down and Bottom-up approaches, Sliding-

window does not require scanning of entire time series repeatedly to make segmenting

decisions. In addition, the method has the advantage of finding an appropriate resolution,

because the partitioning procedure is terminated by means of a predefined error threshold,

not by number of segments. However, SW only propagates from left to right and does not
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attempt to change the partitions on the left side. Therefore, a novel backtracking algorithm

(BT) is also introduced to move towards the left and ensure that the approximation error

is minimum. This combined segmenting algorithm is named as “Sliding Window with

Backtracking (SWBT)”, and is elaborated in the next section.

4.3 Adaptive Time Resolution

This section describes the proposed adaptive time resolution based on SWBT algorithm

and its application to unit commitment problem in detail. First, the Sliding Window

(SW) and Backtracking (BT) procedures are described individually, providing complete

algorithms. Then, the application of SWBT to an hourly unit commitment model is

presented where the objective function and few constraints are modified to account for the

variable time resolution.

4.3.1 Sliding Window with Backtracking (SWBT)

As previously mentioned, the goal of the proposed approach is to reduce the resolution

where it can be afforded. This reduction can be achieved by aggregating finer time periods

to increase the time interval and averaging the value over the aggregated periods. In SW

(Sliding-Window) algorithm, starting from the left most data point, a segment or a time

interval is increased until the approximation error incurred by averaging the value exceeds

some predefined error threshold α. For the SW, the average of all relative errors (ARE)

given in Eq. 4.2 was chosen as the error metric, as ARE allows the predefined error

threshold α to be independent of the range. Such a generic error threshold is useful to

find a common resolution when dealing with demand/wind profiles in different regions

(nodes) that are in different ranges.

In the SWBT Algorithm 1, the general SW starts with the left-most data point making

it the boundary bj of a potential segment j. Then the algorithm attempts to approximate

(average) the demand to the right, by adding one data point i at a time. At some point

i, ARE for the potential segment bj exceeds the threshold α, so the subsequence from bj

to i− 1 becomes one segment. Then the data point i becomes the boundary for the next

potential segment bj+1 and the process repeats until the entire time series (T data points)

has been partitioned into k segments [143]. However, in contrast to the general SW, which

considers total ARE of the segment to decide whether to create a new segment or not,

in SWBT, ARE at each data point in each profile is considered to make the segmenting

decision so as to ensure that drastic variations in each profile is captured.

As SW propagates from left to right, the Backtracking (BT) Algorithm 2 reiterates

to check whether ARE can be further reduced by moving the boundaries towards left.

When a new segment is created updating the next potential boundary bj+1, BT backtrack

to the left boundary of the just-completed segment bj, and checks whether the total

approximation error across all profiles can be reduced by moving the boundary to the left

bj − 1. This is done by calculating the change in the sum of relative errors across all

profiles ∆RE (Eq. 4.4). If ∆RE is negative the boundary is moved, as this indicates that



4.3. ADAPTIVE TIME RESOLUTION 45

the error can be reduced. Then, BT checks whether the error can be further reduced by

moving bj to bj − 2. This procedure continues until the boundary cannot be moved any

further. If bj is moved, then BT backtracks to the segment before bj which is bj−1 and

repeats the same procedure. Thus, the SWBT algorithm continues to move one boundary

at a time until the error cannot be reduced any further.

Therefore, SWBT can be summarised as follows.

1. Sliding Window (SW) algorithm finds the number of segments and initial boundaries

so that the average relative error across all profiles, at each data point would be less

than α

2. Backtracking (BT) algorithm ensures that the total error is minimum for a given

number of segments k and boundaries.

Application of SWBT to three demand profiles is illustrated in Fig. 4.1, where the

resolution is controlled by the error threshold α. Higher α values allow large approximation

errors hence, demand profiles are approximated with lower resolution. In contrast, a lower

α values approximate the demand profile with higher resolution. This is depicted in

Fig. 4.1a and Fig. 4.1b respectively. In Fig. 4.1a, α was set to 0.05 which approximates

24 periods with 10 periods and in Fig. 4.1b, α was set to 0.02 which approximates the

demand profiles with 16 periods. Note that all profiles have the same segmentation.

(a) α = 0.05 (b) α = 0.02

Figure 4.1: Adaptive time resolution application
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Algorithm 1 Sliding Window with Backtracking

Input : Threshold α, Demand Profiles D1, .., DM where Dm = {dm,1, .., dm,P }
Output : No. segments k, Centeroids µD

m,1..µ
D
m,k, Length of segments L1, .., Lk

1: procedure SW(α,D)
2: % Initialise
3: k = 1, bk = 1, Lk = 0
4: for i = 1 to T do
5: for m = 1 to M do
6: %Calculate new mean µD′

m with the data point i (Eq. 4.1)

7: for l = bk to i do
8: Calculate Average Relative Error (ARE) (Eq. 4.2)

9: if all AREl < α then
10: %Update the current segment
11: seg = false
12: Lk = Lk + 1, µD

m,k = µD′

m

13: else
14: %Create a new segment
15: seg = true
16: k = k + 1, bk = i, µD

m,k = dm,i, Lk = 1

17: if i = T then
18: complete = true, start = k
19: else
20: start = k − 1

21: if (seg or complete) and (start > 1) then
22: BT(start, b)

Algorithm 2 Backtracking

1: procedure BT(start, b)
2: for j = start downto 2 do
3: transfers = false, last = bj − 1, first = bj−1
4: for q = last down to first do
5: for m = 1 to M do
6: Calculate the new mean µD′

j when boundary bj move to bj − 1 (Eq. 4.3)

7: Calculate difference in relative error ∆RE (Eq. 4.4)
8: if ∆RE < 0 then
9: transfers = true

10: % Update boundaries and segments
11: bj = bj − 1
12: Lj = Lj + 1
13: Lj−1 = Lj−1 − 1

14: µD
m,j = µD′

m,j

15: µD
m,j−1 = µD

m,j−1 −
dm,q − µD

m,j−1

Lj−1
16: else break
17: if not trasfers then
18: break
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4.3.2 Extended Unit Commitment Formulation

This section presents the modifications required in the unit commitment model to

account for the adaptive time resolution. As the set of time periods T reduces to set K after

application of SWBT, the aggregated time periods must reflect in the unit commitment

model. Since the detailed unit commitment model is provided in Chapter 3, only the

modifications are presented in this section.

Objective Function

The objective function Eq. 3.1 in Chapter 3 is updated to account for the cost param-

eters in the aggregated time periods by including the length of the time period Lt as an

additional coefficient.

min
∑
t∈K

∑
g∈G

((Cvar∗
g,t (pg,t) + Cc

gut,g)Lt + Cu
g vg,t + Cd

gwg,t) (4.5)

Power Balance Constraint

The power balance constraint Eq. 3.24 in Chapter 3 is updated to consider the new

approximated demand µDn,t.

∑
g∈G(n)

pg,t +
∑

r∈R(n)

pr,t +
∑

l∈L|r(l)=n

fl,t −
∑

l∈L|s(l)=n

fl,t = µD
n,t (4.6)

Minimum Up and Down Constraints

In minimum up and down constraints Eq. 3.3 - Eq. 3.4 given in Chapter 3, i = t−T u,d
g

is replaced with i = t − Cu,d
g,p to consider the variable time period length. The parameter

Cu,d is the number of data points to count back from the current point t which is found

using Algorithm 3. The intuition behind the algorithm is to count back from the current

point t until the sum of the segment lengths does not exceed or become equal to the given

minimum up or downtime. While counting back, if the algorithm reaches the beginning of

time horizon, it accounts for the initial up and down-times and if the algorithm is unable

to count back further it exits. For simplicity, this aspect is not shown in Algorithm 3. It is

important to note that, Cu,d is calculated for all generators and periods, and Algorithm 3

depends heavily on how minimum up and down constraints are modelled.

Algorithm 3 Count Back

Input : Current point t, Length of segments L1, .., Lk, Minimum up or down time T u
g , T

d
g

Output : Cu,d

1: sum = 0, Cu,d = 0
2: while (sum+ Lp−(Cu,d+1)) < T u,d

g do

3: Cu,d = Cu,d + 1
4: sum = sum+ Lp−Cu,d
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4.4 Experimental Analysis and Discussion

This section presents the experimental analysis conducted to evaluate the performance

of the proposed approach based on SWBT. The algorithm was applied to a thermal unit

commitment problem with hourly resolution where renewable sources are ignored without

loss of generality. The model was then extended according to Section 4.3.2 to facilitate

the variable resolution with valid cost parameters and constraints.

The analysis was carried out by employing two case studies: 6 bus and IEEE 118

system, which can be found at motor.ece.iit.edu. The simple six bus system which is

consisted of 3 generators, 7 lines, and 3 loads, is utilised to illustrate the changes in UC

solution with adaptive time resolution and the 118 system with 54 generators, 186 lines

and 91 loads is used to show the performance of the proposed approach with an extensive

system. In both cases, a system-wide demand profile was considered for a period of

24 hours, where the demand at each bus was determined by a load distribution factor.

As each demand bus usually contains a unique profile, another instance was considered

where multiple demand profiles were taken into consideration. These two instances can

be elaborated as follows.

• In instance A, system-wide load profiles and distribution factors provided in the test

cases were utilized.

• In instance B, multiple load profiles were considered where each demand bus was

given a unique profile. These profiles were obtained from electricity market regions

and planning sub-regions of Australia which can be found at aemo.com.au and were

scaled to suit the system. The 3 demand profiles that represent the 3 loads in the

6 bus system is presented in Fig. 4.1. Since it is not practical to consider 91 load

profiles, the 118 bus system was divided into 5 zones and 5 different demand profiles

were utilised with load distribution coefficients. The 5 zones are. Zone1: buses

1-19 and 117, zone2: buses 20-32 and 113-115, zone3: buses 33-67, zone4: buses

68-102,116 and 118, and zone5: buses 103-112.

These demand profiles were segmented using SWBT algorithm to obtain adaptive

time resolutions. As this analysis aims to compare the performance of SWBT on unit

Figure 4.2: Number of segments for different α values
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commitment with different adaptive resolutions, the SWBT algorithm was applied multiple

times considering a range of α values to obtain a series of adaptive resolutions.

The outcome of SWBT with different α values is illustrated in Fig. 4.2 where the resolu-

tion (number of segments) decreases as the α value (error threshold) increases. Using these

segmented profiles a series of experiments were carried out to analyse the performance of

SWBT according to following criteria.

1. The performance of the proposed approach based on SWBT algorithm

2. The quality of UC solutions with adaptive time resolutions.

3. The ability of SWBT to accurately represent the required operational flexibility

when significant penetrations of renewable sources are involved in the system.

4. Improvement in accuracy compared to the fixed coarse resolution.

All the algorithms and models used in these experiments were implemented and solved

using Python 2.7 and Gurobi 7.0.2 [131] on a PC with a quad-core processor clocking at

2.8GHz and 8 GB RAM. In addition, the default MIP gap of Gurobi 1 × 10−4 was used

except for the IEEE 118 system instance A in which 1× 10−3 was used due to prolonged

computation times. Moreover, for all test cases and instances, the hourly resolution is

considered as the base case.

4.4.1 Performance of the SWBT Algorithm

The performance of SWBT algorithm was analysed by solving the unit commitment

problem repeatedly for all the adaptive resolutions obtained from different α values. The

results are depicted in Fig. 4.3 and Fig. 4.4 in terms of percentage difference in total

cost %∆C and gain in computational speed respectively. Eq. 4.7 presents the percentage

difference in total cost %∆C, where Coriginal represents the total cost (objective value)

obtained with the original profile at 1 hour resolution, and Csegmented represents the total

cost obtained with the segmented profiles. Hence, a positive %∆C value indicates a total

cost greater than the actual cost with the original demand series and negative otherwise.

%∆C =
Csegmented − Coriginal

Coriginal
× 100% (4.7)

Figure 4.3: Percentage cost differences Figure 4.4: Gain in computational speed
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(a) With original demand series (b) With segmented demand series at α = 0.02

Figure 4.5: UC and dispatch solution for G3 in 6-bus system for Experiment 1-B

(a) Dispatch solution for over estimated demand
with α = 0.08

(b) Dispatch solution for under estimated de-
mand with α = 0.06

Figure 4.6: UC and dispatch solution for G3 in 6-bus system for Experiment 1-B

In Fig. 4.3, it is apparent that all %∆C values are within ±1%, and they become

negligible for smaller α values. As smaller α values increase the resolution, the commitment

solution becomes very similar to the actual solution with the original demand series or even

exactly the same. This is presented in Fig. 4.5b, where the UC solution with segmentation

at α = 0.02 (red dashed line) is the same as the original UC solution shown in Fig. 4.5a, but

with a slightly different dispatch solution (blue thick line). Therefore, the very small %∆C

is due to the difference in dispatch solutions. Also, 118 bus system shows relatively small

%∆C values compared to the 6-bus system, because in large networks, cost difference due

to demand approximation is only a small proportion of the total generation costs. Thus

smaller differences in 118 system indicate that adaptive resolution is more beneficial for

larger systems.

When comparing the reduction in computational time illustrated in Fig. 4.4, it is visible

that the 118 bus system has gained significant computational speed-ups compared to the

6 bus system. For 118 bus system instance B, with an α value of 0.1, the unit commitment

is 500 times faster with only 0.3% error in total cost. This improvement in computational

speed further supports the notion that larger systems could gain significant benefits from

adaptive time resolution. The notable difference between computational gains of instance

A and B in 118 system is due to the different MIP gaps, which indicates that for smaller

MIP gaps the speed-up would be higher.

4.4.2 Quality of Unit Commitment Solutions

The quality of UC solutions was assessed by solving the UC problem again with hourly

resolution while imposing the commitment decisions obtained from the adaptive reso-

lution. Forcing commitment decisions could make the problem infeasible. Hence, un-

served demand was introduced to the power balance constraint with a high penalty cost

of 1000$/MWh to ensure feasibility.

The results obtained are depicted in Fig. 4.7, in terms of increase in cost as a percentage

of the actual cost with original resolution. In Fig. 4.7, a majority of UC solutions shows
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only a negligible increase in cost indicating that they are of high quality. In addition, IEEE

118 bus system shows a relatively small increase in cost compared to the 6-bus system.

This is because, in large networks, increased number of generators and their different

properties allow the system to offset approximation errors easily.

However, in some instances, higher α values have produced UC solutions that are

extremely expensive to operate. These significant peaks are mostly caused by the penalty

cost that is related to unserved demand. Unserved demand occurs when the demand is

underestimated with the adaptive resolution. As this makes the UC problem to commit

less number of units, the available units to serve the true demand becomes insufficient.

This is presented in Fig. 4.6b where time intervals (hours) from 2-3 and 6-7 are under-

committed. In other words, at time intervals 2-3 and 6-7 where the generator is committed

with the original hourly resolution (refer to Fig. 4.5a), in the adaptive resolution approach,

the generator is switched off (refer to Fig. 4.6b).

In contrast, the slight increase in cost is produced when the demand is overestimated

with the adaptive resolution. Over-estimated demand commits extra units that are also

expensive to operate. As a result, generators are forced to continue power generation at

a higher cost due to the minimum generation requirement. This is shown in Fig. 4.6a in

which, from time intervals 3-6, the generator is over-committed (switched on unnecessarily)

compared to the UC solution with the original resolution (refer to Fig. 4.5a).

%∆IC =
Cnew − Cpenalty − Csegmented

Csegmented
× 100% (4.8)

These results are also summarised in Tables 4.1 and 4.2, where k is the number of

segments obtained for each α, SPF (speed-up factor) is the gain in computational speed,

∆IC is the percentage increase in cost excluding the penalty cost (to avoid accounting

for unserved demand twice) and %U is the unserved demand as a percentage of the total

demand. ∆IC is shown in Eq. 4.8 where, Cnew is the new cost obtained for the original

demand series with imposed UC decision.

According to Tables 4.1 and 4.2, for a given system the ideal resolution (number of

segments k) to operate would be the α value that has provided the highest computational

gain (SPF) with zero %∆IC or %U (highlighted rows in Tables 4.1 and 4.2). For example,

Figure 4.7: Quality of unit commitment solutions
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Table 4.1: 6-bus comparison with different α

α
Instance A: 1 Profile Instance B: 3 Profiles

k SPF %∆IC %U k SPF %∆IC %U

0.1 4 6.656 0.739 0 6 5.489 0.9 0
0.09 4 8.909 0.739 0 7 5.634 0.748 0
0.08 4 9.606 0.739 0 8 3.366 0.748 0
0.07 6 5.638 0.582 0 8 4.743 0.748 0
0.06 6 5.666 0.582 0 9 4.799 0 0.273
0.05 8 4.661 0 0.023 10 4.359 0 0.008
0.04 9 2.876 0.739 0 11 2.493 0.145 0.008
0.03 11 3.269 0 0.023 14 2.453 0.145 0.008
0.02 13 2.234 0 0.023 16 2.720 0 0
0.01 18 1.871 0 0 23 1.877 0 0
0.009 18 1.179 0 0 23 1.419 0 0
0.008 18 2.145 0 0 23 1.770 0 0
0.007 18 1.976 0 0 23 1.794 0 0
0.006 18 2.011 0 0 23 1.409 0 0
0.005 18 1.358 0 0 23 1.855 0 0

Table 4.2: 118-bus comparison with different α

α
Instance A: 1 Profile Instance B: 3 Profiles

k SPF %∆IC %U k SPF %∆IC %U

0.1 4 65.800 0.148 0 5 532.726 0.078 0.12
0.09 5 23.620 0.148 0 5 534.291 0.078 0.12
0.08 5 23.478 0.148 0 7 278.753 0 0.12
0.07 7 14.914 0.145 0 7 285.235 0 0.12
0.06 7 15.344 0.144 0 8 115.374 0.043 0
0.05 10 10.330 0.141 0 9 30.423 0.043 0
0.04 11 8.148 0.028 0 10 17.844 0.043 0
0.03 13 6.147 0.025 0 13 7.229 0 0
0.02 14 3.329 0.032 0 17 4.142 0 0
0.01 19 3.068 0.028 0 22 0.867 0 0
0.009 19 3.094 0.028 0 22 0.761 0 0
0.008 21 2.722 0 0 23 0.892 0 0
0.007 21 2.724 0 0 24 0.974 0 0
0.006 22 2.271 0 0 24 1.008 0 0
0.005 24 1.000 0 0 24 0.967 0 0

the ideal resolution for 118 bus system Instance B is at α = 0.03, which has utilised 13

segments to provide accurate results with a computational gain of 7.2. For the same

system, a good quality solution with negligible %∆IC can be obtained 115 times faster

using only 8 segments. Similar results can be observed for other instances around the

same α values. In 6 bus system instance A, ideal resolution to operate is α = 0.01

with 18 segments while good quality solutions can be obtained below α = 0.05. This

indicates that for a given system, 8-18 segments, i.e. 25-60% aggregation level is the most

suitable range for adaptive time resolution to obtain high-quality solutions with significant

computational gains. This roughly translates to an α range of 0.01 − 0.05 depending on

the data provided. Although it is possible to obtain good quality solutions at higher α

values with significant computational gains, according to Fig. 4.7 these values may also

provide highly inaccurate solutions that are extremely expensive to operate. Therefore,

large α values are not recommended unless a substantial gain in computational speed is

essential at the cost of lower accuracy.
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4.4.3 Impact of High Penetrations of Renewable Generators

This section examines the ability of SWBT to accurately represent the required oper-

ational flexibility when significant penetrations of renewable sources are involved in the

system. A large percentage of renewable resources was included by replacing the original

demand profiles with artificial net demand profiles as shown in Fig. 4.9. These net load

profiles represent significant penetrations of solar, which require high ramping capabilities

during the evening peak because of the increasing demand with decreasing solar output.

Thus, they are utilised to investigate the ability of low resolutions to represent the required

operational flexibility accurately in a system.

The previous set of experiments were repeated with the new set of net demand profiles,

where once again the profiles were segmented considering a range of α values. Fig. 4.8

depicts the new segmented demand profiles for α = 0.05, which evidently shows SWBT’s

ability to determine significant variations through increased resolution at the evening peak

and low resolution during other time periods. Consequently, SWBT was able to capture

the required operational flexibility accurately, which is demonstrated in Fig. 4.10 and

Fig. 4.11 in terms of percentage difference in total cost %∆C and the percentage increase

in total cost respectively.

According to Fig. 4.10, for all α values the proposed approach has provided accurate

results with small %∆C values. This indicates that SWBT algorithm is capable of provid-

ing precise solutions for demand profiles with significant variations even at low resolutions.

On the other hand, Fig. 4.11 verifies that obtained UC solutions are of good quality since

all the %∆IC values are negligible. Absence of significant peaks in Fig. 4.11 denotes

that increase in costs are mostly due to over-commitment rather than unserved demand,

thus further emphasises the high quality of UC solutions. Once again, IEEE 118 system

exhibits considerably smaller increases in cost compared to the 6 bus system due to the

large number of generators, which enhances the benefit of the proposed approach for large

systems.

Figure 4.8: 6 Bus system instance A with significant variations at α = 0.05



54 CHAPTER 4. TIME RESOLUTION IN UNIT COMMITMENT

(a) 6 Bus system instance A (b) IEEE 118 Bus system instance A

Figure 4.9: Net load with significant penetrations of rooftop solar

Figure 4.10: Percentage difference in cost Figure 4.11: Percentage increase in cost

4.4.4 Adaptive Vs Fixed Resolution

This section compares the adaptive resolution approach to the commonly used fixed

resolution method. For a fair comparison, both methods were investigated with the same

number of segments. In fixed resolution, 2-6 hr time blocks were considered to obtain 12,

8, 6 and 4 segments. The same number of segments were achieved with adaptive resolution

by varying the α value. This is illustrated in Fig. 4.12 which depicts the segmentation for

both adaptive and fixed approaches. The figure clearly shows the difference in segment

lengths for 8 time segments in the two approaches. Similar to other evaluations, the

experiments were repeated with fixed and variable resolution demand profiles, and the

results obtained are provided in terms of percentage difference in cost and percentage

increase in cost in Fig. 4.13 and Fig. 4.14 respectively.

When comparing the percentage difference in total costs (Fig. 4.13), fixed resolution

constantly underestimated the total cost in 6 bus system compared to the adaptive reso-

lution. Since underestimations correspond to under-commitment, these solutions yielded

extremely high penalty costs when evaluated due to unserved demand (Fig. 4.14). In con-

trast, for 118 system, fixed resolution estimated the total cost more accurately with less

over-commitment. However, the quality of solutions was poor (large percentage increase

in cost Fig. 4.14). This is due to the distortion that occurs in demand profiles with fixed

time blocks (Fig. 4.12). Distorted demand profiles cause the system to schedule a different

commitment profile making the generators available to supply actual demand insufficient

in some time periods. As a result, solutions provided by the fixed resolution overall had

poor quality compared to the solutions provided by the adaptive time resolution.
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(a) Adaptive resolution with α = 0.07 (b) Fixed resolution with 3 hr length

Figure 4.12: Adaptive and fixed resolution with 8 segments (66.67% aggregation level)

Figure 4.13: Percentage difference in cost Figure 4.14: Percentage increase in cost

Furthermore, at extremely coarse resolutions both methods showed poor performance

producing low-quality solutions. However, adaptive resolution performed comparatively

better with over-committed solutions reducing the risk of unserved demand and penalty

costs. Unlike the adaptive resolution approach, fixed resolution approach is also limited to

a smaller set of aggregation levels. The smallest possible aggregation level (50%) already

discards half of the time periods and the next possible aggregation level (66.67%) falls out-

side the recommended range (25-60%). So, the fixed resolution method has only a limited

set of possible aggregation levels compared to the adaptive resolution approach. Therefore,

it is evident that the proposed approach based on adaptive resolution (SWBT) improves

the accuracy and provides more flexibility compared to the fixed resolution approach.
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4.4.5 Application to Operational Simulations and Planning Problems

The proposed approach based on adaptive resolution can be successfully applied to

day-ahead unit commitment problems and even unit commitment simulations with longer

durations (e.g. one year) to determine the generator schedule and their availability with

reduced computational effort. In addition, it can be applied to operational simulations

that aim to evaluate and check the feasibility of a given investment solution (e.g. unit

commitment simulation with the rolling horizon technique discussed in Section 3.3.2).

In addition to the unit commitment simulations, the proposed adaptive resolution

approach based on SWBT can also be applied to find optimal investment solutions with

rolling horizons. For example, optimal investment solutions can be found by solving the

daily unit commitment problems in a cyclic manner with investment decisions set across

all representative periods [120]. Adaptive resolution can be applied to solve these cyclic

unit commitment problems more efficiently.

In addition, the SWBT algorithm can be utilised to reduce the computational bur-

den when solving the GTEP-UC formulation directly with commercially available solvers.

However, to achieve a resolution that is capable of producing results within a reasonable

period of time for a horizon of one year, the problem will require an extremely coarse

resolution of 8-12 hr segment lengths. Since long time segments can cause the investment

solutions to deviate significantly as a result of the distorted demand and renewable gen-

eration profiles, in such cases, it is more appropriate to use SWBT in conjunction with

another approach such as representative days or decomposition techniques. As decompo-

sition techniques divide the problem into multiple sub-problems potentially with shorter

horizons, SWBT can acquire significant computational speed-ups in the sub-problem level,

and thus in the overall problem without compromising the accuracy substantially.

4.5 Conclusion and Limitations

This chapter proposes an adaptive time resolution approach to reduce the computa-

tional time required to solve power system operational models. While the most commonly

used approach is fixed coarse resolution, this method could produce inaccurate solutions

due to the exclusion of important time periods that characterises operational flexibility.

Hence, a coarse resolution that is adaptive to a given data set is proposed and used. In

the approach, consecutive time periods with similar operational conditions are grouped

together to lengthen the time interval and lower the resolution where it can be afforded.

A heuristic sliding window (SW) algorithm is utilised to achieve this goal, where time

segment lengths are increased until the approximation error exceeds a predefined error

threshold. As SW only propagates right and does not attempt to rearrange the segments

on the left side, a novel backtracking algorithm (BT) is also used to reduce the error fur-

ther and approximate the demand series better. This combined algorithm is referred to as

the sliding window with backtracking (SWBT). Since the aggregated time periods must be

accounted for in the unit commitment model, the objective function and few constraints

were also modified to ensure that the cost parameters and system limitations are valid.
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Evaluation of the proposed approach showed that adaptive resolution is capable of

providing accurate solutions with substantial gains in computational speed, especially in

large systems. These solutions are also of high quality as they only require a negligible

increase in cost to meet the real demand. Moreover, the analysis identified that the suitable

error threshold range to operate SWBT is from 0.01-0.05 which roughly represents an

aggregation level of 25-60%. Within this range, the proposed approach based on SWBT

can be successfully applied to unit commitment problems to reduce the computational

time while providing high-quality solutions.

Furthermore, additional investigations showed that SWBT is capable of producing

accurate results even with drastic variations in demand profiles. By increasing the res-

olution along the periods with significant fluctuations and decreasing the resolution at

other periods, SWBT was able to provide good approximations for demand profiles with

coarser resolutions. In comparison to the commonly used fixed resolution method, the

proposed approach based on SWBT provided better quality solutions. As the profiles

are segmented in an adaptive manner, the demand profiles showed minimum distortion

thereby improving accuracy. Furthermore, adaptive resolution has the benefit of operat-

ing at many aggregation levels in contrast to the fixed resolution method. Thus, SWBT

based on adaptive resolution is an improved approach compared to the widely used fixed

resolution approach.

While the adaptive resolution method is highly appealing to reduce the computational

burden in operational models, sole use of SWBT is mostly suitable for problems with short

planning horizons (e.g. day-ahead unit commitment, planning and operational simulations

with rolling horizon). When the planning horizon is long, the segment lengths must be

increased substantially to reduce the number of segments and solve the problem within

a reasonable period of time. Since long time segments cause the demand profiles to

distort significantly, the resulting inaccurate operational decisions may produce investment

solutions that are far from optimal. Thus, for problems with long planning horizons,

it is more appropriate to use SWBT with other approaches that reduce computational

complexity, such as decomposition techniques.
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Chapter 5

Scenario Decomposition for

GTEP-UC

5.1 Introduction

Large optimisation problems often comprise a decomposable structure allowing them

to be solved as multiple sub-problems in a distributed manner. Energy system planning

problem with unit commitment also consists of such structure, which has been exploited

already by Bender’s and Dantzig-Wolfe decomposition techniques. However, application

of these methods has been less effective, because of the integer variables in both invest-

ment and operational levels, and inter-temporal constraints in the problem. Therefore,

this chapter proposes a novel decomposition framework based on an existing scenario de-

composition approach to decompose the generation and transmission expansion planning

problem with unit commitment(GTEP-UC).

The first section of this chapter introduces the GTEP-UC problem and its structure

for both single and multi-period formulations. Then, the chapter proposes the scenario

decomposition framework and its application to GTEP-UC problem. The next section

evaluates the proposed framework discussing its potential and limitations comprehensively,

and compares it with the Bender’s decomposition. The decomposition framework and the

extensive analysis constitute the key contributions of this chapter. Finally, the chapter

concludes that the proposed approach is suitable to decompose GTEP-UC problems and

provides insights for algorithmic extensions.

5.2 Motivation

Although Bender’s and Dantzig-Wolfe decomposition have already been applied to the

energy system planning problem with unit commitment [121, 123, 124], their application

has been less effective in practical instances. For Bender’s and Dantzig-Wolfe decomposi-

tion, binary variables in the problem must be part of either master or slave sub-problem

to obtain dual information that is essential for bound improvement and algorithm conver-

gence. Because of these requirements, Bender’s decomposition often results in a master
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problem that is too large for efficient solution [121,123], and having to integrate additional

approaches like branch and price with Dantzig-Wolfe decomposition [124].

On the other hand, the scenario decomposition approach has the advantage that it has

reduced dependency on problem structure and does not require dual information to be

passed between sub-problems. Rather, it follows an evaluate and cut scheme to improve

the bounds and converge the algorithm. The method also facilitates parallelisation to gain

computational speed-ups, as components of the algorithm have very little dependency on

each other.

However, scenario decomposition approach was initially proposed for stochastic opti-

misation problems with independent scenarios/sub-problems. This is in contrast to de-

composing a deterministic optimisation problem into sub-problems that are linked by

inter-temporal constraints. The adaptation of scenario decomposition to deterministic

optimisation problems thus requires innovation. Therefore, this chapter proposes a de-

composition framework based on scenario decomposition for the deterministic generation

and transmission expansion planning problem with unit commitment.

In addition, GTEP-UC problems are typically formulated with multiple periods to

determine when to construct in the planning horizon. These formulations are compu-

tationally more challenging because they must account for investment and operational

decisions in multiple periods. Benders and Dantzig-Wolfe decomposition techniques have

the ability to deal with decision variables in multiple periods through the dedicated mas-

ter problem (investment decisions) and as an additional set of sub-problems (operational

decisions). Scenario decomposition however does not comprise a master problem and the

scenario sub-problems are also generally limited to one period. Therefore, this chapter

aims to describe the application of scenario decomposition to multi-period problems.

5.3 Problem Formulation and Structure

Energy system planning problem assumes that a set of candidate investments including

thermal generators, transmission lines, large scale wind and solar farms are provided. In

addition, it assumes that for each candidate option, size, technology and location are

already defined such that only the investment decision is left to be decided. Hence, binary

decision variables are utilised to determine the “invest” and “do not invest” decisions. The

single-period model that considers a representative year with annualised capital cost can

be provided as follows.

min
∑
i∈I

CI
i xk,i +

∑
t∈T

∑
g∈G

(Cvar∗
t,g (pk,t,g) + Cc

guk,t,g + Cu
g vk,t,g + Cd

gwk,t,g) +
∑
n∈N

Cpqk,t,n

 (5.1)
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s.t.

uk,g,t 6 xk,g ∀k, g, t (5.2)

uk,g,t − uk,g,t−1 = vk,g,t − wk,g,t ∀k, g, t (5.3)

t∑
i=t−TU

g +1

vk,g,i 6 uk,g,t ∀k, g, t (5.4)

t∑
i=t−TD

g +1

wk,g,i 6 1− uk,g,t ∀k, g, t (5.5)

Pmin
g uk,g,t 6 pk,g,t 6 Pmax

g uk,g,t ∀k, g, t (5.6)

pk,g,t − pk,g,t−1 6 RU
g uk,g,t−1 + SU

g vk,g,t ∀k, g, t (5.7)

pk,g,t−1 − pk,g,t 6 RD
g uk,g,t + SD

g wk,g,t ∀k, g, t (5.8)

Fmin
l xk,l 6 fk,t,l 6 Fmax

l xk,l ∀k, l, t (5.9)

− (1− xk,l)M 6 fk,l,t −Bl(θk,s,t − θk,r,t) ∀k, l, t (5.10)

(1− xk,l)M > fk,l,t −Bl(θk,s,t − θk,r,t) ∀k, l, t (5.11)

− θmax 6 θk,n,t 6 θmax ∀k, n, t (5.12)

θk,n,t = 0 n : slack, ∀k, t (5.13)

0 6 yk,r,t 6 Y max
k,r,t xk,r ∀k, r, t (5.14)

0 6 qk,n,t 6 ∆Dk,n,t ∀k, n, t (5.15)∑
g∈G(n)

pk,g,t +
∑

l∈L|r(l)=n

fk,t,l −
∑

l∈L|s(l)=n

fk,t,l +
∑

r∈R(n)

yk,r,t (5.16)

+ qk,n,t = Dk,t,n ∀k, n, t (5.17)

In the formulation above, i, k, t, n, g, l, r are indices for candidate unit, period (k = 1

in single-period formulation), time, node (bus), thermal generator, transmission line and

renewable generator; I,K, T ,N ,G,L,R are the corresponding sets; r(l), s(l) denote re-

ceiving and sending bus of line l; CI indicates the annualised investment cost of candidate

units; Cvar∗(pt,g) represents the variable cost of generation; Cc
g , C

u
g , C

d
g are commitment,

start-up and shut-down cost; Cp is the penalty cost for unserved demand (i.e. demand

not met); P
max/min
g , T

u/d
g , R

u/d
g , S

u/d
g are maximum and minimum generation limits, min-

imum up and down times, ramp up and down limits and start-up and shut-down limits;

F
max/min
l , Bl are maximum and minimum power flow limits and susceptance; θmax de-

notes maximum phase angle; Y max is the maximum available renewable output; D,∆D

are the nodal demand and nodal net demand; x, u, v, w are binary decision variables for

investment, commitment, start up and shut down status; and p, y, f, θ, q are continuous

variables for thermal generation, renewable generation, power flow phase angle and un-

served demand.

The objective function 5.1 minimises the annualised investment cost, hourly power gen-

eration cost, commitment cost, start-up and shut-down cost and penalty cost of unserved

demand for a period of one year. In addition, for the power generation model Cvar∗(pt,g),

linear cost is used. Constraint 5.2 limits the commitment to existing and invested genera-

tors, where as 5.3 manages the start-up and shut-down events. In addition, constraints 5.4
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and 5.5 controls the minimum up and downtimes. Constraint 5.6 bounds the power gen-

eration between minimum and maximum generation limits, while constraints 5.7 and 5.8

set ramp-up, ramp-down, start-up and shut-down limits for all generators in all periods.

Constraints 5.9 - 5.11 restrict the power flow through existing and candidate transmission

lines following a DC model. The “Big M” method is used to linearise the non-linear DC

equation, in which M represents a large constant. The linearisation also decouples the

phase angles mathematically at nodes r and s, and enables the power flow fk,l,t over line

l between r and s to correctly take the value zero, when the line l is not constructed (i.e.,

when xk,l = 0). Constraint 5.12 bounds the phase angles and 5.13 sets the phase angle of

reference (slack) bus to zero. Constraint 5.14 limits the renewable output where dispatch-

able renewables are considered with no penalty for curtailment. Constraint 5.15 restricts

the unserved demand and finally, constraint 5.17 enforces the nodal power balance.

In addition, the multi-period formulation that considers a long planning horizon and

makes investment decisions in multiple periods can be provided as follows. The planning

horizon is divided into multiple periods with a constant step size (d), and for each period,

a representative year is considered with an annualised capital cost, which is assumed to

be at the beginning of the period. Consideration of a representative year reduces the

size of the problem, and annualised capital cost ensures that expensive long-lived assets

are not discriminated. Thus, the total cost for the representative year is multiplied by a

factor α to account for the duration of the entire period. This factor α that is calculated

using Eq. 5.18 also accounts for the discount rate and converts the future values to present

values using the net present value (NPV) concept.

αk =

d∑
j=1

(1 + γ)(k−1)d+j k = 1..|K| (5.18)

min
∑
k∈K

αk

[∑
i∈I

CI
i xk,i +

∑
t∈T

Cop
t

]
(5.19)

s.t

xk−1,i 6 xk,i ∀k, i (5.20)

Eq. 5.2− Eq. 5.17

In this set of equations, k is the period; α is the multiplication factor; γ is the discount

rate, d is the duration of the period in years and xk,i is the investment decision in period

k. The objective function Eq. 5.19 minimises the discounted investment and operational

costs. The building constraint Eq. 5.20 ensures that all the existing and invested assets

are available for subsequent stages. Without loss of generality, retirements are ignored in

this formulation.

In this regard, GTEP-UC consists a block structure which can be exploited to apply

a decomposition technique. Fig. 5.1 illustrate this structure where investment decisions

are considered as the complicating variables and inter-temporal constraints are considered

as the complicating constraints. Since investment decisions have an impact on every
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Figure 5.1: GTEP-UC problem structure

operational decision and fixing them in the operational level separate the problem into two

parts: investment and operational, investment decisions can be considered as complicating

variables. Similarly, if the inter-temporal constraints such as ramping limits and minimum

up-down times at the boundaries of days or weeks are removed, the days and weeks become

distinct allowing the operational problem to be divided into multiple sub-problems. Thus,

the inter-temporal constraints can be considered as complicating constraints.

5.4 Scenario Decomposition Application

Scenario decomposition [104] was initially proposed for stochastic problems, where

each scenario is an independent realisation of some stochastic processes. In the stochastic

paradigm, the goal of scenario decomposition is to find a solution that is feasible for all the

scenarios, even though only one scenario is expected to be realised. Thus, each scenario

is given a weight that reflects the estimated probability of occurrence, and is solved as a

separate sub-problem.

In contrast, GTEP-UC is deterministic, and aims to find an investment solution that

is feasible throughout the planning horizon. Scenario decomposition is utilised to exploit

the time decomposable structure of the GTEP-UC problem, where each sub-problem is

a planning problem with a shorter horizon (e.g. a day or a week). These sub-problems

are illustrated in Fig. 5.2, where all sub-problems are comprised of both investment and

operational decisions. Because of the deterministic nature, the notion of “scenario” in

GTEP-UC context refers to a daily or weekly sub-problem that is thought to be likely to

happen. So, for the application of scenario decomposition to be successful in GTEP-UC

context, the inter-temporal constraints that bounds daily and weekly scenarios must be

tackled. This section aims to elaborate on the modifications that are essential to facilitate

scenario decomposition in GTEP-UC context, and presents the decomposition framework

for both single-period and multi-period GTEP-UC problems.

Figure 5.2: Time-based GTEP-UC decomposition with scenario decomposition
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5.4.1 Single-Period GTEP-UC

As described in [104], the scenario decomposition method consists two main phases:

candidate solution generation and candidate solution evaluation. In the candidate so-

lution generation phase, independent scenarios are solved as separate sub-problems to

generate potential solutions. In the candidate solution evaluation phase, these solutions

are evaluated and eliminated to find the optimal solution.

Similarly, the proposed decomposition framework presented in Algorithm 4 consists

two phases: candidate solution generation and candidate solution evaluation. In the can-

didate solution generation phase, the sub-problems are formulated as planning problems

with shorter horizons by bringing complicating yearly investment decisions into each sub-

problem. Since scenario sub-problems are (deterministically) certain to happen, they are

formulated with unit weights, and the annualised capital cost is discounted1 to account

for the shortened horizon. The daily or weekly sub-problems are then solved separately to

find candidate investment solutions (line 7). As optimal investment solutions of individ-

ual sub-problems provide the best solutions for themselves, the summation of sub-problem

objective values provide a lower bound LB to the overall problem (line 8).

The complicating inter-temporal constraints are tackled by completely removing them

near the boundary of each sub-problem (at the beginning and end of the shortened hori-

zon). This removal eliminates the intra-day and intra-week dependencies between sub-

problems and makes each sub-problem independent allowing them to be solved separately.

As a result, initial conditions for a particular day are no longer passed from the previ-

ous day and the sub-problems are forced to initialise from an arbitrary state. While this

arbitrary state can be either “switched off” or “switched on” with some generation for ex-

isting generators, for candidate thermal generators the initial state must be “switched off”.

Thus, if a particular generator is invested in every scenario, this arbitrary “commitment”

state could accumulate start-up costs unnecessarily making the lower bound invalid. In

addition, such initial state could also lead to over-commitment, as the invested generator

is forced to be “on” for the required duration of minimum up time in every scenario. But

in reality, the particular unit may have already served the required minimum up time

during the preceding hours, days or weeks, and shutting down can be freely permitted.

Also, the arbitrary initial “generation” states could over-constrain the system flexibility

and lead to unnecessary generation, because of the ramp up-down and startup-shutdown

limitations. As a consequence, they could incur further additional costs. Therefore, in the

sub-problem formulation, the following modifications are made to ensure that the lower

bound is always valid. Note that, these modifications make the lower bound value even

lower, as decisions in the first time period are allowed to take any value at zero cost.

1For example, if each sub-problem is a day, the daily capital cost can be found by dividing the annualised
capital cost by 365.
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Algorithm 4 Scenario Decomposition

1: Initialise: UBU =∞, LB = −∞, iter = 0, Pool = empty
2: while LB < UBU do
3: iter+ = 1
4: % Candidate solutions generation
5: LB = 0 solutions = empty
6: for s in Sub-problems do
7: (obj, sol) = Solve(s)
8: LB+ = obj
9: solutions = Include(sol, solutions)

10: % Candidate Solution Evaluation
11: for sol in solutions do
12: ζL = 0
13: for s in Sub-problems do
14: s = Fix(s, sol)
15: obj = Solve(s)
16: ζL+ = obj

17: if ζL < UBU then
18: Pool = Add(sol, Pool)
19: ζU = RollingHorizon(sol)
20: if ζU < UBU then
21: UBU = ζU

22: % Add integer cuts
23: Sub-problems = IntegerCuts(solutions, Sub-problems)

1. To avoid accumulating start-up cost in every scenario, start-up cost of thermal gen-

erators are disregarded in the first time period.

2. To avoid over-constraining the system flexibility, ramping constraints for the first

time period are ignored allowing the thermal units to settle down to the required

generation without any additional cost.

3. To allow realistic flexible start-up and shut-down status, the commitment decisions

for the first time period are removed from the minimum up and down constraints in

each sub-problem.

When choosing the sub-problem size, it is imperative to select a size that maximises

the efficiency of the algorithm. If the chosen problem size is smaller than ideal, exclusion of

many inter-temporal constraints and start-up costs will weaken the lower bound delaying

the convergence. If the problem size is too large, the time required to solve sub-problems

will be significant, leading to the algorithm being less efficient. Hence, a planning horizon

of one day with daily capital cost is chosen for the experiments reported in this chapter.

Since 24 hours is the longest minimum up and downtime for a standard thermal generator

(e.g. coal) in a system, one day is reasonable to model the functionality of thermal units

with less discrepancy.

In the candidate solution evaluation phase, the previously relaxed complicating vari-

ables and constraints are taken into account by fixing the generated candidate investment

solutions and evaluating them individually. The investment solution with the lowest to-

tal system cost becomes the upper bound UB and the incumbent solution. Note that,

every investment solution is considered as a feasible solution to the full problem, because
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unserved demand is penalised rather than being considered an infeasibility in the formu-

lation. The algorithm then prohibits revisiting each of the evaluated solutions using the

integer cut given in Eq. 5.21 (line 23), which eliminates exactly one solution at a time.

The integer cuts force different solutions in the next iteration that are more expensive for

the sub-problem that generated them, but globally more optimal. Therefore, they raise

the sub-problem lower bounds, and consequentially the global lower bound LB converging

the algorithm when global LB exceeds global UB.

∑
j:x̂j=1

(1− xj) +
∑

j:x̂j=0

xj > 1 ∀x̂ ∈ S (5.21)

Ideally, to evaluate the solutions and generate an upper bound UB for any given set of

investment decisions, unit commitment (UC) model must be solved for the entire planing

horizon. This is a computationally-intensive process and rather impractical even with the

investment variables taking fixed values. In our framework, we therefore check convergence

by calculating an upper bound on the global upper bound UBU , instead of calculating

the actual global upper bound UB. By modifying the algorithm to converge when global

lower bound LB exceeds UBU (line 2), the framework ensures that the global optimal

solution has been already realised at some stage in the solution process.

Specifically, for any investment solution i, let ζUi be an upper bound and ζLi be a

lower bound on the optimal total cost ζ∗i of the GTEP-UC problem with the investment

solution i. The lower bound on total systems cost ζLi is generated by fixing the investment

solutions in the modified sub-problems (line 14) and resolving them. Since individual sub-

problems produce the lowest cost for themselves, the sum of the resulting objective values

provides a lower bound on the exact total cost of investment solutions (line 16). The

upper bound ζUi is obtained by utilising the rolling horizon technique (line 19) discussed

in Section 3.3.2. Since rolling horizon force operational decisions of the previous day to

next day, the summation of objective values provides an upper bound on the total system

costs.

Recall that the upper bound on the current-best solution UBU is the minimum value of

upper bounds across the set of all candidate option solutions I. Hence, any solution i with

ζLi ≤ UBU (line 17) becomes a potential optimal solution, as it could satisfy the condition

ζLi ≤ ζ∗i ≤ UB ≤ UBU , where UB is the current global upper bound, for which the true

optimum value is unknown (as also holds for ζ∗i ). Thus, a solution i with ζLi ≤ UBU is

added to a solution pool K (line 18), and is evaluated through rolling horizon approach

to determine ζUi (line 19). Then, if ζUi ≤ UBU (line 20), the UBU is also updated to the

newly found ζUi (line 21).

Once the global lower bound LB exceeds UBU , then the globally optimal solution has

been found and will be one of the solutions in pool K. However, which of the solutions in

K is the global optimal is not immediately known. Heuristically, the best solution can be

considered as the solution with the lowest ζU value, or alternatively, a unit commitment

model for the entire planning horizon can be calculated for the few potential solutions.
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Figure 5.3: Scenario decomposition for two-period GTEP-UC problem

5.4.2 Multi-Period GTEP-UC

When generating candidate solutions with two or more sequential investment peri-

ods, the resulting investment solutions are comprised of decisions for each of the periods.

Hence, to apply the scenario decomposition approach, each sub-problem must contain

the investment decision variables from every investment period. Constraints must act

on these variables in combination if they are to take sensible values. So, we propose to

combine daily scenarios from every investment period into each of the sub-problems. In

other words, we propose to generate initial sub-problems in a way that each sub-problem

consists at least one scenario from each period. This unification allows constraints that

couple different periods to be added into the sub-problems, as they now contain invest-

ment decisions and daily operations from all periods. Nevertheless, each daily scenario

is independent of others in the sub-problem except for the common dependence on the

investment decision variables and the investment coupling constraints that involve these

variables.

In this chapter, the SD algorithm is applied to a two-period formulation. The two-

period SD algorithm therefore commences with pairs of scenarios rather one. To determine

the initial pairs and form the set of sub-problems, we utilised corresponding days from each

period. For example, day 1 from each period is combined into one sub-problem and the

building constraint is added across all of them. Sub-problem formulation with two periods

are depicted in Fig. 5.3. Once sub-problems with pairs of scenarios are formulated, the

candidate solution generation phase is executed similar to single-period application. To

ensure a valid lower bound, each sub-problem (both scenarios) is modified by removing the

initial conditions (refer to the previous section). As all the sub-problems choose the best

two-period solution for themselves, the lower bound is found by summing the objective

values of sub-problems.

In the candidate evaluation phase, the evaluation is carried out in a similar fashion to

the single-period problem. To generate ubL, each investment solution is evaluated by fixing

the investment decisions in the sub-problems and resolving them. And, to generate ubU

rolling horizon approach is employed. In rolling horizon approach, no overlap duration

is considered between periods, because only the first year of each period is taken into

consideration. Once evaluated, investment solutions with ubL ≤ UBU are added to a

solution pool K, and UBU is updated accordingly. Similarly to the approach taken to

the single-period problem, the evaluated solutions are excluded from the search space by

means of integer cuts, which include decisions from all periods.
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5.5 Bender’s Decomposition for Single-Period GTEP-UC

This section presents the application of Bender’s decomposition to the GTEP-UC

problem for comparison with the scenario decomposition approach. The method is applied

similar to Kamalinia et al. [121] and Schwele et al. [123], in which the Bender’s decomposi-

tion was utilised to decompose a stochastic GTEP-UC problem. In this chapter, Bender’s

decomposition is applied to a deterministic GTEP-UC problem where, inter-temporal

constraints are tackled using both classic and multi-cut Bender’s. In addition, minimum

up-down constraints and start-up costs are taken into consideration unlike the previous

applications [121, 123]. Bender’s decomposition operates as a master problem, and one

or more slave sub-problems iterating between the two until the stopping criterion is met.

Therefore, this section presents the details of the master problem, slave sub-problems and

the Bender’s algorithm.

Master problem

In Bender’s decomposition, to obtain dual information from the sub-problems, the

sub-problems must be an LP problem. As a consequence, all integer variables must be

present in the master problem 2. In the GTEP-UC formulation, the integer variables

or rather binary variables are the yearly investment decisions and hourly commitment,

start-up and shut-down decisions for a period of one year. Thus, these binary decisions

with their corresponding constraints constitute the master problem. Formulation for the

master problem can be given as follows.

The objective function 5.22 represents the summation of annualised capital cost, com-

mitment, start-up and shut-down costs and operational cost α for slave sub-problem s,

and constraints 5.23 - 5.26 present the commitment limits for thermal generators, start-up

shut-down limits, minimum up and minimum downtime limits. In addition, constraint

5.27 bounds the operational costs α to be non-negative. And finally, constraint 5.28 rep-

resents the Bender’s cut which get added in each iteration j until current iteration m,

where f
sub(j)∗
s are the sub-problem objective function values in previous iterations and

λ, µ, ν, ω are the dual values for investment, commitment, start-up and shut-down deci-

sions obtained from the slave sub-problems. When the number of sub-problems is more

than one, the approach results in a multi-cut Bender’s formulation, where a cut is added

from each sub-problem.

min fmas =
∑
i∈I

CI
i xi +

∑
s∈S

∑
t∈T

∑
g∈G

+Cc
gus,t,g + Cu

g vs,t,g + Cd
gws,t,g

 + αs (5.22)

2Unless we relax the problem in some way that enables integer variables to be replaced by continuous
variables in the sub-problems
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s.t.

us,g,t 6 xg ∀s, g, t (5.23)

us,g,t − us,g,t−1 = vs,g,t − ws,g,t ∀s, g, t (5.24)

t∑
i=t−TU

g +1

vs,g,i 6 us,g,t ∀s, g, t (5.25)

t∑
i=t−TD

g +1

ws,g,i 6 1− us,g,t ∀s, g, t (5.26)

αs > 0 ∀s (5.27)

αs > fsub(j)∗s +
∑
i∈I

λ
(j)
s,i (xi − x

(j)
i )

+
∑
g∈G

∑
t∈T

µ
(j)
s,g,t(us,g,t − u

(j)
s,g,t)

+
∑
g∈G

∑
t∈T

ν
(j)
s,g,t(vs,g,t − v

(j)
s,g,t)

+
∑
g∈G

∑
t∈T

ω
(j)
s,g,t(ws,g,t − w(j)

s,g,t) ∀s,m > 2, j = 1....m− 1 (5.28)

Slave Sub-problem

Since both investment and commitment decisions are taken to the master problem,

the slave sub-problem is essentially an economic dispatch model with ramping constraints,

where the dispatch decisions are bounded by the unit commitment decisions.

minfsubs

∑
t∈T

∑
g∈G

(Cvar∗
g (ps,t,g)

 +
∑
n∈N

Cpqs,t,n) (5.29)

s.t.

Eq. 5.6− Eq. 5.17

xi = x
(m)
i : λi ∀i ∈ I (5.30)

us,g,t = u
(m)
s,g,t : µs,g,t ∀g, t (5.31)

vs,g,t = v
(m)
s,g,t : νs,g,t ∀g, t (5.32)

ws,g,t = w
(m)
s,g,t : ωs,g,t ∀g, t (5.33)

The objective function 5.29 presents the cost of generation and penalty for unserved

demand, where Cvar∗
g (pg) is assumed to be linear. In addition, constraints 5.6 - 5.17 repre-

sent the operational constraints: generation limits, DC power flow, renewable generation

constraints and nodal power balance. Finally, constraints 5.30 - 5.33 fix the decisions

obtained from the master problem, in which λ, µ, ν, ω represent the associated dual prices.

This slave sub-problem can be formed either as one big LP problem (classic) or multiple

sub-problems (multi-cut). If formulated as multiple sub-problems, similar to Section 3.3.2,

an overlap duration can be considered to account for inter-temporal ramping constraints

and satisfy boundary conditions. Then the operational cost and dual prices for the overlap
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duration can be discarded when computing fsubs . This overlap will eliminate the need for

feasibility cuts in the Bender’s formulation 3.

Therefore, Bender’s decomposition is formulated as both classic and multi-cut Bender’s

to investigate its performance with scenario decomposition. While the classic Bender’s

considers one sub-problem for the entire duration, multi-cut Bender’s considers several sub-

problems with an overall duration of 48 hours (24 hrs sub-problems with 24 hrs overlap).

These variations are achieved by controlling the set of time periods T and the number of

sub-problems in the above formulation.

Bender’s Decomposition Algorithm

1. Initialise the Benders algorithm with iteration count set to m = 1

2. Solve the Master problem defined by Eq. 5.22 - 5.28, to obtain the investment decision

x(m) and the lower bound LB where LB = fmas∗. For the first iteration solve the

master problem without the Bender’s cut (Eq. 5.28).

3. Fix the investment decisions, and solve the sub-problems s ∈ S to obtain the op-

erational cost fsub∗s and the dual values λ, µ, ν, ω. For multi-cut Bender’s solve the

sub-problems sequentially.

4. Calculate the upper bound UB where,

UB = fmas∗ −
∑

s∈S αs +
∑

s∈S f
sub∗
s

5. If |UB − LB| 6 ε where ε denotes the Bender’s gap, exit with the current solution,

else update the iteration count to m = m+ 1 and go to step 2.

5.6 Experimental Analysis and Discussion

This section provides details of the experimental analysis conducted to evaluate the

performance of the proposed scenario decomposition framework in both single-period and

multi-period setting.

5.6.1 Experimental Setup

To analyse the performance of scenario decomposition framework, four test cases: 6

bus, 14 bus, 18 bus and 24 bus, with different numbers of nodes were utilised. The

details of the test cases are provided in Appendix A, and a summary of test cases is

provided in Table 3.2. In addition, a summary of model attributes is provided in Table 3.3.

For the single-period formulation, a representative year was considered with hourly time

resolution. For the multi-period formulation, a 20 year horizon was considered with two

10 year periods and hourly time resolution. In each period, it was assumed that the

representative year with hourly resolution is at the beginning of the duration. The total

cost for the 10 year duration was taken into account through the co-efficient α.

To analyse the performance with different problem sizes, each test case was represented

with 24 days (two days from each month), 84 days (one week from each month) and

3Feasibility cuts are not required with the current formulation, as unserved demand is considered as a
penalty rather than as an infeasibility
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Table 5.1: Performance of scenario decomposition with single-period

Test Case Instance Opt. gap % Res. gap % Num. sol.

6 Bus
24 0 0.1225 2
84 0 0.0122 1
365 0 0.3012 2

14 Bus
24 0 0.1171 3
84 0 0.0416 1
365 2.195 0.2059 4

18 Bus
24 4.430 0.0045 1
84 5.972 0.0029 1
365 8.038 0.0013 1

24 Bus
24 6.880 0.0794 3
84 7.566 0.0243 1
365 10.211 0.1013 2

364 days (to allow groups of 4 scenarios, discussed in next chapter). To estimate the

operational cost for a year of 365 day duration, a linear scaling factor was applied. Thus,

altogether 4×3 test instances were considered to analyse the performance of the algorithm.

For all instances, the penalty cost was set to 1000 $/MWh of unserved energy, and an

annual monetary discount rate of 10% was considered. For the multi-period formulation

a load growth of 15% was uniformly applied to the demands in the second period.

All algorithms and models were implemented using Python 2.7 and the optimisation

problems were solved using Gurobi 8.0 [131] on a computing node that utilises eight cores

clocking at 2.70 GHz with 16 GB RAM. In addition, Gurobi’s default MIP gap 1× 10−4

was used, and the number of thread count parameter was set to equal the number of cores

(in MIP models). For each test case, the maximum time for the entire algorithm (the

summation of all solving times provided by Gurobi) was limited to 22 hours. For Bender’s

decomposition, an additional time limit of 10 hours was set to the master problem.

5.6.2 Performance of Scenario Decomposition

Table 5.1 and Table 5.2 summarise the computational results obtained with single-

period and two-period formulations. In these tables, the columns indicate (respectively):

the test case identifier; the number of days in the problem instance; optimality gap between

lower bound (LB) and upper of the upper bound (UBU ), as a percentage, at the end of

the maximum time limit; the residual gap between the lower of the upper bound (UBL)

and the upper of the upper bound (UBU ), as a percentage; and, finally, the number of

potential solutions in the pool at the end of the computation period.

With reference to Table 5.1, the smaller test cases with fewer days in the instance

have managed to converge within the given time limit, but the larger test cases have

optimality gaps at the end of the maximum time limit. The optimality gap for the 24

bus 365 day instance is the largest of such gaps. This is expected given the size of the

problem and the limited computation time allocated to solve it. On the other hand, the

residual gaps obtained from all instances were interestingly small leading to only small

number of solutions in the pool at the end of the solving time period. This suggests
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Table 5.2: Performance of scenario decomposition with two-period

Test Case Instance Opt. gap % Res. gap % Num. sol.

6 Bus
24 1.990 0.1347 4
84 5.811 0.0217 1
364 8.754 0.2592 3

14 Bus
24 1.282 0.1051 3
84 2.058 0.0342 1
364 2.609 0.1676 4

18 Bus
24 5.650 0.0033 1
84 6.171 0.0021 1
364 7.952 0.0007 1

24 Bus
24 7.757 0.0802 14
84 7.496 0.0226 5
364 9.734 0.1315 1

that the global optimal solution can be determined after executing only a few full unit

commitment simulations.

The value of the residual gap strongly depends on the characteristics of the problem

such as the demand at the beginning of the sub-problem horizon and the minimum up-

down times. For example, if the time-based decomposition is carried out when the demand

is at its peak, the residual gap is likely to be significantly higher, as units are likely to start

up and the cost with that decisions is ignored (recall that in the SD algorithm, start-up

costs for the first period in the sub-problem horizon are neglected to ensure a valid lower

bound). Since the days were split when the demand is reasonably flat in this set of exper-

iments, the small cost difference is mainly due to the discrepancies in minimum up-down

times and ramping limits. Nevertheless, instances with 365 days show larger residual gaps

with more potential solutions in the pool. As each day is represented as a sub-problem,

when the number of days increases, the presence of numerous sub-problems amplifies the

negative effect of the relaxations and causes UBL to be substantially lower than UBU .

Therefore, when the number of sub-problems is large, it is likely that more potential opti-

mal solutions will be in the pool, and in turn will require more (computationally expensive)

full unit commitment simulations to be carried out.

Table 5.2 shows that none of the two-period formulations have converged. This is in

part due to the large number of sub-problems. While smaller instances like 6 bus 24 day

have exited with small optimality gaps (1.99%), larger instances like 24 bus 364 days show

significant gaps (9.7%) at the end of the maximum time limit. In addition, two-period

results show an increase in the number of potential solutions but the residual gaps do not

exhibit substantial differences between single-period and two-period cases. Considering

the multi-period case and the 24 bus 24 day instance, there are 14 potential solutions, and

because the algorithm is still far away from reaching optimality (7.757%), it is likely that

there are more potential solutions that have not been discovered yet. This larger number

of close-to-optimal solutions is mainly because of the increased number of investment

decisions in the problem with the two periods. Therefore, multi-period formulations will

require a lot more full unit commitment simulations to identify the optimal solution,

compared to the single-period instances.
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Figure 5.4: Performance of scenario decomposition

To analyse the progression of the scenario decomposition algorithm, the change in

bounds were examined with respect to time. This change is illustrated in Figure 5.4

for single-period formulations, in which the bound calculations LB, UBL and UBU are

depicted along with the time it was calculated. As shown in Fig. 5.4, unlike other decompo-

sition algorithms, the scenario decomposition framework has found high-quality solutions

providing a tight upper-bound in the first few iterations. In fact, except for the 6 bus

84 day instance, the best-known solution was found in the first iteration itself. This is

beneficial when solving large-scale optimisation problems, as good quality solutions can be

realised without having to wait for a great deal of wall-clock time to pass. Nevertheless,

the algorithm relies on the lower bound to prove optimality and finally converge. Since

the initial lower bound is weak and also improves slowly, the convergence is often delayed.

Recall that the lower bound is improved by eliminating solutions from the search space

via integer cuts. As each integer cut prohibits only one investment solution at a time, to

remove a particular solution from the search space, first, it must be visited (evaluated).

Naturally, sub-problems produce solutions that are optimal only to themselves. So, for

the algorithm to improve the global lower bound and finally converge, the SD algorithm

must visit many or all of the solutions that lie in between the individually preferred

solution of a sub-problem and the globally-optimal solution to eliminate them. If there

are many solutions in between the preferred solutions and the optimal solution, due to the

weak nature of the integer cuts, many cuts and iterations are required to eliminate these

solutions and close the optimality gap. With two-period formulations, there will be even

more solutions to visit, because of the increased number of investment decisions.

Fig. 5.5 aims to illustrate this issue by presenting the solutions generated by a subset

of daily scenarios from the 6-bus 24-day instance. Fig. 5.5 depicts the solutions generated

by sub-problems 18-23 and their progression from the preferred solution to the globally
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Figure 5.5: Progression of solutions in individual sub-problems

best-known solution. The solutions are depicted with its total cost (global objective)

on the y-axis and normalised objective values for that sub-problem on the x-axis. The

normalisation was carried out by dividing the sub-problem objective function value with

its objective function value in the globally best-known solution. This normalisation is

provided in Eq. 5.34, where S denotes the set of sub-problems and I denotes the set of

iterations. Hence, for all the sub-problems, the objective function value for the globally

best-known solution lies at 1.0 and all the solutions which has a value less 1.0 are pre-

optimal solutions while the rest are post-optimal. The data-point colour indicates in which

iteration the solution was generated.

znorms,i =
zobjs,i

z∗objs

∀s ∈ S, i ∈ I (5.34)

With reference to Fig. 5.5, the first solution provided by sub-problems 18 and 19

are close to the best-known solution for the instance as a whole, where as first solutions

provided by sub-problems 20 to 23 have sub-problem objective function values that are

quite distant from those for the globally best solution. It can also be observed that

the early-found solutions for the majority of the sub-problems lie well before the best

known solution, leading to a weak initial lower bound. Sub-problems eliminate their next-

best preferred solutions sequentially as the algorithm iteratively progresses towards the

globally optimal solution. Sub-problems 20, 21 and 22 have explored many of their pre-

optimal solutions before convergence, and sub-problems 18, 19 and 23 have explored all

its pre-optimal solutions. The algorithm will converge when a sufficient number of sub-

problems have explored all their pre-optimal solutions, because this is necessary in order

for the lower bound to be raised to a sufficiently high value. If there are many solutions

between the preferred solutions for the sub-problems and the global solution applied to
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(a) 14 Bus System (b) 24 Bus system

Figure 5.6: Phase performance

each sub-problem, many integer cuts will be required to remove these solutions and close

the optimality gap.

The addition of the integer cuts as the algorithm progresses acts to increase the com-

putational difficulty in two ways. First, adding the integer cuts increases the time that is

required to solve individual sub-problems. This is demonstrated in Fig. 5.6a and Fig. 5.6b,

which illustrate the time taken by the candidate solution generation phase (Gtime) and

evaluation phase (Etime) at each iteration for 14 bus 24 day and 24 bus 24 day instances.

As depicted, the time taken by the candidate solution generation phase shows an increasing

trend with the growing number of iterations. With 24 bus 24 day instance (Fig. 5.6b), the

time taken by candidate solution generation phase exceeds the time taken by evaluation

phase when the algorithm has reached a large number of iterations. Since the number of

integer cuts in the sub-problem increments at the end of each iteration, the time required

to solve individual sub-problem in candidate solution generation phase also increases. Sec-

ond, adding an integer cut is a computationally intensive task in itself. Each cut is added

only after a computationally expensive evaluation step, hence to generate many cuts a

large number of expensive evaluations must have been carried out. According to Fig. 5.6a

and 5.6b, it is clearly visible that the time spent on the evaluation phase is fairly constant,

but this time is significant compared to the candidate solution generation phase. Since

each generated solution is evaluated by solving the set of sub-problems repeatedly, a very

substantial period of time is spent evaluating the solutions prior to adding the cuts of the

sub-problems.

An important factor contributing to the weak initial lower bound and its slow im-

provement is the diversity between scenarios. If scenarios are similar to each other and

prefer the same set of investments solutions, the summation of individual scenario optimal

objective values will provide a stronger lower bound. However, in reality, daily scenar-

ios have different peak demands and availability in renewable energy-based generation,

so they tend to produce different investment solutions with a different capacity mix. As

a result, when the scenarios are completely different to one another, the resulting lower
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Figure 5.7: Solution performance on other sub-problems

bound becomes very weak due to the contrasting nature in the investment solutions. Be-

sides, the difference in investment solutions also causes integer cuts to have only a limited

impact on the other scenarios, because solutions that are cut-off by a particular scenario

may not be preferred by (i.e., are not relevant to) the other scenarios. Thus, for a large

portion of the process, scenarios continue to explore around their own regions until all or

many investment solutions combinations around their preferred solutions are exhausted.

As a result, cuts generated by diverse scenarios only provide limited assistance towards

improvements in the overall lower bound and the algorithm’s convergence.

The diversity in scenarios is illustrated in Fig. 5.7 by showing the performance of so-

lutions generated by a particular sub-problem on other sub-problems. Fig. 5.7 illustrates

the solutions generated by sub-problems 18 to 23 and their objective function values when

applied to the other sub-problems. The y-axis denotes the sub-problem number, and the

x-axis denotes the normalised sub-problem objective function value for the sub-problem in

the plot title. A substantial number of solutions generated by sub-problems 20–23 have no

merit for the other scenarios; they give rise to very poor objective function values for these

other sub-problems, especially during the earlier iterations of the algorithm. This indi-

cates that these scenarios are very different to the other scenarios, and they produce very

different investment solutions: as a result, the penalty cost for unmet demand drives the

normalised objective values of other scenarios extremely high. In contrast, sub-problems

18 and 19 have provided good quality solutions for the full global instance throughout

the algorithm’s progression — almost all of their generated solutions have a normalised

global objective function value close to 1.0. These results indicate that scenarios 18 and 19

are what could be called “principal”, “non-extreme” or “best compromise” scenarios, that

give rise to investments that are broadly similar to those in the globally-optimal solution.
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Figure 5.8: Explored solution space

These results are also in consistent with the previous discussion related to Fig. 5.5,

where it was noted that sub-problems 20–23 have initial preferred solutions that are

quite distant in objective function terms from the globally preferred solutions, while sub-

problems 18 and 19 are very near-optimal from the beginning of the algorithm. The

supply and demand patterns of sub-problems 20–23 are different to those of the other sub-

problems and in particular the “best compromise” scenarios like those of sub-problems

18 and 19. Because of this, the sub-problems 20–23 need many cuts to be added before

their remaining next-best solutions are near the global optimum (by sub-problem objective

function value). As a result, we conclude that diverse scenarios delay the algorithm con-

vergence. This is a finding of major importance when considering algorithm enhancements

in the subsequent chapter of this thesis.

Diverse scenarios also cause many poor quality solutions to be evaluated in the process

of reaching globally best-known objective. While diverse sub-problems themselves produce

poor quality solutions and must evaluate all or many surrounding poor quality solutions

to reach globally best-known objective, they also cause the minority who produced good

quality solution and preferred solutions around globally best known objective to explore

solutions that are both individually and globally worse, due to the iterative nature in

the algorithm. Fig. 5.5 illustrate this phenomenon, where both pre-optimal solutions

generated by sub-problem 20–23 in early iterations and post-optimal solutions generated

by sub-problem 18–19 in late iterations shows extremely high total cost values (global

objective function value). Fig. 5.8 depicts the outcome of exploring a large solution space,

for each of the different test cases and instances, in terms of the investment cost of solutions

and the total costs (UBL) of solutions. These costs are calculated during the evaluation

step. The data-point colour indicates the iteration in which the solution was generated.

Darker-coloured data points relate to earlier iterations.
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Table 5.3: Performance of Bender’s decomposition

Test Case Instance Num Int Single Sub-problem Multiple Sub-problems
Vars Gap Reason Gap Reason

6 Bus
24 12,124 25.4 time out 26.4 out of mem.
84 42,364 33.6 time out 55.0 out of mem.
364 183,484 49.9 time out 82.8 out of mem.

14 Bus
24 19,063 71.3 time out 62.8 out of mem.
84 66,583 63.9 time out 86.2 master time out
364 288,343 84.8 out of mem. 90.5 out of mem.

18 Bus
24 22,529 3.1 time out 4.6 out of mem.
84 78,689 5.2 time out 13.8 out of mem.
364 340,769 24.8 out of mem. 31.0 out of mem.

24 Bus
24 31,190 6.7 time out 17.4 out of mem.
84 108,950 10.8 time out 37.5 out of mem.
364 471,830 72.9 out of mem. 85.6 out of mem.

As shown in Fig. 5.8, a wide range of total costs and investment costs has been explored

by the algorithm. This is the case for every instance, and indicates that the algorithm

has done a large sweep of the solution space. At the beginning of the process (darker-

colour data points), there are many evaluated solutions that are far beyond optimality.

These extreme solutions are a result of extreme sub-problem pre-optimal solutions, and

typically represent either too few or too many energy system investments for the problem

as a whole (i.e., extremely high total costs due to a large amount of unmet demand or to

an over-investment in network assets). Evaluation of such extreme solutions is a waste of

computational effort, and a major factor delaying convergence. Nevertheless, the figure

also illustrates an optimal frontier in each test case instance, and that very good solutions

have tended to be found early in the solution process. This offers strong potential for the

design of heuristics; if the algorithm faces converging issues and has explored numerous

solutions, this frontier could be exploited to determine the best solution heuristically.

5.6.3 Performance of Bender’s Decomposition

Table 5.3 summarises the obtained results with Bender’s decomposition for both single

and multi sub-problem approaches, where the optimality gap at the end of the algorithm

and the reason for algorithm termination is provided. As shown in the Table 5.3, Ben-

der’s decomposition terminates with significantly larger optimality gaps compared to sce-

nario decomposition approach. While instances with 24 days have provided comparatively

smaller optimality gaps, larger instance like 364 days have terminated with optimality gaps

as large as 90.5%. The main reason for such a huge optimality gap is the early exit caused

by insufficient memory. Because the master problem consists a substantial number of

integer variables (shown in Table 5.3), the problem has become practically intractable.

When comparing the two approaches, almost all the instances with multiple sub-

problems including smaller instances like 6 bus 24 days terminate due to insufficient

memory. Although the master problems in these instances are small, the set of cuts

that get added at the end of each iteration have increased the memory requirement. In
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(a) Multiple sub-problems (b) Single sub-problem

Figure 5.9: Number of nodes explored with Bender’s decomposition

particular, multiple cuts have increased the number of branch and bound nodes4 that need

to be explored to solve the master problem. So, after a certain number of iterations, the

branch and bound tree explodes terminating the algorithm. Fig. 5.9a illustrates this issue,

where the Bender’s optimality gap and the number of nodes explored at each iteration

are shown for the 6 bus 24 days instance with multiple sub-problems (multiple cuts). The

colour ramp indicates the iteration at which the optimality was obtained. According to

the figure, for the optimality gap to reduce below 30%, around 1 million nodes need to be

explored. For larger instances, this number could be extremely large.

In contrast, Bender’s approach with single sub-problem (single-cut) is more efficient

with memory. As shown in Fig. 5.9b, the same instance with a single sub-problem has

achieved similar optimality gap by exploring a substantially fewer number of nodes. How-

ever, this performance is achieved at the cost of a higher number of iterations (shown in

the colour ramp). While the Bender’s approach with multiple sub-problems reached 26.4%

gap in 16 iterations, the single sub-problem approach has taken more than 100 iterations

to reach the same optimality gap. This differences in performance with single and multiple

sub-problems are also visible in Fig. 5.10, which illustrates the optimality gap at the end

of each iteration with respect to time. From Fig. 5.10, it is evident that multi-cut Bender’s

reduces the gap drastically with fewer iterations (data points), while single-cut Bender’s

progresses slowly towards optimality.

When the time duration is considered, many smaller instances give rise to similar

algorithm performance for both approaches. Although multi-cut Bender’s reduces the gap

drastically with few iterations, it explores a large number of nodes in an iteration taking a

significant period of time. In contrast, single-cut Bender’s achieves the same gap via many

4Mixed-integer problems are generally solved using the branch and bound method, where the feasible
solution space is partitioned into a set of sub-spaces by branching on the variable, i.e, restricting the range
of the variable [145]. Then, the linear programming relaxation of the problem is solved with the restriction,
where each linear problem corresponds to a node in the enumeration tree. The branch and bound method
attempts to prune this tree systematically [145].
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Figure 5.10: Performance of Bender’s decomposition

iterations by exploring a smaller set of nodes at a time, thus taking substantially a shorter

period of time per iteration. For larger instances like 364 days however, the performance

differs significantly. Convergence rate of single-cut Bender’s is rather slow compared to the

multi-cut Bender’s, because solving 364 days at once is computationally more expensive,

and only one cut is added per iteration. As a consequence, the majority of the instances

with single-cut Bender’s exits because of the time limitation in the algorithm, while almost

all the instances with multi-cut Bender’s terminate because of the memory shortage.

In this regard, it is evident that scenario decomposition approach is computationally

more efficient compared to the Bender’s decomposition method. Unlike Bender’s decom-

position, the scenario decomposition approach provides high-quality solutions with tighter

bounds in the first few iterations. Components of the SD algorithm also have very little

dependency on each other allowing the approach to be parallelised easily.
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5.7 Conclusion

This chapter proposes and explores a scenario decomposition framework to decompose

the GTEP-UC problem with improved tractability. The proposed framework facilitates

binary variables in both investment and operational levels, and inter-temporal constraints

resulting from generator limitations. In addition, the developed framework enables invest-

ment decisions to be made in multiple periods; particularly two periods, by combining

daily scenarios from each period into one sub-problem.

Through numerical analysis, we observed that for both single and two-period formu-

lations, scenario decomposition is capable of providing high-quality solutions with tight

upper bounds in the first few iterations. However, the method relies on the weak lower

bound that progresses slowly to prove optimality and finally converge. As a consequence,

the convergence is often delayed even if the optimal solution is found earlier in the process.

From the analysis, we identified “weak integer cuts” and “diversity in scenarios” as the

major factors that hinder the rapid improvement of lower bound. As each cut eliminates

only one solution, many integer cuts are required to eliminate the solutions between the

preferred solution and optimal solution, and close the bound gap. On the other hand,

diversity in scenario reduces the performance by increasing the distance between the pre-

ferred solution and optimal solution. Diverse scenarios also cause the algorithm to explore

a large solution space leading to many unnecessary evaluations. These two key issues must

be tackled, if we are to improve the performance of the proposed scenario decomposition

approach.

The chapter also investigates the application of classic and multi-cut Bender’s de-

composition for the GTEP-UC problem. Experimental analysis demonstrated that the

convergence rate of classic Benders is slow because of the single cut that get added at the

end of each iteration, and multi-cut Bender’s is memory intensive because of the large

number of nodes it needs to explore. As a result, both approaches exited with reasonably

large bound gaps at the end of the maximum time limit compared to the scenario decom-

position framework. Therefore, we conclude that the scenario decomposition approach is

computationally more efficient compared to the Bender’s decomposition in terms of both

run-time, and memory requirements, thus can be successfully applied to decompose the

GTEP-UC problem. In the next chapter, we aim to discuss a few algorithmic extensions

to enhance the performance of the proposed scenario decomposition framework for the

GTEP-UC problem.
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Chapter 6

Scenario Decomposition

Extensions

6.1 Introduction

The scenario decomposition algorithm for GTEP-UC has shown to be capable of finding

high-quality solutions earlier in the solving process. Its rate of convergence is however

hindered by: (i) diversity between scenarios; (ii) integer cuts which are ineffective for

many sub-problems and weak cuts which eliminate just a single solution; and (iii) can

over time bloat the size of the MIP formulation and the time taken to solve it. Therefore,

in this chapter, we propose two extensions to mitigate the issues of diversity and weak

integer cuts. We propose a scenario grouping approach to tackle the issue of diversity

in scenarios, and a branching approach to explore solutions more quickly through fixing

investment decisions and generating stronger cuts.

The chapter first provides a brief recapitulation of the issues related to the scenario

decomposition algorithm, their causes and impact on the algorithm performance. Then the

subsequent sections provide the methodology for grouping and branching mechanisms. In

particular, we discuss two grouping mechanisms: heuristic and stable, and two branching

strategies: local and multiple, which are the contributions of this chapter. Then, the

subsequent section provides the details of the experimental analysis carried out to evaluate

the performance of the proposed extensions on the scenario decomposition framework. And

finally, the last section summarises the findings and concludes the chapter.

6.2 Motivation

The performance of scenario decomposition framework is delayed by the slow improve-

ment in lower bound and the large solution space explored by the algorithm. This is

depicted in Fig. 6.1a and Fig. 6.1b respectively, which illustrate the performance of 6 bus

system with 24 days. As shown in Fig. 6.1a, although the framework is capable of finding

high-quality solutions in the first few iterations, it relies on the weak lower bound that

progresses slowly to prove optimality. On the other hand, as demonstrated in Fig. 6.1b,
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(a) Algorithm convergence (b) Explored solution space

Figure 6.1: Scenario decomposition performance for 6 Bus 24 days instance

SD algorithm explores numerous solutions that are far from optimal, especially during

early iterations (the colour ramp indicates the iteration which generated the solutions).

As previously mentioned, one of the main reasons for weak lower bound and large solu-

tion space is diversity in scenarios. Scenarios with diverse properties generate conflicting

investment solutions weakening the lower bound. Besides, evaluation of these solutions

often leads to an exploration of a larger than necessary number of solutions prior to al-

gorithm convergence, because of the irrelevance of some sub-problems’ solutions to the

other sub-problems and the global problem. Also, diversity between sub-problems causes

the sub-problems to explore their own regions for a large portion of the process. Thus, a

grouping approach that bundles scenarios with dissimilar properties into each of the sub-

problems could overcome the issue of diversity by forcing the sub-problems to compromise

their investment solutions.

Apart from diversity in scenarios, another factor that has contributed towards slow

improvement in lower bound and unnecessary evaluations is weak integer cuts. Since

the algorithm does not involve any dual information, the improvement in lower bound is

afforded only through integer cuts that eliminate only one solution at a time. Hence, if

there are many solutions between the preferred solutions of individual sub-problems and

the optimal solution, it would be more efficient if we could avoid visiting all of them, or

visit them at minimum computational expense. Branching would explore these solutions

more quickly through fixing the values of some binary investment variables, and generate

stronger cuts that rule out larger numbers of solutions.

6.3 Grouping

Grouping multiple scenarios into a single sub-problem is one of the most effective

approaches used by many studies [146–151] to strengthen the lower bound and improve

solution quality. Since grouping enforces subset of consistency constraints back in the

sub-problem tightening the relaxation [146,149], the resulting solutions improve the lower

bound and solution quality at the expense of increased sub-problem solving times. Even
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though random grouping is the most common approach [146–148], multiple studies have

shown that grouping utilising the information obtained from the algorithm can improve

the solution quality and computing efficiency significantly, compared to the single-scenario

sub-problems or randomly grouped multiple-scenario sub-problems [149–151].

In current literature, a number of methodologies [146–151] have utilised information

from algorithm to form scenario groups in a systematic manner, where either generic

[149, 151] or problem-specific metrics [150] have been employed to measure similarity or

dissimilarity between scenarios. This includes heuristics such as k-means clustering and

greedy approaches [150, 151], and exact methods that focus on solving an optimisation

problem (e.g maximise the bound improvement [149]) to find the optimal grouping strat-

egy [149,151]. While optimal grouping techniques have shown to provide stronger bounds

compared to the heuristic methods [151], depending on the group size, solving an optimi-

sation problem is a computationally expensive process [151].

For the scenario decomposition approach to GTEP-UC, we use grouping to address

the issue of diversity between daily scenarios. In particular, we create sub-problems within

which dissimilar scenarios are grouped together. The intuition behind combining scenarios

with dissimilar properties is to make the resulting solution a comprise between the two

contrasting sub-problems. As dissimilar grouping implicitly makes the groups somewhat

similar to each other, it minimises the generation of outlying candidate solutions and also

enhances the effectiveness of the integer cuts improving the lower bound and convergence

rates.

Intuitively, to form groups of dissimilar scenarios, low demand and/or high renew-

able scenarios (produce inadequate investments) must be grouped with high demand

and/or low renewable scenarios (produce surplus of investments). This requires multi-

dimensional analysis of time series, as each sub-problem consists of multiple contiguous

demand and renewable generation profiles (for each node and generator). In addition,

high/low demand/generation is specific to a certain time interval, hence to classify an

entire sub-problem as high/low demand/renewable scenario additional classification steps

are required.

Therefore, to carry out grouping while mitigating these issues, we propose to measure

dissimilarity in more abstract level and ignore the details of low/high demand/renewable

scenarios. Following the lead of others’ work reported in the literature, we could achieve

this abstraction by utilising either generic metrics such as distance between two solutions

or problem-specific metrics such as penalty cost. Since dissimilar scenarios are likely to

produce completely different solutions, by measuring the distance between two solutions

similarity or dissimilarity between two scenarios can be determined explicitly. On the

other hand, the penalty cost relates to unserved demand. So for evaluation of any given

scenario’s solution, the alternative scenario with the highest penalty cost is likely to be

the one with the most contrasting features to the scenario that generated the solution.

Hence, by identifying the scenario with the highest penalty cost, an opposite scenario of

the scenario that generated the solution can be found implicitly.
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Once the dissimilarity between scenarios is measured, the most dissimilar scenarios can

be grouped together to form groups of dissimilar scenarios. However, this kind of group-

ing is not straightforward, as the relationships between scenarios are rather complicated

and multi-way. Hence, the application of heuristic methods such as k-means clustering

is limited. On the other hand, current methods for optimal grouping comprise a com-

plicated structure (e.g. mixed integer bi-level) and require dual variables and additional

algorithms (e.g. branch and cut) to determine the optimal groups. Therefore, we propose

to form groups progressively by ranking scenarios and forming groups of two (pairs) at

a time. This is carried out by ordering scenarios from most dissimilar to least dissimilar

for each candidate solution and paring the most dissimilar scenario with the scenario that

generated the solution. However, a particular scenario could be the most dissimilar for

many scenarios or a certain scenario could have multiple dissimilar scenarios which are

also dissimilar to each other. Therefore, to carry out grouping in a more systematic man-

ner, we propose and explore two grouping approaches: a heuristic and a stable grouping

approach.

Once the pairs of dissimilar scenarios are determined using either heuristic or stable

grouping approach, the scenarios are grouped into one sub-problem through a common set

of investment decisions to ensure that the investment solution is a compromise between

multiple scenarios. Since grouping allows non-contiguous daily scenarios to be grouped

into one sub-problem, the same modified daily sub-problem (with no start-up costs, and

inter-temporal constraints for the first period) utilised in the candidate solution generation

phase (Section 5.4) is employed to form sub-problems with multiple days. And, the sub-

problem objective is updated to the correct weight of investment and operational cost i.e.,

the daily capital costs are multiplied by the number of days in the sub-problem, to ensure

that the lower bound is valid with multiple days.

6.3.1 Heuristic Grouping

Heuristic grouping follows a greedy approach pairing daily scenarios with the most

dissimilar alternative scenario. If a scenario is already paired with another scenario, then

the next most dissimilar scenario is used to form the pairs. Hence, it is ideal if the

measurement of dissimilarity between two scenarios are different to another as it allows

scenarios to be ordered with a minimum number of ties. Since solution distance is likely to

produce many ties once ordered, for heuristic grouping the problem-specific “penalty cost”

is utilised as the metric to measure dissimilarity. This method is provided in Algorithm 5

and can be described as follows.

Heuristic grouping (Algorithm 5) initiates at the end of the first iteration, with a set of

arrays that provides penalty cost of each scenario for each candidate solution as the input

(line 1). Then for each candidate solution, the scenarios (days) are sorted in the order from

highest penalty cost to lowest (line 9), and the scenario with the highest penalty cost is

paired with the scenario that generated the solution following a greedy approach (line 14).

If a scenario has already been included in a group, then the scenario with the next highest

penalty cost is used (line 17) restricting the scenarios to be part of only one group. Thus,
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Algorithm 5 Heuristic Grouping

1: Input : solutions, arrays
2: Output : pairs
3: pairs = empty, used sub-problems = empty
4: for sol in solutions do
5: s = get(sol) % Get the scenario that generated the solution
6: if s not in used sub-problems then
7: used sub-problems = include(s)
8: array = get(arrays,sol) % Get the penalty cost array for that solution
9: sorted array = sort(array)

10: % Make pairs
11: index = 0
12: while True do
13: if sorted array [index] not in used sub-problems then
14: pairs = add(s,sorted array [index])
15: used sub-problems = include(sorted array [index])
16: exit
17: else index+ = 1

at the end of the first iteration, the number of sub-problems reduces by half as each sub-

problem now consists a pair of scenarios. A similar procedure is followed at the end of the

second iteration for further grouping, where pairs of scenarios are combined into groups

of four scenarios. Since grouping any further could make the scenario decomposition

approach less efficient because of the increased sub-problem solving times, the grouping

process terminates at the end of the second iteration after the construction of groups with

four scenarios. Thus, any candidate solution generation phase after the second iteration

will utilise sub-problems of four scenarios to generate solutions. However, for candidate

evaluation phase, single scenario sub-problems are used to avoid escalation in evaluation

time.

When there are two or more periods in the GTEP-UC formulation, the penalty cost

per sub-problem for each candidate solution can be obtained by averaging the penalty cost

produced by scenarios in different periods. For example, in the two-period formulation,

the penalty cost produced by sub-problem x can be found by averaging the penalty cost

produced by day x in both periods for any given solution. Recall that in the two-period

formulation, initial sub-problems are formed by combining corresponding scenarios across

different periods (refer to Section 5.4.2). So, if sub-problem x has the worst penalty cost

for the investment solution produced by sub-problem y, they can be grouped together.

This difference in grouping for single and two-period formulations is illustrated in Fig. 6.2.

With two periods, the SD algorithm creates sub-problems of four daily scenarios at the

end of first iteration itself. Hence, at the end of the second iteration, periods are switched

according to the pairs suggested by heuristic grouping instead of bundling them into one

sub-problem. Such action will provide additional diversity within the sub-problem without

increasing the size. This procedure is illustrated in Fig. 6.3, where days x, y in sub-problem

n and days u, v in sub-problem m are switched between periods.
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Figure 6.2: Grouping with single and two-period GTEP-UC problems

Figure 6.3: Grouping switching with two-period GTEP-UC problems

6.3.2 Stable Grouping

In the stable grouping approach, the grouping problem is formulated as a stable room-

mate (SR) problem, to keep the grouping problem simple and less computationally in-

tensive. Stable room-mate (SR) problem is the problem of finding a stable matching i.e.,

stable room-mate pairs, from an even-sized set of participants with a list of preferences.

A matching is defined as stable if no two non-room-mate participants in the set prefer

each other more than their current room-mate under the matching. In technical terms,

this can be expressed as follows. Given an even-sized set of cardinality n with a list of

preferences for each element that ranks n − 1 others in order, the goal of SR problem is

to find n/2 pairs, such that no two elements in the set which are not room-mates prefer

each other more than their current room-mate [152].

SR problem is often viewed as a variant of the well known stable marriage (SM)

problem introduced by Gale and Shapley to assign applicants to colleges [153]. The goal

of SM problem is to find stable matchings from two disjoint sets, commonly referred to

as “men” and “women”. The SM problem initiates with individuals in each set having

ranked n members of the opposite sex in order of preference, and a stable matching is

found when no couple prefer each other more than their actual partners. For SM problem,

there is at least one stable matching for every problem instance. Thus, an algorithm was

designed by Gale and Shapley to produce one such solution [153]. This algorithm was
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extended by Irvin to find stable room-mate pairs in SR problem [152]. However, in stable

room-mate problem, a stable matching may not be possible for some problem instances,

thus the algorithm was designed to find a stable matching if exists or indicate otherwise.

This algorithm is commonly known as Irvin’s algorithm for SR problem, and is widely

used to solve SR problems [154–156].

In scenario decomposition context, each sub-problem becomes a participant with a

list of preferences, where the preference is based on the dissimilarity. Hence, for each

sub-problem the alternative sub-problem that differs the most is ranked with the highest

preference. Previously, with heuristic grouping, problem-specific “penalty cost” was chosen

as the performance metric to quantify the dissimilarity in an abstract level. For the

SR problem, we utilise “solution distance” between candidate solutions to rank the sub-

problems, as “solution distance” ensures that at least one stable matching exists for every

problem instance (discussed later in this section). And, unlike the “penalty cost” that

requires computationally expensive evaluations, “solution distance” utilises the less intense

candidate solution generation stage to obtain necessary information for grouping. It also

enables the approach to be generalised to other problem domains with similar structure

(co-optimisation of investment and operations) because of its problem independent nature.

Thus, the application of SR problem for grouping is comprised of two main steps.

1. Creation of preference list

2. Application of Irvin’s algorithm [152]

When creating the preference list, a simple distance function Eq. 6.1 is utilised to

calculate the distance between two solutions, where xa and xb are the investment solutions

obtained from two distinct sub-problems and N is the number of investment decisions.

Note that for multi-period formulations, xa and xb include investment decisions from all

the periods. Then, by calculating the distance between solutions provided by each sub-

problem, a distance matrix is created where the number of rows and columns are equal to

the number of sub-problems. This will result in a symmetric distance matrix with zeros in

the main diagonal and each element denoting the distance from one solution to another.

To distinguish between sub-problems with exactly the same solution (distance = 0) to

itself, the diagonal is replaced with -1. Then based on the distance matrix, a preference

matrix of same size is created, where in each row, sub-problems are prioritised from the

largest distance to the smallest. As a result, rows in the preference matrix will provide

lists of preferences for the sub-problems. An illustrative example for this particular step

can be provided as follow.

∑
i∈N
| xai − xbi | (6.1)

Example 1 Consider the following set of sub-problems and their respective solutions.

S = {s1 = [1, 1, 1, 0], s2 = [1, 1, 0, 0], s3 = [0, 0, 0, 0], s4 = [1, 1, 0, 0]}
The distance matrix D can be given as follows, where the element di,j represents the

distance between the solutions obtained from sub-problems si and sj. Note that, when

i = j, the diagonal is -1 instead of 0. Once the distance matrix is created, by ranking the
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sub-problems from highest to lowest distance, preference matrix P is obtained, where row

i in matrix P demonstrates the preference list for sub-problem si.

D =


−1 1 3 1

1 −1 2 0

3 2 −1 2

1 0 2 −1

 P =


s3 s2 s4 s1

s3 s1 s4 s2

s1 s2 s4 s3

s3 s1 s2 s4


Once the preference matrix is formulated, Irvin’s algorithm for SR problem [152] is

utilised to obtain the suitable pairs. Irvin’s algorithm for SR problem [152] can be sum-

marised into the following three steps.

1. Step 1: The algorithm aims to find an initial matching by making participants to

propose to their highest preference. The recipients accept the proposal if that’s

their only proposal or they have received a better proposal from a more preferable

participant. If any proposal gets rejected, the participant keeps on proposing to

other participants in the order of their preference until one of them accept.

2. Step 2: The second step of the algorithm removes impossible pairs by eliminating

the participants that they prefer less than their currently accepted one. This is

executed by simply removing the participants on the right hand side of the accepted

participant in the preference matrix in a symmetrical fashion. For example, if A

rejects B, A must be removed from B’s preference list. If at any point a preference

list for a participant becomes empty, that indicates that no stable matching exists

for this particular instance.

3. Step 3: The final step aims to find a stable matching by reducing the preferences

lists that contain more than one preference. This is achieved by identifying cycles

in the preference sequence and removing any undesirable pairs. This step repeats

until no participant has more than two preferences, or one participant runs out of

participants to propose to, in which no stable matching exists. Once each participant

has only one participant in the preference list, a stable matching has been found.

For this dissimilar grouping problem, if solution distance is utilised as the metric to

rank the sub-problems, at least one stable matching exists for every problem instance.

This can be explained as follows. Since the distance matrix is symmetric, the preferences

of opposite scenarios are ordered in a manner that compliments each other. This is visible

in the illustrative Example 1 provided above. For s1 the sub-problem with the highest

preference is s3. Similarly, for s3 the scenario with the highest preference is s1. Therefore,

it is guaranteed that s1 and s3 belong to one pair. Although s1 and s3 come at a higher

preference for s2 and s4, because s2 and s4 come later in s1 and s3 preference list, s2 and s4

will have to settle with each other. Thus, the pairs become (s1, s3) and (s2, s4). Note that

s2 and s4 are exactly similar yet they have been paired together. This is because, in the

set of solutions provided above, s1 can be considered as one of the extreme scenarios with

the most number of investments, and s3 can be considered as the other extreme scenario

with no investments. For extreme sub-problems, moderate sub-problems such as s2 and s4

becomes the least preference. This property is ideal to omit outlying candidate solutions
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Algorithm 6 Stable Grouping

1: Input : solutions
2: Output : pairs
3: % Generate the distance matrix
4: D = matrix(|solutions|, |solutions|)
5: for i in range(|solutions|) do
6: Di,i = -1 % Set the distance of itself to -1
7: for j in range(i+1,|solutions|) do
8: d = distance(solutions[i],solutions[j])
9: Di,j = d

10: Dj,i = d

11: % Obtain the preference matrix
12: P = matrix(|solutions|, |solutions|)
13: for i in range(|solutions|) do
14: P [i, : ] = sortD[i, : ]])

15: pairs = StableRoommate(P)

in the scenario decomposition framework, as the algorithm requires extremely different

sub-problems such as s1 and s3 to be grouped together, and moderate sub-problems such

as s2 and s4 to be grouped together.

Algorithm 6 provides the procedure for stable grouping utilising Irvin’s algorithm for

SR problem [152]. The method initiates with the generated solutions for each sub-problem

as the input (line 1). Then, as previously described, it creates the distance matrix in a

symmetric fashion (lines 4 - 10), which in turn is used to generate the preference matrix

by ordering each row (lines 12 - 14). This preference matrix is provided as an input to the

stable room-mate algorithm [152] to obtain pairs of scenarios (line 15), and the resulting

pairs are returned as the output to the main SD framework (line 2). The grouping contin-

ues until groups of four scenarios are formed, as prolonged sub-problem solution times for

larger groups could erode the computation-time advantages of the scenario decomposition

approach.

For the two-period formulation, stable grouping is executed only once, so that the

groups contain four scenarios and sub-problem solution times remain moderate. In the

next iteration, scenarios are exchanged between the groups according to the pairs suggested

by the Irvin’s algorithm for additional diversity. Because solutions are now forced to

compromise across four different scenarios (refer to Fig. 6.3), such an exchange is likely

to improve the lower bound of individual sub-problems, and as a result, the global lower

bound.

6.4 Branching

Branching techniques are used extensively in combinatorial optimisation problems

to find good-quality solutions and improve computational efficiency (e.g. branch and

bound [157], local branching [158]). In scenario decomposition context, the application

of branching techniques was first explored by Hemmi et al. in [148]. The method was

introduced as “diving” rather than as a form of branching, with the objective of raising

lower bound and improving convergence rates.
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The goal of “diving” algorithm [148] is to build a partial solution extending one (binary

variable) decision at a time, until the solution is complete (a new best-found solution

candidate), or the lower bound (sum of sub-problem lower bounds) given the partial

solution exceeds the current global upper bound. In the latter case, it is proven that

no full solution stemming from the partial solution (that has not already been cut from

the sub-problems) can be optimal. Thus, a cut derived from the partial solution, i.e.,

a “partial cut”, can be added to all the sub-problems so as to remove the entire set of

solutions containing that combination of decision variable values. An illustrative example

for “partial cut” and “diving” algorithm [148] follows.

Example 2 Consider the following set of sub-problems and their candidate solutions ob-

tained at the end of the candidate solution generation phase.

S = {s1 = [1, 1, 0, 0, 1], s2 = [1, 1, 0, 0, 0], s3 = [1, 0, 1, 0, 0], s4 = [1, 1, 1, 0, 1]}

The “diving” method [148] is initiated in a separate algorithm by fixing the most preva-

lent set of investment decision values chosen from the current set of candidate solutions.

These values include the decisions that are common in all the solutions, and the next most

prevalent decision. In this example, x1, x2 and x4 are set to 1, 1 and 0 respectively, i.e.,

the combination [1, 1, x3, 0, x5]. Note that, x1 = 1 and x4 = 0 are the decisions that are

common in all solutions, where as x2 = 1 is the next most prevalent decision. Once the de-

cisions are fixed, suppose that following solutions are obtained in the next diving iteration,

where the lower bound is still below the global upper bound. Note that this lower bound

is conditional on the partial solution, and estimates the optimal value of a full solution

stemming from the partial solution.

S = {s1 = [1, 1, 0, 0, 1], s2 = [1, 1, 0, 0, 0], s3 = [1, 1, 0, 0, 0], s4 = [1, 1, 1, 0, 1]}

Then, the most prevalent decision value is chosen again and is fixed for the next diving

iteration. In this example, x3 = 0 is the next most prevalent decision, as it occurs in

all s1, s2 and s3, hence the combination [1, 1, 0, 0, x5] is fixed for the next diving iteration.

Note that s1, s2 and s4 have not changed their solutions, and s3 has now generated the

same solution as s2. This repetition arises because the solutions are not evaluated nor

eliminated during the diving process. The solutions are constrained only by the cuts added

to the sub-problems before diving commenced and the partial solution that is fixed by the

diving process, but there are no new cuts added while diving is occurring.

After this second iteration of diving, the lower bound exceeds the global upper bound.

The diving algorithm has proved that no full solution can be derived from the partial so-

lution x1 = 1, x2 = 1, x3 = 0, x4 = 0, that is better than the current best solution.

Therefore, the partial solution can be added as a partial cut Eq. 6.2 to the scenario decom-

position framework. Such a partial cut is stronger than the full integer cut as it removes

all the solutions with the combination [1, 1, 0, 0, x5], which are [1, 1, 0, 0, 0] and [1, 1, 0, 0, 1]

in this example.

(1− x1) + (1− x2) + x3 + x4 > 1 (6.2)
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Clearly, if the partial solution’s combination of decision variables and their values is longer,

then fewer solutions are eliminated by the partial cut.

The diving algorithm [148] has shown to reduce the number of iterations required by

the SD algorithm to converge. It also proves useful for small instances for the GTEP-

UC problem. However, “diving” [148] can be wasteful of computational effort when the

partial solutions are arrived at after several cycles of partial solution extension. Unless the

full solutions from sub-problem solves are progressively added as cuts (which would then

require computational effort to be expended on an additional evaluation step per solution

explored), no information is gained from the early cycles in the diving process other than

insight into the next decision variable to fix. Each cycle requires the sub-problems to be

solved in full (using the partial solution). The total time taken for the sub-problem solves

may be comparable to the total time saved by eliminating solutions via a partial cut.

Especially, in cases where the cut has many variables included and/or a good proportion

of the eliminated solutions are rather unfavourable and would not be explored by the main

algorithm before convergence anyway. Also for GTEP-UC, diving process often proved

that the partial cuts comprise many fixed decisions (i.e., “long cuts”), and so eliminate

only a relatively small set of decisions. Therefore, in this section, we propose more efficient

branching mechanisms for the scenario decomposition framework proposed in Chapter 5.

Grouping brings about diversity (in electricity supply and demand) within sub-problem

instances, and similarity between sub-problem instances, and proves to be very helpful.

Nevertheless, branching that is achieved through fixing decision variable values in the sub-

problems can assist in two ways. First, by fixing decision variable values, the sub-problems

have fewer columns and can be solved more rapidly. As long as the partial solution has a

high probability of being part of a close-to-optimal solution, this brings efficiency to the

overall algorithm. Second, as is the case with diving, if and when the (branching) lower

bound exceeds the current (global) upper bound, then the partial solution can be cut from

all sub-problems. The main differences between branching (as defined here) and diving

(as in [148]) are that: (i) partial solution extension does not occur after each iteration in

branching; and (ii) during branching all other steps of the iterative scenario decomposition

algorithm continue to be utilised so that the information uncovered by the sub-problem

solves is exploited more fully.

Therefore, the main purpose of branching is to explore and eliminate solutions strate-

gically with minimum computational effort, by hard fixing subset of investment decisions

and forcing all the sub-problems to search a particular region at the same time. This pro-

cedure is provided in Algorithm 7 and Algorithm 8, where Algorithm 7 provides the steps

for branching mechanism, while Algorithm 8 shows how branching is executed within the

scenario decomposition framework.

The branching mechanism initialises by fixing the set of investment decisions (line 4

Algorithm 7) selected by the SD algorithm (line 10 Algorithm 8). These investment

decisions are selected based on the outcomes of the previous iterations. The procedure

for selecting these decisions are discussed later in this section. With the fixed investment

decisions, the branching algorithm (Algorithm 7) continues to iterate between candidate
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Algorithm 7 Branching

1: Input: fix decisions,Sub-problems,UBU , Pool
2: Output: UBU , Pool
3: LBB = −∞
4: Sub-problems = Fix(Sub-problems,fix decisions)
5: while LBB < UBU do
6: Candidate solutions generation
7: Candidate solution evaluation
8: Add integer cuts

9: Sub-problems = Free(Sub-problems,fix decisions)

Algorithm 8 Scenario Decomposition with Branching

1: Initialise: UBU =∞, LB = −∞, iter = 0, Pool = empty
2: while LB < UBU do
3: iter+ = 1
4: Candidate solutions generation
5: Candidate solution evaluation
6: Add integer cuts
7: % Initialise Branching
8: if branch then
9: % Select the decisions to be fixed

10: fix decisions = Select(solutions)
11: Branching(fix decisions)
12: % Add Partial Cuts
13: Sub-problems = PartialCuts(fix decisions, Sub-problems)

Figure 6.4: Scenario decomposition with branching
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solution generation phase and evaluation phase until the branching lower bound LBB

exceeds the global upper bound. Note that, unlike the “diving” approach in [148], full

integer cuts are added at each branching iteration after evaluation (line 8 Algorithm 7).

Once the branching algorithm (Algorithm 7) terminates, the fixed combination is added

as a partial cut to the SD algorithm (line 23 Algorithm 8) to eliminate the respective

solutions, and the decisions are freed from the fixed values (line 9 Algorithm 7). By

repeating this procedure with different sets of fixed decisions over several iterations of

SD algorithm (Algorithm 8), multiple partial cuts are added to remove multiple sets of

solutions. The schematic diagram for the branching mechanism along with the main SD

framework is provided in Fig. 6.4.

The most challenging aspect of branching is selecting the decisions to fix from the pre-

vious iterations of SD algorithm (line 10 Algorithm 8). In order to address this challenge,

we introduce the concept of frequent combinations. Essentially, a frequent combination

is a partial solution that occurs repeatedly in generated investment solutions. While this

partial solution could include both binary 1 and 0 decision values, in this chapter we limit

the frequent combination to binary 1 decisions, i.e, combinations of most frequently in-

vested units. This is because the investment solutions tend to be sparse arrays in non-zero

values (for the test cases utilised in this thesis). And, shorter the combination stronger

the partial cut, so we limit ourselves to frequent combinations of invested units.

Fig. 6.5 aims to depict these frequent combinations in solutions generated by 6 bus 24

day instance (with grouped scenarios). The y-axis represents the solution id, x-axis repre-

sents the investment decisions, where G, R and L indicate thermal generators, renewable

generators and transmission lines respectively, and filled lines represent the investment

(binary 1). The figure clearly shows that generators G5, G6 and lines L7 have been in-

vested in many solutions, thus can be considered as one of the frequent combinations.

For the same problem instance, G3, G5, G6 and L7 and G5, G6, R2 and L7 can also be

considered as frequent combinations, because many solutions contain at least one of them.

By identifying these frequent combinations, they can be explored progressively. With

multiple frequent combinations, the order of execution is crucial, as exploration of cer-

tain combinations prior to others may improve the computational efficiency. For example,

combination G5,G6,L7 is a subset of both G3,G5,G6,L7 and G5,G6,R2,L7. Hence, by first

eliminating solutions with combinations G3,G5,G6,L7 and G5,G6,R2,L7, the combination

G5, G6, L7 can be explored more efficiently.

Therefore, the objective of branching mechanisms is to determine these frequent com-

binations from the outcomes of the previous iterations with their order of execution and

explore them systematically. In this section, we propose two branching mechanisms: lo-

cal and multiple, where local branching forces sub-problems to explore solutions near the

(local to) current best solution, while multiple branching forces sub-problems to explore

preferred regions of individual sub-problems.
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Figure 6.5: Illustration of frequent combinations

6.4.1 Local Branching

Local branching identifies the frequent combinations in near-optimal solutions and

forces the sub-problems to explore around them. Since near-optimal solutions are good-

quality solutions [158] preferred by many sub-problems, by exploring them quickly (through

decision variable fixing) and eliminating them via cuts, the lower bound can be improved

significantly. These combinations can be identified by maintaining a solution pool with

the best N solutions obtained from the evaluation phase and extracting the decision val-

ues that are common among them. Recall that we assume solutions are sparse arrays, so

we extract only the decisions with value 1. For example, if a solution pool of size 10 is

selected, decision values (binary 1) that are common in all 10 solutions could be selected

as the frequent combination. Note that, this solution pool is different to the solution pool

discussed in Section 5.4, as it stores all the solutions with the lowest ζL whether or not

they are potentially optimal solutions1 .

This procedure is shown in Algorithm 9, which demonstrates the scenario decompo-

sition algorithm with local branching. The pool of best N solutions (where N = 10 for

the experiments reported in this thesis), is represented through N , and X denotes the

set of investment decision variables. The pool N is updated by adding the solutions with

ζL < ζLmx, where ζL is the lower bound on the total objective value (refer to Section 5.4) of

a solution and ζLmx is the solution with the largest objective value in the pool (lines 8-10).

The solutions with the largest objective values are removed from the pool simultaneously

to maintain a constant N . Then, the frequent combination is obtained by calculating the

frequency of investment (binary 1) for each decision, and extracting the decisions with N

frequency (lines 14 - 16).

1ζL is the lower bound on the total objective value – refer to Section 5.4
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Algorithm 9 Scenario Decomposition with Local Branching

1: Initialise: UBU =∞, LB = −∞, iter = 0, Pool = empty,N = empty
2: while LB < UBU do
3: iter+ = 1
4: Candidate solutions generation
5: Candidate solution evaluation
6: Add integer cuts
7: % Maintain the pool of best N solutions where N = 10
8: for sol ∈ solutions do
9: if ζLsol < ζLmx then

10: Add the solution to the pool and remove from the pool a solution with ζL = ζLmx

11: % Initialise Branching
12: if local branch then
13: % Select the decisions to be fixed
14: for xi ∈ X do
15: if

∑
n∈N xi,n = |N | then

16: Add xi = 1 to the fix decisions

17: Branching(fix decisions)
18: % Add Partial Cuts
19: Sub-problems = PartialCuts(fix decisions, Sub-problems)

Once the frequent combination is extracted from the solution pool, by hard fixing the

decisions in the combination and calling the branching algorithm (Algorithm 7), the fre-

quent combination can be explored and eliminated. Recall that, the solution pool gets

updated continuously as the algorithm proceeds. Thus, determining when to extract the

frequent combination and initialise the branching algorithm is crucial. If initialised at

the beginning of the scenario decomposition algorithm, the frequent combination will be

extremely short as a variety of solutions are likely to be in the solution pool. Although

short combination makes the partial cut extremely effective (since many solutions are

eliminated with a single cut), a substantial amount of time will also be required to enu-

merate and validate that the combination cannot be extended to a better solution than

the current best solution. Hence, to improve the computational efficiency, the branching

mechanism initialises when the frequent combination is reasonably long. This is achieved

by pre-determining the iteration that initialises the branching mechanism or alternatively,

the algorithm can be designed to initialise branching when the number of decisions in the

frequent combination becomes reasonable or stable.

Once the partial cut that represents the frequent combination is added to the SD al-

gorithm (line 19 Algorithm 9), sub-problems are likely to select a different combination

and explore around them. If we are to improve the convergence rate of the SD algo-

rithm, these combinations must also be explored and eliminated. The other frequent

combinations can be determined by identifying the decision that sub-problems trade once

the partial cut is added. Because sub-problems are likely to retain the most important

set of decisions in the combination, and trade the least important decision/s, removal

of the least frequent decision within the frequent combination gives rise to another fre-

quent combination. Therefore, local branching starts with a reasonably long frequent

combination and then it removes a least frequent decision at a time until the global lower

bound (computed across all sub-problems, without any restrictions on decisions except for
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Figure 6.6: Illustration of local branching

solution-eliminating cuts) exceeds the global upper bound. Although only one decision

is fixed at the end of the mechanism leaving a large space to be explored, since previous

combinations have excluded most of the prominent solutions, the combination with one

decision can be explored with much less computational effort.

Example 3 Consider the following frequent combination F = {G3, G5, G6, R0, L7}.
Assume that the decisions are traded, or the least popular decisions within the frequent

combination are in the order of {R0, G3, G5, G6, G7}
Then, the frequent combinations are,

F = {f1 = [G3, G5, G6, R0, L7], f2 = [G3, G5, G6, L7], f3 = [G5, G6, L7],

f4 = [G6, L7], f5 = [L7]}
These combinations are depicted in Fig. 6.6.

These combinations are explored by calling the branching algorithm (Algorithm 7)

multiple times over several iterations of SD algorithm (Algorithm 8). After each execu-

tion, the branching algorithm return to the SD algorithm, to add the corresponding partial

cut and check algorithm convergence. Returning to the SD algorithm after each call to

compute the global lower bound with the newly added partial cut minimises the solu-

tion evaluations that are not necessary for algorithm convergence i.e., switching between

branching and SD algorithms ensures that the overall procedure has not over-branched.

6.4.2 Multiple Branching

Multiple branching is an alternative to the local branching approach. The aim is to

explore solution regions preferred by individual sub-problems. This provides the ability to

eliminate solutions around the best-known solution (near-optimal solutions), and also solu-

tions in other regions that are being explored by various sub-problems. In the event where

a substantial number of sub-problems are not exploring around near-optimal solutions,

multiple branching will ensure that these regions are also explored and eliminated.
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Figure 6.7: Frequent combinations for 6 bus 24 day per sub-problem

The first step of multiple branching is to determine the preferred regions of sub-

problems. This is achieved by identifying the frequent combinations in solutions provided

by the distinct sub-problems over several SD iterations. Essentially, the approach keeps

track of the solutions generated by each sub-problem, and extracts the common decisions

between iterations with binary value 1 (assuming that investment solutions are sparse

arrays). For example, consider the previously discussed 6 bus 24 day instance with groups

of four daily scenarios (refer to Fig. 6.5). For the same instance, generated solutions are

demonstrated per sub-problem in Fig. 6.7, where y-axis represents the sub-problem id,

x-axis represents the investment decisions, coloured block indicates an investment, and

intensity in colour indicates how often that investment is chosen by that sub-problem

(darker the colour, the decision is more frequent). The figure clearly shows that for each

sub-problem, a certain combination is more prominent. For sub-problem s0, the most

prominent combination is G3, G5, G6, R1, R3 and L7. For sub-problem s1, it is G5, G6,

L7, and L8. For both s2 and s3, the most prominent combination is G3, G5, G6 and L7.

For sub-problem s4, it is G5, G6, R0 and L7, whereas for s5, it is G3, G5, G6, L7 and L8.

Thus, by fixing these frequent combinations, the preferred region of each sub-problem can

be explored systematically.

This procedure is shown in Algorithm 10, where S is the set of sub-problems, S is a

solution generated by a sub-problem s ∈ S, K is a matrix that counts the frequency of

decision variables being binary one for each sub-problem, Fs is the frequent combination

for sub-problem s, and X is the set of investment decisions. To keep track of the generated

solutions per sub-problem, for each sub-problem s, the frequency of decision xi being one

(ks,i) is calculated (lines 9 - 12). This frequency is calculated for all SD iterations until the

iteration which initiates the branching procedure, so that, all the solutions generated before

the branching procedure are taken into account. Then, once the branching procedure is

initialised, for each sub-problem s, investment decisions that match a certain threshold

N are selected as the frequent combination Fs for that sub-problem (lines 18-20). In the
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Algorithm 10 Scenario Decomposition with Multiple Branching

1: Initialise: UBU =∞, LB = −∞, iter = 0, Pool = empty
2: % Matrix that keeps track of solutions per sub-problem
3: K = matrix(|S|, |X |)
4: % Set of frequent combinations
5: F where |F| = |S|
6: while LB < UBU do
7: iter+ = 1
8: % Candidate solutions generation
9: for s ∈ S do

10: S = solve(s)
11: for xi ∈ X |S do
12: ks,i+ = xi where ks,i ∈ K
13: Candidate solution evaluation
14: Add integer cuts
15: % Initialise Branching
16: if multiple branch then
17: % Select the frequent combinations of individual sub-problems
18: for s ∈ S and i ∈ X do
19: if ks,i = N then
20: Add ks,i to Fs

21: Branching(fix decisions)
22: % Add Partial Cuts
23: Sub-problems = PartialCuts(fix decisions, Sub-problems)

current setting, N is set to the iteration that initiates the multiple branching procedure,

so that, only the decisions (binary 1) common in all the iterations are selected as the

frequent combination.

Once the unique frequent combinations are identified, the next challenge is to execute

multiple branching in an order that improves the efficiency of the overall algorithm. Recall

that, execution of short combinations prior to long combinations can be computationally

inefficient, especially if the short combination is part of the long combination. Thus, the

order of execution is determined by the length of the combination, and the branching algo-

rithm proceeds from the longest frequent combination to the shortest. In the event where

there are multiple long combinations, the priority is given to the combination preferred by

the majority2. For better performance, the order of execution can be improved by employ-

ing other measuring parameters such as investment cost and total objective value, and by

carefully sorting the common subsets of decisions in the frequent combinations. However,

in this chapter, the order of execution depends only on the length of the combination.

Example 4 Consider the 6-bus 24 day instance, where frequent combinations of sub-

problems are demonstrated in Fig. 6.7. For each sub-problem, frequent combinations are

as follows.

F = {f0 = [ G3, G5, G6, R1, R3, L7], f1 = [ G5, G6, L7, L8],

f2 = f3 = [G3, G5, G6, L7], f4 = [G5, G6, R0, L7], f5 = [G3, G5, G6, L7, L8] }
The order of execution based on length for these combinations can be listed as follows.

2Given multiple combinations with the same length, prioritising the most prevalent combinations has
negligible impact on the algorithm performance (positively or negatively). It is simply used to resolve the
ties between priorities
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Figure 6.8: Illustration of multiple branching

Forder = {f0, f5, (f2, f3), f4, f1}
First three combinations f0, f5 and (f2, f3) are illustrated in Fig. 6.8

Once the priorities of the frequent combinations are determined, they are executed

in the respective order by calling the branching algorithm (Algorithm 7) multiple times,

where the unique frequent combinations become the decisions to be fixed and explored in

each call.

As discussed with local branching, determining when to initialise the branching mech-

anism is crucial. Initialising the multiple branching mechanism too early in the SD algo-

rithm can make the entire process inefficient. At the beginning of the SD algorithm, the

frequent combinations are likely to be long3. In addition, the number of unique combi-

nations are likely to be significant4. Because long combinations lead to weak partial cuts

that remove only fewer solutions, if branching is initiated too early, the procedure (Algo-

rithm 7) is likely to explore many weak combinations that do not contribute significantly

towards the improvement of the global lower bound.

Thus, the multiple branching is delayed by pre-defining a later iteration to initialise.

Alternatively, the SD algorithm can be continued until the length and/or the number of

unique frequent combinations becomes reasonable. The advantage of multiple branching

over local branching is that, it does not rely on the expensive evaluation stage (in local

branching to obtain the pool of near-optimal solutions, the evaluation step is essential).

Hence, if the evaluation step is too expensive to allow multiple iterations, sub-problems can

be solved repeatedly without evaluation, solely to extract frequent combinations. However,

in such situations, extra care must be taken not to remove these solutions from the solution

space without evaluation.

3Because the full integer cut exclude exactly the generated solution, and the sub-problems are likely to
change only few decisions in the next iteration, many decision values will be common between the iterations
for each sub-problem leading to long combinations

4Longer the combination, more variations
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6.5 Experimental Analysis and Discussion

This section provides the details of the experimental analysis conducted to evaluate the

performance of the proposed extensions for scenario decomposition in both single-period

and multi-period setting.

6.5.1 Experimental Setup

The extensions were analysed using four test cases: 6 bus, 14 bus, 18 bus and 24 bus

systems, with three instances in each test case where, 24 days (2 days from each month),

84 days (1 week from each month) and 364 days (to make it divisible by four for grouping)

were used to represent the 365 days. To account for an operational cost of 365 days,

the operational costs were multiplied by their respective ratios. In addition, a period of

one year was considered for single-period formulation, while a horizon of 20 years with

two periods (10 years each) was considered for two-period formulation. In addition, the

penalty cost was set to 1000 $/MWh of unserved energy, and an annual monetary discount

rate of 10% was considered. For the two-period formulation, a load growth of 15% was

uniformly applied to the demands in the second period.

Moreover, the grouping algorithms were executed only in the first three iterations of

the SD framework limiting the sub-problems to groups of four scenarios. Both branching

algorithms were pre-defined to start at iteration 10, and they are compared against the

“diving” algorithm [148], which initialises from iteration 1. All algorithms and models were

implemented using Python 2.7 and the optimisation problems were solved using Gurobi

8.0 [131] on a computing node that utilises eight cores clocking at 2.70 GHz with 16 GB

RAM. In addition, Gurobi’s default MIP gap 1× 10−4 was used and the number of thread

count was set to number of cores. For each test case, a maximum time limit of 22hrs was

set for the entire algorithm (the summation of all solving times provided by Gurobi).

6.5.2 Impact of Dissimilar Grouping

To investigate the impact of dissimilar grouping, heuristic and stable grouping algo-

rithms were applied to the previously described four test cases and three instances (without

diving or branching) considering a single-period formulation. Table 6.1 summarises the

obtained results, where the columns illustrate test case, instance, type of the algorithm,

best-known objective value (UBU ), the optimality gap at the end of the maximum time

limit, the residual gap and the number of potential solutions in the pool respectively.

Three types of algorithms were considered, where basic indicates basic scenario decom-

position (SD) framework without grouping, heuristic denotes heuristic grouping approach

and stable denotes stable room-mate grouping approach. According to the Table 6.1 it

is visible that grouping algorithms have managed to prove optimality5 for some instances

(such as 14-Bus 364-day) for which the non-grouping algorithm did not converge. For

the instances that were not fully solved to optimality within the time limit, grouping has

5Prove optimality for one of the solutions in the pool
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Table 6.1: Performance of scenario decomposition with grouping

Test case Instance Type Best obj. (M$) Opt. gap (%) Res. gap (%) N. sol.

6 Bus

24
Basic 149.77 0 0.123 2
Heuristic 149.77 0 0.123 2
Stable 149.77 0 0.123 2

84
Basic 149.96 0 0.012 1
Heuristic 149.96 0 0.012 1
Stable 149.96 0 0.012 1

364
Basic 156.49 0 0.301 2
Heuristic 156.49 0 0.301 2
Stable 156.49 0 0.301 2

14 Bus

24
Basic 615.05 0 0.117 3
Heuristic 615.05 0 0.117 3
Stable 615.05 0 0.117 3

84
Basic 606.86 0 0.042 1
Heuristic 606.86 0 0.042 1
Stable 606.86 0 0.042 1

364
Basic 644.73 2.20 0.206 4
Heuristic 644.73 0 0.206 4
Stable 644.73 0 0.206 4

18 Bus

24
Basic 608.41 4.43 0.005 1
Heuristic 608.41 0.45 0.005 1
Stable 608.41 0 0.005 1

84
Basic 601.52 5.97 0.003 1
Heuristic 601.52 1.10 0.003 1
Stable 601.52 0 0.003 1

364
Basic 616.17 8.04 0.001 1
Heuristic 616.17 3.06 0.001 1
Stable 616.17 1.20 0.001 1

24 Bus

24
Basic 1591.90 6.88 0.079 3
Heuristic 1589.80 2.20 0.065 2
Stable 1589.80 2.43 0.065 2

84
Basic 1564.41 7.57 0.024 1
Heuristic 1564.41 2.07 0.024 1
Stable 1564.41 1.70 0.024 1

364
Basic 1617.22 10.21 0.101 2
Heuristic 1617.22 4.08 0.101 3
Stable 1617.22 2.85 0.101 3

provided much tighter bounds and better solutions. In particular, for 24 bus 24 day in-

stance, grouping algorithms have found a new best-known objective with fewer potential

solutions in the pool. In addition, for 24 bus 364 days instance, grouping has managed to

find an additional high-quality solution that was not discovered previously with the basic

SD framework.

When comparing the two grouping algorithms, stable grouping outperforms heuristic

algorithm in many instances. While heuristic grouping only provides better bounds for 18

Bus 24 and 18 Bus 84 instances, stable grouping has managed to prove optimality. For

the instances that did not converge, stable grouping provides tighter bounds compared to

the heuristic grouping approach. This performance is expected as stable grouping takes

preferences of all groups into account, whereas the heuristic follows a greedy approach.

The significant difference in performance also indicates that selecting which scenarios are

to be grouped plays a significant role.
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Figure 6.9: Performance of scenario decomposition with grouping

The difference in performance with two grouping mechanisms is also visible in Fig. 6.9,

which illustrates the performance of the algorithms in terms of bound improvement. In

the figure, SD-N represents scenario decomposition with no extensions, SD-H indicates

scenario decomposition with heuristic grouping and SD-S denotes scenario decomposition

with stable grouping. As shown in Fig. 6.9, grouping has improved the lower bound and the

convergence rates of the SD algorithm significantly regardless of the grouping mechanism.

In addition, according to 6 bus 84 day instance, when the best-known solution was not

obtained in the first few iterations, grouping has aided to find it earlier in the process. This

improvement in performance demonstrates that dissimilar grouping provides a number of

benefits to the SD algorithm, (i) raise the lower bound significantly, (ii) improve the

convergence rates, and (iii) provide high-quality solutions earlier in the process. When

comparing the two schemes, for the 14-bus 84 day instance, stable grouping has reduced

the time required to solve the instance by a factor of 15, while heuristic grouping reduced

the time only by a factor of 5. This gap in performance also tends to increase with larger
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Figure 6.10: Progression of solutions with stable grouping

test cases like 18-bus system, as both 18-bus 24 day and 18-bus 84 day instances show that

heuristic grouping is far away from reaching optimality compared to the stable approach.

One of the major reason for remarkable performance with stable grouping is its sig-

nificant improvement in lower bound. According to the Fig. 6.9 stable grouping tends

to provide much stronger bounds compared to the heuristic grouping approach. This is

mainly due to the fact that stable groups contain scenarios that are more dissimilar to

each other, hence they provide investment solutions that are better compromises than

their individually preferred solutions. This is depicted in Fig. 6.10, which illustrate the

progression of solutions for 6 bus 24 day instance with stable grouping. Note that the

sub-problems now include groups of four scenarios, thus the figure presents the entire set

of daily scenarios. Similar to the previous chapter, the progression is shown in terms of the

global objective function value and normalised objective value for the individual group.

As shown in Fig. 6.10, the first preferred solutions provided by half of the groups are lo-

cated almost at the globally best-known objective (1.0 in the x-axis), while the other half

initialise their preferred solutions quite close (0.96 or more) to the globally best-known

objective. This evidently shows that the resulting lower bound is much stronger with

grouping. Because the initial solutions are located quite close to the globally best-known

objective, grouping has also reduced the number of evaluated solutions (both pre-optimal

and post-optimal) required to reach the globally best known objective. As a result, in

addition to the strong lower bound, reduction in evaluated solutions has also contributed

towards the acceleration of convergence rates – evaluation is generally the more expensive

step. Fig. 6.11 illustrates this reduction in explored search space with grouping, where

grey dots indicate the solutions explored by the SD algorithm without grouping, while the

coloured dots denote the solutions explored by the SD algorithm with stable grouping. It
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Figure 6.11: Explored solution space with stable grouping

is clearly visible that, grouping has reduced the number of explored solutions, especially

outlying candidate solutions with extreme costs.

Another factor that has contributed to improving the convergence rates with stable

grouping is the improved effectiveness in integer cuts. Since stable grouping bundles

dissimilar scenarios in a more systematic manner, the groups (sub-problems) are more

similar to each other. As a result, the integer cuts generated from a particular sub-

problem have a higher impact on other sub-problems, because they cut off solutions not

only preferred by themselves but also preferred by other sub-problems. Thus, dissimilar

grouping further contributes to the algorithm convergence by improving the effectiveness of

integer cuts implicitly. This similarity in sub-problems can be observed in Fig. 6.12, which

shows the performance of solutions on other sub-problems. The green line indicates where a

sub-problem is providing its own solutions. Fig. 6.12 clearly shows that solutions generated

by all sub-problems perform well on other sub-problems as the maximum normalised

objective for every group is quite low (for most of the sub-problems, maximum is 1.1).

Although grouping has improved the performance of the SD algorithm drastically,

its application is limited. Grouping increases the sub-problem solving time, because the

sub-problem instances are larger. Especially, sub-problems with dissimilar grouping, as

more effort is required to agree on a solution when the properties within the sub-problem

disagree with each other [150]. This performance with grouping is illustrated in Fig. 6.13,

which depicts the phase performance for 14 bus 24 day instance and 24 bus 24 day instance.

From the figure it can be observed that, grouping has significantly increased the time taken

by the candidate solution generation phase and decreased the time taken by the evaluation

phase. Especially for large systems like the 24-bus system (Fig. 6.13b), the time taken by

the candidate solution generation phase in later iterations is extremely high. This suggests

that increasing group size is limited to smaller test cases, although it improves the bounds
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Figure 6.12: Solution performance on other sub-problems with grouping

and convergence rates, and has been already exploited in the SD context. Thus, any

further improvement to the algorithm convergence requires additional mechanisms like

branching or diving.

6.5.3 Impact of Branching

To investigate the impact of branching and compare the performance with diving, the

scenario decomposition procedure was executed with both branching (local and multiple)

and diving algorithms. The algorithms were implemented on the scenario decomposition

framework with stable grouping. While diving algorithm was applied to all single-period

instances, branching was applied only to 18 bus and 24 bus systems. Because branching

requires a certain number of iterations to learn the frequent combinations, and all the

instances of 6 bus and 14 bus systems converge within few iterations (with stable group-

ing), only larger test cases like 18 bus and 24 bus were utilised to examine the impact of

branching with single-period instances. For two-period instances, both diving and branch-

ing were applied to all instances. Fig. 6.14 and Fig. 6.15 depict the obtained results with

different algorithms, where SD-N refers to the basic scenario decomposition framework,

SD-S indicates stable grouping, SD-D denotes stable grouping with diving, SD-L speci-

fies stable grouping with local branching and finally, SD-V signifies stable grouping with

multiple branching. In addition, the complete set of results for both single-period and

two-period instances are provided in Appendix B.

As shown in Fig. 6.14 and Fig. 6.15, diving has not significantly improved the perfor-

mance in many instances except for the 18 bus 24 single-period instance, in which diving

shows a noticeable improvement compared to the SD algorithm with grouping. In fact,

test cases with many days show adverse performance for diving by lagging behind and
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(a) 14 Bus System (b) 24 Bus system

Figure 6.13: Phase performance with grouping

converging later than the grouping only algorithm (e.g. 6-bus 84 day and 14-bus 364 day

instances in Fig. 6.14). Diving solves sub-problems repeatedly to generate and validate

partial cuts. So for test cases with many days, partial cut validation process is expensive,

due to the increased number of sub-problems. This poor performance is further evident

in Fig. 6.15 with two-period formulation, where the sub-problems are twice the size of the

single-period formulation and double the number. Another factor that has affected the

poor performance of diving is the weak partial cuts. Since partial cuts generated by diving

have many decisions, they are long and comparatively weak. Hence, many of them are

required to raise the lower bound and improve the performance.

In contrast, both branching mechanisms show improved convergence rates in single-

period and two-period instances. For example, in single-period 18-bus 84 day instance local

branching has reduced the computational time by a factor of 5, while multiple branching

has reduced the time by a factor of 3. Larger computational gains are observed with

two-period instances, where 6-bus 24 day instance with local branching shows a reduction

in computational time by a factor of 7, while multiple branching shows a reduction in

computational time by a factor of 5. This improvement in convergence rates is mainly due

to two reasons. First, branching fixes a set of decisions, so the time required to generate

solutions decreases because of the reduced branch and bound tree. Second, branching

forces all the sub-problems to explore a certain combination, so the ability to produce

good quality solutions with that combination is determined earlier in the process. Thus,

branching improves convergence rates by exploring fewer poor-quality solutions in total.

This elimination of poor-quality solutions is visible in Fig. 6.16 - Fig. 6.18, which

illustrate the progression of solutions for the single-period 18 bus 24 day instance with

stable grouping, stable grouping with local branching and stable grouping with multiple

branching respectively. The colour ramp indicates the solutions generated by the main SD

framework with grouping, while others denote the solutions generated during the branching

mechanism. According to Fig. 6.16 - Fig. 6.18, local and multiple branching have avoided
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Figure 6.14: Performance of scenario decomposition with grouping and branching

multiple series of poor-quality solutions (higher global objective function values) that were

generated and evaluated by the stable grouping only algorithm, especially at Group 0.

When comparing the two branching mechanisms, according to Fig. 6.14 and Fig. 6.15,

local branching outperforms multiple branching in many instances except for single-period

18-bus 24 day and two-period 6-bus 84 day instances. According to Table 6.2, which

summarises the results obtained for two-period 24-bus 24 days instance, local branching

has found a new upper bound with 25 potential solutions in the pool. This performance

from local branching is expected as it searches around the current best-known solution,

where it is likely to have good-quality solutions. Therefore, local branching can be utilised

to generate better quality solutions when the solution quality needs to be improved.

The differences in performance with local and multiple branching can be analysed

through Fig. 6.17 and Fig. 6.18, which illustrate the progression of solutions with local

and multiple branching. Fig. 6.17 depicts the solutions that were generated during the

execution of two local branches (B1-10 and B2-11) at SD iteration 10 and 11 (Recall that



110 CHAPTER 6. SCENARIO DECOMPOSITION EXTENSIONS

Figure 6.15: Performance of multi-period SD with grouping and branching

Table 6.2: Summary of results for two-period 24 bus 24 days instance

Type Best Obj. (M$) Opt. gap (%) Res. gap. (%) Num. sol.

Basic 14706.20 7.757 0.0802 14
Optimal G. 14621.78 2.947 0.0748 8
Diving 14627.42 2.980 0.0751 3
Local B. 14620.66 3.004 0.0740 25
Multiple B. 14621.78 3.009 0.0748 4

in the current setting branching initiates at iteration 10 in the SD algorithm). Fig. 6.18

illustrates the execution of multiple branches based on frequent combinations from SD

iteration 10 -15. Recall that, in multiple branching, frequent combinations are obtained

from individual groups and are prioritised based on length and prevalence (Refer to Sec-

tion 6.4).

According to Fig. 6.17, local branching has avoided generation and evaluation of poor

quality solutions compared to the stable grouping algorithm depicted in Fig. 6.16, espe-

cially at Group 0, 2 and 3. Instead, local branching has generated and evaluated a new

series of better quality solutions (visible in the y-axis). In multiple branching, although

it is not significant, a number of poor quality solutions have been explored. For example,

when the frequent combination of group 0 (indicated by dark blue G0-10) is forced on to

other groups, the obtained solutions are far beyond optimality (larger objective values in

y-axis). Similar results can be observed with frequent combination of group 2 (indicated

by light blue G2-11), where the generated solutions are outliers for other groups. These

frequent combinations make the multiple branching process inefficient, and they suggest

that the approach can be improved by filtering which frequent combinations to explore

and/or by improving the execution order. In this regard, the main advantage that local



6.5. EXPERIMENTAL ANALYSIS AND DISCUSSION 111

Figure 6.16: 18-bus 24 day instance with stable grouping

Figure 6.17: 18-bus 24 day instance with stable grouping and local branching

Figure 6.18: 18-bus 24 day instance with stable grouping and multiple branching
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branching has over multiple branching is to discover new solutions that might be opti-

mal during the branching process. However, as shown in Fig. 6.14 and Fig. 6.15, local

branching has the risk of over-branching and eliminating solutions more than necessary.

Since latter branching combinations consist only a few decisions, validation may require

evaluation of many irrelevant solutions. Thus, a combined approach of local and multiple

branching mechanisms may improve the efficiency of the branching process.

Therefore, to improve the convergence rate of the SD algorithm, the main challenge

is to explore near-optimal solutions and eliminate them earlier in the process possibly

without evaluation (via partial cuts), while minimising the exploration of average quality

solutions.

6.6 Conclusion

This chapter proposed and explored two extensions i.e, grouping and branching, to

tackle the issue of diversity in scenarios and to mitigate the issue of weak integer cuts.

The grouping method bundles dissimilar scenarios utilising the information revealed

in the previous iterations. In particular, the chapter proposed two grouping strategies:

heuristic and stable. The experimental analysis demonstrated drastic savings in com-

putational time with grouping, due to the significant improvement in lower bound and

reduction in explored solution space. Stable grouping showed improved performance com-

pared to the heuristic grouping, as the method takes grouping preferences of all scenarios

into account. However, the potential of grouping has already been exploited, as further

grouping could deteriorate the overall performance of the SD algorithm because of the

larger sub-problem solving times. This further emphasises the need for other mechanisms

such as branching to improve the algorithm performance.

Branching leads to the generation of stronger partial cuts based on the identification

of frequent combinations of decision variable values. In this chapter, we discussed two

types of frequent combinations: one resulting from a pool of near-optimal solutions (local

branching) and the other resulting from preferred regions of individual sub-problems (mul-

tiple branching). From the experimental analysis, it was observed that both branching

mechanisms (with stable grouping) are effective, improve the efficiency of the SD algo-

rithm and outperforms the “diving” algorithm. However, local branching outperformed

multiple branching in many occasions. It found better quality solutions and converged

prior to multiple branching. According to the outcomes, the execution of certain frequent

combinations in multiple branching was not necessary. Thus, by modifying the approach

to select the most critical set of frequent combinations, the efficiency of the multiple

branching approach can be enhanced.

Even with grouping and branching, optimality gaps provided by larger instances are

quite significant. Due to the sheer number of solutions lying between the preferred so-

lutions and the optimal solution, and the fact that solutions are removed only through

integer cuts, a large number of solutions must be evaluated and cut to prove optimal-

ity. This demonstrates that the key challenge in the scenario decomposition approach is
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not about finding good-quality solutions, rather it is eliminating solutions in an efficient

manner in order to prove optimality.
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Chapter 7

Conclusion and Future Work

7.1 Thesis Summary and Contributions

Energy system planning addresses the need for new capacities in generation, trans-

mission and storage facilities. In general, these problems contain many inter-temporal

dependencies, which are ignored due to computational limitations. However, with integra-

tion of large-scale renewable energy-based generation, consideration of these dependencies

are becoming crucial in the planning stage, because they characterise the operational

flexibility in a system and address the variability and uncertainty inherent to renewable

energy-based generation.

The experimental analysis carried out in Chapter 3 showed that ignoring temporal

dependencies in planning stage could lead to sub-optimal investment solutions. In par-

ticular, by considering three operational models with different details of operational flex-

ibility: economic dispatch (no operational flexibility), economic dispatch with ramping

(consider operational flexibility approximately via ramping constraints) and full unit com-

mitment (accurately represent flexibility constraints), the analysis showed that tradition-

ally used operational models like economic dispatch and economic dispatch with ramping

provide sub-optimal investment solutions that are operationally expensive. More specifi-

cally, Chapter 3 showed that representing operational flexibility accurately requires unit

commitment with chronological demand and renewable generation profiles as the embed-

ded operational model.

Solving unit commitment in the planning context is computationally intensive, be-

cause of its numerous integer (binary) variables and inter-temporal constraints. Besides,

a fine resolution is essential to accurately capture the rapid variations in renewable en-

ergy based generation. Thus, a planning problem that considers a representative year

with hourly operational conditions often leads to a high-dimensional MIP problem, that

is computationally limited even for small systems. Therefore, in this thesis, we developed

computationally efficient methods to incorporate unit commitment in energy system plan-

ning problems. The thesis proposed solution methods to reduce the problem size and solve

a complex MIP problem with a large number of binary variables in both investment and

operational stages, and inter-temporal constraints.
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In general, large-scale optimisation problems are solved using decomposition techniques

based on mathematical programming. As shown in Chapter 2, application of decomposi-

tion techniques such as Bender’s and Dantzig-Wolfe decomposition have been less effective

on planning problems with unit commitment, because of the binary variables and inter-

temporal constraints. Therefore, in Chapter 5 we proposed a decomposition framework

based on an existing scenario decomposition (SD) method to decompose the deterministic

GTEP-UC problem (generation and transmission expansion planning with unit commit-

ment). Experimental analysis demonstrated that the proposed approach based on SD is

capable of finding high-quality solutions in the first few iterations, and is computationally

more efficient compared to both classic and multi-cut Bender’s decomposition approaches.

In addition, if implemented in a parallel processing environment, the SD framework has

the potential to make GTEP-UC and related problems with binary variables and inter-

temporal constraints much more tractable for practical size instances.

Moreover, further computational speed-ups can be gained in the sub-problem level and

as a result in the overall problem, by utilising the adaptive resolution approach proposed in

Chapter 4 i.e., Sliding Window with Backtracking (SWBT) algorithm. Unlike the coarse

resolution with the fixed length, the proposed SWBT approach reduces the resolution

only where it can be afforded, thus mitigates the risk of ignoring important time periods

that characterises the flexibility of the system. The experimental analysis in Chapter 4

exhibited that the method provides high-quality solutions for unit commitment problems

with significant gains in computational speeds, especially for larger systems, and is capable

of capturing rapid variations in renewable energy-based generation.

In addition, two extensions were proposed in Chapter 6 to improve the performance

of the scenario decomposition framework for GTEP-UC; grouping approaches to tackle

the issue of diversity in scenarios and branching techniques to generate stronger integer

cuts. Grouping approaches grouped dissimilar scenarios into one sub-problem to maintain

similarity between the sub-problems. The dissimilarity was measured abstractly (e.g.

penalty cost, solution distance) eliminating the need to carry out high-dimensional data

analysis. The methods showed that, by grouping extremely different scenarios into one

sub-problem, and forcing them to compromise their investment solutions, the lower bound

and rate of convergence can be improved significantly. Especially, in the stable grouping

approach, which takes differences in all sub-problems into account to ensure that extreme

scenarios are grouped into one sub-problem.

On the other hand, branching mechanisms showed that by fixing sets of decisions, the

outcomes of partial investment solutions can be realised earlier in the solution process

avoiding any solutions with that combination being generated again. In particular, the

local branching approach showed that by searching around the best-known solution, high-

quality solutions can be generated and eliminated more efficiently. In addition, multiple

branching showed that by forcing all the sub-problems to search a particular region pre-

ferred by a certain sub-problem simultaneously, preferred regions of sub-problems can be

explored and eliminated earlier in the solution process improving the lower bound and

convergence rates.
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In this regard, the contributions of this thesis are as follows.

1. Through an experimental analysis that investigates the impact of unit commitment

model in the planning context with respect to traditionally used economic dispatch

model, the thesis showed that representing inter-temporal dependencies in opera-

tional conditions and limitations in thermal generators is influential in energy sys-

tem planning with high shares of renewable energy-based generators and thermal

generators. To the best of our knowledge, the study is the first of its kind to com-

pare economic dispatch with full unit commitment model (with binary variables

and detailed set of flexibility constraints) that includes one-year planning horizon at

hourly resolution (without employing representative days and unit clustering) and a

transmission network.

2. The thesis proposed a decomposition framework based on an existing scenario de-

composition (SD) method to decompose the computationally intensive energy system

planning with unit commitment problem. The proposed framework is computation-

ally more efficient in terms of both run-time and memory compared to the Ben-

der’s decomposition. In addition, the scenario decomposition framework is capable

of dealing with multi-period formulation with a relatively straightforward exten-

sion of single-period formulation with grouping. The SD method is also capable

of finding high-quality solutions earlier in the solution process, especially when the

sub-problems naturally deliver solutions that are near-optimal. Thus, SD offers a

good heuristic to derive high-quality candidate options, when reaching optimality is

hard and/or not necessary. Such an application is suitable for real-world problems

that involve an enormous number of electric buses (nodes), generators and trans-

mission lines. Since scenario decomposition was originally designed for stochastic

programming problems, the proposed decomposition framework is also extensible

for stochastic formulations.

3. The thesis investigated the scenario decomposition (SD) approach in detail and

brought clarity to the fundamental elements of SD framework, as applied to deter-

ministic planning problem with a large number of operational cases that consists

binary variables and are bounded by inter-temporal constraints. The analysis in-

troduced the notion of “pre-optimal” and “post-optimal” in generated solution, and

showed that, for the SD algorithm to converge, at least one sub-problem must start

exploring its “post-optimal” solutions. In addition, the analysis identified that diver-

sity in scenarios and weak integer cuts are major factors that affect the performance

of the SD algorithm.

4. The thesis proposed two grouping approaches: heuristic grouping and stable group-

ing, that group dissimilar scenarios to tackle the issue of diversity in scenarios and

improve the performance of the SD framework. The proposed approaches measure

dissimilarity abstractly eliminating the need to carry out high-dimensional data anal-

ysis. If a generic metric such as solution distance is chosen, the proposed grouping

methods are also applicable to other problem domains with similar characteristics.
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5. The thesis also proposed two branching mechanisms: local branching and multiple

branching, that improve the performance of the scenario decomposition algorithm

by removing sets of solutions in targeted regions, particularly near-optimal solutions

(local branching) and preferred solutions of sub-problems (multiple branching). To

identify these targeted regions, the thesis introduced the concept of frequent combi-

nations. In addition, when closing the bound gap is difficult, local branching can be

utilised to find better quality solutions.

6. The thesis proposed an algorithm named Sliding Window with Backtracking (SWBT)

to obtain a resolution that is adaptive to the given data set. The algorithm is capable

of reducing the size of the problem providing high-quality solutions and outperforms

the commonly used fixed resolution approach. Thus, it is ideal for optimisation and

simulation problems that involve high resolutions, to reduce the computational bur-

den with minimum approximation errors. Such application is useful for planning and

operational problems with shorter horizons such as rolling horizon based techniques

and sub-problems in decomposition techniques.

7. Finally, the thesis presents four test cases that were developed to incorporate can-

didate investment options and technical parameters required for unit commitment

problem. Existing test cases do not contain input data desired for both unit com-

mitment model and capacity expansion planning. And, details of real systems are

not publicly available. Thus, four test cases collected from multiple sources were

upgraded to incorporate required input parameters. These test cases are currently

available to the public via the Monash figshare repository.

With the transition towards renewable energy-based generation, I believe that the

proposed methods and analytical discussions in this thesis will help to bridge the gap

between the theoretical need to consider operational flexibility and the practical require-

ments of computational resources to incorporate unit commitment in planning problems,

and provide a power system that is both reliable and economically efficient.
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7.2 Future Work

In the scenario decomposition framework, large instances provided significant optimal-

ity gaps at the end of the maximum time limit even with grouping and branching. Due to

the large number of solutions that needs to be cut off to improve bounds, the main chal-

lenge in scenario decomposition is not finding good quality solutions but rather eliminating

solutions in an effective manner to raise the lower bound and close the optimality gap.

Thus, it will be beneficial to investigate other methods that could be employed to improve

the efficiency of the proposed scenario decomposition framework. For example, instead of

solving all the sub-problems in every iteration, an approach could be devised to optimise

which sub-problem to solve, to gain the largest bound improvement. In addition, existing

solutions can be perturbed to generate new solutions rather than resolving sub-problems.

Although the current scenario decomposition framework is capable of handling intra-

day inter-temporal constraints, the ability to deal with global inter-temporal constraints

is limited. For example, hydro generators require consideration of consecutive months to

accurately model seasonal storage and water flow constraints. In addition, constraints that

represent environmental concerns such as renewable energy targets and carbon emission

limits must account for power generation across the entire year. Thus in future, it will be

useful to extend the approach to account for global constraints, as they will greatly enhance

the utility of the proposed scenario decomposition framework in real-world applications.

All the experiments conducted in this thesis are based on test cases that were upgraded

from existing operational test instances. Hence, for a more insightful study, it will be useful

to gather all the elements discussed in this thesis, and conduct an experimental analysis

using a real system (e.g. Australian energy system). However, the main challenge in this

aspect would be collecting all the necessary data, especially the technical characteristics

of thermal generators that are subject to confidentiality.

This thesis only considers a static multi-period formulation, where investment decisions

for all the periods are made once in the solving process assuming perfect foresight. In real-

ity, long-term expansion planning problems are associated with significant uncertainty and

multi-period decisions are made over several stages when the uncertainty pertaining to the

previous stage is realised. Such a dynamic formulation accounts for various future possi-

bilities to provide more robust solutions. The proposed decomposition framework based

on scenario decomposition permits a relatively straightforward extension for stochastic

scenarios due to its stochastic programming origin. Therefore, it will be worthwhile to

extend the current scenario decomposition approach to make decisions in multiple stages

considering long-term uncertainty.
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Appendix A

Test Cases

This chapter presents the four test-cases: 6-Bus, 14-Bus, 18-Bus and 24-Bus, that

were updated to incorporate input parameters for energy system planning with unit com-

mitment. The test cases contain investment costs for the generation and transmission

expansion planning problem (candidate units), operational costs and technical parameters

for the unit commitment problem with DC formulation, and hourly load and renewable

generation profiles for a period of one year. These test cases are publicly available at

Monash figshare repository [159,160].

Nomenclature

Bus Bus number

Ti Technology Index

IntI Initial existing status

CI Investment cost M$/MW

CAI Annualised cost (M$)

CM Fixed OM cost (M$/MW/yr)

CV Variable OM cost ($/MWh)

LS Life span (yr)

γ Discount rate (%)

Nodes

Type Bus Type

Bkv Base kv

Lzone Load Zone

LF Load Factor

SF Scaling factor

Renewable Units

Rmax Maximum available

generation (MW)

Rzone Renewable zone

Thermal Unitst

Pmax Maximum generation (MW)

Pmin Minimum generation (MW)

IntS Initial on off status

IntP Initial generation (MW)

MinU/MinD Minimum up and down times (hr)

RU/RD Ramp up and down limits (MW)

SU Start up limit (MW)

SD Shut down limits (MW)

HR Heat rate (MMBTU/MWh)

CF Fuel cost ($/MMBTU)

CG Generation cost ($/MWh)

CSU Star up cost ($/startup)

CC Commitment cost ($/hr)

Transmission Lines

From/To Connecting buses

Fmax Maximum Flow (MW)

Fmin Minimum Flow (MW)

X Reactance (p.u.)
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A.1 System Description

This section summarises the upgrading process conducted to generate test cases for

energy system planning with unit commitment. In all test cases, the obtained data serve

as the existing system, and candidate options were assigned to existing nodes/buses con-

sidering a range of technologies.

A.1.1 Bus Data

For each bus, bus type, Base kV, load distribution factor (LF), load zone (Lzone)

and scaling factors (SF) are provided (e.g. Table A.4). For the bus type, Matpower case

format was followed [161], where 1 indicates PQ bus, 2 refers to PV bus and 3 indicates

reference bus. Load zone (Lzone) allows different demand profiles to be assigned for

different demand nodes/buses. If one demand profile is chosen for several nodes/buses,

load distribution factors (LF) are used to distribute the load among the nodes. For buses

that do not contain any load, LF and Lzone are set to zero. The scaling factors (SF) were

designed to promote new generating units and transmission lines in the panning problem.

In addition, a Base MVA of 100 MVA was considered.

A.1.2 Unit Data

A technology index (Ti) was assigned to each unit according to Table A.1.

Table A.1: Technology index

1 Coal 5 Solar

2 CCGT 6 Battery Storage (Li-ion)

3 OCGT 7 Transmission lines (HV AC)

4 Wind

Thermal Units

For thermal units (coal, CCGT and OCGT), cost and technical parameters that are

necessary for the unit commitment model are provided (e.g. Table A.16). The technical

parameters and cost parameters are based on Table A.2 [6] and Table A.3 respectively.

Table A.2: Technical parameters

Technology Pmin RU/RD MinU MinD

p.u p.u hr hr

Coal 0.5 0.3 24 12

CCGT 0.3 0.5 6 12

OCGT 0.25 1 1 1

Renewable Units

A renewable zone was assigned to all renewable units (e.g. Table A.6). Wind and solar

profiles that determine the generation output of each unit are based on these zones. Note

that these zones are different to load zones mentioned above and same zone number does

not imply that the units and loads are co-located.
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Transmission Lines

For transmission lines, the information required for DC power flow calculations are

provided (e.g. Table A.5). The candidate lines were assigned to either increase the capac-

ity in existing lines, or install completely new lines that connect previously unconnected

nodes/buses changing the network topology.

A.1.3 Cost Data

The cost parameters for different technologies obtained from [6, 162] are summarised

in Table A.3. Note that investment cost CI shown here is the total cost of installation.

Annualised investment cost was calculated using Eq (A.1). Total annual cost CAI provided

in test cases are the sum of annualised capital cost and fixed operational and maintenance

cost for a year CM . In addition, total generation cost CG is considered as the sum of fuel

cost CF and variable OM cost CV .

Table A.3: Cost parameters

Ti CI LS γ HR CF CV CM CSU+ CG

1 1.52 30 10 8 2.89 7.33 0.043 54.11 30.45
2 1.28 30 10 7.34 5.78 4.73 0.025 16.23 47.15
3 0.77 30 10 14.31 5.78 13.4 0.017 28.14 96.12
4 1.50 25 10 NA NA NA 0.060 NA 0
5 0.83 25 10 NA NA NA 0.015 NA 0
6 1.00 15 10 NA NA NA 0.012 NA 0

7 1100 * 50 7 NA NA NA NA NA NA
* The provided value is in $/MW/km.
+ The provided value is in $/MW/startup.

CAI =
γ CI

1− (1 + γ)−LS
(A.1)

A.1.4 Demand, Solar and Wind Profiles

Hourly load and renewable generation profiles obtained from the Australian Energy

Market Operator (aemo.com.au) for a period of one year are provided. For load profiles

appropriate scaling factors were applied, and for renewable generation profiles, hourly

capacity factors are presented. Due to the enormous amount of data, these profiles are

not shown in this section and can be found in the repository [160].

A.2 Test Cases

This section provides the details of the four test cases: 6-Bus, 14-bus, 18-Bus, and 24-

Bus. The technical parameters of the existing units were extended for the unit commitment

problem, and candidate generators and transmission lines were added to update the test

case for capacity expansion planning problems. The existing or candidate status of an

unit is determined by the initial existing status “IntI”, where 1 indicates “existing” and 0

otherwise.
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A.2.1 6-Bus System

The 6-bus system was obtained from motor.ece.iit.edu, and can be illustrated as follows.

Figure A.1: 6-bus system

Table A.4: 6-bus nodes

Bus Type BkV LF Lzone SF

1 3 230 0 0 0
2 2 230 0 0 0
3 2 230 1 1 0.0225
4 1 230 1 2 0.105
5 1 230 1 3 0.105
6 1 230 0 0 0

Table A.5: 6-bus transmission lines

Line From To X Fmax Fmin IntI CAI

1 1 2 0.17 200 -200 1 0

2 2 3 0.037 110 -110 1 0

3 1 4 0.258 100 -100 1 0

4 2 4 0.197 100 -100 1 0

5 4 5 0.037 100 -100 1 0

6 5 6 0.14 100 -100 1 0

7 3 6 0.018 100 -100 1 0

8 1 5 0.258 100 -100 0 0.39

9 4 5 0.037 100 -100 0 0.24

10 5 6 0.14 100 -100 0 0.56

Table A.6: 6-bus renewable generators

Gen Bus Ti Rmax Rzone IntI CAI

1 4 4 70 1 0 15.77

2 5 4 50 1 0 11.26

3 6 5 115 3 0 12.24

4 5 5 100 3 0 10.64
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A.2.2 14-Bus System

The 14 bus system is based on the IEEE 14 bus case, which was obtained from mat-

power test cases [161]. The 14 bus system is presented in Fig. A.2 [163].

Figure A.2: IEEE 14-bus system

Table A.7: 14-bus nodes

Bus Type BkV LF Lzone SF

1 3 230 0 0 0
2 2 230 0.0838 1 0.1563
3 2 230 0.3637 1 0.1563
4 1 230 0.1846 1 0.1563
5 1 230 0.0293 1 0.1563
6 2 230 0.0432 1 0.1563
7 1 230 0 0 0
8 2 230 0 0 0
9 1 230 0.1139 1 0.1563

10 1 230 0.0347 1 0.1563
11 1 230 0.0135 1 0.1563
12 1 230 0.0235 1 0.1563
13 1 230 0.0521 1 0.1563
14 1 230 0.0575 1 0.1563

Table A.8: 14-bus renewable generators

Gen Bus Ti Rmax Rzone IntI CAI

1 6 4 120 1 0 27.03

2 12 4 80 1 0 18.02

3 7 4 30 1 0 6.76

4 9 5 110 3 0 11.71

5 14 5 90 3 0 9.58

6 3 4 40 3 0 4.26
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Table A.9: 14-bus transmission lines

Line From To X Fmax Fmin IntI CAI

1 1 2 0.05917 100 -100 1 0
2 1 5 0.22304 100 -100 1 0
3 2 3 0.19797 100 -100 1 0
4 2 4 0.17632 100 -100 1 0
5 2 5 0.17388 100 -100 1 0
6 3 4 0.17103 100 -100 1 0
7 4 5 0.04211 100 -100 1 0
8 4 7 0.20912 100 -100 1 0
9 4 9 0.55618 100 -100 1 0
10 5 6 0.25202 100 -100 1 0
11 6 11 0.1989 100 -100 1 0
12 6 12 0.25581 100 -100 1 0
13 6 13 0.13027 100 -100 1 0
14 7 8 0.17615 100 -100 1 0
15 7 9 0.11001 100 -100 1 0
16 9 10 0.0845 100 -100 1 0
17 9 14 0.27038 100 -100 1 0
18 10 11 0.19207 100 -100 1 0
19 12 13 0.19988 100 -100 1 0
20 13 14 0.34802 100 -100 1 0
21 1 2 0.05917 100 -100 0 0.40
22 2 3 0.19797 100 -100 0 0.24
23 1 3 0.34802 150 -150 0 1.08
24 10 9 0.19207 70 -70 0 0.22
25 10 14 0.27038 150 -150 0 0.83
26 6 8 0.04211 90 -90 0 0.14
27 8 9 0.19797 100 -100 0 0.28

A.2.3 18-Bus System

The 18 bus system represents a section of the IEEE 118 bus system obtained from

motor.ece.iit.edu. In particular, it represents the buses 1-7, 11-19, 113 and 117. The 18

bus system is depicted in Fig. A.3 [164].

Figure A.3: 18-bus system



A.2. TEST CASES 127

Table A.10: 18-bus nodes

Bus Type BkV LF Lzone SF

1 3 138 0.081341368 1 0.2312

2 1 138 0.031896511 1 0.2312

3 1 138 0.062200454 1 0.2312

4 1 138 0.047852283 1 0.2312

5 1 138 0 0 0

6 1 138 0.082933937 1 0.2312

7 1 138 0.030303943 1 0.2312

8 1 138 0.111645305 1 0.2312

9 1 138 0.074956057 1 0.2312

10 1 138 0.054222568 1 0.2312

11 1 138 0.022326057 1 0.2312

12 1 138 0.143541822 1 0.2312

13 1 138 0.039874397 1 0.2312

14 1 138 0.01754834 1 0.2312

15 1 138 0.095689539 1 0.2312

16 1 138 0.071770908 1 0.2312

17 1 138 0 0 0

18 1 138 0.031896511 1 0.2312

Table A.11: 18-bus renewable generators

Gen Bus Ti Rmax Rzone IntI CAI

1 7 4 70 1 0 15.77

2 4 4 140 1 0 31.53

3 14 4 250 1 0 56.31

4 1 4 135 1 0 30.41

5 11 5 80 3 0 8.51

6 10 5 145 3 0 15.43

7 8 5 120 3 0 12.77

8 18 5 135 3 0 14.37

Table A.12: 18-bus transmission lines

Line From To X Fmax Fmin IntI CAI

1 1 2 0.0999 175 -175 1 0

2 1 3 0.0424 175 -175 1 0

3 4 5 0.00798 500 -500 1 0

4 3 5 0.108 175 -175 1 0

5 5 6 0.054 175 -175 1 0

6 6 7 0.0208 175 -175 1 0

7 4 8 0.0688 175 -175 1 0

8 5 8 0.0682 175 -175 1 0

9 8 9 0.0196 175 -175 1 0

10 2 9 0.0616 175 -175 1 0

11 3 9 0.16 175 -175 1 0

12 7 9 0.034 175 -175 1 0

13 8 10 0.0731 175 -175 1 0
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Line From To X Fmax Fmin IntI CAI

14 9 11 0.0707 175 -175 1 0

15 10 12 0.2444 175 -175 1 0

16 11 12 0.195 175 -175 1 0

17 9 13 0.0834 175 -175 1 0

18 12 14 0.0437 500 -500 1 0

19 13 14 0.1801 175 -175 1 0

20 14 15 0.0505 175 -175 1 0

21 15 16 0.0493 175 -175 1 0

22 16 17 0.117 175 -175 1 0

23 12 16 0.0394 175 -175 1 0

24 14 17 0.0301 175 -175 1 0

25 9 18 0.14 175 -175 1 0

26 4 8 0.0682 175 -175 0 0.97

27 8 9 0.0196 110 -110 0 0.37

28 13 14 0.1801 175 -175 0 1.55

29 14 17 0.0301 175 -175 0 1.36

30 14 15 0.0505 175 -175 0 1.16

31 9 18 0.14 110 -110 0 1.22

A.2.4 24-Bus System

The provided 24 bus system is based on the IEEE Reliability Test System - 96 [165].

The single-area version of this test case was updated by C. Ordoudis et al. [166] for

electricity market and power system operation studies. In this section, the updated version

is extended to incorporate capacity expansion data.

Figure A.4: IEEE RTS 24-bus system
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Table A.13: 24-bus renewable generators

Gen Bus Ti Rmax Rzone IntI CAI

1 3 4 420 1 0 94.61

2 5 4 315 1 0 70.95

3 7 4 455 1 0 102.49

4 16 4 245 1 0 55.19

5 21 4 175 1 0 39.42

6 23 4 420 1 0 94.61

7 13 5 115 3 0 12.24

8 14 5 100 3 0 10.64

9 15 5 220 3 0 23.42

10 21 5 110 3 0 11.71

Table A.14: 24-bus nodes

Bus Type BkV LF Lzone SF

1 3 0.038 1 0.75

2 1 0.034 1 0.75

3 1 0.063 1 0.75

4 1 0.026 1 0.75

5 1 0.025 1 0.75

6 1 0.048 1 0.75

7 1 0.044 1 0.75

8 1 0.06 1 0.75

9 1 0.061 1 0.75

10 1 0.068 1 0.75

11 1 0 0 0.75

12 1 0 0 0.75

13 1 0.093 1 0.75

14 1 0.068 1 0.75

15 1 0.111 1 0.75

16 1 0.035 1 0.75

17 1 0 0 0.75

18 1 0.117 1 0.75

19 1 0.064 1 0.75

20 1 0.045 1 0.75

21 1 0 0 0.75

22 1 0 0 0.75

23 1 0 0 0.75

24 1 0 0 0.75
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Table A.15: 24-bus transmission lines

Line From To X Fmax Fmin IntI CAI

1 1 2 0.0146 175 -175 1 0

2 1 3 0.2253 175 -175 1 0

3 1 5 0.0907 350 -350 1 0

4 2 4 0.1356 175 -175 1 0

5 2 6 0.205 175 -175 1 0

6 3 9 0.1271 175 -175 1 0

7 3 24 0.084 400 -400 1 0

8 4 9 0.111 175 -175 1 0

9 5 10 0.094 350 -350 1 0

10 6 10 0.0642 175 -175 1 0

11 7 8 0.0652 350 -350 1 0

12 8 9 0.1762 175 -175 1 0

13 8 10 0.1762 175 -175 1 0

14 9 11 0.084 400 -400 1 0

15 9 12 0.084 400 -400 1 0

16 10 11 0.084 400 -400 1 0

17 10 12 0.084 400 -400 1 0

18 11 13 0.0488 500 -500 1 0

19 11 14 0.0426 500 -500 1 0

20 12 13 0.0488 500 -500 1 0

21 12 23 0.0985 500 -500 1 0

22 13 23 0.0884 250 -250 1 0

23 14 16 0.0594 250 -250 1 0

24 15 16 0.0172 500 -500 1 0

25 15 21 0.0249 400 -400 1 0

26 15 24 0.0529 500 -500 1 0

27 16 17 0.0263 500 -500 1 0

28 16 19 0.0234 500 -500 1 0

29 17 18 0.0143 500 -500 1 0

30 17 22 0.1069 500 -500 1 0

31 18 21 0.0132 1000 -1000 1 0

32 19 20 0.0203 1000 -1000 1 0

33 20 23 0.0112 1000 -1000 1 0

34 21 22 0.0692 500 -500 1 0

35 1 2 0.0146 175 -175 0 0.70

36 6 10 0.0642 175 -175 0 0.42

37 7 8 0.0652 350 -350 0 2.23

38 13 23 0.0884 250 -250 0 1.39

39 14 16 0.0594 250 -250 0 1.20

40 15 21 0.0249 400 -400 0 3.19
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Table A.16: 6-bus thermal generators

Gen Bus Ti Pmax Pmin IntS IntP MinU MinD RU RD SU SD IntI CAI CSU CG CC

1 1 1 220 110 24 160 24 12 66 66 110 110 1 0 11904 30 0
2 2 2 100 30 6 50 6 12 50 50 50 50 1 0 1623 47 0
3 6 3 20 5 1 20 1 1 20 20 20 20 1 0 562 96 0
4 1 1 100 50 -12 0 24 12 30 30 50 50 0 20.48 5411 30 0
5 2 2 100 30 -12 0 6 12 50 50 50 50 0 16.11 1623 47 0
6 6 2 50 15 -12 0 6 12 25 25 25 25 0 8.05 811 47 0
7 5 3 50 10 -1 0 1 1 50 50 50 50 0 4.93 1407 96 0

Table A.17: 24-bus thermal generators

Gen Bus Ti Pmax Pmin IntS IntP MinU MinD RU RD SU SD IntI CAI CSU CG CC

1 1 2 152 45.6 6 76 6 12 76 76 76 76 1 0 2466 47 0
2 2 3 152 38 1 152 1 1 152 152 152 152 1 0 4277 96 0
3 7 1 350 175 24 245 24 12 105 105 175 175 1 0 18938 30 0
4 13 1 591 295.5 24 413.7 24 12 177.3 177.3 295.5 295.5 1 0 31979 30 0
5 15 3 60 15 1 60 1 1 60 60 60 60 1 0 1688 96 0
6 15 2 155 46.5 6 77.5 6 12 77.5 77.5 77.5 77.5 1 0 2515 47 0
7 16 3 155 38.75 1 155 1 1 155 155 155 155 1 0 4361 96 0
8 18 1 400 200 24 280 24 12 120 120 200 200 1 0 21644 30 0
9 21 2 400 120 6 200 6 12 200 200 200 200 1 0 6492 47 0

10 22 1 300 150 24 210 24 12 90 90 150 150 1 0 16233 30 0
11 23 2 310 93 6 155 6 12 155 155 155 155 1 0 5031 47 0
12 23 1 350 175 24 245 24 12 105 105 175 175 1 0 18938 30 0
13 5 1 300 150 -12 0 24 12 90 90 150 150 0 61.44 16233 30 0
14 17 2 400 120 -12 0 6 12 200 200 200 200 0 64.42 6492 47 0
15 10 3 200 50 -1 0 1 1 200 200 200 200 0 19.73 5628 96 0
16 20 1 600 300 -12 0 24 12 180 180 300 300 0 122.88 32466 30 0
17 9 2 350 105 -12 0 6 12 175 175 175 175 0 56.37 5680 47 0
18 24 3 240 60 -1 0 1 1 240 240 240 240 0 23.67 6753 96 0
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Table A.18: 14-bus thermal generators

Gen Bus Ti Pmax Pmin IntS IntP MinU MinD RU RD SU SD IntI CAI CSU CG CC

1 1 1 330 165 24 231 24 12 99 99 165 165 1 0 17856 30 0
2 2 1 140 70 24 98 24 12 42 42 70 70 1 0 7575 30 0
3 3 2 100 30 6 50 6 12 50 50 50 50 1 0 1623 47 0
4 6 2 100 30 6 50 6 12 50 50 50 50 1 0 1623 47 0
5 8 3 100 25 1 100 1 1 100 100 100 100 1 0 2814 96 0
6 10 1 400 200 -24 0 24 12 120 120 200 200 0 81.92 21644 30 0
7 5 1 220 110 -24 0 24 12 66 66 110 110 0 45.06 11904 30 0
8 7 2 300 90 -6 0 6 12 150 150 150 150 0 48.32 4869 47 0
9 13 2 200 60 -6 0 6 12 100 100 100 100 0 32.21 3246 47 0

10 4 3 250 62.5 -1 0 1 1 250 250 250 250 0 24.66 7035 96 0
11 11 3 120 30 -1 0 1 1 120 120 120 120 0 11.84 3376 96 0

Table A.19: 18-bus thermal generators

Gen Bus Ti Pmax Pmin IntS IntP MinU MinD RU RD SU SD IntI CAI CSU CG CC

1 4 1 30 15 24 21 24 12 9 9 15 15 1 0 1623 30 0
2 6 2 30 9 6 15 6 12 15 15 15 15 1 0 486 47 0
3 9 2 300 90 6 150 6 12 150 150 150 150 1 0 4869 47 0
4 12 1 30 15 24 21 24 12 9 9 15 15 1 0 1623 30 0
5 15 3 100 25 1 100 1 1 100 100 100 100 1 0 2814 96 0
6 16 3 30 7.5 1 30 1 1 30 30 30 30 1 0 844 96 0
7 17 2 100 30 6 50 6 12 50 50 50 50 1 0 1623 47 0
8 4 1 300 150 -24 0 24 12 90 90 150 150 0 61.44 16233 30 0
9 9 2 400 120 -6 0 6 12 200 200 200 200 0 64.42 6492 47 0

10 17 3 200 50 -1 0 1 1 200 200 200 200 0 19.72 5628 96 0
11 8 1 220 110 -24 0 24 12 66 66 110 110 0 45.06 11904 30 0
12 13 2 170 51 -6 0 6 12 85 85 85 85 0 27.38 2759 47 0
13 11 3 120 30 -1 0 1 1 120 120 120 120 0 11.84 3376 96 0
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Table B.1: Performance of scenario decomposition with single-period

Test Case Instance Type Opt. obj. Opt. gap Res. gap N. solutions

6 Bus

24

Basic 149.77 0 0.123 2
Heuristic G. 149.77 0 0.123 2
Stable G. 149.77 0 0.123 2
Diving 149.77 0 0.123 2

84

Basic 149.96 0 0.012 1
Heuristic G. 149.96 0 0.012 1
Stable G. 149.96 0 0.012 1
Diving 149.96 0 0.012 1

364

Basic 156.49 0 0.301 2
Heuristic G. 156.49 0 0.301 2
Stable G. 156.49 0 0.301 2
Diving 156.49 0 0.301 2

14 Bus

24

Basic 615.05 0 0.117 3
Heuristic G. 615.05 0 0.117 3
Stable G. 615.05 0 0.117 3
Diving 615.05 0 0.117 3

84

Basic 606.86 0 0.042 1
Heuristic G. 606.86 0 0.042 1
Stable G. 606.86 0 0.042 1
Diving 606.86 0 0.042 1

364

Basic 644.73 2.20 0.206 4
Heuristic G. 644.73 0 0.206 4
Stable G. 644.73 0 0.206 4
Diving 644.73 0 0.206 4

18 Bus

24

Basic 608.41 4.43 0.005 1
Heuristic G. 608.41 0.45 0.005 1
Stable G. 608.41 0 0.005 1
Diving 608.41 0 0.005 1
Local B. 608.41 0 0.005 1
Multiple B. 608.41 0 0.005 1

84

Basic 601.52 5.97 0.003 1
Heuristic G. 601.52 1.10 0.003 1
Stable G. 601.52 0 0.003 1
Diving 601.52 0 0.003 1
Local B. 601.52 0 0.003 1
Multiple B. 601.52 0 0.003 1

364

Basic 616.17 8.04 0.001 1
Heuristic G. 616.17 3.06 0.001 1
Stable G. 616.17 1.20 0.001 1
Diving 616.17 1.247 0.001 1
Local B. 616.17 1.242 0.001 1
Multiple B. 616.17 1.226 0.001 1

24 Bus

24

Basic 1591.90 6.88 0.079 3
Heuristic G. 1589.80 2.20 0.065 2
Stable G. 1589.80 2.43 0.065 2
Diving 1589.80 2.237 0.065 2
Local B. 1589.80 2.95 0.065 2
Multiple B. 1589.80 2.929 0.065 2

84

Basic 1564.41 7.57 0.024 1
Heuristic G. 1564.41 2.07 0.024 1
Stable G. 1564.41 1.70 0.024 1
Diving 1564.41 1.819 0.024 1
Local B. 1564.41 1.867 0.024 1
Multiple B. 1564.41 1.854 0.024 1

364

Basic 1617.22 10.21 0.101 2
Heuristic G. 1617.22 4.08 0.101 3
Stable G. 1617.22 2.85 0.101 3
Diving 1617.22 2.875 0.101 3
Local B. 1617.22 2.866 0.101 3
Multiple B. 1617.22 2.847 0.101 3
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Table B.2: Performance of scenario decomposition with two-period

Test Case Instance Type Opt. obj. Opt. gap Res. gap N. solutions

6 Bus

24

Basic 1398.77 1.99 0.1347 4
Stable G. 1398.77 0.00 0.1347 4
Diving 1398.77 0.00 0.1347 4
Local B. 1398.77 0.00 0.1347 4
Multiple B. 1398.77 0.00 0.1347 4

84

Basic 1380.31 5.81 0.0217 1
Stable G. 1380.31 0.45 0.0217 1
Diving 1380.31 1.48 0.0217 1
Local B. 1380.31 0.00 0.0217 1
Multiple B. 1380.31 0.00 0.0217 1

364

Basic 1440.89 8.75 0.2592 3
Stable G. 1440.89 2.99 0.2592 3
Diving 1440.89 3.47 0.2592 3
Local B. 1440.89 2.99 0.2592 3
Multiple B. 1440.89 2.99 0.2592 3

14 Bus

24

Basic 5901.93 1.28 0.1051 3
Stable G. 5901.93 0.00 0.1051 3
Diving 5901.93 0.00 0.1051 3
Local B. 5901.93 0.00 0.1051 3
Multiple B. 5901.93 0.00 0.1051 3

84

Basic 5836.35 2.06 0.0342 1
Stable G. 5836.35 0.31 0.0342 1
Diving 5836.35 0.49 0.0342 1
Local B. 5836.35 0.00 0.0342 1
Multiple B. 5836.35 0.16 0.0342 1

364

Basic 6244.33 2.61 0.1676 4
Stable G. 6244.33 0.52 0.1676 5
Diving 6244.33 0.80 0.1676 4
Local B. 6244.33 0.52 0.1676 5
Multiple B. 6244.33 0.52 0.1676 5

18 Bus

24

Basic 5457.72 5.65 0.003 1
Stable G. 5457.72 1.83 0.0033 1
Diving 5457.72 1.88 0.0033 1
Local B. 5457.72 1.95 0.0033 1
Multiple B. 5457.72 1.94 0.0033 1

84

Basic 5387.99 6.17 0.0021 1
Stable G. 5387.99 1.75 0.0021 1
Diving 5387.99 1.79 0.0021 1
Local B. 5387.99 1.80 0.0021 1
Multiple B. 5387.99 1.77 0.0021 1

364

Basic 5517.13 7.95 0.0007 1
Stable G. 5517.13 2.49 0.0007 1
Diving 5517.13 2.50 0.0007 1
Local B. 5517.13 2.49 0.0007 1
Multiple B. 5517.13 2.49 0.0007 1

24 Bus

24

Basic 14706.20 7.76 0.0802 14
Stable G. 14621.78 2.95 0.0748 8
Diving 14627.42 2.98 0.0751 3
Local B. 14620.66 3.00 0.074 25
Multiple B. 14621.78 3.01 0.0748 4

84

Basic 14276.62 7.50 0.0226 5
Stable G. 14276.62 2.20 0.0226 2
Diving 14276.62 2.21 0.0226 2
Local B. 14276.62 2.21 0.0226 2
Multiple B. 14276.62 2.20 0.0226 2

364

Basic 14803.88 9.73 0.1315 1
Stable G. 14803.88 3.70 0.1315 1
Diving 14803.88 9.73 0.1315 1
Local B. 14803.88 3.70 0.1315 1
Multiple B. 14803.88 3.70 0.1315 1
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