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Abstract  

Internet of Things is a very active research area with great commercialisation potential. 

Context-awareness in IoT applications has a profound impact on smartness, relevance, 

adaptability, dependability and flexibility of such applications. Moreover, context-awareness 

can be seen as a key to breaking the data silos barrier, which still constraints the development 

of IoT System-of-Systems. For this, a special-purpose platform needs to be researched and 

developed. The main aim of this platform is processing context requests coming from 

heterogeneous entities, thus, providing Context-as-a-Service. We refer to such a platform as a 

CoaaS platform.  

The CoaaS platform will have to cope with potentially big data generated from billions 

of devices. The amount of context, metadata, annotations in IoT ecosystems equals and may 

even exceed the volume of raw data. At the same time, the CoaaS platform will have to process 

queries in near real-time. 

In this dissertation, we address the challenges of building a context storage management 

system (CSMS) as a core component of the CoaaS platform. The requirements to context query 

processing time, service discovery and selection, data encapsulation and overall efficiency 

determine the need for organizing an internal horizontally scalable and high-performing storage 

subsystem as a part of CoaaS platform. However, no substantial R&D has been carried out on 

how IoT-scale context can be stored, indexed, retrieved and provisioned to various IoT 

services. This research is concerned with how to architect a scalable context storage 

management system that can cost-efficiently and effectively respond to context queries from 

CoaaS platform, maintain the agreed quality of service, and provide proactive adaptation and 

caching.  

We exemplify, validate, and evaluate the usage of the proposed CSMS via a smart city 

use case study, but the proposed solution can be deployed in other application domains as well.  

The thesis contains 204 pages, 74 figures, and 4 tables. This work resulted in thirteen 

peer-reviewed publications. 
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Chapter 1: Introduction 
 

1.1 THE INTERNET OF THINGS AND CONTEXT AWARENESS 

The modern world is more technology-dependent and technology-driven than any time 

before. Connected Smart Objects are taking the place of ordinary things, opening a new area 

for innovations. Most of the organisations which own and manage physical infrastructure, have 

already realised the potential of the Internet-of-Things (IoT) technological stack for solving 

internal tasks of managing the infrastructure, as well as providing innovative services for 

customers. Still, there is an enormous hidden capacity for developing services that could be 

built on top of data, which is spread across the IoT silos owned by various organisations. These 

services can potentially make our daily life more efficient and comfortable.   

The area of building applications which are dependent on real-time data about external 

entities is often referred to as Context-Awareness (CA) [1]; the relevant data, which might also 

be pre-processed and aggregated, is referred to as context. Despite the potential of context-

aware computing for the IoT, the progress in the introduction of these kind of services in the 

real world is in its infancy. The main problems are the lack of universal acceptance, 

standardisation, and accessible technologies. Even if the relevant data is potentially reachable, 

it is hard for a software developer to find these data, not even mentioning the problem of 

processing data from thousands of sources when the data is represented in different formats 

and has a different level of precision or trust.  

A more feasible approach to the problem can be the communication through a 

middleware platform, which facilitates interoperability between multiple IoT silos and serves 

as an aggregator and a redirector at the same time. The main functionalities of such a platform 

include searching for data sources, retrieving and caching relevant data, building aggregations 

on top of these data, and answering queries from context consumers. Accordingly, we can say 

that a middleware with the described functionalities provides Context-as-a-Service in an 

ecosystem, where any entity can provide context, (acting as a context provider), or query 

context, (acting as a context consumer).  

Advanced middleware platforms which comprise functionalities of (i) IoT marketplace, 

(ii) gateways to multiple data sources, (iii) subscription mechanisms, (iv) features for 

performing aggregations, reasoning, analytical functions, and (v) advanced sensor data 

management, are called Context Management Platforms (CMP) [2].  
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We can distinguish three main phases of IoT evolution, which are (i) the M2M phase, 

(Machine to Machine), (ii) the IoT silo phase, and (iii) the IoT ecosystems phase [3]. To date, 

significant progress in building IoT silos has been achieved. Currently, we are entering the 

third phase of IoT evolution (the IoT ecosystems phase), which is characterised by numerous 

horizontal integrations between the IoT silos. At this stage, smart devices can communicate 

with each other spontaneously, without being locked in a silo of a company that produces the 

device or owns it. We provide a more detailed discussion of similarities and differences 

between IoT platforms and CMPs, as well as the discussion of IoT phases and the definition of 

the IoT ecosystem in Chapter 2. As context awareness plays a key role in enabling IoT 

ecosystems, Context Management Platforms are attracting substantial research efforts 

nowadays. 

1.2 IOT PLATFORMS AND CONTEXT MANAGEMENT PLATFORMS 

The discussion of IoT middleware is often formed around the term ‘IoT platform’. 

However, we need to highlight the difference between the terms IoT platform and Context 

Management Platform. Once the IoT started to gain momentum, it was immediately 

commercialised by software vendors. Eventually, as the vendors were searching for fast 

commercial outcomes, the term IoT platform was used for the software, which is an enabler of 

IoT silos. These platforms are designed to be governed by the owner, (e.g. company/developer 

of IoT applications and devices), with full control over the data, which pass through this 

platform.  

However, for the IoT ecosystems phase, we need a different type of platform where the 

spontaneous horizontal integrations would be possible. For that, an IoT platform will need to 

treat all the participants equally, based on the established rules of context exchange. Recently, 

the terms ‘Context Information Management’ (CIM) and ‘Context Management Platform’ 

(CMP) have received the community recognition. Currently, the standardisation efforts in the 

area of CMPs and context query languages are led by the ETSI CIM working group [4],  where 

the NGSI-LD  language and the FIWARE [5] platform are the basis for the proposed standard. 

Consequently, in our research, we use the term CMP to refer to a platform designed for the 

needs of the IoT ecosystems phase. At the same time, CMPs process the same IoT data as the 

IoT (silo) platforms. Thus, in this research, we look at IoT platforms as a closely relevant field 

of study, and many principles are applicable in both fields. 
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For our research, we use a broad definition given by Dey: “Context is any information 

that can be used to characterise the situation of an entity. An entity is a person, place, or object 

that is considered relevant to the interaction between a user and an application, including the 

user and applications themselves” [6]. 

1.3 BIOTOPE PROJECT INSPIRED USE CASES 

This research is related and contributes to the bIoTope project1 [7], which aims to build 

an IoT open Innovation Ecosystem for Connected Smart Objects, (CSO), with the primary 

application domain of Smart Cities. The bIoTope project is a part of European Union's Horizon 

2020 Programme2. Among the key objectives of the bIoTope project, the following are directly 

connected with the scope of this research: (i) enabling interoperability between smart objects 

and vertical IoT silos by developing standards for open API’s, (ii) enabling creation of novel 

intelligent context-aware services, (iii) establishing a framework which will facilitate access to 

IoT data with respect to security, privacy, and trust. 

The meetings we held during the bIoTope general assemblies, and other collaborative 

meetings, considerably helped to scope the project and understand the roles and requirements 

of IoT ecosystem stakeholders. Based on the discussed scenarios, we could deduce the set of 

features, which are essential for a CMP. We discuss these features in Chapter 3. 

The main scenarios were the smart mobility and smart waste management. The smart 

mobility use case was developed in collaboration with the BMW Group. The initial use cases 

contained such tasks as searching for a vacant carpark and searching for a charging point for 

an electric vehicle. In this use case, a smart car or the backend of the navigation system is 

requesting the contextual information from the CMP about the availability of parking facilities 

around the needed location. The providers of contextual information are registered in the CMP, 

when the query is executed, CMP retrieves the needed data from the providers, processes it and 

returns the resulting answer to the consumer. This scenario is used as an illustration of query 

processing in Chapter 5, more details can be found in [8] and [9]. 

 Then, we proceeded to a more complex scenario, where the automatic preconditioning 

of an electric car was triggered, based on the subscription for situation monitoring. 

Preconditioning is the enabling of a heater or an air conditioning system in advance to prepare 

the perfect environment for the driver. The preconditioning procedure should be started 

                                                 
1 https://biotope-project.eu 
2 https://ec.europa.eu/research/fp7/index_en.cfm 
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automatically when the driver is likely to use the vehicle. In the most simple case, CMP is 

monitoring the location of the user, and when the distance between the driver and the vehicle 

is decreasing and a driver has an event planned in the calendar, CMP sends a notification to 

start the preconditioning procedure. The details of the query for the preconditioning scenario 

can be found in chapter 4. 

In general, there are two types of users in the scenarios above. The end user, (e.g. the 

driver of a car), is a secondary user from the CMP perspective, as these users do not interact 

directly with the platform. In fact, an application developer is the primary user of the platform, 

as it is the person/team who composes context queries, thus integrating the application/device 

of an end user to the ecosystem. The critical point that should be taken into account is that the 

primary user (developer), is not tightly coupled with the CMP platform. For this reason, it is 

hard to manually tune the middleware for optimal performance, like it is done by administrators 

in enterprise systems or IoT silos.   

 For instance, consider a developer, who is in charge of creating a context-aware 

application that suggests parking facilities to drivers. In order to develop such an application, 

there are several challenges that need to be addressed. At first, the developer needs to retrieve 

data from IoT-enabled parking facilities in near real-time. This challenge is hardened by the 

fact that the mentioned facilities are owned by different organisations and might follow 

different standards and protocols of data access and exchange. Moreover, in order to improve 

the quality of recommendations, these data need to be enriched by considering additional 

context, such as weather conditions, safety of the area and the user’s profile.  

A scenario with vehicle preconditioning requires defining how the monitoring of 

incoming events should be handled. In this scenario, for instance, events contain the current 

location of the vehicle’s owner, sent by the smartphone. The process of monitoring involves 

the windowing and trend analysis functionality, as well as other CMP mechanisms. 

In addition to smart parking, and charging and preconditioning scenarios, we considered 

other smart city use cases, including such domain as waste management and safety in the city. 

For instance, in Chapter 4 we illustrate the design of the proposed system based on a scenario 

and a corresponding query, which enable a smartphone application to find appropriate smart 

garbage containers around a certain location. An early work which describes how a CMP can 

enable the safety of school students during the pick-up times by facilitating the secure exchange 

of context between IoT devices of classmates, their parents, school, bus, and other entities is 
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described in [10].We found that enabling the described scenarios with existing CMP prototypes 

is burdensome. For this reason, as a part of a bIoTope project, our research group started the 

research and development of the Context-as-a-Service (CoaaS) platform to address the lack of 

modern context exchange middleware for the IoT.  

1.4 CONTEXT-AS-A-SERVICE (COAAS) PLATFORM 

The CoaaS platform aims to support application developers of CA applications in 

expressing their needs for contextual information in a more flexible way, and avoid the tedious 

effort to implement application-dependent event processing pipelines to detect situations. The 

CoaaS platform has significant differences with other research efforts made in the area of CMP. 

For instance, the query interface is based on a specifically designed Context Definition and 

Query Language (CDQL) [10]. There are also significant differences in the approach to data 

retrieval, storage and processing. 

The main motivation behind developing CoaaS is providing a generic and standard way 

to define, advertise, discover/acquire, and query context. In other words, CoaaS facilitates 

context exchange between IoT entities. CoaaS is designed to follow the XaaS (Everything as a 

Service) paradigm. However, the approach is different from well-known SaaS (Software as a 

Service), PaaS (Platform as Service), or IaaS (Infrastructure as a Service) paradigms. Figure 

1.1 depicts an overview of CoaaS platform in an IoT ecosystem.  As it is shown, context 

consumers send their contextual requirements to CoaaS as context queries, which are 

represented in CDQL. CDQL supports two types of queries, PULL-based query, where the 

query is only executed once, and PUSH-based query which enables continual situation 

monitoring. We provide more detailed information about the CoaaS platform and CDQL 

language in Chapter 3, as the background for the main scope of this research. 

 

Figure 1.1 - An overview of Context-as-a-Service in IoT ecosystem 
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When a CoaaS platform is deployed for the operation in IoT ecosystem, none of the 

context consumers or context providers have full control over the platform. The platform 

provides access to contextual information by returning results of consumers’ queries; thus the 

platform provides a service, which can be billed accordingly (e.g. per query). 

1.5 CONTEXT STORAGE AND MANAGEMENT SYSTEM 

The fundamental challenge that will be faced by CoaaS or any other CMP is to process 

and manage enormous amounts of context stemming from IoT context providers and other data 

sources. Some of this data will have to be stored for such purposes as acquiring historical 

context, mining patterns, access control, service discovery and other purposes. The need for 

storing and processing context stemming from IoT big data in near real-time, dictates the need 

for organising a specialised storage component in the CoaaS platform. We call this component 

a Context Storage Management System (CSMS). Researching, architecting, implementing and 

evaluating the CSMS is the main objective and contribution of this PhD project, which is 

described in this thesis.  

Apart from the analysis and implementation of the main components, we have focused 

on researching the cache efficiency problem. As the CoaaS platform will operate in the cloud 

environment, we can potentially cache all the related data and refresh every data item at a high 

rate. However, running a system with such a strategy will require an infinite amount of 

monetary resources to afford paying for the infrastructure. At the same time, caching is 

necessary to reduce the number of expensive calls to remote providers as well as lowering the 

query serving time. Finding an optimal balance between the resource consumption and query 

execution time is an essential part of the project.  Research, development, and evaluation of the 

cache management strategies and models are at the centre of the research scope. 

1.6 CHALLENGES AND NOVELTY OF THE PROJECT 

As discussed above, the transition from an IoT silo phase to IoT ecosystems phase occurs 

slowly. One of the main challenges for creating the middleware that will be able to facilitate 

the interaction in such an ecosystem is to get a clear view on the required functionalities and 

the forms in which these functionalities should be delivered. 

Moreover, there are a number of technical challenges, which influence the flow of the 

CSMS project. These challenges are (i) the lack of common approach to modelling and 

querying, (ii) the gap between the modern data storage/processing technologies and existing 
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CMP prototypes, (iii) the need to serve queries based on the data both from the internal storage 

and from the context providers, and (iv) self-adaptation with a focus on cloud-based 

deployment.  

Challenge (i) can be referred to as a war of standards. While many proposals are made, 

they lack the support of real successful large-scale integrations. In recent times, two distinct 

directions have been considered, which are the semantic modelling and the document-based 

mark-up modelling. A fusion of these approaches can be seen as the third option. 

Challenge (ii) is related to the problem of bridging the gap between the modern 

technologies commonly accepted in the industry (such as databases, analytic frameworks, event 

processors) and the ways of context modelling and querying need to be dealt with. While few 

prototypes make use of modern data storage and processing frameworks, there is a need to 

develop a solution which can effectively harness these technologies, leaving the high-level 

access to the consumer through a well-balanced API.  

We refer to the challenge (iii) as Not only Database – Not only Redirector (NoD-NoR) 

mode of CMP operation. In the database mode, all the data is always retrieved from the internal 

datastore to service the query. On the other hand, the redirector mode involves retrieving all 

the data from external sources. The NoD-NoR approach combines these two modes. This 

ability adds complexities at the development stage, but can also significantly improve the 

performance and cost-efficiency. 

Challenge (iv) is related to the previous challenge, as well as to the loose coupling of 

consumers with the middleware. To understand which data should be kept in the internal 

storage and when it should be refreshed, a middleware needs to contain mechanisms that will 

be monitoring the query load and the behaviour of data sources. Based on the collected data, 

these self-adaptation mechanisms should produce the optimal strategy. We discuss these 

challenges in detail in Chapter 2. The challenges (i-iii) directly influence the functional and 

architectural sides of the R&D process, which are described in Chapters 3 and 4. The challenges 

(iii-iv) require research in the area of adaptive caching, prefetching, and task allocation. We 

tackle these challenges in Chapters 5 and 6. 

One of the main differences of a CMP with many other types of data-centric systems is 

the lack of clearly defined pattern of data retrieval and ingestion. A typical database is usually 

designed and maintained to serve a particular application or a set of applications, and, 

consequently, can be tuned for specific loads. However, a modern CMP should automatically 
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adapt to the load, which is generated by context consumers (queries) and context providers 

(ingestion). We cannot rely on manual tuning of a CMP for a particular use case or a set of use 

cases. In general, a CMP should have a good performance in a wide range of use-cases. 

The freshness of context and the latency of access to context, along with several other 

parameters, form the metric called Quality of Service (QoS). On the other hand, the price of 

services provided by the middleware is referred to as the Cost of Context (CoC). Linking these 

groups of parameters is achieved by establishing Service Level Agreements (SLAs) between 

the consumers, the middleware, and providers. Then, these parameters can be used to build 

cost-based models used for cache management, prefetching, and other self-adaptation tasks of 

the CMP.   

The area of cache management for IoT data, where the freshness, cost, latencies, 

undefined patterns of access, and other specific parameters important for CMP operation in 

NoD-NoR mode are taken into account, are not well researched. The problem becomes even 

more complicated when multiple SLAs are taken into account, for instance, consumers can 

subscribe to a platinum, golden, or silver plan. We investigate this problem in Chapters 6 and 

7. 

1.7 RESEARCH QUESTIONS 

Based on the analysis of existing projects in the area, along with the requirements of the 

CoaaS platform and the existing gaps in context storage management strategies, the following 

research questions are proposed: 

RQ1 - How to architect a data storage and processing system that can effectively respond 

to context queries in the Context-as-a-Service (CoaaS) IoT platform? 

RQ1.1 - What are the main factors and CoaaS requirements that can influence the 

design of a storage system? 

RQ1.2 – How to design the needed software modules, and what functionalities 

should these modules provide to satisfy all the identified requirements?  

RQ2 - How to balance CoaaS platform’s performance vs. cost while complying with 

CoaaS constraints?  

RQ2.1 - What are the main caching strategies, efficiency criteria, and monitored 

metrics? 
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RQ2.2 - How to build a cost-efficiency model that can govern proactive caching 

for dynamic CoaaS loads? 

RQ2.3 - How multilayered cache management techniques influence the 

performance of the CoaaS platform? 

In this chapter, we provided the background discussion of the CMP field. We highlighted 

the research gaps and perspectives, focusing on bridging such areas as the modern data storage 

and processing frameworks, CSMS architectural requirements, and relevant self-adaptation 

techniques. In the next chapter, we present a comprehensive literature review, which forms the 

theoretical base for the project. 

1.8 RESEARCH CONTRIBUTIONS 

In this section, we provide a list of main contributions of the PhD project to the body of 

knowledge. 

- An architecture of a novel data storage and processing system, which is capable of 

serving CoaaS (CDQL) requests as well as support the CoaaS platform requirements and use-

cases. 

- A set of context caching strategies, which can facilitate cost efficient CSMS operation, 

taking into account the possibility of multiple SLAs, as well as the CoaaS approach to context 

querying and situation definition. 

- Mathematical methods to estimate and optimise the cost of CoaaS operation for a 

planning period to address multiple SLAs established to cover cost and time constraints. Other 

CoaaS unique features and constraints are also taken into account. 

-Implementation and evaluation of a prototype of the proposed CSMS, including main 

modules, CDQL wrapper and mathematical models, which support the management of 

operations in CSMS. 

1.9 THESIS STRUCTURE 

In Figure 1.2, the structure of the thesis is presented. 
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Figure 1.2 - Thesis structure 

The background part includes the literature review. The architectural part contains the 

requirements to CSMS and the proposed architecture. The requirements arise from the analysis 

of use cases, CoaaS project background and the literature review. The architectural part also 

contains the description of the design and implementation of CSMS. The caching part contains 

the proposed caching approaches and CSMS refresh rate-based caching models. The evaluation 

part includes the validation and evaluation of the proposed models. The conclusion part 

concludes the thesis.  
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Chapter 2: Literature review 

2.1 INTRODUCTION 

The focus of this research is on the Context Storage Management System (CSMS) for 

the Context as a Service (CoaaS) platform. In this chapter, we present the analysis of 

publications, which are relevant for the CSMS component. The relevant fields include such 

areas as IoT context modelling, storage, processing caching and prefetching. We review both 

the IoT platforms and the Context Management Platforms (CMP), as they share numerous 

similarities. Additionally, we focus on self-adaptation mechanisms, which are useful for the 

efficiency and performance tuning of IoT and CMP middleware.  

The chapter is structured in the following way:  In Section 2.2, we present the background 

of IoT context management, main definitions used in the literature, and discuss the similarities 

and differences between the IoT platforms and CMPs. In Section 2.3, we analyse the main 

context modelling approaches, which have a direct impact on the storage and processing 

components of any CMP. In Section 2.4, we analyse architectures of popular IoT platforms and 

CMPs. Section 2.5 presents the discussion of the approaches to measure and compare the 

performance of IoT middleware. We also discuss the concept of Service Level Agreements 

(SLAs) used by cloud IoT platforms as a method to negotiate the balance of performance and 

cost of provided services. This section bridges the part where we analyse the CMP storage 

architectures with the analysis of techniques for the adaptive workload optimisation, which is 

presented in Section 2.6.  

Among all self-adaptation techniques, we identified efficient cache management as the 

most important for the CoaaS platform at its current state of development. We present the 

analysis of traditional caching approaches and relevant theories for managing the cache in 

fixed-size systems in Section 2.7. Then, in Section 2.8, we analyse how the traditional 

approaches should be changed in order to fit the concept of the elastically scalable cloud-based 

systems. In Section 2.9 we analyse existing probabilistic techniques and strategies, which can 

be used by CMPs to plan the retrieval and caching of context information efficiently. Section 

2.10 presents another group of methods, which are helpful in planning the task allocation, and 

section 2.11 concludes the chapter.  
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2.2 IOT CONTEXT MANAGEMENT BACKGROUND 

In this section, we present our vision on the IoT evolution, along with the discussion of 

how context awareness is playing a crucial role in this evolution. We also discuss the 

definitions of context and our view on the problem. Next, we highlight the similarities and the 

differences between the IoT platforms and Context Management Platforms. 

2.2.1 INTERNET OF THINGS EVOLUTION 

As we mentioned in Chapter 1, we can distinguish three main phases of IoT, and we are 

now entering the third phase [3].  

The M2M phase (Phase 1) refers to the stage when physical machines were upgraded 

with electronic communication technologies and could exchange the data with other machines 

in order to achieve a higher level of automation. However, the integration process required 

manual programming and tuning. This phase includes SCADA, HVAC, RFID, remote control, 

traffic control, and other industrial systems. Ordinary people had minimal direct contact with 

that kind of technologies; most of the settings were done by professionals manually. 

Communication of devices was mostly based on specialised proprietary protocols. 

The IoT silo phase (Phase 2) started when commercial companies realised the potential 

of services, which connected devices can bring to the mass market. The leading enabler of this 

market was the appearance of smartphones and wearable devices. Mostly, the communication 

technologies used in the devices of this era were based on the TCP/IP and Bluetooth protocols. 

During the silo phase, IoT technologies were instantaneously integrated into the 

production cycle of companies that worked in such well-established areas as transportation, 

construction, agriculture, and manufacturing. Investments, research and start-ups in the IoT 

area produced significant progress in embedded sensors, sensor data management systems, and 

applications, which used this data.  

 Probably, the first successful example of that era was the appearance of navigation 

systems, which were able to gather information about the traffic from their own consumers. 

Such systems are a perfect example of how sharing data between devices belonging to 

unrelated people can bring advantages in efficiency optimisation for each of them. However, 

the dissemination of all the data was controlled by companies which provided these services. 

No one else could access the data; that kind of systems represented a typical silo, i.e. a vertically 

integrated system with no horizontal connections.  
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Then, the operators of the transportation infrastructure started online publishing of data 

about planned road closures, planned changes in timetables, and similar plans. Developers of 

navigation systems began to integrate this information to enhance the quality of the navigation 

[11]. We can see these data as contextual, as it is coming from related sources, which are not 

controlled by the developers of the navigation system. Such integrations formed the first 

horizontal connections and could be seen as a paradigm shift, bringing us to the next IoT phase. 

The IoT ecosystems phase (Phase 3) refers to the stage, when smart devices can 

communicate with each other spontaneously, without being locked into a silo of a company, 

which produced the device or the software. This stage is characterised by a massive number of 

horizontal connections; devices and vertical silos form an ecosystem. However, the progress 

towards the “true” interoperability-enabled IoT, where devices can seamlessly exchange data 

with devices belonging to another IoT silo, is still in the early stage [12]. We are just entering 

the ecosystem phase.  

There are several active directions of research, which include the creation of semantic 

standards and query languages for data annotation and retrieval, development of marketplaces 

for finding the right context sources and services, and development of gateways for storing and 

sharing sensor data. On the networking side, the IoT research focuses on such technologies as 

low-power wide-area networks (e.g. LoRaWAN [13]), Dedicated Short Range Communication 

(DSRC [14]), and 5G mobile networks [15]. 

In general, the horizontal communication between IoT devices can be organised in two 

ways: (i) peer-to-peer (P2P), and (ii) through middleware [1]. The P2P communication has its 

own benefits; we can compare it with visiting a known website via a browser. However, finding 

any unknown site requires using a search engine, which is, to some extent, a middleware 

system. In theory, development of a fully distributed P2P IoT network (e.g. blockchain-based) 

is possible; however, in practice, the physical limit in network bandwidth, data storage, and 

data processing capabilities of individual devices are not allowing the creation of such a system 

in the foreseeable future. 

The ‘middleware way’ removes the aforementioned physical limits. Moreover, it also has 

the potential to solve the problem of privacy concerns, which is one of the most widely 

discussed issues in the IoT area [16]. With P2P communication, each device will have to 

request data from individual devices to build an aggregation (e.g. traffic map); consequently, 

every individual can be tracked by unknown requesters. On the contrary, middleware can take 
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the role of building the aggregations, (e.g. navigation system optimises routes based on GPS 

tracks of users), thus protecting individuals from direct access to sensitive data. At the same 

time, the middleware should not forbid the P2P communication between devices in cases when 

the provider allows the direct discovery and querying. The modern state of IoT and CMP 

middleware was inspired by and emerged from the earlier research is such areas as pervasive 

computing, mobile computing and context awareness. A survey of pervasive computing 

middleware, which illustrates the details, models and ideas that were widely adopted in the 

earlier works can be found in [17], [1].In Chapter 1, we pointed out how a class of middleware 

platforms called Context Management Platforms (CMPs) can help to facilitate the horizontal 

context exchange in IoT ecosystems. We also highlighted that while having many similarities 

with IoT platforms, CMPs have their specific requirements, as the business model of such a 

platform differs from a platform which is an enabler for operation an IoT silo. Typically, IoT 

platforms are offered as software for on-premises installation or Platform-as-a-Service (PaaS). 

However, for the enabler of horizontal integrations in IoT ecosystems, the term ‘Context-as-a-

Service’ is widely used nowadays. 

Wagner et al. [18] analysed requirements for the Context-as-a-Service middleware 

platform. The defined requirements related to the storage part of the platform are (i) possibility 

to exchange context information that is heterogeneous and (ii) consumption of resources used 

by context services should be minimised. Hong et al. [19] advocated advantages of an 

infrastructure approach to context aware computing which include (i) system interoperability, 

(ii) loose coupling and independence of systems and (iii) simpler mobile devices with less 

power consumption. Authors also declared five high-level challenges for context-aware 

infrastructure which are (i) simple but expressive data formats for context data representation, 

(ii) building discovery services, (iii) finding balance between smart infrastructure and smart 

devices, dividing their responsibilities, (iv) defining scopes for dealing with security and 

privacy of data and (v) building scalable infrastructures for dealing with a large number of 

sensors and devices. 

2.2.2 CONTEXT: DEFINITIONS AND DISCUSSION  

The term “context” is well studied in literature and has a number of definitions. In this 

paper we will use the definition provided by Dey in [20]: “Context is any information that can 

be used to characterise the situation of an entity. An entity is a person, place, or object that is 

considered relevant to the interaction between a user and an application, including the user and 
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applications themselves.” Dey also provides a definition for context-aware computing: “A 

system is context-aware if it uses context to provide relevant information and/or services to the 

user, where relevancy depends on the user’s task”.  

Bazire et al. stated that “it was not possible to develop in isolation a model of context 

because context, knowledge and reasoning are strongly intertwined” [21]. Brezillon et al. also 

suggested that “the notion of context can take on different meanings, depending on, well. . . 

the context” [22]. Dourish stated that there is no need in deciding what is context and what is 

not in general. He defines contextuality as “a relational property that holds between objects or 

activities” [23]. 

While the concept of context is still debated, from the middleware perspective context is 

any data and metadata that can be queried for making decisions about an entity’s situation. 

There are several dimensions for characterizing context. First of all, context can be 

classified by, as sensed, (e.g. current GPS position), static (e.g. map of the location), derived 

(e.g. address of presence) and profiled (slowly changing) [24].  All these types can be used as 

context by different applications. Secondly, context can be current (e.g. GPS coordinates), 

historical (set of points representing users track), aggregated and compressed (most common 

tracks of user represented by critical points only) etc. Historical and aggregated context plays 

a significant role for any machine-learning algorithms, which are used for making reasoning 

and predictions. Thirdly, context can be used by different types of applications ranging from 

one person’s needs in managing any smart space, to city authorities needs for making tactical 

or even strategic decisions about infrastructural management.  

We also need to give some clarification here, as the aforementioned classical Dey’s 

definition is not always entirely reflecting our perspective. In our vision, the border between 

‘data’ and ‘context’ is not in the level of processing. While many researchers suggest ‘raw 

data’ is data, and ‘high-level data’ is context, such an approach does not provide total clarity. 

The often used term ‘situation’, which is commonly used for describing a higher level of 

context, only tangles the discussion.   

To clarify our vision, we looked at the problem by putting the access to data in the 

spotlight, things change. The data which is always directly accessible by the application the 

own data of the application. It is precisely what happens in IoT silos, and the discussion of 

context is not really applicable. However, if the access to data is not entirely controlled by the 

application which wants to use it, then this data can be called contextual. For instance, the data 
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is requested from a horizontally integrated device, which can grant or not grant access based 

on its own decision. 

In this research, we use examples and use cases, where IoT entities request context from 

external providers. Consequently, every data item is referred to as a context attribute. At the 

same time, the IoT entity is still able to put its data in the CMP and then request it back, thus 

using CMP as an IoT platform. It seems that the overlapping between the notions of context 

and data is unavoidable.  

2.3 CONTEXT MODELLING APPROACHES 

In this section, we analyse the existing context representation techniques. We included only 

those techniques in our scope, which are supported by relatively common storage and 

processing technologies. 

2.3.1 POPULAR STORAGE APPROACHES AND CORRESPONDING CONTEXT 

MODELLING  

Key-Value is a popular NoSQL storage technique that represents any information with 

a key association and retrieves it by the given key effortlessly and quickly. Key-value 

modelling is the fastest, easiest and noticeably scalable way of retrieving information from 

storage. However, standards, schema, verification and relations between entities are not 

offered. The most important point from our perspective is the absence of means for searching 

inside values, making it possible to request data only by key. The key-value is mentioned as a 

context modelling technique in many surveys (e.g. [25], [26]).  

Document-oriented or Mark-up scheme tagged encoding is another NoSQL technique, 

and at the same time one of the most popular ways for representing context. Older proposals 

were based on XML (e.g. ContextML [27], SensorML [28]). One of the pioneering works in 

adopting the document-based markup to model the description of sensor data sources was made 

in the Global Sensor Networks (GSN) project, where XML was chosen as the base format [29]–

[31]. Later, the extended version of GSN component was used as a part of the OpenIoT project 

[32]. 

Then, with the rising popularity of JSON-based storage, the attention also shifted. The 

document-based approach is still very flexible and scalable, but allows organisation of data in 

structures, which are grouped into collections. The important point is that there are ways to 

organise different types of indices over collections, making fast queries possible. Data 
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denormalisation is a strong and at the same time weak point of this approach. It is fast to retrieve 

and write, but the data can easily become inconsistent. Furthermore, document-oriented 

approaches consume more disk space in comparison with the relational approaches due to 

applying data denormalisation as a main data modelling technique. Maintaining relations 

between documents is possible, but not all the document storage engines support joins, as the 

NoSQL concept assumes that this work should be done by higher-level software components. 

The most widely used document-oriented stores are MongoDB [33] and CouchDB. JSON-LD 

fits naturally with MongoDB document model. 

Relational database is another way of context storage. Relational database management 

systems (RDBMS) technology is one of the most well-established technologies and have been 

used as a main approach for data management for more than 40 years. Allowing an excellent 

level of stability, functional richness, knowledge base and other benefits, the relational model 

has a serious disadvantage for modelling context – it has a rigid schema that makes it hard to 

store any information that is not structured in the way that is defined by relational schema. 

Another problem is the expensiveness of joins between tables. The most well-known open-

source relational databases are PostgreSQL and MySQL. One of the early context modelling 

approaches based on the relational model is ORM [24]. 

Ontology-Based Modelling is a way of organizing context into ontologies using 

semantic technologies like RDF or OWL. A large number of development tools, reasoners, 

standards and storage engines [34] are available. Ontologies give capabilities for defining 

entities and expressing relations between them. However, when dealing with Big Data, retrieval 

of context can be resource consuming and issues with scalability may arise. Besides, ontologies 

are not recommended for representing streams of sensor data. Examples of RDF storage 

engines are Jena2, Sesame, AllegroGraph, Virtuoso, etc. [34] Most popular serialization 

formats are Turtle, N-Triples, N-Quads, N3, RDF/XML and JSON-LD. 

Graph-based modelling is a natural way of representing entities and interconnections 

between them. They are ideal for representing unstructured information and information that 

has ambiguity. Graphs are typeless and, schemaless, and there are no constraints on relations. 

This structure is ideal for representing social networks and is recommended for read-mostly 

requirements. Graph databases have a lot in common with RDF storages but use different 

languages for querying data. Some graph databases can be used as RDF storages with special 

plugins applied. Graph databases is a rapidly developing field; the popularity of graph 

databases has increased by 500% within 2014-2015 years period [35]. Most popular graph 
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Databases are Neo4J, Titan and OrientDB. However, the context modelling community is 

usually preferring the ontology-based approach over the graph-based approach, due to such 

reasons as existing standard semantic vocabularies and embedded reasoning features. 

Object-Based Modelling. Numerous projects focus on common object-oriented 

programming languages techniques for modelling context [36],[37]. These projects deliver 

huge theoretic base and numerous advanced features for context processing, without focusing 

on the persistence problem that makes them hard to use in a large-scale environment. Though 

numerous attempts were taken to develop object storage, the industry standard is still mapping 

objects to a relational database schema. This is usually done manually, or with a special 

object/relational framework facilitating the automatic process of mapping entities and hiding 

the persistence level under ORM abstractions [38]. The main problem of this approach is called 

object-relational impedance mismatch [39], which represents a set of difficulties while 

transferring data from object model, with polymorphism, inheritance and encapsulation, to the 

denormalised table-based database approach.  

Based on the discussion above, our research of context representation approaches is 

summarised by providing quantitative analysis in Table 2.1. In [40] we have identified main 

requirements to the CMP storage. The comprehensive discussion of the CSMS requirements is 

presented in Chapter 3. We use the following designations:  Disk-based (D); Relations (R); 

Veracity (C); Geospatial data indexing (GSI); Storage of Sensory Data (SD); 

Schemaless/Structural data freedom (SL); Horizontal Scalability (HS); Fast Writes (FW); 

Strong/native support (++); Supported (+); Limited support (+/-); Not supported (-).  

Table 2.1. Summary of context representation approaches and their intersections with 

CMP storage requirements 

 D R V GSI SD SL HS FW 

Relational + + - + +/- - - +/- 

Ontology + + + - - + - - 

Key-Value + - + - +/- ++ ++ ++ 

Document + +/- + + ++ ++ ++ + 

Wide-Column + - + + + + ++ + 

Graph + ++ + + - ++ +/- - 

Object - + - - - ++ - + 

 

As it can be seen from the table, the document-based approach has support or strong 

support for all the identified requirements, except the limited support for relations. All the other 

approaches only support one or several requirements and have limited capabilities.  
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According to the analysis of context representation and storage techniques, we identify 

the document-oriented approach as the most suitable for our purpose. 

2.3.2 RECENT TRENDS IN CONTEXT QUERYING AND EXCHANGE FORMATS 

The discussion of context exchange platforms had its rebirth with the wave of IoT. There 

exists a considerable body of knowledge in the area of context modelling, which was created 

before the IoT era. There also exists several Context Query Languages (CQLs). However, due 

to different reasons, these approaches did not grow into widely accepted standards [41]; 

moreover, not all of these proposals are applicable to IoT-generated context. [42] 

Many of the existing works are based on Semantic Web concepts as the means for context 

modelling and querying. There exists a significant number of semantic vocabularies, designed 

to provide a model for context modelling in certain areas. For instance, in the field of sensor 

data exchange, the Semantic Sensor Network (SSN) ontology [43] is mentioned the most often 

in related literature. Probably, the most influential general-purpose semantic vocabulary is the 

schema.org [44]. This community was founded with the collaboration of such companies as 

Google, Yandex, Yahoo and Microsoft. Recently, the schema.org community started the 

development of an extension for the support of IoT data, which is called IoT.schema.org [45].  

In the bIoTope project, several vocabularies were created to support the use cases. For 

instance, the MobiVoc semantic vocabulary [46] was developed for the parking and electric 

charging scenarios. Another example is the Waste Management vocabulary [47], designed to 

support the context exchange in solid waste collection and bottle bank management use cases.  

At the same time, there exist attempts to create context management middleware based 

on the principles of document-based modelling. For example, the FIWARE Orion [5] context 

broker is using the JSON (Java Script Object Notation) as data exchange and storage format. 

The FIWARE’s NGSI [48] language is built on top of JSON to enable data transfer and 

querying. The reasons for this choice are the simplicity of JSON integration with modern web 

and application development frameworks. Moreover, JSON is natively supported by several 

NoSQL databases. The latter opened possibilities for high-performance data ingestion and 

querying, which were hard to achieve with a semantic graph approach.   

Another attempt for modelling IoT context was made by the The Open Group (TOG) 

[49], where XML (Extensible Markup Language) is used as the base. The TOG’s OMI/ODF 
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standard [50],[51]  defines the messaging and document format. In general, both the NGSI and 

ODF are examples of document-based markup modelling approaches. 

As an approach to join the world of Semantic Web and JSON, the JSON-LD initiative 

was proposed [52]. Later, as part of ETSI efforts to standardise the context information 

management [53],[4], FIWARE proposed the modification of NGSI, which was based on 

JSON-LD approach. The result is called NGSI-LD [54]. Then, Fiware started the development 

of the NGSI-LD –based schemas [55] for smart city scenarios. Similar decisions were made by 

the BIG IoT [56] and simbIoTe [57] projects, which are also a part of the EU FP7 [58] family. 

At the same time, the modelling and querying approaches have a direct impact on the 

design of data storage and processing systems. A mismatch between the concepts of modelling 

and storage may cause a significant overhead. Accordingly, the design of the CSMS is 

influenced by context modelling and querying decisions. However, existing data storage and 

processing technologies can also influence the design of context models. 

2.3.3 SITUATION MODELLING AND REASONING 

The notion of situation reasoning is often discussed together with the concepts of context 

modelling. Usually, by situation, we mean a context of higher level, that was derived from the 

raw context by applying specific algorithms. The important point is that often situation 

reasoning involves the handling of uncertainty. There exists a number of works in the area [1]; 

however the analysis of these works lies beyond the scope of current research.  

We would like to highlight the Context Spaces Theory (CST) [59], as it was chosen as 

the first step for embedding the situation reasoning in CoaaS platform, as well as the CST 

concepts were used for situation modelling in CDQL [60]. CST uses geometric metaphors for 

representing context attributes and building multidimensional spaces. Special context 

situations algebra is used for situation detection and prediction.  

The visualisation of a situation subspace and context-situation pyramid [61] in CST is 

presented in Figure 2.1. CST proposes steps to a generic framework for context-aware 

applications, and provides a model and concepts for context description and operations over 

context. This theory is implemented in two frameworks ECORA [37] and ECSTRA [36] and 

has been extended in Fuzzy Situation Inference (FSI) [62] for situation modelling and 

reasoning under uncertainty, and other advanced reasoning capabilities. 
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Figure 2.1 - Visualization of situation subspace in Context Spaces theory (a) and 

Context-Situation Pyramid (b) [59] 

The main notion in CST is the concept of situations. The CST model represents situations 

as geometrical objects in multidimensional space  [63] . Such a geometrical object is called a 

situation space. A situation space is a tuple of regions of attribute values related to a situation. 

Each region is a set of accepted values for an attribute based on a pre-defined predicate. For 

instance, in [60] we used a ‘Good for Walking’ situation as an example of a CST-based 

function. This situation indicates if the walking path from the suggested carpark location to 

driver’s destination is good for walking, or not. This situation space can be characterized using 

several context attributes such as temperature, rain intensity, snow intensity, time of the day, 

safety of the area, health status of a driver, age, etc. Further, the acceptable regions of values 

for each context attribute should be defined, e.g., the lower and upper bounds of temperature. 

This forms a basic layer of situation modelling, which can be seen as rule-based reasoning. 

In addition to basic concepts and techniques for situation modelling and reasoning, the 

CST model provides heuristics developed specifically for addressing context-awareness under 

uncertainty. These heuristics are integrated into reasoning techniques to compute the 

confidence level of the occurrence of a situation [64]. One of the main heuristics of the CST 

model is considering individual significance (weight) of each attribute. Weights are values from 

0 to 1 assigned to every context attribute, and they represent the importance of each attribute 

in a situation, with a total sum of 1 per situation. In a simplified version of the example, only 

considering temperature, rain intensity, and safety of the area, the values 0.2, 0.2, and 0.6 can 

be assigned to these attributes respectively. 

Moreover, CST assigns a belief value to each region that indicates its level of confidence 

in the occurrence of the situation. The confidence in the occurrence of a whole situation is 

defined as Confidence = ∑ 𝑤𝑖 ∗  𝑏𝑖
𝑛
𝑖=1 , where wi represents the weight of a particular context 

attribute and bi stands for the belief of the range to which the attribute’s i value belongs to. 
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2.4 CONTEXT STORAGE AND PROCESSING ARCHITECTURES IN IOT AND 

CMP PLATFORMS 

In this section, we focus on discussing the organizational structure of the ingestion and 

storage components of IoT and CMP platforms. We analyse how the architectural components 

and differences influence the overall functionality and performance of platforms. 

Performance of a real IoT system’s storage component depends not only on the 

underlying storage technology but also on the ingestion pipeline, messaging queue and other 

components of the platform which take part in data processing or storage. Decisions about how 

to store, cache and access different types of data also have significant influence on the overall 

performance. 

In this section, we analyse how different IoT platforms deal with data management 

issues. We have grouped the analysed platforms into two categories: commercial IoT platforms 

and academy/research projects. This grouping was done due to seriously different approaches 

followed by these two worlds. Difference in targets and approaches makes it hard to compare 

projects from different groups, but we believe that best practices from one group can be applied 

in another for raising the functionality and performance to the next level.  

A corner-stone of all commercial solutions is in avoiding technologies that were not 

seriously tested in real work, focusing on security, performance and cost reduction. These 

solutions are often cloud-based and use SaaS or PaaS model. Their main target is to allow 

customers straightforward and rapid development of applications that will connect companies’ 

“things” together. These solutions provide interoperability in terms of various sensors and 

protocols, but the problem of horizontal data exchange between companies, state organizations, 

and individuals is not brought into question. Research projects, on the other hand, provide 

open-source software that can be hosted and maintained by organizations themselves. These 

projects often focus on semantic and horizontal interoperability, and while providing cutting 

edge functionality in some aspects can lack functionally or performance in others.  

Some cloud solutions do not fully disclose their underlying architecture, limiting the 

scope of our research in some aspects. 

2.4.1 COMMERCIAL IOT PLATFORMS 

Predix [65] is a PaaS IoT platform developed by General Electric and aiming to provide 

services in data collection and processing in the area of Industrial Internet of Things. Predix 
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has a catalogue of provided services that includes a set of tools for data management. Predix 

does not produce a one-fits-all solution and propose only the use of one or several services that 

are best suited for the current task. These services are (i) Asset Data, (ii) Time Series, (iii) SQL 

database, (iv) Blobstore, and (v) Key-Value store. Communication of components is organized 

by Message Queue based on AMQP. Asset data is a set of models that are used to describe 

machines and instances that are created based on these models. Time Series service provides 

means for efficient ingestion, distribution and storage of sensory data, including indexing for 

enabling fast querying. The SQL database service is built on top of well-known open-source 

PostgreSQL database. Blobstore service provides means for storing and retrieving any amounts 

of binary data and ensures high availability and horizontal scalability. Key-Value store service 

is built on top of open-source Redis project and serves as an advanced cache store.  

Predix uses a hybrid (or polyglot persistence) storage solution, but all the responsibilities for 

choosing the right options are left to the application developers. 

Data service is a promising feature of the platform, which is in the beta stage; only two 

services are available: (i) Places data services and (i) Seismic data services. This is a remarkable 

step to horizontal IoT solutions. The platform provides easily accessible data from external 

data sources or sensors, to application developers, making it possible to adapt industrial 

automation solutions to detected earthquakes or other circumstances.  

Predix uses a graph database for its asset service to store data as RDF triples. A special 

Graph Expression Language (GEL) is used for data retrieval [66]. 

Tibbo Aggregate [67] is an example of a commercial non-cloud IoT platform. All data 

is logically separated into two groups: (i) configuration and (ii) events. This approach helps in 

providing flexibility of data storage in the case when new business objects are added.  

Configuration data can be stored in almost any enterprise-grade relational database that 

supports JDBC connectivity, key-value database or in a file-based storage. In case of a 

relational database, the AggreGate platform includes an embedded database or a preconfigured 

version of MySQL. AggreGate provides the means for database clustering for achieving high 

availability. 

Key-value integrated storage is recommended for scenarios which need clustering 

together with high update rate. File-based storage can be used in environments with limited 

resources. Event data can be stored in relational database, NoSQL database or in-memory 

storage. RDBMS puts some limits on insertion performance. NoSQL database provides 
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horizontal scalability, high insertion rates and failover functionality. Approximate estimated 

insertion rates for a relational database are about 500-2000 events per second and 10-20 

thousand events per second for a NoSQL database [68]. Aggregate also provides functionality 

for building a failover cluster and achieving high availability. 

ThingWorx [69] is a cloud-based platform enabling developers to build solutions for 

IoT. It provides three main ways for data storage: (i) Data Tables, (ii) Streams and (iii) Value 

streams. ThingWorx also uses concepts of an InfoTable and a DataShape. The InfoTable is a 

JSON document in which all the objects share the same properties. InfoTables are fast in-

memory objects and are recommended for storing temporary data. The DataShape specifies 

what property names are required in an object and what types they have. This means a 

DataShape represents a schema for defining a “thing”. The concept of a DataTable in 

ThingWorx is similar to a table in relational databases, but columns are defined by a 

DataShape. A DataTable supports the creation of indexes on its properties. It is recommended 

to build an index for each common request for achieving high performance, and to use 

DataTables when it is expected to have not more than 100000 rows in it. Storage of time series 

data is facilitated by streams. A stream consists of a timestamp and additional properties 

defined by a DataShape. For dealing with things-driven models, it is recommended to use 

Value Streams, which have some differences with ordinary Streams. Value Streams provide 

persistence for associated property and return only property values on request. On the contrary, 

an ordinary stream returns a whole row when querying a single column. 

Amazon AWS IoT platform is a cloud based platform that makes use of all the 

impressive technological stack provided by Amazon.  Communication between devices and 

cloud is organized by a Device Gateway which supports the publish/subscribe approach. 

Configuring rules for filtering and transforming incoming events is done by a Rule Engine. 

This configuration includes routing of data to various supported databases, messaging queues, 

AWS Lambda and other services. Registration and monitoring connected devices is done in a 

Device Registry. Configuration of processing rules for the device is done in a JSON document 

consisting of an SQL statement and an action list.  

Amazon’s IoT solution uses storage solutions provided by Amazon Storage Services. 

Full description of its capabilities is not possible in this paper due to space limitations. Amazon 

Storage Services focus on providing scalability, availability and elasticity for mostly well-

known storage technologies and promote a so-called NoDBA approach which reduces 
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operational costs for customers.  The variety of provided storage services includes Amazon 

DynamoDB, Amazon RDS, ElastiCache and ElasticSearch.  

Amazon DynamoDB is a cloud managed NoSQL key-value store, but a version for self-

hosted installation is also available. Amazon Relational Database Service (Amazon RDS) can 

use any of the six most popular relational databases. This set of databases incudes a cloud 

database Amazon Aurora, open-source databases like PostgreSQL and MariaDB, and 

commercial solutions like Oracle DB and MS SQL server. 

Amazon’s in-memory data store cloud service is represented by so-called “ElastiCache”.  

This service can significantly improve system performance by reducing the number of slow 

disk reads. ElastiCache is based on two popular open-source in-memory engines: Redis as an 

in-memory data store and Memcached as a system for object caching. For such use cases as 

device-log analysis and real-time monitoring of applications, Amazon recommends the 

ElasticSearch service that is based on a famous cognominal search engine. Amazon IoT 

platform uses a messaging system based on Kafka-based named “AWS Kinesis” for event-

broadcasting. Capturing and loading streaming data is performed by Kinesis Firehose and 

analytical processing of streaming data is performed by Kinesis Analytics [70]. Amazon AWS 

IoT introduces the “thing shadow” or “device shadow” concept. A special “Thing Shadows” 

service is responsible for managing fast and easy access to a JSON document, with a current 

state of device that was last reported to the platform. 

IBM Watson IoT solution relies on the IBM Cloudant database. It is a cloud fully 

managed document-oriented database sharing many common features with Apache CouchDB. 

IBM recognizes the need for flexible storage solutions, but currenly their solution is mostly 

document-oriented. Describing plans for the future, IBM’s specialists state that variety of tasks 

causes different requirements to latency, scalability, cost and performance, causing the need 

for different storage solutions [71]. By now, data from devices can be stored in two formats. If 

the API receives a valid JSON, it is stored in the same way. In the other case, the data is saved 

as a base64 encoded string inside the payload field of a JSON document.  

2.4.2 OPEN SOURCE IOT AND CMP SOLUTIONS 

The FIWARE community’s aim is to create an open ecosystem that will enable 

development of Smart Applications. This ecosystem is based on royalty-free standards and 

covers a wide range of tasks. Software for different category of tasks is grouped into modules, 

which are called “generic enablers” [72].  
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FIWARE provides several generic enablers for dealing with various types of storage. The 

central module of FIWARE ecosystem is the Orion Context Broker. This component uses a 

connector called “Cygnus” that is responsible for persisting or retrieving data from a specific 

storage. Current release of Cygnus can communicate with HDFS, MySQL, PostgreSQL, 

CKAN, MongoDB, Comet, Kafka, DynamoDB and CartoDB. 

Time series data in FIWARE ecosystem is managed by a component called Comet or 

Short Term History (STH). This component deals with storage, retrieval and removal of raw 

time series data as well as aggregated context information. This component relies on MongoDB 

as the datastore. 

Semantic Application Support (SAS) GE provides a possibility for developing 

applications based on Semantic-web technological stack. In [73], Ramparany et. al. suggest 

that OWL and other Semantic technologies can help in solving such problems as (i) Semantic 

data interoperability, (ii) data integration and abstraction, (iii) data discovery, and (iv) 

reasoning. FIWARE developers admit that despite massive investments and development of 

mark-up and query languages, the progress with penetration of Semantic web technologies into 

the market is still too slow. They identify several reasons which include both technical, 

engineering and commercial problems. SAS GE tries to solve technical and engineering 

problems which are (i) scalability, (ii) performance, (iii) distribution (iv) security, (v) lack of 

methodologies and best practices, and (iv) lack of development instruments. The GE consists 

of a GUI client and server-side components which are responsible for storing and managing 

ontologies.  Server-side components provide scalable and secure ways to publish and retrieve 

metadata, as well as instruments for managing the infrastructure and data. 

The data layer of SAS GE consists of a relational database which stores information about 

ontology documents, and a Knowledge Base that supports OWL-2RL. At the moment there is 

no knowledge base-independent solution and it is implemented as a combination of Sesame 

and OWLIM [74] . 

Object storage generic enabler is based on OpenStack Swift. It provides REST API for 

storing objects taking care about scalability, high availability, and robustness. Swift is a 

recommended technology for an efficient, inexpensive and safe way for storing a large amount 

of data. [75] The Object storage generic enabler extends standard Swift Object Store with 

special scripts that are executed inside the Object storage when some data is uploaded or 
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downloaded. These scripts are called “storlets”. This technique is useful for transforming 

objects, extracting additional information or analysing the object is some way [76]. 

OpenIoT [32] is an open source IoT platform, which includes a set of novel 

functionalities, as it is based on semantic web concepts and uses a triple store.  

In OpenIoT the registration, data acquisition and deployment of sensors is managed by 

X-GSN. X-GSN is an extension of the GSN [29] which is responsible for semantically 

annotating both sensor data and metadata. Virtual sensor is the main fundamental concept in 

X-GSN, which is capable of representing any abstract entity (e.g. physical devices) that collects 

any features. In order to make a virtual sensor accessible from the rest of the OpenIoT platform, 

each virtual sensor needs to register within the Linked Sensor Middleware (LSM). LSM is 

another core component in OpenIoT which is responsible for handling the sensor data delivery 

chain. In this regard, LSM transforms and annotates, (based on the supported ontologies), the 

data coming from virtual sensors, (through X-GSN), into a Linked Data representation i.e., 

RDF, and stores it in the database. The OpenIoT platform relies on Openlink Virtuoso (it is 

also known as Virtuoso Universal Server) as the main database. OpenLink Virtuoso is a hybrid 

database engine that combines the functionality of a traditional RDBMS, ORDBMS, virtual 

database, RDF, XML, free-text, web application server and file server functionality in a single 

system [77]. According to information on the website, Virtuoso can handle the insert rate of 

36K triples per second on a single 4-core machine.  

2.4.3 MODES OF CMP OPERATION 

During the initial research stage and our consultations with the bIoTope project partners, 

it became apparent that there exists several ways for platform development, based on the 

approach to managing data flows.  

Database Mode - The first way is to put all the data from all the connected devices into 

the storage and always answer the queries from the platforms storage. As the IoT data is 

transient, the platforms will have to refresh the data at a high pace, causing high load on the 

data sources, network, and computation resources. At the same time, serving queries based on 

the stored data is a more straightforward task, which guarantees lower latencies for the 

consumer. We call this approach a database mode, as all the required data is contained in the 

internal storage. The difference with the regular database is that the IoT data can potentially be 

different at the source side when the consumer requests it from the platform. The main 
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limitation of a CMP working in a database mode is its inability to reach the highest freshness 

of context. 

Redirector Mode - The second way is to retrieve all the data from external sources when 

the request arrives. This approach guarantees the delivery of the freshest context to the 

consumer. However, it can also cause significant network and computation load. Moreover, 

retrieving data from external sources causes delays, which result in a long overall latency of 

serving the context query for the consumer. We call this approach a redirector mode, as all the 

context queries are always redirected by the platform to providers. 

NoD-NoR Mode - Trying to tackle the issues possessed by the database and redirector 

modes, we concluded that the best balance of performance and cost-efficiency could be 

obtained only by a platform, which combines the features of both approaches. We called this 

approach the NoD-NoR mode (Not only a Database, Not only a Redirector). 

Most of the CMP and IoT platforms are designed around a “database” or a “redirector” 

approach. In CoaaS, we have chosen the NOD-NOR strategy, as we believe it is the most cost-

efficient way to enable an ecosystem-scale context acquisition.  

The effective realisation of a CMP which supports the NoD-NoR mode is a challenging 

task, requiring significant research efforts. First, the software development requires 

significantly more efforts due to an increasing complexity of the dataflow. Secondly, the NoD-

NoR approach requires efficient self-adaptation mechanisms. 

2.4.4 A GAP BETWEEN THE STATE OF THE ART IN DATA STORAGE AND 

PROCESSING WITH CMP PROTOTYPES 

The data storage and processing technologies made a huge step during the last decade. 

Among the relatively novel achievements, we can mention the rise of NoSQL databases (e.g. 

MongoDB [33], Apache Cassandra [78], Redis [79]), distributed data storage and analytics 

frameworks (e.g. Apache Hadoop [80], Apache Spark [81]), message queues (e.g. Apache 

Kafka [82], RabbitMQ [83], ZeroMQ [84]), full text search engines (e.g. ElasticSearch [85], 

Sphinx [86]), stream processing frameworks and complex event processing frameworks (e.g. 

WSO2 CEP [87], EsperTech Esper [88]).  

Stream processing systems, continuous querying and complex event processing (CEP) 

could be seen as separate fields of research. However, we noticed that in recent time most of 

the frameworks and systems developed in each of these fields are trying to extend their 



29 

 

functionality by borrowing functionalities from each other. For instance, CEP engines are 

extending the scalability support, while stream processors are adding more advanced CEP 

functionalities. We can expect that these fields will be further merged in the near future. For 

that reason in this thesis, we consider use the terms that refer to these fields (i.e. the stream 

processing and CEP) interchangeably in this thesis. 

Moreover, specialised storage solutions aiming at sensory data were created, such as 

OpenTSDB [89], InfluxDB [90], Logstash [91], and Graphite [92]. On top of that, the 

traditional relational databases have also evolved and offer new functionalities and scaling 

options (e.g. TimescaleDB [93] for PostgreSQL [94] ). Another area of growth was the graph 

databases (e.g. Neo4J [95]).  We do not consider the proprietary cloud-based solutions (e.g. 

Amazon IoT platform [96], Google IoT core [97]), as these technologies cannot be deployed 

on-premises. All these relatively novel solutions have proved themselves in real-world 

deployments. At the same time, the growth in the area of RDF databases was not inspiring, due 

to the lack of open, stable and industry-tested solutions.  

The first (pre-IoT) generations of context exchange middleware were mostly custom 

solutions, which were not trying to achieve large scale of data storage or processing. Some 

projects were based on RDF-based databases. The recent CMP projects are usually based on 

one or a combination of several mentioned modern technologies.  

However, the most crucial problem is still not solved. This problem lies in the lack a way 

to harness the underlying data storage and processing solutions with a single API, which will 

be convenient and safe to use by context providers and consumers. This API should take into 

account such aspects as near real-time querying, situation monitoring and event processing, 

access control, the need for aggregation and reasoning functions, and, potentially, other 

functionality. The access control and convenience requirements mean that providing access to 

underlying storage components using their native query languages is not an option. Such an 

advanced API and the Context Definition and Query Language (CDQL) [98] are, in general, 

interchangeable notions. Designing components, which can enable CDQL to use modern data 

storage and processing technologies is an important research direction in the design of CSMS.  

2.4.5 DISCUSSION 

After analysing several IoT platform approaches to data storage we identified that mostly 

such platforms prefer not to limit developers in choice of the data storage format. Some IoT 

platforms introduce their own storage technologies, others offer well-known open source or 
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commercial solutions. Mostly these platforms offer the following storage types: (i) in-memory, 

(ii) document-oriented, (iii) column-oriented, (iv) relational, (v) RDF. Organization of blob 

storage is done using OpenStack Swift. The scalability and high performance of message 

queueing is achieved by using technologies like Apache Kafka, RabbitMQ, or ZeroMQ. For 

Big Data processing IoT platforms usually rely on Apache Hadoop or Apache Spark. 

Research prototypes often use RDF or OWL, but this trend is still mostly avoided by 

commercial companies due to issues with scalability and low industry penetration of Semantic 

Web technologies. All the discussed platforms leave the decision about how to store incoming 

data to developers and do not provide means for automated efficient resource allocation. 

It is also worth noting that some of the discussed platforms are developing and 

introducing new features at a very fast pace so that we can expect major changes in the market 

in the near future. 

The discussion of context modelling techniques and architectures of IoT and CMP 

platforms always lead to a question of comparing the efficiency of existing platforms. We 

highlight current works in the area of IoT and CMP platforms benchmarking in the next section. 

2.5 MEASURING THE PERFORMANCE OF IOT AND CMP PLATFORMS 

Comparing the performance of different platforms is a complex task. The complexity 

grows exponentially with the number of features and possible use-cases. However, 

performance benchmarks are needed both for product consumers and developers. Product 

consumers can rely on the benchmarking results for making a better choice and developers can 

analyse weaknesses of their product, improve and demonstrate the results. 

2.5.1 BENCHMARKING 

The lack of accepted and appropriate benchmarks is still an open challenge for IoT 

middleware. To tackle the issue, a renowned non-profit organization Transaction Performance 

Council (TPC) [99], which has been developing benchmarks for data-centric systems since 

1989, started the development of a benchmark for the IoT. In 2018, TPC released a new 

benchmark called TPCx-IoT [100] with the aim to enable a fair comparison of IoT gateways 

performance. Development of the benchmark involved contributors from such companies as 

Red Hat, Intel, Cisco, Huawei, Dell, Microsoft, IBM, Oracle, HPE, and VMWare. 
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As a base for the dataset generation, TPC used a “realistic dataset based on data from 

sensors from modern electric power substations” [100]. However, it is arguable that a particular 

scenario will be representational of other types of load. The main metric which is used in TPCx-

IoT benchmark is the IoTps (performance metric). The IoTps represents the throughput of a 

system and is calculated as the number of ingestions performed during a time period (e.g. 

ingestion/second). The Price Performance Metric is also defined as $/IoTps = P/IoTps, where 

P is the total cost of ownership of the system. 

Authors of TPCx-IoT highlight that it is not allowed to tune the system under test to be 

able to pass the benchmark with better results, especially if such modifications negatively 

impact other parts of functionality. However, it is not easy to prove if such modifications were 

introduced, especially in non-open source systems. This issue is one of the most problematic 

obstacles to overcome in scenario-based benchmarks. Another issue is the inability to compare 

systems working under load, where queries are significantly different to queries that are used 

in the TPCx-IoT benchmark. Moreover, the querying part of the benchmark is not covered by 

the IoTps metric, while for a CMP this part has at least the same importance as the ingestion. 

TCPx-IoT is a good starting point for the discussion of IoT Gateways benchmarking. 

However, it is not very useful for evaluation of CMPs.  In other words, the CMPs require more 

sophisticated benchmarks, which will cover such aspects as high-level queries, analytical 

queries, subscriptions, and situation monitoring over continuous data streams. 

In recent years, several academic papers in the area of IoT platforms evaluation were 

published [101]–[105]. These works are mainly focused on measuring the performance of IoT 

platforms in terms of ingestion and not paying enough attention to data retrieval performance. 

There are only a few papers [100], [105] that took data retrieval performance into account. 

However, in our opinion, the metrics that are used in these papers are too basic and unlikely to 

represent the actual performance of IoT platforms. 

In the world of transactional databases this effort was started and supported since 1988 

by TPC) [99]. Actual benchmarks are TPC-C, TPC-H, TPC-E, TPC-DS, TPC-DI and TPCx-

HS, which cover such areas as OLTP, ad-hoc DSS, complex OLTP, complex DSS, data 

integration and Big Data. 

In the NoSQL movement, which has significant differences in approaches with the 

classical transactional world, the most popular benchmarking approach is the Yahoo Cloud  

Serving Benchmark (YCSB) [106], which is supported by a number of open-source tools [107]. 
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Semantic web community also introduces a number of benchmarking strategies for RDF Stores 

(e.g. Berlin SPARQL Benchmark [108]). 

Discussion of benchmarking strategies for the IoT platforms has already started 

[109],[110] and some attempts have been made [111],[112]. For example, in [113] an approach 

of benchmarking the results of IoT platform deployment in a Smart City is discussed; the 

EEMBC IoT benchmark focuses on devices and connectivity [114]; HP develops the 

IoTAbench [115] with initial focus on use-cases like smart metering. The problem is in the 

variety of vendors understanding of the IoT platforms principles, tasks, main features and 

system complexity in general. 

We have also proposed our approach to CMP benchmarking in [16]. The core of the 

approach is based on the notion of ‘query richness’. In general, we introduced a set of variables 

and a set of metrics. The variables are: (i) hardware capacity, (ii) ingestion rate, (iii) incoming 

query rate, (iv) pull query richness, (v) push query richness, and (vi) push query number. The 

metrics are: (i) query execution time, (ii) event handling time, (iii) network used, and (iv) 

transition time between modes [16]. We also demonstrated the importance of taking high-level 

queries into account when testing IoT systems, as such queries can provide very significant 

improvement to the performance. 

2.5.2 SERVICE LEVEL AGREEMENTS 

To link the discussion of performance measurement with the CMP self-adaptation 

techniques, we need an instrument for defining what performance can be considered 

satisfactory for the consumer, and what price the consumer agrees to pay for the proposed 

performance. These tasks are usually implemented by establishing a Service Level Agreement 

(SLA) between a context consumer and the middleware platform. In [116], a systematic study 

of  IoT SLA management is presented. 

 The commercial cloud-based IoT platforms have already established their own SLAs. 

For instance, we analysed SLAs of Amazon IoT platform [117], EVRYTHNG Platform [118], 

Microsoft Azure SLA for IoT Hub [119], and Google Cloud IoT Core Service Level Agreement 

(SLA) [120].  

To start, most Platform as a Service (PaaS) providers define the price for the uptime per 

month (e.g. more than 99% uptime). If this condition is not satisfied, the provider returns a 

certain percent of the service fee (e.g. 30%) back to the consumer’s account.  
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At the time of analysis, the most well-defined SLA was proposed by Amazon IoT. This 

platform defines SLAs for connectivity, messaging, device shadow and registry, and the rules 

engine. An example of an SLA for messaging is presented in Table 2.2: the pricing is per 

million messages and the pricing depends on usage (plan), and the region where the platform 

is located.  

Table 2.2 - Amazon IoT SLA for messaging [117] 

Monthly Message Volume US East 

(N.Virginia) 

EU (London) APAC (Sydney) 

Up to 1 billion messages $1.00 $1.20 $1.65 

Next 4 billion messages $0.80 $0.96 $1.32 

Over 5 billion messages $0.70 $0.70 $0.84 

 

A similar approach is applied to other services, every action is counted and a price is 

charged for a million of operations. Amazon does not define the performance of execution 

(latency).  

Although during recent years commercial IoT platforms achieved a certain level of SLA 

definition, in the field of CMPs the discussion has just started. The reason for that is, first of 

all, the lack of real CMPs operating at large scale. Secondly, the complexity of business rules 

for a CMP is higher, as providers and consumers do not belong to the same owner. Jayaraman 

et al. [121] discussed the problem of orchestrating QoS in IoT ecosystems. They came to a 

conclusion that the core of the QoS definition should be built around the quality of IoT data 

(freshness, coverage) and timeliness of its delivery (latency); and so, these parameters should 

be linked to the cost of IoT services. 

Along with the architecture and realisation of software modules, there is another aspect 

which can significantly influence the performance of a CMP. As the load comes in a form of 

queries composed by context consumers, the variety of queries can be massive, and as these 

queries can change over time, it is impossible to correctly tune the CMP manually. 

Consequently, self-adaptation becomes a crucial factor. We discuss the techniques which can 

be employed for workload adaptation in the next section. 
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2.6 ADAPTIVE WORKLOAD OPTIMIZATION TECHNIQUES 

The self-adaptation process can pursue several, often mutually conflicting, objectives: 

fast data ingestion, fast query response, low consumption of main memory and disk space, low 

consumption of processing power, network bandwidth and external services. We can roughly 

divide these aims in two categories: (i) Quality of Service (QoS) optimisation and (ii) Resource 

optimization. In the QoS category, the latency of query serving plays a critical role. For 

instance, the link between latency and sales has been studied in the fields of e-commerce and 

search engines. In 2006, Amazon reported every 100ms of delay resulted in 1% sales decrease. 

Google showed how a 0.5 sec latency in delivering search results decreased the traffic by 20% 

[122]. Since then, the user expectations and demands have only grown; latencies in serving 

user requests are not tolerated anymore. 

There is a broad range of research efforts in the area of self-adaptation mechanisms, 

covering such topics as: (i) saving and reusing results of completed computations (caching), 

(ii) in-memory caching, (iii) reducing big data, (iv) proactive retrieval of raw data, (v) pre-

computation of results, (vi) adaptive indexing, (vii) elastic cluster sizing, (viii) dynamic choice 

of storage format and data placement. 

- A survey on big data reduction methods was performed by Rehman [123]. The main 

research directions in this area are the network theory, big data compression, redundancy 

elimination, data pre-processing and dimension reduction. 

-A significant research was done in the area of elastic cluster sizing and resource 

allocation for reducing the cost of cloud services while satisfying the SLA [124], [125]. 

Dutreilh et al. propose to use reinforcement learning for efficient automated resource allocation 

in cloud systems [126]. 

- Data and task placement is a term referring to the adaptive choice of the storage and 

processing facility. For instance, the decision can be made between factors like using an in-

memory or disc-based storage, number of the server nodes containing the data and facilitating 

parallel access, geographic location of server nodes. Dynamic resource reallocation between 

HDD and SSD was studied in [127],[128], [129] and [130]. 

-Approaches for lowering the load on network infrastructure and decreasing the network 

latencies include (i) bringing the computations to the data [131], (ii) data co-location [132], 

(iii) caching and reusing data from remote providers in the middleware. 
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-Implementing the query-based data proactive data retrieval adaptation is the promising 

approach. For instance, PRESTO, a feedback-driven data management system for sensor 

networks, is described in [133]. The main aim of PRESTO is to reduce the number of queries 

to sensors by using a shared by sensors and central node prediction model. With this approach, 

the sensor has to push data to the system only in the case when the measurement is different 

from the prediction and the central node can serve queries without querying remote sensors. 

Simultaneously, the system automatically adjusts the models based on query dynamics, 

especially to such parameters as error and precision tolerance. 

- In the area of predictive queries based on objects location, a substantial work was 

performed by Hendawi et. al. In [134] a system called Panda is described, which is able to scale 

up and support a large number of moving devices, as well as large number of queries. 

-Indexing involves building an accessory data structure and maintaining data in this 

structure, to facilitate fast access to the place, where the full document (or row in case of a 

relational database) is located. Maintaining the right indexing strategy is a hard task that is 

typically performed by the database administrator [135].  Lack of indices causes full scanning 

of available data, which consumes lot of time and resources. At the same time, maintaining 

indices also has a cost, as every newly added, deleted or modified piece of data needs to be 

added to, (or deleted from), all the corresponding index structures. An over indexed datastore 

will be performing unacceptably in many cases, and the ingestion process will suffer, in 

particular. 

 With semi-structured contextual information, with not predefined and constantly 

changing queries and workloads, maintaining the right balance manually becomes impractical. 

There is a variety of works discussing and proposing techniques that will allow indexes to be 

built based on background analysis of workload. First of all, there is a need to understand the 

characteristics of the workload. The research in automated workload characterization that was 

conducted as part of the Cloud-TM project is presented in [136]. Authors stress that effective 

mechanisms for self-tuning are essential for a cloud system that has to deal with the changing 

workload. They present a component called Workload Analyser that is responsible for 

gathering statistical data from cluster nodes, producing workload profiles and generating 

characteristics of present and predicted needs of the deployed applications. 
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In [137] authors divide approaches to indexing into four classes, which are: (i) no 

indexes, with full table scanning, (ii)  the traditional offline approach, (iii) online tuning and 

(iv) adaptive indexing, when the index is built as a side effect of the query execution. 

Moreover, authors propose a methodology for benchmarking the effect of adaptive 

indexing on the performance of the system. Authors examined other approaches to the problem, 

being soft indexes [138] and online tuning [139], which involve a monitoring phase and an 

index building phase.  

-Caching the results of query execution in memory (or even on disk) can sufficiently 

increase the system performance by reusing these results instead of performing the whole query 

once again. Brin and Page in their paper [140] name the caching of results as one of the most 

efficient approaches for increasing the performance of a web search engine. Caching strategies 

are an active research direction in many areas, including the IoT middleware. Caching can be 

applied to raw data and to the results of query execution, which have the potential to be reused. 

The research of caching strategies includes such traditional techniques as Least recently Used 

(LRU) and Least Frequently Used (LFU), cost-function based approaches, where cached items 

are assigned a score based on the value of an item, and intelligent techniques, where advanced 

machine learning techniques are applied for decision making. 

-Prefetching (or proactive retrieval) is a technique often combined with caching to 

achieve higher efficiency. Prefetching refers to a situation when the middleware retrieves the 

data from the source before the arrival of the query, which might need the data. Prefetching 

requires analysis of access patterns (queries), as well as the analysis of the behaviour of data 

items.  

-Pre-computation of results is a technique when results are computed before being 

queried. In [141] the basic principles of SensorDB are discussed. Authors state that while 

having thousands of data points coming from sensors, the individual results are usually not as 

important as patterns and correlations. For this reason SensorDB pre-calculates certain features 

of the data stream using a set of pre-defined aggregation windows. This technique helps to 

increase scalability, query response time and overall performance of the system. 

The same approach is presented in [142]. Authors of SmartFarmNet platform use the 

micro summarisation approach to calculate statistical features of a data stream for aggregation 

windows. SmartFarmNet also makes decision about the placement of results based on data 
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access patterns. For example, frequently accessed data is stored in in-memory database.  

Related work in the area on location predictions can be also found in [143]. 

-Discussion of in-memory databases and In-memory Data Grids (IMDGs) is very active 

nowadays. It is a more technological, rather than methodological way to reach efficiency and 

high performance of a system. IMDGs receive a lot of attention in the IoT community [105].  

In a survey of Big Data management and processing technologies [144] Zhang et al. state we 

are facing a revolution in system design. Access to memory is hundreds times faster in 

comparison with spinning disk or SSD technologies. This makes this kind of data management 

system a leader in performance, in comparison with all other competitors. At the same time 

cost of a system that works with Big Data can become unreasonably high. Di Sanzo et. al. [145] 

propose machine learning techniques for tuning the performance of IMDGs. 

Most of the techniques discussed above rely on sophisticated statistical, probabilistic and 

machine learning techniques. Many of the developed approaches can be useful for the CoaaS 

middleware. We have chosen the cache management and prefetching as the central direction 

of our research. We discuss the relevant work in detail in the next sections. 

2.7 TRADITIONAL CACHING APPROACHES 

In this section, we analyse the existing traditional approaches to data caching used across 

various internet middleware projects. While the IoT, and especially CMP middleware is still 

passing through the infancy stage, the area of web servers has passed this stage decades ago, 

and the techniques used there can already be seen as traditional. Nevertheless, reviewing these 

techniques is essential for the understanding of the field, as the area of web caching is related 

to IoT caching. In web caching related literature, the caching approaches are usually classified 

into client caching, proxy caching, and server caching. A CMP acts as a proxy and as a server 

at the same time, as it redirects the contextual data from the provider to the consumer, as well 

as handles the execution of a query, which can be complex [16].   

We can mark the border between the traditional approaches and modern approaches in 

the following manner: if the approach can be efficiently applied in a system, which can be 

‘infinitely’ elastically scaled, then we call the approach modern. The reason for that is the recent 

migration of majority of systems deployment towards the cloud, where any software that has 

the capability to scale horizontally can get almost any amount of resources. The limit with this 

approach is only the price, which the owners of the system are required to pay to the operator 

of the cloud.  
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However, if the system is working in a non-cloud mode, for example on a dedicated 

server or on an edge device, the computational and storage resources are strictly limited, and 

the system (or its designers) has to make a choice of a caching strategy based on the fixed size 

of these resources. These systems were the majority in a recent past, and we call the caching 

techniques used for these types of systems - traditional caching approaches. In the literature, 

these approaches are also referred to as cache replacement strategies, as the decision is usually 

about deleting (evicting) an object from the cache, when the available resources are close to 

being exhausted. We can also separate the traditional caching approaches to basic and 

intelligent. Basic approaches rely on simple algorithms, which can be efficient in certain cases, 

but cannot adapt to changes in load. Intelligent approaches, on the contrary, are designed to 

analyse continuously the performance and load in order to tune the cache decisions. We review 

basic and intelligent approaches in the following sections. 

2.7.1 BASIC POLICIES 

The most common example of the traditional cache replacement policies are LRU, LFU, 

SIZE, GD-size, GDSF, and their variations [146]. The main factors, which influence the 

decision about the eviction of an object from the cache are: (i) the recency of access to an 

object, (ii) the frequency of access to an object, (iii) the size (in bytes) of an object, (iv) the cost 

of retrieving the object, (v) the latency of access to an object, when retrieved from an external 

source. The LRU (Least Recently Used) algorithm chooses objects for eviction, which were 

requested least recently. However, while being simple to implement, not considering other 

influential factors causes a low performance of LRU, when used in web caching [147]. There 

exists a number of extensions for the LRU algorithm, e.g. LRU-threshold, SB-LRU, HLRU, 

LRU-hot, and Pitkow/Recker. 

LFU (Least Frequently Used) is a frequency-based algorithm, which evicts the objects 

that were accessed less often. However, LFU suffers from the cache pollution problem; the 

objects, which were accessed many times long ago, are still kept in the cache and occupying 

the space. The variations of LFU are such policies as LFU-aging, Window-LFU, HYPER-G, 

LFU-DA. 

The policy called SIZE evicts the objects, which have the largest size to free the storage 

resources. Obviously, not taking into account the latency and cost of re-obtaining the large 

objects causes cache pollution and poor performance. The extension of the SIZE policy is the 

Greedy-Dual-Size (GDS) algorithm [148]. This algorithm assigns a value to each object, by 
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computing a function over several parameters of the object. These parameters are the cost of 

retrieving the object C(p), size of the object S(p), and the aging factor L. Later, the GDS 

algorithm was upgraded to take the frequency F(p) of access into account, and, accordingly 

was called GDSF [149]. An expression for calculating the key is presented below: 

 𝐾(𝑝) = 𝐿 + 𝐹(𝑝) ×
𝐶(𝑝)

𝑆(𝑝)
 (Eq. 2.1) 

Technically, the GD-Size and GDSF policies are the basic examples of a bigger group, 

which is called Function-based policies. Algorithms belonging to this group are available to 

overcome the disadvantages of LRU, LFU and SIZE –based policies, however, finding the 

right parameters and weights for these parameters is a complex task.  

There also exists a group of policies called Randomized policies, where the choice of an 

object for eviction is randomised. The examples of such policies are RAND, LRU-C, and 

HARMONIC. These policies can provide a simple way to clear the space in the cache for new 

items, however, the performance of such policies is questionable and it is hard to figure out 

clearly the advantages and disadvantages.    

While the above-described group of algorithms can bring benefits in certain scenarios, 

they cannot guarantee any kind of optimality. In that sense, we can call them heuristic-based 

methods. These types of algorithms have no self-adaptation and the designer or the 

administrator of a system has to evaluate and compare the performance of these algorithms in 

case he/she wants to adopt these policies in the system under consideration. 

2.7.2 INTELLIGENT POLICIES 

The emergence of machine learning (ML) technologies lead to the appearance of 

intelligent caching policies, which are using the access logs as training data. Some existing 

works show the higher efficiency of intelligent approaches compared to basic techniques.  

For instance, artificial neural networks (ANN) were used for making cache decisions in proxy 

caches [150], [151]. In these works, objects are assigned a rating, and the objects with the 

lowest rating are removed. Another approach based on logistic regression technique (LR) was 

proposed in [152]. The aim of the algorithm is to predict if the particular object will or will not 

be requested in a defined time frame. Similar aim was pursued in [153], but the back-

propagation neural network was used instead of the LR. 
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There also exist works showing the applicability of genetic algorithms to cache 

replacement [154]. 

The main criticism of the usage of ML-based approaches to large caches is that the 

learning process can take a significant amount of time and computational resources. Moreover, 

quick adaptation to changes in load is also challenging for such methods.  

2.7.3 PERFORMANCE CHARACTERISTICS OF TRADITIONAL CACHING 

APPROACHES 

According to [155],[146],[156] there exist several main measures (metrics) that can be 

used to analyse the performance of a chosen caching strategy in a certain environment. These 

metrics are the Hit Rate (HR) and its inverse, the Miss Rate (MR). These metrics are often also 

referred to as the Hit Ratio and Miss Ratio. Other important metrics are the Byte Hit Rate 

(BHR) and the Latency Saving rate (LSR).  

HR represents the percentage of requests which a system can answer from the cache. 

Correspondingly, the MR represents the percentage of requests that a system cannot answer 

from the cache and has to retrieve the requested data from the external source on the fly. 

However, HR cannot fully represent the performance, as it only shows the percentage of 

requests, but not the amount of data transfer reduced, or the reduction in wait time for the client. 

The expressions for calculating the HR and MR are presented below. In these expressions, N 

is the total number of requests, 𝛿𝑖 equals to 1 if the request was served out of the cache and 

equals to 0 if the request caused a cache miss [146]. 

 

 𝐻𝑅 =
∑ 𝛿𝑖

𝑁
𝑖=1

𝑁
 (Eq. 2.2) 

  𝑀𝑅 = 1 − 𝐻𝑅 (Eq. 2.3) 

 

BHR represents the percentage of bytes retrieved from the cache to serve requests. LSR 

represents a ratio of sum of latencies of request serving, based on cached objects, over the sum 

of all request serving times. Expressions for finding the BHR and the LSR are presented below. 

In these expressions, 𝑏𝑖 represents the size of requested object, and 𝑡𝑖 represents the time of 

serving the request to this object [146]. 
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 𝐵𝐻𝑅 =
∑ 𝑏𝑖𝛿𝑖

𝑁
𝑖=1

∑ 𝑏𝑖
𝑁
𝑖=1

 (Eq. 2.4) 

 𝐿𝑆𝑅 =
∑ 𝑡𝑖𝛿𝑖

𝑁
𝑖=1

∑ 𝑡𝑖
𝑁
𝑖=1

 (Eq. 2.5) 

 

2.7.4 PREFETCHING 

The discussion of caching techniques is often followed by the discussion of prefetching. 

Caching is always a reactive technique, and the decision is made on which objects that have 

already been obtained by the server should be kept and reused, and which objects should be 

evicted. When the system predicts the future requests, the needed data can be retrieved from 

the sources and pre-processed, and an incoming query can be served with less latency.  Mostly, 

the prefetching approaches are based on analysing the content of objects or history of access to 

objects. In [157], a double dependency graph (DDG) was used to manage the prefetching 

decisions. Another popular approach to predict the access to objects is the Markov Model 

(MM) -based approach. For instance, such an approach was used in [158] and [159]. In order 

to reach a decent level of prediction precision, higher levels of MM are used. However, such 

models cause significant complexities and computation load. There are also challenges in 

taking recent changes in access patterns into account.   

Another group of prefetching algorithms is based on the computation of the cost function.  

There exist works where the prefetching decision is based on the popularity of objects [160], 

lifetime of objects [161], or a balance of popularity and update rate  [162]. There also exists a 

group of algorithms called Objective-Greedy prefetching [163], which aim to improve a chosen 

metric, by prefetching such objects, which will maximise the chosen metric. 

There are also works employing data mining [164] and clustering-based prefetching 

[165] for improving the performance. One of these works, for instance, employs the page-rank 

algorithm for clustering web objects [166].  

Surveys of performance efficiency criteria for web prefetching are available in [167], 

[168] and [146]. Main metrics are: (i) precision, (ii) byte precision, (iii) recall, (iv) byte recall, 

(v) traffic increase, (vi) latency ratio. Precision represents the ratio of hits to the number of 

objects that were prefetched. Byte precision shows the ratio of sizes of objects that were hit and 

sizes of objects that were prefetched. Recall represents the ratio of cache hits to the total number 

of requests, while byte recall represents the same notion measured in bytes. The traffic increase 
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measures the ratio of the network traffic in the case when prefetching is enabled to the case 

when it is not enabled. The latency ratio represents the difference in the time of request serving 

for a user. 

2.7.5 CACHING OF IOT DATA 

As it was already mentioned, the IoT data differs from many other data types, as it is 

transient. In other words, the data is changing over time. Depending on the type of source, 

changes can happen more or less often. Moreover, the consumer can also be interested in 

receiving data with a certain level of precision. For instance, the readings of a high-precision 

sensor can change every millisecond. However, these changes for a fraction of unit of 

measurement are not always of interest for a consumer. A consumer might be interested in 

significant changes, for instance, when the value changes for 10%. There might be classes of 

consumers, which may want to receive the contextual data with low latency and high precision, 

and classes of consumers who may settle for less precise results and longer latencies, but for a 

lower price. The most important thing is that by monitoring the behaviour of a data item, we 

can compute the TTL for a certain level of precision. 

There exists a number of works on caching IoT data in Information Centric Networks 

(ICN) or Named Data Networks (NDN). Originally, NDN was designed to support fast access 

to immutable objects (e.g. video streaming). Meddeb et al. [169], [170] showed that the caching 

nodes of ICN can also be used to store the IoT data. They used the classification of IoT traffic 

proposed by Liu [171], who proposed four main categories, which are (i) continuous, (ii) 

periodic, (iii) On/Off, and (iv) request-response. In general, these four modes can be 

represented as only two – periodic and On/Off. By the On/Off mode, authors mean event-

driven updates of a sensor value. Then, they propose an algorithm to predict Tfresh, the period 

when the data item is considered fresh. The algorithm is based on the Autoregressive Moving 

Average (ARMA) model [172], which is a version of the Kalman filter algorithm. Thus, after 

estimating the Tfresh based on a time series, Meddeb et al., proposed the Least Fresh First (LFF) 

caching strategy for IoT data in ICN. The LFF strategy is based on evicting those values from 

the caching node, which have the worst freshness. 

Al-Turjman et al. [173] proposed the Least Value First (LVF) policy for ICN caching 

nodes. It is a function-based caching approach, which takes into account the delay of data 

fetching, popularity and age parameters for making a decision about the cache eviction. The 

proposed utility function assigns a value to each object. Al-Turjman et al. in general defined a 
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Delay Model, a Popularity Model, and an Age model. A formula for computing the value of a 

data item is presented below (Eq. 2.6). 

 𝑉𝑎𝑙𝑢𝑒𝑁𝐷𝑂 𝑖
= 𝛼 × 𝐷𝑖

′ + 𝛽 × 𝑃𝑜𝑝𝑁𝐷𝑂 𝑖
+ 𝛾 × 𝐷𝑟𝑜𝑝𝑁𝐷𝑂 𝑖

      [173] (Eq. 2.6) 

In the formula above, D represents the delay model, which is calculated based on the 

latency of access to the data source providing this data item; Pop represents the frequency of 

queries to the data item; Drop represents the age of the data item, which is proportional to the 

TTL. Parameters 𝛼, 𝛽, and 𝛾 are introduced for manual tuning purposes. Authors showed the 

superiority of the LFF strategy compared to LFU and LRU. However, as the costs are not taken 

into account in this model, it is not possible to apply it for multiple SLAs, and its application 

to non-fixed size systems is also questionable. 

 In this section, we have summarised the main cache management policies for fixed-size 

systems, where the aim is to clear the limited cache for new objects, but at the same time to 

provide the best service for the client. In the next section, we are presenting the analysis of 

publications related to the field of cache management for cloud-based non-fixed size systems. 

2.8 CACHING STRATEGIES FOR ELASTICALLY SCALABLE CLOUD-BASED 

SYSTEMS 

As it was mentioned in Section 2.7, the traditional caching techniques aim to find the 

best decision on which objects to evict from the cache, in order to free the space for other 

objects. However, this approach is questionable in the age of cloud systems, when the size of 

space that can be allocated for the cache is potentially infinite. For instance, the paradigm shift 

for cache management when moving from fixed-size systems to the cloud systems was 

highlighted in [174], [175] and [176].  Cloud systems usually rely on the pay-per-use model. 

Eventually, the cache management problem is not limited by the size of storage or processing 

resources anymore. It is limited by monetary costs, which allow use of cloud resources. 

Consequently, minimising the cost of using the cloud-based system while keeping a defined 

level of QoS becomes the main objective in the cloud paradigm.   

Le Scouarnec et al. [177] developed a cloud-oriented caching policy for video streaming 

services. In their model, the frequency of access to a cached data item and the cost of cloud 

services were the determining factors for cache management decisions. As an example of cloud 

services, authors used Amazon S33 and Amazon EC24 for storage and computing 

                                                 
3 https://aws.amazon.com/s3 
4 https://aws.amazon.com/ec2 

https://aws.amazon.com/s3
https://aws.amazon.com/ec2/
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correspondingly. In the proposed model, the choice was made between storing the object for 

the price of storage (S3) or recompute every time it is needed for a price of computing resources 

(EC2). The authors call the model ‘time-based’, as it returns the amount of time, during which 

the object should be kept in the cache.  

Three analytical models are proposed. The first is based on the complete knowledge of 

the future, (time of requests to each item), to provide the lower bound of the possible cost. The 

second model is a global policy without distinguishing items, and the third model is based on 

the knowledge of demand for each object individually and independently from other objects. 

Then the authors show that the second model is able to approach the performance of the ideal 

cache policy. The distribution of arrivals to an individual object is modelled as a homogeneous 

Poisson process; the measurements of the arrival rate are performed over a sliding temporal 

window.  

While the proposed models in [177] are valuable for video streaming services, they are 

not directly suitable for IoT data, as such an essential parameter like freshness is not taken into 

account. The latencies of access and their influence on the final cost are not taken into account 

as well. 

During several last decades, we got used to the fast growth in the performance of 

processors, memory and storage. Unfortunately, now we see the signs of reaching the limits of 

current silicone-based chips. Many recent articles are questioning the Moore’s law validity. 

[178]. As the requirements from the consumers will only increase, we cannot expect to cover 

the demand by throwing more and more processing power on tasks. Thus, the research in the 

field of smart, adaptive, energy-efficient solutions will most likely gain more attention in the 

IoT community. 

2.9 PROBABILISTIC APPROACHES TO CACHING AND PREFETCHING 

In Section 2.7.5, we concluded that the freshness of cached objects is an essential 

parameter, which has a direct influence on the efficiency of cache decisions. We also reviewed 

how SLAs can define the level of freshness (Section 2.5.2) and how the freshness can be 

predicted (Section 2.7.5). In this section, we review the existing works on the modelling of 

caches, looking from a perspective of a single object (data item), which is subject to freshness 

loss over time. Once the freshness level acceptable for servicing queries is defined in the SLA, 

and the prediction of how long the particular data item is maintaining the defined level of 
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freshness, for any cached data item, an associated expiry time is recorded. In the literature, 

expiry time is also referred to as the time-to-live (TTL) or the expiry period. 

In [179], Jung et al. investigated the following problem: how to predict the hit rate of a 

single data item, if the statistics of requests to this item and its TTL are known? 

The initial models used by Jung et al. were developed by Cohen et al. in [180] and [181]. 

They have developed a simple model to predict cache hits in distributed caches for several 

specific different distributions of inter-request time.  

Jung et al. [179] focused on a single cache but provided a model for predicting the hit 

rate for any arbitrary inter-request time distribution. The important assumption is that a 

sequence of requests to a particular data item can be represented as a sequence of random 

variables, which are independently and identically distributed (i.i.d.). This means, that the 

process can be viewed as a renewal process [182].  Despite the approach being conservative 

and simple, Jung et al. reported good prediction accuracy. 

The strength of the model is that it considers evicting the data item from the cache only 

when the TTL expires. This makes the model suitable for elastically scalable systems, as it 

does not limit the number of cached objects in the system. Moreover, objects are treated 

independently. The modelled environment is presented in Figure 2.2. The process starts at time 

t = 0, when a cache miss happens. It is assumed that a cache miss causes a retrieval of data 

from the external system. Until the time t = T, when the retrieved data expires, the requests are 

served from the cache. T represents the TTL. The time between requests is marked as X1, X2, 

X3 and X4. At time S4, a miss happens again, and the process starts from the beginning.  

 

Figure 2.2 - Visualization of request arrivals, cache hits and misses [179] 

The main finding of Jung et al. in [179] were the formulas for finding the hit and miss 

rates based on the expiry period (T) and the expectation of requests arriving during this period 

E[N(T)]. The formula for hit rate is presented below [179]: 

 𝐻𝑅(𝑇) =  
𝐸[𝑁(𝑇)]

𝐸[𝑁(𝑇)] + 1
 (Eq. 2.7) 
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 Based on the fact that MR(T) = 1 – HR(T), the miss rate can be found as follows [179]: 

 𝑀𝑅(𝑇) =  
1

𝐸[𝑁(𝑇)] + 1
 (Eq. 2.8) 

The formulas above provide a way to predict it and miss rates for reactive caching. These 

formulas can also be helpful in the case when optimization of the expiry period is needed. 

However, they cannot be used when prefetching is involved. 

Scwefel et al. analysed the caching strategies and ways to establish the adaptive strategy 

for context middleware in [183]. They have looked at the problem from a different angle. In 

the proposed scenario, the mismatch probability between the value ‘contained’ in the source 

system, and the value ‘contained’ in the cache of the middleware was in the scope. In general 

the described scenario is a reactive Quality of Service (QoS) -based strategy. Another detail 

which is taken into consideration is the latency of transferring the request from the middleware 

to the source, and the latency of getting the answer back. The scenario is graphically 

represented in Figure 2.3. 

 

Figure 2.3 – Reactive caching strategy with QoS as the main focus [183] 

In the diagram, two processes are presented. The event process shows how a data item is 

changing its value at certain moments in the data source. The request process represents 

arrivals of requests to the middleware system that might contain the item in the cache. In the 

provided diagram, the request Rk is arriving at the same time as event EI changed the value in 

the source. As there is no value in the cache, the middleware retrieves the freshest value from 

the source, services the query and caches the data item. The query Rk+1 arrives during the period 

when the item is considered fresh (bold line). As the request happened before the event Ek+1, 

there is no mismatch in the query result returned to the consumer, and the value contained in 

the source. Request Rk+2 is a miss again, and the request Rk+3 is a cache hit. However, Rk+3 

arrived later than the event EI+2 changed the value of the item in the source system. This 

situation is called a mismatch, which causes the level of QoS. Authors defined three main 

performance metrics, which are (i) the mismatch probability (mmPr), (ii) the access delay, and 
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(iii) the network overhead. The mismatch probability is the probability of request to obtain the 

data item value from the middleware, which already has changed in the source. The access 

delay is the average latency of request servicing, and the network overhead is the bandwidth 

consumption to serve the request process. With this approach, the only parameter which the 

middleware can change is the expiry period (T), as the network delay, (upstream and 

downstream), as well as the event process, cannot be influenced by the middleware.  

In [184], Olsen et al. proved that a mismatch probability for a scenario without caching 

(T = 0) can be found as follows: 

 𝑚𝑚𝑃𝑟 =
𝜆

𝜆 + 𝜐𝐷
 (Eq. 2.9) 

In the expression above, the event process, as well as the delay process, are Poisson 

processes. The event process has the rate 𝜆, and the delay process has the rate 𝜐𝐷. 

In [183], Schwefel et al. upgraded the model to reflect the presence of caching. They 

have developed models for (i) calculating the mismatch probability, (ii) calculating the mean 

access delay, and (iii) calculating the network overhead. Based on the provided mathematical 

models, authors formulated two scenarios for optimisation of the cache period: (i) minimisation 

of the average access latency and network usage, while keeping the probability of mismatch 

under a certain threshold, and (ii) minimisation of mismatch probability, while keeping the 

latency of access and network usage under a defined threshold.  

In [185], Bogsted et al. further developed probabilistic models for optimisation of access 

to data items, which are subject to change. In this paper authors defined models for reactive 

and proactive strategies. Technically, proactive strategy represents prefetching. Authors define 

models for two main classes of the proactive strategy, which are (i) event driven and (ii) 

periodic.  

In the reviewed papers ([186], [184], [185] and [183]), the mismatch is always viewed 

as absolute. However, in many IoT scenarios, aging of data items can be treated as a decay 

function. For example, we can consider a linear function of a data item aging. If, for example, 

a consumer agrees on the particular level of freshness (e.g. 80%), we can straightforwardly 

calculate the TTL and use the cached data for serving queries of a corresponding SLA. 
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2.10 OPTIMIZATION OF ALLOCATION OF TASKS AND RESULTS  

In the previous section, we looked at the problem of caching from the perspective of 

making a decision about the eviction or prefetching of an individual data object. At the same 

time, we can look at the problem from another angle – the allocation of computational tasks 

and allocation of storage facilities for intermediate results and large chunks of data. For 

instance, cloud compute nodes have different performance and corresponding costs. Cloud 

storages also have different time of data access (HDD, SDD, in-memory) and price. If there 

exists several types of cached data, it is possible to look at the problem of searching for cached 

results as a bag of tasks and intermediate result allocation. 

Malawski et al. [187]–[189] proposed a methodology for cost-optimal task and data 

allocation for distributed scientific applications. They defined the goals for optimisation, 

variables, parameters, and constraints. They took into account the cost of cloud compute, 

storage, and networking services. The delays of transferring the data from one cloud service 

provider to another was also taken into account. Moreover, the possibility of using limited 

private resources and possible limits in cloud resources was taken into account. Eventually, 

based on the defined goals, a Mixed Integer Non-Linear Problem was formulated. This 

formulation was converted to an AMPL program, and a CBC solver was used to find the global 

optimum. 

The model is called linear program if objectives and constraints are a linear combination 

of systems’ variables. In the usual case, when the linearity assumption is too far from reality, 

non-linear functions are used and, consequently, the model is called a “non-linear program”. 

Moreover, if a variable can have only integer value, the problem is called “integer 

programming”. From the computational perspective, these type of problems are much harder 

to solve. The types of possible problems are classified into the following categories: Linear 

programming (LP), Quadratic programming (QP), Non-linear programming (NLP), Mixed-

integer programming (MIP), Mixed-integer non-linear programming (MINLP), Constraint 

programming (CP). 

There exists a significant body of knowledge in the area of applying linear/non-linear 

programming approach to the problem of finding an optimal solution for balancing complex 

systems. In [190], Turinsky and Grossman applied convex optimisation techniques to optimise 

data mining strategies, with the possibility of choosing between centralised and in-place 
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strategies. Menache and Singh in [191] described applying convex optimisation to online 

caching to reduce infrastructure cost in cloud environments.  

In general, there is a substantial amount of work that use a linear programming approach 

to address the problem of allocation of intermediate results, including caching, in scientific 

computing and other related areas. 

The linear programming approach applied to costs of various types of cloud compute 

instances, costs of cloud storage, latencies of access to data, and corresponding SLA conditions 

can be used by CSMS self-adaptation framework to optimise the amount of purchased cloud 

resources. This approach can also be applied to the optimisation of allocation of tasks and big 

slices of data [187], [189]. 

2.11 CONCLUSION 

In this chapter, we reviewed the publications, which are relevant to the field of IoT and 

CMPs. We concentrated on the context modelling techniques, storage components of IoT 

middleware, and self-adaptation techniques used for efficiency optimisation. Based on the 

analysis above, we can state that while the market of IoT systems is quickly growing and 

evolving, the CMP area is still in its infancy.  

We can see that most of the IoT middleware solutions reuse and harness available data 

storage and processing technologies. Mostly, the used technologies are open source-based or 

require no license. Another common feature of the used base-level technologies is the 

orientation for horizontal scalability. For these reasons, NoSQL solutions are often used as the 

core storage and processing components. However, we have identified the lack of CMP 

projects with a common, unified and flexible interface, which allows defining, injecting, 

querying, monitoring, and managing the context. While such an interface was developed as a 

part of the CoaaS project, the storage system which can facilitate the work of this interface still 

needs to be designed. 

Another common area of research in CMP storage and processing is the self-adaptation 

mechanisms, strategies, and algorithms. The core of these mechanisms is adaptive cache 

management, as it is one of the factors, which have the highest impact on the performance of 

the whole platform. While some basic benchmarking frameworks for IoT platforms are already 

introduced, there is still no commonly accepted benchmarking framework for the CMP area. 

At the same time, there is an urgent need for such benchmarks, and the influence of self-

adaptation should be taken into account.  
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 An important factor for performance analysis is the ability to define SLAs between 

CMPs and context consumers. While cloud IoT platforms already use simple SLAs to bill their 

services, in the area of CMPs, the discussion of SLA definition only begins.  

Traditional caching techniques are not applicable to elastically scalable cloud systems. 

For these reasons, optimization of caching strategy for CMPs required defining costs through 

cloud resources and SLAs. There exists a number of works in the area of defining task and data 

allocation, as well as works aiming to predict the hit and miss rates in CMP-originated 

environments to solve the cache optimisation task. However, there is a research gap for cases 

where several SLAs are defined, and the arrival of queries is a stochastic process. This problem 

requires research and development to establish such techniques. 

Based on the literature review and the analysis of research gaps, in the next chapters, we 

proceed to the development of CSMS architecture, CSMS modules design, and investigation 

of cache management techniques. 
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Chapter 3: Context Storage Management 

System requirements and architecture 
 

3.1 INTRODUCTION 

After the initial research, analysis of the literature (Chapter 2) and use cases, it became 

evident that the CoaaS middleware platform cannot be only used to retrieve information from 

providers, fuse it and send back to customers on request, playing just a role of a redirector or a 

reasoner. It also need to maintain the quality of performance and meet the agreed quality of 

service. 

First, the need to query numerous sources of information sequentially, and potential 

unavailability of these sources as well as network latencies can lead to unexpected delays in 

serving queries. However, consumers expect the platform to meet the agreed quality of service 

and not being able to conform with this level will lead the platform’s operator to financial 

losses. Therefore, keeping the most critical data at the platform's side could significantly 

improve the quality of service. 

 

Figure 3.1 - Acquiring current context requires support form deeper levels 

  Secondly, the process of deriving and managing context depends on the knowledge of 

the history, trends and patterns of context changes.  Moreover, enabling proactive adaptation 

and caching in CSMS, which we consider as a potential solution to achieve cost efficiency, 

requires the information about the patterns of incoming queries. Proactive adaptation also 

depends on context prediction, which in turn depends on the context history. The only way to 
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acquire the mentioned patterns and trends is by storing the incoming data, (both from the 

providers and consumers sides), at the platform's side and continuously analysing it. 

Schematically this concept is presented in Figure 3.1, which depicts all types of data 

which are passing through the CSMS or are stored in CSMS. To clarify the figure, we can 

consider a simple scenario, when a context consumer (the purple arrow) requests the data about 

available carparks in a certain area. Contextual information about the number of parking places 

is retrieved from the context providers (the red arrow). At the moment of retrieval this context 

is fresh (not expired) and can be returned to the consumer. The number of available parking 

spots for each parking facility at a current time can be saved as a history. As the history dataset 

keep growing in size, this data can be aggregated and converted into compressed knowledge 

(trends and patterns). The incoming query is saved in the query history, and the aggregated 

patterns are derived from this dataset. As a result, the platform has the data, which describes 

how often a particular service provider has been queried, as well as how fast the value of the 

measurement (number of available parking spots) has been changing. This data is used for 

computing the optimal behaviour of the platform (proactive caching). Moreover, this data is 

also used for enabling the prediction functionality, for instance, to service a query which 

requests the number of available parking spots in an hour from the current time.  

It is also worth noticing, that while the two reasons above (speed of query execution and 

adaptation) are essential for fast query servicing and advanced functionality, there is also a 

requirement to store the metadata about context providers. Without this data, CoaaS will not 

be able to find the sources of context to serve a query. Consequently, the storage of context 

providers’ descriptions is a basic and essential part, without which a CMP cannot function. 

The above-mentioned reasons highlight the need to store metadata and context as a core 

part of the CoaaS middleware platform. This chapter is organised in the following way: in 

Section 3.2, we discuss the vision of CoaaS, its overall architecture, and its main interface, the 

CDQL language, as an input for the CSMS project. In Section 3.3, we discuss the requirements 

which are essential for CSMS to effectively serve as a part of the CoaaS platform. Next, in 

Section 3.4, we describe the proposed CSMS architecture and its main modules. Section 3.5 

concludes the chapter. 
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3.2 COAAS AND CDQL BACKGROUND5 

In this section, we introduce the vision of the Context-as-a-Service (CoaaS) platform, 

including such aspects as its blueprint architecture, principal components and the CDQL query 

language, which is the primary interface for communicating with the platform.  

This section explains the alignment of the CoaaS vision, and especially the unique 

features, of the platform to the requirements, which the storage system of the platform (i.e. 

CSMS) must satisfy.   

3.2.1 COAAS VISION 

The CoaaS platform is designed to enable the context exchange in IoT ecosystems. We 

have defined the concept of IoT ecosystem in Chapter 2. The big picture of an IoT ecosystem 

and the role of the CoaaS platform is presented in Figure 3.2. The main aim of designing the 

platform was in enabling the developers of context-aware applications to query context from 

external providers seamlessly, flexibly, and cost-efficiently. Thus, the CoaaS platform belongs 

to the class of Context Management Platforms.  

The top layer in Figure 3.2 represents the context-aware IoT applications, which request 

contextual information from the IoT ecosystem. These applications are called Context 

Consumers (CC’s). In Figure 3.2, the bottom layer represents IoT entities, which can provide 

the contextual information about entities. These sources are referred to as Context Providers 

(CP). 

As is defined in Chapter 2, “context is the information that can be used to characterise 

the situation of an entity” [20]. For instance, we can consider such objects as cars, parking 

facilities, locations, and persons as entities. Each entity can be defined by specific parameters, 

which are called context attributes. For instance, a parking facility can have such attributes as 

geolocation, opening hours specification, and occupancy of the facility. In general, a context 

provider can be any system, ranging from a single sensor connected to a wireless network, to 

a complex backend enterprise-level system. For instance, a simple connected temperature 

sensor can be considered a context provider. On the other hand, web services which are 

                                                 
5 Section 3.2 is not presented as a personal contribution of the author. This discussion is 

needed as a background. At the same time, as the author has been an active member of the 

CoaaS research group, placing this section in the literature review was considered unfitting. 
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providing information about weather or traffic can also be considered context providers. 

However, in the latter case, a service can provide context about multiple locations, which are 

different entities of interest.  

 

Figure 3.2 - CoaaS platform in IoT ecosystem 

Each CP can provide information about one or more entities. For this reason, the notion 

of a context service was introduced. A context service makes available the information about 

an exact entity. A context service makes available the information about an exact entity. A 

context service can also be seen as an API to a particular entity. The important point is that the 

access to this API is controlled by the CP, so the access control restrictions, fees and other 

features of the as-a-service model can be applied. 

It is also essential to notice, that the same device or application can be a context consumer 

and a context provider; the difference is only in the direction of the dataflow.  

In Figure 3.2, the CoaaS platform is represented as a middle layer. CoaaS receives context 

queries (CQ) from context consumers. A context query is a description of information, which 

should be requested from one or multiple entities. This information can be low-level, (context 

attributes), or high-level when additional functions are applied to the low-level context. 
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A context query consists of one or several joined context requests (CR). A context request 

is a retrieval of information about a certain entity type. CR consists of one entity and zero to 

many predicates. 

There are two ways of communication between the platform and context providers. The 

platform can retrieve data from the provider when this data is needed, or the provider can push 

the stream of context updates into the platform. A context update is a message, which contains 

the state of a particular entity (context attributes with values), and the time of measurement. To 

enable the subscription functionality, which is also called situation monitoring, CoaaS 

infiltrates the stream of context updates though the registered subscriptions. 

The main interface of communication with CoaaS is the Context Definition and Query 

Language (CDQL), which was developed specifically to comprehend the features of the CoaaS 

platform. More details about the theoretical foundations of CDQL can be found in [192]. 

We have discussed the high-level view on the ecosystem and highlighted the main 

definitions and concepts. In the next subsection, we discuss the blueprint architecture of the 

CoaaS platform.   

3.2.2 COAAS ARCHITECTURE 

In this section, we concisely describe the high-level architecture of the CoaaS platform, as well 

as the principal functionality of the main components. The designed architecture is presented 

in Figure 3.3. 

As it is shown in the figure, the platform comprises four principal components, which 

are depicted as blue rectangles. These components are (i) Query Engine (QE), (ii) Context 

Storage Management System (CSMS), (iii) Communication and Security Manager (CSM), and 

(iv) Context Reasoning Engine (CRE). 

The Context Query Engine (QE) is a component responsible for handling the execution 

of incoming context queries, which are formulated in CDQL language. QE controls the parsing 

stage, generation of the query execution plan and the assembling of the final result. An 

important subcomponent of QE is the Invoker, which is responsible for retrieving context 

information from context providers when there is a demand from internal components of 

CoaaS. 
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Figure 3.3 - CoaaS Blueprint Architecture 

Context Storage Management System (CSMS) manages the process of caching the 

context information and facilitating the efficient access to the cached data. Besides caching, 

CSMS provides the service discovery functionality based on the stored information about the 

known context services. The third important feature of CSMS is subscription module, which is 

designed to support the continuous monitoring of incoming context, infer situations from 

available context, detect changes in situations and provide notification of detected changes. 

This component monitors the real-time context of the IoT entities by percolating the incoming 

events through all the registered PUSH-based queries. The last objective of CSMS is storing 

and analysing the historical context to facilitate self-adaptation and efficiency optimisation. 

The Communication and Security Manager is a mechanism designed to handle the 

incoming and outgoing traffic. The important features of CSM are the transferring of messages 

to the right components, checking the validity of messages and initial authorisation of context 

requests.  

The Context Reasoning Engine is responsible for inferring higher level context from the 

raw contextual information. In general, CRE can contain a set of reasoning enablers, which are 

based on different techniques. At the moment, the CRE is represented by a software component 

called ECSTRA [36], which is capable of estimating the likelihood of the situation based on 

the Context Spaces Theory.  
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Table 3.1 contains a brief list of functions for each of the components. 

Table 3.1. CoaaS components and their functions 

Component Functions 

Context Query Engine (i) Context query parsing 

(ii) Execution plan generation 

(iii) Context result assembling 

(iv) Sensor data acquisition (via Invoker) 

(v) Context service selection 

Context Storage Management System 

 

(i) Current and historical context storage 

(ii) Context service registration and discovery 

(iii) Event processing 

(iv) Subscription monitoring 

(v) Caching and prefetching strategies 

(vi) Triggering sensor data acquisition 

Communication and Security Manager (i) Access control 

(ii) Authorisation 

(iii) Messaging 

(iv) Security monitoring (e.g. DDoS) 

Context Reasoning Engine (i) Inferring higher-level based on advanced 

reasoning techniques (e.g. CST) 

 

Next, we discuss the critical characteristics of the CDQL language. 

3.2.3 COAAS INTERFACES – CDQL 

Context Definition and Query Language (CDQL) [10], [60], [98] is a flexible and generic 

context query language that allows IoT applications to publish and query context.  Figure 3.4 

illustrates the production rule of the CDQL language, which consists of three mandatory and 

two optional clauses. 
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Figure 3.4 - CDQL Production rule [98] 

The mandatory clauses are PREFIX, SELECT, and DEFINE.  

The PREFIX clause is used for listing the semantic vocabularies, which are adopted to 

describe the entities in the query.   

The SELECT clause is used for identifying the output of the query which can be either 

low-level context (a set of context attributes), or high-level context.  

The DEFINE clause is needed to compose complex queries that include various entities 

and constraints. This clause defines the entities that are involved in a context query. Figure 3.5 

provides an example of a basic CDQL query. This query expresses a request to find available 

car parks and can be issued by a smart car or the navigation system’s backend server.  

 

Figure 3.5 - PULL-based CDQL for finding parking 

One of the distinguishing features of CDQL is the integrated ability to represent 

situations in a probabilistic form, is based on the Context Spaces Theory (CST); more details 

can be found in [63] and [60]. This feature enables the uncertainty handling in context queries. 

To enable this feature, a specific syntax was designed.  

In Figure 3.6, an example of situation representation is provided. This example defines a 

probabilistic ‘goodForWalking’ situation-function, which computes the probability of the 

comfortable walking condition for a particular location. The representation of the situation 

contains definitions of ranges of values for every attribute. Each attribute is assigned with a 

weight and, each range is assigned with a belief.  
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Figure 3.6 - Example of CST-based situation function definition 

The syntax for describing situations in CDQL also contains means to represent window-based 

functionality, trends and temporal relations between events [60]. 

The second type of a CDQL query is a PUSH-based query, which is designed to enable 

the subscription for situation monitoring functionality of the CoaaS platform. 

 

Figure 3.7 - PUSH-based CDQL for finding parking 
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The code snippet in Figure 3.7 shows an example of a PUSH-based CDQL query. This 

query will instruct the CoaaS platform to monitor specific parking that a car is driving to. If 

CoaaS detects that the carpark will be full by the time a car will arrive there, the platform 

suggests alternative carparks. It is worth mentioning, in order to select a list of alternative car 

parks, CoaaS takes the distance and walking conditions between the destination and parking 

into consideration by using the ‘goodForWalking’ function. 

To support the PUSH-based query functionality, CDQL contains the WHEN and 

CALLBACK clauses. The WHEN clause allows us to describe the situation, which will be 

monitored based on the incoming events. When the situation is detected, the subscription is 

triggered, and the SELECT clause of the corresponding query is executed. The CALLBACK 

clause defines the format and address of the endpoint, where the result of the query execution 

will be sent. 

On the contrary, a PULL-based query does not contain a WHEN clause, as it is executed 

only once immediately after the query has been received.  

In this section, we provided an overview of CoaaS platform and presented its blueprint 

architecture. Moreover, we identified the main components of CoaaS and explained their roles. 

Based on the provided discussion, we can proceed to identifying the requirements to the context 

storage management subsystem of the CoaaS platform that is the main focus of this dissertation. 

3.3 CSMS REQUIREMENTS 

In this section, we identify and discuss requirements to CSMS. We look at the 

requirements from two perspectives. The first perspective is the functionality that should be 

supported by CSMS to effectively serve as a part of the CoaaS platform. Analysis of functional 

requirements will lead to the development of the CSMS architecture.  

The second perspective is the technological side of the problem. The proposed analysis 

of technological requirements leads to the mapping of the architecture on the existing basis of 

data storage and processing technologies. Then, we proceed to the physical architecture and its 

implementation, which are described in Chapter 4. 

3.3.1 CSMS FUNCTIONAL REQUIREMENTS 

In this subsection, we briefly identify the main functional requirements. The method for 

elicitation of functional requirements was based on thorough and critical literature review 
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(Chapter 2), comparative analysis of related work, and analysis of the bIoTope project use 

cases. 

We have separated the functional requirements into three groups: the fundamental 

requirements, the advanced requirements and the CoaaS-specific requirements. 

The basic CMP can work in the ‘all or nothing’ fashion where the ‘all’ stands for the 

database mode and ‘nothing’ stands for the redirector mode (refer to Chapter 2). While the 

redirector mode cannot provide a decent performance in wide scale scenarios, it can still be 

useful in certain cases; besides, it has minimal requirements of the storage subsystem. 

The fundamental functional requirements group contains minimal requirements, 

which are essential for any CMP to enable the ability to serve the use cases. These requirements 

are as follows: 

Context provider selection. The CMP storage system should be able to return a list of 

context providers, which can potentially provide the contextual information requested by the 

consumer. For that, a repository of possible providers should be organised.   

Subscription/Situation monitoring. In order to support the PUSH-based queries 

(subscriptions), the storage subsystem should support the following two main functionalities: 

(i) the subscriptions derived from PUSH-based queries should be stored in a repository, and 

(ii) every event, which arrives to the CMP, should be checked against each related CDQL 

WHEN clause, to estimate the occurrence of a situation, which triggers the subscription. 

Having these minimal requirements satisfied, the storage system can support a CMP 

operating in the redirector mode. However, to provide advanced functionality or better 

performance, the requirements which form the advanced functional requirements group should 

be satisfied. 

The advanced functional requirements group contains functionalities, which add the 

possibility of a CMP to work in the database mode. It includes the following: 

Current context storage and retrieval. If the database or NoD-NoR mode is chosen, the 

storage system should contain the repository and interfaces in order to enable the ingestion of 

current context data and its retrieval for serving context queries.  

Historical context retrieval. The storage subsystem should support storage and retrieval 

of historical context data to support the historical queries as well as the predictive functionality 

of the CMP. 
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As it was mentioned in Chapter 2, the CoaaS platform is designed to operate in the 

NoD-NoR mode. Moreover, CDQL offers a novel approach to context querying with several 

unique features embedded into the language. That adds another group of requirements - the 

CoaaS-specific requirements. 

The CoaaS-specific functional requirements group contains requirements that need to 

be satisfied to serve the use cases, which rely on the novel features provided by the CoaaS 

platform. 

CDQL request processing. An essential requirement is to be able to connect the CoaaS 

Query Engine (QE) with the underlying data storage facilities. Consequently, the storage 

subsystem should contain a mechanism for transparently converting a CDQL request to the 

required format.  

On the fly retrieval of external data when the cached data is expired at the query arrival 

time. To support the NoD-NoR mode, the storage subsystem should be able to combine the 

retrieved from storage cached context with the data that was retrieved during the query serving 

(on the fly), as part of the cached data was expired.  

Post-retrieval computations. Another side of the request processing is the support for 

such CDQL features as CST-based functions, window-based functions, aggregation functions, 

built-in and computation functions. The storage subsystem should support the storage of 

definitions of functions (applicable to CST functions) as well as processing the data by these 

functions after retrieving the raw context from the cache or external providers. 

Analysis of query patterns and context sources behaviour for cache management 

purposes. The NoR-NoD mode of operation requires an intelligent approach for cost-efficiency 

adaptation. Enabling this approach requires storing the patterns of queries to context attributes, 

as well as storing the patterns of changes in the attribute’s value. Acquiring these patterns 

requires an analytical module embedded in the cache management system of the storage. 

Higher-level cache storage and retrieval. As described in Section 3.2.3, CDQL supports 

complex queries, which consist of requests to different entities. The storage subsystem should 

support storing cached context at levels higher than simple context attributes, as it can 

significantly improve the cost-efficiency of system operation, and reduce the latency of query 

serving.  

Optimization of the external context retrieval strategies based on the data extracted from 

the pattern analysis. The storage subsystem should contain a module responsible for 
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calculating the optimal strategy of computational resource allocation, as well as the optimal 

strategies for the retrieval of context from the external sources. 

We discuss the realisation and more detailed justification of these requirements in 

Chapters 4 and 5. 

3.3.2 TECHNOLOGICAL AND NON-FUNCTIONAL REQUIREMENTS 

The group of technological requirements includes such areas as modelling, scalability, 

reliability, performance, and querying capabilities. During the development of CSMS, we 

aimed to make use of existing technologies and build the CSMS modules on top of them, 

instead of trying to create another base-level technology. By ‘technological requirements’ we 

mean the requirements to technologies, which are used as the base-level, in other words, as 

enablers for CSMS modules. In cases where one technology could not cover the requirements, 

we united several pieces through the higher-level components; thus, following the Polyglot 

Persistence approach [193]. The decisions we made during the implementation phase were 

according to the defined requirements. 

We have identified the following technological requirements of a context storage 

middleware: 

Disk-based core storage. The modules of CSMS which provide the core CSMS 

functionality should be based on technologies which support disk-based storage. In-memory 

systems (e.g. in-memory databases) are gaining more and more attention nowadays. However, 

the reliability of this class of systems is significantly lower than the reliability of disc-based 

systems, as in-memory systems are heavily dependent on the infrastructure and hardware. In 

case of a hardware fault, the loss of stored data is inevitable.  

The loss of some types of information is tolerable for the CoaaS use cases. For instance, 

the loss of cache will cause a decrease of efficiency during a certain period, but will not 

completely disrupt the operation. However, the failure of such a component as the repository 

of context providers will cause a complete halt of the system until the recovery of the repository 

is completed. Losing the historical data will cause the inability to answer requests about the 

past, but the main CoaaS functionality will be still available. At the same time, the potentially 

tremendous amount of historical data makes it hard and very expensive to store all of it in an 

in-memory storage system. Moreover, the possibility and all the benefits of the proactive 

adaptation will be lost until the time when the history will be filled again with fresh data. The 

analytical metadata, on the contrary, requires much less space to store. However, acquiring this 
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metadata required significant time and processing power, making it too expensive to discard. 

Eventually, at this point of the state of technology, we made a decision to focus on reliable 

disc-based systems, and use expensive and less reliable in-memory systems only for boosting 

the cache performance in a situation where it is cost-efficient.  

Scalability. It is hard to predict the amount of stored information, but in case of smart 

city scenarios, it would not be possible to provide the storage service by one server node. This 

means that the proposed solution must be horizontally scalable. By horizontal scalability, we 

mean the ability of the system to use many cloud instances (server nodes) in parallel. Another 

important factor is the ability to add more server nodes to the cluster during the growth of the 

system, and, also, to reduce the number of servers used in cases when there is no need in that 

amount of processing or storage resources. These scaling processes should not require major 

manual efforts.  

High Availability – the storage components should not have a single point of failure. In 

case of one or several server nodes failure, the queries should be served from the nodes which 

are still online, and the failover should be managed automatically. 

Various approaches to CAP theorem. Traditionally, one of the main principles of 

database management systems is ACID – Atomicity, Consistency, Isolation and Durability. 

According to the CAP theorem, we cannot have consistency, availability and partitioning 

tolerance in one system at the same time. As it is mentioned in Chapter 2, the high demand for 

horizontal scalability and high availability (partitioning) was one of the factors that gave 

momentum to the NoSQL movement, where these factors outweighted the requirement for 

ACID compliance. 

As it was discussed in Chapters 1 and 2, the context retrieved from different sources can 

already be uncertain and, potentially, conflicting. Moreover, while being stored, it loses the 

freshness. Consequently, it makes it hard to speak about the complete consistency of IoT data 

in open ecosystems. That means the middleware solution in some cases can afford lack of 

transactional support and consistency in favour of high availability and partitioning, as the 

requirements for horizontal scalability and availability have higher priority. At the same time, 

some parts of a middleware system, such as consumer management, can have strong 

requirements for consistency, and these requirements should be satisfied also. 

Structural freedom. The contextual information is pushed into CoaaS by independent 

context providers. It is hard to force these external entities to supply the data structured 
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precisely the same as expected by the storage side. The data description format can change or 

be extended over time, while the context providers are not updated synchronously with the 

platform. The rigid nature of relational databases makes it hard to deal with the challenges 

above. During recent years the JSON mark-up has become a de-facto standard in the web 

document exchange. The document-based storage allows some level of structural freedom, at 

the same time still keeping documents semi-structured and available for indexing. 

 Eventually, we came to the conclusion that the CSMS storage should be able to store 

structured or semi-structured data without applying severe restrictions on its structure. 

Interconnected entities – in some cases storage must facilitate the means for storing 

highly interconnected data, (e.g. relations of people, organisations, transport, and 

infrastructure), and effectively running queries over such data.  

Veracity – different sources can supply information that can be conflicting or uncertain 

and there should be a way to store all variants of incoming data with annotations about the 

identity and trust level of the originator and rank of the suggestion.  

Large amounts of sensory data – sensors and other Internet-enabled devices generate a 

large number of time series events of similar, but not the same structure. 

Ontology (semantic data) support – many research projects model data using ontological 

principles as it is a common way for modelling the domain knowledge. However, this approach 

has performance issues when used for ingesting and storing large amounts of raw data and low-

level context. At the same time, the ability to store semantic data is useful, at least for the 

validation of the incoming data. 

Fast information retrieval and rich indexing capabilities – performance is the critical 

requirement for context delivery in smart cities applications. The base-level technologies 

should provide efficient indexing features to enable the fast retrieval of stored context. 

Fast writes – streams of sensor readings should be ingested into the storage system 

without long delays, queues or loss. 

Geospatial data – many IoT scenarios and applications are highly dependable on 

geospatial context, so the middleware storage must be able to provide effective indexing 

capability for this type of context. 
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On-premises or cloud deployment – to avoid the vendor lock-in, the used base-level 

solutions should be possible to deploy on-premises or in an IaaS cloud; proprietary solutions 

which are available only as PaaS carry risks for the sustainable development of the CSMS. 

Available open-source solutions – the used base-level technologies should be open-

source, or at least not heavily licensed.  

In this section, we identified the core set of requirements to CSMS, which are enough to 

cover the CoaaS -related scenarios that we consider in the bIoTope project, or the scenarios 

that are often discussed in modern IoT ecosystems literature. As the business, legislative, or 

technological changes are being introduced, there will be an increasing need for new features 

of the platform, and consequently, the list of requirements to CSMS can be extended to reflect 

these changes. 

After analysing the requirements for the middleware storage system (i.e. CSMS), it 

becomes evident that fulfilling all the requirements with one existing base-level solution is not 

feasible. In cases where one technology cannot cover the requirements, we can unite several 

pieces through the higher-level components; thus, following the Polyglot Persistence approach 

[193]. 

In the next section, we introduce the principal architecture of CSMS and its main 

modules. 

3.4 CSMS ARCHITECTURE 

In this section, we present the architecture of CSMS, which is designed based on the 

discussion provided in the first part of this chapter, as well as on the findings from the literature 

review (Chapter 2). 

The principal components of the context storage management system are: (i) Storage 

Query Execution Manager (SQEM), (ii) Context Service Description Repository, (iii) Context 

Repository, (iv) Performance Repository, (v) Subscription module, and (vi) a set of 

recommenders that enable the optimisation of the system performance. 

Schematically the CSMS architecture is presented in Figure 3.8. 
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Figure 3.8 - CSMS architecture 

Below, we provide a description of the aforementioned components. 

Storage Query Execution Manager (SQEM) 

The SQEM is the entry point for context queries. We should consider two different 

scenarios: (i) PULL-based query execution and (ii) PUSH-based query execution. During the 

PULL-based query execution, the CoaaS query engine (QE) transmits the parsed context query 

coming from a consumer. First, the query execution engine needs to obtain a list of context 

providers, which can serve as data sources. For that reason, the Context Service Description 

Repository (CSDR) is used.  

Accessing the repository, which is a persistent storage, requires the ability of SQEM to 

construct a query to a corresponding datastore. For that, SQEM contains a translator, which 

generates queries in native query languages to corresponding datastores.  

Once the list of candidate providers is obtained, SQEM accesses the Context Repository 

(CR) to fetch the stored (cached) context. We also apply the term ‘cached’ to the stored context 

data, as it is mostly based on transient IoT data. In the case when the cached data is missing, 

or it is considered to be expired, SQEM requests the missing data through the QE, based on the 

context service description. In a case when the CDQL query contains functions (CST, 
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aggregation, computation functions), which require post-processing, SQEM manages the 

process of applying these functions to the retrieved context. 

When the query is serviced, and the context is returned to the consumer, SQEM saves 

the query together with the result into a higher level of cache to enable the reuse of already 

computed results. These higher levels of cache are also stored in the CR. SQEM also saves the 

statistics about the access to entities, instances of entities, and context attributes into the 

Performance Repository (PR). 

In case of a PUSH-based query, SQEM converts the ‘WHEN’ clause of a query into a 

subscription, which is registered by a Subscription Module (SM). If a subscription contains a 

time window-based function, SQEM registers this function in an event-processing engine. 

Then all the incoming events are ‘percolated’ through all the registered subscriptions. 

Context Service Description Repository (CSDR) 

CSDR, which is graphically represented in Figure 3.9, is the primary source of 

information for the query engine to determine a list of sources, from which the needed 

contextual information can be retrieved. The result of accessing the CSDR is a list of context 

services together with their properties. These properties should include, but not be limited to 

the following: (i) entity type, about which the service is provided (e.g. carpark, weather station), 

(ii) address of the endpoint (e.g. IP address, FCM), (iii) format of communication (e.g. HTTP 

post request), (iv) credentials to access the server (e.g. login/password), (v) cost of service 

request, and (vi) service schema (MobiVoc). The service schema contains a reference to the 

semantic vocabulary, according to which a new document with information about a service can 

be validated.  The identifier of the service links the service description with the cached value 

of the last retrieved sensor measurement (raw context), and also the historical data if it is 

collected. 

Another part of the CSDR is the Context providers store. Context providers are linked to 

context services so that one context provider can provide one or more services. The context 

providers store accumulates the information about billing and service level agreements between 

the provider and the Context Management Platform (CMP). 

The third part of CSDR is the utility information collection. While the first two parts are 

created and initiated by the provider, the utility information is created by the platform and 

contains aggregated information about the provider, based on the analysis of statistics. These 
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parameters include but are not limited to the latency or access and the quality of supplied 

context.  

Incoming requests to CSDM are (i) context queries, (ii) registration of context services, 

(iii) registration of context providers, and (iii) update of context service or providers state. 

 

 

Figure 3.9 - Context Service Description Repository 

Context Repository 

Context repository (CR), which is graphically represented in Figure 3.10, contains the 

data, which can be used for directly answering context requests without accessing external 

providers. In general, CR can be seen as a cache, as the stored IoT data is subject to aging. CR 

contains the following parts: (i) current context, (ii) historical context, (iii) cache of higher 

levels. 

The current context is the representation of the state of the context service. The current 

context store contains the context attributes that were retrieved last. The information is 

structured according to the semantic vocabulary, which is corresponding to the service entity 

type and linked to the service (CSDR). For each context attribute, the expiry time is attached. 

The expiry time can be provided by the source, or it can be obtained by analysing the historical 

information. 
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Historical context is time-series data, which is obtained by moving the current context to 

a separate store when the last cached context value is updated. Historical context is used for 

answering historical queries, aggregation queries and queries which require context 

predictions. It is also used for estimating the expiry period of context attributes. 

The cache of higher level data contains the answers for context queries or parts of these 

queries, which can be reused in the nearest future; thus reducing the load on the CSMS. 

 

Figure 3.10 - Context Repository 

Subscription Module (SM) 

Subscription module, which is presented in Figure 3.11, facilitates the whole process of 

notifying the subscribers about a detected situation. By ‘situation’ here we mean the WHEN 

clause of the CDQL PUSH-based query. Each consumer can register an unlimited number of 

PUSH-based queries, and all the incoming events will be ‘percolated’ through these queries. If 

needed, CoaaS will initiate periodical requests to data sources for keeping the state of the 

involved context attributes up to date. Moreover, incoming events are used to change the 

condition of the service provider in CSDM if this state changes. 

Main parts of the SM contain the data about (i) Subscribers, (ii) Subscription Definitions 

(CDQL WHEN), (iii) Actions (CDQL SELECT), and (iv) CST-based situation definitions.  
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The Subscribers part contains the properties of subscribers (e.g. endpoint where to send 

the notification when the subscription is triggered).  

The Subscription Definitions part contains the WHEN clauses of all the registered 

subscriptions, which are stored in a way which is convenient for accessing when the context 

update needs to be percolated.  

The Actions part contains the SELECT clause of all PUSH-based queries when the 

subscription is triggered; the SELECT clause is executed in the same way, as if it would be 

issued as a PULL-based query. 

The CST-based situation definitions part contains the definitions of all the registered 

situations, which are modelled based on the Context Spaces Theory [60]. 

 

Figure 3.11 - Subscription module 

Performance Repository 

The performance repository (PR) contains the data about the performance of the external 

providers, consumers and internal components of the system. For the external providers, the 

latency of access is measured for each context retrieval. Based on this information, the expected 

latency and reliability is computed, which are then stored as part of CSDR.  

For the consumers, the latencies of servicing the queries is measured for the purpose of 

fair billing.  Moreover, each access to context attributes is registered in order to later estimate 

the popularity of each attribute. Whole CDQL queries with the attached execution plans and 
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details about how fast each part of the execution plan was serviced are also stored in PR for 

later being used as datasets for performance tuning. 

For the internal components, the cache management decisions, storage and compute 

resource allocation decisions, latencies of access to cached data, and costs of used resources 

are recorded. 

Recommenders and planners 

For the purpose of managing the storage query process and adjusting the performance 

and cost-efficiency of the whole system, several recommenders and planners are needed. These 

software components rely on query execution statistics, logs of requests, responses, and plans. 

By analysing this data in background batches, the system adjusts its performance according to 

the load. 

Proactive Raw Data Retrieval (PRDR) planner is responsible for initiating the data 

retrieval from remote context source and caching this data item before a context query 

requested this data. This strategy helps to reduce the time of serving the query. At the same 

time, retrieving data that will not be used is not cost-efficient. For that reason, the PRDR relies 

on predictive algorithms to keep the optimal level of performance and cost. 

In-memory caching and co-location (IMCC) recommender is responsible for offering the 

following recommendation: what piece of information (e.g. level of cache) should be kept 

inside the in-memory caching node, or in a cheaper disk-based storage, or nor kept at all. This 

task involves predicting the probability of reusing the same context, based on its parameters 

(especially context lifetime), former behaviour patterns of consumer and other relevant 

historical data. On the other hand, the cost of consumed resources and corresponding delays in 

query serving is taken into account. 

The technological aspects of storage 

CoaaS architecture depends on several types of data: structured, semi-structured and 

unstructured. Apart from storing data for later retrieval (database-like access), there exist other 

data storage-related technologies, which include storing incoming messaging as queue, and 

processing streams of incoming messages. 

Document store (DS) is the core part of the CSMS. DS stores all the incoming data and 

derived context that can be reused for serving future context requests. This load imposes a strict 

requirement towards reliability and scalability of DS, as this part must always be available. As 
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it is considered that the size of DS will be enormous, proper indexing is required to keep the 

data retrieval time inside the SLA bounds. 

In-memory cache (IMC). Operating in near real-time is one of the requirements for the 

CoaaS middleware. For this reason, an in-memory caching layer can be used for storing context 

requests and corresponding answers. This layer can significantly reduce the query processing 

time in the case when a query with a complete or partial similarity has already been processed 

recently. 

Message queue (MQ). In the perfect situation, the incoming messages which contain 

context updates, as well as context queries can be processed immediately at the moment of 

arrival. However, the incoming traffic can be “bursty”. In such a case, there is a need to allocate 

more resources to process these requests; otherwise, the server will not be able to handle the 

load and some of the requests would be rejected. To efficiently tackle the issue, distributed 

message queues are used as the buffer for incoming messages. Moreover, in case of a failure 

and corresponding delays in the processing side, MQ accumulates the incoming messages and 

after the failed service is fixed, the processing can be continued from the moment when the 

service has stopped. 

Complex Event Processor (CEP). Serving the PUSH-based queries (subscriptions) 

requires not only checking if the conditions in any registered subscriptions are triggered, or 

not, by a certain incoming event. There is also a need to monitor trends and enable the 

processing of sliding window-based functionality. Another task is to provide predictions based 

on the incoming data streams. For these purposes, a special class of data processing software 

is needed. Such software is usually referred to as CEP or data stream processors. 

3.5 CONCLUSION 

In this chapter, we discussed our approach to architecting the CSMS for the CoaaS 

platform. First, we introduced the vision of the CoaaS platform. We recapitulated the blueprint 

architecture and the main concepts of the CDQL language. Based on the provided discussion 

as well as on the analysis of CMP requirements provided in Chapter 2, we formulated the main 

requirements to CSMS. We grouped these requirements into functional requirements (Section 

3.3.1) and technological requirements (Section 3.3.2).  

Based on the formulated requirements, we proposed the architecture of CSMS and its 

modules (Section 3.4). In the next chapter, we proceed to the detailed description of the design 

and implementation of CSMS main modules.    
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Chapter 4: Design and implementation 

4.1 INTRODUCTION 

In this chapter, we describe the design and implementation of the Context Storage 

Management System (CSMS) and its main modules, which were conceptually introduced as 

architectural elements in Chapter 3. 

The chapter is structured in the following way: In Section 4.2, we provide an overview 

of the CSMS implementation and define the queries, which we use throughout the chapter to 

illustrate the dataflow. In Section 4.3, we describe the details of the Storage Query Execution 

Manager (SQEM) implementation, which contains the main logic, facilitating the 

communication between the CoaaS Query Engine (QE), storage repositories and event stream 

processor. Then, in Section 4.4 and Section 4.5, we discuss the implementation of context 

service description and context repositories. In Section 4.6, we present the implementation of 

the subscription module. Section 4.7 concludes the chapter. 

4.2 AN OVERVIEW OF KEY MODULES OF CSMS IMPLEMENTATION 

Figure 4.1 provides a high-level view of the main modules of CSMS implementation. 

The horizontal blue dotted line represents the border between the Query Engine (QE) and the 

CSMS. QE converts the initial CDQL query to a set of context requests, which are sent to 

SQEM.   

The core logic of CSMS is realized as JavaEE6 applications, which are running over a 

Payara Application Server 57. The main components of CSMS are the Storage Query Execution 

Manager (SQEM) and the Cache Manager (CM). SQEM governs the process of handling the 

requests from the QE and connecting them to corresponding repositories. For this reason, 

SQEM contains wrappers, which automatically generate queries to underlying datastores.  

In particular, the Mongo wrapper was created for generating MongoQL8 queries. 

MongoDB was chosen as a main datastore for CSMS repositories, as it supports document-

oriented storage, is widely used, is horizontally scalable, does not require licensing, and is cross 

platform. Moreover, it also provides an in-memory option, reducing the need for adopting 

another datastore for fast caching, which will cause more complexities in development. 

                                                 
6 https://www.oracle.com/java/technologies/java-ee-glance.html 
7 https://www.payara.fish/ 
8 https://docs.mongodb.com/manual/crud/ 

https://www.oracle.com/java/technologies/java-ee-glance.html
https://www.payara.fish/
https://docs.mongodb.com/manual/crud/
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Further, SQEM contains a wrapper to handle the process of event stream monitoring. To 

this end, the Siddhi9 wrapper was created to generate Siddhi applications, which define the 

event stream processing chain in WSO2 Siddhi CEP 4.010 component.  

 

 

Figure 4.1  - CSMS implementation high-level view 

The Cache Management (CM) component contains the algorithms for analyzing the IoT 

data (context attributes), which are stored in the context repository. The usage of these 

attributes (requests) is also taken into account to compute and apply the optimal caching 

strategy. The caching strategies and models are discussed in detail in Chapter 5 and 6, and the 

evaluation of the proposed models is provided in Chapter 7. 

The main repositories, which are the Context Repository (CR), Context Service 

Description Repository (CSDR), Subscription Repository (SR), and Performance Repository 

(PR), are based on corresponding MongoDB 4.011 databases and collections. The incoming 

events are first routed into the Apache Kafka 2.312 queue, which is used as a persistent buffer 

for incoming messages.  For platform administration purposes, such as user authentication and 

management, CSMS is using PostgreSQL 1113. 

The design and main workflows of SQEM, main repositories, and stream processing are 

described in the following sections of this chapter. For illustration purposes, two CDQL queries 

                                                 
9 https://docs.wso2.com/display/CEP420 
10 https://docs.wso2.com/display/CEP420 
11 https://www.mongodb.com/ 
12 https://kafka.apache.org/ 
13 https://www.postgresql.org/ 

https://docs.wso2.com/display/CEP420
https://docs.wso2.com/display/CEP420
https://www.mongodb.com/
https://kafka.apache.org/
https://www.postgresql.org/
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are used. In general, CSMS does not deal with full CDQL queries directly, except the retrieval 

of full query cache results. The QE breaks the CDQL query into requests, which are issued to 

CSMS in a particular order; the order is defined by the QE. A request is a part of the CDQL 

query, which is based on a single entity. In other words, requests are joined together to form a 

full CDQL query. A simple CDQL query can consist of one request, while a complex query 

can contain as many entities as the developer has defined. The term ‘entity’ is used to refer to 

a class or a type of things (e.g. car, location, or event). When we refer to a single thing (e.g. 

car#1), we use the term ‘instance of an entity’ or ‘instance’. In the current implementation, the 

instances are stored and returned in a JSON document format, which is shaped in accordance 

with a corresponding semantic vocabulary. For that reason, the term ‘document’ is also used, 

referring to an instance of an entity during the data processing or filtering stage. 

According to [98], a CDQL query can be PULL-based or PUSH-based, and both modes 

should be supported by CSMS. For the discussion of a PULL-based query handling by the 

CSMS, a CDQL query that is presented in Figure 4.2 is used. The query was designed during 

the bIoTope consortium meeting to facilitate the search of internet-connected waste containers 

for the developers of the Smart Waste Management (SWM)-related applications [194],[47]. 

There are three entities defined in the query: (i) Location (targetLocation, line 5), (ii) Weather 

(targetWeather, line 7), and (iii) Waste container (targetBin, line 9). Consequently, the query 

is executed as a sequence of three context requests from the QE to CSMS. These requests are 

(i) find a set of services, which can return locations based on the given criteria, or find cached 

locations, (ii) find services that can provide information about weather in locations, or find 

cached weather data in locations, (iii) find the waste container entities around given locations 

with a distance less than the given criteria. 

The purpose of the query is to find all the waste containers (bins), which are located near 

the university, not filled over the top (line 11), and accept both plastic and glass waste (line 

12). The subtle moment is how the proximity “near the university” is defined. The location of 

the university is defined by the address (line 6). Then the proximity is influenced by the 

weather. In case it is “good for walking”, the 3km radius is used. In other case, it is not “good 

for walking”, so only 100 m radius is applied (lines 14-16).  
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Figure 4.2 – PULL-based CDQL query 

While the approach allows a simple way to request context for a developer of a context-

aware application (context consumer), supporting such queries requires significant 

development effort on the platform’s side. 

The novel feature of CDQL, compared to other context query languages, is its support 

for the Context Spaces Theory (CST) –based functions, which are used to describe ‘situations’. 

An example of a CDQL definition of the CST-based situation function ‘situWeather()’, which 

is a part of a PULL-based CDQL query, is presented in Figure 4.3. The basics of CST are 

presented in Chapter 2 and [63], and the concept of CST-based situation functions is described 

in Chapter 3, [195] and [98]. In this example, the situation function defines three situations, 

which are ‘cold’, ‘hot’, and ‘goodForWalking’. The CDQL query uses the ‘goodForWalking’ 

situation. This situation is defined by two parameters, which are the airTemperature and the 

windSpeed. Each parameter has a weight, and each parameter is also divided into ranges. 

Ranges define ranges of values, and when the input value is applied to the function, the belief 

of the corresponding range is applied. Then, the weights and the beliefs of each parameter are 

used to obtain a final value of the situation probability [63]. 

The input values for the situation function (air temperature and wind speed) are obtained 

from the entity ‘Weather’, which is retrieved based on the user’s device location from a 

corresponding weather service. Eventually, the function returns the probability of situation 

‘Good for Walking’, which is later compared with the criteria given in the query (40%), and 

the final Boolean value is obtained. 
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Figure 4.3 – Situation function definition 

The processing of other operators used in the main ‘waste container search’ query is 

discussed in Section 4.3. For the illustration of how the second type of CDQL query (PUSH-

based) is supported by CSMS, the smart vehicle preconditioning scenario is used. The PUSH-

based CDQL query is presented in Figure 4.4. 

 

Figure 4.4 – PUSH-based CDQL query 

The query was developed as a part of the smart mobility use case of the bIoTope project 

in collaboration with a large vehicle manufacturer. The main idea behind the presented PUSH 

query is to facilitate the following scenario:  
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A driver has a meeting planned in his calendar. The meeting is far from the place where 

the driver is now. The temperature in the car is out of the preferred range, so it would be not 

comfortable for a driver to get into the car. When the driver starts walking towards the car, this 

event is detected and used by the car to start the A/C or the heater, in order to adjust the 

temperature to the preferred value. This is called preconditioning. To facilitate this scenario, 

CoaaS has to monitor the related context attributes continuously and, when the situation is 

detected, inform the context consumer, which is the backend system of the car manufacturer in 

this case. 

There are four entities defined in the query: (i) events, (ii) eventLocation, (iii) driver, and 

(iv) car (lines 10-14). The car is defined by its VIN number; the owner/driver is linked to the 

car in the context service definition. The driver is defined by the known identifier, the event is 

linked to the driver through joining the driver’s e-mail with the list of event attendees, and the 

event location is extracted from the event definition.  

The most important part of the PUSH-based query is the ‘WHEN’ clause (lines 3 - 9), as 

it is the section where the ‘subscription triggering’ is defined. When all the conditions in the 

‘when’ clause are in the ‘True’ state, the ‘select’ part of the query is executed. 

The feature which needs the most discussion is the decrease() function. The 

decrease(distance(), 5min) function returns ‘True’ if the distance between the driver and the 

car is decreasing during the last five minutes (Figure 4.4, line 8). Supporting such functionality 

requires event stream processing. This feature is discussed in detail in Section 4.3.4. Processing 

of the other components of the ‘when’ clause is discussed as the part of a subscription module 

implementation (Section 4.6). 

We have introduced the main components of the implemented CSMS design, and also 

defined the queries which will be used for the demonstration of the dataflow throughout this 

chapter. 

4.3 SQEM MODULE IMPLEMENTATION 

In this section, the design, implementation and functionality evaluation of the Storage 

Query Execution Module (SQEM) is presented. According to its name, SQEM is a gate 

between the Query Engine, which deals with external context providers and consumers 

directly, and the components of CSMS. The main objective of SQEM is to serving the context 

requests from QE by routing these requests to a corresponding storage component and 

converting these requests to a proper format. There are several reasons for this design decision. 
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First, CDQL is designed to query real-time data from context providers together with the 

data that is cached in the storage. The query format is designed to help application developers 

to express their need in context. This includes high-level functions (refer to Chapter 3) and 

other CDQL-based functionality. Correspondingly, the format of a query is not aligned to the 

format of any existing datastore. 

Since the beginning of the CoaaS project, it was decided to follow the principle of 

keeping the main interface of CoaaS (CDQL) and the Query Engine (QE) datastore agnostic. 

In case of future technological or licensing changes in underlying datastores, there would be a 

need to make changes only in SQEM part. Consequently, no changes would be needed in QE, 

and most importantly, no changes will be needed in queries, which are embedded in external 

software of context consumers. 

Another reason for the need of the query translation in CSMS is the possibility to use the 

benefits of a hybrid system, comprising several underlying technologies such as document 

store, in-memory key-value (KV) store, data stream processors, and semantic graph storage. A 

CDQL query can be split into parts by SQEM, according to data placement strategy. Queries 

to each component are expressed with the means of different internal query languages. 

One more reason for the need of the SQEM layer between QE and storage is the 

possibility to execute high-level queries without a need to investigate complexities of data 

organisation. These high-level functions need to be translated into queries, which match the 

context model. For example, if a CDQL query looks like “find carparks available between 

11.30 and 16.40 with cost less than $5”, the real data structure describing a parking facility 

will be complex, including information about the schedule during different days, price ranges, 

maximum length of staying, information about the user’s permit and residence. To simplify the 

work of an application developer, CoaaS provides the option of using custom hosted entity-

related functions such as “availability” and “cost”. Handling of such high-level functions which 

are tightly connected to the context model is realised at the level of SQEM, as these functions 

are a part of the post-retrieval context processing flow. The details of post-retrieval data flow 

are discussed in Section 4.3.3. 

4.3.1 CDQL TO MONGOQL QUERY TRANSLATOR 

A CDQL request which arrives from the QE to SQEM must be translated for the 

possibility of being executed in underlying levels of CSMS. CDQL requests arrive through an 

API which provides the request in Reverse Polish notation (RPN). In this section, we illustrate 
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how a CDQL request is transformed and executed, to retrieve data from the Context Service 

Description Repository (CSDR) and the Context Repository (CR).  

 

Figure 4.5 – RPN representation of a CDQL request 

The original CDQL query is written in infix form. In order to compute the satisfiability 

of the WHERE clause, it is more convenient to transform the infix form to the Reverse Polish 

notation (RPN) form (postfix). In Figure 4.5, an example of an RPN representation of CDQL 

request is presented. SQEM accepts the RPN-CDQL input and generates an equivalent query 

to the underlying datastore. Such an approach significantly simplified the query translator 

algorithm, as it eliminated the dependence of infix expressions on brackets. 

As it was stated in the previous section, the main functionality of SQEM is to facilitate 

the process of CDQL requests execution on the storage side. The CSDR and CR modules of 

CSMS are based on document-oriented storage principles. For the current implementation of 

CSMS, MongoDB 4.0 has been chosen. Thus, SQEM needs to be able to convert a CDQL 

request into a correct MongoQL query, which will be executed in MongoDB. In the following 

paragraphs, a description of transformation rules that are used for translation from CDQL to 

MongoQL is provided.  

Simple and complex operators can be distinguished. Simple CDQL operators are 

executed directly in the database, as analogues for these operators exist in the database. The 

following list of simple CDQL operators is supported: 

“=”, “<”, “>”, “<=”, “>=”, “containsAny”, “containsAll”, “and”, “or”, “not”, 

Complex operators cannot be executed in the database and have to be partly or fully 

processed by SQEM. Some of the complex operators are dependent on the entity type. 

For example, “Distance”, “Cost”, “Availability” are examples of complex operators. 

These operators require additional processing after being retrieved from the datastore. The 

complex operators are discussed in detail in Section 4.3.4. 

The simple operators are translated according to the rules, which are presented and 

exemplified in Table 4.1. 
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Table 4.1. CDQL to MongoQL translation rules used by SQEM 

Simple Operator Notation  CDQL (SQL-like 

syntax) example 

MongoQL (JSON-

based syntax) example 

Equality operator “=” “name” = “John” 

 

“name”: “John” 

Comparison 

operators 

“<”, “>”, “<=”, 

“>=” 

“age” < 60 

 

“age”: { $lt: 60} 

Containment 

operator (Any) 

“containsAny”[“arg1”, 

“arg2”, …, “arg_n” ] 

“plugType” 

containsAny 

[“EU”, “AU”] 

{plugType: { $in: 

[ EU, AU ] } } 

Containment 

operator (All) 

“containsAll”[“arg1”, 

“arg2”, …, “arg_n” ] 

“plugType” 

containsAll [“EU”, 

“AU”] 

{plugType: { $all: 

[ EU, AU ] } } 

Conjunction 

operator 

AND “height” > 2 and 

“width” > 1.7 

 

{$and: [ { height: 

{ $gt: 2 } }, { width: 

{ $gt: 1.7} } ] }  

Disjunction 

operator 

OR “height” > 2 or 

“width” > 1.7 

 

{ $and: [ { height: 

{ $gt: 2 } }, { width: 

{ $gt: 1.7} } ] }  

Logical negation 

operator 

NOT  

 

“colour” not “red”  

 

{ colour: { $ne: 

“red” } } 

 

In Table 4.1, a conjunction operator is used to select an entity only when both operands 

connected by the operator are ‘True’. In MongoQL there are two options for expressing AND 

operator: implicit “,” and explicit “$AND”. The implicit form is more convenient to read by 

human. However, from the implementation perspective, the explicit option is more convenient 

and robust.  We have chosen to use the explicit operator in most cases, as it requires less 

complexity in the process of translation. 
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A disjunction operator is used to choose an entity when any of two operands the side of 

the operator are ‘True’. A logical negation operator is used to reverse the meaning of the 

operand. The described building blocks allow us to combine them to convert any incoming 

CDQL request based on simple attributes to a MongoDB request. 

Next, we proceed towards the discussion of complex operators. Probably, the most 

important complex operator for smart city scenarios is the distance operator. 

Distance – the distance operator is represented as distance(entityA, entityB, 

commuteType). The distance function enables finding the most suitable context providers in 

case of a geospatial query. The distance function contains three attributes:  (i) the location of 

Entity A, (ii) the location of Entity B, and (iii) a commute type.  

The commute type describes the means of commuting between locations. Available 

options are: (i) linear, (ii) walking, (iii) car, (iv) cycling, and (v) public transport. Technically, 

the commute type parameter is making the distance operator complex. While it is possible to 

find a linear distance between objects in a datastore, finding a driving distance requires the 

usage of advanced external geo-information services. At the same time, calling external 

services for every registered context provider would cause significant latencies and expenses. 

Consequently, to save these resources and reduce the search space, the initial filtering is 

performed in the datastore. All the entities which passed the initial filter are later checked for 

more restrictive conditions. The least restrictive condition is the linear distance. 

All three attributes are needed when the QE has coordinates of both the context provider 

and destination and wants to check how far is one from the other using the means embedded in 

SQEM. In case, when it is needed to search for a list of providers, the location of a provider 

can be left empty. 

The comparison operator “<” after the distance function shows that the distance should 

not be more than the expression on the right side. MongoDB uses a reversed order of geo 

points; i.e. [lon, lat]. However, CDQL query accepts a common order of [lat, lon].  

For instance, coordinates of Monash University Clayton campus in CDQL are represented as 

[-37.910408, 145.1345673] 

CDQL: 

distance([ 144.49070753102933, -37.655660795303056], [ 144.49070753102922, -

37.655660795303011], "walking") < {"value":1000,"unit":"m"} 
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MongoQL: 

   "entrance.location":   { $geoWithin: 

      { $centerSphere: [ [ 144.49070753102933, -37.655660795303056], 1000 / 6371000] 

} } 

   In the expression above, 6371000 is an approximate equatorial radius of the earth, as it 

is needed to convert meters to radians.  

After executing a MongoDB query, each of the results will be fed into a routing engine 

in order to obtain the walking distance, which is longer or equal to the linear distance. In Figure 

4.6, an example of the resulting transformation of a CDQL request containing simple operators 

and a distance operator is presented. 

 

Figure 4.6 – A MongoQL query illustrating the transformation of CDQL request 

with several simple operators and one distance operator, without taking the expiry 

into account 

Freshness of context attributes - The transformation of a CDQL query is significantly 

complicated by the necessity to control the expiration of context attributes that are changing in 

real-time. In Figure 4.7, an example of a simple CDQL query, where only one context attribute 

taken into account, is provided. This query is designed to retrieve the information about all the 

waste containers that have the real-time capacity less than 100 per cent. While from the context 
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consumer point of view the query looks simple and straightforward, the NOD-NOR mode of 

operation adds complexity in the communication between the CSMS and the QE, which needs 

further discussion. 

 

Figure 4.7 - Simple CDQL query with one attribute 

The full process of facilitating the NoD-NoR mode of operation is presented as a dataflow 

diagram in Figure 4.8 to show the complexity of freshness check. The process includes 

retrieving the available information from the datastore and enriching it with fresh values 

obtained through the Invoker component of the CoaaS platform. The Invoker is responsible for 

retrieving information from external context providers on request from internal components of 

CoaaS, or according to a schedule. The dataflow also includes fusing the retrieved data, 

returning it to the next stages of processing or a query engine. In the end, the context values 

that were retrieved by the Invoker are updated in the datastore. 
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Figure 4.8 – Freshness check in NoD-NoR mode 

After representing the whole process of the freshness check in Figure 4.8, we can 

concentrate on the query, which is generated by SQEM and then executed by the datastore. 

Due to the JSON-based MongoQL syntax, the generated query is quite verbose and bulky. As 
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it is hard to read long MongoQL queries, for the description purpose, a simple pseudo SQL 

representation of the query, which is presented in Figure 4.9, is provided. 

 

Figure 4.9 - Pseudo SQL query representing the logic behind the transformation 

A pseudo SQL query above represents the logic behind the execution part, which is 

processed by the datastore. The datastore should return all the bins where the expiry time of 

the particular attribute has already passed (Line 3), or bins where the real-time capacity is less 

than 100, and the attribute is considered “fresh enough” (Line 5). The term “fresh enough” 

means that the expiry time is more than now, or expiry time is not defined. The datastore will 

also return all the bins which have no expiry time attribute (expiryTime is null), as such 

attributes are considered static (Line 5). 

The entities with expired attributes should be retrieved from the datastore for the 

following reason: it is unknown if the entity matches the query or not. Consequently, SQEM 

retrieves entities with expired attributes from the datastore and passes them to the Invoker. The 

Invoker will request the data from the external provider in an ad-hoc manner and pass it to the 

QE. Then, the Invoker will also update the datastore. 

A generated MongoQL query is presented in Figure 4.10. The outer implicit ‘and’ clause 

contains two operands. The first operand states that the field swm:Capacity.realTimeCapacity 

contains an object ($type: 3). The second operand contains expressions that represent the logic 

defined with the pseudo SQL statement above. As can be seen, the generated query does not 

contain excessive clauses and is formulated effectively.  

Due to the complexities added by the freshness check, even filtering by a single context 

attribute can generate a query, which is not very easy to read for a human. However, filtering 

can be done using many attributes, and each of these attributes adds complexity to the generated 

query, to deal with the possible expiry of a context attribute. Such generated MongoQL query 

is very hard to compose or to be read by a human; however, it is efficient for being read and 

processed by a machine. 
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Figure 4.10 – Mongo query generated for the real-time capacity attribute taking 

expiry into account 

With the example above, we have demonstrated how the transformation of a CDQL query 

in SQEM helps to avoid the tedious task of composing long queries, and having complex 

processing pipelines, for a developer of a context consumer application. Moreover, these 

transformations facilitate the possibility of CSMS to work in the NoD-NoR mode. 

4.3.2 CDQL SITUATION FUNCTION TRANSFORMATION 

In this section, we demonstrate how a CDQL situation function definition is translated 

into a stored format by SQEM. In Section 4.2, we introduced the ‘situWeather’ function, which 

contained the definition of the ‘goodForWalking’ situation. The call to a situation function is 

shown in Figure 4.2, and the definition of the situation function from the user (CDQL) 

perspective is presented in Figure 4.3.  
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Figure 4.11 - Stored CST function 

In Figure 4.11, a stored definition of a situation function is presented.  To reduce the size 

of the example, less important parts are collapsed. The main sections of a document that define 

a situation function are: (i) ObjectID, (ii) functionTitle, (iii) nameSpaces, (iv) relatedEntities, 

and (v) Situations. 
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The ObjectID is used as a unique identifier of the document in the datastore. The 

functionTitle is defining the name of the function, nameSpaces contains a list of semantic 

vocabularies used in the definition of the function, relatedEntities contains the mapping of the 

related entities, and the Situations section contains the list of situation definitions.  

An expanded view of related entities is presented in Figure 4.12. In this case, the 

relatedEntities section contains only one mapping r1. This mapping is used in the definition of 

a situation to map the input values of an entity, (type “Weather” defined by the schema.org 

vocabulary), to the attributes, which are used in the definition of a situation.   

 

Figure 4.12 – Related entities section of a stored situation function  

The definition of the stored ‘goodForWalking’ situation contains a list of attributes, 

which are mapped to the input entities (e.g. airTemperature). Each attribute has a name, a list 

of ranges, and a weight. Each range contains a definition of a range and Belief. The definition 

of a range is a text field, the type of used braces (round or square) define if the point on the 

corresponding end of a range is included or excluded.  

Figure 4.13 shows a schematic dataflow, which illustrates how a request with a situation 

function is processed. 

When a situation function is called in a CDQL request, SQEM retrieves the definition of 

a function by name, parses the definition to find the relevant ranges for each attribute, puts the 

values of corresponding beliefs and weights into a call to a CST reasoner (ECSTRA), and 

finally, receives the likelihood of a situation occurrence, (i.e. a value between 0 and 1), based 

on the definition and input context attributes [36]. Then, the likelihood is compared to a value 

given in a query, and the final Boolean value for the RPN condition is obtained. 
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Figure 4.13 – Dataflow of situation function processing 

4.3.3 SQEM POST-RETRIEVAL CONTEXT PROCESSING  

In this section, we discuss the next stage of context processing, that is SQEM post-

retrieval context processing. The term ‘post-retrieval’ in this section means ‘after context was 

retrieved from the Context Repository (CR)’.  

In Section 4.3, we provided details about how contextual entities were processed in 

SQEM during the freshness check. The datastore returns the documents in which the attributes 

used as selection criteria are not expired and relevant, or known to be expired. The reason for 

this is that when the cached attribute is used for filtering, and the attribute is expired, it is 

impossible to understand if the document is relevant or not. Consequently, the document should 

be retrieved from the datastore and further processed for making the final decision: to 

determine if the document matches the selection criteria or not. In general, there are two types 
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of attributes from the query perspective: (i) attributes which are used for filtering, (defined by 

the where clause), and (ii) attributes that are used for returning to the consumer, (defined by 

the select CDQL clause).  For example, documents can be filtered based on the location of an 

instance, but the returned attribute is the current velocity of the instance. Technically, both 

attributes can be expired, and the expiration period can be different. Further, if the attributes 

used for initial filtering are not expired and the document is considered worth being returned 

to a consumer, it may appear that the attributes that will be returned to the contained in the 

document are expired.  Consequently, these attributes need to be refreshed before being 

returned to the consumer.  

We also described the processing of CST-based situation functions (Section 4.3.2), which 

require retrieving documents from the context storage and injecting the retrieved data into the 

call to a CST reasoning engine. 

There are several other types of post-retrieval processing, which need to be highlighted, 

namely (i) the build-in functions and (ii) custom functions. Both types of functions belong 

to a class, which is called computation functions. 

The built-in functions are either embedded in the main functionality of the platform 

directly or make use of pre-defined external services. Examples of embedded build-in functions 

are avg(), max(), min().  

An example of a built-in function which is relying on an external service is the distance() 

function with an argument other than ‘linear’. For instance, if the CDQL request contains a 

condition as follows: distance(car.location, Carpark.location, ’waking’) < 300m, then the 

initial filtering of related instances is performed in the datastore by applying the distance 

function with a linear argument. Next an external router is used to obtain the walking distance 

to each carpark, and then the post-processing is applied to a set of documents, in order to filter 

out those where the walking distance is not matching the given criteria. 

A custom computation function is a function defined by context consumers, or the 

DevOps team responsible for a particular CoaaS platform deployment. A custom function can 

be defined as an aggregation function over a set of documents, or it can be defined over one 

document. In any case, the aim of a custom function is to process specific fields of the retrieved 

documents and return the specific result, instead of returning the whole document.  

The custom functions are deployed as a RESTful service. During the processing of a 

request that contains a custom function, CSMS sends the initially retrieved documents to the 
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corresponding RESTful service and uses the received results for further processing of the 

request. As an example of a custom function, consider the parkingAvailability() function, 

which can be used for simple, (from CDQL user perspective), filtering of parking facilities.  

The possibility of using a parking spot is often a complex issue, where the decision if a 

particular driver can use the spot, depends on the status of the driver, (e.g. has a permit, has 

limited mobility, etc.), the time of the day, the day of the week and other factors. These factors 

can be area-dependant. All these factors are represented in the document, which is describing 

the carpark, according to a corresponding ontology (semantic vocabulary). However, a 

developer of an external application might prefer to use a custom function like 

‘parkingAvailability(targetCarpark, 1:30PM, 3:40PM) = True’ in the query, instead of 

developing the code for processing of a complex structure in the application.  

Another example of a custom function is the costOfParking() function. The parking 

pricing can vary based on the time of the day, day of the week, and the type of a vehicle (e.g. 

electric car). A CSDL-definition of a carpark entity contains a complex structure for defining 

the pricing.  For instance, a CDQL request with a function which will significantly simplify 

the job of a developer will look like:  

costOfParking(targetCarpark, targetCar, 1:15PM, 4:30PM). 

Hosting custom functions at the platform’s side brings not only the advantage of query 

simplicity. It also enables the option of caching at the level of functions, (discussed in Chapter 

5). Moreover, it also enables the possibility for optimization, as it reduces the amount of data 

transferred to the client application and back [16].  

In the next section, we present the discussion of another processing enabler, which is 

essential for PUSH-based queries and situation monitoring. 

4.3.4 CDQL-SIDDHI TRANSLATOR 

One of the main functionalities that is embedded in CDQL to serve the situation 

monitoring is the support of window functions. These functions are used to detect trends, which 

data sources exhibit during a certain period. The period of time is usually defined as a sliding 

window (e.g. last 30 min), where the beginning of a period is some point in the past defined as 

𝑡𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 = 𝑡𝑛𝑜𝑤 − 𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒, and the end of the period is the current moment.  In this 

case, as time goes by, some of the data points are falling out of the scope. At the same time, 

new data items may arrive. The difference between window functions and other types of 
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functions is that the result is influenced by both time and event flow. This means that SQEM 

cannot just call a function and obtain a resulting value. In such cases, it would be an analytical 

function over a recorded dataset. The window function, on the contrary, is always “loaded”, 

which means it runs continuously and, consequently, consumes computational resources that 

need to be competently managed. 

CDQL supports the increase(), decrease(), and isValid() functions. In Section 4.2 (Figure 

4.4), we have used the decrease() function to detect the moment when the driver is heading 

towards the car. In this scenario, we want to capture when the distance between the driver’s 

location and car’s location is decreasing. The incoming data is a stream of events with the 

driver’s location, which keeps changing. Without CDQL-specific details, the function can be 

defined as follows: 

 Decrease(distance(driver.geo, location.geo, “walking”), 5min) 

The window function above returns ‘True’ if the distance between two locations decreases 

during the last five minutes.  

There can be numerous complexities in realising such type of functions, including issues 

like data fluctuations smoothing, memory and resource management, missing events and 

wrong order of events delivery handling. Moreover, trend prediction techniques can be applied 

to achieve advanced functionality. The type of software that provides the required functionality 

to support window function execution, is usually referred to as Data Stream (DS) processors 

or Complex Event Processors (CEP). The field is actively growing and offering more advanced 

functionality, as well as the complexity of defining the stream monitoring tasks. 

As the task of trend monitoring is complex, a decision has been made not to re-implement 

the basic functionality, but to effectively reuse an existing open-source framework. The WSO2 

Siddhi Complex Event Processing Engine14 was chosen and integrated as a library into CSMS. 

This approach allows us to use available advanced functionality, as well as add new 

functionality once it becomes available in future.  

According to CDQL aims discussed in Chapter 3, the main interface for the developer of 

a context consumer application should be kept (i) simple but flexible, (ii) unified, (iii) agnostic 

of underlying technologies. That means we had to find a way to connect the features available 

in CDQL to the capabilities of a streaming platform. We limited the consumer’s direct access 

                                                 
14 https://wso2.com/products/complex-event-processor/ 

https://wso2.com/products/complex-event-processor/
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to a streaming platform and configuration of the data stream monitoring, using the native syntax 

of the streaming platform in order to keep the consistency and simplicity of CDQL, as well as 

for the security and access control reasons. 

In a similar way as it has been done with the storage component, a query translator was 

created, which connected the functionality supported in CDQL to the functionality embedded 

in the Siddhi CEP engine.  

Siddhi CEP has an advanced but not very simple language called Siddhi for defining the 

stream monitoring tasks. Every monitoring task is formulated in the form of so-called Siddhi 

application, which is registered in the CEP engine. The aim of an SQEM Siddhi translator is to 

generate a Siddhi application or several applications based on the window functions defined in 

a CDQL query. A representation of the decrease() function, which was converted to a Siddhi 

application, is presented in Figure 4.14. 

In this case, CSMS had to monitor the continual decrease of the distance between two 

objects during a defined period. The incoming events contained the geo-coordinates of a 

moving object and the timestamp of message sending moment. As the window function 

contained a distance() function inside, at first a pre-processor computed the distance between 

two coordinates, (coordinate of the second object were retrieved from the storage or external 

provider), and the distance was obtained. In the case when the non-linear distance parameter 

(e.g. Walking distance) was used in a CDQL query, an external router was applied to obtain 

the distance. Eventually, the stream of new events that contained a pre-computed distance was 

routed into a Siddhi application. 

 

Figure 4.14 – A generated Siddhi application for distance decrease monitoring over 

a sliding window  

The ‘@app:name’ field (Line 1) links the Siddhi application to the definition of a 

subscription, where the current windowing function is used. At Line 2, the format of the 
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expected stream is defined, where the ‘amount’ field represents the ‘distance’ from the 

incoming event. Line 3 defines an event result table, where the results of monitoring will be 

stored. Lines 5 to 11 define the logic, which allows us to compare the incoming parameter with 

all the previous distance parameters during the defined window size. 

As it can be seen, defining simple monitoring tasks requires a great deal of effort in 

Siddhi. Moreover, event pre-processing, which requires interaction with CoaaS to retrieve 

missing parameters, also adds complexity. 

In this section, we showed how translating a CDQL window function call into a Siddhi 

application for stream monitoring was achieved. Window functions can only be used in the 

‘WHERE’ clause of PUSH-based queries. The description of a dataflow for serving the whole 

PUSH query is presented in Section 4.6. 

4.4 CSDR REPOSITORY IMPLEMENTATION 

Context Service Description Repository (CSDR) is a place where the information about 

context services is stored. Context services are the external endpoints that provide context 

about a particular entity instance. Each context provider can have one to many context services. 

The incoming CDQL query can request for context from entities based on any information 

about the entity. Some parts of this information are static (e.g. type, ID), some are semi-static 

(e.g. IP address), and some are transient (e.g. location of a vehicle). The query can search for 

context based on a known ID of a vehicle. Then the search for a provider is based on its static 

information. However, if the query looks like “return all the vehicles around location X”, then 

the task relies on the transient data. This means the entities, which were within the area a minute 

ago, might not be around at the moment of query execution.  

The core of the context service definition consists of (i) the entity identifier, (ii) entity 

type, (iii) the endpoint address, (iv) the format of a request (from CoaaS to the provider), and 

(v) the format of a response (from the provider to CoaaS). In general, these components are 

essential to enable the communication between CoaaS and the service provider. However, the 

actual context (real-time data) also defines the entity during the search. For this reason, in the 

current implementation of CSMS, CSDR is merged with the repository of current context, 

which is described in the next section. 
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4.5 CONTEXT REPOSITORY IMPLEMENTATION 

In this section, the implementation of the Context Repository module (CR) is presented. 

CR is the central part of CSMS and enables several features, which are crucial for the CoaaS 

platform. CR can be viewed as a datastore, which contains static data together with transient 

IoT data. Regarding the changing (transient) data, CR can be considered as a cache, which 

contains the last values of context attributes. These attributes were retrieved from external 

providers. The transient attributes are annotated with the timestamp of fetching from the 

external providers and the expiry period. The expiry period is used for making a decision if the 

value can be considered fresh enough at the moment of a CDQL request arrival, or the value 

needs to be refreshed before making a decision about returning it to a consumer.  

Each entity instance is structured according to a chosen semantic vocabulary, and each 

field, in turn, is annotated with a CoaaS metadata. Figure 4.15 represents an instance of a 

ParkingFacility entity that is structured according to a MobiVoc semantic vocabulary. We have 

adopted JSON-LD structure for storing the description of the entity. 

Each entity is represented by three main attributes, which are @id and @type, and 

Attributes. The @id field is a unique identifier of the entity instance. The @type fields links 

the entity with the corresponding semantic vocabulary structure. The Attributes field is an array 

of context attributes associated with the entity. Each context attribute has four sub-fields, which 

are name, @type, value, and metaData. The name field is the title of the attribute (e.g. capacity), 

the @type field is a type of the value of the attribute, and the value field contains an actual 

value. The metaData provides additional information about context attributes, containing such 

fields as expiry time, observation time, and accuracy of measurement. 

The context repository is not only a cache of low-level context attributes. Once a query 

is served, the results can be also cached for later reuse. The initial query string is converted 

into a hash, and the result of a query execution is stored next to the query hash. The result of 

query execution is also associated with the expiry time of the context attribute, which was used 

for filtering or returning, and which has the shortest expiry period, compared to other used 

context attributes. In other words, the time of expiry of this attribute is the closest to the moment 

when the result was put into the cache. If the same query (same hash) arrives before the 

expiration, the cached result is reused instead of executing the whole process. Caching and 

reusing the whole query is the most efficient scenario; however, it is the least likely at the same 

time. For that reason, lower level parts of the query execution, which might be repeated in other 
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queries, are also cached, following the same principle of the shortest expiry period. These 

lower-level parts are CDQL requests (a single entity query), CST functions and computation 

functions. The lowest (base) level is the level of raw context attributes, which were already 

introduced in the first part of this section. The detailed description of CSMS cache levels is 

presented in Chapter 5. 

 

Figure 4.15 - Context repository entity instance definition 

The components presented above form the CSMS framework for serving the PULL-

based queries. In the next section, we focus on the essential components for serving the second 

type of CDQL queries, which are the PUSH-based queries. 
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4.6 SUBSCRIPTION MODULE IMPLEMENTATION 

In this section, the implementation of the Subscription Module (SM) is presented. SM is 

designed to facilitate the execution of PUSH-based queries in the CoaaS platform. An overall 

architecture of the Subscription Module (SM) is presented in Figure 4.16. 

 

Figure 4.16 - Subscription module implementation 

In Section 4.2, a preconditioning scenario is described, in which a connected car was 

informed by the CoaaS platform that a driver was walking towards the car, and he/she was 

likely to use it. When this situation was detected, the preconditioning procedure started to 

adjust the temperature and other internal parameters of the car for an immediate comfortable 

departure. A corresponding CDQL query is presented in Figure 4.4.  

The Subscription Module, as well as other CSMS modules, is governed by SQEM. The 

main aim of the situation module is to inform the CoaaS Query Engine (QE) when the 

conditions defined in a ‘WHEN’ clause of a PUSH-based query are met. After it happens, a 

corresponding CDQL query is executed in a similar way to a PULL-based query execution 

process. In the next paragraphs, the process of facilitating the monitoring of subscriptions and 

the main dataflow happening in CSMS is described. 

The process starts with registration of a new subscription arriving from the QE side. In 

the use-case, several conditions should be met to trigger the subscription. In Section 4.3.4, we 

have already described the process of handling one of the conditions, which is a window 

function. The decrease(distance(), 5min) function returns ‘True’ if the distance between the 

driver and the car is decreasing during the last five minutes (Figure 4.4, line 8). Other 
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conditions, which should be met to trigger the subscription, include the following 

circumstances. There should be an appointment for the meeting in the driver’s calendar, and 

the time left until the start of the meeting is less than 50 minutes (line 3). The meeting should 

be located too far to walk from the driver’s location (more than 2000 meters, line 4). The car 

should be parked within walking distance from a driver (less than 500 meters, line 5), and the 

conditions of the environment around the car are out of the preferred range (line 9). All these 

parameters should be continuously monitored. 

In Figure 4.16, the flow of subscription registrations is depicted as a blue arrow in the 

mid-bottom part of the picture. During the situation registration procedure, a restructured 

subscription definition is placed into a subscription store. In Figure 4.17 the structure of a stored 

subscription definition is presented.  

 

Figure 4.17 - Structure of a stored subscription definition 
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The full subscription description is stored in JSON format and contains 3205 lines for 

the defined scenario. Due to space considerations, in Figure 4.17,  the structure is presented in 

a tree format, where most of the sections are compressed. However, it shows the most necessary 

parts. These parts are the callback, query string and parsed query, related entities, situation and 

the user. The most important part is the relatedEntities section. It contains the information that 

the entity driver (Type:Person defined in schema.org) is related to the subscription. 

Consequently, all the incoming messages, which change, for instance, the location, and are 

relevant to the entity driver with a certain DriverID, trigger the retrieval of this definition into 

SQEM and processing of the situation. 

Other important notions for the subscriptions module are the messages and events. Here 

the assumption is made that all the involved entities send messages to CoaaS every time 

anything changes, for instance, the driver’s smartphone sends the location when a driver starts 

walking, or the car sends the temperature measurements when the temperature changes. To 

achieve this, CoaaS retrieves needed contexts from external entities periodically, or according 

to a plan developed by the proactive cache management component. In any case, these context 

updates come in the form of messages that need to be processed and fused in order to 

understand if the conditions of the ‘WHEN’ clause are met or not. These events are routed to 

SQEM and then processed in the situation module. In Figure 4.16, the stream of incoming 

events is depicted as dark red arrow in the bottom left corner of the picture. 

When the event arrives at SQEM, a MongoQL query is generated to the subscription 

description store to check if there are any related subscriptions. 

A sequence diagram of the event processing chain is presented in Figure 4.18. A 

generated query to find subscriptions related to an event is presented in Figure 4.19. The query 

is generated by the SQEM Mongo wrapper, similar to the process of query generation for the 

Context Repository (CR), which was described in Section 4.3.1.  
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Figure 4.18 – Event processing sequence diagram 
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Figure 4.19 – A generated query to find related subscriptions 

In the case when a subscription registration related to the incoming event is found in the 

situations description store, the description is returned to SQEM.  

The situation definition can be of any level of complexity, which is allowed by the CDQL 

‘WHERE’ clause. The description can include a trend function (stream processing, 

windowing), a CST-function (context spaces situation definition), computational function, as 

well as other simple operators, which were described in Section 4.3.1. 

If a situation description contains a stream processing function (or several functions), the 

event is routed to the CEP Engine’s corresponding registered stream processing application 

(Siddhi app). In a case when the stream application returns ‘True’, the processing continues. 

If a situation description contains a CST function, the request is sent to the ECSTRA-

based reasoning engine, to estimate the result of the CST function. First, the definition of a 

CST function is retrieved. Then, this request has to be sent through the QE, (event and CST), 

as there may be other entities and context attributes involved in the definition of a CST 

function. If one of the conditions is not satisfied, the data from the event is used to update the 

current value of a corresponding context attribute in the storage. 

Eventually, when an incoming message changes one of the conditions from the ‘WHEN’ 

clause to ‘True’, and all the other conditions are found to be met, SQEM sends a detected 

situation message to the QE. The message contains the parsed PUSH query from the situations 

description store. As the situation is already detected, the QE can act in the same way as with 

a PULL-based query. The QE uses the ‘SELECT’ clause from the query to get the required 

context from the storage and sends the assembled final document to the context consumer.   
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4.7 CONCLUSION 

In this chapter, we presented the design and implementation of the CSMS modules, 

which are necessary for the functioning of the CoaaS platform. We presented the architecture 

of each module and discussed the dataflow between components. Along with the discussion of 

the dataflow, we provided the evaluation of the transformation of CDQL queries into queries 

to the underlying data storage layers. We showed how existing available data storage and 

processing solutions that do not require licensing, can be effectively used to facilitate the 

process of large-scale context query serving and situation monitoring. While the CDQL query 

is designed with an aim to hide the complexity from the end-user, there are a lot of processes 

happening between the query engine and CSMS to serve the query. For instance, significant 

complexity is brought by the possibility to serve queries relying on the data, which is 

unavailable or expired in the external storage. While such functionality can bring significant 

flexibility and cost-efficiency in the process of CMP operation, the complexity of internal 

queries to data stores as well as the interaction between the modules of CoaaS grows, finding 

effective ways to harness the integrated data storage and processing solutions are required. 

We showed the designed and implemented mechanisms, which facilitate such 

functionality as: (i) serving context requests from the query engine and retrieving current 

contextual information, (ii) discovery of context providers, (iii) registering and processing 

CST-situation functions, (iv) registering and processing window-based functions, and (v) 

processing the event streams for situation monitoring. Moreover, the workability of these 

mechanisms was illustrated on real smart city use cases and queries. 
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Chapter 5: CSMS caching approaches 
 

5.1 INTRODUCTION 

In this chapter, we focus on Context Storage Management System (CSMS) caching 

strategies and mathematical models, which support these strategies. The overall challenge 

faced by the Context as a Service (CoaaS) platform is processing and managing enormous 

amounts of context stemming from IoT context providers and other data sources. As it was 

mentioned in previous chapters, self-adaptation is the most critical factor for efficient CSMS 

operation. 

In Chapter 2, we have described the Not only Database, Not only Redirector (NOD-

NOR) principle of operation, which is used as the first fundamental principle of current 

research. For a platform operating in NOD-NOR mode, the core of self-adaptation is the 

decision about what data should be kept in the cache for serving queries and what data can be 

retrieved from external context providers in an ad-hoc fashion. Consequently, we can state that 

efficient proactive cache management is one of the impending challenges for CSMS.  

The second fundamental principle of the current research is the cloud-based deployment 

of a Context Management Platform (CMP). In the past, the design of adaptation algorithms 

was aimed at optimising the performance of a fixed-size system or, alternatively, to find the 

right size for the needed system. Examples of this approach are LRU, LFU [196], and other 

methods described in Chapter 2. However, with the rise of IaaS and PaaS business models 

[197], it became possible for an operation team to quickly scale the system to suit the changing 

requirements. For instance, an administrator can promptly allocate several more cloud servers 

for a NoSQL database and reconfigure the load balancer for using these additional servers as 

shards. By this, an administrator can achieve faster query execution time or a higher number 

of parallel queries served per second. The described approach is called horizontal scalability.  

In a cloud system, achieving higher performance will come at the cost of paying for these 

additional resources (e.g. servers, storage). However, when the need to serve an additional 

amount of queries disappears, an administrator can deallocate some of the cloud servers to 

reduce the cost of operation. If the pattern of incoming load (the number of queries in a 

particular time of a day) is known, the process of allocation and deallocation can be easily 

automated. Obviously, not all computational tasks can be easily scaled. For instance, operation 

of RDBMS is well known for issues with horizontal scaling. As it was described in Chapter 4, 
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we have designed the CoaaS modules in a way that is compatible with the concept of horizontal 

scalability to enable the platform to operate in cloud environments and be easily adaptable for 

varying loads. Adapting the approach in this way brings us to an understanding that the cost of 

caching (the use of cloud resources and external services), together with meeting the necessary 

constraints will be a crucial factor in deciding on the caching strategy.  

We have already defined two main concepts used for the caching model: (i) the NOD-

NOR principle and (ii) the non-fixed size nature of cloud deployment.  Now we can move to 

the third principal component, which is (iii) the transient nature of IoT data. 

IoT data consists of a large number of relatively small in size data items, which we also 

interchangeably call context attributes, as these raw attributes are used for deriving higher-

level context. The smallest possible data item is a measurement with a timestamp coming from 

a remote sensor. An example of such minimalistic data item (context attribute) is presented 

below: 

{  

“sensorid”:”1068a0614803”, 

“value”:”44.17”, 

“timestamp”: “1524810064”  

} 

As the sensor identifier is known, we can obtain information about the type of data, which a 

particular source is producing, as well as other semi-static metadata (e.g., precision, owner). 

While managing semi-static data is not a big problem, the IoT data itself should be looked at 

from a closer perspective.  

The main difference between IoT data and other types of data is that IoT data changes 

over time, or, at least, it can change. For instance, a car can change its location with time when 

the vehicle is used, or, the location will remain the same while the vehicle is parked. In this 

case, the location is an example of a continuously changing attribute. An attribute can also be 

binary; for instance, the occupancy of a particular parking spot. An attribute can also take a 

value from a defined set (e.g. red, yellow, green). The critical point is that IoT data can become 

obsolete at any time. A newspaper article or a video file, on the contrary, are examples of non-

IoT data. Such data will not usually change over time. If we look at IoT data from another 

perspective, very strictly, we can say that any IoT data which is returned to a consumer can 
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become obsolete, when it takes at least several milliseconds to be transferred from a provider 

to a consumer. During these several milliseconds, a real value (in a sensor) could already be 

changed. In the best (and the most expensive) case, the speed of data transfer is limited by the 

speed of light.  

However, a consumer is not interested in obtaining a value which absolutely matches 

reality, as, strictly speaking, absolute matching is impossible in general. Usually, a consumer 

is satisfied with some level of confidence. As we move from real-time critical systems towards 

smart city cross-domain scenarios, which inspire the development of CoaaS (Chapter 3), we 

can see that the level of needed confidence is reduced. For example, it is enough to know that 

a car is moving in a specific area and direction, without knowing the exact place, or it is enough 

to know that in a certain parking area there are about a hundred available parking spots, and 

there is no need to know when a value changes from 100 to 99 vacancies, or a specific spot is 

occupied. In time, a data item will lose its freshness. However, it will remain useful for many 

or some use cases, and every use case has to define its need individually. The discussion above 

brings about two more valuable questions: (i) how to assess the freshness of a cached context 

attribute and (ii) how to negotiate the needed level of freshness between a CMP and context 

consumers. 

In the area of estimating the freshness of IoT data in Named Data Networks (NDN), a 

significant research effort was undertaken by Meddeb et al. [169][170]. In general, there is a 

considerable body of knowledge for time series analysis and prediction (refer to Chapter 2). 

These techniques, however, are not the focus of our work. The assumption made was that we 

could reuse existing techniques for each type of context attribute to estimate the speed of 

freshness loss. Instead of focusing on determining the freshness loss, we made the assumption 

that the speed of freshness loss is known and focused on the estimation of platform’s operation 

cost under variable CDQL-query load, with respect to the varying requirements to context data 

freshness.  

Negotiating the level of freshness and other Quality of Service (QoS) and Quality of 

Context (QoC) parameters between context consumers and a CMP is usually done by defining 

the Service Level Agreements (SLAs). While commercial cloud IoT platforms have defined 

the usage of resources in their own terms for their purposes (refer to Chapter 2), the definition 

of SLAs for CMPs should be based on different principles and is still in its infancy. However, 

some efforts have already been made [198]. Nevertheless, we can create a minimalistic SLA 

by defining just four main parameters: (i) maximum time of serving a request, (ii) minimum 
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level of freshness (iii) price of a request, and (iv) penalty paid in case when a request is not 

served within a defined time. We provide a more detailed description of each SLA parameter 

further in this chapter. 

To sum up the discussion above and turn it into a practical CoaaS cache management 

framework, we need to fuse the objectives, pursued by a CMP, with the three main principles 

of CSMS operation: (i) NOR-NOD mode, (ii) non-fixed size of a system and  (iii) SLA 

definition based on freshness, where multiple levels of SLAs are possible. 

The main objective is to minimise the cost (or to maximise the profit) of a CMP operation. 

In the long run, the cost of serving incoming CDQL queries must be lower than the revenue 

acquired from the consumers. All other objectives are subordinate to the main objective and 

are reflected in the SLAs with consumers. These secondary objectives are: (i) reducing the time 

of serving queries and (ii) keeping the acceptable level of the QoC, which is, foremost, 

dependent on freshness.  

The main aim we were pursuing while researching the cache management strategies was 

to find an answer to each of the following questions:  

 How to define efficient usage of cached data in CoaaS? (Problem statement) 

 What are the available strategies we can apply to caching at the level of context 

attributes? (Choice of strategy problem) 

 When do we need to refresh a context attribute to achieve the peak efficiency? 

(Proactive caching problem) 

 Can we apply caching at a higher level than at the level of raw data items? 

(Multilayered logical cache problem) 

 Can the presence of different levels of cache influence the model? (Physical levels 

problem) 

The rest of the chapter is organised in the following way: in Section 5.2. we define the 

primary approach to efficiency. In Section 5.3, we describe our approach to logical separation 

of cache levels, while in Section 5.4, we present another dimension of cache separation – the 

physical levels. Next, in Section 5.5 we describe the main parameters which influence cache 

decisions and define the main caching strategies which can be used. Section 5.6 describes the 
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model for cache management taking higher levels of cache into account, and Section 5.7 

concludes the chapter. 

5.2 CSMS EFFICIENCY DEFINITION 

First, we need to define how to deal with the concept of efficiency in general. As a 

platform, CoaaS connects two types of entities: (i) context consumers, and (ii) context 

providers. Similar to the real world, consumers want the best possible service delivered free of 

charge and without any latency. On the other hand, providers have constraints in their physical 

abilities (latency, throughput) and, potentially, want to receive payments for providing the 

sensing services. In the middle of this IoT ecosystem, CoaaS (as well as any other IT solution) 

is operated by a private or public company. Consequently, the platform operation cost must be 

balanced with the received income, so that the overall service cost would be reasonable, 

predictable and clear. 

We have identified the primary sources of potential income and loss. Further, we have to 

define service level agreements (SLAs) which are established between the context consumer 

and the context provider. Then, income is easily defined as a price paid by the consumer for 

having a query serviced correctly and in a specified amount of time. The loss is defined as the 

sum of several costs: (i) the price of remote services being called, (ii) the amount of cloud 

services (processing, storage, network) being used by the platform, (iii) the amount of penalties 

which are returned to the account of the consumer in the case when a query is not serviced in 

a specified time. Moreover, the administration of the platform can add any other constraints 

(e.g. maximum percentage of failed queries for a particular consumer). Eventually, according 

to the discussion above, we have defined efficiency as the optimal point of the platform’s 

operation in terms of operational costs under certain circumstances (defined SLAs, estimated 

provider behaviour). 

Defining efficiency in such a way allows us to proceed to the next step in the modelling 

process. The base level of context is a simple data item (also referred to as context attribute). 

A data item is an atomic value, for example, a sensor reading. The most essential characteristics 

of the data item which is used to serve a query are (i) the latency, required to access the data 

item, and (ii) the correctness of this data item. In general, according to the NOR-NOD concept, 

it does not matter to a consumer where the data item comes from to serve a query – is it retrieved 
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from a remote source or the cache. Consequently, all the storage of transient (non-static) IoT 

data can be viewed as a cache.  

The “correctness” of a data item should also be considered. The assumption made here 

is that any data item which is retrieved from a data source can already be, strictly speaking, 

incorrect by the time it is delivered to a requesting site, as even with direct data transfer 

latencies of several milliseconds are unavoidable. Technically, the reading on the context 

producer side could change by that time. If the data item is cached for a specified period by the 

middleware platform, the probability that this data item holds an incorrect value increases.  

We should also take into account the role of a CMP (facilitating horizontal integrations), 

and the difference to the role of real-time critical systems, which are designed for time and 

mission-critical applications. In CMP, a certain amount of inaccuracy and latency can be 

allowed if it is balanced by reasonable quality and cost. Consequently, we have adopted the 

notion of “freshness” [173],[169], which reflects how far a data item could deviate from the 

real value. The freshness can be estimated by monitoring the behaviour of a data item for a 

period of time. There is a vast body of knowledge applicable to predicting the behaviour of a 

value, based on time series analysis. However, these methods are uniquely defined for different 

types of data (i.e., binary, continuous) and will not be considered in this research. We assume 

that the expiration time is assigned to a data item so that that freshness will decrease linearly 

from 100% to 0% (or from 1 to 0), and it is always known to the platform in which state the 

data item is. In other words, it is always known in advance how many percent of freshness the 

data item will have at any point in time (refer to Chapter 2 for details). Hence, to define an 

SLA between a consumer and the platform, we just need to negotiate four main points: (i) the 

level of acceptable freshness, (ii) the price of serving a request, (iii) the acceptable delay, and 

(iv) the penalty in case the query is not served in a specified amount of time. 

As the CoaaS platform is operating in the cloud environment, where the amount of 

resources is technically unlimited, we can potentially cache all the related data and refresh 

every data item at a very high rate. However, running a system with such a strategy will 

require an infinite amount of resources to afford paying for the infrastructure and the calls to 

remote services. Caching can undoubtedly help to reduce the number of expensive calls to 

remote providers as well as to reduce the query serving time. The disadvantage of caching is 

the loss of freshness and the increased cost of storage and processing resources, as well as the 

complexity added to the system. Finding an optimal balance between resource consumption 

and query execution time becomes an essential part of the project. Mathematical models, 
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which are used for decision making, are presented in Section 5.5. In the next section, we 

define the logical levels of cache. 

5.3 CSMS LEVELS OF CACHE 

In this section, we discuss the structure and levels of cache in CoaaS. We show how the 

cache structure and management techniques are related to the aforementioned NOR-NOD 

principle of platforms’ operation, SLAs between CoaaS and context consumers, and CDQL 

language. 

We start with discussing logical levels of cache, as this is more valuable, we will discuss 

physical layers in Section 5.4. 

We distinguish four primary levels of cache, as shown in Figure 5.1. Level 1 (L1) cache 

is the lowest level, which is responsible for storing data items that describe the state of a 

particular entity. Higher levels of cache contain results of executing aggregation and situation 

functions (L2), CDQL request (single-entity query) results (L3), and full CDQL query results 

(L4). Each decision about caching or eviction must be based on an estimation of current and 

future validity of a particular piece of information. The details of these cache levels are 

described below. We use the bottom-up approach to introduce the cache levels from the most 

basic to the higher-levels, as it matches the nature of forming the cache. 

 

Figure 5.1  - Levels of cache in CSMS 

We also use a CDQL query from the smart mobility use case for demonstrating how these 

levels are aligned to a CDQL representation. The query that aims to find parking facilities is 

presented in Figure 5.2. 
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Figure 5.2 - CDQL query used for pushing information about suitable carparks 

when a car is close to a destination. 

5.3.1 LEVEL 1 (L1) – RAW CONTEXT (CONTEXT REPOSITORY) 

We need to emphasise what we mean by caching in this particular study once again. 

When any transient data (context) is retrieved from the producer and saved in the CoaaS context 

repository, it is already considered cached. This data is no longer contained “in” the producer 

system and, potentially, can become invalid or obsolete at any moment. Consequently, the 

CoaaS context repository, which contains raw context retrieved from the producer, is 

considered an L1 cache.  

It is not a database containing the freshest possible data. The producer system has the 

‘perfect’ copy of the data. CoaaS has a copy that is ‘fresh enough’ for a certain SLA. If a cache 

miss happens, or the whole cache is empty, the fresh copy will be requested from the producer. 

For instance, consider the following expression (Line 17): 

targetCarpark.capacity.currentValue > 0 

The repository record “capacity.currentValue = 14” is an example of raw context, which 

reflects the number of available spots for resident parking of the area which is served by 

Carpark A. Raw context storage and caching is organised at an entity instance -based level and 

follows the structure of a semantic vocabulary adopted for this particular entity type. In the 

current example, an entity instance is a particular parking garage A, while the entity type is a 

“ParkingFacility”. The entity-related document is annotated according to MobiVoc semantic 

vocabulary [46], which is developed as part of bIoTope consortium.  

To illustrate the content of L1 cache, consider a part of the CDQL query, which aims to 

find parking facilities with vacant spots: “targetCarpark.capacity.currentValue > 0”. 
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In order to process this expression, all the parking facilities in the search scope will be 

scanned to compare the number of vacant spots with zero. The number of available parking 

spots is transient, but still a cacheable parameter. These primitive low-level data items 

(contextual attributes) populate the L1 cache. 

5.3.2 LEVEL 2 (L2) – FUNCTION EXECUTION RESULT CACHE 

As described in [98], CDQL contains several main types of functions, namely 

aggregation functions, and situation functions. An aggregation function returns a value 

computed by performing a particular operation on one or more entities. Aggregation functions 

can be built-in or user-defined. Built-in functions can be generic (average, max, min) or 

domain-based (costOfParking).   User-defined functions are registered and hosted by CoaaS as 

RESTful endpoints. An example of an aggregation function, which computes a value based on 

one entity, is “costOfParking” (Line 18). This function calculates the cost for a particular 

customer with a particular permit type for a specific slot of time and using other possible 

parameters. Another example is the “availabilityParking” function (Line 19), which computes 

the availability of parking in the garage based on the opening hours specification. 

A situation function is represented by a Context Spaces Theory (CTS)-based description 

of a situation [63], [60]. For example, the “goodForWalking” function in Figure 5.2 (Line 11) 

computes the probability that the environment in a particular place is suitable for walking for 

a particular person. 

The execution time of such functions can vary. In the case when the number of entities 

processed by the function is high, the execution time, as well as the amount of consumed 

resources, can also be very substantial. In the case when an external API needs to be called for 

doing the computation (e.g., Google weather API for the goodForWalking function), the cost 

of function execution can be high. To tackle this issue, we organised the second level (L2) of 

caching, which stores the results of executing aggregation functions. Each function is linked to 

statistical data stored in the CoaaS Performance Repository (PR). The data includes the 

frequency of using the function, used parameters, execution time, access restrictions, and other 

relevant metadata. Accordingly, results acquired after the execution together with the 

estimations of freshness are also stored in PR.  
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5.3.3 LEVEL 3 (L3) – CDQL REQUEST CACHE FUNCTION 

As defined in [98], the CDQL query consists of one or more entity-based requests, which 

are joined and can also be thought of as sub-queries. These requests can be executed in 

sequential order or parallel, according to the CDQL query execution plan, which is constructed 

by the query engine. A request can include operations (equality, comparison, etc.) over raw 

context as well as operations over the results of functions.  These operations can be connected 

by logical operators (and, or, not). A request is only a part of the full CDQL query. 

Correspondingly, the probability of a repeated request arrival is higher than a probability of a 

repeated full CDQL query arrival. For example, in Figure 5.2, two entities are defined to serve 

a carpark search query. The “targetLocation” entity is defined by address. Geographical 

coordinates, which are retrieved from a geocoder API to serve this particular query, can be 

cached and later reused for serving a completely different query in which the location will be 

defined by this address. From the performance perspective, reusing a CDQL request result is 

the second best possible cache hit after reusing the whole CDQL query result in level 4. 

5.3.4 LEVEL 4 (L4) – FULL CDQL QUERY CACHE 

The entire CDQL query result can also be cached and reused. The L4 cache hit is the best 

situation from the resource consumption perspective. However, it is least likely to happen, as 

all factors such as the whole CDQL query, access restrictions, and freshness requirements must 

match. Nonetheless, in a situation when a consumer reissues the query soon after the same 

query was issued or the same query comes from another user with a similar profile, the cached 

result can significantly improve the performance.  Another possibility to improve the hit rate 

of L4 is the use of approximation techniques. For instance, a geo point can be replaced (or 

duplicated) by an area (geo box), making a particular cached query much broader, consequently 

increasing the hit rate. 

5.3.5 CACHING PYRAMID AND CACHE SCAN ORDER 

As shown in Figure 5.1, the four levels of cache form a pyramidal structure, where the 

first layer (L1) represents the bottom of the pyramid and the fourth level (L4) represents the 

top. The cache is scanned from the top to the bottom of the pyramid during the execution phase 

of the query. In this section, we show the possible options and steps that are passed during this 

process. 
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Option 1: L4 cache hit. When a query comes into the platform and is validated by the 

parser, it is passed to CSMS for checking the possibility of reusing the whole query. If the 

query and consumer profile match and the freshness/validity of results are considered to be 

satisfactory, the query results are retrieved from the storage and passed back to the CoaaS 

Query Engine (QE), which, in turn, passes the results to the consumer. In general, this is the 

fastest and least resource-consuming option. 

Option 2: L3 hit (partial hit). If the whole query had no matches in the L4 cache, a 

corresponding signal is returned by CSMS to the QE. QE constructs an execution plan, which 

consists of entity-based requests execution and the order of this execution. Usually, requests 

are executed in a particular order, as the forming of full request often requires results of the 

previous ones for making the join. However, parallel request execution is also possible in 

certain cases, for example, to find an entity located between two geographical points, which 

are defined by addresses. As locations are not dependent on each other, they can be retrieved 

in parallel. When it becomes possible to execute a particular request, QE sends the request to 

CSMS. If the request can be fulfilled from the L3 cache, CSMS immediately returns the result. 

If not, CSMS processes the request as usual, which involves both: using L2 and L1 caches as 

well as calling the invoker to retrieve missing data from the remote producers (Option 2 and 

Option 3). 

Option 3: Level 2 hit (partial hit). While a request is processed by CSMS, it needs to 

compute the values of aggregation and situation functions, if they are used in the request. If 

functions are not used, this step is omitted, and CSMS uses Option 4. If functions are used in 

a query, CSMS checks the cache for stored results of function execution, which might be 

reused. For example, if the cache contains a result of the “goodForWalking” function for a 

particular person in a specific area and the result is considered fresh enough, it is reused. 

Option 4:  Level 1 hit (partial hit). When the raw context value is needed to process 

the request, CSMS checks the raw context repository (L1 cache). If the value is missing or 

considered not fresh enough, CSMS calls the invoker to fetch the new value, uses it for 

processing the request and potentially caches the value. The decision on caching and refreshing 

in L1 is the main focus of this particular study. 

In the next section, we define the concept of caching levels from the physical perspective. 
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5.4 CSMS PHYSICAL LEVELS OF CACHE 

In the previous section, we have described four logical levels of cache that are directly 

aligned to the concepts of CoaaS and CDQL. However, there exists another dimension for 

cache allocation, which is the data and computation placement. In general, the cache can be 

stored on disk and in main memory. Moreover, on-disk storage can be divided into Hard Disk 

Drive (HDD) and Solid State Drive (SSD). Computations, in turn, can be run on processing 

nodes with different characteristics (fast, medium, slow instances). Consequently, the question 

of allocation of data and computational tasks also has its place in the choice of an optimal 

caching strategy. Both in-memory cache, as well as fast computation nodes, cost more to run. 

Finding an optimal cache placement strategy will help to meet the CoaaS constraints and will 

reduce the cost of running the process. The concept of an in-memory cache is shown 

graphically in Figure 5.1 as a blue bubble on the right, which intersects all the logical levels. 

Initially, we considered the physical caching layers as our main priority. However, while 

running experimental queries within the bIoTope project, it became apparent that reducing data 

access time within CoaaS resulted in less productivity increase and cost reduction when 

compared to logical cache based on the NOD-NOR concept. Moreover, the technological 

changes, such as enhancements in SDD technology, can also decrease the benefit of physical 

level separation. We also found that even higher increase in cost efficiency could be achieved 

by optimising the usage of external context providers.  Consequently, as our main priority, we 

have focused on the development of the cost model, as well as the CoaaS prototype for the 

logical levels.  

The basement of the cache pyramid, which is the level of raw context attributes (L1), is 

the most essential part of the model. We define and discuss strategies and models for L1 in the 

next section. 

5.5 A MODEL FOR A SINGLE CONTEXT ATTRIBUTE 

When we started the investigation of potentially applicable caching strategies, we found 

that the nature of an easily scalable cloud system made classical approaches to caching (LRU, 

LFU, etc.) not suitable (refer to Chapter 2), as with the cloud concept there is no boundary to 

which we can fill the cache. It is infinite. Moreover, there is no clear way to attach these 

approaches to the cost of operation. For that reason, we have chosen the utility-function based 

approach, where a function is applied to every cached item in order to estimate the need to keep 

the item in a cache.  
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In particular, we have extended the Al-Turjman’s Least Value First (LVF) policy [173], 

which was proposed for the Information-Centric Networking (ICN) caching nodes. It is a 

function-based caching approach, which takes into account the delay of data fetching, 

popularity and age parameters for making a decision about cache eviction. The proposed utility 

function assigns a value to each object. Al-Turjman in general defined a Delay Model, a 

Popularity Model, and an Age model. Details of the LVF approach can be found in Chapter 2.  

However, LVF strategy was developed in an early stage of work on IoT caching based on ICN 

architectures and is more theoretical, rather than applicable as a real methodology. Moreover, 

the LVF approach is also more suitable for fixed-size systems. Extending the LVF model 

brought us to defining the primary influential factors, from which we derived the Need-To-

Refresh (NTR) formula. The NTR index, which is computed according to Eq. 5.1, has a simple 

physical meaning: it shows how strong the need to refresh a particular data item is; the higher 

the index, the better for the system to retrieve a data item and to drop the value of NTR index 

back to its possible minimum.  

A formula for computing the NTR is presented below: 

 

𝑁𝑇𝑅 = 𝛼 × 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 +  𝛽 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 𝛾 × 𝑈𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +   

+ 𝛿 × 𝐹𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝐿𝑜𝑠𝑠 + 휀 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝐶𝑜𝑠𝑡 +   

+ 𝜖 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡 + 𝜃 ×
𝑃𝑒𝑛𝑎𝑙𝑡𝑦

𝑃𝑟𝑖𝑐𝑒
 

(Eq. 5.1) 

The parameters in the formula above are described and discussed in Section 5.5.1. Later 

in this chapter, we also show why we decided to switch from NTR approach to another 

methodology, which we call the refresh rate-based approach. However, the main criteria used 

for a rate-based strategy remained the same as those we defined for NTR. Despite the 

inapplicability of NTR to the management of non-fixed size systems, it is still useful for an 

initial explanation of the theory. The reasons are provided later in this chapter. 

5.5.1 PARAMETERS INFLUENCING THE CACHE DECISION 

The main criteria initially used for the NTR strategy consists of the following six items: 

(i) Freshness, (ii) Latency, (iii) Popularity, (iv) Retrieval cost, (v) Unreliability (Possible 

unavailability of a context provider), (vi) Processing cost. 

All the listed parameters are directly related to individual data items. Once we have 

initially listed the parameters, which are influencing the “Need to Refresh” decision, we can 

understand how these parameters affect the value of NTR.  
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Graphically, these influences are presented in Figure 5.3. The up arrows indicate the 

parameters, which are directly proportional to the value of NTR. The down arrows indicate the 

parameters that are inversely proportional to the value of NTR. In particular, when the 

freshness, the retrieval cost and the processing cost are decreasing, the NTR is growing. On the 

contrary, the NTR is growing when the latency, popularity, unreliability and the penalty to 

price ratio are increasing.  

 

Figure 5.3 – Factors, which influence the need-to-refresh index of a data item 

Below we provide the discussion of main parameters and their influence on cache 

decisions. We discuss both the influence on NTR-based approach, as well as on refresh rate-

based (RRB) approach, which is chosen as our primary approach. 

Freshness  

The freshness of a data item is, probably, the most important, yet hard to compute 

parameter in the NTR formula.  

Freshness can take a value between 0 and 1. It can be estimated as a result of monitoring 

historical values of a particular data item. Freshness close to 1 shows that a data item is 

considered to be very reliable (just fetched from a provider). Freshness loss in Eq. 5.1 is the 

inverse of freshness. The principal methodologies which are applicable to estimating the 

freshness of a data item are mentioned in Chapter 2. The lower the freshness, the higher the 

NTR. Obviously, when the freshness of a data item is low, the chance of getting a cache miss 

is higher. A cache miss will result in losses. Consequently, it is better to refresh a data item, as 

it has high NTR. 

The notion of the data item freshness of a data item is the same in both NTR and refresh 

rate-based approaches. 
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Retrieval cost 

Retrieval cost is the amount of money that is charged by the data provider for using its 

API. For instance, Google Weather API provides information about the weather for free only 

for a relatively small number of calls per day. For a production-scale system, the number of 

calls will be significantly higher, and each API call will have a cost.  

In a simple case, when the producer is charging some amount for n number of API calls, 

the Retrieval cost (RetrievalCost) of one data item di is defined below: 

 𝑅𝐶𝑑𝑖 =  
𝐶𝑜𝑠𝑡𝑛

𝑛
 (Eq. 5.2) 

The higher the retrieval cost, the less we want to retrieve a data item. Consequently, high 

retrieval cost is lowering the overall NTR, as well as the rate of retrievals for the rate-based 

approach. 

Processing cost 

By processing cost, we mean the cost of networking, storage, and computational 

resources that are consumed by a cloud system to perform all the needed computations over a 

single data item when it is retrieved.  

Identifying the cost of processing a single data item is not a simple task, as the number 

of data items processed by one server node can be, in certain cases, measured in terms of 

billions per hour. At the same time, if the system retrieves data at a very high rate (up to every 

millisecond), even a minimal cost of processing a single data item will result in a substantial 

total.  Every data item can be registered in zero to many situation monitoring subscriptions. As 

each subscription has individual parameters, each incurring a different amount of load during 

processing, estimating the resulting cost of processing an attribute becomes even harder.  

However, we can apply some assumptions, which will help in determining the cost. For 

instance, the total cost of running the part of the cluster that is responsible for serving the event 

processing pipeline is designated as 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_ℎ𝑜𝑢𝑟. Accordingly, the processing cost (PC) 

of one data item di is depicted below:  

 𝑃𝐶𝑑𝑖 =
𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_ℎ𝑜𝑢𝑟

𝑖𝑡𝑒𝑚𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
 (Eq. 5.3) 

In the expression above the 𝑖𝑡𝑒𝑚𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 represents the total number of items 

processed by the event processing pipeline. 
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A higher cost of processing of data item corresponds to a lower NTR index, as it is more 

beneficial to avoid frequent retrievals of the data item to save on the cost of operation.  

In practice, it means that there is no such thing as free data retrieval and caching. Even 

though the context provider is ready to provide data without any charges and does not limit the 

number of requests, the processing cost, especially in the case of frequent retrieval will result 

in higher overall cost. In the model, we consider the overall cost as a combination of the 

processing cost and the retrieval cost. 

Latency  

Any communication with a remote data source introduces unavoidable latency. However, 

the value of such latencies can significantly vary depending on the distance to the provider, the 

quality of the network and its load, the number of redirects and routers, the number of requests 

that a provider is serving at a particular time and many other technical issues. In general, high 

latency significantly reduces the possibility of getting data from a provider on the fly while 

serving an incoming query. It means that a particular data item, which is retrieved through a 

slow connection, is to be kept and maintained in the cache. We designate this latency parameter 

as 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑖 for a data item d.i. The latency can be can be calculated as: 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑖 =  
∑ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑛

𝑛
0

𝑛
 (Eq. 5.4) 

In the expression above,  n is the number of successful tries to fetch the data from a 

remote provider.  

For NTR estimation, we are using a normalised latency, which is defined below: 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑖_𝑛𝑜𝑟𝑚 =  
𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑖

𝑎𝑣𝑔(𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑜𝑡𝑎𝑙)
 (Eq. 5.5) 

In the expression above, latency of access to a data item (𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑖) is the time, which 

is needed by CoaaS to obtain a data item from a particular context provider, and the total latency 

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑜𝑡𝑎𝑙) is a sum of average latencies of all data items. 

The higher the latency, the higher the NTR, as the high latency increases the chance of 

being not able to serve a request in an ad-hoc fashion. 

For a refresh rate-based approach, we use an average latency of access to the data item 

during the monitored period, which is statistically similar to the planning period. 

Popularity  
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From the business perspective, CoaaS aims to keep customers satisfied by providing a 

reasonably high quality of service for a reasonably low cost. The first question to answer is 

how popularity affects the overall NTR value of a data item. If an item is popular (and is 

predicted to be popular), it means that the item will be used to serve many context queries and, 

in turn, definitely requires caching. Otherwise, the number of external calls will be very high 

causing latencies, network overloading, and high cost of retrieval and processing.  

For the NTR strategy, we used the relative popularity of a data item (d.i.), which is 

designated as RelPopularitydi: 

 𝑅𝑒𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑖 =
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑑𝑖

𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑡𝑜𝑡𝑎𝑙
 (Eq. 5.6) 

In the expression above, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑑𝑖 represents the number of arriving requests 

to a particular data item during a monitored period, and 𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑡𝑜𝑡𝑎𝑙 represents the 

number of all requests arriving at CoaaS during the same period. 

For the refresh rate-based approach, instead of relative popularity, we use the arrival rate 

(number of arrivals) of requests to a particular data item, which is designated as λ. The arrival 

rate is computed over a period of time t between t1 and t2, and it follows a Poisson distribution: 

 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑑𝑖(t ≥ t1, t < t2) =  𝜆 (Eq. 5.7) 

Unreliability  

As we are dealing with IoT entities serving as context providers, we should assume that 

some of these entities (e.g., mobile) can be connected to the network via unstable and slow 

(wireless) channels. All these factors lead to a high possibility of a context provider becoming 

unavailable during certain time period due to network bottlenecks or handover issues. The 

unavailability of a data provider, in the case of having no valid data in the cache, will cause 

CoaaS to either exclude the data from a particular provider from the result set, or to increase 

the overall time of serving the query, while trying to establish a connection. Both consequences 

are not acceptable especially if high QoS is needed. Therefore, we suggest that low reliability 

(high probability of node unavailability) will be a reason for the higher caching rate. In the 

simplest case, unreliability of a data item can be calculated as: 

 𝑈𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝐹𝑒𝑡𝑐ℎ𝑑𝑖𝑓𝑎𝑖𝑙

𝐹𝑒𝑡𝑐ℎ𝑑𝑖𝑡𝑜𝑡𝑎𝑙

 (Eq. 5.8) 
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In the above formula, 𝐹𝑒𝑡𝑐ℎ𝑑𝑖𝑓𝑎𝑖𝑙
 represents the number of unsuccessful attempts to 

fetch data from the provider, and 𝐹𝑒𝑡𝑐ℎ𝑑𝑖 𝑡𝑜𝑡𝑎𝑙
 represents the total number of tries to get data 

during a planning period. 

If the predicted possible period of unavailability is added to the amount of time since the 

data item is fetched and this total period is longer than the estimated expiry period, it is better 

to pre-fetch data before the moment of expiration. If the system remains confident the data is 

available on request until the query arrives, and it will not be able to retrieve new data because 

of its unavailability, the quality of service will inevitably suffer. To the best of our knowledge, 

including provider reliability into the caching decision, is a novel approach and was not 

considered in previous works. 

The higher the provider unreliability, the higher is the NTR, as the chance of not being 

able to retrieve a data item from an external provider on the fly will increase because of its 

unreliability. 

Penalty/Price ratio 

The price of a data item access is the price which a context consumer pays to retrieve a 

data item. Penalty, on the other hand, is the amount of money which is returned to the consumer 

account when a data item request is not served in a specified period of time. The price of access 

to a data item and the penalty are defined in the SLA. The higher is the penalty (while the price 

is fixed), the higher is the penalty/price ratio, and, consequently, the higher is the need to refresh 

a data item, as not being able to properly serve a query will cause a significant losses. 

5.5.2 DISCUSSION OF THE NTR-BASED APPROACH 

After defining the main components of NTR formula (Eq. 5.1), we need to find the weight 

coefficients 𝛼, 𝛽, 𝛾, 𝛿, 휀, 𝜖, 𝜃 for the NTR formula. In the case of a fixed size system that would 

be sufficient. For a non-fixed size system, we also need the threshold of NTR, above which the 

data item would be a candidate for refreshing. 

However, after trying to proceed in this way we found that it is not appropriate. This is 

because after any given time duration the value of NTR may change, resulting in the need to 

re-compute the NTR and also to sort the data items in order to find which ones are above the 

NTR threshold. As the number of data items could be huge, the process can become very 

computationally tedious and expensive. Moreover, we could not find a proper methodology for 

estimating the threshold and weights, as the freshness is not connected to the levels defined by 
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SLAs, and the fact that the influence of different SLA levels on hits and misses is also not 

introduced, although, the list of main influential factors remain valid. Moreover, the NTR 

index, while it remains unused for the model, is useful to exemplify the whole concept of 

balancing the factors, which are influencing the caching decisions. 

At this point, it becomes evident that a more reasonable approach would be to estimate 

the optimal rate of retrieval of a data item. By retrieval rate, we mean how much time the CSMS 

should wait between the moment of last retrieval of a data item and the moment of planned 

retrieval. We call this approach a rate-based approach. In the next section, we define the 

possible strategies and provide details on their usage. 

5.6 ADDING LOGICAL AND PHYSICAL LEVELS OF CACHE TO THE MODEL 

As described in previous sections, the cache pyramid in Figure 5.1 consists of two 

dimensions: the logical and the physical dimensions. The logical dimension matches the CDQL 

constructs, and the physical dimension matches available technological instances. 

We start our discussion at the logical level. Due to the complexity of realisation of 

proactive strategy on all levels of cache, we have applied the reactive strategy at levels L2 –

L4. This means, that even when a proactive decision is made to refresh a context attribute, all 

the cached results of requests, functions and full CDQL queries need not be recomputed. Any 

higher-level objects contain one or several context attributes from L1, where some operators 

were applied to these attributes. Consequently, the reusability of items from L2-L4 levels, also 

depends on the freshness properties of the basic L1 realisation. These higher-level objects are 

stored and can be reused until the expiry of any context attribute, which has the shortest lifetime 

for the least expensive SLA. 

When a CDQL query arrives at CoaaS, CSMS tries to reuse the cached data starting from 

the top of the cache pyramid, which is the level of full queries (L4). A hit at L4 is the best case 

for CSMS, as there will be no need to spend processing resources on searching through the 

lower levels of cache and fetch data from external sources. Moreover, the processing resources 

which are needed for the Query Engine to validate the query, parse it and perform final joining 

of results are also saved.  

In a case when a result of a query is not present in the cache, or the result is based on 

attributes with freshness below the SLA threshold, the Storage Query Execution Manager 

(SQEM) moves to the lower level – L3, and tries to obtain results for parts of the CDQL query 

one by one. If there are one or more misses, SQEM moves down the pyramid, until it hits the 
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lowest level L1. If there is a miss again, data is retrieved from the context provider. After the 

requests are processed and the query is served, corresponding objects are cached at L2-L4 

levels. The two main benefits of storing not only the full CDQL query result, but also the partial 

query results, are (i) for cases when the same query arrives and parts of the query result are 

outdated, other partial results can be reused and only the outdated results have to be fetched 

from external sources, and (ii) for cases when different queries are involved, but parts of queries 

are intersecting, these partial results can be reused. 

As with any caching, the described approach has several disadvantages. The first problem 

is that storage, retrieval, and frequent refresh of cached data will result in rising the cost of 

using cloud services. The second problem is that sequential scanning of all the levels from L4 

to L1 also increases the latency of query serving time. The worst-case latency of full CDQL 

query servicing can be found as follows: 

 
𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐶𝐷𝑄𝐿𝑞𝑢𝑒𝑟𝑦 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐿4 + ∑ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐿3

𝑛3
0 + ∑ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐿2

𝑛2
0 +

∑ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐿1
𝑛1
0  +  ∑ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑒𝑥𝑡𝐴𝑡𝑡𝑟𝑛

𝑛_𝑒𝑥𝑡
0   

(Eq. 5.9) 

By worst-case latency, we mean the fully sequential search, which resulted in all levels 

being searched and no relevant cached data was found; eventually, the data is retrieved from 

the external context providers. The fully sequential search can be defined as sequential search 

both for the levels (L3 search starts after L4 has failed), and inside the levels (request R2 is 

searched after the request R1 was found or detected as missing). 

In the Eq. 5.9, the indexes n1 to n4 represent the number of documents that need to be 

searched for a corresponding level L1 to L4. For instance, n3 represents the number of requests 

that constitute the query, and the corresponding number of documents with results that need to 

be searched in the storage; n2 represents the number of functions used in the query and the 

corresponding number of documents that need to be searched. Next, n1 represents the number 

of entity instances, which need to be retrieved from the storage if the query should be 

assembled. Eventually, the latencies of the access to attributes retrieved from external sources 

on the fly, (extAttr) are taken into account. 

Technically, it is possible to scan the cache in parallel, so that if the search in L4 fails, 

searching through L3, L2 and L1 are already performed or partly performed. However, this 

approach will cause a rise in processing cost, as the number of parallel queries will increase; 

moreover, in a case when the number of hits in L4 is high, all the queries to L3-L1 will be 

wasted. 
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At the same time, an increase in the latency, which is created by potential unsuccessful 

scanning of L4-L2 will cause a rise in the number and amount of penalties. 

As a CDQL query arrives at the Query Engine and, then to CSMS, it is unknown if a 

particular request is cached or not. Consequently, we can avoid scanning only by switching off 

caching for a particular level and informing SQEM about it. Technically, it is possible to 

implement switching off caching at a smaller scale than at a whole level (e.g. entity type). 

However, that will increase the complexity of SQEM implementation and the model even 

more. 

Now we can add the discussion of physical levels into the picture. As described above, 

the cache can be horizontally scaled among many server nodes (scaling out). Each server node 

has the following characteristics, which are associated with cost: (i) performance of the node 

(CPU frequency, number of cores, main memory), (ii) type of storage (in-memory, SSD, 

HDD). Characteristics of a server node have a direct influence on an important feature – the 

time of cache scanning. However, there exists another component, which is influencing the 

time of scanning – the amount of data that is handled by a single server node. Modern NoSQL 

databases use the ‘sharding’ approach for horizontal partitioning of data for spreading the load. 

A shard is a partition of data that is kept on separate server node. In other words, the less cached 

data is stored at a server node (shard size), the faster the node finishes the search and the more 

parallel queries it can process. On the other hand, the more shards we create, the higher is the 

cost of supporting the storage and processing infrastructure. 

The problem is now scoped to finding the balance between the potential income against 

penalties and the cost of computational and storage resources of a particular type. The resources 

are defined as the number of nodes of each type. Then, we can make a decision about using or 

not using each logical level of cache and which resources must be associated with each level. 

This decision can be made by constructing a corresponding linear programming model. 

5.7 CONCLUSION 

In this chapter, we focused on caching strategies and models. We have formulated and 

described three main cornerstones, which influence cache management decisions in CoaaS: the 

NOR-NOD concept, the non-fixed size of the caching and processing system, and the transient 

nature of IoT data. We have also introduced the levels of cache, both from the logical point of 

view and from the physical point of view. The logical view matches the CDQL constructs, such 

as raw context attributes, requests, functions, and full queries. The physical dimension 
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represents the technological possibilities and limits, as well as the costs caused by using these 

technologies. The choice here is between the available storage options (in-memory, HDD, 

SSD), as well as between the number and performance of the processing nodes. 

We have shown how the cache efficiency can be represented as a function of components 

such as freshness of a cached data item, latency of access to a context provider, probability of 

unavailability of a provider, popularity of a data item, cost of data retrieval, cost of processing, 

penalty in case of a cache miss, and the price of serving a request. We have formulated a 

theoretical construct called the NTR index to represent our idea. Then, we have shown how the 

logical and physical levels of cache can be integrated into the optimisation model. 

However, due to the impossibility of applying the value-based approach directly, we 

moved to a refresh rate -based approach, where the cache decision is expressed as the amount 

of time until the next retrieval after the end of the freshness period for the most expensive SLA.  

In the next chapter, we analyse the refresh-based approach and corresponding strategies 

in detail. Then, we propose the methodology for cost prediction of a planning period for the 

refresh rate -based approach, taking the possibility of multiple SLAs into account. 
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Chapter 6: CSMS refresh rate -based caching 

strategies and models 
 

6.1 INTRODUCTION 

In the previous chapter, we have discussed how the management of the physical and 

logical levels of cache can bring the performance and efficiency benefits to the Context as a 

Service (CoaaS) platform.  

We also discussed the factors, which are influencing the caching decisions at a level of a 

single context attribute. For that, we introduced a concept of the Need-to-Refresh (NTR) index, 

which is a function-based caching policy. However, while being useful as a theoretical 

construct, the NTR –based policy is not practical, due to three main reasons: (i) the high amount 

of required computations to keep the index regularly updated, (ii) the problem with finding the 

threshold, under which the proactive refreshing of an attribute is not beneficial, and (iii) the 

problem of connecting the generic NTR index to multiple Service Level Agreements (SLAs), 

which can be defined at the same time. 

To address the problem, we have investigated the possibility of using the Refresh Rate-

Based (RRB) policy for the cache management decisions in the CoaaS platform. The aim of 

the RRB policy is to find an optimal period for refreshing each context attribute. Then, a 

component responsible for retrieving the context from the external sources (CoaaS Invoker) 

can use the computed period for scheduling the retrievals.  

This chapter is organised in the following way: In Section 6.2 we describe the refresh 

rate based approach for finding the optimal behaviour of the Context Storage Management 

System (CSMS), for efficient context caching and retrieval. In Section 6.3.1, we present the 

mathematical model, which aims to estimate the operation cost for the case of a single SLA. 

We extend this model for a case of multiple SLAs in Section 6.3.2, and Section 6.4 concludes 

the chapter. 

6.2 REFRESH-RATE BASED CACHING STRATEGIES 

In this section, we describe three main refresh-based caching strategies, which are 

possible for a simple context attribute. These strategies are the full coverage strategy, the 

reactive strategy, and the proactive strategy. The strategies are corresponding to the database 

mode, redirector mode, and NOD-NOR (Not only Database, Not only Redirector) modes of 
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CMP operation, (refer to Chapter 2 and Chapter 5). Each of the strategies can be beneficial in 

certain circumstances. Consequently, there is a need for detailed investigation of each strategy 

and development of methods for making optimal decisions. 

6.2.1 FULL COVERAGE STRATEGY 

The first strategy is full coverage, which is graphically represented in Figure 6.1. We use 

the following designations throughout the diagrams: a vertical orange arrow represents a 

retrieval of fresh data by CoaaS from a context provider; a vertical dark blue arrow represents 

a request to a data item arriving from context consumers to CoaaS at random moments of time. 

We assume that the arrivals of requests are happening in accordance with the Poisson 

distribution. Horizontal dotted lines represent the levels of freshness of a data item, which is 

stored in CoaaS. The line which is shown at the level of ‘Freshness = 1’ represents the level 

of maximum freshness when the data item is just retrieved from a provider and cached in 

CSMS. The diagonal green lines, which are going diagonally downwards from the top of 

orange arrows, represent the loss of freshness of a data item over time. The second horizontal 

dotted line below the level of ‘Freshness = 0.7’ represents the SLA threshold of freshness. A 

data item with a freshness level below this threshold cannot be reused when a request arrives 

from a context consumer. The height of the dark blue arrows (requests) depicts the desired 

level of freshness. The time between the level of maximum freshness until the moment of 

reaching the SLA threshold is called the expiry period (or freshness period), which is 

designated as Exp. Period in the diagrams and as T in subsequent mathematical expressions. 

In the situation when there are several SLAs being defined, expiry periods differ for each SLA.  

 

Figure 6.1 - Full coverage caching strategy 



129 

 

The time between retrievals is called a refresh period and designated as Refr. Period. We 

distinguish planned refresh period from the real refresh period. A planned refresh period is 

the time between planned retrievals of a data item by CoaaS from a context provider. A real 

refresh period is the average time between retrievals. The real refresh period can be smaller 

than a planned period, as possible cache misses can trigger immediate refreshment of a data 

item.  

Another important notion is the planning period, which is designated as 

𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 in subsequent mathematical expressions. The planning period is the period 

of time for which the decision about the caching strategy and the corresponding parameters is 

made. The planning period contains many refresh periods. The most important feature of a 

planning period is that the distribution of arriving queries is expected to be Poisson distribution. 

In our discussion and evaluation, we use a planning period equal to one minute. However, it 

can be different depending on the patterns of request arrivals. 

With a full coverage strategy, CoaaS is always able to serve a request to a particular 

context attribute out of the cache. In some sense, it can be viewed as a database mode of 

operation, where freshness is taken into account. The difference with the database mode is that 

while in real IoT database all the data contains the latest sensor readings, in CSMS’s cache the 

attribute value contains a sensor reading that is fresh enough to cover the most expensive SLA. 

At the moment when the freshness of a context attribute becomes too low to serve a request for 

any SLA, a new attribute value is retrieved from the provider. Consequently, the maximum 

reasonable refresh rate (𝑀𝑎𝑥𝑅𝑎𝑡𝑒) is the rate at which CSMS refreshes a data item as soon as 

its expiry period for the most expensive SLA is over:  

 𝑀𝑎𝑥𝑅𝑎𝑡𝑒 = 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑/𝐸𝑥𝑝𝑃𝑒𝑟𝑖𝑜𝑑 (Eq. 6.1) 

Refreshing at a higher rate will not improve cost-efficiency. On the contrary, it will 

reduce the efficiency, as the cost of retrieval will increase. With full coverage strategy, the 

penalty component will equal zero, as it is always possible to serve a request out of the cache 

(Refer to Chapter 5, Section 5.2, where the elements of cost efficiency were described). The 

estimation of the cost of operation during a planning period is trivial: 

 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)

= 𝜆 × 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 × 𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑞

− (𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑/𝐸𝑥𝑝𝑃𝑒𝑟𝑖𝑜𝑑)  × 𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 

(Eq. 6.2) 
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In the expression above, 𝜆 is arrival rate of request in Poisson distribution t, which 

represents the popularity parameter (Section 5.5.1). The arrival rate and the length of the 

planning period should be measured in the same unit; for instance, in our simulations, we use 

the number of requests per second to characterise 𝜆 and the planning period is in seconds.  

𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑞 is the price that a consumer pays for each request, and 𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 is the price 

which CoaaS pays to retrieve a data item from a context provider. From here onwards, we 

assume that 𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 includes both the price of the external provider API usage and 

the cost of internal cloud resources used to process the data item. Eventually, the total cost of 

operation for the full coverage strategy (Eq. 6.2) consists of one positive component and one 

negative component. The positive part is the income received by CoaaS while serving a certain 

number of expected requests for a specific price. The negative component is the number of 

retrievals multiplied by the cost of retrievals. 

6.2.2 REACTIVE STRATEGY 

The second strategy we need to discuss is the reactive strategy, which is graphically 

represented in Figure 6.2. The reactive strategy is the opposite of the full coverage strategy. 

The refresh rate is set to zero, meaning that CSMS does not retrieve data proactively.  A 

retrieval can happen on the fly only in the case of a request arrival, which causes a cache miss. 

We state that the moment of planned retrieval is set to infinity. 

 

Figure 6.2 - Reactive caching strategy 

In Figure 6.2, a request from a consumer to CoaaS (dark blue arrow) happens before the 

retrieval from an external provider (orange arrow). During the expiry period, all the arriving 

requests are served out of the cache. When the freshness (green diagonal line) reaches the SLA 

threshold, (this moment is shown with a dotted vertical blue line), the cache is not covering the 
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data item anymore. When a new request arrives after the moment of expiry, (blue vertical 

dotted line), it causes immediate retrieval, (the orange arrow occurs immediately after the 

request). Then, the process starts again. Every request which causes a retrieval is a cache miss, 

which incurs a penalty, (Refer to Section 5.2). At the same time, every request which arrives 

during the time when the cached data is fresh, is a cache hit. The percentage of hits is called 

the hit rate, and the percentage of misses is called the miss rate. We designate the hit rate as 

HR and the miss rate as MR. As can be seen from the figure, the expiry period and the refresh 

period are not equal, different from the full coverage strategy. The refresh period depends 

entirely on the arrival of the first cache miss, making it random. As such, we use the average 

refresh period over a planning period. 

Eventually, we can estimate the cost of the planning period for the reactive strategy as 

follows: 

 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒)

= 𝜆 × 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 × 𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑞 −  𝜆 

× 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 × 𝑀𝑅(𝑇) × 𝑃𝑟𝑖𝑐𝑒𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 − 𝜆 

× 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 × 𝑀𝑅(𝑇) × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

(Eq. 6.3) 

The expression above (Eq. 6.3) differs from the expression for the full coverage strategy 

(Eq. 6.2) as the second component represents the price paid by CoaaS for retrievals, by using 

the miss rate (MR). The third component represents the loss caused by penalties, which is also 

expressed using the miss rate. 

Hit and miss rates for a reactive strategy depend only on the arrival rate of requests (λ) 

and the expiry period of a data item (T). The hit can be computed as described by Jung et al. 

[179]: 

 𝐻𝑅(𝑇) =  
𝐸[𝑁(𝑇)]

𝐸[𝑁(𝑇)] + 1
 (Eq. 6.4) 

In the expression above, E[N(T)] is the expectation of requests which arrive during the 

freshness period: 𝐸[𝑁(𝑇)] = λ × 𝑇. Accordingly, based on the fact that MR(T) = 1 – HR(T), 

we can also compute the miss rate as follows [179]: 

 𝑀𝑅(𝑇) =  
1

𝐸[𝑁(𝑇)] + 1
 (Eq. 6.5) 
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The hit rate (HR) and miss rate (MR) are always less or equal to one. The total number 

of retrievals during the planning period (𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑁𝑢𝑚) depends on the miss rate and the 

expected number of requests (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟) and can be computed as: 

 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑁𝑢𝑚 =  𝑀𝑅(𝑇) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 (Eq. 6.6) 

6.2.3 PROACTIVE STRATEGY 

The third main strategy is the proactive strategy. With this strategy, the moment of 

planned retrieval happens after the expiry period of the most expensive SLA, but before t = ∞. 

We call the time Δt between the end of the expiry period and the moment of planned retrieval 

a “gap”. If a request arrives during this period, it “falls within the gap,” and CSMS has a cache 

miss. The proactive strategy is the most sophisticated approach, as it requires adaptive 

mechanisms to estimate the optimal size of the gap in order to achieve the most efficient cost 

of operation. We designate the size or the time of the gap as t_gap. A diagram illustrating the 

proactive strategy and the concept of the gap is presented in Figure 6.3. 

 

Figure 6.3 - Proactive caching strategy 

As can be seen in the figure, CoaaS proactively retrieves a data item and requests are 

served out of the cache till the moment of expiry. The time elapsed from the moment of expiry 

(blue dotted vertical line) to the moment of the next planned retrieval (orange arrow) is the gap, 

and the size of this gap is shown as t_gap. 

Figure 6.3 depicts the perfect scenario where there are no requests arriving during the 

gap. In this case, the refresh period is the same as the planned refresh period, which is equal 

to a sum of the expiry period and the gap size. 
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However, if there is a request arrival during the gap, a cache miss will occur, and there 

are a number of options to handle this issue, which needs to be discussed. These options 

include: (i) immediate retrieval to serve the request and no reuse of the retrieved data item (no 

reuse), (ii) immediate retrieval and reuse until the next planned retrieval (reuse without shift), 

(iii) retrieve and shift the time of the next planned retrieval (reuse with shift). Technically, it is 

possible to define more options, such as no retrieval and waiting until the moment of the next 

planned retrieval.  

 

Figure 6.4 - Classification of approaches 

The classification of possible options to deal with retrievals during the gap is presented 

in Figure 6.4. We have designated the strategies, which were in the focus of the current study 

with the bold font. The diagrams of these options are presented in Figure 6.5. 

The “no reuse” option is depicted in Figure 6.5 (a). Requests, which arrive during the gap 

(shown with yellow arrows), cause retrievals. However, the retrieved items are not cached (not 

reused), and each new request causes yet another retrieval. At the end of the gap, a proactive 

retrieval is then initiated by CoaaS. 
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Figure 6.5 - Possible approaches to dealing with cache misses 

The “reuse without shift” option is shown in Figure 6.5 (b). In this case, if a request 

arrives during the gap, it causes a retrieval, and the data item is cached. When the planned gap 

expires, CoaaS proactively retrieves a data item, despite the fact that the cached item is still 

fresh enough to serve queries. 

The “reuse with shift” option is shown in Figure 6.5 (c). The difference between this and 

the previous option is that after the cache miss and data retrieval, the planned retrieval time is 

changed (shifted). The initial planned time is shown as a dotted orange arrow. As the planned 

retrieval is shifted, the initial planned retrieval is cancelled, and the gap time starts from the 

end of the expiry period. 

While Options (a) and (b) have some benefits from the perspectives of technical 

simplicity resulting in more straightforward planning, the ultimate cost-efficiency can be 

achieved with the Option (c), as only this option allows reuse during the entire freshness period. 

Consequently, we have chosen Option (c) for our studies of proactive cache management. In 

subsequent discussions, the term “proactive strategy” will mean a “proactive strategy option 

reuse with shift”. 
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To elaborate further on Option (c), the concept of shifted retrievals happening during a 

planning period is graphically represented in Figure 6.6. In Figure 6.6 (a), the planning period 

is depicted, where no query arrivals happen during the gaps. The end of the planning period is 

represented by a vertical purple line. As everything goes according to a plan, there are three 

complete refresh periods fitting in one planning period. In the second diagram (Figure 6.6 b), 

a more realistic situation is shown. Requests arrive during the gap, causing retrievals to happen 

before the planned moment. We call this a shift. Eventually, in the current example, four 

periods are fitting in one planning period, as the real refresh periods are shorter than the planned 

refresh periods. 

 

Figure 6.6 - Planned and real retrievals in the long run 

 

6.2.4 STRATEGY CONSIDERATIONS WITH RESPECT TO MULTIPLE SLAS 

For a situation with a single SLA, the optimal strategy is either full coverage or reactive. 

This means that using the proactive strategy and planning the gap is always suboptimal. 

However, there are two fundamental issues. 

The first point is that we still need to decide between choosing the reactive or the full 

coverage strategy. For that, we need to estimate the cost of operation in both cases. While it is 

clear for the full coverage (Eq. 6.2), it is not as evident for the reactive strategy. The main issue 

with the reactive strategy is that at the moment when there is a cache miss (and a triggered 

retrieval), the process starts at this point again. Eventually, it is not obvious how to compute 
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the cost of operation for the planning period, as there will be hits, misses, and retrievals 

involved. We have demonstrated our solution in Eq. 6.3. 

The second point is that when there are more than one SLAs defined, there is always a 

gap unless coverage of the most expensive SLA is chosen as a strategy. The concept of gaps 

appearing in the case of multiple SLAs is graphically presented in Figure 6.7. In this example, 

we have decided to provide full coverage only for SLA3 (designated with bold dotted line), 

which has the longest expiry period, compared to SLA1 and SLA2. In the third refresh cycle, 

there are no cache misses, and the full gaps for SLA1 and SLA2 are marked. We have provided 

this example to show how the gaps will inevitably appear in the case of a policy with multiple 

SLAs. 

 

Figure 6.7 - Gaps in case of several SLAs 

In a policy with multiple SLAs, the shift will happen in the same way as a policy with  

single SLA. When there is a cache miss, and a data item is retrieved on the fly, the whole 

process shifts to the left on the time axis, making the real number of refresh periods higher than 

the number of planned refresh periods, as shown in Figure 6.6 (b). Consequently, there is a 

need to estimate the cost of a planning period taking into account the number of hits, misses, 

and refreshes. 

In this section, we have described three main strategies of caching in CSMS. For the 

proactive strategy, we have also described the concept of gaps as well as our approach to 

handling cache misses when they happen during the gap. We have illustrated our concepts on 

a policy with one SLA, as it is the most basic level. As we have shown, the decision process 

for a single SLA policy is not excessively complex in practice. However, there is still a need 

to develop a method to estimate cost-efficiency in a situation with gaps. Moreover, in the 

situation where multiple SLAs are defined, making a decision about the optimal caching rate 

becomes much harder, so a method for cost prediction becomes even more important. 

In the next section, we will discuss and present our approach to predicting the planning 

period cost for policies with single SLA and multiple SLAs. 
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6.3 COST PREDICTION OF PLANNING PERIOD 

In this section, we are addressing one of the most important questions – the cost 

prediction of a planning period. At first, we formally define the main notions and convey a 

generalised formula for cost estimation, when multiple SLAs are defined. 

Let SLA = {SLA1, SLA2, SLA3…SLAn} be the set of defined SLAs; each member of the 

set contains cost-related components, defined in Section 5.2. These components are (i) the 

request price, (ii) the retrieval cost (which consists of the service call cost, and the processing 

cost), and (iii) the penalty cost.  

There are two more parameters defined for each SLA: the freshness period and the 

expected number of requests. The freshness period T defines for how long since the retrieval a 

data item can be reused. The expected number of requests represents the number of requests 

for a particular SLA, which we expect to arrive during a planning period based on the statistical 

data from the performance datastore. 

Let RequestPrices be the request price received by CoaaS for the all SLAn requests for 

each s ∈ SLA. For every s ∈ SLA, where T is the length of the freshness period, and tg is a 

variable, representing the chosen gap size.  

 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 = 𝐻𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑠 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 (Eq. 6.7) 

Let PenaltyCosts be the penalty cost incurred by all SLA misses for each s ∈ SLA 

For every s ∈ SLA:  

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡 = 𝑀𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑠 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠 (Eq. 6.8) 

Let CTR (Cost of Triggered Retrievals) be the cost incurred by total number of retrievals 

caused by cache misses. CTR is defined for all the SLAs together, as any  

Let CAR (Cost of Automatic Retrievals) be the cost incurred by the total number of 

retrievals occurred according to the planned time 

Eventually, we can formulate a generalised formula for predicting the cost of a planning 

period: 
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𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑃𝑒𝑟𝑖𝑜𝑑 =

=  ∑  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 − 

𝑠 ∈ 𝑆𝐿𝐴

− ∑  𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠 − 𝐶𝑇𝑅 − 𝐶𝐴𝑅 

𝑠 ∈ 𝑆𝐿𝐴

 

(Eq. 6.9) 

The main challenge in the application of the formula above is the dependence of the cost 

of penalties 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡 as well as the cost of triggered retrievals (CTR) on the miss rate. 

The number of automatic retrievals also depends on the number of cache misses and shifts 

which are caused by this misses.   

In the next section, we research the problem of finding the needed components for the 

application of the generalised formula in real scenarios. We start with the most simple scenario 

– a single SLA policy, and then proceed to a more complex scenario, where two SLAs are 

defined. 

6.3.1 A POLICY WITH ONE SLA 

A detailed diagram of a planned refresh period for a policy with one SLA (1SLA) with a 

cache miss and a shift is presented in Figure 6.8. The process starts at time t = 0 with a retrieval, 

which is depicted by an orange arrow. The freshness of cached attribute equals 1 at this stage. 

The next retrieval is planned at time t2. The end of the freshness period happens at time t1, and 

the time between t1 and t2 is the size of a gap. When a request arrival (depicted by a black 

arrow) happens between t1 and t2 (black arrow), an unplanned retrieval is triggered. The time 

between the moment of the unplanned retrieval and the time of planned retrieval (depicted by 

the horizontal green arrow) is the shift. Note that now there is no real need for a refresh t2, as 

the value will still be fresh enough by that time. 
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Figure 6.8 - Cache miss caused a shift of the retrieval moment 

In Figure 6.9, the detailed diagram of one full refresh period (top graph), and the 

corresponding cumulative distribution of miss probability during one refresh period (bottom 

graph) is presented.  During the first phase (Phase 1), when the freshness of the attribute value 

is above the SLA threshold, only cache hits are possible. After t1, the Phase 2 starts. In Phase 

2, the probability of meeting the first request arrival, which will cause a cache miss, grows 

exponentially according to the feature of the Poisson process:  

 𝑃𝑚𝑖𝑠𝑠(𝑡𝑚𝑖𝑠𝑠 ≥ 𝑡1) = 1 − 𝑒−λt, (Eq. 6.10) 

In the expression above, t is the time after t1.  

When the second retrieval happens due to the moment of planned retrieval or a miss, the 

process will start from the beginning. 

We should note that 𝑃𝑚𝑖𝑠𝑠 represents the cumulative probability. It represents the chance 

of encountering the arrival before the time t, but not exactly at time t. The possible range of 

𝑃𝑚𝑖𝑠𝑠 is depicted in Figure 6.9 as 𝑃𝑚𝑖𝑠𝑠(𝑆𝐿𝐴1). In the case, when a planned retrieval is set too 

far (reactive  strategy), the cumulative probability of a cache miss will reach 1. 
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Figure 6.9 - Phases of one refresh period and the cumulative probability distribution 

of a miss 

Our main interest is to estimate the cost of operation for a planning period. The general 

expression for estimating the cost is presented below: 

 
𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 =  ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒 −  ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠𝐶𝑜𝑠𝑡 −𝑘

0
𝑛
0

 ∑ 𝐶𝑜𝑠𝑡𝑂𝑓𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠 −  ∑ 𝐶𝑜𝑠𝑡𝑂𝑓𝐴𝑢𝑡𝑜𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠
𝑗
0

𝑙
0   

(Eq. 6.11) 

In the expression above, n is the number of requests, k is the number of misses, l is the 

number of retrievals that are caused by a cache miss and j is the number of retrievals that 

happen according to the planned time. Here we separate the cost of triggered retrievals from 

the cost of auto retrievals for two main reasons: firstly, clarity of explanation and, secondly, 

the potential use for more complex scenarios, where automatic retrievals are done in advance 

and therefore can be served more cheaply, as they  may potentially use another interface of 

retrieval or different processing facilities. In summary, we can say that the total cost of 

operation has one positive and two negative components. The positive component is the sum 

of prices, which are paid by consumers for requests to attributes. The negative components are 

(i) the sum of penalties, caused by cache misses, and (ii) the sum of retrieval costs.  

The cost of serving requests in the case of full coverage (no gap) or case of the reactive 

strategy (infinite gap) was already described in Section 5.6.1 and Section 5.6.2 

correspondingly. However, in the case when there is a finite gap (proactive strategy), the 

computation becomes not as obvious. The main issue is that every time a miss happens, the 

whole picture shifts to the left along the time axis. Eventually, it is not clear how many refresh 
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periods will fit in a planned period. Consequently, we can conclude that if we can find the hit 

rate, the miss rate, and the real number of refreshes, we would be able to estimate the cost. 

Next, we can transform a formula for the cost of the planning period (Eq. 6.11) to a more 

usable form. The concept is based on finding the Hit rate, the Miss rate, and the ratio of 

Refreshes to requests. Consequently, we called the formula of our approach the HMR 

formula. Details of the formula and its components are described below. 

 

𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 = 

= 𝐻𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒 + 

+ 𝑀𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 ×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒 –  

− 𝑀𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 − 

− 𝑅𝑅(𝑇, 𝑡𝑔) ×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 6.12) 

The hit rate (HR), miss rate (MR) and refresh ratio (RR) are dependent on the length of 

the freshness period (T), and the size of a chosen gap, also referred to as gap time (𝑡𝑔). 

As 𝐻𝑅(𝑡𝑔) + 𝑀𝑅(𝑡𝑔) = 1, we can simplify the expression above by replacing the first 

two components with (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒), consequently: 

 

𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 = 

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒 –  

− MR(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 − 

− 𝑅𝑅(𝑇, 𝑡𝑔) ×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 6.13) 

The positive component of the expression in Eq. 6.13 represents the income, which 

CoaaS receives from serving a certain number of requests (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟) for a specific 

price (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒), which arrive during the planning period. The two negative components 

are the penalties and the price of data retrieval. The penalties can be expressed as the number 

of all queries, multiplied by the miss rate and multiplied by the cost of each penalty. It means 

that for finding the penalty component, we need to find the miss rate. 

While the first two components in Eq. 6.13 are intuitively able to be defined, the retrievals 

component is harder to define. The problem is that retrievals can happen because of cache 

misses, (triggered retrievals), as well as the result of successfully reaching the end of the gap, 

(planned retrievals). For the cost estimation, it does not matter what type of retrieval happens. 

We only need the number of all retrievals that are expected to occur during the planning period. 

We have found that a convenient way to find the number of all retrievals is to express them 
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through a ratio coefficient, which represents the ratio of retrievals to incoming requests. We 

call this coefficient the Refresh ratio and designate it as 𝑅𝑅. It is vital to note that, while hit 

and miss rate can only take values between 0 and 1, the refresh ratio can take any positive 

value. Eventually, the third component of the Eq. 6.13 can be calculated as the refresh ratio 

multiplied by the number of requests and the price of one data retrieval. 

We have described the meaning and the general components of the HRM formula; now, 

we can proceed to find the HR, MR, and RR, which are needed to apply the HRM formula. 

To find the hit rate (HR(T, 𝑡𝑔)) for a policy with gaps we can use the expressions for 

HR(T)  and MR(T), which we used for the reactive strategy (Eq. 6.4, Eq.6.5) together with the 

feature of the Poisson process, which describes the probability of meeting the first arrival after 

a random point in time (𝑃 = 1 − 𝑒−λ𝑡).  Eventually, the hit rate and miss rate can be calculated 

as follows: 

 𝐻𝑅(𝑇, 𝑡𝑔) =  
𝐸[𝑁(𝑇)]

𝐸[𝑁(𝑇)] + 1 − 𝑒−λ 𝑡𝑔
 (Eq. 6.14) 

   

 𝑀𝑅(𝑇, 𝑡𝑔) =  
1 − 𝑒−λ 𝑡𝑔

𝐸[𝑁(𝑇)] + 1 − 𝑒−λ 𝑡𝑔
 (Eq. 6.15) 

In the expression above, 𝑁(𝑇) represents the number of requests, which will arrive during 

the freshness period of a cached data item.  

An expected number of requests per real refresh period is defined as: 

 𝐸[𝑅𝑒𝑞𝑃𝑒𝑟𝑅𝑒𝑎𝑙𝑅𝑒𝑓𝑟𝑒𝑠ℎ𝑃𝑒𝑟𝑖𝑜𝑑] = 𝐸[𝑁(𝑇)] + 1 − 𝑒−λ 𝑡𝑔 , (Eq. 6.16) 

In the formula above, by real refresh period, we mean the average time between 

retrievals, either triggered or automatic. 

In this case, the refresh ratio (RR) is defined as: 

 𝑅𝑅(𝑇, 𝑡𝑔) =  
1

𝐸[𝑁(𝑇)] + 1 − 𝑒−λ 𝑡𝑔
 (Eq. 6.17) 

Multiplying RR(T, 𝑡𝑔) by the expected number of requests during the planning period 

gives us the number of retrievals which happen during this period: 

 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑁𝑢𝑚 =  𝑅𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚 (Eq. 6.18) 
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Now we have obtained all the required parts for the HMR formula, and it is possible to 

compute the overall cost of serving requests to a data item for a planned period for any given 

gap size 𝑡𝑔. 

We have run a set of simulations to check the components and the whole HMR formula. 

The results of this simulation show that the results obtained analytically closely match the 

results of an experiment. The results of the simulations and corresponding analytical solutions 

are available in the evaluation chapter (Chapter 7). 

In the next section, we are progressing from a simple 1SLA policy to the more advanced 

and realistic scenarios with multiple SLAs. 

6.3.2 A POLICY WITH MULTIPLE SLA (2SLA) 

In this section, we analyse a scenario with two SLAs as an example for situations with 

multiple SLAs. In Figure 6.10, a detailed diagram of one refresh period (top graph) and the 

corresponding cumulative probability of a miss (bottom graph) for a scenario with two SLAs 

are presented.  

 

Figure 6.10 - Phases of one refresh period with 2SLA policy and probability of a 

miss 

The main difference of the 2SLA policy (Figure 6.10), compared to the 1SLA policy 

(Figure 6.9), is that there is no single expiry period. SLA1 and SLA2 expiry periods are 
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overlapping; however, the SLA2 expiry period is longer. That leads to a situation when an 

SLA1 request arriving during the second part of the SLA2 freshness period causes a cache 

miss. In the diagram presented in Figure 6.10, we have identified 3 phases of the process. Phase 

1 is the state when all the SLAs are covered by the cache, and a miss cannot happen. Phase 2 

is the state when SLA1 is not covered (SLA1 gap), but the data is still fresh enough for SLA2. 

In phase 3, both SLAs are not covered (SLA1&2 gap) and any arrival of a request would cause 

a cache miss. 

The bottom graph shown in Figure 6.10 represents how the cumulative probability of 

getting a cache miss is changing over time. During Phase 1, the probability equals zero, then, 

during Phase 2, it grows exponentially, as SLA1 requests can cause cache misses. In Phase 3, 

the cumulative probability is also growing exponentially, but faster, and both SLA1 and SLA2 

requests can cause a cache miss. 

We can rewrite the formula of the cost for the planned period in the following way: 

 

𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑃𝑒𝑟𝑖𝑜𝑑 =  ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1 +𝑛
0

 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2
𝑚
0 − ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠𝐶𝑜𝑠𝑡𝑆𝐿𝐴1 −𝑘

0

 − ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠𝐶𝑜𝑠𝑡𝑆𝐿𝐴2
𝑟
0 −  ∑ 𝐶𝑜𝑠𝑡𝑂𝑓𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠 −𝑙

0

 − ∑ 𝐶𝑜𝑠𝑡𝑂𝑓𝐴𝑢𝑡𝑜𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠
𝑗
0   

(Eq. 6.19) 

In the expression above, n is the number of SLA1 requests, m is the number of SLA2 

requests,  k is the number of SLA1 misses, r is the number of SLA2 misses, l is the number of 

retrievals that are caused by a cache miss and j is the number of retrievals that occur according 

to the planned time. 

Similarly to the process we described for the 1SLA policy, we can rewrite the previous 

expression to an expanded form using the Hit rates, Miss rates, and the Refresh ratio, we call 

this the HMR-2SLA formula. The critical point is that we need to use separate hit and miss 

rates for each SLA, as penalties are different. However, the number of refreshes is common for 

all the SLAs, as any cache miss (SLA1 or SLA2) will cause a retrieval with an associated cost. 
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𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 = 

=  𝐻𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1 + 

    + 𝐻𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2 + 

+ 𝑀𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 ×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1 +  

+ 𝑀𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2 – 

− 𝑀𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴1 − 

− 𝑀𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴2 − 

− 𝑅𝑒𝑓𝑟𝑒𝑠ℎ𝑅𝑎𝑡𝑖𝑜(𝑇, 𝑡𝑔) ×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1&2 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 6.20) 

 

We also can rewrite the above in a more compact way: 

 

𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1 + 

+ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2 −  

− 𝑀𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴1 − 

− 𝑀𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴2 − 

− 𝑅𝑅(𝑇, 𝑡𝑔) ×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝐴𝑙𝑙 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 6.21) 

The meanings of the components are similar to those we defined for the cost formula for 

1SLA policy (Eq. 6.13). The difference for a policy with two SLAs is that the miss rates should 

be found for SLA1 and SLA2 separately. 

To find hit rates, miss rates, and the refresh ratio, we need to describe the possible 

scenarios of cache misses. Misses can be caused by SLA1 and SLA2. SLA1 request arrival can 

cause a miss in phase 2 and phase 3. Illustrations of possible options where SLA1 request 

causes a miss in 2SLA scenario are presented in Figure 6.11 and Figure 6.12. 

 

Figure 6.11 - SLA1 request causes a miss during the second phase 
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In Figure 6.11, a situation where an SLA1 request is arriving during Phase 2 and causing 

a cache miss is shown. 

 

Figure 6.12 - SLA1 request causes a miss during the third phase 

In Figure 6.13, an SLA1 request arrives during the third phase, which is also causing a 

cache miss. 

An SLA2 request can cause a miss only during the third phase, as it is represented in 

Figure 6.13. 

 

Figure 6.13 - SLA2 request causes a miss during the third phase 

Now we have a situation in which the problem falls into three branches, which must be 

treated differently. As it is shown in Figure 6.10, each refresh period consists of three phases. 

In phase 1, all the incoming requests are served from the cache without any misses. In phase 

two, all SLA2 requests are served from the cache. However, any SLA1 request is causing a 

cache miss and retrieval with a corresponding shift. In phase 3, any incoming request causes a 

cache miss and retrieval.  

Next, we describe what happens if we put the moment of an automatic retrieval inside 

each of the phases. Computations in phase 1 and phase 2 are trivial; however, phase 3 requires 

more effort to estimate the cost. 
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In phase 1, retrieving a data item before the end of phase 1 is not efficient, as the increase 

in the cost of retrieval is not compensated by an increase in income. Consequently, it makes 

sense to put the retrieval time only at the end of the expiry period of SLA1. It will provide full 

coverage for all SLAs. Consequently, it is easy to calculate the expected cost of a planned 

period as follows: 

 

𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑒𝑑𝑃𝑒𝑟𝑖𝑜𝑑

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1

+  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2

− (𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑/𝐸𝑥𝑝𝑃𝑒𝑟𝑖𝑜𝑑𝑆𝐿𝐴1) × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 6.22) 

In phase 2 the moment of planned retrieval lays between the end of expiry period SLA1 

and the end of expiry period SLA2, all the SLA2 requests are served from the cache, but any 

SLA1 request causes a miss and requires a retrieval. It means that we can look at this scenario 

in the same way as we did in a scenario for 1SLA. The only difference with the 1SLA scenario, 

is that the total cost will increase by the amount of average SLA2 queries served between the 

SLA1 expiry period and first SLA1 request. 

In phase 3, the moment of planned retrieval is set after the end of both SLA1 and SLA2 

expiry periods. It means that during phase 1 all the requests are served from the cache; during 

phase 2 only SLA2 requests are served from the cache, and during phase 3 any incoming 

request will cause a cache miss and a retrieval. 

We provide a detailed analysis of the most complicated scenario when the retrieval is 

planned for phase 3. 

As can be seen in Figure 6.10, starting from the beginning of phase 2 until the beginning 

of phase 3, the probability of a cache miss grows exponentially (𝑃 = 1 − 𝑒−𝜆1𝑡), where λ1 is 

the arrival rate of SLA1 requests. 

Since the beginning of phase 3, the probability of a miss also grows exponentially. 

However, the growth is steeper, as the probability is now influenced by both arriving processes. 

According to a property of the Poisson process, the superposition of two Poisson 

processes is also a Poisson process. The intensity of the resulting process, according to [199] 

is: 𝜆 =  𝜆1 + 𝜆2. Another interesting property of two independent interfering Poisson processes 

is that a probability of meeting an arrival from the first process earlier than an arrival from the 

second process is [199]: 
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 𝑃{𝑋1 < 𝑋2} =  
 𝜆1

 𝜆1 +  𝜆2
 (Eq. 6.23) 

We will be using this property in our discussion. 

First, we can derive an expression for the probability of meeting a cache miss before the 

moment of automatic retrieval (t = tar). The expression will consist of a probability of SLA1 

request arrival during the second phase (Δt2) summed with a probability of any request arrival 

during Δt3, which is multiplied by the probability of zero SLA1 requests arrivals during the 

Δt2: 

 

𝑃𝑚𝑖𝑠𝑠𝑃ℎ3(𝑡𝑎𝑟)

= (1 − 𝑒−𝜆11𝛥𝑡2) + (1 − 𝑒−(𝜆1+𝜆2)𝑡𝑎𝑟) × (1

− (1 − 𝑒−𝜆1𝛥𝑡2)) 

(Eq. 6.24) 

Separately graphs of the first and the second phase are presented in Figure 6.14 left and 

right graphs correspondingly. 

 

Figure 6.14 - Probability of a miss during Phase 2 (left graph), and Phase 3(right 

graph) 

An example graph of the whole expression is presented in Figure 6.15. 

This expression also allows calculation of an average amount of all misses before any 

(either triggered or automatic) refresh. 
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Figure 6.15 - Cumulative probability of a miss at Phase 3 for 2SLA policy 

PmissPh3(tar) 

After we have identified the cumulative distribution function of miss probability, we can 

move to finding the hit rate. First, we can derive expressions for total hit (𝐻𝑖𝑡𝑅𝑎𝑡𝑒𝑇𝑜𝑡𝑎𝑙) and 

miss rates. By total hit rate, we mean the hit rate calculated for all the requests without 

distinguishing them by SLA. These parameters are not used in the cost formula directly, but 

they will be required for finding separate rates for both SLAs. A total hit rate can be calculated 

as the expected number of hits during one refresh period divided by the expected number of 

requests during one real refresh period: 

 𝐻𝑖𝑡𝑅𝑎𝑡𝑒𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔) =  
𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]
 (Eq. 6.25) 

Next, we need to define the numerator and the denominator of the expression above. 

The expected number of hits per request period consists of the number of hits during 

phase 1, plus the number of hits which can happen during phase2, (there can be no hits at phase 

3). Finding the expectancy of total hits during phase 1 is trivial: 

 𝐸[𝐻𝑖𝑡𝑠𝑃ℎ1(𝑇, 𝑡𝑔)] = (𝜆1 +  𝜆2) × 𝛥𝑡1 (Eq. 6.26) 

However, finding the expectancy of total hits during the second phase requires more 

effort. It will also consist of two parts: (i) the number of hits which happened in a case when 

there were no SLA1 requests during phase 2, plus (ii) the number of hits which occurred in a 

case where there was an SLA1 request during phase 2.  

The number of hits during phase 2 in case there were no SLA1 requests during this phase 

(𝐻𝑖𝑡𝑁𝑢𝑚𝑃ℎ2|𝑛𝑜𝑆𝐿𝐴1𝑟𝑒𝑞) can be found as: 

 𝐻𝑖𝑡𝑁𝑢𝑚𝑃ℎ2|𝑛𝑜𝑆𝐿𝐴1𝑟𝑒𝑞 =  (𝑃(𝑡𝑚𝑖𝑠𝑠 > 𝑡2)) × 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(Δt2)] (Eq. 6.27) 
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We also need to consider a scenario when an SLA1 miss happened during phase 2. The 

number of hits, which occurred before the SLA1 request happened at phase 2 

(𝐻𝑖𝑡𝑁𝑢𝑚𝑃ℎ2|𝑤𝑖𝑡ℎ𝑆𝐿𝐴1𝑟𝑒𝑞), can be found as: 

 
𝐻𝑖𝑡𝑁𝑢𝑚𝑃ℎ2|𝑤𝑖𝑡ℎ𝑆𝐿𝐴1𝑟𝑒𝑞 = ∫ 𝑓𝑚𝑖𝑠𝑠(𝑆𝐿𝐴1(𝑡 > 𝑡1)) ×

𝑡2

𝑡=𝑡1

𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑡 − 𝑡1)]𝑑𝑡, 
(Eq. 6.28) 

In the expression above, 𝑓𝑚𝑖𝑠𝑠(𝑆𝐿𝐴1(t > 𝑡1)) can be found as follows: 

 𝑓𝑚𝑖𝑠𝑠(𝑆𝐿𝐴1(t > 𝑡1)) =  λ1𝑒−λ1(t−t1) (Eq. 6.29) 

The full expression for finding the expectation of hits during the refresh period is 

presented below: 

 

𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

= 𝐸[𝐻𝑖𝑡𝑠(𝛥𝑡1)] + (𝑃(𝑡𝑚𝑖𝑠𝑠 > 𝑡2)) × 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝛥𝑡2)]

+ ∫ (𝑓𝑚𝑖𝑠𝑠(𝑡 − 𝑡1) × 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑡 − 𝑡1)])𝑑𝑡
𝑡2

𝑡=𝑡1

=  (𝜆1 +  𝜆2) × 𝛥𝑡1 + (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+  ∫ 𝜆1𝑒−𝜆1(𝑡−𝑡1) 𝜆2(𝑡 − 𝑡1)𝑑𝑡
𝑡2

𝑡=𝑡1

 

(Eq. 6.30) 

The integral at the end of the expression above can be solved as: 

 ∫ 𝜆1𝑒−𝜆1(𝑡−𝑡1) 𝜆2(𝑡 − 𝑡1)𝑑𝑡 =  
𝜆2 − 𝜆2𝑒𝜆1(𝑡1−𝑡2)(𝜆1(𝑡2 − 𝑡1) + 1)

𝜆1

𝑡2

𝑡=𝑡1

 (Eq. 6.31) 

 

Graphically, an example of this integral is represented in Figure 6.16.  

 

Figure 6.16 - Graphical representation of HitNumPh2|withSLA1req  

Now we can move to find the denominator of the 𝐻𝑖𝑡𝑅𝑎𝑡𝑒𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔) expression, which 

is the number of expected requests during a refresh period (𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]). 
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We need to consider 3 parts: requests which happened during the first phase, requests 

that occurred during the second phase, and, possibly, requests that arrived during the second 

phase, if there were no SLA1 requests during phase 2. 

 

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

= 𝐸[𝐻𝑖𝑡𝑠(𝛥𝑡2)] +  (𝑃(𝑡𝑚𝑖𝑠𝑠 > 𝑡2)) × 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝛥𝑡2)]

+ ∫ (𝑓𝑚𝑖𝑠𝑠(𝑡 − 𝑡1) × (1 + 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑡 − 𝑡1)]))𝑑𝑡 
𝑡2

𝑡=𝑡1

+ 𝑃(𝑡𝑚𝑖𝑠𝑠 >  𝑡2)) × (𝐸[𝑀𝑖𝑠𝑠𝑇𝑜𝑡𝑎𝑙(𝛥𝑡3)]) 

(Eq. 6.32) 

If we put previously defined parts into the expression, we receive a final expression for 

the expectation of requests during the refresh period: 

 

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

=  (𝜆1 +  𝜆2) × 𝛥𝑡1 + (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+  ∫ 𝜆1𝑒−𝜆1(𝑡−𝑡1) 𝜆2(𝑡 − 𝑡1)𝑑𝑡
𝑡2

𝑡=𝑡1

+ (1 − (1 − 𝑒−𝜆1𝛥𝑡2))

× (1 − 𝑒−(𝜆1+𝜆2)𝛥𝑡3) 

 

(Eq. 6.33) 

The integral can be solved in the following way: 

 

∫ 𝜆1𝑒−𝜆1(𝑡−𝑡1) 𝜆2(𝑡 − 𝑡1)𝑑𝑡
𝑡2

𝑡=𝑡1

=  
−𝑒𝜆1(𝑡1−𝑡2)(𝜆1𝜆2(𝑡2 − 𝑡1) + 𝜆1 + 𝜆2) + 𝜆1 + 𝜆2

𝜆1
 

(Eq. 6.34) 

 

Its graphical representation is shown in Figure 6.17. 

 

Figure 6.17 - Graphical representation of integral 
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Once we have found the expected number of all requests during one refresh period ( 

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]), we can easily express the refresh ratio: 

 𝑅𝑅(𝑇, 𝑡𝑔) =
1

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]
 (Eq. 6.35) 

After we have derived an equation for finding the total hit rate and the fraction of 

triggered requests in a 2SLA policy, we need to move towards finding hit rates for SLA1 and 

SLA2 separately, as these are the only missing parts for finding the expected cost of a planned 

period. 

The hit rate for SLA1 in 2SLA policy can be defined in a similar way to what we did for 

total hit rate: 

 𝐻𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) =  
𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]
 (Eq. 6.36) 

In the expression above, the number of SLA1 hits (𝐻𝑖𝑡𝑠𝑆𝐿𝐴1) and the number of SLA1 

requests. Request (𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1) are the expected average values per one real refresh 

period. 

We start with finding the hit rate for SLA1. Finding 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔)] is trivial as hits 

can happen only during the first phase. 

For finding the number of SLA1 requests during one real refresh period 

(𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]) we need to consider situations that can happen during all the 

three phases. 

During phase 1, there is no possibility to get a miss; consequently, the amount of requests 

is equal to the amount of SLA1 hits. Unfortunately, in phase 2, we cannot use the same 

approach we used for finding the hit rate for policy with one SLA. The situation is more 

complex, as there is a chance that there will be no requests during the second phase, but the 

first request which will happen during the third phase will be an SLA1 request.  

In the second phase, a miss can occur only once, and if it occurs, it can be only an SLA1 

miss, as SLA2 is still in the boundaries of its freshness period. Consequently, in phase 2, the 

probability of meeting an SLA1 request, (as well as the expectation of the number of requests), 

is just a probability of the first arrival for a Poisson process with λ = λ1: 

 𝑃(𝑡𝑚𝑖𝑠𝑠 ≤ 𝑡2) = 1 − 𝑒−λ1Δt2 (Eq. 6.37) 
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We are using Δt2, as during the first phase, the probability was equal to zero and only 

started to grow as the process reached the point t1. 

In phase 3, the expected number of requests is also not more than one, as any request will 

trigger a refresh. However, SLA2 requests in this phase can also interfere. The expected 

number of SLA1 requests in phase 3 will be a product of three components: (i) the probability 

that there was no SLA1 requests during phase 2, (ii) the probability of the arrival of an SLA1 

request before an SLA2 request in phase 3, (iii) and the probability of arrival of any (SLA1&2) 

requests during the phase 3 before the moment of automatic retrieval.  

For the second component, we use a property of interfering Poisson processes, which 

states that a resulting process is also a Poisson process with intensity λ =  λ1 + λ2 and 

probability of arrival of the 𝑃(𝑋1 < 𝑋2) =  
λ1

λ1+λ2
 . 

Eventually, the expected number of SLA1 requests during one refresh period can be 

found as: 

 

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]

= 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝛥𝑡1)] + 𝑃𝑚𝑖𝑠𝑠(𝑡𝑚𝑖𝑠𝑠𝑆𝐿𝐴1 ≤ 𝑡2)

+ 𝑃𝑚𝑖𝑠𝑠𝑆𝐿𝐴1(𝑡𝑚𝑖𝑠𝑠 > 𝑡2) × 𝑃(𝑋1 < 𝑋2)

× 𝑃𝑚𝑖𝑠𝑠𝑆𝐿𝐴1&2(𝑡𝑚𝑖𝑠𝑠 < 𝑡3)

=  𝜆1𝛥𝑡1 + (1 − 𝑒−𝜆11𝛥𝑡2) + 𝑒−𝜆1𝛥𝑡2 ×
𝜆1

𝜆1 + 𝜆2
× (1

− 𝑒−(𝜆1+ 𝜆2)𝛥𝑡3) 

(Eq. 6.38) 

Thus, we obtained the nominator and denominator for the 𝐻𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) expression (Eq. 

6.36).  

Next, we can move to calculating the hit rate for SLA2. Similarly to the equation for 

HR(SLA1): 

 𝐻𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) =  
𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑇, 𝑡𝑔)]

(𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2(𝑇, 𝑡𝑔)])
 (Eq. 6.39) 

On the other hand, now we have a more natural way to find the hit rate of SLA2. For the 

SLA1, we have to use the hits and requests expectations for a refresh period. However, for the 

last SLA, we can use an option, which is based on using all the hits and requests during the 

whole planning period: 
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 𝐻𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) =  
𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑇, 𝑡𝑔)

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2(𝑇, 𝑡𝑔)
 (Eq. 6.40) 

We already found expressions for Total hit ratio and SLA1 hit ratio. By multiplying them 

by the number of corresponding requests, we can get the total hit number and SLA1 hit number: 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1&2(𝑇, 𝑡𝑔) = 𝐻𝑅𝑇𝑜𝑡𝑎𝑙 × 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1&2  (Eq. 6.41) 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔) = 𝐻𝑅𝑆𝐿𝐴1 × 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 (Eq. 6.42) 

Now we can subtract the amount of hits SLA1 from the amount of all hits: 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑇, 𝑡𝑔) = 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1&2 − 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1 (Eq. 6.43) 

Eventually, we can find the hit rate for SLA2: 

 𝐻𝑅𝑆𝐿𝐴2 =  
𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴2

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2
 (Eq. 6.44) 

Miss rate for SLA2 is, obviously: 

 𝑀𝑅𝑆𝐿𝐴2 = 1 − 𝐻𝑅𝑆𝐿𝐴2 (Eq. 6.45) 

We have obtained all the required components for the total cost formula, which allows 

computing the estimated cost of a planned period depending on the chosen size of a gap.  

Moreover, we can use the derived expression for the optimisation model to find the 

optimal gap size, which corresponds to the lowest cost of cache operation. We managed to 

convert the initial problem into a two-dimensional problem, where the cost of a planning period 

depends only on the choice of the gap between the end of the freshness period of the most 

expensive SLA, and the moment of planned retrieval. Hence, finding the optimal value is 

trivial. The process of estimating the cost of operation according to the algorithm and equations 

from this section, as well as finding the optimal size of the gap, is presented in Chapter 7 

(Evaluation). Results of simulations, which are proving the correctness of the method, are also 

provided. In the next section, we will describe how higher levels of cache are taken into 

account. 

6.4 CONCLUSION 

In this chapter, we focused on the refresh rate -based caching strategies and models, 

where the cache decision is expressed as the amount of time until the next retrieval, after the 

end of the freshness period for the most expensive SLA. We introduced three main caching 

strategies for a single context attribute, which are (i) full coverage, (ii) reactive, and (iii) 

proactive strategies. We have shown how to estimate the cost for the first and the second 
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strategy based on the existing body of knowledge. The proactive strategy required the 

development of methods for cost estimation, which were presented in Section 6.3. While 

requiring a more sophisticated methodology, when realised, the proactive strategy can help to 

reach the maximum cost efficiency of the CSMS operation. The evaluation of the proposed 

methods is presented in Chapter 7. 
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Chapter 7: Evaluation 
 

7.1 INTRODUCTION 

In this chapter, we demonstrate how the proposed refresh rate-based models presented in 

the previous chapter can be used to reduce the load on the IoT Context Management Platform 

(CMP). 

In Section 7.2, we evaluate the proposed caching models. The mathematical derivations 

of the models were presented in Chapter 6. In order to assess the correctness of the model from 

a practical side, we run a set of simulations to show how our theoretical findings are matching 

the results that we obtain from a simulation. In Section 7.2.1, we describe the setup of the 

experimental environment. In Section 7.2.2, we run simulations for 1SLA policy and in Section 

7.2.3 for 2SLA policy to demonstrate how the predicted parameters at each phase match the 

results of our experiments. We also illustrate how a proactive caching strategy reduces the cost 

of CSMS operation in the case of an optimal choice of the retrieval rate. 

7.2 REFRESH RATE -BASED CACHING MODELS EVALUATION 

In this section, we show how the caching strategies and models, which were discussed 

and derived in Chapter 6, can be tested by a set of simulations. We describe a testing 

environment used; then we show an example of an analytic solution for 1SLA policy and 2SLA 

policies as well as the results of a simulation for these policies with similar parameters. 

Afterwards, we provide graphs which allow comparison of how the predicted values of the cost 

of operation are matching the values, which are obtained from the simulation for a wide variety 

of input parameters to show how the proposed theoretical method is matching the experimental 

results. We also provide graphical analysis of several cases, where each strategy can be 

beneficial for the cost efficiency of CSMS operation. 

7.2.1 DESIGN AND EVALUATION OF THE SIMULATION TOOL 

First, we describe the design of the environment, which is used for our tests and 

simulations. To simulate the query load, which would be coming from a query engine to CSMS 

in real life, we need to generate a stream of CDQL requests, which are aiming to access a 

context attribute with a certain level of freshness. According to the theoretical foundations and 

practical assumptions which we described in Chapter 2, Chapter 5 and Chapter 6, the 

distribution of request inter-arrival times should follow the Poisson law. We have chosen 
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jMeter, a widely accepted open-source tool used for load testing. The JMeter-based request 

generator was configured to produce a certain amount of requests per minute using the Poisson 

timer. Configuration scripts allow changing the freshness period for different SLAs as well as 

the gap size and all the costs. The process of running a test is shown in Figure 7.1. 

 

Figure 7.1 - JMeter –based request generator 

The configuration of timers in jMeter is not entirely straightforward, which was causing 

a necessity to check if the resulting set of request inter-arrival times is exponentially distributed. 

To test this, we have run a test and built a graph of inter-arrival times, which is presented in 

Figure 7.2. According to the visualised results, the arrival process of requests corresponds to a 

Poisson process, and we can rely on the results of the simulation.  

 

Figure 7.2 - Distribution of inter-arrival times of generated requests 

Apart from the request generator, we needed a tool which will be registering requests and 

counting all the relevant parameters, such as hits and misses for all the SLAs, as well as the 
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number of refreshes and the overall cost of operation. For that reason, we developed a cache 

evaluation tool, which is implemented as a JavaEE web service. We intentionally separated 

experimental measurements from the real CoaaS platform prototype, to avoid potential 

influence caused by the interference of unforeseen factors. Eventually, the simulation 

environment consists of two main modules – the request generator, which is issuing requests, 

and the evaluation tool, which accepts arriving requests and computes the number of hits, 

misses, and associated costs based on the defined SLAs. 

7.2.2 EVALUATION OF THE HMR METHOD FOR 1SLA POLICY 

In this section, we provide an example of the analytical estimation of the cost for a 

planning period for a context attribute in a situation, where only one SLA is defined. Then, we 

compare each of the predicted components with the results of a simulation. 

At first, we need to define the SLA by specifying the following components: the expiry 

period of the data item, the price of a request for a consumer, and the penalty, which is paid by 

CoaaS in the case when a cache miss happens. We also need to define additional input 

parameters like the cost of retrieval of a data item from a context provider to CoaaS, the length 

of a planning period and the expected number of request arrivals during the planning period. 

Then, we need to choose a gap size, which is the variable, directly influencing the strategy and, 

in turn, the final cost. The definitions of the terms above are provided in Chapter 6.  

Let the SLA be the following: 

Expiry period = 100 ms = 0.1 sec. 

Request price = 80 

Penalty = 180 

Let the additional parameters be the following: 

Retrieval cost = 75 

Planning period = 60 sec. 

Request arrival rate (λ) = 8 requests/sec 

Let us choose the gap size  𝑡𝑔= 150ms = 0.15, (we measure the gap size between the end of the 

freshness period and the moment of retrieval). 
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We are deliberately not choosing a gap size which corresponds to the reactive or the 

proactive strategies, as these options are much simpler and, moreover, the proactive strategy is 

our main scope of interest due to a possibility of achieving the lowest cost of operation. 

The result of a simulation for the provided input parameters is presented in Figure 7.3. 

    

Figure 7.3 - Results of the simulation for an 1SLA policy 

Now we can compare the simulation results to the analytical solution. 

According to the simplified version of the HMR formula (Eq. 6.13), the cost of a planning 

period for a proactive caching strategy with shifts can be found as: 

 𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒 –  MR(𝑇, 𝑡𝑔)

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 − 𝑅𝑅(𝑇, 𝑡𝑔)

×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 7.1) 

The number of requests is, obviously, equal to: 

 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟 = 𝜆 × 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 = 8 × 60 = 480 (Eq. 7.2) 

First, we need to find the hit and miss rates (Eq. 6.14), which can be achieved as follows: 

 
𝐻𝑅(𝑇, 𝑡𝑔) =  

𝐸[𝑁(𝑇)]

𝐸[𝑁(𝑇)] + 1 − 𝑒−𝜆 𝑡𝑔
=  

8 × 0.1

8 × 0.1 + 1 − 𝑒−8 × 0.15 
= 0.534 (Eq. 7.3) 
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Consequently, the number of hits during the planning period equals: 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠 =  0.534 ∗ 480 = 256.3 (Eq. 7.4) 

The miss rate can be found as subtracting the hit rate from one, or as follows (Eq. 6.15): 

 
𝑀𝑅(𝑇, 𝑡𝑔) =  

1 − 𝑒−𝜆 𝑡𝑔

𝐸[𝑁(𝑇)] + 1 − 𝑒−𝜆 𝑡𝑔
=  

1 − 𝑒−8 × 0.15 

8 × 0.1 + 1 − 𝑒−8 × 0.15 
= 0.466 (Eq. 7.5) 

The number of misses during the planning period equals to: 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠 =  0.466 ∗ 480 = 223.6 (Eq. 7.6) 

Then we need to find the ratio of retrievals to requests RR(T, 𝑡𝑔) (Eq. 6.17): 

 
𝑅𝑅(𝑇, 𝑡𝑔) =  

1

𝐸[𝑁(𝑇)] + 1 − 𝑒−𝜆 𝑡𝑔
=  

1

8 × 0.1 + 1 − 𝑒−8 × 0.15 
= 0.67 (Eq. 7.7) 

Consequently, the number of all retrievals during the planning period (Eq. 6.18) is: 

 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑁𝑢𝑚 =  𝑅𝑅(𝑇, 𝑡𝑔) × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚 = 0.67 × 480 =  321 (Eq. 7.8) 

Eventually, the overall cost of the planning period is equal to: 

 𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑 = 480 × (80 − 0.466 × 160 − 0.67 × 75)

=  −21426.5 
(Eq. 7.9) 

As can be seen, the results of each step and the overall result are closely matching the 

results of the simulation. 

We have completed the evaluation of a method for estimating the cost of the planning 

period for 1SLA policy, and demonstrated the matching of simulation results for the chosen 

gap size. Next, we build graphs of predicted and simulated results for various gap sizes, to 

show how the described method is matching the simulation results in a wide range of possible 

gap sizes. 

In Figure 7.4, the graphs for predicted hit rate, miss rate, and refresh ratio are presented, 

while in Figure 7.5 the results of simulations for the corresponding gap sizes are presented. In 

Figure 7.6 and Figure 7.7, the results of estimated cost and cost, which was received as a result 

of the simulation are presented. As can be seen from the graphs, both predicted and simulated 

results are closely matching. We use the following colour codes and designations: hit rate and 

simulated hit rate are depicted in green and designated as HR(t) and SHR(t), miss rate and 

simulated miss rate are depicted in blue and designated as MR(t) and SMR(t), and refresh ratio 
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is depicted in yellow and designated as R(t) and SR(t). The overall predicted and simulated 

cost of planning period is depicted in orange. 

 

Figure 7.4 - Predicted Hit rate, Miss rate, and Refresh-Request ratio 

 

Figure 7.5 - Hit rate, Miss rate, and Refresh-Request ratio acquired from simulation 
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Figure 7.6 - Predicted total cost of operation 

 

Figure 7.7 - Total cost of operation acquired from the simulation 

In this set of experiments, we got negative costs. Technically, the cost of operation can 

be both, positive and negative, as we have included the income into the equation. The main 

objective is to keep the cost of operation as high as possible. When the highest achievable cost 

is still negative, a change in the pricing strategy might be required.  

In the described experiment, the maximum of the objective function is achieved with a 

gap size which equals to zero, meaning that the full coverage is the most beneficial strategy for 

the current SLA and source behaviour. As it was said, in 1SLA policy, the maximum is always 

located at reactive strategy or full coverage strategy, and never in between. However, in a case 
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with multiple SLAs, the situation becomes more complicated.  In any case, an analyst needs a 

methodology for informed decision while making and adaptation of the pricing strategy and 

SLA negotiation. 

We have demonstrated the matching of results for 1SLA policy. In the next section, we 

are evaluating the model for more advanced policies. 

7.2.3 EVALUATION OF HMR APPROACH FOR 2SLA POLICY 

In this section, we evaluate the method for estimation of the cost of a planning period in 

case of a 2SLA policy according to the methodology which was proposed in Chapter 6. 

To define the task, we need to add several parameters to the formulation of the task for 

the 1SLA evaluation. In the SLA section, we need to add separate SLA1 and SLA2 expiry 

periods and different costs of access to context attributes for SLA1 and SLA2 from the 

consumer side. We also need to define such parameters as the expected rate of request arrivals 

for SLA1 and SLA2 during the planning period. 

Let the SLA be the following: 

SLA1 Expiry period = 100 ms = 0.1 sec. 

SLA2 Expiry period = 250 ms = 0.25 sec. (Expiry period is measured from t = 0, refer to 

diagrams presented in Chapter 6) 

Request price SLA1 = 80 

Request price SLA2 = 40 

Penalty SLA1 = 160 

Penalty SLA2 = 80 

Let the additional parameters be the following: 

Retrieval cost = 75 

Planning period = 60 sec. 

Request arrival rate SLA1 (λ1) = 4 requests/sec 

Request arrival rate SLA2 (λ2) = 8 requests/sec 
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For the current evaluation, we are choosing the most complex scenario, when the moment of 

planned retrieval is located in phase 3. In other words, there is a time gap between the longest 

expiry period, (cheapest SLA, which is SLA2), and time at which a retrieval is planned. 

Let us choose the gap size  𝑡𝑔= 100ms = 0.1 sec. We measure the gap size starting from the end 

of the freshness period of SLA2. 

The results of the simulation for 2SLA policy are presented in Figure 7.8. We will be 

comparing each step in the analytical solution with the result of a simulation to verify the 

correctness of the method. 

  

Figure 7.8 - Simulation results for 2SLA strategy 
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According to Chapter 6 (Eq. 6.21), the cost of a planning period can be found as: 

 𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1

+ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2 –  𝑀𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔)

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴1 − 𝑀𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔)

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴2 − 𝑅𝑅(𝑇, 𝑡𝑔)

×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝐴𝑙𝑙 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒 

(Eq. 7.10) 

For being able to apply the expression above, we need to find the separate hit rate and 

miss rate for SLA1 and SLA2. We also need to find the refresh to request ratio, which is 

common for both SLAs. However, according to the method defined in Chapter 6, we need to 

start with finding the total hit and miss rate first.  

The total hit rate can be found (Eq. 6.25) as follows: 

 
𝐻𝑅(𝑇, 𝑡𝑔) =  

𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]
 (Eq. 7.11) 

In the expression above 𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)] is an expected number of hits of all SLAs 

requests arriving during one refresh period, and 𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)] is the expected 

number of requests of all SLAs during one refresh period.  

The expected number of all hits on one refresh period (Eq. 6.30, Eq. 6.31) can be found 

as: 
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 𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

= 𝐸[𝐻𝑖𝑡𝑠(𝛥𝑡1)] + (𝑃(𝑡𝑚𝑖𝑠𝑠 > 𝑡2)) × 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝛥𝑡2)]

+ ∫ (𝑓𝑚𝑖𝑠𝑠(𝑡 − 𝑡1) × 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑡 − 𝑡1)])𝑑𝑡
𝑡2

𝑡=𝑡1

=  (𝜆1 +  𝜆2) × 𝛥𝑡1 + (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+  ∫ 𝜆1𝑒−𝜆1(𝑡−𝑡1) 𝜆2(𝑡 − 𝑡1)𝑑𝑡
𝑡2

𝑡=𝑡1

= (𝜆1 +  𝜆2) × 𝛥𝑡1 + (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+  
𝜆2 − 𝜆2𝑒𝜆1(𝑡1−𝑡2)(𝜆1(𝑡2 − 𝑡1) + 1)

𝜆1

= (4 + 8) × 0.1 + (1 − 𝑒−4×0.15)

+
8 −  8𝑒4(0.1−0.25)(4(0.24 − 0.1) + 1)

4
= 2.11 

(Eq. 7.12) 

The obtained result matches the simulation results:  

𝐴𝑣𝑔[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]
𝑠𝑖𝑚

=
519

244
= 2.1 

We can also separately test two parts of the expression above. The first part represents 

the number of hits during phase 1 (Eq. 6.26): 

 𝐸[𝐻𝑖𝑡𝑠𝑃ℎ1(𝑇, 𝑡𝑔)] = (𝜆1 + 𝜆2) × 𝛥𝑡1 = (4 + 8) × 0.1 = 1.2 (Eq. 7.13) 

From the simulation results, dividing the number of hits during phase 1 by the number of 

refreshes gives us: 

 𝐴𝑣𝑔[𝐻𝑖𝑡𝑠𝑃ℎ1]𝑠𝑖𝑚 =
307

244
= 1.2, (Eq. 7.14) 

The received result matches the expectation. 

The second part represents the expectancy of total hits during the second phase (Eq. 6.27-

Eq. 6.29). 
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 𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙𝑃ℎ2(𝑇, 𝑡𝑔)]

= (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+  
𝜆2 −  𝜆2𝑒𝜆1(𝑡1−𝑡2)(𝜆1(𝑡2 − 𝑡1) + 1)

𝜆1

= (1 − (1 − 𝑒−4×0.15)) × (8 × 0.15)

+
8 −  8𝑒4(0.1−0.25)(4(0.25 − 0.1) + 1)

4
= 0.9 

(Eq. 7.15) 

From the simulation results, dividing the number of hits during phase 2 by the number of 

refreshes gives us:  

 
𝐴𝑣𝑔[𝐻𝑖𝑡𝑠𝑃ℎ2(𝑇, 𝑡𝑔)]

𝑠𝑖𝑚
=

211

244
= 0.86 (Eq. 7.16) 

The received result matches the expectation. 

We have successfully tested the expectancy of total hits during one refresh period. 

The second component of the expression for finding the total hit rate is the expected 

number of arriving requests during one refresh period (Eq. 6.32 - Eq. 6.34), which can be found 

as follows: 

 𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

=  (𝜆1 +  𝜆2) × 𝛥𝑡1 + (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+  ∫ 𝜆1𝑒−𝜆1(𝑡−𝑡1) 𝜆2(𝑡 − 𝑡1)𝑑𝑡
𝑡2

𝑡=𝑡1

+  (1 − (1 − 𝑒−𝜆1𝛥𝑡2))

× (1 − 𝑒−(𝜆1+𝜆2)𝛥𝑡3)

=  (𝜆1 +  𝜆2) × 𝛥𝑡1 + (1 − (1 −  𝑒−𝜆1𝛥𝑡2)) × (𝜆2𝛥𝑡2)

+
−𝑒𝜆1(𝑡1−𝑡2)(𝜆1𝜆2(𝑡2 − 𝑡1) + 𝜆1 + 𝜆2) + 𝜆1 + 𝜆2

𝜆1

+  (1 − (1 − 𝑒−𝜆1𝛥𝑡2)) × (1 − 𝑒−(𝜆1+𝜆2)𝛥𝑡3)

=  (4 + 8) × 0.1 + (1 − (1 −  𝑒−4×0.15)) × (8 × 0.15)

+  
−𝑒4(0.1−0.25)(4 × 8(0.25 − 0.1) + 4 + 8) + 4 + 8

4

+  (1 − (1 − 𝑒−4×0.15)) × (1 − 𝑒−(4+8)×0.1) =  2.93 

(Eq. 7.17) 
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From the simulation results, we can see that the average number of requests per one 

refresh period equals to: 

 
𝐴𝑣𝑔[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]

𝑠𝑖𝑚
=

718

244
= 2.94 (Eq. 7.18) 

The result is closely matching the result predicted by the analytical solution above. 

Then, the total hit rate equals to: 

 𝐻𝑅𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔) =  
𝐸[𝐻𝑖𝑡𝑠𝑇𝑜𝑡𝑎𝑙(𝑇,𝑡𝑔)]

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇,𝑡𝑔)]
=

2.11

2.94
= 0.72, (Eq. 7.19) 

The received result is matching the result of a simulation. 

Total miss rate is, obviously: 

 𝑀𝑅𝑇𝑜𝑡𝑎𝑙 = 1 − 𝐻𝑅𝑇𝑜𝑡𝑎𝑙 = 1 − 0.72 = 0.28 (Eq. 7.20) 

The refresh rate (Eq. 6.35) can be found as: 

 
𝑅𝑅(𝑇, 𝑡𝑔) =

1

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙(𝑇, 𝑡𝑔)]
=

1

2.93
= 0.34 (Eq. 7.21) 

which is matching the result of the simulation: 

 
𝑅𝑅𝑠𝑖𝑚 =

𝐹𝑒𝑡𝑐ℎ𝑁𝑢𝑚𝑏𝑒𝑟

𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑡𝑎𝑙
=

244

718
= 0.34 (Eq. 7.22) 

We have validated the method for finding total hit and miss rate for the 2SLA policy. 

Next, we can find the separate hit rate for SLA1 (Eq. 6.36): 

 
𝐻𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) =  

𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]
 (Eq. 7.23) 

The expected number of hits during one refresh period can be found in a simple way, as 

SLA1 hits can happen only during phase 1:  

 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]  = λ1Δt1 = 4 × 0.1 = 0.4 (Eq. 7.24) 

This matches the result of the simulation: 

 
𝐴𝑣𝑔[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]

𝑠𝑖𝑚
=

𝐻𝑖𝑡𝑠𝑆𝐿𝐴1

𝐹𝑒𝑡𝑐ℎ𝑁𝑢𝑚𝑏𝑒𝑟
=

103

244
= 0.42 (Eq. 7.25) 

The expected number of SLA1 requests during one refresh period (Eq. 6.38) can be found 

as: 
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 𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]

= 𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝛥𝑡1)] + 𝑃𝑚𝑖𝑠𝑠(𝑡𝑚𝑖𝑠𝑠𝑆𝐿𝐴1 ≤ 𝑡2)

+ 𝑃𝑚𝑖𝑠𝑠𝑆𝐿𝐴1(𝑡𝑚𝑖𝑠𝑠 > 𝑡2) × 𝑃(𝑋1 < 𝑋2)

× 𝑃𝑚𝑖𝑠𝑠𝑆𝐿𝐴1&2(𝑡𝑚𝑖𝑠𝑠 < 𝑡3)

=  𝜆1𝛥𝑡1 + (1 − 𝑒−𝜆11𝛥𝑡2) + 𝑒−𝜆1𝛥𝑡2 ×
𝜆1

𝜆1 + 𝜆2
× (1

− 𝑒−(𝜆1+ 𝜆2)𝛥𝑡3)

= 4 × 0.1 + (1 − 𝑒−4×0.15) + 𝑒−4×0.15 ×
4

4 + 8

× (1 − 𝑒−(4+ 8)×0.1) = 0.97 

(Eq. 7.26) 

The result of this step is also closely matching the simulation: 

 
𝐴𝑣𝑔[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]

𝑠𝑖𝑚
=

𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1

𝐹𝑒𝑡𝑐ℎ𝑁𝑢𝑚𝑏𝑒𝑟
= 240/244

= 0.98 

(Eq. 7.27) 

Eventually, the hit rate for SLA1 is equal to: 

 
𝐻𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) =  

𝐸[𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔)] 

𝐸[𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1(𝑇, 𝑡𝑔)]
=

0.4

0.98
=  0.408 (Eq. 7.28) 

The miss rate for the SLA1 can be found as follows: 

 𝑀𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) = 1 − 𝐻𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔) = 1 − 0.4 = 0.6 (Eq. 7.29) 

Hit and miss rates for SLA1 which were obtained by simulation are also close to 0.4 and 

0.6; consequently, we have successfully tested expressions for SLA1 hit and miss rates.  

Next, we can find the hit and miss rate for SLA2. 

To find the hit rate for SLA2, we are using the approach based on the whole planning 

period (refer to Chapter 6), which is more straightforward than the method we used for SLA1. 

However, we only can use this approach for the last SLA, but not for all of them. The hit rate 

for SLA2 (Eq. 6.39) can be found as: 

 
𝐻𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔) =  

𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑇, 𝑡𝑔)

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2(𝑇, 𝑡𝑔)
 (Eq. 7.30) 

As we already know the total hit rate, we can use it to find the total number of hits based 

on Eq. 6.41:  
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 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1&2(𝑇, 𝑡𝑔) = 𝐻𝑅𝑇𝑜𝑡𝑎𝑙 × 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1&2 

= 0.72 × 720 = 518.4 
(Eq. 7.31) 

Then, we find the number of hits for SLA1 (Eq. 6.42) in a similar manner: 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1(𝑇, 𝑡𝑔) = 𝐻𝑅𝑆𝐿𝐴1 × 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 = 0.4 × 240

= 96 
(Eq. 7.32) 

Based on that, we find the number of hits for SLA2 (Eq. 6.43): 

 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴2(𝑇, 𝑡𝑔) = 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1&2 − 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴1

= 518.4 − 96 = 422.4 
(Eq. 7.33) 

Next, we find the hit and miss rates for SLA2 (Eq. 6.44): 

 
𝐻𝑅𝑆𝐿𝐴2 =  

𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑡𝑠𝑆𝐿𝐴2

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2
=

422.4

480
= 0.88 (Eq. 7.34) 

 𝑀𝑅𝑆𝐿𝐴2 = 1 − 𝐻𝑅𝑆𝐿𝐴2 = 1 − 0.88 = 0.12 (Eq. 7.35) 

The results from the simulation are: 𝐻𝑅𝑆𝐿𝐴2𝑠𝑖𝑚 = 0.87 and 𝑀𝑅𝑆𝐿𝐴2𝑠𝑖𝑚 = 0.13, which 

means the predicted values are very close to the simulation results. 

Now we have obtained all the components and we can estimate the cost of a planned 

period (Eq. 6.21): 

 𝐶𝑜𝑠𝑡𝑂𝑓𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴1

+ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑆𝐿𝐴2 –  𝑀𝑅𝑆𝐿𝐴1(𝑇, 𝑡𝑔)

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴1 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴1 − 𝑀𝑅𝑆𝐿𝐴2(𝑇, 𝑡𝑔)

× 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝐿𝐴2 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝐿𝐴2 − 𝑅𝑅(𝑇, 𝑡𝑔)

×  𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝐴𝑙𝑙 × 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑃𝑟𝑖𝑐𝑒

=  240 ∗ 80 + 480 ∗ 40 − 240 ∗ 0.6 ∗ 160 − 480 ∗ 0.12

∗ 80 − 0.34 ∗ 720 ∗ 75 = −7608 

(Eq. 7.36) 

The result is close to the value of the overall cost obtained from the simulation. Thus, we 

have finalised the evaluation of the proposed method for estimating the cost of a planning 

period for 2SLA policy for a chosen gap size. Next, we will present the results of the analytical 

solution and its graphical comparison with the result of a simulation, similarly how we did it 

for 1SLA policy. 
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We use the following colour codes and designations: hit rate and simulated hit rate are 

designated as HRn(t) and SHRn(t) and depicted in dark green and light green for SLA1 and 

SLA2 correspondingly. Miss rate and simulated miss rate are designated as MRn(t) and 

SMRn(t) and are depicted in light blue and dark blue correspondingly. The refresh ratio is 

depicted in yellow and designated as R(t) and SR(t). The overall predicted and simulated cost 

of planning period for 2SLA policy is depicted in orange. 

From the graphs presented in Figure 7.9, Figure 7.10, Figure 7.11 and Figure 7.12, it can 

be seen that the shapes and numerical values of the results of the analytical solution are closely 

matching the results of simulations. 

 

Figure 7.9 - Predicted Hit rate, Miss rate, and Refresh-Request ratio 
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Figure 7.10 - Hit rate, Miss rate, and Refresh-Request ratio acquired from the 

simulation 

 

Figure 7.11 - Predicted total cost of operation 
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Figure 7.12 - Total cost of operation acquired from the simulation 

We have demonstrated the matching of predicted with analytical solutions results with 

the results of a simulation for 2SLA policy.  

In the described experiment, the maximum of the objective function is achieved with a 

gap size which equals to zero, meaning that the full coverage is the most beneficial strategy for 

defined SLAs and input parameters. Next, we demonstrate how a change in only one parameter 

can dramatically change the situation. 

For instance, let the retrieval price be equal to 85. A corresponding graph is presented in 

Figure 7.13. The most efficient point of operation is still with gap size equal to zero, the shape 

of the graph is slightly different to the shape shown in Figure 7.11, where the price of retrieval 

was equal to 75. 

 

Figure 7.13 - Predicted cost for retrieval price = 85 
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However, if we choose the retrieval price equal to 100, the shape of the graph is changing, 

as it is shown in Figure 7.14. The point of maximal efficiency is still at gap size equal to zero 

(full coverage strategy). The cost of operation grows with the increase in gap size. However, 

after gap size = 0.1, we can see a steep decrease in the cost, and the cost is keeping almost 

stable afterwards. 

 

Figure 7.14 - Predicted cost for retrieval price = 100 
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Figure 7.15 - Predicted cost for retrieval price = 160 

With the input parameters used, the benefit of the proactive strategy is not huge over the 

cost of the reactive strategy. However, if we change the penalty for SLA1 to 600, as it is shown 

in Figure 7.16, the cost in the optimal point (t = 0.1) is significantly higher than with the full 

coverage strategy or with the reactive strategy. Consequently, this strategy is significantly more 

beneficial with given input parameters. 

 

Figure 7.16 - Predicted cost for retrieval price = 160 and SLA1 penalty = 600 
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Figure 7.17 - Predicted cost for retrieval price = 300 

With the current input parameters, the benefit of the reactive strategy is not huge over 

proactive retrieval with gap size t=0.1. 

However, if we again change the input parameters and set λ2 = 80, the difference, which 

is shown in Figure 7.18, becomes more obvious. In this case, it is clear from the graph that the 

most efficient strategy is to use a reactive strategy. 

 

Figure 7.18 - Predicted cost for retrieval price = 300 and λ2 = 80 
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7.3 CONCLUSION 

In this chapter, we have evaluated the CSMS refresh rate-based caching strategies by 

comparing the analytical methods, which we proposed in Chapter 6 with the results of the 

simulation. We have described the simulation environment, which consists of a specially 

configured JMeter-based request injection tool and custom request registration tool. Then, we 

provided a step by step evaluation of our methods for 1SLA and 2SLA policies with fixed 

chosen gap size, to show how the results of each expression are matching the simulation results. 

We also provided a graphical comparison of the results for various gap sizes and other input 

parameters, in order to prove the workability of the proposed methods with a variety of 

parameters. We have shown that there exist input parameters with which every strategy (full 

coverage, proactive and reactive) is beneficial, and it is essential to have a methodology for the 

optimal decision making. 

We found that the proposed methods are producing reliable results which are closely 

matching the results of a simulation. 
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Chapter 8: Conclusion 
 

8.1 INTRODUCTION 

In this chapter we present a summary of the project and contributions. We also discuss 

the directions for extending the proposed solution and theory.  

This chapter is structured in the following way: In Section 8.1, we briefly bring to mind 

the evolution of the bIoTope and CoaaS projects, which formed the background for this 

research. Section 8.2 provides the discussion of research outcomes, including the architecture 

of CSMS, its implementation and integration with other parts of the CoaaS platform. This 

section also provides the analysis of obtained results in the area of cache management 

strategies, which were investigated in this project. Section 8.3 contains the discussion of the 

directions for future work. 

8.1.1 CONTEXT-AS-A-SERVICE (COAAS) PLATFORM AND BIOTOPE 

PROJECT 

The Context-as-a-Service (CoaaS) platform project started as a part of the bIoTope 

project15 in 2016. This project is a globally distributed community, which aims to foresee the 

future and propose steps to achieve it. The bIoTope project brought together representatives of 

various industries and sectors from different countries. These participants represented different 

types of mindset, as they were coming from such areas as academia, governmental services, 

managers of large and small enterprises, and founders of start-ups. We found that building the 

ecosystem consisting of devices requires, first of all, building the ecosystem of people that have 

intersecting interests. This ecosystem facilitated the crystallisation of concept, as well as our 

understanding of the desires and possibilities of different parties.  

At the side of the CoaaS group, we had to define the scope of CoaaS and the concepts of 

primary interfaces. The Context Storage Management System (CSMS) project started at the 

same time with the development of the CoaaS platform and the Context Definition and Query 

Language (CDQL). We provided the essential background of CoaaS and CDQL in the first part 

of Chapter 3. 

                                                 
15 https://biotope-project.eu/ 

https://biotope-project.eu/
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During the bIoTope project, we worked in close contact with representatives of the BMW 

group, who provided valuable insights, which helped to shape the scope of the CoaaS platform. 

This discussion also resulted in a joint publication [60]. The CoaaS group had participated in 

facilitating such IoT scenarios as searching for carparks and electric charging stations. Aalto 

University, Helsinki, Finland hosted the test of the scenario. CoaaS was also used to facilitate 

the real trial of preconditioning of an electric connected BMW i3. The tests were conducted in 

Melbourne, Australia and hosted by Data 61, CSIRO. This work was also influenced by 

Eccenca GmbH16, who provided the MobiVoc [46] semantic vocabulary, used to structure the 

descriptions of the carpark entity.  

The CoaaS group also participated in facilitating the scenario of IoT-enabled waste 

management (WM), as well as in support of the scenario, where the intersection of WM with 

BMW vehicle routing was considered. The smart waste management scenario and the 

corresponding semantic vocabulary was maintained by the ITMO University, St. Petersburg, 

Russia. 

In general, we can state that during the time of the project, CoaaS has moved from the 

stage of a not clearly defined concept to the stage of a working prototype, which has been tested 

with real consumers. The project meetings, consortium assemblies, and implementations and 

tests of scenarios provided the view on how the IoT ecosystem can evolve, and how the CoaaS 

platform should advance to comply with the challenges. Then, it became possible to move 

towards the individual part of the project. 

We saw the challenges for the data storage and processing component of CoaaS in two 

main directions: (i) researching and developing the main modules, which can govern the 

storage of data in the CoaaS platform and facilitate the work of the Query Engine, and (ii) 

achieving the high efficiency of data storage and processing modules. 

The data storage and processing component was called the Context Storage and 

Management System (CSMS). In the next Section, we summarise the details of the research 

conducted in this dissertation. 

 

                                                 
16 https://www.eccenca.com/en/index.html 
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8.2 RESEARH OUTCOMES 

In this section, we discuss the results and key contributions made by this dissertation, 

which were achieved during the development of the CSMS. In Section 8.2.1, we discuss the 

architectural side of the project. In Section 8.2.2, we discuss the results achieved in the area of 

caching strategies applicable for modern CMPs.  

8.2.1 CONTEXT STORAGE AND MANAGEMENT SYSTEM: RESEARCH, 

ARCHITECTURE AND IMPLEMENTATION 

In this section, we summarise the main contributions of this thesis in the area of 

architectures of storage component of IoT platforms, and the decisions made during the 

implementation of CSMS and its integration with other CoaaS platform components. 

In Chapter 3, to address RQ1.1, we analysed the requirements to CSMS, which were 

dictated by the use cases, decisions made at the beginning of the CoaaS project, CDQL 

language, and state of the art in the area of IoT and context management platforms. This 

analysis led to the design of the CSMS architecture, which was presented in the second part of 

Chapter 3 to answer RQ1. 

In Chapter 4, the details of design and implementation of CSMS were presented to 

address RQ1.2. The main component of CSMS was the Storage Query Execution Manager 

(SQEM). It was the entry point for CDQL requests which arrived from the CoaaS Query Engine 

(QE). SQEM was responsible for facilitating the execution of context request in the storage 

system. SQEM converted the query to the format of the corresponding underlying datastore. 

Moreover, it facilitated the process of treating the expiration and refreshment of context 

attributes, as well as handling the process of execution of functions which were contained in a 

CDQL query.  

The main storage modules that were proposed and developed included: (i) the Context 

Service Description Repository (CSDR), which was responsible for finding the right sources 

of context to serve the query, (ii) the Context Repository (CR), which contained the cached 

context attributes, and (iii) the subscriptions repository (SR). SR was a part of a Situation 

Module (SM), which also contained the event stream processing engine. SM received context 

updates from providers, and all the events were percolated through the subscriptions, in order 

to trigger the execution of a registered query (CDQL push-based query), when the situation 

was detected. 
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The aforementioned principal components are essential for the functioning of the CSMS. 

Other parts of the architecture are needed for achieving the higher efficiency, for instance, 

cache management and proactive retrieval of raw data.  

8.2.2 CACHING STRATEGIES AND MODELS FOR CSMS 

In this section, we summarise our findings in the area of cache management and 

efficiency optimisation of CSMS operation, which were presented in Chapter 5-7 and helped 

to answer RQ1.  

To address RQ1, we defined the main concepts and influencing parameters. The proposed 

theory and model were based on three main concepts: (i) Not only Database-Not only 

Redirector (NoD-NoR) mode of CMP operation, (ii) the unlimited amount of resources in a 

scalable cloud system, unlike fixed size systems, and (iii) the possibility to define requirements 

to the quality and cost of context through SLAs, established between a CMP and a context 

consumer, as well as between a CMP and a context provider. The SLA-based requirements 

included the freshness, latency of access, retrieval cost, processing cost, penalty and price of 

access. The computed parameters included the popularity, and reliability of context providers.  

The NoD-NoR concept defined a system, which not only could answer queries based on 

the data from the internal storage, but also could retrieve the needed data from external 

providers on the fly. The second concept stated that as most modern middleware systems were 

hosted in the cloud, it was not efficient to develop caching strategies for getting the best 

performance from a certain amount of resources. On the contrary, it was beneficial to develop 

strategies which aimed at higher cost efficiency, as the affordability of using cloud resources 

and external services became the only limitation. The third concept linked the losses and 

income of the platform. Based on this link, the cost-efficiency model was developed. 

To answer RQ2.3, we also defined the physical and logical dimensions of cache. The 

physical dimension represented the choice of caching data using the in-memory storage or 

using the disk-based storage. It also took into account the amount of data which should be 

handled by one server node. While the in-memory systems could reduce the latency of access, 

the cost of operation was also much higher than the operation cost of a disk-based system. The 

amount of data handled by one server node influenced the ingestion rate and search time. 

Spreading the load among several nodes helped to reduce the latency; however, using too many 

server nodes increased the cost of operation. 
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The logical dimension of cache represented caching the results of the CDQL query 

execution, based on the components of the query. The cache pyramid consisted of four levels, 

starting from the level of raw context attributes, and including results of functions execution, 

the results of CDQL requests execution, and, at the highest level, the results of full CDQL 

query execution.  

To answer RQ2.2, in Chapter 6, we researched the ways to build a model for an individual 

context attribute. The three main strategies were (i) full coverage, (ii) proactive, and (iii) 

reactive. The proactive strategy defined the retrieval of an attribute from the external system 

after specific time since the data item had expired. This meant there was a time gap between 

periods when the incoming query could be served out of the cache. First, we developed models 

for a policy where only one SLA was defined (1SLA policy) and shown that for that type of 

policy, the proactive strategy was never beneficial. We also developed a method for predicting 

the cost of operation with any chosen strategy and any selected gap.  

Then, we investigated the process taking into account the possibility of more than one 

SLA defined (nSLA). We illustrated the process on a 2SLA policy example. We showed that 

the model became significantly more complicated. Moreover, with nSLA policies, the 

proactive strategy could be the most cost-efficient, if the right gap size was chosen. We also 

developed a model to predict the cost of operation for 2SLA policy for a any selected gap size. 

We evaluated and illustrated the results in Chapter 7. 

8.3 FUTURE WORK 

In this section, we outline the future directions of the research which we see as the most 

promising for the advancement of CMPs in general, and CoaaS with CSMS in particular. 

Real integrations 

There is nothing more valuable than feedback from real consumers. As the preliminary 

work in the CMP area is already completed, it is the time to bring the prototypes of scenarios 

to a much bigger scale. The results achieved form the real large scale integrations will open 

new research gaps; these results will also reinforce the theory and practice of CMPs. We also 

expect the development of new business models and the development of corresponding ways 

of defining the agreements, (SLAs), between parties in the IoT ecosystems. If new agreements 

differ from those which were used as the base for the development of the caching model, 

corresponding adjustments would have to be made. 
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Taking access control into account 

The current implementation of CoaaS, as well as many other prototypes of CMPs, does 

not support a flexible mechanism for access control. However, in real IoT ecosystem-wide 

scenarios, such mechanisms will have the highest importance, as otherwise, it will be hard to 

reach the agreement of context providers to participate in the ecosystem. The access control 

mechanisms will also have a massive impact on the design and efficiency of CSMS. 

Extending the analytical framework: predictions and freshness  

The freshness parameter, which was used for building and evaluating the caching model 

in Chapters 5-7, is an essential component for cache management in transient IoT 

environments. However, estimating the freshness of data items is not an easy task and requires 

a solid analytical framework to be built and integrated as a part of CSMS. 

Another side of the analytical framework is supporting the scenarios, where predictions 

of future situations are needed.  

Benchmarking and standardisation 

Nowadays, every research group or company which proposes an IoT or a CMP platform, 

shows the results of performance evaluation on scenarios, which are beneficial for this 

particular platform. This situation leads to complexities in comparison of these platforms for 

an external integrator. Developing a solid, credible benchmarking methodology for IoT CMPs 

requires substantial R&D effort in both academic and industry IoT communities. We believe 

that mature benchmarking can significantly improve the evidence-based competition in the 

field of CMPs. 

Standardisation of context definition and querying is always in the main scope of any IoT 

conference or meetup. The work in this direction should be continued with the active 

involvement of researchers and standardisation units. 

Development of more advanced caching models 

As the business strategies change or become more complex, there will be a need to adjust 

the current cache management strategy or develop a new model. Another direction is extending 

the model so that it would use the links between the context attributes. In the current model, all 

the context attributes were looked as individually. For instance, it might happen that several 

attributes can only be retrieved together from the provider for a joint price. It can also happen 
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that certain attributes are often requested by consumers in a certain order. Taking these 

complexities into account can enhance the cost efficiency of CSMS operation. 

Application of ML techniques 

As we have shown, the development of caching strategies, even for a single context 

attribute is a very labour-intensive and time consuming task. However, business requirements 

can change fast, and there is a need for adapting the cache strategies accordingly. This can 

potentially be achieved with the application of modern machine learning techniques. For 

instance, the application of reinforcement learning to CSMS caching tasks, and evaluation of 

its performance, is an interesting research area. At the same time, maintaining the 

understanding of processes through obtaining an analytical solution, instead of purely relying 

on the ML decisions, is also worth the effort, in our opinion. 

Solving the inverse problem  

In this thesis we have searched for the optimal cache management decisions for the 

known price of IoT services. However, the problem of defining the price both from the side of 

the providers of context and from the side of a CMP might also be an issue. For that, solving 

the inverse problem might be required, as well as the development of visualising instruments 

and dashboards for the administrators and management of the IoT infrastructure. 
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Appendices 

Appendix A. List of abbreviations 
 

1SLA - A data access policy where one SLA is defined 

2SLA - A data access policy where two SLAs are defined 

ACID - Atomicity, Consistency, Isolation and Durability 

AMQP - Advanced Message Queuing Protocol 

ANN - Artificial Neural Networks 

API - Application Programming Interface 

BHR - byte Hit Rate  

bIoTope - building an IoT OPen innovation Ecosystem 

CA - Context-Awareness 

CAP - Consistency, Availability, Partition tolerance 

CAR - Cost of Automatic Retrievals 

CDQL - Context Definition and Query Language 

CEP - Complex Event Processing 

CIM - Context Information Management 

CM - Cache Management 

CMP - Context Management Platforms 

CoaaS - Context-as-a-Service 

CoC - Cost of Context 

CP - Context Provider 

CQ - Context Queries 

CQE - Context Query Engine 

CQL - Context Query Languages 

CR - Context Repository 

CR - Context Repository  
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CRE - Context Reasoning Engine 

CSDR - Context Service Description Repository  

CSMS - Context Storage Management System 

CSO - Connected Smart Objects 

CST - Context Spaces Theory 

CTR - Cost of Triggered Retrievals 

CU - context updates 

DDG - double dependency graph 

DDoS - distributed denial-of-service attack 

DS - Data Stream (processing) 

DS - Document store 

DSL – Domain Specific Language 

DSRC - Dedicated Short Range Communication 

DSS – Decision Support System 

ETSI - European Telecommunications Standards Institute  

EU FP7 – European Union Seventh Framework Programme 

GE – Generic Enabler 

GEL - Graph Expression Language 

GPS - Global Positioning System 

GSN - Global Sensor Networks 

GUI - graphical user interface 

HDD – Hard Disk Drive 

HMR - Hit rate, the Miss rate, and the ratio of Refreshes to requests 

HR - Hit Rate 

HVAC - Heating, Ventilation, and Air Conditioning 

i.i.d - independently and identically distributed 
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IaaS - Infrastructure as a Service 

ICN - Information-Centric Networking 

IMDG - In-memory Data Grid 

IoT - Internet-of-Things 

IoTps – IoT performance metric 

JSON - JavaScript Object Notation 

JSON-LD - JavaScript Object Notation for Linked Data 

KV - key-value 

LFU - Least Frequently Used 

LR - logistic regression  

LRU - Least recently Used 

LSM - Linked Sensor Middleware 

LSR - Latency Saving rate 

LVF - Least Value First 

M2M – Machine to Machine (communication) 

ML - Machine Learning 

MM - Markov Model 

MR - Miss Rate 

NoD-NoR - Not only a Database, Not only a Redirector 

NoSQL – Not Only SQL 

nSLA - A data access policy where n SLAs are defined 

NTR –Need to Refresh 

OLTP - Online Transaction Processing 

ORM - Object-Relational Mapping 

OWL - Web Ontology Language 

P2P - Peer-to-Peer 
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PaaS - Platform as a Service 

Pmiss - cumulative probability of a cache miss 

PR - Performance Repository 

PRDR - Proactive Raw Data Retrieval 

QE - CoaaS query engine 

QoS - Quality of Service 

RDBMS - Relational Database Management System 

RDF - Resource Description Framework 

RESTful - representational state transfer (service) 

RFID - Radio Frequency IDentification 

RPN - Reverse Polish notation 

RR - Refresh ratio  

RRB - Refresh Rate-Based (policy) 

SaaS - Software as a Service 

SCADA - supervisory control and data acquisition 

SHR - Simulated Hit Rate 

SLA - Service Level Agreement 

SLA1 - Service Level Agreement 1 (First) (the most expensive) 

SLAn - Service Level Agreement n-th 

SM - Subscription Module 

SMR - Simulated Miss Rate 

SPARQL - SPARQL Protocol and RDF Query Language 

SQEM - Storage Query Execution Manager 

SQL – Structured Query Language 

SR - Simulated Refresh ratio 

SSD – Solid State Disk 
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SSN - Semantic Sensor Network 

TCP/IP - Transmission Control Protocol/Internet Protocol 

TOG - The Open Group 

TPC - Transaction Processing Performance Council 

TTL - Time-to-Live 

VIN - Vehicle Identification Number 

XML - Extensible Markup Language 
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Appendix B. Glossary  
 

Complex Event Processing is the process of analysing continuous stream of events for finding 

the defined patterns. 

Context [20] “is any information that can be used to characterise the situation of an entity. An 

entity is a person, place, or object that is considered relevant to the interaction between a user 

and an application, including the user and applications themselves.”  

Context attribute is the data, which can characterise an associated context entity. 

Context consumer is any participant of the IoT ecosystem, which requires context about 

entities. 

Context entity is an object (real or virtual) of the IoT ecosystem. 

Context Management Platform (CMP) is an advanced middleware platforms which 

comprise functionalities of (i) IoT marketplace, (ii) gateways to multiple data sources, (iii) 

subscription mechanisms, (iv) features for performing aggregations, reasoning, analytical 

functions, and (v) advanced sensor data management. 

Context provider is any participant of the IoT ecosystem, which is able to provide context 

about entities. 

Context query represents a formulated request for contextual information. 

Context request (in CDQL scope) is a part of a context query, which is formulated to retrieve 

contextual information about a particular entity type. 

Context update is a message, containing information about the current value of one or many 

context attributes. 

Context-as-a-Service (concept) refers to an IT business model, where a platform provides 

contextual information about external entities based on the pay-as-you-go model. 

Cost of Automatic Retrievals (CAR) - the cost incurred by the total number of planned 

retrievals, which occurred during the planning period. 

Cost of Triggered Retrievals (CTR) - the cost incurred by total number of retrievals caused 

by cache misses during the planning period.  

Data stream – we use the term Event Stream interchangeably with Data Stream. However, in 

other domains (e.g. video streaming) the term data stream can have a different meaning. 
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Database Mode of CMP operation refers to the mode based on the full coverage strategy. All 

the queries are served from the cache. 

Elastically scalable system is a system, which can rapidly increase the amount of used 

physical resources (e.g. computational, storage), as well as decrease the amount of these 

resources. 

Event stream is an incoming continuous and potentially infinite sequence of messages, which 

contain data about changes in context attributes’ values. 

Freshness is the metric, which shows how stale is the cached value. 

Full Coverage strategy is a caching strategy, where the prefetching is always performed in 

the end of the freshness period, thus queries can be always served from the cache. 

Gap (cache) is the time Δt between the end of the expiry period and the moment of planned 

retrieval. If a request arrives during this period, it “falls within the gap,” and CSMS has a cache 

miss. 

Invoker (CoaaS platform) is a software component responsible for retrieving the information 

form context providers. 

IoT ecosystem (IoT Phase 3) refers to the stage, when smart devices can communicate with 

each other spontaneously, without being locked into a silo of a company, which produced the 

device or the software. This stage is characterised by a massive number of horizontal 

connections; devices and vertical silos that form an ecosystem. 

IoT silo is a vertically oriented IoT system where the dataflow is controlled by one 

organisation. 

Least Fresh First (LFF) strategy is a caching strategy when the least fresh first items are 

evicted first. 

Least Valuable First (LVF) strategy is a caching strategy when the items which are less 

valuable to the system are evicted first. 

Need to Refresh (NTR) – is a metric, which shows how strong is the influence of refreshing 

the data item at current time on the cache performance. 

Not only Database – Not only Redirector (NoD-NoR) mode of CMP operation refers to the 

mode, where a decision about the caching strategy and caching rate is made individually for 



204 

 

each context attribute. The queries can be served from the cache, as well as from the external 

providers. 

Planned refresh period is the time between planned retrievals of a data item by CoaaS from 

a context provider.  

Planning period is the period of time for which the decision about the caching strategy and 

the corresponding parameters is made. 

Prefetching refers to the process of retrieving context from providers and caching it, before it 

was requested by the consumer. Prefetching is used as an enabler for the proactive caching 

strategy. 

Proactive strategy is a caching strategy that is based on prefetching the data before it was 

requested by the consumer. A proactive strategy allows cache gaps, which makes it different 

from the full coverage strategy. 

PULL-based query (CDQL) is a query, which is executed once at the moment of arrival. It 

can be seen as a SELECT query in databases. 

PUSH-based query (CDQL) represents a subscription for situation monitoring. The resulting 

context is “pushed” back to the consumer, when the platform detects the situation by analysing 

incoming event streams. 

Reactive strategy is a caching strategy, which is based on reusing cached data for serving 

queries, but never uses prefetching. 

Real refresh period is the average time between retrievals. 

Redirector Mode of CMP operation refers to the mode, when all the queries are served based 

on the data, which is retrieved from the context providers on the fly. Cache is not used. 

Service Level Agreement (SLA) is a formally defined contract between the consumer and the 

provider of IT services. SLA define such aspects as latencies, reliability, accuracy, freshness, 

prices and penalties. 

 

 


