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Abstract

Graphs provide a useful data structure to represent sets of relationships among
objects. Since drawings of graphs help humans to comprehend graphs better,
one common approach to studying graphs is to construct drawings of them on
surfaces. With this motivation, we study several types of drawings of graphs.

A drawing D of a graph is planar if no two edges in D cross each other.
A graph is planar if it has a planar drawing. A graph G is a non-separating
planar graph if it has a planar drawing D such that for any cycle C in D, any
two vertices not in C are on the same side of C in D.

Non-separating planar graphs are closed under taking minors and are a
subclass of planar graphs and a superclass of outerplanar graphs.

In this thesis, we first show that a graph is a non-separating planar graph
if and only if it does not contain K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a minor.
Furthermore, we provide a structural characterisation of this class of graphs.
More specifically, we show that any maximal non-separating planar graph is
either an outerplanar graph or a subgraph of a wheel or it can be obtained by
subdividing some of the side-edges of the skeleton of a triangular prism (two
disjoint triangles linked by a perfect matching).

Moreover, to demonstrate an application of non-separating planar graphs,
we use our structural characterisation of non-separating planar graphs to prove
that, for all n ≥ 8, there are maximal linkless graphs on n vertices with 3n−3
edges. This provides a partial answer to a question that was asked by Horst
Sachs about the number of edges of linkless graphs.

The Hanani-Tutte Theorem states that a graph is planar if it has a drawing
D such that any two edges in D cross an even number of times. We prove
a Hanani-Tutte type theorem for non-separating planar graphs and then use
this theorem to prove a stronger version of the Hanani-Tutte Theorem, namely
that a graph is planar if it has a drawing in which any two disjoint edges cross
an even number of times or it has a chordless cycle that enables a suitable
decomposition of the graph into smaller non-separating planar graphs.

A drawing of a graph is a superthrackle if any two edges in the drawing
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cross exactly once. A graph that has a superthrackle drawing is superthrack-
lable. A drawing of a graph on a disc is an outer-drawing if all the vertices
of the drawing are on the boundary of the disc. An outer-drawing that is
a superthrackle is an outersuperthrackle and a graph that has an outersu-
perthrackle drawing is an outer-superthracklable graph.

We characterise outersuperthrackles. Then we define variations of outer-
superthracklable graphs such as generalised outersuperthracklables and weak
outersuperthracklables and show that they are all equivalent to the class of
outersuperthracklable graphs.

Next we show that the classes of superthracklable graphs and generalised
superthracklable graphs are the same for all surfaces.

Lastly, we compare the Hanani-Tutte Theorem with our previous results
in this paper and show that for any surface Σ, there is a relation between the
class of graphs that are not embeddable on Σ and the class of graphs that
are not superthracklable with respect to Σ. More specifically, we show that,
for any forbidden minor G for embeddability of graphs on a surface Σ, there
are two infinite families of graphs that we can construct from G that are not
superthracklable with respect to Σ.
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1
Introduction

In this chapter we give a brief introduction to the field and a summary
of our research. We define the scope of our research and provide context
for our results about (1) local manipulations of embeddings of graphs, (2)
characterisation of non-separating planar graphs, (3) a stronger version
of the Hanani-Tutte Theorem, (4) outerthrackles and its variations and
(5) the relation between the Hanani-Tutte Theorem and thrackles.

Graphs are used as conceptual tools to model objects and relationships
between them. Applications of such models are ubiquitous through computer
science, engineering, mathematics, chemistry, economics, biology and even
social sciences as many practical systems can be modelled by graphs. For
example, in computer science, graphs are used to represent computer networks
[9], databases [119] and information systems [116]. In chemistry, they are
used to model molecular structures [71, 122]. In biology, graphs represent
evolutionary trees [39, 68, 95] and gene regulatory networks [82, 84] and in
sociology graphs are used to model human social networks [81].

When trying to study and understand graphs, it is often useful to construct
easy-to-read drawings of them. A drawing drawing of a

graph
of a graph on a plane is a diagram

consisting of a set of points representing vertices of the graph and a set of
lines or curves between the points (and internally disjoint from the points)
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v1

v2

v3v4

v1 v2

v3v4

Fig. 1.1 Two drawings of the graph K4

representing edges of the graph (see Figure 1.1). 1

A graph has infinitely many drawings. To obtain a useful drawing of a
graph for a specific application, we need to consider various criteria. For ex-
ample, crossings or bends on edges may confuse whoever is reading a drawing.
Therefore it is desirable to reduce the number of edge crossings or bends in a
drawing [101, 102, 104, 131].

Constructing good drawings of graphs is so important that the field of
graph drawing graph drawing, as an area of mathematics and computer science, has devel-
oped and is the focus of the annual Graph Drawing Symposium. It combines
methods from graph theory, geometry and information visualisation to devise
graph drawing algorithms [8, 93].

Before we present our results, we briefly introduce three classes of graphs
that are very closely related to our results: planar graphs, linkless graphs and
thracklable graphs.

1.1 Planar Graphs
A planar drawing planar drawingis a drawing in which no two edges cross. Planar graphs are
the graphs that have a planar drawing planar graph.

Planar graphs have a long history in graph theory [92]. Also, experiments
of Purchase et al. [102, 104, 131] have shown that readability of a drawing
is negatively correlated with the number of edge crossings. These two facts
among others have motivated extensive investigations of drawings of graphs
with no crossings (see [8, 71, 93, 116]).

An edge e = (u, v) in a graph G is subdivided subdivisionby replacing it with two
edges, (u, w) and (w, v), where w is not a vertex of G. A subdivision of a
graph G is a graph that can be obtained by subdividing an edge of the graph
G or a subdivision of G. Any graph is a subdivision of itself.

In 1930, Kuratowski characterised planar graphs in terms of two forbidden

1For formal definitions of the terms used in this thesis refer to Chapter 2.
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(a) K5 (b) K3,3

Fig. 1.2 Forbidden subdivisions/minors of planar graphs

subdivisions [75]. More specifically, he proved the following theorem:

Theorem 1 (Kuratowski’s Theorem [75]). A graph is planar if and only if
it does not contain a subdivision of K5 or a subdivision of K3,3 as a subgraph
(see Figure 1.2).

Any graph G′ that can be obtained from G by a series of edge deletions,
vertex deletions and edge contractions is called a minor minorof G. We write
G′ � G. Any graph G is a minor of itself.

Later on, Wagner proved the following theorem which implies Kuratowski’s
theorem:

Theorem 2 (Wagner [129]). A graph is planar if and only if it does not
contain K5 or K3,3 as a minor.

Another famous characterisation of planar graphs is the Hanani-Tutte The-
orem (sometimes known as the Strong Hanani-Tutte Theorem).

Theorem 3 (Strong Hanani-Tutte Theorem [124]). In any drawing of a non-
planar graph there exist two vertex-disjoint edges that cross each other an odd
number of times.

In other words, if we can draw a drawing of a graph G such that any two
vertex-disjoint edges in D cross each other an even number of times then G

is planar.
The Hanani-Tutte Theorem is often stated in the following weaker form:

Theorem 4 (Weak Hanani-Tutte Theorem). If there is a drawing D of a
graph G such that any two edges in D cross each other an even number of
times, then G is planar.

The Hanani-Tutte Theorem immediately holds in the reverse direction
and therefore Hanani-Tutte Theorem provides us with a characterisation of
planarity.
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1.2 Linkless Graphs
A realisation realisationof a graph G = (V, E) is a representation R of G in R3, where
each vertex is a distinct point and each edge is a closed continuous arc between
the points representing its endpoints. Informally, realisations of graphs are
drawings of graphs in R3. A projection projectionof a graph G is a drawing of G with
an over/under relation between the edges specified at each crossing.

Kaufmann [70] and Yamada [136] independently proved that if P and P ′

are two (piecewise linear) projections of the same realisation of a graph in R3,
then P and P ′ are related by a finite sequence of the local moves as is stated
in the following theorem.

Theorem 5 (Kaufmann [70] and Yamada [136]). Let P and P ′ be two pro-
jections of the same realisation of a graph. Then one can obtain P ′ from P
by a finite sequence of the local moves given in Figure 1.3.

Two vertex-disjoint cycles C1 and C2 that are embedded in R3 are linked
linked cyclesif no topological sphere can be embedded in R3 separating C1 from C2. To

put it in another way, two cycles C1 and C2 are not linked (unlinked) if they
can be continuously deformed without ever intersecting each other until C1

and C2 end up on two different sides of a topological sphere embedded in R3.
Informally, a link consists of two cycles that are embedded in three dimensions
such that they cannot be separated unless we cut one of them (see Figure 1.4).

A realisation R of a graph is linkless linkless realisa-
tionif it does not contain two linked

cycles. In other words, a realisation R of a graph is linkless if for any two
disjoint cycles C1 and C2 in R one can embed a topological sphere in R3 that
separates C1 from C2. A graph is linkless linkless graphif it has a linkless realisation.

1.3 Thracklable and Superthracklable Graphs
A thrackle thrackleis a drawing of a graph in which any two edges have exactly one
point in common. In other words, in a thrackle, any two vertex-disjoint edges
cross exactly once and incident edges do not cross (see for example, Figure 1.5).
Any graph that has a thrackle drawing on a surface Σ is thracklable thracklablewith
respect to Σ.

Since readability of a drawing is negatively correlated with the number of
edge crossings, we usually try to construct drawings of graphs with as few
crossings as possible [103, 104, 132]. For this reason, in the literature, the
following three constraints are usually enforced on graph drawings:
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Fig. 1.3 Reidemeister moves for spatial graphs
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Fig. 1.4 A link is composed of two cycles in three dimensions that cannot be
separated from each other.

Fig. 1.5 A thrackle

• an edge does not cross itself.

• incident edges do not cross themselves.

• two edges do not cross more than once.

Having the above constraints in mind, a planar drawing is a best drawing
that we hope we can construct for a graph and a thrackle is a worst drawing
that we may be able to construct for a graph such that it meets all of the
above constraints.

Many different variations of thrackles have been defined and studied during
the past few years.

An outerdrawing outerdrawingof a graph G is a drawing of G on a disc such that all
the edges are drawn on the disk and all the vertices of the drawing are on the
boundary of the disc.

An outerdrawing that is a thrackle is an outerthrackle outerthrackle. A graph that has
a outerthrackle drawing is outerthracklable outerthrack-

lable
.

Cairns and Nikolayevsky characterised outerthracklable graphs as follows.

Theorem 6 ([17]). Let G be an outerthracklable graph such that deg(v) ≥ 2
for any vertex v in G. Then G is an odd cycle.

Any simple cycle on the projective plane is 2-sided 2-sided cycleif it has a neighbourhood
isomorphic to a cylinder. Any simple cycle on the projective plane is 1-sided

1-sided cycleif it has a neighbourhood isomorphic to a Möbius strip (see for example,
Figure 1.6). A parity embedding parity

embedding
is an embedding of a graph in the projective

plane in which a simple cycle C is 1-sided if and only if C is of odd length.
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(a) A 1-sided cycle (b) A 2-sided cycle

Fig. 1.6 Examples of 1-sided and 2-sided cycles on the projective plane

A drawing D of a graph G is a generalised thrackle generalised
thrackle

if any two edges in D

have an odd number of points in common [16] (see for example, 2.17). Any
graph with a generalised thrackle drawing is a generalised thracklable generalised

thracklable
graph.

Fig. 1.7 A generalised thrackle

Cairns and Nikolayevsky characterised generalised thracklable graphs with
respect to the plane as follows.

Theorem 7 ([16]). A graph is generalised thracklable if and only if it has a
parity embedding in the projective plane.

Superthrackles are defined by Archdeacon and Stor [4]. A drawing D of
a graph G on a surface Σ is a superthrackle superthrackleif any two edges in D cross each
other exactly once [4] (see for example, Figure 1.8). Any graph that has a
superthrackle drawing on a surface Σ is superthracklable superthrack-

lable
with respect to Σ.

Fig. 1.8 A superthrackle

Archdeacon and Stor characterised superthrackles as follows.

Theorem 8 ([4]). A graph is superthracklable with respect to the plane if and
only if it has a parity embedding in the projective plane.
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An even edge-subdivision even edge-
subdivision

of an edge e in a graph replaces edge e with a
path of an odd length. A vertex subdivision at u in a graph G subdivides
every edge that is incident with u once vertex

subdivision
.

Two graphs G and G′ are parity homeomorphic if there is a graph H that
can be obtained from G and from G′ by the operations of even edge-subdivision
or vertex subdivision. parity

homeomorphicArchdeacon and Stor also proved the following.

Theorem 9 ([4]). The following two classes of graphs are equivalent:

• superthracklable graphs with respect to the plane,

• the graphs that does not have a subgraph that is parity homeomorphic to
any graph in Figure 1.9.

A drawing D of a graph G on a surface Σ is a generalised superthrackle
generalised
superthrackle

if any two edges in η cross each other an odd number of times. Any graph
with a generalised superthrackle drawing on a surface Σ is a generalised su-
perthracklable generalised su-

perthracklable
graph with respect to Σ.

Cairns and Nikolayevsky characterised generalised thracklable graphs [16]
and Archdeacon and Stor characterised superthracklable graphs [4] and the
two characterisations are the same (see Theorem 31 and Theorem 8). That
is, any generalised thracklable graph is a superthracklable graph.

Theorem 10 ([4]). A graph is superthracklable if and only if it is generalised
superthracklable.

1.4 Our Research
In this thesis we aim at studying graphs through their drawings. We define
classes of graphs based on whether they have drawings that meet certain
conditions and then we characterise those classes of graphs in various ways.
Next we outline the structure of this thesis and provide a summary of our
results in each chapter.

Chapter 2 contains the terminology and formal definitions that are fre-
quently used in this thesis. We survey the main results in the field and pro-
vide the reader with the necessary background and literature review. This
chapter also serves as a motivation for the results that are presented later in
this thesis.

In Chapter 3 we present a number of moves for manipulating drawings
in order to obtain different drawings of the same graph. We prove that any
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(a) V2 (b) W −
4 (c) K∗

5 (K5 with all of its
edges subdivided once)

u v
(d) K∗

5 (e) (K5 with all of
its edges except for one of
them subdivided once)

(e) K∗
3,3 (K3,3 with all

of its edges subdivided
once)

u v
(f) K∗

3,3(e) (K3,3 with all of
its edges except for one of
them subdivided once)

(g) Ψ4

(h) Φ4

Fig. 1.9 The obstruction set for superthrackles
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drawing D of a graph G can be manipulated to any other drawing D′ of G

using the aforementioned set of local moves. We then provide a set of local
moves to change any drawing D of G to any other drawing D′ of G on any
given surface Σ. Results of this chapter will be used frequently throughout
the rest of this thesis.

In Chapter 4 we prove two Hanani-Tutte type theorems for outerplanar
graphs. The first Hanani-Tutte type theorem relates the parity of the num-
ber of crossings between edges of the graph and its cycles with the rotational
order of the edges around the vertices of the graph in the drawing. The sec-
ond Hanani-Tutte type theorem relates the parity of the number of crossings
between vertex-disjoint edges to the rotational order of the edges around the
outerface of the drawing.

Chapter 5 is dedicated to a class of graphs called non-separating planar
graphs. We introduce this class of graphs since we encountered it multiple
times during our research. Non-separating planar graphs, are a subclass of
planar graphs and are closed under taking minors and therefore by the graph
minor theorem they can be characterised by a finite family of minimal excluded
minors. In this chapter, we determine the family of excluded minors for non-
separating planar graphs, which consists of three graphs. We characterise
non-separating planar graphs in terms of these three minimal excluded minors.
Moreover, we provide a structural characterisation for non-separating planar
graphs.

Chapter 6 provides us with a Hanani-Tutte type theorem for non-separating
planar graphs. This characterisation will be used later to prove a stronger ver-
sion of the Hanani-Tutte Theorem for planar graphs.

Chapter 7 is about two applications of non-separating planar graphs. First,
it provides a stronger version of the Hanani-Tutte Theorem. As well as relying
on the results of Chapter 5, we rely on the results of Chapter 4 to decompose
planar graphs into smaller non-separating planar graphs and prove a stronger
version of the Hanani-Tutte Theorem. As the second application of non-
separating planar graphs, we construct a family of maximal linkless graphs
that have at most 3|V | − 3 edges, where |V | is the number of vertices of the
graph. This answer is related to a question asked by Sachs in 1983 [113].

In Chapter 8 we define different variations of outerthrackles and for any
variation V of those variations, we characterise the class of graphs that have
a V drawing. Lastly, we prove that all of these classes are equivalent.

Chapter 9 is dedicated to to finding a Hanani-Tutte type theorem for
thrackles. In this chapter, we first prove a Hanani-Tutte Theorem for su-
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perthrackles. In fact we show that there is a theorem similar to the Weak
Hanani-Tutte Theorem for superthrackles. Then we show that there is no
theorem similar to the Strong Hanani-Tutte Theorem for superthrackles by
providing a counterexample.

Lastly, Chapter 10 concludes the thesis by reflecting on the main theorems
and results and presenting open problems that arise from our research as well
as the directions for future work.

1.5 Publications
The following three papers are submitted as the results of the research con-
ducted in this thesis.

• Non-separating Planar Graphs (with Graham Farr), submitted (see
[31]).

• On the Strong Hanani-Tutte Theorem (with Graham Farr), sub-
mitted (see [32]).

• Thrackles, Superthrackles and the Hanani-Tutte Theorem (with
Graham Farr), submitted (see [33]).



2
Literature Review

In this chapter we introduce the reader to the basic terminology of graph
drawing such as graphs, drawings, realisations, embeddings, etc. We re-
view the important results of the field and classify the graphs based on
the surfaces that they can be embedded in.

We start this chapter by defining graphs and their drawings/realisations
and work our way through to embeddings of graphs and other terms that
we use troughout this thesis. For a more comprehensive discussion on these
definitions and concepts we refer the reader to the following books:

• For graph drawing concepts refer to [8, 71, 89, 93].

• Graph theory is described in [34, 62].

• For computational geometry see [29, 59].

• For complexity theory refer to [56].

2.1 Graphs
A graph graphG = (V, E) consists of a finite set V of vertices and a finite multiset
E of edges where each edge edgeis an unordered pair of vertices.
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u
v

(a) G

u
v

(b) G′ = G \ (u, v)

Fig. 2.1 Edge deletion

An edge that consists of vertex u and vertex v is denoted by (u, v). We
usually denote the set of vertices of G by V (G) and the set of edges of G by
E(G) . The numbers of vertices and edges of a graph G = (V, E) are |V | and
|E| respectively.

An edge (u, v) is a loop loopif u = v and edges that are included more than
once in the multiset E are called parallel parallel edgeedges. Two edges e and e′ are parallel
if they have the same endpoints. A graph that does not contain any loops or
parallel edges is called simple simple graph. A graph in which loops and parallel edges are
allowed is called a multigraph multigraph.

An isomorphism isomorphismof graphs G and G′ is a 1-1 mapping f of V (G) onto
V (G′) such that for any pair of vertices u and v: (u, v) ∈ E(G) if and only
if (f(u), f(v)) ∈ E(G′). Two graphs G and G′ are isomorphic isomorphicif there is an
isomorphism between G and H.

For any vertex u in a graph G, we denote the set of neighbours of u by
N(u).

2.2 Graph Minor Theory
The theory of graph minors developed by Robertson and Seymour is one of
the most important recent advancements in graph theory and even in math-
ematics. This substantial body of work is presented in a series of 23 papers
(Graph Minors I–XXIII) over 20 years from the 1980s to 2004.

In order to state the main graph minor theorems, we first need to define
some terms. Let G = (V, E) be an arbitrary graph. Then one can obtain a
graph G′ = (V ′, E ′) by:

1. deleting an edge edge deletion(u, v) from G, where V ′ = V and E ′ = E \ (u, v). We
denote G′ by G′ \ (u, v) (see, for example, Figure 2.1).

2. deleting a vertex vertex deletionu of G, where V ′ = V \ u and E ′ = E \ {(u, v)|v ∈ V }
(see, for example, Figure 2.2).



2.2 Graph Minor Theory 14

3. contracting an edge edge
contraction

(u, v) of G, where u 6= v and V ′ = V \{u, v}∪w and
E ′ = E \ {(u, x), (v, x)|x ∈ V } ∪ {(w, x)|x ∈ V, (u, x) ∈ E ∨ (v, x) ∈ E}
(see, for example, Figure 2.3).

Any graph G′ that can be obtained from G by a series of the above opera-
tions (edge deletion, vertex deletion, edge contraction) is called a minor minorof G.
We denote this relation by G′ � G. Any graph G is a minor of itself (G � G).
A minor of G that is not isomorphic to G is called a proper minor.

Any graph G′′ that can be obtained from G by a series of the first two
operation mentioned above (edge deletion, vertex deletion) is subgraphcalled a subgraph
of G. The graph G′′ is a spanning spanningsubgraph of G if it includes all the vertices
of G.

Now we state the Graph Minor Theorem (also known as the Robert-
son–Seymour Theorem or Wagner’s Conjecture1).

Theorem 11 (Graph Minor Theorem [109]). Let S be an infinite set of graphs.
Then there exist two graphs G and G′ in S such that G′ is a minor of G.

A set S of graphs is a minor-closed set or minor-closed family or minor-
closed class minor-closed setof graphs if any minor of a graph G ∈ S is also a member of
S.

Graph H is an minimal excluded minor minimal
excluded minor

for a family G of graphs, if no
graph G ∈ G contains H as a minor and for any graph H−, where H− � H,
there is a graph G′ ∈ G that contains H− as a minor.

The Graph Minor Theorem can also be formulated as follows:

Corollary 1 ([109]). For every minor-closed class of graphs G, the set of
minimal excluded minors for G is finite.

u

(a) G (b) G′ = G \ u

Fig. 2.2 Vertex deletion

1Wagner has posed this theorem in terms of a question [130] and although he has never
conjectured this result it was known as Wagner’s conjecture [34].
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u
v

(a) G

w

(b) G′ = G/(u, v)

Fig. 2.3 Edge contraction

Another important result of the graph minor theory is about a polynomial
time algorithm to verify whether a graph G′ is a minor of a graph G.

Theorem 12 (Robertson and Seymour [108]). For any fixed graph G′, there
is an algorithm to determine whether a given graph G with n vertices contains
G′ as a minor in O(n3) time2.

Theorem 12 and Corollary 1 together show that for every minor-closed set
S of graphs, there is a polynomial time algorithm for testing whether a graph
belongs to S or not. In other words, given a graph G and a minor-closed set
S of graphs, one can check whether G is in S by checking whether G contains
G′ as a minor for each minimal excluded minor G′ of S [11].

Theorem 13 ([12, 108]). Let S be a minor-closed set of graphs. Then there
is a polynomial time algorithm to test whether any graph G is in S.

It is important to emphasise that Theorem 13 is non-constructive. That is,
Theorem 13 only guarantees the existence of a polynomial time algorithm but
does not provide us with the algorithm (which makes it an unusual result).

2.3 Embeddings of Graphs
A graph G is embedded in a topological space X if the vertices of G are distinct
elements of X and every edge (u, v) of G is represented by a simple arc in X

that joins u to v such that all such arcs are internally disjoint from each other
and from the vertices of G. An embedding embeddingof a graph G in a topological space
X is an isomorphism of G with a graph G′ embedded in X [89].

A surface surfaceor a two-dimensional manifold Σ is a connected compact topo-
logical space which is locally homeomorphic to an open disk in the plane and
for any two distinct points x, y ∈ Σ, there exists open neighbourhoods Nx of

2Recently, Kawarabayashi, Kobayashi and Reed improved the time complexity of this
algorithm to O(n2) [72].
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x and Ny of y such that Nx ∩Ny = ∅ [89]. To define a surface with a boundary
surface with a
boundary

we relax the definition of a surface and we allow the neighbourhood of the
points to be homeomorphic to half-planes as well as disks.

Embeddings of graphs in two-dimensional manifolds are specified by the
cyclic order of the edges around vertices [38, 106]. In this thesis, we denote
the cyclic order of the edges at a vertex v of an embedding η by πη(v) πη(v)and we
denote the cyclic order of edges around all the vertices in an embedding η by
Πη Πη(Πη := (πη(v) : v ∈ V )). In this thesis, embeddings are in the plane unless
otherwise stated.

Embeddings of graphs in R3 are called spatial embeddings spatial
embedding

and are usually
specified/depicted by a projection of the embedded graph in R3 on the plane
and indicating the over/under relations between the edges (see [28, 64]).

2.3.1 Planar Embeddings

A graph is planar planar graphif it can be embedded in the plane. A plane graph is a
planar graph with a fixed embedding in the plane plane graph.

A plane graph divides the plane into connected regions called faces face. Usu-
ally the unbounded face is called the outer face outer face. Euler’s formula establishes
a relation between the numbers of vertices, edges and faces of a graph as is
indicated in the following theorem.

Theorem 14 (Euler’s formula, 1750). Let G be a connected plane graph with
|V | vertices, |E| edges and |F | faces. Then |V | − |E| + |F | = 2.

Let G be a class of graphs and let G be a graph in G. The graph G is
maximal maximalwith respect to G if any graph G′ that is obtained by adding an edge
to G is not in G.

Using Euler’s formula, one can prove a number of important theorems
about plane graphs. One of these theorems is about the maximum number of
edges of a plane graph.

Theorem 15 (see, for example, [34]). Any maximal planar graph with |V | ≥ 3
vertices has 3|V | − 6 edges.

Kuratowski and Wagner provide two elegant characterisations of planar
graphs in terms of forbidden graphs (see Theorem 17 and Theorem 2).

However, neither Kuratowski’s Theorem nor Theorem 2 leads to an effi-
cient algorithm for testing whether or not a graph is planar. In 1974, Hopcroft
and Tarjan managed to develop a linear-time algorithm for this problem [69].
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(a) K4 (b) K2,3

Fig. 2.4 Minimal excluded minors of outerplanar graphs

Linear-time algorithms for finding planar embeddings of graphs were devel-
oped later by Chiba et al. [23] and Mehlhorn and Mutzel [87]. Later on, simpler
linear-time algorithms were developed in order to perform planarity testing
and find planar embeddings for planar graphs simultaneously (see [115]).

2.3.2 Outerplanar Embeddings

A graph is outerplanar outerplanarif it has a planar embedding such that all the vertices
lie on the same face; we normally assume this face to be the outer face.
An alternative definition of an outerplanar graph is as follows. A graph is
outerplanar if it can be embedded in a disk such that all the vertices lie on
the boundary of the disk. An outerplane outerplanegraph is an outerplanar graph with
a fixed embedding in the disk. In this thesis, we denote the boundary of any
disk d with ∂(d).

Some of the significance of this class of graphs is derived from the fact that
some problems that are N P-complete for planar graphs can be easily solved
in polynomial time for outerplanar ones. Here we review some of the results
on outerplanar graphs that are relevant to this thesis.

Chartrand and Harary characterised outerplanar graphs in terms of two
minimal excluded minors as follows.

Theorem 16 (Chartrand and Harary [21]). A graph G is outerplanar if and
only if it does not contains K4 or K2,3 as a minor (see Figure 2.4).

Two other important results about outerplanar graphs are as follows:

• A graph G is outerplanar if and only if it has an embedding η on the
plane such that the dual embedding η∗ of η has a vertex v such that
η∗ − v contains no cycle [117].

• A bi-connected outerplanar graph has a unique Hamiltonian cycle [117].
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Using Euler’s formula, it is routine to see that an outerplanar graph G

with |V | ≥ 2 vertices has at most 2|V | − 3 edges. Moreover, an outerplanar
graph has at least two vertices of degree less than 3 and at least three vertices
of degree less than four [117].

2.3.3 Book Embeddings

Book embeddings are, in a sense, a generalisation of outerplanar embeddings of
graphs. Book embeddings are used in order to define several graph invariants
such as book thickness [10] and pagewidth [67]. In addition to theoretical
applications, book embeddings are used in designing VLSI layouts [25], graph
drawing, knot theory [36], etc.

A book book(also called a fan of half-planes [63]) is a topological space consisting
of a single line l, called the spine spine, together with a collection of one or more
half-planes, called the pages pageor leaves of the book, such that each half-plane
has l as its boundary [35]. Clearly, books with a finite number of pages can
be embedded into R3 by choosing l to be a line in R3 and by letting the k

pages of the book correspond to k half-planes “rotating around” l, i.e., they
are all disjoint except on l [10] (see Figure 2.5).

A book embedding book
embedding

of a finite graph G into a book B is an embedding of G

on B such that every vertex of G is drawn as a point on the spine of B, and
every edge of G is an arc that lies within a single page of B such that no two
edges cross. Clearly, every finite graph with |E| edges has a book embedding
into a book with |E| pages. The book thickness book thickness(sometimes called page number

page numberor stack number) of G is the minimum number of pages required for a book
embedding of G stack number[10].

It is straightforward to see that the book thickness of a graph is at most
one if and only if it is outerplanar. The book thickness of a graph G is at most
two if and only if G is a subgraph of a planar graph that has a Hamiltonian
cycle [10]. Therefore, graphs with a page number of two are also known as
subhamiltonian planar graphs [67]. All planar graphs have book thickness at
most four [137, 138].

Finding the book thickness of a graph is N P-hard. This follows from
the fact that finding Hamiltonian cycles in maximal planar graphs is N P-
complete [25].
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Fig. 2.5 A graph that is embedded in a book with 3 pages.

2.3.4 Embeddings on Surfaces

There are two infinite families of surfaces without boundaries up to homeo-
morphisms (see [37, 50, 89] for details and definitions). Kerékjártó for the first
time gave a complete proof that every surface is homeomorphic to a space ob-
tained from a sphere by adding handles and crosscaps [121, 128]. One can add
a handle handleto a surface Σ by removing two disjoint open disks d1 and d2, with
disjoint boundaries ∂(d1) and ∂(d1), from Σ and identifying ∂(d1) and ∂(d1)
in such a way that the orientability of Σ is preserved [34]. To add a crosscap

crosscapto a surface Σ, one can remove an open disk d with ∂(d) as its boundary from
Σ and then identify opposite points of ∂(d) in pairs [34].

Here, we use Tg and Nn to denote the orientable surface with genus g

(g ≥ 0) and the non-orientable surface which can be constructed by n cross
caps, respectively.

Each surface can be constructed from an even-sided oriented polygon,
called a fundamental polygon fundamental

polygon
, by pairwise identification of its edges [43]. Fig-

ure 2.6 depicts four examples of surfaces that are constructed is this way.
Precisely, any fundamental polygon can be represented symbolically as fol-
lows. Label each pair of the edges that are identified together with a distinct
symbol (for example, a, b, etc.). Begin at any vertex, and proceed around the
perimeter of the polygon in the clockwise direction until returning to the start-
ing vertex. During this traversal, as you traverse each edge of the polygon,



2.3 Embeddings of Graphs 20

(a) Sphere (b) Real projec-
tive plane

(c) Torus (d) Klein bottle

Fig. 2.6 Obtain the corresponding surface, by gluing the (iso-chromatic) sides
with matching arrows of each polygon to each other so that the arrows point
in the same direction.

record the label of that edge, say a, if the direction of the edge is clockwise,
or record a−1 if the direction of the edge is counterclockwise.

For example, the fundamental polygon of the sphere (as shown in Fig-
ure 2.6(a)), when traversed clockwise starting at the upper left vertex, yields
abb−1a−1.

Such a representation of a surface is called the polygonal representation polygonal
representation

of
the surface.

Theorem 17 ([57, 133]). Every surface can be represented by one the following
three standard forms of polygonal representation standard form.

1. aa−1 (sphere; orientable)

2. a1, a1, a2, a2, . . . , ak, ak where k ≥ 1 (sphere with k crosscaps; non-orientable)

3. a1, b1, a−1
1 , b−1

1 , a2, b2, a−1
2 , b−1

2 , . . . , ah, bh, a−1
h , b−1

h where h ≥ 1 (sphere with
h handles; orientable)

We define the Euler characteristic Euler
characteristic

χ(Σ) of a surface Σ as follows:

χ(Σ) =

2 − 2g if Σ = Tg

2 − n if Σ = Nn

Now we state the generalized Euler’s formula for the surfaces [22, 50, 89].
A 2-cell embedding 2-cell

embedding
is an embedding in which every face is homeomorphic

to an open disk [76].

Theorem 18 (Euler’s formula). Let G be a connected 2-cell embedded graph
on a surface Σ with |V | vertices, |E| edges and |F | faces. Then

|V | − |E| + |F | = χ(Σ).
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As an example, Figure 2.7 depicts an embedding of the Petersen graph on
the projective plane N1. This embedded graph has 10 vertices, 15 edges and
6 faces. By substituting these values into the Euler’s formula we can check
that χ(N1) = 1.

Fig. 2.7 An embedding of the Petersen graph on the real projective plane, N1.

We define the genus genusγ(G) of a graph G as the minimum g such that
G is embeddable in the surface Tg. Similarly we define the non-orientable
genus non-orientable

genus
γ̃(G) of a graph G as the minimum n, such that G is embeddable in

the surface Nn. The complexity of finding the genus of a graph was listed
among the fundamental open problems of Garey and Johnson [56]. Later on
Thomassen proved that this problem is N P-complete [120].

Ringel and Youngs proved the following theorem about the genus and the
non-orientable genus of the complete graphs [106, 107].

Theorem 19 (Ringel and Youngs (1968) [107] 3). If n ≥ 3 then

γ(Kn) =
⌈

(n − 3)(n − 4)
12

⌉
.

If n ≥ 3 and n 6= 7 then

γ̃(Kn) =
⌈

(n − 3)(n − 4)
6

⌉
.

Note that by the above theorem K7 can be embedded on the torus (T1).
Figure 2.8 depicts embeddings of K7 and K3,3 on the torus T1.

3This theorem also completed the solution of an important problem in topological graph
theory called the Heawood problem: finding the smallest number H(Σ) such that any graph
embedded in Σ can be coloured with H(Σ) colours such that no two adjacent vertices have
the same colour.



2.3 Embeddings of Graphs 22

(a) An embedding of K7
on torus

(b) An embedding of
K3,3 on torus

Fig. 2.8 Embeddings of two non-planar graphs on torus.

Embeddings of graphs on surfaces with boundaries have also been well
studied. In particular, the disk dimension problem defined by Syslo and also
Fellows and Langston is concerned with embeddings of graphs on surfaces
with boundaries [40, 42, 118]. The disk dimension dg(G) of a graph G is the
least positive integer k for which G embeds in Tg minus k disjoint open disks,
with every vertex of G lying on the boundary of one of the forbidden disks.

Let G(g, d) (where g, d ∈ N) denote the family of all graphs with dg ≤ d.
Then G(0, 1) denotes the family of outerplanar graphs, G(0, ∞) denotes the
family of planar graphs and G(g, ∞) denotes the family of graphs with genus
g.

The disk dimension problem is N P-complete if d is not fixed, even for the
case when g = 0 [56]. Moreover it is also N P-complete for the case where
d = ∞ and g is not fixed (this is equivalent to graph genus problem) [120].
For further details about the disk dimension problem, see [40, 42, 56, 118].

By the Graph Minor Theorem, the class of graphs that are embeddable
on a fixed surface can be characterised in terms of a finite number of minimal
excluded minors [5, 78, 88]. However apart from the cases of G(0, 1), G(0, 2),
G(0, ∞) and the graphs that are embeddable on the projective plane (N1),
the complete lists of the minors are not known.

In fact, the graphs that are embeddable on G(0, 1) are characterised in
terms of 2 minimal excluded minors and the graphs that are embeddable on
G(0, 2), called outer-cylindrical graphs, are characterised in terms of 38 min-
imal excluded minors (see [5] for the complete list of these minimal excluded
minors).

Graphs that are embeddable on the projective plane are characterised in
terms of 35 minimal excluded minors (see [3, 89] for the complete list). Al-
though there are over 16,000 minimal excluded minors known for toroidal
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(a) The two cycles of a link, indi-
cated in blue and red, in a realisa-
tion of K6

(b) The two cycles of a link, indi-
cated in blue and red, in a realisa-
tion of K1,3,3

Fig. 2.9 Links in realisations of graphs

graphs (see [20, 55]) and over 4000 minimal excluded minors are known for
graphs that are embeddable on the Klein bottle [30], the complete lists of
minimal excluded minors for toroidal graphs and the graphs embeddable on
the Klein bottle are not known yet.

2.3.5 Linked and Linkless Embeddings

An embedding η of a graph in R3 is linkless linklessif, for every pair of disjoint cycles
C1 and C2, one can embed a topological sphere into R3 separating C1 from
C2. Roughly speaking, if two cycles are linked in R3, we cannot contract one
of them into a single point without cutting the other one (see Figure 2.9). A
graph is linkless, if it has linkless embedding in R3.

Sachs suggested the study of linkless embeddings for the first time [113].
He conjectured that these embeddings can be characterised by excluding the
Petersen family of graphs.

Theorem 20 (Sachs Conjecture [113]). A graph is linkless if and only if it
does not contain any graph in the Petersen family as a minor.

The Petersen family Petersen family
of graphs

of graphs consists of K6 and six other graphs, includ-
ing the Petersen graph, as shown in Figure 2.10. All of these graphs can be
obtained from each other by a series of Y ∆ and ∆Y exchanges which we will
not define here (see, for example, [123, 139]).

Conway, Gordon and Sachs proved that K6 is not linkless [28]. Sachs
also proved that the other members of the Petersen family of graphs are not
linkless [113]. Moreover, in the same paper he showed that every minor of a
linkless graph is linkless. Motwani, Raghunathan and Saran studied linkless
embeddings from an algorithmic point of view [90]. They announced a proof
for Conjecture 20 in [90] and [114] but the proof in [90] is not correct [111].
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(a) K6 (b) (c) (d)

(e) (f) (g) Petersen graph

Fig. 2.10 The Petersen family of graphs on the projective plane. (These draw-
ings are drawn based on the drawings in [73]).

Robertson, Seymour and Thomas proved that G is linklessly embeddable
in R3 if and only if it does not contain any graph in the Petersen family as
a minor [110, 111]. They also show that a graph is linklessly embeddable in
R3 if and only if it admits a flat embedding into R3. We shall discuss flat
embeddings in Section 2.3.8. Since linkless graphs are closely related to flat
graphs, some of the basic results about linkless graphs are not mentioned until
Section 2.3.8.

Van der Holst presents a polynomial-time algorithm to compute a linkless
embedding of a linkless graph [126]. Moreover he showed that, given an em-
bedding of a graph, it can be decided whether this embedding is a linkless
embedding in polynomial time [126].

2.3.6 3-linked and 3-Linkless Embeddings

A graph is 3-linkless 3-linklessif there is a spatial embedding η of it such that for any
three disjoint cycles in η one can embed a topological sphere intoR3 separating
one of the three cycles from the other two (see [46, 49]). Understanding this
definition might be easier if we define 3-linked graphs and let the 3-linkless
graphs to be the graphs that are not 3-linked. A graph is 3-linked 3-linkedif every
spatial embedding of it contains a non-split link of three components. That
is, every cycle in a 3-linkless graph can be separated from any other two
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vertex-disjoint cycles in the graph via a topological sphere.
One might think that any linkless embedding is also a 3-linkless embedding

but this is not true since, for example, the Borromean rings are linkless but
not 3-linkless (see Figure 2.11).

Fig. 2.11 The Borromean rings is embedded into R3 linklessly although it is
not 3-linkless. Any pair of cycles of the Borromean rings are not linked but
these three rings cannot be separated from each other unless one of them is
cut.

Although a number of 3-linked graphs such as K10 are known, the complete
set of excluded minors of this class of graphs is not known4 [45].

2.3.7 Intrinsically Knotted, Knotted and Knotless Em-
beddings

A spatial embedding of a cycle is knotted knottedif it is not contained in the surface of
a topological sphere. A spatial embedding of a graph with no knotted cycles is
called knotless. That is, every cycle in a knotless knotlessembedding is an un-knot. A
graph is knotless if it has a knotless embedding. A graph is called intrinsically
knotted intrinsically

knotted
(or knotted) if every spatial embedding of it contains a knotted cycle.

The class of intrinsically knotted graphs is closed under minors [41]. Con-
way and Gordon showed that K7 is intrinsically knotted [28]. Motwani,
Raghunathan and Saran showed that K7 is a minor-minimal intrinsically
knotted graph [90]. In fact 14 minor-minimal intrinsically knotted graphs
are found among the Heawood family of graphs [65]. The Heawood family Heawood family

of graphs
of

graphs contains K7 and 19 other graphs that are obtained from K7 by a fi-
nite sequence of Y ∆ and ∆Y exchanges. Although additional minor-minimal
intrinsically knotted graphs are known, intrinsically knotted graphs have not
been completely characterised yet [47, 48, 74].

4Graph K9 has a 3-linkless realisation in R3 [45].
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v1

v2

v3

v4

v5
(a) A realisation of K5 that is lin-
kless, knotted and not flat

v1

(b) A linkless and knotless reali-
sation which is not flat

Fig. 2.12 Linkless embeddings are not flat in general

Another interesting fact about intrinsically knotted graphs is that although
∆Y exchanges preserve intrinsically knotted graphs, Y ∆ exchanges may not
preserve this property [44].

2.3.8 Flat Embedding

An embedding of a graph in R3 is flat flatif for every cycle C of G, one can
embed a closed disk d with C as its boundary in R3 such that d is disjoint
from the vertices and edges of G (i.e. the interior of d does not contain or
intersect with any vertices or edges of G). Clearly every flat embedding is
linkless, but the converse may not be true. Figure 2.12(a) depicts a linkless,
knotted realisation of K5 that is not flat. In fact every knotted cycle in R3 is
linkless but it is not flat. As another example consider the borromean rings
(Figure 2.11). Although the Borromean rings are linkless and knotless, they
are not flat. One more simple example is provided in Figure 2.12(b).

Sachs proved that a linkless graph does not contain any minor in the Pe-
tersen family and conjectured that a graph is linkless if and only if it does not
contain any of the graphs of the Petersen family as a minor. Böhme proposed
the following conjecture which is a strengthening of Sachs’ conjecture: a graph
is flat if and only if it is linkless and a graph is linkless if and only if it has no
minor in the Petersen family [13].

Since a flat graph is clearly linkless and Sachs showed that a linkless graph
does not contain any minor in the Petersen family, in order to prove Sachs’
conjecture it was required to prove that a graph with no minor in the Petersen
family is flat. Finally Robertson, Seymour and Thomas proved Böhme’s con-
jecture and showed that the classes of linkless and flat graphs are equivalent.
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Theorem 21 (Robertson, Seymour and Thomas [110, 111]). For a graph G,
the following are equivalent:

• G is linkless

• G has a flat embedding

• G has no minor in the Petersen family.

Flat embeddings in R3 are considered to be a generalisation of plane em-
beddings. For example, the famous theorem by Whitney which states that
every 3-connected planar graph has a unique planar embedding, can be gen-
eralised to flat embeddings as follows: every 4-connected flat graph G has an
“unique” flat embedding in R3 [110, 111]. Here, “unique” means equivalent
up to ambient isotopy (which we shall define in the next chapter).

Kawarabayashi, Kreutzer and Mohar proved that there is a quadratic time
algorithm that accepts a graph G as input and either detects one of the Pe-
tersen family of graphs as a minor in G, or returns a flat (and hence linkless)
embedding of G in R3 [73].

2.4 Embeddings and the Colin de Vedière In-
variant

The Colin de Verdière parameter µ(G) of a graph G is an interesting linear
algebraic invariant introduced in [26] (see [27] for the English translation).
Although this invariant is defined is in terms of matrices, it is closely related
to topological embeddability properties of the graph.

The parameter µ(G) is minor-monotone; that is, if G′ is a minor of G, then
µ(G′) ≤ µ(G) [26]. Hence by the graph minor theorem, the class of all graphs
G with µ(G) ≤ k can be described in terms of a finite collection of minimal
excluded minors. Several well-know families of graphs can be characterised in
terms of their Colin de Verdière invariants:

• µ(G) ≤ 0 if and only if G has no edges [27, 127]

• µ(G) ≤ 1 if and only if G is a disjoint union of paths [127]

• µ(G) ≤ 2 if and only if G is outerplanar [27, 127]

• µ(G) ≤ 3 if and only if G is planar [27, 127]
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• µ(G) ≤ 4 if and only if G is linkless [79, 127]

The reason that Petersen family of graphs are minimal excluded minors
for µ(G) ≤ 4 follows from the following three theorems [125].

Theorem 22 (Colin de Verdière [27]). For any complete graph Kn,

µ(Kn) = n − 1.

In particular, µ(K6) = 5.

Theorem 23 (Bacher and Colin de Verdière [7]). If G′ is obtained from G

by subdividing an edge, then µ(G′) ≥ µ(G). If G is obtained from G′ by
suppressing a vertex of degree 2 and µ(G′) ≥ 4 then µ(G) ≥ µ(G′).

Theorem 24 (Bacher and Colin de Verdière [7]). If G′ is obtained from G by
a ∆Y transformation, then µ(G′) ≥ µ(G). If G is obtained from G′ by a Y ∆
transformation and µ(G′) ≥ 5 then µ(G) ≥ µ(G′).

For more information and theorems on the Colin de Verdière parameter
see [127].

2.5 Drawings, Realisations, Projections
A drawing drawing of a

graph
D of a graph G on a surface Σ is a mapping f from vertices and

edges of G that assigns:

• to each vertex u of G, a distinct point f(u) in Σ and

• to each edge (v1, v2) of G, a simple continuous arc ζ = f((v1, v2)) in Σ
connecting f(v1) to f(v2) such that ζ does not pass through the image
under f of any vertex.

Two edges e and e′ cross if they share a point other than their endpoints.
The shared point is a crossing crossingbetween e and e′.

We sometimes refer to a point f(u) in D that represents a vertex u in G

as vertex u of D and similarly, we may refer to an arc ζ in D that represents
an edge (u, v) in G as edge (u, v) of D. Moreover, we sometimes use D to
denote the set of all points of Σ that represent vertices of G or belongs to arcs
representing edges of G.

In this thesis, we assume that graph drawings are not degenerate degenerate
drawing

[59], in
that they satisfy the following conditions:
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• An edge does not contain a vertex other than its endpoints.

• Any two edges cross a finite number of times and the intersection of the
arcs representing them must be a finite set of points.

• Edges must either properly cross or not cross at all (for example, they
must not meet tangentially). More precisely, for a crossing point p on
two edges e1 and e2, the cyclic order of the edges around p is e1, e2, e1, e2.

• No point represents more than one crossing. (It follows that a single
edge cannot pass through the same crossing twice.)

Let D be a drawing of a graph G and let G− be the subgraph of G induced
by S, where S ⊆ V (G) (G− = G[S]). Then D[G−] D[G]is a drawing of G− that is
obtained as follows:

• for each vertex v in G−, let v be represented by the same point that
represents v in D, and

• for each edge e in G−, let e be represented by the same arc that represents
e in D.

A realisation realisationof a graph is a drawing of it in R3 with no crossings. A
projection of a graph G is a drawing projectionof G with an over/under relation between
the edges specified at each crossing (see for example Figure 2.13).

v1

v2

v3

v4

Fig. 2.13 A projection of K4. Note that (v1, v3) is passing over (v2, v4).

For a vertex v in a drawing D, a local disk local disk of a
vertex

Σv at v is a sufficiently small
neighbourhood homeomorphic to an open disk centred on v such that:

• Σv does not contain any vertex other than v,

• Σv does not contain any crossings,

• for any edge e incident with v, the intersection of the drawing of e with
Σv is an arc homeomorphic to [0, 1),
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• every edge that is not incident with v is disjoint from Σv (see, for exam-
ple, Figure 2.14).

u

d

(a) disk d con-
tains a crossing

u

d

(b) disk d con-
tains an edge
segment that
does not have u
as its endpoint

u

d

(c) disk d contains
an edge segment
that does not have
u as its endpoint

u
d

(d) disk d is a local
disk for u

Fig. 2.14 (a)-(c) depicts three examples of disks that are not local disks of u.
(d) depicts a local disk of u.

Similarly, for a non-self-intersecting edge e = (u, v) in a drawing D, let a
local disk local disk of an

edge
Σe of the edge e be a sufficiently small disk that contains e in its

interior such that:

• Σe does not contain any vertex other than u or v,

• Σe does not contain any crossings other than the crossings on e,

• any maximal continuous segment of an edge f that intersects with Σe is
either a arc homeomorphic to (0, 1) that crosses e once or a arc homeo-
morphic to [0, 1) that has u or v as one of its endpoints (see, for example,
Figure 2.15).

2.6 The Hanani-Tutte Theorem
The Hanani-Tutte Theorem is another famous result in graph theory which
can be thought of as a characterisation of planar graphs in terms of their
drawings. Hanani proved the following in 1934.

Theorem 25 (Hanani [24]). Every drawing of K5 or K3,3 contains two vertex-
disjoint edges that cross an odd number of times.

By Kuratowski’s Theorem and Hanani’s Theorem, we can easily see that
in any drawing of a non-planar graph there are two vertex-disjoint paths that
cross an odd number of times and hence there are two vertex-disjoint edges
that cross an odd number of times. In other words, it is easy to derive the
Strong Hanani-Tutte Theorem (Theorem 3), from Theorem 25.
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u
d

v

(a) disk d does
not contain the
edge (u, v)

ud

v

(b) disk d con-
tains an edge
segment that
does not have
u or v as its
endpoint and
does not cross
(u, v)

ud

v

(c) disk d con-
tains a crossing
that is not on
(u, v)

u
d

v

(d) disk d is a lo-
cal disk for (u, v)

Fig. 2.15 (a)-(c) depicts three examples of disks that are not local disks of
(u, v). (d) depicts a local disk of (u, v).

The Strong Hanani-Tutte Theorem was first explicitly stated by Tutte [124].
This Theorem is usually used in the weaker form known as the Weak Hanani-
Tutte Theorem (Theorem 4).

The difference between the strong version and the weak version of the
Hanani-Tutte Theorem is that in the strong Hanani-Tutte we only require the
vertex-disjoint pairs of edges in a drawing of the graph to cross each other an
even number of times, whereas in the Weak Hanani-Tutte Theorem we require
any pair of edges in a drawing of a graph to cross an even number of times.

Notice that both the strong and the Weak Hanani-Tutte Theorems provide
us with a characterisation of planar graphs since the converses of both of these
theorems are true. More specifically, by definition any planar graph has a
drawing in which any two edges cross zero times.

The Hanani-Tutte Theorem in its weak form has been generalised to all
2-manifolds [98]. This is especially interesting as we do not yet have minimal
excluded minor characterisations for the graphs that can be drawn without
crossings on surfaces other than the sphere and projective plane.

Theorem 26 ([98]). For every surface Σ, a graph G has a drawing on Σ with
no crossings if and only if it has a drawing D on Σ such that any two edges
cross an even number of times in D.

However, the Strong Hanani-Tutte Theorem has only been generalised to
the projective plane [97]. In fact we know that it cannot be generalised to the
orientable surface of genus four [51].
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Theorem 27 ([97]). A graph G has a drawing on the projective plane with no
crossings if and only if it has a drawing D on the projective plane such that
any two vertex-disjoint edges cross an even number of times in D.

Theorem 28 ([51]). There exists a graph G with a drawing in the compact
orientable surface Σ with 4 handles in which every pair of vertex-disjoint edges
cross an even number of times such that G does not have a planar drawing in
Σ.

There are numerous other versions of the Hanani-Tutte Theorem. For
example, see the following slightly stronger version of the Weak Hanani-Tutte
Theorem:

Theorem 29 ([77, 98]). Let D be a drawing of a graph G such that any two
edges cross an even number of times in D. Then G is planar and has a planar
drawing D′ with a rotation system of edges around the vertices that is the same
as the rotation system of edges around the vertices in D.

Recently, Fulek, Kynčl and Pálvölgyi unified this version of the Weak
Hanani-Tutte Theorem with the Strong Hanani-Tutte Theorem as follows.

Theorem 30 ([54]). Let G be a graph and let W ⊆ V (G). Let D be a drawing
of G where every pair of edges that are vertex-disjoint or have a common
endpoint in W cross an even number of times. Then G has a planar drawing
where the cyclic orders of edges at vertices of W are the same as in D.

If W is empty in the above theorem, then the theorem is equivalent to the
strong version of the Hanani-Tutte Theorem. If W = V (G) then the theorem
is equivalent to the weak version of the Hanani-Tutte Theorem.

2.7 Thrackles and Superthrackles
A thrackle thrackleis a drawing of a graph in which any two edges have exactly one
point in common [105]. In other words, in a thrackle, any two vertex-disjoint
edges cross exactly once and incident edges do not cross (see for example, Fig-
ure 2.16). Any graph that has a thrackle drawing on a surface Σ is thracklable

thracklablewith respect to Σ.
The notion of thrackle was defined by John Conway as he conjectured the

following:

Conjecture 1 (Conway’s Thrackle Conjecture [14, 105]). For a thracklable
graph G = (V, E), |E| ≤ |V |.
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Fig. 2.16 A thrackle

Despite considerable efforts, Conway’s thrackle conjecture is still open.
Lovász, Pach and Szegedy proved that every bipartite thracklable graph

is planar [80] and hence the number of edges of a bipartite thrackle with n

vertices cannot exceed 2n − 3. This bound later was improved to (3n − 3)/2
by Cairns and Nikolayevsky [15] and then to 167

117n ≈ 1.428n by Fulek and
Pach [52].

Currently, the tightest upper bound on the number of edges of a thrackle
is due to Fulek and Pach. They proved an upper bound of 1.3984n edges
for a thrackle with n vertices [53]. There are numerous other papers try-
ing to tighten the upper bound on the number of edges of thrackles (see for
example, [18, 61, 99, 100]).

Assuming that Conway’s Thrackle Conjecture is true, Woodall proved that
the bound stated in the conjecure is tight since any cycle other than C4 is a
thrackle [135]. Moreover, with the same assumption Woodall characterised all
thrackles as follows [135]: a graph is a thrackle if and only if

• it has at most one cycle of odd length, and

• it does not contain C4, and

• each of its connected components contains at most one cycle.

With this theorem in mind, to prove Conway’s thrackle conjecture it is
enough to verify that a graph that consists of two even cycles with one vertex
in common is not a thrackle [100, 135].

Many different variations of thrackles have been defined and studied during
the past few years. Pach and Sterling defined x-monotone thrackles as the ones
whose edges are arcs that meet every vertical line in at most one point. They
also verified Conway’s thrackle conjecture for this class of graphs.

Cairns and Nikolayevsky characterised outerthracklable graphs (see Theo-
rem 6). Moreover, they proved that the number of edges of an outerthracklable
graph does not exceed the number of vertices of the graph [17].
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A drawing D of a graph G is a generalised thrackle generalised
thrackle

if any two edges in D

have an odd number of points in common [16] (see for example, 2.17). Any
graph with a generalised thrackle drawing is a generalised thracklable generalised

thracklable
graph.

Fig. 2.17 A generalised thrackle

Cairns and Nikolayevsky characterised generalised thracklable graphs as
follows.

Theorem 31 ([16]). A graph is generalised thracklable on the plane if and
only if it has a parity embedding in the projective plane.

Superthrackles are defined by Archdeacon and Stor in [4]. They also char-
acterised superthrackles (see Theorem 8).

A drawing of a graph on a surface Σ is a 1-point superthrackle 1-point
superthrackle

if it can
be drawn as a superthrackle on Σ such that all the edge crossings occur at a
common point5. Any graph that can be drawn as a 1-point superthrackle on
surface Σ is 1-point superthracklable 1-point su-

perthracklable
with respect to Σ.

Archdeacon and Stor also proved the following.

Theorem 32 ([4]). The following classes of graphs are equivalent:

• superthracklable graphs,

• 1-point superthracklable graphs,

• graphs that have a parity embedding on the projective plane,

• graphs without a subgraph that is parity homeomorphic to any graph in
Figure 2.18.

Cairns and Nikolayevsky characterised generalised thracklable graphs [16]
and Archdeacon and Stor characterised superthracklable graphs [4] and the
two characterisations are the same (see Theorem 31 and Theorem 8). That
is, any generalised thracklable graph is a superthracklable graph.

5For this specific definition we relax the definition of a drawing so that three or more
edges can all cross at a common point.
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(a) V2 (b) W −
4 (c) K∗

5 (K5 with all of its
edges subdivided once)

u v
(d) K∗

5 (e) (K5 with all of
its edges except for one of
them subdivided once)

(e) K∗
3,3 (K3,3 with all

of its edges subdivided
once)

u v
(f) K∗

3,3(e) (K3,3 with all of
its edges except for one of
them subdivided once)

(g) Ψ4

(h) Φ4

Fig. 2.18 The obstruction set for superthrackles
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Theorem 33 ([4]). A graph is superthracklable if and only if it is generalised
superthracklable.

Tangles, tangled thrackles, and spherical thracles are some of the other
variations on thrackles. For definitions and results see [19, 94, 112].

For applications of thrackles see [1, 60].



3
Local Manipulations of Drawings

In this chapter we develop a set of moves that enable us to transform
any drawing of a graph G to any other drawing of G. We generalise these
moves to be applicable to drawings on all surfaces. We will use the results
of this chapter frequently in the rest of the thesis.

3.1 Local Manipulations of Drawings in the
Plane

In this chapter we introduce a set of local moves that would help us to trans-
form any drawing of a graph G to any other drawing of G. References to these
moves can be found in the literature individually. However to the best of our
knowledge we do not have a theorem in the literature that introduces a set of
moves for manipulating any drawing of a graph to obtain any other drawing
of it. For example, the Rp

III move, which we will introduce shortly, is used by
Gioan under the name of triangle transformation or a triangle switch to ma-
nipulate some of the drawings of Kn to each other [58]. The same move is used
by Arroyo et al. under the name of triangle-flip for manipulating drawings of
complete graphs [6].
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Recall that Kaufmann [70] and Yamada [136] independently proved that if
two (piecewise linear) projections P and P ′ represent the same embedding of
a graph in R3 then one can manipulate P and obtain P ′ by a finite sequence
of local moves (Theorem 5). We will use Theorem 5 to prove that there is a
set of five local moves that we can use to change any drawing of a graph to
any other drawing of it. The main idea in this proof is that any embedding
of a graph G in R3 can be transformed to any other embedding of G in R3

by allowing the edges to move freely in 3-space and also by allowing them to
pass through each other.

Proposition 1. Let D and D′ be two drawings of a graph G in the plane.
Then D and D′ are related by a finite sequence of the local moves given in
Figure 3.2.

Proof. The main idea of this proof is that any embedding of a graph G in
R3 can be converted to any other embedding of G in R3 if we allow the
edges to deform and pass through each other (see, for example, [2], page 219).
Roughly speaking, we convert D and D′ to two projections P and P ′ of G

and utilise Theorem 5 (the Reidemeister moves given in Figure 1.3) and the
idea we mentioned above to obtain P ′ from P . We then show than any of
the Reidemeister moves that we use to obtain P ′ from P corresponds to a
Reidemeister move in Figure 3.2 which we could have used to obtain D′ from
D. In the rest of this proof we will lay out these ideas in more detail.

Convert D and D′ to two projections P and P ′ of G by changing the
crossings in D and D′ to overcrossings and undercrossings arbitrarily. P and
P ′ are projections of two embeddings of G in R3, which may not be ambient
isotopic. However, as it was mentioned earlier, any embedding of a graph G

in R3 can be converted to any other embedding of G in R3 if we allow the
edges to deform and pass through each other. That is, by Theorem 5 we can
change P to P ′ by a finite sequence of Reidemeister moves from the set given
in Figure 1.3 and changing some overcrossings to undercrossings and some
undercrossings to overcrossings.

Obtain P ′ from P using a finite number k of steps, where each step is either
a single Reidemeister move from Figure 1.3 or changing an overcrossing to an
undercrossing or vice versa. Then change the undercrossings and overcrossings
to simple crossings in order to obtain D′ from P ′. Let P0 = P . For each
i ∈ {0, 1, ..., k}, let Pi represent the projection that is obtained by applying
the first i steps to P , and let Di be the drawing of G in the plane that is
obtained by changing overcrossings and undercrossings of Pi to crossings (see
Figure 3.1).
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D0 = D D1 D2 Di Di+1 Dk = D′

P1 P2

. . .

Pi Pi+1 Pk = P ′

. . .
P0 = P

Fig. 3.1 Transforming P to P ′ through a series of steps using Reidemeister
moves from Figure 1.3 and changes between overcrossings and undercrossings.
Any horizontal arrow in this picture represents either a Reidemeister move or
a change of an undercrossing to overcrossing or vice versa. Any downward
vertical arrow represents a transformation of a projection to a drawing by
changing overcrossings or undercrossings to crossings.

The transformation of P to P ′ via the intermediate steps Pi → Pi+1, to-
gether with the crossing removals that reduce Pi to Di, yield a transformation
of D to D′ through a series of steps by transforming each Di to Di+1. In each
step we can obtain Di+1 from Di, for all i ∈ {0, . . . , k − 1}, by:

1. Obtaining the projection Pi from Di by changing the crossings of Di to
overcrossings and undercrossings according to Pi.

2. Using one of the Reidemeister moves in Figure 1.3, or changing an un-
dercrossing to an overcrossing or vice versa, to change Pi to Pi+1.

3. Obtaining a drawing Di+1 from Pi+1 by changing overcrossings and un-
dercrossings of Pi+1 to crossings.

If the transformation of Pi to Pi+1 is obtained by a change of an overcrossing
to an undercrossing or vice versa, then Di = Di+1. If the transformation
of Pi to Pi+1 is obtained by a Reidemeister move from Figure 1.3, then the
transformation of Di to Di+1 is obtained by the corresponding Reidemeister
move from Figure 3.2.

Throughout the rest of this thesis we refer to any of the moves in Figure 3.2
by the symbol indicated in the figure (for example we refer to the first move
in this figure by Rp

I).

3.2 Local Manipulations of Drawings on Sur-
faces

In this section we generalise Proposition 1 to drawings on all surfaces.
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Rp
I

Rp
I

↔
Rp

II
Rp

II

↔
Rp

III
Rp

III

↔
Rp

IV
Rp

IV

...
...

↔
...
...

Rp
V

Rp
V

..

.

↔
..
.

Fig. 3.2 Reidemeister moves for plane graphs where Rp
IV and Rp

V are shown
for a vertex of degree 5.
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Rs Rs

...

... ↔

...

...
↔

...

...

Fig. 3.3 Reidemeister move Rs that is useful in manipulation of drawings of
graphs on a surface Σ other than the plane. The (red) dashed line represents
∂′(Σ) (or the fundamental polygon of Σ). Note that only the local neighbour-
hood of the boundary of Σ is shown in this figure.

↔ ↔

Fig. 3.4 An illustration of Rs for the torus.

Let Σ be any surface. We use Proposition 1 to prove that one can change
any drawing of a graph G on Σ to any other drawing of G on Σ using the moves
in Figure 3.2 and the extra move shown in Figure 3.3. Figure 3.4 depicts an
example of this move on the torus.

Throughout the rest of this thesis we refer to the move in Figure 3.3 by
Rs.

Proposition 2. Let η and η′ be two drawings of a graph G on a surface Σ
and let ∂′(Σ) denote the boundary of the fundamental polygon1 of Σ. Then
η and η′ are related by a finite sequence of the set of local moves depicted in
Figures 3.2 and Figure 3.3.

Proof. Let ηtemp be a drawing of G obtained from η by removing all the
crossings between edges of η and ∂′(Σ) using a finite number of Rs moves
(see Figures 3.5(a) and 3.5(b)). Let η− be a drawing of G on the plane Σ+

that is obtained from ηtemp by gluing a disk to ∂′(Σ) instead of identifying
the points of ∂′(Σ) pairwise in the usual way (see Figure 3.5(c)). Similarly,
let η′

temp be a drawing of G obtained from η′ by removing all the crossings
between edges of η′ and ∂′(Σ) using a finite number of Rs moves and let η′−

be a drawing of G on the plane Σ+ that is obtained from η′
temp by gluing a

disk to ∂′(Σ).
1For the definition of the fundamental polygon of a surface refer to Section 2.3.4.
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(a) η (b) ηtemp (c) η−

Fig. 3.5 η is a drawing of G on Σ. ηtemp is obtained from η by removing all
the crossings between edges of η and ∂′(Σ). η− is a drawing of G on the plane
Σ+ that is obtained by gluing a disk to ∂′(Σ).

By Proposition 1, there is a finite sequence of Reidemeister moves, each
taken from Figure 3.2, that transforms η− to η′−. Obtain η′− from η− in this
way. Now it is straightforward to remove a disk d from Σ+ and identify the
points on its boundary ∂(d) in pairs, so as to convert Σ+ back to Σ and then
use Rs as necessary to obtain the drawing η′ of G on Σ.

That is, we can obtain η′ from η by using the moves in Figure 3.2 and the
extra move shown in Figure 3.3.

3.3 Local Manipulations of Drawings on Sur-
faces with Boundaries

Let Σ be a surface with a boundary ∂(Σ) that consists of a union of k disjoint
closed curves c1, c2, . . . , ck. A drawing η of a graph G on a surface Σ is an
outer-k-drawing outer-k-drawingif all the vertices of G are located on ∂(Σ). In such a drawing,
each vertex is located on a component ci, 1 ≤ i ≤ k, of the boundary. For any
outer-k-drawing η on a surface Σ, we define the vertex-to-boundary assignment

vertex-to-
boundary
assignment

to be the function that maps each vertex v of G to the component c of ∂(Σ) on
which the vertex is located. Note that this function does not specify the cyclic
order of the vertices along c. We denote the vertex-to-boundary assignment
of η by ȯ(η).

We use Theorem 2 to prove the following.

Proposition 3. Let η and η′ be two outer-k-drawings of a graph G on a
surface Σ with the boundary ∂(Σ) and let ȯ(η) = ȯ(η′). Then η can be changed
to η′ by a finite sequence of the local moves depicted in Figures 3.2, 3.3 and
3.6 except for Rp

IV .
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Rop
I

Rop
I

...

...
↔

...

...

Rop
II

Rop
II

u
v

..
.

↔

v
u

..
.

Fig. 3.6 Reidemeister moves for outerdrawings of graphs where Rop
I and Rop

II

are shown for a cycle of the boundary on which all the vertices have three
edges incident with them.

Proof. Let c1, c2, . . . , ck be the components of ∂(Σ). Let ηtemp be a drawing
of G on the surface Σ+ obtained from η by gluing a disk di to component
ci, for each i, 1 ≤ i ≤ k, of ∂(Σ) so that, for each i, the boundary of di is
identified with ci. Let G+ be a graph obtained by adding a vertex vi to G for
each component ci, 1 ≤ i ≤ k, of the boundary ∂(Σ) such that vi is adjacent
to all the vertices on ci. We call these extra vertices disk vertices disk vertex. Let η+ be a
drawing of G+ on Σ+ that is obtained from ηtemp by placing vi in the interior
of di and making sure that the edges incident with vi are all routed within
di, meeting ci only at their endpoints, and that they do not cross (see, e.g.,
Figure 3.7).

Similarly, let η′
temp be a drawing of G on the surface Σ+ that is obtained

from η′ by gluing a disk di to each component ci, 1 ≤ i ≤ k, of the boundary
of Σ. Moreover, let η′+ be a drawing of G+ that is obtained from η′

temp by
placing vi on di and making sure that the edges incident with vi are all routed
within di, meeting ci only at their endpoints, and that they do not cross (see,
e.g., Figure 3.7).

Since η+ and η′+ are two drawings of G+ on the surface Σ+, by Proposi-
tion 2 η+ and η′+ are related by a finite sequence of the Reidemeister moves
given in Figures 3.2 and 3.3. Obtain the drawing η′+ from η+ by a finite
sequence S of j of the Reidemeister moves given in Figures 3.2 and 3.3. Let
η+

l , 1 ≤ l ≤ j represent the drawing obtained by applying the first l Reide-
meister moves in S to η+. Now let ηl be the outer-k-drawing of G that is
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(a) η (or η′) (b) η+ (or η′+)

Fig. 3.7 Obtaining η+ (or η′+) from η (or η′) by adding the red vertices and
edges to it.

v x2

x1

u

(a) η+
l

v x2

u

(b) after remov-
ing x1

v

u

(c) after remov-
ing x2

Fig. 3.8 Step 1. Obtaining ηl from η+
l

obtained from η+
l by:

1. For any edge (u, v) that is incident with a disk vertex v, let x1, x2, . . . , xi′

be the crossings on (u, v) ordered from u to v. Remove x1, x2, . . . , xi′ in
this specific order, using Rp

IV , by moving the edge that crosses (u, v) over
u. (For the first two steps in this process, see Figure 3.8.) Denote this
new drawing by η∗

l . An alternate (and equivalent) way of drawing the
removal of the crossings on (u, v) is given in Figure 3.9. Throughout the
rest of this proof we shall use the latter way of drawing the modifications
of the drawings as the edges near v remain straighter in appearance and
it makes understanding of the proof easier.

v x2

x1

u

(a) η+
l

v x2

u

(b) after remov-
ing x1

v u

(c) after remov-
ing x2

Fig. 3.9 An alternate way of achieving step 1 (where we obtain ηl from η+
l ).
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(a) choosing a disk for
any disk vertex

(b) removing the disks
associated with the
disk vertices from the
surface

Fig. 3.10 Step 2 of obtaining ηl from η+
l

2. At this point there are no crossings on the edges that are incident with
the disk vertices. For any disk vertex v, let dv be a disk in Σ+ with all
the vertices in N(v) on its boundary such that only v and all the curves
representing edges incident with v, excluding their endpoints other than
v, are located in the interior of dv (see, e.g., Figure 3.10(a)). We call such
disks vertex disks vertex disk. Remove the interiors of all vertex disks along with
all the edges and vertices on them from Σ+ (see, e.g., Figure 3.10(b)).

Transformation of η+ to η′+ happens through a series of steps by chang-
ing each η+

i to η+
i+1. Similarly, transformation of η to η′ happens through a

series of steps by changing each ηi to ηi+1. Figure 3.11 depicts the process of
transforming η to η′ and its relation with the process of transforming η+ to
η′+.

η∗ η∗1 η∗2 η∗l η∗l+1 η∗j = η′

η+ η+1 η+2

. . .

η+l η+l+1 η+j = η′+

. . .

η η1 η2 ηl ηl+1 ηj = η′

. . . . . .

Fig. 3.11 Transformation of η to η′ through a series of steps. Each horizontal
arrow represents a Reidemeister move from Figure 3.2 or 3.3.

Next we show that any ηl+1 can be obtained from ηl by a finite sequence
of the local moves depicted in Figures 3.2, 3.3 and 3.6 except for Rp

IV . Let R

be the Reidemeister move that changes η+
l to η+

l+1. We have 5 cases:
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v

u

(a) η+
l

v

u

(b) η+
l+1

v u

(c) η∗
l

v u

(d) η∗
l+1

Fig. 3.12 Comparing η+
l with η+

l+1 and η∗
l with η∗

l+1, where R = Rp
I .

Case 1, R = Rp
I . Let e be the edge that is affected by R performed on

η+
l . If e is not incident with any disk vertex then all changes to the drawing

occur outside the vertex disks, so ηl can be transformed to ηl+1 using one Rp
I .

If e is incident with a disk vertex v then the difference between η+
l and

η+
l+1, and consequently ηl and ηl+1, would be in a finite number of edges (all

the edges incident with u other than (u, v)) similar to what is depicted in
Figure 3.12.

Then it is straightforward to transform ηl to ηl+1 by tangling (or untan-
gling) the edges of ηl one by one using a number of Rp

I and Rp
II as shown in

Figure 3.13.

v u

(a)
v u

(b)
v u

(c)
v u

(d)
v u

(e)
v u

(f)
v u

(g)

Fig. 3.13 Comparing η∗
l to η∗

l+1. η∗
l can be transformed to η∗

l+1 using Rp
I and

Rp
II . Rp

I is used to transform (a) to (b) and (c) to (d) and (e) to (f) and Rp
II

is used to transform (b) to (c) and (d) to (e) and (f) to (g).

Case 2, R = Rp
II. Let e1 and e2 be the two edges that are affected by R

performed on η+
l . If e1 and e2 are not incident with any disk vertex then ηl

can be transformed to ηl+1 using Rp
II . If e1 or e2 or both are incident with

disk vertices, then ηl can be transformed to ηl+1 using Rop
II repeatedly for all

the edges of G that are incident with that endpoint of e1 or e2 or both that is
not a disk vertex (see, for example, Figure 3.14).

Case 3, R = Rp
III . Let e1, e2 and e3 be the three edges that are affected
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v

ue2

(a) η+
l

v

ue2

(b) η+
l+1

v

ue2

(c) η∗
l

v

ue2

(d) η∗
l+1

Fig. 3.14 Comparing η+
l with η+

l+1 and η∗
l with η∗

l+1, where R = Rp
II and

e1 = (u, v). η∗
l (c) can be changed to η∗

l+1 (d) using Rp
II .

by R performed on η+
l . If e1, e2 and e3 are all edges of G in η+

l , then ηl can
be transformed to ηl+1 using Rp

III .
If one, two or all three of the edges are incident with disk vertices then ηl

can be transformed to ηl+1 using Rop
III repeatedly for all the edges of G that

are incident with those endpoints of e1, e2 or e3 that are not disk vertices (see
for example Figure 3.15).

v u
e2

e3

(a) η+
l

v u
e2

e3

(b) η+
l+1

v u
e2

e3

X

(c) η∗
l

v u
e2

e3

X

(d) η∗
l+1

Fig. 3.15 Comparing η+
l with η+

l+1 and η∗
l with η∗

l+1, where R = Rp
III . Notice

that η∗
l , (c), can be changed to η∗

l+1, (d), using Rp
III .

Case 4, R = Rp
IV . Let u be the vertex and e be the edge that are affected

by R performed on η+
l as is shown in Figures 3.16(a) and 3.16(b). (Roughly

speaking, let e be the edge that is pulled from one side of u to the other side
of it.)

If u is a vertex of G in η+
l , then ηl can be transformed to ηl+1 by a number

of Rp
II moves (see for example Figure 3.17). If v is a disk vertex then it is

straightforward to see that ηl can be transformed to ηl+1 using Rop
I .

Case 5, R = Rp
V . Let u be the vertex that is incident with both of the

edges that are affected by R performed on η+
l . If u is a vertex of G (u is not

a disk vertex) then ηl can be transformed to ηl+1 using Rp
V .
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v
u

e

(a) η+
l

v
u

e

(b) η+
l+1

v
u

e

(c) η∗
l+1

Fig. 3.16 Comparing η+
l with η+

l+1 and η∗
l+1, where R = Rp

IV and v is the disk
vertex. Notice that η+

l (b) can be changed to η∗
l+1 (c) using Rp

II .

If u is a disk vertex then ηl can be transformed to ηl+1 using Rop
II (see for

example Figure 3.18).
That is, we can obtain ηl+1 from ηl by a finite sequence of the local moves

depicted in Figures 3.2, 3.3 and 3.6 except for Rp
IV .

Throughout the rest of this thesis we refer to the moves in Figure 3.6 by
their corresponding symbols (Rop

I and Rop
II).
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(a) η+
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(b) η+
l+1

u1
u

e

u5

u4
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(c) η∗
l

u1
u

e

u5

u4

u3
u2

(d) η∗
l+1

u1

e

u5

u4

u3

u2

(e) ηl

u1

e

u5

u4

u3
u2

(f) ηl+1

Fig. 3.17 Comparing η+
l with η+

l+1, where R = Rp
IV and v is the disk vertex.

Notice that ηl (Figure 3.17(e)) can be changed to ηl+1 (Figure 3.17(f)) using
Rop

I .
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(a) η+
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u1
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(b) η+
l+1
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u5
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(c) η∗
l

u1
u
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u3

u2

(d) η∗
l+1

u1

u5

u4

u3u2

(e) ηl

u1

u5

u4
u3

u2

(f) ηl+1

Fig. 3.18 Comparing η+
l with η+

l+1 and η∗
l with η∗

l+1, where R = Rp
V and u

is the disk vertex. Notice that ηl (Figure 3.18(e)) can be changed to ηl+1
(Figure 3.18(f)) using Rop

II .



4
The Hanani-Tutte Theorem and

Outerplanar graphs

In this chapter we prove two Hanani-Tutte type theorems for outerplanar
graphs. The first Hanani-Tutte type theorem is related to the rotational
order of the edges around the vertices and the second one is related to
the rotational order of the vertices around the boundary of the disk (or
the outerface of the drawing). We finish this chapter with a couple of
conjectures about outerplanar graphs.

In this chapter we develop two Hanani-Tutte type theorems for outer-
planar graphs. The first one, which is similar to the Weak Hanani-Tutte
Theorem, concerns drawings which preserve the rotational order of the edges
around the vertices in the drawing. Let u be a vertex in an outerdrawing
η. Let c be a circle centred at u that is located in the local neighbour-
hood of u. The rotational order of the edges around u in η (or πη(u)), is
the order in which we encounter all the edges adjacent to u as we traverse
c without encountering the boundary of the disk on which η is drawn. For
example, πη(u) in Figure 4.1(a) is (eu

1 , eu
2 , . . . , eu

i , e, eu
i+1, eu

i+2, . . . , eu
j ) rather

than (eu
j , eu

1 , eu
2 , . . . , eu

i , e, eu
i+1, eu

i+2, . . . , eu
j−1). Therefore in outerdrawings, ro-

tational orders of edges around vertices are total orders and not cyclic orders.
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The second one, which is similar to the Strong Hanani-Tutte Theorem, con-
cerns the drawings which preserve the rotational order of the vertices around
the boundary of the disk. We break this chapter in two sections accordingly.

4.1 Rotational Order of the Edges Around the
Vertices

In this section we prove a Hanani-Tutte type theorem that is closely related to
the rotational system of the edges around the vertices in outerdrawings of the
graph. (Please refer to Section 2.3 for the definition of the rotational system
of the edges around the vertices and its notation.)

Lemma 1. Let η be an outerdrawing of a graph G such that any edge in η

crosses any cycle in η an even number of times. Then there is an outerem-
bedding η′ of G such that Πη′ = Πη.

Proof. Let Σ be the disk (with the boundary ∂(Σ) that consists of a cycle) on
which η is drawn. We assume that G is connected.

We prove the lemma by induction on the number of vertices. In the base
case η has a single vertex v and any edge (in this case, a loop) crosses any
cycle (in this case, also a loop) an even number of times. For the proof of the
base case we refer the reader to the elegant proof of the base case of Theorem
3.2 of [96] by Pelsmajer, Schaefer and Štefankovič.

We proceed to the inductive case. Let (u, v) be an edge of η, where u 6= v.
Let

πη(u) = (eu
1 , eu

2 , . . . , eu
i , e, eu

i+1, eu
i+2, . . . , eu

j )

where 1 ≤ i ≤ j and eu
k = (u, uk) (see, for example, Figure 4.1(a)). Moreover,

let
πη(v) = (ev

1, ev
2, . . . , ev

i′ , e, ev
i′+1, ev

i′+2, . . . , ev
j′)

where 1 ≤ i′ ≤ j′ and ev
k′ = (v, v′

k) (see, for example, Figure 4.1(b)).
Since (u, v) crosses any cycle C an even number of times, there cannot be

any path P from us, 1 ≤ s ≤ i, to ut, i+1 ≤ t ≤ j, that is vertex-disjoint from
(u, v). Otherwise, (u, v) crosses the cycle (u, us) ∪ P ∪ (ut, u) an odd number
of times, which is a contradiction since η is an outerdrawing (see for example
Figure 4.2(a)). Similarly, since (u, v) crosses any cycle C an even number of
times, there cannot be any path from vs, 1 ≤ s ≤ i′, to vt, i′ + 1 ≤ t ≤ j′, that
is vertex-disjoint from (u, v).
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u

... ..
.

eu1

eui e eui+1

euj

u1

ui v
ui+1

uj

(a) edges incident with u in η

v

... ..
.

ev1

evi e evi+1

evj

v1

vi u
vi+1

vj

(b) edges incident with v in η

Fig. 4.1 edges around u and v in η.

us

ut

P

u

v

(a)
u

v

(b) η

x
(c) η−

Fig. 4.2 Figure 4.2(a) depicts (u, v) crossing a cycle an odd number of times.
Figures 4.2(b) and 4.2(c) depict the edge (u, v) and the edges incident with
v as (u, v) is contracted to a vertex x while preserving the cyclic order of the
edges around the vertices.

It follows that any path in η from any vertex us, 1 ≤ s ≤ i, to any vertex
ut, i + 1 ≤ t ≤ j, contains u or v, and any path in η from any vertex vs, 1 ≤
s ≤ i′, to any vertex vt, i′ + 1 ≤ t ≤ j′, contains u or v.

Let G− be the graph that is obtained by contracting (u, v) to x. Let η− be
a drawing of G− that is obtained by contracting (u, v) in η while preserving
the rotational order of the edges around each vertex such that the edges that
are incident with v (in η) follow the path of (u, v) sufficiently closely and are
joined to x in η− (see, for example, Figures 4.2(b) and 4.2(c)). Clearly η− is
an outerdrawing. Moreover, any edge in η− crosses any cycle in η− an even
number of times since:

1. (u, v) crosses any cycle in η an even number of times and therefore any
edge that was incident with v in η and now follows the path of (u, v) in
η− crosses any cycle an even number of times (see Figure 4.3(a)).

2. any cycle C containing v has two edges incident with v and therefore
if these two edges each follow the path of (u, v) sufficiently closely, to-
gether they cross any edge along the way an even number of times (see
Figure 4.3(b)).

By induction, there is an outerembedding η′− of G− such that Π(η′−) =
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x
(a)

x
(b)

Fig. 4.3 Any edge e crosses any cycle C an even number of times in η−. The
edges of C are shown in red and e is shown in green.

u

... ...
eu1

eui
e
eui+1

euj

(a) neighbourhood of u in η

x
... ...

eu1

eui

ev1

eui+1

euj

evj′
.. . evi′

evi′+1
...

(b) neighbourhood of x in η′−

Fig. 4.4 (a) order of the edges around u. (b) angle ∠xv in η′− in green contains
ev

1, ev
2, . . . , ev

k and separates eu
1 , eu

2 , . . . , eu
i from eu

i+1, eu
i+2, . . . , eu

j .

Π(η−). Since Π(η′−) = Π(η−), there is an angle ∠xv in η′− centred at x that
contains all the intersections between the local disk Σx of x and ev

1, ev
2, . . . , ev

j′

and separates eu
1 , eu

2 , . . . , eu
i from eu

i+1, eu
i+2, . . . , eu

j (see Figure 4.4).
As mentioned before, any path in η from any vertex us, 1 ≤ s ≤ i, to any

vertex ut, i + 1 ≤ t ≤ j, contains u or v, and any path in η from any vertex
vs, 1 ≤ s ≤ i′, to any vertex vt, i′ + 1 ≤ t ≤ j′, contains u or v. Therefore any
path from any of the vertices u1, u2, . . . , ui or vi′+1, vi′+2, . . . , vj′ to any of the
vertices ui+1, ui+2, . . . , uj or v1, v2, . . . , vi′ passes through x.

Let H = G− \ x. Let C1 be the union of the connected components of
H that contain at least one of the vertices u1, u2, . . . , ui or vi′+1, vi′+2, . . . , vj′ .
Similarly, let C2 be the union of the connected components of H that contain
at least one of the vertices ui+1, ui+2, . . . , uj or v1, v2, . . . , vi′ .

Since any vertex in {u1, u2, . . . , ui}∪{vi′+1, vi′+2, . . . , vj′} is adjacent to u or
v, x is adjacent to a vertex in C1 and since any vertex in {ui+1, ui+2, . . . , uj}∪
{v1, v2, . . . , vi′} is adjacent to u or v, x is adjacent to a vertex in C2.

Let v1 and v2 be two vertices of C1 and let v3 be a vertex of C2. Vertices
v1, v3, v2, x cannot appear in this order (or its reverse) on ∂(Σ) in η′− since
then, considering π(x), there would be at least one crossing in η′− between
two of the edges that are incident with x. In other words, the vertices of C1
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x

C1 C2
.p

... ...

(a) η′−; Point p separates ver-
tices of C1 from vertices of
C2.

u

C1 C2

v

... ...

...
...

(b) η′; v is located at the po-
sition of point p.

Fig. 4.5 Decontracting x to (u, v)

appear consecutively on ∂(Σ) and the vertices of C2 also appear consecutively
on ∂(Σ) (see Figure 4.5(a)).

Hence there is a point p on ∂(Σ) such that the vertex in η′− that appears
before (or after) p on ∂(Σ) belongs to C1 and the vertex that appears after (or
before) p on ∂(Σ) belongs to C2. Roughly speaking, p separates the vertices
of C1 form the vertices of C2 on ∂(Σ) (see Figure 4.5(a)) and since any path
from any vertex of C1 to any vertex of C2 passes through x, it follows that p

is on the same face of η′− as is x (see Figure 4.5(a)).
Now it is straightforward to decontract x to (u, v) (without introduc-

ing any crossings), locating u at the position of x and v at the position of
p while preserving Π(η′−), to obtain an outerembedding η′ of G (see Fig-
ure 4.5(b)). Since there are no crossings in η′− and Π(η′−) = Π(η−), vertices
u1, u2, . . . , ui and vi′+1, vi′+2, . . . , vj′ (which are vertices of C1) and v1, v2, . . . , vi′

and ui+1, ui+2, . . . , uj (which are vertices of C2) appear exactly in this order
on ∂(Σ) and therefore after the decontraction Πη′ = Πη.

The next two lemmas investigate the relationship between the Reidemeis-
ter moves we introduced in Chapter 3 and the parity of the number of crossings
between an edge and a cycle in outerdrawings.

Lemma 2. Rp
I , Rp

II , Rp
III and Rop

II preserve the parity of number of crossings
between an edge and a cycle that are edge-disjoint in an outerdrawing.

Proof. Clearly, Rp
II preserves the parity of the number of crossings between

any two edge-disjoint cycles. Moreover, since the parity of the number of
crossings between an edge and a cycle only changes by introducing or removing
crossings between two distinct edges, it follows that Rp

I and Rp
III also preserve

the parity of the number of crossings between two cycles.
Roughly speaking, in Rop

II we are switching the order of two vertices u and
v on the boundary of a surface and we are introducing a crossing between
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..
.

...
vj

v1

vi+1

vi

(a) before (or after) Rop
I

..
.

...
vj

v1

vi+1

vi

(b) after (or before) Rop
I

Fig. 4.6 Rop
I preserves the parity of the number of crossings between an edge

and a cycle in an outerdrawing.

any edge e1 and cycle C where e is incident with u and C contains v (or e

is incident with v and C contains u). Since any cycle has either 0 or 2 edges
incident with u or v, we either increase the number of the crossings between
any e and C by 0 or by 2. Therefore we do not change the parity of the
number of crossings between the edges and cycles in a drawing by performing
Rop

II .

Lemma 3. The Rop
I move preserves the parity of the number of crossings

between two edges in an outerdrawing η.

Proof. Let Σ be the disk on which η is drawn. Roughly speaking, in Rop
I

we are pushing an edge e from one side of ∂(Σ) to another side of it. Let
v1, v2, . . . , vi be the vertices on one side of ∂(Σ) and let vi+1, vi+2, . . . , vj be
the vertices on the other side of ∂(Σ) (see Figure 4.6).

Clearly, e is always involved in all the crossings that are removed or intro-
duced. So if the parity of the number of crossings between two edges e1 and
e2 changes then either e = e1 or e = e2. Without loss of generality let e = e1

and let e2 = (u, v). We have two cases.
Case 1. u ∈ {v1, v2, . . . , vi} and v ∈ {vi+1, vi+2, . . . , vj} (or vice versa).

In this case the number of crossings between the two edges does not change.
Case 2. u, v ∈ {v1, v2, . . . , vi} or u, v ∈ {vi+1, vi+2, . . . , vj}. Therefore

the Rop
I move either adds two crossings between the two edges or removes two

crossings from the two edges. Therefore the parity of the number of crossings
between e′ and C remains the same.

We are now prepared to prove the following lemma.

Lemma 4. Let η be an outerembedding of a graph G and let η′ be an outer-
drawing of G such that Πη = Πη′. Then any edge crosses any cycle an even
number of times in η′.
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Proof. Since there are no crossings in η, any edge crosses any cycle in η an even
number of times. By Theorem 3, any outerdrawing η′ of G can be obtained
from η by Rp

I , Rp
II , Rp

III , Rp
V , Rop

I Rop
II . Moreover, by Lemma 2 and Lemma 3,

all of these moves except for Rp
V preserve the parity of the number of crossings

between an edge and a cycle in a drawing. So it is enough to show that we
can obtain η′ from η by Rp

I , Rp
II , Rp

III , Rp
V , Rop

I , Rop
II in such a way that the

usage of Rp
V does not change the parity of the crossings between the edges

and cycles.
Since the rotational order of edges around edges in outerdrawings is a

total order and Πη = Πη′ , any time that we use Rp
V to switch the place of

an edge e1 with an edge e2 in the rotational order of edges around a vertex
we need to use Rp

V to do the reverse and switch the place of e2 with e1 and
therefore usage of Rp

V in the transformation of η to η′ preserves the parity of
the number of crossings between any cycle and edge in the drawing and the
lemma follows.

Lemma 1 and Lemma 4 provide us with the following theorem.

Theorem 34. For any graph G, let Π be a rotational system of the edges
around the vertices of G. The following statements are equivalent:

1. There is an outerembedding η of G where Πη = Π.

2. There is an outerdrawing η′ of G in which any edge crosses any cycle an
even number of times and Πη′ = Π.

3. In any outerdrawing η′′ of G where Πη′′ = Π, every edge crosses every
cycle an even number of times.

One way of using the above theorem is as follows. To determine whether a
rotational system Π of edges around the vertices of G is a rotational system of
edges around the vertices of an outerembedding of G, we can draw an arbitrary
outerdrawing η of G such that Πη = Π and check whether edges cross cycles
an even number of times in η.

4.2 Rotational order of vertices around the
boundary

In this section we prove a Hanani-Tutte type theorem that is closely related
to the rotational order of the vertices around the boundary of the disk in the
drawings of the graph.
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Lemma 5. Let η be an outerdrawing of a graph G in which any two vertex-
disjoint edges cross each other an even number of times. Then there is an
outerembedding η′ of G with ρ(η′) = ρ(η).

We provide three different proofs for this lemma as in each of our method
for proving this lemma is completely different.

Proof 1. We prove by induction on the number of the vertices. In the base
case G has a single vertex and the lemma holds trivially.

Suppose that G has more than one vertex. Let Σ be the disk on which η is
drawn. Let u and v be two consecutive vertices of η on ∂(Σ). Let v1 ∈ N(u)\v

and v2 ∈ N(v) \ u. Since any two vertex-disjoint edges in η cross an even
number of times, u, v2, v1, v cannot appear in this order on ∂(Σ), otherwise
(u, v1) crosses (v, v2) an odd number of times (see, for example, Figure 4.9(a)).
Therefore, vertices of N(u) and vertices of N(v) do not appear interleaved on
∂(Σ). Roughly speaking, vertices of N(u) appear on one of side of ∂(Σ) and
vertices of N(v) appear on the other side of ∂(Σ) (see Figure 4.9(b)).

u
v

v2 v1

(a) two edges crossing
an odd number of times

u
v

N(u) N(v)

(b) vertices of N(u) and N(v)
on ∂(Σ)

Fig. 4.7 Vertices of N(u) and N(v) cannot appear interleaved on ∂(Σ)

Obtain ηtemp from η by deleting the edge (u, v) (if it exists) and adding an
edge between u and v such that it follows ∂(Σ) closely enough so that it does
not cross any other edges. Since (u, v) is not crossed by any edges in ηtemp,
any two vertex-disjoint edges still cross each other an even number of times
in ηtemp. Moreover ηtemp remains an outerdrawing.

Let G− be the graph that is obtained by contracting (u, v) into a vertex x

and let η− be a drawing of G− that is obtained by contracting (u, v) in ηtemp

while preserving the cyclic order of the edges around vertices as illustrated in
Figure 4.8. Roughly speaking, the edges that are incident with v (in η) follow
the path of (u, v) and are joined to x in η−.

Since any two vertex-disjoint edges in η− cross each other an even number
of times and η− is an outerdrawing, by induction there is an outerembedding
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v
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eu3

ev1

ev2
ev3

(a) before contraction

x

eu2eu1
eu3

ev1

ev2
ev3

(b) after contraction

Fig. 4.8 Contracting (u, v) to a vertex x while preserving the cyclic order of
the edges around the vertices

η′− of G such that ρ(η′−) = ρ(η−). This implies that, vertices of N(u) and
vertices of N(v) do not appear interleaved on ∂(Σ).

Let e1 = (u, v1) be an edge that is incident with u in η and let e2 = (v, v2)
be an edge that is incident with v in η. As there are no crossings in η′−, e1 and
e2 should appear in the same order in π(x) as v1 and v2 appear in ρ(η′) (see
Figure 4.9). Hence, if we let eu

1 , eu
2 , . . . , eu

i be the edges that are incident with
u in η and ev

1, ev
2, . . . , ev

j be the edges that are incident with v in η, there is a
straight-line ray r that starts at x and separates all the intersections between
the local disk Σx of x and eu

1 , eu
2 , . . . , eu

i from all the intersections between Σx

and ev
1, ev

2, . . . , ev
j (see Figure 4.10(a)).

x

π(x)

v2 v1

ρ(η′−)

e2e1

(a) π(x) and ρ(η′−) do not al-
low existence of a drawing η′−

without crossings

x

π(x)

v2 v1

ρ(η′−)

e2 e1

(b) π(x) and ρ(η′−) in a η′−

without crossings

Fig. 4.9 Edges e1 and e2 should appear in the same order in π(x) as v1 and v2
appear in ρ(η′−) so that η′− does not have any crossings.

Now it is straightforward to decontract x to (u, v) and obtain an outerem-
bedding η′ of G with ρ(η′) = ρ(η) by locating u at the position of x and
locating v at a point very close to x (see Figure 4.10).

Proof 2. Since Rp
I does not change the parity of the crossings between two

independent edges, if an edge crosses itself we can use Rp
I to remove that
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ev1

ev2

ev3v

(b) after decontraction

Fig. 4.10 Decontracting x to (u, v)

crossing. Therefore, throughout this proof we assume that no edge crosses
itself.

We prove this theorem by induction on the number of crossings. In the
base case there is no crossing in η and therefore G is outerplanar. We proceed
to the inductive cases.

Case 1. There are two independent edges e = (v1, v2) and e′ =
(v3, v4) in η such that e crosses e′ an even number of times. Let x1 and
x2 be two consecutive crossings between e and e′ on e, so that crossings x1

and x2 divide e into three segments: the part from v1 to x1 or x2, whichever
appears first as we move from v1 towards v2 on (v1, v2) (say x1), the part from
x1 to x2 and the part from x2 to v2. Similarly x1 and x2 divide e′ into three
segments: the part from v3 to x1 or x2, whichever appears first as we move
from v3 towards v4 on (v3, v4) (say x1), the part from x1 to x2 and the part
from x2 to v4.

We shall reroute e or e′ in η to obtain a drawing of G with a smaller
number of crossings in which any two independent edges cross each other an
even number of times. Let l denote the part of e from x1 to x2 and let l′

denote the part of e′ from x1 to x2. Let C denote the cycle that is formed
by l and l′. Since no edge crosses itself, l and l′ do not have self-crossings.
Moreover, since crossings x1 and x2 are two consecutive crossings between e

and e′ on e, l and l′ do not cross each other. Therefore C is a simple cycle (C
does not cross itself).

Since η is an outerdrawing, all the vertices of G are located outside C.
Therefore the parity of the number of crossings of any arbitrary edge e′′ and
l is equal to the parity of the number of crossings of e′′ and l′. Therefore we
can redraw e and e′ near x1 and x2 to remove x1 and x2 (see Figure 4.11) such
that:

• the redrawn e consists of the part of e from v1 to x1 and l′ in η and the
part of e from x2 to v2 and
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(a) before (b) after

Fig. 4.11 Strengthened version of Rp
I .

v1 v2

v3 v4
(a) before

v1 v2

v3 v4
(b) after

Fig. 4.12 Removing two crossings on two edges that cross each other an even
number of times using the strengthened version of Rp

I .

• the redrawn e′ consists of the part of e′ from v3 to x1 and l in η and the
part of e′ from x2 to v4.

Then we can manipulate the drawing in the neighbourhood of x1 and x2 such
that e and e′ do not touch at x1 and x2. (See, e.g., Figure 4.12.)

Then we obtain a drawing η− of G with a smaller number of crossings
compared to η in which any two independent edges cross each other an even
number of times. Moreover ρ(η−) = ρ(η). Therefore, by induction, G has an
outerembedding η′ such that ρ(η′) = ρ(η).

Case 2. No two independent edges in η cross an even number
of times. In other words, if there is a crossing in η then it is formed by an
intersection of two edges that are both incident with one vertex. Let x be a
crossing in η that is formed by the intersection of e = (u, v) and e′ = (v, w).
Crossing x divides e into two segments: ux, xv and it divides e′ into two
segments vx, xw. Let l denote the part of e from v to x and let l′ denote the
part of e′ from v to x. Let C denote the simple cycle that is formed by l and
l′.

Since all the vertices of G, except v, are located outside C, the parity of
the number of crossings of any arbitrary edge e′′ (that is not incident with v)
and l is equal to the parity of the number of crossings of e′′ and l′. Hence we
can remove the crossing between e and e′ using the strengthened version of the
Rp

I move as shown in Figure 8.13, obtaining a drawing η− of G with a smaller
number of crossings compared to η in which any two independent edges cross
each other an even number of times. Moreover ρ(η−) = ρ(η). Therefore, by
induction, G has an embedding η′ such that ρ(η′) = ρ(η).
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v
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w
(a) before

v

u

w
(b) after

Fig. 4.13 Removing a crossing from two adjacent edges using the strengthened
version of Rp

I .

Proof 3. Define a separating edge to be an edge that joins two non-consecutive
vertices in ρ(η). We prove this lemma by induction on the number of sepa-
rating edges. In the base case there are no separating edges in η. That is, the
endpoints of any edge of G are consecutive in ρ(η) and therefore G is a cycle
and it is straightforward to draw an outerembedding of G. We proceed to the
inductive case.

Let (u, u′) be a separating edge in η. As we traverse the vertices in ρ(η)
in the clockwise direction, let Ur be the set of the vertices in ρ(η) that appear
after u and before u′ and let Ul be the set of the vertices in ρ(η) that appear
after u′ and before u. Both Ur and Ul are nonempty, by definition of the
separating edge.

There is no edge (ul, ur) in η such that ul ∈ Ul and ur ∈ Ur, otherwise it
would cross (u, u′) an odd number of times. Let Gr = G[{u, u′} ∪ Ur] and let
ηr be the drawing of Gr obtained from η by deleting the vertices of Ul and
their incident edges. Let Gl = G[{u, u′} ∪ Ul] and let ηl be the drawing of Gl

obtained from η by deleting the vertices of Ur and their incident edges.
Any separating edge in either ηr and ηl is a separating edge in η. Moreover,

(u, u′) is a separating edge in η but it is not a separating edge in ηr or ηl.
Therefore, the number of separating edges in Gr and Gl is fewer than the
number of separating edges in G and ηr and ηl are two outerdrawings of
Gr and Gl respectively in which any two vertex-disjoint edges cross an even
number of times. Therefore by induction there is an outerembedding η′

r of Gr

and an outerembedding η′
l of Gl such that ρ(η′

r) = ρ(ηr) and ρ(η′
l) = ρ(ηl).

Let dr and dl be the disks on which ηr and ηl are drawn. Since ρ(η′
r) = ρ(ηr)

and ρ(η′
l) = ρ(ηl), u and u′ appear consecutively on both ∂(dr) and ∂(dl). As

we traverse ∂(dr) in the clockwise direction, let ∂r be that part of ∂(dr) from
u′ to u (on which any point appears after u′ and before u). Similarly, as we
traverse ∂(dl) in the clockwise direction, let ∂l be that part of ∂(dl) from u to
u′ (on which any point appears after u and before u′). Choose a direction for
∂r and ∂l such that both of them are directed from u′ to u (see Figures 4.14(b)
and 4.14(a)). Let η′ be the embedding that is obtained from η′

r and η′
l by:
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u

u′

∂l

(a) ηl; ∂l is depicted
in red.

u

u′

∂r

(b) ηr; ∂r is depicted
in red.

u

u′

(c) η′

Fig. 4.14 Obtaining η′ from ηl and ηr.

1. gluing dr and dr together such that ∂r is identified with ∂l in the forward
direction.

2. deleting one of the two curves that represents (u, u′) (see Figure 4.14(c)).

η′ is an outerembedding of G and therefore the lemma follows.

Let η be an outerdrawing of a graph G on a disk Σ. Let p1 and p2 be two
points on ∂(Σ). We say p1 and p2 separate vertices v1 and v2 of η if v1 and v2

are in two distinct components of ∂(Σ) \ {p1, p2}.

Proposition 4. Let η be an outerdrawing of a graph G on a disk Σ and let
p1 and p2 be two points on ∂(Σ) such that:

1. the order of the vertices of G and the points p1 and p2 on ∂(Σ) is as fol-
lows: v1, v2, . . . , vi, p1, v′

1, v′
2, . . . , v′

i′ , p2 (where v1, v2, . . . , vi, v′
1, v′

2, . . . , v′
i′

are the vertices of G).

2. any pair of vertex-disjoint edges (vj, v′
k), 1 ≤ j ≤ i, 1 ≤ k ≤ i′ cross each

other an odd number of times.

3. any other pair of vertex-disjoint edges cross an even number of times.

Then there is an outerembedding η′ of G such that:

ρ(η′) = v1, v2, . . . , vi, v′
i′ , v′

i′−1, . . . , v′
1.

Proof. We prove this by induction on the number of vertices. In the base
case, G has two vertices that are separated by p1 and p2, and the lemma holds
trivially. We proceed to the inductive case.

Let u and v be two consecutive vertices of η on ∂(Σ) that are not separated
by p1 and p2. Let u′ ∈ N(u) \ {v} and let v′ ∈ N(v) \ {u}.
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If p1 and p2 separate u′ from u and v′ from v, by the second condition of
this lemma, u, u′, v′, v cannot appear in this order on ∂(Σ), otherwise (u, u′)
crosses (v, v′) an even number of times (see, for example, Figure 4.15(a)).
Therefore, those vertices of N(u) and N(v) that are separated from u and v

by p1 and p2 do not appear interleaved on ∂(Σ) (see Figure 4.16(a)).

u
v

v′u′

p1
p2

(a) Edges (u, u′) and (v, v′)
crossing an even number of
times, violating first condition
of the lemma.

u
v

v′ u′
p1

p2

(b) Edges (u, u′) and (v, v′)
crossing odd number of times,
violating the second condition
of the lemma.

Fig. 4.15 Order of vertices on ∂(Σ)

If p1 and p2 do not separate u′ from u and v′ from v, by the third condi-
tion of this lemma, u, v′, u′, v cannot appear in this order on ∂(Σ), otherwise
(u, u′) crosses (v, v′) an odd number of times (see for example, Figure 4.15(b)).
Therefore, those vertices of N(u) and N(v) that are not separated from u and
v by p1 and p2 do not appear interleaved on ∂(Σ) (see Figure 4.16(b)).

Obtain a drawing ηtemp from η by deleting the edge (u, v) from η (if it
exists) and adding an edge between u and v such that it follows ∂(Σ) closely
enough that it does not meet any other edges. Since u and v are not separated
by p1 and p2 in ηtemp and (u, v) is not crossed by any edges in ηtemp, both of
the conditions of this lemma still hold in ηtemp. Therefore ηtemp remains an
outerdrawing.

Obtain a graph G− from G and a drawing η− from ηtemp by a similar
process to that described in the first proof of Lemma 5 (see Figure 4.8).

It is straightforward to see that conditions 1 and 2 of this lemma hold
for η−. By induction there is an outerembedding η′− of G such that if
ρ(η−) = v1, v2, . . . , x = vj, . . . , vi−1, v′

1, v′
2, . . . , v′

i′ then ρ(η′−) = v1, v2, . . . , x =
vj, . . . , vi−1, v′

i′ , v′
i′−1, . . . , v′

1. Hence, vertices of N(u) and vertices of N(v) do
not appear interleaved on ∂(Σ). Roughly speaking, vertices of N(u) appear
on one of side of ∂(Σ) and vertices of N(v) appear on the other side of ∂(Σ)
(see Figure 4.16).

Therefore, by similar reasoning to that described in the first proof of
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x

N(v) N(u)

p1
p2

N(v)N(u)

(a) η−
x

p1
p2

N(v)N(u)

(b) η′−

Fig. 4.16 Order of vertices on ∂(Σ) in η− and η′−

Lemma 5, it is possible to decontract x to (u, v) and obtain an outerembedding
η′ of G with ρ(η′−) = v1, v2, . . . , vj−1, vj = u, vj+1 = v, . . . , vi, v′

i′ , v′
i′−1, . . . , v′

1

(see Figure 4.10).

The next lemma investigates the relation between the Reidemeister moves
that we introduced in Chapter 3 and the parity of the number of crossings
between two vertex-disjoint edges in outerdrawings.

Lemma 6. Rp
I , Rp

II , Rp
III , Rp

V preserve the parity of the number of crossings
between two vertex-disjoint edges in an outerdrawing.

Proof. The proof is straightforward.

Now we are prepared to prove the following lemma.

Lemma 7. Let η be an outerembedding of a graph G on a disk Σ. Then any
two vertex-disjoint edges cross an even number of times in any outerdrawing
η′ of G with Πη′ = Πη.

Proof. The proof of this lemma is very similar to the proof of Lemma 4. In
the proof of Lemma 4 we used Lemma 2. Here we use Lemma 6 instead.

Lemma 5 and Lemma 7 enable us to establish the following result.

Theorem 35. Let ρ be a sequence of the vertices of a graph G. The following
statements are equivalent:

1. There is an outerembedding η of G on a disk such that ρη = ρ.

2. There exists an outerdrawing η′ of G such that ρη′ = ρ and any two
vertex-disjoint edges in η′ cross each other an even number of times.

3. In any outerdrawing η′′ of G where ρη′′ = ρ, every two vertex-disjoint
edges cross each other an even number of times.
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4.3 Characterisations of Outerplanar Graphs
Theorem 34 and Theorem 35 provide us with the following two characterisa-
tions of outerplanar graphs.

Theorem 36. A graph G is outerplanar if and only if there is an outerdrawing
η of G such that any edge in η crosses any cycle in η an even number of times.

Theorem 37. A graph G is outerplanar if and only if there is an outerdrawing
η of G such that any two vertex-disjoint edges in η cross an even number of
times.

We propose the following two conjectures about outerplanar graphs.

Conjecture 2. A graph G is outerplanar if and only if there is an outerdraw-
ing η of G such that any two vertex-disjoint edges in any cycle in η cross each
other an even number of times.

Conjecture 3. Let G∗ be the dual of an outerembedding of a graph G. Then
G∗ does not contain the graphs shown in Figure 4.17 as minors.

(a) K4 (b) (c) K3 ∪ K3

Fig. 4.17 Three minimal excluded minors, mentioned in Conjecture 3, for the
graphs that are duals of outerembeddings.



5
Non-separating Planar Graphs

5.1 Non-separating Planar Graphs

In this chapter, we show that a graph is a non-separating planar graph if
and only if it does not contain any of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as
a minor.
Furthermore, we show that any maximal non-separating planar graph is
either an outerplanar graph or a wheel or it can be obtained by subdi-
viding some of the side-edges of the 1-skeleton of a triangular prism (two
disjoint triangles linked by a perfect matching).

Let C be a cycle in a planar drawing D of a graph G, then C is a separating
cycle separating cycleif there is at least one vertex in the interior of C and one vertex in the
exterior of C.

A non-separating planar drawing non-separating
planar drawing

of a graph is a planar drawing of the
graph that does not contain any separating cycles. A non-separating planar
graph non-separating

planar graph
is a graph that has a non-separating planar drawing (see for example

Figure 5.1).
In this chapter we characterise non-separating planar graphs. Non-separating

planar graphs are a subclass of planar graphs and a superclass of outerplanar
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Fig. 5.1 Three examples of non-separating planar graphs

graphs and are closed under minors. To characterise non-separating planar
graphs we prove Theorems 38 and 39 as follows.

Theorem 38. A graph G is a non-separating planar graph if and only if
it does not contain any of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a minor (see
Figure 5.2).1

(a) K1 ∪ K4 (b) K1 ∪ K2,3 (c) K1,1,3

Fig. 5.2 Minimal excluded minors for non-separating planar graphs

A graph is a triangular prism triangular prismif it is isomorphic to the graph that is
depicted in Figure 5.3(a). A graph is an elongated triangular prism elongated

triangular prism
if it is a

triangular prism or if it is obtained by some sequence of subdivisions of the
red dashed edges of the triangular prism depicted in Figure 5.3(b).

We also characterise non-separating planar graphs in terms of their struc-
ture as follows.

Theorem 39. Any non-separating planar graph is one of the following:

1. an outerplanar graph,

2. a subgraph of a wheel,

3. a subgraph of an elongated triangular prism.

Theorems 38 and 39 together provide us with Theorem 40:

Theorem 40. The following are equivalent, for any graph G:

1where ∪ denotes the disjoint union
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(a) Triangular prism (b) Elongated triangular prism

Fig. 5.3 Triangular prism and elongated triangular prism

1. G does not contain any of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a minor.

2. G is outerplanar or a subgraph of a wheel or a subgraph of an elongated
triangular prism.

3. G is a non-separating planar graph.

5.2 Preliminary Lemmas
A path P in a graph G is said to be chordless chordlessif there is no edge between any
two non-consecutive vertices of P in G. A uv-path uv-pathis a path from a vertex u

to a vertex v.
Vertices u and v, in a subdivision S of K2,3, are called terminal

vertices
the terminal vertices

of S if both u and v have degree 3 in S. Define the terminal paths in S as the
three uv-paths in S terminal paths.

Next we will prove a couple of lemmas about the graphs that do not contain
K1,1,3 as a minor (see Figure 5.4).

Fig. 5.4 K1,1,3

Lemma 8. Every terminal path in a spanning K2,3-subdivision of a K1,1,3-
minor-free graph is chordless.

Proof. Suppose that such a terminal path P has a chord e. Then it is easy to
find a K1,1,3 minor in the graph.
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A vertex w of a uv-path P is an inner vertex inner vertexof P if w 6= u and w 6= v.
An edge e of a path P is an inner edge inner edgeof P if e is incident with two inner
vertices of P .

Given a set P of paths in a graph G, define a middle path middle pathP ∈ P to be a
path such that for any other path P ′ ∈ P there is an edge in G that is incident
with an inner vertex of P and an inner vertex of P ′. In other words, for each
path P ′ ∈ P other than P there is an inner vertex of P that is adjacent to
an inner vertex of P ′ (see, e.g., Figure 5.5). Two vertices u and v are co-path

co-pathwith respect to P if u and v are on the same path in P .

P1

P2

P3

vu

u′ v′
P4

Fig. 5.5 P2 is the only middle path among the four paths P1, P2, P3, P4, where
P1, P2, P3 are uv-paths and P4 is a u′v′-path.

Any graph G that contains a K2,3-subdivision is middle-less middle-lessif there is no
middle path among the terminal paths of any spanning subgraph of G that is a
K2,3-subdivision. Any graph G with a spanning K2,3-subdivision is middle-ful

middle-fulif it is not middle-less.
We divide the rest of lemmas in this section into two subsections. The

first section is about the middle-less graphs and the second section is about
the middle-ful ones.

5.2.1 Middle-less Graphs

We start by proving that middle-less graphs do not contain W4 as a minor.

Lemma 9. If G is a middle-less graph then G does not contain W4 as a minor
(see Figure 5.6(a)).

Proof. Suppose that there is a middle-less graph G that contains W4 as a
minor. Then it is straightforward to find a K2,3-subdivision with a middle path
in G. But this is a contradiction since G is middle-less (see, e.g., Figure 5.6(b)).
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(a) W4

P1

P2

P3

(b) W4 with P2 as its middle
path.

Fig. 5.6 Any graph with a W4 minor is middle-ful.

Let U be a subset of the vertices of a graph G, then G[U ] denotes the
subgraph of G induced by U . Similarly, for any subgraph H of the graph G,
G[H] denotes the subgraph of G that is induced by the vertices of H.

Lemma 10. Let P1, P2, P3 be the terminal paths in a spanning K2,3-subdivision
S of a middle-less graph G with neither a K1,1,3-minor nor a (K1∪K2,3)-minor
where G[P1 ∪ P2] has an edge e that is not in P1 or P2. Then:

• either every edge of G[P2 ∪ P3] is an edge of P2 ∪ P3 or every edge of
G[P2 ∪ P1] is an edge of P1 ∪ P3 and

• e is the only edge in G[P1 ∪ P2] that is not in P1, P2 and P3.

Proof. Let G1 = G[P1 ∪ P2], G2 = G[P2 ∪ P3] and G3 = G[P3 ∪ P1] and let u

and v be the two vertices of e. First we show that G2 does not have any edge
that is not an edge of P2 or P3. To reach a contradiction suppose that G2 has
an edge e1 = (u1, v1) that is not in P2 ∪ P3. Moreover, by the assumptions of
the lemma, there is an edge e in G1 that is not in P1 ∪ P2.

By Lemma 8, e and e1 are not chords of P1, P2 or P3 and therefore, without
loss of generality, u is an inner vertex of P1 and v is an inner vertex of P2 and
u1 is an inner vertex of P2 and v1 is an inner vertex of P3 (see, e.g., Figure 5.7).
But this is a contradiction since then P2 is a middle path and therefore G is
not middle-less. Similarly we can show that G3 does not have any edge that
is not an edge of P1 or P3.

Now we show that there is at most one edge in G1 that is not an edge of P1

or P2. To reach a contradiction suppose that G1 has two edges e1 = (u1, v1)
and e2 = (u2, v2) that are not among the edges of P1 or P2 (note that it is
possible that either u1 = u2 or v1 = v2 or u1 = v2 or v1 = u2).

By Lemma 8, e1 and e2 are not chords of P1 or P2 and therefore, without
loss of generality, let u1 and u2 be among the inner vertices of P1 and v1 and
v2 be among the inner vertices of P2 (see, e.g., Figure 5.8).
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P1

P2

P3

u

v

v1

u1

Fig. 5.7 u, v, u1, v1 in G

u1

v1

u2

v2

P1

P2

P3

e1 e2

Fig. 5.8 e1, e2, P1, P2 and P3 in G

Choose P to be either P1 or P2 so that the endpoints of e1 and e2 on the
other path are distinct. Let G− be the graph that is obtained by contracting
all the edges of P except the ones that are incident with the terminal vertices
of S into a single vertex w. It is easy to see that there is a W4-minor in G−

(see, e.g., Figure 5.9). Then by Lemma 9, G is not middle-less, which is a
contradiction.

u1 u2

w

(a) G−

u1 u2

w

P1

P2

P3

(b) G− with a middle path P2

Fig. 5.9 Finding a middle path in G−.

Lemma 11. Let {u, v} and {P1, P2, P3} be the sets of terminal vertices and
terminal paths respectively in a spanning K2,3-subdivision S of a middle-less
graph G with no K1,1,3-minor and no (K1 ∪ K2,3)-minor where the lengths of
P1 and P2 are greater than 2 and G[P1 ∪ P2] has an edge e′ = (u′, v′) that is
not in P1 ∪ P2. Then either:
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• u′ and v′ are adjacent to u, or

• u′ and v′ are adjacent to v.

Proof. By Lemma 8, e′ is not a chord of P1 or P2 and therefore, without loss
of generality, let u′ be an inner vertex of P1 and v′ be an inner vertex of P2.
To reach a contradiction, suppose that u′ and v′ are not both adjacent to the
same vertex u or v. We have two cases:

Case 1. Neither u′ nor v′ is adjacent to the terminal vertices. In
this case it is easy to find a K1 ∪ K2,3 minor in G (see, e.g., Figure 5.10 and
Figure 5.18(a)).

u′

v′

P1

P2
P3

e′

(a) e′, P1, P2 and P3 in G (b) P ′
1 and P ′′

1 in G

(c) K1 ∪ K2,3

Fig. 5.10 e′, P1, P2, P3, P ′
1 and P ′′

1 in G. Compare the colouring scheme of
Figure 5.10(b) with Figure 5.18(a) to see how K1 ∪ K2,3 is a minor of G.

Case 2. One of the two vertices u′ or v′ is adjacent to u or v.
Without loss of generality let u′ be adjacent to u (see, e.g., Figure 5.11(a)).

u′

v′

P1

P2
P3

e′

(a) e′, P1, P2 and P3 in G

u′

v′

P ′′
1

P2
P3

e′

u v

P ′
1

(b) P ′
1 and P ′′

1 in G

Fig. 5.11 e′, P1, P2, P3, P ′
1 and P ′′

1 in G.
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The vertex u′ splits P1 into two shorter paths P ′
1 and P ′′

1 , where P1 contains
the edge (u, u′). Without loss of generality, let P ′

1 be a shortest path among
P ′

1 and P ′′
1 (see, e.g., Figure 5.11(b)). Then, since the lengths of P1 and P2 are

greater than 2, it is easy to see that there is a K2,3 minor in P ′
1 ∪ e′ ∪ P2 ∪ P3

and an inner vertex v′′ on P ′′
1 such that P ′

1 ∪e′ ∪P2 ∪P3 and v′′ form a K1 ∪K2,3

minor in G (see, e.g., Figure 5.12). However, this is a contradiction since G

is a K1 ∪ K2,3-minor free graph.

Fig. 5.12 Finding a K1 ∪ K2,3-minor in G (compare with Figure 5.10(c)).

Lemma 12. Let G be the family of middle-less graphs with no K1,1,3-minor, no
(K1 ∪ K4)-minor, no (K1 ∪ K2,3)-minor, and that contain a K2,3-subdivision.
Then any G ∈ G can be obtained by subdividing the dashed (red) edges of the
graphs that are shown in Figure 5.13.

(a) Type I (b) Type II (c) Type III

Fig. 5.13 Three types of middle-less non-separating planar graphs

Proof. Let P1, P2, P3 be the terminal paths and u, v be the terminal vertices
in a K2,3-subdivision S of a graph G ∈ G. Since G does not contain K1 ∪ K2,3

as a minor, S is a spanning K2,3-subdivision of G. If G does not have any
edges other than the edges of P1, P2, P3 then, clearly, G can be obtained by
subdividing the dashed (red) edges of the graph depicted in Figure 5.13(a).

Now let us consider the case where G has an edge e′ = (u′, v′) that is not
an edge of any of P1, P2, P3. By Lemma 10, e′ is the only edge in G that is
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not an edge of P1, P2 or P3. By Lemma 8, e′ is not a chord of P1 or P2 and
therefore, without loss of generality, let u′ be an inner vertex of P1 and v′ be
an inner vertex of P2. We have two cases:

Case 1. Either P1 or P2 has length 2. It is easy to verify that in this
case G is a graph that can be obtained by subdividing the red dashed edges
in Figure 5.13(b).

Case 2. The lengths of both P1 and P2 are more than 2. By
Lemma 11, both u′ and v′ are adjacent to the same vertex u or v. Now
it is easy to verify that in this case G is a graph that can be obtained by
subdividing the red dashed edges in Figure 5.13(c).

5.2.2 Middle-ful Graphs

Lemma 13. There is at most one middle path in the set of terminal paths of
a spanning K2,3-subdivision of a K1,1,3-minor-free graph.

Proof. Let P = {P1, P2, P3} be the set of terminal paths in a spanning K2,3-
subdivision S in a K1,1,3-minor-free graph G. To reach a contradiction, sup-
pose that there is more than one middle path in P . Without loss of generality,
let P1 and P2 both be middle paths. Since P1 and P2 are middle paths:

1. there is an edge incident with an inner vertex of P1 and an inner vertex
of P2, and

2. there is an edge incident with an inner vertex of P1 and an inner vertex
of P3, and

3. there is an edge incident with an inner vertex of P2 and an inner vertex
of P3.

Now, it is easy to find a K1,1,3 as a minor in G. see, e.g., Figure 5.14.

Next we will prove a lemma about a class of graphs that does not contain
K1 ∪ K4 as a minor (see Figure 5.15).

Lemma 14. Let P1, P2, P3 be the terminal paths in a spanning K2,3-subdivision
S of a graph G with no (K1 ∪ K4)-minor, where P2 is a middle path. Then
there is no pair of edges e1 = (u1, v1) and e2 = (u1, v2) in G such that u1 is an
inner vertex of P1 or P3 and v1 and v2 are two distinct inner vertices of P2.

Proof. To reach a contradiction suppose that there is an edge e1 = (u1, v1)
and an edge e2 = (u1, v2) such that u1 is an inner vertex of P1 or P3 and v1
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P1

P2

P3

u v

(a) G with P1 and P2 as middle
paths.

(b) G contains K1,1,3 as a mi-
nor.

Fig. 5.14 If P1 and P2 are middle paths then G contains K1,1,3 as a minor. The
colour scheme used here to colour the vertices of a K1,1,3 minor is the same as
the one used in Figure 5.4

Fig. 5.15 K1 ∪ K4

and v2 are two inner vertices of P2 (see, e.g., Figure 5.16(a)). Without loss
of generality let u1 be an inner vertex of P1. Since P2 is a middle path there
is also an edge e3 = (u3, v3) in G, where v3 can possibly be in {v1, v2}, such
that u3 is an inner vertex of P3 and v3 is an inner vertex of P2 (see, e.g.,
Figure 5.16(b)). Now it is easy to find a (K1 ∪ K4)-minor in G (see, e.g.,
Figure 5.16(c)).

P1

P2

P3

u v

u1

v1 v2

(a) G with P2 as a middle
path.

P1

P2

P3

u v

u1

v1 v2

u3

v3

(b) G contains K1,1,3 as
a minor.

(c) Finding a K1∪K4 mi-
nor in G.

Fig. 5.16 G contains K1 ∪ K4 as a minor.

Let P be a path and h be a vertex that is not in P . Let G be the graph
that is obtained from P and h by adding an edge (h, v) fanfor every vertex v in
P . Then G is a fan graph and h is the handle handleof G. K3 and K4 minus an
edge are the only fan graphs that do not have a unique handle.



5.2 Preliminary Lemmas 76

Let P be a uv-path. We define the outer outer vertexinner vertices of P as those inner
vertices of P that are adjacent to u and v on P .

Lemma 15. Let P1, P2, P3 be the terminal paths in a spanning K2,3-subdivision
S of a graph G with no K1,1,3-minor, no (K1 ∪K4)-minor and no (K1 ∪K2,3)-
minor, where P2 is a middle path. Then, G[P1 ∪ P2] and G[P2 ∪ P3] are
subgraphs of fan graphs whose handles are among the outer inner vertices of
P2.

Proof. Let G1 = G[P1 ∪ P2] and G2 = G[P2 ∪ P3]. First we show that G1 and
G2 are subgraphs of fan graphs. To reach a contradiction suppose that either
G1 or G2 is not a subgraph of a fan graph. Without loss of generality, suppose
that G1 is not a subgraph of a fan graph.

Since G1 is not a subgraph of a fan graph, there are two edges e1 = (u1, v1)
and e2 = (u2, v2) in G1 that are neither an edge of P1 nor an edge of P2 and
are vertex-disjoint. By Lemma 8, e1 and e2 are not chords of P1 or P2. In
other words:

• u1, v1, u2, v2 are all inner vertices of P1 and P2.

• u1 and v1 are not co-path with respect to {P1, P2, P3}.

• u2 and v2 are not co-path with respect to {P1, P2, P3}.

Without loss of generality let u1 and u2 be the two endpoints of e1 and e2

on P1 and let v1 and v2 be the other two endpoints of e1 and e2 on P2. Let u

and v be the terminal vertices of S. Contract all the edges of P1 that are not
incident with u and v into a single vertex w and let us denote the resulting
minor of G by H. The graph H is a spanning K2,3-subdivision, and satisfies
all conditions in Lemma 14.

Since H is a minor of G, it does not contain a K1 ∪ K4 minor. Moreover,
P2 is a middle path in H. Also, w is adjacent to v1 and v2 in H. Therefore,
e1 = (w, v1) and e2 = (w, v2) are two edges of H that contradict Lemma 14
and therefore G1 is a subgraph of a fan graph. We denote the corresponding
fan graph by G+

1 .
Similarly, we conclude that G2 is a subgraph of a fan graph and we denote

the corresponding fan graph by G+
2 .

Next we show that the handles of fan graphs G+
1 and G+

2 , which we denote
by h1 and h2 respectively, are outer inner vertices of P2. As the first step, we
show that h1 and h2 are inner vertices of P2 and then as the second step we
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show that both h1 and h2 are adjacent to either u or v on P2 (i.e., h1 and h2

are outer inner vertices of P2).
We use contradiction to prove the first step. To reach a contradiction

suppose that either the handle of G+
1 or the handle of G+

2 is not an inner
vertex of P2. Without loss of generality, suppose that the handle of G+

1 is
not an inner vertex of P2. Then it must be on P1. So there are two edges
e1 = (u′

1, v′) and e2 = (u′
2, v′) in G1 that are not in E(P1) ∪ E(P2) and are

incident with the same vertex v′ on P1.
By Lemma 8, e1 and e2 are not chords of P1 or P2 and therefore v′ is an

inner vertex of P1 and u′
1 and u′

2 are inner vertices of P2. However, this is also
in contradiction with Lemma 14.

We use contradiction to prove the second step as well. To reach a contra-
diction, without loss of generality, suppose that h1 is not adjacent to u or v on
P2 and let h2 be any vertex on P2. The handle h2 splits P2 into two subpaths:
P ′

2 from u to h2 and P ′′
2 from h2 to v. Without loss of generality, let h1 be an

inner vertex of P ′
2 or let h1 = h2 (see, e.g., Figure 5.17(a)).

Since P2 is a middle path, there are two edges e1 = (u1, x1) and e2 =
(u2, x2) such that u1 is an inner vertex of P1 and u2 is an inner vertex of P3.
Since G1 is a subgraph of a fan graph G+

1 with handle h1 we have x1 = h1 and
since G2 is a subgraph of fan graph G+

2 with handle h2 we have x2 = h2 (see,
e.g., Figure 5.17(b)). Let P ′

1 be the part of P1 from u to u1 and let P ′
3 be the

part of P3 from u to u2.

P1

P ′
2

P3

u v
h1

h2

P ′′
2

(a) h1, h2, P ′
2 and P ′′

2 in G.

P1

P ′
2

P3

u v
h1

h2

P ′′
2

u1

u2

(b) u1, u2 in G.

Fig. 5.17 Finding K1 ∪ K2,3 minor in G.

Now it is easy to see that v together with P ′
1 ∪ (u1, h1) ∪ P ′

2 ∪ (u2, h2) ∪ P ′
3

contains a K1 ∪ K2,3 minor, which is a contradiction (see, e.g., Figure 5.18).

Lemma 16. Let G[P1 ∪ P2] and G[P2 ∪ P3] be subgraphs of fan graphs G+
1

and G+
2 with the same handle h where P1, P2, P3 are the terminal paths in a

spanning K2,3-subdivision S of a K1,1,3-minor-free and (K1 ∪ K2,3)-minor-free
graph G in which P2 is a middle path. Then length of P2 is 2.
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(a) K1 ∪ K2,3 (b) G contains K1 ∪K2,3 as a
minor.

Fig. 5.18 Finding K1 ∪ K2,3 minor in G.

Proof. To reach a contradiction suppose that length of P2 is greater than 2.
Since P2 is the middle path, by Lemma 15, h is an outer inner vertex of
P2. Now, it is easy to find a K1 ∪ K2,3 minor in G which contradicts the
assumptions of the lemma (see, e.g., Figure 5.19).

Fig. 5.19 Finding K1 ∪ K2,3 in G

Lemma 17. Let G1 = G[P1 ∪ P2] and G2 = G[P2 ∪ P3] be subgraphs of
fan graphs G+

1 with handle h1 and G+
2 with handle h2 respectively such that

h1 6= h2, where u, v are the terminal vertices and P1, P2, P3 are the terminal
paths in a spanning K2,3-subdivision S of a graph G with no K1,1,3-minor, no
(K1 ∪ K4)-minor, no (K1 ∪ K2,3)-minor, and in which P2 is a middle path.

Then there is exactly one edge e′ = (h1, v′) in G1 that is not in P1 ∪ P2

and there is exactly one edge e′′ = (h2, v′′) in G2 that is not in P2 ∪ P3, where:

• h1 and v′ are outer inner vertices of P2 and P1 respectively that are both
adjacent to u or both adjacent to v and

• h2 and v′′ are outer inner vertices of P2 and P3 respectively that are both
adjacent to u or both adjacent to v.

Proof. Since P2 is a middle path, there is an edge e′ = (h1, v′) in G1 that is
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not in P1 ∪ P2 and there is an edge e′′ = (h2, v′′) in G2 that is not in P2 ∪ P3.
Moreover, by Lemma 15, h1 and h2 are outer inner vertices of P2.

Now to reach a contradiction, without loss of generality, let h1 be adjacent
to u on P2 but let v′ be a vertex that is not adjacent to u on P1. Let v1 be
the vertex that is adjacent to u on P1.

Since h1 and h2 are inner vertices of the middle path P2, by Lemma 8, v′ is
an inner vertex of P1 and v′′ is an inner vertex of P2 (see, e.g., Figure 5.20(a)).

We know that v1 appears before v′ as we traverse P1 from u towards v and
h1 appears before h2 as we traverse P2 from u towards v. Let P ′ be the part
of P1 that stretches from v′ to v. Now it is easy to see that v1 together with
(h1, v′) ∪ P ′ ∪ P2 ∪ P3 contains a K1 ∪ K2,3 minor, which is a contradiction
(see, e.g., Figure 5.20(b)).

u v
h1

h2

v′′

v′v1

(a) K1 ∪ K2,3

u v
h1

h2

v′′

v′v1

(b) G contains K1 ∪ K2,3
as a minor.

Fig. 5.20 Finding a K1 ∪ K2,3 minor in G.

Lemma 18. Let G be the family of middle-ful K1,1,3-minor-free, (K1 ∪ K4)-
minor-free and (K1 ∪ K2,3)-minor-free graphs that contain a K2,3-subdivision.
Then any G ∈ G is either a subgraph of a wheel with at least 4 spokes or it is
an elongated triangular prism.

Proof. Let P1, P2, P3 be the terminal paths and u, v be the terminal vertices
in a K2,3-subdivision S of a graph G ∈ G where P2 is a middle path. Since
G does not contain K1 ∪ K2,3 as a minor, S is a spanning K2,3-subdivision of
G. Let G1 = G[P1 ∪ P2] and G2 = G[P2 ∪ P3]. Since P2 is a middle path, by
Lemma 15, G1 and G2 are subgraphs of fan graph G+

1 and G+
2 with handles

h1 and h2 where h1 and h2 are both among the outer inner vertices of P2.
We break the rest of the proof into two cases:
Case 1. h1 = h2. By Lemma 16, the length of P2 is 2 and therefore G

is a subgraph of a wheel W . Moreover, since P2 is a middle path, W has at
least 4 spokes.
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Case 2. h1 6= h2. By Lemma 17, there is exactly one edge e1 in G1 that
is not in P1 ∪ P2 and exactly one edge e2 in G2 that is not in P2 ∪ P3. Then,
by Lemma 17, G is an elongated triangular prism.

5.3 Proof of the Main Theorems
In this section we prove Theorems 38 and 39.

Lemma 19. A graph G does not contain any of K1 ∪ K4 or K1 ∪ K2,3 or
K1,1,3 as a minor if and only if G is either an outerplanar graph or a subgraph
of a wheel or an elongated triangular prism.

Proof. It is straightforward to see that any outerplanar graph or a subgraph
of a wheel or an elongated triangular prism does not contain any of K1 ∪ K4

or K1 ∪ K2,3 or K1,1,3 as a minor. Next we prove the lemma in the other
direction.

We break the proof into the following three cases:

1. G does not contain any of K4 or K2,3 as a minor.

2. G contains K4 but does not contain K2,3 as a minor.

3. G contains K2,3 as a minor.

Case 1. G does not contain any of K4 or K2,3 as a minor. In this
case, G is outerplanar.

Case 2. G contains K4 as a minor but it does not contain K2,3

as a minor. Since the degrees of the vertices in K4 are less than 4, any
subgraph contractible to K4 is also a subdivision of K4. Therefore, there is a
subdivision S of K4 in G.

Since G does not contain K1 ∪ K4 as a minor, S is a spanning subgraph
of G (any vertex of G is also a vertex of S). Moreover, since any proper
subdivision of K4 contains K2,3 as a minor, K4 is the only graph that contains
K4 as a minor but does not contain K2,3 as a minor. So G is isomorphic to
K4 and is a subgraph of a wheel.

Case 3. G contains K2,3 as a minor. Since the degrees of the vertices
in K2,3 are less than 4, any subgraph contractible to K2,3 is also a subdivision
of K2,3. Therefore, there is a subdivision S of K2,3 in G. Since G does not
contain K1 ∪ K2,3 as a minor, S is a spanning subgraph of G.

Here we have two cases:
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Case 3a. G is middle-less. By Lemma 12, G can be obtained by
subdividing the red dashed edges of one of the graphs shown in Figure 5.13.
Now, any of the graphs shown in Figure 5.13 is either a subgraph of a wheel
or an elongated triangular prism. Therefore G is either a subgraph of a wheel
or a subgraph of an elongated triangular prism.

Case 3b. G is middle-ful. By Lemma 18, G is either a subgraph of a
wheel or it is an elongated triangular prism.

Now we are ready to prove Theorem 38.

Proof of Theorem 38. It is straightforward to verify that in any planar draw-
ing of a graph that contains K1∪K4 or K1∪K2,3 or K1,1,3 as a minor, there are
two vertices that are separated by a cycle. Therefore, to prove this theorem,
it is sufficient to show that any graph that does not contain any of K1 ∪ K4

or K1 ∪ K2,3 or K1,1,3 as a minor is a non-separating planar graph.
By Lemma 19, any graph that does not contain any of K1 ∪K4 or K1 ∪K2,3

or K1,1,3 as a minor is either an outerplanar graph or a subgraph of a wheel
or an elongated triangular prism and it is easy to verify that any such graph
is a non-separating planar graph.

Now we prove Theorem 39

Proof of Theorem 39. Theorem 39 is a direct consequence of Lemma 19 and
Theorem 38.



6
A Hanani-Tutte Type Theorem for

Non-separating Planar Graphs

In this chapter, we prove a Hanani-Tutte type theorem for non-separating
planar graphs.

In the previous chapter, we characterised non-separating planar graphs in
terms of minimal excluded minors. Moreover we gave a structural character-
isation of them. In this chapter, we prove a Hanani-Tutte type theorem for
non-separating planar graphs. To state the theorem that we want to prove,
first we need to define some new terminology. Moreover, we will redefine the
notion of a separating cycle so that it is applicable to drawings that are not
planar.

A drawing D of a graph G in R2 partitions all the points of R2 \ D (where
by D we denote the set of all points in D) into a set of regions region, denoted by
regions(D), such that any two points p and q are in the same region r ∈
regions(D) if there is a curve from p to q that does not cross any vertex or
edge of D. Regions in a planar drawing are called faces face. Two regions are
adjacent adjacent regionif they share an edge or a segment of an edge on their boundaries.

For any drawing D of a cycle, define a black-and-white colouring black-and-white
colouring

of the
plane with respect to D to be a colouring of each region of regions(D) either
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black or white such that no two adjacent regions are coloured in the same
colour (see, for example, Figure 6.1). Lemma 20 proves that such a colouring
exists for any drawing of a cycle.

(a) A drawing D of cycle C (b) Colouring regions of the plane in
black and white based on D

Fig. 6.1

Let C be a cycle in a graph G. Let D be a drawing of G. Cycle C is a
separating cycle separating cyclein D if there is a pair of vertices u and v in G such that:

• u /∈ V (C), v /∈ V (C) and

• u and v are located in regions with different colours in a black-white
colouring of the plane with respect to D[C].

Cycle C separates separatesu from v in D.
A non-separating non-separating

drawing
drawing of a graph is a drawing of the graph that does

not contain any separating cycles.
With this terminology we can redefine non-separating planar graph as

follows. A non-separating planar graph non-separating
planar graph

is a graph that has a non-separating
planar drawing.

Now we are ready to state the Hanani-Tutte type theorem for non-separating
planar graphs.

Theorem 41. Let D be a non-separating drawing of a graph G such that any
two vertex-disjoint edges in D cross each other an even number of times. Then
G is a non-separating planar graph.

The reverse implication also holds, by the definition of non-separating
planar graphs.

The rest of this chapter is dedicated to proving the above theorem.
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6.1 Preliminary Results
Lemma 20. Let D be a drawing of a cycle on the plane. Then there is a
black-and-white colouring for D.

Proof. Let G be a graph with a vertex for each region of D and an edge (u, v)
for any two adjacent regions r1 and r2 of D where r1 is represented by vertex
u of G and r2 is represented by vertex v of G.

The graph G is a dual of an Eulerian planar graph and therefore it is
bipartite [134].

A two-vertex-avoiding cycle two-vertex-
avoiding
cycle

in a graph G is a cycle in G with |V (G)| − 2
vertices.

In any drawing D, define φ(D) to be the number of separating cycles in D

and define χ(D) to be the number of pairs of vertex-disjoint edges that cross
each other an odd number of times in D.

For an edge e and a vertex v in a graph G = (V, E), we denote:

• the set of all the two-vertex-avoiding cycles that have e as an edge but
do not have v as a vertex by C(e − v) C(e − v)and

• the set of all the edges that are incident with v but are vertex-disjoint
from e by E(v − e) E(v − e).

Next we prove that the parity of φ+χ is an invariant for drawings of some
graphs that will be useful later.

Lemma 21. Let G be a simple graph such that the shortest cycle in G is a
two-vertex-avoiding cycle and for any edge e and any vertex v that is not an
endpoint of e, |E(v − e)| and |C(e − v)| have the same parity. Let D and D′

be two different drawings of G, then φ(D) + χ(D) and φ(D′) + χ(D′) have the
same parity.

Proof. By Proposition 1, any drawing D′ of G can be obtained from D by
performing a series of Reidemeister moves in {Rp

I , Rp
II , Rp

III , Rp
IV , Rp

V }. There-
fore, in order to show that φ(D) + χ(D) and φ(D′) + χ(D′) have the same
parity, it is enough to show that φ(D1) + χ(D1) and φ(D2) + χ(D2) have the
same parity for any two drawings D1 and D2 of G where D2 is obtained by
performing a Reidemeister move in {Rp

I , Rp
II , Rp

III , Rp
IV , Rp

V } on D1.
Let D2 be obtained from D1 by performing any of the Reidemeister moves

Rp
I , Rp

II , Rp
III , Rp

V . Since no edge is pushed over a vertex in any of these
moves, the number of separating cycles does not change and therefore φ(D1) =
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φ(D2). Moreover, since the parity of the number of crossings of vertex-disjoint
edges does not change in any of these moves, χ(D1) = χ(D2). Therefore
φ(D1)+χ(D1) and φ(D1)+χ(D1) have the same parity. So let D2 be obtained
from D1 by performing a Rp

IV move, in which edge e is pushed over vertex v.
We have two cases:

Case 1. Edge e is incident with v. In this case, all the edges involved
in the move are incident with v. Therefore pushing e over v does not change
the number of pairs of vertex-disjoint edges that cross each other and χ(D1) =
χ(D2). Moreover, as v is a vertex of any cycle C that contains e (since e is
incident with v), this move does not change any separating cycle to a non-
separating cycle or vice-versa and therefore φ(D1) = φ(D2). Hence φ(D1) +
χ(D1) and φ(D2) + χ(D2) have the same parity.

Case 2. Edge e is not incident with v. Let Cs→n be the set of cycles
in G that are separating cycles in D1 and are non-separating cycles in D2 and
let Cn→s be the set of cycles in G that are non-separating cycles in D1 and
are separating cycles in D2. Note that, as e is pushed over v:

• any cycle in C(e − v) is a two-vertex-avoiding cycle and hence it either
changes from a separating cycle to a non-separating cycle or vice-versa
and

• any cycle that is not in C(e−v) is either a cycle that contains all vertices
of G except for one of them or does not contain e and hence remains a
separating cycle or a non-separating cycle.

Therefore we have |Cs→n| + |Cn→s| = |C(e − v)|.
Now let Eo→e be the set of all edges in G that cross e an odd number of

times in D1 and an even number of times in D2 and let Ee→o be the set of all
edges in G that cross e an even number of times in D1 and an odd number of
times in D2. As e is pushed over v:

• the number of crossings between e and any edge e′ which is in E(v − e)
(and is therefore vertex-disjoint from e) either increases or decreases by
one (so the parity of the number of crossings between e and e′ changes)
and

• the number of crossings between any other two vertex-disjoint edges
remains the same.

Therefore we have |Eo→e| + |Ee→o| = |E(v − e)|.
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Since |Cs→n| + |Cn→s| has the same parity as |C(e − v)| and φ(D2) =
φ(D1) − |Cs→n| + |Cn→s|, we find that φ(D1) + φ(D2) has the same parity as
|C(e − v)|. Moreover, since |Eo→e| + |Ee→o| has the same parity as |E(v − e)|
and χ(D2) = χ(D1) − |Eo→e| + |Ee→o|, we find that χ(D1) + χ(D2) has the
same parity as |E(v − e)|. Therefore φ(D1) + φ(D2) + χ(D1) + χ(D2) has the
same parity as |C(e − v)| + |E(v − e)|.

By the Lemma’s assumption, the parities of |E(v − e)| and |C(e − v)| are
the same. Therefore the parities of φ(D1) + χ(D1) and φ(D2) + χ(D2) are the
same.

6.2 Proof of the Main Theorem
Lemma 22. Any drawing of K1 ∪ K2,3 or K1 ∪ K4 or K1,1,3 on the plane
either contains a separating cycle or two vertex-disjoint edges that cross each
other an odd number of times.

Proof. To prove this lemma we show that φ(D) + χ(D) is odd in any drawing
of K1 ∪ K2,3 or K1 ∪ K4 or K1,1,3.

Let G be K1∪K2,3 or K1∪K4 or K1,1,3. First note that K1∪K2,3 and K1∪K4

and K1,1,3 have six, five and five vertices respectively. Moreover the shortest
cycle in K1 ∪ K2,3 and K1 ∪ K4 and K1,1,3 has four, three and three vertices
respectively. Therefore, the shortest cycle in G is a two-vertex-avoiding cycle.

Since any of K1 ∪ K2,3 or K1 ∪ K4 or K1,1,3 have a unique combinatorial
embedding up to isomorphism, we can verify, for any edge e in G and any
vertex v in G that is not an endpoint of e, that C(e − v) and E(v − e) have
the same parity. Therefore we can apply Lemma 21 to G.

Now let D be a planar drawing of G. Since D is planar, χ(D) = 0 and since
there is only one separating cycle in D, φ(D) = 1 therefore φ(D)+χ(D) is odd.
Moreover by Lemma 21, for any two drawings D and D′ of G, φ(D) + χ(D)
and φ(D′)+χ(D′) have the same parity and hence φ+χ is odd for any drawing
of G.

We use Lemma 22 to prove Theorem 41.

Proof of Theorem 41. By Lemma 22, we know that any drawing of K1 ∪ K4,
K1 ∪ K2,3 or K1,1,3 contains either a separating cycle or two vertex-disjoint
edges that cross each other an odd number of times.

First we show that any drawing of a subdivision of K1 ∪ K4, K1 ∪ K2,3 or
K1,1,3 contains a separating cycle or two vertex-disjoint edges that cross each
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other an odd number of times. Let G be one of K1∪K4, K1∪K2,3 or K1,1,3 and
let e1, e2, . . . , ei be all of the edges of G. Let G′ be any subdivision of G. Let
P1, P2, . . . , Pi be i internally disjoint paths in G′ such that G′ can be obtained
from G by replacing e1, e2, . . . , ei with the paths P1, P2, . . . , Pi respectively.

To reach a contradiction suppose that there is a drawing D′ of G′ with
no separating cycles such that any two vertex-disjoint edges in D′ cross each
other an even number of times. Obtain a drawing D of G from D′ as follows.
For each j, 1 ≤ j ≤ i, replace path Pj, in D′ with an edge ej such that ej is
drawn along the curve representing Pj. Since any two vertex-disjoint edges in
D′ cross each other an even number of times, any two vertex-disjoint paths in
D′ cross each other an even number of times too. Therefore any two vertex-
disjoint edges in D cross each other an even number of times. Moreover, since
there are no separating cycles in D′, there are no separating cycles in D. But
this is a contradiction since, by Lemma 22, any drawing of any of K1 ∪ K4,
K1 ∪ K2,3 or K1,1,3 contains either a separating cycle or two vertex-disjoint
edges that cross each other an odd number of times.

In other words, any non-separating drawing D in which any two edges
cross an even number of times does not contain a subdivision of K1 ∪ K4,
K1 ∪K2,3 or K1,1,3 and therefore, by Theorem 40, it is a non-separating planar
graph.



7
Applications of Non-separating Planar

Graphs

This chapter is about two applications of non-separating planar graphs.
First, we use non-separating planar graphs and the Hanani-Tutte charac-
terisation of them to prove a stronger version of the Strong Hanani-Tutte
Theorem. Then we use them in a completely different context to prove
that there are maximal linkless graphs with at most 3|V | − 3 edges.

In Chapter 5, we characterised non-separating planar graphs in terms
of three minimal excluded minors and we proved that any maximal non-
separating planar graph is either a maximal outerplanar graph or a wheel
or an elongated triangular prism. Then in Chapter 6, we gave a Hanani-
Tutte type characterisation of non-separating planar graphs. In this chapter
we will utilise these three theorems to first prove a stronger version of the
Strong Hanani-Tutte Theorem and then to show that there are maximal lin-
kless graphs with less than 4|V | − 10, more specifically, 3|V | − 3, edges.

To state the stronger version of the Strong Hanani-Tutte Theorem, first
we need to define some new terms.

First recall that in Chapter 6, we redefined the notion of a separating cycle
as follows. Let D be a drawing of a graph G and let C be a cycle in G. Cycle
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C is a separating cycle separating cyclein D if there is a pair of vertices u and v in G such
that:

• u /∈ V (C), v /∈ V (C) and

• u and v are located in regions with different colours in a black-white
colouring of the plane with respect to D[C].

Now we can define a decomposing cycle as follows. A separating cycle C

in D is a decomposing cycle decomposing
cycle

if any edge e that is vertex-disjoint from C crosses
C an even number of times in D. For a black-and-white colouring of regions
of the plane with respect to D[C], where C is a decomposing cycle, let Vw be
the set of vertices of G that are on a white region of the plane and let Vb be
the set of vertices of G that are on a black region of the plane.

Let Gw be the graph that is induced from G by the vertices of C and Vw

(Gw = G[Vw ∪ V (C)]) and let Gb be the graph that is induced from G by the
vertices of C and Vb (Gb = G[Vb ∪ V (C)]). Note that C is a part of both Gw

and Gb. Then we say that C decomposes decomposeD into two drawings: D[Gb] and
D[Gw].

A drawing D is evenly decomposable evenly
decomposable

if it complies with one of the following
two conditions:

• every two vertex-disjoint edges in D cross an even number of times;

• there is a chordless decomposing cycle that decomposes D into two
evenly decomposable drawings.

Now we can state a stronger version of Theorem 3 (the Strong Hanani-
Tutte Theorem).

Theorem 42. Let D be an evenly decomposable drawing of a graph G on the
plane. Then G is planar and there is a planar drawing D′ of G such that any
decomposing chordless cycle C in D′ separates vertices u and v in D′ if and
only if C separates u and v in D.

Since a drawing in which any two vertex-disjoint edges cross each other an
even number of times is evenly decomposable by definition, Theorem 42 is at
least as strong as the strong version of the Hanani-Tutte Theorem. Moreover
since there are evenly decomposable drawings in which there is a pair of vertex-
disjoint edges that cross each other an odd number of times, Theorem 42 is
stronger than the strong version of the Hanani-Tutte Theorem.
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Fig. 7.1 An evenly decomposable drawing with two edges that cross each other
an odd number of times. The cycle drawn in red is the decomposing cycle in
this drawing.

Figure 7.1 depicts a simple example of an evenly decomposable drawing
with a pair of vertex-disjoint edges that cross an odd number of times.

A class G of graphs is pure pureif |E| = |E ′| for any two maximal graphs G =
(V, E) and G′ = (V ′, E ′) in G where |V | = |V ′| [86]. The classes of outerplanar
graphs and planar graphs are two well-known pure classes of graphs. The class
of toroidal graphs is a well-known class of graphs that is not pure [66]. In fact
by Theorem 39, it is easy to see that the class of non-separating planar graphs
is not pure either. For more results on the number of edges of maximal graphs
that are embeddable on surfaces or belong to minor-closed classes of graphs,
see [85, 86].

The second application of non-separating planar graphs is to linkless graphs.
Recall that a linkless linklessgraph is a graph that has an embedding η in R3 such
that no two cycles in η are linked (refer to Chapter 2 for the definition of
linked cycles and others).

Although linkless graphs are characterised in terms of a set of minimal
excluded minors, there are a lot of unanswered questions about them. For
example, since linkless graphs do not contain a K6-minor, it follows that they
have at most 4|V | − 10 edges where |V | is the number of vertices in G [83].
However, prior to the present work it was open whether all maximal linkless
graphs have 4|V | − 10 edges. In this chapter we show that there is a class G
of maximal linkless graphs such that any graph G ∈ G has at most 3|V | − 3
edges. More specifically, we prove the following theorem:

Theorem 43. There exists an infinite family G of maximal linkless graphs
such that any graph G ∈ G has at most 3|V (G)| − 3 edges.

Since there are maximal linkless graphs on n vertices with 4n−10 edges, by
Theorem 43, linkless graphs are not pure. Moreover, Theorem 43 is related to
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a question asked in 1983 by Horst Sachs about the number of edges of linkless
graphs [113]. He asked the following question. What is the maximum number
of edges of a linkless graph on |V | vertices?

In Section 7.1 we prove Theorem 42 and provide an example for it. In
Section 7.2 we prove Theorem 43 and demonstrate a connection between
non-separating planar graphs and linkless graphs.

7.1 Hanani-Tutte Theorem, Stronger Version
Lemma 23. Let D be a drawing of a graph G on the plane which contains a
separating cycle. Then there exists a chordless separating cycle in D.

Proof. Let C = (v1, v2, . . . , vk) be the shortest separating cycle in D. We
claim that C is chordless.

To the contrary, let (vi, vj), 1 ≤ i < j ≤ k, be a chord in C. Then we show
that cycle C1 = (v1, v2, . . . , vi, vj, vj+1, . . . , vk) or cycle C2 = (vi, vi+1, . . . , vj)
is a shorter separating cycle than C and hence we reach a contradiction.

Let a and b be two vertices that are separated by C and let ζ be a curve
from a to b that does not pass through any vertices or crossings of D and is
not tangent to any edge in D at any point. Since C is a separating cycle with
respect to a and b, the curve ζ crosses C an odd number of times.

Now suppose that neither C1 nor C2 is separating. In other words, ζ crosses
C1 an even number of times and ζ crosses C2 an even number of times.

Let α be the number of crossings between ζ and C1, let β be the number
of crossings between ζ and C2, and let γ be the number of crossings between
ζ and (vi, vj). Then the number of crossings between ζ and C is α + β − 2γ

which is even, since α and β are even, and therefore C is not a separating
cycle, which is a contradiction.

Proof of Theorem 42. We prove this theorem by induction on the number of
chordless decomposing cycles in the drawing of the graph.

In the base case, there are no chordless decomposing cycles in D. By the
definition of evenly decomposable drawings, any two vertex-disjoint edges in
D cross an even number of times.

First we show that D is a non-separating drawing. To reach a contradiction
suppose that there is a separating cycle in D. By Lemma 23, there exists a
chordless separating cycle C in D. Since any two vertex-disjoint edges in D

cross an even number of times, C is a chordless decomposing cycle. This is
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a contradiction since according to the assumptions of the base case there are
no chordless decomposing cycles in D.

Therefore D is a non-separating drawing. By Theorem 41, G is a non-
separating planar graph, so it has a planar drawing in which there are no
separating cycles. Therefore the requirements of the conclusion of this theorem
are satisfied.

We proceed to the inductive case where there is a chordless decomposing
cycle C = (v1, v2, . . . , vk) in D. Cycle C decomposes G into two graphs Gw =
G[{v1, v2, . . . , vk} ∪ Vw] and Gb = G[{v1, v2, . . . , vk} ∪ Vb] such that there is no
edge between any vertex v ∈ Vw of Gw and any vertex v′ ∈ Vb of Gb (otherwise
there is an edge in D that crosses C an odd number of times). In other words,
the only vertices and edges that are shared between Gw and Gb are the vertices
and the edges of C.

Since D[Gw] is contained entirely within D, any cycle that is not a sepa-
rating cycle in D is not a separating cycle in D[Gw] either. Moreover, since
vertices of Vb are not present in D[Gw], the cycle C — which was a separating
cycle in D — is not a separating cycle in D[Gw]. Therefore, the number of
separating cycles in D[Gw] is less than the number of separating cycles in
D[G]. Similarly, the number of separating cycles in D[Gb] is less than the
number of separating cycles in D[G]. Hence by induction it follows that there
is a planar drawing Dw of Gw such that all the vertices of Vw are on the same
side of C and there is a planar drawing Db of Gb such that all the vertices of
Vb are on the same side of C.

Since C is not a separating cycle in Dw and it does not have any chords,
it is a face of Dw. Similarly, C is a face of Db. Therefore it is easy to see that
we can obtain a drawing D of G by gluing Dw and Db on the vertices and
edges of C.

Figure 7.2 depicts an evenly decomposable drawing and its decomposition
process. The drawing is decomposed a couple of times until there are no more
decomposing cycles in it and any two vertex-disjoint edges cross each other
an even number of times. Notice that in the first step of the decomposition
we could have chosen the other cycle in the graph as the decomposing cycle.

Since Theorem 42 is stronger than the strong version of the Hanani-Tutte
Theorem, we can state the Strong Hanani-Tutte Theorem as a corollary.

Corollary 2. (Strong Hanani-Tutte Theorem) Let D be a drawing of a graph
G such that any two vertex-disjoint edges in D cross an even number of times.
Then G is planar.
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Fig. 7.2 An evenly decomposable drawings and its decomposition. The de-
composing cycle is depicted in red in each step. Notice that some of the edges
of the decomposing cycles are crossed an odd number of times by other vertex-
disjoint edges and hence the Strong Hanani-Tutte Theorem is not applicable.

Lastly, note that, since any planar drawing is an evenly decomposable
drawing, Theorem 42 can also be stated as a characterisation of planar graphs.

Theorem 44. A graph G is planar if and only if G has an evenly decomposable
drawing.

7.2 Proof of Theorem 43
Consider two linked circles in three dimensions and a cross section of them
that contains one of the two circles as depicted in Figure 7.3(a). Such a cross-
section has a structure that resembles the structure of a separating cycle with
a vertex inside it and another outside it.

With this intuition in mind, we prove Theorem 43.

Lemma 24. An elongated triangular prism has |V (G)| + 3 edges.

Proof. The proof is straightforward.

Lemma 25. An elongated triangular prism contains both K4 and K2,3 as a
minor.

Proof. The proof is straightforward.
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(a) a link in 3D (b) intersection of a plane with a link (c) cross section of
the link from the
top

Fig. 7.3 A separating cycle in a cross section of a link with a plane

Proof of Theorem 43. Let G be an elongated prism. By Theorem 39, G is a
maximal non-separating graph and by Lemma 24, G has |V (G)| + 3 edges.
Moreover by Lemma 25, G contains both K4 and K2,3 as minors.

Let H be the graph that is obtained by adding two new vertices u and v

to G such that u and v are each adjacent to all the vertices of G. Since G

has |V (G)| + 3 edges, the graph H has at most 3|V (H)| − 3 edges. There are
no linked cycles in H, and hence it is a linkless graph. We claim that H is a
maximal linkless graph.

To prove that H is a maximal linkless graph, we show that any graph H+

that is obtained by adding an edge e to H is not a linkless graph. Since u and
v are adjacent to all the vertices of G, edge e (in H+) is either (u, v) or it is
an edge between two vertices of G.

Let H+ be the graph obtained by adding (u, v) to H. Since G contains
both K4 and K2,3 as a minor, H+ contains both K6 and K1,1,2,3 as a minor.
The latter contains K1,3,3. However, by Theorem 21, K6 and K1,3,3 are both
minimal excluded minors for linkless graphs.

Now let H+ be the graph that is obtained by adding an edge between two
vertices of G in H. By Theorem 38, G + e contains K4 ∪ K1 or K2,3 ∪ K1 or
K1,1,3 as a minor.

If G+e contains K4 ∪K1 as a minor, then H+ contains K6 as a minor and
hence by Theorem 21 H+ is not a linkless graph. If G + e contains K2,3 ∪ K1

as a minor, then H+ contains K1,1,2,3 as a minor. But K1,1,2,3 contains K1,3,3

as a minor and therefore by Theorem 21 H+ is not a linkless graph. If G + e

contains K1,1,3 as a minor, then H+ contains K2,1,1,3 as a minor, which in turn
contains K1,3,3 as a minor. Therefore by Theorem 21 H+ is not a linkless
graph.



8
Outerthrackles

In this chapter we characterise outersuperthrackles. Then we define
variations of outersuperthracklable graphs such as generalised outersu-
perthracklable graphs and weak outersuperthracklable graphs and we
show that these classes of graphs are all the same as the class of out-
ersuperthracklable graphs.

A drawing D of a graph G on a surface Σ is a weak thrackle weak thrackleif any two
vertex-disjoint edges in D cross each other exactly once (see for example,
Figure 8.1(c)). In a weak thrackle two incident edges may or may not cross,
compared with a thrackle in which such two edges do not cross. Any graph

weak
thracklable

that has a weak thrackle drawing on a surface Σ is weak thracklable with
respect to Σ.

A drawing D of a graph G on a surface Σ is a generalised superthrackle generalised
superthrackle

if
any two edges in D cross each other an odd number of times (see for example,
Figure 8.1(d)). Any graph with a generalised superthrackle generalised su-

perthracklable
drawing on a

surface Σ is a generalised superthracklable graph with respect to Σ.
A drawing D of a graph G on a surface Σ is a weak generalised thrackle weak

generalised
thrackle

if
any two vertex-disjoint edges in D cross each other an odd number of times
(see for example, Figure 8.1(e)). Any graph that can be drawn as a weak
generalised thrackle on a surface Σ is a weak generalised thracklable weak

generalised
thracklable

graph
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with respect to Σ.

(a) thrackle (b) superthrackle (c) weak thrackle

(d) generalised superthrackle (e) weak generalised thrackle

Fig. 8.1 Examples of different variations of thrackles

From the above definitions we can immediately deduce that:

• any thrackle is both a generalised thrackle and a weak thrackle,

• any superthrackle is a generalised superthrackle and

• any generalised superthrackle is a weak generalised thrackle (see Fig-
ure 8.2).

thrackles
weak
thrackles

generalised
thrackles

(a)

generalised
superthrackles

superthrackles

weak generalised superthrackles

(b)

Fig. 8.2 Relationship between different variations of thrackles and superthrack-
les

A graph that has a thrackle outerdrawing is outerthracklable outerthrack-
lable

. A graph
that has a superthrackle outerdrawing is outersuperthracklable. A graph that
has a weak thrackle outerdrawing is weak outerthracklable. A graph that has
a generalised superthrackle outerdrawing is generalised outersuperthracklable
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generalised
outersu-
perthracklable

and a graph that has a weak generalised thrackle outerdrawing is called weak
generalised outerthracklable.

In this chapter we characterise outersuperthracklable graphs. More specif-
ically we prove the following theorem.

Theorem 45. Any graph G is outersuperthracklable if and only if G does not
contain any of:

1. Star2,2,2 as a minor (see Figure 8.3(a)),

2. K2 ∪ K3 as a minor (see Figure 8.3(b)),

3. any cycle of even length with four or more vertices.

(a) Star2,2,2 (b) K2 ∪ K3

Fig. 8.3 Two minimal excluded minors for outersuperthracklable graphs.

We also show that the classes of outerthracklable graphs, outersuperthrack-
lable graphs, weak outerthracklable graphs, generalised outersuperthracklable
graphs and weak generalised outerthracklable graphs are all equivalent. In
other words, we prove the following theorem.

Theorem 46. The following five classes of graphs are equivalent:

1. outerthracklable graphs

2. outersuperthracklable graphs

3. weak outerthracklable graphs

4. generalised outersuperthracklable graphs

5. weak generalised outerthracklable graphs.

The rest of this chapter is organised as follows. Section 8.1 is dedicated to
characterisation of weak generalised outerthracklable graphs and Section 8.2
investigates the relation between outerthracklable graphs, outersuperthrack-
lable graphs, weak outerthracklable graphs, generalised thracklable graphs
and weak generalised thracklable graphs.
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8.1 Weak Generalised Outerthracklable Graphs
In this section we characterise weak generalised outerthracklable graphs. We
start by proving that weak generalised outerthracklable graphs cannot contain
Star2,2,2 as a minimal excluded minor.

Lemma 26. None of the graphs C4, K2 ∪ K3 and Star2,2,2 have a weak gen-
eralised outerthrackle drawing.

Proof. Let G be any of the graphs C4, K2 ∪ K3 or Star2,2,2. By just placing
vertices of G in different cyclic orders around a disk, we observe that in any
outerdrawing of G there are two edges (u, u′) and (v, v′) such that vertices
u, u′, v, v′ appear in that order around the boundary of the disc and therefore
(u, u′) crosses (v, v′) an even number of times. Therefore, none of C4, K2 ∪K3

or Star2,2,2 has a weak generalised outerthrackle drawing.

Lemma 27. Any graph G that contains Star2,2,2 as a minor is not a weak
generalised outerthracklable graph.

Proof. Any graph that contains Star2,2,2 as a minor has Star2,2,2 as a sub-
graph. So by Lemma 26 any graph G that contains Star2,2,2 as a minor does
not have a weak generalised outerthrackle drawing and hence is not a weak
generalised outerthracklable graph.

Let e = (u, v) be an edge of a graph G. Let G′ be the graph that is
obtained from G by replacing (u, v) with three edges (u, w), (w, x) and (x, v),
where w, x 6∈ V (G). Define the double topological contraction double

topological
contraction

operation (or
double contraction for short) to be the operation that is performed on G′ to
obtain G (see Figure 8.4).

u
w x

v

(a) before double contraction
(G′)

u v

(b) after double contraction (G)

Fig. 8.4 Double topological contraction operation

Define a graph G− to be a double minor double minorof a graph G if we can obtain G−

from G by deleting vertices and edges and the double contraction operation.
Next we show that weak generalised outerthracklable graphs are closed

under the double contraction operation (see Figure 8.4).
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Lemma 28. Weak generalised outerthracklable graphs are closed under the
double contraction operation.

Proof. Let η be a weak generalised outerthrackle drawing of G. Let (v1, v2),
(v2, v3), (v3, v4) be three edges of G such that v2 and v3 have degree 2. Let G−

be the graph that is obtained from G by double contracting (v1, v2), (v2, v3),
(v3, v4) to (v1, v4). Obtain a drawing η− of G− from η as follows:

1. remove (v1, v4) from η if (v1, v4) is an edge in G.

2. add (v1, v4) to η such that it follows the path of (v1, v2)∪(v2, v3)∪(v3, v4)
sufficiently closely so that (v1, v4) is drawn within the local disks of
(v1, v2), (v2, v3) and (v3, v4) and for every crossing between an edge f

and (v1, v2) ∪ (v2, v3) ∪ (v3, v4) there is only one crossing between f and
(v1, v4) (see Figure 8.5(a)).

3. remove vertices v2, v3 and edges (v1, v2), (v2, v3), (v3, v4).

4. remove the self crossings of (v1, v4) by the Rp
I move that is shown in

Figure 3.2 (see Figure 8.5(b)).

v1

v2

v3

v4

(a)

v1

v4

(b)

Fig. 8.5 Constructing η− from η. (For simplicity, the rest of the edges of η or
η′ are not shown in this Figure.)

Since any two vertex-disjoint edges cross each other an odd number of
times in η, any edge that is not incident with v1, v2, v3, v4 crosses (v1, v2) ∪
(v2, v3) ∪ (v3, v4) an odd number of times in η. Therefore, any edge in η− that
is not incident with v1 or v4 crosses (v1, v4) an odd number of times and hence
η− is a drawing of G− in which any two vertex-disjoint edges cross an odd
number of times.

We use Lemma 28 to show that there cannot be a cycle C of odd size and
an edge that is vertex-disjoint from C in any weak generalised outerthrackle.
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Lemma 29. Let G either be a cycle C with an even number of vertices or
consist of a cycle C with an odd number of vertices and an edge e that is
vertex-disjoint from C. Then G is not a weak generalised outerthracklable
graph.

Proof. We prove this lemma by contradiction. Let us assume that such a G

is a weak generalised outerthracklable graph. Then by double contracting C

(multiple times if necessary), we obtain a graph G′ that is either C4 or K2∪K3.
If G is a weak generalised outerthracklable graph then, by Lemma 28, G′ is
a weak generalised outerthracklable graph. But this is a contradiction by
Lemma 26.

Now we prove Theorem 45.

Proof of Theorem 45. By Lemma 27 and Lemma 29 weak generalised out-
erthracklable graphs do not have Star2,2,2 as minor or C4 as a double minor.
Moreover since K2 ∪ K3 contains an edge and a cycle of odd length that are
vertex-disjoint, by Lemma 29 weak generalised outerthracklable graphs do not
contain K2 ∪ K3 as a double minor either. Therefore we only need to show
that if a graph G does not have Star2,2,2 as minor, K2 ∪ K3 as a double minor
or C4 as a double minor, then G is a weak generalised outerthracklable graph.

We prove this by induction on the number of vertices. In the base case G

has one or two or three vertices and the lemma holds trivially. We proceed to
the inductive case. We have two cases:

Case 1. There is a vertex v in G, with deg(v) ≥ 3. Since G contains
neither C4 nor Star2,2,2, for any vertex v in G with deg(v) ≥ 3, there is a
vertex v′ adjacent to v in G such that deg(v′) = 1. Let v1 and v2 be two
vertices (other than v′) that are adjacent to v. Let G− be the graph that is
obtained from G by deleting v′ and (v, v′) from G.

By induction G− has a weak generalised outerthrackle drawing η−. Let
d be the disc on which η− is drawn. To obtain a drawing η of G from η−,
choose the location of v′ on ∂(d) such that the order of v, v′, v1, v2 (clockwise
or anticlockwise) on ∂(d) is v, v1, v′, v2 and let (v, v′) be represented by an
arbitrary curve from v to v′ (see Figure 8.6(a)).

We need to show that (v, v′) crosses any any other vertex-disjoint edge an
odd number of times.

Let (w, w′) be an arbitrary edge of G that is vertex-disjoint from (v, v′),
if such an edge exists. If (w, w′) is vertex-disjoint from both (v, v1) and
(v, v2) then since any two vertex-disjoint edges in η− cross an odd number
of times, (w, w′) crosses both (v, v1) and (v, v2) an odd number of times and
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v v1

v2

v′

(a) (v, v1), (v, v′) and
(v, v2) in η

v v1

v2

w

w′ v′

(b) (w, w′) crosses
(v, v′) an odd num-
ber of times

v v1=w

v′

v2
w′

(c) (w, w′) crosses (v, v′)
an odd number of times

Fig. 8.6 vertex-disjoint edges cross each other an odd number of times in η.

therefore the order of v, v′, v1, v2, w, w′ on ∂(d) is either v, w, v1, v′, v2, w′ or
v, w′, v1, v′, v2, w (see Figure 8.6(b)). In both of these cases, by the order of
the vertices on ∂(d), (w, w′) crosses (v, v′) an odd number of times.

Now let (w, w′) be vertex-disjoint from either (v, v1) or (v, v2) (say (v, v2)).
That is either w = v1 or w′ = v1. Without loss of generality let w = v1.
(v1, w′) (or in other words (w, w′)) crosses (v, v2) an odd number of times and
therefore the order of v, v′, v1 = w, v2, w′ on ∂(d) (clockwise or anticlockwise)
is v, v1 = w, v′, v2, w′ (see Figure 8.6(c)). In this case, (w, w′) crosses (v, v′) an
odd number of times as well. Therefore any edge that is vertex-disjoint from
(v, v′) crosses (v, v′) an odd number of times and hence any two vertex-disjoint
edges in η cross an odd number of times. That is, η is a weak generalised
outerthrackle.

Case 2. There is no vertex v in G with deg(v) ≥ 3. Since the degree
of any vertex in G is less than 3, G consists of a number of isolated vertices or
paths and cycles. By condition 2, there is no edge in G that is vertex-disjoint
from a cycle in G. Therefore G consists of a number of cycles, a number of
paths and a number of isolated vertices.

We ignore isolated vertices throughout the rest of this proof, as we can
add isolated vertices to any outersuperthracklable graph and the result would
be another outersuperthracklable graph.

Let G be a cycle. By condition 3, G cannot contain any cycle of even
length. Therefore G is a cycle of odd length. Let G = C2n+1. Let v1, v2, v3, v4

be four consecutive vertices of G. Let G− be the graph that is obtained from
G by double contracting (v1, v2) ∪ (v2, v3) ∪ (v3, v4) to (v1, v4).

By induction, G− has a weak generalised outerthrackle drawing η−. Let
d be the disc on which η− is drawn. Let v0 be the vertex of G− that is in
N(v1)\v4 and let v5 be the vertex of G− that is in N(v4)\v1 (v0 may be equal
to v5).
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The cyclic order in which vertices v0, v1, v4, v5 appear on ∂(d) (clockwise
or anticlockwise) is v1, v4, v0, v5 (see for example Figure 8.7(a)), else (v0, v1)
crosses (v4, v5) an even number of times. Obtain a drawing η of G from η− as
follows:

1. insert v2 and v3 on ∂(d) such that the order of v0, v1, v2, v3, v4, v5 (clock-
wise or anticlockwise) on ∂(d) is v0, v5, v3, v1, v4, v2 and v2 is located in
a local disk Σv4 of v4 and v3 is located in a local disk Σv1 of v1.

2. represent (v1, v2), (v2, v3) and (v3, v4) by three arbitrary curves between
the corresponding vertices.

3. delete (v1, v4) (compare η− and η in Figures 8.7(a) and 8.7(b)).

v5

v1 v4

v0

(a) (v0, v1), (v1, v4)
and (v4, v5) in η−

v5

v1 v4

v0

v2v3

Σv1
Σv4

(b) η, is obtained by
adding the red vertices and
edges to η− and remov-
ing (v1, v4) from it. Notice
that Σv1 and Σv4 are the
local disks of v1 and v4 in
η− (before we add v3 and
v2 to the drawing).

v1 v4
v2

w

w′

Σv4

(c) order of w, w′, v1, v2
and v4 on ∂(d). The
dashed black line, repre-
sents the path of (v1, v4)
in η−.

Fig. 8.7 Vertex-disjoint edges cross each other an odd number of times in η.

We claim that any two vertex-disjoint edges in η cross each other an odd
number of times. Since any two vertex-disjoint edges in η− cross each other an
odd number of times, we only need to show that (v1, v2), (v2, v3) and (v3, v4)
cross any other edge that is vertex-disjoint from them an odd number of times.

Let E ′ be the set of edges in G− that are vertex-disjoint from (v1, v4). The
set of edges that are vertex-disjoint from (v1, v2) in η is E ′∪(v3, v4). Let (w, w′)
be an arbitrary edge in E ′. Since (w, w′) crosses (v1, v4) in η− an odd number
of times, the order of w, w′, v1, v4 on ∂(d) (clockwise or anticlockwise) is ei-
ther v1, w, v4, w′ or v1, w′, v4, w. Since we insert v2 in Σv4 in η, it follows that
the order of w, w′, v1, v2 on ∂(d) is either v1, w, v2, w′ or v1, w′, v2, w (see Fig-
ure 8.7(c)). Hence (w, w′) crosses (v1, v2) an odd number of times. Moreover,
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as the order of v1, v2, v3, v4 (clockwise or anticlockwise) on ∂(d) is v3, v1, v4, v2

(v1 and v2 are separated by v3 and v4 on the boundary), (v1, v2) crosses (v3, v4)
an odd number of times. That is, any edge that is vertex-disjoint from (v1, v2)
crosses (v1, v2) an odd number of times.

By a similar argument, any edge that is vertex-disjoint from (v3, v4) crosses
(v3, v4) an odd number of times.

The set of edges that are vertex-disjoint from (v2, v3) in η is E ′. Any edge
in E ′ crosses (v1, v4) an odd number of times. Therefore, after we insert v2 in
Σv4 and v3 in Σv1 , any edge in E ′ also crosses (v2, v3) an odd number of times.
That is, η is a weak generalised outerthrackle.

If G is the union of a number of paths then we obtain a graph G+ by
adding a couple of edges (and maybe a vertex) to G until it becomes a cycle
of odd length (so that we do not violate condition 3 in the theorem). We
construct a weak generalised outerthrackle drawing of G+ and then we delete
the extra edges and vertices of G+ to obtain a weak generalised outerthrackle
drawing of G.

v1
v2

v3

v4v2n−1

v2n

v2n+1

. . .

(a) vertices of
C2n+1

p0
p1

pj
pj+n

p2n

. . .

...
...

(b)
p1, p2, . . . , p2n+1 on
∂(d).

p0
p1

pj
pj+n

p2n

. . .

...
...

vi−1
vi

(c) position of vi−1
and vi on ∂(d).

Fig. 8.8 Constructing a weak generalised outerthrackle drawing of an odd
cycle.

Figures 8.9(a) and 8.9(b) depict the thrackled outerdrawings of C7 and
C9 respectively according to the algorithm that is embedded in the proof of
Theorem 45 and Figure 8.9(c) depicts an outerdrawing of a graph G that has
four edges more than a cycle drawn using the same algorithm.

8.2 Relationship between different types of super-
thrackles

Let (v, v1) and (v, v2) be two incident edges of a graph G and let G′ be the
graph that is obtained from G by identifying v1 and v2 and then deleting
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(a) C7 (b) C9 (c) C5 with four
extra edges.

Fig. 8.9 Three weak generalised outerthrackles

any loops formed. Define the folding foldingoperation to be the operation that is
performed on G to obtain G′. More specifically, we say that we obtain G′

from G by folding (v, v1) onto (v, v2).

Lemma 30. Let e = (v, v1) and e′ = (v, v2) be two incident edges that appear
consecutively in πη(v) where η is a generalised superthrackle drawing of a
graph. Then there is a non-self-intersecting curve ζ from v1 to v2 that crosses
each edges of η an even number of times.

Proof. Let ζ ′ be a curve from v1 to v2 such that:

1. ζ ′ and (v, v1) are located consecutively in the cyclic order of the edges
and ζ ′ around v1 in η.

2. ζ ′ and (v, v2) are located consecutively in the cyclic order of the edges
and ζ ′ around v1 in η.

3. ζ ′ follows the paths of (v, v1) and (v, v2) sufficiently closely so that it is
drawn within the local disks of (v, v1) and (v, v2) and for any crossing
between an edge e and (v, v1), there is only one crossing between e and
ζ ′ and for any crossing between an edge e and (v, v2), there is only one
crossing between e and ζ ′ (see Figure 8.10).

Since η is a generalised superthrackle, any two edges cross an odd number
of times in η and therefore ζ ′ crosses all the edges other than (v, v1) and (v, v2)
an even number of times in η. Now obtain ζ from ζ ′ by:

1. removing the self-crossings on ζ ′ using Rp
I .

2. using Rp
V , if necessary, to make sure that ζ crosses both (v, v1) and (v, v2)

an even number of times.

Curve ζ crosses each edge of η an even number of times.
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v

v2

v1

(a) Local area of
(v, v1) and (v, v2) in η
before adding ζ ′

v

v2

v1

(b) Local area of
(v, v1) and (v, v2) in η
after adding ζ ′

Fig. 8.10 Adding ζ ′ to η

Next we show that generalised superthracklable graphs are closed under
the folding operation under certain circumstances.

Theorem 47. Generalised superthracklable graphs are closed under folding of
any two edges e = (v, v1) and e′ = (v, v2) that appear consecutively at v in
some generalised superthrackle drawing of the graph.

Proof. Let η be a generalised superthrackle drawing of a graph G. Let (v, v1)
and (v, v2) be two edges that appear consecutively in πη(v). By Lemma 30
there is a curve from v1 to v2 that crosses each edge of η an even number of
times.

Let G+ be the graph that is obtained by adding (v1, v2) to G (if it is not
already in G). Let η+ be a drawing of G+ that is obtained from η by deleting
the edge (v1, v2) from G (if (v1, v2) is already in η) and adding (v1, v2) back to
η such that it is routed along ζ.

Remove the self-crossings of (v1, v2) using Rp
I and remove all the crossings

on (v1, v2) by pushing the crossings over v2 using Rp
IV . Then obtain a drawing

η− by contracting (v1, v2) to x such that:

• any edge f incident with v2 (other than (v1, v2)) in η follows the path of
(v1, v2) sufficiently closely in η− so that, as it extended for any crossing
between an edge f ′ and (v1, v2), there is only one crossing between f ′

and the new portion of f that follows the path of (v1, v2) and

• the rotational order of the edges around the vertices is preserved (as
shown in Figure 8.11).

Let G− be the graph that is represented by η−. By definition, G− is
obtained from G by topological folding of (v, v1) onto (v, v2). Since any edge
in η+ crosses (v1, v2) an even number of times, Rp

IV does not change the parity
of the number of crossings between the edges and the parity of the number



8.2 Relationship between different types of super-thrackles 106

v1

v2

(a) η

x
(b) η−

Fig. 8.11 Obtaining η− from η by contracting (v1, v2) to x

of crossings between the edges in η− is the same as η. Therefore η− is a
generalised superthrackle drawing of G−. The lemma follows.

Now we are ready to prove that any weak generalised outerthrackle is an
outersuperthrackle.

Theorem 48. Let η be a weak generalised outerthrackle drawing of a graph
G. Then there is an outersuperthrackle drawing η′ of G with ρ(η′) = ρ(η).

Proof. Throughout this proof we assume that no edge crosses itself. That
is, since Rp

I does not change the parity of the number of crossings between
vertex-disjoint edges, if an edge crosses itself we use Rp

I to remove the self
crossing.

We prove this lemma in two steps. As the first step, we construct an
outerthrackle drawing ηtemp of G. Then, as the second step, we use ηtemp to
construct an outersuperthrackle drawing η′ of G.

Step 1: Let η be a weak generalised outerthrackle drawing of a graph
G. We need to show that there is an outerthrackle drawing η′ of G with
ρ(η′) = ρ(η).

We prove the first step by induction on the number of crossings in the
drawing.

The minimum number of crossings in a weak generalised outerthrackle
drawing occurs when any two vertex-disjoint edges cross once and there are
no crossings between any two edges that are incident at the same vertex.
Therefore, in the base case of the induction for step 1, vertex-disjoint edges
cross once and edges that are incident at the same vertex do not cross. That
is, η is an outerthrackle drawing of G and we are done. We proceed to the
inductive cases.

Case 1, there are two edges e = (v1, v2) and e′ = (v3, v4) in η that
cross more than once. Without loss of generality let e and e′ be vertex-
disjoint. Let x1 and x2 be two crossings on e and e′ that are consecutive on
e.
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v1 v2

v3 v4
(a) before

v1 v2

v3 v4
(b) after

Fig. 8.12 Removing two crossings on two edges that cross each other an even
number of times.

Crossings x1 and x2 divide e into three three segments: the part from v1

to either x1 or x2 (whichever crossing that we reach first as we move along
the path of (v1, v2) from v1 to v2), say x1, the part from x1 to x2 and the part
from v2 to either x1 or x2 (whichever crossing that we reach first as we move
along the path of (v1, v2) from v2 to v1). Similarly x1 and x2 divide e′ into
three line segments: the part from v3 to x1, the part from x1 to x2 and the
part from x2 to v4.

We reroute e or e′ in η to obtain a weak generalised outerthrackle drawing
of G with a smaller number of crossings as follows. Let l denote the part of e

that extends from x1 to x2 and let l′ denote the part of e′ that extends from
x1 to x2. Let C denote the simple cycle (a cycle that does not cross itself)
that is formed by l and l′.

Since η is an outerdrawing, all the vertices of G are located outside C and
therefore the parity of the number of crossings of any arbitrary edge e′′ and
l is equal to the parity of the number of crossings of e′′ and l′. Therefore if
we remove x1 and x2 as is shown in Figure 8.12, we obtain a drawing η− of G

with a smaller number of crossings compared to η such that the parity of the
number of times any two independent edges cross are the same. Therefore, η−

is a weak generalised outerthrackle drawing with a smaller number of crossings
compared to η. Hence, by induction, G has a weak outerthrackle drawing ηtemp

in which the edges that are incident with a vertex do not cross.
Case 2, there are two incident edges e and e′ in η that cross once.

Obtain an outerdrawing η2 of G from η by removing any crossings between
two edges that are incident at the same vertex using the move that is shown
in Figure 8.13.

By the same argument as in Case 1, this move does not change the parity
of the number of crossings between vertex-disjoint edges in outerdrawings.
Therefore, η2 is an outerthrackle drawing of G with a smaller number of
crossings compared to η and by induction, G has an outerthrackle drawing
ηtemp in which the edges that are adjacent to a vertex do not cross.

Step 2. In this step we use Rp
I to reverse the order of the edges adjacent
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v1

v2

v3
(a) before

v1

v2

v3
(b) after

Fig. 8.13 Removing crossings on two adjacent edges (where (v1, v2) and (v1, v3)
are the only two edges that are depicted here). The difference between Rp

I and
this move is that here there might be other crossings between other edges and
(v1, v2) or other edges and (v1, v3) that cross (v1, v2) or (v1, v3) between v1 and
the crossing.

to any vertex v of ηtemp to obtain another drawing η′ of G. That is, if π(v)
in ηtemp is e1, e2, . . . , ei then change π(v) to ei, ei−1, . . . , e1 in η′ through the
following series of steps:

1. π(v) = e2, e3, . . . , ei, e1 (see, for example, Figure 8.14(b)).

2. π(v) = ei, ei−1, e1, e2, . . . , ei−2 (see, for example, Figure 8.14(c)).

...

i − 1. πη′(v) = ei, ei−1, . . . , e1 (see, for example, Figure 8.14(d)).

v e1

e2
e3
e4

e5

πv

(a)

v e1

e2
e3
e4

e5

πv

(b)

v e1

e2
e3
e4

e5

πv

(c)

v e1

e2
e3
e4

e5

πv

(d)

Fig. 8.14 Constructing η′ from ηtemp by reversing the order of the edges around
the vertices.

Rp
I does not change the parity of the number of crossings between vertex-

disjoint edges. However, it changes the parity of the number of crossings
between the edges that are incident with v. Knowing that any two edges that
are adjacent to one vertex cross each other an even number of times in ηtemp,
it is easy to see that any two edges that are adjacent to one vertex cross each
other once in η′. Therefore, η′ is a drawing of G in which any two edges cross
once. The theorem follows.

We conclude this chapter by establishing the relationship between these
different types of outerthracklable graphs.
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Theorem 49. The following four classes of graphs are equivalent:

1. outersuperthracklable graphs

2. weak outerthracklable graphs

3. generalised outersuperthracklable graphs

4. weak generalised outerthracklable graphs.

Proof. By definition, any outersuperthrackle is both a weak outerthrackle and
a generalised outersuperthrackle. Moreover any weak outerthrackle or gener-
alised outersuperthrackle is a weak generalised outerthrackle. Therefore by
definition, the class of weak generalised outerthracklable graphs includes all
the weak outerthracklable graphs and all generalised outersuperthracklable
graphs, and both of the classes of weak outerthracklable graphs and the gener-
alised outersuperthracklable graphs include outersuperthracklable graphs (see
Figure 8.15).

weak generalised outerthrackles

outersuperthrackles
generalised
outersuperthrackles

weak
outerthrackles

Fig. 8.15 Relationship between different types of outerthracklable graphs

Therefore, to prove that all the aforementioned classes of graphs are equal,
we only need to show that any weak generalised outerthracklable graph is an
outersuperthracklable graph. That is, the Theorem follows by Theorem 48.



9
The Hanani-Tutthe Theorem and

Superthrackles

In this chapter we prove that the classes of generalised superthracklable
graphs and superthracklable graphs are equal.
Moreover, we show that there is a relationship between the class of graphs
that are not embeddable on a surface Σ and the class of graphs that are not
superthracklable with respect to Σ. More specifically, we show that given
a minimal excluded minor G for embeddability of graphs on a surface Σ
there are two infinite families of graphs that we can construct from G

that are not superthracklable with respect to Σ.

Theorem 33 states that any generalised thracklable graph is a superthrack-
lable graph. In this chapter, we provide a simple and direct proof for Theo-
rem 33 and generalise it to all surfaces.

Theorem 50. Any generalised superthracklable graph with respect to surface
Σ is superthracklable with respect to Σ.

Then we investigate the relationship between Theorem 33 and the Weak
Hanani-Tutte Theorem. Note that there are similarities between Theorem 33
and the Weak Hanani-Tutte Theorem since:
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• the Weak Hanani-Tutte Theorem can be rephrased as: every graph G

with a drawing in which every two edges cross an even number of times
has a drawing in which every two edges cross zero times, and

• Theorem 33 can be rephrased as: every graph G with a drawing in which
every two edges cross an odd number of times has a drawing in which
every two edges cross once.

For any graph G = (V, E) and any subset E ′ of E, let G(G, E ′) be the
family of all the graphs that are obtained from G as follows:

• Replace every edge e = (u, v) ∈ E ′ with a (u, v)-path P of even length,

• Replace every edge e = (u, v) 6∈ E ′ with any (u, v)-path P ,

• such that all paths so introduced are internally disjoint from each other.

We use the weak Hanani-Tutte Theorem to prove Theorem 51.

Theorem 51. Let Σ be a surface. Let G be a graph such that in any drawing
of G on Σ there are two edges that cross each other an odd number of times.
Let e be any edge of G and let G′ be a graph in G(G, E \ {e}). Then in any
drawing of G′ on Σ, there are two edges that cross each other an even number
of times.

Moreover, given that the Strong Hanani-Tutte Theorem holds for planar
graphs one might think that the analogous statement holds for superthrackles,
that is, that any weak generalised superthracklable graph is superthracklable.
Lastly, we show that the latter statement is false.

The rest of this chapter is organised as follows. In Section 9.1 we prove
equivalence of generalised superthracklable graphs and superthracklable graphs
for all surfaces. Section 9.2 is dedicated to the relationship between the
Hanani-Tutte Theorem and thrackles.

9.1 Generalised Superthrackles and Superthrack-
les

Lemma 31. Let η be a generalised superthrackle drawing of a multigraph with
only two vertices u and v and no loops. Then πη(u) = πη(v).
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Proof. We prove this lemma by induction on the number m of edges in the
drawing. In the base case η does not have any edges and the lemma holds
trivially. We proceed to the inductive case.

Let e1, e2, . . . , em be the edges in η, named so that π(u) = e1, e2, . . . , em.
Let η− be the drawing obtained by deleting em from η. Any two edges in η−

cross each other an odd number of times and therefore η− is a generalised su-
perthrackle as well. Hence, by induction, πη−(u) = πη−(v) = e1, e2, . . . , em−1.

Now to reach a contradiction suppose that πη(u) 6= πη(v). Since πη−(u) =
πη−(v), this means that em is not located between em−1 and e1 in πη(v).

Without loss of generality, let us assume that πη(v) = e1, e2, . . . , ei, em,

ei+1, ei+2, . . . , em−1, where 1 ≤ i ≤ m − 1, as shown in Figure 9.1. Let C be
the cycle that is defined by the two edges em−1 and e1.

v
e1

ei

ei+1

em−1

e2

em

ei+2

Fig. 9.1 πη(v)

By Lemma 20, we can colour all the regions of the plane with respect to
η[C] either black or white, such that any curve that extends from a point p1

to a point p2 crosses C:

• an even number of times if p1 and p2 are located in regions with the
same colour or

• an odd number of times if p1 and p2 are not located in regions with the
same colour.

Now, let us consider the colouring of the regions in the neighbourhoods of
vertices u and v. Such a colouring can be in the form of one of the four cases
shown in Figure 9.2.

Since η is a generalised superthrackle, any edge of η other than e1 and
em−1, say e2, crosses C an even number of times. Therefore the colouring of
the regions of the plane in the neighbourhood of u and v cannot be similar
to Figure 9.2(b) or Figure 9.2(c). (The edge e2 should start and end in two
isochromatic regions.) However, this would lead to a contradiction since then
the initial and final portions of em, which crosses C an even number of times,
lie in two regions that are not coloured the same.
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v
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ei+1

em−1

e2

em

ei+2

u
e1 ei

em

e2

ei+1

em−1

(a)

v
e1

ei

ei+1

em−1

e2

em

ei+2

u
e1 ei

em

e2

ei+1

em−1

(b)

v
e1

ei

ei+1

em−1

e2

em

ei+2

u
e1 ei

em

e2

ei+1

em−1

(c)

v
e1

ei

ei+1

em−1

e2

em

ei+2

u
e1 ei

em

e2

ei+1

em−1

(d)

Fig. 9.2 Four different forms of black-and-white colouring of neighbourhood
of u and v in η based on C

Now we deal with the case of a graph with two vertices that may have
loops.

Lemma 32. Let η be a generalised superthrackle drawing of a multigraph G

with two vertices. There is a superthrackle drawing η′ of G such that Π(η′) =
Π(η).

Proof. Let u and v be the vertices of G. Then the following three cases
are forbidden in a generalised superthrackle drawing η of a generalised su-
perthracklable G:

1. Let e1 and e2 be two loops in G where e1 is incident with u and e2

is incident with v. In this case, in any drawing of G, e1 and e2 cross
each other an even number of times and therefore G is not a generalised
superthracklable graph. (See, for example, Figure 9.3(a).)

2. Let e1 and e2 be two loops that are both incident with the same vertex,
say u, then the restriction of πη(u) to e1 and e2 cannot be e1, e1, e2, e2

since in that case e1 and e2 cross each other an even number of times.
(See, for example, Figure 9.3(b).)

3. Let e1 and e2 be two parallel edges between u and v, let e3 be a loop that
is incident with u, and let the two occurrences of e3 in πη(u) be separated
from each other by e1 and e2. (See, for example, Figure 9.3(c).) In this
case, e3 crosses the cycle defined by the two edges e1 and e2 an odd
number of times since it starts and ends on opposite sides of the cycle.
Therefore e3 crosses either e1 or e2 an even number of times.

Using forbidden case 1, from this point on, we assume that if there is any
loop in G it is incident with u and not with v.
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vu

(a)

u

(b)

vu

(c)

Fig. 9.3 Three forbidden cases in a superthrackle drawing of a multigraph with
two vertices.

We prove this lemma by induction on the number of edges of G. Let u

and v be the two vertices of G. In the base case, there is at most one loop
and at most one edge (u, v) in G. If G has has less than two edges then, by
definition, any drawing of G is a superthrackle. So let us assume that there
is a loop and an edge (u, v) in G. In this case, it is easy to see that there is
a superthrackle drawing η′ of G such that Π(η′) = Π(η). We proceed to the
inductive case.

We have the following two cases:
Case 1. There are at least two parallel edges between u and v in

G. By the forbidden case 3, we know that all the endpoints of the edges that
are not loops in G appear consecutively in πη(u). Therefore, by Lemma 31,
there are two parallel edges e1 = (u, v) and e2 = (u, v) in G such that both
of their endpoints appear consecutively and in the same order in both πη(u)
and πη(v). (See, for example, Figure 9.4(a).)

Let G− be the graph obtained by deleting e2 from G and let η− be the
drawing obtained by deleting e2 from η. By the inductive hypothesis G− has
a superthrackle drawing η−

1 such that Π(η−
1 ) = Π(η−).

Now we obtain a drawing η1 of G such that Π(η1) = Π(η) by adding the
edge e2 back to η−

1 as in the following two steps:

1. add e2 to the drawing such that e2 follows e1 sufficiently closely so that
it is drawn in the local disk of e1 and does not meet e1 and πη1(u) is the
same as πη(u). (See, for example, Figure 9.4(b).)

2. use the Rp
I move to switch the rotational order of e1 and e2 around v

(See, for example, Figure 9.4(c).)

vu e1
e2 e1

e2

(a) order of e1 and e2
in πη(u) and πη(v)

vu e1

e2
(b) e2 closely follows e1

vu e1

e2
(c) using R1 to ensure
that e2 crosses e1

Fig. 9.4 Obtaining η1 by adding the edge e2 to η−
1 in case 1.
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Since η−
1 is a superthrackle, any pair of edges in η1 that does not contain

e2 cross each other once. Moreover since e2 follows e1 sufficiently closely, e2

also crosses any edge other than e1 in η1 once. Lastly, with the Rp
I move in

step 2, we guarantee that e2 crosses e1 once as well. Hence any two edges in
η1 cross each other once and therefore η1 is a superthrackle.

Case 2. There is at least two loops in G and there is at most one
edge incident with both u and v. By forbidden case 1, all the loops in G

are incident with one vertex. Let e1, e2, . . . , ei be the loops that are incident
with u and let e′ be the edge that is incident with both u and v.

By forbidden cases 2 and 3, it is easy to see that the loops can be named
so that πη(u) = e1, e2, . . . , ei, e1, e2, . . . , ei, e′ (see Figure 9.5(a)). Let G− be
the graph obtained by deleting e2 from G and let η− be the drawing that
is obtained by deleting e2 from η. By the inductive hypothesis G− has a
superthrackle drawing η−

1 such that Π(η−
1 ) = Π(η−).

Now we obtain a drawing η1 of G such that Π(η1) = Π(η) by adding e2

back to G as in the following two steps:

1. add e2 to the drawing such that e2 follows e1 sufficiently closely and does
not cross it (see for example Figure 9.5(b)).

2. use the Rp
I move to switch the rotational order of e1 and e2 around u

such that Π(η1) = Π(η) (see for example Figure 9.5(c)).

ue1
e2 ei

e1
e2ei

e′

(a) π(u)

u

e1 e2

(b) e2 closely fol-
lows e1

u

e1 e2

(c) using R1 to
ensure that e2
crosses e1

Fig. 9.5 Obtaining η1 by adding the edge e2 to η−
1 in case 2.

By a similar reasoning to case 1, any two edges in η1 cross each other once
and therefore η1 is a superthrackle.

We use the above lemma as the base case of the proof of the following
theorem.

Theorem 52. Let η be a generalised superthrackle drawing of a connected
multigraph G. Then there is a superthrackle drawing η′ of G such that Π(η′) =
Π(η).



9.1 Generalised Superthrackles and Superthrackles 116

Proof. It is easy to prove the lemma if G has only one vertex. So let us assume
that G is connected and has at least two vertices.

We prove this theorem by induction on the number of the vertices in G.
In the base case, G has two vertices and by Lemma 32, we know that the
theorem holds. We proceed to the inductive case where there are at least
three vertices in G.

Let u and v be two distinct vertices of G such that there are two edges
(u, w) and (v, w) in G where (u, w) and (v, w) appear consecutively in πη(w)
and w 6= u, v. Since G is connected and G has at least three vertices, such u

and v exist.
By Lemma 30, there is a curve c that extends from u to v and crosses each

edge of G an even number of times. Let G+ be the graph obtained by adding
an edge e = (u, v) to G and let η+ be a drawing of G+ obtained by adding e

to η such that e is routed along the curve c.
Let G− be the graph that is obtained by contracting e in G+. G− has one

vertex fewer than G. Obtain a drawing η− of G− by contracting e in η+ such
that:

• any edge e′ incident with v follows the route of e sufficiently closely until
it reaches u without crossing any other edge incident with v;

• for any new crossing introduced between e′ and another edge e′′ in η−

there is a crossing between e and e′′ on η+ (see for example Figure 9.6).

v

u

e

w

(a) Edge e crosses all
the other edges in η+

an even number of
times.

u

w

(b) Contracting e such
that all the edges in-
cident with v follow e
sufficiently closely.

Fig. 9.6 Obtaining η by contracting e in η+

The edge e crosses all other edges of η+ an even number of times and since
η is a generalised thrackle, all the edges in η+ except e cross each other an
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odd number of times. Therefore, any two edges in η− cross each other an odd
number of times. In other words, η− is a generalised thrackle as well.

Since G− has one vertex fewer than G, by the inductive hypothesis, there
is a superthrackle drawing η−

1 of G− such that Π(η−
1 ) = Π(η−).

All the edges that were incident with v in η+ appear consecutively in
πη−(u). Therefore, since Π(η−

1 ) = Π(η−), those edges appear consecutively in
πη−

1
(u) as well (see for example Figure 9.7(a)). Hence it is easy to decontract

e to obtain a drawing η+
1 of G+ such that all the edges of η+

1 except for e

cross each other once and e does not cross any other edges (see for example
Figure 9.7(b)).

u

(a) πη−(u). Edges
that were incident
with v in η+ are de-
picted in red.

u
v

(b) Obtaining η+
1

from η− by decon-
tracting e

u
v

(c) Obtaining η′

from η+
1 by deleting

e

Fig. 9.7 Obtaining η′

Now we can delete e from η+
1 to obtain a superthrackle drawing η′ of G

(see for example Figure 9.7(c)).

9.2 The Hanani-Tutte Theorem and Superthrack-
les

In this section we examine the relationship between the Hanani-Tutte Theo-
rem and superthrackles. The first subsection is about the connection between
the Weak Hanani-Tutte Theorem and Superthrackles and the second subsec-
tion is about the connection between the Strong Hanani-Tutte Theorem and
Superthrackles.

9.2.1 The Weak Hanani-Tutte Theorem and Superthrack-
les

Archdeacon and Stor characterised superthrackles in terms of eight forbidden
configurations [4]. Four of these configurations are closely related to K3,3 and
K5 which are the forbidden graphs in Kuratowski’s Theorem. Next we will
explain why is there such a close relation between these two theorems.
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Now we are ready to prove Theorem 51.

Proof of Theorem 51. Every edge e in G is replaced by a path in G′. Let us
denote that path by P (e) and the length of that path by l(e). Denote the
edges of P (e) by e′

1, e′
2, . . . , e′

l(e).
Let η′ be a drawing of G′. Obtain a drawing η of G from η′ by replacing

edges e′
1, e′

2, . . . , e′
l(e) in η′, for every edge e in G, with an edge e such that e is

routed exactly on the curve along which the edges e′
1, e′

2, . . . , e′
l(e) are routed

in Σ (see for example, Figure 9.8).

e′1

e′2

(a) Edges e′
1 and e′

2 of path
P (e) in drawing η′ of graph
G′

e

(b) Edge e in drawing η of
graph G

Fig. 9.8 Replacing e∗
1 and e∗

2 with e, where i(e) is 2

By the theorem’s assumption, in any drawing η of G there are two edges
that cross each other an odd number of times. Let e and f be two edges
that cross an odd number of times in η. For every edge (u, v) in G with the
exception of one of the edges, there is a (u, v) path with even length in G′.
Therefore, e or f is replaced by a path of even length to obtain G′ from G.
Without loss of generality, let f be always an edge that is replaced by a path
of even length as we obtain G′ from G.

Let us denote the number of crossing between two paths P1 and P2 with
χ(P1, P2). Since χ(e, f) is odd in η, χ(P (e), P (f)) is odd in η′. But χ(P (e), P (f))
is obtained by summing up χ(e1, e2) for all the pairs e1, e2 of edges where e1 is
an edge of P (e) and e2 is an edge of P (f). Since l(f) is even, there is an even
number of such pairs of edges. To reach a contradiction, assume that all such
pairs of edges cross an odd number of times. Then we have an even number of
odd integers that sum up to an odd integer, which is a contradiction. Hence
there is an edge e1 in P (e) and an edge f2 in P (f) such that e1 crosses f2 an
even number of times (see for example, Figure 9.9).

An implication of the Weak Hanani-Tutte Theorem along with the Ku-
ratowski’s Theorem is that, in any drawing of K3,3 or K5 or any subdivision
of them, there are two edges that cross each other an odd number of times.
This fact, along with Theorem 51, proves that K∗

5 , K∗
5(e), K∗

3,3 and K∗
3,3(e)
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e1

e2

f1
f2

Fig. 9.9 πη(v)

(depicted in Figure 2.18) have the property that, in any drawing of them in
the plane, there are two edges that cross an even number of times. Therefore,
by definition, these graphs are not generalised superthracklable and therefore
not superthracklable either.

The Weak Hanani-Tutte Theorem can be generalised to all surfaces [96, 97].
That is, if a graph G does not have a drawing that can be drawn on a surface
Σ without crossings, then there are two edges that cross each other an odd
number of times in any drawing of G on Σ and hence, by Theorem 51, any
graph in G(G, E \ {e}) is not superthracklable on Σ.

Theorem 53. Let G be a graph that is in the set of minimal excluded minors
for embeddable graphs on a surface Σ. Let H = (V, E) be a subdivision of
G. Then any graph that contains a graph in G(H, E \ {e}), where e ∈ E, is
neither a generalised superthracklable graph nor a superthracklable graph with
respect to Σ.

Proof. Since H contains a subdivision G, it is not embeddable on Σ. There-
fore, by the Weak Hanani Tutte Theorem for all surfaces [96, 97], in any
drawing of H on Σ there are two edges that cross each other an odd number
of times.

Therefore by Theorem 51 in any drawing of a graph H ′ in G(H, E \{e}) on
Σ, there are two edges that cross each other an even number of times. Hence
if a graph H ′′ contains H ′ it cannot be drawn on Σ such that any two edges
of H ′′ cross an odd number of times. Hence, by Theorem 52, H ′′ is neither a
generalised superthracklable graph nor a superthracklable graph.

9.2.2 The Strong Hanani-Tutte Theorem and Superthrack-
les

In Section 9.1, we proved that any generalised superthracklable graph is a
superthracklable graph. In other words, if there is a drawing of a graph G in
which any two edges cross each other an odd number of times, then there is



9.2 The Hanani-Tutte Theorem and Superthrackles 120

a drawing of G in which any two edges cross once. We also pointed out the
similarities between this theorem and the Weak Hanani-Tutte Theorem.

A natural question that arises from the above observation is whether we
can prove a theorem similar to the Strong Hanani-Tutte Theorem for su-
perthrackles. Let G be a graph that has a drawing in which any two vertex-
disjoint edges cross an odd number of times. Can we, with certainty, claim
that G has a drawing in which any two edges cross once?

The answer to the above question is no. Figure 9.10(a) depicts a planar
embedding of a graph G that is not superthracklable by Theorem 32. Fig-
ure 9.10(b) depicts a drawing of G in which any two vertex-disjoint edges cross
each other an odd number of times.

a

c

b

d

e

(a) A planar em-
bedding of a non-
superthracklable graph
G

a

c

b d

e

(b) A drawing of G in which any
two vertex-disjoint edges cross an odd
number of times.

Fig. 9.10 A non-superthracklable graph G and a drawing of G in which any
two vertex-disjoint edges cross an odd number of times.



10
Conclusion

In this chapter we summarise our main results and review the connections
between them. We then discuss open questions and directions for further
research.

In this thesis we investigated three main topics: the Hanani-Tutte Theo-
rem, non-separating planar graphs and thrackles and some of their variations.
These three topics may seem unrelated to each other at the first glance, but
through the course of this thesis we have observed connections between them
as follows.

We proved a stronger version of the Strong Hanani-Tutte Theorem. To do
so, we first characterised non-separating planar graphs in terms of minimal
excluded minors. We then used this characterisaion to prove a Hanani-Tutte
type theorem for non-separating planar graphs which in turn was used in the
proof of the stronger version of the Strong Hanani-Tutte Theorem. We also
decomposed planar graphs into smaller non-separating planar graphs in the
proof of the stronger version of the Strong Hanani-Tutte Theorem.

Motivated by the weak and the strong versions of the Hanani-Tutte The-
orem, we defined a number of different types of outerthracklable graphs and
showed that all of these classes of graphs are equal.

We also investigated the relationship of the Hanani-Tutte Theorem with
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thrackles and proved that any generalised superthracklable graph is a su-
perthracklable graph, which is an analogue of the Weak Hanani-Tutte Theo-
rem for superthrackles.

Then we showed that, given a minimal excluded minor G for the class of
graphs that are embeddable on a surface Σ, we can use G to construct two
infinite families of graphs that are not superthracklable with respect to Σ.

Moreover we found a counterexample for the analogue of the Strong Hanani-
Tutte Theorem for superthrackles.

Lastly, we showed that there is a close relationship between non-separating
planar graphs and linkless graphs by using a family of maximal non-separating
planar graphs to construct a family of maximal linkless graphs on |V | vertices
with 3|V | − 3 edges.

10.1 Future Work

10.1.1 Non-separating Planar Graphs

We believe that non-separating planar graphs are an interesting class of graphs
in their own right and that they deserve to be studied more thoroughly.

One can define a class of graphs similar to non-separating planar graphs
with respect to surfaces other than the plane. For example, a graph G is a
non-separating toroidal non-separating

toroidal graph
graph if it has a drawing D without crossings on the

torus such that for any cycle C in D and any two vertices u, v ∈ V (G)\V (C),
one can draw a curve from u to v without crossing any of the edges of C.

Any such class of graphs is also closed under taking minors and hence it
can be characterised using a finite set of minimal excluded minors. It would
be especially interesting to know the set of minimal excluded minors for non-
separating toroidal graphs since they are all minors of the minimal excluded
minors for toroidal graphs and we do not yet know the complete set of minimal
excluded minors for toroidal graphs (see [91]).

Chartrand and Harary proved that a graph is outerplanar if and only if
it does not contains any of K4 or K2,3 as a minor [21]. We proved that a
graph is a non-separating planar graph if and only if it does not contain any
of K1 ∪ K4 or K1 ∪ K2,3 or K1,1,3 as a minor (Theorem 38). Notice that for
any minimal excluded minor f for outerplanar graphs, f ∪ K1 is an minimal
excluded minor for non-separating planar graphs.

An interesting question to ask is whether or not such a relation exists for
other surfaces. More specifically, let Σ be a surface other than the sphere and
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let G Gbe the class of all graphs that can be embedded in Σ without a separating
cycle. Moreover, let F Fbe the class of all graphs that have a drawing on Σ
such that all of its vertices are on the same face. Is it the case that for any
minimal excluded minor f for F , f ∪ K1 is an minimal excluded minor for G?

By Theorem 39, it is straightforward to see that, in any non-separating
planar graph G, there is an edge e such that G \ e is outerplanar. In fact, it is
straightforward to see that in any non-separating planar drawing η of a graph
G, there is an edge e such that the drawing that is obtained by removing e

from η is outerplane.
It would be also interesting to know if there is such a relationship between

similar classes of graphs on other surfaces. More specifically, is there an edge
in any graph G ∈ G such that G \ e ∈ F?

Sachs points out that for any integer n ≥ 4, there is a maximal linkless
graph with n vertices and 4n − 10 edges. Moreover, since linkless graphs do
not contain a K6-minor, it follows that G has at most 4n − 10 edges [83]
and we showed that there are maximal linkless graphs with 3|V | − 3 edges
(Theorem 43). A natural question that arises as a result of this theorem is
the following. Does every edge-maximal linkless graph with n vertices have
at least 3n − 3 edges?

Theorem 43 also showed that there is a connection between non-separating
planar graphs and linkless graphs. It would be interesting to explore this
connection further. In fact it was this connection that served as our first
motivation for exploring the structure of non-separating planar graphs.

Lastly, in the view of the use we have made of non-separating planar
graphs, it would be interesting to see if they have other applications or if they
are related to other classes of graphs.

10.1.2 Hanani-Tutte Theorem

To prove a stronger version of the Strong Hanani-Tutte Theorem, namely
Theorem 42, we used a Hanani-Tutte type characterisation of non-separating
planar graphs, namely Theorem 41. Theorem 42 relies on the definition of
evenly decomposable drawings and this definition is based on the requirements
of Theorem 41. So Theorem 42 could be strengthened if one could provide a
stronger Hanani-Tutte type characterisation for non-separating planar graphs.

In the statement of Lemma 21, we introduced a graph G as follows. Let G

be a graph such that the shortest cycle in G is a two-vertex-avoiding cycle and
for any edge e and any vertex v that is not an endpoint of e, |E(v − e)| and
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|C(e − v)| have the same parity. Now let H Hbe the family of all such graphs.
It would be interesting to know more about H and to know whether there are
non-trivial graphs other than K1 ∪ K4, K1 ∪ K2,3 and K1,1,3 that are included
in this class of graphs.

Regarding the invariant φ + χ, which was introduced in Section 6.1, we
conjecture the following.

Conjecture 4. Let G be a minimal excluded minor for the class of graphs that
have an embedding on a surface Σ with no separating cycle. For any drawing
D of G on Σ, φ(D) + χ(D) is odd.

We also conjecture the following strengthening.

Conjecture 5. Let D be a non-separating drawing of a graph G on a surface
Σ such that any two vertex-disjoint edges in D cross an even number of times.
Then G has a non-separating drawing with no crossings on Σ.

10.1.3 Thrackles

Archdeacon and Stor proved that a graph is both superthracklable and gen-
eralised superthracklable if and only if it does not contain a subgraph that
is parity homeomorphic to any graph in Figure 2.18 (see Theorem 32). Al-
though superthracklable graphs and generalised superthracklable graphs are
well studied, we still do not know whether for every surface there exists a
finite set S of graphs such that we can characterise superthracklable graphs
and generalised superthracklable graphs for that surface in terms of graphs
without subgraphs that are parity homeomorphic to a graph in S.

Moreover, we do not know about characterisations of superthracklable
graphs on surfaces other than the plane. For example, what are the su-
perthracklable graphs with respect to the projective plane?
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