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In the last decade, lattice-based cryptography, a promising candidate for quantum-
safe algorithms, has seen a great interest with many new applications being developed.
Although it offers solutions even to problems which long seemed elusive, there is still
a gap in some areas where lattice-based cryptographic proposals are not efficient
enough for practical use and even fall far behind their classical counterparts in terms
of efficiency. This unsatisfactory state of affairs, where practical requirements are
not met by lattice-based proposals, forms the fundamental problem tackled in this
Ph.D. thesis, where new techniques in lattice-based cryptography are explored with
a practice-oriented approach in mind. This is a particularly critical problem to be
studied today as today’s classical cryptographic algorithms relied on by billions ev-
eryday are threatened by the advances in quantum computers and there is an ongoing
post-quantum cryptography standardisation process initiated by NIST.

A particular focus of this thesis is on designing efficient zero-knowledge proofs
(ZKP), which allow one party to convince another party of the truth of a certain
statement without revealing secret information. These proof systems are fundamental
tools used in the construction of many privacy-preserving protocols such as anony-
mous credentials and those used in the blockchain-based applications. The main aim
when designing these ZKPs is to develop novel widely applicable techniques that can
overcome important challenges in the construction of lattice-based ZKPs in general.
More specifically, the target problem here boils down to efficiently proving nonlinear
polynomial relations that can prove more complex statements. To this end, the prob-
lem is studied in two contexts: multi-shot proofs, that does not necessarily reach a
convincing soundness level in a single execution, and one-shot proofs, that does so.
The former allows the problem to be studied in a less constrained setting and build
the stepping stones for the latter more practical goal. Then, in the latter setting,
fundamental techniques for the construction of efficient lattice-based algebraic proofs
are established.

Having demonstrated useful foundational techniques in the consideration of ZKP
designs, the attention is turned into proving particular useful relations such as bi-
nary proof, range proof, one-out-of-many proof and set membership proof. Then, the
constructed ZKPs are used as building blocks for advanced cryptographic tools such
as ring signatures, which is a type of anonymous signature where the identity of the
actual signatory is hidden among a set of identities. Such anonymous signatures have
a wide range of applications in areas such as cryptocurrencies and e-voting systems.
The evaluation of the proposed ring signatures proves the effectiveness of the foun-
dational techniques, where the proposals in this thesis achieve a dramatic efficiency
improvement in comparison to the prior arts.
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Proceeding even closer to practice from theory, the final objective of the thesis is
set to construct a privacy-aware blockchain application, enabling users to create confi-
dential transactions (CT) on blockchain. That is, the goal is to enable a user to create
a blockchain transaction while hiding her identity and the transaction amount, and
prove in zero-knowledge fashion that the created transaction is valid. In particular,
a full-fledged post-quantum blockchain CT protocol, named MatRiCT, is designed,
accompanied by an efficient implementation. MatRiCT makes use of the foundational
tools developed in the context of zero-knowledge proofs and provides the first prac-
tical solution to a post-quantum RingCT protocol, the family of CT protocols based
on ring signatures. An important feature of MatRiCT is its ability to tune the bal-
ance between privacy and accountability. In particular, MatRiCT comes in with an
optional auditability feature that allows a selected auditor to be able to revoke the
anonymity of the users who opt in for auditing by the particular auditor. Such an
accountability feature is important for regulatory or financial enterprise applications.
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Chapter 1

Introduction

In today’s computerised world, billions of people rely heavily on security systems that
protect a tremendous amount of sensitive information ranging from personal details,
passwords to access various systems, banking information to health records and even
government secrets. The algorithms currently used in such systems rely on classi-
cal cryptographic assumptions, such as integer factorisation and discrete logarithm
problem (DLP), that do not provide security against attacks by powerful quantum
computers. Although it is hard to predict precisely when a scalable quantum computer
powerful enough to break today’s classical cryptographic schemes would be developed,
NIST’s call [NIS17] for proposals for post-quantum cryptography (PQC) standardi-
sation is an important indication that there is an evident need for post-quantum1

alternatives of today’s widely used cryptographic tools.2

Lattice-based cryptography today stands as one of the most promising candidates
for post-quantum cryptography, and it studies the design and analysis of cryptographic
constructions whose security is based on computationally hard lattice problems (such
as Shortest Vector Problem) that are believed to resist quantum attacks. In terms
of basic cryptographic primitives such as encryption schemes and digital signatures,
lattice-based cryptography already seems to offer good solutions. For example, there
are multiple lattice-based digital signatures such as Dilithium [DLL+18], qTESLA
[ABB+19] and Falcon [FHK+18] that moved on to the second round of NIST’s PQC
standardisation process. Depending on the desired security guarantees, one can pick
one of the signatures and its existing computational efficiency would be good enough
for many applications. However, post-quantum security does not come for free, of
course. The main drawback of such lattice-based schemes over their classical counter-
parts (especially those based on elliptic curves) is that lattice-based solutions incur
higher storage and communication costs for keys and signature. To illustrate, the
aforementioned lattice-based signature schemes require in the order of a few KB stor-
age whereas a signature scheme based on Elliptic Curve Discrete Logarithm Problem
(ECDLP) requires only a few hundreds of bits storage. Such a gap in storage seems
to be inherent in most (if not all) of the existing post-quantum proposals, and the
current state of affairs suggests that there is no better alternative than accepting the
gap.

On the other hand, if one looks at more advanced cryptographic schemes such
1The term “post-quantum” used throughout the thesis means currently believed to resist efficient

attacks by powerful quantum computers. Just as there is no proof, for example, that AES can never be
broken efficiently by classical computers, there is also no proof that any of the existing post-quantum
cryptography candidates can never be broken efficiently by quantum computers.

2This chapter is partly based on [ESS+19, ESLL19, EZS+19].



2 Chapter 1. Introduction

as zero-knowledge proofs3, ring/group signatures4 and advanced privacy-preserving
protocols such as confidential transactions5, the gap in storage and communication
costs grows even much larger. To illustrate, the only logarithmic-sized ring signature
from lattices (due to Libert et al. [LLNW16]) prior to this Ph.D. research project
results in a signature of length more than 40 MB for only 1000 users. DLP-based
analogs (e.g., [GK15, BCC+15]), however, cost only a few KB for even billions of
users. This huge gap here indeed stems from the imbalanced costs of the under-
lying zero-knowledge proofs (ZKP), which are used as building blocks to construct
such anonymous signatures. In fact, in a more general sense of proving complicated
statements in zero-knowledge fashion, the prior lattice-based ZKPs do not seem to
offer practically acceptable solutions. Such a state of affairs is very unfortunate as
ZKPs are fundamental building blocks for many privacy-preserving applications rang-
ing from anonymous credentials, secure e-voting to privacy-aware blockchain-based
applications (such as anonymous cryptocurrencies, e.g., Zcash and Monero).

This major problem of lack of satisfactory post-quantum ZKP constructions and
their higher level protocol applications constitutes the main challenge we address in
this Ph.D. research. In particular, in this thesis, new techniques in design and analysis
of algebraic lattice-based zero-knowledge proofs are explored with a practice-oriented
approach in mind. The main reason a particular focus is given on algebraic proofs
is that they often lead to very efficient constructions (in practice) by exploiting the
algebraic structures in certain polynomial rings. Construction of efficient ZKPs alone,
however, does not fully address the practical needs of real-life applications. Indeed,
the need to design quantum-secure alternatives of currently deployed algorithms is
widely agreed on. An example of this can be seen in Zcash’s FAQ page [Tea19],
which states that the developers “plan to monitor developments in postquantum-secure
components, and if/when they are mature and practical, update the Zcash protocol to
use them.” In addressing such a practical need, after construction of efficient ZKPs,
we turn our attention to the construction of efficient advanced protocols with post-
quantum plausibility. A particular application of interest is a blockchain confidential
transactions protocol using ring signatures, namely a RingCT protocol [Noe15].

An important goal of the thesis is to establish novel techniques that can be widely
applicable in the construction of various lattice-based ZKPs, not just those focused on
in the thesis. Since the tools (especially in Chapters 4 and 5) are mostly introduced
in a generic protocol setting, they are believed to be of independent interest for future
works on efficient lattice-based ZKPs.

Prior works on lattice-based ZKPs focused mostly on proving linear relations
that are sufficient for basic applications such as (ordinary) signatures. Such a linear
relation, for example, can prove knowledge of an opening of a commitment6 as lattice-
based commitments are linear functions of the secrets. The ZKPs in this thesis, on
the other hand, are mainly concerned with proving non-linear relations. For example,

3A zero-knowledge proof is a proof system where one party convinces another party that a certain
statement regarding a secret is true without revealing the secret.

4Ring and group signatures are a type of anonymous signatures where the identity of the real
signatory is hidden within a set of identities (i.e., an anonymity set or ring/group). An important
efficiency aspect is how the signature length grows with the anonymity set/group/ring size.

5A confidential transactions (CT) protocol allows a user to conduct transactions on blockchain
while hiding sensitive information such as his/her identity and transaction amount. The family of CT
protocols that are focused in the thesis are called RingCT protocols as they rely on ring signatures
as a core component.

6A commitment is the output of a cryptographic function called commitment function. For now,
one may imagine a commitment function to be an encryption scheme, a commitment to be a ciphertext
and an opening to be a message. A commitment scheme is formally defined in Chapter 3.
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one can use the relation x · (x− 1) = 0 to prove that x is binary (i.e., a binary proof)
and (x−α1) · · · (x−αk) = 0 to prove that x is contained in the set S = {α1, . . . , αk}
(i.e., a set membership proof). Observe that the latter polynomial relation is of degree
k = |S|. Indeed, one can perform a set membership proof using a polynomial relation
of degree log |S|, which is likely to result in a more compact proof than set membership
proofs based on linear relations, whose proof length is linear in |S|. A similar relation
(in particular, a one-out-of-many relation) is one of the polynomial relations of interest
to be proven efficiently in the thesis.

As suggested by the above example of set membership proofs, the motivation for
studying lattice-based ZKPs with non-linear relations comes from the fact that the
ability to prove such non-linear relations has been shown to be very useful in the
DL setting (see, e.g., [GK15, BCC+15, BCC+16, BBB+18]) for constructing both
asymptotically and practically more compact proofs. However, ZKPs do not run so
smoothly in the lattice setting and the tools used in the DL-setting cannot be applied
efficiently in a straightforward manner in lattice-based cryptography. Therefore, one
requires novel techniques (as those introduced in this thesis) to construct efficient
advanced ZKPs based on lattice assumptions. Then, there are further problems to
be overcome when one is interested in extending the ZKPs efficiently to higher level
protocols such as a confidential transactions protocol.

At a high level, some examples of ZKPs that are of particular interest in this work
are as follows.

1. One-out-of-many proof: the prover’s goal is to prove knowledge of a secret
associated to an (undisclosed) public element in a set of public elements.

2. Binary proof: the prover’s goal is to prove that a commitment opens to a sequence
of bits.

3. Range proof: the prover’s goal is to prove that a commitment opens to a value
in a certain range.

4. Set membership proof: the prover’s goal is to prove that a commitment opens
to a value in a certain public set.

5. Balance proof: the prover’s goal is to prove that the sum of the committed
integers in a set of inputs is equal to the sum of the committed integers in a set of
outputs.

Let us take a 1-out-of-N proof as an example to give a general idea of how such
proofs can be useful in practice. For example, using a 1-out-of-N proof, one can
prove knowledge of a secret key corresponding to one of N public keys, i.e., proving
membership in a certain set of users. This way, the prover can anonymously prove
his credibility by showing that he is one of the credible parties. As another simple
example, using a range proof, one can prove (without revealing his exact age) that
his age is greater than 18. This could serve as an evidence of eligibility for certain
practical applications.

For practical purposes, it is very desirable that a protocol achieves a convincing
soundness level in one execution. Otherwise, all the operations in the protocol need
to be repeated to amplify soundness (i.e., to reduce the chance that a cheating prover
succeeds). In turn, protocol repetitions result in multi-fold increase of both the proof
length (i.e., the communication size) and the computational cost. We call the protocols
that reach a convincing soundness level (i.e., an exponentially small soundness error)
to be one-shot. The protocols that require repetitions are then called multi-shot.
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Figure 1.1: Overview of contributions.

1.1 Contributions

In general, the main theoretical contribution of the thesis is the introduction of novel
technical tools for the design and analysis of algebraic lattice-based zero-knowledge
proofs. The tools are applicable in a generalised setting of many-special sound proto-
cols (see Definition 3.6), what we also call protocols with “complex” witness extraction.
Many existing solutions for the more specific case of 2-special sound protocols are ob-
tained as a special case of our techniques. Many-special sound protocols are those
that can prove non-linear relations whereas 2-special sound protocols in general are
restricted to the linear relations.

On a more practical perspective, the new techniques developed are used to con-
struct efficient useful protocols such as binary proofs, range proofs, one-out-of-many
proofs, set membership proofs and balance proofs. Further, in terms of advanced cryp-
tographic tools, the common application in all core chapters is to a ring signature. As
an indication of the effectiveness of our techniques, we show in Table 1.1 that the ring
signatures introduced achieve a dramatic improvement in terms of length in compari-
son to other scalable “post-quantum” proposals at the same security level. Apart from
ring signatures, another application of practical interest is a form of privacy-preserving
linkable anonymous credentials.

As a concrete embodiment of various novel techniques, the main practical contri-
bution of the thesis is the introduction of MatRiCT, the first practical post-quantum
RingCT protocol.

With this general overview of the contributions, let us go over the contributions
of each chapter in more detail. To give a better understanding of the “flow” of the
contributions, Figure 1.1 provides a high-level overview of the contributions.
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Table 1.1: Comparison of signature lengths (in KB) of “post-quantum” sub-linear size ring
signatures (the challenge space size is 2256). “?” indicates that the signature length for the

particular setting cannot be approximated using the results of the respective reference.

Ring Size N : 2 8 64 4096 221 Security basis
[LLNW16] 23000 52000 94000 179000 306000 SIS
[YAZ+19] ? ? ? > 13000 ? LWE & LWR & SIS
Chapter 4 1000 1200 1600 2400 4100 M-LWE & M-SIS
[DRS18] 236 477 839 1561 2645 LowMC (Symmetric-key)

[KKW18] ? ? ∼ 250 ∼ 456 ? LowMC (Symmetric-key)
Chapter 5 36 41 58 103 256 M-LWE & M-SIS
Chapter 6 18 19 31 59 148 M-LWE & M-SIS

1.1.1 Chapter 4

Novel technical tools for the design and analysis of multi-shot algebraic
lattice-based zero-knowledge proofs.

We study the problem of proving non-linear polynomial relations, which previously
did not receive a lot of attention in lattice-based cryptography, and introduce a set of
new technical tools for the design and analysis of algebraic proofs. Here, we introduce
3 methods to get better “quality” witness extraction, which allows one to choose less
aggressive parameters and thus get more efficient proofs. We can view these new
techniques in Chapter 4 as the stepping stones towards more practical goals in the
further chapters.

Efficient proofs for useful approximate relations.

We show that our new techniques are useful in constructing efficient ZKPs from lat-
tices. In particular, we construct efficient binary proofs and one-out-of-many proofs,
where the proved relations are approximate. What this means is that the proved
relations are slightly relaxed, but are still stronger than those in Chapter 5. These
proofs may serve as better options than those in Chapter 5 when one is interested in
extending recursive proofs like Bulletproofs [BBB+18] to the lattice setting.

Efficient scalable ring signature based on standard lattice assumptions.

As shown in Table 1.1, even our initial ring signature design in Chapter 4 achieves
a dramatic improvement in terms of length over the only prior log-sized result from
lattices by Libert et al. [LLNW16], where the improvement is almost two orders of
magnitude. Even in comparison to a very recent lattice-based proposal [YAZ+19],
this scheme is still much shorter.

An important feature of our constructions is that a modulus q of a special form
(such as q ≡ 17 mod 32 as in [dPLNS17]) is not required, which allows the use of fast
computation algorithms such as Number Theoretic Transform (NTT).

1.1.2 Chapter 5

One-shot proof techniques for non-linear polynomial relations via adjugate
matrices.

We introduce new techniques that provide the first solution to the problem of building
efficient one-shot lattice-based ZKPs that require a “complex” witness extraction. In



6 Chapter 1. Introduction

particular, we introduce witness extraction for ZKPs proving that the witness satisfies
a non-linear polynomial relation of degree k ≥ 2 (i.e., “(k+1)-special sound protocols”,
see Definition 3.6) while still having a one-shot proof. Our proofs reach a negligible
soundness error in a single run of the protocol. In comparison to relevant multi-
shot prior works such as [LLNW16], we improve the asymptotic computation and
communication costs by a factor of Õ(λ) for the security parameter λ (see Table
5.1), and also achieve a dramatic practical efficiency improvement in both costs (see,
e.g., Table 1.1). The previous one-shot ideas [Lyu09, Lyu12, BKLP15, BDL+18] are
obtained as a special case of our technique (see Section 5.3.2).

Speedup Technique 1: CRT-packing supporting inter-slot operations.

Drawing inspiration from the CRT-packing techniques [SV14, GHS12] used in fully
homomorphic encryption, we introduce the first CRT-packing technique in lattice-
based ZKPs that supports a complete set of “inter-slot” operations. That is, our
technique supports operations between messages stored in separate CRT “slots”, and
gives the ability to commit to/encode multiple messages at once and then “extract”
all the messages in a way that permits interoperability among extracted values. In
its full potential, it provides an asymptotic improvement of O(log q) in computation
costs of proofs involving O(log q) messages at no additional cost to the proof length
(see Table 5.1).

Speedup Technique 2: “NTT-friendly” tools for fully-splitting rings.

An important obstacle to computational efficiency of lattice-based ZKPs is that one
often requires invertibility of short elements in a ring. A common solution to meeting
this criterion is to choose a modulus q of a special form (such as q ≡ 5 mod 8) at the
cost of disabling the ring Rq = Zq[X]/(Xd + 1) to fully-split, and thus preventing the
(full) use of fast computational algorithms such as NTT. We introduce a new result
(Lemma 5.5) that can be used as an alternative to enforcing invertibility, and show
how it can be made use of while still supporting the use of NTT-like algorithms. The
only requirement of our lemma is for the modulus q to be sufficiently large, without
putting any assumptions on its “shape”. One can see from, e.g., [LS18, Table 2] that
full NTT provides a speedup of a factor between 6-8 in comparison to plain Karatsuba
multiplication (with no FFT).

Design of shorter and faster lattice-based protocols.

Our techniques enable the construction of communication and computation efficient
lattice-based analogues of DL-based protocols for important applications, where there
was previously no efficient lattice-based solutions known. To illustrate this utility of
our techniques, we design an efficient range proof that uses speedup technique 1, and
an efficient one-out-of-many proof that uses speedup technique 2, where our one-shot
proof technique is also applied in both of the proofs.

Application to advanced cryptographic tools.

Despite their relaxed nature, we show that our ZKPs are sufficient for important
practical applications. Our one-out-of-many proof is used as a building block for
lattice-based ring signatures, and our relaxed aggregated range proof is shown to
be sufficient for an application in a form of privacy-preserving linkable anonymous
credentials.



1.1. Contributions 7

As detailed in Section 5.6.1, our ring signature in Chapter 5 achieves a signature
length quasi-linear in the security parameter λ, and poly-logarithmic in the ring sizeN .
In practice, the signature length is proportional to λ log2 λ logcN for some constant
c ≈ 1.67. This improves on the quadratic dependence on λ in [LLNW16, DRS18,
KKW18].7 In terms of the dependence on logN , our scheme grows slightly faster,
however, it still outperforms all these works for N as big as billions and beyond.

We further analyse the computational efficiency of our ring signature in Appendix
5.6.1. The analysis based on reasonable assumptions shows that our construction
also greatly improves the practical signing/verification times over the existing ring
signature proposals with concrete computational efficiency results. For N = 1024,
we estimate the signing/verification times of our scheme to be below 30 ms whereas
[KKW18] reports 2.8 seconds for both of the running times. Our ring signature as
well as its underlying protocols, namely binary proof and one-out-of-many proof, do
not require any assumption on the “shape” of the modulus q, and thus permit the use
of NTT-like algorithms.

1.1.3 Chapter 6

Improved ring signature.

Our first contribution in this chapter is to introduce the shortest scalable ring signature
to date from standard lattice assumptions, namely M-SIS and M-LWE. In particular,
we introduce several improvements on the sublinear-sized ring signature in Chapter
5. This new construction, unlike the one in Chapter 5, does not require any (discrete)
Gaussian sampling, and therefore it is much easier to protect against side-channel
attacks. To get an advantageous use of the uniform distribution, we introduce a
new technique for the application of rejection sampling on binary secrets with fixed
Hamming weight (see Section 6.2).

MatRiCT: A novel post-quantum RingCT.

Our main contribution in Chapter 6 is the design of a novel RingCT protocol, named
MatRiCT, that is efficient, scalable and post-quantum. The main technical novelties
of MatRiCT are sketched in Section 6.2. As shown in Table 6.4, in comparison to the
only existing post-quantum RingCT protocol supporting multiple inputs and outputs,
we achieve a dramatic improvement in transaction size, which is the main metric in
determining transaction fees. Our scheme is also very efficient in terms of compu-
tational complexity even for an anonymity set as large as 1000 as shown in Table
6.5.

As a bonus feature, we show in Section 6.9 that MatRiCT easily extends to provide
auditability (i.e., the ability of an authority to trace real spenders) in a way that does
not require significant modifications to the system. Auditability is an important
feature to prevent illegal use of a cryptocurrency, and is desired, e.g., for regulatory
or financial enterprise applications. The auditability feature of MatRiCT allows a
selection among different anonymity flavours within the same environment such that
each user selects his/her own auditor and can even select to have no auditing.

7In [LLNW16], the soundness error goal of λ−ω(1) is used and so the number of protocol repetitions
for Stern’s framework is taken to be ω(log λ), which disappears in Õ(·) notation. But, we consider a
practice-oriented goal for the soundness error of 2−λ, and thus the number of protocol repetitions for
Stern-based proofs must be Ω(λ). Also, it is stated in [KKW18] that they have the same asymptotic
signature growth with [LLNW16].
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Novel extractable commitment.

We introduce a novel extractable commitment scheme from lattices, which extends
the commonly used Hashed-Message Commitment (HMC) (see Section 3.2.2). An
extractable commitment has an additional CExtract function that allows a party to
recover the message stored in a commitment using a (secret) trapdoor. Without knowl-
edge of the trapdoor, however, the message remains hidden. Therefore, extractable
commitments are ideal tools for privacy-preserving applications where accountability,
e.g., in case of misbehaviour is desired.

The main advantage of our primitive is that it can be realised with almost the same
parameters as HMC, and does not mandate very aggressive parameters. To illustrate,
for an n × m commitment matrix over a ring with modulus q, the GPV trapdoor
[GPV08] (see also the improved constructions and Figure 1 in [MP12]) requires m =
O(n log q) whereas, for the same trapdoor norm level, we only require m = O(n) as in
standard HMC. The extraction works when the input message space is not too large
(i.e., it is feasible to iterate over all messages).

Efficient group signature for moderate-sized groups.

Combination of our ring signature with the extractable commitment results in a group
signature (or an accountable ring signature), which shares the same efficiency features
as the ring signature. The signature length of our ring/group signature is very short
and compared to the state-of-the-art post-quantum proposals in Table 6.6.

New formal definitions for RingCT-like protocols.

Further, we introduce new rigorous security definitions for RingCT-like protocols.
Our goal in introducing a new set of definitions is to provide an easy-to-understand
model that captures the real-world scenario more closely than the previous attempts
[SALY17, YSL+19]. We believe these formal foundations to contribute to the devel-
opment of future RingCT protocols in general (not only in the lattice setting).

1.2 Thesis Structure

The rationale behind the structure of the thesis is as follows. The topics within the
core chapters (i.e., Chapters 4, 5 and 6) start from theoretical foundations and build
towards the practical applications. A similar structure is established among these
three chapters as foundational techniques, zero-knowledge proofs and cryptographic
primitives are constructed in Chapters 4 and 5, which then builds up to a practical
system of post-quantum blockchain confidential transactions protocol in Chapter 6.

Chapter 2 covers the related literature in zero-knowledge proofs, ring and group
signatures, and RingCT protocols. Then, in Chapter 3, notations used throughout
the thesis, cryptographic definitions such as sigma protocols, security assumptions
and commitments schemes, and mathematical background are introduced. Chapter 4
discusses new techniques in multi-shot protocols (i.e., protocols that require multiple
repetitions) and their applications. The focus in Chapter 5 is on one-shot proof
techniques where no protocol repetition is required. Then, Chapter 6 blends the
tools introduced so far with novel techniques targeted specifically for confidential
transactions protocols to construct a practical RingCT protocol, accompanied by a
full implementation. The thesis is concluded in Chapter 7 with some discussions and
potential future research directions.
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Chapter 2

Literature Review

This chapter summarises the state of the art in the areas relevant to our discussion
further on as of the time of writing (July 2019). We start with zero-knowledge proofs
(ZKP), which form the basis of many constructions described in the thesis. ZKPs
enable a prover to convince a verifier that a certain statement regarding a secret is true
with minimal secret information leakage. Then, we discuss two types of anonymous
signatures, namely ring signature and group signature. These tools allow a party
to generate a signature on behalf of a set of users. Finally, we cover some of the
related literate in RingCT protocols, where users can create confidential transactions
on blockchain so that the spender’s identity as well as the transaction amount is
hidden from the outside world. The discussion in this chapter is kept informal, and
relevant formal definitions are given in the following and subsequent chapters.1

2.1 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKP) are fundamental building blocks used in many privacy-
preserving applications such as anonymous cryptocurrencies and anonymous creden-
tials [Cha85], and the underlying advanced cryptographic primitives such as ring signa-
tures [RST01]. They were introduced by Goldwasser, Micali and Rackoff [GMR89]. In
this thesis, we restrict our attention particularly to lattice-based proposals and the rel-
evant classical counterparts. An important feature desired of many protocols (whether
they rely on lattice-based or classical assumptions) in practice is non-interactivity.
This feature enables a prover to create a proof on her own such that the proof can
later be verified by outside parties with no interaction required between any parties.
Thankfully, there is a generic method that transforms an interactive sigma protocol,
which is the class of zero-knowledge proofs focused on in this work (see Section 3.2.3),
into a non-interactive one. This tool is often called the Fiat-Shamir transformation
[FS86] and the security of a scheme using this transformation is proven in the random
oracle model2 [BR93]. The idea for the Fiat-Shamir transformation is to replace the
verifier by a random oracle that returns completely random (but consistent) outputs.
In practice, the random oracle is often realised by a cryptographic hash function3.

A core property of ZKPs is soundness, that is, a cheating prover should not be
able to create a convincing “proof”. In the context of proofs of knowledge (PoK), this
means successful provers know a relevant secret (i.e., a witness), and this is usually

1This chapter is partly based on [ESS+19, ESLL19, EZS+19].
2It is worth noting here that the post-quantum algorithms studied throughout the thesis do not

necessarily include a security proof in the quantum random oracle model (QROM). There are several
exciting recent works, e.g. [LZ19, DFMS19], that study the behaviour of Fiat-Shamir protocols in the
quantum setting and provide promising results on the security of Fiat-Shamir protocols in QROM.
We refer to these papers for more details.

3In this thesis, we always consider a cryptographic hash function, even though we may simply
write “hash function”.
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proven by using an extractor that efficiently recovers a witness given two accepting
protocol transcripts with the same initial message. We call this procedure “basic”
witness extraction (also known as “2-special soundness”, see Definition 3.6). A natural
behaviour that is trivially observed in discrete logarithm (DL) based ZKPs is that
they achieve a convincing soundness level (i.e., a negligible soundness error) in a
single protocol run (i.e., they are one-shot). However, this natural behaviour turns
out to be unexpectedly hard to achieve in lattice-based proofs. There are some works,
e.g., [Lyu09, Lyu12, BKLP15, BDL+18, LN17] that address this problem in lattice-
based cryptography and provide one-shot proofs in the context of protocols that work
with “basic” witness extraction. On the other hand, recent research in the DL setting
[GK15, BCC+15, BCC+16, BBB+18] has shown that for proving certain non-linear
relations in the secret witness, it is possible to construct more efficient proofs that
require a “complex” witness extraction involving more than two accepting protocol
transcripts (and thus more than two challenges) for recovering prover’s secret (i.e.,
the protocols are many-special sound). Such proofs rely on higher degree relations to
obtain compact results, unlike the 2-special sound proofs that can only check linear
(first degree) relations (we refer to the aforementioned works for the motivation behind
proving high-degree relations). Again, in the DL setting, these proofs work smoothly
and are easily one-shot. However, in the lattice setting, the situation is much more
complicated.

Focusing on one-shot proofs, the protocols in [BKLP15] and [BDL+18] are impor-
tant for our purposes as these protocols explicitly make use of lattice-based commit-
ments similar to the works in the thesis. In fact, the ideas in aforementioned works
date back to the works by Lyubashevsky [Lyu09, Lyu12] introducing the “Fiat-Shamir
with Aborts” technique in lattice-based cryptography. The advantage of these works
is that the (underlying) protocols achieve a negligible soundness error in a single run,
which makes them very efficient in practice. However, all these approaches are limited
to working with “basic” witness extraction except for a specific multiplicative (second
degree) relation in [BKLP15]. The multiplicative argument in [BKLP15] is to prove
that the coefficient of a quadratic term is zero and no explicit witness extraction from
this non-linear relation is provided (and, indeed, no witness extraction from this sec-
ond degree relation is needed as witnesses are extracted from the linear relations).
Additionally, all these one-shot proofs introduce new complications (more precisely,
relaxations in the relation being proved) as we discuss in detail in Section 5.3.

Another line of research makes use of multi-shot proofs that require multiple pro-
tocol repetitions to get a negligible soundness error. Stern-like combinatorial protocols
[Ste96] fall into this category, where one needs at least λ protocol repetitions for λ-bit
security. Even though these approaches have a wide range of applications such as
group and ring signatures as in [LLNW16] with signature length logarithmic in the
group/ring size, but quadratic in the security parameter λ, the latter inefficiency in
terms of the security parameter makes them seem to fall far behind practical expec-
tations (see Table 1.1 for the concrete results of [LLNW16]). Another approach for
proving relations without a relaxation (approximation) factor is to use binary chal-
lenges combined with “Fiat-Shamir with Aborts” technique. Again, a single iteration
of such a protocol has a soundness error of only 1/2, and thus requires O(λ) repeti-
tions.

In the ring R = Z[X]/(Xd + 1), it is possible to achieve a soundness error of
1/(2d) using the monomial challenges from [BCK+14]. Here the challenges are of the
form Xi for some 0 ≤ i < 2d (i.e., there are 2d possible challenges in total), and it
is shown in [BCK+14] that doubled inverses of challenge differences are short (more
precisely,

∥∥2(Xi −Xj)−1
∥∥ ≤ √d for i 6= j as recalled in Lemma 3.20). Still proofs
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using monomial challenges require at least 10 repetitions for a typical ring dimension
d ≤ 2048. To summarise, for a soundness goal of 2−λ, all the above multi-shot
approaches produce proofs of length Õ(λ2), as a function of the security parameter λ.

One can also get asymptotically efficient lattice-based proofs for arithmetic cir-
cuits when the circuit size is large compared to the security parameter λ using the
amortisation techniques from [BBC+18]. However, these techniques do not seem to
be helpful when the proved relations do not necessarily require a large circuit and still
the quadratic increase in the security parameter λ is not avoided.

2.2 Ring Signatures

Ring signatures, introduced by Rivest, Shamir and Tauman-Kalai [RST01], offer a
way for anonymous signature generation in that the signer’s identity is hidden within
a set of identities, called a ring. That is, the outside world only knows that one of the
ring members generated the signature, unable to determine which one exactly. The
rigorous security notions of ring signatures were established in the work of Bender,
Katz and Morselli [BKM09].

An important aspect of ring signatures in practice is the signature length and its
growth with the ring size. One may distinguish in the literature two broad types of ring
signatures. The first type, “linear size” ring signatures, has ring signature length linear
in the size of the ring and thus does not scale well to very large rings. The second type,
“log size” ring signatures, has length that increases only poly-logarithmically with the
size of the ring, and thus can be efficient even for very large rings. In this thesis,
the focus is mainly on the second type, but the log size ring signature constructions
introduced in the thesis reach the same efficiency level of linear size proposals based
on comparable security assumptions in terms of length even for very small ring sizes.

Two important log size ring signatures based on classical assumptions are due to
Groth and Kohlweiss [GK15] and Bootle et al. [BCC+15], where the main ideas in the
latter are borrowed from the former. In [GK15, BCC+15], the authors first describe
efficient (in terms of communication complexity) one-out-of-many proofs, which then
enable them to design short ring signatures in the DL setting. There are also very
recent log size ring signatures proposed in [YSL+19, LRR+19] using Bulletproofs proof
system [BBB+18].

On the side of the lattice setting, most of the existing ring signature schemes (e.g.,
[MBB+13, TSS+18, BLO18]) have linear size. [ZZTA18] attempts to extend Groth-
Kohlweiss’ scheme [GK15] by replacing Pedersen commitment with a lattice-based
commitment scheme. It is claimed that the security requirements for the instantiation
with this lattice-based commitment follows from the results of [GK15]. However,
as detailed in [ESS+19], this does not hold true without addressing some low-level
technical issues, which is also hinted in the works [LLNW16, BLO18] by noting that
Groth-Kohlweiss’ scheme does not easily extend to the lattice setting.

Prior to the constructions to be described in this thesis, this leaves us with the
work of Libert et al. [LLNW16] (and a follow-up by [YAL+17], adding linkability to
[LLNW16]) as the only log size ring signature from lattices. In [LLNW16], the authors
first design an accumulator through a Merkle tree using SIS-based hash function. Zero-
knowledge membership arguments are then built for this accumulator. Having these
building blocks, the authors propose ring and group signatures, both of which are log
size in the number of users involved. We therefore mainly focus on [LLNW16] for
efficiency comparison purposes. For example, even for the smallest ring size of 2, the
signature length of [LLNW16] is well above 10 MB.
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Very recently, another lattice-based ring signature is proposed in [YAZ+19] using
exact lattice-based proofs. However, as can be seen from Table 1.1, the practical
efficiency of this scheme seems to be far behind practical expectations.

There are other “post-quantum” ring signatures whose security rely on symmetric-
key primitives alone. The proposals in [DRS18] and [KKW18] are examples of such log
size ring signatures. These proposals are instantiated using LowMC cipher [ARS+15],
which is specially designed to reduce the multiplicative complexity of the circuit im-
plementing the algorithm. LowMC is a relatively new symmetric-key cipher and its
security seems not as well understood as more established ciphers such as AES. A
recent study [dSGDOS19] shows that replacing LowMC with AES in Picnic signature
[CDG+19], which is an (ordinary) signature scheme submitted to the NIST PQC pro-
cess, increases the signature length by a factor of at least 2.5. Therefore, it seems
plausible to say that the ring signature lengths in [DRS18] and [KKW18] would in-
crease by a similar factor when instantiated with AES. Even the constructions based
on LowMC are significantly longer in comparison to our improved constructions as
given in Table 1.1.

2.3 Group Signatures

A group signature is another example of an anonymous signature, where the signa-
tory signs a message on behalf of a group of users. In general, it is similar to a ring
signature, but the important difference is that there exists a group manager, who can
reveal a signatory’s identity, e.g., in case of a dispute or a misbehaviour. Group sig-
natures were introduced by Chaum and van Heyst [CvH91] and viable construction
were provided in [ACJT00]. Rigorous security notions of group signatures were estab-
lished in the work of Bellare, Micciancio and Warinschi [BMW03]. The first lattice-
based group signature scheme was proposed by Gordon, Katz and Vaikuntanathan
[GKV10]. A number of follow-up works appeared in the literature improving upon
the efficiency, e.g., [LLLS13, NZZ15, LNW15] or the functionalities provided, e.g.,
[LLNW14]. All of these schemes make use of a trapdoor (usually referred as a GPV
trapdoor [GPV08]), which creates a bottleneck in terms of efficiency. On contrary,
the work by Benhamouda et al. [BCK+14] does not make use of a trapdoor, but it is
not fully lattice-based in that it combines lattice-based assumptions with DLP-related
ones. As mentioned before, Libert et al. [LLNW16] introduce a log size lattice-based
accumulator, which is then used to build a group signature. This work was followed
up by more recent ones such as [LLM+16, LNWX17], where group signatures with
additional features are proposed.

In a recent work, del Pino, Lyubashevsky and Seiler [dPLS18] introduce new tech-
niques in building sub-linear size group signatures from lattices. Their construction
relies on zero-knowledge proofs of automorphism stability, which allows proving knowl-
edge of secrets that remain stable under certain automorphisms. The group signature
length remains constant even up to a huge group size of 280, but the concrete signature
length for typical security levels is still relatively large. In particular, it is around 581
KB for a group of size at most 280 (for “CPA-anonymous” version).

Another recent “post-quantum” group signature with logarithmic length is due to
Katz, Kolesnikov and Wang [KKW18]. The construction is based on symmetric-key
primitives alone, and is in particular instantiated with LowMC cipher [ARS+15]. As
discussed earlier, the use of LowMC cipher helps reduce the signature length signifi-
cantly by minimising the multiplicative complexity of the cipher used. We compare
our group signature proposal to these state-of-the-art works in Table 6.6, which shows
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that our proposal produces significantly shorter group signatures for groups of size
millions and beyond.

2.4 RingCT Protocols

In a blockchain environment, the two main entities for the purposes of this thesis
are spenders, who create a transaction and its proof of validity, and verifiers, who
check the validity of a transaction and its proof. There are also recipients of the
transactions, but they do not play a central role in RingCT system.

A RingCT [Noe15] protocol allows users to create confidential transactions on
blockchain so that the spender’s identity as well as the transaction amount is hidden
from the outside world. Additionally, the protocol must guarantee that the transaction
is a valid spending. This is mainly captured by a fundamental property, balance,
which requires that the total amount being spent by the spender is exactly equal
to the total amount received by the recipients where no double-spending or negative
amount spending occurs.

Monero cryptocurrency is currently the most prominent application that heavily
relies on RingCT protocol to provide privacy-preserving solutions. It also uses stealth
addresses to allow the users to hide the recipient’s identity. Auditability (i.e., the
ability of an authority to trace real spenders) is another important feature required to
prevent illegal use of a cryptocurrency, and is desired, e.g., for regulatory or financial
enterprise applications.

Previous RingCT protocols, e.g. [Noe15, SALY17], make use of three core in-
gredients: 1) a homomorphic commitment scheme, allowing one to hide some secret
with the ability to later reveal it while ensuring that the secret committed in the first
place and the opened one are the same, 2) a linkable ring signature [RST01, LWW04]
(or one-out-of-many proof), allowing one to prove knowledge of a secret key corre-
sponding to an (undisclosed) element in a set of public keys, and 3) a range proof,
showing that a secret committed value falls within a certain range. In RingCT pro-
tocol, the transaction amount is hidden via the use of the commitment scheme, and
the spender’s identity is hidden via the use of the ring signature. The main purpose
of the range proof is for guaranteeing the validity of a transaction by proving that the
real transaction amount hidden in a commitment is in a valid (positive) range.

The first RingCT protocol was introduced in [Noe15] (called RingCT 1.0, here-
after), and more formal definitions were then provided in [SALY17] (called RingCT
2.0, hereafter). Both of these solutions are in the DL setting and the latter requires a
trusted setup, which undermines the idea of a blockchain environment where there is
no particular trusted authority. Very recently, another DL-based RingCT is proposed
in [YSL+19] (called RingCT 3.0, hereafter), where the security model is also improved
over RingCT 2.0.

The RingCT correctness and security models defined in RingCT 2.0 and 3.0 have
some unsatisfactory aspects. In particular, they seem complicated to understand,
and do not capture the inherent stateful nature of a blockchain system. Therefore,
there are gaps in some definitions. For example, the balance definition in RingCT 3.0,
which requires all input accounts to be uncorrupted, seems to include a very strong
assumption that leaves a real-life attack out of the scope of the security model. In
this thesis, we introduce a new set of formal definitions for RingCT-like blockchain
protocols in Section 6.3, where a more detailed comparative discussion between our
model and the prior ones is provided.
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Table 2.1: Overview of RingCT proposals. The scalability referred here is in terms of
anonymity set size.

No trusted
setup Post-quantum Scalable Multiple

in/outputs
Efficient

Implement.
RingCT 1.0 [Noe15] 3 7 7 3 7

RingCT 2.0 [SALY17] 7 7 3 3 7

RingCT 3.0 [YSL+19] 3 7 3 3 7

Omniring [LRR+19] 3 7 3 3 3

LRCT v1.0 [TSS+18] 3 3 7 7 7

LRCT v2.0 [TKS+19] 3 3 7 3 7

MatRiCT, Chapter 6 3 3 3 3 3

In a concurrent and independent work [LRR+19], another set of formal defini-
tions for RingCT is provided together with a construction in the DL-setting. As
in [YSL+19], this construction also makes use of advanced DL-based ZKPs, namely
Bulletproofs [BBB+18].

In the post-quantum world, an initial attempt to design a lattice-based RingCT
was done by Torres et al. in [TSS+18] (called LRCT v1.0, hereafter). This protocol
is restricted to the single-input single-output wallets, i.e., the user spends a single
account to a single output address, and therefore the balance property is easy to
satisfy. Moreover, it does not involve a range proof to make sure that the amount
being spent is positive. Very recently, LRCT v1.0 was extended to support multiple-
input and multiple-output wallets in [TKS+19] (called LRCT v2.0, hereafter), where
a range proof is used to prove balance. However, the concrete efficiency of this scheme
is far behind practical expectations (see Table 6.4 in Chapter 6).

In Chapter 6, we introduce an efficient post-quantum RingCT protocol, named
MatRiCT. Two crucial advantages of MatRiCT over LRCT v2.0 are that 1) the un-
derlying ZKPs of MatRiCT reach a convincing soundness level in a single execution,
and thus no protocol repetition is required, and 2) MatRiCT does not require a range
proof on a 64-bit range even though 64-bit amounts are allowed (note that a single
64-bit range proof from lattices alone costs at least about 100 KB currently). An
overview of existing RingCT proposals is given in Table 2.1.

Another project to design a post-quantum privacy-preserving cryptocurrency has
been initiated in [Fou18], where lattice-based techniques are to be used. Though there
is currently no concrete scheme available, the authors mention that they aim to design
a ring signature of size less than 400 KB for rings of 215 users and that the range proof
is expected to cost a few hundred KB. Our results are far ahead of these goals (see
Tables 1.1 and 6.4).
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Chapter 3

Preliminaries

This chapter covers the preliminaries made use of in the next chapters. First, com-
monly used notations are introduced. Then, we cover the cryptographic definitions,
namely sigma protocols, our security assumptions, commitment schemes and ring sig-
natures. Finally, relevant mathematical background is covered, including some basics
from Linear Algebra, discrete Gaussian distribution and rejection sampling as used in
our protocols later on.1

3.1 Notations

Zq = Z/qZ denotes the ring of integers modulo q represented by the range
[
− q−1

2 , q−1
2

]
where q is an odd positive integer. [a, b] = {a, . . . , b}, and [a, b) = {a, . . . , b − 1} for
a < b ∈ Z. Logarithms are base 2 unless explicitly specified otherwise.

Matrices and vectors.

Throughout the thesis, bold-face lower-case letters such as x are used to denote column
vectors and bold-face capital letters such as A to denote matrices with In being the
n-dimensional identity matrix. (x,y) denotes appending the vector y to the vector x
to form a single longer vector.

For a vector v = (v0, . . . , vn−1), the Euclidean, infinity and `1 norms are defined
as

‖v‖ =

√√√√n−1∑
i=0

v2
i ,

‖v‖
∞

= max
0≤i≤n−1

|vi|, and

‖v‖
1

=

n−1∑
i=0

|vi|.

Algorithmic notations.

We denote the main security parameter by λ and say that a function ν(λ) is negligible
(denoted by ν = negl(λ)) if ν(λ) < 1/2cλ, for a constant c > 0.2 a ← Z means a is
chosen uniformly from a set Z. If Z is a distribution, we use the same notation to
sample a from a distribution Z. In the case that Z is an algorithm, the same notation

1This chapter is partly based on [ESS+19, ESLL19, EZS+19].
2Note that we use a more practically-oriented definition of being negligible as opposed to more

theoretical works, which use ν(λ) < 1/λc for any c > 0 and all sufficiently large λ.
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is used to denote that the algorithm outputs a. U(S) denotes the uniform distribution
on a set S.

Polynomials and polynomial rings.

For a polynomial p, the corresponding norms are defined analogously on the coefficient

vector of p. For a vector p = (p0, . . . , ps−1) of polynomials, ‖p‖ =
√∑s−1

i=0 ‖pi‖
2,

‖p‖
1

=
∑s−1

i=0 ‖pi‖1 , ‖p‖∞ = max0≤i≤s−1 ‖pi‖∞ , and HW(p) denotes the Hamming
weight of the coefficient vector of p.

We define the rings R = Z[X]/(Xd + 1) and Rq = Zq[X]/(Xd + 1) where d > 1
is a power of 2. Uc defines the set of all polynomials in R with infinity norm at most
c ∈ Z+. When sampling polynomials in R, we write p← Smd to indicate that p ∈ Rm
is a vector of m polynomials where each coefficient is sampled uniformly at random
from a set S (i.e., md coefficients are sampled in total).

3.2 Cryptographic Definitions

3.2.1 Security assumptions: Module-SIS and Module-LWE

The constructions studied in this thesis rely mainly on two well-studied assumptions
in lattice-based cryptography, namely Module Short Integer Solution (M-SIS) and
Module Learning With Errors (M-LWE) [LS15]. They can be seen as generalisations
of SIS [Ajt96] and LWE [Reg09] problems. Module variants of these two problems
are defined over a ring Rq = Zq[X]/(Xd + 1) for a positive integer “modulus” q and a
power-of-two ring dimension d.

Definition 3.1 (M-SISn,m,q,βSIS). Let Rq = Zq[X]/(Xd + 1). Given A← U
(
Rn×mq

)
,

find z ∈ Rmq such that Az = 0 mod q and 0 < ‖z‖ ≤ βSIS.

As in [BDL+18], one can define M-SIS in “Hermite normal form” such that A =

[ In ‖A′ ] ∈ Rn×mq and A′ ← U
(
R
n×(m−n)
q

)
. This standard variant is known to be as

hard as the given M-SIS definition above. When we want to be more explicit, we call
the definition in “Hermite normal form” as M-SIS in HNF.

For simplicity, we consider a special case of M-LWE problem where each error and
secret key coefficient is sampled uniformly from {−B, . . . ,B} for some B ∈ Z+. A
more special case of B = 1 is commonly practised in recent lattice-based proposals
such as [BDL+18, LN17, dPLS18]. The secret key coefficients can equivalently be
sampled uniformly from Zq.

Definition 3.2 (M-LWEn,m,q,B). Let Rq = Zq[X]/(Xd + 1) and s ← UnB be a secret
key. Define LWEq,s as the distribution obtained by sampling e ← UB, a ← Rnq and
returning (a, 〈a, s〉+e). Givenm samples from either LWEq,s or U(Rnq , Rq), the problem
asks to distinguish which is the case.

When Rq is set to be Zq in M-SIS and M-LWE definitions, one obtains the plain
SIS and LWE definitions, respectively. Therefore, module variants can be seen as a
generalisation of the original forms.

The hardness of M-LWE against currently known attacks seems not to be affected
significantly by the number of samples m unless it is cubic in the overall dimension
parameter. In particular, with respect to the Definition 3.2, m ≈ (n · d)3 samples
are needed for the attack in [AG11]. The number of samples in our constructions is
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always significantly smaller than this value, and thus m does not play a crucial role
in parameter settings.

It is also clear from the respective definitions that M-SIS problem gets harder as
βSIS gets smaller, and M-LWE problem gets harder when the error is sampled from a
wider distribution (i.e., as B increases). Therefore, when estimating practical security
of a construction against known attacks, it is enough to investigate the easiest cases,
i.e., when B or the standard deviation of the error distribution (in case the error is
sampled from a Gaussian distribution) is the smallest for M-LWE, and when βSIS is
the largest for M-SIS.

3.2.2 Commitment schemes

Commitment schemes are very powerful tools used in many cryptographic protocols.
They consist of three algorithms as below.

• CKeygen is a PPT algorithm that, on input security parameter 1λ, outputs the
public parameters pp together with the specifications of a message space SM , a
randomness space SR and a commitment space SC .
• Commit is a PPT algorithm that, on input public parameters pp and a message
M ∈ SM , outputs a commitment C ∈ SC .
• COpen is a deterministic polynomial-time algorithm that, on input public parame-

ters pp, a tuple (M, r;C) ∈ SM ×SR×SC , outputs a bit b, indicating ‘accept’ when
b = 1, and ‘reject’ otherwise.

Some lattice-based commitment schemes, as those used in this thesis, have an ad-
ditional input y, called the relaxation factor, to the COpen algorithm, which is also
parameterised by a norm bound γcom. These are crucial differences of lattice-based
commitment schemes and they will become clear when the concrete instantiations are
defined further below. We also provide an example of a proof relation at the end of
Section 3.2.3, where the role of the relaxation factor is shown.

Two important properties of commitment schemes are hiding and binding, and
in this thesis, we are interested in computational variants. Computational hiding
property is satisfied if the following holds for all PPT algorithms A.

Pr

[
pp← CKeygen(1λ); (M0,M1)← ACKeygen(pp)

b← {0, 1}; C ← Commitpp(Mb)
: A(C) = b

]
≤ 1/2 + negl(λ).

Computational strong γcom-binding property is satisfied if the following holds for all
PPT algorithms A.

Pr

[
pp← CKeygen(1λ);
(C, t0, t1)← A(pp)

:
(M0, r0) 6= (M1, r1) ∧

COpenpp(C, t0) = COpenpp(C, t1) = 1

]
≤ negl(λ),

where ti = (yi,Mi, ri) for i = 0, 1 and the norm bound parameter in COpen is γcom. In
the case of computational γcom-binding, the requirement (M0, r0) 6= (M1, r1) in strong
binding is replaced with M0 6= M1.

Algebraic lattice-based protocols mainly make use of two commitment schemes:
Unbounded-Message Commitment (UMC) [BKLP15, BDL+18] and Hashed-Message
Commitment (HMC) (derived from Ajtai’s SIS hash function [Ajt96]). A statistically-
hiding variant of HMC over Zq is also provided in [KTX08], and HMC is already
used prior works such as [BKLP15, BDL+18]. We define the commitment schemes
over module lattices and rely on computational hiding and binding properties as in
[BDL+18].
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These commitment schemes offer different tradeoffs. For example, UMC allows one
to commit to messages of unbounded length but the commitment vector dimension
increases linearly with the message vector dimension in a commitment. For HMC, on
the other hand, one can only commit to messages of bounded length (when binding
is based on M-SIS) but the height of the commitment vector is independent of the
message vector dimension. Thus, one can commit to long message vectors without
significantly increasing the commitment vector size using HMC.

Let n,m,B, q be positive integers, and assume that we commit to v-dimensional
vectors over Rq for v ≥ 1. As mentioned, the opening algorithm COpen is relaxed in
the sense that there is an additional input y ∈ Rq, called relaxation factor, to COpen
algorithm along with a message-randomness pair (m′, r′) such that COpen checks if
y · C = Comck (m′; r′).

Instantiation of HMC

The message space of HMC consist of elements of Rq with small norm. How small
a message needs to be depends on the application, but in any case we must have
‖m‖

∞
< q as indicated by COpen below. The instantiation of HMC with m > n is

as follows.

• CKeygen(1λ): Pick G′r ← R
n×(m−n)
q and Gm ← Rn×vq . Output ck = G =

[Gr ‖Gm ] ∈ Rn×(m+v)
q whereGr = [ In ‖G′r ]. We assume that Commit and COpen

takes ck as an input implicitly.
• Commit(m): Pick r ← {−B, . . . ,B}md. Output

Comck (m; r) = G ·
(
r
m

)
= Gr · r +Gm ·m.

• COpen(C, (y,m′, r′)): If Comck (m′; r′) = yC and ‖(r′,m′)‖ ≤ γcom, return 1.
Otherwise, return 0.

It is easy to see from the above definition that the commitment key G is in Hermite
normal form. In this case, it is easy to show the following lemma, whose variant also
appears in [BDL+18].

Lemma 3.3. HMC with a commitment key G in HNF as above is

• computationally hiding if M-LWEm−n,n,q,B problem is hard, and
• computationally strong γcom-binding with respect to the same relaxation factor y if
M-SISn,m+v,q,2γcom in HNF is hard.

Furthermore, if M-LWEm−n,n,q,B problem is hard, commitment to any message is com-
putationally indistinguishable from a uniformly random element in Rnq .

Proof. Let (y,m, r) and (y,m′, r′) with (r,m) 6= (r′,m′) be two valid openings of a
commitment C. That is,

yC = Comck (m; r) = Comck

(
m′; r′

)
and ‖(r,m)‖ ,

∥∥(r′,m′)
∥∥ ≤ γcom.

Therefore, we have yC = G·(r,m) = G·(r′,m′), which impliesG·(r−r′,m−m′) =
0. Hence, (r − r′,m −m′) is a solution to M-SISn,m+v,q,2γcom problem (in Hermite
normal form). This proves the computational strong binding with respect to the same
relaxation factor y.

For the hiding property, we can write Comck (m; r) = Gr ·r+Gm ·m = r0 +G′r ·
r1 +Gm ·m where r = (r0, r1) since Gr = [ In ‖G′r ]. The result of the computation
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r0 +G′r · r1 gives n M-LWE samples with r1 ∈ Um−nB as the secret key. Therefore,
if M-LWEm−n,n,q,B is hard, r0 +G′r · r1 looks uniformly random in Rnq and so does
commitments to any message.

If we replace the commitment key G by a completely random matrix, then still a
very similar result as below holds.

Lemma 3.4. Let s be the number of fields Fp1 , . . . ,Fps the ring Rq (for some q ∈ Z+)
splits into, and p = min{p1, . . . , ps}. Assume that n·s

pm−n+1 is negligible. Then, HMC
with a completely random commitment key G is

• computationally hiding if M-LWEm−n,m,q,B problem is hard, and
• computationally strong γcom-binding with respect to the same relaxation factor y if
M-SISn,m+v,q,2γcom is hard.

Furthermore, if M-LWEm−n,m,q,B problem is hard, commitment to any message is
computationally indistinguishable from a uniformly random element in Rnq .

Proof Sketch. The proof of the binding property is analogous to the binding proof of
Lemma 3.3.

To prove the hiding property, we draw attention to the “duality” between the
knapsack problems and LWE, which has already been noticed in cryptography (see,
e.g., [MM11, BDL+18]). Given (A,u) for A ← Rn×mq , the goal in the knapsack
problem considered in this work is to distinguish between the cases: 1) u ← Rnq and
2) u = Ax for x← UB for some B ∈ Z+. In Lemma 4.8 and Lemma 4.9 of [MM11],
it is shown that this knapsack problem is as hard as LWEm−n,m,q,B when one works
over Zq. The result extends to the ring case provided that the probability of A being
singular is negligible. We can argue this as follows.

A is non-singular if it is non-singular over all the fields the ring Rq (for some
q ∈ Z+) splits into. The probability that a random n×m matrix A is full-rank over
Fp is at least

(
1− 1/pm−n+1

)n (see, e.g., [FG15] and the references therein). Then,
the probability that A is full-rank over all the s fields is at least

(
1− 1/pm−n+1

)n·s ≥
1− ns

pm−n+1 = 1− negl(λ) by assumption. This concludes the argument.

For the setting where we use this lemma, the parameters satisfy the following. 1)
m ≥ 2n, 2) p� 220 and 3) the modulus q has at most 2 prime factors and thus s is at
most 2d (note that the polynomial Xd+1 can split into at most d factors). From here,
we can easily conclude that the probability of A being singular over Rq is negligibly
small.

Since M-SIS in HNF is equivalent to original M-SIS and the number of samples in
M-LWE problem does not play a crucial role in our estimations of practical security,
both of the instantiations of HMC are in equal positions in terms of security.

Instantiation of UMC

Unlike HMC, UMC allows arbitrarily long messages as inputs. The instantiation of
UMC is similar to that of HMC and defined as below for m > n+ v.

• CKeygen(1λ): Pick G′1 ← R
n×(m−n)
q and G′2 ← R

v×(m−n−v)
q . Set G1 = [ In ‖G′1 ]

and G2 = [ 0v×n ‖ Iv ‖G′2 ]. Output ck = G =

[
G1

G2

]
∈ R(n+v)×m

q . We assume

that Commit and COpen takes ck as an input implicitly.
• Commit(m): Pick r ← {−B, . . . ,B}md. Output

Comck (m; r) = G · r + (0n,m).
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• COpen(C, (y,m′, r′)): If Comck (m′; r′) = yC and ‖r′‖ ≤ γcom, return 1. Other-
wise, return 0.

Observe from the above definition that only the norm of r′ is checked in the COpen
algorithm of UMC whereas that of (m′, r′) is checked in HMC. Also, our definition
of COpen for UMC is slightly different than that in [BDL+18] because we do not
multiply the relaxation factor with the message as the invertibility of the relaxation
factor y is not assumed in our case.

Lemma 3.5 ([BDL+18]). UMC defined above is

• computationally hiding if M-LWEm−n−v,n+v,q,B problem is hard, and
• computationally γcom-binding with respect to the same relaxation factor y if M-
SISn,m,q,2γcom is hard.

Furthermore, if M-LWEm−n−v,n+v,q,B problem is hard, commitment to any message is
computationally indistinguishable from a uniformly random element in Rn+v

q .

We use the same notation for both of the commitment schemes and will clarify
in the relevant sections which specific instantiation is used. We say that (y,m′, r′)
is a valid opening of C if COpen(C, (y,m′, r′)) = 1. A valid opening (y,m′, r′)
with y = 1 is called an exact valid opening. We call the message part m′ of an
opening as message opening, and if (y,m′, r′) is a valid opening such that yC =
Comck (ym′; r′), then we call m′ a relaxed message opening with relaxation factor y.
It is also straightforward that both UMC and HMC satisfy the following homomorphic
properties: Comck (m0; r0) + Comck (m1; r1) = Comck (m0 +m1; r0 + r1) and c ·
Comck (m; r) = Comck (c ·m; c · r) for short c ∈ Rq.

For HMC, we see that M-SIS security increases with n whereas M-LWE security
increases with m − n. On the other hand, for UMC, M-SIS security increases with
n while M-LWE security increases with m − n − v. In the constructions to be de-
scribed, these two security aspects are balanced when setting the concrete parameters.
Moreover, for a scheme using UMC, the parameter setting is done using the results of
Lemma 3.5. Similarly, for a scheme using HMC, the parameter setting is done using
the results of Lemma 3.3 or Lemma 3.4.

For both of the commitment schemes, practical security estimations are done sim-
ilarly. To estimate practical M-SIS hardness, we use the methodology in [MR09]. In
particular, we say that the commitment scheme is γ-binding if the following is satisfied

min
{
q, 22

√
nd log q log δ

}
> 2γ, (3.1)

where δ is the so-called “root Hermite factor”, and n, d and q are the parameters in
the definition of HMC/UMC. On the other hand, practical security of M-LWE against
known attacks is estimated using the well-known “LWE estimator” due to Albrecht
et al. [APS15]. We run the LWE estimator under both enumeration and sieving
techniques, and ensure that both of them require a complexity of at least about 2λ.
We often adapt δ ≈ 1.0045 for λ = 128-bit post-quantum security.

3.2.3 Sigma protocols

Σ-protocols are a type of zero-knowledge proofs between two parties: the prover and
the verifier. A language L ⊆ {0, 1}∗ is said to have a witness relationship R ⊆
{0, 1}∗ × {0, 1}∗ provided v ∈ L if and only if there exists w ∈ {0, 1}∗ such that
(v, w) ∈ R. The quantity w is referred to as a witness for v. The definition of
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Σ-protocols from [BCK+14] generalises the well-known notion of Σ-protocols. We
further extend it to allow (k+ 1)-special soundness as in [GK15, BCC+15]. Our work
focuses on special honest-verifier zero-knowledge since it suffices for non-interactive
proof applications via Fiat-Shamir heuristic [FS86].

Definition 3.6 (Extension of Definition 2.5 in [BCK+14]). Let (P,V) be a two-party
protocol where V is a PPT algorithm, and L,L′ be languages with witness relations
R,R′ such that R ⊆ R′. Then, (P,V) is called a Σ-protocol for R,R′ with complete-
ness error α, a challenge set C, public input v and private input w, if it satisfies the
following conditions:

• Three-move form: The protocol has the following form. On input (v, w), P
computes initial commitment t and sends it to V. On input v, V draws a challenge
x← C and sends it to P. The prover sends a response s to V. The verifier accepts
or rejects depending on the protocol transcript (t, x, s). The transcript (t, x, s) is
called accepting if the verifier accepts the protocol run.
• Completeness: Whenever (v, w) ∈ R, the honest verifier accepts with probability
at least 1− α when interacting with an honest prover.
• (k+1)-special soundness: There exists a PPT algorithm E (called the extractor)
which takes (k+ 1) accepting transcripts (t, x0, s0), . . . , (t, xk, sk) with pairwise dis-
tinct xi ∈ C (0 ≤ i ≤ k) as inputs, and outputs w′ satisfying (v, w′) ∈ R′. We call
this procedure witness extraction, and say that the protocol has a soundness error
k
|C| .

3

• Special honest-verifier zero-knowledge (SHVZK): There exists a PPT algo-
rithm S (called the simulator) that takes v ∈ L and x ∈ C as inputs, and outputs
(t, s) such that (t, x, s) is (computationally) indistinguishable from an accepting pro-
tocol transcript generated by a real protocol run.

Let us give an example pair of relations (R,R′) that is of interest in many lattice-
based proof systems. The pair of relations below corresponds to a relaxed proof of
knowledge (RPoK) of an opening of a commitment C under a commitment key ck.

RRPoK(T ) =
{

((ck, C), (m, r)) : ‖(m, r)‖ ≤ T ∧ C = Comck (m; r)
}
.

R′RPoK(T̂ ) =
{

((ck, C), (y,m′, r′)) : ‖(m′, r′)‖ ≤ T̂ ∧ yC = Comck (m′; r′)
}
.

Typically, we have T ≤ T̂ for some publicly known real numbers T , T̂ , and the
relaxation factor y, which is part of the prover’s witness, is a non-zero element of the
set of challenge differences.

3.2.4 An easy-to-use method of setting parameters for lattice schemes

In lattice-based cryptography, concrete parameter setting may often get quite com-
plicated due to a large set of parameters requiring careful adjustments. Here, we
present an easy-to-use algorithm for setting parameters in practice, based on known
attacks on LWE and SIS, which we believe could be useful for other lattice schemes.
This is indeed an algorithmic summary of what has been explained about practical
security estimations at the end of Section 3.2.2. In particular, this method uses the
LWE estimator by Albrecht et al. [APS15] for LWE estimations and the methodology
by Micciancio and Regev [MR09] for SIS estimations. The LWE estimator is run
under both “sieving” and “enumeration”, and the largest root Hermite factor returned
is taken to be the final root Hermite factor. We emphasise that this method should

3Further discussion on soundness error can be found in Section 2.2 of [BKLP15].



22 Chapter 3. Preliminaries

Algorithm 3.1 GetParams(DSET,QSET, FβSIS)

INPUT: DSET : a set of potential d values; QSET : a set of potential log q
values; FβSIS : a function computing the SIS solution norm given (n, `, d, log q).
OUTPUT: a list L of suitable (d, log q, n, `) tuples
ASSUME: δ ≈ 1.0045, λ = 128,B = 1, log q ≥ 8

1: L = ∅ . Initialise output list
2: δ = 1.0045 . Set root Hermite factor
3: BaseDim = 342 . Set LWE dim. param. required for (q,B) = (28, 1)
4: StepSize = 39 . Set gap between LWE dim.’s of log q and log q + 1
5: for each d ∈ DSET do
6: for each log q ∈ QSET do
7: ` = d(BaseDim + StepSize · (log q − 8)) /de . Set LWE module rank
8: q = 2log q

9: n = 1 . Initialise/Reset SIS module rank
10: while nd ≤ 8192 do . Overall SIS dim. param. rarely exceeds 8192
11: βSIS = FβSIS(n, `, d, log q) . Set SIS solution length
12: if min

{
q, 22

√
nd log q log δ

}
> βSIS then . Check SIS condition

13: while min
{
q, 22

√
nd log q log δ

}
> βSIS do . Loop while SIS holds

14: n = n− 1 . Decrease n one-by-one
15: βSIS = FβSIS(n, `, d, log q) . Compute βSIS with new n
16: end while
17: L = L ∪ {(d, log q, n+ 1, `)} . n+ 1 is the smallest rank possible
18: End ‘while’ loop starting at Step 10
19: end if
20: n = n+ 10 . Increase of n can be adjusted
21: end while
22: end for
23: end for
24: return L

not be seen as a way to guarantee the security of a scheme as there are many other
concerns, which cannot be included in a simple algorithm, affecting the security of a
cryptographic algorithm.

In the algorithm, we adapt δ ≈ 1.0045 for λ = 128-bit post-quantum security, and
B = 1 for M-LWE. We denote the module rank of M-SIS by n and module rank of
M-LWE by `. The procedure is presented in Algorithm 3.1.

Given sets of potential d and log q values, Algorithm 3.1 simply iterates over all
the pairs and tries to find possible SIS and LWE module ranks (n, `) satisfying the
security requirements for the given δ = 1.0045. The idea for setting the LWE module
rank turns out to be quite simple as given at Step 7, which uses a linear extrapolation
(in log q) formula to estimate the LWE rank needed for M-LWE`,∗,q,B security against
lattice reduction attacks with Hermite factor δ and dim(Rq) = d. We tested the LWE
estimator [APS15] on a wide range of parameter sets and found that for a fixed (δ,B)
pair, LWE dimension parameter (i.e., `d) increments by fixed-size steps for increasing
log q. For example, for fixed (δ,B) = (1.0045, 1), `d = 342 is sufficient for q ≈ 28 and
`d = 381 for q ≈ 29. If we keep doubling q one-by-one, we see that `d increments
by almost 39 for each doubling. Therefore, we accordingly set StepSize and BaseDim
parameters, which are then used in the formula at Step 7.

A similar behaviour is observed for different (δ,B) pairs as well. For example,
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for (δ,B) = (1.0045, 5), StepSize = 38.5 and BaseDim = 202 were observed to give
accurate results. Therefore, our algorithm can be easily adjusted to different δ and
B values by testing first the dimension required for q = 28 (which allows to set
BaseDim) and then figuring out StepSize by observing the gap between the required
dimensions for q = 28 and a large modulus of, say, q = 280. In particular, StepSize =
DIM80−BaseDim

(80−8) would need to be set, where DIM80 is the dimension required for q =

280.
An important advantage of using a formula to compute the required LWE di-

mension is due to the fact that the LWE estimator [APS15] does not run very fast.
Therefore, when iterating over a large set of potential parameters, running the estima-
tor over and over again takes too long whereas our simple formula provides accurate
parameters very quickly.

Having fixed the module rank ` for LWE at Step 7, the remaining task is finding
the smallest module rank n for SIS. We do this by iterating over increasing n values
and checking if the SIS condition (i.e., the inequality (3.1)) holds. As the algorithm
is designed to work for any d, including d = 1 (i.e., the case of plain LWE/SIS), n is
incremented by 10 at each iteration. Otherwise, since n starts from 1, it would take
too long until a suitable n is reached for small d values.

The SIS condition checks whether the SIS attack fails, i.e., the norm of the short-
est vector computable by the attacker with a lattice reduction algorithm having root
Hermite Factor δ is greater than βSIS. To check this condition, one needs to com-
pute βSIS defined in Definition 3.1. That is, one should answer the question: How
short should SIS solutions be to guarantee the security of the scheme? This can be
determined from the underlying scheme’s security proofs, where a statement simi-
lar to the following appears: “If M-SISn,m,q,βSIS is hard, then the proposed scheme
is secure”. The computation of this value is very much dependant on a particular
construction, and hence Algorithm 3.1 requires a function FβSIS that outputs βSIS for
a given (n, `, d, log q) tuple. For example, if we require a commitment scheme to be
γ-binding, then we have βSIS = 2γ.

For a given q (or log q), there may be cases where there exists no suitable n because
q may always fall smaller than βSIS. Therefore, we increment n as long as nd ≤ 8192,
i.e., the overall SIS dimension is smaller than 8192. This is because most, if not all, of
the practical lattice schemes have a SIS dimension less than or equal to 8192. On the
other hand, once a suitable n value satisfying the SIS requirement is found at Step
12, we then start decreasing n as long as SIS condition is still satisfied. After that the
smallest SIS and LWE module ranks are added to the list L with the corresponding
(d, log q) pair. The LWE estimator should be run on the final chosen parameter sets to
verify the accuracy of the linear extrapolation formula in Step 7. At the end, the list L
of suitable parameter sets is returned. One can, for example, use this list to compute
corresponding proof lengths to see what parameter sets give the optimal sizes. Note
here that it is straightforward to compute the parameter m in the previous section
given (n, `, d, log q) and the message dimension v. In particular, m = n+ ` for HMC
and m = n+ v + ` for UMC.

We also note that simplicity of the algorithm is preferred over performance in its
current form. For small optimisations, one may combine some of the ‘if’ and ‘while’
statements and change how much n increases at Step 20 depending on d. For example,
if d is large, say d ≥ 256, then n can be incremented one by one and the inner-most
while loop can be removed in this case. Nevertheless, variants of Algorithm 3.1 are
used for many constructions studied throughout the thesis, and the running time of
the algorithm is already good enough for rapid selection of concrete parameter sets.
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3.2.5 Ring signatures

The formal definitions of ring signatures were established in [BKM09], and we use
variants of those. A ring signature consists of four algorithms (RSetup, RKeygen,
RSign, RVerify) defined as follows.

• pp← RSetup(1λ): On input a security parameter λ, outputs the public parameters
pp, which are available to everyone.
• (pk, sk)← RKeygen(pp): Given pp, generates a public-secret key pair (pk, sk).
• σ ← RSignpp,sk(M,L): On input a message M and a ring L of public keys and for

a secret key sk generated by RKeygen and its corresponding public key pk ∈ L,
outputs a signature σ on M with respect to L.
• {0, 1} ← RVerifypp(M,L, σ): On input a purported signature σ, a messageM and

a ring L, checks if σ is a valid signature on M with respect to L. Outputs 1 when
it is valid, and outputs 0 otherwise.

Definition 3.7 (Correctness). A ring signature scheme has statistical correctness if
the following holds for any pp← RSetup(1λ), any (pk, sk)← RKeygen(pp), any L
with pk ∈ L, and any M ∈ {0, 1}∗,

Pr[ RVerifypp(M,L,RSignpp,sk(M,L)) = 1 ] ≥ 1− negl(λ).

Definition 3.8 (Anonymity). A ring signature scheme has statistical anonymity if
the following holds for any PPT adversary A

Pr

[
pp← RSetup(1λ); (M, j0, j1,L)← ARKeygen(pp)

b← {0, 1}; σ ← RSignpp,skjb (M,L); b′ ← A(σ)
: b′ = b

]
≤ 1

2
+ negl(λ),

where (pkj0 , skj0), (pkj1 , skj1)← RKeygen(pp) and pkj0 , pkj1 ∈ L.
Definition 3.9 (Unforgeability w.r.t. insider corruption). A ring signature scheme
is unforgeable with respect to insider corruption if the following holds for all PPT
adversary A

Pr

[
pp← RSetup(1λ);

(M,L, σ)← APKGen,Sign,Corrupt(pp)
: RVerify(M,L, σ) = 1

]
≤ negl(λ),

where

• PKGen : on the i-th query, runs (pki, ski)← RKeygen(pp) and returns pki.
• Sign(i,M,L) : returns σ ← RSignpp,ski(M,L) if (pki, ski)← PKGen and pki ∈ L.
Otherwise, returns ⊥.
• Corrupt(i) : returns ski if (pki, ski)← PKGen. Otherwise, returns ⊥.
• For A’s output (M,L, σ), Sign(·,M,L) has never been queried, all public keys in L
are generated by PKGen and no public key in L is corrupted.

3.3 Mathematical Background

3.3.1 Representative matrices

For a vector p = (p0, . . . , pm−1) of polynomials in R = Z[X]/(Xd + 1) with m ≥ 1,
we denote the vector of all coefficients in p by Coeff(p) ∈ Zmd. For any f, g ∈ R,
there exists a matrix Rot(f), called the Rot matrix of f , such that Rot(f) ·Coeff(g) =
Coeff(f · g). This notion generalises to the case where (Rot(f) ⊗ Im) · Coeff(p) =
Coeff(f ·p) for f ∈ R and p ∈ Rm for m ≥ 1 where ⊗ denotes the Kronecker product.
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3.3.2 Singular values

For a rank-n matrix A ∈ Rm×n, there exists orthogonal matrices U ,V and a diagonal
matrix Λ with the non-negative diagonal entries σ1 ≥ · · · ≥ σn such thatA = UΛV >.
The values σ1(A) and σn(A) are called the largest and the least singular values of A,
respectively.

Fact 3.10. For square matrices A,A1, . . . ,As ∈ Rn×n, s ≥ 1, and c ∈ R, the
following holds

• σ1(A1 · · ·As) ≤ σ1(A1) · · ·σ1(As), and σn(A1 · · ·As) ≥ σn(A1) · · ·σn(As),
• σ1(cA) = |c| · σ1(A) and σn(cA) = |c| · σn(A),
• σ1(A ⊗ Im) = σ1(A) and σn(A ⊗ Im) = σn(A) for any m ≥ 1 where ⊗ denotes
the Kronecker product,

• A and A> have the same singular values.

3.3.3 Discrete Gaussian distribution and its properties

In this thesis, we always consider Gaussian distributions centred at zero, and thus
restrict our definitions to that case. Let S ∈ Rm×n be a rank-n matrix. Define the
ellipsoid Gaussian function on Rn centred at zero with parameter S (and covariance
matrix S>S) as ρS(x) = e−πx

>(S>S)−1x for all x ∈ Rn. The ellipsoid discrete Gaus-
sian distribution over Zn centred at zero with parameter S is then defined by the
probability mass function DnS(x) = ρS(x)/ρS(Zn) where ρS(Zn) =

∑
z∈Zn ρS(z) is a

normalisation factor. If the parameter S = sIn for s ∈ R+, then we obtain the spher-
ical discrete Gaussian distribution, denoted by Dns . We denote by Dn

σ the discrete
normal distribution with standard deviation σ, defined as Dns with s = σ

√
2π.

Fact 3.11 (A result of [AGHS13, Fact 2]). For an invertible n×n matrixX, X ·DnS =
Dn

SX>
. That is, the distribution induced by sampling v ← DnS and outputting y = Xv

is the same as Dn
SX>

.

As defined in [MR07], for a lattice L and real ε > 0, the smoothing parameter,
ηε(L), of L is the smallest s such that ρ1/s(L

∗ \{0}) ≤ ε where L∗ is the “dual lattice”.
We skip the details, but for our purposes the following facts are enough.

Fact 3.12 ([MR07, Lemma 3.3]). ηε(Zn) < 6 for ε = 2−128 and any 1 ≤ n ≤ 232.

Lemma 3.13 ([AGHS13, Lemma 3]). Let σ1(S) and σn(S) be the largest and the
least singular values of a rank-n matrix S, respectively. If σn(S) ≥ ηε(Zn),

Pr
v←DnS

[
‖v‖ ≥ σ1(S)

√
n
]
≤ 1 + ε

1− ε
· 2−n.

In our protocols, we sometimes deal with sum of independent vectors from discrete
normal distribution. To study the behaviour of such sums, we make use of the following
lemma.

Lemma 3.14 (Special case of [MP13, Theorem 3.3]). Let y1, . . . ,ys be independent
vectors with distribution Dd

σ for d ≥ 1. If σ ≥ η(Zd)/
√
π for the smoothing parameter

η(Zd) of Zd, then the distribution of z := y1 + · · ·+ ys is statistically close to Dd
σ
√
s
.

The standard deviations in our protocols are always much larger than 6, and thus
discrete normal variables behave as its continuous counterpart when multiple samples
are summed over. Finally, the lemma below summarises more concrete “tail-cut”
bounds on discrete normal distribution.
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Lemma 3.15 ([Lyu12, Lemma 4.4]). The following holds for discrete normal distri-
bution.

1. For any α > 0, Pr[|z| > α · σ : z ← Dσ] ≤ 2 · exp
(
−α2

2

)
,

2. For any α > 1, Pr[‖z‖ > ασ
√
t : z ← Dt

σ] < αte
1−α2

2
t.

In particular, we have

• Pr[|z| > 12σ : z ← Dσ] < 2−100,
• Pr[‖z‖ > 2σ

√
t : z ← Dt

σ] < 2−100 if t ≥ 86, and
• Pr[‖z‖ > 5σ

√
t : z ← Dt

σ] < 2−100 if t ≥ 7.

3.3.4 Rejection sampling

Rejection sampling is among the important tools used in many lattice-based protocols.
Its use in lattice-based cryptography was introduced by Lyubashevsky [Lyu09, Lyu12].
There are two flavors of these rejection sampling techniques. The one in [Lyu09] makes
the post-rejection distribution uniform over some set whereas that in [Lyu12] makes
use of discrete Gaussian distribution. We summarise the results of the latter below
and leave the discussion on the former when we make use of it in our protocols.

Algorithm 3.2 Rej(z, c, φ, T )

1: σ = φT
2: µ(φ) = e12/φ+1/(2φ2)

3: u← [0, 1)

4: if u >
(

1
µ(φ)

)
· exp

(
−2〈z,c〉+‖c‖2

2σ2

)
, then return 0 . means “abort” in protocol

5: else return 1

Lemma 3.16 ([Lyu12]). Let h be a probability distribution over V ⊆ Zs (s ≥ 1)
where all the elements have norm less than T . Let c ← h and φ > 0, and consider
the algorithm F that samples y ← Ds

σ and outputs Rej(z, c, φ, T ) (Algorithm 3.2) for
z = y + c. The probability that F outputs 1 is within 2−100 of 1/µ(φ) for µ(φ) =
e12/φ+1/(2φ2), and conditioned on the output being 1, the statistical distance between
distribution of z and Ds

σ is at most 2−100.

3.3.5 Some basics of Linear Algebra and Vandermonde matrices

We recall some basics about Vandermonde matrices and from Linear Algebra relevant
to our discussions (see, e.g., [HJ12] for more details). We assume that the matrices
are defined over a ring R. Let A be a n × n square matrix and det(A) denote its
determinant. The adjugate adj(A) of A, defined as the transpose of the cofactor
matrix of A, satisfies the following property

adj(A) ·A = A · adj(A) = det(A) · In. (3.2)

Therefore, if A is non-singular, adj(A) = det(A) ·A−1. A (k + 1)-dimensional Van-
dermonde matrix V is defined as below for some x0, . . . , xk ∈ R,

V =


1 x0 x2

0 · · · xk0
1 x1 x2

1 · · · xk1
...

...
...

. . .
...

1 xk x2
k · · · xkk

 ,
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and its determinant satisfies the following property

det(V ) =
∏

0≤i<j≤k
(xj − xi). (3.3)

Further, the following is an easy consequence of (3.3).

Fact 3.17. The Vandermonde determinant det(V ) has
(
k+1

2

)
multiplicands of the

form xj − xi with j 6= i.

We observe from [Tur66] that the Vandermonde matrix inverse V −1, when it
exists, has the following structure

∗
(x0−x1)(x0−x2)···(x0−xk)

∗
(x0−x1)(x1−x2)···(x1−xk) · · · ∗

(x0−xk)(x1−xk)···(xk−1−xk)
∗

(x0−x1)(x0−x2)···(x0−xk)
∗

(x0−x1)(x1−x2)···(x1−xk) · · · ∗
(x0−xk)(x1−xk)···(xk−1−xk)

...
...

. . .
...

1
(x0−x1)(x0−x2)···(x0−xk)

−1
(x0−x1)(x1−x2)···(x1−xk) · · · (−1)k

(x0−xk)(x1−xk)···(xk−1−xk)

, (3.4)

where ∗ denotes some element in the ring R, computed as a function of xi’s. It is clear
from this structure that V −1 exists over R if and only if the differences xi − xj for
0 ≤ i < j ≤ k are invertible over R. The structure in (3.4) helps us to visualise the
structure of adj(V ) using the fact that adj(V ) = det(V ) · V −1 if V is non-singular.
In particular, we have the following fact.

Fact 3.18. Let (Γ0, . . . ,Γk) be the last row of adj(V ). Then,

Γi = (−1)i+k
∏

0≤l<j≤k∧ j,l 6=i
(xj − xl),

and Γi has
[(
k+1

2

)
− k
]

= k(k−1)
2 multiplicands for all 0 ≤ i ≤ k.

Fact 3.18 follows by observing that k multiplicands in det(V ) are cancelled out
by the corresponding denominator in V −1.

3.3.6 Technical lemmas

We first summarise some results regarding different norms and a product of polyno-
mials in Z[X]/(Xd + 1).

Lemma 3.19. For any f, g ∈ R = Z[X]/(Xd + 1), we have the following relations

1. ‖f‖ ≤
√
d · ‖f‖

∞
,

2. ‖f‖ ≤ ‖f‖
1
≤
√
d ‖f‖,

3. ‖f · g‖ ≤
√
d · ‖f‖ · ‖g‖,

4. ‖f · g‖
∞
≤ ‖f‖ · ‖g‖,

5. ‖f · g‖
∞
≤ ‖f‖

1
· ‖g‖

∞
,

6. ‖
∏n
i=1 fi‖∞ ≤

(∏n−1
i=1 ‖fi‖1

)
· ‖fn‖∞ where fi ∈ R for all 1 ≤ i ≤ n.

Proof. The first 5 relations are standard and we only provide a proof for the last one.
If n = 2, the result is clear by the forth relation. Assume that the result holds for all
s < n, and we want to show that it holds for n > 2.∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
∞

≤ ‖f1‖1 ·

∥∥∥∥∥
n∏
i=2

fi

∥∥∥∥∥
∞

≤

(
n−1∏
i=1

‖fi‖1

)
· ‖fn‖∞ ,
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where the first inequality holds due to the forth relation and the second one follows
by the inductive assumption.

The lemma below shows that any difference of two (distinct) monomials in R =
Z[X]/(Xd + 1) is of a special form and also has a small norm. The lemma will be
useful when we make use of “monomial challenges” [BCK+14] in our protocols.

Lemma 3.20 ([BCK+14, Lemma 3.1]). For 0 ≤ i, j ≤ 2d − 1, all the coefficients of
2(Xi−Xj)−1 ∈ Z[X]/(Xd+1) are in {−1, 0, 1}. This implies that

∥∥2(Xi −Xj)−1
∥∥ ≤√

d.
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Chapter 4

Multi-Shot Algebraic Proofs and
Applications

As discussed in the previous chapters, it is not an easy task to design efficient lattice-
based ZKPs that can prove complex non-linear relations. It seems even harder to
make such proofs one-shot, where one is restricted to working with exponentially
large challenge sets with possibly much less control. Therefore, as an initial step,
this chapter investigates the design of algebraic proofs that do not necessarily reach a
negligible soundness error in a single protocol execution. This investigation forms an
important stepping stone in understanding the precise challenges that arise when one
is concerned with proving non-linear relations. More precisely, this chapter studies
multi-shot algebraic ZKPs that can prove non-linear relations.1

We first start with introducing new technical tools for the design and analysis
of many-special sound protocols in Section 4.1. In order to understand the security
requirements of such protocols, it is important to study the norm of an extracted
witness, which is done in Section 4.1.2 for the monomial challenges. Then, with these
new tools available, we show how to construct binary and one-out-of-many proofs in
Section 4.2. Having these ZKPs as building blocks, we introduce a ring signature
scheme based on standard lattice assumptions in Section 4.3.

Throughout this chapter, the commitment scheme is always instantiated with
HMC in HNF.

4.1 New Technical Tools for Lattice-Based Proofs

In this section, we present a collection of technical tools we use in our constructions
in this chapter. These new tools may be of independent interest for future works on
algebraic lattice-based zero-knowledge proofs and signatures.

4.1.1 Proving a value binary in Rq

We first show a lemma that, in particular, enables one to guarantee that b ∈ Rq is a bit
when the equation b·(1−b) = 0 holds over Rq. Our lemma does not put any additional
assumption on q but its size, which enables one to use fast computation algorithms
such as the number-theoretic transform (NTT) with q ≡ 1 mod 2d. In particular,
we do not need number theoretic conditions on q that makes NTT less efficient. For
example, such a condition is imposed in [dPLNS17] to ensure the invertibility of small
elements in Rq.

Lemma 4.1. For b ∈ Rq = Zq[X]/(Xd + 1), if b · (α − b) = 0 over Rq for some
positive integer α, and ‖b‖+ α <

√
q, then b ∈ {0, α}.

1This chapter is mainly based on [ESS+19].
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Proof. Since ‖b‖+ α <
√
q, we have ‖b‖ < √q. Then, we get

‖b · (α− b)‖
∞
≤ ‖b‖ · ‖α− b‖ ≤ ‖b‖ · (‖b‖+ α) <

√
q · √q = q.

Therefore, b · (α − b) = 0 holds over R. Since Xd + 1 is irreducible over Q, we get
b ∈ {0, α}.

We remark that above we essentially use the fact that R is an integral domain.
This is in particular true for our choice of R since Xd+1 is irreducible over Q, but the
result also generalises to any other integral domain rings (for instance, Zq[X]/(f(X))
for other irreducible f ’s).

4.1.2 Bounding the extracted witness norm for monomial challenges

Consider a Σ-protocol where the prover’s initial commitments are A0, A1, . . . , Ak (k ≥
1), and he responds with (fx, rx) for a given challenge x by the verifier. Then, the
verifier checks whether A0 + A1x + A2x

2 + · · · + Akx
k = Com(fx; rx) holds where

Com is a homomorphic commitment scheme. Now, suppose Ak is the commitment of
prover’s witness and that the extractor obtains k + 1 accepting protocol transcripts
for the same initial commitments, represented as follows.

1 x0 x2
0 · · · xk0

1 x1 x2
1 · · · xk1

...
...

...
. . .

...
1 xk x2

k · · · xkk

 ·


A0

A1
...
Ak

 =


Com(fx0 ; rx0)
Com(fx1 ; rx1)

...
Com(fxk ; rxk)

 .

Here, the matrix on the very left is a Vandermonde matrix V , and the extractor can
recover a possible opening of Ak via multiplying both sides by V −1, if exists, due to
the homomorphic properties of the commitment scheme. Recalling from Section 3.3.5,
the inverse matrix V −1 has the following form:

∗
(x0−x1)(x0−x2)···(x0−xk)

∗
(x0−x1)(x1−x2)···(x1−xk) · · · ∗

(x0−xk)(x1−xk)···(xk−1−xk)
∗

(x0−x1)(x0−x2)···(x0−xk)
∗

(x0−x1)(x1−x2)···(x1−xk) · · · ∗
(x0−xk)(x1−xk)···(xk−1−xk)

...
...

. . .
...

1
(x0−x1)(x0−x2)···(x0−xk)

−1
(x0−x1)(x1−x2)···(x1−xk) · · · (−1)k

(x0−xk)(x1−xk)···(xk−1−xk)

, (4.1)

where ∗ denotes some element in the domain. Our main protocol to be described has
this structure and, therefore, the Vandermonde matrix inverse plays a crucial role in
the witness extraction. In particular, if we denote the entries in the last row of V −1

by α0, . . . , αk (from left to right), we have

Ak =

k∑
j=0

αjCom(fxj ; rxj ) = Com

 k∑
j=0

αjfxj ;

k∑
j=0

αjrxj

 =: Com(mext; rext). (4.2)

These arguments tell us that we need to make sure V −1 exists in the first place,
which follows from the invertibility of pairwise differences of challenges. What is more
important in the case of lattice-based proofs is that αj ’s (and, in general, the entries
in V −1) must have small norm so that extracted witness (particularly, (mext; rext)) is
a valid opening (of Ak). To that end, we choose the set of monomials as the challenge
space and, thus, can make use of Lemma 3.20 to bound the entries in V −1, which
brings us to our first method below. In the rest, we focus on the last row of V −1,
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which is enough for our purposes, but our results can be extended to the cases related
to the other entries of V −1.

Method 1

Taking the first entry α0 as an example, we have

2kα0 =
2k

(x0 − x1)(x0 − x2) · · · (x0 − xk)
=

2

x0 − x1
· 2

x0 − x2
· · · 2

x0 − xk
.

For monomial challenges, using Lemma 3.19 and Lemma 3.20, we get

∥∥∥2kα0

∥∥∥ =

∥∥∥∥∥
k∏
i=1

2

x0 − xi

∥∥∥∥∥ ≤ (√d)k−1
k∏
i=1

∥∥2(x0 − xi)−1
∥∥ ≤ (√d)k−1 (√

d
)k

= dk−0.5.

Since all the entries in the last row have a similar form and the bound does not depend
on the particular choice of monomials, the same bound holds for all entries in the last
row of V −1. Note that V −1 exists over Rq for odd q (though may not have small
entries) since 2 is invertible for such q. We summarise these results in the following
lemma, whose proof follows from the above discussion.

Lemma 4.2. For k ∈ Z+, let xi = Xωi ∈ R = Z[X]/(Xd + 1) for 0 ≤ ωi ≤ 2d − 1
and 0 ≤ i ≤ k. Define the Vandermonde matrix V of dimension k+ 1 where i-th row
is the vector (1, xi, x

2
i , . . . , x

k
i ). Then, V is invertible over Rq for odd q, and for any

entry αj (0 ≤ j ≤ k) in the last row of V −1, we have
∥∥2kαj

∥∥ ≤ dk−0.5.

Using Lemma 4.2, we can now summarise the main result of Method 1.

Lemma 4.3. For the extracted opening (mext, rext) of Ak in (4.2), we have∥∥∥2krext

∥∥∥ ≤ (k + 1) · dk · max
0≤j≤k

∥∥rxj∥∥ and
∥∥∥2kmext

∥∥∥ ≤ (k + 1) · dk · max
0≤j≤k

∥∥∥fxj∥∥∥ .
Proof.

∥∥∥2krext

∥∥∥ =

∥∥∥∥∥∥
k∑
j=0

2kαjrxj

∥∥∥∥∥∥ ≤ (k + 1) · max
0≤j≤k

∥∥∥2kαjrxj

∥∥∥
≤(k + 1)

√
d max

0≤j≤k

∥∥∥2kαj

∥∥∥ max
0≤j≤k

∥∥rxj∥∥ ≤ (k + 1) · dk max
0≤j≤k

∥∥rxj∥∥ . (4.3)

A similar result follows analogously for mext.

This initial attempt succeeds, but the result may not be optimal. Thus, we deepen
our analysis to get a tighter bound.

Method 2

We observe that all entries in V −1 are constructed by challenge values, which are
public. Therefore, independent of a protocol run, anyone can take a set of challenges
and compute, in particular,

∥∥2kαj
∥∥ for any entry αj in the last row of V −1. The

important part here is that one can efficiently indeed iterate through all the possible
challenge sets (to be used in witness extraction) if the challenge space size and k are
not too large. This means anyone can compute a global bound Bd,k on

∥∥2kαj
∥∥ for
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any given k and d independent of the index j and the challenges used in the witness
extraction.

Observing from (4.1), the total search space will be of size at most (k+ 1) · |C|k+1

where |C| = 2d denotes the monomial challenge space size. However, note that,
assuming w.l.o.g. i > j,∥∥(Xi −Xj)−1

∥∥ =
∥∥∥X2d−i(1−Xj−i)−1

∥∥∥ =
∥∥(1−Xj−i)−1

∥∥ (4.4)

since multiplication by a monomial in R simply performs a nega-cyclic rotation of the
coefficients. Therefore, for any given k, it is enough to iterate through all subsets of
{1, . . . , 2d− 1} of size k, and compute

∥∥∥∏ω∈Uk 2(1−Xω)−1
∥∥∥ for such a given subset

Uk. As a result, the search space size is reduced to
(|C|−1

k

)
. In our parameter setting

for practical ring sizes of N ≤ 220, we have k ≤ 3. Therefore, for example, for d = 64
and k = 3, this requires only

(
127
3

)
< 218.4 iterations to be performed only ever once.

Below is the result of Method 2, where the proof follows by replacing max0≤j≤k
∥∥2kαj

∥∥
in (4.3) by Bd,k.

Lemma 4.4. For the extracted opening (mext, rext) of Ak in (4.2), and any given d
and k, there exists a constant Bd,k ≤ dk−0.5 and an algorithm to compute Bd,k with
a running time at most (k − 1) ·

(
2d−1
k

)
polynomial multiplications in Rq and

(
2d−1
k

)
Euclidean norm computations of degree d polynomials such that∥∥∥2krext

∥∥∥ ≤ (k + 1) ·
√
d · Bd,k · max

0≤j≤k

∥∥rxj∥∥ , and (4.5)∥∥∥2kmext

∥∥∥ ≤ (k + 1) ·
√
d · Bd,k · max

0≤j≤k

∥∥∥fxj∥∥∥ . (4.6)

Method 3

The above two methods give us ways to bound the extracted witness length inde-
pendent of a protocol run. The question one may also ask is “How much additional
information can we use from a protocol run?”

Assume that the prover’s response follows a discrete Gaussian distribution, i.e.,
rx ← Dmds for some s ∈ R+,m ∈ Z+. Instead of bounding

∥∥2kαj
∥∥, we bound∥∥2kαjrxj

∥∥ for all j’s. The product 2kαjrxj can be represented as (Rot(2kαj)⊗ Im) ·
Coeff(rxj ) = Coeff(2kαjrxj ) where ⊗ denotes the Kronecker product. Let us denote
Rj = Rot(2kαj)⊗Im. Since Coeff(rxj )← Dmds , by Fact 3.11, we haveRj ·Coeff(rxj ) ∈
Dmd
sR>j

. Hence, by Lemma 3.13, with high probability, we get

∥∥∥Coeff(2kαjrxj )
∥∥∥ =

∥∥Rj · Coeff(rxj )
∥∥ ≤ σ1(sR>j )

√
md = σ1(Rj)s

√
md, (4.7)

if σn(sR>j ) ≥ ηε(Zmd), which can be easily satisfied as shown in the proof of Lemma
4.5 below. We can now summarise the main result of Method 3 as below.

Lemma 4.5. Let rext =
∑k

j=0 αjrxj be the randomness opening of Ak as in (4.2).
Assume that s ≥ 6, d ∈ {4, 8, . . . , 512} and md ≤ 232. If rxj ← Dmds for all 0 ≤ j ≤ k,
then with probability at least 1− 1+ε

1−ε2
−md for ε = 2−128,∥∥∥2krext

∥∥∥ ≤ (k + 1) · max
0≤j≤k

σ1(Sj) · s
√
md, (4.8)

where Sj = Rot(2kαj) for j = 0, . . . , k.
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Proof. By Fact 3.10, σn(R>j ) = σn(Rj) = σn(Sj ⊗ Im) = σn(Sj) for any 0 ≤ j ≤ k.
Again, by Fact 3.10, we have

σn(Sj) = σn

 k∏
i=0,i 6=j

Rot
(

2

xj − xi

) ≥ k∏
i=0,i 6=j

σn

(
Rot

(
2

xj − xi

))
.

We have verified by computation that σn
(
Rot

(
2

xj−xi

))
≥ 1 for any pair of monomial

challenges xj , xi and any d ∈ {4, 8, . . . , 512}. As a result, σn(R>j ) ≥ 1 is always
satisfied with the given assumptions. Thus, using Fact 3.10 and Fact 3.12, we have

σn(sR>j ) ≥ s · σn(R>j ) ≥ 6 > ηε(Zmd).

Since σ1(Sj) = σ1(Rj) by Fact 3.10, the rest follows from Lemma 3.13 as sketched in
the description of Method 3.

Similar to the idea in Method 2, one can iterate through all Sj ’s and compute a
global bound Sd,k on possible σ1(Sj)’s for a given d and k. When rxj ← Dmds , we
have

∥∥rxj∥∥ ≤ s
√
md (up to a small constant factor) by Lemma 3.13. As a result, we

may reduce the comparison of the three methods to the comparison of the values dk

(Method 1), B′d,k =
√
d · Bd,k (Method 2) and Sd,k (Method 3).

However, there is an important detail in Method 3: it only works when the prover’s
response follows a discrete Gaussian distribution and the verifier cannot simply check if
that is the case. To solve this problem, we introduce a new tool called, Pseudo Witness
Extraction in Algorithm 4.1. If Algorithm 4.1 is used in protocol’s verification with
an input bound β, then

∥∥2krext
∥∥ ≤ (k + 1)β must hold. Hence, when the prover’s

responses rxj ’s are from Dmds , setting β = Sd,ks
√
md ensures both that an honest

prover’s proof will be accepted and also that the extracted randomness will satisfy
the norm-bound as in Lemma 4.5.

In Table 4.1, we provide a comparison between the three methods introduced. As
can be seen from the table, as k increases, the advantage of Method 2 and Method
3 over Method 1 grows larger. There are also obvious patterns that can be observed
from the table such as Sd,k/B′d,k ≈

√
2 for any d and k. We leave the investigation of

these behaviours as an open problem. For larger values of k, for which it is infeasible
to search the whole space, one can use Lemma 3.19 to upper-bound Bd,k (as Bd,k is an
upperbound on the norm of a product of polynomials) and Fact 3.10 to upper-bound
Sd,k (as Sd,k is an upperbound on the singular value of a product of matrices). These
still give better results over Method 1.

Algorithm 4.1 Pseudo-witness-extraction

Input: a vector r; a challenge x0 ∈ C; an integer k ≥ 1; a norm bound β ∈ R+

1: for each k-tuple (x1, . . . , xk) ∈ Ck s.t. x0 6= x1 6= · · · 6= xk do
2: rp-ext =

[∏k
j=1 2(x0 − xj)−1

]
· r

3: if ‖rp-ext‖ > β, then return False
4: end for
5: return True
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Table 4.1: Comparison of Method 1, Method 2 and Method 3. ∗ indicates that only a subset
of the whole search space has been iterated through.

k = 2 k = 3 k = 4

d log(dk) log(B′d,k) log(Sd,k) log(dk) log(B′d,k) log(Sd,k) log(dk) log(B′d,k) log(Sd,k)
16 8 7.21 6.70 12 9.56 9.06 16 11.92 11.42
32 10 9.21 8.70 15 12.55 12.05 20 15.90 15.40
64 12 11.21 10.70 18 15.55 15.05 24 19.90 19.40
128 14 13.21 12.70 21 18.55 18.05∗ 28 23.90∗ 23.40∗

256 16 15.21 14.70 24 21.55 21.05∗ 32 - -

4.2 Multi-Shot Sigma Protocols from Lattices

Now that we have established various tools that can be used in the witness extraction
of algebraic protocols, we apply these techniques in ZKPs for important relations. The
starting point of the protocols to be described is the works by Groth and Kohlweiss
[GK15] and Bootle et al. [BCC+15]. However, as mentioned in Section 2.1, these
DL-based proofs do not easily extend to the lattice setting, and one needs special
tools as those introduced in the previous section.

4.2.1 Σ-protocol for commitment to a sequence of bits

In this section, we describe a lattice-based Σ-protocol showing that a commitment B
opens to sequences of binary values where the Hamming weight of each sequence is
exactly one. Let N = βk > 1 and r, r̂ ∈ Rmq , and define the relations to be proved in
Definition 4.6.

Definition 4.6. For positive real numbers T and T̂ , we define the following relations
to be used in Protocol 4.1.

Rbin(T ) =

{
((ck,B), (b0,0, . . . , bk−1,β−1, r)) : ‖r‖ ≤ T ∧ (bj,i ∈ {0, 1} ∀j, i)
∧ B = Comck (b0,0, . . . , bk−1,β−1; r) ∧ (

∑β−1
i=0 bj,i = 1 ∀j)

}
.

R′bin(T̂ ) =

{
((ck,B), (b0,0, . . . , bk−1,β−1, r̂)) : ‖r̂‖ ≤ T̂ ∧ (bj,i ∈ {0, 1} ∀j, i)
∧ 2B = Comck (2b0,0, . . . , 2bk−1,β−1; r̂) ∧ (

∑β−1
i=0 bj,i = 1 ∀j)

}
.

Remark 4.7. The conditions on the norms of r and r̂ in the relations Rbin and R′bin
play a very crucial role, and is one of the main differences of a lattice-based zero-
knowledge proof over its classical counterpart. Without that control, one cannot easily
tie the security of the protocol to a hard lattice problem.

In the protocol, we first prove that each value in the sequences is binary, and then
that the sum of each sequence equals one. This guarantees that there is only a single
1 in each sequence. The idea behind proving a value binary works as follows. Let b
be the value we want to prove binary. Given a challenge x, the value b is multiplied
by x and the resulting value is masked by a as f = x · b + a in the protocol (Step
10 in Protocol 4.1). Now observe that f · (x − f) = b(1 − b) · x2 + a(1 − 2b) · x − a2

and proving that the coefficient of x2 is zero implies that b(1 − b) = 0. Then, using
Lemma 4.1, for a sufficiently large q, this statement over Rq implies that b is binary.

Similar to [BCK+14], we make use of an auxiliary commitment scheme aCom
(which is assumed to be hiding and binding) in order to be able to simulate aborts
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Pbin((ck,B), ({bj,i}k−1,β−1j,i=0 ; r)) Vbin(ck,B)

1: a0,1, . . . , ak−1,β−1 ← Dd
φ1

√
k

2: rc ← {−B, . . . ,B}md

3: ra, rd ← Dmd
φ2B
√
2md

4: for j = 0, . . . , k − 1 do

5: aj,0 = −
∑β−1

i=1
aj,i

6: A = Comck (a0,0, . . . , ak−1,β−1; ra)

7: C = Comck

(
{aj,i(1− 2bj,i)}k−1,β−1

j,i=0 ; rc
)

8: D = Comck

(
−a20,0, . . . ,−a2k−1,β−1; rd

)
9: (ca, da) = aCom(A,C,D)

ca

x := Xω
ω ← {0, . . . , 2d− 1}

10: fj,i = x · bj,i + aj,i ∀j, ∀i 6= 0

f1 := (f0,1, . . . , fk−1,β−1)

b1 := (b0,1, . . . , bk−1,β−1)

11: Rej(f1, xb1, φ1,
√
k)

12: zb = x · r + ra

13: zc = x · rc + rd

14: Rej((zb,zc), x(r, rc), φ2,B
√

2md)

Return ⊥ if aborted.
f0,1, . . . , fk−1,β−1,

da, A,C,D,zb, zc

1: for j = 0, . . . , k − 1 do

2: fj,0 = x−
∑β−1

i=1
fj,i

3: (ca, da)
?
= aCom(A,C,D)

4: ‖fj,i‖
?

≤ 5φ1

√
dk ∀j, ∀i 6= 0

5: ‖fj,0‖
?

≤ 5φ1

√
dk(β − 1) ∀j

6: ‖zb‖ , ‖zc‖
?

≤ 2
√

2φ2Bmd
f := (f0,0, . . . , fk−1,β−1)

g := {fj,i(x− fj,i)}k−1,β−1
j,i=0

7: xB +A
?
= Comck (f ; zb)

8: xC +D
?
= Comck (g; zc)

Protocol 4.1: Lattice-based Σ-protocol for Rbin and R′bin.
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in the proof of zero-knowledge property.2 One can treat aCom as a random oracle.
However, if aCom is computationally binding, then the soundness of the protocol
holds under the respective assumption and similarly if it is computationally hiding
[BCK+14]. The full protocol is described in Protocol 4.1, which will later be used
in the one-out-of-many proof. The parameters φ1, φ2 control the acceptance rate of
two-step rejection sampling and can be adjusted as desired.

Remark 4.8. The way the rejection sampling is done in Protocol 4.1 allows us to
sample fj,i’s from a narrower distribution, and to make their norm smaller. This as
a result weakens the condition on the size of q.

We summarise the result of Protocol 4.1 below.

Theorem 4.9. For T = (2d+ 2)
(
54φ4

1d
3k3β(β − 1) + 12φ2

2B2m2d2
)1/2, assume that

the commitment scheme is T -binding and also hiding (i.e., M-LWEm−n,n,q,B is hard).
Let d ≥ 7, md ≥ 86, and q > (10φ1d

√
kd(β − 1) + 2)2. Then, Protocol 4.1 is

a 3-special sound Σ-protocol (as in Definition 3.6) for relations Rbin(B
√
md) and

R′bin(4
√

2φ2Bmd2) with soundness error 1/d and a completeness error 1 − 1
µ(φ1)µ(φ2)

for µ(·) defined in Lemma 3.16.

Proof. Completeness: By Lemma 3.16, prover responds with probability statisti-
cally close to 1/(µ(φ1)µ(φ2)), and distributions of fj,i’s (i 6= 0) are statistically close
to Dd

φ1
√
k
and that of zb, zc are statistically close to Dmd

φ2B
√

2md
since

‖(x · b0,1, . . . , x · bk−1,β−1)‖ ≤
√
k, and ‖(x · r, x · rc)‖ ≤ B

√
2md.

Since the standard deviation of all sampled discrete normal coefficients are much larger
than 6, the sum of discrete normal samples behave as in the continuous case by Fact
3.12 and Lemma 3.14. That is, the distribution of

∑β−1
i=1 fj,i is statistically close to

Dd

φ1
√
k(β−1)

. Therefore, if the prover does not abort, and since d ≥ 7 and md ≥ 86,

by Lemma 3.15 except with probability at most 2−100, we have,

‖fj,i‖ ≤ 5 · φ1

√
k ·
√
d = 5φ1

√
dk, ∀j ∈ [0, k − 1],∀i ∈ [1, β − 1],

‖fj,0‖ =

∥∥∥∥∥x−
β−1∑
i=1

fj,i

∥∥∥∥∥ ≤ 5 · φ1

√
k(β − 1) ·

√
d = 5φ1

√
dk(β − 1), ∀j ∈ [0, k − 1],

and ‖zb‖ , ‖zc‖ ≤ 2·φ2B
√

2md·
√
md = 2φ2

√
2Bmd, proving the bounds on the norms.

The other verification steps follow via straightforward investigation.
SHVZK: Given a challenge x, the simulator outputs (aCom(0), x,⊥) indicating an
abort with probability 1 − 1/(µ(φ1)µ(φ2)). Otherwise, it picks C ← Rnq , fj,i ←
Dd
φ1
√
k
for all 0 ≤ j ≤ k − 1 and 1 ≤ i ≤ β − 1, and also zb, zc ← Dmd

φ2B
√

2md
.

Then, it sets fj,0 = x −
∑β−1

i=1 fj,i for all j = 0, . . . , k − 1. Finally, it computes
A = Comck (f ; zb) − xB, D = Comck ({fj,i(x− fj,i)}j,i; zc) − xC and (ca, da) =
aCom(A,C,D) where f = (f0,0, . . . , fk−1,β−1). It outputs the simulated transcript
(ca, x, (da, {fj,i}k−1,β−1

j=0,i=1 , A,C,D,zb, zc)).
Note that the narrowest distribution where a randomness coefficient is sampled

from is U({−B, . . . ,B}) and M-LWEm−n,n,q,B is assumed to be hard. Therefore, by
Lemma 3.3, all of the commitments are computationally indistinguishable from uni-
formly random elements in Rnq . Hence, if the protocol is not aborted, the real and

2In protocol’s application to a ring signature (and for other applications in general), simulation
of aborts is not needed as the protocol is made non-interactive.
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simulated transcripts are indistinguishable by Lemma 3.16 and the hiding property of
the commitment scheme. If an abort occurs, then the indistinguishability is satisfied
due to hiding property of aCom and the fact that the probability of having an abort
is the same for all x.
3-special soundness: Given 3 accepting transcripts, by the binding
property of aCom, we have the tuples (A,C,D, x, f0,1, . . . , fk−1,β−1, zb, zc),
(A,C,D, x′, f ′0,1, . . . , f

′
k−1,β−1, z

′
b, z
′
c), (A,C,D, x′′, f ′′0,1, . . . , f

′′
k−1,β−1, z

′′
b , z
′′
c ). Let f =

(f0,0, . . . , fk−1,β−1), f ′ = (f ′0,0, . . . , f
′
k−1,β−1), f ′′ = (f ′′0,0, . . . , f

′′
k−1,β−1) where

fj,0, f
′
j,0, f

′′
j,0’s are computed as in the verification. Then, by Step 7 in the verification,

we have xB +A = Comck (f ; zb) and x′B +A = Comck

(
f ′; z′b

)
. By subtracting the

equations and multiplying both sides by 2(x− x′)−1, we get

2B = Comck

(
2(x− x′)−1(f − f ′); 2(x− x′)−1(zb − z′b)

)
=: Comck

(
b̂; r̂b

)
.

This gives us openings of 2B as b̂ = (b̂0,0, . . . , b̂k−1,β−1) and r̂b. Note that

‖r̂b‖ =
∥∥2(x− x′)−1(zb − z′b)

∥∥ ≤ √d · ∥∥2(x− x′)−1
∥∥ · ∥∥(zb − z′b)

∥∥
≤ d ·

∥∥(zb − z′b)
∥∥ ≤ d · 2 · 2√2φ2Bmd = 4

√
2φ2Bmd2,

which proves the required norm-bound on the extracted randomness for R′bin.
We can also recover openings of 2A by computing âj,i = 2fj,i − x · b̂j,i and r̂a =

2zb − x · r̂b. Similarly, by Step 8 of the verification, we get openings ĉj,i and d̂j,i of
2C and 2D, respectively, such that 2gj,i = xĉj,i + d̂j,i and gj,i = fj,i(x − fj,i). From
here, by multiplying the former by 2, we get

2 ·
(
x · ĉj,i + d̂j,i

)
= 2 · 2gj,i = 2 · (2fj,i(x− fj,i)) = 2fj,i(2x− 2fj,i)

= x2
[
b̂j,i(2− b̂j,i)

]
+ x

[
2âj,i(1− b̂j,i)

]
− â2

j,i,

which implies

x2
[
b̂j,i(2− b̂j,i)

]
+ x

[
2âj,i(1− b̂j,i)− 2ĉj,i

]
− â2

j,i − 2d̂j,i = 0. (4.9)

By Lemma 4.11 (further below), norms of the openings of 2A, 2B, 2C, 2D are all
smaller than T . By the T -binding property of the commitment scheme, PPT prover
cannot know other openings of 2A, 2B, 2C or 2D. Thus, (4.9) also holds for the other
challenges x′ and x′′ with the same âj,i, b̂j,i, ĉj,i, d̂j,i’s. Then, we can write this system
of equations as 1 x x2

1 x′ x′2

1 x′′ x′′2

 ·
 −â2

j,i − 2d̂j,i
2âj,i(1− b̂j,i)− 2ĉj,i

b̂j,i(2− b̂j,i)

 = 0 over Rq.

The left-most matrix is a Vandermonde matrix V , which is invertible by Lemma 4.2.
Therefore, we get b̂j,i(2− b̂j,i) = 0 over Rq. Further, we have∥∥∥b̂j,i∥∥∥ =

∥∥2(x− x′)−1(fj,i − f ′j,i)
∥∥ ≤ √d · ∥∥2(x− x′)−1

∥∥ · ∥∥fj,i − f ′j,i∥∥
≤ d ·

∥∥fj,i − f ′j,i∥∥≤d · 2 ·(5φ1

√
dk(β − 1)) = 10φ1d

√
dk(β − 1).
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Since q >
(

10φ1d
√
dk(β − 1) + 2

)2
≥
(∥∥∥b̂j,i∥∥∥+ 2

)2
, we have b̂j,i = 2bj,i for bj,i ∈

{0, 1} by Lemma 4.1. Moreover, by construction, for all j = 0, . . . , k − 1,

2x =

β−1∑
i=0

2fj,i = x ·
β−1∑
i=0

2bj,i +

β−1∑
i=0

âj,i = 2x ·
β−1∑
i=0

bj,i +

β−1∑
i=0

âj,i.

If this is true for 2 distinct challenges x and x′, then
∑β−1

i=0 bj,i = 1 for all j =
0, . . . , k− 1 as desired. Finally, since the protocol is 3-special sound and |C| = 2d, the
soundness error is 2/(2d) = 1/d.

As evident from the discussions on lattice-based commitment schemes in Section
3.2.2, it is important to keep track of the norm of an opening of a commitment. For
Protocol 4.1, we do that in the following lemmas.

Lemma 4.10. The vector g defined in the verification of Protocol 4.1 satisfy the
following ‖g‖2 ≤ 54φ4

1d
3k3β(β − 1).

Proof. Since x is a monomial, we simply upper-bound ‖x− fj,i‖ by ‖fj,i‖ below.

‖g‖2 =

k−1∑
j=0

β−1∑
i=0

‖fj,i(x− fj,i)‖2 ≤
k−1∑
j=0

β−1∑
i=0

d ‖fj,i‖2 ‖x− fj,i‖2

=

k−1∑
j=0

β−1∑
i=1

d ‖fj,i‖2 ‖x− fj,i‖2 +

k−1∑
j=0

d ‖fj,0‖2 ‖x− fj,0‖2

≤
k−1∑
j=0

β−1∑
i=1

d
(

5φ1

√
dk
)2(

5φ1

√
dk
)2

+
k−1∑
j=0

d
(

5φ1

√
dk(β − 1)

)2(
5φ1

√
dk(β − 1)

)2

≤ dk(β − 1)
(

5φ1

√
dk
)4

+ dk
(

5φ1

√
dk(β − 1)

)4

= 54φ4
1d

3k3(β − 1) + 54φ4
1d

3k3(β − 1)2

= 54φ4
1d

3k3β(β − 1)

Lemma 4.11. The opening (d̂, r̂d) of 2D in the special soundness proof of Protocol
4.1 satisfy the following∥∥∥(d̂, r̂d)

∥∥∥ ≤ (2d+ 2)
(
54φ4

1d
3k3β(β − 1) + 12φ2

2B2m2d2
)1/2

.

Furthermore, the same bound applies to the openings of 2A, 2B and 2C.

Proof. For distinct challenges x and x′, recall the opening (b̂, r̂b) of 2B in the special
soundness proof of Protocol 4.1. We have

b̂ = 2(x− x′)−1(f − f ′) and r̂b = 2(x− x′)−1(zb − z′b). (4.10)

Similarly, recalling the opening (â, r̂a) of 2A, we have

â = 2f − xb̂ and r̂a = 2zb − xr̂b. (4.11)
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Table 4.2: A summary of identifiers for Chapter 4.

Notation Explanation

N = βk
the number of public commitments for one-out-of-many proof
(or the ring size for the ring signature)

β base for the representation of user indices
q an odd modulus
d ring dimension (i.e., Rq = Zq[X]/(Xd + 1))

k · β the number of packed messages in a commitment
m the dimension of randomness in a commitment (i.e., r ∈ Rmq )

n×(m+ kβ) public commitment key dimensions (i.e., G ∈ Rn×(m+kβ)
q )

n× 1 commitment dimensions
B maximum absolute coefficient of a uniformly chosen fresh randomness
r number of protocol repetitions to achieve negligible soundness error
` prover’s index with 0 ≤ ` ≤ N − 1

C challenge space with C = {Xω : 0 ≤ ω ≤ 2d− 1}
φ1, φ2 parameters controlling the acceptance rate of rejection sampling

Following the same procedure using the last verification step of Protocol 4.1, we can
get the following openings (ĉ, r̂c) and (d̂, r̂d) of 2C and 2D, respectively,

(ĉ, r̂c) = (2(x− x′)−1(g − g′), 2(x− x′)−1(zc − z′c)), (4.12)

(d̂, r̂d) = (2g − xĉ, 2zc − xr̂c). (4.13)

We bound the norm of (d̂, r̂d), which also involves bounding the norm of (ĉ, r̂c).
Without loss of generality, assume that ‖g‖ ≥ ‖g′‖ and ‖zc‖ ≥ ‖z′c‖. We use a
stronger bound from Protocol 4.2 (to be described in Section 4.2.2) in order to bound
‖zc‖ below. This way, we can make use of the same result in both of the protocols.∥∥∥(d̂, r̂d)

∥∥∥ = ‖(2g − xĉ, 2zc − xr̂c)‖ ≤ ‖(2g, 2zc)‖+ ‖(xĉ, xr̂c)‖

≤ 2 ‖(g, zc)‖+ ‖(ĉ, r̂c)‖
= 2 ‖(g, zc)‖+

∥∥(2(x− x′)−1(g − g′), 2(x− x′)−1(zc − z′c)
∥∥

≤ 2 ‖(g, zc)‖+
√
d
∥∥2(x− x′)−1

∥∥∥∥((g − g′), (zc − z′c))
∥∥

≤ 2 ‖(g, zc)‖+ 2d ‖(g, zc)‖

≤ (2d+ 2)

(
54φ4

1d
3k3β(β − 1) +

(
2
√

3φ2Bmd
)2
)1/2

= (2d+ 2)
(
54φ4

1d
3k3β(β − 1) + 12φ2

2B2m2d2
)1/2

. (4.14)

The bounds on openings of 2A and 2B are clearly weaker as they only involve fj,i’s
whereas opening of 2D involves the products fj,i(x− fj,i)’s as part of g.

4.2.2 One-out-of-many protocol

We are now ready to describe our main protocol. Let δj,i denote the Kronecker’s delta
such that δj,i = 1 if j = i, and δj,i = 0 otherwise. The prover’s goal in the protocol is
to show that he knows the randomness within a commitment to zero among a list of N
commitments. The commitments other than the prover’s need not be commitments to
zero, i.e., there is no need to assume that they are well-formed. Similar to the previous
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works [GK15, BCC+15], we assume that the number of commitments satisfy N = βk,
which can be realised by using the same commitment multiple times until such an N is
reached. Let c` be the prover’s commitment for 0 ≤ ` ≤ N−1, and L = {c0, . . . , cN−1}
be the list of all commitments. The main idea is to prove knowledge of the index `
such that

∑N−1
i=0 δ`,ici is a commitment to zero. Note that δ`,i =

∏k−1
j=0 δ`j ,ij where

` = (`0, . . . , `k−1) and i = (i0, . . . , ik−1) are representations in base β. The relations
for the protocol are given in Definition 4.12 and a set of identifier are given in Table
4.2.

Definition 4.12. For positive real numbers T and T̂ , we define the following relations
to be used in Protocol 4.2.

R1/N(T ) =

{
((ck, (c0, . . . , cN−1)), (`, r)) : (ci ∈ Rnq ∀i ∈ [0, N − 1]) ∧
` ∈ {0, . . . , N − 1} ∧ ‖r‖ ≤ T ∧ c` = Comck (0; r)

}
.

R′1/N(T̂ ) =

{
((ck, (c0, . . . , cN−1)), (`, r̂)) : (ci ∈ Rnq ∀i ∈ [0, N − 1]) ∧
` ∈ {0, . . . , N − 1} ∧ ‖r̂‖ ≤ T̂ ∧ 2kc` = Comck (0; r̂)

}
.

For each 0 ≤ j ≤ k − 1, the prover commits to a sequence (δ`j ,0, . . . , δ`j ,β−1) and
proves that it is a binary sequence with Hamming weight one using Protocol 4.1. As
given in Protocol 4.1, the prover responds with fj,i = x · δ`j ,i + aj,i upon receiving a
challenge x. Now, let us concentrate on the product

∏k−1
j=0 fj,ij =: pi(x). Observe that

for all i ∈ {0, . . . , N − 1},

pi(x) =
k−1∏
j=0

(
xδ`j ,ij + aj,ij

)
=

k−1∏
j=0

xδ`j ,ij +
k−1∑
j=0

pi,jx
j = δ`,ix

k +
k−1∑
j=0

pi,jx
j , (4.15)

for some coefficients pi,j ’s depending on ` and aj,i. This means that pi,j ’s can be
computed by the prover before receiving a challenge. Now, since δ`,i = 1 if and only
if i = `, the only pi of degree k is p`. Then, the idea is to send some Ej ’s in the initial
message, which will later be used by the verifier to cancel out the coefficients of low
order terms 1, x, . . . , xk−1, and the coefficient of xk will be

∑N−1
i=0 δ`,ici = c`, which

corresponds to the prover’s commitment. The full protocol is described in Protocol
4.2, and its results are summarised in the following theorem.

Theorem 4.13. For T = (2d+2)
(
54φ4

1d
3k3β(β − 1) + 12φ2

2B2m2d2
)1/2, assume that

the commitment scheme is T -binding and also hiding (i.e., M-LWEm−n,n,q,B is hard).
Let d ≥ 7, md ≥ 86, and q > (10φ1d

√
dk(β − 1) + 2)2. Then, Protocol 4.2 is a

(k′+ 1)-special sound Σ-protocol (as in Definition 3.6) for the relations R1/N(B
√
md)

and R′1/N(2
√

3φ2Bmd ·(k+1) ·dk) with a soundness error k′

2d and a completeness error
1− 1/(µ(φ1)µ(φ2)) where k′ = max{2, k} and µ(·) is defined in Lemma 3.16.

Proof. Completeness: Note that multiplication by x in Rq simply performs a nega-
cyclic rotation of the coefficients of a polynomial and thus the distribution of

∑k−1
j=0 x

jρj
is statistically close to Dmd

φ2B
√

3md
by Lemma 3.14. From here the bounds on the norms

of each component follow similar to the completeness proof of Theorem 4.9.
All the remaining but the last verification steps also follow straightforwardly. To

prove that the last verification step holds for honestly generated values, we have, for
c` = Comck (m`; r),

N−1∑
i=0

k−1∏
j=0

fj,ij

 ci −
k−1∑
j=0

Ejx
j =

N−1∑
i=0

pi(x)ci −
k−1∑
j=0

(
N−1∑
i=0

pi,jci + Comck

(
0; ρj

))
xj
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P(ck, (c0, . . . , cN−1), (`, r)) V(ck, (c0, . . . , cN−1))
1: rb ← {−B, . . . ,B}md

2: δ = (δ`0,0, . . . , δ`k−1,β−1)

3: B = Comck (δ; rb)

4: A,C,D, rc ← Pbin(ck,B, (δ, rb))[1− 8]

5: for j = 0, . . . , k − 1 do

6: ρj ← Dmd

φ2B
√

3md/k

7: Ej =

N−1∑
i=0

pi,jci + Comck

(
0; ρj

)
using pi,j ’s from (4.15)
8: (ca, da) = aCom(A,B,C,D, {Ej})

ca

x = Xω
ω ← {0, . . . , 2d− 1}

9: f1, zb, zc ← Pbin(x)[10− 13]

10: z = xk · r −
k−1∑
j=0

xj · ρj

11: Rej((z, zb, zc), (xkr, xrb, xrc), φ2,B
√

3md)

Return ⊥ if aborted.
da,f1, B,z, {Ej}k−1j=0

R := (A,C,D, zb, zc)

1: Vbin(ck,B, x,f1,R)[1,2,6,7]
?
= 1

2: (ca, da)
?
=aCom(A,B,C,D, {Ej})

3: ‖fj,i‖
?
≤ 5φ1

√
dk ∀j,∀i 6= 0

4: ‖fj,0‖
?
≤ 5φ1

√
dk(β − 1) ∀j

5: ‖z‖ , ‖zb‖ , ‖zc‖
?
≤ 2
√

3φ2Bmd

6:

N−1∑
i=0

k−1∏
j=0

fj,ij

 ci −
k−1∑
j=0

Ejx
j

?
= Comck (0; z)

for i = (i0, . . . , ik−1).

Protocol 4.2: Lattice-based Σ-protocol for R1/N and R′1/N.
Pbin(ck,B, (δ, rb))[1− 8] denotes running the same steps from 1 to 8 done by Pbin in
Protocol 4.1. Similar notation is used for Vbin. ra and rd in Pbin(ck,B, (δ, rb))[1− 8] are
drawn from Dmd

φ2B
√
3md

instead of Dmd
φ2B
√
2md

as the rejection sampling is now done on a
(3md)-dimensional vector.
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=

N−1∑
i=0

pi(x)ci−
k−1∑
j=0

N−1∑
i=0

pi,jcix
j−

k−1∑
j=0

xj · Comck

(
0; ρj

)

=
N−1∑
i=0

ci

pi(x)−
k−1∑
j=0

pi,jx
j

− k−1∑
j=0

xj · Comck

(
0; ρj

)
=

N−1∑
i=0

ciδ`,ix
k −

k−1∑
j=0

xj · Comck

(
0; ρj

)
= xk · c` −

k−1∑
j=0

xj · Comck

(
0; ρj

)

= Comck

xkm`; x
kr −

k−1∑
j=0

xjρj

 = Comck

(
xkm`; z

)
= Comck (0; z) if m` = 0.

SHVZK: Given a challenge x, the simulator outputs (aCom(0), x,⊥) indicating an
abort with probability 1 − 1

µ(φ1)µ(φ2) . Otherwise, it picks B,C,E1, . . . , Ek−1 ← Rnq

and fj,i ← Dd
φ1
√
k
for all 0 ≤ j ≤ k − 1 and 1 ≤ i ≤ β − 1, and also picks z, zb, zc ←

Dmd
φ2B
√

3md
. Then, it calculates fj,0 = x −

∑β−1
i=1 fj,i for all 0 ≤ j ≤ k − 1, and

computes E0 so as to ensure that the last verification equation is satisfied. Similarly,
it computes A and D so that the corresponding verification equations are satisfied.
Then, it calculates (ca, da) = aCom(A,B,C,D, {Ej}k−1

j=0) and outputs the simulated
transcript

(ca, x, (da, {fj,i}i 6=0, A,B,C,D, {Ej}k−1
j=0 , z, zb, zc)).

Note that the narrowest distribution where a randomness coefficient is sampled from
is U({−B, . . . ,B}) and M-LWEm−n,n,q,B is assumed to be hard. Therefore, by Lemma
3.3, all of the commitments are computationally indistinguishable from uniformly ran-
dom elements in Rnq . Hence, if the protocol is not aborted, the real and simulated
transcripts are indistinguishable by Lemma 3.16, the hiding property of the commit-
ment scheme and the fact that A,D,E0 are uniquely determined by the verification
equations given all the other components in both the real proof and the simulation.
If an abort occurs, then the indistinguishability is satisfied due to hiding property of
aCom and the fact that the probability of having an abort is the same for all x.
(k′ + 1)-special soundness: Assume that k > 1. Given (k + 1) distinct challenges
x0, . . . , xk, by aCom’s binding property, we have (k+ 1) accepting responses with the
same (A,B,C,D, {Ej}). Suppose that ((f

(0)
j,i , z

(0)), . . . , (f
(k)
j,i , z

(k))) are produced. We
first use 3-special soundness of Protocol 4.1 to extract openings b̂j,i and âj,i of 2B and
2A, respectively. We can also obtain bj,i such that b̂j,i = 2bj,i, and it is guaranteed that
bj,i ∈ {0, 1} and

∑β−1
i=0 bj,i = 1. From here, we can obtain the digits `j by choosing

`j = i∗ for which bj,i∗ = 1. Then, we construct the index ` as ` =
∑k−1

j=0 β
j`j .

Using bj,i and âj,i, we can compute p̂i(x) = 2k
∏k−1
j=0 fj,ij =

∏k−1
j=0 2fj,ij =

∏k−1
j=0(x ·

2bj,ij + âj,ij ). Note that p̂`(x) is the only such polynomial of degree k in x by the
construction of `. Thus, the last verification step, when both sides are multiplied by
2k, can be rewritten as

∑N−1
i=0 p̂i(x)ci −

∑k−1
j=0 2kEjx

j = Comck

(
0; 2kz

)
. Separating

the term of degree k with respect to x, we get

xk · 2kc` +

k−1∑
j=0

Ẽjx
j = Comck

(
0; 2kz

)
, (4.16)

where Ẽj ’s are the coefficients of the monomials xj of degree strictly less than k. Now,
we know that (4.16) holds for distinct challenges x0, . . . , xk, which can be represented
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as a system of equations where x0, . . . , xk form a Vandermonde matrix V as in Section
4.1.2. From the discussion in Section 4.1.2, V is invertible and we can obtain a linear
combination α0, . . . , αk of copies of (4.16) with respect to different challenges that
produces the vector (0, . . . , 0, 1). This gives

2kc` =
k∑
e=0

αe

xke · 2kc` +
k−1∑
j=0

Ẽjx
j
e

 = Comck

(
0; 2k

k∑
e=0

αez
(e)

)
. (4.17)

An opening of 2kc` to the message 0 with randomness rext = 2k
∑k

e=0 αez
(e) is ob-

tained. The bound on the norm of rext for R′1/N follows easily by Lemma 4.3.
Finally, we assumed that k > 1. If k = 1, then we still need at least 3 challenges

to be able to prove special soundness due to the 3-special soundness of Protocol 4.1.
Thus, Protocol 4.2 is (k′ + 1)-special sound for k′ = max{2, k}, and since |C| = 2d,
the soundness error is k′/2d.

It is easy to see from the definition of R′1/N that the norm of the extracted ran-
domness, and thus the size of q, grows with dk = dlogβ N . If one is to rely on Ring-SIS
and use a base β = 2, then this growth would be very rapid, yielding a very inefficient
scheme. This justifies our choice of working with M-SIS problem and choosing large
base values β as given in Section 4.3.4. As discussed in Section 4.1.2, the bound on
‖rext‖ can be tightened using Method 2 or Method 3.

4.3 Application to Ring Signature

Let N = βk for 2 ≤ β ≤ N , and n,m be fixed positive integers. As a single run of
Protocol 4.2 does not provide a small enough soundness error, suppose that r non-
aborting executions of Protocol 4.2 gives negligible soundness error of 2−λ.

Recall that a single run of Protocol 4.2 produces an accepting transcript with
probability 1/(µ(φ1)µ(φ2)). Therefore, when it is repeated r times, the overall accep-
tance rate reduces to 1/(µ(φ1)µ(φ2))r, which is too small. Therefore, we introduce
the tweaks below to Protocol 4.2 in order to get an overall completeness error of
1− 1/(µ(φ1)µ(φ2)) for the r-repeated protocol.

4.3.1 Tweaks for r-repeated protocol

First, we apply the rejection sampling to r-concatenated vectors at once. That is,
it is applied on (f1

1, . . . ,f
r
1) and (z1, z1

b , z
1
c , . . . ,z

r, zrb , z
r
c). Thus, we need to sam-

ple fj,i ← Dd
12
√
kr

(i 6= 0) and z, zb, zc ← Dmd
12B
√

3mdr
, and hence require q >

(10φ1d
√
dkr(β − 1) + 2)2 as in Assumption 4.14 below. Furthermore, since the ex-

tracted randomness norm will be larger, the relation R′1/N becomes R′1/N(24
√

3rBmd ·
(k+ 1) ·dk) and the commitment scheme is required to be binding in a larger domain.
Therefore, the commitment scheme is set to be T1-binding for

T1 = (2d+ 2)
(
54φ4

1d
3k3β(β − 1)r2 + 12φ2

2B2m2d2r
)1/2

.

Note that these tweaks do not affect the soundness error of individual protocol runs
as the extraction still works with k+ 1 accepting transcripts. Only the extracted wit-
ness norm is increased since the bound on ‖z‖ changes from 24

√
3Bmd to 24

√
3rBmd

in Protocol 4.2.
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4.3.2 Construction

We now describe our lattice-based ring signature, which similarly builds on the one-
out-of-many proof as in [GK15, BCC+15]. We summarise the assumptions on the
parameters in Assumption 4.14, and let CMT = (A,B,C,D, {Ej}k−1

j=0) and RSP =

({fj,i}k−1,β−1
j=0,i=1 , z, zb, zc) be the corresponding values from Protocol 4.2.

Assumption 4.14. Assume d ≥ 7, md ≥ 86 and q > (10φ1d
√
dkr(β − 1) + 2)2.

• RSetup(1λ) : Run G ← CKeygen(1λ) and pick a hash function H : {0, 1}∗ → Cr
for C = {Xω : ω ∈ [0, 2d− 1]}. Return ck = G and H as pp = (ck,H).
• RKeygen(pp) : Run r ← UmB , c = Comck (0; r) and return (pk, sk) = (c, r).
• RSignpp,sk(M,L) : Parse L = (c0, . . . , cN−1) with c` = Comck (0; sk) where ` ∈
{0, . . . , N − 1}. Continue as follows.

1. Generate (CMT1, . . . , CMTr) by running P(ck, (c0, . . . , cN−1), (`, sk))[1 − 7] r-
times in parallel with the described modifications.

2. Compute x = (x1, . . . , xr) = H(ck,M,L, (CMT1, . . . , CMTr)).
3. Compute RSPi by running P(xi)[9− 11] with CMTi for all i ∈ {1, . . . , r}.
4. If RSPi 6=⊥ for all i ∈ {1, . . . , r}, return σ = ({CMTi}ri=1,x, {RSPi}ri=1) .
5. Otherwise go to Step 1.

• RVerifypp(M,L, σ) : Parse σ = ({CMTi}ri=1,x, {RSPi}ri=1), x = (x1, . . . , xr) and
L = (c0, . . . , cN−1). Proceed as follows.

1. If x 6= H(ck,M,L, (CMT1, . . . , CMTr)), return 0.
2. For each i ∈ {1, . . . , r}:

(a) Run Protocol 4.2’s verification with CMTi, xi and RSPi except Step 2.
(b) If verification fails, return 0.

3. Return 1.

We can remove A,D,E0 from the signature as they are uniquely determined by the re-
maining components, and Step 1 in RVerify ensures the relevant protocol verification
steps hold. This is a standard technique and we skip the details.

4.3.3 Security proofs

The correctness and anonymity properties of the ring signature follow from the com-
pleteness and zero-knowledge properties of Protocol 4.2, respectively. In particular,
the expected number of iterations in RSign is µ(φ1)µ(φ2), which is upper-bounded
by 3 in the parameter setting. However, the unforgeability proof of the ring signature
is not straightforward due to the small challenge space and soundness gap issues. We
prove the following.

Theorem 4.15. If Assumption 4.14 holds and HMC in HNF defined in Section

3.2.2 is T ′-binding where T ′ = max{T1,

√(
24
√

3r ·mB(k + 1)dk+1
)2

+ 22k} for T1

described with the tweaks, then the ring signature scheme described above is unforge-
able with respect to insider corruption in the random oracle model.

Proof. We prove the unforgeability by showing if there exists a PPT forger with
a polynomial running time and a non-negligible success probability, then one can
break the binding property of the commitment scheme for message and randomness
of maximum Euclidean norms 2k and 24

√
3r · mB(k + 1)dk+1, respectively. This

implies that one can find a solution to Module-SISn,m+kβ,q,βSIS problem for βSIS =
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2

√(
24
√

3r ·mB(k + 1)dk+1
)2

+ 22k by Lemma 3.3. For simplicity, we stick to the
notation k and write (k + 1)-special soundness instead of defining k′ = max{2, k}.

Let Cr be the range of H (i.e., each output component of H is in C), Ψ be the set
of all random tapes that could be used by a PPT adversary A, and Φ be the set of all
random tapes defining the random oracle H. Let xj = (xj,1, . . . ,xj,r) be the output
of j-th random oracle query. We partition Φ into Φj− , xj and Φj+ so that Φj− ,Φj+

represent the sets of random tapes defining the random oracle outputs up to j-th query
(i.e., x1, . . . ,xj−1) and after j-th query (i.e., xj+1, . . . ,xQ), respectively. Therefore,
the tuple (φj− ,xj , φj+) defines all the random oracle outputs. Further, assume that A
makes qP , qS , qH queries to PKGen, Sign and the random oracle, respectively. Hence,
A makes at most Q = qS + qH random oracle queries in total. Suppose that A has
running time TA = poly(λ) and a probability ε = 1/poly(λ) > 4Qη of generating a
successful forgery where η = (k/|C|)r.

We construct an adversary D against the binding property of the commitment
scheme with a running time TB = poly(λ) and non-negligible success probability
εB = 1/poly(λ). On input a commitment key ck, D works as follows.

1. Pick t← {1, . . . , qP }.
2. Set pkt = Comck (1; rt) for some randomness rt ∈ {−B, . . . ,B}md where 1 =

(1, 0, . . . , 0) ∈ BIN ⊆ {0, 1}∗ (observe that ‖rt‖ ≤ B
√
md).

3. Pick j ← {1, . . . , Q}.
4. Pick ψ ← Ψ.
5. Pick (φj− ,xj , φj+)← Φj− × C × Φj+

6. Run 0: run A(ψ, φj− ,xj , φj+) with access to the oracles PKGen, Sign, Corrupt
and the random oracle H(φj− ,xj , φj+) simulated as follows. Whenever A queries
PKGen, D answers as in the real case except for t-th query where pkt is returned.
If A ever queries Corrupt(t), D aborts (abort Type I). If A queries Sign(t,M,L),
it picks a random challenge vector x and uses SHVZK simulator of Protocol 4.2
to simulate the proof ({CMTi}ri=1, {RSPi}ri=1) (note that only the simulation of
non-aborted protocols is used here). Then, the random oracle is programmed as
H(ck,M,L, {CMTi}ri=1) = x, except if (ck,M,L, {CMTi}ri=1) has been queried
before (abort Type II).

(a) If A outputs a forgery σ0 using j-th random oracle query output x0
j , fix ψ and

φj− .
(b) Otherwise, abort.

7. Pick φ′1, . . . , φ′N ← Φj+

8. Run i (for i ∈ {1, . . . ,N} andN defined below in the analysis): runA(ψ, φj− ,x
i
j , φ
′
i)

with access to oracles PKGen, Sign, Corrupt and the random oracle H(φj− ,x
i
j , φ
′
i)

where xij is the response of the j-th random oracle query at iteration i.

(a) A outputs a forgery σi. We say that Run i is j-successful if σi was forged
with respect to xij .

9. If there exists i∗ ∈ [1, r] and S∗ ⊆ {0, . . . ,N} with |S∗| = k + 1 such that G∗ :=
{xuj,i∗ : u ∈ S∗} contains k + 1 distinct challenges and σu is j-successful for all
u ∈ S∗, then run (k + 1)-special soundness extractor E of Protocol 4.2 on input
{σu}u∈S∗ to extract an opening of 2kpkt′ to (0, st′) for some 1 ≤ t′ ≤ qP where
‖st′‖ ≤ 24

√
3r ·mB · (k + 1) · dk+1.

10. If t = t′, return ((2k·1, 2k·rt), (0, st′)) as a binding collision pair for the commitment
scheme. Note that multiplication of (1, rt) by 2k gives a valid opening of 2kpkt,
because dk+1 > 2k since d ≥ 7.
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11. Otherwise, abort.

Note that when D returns a binding collision, there cannot be Type I aborts as the
forged signature must be for a ring comprised only of uncorrupted users.

Now, let us analyse this procedure in more details and denote εLWE = O(2−λ)
as the advantage of solving M-LWE problem. First, we observe that in each run of
A, the view of A is simulated by D with the same distribution as in the real attack
except for:

• pkt is a commitment to 1 in the simulation by D whereas it is a commitment to 0
in the real attack. By the hiding property of the commitment scheme, this reduces
the success probability of A by at most εLWE.
• There is a statistical distance of at most O(qS · 2−λ) between the distribution of

signing oracle simulator and that of the real signing oracle.
• A Type II abort occurs during a signing oracle query with probability at most
Q · 2−λ.

By the simulation statistical distance argument above, each run of A with pkt and
signing oracle simulated by D succeeds with probability ε̃ ≥ ε − O(Q · 2−λ). We
say that (ψ, φj− ,xj , φj+ , j) is ‘winning’ if A(ψ, φj− ,xj , φj+) outputs a valid forgery
using xj after Q random oracle queries. Note that there exists a j∗ ∈ {1, . . . , Q} such
that Pr[ (ψ, φj∗− ,xj∗ , φj∗+ , j

∗) winning ] ≥ ε̃/Q. By the Splitting Lemma (Lemma 7 of
[PS00]), there exists a subset S ⊆ Ψ× Φj∗−

such that

Pr
ψ∈Ψ,φj∗−

∈Φj∗−

[(ψ, φj∗−) ∈ S] ≥ ε̃/(2Q), and

ε′ := Pr
xj∗∈C,φj∗+∈Φj∗+

[(ψ, φj∗− ,xj∗ , φj∗+ , j
∗) winning ] ≥ ε̃/(2Q) ∀(ψ, φj∗−) ∈ S.

Now, for (ψ, φj∗−) ∈ S, c ∈ C and 1 ≤ i ≤ r, define pi(c) as the probability
with respect to xj∗ ∈ C and φj∗+ ∈ Φj∗+

that (ψ, φj∗− ,xj∗ , φj∗+ , j
∗) is winning and

xj∗ = (xj∗,1, . . . , xj∗,r) with xj∗,i = c.

Claim 4.16. If ε′ > (k/|C|)r, then there exists an i∗ ∈ [1, r] and G ⊆ C with |G| = k+1
such that

pi∗(c) ≥
ε′ − (k/|C|)r

(|C| − k) · r
=: p ∀c ∈ G.

If the claim holds, then a sample of N := (k+ 1) ·p−1 independent and identically
distributed winning tuples (ψ, φj− ,xj , φj+ , j) will yield a set

{
x1
j , . . . ,x

k+1
j

}
such that

G = {x1
j,i∗ , . . . , x

k+1
j,i∗ } with a probability at least 1 − (k + 1)e−(k+1), which is greater

than 7/10 for k ≥ 1 (this comes from the fact that the probability that N samples
do not contain c for some c ∈ G is at most (k + 1) · (1 − p)N ). That is, after N/ε′
rewindings, we obtain a set of (k + 1) distinct challenge values of Protocol 4.2 with
respect to the same initial commitment with a high probability.

Now, N = poly(λ) if k, |C|, r = poly(λ) and (ε′ − (k/|C|)r)−1 ≤ poly(λ). It is easy
to see that the first requirement holds since |C| = 2d, r = λ

log(2d)−log k and k ≤ logN .
For the second requirement, we have(

ε′ − (k/|C|)r
)−1

= (ε′ − η)−1 ≤ (ε′ − ε′/2)−1 = 2/ε′ ≤ poly(λ),

where the first inequality holds since ε′ > 2η. Now, by (k + 1)-special soundness
of Protocol 4.2, we can use the set G to extract an opening of 2kpkt′ to (0, st′) for
some t′ ∈ {1, . . . , qP }. By the hiding property of the commitment scheme, t′ = t with
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probability at least 1
qP
− εLWE. Also, j = j∗ with probability 1

Q . Hence, D succeeds
to output a binding collision pair with probability

Pr[j = j∗] · Pr[(ψ, φj−) ∈ S] · Pr

[
N runs contain k + 1
j-successful distinct challenges

]
· Pr[t = t′]

≥ 1

Q
· ε̃

2Q
· 7

10
·
(

1

qP
− εLWE

)
=

1

poly(λ)
.

This leaves us with the proof of the claim, which is based on a pigeonhole argument.
For each i ∈ [1, r], let Mi with |Mi| = k be the set of c ∈ C such that pi(c′) ≤ pi(c)
for all c′ /∈ Mi and all c ∈ Mi. Further, let B be the set of (xj , φj+) ∈ Cr × Φj+ for
xj = (xj,1, . . . , xj,r) such that xj,i ∈Mi for all i ∈ [1, r]. Since |Mi| = k,

Pr[(xj , φj+) ∈ B] ≤ Pr[xj,i ∈Mi ∀i ∈ [1, r]] ≤ (k/|C|)r .

For each (xj , φj+) ∈ S \ B, there exists i ∈ [1, r] and c ∈ C \Mi such that xj,i = c.
This implies that

r∑
i=1

∑
c∈C\Mi

pi(c) ≥ Pr[(xj , φj+) ∈ S \B] ≥ Pr[(xj , φj+) ∈ S]− Pr[(xj , φj+) ∈ B]

≥ ε′ − (k/|C|)r .

From here, we can deduce that there exists i∗ ∈ [1, r] and c∗ ∈ C \ Mi such that
pi∗(c

∗) ≥ ε′−(k/|C|)r
(|C|−k)·r . Hence, for all c ∈ G := Mi∗ ∪ {c∗}, pi∗(c) ≥ ε′−(k/|C|)r

(|C|−k)·r , proving
the claim.

4.3.4 Parameter setting

First of all, we set φ1 = φ2 = 22 to get an acceptance rate of more than 1/3 for
the two-step rejection sampling. Such an acceptance rate is greater than or equal to
the most commonly used ones such as those in [dPLNS17, Lyu12, BLO18, BDL+18]
and the expected number of iterations in RSign is 3 in this case. Also, we need to
ensure that the commitment scheme T ′-binding as in Theorem 4.15. Thus, from the
discussion in Section 3.2.2, to make M-SIS secure against known lattice attacks, we
ensure the following holds

min
{
q, 22

√
n·d·log q log δ

}
> max

{
2T1, 2 · 24

√
3rBmd · (k + 1) · Bd,k

}
. (4.18)

That is, we use Method 2 to bound the extracted witness norm, which does not require
the use of Algorithm 4.1 in the protocol’s verification. For the set of (d, k) pairs used
in Table 4.3, the exact value of Bd,k is computed by iterating through the whole search
space.

We also set B = 1 as in previous works [BDL+18, LN17, dPLS18], and make sure
that M-LWEm−n,n,q,1 is hard using Albrecht et al.’s estimator [APS15]. The root
Hermite factor δ is at most 1.0045 for both M-SIS and M-LWE security estimations.
Finally, Assumption 4.14 is ensured to hold.

Table 4.3 shows several instances with respect to different ring sizes where the
soundness error of the underlying (r-repeated) protocol is 2−λ and we restrict log q ≤
64. The calculations are done as given in Table 4.4 further below. Note that since r is
rounded up, the security parameter λmay be slightly larger than 128. Also, the results
from Lemma 3.15 used to bound the Euclidean norm of a discrete normal vector can
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Table 4.3: Parameters and sizes of our lattice-based ring signature for a root Hermite factor
δ ≤ 1.0045. The total challenge space size is around 2λ. The signature sizes are rounded to

the nearest integer.

N 64 256 1024 4096 ∼ 216 ∼ 220 230

(n,m) (5, 13) (5, 13) (11, 25) (21, 50) (20, 51) (40, 101) (41, 106)
(d, log q) (256, 50) (256, 53) (128, 46) (64, 47) (64, 50) (32, 49) (32, 52)

(k, β) (2, 8) (2, 16) (2, 32) (2, 64) (3, 41) (3, 102) (5, 64)
r 16 16 19 22 24 29 35
λ 128.0 128.0 133.0 132.0 129.96 128.04 128.73

Signature Size (KB) 774 881 1021 1178 1487 1862 3006
User PK Size (KB) 7.81 8.28 7.91 7.71 7.81 7.66 8.33
User SK Size (KB) 0.81 0.81 0.78 0.78 0.80 0.79 0.83

be adjusted with respect to the vector dimension. In particular, the constant 54 in T1

(and also T ) can be reduced depending on the choice of d. We take this optimisation
into consideration when setting the parameters.

Remark 4.17. When considering the r-repeated protocol, the bound in (4.14) becomes
(2d+2)

(
54φ4

1d
3k3β(β − 1)r2 + 12φ2

2B2m2d2r
)1/2, and this bound is used when setting

the parameters for the ring signature.

Table 4.4: Calculation of parameters and sizes for the ring signature.

Notation/Formula Notes
Security parameter λ

Dimension of
randomness vector

m
Chosen based on
LWE estimator of [APS15]

Soundness error η =
max{2, logβ N}

2d Recall that k = logβ N

Number of
protocol repetitions

r = d− λ
log η e

Num. of commitments Nc = k + 1 B,C,E1, . . . , Ek−1

Number of fj,i values Nf = k · (β − 1) f0,1, . . . , fk−1,β−1 ∈ Dφ1
√
kr

Num. of randomness NR = 3 z, zb, zc ∈ Dmd
φ2B
√

3mdr

Ring Signature size
r · [Nc · (nd log q)

+Nf · d · log(12φ1

√
kr)

+NR · (md log(12φ2B
√

3mdr))]

User public key size nd log q A commitment in Rn×1
q

User secret key size md · log(2B + 1)

A randomness vector in
{−B, . . . ,B}md. For B = 1,
we take log(2B + 1) = 2.

4.4 Discussion

The investigation of many-special sound protocols in this chapter helps us to un-
derstand the challenges one needs to address in constructing lattice-based ZKPs for
non-linear polynomial relations. For example, one of the things that we need to be
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careful about is that we do not always have a field structure and therefore non-zero
elements (in particular, non-zero challenge differences) may not always be invertible.
Even more importantly, the challenge differences do not necessarily have a short in-
verse, restricting us to the set of monomials as the challenge space. As a result, the
challenge space size is not exponentially large.

Another important aspect of the chapter is that it provides us with new techniques
in handling relaxations in the context of multi-shot proofs, in particular, for the
relations of interest in this work. For example, the unforgeability proof of the ring
signature (Theorem 4.15) introduces useful tools when the challenge space size is small
and the underlying ZKP of the signature is not exact.

It is not too hard to see the limitation in this chapter: the protocols require
repetitions for soundness amplification. That is, the new technical tools do not work
with an exponentially large challenge space (i.e., a challenge space of size about 2λ).
This is precisely one of the questions addressed in the next chapter, where new tools
for the design and analysis of one-shot algebraic proofs are introduced.

On the other hand, the advantage of the ZKPs introduced in this chapter is that
they have a fixed publicly known relaxation factor. For example, the relaxation factor
is always 2 for the binary proof. That is, for any commitment B with a valid binary
proof, anyone can conclude that 2B is well-formed. However, as we will see in the
next chapter, the relaxation factor may also be a part of the witness. That is, the
verifier may only be ensured of the fact that there exists a relaxation factor y such
that yB is well-formed, but the exact value of y is unknown to the entities apart from
the prover. The advantage of having such a fixed publicly known relaxation factor
may prove useful particularly when extending Bulletproofs-like [BBB+18] recursive
ZKPs to the lattice setting. Otherwise, when the relaxation factors are different in
each recursion, witness extraction may become more complicated.
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Chapter 5

One-Shot Algebraic Proofs and
Applications

Having seen the challenges in constructing ZKPs for non-linear relations in the previ-
ous chapter, we set a more practice-oriented goal in this chapter by studying one-shot
algebraic proofs for non-linear relations. Therefore, we will work with challenge spaces
of size at least 2λ (or more precisely, 22λ for λ-bit post-quantum security). It is un-
known at the moment whether such a large suitable challenge space exists with the
property that any pairwise challenge difference has short inverse. As a result, in-
stead of enforcing challenge difference to have short inverses, we will aim to avoid any
challenge difference inverse term in an extracted witness.1

Another goal of the chapter is to introduce new tools to overcome the Õ(λ2)
growth of the proof length. To that end, we first start the chapter with a discussion
about the asymptotic costs of the existing lattice-based ZKPs in Section 5.1. Our new
techniques, as summarised in Section 5.2, are aimed at constructing shorter and faster
proofs both asymptotically and in practice. We first go into the details of our new one-
shot proof techniques for non-linear polynomial relations and new tools for compact
proofs in Section 5.3. The new techniques for faster lattice-based proofs are discussed
in Section 5.4, where the CRT-packing technique supporting interslot operations and
“NTT-friendly” tools are introduced. The former technique is accompanied by an ap-
plication to an efficient (relaxed) range proof with concrete parameter settings. After
that, we turn our attention in Section 5.5 to the applications of the new techniques
to other useful relations such as a binary proof, one-out-of-many proof and set mem-
bership proof. Later in Section 5.6, we consider higher level applications of the new
ZKPs. In particular, we introduce an efficient ring signature and a privacy-preserving
credentials scheme based on standard lattice assumptions.

5.1 Asymptotic Costs of Existing Lattice-Based ZKP Tech-
niques

First, let us assume that one relies on computational hardness assumptions, particu-
larly, Module-SIS (M-SIS) and Module-LWE (M-LWE) for the security of a commit-
ment scheme and let dSIS, dLWE be the dimension parameters required for M-SIS and
M-LWE security, respectively. Based on the state of the art in lattice cryptanalysis, it
is known that one needs dSIS = O(λ log2 βSIS

log q ) for λ-bit security based on M-SIS where
βSIS is the norm of a valid M-SIS solution (see Section 5.6.1 for more discussion).
Letting βSIS = qε for 0 < ε ≤ 1, we get log βSIS = ε log q and, for a balanced security,

dLWE ≈ dSIS = O(λε2 log q). (5.1)
1This chapter is mainly based on [ESLL19].
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In lattice-based cryptography, the most commonly used commitment schemes for alge-
braic proofs are Unbounded-Message Commitment (UMC) and Hashed-Message Com-
mitment (HMC). These commitment schemes have different tradeoffs as discussed in
Section 3.2.2. Let n,m, d, v be the module rank for M-SIS, the randomness vector
dimension in a commitment, the polynomial ring dimension and the message vector
dimension in a commitment, respectively. The commitment vector is of dimension
n + v for UMC and n for HMC, which means the space costs of a commitment are
(n+ v)d log q and nd log q for UMC and HMC, respectively. Letting κ be the number
of protocol repetitions, we get the formulae for space costs in Table 5.1.

The commitment matrix dimensions are (n+ v)×m for UMC and n× (m+ v) for
HMC, and both of the commitments are computed as a matrix-vector multiplication.2

Therefore, we also get the formulae for the time costs as given in Table 5.1 assuming
a degree-d polynomial multiplication can be performed in time Õ(d) (more precisely,
O(d log d)) using, e.g., FFT-like methods.

Further, we have dLWE = (m − n − v)d and thus md > dLWE for UMC, and
dSIS = nd for both HMC and UMC. As a result, using (5.1), we get

md = O(λε2 log q) for UMC, and nd = O(λε2 log q) for UMC/HMC. (5.2)

Now, suppose that we want to prove a relation that involves commitment to k =
O(log q) messages (for example, to prove knowledge ofm1, . . .mk such that

∑k
i=1 αimi =

0 for public values α1, . . . , αk). Clearly, if we commit to these messages independently,
then the overall cost of both time and space increase by a factor of k. Alternatively,
we can pack multiple messages in a commitment by setting v = k and hope that this
gives a better performance. If an existing multi-shot technique such as Stern-based
proofs, or those using binary or monomial challenges, is used, the number of protocol
repetitions κ will be Õ(λ), and thus we get the asymptotic costs in the “multi-shot”
column of Table 5.1 (using (5.2)). On the other hand, if one can make the proof
one-shot, then we get the complexities in the “one-shot” column of Table 5.1, where
there is a clear saving of Õ(λ).

5.2 Overview of New Techniques

Before going into low-level technical details, we also present an overview of the main
techniques introduced in this chapter.

5.2.1 One-shot witness extraction for non-linear polynomial rela-
tions

The main challenge in designing efficient lattice-based ZKPs is that the extracted
witness is required to be short as mandated by computational lattice problems (in
particular, Short Integer Solution – SIS problem). Traditional witness extraction
techniques involve the inverse of challenge differences as a multiplicative factor in
extracted witnesses, and such an approach is problematic in lattice-based protocols as
these inverse terms need not be short in general. This causes one either to resort to
more inefficient techniques such as aforementioned multi-shot proofs or to introduce
relaxations in the proofs. Our solution in this chapter falls into the latter.

The target problem reduces to the question of extracting useful information from
a system of equations of the form V · c = b where V is a matrix (a Vandermonde

2Here, we overlook the fact that some parts of the commitment matrix are zero or identity, but
this does not change the asymptotic behaviour in Table 5.1.
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matrix in our case) constructed by challenges, c is a vector of commitments with
unknown openings and b is a vector of commitments with known openings. Our
idea is to introduce the use of adjugate matrices instead of inverse matrices in the
“complex” witness extraction of lattice-based ZKPs. This technique, in one hand,
enables us to extract useful information about the openings of the commitments in c
without the involvement of inverse terms, and on the other hand, is the main cause of
relaxations. Here, it is crucial that the relaxed proof proves a useful relation, is sound,
and also efficient. These piece together nicely when the use of adjugate matrices is
accompanied by a good choice of challenge space, and we provide an analysis of our
technique with a family of commonly used challenge spaces. It is worth emphasising
that straightforward soundness proofs do not work, and one needs special tools such
as those introduced in this chapter to overcome the complications. Our one-shot proof
approach is detailed in Section 5.3.

5.2.2 CRT-packing supporting inter-slot operations

Let R = Z[X]/(Xd + 1) and Rq = Zq[X]/(Xd + 1) for a usual choice of power-of-
two d. It is known that Xd + 1 factors linearly (and thus Rq fully splits) for certain
choices of q (e.g., a prime q ≡ 1 mod 2d) and, in that case, one can use NTT for
polynomial multiplication in Rq in time O(d log d). Assume that we choose such an
“NTT-friendly” q. For 1 ≤ s ≤ d where s is a power of two, let R(0)

q , . . . , R
(s−1)
q

be the polynomial rings of dimension d/s such that Rq ∼= R
(0)
q × · · · × R

(s−1)
q and

R
(i)
q = Zq[X]/(P (i)(X)) for some polynomial P (i)(X) of degree d/s for all 0 ≤ i < s

(which is obtained by the Chinese Remainder Theorem – CRT). We use these CRT
“slots” to store s messages in a single ring element. Thus, if we have k messages in
total, we can set the message vector dimension in a commitment as v = k/s (instead
of v = k in previous approaches).

This initial part of the CRT-packing idea seems easy, and indeed a possible appli-
cation of CRT in lattice-based ZKPs is mentioned in [LS18] to perform parallel proofs,
where there is no interaction between the messages in different slots. We are, on the
other hand, interested in applications such as range proofs requiring “inter-slot” oper-
ations between messages in separate CRT slots, and get a complete set of operations
(see [GHS12] for a discussion in the context of FHE).

First thing to note about the CRT-packing technique is that even if the messages to
be stored in CRT slots are short, the resulting element in Rq representing s messages
need not be so. This makes the technique inapplicable to HMC, which require short
message inputs (at least in the general case). More importantly, there are two crucial
hurdles we need to overcome: 1) it is not clear how to enable inter-slot operations
and make the ZKP work in this setting, and 2) we need to make the proof one-shot
in order not to lose the factor λ gained.

Let us write m = 〈m0, . . . ,ms−1〉 where m ∈ Rq and mi ∈ R(i)
q for 0 ≤ i < s if m

maps to (m0, . . . ,ms−1) under the CRT-mapping. In general, to prove knowledge of
a message b, the prover in the protocol needs to send some “encoding” of the message
as f = Encx(b) := x · b + ρ where x is a challenge and ρ is a random masking
value. Clearly, we do not want to send k encodings in Rq as it does not result in any
savings. Instead, our idea is to send k/s elements in Rq, each encoding s messages,
in a way that enables the verifier to “extract” all k messages out of them. When the
prover sends f = x · m + ρ (there may be multiple such f ’s), for each 0 ≤ i < s,
the verifier can compute fi = f mod (q, P (i)(X)) = xi · mi + ρi as the extracted
encodings where x = 〈x0, . . . , xs−1〉 and ρ = 〈ρ0, . . . , ρs−1〉. The main problem now is
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Table 5.1: The (minimal) asymptotic time and space complexities of lattice-based protocols
involving commitment to k = O(log q) messages. βSIS: M-SIS solution norm, q: modulus, κ:
the number of protocol repetitions, n: module rank for M-SIS, v: message vector dimension
in a commitment, d: polynomial ring dimension, m: randomness vector dimension in a
commitment. Assume: log q < log2 βSIS/2 and degree-d polynomial multiplication costs Õ(d).

To optimise both costs, one would set n = v in all cases.

Multi-shot One-shot One-shot + CRT

Formula κ = Õ(λ), v = k κ = 1, v = k κ = 1, v = O(1)

Space UMC κ(n+ v)d log q Õ(λ2 log2 βSIS) Õ(λ log2 βSIS) Õ(λ log2 βSIS)

Time UMC κ(n+ v)md Õ(λ2 log2 βSIS) Õ(λ log2 βSIS) Õ(λ log2 βSIS/ log q)

Space HMC κnd log q Õ(λ2 log2 βSIS) Õ(λ log2 βSIS) N/A

Time HMC κn(m+ v)d Õ(λ2 log2 βSIS) Õ(λ log2 βSIS) N/A

that fi’s are encodings of mi’s, but under possibly different xi’s, which circumvents
interoperability of distinct fi’s. For example, the sum fi + fj for i 6= j does not result
in an encoding of the sum of messages under a common challenge x if xi 6= xj .

To overcome this problem, our idea is to choose the challenge x = 〈x, . . . , x〉 for
x ∈

⋂s−1
i=0 R

(i)
q such that all extracted encodings are under the same challenge x. This

means x must be of degree smaller than d/s and thus the challenge space size is
possibly greatly decreased.3 To make the proof one-shot, we choose the challenges to
be polynomials of degree at most d/s− 1 with coefficients in Zp such that pd/s = 22λ

(i.e., there are 22λ challenges in total).4 Therefore, we need d/s · log p = 2λ, which
is satisfied by choosing d/s = λε2 and log p = 2/ε2. We should also ensure log q >
log p = 2/ε2 = 2 log2 q/ log2 βSIS. This holds assuming log q < log2 βSIS/2, which is
easily satisfied in most of the practical applications.

To have fast computation, we also set d = dSIS = O(λε2 log q), and hence get
s = O(log q). Recall that we have k messages in total and s slots in a single ring
element. As a result, for k = O(log q), it is enough to have v = k/s = O(1). Overall,
we end up with the asymptotic costs in the last column of Table 5.1, where our
technique has a factor log q saving in asymptotic computational time in comparison
to previous approaches without any compromise in communication.

An attractive example in practice where one would need a commitment to k =
O(log q) messages is a range proof on [0, 2k − 1]. Let us take a range proof on ` ∈
[0, 264 − 1] as a running example. In this case, our proof proceeds as follows. We
allow Rq to split into at least 64 factors, and thus use a single Rq element to commit
to all the bits of ` (so committing to all the bits of ` only cost a single commitment
with message vector dimension v = 1). In its initial move, the prover sends some
commitments and gets a challenge from the verifier. Then, the prover responds with
a single encoding in Rq (or 64 small encodings that costs as much as a single element
in Rq). From here, the verifier extracts the encodings of all the bits, reconstructs
the masked integer value ` and checks whether it matches the input commitment to
`. In this setting, it is clear that we require operability between different slots, and
thus we set the encodings of all the bits to be under the same challenge x. For a

3We remark that earlier works [SSTX09, BKLP15] also considered choosing a challenge of degree
d/s for some s > 1 for the purpose of invertibility of challenges. However, our motivation here is to
make sure that x has the same element in all CRT slots.

4In this chapter, we consider a challenge space size of 22λ for λ-bit post-quantum security.
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ring dimension d = 512, the infinity norm of a challenge can be as large as 231, which
seems quite large.

An alternative to this approach is to use “norm-optimal” challenges from [LS18]
(named “optimal” in [LS18]) such that the infinity norm of a challenge is set to 1, and
thus the overall Euclidean norm of a challenge is minimised. In this case, one needs to
set the ring dimension d ≥ 256 to get a challenge space size of at least 2256. However,
this results in significantly longer proofs as shown in Table 5.2. The reason behind
this phenomenon is that one needs to encode 64 values and with the “norm-optimal”
challenges the cost of these encodings and the commitments grow too much. The use
of challenges with larger (even much larger) norm does not seem to cause significant
increase in the proof length, which can be explained as follows. To do a range proof
on 64-bit range, the modulus q must be at least 264. Using UMC, where the message
part does not affect the hardness of finding binding collisions (in particular, M-SIS
hardness), such a large q already makes M-SIS very hard and M-LWE very easy.
Therefore, having a challenge with a large norm only brings the hardness level of
M-SIS to that of M-LWE, and results in a very compact proof.

We also add for comparison a hypothetical idealised range proof scheme optimised
for proof length in Table 5.2, where for this scheme we only check two conditions: 1)
q ≥ N and 2) M-SIS and M-LWE root Hermite factors are less than or equal to 1.0045.
More specifically, we go over all the values of the ring dimension d ∈ {8, 16, . . . , 1024},
log q ∈ {logN, . . . , 100} and initial noise distribution U({−B, . . . ,B}) for B ∈ {1, 2, 3},
and set the remaining parameters so that the above security condition (2) is satisfied.
Therefore, for the “ideal w/o CRT” scheme we do not check whether the soundness
proof of the protocol works with the parameters set. Even with this advantage given,
we see from Table 5.2 that our range proof, as expected, has approximately the same
proof length as “ideal w/o CRT”, and also achieves a significant speed-up as the ring
dimension as well as the number of FFT levels supported is higher. One can see from
[LS18, Table 2] that going from 2 levels of FFT to 6 levels of FFT alone results in a
speedup of a factor more than 3.

When we allow the ring Rq to split into more than 64 factors, then the 64 subrings
in which the message bits are encoded will not be fields and the structure of Rq is lost
in these subrings. We are currently unable to make the soundness proof of the binary
ZKP go through in these subrings, whose structure is unclear. On the other hand, we
can make the binary proof work both in Rq using our new result (Lemma 5.5) and
in any field. Thus, we allow Rq to split into exactly logN fields for a range proof of
width N , which also gives the invertibility of challenges and challenge differences at
no cost.

The reason why the scheme with “norm-optimal” challenges cannot split into more
than 22 = 4 factors is because the invertibility of polynomials with coefficients as large
as 216 is required when one relies solely on the results of [LS18].

5.2.3 “NTT-friendly” tools for fully-splitting rings

[LS18] studies in detail how cyclotomic rings split and the required invertibility con-
ditions for short ring elements. A main motivation in [LS18] for the invertibility of
short elements can be sketched as follows. In the hope of proving knowledge of a
secret s (which is usually a message-randomness pair (m, r)) that satisfies a certain
relation g(s) = t for public homomorphic function g and public t, one-shot proofs can
only convince the verifier of knowledge of s̄ such that g(s̄) = x̄t, where x̄ = x− x′ for
some (distinct) challenges x, x′. If g is a commitment scheme and one later opens t
to a valid s′ such that g(s′) = t, then one can show that s′ = s̄/x̄ using the binding
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property of the commitment scheme provided that x̄ is invertible. In our protocols,
however, the relaxed relation proves knowledge of a secret message m such that

g′(x̄m) = x̄t′

where g′ and t′ are the parts dependent on the message (see Definitions 5.6 and 5.14).
When one gets two relaxed openings (x̄0,m0) and (x̄1,m1), we have

g′(x̄0m0) = x̄0t
′

g′(x̄1m1) = x̄1t
′ =⇒

g′(x̄1x̄0m0) = x̄1x̄0t
′

g′(x̄0x̄1m1) = x̄0x̄1t
′ =⇒ x̄1x̄0m0 = x̄0x̄1m1, (5.3)

due to the binding property of the commitment scheme. On contrary to the invert-
ibility requirement, if the norm of each term is small relative to q, which is often the
case, we use our new result Lemma 5.5 to show that,

x̄0x̄1(m0 −m1) = 0 in Zq[X]/(Xd + 1) =⇒ m0 = m1. (5.4)

That is, we can conclude the equality of two message openings even for non-invertible
challenge differences. The lemma only requires q to be sufficiently large without
putting any condition on its “shape”, and thus enables the use of an “NTT-friendly”
modulus q. Next, we initiate our detailed discussion on the new techniques.

5.3 One-Shot Proofs for Non-Linear Polynomial Relations

In this section, we focus on lattice-based zero-knowledge proofs in a general frame-
work using homomorphic commitments, and introduce our techniques to get efficient
proofs. Even though such a setting is also mostly shared with DL-based Σ-protocols
using homomorphic commitments, the main challenges described here are not encoun-
tered in those cases. Since our main concern is about the soundness of the protocol,
in this section, we omit the discussion about the zero-knowledge property, which is
later obtained using a standard rejection sampling technique. We always consider
homomorphic commitments when referring to “commitment” and assume that all the
elements are in a ring R.

5.3.1 The case for linear relations (2-special soundness)

If we investigate the (underlying) one-shot Σ-protocols from [Lyu09, Lyu12, BKLP15,
BDL+18], we see the following. The common input of the protocol is a commitment
C1 to the prover’s witness and the prover sends an initial commitment C0.5 Then, the
verifier sends a random challenge x← C, which is responded by the prover as (f , z),
and (f , z) is used by the verifier as a message-randomness pair for a commitment
computation.6 More precisely, the verification checks if C0 + xC1 = Comck (f ; z)
holds and f , z have small norm. This is equivalent to the structure represented in
Protocol 5.1 for k = 1. From here, when the extractor gets two valid protocol tran-
scripts (C0, x0,f0, z0), (C0, x1,f1, z1) using the same initial message C0, and different

5The reason behind indexing becomes clear in what follows.
6In certain proofs, the use of UMC allows the prover to respond only with the randomness part

z. In such a case, f need not be transmitted and can be assumed to be set appropriately by the
verifier.
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P((ck, C0, . . . , Ck), (mk, rk)) V(ck, C0, . . . , Ck)

x x← C

f , z ← F (· · · ) f , z

‖f‖
?

≤ Tf , ‖z‖
?

≤ Tz

C0 + xC1 + · · ·+ xkCk
?
= Comck (f ; z)

Protocol 5.1: Structure of a (k + 1)-special sound Σ-protocol. Tf , Tz ∈ R+ are some
pre-determined values that vary among different proofs.

challenges x0 and x1, the extractor obtains

C0 + x0C1 = Comck (f0; z0)

C0 + x1C1 = Comck (f1; z1)
=⇒ (x1 − x0)C1 = Comck (f1 − f0; z1 − z0) . (5.5)

At this stage, it is not possible to obtain a valid exact opening of C1 unless (x1−x0)−1 is
guaranteed to be short due to the shortness requirements of valid openings for lattice-
based commitment schemes.7 Unless ensured by design, there is no particular reason
why the inverse term (x1 − x0)−1 would be short. In the current state of affairs, the
largest set of challenges with short challenge difference inverses is monomial challenges
[BCK+14] used with ring variants of lattice assumptions. Here, only 2(x1 − x0)−1 is
guaranteed to be short and thus the extractor can only get the openings of 2C1. As
discussed previously, for a ring dimension of d, the cardinality of the monomial chal-
lenge space is only 2d, which is typically smaller than 212 in practice. This small
challenge space problem causes major efficiency drawbacks in terms of both computa-
tion and communication as the protocol is required to be repeated many times to get
a negligible soundness error (that is, the same computation and communication steps
are repeated multiple times, resulting in a multi-fold increase in both computation
and communication). The situation is even worse in terms of the number of repeti-
tions when binary challenges or Stern’s framework [Ste96] is used where the protocol
is required to be repeated at least λ times for λ-bit security.

The idea for a one-shot proof is to make use of (5.5) without any inverse com-
putation by observing that (f1 − f0, z1 − z0) is a valid opening of (x1 − x0)C1 as
long as f1 − f0 and z1 − z0 are short, which is ensured by norm checks on f , z in
each verification. If one can prove that having this relaxed case is sufficient and also
violates the binding property of the commitment (i.e., that it allows one to solve a
computationally hard problem), then the soundness of the protocol is achieved (with a
relaxed relation R′ as in Definition 3.6) with no challenge difference inverses involved.
This eliminates the need for challenge differences to have short inverses and enables
one to use exponentially large challenge spaces, resulting in one-shot proofs. The
main technical difficulty here is handling the soundness gap, where the extractor only
obtains an exact opening of (x1 − x0)C1 (rather than C1, which is the commitment
to the prover’s witness).

7Recall that UMC allows an unbounded message opening, but still the randomness is required to
be short.
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5.3.2 Generalisation to degree k > 1 ((k + 1)-special soundness)

As can be seen from (5.5), the 2-special sound case is quite restrictive as it only
allows witness extraction from linear (first degree) relations. On the other hand,
the ability to work with non-linear relations is a must in recent efficient proofs
[GK15, BCC+15, BCC+16, BBB+18], which renders the existing lattice-based one-
shot techniques inapplicable. Therefore, we generalise our setting, and suppose that
we have a degree-k polynomial relation ((k + 1)-special sound Σ-protocol), k ≥ 1,
with the structure given in Protocol 5.1. Note that since the extractor only knows
that verification steps hold, unaware of how any component is generated, other steps
but those in the verification is not important. Therefore, we write all the Ci’s as
a common input whereas in the actual protocol a subset of them can be generated
during a protocol run. The commitment to the prover’s witness (mk, rk) is Ck.

The witness extraction, in this case, works by the extractor obtaining k + 1 ac-
cepting protocol transcripts for distinct challenges x0, . . . , xk with the same input
(C0, . . . , Ck), and responses (f0, z0), . . . , (fk, zk), represented as below.

1 x0 x2
0 · · · xk0

1 x1 x2
1 · · · xk1

...
...

...
. . .

...
1 xk x2

k · · · xkk

 ·


C0

C1
...
Ck

 =


Comck (f0; z0)
Comck (f1; z1)

...
Comck (fk; zk)

 . (5.6)

We have seen that using the aforementioned relaxed opening approach, one can extract
a witness from a linear relation (5.5) in one shot. Now a natural generalisation is to
ask “Can we extract a witness from a non-linear relation (5.6) as in Protocol 5.1 in
one shot?”
Naive approach and previous multi-shot approach. Denoting (5.6) as V ·c = b,
the matrix V is a Vandermonde matrix. A straightforward idea to obtain the openings
of Ci’s is to multiply both sides of (5.6) by V −1, which gives c = V −1 · b. From here,
using the homomorphic properties of the commitment scheme, we can get potential
“openings” of Ci’s. However, one needs to make sure that V −1 exists over R and that
it has short entries so that these “openings” are valid. This is exactly the problem
addressed in Section 4.1.2.

The approach in Section 4.1.2 was by making use of monomial challenges from
[BCK+14]. Using the structure of V −1 in (3.4), we argued that the entries in 2kV −1

are short by the fact that doubled inverse of challenge differences (i.e., 2(xj − xi)−1)
are short when monomial challenges are used. Thus, this approach still maintains the
drawback of requiring multiple protocol repetitions to achieve a negligible soundness
error, and does not address our question in this chapter.
One-shot solution. Now, let us see how we can develop a one-shot proof technique
for non-linear relations. Using (3.2), we multiply both sides of (5.6) by adj(V ), and
obtain

adj(V ) · V · c = adj(V ) · b =⇒ det(V ) · c = adj(V ) · b. (5.7)

Note that det(V ) is just some scalar in R, and we obtain potential relaxed “openings”
of Ci’s as a result of the multiplication adj(V ) · b. In particular, for the commitment
Ck of the witness, we have

det(V ) · Ck =
k∑
i=0

Γi · Comck (f i; zi) = Comck

(
k∑
i=0

Γi · f i;
k∑
i=0

Γi · zi

)
, (5.8)

where Γi = (−1)i+k
∏

0≤l<j≤k∧j,l 6=i(xj−xl) by Fact 3.18. As a result, we get a relaxed
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opening of Ck, or more precisely, an exact opening of det(V ) · Ck as (m̂k, r̂k) =(∑k
i=0 Γif i,

∑k
i=0 Γizi

)
. Provided that the norms of m̂k and r̂k are small, this gives a

valid opening and thus can be related to a hard lattice problem (M-SIS, in particular).
It is important to observe that m̂k and r̂k do not involve any inverse term and can be
guaranteed to be short by ensuring that Γi’s are short. The opening of other Ci’s can
also be recovered analogously, but the case for Ck is sufficient for our applications.

When k = 1, i.e., when the protocol is 2-special sound, det(V ) = (x1 − x0) and
(Γ0,Γ1) = (−1, 1). Therefore, we exactly obtain (5.5) as a special case of (5.8) with
k = 1. That is, we get the results of the previous approaches from [Lyu09, Lyu12,
BKLP15, BDL+18] as a special case of ours.

5.3.3 New tools for compact proofs

Let us analyse our generalised solution and introduce our new tools to get compact
proofs. The results can be easily used in other protocols that use a challenge space of
the form in (5.9) as they are independent of the low-level details of a protocol. Since
the most commonly used challenge spaces (e.g., in [BDL+18, BLO18, dPLS18, LN17,
LS18]) for one-shot proofs are special cases of (5.9), our results are widely applicable.

Let R = R = Z[X]/(Xd + 1) and Rq = Zq[X]/(Xd + 1) for q ∈ Z+. For w ≤ d
and p ≤ q/2, let Cdw,p be the challenge space defined as

Cdw,p = {x ∈ Z[X] : deg(x) < d ∧ HW(x) = w ∧ ‖x‖
∞

= p }. (5.9)

It is easy to observe that ‖x‖
1
≤ pw for any x ∈ Cdw,p and |Cdw,p| =

(
d
w

)
· (2p)w, which

is, for example, larger than 2256 for (d,w, p) = (256, 60, 1). We define ∆Cdw,p to be the
set of challenge differences excluding zero.

Bound on the product of challenge differences.
Lemma 5.1. For any y1, . . . , yn ∈ ∆Cdw,p, the following holds∥∥∥∥∥

n∏
i=1

yi

∥∥∥∥∥
∞

≤ (2p)n · wn−1, and

∥∥∥∥∥
n∏
i=1

yi

∥∥∥∥∥ ≤ √d · (2p)n · wn−1.

Proof. Since ‖x‖
∞
≤ p and ‖x‖

1
≤ pw for all x ∈ Cdw,p, we have ‖y‖

∞
≤ 2p and

‖y‖
1
≤ 2pw for all y ∈ ∆Cdw,p. Therefore, using Lemma 3.19, we get∥∥∥∥∥

n∏
i=1

yi

∥∥∥∥∥
∞

≤
n−1∏
i=1

‖yi‖1 · ‖yn‖∞ ≤ (2p)n · wn−1.

Therefore, we also have∥∥∥∥∥
n∏
i=1

yi

∥∥∥∥∥ ≤ √d ·
∥∥∥∥∥
n∏
i=1

yi

∥∥∥∥∥
∞

≤
√
d · (2p)n · wn−1.

Bound on the relaxation factor: det(V ).

Lemma 5.2. Let κ =
(
k+1

2

)
= k(k+1)

2 . For the (k + 1)-dimensional Vandermonde
matrix V defined in (5.6) using the challenge space Cdw,p in (5.9),

‖det(V )‖
∞
≤ (2p)κ · wκ−1.



60 Chapter 5. One-Shot Algebraic Proofs and Applications

Proof. By Fact 3.17, det(V ) has κ =
(
k+1

2

)
multiplicands where each multiplicand is

in ∆Cdw,p. The result follows from Lemma 5.1.

Bound on the extracted witness norm: adj(V )× (openings of b).

Lemma 5.3. For k ≥ 1 and (m̂k, r̂k) =
(∑k

i=0 Γif i,
∑k

i=0 Γizi

)
where Γi =∏

0≤l<j≤k∧j,l 6=i(xj − xl), the following holds, for κ′ = k(k − 1)/2,

• ‖m̂k‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 ·maxi ‖f i‖, and
• ‖r̂k‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 ·maxi ‖zi‖.

Proof. Let κ′ = k(k−1)
2 . We have

‖m̂k‖ =

∥∥∥∥∥
k∑
i=0

Γif i

∥∥∥∥∥ ≤ (k + 1) ·max
i
‖Γif i‖ ≤ (k + 1) ·

√
d ·max

i
‖Γi‖ ·max

i
‖f i‖

≤ (k + 1) · d · (2p)κ′ ·wκ′−1 ·max
i
‖f i‖ , (by Fact 3.18 and Lemma 5.1).

The bound for r̂k follows in a similar manner.

Reducing extracted witness norm in proofs with non-linear relations. In
some proofs with non-linear polynomial relations such as our one-out-of-many proof,
the extractor obtains an opening with a relaxation factor y of some component that
is witness of a sub-protocol. Since the invertibility of y is not ensured, when this
opening is used in the non-linear polynomial relation, the relaxation factor also gets
exponentiated by the degree k > 1. In the end, instead of getting det(V ) as the overall
relaxation factor, we end up with relaxation factor yk · det(V ). We use the lemma
below to show that even though we cannot completely eliminate the extra term yk,
we can eliminate its exponent k. This results in obtaining an extracted witness with
a smaller norm, and in turn, helps in getting shorter proofs.

Lemma 5.4. Let f, g ∈ R = Z[X]/(Xd + 1). If f · gk = 0 in Rq = Zq[X]/(Xd + 1)
for some k ∈ Z+, then f · g = 0 in Rq.

Proof. If k = 1, then the result is clear. Assume that k ≥ 2. Suppose that Xd + 1
factors into n ≤ d irreducible polynomials α1, . . . , αn modulo q. Let S be the set of
indices i such that gk = 0 mod (q, αi) and ε = |S|. (Note that S may be an empty
set and ε = 0).

(1) From the definition of S and the fact that f · gk = 0 over Rq, we have f = 0 mod
(q, αj) for all j /∈ S.

(2) For any i ∈ S, gk = 0 mod (q, αi) by the definition of S. Since αi is irreducible
modulo q, it is impossible to have this property without having g = 0 mod (q, αi).

Thus, for all i /∈ S, f · g = 0 mod (q, αi) by (1). And, for all i ∈ S, f · g = 0 mod
(q, αi) by (2). By the Chinese Remainder Theorem, f · g = 0 over Rq.

5.4 New Techniques for Faster Lattice-Based Proofs and
Application to Range Proofs

In this section, we go into the details of our new techniques to get computation-efficient
proofs. We first show a lemma that enables one to prove the following: if a product
of polynomials is equal to zero in Rq and the norm of each factor is sufficiently small,
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then there must be a factor which is exactly equal to zero. This result works for any
sufficiently large q, enabling the use of a modulus suitable for fast computation such
as an “NTT-friendly” modulus.

Lemma 5.5. Let f1, . . . , fn ∈ R for some n ≥ 1. If
∏n
i=1 fi = 0 in Rq and q/2 >

‖f1‖∞ ·
∏n
i=2 ‖fi‖1, then there exists 1 ≤ j ≤ n such that fj = 0.

Proof. Using Lemma 3.19 and the assumption on q, we have∥∥∥∥∥
s∏
i=1

fi

∥∥∥∥∥
∞

≤ ‖f1‖∞ ·
n∏
i=2

‖fi‖1 < q/2.

Therefore,
∏n
i=1 fi = 0 holds over R. Since Xd + 1 is irreducible over Q, (at least)

one of the multiplicand fi’s must be zero.

Note that Lemma 5.5 requires all the multiplicands to have bounded norm whereas
there is no such requirement in Lemma 5.4. Therefore, we are unable to use Lemma
5.5 for the purpose of the use of Lemma 5.4 described previously as there is no norm-
bound on a multiplicand in the place Lemma 5.4 is used (see how these lemmas are
used in the soundness proofs for more details). Lemma 5.5 is used in the binary
proof to argue that y0y1y2b̂(y− b̂) = 0 in Rq for some (non-zero) challenge differences
y, y0, y1, y2 implies b̂ = yb for a bit b ∈ {0, 1} without requiring invertibility of any
challenge difference (see Section 5.5.1).

5.4.1 Supporting inter-slot operations on CRT-packed messages

Now, we can go into the details of our CRT packing technique. Define f = Encx(m) =
x ·m + ρ ∈ Rq as an encoding of a message m under a challenge x. This encoding
is widely used in proofs of knowledge as a “masked” response to a challenge x. An
important advantage of this encoding over a commitment is that the storage cost of
an encoding is at most d log q whereas that of a commitment is nd log q for HMC and
(n+ v)d log q for UMC. Therefore, for a typical module rank of, say, 4, a commitment
is 4× more costly than an encoding.

There are known methods to choose a modulus q such that Xd + 1 splits into s
factors, in which case, Rq splits into s fields and we get Rq = R

(0)
q × · · · ×R(s−1)

q . In
the case that Xd+1 splits into more than s factors, but we only want to use s slots, we
still have Rq = R

(0)
q ×· · ·×R(s−1)

q where R(i)
q = Zq[X]/(P (i)(X)) for some polynomial

P (i)(X) of degree d/s. However, R(i)
q ’s are not a field in that case as P (i)(X)’s are

not irreducible over Zq.
As discussed previously, when we use these s slots to pack s messages in a single

ring element, we have

f = Encx(m) = x ·m+ ρ = 〈x0m0 + ρ0, . . . , xs−1ms−1 + ρs−1〉, (5.10)

where x = 〈x0, . . . , xs−1〉, m = 〈m0, . . . ,ms−1〉 and ρ = 〈ρ0, . . . , ρs−1〉 in the CRT-
packed representation. In this case, parallel additions are easy as

Encx(〈m0, . . . ,ms−1〉)+Encx(〈m′0, . . . ,m′s−1〉) = Encx(〈m0 +m′0, . . . ,ms−1 +m′s−1〉).

Parallel multiplication is also possible as Encx(m) · Encx(m′) = m ·m′ · x2 + c1x+ c0

for c0, c1 only dependent on m,m′, ρ, ρ′, all of which are known to the prover in
advance of his first move. Therefore, the prover can prove that the coefficient of x2
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is the product of m and m′, and thus proving the relation in parallel for all CRT
slots.8 Addition and multiplication alone, however, do not provide a complete set of
operations (see [GHS12] for a discussion in the context of FHE). Given an encoding
of m, our main requirement is to have the ability to extract all encodings in the
CRT slots of m in a way that allows further operations among extracted encodings.
That is, all extracted encodings must be under the same challenge x, which translates
to requiring x = 〈x, . . . , x〉 for x ∈

⋂s−1
i=0 R

(i)
q . As a result, when we use s slots,

the degree of a challenge can be at most d/s − 1. With this, from an encoding
f = Encx(〈m0, . . . ,ms−1〉), anyone can extract encodings by computing

fi := f mod (q, P (i)(X)) = x ·mi + ρi = Encx(mi)

for all 0 ≤ i ≤ s − 1. Conversely, given encoding Encx(mi)’s for all 0 ≤ i ≤ s − 1,
anyone can compute an encoding Encx(〈m0, . . . ,ms−1〉).

Even more, with this choice of the challenge x = 〈x, . . . , x〉 for x ∈
⋂s−1
i=0 R

(i)
q , we

get invariance of the challenge under any permutation σ on CRT slots. That is, for
any permutation σ, we have σ(Encx(m)) = Encx(σ(m)). From here, one can perform
any inter-slot operation, and may even not require packing/unpacking of the messages
in some applications. In our application to the range proof, extraction of the slots
is sufficient and we refer to [GHS12] for more on permutations. In our approach, an
encoding and a commitment per message slot costs, respectively, at most d log q/s
bits and (n+ v) log q/s bits, which are much cheaper than a commitment to a single
message.

5.4.2 Using CRT-packed inter-slot operations in relaxed range proof

In this section, we introduce the first application of our ideas to Σ-protocols where the
proof is relaxed as described in Section 3.2.3. In all of our protocols in this chapter, the
prover aborts if any rejection sampling step (Algorithm 3.2) returns 0, and our proto-
cols in this chapter are honest-verifier zero-knowledge for non-aborting interactions.
For most of the practical applications, the protocol is made non-interactive, and thus
having only non-aborting protocols with the zero-knowledge property does not cause
an issue. Nevertheless, the protocols can be easily adapted to be zero-knowledge for
the aborting cases using a standard technique from [BCK+14] as done in Chapter 4.

Our first application is a range proof that allows an efficient aggregation in the
sense that the prover can prove that a set of committed values packed in a single
commitment falls within a set of certain ranges. Let ψ ∈ Z+, `(i) ∈ [0, Ni) be prover’s
values for 1 ≤ i ≤ ψ and Ni = 2ki with k = k1+· · ·+kψ, and s be the smallest power of
two such that s ≥ max{k1, . . . , kψ}. For simplicity, we use base β = 2, but the result
can be generalized to other base values β. The binary case gives the most compact
proofs in practice. Assume that Rq = Zq[X]/(Xd + 1) splits into exactly s fields
such that Rq = R

(0)
q × · · · × R(s−1)

q and R(i)
q = Zq[X]/(P (i)(X)) for some irreducible

polynomial P (i)(X) of degree d/s for all 0 ≤ i < s. Write `(i) = (b
(i)
0 , . . . , b

(i)
ki−1) in the

binary representation and define `(i)crti = 〈b(i)0 , . . . , b
(i)
ki−1〉. The exact relations proved

by our “simultaneous” range proof is given in Definition 5.6. We show in Section 5.6.2
that the relaxed range proof is sufficient for an application in anonymous credentials.
Such a “simultaneous” range proof is useful when showing a credential that a set of
attributes such as age, expiry date, residential postcode etc. fall into some respective

8We believe this is the application of CRT mentioned in [LS18].
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ranges, and this can be achieved with a single commitment and a single proof using
our techniques.

Definition 5.6. The following defines the relations for Protocol 5.2 for T , T̂ ∈ R+.

Rrange(T ) =

{
((ck, V ), (`(1), . . . , `(ψ), r)) : ‖r‖ ≤ T ∧

V = Comck

(
`(1), . . . , `(ψ); r

)
∧ `(i) ∈ [0, Ni) ∀1 ≤ i ≤ ψ

}
,

R′range(T̂ ) =

{
((ck, V ), (x̄, `(1), . . . , `(ψ), r̂)) : ‖r̂‖ ≤ T̂ ∧ x̄ ∈ ∆Cd/sw,p ∧
x̄V =Comck

(
x̄`(1), . . . , x̄`(ψ); r̂

)
∧ `(i) ∈ [0, Ni) ∀1 ≤ i ≤ ψ

}
.

The full description of the range proof is given in Protocol 5.2 where the commit-
ment scheme is instantiated with UMC and φ1, φ2 are parameters determining the
rejection sampling rate. The first part of the proof (Steps 4 and 5 in the verification,
and its relevant components) uses the binary proof idea from [BCC+15] to show that
f

(i)
j ’s are encodings of bits, but the proof is done in parallel CRT slots. Observe in Pro-

tocol 5.2 that f (i) = x · 〈b(i)0 , . . . , b
(i)
ki−1,0

s−ki〉+ 〈a(i)
0 , . . . , a

(i)
ki−1,0

s−ki〉 = x · `(i)crti + a
(i)
crti

where 0s−ki denotes a zero vector of dimension s − ki. Therefore, we have, for each
1 ≤ i ≤ ψ,

f (i)(x− f (i)) = x2 · `(i)crti(1− `
(i)
crti) + x · a(i)

crti(1− 2`
(i)
crti)− (a

(i)
crti)

2.

Since there is no x2 term (i.e., the coefficient of x2 is zero) on the left hand side of Step
5 in the verification, we get `(i)crti(1 − `

(i)
crti) = 0 when Step 5 is satisfied for 3 distinct

challenges x. This gives us

〈b(i)0 (1− b(i)0 ), . . . , b
(i)
ki−1(1− b(i)ki−1),0s−ki〉 = 0 =⇒ b

(i)
j (1− b(i)j ) = 0 in R(j)

q (5.11)

for each 0 ≤ j < s−ki. This fact is then used to prove that b(i)j ’s are binary. However,
since the proof is relaxed, we need to deal with more complicated issues and give the
full details in the proof of Theorem 5.8 below. The second part of the proof is a
standard argument to show that the bits b(i)0 , . . . , b

(i)
ki−1 construct a value `(i) for each

1 ≤ i ≤ ψ.

Remark 5.7. The first rejection sampling at Step 14 of Protocol 5.2 is not necessary
as UMC allows unbounded-length messages. However, when rejection sampling is
done, the bitsize of f (i)

j ’s are smaller than d log q/s, which is the bitsize of a random

element in R
(j)
q . Further, there is no mod q reduction in the prover’s response, and

also no mod P (j)(X) at Step 13 of Protocol 5.2 since b(i)j ’s are binary.

Theorem 5.8. Let γrange = 4
√

3φ2pwBmd. Assume q > max{N1, . . . , Nψ}, d ≥
128,9 Rq splits into exactly s fields and UMC is hiding and γrange-binding. Then,
Protocol 5.2 is a 3-special sound Σ-protocol (as in Definition 3.6) for the relations
Rrange(B

√
md) and R′range(γrange) with a completeness error 1 − 1/(µ(φ1)µ(φ2)) for

µ(·) defined in Lemma 3.16.

Proof. Let k = k1 + · · ·+ kψ.
Completeness: The prover responds with probability 1/(µ(φ1)µ(φ2)) + ε for |ε| ≤
2 ·2−100 by Lemma 3.16. Since there is at most k1 + · · ·+ks = k-many 1’s in b and the

9The assumption d ≥ 128 is put merely to use a constant factor of 2 as in Lemma 3.15 when
bounding the Euclidean norm of a vector following normal distribution.
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Prange((ck, V ), (`(1), . . . , `(ψ); r)) Vrange(ck, V )
1: rb, rc ← {−B, . . . ,B}md

2: ra, rd, re ← Dmd
φ2T2

for T2 = pwB
√

3md

3: for i = 1, . . . , ψ do

4: a
(i)
0 , . . . , a

(i)
ki−1 ← D

d/s
φ1T1

for T1 = p
√
kw

5: a
(i)
crti = CRT

−1(a
(i)
0 , . . . , a

(i)
ki−1,0

s−ki)

6: `
(i)
crti = CRT

−1(b
(i)
0 , . . . , b

(i)
ki−1,0

s−ki)

7: B = Comck

(
`
(1)
crti, . . . , `

(ψ)
crti; rb

)
8: A = Comck

(
a
(1)
crti, . . . , a

(ψ)
crti; ra

)
9: C = Comck

(
a
(1)
crti(1− 2`

(1)
crti), . . . , a

(ψ)
crti(1− 2`

(ψ)
crti); rc

)
10: D = Comck

(
−(a

(1)
crti)

2, . . . ,−(a
(ψ)
crti)

2; rd
)

11: E = Comck (e; re)
A,B,C,D,E

x x← Cd
′

w,p for d′ = d/s

12: for i ∈ [1, ψ], j ∈ [0, ki) do

13: f
(i)
j = x · b(i)j + a

(i)
j

f crt := (f
(1)
0 , . . . , f

(ψ)
kψ−1)

b := (b
(1)
0 , . . . , b

(ψ)
kψ−1)

14: Rej(f crt, xb, φ1, p
√
kw)

15: zb = x · rb + ra, zc = x · rc + rd

16: z = x · r + re

17: Rej((zb,zc,z), x(rb, rc, r), φ2, T2)

If aborted, return ⊥ . f crt, zb, zc, z

1: for i = 1, . . . , ψ do

2: f (i) = CRT
−1(f

(i)
0 , . . . , f

(i)
ki−1,0

s−ki)

3: ‖zb‖ , ‖zc‖ , ‖z‖
?

≤ 2φ2T2

√
md

4: xB +A
?
= Comck

(
f (0), . . . , f (ψ); zb

)
g := (f (0)(x− f (0)), . . . , f (ψ)(x− f (ψ)))

5: xC +D
?
= Comck (g; zc)

6: xV + E
?
= Comck (v; z)

Protocol 5.2: Σ-protocol for Rrange and R′range. The vectors e and v are defined below.

e :=

(
k1−1∑
j=0

2ja
(1)
j , . . . ,

kψ−1∑
j=0

2ja
(ψ)
j

)
, v :=

(
k1−1∑
j=0

2jf
(1)
j , . . . ,

kψ−1∑
j=0

2jf
(ψ)
j

)
over Rq.
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rest is zero, there will be at most kw non-zero coefficients in xb where each coefficient
is in {−p, . . . , p}. Thus, we have

‖xb‖ =
∥∥∥x(b

(1)
0 , . . . , b

(ψ)
kψ−1)

∥∥∥ ≤ p√kw = T1.

Also, we have, using Lemma 3.19,

‖x(rb, rc, r)‖ ≤ ‖x(rb, rc, r)‖
∞

√
3md ≤ ‖x‖

1
‖(r, rc)‖∞

√
3md ≤ pwB

√
3md = T2.

Hence, by Lemma 3.16, the distributions of f (i)
j ’s are statistically close to Dd/s

φ1T1
and

those of zb, zc, z are statistically close to Dmd
φ2T2

(within statistical distance 2−100 in
both cases). Therefore, since d ≥ 128, by Lemma 3.15 except with probability at most
2−128, we have

‖zb‖ , ‖zc‖ , ‖z‖ ≤ 2 · φ2pwB
√

3md ·
√
md = 2

√
3φ2pwBmd.

Steps 4 and 5 of the verification follow by a straightforward investigation. For the last
step of the verification, we have, for each 1 ≤ i ≤ ψ,

ψ∑
j=0

2jf
(i)
j = x

ψ∑
j=0

2jb
(i)
j +

ψ∑
j=0

2ja
(i)
j = x · `(i) +

ψ∑
j=0

2ja
(i)
j . (5.12)

Therefore, we get

Comck (v; z)− E = Comck (v − e; z − re)=Comck

(
x`(1), . . . , x`(ψ); xr

)
= xV.

SHVZK: Assume that the protocol is not aborted. The simulator sets C =
Comck (0; rc) and B = Comck (0; rb) for rc, rb ← {−B, . . . ,B}md. Then, it picks
f

(i)
j ← D

d/s
φ1T1

for all 1 ≤ i ≤ ψ and 0 ≤ j ≤ ki − 1, and also zb, zc, z ← Dmd
φ2T2

.
Then, it computes f = (f (1), . . . , f (ψ)) as in the verification of Protocol 5.2. Fi-
nally, it computes A = Comck (f ; zb) − xB, D = Comck (g; zc) − xC and E =
Comck (v; z) − xV where g,v are set as in Protocol 5.2. It outputs the simulated
transcript ((A,B,C,D,E), x, (f crt, zb, zc, z)) where f crt := (f

(1)
0 , . . . , f

(ψ)
kψ−1).

The distribution of simulated (f crt, zb, zc, z) is statistically close to the real dis-
tribution by Lemma 3.16 as argued in the completeness proof. Conditioned on
(f crt, zb, zc, z, x) and (B,C, V ), simulated (A,D,E)’s distribution is exactly the same
as in the real case. Finally, the distribution of simulated (B,C) is computationally
indistinguishable from the real one by the hiding property of the commitment scheme
(i.e., due to M-LWE).
3-special soundness: Given 3 accepting protocol transcripts, we have

(A,B,C,D,E,x,f crt, zb, zc, z),

(A,B,C,D,E,x′,f ′crt, z
′
b, z
′
c, z
′),

(A,B,C,D,E,x′′,f ′′crt, z
′′
b , z
′′
c , z
′′),

with f = (f (1), . . . , f (ψ)), f ′ = (f ′(1), . . . , f ′(ψ)) and f ′′ = (f ′′(1), . . . , f ′′(ψ)) computed
as in the verification. We split the proof into two parts: binary proof and range proof.
Binary proof. By Step 4 in the verification, we have

xB +A = Comck (f ; zb) , (5.13)
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x′B +A = Comck

(
f ′; z′b

)
, (5.14)

x′′B +A = Comck

(
f ′′; z′′b

)
. (5.15)

Subtracting (5.14) from (5.13), we get (x− x′) ·B = Comck

(
f − f ′; zb − z′b

)
. Thus,

for y := x− x′, we get exact valid openings of yB such that

yB = Comck

(
f − f ′; zb − z′b

)
=: Comck

(
b̂; r̂b

)
. (5.16)

Note that ‖r̂b‖ = ‖zb − z′b‖ ≤ 4
√

3φ2pwBmd = γrange, proving the claimed bound for
R′range. Multiplying (5.13) by y and using (5.16) gives

yA = Comck (yf ; yzb)− xyB = Comck

(
yf − xb̂; yzb − xr̂b

)
= Comck

(
xf ′ − x′f ; xz′b − x′zb

)
=: Comck (â; r̂a) .

(5.17)

Observe that yf = xb̂+â by the definition of â. By the Chinese Remainder Theorem,
the equality holds in each CRT slot. Using Step 5 of the verification in a similar
manner, we get exact message openings ĉ and d̂ of yC and yD such that yg = xĉ+ d̂.
Writing these equations coordinate-wise in each CRT slot, we have the following for
all 1 ≤ i ≤ ψ and 0 ≤ j ≤ s− 1

yf
(i)
j = xb̂

(i)
j + â

(i)
j in R(j)

q , and (5.18)

yg
(i)
j = yf

(i)
j (x− f (i)

j ) = xĉ
(i)
j + d̂

(i)
j in R(j)

q , (5.19)

since all the challenges and their differences are the same in each CRT slot. Now,
by the γrange-binding property of UMC, except with negligible probability, the PPT
prover cannot output a new valid exact opening of yA, yB, yC or yD in any of its
rewinds. Thus, except with negligible probability, responses with respect to x′ and x′′

will have the same form. That is, the following holds

yf
′(i)
j = x′b̂

(i)
j + â

(i)
j ,

yf
′′(i)
j = x′′b̂

(i)
j + â

(i)
j ,

yf
′(i)
j (x′ − f ′(i)j ) = x′ĉ

(i)
j + d̂

(i)
j ,

yf
′′(i)
j (x′′ − f ′′(i)j ) = x′′ĉ

(i)
j + d̂

(i)
j ,

in R(j)
q . (5.20)

Now, multiplying (5.19) by y and using (5.18), we get

y·
(
x · ĉ(i)

j + d̂
(i)
j

)
= y ·

(
yf

(i)
j (x− f (i)

j )
)

= yf
(i)
j (yx− yf (i)

j )

= (xb̂
(i)
j + â

(i)
j )(yx− xb̂(i)j − â

(i)
j ) = (xb̂

(i)
j + â

(i)
j )(x(y − b̂(i)j )− â(i)

j )

= x2
[
b̂
(i)
j (y − b̂(i)j )

]
+ x

[
â

(i)
j (y − 2b̂

(i)
j )
]
− (â

(i)
j )2,

(5.21)

and thus

x2
[
b̂
(i)
j (y − b̂(i)j )

]
+ x

[
â

(i)
j (y − 2b̂

(i)
j )− yĉ(i)

j

]
− (â

(i)
j )2 − yd̂(i)

j = 0 in R(j)
q . (5.22)

Repeating the same steps of (5.21) with the equations in (5.20), we get two copies of
(5.22) where x is replaced with x′ in one and with x′′ in the other. That is, we have
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the following system 1 x x2

1 x′ x′2

1 x′′ x′′2

 ·
 −(â

(i)
j )2 − yd̂(i)

j

â
(i)
j (y − 2b̂

(i)
j )− yĉ(i)

j

b̂
(i)
j (y − b̂(i)j )

 = 0 in R(j)
q . (5.23)

Since R(j)
q is a field, the Vandermonde matrix on the left is invertible for distinct

challenges, and we get b̂(i)j (y − b̂(i)j ) = 0, which implies b̂(i)j ∈ {0, y} in a field, i.e.,

b̂
(i)
j = yb

(i)
j for b(i)j ∈ {0, 1}. (5.24)

Range proof. By Step 6 of the verification, we have yV = Comck (v − v′; z − z′).
Multiplying v − v′ by y, we also know that

y · (v − v′) =

k1−1∑
j=0

2j(yf
(1)
j − yf

′(1)
j ), . . . ,

kψ−1∑
j=0

2j(yf
(ψ)
j − yf ′(ψ)

j )


=

k1−1∑
j=0

2j(x− x′)b̂(i)j , . . . ,
kψ−1∑
j=0

2j(x− x′)b̂(ψ)
j

 (by (5.18) and (5.20)),

=

k1−1∑
j=0

2jy2b
(i)
j , . . . ,

kψ−1∑
j=0

2jy2b
(ψ)
j

 (by (5.24)).

Let us focus on a coordinate y ˆ̀(i) of y(v− v′) for any 1 ≤ i ≤ ψ. Since y = 〈y, . . . , y〉
and it is invertible in all R(j)

q ’s, it is invertible in Rq. Then, we have

y ˆ̀(i) = y2
ki−1∑
j=0

2jb
(i)
j︸ ︷︷ ︸

∈[0,Ni−1]

=⇒ ˆ̀(i) = y`(i) for some `(i) ∈ [0, Ni − 1]. (5.25)

As a result, yV = Comck

(
y`(1), . . . , y`(ψ); z − z′

)
where `(1), . . . `(ψ) are in the ranges

[0, N1), . . . , [0, Nψ), respectively. Note that since q > max{N1, . . . , Nψ} there is no
modular reduction performed when computing

∑ki−1
j=0 2jb

(i)
j .

Extension to arbitrary ranges.

We assumed that a range is of the form [0, N) for N = 2k. Our range proof can
be extended to work for arbitrary ranges using standard techniques as follows. For
simplicity, let us assume that ψ = 1, i.e., V is a commitment to a single value `. Our
discussion easily generalises to the case of committing to a set of values. Suppose that
we want to prove ` ∈ [a, b) for b > a+1 and a, b ∈ Z. First, using V ′ = V −Comck (a; 0)
in the protocol proves that `− a ∈ [0, N), i.e., ` ∈ [a,N + a) (this implies that we can
“shift” the range in any suitable way). Now, if b−a can be set so that b−a = N = 2k,
then we are done. Otherwise, we set 2k = N > b − a, and run another range proof
for V ′′ = Comck (b; 0) − V . This proves that b − ` ∈ [0, N), i.e., ` ∈ [b −N, b). As a
result, ` must be in the intersection of [a,N + a) and [b−N, b), i.e., ` ∈ [a, b). Note
that the proved relations are relaxed as in R′range, but they indeed work in this sense.
Suppose that we have a range proof for V1 = V − Comck (a; 0) for the range [0, N1)
and another range proof for V2 = V −Comck (b; 0) for the range [0, N2). Then, these
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prove knowledge of (x̄1, `1, r̂1) and (x̄2, `2, r̂2) such that

Comck (x̄1`1; r̂1) = x̄1V1 = x̄1(V − Comck (a; 0)) ∧ `1 ∈ [0, N1),

Comck (x̄2`2; r̂2) = x̄2V2 = x̄2(V − Comck (b; 0)) ∧ `2 ∈ [0, N2).

Therefore, we have

x̄1V = Comck (x̄1(`1 + a); r̂1) =⇒ x̄2x̄1V = Comck (x̄2x̄1(`1 + a); r̂1) ,

x̄2V = Comck (x̄2(`2 + b); r̂2) =⇒ x̄1x̄2V = Comck (x̄1x̄2(`2 + b); r̂2) .

By the binding property on x̄1x̄2V , the committed messages x̄2x̄1(`1+a) and x̄1x̄2(`2+
b) must be the same. That is, x̄2x̄1(`1 + a) = x̄1x̄2(`2 + b), which implies that
` := `1 + a = `2 + b since x̄1, x̄2 ∈ ∆Cd/sw,p and thus are invertible when Rq splits
into exactly s fields. Hence, ` ∈ [a,N1 + a) ∩ [b,N2 + b), which concludes that the
combination of the proofs behave in an expected manner.

Practical aspects of the range proof.

Let N = βk, and assume we want to prove knowledge of an opening ` of V such that
V = Com(`) and ` ∈ [0, N). The generic way for such a range proof works as follows.
The prover publishes the commitments Com(`j) to the digit `j ’s of `, and proves
that each digit is in {0, . . . , β − 1}, namely a set membership proof. The last step is
then to use the homomorphic properties of the commitment to check that these digits
construct V , i.e., Com(`) =

∑
j β

jCom(`j). Such a proof involves sending at least k
commitments and k masked randomnesses. The β value needs to be small, otherwise
the set membership proof becomes cumbersome (especially in the case of lattice-based
proofs), and in general β = 2 is set and thus k = logN . Doing a range proof for ψ
values, at best, would multiply the number of commitments by ψ. Therefore, the
overall cost would be proportional to at least ψ logNnd log q bits since a commitment
is of size at least nd log q bits.

In our proof, on the other hand, the number of commitments and randomnesses
communicated is constant. More precisely, always 2 commitments10 and 3 random-
nesses are sent, but their dimensions may vary. In total, the range proof length is
(2(n+ v)d log q + ψ logN(d/s)Bf + 3mdBz) bits where Bf , Bz < log q are the bit-
lengths of f (i)

j ’s and z’s, respectively. We have v ≈ ψ and m ≈ 2n+ψ. Therefore, the
overall proof length growth is slower in comparison to the generic approach. In Table
5.2, we provide a comparison of our CRT-packed range proof with an idealised scheme
and one that uses the “norm-optimal” challenges with infinity norm 1 [LS18]. We can
see easily that our range proof provides much better computational efficiency without
any significant compromise in communication size. We also have the invertibility of
the challenge differences in ∆Cd/sw,p. In Tables 5.3, 5.4 and 5.5, we provide the full
parameter setting of the compared range proof methods.

10Note that this happens in the non-interactive case where 5 commitments reduce to 2 commit-
ments. It is standard to exclude from the proof output the commitments (A,D,E in our case) that
are uniquely determined by the remaining components.
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Table 5.2: Comparison of non-interactive range proof sizes (in KB). “Ideal w/o CRT” is a
hypothetical scheme optimised for proof length. FFT denotes the maximum number of FFT
levels supported. Our proof sizes can be slightly reduced at the cost of reducing the FFT

levels.

range width (N) N = 232 N = 264

# of batched proofs (ψ) 1 5 10 (d, FFT) 1 5 10 (d, FFT)
with “norm-optimal”
challenges from [LS18] 161 745 1484 (256, 1) 443 2131 4274 (256, 2)

Ideal w/o CRT 52 113 180 (32, 5) 86 201 302 (16, 4)

Our Work: CRT-packed 58 130 202 (512, 5) 93 216 319 (512, 6)

Table 5.3: The parameter setting of our range proof on [0, 2logN − 1] with CRT-packing
for 128-bit security. B = 1 for all cases. The root Hermite factor for LWE varies in between
1.00399 and 1.00493, and for SIS is ≈ 1.0035. M-SIS and M-LWE dimension parameters are
nd and (m − n − v)d, respectively, for Tables 5.3, 5.4 and 5.5. Here it is harder to balance

the security as the dimension parameters increase as multiples of 512.

logN 32 32 32 64 64 64
ψ 1 5 10 1 5 10

Range Proof Size (KB) 58 130 202 93 216 319

module rank for M-SIS n 2 3 3 2 4 4
com. randomness vector dimension m 7 12 17 9 14 19
poly. ring dimension d 512 512 512 512 512 512
num. of slots in CRT s 16 32 32 32 64 64
com. message vector dimension v 2 5 10 2 5 10
modulus q ≈ 243 ≈ 246 ≈ 247 ≈ 267 ≈ 266 ≈ 267

Hamming weight of challenges w 32 16 16 16 8 8
max. abs. coefficient of challenges p 128 32768 32768 32768 231 231

Table 5.4: The parameter setting of “Ideal w/o CRT” range proof on [0, 2logN−1] for 128-bit
security. B = 1 and v = ψ logN for all cases. The root Hermite factor for SIS and LWE are
≈ 1.0045. There is no additional assumption on the parameters to make sure that the binary
proof works. The only assumption is q ≥ 2logN and the parameters are set to make UMC

hiding and γrange-binding.

logN 32 32 32 64 64 64
ψ 1 5 10 1 5 10

Range Proof Size (KB) 52 113 180 86 201 302

n 34 89 92 52 210 213
m 107 345 508 275 847 1170
d 32 16 16 16 8 8
q ≈ 232 ≈ 238 ≈ 238 ≈ 264 ≈ 264 ≈ 264

w 32 16 16 16 8 8
p 128 32768 32768 32768 231 231
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Table 5.5: The parameter setting of range proof on [0, 2logN − 1] using “norm-optimal”
challenges with infinity norm 1 for 128-bit security. B = 1 and v = ψ logN for all cases. The
root Hermite factor for LWE is ≈ 1.0045. For SIS, the root Hermite factor is in between
1.0030 and 1.0045. When the invertibility results of [LS18] are used, q may actually need to
be larger to ensure that b̂(y − b̂) = 0 in Rq implies b̂ ∈ {0, y}. But, we ignore this in favor of

the method.

logN 32 32 32 64 64 64
ψ 1 5 10 1 5 10

Range Proof Size (KB) 161 745 1484 443 2131 4274

n 3 4 2 2 4 3
m 40 169 332 76 332 653
d 256 256 256 256 256 256
q ≈ 232 ≈ 232 ≈ 232 ≈ 264 ≈ 264 ≈ 264

w 60 60 60 60 60 60
p 1 1 1 1 1 1

5.5 Efficient One-Shot Proofs for Other Useful Relations

In this section, we apply our one-shot proof techniques to construct efficient ZKPs for
useful relations such as a binary proof, a one-out-of-many proof and a set membership
proof. We instantiate the commitment scheme with HMC in HNF in this section.

5.5.1 Relaxed proof of commitment to sequences of bits

Using our new techniques, we extend the multi-shot proof of commitment to bits
from Section 4.2.1 to a one-shot proof. The new protocol proves a weaker relation
but, the relaxation is tailored in a way that the soundness proof of the higher level
proofs (Protocol 5.4) still work. The protocol proves that a commitment B opens to
sequences of binary values such that there is a single 1 in each sequence, i.e., Hamming
weight of each sequence is exactly 1. The relations of our one-shot binary proof are
defined in Definition 5.9 where b = (b0,0, . . . , bk−1,β−1) for k ≥ 1, β ≥ 2.

Definition 5.9. The following defines the relations for Protocol 5.3 for T , T̂ ∈ R+.

Rbin(T ) =

{
((ck,B), (b, r)) : ‖r‖ ≤ T ∧ (bj,i ∈ {0, 1} ∀j, i)
∧ B = Comck (b; r) ∧ (

∑β−1
i=0 bj,i = 1 ∀j)

}
.

R′bin(T̂ ) =

{
((ck,B), (y, b, r̂)) : ‖r̂‖ ≤ T̂ ∧ (bj,i ∈ {0, 1} ∀j, i) ∧

y ∈ ∆Cdw,p ∧ yB = Comck (yb; r̂) ∧ (
∑β−1

i=0 bj,i = 1 ∀j)

}
.

The idea of the binary proof (combined with the CRT-packing technique) is already
used in Protocol 5.2. The condition on the Hamming weight is the difference to
Protocol 5.2 and is handled with a small modification. We describe the full protocol
in Protocol 5.3 where the commitment scheme is instantiated with HMC in HNF and
also summarise the results below. As before, the norms of some components in the
protocol are bounded separately in Lemmas 5.11 and 5.12.

Theorem 5.10. Let γbin = 2p
√
dw
(
16φ4

1p
4d3k3w2β(β + 1) + 12φ2

2p
2w2B2m2d2

)1/2.
Assume that d ≥ 128, q/2 > 27φ2

1p
5w3d2kβ and HMC in HNF is hiding and γbin-

binding. Then, Protocol 5.3 is a 3-special sound Σ-protocol (as in Definition 3.6)
for the relations Rbin(B

√
md) and R′bin(4

√
2φ2pwBmd) with a completeness error

1− 1
µ(φ1)µ(φ2) for µ(·) defined in Lemma 3.16.
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Pbin((ck,B), (b; r)) Vbin(ck,B)

1: a0,1, . . . , ak−1,β−1 ← Dd
φ1T1

for T1 = p
√
kw

2: rc ← {−B, . . . ,B}md

3: ra, rd ← Dmd
φ2T2

for T2 = pwB
√

2md

4: for j = 0, . . . , k − 1 do

5: aj,0 = −
∑β−1

i=1
aj,i

6: A = Comck

(
{aj,i}k−1,β−1

j,i=0 ; ra
)

7: C = Comck

(
{aj,i(1− 2bj,i)}k−1,β−1

j,i=0 ; rc
)

8: D = Comck

(
{−(aj,i)

2}k−1,β−1
j,i=0 ; rd

)
A,C,D

x x← Cdw,p

9: for j ∈ [0, k), i ∈ [1, β) do

10: fj,i = x · bj,i + aj,i

f1 := (f0,1, . . . , fk−1,β−1)

b1 := (b0,1, . . . , bk−1,β−1)

11: Rej(f1, xb1, φ1, T1)

12: zb = x · r + ra

13: zc = x · rc + rd

14: Rej((zb,zc), x(r, rc), φ2, T2)

If aborted, return ⊥ . f1, zb, zc

1: for j = 0, . . . , k − 1 do

2: fj,0 = x−
∑β−1

i=1
fj,i

3: ‖fj,i‖
?

≤ 2φ1T1

√
d ∀j, ∀i 6= 0

4: ‖fj,0‖
?

≤ 2φ1T1

√
βd ∀j

5: ‖zb‖ , ‖zc‖
?

≤ 2φ2T2

√
md

f := {fj,i}k−1,β−1
j,i=0

g := {fj,i(x− fj,i)}k−1,β−1
j,i=0

6: xB +A
?
= Comck (f ; zb)

7: xC +D
?
= Comck (g; zc)

Protocol 5.3: Σ-protocol for Rbin and R′bin.
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Proof. Completeness: The main difference from Protocol 5.2 is that there is a sum
of fj,i’s, which follow a normal distribution. By the discussion in Section 3.3.3, the
sum of discrete normal variables behaves as its continuous counterpart. That is, the
distribution of

∑β−1
i=1 fj,i is statistically close to Dd

φ1T1
√
β−1

. Hence, we have

‖fj,i‖ ≤ 2 · φ1p
√
kw ·

√
d = 2φ1p

√
dkw, ∀j ∈ [0, k), ∀i ∈ [0, β), and

‖fj,0‖ =

∥∥∥∥∥x−
β−1∑
i=1

fj,i

∥∥∥∥∥ ≤ ‖x‖+

∥∥∥∥∥
β−1∑
i=1

fj,i

∥∥∥∥∥
≤
√
w + 2 · φ1p

√
kw(β − 1) ·

√
d ≈ 2φ1p

√
βdkw.

The rest is analogous to the completeness proof of Protocol 5.2.
SHVZK: Assume the protocol is not aborted. The simulator sets C = Comck (0; rc)
for rc ← {−B, . . . ,B}md, and picks fj,i ← Dd

φ1T1
for all 0 ≤ j ≤ k − 1 and 1 ≤

i ≤ β − 1, and also zb, zc ← Dmd
φ2T2

. Then, given x, it sets fj,0 = x −
∑β−1

i=1 fj,i
for all j = 0, . . . , k − 1. Finally, it computes A = Comck (f ; zb) − xB and D =
Comck (g; zc) − xC where f , g are set as in Protocol 5.3. It outputs the simulated
transcript ((A,C,D), x, (f1, zb, zc)) where f1 is set as in Protocol 5.3. The indistin-
guishability argument is as in SHVZK of Theorem 5.8.
3-special soundness: The proof proceeds almost identical to the soundness proof of
Theorem 5.8 up to Equation (5.23) except that when the commitment scheme is in-
stantiated with HMC in HNF, we need to bound the norm of the message-randomness
opening pair together to use the binding property argument. The exact opening of
yD has the largest norm-bound of

γbin = 2p
√
dw
(
16φ4

1p
4d3k3w2β(β + 1) + 12φ2

2p
2w2B2m2d2

)1/2
as shown in Lemma 5.12. As in (5.18), (5.19), and (5.20), we have the following
equations, but now holding in Rq

yfj,i = xb̂j,i + âj,i,

yf ′j,i = x′b̂j,i + âj,i,

yf ′′j,i = x′′b̂j,i + âj,i,

yfj,i(x− fj,i) = xĉj,i + d̂j,i,

yf ′j,i(x
′ − f ′j,i) = x′ĉj,i + d̂j,i,

yf ′′j,i(x
′′ − f ′′j,i) = x′′ĉj,i + d̂j,i,

in Rq. (5.26)

Then, by the γbin-binding property of HMC in HNF, we get below the same system
of equations as in (5.23) of the soundness proof of Theorem 5.8 1 x x2

1 x′ x′2

1 x′′ x′′2

 ·
 −(âj,i)

2 − yd̂j,i
âj,i(y − 2b̂j,i)− yĉj,i

b̂j,i(y − b̂j,i)

 = 0 in Rq.

Note that again all equations now hold in Rq, and there is no use of any invertibility
argument. Now, multiplying both sides of the above system of equations by adj(V )
where V is the Vandermonde matrix on the left, we get

det(V )b̂j,i(y − b̂j,i) = (x′′ − x′)(x′ − x)(x′′ − x)b̂j,i(y − b̂j,i) = 0 in Rq. (5.27)

We also know that∥∥∥b̂j,i∥∥∥
1

=
∥∥fj,i − f ′j,i∥∥

1
≤ 2 ·

√
d · 2φ1p

√
βdkw = 4φ1pd

√
βkw, and
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∥∥∥y − b̂j,i∥∥∥
1

≤ ‖y‖
1

+
∥∥∥b̂j,i∥∥∥

1

≤ pw + 4φ1pd
√
βkw ≈ 4φ1pd

√
βkw.

From here, we can further get a bound as∥∥∥(x′′ − x′)(x′ − x)(x′′ − x)b̂j,i(y − b̂j,i)
∥∥∥
∞
≤∥∥x′′ − x′∥∥

∞
·
∥∥x′ − x∥∥

1
·
∥∥x′′ − x∥∥

1
·
∥∥∥b̂j,i∥∥∥

1

·
∥∥∥y − b̂j,i∥∥∥

1

≤ 2p · (2pw)2 · (4φ1pd
√
βkw)2

= 27φ2
1p

5w3d2kβ. (5.28)

Since q/2 > 27φ2
1p

5w3d2kβ, one of the factors in (5.27) must be zero by Lemma 5.5.
As challenge differences are non-zero, this gives either b̂j,i or y− b̂j,i is zero. Thus, we
get b̂j,i ∈ {0, y}. That is, b̂j,i = ybj,i for bj,i ∈ {0, 1} as needed for R′bin.

Finally, for all j = 0, . . . , k − 1, by multiplying Step 2 of the verification by y, we
have the following

yx =

β−1∑
i=0

yfj,i =

β−1∑
i=0

xb̂j,i +

β−1∑
i=0

âj,i = yx ·
β−1∑
i=0

bj,i +

β−1∑
i=0

âj,i.

This holds for 2 distinct challenges x and x′, and therefore(
β−1∑
i=0

bj,i − 1

)
y(x− x′) =

(
β−1∑
i=0

bj,i − 1

)
y2 = 0 in Rq.

Using Lemma 5.5 as above (the condition on the size of q here is much weaker), we

get
β−1∑
i=0

bj,i = 1 for all 0 ≤ j ≤ k − 1 as required.

Lemma 5.11. The vector g defined in Protocol 5.3 satisfies the following

‖g‖2 ≤ 16φ4
1p

4d3k3w2β(β + 1).

Proof. We use the bounds on the norm of fj,i’s in the sequel (see Protocol 5.3 defi-
nition). For simplicity, we bound ‖x− fj,0‖ by the bound on ‖fj,0‖ as ‖x‖ is much
smaller in comparison.

‖g‖2 =
k−1∑
j=0

β−1∑
i=0

‖fj,i(x− fj,i)‖2 =
k−1∑
j=0

β−1∑
i=1

‖fj,i(x− fj,i)‖2 +
k−1∑
j=0

‖fj,0(x− fj,0)‖2

≤
k−1∑
j=0

β−1∑
i=1

d ‖fj,i‖2 ‖x− fj,i‖2 +

k−1∑
j=0

d ‖fj,0‖2 ‖x− fj,0‖2

≤ dk(β − 1)
(

2φ1p
√
dkw

)4
+ dk

(
2φ1p

√
βdkw

)4

≤ dk
(

2φ1p
√
dkw

)4
·
[
(β − 1) + β2

]
≤ 16φ4

1p
4d3k3w2β(β + 1).
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Lemma 5.12. The exact opening (d̂, r̂d) of yD in the soundness proof of Theorem
5.10 satisfies the following∥∥∥(d̂, r̂d)

∥∥∥ ≤ 2p
√
dw
(
16φ4

1p
4d3k3w2β(β + 1) + 12φ2

2p
2w2B2m2d2

)1/2
.

Proof. For y = x− x′, we have

yC = Comck

(
g − g′; zc − z′c

)
. (5.29)

Then, the exact opening (d̂, r̂d) of yD is obtained as follows

yD = Comck (yg; yzc)− xyC = Comck (yg; yzc)− xComck

(
g − g′; zc − z′c

)
= Comck

(
xg − x′g; xzc − x′zc

)
− Comck

(
xg − xg′; xzc − xz′c

)
= Comck

(
xg′ − x′g; xz′c − x′zc

)
. (5.30)

Without loss of generality, assume that ‖(xg′, xz′c)‖ ≥ ‖(x′g, x′zc)‖.∥∥∥(d̂, r̂d)
∥∥∥ =

∥∥(xg′ − x′g, xz′c − x′zc)
∥∥ ≤ 2

∥∥(xg′, xz′c)
∥∥ ≤ 2

√
d ‖x‖ ·

∥∥(g′, z′c)
∥∥

≤ 2p
√
dw ·

∥∥(g′, z′c)
∥∥ = 2p

√
dw
(∥∥g′∥∥2

+
∥∥z′c∥∥2

)1/2

≤ 2p
√
dw

(
16φ4

1p
4d3k3w2β(β + 1) +

(
2
√

3φ2pwBmd
)2
)1/2

(by Lemma 5.11)

= 2p
√
dw
(
16φ4

1p
4d3k3w2β(β + 1) + 12φ2

2p
2w2B2m2d2

)1/2
. (5.31)

Remark 5.13. Note that, when bounding ‖zc‖ in the proof of Lemma 5.12, we use
the norm bound in Protocol 5.2’s verification, which is a stronger case than that in
Protocol 5.3. The norm bound of zc in Protocol 5.4 to be described is the largest
one, and (5.31) becomes 2p

√
dw
(
16φ4

1p
4d3k3w2β(β + 1) + 12φ2

2p
2kB2m2d2w2k

)1/2 us-
ing that bound. We consider the strongest bound when instantiating the parameters
for the ring signature in this chapter, which builds on Protocol 5.4.

5.5.2 Relaxed one-out-of-many proof

Our one-shot one-out-of-many proof has the same structure as the one-out-of-many
proof in Section 4.2.2. The main differences of the one-shot proof are the use of an
exponentially large challenge set, the relation the verifier is convinced of and some
tweaks to the rejection sampling. The challenging part here is the soundness proof of
the protocol. We use our new tools, namely Lemmas 5.1, 5.3 and 5.4, from Section
5.3 to make the soundness proof work.

Let L = {P0, . . . , PN−1} be a set of public commitments for some N ≥ 1. The
prover’s goal is to show that he knows an opening of one of these Pi’s. As before,
we assume that N = βk, which can be easily satisfied by adding dummy values to
L when needed. Suppose that the prover’s commitment is P` for some 0 ≤ ` < N .
Observe that

∑N−1
i=0 δ`,iPi = P`. The idea for the proof is then to prove knowledge of

the index ` with
∑N−1

i=0 δ`,iPi being a commitment to zero. Writing ` = (`0, . . . , `k−1)

and i = (i0, . . . , ik−1) as the representations in base β, we have δ`,i =
∏k−1
j=0 δ`j ,ij . The

prover first commits to the sequences (δ`j ,0, . . . , δ`j ,β−1) for all 0 ≤ j ≤ k−1, and then
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uses Protocol 5.3 to show that they are well-formed (i.e., they construct an index in
the range [0, N) as in the range proof). Let us define the proved relations next.

Definition 5.14. The following defines the relations for Protocol 5.4 for T , T̂ ∈ R+.

R1/N(T ) =

{
((ck, (P0, . . . , PN−1)), (`, r)) :

` ∈ [0, N) ∧ ‖r‖ ≤ T ∧ P` = Comck (0; r)

}
,

R′1/N(T̂ ) =

{
((ck, (P0, . . . , PN−1)), (y, `, r̂)) : ` ∈ [0, N) ∧ ‖r̂‖ ≤ T̂ ∧
yP` = Comck (0; r̂) ∧ y is a product of elements in ∆Cdw,p

}
.

From Protocol 5.3, the prover’s response contains fj,i = xδ`j ,i+aj,i for a challenge
x. Considering the product pi(x) :=

∏k−1
j=0 fj,ij , we see that, for all i ∈ [0, N − 1],

pi(x)=

k−1∏
j=0

(
xδ`j ,ij + aj,ij

)
=

k−1∏
j=0

x · δ`j ,ij +

k−1∑
j=0

pi,jx
j = δ`,ix

k +

k−1∑
j=0

pi,jx
j , (5.32)

for some ring element pi,j ’s as a function of ` and aj,i’s (independent of the challenge
x). Since ` and aj,i’s are known to the prover before receiving a challenge, he can
compute pi,j ’s prior to sending the initial commitment. Since p` is the only such
polynomial of degree k, in his first move, the prover sends some Ej ’s that are tailored
to cancel out the coefficients of the terms 1, x, . . . , xk−1, and the coefficient of xk is
set to the prover’s commitment P` using

∑N−1
i=0 δ`,iPi. The full description is given in

Protocol 5.4.

Theorem 5.15. Let γ1/N = (k + 1)2κ
′+2
√

3φ2Bmd2wκpκ+1 for κ′ = k(k − 1)/2 and
κ = k(k+ 1)/2. Assume d ≥ 128, q > 27φ2

1p
5w3d2kβ and HMC in HNF is hiding and

γ-binding for γ = max{γbin, γ1/N}. For µ(·) defined in Lemma 3.16, Protocol 5.4 is a
(k′+ 1)-special sound Σ-protocol (as in Definition 3.6) for the relations R1/N(B

√
md)

and R′1/N(γ1/N) with a completeness error 1− 1/(µ(φ1)µ(φ2)) where k′ = max{2, k}.

Proof. Completeness: Step 1 of verification follows from the completeness of Pro-
tocol 5.3. For bounding the maximum norm of masked randomnesses in Step 11 of
prover’s computation, we have∥∥∥∥∥∥xkr −

k−1∑
j=1

xjρj

∥∥∥∥∥∥ ≤
∥∥∥xkr∥∥∥+

k−1∑
j=1

∥∥xjρj∥∥ ≤ √md ·
∥∥∥xkr∥∥∥

∞
+
k−1∑
j=1

∥∥xjρj∥∥∞


≤
√
md ·

‖x‖k
1
‖r‖

∞
+
k−1∑
j=1

‖x‖j
1

∥∥ρj∥∥∞


≤
√
md ·

(pw)kB +
k−1∑
j=1

(pw)jB

 = B
√
md

k∑
j=1

(pw)j .

Denote r′ = xkr −
∑k−1

j=1 x
jρj . Then, we have

∥∥(xrb, xrc, r
′)
∥∥ =

(
‖(xrb, xrc)‖2 +

∥∥r′∥∥2
)1/2

≤

(pwB√2md
)2

+

B√md k∑
j=1

(pw)j

21/2
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P1/N((ck, (P0, . . . , PN−1)), (`, r)) V1/N(ck, (P0, . . . , PN−1))
1: rb ← {−B, . . . ,B}md

2: δ = (δ`0,0, . . . , δ`k−1,β−1)

3: B = Comck (δ; rb)

4: A,C,D ← Pbin((ck,B), (δ, rb))

5: ρ0 ← Dmd
φ2T2

for T2 = Bpkwk
√

3md

6: for j = 0, . . . , k − 1 do

7: ρj ← {−B, . . . ,B}
md if j 6= 0

8: Ej =

N−1∑
i=0

pi,jPi + Comck

(
0; ρj

)
using pi,j ’s from (5.32) A,B,C,D,E0, . . . , Ek−1

x x← Cdw,p

9: f1,zb,zc ← Pbin(x)

10: Rej(f1, xδ1, φ1, p
√
kw) for δ1 := (δ`0,1, . . . , δ`k−1,β−1)

11: z = xkr −
k−1∑
j=0

xjρj

12: Rej((zb,zc,z), (xrb, xrc, x
kr −

k−1∑
j=1

xjρj), φ2, T2)

If aborted, return ⊥ . f1, zb, zc, z

1: Vbin(ck,B, x,A,C,D,f1,zb,zc)
?
= 1

2: ‖z‖ , ‖zb‖ , ‖zc‖
?

≤ 2
√

3φ2Bmdpkwk

3:

N−1∑
i=0

(
k−1∏
j=0

fj,ij

)
Pi−

k−1∑
j=0

Ejx
j ?
=Comck (0; z)

Protocol 5.4: Σ-protocol for R1/N and R′1/N. Step 5 of the verification (norm checks on
zb, zc) in Protocol 5.3 is skipped when Vbin(ck,B, x,A,C,D,f1, zb, zc) is run.

≤

2w2p2B2md+ B2md

 k∑
j=1

(pw)j

21/2

≤

B2md ·

2w2p2 +

 k∑
j=1

(pw)j

21/2

≤ Bwkpk
√

3md.

Therefore, for T2 = Bwkpk
√

3md, the distribution of z, zb, zc are statistically close to
Dmd
φ2T2

by Lemma 3.16. Hence, by Lemma 3.15, we have

‖z‖ , ‖zb‖ , ‖zc‖ ≤ 2 · φ2Bwkpk
√

3md ·
√
md = 2

√
3φ2Bmdwkpk.
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For the last verification, we have, for P` = Comck (0; r),

N−1∑
i=0

k−1∏
j=0

fj,ij

Pi −
k−1∑
j=0

Ejx
j =

N−1∑
i=0

pi(x)Pi −
k−1∑
j=0

(
N−1∑
i=0

pi,jPi + Comck

(
0; ρj

))
xj

=
N−1∑
i=0

pi(x)Pi−
k−1∑
j=0

N−1∑
i=0

pi,jPix
j−

k−1∑
j=0

xj · Comck

(
0; ρj

)

=
N−1∑
i=0

Pi

pi(x)−
k−1∑
j=0

pi,jx
j

− k−1∑
j=0

xj · Comck

(
0; ρj

)
=

N−1∑
i=0

Piδ`,ix
k −

k−1∑
j=0

xj · Comck

(
0; ρj

)
= xk · P` −

k−1∑
j=0

xj · Comck

(
0; ρj

)

= Comck

0; xk · r −
k−1∑
j=0

xj · ρj

 = Comck (0; z) .

SHVZK: Assume that the protocol is not aborted. A,B,C,D,f1, zb, zc, z are sim-
ulated as in the case of Protocol 5.2 where zb, zc, z are sampled from Dmd

φ2T2
for

T2 = Bpkwk
√

3md. The simulator also samples E1, . . . , Ek−1 ← U(Rnq ) and computes
E0 in the way to ensure that the last verification step is satisfied. Then, the simulated
transcript is output as below

((A,B,C,D, {Ej}k−1
j=0), x, (f1, zb, zc, z)).

The simulation of E1, . . . , Ek−1 is computationally indistinguishable from the real case
by M-LWE assumption. The rest of the indistinguishability argument is the same as
in SHVZK of Protocol 5.2.
(k′ + 1)-special soundness: Assume that k > 1. Given (k + 1) distinct challenges
x0, . . . , xk, we have (k+ 1) accepting responses with same (A,B,C,D,E0, . . . , Ek−1).
Suppose that (f

(0)
1 , z(0)), . . . , (f

(k)
1 , z(k)) are part of the responses with respect to

challenges x0, . . . , xk, respectively. Setting y = x1−x0, we first use 3-special soundness
of Protocol 5.3 to extract exact valid message openings b̂j,i and âj,i of yB and yA,
respectively. We know that b̂j,i = ybj,i for bj,i ∈ {0, 1} and only a single one of
{bj,0, . . . , bj,β−1} is 1 for each j ∈ {0, . . . , k−1}. Now, we construct the representation
of ` in base β as follows. For each 0 ≤ j ≤ k− 1, the j-th digit `j is the integer c such
that bj,c = 1. It is easy to construct the index ` from here using its digit `j ’s.

Recalling equations in (5.26) from the soundness proof of Protocol 5.3 that use
γbin-binding property of the commitment scheme, we have, for all 0 ≤ η ≤ k − 1,

yf
(η)
j,i = xη b̂j,i + âj,i = xη · ybj,i + âj,i.

Now compute p̂i(xη) = yk
∏k−1
j=0 f

(η)
j,ij

=
∏k−1
j=0 yf

(η)
j,ij

=
∏k−1
j=0

(
yxηbj,ij + âj,ij

)
for each

i = 0, . . . , N−1. By the construction of `, p̂`(xη) is the only polynomial of degree k in
xη for all 0 ≤ η ≤ k− 1. Then, we can multiply the both sides of the last verification
step by yk and re-write it as below

N−1∑
i=0

p̂i(xη)Pi −
k−1∑
j=0

ykEjx
j
η = xkη · ykP` +

k−1∑
j=0

Ẽjx
j
η = Comck

(
0; ykz(η)

)
, (5.33)
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where Ẽj ’s are the terms multiplied by the monomials xjη’s of degree at most k−1 and
are independent of xη. Equation (5.33) is exactly the case described in (5.6) and the
verification of Protocol 5.1 in Section 5.3 with Ck = ykP`. By the discussion in Section
5.3, we obtain exact openings of det(V )ykP` as (0, ykr̂) where r̂ =

∑k
i=0 Γiz

(i) for
Γi = (−1)i+k

∏
0≤l<j≤k∧j,l 6=i(xj − xl), i.e., we have

det(V )ykP` = Comck

(
0; ykr̂

)
=⇒ yk · (det(V )P` − Comck (0; r̂)) = 0

(by Lemma 5.4) =⇒ y · (det(V )P` − Comck (0; r̂)) = 0

=⇒ det(V )yP` = Comck (0; yr̂) . (5.34)

In the end, we have an exact opening of det(V )yP` as (0, yr̂). This randomness
opening is a factor y ∈ ∆Cdw,p larger than what we have in Lemma 5.3. Thus, using
Lemmas 5.1 and 5.3, we conclude, for κ′ = k(k − 1)/2 and κ = k(k + 1)/2,

‖yr̂‖ ≤ (k + 1)d(2p)κ
′+1wκ

′
max
i

∥∥∥z(i)
∥∥∥ ≤ (k + 1)d(2p)κ

′+1wκ
′ · 2
√

3φ2Bmdwkpk

≤ (k + 1)2κ
′+2
√

3φ2Bmd2wκpκ+1.

Recall that we assumed k > 1. When k = 1, Protocol 5.3 still needs 3 challenges
for its soundness property. As a result, Protocol 5.4 is at least 3-special sound.

5.5.3 Relaxed set membership proof

Suppose the prover has a commitment C and wants to prove knowledge of a message
opening m of C such that m ∈ S = {v0, . . . ,vN−1}. Such a set membership proof
can be constructed from one-out-of-many proof as in [GK15]. The protocol works as
follows. Both the prover and the verifier set Pi = C − Comck (vi; 0) in the one-out-
of-many proof, and run that protocol. This proves knowledge of (y, `, r̂) such that
yP` = Comck (0; r̂), which gives

yP` = y(C − Comck (v`; 0)) = Comck (0; r̂) ,

=⇒ yC = Comck (0; r̂) + yComck (v`; 0) = Comck (yv`; r̂) . (5.35)

As a result, our set membership proof convinces the verifier of the following statement,
for some T̂ ∈ R+,

R′mem(T̂ ) =

{
((ck, (v0, . . . ,vN−1), C), (y, `, r̂)) : ` ∈ [0, N) ∧ ‖r̂‖ ≤ T̂ ∧
yC = Comck (yv`; r̂) ∧ y is a product of elements in ∆Cdw,p

}
. (5.36)

5.6 Applications to Advanced Cryptographic Schemes

5.6.1 Ring signature

The construction of ring signature from one-out-of-many proof follows the same strat-
egy as in [GK15, BCC+15] and Section 4.3. The users commit to their secret keys
and these commitments represent the public keys. A set of public keys is then used
as the set of public commitments in the one-out-of-many proof. The prover proves
knowledge of an opening of one of the commitments (i.e., knowledge of a secret key
corresponding to one of the public keys used to construct the signature). The main
difference from [GK15, BCC+15] and Section 4.3 is that we show that our relaxed
proof is still sufficient.
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Construction

Let N = βk for 2 ≤ β ≤ N , k ≥ 1 and q,B with B < q be positive integers. Let
CMT = (A,B,C,D,E0, . . . , Ek−1) and RSP =

(
{fj,i}k−1,β−1

j=0,i=1 , z, zb, zc

)
be the initial

commitment and prover’s response from Protocol 5.4, respectively. Also, denote Cdw,p
as the challenge space defined in (5.9) and CMT∗ = (B,C,E1, . . . , Ek−1) as a subset
of CMT. Our ring signature uses Fiat-Shamir heuristic [FS86] to make Protocol 5.4
non-interactive and is defined as follows.

• RSetup(1λ): Run G ← CKeygen(1λ) of HMC in HNF and pick a hash function
H : {0, 1}∗ → Cdw,p. Return the commitment key ck = G and H as pp = (ck,H).
• RKeygen(pp): Sample r ← {−B, . . . ,B}md and compute P = Comck (0; r) for

the all-zero vector 0. Return (pk, sk) = (P, r).
• RSignpp,sk(M,L): Parse L = (P0, . . . , PN−1) with P` = Comck (0; sk) for ` ∈

[0, N). Proceed as follows.

1. Generate CMT by running P1/N((ck, (P0, . . . , PN−1)), (`, sk)).
2. Compute x = H(ck,M,L,CMT).
3. Compute RSP by running P1/N(x) with CMT.
4. If RSP =⊥, go to Step 1.
5. Otherwise, return σ = (CMT∗, x,RSP) .

• RVerifypp(M,L, σ): Parse L = (P0, . . . , PN−1), σ = (CMT∗, x,RSP) and CMT∗ =
(B,C,E1, . . . , Ek−1). Continue as follows.

1. Compute A,D and E0 so that Steps 6 and 7 in Protocol 5.3, and Step 3 in
Protocol 5.4 are satisfied.

2. Set CMT = (A,B,C,D,E0, . . . , Ek−1).
3. If x 6= H(ck,M,L,CMT), return 0.
4. Return the output of V1/N(ck, (P0, . . . , PN−1), (CMT, x,RSP)).

Correctness and anonymity properties of the ring signature follows easily from the
completeness and SHVZK of Protocol 5.4, respectively. In particular, for φ1 = φ2 =
15, we have 1/(µ(φ1)µ(φ2)) > 1/5. Therefore, an accepting transcript is produced by
Protocol 5.4 with probability at least 1/5. Thus, the expected number of iterations
in RSign is 5, which is O(1), for φ1 = φ2 = 15. Unforgeability of the ring signature
is stated in Theorem 5.16.

Theorem 5.16. If HMC in HNF is hiding and γ-binding where γ = max{γbin, γ1/N}
for γbin and γ1/N defined in Theorem 5.10 and Theorem 5.15, respectively, then the ring
signature scheme described by (RSetup,RKeygen,RSign,RVerify) is unforgeable
with respect to insider corruption in the random oracle model.

Proof (Sketch). The idea for the proof is similar to that in Proof of Theorem 4.15, but
the challenge space is exponentially large in this case and no parallel repetition of the
underlying protocol is required in the ring signature. Assume that there exists a PPT
adversary F that can forge a ring signature in polynomial time and non-negligible
probability. This gives rise to an adversary A which can break the binding property
of the commitment scheme, and thus solve M-SIS problem.
A creates an invalid public key pk` such that pk` = Comck (1, 0, . . . , 0; r) for

r ← {−B, . . . ,B}md, which cannot be detected by F due to the hiding property of
the commitment scheme. Then, it runs F until k + 1 forgeries in total with distinct
challenges are obtained where CMT∗ part of the signature (and thus CMT) is the same
for all forgeries and pk` is not corrupted. This can be done in polynomial time using
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Table 5.6: The parameter setting of our ring signature with a root Hermite factor ≤ 1.0045
for both M-LWE and M-SIS. B = 1, φ1 = φ2 = 15 for all cases.

N 2 8 64 212 221

(d, w, p) (256, 60, 1) (256, 60, 1) (128, 66, 2) (128, 66, 2) (128, 66, 2)
(n, m) (4, 12) (4, 13) (10, 28) (13, 32) (22, 46)
(k, β) (1, 2) (1, 8) (1, 64) (2, 64) (3, 128)

q ≈ 253 ≈ 258 ≈ 259 ≈ 260 ≈ 277

Signature Length (KB) 36 41 58 103 256
Public Key Length (KB) 6.63 7.25 9.22 12.19 26.47
Secret Key Length (KB) 0.38 0.41 0.44 0.50 0.72

the Forking Lemma in [BPVY00]. Then, A runs the extractor of Protocol 5.4 to get an
exact valid opening (0; s) of y · pki for some public key pki where y is the relaxation
factor in Definition 5.14. With 1/poly(λ) probability, i = ` as F can only make
polynomially many queries to PKGen oracle. As a result, ((y, 0, . . . , 0; yr), (0; s)) is
binding collision pair for the commitment scheme since (y, 0, . . . , 0) 6= 0.

Concrete parameters

As mentioned before, we set our parameters to make the easiest cases of M-SIS and
M-LWE hard against known attacks in practice and aim for 128-bit “post-quantum”
security λ = 128. We set (d,w, p) so that |Cdw,p| > 2256. Similar to recent lattice-
based proposals [BDL+18, LN17, dPLS18], we too consider an error distribution of
U({−1, 0, 1}d), i.e., B = 1 for M-LWE problem. We set φ1 = φ2 = 15 so that
the acceptance rate of the rejection sampling is more than 1/5. Practical security
estimations are done as summarised in Section 3.2.2 for a root Hermite factor of
around 1.0045. We make sure that the commitment scheme is γbin-binding and γ1/N-
binding. The full parameter setting is given in Table 5.6 for various ring sizes.

Asymptotic signature length

We neglect any log log (multiplicative/additive) terms (both in λ and N) through-
out our analysis in this section and work with the challenge space Cdw,1. Security of
βSIS-M-SIS in dimension nd and modulus q with βSIS ≈ q against BKZ-reduction at-
tack with root Hermite factor δ [MR09] requires nd ≥ log q/(4 log δ). Using the BKZ
root Hermite factor from [ADPS16] with log δ = Ω(1/λ) for security parameter λ,
we get nd = Ω(λ log q). Balancing the same security level for “dual” attack on LWE
[ADPS16], we get m = O(n) and md = Ω(λ log q) (recall that the LWE dimension
parameter is proportional to (m − n) · d). Take k = O((logN)/t) for a parameter
1 ≤ t ≤ logN to be optimised. As a result, we have β = N1/k = 2logN/k = O(2t).
To be a one-shot proof, we require 2w

(
d
w

)
= 2O(λ). Then, choosing d = O(λ) and

w = O(λ/ log λ) is sufficient. Finally, we need q = O(wk
2
kmd2) for M-SIS secu-

rity11. Therefore, log q = O(k2 logw + log(md)) = O(((logN)/t)2 log(λ/ log λ) +
log(λ log q)) = O((log2N log λ)/t2). Using these, we can also find

log(kw) = O(log(logNλ/(t log λ))) = O(log λ), and

log(wmd) = O(log(λ2/(log λ log q)) = O(log λ).

11This is due to γ1/N, which grows asymptotically faster than γbin.
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Now, for the signature size |σ|, we have

|σ| = O(knd log q + kβd log(kw) +md log(wmd))

= O(λ log q(logN log q/t+ log λ) + λ log λ logN2t/t)

= O(λ logN(log2 q/t+ 2t log λ/t))

= O(λ logN(log4N log2 λ/t5 + 2t log λ/t))

= O(λ log λ logN(log4N log λ/t5 + 2t/t)).

Taking t = O(1), we can get |σ| to be quasi-linear in λ and poly-logarithmic in N , i.e.,
|σ| = O(λ log2 λ log5N). However, if we set t = (logN)2/3, then log4N log λ/t5 =
log λ(logN)2/3 and this term is roughly of the same size as or larger than 2t/t for all
practical N values such as N ≤ 230. Therefore, we can say that the signature length
in practice is proportional to λ log2 λ logcN where c ≈ 1.67 for N ≤ 230. Hence, for a
fixed security level, the signature length grows slightly faster than logarithmic in N ,
which also matches the signature length growth for the values provided in Table 5.6.

Computational efficiency

To estimate the computational efficiency of the ring signature, we look at that of the
one-out-of-many proof in Section 5.5.2, and consider the efficiency in terms of degree-
256 polynomial multiplications in Rq, denoted by poly256_mult. We assume that a
standard PC has a CPU running at 3 GHz.

Let us take a medium-sized number of ring participants as N = 210. Our ring
signature in this case can be instantiated with (d,w, p) = (256, 60, 1), n = 6, m = 15,
q ≈ 256, k = 2, β = 32, B = 1, φ1 = φ2 = 15 (signature length is 89 KB). Then, the
commitment key dimensions are 6×79 where the first 6×6 part is the identity matrix.
Therefore, each commitment computation requires at most 6 ·73 = 438 poly256_mult
(this can be further optimised when the committed message is zero or binary-valued).
Offline signing. To compute A,B,C,D, there will be 4 · 438 = 1752 poly256_mult
in total. To compute Ej ’s, we need to perform around k · n · N + k · n · m = 2 ·
6 · 210 + 2 · 6 · 15 = 12468 poly256_mult (the computation of pi,j takes at most 1
poly256_mult for k = 2). Setting φ1 = φ2 = 15, the expected number of iterations
due to rejection sampling will be 5. Therefore, the initial step for the prover is
dominated by 5 · (1752 + 12468) ≈ 216 poly256_mult on average. According to the
NTT implementation of [Chu18], for polynomial degree 256 and 51-bit modulus, NTT
transformation costs about 8000 cycles and pointwise multiplication costs about 1000
cycles. Note that the user public keys and the commitment matrix can be stored in
the NTT domain, and thus the number of NTT transformations are much less than
that of the pointwise multiplications in our scheme. In particular, the number of NTT
transformations is in the order of k·(m+β) (kβ transformations for a0,0, . . . , ak−1,β−1 ∈
Rq’s and (k + 4)m transformations for the randomnesses ra, rb, rc, rd, ρ0, . . . , ρk−1 ∈
Rmq ) whereas that of pointwise multiplications is in the order of kn(N + m) (due to
Step 8 of the prover). Therefore, the cost of pointwise multiplication is the dominant
part in the computational cost of signing, and it can be done in about 1000 ·216 ≈ 226

cycles, i.e., in about 20 ms on a standard PC. This phase can be easily computed
offline.

Note that we need to sample 3md coefficients from a wide discrete normal distri-
bution to construct the vectors ρ0, ra, rd ∈ Rmq , which is repeated 5 times on average
due to rejection sampling. For the concrete parameters with N = 210, this means
sampling less than 58000 coefficients in total with a standard deviation around 222.5.
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Figure 3 and Table 4 in [ZSS19] show that one can sample 1024 Gaussian coefficients
in less than 218 cycles independent of the standard deviation. Thus, Gaussian sam-
pling with a cost of about 58 · 218 < 224 cycles will not be a bottleneck for offline
running time.
Online signing. The response phase of the prover requires about (k+2)m polynomial
multiplications, which is only 4 · 15 = 60 poly256_mult. When repeated 5 times on
average, it would take only around 100 µs on a standard PC. This phase can be treated
as the online signing phase and is very fast.
Verification. The verification time of the ring signature is dominated by the last
verification step in Protocol 5.4, which takes around (k−1+n)·N+k ·n+n·m = 7270
poly256_mult. Note that there is no additional factor due to rejection sampling here.
This would take about 2-3 ms with the same assumptions.

The reported signing/verification running times of [KKW18] with the same N =
210 is 2.8 seconds. Also, extrapolating the computational efficiency results of NTRU-
based ring signature from [LAZ19] (without linkability), the running time for sign-
ing/verification would be around 700-800 ms (where the signature length is about
14 times larger than ours). Therefore, our ring signature scheme also outperforms
[KKW18] and [LAZ19], which are the only two works providing concrete running
times, by a large margin in terms of computational efficiency for medium-sized rings.

For smaller ring sizes, the scheme in [KKW18] does not seem to get noticeably
faster. For example, for N = 27, the running times of signing and verification go down
to 2 seconds, i.e., not even reduced by a factor of 2 over the case N = 210. In our
case, the offline signing and verification times would be reduced by a factor of more
than 8 as N is reduced by a factor 8 and k would be set to 1.

5.6.2 Privacy-preserving credentials

In an anonymous credential system, there are three entities: organisations, that are
able to issue credentials, users, who can obtain and show credentials, and verifiers,
who verify the user credentials. Our goal here is to enable an efficient way for users
to get a credential containing a set of attributes and later use it to prove that some
of the attributes satisfy certain properties without revealing the attribute itself. We
provide privacy for credential attributes by revealing only that they satisfy a certain
relation, but we do not provide unlinkability between multiple showings or issuing,
which is left as an interesting open problem for future work. In fact, linkability is a
desired property in some applications such as e-voting and e-cash systems. Also, user
anonymity can be obtained to some degree by using pseudonyms. Let us a give a
simple example scenario. The user, Alice, wants to apply for a job that only considers
applicants of age between 18 and 33, and from a European country. Then, she obtains
a credential from her state government with these (and possibly more) attributes. The
goal in this scenario is for Alice to convince the employer that she is eligible for the
application without revealing the full details as she may not end up getting the job.
The privacy of the credential attributes is achieved by revealing only the fact that
some attributes satisfy a certain relation. Let us first describe our security model and
then see how we can tackle this problem using our tools.

Let RPoK(C) be a relaxed proof of knowledge where the verifier is convinced
that the prover knows (y, r̂) such that yC = Comck (0; r̂) and y is invertible. Fur-
ther, let ΠP(C) be a protocol that proves knowledge of (y, m̂, r̂) such that yC =
Comck (ym̂; r̂), y is invertible and m̂ satisfies some property P, denoted by m̂ ∈ P
(recall that the relaxation factor in our range proof is invertible). Now, the game
between a prover and a challenger works as follows.
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1. The prover sends a message m and a commitment C along with RPoK(C ′) where
C ′ = C − Comck (m; 0).

2. Then, the challenger chooses a property P that can be proven by some protocol
ΠP, and sends P to the prover.

3. Finally, the prover sends ΠP(C).

The prover wins if m /∈ P.
Theorem 5.17. If the commitment scheme Comck (∗; ∗) is γ-binding (for appropri-
ately set γ), and RPoK(C ′) and ΠP(C) are sound with an invertible relaxation factor,
then no PPT adversary can win the above game with a non-negligible probability.

Proof. Let A be a PPT adversary that plays the above game and sends m and C in
the first move. Let C ′ = C − Comck (m; 0). By the soundness of RPoK(C ′), A must
know (y, r̂) such that

yC ′ = Comck (0; r̂) =⇒ y(C − Comck (m; 0)) = Comck (0; r̂)

=⇒ yC = Comck (ym; r̂) . (5.37)

Now, by the soundness of ΠP(C), A must also know (y′, m̂′, r̂′) such that m̂′ ∈ P and

y′C = Comck

(
y′m̂′; r̂′

)
. (5.38)

Multiplying (5.37) by y′ and (5.38) by y, we get

y′ · (yC) = Comck

(
y′ym; y′r̂

)
and y · (y′C) = Comck

(
yy′m̂′; yr̂′

)
=⇒ Comck

(
y′ym; y′r̂

)
= Comck

(
yy′m̂′; yr̂′

)
. (5.39)

By the binding property of the commitment scheme, y′ym = yy′m̂′, and thus m =
m̂′ ∈ P since y, y′ are invertible by assumption.

Remark 5.18. A similar argument as in Theorem 5.17 can be used to strengthen the
proved relations in our relaxed protocols as follows. A relaxed proof for a property P
combined with an exact proof of knowledge (i.e., proving knowledge of (m, r) such
that C = Comck (m; r)) proves that the prover knows an exact valid opening of C
and that this opening (without any relaxation) satisfies P. However, such lattice-
based exact proofs of knowledge are not currently very efficient. Furthermore, the
invertibility assumption of the relaxation factor can be circumvented using Lemma 5.5
provided that the relaxation factor and the message m have bounded norm, i.e., we
can infer m = m′ from yy′(m−m′) = 0 in Rq using Lemma 5.5.

Going back our scenario, m in the above game represents the set of attributes.
Alice applies to get a credential with the set of attributes inm, and obtains a signature
on C after passing the relaxed proof of knowledge. In her application for the job, she
first shows that C is signed by an authority and that her age attribute is the range
[18, 33), and the expiry date and country code attributes are in some valid ranges
(using a single relaxed range proof). Here, the ranges for all the other attributes but
these three are set so that they are trivially satisfied (for example, the range is [0, 232)
if they are unsigned and represented by 32 bits). Seeing a signature on C and the
range proof, the employer is convinced that Alice is eligible to apply.

All of our proofs except for one-out-of-many proof has the structure represented
by ΠP where the property P changes for each proof. For example, a similar idea can
be also used with the set membership proof. In that case, the public set S in the
protocol needs to be set so that it covers all the possible options for the attributes
that Alice does not want to reveal any information about.
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5.7 Discussion

The clear advantage of the new techniques and tools introduced in this chapter is that
they do not require protocol repetitions for soundness amplification. As a result, we
are able to overcome the Õ(λ2) barrier in both the asymptotic proof length growth and
the computation time, and can construct very short and fast proofs from lattices. We
believe that overcoming of this barrier is an important milestone in the construction
of efficient advanced ZKPs from lattices.

Having efficient building blocks in turn paves the way for an efficient and scalable
ring signature scheme based on standard lattice assumptions. One can see the effec-
tiveness of the new techniques by looking at the dramatic improvements of the new
ring signature scheme in comparison to the prior art (see Table 1.1).

A limitation, on the other hand, is that we can only get relaxed proofs. That
is, the proved relations additionally involve a (possibly non-trivial) relaxation factor.
However, we also show how to handle the relaxation in ZKPs’ application to higher
level constructions and show that they are still useful in practice despite their relaxed
nature. Another example of this is given in the next chapter, where we show how to
construct an efficient blockchain confidential transactions protocol based on similar
relaxed proofs.

If we compare the proofs in this chapter and those in the previous chapter, we
can see an important difference in relation to the relaxation factor. Firstly, as men-
tioned before, the relaxation factor in the previous chapter is a fixed publicly known
value, whereas in this chapter, we only know that it is either a challenge difference
or a product of challenge differences with its exact nature known only to the prover.
Furthermore, the growth of the norm of the relaxation factor with the polynomial
relation degree k in this chapter is greater than that in the previous chapter. This in
turn creates an advantage for the methods in the previous chapter as the extracted
witness length growth is slower in the polynomial relation degree k, but this advantage
in favour of the prior methods from Chapter 4 is negated by the quadratic dependence
of the proof length growth on the security parameter.

Throughout the chapter, our focus has mainly been on proving relaxed relations.
As briefly touched upon in Remark 5.18, it is indeed possible to strengthen our relaxed
proofs by combining them with an exact proof of knowledge. This method would
enable one to construct, in particular, exact binary, range and set membership proofs
(with larger proof sizes). Although current exact proof constructions from lattices do
not seem to offer a satisfactory solution in terms of practical efficiency, there has been
very recent exciting works [BLS19, YAZ+19] that aim to design more efficient exact
proofs. It is therefore plausible to expect further developments in the construction of
exact proofs, and hence strengthening our relaxed proofs would become cheaper as
the cost of an exact proof of knowledge decreases.
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Chapter 6

Blockchain Confidential
Transactions from Lattices

As stated previously in the introduction, zero-knowledge proofs are a fundamen-
tal tool used in numerous privacy-preserving applications, and they have recently
become a crucial part of privacy-aware blockchain-based applications such as pri-
vate/anonymous cryptocurrencies, e.g., Monero and Zcash. As seen in the previous
chapters, when coupled with commitments, ZKPs allow users to prove useful state-
ments without leaking private information. For example, Monero uses the RingCT
protocol [Noe15] to realise confidential transactions. However, the currently deployed
solutions in these systems do not provide post-quantum security. Quoting again
from Zcash’s FAQ page [Tea19], the developers “plan to monitor developments in
postquantum-secure components, and if/when they are mature and practical, up-
date the Zcash protocol to use them.” Therefore, there is an evident need to design
quantum-secure alternatives of currently deployed privacy-preserving protocols, which
brings us to the main goal of this chapter: introduce a practical post-quantum RingCT
protocol based on computational lattice problems (in particular, M-SIS and M-LWE).1

As one may recall from Chapter 2, the main challenge in the construction of ef-
ficient lattice-based advanced protocols such as RingCT comes from the difficulty
in realising suitable underlying ZKPs efficiently. Thankfully, the tools developed in
the previous two chapters can be used as important building steps towards the con-
struction of an efficient post-quantum RingCT protocol. Of course, straightforward
combination of the already designed ZKPs does not result in a very efficient scheme
and we still need to come up with new techniques specifically crafted for our target
RingCT construction, which is exactly what is done in the upcoming sections.

We start the chapter by giving an overview of MatRiCT, our efficient, scalable and
post-quantum RingCT protocol, in Section 6.1. Then, a high-level summary of the new
techniques introduced in this chapter is given in Section 6.2. Our formal definitions for
RingCT-like cryptocurrency protocols and comparative discussions between the new
definitions and the prior ones are provided in Section 6.3. Later in Section 6.4, the
full algorithmic details of MatRiCT are discussed, where we split MatRiCT into sub-
procedures, each of which is summarised as a pseudocode. We introduce an improved
soundness proof for the underlying binary proof used in MatRiCT in Section 6.5. The
security proofs of MatRiCT are given in Section 6.6, where we show that MatRiCT
satisfies correctness, anonymity and balance properties defined in Section 6.3. We
then discuss the parameter choices and implementation details in Section 6.7, where
an evaluation of MatRiCT is also provided. Section 6.8 covers a discussion about
a parameter choice regarding the serial numbers used in MatRiCT. The extension of
MatRiCT to provide auditability is detailed in Section 6.9, where our novel extractable

1This chapter is mainly based on [EZS+19].
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commitment scheme, the crucial tool enabling the auditability feature, is introduced.
More discussion on the ring and group signatures, which are constructed as sub-blocks
of MatRiCT, is provided in Section 6.10.

In this chapter, the commitment scheme is always instantiated with HMC (i.e.,
using a completely random commitment matrix G).

6.1 Overview of MatRiCT

One of the most important features of MatRiCT is that no wide range proof is required.
The general structure of the whole system is as follows. We work over two cyclotomic
rings Rq = Zq[X]/(Xd + 1) and Rq̂ = Zq̂[X]/(Xd + 1) where q is a small modulus (of
about 31 bits) and q̂ is large modulus (of about 53 bits). Note that both moduli are
much smaller than 64 bits in bit-length even though we allow the transaction amount
to be of 64 bits.

A user secret key sk is a random short vector over Rq and the user’s public key
is generated by using sk as the randomness of a commitment to zero. When minting
a coin to represent an amount without revealing its value, we do not commit to the
integer amount, but instead commit to the bits of the amount over Rq. Therefore, a
standard argument stating that the sum of input coins equals the sum of output coins
is not sufficient for the balance property as the addition is done over Zq. Instead, we
introduce a novel balance proof as sketched in Section 6.2.

To spend some of her accounts, each of which is a pair of a public key and a coin,
a user Alice proceeds as follows. She mints her coins and computes some “corrector”
values to be used in the balance proof. These corrector values help Alice prove that
the sum of input amounts equals the sum of output amounts, and they are binary
when there is one input account and at most two output accounts. For simplicity, let
us assume that is the case for now. To hide her identity, Alice gathers other accounts
to be used in a ring signature. Suppose Alice wants to spend M of her accounts while
hiding herself among N users, in which case she gathers M · N accounts (including
those of her own), seen as anM×N matrix. Then, she chooses an index ` ∈ [0, N−1]
and places her own accounts on the `-th column. Below is an illustration of the matrix
constructed by Alice.

Ain =

act0,0 · · · act0,` = (pk0,`, cn0,`) · · · act0,N−1
...

. . .
...

. . .
...

actM−1,0 · · · actM−1,` = (pkM−1,`, cnM−1,`) · · · actM−1,N−1

After this initial setting, Alice computes an aggregated binary proof over Rq̂ where
she proves that 1) all minted output coins are commitment to bits, 2) her index ` is
properly encoded by some bits in some ring elements, and 3) the “corrector” values are
properly encoded as bits in some ring elements. Here, our scheme crucially benefits
from this efficient aggregation. Alice then providesM ring signatures for her accounts
to be spent, and also proves that the “corrector” commitment is of special form such
that the commitment does not contain any value (i.e., the committed message rep-
resents zero). Finally, she runs another ring signature on commitments P0, . . . , PN−1

where

Pi =
∑

(output coins)−
∑(

input coins in
i-th column

)
+ (“corrector” com.).
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Observe that Alice knows all the secret values that constructs P`, and the corrector
commitment is constructed in a way that P` is a commitment to zero over Rq when the
sum of input (integer) amounts equals the sum of output (integer) amounts. Recall
that Alice also proves corrector commitment contains no value. Finally, she computes
serial numbers as commitments to her secret keys used under a new commitment key
and proves that this is indeed the case. This step is to prevent Alice from double-
spending.

For auditability, we allow the auditor to extract Alice’s index since she already
proves that her index ` is properly encoded in some commitment. For this, we require
an extra tool: an extractable commitment compatible with our construction (see
Section 6.9.1).

An important feature of auditable MatRiCT is that users can choose a specific
auditor from a set of possible auditors or can even choose to have no auditors, all
within the same environment. Therefore, the user chooses an auditing option i, where
i = 0 indicates no auditor (i.e., full anonymity) and i > 0 indicates auditing by the
i-th authority (i.e., conditional anonymity).

6.2 Overview of New Techniques

6.2.1 Improved ring signature

The ring signatures from previous chapters consist mainly of two parts: 1) a binary
proof on the signer’s index, and 2) a one-out-of-many proof on the set of public
keys. We show that the two verification equations in the binary proof can be batched
together, which reduces the number of commitments and the randomnesses to be
communicated by half and thus the binary proof’s cost almost by half. Let us recall
the general idea for the binary proof from previous chapters that build on the ideas
from [GK15, BCC+15].

Suppose that we want to show b is a bit. Let B = Com(b; ∗), A = Com(a; ∗) and
f = x · b+ a for some masking value a and a challenge x where Com is homomorphic
commitment.2 Then, one verification equation shows that f is well-formed by checking
xB + A = Com(f ; ∗). The other equation proves that the coefficient of x2 in the
product f · (x− f) = x2 [b(1− b)] +x [a(1− 2b)]−a2 is zero by checking Com(f · (x−
f); ∗) = xC +D where C = Com(a(1− 2b); ∗) and D = Com(−a2; ∗) are set by the
prover. Thus, the latter verification equation proves that b(1− b) = 0, which implies
(under certain conditions) that b is binary.

In the ring signature, we do not make use of the commitments A,B,C,D, other
than for showing that f “encodes” a bit b. Therefore, the prover can set B =
Com(b, a(1− 2b); ∗) and A = Com(a,−a2; ∗), and the verifier can equivalently check
xB + A = Com(f, f(x − f); ∗). That is, since both verification equations are effec-
tively linear in x, they can be batched together. This ensures again that f = xb + a
and that the coefficient of x2 in the product f · (x− f) is zero. Now we do not need
to have the commitments C,D at all, and also do not need to communicate a masked
randomness for a second verification. The gain in the communication cost follows
from here. This idea works both in the DL setting (and thus applies to all protocols
using the proof systems from [GK15, BCC+15]), and in the lattice setting as we do
not exploit any special property of the commitment scheme other than the standard
binding property.

2In the real proof, multiple binary proofs are batched by committing to all the bits bi’s together
as B = Com(b0, b1, . . . ; ∗), which we ignore here for simplicity.
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Second, we show that by using two sets of compatible parameters for the two parts
of the ring signature, one can significantly reduce the signature length. Here, it is
important to choose the parameters carefully as the two parts are not completely
independent. In our setting, the binary proof requires a much bigger modulus than
the one-out-of-many proof. This is due to both the hardness of the underlying M-SIS
problem and also to make the binary proof go through in a ring Rq̂ with zero divisors
where b(1−b) = 0 may not imply b ∈ {0, 1} (unlike in the field Zq). Therefore, we use
a large modulus q̂ for the binary proof, and a small modulus q for the one-out-of-many
proof (and also the other parts of the protocol). In addition to reducing the proof
length, this also reduces the user public key size. Since public keys play a central role
in the whole blockchain system, the overall advantage is two-fold. The new binary
proof additionally has the advantage that the condition on the modulus to make the
binary proof go through in the ring Rq̂ is much weaker than the one in Chapter 5.
Using the soundness proof from Chapter 5, one would need to set q̂ to be of more
than 70 bits whereas we use around a 53-bit modulus q̂ in this chapter.

6.2.2 Efficient rejection sampling for binary secrets of fixed Ham-
ming weight

Recall that the prover’s binary secrets are encoded as f = x · b+ a where b is a secret
bit, a ∈ Rq̂ is a masking element and x ∈ Rq̂ is a challenge received (computed) after
a is sampled. For our commitment scheme to be binding, f needs to be of small norm
and thus we cannot choose a randomly from Rq̂. In this case, a standard technique
to make sure that f does not reveal information about the secret is using rejection
sampling [Lyu09]. Suppose that we sample a ← {−Ba, . . . ,Ba}d and ‖x · b‖

∞
≤ p

for all possible x and b values where Ba � p ∈ Z+. The idea for the rejection
sampling in [Lyu09] is to make the distribution of f uniform in a box by aborting
the interactive protocol (or starting over in the non-interactive case) if the maximum
absolute coefficient of f is greater than Ba − p.

Now, when b = 0, we know independent of the challenge x that f will be equal to
a. Therefore, in this case, one may sample a directly from {−(Ba − p), . . . ,Ba − p}d
in the first place to make sure that f = x · b+ a is not rejected. Still, the distribution
of f conditioned on passing the rejection sampling check is identical to the uniform
distribution on {−(Ba − p), . . . ,Ba − p}d, thus simulation-based security aspects re-
main untouched. However, the number of zero secrets affects the overall acceptance
probability and thus such a rejection sampling leaks side-channel information. For ex-
ample, proving knowledge of secret bits 1, 1, 1, 1, 1 is likely to take longer than proving
knowledge of secret bits 0, 0, 0, 0, 0 as the latter is never rejected while the former is
rejected with some non-negligible probability.

In our protocol, the user index is represented in unary, i.e., the bit sequence
representing the user index has a fixed number of zeros and ones. Therefore, the above
technique of sampling the masking value from the accepted distribution in advance
does not leak additional information as the prover’s goal is to prove that there are
exactly k ones in the secret bit sequence for some publicly known k ∈ Z+. Hence,
the technique is applicable and allows us to increase the acceptance rate significantly
without needing to sample these components from a wider interval. To illustrate,
when N = 200, the bit sequence representing the user index ` is the `-th unit vector,
i.e., has 199 zeros and a single one. Therefore, if the acceptance probability for a single
secret bit is P , then the overall acceptance probability using our technique is still P
instead of P 200, which would be the case using the previous standard technique.
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We also note that the technique trivially extends to the case where the secret
sequence has a fixed number of zeros and some other elements (which may not be
binary) as we do not make use of the fact that nonzero secrets are equal to 1.

6.2.3 Novel balance proof

Suppose we want to prove that

M−1∑
i=0

ain,i =
S−1∑
i=0

aout,i (6.1)

for some input amounts ain,0, . . . , ain,M−1 and output amounts aout,0, . . . , aout,S−1

where M,S ∈ Z+. The general idea to prove (6.1) while hiding the amounts is to
commit to each amount value using a homomorphic commitment scheme, and then
show that 1) each committed value is in a valid positive range, and 2) the sum of out-
put commitments minus the sum of the input commitments is a commitment to zero.
For the lattice-based schemes, there do not exist a range proof that is significantly
shorter than the generic approach: first, prove that some masked values encode bits,
and then that these bits construct the committed integer. One important detail that
especially has an effect for the lattice-based schemes is that (6.1) must hold over Z,
not just Zq.

Now, let us see how our balance proof works. Assume we want to work in base β ≥
2 and the amounts are represented by r digits. Then, we can write a =

∑r−1
j=0 β

ja[j]
for any amount a with the digits a[j]’s. Hence, we get

M−1∑
i=0

ain,i =
S−1∑
i=0

aout,i⇐⇒
M−1∑
i=0

r−1∑
j=0

βjain,i[j] =
S−1∑
i=0

r−1∑
j=0

βjaout,i[j],

⇐⇒
r−1∑
j=0

βj
M−1∑
i=0

ain,i[j] =

r−1∑
j=0

βj
S−1∑
i=0

aout,i[j],

⇐⇒ 0 =
r−1∑
j=0

βj

(
S−1∑
i=0

aout,i[j]−
M−1∑
i=0

ain,i[j]

)
, (6.2)

⇐⇒ 0 =
r−1∑
j=0

βj

(
S−1∑
i=0

aout,i[j]−
M−1∑
i=0

ain,i[j] + cj − βcj+1

)
, (6.3)

for c0 = cr = 0 and any corrector values c1, . . . , cr−1 ∈ Z. Therefore, instead of
using the general idea that mandates a very large modulus, we can proceed as follows.
Setting β = 2, for each amount, we commit to its bits as

Cin,i = Com(ain,i[0], . . . , ain,i[r − 1]; ∗),
Cout,i = Com(aout,i[0], . . . , aout,i[r − 1]; ∗).

Then, we also create a “corrector” commitment C = Com(c0 − 2c1, . . . , cr−1 − 2cr; ∗)
with c0 = cr = 0. Finally, we prove that 1) Cin,i’s and Cout,i’s are commitments to
bits, 2)

∑S−1
i=0 Cout,i −

∑M−1
i=0 Cin,i + C is a commitment to zero, and 3) C is well-

formed as above. These guarantee that 1) the opening message for any commitment
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to an amount represents a unique value in a positive range [0, 2r − 1], 2)

0 =

S−1∑
i=0

aout,i[j]−
M−1∑
i=0

ain,i[j] + cj − 2cj+1 (6.4)

for any j ∈ {0, . . . , r − 1}, and 3) C does not add any value in this representation.
Therefore, we prove (6.3) and equivalently (6.1). Since a range proof already decom-
poses a value to its bits, from a practical perspective, we replace the reconstruction
part of the range proof by the proof that shows C is well-formed. Importantly, though,
we do not need to use a very large modulus since the modulus just needs to be large
enough to guarantee that (6.4) holds over Z, which is a very weak condition in a
practical RingCT system.

The reason why we cannot simply use (6.2) is that, when amounts are represented
by commitments to their bits, the addition of the commitments adds the corresponding
bits over Zq where q � 2. Therefore, for Bits(a) denoting the bits of a positive integer
a,

Com(Bits(a1); ∗) + Com(Bits(a2); ∗) 6= Com(Bits(a1 + a2); ∗),

and hence the proof does not work without the corrector C.

6.2.4 New extractable commitment

Our extractable commitment can be seen as a bridge between an LWE-based encryp-
tion, and a SIS-based commitment scheme with a “full trapdoor”, i.e., the commitment
matrix A is constructed in a way that a trusted party knows a matrix G such that
G ·A = 0 mod q. The disadvantage of an encryption scheme is that it does not allow
compression (since there is unique decryption). As a result, it is inefficient to encrypt
long messages whereas we want to have a compact commitment to long message vec-
tors, i.e., we require a compressing commitment. The most promising candidate for
this task is HMC, which can be seen as a commitment to the hash of the message while
still preserving the algebraic structure. Now, if one puts a full trapdoor to HMC, then
the recovered information via annihilating the randomness part with the trapdoor
would be only the hash of the message, not the message itself. Then, one still has
to recover the original message from here. Additionally, putting a full trapdoor often
requires more aggressive parameters than those sufficient for the system without the
trapdoor.

These bring us to our idea of using a “mini trapdoor”. Suppose that C = Ar+Bm
is a commitment to a message vector m with a randomness vector r and a uniformly
random matrix B. The idea now works as follows. We construct A an as LWE matrix

such that A =

[
A′

t>

]
where t = A′>s + e for some secret s and error e known

only to the message extractor and A′ is uniformly random. To extract a message
from C, the extractor computes 〈(s,−1), C〉, which is equal to −〈e, r〉 + 〈b,m〉 for
b = (s,−1)>B. Then, the idea is to let the extractor iterate through all the possible
messages m′ and compute 〈(s,−1), C〉 − 〈b,m′〉. For the correct message, the result
will be e′ = −〈e, r〉, and for an incorrect message, it will be a random element in
the ring Rq since B is an independent uniformly random matrix and m −m′ 6= 0.
Therefore, we can set the parameters so that ‖〈(s,−1), C〉 − 〈b,m′〉‖

∞
is small only

for the correct message with an overwhelming probability, which allows the extractor
to recover the message. Furthermore, from M-LWE problem, A is computationally
indistinguishable from random, and thus hiding property of HMC can still be used.
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Table 6.1: Notations for the RingCT formal model.

S the blockchain state
act = (pk, cn) an account comprised of a public key and a coin
M,S ≥ 1 the number of spender’s input and output accounts, resp.
N ≥ 2 the number of accounts to hide a single input account
Rin the set of spender’s real accounts

Kin = (SKin,

CKin,Amtin)

the set of spender’s account secret keys ask = (sk, cnk, amt)

with a secret key, coin key & amount

Ain
the set of all input accounts arranged as a M ×N
matrix where the i-th row contains Rin[i]

PKout the set of output public keys with |PKout| = S

CNout the set of output coins with |PKout| = S

Amtout the set of output amounts with |Amtout| = S

CKout the set of output coin keys with |CKout| = S

Aout the set of output accounts with |Aout| = S

Π the proof output
SN the set of serial numbers
tx a transaction tx = (Ain,PKout,CNout,Π, SN)

V the set of all valid amounts

6.3 Formal Definitions for RingCT-like Cryptocurrency
Protocols

In this section, we describe our formal definitions for RingCT-like protocols. First,
we introduce the notation used specifically for the security model in Table 6.1. The
blockchain state S consists of two lists: 1) a list of registered accounts act = (pk, cn),
indicating a public key pk is paired with a coin cn, and 2) a list of all verified trans-
actions. We assume that S is properly updated among all users at all times.3 The
following tuple of polynomial time algorithms define RingCT protocol.

• pp ← Setup(1λ) : given the security parameter λ, output the system parameters
pp, which is assumed to be an implicit input to all the remaining functions.
• (pk, sk)← KeyGen() : output a public-secret key pair (pk, sk).
• s← SerialGen(sk) : on input a secret key sk, output a serial number s associated

to sk.
• (cn, cnk)/ ⊥←Mint(amt) : on input an amount amt, if amt ∈ V, output a coin cn

and its coin key cnk. Otherwise, output ⊥. If cnk is given as an input, then Mint
computes a deterministic function such that cn = Mint(amt, cnk).
• (act,S)← AccountGen(pk, cn,S) : on input a public key pk and a coin cn, register

an account act = (pk, cn) to the blockchain state S. Output act and updated state
S.
• 0/1← CheckAct(pk, cn,S) : on input a public key pk, a coin cn and the blockchain

state S, output 1 if (pk, cn) is a registered account in S. Otherwise, output 0. In
the case that the input has a set of pairs of (pk, cn), then output 1 if all (pk, cn)
pairs are registered accounts in S. Otherwise, output 0.
• (tx,CKout) ← Spend(Ain,Rin,Kin,PKout,Amtout) : on input Ain,Rin,Kin,PKout,

and Amtout as in Table 6.1, mint output coins by running (CNout,CKout) ←
3In practice, this is managed by a consensus algorithm, which is outside the scope of this work.
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Table 6.2: Structure of the list L used in the RingCT security model.

L : pk sk s (serial #) cn cnk amt IsCrpt

Mint(Amtout). Generate the serial numbers by running SN ← SerialGen(SKin)
and a proof Π. Output (tx,CKout)=((Ain,PKout,CNout,Π, SN),CKout).4

• 0/1 ← IsSpent(SN,S) : on input a set SN of serial numbers and the blockchain
state S, if there is a collision in SN or if a serial number appears both in SN and S,
output 1. Otherwise, output 0.
• ∅/(Aout, S) ← Verify(tx,S) : on input a transaction tx as in Table 6.1, if
IsSpent(SN, S) = 1 or CheckAct(Ain, S) = 0, output ∅. Check the proof Π and
output ∅ if not valid. Otherwise, run (Aout,S) ← AccountGen(PKout,CNout,S)
and add tx to S. Output Aout 6= ∅ and updated S.

One of the most important differences of our definitions to RingCT 2.0 [SALY17]
and 3.0 [YSL+19] is that some of the functions take the blockchain state S as an input
to capture the inherent stateful nature of a blockchain environment. However, this
important piece is completely missing in RingCT 2.0 and 3.0, and sometimes used
implicitly in the definitions without having it as an input. For the tuple of algorithms
that define the protocol, we additionally have the functions SerialGen,CheckAct
and IsSpent, which do not exist in RingCT 2.0 or 3.0. Therefore, in the correctness
definitions of RingCT 2.0 and 3.0, there is no restriction on input accounts being
unspent whereas there should be such a restriction (see our correctness definition
further below).

We consider an account as a registered public key and coin pair on blockchain.
Therefore, our Spend algorithm does not output accounts as the transaction would
not have been validated at that point yet. Hence, Verify takes public key and coin
pairs as inputs, and outputs the accounts if the input transaction is valid. On the
other hand, Spend algorithms in RingCT 2.0 and 3.0 directly output accounts. Also,
Mint algorithm in RingCT 2.0 and 3.0 take a public key as an input, but does not
make use of it.

6.3.1 Security Definitions

Towards getting a “cleaner” model, we only use the single list L in Table 6.2 instead
of five lists as in RingCT 2.0 and 3.0. The list L is seen as a database for which any
of the following can be used as a unique identifier of a row: a public key, a secret key,
a serial number, a coin or a coin key. Retrieving a row in L is denoted, for example,
by L[pk] for some public key pk. Then, L[pk].cnk denotes the coin key associated with
the public key pk. IsCrpt denotes the “is corrupted” tag.
Oracles. The oracles accessed by an adversary A are defined below.
• PkGen(i) : on the i-th query, run (pki, ski)← KeyGen(), s← SerialGen(ski) and

output pki. Add (pki, ski, s) to L where IsCrpt tag is set to zero and the remaining
fields are left empty.
• Mint(amt) : run (cn, cnk)←Mint(amt), and output cn.
• ActGen(pk, amt, S) : run (cn, cnk) ← Mint(amt) and (act, S) ←
AccountGen(pk, cn, S). Insert (cn, cnk, amt) to L[pk] and output (act, S).
• Corrupt(act) : For act = (pk, cn), if L[pk] cannot be found, return ⊥, indicating

failure. Otherwise, update L[pk].IsCrpt to 1, and output L[pk].sk, L[pk].cnk and
L[pk].amt. Alternatively, the input may be either pk alone or cn alone. In the
4CKout along with the output amounts are delivered to the recipient(s) privately.
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former case, only L[pk].sk is returned, and in the latter, L[cn].cnk and L[cn].amt are
returned.
• Spend(Ain,Rin,PKout,Amtout) : Retrieve from L all account secret keys Kin as-

sociated to Rin. Run (tx,CKout) ← Spend(Ain,Rin,Kin,PKout,Amtout) and B ←
Verify(tx,S). If B = ∅ (i.e., the verification fails), return ⊥. Otherwise, return tx
and, for each 1 ≤ i ≤ |PKout|, update the coin, coin key and amount information in
L[PKout[i]] with CNout[i], CKout[i] and Amtout[i], respectively.

We let Orc denote the set of all oracles defined above together with the random
oracle. With respect to the positioning of the accounts in Rin inside Ain, we define
two flavours of properties for RingCT: 1) with shuffling and 2) without shuffling. In
the latter case, all the accounts in Rin are restricted to be in the same column, which
provides a somewhat weaker level of anonymity as described in [YSL+19]. We give
our definitions for the former case, and it is trivial to get the latter by imposing the
aforementioned restriction on Rin.

Correctness

Informally, correctness requires that any user is able to spend any of her honestly
generated unspent accounts, which has honestly generated keys and coins with a valid
amount.

A RingCT protocol is said to be ε-correct if the following holds for
any pp ← Setup(1λ), any M,N,S ∈ Z+, (pk0, sk0), . . . , (pkM−1, skM−1) ←
KeyGen(pp) such that IsSpent(SerialGen(ski)) = 0 for all i = 0, . . . ,M −
1, any amt0, . . . , amtM−1, amtout,0, . . . , amtout,S−1 ∈ V such that

∑M−1
i=0 amti =∑S−1

i=0 amtout,i, any set PKout of arbitrarily generated output public keys and any
set Ain \ Rin of arbitrarily generated decoy accounts,

Pr

[
Verify(tx,S) 6= ∅ :

(tx,CKout)← Spend(Ain,Rin,Kin,PKout,Amtout)

]
≥ 1− ε

where cni = Mint(amti, cnki) for some cnki’s in the domain of coin keys,
acti ← AccountGen(pki, cni) for i = 0, . . . ,M − 1, Rin = {act0, . . . , actM−1},
Amtout = {amtout,0, . . . , amtout,S−1}, Ain and tx are as in Table 6.1, and Kin =
{(sk0, cnk0, amt0), . . . , (skM−1, cnkM−1, amtM−1)}. If ε = 0, then the protocol is said
to be perfectly correct. If ε = negl(λ), then it is said to be statistically correct.

Observe from the above correctness definition that the spent input coins may not
be generated honestly, but the input amounts and coin keys are in the correct domains.
Indeed, the input coins spent by a user, say Alice, are the output coins of a previous
transaction and thus are generated by another user, say Bob. Therefore, Alice cannot
guarantee that Bob generated the coins honestly. However, Alice also receives the
coin keys and amounts for these coins and can easily check if they are in the correct
domains and whether the coins can be spent. Therefore, the correctness property
alone does not guarantee that any received coins can be spent. This aspect can be
captured in a security property (such as availability), which could require any coin
output by a verified transaction to be “spendable”. As in prior models RingCT 2.0
and 3.0, our model does not include such an availability property.

In the correctness definition of RingCT 3.0, the amounts are randomly sampled
from Zp. However, in our case, the correctness requires any amount in the valid range
V to be able to be spent.
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Anonymity

Informally, anonymity requires that the real spender’s accounts are hidden among the
uncorrupted (i.e., never been queried to Corrupt) accounts as long as there are at
least two sets of uncorrupted input accounts that can be successfully spent.

A RingCT protocol is said to be anonymous if the following holds for all PPT
adversaries A and pp← Setup(1λ)

Pr [A wins the game Exp:Anonymity] ≤ 1/2 + negl(λ),

where Exp:Anonymity is defined as follows.

1. (Ain,PKout,Amtout,R
0
in,R

1
in, st)← AOrc(pp) :A is given pp and access to all oracles,

and then outputs two target sets of accounts to be spent as (Ain,PKout,Amtout,R
0
in,

R1
in, st) where

• st is some state information to be used by A in the next stage,
• Ain,PKout and Amtout are as in Table 6.1,
• R0

in,R
1
in ⊂ Ain such that both R0

in and R1
in contain exactly one account from each

row of Ain.

2. (txi,CK
i
out) ← Spend(Ain,R

i
in,K

i
in,PKout,Amtout) for i = 0, 1 : Both sets R0

in and
R1

in of real input accounts are spent with the arguments specified by A where

• Kiin is the set of account secret keys of the accounts in Riin retrieved from L for
i = 0, 1.

If Verify(txi, S) = ∅ for some i ∈ {0, 1}, then set tx0 = tx1 =⊥.
3. b← {0, 1}
4. b′ ← AOrc(txb,CK

b
out,Amt0in,Amt1in, st) : A is given access to all the oracles, the

state st, one of the Spend outputs, and the input amounts in K0
in and K1

in. Then,
A outputs a guess for the real input of the Spend output provided.

A wins the game Exp:Anonymity if the following holds

• all public keys and coins in R0
in and R1

in are generated by PkGen and Mint, re-
spectively, and all accounts in R0

in and R1
in are generated by ActGen,

• all public keys in PKout are generated by PkGen,
• tx0 6=⊥ and tx1 6=⊥,
• no account (including its public key and coin) in R0

in or R1
in has been corrupted (i.e.,

queried to Corrupt),
• (·,Riin·, ·) has never been queried to Spend for i = 0, 1,
• b′ = b.

Note that the adversary is restricted to corrupting at most N − 2 accounts in any
row of Ain by making sure that R0

in and R1
in have all uncorrupted accounts. Further,

instead of having two sub-definitions as in RingCT 3.0, we define a single anonymity
experiment that covers different attack scenarios. Our definition is based on an in-
distinguishability argument, which makes it easier to extend the anonymity proofs of
the ring signature used as a building block. Moreover, in our anonymity definition,
only the accounts in Rin are assumed to be honestly generated, not all those in Ain.

Balance

Informally, balance requires that no adversary can spend a set A of accounts under
his control such that the sum of output amounts is more than the sum of the amounts
in A.
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A RingCT protocol is said to be balanced if the following holds for all PPT adver-
saries A and pp← Setup(1λ)

Pr [A wins the game Exp:Balance] ≤ negl(λ),

where Exp:Balance is defined as follows.

1. (tx1,Amt1out,CK
1
out), · · · , (txt,Amttout,CK

t
out) ← AOrc(pp) : The adversary A is

given access to all the oracles Orc together with pp, and outputs a set of t trans-
actions where

• txi = (Aiin,PK
i
out,CN

i
out,Πi, SNi) for i = 1, . . . , t,

• Amtiout’s and CKiout’s are sets of output amounts and coin keys, respectively, for
uncorrupted output public keys with |CKiout| = |Amtiout| ≤ |PKiout| = |CNiout| for
all i ∈ {1, . . . , t}.

2. Bi ← Verify(txi,S) for i = 1, . . . , t.

A wins the game Exp:Balance if the following holds

• for all i ∈ {1, . . . , t}, all public keys and coins in Aiin are generated by PkGen and
Mint, respectively, and all accounts in Aiin are generated by ActGen,
•
⋂t
i=1 SNi = ∅,

• Bi 6= ∅ for all i = 1, . . . , t,

• there exists a j∗ ∈ [1, t] such that
S′−1∑
i=0

Amtj
∗

out[i] >
M−1∑
i=0

amtin,i where S′ = |Amtj
∗

out|,

M = |SNj∗ |, amtin,i = L[si].amt for all si ∈ SNj∗ if si ∈ L and L[si].IsCrpt = 1, and
amtin,i = 0 otherwise,
• for any i ∈ [1, t] and 0 ≤ j < |PKiout|, if L[pki,j ].IsCrpt = 0 for pki,j =

PKiout[j], then CKiout[j] = L[pki,j ].cnk, Amtiout[j] = L[pki,j ].amt and CNiout[j] =

Mint(Amtiout[j],CK
i
out[j]).5 That is, for all uncorrupted output public keys, the

corresponding output coin key, output amount and output coin provided by the
adversary are correct.

In Exp:Balance, the output of the adversary does not include information about
the output coin key or output amount for the corrupted output public keys. The
reason that the adversary needs to output such information for uncorrupted output
public keys is that the honest recipient checks whether the output coin key and output
amount are in the correct domains and construct the coin. Clearly, the adversary may
corrupt all the output public keys, in which case, he would not need to output CKout
or Amtout.

Attack scenarios of the balance model.

1. Forgery: The attacker tries to create a valid proof where (at least) one of the real
spent accounts is not corrupted. This is captured by setting an input amount to
zero if no corruption occurs with respect to a certain serial number.

2. Unbalanced input and output amounts: The attacker tries to create a trans-
action where the sum of input amounts being spent does not match the sum of
output amounts. This is captured by letting the attacker corrupt all the input
accounts.
5Without loss of generality, we assume that the indices for corrupted public keys are the last ones

so that the indexing matches.
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3. Double spending: The attacker tries to spend an account twice with distinct
serial numbers. This is captured by setting an input amount to zero if the respective
serial number is not in L.

Our balance definition is presented as a single experiment rather than having sub-
definitions. For example, RingCT 3.0 has three sub-cases of balance: unforgeability,
equivalence and linkability. Further, the unforgeability definition in RingCT 3.0 re-
quires all input accounts in Ain to be uncorrupted. However, in this case, a natural
forgery attack where the attacker has control over a single input account (which may
not even be the real spent one) is excluded from the model. In our balance defini-
tion, on the other hand, the adversary wins the game -among other cases- if there
is only a single uncorrupted account for which a valid serial number is generated by
the adversary. Further, our balance definition allows an adversary to output a set of
transactions (where one transaction can possibly be an input to the other), while only
the linkability definition in RingCT 3.0 allows just two transactions to be output.

In RingCT 2.0/3.0 formal models (and also in LRCT v2.0), there is an additional
property, non-slanderability. It states “it is infeasible for any malicious user to produce
a valid spending that shares at least one serial number with a previously generated
honest spending” [SALY17]. Although non-slanderability could be a requirement in
some applications of a linkable ring signature where the users are punished if a signa-
ture is detected to be generated twice using the same secret, we do not believe that is
the case in the RingCT setting. The reason is that if someone generates a spending
that has the same serial number with a previously generated one, then simply the
second spending does not verify and thus ignored with no punishment in regards to
the first spending. Hence, even if an attacker succeeds in winning the above non-
slanderability game, there is no harm to honest users nor is there any gain for the
attacker.

In our formal definitions, we aimed to explicitly state our assumptions so that
the model can further be easily strengthened in future by removing some of them.
For example, a potential extension is to remove the assumption in Exp:Balance that
the input coins are generated honestly. This would require using the soundness of
the preceding transaction proofs (in addition to the “current” one), complicating the
balance analysis even further. Thus, in this work, such an assumption is included as
in RingCT 2.0 and 3.0.

6.4 MatRiCT: Efficient, Scalable and Post-Quantum Con-
fidential Transactions Protocol

Table 6.3: Identifiers for MatRiCT.

Notation Explanation

Rq, Rq̂
Cyclotomic rings

of degree d :
Rq = Zq[X]/(Xd + 1)
Rq̂ = Zq̂[X]/(Xd + 1)

n, n̂ height of commitment matrices in Rq and Rq̂, resp
m, m̂ randomness vector dimensions in Rq and Rq̂, resp
N = βk ring size of ring signature (and anonymity set size)

` spender’s column index with 0 ≤ ` < N

r bit-length of an amount, i.e., amt ∈ V = [0, 2r − 1]

B max. absolute coefficient of initial randomness
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6.4.1 Description of MatRiCT

We describe the full details of MatRiCT in this section. We specify the functions
Setup, KeyGen, SerialGen, Mint, Spend and Verify. To simplify presentation,
the part concerning the corrector values in Spend is shown for the case (M,S) =
(1, 2) in Algorithm 6.8 and we discuss in the text how the general case can be easily
accomplished. Let us go over the description of each algorithm one-by-one and fix
the notation in Table 6.3. We assume that r-bit precision is always sufficient for the
amounts (even when they are summed)6 and that valid amounts are used to call the
functions. It is trivial to return an error when that is not the case.

In general, there are 3 commitment keys G, Ĝ and H used in the system where
H (defined over Rq) is used only in the serial number generation, Ĝ is used for the
commitments over Rq̂ in binary proof and G is used elsewhere for the commitments
over Rq.

Algorithm 6.1 SamMat(ρ′, v, q′, n′,m′, str)

INPUT: ρ′ for some seed ρ′ ∈ {0, 1}256; v, q′, n′,m′ ∈ Z+; str is an optional
auxiliary input string.

1: G← Sam(ρ′, str) where G ∈ Rn
′×(m′+v)
q′

2: return G . G can be output in the NTT domain.

Algorithm 6.1 generates a random matrix from a small seed ρ using an extendable
output function Sam (modelled as a random oracle in the security analysis). It also has
an auxiliary input string str so that different matrices from the same seed can be gener-
ated. Calling the function with the same seed ρ and same string str results in the gen-
eration of the same entries. For example, running A ← SamMat(ρ, v1, q, n1,m1, str)
and B ← SamMat(ρ, v2, q, n2,m2, str) with n1 ≤ n2, m1 + v1 ≤ m2 + v2 results in two
matrices A and B where A is a sub-matrix of B.

Algorithm 6.2 Setup(1λ) λ is the security parameter

1: Choose integer parameters k, β, r, n,m, n̂, m̂, d, q, q̂ such that N = βk

2: Set w, p such that |Cdw,p| > 2256

3: ρ← {0, 1}256

4: Pick a hash function H : {0, 1}∗ → Cdw,p
5: return pp = (ρ,H, k, β, r, n,m, n̂, m̂, ns, d, w, p, q, q̂)

Algorithm 6.2 sets the system parameters. Here, for ease of presentation, we
assume the ring size to be fixed to some N . The range of the hash function is defined
as the following challenge space

Cdw,p = {x ∈ Z[X] : deg(x) = d− 1 ∧ HW(x) = w ∧ ‖x‖
∞

= p}.

This is the same set defined in (5.9) and |Cdw,p| =
(
d
w

)
(2p)w. Thus, given d, one can

easily set (w, p) such that |Cdw,p| > 2256.

6We do not assume here that summing multiple amounts of, say, 264−1 is impossible. To be more
explicit, r can be set as the smallest integer such that MAXamt ·MAXio ≤ 2r − 1 where MAXamt is the
maximum amount possible and MAXio is the maximum number of input/output accounts allowed.
But, the amount is still represented in r bits. Recall that our protocol does not have the disadvantage
of requiring a modulus greater than 2r − 1 and a few more bits of precision can be added at almost
no cost.
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Algorithm 6.3 KeyGen(pp)

1: G← SamMat(ρ, 0, q, n,m, “G”)
2: r ← {−B, . . . ,B}d·m
3: c = G · r in Rnq . Commitment to zero under ck = G
4: return (pk, sk) = (c, r) . Can be output in the NTT domain

Algorithm 6.3 generates a public-secret key pair. The secret key is random vector
over Rq with infinity norm B, and the public key is a commitment to zero with the
secret key used as the randomness.

Algorithm 6.4 generates a serial number for a given secret key. The serial number
is a commitment to zero using the secret key as the randomness under the commitment
key H. Observe that the height of the commitment matrix here is set to ns.

Algorithm 6.5 implements minting a coin, which is computed as a commitment to
the bits of an input amount. The commitment key used here is the same as the one
in KeyGen.

Algorithm 6.4 SerialGen(sk) for a secret key sk ∈ Rmq
1: H ← SamMat(ρ, 0, q, ns,m, “H”)
2: c = H · r in Rnsq where r = sk ∈ Rmq . Com. to zero under H
3: return s = c . s can be output in the NTT domain

Algorithm 6.5 Mint(amt) for amt ∈ [0, 2r − 1]

1: G← SamMat(ρ, r, q, n,m, “G”)
2: r ← {−B, . . . ,B}d·m, (b0, . . . , br−1)← Bits(amt)
3: C = Comck (b0, . . . , br−1; r) in Rnq where ck = G
4: return (cn, cnk) = (C, r)

Since Spend algorithm is very long, we split it into multiple parts, Algorithms 6.6,
6.7, 6.8 and 6.9. Spend starts by setting some parameters in Algorithm 6.8. These
settings are done to accommodate different parameters while keeping the acceptance
rate of the rejection sampling similar. In Step 7, we compute the corrector values ci
where the division by two is always exact by the following lemma.

Lemma 6.1. Let A,B be two sets of non-negative integers and a = (a[0], . . . , a[r−1])
be the representation of a non-negative integer a in base β ≥ 2. If

∑
a∈A a =

∑
b∈B b,

then for any β ≥ 2, there exists c0, . . . , cr ∈ [−(|B| − 1), |A| − 1] with c0 = 0 such that∑
a∈A

a[i]−
∑
b∈B

b[i] = βci+1 − ci.

Further, cr = 0 if the result of the sum is of at most r digits in base β.

Proof. Let β ≥ 2. For any set A of non-negative integers and any 0 ≤ i < r where r
is the maximum number of digits needed to represent elements in A, we can write(∑

a∈A
a

)
[i]− ci + βci+1 =

∑
a∈A

a[i] (6.5)

for the carries c1, . . . , cr and c0 = 0 since there is no carry for the least significant bit.
Now, fix A,B as two sets of non-negative integers where the sum over A equals the
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sum over B. Clearly, the following holds(∑
a∈A

a

)
[i] =

(∑
b∈B

b

)
[i] (6.6)

for any 0 ≤ i < r. Using (6.5) and (6.6), for any 0 ≤ i < r, we get∑
a∈A

a[i]−
∑
b∈B

b[i]

=

(∑
a∈A

a

)
[i]− c′′i + βc′′i+1 −

(∑
b∈B

b

)
[i] + c′i − βc′i+1

= −(c′′i − c′i) + β(c′′i+1 − c′i+1),

for some carries c′0, c′′0, . . . , c′r, c′′r where c′0 = c′′0 = 0. Defining ci := c′′i − c′i with c0 = 0
concludes the first part. Note that due to c′′i , c

′
i being carry values, c′′i ∈ [0, |A| − 1]

and c′i ∈ [0, |B| − 1], and thus ci ∈ [−(|B| − 1), |A| − 1].
When neither of the sums exceed r digits, c′r = c′′r = 0, and thus cr = 0.

After computation of the corrector values, the spender mints the output coins, and
runs an aggregated binary proof using Algorithm 6.6. The idea for the binary proof is
the same as in Section 5.5.1, but we apply our efficient rejection sampling technique
for binary secrets of fixed Hamming weight and the binary proof here proves a slightly
different relation given in Lemma 6.3. In general, Algorithm 6.6 takes t sequences of
bits where each sequence has sj elements, and the masking values for each sequence
is sampled from UBj . Also, each sequence has a flag Boolj to indicate whether the
sequence has a fixed Hamming weight, in which case the masking values for zero bits
are sampled directly from the accepted distribution of rejection sampling. Note that
for the case of Hamming weight equal to 1, there is always exactly one element in
{a(j)

1 , . . . , a
(j)
sj } not sampled from the accepted distribution.

Defining δi,j as the Kronecker’s delta, Step 14 of Algorithm 6.8 computes the unary
representation of the spender’s index ` in base β, which has a fixed Hamming weight.
Therefore, the flag Boolj is set to True for these sequences. Then, we also add the
corrector values and the output amount bits to the array b, which is then input to
the binary proof. The most common cases for the number of input/output accounts
are (M,S) = (1, 2) and (M,S) = (2, 2). For the former case, the corrector values are
binary as they are simply the carries in the sum of two output amounts. Therefore,
the steps given in Algorithm 6.8 are sufficient. In the latter case, we can prove that
the corrector values are differences of some bits cin,i, cout,i, which are the carries from
the sum of two inputs and the sum of two outputs, respectively.

In general, however, the corrector values can fall in a larger interval [−(M−1), S−
1], and in that case, one needs to prove that they are indeed in that interval. This
can be done using a standard range proof, where the range width is only M + S − 1,
which is expected to be very small. In fact, we do not need to prove that they fall
exactly in [−(M − 1), S − 1], but can alternatively prove that they are in a range of
width 2l for l = dlog(M + S − 1)e. There are standard methods to “shift” the range
at no cost (see Section 5.4.2). As mentioned in Section 6.2, as long as (6.4) is ensured
to hold over Z, the corrector values can be set freely. The final part of Algorithm 6.6
is committing to all the values.

Steps 26 and 27 of Algorithm 6.8 are used to prove that the corrector commitment
C is well-formed, i.e., does not contain any value with respect to the representation
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Algorithm 6.6 BinaryCommit . Commitment Step of Binary Proof

INPUT: t ∈ Z+; {(sj ,Boolj , (b(j)0 , . . . , b
(j)
sj−1),Bj)}t−1

j=0 where sj ∈ Z+,Boolj ∈
{True,False}, b(j)i ∈ {0, 1}; B, B̂big ∈ Z+.
OUTPUT: (ra, rb), (A,B), {(a(j)

0 , . . . , a
(j)
sj−1)}t−1

j=0 where ra, rb ∈ Rm̂q̂ , A,B ∈ Rn̂q̂
and a(j)

i ∈ Rq̂.

1: ck = Ĝ← SamMat(ρ, v, q̂, n̂, m̂, “Gbig”) for v = 2 ·
(∑t−1

j=0 sj

)
2: rb ← {−B, . . . ,B}d·m̂
3: ra ← {−B̂big, . . . , B̂big}d·m̂
4: for j = 0, . . . , t− 1 do . Iterate over each bit sequence
5: if Boolj = True then . The case of HW being 1.
6: if b(j)0 = 0, then i∗ = −1 . Out of [1, sj − 1] by default
7: else i∗ ← {1, . . . , sj − 1} and a(j)

i∗ ← {−Bj , . . . ,Bj}d
8: for i = 1, . . . , sj − 1 and i 6= i∗ do . i starts from 1.
9: if b(j)i = 0, then a

(j)
i ← {−(Bj − p), . . . ,Bj − p}d

10: else a
(j)
i ← {−Bj , . . . ,Bj}d

11: end for
12: a

(j)
0 = −

∑sj−1
i=1 a

(j)
i

13: else
14: for i = 0, . . . , sj − 1 do . i starts from 0.
15: a

(j)
i ← {−Bj , . . . ,Bj}d

16: end for
17: end if
18: end for
19: b =

(
b
(0)
0 , . . . , b

(t−1)
st−1−1

)
, a =

(
a

(0)
0 , . . . , a

(t−1)
st−1−1

)
20: c =

(
a

(0)
0 (1− 2b

(0)
0 ), . . . , a

(t−1)
st−1−1(1− 2b

(t−1)
st−1−1)

)
21: d =

(
−(a

(0)
0 )2, . . . ,−(a

(t−1)
st−1−1)2

)
22: B = Comck (b, c; rb), A = Comck (a,d; ra) in Rn̂q̂ with ck = Ĝ

23: return (ra, rb), (A,B), {(a(j)
0 , . . . , a

(j)
sj−1)}t−1

j=0

of the amounts. After that, the spender runs M ring signatures to prove ownership
of an account from each row of Ain. Here, she also computes a serial number for each
account spent. Finally, another ring signature is run to prove that the balance is
preserved by showing

∑S−1
i=0 cnout,i−

∑M−1
i=0 cni,` +C is a commitment to zero for the

same index ` ∈ [0, N − 1]. Note that all ring signatures are run using the same vector
p, and thus the indices of the spender’s accounts are the same in all rows (notice
also that Verify, Algorithm 6.10, uses the same fj,i’s in the verification of the ring
signatures at Steps 22 and 28).

The main part of the ring signature is summarised in Algorithm 6.7, which follows
the same blueprint as the one-out-of-many proof in Section 5.5.2, but again proves a
slightly different relation given in Lemma 6.8. Additionally, when the ring signature
is used to prove knowledge of a user secret key, Algorithm 6.7 also outputs elements
F0, . . . , Fk−1 to be used in verification of the serial number. pi,j ∈ p input to Algorithm
6.7 are defined as in (5.32). The computation of pi,j ’s is summarised in Algorithm
6.11 for k ≤ 2. The final step of Algorithm 6.8 is hashing all the information up to
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Algorithm 6.7 RingCommit . Commitment Step of Ring Sign.
INPUT: GenSerial ∈ {True,False}; (P0, . . . , PN−1) where Pi ∈ Rnq ;
(p0,0, . . . , pN−1,k−1) where pi,j ∈ Rq; B,Bbig,k ∈ Z+.
OUTPUT: (ρ0, . . . ,ρk−1), (E0, F0, . . . , Ek−1, Fk−1) where ρj ∈ Rmq , Ej ∈ Rnq
and Fj ∈ Rnsq . Fj ’s are omitted when GenSerial = False.

1: ck = G← SamMat(ρ, 0, q, n,m, “G”)
2: if GenSerial = True, then H ← SamMat(ρ, 0, q, ns,m, “H”)
3: ρ0 ← {−Bbig,k, . . . ,Bbig,k}d·m
4: for j = 0, . . . , k − 1 do
5: ρj ← {−B, . . . ,B}d·m if j 6= 0
6: Rj = Comck

(
0; ρj

)
in Rnq

7: Ej =
∑N−1

i=0 pi,jPi +Rj in Rnq
8: if GenSerial = True, then Fj = H · ρj in Rnsq
9: end for
10: if GenSerial = True, then return (ρ0, . . . ,ρk−1), (E0, F0, . . . , Ek−1, Fk−1)
11: return (ρ0, . . . ,ρk−1), (E0, . . . , Ek−1)

that step, where the hash function is modelled as a random oracle.
The second part of Spend (Algorithm 6.9) is comprised of the spender’s masked

responses of the underlying ZKP. Each bit input to the binary proof is masked by the
corresponding a ∈ Rq̂, and the rejection sampling technique from [Lyu09] is applied.
The general idea works as follows. If we have a vector y = s+v where s is the secret-
dependent part and v ← {−B, . . . , B}t for some B, t ∈ Z+, then rejection happens
when ‖y‖

∞
> B−‖s‖

∞
. To have a small rejection probability, we set B = c · ‖s‖

∞
· t

for some constant c.
Additionally, Spend also restarts if the norm of some fj,0 or g is “unexpectedly

large”. This is done in order to use tighter bounds when computing M-SIS hardness.
The bound on fj,0 comes from the fact that aj,0 is the sum of uniformly sampled
elements and thus its distribution converges to a Gaussian distribution. It is hard
to formally bound the probability of having a rejection due to Step 20, and thus the
bound Tg on ‖g‖ is computed experimentally so that the chance of restarting due
to Step 20 is less than 1%.7 However, this does not raise a security concern as the
same bound is also checked by the verifier and thus ensured to hold for any accepting
transcript. The masked randomnesses are similarly computed as in the one-out-of-
many proof in Section 5.5.2 and the same rejection sampling idea as above is used.
The output part CKout of Algorithm 6.9 is transmitted to the recipient(s) privately
along with corresponding output amounts and is not revealed publicly. This can be
trivially accomplished by encrypting this information with the recipient’s public key.

The verification (Algorithm 6.10) of a proof performs the same norm checks as in
Algorithm 6.9, computes the “missing” components not output by Spend and then
checks whether the hash output matches. The missing components are those that are
uniquely determined by the rest and thus need not be transferred.

Remark 6.2. For our concrete parameters, f1, fj,0’s and f r remain the same when
seen as elements in either Rq̂ or Rq since their infinity norm is smaller than q/2 < q̂/2.

7Observe here that Tg is a factor 4d smaller than the theoretical bound in Lemma 6.5.



102 Chapter 6. Blockchain Confidential Transactions from Lattices

Algorithm 6.8 Spend-I

INPUT: M,S ∈ Z+; Ain = (act0,0, . . . , actM−1,N−1) where acti,j =
(pki,j , cni,j) is an account; ` ∈ [0, N − 1]; (ask0,`, . . . , askM−1,`) where aski,` =
(ri,`, cnki,`, amtin,i) ∈ Rmq × Rmq × Z+; PKout = (pkout,0, . . . , pkout,S−1) where
pkout,i ∈ Rnq ; (amtout,0, . . . , amtout,S−1) where amtout,i ∈ [0, 2r − 1].

1: Ba = d20 · pkde, Br = dp(S + 1)rde
2: Tg = d3

(
B4
akβ(β + 1) + B4

rr(S + 1)
)
/(4d)

3: Bbig = d1.2 · (M + S + 1)Bpwmde, B̂big = d8 · (M + S + 1)Bpwm̂de
4: Bbig,k = d1.2 · (M + S + 1)B(pw)kmde
5: B′big,k = d2.4 · (M + S + 1)B(pw)kmde
6: for i = 0, . . . , r − 2 do . c0 = cr = 0

7: ci+1 =
(
ci +

∑S−1
j=0 amtout,j [i]−

∑M−1
j=0 amtin,j [i]

)
/2

8: end for
9: for i = 0, . . . , S − 1 do

10: (cnout,i, cnkout,i)←Mint(amtout,i)
11: end for
12: CNout = (cnout,0, . . . , cnout,S−1)
13: CKout = (cnkout,0, . . . , cnkout,S−1)
14: b = {(β,True, (δ`j ,0, . . . , δ`j ,β−1),Ba)}k−1

j=0

15: b = b ∪ (r − 1,False, (c1, . . . , cr−1),Br)
16: for j = 0, . . . , S − 1 do
17: b = b ∪ (r,False,Bits(amtout,j),Br)
18: end for
19: ck = G← SamMat(ρ, r, q, n,m, “G”)
20: rc ← {−B, . . . ,B}d·m, rd ← {−Bbig, . . . ,Bbig}d·m

21: (ra, rb), (A,B), (a0,0, . . . , ak−1,β−1, ac,1, . . . , ac,r−1, a
(0)
out,0, . . . , a

(S−1)
out,r−1) ←

BinaryCommit(k + 1 + S, b,B, B̂big) . ac,0 = ac,r = 0
22: for i = 0, . . . , S − 1 do
23: r

(i)
g ← {−Bbig, . . . ,Bbig}d·m

24: Gi = Comck

(
a

(i)
out,0, . . . , a

(i)
out,r−1; r

(i)
g

)
in Rnq

25: end for
26: C = Comck (c0 − 2c1, . . . , cr−1 − 2cr; rc) in Rnq
27: D = Comck (ac,0 − 2ac,1, . . . , ac,r−1 − 2ac,r; rd) in Rnq
28: Compute p = (p0,0, . . . , pN−1,k−1) using Alg. 6.11 with (`, a0,0, . . . , ak−1,β−1)
29: for i = 0, . . . ,M − 1 do
30: si = SerialGen(ri,`) . Not recomputed if restarted
31: (ρ

(i)
0 , . . . ,ρ

(i)
k−1), (E

(i)
0 , F

(i)
0 , . . . , E

(i)
k−1, F

(i)
k−1)←

RingCommit(True, (pki,0, . . . , pki,N−1),p,B,Bbig,k)
32: end for
33: for j = 0, . . . , N − 1 do
34: Pj =

∑S−1
i=0 cnout,i −

∑M−1
i=0 cni,j + C in Rnq

35: end for
36: (ρ

(M)
0 , . . . ,ρ

(M)
k−1), (E

(M)
0 , . . . , E

(M)
k−1)←

RingCommit(False, (P0, . . . , PN−1),p,B,B′big,k)

37: x = H(A,B,C,D,E
(0)
0 , . . . , E

(M)
k−1 , F

(0)
0 , . . . , F

(M)
k−1 , G0, . . . , GS−1, s0, . . . , sM−1,Ain,

PKout,CNout)
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Algorithm 6.9 Spend-II . No mod q or q̂ in this function!

OUTPUT: CKout,Ain,PKout,CNout,SN and Π as below where F (0)
1 , . . . , F

(M)
k−1 ∈

Rnsq ; B ∈ Rn̂q̂ ; C,E
(0)
1 , . . . , E

(M)
k−1 ∈ Rnq ; x ∈ Cdw,p; f1 ∈ R

k(β−1)
q ; f r ∈ Rr−1+Sr

q ;
zb ∈ Rm̂q̂ ; zc, zout,0, . . . ,zout,S−1, z

(0), . . . ,z(M) ∈ Rmq

1: for j = 0, . . . , k − 1 and i = 0, . . . , β − 1 do
2: fj,i = xδ`j ,i + aj,i
3: end for
4: for i = 1, . . . , r − 1 do
5: fc,i = xci + ac,i
6: end for
7: for j = 0, . . . , S − 1 and i = 0, . . . , r − 1 do
8: f

(j)
out,i = x · amtout,j [i] + a

(j)
out,i

9: end for
10: f1 = (f0,1, . . . , fk−1,β−1) . fj,0’s are excluded
11: if ‖f1‖∞ > Ba − p, then Go to Step 20 of Alg. 6.8

12: f r =
(
fc,1, . . . , fc,r−1, f

(0)
out,0, . . . , f

(S−1)
out,r−1

)
13: if ‖f r‖∞ > Br − p, then Go to Step 20 of Alg. 6.8
14: for j = 0, . . . , k − 1 do
15: if ‖fj,0‖ > Ba

√
d(β − 1), then Go to Step 20 of Alg. 6.8

16: end for
17: g = (f0,0(x− f0,0), . . . , fk−1,β−1(x− fk−1,β−1))
18: g = g ∪ (fc,1(x− fc,1), . . . , fc,r−1(x− fc,r−1))

19: g = g ∪
(
f

(0)
out,0(x− f (0)

out,0), . . . , f
(S−1)
out,r−1(x− f (S−1)

out,r−1)
)

20: if ‖g‖ >
√
Tg, then Go to Step 20 of Alg. 6.8

21: zb = xrb + ra . m̂-dimensional
22: if ‖zb‖∞ > B̂big − Bpw, then Go to Step 20 of Alg. 6.8
23: zc = xrc + rd
24: for i = 0, . . . , S − 1 do
25: zout,i = xrout,i + r

(i)
g where rout,i = cnkout,i

26: end for
27: if ‖(zc, zout,0, . . . ,zout,S−1)‖

∞
> Bbig − Bpw, then Go to Step 20 of Alg. 6.8

28: for i = 0, . . . ,M − 1 do
29: z(i) = xkri,` −

∑k−1
j=0 x

jρ
(i)
j

30: if
∥∥z(i)

∥∥
∞
> Bbig,k − B(pw)k, then Go to Step 20 of Alg. 6.8

31: end for
32: z(M) = xkrM,` −

∑k−1
j=0 x

jρ
(M)
j where rM,` =

∑S−1
i=0 rout,i −

∑M−1
i=0 cnki,` + rc

33: if
∥∥z(M)

∥∥
∞
> B′big,k − (M + S + 1)B(pw)k, then Go to Step 20 of Alg. 6.8

34: return CKout,Ain,PKout,CNout, SN = (s0, . . . , sM−1) and
Π = (B,C,E

(0)
1 , . . . , E

(M)
k−1 , F

(0)
1 , . . . , F

(M)
k−1 , x,f1,f r, zb, zc, z

(0), . . . ,z(M), zout,0,
. . . , zout,S−1)

6.5 Improved Special Soundness Proof for the Binary Proof

Before going into the technical details of the soundness proofs, we remark the fol-
lowing. Even though we prove separate statements regarding the extracted openings
of different components of the full protocol, the openings are indeed related. First,
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Algorithm 6.10 Verify

INPUT:M,S ∈ Z+; Ain = (act0,0, . . . , actM−1,N−1) where acti,j = (pki,j , cni,j) is
an account; PKout = (pkout,0, . . . , pkout,S−1); CNout = (cnout,0, . . . , cnout,S−1); Π =

(B,C,E
(0)
1 , . . . , E

(M)
k−1 , F

(0)
1 , . . . , F

(M)
k−1 , x,f1,f r, zb, zc, z

(0), . . . ,z(M), zout,0, . . . ,
zout,S−1); SN = (s0, . . . , sM−1).
OUTPUT: True/False

1: if ‖f1‖∞ > Ba − p, then return False
2: if ‖f r‖∞ > Br − p, then return False
3: Parse f1 = (f0,1, . . . , fk−1,β−1) as in Alg. 6.9
4: Parse f r = (fc,1, . . . , fc,r−1, f

(0)
out,0, . . . , f

(S−1)
out,r−1) as in Alg. 6.9

5: for j = 0, . . . , k − 1 do
6: fj,0 = x−

∑β−1
i=1 fj,i

7: if ‖fj,0‖ > Ba
√
d(β − 1), then return False

8: end for
9: Compute g as in Alg. 6.9
10: if ‖g‖ >

√
Tg, then return False

11: if ‖zb‖∞ > B̂big − Bpw, then return False
12: if ‖(zc, zout,0, . . . ,zout,S−1)‖

∞
>Bbig − Bpw, then return False

13: if
∥∥(z(0), . . . ,z(M−1))

∥∥
∞
> Bbig,k − B(pw)k, then return False

14: if
∥∥z(M)

∥∥
∞
> B′big,k − (M + S + 1)B(pw)k, then return False

15: f = (f0,0, . . . , fk−1,β−1) ∪ f r . fj,0’s are included.
16: A = Comck (f , g; zb)− xB in Rn̂q̂
17: D = Comck (fc,0 − 2fc,1, . . . , fc,r−1 − 2fc,r; zc)− xC in Rnq where fc,0 = fc,r = 0
18: for i = 0, . . . , S − 1 do
19: Gi = Comck

(
f

(i)
out,0, . . . , f

(i)
out,r−1; zout,i

)
− xcnout,i in Rnq

20: end for
21: for l = 0, . . . ,M − 1 do
22: E

(l)
0 =

[∑N−1
i=0

(∏k−1
j=0 fj,ij

)
pkl,i

]
− Comck

(
0; z(l)

)
−
∑k−1

j=1 E
(l)
j xj in Rnq

where i = (i0, . . . , ik−1) in base β
23: F

(l)
0 = xksl −H · z(l) −

∑k−1
j=1 F

(l)
j xj in Rnsq

24: end for
25: for j = 0, . . . , N − 1 do
26: Pj =

∑S−1
i=0 cnout,i −

∑M−1
i=0 cni,j + C in Rnq

27: end for
28: E

(M)
0 =

[∑N−1
i=0

(∏k−1
j=0 fj,ij

)
Pi

]
− Comck

(
0; z(M)

)
−
∑k−1

j=1 E
(M)
j xj in Rnq

29: if x 6= H(A,B,C,D,E
(0)
0 , . . . , E

(M)
k−1 , F

(0)
0 , . . . , F

(M)
k−1 , G0, . . . , GS−1, s0, . . . , sM−1,

Ain,PKout,CNout), then return False
30: return True

there is a single extraction procedure that is used to extract the openings of all com-
ponents. Therefore, all the relaxation factors are determined by the same challenges.
In particular, the relaxation factor is exactly the same element y when it is simply a
challenge difference in ∆Cdw,p. That is, for example, y in Lemmas 6.3, 6.6, and 6.7 are
exactly the same. Moreover, when the relaxation factor is a product of elements in
∆Cdw,p, then one of the multiplicands in the product is equal to the y in Lemmas 6.3,
6.6, and 6.7.

Also, as in the ring signature or one-out-of-many proof in Chapter 5, different parts
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Algorithm 6.11 Compute pi,j for k ∈ {1, 2}
INPUT: `, a0,0, . . . , ak−1,β−1

OUTPUT: p0,0, . . . , pN−1,k−1 ∈ Rq

1: if k = 1 then
2: for i = 0, . . . , N − 1 do
3: pi,0 = a0,i0 . i = (i0, . . . , ik−1) in base β
4: end for
5: return (p0,0, . . . , pN−1,0)
6: else if k = 2 then
7: for i = 0, . . . , N − 1 do
8: pi,0 = a0,i0 · a1,i1

9: pi,1 = δ`0,i0 · a1,i1 + δ`1,i1 · a0,i0

10: end for
11: return (p0,0, p0,1, . . . , pN−1,0, pN−1,1)
12: end if

of the protocol uses the same components. For example, the binary proof proves that
all f ’s in (f1,f r) encode some bits, and they are later used both in the ring signature
and also to prove that the corrector commitment C is well-formed. Since the full
special soundness proofs for similar underlying protocols used here have already been
shown in Chapter 5, our goal in the proofs here is to point to the main technical differ-
ences and to show how the extracted opening norms are bounded, which is important
for choosing parameter.

Lemma 6.3. Assume that the following holds

• q̂/2 > max
{

2pwdBf (p+ Bf ), 2pwB2
adβ

}
for Bf = max{Ba,Br},

• HMC is γbin-binding for γbin = 2p
√
dw
(
Tg + B̂2

bigm̂d
)1/2

.

For an input commitment B ∈ Rn̂q̂ , a commitment key ck and proof output (A, x,f1,f r,
zb), our binary proof in this chapter proves knowledge of (y, b, ĉ, r̂) such that

• y ∈ ∆Cdw,p,
• yB = Comck (yb, ĉ; r̂),
• All coordinates bi of b is in {0, 1},
• ĉ is uniquely determined by y,f1,f r, x and b,
• For the first kβ coordinates b0,0, . . . , bk−1,β−1 of b,

β−1∑
i=0

bj,i = 0,

i.e., there is only a single 1 in {bi,0, . . . , bi,β−1} for all 0 ≤ i ≤ k − 1,
• ‖(yb, ĉ, r̂)‖ ≤ γbin.

Proof. The proof uses the standard norm relations in R = Z[X]/(Xd + 1) as given
in Lemma 3.19. As in the special soundness proofs of Theorems 5.8 and 5.10, for 3
distinct challenges x, x′, x′′, the extractor of the interactive binary proof is given three
accepting protocol transcripts as

(A,B, x,f1,f r, zb), (6.7)
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(A,B, x′,f ′1,f
′
r, z
′
b), (6.8)

(A,B, x′′,f ′′1,f
′′
r , z
′′
b ). (6.9)

Since they are accepting transcripts, we have from Step 16 of Algorithm 6.10

xB +A = Comck (f , g; zb) , (6.10)
x′B +A = Comck

(
f ′, g′; z′b

)
, (6.11)

where f and g are as defined in Algorithm 6.10. Let y = x−x′ and take the difference
of the above two equations. We get

yB = Comck

(
f − f ′, g − g′; zb − z′b

)
, (6.12)

yA = Comck

(
xf ′ − x′f , xg′ − x′g; xz′b − x′zb

)
. (6.13)

Define b̂ = f − f ′, â = xf ′ − x′f , ĉ = g − g′ and d̂ = xg′ − x′g. From here, we have

yfi = xb̂i + âi ∈ Rq̂, (6.14)

ygi = yfi(x− fi) = xĉi + d̂i ∈ Rq̂, (6.15)

for any coordinate fi of f and any coordinate gi of g. Further, for any coordinate
fi 6= fj,0 of f , we have

‖yfi(x− fi)‖∞ ≤ ‖y‖1 ‖fi‖1 ‖x− fi‖∞ ≤ 2pw · dBf · (p+ Bf ),

where Bf = max{Ba,Br}. Now, for the coordinates fj,0 of f , we have

‖yfj,0(x− fj,0)‖
∞
≤ ‖y‖

1
‖fj,0‖ ‖x− fj,0‖

≤ 2pw · Ba
√
d(β − 1) · (p

√
w + Ba

√
d(β − 1))

≈ 2pwB2
adβ.

Therefore, since the following holds

q̂/2 > max
{

2pwdBf (p+ Bf ), 2pwB2
adβ

}
, (6.16)

the equations (6.14) and (6.15) hold over R for any coordinate of f and g.
By Lemma 6.6 further below, we know that the Euclidean norm of (ĉ, d̂, xzb−x′z′b)

(i.e., the opening of yA) is bounded from above by γbin = 2p
√
dw
(
Tg + B̂2

bigm̂d
)1/2

.
The same bound clearly holds for the opening of yB by ignoring the factor x. Then,
using γbin-binding of HMC, the steps continue exactly as in the soundness proofs of
Theorems 5.8 and 5.10 with a crucial difference: the equations now hold in R, not Rq̂.
As a result, for any coordinate â of â, any coordinate b̂ of b̂ and any coordinate ĉ of
ĉ, we get  1 x x2

1 x′ x′2

1 x′′ x′′2

 ·
 ∗

â
(
y − 2b̂

)
− yĉ

b̂(y − b̂)

 = 0 in R, (6.17)

where the entries marked with ∗ are not relevant for our analysis. Denoting the
left-most matrix by V and multiplying both sides by the adjugate matrix V as in
Theorems 5.8 and 5.10, we get

det(V )b̂(y − b̂) = (x′′ − x′)(x′ − x)(x′′ − x)b̂(y − b̂) = 0 in R. (6.18)
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Again note the difference from the proofs of Theorems 5.8 and 5.10 that (6.18) hold
in R, not Rq̂. By Lemma 5.5, one of the factors in (6.18) needs to be zero. Since
the challenge differences cannot be zero, we get either b̂ = 0 or y − b̂ = 0. That is,
b̂ ∈ {0, y}. This proves that all coordinates of b̂ are in {0, y} as required for the binary
proof. In other words,

b̂ = yb for b ∈ BIN ⊂ {0, 1}∗, (6.19)
yfi = yxbi + âi ∈ R, (6.20)

for any coordinate fi of f where bi ∈ {0, 1}. Further, by Step 6 of Algorithm 6.10, we
have

fj,0 = x−
β−1∑
i=1

fj,i,

f ′j,0 = x′ −
β−1∑
i=1

f ′j,i,

=⇒ fj,0 − f ′j,0 = x− x′ −
β−1∑
i=1

(
fj,i − f ′j,i

)
.

Since b̂ = f − f ′ = yb with all the coordinates of b in {0, 1}, we get

ybj,0 = y −
β−1∑
i=1

ybj,i =⇒ y

β−1∑
i=0

bj,i = y =⇒
β−1∑
i=0

bj,i = 1, (6.21)

since y 6= 0.
Now, using the fact that (6.17) holds over R in a similar fashion, we also get for

any coordinate â of â, any coordinate b̂ of b̂ and any coordinate ĉ of ĉ

â
(
y − 2b̂

)
− yĉ = 0 =⇒ yĉ = â

(
y − 2b̂

)
= â (y − 2yb) . (6.22)

From here, by Lemma 5.5 and definition of â, we have

ĉ = â(1− 2b) =
(
xf ′ − x′f

)
(1− 2b)

=
(
x (f − yb)− x′f

)
(1− 2b) (by the definition of b̂ = yb)

=
(
xf − yxb− x′f

)
(1− 2b) = (yf − yxb) (1− 2b)

= y(f − xb)(1− 2b).

The above proves that ĉ is determined by y,f , x and b where f = (f1,f r).

6.6 Security Proofs for MatRiCT

We first prove/recall some auxiliary lemmas that will be used to prove the balance
and anonymity properties of MatRiCT.

6.6.1 Auxiliary lemmas

The following lemma shows that any element in ∆Cdw,p is invertible in Rq when q is
chosen in a certain way. The result is a direct corollary of [LS18, Corollary 1.2].

Lemma 6.4. If q > (2p
√
K)K and q ≡ 2K + 1 mod 4K for some 1 < K ≤ d where

K is a power of 2, then any y ∈ ∆Cdw,p is invertible in Rq.
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Lemma 6.5. The vector g defined in Algorithms 6.9 and 6.10 satisfies the following

‖g‖2 ≤ d3
(
B4
akβ(β + 1) + B4

rr(S + 1)
)
.

Proof. We use the bounds on the norm of f∗’s in the sequel (see Algorithm 6.10).
For simplicity, we bound ‖x− f∗‖ by the bound on ‖f∗‖ as ‖x‖ is much smaller in
comparison.

‖g‖2 =
k−1∑
j=0

β−1∑
i=0

‖fj,i(x− fj,i)‖2 +
r−1∑
i=1

‖fc,i(x− fc,i)‖2

+
S−1∑
j=0

r−1∑
i=0

∥∥∥f (j)
out,i(x− f

(j)
out,i)

∥∥∥2

=

k−1∑
j=0

β−1∑
i=1

‖fj,i(x− fj,i)‖2 +

k−1∑
j=0

‖fj,0(x− fj,0)‖2

+
r−1∑
i=1

‖fc,i(x− fc,i)‖2 +
S−1∑
j=0

r−1∑
i=0

∥∥∥f (j)
out,i(x− f

(j)
out,i)

∥∥∥2

≤
k−1∑
j=0

β−1∑
i=1

d ‖fj,i‖2 ‖x− fj,i‖2 +
k−1∑
j=0

d ‖fj,0‖2 ‖x− fj,0‖2

+
r−1∑
i=1

d ‖fc,i‖2 ‖x− fc,i‖2 +
S−1∑
j=0

r−1∑
i=0

d
∥∥∥f (j)

out,i

∥∥∥∥∥∥x− f (j)
out,i

∥∥∥2

≤ dk(β − 1)
(
Ba
√
d
)4

+ dk
(
Ba
√
dβ
)4

+ d(r − 1)
(
Br
√
d
)4

+ dSr
(
Br
√
d
)4

≤ dk
(
Ba
√
d
)4 [

(β − 1) + β2
]

+ d
(
Br
√
d
)4

[r − 1 + Sr]

≤ d3
(
B4
akβ(β + 1) + B4

rr(S + 1)
)
.

Lemma 6.6. The extracted opening (â, r̂a) of A for A defined in Algorithms 6.8 and
6.10 satisfies the following

‖(â, r̂a)‖ ≤ 2p
√
dw
(
Tg + B̂2

bigm̂d
)1/2

.

Proof. For two accepting transcripts with respect to different challenges x, x′ ∈ Cdw,p,
we have

xB +A = Comck (f , g; zb) , (6.23)
x′B +A = Comck

(
f ′, g′; z′b

)
, (6.24)

where (f , zb) and (f ′, z′b) are responses with respect to challenges x and x′, respec-
tively, and g and g are constructed from f and f ′, respectively, as in Algorithm 6.10.
From here, as in Lemma 5.12, the extracted opening (â, r̂a) of yA for y = x− x′ is as
follows

yA = Comck

(
xf ′ − x′f , xg′ − x′g; xz′b − x′zb

)
. (6.25)
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Assume ‖(xg′, xz′b)‖ ≥ ‖(x′g, x′zb)‖ without loss of generality. Also, note that the
norms of f and f ′ are much smaller than that of g and g′, respectively. This is due
to the fact that a coordinate of g is about the square of a coordinate of f . Therefore,
for simplicity, we neglect xf ′ − x′f in the rest. We have

‖(â, r̂a)‖ ≈
∥∥(xg′ − x′g, xz′b − x′zb)

∥∥ ≤ 2
∥∥(xg′, xz′b)

∥∥
≤ 2
√
d ‖x‖ ·

∥∥(g′, z′b)
∥∥ ≤ 2p

√
dw ·

∥∥(g′, z′b)
∥∥

= 2p
√
dw
(∥∥g′∥∥2

+
∥∥z′b∥∥2

)1/2

≤ 2p
√
dw

(
Tg +

(
B̂big
√
m̂d
)2
)1/2

= 2p
√
dw
(
Tg + B̂2

bigm̂d
)1/2

. (6.26)

Lemma 6.7. The extracted opening (ĉ, r̂c) of C for C defined in Algorithms 6.8 and
6.10 satisfies the following

‖(ĉ, r̂c)‖ ≤ 2
(
9rB2

rd+ B2
bigmd

)1/2
.

Further, the same bound as above also holds for the Euclidean norm of an extracted
opening of cnout,i for any 0 ≤ i ≤ S − 1.

Proof. Analogues to Lemma 6.6, the extracted opening of C satisfies

yC = Comck

(
f c − f ′c; zc − z′c

)
, (6.27)

where fc,0 = fc,r = f ′c,0 = f ′c,r = 0, f c = (fc,0 − 2fc,1, . . . , fc,r−1 − 2fc,r), and
f ′c = (f ′c,0 − 2f ′c,1, . . . , f

′
c,r−1 − 2f ′c,r).

Note the fact that all of polynomials fc,0, f ′c,0, . . . , fc,r−1, f
′
c,r−1 are upper-bounded

by the same real value, which is used in the sequel. Assume without loss of generality
that ‖(f c, zc)‖ ≥

∥∥(f ′c, z
′
c)
∥∥.

‖(ĉ, r̂c)‖ =
∥∥(f c − f ′c, zc − z′c)

∥∥ ≤ 2 ‖(f c, zc)‖

= 2
(
‖fc,0 − 2fc,1, . . . , fc,r−1 − 2fc,r‖2 + ‖zc‖2

)1/2

≤ 2
(

32 ‖fc,1, . . . , fc,r−1‖2 + ‖zc‖2
)1/2

≤ 2
(

9(r − 1)(Br
√
d)2 + (Bbig

√
md)2

)1/2

≤ 2
(
9rB2

rd+ B2
bigmd

)1/2
. (6.28)

For any 0 ≤ i ≤ S − 1, an extracted opening of cnout,i is

y · cnout,i = Comck

(
fout,i − f ′out,i; zout,i − z′out,i

)
. (6.29)

We have ‖zout,i‖∞ ≤ Bbig and
∥∥fout,i

∥∥
∞
≤ Br. Therefore, (fout,i−f ′out,i, zout,i−z′out,i)

can be upper-bounded as above easily.

Lemma 6.8. Assume that q > (2p
√
K)K and q ≡ 2K+1 mod 4K for some 1 < K ≤

d where K is a power of 2. On input a commitment key ck and a set of commitments
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(P0, . . . , PN−1), the underlying one-out-of-many proof of our ring signature proves
knowledge of (y, `, r̂) such that

• ` ∈ {0, . . . , N − 1},
• yP` = Comck (0; r̂),
• y is a product of κ elements in ∆Cdw,p for κ = k(k+1)/2, and ‖y‖ ≤

√
d ·(2p)κwκ−1,

• ‖r̂‖ ≤ (k + 1) · d · (2p)κ′wκ′−1
√
md ·max{Bbig,k,B′big,k}.

Further, the proof is k′-special sound where k′ = max{k + 1, 3}.

Proof. The first three properties and the fact that one-out-of-many proof is k′-special
sound directly follow from Theorem 5.15, and the remaining property is shown in
Lemma 6.9 below.

Lemma 6.9. Let κ′ = k(k − 1)/2. For any 0 ≤ i ≤ M − 1, the extracted opening
(0, r̂i) of pki,` for the real spender’s public key pki,` defined in Algorithms 6.8 and
6.10, and the extracted opening (0, r̂M ) of P` for P` defined in Algorithms 6.8 and
6.10 satisfies the following

‖r̂i‖ ≤ (k + 1) · d · (2p)κ′wκ′−1Bbig,k
√
md,

‖r̂M‖ ≤ (k + 1) · d · (2p)κ′wκ′−1B′big,k
√
md,

provided that q > (2p
√
K)K and q ≡ 2K + 1 mod 4K for some 1 < K ≤ d where K

is a power of 2. Further, if k = 1 and the same assumption on q holds, we have

‖r̂i‖ ≤ 2Bbig,k
√
md,

‖r̂M‖ ≤ 2B′big,k
√
md.

Proof. By the assumption on q and Lemma 6.4, any y ∈ ∆Cdw,p is invertible. The
extraction of our one-out-of-many proofs (the underlying ZKP of the ring signature)
will not have an additional y factor that appears in the special soundness proof of
Theorem 5.15. Therefore, we can directly use the results in Lemma 5.3, which gives
for κ′ = k(k − 1)/2 and any 0 ≤ i ≤M − 1

‖r̂i‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 ·Bz,

where Bz is an upper-bound on the Euclidean norm of any z(i). Hence, using the
bound from Algorithm 6.10, we have

‖r̂i‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 · Bbig,k
√
md.

Similarly, the following is obtained by replacing Bbig,k with B′big,k in the norm z(M)

‖r̂M‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 · B′big,k

√
md.

When k = 1, then the verification equations for the ring signatures are just linear
equations. Therefore, the extracted openings are simply obtained by looking at the
difference of two verification equations with respect to different responses as in the
proof of Lemma 6.6. That is, r̂i = z

(i)
0 − z

(i)
1 where z(i)

0 , z
(i)
1 are two responses with

respect to different challenges in the protocol’s witness extraction. Hence, when k = 1,
we have

‖r̂i‖ ≤ 2Bbig,k
√
md,
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‖r̂M‖ ≤ 2B′big,k

√
md.

Observe that when k = 1, κ′ = 0. Therefore, the general bound gives ‖r̂i‖ ≤
2(d/w)Bbig,k

√
md, which is slightly looser then the above bound (note that we always

have 1 ≤ w ≤ d since w is the Hamming weight of degree d− 1 polynomials).

6.6.2 Correctness

The correctness of MatRiCT follows from the completeness of the underlying ZKP,
and MatRiCT is perfectly correct. The settings of A,D,E(l)

0 , F
(l)
0 , E

(M)
0 for all 0 ≤ l ≤

M − 1 are all done analogous to Protocol 5.4. All the norm checks will be successful
as they are all also done in Spend algorithm. Also, the underlying one-out-of-many
proof allows decoy public commitments not to be well-formed as in Protocol 5.4, and
therefore the given correctness requirements are satisfied.

6.6.3 Anonymity

Lemma 6.10. (Anonymity) Let A be a PPT adversary, AdvLWE
A be the advantage of

A over solving M-LWEm−n−ns,m,q,B and AdvLWE2
A be the advantage of A over solving

M-LWEm̂−n̂,m̂,q̂,B. The advantage of A against Exp:Anonymity without shuffling is at
most

AdvAnoA ≤ AdvLWE2
A + k(M + 1) ·AdvLWE

A .

Proof. The proof uses the simulation of the underlying ZKP of our construction where
the indistinguishability is either due to an M-LWE assumption or rejection sampling.
We use the following succession of games.
Game0 : This is identical to Exp:Anonymity without shuffling.
Game1 : First, the challenger simulates the response where the rejection sampling is
applied. In Algorithm 6.9, it replaces all the coordinates of f1 by uniformly random el-
ements in UBa−p, all the coordinates of zb by uniformly random elements in UB̂big−Bpw,
all the coordinates of zc by uniformly random elements in UBbig−Bpw, all the coordi-
nates of z(i) by uniformly random elements in UBbig,k−B(pw)k for all 0 ≤ i ≤M−1, and
all the coordinates of z(M) by uniformly random elements in UB′big,k−(M+S+1)B(pw)k .
This game is perfectly indistinguishable from the previous game due to rejection sam-
pling.

AdvGame0
A −AdvGame1

A = 0.

Game2 : In Algorithm 6.6, the challenger replaces B by a uniformly random element
in Rn̂q̂ . This game is computationally indistinguishable from the previous game by
M-LWEm̂−n̂,m̂,q̂,B hardness as in the hiding property of the commitment scheme.∣∣∣AdvGame1

A −AdvGame2
A

∣∣∣ ≤ AdvLWE2
A .

Game3 : In Algorithm 6.8, the challenger replaces C by a uniformly random element
in Rnq . This game is computationally indistinguishable from the previous game by
M-LWEm−n,m,q,B hardness.∣∣∣AdvGame2

A −AdvGame3
A

∣∣∣ ≤ AdvLWE
A .

Game4 : In Algorithm 6.4, the challenger replaces serial number si’s by a uniformly
random element inRnsq and the public keys pki,`’s in Rin (i.e., the `-th column of Ain) by
a uniformly random element in Rnq for i = 0, . . . ,M−1. This game is computationally
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indistinguishable from the previous game by M-LWEm−n−ns,m,q,B hardness due to the
following observation.

Let G′ :=

(
G
H

)
. We have

(
pki,`
si

)
= G′ · ri,` where ri,` is the secret key

corresponding to the public key pki,`. Since G′ has the same distribution as a com-
mitment key ck output by CKeygen, the hiding property argument for the commitment
also holds with respect to the combined matrix G′ ∈ R(n+ns)×m

q . Also, note that no
Corrupt or Spend is allowed to be queried for these public keys, and the distribu-
tion of the secret keys ri,` is identical to that in M-LWE definition since the public
keys in Rin are assumed to be generated honestly by querying PkGen.∣∣∣AdvGame3

A −AdvGame4
A

∣∣∣ ≤M ·AdvLWE
A .

Game5 : In Algorithm 6.7, the challenger replaces Rj by a uniformly random element
in Rnq , and Fj by a uniformly random element in Rnsq for all 1 ≤ j ≤ k − 1 (if
GenSerial = False, then only Rj is replaced and the argument still works). This game
is computationally indistinguishable from the previous game by M-LWEm−n−ns,m,q,B
hardness due to a similar discussion as above.∣∣∣AdvGame4

A −AdvGame5
A

∣∣∣ ≤ (M + 1)(k − 1) ·AdvLWE
A .

Game6 : In Algorithm 6.7, the challenger replaces Ej by a uniformly random element
in Rnq for all 1 ≤ j ≤ k−1. This game is perfectly indistinguishable from the previous
game as Rj is uniformly random in Rnq and independent of the summation in Step 7
of Algorithm 6.7. ∣∣∣AdvGame5

A −AdvGame6
A

∣∣∣ = 0.

Note that Mint is completely independent of all the inputs to Spend except for
output amounts, which is already known to A. Also, output coin keys CKout are
always generated independently and uniformly at random. Therefore, in Game6, the
output of Spend is independent of Rin, Kin and Amtin, and thus also independent of
b. Hence, A has probability 1/2 of outputting b′ = b in Game6.

6.6.4 Balance

Lemma 6.11. (Balance) Assume that q >
(

2p
√
K
)K

and q ≡ 2K + 1 mod 4K for
some 1 < K ≤ d where K is a power of 2. Let κ = k(k + 1)/2 and θ be a positive
real number such that the Euclidean norm of any product of κ− 1 elements in ∆Cdw,p
is at most θ. If M-LWEm−n−ns,m,q,B, M-SISn,m+r,q,2γ and M-SISn̂,m̂+v,q̂,2γbin are hard
where v = 2 (k(β − 1) + r − 1 + Sr),

γbin = 2p
√
dw
(
Tg + B̂2

bigm̂d
)1/2

and

γ = max

(k + 1) · d · (2p)κ′wκ′−1
√
md ·max{Bbig,k,B′big,k},

θ
√
d · (S + 1) · 2

(
9rB2

rd+ B2
bigmd

)1/2

 ,

then no PPT adversary can win Exp:Balance without shuffling with non-negligible
probability.

Proof. First, due to the M-SIS assumptions, HMC is γ-binding when instantiated with
parameters n,m, q,B and γbin-binding when instantiated with parameters n̂, m̂, q̂,B.
We separate the proof into three cases.
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Case 1 (forgery): Let Eforge be the event that A wins the game in a way that
there exists si∗ ∈ SNj∗ with 0 ≤ i∗ ≤ M − 1 and 1 ≤ j∗ ≤ t such that si∗ ∈ L
and L[si∗ ].IsCrpt = 0. In this case, the proof follows as in the unforgeability proof of
Theorem 5.16, which is sketched below.
D creates an invalid public key pk` for PkGen(`) query such that pk` =

Comck (1, 0, . . . , 0; r) for r ← {−B, . . . ,B}d·m. pk` is computationally indistinguish-
able from a valid public key by M-LWEm−n,m,q,B hardness assumption. D runs A until
Eforge occurs k′ = max{k + 1, 3} times in total with respect to distinct H outputs
and the same H inputs where

• the indices j∗ and i∗ are the same for all k′ Eforge events,

• pk` ∈ Aj
∗

in and it is not corrupted.

k′-special soundness of the underlying one-out-of-many proof holds when HMC is γ-
and γbin-binding, which is satisfied if M-SISn,m+r,q,2γ and M-SISn̂,m̂+v,q̂,2γbin are hard.
Therefore, there exists a PPT extractor that recovers an opening (0, s) of a public
key pkψ in the i∗ row of Aj

∗

in such that y · pkψ = Comck (0; s) where y ∈ ∆Cdw,p is
some relaxation factor with ‖y‖ =

√
d(2p)κwκ−1 � γ and ‖s‖ ≤ γ by Lemma 6.8.

With probability 1/(M · N), pk` = pkψ. Hence, y · pk` = Comck (y, 0, . . . , 0; yr) =
Comck (0; s) = y · pkψ. Since (y, 0, . . . , 0, yr) 6= (0, s), this violates the γ-binding
property of the commitment scheme and also gives a solution to M-SISn,m,q,2γ , which
gives a contradiction.
Case 2 (double-spend): Let E2xspend be the event that A wins the game in a
way that there exists si∗ ∈ SNj∗ with 0 ≤ i∗ ≤ M − 1 and 1 ≤ j∗ ≤ t such that
si∗ /∈ L. Assume that the assumptions in the statement of the lemma hold and
E2xspend happens. We show that this gives a contradiction. Since the transactions
output by A are valid, we have from Algorithm 6.10

G · z(i∗) =
N∑
i=0

k−1∏
j=0

fj,ij

 pki∗,i −
k−1∑
j=0

E
(i∗)
j xj , (6.30)

H · z(i∗) = xksi∗ −
k−1∑
j=0

F
(i∗)
j xj , (6.31)

where pki∗,i is an honestly generated public key for all i ∈ [0, N − 1]. Again using the
extractor of the underlying ZKP as in Case 1, D, who runs A multiple times, obtains
a witness s such that

y · pki∗,` = G · s, (6.32)

y · si∗ = H · s, (6.33)

for some 0 ≤ ` ≤ N − 1 where y is a product of κ elements in ∆Cdw,p with ‖y‖ � γ
and ‖s‖ ≤ γ by Lemma 6.8. Since pki∗,` is an honestly generated public key, we also
have

pki∗,` = G · r`
s` = H · r`

=⇒ y · pki∗,` = G · yr` (6.34)

for some r` ∈ Rmq with ‖r`‖∞ = B where s` = L[pki∗,`].s. Using (6.32), right side of
(6.34) and γ-binding of HMC with respect to G, we get s = yr`. Then, from (6.33),
we get

y · si∗ = H · yr` =⇒ si∗ = H · r` (6.35)
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since y is invertible because all its factors are invertible by Lemma 6.4. From right
side of (6.35) and left side of (6.34), we conclude that si∗ = s` ∈ L, which gives a
contradiction.
Case 3 (unbalanced amounts): Let Eunbalanced be the event that A wins the
game in a way that for all si ∈ SNj∗ where 0 ≤ i ≤M −1, si ∈ L and L[si].IsCrpt = 1.
Assume that the assumptions in the statement of the lemma hold and there exists a
PPT D who runs A.

As in Case 1, D runs A until Eunbalanced occurs k′ = max{k + 1, 3} times with
respect to distinct H outputs and the same H inputs where the index j∗ is the same
for all k′ events. Then, it uses the extractor of the underlying ZKP of the j∗-th
transaction to obtain the following, for all i ∈ [0, S − 1],

x̄ · C = Comck (x̄c0 − x̄2c1, . . . , x̄cr−1 − x̄2cr; rc) , (6.36)

x̄ · cnout,i = Comck

(
x̄b

(i)
out,0, . . . , x̄b

(i)
out,r−1; rout,i

)
, (6.37)

y · P` = Comck (0; r) , with P` =

S−1∑
j=0

cnout,j −
M−1∑
j=0

cnj,` + C (6.38)

where

• c0 = cr = 0 and c1, . . . , cr−1 ∈ [−(M − 1), (S − 1)],8

• x̄ ∈ ∆Cdw,p,
• y is a product of κ elements in ∆Cdw,p where one of its factors is x̄ by Lemma 6.8,
• ‖r‖ ≤ γ by Lemma 6.9,
• ‖(x̄c0 − x̄2c1, . . . , x̄cr−1 − x̄2cr, rc)‖ ≤ γ/((S + 1)θ

√
d),∥∥∥x̄b(i)out,0, . . . , x̄b

(i)
out,r−1, rout,i

∥∥∥ ≤ γ/((S + 1)θ
√
d) by Lemma 6.7,

• b(i)out,j ∈ {0, 1} for all i ∈ {0, . . . , S − 1} and all j ∈ {0, . . . , r − 1}.

Multiplying (6.36) and (6.37) by y′ = y/x̄, we get

y · C = Comck

(
yc0 − y2c1, . . . , ycr−1 − y2cr; y

′rc
)
, (6.39)

y · cnout,i = Comck

(
yb

(i)
out,0, . . . , yb

(i)
out,r−1; y′rout,i

)
, (6.40)

where ∥∥(yc0 − y2c1, . . . , ycr−1 − y2cr, y
′rc)

∥∥ ≤ γ/(S + 1), and∥∥∥yb(i)out,0, . . . , yb
(i)
out,r−1, y

′rout,i

∥∥∥ ≤ γ/(S + 1).

Since the input coins are generated honestly, we also have

cni,` = Comck (bi,0, . . . , bi,r−1; ri) (6.41)

where ‖ri‖∞ = B and bi,j ∈ {0, 1} for all i ∈ {0, . . . ,M −1} and all j ∈ {0, . . . , r−1}.
Substituting (6.39), (6.40) and (6.41) into (6.38), we get

8Here, we assume the general case where the spender proves that ci’s are in [−(M − 1), (S − 1)],
and need not be necessarily binary.



6.6. Security Proofs for MatRiCT 115

Comck (0; r) =

S−1∑
i=0

(
Comck

(
yb

(i)
out,0, . . . , yb

(i)
out,r−1; y′rout,i

))
−
M−1∑
i=0

(Comck (ybi,0, . . . , ybi,r−1; yri))

+ Comck

(
yc0 − y2c1, . . . , ycr−1 − y2cr; y

′rc
)
.

Observe that the input of the commitment on the left hand side has Euclidean norm
at most γ. Similarly, after using the homomorphic properties of the commitment
scheme, the input of the commitment on the right hand side has norm at most γ (here
we neglect the norm of (ybi,0, . . . , ybi,r−1, yri) as that is much smaller in comparison).
Then, using γ-binding property of HMC, we get

0 = y
S−1∑
i=0

b
(i)
out,j − y

M−1∑
i=0

bi,j + ycj − y2cj+1 (6.42)

for all j ∈ {0, . . . , r − 1} with c0 = cr = 0. By the assumption on q and Lemma 6.4,
y is invertible in Rq, and thus we have9

0 =

S−1∑
i=0

b
(i)
out,j −

M−1∑
i=0

bi,j + cj − 2cj+1, (6.43)

where with c0 = cr = 0. Since HMC is γ-binding, we have q > γ � max{4M, 4S}.
Hence, (6.43) holds over R. Since all the values are just integers, (6.43) in fact holds
over Z.

By the definition of Exp:Balance, the sum of the amounts in Amtj
∗

out (i.e., the
amounts corresponding to uncorrupted output public keys) can be at most the sum of
the amounts in all output coins. Using this fact, we look at the following sum where
amtin,i = L[si].amt for si = SNj∗ [i]

S′−1∑
i=0

Amtj
∗

out[i]−
M−1∑
i=0

amtin,i ≤
S−1∑
i=0

r−1∑
j=0

2jb
(i)
out,j −

M−1∑
i=0

r−1∑
j=0

2jbi,j

=
r−1∑
j=0

2j

(
S−1∑
i=0

b
(i)
out,j −

M−1∑
i=0

bi,j

)
=

r−1∑
j=0

2j (2cj+1 − cj)

=
r−1∑
j=0

2j+1cj+1 −
r−1∑
j=0

2jcj = 2rcr − c0

= 0, since c0 = cr = 0.

The above implies that
S′−1∑
i=0

Amtj
∗

out[i] ≤
M−1∑
i=0

amtin,i,

9We note here that (6.43) can also be obtained without using invertibility of y. In that case, one
can argue that the infinity norm of the right-hand side of (6.42) is smaller than q/2, which would be
easily satisfied. That implies that (6.42) holds over R. Then, by Lemma 5.5, either y = 0 or (6.43)
holds. Since y 6= 0, (6.43) must hold.
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which gives a contradiction with the winning assumption of A in Exp:Balance.

Remark 6.12. Note that in Lemma 6.11, the factor θ
√
d can be taken to be 1, when

k = 1. This is due to fact that in this case, κ = 1, and thus y = x̄. Hence, there is
no need to do cross multiplication to have (6.36), (6.37) and (6.38) multiplied by the
same relaxation factor y.

6.7 Implementation and Parameters

In our implementation, we target any anonymity level 1/N for N ≤ 1000, 64-bit
precision for amounts (i.e., r = 64) and the most common transaction settings where
there are at most two input/output accounts (i.e., M,S ≤ 2). For all these settings,
the following parameters are sufficient: B = 1, (d,w, p) = (64, 56, 8), q = 231 −
218 + 23 + 1, q̂ = (227 − 211 + 1) · (226 − 212 + 1), k = 1, ns = 1, (n,m) = (18, 38)
and (n̂, m̂) = (32, 65). With these parameters, a single public costs 4.36 KB and a
single serial number costs 248 bytes. The rationale behind the parameter setting is as
follows.

First, our experimental analysis shows that d = 64 is the best choice to optimise
the proof length. Having set d = 64, we get (w, p) = (56, 8) to have about 256-bit
H output. Again we follow the same methodology from Section 3.2.2 to measure the
practical security of our scheme, aim for a root Hermite factor of δ ≈ 1.0045 for both
M-LWE and M-SIS, and choose B = 1.

From our security assumption M-LWEm−n−ns,m,q,B, we can see that the efficiency
of our scheme degrades with increasing ns as M-LWE gets easier. Indeed, having
a small ns does not affect the anonymity or balance properties. Therefore, we can
simply set ns = 1. We discuss the implications of this choice in more detail in Section
6.8. Then, we set the remaining parameters to make sure that M-LWE and M-SIS
assumptions hold with δ ≈ 1.0045.

q is chosen to allow Rq to split into 4 factors while having y = x − x′ (challenge
differences) invertible in Rq for any x, x′ ∈ Cdw,p. This follows from the results of
[LS18] as given in Lemma 6.4. The other modulus q̂ is chosen to have two “NTT-
friendly” prime factors p1 and p2 so that bothRp1 andRp2 fully splits, allowing efficient
polynomial multiplication using NTT. All these primes p1, p2 and q are chosen to have
a form similar to 2k1 − 2k2 + 1, which enables the fast modulo reduction technique in
[Sei18] for the input smaller than 2k1−k2 times the modulus. By using this technique,
we only apply one modulo reduction at the end when computing

∑
xi, xi ∈ Rq or

xi ∈ Rq̂, such as in the commitments.
To reduce the number of NTT transformations, SamMat samples uniformly at ran-

dom directly from the NTT domain10. In addition, all commitment outputs (including
pk and cn) are in the NTT domain (i.e., without any inverse NTT during commitment
computations). However, since the secrets (notably a, r, and ρ) are involved in the
norm checks of Spend in Algorithm 6.9, and norm checks are also required for the
output f and z of Spend during Verify, we keep these elements in their normal do-
main and perform NTT when computing the commitments. Therefore, only forward
NTT is needed and we eliminate all the inverse NTT from the implementation.

To accelerate the norm checks and avoid unnecessary overhead during the rejec-
tion of Spend in Algorithm 6.9, we adapt the early-evaluation rejection technique in
[RGCB19]. In particular, we check the infinity or Euclidean norm and restart immedi-
ately during each ring element computation of f r, g, and all z’s. However, for f1, we

10What we mean by NTT domain for Rq is the four factors it splits into.
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Figure 6.1: Proof length growth (including the cost of serial numbers) with anonymity set
(ring) size.

need to hide what index may give a rejection due to the application of our rejection
sampling technique for fixed Hamming weight binary secrets. Therefore, a restart
happens only after f1 is completely iterated over. In addition, since Tg is larger than
64 bits, we use the GMP library [GT15] to compute ‖g‖ and make the comparison.

To implement the NTT efficiently, we adapt the techniques discussed in [Sco17]
for both factors Rp1 and Rp2 of Rq̂ during the NTT butterfly computations, notably
the lazy Montgomery reduction. However, for multiplication in Rq, since the input
would be reduced to [0, 2q − 1] in the lazy reduction, the intermediate value during
multiplication reduction may exceed 64 bits for the input less than 4q2. Thus, we
use the full Montgomery reduction for Rq instead. In addition, we also adapt the
constant-time comparison techniques similar to [Sco17] in our NTT implementation
and uniform samplers (e.g., {−B, . . . ,B} or {−Bbig, . . . ,Bbig}) for the secrets.

In our implementation, we use the AES-NI hardware instructions on Intel CPUs
[Gue09] to implement the pseudorandom generator and use the SHAKE-256 [NIS] to
implement the hash function H. We compile our implementation by using GCC 8.3.0
with the compiler switch -O3 -march=native during the benchmarks.

The concrete proof lengths of MatRiCT are compared with the prior art in Ta-
ble 6.4, and the computational evaluation of MatRiCT is given in Table 6.5, where
the running times are the average number of cycles in 1000 runs divided by 3 · 106.
Asymptotically, the proof generation and verification times are O(M ·N) as M ring

Table 6.4: Proof length comparison (in KB) of “post-quantum” RingCT proposals, support-
ing multiple inputs/outputs.

Anonymity level 1/10 1/100

#inputs → #outputs 1→ 2 2→ 2 1→ 2 2→ 2

LRCT v2.0 [TKS+19] >8000 >10000 >50000 >70000
MatRiCT: Chapter 6 93 110 103 120

LRCT v2.0 [TKS+19] PK Size: 100 KB Modulus: ≈ 2196

MatRiCT: Chapter 6 PK Size: 4 KB Modulus: < 253
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Table 6.5: Running times (in ms) of MatRiCT at 3 GHz.

Anonymity level 1/10 1/100 1/1000

#inputs → #outputs 1→ 2 2→ 2 1→ 2 2→ 2 1→ 2 2→ 2

Key Gen. 2 2 2 2 2 2
Transaction Gen. 242 375 360 620 1858 3514

Verification 20 23 31 40 146 223

signatures are run, each with O(N) computation. Further, we show in Figure 6.1 that
MatRiCT proof length scales very slowly with anonymity set size. The proof length
scales linearly with the number of input accounts as shown in Figure 6.2. Asymptoti-
cally, the proof length grows poly-logarithmically in N (due to the use of an improved
variant of the ring signature from Chapter 5) and linear inM , i.e., |Π| = O(M ·logcN)
for a small constant c.
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Figure 6.2: Proof length growth with the number of input accounts. Proof length also
includes the cost of serial numbers.

6.8 Implications of Small Dimensional Serial Number

Recall that for the commitment matrix H ∈ Rns×mq , a serial number is computed
as s = ComH(0; sk) where sk is a secret key. Choosing ns = 1 here with d = 64
actually makes M-SIS easy to solve with respect toH. However, one can see from the
balance proof (proof of Lemma 6.11) that the adversary needs to find a witness either
for (pk, s) together or for pk in order to break the balance property. Since we make
sure that the public key commitments are binding, there is no issue in the balance
proof. Similarly, from the anonymity perspective, the serial number alone will clearly
hide the secret key as we show in the anonymity proof (proof of Lemma 6.10) that
(pk, s) together still hides the secret key. Moreover, even with ns = 1, the output
space of 1-dimensional commitments is sufficiently large (in particular, qd ≈ 231·64 for
our parameters) that there is a negligible chance for two random secret keys to result
in the same serial number.
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What may indeed happen is that, for a given s, an adversary can find some short
vector r′ such that r′ 6= sk and s = ComH(0; r′). In this case, it must hold that pk =
ComG(0; sk) 6= ComG(0; r′) as otherwise we would get a solution to M-SISn,m,q,2γ
with respect to G where γ = max{‖r′‖ , ‖sk‖}. Hence, the adversary still cannot
create a valid transaction without having pk′ = ComG(0; r′) as one of the public
keys of the real spent accounts in Rin. Therefore, he first requires an account to be
created with pk′ and then he can spend that account with the serial number s. If
he can succeed in this before the honest user whose secret key commits to the same
serial number s, then this would prevent the honest user from being able to spend
her account. Note that the attack works only when the attacker guesses/knows the
serial number of an unspent account, and only results in a violation of availability (as
the honest user can no longer spend her account). The chance of a correct guess is
negligibly small as the output space is too large, which leaves knowledge of an account
serial number before it is ever spent as the only viable option for the attacker. This
whole attack scenario in general does not seem very likely to happen. Nevertheless,
stronger security against such an attack can be easily accomplished by increasing ns
so that M-SIS is hard with respect to H, which requires increasing m, and possibly
n and/or q.

6.9 Extension to Auditable RingCT

In this section, we introduce our novel extractable commitment scheme from lattices
and explain how to use it to add auditability to MatRiCT.

6.9.1 Extractable commitment scheme

We extend HMC to allow message extraction. All the previous algorithms, CKeygen,
Commit and COpen, that define the commitment remain the same, and we introduce
how to put a trapdoor to a commitment key.

• CAddTrapdoor(ck) : Let ck = [A ‖B ] ∈ R
n×(m+v)
q where A =

[
A′

a>

]
for A′ ∈

R
(n−1)×m
q and a ∈ Rmq . Sample s′ ← Rn−1

q , e← UmBe
, and set Atd =

[
A′

t>

]
where

t = A′>s′ + e. Output (cktd, td) = (Atd, (s, e)) where s = (s′,−1).

We next introduce how the extraction works when the committed message comes
from a relatively small set. Let ∆Cdw,p be the set of differences of all challenges in
Cdw,p except for the zero element. When a commitment key with a trapdoor is used
to generate a proof, the ZKPs we use prove knowledge of an opening (y,m, r) of a
commitment C such that

yC = Comck (ym; r) = Atdr +Bym. (6.44)

From here, we can try to eliminate the randomness by multiplying both sides by the
secret key s. However, the message extractor does not know what y is. For an honest
user, we simply have y = 1 and we restrict our discussion here to this case. However,
we note that, for a similar Fiat-Shamir protocol, it has been shown in [LN17] that
a valid approach in general is actually trying random y ∈ ∆Cdw,p, and the expected
number of iterations until an acceptable y is reached is the same as the number of
random oracle queries made to generate the proof. We believe that the same technique
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(which is also used in [dPLS18]) and [LN17, Lemma 3.2] can be applied in our case
and we leave its detailed investigation to future work.

Now, suppose that y = 1. We can rewrite (6.44) as C = Atdr +Bm. From here,
the extraction proceeds as given in Algorithm 6.12.

Algorithm 6.12 CExtractSM(C, td)

INPUT: C ∈ Rnq a commitment; td = (s, e) trapdoor

1: for m′ ∈M do . where |M| = poly(λ)
2: e′ = 〈s, C〉 − 〈b,m′〉 where b = s>B
3: if ‖e′‖

∞
< q/8, then return m′

4: end for

We prove in Lemma 6.13 that, for a commitment C with a valid zero-knowledge
proof of opening, the message output by Algorithm 6.12 is the same as the one used
to create the commitment C for sufficiently large q.

Lemma 6.13. Let ck = G = [Atd ‖B ] ∈ R
n×(m+v)
q be a commitment key with

a trapdoor td = (s, e) as in CAddTrapdoor. Assume that (C, (m, r)) satisfy C =
Comck (m; r), ‖r‖

∞
≤ Br and m ∈ M with |M| = s, and m′ = CExtractSM(C, td).

If q > 8BeBrmd, then m = m′ except for a probability at most s · 2−d.

Proof. It is easy to observe that s> ·Atd = s′>A′− t> = −e>. Let b = s> ·B. Since
C = Comck (m; r) for ck = [Atd ‖B ], we have

〈s, C〉 = 〈−e, r〉+ s> ·B ·m = 〈−e, r〉+ 〈b,m〉,
⇐⇒ 〈b,m〉 = 〈s, C〉+ 〈e, r〉. (6.45)

Since m′ is the output of CExtractSM(C, td), we further have e′ = 〈s, C〉 − 〈b,m′〉
and ‖e′‖

∞
< q/8. Now, consider the following

〈b,m−m′〉 = 〈b,m〉 − 〈b,m′〉
= (〈s, C〉+ 〈e, r〉)−

(
〈s, C〉 − e′

)
= 〈e, r〉+ e′.

Therefore, we have ∥∥〈b,m−m′〉∥∥
∞

=
∥∥〈e, r〉+ e′

∥∥
∞

≤ ‖〈e, r〉‖
∞

+
∥∥e′∥∥

∞

≤ BeBrmd+ q/8 < q/8 + q/8 < q/4.

Since B is chosen independently and uniformly at random, b = s> ·B is uniformly
random, and thus when m 6= m′, 〈b,m−m′〉 is also uniformly random Rq. So, the
above holds with probability about 2−d. Thus, using a union bound on all m ∈ M,
m = m′ except for a probability at most s · 2−d.

6.9.2 Adding auditability

From the tools developed so far, it is now easy to add auditability to our RingCT
construction. As part of Spend, the spender proves knowledge of an index ` ∈
[0, N − 1] and the secret keys of the accounts in the `-th column of Ain. Further, as
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detailed in Section 6.5, the binary proof part proves knowledge of (y, b, ĉ, r̂) such that
y ∈ ∆Cdw,p, yB = Comck (yb, ĉ; r̂) ∈ Rn̂q̂ and the first kβ elements of b represents an
index ` ∈ [0, N − 1]. Hence, we know that

yB = Ar̂ +B

(
yb
c

)
= Ar̂ +B0ym+B1m̂ = [A ‖B1 ]

(
r̂
m̂

)
+B0ym,

where m is the part (the first kβ elements of b) we want to recover and m̂ is the
remaining part of the message opening. Therefore, restricting to the case y = 1, we
can put a trapdoor for the concatenated matrix [A ‖B1 ] and use Algorithm 6.12 to
extract m, which reveals the real spender’s identity. The message space size here is
equal to the anonymity set size N . Therefore, the extraction time (as in Spend)
is linear in N . We know by Lemma 6.13 that for an appropriately chosen q̂, the
extracted index will be the same as the one used in the proof. A formal definition
of auditability, which can be established similar to traceability in group signatures
[BMW03], is left as a future work.

Note that multiple trapdoors can be put for the same matrix. If no auditing is
desired, the last row of the commitment matrix remains as a uniformly random vector.
If a user selects auditing option i > 0, then a vector released by the i-th authority is
used in the last row of the commitment matrix.

6.10 More on Ring and Group Signature

We describe the full ring/group signature signing procedure in Algorithm 6.13. The
verification works similar to Algorithm 6.10. In particular, the verifier checks the same
norm bounds as in Algorithm 6.13, computes A and E0, and finally checks whether x =
H(A,B,E0, . . . , Ek−1) for x provided as part of the signature. The opening algorithm
for revealing user’s identity in the group signature is realised using Algorithm 6.12 in
Section 6.9.1. Since the signer proves knowledge of an index ` ∈ [0, N − 1], which is
encoded using fj,i’s, and the secret key of the `-th public key, the opener of a group
signature just needs to extract the index from the commitment B.11 As there are only
N possibilities12, the running time of the opening algorithm of the group signature
is in the same order as the signing (i.e., O(N)). Since signature generation is likely
to occur much more frequently than opening a group signature, this is completely
acceptable in our setting.

In Tables 6.7 and 6.8, example sets of concrete parameters for our ring and group
signature, respectively, are provided, where we optimise the proof length for a fixed
ring dimension d. In the case of a group signature, we also need to make sure that
M-LWEn̂−1,m̂,q̂,Be is hard in order to argue that a commitment key with a trapdoor
is indistinguishable from random. Therefore, the choice of parameters for the group
signature is more restrictive. In Table 6.6, a comparison among existing post-quantum
scalable ring/group signatures is provided.

The two limitations of our group signature are 1) the running time of the opening
algorithm as well as the signing and verification is linear in the group size (the opening
algorithm has linear time also in [KKW18]) and 2) the group public key length grows
linearly in the group size. These are as expected since the group signature builds on

11Note that the binary proof in this case includes only the proof for the index ` and no additional
bits.

12Note here that even though the commitment B includes another vector c as a committed message,
by Lemma 6.3, this second part is uniquely determined by the information provided in the proof and
recovered in Algorithm 6.12.
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Algorithm 6.13 Signing of Ring/Group Signature

INPUT: µ, (pk0, . . . , pkN−1), `, sk where µ is a message, sk = r ∈ Rmq , ` ∈ [0, N−
1] and pki ∈ Rnq for i = 0, . . . , N − 1.
OUTPUT: Π = (B,E1, . . . , Ek−1, x,f1, zb, z) where B ∈ Rn̂q̂ ; E1, . . . , Ek−1 ∈
Rnq ; x ∈ Cdw,p; f1 ∈ R

k(β−1)
q̂ ; zb ∈ Rm̂q̂ ; z ∈ Rmq .

1: Ba = d2 · pkde
2: Tg = d3B4

akβ(β + 1)/(2d)
3: B̂big = d1.5Bpwm̂de
4: Bbig,k = d1.5B(pw)kmde
5: b = {(β,True, (δ`j ,0, . . . , δ`j ,β−1),Ba)}k−1

j=0

6: ck = G← SamMat(ρ, r, q, n,m, “G”)
7: (ra, rb), (A,B), (a0,0, . . . , ak−1,β−1)← BinaryCommit(k, b,B, B̂big)
8: Compute p = (p0,0, . . . , pN−1,k−1) using Algorithm 6.11 with the input

(`, a0,0, . . . , ak−1,β−1) when k ∈ {1, 2}
9: ρ0 ← {−Bbig,k, . . . ,Bbig,k}d·m
10: for j = 0, . . . , k − 1 do
11: ρj ← {−B, . . . ,B}d·m if j 6= 0

12: Ej =
∑N−1

i=0 pi,jPi + Comck

(
0; ρj

)
in Rnq

13: end for

14: x = H(µ,A,B,E0, . . . , Ek−1)

15: for j = 0, . . . , k − 1 and i = 0, . . . , β − 1 do
16: fj,i = xδ`j ,i + aj,i
17: end for
18: f1 = (f0,1, . . . , fk−1,β−1) . fj,0’s are excluded
19: if ‖f1‖∞ > Ba − p, then Restart
20: for j = 0, . . . , k − 1 do
21: if ‖fj,0‖ > Ba

√
d(β − 1), then Restart

22: end for
23: g = (f0,0(x− f0,0), . . . , fk−1,β−1(x− fk−1,β−1))
24: if ‖g‖ >

√
Tg, then Restart

25: zb = xrb + ra . m̂-dimensional
26: if ‖zb‖∞ > B̂big − Bpw, then Restart
27: z = xkr −

∑k−1
j=0 x

jρj
28: if ‖z‖

∞
> Bbig,k − B(pw)k, then Restart

29: return Π = (B,E1, . . . , Ek−1, x,f1, zb, z)

a ring signature. However, the cost of the public key storage can be amortised over
many signatures as one would expect many signatures to be generated by the same
group. Consider a group of 1000 members generating 1000 signatures in total, the
total storage cost of all public keys and all signatures would be about 65 MB using our
group signature. In the case of the two state-of-the-art post-quantum group signatures
[KKW18] and [dPLS18], this cost would exceed 400 MB. Therefore, in the settings
where the number of group members is not significantly greater than the number of
signatures, the overall cost is lower using our group signature.

Moreover, our group signature can be easily made dynamic in that the group
manager can add or remove members by appending their individual public key to the
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group public key gpk or deleting it from gpk. In this case, it is required that group
signature is verified using the group public key at the time of signature generation.

We also note that our constructions in this chapter do not require any (discrete)
Gaussian sampling. Replacing some of the uniform samplings with a discrete Gaussian
in our schemes helps further reduce the signature length, but our goal in this chapter
is to introduce an easy-to-implement scheme.

Table 6.6: Comparison of signature lengths (in KB) of “post-quantum” ring/group signa-
tures. The last column represents whether ring or group signature is supported. “?” indicates
that the signature length cannot be approximated using the results of the respective reference.

Ring/Group Size N : 2 8 64 4096 221 Ring/Group
[dPLS18] 581 581 581 581 581 Group
[KKW18] ? ? 250 456 ? Ring&Group
Chapter 5 36 41 58 103 256 Ring

This Chapter 18 19 31 59 148 Ring
This Chapter 28 29 34 60 148 Group

Table 6.7: Concrete parameters of our ring signature, optimised for proof length. Signature
and key sizes are in KB. The hash output size (or challenge space size for the underlying
protocol) is at least 2256. The root Hermite factor of both M-SIS and M-LWE are about
1.0045. B = 1 and (d,w, p) = (128, 66, 2) always. The signature length can sometimes be
slightly further reduced by choosing varying d values. For example, the same parameters of

the group signature for N = 221 in Table 6.8 also works for the ring signature.

N 2 8 64 1024 4096 221

(n, n̂) (8, 9) (8, 9) (8, 11) (13, 10) (13, 12) (21, 13)
(m, m̂) (17, 22) (17, 23) (17, 25) (27, 26) (27, 26) (42, 28)

(log q, log q̂) (27, 42) (27, 46) (27, 44) (45, 52) (45, 46) (69, 47)
(k, β) (1, 2) (1, 8) (1, 64) (2, 32) (2, 64) (3, 128)

Sign. Size 18 20 31 48 59 156
PK Size 3.38 3.38 3.38 9.14 9.14 22.64
SK Size 0.27 0.27 0.27 0.42 0.42 0.66

Table 6.8: Concrete parameters of our group signature, optimised for proof length. Signa-
ture and key sizes are in KB. The hash output size (or challenge space size for the underlying
protocol) is at least 2256. The root Hermite factor of both M-SIS and M-LWE are about
1.0045. B = 1, Be = 4 and (d,w, p) = (64, 56, 8) always. PK Size here refers to the per-user

public key size. The group public key size would be N×(PK Size).

N 2 8 64 1024 4096 221

(n, n̂) (17, 30) (17, 30) (17, 30) (29, 30) (29, 30) (47, 30)
(m, m̂) (36, 61) (36, 61) (36, 61) (60, 61) (60, 61) (96, 61)

(log q, log q̂) (29, 49) (29, 49) (29, 49) (49, 49) (49, 49) (79, 49)
(k, β) (1, 2) (1, 8) (1, 64) (2, 32) (2, 64) (3, 128)

Sign. Size 28 29 34 54 60 148
PK Size 3.85 3.85 3.85 11.10 11.10 29.01
SK Size 0.28 0.28 0.28 0.47 0.47 0.75
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6.11 Discussion

As can be seen from Figure 6.2, a limitation of MatRiCT is that the proof length
is linear in the number of input accounts (i.e., the parameter M), which means that
the proof would be costly when there are many, say 1000, input accounts (though
such a large M is quite rare in practice). However, this limitation seems hard to
overcome because one needs to construct an efficient M -out-of-N proof with proof
length growth sublinear inM and N in order to circumvent this limitation. Currently,
such proofs seem difficult to construct from lattices.

Another effect of increasing number of input accounts is that it makes the pa-
rameter setting more difficult. More precisely, due to the use of rejection sampling,
each ring signature run as part of the transaction generation reduces the overall ac-
ceptance probability by a certain factor. Therefore, this acceptance probability gets
exponentially smaller for increasing M unless ring signature components are sampled
from wider distributions. As a result, if one wants to allow large number of inputs,
then the parameter setting needs to be done accordingly, which results in a level of
overkill for smallM values. There seems to be no way around this when multiple ring
signatures with rejection samplings are used.

As mentioned in Section 6.10, our group signature also has certain limitations,
which are indeed inherited from the ring signature. These limitations may be restric-
tive for the scheme’s use in certain scenarios, for example, when there are large number
of group members. In such a case, the group public key may grow very large. It would
be very interesting to see if these limitations can be overcome, e.g., by compressing
the group public key somehow.

On the positive side, we can see MatRiCT as an important step forward in the
deployment of post-quantum cryptographic algorithms. Its communication and com-
putation costs are within practical limits, and it has relatively small public key and
modulus sizes. It allows other nice features such as auditability. In fact, the au-
ditability feature is quite unique in that the users themselves can decide what level
of anonymity to choose. In the scenarios where auditability is a must, then the au-
thority (or authorities) can enforce users to opt in for auditing by having transaction
validation done via commitment keys with trapdoors. That is, if a user does not use a
commitment key with a trapdoor, then her transaction would fail in the verification.

An important feature of MatRiCT is that the modulus size is, in essence, deter-
mined by the security requirements, not the balance proof. As mentioned before, the
prior balance proof approach requires the modulus to be larger than the amounts. Re-
moving this requirement gives MatRiCT much more flexibility in parameter choices,
and allows faster computation and shorter proof length.

A more low-level technical side of MatRiCT is that it only makes use of relaxed
proofs, which are often more efficient to construct in lattice-based cryptography. Of
course, the use of relaxed proofs is not so straightforward as one needs to handle
the effect of the relaxations. Most notably, we see its impact on the balance proof.
We believe that our techniques to handle relaxations may also prove useful for future
works that rely on relaxed proofs.
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Conclusion

In this thesis, we studied the problems related to the design of lattice-based zero-
knowledge proofs and their application to higher level protocols. We first approached
the problem from a foundational perspective and studied it in a less restrictive setting
of multi-shot proofs. This approach was an important starting point as there was no
set of prior technical tools that could efficiently solve the problems of interest in the
thesis. In particular, a set of new technical tools for the design of multi-shot proofs for
non-linear relations was introduced, followed by their application in the construction
of useful protocols in practice.

Having seen the main challenges in proving non-linear relations in the lattice set-
ting, we later focused on the more practical setting of one-shot proofs. Again, the
prior techniques were very limited in that they could only allow one to prove linear re-
lations, which are not sufficient to construct efficient advanced cryptographic schemes.
Therefore, our next objective was to introduce new techniques for the design of one-
shot proofs for non-linear relations. With this objective completed, we sought for
practical applications of the new techniques, and were able to construct substantially
more efficient advanced tools thanks to our new one-shot proof techniques.

As the final objective of the thesis, we focused on a very practical problem of
important real-life impact. That is, we targeted designing an efficient, scalable and
post-quantum RingCT protocol. This problem is likely to be of significant inter-
est for future privacy-oriented cryptocurrencies as the threat of quantum comput-
ers against the currently deployed cryptographic algorithms grows bigger. Towards
addressing the final objective, further improvements over the developed techniques
were introduced. In particular, we designed efficient ring signature, group signature
and extractable commitment scheme, which may be of independent interest for other
privacy-preserving protocols such as secure e-voting. The full practical embodiment of
our novel techniques is MatRiCT, the first practical RingCT protocol from standard
lattice assumptions.

7.1 Future Research Directions

7.1.1 More theoretical directions

An interesting open question for lattice-based ZKPs in general is finding a large set of
challenges with desired properties. If we recall from Chapter 4, some desired properties
are as follows: 1) challenges should have small norm, 2) challenge differences should
be invertible, 3) challenges difference inverses should have small norm. The set of
monomial challenges is such a set with these features, but the total set size is very
small. Finding a larger set with similar properties would be a very interesting result.

Another open question is related to our CRT-packing technique from Chapter 5.
Our technique allows to get faster proof, but does not help with the proof length. It
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would be significantly helpful in reducing the proof length if one can come up with a
similar CRT-packing technique without requiring the challenges to be of small degree.
Another related question is to do with making the CRT-packing technique work in
fully splitting rings when proving a binary relation.

If we recall from Section 6.9.1, the message extraction algorithm for our extractable
commitment scheme works for relatively small message sets (in particular, sets that
can be exhaustively iterated over in practice). A very interesting study would be to
investigate whether message extraction could be made possible in other settings where
the set of possible messages is not very small, but possibly has some special properties.

A somewhat orthogonal direction of research is to see whether our proofs can be
strengthened at a low cost. That is, for our purposes in the thesis, proofs of relaxed
relations were sufficient, but for some scenarios such as verifiable encryption, this may
not be the case. Even the recent exact proofs, e.g., [BLS19, YAZ+19], which indeed
make use of the new techniques introduced in the thesis, do not yet seem to offer a
satisfactory solution in practice. But we believe that future research on this topic will
offer more practically relevant solutions.

Although named “more theoretical directions”, the answers to these questions
would surely have implications for various applications as well. Therefore, they should
not be seen as questions of pure theoretical interest.

7.1.2 More application-oriented directions

A clear future research direction is the investigation of the new techniques’ application
to other zero-knowledge proofs of practical interest. For example, the techniques may
be helpful in extending advanced DL-based ZKPs such as Bulletproofs [BBB+18] to
the lattice setting. More generally, a ZKP of arithmetic circuit satisfiability is an
important tool for various applications, and for such proofs, there does not seem to
be a satisfactory lattice-based solution. Therefore, making use of the new techniques
in this setting seems to be an interesting research direction.

An important question to study is the extension of MatRiCT. First, MatRiCT in
its current form does not support recipient anonymity. Incorporation of this feature
into both the formal foundations and MatRiCT is one of our future works. Another
property to be formally studied is the auditability feature. We also studied auditability
in a simpler setting where the relaxation factor of the underlying proof was assumed to
be 1. As mentioned in Chapter 6, in order to allow auditability from other relaxation
factors in general, we believe that a potential path to pursue is the extension of the
results of [LN17].

Another applied research direction is to build on our privacy-preserving credentials
proposal from Section 5.6.2. Our proposal can be seen as an initial step forward in
constructing efficient post-quantum anonymous credentials. But there are certainly
interesting questions to be answered such as providing unlinkability between credential
showings (i.e., two showings of the same credential cannot be linked to each other).

There are further various applications where our techniques and results may prove
useful. Some examples are group signatures, secure e-voting systems, other blockchain
protocols (than RingCT) and remote attestation protocols (such as Direct Anonymous
Attestation, namely DAA).



127

Bibliography

[ABB+19] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Patrick Longa,
and Jefferson E. Ricardini. The lattice-based digital signature scheme
qTESLA. Cryptology ePrint Archive, Report 2019/085, 2019. https:
//eprint.iacr.org/2019/085.

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A
practical and provably secure coalition-resistant group signature scheme.
In CRYPTO, pages 255–270. Springer, 2000.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange-a new hope. In USENIX Security Sympo-
sium, 2016.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence
of errors. In ICALP, pages 403–415. Springer, 2011.

[AGHS13] Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete
Gaussian leftover hash lemma over infinite domains. In ASIACRYPT,
pages 97–116. Springer, 2013.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In STOC, pages 99–108. ACM, 1996.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EU-
ROCRYPT, volume 9056 of LNCS, pages 430–454. Springer, 2015.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy,
pages 315–334. IEEE, 2018.

[BBC+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino,
Jens Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-
knowledge arguments for arithmetic circuits. In CRYPTO, volume
10992 of LNCS, pages 669–699. Springer, 2018.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based
on DDH. In ESORICS, pages 243–265. Springer, 2015.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic

https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2019/085


128 BIBLIOGRAPHY

circuits in the discrete log setting. In EUROCRYPT, pages 327–357.
Springer, 2016.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyuba-
shevsky, and Gregory Neven. Better zero-knowledge proofs for lattice
encryption and their application to group signatures. In ASIACRYPT,
pages 551–572. Springer, 2014.

[BDL+18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More efficient commitments from structured lattice
assumptions. In SCN, pages 368–385. Springer, 2018.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and
Krzysztof Pietrzak. Efficient zero-knowledge proofs for commitments
from learning with errors over rings. In ESORICS, pages 305–325.
Springer, 2015.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. Journal
of Cryptology, 22(1):114–138, 2009.

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical
lattice-based one-time linkable ring signatures. In ICICS, volume 11149
of LNCS, pages 303–322. Springer, 2018.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic
techniques for short(er) exact lattice-based zero-knowledge proofs. In
CRYPTO (1), volume 11692 of Lecture Notes in Computer Science,
pages 176–202. Springer, 2019.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations
of group signatures: Formal definitions, simplified requirements, and a
construction based on general assumptions. In EUROCRYPT, volume
2656, pages 614–629. Springer, 2003.

[BPVY00] Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung.
Design validations for discrete logarithm based signature schemes. In
PKC, pages 276–292. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM conference on Com-
puter and communications security, pages 62–73. ACM, 1993.

[CDG+19] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha. The pic-
nic signature scheme, 2019. Submission to NIST Post-Quantum Cryp-
tography project.

[Cha85] David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Communications of the ACM, 28(10):1030–
1044, 1985.

[Chu18] Chitchanok Chuengsatiansup. Private communication, 2018.



BIBLIOGRAPHY 129

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In EURO-
CRYPT, pages 257–265. Springer, 1991.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Se-
curity of the fiat-shamir transformation in the quantum random-oracle
model. In CRYPTO (2), volume 11693 of Lecture Notes in Computer
Science, pages 356–383. Springer, 2019.

[DLL+18] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals–Dilithium: Digital signa-
tures from module lattices. In CHES, volume 2018-1, 2018.

[dPLNS17] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor
Seiler. Practical quantum-safe voting from lattices. In CCS, pages 1565–
1581. ACM, 2017.

[dPLS18] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability.
In ACM CCS, pages 574–591. ACM, 2018.

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum
zero-knowledge proofs for accumulators with applications to ring sig-
natures from symmetric-key primitives. In PQCrypto, pages 419–440.
Springer, 2018. (Extended version at https://eprint.iacr.org/2017/
1154).

[dSGDOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela
Orsini, and Nigel P. Smart. BBQ: using AES in picnic signatures. In
SAC, volume 11959 of Lecture Notes in Computer Science, pages 669–
692. Springer, 2019.

[ESLL19] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu.
Lattice-based zero-knowledge proofs: New techniques for shorter and
faster constructions and applications. In CRYPTO (1), volume 11692
of Lecture Notes in Computer Science, pages 115–146. Springer, 2019.
(Full version at https://eprint.iacr.org/2019/445).

[ESS+19] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications
to ring signatures. In ACNS, volume 11464 of LNCS, pages 67–88.
Springer, 2019. (Full version at https://eprint.iacr.org/2018/773).

[EZS+19] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K.
Liu, and Dongxi Liu. MatRiCT: Efficient, scalable and post-quantum
blockchain confidential transactions protocol. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’19, pages 567–584. ACM, 2019. (Full version at https:
//eprint.iacr.org/2019/1287).

[FG15] Jason Fulman and Larry Goldstein. Stein’s method and the rank distri-
bution of random matrices over finite fields. The Annals of Probability,
43(3):1274–1314, 2015.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor

https://eprint.iacr.org/2017/1154
https://eprint.iacr.org/2017/1154
https://eprint.iacr.org/2019/445
https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2019/1287
https://eprint.iacr.org/2019/1287


130 BIBLIOGRAPHY

Seiler, William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-
based compact signatures over NTRU, 2018. https://falcon-sign.
info/falcon.pdf.

[Fou18] Abelian Foundation. Abelian Coin (ABE) – a quantum-resistant
cryptocurrency balancing privacy and accountability, 2018.
https://www.abelianfoundation.org/wp-content/uploads/2018/
08/Abelian-Whitepaper-CB20180615.pdf (June 15, 2018 version).

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, pages 186–194.
Springer, 1986.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic
encryption with polylog overhead. In EUROCRYPT, volume 7237 of
LNCS, pages 465–482. Springer, 2012.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In EUROCRYPT, volume 9057, pages
253–280. Springer, 2015.

[GKV10] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group
signature scheme from lattice assumptions. In ASIACRYPT, volume
6477, pages 395–412. Springer, 2010.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. Comput., 18(1):186–
208, 1989. Preliminary version in STOC 1985.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In STOC, pages
197–206. ACM, 2008.

[GT15] Torbjrn Granlund and Gmp Development Team. GNU MP 6.0 Multiple
Precision Arithmetic Library. Samurai Media Limited, United Kingdom,
2015.

[Gue09] Shay Gueron. Intel’s new AES instructions for enhanced performance
and security. In FSE, LNCS, pages 51–66. Springer, 2009.

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge
university press, 2012.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signa-
tures. In ACM CCS, pages 525–537. ACM, 2018.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently
secure identification schemes based on the worst-case hardness of lattice
problems. In ASIACRYPT, volume 5350 of Lecture Notes in Computer
Science, pages 372–389. Springer, 2008.

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-
based (linkable) ring signature. In ACNS, volume 11464 of Lecture Notes
in Computer Science, pages 110–130. Springer, 2019.

https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf


BIBLIOGRAPHY 131

[LLLS13] Fabien Laguillaumie, Adeline Langlois, Benoît Libert, and Damien
Stehlé. Lattice-based group signatures with logarithmic signature size.
In ASIACRYPT, pages 41–61. Springer, 2013.

[LLM+16] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huax-
iong Wang. Signature schemes with efficient protocols and dynamic
group signatures from lattice assumptions. In ASIACRYPT, pages 373–
403. Springer, 2016.

[LLNW14] Adeline Langlois, San Ling, Khoa Nguyen, and HuaxiongWang. Lattice-
based group signature scheme with verifier-local revocation. In Public
Key Cryptography (PKC), volume 8383, pages 345–361, 2014.

[LLNW16] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: logarithmic-size
ring signatures and group signatures without trapdoors. In EURO-
CRYPT, pages 1–31. Springer, 2016.

[LN17] Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryp-
tion from lattices. In EUROCRYPT, pages 293–323. Springer, 2017.

[LNW15] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from
lattices: simpler, tighter, shorter, ring-based. In Public Key Cryptogra-
phy (PKC), pages 427–449. Springer, 2015.

[LNWX17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-
based group signatures: Achieving full dynamicity with ease. In ACNS,
pages 293–312. Springer, 2017.

[LRR+19] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder,
Sri Aravinda Krishnan Thyagarajan, and Jiafan Wang. Omniring: Scal-
ing private payments without trusted setup. In ACM CCS, pages 31–48.
ACM, 2019.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-
tions for module lattices. Designs, Codes and Cryptography, 75(3):565–
599, 2015.

[LS18] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based
zero-knowledge proofs. In EUROCRYPT, pages 204–224. Springer,
2018.

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spon-
taneous anonymous group signature for ad hoc groups (extended ab-
stract). In ACISP, volume 3108 of LNCS, pages 325–335. Springer,
2004.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lat-
tice and factoring-based signatures. In ASIACRYPT, pages 598–616.
Springer, 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755. Springer, 2012. (Full version).



132 BIBLIOGRAPHY

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir.
In CRYPTO (2), volume 11693 of Lecture Notes in Computer Science,
pages 326–355. Springer, 2019.

[MBB+13] Carlos Aguilar Melchor, Slim Bettaieb, Xavier Boyen, Laurent Fousse,
and Philippe Gaborit. Adapting Lyubashevsky’s signature schemes to
the ring signature setting. In AFRICACRYPT, pages 1–25, 2013.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the
sample complexity of LWE search-to-decision reductions. In CRYPTO,
LNCS, pages 465–484. Springer, 2011. (Full version).

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT, volume 7237 of LNCS, pages
700–718. Springer, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with
small parameters. In CRYPTO, pages 21–39. Springer, 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on Gaussian measures. SIAM Journal on Computing,
37(1):267–302, 2007. Preliminary version in FOCS 2004.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
Post-quantum cryptography, pages 147–191. Springer, 2009.

[NIS] NIST. SHA-3 standard: Permutation-based hash and extendable-
output functions. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.202.pdf. Accessed: 2019-05-15.

[NIS17] NIST. Post-quantum cryptography – call for proposals, 2017.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization/
Call-for-Proposals.

[Noe15] Shen Noether. Ring signature confidential transactions for monero.
Cryptology ePrint Archive, Report 2015/1098, 2015. https://eprint.
iacr.org/2015/1098.

[NZZ15] Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient
group signatures from lattices. In Public Key Cryptography (PKC),
pages 401–426. Springer, 2015.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. Journal of Cryptology, 13(3):361–396,
2000.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, 2009. Preliminary version in
STOC 2005.

[RGCB19] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and
Shivam Bhasin. Improving speed of Dilithium’s signing procedure.
Cryptology ePrint Archive, Report 2019/420, 2019. https://eprint.
iacr.org/2019/420.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2019/420
https://eprint.iacr.org/2019/420


BIBLIOGRAPHY 133

[RST01] Ronald Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
ASIACRYPT, pages 552–565, 2001.

[SALY17] Shifeng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. RingCT
2.0: A compact accumulator-based (linkable ring signature) protocol
for blockchain cryptocurrency monero. In ESORICS, volume 10493 of
LNCS, pages 456–474. Springer, 2017.

[Sco17] Michael Scott. A note on the implementation of the number theoretic
transform. In IMACC, LNCS, pages 247–258. Springer, 2017.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for
Ring-LWE lattice cryptography. Cryptology ePrint Archive, Report
2018/039, 2018. https://eprint.iacr.org/2018/039.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In ASIACRYPT,
pages 617–635. Springer, 2009.

[Ste96] Jacques Stern. A new paradigm for public key identification. IEEE
Transactions on Information Theory, 42(6):1757–1768, 1996.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD
operations. Des. Codes Cryptography, 71(1):57–81, 2014.

[Tea19] Zcash Team. Frequently asked questions, 2019. https://z.cash/
support/faq/#quantum-computers, accessed on April 23, 2019.

[TKS+19] Wilson Abel Alberto Torres, Veronika Kuchta, Ron Steinfeld, Amin
Sakzad, Joseph K. Liu, and Jacob Cheng. Lattice RingCT v2.0 with
multiple input and multiple output wallets. In ACISP, volume 11547 of
LNCS, pages 156–175. Springer, 2019. Full version at https://eprint.
iacr.org/2019/569.

[TSS+18] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K.
Liu, Veronika Kuchta, Nandita Bhattacharjee, Man Ho Au, and Jacob
Cheng. Post-quantum one-time linkable ring signature and application
to ring confidential transactions in blockchain (lattice ringct v1. 0). In
ACISP, pages 558–576. Springer, 2018.

[Tur66] L. Richard Turner. Inverse of the vandermonde matrix with applications.
Technical Report NASA-TN-D-3547, Lewis Research Center, NASA,
1966.

[YAL+17] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu.
Lattice-based techniques for accountable anonymity: Composition of
abstract stern’s protocols and weak prf with efficient protocols from lwr.
Cryptology ePrint Archive, Report 2017/781, 2017. https://eprint.
iacr.org/2017/781.

[YAZ+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu,
and William Whyte. Efficient lattice-based zero-knowledge arguments
with standard soundness: Construction and applications. In CRYPTO
(1), volume 11692 of LNCS, pages 147–175. Springer, 2019.

https://eprint.iacr.org/2018/039
https://z.cash/support/faq/#quantum-computers
https://z.cash/support/faq/#quantum-computers
https://eprint.iacr.org/2019/569
https://eprint.iacr.org/2019/569
https://eprint.iacr.org/2017/781
https://eprint.iacr.org/2017/781


134 BIBLIOGRAPHY

[YSL+19] Tsz Hon Yuen, Shi-feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F.
Esgin, Qingzhao Zhang, and Dawu Gu. RingCT 3.0 for blockchain con-
fidential transaction: Shorter size and stronger security. Cryptology
ePrint Archive, Report 2019, 2019. (To appear at Financial Cryptogra-
phy and Data Security 2020).

[ZSS19] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: Fast,
compact, and constant-time discrete Gaussian sampler over integers.
IEEE Transactions on Computers, 2019.

[ZZTA18] Huang Zhang, Fangguo Zhang, Haibo Tian, and Man Ho Au. Anony-
mous post-quantum cryptocash. In Financial Cryptography, volume
10957 of LNCS, pages 461–479. Springer, 2018. https://eprint.iacr.
org/2017/716.

https://eprint.iacr.org/2017/716
https://eprint.iacr.org/2017/716

	Copyright notice
	Abstract
	Declaration
	Publications included in the thesis
	Acknowledgements
	Introduction
	Contributions
	Chapter 4
	Chapter 5
	Chapter 6

	Thesis Structure

	Literature Review
	Zero-Knowledge Proofs
	Ring Signatures
	Group Signatures
	RingCT Protocols

	Preliminaries
	Notations
	Cryptographic Definitions
	Security assumptions: Module-SIS and Module-LWE
	Commitment schemes
	Sigma protocols
	An easy-to-use method of setting parameters for lattice schemes
	Ring signatures

	Mathematical Background
	Representative matrices
	Singular values
	Discrete Gaussian distribution and its properties
	Rejection sampling
	Some basics of Linear Algebra and Vandermonde matrices
	Technical lemmas


	Multi-Shot Algebraic Proofs and Applications
	New Technical Tools for Lattice-Based Proofs
	Proving a value binary in Rq
	Bounding the extracted witness norm for monomial challenges
	Method 1
	Method 2
	Method 3


	Multi-Shot Sigma Protocols from Lattices
	-protocol for commitment to a sequence of bits
	One-out-of-many protocol

	Application to Ring Signature
	Tweaks for r-repeated protocol
	Construction
	Security proofs
	Parameter setting

	Discussion

	One-Shot Algebraic Proofs and Applications
	Asymptotic Costs of Existing Lattice-Based ZKP Techniques
	Overview of New Techniques
	One-shot witness extraction for non-linear polynomial relations
	CRT-packing supporting inter-slot operations
	``NTT-friendly'' tools for fully-splitting rings

	One-Shot Proofs for Non-Linear Polynomial Relations
	The case for linear relations (2-special soundness)
	Generalisation to degree k>1 ((k+1)-special soundness)
	New tools for compact proofs

	New Techniques for Faster Lattice-Based Proofs and Application to Range Proofs
	Supporting inter-slot operations on CRT-packed messages
	Using CRT-packed inter-slot operations in relaxed range proof

	Efficient One-Shot Proofs for Other Useful Relations
	Relaxed proof of commitment to sequences of bits
	Relaxed one-out-of-many proof
	Relaxed set membership proof

	Applications to Advanced Cryptographic Schemes
	Ring signature
	Construction
	Concrete parameters
	Asymptotic signature length
	Computational efficiency

	Privacy-preserving credentials

	Discussion

	Blockchain Confidential Transactions from Lattices
	Overview of MatRiCT
	Overview of New Techniques
	Improved ring signature
	Efficient rejection sampling for binary secrets of fixed Hamming weight
	Novel balance proof
	New extractable commitment

	Formal Definitions for RingCT-like Cryptocurrency Protocols
	Security Definitions
	Correctness
	Anonymity
	Balance


	MatRiCT: Efficient, Scalable and Post-Quantum Confidential Transactions Protocol
	Description of MatRiCT

	Improved Special Soundness Proof for the Binary Proof
	Security Proofs for MatRiCT
	Auxiliary lemmas
	Correctness
	Anonymity
	Balance

	Implementation and Parameters
	Implications of Small Dimensional Serial Number
	Extension to Auditable RingCT
	Extractable commitment scheme
	Adding auditability

	More on Ring and Group Signature
	Discussion

	Conclusion
	Future Research Directions
	More theoretical directions
	More application-oriented directions



