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Abstract

Affective analysis is an emerging research area which helps human to better under-

stand their mental state through human-machine interaction. During the interaction

process, bio-signal analysis is the essential work of detecting human affective changes

since bio-signals are considered as a representation of physiological responses which

are related to human affective states. Machine learning methods to analyse bio-

signals are currently promoted as the better way to detect physiological changes,

but most empirical works have utilised limited types of bio-signals in affect recog-

nition, which cannot provide precise results. Moreover, these empirical works have

mainly deployed traditional machine learning methods rather than deep learning

models, which may have the opportunity to improve the classification accuracy.

This research provides a performance comparison between traditional machine

learning models and deep learning models on multimodal bio-signals for human men-

tal state classification tasks. The extensive experimental results suggest that deep

learning algorithms outperform traditional machine learning algorithms in accuracy

and weighted F1 score for classification tasks in affective analysis.

Furthermore, to improve the explainability of the deep learning model, this re-

search conducted a thorough analysis to understand the contribution of each bio-

signal, and how they differ for various affective states. The research work improves

the state of the art for emotion recognition from bio-signals and the current under-

standing of the relationship between affect and bio-signals.
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Chapter 1

Introduction

Our daily life is surrounded by many modalities such as human vision, hearing,

and smell. The term modality refers to a certain type of representation that stores

information such as bio-signals, texts and videos [5]. Modalities can be characterised

to different types of representation with various statistical properties, in particular

sensory modality, which is a primary form of sensation to encode information [34].

Bio-signals are a type of sensory modality which can represent human physiological

responses. This modality is increasingly applied to artificial intelligence to make

progress in human computer interaction due to its numerical representation and

the advancement in wearable sensors which allows convenient measurement. For

example, the ECG signal collected by wearable sensors (e.g., Apple watch) is a

certain sensory modality, which can interpret human heart activity patterns at many

value points. Computers can process this numerical information to infer human

mental states and then take action to interact with the human. However, many other

signal modalities (e.g., EMG, EDA) are also collected at different sampling rates.

When these modalities are processed by one computer simultaneously, techniques

are needed for aligning and analysing multiple sources of information.

An emerging field called multimodal machine learning is established, which in-

terprets and reasons about human activity from multimodal information [33]. This

field involves signal denoising techniques, multimodal fusion, and machine learning

algorithms to process multimodal-multisensory information. One significant appli-

cation area of multimodal machine learning is affective computing which is broadly

defined as an interdisciplinary field of psychology, computer science and signal pro-

cessing [34]. In the affective computing, affect recognition (or affect detection) is a

popular topic which can estimate the human latent mental state (e.g., stress) from

machine-readable signals (e.g., bio-signals, video, and audio) to understand the hu-

man emotion and provide mental wellbeing support [43]. Most of affect recognition

research focuses on analysing video, audio, and text modalities. Nevertheless, using

those modalities to analyse human affect is quite limited due to mobility and appli-
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cability in human life. In comparison, bio-signals recently have received increasing

attention since mobile devices are widely embedded with many types of bio-sensors

to record the user’s physiological signals continuously [43].

There are many types of time series signals in the real world such as bio-signals,

and audio. Most of them have existed in a continuous form which is hard to pro-

cess. The way to enable computers to process signal data more efficiently is to

digitise the continuous signal. A weakness of digitisation is massive noise blended

in the digitized process such as quantization error, and instrument errors [35]. To

minimise the impact of errors or noise, signal processing techniques are commonly

used. Signal processing is a field that analyses, operates, and modifies the time

series information by using the theory in mathematics, information, and electronic

engineering [43]. The existed signal processing techniques can filter noise in the raw

signal at Time domain and Frequency domain [35]. When computers are utilised for

analysing the multimodal signals, the processed signals need to be summarised in a

joint representation (or feature vector) for the machine learning algorithms. Multi-

modal fusion is the field discussing the ways to integrate different modalities into a

joint representation. There are two commonly used schemes for integrating multi-

ple modalities: early fusion and late fusion [34, 45]. Early fusion concatenates the

unimodal information into a joint representation for model classification, while late

fusion processes the unimodal information individually, and combines the output

results from all submodels as a joint representation for the final decision process.

Machine Learning is the study of discovering information from data, which have

been applied to affective computing in the last two decades [33]. Machine learning

approaches can be subcategorised into Shallow machine learning (SML) algorithms

(e.g., Decision Tree, Support Vector Machine, and K-Nearest-Neighbour) and Deep

learning algorithms (e.g., Convolutional Neural Networks, and Recurrent Neural

Networks). SML algorithms are commonly used to affect recognition task due to

their high explainability. However, their performance depends on the feature engi-

neering step, which determines the upper bound of SML classification performance.

In contrast, deep learning algorithms can avoid feature engineering steps and typ-

ically have better performance than SML models in processing large datasets [25].

In the task of facial recognition, deep learning algorithms even achieve better per-

formance than human judgement [25]. However, many empirical works on affective

computing have mainly focused on SML methods due to model simplicity and ex-

plainability [43]. In contrast, deep learning models are known as a ”black box” to

analyse the signals because the models have a complex structure and low explain-

ability [7]. To improve the complex model’s explainability, Been [7] has summarised

three explainable phases, which are 1) Before building the models, 2) Building the

models, and 3) After building the models. Although these phases have been widely

2



applied to the linguistic and visual modality, there has been little application to the

study of physiological signals.

1.1 Motivation

This thesis is inspired by a state-of-the-art study in affective computing based on

physiological signals by [42]. This study collected multiple types of physiological

signals from 15 participants and conducted an experiment on distinguishing stress,

amusement, and neutral state recognition using SML models including Random

Forest, Adaboosting, and Linear Discriminant Analysis [42]. Although the models

achieved admirable results using carefully selected features, the classification per-

formance (accuracy and F1 score) can be potentially improved using other methods

such as deep learning models. However, the main disadvantage of deep learning is

the low explainability, which restricts applying deep learning to analyse physiologi-

cal signals in affect recognition. Therefore, this research is motivated to explore the

performance and explainability of a deep learning model for distinguishing stress,

amusement, and neutral state from multiple physiological signals.

1.2 Research Methodology

1.2.1 Research Objectives and Questions

This thesis investigates methods to improve the classification accuracy and explain-

ability in affect recognition tasks based on the multimodal-multisensory dataset pro-

vided by [42]. The study utilises this dataset and implements the same classification

task but focuses on deep learning models and their explainability. By exploiting the

empirical works in multimodal deep learning applications, this research builds sev-

eral models to facilitate both the classification task and the explainable tasks. The

research objectives and questions are detailed as follows:

Objective 1: Design several deep fusion networks for affect recognition based on

multimodal bio-signals, and select the best one as the proposed model.

RQ 1.1: How to build an accurate deep learning model on the multimodal-

multisensory dataset?

RQ 1.2: Which fusion scheme is better for affect recognition on multi-

modal bio-signals?

Objective 2: Provide experimental evidences to demonstrate that the proposed

model has better classification performance than the state of art.

3



RQ 2.1: To what extent, are the deep learning models better than the

state of the art for the same affect recognition task?

Objective 3: Provide the explainability analyses on the classification results of the

deep fusion network in three explainable phases.

RQ 3.1: What are the various bio-signal patterns unique to stress, amuse-

ment, and neutral states?

RQ 3.2: What is the importance of the chest and wrist wearable sensor

for affect recognition?

RQ 3.3: What is the importance of different types of signals for affect

recognition?

1.2.2 Research Framework

Figure 1.1 displays the operational framework for this research which is divided into

three stages. This research framework is based on and extends the data processing

chain proposed by [44].

Figure 1.1: Research Framework

Stage 1 is based on data collection and pre-processing. Since the dataset has

been collected from 15 subjects using chest and wrist sensors [42] in a less control

environment, this research starts with the data pre-processing step. There are many

techniques involved in pre-processing: outliers processing, signal denoising, data

normalisation, and segmentation. These are necessary to ensure the model can

work as expected on their dataset. The processed signals will be set as the input

for model training and explored by the Before building the model phase.
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Stage 2 is based on training models, classification, and evaluation. Since the pro-

cessed signal sampling rates are different, the multimodal fusion scheme is adopted

to generate joint representation for the final classifier. Although the benchmark has

achieved 80% classification accuracy, it can be potentially improved by using deep

learning algorithms. Therefore, each submodel will be built based on the deep learn-

ing architecture. The models’ hyper-parameters (e.g., layer selection, and batch size)

will be tuned to the optimal level, and these models are then evaluated by accuracy

and F1 score using Leave-One-Subject-Out cross-validation.

Stage 3 aims to understand the classification results and explainability. To

obtain interpretable results, three explainable phases will be deployed to the previous

two stages.

• Before building the model is conducted after data pre-processing to distinguish

the differences between three affective states in various bio-signals.

• Building the model is analysed based on the importance (i.e., stream weights,

Wi) at the sensors-level to understand which sensor contributes more to the

classification results.

• After building the model is explored based on the importance at the signal-level

to assess the contribution of each signal to the model performance.

1.2.3 Research Data

This research adopts naturalistic data named WESAD (Wearable Stress and Affect

Detection data set) for the experimental simulation retrieved from UCI machine

learning repository1. The dataset is provided by [42] and contains 15 subjects’

data. Each subject wore two wearable sensors: RespiBAN and Empatica E4. The

RespiBAN sensor is used to record the bio-signals elicited from the chest, and the

Empatica E4 sensor is used to capture the bio-signals on the participants’ non-

dominant wrist. The specific number of records for each subject is presented in

Appendix A.

These subjects experienced three main activities (baseline, amusement, and

stress) to induce the target emotion states. To avoid the effect of the activities’ or-

der, the data collection was conducted interchangeably (shown in figure 1.2). Both

orders start with the Baseline stage which is the control group. The red bar is a

checkpoint representing the end of the previous activity, and subjects needed to fill

out several types of questionnaires to obtain the ground truth. There was a Rest

stage following the Stress stage to ensure that the result in meditation was unbiased,

1UCI machine learning repository https://archive.ics.uci.edu/ml/datasets.php
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which had a duration of 10 minutes. Finally, meditation (Medi) was the stage to

relieve stress and excitement.

Figure 1.2: Ways to collect bio-signals

Image retrieved from [42]

1.2.4 Experimental Configuration

There are more than 20 millions data records in the WESAD dataset which are

processed on a computer with GPU (NVIDIA GeForce RTX 2080 Ti), CPU (Intel(R)

Core(TM) i7-9700), and RAM (32 GB). The models are implemented on Python

3.6. The main external packages are Biosppy, Keras, and Sklearn. These packages

are introduced as follows.

Biosppy —provides many types of biological signals analytical template including

BVP, ECG, Resp, and EDA. The different types of filters (i.e., FIR and Butterworth)

and bands (low-pass, high-pass, and band-pass) are encapsulated in this library.

Additionally, this library can also extract some basic signal features such as heart

rate, respiratory cycle.

Keras —is an open source neural network API written in Python, which is run-

ning on top of Tensorflow, CNTK, and Theano. It provides high-level neural network

design framework and fast implementation of experiments. Keras also has many ex-

tensible functions for the user to define such as the learning rate in optimizers.

Sklearn —is a free machine learning package in Python programming language.

It provides a range of classification, regression, and clustering algorithms such as

random forest, linear regression, and k-means. It is characterized by a streamlined,

uniform, and clean API, and it is easy to implement the machine learning algorithms.

Moreover, it also provides data pre-processing tools such as min-max normalization.

Other packages are applied to manipulate the data type and shape (e.g., Numpy,

Scipy, and Pandas), and to operate exploratory data analysis (e.g., Matplotlib).

1.3 Thesis Structure

This thesis is organised as follows:
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Chapter 1 gives an introduction to this research to explain the needs of deep

learning application in affective computing based on bio-signals and the needs of

explainability for deep learning algorithms.

Chapter 2 provides a brief review of the literature on human affective states,

multimodal fusion schemes, classification algorithms, and model explainability.

Chapter 3 describes the preprocessing methods on an original dataset including

removing irrelevant information, denoising raw signals, and data normalisation. The

input preparation is discussed in detail for future repeated experiments.

Chapter 4 provides the exploratory data analysis for each signal in stress,

amusement, and normal states. All the physiological signals have been analysed

by various statistical features to find differences.

Chapter 5 introduces multimodal deep fusion networks to affect recognition

based on bio-signals. It is designed to solve the modalities which are collected by

the different sampling rate and generate explainable results.

Chapter 6 presents the ways to conduct the experiment and the classification

results measured by accuracy and F1 score. The best model has a significant im-

provement in both measurements compared with the state of the art. Additionally,

the performance of early and late fusions are discussed in this chapter.

Chapter 7 explains the classified results at sensor- and signal-level. Three

explainable phases are adopted to analyse the importance of each modality.

Chapter 8 concludes the research, discusses the limitations, and provides rec-

ommendation for future works in the field of multimodal machine learning.
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Chapter 2

Literature Review

This chapter provides some backgrounds on human affective states, bio-signals, ma-

chine learning models, multimodal fusion schemes and explainability for modelling.

Section 2.1 introduces the definition of some terms in affective computing. Section

2.2 introduces the sensors that [42] used to collect bio-signals, and the characteristics

of bio-signals. Section 2.3 discusses the empirical works on shallow machine learning

and deep learning in the field of affective computing based on bio-signals. Section 2.4

presents the commonly used multimodal fusion schemes, and section 2.5 describes

the three explainable phases to interpret differences between various states. Finally,

evaluation metrics are presented in Section 2.6 for model performance measurement.

2.1 Background of Human Affective States

2.1.1 Emotion model

The affective state is an undirected feeling and usually lasts for a long time. It is de-

fined as a neurophysiological state which is consciously accessible as the nonreflective

and simple feeling composed of arousal and valence [40]. In contrast, emotions are

the directed and temporal feelings arising from a cognitive process by stimuli which

can also be considered as the indicator of affect [40]. Although the empirical works

provide many definitions of these two terms, it is still hard to distinguish them clearly

[43]. There is a way to quantify the human affect or emotion for computing which

is the circumplex model or emotion model. This model is frequently mentioned in

the articles on human affective recognition which is normally composed of categori-

cal models and dimensional models [43]. Categorical models include many discrete

categories to represent different emotions such as stress, amusement and anger [43].

As for dimensional models, they can map different emotions into multi-dimensional

space [43]. The valence-arousal model (shown in Figure 2.1) was proposed by [40] to

vectorise the affective representation in the vector space. The valence axis defines
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the polarity of experiencing emotion whether it is a positive or a negative feeling

[40]. The arousal axis indicates the level of excitement or calm [40].

Figure 2.1: Circumplex Model

Image retreved from [40]

2.1.2 Stress and Amusement

Stress and amusement are two types of human affective or mental states. Stress is

a term used to describe an experience under pressure [43]. It is often elicited by

physiological (external) or psychological (internal) stimuli [43]. From a scientific

view, stress is primarily viewed as a physiological response, which can be classified

as eustress (positive outcome) and distress (negative outcome) [30]. Eustress has

a positive (e.g. motivating) effect on an individual [43]. For example, when a

student has prepared well for an exam (the exam is considered as a stimulus), the

body can provide more energy as a reaction to the stimulus. This body reaction

could motivate students to look forward to solving the questions. In contrast, if the

students do not review the class content, they worry about failing the exam and feel

anxious to attend, which could be considered as distress (e.g. anxious and worried).

On the other hand, amusement is defined as the positive human affective state of

experiencing an entertaining event which has a similar arousal level as happy [43].

To measure whether a person is amused or stressed, researchers normally record

physiological responses such as sweating, faster breathing, and heart palpitations to

infer affective states [43]. The physiological information is recorded by sensors in

the form of bio-signals. The description of various bio-signals will be introduced in

section 2.2.1.

2.2 Background of Bio-signals

2.2.1 Sensors and Bio-ignals

This section provides an overview of sensory modalities to inference human affect.

The wearable sensor is a device to sample the continuous signals into a digital
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representation. In the process of conversion, the noise in the signal is unavoidable.

Therefore, using a high-quality sensor is necessary to reduce the percentage of noise

in the signal. Schmidt et al. [42] utilized RespiBAN Professional1 for collecting

chest signals and Empatica E4 2 for wrist signals. The details for these sensors are

as follows:

1) RespiBAN —It is a wearable chest sensor which is placed around the partic-

ipant chest shown as Figure 2.2. which can collect six various bio-signals in total,

and the sampling rate for these signals is at 700 HZ.

Figure 2.2: Placement of the RespiBAN on human torso.

Image retrieved from https://www.biosignalsplux.com/en/respiban-professional

2) Empatica E4 —It is a wearable wrist sensor that can collect the signals ACC

(32HZ), BVP (64HZ), and EDA and Temp (4HZ). Subjects wear the Empatica E4

on the wrist.

The physiological changes in bio-signals are quite related to the affective states

so most studies utilised bio-signals for affective recognition task [43]. The bio-signals

collected by above two sensors are introduced as follows:

Electrocardiogram (ECG) can illustrate the human heart activity, which is

considered as a reliable source for heart disease diagnosis. It can also analyse human

mental states like stress. The standard sensor for ECG signal has three electrodes

(shown in Figure 2.3) placed on the subject torso, and the minimum sampling rate

is 50 HZ [31].

Figure 2.3: ECG signal collection by RespiBAN

Image retrieved from https://www.biosignalsplux.com/en/

1https://www.biosignalsplux.com/en/respiban-professional
2https://www.empatica.com/research/e4/
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Electromyography (EMG) can present the activity cycle, amplitude and

other features of the muscle. Commonly, researchers deploy a pair of electrodes

to the skin on the muscle such as the shoulder (shown in Figure 2.4). When the

muscle cells are activated, the surface electrodes can record the muscle physiological

changes. The minimal sampling rate is 1000 HZ [43].

Figure 2.4: EMG signal collection by RespiBAN

Image retrieved from https://www.biosignalsplux.com/en/

Respiration (RESP) is utilized to record human inhalation and exhalation

activity. Commonly, a subject is equipped with a chest belt (shown in Figure 2.5)

measuring the respiration pattern directly. The minimal sample rate for RESP

sensor is 31 HZ [17].

Figure 2.5: RESP signal collection by RespiBAN

Image retrieved from https://www.biosignalsplux.com/en/

3-axis Accelerometer (ACC) can record human movement in 3-dimensional

space (X, Y, Z), which can measure physical activity, the range of motion, and

shocks. These activities are provided as context information to recognize affective

states. The intensity level of activities is estimated for stress detection instead of

classifying different activities [36].

Temperature (TEMP) records the suitable temperatures for the human body.

It is measured by the temperature-dependent resistors. Due to low-frequent changes

of the body temperature, 1 HZ sampling rate is sufficient [43].

Electrodermal activity (EDA) is commonly utilized to measure the activity

of electrical changes at the surface of the skin placed at the sweat gland such as
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wrist or palm (shown in Figure 2.6). The minimum sampling rate to acquired EDA

signal is at 31 HZ [17].

Figure 2.6: EDA signal collection by RespiBAN

Image retrieved from https://www.biosignalsplux.com/en/

Blood Volume Pulse (BVP) is widely used to measure the heart rate based

on the volume of blood and is embedded in many heart rate variability biofeedback

systems and apps [43].

2.3 Machine Learning in Affective Computing

2.3.1 Shallow Machine Learning Models

Classification task in affective computing can be performed by statistical test (e.g.,

ANOVA) or machine learning algorithms [43]. In comparison, machine learning

methods, especially for SML, are used more frequently than statistical test in bio-

signals to detect affective states [28, 42, 46]. For example, Lisetti and Nasoz [28]

used K-Nearest Neighbor, Linear Discriminant Analysis with ECG, EDA, and Temp

to detect six affective states; Katsis et al. [21] used Support Vector Machine with

EDA, ECG, EMG, Resp to detect stress, disappointment, and euphoria. The details

about SML algorithms on bio-signals for affective detection task are summarised in

Table 2.1.

Author Signals Classification Detected States Performance

Lisetti and Nasoz [28] ECG, EDA, Temp KNN, LDA, NN
Sadness, amusement, fear,
surprise, anger, frustration

Acc: 84%

Healey and Picard [17]
ACC, EDA,
HR, audio

LDF Level of Stress Acc: 97%

Katsis et al. [21]
ECG, EDA,
EMG, Resp

SVM, ANFIS
Stress, disappointment,

euphoria
Acc: 79%

Schmidt et al. [42]
ECG, EDA, Temp,

ACC, BVP, Resp,EMG
DT, RF, KNN,
LDA, Adaboost

Stress, amusement,
neutral

Acc: 80%
F1-score: 74%

Table 2.1: Summary of traditional machine learning on bio-signals.
Abbreviations: Classification Accuracy (ACC), Decision Tree (DF), Random Forest (RF), K Nearest Neighbour (KNN),
Linear Discriminant Analysis (LDA), NN (Neural Networks), Linear Discriminant Function (LDF), Support Vector Machine
(SVM), Adaptive Neuro-fuzzy Inference system (ANFIS), Logistic Regression (LR), Multilayer Perceptron (MLP), Naive
Bayes (NB), Bayesian Network (BN), Funtion Tree (FT)
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Nevertheless, SML heavily relies on feature extraction, which focuses on the

knowledge inspired features but ignores some other potential features [15, 32]. In

other words, it requires domain knowledge to construct a set of features as the input

for the model training but the domain knowledge might not cover all the significant

features. Some unexplored significant features can determine the upper bound of

the model performance. On the other hand, deep learning algorithms can avoid the

feature engineering step. Many works on deep learning based applications have also

obtained breakthrough progress such as computer vision, and speech recognition

[8, 12, 38]. However, deep learning algorithms are still not the main role in the

field of bio-signal based affect recognition [2]. To narrow the gap, this research will

adopt deep learning algorithms which are expected to obtain better classification

performance than the state of the art on the affect recognition task.

2.3.2 Deep Learning Models

Deep learning model consists of multiple layers and each layer can learn a vector

representation at a different complexity. The fundamental of deep learning is neural

networks [25]. Generally, standard neural networks (NN) are composed of many fully

connected layers (or dense layers) which connect all the neurons with the previous

layer and classify the results [25]. The fully connected layer is the basic layer in

the neural network which is used for classification. Before classifying results, fully

connected neural networks normally need convolutional layers to extract features

vector from data [25]. For time series data, recurrent layers are considered more

effective in processing the information than the convolutional layers [8]. The details

of convolutional and recurrent neural networks are introduced as follows:

Convolutional Neural Network (CNN) is composed of convolutional layers,

pooling layers, and fully connected layers [24]. Convolutional layers are designed to

extract features from signals and then feed the features to fully connected layers for

classification (shown in figure 2.7).

Figure 2.7: Convolutional neural networks for signal

Image retrieved from [4]

• Convolutional Layer: It is used to slide across each bio-signal with filters that

can extract features from inputs [4]. Features are continuously extracted and
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compressed, which means that the original features are concentrated with the

increasing number of convolutional layers. Therefore, high-level features are

generated in the last layer of convolution.

• Pooling Layer: It is used to perform subsampling on the input feature map

from the convolutional layer and simplifies the network computing complexity

to prevent overfitting and reduce computational intensity [4]. The pooling

layer is optional in the CNN network.

Recurrent Neural Network (RNN) is normally used to process and predict

sequential data-related tasks such as speech recognition, and machine translation

[48]. RNN has been proved to outperform CNN at processing sequential data be-

cause RNN considers sequential order and context [22]. A typical RNN (shown in

Figure 2.8) can deliver the processed information from the previous state to the

current state [10]. Based on the RNN structure, it could remember the history in-

formation, and use this information to determine the output. Additionally, there is

Figure 2.8: Recurrent Neural Network

Image Retrieved from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

an improved version of RNN called Long Short Term Memory (LSTM), which can

capture long-term dependencies better than ordinary RNN and solve the gradient

vanishing problem in RNN [10]. The memory in LSTM is called a cell. Internally,

the cell determines the reservation of information in memory. Then, the current

memory and the input from the previous state are combined. LSTM has been

proven to be more effective in capturing long-term dependencies in time series data

processing [10].

Hybrid Deep Neural Networks (HDNN) is a model framework that combines

various functional layers. The previous introduction summarised that CNN is usu-

ally used for image processing, and RNN is for time series processing. Based on

the respective advantages, Bashivan et al. [6] found that the hybrid deep learning

model achieved high accuracy in stress detection tasks.

Deep learning models have been proved to outperform SML methods in many

fields [6, 25], but there are few empirical works applying deep learning algorithms to

human mental state recognition based on bio-signals due to low explainability [43].

Moreover, most of these empirical study focused on individual signals (shown in
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Author Input Bio-signals Classification Methods

Acharya et al. [3] ECG 9-layer CNN to categorize ECG beats

Yildirim [48] ECG LSTM to classify ECG

Kiranyaz et al. [23] ECG CNN to classify ECG in real time

Su et al. [47] Blood Pressure LSTM to predict Blood Pressure

Table 2.2: Summary of deep learning models on bio-signal related task

table 2.2). Compared to multimodal bio-signals, the unimodal result is less reliable

[43]. Therefore, this research will explore the classification performance of deep

learning models using multimodal bio-signals while improving their explainability.

2.4 Multimodal Fusion Schemes

When the model input consists of the representations from multiple bio-signals at

different sampling rates, multimodal fusion schemes can be deployed in model struc-

ture to integrate these signals for classification [34]. Since the deep learning model

is normally stacked with multiple functional layers, it allows multiple bio-signals

fusion at any stage. There are three basic levels of multimodal fusion, namely data,

feature, and decision level. Figure 2.9 takes two modalities as an example for the

integration in the deep learning model, and the details of the basic fusion levels or

schemes are introduced in the following sections.

Figure 2.9: Basic Fusion Strategies for two modalities

2.4.1 Data Level

Fusion in data level is also called signal-level fusion which is similar to the multi-

variate tabular data. As shown in the left of Figure 2.9, multiple modalities are

concatenated at the first stage of the model diagram, and then the representation is

fed to the model’s first layer [33]. The main advantage of this scheme is that it has
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less information loss compared with the other two schemes. The main drawback is

that it is failed to integrate modalities with different input shapes.

2.4.2 Feature Level

Fusion in feature level is also called early fusion, multiple modalities are integrated

before being fed to the classifier [33]. As shown in the middle of Figure 2.9, two

modalities are fed into submodels (without classifiers) separately and then concate-

nate the feature vectors before the classifier. The main advantage of this scheme

is that it can compress the information which is more efficient for the streaming

process than the other schemes. The main drawback is that it simply concatenates

the features from multiple modalities which lose the original data structure.

2.4.3 Decision Level

Fusion in decision level is also called late fusion [33]. As shown in the right of Figure

2.9, multiple bio-signals are trained individually on each submodel (with a classifier),

and then the outputs from the separated classifiers are concatenated as the input for

the final stacking classifier. The learning process of late fusion is completed in two

steps: 1) training the submodel classifiers, and 2) training the final fused classifier.

The main advantage of this scheme is that it can lower the voting weight for the

weak classifier. The main drawback of this scheme is that the computational cost is

much higher than the other two schemes.

2.4.4 Hybrid Fusion Scheme

The hybrid fusion scheme combines the above three levels to the model pipeline,

which is expected to take advantages of each scheme for better classification perfor-

mance [33].

2.5 Explainability for Modelling Tasks

Deep learning has achieved leading performance in many classification tasks. How-

ever, a big issue in deep learning is that it is hard to explain the variables or features

which influence the results [14]. A model which is hard to explain influence or corre-

lation from various features is referred as a ”black-box” (e.g., deep learning models)

[13]. Explainability is also an important evaluation metric of machine learning al-

gorithms [1, 26]. Explainability is a model ability to interpret important features or

variables in machine learning tasks [1, 13, 14].
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Figure 2.10: Accuracy Vs. explainability

Image retrieved from [13]

Researchers use the word interpretability and explainability interchangeably.

Currently, model interpretability and accuracy are the criteria to measure the model

performance [13, 14, 19]. Nevertheless, they are hard to keep a balance (shown in

Figure 2.10). For example, the traditional ML method such as decision tree has

decent interpretability but generally low accuracy. On the other hand, deep learn-

ing models have high accuracy in general but low interpretability. The current

challenges are to obtain higher explainability. There are three explainable phases

summarised by [7] which are introduced in the following sections.

2.5.1 Before building the models

After filter the noise from the raw signals, these signals can be plotted to analyse

some statistical features such as mean, maximum and minimum values. This step is

named Exploratory data analysis which aims to explore the intuitive patterns, check

the research assumptions, and observe the correlation between variables and results

visually [7]. The exploratory data analysis is completed before feeding the data to

models.

2.5.2 Building the models

It includes three types of approaches to interpret models [7]. Rule-based approach

such as decision tree lists a set of rules to explain the decision process [13]. Feature-

based approach can assign weights to each feature to explain the important features

[7]. Case-based approach can interpret the results based on the similarity around

the analysing target [7]. In this research, the feature-based approach is utilised to

explain the importance of sensor-level.
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2.5.3 After building the models

There are three approaches in this method: Ablation experiment, Surrogated models,

and Investigation on hidden models [7, 27]. Ablation test or sensitivity analysis can

help to explain the important features [7]. The surrogate model is an approach to

find a high explainability model to mimic the ’black-box’ model training on the same

predictors and outputs, and then use the surrogate model to explain the ’black-box’

model [27]. Investigating hidden layers is the approach which usually applies to

images. Since CNN can extract features from the raw data, the high-level features

can be visualised in the last convolutional layers [7]. For after building the models

phase, the ablation experiment is utilised to explain the importance at signal-level.

Most empirical explainable studies deployed explainable methods on images and

text instead of time series data [7, 27]. Therefore, this research will explore the

explainability of affect recognition using deep learning models with time series data

collected as bio-signals.

2.6 Model Evaluation Metrics

After tuning the parameters for the proposed models, the next step is to check

the model performance for multi-classification tasks. There are two commonly used

methods to evaluate models in signal processing: classification accuracy and F1 score

[42].

Figure 2.11: Binary classification confusion matrix

Image retrieved from http://rasbt.github.io/mlxtend/user guide/evaluate/confusion matrix/

• Classification Accuracy is defined as the percentage of predicting the correct

results (shown in equation 2.1)which includes true positive and true negative

(shown in Figure 2.11). For the classification of the affective state, accuracy

is used to record the corrected prediction for stress, amusement, and neutral

states [42].
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Accuracy =
Number of correct predictions

Total number of predictions
(2.1)

• F1 score is considered as a robust metric for unbalanced dataset classification

(shown in equation 2.4), which is defined as the harmonic mean of recall (shown

in equation 2.2) and precision (shown in equation 2.3).

Recall =
Number of true predicted labels

Total number of labels
(2.2)

Precision =
Number of true predicted labels

Total number of predicted labels
(2.3)

F1score =
2 · Recall · Precision

Recall + Precision
(2.4)

Since the state of the art utilised these two metrics to evaluate the model per-

formance, this research will continue to use them to measure the proposed model.

2.7 Chapter Summary

This chapter has summarised the background of the research and discussed the

research gaps in the empirical works on affect recognition tasks. The literature

[42, 43] claim that the human physiological responses are related to the biological

signals. One of the ways to analyse the correlation is to use machine learning

algorithms. Basically, there are two subcategories in machine learning: Shallow

Machine Learning and Deep Learning. In terms of shallow machine learning, it

highly relies on the feature engineering step and requires domain knowledge to find

effective features. On the other hand, deep learning algorithms can avoid the step to

design the features and provide generally high classification performance on a large

dataset. However, deep learning is considered as the ’black-box’ model due to their

low explainability which is still a big challenge in this community. To improve the

explainability, there are three explainable phases proposed by previous works. The

details about implementing an experiment on affective detection and explainability

are demonstrated in the following chapters.
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Chapter 3

Data Pre-processing

Chapter 3 describes the data preprocessing works including outliers processing, sig-

nal denoising, data normalisation, and data segmentation. Data pre-processing is

considered as a crucial step in the experiment. First, the target records should be

selected since there are many irrelevant labels such as meditation. Subsequently,

the outliers and data noise should be processed to avoid their negative influences on

model performance. Then, since the values for each signal are different, the model

normalisation needs to be applied to transform the signals to the same scale which

enables effective model training. After processing the signals based on the above

steps, these signals are synchronised and segmented into many aggregated windows

as the model input. The details of these steps are introduced in this chapter.

3.1 Data Description

This research simulates the experiment on WESAD dataset (Wearable Stress and

Affect Detection dataset), which was collected by Schmidt et al. [42] for affective

recognition based on bio-signals. There are 15 subjects in WESAD dataset, and the

file size for each subject is presented in Appendix A. Additionally, Schmidt et al [42]

provided the note for the participant’s personal information (e.g., age, gender, and

height), study pre-requisites (e.g., Did you drink coffee today? Are you a smoker?),

and additional notes1. The participants’ age ranges from 24 to 35, and the average

age is 27.5. There are 12 males and 3 females. The chest and wrist signals were

stored in each subject’s file separately. In the participant file, it contains the chest

and wrist bio-signal, labels and participant’s information. The RespiBAN sensor

was worn on the subject’s torso collecting all signals in sampling rate 700 HZ. On

the other hand, the Empatica E4 sensor was worn on the participant’s non-dominant

wrist. The sampling rate for various bio-signals is different2. Then, the ground truth

1Record the Unexpected behaviour happened in experiment
2ACC in 32 HZ; BVP in 64 HZ; EDA and Temp in 4 HZ

20



was encoded as not defined/transient - 0, baseline - 1, stress - 2. amusement - 3,

meditation - 4, meaningless - 5/6/7. Baseline (or neutral), amusement, and stress

are extracted as the targets in this research. These three target labels were obtained

in the following conditions:

Baseline condition: Subjects were sitting or standing at a table and reading

provided magazines.

Amusement condition: Subjects watched a set of funny video clips. These

clips were selected from the corpus by [41].

Stress condition: Subjects were asked to give a public presentation or have a

mental arithmetic task.

These target labels are imbalanced in each subject’s data file. The proportion is

approximately 5 (Baseline): 3 (Amusement): 2 (Stress).

3.2 Outliers Processing

The information recorded in the additional notes presents that some subjects have

some special conditions which are different from the typical subjects [42]. For exam-

ple, subject 6 had completed many interviews before the stress test, and the sensors

of subject 2 and 17 were not fully attached. The details of this information were

attached in Appendix B. Considering these note information, this research does

not include them in the testing set, but in the training set. Therefore, the test set

consists of subject 4, 7, 9, 10, 11, 13, and 14.

3.3 Signal Denoisng

Normally, raw signals contain too much noise. Take 10 seconds Resp signal from a

subject as an example (shown in 3.1), it presents the noise around the line. There

are two commonly used ways to denoise signal: Time domain filtering and Frequency

domain filtering [35]. The time domain method utilises many types of sliding win-

dows to smooth the signal. On the other hand, the frequency domain method filters

the noise frequency components. This research focuses on the latter method to filter

the noise.

Figure 3.1: Unprocessed Resp signal from a subject

21



To filter the noise in the frequency domain, it is important to first observe the

frequency components. Forward Fourier Transformation is utilised to transform the

signal from time domain representation to frequency components [37] (See Equation

3.1). After transformation, the noise and signal are displayed in separated frequency

components (shown in Figure 3.2).

X(w) =
+∞∑
t=0

x(t)e−jwt (3.1)

Where x(t) is a function of time; X(w) is a function of frequency, and the function

values of X(w) are complex numbers.

Figure 3.2: Unprocessed Resp signal’s frequency domain from the subject

In the frequency domain, filters can suppress the unexpected signal frequency

components to pass through the system and then obtains the desired signal frequency

components [37]. The filter type can be classified based on the range of signal

frequency in the pass-band (e.g., low pass, and high pass); on the frequency response

(e.g., Butterworth filter). In this research, the following filters are used in frequency

domain denoising.

• Finite impulse response (FIR) —It is a filter that the impulse responses

have a finite duration. It can be designed to be a linear phase which is more

stable and easier to analyse compare with the infinite impulse response system.

• Butterworth: It is designed to flatten the frequency response in the pass-

band and obtain a smoothed frequency response.

• Lowpass: It allows the low frequency (lower than the cutoff frequency3) signal

to go through the filter but attenuate the high-frequency signal components.

• Highpass: It allows the high frequency (higher than the cutoff frequency)

signal to pass the filter but attenuate the low-frequency signal components.

• Bandpass: It allows the signal to pass the defined range, and attenuate the

frequency out of the pass-band4.

3Cutoff frequency is the threshold that the signal in the frequency domain beyond that level
will not be passed.

4pass band is the band allowing the frequency to pass in a certain band.
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The selection of filter, band type and cutoff frequency for various bio-signals

follows the empirical works [9, 42, 43].

• ECG Pre-processing: ECG is processed by the FIR filter and bandpass

with the passband from 3 HZ to 45 HZ [9].

• BVP Pre-processing: BVP is processed by the Butterworth filter and band-

pass with the passband from 1 HZ to 8 HZ to filter [9].

• RESP Pre-processing: Resp is processed by the Butterworth and bandpass

with the pass band from 0.1 HZ to 0.35 HZ [42].

• EDA Pre-processing: EDA is processed by the low-pass band to filter the

frequency components higher than 5 HZ. According to [43], physiological plau-

sible changes normally happen on the low-frequency domain in the EDA signal.

• ACC Pre-processing: ACC signal is processed by the Butterworth filter

with the low-pass band to filter the frequency higher than 5 HZ [43].

• EMG Pre-processing: EMG signal is processed by the Butterworth filter

and highpass band to filter the frequency lower than 100 HZ [9].

After filtering the noise in frequency domain for Resp signal, Inverse Fourier

Transformation is then used to transform the processed frequency components back

to the time domain representation [37] (See Equation 3.2). Finally, the smoothed

Resp signal is presented in Figure 3.3.

x(t) =
1

2π

+∞∑
w=0

X(w)ejwt (3.2)

Figure 3.3: Processed Resp signal from a subject

Based on the literature of bio-signal pre-processing, the processed and unpro-

cessed signals for all chest modalities in different affective states are presented in

Appendix C.
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3.4 Data Normalisation

Min-max normalisation was applied across different signals to build the same scale

for model training (shown in Equation 3.3). The values were converted to the range

from 0 to 1.

Min−Max scores =
x−min(x)

max(x)−min(x)
(3.3)

Where min(x) is the minimum value of a signal; max(x) is the maximum value

of the signal.

3.5 Data Segmentation

Some human activity patterns normally appear on the short time scales so a window

size of less than 5 seconds is commonly used [16, 18, 42]. In this research, the

window size is defined in 1 second with the window shift of 0.25 seconds. Each 1

second window is composed of all chest and wrist bio-signals (shown in Table 3.1).

The sampling rate means the number of points that are collected in 1 second. For

example, all chest-based bio-signals were sampled at 700 HZ so there are 700 points

with 8 signals (ACC contains 3 axes) in a window. As for wrist-based bio-signals,

the sampling rates are BVP 64 HZ, ACC 32 HZ, and EDA & Temp 4 HZ, which

shows that the number of points is different in 1 second window. Additionally, the

number of windows for each subject is attached in Appendix A

Signal Sampling Rate Number of Points (1 sec)

All Chest Signals 700 HZ 700

BVP 64 HZ 64

ACC 32 HZ 32

Temp and EDA 4 HZ 4

Table 3.1: Number of points in 60 seconds windows

3.6 Chapter Summary

Chapter 3 has described the data preprocessing methods in terms of extracting the

target records for the classification task, outliers processing to improve the model

generalisability, signal denoising to improve the data fidelity, data normalisation

to build the common scale for each signal, and data segmentation for model input

shape. After processing the signals, exploratory data analysis, which is the first

phase of explainability methods, will be discussed in the Chapter 4 to compare

some features from different modalities in the baseline, stress, and amusement state.
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Chapter 4

Exploratory Data Analysis

This Chapter introduces exploratory data analysis to compare the differences in

various affect states. In statistics, exploratory data analysis is a way to analyse the

dataset and conclude the characteristics by visualisation. The goals of exploratory

data analysis are to explore the intuitive patterns from the data, check the assump-

tions, determine the relationship between each signal, and estimate the relation

between explanatory and outcome variables. Normally, the exploratory analysis

does not include formal statistical testing and inference analysis. Thus, the signal

plots and specific feature values are presented for observing the patterns.

4.1 Explanatory Features

The explanatory features are used to represent the characteristics or patterns from

the processed data [42, 43]. The 10 features selected from [42] are adopted to analyse

the signals patterns in this research.

• Mean —The mean value is a measure of central tendency [39], which is equal

to the sum of all the values in the dataset divided by the number of values in

the dataset (shown in Equation 4.1).

Xsignal =
1

N

N∑
n=1

Xn (4.1)

• Median —The median is also the measure of central tendency which can be

found in the middle score for the dataset that has been arranged in order of

magnitude [39]. Compared with the mean measurement, the advantage of the

median is that it is influenced less by outliers in the data distribution.

• Standard deviation —The standard deviation is used to quantify the variation

of a set of data values [39]. The way to calculate the standard deviation is

shown in Equation 4.2.
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σsignal =

√∑N
n=1(Xn −Xsignal)2

N
(4.2)

• R Peak (RP) —The maximum amplitude in the R wave (shown in 4.1) is

called R peak amplitude or R peak [20].

• RR Interval (RRI) —The interval (shown in 4.1) derived from the two con-

secutive R wave [20].

Figure 4.1: R peaks and RR intervals in ECG

• Zero cross points —This feature can be used to analyse the duration of respi-

ratory [42].

• Signal power —Power is defined as the consumed energy in unit time. In the

discrete signal domain, the calculation is shown as 4.3.

Psignal = lim
N→∞

1

N

N∑
n=1

|x(n)|2 (4.3)

• Signal Correlation —Signal cosine similarity is normally used to measure the

correlation for homogeneous signals such as ACC X, Y, and Z or heterogeneous

signals such as ECG and Resp [43]. The equation 4.4 is used to calculate the

signal cosine correlation.

Cosine Similarity =
A ·B

||A|| · ||B||
=

∑n
i=1Ai ×Bi√∑n

i=1(Ai)2 ×
√∑n

i=1(Bi)2
(4.4)

• Slope and Intercept —These two features are obtained by fitting a linear re-

gression in a defined window. Slope and intercept are used to analyse the

trend and changes in the window over time [42].

In the following plots, subject 7 (S7), who has no additional note, is selected as

a representative for comparing the feature differences between baseline, stress, and
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amusement in different signals. The X-axis represents the index of the point in the

time series for each state, and the Y-axis represents the actual value for each signal

at a certain timestamp.

4.2 Chest signal analysis

4.2.1 ECG

ECG signal presents a periodical pattern (shown as Figure 4.2), which consists of

peaks and wave interval. Figure 4.2 shows that there are more R peaks in stress

than the other two states which can deduce the mean of RR interval is smaller than

the other two. Compared baseline with amusement state, there are more R peaks in

baseline state than amusement state. Therefore, the number of R peaks per minute

and mean of RR interval are selected to observe the ECG signal.

Figure 4.2: ECG signal Comparison

The number of R Peaks1 and mean of RR interval for the S7’s ECG signal

features are shown in Table 4.1, and the stress state presents the most number of R

peaks per minute.

4.2.2 Chest Temp

The body temperature is in a certain range for each state (as shown in Figure 4.3).

Figure 4.3 shows that the temperature in the stress state is slightly higher than the

1The R Peak is calculated by biospp ecg
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Affective State No. RPs (per mins) Mean of RRI

Baseline 71 595

Stress 84 500

Amusement 58 720

Table 4.1: ECG explanatory features for subject 7

other two states. Comparing baseline with amusement state, the body temperature

in the amusement could be higher than the baseline. Both baseline and amusement

states present a stable trend. The trend can be analysed by fitting a linear regression

on the Temp signal. Therefore, mean and linear regression parameters are selected

for observation.

Figure 4.3: Chest Temp signal Comparison

Affective State Mean of Temp Slope Intercept

Baseline 34.48 3.4× 10−7 34.34

Stress 34.91 5.8× 10−7 34.78

Amusement 34.44 −5.5× 10−8 34.44

Table 4.2: Temp explanatory features for subject 7

The mean of temperature2, slope and intercept 3 for S7’s Temp signal features are

shown in Table 4.2, which shows that the slope, intercept and mean of temperature

in stress are slightly higher than the other two states.

2The mean value is calculated by numpy.mean
3The slope and intercept are calculated by sklearn.linear model.LinearRegression
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4.2.3 Chest ACC

There are three lines in chest ACC signal plot representing the three dimensions

of movements (shown as Figure 4.4), which displays that these lines keep fluctuat-

ing in baseline and stress state but are stable in amusement state. Therefore, the

correlation for each axis in the different state is explored.

Figure 4.4: Chest ACC signal Comparison

Affective State Cosine XY Cosine XZ Cosine YZ

Baseline -0.91 -0.96 0.85

Stress -0.86 -0.98 0.84

Amusement -0.54 -0.99 0.52

Table 4.3: Chest ACC explanatory features for subject 7

The signal correlation4 for the S7’s ACC signal features are shown in Table 4.3,

which presents that X and Z axis are highly correlated in each state.

4The correlation is calculated by scipy.sptial.distance.cosine
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4.2.4 Resp

The respiratory presents a smoothing wave shape in a certain range for each state

(as shown in Figure 4.5), which displays that the duration in stress state is longer

than the other two states. In other words, subject 7 took breathing more frequent in

baseline and amusement states than the stress state. In terms of signal power, the

stress state might be higher than the other two. The number of zero cross points

per 1 minute and signal power are selected to observe.

Figure 4.5: Respiratory signal Comparison

Affective State No. Zero points (per mins) Power

Baseline 32 2.74× 106

Stress 24 6.18× 106

Amusement 33 7.56× 105

Table 4.4: Respiratory explanatory features for subject 7

The result (shown in Table 4.4) presents that The number of zero points5 (per

minutes) in stress state is lower than the other two. However, the Resp power in

stress state is much higher than the other two. It indicates that the subject takes

deep breathing in the stress state.

4.2.5 EMG

The EMG signal normally contains much noise which is hard to remove. Figure 4.6

presents that the amplitude fluctuated range in amusement state could be slightly

5The number of zero cross points is calculated by biosppy.resp
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smaller than the other two states. Additionally, the median metric can be used to

find the representative central value. Therefore, median and power are selected to

measure and describe the EMG signal.

Figure 4.6: EMG signal Comparison

Affective State Median Power

Baseline −1.69× 10−5 42.07

Stress −7.19× 10−6 27.50

Amusement 6.56× 10−5 4.94

Table 4.5: EMG explanatory features for subject 7

The mean and power values for the S7’s Resp signal features are shown in Table

4.5. The results present that the EMG’s power in amusement state is lower than

the other two, and the median feature in amusement state is the positive value.

4.2.6 Chest EDA

The EDA signal is a measure of sweat excreted by the human body, which is quite

related to human affective states [43]. Figure 4.7 presents a periodical falling pattern

of EDA for baseline and amusement state. However, the stress state displays a

different trend compared with the other two states. Additionally, the variability

of sampling points in the stress state seems more complex than the other two.

Therefore, mean, standard deviation, slope and intercept are selected to observe the

EDA signal.
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Figure 4.7: Chest EDA signal Comparison

Affective State Mean Std Slope intercept

Baseline 11.50 0.49 −1.66× 10−6 12.19

Stress 18.07 1.49 1.14× 10−5 15.51

Amusement 11.77 0.15 −1.72× 10−6 11.99

Table 4.6: EDA explanatory features for subject 7

The result (shown in Table 4.6) presents that the four explanatory features’

values of EDA signal in stress state are higher than the other two which indicates

that the skin electronic activity at the chest is more active in stress state than the

others.

4.3 Wrist signal analysis

The sampling rate for wrist signals is different from the chest signals. The chest

signal points are visualised in 7000 points (10 seconds) which can present a basic

view of signal changes. However, the sampling points for wrist signals might not

be enough to view the signal changes due to their lower sampling rate. Hence, the

following plots deploy around 700 sampling points for each signal.

4.3.1 Wrist ACC

Based on the nature of ACC, the physical activity in the wrist is more active than the

chest (shown as Figure 4.8). The wave for each axis changes frequently in baseline
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and stress state. However, these axes are quite stable in amusement state. Since

the temporal changes for each axis may affect other axes, the correlation metric is

also applied to wrist ACC.

Figure 4.8: Wrist ACC signal Comparison

Affective State Cosine XY Cosine XZ Cosine YZ

Baseline -0.88 0.79 -0.78

Stress -0.83 -0.56 0.28

Amusement -0.99 -0.99 -0.99

Table 4.7: Wrist ACC explanatory features for subject 7

The signal correlation for the subject 7’s wrist ACC signal features is shown in

Table 4.7, which presents that X, Y and Z axis are highly correlated in amusement

state. In the stress state, the cosine similarity between Y and X are lower than the

other two features.
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4.3.2 BVP

The BVP signal is related to the changes of the blood volume in vessels which

normally can be measured by the hand or wrist sensor [43]. Figure 4.9 presents

three different trend of lines. In terms of amusement state, the BVP might display

a periodical wave over time. However, the baseline and stress state do not have

clear patterns. The variability of BVP in the stress state seems more complex than

the baseline state. Additionally, the amplitude range for each state are also quite

different, which can be measured by power. Therefore, standard deviation and power

are proposed to observe the difference between each state.

Figure 4.9: BVP signal Comparison

Affective State Std Power

Baseline 17.32 2.28× 107

Stress 40.95 6.86× 107

Amusement 4.30 4.39× 105

Table 4.8: BVP explanatory features for subject 7

Table 4.8 presents that The standard deviation and power of BVP signal in stress

state are higher than the other two, which indicates that the heart activity of subject

7 is more intense.

4.3.3 Wrist EDA

Compared with the chest EDA plot (shown as Figure 4.7), wrist EDA signal presents

different patterns. The baseline and amusement state display a decreasing trend
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(shown as Figure 4.10). In contrast, the magnitude of wrist EDA signal seems to

keep increasing in the stress state. It indicates that the excreted sweat from the

human wrist in stress state is more than the other two which is corresponding to

the stress response [43]. The differences between baseline and amusement are the

magnitude and variability. Therefore, the same explanatory features used in chest

EDA are also applied to wrist EDA.

Figure 4.10: Wrist EDA signal Comparison

Affective State Mean Std Slope Intercept

Baseline 4.66 0.46 −2.88× 10−4 5.34

Stress 6.79 0.29 3.52× 10−4 6.34

Amusement 4.46 0.15 3.04× 10−4 4.69

Table 4.9: Wrist EDA explanatory features for subject 7

Table 4.9 presents that the values of mean, slope and intercept from wrist EDA

signal in stress state are higher than the other two. It also indicates that the skin

electronic activity at the wrist is more active in stress than the other two states.

4.3.4 Wrist Temp

Compared with the chest Temp plot (shown as Figure 4.3), the wrist Temp signal

presents a more clear trend for each state (shown as Figure 4.11). The temperature

in the baseline state keeps increasing generally. In terms of stress and amusement

state, their lines are decreasing over time. Therefore, the mean, slope, and intercept

are also used to describe wrist’s Temp.
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Figure 4.11: Wrist Temp signal Comparison

Affective State Mean of Temp Slope Intercept

Baseline 33.96 2.14× 10−4 33.45

Stress 32.88 −2.66× 10−4 33.22

Amusement 33.23 −2.89× 10−4 33.44

Table 4.10: Wrist Temp explanatory features for subject 7

The results (shown in Table 4.10) presents that the slope, intercept and mean

of temperature in stress are lower than the other two states. It indicates that the

subject 7’s wrist temperature is generally lower than the other two states and also

decreasing stably over time.

4.4 Chapter Summary

This chapter has explored the trend and patterns for each signal in various states

by exploratory data analysis. Some plots present the trend or periodical patterns

which can distinguish the differences between various states intuitively. However,

some signals such as EMG are hard to find patterns, which needs several explana-

tory features to quantify the differences. After analysing signals by their features

respectively, the differences between various states are discussed. Then, the next

chapter will introduce the model to classify these states.
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Chapter 5

Models for Affect Detection

Existing approaches to affect recognition are either statistical analysis (ANOVA) or

machine learning [43]. The focus in this research is to use machine learning model, in

particular deep learning models, to recognise neutral, stress and amusement state.

In this chapter, we will demonstrate the structure of the proposed deep learning

fusion model. In particular, the deep learning models consists of various layers

including Convolutional Layer, and Full Connected Layer. In Chapter 3, the data

segmentation is described using 1 second window with shift sliding 0.25 seconds. The

sampling rate for the chest sensor and wrist sensor is different which determines the

variety of model’s input shape. In terms of chest modalities, all the signals were

sampled at 700 HZ. These signals can be fused at the data level as a matrix 700 ×
8 for a window processed by a single stream deep learning model. In comparison,

the wrist’s signals need to be processed by a multi-stream deep learning model to

solve the problem of incompatible input shape.

5.1 Model for Chest Sensor

Since all signals collected from chest were sampled at 700 HZ, these signals can

be integrated at data level to feed a single stream deep learning model (shown as

Figure 5.1). Two 1D convolutional layers are adopted to extract features and then

the LSTM layer is added to process the time series information. Subsequently, a

1D convolutional layer is deployed again to refine the feature vector from LSTM

output. The high-level features are flattened into a vector which is then fed to fully

connected neural networks for classification. Since this is multi-classes classification

tasks, Softmax is selected as the activation function in the output layer.

Figure 5.1: Chest Model
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5.2 Model for Wrist Sensor

The wrist’s signals were sampled at different rates (BVP, 64 HZ; Wrist ACC, 32

HZ; Wrist EDA & Temp, 4 HZ) so the model’s input shape for these signals is

also different. Therefore, these signals need to be fed into different submodels and

then concatenate their feature vectors for the fully connected neural networks to

classify results. The proposed model structure is adopted early fusion scheme which

is shown in Figure 5.2, and the submodels’ description is introduced as follows:

Figure 5.2: Wrist Model

Wrist EDA and Temp submodel —The input shape for EDA and Temp are 4 ×
2, which does not have plenty of data points compared with other submodels in a

batch. To avoid overfitting, this submodel is designed in a shallow structure. After

tuning the hyper-parameters, the optimal architecture consists of one convolutional

layer and one dense layer as shown in Figure 5.2.

BVP submodel —The input shape for BVP is 64 × 1 which has more data

points in a batch than EDA and Temp. However, there is only one signal for

BVP submodel. After tuning the hyper-parameters, the optimal architecture for

BVP submodel consists of dense layers and batch normalisation layer alternately as

shown in Figure 5.2.

Wrist ACC submodel —The input shape for ACC is 32 × 3. The number of

sampling points for the ACC signal’s input is plentiful compared with the other two

parts, and there are three variables (X, Y, and Z movements) for every input matrix.

After tuning the hyper-parameters, the architecture for ACC submodel is similar to

the BVP submodel but there is one more 1D convolutional layer added to extract

the features again.

After flattening the feature vectors from each stream, these vectors are then

merged to be a super-vector which is fed to the fully connected neural networks for

classification.
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5.3 Main Fusion Models

After building the models for chest and wrist modalities, the next step is to ex-

plore the main fusion model combining these two streams. There are three basic

fusion levels which have been introduced in section 2.4 including data-, feature-,

and decision-levels. The chest signals are trained in data-level. The wrist signals

can be trained using early fusion (feature level) or late fusion (decision level). To

obtain an optimal main fusion model, early and late fusion are implemented in the

experiment.

5.3.1 Early Fusion Scheme

Early fusion merges separated channel’s features at the concatenated layer before

classification [45]. As shown in Figure 5.3, the extracted features from each channel

are concatenated horizontally into a joint representation. Then, the representation

is fed to the fully connected neural network for classification [11, 45]. The model is

compiled in the categorical cross-entropy loss function with Adam optimiser in the

batch size 32 with 5 epochs.

Figure 5.3: Early fusion Model

5.3.2 Late Fusion Scheme

Late fusion trains each submodel separately to obtain the classified results from the

submodels, and these classified results are integrated into a joint representation to

train the final classifier [45]. In contrast to early fusion, late fusion focuses on the

strength of individual model [11]. As shown in Figure 5.4, there are four submodels

with output dense layers which can generate the classified results. These results are

concatenated to a joint representation which is then fed into the final supervised

learner. The final supervised model can be any machine learning algorithms to

classify the results. In this research, two supervised learners are adopted: Random

Forest and Single-Layer Neural Network. All models in late fusion are compiled in
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the categorical cross-entropy loss function with Adam optimiser in the batch size 32

with 5 epochs.

Figure 5.4: Late fusion Model

5.4 Chapter Summary

Chapter 5 has introduced the architecture for chest, wrist and main fusion models.

The sampling rate for various signals in the chest channel is the same so a single

stream deep learning model is adopted to process the classification task. On the

other hand, the wrist signals have different sampling rate. In this research, early

fusion is adopted in wrist’s model structure for model training. Based on the main

fusion model architecture (shown as Figure 5.3 and 5.4), early fusion focuses on

feature-level integration which concatenates various features into one super-vector

for classification. Compared with late fusion, early fusion scheme only has one learn-

ing phase. Thus, it trains faster than late fusion[45]. On the other hand, late fusion

focuses on decision-level integration which integrates the classified results or proba-

bility from each stream and then classifies the affective states by the final supervised

classier [11]. One advantage is that the late fusion scheme is easy to interpret the

results from the final classifier [11]. Nevertheless, the main disadvantage of the late

fusion approach is that every submodel requires a training process which is quite

time-consuming [45]. Additionally, since each submodel is trained separately, late

fusion scheme might lose the correlation in mixed feature space [45]. In conclusion,

this chapter has demonstrated the model architectures and discussed the strength

and weakness of two fusion schemes in the main models. The classification results

are reported in Chapter 6 to compare the efficiency of the proposed models and

fusion strategies.
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Chapter 6

Results and Discussion

Shallow machine learning (SML) includes many algorithms (e.g., Logistic Regres-

sion, and Random Forest) to perform classification tasks. However, it heavily relies

on pre-defined features which determine the upper bound of classification perfor-

mance. The state of the art [42] utilised five SML models to detect the three mental

states based on the WESAD dataset. Although they achieved competent results,

the classification performance can be potentially improved by deep learning mod-

els. Several deep learning models have been introduced in Chapter 5, which are

expected to learn the features automatically and provide better classification per-

formance. The results by using All Chest, All Wrist and All Modalities are presented

in detail in this chapter.

6.1 Evaluation Protocol

The metrics to evaluate model performance are classification accuracy and weighted

F1 score. The weighted F1 score calculates the scores for each label, and then weight

averages the scores to obtain the final score. The weighted F1score is commonly used

for label imbalance datasets. Schmidt et al. [42] utilised the Leave-One-Subject-

Out (LOSO) cross-validation as the strategy to evaluate their model’s classification

accuracy and weighted F1 score. This research continues using the same strategy to

measure the classification performance of multimodal deep fusion network models.

Section 3.2 introduced that the WESAD dataset contains 15 subjects in total.

7 subjects of them are set in the testing group and the other 8 subjects are in the

training group. In the test group, one subject is selected as a test set, and then the

remaining subjects in the test group are integrated with the training group to be

a training set. Then, the training set is used to train the model, and the test set

is used to evaluate model performance. In conclusion, the diagram of 1 fold LOSO

cross-validation is shown in Figure 6.1.

Since there are 7 subjects in the testing group, the model is evaluated by 7 folds
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Figure 6.1: One fold LOSO evaluation

LOSO cross-validation for accuracy and weighted f-score. This research defines the 7

folds LOSO cross-validation as a round. To provide less biased results, this research

implement 5 rounds (1 trial) 7 folds LOSO cross-validations as shown in Figure 6.2.

Figure 6.2: Experiment Protocol

6.2 Benchmark Results

Schmidt et al. [42] adopted five SML models: Decision Tree (DT), Random For-

est (RF), AdaBoosting (AB), Linear Discriminant Analysis (LDA), and K-Nearest-

Neighbour (KNN) to detect the affective states. They utilised 60 seconds as a

window with 0.25 seconds as the shift sliding, and the features are extracted from

the 60 seconds window to fed the models. Additionally, they defined several terms

for evaluation, and this research select All Chest1, All Wrist2, and All Modalities3

for comparison. The results for their work are listed as follows:

Benchmark Classification Accuracy from [42] is shown in Figure 6.3 (left).

They obtained 0.77 in All Chest by LDA model, 0.75 in All Wrist by AB model,

and 0.80 in All Modalities by AB model.

1contains ECG, EDA, EMG, RESP, TEMP, and ACC
2contains BVP, ACC, EDA, and TEMP
3contains all chest and wrist signals
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Benchmark Weighted F1 score from [42] is shown in Figure 6.3 (right). They

obtained 0.73 in All Chest by LDA model, 0.64 in All Wrist by AB model, and 0.72

in All Modalities by LDA model.

Figure 6.3: Three-class classification accuracy results (left) and weighted F1 score (right)

6.3 Deep Fusion Network Results

In contrast, this research proposes four deep learning models: Single stream model

for All Chest, Early Fusion (EF) for All Modalities, Early Fusion for All Wrist, Late

Fusion with Random Forest (LF-RF) for All Modalities, and Late Fusion with Neural

Network (LF-NN) for All Modalities. All deep learning models process the data in

1 second window size with 0.25 seconds sliding stride. The results for classification

accuracy and F1 score are listed as follows:

Classification Accuracy for deep learning models is shown in Figure 6.4 (left).

It presents 0.83 in All Chest by Single stream model, 0.85 in All Modalities by LF-

RF, and 0.83 in in All Modalities by LF-NN.

Weighted F1 score for deep learning models is shown in Figure 6.4 (right). It

presents 0.81 in All Chest by Single stream model, 0.86 in All Modalities by LF-RF,

and 0.82 in All Modalities by LF-NN.

Figure 6.4: Results of Deep Learning model in classification accuracy (left) and weighted F1 score (right)
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6.4 Discussion

There are five models proposed in this research, and their performance is demon-

strated in this chapter. The single stream deep learning model (or submodel 1) is

trained by 8 layers deep learning architectures based on all chest bio-signals. As

shown in Table 6.1, there are 3 convolutional layers to extract the feature vectors

from the chest modalities, and 1 LSTM layer to process the time series information.

Deep learning models avoid the step of feature engineering, which can be conducted

by the convolutional layer automatically. The 4th convolutional layer can extract

high-level features to feed the fully connected neural networks for classification so

the single stream deep learning model has achieved better classification performance

than the state of the art.

Layer Chest Sensor Wrist Sensor
submodel 1 submodel 2 submodel 3 submodel 4

1 Conv1D Conv1D Dense Dense
2 Conv1D Dense BN BN
3 LSTM Flatten Dense Dense
4 Conv1D Dense BN BN
5 Flatten - Flatten Conv1D
6 Dense - Dense Flatten
7 Dense - - Dense
8 Dense - - -

Table 6.1: Submodels of Late Fusion Models
Abbreviation: BN (Batch Normalization), Conv1D (One dimensional convolutional layer), LSTM(Long short term
memory).

In terms of fusion models on all modalities, two late fusion models (LF-NN

and LF-RF) have higher classification accuracy than the state of the art in two

measurements. These two late fusion models have the same submodel architecture

as shown in Table 6.1, but are different at the final supervised classifier. The result

presents that the model performance of LF-RF is better than LF-NN. Thus, LF-RF

is mainly discussed in this section. Compared with the state of the art [42], the

performance of LF-RF and submodel 1 is shown in Table 6.2.

Method Modalities Accuracy Weighted F1 score

Adaboosting [42] All Chest 0.80 0.73
LDA [42] All Chest 0.79 0.74

LF-RF submodel 1 All Chest 0.83 0.81

Adaboosting [42] All Modalities 0.80 0.69
LDA [42] All Modalities 0.76 0.72

LF-RF All Modalities 0.85 0.86

Table 6.2: Classification Performance Comparison

As for early fusion, it has faster training stage than the late fusion and can

capture the correlation from various modalities which is applicable to deep learning

training. However, the performance of early fusion model in All Wrist and All

Modalities is lower than the benchmark. A reason for this result is because the
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sampling rates of various modalities are quite different, which might not provide

expected results in early fusion [34]. The late fusion focuses more on the individual

model’s strength which can be applied to broader learning tasks since it does not

suffer the problems from early fusion [34]. Thus, the late fusion scheme performs

better than early fusion on all modalities.

6.5 Chapter Summary

This chapter has introduced the evaluation protocol to obtain less biased results

in classification accuracy and F1 score. The results are compared between shallow

machine learning and deep learning models, and the proposed deep learning models

have achieved better classification performance on All Chest and All Modalities

than the state of the art. The multimodal fusion schemes are also discussed in this

Chapter, and the late fusion scheme has better performance on research task than

the early fusion. As described in Section 2.5, the main challenge is to both improve

the classification accuracy and explainability. The next chapter will introduce the

explainability in the phase of Building the models, and After building the models.
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Chapter 7

Explainability in Affective

Recognition

Explainability is considered as a new challenge when deep learning models become

popular since many research fields need not only effective models and but also the

reasons to explain the classified results [7]. However, the general high accuracy mod-

els normally have low explainability and vice versa. To improve the explainability of

high-performance models, three explainable phases are introduced by [7] which are

Before building the models, Building the models, and After building the models to find

the explanation for model classification results. Since the Late Fusion with Random

Forest (LF-RF) model achieves the highest classification accuracy and weighted F1

score, this Chapter will discuss the explainable approaches for this model in details.

7.1 Before building the models

Before building the models, the signals’ patterns and differences can be identified

by exploratory data analysis. The details have been discussed in Chapter 4. All

signals from chest and wrist sensors were visualised in a certain period of time, and

the intuitive patterns and trends for each state have been illustrated. Additionally,

the values of explanatory metrics have also been summarised as tables to explain

the differences in various states. Both plots and explanatory variables’ results have

explained the differences for a subject’s physiological responses in various affective

states.

7.2 Building the models

In Building the Models phase, the sensor-level and wrist signal-level importance are

discussed. The model architecture for each stream has been introduced in Chapter
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5. This Chapter mainly focuses on the explainability in Late Fusion with Random

Forest (LF-RF) model and model structure is presented in Figure 7.1. There are

four sub-models in LF-RF model. Each sub-model firstly generate the classified

scores, and then these scores are set as the input for training the Random Forest

model. The weights (i.e., Wi) for each stream classified results are generated after

the training process. These weight scores can explain the sensor’s or submodel’s

importance of the classification results.

Figure 7.1: Late Fusion with Random Forest (LF-RF) Model

Submodel Chest Modalities BVP ACC (Wrist) EDA and Temp (Wrist)

Weight Scores 0.595 0.122 0.281 0.001

Table 7.1: Sensor-level Importance

As shown in Table 7.1, the chest and wrist models provide the around 60% and

40% contribution respectively to the correct classification results, which indicates

that the modalities and submodel from RespiBAN sensor have higher importance

than the Empatica E4 sensor. In the wrist model, the BVP stream takes around

12.2% and the ACC provides 28.1% contribution. However, the wrist EDA and

Temp stream contribute 0.1% for the classification which has trivial influences on

classification. Since there only 4 data points for EDA or Temp in a window, the

data distribution are quite sparse, which leads to the low weight score. In conclu-

sion, the weight scores for the important signals from wrist modalities have been

displayed. However, the signal importance from chest modalities is still unknown.

To understand the signal-level importance of chest modalities, the next section will

introduce the After Building the Model approach for each chest signal.

7.3 After building the models

The ablation experiment is an approach in After Building the Models phase. The

signal-level importance is conducted by the ablation experiment by removing a fea-

ture and assessing the effect with the remaining features on the model performance,
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which can explore how the removal feature affects the model performance [29]. The

ablation experiment is an approach from After building the models phase, and the

algorithm is shown in Algorithm 1.

Algorithm 1 Ablation Experiment
Input: A set of Bio-signals
Output: A list of the accuracy scores after feature ablation

1: ablist = an empty list
2: n = number of signals
3: while n > 0 do
4: abFeat = the type of signal at position n
5: remove the abFeat from the set of bio-signals
6: p = classification results from training the remaining signals
7: save the tuple (name, p) to the ablist
8: n = n− 1
9: put the abFeat signal back to the set of bio-signal

10: return ablist

After removing a certain type of signal out of the full modality set, the model

training is also examined five rounds for each ablation to obtain less biased results

that are displayed in Table 7.2.

Removed signal Accuracy Weighted F1 score

ACC 0.71 0.68

ECG 0.78 0.76

EMG 0.81 0.78

EDA 0.65 0.63

Temp 0.73 0.70

Resp 0.82 0.79

All Chest Signals 0.83 0.81

Table 7.2: Chest Signal Ablation Experiment

After removing the EDA signal, the classification accuracy and weighted F1 score

present significant decrease (accuracy from 0.83 to 0.65, and the weighted F1 score

from 0.81 to 0.63). Additionally, removing ACC or Temp also has around 10%

deduction. In terms of Resp and EMG signal, the model does not have significant

decreasing. Considering EMG, Resp and ACC might be correlated to each other

due to human respiratory activity, an additional experiment is conducted which is

the same as the ablation experiment but removing a signal combination. The result

is shown in Table 7.3, which presents that after removing EMG and Resp, there is

still no significant decreasing. Nevertheless, when EMG, Resp, and ACC signals are

removed, the classification accuracy and F1 score are closed to the result of only

removing the ACC signal.
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Removed signal combination Classification Accuracy Weighted F1 score

EMG and Resp 0.81 0.77

EMG and ACC 0.72 0.68

Resp and ACC 0.72 0.69

EMG, Resp, and ACC 0.72 0.69

All Chest Signals 0.83 0.81

Table 7.3: Addtional experiments on removing set of signals

7.4 Chapter Summary

In Chapter 4, the Before Building the Models phase has been discussed by ex-

ploratory data analysis to compare the difference between various affective state. In

this Chapter, the phase of Building the Models and After Building the Models are

mainly discussed. Since the random forest is adopted as the final supervised model

in the LF-RF model, the weight scores for various submodels can be calculated, and

the calculated results present that the chest stream takes around 60% contribution

for classification, and the other 40% is from wrist model. The signal-level impor-

tance for wrist modalities can also be explained due to the LF-RF structure, and

the main contributions from wrist’s streams are BVP (12.2%) and ACC (28.1%).

On the other hand, the sampling rate for all chest modalities are 700 HZ and these

modalities are trained in one stream deep learning model. To explain the signal-

level importance for chest modalities, the ablation experiment is applied to assess

each signal’s influence. The result indicates that removing EDA, ACC, Temp sig-

nals caused a significant decrease in classification accuracy and weighted F1 score.

Moreover, the additional experiments are also implemented to check the importance

for EMG and Resp signals which do not display obvious decreasing.
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Chapter 8

Conclusion

This research explores a number of problems in affect recognition by using deep

learning models on multimodal bio-signals data, which includes the design of model’s

architecture, selection of multimodal fusion schemes, and explainability of deep

learning models. The proposed models have obtained higher classification accu-

racy and F1 score than the state of the art [42] in All Chest and All Modalities

experiments. In all modalities analysis, the Late Fusion with Random Forest (LF-

RF) model has obtained the best results than other models such as early fusion

model in this research. However, high classification performance models normally

have low explainability, which has discouraged researchers to use deep learning to

affect recognition. Due to the structure of LF-RF, this model can provide the stream

weight scores for the sensor-level importance and the wrist signal-level importance.

In terms of chest stream, all bio-signals are trained in an 8 layers deep learning

model. To explain the chest signal-level importance, the ablation experiment is con-

ducted. Therefore, the achievements of this research are not only to provide a more

accurate model than the state of art, but also to improve the explainability for the

classified results.

8.1 Contributions

The literature review in this thesis provides related backgrounds and works to give

an overview of the field research progress. The main contributions of this research

are as follows:

8.1.1 Novel model in affective detection

Chapter 5 describes a novel application of deep learning algorithms to bio-signals for

three affective states detection. For these models, convolution, LSTM, and dense

layers have been adopted to obtain competent results. Experiments demonstrate
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that the deep learning model captures a high-level correlation underlying the data,

and achieves higher classification accuracy and F1 score than the state of the art

from [42].

8.1.2 Multimodal-multisensory fusion schemes

The application of multimodal fusion to process multimodal multi-sensor bio-signals

are described in chapter 5. The early fusion focuses on the feature-level which

presents various features concatenated into one super-vector for classification. Com-

pared with late fusion, the early fusion scheme is only required for one learning phase

which trains faster than late fusion. However, the classification accuracy and F1

score are lower than late fusion model in this research. On the other hand, late fu-

sion can analyse and interpret the results after training. Moreover, its classification

performance is better than the early fusion scheme. Nevertheless, one disadvantage

of the late fusion approach is that every stream requires a standalone supervised

learning training process which is quite time-consuming.

8.1.3 Explainability for deep learning in affect detection

The explainability or interpretability for this research has been demonstrated in

three different methods Before building the models, Building the models, and After

building the models. Chapter 4 has demonstrated the Before building the models

analysis for every signal in different affective states. This method visualises the

general patterns and trends intuitively from the data to find the differences. In terms

of the Building the models method, Chapter 7 presents the weights for the classified

results from every stream sub-model. It shows that the chest sensor contributes

more to the correct classified results than the wrist sensor. Chapter 7 describes the

ablation experiment for analysing chest modalities to demonstrate the method of

After building the models, and the results show that the EDA, ACC, Temp, and

ECG signals have significant importance.

8.1.4 Publication Plan

The works of multimodal deep fusion network architecture, model performance, and

sensor- and signal-level explainability have been submitted to the ACM International

Conference on Information and Knowledge Management (CIKM), 2019.

The three phases’ explainable results will be extended for submission to the

journal of IEEE Transactions on Affective Computing.
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8.2 Limitations

The limitations of this research are listed as follows:

1. Instrument Bias —There are many subjects’ data collected in unexpected

conditions (shown in Appendix B) such as not fully attached the sensor.

2. Selection Bias —All subject are from the European group, and the range of

age is from 25-35 years. The training models are limited since the biological

signals could vary due to ethnic and age differences.

3. Inadequate sample size —The sample size is 15 subjects, which might not be

enough for early fusion to achieve better classification performance.

4. Personalisation —Since the main fusion model is trained to detect the general

pattern, the classification accuracy might be lower for some special cases.

The first three limitations are from the WESAD dataset [42], which cannot be

controlled in this research. The fourth limitation is about personalisation which will

be explored in future works.

8.3 Future Work

8.3.1 Transfer Learning

The fusion model has been trained on the chest and wrist bio-signals to detect three

affective states. When additional types of affects are required to be recognised, the

straightforward way is to collect the bio-signals again and label the other affects

which are quite expensive and time-consuming. Transfer learning is an emerging

field to enable the model adapting to the new cases. After training a model on a

task, the model can be transferred to the other similar datasets to learn the patterns,

which can reduce the workload in data collection and model training.

8.3.2 Other Multimodal Fusion Schemes

This research has only investigated the multimodal fusion schemes on the early

fusion and late fusion. However, it is possible to obtain better classification results

by optimising the weighted loss function. The loss function can be concatenated

in a weighted way to minimise the training loss together from all the submodel.

Additionally, the early fusion scheme can be implemented to concatenate the feature

vectors with the weights from submodels, which is also possible to improve the

model’s classification performance.

52



References

[1] Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y., and Kankanhalli,

M. Trends and Trajectories for Explainable, Accountable and Intelligible Sys-

tems: An HCI Research Agenda. In Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems - CHI ’18 (Montreal QC, Canada,

2018), ACM Press, pp. 1–18.

[2] Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H.,

Adam, M., and Tan, R. S. Deep convolutional neural network for the

automated diagnosis of congestive heart failure using ECG signals. Applied

Intelligence 49, 1 (Jan. 2019), 16–27.

[3] Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M.,

Gertych, A., and Tan, R. S. A deep convolutional neural network model

to classify heartbeats. Computers in Biology and Medicine 89 (Oct. 2017),

389–396.

[4] Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H.

Deep convolutional neural network for the automated detection and diagnosis

of seizure using EEG signals. Computers in Biology and Medicine 100 (Sept.

2018), 270–278.
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A Number of records in Chest and Wrist

Subjects Chest points
Wrist points

(ACC)
Wrist points

(BVP)
Wrist points

(EDA AND TEMP)
Windows

S2 1484700 67776 135552 8472 8463

S3 1508500 68864 137728 8608 8599

S4 1515501 69184 138368 8648 8639

S5 1551900 70848 141696 8856 8847

S6 1541400 70368 140736 8796 8787

S7 1538601 70240 140480 8780 8771

S8 1546299 70592 141184 8824 8815

S9 1537900 70208 140416 8776 8767

S10 1593900 72768 145536 9096 9087

S11 1559600 71200 142400 8900 8891

S13 1558201 71136 142272 8892 8883

S14 1558901 71168 142336 8896 8887

S15 1563100 71360 142720 8920 8911

S16 1554701 70976 141952 8872 8863

S17 1593200 72736 145472 9092 9083

In Total 23206404 1059424 2118848 132428 132293

Table A.1: Number of data Points
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B Abnormal Subjects

Subject 2 Additional Notes

The RespiBAN temperature sensor was not fully attached throughout the entire

duration of the study protocol.

Subject 3 Additional Notes

During the baseline condition, the subject was sitting in a sunny workplace.

Subject provided a valence label of 7 after the stress condition, claiming that he was

looking forward to the next condition and was therefore cheerful.

Subject 5 Additional Notes

Subject might have fallen asleep during the first meditation.

Subject 6 Additional Notes

Subject claimed that he had a stressfull week and hence the study was rather relax-

ing for him.

Stress condition / TSST interview part: subject was not really stressed as he en-

countered many interviews in the weeks before.

Subject 8 Additional Notes

Subject had already a rather stressful day, prior to the study.

Subject felt rather cold in the room where the stress condition was carried out.

Subject 15 Additional Notes

Subject didn’t really believe the cover story of the stress condition (TSST).

Subject 16 Additional Notes

Subject felt rather cold in the room where the stress condition was carried out.

Subject 17 Additional Notes

The RespiBAN temperature sensor was not fully attached throughout the entire

duration of the study protocol.
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C Raw and processed signals for each state

Figure A.1: Subject 7 baseline state without filtering
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Figure A.2: Subject 7 baseline state with filtering
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Figure A.3: Subject 7 stress state without filtering
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Figure A.4: Subject 7 stress state with filtering
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Figure A.5: Subject 7 amusement state without filtering
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Figure A.6: Subject 7 amusement state with filtering

65


