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Abstract

An intensely investigated problem in time series analysis is identifying change-points (that

is, segment boundary points) and modeling shifts in the dynamical properties of each seg-

ment. Time series segmentation plays a vital role in many applications. An important and

interesting focus of current research in this field is to segment multiple sequences in parallel

instead of a single sequence, which can make the inference of change-point locations more

accurate, precise and sensitive. This task has recently received much attention.

The autocorrelation structure of parallel time series may display more complex patterns

than are observed for individual time series and some dependency may also exist between

parallel time series. Therefore, the task of developing methods to account for these depen-

dencies in order to avoid false change-point detection is important in this context.

In this research, my focus was to use a Bayesian approach to segment time series data

and develop methods to segment multiple parallel time series. The analysis was mainly

carried out using a Bayesian change-point segmented ARMA model. In the first phase of

the research, I introduced and validated this model. This novel methodology presented a

promising direction to estimate the locations of change-points by segmenting a time series

using an ARMA model to account for the autocorrelations in time series in a better way.

ARMA models express a time series as a linear function of its past values and consider

the dependence between residual terms by incorporating a moving average component.

This methodology used a prior on the locations of change-points as well as on different

parameters of the ARMA model and determined the posterior probability distributions

of these change-points. Parameters were inferred using the Generalized Gibbs sampler

Markov chain Monte Carlo technique. A second methodological innovation was a simple

one-dimensional approach to segmenting parallel time series. I proposed an event detection

approach for segmenting spatio-temporal data with background noise which adapted the

segmented ARMA model. I pre-processed the data by finding the maximum over locations

for each time point, thus producing a single summary time series amenable to analysis with
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the segmented ARMA model instead of segmenting two-dimensional data. This dimension

reduction method involves information loss and provided false positive change-points in high

background noise. A third, and most important, methodological innovation was to build

a more general and flexible method for the segmentation of multiple parallel sequences. I

developed three alternative models to simultaneously segment multiple series, each of which

were alternative generalizations of the Bayesian change-point segmented ARMA model.

Incorporating multiple parallel series in segmentation greatly helped to clearly identify all

change-point locations for a data set where the segmentation of a single time series detected

only some change-points.

Finally, my focus turned to zero-inflated data, raised because of the presence of excessive

numbers of zeros in an interesting data set pertaining to the composition of sediment

cores extracted from a floodplain lake. These time series directed my research interest to

investigate the literature of models regarding zero-inflated data. The insight of this review

provides an interesting direction for future research, to generalize the Bayesian change-point

segmented ARMA model for handling zero-inflated time series data.
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Notation

Symbol Description

T The total length of the signal.

t = 1, 2 · · · , T A time point in the signal.

xt Signal at time t.

X = (x1, · · · , xT ) A vector of the values of the signal.

φ Probability of starting a new segment.

K Total number of segments.

k = 1, · · · , K Index for the segments.

s = (s1, · · · , sK) Starting positions of the segments.

N The number of groups.

g = (g1, · · · , gK) A vector containing the assignment of each segment to a group.

π = (π1, · · · , πN) The probabilities of assigning segments to groups.

a Order of the AR model.

m Order of the MA model.

ψ Parameter of AR model.

θ Parameter of MA model.

ε = (ε1, · · · , εT ) A vector of error terms.

σ2 variance of the error term.

ck Mean signal level (or mean of the ARMA model) for the segment k.

AR(a) Autoregressive model with order a which is:

xt = c+
a∑
i=1

ψi(xt−i − c) + εt

MA(m) Moving average model with order m which is:

xt = c+
m∑
i=1

θiεt−i + εt

ARMA(a,m) Autoregressive moving average model with order a and m which is:

xt = c+ εt +
a∑
i=1

ψi(xt−i − c) +
m∑
i=1

θiεt−i
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Chapter 1

Introduction

A time series is a sequence of observations made for a well-defined variable at successive

time-points. In many applications, the time points are equally spaced, although this is not a

necessary requirement. For example, the total retail sales made by a specific company each

month of the year would form a time series because sales revenue is a well-defined variable,

consistently estimated at approximately equally spaced time intervals [1]. Time series are

generally modelled as random processes that may be stationary or non-stationary. A non-

stationary time series is a time series that exhibits temporal heterogeneity, thus statistical

properties such as localised mean, variance and autocorrelations at various lags are not

constant over time. For example, some time series are characterized by sudden changes of

local statistical properties at certain time instants known as change-points, and constant

local statistical properties in between change-points. Identification of change-points and

modelling the segments of the time-series between change-points is an intensely investigated

problem in time series analysis. Most of the literature on this topic (reviewed in Chapter

2) focuses on abrupt changes to the first few moments of the series (mean and variance).

The aim is to detect locations of change-points and the amount of change in those moments

over time.

The conclusions drawn from time-series data can be inaccurate if the lack of homogeneity

is not taken into account [2]. Failing to detect change-points can also have a harmful impact

on predictive performance. Recognition of these facts has led to an interest in change-point

detection. As a result, it has become a beneficial tool in a diverse set of application fields

including bioinformatics [3, 4], EEG analysis [5–7], finance [8, 9], industrial monitoring [10],

signal processing [11], econometrics [12, 13] and disease demographics [14].

In its simplest form, the change-point problem considers whether one or more changes
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occur in a time series and if so, the most likely times of any such changes. A more complex

and difficult problem is to identify, locate and estimate multiple change-points in a time

series. Both frequentist and Bayesian approaches have generated significant amounts of lit-

erature on estimation for multiple change-point models. This literature is surveyed in [10,

15–20], where numerous models and methods are suggested, discussed and a comprehen-

sive list of references is reviewed. As an approach to change-point detection, the Bayesian

approach is particularly appealing because it automatically achieves a compromise between

model intricacy (quantified by the number of change points) and model fit. A significant ad-

vantage of Bayesian change-point detection approaches over frequentist approaches is that

they quantify uncertainty about the number and location of change points [21]. Bayesian

approaches also produce a probability distribution to quantify uncertainty in the param-

eters, rather than using a point estimate. In addition, for some frequentist approaches to

detecting multiple change-points, the computational expense increases drastically with the

number of change-points present in the time series. A combinative cost in the optimiza-

tion task is induced by some forms of frequentist approach with maximum likelihood, and

this may make calculations prohibitive whenever the number of change-points is more than

two [22]. In contrast, several authors have used dynamic programming [8, 23] to render

Bayesian approaches computationally feasible [24].

A variety of Bayesian change-point approaches have been developed and widely used

in time-series segmentation. The Bayesian approach to multiple change-points dates back

to the seminal paper of Chernoff and Zacks [25]. Here I highlight two aspects of Bayesian

change-point models: one is the types of model used to model homogenous behaviour within

segments and the other is the types of method used to simulate sampling from a posterior

distribution. In Bayesian approaches, there are many different types of model that have

been used to describe the behaviour of a sequence within a segment (between two successive

change-points). There are so many candidate models that is infeasible to enumerate all of

them here. As a result, I mention only those models of most direct relevance to this

thesis, specifically those which used an autoregressive model (AR) for each segment [26–

34]. These Bayesian approaches model a nonstationary time series by segmenting the series

into blocks of different AR processes. However, the presence of autocorrelation in time

series may sometimes lead to an excessively large estimate of the number of change-points.

This thesis introduces an autoregressive moving average (ARMA) model. ARMA models

take into account the dependence between residual terms by adding a moving average
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component, as discussed in Chapter 2. Using a segmented ARMA model in a Bayesian

approach is advantageous in that it permits the fitting of more flexible Bayesian change-

point models than is possible with an AR model. Pei-Gee [33] argues that ARMA models

may be useful for analysing texture and contextual information in image segmentation.

However, Pei-Gee used a two-dimensional AR model instead of an ARMA model to simplify

the computation in his proposed time series segmentation approach.

The complexity of posterior distributions for parameters of change-point models usually

necessitates specialised simulation methods. McCulloch and Tsay [35] expanded Chernoff-

Zack’s model of normal mean shift Gaussian autoregressive models with possible changes

in level and error variance and used the Gibbs sampler to approximate the posterior dis-

tribution of time-varying parameters. Succeeding improvements of the Bayesian approach

make use of reversible jump Markov chain Monte Carlo (MCMC) developed by Green

[36], Metropolis-Hastings (MH) algorithm [37] or Gibbs sampling used in conjunction

with Metropolis-Hastings steps, as in Albert and Chib [2], Chib [38], Liu and Lawrence

[39], Wang and Zivot [40], Chib, Nardari and Shephard [41]. All these methods involved

simulation-based inference via MCMC algorithms. The method of time series segmentation

used in this thesis uses a highly efficient sampling technique (Generalized Gibbs Sampler,

or GGS) to generate samples from a posterior distribution. This technique (developed by

Keith et al. [42]) is similar to a conventional Gibbs sampler but provides an alternative to

the reversible jump sampler. The dimension in this algorithm does not need to be fixed

and it provides flexibility to sample from varying dimensional spaces.

Detection of multiple changes in multiple parallel time series has recently received much

attention in time series segmentation. Segmentation of multiple sequences is an important

and interesting but also a challenging problem because of its complexity. Three approaches

are considered in the literature to segment multiple time series in parallel. The first is the

simultaneous segmentation of all series where changes are in common among series [43–

45], the second approach is the joint segmentation of all the series where each series has

its own specific number and location of changes [46–49] and the third approach considers

all series independently and compares the location of change-points between the series

[44]. Segmenting multiple sequences instead of a single sequence potentially makes the

inference of change-point locations more accurate, more precise and more sensitive. Also,

some dependency may exist between multiple series and it is necessary to consider these

dependencies in order to avoid false change-point detection [49]. Segmentation of multiple
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sequences in parallel can potentially enhance robustness and power by pooling information

across sequences [43]. These motivating reasons are relevant in an increasing number of

applications in which analysis of multiple series at a time enhances the ability to infer an

intricate underlying phenomenon.

Keeping the above points in mind, the main objective of this thesis is to:

‘segment time series data with a Bayesian change-point segmented ARMA model and de-

velop methods to segment multiple parallel time series’.

To achieve this objective, I used a Bayesian change-point segmented ARMA model through-

out this research. This method considers the problem of modeling a time series by segment-

ing the series into blocks of autoregressive moving average (ARMA) processes. The model,

methods and software were developed in collaboration with Assoc. Prof. Jonathan M. Keith

and Dr. Sarah Boyd. In Chapter 2, I discuss: i) basic terminologies related to time series

segmentation; ii) a Bayesian change-point model [42] used for segmenting binary sequences,

which is closely related to the Bayesian change-point segmented ARMA model; iii) a wider

review of models used in time series segmentation, a review of MCMC samplers used in

time series segmentation and a review of the models used to segment multiple sequence in

parallel; and iv) background to some other methods used in this thesis.

The focal point of Chapter 3 is to introduce and validate a Bayesian change-point seg-

mented ARMA model and asses the performance of this model by segmenting one dimen-

sional time series data. The Bayesian change-point segmented ARMA model has two novel

features: i) a separate ARMA model for each segment and ii) a highly efficient technique

(GGS) to generate samples from a posterior distribution. I demonstrate that this novel

method provides a promising way to estimate the locations of change-points. To the best

of my knowledge, the use of ARMA models in change-point analysis is an approach that is

surprisingly absent from the existing literature. A key advantage of ARMA models over AR

models is that the former can better account for the autocorrelations in a time series [1].

ARMA models not only express a time series as a linear function of its past values but also

consider the dependence between residual terms by including a moving average component.

In the model presented here, each segment in the time series is assumed generated by an

ARMA model with different means but the same variance. I validated this method using

Cook’s method [50] and tested its performance by applying it to simulated data and to a

well known real world dataset used in the literature for change-point detection. I applied
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AR(1), MA(1) and ARMA(1,1) models to that real data and compared these three mod-

els using DICV values. Results obtained using simulated data demonstrated that fitting

a segmented ARMA model potentially detects a larger number of change-points than the

AR model and for the real world data, the segmented ARMA model identifies a greater

number of change-points than have been detected by comparable methods in the existing

literature illustrating the higher sensitivity of the proposed model. This work was pub-

lished in the journal PLoS ONE [51] and the methodology was presented as a poster at the

BioInfoSummer 2015 conference held in Sydney.

As this thesis is primarily aimed at developing improved methods for parallel segmen-

tation, I explored methods and statistical resources currently available segmenting parallel

sequences. This motivates the work of Chapter 4, where I propose a simple one-dimensional

approach to segment parallel time series. This is an event detection approach for spatio-

temporal data in presence of background noise using a one-dimensional summary statistic.

Here I adapted the Bayesian change-point segmented ARMA model presented in Chap-

ter 3 to detect such events. As the Bayesian change-point segmented ARMA model is

designed for one-dimensional data, I pre-processed parallel spatially correlated time-series

data to produce a single summary sequence. The goal of this chapter was to identify an

event of interest in parallel sequences partially obscured by background noise, without ex-

plicitly segmenting the two-dimensional data. Instead of segmenting the two-dimensional

image, I developed a complementary approach to segment parallel time series collected at

roughly evenly spaced spatial locations along a line or curve. Before applying the Bayesian

change-point segmented ARMA model, the data were pre-processed using the maximum

over locations as a summary statistic for each time point. The performance of the method

was evaluated via synthetic data as well as on real world data and the results compared

with a simple event extraction method. Results of synthetic data found the model to be

effective in identifying events in backgrounds with a variety of noise levels. Results ob-

tained using real world data identified the boundary of an event with high probability in

data with a low level of background noise. The method was less effective in identifying

events in the presence of a high level of background noise, for which it found some false

positive change-points in addition to true events. In the same chapter, I also investigated

an alternative summary statistic, obtained using principal component analysis (PCA). As a

summary statistic, the maximum produced better results than PCA in our examples. How-

ever, dimension reduction method using any summary statistic includes information loss,
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and is therefore suitable only for preliminary exploratory analysis. Further development

of this model is required to improve the sensitivity of this method in the presence of high

noise variance. This work is currently submitted to a journal.

In Chapter 5, I propose a more general and flexible method for the segmentation of

multiple sequences in parallel. This method is also a generalization of the Bayesian change-

point segmented ARMA model presented in Chapter 3. In this chapter, I present three

alternative models for simultaneous segmentation of multiple series in parallel. The first

generalization assumes change-points occur in corresponding locations in all series, the

second adds the additional assumption that all time-series have the same probabilities of

assigning segments to a number of segment classes and the third assumes adds the further

assumption that corresponding segments in each time-series belong to a common segment

class. The performances of these three generalizations were assessed using simulated data

and real world data. These alternative models were also compared using three information

criteria (approximated AIC, BIC and DICV values) in real life examples. This work is

currently submitted to a renowned journal.

The real world data used in Chapter 5 motivates the work in Chapter 6. The data set

is taken from a sediment core and includes concentrations of thirty-seven metal elements

detected at each depth (in mm) in the cores. The time series of these elements represent

specific sediment characteristics such as magnetic susceptibility, organic matter, sediment

particle size and elemental composition of the sediments [52, 53]. Most of the elements

were not detected at all depths in the core, resulting in time-series that include zeros

over extended time-periods. For this reason, I segmented only ten time-series in parallel in

Chapter 5, specifically those that did not contain any zeros. The excessive number of zeroes

in the remaining sequences directed my research interest to models for zero-inflated data. A

variable is described as zero-inflated semicontinuous when it has a continuous distribution

except for a probability mass at 0. In Chapter 6, I review models for zero-inflated data.

This chapter will ultimately form the basis for a review article (in preparation) and provides

an interesting direction for further research.

As this thesis is intended to be written in fulfillment of the requirement for ‘Thesis by

Publications’, Chapter 3, Chapter 4, Chapter 5 and Chapter 6 are presented as journal

articles formatted for their respective journals. The methods sections of Chapter 3, Chap-

ter 4 and Chapter 5 partially overlap since they all use the same Bayesian change-point

segmented ARMA model as the basic model. The bibliographies of these chapters are
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incorporated at the end of each chapter.

In synopsis, the main objective of this thesis is to segment time series data with a

Bayesian change-point segmented ARMA model and develop methods to segment multiple

parallel sequences. To achieve this, I have investigated the following aspects:

1. Review literature to gain knowledge about the models used for time series segmen-

tation, sampling techniques used in time series segmentation and about the models

used to segment parallel sequence [Chapter 2].

2. Present a Bayesian change-point modelling approach where the data in segments are

modeled by an autoregressive moving average (ARMA) model [Chapter 3].

3. Validate the segmented ARMA model and assess the performance of Bayesian change-

point segmented ARMA model via simulated and real world data [Chapter 3].

4. Segment parallel spatially correlated time-series data using a simple approach based

on a summary statistic [Chapter 4].

5. Segment multiple sequences in parallel using a generalization of the segmented ARMA

model assuming the same change-points for all time series [Chapter 5].

6. Segment multiple sequences in parallel using a generalization of the segmented ARMA

model assuming the change-points and probabilities of assigning segments to classes

are identical for all time series [Chapter 5].

7. Segment multiple sequences in parallel using a generalization of the segmented ARMA

model by considering parallel sequences have common segment classes in addition to

the assumptions of the above two generalizations [Chapter 5].

8. Review models for zero-inflated time-series data [Chapter 6].

9. Discuss key findings, issues regarding methodological challenges, and future works

[Chapter 7].
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter is organized into four sections. First, I discuss some background definitions

related to segmentation: I define time series segmentation and change-point detection,

review literature about previously used models in time series segmentation and give an

overview of a Bayesian change-point model. The second section reviews the Markov chain

Monte Carlo (MCMC) method, different types of MCMC sampler, the steps to sample from

the posterior distribution of a Bayesian change-point model and includes a discussion of

literature about different types of sampler used for time series segmentation. In the third

section, I discuss literature about previously used methods to segment parallel sequences.

Lastly in the fourth section, I review some models and methods that are used in the

upcoming chapters of this thesis.

2.2 Some Background to Segmentation

2.2.1 Time Series Segmentation

A time series is a sequence of measurements made at consecutive (and usually equally

spaced) points in time. Some time series can be partitioned into discrete segments, each

with characteristic properties. That is, time series segmentation decomposes time series into

homogeneous segments consisting of similar observations, different from those of neighbour-

ing segments [1]. Segmentation is useful in such disparate fields as bioinformatics, industrial

monitoring, audiovisual data and financial data [2]. This process of partitioning a sequence
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2.2. SOME BACKGROUND TO SEGMENTATION

into individual segments with an intention of revealing changes in the properties of the

sequence is known as time series segmentation. Examples of application of time-series seg-

mentation include speaker segmentation, in which an audio recording signal is divided into

segments to identify who is speaking at different times [3, 4]; segmenting time series of stock

market trajectories to quantify the impact of important world events [5]; segmentation of

handwriting to identify the several words or letters of which it is composed [6], and many

more. The goals of segmentation may include to: i) identify time intervals of stability and

homogeneity in the behavior of the process; ii) delineate the time instants of change; iii)

identify characteristics of each segment; and iv) use these facts and information to ascer-

tain shapes and patterns in a nonstationary time series [7]. Overall, the main intent of

time-series segmentation is to pinpoint the segment boundary points in the time-series, and

to determine the dynamical properties corresponding to each segment.

2.2.2 Change-point detection in time series

Change-point detection refers to the problem of detecting changes and determining the

times of changes in stochastic processes [8]. Change-point detection methods can be a way

to segment time series data, as the purpose of such methods is to segment a succession

of observations by selecting a series of change-point locations such that the observations

are, in some sense, homogeneous within segments and heterogenous between segments.

Mathematically, if we have an ordered sequence of observations x1:T = (x1, x2, · · · , xT ),

a change-point is said to be present at time point s where s ∈ {1, 2, · · · , T − 1} if the

statistical properties of x1, · · · , xs and xs+1 · · ·xT differ in some way. This definition refers

to a single change-point; if we extend the concept to multiple change-points we now have

a number of change-points k with positions, s1:k = (s1, · · · , sk). Here, every change-point

position is an integer between 1 and T − 1 inclusive. We assume s0 = 0 and sk+1 = T , and

the change-points are ordered so that si < sj if, and only if, i < j. The k change-points

will divide the data into k+1 segments where the i-th segment holds data x(si−1+1):si . Each

segment has a corresponding set of parameters. Change-point detection methods represent

the data by finding the number of segments and by estimating the values of parameters

associated with each segment [9].

Figure 2.1 shows common four types of change-point problems. In the first row, segments

differ in mean. In the second row, segments differ in variance. In the third row, segments

differ in their internal patterns of autocorrelation. The segments shown in the fourth row
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2.2. SOME BACKGROUND TO SEGMENTATION

differ in the entire form of their probability distribution [10]. In this thesis, I consider those

problems where changes are present in the mean and variance.

Figure 2.1: Types of common change-point problems. First row: changes in the mean,
second row: changes in the variance, third row: changes in the autocorrelation and fourth
row: changes in the shape of the probability distribution.

2.2.3 Change-point detection model

There are many models that have been used to detect change-points in time-series and it is

beyond the scope of this thesis to enumerate all of them. Miscellaneous methods of non-,

semi- and fully parametric change-point modeling have flourished [11–17].

Models for time series segmentation

Change-point detection in time series segmentation has been the subject of intensive re-

search in the past half-century and the literature on this subject is extensive (see reviews,

[11, 14–16]). Here I review some change-point detection approaches focusing on Bayesian

approaches. Chernoff and Zacks [18] introduced the first Bayesian approach to change-point

detection in 1964, in which they inferred the mean of a normal distribution for each of two
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2.2. SOME BACKGROUND TO SEGMENTATION

segments in a Bayesian framework. They considered X1, X2, · · · , Xn independent and nor-

mally distributed random variables with means µ1, µ2, · · · , µn and variance 1. Every mean

at each time point µi was the same as the mean at previous time point µi−1, except at a

single change-point. The focus of their approach was to estimate the final mean µn.

They made three assumptions: i) the time point when a change occurs follows an

arbitrary specified a priori probability distribution, ii) the difference between the means is

normally distributed with mean 0 and variance σ2 and iii) the final mean µn is a normally

distributed random variable with means 0 and variance τ 2. They derived a Bayes estimator

of µn for a quadratic loss function by letting τ 2 → ∞ and a minimum variance linear

unbiased estimator (MVLU) of µn based on the previous three assumptions. They showed

the Bayes estimator was more efficient than the MVLU estimator if the location of the

change-point is neither 0 nor n − 1. The Bayes estimator is in general very difficult to

apply as it involves many computations. Consequently, they considered a simplification

of the general Bayes estimator formula by assuming the a priori variance of the changes,

σ2 → 0. However, the simplified estimator was not efficient when the magnitude of changes

was large. Then they studied the case where the a priori distribution of change-point times

is such that there is at most one change-point and derived a simple Bayes estimator called

AMOC (at most one change) under this assumption. For sequences with two change-points,

they developed an ‘ad hoc’ estimator in order to avoid the shortcomings of the AMOC

estimator. The ad hoc estimator used the AMOC Bayes estimator in combination with a

sequence of tests intended to identify the last time point of change. These estimators were

then compared using Monte Carlo computations [18]. This method ignores the dynamic

and compound nature of the problem. That is, in some real applications, data becomes

available sequentially, with each new observation requiring a new estimate for the mean of

the last observation. If the times between observations are short, the AMOC and ad hoc

estimators may be too computationally expensive to re-estimate for each new observation.

Smith [19] also considered the problem of finding a single change-point in a finite series

of independent observations. He considered three cases: i) the initial parameter distribution

and the changed parameter distribution both are known; ii) only the initial distribution is

known; and iii) both distributions are unknown [20]. He introduced Bayesian approaches

for each of these cases, in which the probability distributions of the observed signals are

binomial or normal.

To model the relationship between a response and an explanatory variable, Fearnhead
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[21] proposed a novel algorithm for exact Bayesian inference in regression models. This

method models the functional relationship between the response and explanatory variables

as a sequence of independent linear regressions on disjoint segments. This method uses

an efficient dynamic programming algorithm to exactly estimate the posterior distribution

over the number and location of change-points in one-dimensional time series. An unknown

number of segments and an unknown model order for the linear regressions within each

segment was allowed. He first estimated the joint posterior distribution of the number and

positions of change-points using dynamic programming and then sampled change-points

from this posterior distribution using a perfect simulation algorithm. This algorithm makes

use of the independence between segments and the Markovian nature of the time-series

within segments. The algorithm includes a recursion for the probability of the data from

time t onwards, conditional on a change-point immediately before time t, in terms of the

equivalent probabilities for all times after t. When these probabilities have been calculated

for all time-points, it is possible to directly simulate from the posterior distribution of the

time of the first change-point, and then the conditional distribution of the time of the second

change-point, given the first, and so on. An advantage of the perfect simulation algorithm is

that it takes independent samples from the posterior distribution and avoids the problems

of diagnosing convergence encountered by other MCMC methods. However, the method is

not suitable for comparison of models involving different numbers of change-points.

Punskaya et al. [4] developed a Bayesian method for estimating the parameters of an

assumed functional relationship between response and explanatory variables given noisy

measurements. In their model, certain parameters are piecewise constant functions of time,

thus dividing the time series into segments within which standard models (such as au-

toregressive or Lotka-Volterra models) can be applied, with the number and locations of

change-points being additional parameters to be estimated. Mathematically, for any generic

sequence κt, they defined κi:j =∆ (κi, κi+1, · · ·κj)T and let y0:T−1 be a vector of T real obser-

vations. The elements of y0:T−1 were assumed generated by one of the models Mk,pk where

the signal is in the form of a linear regression model with piecewise constant parameters

and k (k ∈ 0, · · · , kmax) change-points. That is,

Mk,pk : yτi:τi+1−1 = G
(pi)
i β

(pi)
i + nτi:τi+1−1, i = 0, · · · , k. (2.1)

where, β
(pi)
i is a vector of pi model parameters for the ith segment i = (0, · · · , k) and

nτi:τi+1−1 is a vector of i.i.d. Gaussian noise samples of variance σ2
i associated with the
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ith model. The change-points of the model Mk,pk are arranged in the vector τ k =∆ τ 1:k

and they adopted τ0 = 0 and τk+1 = T − 1 for notational convenience. They also denoted

σ2
k =∆ σ2

0:k and pk =∆ p0:k, where pi = 0, · · · , pmax. The matrix G
(pi)
i is the matrix of the

basis functions for the ith segment i = (0, · · · , k). For the piecewise polynomial model,

G
(pi)
i is of the following form:

G
(pi)
poly i =



1 xτi x2
τi

· · · xpi−1
τi

1 xτi+1
x2
τi+1

· · · xpi−1
τi+1

...
...

...
. . .

...

1 xτi+1−1 x2
τi+1−1 · · · xpi−1

τi+1−1


and for a piecewise constant autoregressive process, G

(pi)
i is of the following form:

G
(pi)
AR i =



yτi−1 yτi−2 · · · yτi−pi

yτi yτi−1 · · · yτi+1−pi
...

...
. . .

...

yτi+1−2 yτi+1−3 · · · yτi+1−1−pi


The orders of the different linear regression models p0:k were assumed equal and un-

known, that is, pi = pj = p0 for any (i, j) ∈ {0, · · · , k}. The number of change-points k

and the associated parameters Ψk,pk =∆ (τ k,pk, {β(pi)
i }ki=0,σ

2
k) were also unknown. Given

yτ0:T−1, their aim was to estimate k and Ψk,pk . They used joint prior distributions for the

number of the change-points, their locations and the unknown orders of the linear regres-

sion models within each segment. They also developed hierarchical prior distributions in

which the hyperparameters were presumed random with a vague prior distribution. Re-

versible jump Markov chain Monte Carlo (MCMC) methods were used to estimate the

resulting posterior probability distributions, as these did not admit closed-form analytical

expressions. The proposed approach is flexible and can be used to compute the predictive

distribution from the MCMC samples. This algorithm can be extended for a more general

noise distribution or for multivariate signals.

Another piecewise autoregressive (AR) process was suggested by Davis et al. [22]. They

allowed for an unknown number and locations of segments and also unknown orders of the

respective AR processes. They provided an algorithm for finding the “best”-fitting model

from the class of piecewise AR processes, that is, the “best” combination of the number
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of breakpoints, the lengths of the segments, and the orders of the piecewise AR processes.

To achieve this, they proposed an automatic piecewise autoregressive modeling procedure,

referred to as Auto-PARM. The minimum description length principle was used to quantify

the fit of the model to the data. The “best” combination was defined as the optimizer of

an objective function and the authors used a genetic algorithm to solve this optimization

problem. After specifying the number of change-points, their positions and the order of

the respective AR process, they determined the maximum likelihood estimates of the AR

parameters for each segment. They also considered the segmentation of multivariate time

series data.

To segment possibly nonstationary time series data, a class of time-domain models

(models used to measure variation of amplitude of signal with time known as time-domain

model) was developed by Wood et al. [23]. Models in this class are structured as a mixture

of time series, each with fixed and unknown parameters, and time-varying mixture proba-

bilities. They estimated the number of mixture components using the data. In particular,

the authors studied mixtures of autoregressive models with unknown but finite lags and

an unknown number of components. The data set was divided into small non-overlapping

segments such that all observations within one segment were always assigned to the same

component. The model parameters, including the number of mixture components, were

estimated using Markov chain Monte Carlo methods. Many current methods in time series

analysis whose parameters change over time are based on segmentation of the time series

[4, 22, 24]. Another approach which permits the parameters to change is to model their

evolution [25, 26]. The method suggested by Wood [23] differs from these methods in that

it does not determine which parameters change and which do not and it also doesn’t spec-

ify the model for parameter evolution to allow for structural changes. This is a significant

advantage of Wood’s method, because in any model with more than a few parameters, it is

likely that not all parameters will evolve in the same way or that not all parameters change

abruptly at the same time. Moreover, sometimes it is hard to model the evolution of some

parameters. In such cases, this method formulation allows some of the parameters to be

the same over time by making them common across all components.

The observations in change-point detection problems can not in general be assumed to

be independent. The autocovariance structure of a time series may exhibit complicated

patterns of dependence and this needs to be considered in change-point estimation. How-

ever, considering the dependence structure may invalidate the classical inference approach
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of the independent case. Chakar et al. [27] proposed a robust approach for detecting mul-

tiple change-points in the mean of a Gaussian AR(1) process by taking into account the

dependency structure. The proposed method involves two phases: i) creating a robust esti-

mator of the autocorrelation parameter to whiten the original series (that is, a transformed

time series which behaves like statistical white noise) and ii) estimating change-points in

the mean of the now approximately independent random variables. They considered the

segmentation of an AR(1) process with homogeneous auto-correlation coefficient ρ∗:

yi = µ∗k + ηi, t∗n,k + 1 ≤ i ≤ t∗n,k+1, 0 ≤ k ≤ m∗, 1 ≤ i ≤ n, (2.2)

where, (ηi)i∈Z is a zero-mean stationary AR(1) Gaussian process and ηi = ρ∗ηi−1 + εi. Here,

|ρ∗| < 1, the εi’s are i.i.d. zero-mean Gaussian random variables with variance σ∗
2

and

y0 is a Gaussian random variable with mean µ∗0 and variance σ∗
2
/(1 − ρ∗2). The purpose

of their methodology was to estimate both the change-point locations t∗n = (t∗n,k)1≤k≤m∗

and the means µ∗ = (µ∗k)0≤k≤m∗ , considering the presence of autocorrelation ρ∗. Before

performing segmentation, they proposed to estimate ρ∗, but the estimation is more complex

in the presence of change-points. Consequently, they considered the data observed at the

change-point positions as outliers and proposed an estimate of ρ∗ which was robust to the

existence of such outliers. For the segmentations, they developed a criterion equivalent to

the classic least-squares and applied it to a decorrelated version of the series, calculated

using the estimated ρ∗. They showed that the resulting change-point estimators have

the same asymptotic properties as the classical estimators in the independent framework,

indicating that the performances of the estimators were not influenced by the dependence

assumption. Finally, the authors identified the number of segments by proposing a model

selection criteria. This method is computationally effective and displays better performance

on finite sample size data than established approaches that do not consider the dependence

structure of the time series.

Chan and Tong [28] suggested a new class of non-linear models to consider the prob-

lem of regime switching behaviour in the conditional mean. They named these Smooth

Transition Autoregressive (STAR) models. STAR models are an expansion of Threshold

Autoregressive (TAR) models, which were proposed by Tong and Lim [29–31]. The TAR

model is a piecewise linear model consisting of two or more regimes of linear submodels.

The TAR model uses an indicator variable representing a switch from one regime to an-

other and taking a value zero or one, conditioning upon the values of a transition variable
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and threshold parameter. If the transition variable is a lagged endogenous variable, a spe-

cial class of the TAR model is produced, called the Self Exiting Threshold Autoregressive

(SETAR) model [30] and specified by the following equation:

yt = XTψ(j) + σ(j)εt, rj−1 < zt < rj. (2.3)

where, XT = (1, yt−1, yt−2, · · · , yt−p) is a column vector of variables, j is the indicator

variable, yt = ψ0 + ψ1yt−1 + · · ·+ ψayt−a + εt, ψ is the vector of autoregressive parameters,

εt ∼iid WN(0, 1), zt is a transition variable and −∞ = r0 < r1 < · · · < rk = +∞ are k + 1

non-trivial thresholds dividing the domain of zt into k different regimes.

Chan and Tong [28] replaced the indicator variable of the TAR model with a smooth

transition function in their STAR model, reasoning that abrupt jumps from one regime to

another may not be an adequate representation of the underlying mechanism generating

observed data. A smooth transition between regimes may be of use when the transition

from one regime to another arises as a result of several actions that occur over time. The

STAR model can be presented as follows:

yt = XT + F (zt, ζ, c)X
T + σ(j)εt. (2.4)

where, F (zt, ζ, c) is the transition function bounded between 0 and 1, ζ is the smoothing

parameter and c is the location parameter. In a Bayesian framework, Péguin-Feissolle [32]

presented an estimation and prediction procedure for a general non-linear model and then

described it using an LSTAR model with simulated data. A comparison of non-linear mod-

els with regime changes in the conditional mean, namely Markov switching autoregressive

(MSAR) models, TAR and STAR models, was presented by Potter [33]. The review in-

cluded estimation techniques from a classical and Bayesian perspective as well as a review

of some of the parametric tests for non-linearity.

Traditional time series modelling assumes a constant conditional variance. Engle (1982)

[34] introduced the Autoregressive Conditional Heteroscedastic (ARCH) model which allows

the conditional variance to change over time. This revolutionary new class of models

could be applied to processes with non-constant variances, conditional on the past, but

required constant unconditional variances. The ARCH model was generalised by Bollerslev

(1986) [35], who introduced past conditional variances into the model’s conditional variance

equation. The resulting model is known as the Generalised Autoregressive Conditional
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Heteroscedastic (GARCH) model and has been widely applied in several fields, though

most commonly in economics and finance. GARCH models have been used for Value at

Risk estimation [36, 37], and to estimate volatility for financial markets and indices [38–40].

GARCH models were also used to model speech signals by Cohen (2004) [41]. Estimation of

GARCH model parameters has also been performed in Bayesian framework. Bauwens and

Lubrano [42] applied a Griddy-Gibbs sampler for inference of the parameters of GARCH

models with student errors. They showed that their method is feasible and competitive for

importance sampling and the Metropolis-Hastings algorithm.

Hidden Markov models (HMMs) are well-established as an efficient approach in time

series segmentation. A HMM is a statistical model in which the observed time series

is fractionated into segments and the time series within each segment is modeled by a

Markov process with hidden states. In each segment, hidden states determine the transition

probabilities and the transitions between these hidden states occur at segment ends [11].

Albert and Chib [43] considered HMMs for regime switching problems. Regime shifts

were conceptualised as the outcome of an unobserved two-state indicator variable and mod-

eled by a Markov process with unknown transition probabilities. They developed the model

in a Bayesian framework in which the unobserved states, one for each time point, were con-

sidered as missing data and these unobserved states were analyzed using Gibbs sampling.

This method is useful, as the conditional posterior distribution of the parameters, given

the states, and the conditional posterior distribution of the states, given the parameters,

have an amenable structure for Monte Carlo sampling. This method is straightforward and

generates the marginal posterior distributions for all parameters of interest. The authors

also obtained the posterior distributions of the states, future observations, and the resid-

uals, averaged over the parameter space. Bayesian HMM approaches are computationally

intense and are generally impracticable for segmenting large sequences, without simplifying

heuristics.

Kehagias [44] also used HMMs for the segmentation of hydrological and enviromental

time series data. In this model, the unobservable state process is Markovian and can take

a finite number of values 1, 2 · · · , k. At every time step, the state process can either remain

the same or increase by one and the observable process generates a sample from a normal

distribution with mean value depending on the current state. They assumed that the time

series x = (x1, x2, · · · , xT ) is a realization of the observable process and represent each time

interval during which the hidden state doesn’t change as a separate segment. Under this
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correspondence, the segmentation problem is simplified to estimating the underlying state

sequence z1, z2, · · · , zT .

Successive generalizations and expansions of Bayesian methods of change-point detection

problems include [45–48] and many others.

Bayesian change-point detection model

Now I describe one Bayesian change-point modeling approach [49] in detail that is closely

related to the Bayesian change-point segmented ARMA model which is used throughout

my thesis to achieve my objectives. This Bayesian change-point model generates binary

sequences.

Let T be the length of the binary sequence and let φ be the probability of starting a

new segment, assuming change-point times were generated by a sequence of Bernoulli trials

at each time point to decide whether to start a new segment. The probability of generating

a segmentation with k change-points at positions s = (s1, · · · , sk) is given by

p(k, s|φ) = φk−f (1− φ)T−1−k. (2.5)

where f is the number of fixed change-points. Fixed change-points are the boundaries

between the segments of sequences that can not be moved or removed. Suppose that T and

f are given. A decision is made whether to start a new segment at each position in the

sequence except the first and those immediately following fixed change-points. Set s0 = 1

and sk+1 = T + 1.

Segments are classified into groups that share similar properties. Each segment is as-

signed to one of ϑ groups. Denote the group to which segment j is assigned by gj ∈

{0, 1, · · · , ϑ − 1} and let πt be the probability of assigning a segment to group t. Set

g = (g0, · · · , gk). Then the probability of a specific assignment of the segments such that

x0 segments are assigned to group ‘0’, . . . , xϑ−1 segments are assigned to group ‘ϑ-1’ is :

p(g|k, π) = πx00 · · · π
xϑ−1

ϑ−1 =
k∏
j=0

πgj . (2.6)

Let θj be the probability of generating a ‘1’ at each position of segment j. For each

segment j, the parameter θj is drawn from a beta distribution with as yet unspecified

parameters α
(t)
0 , α

(t)
1 , where t = gj, that is,
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p(θj|α(t)
0 , α

(t)
1 ) = B(θj|α(t)

0 , α
(t)
1 ) =

Γ(α
(t)
0 + α

(t)
1 )

Γ(α
(t)
0 )Γ(α

(t)
1 )

θ
α
(t)
1 −1

j (1− θj)α
(t)
0 −1. (2.7)

Set θ = (θ0, · · · , θk), α(t) = (α
(t)
0 , · · · , α(t)

k ) and α = (α(0), · · · , α(ϑ−1)). Finally, the

binary sequence within each segment is generated by independent Bernoulli trials at each

position in the segment. The probability that segment j contains a specific sequence Xj

including mj zeros and nj ones is :

p(Xj|Tj, θj) = θ
nj
j (1− θmjj ). (2.8)

where Tj = sj+1 − sj is the length of segment j. Also note, mj + nj = Tj. The final

binary sequence S is obtained by concatenating X0, · · · , Xk. Thus, the joint distribution

of k, s, g, θ and X is given by:

p(k, s, g, θ, S|φ, π, α) = p(k, s|φ)p(g, k|π)
k∏
j=0

B(θj, α
(gj))p(Xj|Tj, θj). (2.9)

Figure 2.2 illustrates the conditional dependencies of the parameters.

One must assign prior probabilities to the parameters to complete the Bayesian model.

For π and φ, a uniform prior p(π) = p(φ) = 1 is assigned on the interval [0,1]. For α(t),

uniform priors are assigned on mean µ(t) and standard deviation σ(t) of the beta distribution,

given by µ
(t)
i =

α
(t)
i

α
(t)
0 +α

(t)
1

and σ(t) =

√
µ
(t)
0 µ

(t)
1

α
(t)
0 +α

(t)
1 +1

.

Figure 2.2: The parameters of the model with their dependencies
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One can obtain the following posterior distribution by integrating over φ and θ and

summing over g with the help of Bayes rule.

p(k, s, π, µ, σ) ∝ Γ(T − k)Γ(k − f + 1)
k∏
j=0

f(mj, nj|π, α). (2.10)

where, µ = (µ(0), µ(1), · · · , µ(ϑ−1)) and σ = (σ(0), σ(1), · · · , σ(ϑ−1)), α is a function of µ and

σ and

f(m,n|π, α) =
∑
t

[
πt

Γ(α
(t)
0 + α

(t)
1 )

Γ(α
(t)
0 )Γ(α

(t)
1 )
× Γ(m+ α

(t)
0 )Γ(n+ α

(t)
1 )

Γ(m+ α
(t)
0 + n+ α

(t)
1 )

]
. (2.11)

2.3 Sampling

2.3.1 Markov Chain Monte Carlo Method (MCMC)

Markov Chain Monte–Carlo (MCMC) is a popular method for acquiring information about

distributions, especially posterior distributions in Bayesian inference. Bayesian analysis

often requires the integration of intricate and high-dimensional functions including the esti-

mation of i) the normalising constant of proportionality in Bayes’ theorem ii) the marginal

distributions and iii) inferences in the form of posterior expectations. Explicit calculation

of such intricate integrals are often intractable or computationally intense even with pow-

erful computational resources. MCMC methods provide an alternative way of performing

such computation by sampling from the posterior distribution and estimating quantities of

interest using those simulated samples [50]. MCMC combines two concepts: Monte Carlo

integration and Markov chains.

Monte Carlo is the method of estimating properties of a distribution by analyzing ran-

dom samples from the distribution. Let
∫ b
a
h(θ)dθ be an integral to be computed. Then h(θ)

can be decomposed into a product of two functions, f(θ) and p(θ), using the Monte Carlo

method, where f(θ) is a function of θ and p(θ) is a probability density function defined over

the interval (a, b). Then the original integral
∫ b
a
h(θ)dθ can be written as an expectation of

f(θ) over the density p(θ) as follows:

∫ b

a

h(θ)dθ =

∫ b

a

f(θ)p(θ)dθ = Ep(θ)[f(θ)]. (2.12)

The Monte Carlo method draws a sufficiently large number of random samples from the

density p(θ), so that the original integration can be estimated as follows:
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∫ b

a

h(θ)dθ = Ep(θ)[f(θ)] ' 1

n

b∑
a

f(θi). (2.13)

The Markov chain element of MCMC is the concept that random samples are generated

using a sequential process. Each random sample is used as a stepping stone to generate

the next random sample. A defining property of Markov chains is that, conditional on the

chain’s present state, future states are independent of the past states (this is the “Markov”

property). A Markov chain is defined to be a sequence of random variables θ1, · · · , θn such

that θn+1 is conditionally independent of θ1, · · · , θn−1, given θn, that is [51],

p(θn+1|θ1, · · · , θn) = p(θn+1|θn), (2.14)

where p may represent a probability or a probability density. The range of possible values

for the random variable θ is known as the state space of the Markov chain [51]. A Markov

chain has stationary transition probabilities if the conditional distribution of θn+1 given

θn does not depend on n. Let f(θ) be a target probability distribution of a quantity of

interest on a target state space S. If f(θ) can not be sampled directly, then the MCMC

method involves forming a Markov chain in the target state space S such that its stationary

distribution is the same as the target posterior distribution. In a countable state space, the

distribution f is stationary with respect to a transition matrix P = pij, if fP = f . The

transition matrix P consists of transition probabilities:

pij = p(θn+1 = j|θn = i), i = 1, 2 · · · , n and j = 1, 2 · · · , n. (2.15)

The concept of a stationary distribution can be generalised in a straightforward manner

for an uncountable state space, using probability densities and transition functions. The

Markov chain effectively converges to its stationary distribution after running the chain for

a sufficient time and the samples drawn from the chain can be regarded as samples from

the target posterior distribution [50]. Then Monte Carlo integration is used to approximate

the posterior quantities of interest.

In Bayesian analysis, there are many MCMC methods available, including the Metropolis-

Hastings algorithm, Gibbs sampler, reversible jump sampler and Generalized Gibbs sampler

(GGS). I used GGS as the sampling technique throughout this thesis.
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Metropolis-Hastings algorithm

The Metropolis algorithm is one of the simplest MCMC algorithms, named for the American

physicist and computer scientist Nicholas C. Metropolis. This algorithm can be used to

obtain random samples from an arbitrarily complex target distribution of any dimension,

where the normalizing constant may not be known. Assume the aim is to draw samples

from a distribution with probability (or probability density) p(θ|y). The basic steps of the

Metropolis algorithm are as follows [52]:

1. Choose an initial value θ0. This need not be from a high density region of the target.

2. Sample a proposal θ∗ from a distribution q(θt−1, θ) using the current θt−1 . Here,

q(θt−1, θ) is the probability (or probability density) of θ given a previous value of θt−1

and is known as the proposal distribution. A condition of the Metropolis algorithm

is that the proposal distribution must be symmetric, that is, q(θt−1, θ) = q(θ, θt−1)

3. Given θ∗, compute an acceptance probability (α) at the proposal θ∗ and current θt−1

points,

α = min

{
p(θ∗|y)

p(θt−1|y)
, 1

}
. (2.16)

4. Accept proposal θ∗ as θt with probability α. If θ∗ is not accepted, θt = θt−1.

5. Repeat steps 2-4 (K times).

The above steps generate a Markov chain (θ0, θ1, · · · , θK) since the transition probabilities

from θt to θt+1 depend only on θt and not (θ0, · · · , θt−1). The chain moves to its stationary

distribution after a burn-in period (say, m steps) and the samples θm+1, · · · , θK are taken

to be samples from p(θ|y).

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm, which

was proposed by Hastings (1970). The main difference is that the Metropolis-Hastings

algorithm does not require a symmetric distribution (in Step 2 above). Here, an asymmetric

proposal distribution, q(θ∗, θt) 6= q(θt, θ∗) is used. Then the acceptance probability becomes:

α = min

{
p(θ∗|y)q(θ∗, θt−1)

p(θt−1|y)q(θt−1, θ∗)
, 1

}
. (2.17)

Other steps remain the same.
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Gibbs Sampling

The Gibbs sampler is a special case of the Metropolis-Hastings Algorithm, named by Geman

and Geman (1984) after the American physicist Josiah W. Gibbs. The Gibbs sampler

actually existed before this, and was known as Glauber dynamics in the context of statistical

physics [53].

In the Gibbs sampler, the proposal distribution cycles through the posterior conditional

distributions and the proposals are accepted 100% of the time. Gibbs sampling is advan-

tageous when it is easy to sample from the conditional posterior distributions for each

parameter in the model, conditional on all other parameters. Therefore, the main idea

of Gibbs sampling is that it decomposes the joint posterior distribution into full condi-

tional distributions for each parameter in the model and these conditionals are sampled

sequentially and iteratively [54].

Assume a parameter vector θ = (θ1, · · · , θm) of K samples need to be obtain from the

joint probability distribution p(θ1, · · · , θm) where m is the number of parameters. Let the

i-th sample be θ(i) = (θ
(i)
1 , · · · , θ(i)

m ). The sampling steps are as follows:

1. Start with i = 0 and choose an arbitrary initial value of θ(0) = (θ
(0)
1 , · · · , θ(0)

m ).

2. For the (i+1)-th sample, the parameter vector will be defined as θ(i+1) = (θ
(i+1)
1 , · · · , θ(i+1)

m ).

To generate the (i+1)-th sample, each component parameter θ
(i+1)
j is sampled in turn

from the distribution specified by p(θ
(i+1)
j |θ(i+1)

1 , · · · , θ(i+1)
j−1 , θ

(i)
j+1, · · · , θ

(i)
m ).

3. Repeat step 2 until i = K.

The above steps generate K samples after a burn-in period. These samples can be

considered as samples from the posterior joint distribution. Monte Carlo integration can

be performed using these draws to obtain quantities of interest [54].

Reversible Jump Sampler

The reversible jump sampler introduced by Green [46] allows simulation of sampling from

posterior distributions on spaces of varying dimensions. This simulation is feasible even if

the number of parameters in the model is unknown. Suppose that the competing fixed-

dimensional models are represented by the set M = {M1,M2, · · · }. The posterior distri-

bution under model Mk is p(θk|y, k) ∝ p(y|θk, k)p(θk|k), where p(y|θk, k) is the likelihod

model and p(θk|k) is the prior distribution of the parameters of model Mk, respectively.
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The reversible jump sampler generalizes the Metropolis-Hastings algorithm by allowing

transitions between models defined by (k, θk) to (k′, θk′) with different dimensions k and k′.

The resulting Markov chain includes transitions between such distinct models and may be

treated as samples from the joint distribution p(θk, k). If the current state of the Markov

chain is (k, θk), then the steps of the reversible jump sampler are as follows [55, 56]:

1. Propose a move to a state (k′, θk′) in model Mk′ with proposal probability J(k → k′)

The model Mk′ has higher dimension than the model Mk, so that nk′ > nk where nk′

and nk are the dimension of parameter θ′k under model Mk′ and θk under model Mk

respectively .

2. Generate u of length dk→k′ = nk′ − nk with a proposal probability (or probability

density) q(u|θk, k, k′).

3. Set (θk′ , u
′) = gk,k′(θk, u), where gk,k′ is a bijection between (θk, u) and (θk′ , u

′), where

u and u′ work in dimension-matching condition, nk +dk→k′ = nk′ +dk′→k; dk′→k is the

length of vector u′.

4. The acceptance probability of the new model, (θk′ , k
′) is

min

{
1,
p(y|θk′ , k′)p(θk′)p(k′)
p(y|θk, k)p(θk)p(k)

J(k′ → k)q(u′|θk, k′, k)

J(k → k′)q(u|θk, k, k′)

∣∣∣∣∂gk,k′(θk, u)

∂(θk, u)

∣∣∣∣} . (2.18)

Repeating steps 1-4 generates a sample θkl, l = 1, · · · , L.

Generalized Gibbs Sampling (GGS)

This section summarises the Generalized Gibbs Sampler (GGS) presented in [57]. GGS is

a generalization of the Gibbs sampler. Moreover, it can consider as a generalisation of all

the well known MCMC samplers.

The conventional Gibbs sampler is used to sample from a distribution f over a space

X with fixed dimension d. Each iteration of the Gibbs sampler involves d coordinate up-

dates where new values for each of the d coordinates are drawn from the one-dimensional

conditional distributions of p with the other coordinates fixed. On the other-hand, the

GGS can be used when points in X do not have fixed dimension, and may not even have

a representation in terms of coordinates. The move types of GGS are analogous to the

coordinate updates of the conventional Gibbs sampler.
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A set I is defined, which will be referred to, in the following, as the index set. Let

U ⊂ I × X, such that the projections of U onto X and I are surjective. For each x ∈ X,

let Q(x) be the set {(k, z) ∈ U : z = x}. Q(x) is a catalogue of the types of transitions

available from x. For every x ∈ X, a transition matrix or density Qx is defined on Q(x).

The probability (or probability density) of the stationary distribution of the Markov chain

induced by Qx is denoted by qx. Define Q the global transition matrix or density on U :

Q((i, x), (j, y)) =

Qx((i, x), (j, y)) for(j, y) ∈ Q(x)

0 otherwise

For each (i, x) ∈ U, let R(i, x) be the set of possible transitions of type i available at x.

These sets are required to form a partition of U:

(j, y) ∈ R(i, x)⇔ (i, x) ∈ R(j, y)

(j, y) ∈ R(i, x)

(k, z) ∈ R(j, y)

⇒ (k, z) ∈ R(i, x)

Here, (i, x) ∈ R(i, x). On R(i, x), a transition matrix or density R(i, x) with respect to

ηr on r = R(i, x) is defined as follows :

R(i,x)((i, x), (j, y)) =
f(y)qy(j, y)∫

r
f(z)qz(k, z)dηr(k, z)

where the integral is replaced by a sum if r is countable (and similarly for subsequent

integrals in this section). A global transition matrix or density R is defined on U:

R((i, x), (j, y)) =

R(i,x)((i, x), (j, y)) for(j, y) ∈ R(i, x)

0 otherwise

This formula can be generalized by replacingR((i, x), (j, y)) withR((i, x), (j, y))S((i, x), (j, y))

in the definition of the density R, given that S((i, x), (j, y)) = S((j, y), (i, x)) and adjusting

S so that for all (i, x),
∫
r
R((i, x), (j, y))S((i, x), (j, y))dηr(j, y) = 1. This can be useful to

divide the R(i, x) set into two (or more) subsets. Consider a Markov chain {U1, U2, · · · } on

U with a transition matrix or density P = QR.

P ((i, x), (j, y)) =

∫
r\Q(x)∩R(j,y))

Q((i, x), (k, z))R((k, z), (j, y))dηr(k, z)
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Let µ be the probability (or density) µ(i, x) = f(x)qx(i, x). Now,

µ(i, x)R((i, x), (j, y)) =


f(x)qx(i,x)f(y)qy(j,y)∫

r\(i,x) f(z)qz(k,z)dηr(k,z)
if(j, y) ∈ R(i, x)

0 otherwise

µ(j, y)R((j, y), (i, x)) =


f(x)qx(i,x)f(y)qy(j,y)∫

r\(j,y) f(z)qz(k,z)dηr(k,z)
if(i, x) ∈ R(i, x)

0 otherwise

Here (j, y) ∈ R(i, x), (k, z) ∈ R(j, y)⇒ (k, z) ∈ R(i, x) is known, so

µ(i, x)R((i, x), (j, y)) = µ(j, y)R((j, y), (i, x))

(note that if S((i, x), (j, y)) = S((j, y), (i, x)) and

∫
r\U

µ(i, x)Q((i, x), (j, y))dηr(i, x) =

∫
r\Q(y)

f(y)qy(i)Q((i, y), (j, y))dηr(i, y)

= f(y)qy(j) = µ(j, y)

Consequently, µ is stationary with respect to Q and to R and with respect to P . If P is

ergodic, µ is the limiting distribution of the process P . So, the steps of the generalized

Gibbs sampler are as follows :

1. Q-step : Given Un = (i, x), generate V ∈ Q(x) by drawing from the distribution with

probability or density Q((i, x), .).

2. R-step : Given V = (j, y), generate W ∈ R(j, y) by drawing from the distribution

with probability or density R((j, y), .).

3. Let Un+1 = W .

This algorithm creates a Markov chain, so that the limited distribution is µ(i, x) provided

that the density P is ergodic.

2.3.2 Sampling steps of Bayesian change-point detection model

To estimate values of the parameters k, s, π and α of the Bayesian change-point detection

model discussed in Section 2.2.3, a sample from the posterior distribution in Equation 2.10

is drawn using the Generalized Gibbs Sampler (GGS). The GGS sampler cycles through a

sequence of steps by updating parts of the current element of a Markov chain and holding
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other parts constant, in a manner resembling the conventional Gibbs sampler. Unlike the

conventional Gibbs sampler, the GGS can sample from spaces in which the dimension

varies from point to point. The GGS algorithm was applied to the change-point model in

Section 2.2.3, using the move-types defined below.

Move Types

• (I, i) : decide whether to insert a new change-point in segment i, and at what position.

• (D, i) : decide whether to delete change-point i (if it is not a fixed change-point).

• (S, i) : slide change-point i to a new position between si − 1 and si + 1 (if it is not a

fixed change-point).

• (πt1 , πt2) : simultaneously update πt1 and πt2 for (t1, t2) ∈ {0, · · · , ϑ− 1}2.

• (t1, t2) : simultaneously update πt1 , πt2 , α
(t1) and α(t2) for (t1, t2) ∈ {0, · · · , ϑ− 1}2.

• πt: update πt, scaling all other π values by a constant factor.

• σt: update
√

1
zt+1

while holding µt fixed.

• µt: update µt while holding σt fixed.

There are: k + 1 I-moves; k D-moves; k S-moves; 3ϑ moves for each group to update

πt, σ
t, µt; ϑ(ϑ − 1)/2 moves to update (πt1 , πt2) and ϑ(ϑ − 1)/2 moves to update (t1, t2).

Then the total number of moves for a sequence with k change-points is:

N(k) = 3k + 1 + ϑ(ϑ− 1) + 3ϑ.

where ϑ is the number of groups. There is a possibility no change is made in each of the first

3 moves, in which case the current segmentation is repeated. The sampler cycles through

the available moves in a systematic manner, illustrated in Figure 2.3.
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Figure 2.3: The order in which the updates are carried out.

Insertion Step:(I; i)

For each segment i = 0, · · · , k, determine the conditional posterior distribution over the

set consisting of the current segmentation and the segmentation obtained by inserting a

new change-point between si and si+1, while holding π, α and the positions of the other

change-points constant. The distribution of the current segmentation is proportional to

(using Equation 2.10):

Γ(T − k)Γ(k − f + 1)f(mi, ni|π, α).

where mi and ni are respectively the numbers of zeros and ones in segment i. The con-

ditional posterior probability of a segmentation with a new change-point at position z is

proportional to (using Equation 2.10):

Γ(T − k − 1)Γ(k − f + 2)f(m′i, n
′
i|π, α)f(m′i+1, n

′
i+1|π, α).

where m′i and n′i are respectively the numbers of zeros and ones between si and z − 1 and

m′i+1 and n′i+1 are respectively the numbers of zeros and ones between z and si+1−1. Select

the current segmentation (that is, the current segmentation is repeated with no change)

with probability proportional to:
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w− =
Γ(T − k)Γ(k − f + 1)f(mi, ni|π, α)

N(k)
. (2.19)

Select a new segmentation with a new change-point at z for each z ∈ {si+1, · · · , si+1−1}

with probability proportional to:

wz =
Γ(T − k − 1)Γ(k − f + 2)f(m′i, n

′
i|π, α)f(m′i+1, n

′
i+1|π, α)

N(k + 1)
. (2.20)

Improving the efficiency of insertion step (I; i)

The last stage of the sampling procedure given in the previous section can be improved with

the help of the following method. According to the generalized Gibbs sampler discussed in

Section 2.3.1:

R((I, i), (k, s0)) = ((I, i), (k, s0))
⋃

sz∈{si+1,··· ,si+1−1}

((D, i+ 1), (k + 1, sz)).

The probability of inserting a change-point at position x is

R((I,i),(k,s0))(((I, i), (k, s0)), ((D, i+ 1), (k + 1, sx))) =
wx

w− +
∑

z wz
.

In fact, the generalized form of the algorithm is used with the matrix S (see Section 2.3.1)

S((I, i)(k, x), (D, i+ 1)(k + 1, y)) = [w− +
∑
z

wz]min

[
1

w−
,

1∑
z wz

]
.

and choose S(((I, i), (k, x)), ((I, i), (k, x))) so that the sum over all the possibilities is one.

The fact that S is symmetrical, so S(((D, i+1), (k+1, y)), ((I, i), (k, x))) = S(((I, i), (k, x)),

((D, i+ 1), (k + 1, y))) will be seen in the deletion move. This matrix S is used to separate

the set R((I, i)(k, x)) into two subsets: {((I, i)(k, x))} on the one hand and on the other

hand,
⋃
sz∈{si+1,··· ,si+1−1}((D, i + 1), (k + 1, sz)). Hence, the probability of inserting a new

change-point at some point x, which is the probability of a transition to any element other

than the current one, is given by:

wx
w− +

∑
z wz

[w− +
∑
z

wz]min

[
1

w−
,

1∑
z wz

]
= wxmin

[
1

w−
,

1∑
z wz

]
.

Then the probability of making an insertion can be replaced by probability:
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min

1,

si+1−1∑
z=si+1

wz

w−

 .

If the decision is made to insert a new change-point, its position z ∈ {si+1, · · · , si+1−1}

is selected with probability proportional to wz. This modification enhances the probability

of accepting an insertion, and thus improves the efficiency of the algorithm. If a change-

point is inserted, the move-type is updated to (D, i + 1), otherwise it remains (I, i). In

either case, the move-type is then updated as in Figure 2.3.

Deletion Step: (D; i)

For each non-fixed change-point i = 1, · · · , k, determine the conditional posterior distribu-

tion over the set consisting of every segmentation with a change-point at z between si−1 +1

and si+1 − 1 and the segmentation obtained by deleting a non-fixed change-point si, while

holding π, α and the positions of the other change-points constant.

The conditional posterior distribution of a segmentation obtained by deleting the change-

point si is proportional to (using Equation 2.10):

Γ(T − k + 1)Γ(k − f)f(mi, ni|π, α).

where mi and ni are respectively the numbers of zeros and ones between si−1 and si+1 −

1. The conditional posterior distribution of a segmentation obtained by sliding si to a

(possibly) new change-point at z between si−1 + 1 and si+1 − 1 is proportional to (using

Equation 2.10):

Γ(T − k)Γ(k − f + 1)f(m′i, n
′
i|π, α)f(m′i+1, n

′
i+1|π, α).

where m′i and n′i are respectively the numbers of zeros and ones between si−1 and z−1 and

m′i+1 and n′i+1 are respectively the numbers of zeros and ones between z and si+1 − 1.

A straight forward GGS update would be to delete the change-point with probability

proportional to:
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w− =
Γ(T − k + 1)Γ(k − f)f(mi, ni|π, α)

N(k − 1)
(2.21)

or slide the change-point to position z with probability proportional to:

wz =
Γ(T − k)Γ(k − f + 1)f(m′i, n

′
i|π, α)f(m′i+1, n

′
i+1|π, α)

N(k)
. (2.22)

Improving the efficiency of deletion step (D; i)

As with the insertion step, the probability of deleting change-point si can be modified to:

min

1,
w−

si+1−1∑
z=si−1+1

wz

 .

If the decision is made not to delete the change-point, its position remains unchanged.

If a change-point is inserted, the move-type is updated to (I, i − 1), otherwise, it remains

(D, i). For a fixed change-point, the (D, i) move is replaced by the trivial move of repeating

the same segmentation. In either case, the move-type is then updated as in Figure 2.3.

Slide Step: (S; i)

For each non-fixed change-point i = 1, · · · , k, determine the conditional posterior distribu-

tion over the set of segmentations obtained by sliding si to a (possibly) new change-point

between si−1 and si+1, while holding π;α and the positions of the other change-points

constant.

The conditional posterior probability of a segmentation obtained by sliding change-point

i to z is proportional to (using Equation 2.10):

Γ(T − k)Γ(k − f + 1)f(m′i, n
′
i|π, α)f(m′i+1, n+ 1′i|π, α).

where m′i and n′i are respectively the numbers of zeros and ones in the segment with end-

points si−1 and z − 1 and m′i+1 and n′i+1 are respectively the numbers of zeros and ones in

the segment with endpoints z and si+1 − 1. The conditional posterior probability of the

current segmentation is proportional to (using Equation 2.10):
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Γ(T − k)Γ(k − f + 1)f(mi, ni|π, α)f(mi+1, ni+1|π, α)

where mi and ni are respectively the numbers of zeros and ones between si−1 and si − 1

and mi+1 and ni+1 are respectively the numbers of zeros and ones between si and si+1 − 1.

A straight forward GGS update would be to re-select the current segmentation with

probability proportional to:

w− =
Γ(T − k)Γ(k − f + 1)f(mi, ni|π, α)f(mi+1, ni+1|π, α)

N(k)
(2.23)

or slide the change-point to position z with probability proportional to:

wz =
Γ(T − k)Γ(k − f + 1)f(m′i, n

′
i|π, α)f(m′i+1, n+ 1′i|π, α)

N(k)
. (2.24)

Improving the efficiency of sliding step (S; i)

Here, the matrix S described in GGS (Section 2.3.1) is not used. So, the probability of

sliding the change-point si to x is


wx

w− +

si+1−1∑
z=si−1+1

wz

 .

For a fixed change-point, the current segmentation is repeated. The move-type is then

updated as in Figure 2.3.
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Steps π, α, µ

Updates of πt, σ
t and µt include sampling the conditional posterior distributions over several

one-dimensional subspaces of the target space, holding k and s fixed. These updates are

conventional Gibbs updates. The conditional distributions are straight forward to derive,

but attention must be given to multiply by the appropriate Jacobian when a change of

variables is involved. Further details of these updates may be found in [49].

Monte Carlo Integration

For each character position in the binary sequence, the posterior probability that position

is within a given group is calculated by Monte Carlo integration. Further details may be

found in [49].

2.3.3 Sampling from a posterior distribution in time series seg-

mentation

In Bayesian change-point analysis, a variety of sampling techniques have been used to

simulate samples from a posterior distribution. Carlin et al. [20] faced difficulties in com-

puting marginal posterior distributions for the location of the change-point and of the

model parameters in their hierarchical Bayesian change-point model. They suggested a

straightforward Markov chain Monte Carlo sampling method, which employs the Gibbs

sampler to obtain marginal posterior distributions. The Gibbs sampler was described in

Section 2.3.1. The Gibbs sampler, in general, deals with missing data in a straightfor-

ward manner. Missing data values can be treated as additional model parameters whose

conditional distributions can be sampled.

Green [46] used the reversible jump sampler to estimate the number of change-points

for a non-homogenous Poisson process. In Green’s approach, segmentations of a time

series with different numbers of change-points corresponded to subspaces with differing

dimensionality. At each step of Green’s algorithm, a choice is made whether to: (1) delete

a change-point, thus joining two consecutive segments (death move); (2) add a new change-

point, thus dividing a segment into two (birth move); or (3) alter the location of a change-

point. A move is accepted at each step with a probability similar to that used by the

Metropolis-Hastings algorithm. One practical issue for this methodology is to identify
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moves which are likely to be useful. Moreover, in many cases the reversible jump algorithm

converges slowly.

Chib [45] also used the reversible jump MCMC for time series segmentation. He gener-

alized reversible jump MCMC to analyse a change-point model in terms of latent discrete

state variables. A latent variable is associated with each position in the time series, and is

used to indicate which of several alternative discrete-time, discrete-state Markov processes

describes the dependence between adjacent time-points.

Billio et al. [58] introduced a Markov-Chain Monte Carlo (MCMC) algorithm to sample

the regime-indicator variables using a proposal density which is an accurate approximation

of the target density. The approximation error in the proposal density was corrected by

applying the Metropolis Hastings (MH) algorithm. When the entire series of the regime

indicator variable was drawn from the proposal density, the approximation error was cor-

rected for by globally accepting or rejecting the newly drawn regime indicator variables

with a carefully defined probability. The authors used a Gibbs sampler for drawing the

regime-indicator variables. In this sampler, a single indicator variable is drawn one at a

time, conditional on the remaining regime-indicator variables.

Lavielle and Lebarbier [59] proposed a Bayesian methodology in order to investigate a

change-point process instead of estimating the sequence of change-point instants (τk, k > 0).

They defined the change-point process as follows:

rt =

1 if there exists k such that t = τk,

0 otherwise.

They assumed y = (yt, t > 1) is a real process such that, for any t > 1, yt = s(t) + εt.

Here, εt is a sequence of random variables with mean 0 and s is a piecewise constant function

between two successive change-points instants (τk). A sequence mk also exists such that,

for any k > 1, s(t) = mk for all τk−1 + 1 6 t 6 τk with the condition τ0 = 0. The unknown

function s was recovered by estimating the sequences rt and mk. To obtain a good estimate

of the configuration of change-points, they investigated the joint posterior distribution of

the mean sequence m = mk and the change-point process r = rt instead of the posterior

distribution of τ . Here, the dimension of the series rt is fixed. This article used Metropolis-

Hasting to sample a series of zeros and ones, of fixed length n− 1, where the length of the

observed signal is n.

To estimate the distribution of the mean of the newly defined series rt, the authors
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used a hybrid MCMC algorithm, combining elements of the Metropolis-Hasting algorithm

with elements of the Gibbs sampler. This hybrid algorithm produced ergodic Markov

chains (s(i), r(i)) which converged to the joint posterior distribution p(s, r|y; θ), where θ is

the set of hyper-parameters of the model. As p(s, r|y; θ) cannot be described completely,

they considered estimating the posterior expectation of the mean (E(s|y; θ)). However,

the posterior expectation of the mean was not suitable for finding a good configuration of

change-points as it produced a smooth version of the signal instead of a step function.

They considered another approach which conditionally provided a good estimation of

the configuration of change-points. In this approach, they used the MAP estimate of r and

the fact that the conditional distribution p(s|r, y; θ) is a Gaussian distribution with known

parameters. They also used a modification of an MCMC algorithm to estimate the hyper-

parameters of the model (θ) instead of setting the hyper-parameters to a particular value.

To update the set of hyperparameters at each iteration of MCMC, they used a stochastic

approximation to expectation maximization (SAEM) introduced by Delyon et al. [60]. This

resulted in an iterative algorithm which needs an initial configuration of change-points r(0)

and an initial guess θ(0). The algorithm is composed of two steps at each iteration i: a

simulation step and an estimation step. In the simulation step, a new configuration r(i)

is generated with M iterations of the MCMC algorithm, using the current values of the

hyper-parameters θ(i−1) and the current configuration r(i−1). Then θ(i) is updated at the

estimation step using the new configuration r(i) and a stochastic approximation. After that,

θ(i) is computed by maximizing the complete likelihood f(r, y; θ).

One important advantage of this method is the capability to automatically execute

different tasks (estimate the posterior distribution of the unknown sequence of change-

points instants, estimate the hyper-parameters of the model and compute the change-points

sequences of highest probabilities). This method is much faster than the reversible jump

algorithm. Another advantage was that the hyper-parameters of the model were estimated,

rather than arbitrarily selected. This method can be extended to detect changes in the

spectrum of a signal.

2.4 Segmenting parallel sequences

Many methods have been discovered and introduced in the literature in the last and recent

decades for the segmentation of a single sequence. However, numerous applications require
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the segmentation of multiple sequences simultaneously, in order to better understand a

complex underlying phenomenon. Here I review some methods from the literature that

have been used to segment parallel sequences.

Chamroukhi et al. [61] developed methods for human activity recognition using joint

segmentations of multidimensional time series of acceleration data. This acceleration data

was measured in a three-dimensional space using body-worn accelerometers. To perform

automatic temporal segmentation, they developed a statistical latent process model by

assuming the observed acceleration series was determined by a series of hidden (unobserved)

activities. The method depends on a multiple regression model, including a hidden discrete

logistic process. The logistic process determines switching from one activity to another over

time.

They studied the model in an unsupervised context by maximizing the observed-data

log-likelihood through a dedicated expectation-maximization (EM) algorithm. The perfor-

mance of the proposed model of joint segmentation was compared to alternative approaches,

including well-known supervised static classifiers and the standard hidden Markov model

(HMM). Two significant advantages of this method are that it directly utilizes the raw

acceleration data and works in an unsupervised way. This approach used regression models

with polynomial bases to segment human activity data and the method can be extended

by using non-linear models for improving the representation of each activity signal. To

describe any kind of complex activities, this method can also be extended by integrating it

into a Bayesian non-parametric model.

Another joint segmentation of correlated time-series data was considered by Collilieux

et al. [62]. They segmented spatio-temporal data and dealt with multiple series, consid-

ering the dependency between them to avoid false change-point detection. They assumed

each series to be affected by changes at series-specific breakpoints and also assumed the

observed sequences at each location were correlated. They proposed a model for correlated

Gaussian series based on a segmentation model combined with a factor model. To remove

the between series dependence, they used a variant of the EM algorithm which combines

EM and dynamic programming (DP). The DP algorithm is applicable only when the log-

likelihood is additive with respect to the segments [63]. However, the log-likelihood is not

additive if dependency exists, so they transformed the data to remove the between-series

dependency and then applied the DP algorithm to the transformed data. The authors also

proposed a heuristic model selection procedure combining two BIC criteria: the classical
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BIC to determine the number of factors and a modified BIC criterion to determine the

number of segments in the context of segmentation.

The advantage of this segmentation approach is that it considers a wide range of possible

dependency structures between series, rather than assuming the simplest form of correlation

between all series. The inferred number of segments obtained using this method is close

to the true number and the change-points are accurately positioned if the noise variance is

small, regardless of the strength of dependency between the series. However, when the noise

variance is large, the change-point detection becomes less accurate. In that case the method

tends to underestimate the number of segments, although it is still able to accurately infer

change-point locations.

Cleynen and Robin [64] were interested in the segmentation of independent series in

order to compare the locations of change-points between several series that have been

observed independently. In this work, independent series are the series that have been

observed during the same period of time, but not necessarily simultaneously. For example,

in a study of finding changes in the stream flow of a river over a year, independent series can

arise when the purpose is to examine whether those changes occur at the same time every

year. Independent series can also arise for data sets with a non-temporal one-dimensional

structure. For instance, the authors considered genomic locations instead of time in their

examples. Two exact approaches in a Bayesian framework were developed by the authors to

compare the positions of change-points. The first approach was used to compare the location

of change-points between two series and the second compared more than two series. In their

first approach, they determined the posterior credibility interval of the shifts in location

of change-points in two independent series of the same length. In the second approach,

they estimated the posterior probability for a given change-point to have the same location

in all series. The computations in both approaches were performed in an exact manner in

quadratic time. Both approaches used a Bayesian segmentation model introduced by Rigaill

et al. [65] with conjugate priors to make exact inference on the change-point model. They

used a Gaussian heteroscedastic distribution, a Gaussian homoscedastic distribution with

known variance, a Poisson, and a negative binomial homoscedastic with known dispersion

as alternative data models in their Bayesian segmentation model.

Harlé et al. [2] proposed a Bayesian model for joint segmentation in multivariate time

series data. They presented a vector J ∈ {0, 1}N to model the presence or absence of

change-points at different time points where ji is an entry defined as an indicator variable

42



2.4. SEGMENTING PARALLEL SEQUENCES

such as

ji =

1 if xi is a change-point,

0 otherwise,

for all 1 ≤ i ≤ n and j1 = jN = 1. Their model combines a robust non-parametric

statistical test acting on individual time segments and a Bayesian framework. It makes

weak assumptions regarding the locations of change-points across multivariate time series

and regarding the distributions of the signals. The authors derived a composite marginal

likelihood in order to approximate the full likelihood and created an inference function

using the p-values of certain statistical tests in that composite marginal likelihood. These

p-values were considered as a random variable pi which were calculated from the data. And

the inference function is as follows:

L∗(X|J) =
N−1∏
i=2

f(pi|J). (2.25)

L∗(X|J) is not a proper likelihood and is called a composite marginal likelihood as it

was composed of a product of the marginal likelihood of the (pi)1≤i≤N using their univariate

distributions. Then they used the non-parametric Wilcoxon rank sum test in order to be free

from any Gaussian assumption and to be robust to outliers. They choose a prior distribution

for the change-point indicator vector and derived the corresponding posterior distribution.

They identified the Maximum A Posteriori (MAP) parameter values using a Gibbs sampler

strategy. An advantage of this method is that it provides information about the underlying

dependency structure between time series without making any assumption on the number

of change-points. A limitation of this method is the relatively long computation time.

Zhang and David [66] also considered the problem of detecting simultaneous change-

points in multiple sequences to identify DNA copy number variants, which are gains and

losses of segments in chromosomes in multiple samples. They looked at the problem of

detecting local signals that occur at the same location in multiple one-dimensional noisy

sequences, giving special attention to relatively weak signals that occur in only a fraction

of the sequences. They proposed simple scan and segmentation algorithms which depend

on summing chi-square statistics across samples. The resulting statistic is equivalent to the

generalized likelihood ratio for models in which the errors in each sample are independent.

In these algorithms, they investigated the particular problem of detecting a shared abrupt
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jump in mean, assuming the noise within each profile to be independent and identically

distributed Gaussian variables. They used this mean shift model to detect DNA copy

number variants. They also used a multisample segmentation algorithm to analyse a cohort

of tumor samples that holds complex nested and overlapping copy number aberrations.

Their algorithm provided a sparse and intuitive summary across these tumor samples. The

segmentation algorithm is slower than the multi-sample scan, because each time a change-

point is found, the entire interval must be re-scanned in the next step of the recursion.

A joint segmentation algorithm to address the problem of segmenting correlated signals

recorded from several sensors was proposed by Dobigeon et al. [67]. This algorithm was

based on a hierarchical Bayesian model and was developed for piecewise constant autore-

gressive (AR) processes where the orders of these processes are fixed on each segment. They

studied J sensors delivering J signals, each with sample size n. They denoted individual

signals as xj = (xj,1, · · · , xj,n) and modeled each of the J signals as a piecewise constant

AR process as follows:

xj,t =
a∑
i=1

ψj,k,ixj,t−i + εj,t, j = 1, 2, · · · , J and k = 1, 2, · · · , Kj (2.26)

where, xj,t is the sample of signal j at time t, k is the segment index, Kj is the number of

segments, ψj,k = (ψj,k,1, · · · , ψj,k,a)T is the set of AR parameters, a is the order of the AR

model and εj = (εj,1, · · · , εj,n) are i.i.d. zero mean Gaussian noise samples. The segment

k in the signal j has boundaries [ij,k−1 + 1, ij,k] where ij,k is the time index immediately

after a change-point is found, with condition ij,0 = 0 and ij,Kj = n. In matrix form, the

piecewise constant AR process becomes:

xTj,ij,k−1+1:ij,k
= Xj,kψj,k + εTj,ij,k−1+1:ij,k

, (2.27)

where, Xj,k denotes a matrix of J observed signals with size (ij,k − ij,k−1)× a and

Xj,k =



xj,ij,k−1
xj,ij,k−1−1 · · · xj,ij,k−1−a+1

xj,ij,k−1+1 xj,ij,k−1
· · · xj,ij,k−1−a+2

...
...

...
...

xj,ij,k−1 xj,ij,k−2 · · · xj,ij,k−a


The authors suggested a Bayesian approach for estimating the change-point locations

ij,k from the J observed time series xj. They chose a suitable prior to take account of
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the correlations between change-point locations of the observed signals, and sampled the

resulting posterior distribution using a Gibbs sampling strategy. They also described an

extension of this model, assuming unknown model order of the piecewise constant AR

processes. The assumptions this model makes regarding the observed signals are weak to

handle a large class of real signals (for example, seismic or biomedical signals).

Dobigeon et al. [68] also considered the problem of identifying and characterizing struc-

ture in two or more related astronomical time series. This article proposed a Bayesian

time-series segmentation algorithm, permitting the joint segmentation of multiple signals

coming from different sensors. This model is hierarchical and involves a piecewise constant

Poisson rate model with prior distributions for the unknown parameters of change-point lo-

cations and Poisson parameters. They used a Gibbs sampling strategy for joint estimation

of the unknown parameters and hyperparameters. One significant feature of this method

is that its treatment of possible relationships between observed times series can be used to

investigate interrelationships between time series arising in a wide range of applications,

especially in astronomical data. Another significant feature is that information regarding

uncertainties in the parameter estimates emerges from the sampling strategy. However,

this approach can be very expensive in terms of computational time.

Some other approaches to segment parallel sequence include [69–74].

Autocorrelation may occur in time series data and some dependency may also exist

between multiple time series. It is important to consider these dependencies to avoid false

change-point detection. Consequently, it is necessary to consider time series models that

can take into account these dependencies. In all aforementioned studies, the methods used

for segmenting parallel time series data did not allow for possible correlations between

noise terms at consecutive time points. This thesis aims to fill this gap by proposing an

autoregressive moving average (ARMA) model in each segment. AR models have been

used in the context of segmenting multiple sequences: Dobigeon et al. [67] used piecewise

constant segmented autoregressive (AR) models for joint segmentation of multiple time

series. But ARMA models can consider the dependency between the residual terms of the

model by including a moving average component. This provides an advantage of ARMA

models over AR models, that may be important in some applications. The segmentation

model used in this thesis also provides flexibility to sample from varying dimensional spaces

in which the number of change-points is unknown, using a highly efficient Generalized Gibbs

Sampler. These reasons make a segmented ARMA model in a Bayesian setting more flexible
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than segmented AR models for the segmentation of multiple sequences in parallel. A better

way to handle the dependencies between multiple time-series is to segment a multivariate

ARMA model. We intend to explore such approaches in future work.

2.5 Models and methods used in this thesis

Here I present some models and methods used in upcoming chapters.

2.5.1 ARMA model

One difference between the Bayesian change-point model presented in Chapter 3 and the

model discussed in Section 2.2.3 is that the latter model is designed for binary sequences

whereas the segmented ARMA model presented in Chapter 3 is designed for time series

data. These distinct data types necessitate different models within each segment. In the

model described in Section 2.2.3, the binary sequence within each segment is generated by

independent Bernoulli trials at each position in that segment whereas the Bayesian change-

point segmented ARMA model segments the sequence by assuming an ARMA process

within each segment. A concise description of ARMA models follows.

An Autoregressive–moving-average (ARMA) model gives a parsimonious representa-

tion of a (weakly) stationary stochastic time series process. This model provides a general

framework for studying stationary processes in terms of two polynomials, one for the au-

toregression (AR) component and the second for the moving average (MA) component [75].

In 1951, the general ARMA model was illustrated by Peter Whittle in his thesis, ”Hypoth-

esis testing in time series analysis”, and was popularised in the 1970 book by George E. P.

Box and Gwilym Jenkins [76]. The ARMA model is used to model and forecast the future

values in a time series. The AR component involves regression of the variable on its past

values and the MA component involves modeling of the error term, which depends linearly

on its previous values. A real-valued stochastic process {Xt} is an ARMA(a,m) process if

1. {Xt} is stationary or weakly stationary.

2. The process or the deviation of the mean from the process itself (Xt −E(Xt)) fulfills

the linear difference equation written in “regression form” as

Xt − ψ1Xt−1 − · · · − ψaXt−a = εt + θ1εt−1 + · · ·+ θmεt−m (2.28)
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where, ψ1, · · · , ψa are the AR parameters, θ1, · · · , θm are the MA parameters and

ε1, εt−1, · · · are the white noise error terms with εt ∼ N(0, σ2).

The polynomials

ψ(z) = 1− ψ1z − · · · − ψaza (2.29)

and

θ(z) = 1 + θ1z + · · ·+ θmz
m (2.30)

have no common factors.

The ARMA model described in Equation 2.28 can not be simplified if the polynomials

of Equation 2.29 and Equation 2.30 have no common factors. However, there are excess

parameters if the polynomials do have common factors and this unnecessarily complicates

analysis of the model. We can write Equation 2.28 concisely using the backshift operator

B as

ψ(B)Xt = θ(B)εt. (2.31)

where ψ(B) and θ(B) are known as the regressive operator (polynomial in B) and the

moving average operator (polynomial in B), respectively. When θ(B) = 1, an ARMA(a,m)

model reduces to an AR(a) and for ψ(B) = 1, ARMA(a,m) reduces to MA(m). These

processes are denoted AR(a) and MA(m), indicating that the autoregressive model and the

moving average model are members of the ARMA models family [77].

Properties of ARMA Process

Stationarity

A stochastic process is said to be strictly stationary if the joint distribution of that process

does not change over time. That is, the joint distribution of Xt1 , Xt2 , · · · , Xtn is the same

as the joint distribution of Xt1+h, Xt2+h, · · · , Xtn+h for any integer t1, t2, · · · , tn and h [78,

79]. The process is weakly stationary if the mean is a fixed constant for all time points and

the autocovariances of the process depend only on the time difference [78].

An ARMA(p, q) process given by Equation 2.28 is stationary if the characteristic equa-

tion ψ(B) = 0 has all its roots outside the unit circle [78]. We can write from Equation 2.30
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Xt = φ(B)εt. (2.32)

where, φ(B) = θ(B)
ψ(B)

= 1+θ1B+θ2B2+···+θmBm
1−ψ1B−ψ2B2−···−ψaBa . The process Xt is stationary if

∞∑
j=1

|φj| <∞. (2.33)

This occurs if the series φ(Z) converges for every Z with the condition |Z| ≤ 1 and the

series converges if the complex zeros of φ(Z) lie outside the unit circle [80].

Stationarity is an important property of time series. For stationary series, a finite

realisation of the process can be taken as representative of the process, thus permitting one

to make statistical conclusions about the whole process [81].

Causality

Causality of a stationary time series indicates that the time series is dependent only on

past and present noise, not on future values of the noise. This property is important for a

process as only the past or present shocks can influence the current state [81].

An ARMA(a,m) process Xt is causal if there is a φ(B) = φ0 + φ1B + φ2B
2 + · · · with∑∞

j=0 |φj| <∞ [75, 80] and

Xt =
∞∑
j=0

φjεt−j for all t. (2.34)

The weights φj can be estimated from the relation φ(B)ψ(B) = θ(B) to satisfy

φj = ψ1φj−1 + ψ2φj−2 + · · ·+ ψaφj−a − θj, j > 0. (2.35)

with the condition φ0 = 1, φj = 0 for j < 0 and θj = 0 for j > m.
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Invertibility

The process Xt is said to be invertible if the characteristic equation θ(B) = 0 has all its

roots outside the unit circle [78]. An ARMA (a,m) process is invertible if there exists

constants |πj| and if there is a π(B) = π0 + π1B + π2B
2 + · · · with

∑∞
j=0 |πj| <∞ [75, 80]

and

εt =
∞∑
j=0

πjXt−j. (2.36)

The above equation implies that the errors can also be expressed as weighted sums

of present and previous observations. The weights πj can be estimated from the relation

θ(B)π(B) = φ(B) to satisfy [78]

πj = θ1πj−1 + θ2πj−2 + · · ·+ θmπj−m + ψj, j > 0. (2.37)

with the condition π0 = −1, πj = 0 for j < 0 and ψj = 0 for j > a.

2.5.2 Model Comparison

Akaike information criterion (AIC)

Statistician Hirotugu Akaike introduced the Akaike information criterion (AIC) in the early

1970s to compare the quality of different statistical models[82]. The AIC is used in Chapter

5. It is defined as:

AIC = 2d− 2lnf(x|θ̂). (2.38)

where d is the number of estimated parameters in the model, x is the observed data, θ̂ is the

maximum likelihood estimate (MLE) for the model parameters θ and f(x|θ̂) is the likelihood

of the parameter θ. The first term in AIC provides a penalty function that increases with

the number of estimated parameters in the model and the second term provides a measure

of goodness of fit of the model that is assessed by the likelihood function [83].

Keith et al. (2008) suggested an approximation of AIC for the Bayesian segmentation

and classification model given as [49]:

ÂIC = 2K − 2lnf(x|θ̂). (2.39)

where, K is the average number of segments over the set of segmentations sampled by
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MCMC and lnf(x|θ̂) is the average of log-likelihood over the set of MCMC samples. The

difference between the approximated AIC and the regular AIC is that the approximated

AIC uses averages for model fit and model complexity whereas the regular AIC uses a fixed

number of parameters d and an optimized log-likelihood lnf(x|θ̂). The advantage of this

approximated criterion is that it can be estimated using the already sampled segmentations

[49].

Bayesian information criterion (BIC)

Bayesian information criterion (BIC) (also used in Chapter 5) was first developed by Gideon

E. Schwarz (1978) in the paradigm of the maximum likelihood methodology and originated

from a Bayesian approach to model selection [84]. The BIC is defined as:

BIC = dlnn− 2lnf(x|θ̂). (2.40)

where, n is the sample size. To solve the overfitting problem in models, BIC introduces

a penalty term (dlnn). This is similar to the penalty term used in AIC but it penalizes

the number of parameters more heavily. Hence, BIC favours models with fewer parameters

[85].

This thesis uses an approximation to BIC proposed for the Bayesian change-point model

in Oldmeadow et al. (2010) given as [86]:

B̂IC = −2lnf(x|θ̂) +KlnT. (2.41)

where, T is the total length of the signal.

Deviance information criterion (DICV)

A model selection tool developed in generalized linear models is known as the DIC (Spiegel-

halter et al., 2002 [87]) where model assessment is based on the model deviance, D(θ) =

−2lnf(x|θ), f(x|θ) is the likelihood function. DICV (used in Chapter 3 and Chapter 5)

is a Bayesian analogue of the Akaike Information Criterion (AIC) and similar to AIC, but

the complexity penalty depends on the number of effective model parameters, and not the

actual number of free parameters as in AIC. Spiegelhalter et al. (2002) defined the complex-

ity measure pD, known as the effective number of parameters, to be the difference between

the mean posterior deviance and the deviance evaluated at the posterior estimates of the
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parameters given as [85]:

PD = D(θ)−D(θ̂). (2.42)

where D(θ) is the mean posterior deviance (Eθ[D(θ)]) and θ̂ is an estimate of θ, often the

posterior mean, median or mode. The DIC is then defined as:

DIC = D(θ) + pD = D(θ̂) + 2pD. (2.43)

The deviance used in the DIC is computed at posterior means (or alternatively posterior

medians or posterior modes). The penalty function for model complexity in the AIC is es-

timated by the nominal number of parameters in the model whereas DIC uses an estimate

of the effective number of parameters in the model. The nominal number of parameters al-

lows zero covariance among parameters whereas the effective number of parameters assumes

non-zero covariance among parameters. Moreover, the nominal number of parameters is

complicated to determine, especially in hierarchical models, and the effective number of

parameters is typically estimated from the data. However, the effective number of param-

eters pD cannot be intrinsically specified in missing data models such as mixture models

[85]. The parameters θ may not be identifiable in these models and use of the posterior

mean can give a poor estimate of pD. In these cases, the posterior median or mode is the

more pertinent choice. To identify the posterior mode is a problematic task in the Bayesian

segmentation model as the set over which we are sampling is large [85]. Moreover, pD can

be negative for three reasons: i) if the posterior distribution is very dissimilar from the

normal distribution, so that f(θ) does not give a good estimate of θ; ii) if the sampling

distribution is non-log concave; and iii) if strong prior-data conflict is present (Gelman et

al. [88]). Gelman et al. [88] and Sturtz et al. [89] proposed an alternative estimator of the

effective dimension size instead of pD used in Raftery et al. [90]. It is denoted as pv and

defined as:

pv = V ar(D(θ))/2.

giving

DICV = D(θ) + pv. (2.44)

Raftery et al. [90] suggested that the effective number of parameters is substantially
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overestimated by this version for normal random effect models.

2.5.3 Principal Component Analysis (PCA)

Principal component analysis (used as a summary statistic in Chapter 4 for dimensionality

reduction) is a statistical approach that uses orthogonal transformation in order to convert

a large number of possibly correlated variables into a small number of linearly uncorrelated

variables. The resulting linearly uncorrelated variables are called principal components. It

is a useful technique to analyze the interrelationships among a large number of variables

and to reduce the number of variables needed to describe a data set with a minimum loss

of information. Principal component analysis was invented by Karl Pearson in 1901, and

is often used as a tool in predictive modeling and exploratory data analysis [91]. It is a

common technique for finding patterns in data of high dimension [92, 93]. The technique

is widely used in fields such as face recognition, image compression and computer graphics.

PCA has also been used in time series analysis. Jolliffe wrote a chapter about PCA for

time series and non-independent data in his book [94]. Some other authors used PCA for

time series data including [95–98].

Let X = [xi] be any p× 1 random vector. The first principal component (Y1) is a linear

combination of the variables X1, X2, · · · , Xp

Y1 = a11X1 + a12X2 + · · ·+ aapXp. (2.45)

or, in matrix notation

Y1 = aTX. (2.46)

The first principal component is computed such that it achieves the greatest possible

variance for such a linear combination. Note that, the sum of squares of the weights is

constrained to be 1.

a2
11 + a2

12 + · · ·+ a2
1p = 1.

The second principal component is then computed in the same way using the residuals

obtained by subtracting the first principal component from the data. The second principal

component is uncorrelated with (i.e., orthogonal to) the first principal component and

accounts for the next highest variance. This process is iterated until a total of p principal

components have been computed, where p is the original number of variables. The total

52



2.5. MODELS AND METHODS USED IN THIS THESIS

variance of all of the principal components will equal the total variance among all of the

variables at this point. In matrix notation, the transformation of the original variables to

the principal components is written as

Y1 = AX. (2.47)

The principal components are found by calculating the eigenvectors and eigenvalues

of the data covariance matrix. One can calculate the variance-covariance matrix of the

principal components as follows:

SY = ASXAT. (2.48)

The rows of matrix A are the eigenvectors. The values within a particular row of ma-

trix A are known as weights aij, and are also known as loadings. Large loadings imply

that a particular variable has a strong relationship with a particular principal component.

The elements in the diagonal of matrix SY are the eigenvalues, which are the variances of

each principal component. These variances reduce monotonically from the first principal

component to the last. Eigenvalues are commonly plotted on a scree plot, which facilitates

visualising the decreasing rate at which variance is explained by additional principal com-

ponents. The off-diagonal elements of matrix SY are zero, indicating zero covariance, as

the principal components are independent.

The positions of each observation in this new coordinate system of principal components

are called scores. These are computed as linear combinations of the original variables and

the weights aij. For example, the score for the rth sample on the kth principal component

is obtained as

Yrk = a1kxr1 + a2kxr2 + · · ·+ apkxrp.

The correlations of the original variables with the principal components are used to

interpret the principal components. The correlation of variable Xi and principal component

Yj is

rij =
√
a2
ijV ar(Yj)/sii.

The goal of principal components analysis is reduction of dimensionality. Many criteria

have been suggested for ascertaining how many PCs should be examined and how many

should be discarded. Four criteria are best evaluated by examining the scree plot [92]:
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• Disregard principal components at the point at which the next PC shows little increase

in the total explained variation.

• Incorporate all PCs up to a predetermined total percent explained variation, such as

90%.

• Disregard components whose explained variation is less than one when a correlation

matrix is used, or less than the average variation explained when a covariance matrix

is used, with the idea being that such a PC offers less than one variable’s worth of

information.

• Disregard the last PCs with variances all roughly equal.

In this thesis, I disregarded principal components according to the first criteria as the

retained principal components can explain most of the variation from the data, and thus

the discarded ones provide little information about the total explained variation.
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Chapter 3

Bayesian change-point modeling with

segmented ARMA model

Chapter Objectives

The overall objective of this thesis is to extend and develop a Bayesian change-point seg-

mented ARMA model for time series data and develop methods to segment multiple parallel

time series. This chapter addresses the first part of my objective by introducing and val-

idating a Bayesian change-point segmented ARMA model which considers the problem of

modeling a time series by segmenting the series into blocks of autoregressive moving av-

erage (ARMA) processes. The performance of this model was assessed by applying it to

a simulated and a real-world data. The results of this approach showed high detection

accuracy for both simulated and real data. I compared the results of real data with the

findings of other methods which are available in the existing literature. This model showed

high sensitivity and detected a larger number of change-points than had been identified by

those comparable methods.
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Abstract

Time series segmentation aims to identify segment boundary points in a time series, and

to determine the dynamical properties corresponding to each segment. To segment time

series data, this article presents a Bayesian change-point model in which the data within

segments follows an autoregressive moving average (ARMA) model. A prior distribution is

defined for the number of change-points, their positions, segment means and error terms.

To quantify uncertainty about the location of change-points, the resulting posterior probabil-

ity distributions are sampled using the Generalized Gibbs sampler Markov chain Monte

Carlo technique. This methodology is illustrated by applying it to simulated data and to real

data known as the well-log time series data. This well-log data records the measurements of

nuclear magnetic response of underground rocks during the drilling of a well. Our approach

has high sensitivity, and detects a larger number of change-points than have been identified

by comparable methods in the existing literature.

Introduction

A time series is a succession of measurements made over a time interval. Some time series can

be divided into a sequence of individual segments, each with its own unique characteristic

properties. Identifying segment boundaries and inferring dynamical properties of different

segments is referred to as time series segmentation. Change-point detection methods can be

used to segment time series data since the goal of such methods is to select a sequence of

change-point locations such that the observations are, in some sense, homogeneous within

segments and different between segments [1].

Statistical analysis of change-point problems has been the subject of intensive research

in the past half-century and there has been a large amount of literature on this subject (for

reviews, see [2–5]). Literature on Bayesian change-point modeling is as extensive as for the

classical change-point model. The Bayesian change-point model was pioneered by Chernoff

and Zacks [6], who estimated the mean of a normal distribution for each segment in a Bayesian

framework. Smith [7] proposed a Bayesian change-point model for finite series with normal

and binomial models. To detect change-points in multivariate time series, Harlé et al. [8]

used a Bayesian approach where change-points are modeled using Bernoulli variables for the
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change-point indicator vector. Successive generalizations and extensions of Bayesian methods

for change-point problems include [9–13] and many others.

Different authors propose diverse models for each segment. For example, Punskaya et al.
[14] suggested a Bayesian method for fitting piecewise linear regression models such as auto-

regressive models. To explain regime switching behaviour in the conditional mean, Chan

and Tong [15] proposed a new class of non-linear models, called the Smooth Transition

Autoregressive (STAR) models. This model is an extension of the Threshold Autoregressive

(TAR) model, introduced by Tong and Lim [16–18]. The TAR model is a piecewise linear

model consisting of two or more linear sub-models. An indicator variable is used in the TAR

model which represents a switch from one regime to another and takes a value zero or one,

depending upon the values of a transition variable and a threshold parameter. This indicator

variable implies abrupt jumps from one regime to the next. Chan and Tong [15] suggested

the replacement of the indicator function with a smooth transition function in their STAR

model, since sudden jumps from one regime to another may not be the best representation

of the underlying mechanism generating observed data. Davis et al. [19] estimated structural

breaks in a nonstationary time series by segmenting the series into blocks of distinct autore-

gressive (AR) processes. They assumed the number of breakpoints, their locations and the

orders of the respective AR models are unknown. To segment non-stationary time series

data, Wood et al. [20] developed a Bayesian mixture of autoregressive models where compo-

nents of the model are time series and mixture probabilities. The time series have constant

but unknown parameters and those mixture probabilities depend on time. They assumed

unknown lag of the AR processes as well as an unknown number of components in the mix-

ture model. To estimate the number and locations of multiple change-points in the mean of

a Gaussian AR(1) process, Chakar et al. [21] proposed a new approach where the unknown

autocorrelation coefficient and the variance of an “innovation” term remain unchanged

from one segment to the other. They firstly estimated the autocorrelation coefficient and

then decorrelate the series. After that they applied a dynamic programming algorithm to the

decorrelated series.

As noted above, some existing models for time series segmentation have used a segmented

AR model [19, 22]. This paper proposes to segment time series data using a segmented ARMA

model, an approach that is surprisingly absent from the existing literature. Results for the well-

log time series data discussed below show that fitting an ARMA model in each segment poten-

tially identifies a greater number of change-points than the AR model in both real and simu-

lated data and thus provides higher sensitivity. Moreover, we find that this is true for both

large and small values of the variance σ2 of the innovation term. Detailed explanations and

comparison with AR model are provided in S3 Appendix.

The Bayesian segmented ARMA change-point model presented here resembles the

approach of Keith et al. [23]. The major modelling innovation here is the use of an ARMA

model in all segments. The posterior marginal distribution of this model are difficult to analyse

directly since they have nonstandard form. However, simulated sampling can be performed

via a Markov chain Monte Carlo (MCMC) algorithm. Several MCMC algorithms are available

in the literature including the Metropolis-Hastings algorithm [24, 25], Gibbs Sampler [26], the

Reversible Jump MCMC algorithm [9]; Multiple-Try Metropolis algorithm [27] and Delayed

Rejection Metropolis-Hastings algorithm [28]. The Bayesian segmented ARMA change-point

model here uses a highly efficient sampling technique known as the Generalized Gibbs Sam-

pler (GGS) for generating samples from a posterior distribution [29]. The dimension in this

algorithm does not need to be fixed and it provides flexibility to sample from varying dimen-

sional spaces. The Generalized Gibbs Sampler (GGS) has been applied to some very high

dimensional problems (see [30, 31]). It has resulted in highly efficient sampling for these

Bayesian change-point modeling with segmented ARMA model
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problems. However, no systematic comparison of the advantages and disadvantages of the

GGS versus the reversible jump sampler has been performed.

Methodology

Problem statement

We consider the problem of modeling a time series by segmenting the series into blocks of

autoregressive moving average (ARMA) processes. Let t = 1, � � �, T be time points in the signal

or time series, where T represents the total length of the signal. Let xt represent a real valued

signal at time point, t. Let, X ¼ ðxtÞ
T
t¼1

represent the time series vector or the signal that we

want to segment. The ARMA model is:

xt ¼ cþ �t þ
Xa

i¼1

ciðxt� i � cÞ þ
Xm

i¼1

yi�t� i:

where ψ1, � � �, ψa and θ1, � � �, θm are the parameters of the AR and MA sub-models, respec-

tively; a and m denote the order of the AR and MA sub-models; c is the mean of the ARMA

model; � is white noise and xt is the time series. The number of change-points and their loca-

tions are assumed unknown. Each segment in the time-series is assumed to be generated by

an ARMA model with different mean, and the goal is to infer the most probable segment loca-

tions and model parameters that describe them.

Likelihood model

We start by writing down the likelihood function of a model in which the sequence within each

segment is generated by an ARMA process. This determines the probability of generating the

observed sequence for any given parameter values. For each position in the signal except the first,

the probability of starting a new segment at that position is denoted by ϕ. Thus a time series with

K segments that have starting positions s = (1 = s1 < � � �< sK� T) is generated with probability:

pðK; sj�Þ ¼ �K� 1
ð1 � �Þ

T� K
: ð1Þ

Here, s1 = 1, indicating that the first segment always starts at the beginning of the signal.

Let the right hand points of the segments be d = (d1, � � �, dK) where dK = T so that the last seg-

ment always finishes at the end of the signal. Let Xk be the signal of the segment between posi-

tions sk and dk inclusive. Each segment is then assigned to one of N groups with probabilities

π = (π1, � � �, πN) where πn is the probability of assigning any segment to group n. We denote

the group to which segment k is assigned by gk 2 {1, � � �, N} where g = (g1, � � �, gK). Then the

probability of a specific assignment of the K segments to the N groups is

pðgjK; πÞ ¼
YK

k¼1

πgk
: ð2Þ

Let bn be the number of segments with gk = n. The probability of a specific assignment of

the K segments to the N groups can be alternatively defined as:

pðgjK; πÞ ¼
YN

n¼1

πbn
n : ð3Þ

Bayesian change-point modeling with segmented ARMA model
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Each segment is then modeled by an ARMA model. We write the ARMA model in each

segment as:

xt ¼ ck þ �t þ
Xa

i¼1

ciðxt� i � ckÞ þ
Xm

i¼1

yi�t� i: ð4Þ

Here, ck is the mean signal level for segment k and ck � N ðmgk ; t
2
gk
Þ, where mgk and t2

gk
are

the mean and variance of the distribution of these means for the group gk. Also, ϵ = (�1, � � �, �T)

is the vector of error terms and �t = xt − λt, where lt ¼ ck þ
Xa

i¼1

ciðxt� i � ckÞ þ
Xm

i¼1

yi�t� i.

We suppose that �t � N ð0; s2Þ, where σ2 is the variance of error terms and this applies for

t 2 (sk, � � �, dk). In our model only these segment means differ between segments; other param-

eters of the ARMA model, ψ and θ, are the same for all segments. This assumption is appropri-

ate for the applications used in this paper but other data sets may need to allow all of these

parameters to differ between segments. In this paper, when we define the order of the AR (a)

and MA (m) submodels we only intend for a and m to take values 0 or 1. Note that when t − sk
is less than a or m, the expression for λt includes terms from the previous segment. However,

for the left end of the signal when we can not look back a or m order steps, λt includes only

the ck term. An alternative is to choose the initial values for each segment by initializing them

from the stationary distribution for the ARMA process in that segment.

The probability density of the observed signal is a product over all segments, that is, the

probability of the signal X conditioning on parameters K, s, θ, ψ, c and σ2 is expressed as a

product of normal distributions with mean λt and variance σ2 as follows:

pðXjK; s; θ;ψ; c; s2Þ ¼
YT

t¼1

pðxtjK; s; y;c; c;s
2; x<tÞ

¼
YT

t¼1

N ðxtjlt; s
2Þ:

ð5Þ

Here, x<t indicates the signal value at time points 1, 2, � � �, t − 1. The joint distribution of X,

K, s, g and c conditional on the other parameters is given by:

pðX;K; s; g; cj�; π; θ;ψ; s2;μ; τÞ ¼

pðXjK; s; θ;ψ; c; s2Þ�

pðK; sj�Þ�
pðcjg; μ; τÞ�

pðgjK; πÞ

ð6Þ

Here, p(c|g, μ, τ) is the probability of the ARMA mean for all segments given by:

pðcjg; μ; τÞ ¼
YK

k¼1

N ðckjmgk ; t
2

gk
Þ: ð7Þ

Fig 1 shows the parameters of this model and their conditional dependencies. A parameter

at the head of an arrow is conditionally dependent on the parameter at the tail.

Prior distribution

Since the segmented ARMA model is presented here in a hierarchical Bayesian framework, we

have to assign prior distributions for the unspecified parameters. A beta prior is assigned for ϕ

Bayesian change-point modeling with segmented ARMA model
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with parameters a = 1.0 and b = 1.0. Our computational algorithm is not sensitive to the choice

of prior for ϕ, as we show in S4 Appendix. We assign a Dirichlet distribution to π = (π1, � � �, πN)

with parameters (α1, � � �, αN) = (1.0, � � �, 1.0) and
PN

n¼1
pN ¼ 1. Inferences are performed here

using a weakly informative normal prior with mean 0.0 and variance 1.0 for the mean μn of the

distribution of ARMA means in segment class N. We also assign an inverse gamma prior distri-

bution with parameters α = 3.0 and β = 3.0 for the variance ðt2
nÞ of the distribution of c and the

variance of the error terms (σ2) of the ARMA model. The order of the AR model and the MA

model will be considered fixed. Since we have no strong prior beliefs about the parameters of

the ARMA model, we choose a uniform prior distribution for these on the interval (-1,1) and

assume they are independent of each other. The forms of these hyper-priors were chosen to

reflect the degree of prior belief about their respective parameters. Note that in general the sig-

nal xt can be shifted and scaled so that the above prior is appropriate.

Posterior distribution

Using Bayes’ theorem the posterior distribution of parameters is:

pðK; s; g; c; �; π; θ;ψ; s2;μ; τjXÞ

/ pðX;K; s; g; cj�; π; θ;ψ; s2;μ; τÞpð�ÞpðπÞpðθÞpðψÞpðs2ÞpðμÞpðτÞ
ð8Þ

See S1 Appendix for details of the calculation of the conditional posterior distribution of

each parameter.

Sampling

The posterior distribution obtained in S1 Appendix is sampled using a Markov chain Monte

Carlo technique known as the Generalized Gibbs Sampler, or GGS [29]. The GGS algorithm

cycles through a sequence of steps in which parts of a sampled element are updated, while other

parts are held constant. These different types of update are analogous to the coordinate updates

of the conventional Gibbs sampler and are known as “move-types”. This technique resembles a

Fig 1. The conditional dependencies of the parameter.

https://doi.org/10.1371/journal.pone.0208927.g001
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conventional Gibbs sampler but can be applied in a transdimensional setting, where it provides

an alternative to the reversible jump sampler. This technique allows the number of change-

points to vary: it cycles through segments inserting and deleting change-points, and shifting

change-point positions. See S2 Appendix for details of the GGS algorithm. The three main

stages of this algorithm in Bayesian change-point segmented ARMA model are: (also see Fig 2)

• Iterate through the segments doing insertion and deletion updates, segment group assign-

ments (gk) and segment mean updates (ck).

• Iterate through the groups updating group parameters (group mean μg and group variance t2
g).

• Update all the other parameters (π, σ2, ϕ, θ and ψ).

Move types. Fig 2 illustrates the following defined move-types:

• (I, k): Decide whether to insert a new change-point in segment k, and at what position.

• (D, k): Decide whether to remove change-point k or move it to a new position (for each

change-point except the first).

• ck: Update mean signal level ck in segment k = 1, 2, 3, � � �, K.

• gk: Update segment group assignments gk in segment k = 1, 2, 3, � � �, K.

• μg: Update group mean μg for group g.

• t2
g : Update group variance t2

g for group g.

• (θ, ψ): Update θ and ψ.

• (π, σ2, ϕ): Update all other parameters, π, σ2 and ϕ.

There are K I-moves, K − 1 D-moves, K moves for updating segment group assignments, K
moves for updating mean signal level, N moves for updating group mean, N moves for updat-

ing group variance, a moves to update parameters of the AR model, m moves to update param-

eters of the MA model and finally three moves for updating other parameters π, σ2 and ϕ. The

total number of moves for a sequence with K segments is:

TðKÞ ¼ 4K � 1þ 2N þ aþmþ 3: ð9Þ

where N is the number of groups, a is the order of the AR model and m is the order of the MA

model.

Insertion: Step (I, k). Each move-type of a GGS sampler involves drawing from a distri-

bution over a subset of the target space. The insertion and deletion move-types mentioned

in Fig 2 both involve selecting an element from a set containing only two elements. In this

respect, these move-types resemble a Metropolis-Hastings update, in which a new element

is proposed and either accepted or rejected with some probability. In fact the insertion and

deletion move-types involve the same subsets: they differ only in which element of the set is

regarded as the source or current element, and which is regarded as the proposed element.

The two elements in these subsets each have non-zero probability of being selected, propor-

tional to the target distribution multiplied by the probability of selecting the move type when

that element is the current element (see [29] for details).

In an (I, k) insertion step (where k 2 {1, � � �, K}) the subset contains the current segmenta-

tion and a new segmentation with a change-point inserted somewhere in segment k. A new

segment end-point position z is proposed between sk and dk − 1, inclusive. The location of z
is selected from a uniform distribution over the set {sk, � � �, dk − 1}. Then for the left segment

Bayesian change-point modeling with segmented ARMA model
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(from sk to z) new values of g 0k and c0k are proposed and for the right segment (from z + 1 to dk)
new values of g 00kþ1

and c00kþ1
are proposed. Here, g 0k and g 00kþ1

are selected from a discrete distribu-

tion with parameters π1, . . ., πN and then c0k and c00kþ1
are selected from normal distributions

with parameters ðmg0k
; t2

g0k
Þ and ðmg00kþ1

; t2
g00kþ1

Þ respectively. Choosing g 0k, g
00
kþ1

, c0k and c00kþ1
in this

manner results in cancellations such that the terms p(c|g, μ, τ) and p(g|K, π) in Eq 6 disappear

when calculating the acceptance ratio.

After further cancellations, the new change-point at position z + 1 is rejected with a proba-

bility proportional to

P1 ¼ ð1 � �Þ
Ydk

t¼sk

pð�tj0; s
2Þ

1

ðdk � skÞ
1

TðKÞ
ð10Þ

where

pð�tj0; s2Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

�2
t

2s2

� �

and

�t ¼ xt � lt ¼ xt � ck þ
Xa

i¼1

ciðxt� i � ckÞ þ
Xm

i¼1

yi�t� i

 !

:

Fig 2. Order of move-types for the sampler. Note that I updates run from 1 to K whereas D updates run from 2 to K.

https://doi.org/10.1371/journal.pone.0208927.g002
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In this expression, 1/(dk − sk) is the probability of proposing the location of the new change-

point and 1/T(K) is a correction factor used by the GGS to account for the number of move

types available for the current segmentation with K segments.

Alternatively, the new change-point is accepted with probability proportional to:

P0 ¼ �
Yz

t¼sk

pð�0tj0; s
2Þ �

Ydk

t¼zþ1

pð�00t j0; s
2Þ

1

TðK þ 1Þ
ð11Þ

where

p �0tj0; s
2

� �
¼

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

�02t
2s2

� �

p �00t j0; s
2

� �
¼

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

�002t
2s2

� �

�0t ¼ xt � l
0

t ¼ xt � c0k þ
Xa

i¼1

ciðxt� i � c0kÞ þ
Xm

i¼1

yi�
0

t� i

 !

ð12Þ

and

�00t ¼ xt � l
00

t ¼ xt � c00k þ
Xa

i¼1

ciðxt� i � c00kÞ þ
Xm

i¼1

yi�
00

t� i

 !

ð13Þ

Here, Eq 12 applies for the left segment from sk to z and Eq 13 applies for the right segment

from z + 1 to dk.
Thus the new change-point at z + 1 is accepted with probability

P0

P0þP1
or rejected with proba-

bility
P1

P0þP1
. An alternative (which we have not implemented) is to use the Metropolis-Hastings

acceptance probability min{1, P0/P1}.

If a change-point is inserted, the move-type is updated to (D, k+ 1), otherwise it remains

(I, k). In either case, the move-type is then further updated as in Fig 2.

Deletion: Step (D, k). For each segment k = 2, � � �, K, a (D, k) deletion step also involves

selecting an element from a set containing only two elements: the current segmentation and

a new segmentation with the change-point at the left end of segment k removed, so that seg-

ments k − 1 and k merge to form a new segment. Values of gk and ck are then chosen for the

new merged segment: gk is selected from a discrete distribution with parameters π1, . . ., πN
and then ck is selected from a normal distribution with parameters mgk and t2

gk
respectively.

Other parameters and the positions of other change-points are held constant.

The probability of accepting the deletion is proportional to:

P1 ¼ ð1 � �Þ
Ydk

t¼sk� 1

pð�tj0; s
2Þ

1

ðdk � sk� 1Þ

1

TðK � 1Þ

where

pð�tj0; s2Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

�2
t

2s2

� �

and

�t ¼ xt � lt ¼ xt � ck þ
Xa

i¼1

ciðxt� i � ckÞ þ
Xm

i¼1

yi�t� i

 !

Here K is the number of segments in the current segmentation, that is, without making the

deletion.
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The probability of rejecting the deletion is proportional to:

P0 ¼ �
Yz

t¼sk� 1

pð�0tj0; s
2Þ �

Ydk

t¼zþ1

pð�00t j0; s
2Þ

1

TðKÞ
:

Thus the deletion is accepted with probability
P1

P0þP1
or rejected with probability

P0

P0þP1
.

The conditional posterior distribution for c and ϵ is proportional to:

Ydk

t¼sk

pðxtjlt; s
2Þ � pðckjmgk ; t

2

gk
Þ:

The c’s and the corresponding �sk ; � � � ; �skþ1
can be updated one segment at a time with this

conditional posterior distribution. Now, the conditional posterior distribution for θ and � is

proportional to:

YT

t¼1

pðxtjlt; s
2Þ � pðyÞ:

To update ψ, similar procedures were used. The sampler iterates through the groups, updat-

ing group parameters (μ and τ) with their respective conditional posterior distributions.

The sampler uses conventional Gibbs updates for other parameters ck, gk, θi, ϕi, σ2, π, ϕ, μg
and τg. We use the Slice sampler [32] where needed to draw from non-standard distributions.

Validation of the methodology

We have used a simulation-based method for testing the correctness of software for fitting

Bayesian models using posterior simulation [33]. This validation technique is based on poste-

rior quantiles. Consider the general Bayesian joint distribution p(y|Θ)p(Θ), where p(y|Θ) pres-

ents the sampling distribution of the data, p(Θ) presents the proper prior distribution of the

parameter vector Θ, and inferences are based on the posterior distribution, p(Θ|y). The valida-

tion method samples a parameter vector Θ(0) from p(Θ). Then conditional on Θ(0), this tech-

nique samples data y from p(y|Θ = Θ(0)) and then simulates sampling from the posterior

distribution, p(Θ|y) using the software to be validated. The resulting posterior sample of size L
is denoted (Θ(1), Θ(2), � � �, Θ(L)). Finally, for each coordinate of Θ(0), denoted θ(0), compute its

posterior quantile q̂ðyð0ÞÞ, with respect to the posterior sample (θ(1), θ(2), � � �, θ(L)). To perform

the validation procedure, many replications are required, each drawing Θ(0) from p(Θ) and y
from p(y|Θ(0)). The simulation output is a collection of estimated posterior quantiles. From

these quantiles calculate a test statistic X2
y
¼
PNrep

i¼1 ðF
� 1ðqiÞÞ

2
where, qi ¼ 1

L

PL
l¼1

I
y
ð0Þ

i >y
ðlÞ
i

is the

posterior quantile for the ith replication, Nrep is the total number of replications, θ denotes

component of Θ and F represents the standard normal CDF. If the software is implemented

correctly, this test statistic follows a χ2 distribution with Nrep degrees of freedom and also

the posterior quantiles will be uniformly distributed. The posterior quantiles’ deviation from

uniformity can be quantified by calculating the associated p value, that is, pθ for each X2
y
.

Extremely small pθ values indicate an error in the software. As an exploratory tool, pθ values

can be transformed into a zθ statistic (zθ = F−1(pθ)). If all |zθ| statistics are not extreme, such as

less than 2, the software may be considered validated.
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To validate our method according to the above described technique, we generated the

parameters τ2, σ2, π, μ from the following prior distributions:

t2 � Inv � gammað3; 3Þ
s2 � Inv � gammað3; 3Þ
p � Uð0; 1Þ
m � Nð0; 1Þ
y � Uð� 1; 1Þ

c � Uð� 1; 1Þ

We generated 20 sequences from an ARMA model with 20 different segment means where

every sequence has length 100. We simulated 5000 draws from the posterior distribution of the

model parameters. Then the quantiles of the posterior distributions for each parameter were

determined and the whole procedure was repeated 20 times. From these quantiles we deter-

mined the absolute values of the zθ statistic. The absolute zθ statistics from this simulation are

plotted in Fig 3:

In the above plot, since the zθ statistic for each parameter is less than 2, we conclude the

software is correctly written. More precisely, we find no evidence of software errors.

Fig 3. Absolute zθ statistic plot. Each row shows a parameter of the segmented ARMA model and the |zθ| statistics

associated with these parameters are displayed as a circle in each row.

https://doi.org/10.1371/journal.pone.0208927.g003
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Illustrative examples

Simulation example

As a test of our method, we applied it to a simulated example in which the number and loca-

tion of change-points, ARMA parameters, segment means and error variance are known. We

analyzed 20 time series, each containing 100 observations, generated from the autoregressive

moving average (ARMA(1,1)) model with parameter values ψ = 0.22 and θ = 0.60. Each series

was generated using σ2 = 0.96 and 20 different segment means. The simulated ARMA data

with the true segment means and the location of change-points is shown in Fig 4.

Fig 4. Simulated signal. The true change-point locations are shown as vertical blue lines and segment means are shown as horizontal red lines.

https://doi.org/10.1371/journal.pone.0208927.g004
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We executed 5,000 iterations of the MCMC estimation algorithm and the first 1,000 itera-

tions were treated as a burn in period and discarded. The convergence of AR and MA parame-

ters is evident in Fig 5. Both AR and MA parameters converge, display good mixing and are

close to the true values of those parameters.

The top panel of Fig 6 presents the simulated signal with the true change-points (red verti-

cal line). The middle plot shows the posterior distribution of occurrence of change-point loca-

tions, that is, the posterior probability of being change-points at each position. The height of

the (red) ‘spikes’ indicates the posterior probability of a change-point being selected at each

time point. The top two plots show the locations of estimated change-points and the true

change-points are similar. This picture is clearer if we compare actual change-point locations

and estimated change-point locations with the simulated data, as in the top and bottom plots

of Fig 6. The blue lines indicate time points at which the posterior probabilities of change-

points are greater than 0.5. Fig 6 (bottom) identifies 17 change-points out of 19 true change-

points.

Fig 7 plots posterior estimators of mean signal level (c) at each position of the simulated sig-

nal. This plot clearly indicates 20 segments in the simulated signal detecting a change in mean

even where change-points were not detected in Fig 6.

Fig 5. Trace plot of AR and MA parameters. Both parameters converged to the true values.

https://doi.org/10.1371/journal.pone.0208927.g005
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Well-log data

We now apply the segmented ARMA model to identify change-points in a real data set. This

data records 4050 measurements of nuclear magnetic response of underground rocks during

the drilling of a well. During drilling, data were obtained at discrete time points by lowering a

probe into a bore-hole in the Earth’s surface. This geophysical data originates from Ó Rua-

naidh and Fitzgerald [34] and has been previously analyzed in the context of change-point

Fig 6. (Top) Segmented signal with the true change-point locations. (Middle) Posterior probabilities of occurrence of change-points. (Bottom)

Estimated change-point locations (posterior probability greater than 0.5). The middle plot shows the location of peaks in the probability profile closely

follows the true change-points locations but in some positions with low posterior probability. Using a threshold in posterior probability 0.5, we identify

17 change-points out of 19 which match the locations of the true change-points.

https://doi.org/10.1371/journal.pone.0208927.g006
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detection by many researchers, for example, by Fearnhead and Clifford [35], Fearnhead [36]

and by Whiteley et al. [1]. A few outliers present in this data were removed by hand before

analyzing the data as in Fearnhead [36]. The data is shown in Fig 8.

The piecewise constant signal of this data indicates information about the geophysical

structure of the rocks in the well. Changes in mean occur at each time point whenever a new

rock type is found. To identify change-points in this well-log data, Ó Ruanaidh and Fitzger-

ald [34] used a Gibbs sampler to fit a Bayesian change-point model with a fixed number

of change-points; Fearnhead and Clifford [35] used on-line Bayesian analysis of data with a

hidden Markov model using particle filters; Fearnhead [36] considered an extension of the

model described by Fearnhead and Clifford [35] in which they considered all the parameters

of their model to be unknown and they used reversible jump MCMC to fit that model;

Whiteley et al. [1] considered the same model used by Fearnhead [36] to analyze well-log

data but here they used a block Gibbs sampler for generating samples from the posterior

distribution.

To find change-points in this data, we attempted to fit an AR(1) model, an MA(1) model

and an ARMA(1,1) model. We are the first to investigate this data using a segmented ARMA

model. Each model was run for 5000 iterations and then tested for convergence of each param-

eter using trace plots and an autocorrelation function (ACF) plot which represents the degree

of correlation between all pairs of samples separated by progressively larger lags (number of

Fig 7. Segment means at each position of simulated data.

https://doi.org/10.1371/journal.pone.0208927.g007
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samples). The change-point profiles and segment mean profiles for each model are given in

Figs 9–11.

In our model, the initial segmentation was generated using a probability of starting a new

segment ϕ = 0.1. The initial segmentation was generated by throwing a uniform(0,1) random

number for each sequence position except the first, making that position a change-point if the

random number is less than ϕ at that position. Note that, this initial segmentation should not

affect the stationary distribution of the Markov chain. The posterior probabilities of occur-

rence of change-points at each position of the input sequence are calculated using the uniform

prior probability distribution for ϕ (the probability that any given sequence position is a

change-point) and the likelihood probability (p(K, s|ϕ) = ϕK−1(1 − ϕ)T−K−1) of generating a

new segmentation with K change-points and s = (1 = s1 < � � �< sK� T) starting positions.

All change-point profile plots (Figs 9–11) show almost the same change-points locations.

But at some locations the AR(1) model gives comparatively smaller posterior probability than

the MA(1) and ARMA(1,1) models. In addition, the AR(1) model identifies fewer change-

points with high posterior probability (when the posterior probability is more than 0.5) than

the other two models. These results are somewhat similar to the previous results found in the

change-point literature [1, 34–36].

Since the three segmented ARMA models indicate many of the same change-point loca-

tions, we compare the change-points locations for which posterior probabilities are greater

Fig 8. Well-log data. This data provides information about the rock structure of the well. Some change-points are

present in the data reflecting the presence of a new rock.

https://doi.org/10.1371/journal.pone.0208927.g008
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than 0.5 in Fig 12. Among these three models, the ARMA(1,1) model identifies the largest

number of change-points and matches more closely with the number and locations of change-

points detectable to the eye. Moreover, the ARMA(1,1) model picks up small changes in mean

with high posterior probability whereas the AR(1) and MA(1) models missed change-points at

some time points where small jumps occured in the data.

To determine the best model among these three, we compare these models using the devi-

ance information criterion (DICV). The DICV is defined as: DICV ¼ pv þ DðyÞ, where DðyÞ
is the mean posterior deviance, pv = Var(D(θ))/2 and deviance D(θ) = −2lnf(y|θ) (details of

DICV are in [37, 38]). The DICV, DðyÞ and pv of these three models are shown in Table 1.

Here, the segmented ARMA(1,1) model gives lower DICV than the other two models. The

lower DICV of the ARMA(1,1) model supports the conclusion that the ARMA(1,1) model is

the best of the three.

Discussion

In this paper, we have developed a Bayesian change-point segmented ARMA model to seg-

ment time series data. The novel features of our approach include: (1) It uses an ARMA model

Fig 9. Top plot shows the posterior estimators of mean signal level (c) on each segment of AR(1) model. Bottom

plot shows the posterior probability of a change-point at each position. These segment means and change-point

positions indicate significant jumps in the original data.

https://doi.org/10.1371/journal.pone.0208927.g009
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in each segment (2) It uses a highly efficient sampling technique (GGS) to generate samples

from a posterior distribution. Results for simulated data and real data show that this model

achieves high detection accuracy.

The results we obtain for the well-log data seem reasonable when judged by eye. The pos-

terior probabilities of change-point occurrences of the ARMA(1,1) model are somewhat

similar to results previously found in the literature for this data. Ó Ruanaidh and Fitzgerald

[34] assumed 13 change-points exist in this data (after removing outliers) but our ARMA

(1,1) model identifies 27 change-points (considering posterior probability more than 0.5).

They missed some small jumps in the data whereas the ARMA(1,1) model identifies small

jumps as well as large jumps. Fearnhead and Clifford [35] inferred 16 change-points but

since they did not remove the outliers of the data, the results cannot be directly compared.

Fearnhead [36] found too many change-points in their piecewise constant model. They

used a random walk sampler and found similar change-points to our ARMA(1,1) model. In

addition to the change-points found by Fearnhead [36], the ARMA(1,1) model identifies

some significant change-points between time points 1 and 1000 and after 2800 (shown in

Figs 13 and 14).

Fig 10. Top and bottom plot show the segment mean profiles and the change-point profiles for MA(1) model

respectively. This model identifies more change-points than the AR(1) model.

https://doi.org/10.1371/journal.pone.0208927.g010
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The results of the ARMA(1,1) model are similar to the results reported in Whiteley et al. [1]

but in some time points ARMA(1,1) model shows a higher posterior probability of change-

point occurrences.

Overall, this paper has presented a promising new direction for estimation of change-point

models by assuming a segment-wise ARMA model. Most of the previous methods discussed in

the literature use autoregressive (AR) models in each segment. Adding a moving average com-

ponent helps to consider the dependence between residual terms which is an advantage over

the segmented AR model. Our results obtained using simulated data demonstrate that when

the data are generated via an ARMA process, the ARMA model finds more change-points

than the AR model, without finding false positives. The ARMA model also finds more change-

points in the well log data, but a question remains whether the additional change-points are

false positives in this case. As the true locations of change in this data set are unknown, this

question cannot be answered definitively. However, we compared the segmented ARMA (1,1)

model, segmented AR(1) model and segmented MA (1) model using the deviance information

criterion (DICV), and found that the ARMA (1,1) is favoured by this criterion, suggesting the

additional change-points reflect a real feature of the data. Since this model assumes the same

Fig 11. Top and bottom plot show the segment mean profiles and the change-point profiles for ARMA(1,1) model

respectively. These change-points and segment means are almost identical to those identified using the MA(1) model.

https://doi.org/10.1371/journal.pone.0208927.g011
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Fig 12. Estimated change-point locations with posterior probability greater than 0.5 for AR(1), MA(1) and ARMA(1,1) model.

https://doi.org/10.1371/journal.pone.0208927.g012

Table 1. DICV of Models.

Model DðyÞ pv DICV

Segmented AR(1) Model 958.0043 181306.7 182264.7

Segmented MA(1) Model 509.5514 253045.4 253554.9

Segmented ARMA(1,1) Model 672.8849 169945.6 170618.5

https://doi.org/10.1371/journal.pone.0208927.t001
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variance for all segments, it is not suitable for data sets in which different segments have differ-

ent variance.
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Fig 13. Comparison between the results of a random walk model [36] and our ARMA(1,1) model. (Left) change-point profiles of

random walk model [36]; (centre) change-point profiles of ARMA(1,1) at time points 1 to 1000; (right) change-point profiles of

ARMA(1,1) after time point 2800.

https://doi.org/10.1371/journal.pone.0208927.g013

Fig 14. Change-point locations identified using ARMA(1,1) model displayed with the original well-log data at two different

time points. (Left) change-point locations using ARMA(1,1) model in well-log data at time points 1 to 1000; (right) change-point

locations using ARMA(1,1) model in well-log data after time point 2800.

https://doi.org/10.1371/journal.pone.0208927.g014
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Chapter 4

Event detection in spatio-temporal

data using a one-dimensional

summary statistic

Chapter Objectives

In this chapter, I explore methods currently available for segmenting parallel sequences,

as the thesis is aimed at developing improved methods for parallel segmentation. This

chapter describes the second methodological development I introduced in this thesis, which

is a simple one-dimensional approach to segment parallel time series. To achieve this,

spatio-temporal data was pre-processed to produce a single summary sequence, which was

then analysed using the change-point model developed in the previous chapter. The single

summary sequence was produced using alternative statistics based on the maximum across

sequences or principal component analysis (PCA). The goal of this work was to detect an

event of interest in parallel sequences partially obscured by different levels of background

noise rather than segmenting the two-dimensional data. This method was tested on syn-

thetic data and real-world data and also compared with a simple event extraction method.

Results for the synthetic data provide evidence of high accuracy for detecting events. For

the real-world data, the proposed method was successful in detecting the boundary of the

events with a low background noise. However, when the background noise level is high and

the variance of background noise is not uniform, this method could identify the events of

the data but also showed some false positive change-points. The maximum-based approach

performed better than the PCA-based approach in our examples although maximum in-
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volves loss of information. However, our results recommend that both PCA and maximum

are suitable for initial exploratory analysis.
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4.1. ABSTRACT

4.1 Abstract

Event detection in spatio-temporal data has recently received increased attention, partic-

ularly in the study of anomaly detection. An interesting yet challenging problem is the

detection of events in noisy backgrounds. In this paper, a Bayesian change-point seg-

mented ARMA model is used to detect events in two-dimensional (time and one spatial

dimension) data and we demonstrate how a technique designed for one-dimensional time-

series can be used to segment parallel spatially correlated time-series. Our aim is to detect

an event of interest in parallel sequences partially obscured by background noise, with-

out explicitly segmenting the two-dimensional data. We reduce data dimensionality using

alternative maximum and principal component analysis (PCA) based summary statistics

before change-point detection. We test our model on synthetic data as well as real world

data and find the model effective in detecting relatively simple events in backgrounds with

various noise levels using an approach based on the maximum across spatial locations. The

results of our proposed method are also compared with a simple event extraction method

for both synthetic data and real world data. Although the maximum-based approach pro-

duces better results than the PCA-based approach in our examples, using the maximum as

a low-dimensional summary statistic is not recommended, because of the information loss

it involves. However, our results suggest PCA performs no better, and possibly worse, than

the maximum, suggesting both are useful only in preliminary exploratory analysis.

Keywords: Event detection; Spatio-temporal data; Bayesian change-point segmented

ARMA model; Dimension reduction; Principal component analysis.

4.2 Introduction

Change-point detection is the problem of identifying abrupt changes in the characteristics

of a signal at unknown points of time in stochastic processes [1]. Change-point detection

methods are used in a broad range of real world applications such as climate change de-

tection [2], genetic time-series analysis [3], signal segmentation [4] and outlier detection

[5].

Development of change detection techniques has recently received considerable attention

in a variety of fields (for reviews, see [1, 2, 6, 7]). Anomalies and outliers occur at unknown

time-points giving rise to changes in some of the statistical properties of the time series.
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By correctly detecting these changes we can detect the anomalies. Therefore, the event and

anomaly detection problem can be formulated as a change-point detection problem. The

goal of change-point detection with particular emphasis on event detection is to detect an

abrupt change, subject to false alarm constraints [8].

There is a wide variety of change-point detection methods in the literature used for

event detection (for example, [9–12]). Tartakovsky et al. [8] proposed an adaptive se-

quential method and a batch-sequential method for early detection of attacks in computer

network traffic. This method considers the fluctuations of the false alarm rate and iden-

tifies changes in the statistical model. To detect anomalies in one-dimensional time-series

data, Burnaev and Ishimtsev [13] used a non-parametric approach involving a probabilistic

interpretation of an anomaly score. To detect an anomaly in a single time series and across

multiple time series, Qiao et al. [14] proposed a novel anomaly detection algorithm for mul-

tiple heterogeneous correlated time series data. They introduced a new clustering-based

compression method to deal with large time series data.

A challenging task is to detect change-points in multidimensional data because increas-

ing dimensionality makes change-point estimation computationally expensive. Some ex-

isting approaches use dimensionality reduction techniques to project the multidimensional

data into a lower dimensional space. Qahtan et al. [15] projected the multidimensional data

on selected principal components using PCA and created multiple univariate data streams.

They used an unsupervised change detection procedure where they measured the variation

in each univariate data stream by a change-score. They determined the final change-score

by aggregating selected components. Other studies also used PCA [16–23] to reduce the

dimension of the data in change-point problems. PCA-based change-detection approaches

are effective to reduce the number of features in the data but they produce a large number

of false alarms [24]. Moreover, these approaches may fail to detect complex changes over

correlations of dimensions as it assumes statistical independence in the transformed space

[23]. Besides PCA, some other dimensionality reduction techniques are used in change-

point problems. Lévy-Leduc et al. [25] proposed a data reduction technique named record

filtering to detect change-points in high-dimensional network traffic data. Record filtering

selects the heavy-hitters with high probability from network traffic data, which are col-

lected at several points of an internet network (heavy-hitters are the entities which account

for a pre-determined proportion of traffic data from total unusual traffic activity and are

measured in terms of number of packets, bytes, or connections [26]). Some authors used an-
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other data reduction technique called random aggregation (or sketch) in network anomaly

detection problems [26–28]. This technique chooses several linear combinations at random

from all the flows and processes them before applying a change-point detection approach.

A low-dimensional summary statistic, known as least absolute shrinkage and selection op-

erator (LASSO) estimator, is also used in high dimensional change-point problems in some

studies [29–32]. Zou and Qiu [32] used shifted mean components in a multivariate statistical

process control (SPC) problem using LASSO estimators. They proposed a LASSO-based

multivariate test statistic which uses both variable selection and regularization to improve

the interpretability and prediction accuracy of the regression model they use.

In this paper, we reduce the dimension of the data using maximum and PCA based

summary statistics before applying a one-dimensional change-point detection algorithm.

Our Bayesian change-point segmented ARMA model is used to identify events of interest.

This model considers the problem of segmenting a time series where each segment of the

time series follows an ARMA model with distinct segment means. It assumes an unknown

number of change-points and locations and the main aim of this model is to infer the most

probable segment locations and model parameters.

We test our proposed method using two synthetic two-dimensional data sets with dif-

ferent shaped hidden events in the presence of noise, and some real world data from a

sensitive security application where we have de-identified the data. We successfully identify

the events of interest in synthetic data sets. For the real data set, the maximum-based

approach identifies the boundary of the events whereas a PCA-based approach provides a

cluster of change-points covering the event in the presence of low background noise. When

high background noise exists, the maximum-based approach detects the events of interest

and some false positive events with low probability whereas the PCA-based approach fails

to identify one real event and also provides false positive events with high probability. These

indicate that in some cases, PCA provides no advantage over the maximum.

4.3 Methods

In earlier work, we developed a hierarchical Bayesian model for identifying change-points in

time series data [33]. The method models a time series by segmenting the series into blocks

of autoregressive moving average (ARMA) processes. Our Bayesian change-point segmented

ARMA model was originally designed for one-dimensional time-series data. In this paper,
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we consider a collection of parallel time-series collected at roughly evenly spaced points

along a line or curve, with correlations between time series that diminish with separation

distance along the line. Here we treat the data as a time-series of vectors, where the

dimension of each vector is the number of spatial locations at which data are collected. As

all our data sets (synthetic and real) are two-dimensional, it is necessary to pre-process the

data using a summary statistic before applying the ARMA model. We have used maximum

as the summary statistic. An alternative summary statistic, based on principal component

analysis (PCA), is alternatively used to reduce the dimension of the data in our real life

examples. As a summary statistic, the maximum gives better results than PCA in our

examples.

4.3.1 Proposed method for event detection in spatio-temporal

data

We consider the problem of detecting events in a spatio-temporal dataset with N par-

allel time-series collected at distinct spatial locations (with time series corresponding to

rows of a data matrix) and M time-points (arranged in columns). We denote by Xn =

(Xn1, . . . , XnM), n = 1, . . . , N the data samples, where Xij is the observation in row i and

column j. We summarise the data to form a single time-series by first computing the max-

imum values over all locations for each time-point (that is, we find the maximum in each

column). Then Bayesian segmented MA(1), AR(1) and ARMA(1,1) change-point models

[33] are applied to the maximum values.

The main idea behind the Bayesian change-point segmented ARMA model is to assume

a MA(1) or AR(1) or ARMA(1,1) model with a different mean in each segment of the time-

series. The aim is to infer the most possible segment locations and model parameters that

describe each segment. The model also assumes an unknown number of change-points and

unknown locations of those change-points. The Bayesian change-point segmented ARMA

model consists of 4 main steps: (1) write down the likelihood function of a model in

which the series within each segment is generated by an ARMA process; (2) compute

the conditional posterior distribution of the unobserved parameters of interest, given the

observed data; (3) generate samples from the conditional posterior distribution of every

parameter using a Markov chain Monte Carlo technique known as the Generalized Gibbs

Sampler, or GGS (4) estimate and evaluate the model (Further details of this model are

found in Appendix B.1 and in the paper [33]).
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The best model from these three models (MA(1), AR(1), ARMA(1,1)) is chosen based

on the deviance information criterion (DICV) approximation values. The DICV is defined

as: DICV= pv + D(Θ), where D(Θ) is the mean posterior deviance, pv = Var(D(Θ))/2

and deviance D(Θ) = −2lnf(y|Θ) (See [34, 35]). In our model, f(y|Θ) is the probability

density of the observed signal, which is a product over all segments. Here, Θ is the set

of parameters which are K, s,θ,ψ, c, σ2. This probability is normally distributed with

mean ck + εt +
a∑
i=1

ψi(xt−i − ck) +
m∑
i=1

θiεt−i and variance σ2. Here, K is the total number of

segments; s is a vector of the starting positions of the segments; θ and ψ are the parameters

of the MA and AR model; c is the mean of the signal. All the parameters are defined in

Appendix B.1. We obtain the posterior distribution of occurrence of change-point locations

from the selected best model. The posterior probability of being a change-point at each

position is tr = [tr1, . . . , trN ]′, which is a Monte Carlo estimator (see Equation B.2 in

Appendix B.1).

In our segmented model, each segment is assigned to a group. We denote the group to

which segment k is assigned by gk ∈ {1, · · · , J}, where g = (g1, · · · , gK). For each position

in the input sequence, we also estimate the probability that the position belongs to a given

group of the selected best model (see Equation B.3 in Appendix B.1). The result is a profile

for that group that can be plotted across the time points or locations.

It is important to note that we take the logarithm of the maximum values as the input

sequence for the real data sets. These data sets mainly show instability in variance as they

do not have the same variance across the signal. The variance is large where the signal

is large and small where it is small. The variance of a time series can be stabilized using

transformations such as logarithms whereas the mean of a time series can be stabilized

using differencing (like ARIMA model) by removing changes in the level of a time series

[36]. The logarithm of the maximum values has variance that appears to be approximately

constant. This means applying logarithm doesn’t indicate ARIMA model as it only helps

to stabilize the variance, not the mean as the differencing technique does in an ARIMA

model.

If the N spatial locations are arranged sequentially, we can use the same technique

to distinguish the locations involved in an event from those that are not. The idea is to

swap the roles of rows and columns. To identify the Monte Carlo estimate of the posterior

probability of being a change-point at column locations, that is, tc = [tc1, . . . , tcM ]′, we

repeat the above described method on a sequence formed by finding the maximum of each
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row.

We summarize the overall algorithm as follows,

input : Dataset with N rows and M columns
output: Probabilities of row change-point locations tr = [tr1, . . . , trN ]′, probabilities of row group

profile pr = [pr1, . . . , pN ]′, probabilities of column change point locations
tc = [tc1, . . . , tcM ]′ and probabilities of column group profiles pc = [pc1, . . . , pcM ]′

1 Take maximum values of columns;
2 Fit Bayesian segmented MA(1), AR(1) and ARMA(1,1) change-point model on the logarithm of

the maximum values;
3 Calculate posterior Prob Of CP MA, posterior Prob Of CP AR and

posterior Prob Of CP ARMA;
4 Calculate posterior Prob Of Group profile MA, posterior Prob Of Group profile AR and

posterior Prob Of Group profile ARMA;
5 Best model = Model with smallest DICV, from models MA(1), AR(1) and ARMA(1, 1) ;
6 tr=Posterior Prob Of Change Points = Posterior Prob Of CP Best model where

Best model ∈ (MA,AR,ARMA) ;
7 pr =Posterior Prob Of Group Profiles = Posterior Prob Of Group profile Best model

where Best model ∈ (MA,AR,ARMA) ;
8 Swap rows and columns in the original data and repeat from line 1 to line 6 to get tc and line 7

to get pc .

Algorithm 1: Event detection with Bayesian change-point segmented ARMA model

4.3.2 A comparison method

For comparison we use a simple event extraction method detailed in Kandanaarachchi et

al. [37], which focuses on early event classification. This algorithm considers points with

high signal values, and clusters them using the DBSCAN algorithm [38].

input : a 2 dimensional array Xn×m, and parameters α, ε and minPts.

output : events and event ids

1 Let xij be the signal value at (i, j) position of X.

2 Let q denote the α-percentile of the signal values of X.

3 S = {(i, j) | xij > q}. S gives locations of X, which have signal values greater than the αth

percentile.

4 Let X(S) be signal values of X in S locations.

5 Using DBSCAN [38] cluster X(S) using ε and minPts.

6 This clustering gives each x ∈ X(S) a cluster id.

7 Consider each cluster as an event.

Algorithm 2: Extract 2-dimensional events from a 2D array using DBSCAN.
We use the default settings of Algorithm 2 with α = 0.95, ε = 5 and minPts= 10 in our

analysis.
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4.4 Results

4.4.1 Synthetic data

To evaluate the performance of the proposed method for event detection, we applied it to

some synthetic data sets with background noise. The first data set consists of an array of

Gaussian noise superimposed on a triangle event and the second one is an example of an

odd quadrangle event.

Test 1

The diagram (Figure 4.1) below shows a 300 × 200 array filled with Gaussian noise with

mean 0 and standard deviation 1. A triangle shaped event is hidden among the noise with

vertices at positions (100,50), (140,60) and (150,100) where the first coordinate represents

spatial location and the second is time. The mean value of the signal in the triangle is

2 while the background has a mean of 0 and the variance in the triangle is same as the

background. The change-points on the x axis take place at 50, 60 and 100 while the

change-points on the y axis take place at 100, 140 and 150.

Figure 4.1: Triangle event hidden in the Gaussian background noise
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Proposed method

We applied Algorithm 1 to our synthetic data set and fitted Bayesian segmented MA(1),

AR(1) and ARMA(1,1) change-point models to the maximum values across row and column

locations respectively. The MA(1) model at column locations was chosen as the best model

among the three models according to DICV values (DICV of MA(1)= 327.165, DICV of

AR(1)= 465.137 and DICV of ARMA(1,1)=654.331). At row locations, we chose AR(1)

as the best model (DICV of AR(1)= 265.414, DICV of MA(1)= 317.221 and DICV of

ARMA(1,1)= 520.631). The row and column change-point profile plots of the selected best

models are given in Figure 4.2a and Figure 4.2c. The change-point profile plot gives the

posterior probability of each position being a change point. As seen from the graph, we

detect x coordinates 50 and 100 and y coordinates 100 and 150 as change points. These

positions correspond to the boundary locations of the triangle event. The change-point

profile plots also show two other change-points with low probability at position (126,71)

within the boundaries of the event. The coordinate (71,126) represents the actual coordinate

(140,60) which is the top corner of this event. To get a clear picture of the boundary location

of the event, we also look at the group profile plots given in Figure 4.2b and Figure 4.2d.

These plots exhibits the correct boundary locations. This validates the claim that our

proposed method can identify the boundary location of events buried in background noise.

Comparison method

To compare with the proposed method we extract events using Algorithm 2. Figure 4.3

shows the events that are extracted, with each event depicted in a different colour. In

addition to the triangle we see three small noisy events extracted by Algorithm 2, which

were correctly not flagged by Algorithm 1. This is a strength of Algorithm 1 compared

to Algorithm 2. However, Algorithm 2 extracts events in a 2-dimensional setting, without

considering each dimension separately, which is an advantage of Algorithm 2.
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Figure 4.2: Profile plots: (a) Change-point profile plot across time points, (b) Group profile
plot across time points, (c) Change-point profile plot across locations, and (d) Group profile
plot across locations

Figure 4.3: Original data and events extracted using Algorithm 2, with each event depicted
in a different colour.
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Test 2

We also generated 300× 200 array of Gaussian noise with mean 0 and standard deviation

1. In this example, a quadrangle is hidden among the noise (Figure 4.4) with a different

mean (of 2) from the background and the variance is the same as for the background. The

change-points on the x axis occur at 50, 60, 80, 100 while the change-points on the y axis

take place at 100, 115, 140 and 150.

Figure 4.4: Odd quadrangle event hidden in the Gaussian background noise

Proposed method

After applying Algorithm 1 to this synthetic example, we chose the best models as in the

previous example. Figure 4.5 plots the row and column change-point profiles (Figure 4.5a,

Figure 4.5c) and group profiles of the best models at row and column locations (Figure 4.5b,

Figure 4.5d). All the plots accurately detect x coordinates 50,100 and y coordinates 100,

150 as row and column change points. These locations represent the boundary locations of

the hidden events.
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Figure 4.5: Profile plots: (a) Change-point profile plot across time points, (b) Group profile
plot across time points, (c) Change-point profile plot across locations, and (d) Group profile
plot across locations

Comparison method

Figure 4.6 shows the extracted events from the original dataset with each colour denoting a

separate event. Again, we see two additional events in colours blue and green just outside

the extracted irregular quadrilateral, which is depicted in red. While both these additional

events are small, the blue noisy event is quite close to the red event, signifying a possibility

that it can be merged with the red event.

Figure 4.6: Original data and events extracted using Algorithm 2, with each extracted
event depicted in a different colour.
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4.4.2 Real World Application

We have used three data sets from a real application that uses fibre-optic cables. Due to

the sensitive nature of the industry, we have de-identified this data. All three data sets

contain anomalies. The background noise level of the first two data-sets are relatively low,

while the third data set contains a high level of background noise. We apply Algorithm 1

to these data sets.

Dataset 1

The heat map in Figure 4.7a represents an event of interest depicted in yellow surrounded

by relatively low background noise depicted in blue. Figure 4.7b and Figure 4.7c show the

time series plots of maximum values across row and column locations respectively which

seems non-linear. Figure 4.7b shows change in means and variance approximately in rows

200-300 and 500-1300. Figure 4.7c shows both change in means and volatilities with an

increasing trend between columns 350-600. To check the non-linearity of those time series,

Keenan’s 1-degree test [39] was used against the null hypothesis that the time series follows

some AR process. This test has p-value less that a significance level of 0.05 for both time

series, therefore we can reject the null hypothesis and conclude that the time series plotted

in Figure 4.7b and Figure 4.7c are nonlinear.

Proposed method

As the data presents in Figure 4.7b and Figure 4.7c show unstable volatility, the logarithm

of the maximum values has been used as the input sequence. The non-linearity of logarithm

of the maximum values has been checked again using Keenan’s 1-degree test. Both time

series have shown linearity according to their p-values which can be used now for segmented

ARMA model. The row and column change point profiles of the selected best models among

the segmented MA(1), AR(1) and ARMA(1,1) models (obtained using the same procedure

as in the synthetic examples) are given in Figure 4.8a and Figure 4.8c. By examining the

change point profile plots in Figure 4.8 we notice that certain row and column locations

have much larger posterior probability than others. There are four spikes in row change-

point locations, they are at 140, 338, 502 and 1247. Similarly, the column change point

profile plot has spikes at locations 315 and 589. We note that these change-point locations

correspond to the rows and columns where the event of interest lies in the heat map.
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Figure 4.7: (a) Heat map of an event of interest surrounded by relatively low background
noise, (b) Time series plot of maximum values across row locations, and (c) Time series
plot of maximum values across column locations

The group profiles plots in Figure 4.8b and Figure 4.8d draw a clear picture of the

boundary of the events. Figure 4.8b shows the boundary of the two events at time points

140-338 and at 502-1247 which correspond to the actual two events seen in the heat map

across time points. Figure 4.8d also displays the boundary of an event at locations 315-589

that accurately corresponds to the event visible in the heat map across location. The results

show that the proposed method finds the boundaries of the events of interest for this real

world data set.

Comparison method

Figure 4.9 shows the extracted events from this real-world dataset. The original dataset

was converted to the log scale for better visualization purposes. We have repeated the

experiment in the original scale and obtained the same events. This is not surprising as

Algorithm 2 works with percentiles. We obtain the desired events in addition to one small
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noise event, which is depicted in red.

Again, Algorithm 1 does not flag this noise event with a high posterior probability,

demonstrating its robustness to noise. However, Algorithm 2 shows the two-dimensional

shape of the event, which is advantageous for certain applications.
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Figure 4.8: Profile plots: (a) Change-point profile plot across row locations, (b) Group
profile plot across row locations, (c) Change-point profile plot across column locations, and
(d) Group profile plot across column locations
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Figure 4.9: Original data and events extracted using Algorithm 2, with each extracted
event depicted in a different colour.

PCA-based approach

Our proposed method for event detection can also be applied using PCA as a summary

statistic. In this method, first we perform PCA on the data samples in rows and columns

respectively and we select the number of principal components (PCs) that corresponds to

the “elbow” point of the PCA scree plot. Then the Bayesian segmented MA(1), AR(1) and

ARMA(1,1) change-point models are applied to each principal component. A summary of

the algorithm using PCA is given in Appendix B.2 and Figure 4.10 presents the change-

point profile plots across row and column locations.
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Figure 4.10: (a) Change-point profile plot across row locations, and (b) Change-point profile
plot across column locations using PCA based approach

There are two sets of spikes in row change-point locations (Figure 4.10a), one around
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200 and the other from 500 to 1100. Similarly, the column change point profile plot (Fig-

ure 4.10b) has spikes around locations 400 - 550. These change-point locations correspond

to the rows and columns where the event of interest lies in the heat map (Figure 5.7a). The

results show that this method finds a cluster of change-points covering the event for this

real world data set.

Dataset 2

Figure 4.11a, 4.11b and 4.11c show the heat map, the time series plots of maximum values

across row and column locations for the second data respectively. Again, the event of

interest is depicted in yellow in a background of relatively low noise. The event seems to

occur in rows 40 - 450, 620 - 750 and 930 - 1050 and columns 250 - 650.
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Figure 4.11: (a) Heat map of an event of interest surrounded by relatively low background
noise, (b) Time series plot of maximum values across row locations, and (c) Time series
plot of maximum values across column locations
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Proposed method

The row and column change point profiles and group profiles are given in Figure 4.12. We

see two spikes of change-points appearing around 50 - 470 in the row change point profile

plot (Figure 4.12a), which corresponds to the first part of the event (rows 40 - 450 on the

heat map in Figure 4.11a) and some high posterior probability values around 615-794 and

936-1-38 which correspond to the next two contiguous yellow blocks. Similarly, the column

change point profile plot (Figure 4.12c) gives two change-points with high probability at

locations 286 and 631 which correspond to the columns of the event. The row group profiles

plot (Figure 4.12b) clearly exhibits an event with three parts at those locations where the

event lies in the heat map. The column group profiles plot (Figure 4.12d) displays the

boundary of the event from 286-631. These are consistent with the apparent change-point

locations observed in the heat map for this data set.
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Figure 4.12: Profile plots: (a) Change-point profile plot across row locations, (b) Group
profile plot across row locations, (c) Change-point profile plot across column locations, and
(d) Group profile plot across column locations
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Comparison method

Figure 4.13 shows the events extracted from this dataset using Algorithm 2. In this instance

there is one small noise event depicted in light blue approximately at coordinates (600, 300).

All other events apart from this event, are real.

Figure 4.13: Original data and events extracted using Algorithm 2, with each extracted
event depicted in a different colour.

PCA-based approach

A cluster of change-points is appearing from 40 - 400 in the row change point profile plot

(Figure 4.14a), which corresponds to the first part of the event (rows 40 - 400 on the

heat map in Figure 4.11a) and some high posterior probability values around 620 and 930

correspond to the remaining events in the heat map. The column change point profile plot

(Figure 4.14b) gives a cluster of change-points from 350- 500, corresponding to the columns

of the event.
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Figure 4.14: (a) Change-point profile plot across row locations, and (b) Change-point profile
plot across column locations using PCA based approach

Dataset 3

The third dataset represents two events of interest in high background noise. The heat

map in Figure 4.15a corresponds to this dataset. The events of interest are the triangular

shaped blocks depicted in a lighter shade of blue than the background. This is a particularly

challenging example not only because the background noise level is high, but also because

the variance of the background noise level is not uniform. For example the background

noise level in columns 600 - 800 has very high variance, and the background noise level in

columns 1400 - 2000 has relatively low variance. Also, the event of interest occurs in the

midst of this transition from high noise variance to low noise variance. The time series

plots of maximum values across row and column locations (Figure 4.15b and Figure 4.15c)

also present the non uniformity of the variance in this dataset.

Proposed method

Our Bayesian change-point segmented ARMA model is developed on the premise of constant

noise variance. As such, we do not expect the same level of accuracy from the proposed

method as in the last two examples. By examining the row change-point profile plot in

Figure 4.16a, we see two higher peaks around row 199-353, which correspond to the first

real event. We also see two other spikes with high probability values around row 544-687

which correspond to the second real event. This change-point profile plot also shows some

other change-points within the events as well as outside the events, which are actually false
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positives because of non-uniformity of the background noise level. We can detect the real

two distinct events from the group profiles plots in Figure 4.16b regardless of the presence

of some false positive change-points. The column change point profile plot (Figure 4.16c)

gives two spikes with high probability in columns 1140 - 1358 which correspond to the real

event and one spike at 718 location. This spike is a false positive change-point because

of the high background noise. Figure 4.16d exhibits two events: the second one indicates

the real event but the first one is actually a false positive. This opens up avenues for

exploration, in particular, ways to improve our model to adapt to changing noise variance.
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Figure 4.15: (a) Heat map of an event of interest surrounded by high background noise,
(b) Time series plot of maximum values across row locations, and (c) Time series plot of
maximum values across column locations
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Figure 4.16: Profile plots: (a) Change-point profile plot across row locations, (b) Group
profile plot across row locations, (c) Change-point profile plot across column locations, and
(d) Group profile plot across column locations

Comparison method

Figure 4.17 shows the extracted events using Algorithm 2 . In addition to the true events,

there are a lot of false positive events in this example. This is a particularly challenging

dataset due to the non-constant variance in noise. If noise were removed prior to extracting

events, we may expect better performance from Algorithm 2.
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Figure 4.17: Original data and events extracted using Algorithm 2, with each extracted
event depicted in a different colour.

PCA-based approach
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Figure 4.18: (a) Change-point profile plot across row locations, and (b) Change-point profile
plot across column locations using PCA based approach

By examining the row change point profile plot (Figure 4.18a) we see that there are
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high posterior probability values in rows 50- 125, which are actually false positives and a

much higher peak around row 300 which corresponds to the first real event in the heat

map (Figure 4.15a). The column change point profile plot (Figure 4.18b) gives a cluster of

change-points in columns 1219 - 1400 which correspond to the real events and a single high

peak around column 390 which is actually a false positive.

4.5 Discussion

We proposed an event detection approach for spatio-temporal data in presence of different

levels of background noise. Here we are not segmenting a two-dimensional image, rather

it is a complementary approach to identify events in parallel sequences. This method was

tested on synthetic data as well as on real world data. Two types of synthetic data are

used for event detection: One has a triangular event in presence of Gaussian noise and the

other has an odd quadrangle event in presence of Gaussian noise. Both the triangle and

odd quadrangle event have different mean from the background but they have the same

variance as the background. The results obtained using synthetic data provide evidence of

high accuracy of our method for the purpose of detecting the boundary of the events. The

results have been compared with a simple event extraction method. For both synthetic

data sets, the comparison method found some small noisy events in addition to the real

events in spite of extracting events in a two-dimensional setting.

We also detected events in real world data: two examples with relatively low background

noise and one with high background noise. Our proposed method finds the boundary of

the event with high probability when the data has a low level of background noise. But

it also found some other change-points as well with low probability. In this scenario, we

identified the boundaries of the event by plotting group profiles of each position of the signal

length. The existence of segment groups helped a lot to distinguish between ’background’

and ‘event’ segments. By taking logarithms of the maximum values, the volatility in each

segment appears to be relatively constant for the first two examples. But for the third

example, the method was less successful not only because of the high background noise

but also for the non-uniform variance of the background. This indicates a limitation of the

Bayesian change-point segmented ARMA model in the presence of high noise variance. This

model cannot be used in a situation where data shows non-uniform volatility. That’s why

it is important to stabilise the variance of the data by applying any types of transformation
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before fitting segmented ARMA. The results of the proposed method were also compared

with a simple event extraction method. The comparison method found one noisy event in

addition to the real event for the first two examples, whereas our proposed method found

the desired boundary of the true events. This comparison method also found more false

positive events for the third example than our proposed method.

Detection of changes only in the mean value of the sequence of observations is known

as additive change-point detection and detection of changes in the variance, correlation

and spectral characteristics of a stochastic process is known as non-additive change-point

detection [4]. Our Bayesian change-point segmented ARMA model assumes different means

for different segments and the same error variance for each class into which a segment is

assigned. It is therefore designed for additive change detection. In future work, we aim

to generalize the Bayesian change-point segmented ARMA model to incorporate changes

in the variance of the original process by allowing distinct variances for each class of the

segments but constant variance with a class.

An alternative approach has been conducted for our real data examples using PCA

as a summary statistic instead of maximum. This method finds a cluster of change-points

covering the event when the data has a low level of background noise. However, the approach

using maximum finds the boundary of the event with high probability. For the third

example with high background noise, both approaches found some false positive change-

points in addition to the real events. The approach using maximum found the false positive

change-points with low posterior probability whereas the PCA-based approach found false

positives with high posterior probability. Moreover, the approach using PCA could not find

the second real event in rows whereas the maximum approach found both real events in

rows. These results indicate that the maximum performs better than PCA in our examples.

The data sets of real world examples do have heterogeneous variance across the signal. We

used the logarithm of the maximum values as the input sequence in the maximum approach

which produces almost the same variance across the signal. The PCA approach used the

principal components as the input sequence which exhibit the same heteroscedasticity as

in the original data. This may explain why the approach using maximum as a summary

statistics exhibits better results than the PCA approach for these examples.

The reduction of dimensionality using any summary statistic involves information loss,

and is therefore only recommended in initial exploratory analyses. In our findings, the

fact that maximum performs better than PCA casts doubt on the value of the numerous
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existing PCA-based approaches ([15–23]). The maximum is intended to be a very crude

summary, and the fact that it outperforms PCA even in these simple examples suggests

that PCA is also very crude. This approach could certainly be extended to other summary

statistics depending on the nature of the data (fail of linearity, heteroscedasticity or lack of

normality in error terms) and the type of events to be detected. To stabilize variance like our

examples, we could also use Fisher transformation (for the sample correlation coefficient)

, square root transformation (for count data) or Box-Cox transformation (for regression

analysis) or angular transformation (for binomial data) [40, 41].

Fisher transformation for the sample correlation coefficient, the square root transforma-

tion or Anscombe transform for Poisson data (count data), the Box–Cox transformation for

regression analysis, and the arcsine square root transformation or angular transformation

for proportions (binomial data).

Segmentation of multiple sequences in parallel is an important current line of research.

The results of this study highlight the importance of developing efficient algorithms for

segmenting parallel sequences instead of using a one-dimensional approach based on dimen-

sion reduction. Consequently, our ongoing work is centered on extending the methodology

proposed here for segmenting multiple sequences in parallel. This can address the short-

comings of methods based on dimension reduction. For example, segmentation of parallel

multiple sequence can pool change-point information across the series to allow for more

efficient detection. Moreover, this can consider dependency between multiple series.
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25. Lévy-Leduc, C., Roueff, F., et al. Detection and localization of change-points in high-

dimensional network traffic data. The Annals of Applied Statistics 3, 637–662 (2009).

26. Zhang, Y., Singh, S., Sen, S., Duffield, N. & Lund, C. Online identification of hierar-

chical heavy hitters: algorithms, evaluation, and applications in Proceedings of the 4th

ACM SIGCOMM conference on Internet measurement (2004), 101–114.

27. Krishnamurthy, B., Sen, S., Zhang, Y. & Chen, Y. Sketch-based change detection:

methods, evaluation, and applications in Proceedings of the 3rd ACM SIGCOMM con-

ference on Internet measurement (2003), 234–247.

28. Li, X. et al. Detection and identification of network anomalies using sketch subspaces in

Proceedings of the 6th ACM SIGCOMM conference on Internet measurement (2006),

147–152.

29. Ciuperca, G. & Maciak, M. Changepoint Detection by the Quantile LASSO Method.

Journal of Statistical Theory and Practice 14, 11 (2020).

30. Meinshausen, N., Yu, B., et al. Lasso-type recovery of sparse representations for high-

dimensional data. The annals of statistics 37, 246–270 (2009).

31. Rojas, C. R. & Wahlberg, B. On change point detection using the fused lasso method.

arXiv preprint arXiv:1401.5408 (2014).

116



4.5. DISCUSSION

32. Zou, C. & Qiu, P. Multivariate statistical process control using LASSO. Journal of

the American Statistical Association 104, 1586–1596 (2009).

33. Sadia, F., Boyd, S. & Keith, J. M. Bayesian change-point modeling with segmented

ARMA model. PloS one 13, e0208927 (2018).

34. Gelman, A. et al. Bayesian data analysis (Chapman and Hall/CRC, 2013).

35. Sturtz, S., Ligges, U. & Gelman, A. E. R2WinBUGS: a package for running WinBUGS

from R (2005).

36. Hyndman, R. J. & Athanasopoulos, G. Forecasting: principles and practice. OTexts,

2014. There is no corresponding record for this reference.[Google Scholar] (2017).

37. Kandanaarachchi, S., Hyndman, R. J. & Smith-Miles, K. Early classification of spatio-

temporal events using partial information (2019).

38. Hahsler, M., Piekenbrock, M., Arya, S. & Mount, D. dbscan: Density Based Clustering

of Applications with Noise (DBSCAN) and Related Algorithms. R package version,

1– (2017).

39. Keenan, D. M. A Tukey nonadditivity-type test for time series nonlinearity. Biometrika

72, 39–44 (1985).

40. McDonald, J. H. Handbook of biological statistics (sparky house publishing Baltimore,

MD, 2009).

41. Warton, D. I. & Hui, F. K. The arcsine is asinine: the analysis of proportions in

ecology. Ecology 92, 3–10 (2011).

117



Chapter 5

Segmenting multiple sequences in

parallel: three paradigms

Chapter Objectives

This chapter addresses the second part of the objective of this thesis, which is to develop

methods to segment multiple parallel time series. To achieve this, three alternative models

were developed for simultaneous segmentation of multiple parallel series. These models

were the generalizations of the Bayesian change-point segmented ARMA model with dif-

ferent assumptions. Unknown parameters and hyperparameters in each model were jointly

estimated using a highly efficient Generalized Gibbs Sampling strategy. These models were

tested by applying them on a synthetic example and a real life example. All generalizations

showed encouraging results for a synthetic example by identifying all change-point loca-

tions for a data set for which the segmentation of a single time series detected only some

change-points. For the real life example, all the generalizations showed different results.

Consequently, these alternative models were compared using three different approximated

information criteria. The suitability of the three generalizations was also investigated by

comparing the results with change-point locations detected in previous studies of this data.

The results obtained with the new method were consistent with those from previous studies.
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5.1. ABSTRACT

5.1 Abstract

The objective of linear segmentation methods is to detect abrupt changes in a signal. Seg-

mentation in multiple sequences simultaneously is a significant and complex task arising in

many domains. This paper approaches such problems using a hierarchical Bayesian frame-

work. We consider three generalizations of a Bayesian change-point model in order to deal

with multiple sequences. A Generalized Gibbs Sampling strategy allows joint estimation of

the unknown parameters and hyperparameters in each model. The performances of these

approaches are assessed via a simulation study and a real world sediment core data set. The

latter application involved simultaneous segmentation of multiple physical and geochemical

properties of sediments in parallel to identify the trends in and main causes of historical

change in the hydrology of rivers and their floodplains. The results obtained for simulated

data are encouraging and show that these models achieve high detection accuracy. All gen-

eralizations produced similar results in the simulated example but in the real life example,

these generalizations produced different results. We propose a number of model selection

criteria for selecting the most appropriate generalization.

Keywords: Segmentation; parallel sequences; hierarchical Bayesian analysis; Generalized

Gibbs sampling; change-point detection..

5.2 Introduction

Segmentation, also known as change-point detection, divides a sequence of observations

into segments, in each of which the sequence behaves as an approximately stationary time

series. The aim of segmentation is to identify and localize abrupt changes and use this

information to detect events of interest in the nonstationary time series[1]. Segmentation

for a single series has been the subject of comprehensive research in recent decades [2–8].

One of the key challenges in segmentation is to segment multiple sequences at a time.

The problem of jointly analysing several series arises in many application fields. For exam-

ple, this problem arises in the simultaneous analysis of multiple genomic profiles associated

with several patients[9], detection of trends in hydro-climatic variables observed in differ-

ent locations[10], joint segmentation of multivariate astronomical photon counting time

series data [11], or the analysis of human activity recognition through joint segmentation

of multidimensional time series of acceleration data [12].
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5.2. INTRODUCTION

Segmentation of two or more series in parallel typically involves one of three distinct

types of statistical problems. The first is the simultaneous segmentation of multiple series

by assuming common change-points among all series [10, 13, 14]. The second is joint

segmentation where each series has its own specific number and location of change-points

[9, 11, 15]. The third type of problem involves observing several series independently and

comparing the change-point location between those series[14].

Zhang et al. [13] considered simultaneous segmentations in multiple sequences to iden-

tify the DNA copy number variants in multiple samples. They considered the problem of

detecting local signals that occur at the same location in multiple one-dimensional noisy se-

quences, giving special attention to relatively weak signals that may occur in only a fraction

of the sequences. They suggested simple scan and segmentation algorithms. The algorithms

depend on summing chi-square statistics across samples. With the help of these algorithms,

they investigated the particular problem of detecting a shared abrupt jump in mean by as-

suming the noise within each profile to be independent and identically distributed Gaussian

variables.

Harlé et al. [16] considered the problem of joint segmentation in multivariate time series

data by proposing a Bayesian model. To model the presence or absence of change-points

at different time points, this Bayesian model defined indicator variables and modelled the

change-points using Bernoulli variables. This model combines a robust non-parametric

statistical test acting on individual time segments in a Bayesian framework.

To compare change-points locations between several series which had been observed in-

dependently, Cleynen and Robin [14] developed two exact approaches in a Bayesian frame-

work. The first approach compared the locations of change-points in both series. The

second approach compared more than two series and estimated the posterior probability

for a given change-point to have the same location in all series. To make exact inference

on the change-point model, both approaches used a Bayesian segmentation model intro-

duced by Rigaill et al. [17] with conjugate priors. The authors used several alternative

data models in their Bayesian segmentation model, including a Gaussian heteroscedastic

distribution, a Gaussian homoscedastic distribution with known variance, a Poisson, and a

negative binomial homoscedastic distribution with known dispersion.

Dobigeon et al. [11] proposed a joint segmentation algorithm, based on a hierarchical

Bayesian model. This algorithm was developed for piecewise constant autoregressive (AR)

processes with fixed order on each segment. The authors identified a suitable prior for
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5.2. INTRODUCTION

considering the correlations between change-point locations of the observed signals. The

resulting posterior distribution was sampled using Gibbs sampling strategy. They also

considered an extension of this model, assuming unknown model order of the piecewise

constant AR processes.

Collilieux et al. [15] considered another joint segmentation of correlated time-series data

involving spatio-temporal data. They modelled the dependency between series to avoid

false change-point detection. They assumed each series to be affected by changes at series-

specific breakpoints and also assumed the observed sequences at each spatial location were

correlated. They proposed a model for correlated Gaussian series based on a segmentation

model combined with a factor model. The authors also developed a heuristic model selection

procedure combining two BIC criteria: the classical BIC to determine the number of factors

and a modified BIC criterion in the context of segmentation to determine the number of

segments. Some other methods to segment parallel sequence include [18–22].

In this article, we consider the simultaneous analysis of multiple sequences in parallel,

where the sequences in question may have different data types and characteristics. To deal

with two or more sequences at the same time, we generalize the Bayesian change-point

segmented ARMA model developed for the one dimensional series described in our earlier

article [23]. Here, we propose three generalizations, which we define with reference to the

following assumptions:

• Change-points occurs in corresponding locations in all series.

• All time series have the same probability of assigning segments to segment classes.

• Corresponding segments in each time-series belong to a common segment class.

The first generalization makes the first assumption, but not the other two, the second

generalization makes the first two, but not the last, and the third generalization makes

all three assumptions. In these generalizations, we are interested only in change-points

for the mean and we assume variance and ARMA parameters do not change, although

they may differ for different sequences. These generalizations consider parallel time series

as independent. Dealing with multiple correlated time series requires to account for the

correlations between these parallel time series without imposing that the changes occur

simultaneously.

122



5.3. METHODOLOGY

5.3 Methodology

5.3.1 First generalization

Our Bayesian change-point segmented ARMA model [23] models a time series by segment-

ing it into blocks of autoregressive moving average (ARMA) processes. Here we generalize

this model to consider multiple parallel time series. In this generalization, we assume

change-points occur at corresponding times (or locations) in all time series. We assume

that a time series is a realization of a stochastic process i.e., a sequence of random variables

(xt), where the values of the index t correspond to ordered times. The time-series repre-

sents observations made at regular intervals indexed by t = 1, · · · , T, which in many cases

correspond to time intervals of equal length. Here, T is the total number of observations

per sequence, which is the same for all sequences. In this generalization, the time series

signal that we want to segment will be Xs = (xs,t)
T
t=1 where s is the index of the sequences,

that is, s ∈ {1, · · · , S}. We divide all sequences into segments and fit ARMA models to

each segment. For each segment, an ARMA model is given by:

xs,t = cs,k + εs,t +
a∑
i=1

ψs,i(xs,t−i − cs,k) +
m∑
i=1

θs,iεs,t−i. (5.1)

where cs,k is the mean signal level or mean of the ARMA model of the sequence Xs for

segment k, εs,t, εs,t−1, · · · are error or white noise terms and εs = (εs,1, · · · , εs,T ) represents

the vector of error terms for t = 1, · · · , T . Further, the error terms are assumed to be

sampled from a normal distribution with mean 0 and variance σ2
s where the subscript s

indicates a different variance for each sequence. Here, ψs,1, · · · , ψs,a are the parameters of

an AR(a) model of order a and θs,1, · · · , θs,m represent the parameters of an MA(m) model

of order m in the sequence Xs. Note that, the variance and the ARMA parameters are held

constant for all segments. Since we assume the same number and locations of change-points

in all sequences, the probability of generating a segmentation with K segments starting at

positions p = (1 = p1 < · · · < pk < T ) is:

p(K,p|φ) = φK−1(1− φ)T−K−1. (5.2)

Here, φ is the probability of starting a new segment. We assume that the first segment

always starts at the beginning of the signal (p1 = 1) and the last segment always finishes

at the end of the signal (dK = T ) where d = (d1, · · · , dK) are the right hand end points
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of the segments. In each sequence, each segment is assigned to one of Ns groups with

probabilities πs = (πs,1, · · · , πs,Ns) where πs,ns is the probability of assigning a segment of

the sequence Xs to group n ≤ Ns. The group of segment k in the sequence Xs is denoted by

gs,k ∈ {1, · · · , Ns}. Let, gs = (gs,1, · · · , gs,K) be a vector containing the group assignments

of the segments. Then the probability that bs,1 segments are assigned to group ‘1’, · · · , bs,Ns
segments are assigned to group ‘Ns’ is:

p(gs|K,πs) = π
bs,1
s,1 · · · π

xb,Ns
s,Ns

=
Ns∏
ns=1

πbs,nss,ns =
K∏
k=1

πs,gs,k . (5.3)

Each segment‘s mean cs,k is normally distributed with mean µs,gs,k and variance τ 2
s,gs,k

for a segment in group gs,k, that is, the probability of the ARMA means for all segments is:

p(cs|gs,µs, τ s) =
K∏
k=1

norm(cs,k|µs,gs,k , τ 2
s,gs,k

). (5.4)

where, cs = (cs,1, · · · , cs,K) is the mean signal level for the segment of the sequence Xs,

µs = (µs,gs,1 , · · · , µs,gs,K ) and τ 2
s = (τ 2

s,gs,1
, · · · , τ 2

s,gs,K
). Next we define Λs = (λs,1, · · · , λs,T )

where λs,T is given by

λs,T = cs,k +
a∑
i=1

ψs,i(xs,t−i − cs,k) +
m∑
i=1

θs,iεs,t−i.

Now we can write xs,t as a function of λs,t and εs,t:

xs,t = λs,t + εs,t.

Figure 5.1a shows the parameters of the model and their conditional dependencies for

two sequences. A parameter at the head of the arrow is conditionally dependent on the

parameter at the tail. Finally the probability of the observed signal Xs conditioning on

parameters K,ps,θs,ψs, cs andσ2
s is expressed as a product of normal distributions with

mean λs,t and variance σ2
s as follows:

p(Xs|K,p,θs,ψs, cs, σ
2
s) =

T∏
t=1

p(xs,t|K, p, θs, ψs, cs, σ2
s , xs,<t)

=
T∏
t=1

norm(xs,t|λs,t, σ2
s).

(5.5)
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Here, xs,<t = (xs,1, · · · , xs,t−1).

(a) First generalization

(b) Second generalization

(c) Third generalization

Figure 5.1: The conditional dependencies of the parameters
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As shown in Figure 5.1a, the joint distribution of Xs, K,p,gs and cs can be written as:

p(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s) =

p(K,p|φ)×
S∏
s=1

p(Xs|K,p,θs,ψs, cs, σ
2
s)× p(cs|gs,µs, τ s)× p(gs|K,πs)

(5.6)

Prior and Posterior Distribution

To complete the model we must specify prior probability distributions for parameters

φ,π,ψ,θ,µ, τ 2 and σ2. We assign a beta prior to φ (probability of starting a new segment)

with parameters a = 1.0 and b = 1.0, a uniform Dirichlet prior to πs = (πs,1, · · · , πs,Ns)

(probabilities of assigning segments to groups) where
∑Ns

ns=1 πs,ns = 1. We also assign uni-

form prior distributions on the interval (-1,1) for parameters ψs and θs and assume they

are independent of each other. A weakly informative normal prior with mean 0.0 and vari-

ance 1.0 is chosen for the mean µs,ns of the distribution of ARMA means in segment class

Ns. Inverse gamma prior distributions with parameters α = 3.0 and β = 3.0 are assigned

to σ2
s and τ 2

s,ns . We have chosen conjugate priors of σ2
s and τ 2

s,ns purely for mathematical

convenience and we have chosen uninformative, or very weakly informative priors for φ, πs,

µs,ns , ψs and θs, because we have little prior knowledge of these parameters. The forms

of these hyper-priors were chosen to reflect the degree of prior belief about their respective

parameters. Further we treat a, the order of the AR model and m, the order of the MA

model as fixed parameters of known value.

Using Bayes’ theorem, we obtain the joint posterior distribution of all data and param-

eters by the following formula:

p(Xs, K,p,gs, cs, φ,πs,θs,ψs, σ
2
s ,µs, τ s) = p(φ)×

S∏
s=1

p(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s)p(πs)p(θs)p(ψs)p(σ

2
s)p(µs)p(τ s)

(5.7)

The details of the calculation of the conditional posterior distribution of each parameter

are provided in Appendix C.1.1.

126



5.3. METHODOLOGY

Sampling

A Markov chain Monte Carlo technique called the Generalized Gibbs Sampler (GGS) is

used to sample the posterior distribution described in supplementary material. (See [24]

and [23] for a full description of the GGS and its application to a single sequence.) Here

we describe the different move-types of GGS and the order in which these move-types are

carried out for our first generalization for multiple sequences.

Move types

Figure 5.2 illustrates the following defined move-types:

• (I, k): Decide whether to insert a new change-point in segment k, and at what posi-

tion.

• (D, k): Decide whether to remove change-point k or move it to a new position (for

each change-point except the first).

• cs,k: Update mean signal level cs,k in segment k = 1, 2, 3, · · · , K for the sequence Xs .

• gs,k: Update segment group assignments gs,k in segment k = 1, 2, 3, · · · , K for the

sequence Xs.

• µs,gs : Update group mean µs,gs for group g of the sequence Xs.

• τ 2
s,gs : Update group variance τ 2

s,gs for group g of the sequence Xs.

• (θs, ψs): Update θs and ψs.

• (πs, σ
2
s, φ): Update all other parameters, πs, σ

2
s and φ.

The total number of moves for s sequences with K segments is:

T (K) = 2(s+ 1)K − 1 + 2sN + sa+ sm+ (2s+ 1), s = 1, 2, · · · , S

where N is the number of groups, a is the order of the AR model, m is the order of the

MA model and s is the index of the sequence.
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5.3.2 Second generalization

This generalization retains the condition used in the first generalization that K,P, φ, T

and π are common to all sequences. The only change from the first generalization is to

assume the same probability of assigning segments to groups (π) for all sequences. Then

the probability of a specific assignment of the segments of the sequences Xs is,

p(gs|K,π) =
K∏
k=1

πgs,k =
Ns∏
ns=1

πbs,nsns . (5.8)

Figure 5.1b illustrates the dependencies of the parameters in this generalization for two

sequences. The other notations are the same as in the previous section. Then the joint

distribution of this model is:

p(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s) = p(K,p|φ)×

S∏
s=1

p(Xs|K,p,θs,ψs, cs, σ
2
s)p(cs|gs,µs, τ s)p(gs|K,π)

(5.9)

Figure 5.2: Order of move-types for the sampler of multiple sequences in first generaliza-
tion. For the second generalization, all moves are same, except only we update π instead
of updating πs, since it is same for all sequences in this generalization. For the third gen-
eralization, all moves are same as the first generalization described in Section 5.3.1 except
π, gk, µs,g and τ 2

s,g are updated in place of πs, gs,k, µs,gs and τ 2
s,gs , as this generalization

assume common segment class g and common π for all sequences.
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Prior and Posterior Distribution

We use a Dirichlet prior distribution with parameters (α1, · · ·αN) = (1.0, · · · , 1.0) for π.

The same priors as in the first generalization are used for all the other parameters. The

conditional posterior distributions of all parameters except π and gs are the same as in

the previous generalization. The conditional posterior distribution of π and gs are given in

Appendix C.2.

Sampling

Move types

As this generalization assumes all time series have the same probability of assigning seg-

ments to groups (π), all the move types described in Sect. 5.3.1 and Figure 5.2 are the

same for the second except only we update π instead of updating πs. Consequently, the

total number of moves for s sequences with K segments becomes:

T (K) = 2(s+ 1)K − 1 + 2sN + sa+ sm+ (s+ 2), s = 1, 2, · · · , S

5.3.3 Third generalization

In addition to the assumptions of the first and second generalizations, this generalization

assumes the corresponding segments in each time-series belong to a common segment class

g for all sequences. We set g = (g1, · · · , gk) where gk is the group of segment k for all

sequences. Then the probability of a specific assignment of the segments for all sequences

is,

p(g|K,π) =
K∏
k=1

πgk =
N∏
n=1

πn
bn (5.10)

Now each segment‘s mean cs,k is normally distributed with mean µs,gk and variance τ 2
s,gk

for

the group gk and sequences Xs, that is, the probability of the ARMA mean for all segments

is:

p(cs|g,µs, τ s) =
K∏
k=1

norm(cs,k|µs,gk , τ 2
s,gk

). (5.11)
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The other notations are the same as second generalization. Figure 5.1c illustrates the

dependencies of the parameters for two sequences in this generalization. The joint distri-

bution of this model is,

p(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s) = p(K,p|φ)×

p(g|K,π)×
S∏
s=1

p(Xs|K,p,θs,ψs, cs, σ
2
s)p(cs|gs,µs)

(5.12)

Prior and Posterior Distribution

We use the same priors as in the second generalization for all parameters. The conditional

posterior distributions of all parameters are the same as in the second generalization ex-

cept for g,µs, τ
2
s and cs and εs. All the conditional posterior distributions are given in

Appendix C.1.3.

Sampling

Move types

As this generalization assumes common segment class g for all sequences, all the move types

described in Sect. 5.3.1 and Figure 5.2 are the same for the third except we update π, gk,

µs,g and τ 2
s,g instead of updating πs, gs,k, µs,gs and τ 2

s,gs . The total number of moves for s

sequences with K segments becomes:

T (K) = (s+ 3)K − 1 + 2sN + sa+ sm+ (s+ 3), s = 1, 2, · · · , S

5.4 Illustrative Examples

5.4.1 Synthetic Example

To test the feasibility and measure the performances of the three generalizations, we gener-

ated two sequences from the autoregressive moving average(ARMA) model with parameter

values ψ1 = 0.23 and θ1 = 0.60 and ψ2 = 0.21 and θ2 = 0.77. Here the number and location

of change-points, ARMA parameters, segment means and error variance are known. Each
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sequence contains 100 observations and then both sequences were replicated 10 times. The

first and second sequences were generated using σ2
1 = 0.96, σ2

2 = 0.6 and 10 different seg-

ment means. The simulated ARMA data with the true segment means and the location

of change-points for first and second sequences are given in Figure 5.3a and Figure 5.3b,

respectively .
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(a) First Sequence
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(b) Second Sequence

Figure 5.3: Simulated signal with true change-point locations and segment means. The
change-point locations are shown as a vertical blue line and segment means are shown as a
horizontal red line.

Before applying segmented ARMA for the above two sequences in parallel, we segmented

each sequence separately. Figure 5.4 presents the change-point profiles plot and segment

means plot. The change-point profile shows the estimation of the posterior distribution

of the change-point positions and segment means at each position of the simulated signal.

Figure 5.4a and Figure 5.4b point out six change-points out of nine true change-points

in the first sequence, thus failing to find any change-point in the range of times 300-700.

Figure 5.4c and Figure 5.4d find seven change-points out of nine true change-points in the

second sequence, but couldn’t detect the change-points in the ranges 200-400 and 700-900.
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(a) Change-point profile plot: First sequence
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(b) Segment mean plot: First sequence
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(c) Change-point profile plot: Second sequence
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(d) Segment mean plot: Second sequence

Figure 5.4: Change-point profile plots and segment mean plots

Results of three generalizations

The first generalization was used to generate the data and to infer the parameters and

change-point locations. The convergence of AR and MA parameters of both sequences

was investigated by plotting time series for the ARMA model parameters, as shown in

Figure 5.5. Here we performed 5,000 iterations of the MCMC estimation algorithm. We

discarded the first 1,000 iterations as a burn-in period. AR and MA parameters of both

sequences show well-conditioned behaviour and converge rapidly. They are not only close

to the true values of the parameters but also display rapid mixing. Here, we present only

the trace plot for the first generalization, as the other two generalizations show similar

behaviour with rapid convergence.

Figure 5.6 presents the estimated change-point locations for all the generalizations. The

change-point profile plots correctly identified all the change-point locations where segment-

ing each sequence separately detected only some change-points. All three generalizations

132



5.4. ILLUSTRATIVE EXAMPLES

produced similar results although for the second generalization, a change-point is detected

at time point 600 with lower posterior probability than for the other generalizations.

Figure 5.5: Trace plot of AR and MA parameters. Both parameters converged to a neigh-
bourhood of the true parameters.
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Figure 5.6: Posterior distribution of occurrence of change-point locations for the synthetic
example.
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Figure 5.7 plots segment means at each position of the simulated first and second signal

with the true change-point locations and true segment means for all generalizations. All the

plots clearly indicate 10 segments in both sequences, and are very close to the true signal.

All generalizations produce similar segment means for both simulated signals. Figure 5.6

and Figure 5.7 demonstrate that the locations of estimated change-points and true change-

points are similar in both sequences.

Instead of generating sequences from a stable ARMA model, the simulation studies had

also been conducted for two more data sets which were simulated from AR model using

different AR parameters. In both data sets, we generated 10 time series of 100 observations,

each with same 10 different segment mean and same variance σ2
1 = 0.49, σ2

1 = 0.6. The two

data sets differed in the value of the AR parameter used to generate the data: in the first

we used ψ1 = 0.23 and ψ2 = 0.21 and in the second we used ψ1 = 0.91 and ψ2 = 0.96. We

applied our methods for the segmented ARMA model and segmented AR model to these

data using all the generalizations and compared the location of change points and number

of change points found by these two models in all the generalizations. Detailed results are

provided in Appendix C.2. These results suggest that if we generate data from an AR

model with high parameter coefficient instead of ARMA model, segmented ARMA works

better than segmented AR model in finding true change-points.

5.4.2 Application to a real data set: Results and Discussions

In this section we use the three generalizations developed in Sect. 5.3 to analyze a sediment

core data set which includes concentrations of metal elements detected at each depth (in

mm) in the cores. The cores are collected from a floodplain lake (Willsmere Billabong) lo-

cated in the urbanised Yarra River catchment, in Victoria, Australia. Coring and analytical

methods for this core have been previously published in Lintern et al. [25, 26].

Sediment cores from aquatic environments can give important information about the

presence of hydrological changes over time (at decadal, centennial and millenial scales) in

the river and its floodplain lakes [27, 28]. Changes in the hydrology of a river reflect river

and floodplains ecology and affect the safety of human society within the river catchment.

Consequently, identification of these historical environmental changes is desirable, in order

to better design environmental management strategies and to protect human life and in-

frastructure from fluvial floods. Specific sediment characteristics (magnetic susceptibility,

organic matter, sediment particle size and elemental composition of the sediments) in the
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cores need to be assessed in parallel for identifying changes in historical river hydrology [26,

28]. On that account, we are interested in simultaneous segmentation of multiple profiles

in parallel for this example. We omitted some time series of elemental composition of sedi-

ments containing zeroes, as our approach is not designed for zero-inflated data. Zeros in the

time series indicate that the elements were not detected in the sediments. Only ten elements

with non-zero values, that also represent important sedimentological processes in waterways

are included in this analysis. Figure 5.8 represents the intensity of ten elements detected

at each depth (in mm) in the cores. Time series plots of Cr, Ni, Pd in Figure 5.8 clearly

shows change in means and relatively constant variances in different segments. Other time

series plots display heteroscedasticy in volatilities and trend, which indicates the presence

of nonlinearity or nonstationarity in the data. Further descriptions about these data can

be found from [26, 29, 30].

For each generalization of our Bayesian segmented ARMA model, we fitted ARMA(1,1)

models to segments of every parallel sequence. Each model was run for 2000 iterations and

we tested the convergence of each parameter as in the synthetic examples. To reduce the

effect of heteroscedasticity in the time-series for some elements, all data were logarithmically

transformed before segmentation. In all MCMC runs we used an initial value of φ = 0.1

(which does not affect the stationary distribution of the Markov chain, but may affect speed

of convergence). We segmented ten sequences in parallel and plotted change-point profiles

for each generalization with the posterior probabilities of occurrence of change-points at

each position of the input sequence (Figure 5.9). These probabilities are computed using

the uniform prior probability distribution for φ and the likelihood probability p(K,p|φ) =

φK−1(1 − φ)T−K−1 of generating a new segmentation with K change-points and p = (1 =

p1 < · · · < pk < T ) starting positions.
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(c) Third Generalization

Figure 5.7: Segment mean plots with the true change-point locations and true segment
means for both sequence.
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Figure 5.8: Sediment Core Data
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Figure 5.9: Posterior distributions of occurrence of change-point locations for the sediment
data.

As noted above, the three generalizations produced similar results for the synthetic data

example, but this was not the case for the real life data. It is not clear whether this difference

is due to a lack of model fit, the larger number of sequences being segmented in parallel,

or the presence of heteroscedasticity for some time series. I tested heteroscedasticity of

sediment core data using Bartlett’s test [31]. This statistic tests of the null that the variances

in each of the samples are the same. This test has a p-value 0.002257614 less that a

significance level of 0.05, therefore we can reject the null hypothesis that the variances in
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each of the samples are constant and infer that heteroscedasticity is indeed present. The

results of the three generalizations highlight the necessity of finding a way to decide which

generalization is most appropriate.

A challenging statistical problem is to generate an effective tool for model compari-

son, especially for computationally demanding hierarchical models. In this example, our

preferred model was selected with reference to three information criteria which were ap-

proximated using posterior samples. We have introduced these information criteria approx-

imations elsewhere [32–35]. These approximations are based on MCMC sampled values.

Three information criterion are used in this example, namely Deviance information crite-

rion (DICV), and approximations to the Akaike information criterion (AIC) and Bayesian

information criterion (BIC). The DICV is defined as: DICV=pv + D(Θ) where D(Θ) is

the mean posterior deviance, pv = V ar(D(Θ)/2) and the deviance is D(Θ) = −2lnf(X|Θ).

The AIC approximation is defined as AIC=2K−2lnf(X|Θ) where K is the average number

of segments over the set of segmentations sampled by MCMC. The BIC approximation is

defined as: BIC=−2lnf(X|Θ) + KlnT where T is the total length of the signal. Further

details of these information criteria are provided in [33–36]. The model with the lowest

value of an information criterion is considered the preferred model. The computed values

of these information criteria are presented in Table 5.1.

Table 5.1: Information criterions of three generalizations

Information Criterion Generalizations

First Second Third

DICV -87535.79 -88494.98 -88039.09

AIC -92351.19 -92153.52 -92501.67

BIC -92199.64 -91955.34 -92256.86

In light of these values, the third generalization appears preferable to the others ac-

cording to AIC and BIC, although DICV favours the second generalization. To further

investigate the suitability of three generalizations, we next consider how the change-point

profiles (Figure 5.9) compare to known changes in the sediment core data.

All generalizations identify change-points between points 1500 and 2000. These corre-

spond to a known problem in the element readings (complete temporal patterns were not

obtained) [29]. These change-points stand out clearly in Figure 5.8. Moreover, all three

generalizations identify a change-point close to time point 1000. This is a section where

a part of the sediment core was hypothesised to have been lost in coring during collection
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(due to stiffness in some sedimentary units) [29].

A boundary between pre-European and post-European sediment deposition had been

previously hypothesized around the point 1000 [29]. This is plausible given the date of

this time point-before 1870 but after the 1700s. This is also based on an analysis of the

pollen species within the sediments, which shows a change in pollen from bush land to a

surrounding catchment that has been increasingly cleared. It’s encouraging that the second

and the third generalization exhibit change-points here.

The sediments in the core change in the proportion of allochthonous (soil from outside

the floodplain lake) to autochthonous (algae and particles created within the lake envi-

ronment) deposition at around time-point 250-300. The first generalization identifies a

change-point at point 233, the second generalization identifies one at point 283 and the

third generalization identifies one at point 220. These change-points support the occur-

rence of a fundamental change occurring at around this time. All the change-point profiles

plots identify some change-points around time point 358-370, indicating a sudden change

in the sediment type. There is a change between high density sediment and low density

sediments here, which is indicated by changes in other characteristics measured in the same

core. Again it is encouraging that all three generalizations find change-points in this region

of the core.

The region around 650-710 has been dated to the 1940s, when the types of sediments

coming into the floodplain lake changed due to urban development in the catchment [29].

It is interesting that the second and the third generalization identify a change-point in this

region whereas the first generalization does not.

There is a unique section (time points 450-480) of the core where there was distinct

textural change in the sediments. This is the section of the core where clear changes occur

(visually) in Figure 5.8. The elements in these sections were also different (due to the

construction material deposited during the 1970s) [29]. All generalizations found change-

points around 460-470. The change-point profiles also exhibit some change-points at time

points 120-200. This may correspond to either a flood - or a drought - or both occurring

in a short time.

These results demonstrate that the second and the third generalization find a greater

number of change-points than the first generalization, which supports the conclusion drawn

using the information criteria.
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5.5 Conclusion

This paper proposes a general and flexible method for the segmentation of multiple se-

quences in parallel. We considered three alternative models, all of which are generaliza-

tions of the Bayesian change-point segmented ARMA model described in our earlier paper

[23]. All generalizations are based on the posterior probability of having a common change-

point. The second generalization makes an additional assumption that all time series have

the same probability of assigning segments to a number of segment classes. The third gen-

eralization adds the further assumption that corresponding segments in each time-series

belong to a common segment class.

The main advantage of using an ARMA model over an AR model is that it can consider

the dependency between the residual terms of the model. This can help to take into account

autocorrelation in the time series in a more flexible way, thus permitting the fitting of more

flexible change-point models.

Our method samples from a varying dimensional space (since the number of change-

points is unknown) using an efficient sampling technique called the Generalized Gibbs

Sampler.

All generalizations produced similar and very encouraging results in a synthetic ex-

ample. They successfully identified all change-point locations for a data set for which the

segmentation of a single time series detected only some change-points. When applied to the

real life example, the three generalizations produced different results and these alternative

models are compared using approximated AIC, BIC and DICV values. The change-points

identified in the real-life example were consistent with previous studies on the dataset [25,

26, 29, 30]. Based on these and other considerations, the fit of the third generalization

was preferred. However, the accuracy of the segmentation of the real data is expected to

be lower than for the synthetic example, due to the presence of heteroscedasticity in some

time series, and other discrepancies between the model and the underlying process.

The three generalizations presented here work well when the change-points pertain to

the mean of the signal in each segment, since the model assumes different segment means

but constant variance within segments. This constant variance model assumption is also

likely not valid for the real data set. Further work is needed to incorporate changes in the

variance of the original process by allowing distinct variances for each class of the segments

but constant variance with a class. Furthermore, these generalizations also assume the

ARMA parameters are the same for all segments. There might also be change-points in the
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ARMA parameters.
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work was funded by the Australian Research Council

(http://www.arc.gov.au/) grant DP1095849. The authors are grateful to the Australian

Research Council (ARC) and the ARC Centre of Excellence for Mathematical and Statis-

tical Frontiers for their support of this project (DP1095849, CE140100049).

Data availability

Sediment core dataset used in Sect. 5.4.2 is available at https://doi.org/10.26180/

5e16d5aadf912.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Badagián, A. L., Kaiser, R. & Peña, D. in Empirical Economic and Financial Research

45–59 (Springer, 2015).

2. Basseville, M., Nikiforov, I. V., et al. Detection of abrupt changes: theory and appli-

cation (Prentice Hall Englewood Cliffs, 1993).

3. Algama, M. & Keith, J. M. Investigating genomic structure using changept: A Bayesian

segmentation model. Computational and structural biotechnology journal 10, 107–115

(2014).

4. Jensen, U. & Lütkebohmert, C. Change-point models. Encyclopedia of Statistics in

Quality and Reliability 1 (2008).

5. Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. Q. A review and comparison

of changepoint detection techniques for climate data. Journal of Applied Meteorology

and Climatology 46, 900–915 (2007).

141

(http://www.arc.gov.au/)
https://doi.org/10.26180/5e16d5aadf912
https://doi.org/10.26180/5e16d5aadf912


5.5. CONCLUSION

6. Aminikhanghahi, S. & Cook, D. J. A survey of methods for time series change point

detection. Knowledge and information systems 51, 339–367 (2017).

7. Rodionov, S. A brief overview of the regime shift detection methods. Large-scale distur-

bances (regime shifts) and recovery in aquatic ecosystems: challenges for management

toward sustainability, 17–24 (2005).

8. Truong, C., Oudre, L. & Vayatis, N. Selective review of offline change point detection

methods. Signal Processing, 107299 (2019).
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Chapter 6

A Study of Models for Zero-inflated

Time Series Data

Chapter Objectives

This chapter addresses a particular objective of this thesis which emerged during the data

analysis of the previous chapter. The real world data I used in the previous chapter was

sediment core data, which includes concentrations of thirty-seven metal elements detected at

each depth (in mm) in the cores. However, not all the elements were used for simultaneous

segmentation in the previous chapter, as some time series contained an excessive number

of zeros. Zeros indicate that some elements were not detected at all depths in the core.

These zeros motivated me to investigate the literature concerning zero-inflated time series

data. In this chapter, I reviewed models for zero-inflated semicontinuous time series data.

Generalization of the Bayesian change-point segmented ARMA model by incorporating an

appropriate zero-inflated model will provide an interesting direction for future research.
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6.1. ABSTRACT:

6.1 Abstract:

In this chapter I consider variables with probability distributions that have continuous den-

sities on the entire sample space with the exception of one value at which there is a positive

point mass (such variables are said to be semicontinuous). Applications in which data are

distributed with a right-skewed continuous positive density and a point mass at zero occur

in many disciplines. When a variable can be modelled as having a standard distribution

apart from a large proportion of zero values, this phenomenon is known as zero-inflation.

In this chapter, I review proposed models for handling zero-inflated semicontinuous time

series data.

6.2 Introduction

Time series data with excess zero values are often encountered by researchers in numerous

fields. These data are characterized by a right-skewed continuous distribution of positive

values with a high proportion of zeros. Because of the substantial proportion of zero

observations, these data are referred to as semicontinuous data, point mass mixture data

or zero-inflated data [1]. The unique features of this type of data make standard statistical

methods, designed for continuously distributed data, either invalid or inaccurate. Failure

to account for zero-inflation in the data may make the resulting estimators of quantities

of interest and their standard errors biased and may result in misleading inferences [2, 3].

Furthermore, data transformation does not typically render the data any easier to analyse

if excess zeros are present [4]. Consequently, excessive zero values need to be accounted for

and require specialised methodology when performing analyses [5].

Semicontinuous time series data with excess zeros arise in many research areas such

as epidemiology, social sciences, health, environment, economics, life sciences, engineering

and others. For example, in a study of household expenditures on certain commodities

during a period of time, it was found that the amount spent on some commodities follows

a semicontinuous distribution because some households spend nothing on that commodity

during the study period [6, 7]. Semicontinuous data also arise in studies involving cloud

seeding data, where a zero indicates no rain and positive values indicate the amount of

rainfall when there is rain [8]. As another example, Figure 6.1 shows the distribution

of annual mental health expenditures among federal employees. More than 80% of the

employees had zero annual expenditures, represented by a vertical line at zero, whereas the
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other employees spent more than 1000 USD in total during the period of investigation [9,

10].

Figure 6.1: Distribution of annual mental health expenditures among federal employees

Zero values encountered in such data can be designated as true zeros, censored zeros

or a mixture of true and censored zeros. A true zero is generally indicated by something

not happening and a censored zero indicates its occurrence below a certain threshold [1].

A related phenomenon occurs in ecological studies of suitability of a given habitat for a

particular species. In such studies, true zeroes correspond to sites where the species is gen-

uinely absent, whereas censored zeros occur due to detection limits or observer effects (for

example due to observers being more likely to visit and record sightings at some locations

than others) [11, 12]. This chapter focuses on models of semicontinuous time series data

with both types of zeros.

The difficulty with semicontinuous data analysis is that the large proportion of zero val-

ues makes conventional continuous probability distributions such as the normal, gamma or

log-normal inappropriate for the analysis of zero-inflated data. Aitchison [13] first expressed

concern about statistical analysis of zero-inflated data. Subsequently, several methodolo-

gies for such data have been developed, due to the increasing interest of dealing with zero-

inflated data. In this article, I survey some methods developed for modeling zero-inflated

time series data and discuss the main ideas behind each method.
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6.3 Models for zero-inflated time series data

6.3.1 Delta distribution

Aitchison [13] proposed an approach to model a positive random variable by introducing a

mixture consisting of a point mass at zero and a lognormal distribution or some other well

known distribution with a continuous density. The resulting distribution was also referred

to as a delta distribution. Mathematically, let X denote a random variable and α denote

the probability that X is zero, Then the distribution of X conditional on X 6= 0 is some

well-known distribution of a positive variable written as:

P{X ⊂ (x+ dx)|x > 0} = f(x)dx, and

P{X ⊂ (x+ dx)} = (1− α)f(x)dx, x > 0.

where f(x) is the conditional probability density given x > 0. If β and γ are the mean and

variance respectively of f(x) and θ and δ are the corresponding parameters of X, then

θ = (1− α)β

δ = (1− α)γ + α(1− α)β2.

Aitchison also developed estimators of the mean and the variance of the mixture distri-

bution. He identified some general results to obtain the best unbiased estimators of θ and δ

under certain conditions. Suppose a random sample S is drawn from the population at time

t = 1, 2, · · · , T where a of the sample values are zero and T − a samples x1, x2, · · · , xT−a
are non-zero. Aitchison considered a random sample with independent observations in his

article [13].

• If a sufficient unbiased estimator of β, denoted b(m), exists for a sample of size m from

the non-zero population, then

c =


(
1− a

T

)
b(T−a), a < T

0, a = T

is a best unbiased estimator of θ. Here, b(T−a) is not defined for a = T , so the two-fold

definition of c is needed. If b(m) is the arithmetic mean of m sample values, then c
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becomes the mean of the sample S including zero values, which is,

c =
1

T

T−a∑
t=1

xt.

and the variance of c is

var(c) =
δ

T
.

• If p(m) and q(m) are jointly sufficient unbiased estimators of β2 and γ respectively for

a sample of size m, then

d =


(
1− a

T

)
q(T−a) + a

T

(
1− a−1

T−1

)
p(T−a) if a < T

0 if a = T.

is a best unbiased estimator of δ. Such jointly efficient estimators of β and γ occur

seldomly. If γ depends on β so that b(m) is sufficient for both β and γ, with γ = Kβ2,

then the following property holds.

• If γ = Kβ2 and b(m), the sufficient unbiased estimator of β, is the sample mean then

δ = (1− α)(K + α)β2.

and

d =


{K+(1−K) a

n
− a(a−1)
n(n−1)}b2(n−a)

{1+ K
n−a}

, if a < T

0, if a = T

is a best unbiased estimator of δ.

Advantages

This model is motivated by economic studies in which the data consists of a large number of

zeroes, and the positive portion of the data fits very well to some well known distribution.

Not only does this model have the ability to consider excess zeros, but also it provides

the potential for modeling positive skewness in the nonzero observations. For instance, in

health economics studies, a large proportion of the population may not incur any medical

cost while relatively few gravely ill patients impose very high costs [6].
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Drawbacks

Depending on the endpoint of the study, data analysis using the delta model may not be

straightforward. For instance, a two-step procedure (separate modeling of zeros and non-

zeros) may no longer be appropriate in many applications. In an air pollution example,

for instance, the concentration level of air contaminant’s at a given industrial site were

modelled using a delta distribution [14]. But this approach didn’t work for this example

because the main interest of this example was in the overall mean contamination level,

rather than in the mean of the non-zero values. Indeed, the focus of the inference is almost

always on the mean of the entire mixture in most studies of this type [14].

6.3.2 Tobit models

A Tobit model is any of a class of regression models where the observed range of the de-

pendent variable is censored in some way [15]. This model was first proposed by James

Tobin in 1958 [16] to diminish the problem of zero-inflated data for observations of house-

hold expenditure on durable goods. The main idea of the Tobit model is to modify the

likelihood function so that it estimates the unequal sampling probability for each obser-

vation conditioning on whether the latent dependent variable occurs above or below the

determined threshold [17]. Here, the likelihood function is a combination of probability

densities (for the observed or uncensored part of the distribution) and cumulative densities

(for the censored part of the distribution) [18].

Mathematically, Let xt denote the observation at time t, t = 1, 2, · · · , T , of a random

variable X. This model assumes that the random variable X can be expressed in terms of

a latent variable X∗ and can be defined as:

xt =

x∗t , x∗t > 0

0, x∗t ≤ 0

When, x∗t ≤ 0, its value is unobserved. The latent variable x∗t can be expressed as a

linear combination of a number of explanatory variables, that is,

x∗t = g′tβ + εt.

where, g′t is a row vector containing the explanatory variables which are observable, β is

a column vector containing the corresponding coefficients describing the linear dependency

151



6.3. MODELS FOR ZERO-INFLATED TIME SERIES DATA

of x∗t on gt. The error terms εt are assumed to be independently and identically distributed

and to follow a normal N(0, σ2) distribution.

The probability that X takes the value zero is given by

p(Xt = 0) = P (X∗t ≤ 0) = P (g′tβ + εt ≤ 0)

= P (ε ≤ −g′tβ)

= P (
ε

σ
≤ −g′tβ

σ
)

= Φ

(
−g′tβ

σ

)
= 1− Φ

(
g′tβ

σ

)

where Φ(.) denotes the cumulative distribution function (cdf) of the N(0, 1) distribution.

The above equation is similar to the so-called Probit model. Probit model is a regression

model which takes response variable with only two possible outcomes (0 and 1). In this

model, the response variable can be expressed in terms of the latent variable as follows [18]:

xt =

1, x∗t > 0

0, otherwise

.

Probit model considers binary response with the following conditional Bernoulli proba-

bilities:

P (Xt = 1|g) = Φ(g′tβ)

P (Xt = 0|g) = 1− Φ(g′tβ).

Tobit model is based on the above Probit model. Conditional on xt > 0, the likelihood

function L of the uncensored positive values of X is given by the probability density function

of the latent variable X∗, that is,

f(xt;β, σ) = σ−1φ

(
xt − g′tβ

σ

)
where φ(.) denotes the probability distribution function of the N(0, 1) distribution. Thus,

the likelihood function for a sample of n independent observations is

l(β, σ) =

[∏
xt=0

{
1−Φ

(
g′tβ

σ

)}][∏
xt>0

σ−1φ

(
xt − g′tβ

σ

)]
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Tobin estimated the maximum likelihood (ML) estimates of β and σ using a Newton-

Raphson algorithm. This model assumes a normal distribution with constant variance for

the error term but it is unrealistic in many applications. The ML estimators becomes

inconsistent when the distribution of εt is not normal [19]. Powell [20] suggested semi-

parametric estimation for the Tobit model by using a symmetrically trimmed least squares

(STLS) estimator with an assumption that the εt are symmetrically distributed about zero.

The STLS estimator is defined as [21]:

β̂STLS = arg minβ

T∑
t=1

I(g′tβ > 0)[min(xt, 2g′tβ)− g′tβ]2

where I is the indicator function. The sum in this expression eliminates the observations

for a given β with g′tβ ≤ 0. The lower tail of the distribution of Xt is censored at zero

for g′tβ > 0; symmetrically censoring the upper tail of the distribution (essentially by

interchanging xt by min{xt, 2g′tβ}) restores the symmetry of distribution of X∗. The final

estimator β̂STLS is consistent and asymptotically normal under the symmetrical distribution

assumption [20]. β̂STLS is obtained by an iterative procedure.

To estimate the covariance matrix of β̂STLS, Yoo et al. [22] used a method involving the

bootstrap. For M bootstrap replications with estimate β̂j in replication j, their estimate

is

Σ̂ =
1

M

M∑
j=1

(β̂j − βSTLS)(β̂j − βSTLS)′

where βSTLS = (1/M)
∑M

j=1 β̂j.

Advantages

The Tobit model is suitable to model a truncated or censored response variable, as it

assumes an underlying normal random variable that is censored by a random mechanism.

Another advantage is that the probability of a zero observation depends on the same random

variable that determines the magnitude of the observation given that it is positive.

Drawbacks

Although the Tobit model is sometimes used for semicontinuous data, it is not appropriate

for “true zeroes” as defined above because zeros in this model do not represent actual

responses. The underlying normal assumption becomes dubious if the zeros in the outcome

variable are true zeros.
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6.3.3 Sample selection models

The sample selection model is an extension of the Tobit model that was first proposed by

J. Heckman in 1979 [23]. It is a statistical model to fix bias from non-randomly selected

samples or otherwise incidentally truncated dependent variables. This is achieved by ex-

plicitly modelling the individual sampling probability of each observation along with the

conditional expectation of the dependent variable. The likelihood function is mathemati-

cally similar to the Tobit model for censored dependent variables [23]. Many variants of

sample selection models are available but here the version of Ven et al. [24] is illustrated.

This model is based on two latent variables X∗1 and X∗2 which are defined as:

x∗1t = g′1tβ1 + ε1t,

x∗2t = g′2tβ2 + ε2t,

Sample selection models thus allow for the latent variables to depend on different co-

variates. Now, the observed variable is defined as:

xt =

exp(x∗2t) if x∗1t > 0,

0 if x∗1t ≤ 0

The error terms ε1 and ε2 are assumed to be independent of the regressors g1 and g2,

and follow a bivariate normal distribution N(0,Σ) distribution, where

Σ =

σ2
1 σ12

σ12 σ2
2


If x∗1t > 0, xt > 0 is observed and x∗2t = log(xt), whereas if x∗1t ≤ 0, xt = 0 is ob-

served and x∗2t is missing. The covariates and parameter vectors (g′1t,β1) for x∗1t may differ

from (g′2t,β2) for x∗2t. Heckman used two alternative estimation methods with this model,

specifically ML and a two-step procedure. For ML estimation, the likelihood function of

the model is given by [21]
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l(β1,β2,Σ) =

[∏
xt=0

P (x∗1t ≤ 0)

][∏
xt>0

f(x∗t |x∗1t > 0)P (x∗1t > 0)

]

=

[∏
xt=0

P (x∗1t ≤ 0)

][∏
xt>0

∫ ∞
0

f(x∗t , x
∗
1t)dx

∗
1t

]

=

[∏
xt=0

{
1− Φ

(
g′1tβ1

σ1

)}]

×

[∏
xt>0

Φ

{(
g′1tβ1

σ1

+
log(xt)− g′2tβ2

σ−1
12 σ1σ2

2

)
× (1− σ2

12σ
−2
1 σ−2

2 )−
1
2

}
σ−1

2 φ

(
log(xt)− g′2tβ2

σ2

)]

ML estimates are found by an iterative method.

Heckman’s two-step procedure is very simple and easy to implement but it does not

work as well as the ML estimators. With the two-step procedure, the subsample regression

function for X∗t is

E[X∗t |x∗1t > 0] = g′2tβ2 + E[ε2t|ε1t > −g′1tβ1] = g′2tβ2 +
σ12

σ1

λt. (6.1)

where λt = φ(zt)/Φ(zt), and zt = g′1tβ1/σ1. Then,

log(Xt) = E[X∗t |g2t, X
∗
1 > 0] + εt

= g′2tβ2 +
σ12

σ1

λt + εt

where Heckman (1979) showed that εt has mean 0 and variance σ2
2[(1−ρ2)+ρ2(1+ztλt−λ2

t )]

with ρ2 = σ2
12/(σ

2
1σ

2
2). The parameters β1 and σ1 can be estimated by a Probit model using

the full sample. Therefore, zt and hence λt can be easily estimated. In Equation 6.1, the

estimated value of λt is used as a regressor and β2 can be estimated using least squares.

Advantages

The sample-selection model is also suitable for censored data as it is an extension of the

Tobit model. But in the Tobit model, the latent variable performs both the role of deter-

mining whether the data is censored and the outcome of interest. The sample selection

model allows the process of participation (selection) and the outcome of interest to be

independent, conditional on observable data.
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Drawbacks

The sample selection model has some disadvantages:

• Like the Tobit model, the sample selection model also assumes truncation or censoring

in the outcome measure, therefore is not appropriate for semicontinuous data.

• The two-step estimator discussed above is a limited information maximum likelihood

(LIML) estimator. The full information (FIML) estimator displays better statistical

properties in asymptotic theory and in finite samples as demonstrated by Monte Carlo

simulations [25].

• The covariance matrix generated by OLS ( a method for estimating the unknown

parameters in a linear regression model by minimizing the sum of the squares of the

differences between the observed dependent variable in a model and those predicted

by the linear function) estimation of the second stage is inconsistent [26].

• The estimator is generally inconsistent if the assumption that the errors are jointly

normally distributed fails, and can give confusing inference in small samples [27].

• Duan [28] and Duan et al. [29–31] discussed the strongest criticisms against the

sample selection model. They argued that the selection models are intrinsically limited

as they depend on untestable assumptions and have poor statistical and numerical

properties and therefore may be inappropriate for any applications including either

conditional (actual) or unconditional (potential) outcomes.

6.3.4 Cragg’s double hurdle model

The following model was proposed by Cragg [32] and is also based on two latent variables

X∗1 and X∗2 . The idea of Cragg’s double hurdle model is exemplified for a data set that

concerns cigarette consumption. Let X denote the amount of cigarette consumed by an

individual during a certain period of time. The first latent variable X∗1 ascertains whether

an individual is a smoker or non-smoker and it depends on some socioeconomic factors

which can be accounted for by the dependency of X∗1 on g1. The second latent variable X∗2

ascertains how much cigarette is consumed by an individual if the individual is a smoker

and it may depend on other covariates in addition to those that influenced the probability

of the individual being a smoker in the first place. During the investigation period, it is

possible for a smoker not to consume any cigarette, that is, X∗2 ≤ 0|X∗1 > 0. To observe
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positive values of X, two hurdles need to be overcome: one is the individual must be a

smoker and the other is the individual has to smoke during the period of the study. Hence

this model is named the double hurdle model. In this model, the observed variable can be

defined as:

X =

X
∗
2 , X∗1 > 0 and X∗2 > 0

0, otherwise

.

Both hurdles are assumed to be linear in the parameters (β1,β2), with additive error

terms ε1 and ε2 randomly distributed with a bivariate normal distribution, where g1 and

g2 are the regressors that influence participation and consumption [33].

• Observed variable (consumption): xt = dx∗2t.

• Participation equation:

x∗1t = g′1tβ1 + ε1t, d = 1 if x∗1t > 0

= 0 otherwise.

• Consumption equation:

x∗∗2t = max[0, x∗2t]

x∗2t = g′2tβ2 + ε2t.

To compute the likelihood of the model, the sample is divided into those with zero

consumption (denoted xt = 0) and those with positive consumption (denoted xt > 0).

Then the likelihood for Cragg’s double-hurdle model considering dependence between ε1

and ε2 is:

L =
∏
xt=0

[1− p(d = 1)p(x∗2 > 0|d = 1)]
∏
xt>0

p(d = 1)p(x∗2t > 0|d = 1)f(x∗2t|x∗2t > 0, d = 1)

=
∏
xt=0

[1− p(ε1t > −g′1tβ1)p(ε2t > −g′2tβ2|ε1t > −g′1tβ1)]
∏
xt>0

p(ε1t > −g′1tβ1)

p(ε2t > −g′2tβ2|ε1t > −g′1tβ1)f(x|ε2t > −g′2tβ2, ε1t > −g′1tβ1).

The above expression includes the density and distribution functions of the truncated
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bivariate normal distribution [33]. If ε1 and ε2 are assumed independent [34], then the above

likelihood reduces to:

L =
∏
xt=0

[1− p(ε1t > −g′1tβ1)p(ε2t > −g′2tβ2]
∏
xt>0

p(ε1t > −g′1tβ1)p(ε2t > −g′2tβ2)f(x|ε2t > −g′2tβ2)

=
∏
xt=0

[
1− Φ

(
g′1tβ1

σ1

)
Φ

(
g′2tβ2

σ2

)] ∏
xt>0

Φ

(
g′1tβ1

σ1

)
Φ

(
g′2tβ2

σ2

)
×

∏
xt>0

[(
1

σ2

)
φ

(
xt − g′2tβ2

σ2

)
Φ

(
g′2tβ2

σ2

)]
.

where, φ(.) and Φ(.) are the standard normal density and distribution functions.

Advantages

Cragg’s double hurdle model generalises both the Tobit model and the sample selection

model and hence is more flexible than the other two models. The Tobit model assumes

that the participation and consumption decision can be modelled as one equation whereas

Cragg’s model eases this assumption and models both decisions separately. In the sample

selection model, zero observations arise due to nonparticipation solely whereas Cragg’s

model eases this assumption and allows zero observations to arise in both the participation

hurdle and consumption hurdle [35].

The difference between the sample selection model and the double hurdle model is

that the sample selection model assumes that in the second stage there will be no zero

observations, whereas the double hurdle model allows a possibility of a zero observation,

which may arise from the individual’s choice or random circumstances.

Drawbacks

A limitation of Cragg’s double hurdle model is that it depends on the assumption of bivariate

normality of the error terms. If the normality assumption is violated, then the maximum

likelihood estimates of the model will not be consistent [36].

6.3.5 Two-part models

Zero-inflated log-normal two-part models

Two-part models incorporate two distinct stochastic process: one determining the occur-

rence of zero values and the other determining the distribution of the continuous non-zero

values. Models of this type consider zero values as true observed zeros. Mathematically,
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suppose that Xt is the semicontinuous response variable at time t; gt is a vector of covari-

ates at time t; β is the parameters used to model the probability of positive responses and

θ presents mean and dispersion parameters of the conditional distribution of the positive

responses. This model uses the same covariates (gt) in both parts of the model. The prob-

ability of a positive response is pβ = P (Xt > 0|gt) and the conditional distribution of the

positive responses has density fθ(Xt|Xt > 0). Then an indicator function J(Xt > 0) is

defined, that is, J(Xt > 0) = 1 if Xt > 0 and J(Xt = 0) = 0, otherwise.

Duan et al. [29] developed the two-part model without assuming an underlying normal

distribution. This model consists of two parts described by two equations. The first part

determines whether the response outcome is positive and is a binary model for the dichoto-

mous event of having zero or positive values, such as the logistic regression model, that

is,

logit[P (Xt = 0)] = g′1tβ1. (6.2)

The second part determines the level of response conditional on its being positive and

assumes a log-normal distribution.

log(xt|xt > 0) = g′2tβ2 + εt.

where, εt ∼ N(0, σ2). Then the likelihood function of the model is [21]

L(β1,β2, σ) =

[∏
xt=0

p(xt = 0)

][∏
xt>0

p(xt > 0)f(xt|xt > 0)

]

=

[∏
xt=0

eg
′
1tβ1

1 + eg
′
1tβ1

][∏
xt>0

1

1 + eg
′
1tβ1

σ−1φ

(
logxt − g′2tβ2

σ

)]
.

The maximum likelihood estimators of the above likelihood function are relatively easy

to determine as the likelihood function factors into two components. The first component

has only the logit model parameter,

L1(β1) =

[∏
xt=0

eg
′
1tβ1

][
T∏
t=1

1

1 + eg
′
1tβ1

]
.

The second component involves only the parameters of the second model part
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L2(β2, σ) =
∏
xt>0

σ−1φ

(
logxt − g′2tβ2

σ

)
.

The maximum likelihood estimates can be obtained by separately maximizing the two

components.

Zero-inflated gamma two-part models

This model differs from the previous model only in that the non-zero part assumes a gamma

distribution. Under this regression framework, the first part of the model follows Equa-

tion 6.2 and in the second part, Xt is modeled using gamma regression with a log link where

Xt ∼ Γ(exp(g′2tβ2), ν). Here, ν = CoV2, and CoV is the coefficient of variation. Combining

these two pieces of the model gives a zero-inflated gamma distributions (ZIG) [1].

Here, p(xt = 0) follows Equation 6.2 and f(xt|xt > 0; g′2t,β2, ν
−1) = 1

Γ(ν)

(
ν
µt

)ν
xν−1
t exp

(
−νxt
µt

)
,

with µt modeled as log(µt) = g′2tβ2. The likelihood is:

L(β1,β2, ν) =

[∏
xt=0

p(xt = 0)

][∏
xt>0

p(xt > 0)f(xt|xt > 0)

]

=

[∏
xt=0

eg
′
1tβ1

1 + eg
′
1tβ1

∏
xt>0

1

1 + eg
′
1tβ1

][∏
xt>0

1

Γ(ν)

( ν

eg
′
2tβ2

)ν
xν−1
t exp

(
−νxt
eg
′
2tβ2

)]
.

Maximizing two parts of the likelihood separately will also maximize the overall like-

lihood. This maximization can be performed via a Newton-Raphson algorithm for each

part.

Advantages

The two-part model has several attractive properties:

• When the zeros are true zeros, this model provides a well-behaved likelihood function

and more appropriate interpretations than the Tobit and sample selection models.

• These models do not assume an underlying normal distribution, hence can be used

for a wider range of data than Tobit models.

• These models don’t have any latent variable and do not involve censoring [37]. Conse-

quently, two-part models are more appropriate than the other models discussed above

160



6.3. MODELS FOR ZERO-INFLATED TIME SERIES DATA

for modelling semicontinuous data.

• These models are very flexible in the sense that the covariates can be included in the

zero and nonzero parts of the model using conventional generalized linear modelling

techniques [11].

• These models don’t require the addition of a constant which can introduce a bias [11].

• These models provide a flexible parametric approach for analysis of zero-inflated semi-

continuous data. Such flexibility can produce improved model fit over traditional

one-part models in many cases [9].

Drawbacks

Two-part models rely on parametric assumptions, which can be a liability. Erroneous

assumptions about the response distribution can naturally lead to misleading inferences.

Specifically, to achieve unbiased parameter estimates in any regression analysis, careful

attention should be given to modeling assumptions [9].

6.3.6 Exponential dispersion models/Tweedie models

Instead of handling zero and non-zero values separately, Jorgensen [38] developed another

approach which uses a positive distribution that simultaneously includes zeros and positive

quantities, known as exponential dispersion models for generalized linear models with a

power variance function. These models are also known as Tweedie distributions or models,

and can handle zero-inflated data without treating the zero and nonzero values separately.

Any exponential dispersion model can be characterized by its variance function V (.).

This function determines the mean-variance relationship of the distribution when the dis-

persion is held constant. If X follows an exponential dispersion model distribution with

mean µ, variance function V (.) and dispersion φ, then the variance of X can be written as:

V (X) = φV (µ).

Tweedie distributions are a special case of the exponential dispersion family for which

V (µ) = µp and V (X) = φµp [31]. The distribution is defined for all values of p except

values in the open interval (0, 1). Many conventional known distributions such as normal

(p = 0), Poisson (p = 1), gamma (p = 2), and inverse Gaussian (p = 3) are a special case of
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Tweedie distributions. The probability density function (pdf) of the Tweedie distribution

does not have any analytical expression except in these special cases. For p > 1, the pdf is:

f(x;µ, φ, p) = c(x, φ)exp

[
1

φ

(
xµ1−p

1− p
− κ(µ, p)

)]
.

where, κ(µ, p) = µ2−p

2−p for p 6= 2 and κ(µ, p) = log(µ) for p = 2. The function c(x, φ) doesn’t

have an analytic expression in general, and is usually estimated by using the series expan-

sion methods that are described in Dunn and Smyth [31] as it doesn’t have an analytical

expression. The Tweedie distribution is a compound Poisson-gamma mixture distribution

for 1 < p < 2, which is the distribution of Z defined as:

Z(t) =


Nt∑
i=1

Xi, Nt = 1, 2, 3, · · ·

0, Nt = 0

where Nt =
∑

t≥1 1[t,∞)(t) ∼ Poisson(λ), Xi ∼ gamma(α, θ) are independently and iden-

tically distributed gamma random variables with the shape parameter α and the scale

parameter θ and the probability density function of Xi is [39]:

f(X) =


αθXθ−1e−αX

Γ(θ)
if X > 0,

0 if X ≤ 0.

The density of Z is governed by a Poisson distribution at X = 0, that is, P (Z = 0) =

exp(−λ) = p0 = 1 − q0. For X > 0, the probability density function of Z is a mixture of

gamma variates with Poisson mixing probability which is:

P (Z > 0) =
∞∑
i=1

pi
q0

(
αtθZiθ−1e−αZ

Γ(iθ)

)
=
Z−1e−αZ

eλ − 1
rθ(vZ

θ).

where pi = e−λλi

i!
, v = λαθ, and rθ(vZ

θ) = Poisson mixing probability =
∑∞

i=1
vZθ

i!Γ(iθ)
[39,

40].

The parameters λ, α, and θ are related to the natural parameters µ, φ and p of the

Tweedie distribution as follows
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λ =
µ2−p

φ(2− p)

α =
2− p
p− 1

θ = φ(p− 1)µp−1

The mean of a Tweedie distribution is positive for p > 1. For the mean response, a model

can be specified as f(µt) = g′β with link function f . The maximum likelihood estimator

for β doesn’t involve c(xt, φ). This model can be fitted with software for generalized linear

models when p is known. Generally, p is unknown and needs to be estimated, but the

estimation can be intricate as it involves (through α) an infinite sum and a gamma function

in c(xt, φ) (Jorgensen [38]). As an alternative, moment based estimation may perform well.

Tweedie [41] proposed an estimate of p based on a single random sample as p̂ = k̂1k̂3k̂
−2
2 ,

where k̂i is an estimate of cumulant i of the distribution. Jorgensen [38] developed a possible

generalization of this approach for a regression model [21]. Let, x and µ̂ be the vectors of

observations and fitted values, respectively. A moment estimator for φ is φ̂ = g2/n − k,

where k is the number of unknown parameters and g2 = (x− µ̂)TV (µ̂)−1(x− µ̂) [21].

Advantages

The exponential dispersion model is relatively simple in the sense that it analyzes data with

a single model including both aspects described in the two-part model. This model is easy

to fit when the power p of the variance function is given.

Drawbacks

This model seems problematic when the power of the variance function is not known.

Moreover, this model does not seem to have received attention in practice other than in

Jorgensen’s work.

6.3.7 Threshold model

Saei et al. [42] suggested recoding the continuous response into an ordinal scale by grouping

the positive values into intervals and then developed a threshold model to analyze outcomes

of a methadone randomized controlled trial and to relate the ordinal outcome variable to

covariates. This model groups the possible outcome values into k ordered categories. Let Xt

be the grouped response variable. The threshold model for an ordinal response involves an
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unobserved continuous random variable Z, such that Z+g′β has the cumulative distribution

function G. If Z stays in the interval θj−1 < Z ≤ θj, then response Xt = j, j ∈ 1, 2 · · · , k

is observed, where θj are threshold parameters [43]. Then,

P (Xt ≤ j|g) = P (Z ≤ θj|g) = P (Z + g′β ≤ θj + g′β) = G(θj + g′β).

The threshold model is then written as:

G−1[P (Xt ≤ j; g)] = θj + g′β, j = 1, 2, · · · , k − 1.

The link function is the inverse of the cdf. The applications of semicontinuous data with

a point mass at zero consider the first category to be the zero outcome and select cutpoints

or thresholds on the positive outcome scale to define the other k − 1 categories. If G is

assumed to be a logistic function, this leads to a logit model for the cumulative probabilities,

called a cumulative logit model [43]. Then the threshold model can be expressed as:

P (Xt ≤ j|g) =
exp(θj + g′β)

1 + exp(θj + g′β)
.

McCullagh [44] assume that G is normal, resulting in a cumulative Probit model. This

approach assumes same covariate effects (the relationship between the cumulative probabil-

ities of the ordinal categories of the outcome variable and the covariates) for each category

of the outcome variable, known as proportional odds assumption. Score test or Wald test

are used to check this important assumption of this approach [43, 45]. Chang and Pocock

[43] used the cumulative logit model for a data set concerning the amount of personal care

for the elderly.

Advantages

This model is conceptually simple in that it uses a single model to deal with zero-inflated

continuous data and hence is generally easy to fit. Elements of β summarize overall effects,

rather than conditional on the response being positive. To make a comparison between

different groups with different levels of the explanatory variables, β can be used directly.

This is in contrast to two-part models, in which one needs to average the results from the

two components of the model to make an unconditional comparison (e.g., to estimate E(X)

for the groups).
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Drawbacks

One disadvantage of this model is that it can lose information about the data because of

grouping. Moreover, it uses an arbitrary way of collapsing the positive scales into categories.

6.4 Summary and Future directions

One difficulty statisticians often confront is in analyzing data that have a substantial propor-

tion of zero values. Zero-inflated data need special statistical methodology to avoid biases

and inappropriate decisions. The data set analysed in Chapter 5 is part of a larger data set

that includes time-series with zero-inflation. The data was sediment core data including

concentrations of metal elements detected at each depth (in mm) in the cores. Different

elements indicate different characteristics of the sediments such as magnetic susceptibility,

organic matter, sediment particle size and elemental composition of the sediments. Zeros

in the time series indicate that the elements were not detected at all depths in the sediment

core. In that chapter, the time series containing zeros were ignored, as the approach was

not designed for zero-inflated data. To handle this type of data for segmentation purposes,

the Bayesian change-point segmented ARMA model needs to be generalized. On that ac-

count, I surveyed the available models for zero-inflated time series data. Each model above

is discussed with its benefits and drawbacks. To the best of my knowledge, these models

have not previously been applied to change-point problems. A summary of the reviewed

models is listed in Table 6.1.

Table 6.1: Summary of the reviewed models

Models True zero Censored zero Two separate model Single model Normality assumption

Delta distribution

Tobit models

Sample selection models

Cregg’s double hurdle model

Two-part models

Exponential dispersion models

Threshold model

The appropriate choice of model depends on the nature of the data used in change-

point problems. The major difference between these models is whether they treat zeros as

true zeros or censored zeros. Some models also assume an underlying normal distribution,

hence can not be used for a wider range of data. Moreover, some models use two separate

stochastic processes (one determines the occurrence of zero values and the other determines

the distribution of the continuous non-zero values) for handling extra zeros in the data and
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others model zeros and non-zeros as a single model.

Generalization of the Bayesian change-point segmented ARMA model by incorporating

an appropriate zero-inflated model can be considered an interesting direction for future

research. The zeros which were omitted from the analysis in Chapter 5 were true zeros.

Consequently, Bayesian change-point segmented ARMA model can be generalized either by

using any of the four models mentioned above in Table 6.1 which work with true zeros or by

introducing an entirely new model. Two-part models can be used to handle extra zeros in

the sediment core data. The generalization model can consist of two parts in each segment

of the time series. The first part will determine whether the time series is positive and

hence hold a binary model for the dichotomous event of having zero or positive values. The

second part will determine the level of time series conditional on its being positive and use

an ARMA model for the non-zero values of the time series. Administering the interruption

of the ARMA process by zeros in this generalization model can be considered as an area

for future research.
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Chapter 7

Discussion, Conclusion and Future

Directions

This thesis considers the problem of modeling a time series by segmenting the series into

blocks which can be fitted by approximately stationary ARMA processes. The main ob-

jective of this thesis is to extend and develop a Bayesian change-point segmented ARMA

model for time series data and develop methods to segment multiple parallel time series.

The Bayesian change-point segmented ARMA methodology presented here segments a

time series so that the resulting segments of the time series are consistent with an ARMA

model with distinct segment means. In the past, some authors modeled nonstationary time

series by segmenting the series into AR processes [1–9]. Autoregressive models operate

under the premise that past values have an effect on current values, which makes this

statistical model popular for dealing with autocorrelation in the time series. However, the

presence of autocorrelation may sometimes lead to excessive proliferation of change-points

[10].

One reason this thesis proposes ARMA models in each segment is that ARMA models

consider the dependence between residual terms by adding a moving average component

instead of only considering the dependence within time series like the AR model. Moreover,

a Bayesian approach with a segmented ARMA model allows the fitting of more flexible

change-point models than is possible with an AR model. Another advantage of this model

is that it uses a highly efficient sampling technique (GGS) [11] for generating samples

from a posterior distribution. These reasons make the Bayesian change-point segmented

ARMA model presented in this thesis a promising new direction in the field of time series

segmentation.
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In this thesis, at first I introduced and validated the Bayesian change-point segmented

ARMA model and segmented one-dimensional time series synthetic data as well as a real

world data set (Chapter 3). When the data was generated via an ARMA process with

different segment means and the same variance, the results showed that an ARMA model

detects more true change-points than either an AR or MA model, for simulated data. More-

over, in some locations, the segmented ARMA model found higher posterior probability of

occurrence of true change-points than the segmented AR model. The posterior estimators

of the mean signal level at each position of the simulated signal correctly identified the

number of actual segments in the simulated data. A change in mean was evident even

where change-points were detected with very low probability.

For real life data, I fitted AR(1), MA(1) and ARMA(1,1) models to detect change-points

in the data and all models identified almost the same change-point locations. But at some

locations the AR(1) model showed relatively smaller posterior probability than the MA(1)

and ARMA(1,1) models. Since the three models found high probabilities of change-point

occurrence at many of the same locations, I compared the change-point locations using a

threshold of 0.5 in the posterior probabilities. By this method, the AR(1) model identified

fewer change-points with high posterior probability than the other two models. Among

these three models, the ARMA(1,1) model identified the largest number of change-points

and matched more closely with the number and locations of actual change-points detectable

to the eye. In addition, the ARMA(1,1) model picked up small changes in mean with high

posterior probability whereas the AR(1) and MA(1) models missed change-points at some

time points where small jumps occurred in the data. The results of the ARMA(1,1) model

were somewhat similar to previous results found in the change-point literature for this data

set but a question remains whether the additional change-points are false positives in this

case. I can not answer this question definitively as the true locations of change in this data

set are unknown. However, the ARMA(1,1) model was found to be the best of the three

models based on DICV values, suggesting the additional change-points found in segmented

ARMA model reflect a real feature of the data. Arguably, it is not justified to compare

MA -which is always stable/stationary- with AR and ARMA. The AR(1) terms in AR and

ARMA introduce dependency in the processes through the relationship between Xt and Xt1.

This may be why the DICV of MA(1) is very high compared to the other two in Table 1 of

Chapter 3. The results of simulated data and real data suggest high detection accuracy for

this model. This method is especially beneficial in analysing segmentation patterns in the
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data where changes are present in the mean. It is not suitable for data sets in which different

segments have different variance, as this model assumes the same variance for all segments.

In future work, the Bayesian segmented ARMA change-point model can be generalized to

incorporate changes in the variance of the original process by allowing distinct variances

for different segments or classes of segments. There are some other limitations of this

model, such as this model is a univariate segmentation method which assumes stationarity

within each segment and this model considers the minimum number of observations in each

segment. Also, this Bayesian change-point segmented ARMA model assumes known and

fixed orders of AR and MA submodels on each segement. Selecting higher orders of AR

or MA model will make this methodology more complex. The selection of the order of the

AR or MA model is a challenging task. This problem can be addressed in two ways: i)

orders of AR or MA model can be considered as unknown and a joint prior distribution

can be set over the orders of the models within each segment ii) different model orders can

be considered for different segments and can be estimated from the data.

Developing a simple, essentially one-dimensional, approach to segmenting parallel time

series was the second main methodological development I introduced in this thesis. In

this phase of the project, an event detection approach was proposed for segmenting spatio-

temporal data in presence of different levels of background noise (Chapter 4). For the

detection of such events in parallel spatially correlated time series data, I pre-processed the

data to produce a single time series amenable to analysis with the segmented ARMA model

instead of segmenting two-dimensional data. A single summary sequence was produced

based on the maximum signal over locations for each time point. The proposed approach

was tested by segmenting two synthetic data sets and three real life data sets with different

shaped hidden events in the presence of noise. Both the synthetic data sets contained

events in the Gaussian noise with a different mean from the background and the same

variance as the background. One contained a triangular event and the other contained an

odd quadrangle event. AR(1), MA(1) and ARMA(1,1) models were fitted for both the data

sets across row and column locations and the best model was chosen based on investigating

DICV values. The change-point profiles and the group profiles of the selected models

accurately identified the boundary locations of events obscured by background noise. A

simple event extraction method was also used to make a comparison with the results of

the proposed method. In spite of extracting events in a two-dimensional setting, this

comparison method found some small noisy events in addition to the real events for both
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synthetic data sets. Instead of simulating data with Gaussian noise, a nonlinear time series

can be simulated and then an ARMA model can be fitted within each segment. This work

can be done in future as it will take more time and more coding.

In this chapter, I considered two real life examples with relatively low background noise

and one with high background noise. The change-point profiles showed the boundary of the

event with high probability for the data sets with a low level of background noise. It also

detected some other change-points with low probability. In this situation, the boundaries

of the event were identified by plotting group profiles of each position of the input signal,

which is the probability that these positions belong to a given group in the selected model.

The third real life example contained two events of interest in high background noise. This

was a particularly challenging example, not only because of the high background noise level,

but also because of the presence of non-uniformity in the variance of the background noise

level. The proposed method didn’t produce the same level of accuracy as in the other two

real life examples. Instead, it found some false positive change-points in addition to the

real events. This example indicates a limitation of this simple approach in the presence of

high noise variance. The results of real life examples were also compared with the event

extraction method. The comparison method identified one false positive event in addition

to the real event for the first two examples, whereas the proposed method identified only

the desired boundary of the true events. The comparison method also found more false

positive events for the third example than the proposed method.

An alternative summary statistic, principal component analysis (PCA) was also used

as the summary statistic in the proposed method instead of the maximum. This approach

found a cluster of high probability change-points covering the event in the data with a

low level of background noise where the true boundary of the event was located. Both

approaches found some false positive change-points in the third example. The difference is

that the maximum approach found false positive change-points with low posterior probabil-

ity whereas the PCA approach found false positive events with high posterior probability.

Moreover, the PCA approach missed a second real event whereas the maximum approach

found both real events. These results indicate that the maximum performs better than

PCA in our examples.

This proposed method of segmenting parallel time series is useful to detect the bound-

aries of events in two-dimensional data in spite of being designed for one-dimensional time

series data. However, this dimension reduction approach involves information loss using
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any summary statistic and hence is only recommended in initial exploratory analysis. The

proposed method assumes univariate ARMA model in each segment, which may be of lim-

ited value for segmenting two-dimensional time series data. The orders of AR and MA

submodels are being fixed on each segment, which is another limitation of this method (as

discussed in Chapter 3). In future, a prior distribution can be assigned to the unknown

orders of the AR and MA submodels, or different model orders can be considered from

one segment to another and can be estimated from the data. This work opens up avenues

for exploration, in particular, in three ways: one is to improve the Bayesian change-point

segmented ARMA model to adapt to changing noise variance (as already noted in Chapter

3); another is to generalise the Bayesian change-point segmented ARMA model to handle

multi-dimensional data and the last one is to extend this model by assuming a multivariate

ARMA model in each segment.

The above results demonstrate the need to devise better models for segmenting parallel

sequences instead of using a one-dimensional approach. Consequently, the next step of this

thesis was to propose a more general and flexible method for the segmentation of multiple

sequences in parallel (Chapter 5). I considered simultaneous segmentation of parallel se-

quences and presented three alternative models. The first generalization assumes common

change-point locations in all time series, the second assumes the same probabilities of as-

signing segments to a number of segment classes, in addition to the assumption of the first

generalization and the third assumes the segments in each time-series belong to a common

segment class, in addition to the assumptions of the first and second generalizations. The

feasibility and performance of these three alternative models were assessed by applying

them to a simulated data as well as to a real world data set.

Results of the synthetic example show that all generalizations achieve similar results and

identified all true change-points where the segmentation of a single time series detected only

some change-points. The results obtained for the real life example showed different results

for the three generalizations. Consequently, the results were compared using approximated

AIC, BIC and DICV values. AIC and BIC prefer the third generalization and the DICV

prefers the second generalization as the most favourable model. The performance of the

three models were again investigated by comparing the locations of estimated change-points

with the known change-point locations in the real life example. The estimated change-

points were consistent with the true change-point in this example. The third generalization

was preferred based on these results which also support the conclusion drawn using the
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information criteria. However, because of the presence of heteroscedasticity in some time

series and other discrepancies between the model and the underlying process, the accuracy

of the results using real life example is lower than the for the synthetic example. The three

alternative models work well when change-points were present in the mean of the signal as all

these models assume different means for different segment. Change-points are also present

in the variance of the signal in each segment but these models assume constant variance

within segments. Consequently, future work is required to assume distinct variances for

each class of the segments but constant variance with in a class (as noted in Chapter 3 and

Chapter 4). All the three alternative models assume a univariate ARMA model in each

segment, which can be considered as a limitation in segmenting correlated parallel time

series data (as mentioned in Chapter 4). Moreover, these generalizations also assume the

same ARMA parameters in each segment but change-points might be exist in the ARMA

parameters.

Chapter 5 performed simultaneous segmentation of ten parallel time series corresponding

to ten distinct elemental concentrations. However, the data set actually includes time-series

for thirty-seven elements. Most of the elements were not detected at all depths in the core

and thus their time series contained zeroes over extended time-periods. These time series

with many zeroes motivated me to investigate the literature regarding zero-inflated data

(Chapter 6). Zero-inflated semicontinuous data has a distribution with a continuous density

except for a probability mass at 0. In Chapter 6, I reviewed models for zero-inflated data.

In future work, the Bayesian change-point segmented ARMA model can be generalized for

handling zero-inflated data, incorporating insights obtained from this review.

In summary, future works following on from this thesis may include:

• Generalize the Bayesian change-point segmented ARMA model by allowing distinct

variances for each segment or segment class.

• Generalize the three alternative models of segmenting parallel sequences for changing

variance.

• Generalize the Bayesian change-point segmented ARMA model for multi-dimensional

data.

• Generalize the Bayesian change-point segmented ARMA model and the three alterna-

tive models of segmenting parallel sequences by assuming different ARMA parameters

for each segment.
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• Generalize the Bayesian change-point segmented ARMA model for handling zero-

inflated data.

• Generalize the Bayesian change-point segmented ARMA model using multivariate

ARIMA in each segment for incorporating correlated parallel time series.
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Appendix A

Appendix Chapter 3

A.1 Details of Posterior Distribution

Conditional Posterior Distribution of π

The conditional posterior distribution of π is:

p(π|X, K, s,g, c, φ,θ,ψ, σ2,µ, τ ) =
p(π,X, K, s,g, c, φ,θ,ψ, σ2,µ, τ )∫

π
p(π,X, K, s,g, c, φ,θ,ψ, σ2,µ, τ )dπ

Using Eq (8), we get,

p(X, K, s,g, c|φ,π,θ,ψ, σ2,µ, τ )p(φ)p(π)p(θ)p(ψ)p(σ2)p(µ)p(τ )∫
π
p(X, K, s,g, c|φ,π,θ,ψ, σ2,µ, τ )p(φ)p(π)p(θ)p(ψ)p(σ2)p(µ)p(τ )dπ

=
p(X, K, s,g, c|φ,π,θ,ψ, σ2,µ, τ )p(π)∫

π
p(X, K, s,g, c|φ,π,θ,ψ, σ2,µ, τ )p(π)dπ

Then, using Eq (6) and cancelling same terms from the numerator and the denominator

the conditional posterior distribution of π becomes

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(π)∫
π
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(π)dπ

=
p(g|K,π)p(π)∫

π
p(g|K,π)p(π)dπ

Now, Using Eq (3), this becomes:
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N∏
n=1

πbnn∫
π

N∏
n=1

πbnn dπ

=
π

(b1+1)−1
1 × · · · × π(bN+1)−1

1∫
π
π

(b1+1)−1
1 × · · · × π(bN+1)−1

1 dπ
= Dirichlet(π|((b1 + 1), · · · , (bN + 1))

Conditional Posterior Distribution of φ

The conditional posterior distribution of φ is,

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,φ)p(π)∫
φ
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(φ)dφ

=
p(K, s|φ)p(φ)∫

φ
p(K, s|φ)p(φ)dφ

Using Eq (1), the conditional posterior distribution of φ becomes

φK−1(1− φ)T−K−1∫
φ
φK−1(1− φ)T−K−1dφ

= Beta(φ|K,T −K)

where, K = Number of segments and T −K = Length of signal-number of segments.

Conditional Posterior Distribution of µ

The conditional posterior distribution of µ is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(µ)∫
µ
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(µ)dµ

=
p(c|g,µ, τ )p(µ)∫

µ
p(c|g,µ, τ )p(µ)dµ

Note that, µ or µn will (currently) not be updated if there is less than one segment in

group n. Then using Eq (7), the conditional distribution for µn (holding all the other µ’s

constant) becomes ∏
k:gk=n

N(ck|µn, τ 2
n)∫

µ

∏
k:gk=n

N(ck|µn, τ 2
n)dµ

.

Let m be the number of segments that have gk = n. Then simplifying the product∏
k:gk=n

N(ck|µn, τ 2
n) =

∏
k:gk=n

1√
2πτ 2

n

exp

[(
(ck − µn)2

2τ 2
n

)]
, the conditional posterior distri-

bution of µ becomes a normal distribution with mean

∑
k:gk=n

ck

m
and variance

τ 2
n

m
.
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Conditional Posterior Distribution of σ2

The conditional posterior distribution of σ2 is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(σ2)∫
σ2 p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(σ2)dσ2

=
p(X|λ, σ2)p(σ2)∫

σ2 p(X|λ, σ2)p(σ2)dσ2

The prior distribution for σ2 is: p(σ2, u0, v0) =
vu00

Γ(u0)
(σ2)−u0−1exp

(
− v0

σ2

)
.

where u0 and v0 are the prior parameters. Now using ε ∼ N(0, σ2) and the above prior

distribution and simplifying, the conditional posterior distribution of σ2 takes the form

of an inverse gamma distribution with parameter u and v, where u = u0 + T
2

and v =

2v0+
T∑
t=1

ε2t

2
= v0 + 1

2

T∑
t=1

ε2t .

Conditional Posterior Distribution of τ 2
n

Let τ be the vector of τ 2
1 , · · · τ 2

N , then the conditional posterior distribution of τ is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(τ )∫
τ
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(τ )dτ

=
p(c|g,µ, τ )p(τ )∫

τ
p(c|g,µ, τ )p(τ )dτ

The prior distribution for τ is: p(τ , α0, β0) =
N∏
n=1

βα0
0

Γ(α0)
(τ 2
n)−α0−1exp

(
−β0

τ 2
n

)
.

where α0 and β0 are the prior parameters. Note that τ 2
n will (currently) only be updated

if there is more than one segment in group n. Now using Eq (7) and the above prior

distribution and simplifying, the conditional posterior distribution of τ takes the form of

an inverse gamma distribution with parameter α and β, where α = α0 + |(k:gk=n)|
2

and

β = β0 + 1
2

∑
k:gk=n

(ck − µn)2.

Conditional Posterior Distribution of g

The conditional posterior distribution of g is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(g)∫
g
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(g)dg

=
p(c|g,µ, τ )p(g|K,π)p(g)∫

g
p(c|g,µ, τ )p(g|K,π)p(g)dg
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Using Eq (2) and Eq (7), The conditional posterior distribution of g becomes

∏K
k=1 N(ck|µgk , τ 2

gk
)×

K∏
k=1

πgk∫
g
(
∏K

k=1 N(ck|µgk , τ 2
gk

)×
K∏
k=1

πgk)dg

.

The gk ’s are independent, so can be updated one at a time with the conditional posterior

distribution of g which is a discrete distribution with parameter
N(ck|µgk , τ 2

gk
)× πgk∫

g
(N(ck|µgk , τ 2

gk
)× πgk)dg

.

Conditional Posterior Distribution of c and ε

The conditional posterior distribution of c and ε is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(c)∫
c
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(c)dc

=
p(X|λ, σ2)p(c|g,µ, τ )p(c)∫

c
p(X|λ, σ2)p(c|g,µ, τ )p(c)dc

Using Eq (5) and Eq (7) and ε ∼ N(0, σ2), the above equation becomes

T∏
t=1

p(xt|λt, σ2)×
K∏
k=1

N(ck|µgk , τ 2
gk

)

∫
c
(
T∏
t=1

p(xt|λt, σ2)×
K∏
k=1

N(ck|µgk , τ 2
gk

))dc

.

The ck’s and the corresponding εsk , · · · , εdk can be updated one segment at a time with the

conditional distribution given by:

dk∏
t=sk

p(xt|λt, σ2)×N(ck|µgk , τ 2
gk

)

∫
c
(
dk∏
t=sk

p(xt|λt, σ2)×N(ck|µgk , τ 2
gk

))dc

.

Conditional Posterior Distribution of ψ and ε

The conditional posterior distribution of ψ and ε is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(ψ)∫
ψ
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(ψ)dψ

=
p(X|λ, σ2)p(ψ)∫

ψ
p(X|λ, σ2)p(ψ)dψ

Using Eq (5) and ε ∼ N(0, σ2), the conditional posterior distribution of ψ and ε given by:
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T∏
t=1

p(xt|λt, σ2)× p(ψ)

∫
ψ
(
T∏
t=1

p(xt|λt, σ2)× p(ψ))dψ

.

Conditional Posterior Distribution of θ and ε

The conditional posterior distribution of θ and ε is:

p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(θ)∫
θ
p(X|λ, σ2)p(c|g,µ, τ )p(K, s|φ)p(g|K,π)p(θ)dθ

=
p(X|λ, σ2)p(θ)∫

θ
p(X|λ, σ2)p(θ)dθ

Using Eq (5) and ε ∼ N(0, σ2), the conditional posterior distribution of θ and ε given by:

T∏
t=1

p(xt|λt, σ2)× p(θ)

∫
θ
(
T∏
t=1

p(xt|λt, σ2)× p(θ))dθ
.
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A.2 Generalized Gibbs Sampling

This section summarizes the method of the MCMC sampler of Keith et al.[1]. In this part,

we want to sample from a distribution f over a space X, called the target space.

We define a set I, which will be referred to, in the following, as the index set. We also

define U ⊂ I× X, so that projection of U onto X and I are surjective.

For each x ∈ X, let Q(x) be the set {(k, z) ∈ U : z = x}. Q(x) is a catalogue of the

types of transitions available from x.

For every x ∈ X, we define a transition matrix Qx on Q(x). We denote by qx the

density of the distribution which is stationary with respect to Qx. We denote Q the global

transition matrix on U :

Q((i, x), (j, y)) =

Qx((i, x), (j, y)) for(j, y) ∈ Q(x)

0 otherwise

For each (i, x) ∈ U, let R(i, x) be the set of possible transitions. These sets are required

to be a partition of U:

(j, y) ∈ R(i, x)⇔ (i, x) ∈ R(j, y)

(j, y) ∈ R(i, x)

(k, z) ∈ R(j, y)

⇒ (k, z) ∈ R(i, x)

We also have (i, x) ∈ R(i, x). On R(i, x), we define a transition matrix R(i, x) as follows

:

R(i,x)((i, x), (j, y)) =
f(y)qy(j, y)∑

(k,z)∈R(i,x) f(z)qz(k, z)

We also define a global transition matrix R on U:

R((i, x), (j, y)) =

R(i,x)((i, x), (j, y)) for(j, y) ∈ R(i, x)

0 otherwise

We can generalize this formula by replacingR((i, x), (j, y)) withR((i, x), (j, y))S((i, x), (j, y))

in the definition of the matrix R, given that S((i, x), (j, y)) = S((j, y), (i, x)) and adjusting

S so that for all (i, x),
∑

(j,y) R((i, x), (j, y))S((i, x), (j, y)) = 1. This can be useful to divide
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the R(i, x) set into two (or more) subsets.

We consider a Markov chain {U1, U2, · · · } on U with a transition matrix P = QR.

P ((i, x), (j, y)) =
∑

(k,z)∈Q(x)∩R(j,y))

Q((i, x), (k, z))R((k, z), (j, y))

Let µ be the distribution defined by µ(i, x) = f(x)qx(i, x).

We have

µ(i, x)R((i, x), (j, y)) =


f(x)qx(i,x)f(y)qy(j,y)∑
(k,z)∈R(i,x) f(z)qz(k,z)

if(j, y) ∈ R(i, x)

0 otherwise

µ(j, y)R((j, y), (i, x)) =


f(x)qx(i,x)f(y)qy(j,y)∑
(k,z)∈R(j,y) f(z)qz(k,z)

if(i, x) ∈ R(i, x)

0 otherwise

We know that (j, y) ∈ R(i, x), (k, z) ∈ R(j, y)⇒ (k, z) ∈ R(i, x), so

µ(i, x)R((i, x), (j, y)) = µ(j, y)R((j, y), (i, x))

(note that if S((i, x), (j, y)) = S((j, y), (i, x)) and

∑
(i,x)∈U

µ(i, x)Q((i, x), (j, y)) =
∑

(i,y)∈Q(y)

f(y)qy(i)Q((i, y), (j, y))

= f(y)qy(j) = µ(j, y)

So, µ is stationary with respect to Q and to R and with respect to P . If P is irreducible

and aperiodic, µ is the limiting distribution of the process P . So, we have the generalized

Gibbs sampler :

1. Q-step : Given Un = (i, x), generate V ∈ Q(x) by drawing from the distribution with

density Q((i, x), .).

2. R-step : Given V = (j, y), generate W ∈ R(j, y) by drawing from the distribution

with density R((j, y), .).

3. Let Un+1 = W .

Now we redefine R for the generalisation of the GGS sampler by including Metropolis’

sampler, Hastings’ generalisations and the reversible jump sampler, that is,
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R((i, x), (j, y)) =


s((i,x),(j,y))f(y)qy(j)∑
(k,z)∈R(i,x)) f(z)qz(k)

if (j, y) ∈ R((i, x))\{(i, x)}

1−
∑

(k,z)∈R(i,x))\{(i,x)}R((i, x), (k, z)) if (j, y) = (i, x)

0 otherwise

Here s is a non-negative and symmetric function such that,

∑
w∈R(i,x)\{(i,x)}

R((i, x), (k, z)) ≤ 1

In case of involving non-denumerable target space, a measure ζ exits on the set R =

{R(i, x) : (i, x) ∈ U} and measures ηr on r for each r ∈ R such that

ξ(A) =

∫
R

ηr(A ∩ r)dζ(r)

where, ξ is a reference measure on U. Now, we can define R(i,x)((i, x), .) to be the density

with respect to ηr on r = R(i, x) given by

R(i,x)((i, x), (j, y)) =
f(y)qy(j, y)∫

r
f(z)qz(k, z)dηr(k, z)

We can also define R(i,x)((i, x), .) to be the density with respect to ηr on r\{(i, x)} and

assign probability mass to (i, x) given by

R(i,x)((i, x), (j, y)) =
s((i, x), (j, y))f(y)qy(j, y)∫

r
f(z)qz(k, z)dηr(k, z)

= 1−

∫
r\(i,x)

s((i, x), (j, y))f(y)qy(j, y)dηr(j, y)∫
r
f(z)qz(k, z)dηr(k, z)

The function s must satisfy
∫
r\(i,x) s((i,x),(j,y))f(y)qy(j,y)dηr(j,y)∫

r f(z)qz(k,z)dηr(k,z)
≤ 1.

In case of reversible jump MCMC sampler instance of the GGS, we define a transition

density function Qx((m0, y0, x0), (m, y, x)) = qx(m, y, x) in Q-step, where qx(m, y, x) =

σx(m)Am(x, y). Here, m is a move-type; m ∈ M (M is the countable set of move-types),

σx(m) is the probability of selecting move-type m at proposed new element x and Am(x, y)

is the density for move-type m at x.

In R-step, the density of µ is σx(m)fm(x, y) at (m, y, x) with respect to ξ and we define

a partition of U which consists of R(m, y, x) = {(m, y, x), (m,x, y)} for all (m, y, x) ∈ U.

Here,
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s((m, y, x), (m,x, y)) = min

(
1 +

σm(x)fm(x, y)

σm(y)fm(y, x)
, 1 +

σm(y)fm(y, x)

σm(x)fm(x, y)

)
This s matrix gives the transition matrix

R(i,x)((i, x), (j, y)) =

αm(x, y) if (j, y) = (i, x) ≡ (m, y, x)

1− αm(x, y) if (j, y) = (m, y, x)

where,

αm(x, y) = min

(
1,
σm(y)fm(y, x)

σm(x)fm(x, y)

)
.

Here, new element(m, y, x) is selected with the transition matrix R which is equivalent

to accepting the proposed y with probability αm(x, y).
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A.3 Supplementary Material A

To test our method, we generated two simulated data sets. In both data sets, we generated

20 time series of 100 observations, each with a different segment mean, from the autoregres-

sive moving average (ARMA (1,1)) model with parameter values ψ = 0.22 and θ = 0 : 60.

The two data sets differed in the value of the parameter σ2 used to generate the data: in

the first we used σ2 = 0.96 and in the second we used σ2 = 0.5. We applied our methods

for the segmented ARMA model and segmented AR model to these data and compared the

location of change points and number of change points found by these two models.

S3 Fig A.1: Segmented ARMA model and segmented AR model with σ2 = 0.96

The top panels of S3 Fig A.1 present the simulated signal for the first data set (σ2 = 0.96)

with the true change-points marked as red vertical lines. The middle plots show the pos-

terior probabilities of occurrence of change-point locations and the bottom plots show the

estimated change-point locations using a threshold (0.5) in the posterior probabilities of

occurrence of change-points. If we compare the above plots, it is clear that the segmented

ARMA and segmented AR models find almost the same number of change points and loca-

tions. But in some locations, the segmented ARMA model gives higher posterior probability

than the segmented AR model. When we apply a threshold (the posterior probability of

occurrence of change-points is greater than 0.5), the segmented ARMA model identifies 17

change-points out of 19 true change-points whereas the segmented AR model identifies 16

change-points.
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S3 Fig A.2: Segmented ARMA model and segmented AR model with σ2 = 0.5

Results for the second simulated data set (σ2 = 0.5) are shown in S3 Fig A.2. These

plots also demonstrate that the ARMA and AR models find the same number of change-

points and the same locations, but in some locations the posterior probability of occurrence

of change-points is lower using the segmented AR model than the segmented ARMA model.

The bottom panel of the segmented AR plot indicates 15 change-points were identified out of

19 but the segmented ARMA model identifies 16 change-points. These results suggest that

the segmented ARMA model identifies significant change-points with higher probability

of occurrence than the AR model, when the data are generated using an ARMA model,

regardless of the value of σ2.
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A.4 Supplementary Material B

Our computational algorithm is not sensitive to the choice of prior for φ. The posterior

distribution of φ is a beta distribution that is scarcely changed by the choice of prior, as the

following graphs indicate. The top panel in S4 Fig A.3 below shows five low information

prior distributions for φ, with different means and variances. S4 Fig A.4 show the posterior

distributions obtained using each of the five priors. Despite the large discrepancies in the

prior information, the posterior distributions are indistinguishable.

S4 Fig A.3: Different prior distributions for φ
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S4 Fig A.4: Posterior distributions for different prior distributions
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Appendix Chapter 4

B.1 Summary of Bayesian change-point modeling with

segmented ARMA model

This section summarizes the Bayesian segmented ARMA model of [2]. This model segments

the input time series into blocks of autoregressive moving average (ARMA) processes. The

joint distribution of the data conditional on the other parameters of the model is given by:

p(X, K, s,g, c|φ,π,θ,ψ, σ2,µ, τ ) =

p(X|K, s,θ,ψ, c, σ2)×

p(K, s|φ)×

p(c|g,µ, τ )×

p(g|K,π)

(B.1)

Here, the probabilities of Equation B.1 are:

p(K, s|φ) = The probability of generating a segmentation with K segments that

have starting positions s

= φK−1(1− φ)T−K .

where, K=Number of segments; s = (1 = s1 < · · · < sK ≤ T ) is a vector of the starting

positions of the segments; T − K = Length of signal-number of segments and φ is the
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probability of starting a new segment at each position in the signal except the first.

p(g|K,π) = The probability of a specific assignment of the K segments to the N groups

=
N∏
n=1

πbnn .

where, g = (g1, · · · , gK) is a vector containing the assignment of each segment to a group

where gk ∈ {1, · · · , J} is the group to which segment k is assigned; π = (π1, · · · , πJ) are

the probabilities of assigning segments to groups where πj is the probability of assigning

any segment to group j and bj is the number of segments with gk = j.

p(c|g,µ, τ ) = Probability of the ARMA mean for all segments =
K∏
k=1

N(ck|µgk , τ 2
gk

).

where, ck is the mean signal level for segment k, that is, the mean of the ARMA model and

ck ∼ N(µgk , τ
2
gk

), where µgk and τ 2
gk

are the mean and variance of the distribution of these

means for the group gk.

p(X|K, s,θ,ψ, c, σ2) = The probability density of the observed signal

=
T∏
t=1

p(xt|K, s, θ, ψ, c, σ2, x<t)

=
T∏
t=1

N(xt|λt, σ2).

with

xt = ck + εt +
a∑
i=1

ψi(xt−i − ck) +
m∑
i=1

θiεt−i.

where, X = (xt)
T
t=1 represent the vector of time series or the signal that we want to segment;

ψ1, · · · , ψa are the parameters of the AR sub-model and θ1, · · · , θm are the parameters of

the MA sub-models where a and m denote the order of the AR and MA sub-models;

ε = (ε1, · · · , εT ) is the vector of error terms and εt ∼ N(0, σ2), where σ2 is the variance of

error terms.

Details of the posterior distributions for every parameter are given in [2]. To detect the

boundaries of the event in Section 4.3.1, we plotted the change-point profiles and group
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profiles. Change-point profiles are the posterior probability of being a change point at

each position of the input series and it can be calculated using the following equation

(Equation B.2)

K∏
k=1

(sk − 1)× φK−1(1− φ)T−K−1∫
φ
φK−1(1− φ)T−K−1dφ

(B.2)

A running total of the position of change-points is kept in each segmentation. We

used the start position of each segment to record the location of the change-points and

incremented the count at that position.

Group profiles gives the posterior probability that each position in the input sequence

belongs to one of the segment classes in the model and it can be determined using the

following equation (Equation B.3)

dk∏
t=sk

p(xt|λt, σ2)×

K∏
k=1

N(ck|µgk , τ 2
gk

)×
K∏
k=1

πgk∫
g
(
K∏
k=1

N(ck|µgk , τ 2
gk

)×
K∏
k=1

πgk)dg

(B.3)

where, dk is end position of the segment k and λt = ck +
a∑
i=1

ψi(xt−i − ck) +
m∑
i=1

θiεt−i.

The above two posterior probabilities, that is, change-point profiles and group profiles

are estimated by Monte Carlo integration. A sample is drawn from the posterior distri-

bution, with each element in the sample consisting of values for K and π. The posterior

probabilities are then calculated and averaged over the sample.
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B.2 Algorithm of the proposed method using PCA as

a summary statistic

input : Dataset with N rows and M columns

output: Probabilities of row change-point locations tr = [tr1, . . . , trN ]′, probabilities of row group

profile pr = [pr1, . . . , pN ]′, probabilities of column change point locations

tc = [tc1, . . . , tcM ]′ and probabilities of column group profiles pc = [pc1, . . . , pcM ]′

1 Treat rows as observations;

2 Perform PCA ;

3 PCs→Get principal components that explain a significant percentage of variance ;

4 /* We looked for the ‘‘elbow’’ point on the PCA scree plot and used the number of

PCs associated with the elbow point. */

5 l = number of PCs ;

6 Posterior Prob Of CP MA = zero matrix of N × 1 ;

7 Posterior Prob Of CP AR = zero matrix of N × 1 ;

8 Posterior Prob Of CP A.MA = zero matrix of N × 1 ;

9 Posterior Prob Of Change Points = zero matrix of N × l ;

10 for each PC k from 1 : l do

11 Posterior Prob Of CP MA = MA(1) Model(PC[k]) ;

12 Posterior Prob Of CP AR = AR(1) Model(PC[k]) ;

13 Posterior Prob Of CP ARMA = ARMA(1, 1) Model(PC[k]);

14 Best model = Model with smallest DICV, from models MA(1), AR(1) and ARMA(1, 1) ;

15 Posterior Prob Of Change Points[column k] = Posterior Prob Of CP Best model where

Best model ∈ (MA,AR,ARMA) ;

16 end

17 tr= Max Posterior Prob Of Change Pt = max(Posterior Prob Of Change Points) row-wise

;

18 /* Here we get the maximum posterior probability of change-points for each row,

from the posterior probability of all selected components. */

19 Set threshold ;

20 /* We used a threshold of 0.5 */

21 Boundary of the event = the locations where Max Posterior Prob Of Change Pt > threshold ;

22 Treat columns as observations;

23 Replace N with M and repeat from line 2 to line 21 to get tc.

Algorithm 3: Event detection with Bayesian change-point segmented ARMA model

using PCA as a summary statistic
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Appendix C

Appendix Chapter 5

C.1 Posterior Distributions

C.1.1 First Generalizations

Conditional Posterior Distribution of πs

The conditional posterior distribution of πs is:

p(πs|Xs, K,p,gs, cs, φ,θs,ψs, σ
2
s ,µs, τ s) =

p(πs,Xs, K,p,gs, cs, φ,θs,ψs, σ
2
s ,µs, τ s)∫

πs
p(πs,Xs, K,p,gs, cs, φ,θs,ψs, σ

2
s ,µs, τ s)dπs

Using Equation (7) from the main article, we get,

p(φ)
S∏
s=1

p(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s)p(πs)p(θs)p(ψs)p(σ

2
s)p(µs)p(τ s)∫

πs

S∏
s=1

p(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s)p(φ)p(πs)p(θs)p(ψs)p(σ

2
s)p(µs)p(τ s)dπs

=

p(φ)p
S∏
s=1

(Xs, K,p,gs, cs|φ,πs,θs,ψs, σ
2
s ,µs, τ s)p(πs)∫

πs

S∏
s=1

p(Xs, K,p,gs, cs|φ,πs,θs,ψ, σ2
s ,µs, τ s)p(πs)dπs

Then, using Equation (6) and cancelling same terms from the numerator and the denomi-

nator the conditional posterior distribution of πs becomes
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C.1. POSTERIOR DISTRIBUTIONS

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(πs)

p(K,p|φ)
∫
πs

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(πs)dπs

=

S∏
s=1

p(gs|K,πs)p(πs)∫
πs

S∏
s=1

p(gs|K,πs)p(πs)dπs

Now, Using Equation (3), this becomes:

S∏
s=1

Ns∏
ns=1

π
bs,ns
s,ns∫

πs

S∏
s=1

Ns∏
ns=1

π
bs,ns
s,ns dπs

=

S∏
s=1

π
(bs,1+1)−1
s,1 × · · · × π(bs,Ns+1)−1

s,Ns∫
πs

S∏
s=1

π
(bs,1+1)−1
s,1 × · · · × π(bs,Ns+1)−1

s,Ns
dπs

= Dirichlet(πs|((bs,1 + 1), · · · , (bs,Ns + 1))

Conditional Posterior Distribution of φ

The conditional posterior distribution of φ is,

p(φ)p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)∫

φ
p(φ)p(K,p|φ)dφ

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)

=
p(K,p|φ)p(φ)∫

φ
p(K,p|φ)p(φ)dφ

Using Equation (1), the conditional posterior distribution of φ becomes

φK−1(1− φ)T−K−1∫
φ
φK−1(1− φ)T−K−1dφ

= Beta(φ|K,T −K)

where, K = Number of segments and T −K = Length of signal-number of segments.
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Conditional Posterior Distribution of µs

The conditional posterior distribution of µs is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(µs)∫

µs
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(µs)dµs

=

S∏
s=1

p(cs|gs,µs, τ s)p(µs)∫
µs

S∏
s=1

p(cs|gs,µs, τ s)p(µs)dµs

Note that, µs or µs,n will (currently) not be updated if there is less than one segment in

group ns. Then using Equation (4), the conditional distribution for µs,n (holding all the

other µs’s constant) becomes

∏
s,k:gs,k=ns

N(cs,k|µs,ns , τ 2
s,ns)∫

µs

∏
s,k:gs,k=ns

N(cs,k|µs,ns , τ 2
s,ns)dµs

.

Let m be the number of segments that have gs,k = ns. Then simplifying the product∏
s,k:gs,k=ns

N(cs,k|µs,ns , τ 2
s,ns) =

∏
s,k:gs,k=ns

1√
2πsτ 2

s,ns

exp

[(
(cs,k − µs,ns)2

2τ 2
s,ns

)]
, the conditional

posterior distribution of µs becomes a normal distribution with mean

∑
s,k:gs,k=n

cs,k

m
and

variance
τ2s,ns
m
.

Conditional Posterior Distribution of σ2
s

The conditional posterior distribution of σ2
s is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(σ2

s)∫
σ2
s
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(σ2

s)dσ
2
s

=

S∏
s=1

p(Xs|λs, σ2
s)p(σ

2
s)∫

σ2
s

S∏
s=1

p(Xs|λs, σ2
s)p(σ

2
s)dσ

2
s

The prior distribution for σ2
s is: p(σ2

s , u0, v0) =
vu00

Γ(u0)
(σ2

s)
−u0−1exp

(
− v0

σ2
s

)
.

where u0 and v0 are the prior parameters. Now using εs ∼ N(0, σ2
s) and the above prior

distribution and simplifying, the conditional posterior distribution of σ2 takes the form

of an inverse gamma distribution with parameter u and v, where u = u0 + T
2

and v =

2v0+
T∑
t=1

ε2s,t

2
= v0 + 1

2

T∑
t=1

ε2s,t.
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Conditional Posterior Distribution of τ 2
s,ns

Let τ s be the vector of τ 2
s,1, · · · τ 2

s,Ns
, then the conditional posterior distribution of τ s is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(τ s)∫

τ s
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(τ s)dτ s

=

S∏
s=1

p(cs|gs,µs, τ s)p(τ s)∫
τ s

S∏
s=1

p(cs|gs,µs, τ s)p(τ s)dτ s

The prior distribution for τ s is: p(τ s, α0, β0) =
Ns∏
ns=1

βα0
0

Γ(α0)
(τ 2
s,ns)

−α0−1exp

(
− β0

τ 2
s,ns

)
.

where α0 and β0 are the prior parameters. Note that τ 2
s,ns will (currently) only be updated

if there is more than one segment in group ns. Now using Equation (4) and the above prior

distribution and simplifying, the conditional posterior distribution of τ s takes the form of

an inverse gamma distribution with parameter α and β, where α = α0 +
|(s,k:gs,k=ns)|

2
and

β = β0 + 1
2

∑
s,k:gs,k=ns

(cs,k − µs,ns)2.

Conditional Posterior Distribution of gs

The conditional posterior distribution of gs is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(gs)∫

gs
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(gs)dgs

=

S∏
s=1

p(cs|gs,µs, τ s)p(gs|K,πs)p(gs)∫
gs

S∏
s=1

p(cs|gs,µs, τ s)p(gs|K,πs)p(gs)dgs

Using Equation (3) and Equation (4), The conditional posterior distribution of gs becomes

S∏
s=1

(
∏K

k=1 N(cs,k|µs,gs,k , τ 2
s,gs,k

)×
K∏
k=1

πs,gs,k)∫
gs

S∏
s=1

(
∏K

k=1 N(cs,k|µs,gs,k , τ 2
s,gs,k

)×
K∏
k=1

πs,gs,k)dgs

.

The gs,k ’s are independent, so can be updated one at a time with the conditional posterior

distribution of gs which is a discrete distribution with parameter
N(cs,k|µs,gs,k , τ 2

s,gs,k
)× πs,gs,k∫

gs
(N(cs,k|µs,gs,k , τ 2

s,gs,k
)× πs,gs,k)dgs

.
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Conditional Posterior Distribution of cs and εs

The conditional posterior distribution of cs and εs is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(cs)∫

cs
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(cs)dcs

=

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(cs)∫

cs

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(cs)dcs

Using Equation (4) and Equation (5) and ε ∼ N(0, σ2
s), the above equation becomes

S∏
s=1

(
T∏
t=1

p(xs,t|λs,t, σ2
s)×

K∏
k=1

N(cs,k|µs,gs,k , τ 2
s,gs,k

))

∫
cs

S∏
s=1

(
T∏
t=1

p(xs,t|λs,t, σ2
s)×

K∏
k=1

N(cs,k|µs,gs,k , τ 2
s,gs,k

))dcs

.

The cs,k’s and the corresponding εps,k , · · · , εds,k can be updated one segment at a time with

the conditional distribution given by:

S∏
s=1

(
dk∏
t=pk

p(xs,t|λs,t, σ2
s)×N(cs,k|µs,gs,k , τ 2

s,gs,k
))

∫
cs

S∏
s=1

(
dk∏
t=pk

p(xs,t|λs,t, σ2
s)×N(cs,k|µs,gs,k , τ 2

s,gs,k
))dcs

.

Conditional Posterior Distribution of ψs and εs

The conditional posterior distribution of ψs and εs is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(ψs)∫

ψs
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(ψs)dψs

=

S∏
s=1

p(Xs|λs, σ2
s)p(ψs)∫

ψs

S∏
s=1

p(Xs|λs, σ2
s)p(ψs)dψs

Using Equation (5) and εs ∼ N(0, σ2
s), the conditional posterior distribution of ψs and εs

given by:
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S∏
s=1

(
T∏
t=1

p(xt|λs,t, σ2
s)× p(ψs))∫

ψs

S∏
s=1

(
T∏
t=1

p(xs,t|λs,t, σ2
s)× p(ψs))dψs

.

Conditional Posterior Distribution of θs and εs

The conditional posterior distribution of θs and εs is:

p(K,p|φ)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(θs)∫

θs
p(K,p|φ)

S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,πs)p(θs)dθs

=

S∏
s=1

p(Xs|λs, σ2
s)p(θs)∫

θs

S∏
s=1

p(Xs|λs, σ2
s)p(θs)dθs

Using Equation (5) and εs ∼ N(0, σ2
s), the conditional posterior distribution of θs and εs

given by:
S∏
s=1

(
T∏
t=1

p(xs,t|λs,t, σ2
s)× p(θs))∫

θs

S∏
s=1

(
T∏
t=1

p(xs,t|λs,t, σ2
s)× p(θs))dθs

.

C.1.2 Second Generalizations

All conditional posterior distributions for the first generalization are the same for the second

except for π and gs as this generalization assumes all time series have the same probability

of assigning segments to groups (π).

Conditional Posterior Distribution of π

The conditional posterior distribution of π is:

p(K,p|φ)p(π)
S∏
s=1

p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,π)

p(K,p|φ)
∫
π

S∏
s=1

p(π)p(Xs|λs, σ2
s)p(cs|gs,µs, τ s)p(gs|K,π)dπ

=

p(π)
S∏
s=1

p(gs|K,π)

∫
π
p(π)

S∏
s=1

p(gs|K,π)p(π)dπ

Now, Using Equation (3), this becomes:
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S∏
s=1

Ns∏
ns=1

π
bs,ns
ns∫

π

S∏
s=1

Ns∏
ns=1

π
bs,ns
ns dπ

=

S∏
s=1

π
(bs,1+1)−1
1 × · · · × π(bs,Ns+1)−1

Ns∫
π

S∏
s=1

π
(bs,1+1)−1
1 × · · · × π(bs,Ns+1)−1

Ns
dπ

= Dirichlet(π|((bs,1 + 1), · · · , (bs,Ns + 1))

Conditional Posterior Distribution of gs

The conditional posterior distribution of gs is:

S∏
s=1

(
∏K

k=1 N(cs,k|µs,gs,k , τ 2
s,gs,k

)×
K∏
k=1

πgs,k)∫
gs

S∏
s=1

(
∏K

k=1 N(cs,k|µs,gs,k , τ 2
s,gs,k

)×
K∏
k=1

πgs,k)dgs

.

The gs,k ’s are independent, so can be updated one at a time with the conditional posterior

distribution of gs which is a discrete distribution with parameter
N(cs,k|µs,gs,k , τ 2

s,gs,k
)× πgs,k∫

gs
(N(cs,k|µs,gs,k , τ 2

s,gs,k
)× πgs,k)dgs

.

C.1.3 Third Generalizations

All conditional posterior distributions of the second generalization are the same for the third

except for g, π, µs, τ
2
s,n and cs and εs as this generalization assumes common segment

class g for all sequences.

Conditional Posterior Distribution of π

The conditional posterior distribution of π is

N∏
n=1

πbnn∫
π

N∏
n=1

πbnn dπ

=
π

(b1+1)−1
1 × · · · × π(bN+1)−1

1∫
π
π

(b1+1)−1
1 × · · · × π(bN+1)−1

1 dπ
= Dirichlet(π|((b1 + 1), · · · , (bN + 1))
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Conditional Posterior Distribution of µs

The conditional posterior distribution of µs is:

∏
s,k:gk=n

N(cs,k|µs,n, τ 2
s,n)∫

µs

∏
s,k:gk=n

N(cs,k|µs,n, τ 2
s,n)dµs

.

Let m be the number of segments that have gk = n. Then simplifying the product∏
s,k:gk=n

N(cs,k|µs,n, τ 2
s,n) =

∏
s,k:gk=n

1√
2πτ 2

s,n

exp

[(
(cs,k − µs,n)2

2τ 2
s,n

)]
, the conditional poste-

rior distribution of µs becomes a normal distribution with mean

∑
s,k:gk=n

cs,k

m
and variance

τ2s,n
m
.

Conditional Posterior Distribution of τ 2
s,n

Let τ s be the vector of τ 2
s,1, · · · τ 2

s,N , then the conditional posterior distribution of τ s is:

S∏
s=1

p(cs|g,µs, τ s)p(τ s)∫
τ s

S∏
s=1

p(cs|g,µs, τ s)p(τ s)dτ s

The prior distribution for τ s is: p(τ s, α0, β0) =
N∏
n=1

βα0
0

Γ(α0)
(τ 2
s,n)−α0−1exp

(
− β0

τ 2
s,n

)
.

where α0 and β0 are the prior parameters. The conditional posterior distribution of τ s takes

the form of an inverse gamma distribution with parameter α and β, where α = α0+ |(s,k:gk=n)|
2

and β = β0 + 1
2

∑
s,k:gk=n

(cs,k − µs,n)2.

Conditional Posterior Distribution of g

The conditional posterior distribution of g is:

S∏
s=1

(
∏K

k=1 N(cs,k|µs,gk , τ 2
s,gk

)×
K∏
k=1

πgk)∫
g

S∏
s=1

(
∏K

k=1 N(cs,k|µs,gk , τ 2
s,gk

)×
K∏
k=1

πgk)dg

.

The gk ’s are independent, so can be updated one at a time with the conditional posterior

distribution of g which is a discrete distribution with parameter
N(cs,k|µs,gk , τ 2

s,gk
)× πgk∫

g
(N(cs,k|µs,gk , τ 2

s,gk
)× πgk)dg

.
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Conditional Posterior Distribution of cs and εs

The cs,k’s and the corresponding εps,k , · · · , εds,k can be updated one segment at a time with

the conditional distribution given by:

S∏
s=1

(
dk∏
t=pk

p(xs,t|λs,t, σ2
s)×N(cs,k|µs,gk , τ 2

s,gk
))

∫
cs

S∏
s=1

(
dk∏
t=pk

p(xs,t|λs,t, σ2
s)×N(cs,k|µs,gk , τ 2

s,gk
))dcs

.
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C.2 Supplementary material

To test our method, we generated two more simulated data sets from AR model using

different AR parameters. The first data set was simulated using ψ1 = 0.23 and ψ2 = 0.21

and the second data set was simulated using ψ1 = 0.91 and ψ2 = 0.96. Both sequences

in those data sets were generated using same variance (σ2
1 = 0.49, σ2

1 = 0.6) and same 10

different segment means. Next we fitted AR model and ARMA model in each segment

using all the generalizations and compared the location of change points and number of

change points found by these two models in all generalizations.

First Dataset:

The simulated AR data (for ψ1 = 0.23 and ψ2 = 0.21) with the true segment means and

the location of change points of both sequences are given in Figure C.1.
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S4 Fig C.1: Simulated AR data with the true segment means and true change-point loca-
tions (ψ1 = 0.23 and ψ2 = 0.21)). The change-point locations are shown as a vertical blue
line and segment means are shown as a horizontal red line.

Next I applied segmented AR(1) model and segmented ARMA(1,1) model in all general-

izations. Figure ?? presents the estimated change-point locations for all the generalizations.

If we compare the above plots, it is clear that the Segmented AR(1) model identified more

change-points than segmented ARMA(1,1) model in all generalizations. And if we com-

pare between all the generalizations in the segmented AR model, it is clear that the third
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generalization identified all change-points with higher posterior probability.
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(a) Segmented AR(1) model
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(b) Segmented ARMA(1,1) model

S4 Fig C.2: Posterior distribution of occurrence of change-point locations.

Second Dataset:

The simulated AR data (for ψ1 = 0.91 and ψ2 = 0.96) with the true segment means and

the location of change points of both sequences are given in Figure C.3.
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S4 Fig C.3: Simulated AR data with the true segment means and true change-point loca-
tions (ψ1 = 0.91 and ψ2 = 0.96)). The change-point locations are shown as a vertical blue
line and segment means are shown as a horizontal red line.

Figure C.4 presents the estimated change-point locations for all the generalizations. Al-

though this data was simulated from AR(1) model but here segmented ARMA(1,1) model

identified more change-points than segmented AR(1) model in all generalizations. In seg-

mented ARMA(1,1) model, the third and first generalization identified all change-points

with higher posterior probability. These results indicate that the segmented ARMA model

identifies more change-points than the AR model when the data are generated from an AR

model with high parameter coefficient.
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(a) Segmented AR(1) model
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(b) Segmented ARMA(1,1) model

S4 Fig C.4: Posterior distribution of occurrence of change-point locations.
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