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Abstract

Medical databases can provide valuable prognostic and diagnostic information for indi-
vidual patient management and also insights into population level trends. Extraction of
the salient information requires sophisticated text and image analysis tools. The vast size
of modern databases, in large part due to the incorporation of volumetric imaging data,
makes the management and labelling of content an onerous task; this is particularly true in
the forensic setting where only a small subsection of the data that is explicitly relevant to
the cause of death is labelled by an expert reader. Machine learning (ML) approaches, in-
cluding both supervised and unsupervised pipelines, offer a potential avenue for alleviating
the level of human intervention required in order to label and therefore structure medical
databases. The ability of algorithms to sufficiently identify key anatomical and patholo-
gical landmarks depends on the condition of the body, the scanner configuration, and the
resulting image quality. In this thesis, the effects of a wide range of decedent-presentations
on an automated labelling pipeline for analysing post-mortem computed tomography (CT)
scans have been investigated. This document is organised into three investigations: devel-
opment of a ML pipeline applied to forensic data; the development of a tool for generation
of synthetic trabecular structures; and, the quantification of the effect of artefacts on image
quality caused by dense structures in CT scans. The final chapters present a discussion
and conclusion with reference to future work.

The first investigation, presented in this thesis, measured the performance characteristics
of a deep learning (DL) pipeline that comprised localisation and labelling steps. Variables
that affected the performance of the organ localisation technique, when applied to the
femur, were studied and their effect quantified. The automatic labelling of proximal and
distal femoral volumes was performed, and the resulting classification was studied using
confusion matrices to compare the performance of the proposed approach when additional
information about the cases was utilised during training.

In the second investigation, a simple analytical tool for modelling trabecular bone struc-
ture was developed. The model provided an accurate way of generating synthetic data
for pre-training and transfer learning which ultimately will help identify degraded bone
structures more efficiently, e.g. regions affected by osteoporosis.

In the third investigation, the coupling artefacts that arise due to the interplay between
the cylindrical symmetry of the CT scanner and the linear organisation of multiple dense
objects in the field of view, were investigated. The effect of the artefacts on the perform-
ance of the pipeline was quantified.
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Finally, the numerical trabecular model and an algorithm designed to generate synthetic
coupling artefacts were combined to investigate the limitations of a DL approach with
application to denoising of medical images.
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Student signature: Date:

I hereby certify that the above declaration correctly reflects the nature and extent of the
student’s and co-authors’ contributions to this work. In instances where I am not the
responsible author I have consulted with the responsible author to agree on the respective
contributions of the authors.

Main Supervisor name: Matthew Dimmock

Main Supervisor signature: Date:

vii



Acknowledgements

Firstly, I would like to express my deepest gratitude to my supervisors, Dr. Matthew
Dimmock and Dr. David Albrecht for their full support, guidance, encouragement and
understanding throughout this endeavour, without which, this candidature would have
been unquestionably an overwhelming pursuit.

Secondly, to my publication co-authors, the opportunity to work with an amazing and
diverse group of people is an unforgettable experience. It has been an absolute privilege
and joy to have been given the opportunity to collaborate. Special acknowledgements go
to my non-official but still wonderful associate supervisors, without whom I could not have
completed this work: firstly, thanks so much to Richard Bassed for your extensive advice
in all matters forensic and all your support in resolving the tedious ethics and data access
issues; secondly, a big thank you to Chris Harris, for your wonderful advice in the world
of orthopaedic surgery, the long nights at the Australian Synchrotron, and ferrying me
backwards and forwards to the Western Hospital with a freezer full of lamb legs in the
boot of your car; and finally, to the always wonderful physicist David Paganin for your
extensive advice in all things technical and fantastic problem solving abilities.

To the Department of Medical Imaging and Radiation Sciences, the Faculty of Medicine,
Nursing and Health Sciences, the Faculty of Information Technology, and the Monash In-
stitute of Graduate Research, thank you for the technical and administrative support given
throughout my candidature. In addition, I would like to thank both academic units for
the financial support provided as part of the Computational Biomedicine PhD Scholarship,
2016-2019.

Thanks also to the Australian Synchrotron and the Australian Orthopaedic Association
for their support in the form of synchrotron beam time on the Imaging and Medical beam-
line (IMBL) and grant money from the Victorian Orthopaedic Research Trust (VORT),
respectively. In addition, I would like to thank the Multi-modal Australian ScienceS Ima-
ging and Visualisation Environment (MASSIVE) HPC facility for the continuous technical
support.

viii
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CHAPTER 1

Introduction

1.1 Medical databases

Health records, composed of a patient’s medical history, medical encounters, orders/prescriptions,
progress notes, and test results (including medical images), are now largely found in elec-
tronic form, creating large digital medical databases. The text and image data from an
individual record can be linked to yield diagnostic and prognostic indicators, or records
can be aggregated to give population level trends [1, 2].

In the last decade, the amount of information that is being generated by health care sys-
tems around the world has increased substantially, thanks largely to the acquisition of
imaging data [3, 4]. Of particular importance are the medical imaging techniques that
generate volumetric representations of the body, e.g. computed tomography (CT) scans
and magnetic resonance imaging (MRI). With the continued technical advances achieved
in the field of medical imaging, the size of these databases will keep increasing due to
improvements in resolution, speed, and reduction in radiation dose [5, 6]. For diagnostic
and prognostic applications, the current medical imaging workflows typically involve the
radiographer or radiologist labelling small portions of the data, leaving large volumes un-
annotated [7, 8] and limiting the potential for large scale applications.

Machine learning (ML) approaches offer a potential avenue for alleviating the level of hu-
man intervention during labelling, with further applications to automatic diagnosis and
auditing images to make the database searchable [9, 10]. ML is widely used for modern
image analysis and computer vision applications in areas as diverse as robotics [11, 12],
surveillance [13, 14], and quality assurance. ML techniques are utilised to find patterns
in data, and/or encode information that can be used for segmentation and classification
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1.2. MACHINE LEARNING AND FORENSIC IMAGING

tasks. More recently, there has been much progress using ML in the automation of image
processing tasks to enhance medical imaging workflows for the key modalities of plain film
X-ray [15, 16], CT [17, 18], and MRI [19, 20]. Drawbacks in the use of these techniques
include the lack of a gold standard to compare results between different ML approaches,
as results giving definitive biomarkers from histo-pathology tests are not always avail-
able [21,22].

The utilisation of ML for improving workflow efficiency requires natural language pro-
cessing (NLP) to interpret and code both medical and legal documents, and image pro-
cessing techniques to process images of anatomy, pathology and histology. Image and NLP
applications are being widely studied using deep learning techniques (DL) [19, 23–25].
Although the analysis of clinical databases using these techniques is an active field of re-
search, access to the data can be cumbersome due to the long waiting times for the ethics
approvals, and the lack of centralised information [26] requiring the ethics applications to
be filed in different centres. Furthermore, medical imaging and reporting in the clinical
setting is usually anatomically-constrained, limiting its potential application to that of the
organ or structure under investigation [27,28].

In addition to clinical databases, equally important but as yet underutilised resources are
those at forensic institutes. Forensic databases provide supporting evidence to the coroner
for death investigations [29], and to the police for the crime scene reconstructions [30]. In
the forensic setting, whole-body scans are commonly acquired giving significant information
about the entire decedent anatomy. The ethics process can also be significantly shorter as
the data is held by a single institution and the administration is more straightforward.

1.2 Machine learning and forensic imaging

In forensic investigations, post-mortem CT (PMCT) is the most widely used medical ima-
ging technique for both the initial triage of the body and also for answering more complic-
ated anatomically- and pathologically-motivated questions about cause of death (CoD).
The use of clinical image processing approaches for PMCT workflows is non-trivial due to
the additional complications relating to decedent decomposition, variability in constitution
and positioning of normal anatomical structures resulting from CoD (e.g. incineration),
artefacts from foreign bodies, and anatomical positioning due to rigor mortis.

The use of traditional (non-ML, e.g. statistical shape models [31–33]) image processing
approaches for anatomical labelling in forensic applications would require a complicated
and organ specific decision tree in order to capture the variations within the database.
Figure 1.1 shows maximum intensity projections (MIPs) [34] generated from the triage
CT scans of five representative cases from the PMCT database of the Victorian Institute
of Forensic Medicine (VIFM). For a representative organ such as the femur, Figure 1.1

2



1.2. MACHINE LEARNING AND FORENSIC IMAGING

Figure 1.1: Coronal MIPs generated from the triage CT scans of representative cases found
in forensic databases. a) High-force fracture. b) Limb outside of FoV. c) Missing limb. d)
Foreign objects. e) Metallic implants.

demonstrates the significant variability relating to its identification and classification. Fig-
ures 1.1a-e show a high-force fracture, limb outside of field of view (FoV), missing limb,
foreign objects, and presence of metallic implants, respectively.

In an attempt to overcome the difficulties in developing traditional algorithmic approaches
that could account for the high degree of variability present in the forensic setting, the use
of ML techniques has been investigated in this work. As stated previously, the development
of ML approaches for analysing clinical imaging data is currently widely reported in the
literature. The most common ML approaches used in clinical medical imaging include sup-
port vector machines (SVMs) [35], random forests (RFs) [36], and artificial neural networks
(ANNs) [37]. ANNs are inspired by the way biological nervous systems process informa-
tion. ANNs contain a large number of highly interconnected nodes (called neurons) which
are separated into layers. These networks can process different pieces of information while
taking constraints and relationships into consideration to coordinate internal processing,
and to optimise the resulting output [37, 38]. The application of ANNs to medical im-
ages has facilitated the automation of needle insertion localisation for lumbar ultrasound
images [39], bone age assessment [40], and segmentation of glioma [41] and the human
retina [42], to name a few. Depending on network architecture and size, ANNs can have
further classifications: DL is the subset of ML that utilises deep neural networks (DNNs)
which differ from the more commonplace ANNs by their depth. DNNs have proven to be

3



1.3. THESIS OVERVIEW

immensely successful in problem solving due to their capacity to learn features from large
training datasets [43].

There is currently a dearth of literature quantifying the performance of the aforementioned
types of ML techniques to forensic medical imaging. The research that constitutes this
thesis builds on the existing clinical and forensic literature available [44–46] and quantifies
the limitations of the use of a ML pipeline in locating and classifying attributes of the femur.
Ultimately, approaches such as that presented in this thesis for automatic labelling of vast
medical databases will significantly reduce the burden on pathologists and radiologists
in labelling retrospectively collected images. The labelling of retrospective images is of
paramount importance for adding structure to existing and future databases in order to
improve the access efficiency for answering important anthropological and medico-legal
questions.

1.3 Thesis Overview

The first section (Chapter 2) of this thesis reports the findings of an extensive review of
the literature. ML techniques were found to have been applied to a large number of tasks
that could be used in medical imaging, where the algorithms most widely utilised include
RFs, SVMs, and CNNs; CNNs were shown to deliver better performance for applications
where different combinations of these approaches were directly contrasted. Techniques
that were found to improve the ML performance in medical imaging included data aug-
mentation, improved feature selection and algorithmic combination, e.g. majority voting.
Performance was shown to be affected by resizing of the input images and the accuracy
of the labels provided with the training data. In addition, the quantitative comparison of
results from different groups for solving similar questions in the medical imaging domain
was found to be difficult due to the lack of gold-standard labels, as well as the variability
in reporting of metrics, and lack of reporting of a diagnostic odds ratio. It was concluded
that ML applications that utilised CNNs could be re-purposed to the forensic domain with
careful consideration to account for the increased variability and temporal factors, e.g.
decomposition, that affect the data used to train the ML techniques. In broad terms, due
to the complexity of the autopsy process, key applications of ML to forensic radiology
would be to highlight and annotate areas of forensic interest, or to present information to
optimally determine the CoD, including differentiation between body cavity fluid accumu-
lations (blood, pus, ascites) and their corresponding volumes, calculation of organ volumes
and weights, percentage of coronary artery calcification, identification of subtle fractures
especially in critical areas such as the cervical spine, and determination of skeletal com-
pleteness and skeletal commingling after mass fatality incidents. These algorithms could
also be used to automate decedent identification using dental records or photographs.
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1.3. THESIS OVERVIEW

In the main study detailed in this thesis (Chapter 3), work pertaining to the localisation
and labelling of the femur to provide enhanced structure to a post-mortem CT database
was performed. DL algorithms were implemented and tested for localisation and classific-
ation tasks when processing PMCT scans. Following the development of the localisation
and labelling pipeline, Chapter 4 presents a numerical model for generation of synthetic
trabecular bone structures which is intended for applications to transfer learning to optim-
ise the training efficiency of DL approaches. Chapter 5 then presents a study of the effects
of metal artefacts from the coupling of dense structures on image quality. The subsequent
discussion (Chapter 6) then contextualises the limitations of the DL approaches employed
for femur localisation and classification by utilising a DNN trained to reconstruct synthetic
trabecular bone structures in the output where the input comprised poor quality images
generated using the aforementioned trabecular bone and metal artefact models. A more
detailed summary of the findings of each individual section is described below.

1.3.1 Chapter 3: Femur localisation and structured unsupervised la-
belling in CT scans using machine learning

The first study presented in this thesis documents the implementation and interpreta-
tion of the two components of a DL pipeline that was developed to localise and label
the femur. The system was trained using 350 full-body CT scans (∼2000 slices per scan)
from the VIFM database with a large variability in terms of body mass index (BMI), time
since death, incompleteness of lower limbs, presence of metallic implants, trauma, and the
presence of foreign objects. Three separate networks were created and linked for parallel
execution in order to determine the presence (or absence) of an organ in a given slice of
each of the three orthogonal views (axial, coronal and sagittal) defined by the reconstruc-
ted CT scan volume. The predictions of the networks were then subsequently merged in
order to generate the 3D bounding box for the organ in the scan from each case. The
resulting predicted bounding boxes, with the addition of 100 more cases obtained from
a population with a higher probability of presenting metallic components in the femur,
were then fed into a DL network. The network was designed for automatic labelling of
the organs according to clustering in a latent vector space representation generated from
a convolutional autoencoder (CAE). The results were then contextualised with respect to
the available forensic information obtained from the associated pathology reports.

For the femur localisation, Dice scores of 0.99, 0.96, and 0.98 and mean absolute errors
(MAEs) of 3.2, 7.1, and 4.2 mm were obtained in the axial, coronal, and sagittal views,
respectively. Test cases were properly labelled as without-implant (I−), nail, hip replace-
ment, or knee replacement with an accuracy >97%, where the recall for I− and hip re-
placement cases was 1.00, but falling to 0.82 and 0.65 for cases with knee replacements and
nails. Factors that were found to be statistically significant in affecting the localisation
stage included the presence of metal in the primary femur, and the rotation of the femur
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1.3. THESIS OVERVIEW

with respect to the movement axis of the scanner bed. The results of the femur localisation
and automatic labelling were submitted to the journal Forensic Science International in
November 2019 and we are still awaiting an outcome from this.

This project was the first to address the utilisation of DL technqiues at the VIFM. As
such, the work contained in this thesis was the first attempt at accessing large numbers
of deidentified CT scans with accompanying decedent’s demographic information, and
therefore had to resolve issues of data access. The transfer of retrospective data from
the VIFM patient archive and communication system (PACS) was non-trivial, and the
exporting of legacy cases was found to interfere with the day-to-day workflow of the forensic
pathologists. Therefore, although ideally much larger numbers of cases would have been
used, the limited times at which data could be accessed and the unavailability of a batch
script to export the data en-mass restricted the workflow.

1.3.2 Chapter 4: Numerical model of the trabecular bone structure

Due to the large dataset requirement of machine learning techniques, and the necessity
for customised training data, e.g.osteoporosis and bone fractures, we derived a numerical
model for the generation of synthetic bone structures. The model included the generation of
projection data for absorption- and propagation-based phase-contrast CT (PB-CT) [47,48]
that was then reconstructed. PB-CT is a special case of conventional absorption-based CT
and exploits the refraction of X-rays from coherent sources to significantly improve image
contrast.

The synthetic structures, when compared with the real trabecular micro-architecture, yiel-
ded an average mean thickness error of 2 µm, and a mean difference in standard deviation of
33 µm for the humerus, 24 µm for the ulna and radius, and 15 µm for the vertebrae. Simu-
lated absorption- and propagation-based phase contrast CT projection data were generated
and reconstructed using the derived mathematical simplifications from the two-material ap-
proximation, and the phase-contrast effects were successfully demonstrated. The results
of this work were published in Medical Physics at the start of 2019.

1.3.3 Chapter 5: Metal artefacts from the coupling of dense objects in
CT

Metal artefacts result from beam hardening [49] and photon starvation [50], and signific-
antly affect image quality in both the clinical and forensic settings. The effect of metal
artefacts on image quality was investigated and characterised. CT scans of fractured ex-
vivo ovine legs with varying degrees of external fixation were acquired using dual-energy
CT (DECT) and metal artefact reduction software (MARS) protocols.

6



1.3. THESIS OVERVIEW

Both the use of DECT and MARS were studied and quantified by measuring attributes of
the resulting image histograms with and without metal. In the presence of metal struc-
tures, the bone distribution at 70 keV presented a change of 80.1% and 30.6% for σ, plus
a relative error of 25.34% and 34.91% for µ, in the case of DECT and DECT + MARS,
respectively. Higher energies in DECT improved σ and worsened µ of the bone peak, while
the error increased for both parameters when both DECT and MARS protocols are used.
The results of this work were published in Strategies in Trauma and Limb Reconstruction
at the end of 2018.

From this research a set of tentative clinical guidelines were established for the positioning
of external fixation frames that maintain the patient support but minimise artefacts visible
in the volumetric scan data. In the final experimental section of this thesis, the proposed
numerical model and the results from the study of metal artefacts from the coupling of
dense objects were utilised for the generation of a noisy simulated database. Volumetric
data was created to mimic axial slices through a femur, approximated as three concentric
elliptical cylinders on a background with appropriate Hounsfield unit (HU) values. The
simulated volumes that approximated extremity CT scans were utilised as the output of
the network, after Gaussian noise was added [51] and the sizes of the simulated bones were
varied to improve the algorithm’s capabilities. A simple model was used to include the
metal artefacts generated when different numbers of dense objects were added around the
simulated leg. A DNN with similar architecture to the CAE, called VNet [52], was utilised
to attempt to denoise the retrospective data by removing the artefacts whilst preserving
the integrity of the simulated anatomy. VNets are the most appropriate DL approach to
use when reconstructing a volumetric input due to its edge preserving nature.

The results were obtained through comparison of the mean and width parameters of Gaus-
sian curves fitted to the volume’s histograms, where the soft tissue was not significantly
affected by the addition of the synthetic coupling artefacts. For the bone tissue in the
presence of the coupling artefacts, the mean and standard deviation values changed an av-
erage of 7% and 51%, respectively, when compared to the artefact-free volumes. The mean
and width values of the predicted volumes when compared to the original volumes, differed
an average of 3% and 1%, respectively. Although the results have been obtained from a
simple model database, the presented artefact (and noise) removal approach utilising DL
has potential applications to retrospective denoising of medical databases through direct
training or transfer learning [53,54].
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CHAPTER 2

Findings from machine learning in clinical medical imaging applications –

lessons for translation to the forensic setting

Findings from machine learning in clinical medical imaging applications – les-
sons for translation to the forensic setting
C. A. Peña-Solórzano, D. W. Albrecht, R. B. Bassed, M. D. Burke, M. R. Dimmock

Submitted to Forensic Science International, October 15, 2019
This chapter is an exact copy of the paper submitted

A literature review was performed to determine current applications of ML for the analysis
of medical images in both the clinical/pre-clinical and forensic settings in order to determine
both the breadth and limitations of the identified approaches. It was determined that ML
techniques are currently not widely used for either the generation of forensic evidence or
the aggregation of data and subsequent analysis to give population level trends. It was also
found that ML applications could be transferred from clinical to forensic settings, provided
that due consideration was taken to account for the increased variability and temporal
factors, e.g. decomposition, that affect the data used to train the algorithms. DNNs were
widely reported to outperform other ML techniques in image processing tasks. There was
found to be a dearth of quantitative metrics presented for inter-study comparisons. It
was also found that a wider use of histopathological gold standard metrics for assessing
algorithm performance is required.

2.1 Publication

The following paper has been submitted to Forensic Science International and is currently
under review for publication.

8



 

Findings from machine learning in clinical medical imaging 

applications – lessons for translation to the forensic setting 
 

Abstract 
 Machine learning (ML) techniques are increasingly being used in clinical medical imaging to 

automate distinct processing tasks. In forensic anatomical imaging, the use of these algorithms presents 

significant challenges due to variability in organ position, structural changes from decomposition, 

inconsistent body placement in the scanner, and the presence of foreign bodies. Existing ML approaches 

in clinical imaging can likely be transferred to the forensic setting with careful consideration to account 

for the increased variability and temporal factors that affect the data used to train these algorithms. 

Additional steps are required to deal with these issues, by incorporating the possible variability into the 

training data through data augmentation, or by using atlases as a pre-processing step to account for 

death-related factors. A key application of ML would be then to highlight anatomical and gross 

pathological features of interest, or present information to help optimally determine the cause of death. 

In this review, we highlight results and limitations of applications in clinical medical imaging that use 

ML to determine key implications for their application in the forensic setting. 

 

Keywords 
Machine learning, clinical medicine, forensic radiology, CT, MRI 

 

Introduction 
Forensic radiology is not clinical radiology 

applied to a deceased person. In the forensic 

setting, findings that a clinical radiologist may 

not typically have encountered are 

commonplace [1], e.g. post-mortem gas 

formation [2]. Post-mortem computed 

tomography (PMCT) is widely used in forensic 

investigations, where acquisition protocols 

used during clinical CT are not applicable due 

to rigor mortis and aversion to repositioning the 

decedent to avoid tampering with evidence. 

However, CT scans can be acquired with higher 

doses and there is no patient motion, therefore 

improving image quality. Additionally, recent 

developments such as PMCT angiography 

(PMCTA) with specialized pumps allows the 

diagnosis of vascular lesions whilst maintaining 

the integrity of anatomic structures, keeping 

evidence intact [3, 4]. 

In order to overcome the limitations of soft 

tissue contrast and a lack of vascular 

visualization provided by PMCT [5], 

postmortem magnetic resonance imaging 

(PMMRI) is increasing in impact, albeit in a 

small way thus far. Whilst PMMRI offers 

improved soft tissue contrast, for vascular 

diagnoses it presents similar performance to 

PMCTA, with higher associated cost. However, 

applications to cardiac imaging are an 

exception, due to improved visualization of the 

coronary arteries and myocardium [5].  

Recently, there has been much progress in the 

automation of image processing tasks to 

enhance medical imaging workflow [6, 7] for 

the key modalities of plain film X-ray [8], CT 

[9, 10], and MRI [11]. In the forensic setting, 

the completion of these tasks has added 

complications such as decedent decomposition, 

trauma, incineration, variability in positioning 

of normal anatomical structures, and artefacts 

from foreign bodies. This review synthesizes 

the information currently available in the 

literature on the pre-clinical and clinical use of 

machine learning (ML) applications, and 

contextualizes the information relative to the 

forensic setting. The limited literature relating 
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to the use of ML in forensic anatomical imaging 

is also addressed.   

Whilst the use of MRI is not yet widespread in 

forensics, its growing popularity and extensive 

use with ML in clinical imaging yields 

important conclusions for long-term forensic 

implementation considerations. In addition, it 

should be noted that whilst there are extensive 

applications for the use of ML in both clinical 

and forensic histopathology, these are not 

considered. 

Machine learning (ML) algorithms 
Image processing typically involves 

segmentation, feature extraction, and 

classification. Many approaches have been 

proposed for medical image segmentation, 

including probabilistic atlases [12, 13], 

statistical shape models (SSMs) [14, 15], graph-

cut (GC) algorithms [16, 17], multi-atlas 

segmentation (MAS) [18], and recently ML 

techniques. ML approaches have been proposed 

for the automation of both image analysis and 

diagnosis, reducing the burden on radiologists 

[19, 20].  

ML techniques can be categorized as 

supervised learning, unsupervised learning, and 

reinforcement learning. In supervised 

environments, data is composed of input-output 

patterns, and the task is to find a deterministic 

function that can predict the output from an 

observed input.  Unsupervised techniques are a 

type of self-organized learning that extracts 

structures from the training samples directly, 

without pre-existing labels [21]. More recently, 

self-supervised techniques, a type of 

unsupervised learning where the training data is 

automatically labelled by exploiting the 

relations between different input signals, are 

being studied for better utilizing unlabeled data 

[22]. Reinforcement learning on the other hand 

is based in trial-and-error, where the algorithm 

evaluates a current situation, takes an action, 

and receives feedback from the environment. 

This feedback can be positive or negative [23]. 

The most common ML techniques used in 

medical applications are summarized below. 

Random forest (RF) 

RFs operate by creating a multitude of decision 

trees (Fig. 1) that can be trained for 

classification and regression tasks, where the 

output is obtained by majority vote. Extra 

randomness is achieved by searching for the 

best feature among a random subset of features 

while splitting a node, avoiding overfitting and 

obtaining a better model.  

 

Fig. 1 RF technique showing the decision trees and 

majority voting for the class prediction of a new 

sample 

k-nearest neighbor (k-NN) 

In k-NN, the training samples are divided into 

classes, and the prediction of a new sample or 

test point is classified by a majority vote of its 

neighbors (Fig. 2). The algorithm uses a 

distance measurement function to search the 𝑘 

closest training samples in the feature space, 

and assigns the case of the class that is the most 

common in the subset.  

 

 

Fig. 2 k-NN technique used to predict the class of a 

new data point when the number of neighbors (𝑘) for 

the majority vote changes from 3 to 6 
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Naive Bayes (NB) 

NB is a classifier based on Bayes theorem, 

which works on conditional probability. 

Membership probabilities are predicted for 

each class, indicating the likelihood that a data 

point belongs to it and assuming feature 

independence in order to reduce the number of 

parameters in the model (Fig. 3) [20].  

 

Fig. 3 Naive Bayes model where each node contains 

a probability table, and the feature values are 

conditionally independent 

Support vector machines (SVMs) 

SVMs originated from statistical learning 

theory [24] and are used for classification as 

they can model highly non-linear systems. 

SVMs project the data onto a high-dimensional 

space and apply a linear classifier on the 

projected data (Fig. 4) [21, 25].  

 

Fig. 4 SVM technique showing data transformation 

to a high-dimensional space and linear classifier 

(hyperplane) calculated on the projected data 

Artificial neural networks (ANNs) 

ANNs are inspired by the biological nervous 

system. ANNs contain a large number of highly 

interconnected nodes (called neurons) 

separated into layers (Fig. 5), enabling the 

network to process different pieces of 

information while considering constraints to 

coordinate internal processing, and to optimize 

its final output [21, 26]. 

 

Fig. 5 Artificial neural network with three inputs, 

two outputs, and two hidden layers of five neurons 

each 

Convolutional Neural Networks (CNN) 

CNNs were inspired by the connectivity pattern 

of the animal visual cortex. Neurons respond to 

stimuli only in a restricted region (receptive 

field) of the previous layer, where receptive 

fields of different neurons partially overlap 

until they cover the entire visual field (Fig. 6). 

Unlike other ML techniques, the network learns 

the filters that are usually “hand crafted”. Also, 

CNNs exploit the strong spatially local 

correlation found on images, allowing the 

features to be detected regardless of their 

position. In recent years, Deep Neural 

Networks (DNNs), which differ from ANNs by 

their depth (the number of neuron layers), have 

proven to be successful in solving diverse 

problems, mainly for their capacity to learn 

features from large datasets [27]. 
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Fig. 6 Convolutional neural network with two fully connected layers for classification into five categories 

Current clinical applications 
ML techniques have been used for medical 

applications in the diagnosis and prognosis of 

diseases as well as for segmentation, 

classification, and measurement of anatomical 

structures [20, 28]. In this review, the ML 

applications have been grouped according to 

the tissue or organ studied, where brain, lungs, 

and skeleton were chosen to highlight results 

and limitations and determine key implications 

for their application in the forensic setting.  

It should be noted that in the following 

discussion, algorithmic performance is assessed 

in terms of Dice’s coefficient (DC), the 

modified Hausdorff distance (MHD) and the 

area under the receiver operating characteristic 

curve (AUC or AUROC), where possible. The 

DC quantifies overlap between the segmented 

image from the technique and a defined ground 

truth, ranging from zero (no overlap) to unity 

(identical segmentation). MHD is a measure of 

similarity between two objects based on their 

shape attributes. AUROC combines 

information of the true positive (TP) rate or 

sensitivity, and false positive (FP) rate or fall-

out.  

Brain tissue  

Traditional atlas-based segmentations require 

registration to align the atlas images to the 

unseen image. Whereas, ML approaches can 

learn the variability between patients, making 

them especially useful in forensics, where the 

image variability is greater than for clinical 

imaging. ML can also be used in combination 

with atlas-based approaches or in its own right. 

As an example of the former, Srhoj-Egekher et 

al. [29] used atlas-based segmentation for pre-

processing T2-weighted MRI neonatal brain 

images to obtain initial probabilities, 

subsequently refined using a k-NN approach.  

Whilst Srhoj-Egekher et al. achieved DCs and 

MHDs ranging from 77% to 93%, and 0.35 to 

2.86 respectively, the approach of assigning a 

tissue classification to each voxel 

independently, post atlas registration, meant 

some voxels were assigned to more than one 

class, while background voxels were 

unclassified. Conversely, Zhang et al. [30] 

opted for purely ML approaches that analyzed 

image patches for segmentation into white 

matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF) of infant brains 

(n=10). Four network architectures were tested 

and, in most cases, the CNN method 

significantly outperformed SVMs and RFs with 

overall DC scores and MHDs of 85% and 0.32, 

respectively. The CNN method also 

outperformed two other common image 

segmentation methods, coupled level set (CLS) 

and majority voting (MV).   
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Table 1 Summary of selection of papers for non-infant brain tissue segmentation 

Authors Type / No. images Mean Dice’s coefficient (%) 

van Opbroek et al. 

[31] 

MRI / 5 training, 12 testing GM=85, WM=88, CSF=78 

(SVM) 

Moeskops et al. [32] MRI / 5 training, 10 testing GM=91, WM=94, CSF=85 

(CNN) 

Wachinger et al. [33]  MRI / 20 cases for training, 10 cases for 

testing (>256 images per case) 

All structures=91 (DCNN) 

Three further publications were found where 

the authors segmented similar structures within 

adult brains. Van Opbroek et al. [31] applied a 

SVM for pixel-wise classification to registered 

volumes from a variety of MRI sequences for 

patients with diabetes and controls. The 

resulting segmentation of eight different tissue 

types demonstrated limited success (Table 1). 

The SVM showed poor performance in low 

contrast areas, while atlas misregistration 

caused voxels to be improperly classified. 

Moeskops et al. [32] used CNNs to process T1-

weighted scans to segment the same eight tissue 

types. With CNNs, the use of different sized 

patches during training allowed for a smooth 

segmentation and analysis of local texture. In 

general, CNNs delivered better segmentation 

(Table 1), although this was a different patient 

cohort. A more recent application of 3D 

DCNNs [33] was used to identify 25 brain 

structures in T1-weighted MRI scans (n=30). 

Again, image patches were utilized as input to 

the network. However, spectral and Cartesian 

coordinate information relating to the patches 

was added after the convolutional layers (e.g. 

see arrow in Fig. 6) in order to introduce spatial 

information, which substantially increased the 

segmentation accuracy. 

ML can also be used for the assisted diagnosis 

of neurodegenerative diseases. Salvatore et al. 

[34] used a combination of PCA with a SVM to 

classify morphological MRI sequences as 

patients with Parkinson's disease (n=28), 

progressive supranuclear palsy (PSP) (n=28), 

or controls (n=28).  The large cohort sizes, 

inter-class cohort balance, and separation 

between PSP patients and other parkinsonian 

variants were identified as particular strengths, 

compared to other papers. The performance 

(accuracy, specificity and sensitivity > 80%) of 

the model was shown to be limited by the 

number of principal components (16 to 26) 

utilized for classification. This dependence is 

an important consideration when using 

dimensionality reduction techniques and was 

also demonstrated for approaches that classified 

Alzheimer's disease [35]. 

Finally, ML techniques have also been used to 

segment and classify brain tumors. Zacharaki et 

al. [36] used conventional and perfusion MRI 

from patients with a diagnosis of intra-cranial 

neoplasm to classify them by type and grade of 

tumor (n=98). Their approach consisted of 

region of interest (ROI) definition, feature 

extraction, feature selection, and classification 

by SVMs. For comparison, linear 

discrimination analysis (LDA) and k-NN were 

also implemented. The mean classification 

accuracy was 91% for the SVM approach, 

compared with 81% for LDA and 90% for k-

NN. Some of the limitations were related to the 

lack of features selected that described 

deformation of healthy structures due to the 

tumor, and the utilization of ROIs which 

yielded inter-observer variability. 

Once the presence of tumors is verified, one 

possible subsequent step would be 

segmentation of the pathology, which is 

challenging even for experienced 

neuroradiologists [37]. To address this 

segmentation problem, a variant of CNNs 

named U-net is often employed [38].  Beers et 

al. [39] utilized two 3D U-nets connected 

sequentially to perform whole tumor, 
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enhancing tumor, and tumor core segmentation, 

achieving mean DCs for the test set (n=95) of 

84%, 70%, and 71%, respectively. When the 

methodology was implemented on patients 

from ongoing clinical trials, the mean DCs 

decreased to 66%, 54%, and 45%, respectively.  

The lower performances on the clinical trial 

patients were attributed to scans being post-

operative, highlighting the importance of case 

selection for training. 

Studies on brain tissues used mostly MRI data 

due to the multi-modality information and a 

good soft-tissue contrast. Whilst the specific 

pathologies discussed are not all relevant to the 

forensic setting, the general conclusions 

deduced from the segmentation and localization 

of anatomical abnormalities are.  Models that 

utilized dimensionality reduction techniques 

prior to classification were shown to yield 

performances dependent on the number of 

selected components. In addition, the 

identification of abnormalities in biological 

tissues required features capable of describing 

complicated deformations of the healthy 

structures. In CNNs, the performance of the 

technique depended significantly on the 

training set adequately representing expected 

cases. In general, CNNs outperformed 

algorithms such as SVMs, RFs, CLSs, and MV 

in segmentation and classification tasks. Note 

that some studies used small datasets, which 

limited statistical power. In addition, as will be 

demonstrated throughout this review, a 

combination of the variability in reporting of 

metrics, the lack of reporting of a diagnostic 

odds ratio [40], the unavailability of datasets 

and reference implementations, and the effect 

of imbalanced data in the classification 

accuracy, common in medical datasets [41, 42], 

made it difficult to compare papers 

quantitatively.  

In the topic of brain tissue segmentation, the 

Multimodal Brain Tumor Segmentation 

Challenge (BraTS) 

(http://braintumorsegmentation.org/) presents 

state-of-the-art methods for the segmentation of 

brain tumors in MRI scans. 

Lungs 

In machine learning, feature learning refers to 

the automatic discovery of meaningful 

representation of features from raw data, in 

contrast to manual feature engineering, where 

the features have to be chosen by a domain 

expert. Feature learning allows for end-to-end 

learning, where a complex system can be 

represented by a single model, bypassing the 

intermediate layers present in traditional 

workflow designs. Learning a representation of 

any tissue is a useful process if subsequent 

classification is required, or if the goal is to find 

differences between samples in the training data. 

The representation quality is highly dependent 

on the learned features. 

A restricted Boltzmann machine (RBM) is a 

generative neural network that can be used to 

perform automatic feature learning. Li et al. [43] 

used a Gaussian RBM with a training dataset 

consisting of different sized patches obtained 

from high-resolution lung CT images (n=92), 

with the purpose of classifying five tissue types 

using SVMs. The best accuracy obtained was 

84%, with a high rate of FPs caused by the 

similarity between tissues. 

Van Tulder and de Bruijne [44] utilized 

convolutional RBMs, adding learning 

objectives that helped the algorithm to extract 

features for description and training data 

classification. The training data consisted of CT 

scans (n=73) with five types of tissues 

classified. Resulting accuracies were <75%, 

and 85-90% for the classification of lung 

patches and airway centerlines respectively. 

The low accuracies were attributed to small 

training sets and number of extracted filters due 

to computational restrictions. 

Netto et al. [45] utilized examinations (n=50) 

with 198 identified nodules and a SVM to 

classify the structure as nodule or non-nodule. 

The resulting accuracy was 91%, with a 

sensitivity of 86%. The largest errors were 

reported when the feature was very large or 

very small, where it could be mistaken for other 

structures or for being the continuation of one. 
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Hua et al. [46] used images containing nodules 

from the Lung Image Database Consortium 

(LIDC) CT dataset to train both a CNN and a 

deep belief network (DBN) constructed by 

stacking RBMs. The performance of the two 

networks was then compared with two feature-

based methods: scale invariant feature 

transform (SIFT) with local binary patterns 

(LBPs) and k-NN, and the fractal analysis 

method together with a SVM (Table 2). The 

major limitation reported was resizing of the 

input images, which discarded size cues that 

were important indicators of malignancy. 

Kumar et al. [47] also used the LIDC images 

(Table 2) to extract features obtained using an 

autoencoder (AE) and a binary decision tree 

classifier (BDT). The false positive rate of 39% 

was attributed to the visual similarity between 

benign and malignant cases, which can be 

compared to a 27% rate obtained on The 

National Lung Screening Trial (NLST) using 

low-dose CT (LDCT) [48]. 

A more recent study compared massive-

training artificial neural networks (MTANNs) 

against CNNs [49] using a database of LDCT 

scans (n=38), consisting of 1057 slices. 

MTANNs are an extension of ANNs, where a 

large number of overlapping sub-regions are 

created for each voxel of the original image and 

used as inputs to the network.  The reported 

AUROC was 0.88 for the MTANN, and 0.78 

for the best of the four CNN architectures. The 

MTANN required a smaller number of training 

samples than the CNNs for a better 

classification performance. This was attributed 

to the hierarchies of the learned features, where 

the MTANN learned to detect lesions utilizing 

low-level features, while the CNNs extracted 

low-, mid- and high-level features, increasing 

their reliance on irrelevant characteristics. 

 

Studies on lungs generally used CT scans for 

the segmentation of tissues and tumors, and 

classification of nodules for early cancer 

diagnosis. Due to the low contrast between 

different tissues in the lungs, the approached 

reported were reliant on shape, texture, and 

feature size. The segmentation performance 

was poor for nodules at the size extremes. 

Major findings included lower performances 

due to image resizing, and the importance of 

reporting false positive rates, which can yield 

high values in applications that intend to 

determine nodule malignancy. 

Skeleton 

Skeletal segmentation usually occurs before 

measurement and/or diagnosis of bone or 

articular diseases. Koch et al. [50] segmented 

MRIs (n=110) of the wrist using marginal space 

learning (MSL) and RFs, where MSL 

incrementally learned classifiers in marginal 

spaces of lower dimensions [51]. The 

segmented images were used to compute the 3D 

model of every carpal bone, with AUCs of 0.88 

for both scan modalities. The approach was an 

order of magnitude faster than previous work 

using a semi-automatic method. Similar 

literature did not report segmentation errors and 

could not be used for comparison. 

Hao et al. [52] used MRI to diagnose 

intervertebral disk degeneration. Similarity 

computations, extracted from a training set 

using texture and shape data, were input to a 

modelling and learning stage and then to a SVM 

classifier that took new data from a test set and 

labelled it as healthy or degenerated. A key 

outcome of this paper was the introduction of 

an active learning phase, alleviating human 

labor by automatically selecting a subset of 

representative training data for a medical expert. 

This way, the classification accuracy remained 

between 90% and 95% while using no more 

than one third of the labelled data. 
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Table 2 Summary of selection of papers for lung nodule classification 

Authors Type / dataset Accuracy (%) Sensitivity (%) 

Hua et al. [46] CT / 2545 nodules - 73 (DBN), 73 (CNN), 76 

(SIFT) 

Kumar et al. [47] CT / 4323 nodules 75 83 (AE+BDT) 

Bone age assessment from plain X-rays is used 

in pediatrics by comparing the results to 

chronological age for the evaluation of 

endocrine and metabolic disorders. A fully 

automated pipeline was presented by Lee et al. 

[53] using a pre-trained CNN (transfer learning). 

Both male and female test X-rays were assigned 

a bone age within 1 year of the correct value 

over 90% of the time, and over 98% within 2 

years. 

X-rays have also been widely used for fracture 

detection, e.g. of the tibia [54], where texture 

and shape features were fed into three different 

ML algorithms: an ANN, k-NN, and SVM, and 

the outputs fused using a majority vote scheme. 

The combination of the classifiers using both 

types of features presented a significant 

improvement over using just one classifier, or 

only one feature type. Reported accuracies, 

precisions, and sensitivities were above 97%. 

Instead of fusing the results from the classifiers, 

multi-stage classifiers have also been used.  

Wels et al. [55] reported a fully automatic 

system using several RF stages, capable of 

detecting osteolytic spinal bone lesions from 

CT volumes, with an average sensitivity of 75%. 

The performance was affected by differences in 

contrast and noise characteristics in the data 

used for training and testing, however, values 

for accuracy were not presented for further 

interrogation. 

Sharma et al. [56] measured trabecular bone 

microarchitecture and used the information to 

discriminate between healthy cases (n=10) and 

patients with Type 1 Gaucher disease (n=20). 

SVMs were used to classify different genotypes 

of the disease, achieving an average 70% 

classification accuracy, 74% sensitivity, and 85% 

precision. The structure of the trabecular bone 

obtained from MRI have also been used classify 

knees with osteoarthritis [57].  The 

characteristics found to relate to the disease 

were useful in classifying healthy from affected 

patients (n=159) with an AUC of 0.92, as well 

as predicting the risk of cartilage loss.  In a 

similar study, the fractal analysis of X-ray 

images with SVMs enabled the automatic 

classification of osteoporotic patients (n=39) 

versus controls (n=38) with accuracies of up to 

95% [58]. Reported limitations from the papers 

in this section include the small number of cases 

and the high percentages of patients at early 

stages of the disease. 

Orthopedic ML applications include disease 

diagnosis, age assessment, and risk prediction 

e.g. osteoporosis, osteoarthritis. Plain film X-

ray and CT were most common; however, MRI 

studies of joints are being increasingly reported. 

The performance of ML applications was 

shown to be affected by the number and 

selected features, which is significantly 

influenced by differences in contrast and noise 

characteristics in the datasets. Comparison or 

ranking of the results was limited by reported 

performance metrics and the use of databases 

that were not representative of the disease 

stages studied. Other limitations included small 

patient cohorts and the processing times.  

Forensic applications 
Three important results for the use of ML in 

clinically-related applications were found that 

can also be applied in the forensic setting: 

firstly, temporal efficiency through the use of 

transfer learning; secondly, improved accuracy 

through the combination of ML classifiers 

using majority voting techniques or multi-stage 

approaches; and finally, the addition of an 

active learning phase, where the human labor 

can be alleviated during labeling. 
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In terms of the currently reported use of ML in 

forensic medicine, it is in its infancy. ML has 

only been trialed in a few specific forensic 

applications including the automation of bone 

age assessment [59]; sex determination using 

bone information [60]; prediction of skull 

fractures [61]; automatic detection of 

hemorrhagic pericardial effusion [62]; and 

automatic forensic dental identification [63]. As 

far as we are aware, none of these studies has 

translated into daily forensic practice, despite 

the potential to streamline case-work in these 

particular disciplines. 

Stern and Urschler [59] utilized MR hand 

images and random regression forests to fuse 

growth information from individual bones for 

automated age estimation. In this case, the MR 

images were obtained from living volunteers, 

but the application to the forensic setting was 

discussed. The resulting mean absolute 

deviation and standard deviation from the 

chronological age were 0.82±0.56 years. The 

results were reported to be similar to clinically 

established methods. 

Arigbabu et al. [60] performed sex estimation 

utilizing 100 head PMCT scans. They 

combined and evaluated six local feature 

representations, two feature learning, and three 

classification algorithms. The best prediction 

rate was 86% using mesh local binary pattern 

(MeshLBP) for features extraction, kernel PCA 

(KPCA) for dimensionality reduction, and 

SVM for the classification. The results were 

within the reported sex prediction range for 

applications that use cranial features. 

Heimer et al. [61] performed skull fracture 

prediction using 150 head PMCT scans (75 

scans for each case: with and without fractures) 

and deep learning. The skulls were 

preprocessed through curved maximum 

intensity projections (CMIPs), where the 

skull’s surface is unfolded into a curved 

projection that can be observed from a single 

view. Deep learning was applied and the best-

performing selected network yielded an AUC 

of 0.965, a sensitivity of 91.4% and a specificity 

of 87.5%.  

Ebert et al. [62] used two separate deep neural 

networks: the first for classification of images 

with or without hemopericardium, and the 

second for the segmentation of the blood 

content in PMCT. The average DC, recall, and 

precision for the classification task were 77%, 

77%, and 85% respectively. For segmentation, 

the values obtained were 78%, 78%, and 79%, 

respectively. 

Dental identification traditionally requires a 

forensic odontologists to find the best match 

between a post-mortem image and an ante-

mortem database, using features such as dental 

restorations, pathologies, and tooth and bone 

morphologies. Zhang et al. [63] proposed a new 

descriptor that encodes the local shape of a 

person’s dental features. They subsequently 

used a RF classifier to match the features of the 

unknown person to those in the database 

(n=200). The result yielded 100% accuracy for 

complete (n=20) and incomplete (n=20) 

datasets.  Incomplete datasets were derived 

from cases involving trauma. The method 

presented was shown to be rotationally and 

translationally invariant, and was orders of 

magnitude faster than conventional 2D methods. 

It is important to note that the database was 

constructed by using a surface laser scanner on 

plaster samples in contrast to PMCT scans.  

Discussion 
Typical goals of ML techniques in medical 

imaging include the differentiation of healthy 

from diseased patients or tissues and the 

localization of pathologies in anatomic 

structures. Algorithmic performance can be 

significantly affected when trying to process a 

new sample that differs significantly from the 

training dataset. This characteristic is especially 

important when it comes to applications in 

forensic medicine, where there is a high 

variability in the structures and image 

acquisition protocols, and unclear definition of 

what normal implies, due to changes occurring 

because of circumstances of death, tissue 
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decomposition, trauma, or incineration. 

However, some applications e.g. organ 

localization, can be immediately translated to 

the forensic setting by using the appropriate 

training data, or by using the clinical medical 

images for the initial training of CNNs and then 

fine-tuning using forensic information. This is 

usually referred to as transfer learning. On the 

other hand, due to the size and availability of 

forensic databases, the opposite is also possible, 

with applications being trained in forensic data 

and then fine-tuned to the clinical setting. 

To improve the capabilities of ML techniques, 

the training data can be modified, or more 

informative features can be used as inputs to the 

algorithms. The selection of features can be 

optimized using learning objectives [44] or by 

utilizing an unsupervised technique as a 

preprocessing step to the classification task [47, 

64]. The features selected can also be used to 

alleviate human labelling, by selecting more 

representative training data for the medical 

expert [52, 65]. Another approach to the 

improvement of ML performance is the 

combination of several techniques using a 

majority vote scheme [54], or the use of multi-

stage classifiers [39] for segmentation of 

different spatially related tissues. 

A wide range of implemented algorithms were 

found during the review process, where SVMs 

outperformed techniques such as LDA and k-

NN [36], however the trend in recent works has 

been the outperformance of CNNs [30, 32]. The 

main disadvantage of classic ML approaches 

compared to CNNs is the performance 

variability due to the quality of the features [34] 

that must be hand-crafted by an expert 

according to the goal and dataset. The selected 

feature pool is commonly processed to lower its 

dimensionality before training the classifier by 

using techniques such as PLS or PCA, where 

PLS has shown to be better for relevant feature 

extraction [35]. It is important to note that the 

number of principal components or features 

selected at the end of this step plays a key role 

in the classification performance [34]. 

The performance of the algorithms can also be 

significantly affected if the labelling process 

(diagnosis) is prone to error [35]. Furthermore, 

for medical and forensic applications, the 

common practice of resizing input images can 

yield to a loss of information that could be 

essential for diagnosis purposes [46]. An 

additional consideration is that some authors 

use for example a radiologist to classify cases, 

then benchmark the performance of the 

algorithm against radiologists. Rajpurkar et al. 

[66], for instance, presented a CNN that 

achieved radiologist-level pneumonia detection 

on a database [67] for which no gold-standard 

label exist, and listed as limitation the lack of 

information in the database that affects the 

radiologists’ accuracy. It is also important to 

note that the lack of reporting of a diagnostic 

odds ratio [40] and the variability in reporting 

of metrics makes it difficult to compare papers.  

For the task of segmentation, both multi-atlas 

algorithms and DCNNs with multiple patch 

sizes showed comparable results [29, 30], 

demonstrating CNNs were most successful. 

Patch-based techniques could be a good 

approach in forensic cases were organs or 

structures are not localized in the usual 

anatomic positions [44]. Furthermore, the use 

of different sized patches in segmentation tasks 

allows for both a smoother separation and the 

detailed analysis of local texture [32]. 

One of the main issues that affects both the 

clinical and forensic settings is the lack of 

interpretability of predictions by black-box 

approaches such as neural networks. This is 

active area of current research and a current 

approach to addressing this concern is the use 

of visual explanations for the class label under 

consideration, obtained from the convolutional 

layer feature maps [68, 69], and attention 

mechanisms [70], able to determine the parts of 

the input images more relevant for a particular 

classification. Furthermore, depending on the 

application, it is not required and could be 

counter-productive to completely automate a 

task, for which a human-in-the-loop can be 
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beneficial by reducing the complexity through 

human input and assistance [65]. 

Some applications of ML already found in 

clinical medicine, that could be repurposed for 

forensic medicine, include segmentation and 

classification of organs and structures, 

including arteries, tiny blood vessels, the liver, 

spleen, stomach, gallbladder, and pancreas [71, 

72]; computation of organ 3D models [50] for 

virtual autopsies; detection of lesions and 

calcification on vascular cross-sections [73]; 

identification of bone and joint atrophies or 

disorders [52, 56, 57, 58]; fluid volume and 

composition on body cavities (blood, pus, 

ascites) [74]; and organ volume estimation, e.g. 

heart size with respect to body size [75]. 

Tasks in forensic radiology that to our 

knowledge have not been tackled using ML 

include: segmentation and classification of 

foreign bodies, differentiation between ante-

mortem and post-mortem gases, calculation of 

body mass index, and determination of skeletal 

completeness after accidents. 

For the segmentation and classification of 

foreign bodies, e.g. bullets, metallic dental 

fillings, the main challenge becomes finding the 

object that does not belong inside the body. 

Furthermore, metallic components can create 

artefacts such as beam-hardening on CT scans 

or field distortions in MRI [76], which can also 

be addressed using deep learning [77]. 

Differentiation between ante-mortem and post-

mortem gases can be difficult using the voxel 

values of CT scans or MRI, so emphasis should 

be placed on understanding the expected 

location and evolution of these gases at 

different points in time [78]; also, 

differentiation between acute and remote 

infarction on the brain, which on a CT scan can 

be characterized by voxel values and tissue 

volume changes, can be tackled utilizing 

existing tissue classification techniques [31, 32, 

35], with the addition of new classes to 

differentiate the types of infarction. 

In forensic anthropology, tasks that could be 

addressed using ML include: determination of 

skeletal completeness after accidents [79], e.g. 

plane crashes; 3D reconstruction of incomplete 

bones, that could be extrapolated from the work 

by Hermoza and Sipiran [80] on incomplete 

archaeological objects; and 3D reconstruction 

of fractured skulls [81, 82], used to infer a cause 

of death, or to perform facial reconstruction. 

Conclusions 
ML techniques have been applied to a large 

number of tasks that could be used in medicine, 

where the algorithms most widely utilized in 

applications with medical images include RFs, 

SVMs, and CNNs. CNNs have shown better 

performance in the literature. 

Techniques to improve the ML performance in 

radiology include data augmentation, improved 

feature selection and algorithmic combination, 

e.g. majority voting. Performance was shown to 

be affected by resizing of the input images and 

the accuracy of the labels provided with the 

training data. In addition, benchmarking was 

found to be difficult due to the lack of gold-

standard labels, as well as the variability in 

reporting of metrics, and lack of reporting of a 

diagnostic odds ratio. 

ML applications investigated for clinical 

medicine could be repurposed to the forensic 

domain with careful consideration to account 

for the increased variability and temporal 

factors, e.g. decomposition, that affect the data 

used to train the ML techniques. Due to the 

complexity of the autopsy process, a key 

application of ML to forensic radiology would 

be to highlight and annotate areas of forensic 

interest, or to present information to optimally 

determine the cause of death, including 

differentiation between body cavity fluid 

accumulations (blood, pus, ascites) and their 

corresponding volumes, calculation of organ 

volumes and weights, percentage of coronary 

artery calcification, identification of subtle 

fractures especially in critical areas such as the 

cervical spine, and determination of skeletal 
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completeness and skeletal commingling after 

mass fatality incidents. 
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CHAPTER 3

Femur localisation and structured unsupervised labelling in CT scans using

machine learning

Semi-supervised labelling of forensic CT data using deep learning

C. A. Peña-Solórzano, D. W. Albrecht, P. C. Harris, R. B. Bassed, J. Gillam, M. R. Dim-
mock

Submitted to Forensic and Legal Medicine, November, 2019

This chapter is an exact copy of the paper submitted

This chapter is divided into two subsections. The first subsection describes the develop-
ment of a tool for localising arbitrary anatomical structures using DL. Localisation is used
as a pre-processing step where the individual voxels are not required to be classified, e.g. to
determine the presence of the organ, or to reduce the computation required in a subsequent
task, e.g. volume calculation or tissues segmentation. The system was trained using 350
full-body CT scans from the VIFM database with a large variability in terms of BMI, time
since death, incompleteness of lower limbs, presence of metallic implants, trauma, and the
presence of foreign objects. Three separate DNNs, more specifically residual neural net-
works (ResNets), were created and linked for parallel execution in order to determine the
presence (or absence) of the femur in a given slice of each of the three orthogonal views
(axial, coronal and sagittal) defined by the reconstructed CT scan volume. The predictions
of the networks were then subsequently merged in order to generate the 3D bounding box
for the organ in the scan from each case. The femur served as an interesting test case
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for the implementation of localisation with a bounding box; the angular variation in po-
sitioning of the femur was challenging when compared to other more static organs in the
body. However, as the pipeline was intended to be generalisable, it was deemed this was
the simplest approach that gave the desired flexibility for the proposed application.

The second subsection details the automated approach to classification of the contents
of the femur inside the bounding box as one of four categories: without-implant, nail,
hip replacement, or knee replacement. A DNN architecture known as CAE was utilised.
The network took the bounding box as input and reconstructed it in the output following
both encoding (compression) and decoding (expansion) steps. The output of the encoder
and input of the decoder was a compressed vector (latent space) that represented the
original input. Additionally, a branch that used the latent space vector for classification
was added to leverage additional case information known about the decedent; in this case
the age. Both the network with and without the classifier branch were tested, resulting in
an improved structure of the latent space and the clustering performance for separating
features in the CT volumes when the additional information was utilised.

3.1 Publication

The following paper has been submitted to Forensic and Legal Medicine and is currently
under review for publication.
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Semi-supervised labelling of forensic CT data using deep 

learning 
 

Abstract 
In order to optimally leverage the information contained in the existing extensive databases of post-mortem 

computed tomography scans for medico-legal investigations, approaches for automating the labelling of key 

anatomical and pathological features are required. We have developed a general deep learning pipeline and 

tested it on classifying metal implants in the femur as a proof-of-principle for labelling content in CT volumes 

not described in the autopsy reports. A pipeline that used both residual networks and an auto-encoder was 

developed for automatic organ localization and classification. The pipeline was trained and tested using n = 

350 full-body PMCT scans. For the localization stage, the ground-truth labels were determined by two 

medical imaging technologists and validated by two medical specialists. A regression analysis was used to 

determine significant factors that affected performance. For the classification, an additional n = 100 PMCT 

scans were used to determine the precision and recall rate. For the femur localization task, Dice scores of 

0.99, 0.96, and 0.98 and mean absolute errors of 3.2, 7.1, and 4.2 mm were obtained in the axial, coronal, 

and sagittal views, respectively. Test cases were properly labelled as without-implant (I-), nail, hip 

replacement, or knee replacement with an accuracy >97%, where the recall for I- and hip replacement cases 

was 1.00, but falling to 0.82 and 0.65 for cases with knee replacements and nails. The semi-automatic 

technique presented here provides a generalized structure for the efficient labelling of image-based content 

not reported by the pathologist. The ability to search for and label structures automatically has many 

applications in accumulating data to answer medico-legal questions with population-level data in forensic 

radiology. 

 

Keywords: Autoencoder; deep learning; machine learning; organ localization; labelling; CT 

 

Introduction 
The ever-increasing number of images and 

autopsy reports acquired by forensic institutions 

provides rich opportunities for developing 

methods that automate the annotation process to 

unlock their value for answering medical and 

forensic questions. These databases capture 

decedents that range in age from 0 to 100+, and 

incorporate all causes of death, both natural and 

unnatural – including homicide, and deaths due to 

accidents and suicide. The utilization of machine 

learning (ML) to develop new tools for improving 

workflow efficiency when interrogating the 

databases requires natural language processing 

(NLP) to interpret and code medical reports and 

legal documents, and the use of deep learning 

(DL) techniques to process images of anatomy, 

pathology and histology. The training of these 

NLP/DL algorithms requires detailed and 

accurate labelling to ensure high sensitivity and 

specificity and to avoid potential biases. The 

automatic labelling of the large numbers of 

images, which will otherwise take enormous 

resourcing in terms of person-hours, will 

significantly reduce the burden on medical 

experts to provide structure to the databases. The 

structure is required in order to provide 

supporting improved evidence to the coroner for 

death investigations and the police for the crime 

scene reconstructions [1], as the searchable text 

only covers a limited number of anatomical 

features reported in any given pathology report. 

 

Whilst the automation of image processing tasks 

has been widely reported in the clinical setting for 

key modalities including plain film X-ray [2, 3], 

computed tomography (CT) [4-6], and magnetic 

resonance imaging (MRI) [7-9], there is a dearth 

of literature reported in the forensic setting [10-

15]. The application of medical imaging 

techniques in forensic investigations raises 

additional complications to those experienced 
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clinically, such as decedent decomposition, 

variability in constitution and positioning of 

normal anatomical structures resulting from cause 

of death (e.g. incineration, severe trauma), 

artefacts from foreign bodies and anatomical 

positioning due to rigor mortis. In this work we 

developed a machine-learning pipeline to assist in 

labelling images in a forensic database containing 

CT reconstructions, adding increased structure for 

content-based retrieval. The pipeline utilized both 

supervised and unsupervised learning, with an 

initial localization step that defined a bounding 

box [16-21] around the structure of interest – the 

femur. After the skeletal element was located, a 

DL [22] data representation framework was used 

to identify patterns and relationships associated 

with metal implants. The results were then 

contextualized with respect to the available 

forensic information obtained from the associated 

pathology reports.  

 

Materials and methods 
A total of n = 350 whole-body CT scans were 

obtained retrospectively from the Victorian 

Institute of Forensic Medicine (VIFM) (ethics 

approval EC 17/2017). The decedents were 

selected consecutively from the available 2017 

dataset until 50 males from each of seven age 

groups (20-90 years of age in 10-year increments) 

were obtained. Cases were included if the cause 

of death was classified in the autopsy report as 

accidental, natural or suicide. All decedents could 

therefore be described as having died due to non-

physical trauma. 

 

The post-mortem CT (PMCT) scans were those 

acquired during the triage process at admission to 

the VIFM. All PMCT scans were acquired using 

the same SOMATOM Definition Flash (Siemens 

Healthcare) scanner configured to operate in dual-

source mode at 120 kVp. Each of the 

reconstructed volumes comprised ~1700 

contiguous axial slices with 512×512 voxels with 

1 mm3 isotropic resolution. The digital imaging 

and communications in medicine (DICOM) files 

were de-identified in accordance with the ethics 

approval and exported anonymously. The 

resulting images were then introduced into the 

image processing pipeline in order to audit for the 

presence of different orthopedic implants in the 

femur as a proof-of-principle validation. The 

pipeline comprised three steps (see Fig. 1): firstly 

pre-processing; secondly 3-dimensional (3D) 

anatomical localization; and finally, semi-

automatic classification. 

 

Pre-processing 

As all CT reconstructions in the database were 

acquired with the same scanner, reconstruction 

technique and parameters, it was determined that 

the algorithms developed as part of this research 

project would operate on fixed size volumes in 

order to simplify the implementation. Each 

reconstructed volume was padded to 

2048×512×512 (axial × coronal × sagittal). The 

axial slices required for padding (Fig. 2c) were 

synthetically generated by sampling the first and 

last slices of each scan (Fig. 2a), generating 

histograms, fitting the noise profiles (Fig. 2b), and 

then subsequently randomly resampling 

according to the aforementioned fit parameters. 

Commodity graphics processing units (GPUs) 

were used as a part of the investigation and the 

limited memory capacity required that the padded 

volumes were then linearly down-sampled by a 

factor of two in the axial, coronal, and sagittal 

directions to 1024×256×256 voxels (2 mm3 

isotropic resolution). This resampled data were 

then introduced into the preliminary organ 

localization algorithm. 

 

Anatomical localization 

Two human readers (medical imaging 

technicians) followed the same multi-step 

protocol to annotate the data (n = 350 CT 

volumes) and determine the look-up table (LUT) 

that was subsequently used to train the neural 

network: 

1. display the slices in the axial profile with a 

window-width (WW) and window-level 

(WL) of 2000 HU and 0 HU, respectively, to 

determine the first and last slices that contain 

femur bone; then  
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Fig. 1. A schematic view of the image processing pipeline developed for automatic labelling of the 

femur. a) Each CT scan was processed on each orthogonal view. b) The predictions were brought 

together to determine the 3D localization of the femur. c) The femoral head was processed through an 

automatic labelling technique. 

 

 
Fig. 2. Padding of the volume on the axial axis. a) Axial slices without the presence of biological tissues 

were sampled. b) Histogram and fitting obtained for dotted square shown in a). c) Sample slice 

generated from the obtained distribution and used as padding. d) The generated slices were appended 

to the axial length of the volume, as indicated by the dotted lines. 

2. display the slices in the coronal profile with a 

WW and WL of 2000 HU and 0 HU, 

respectively, to determine the first and last 

slices that display bone; and finally, 

3. display the slices in the sagittal profile with a 

WW and WL of 2000 HU and 0 HU, 

respectively, to determine the first and last 

slices that display bone. 

A subset of n = 20 CT volumes was then selected 

for cross-checking by an orthopedic surgeon and 

odontologist (with 12 and 13 years of experience 

with CT imaging, respectively). The interrater 

3.1. PUBLICATION

30



 

reliability was determined through the calculation 

of an intraclass correlation coefficient (ICC), 

using a two-way mixed model and absolute 

agreement [23]. The unlabeled images and LUT 

were stored on the hard disk for access by the 

network. All statistical analyses were performed 

using SPSS version 25.0 (IBM, Armonk, NY, 

USA).  

In this work we used a localization technique that 

relied on determining the bounding box for the 

anatomy of interest (femur) in the whole-body CT 

scan using 3D sub-volumes viewed in the axial, 

coronal and sagittal planes (see Fig. 3). The 

implementation required the training of three 

residual convolutional neural networks 

(ResNets), one for each orthogonal view. One 

output class was defined for each network – 

indicating the presence (1) or absence (0) of the 

femur in the current slice under consideration in 

the current direction of visualization. In order to 

further improve the results, several post-

processing steps were implemented [19]. Firstly, 

the 1D predictions obtained from each orthogonal 

view were smoothed using a Gaussian filter with 

a standard deviation (σ) of 10 slices. Secondly, a 

threshold of 0.5 was defined to convert the filtered 

output to binary values. Thirdly, connected-

component analysis was performed to choose the 

largest component, dismissing the rest. Finally, 

the binary outputs of the three networks were 

joined to obtain the predicted 3D bounding as 

presented throughout the remainder of this work. 

  

The n = 350 CT volumes were split 70:15:15 (as 

a percentage) for training, validation and testing 

of performance of the ResNets, respectively. The 

training set contained 244 scans, while the 

validation and test sets contained 53 scans each. 

In order to ensure batch normalization was 

performed correctly, the Hounsfield unit (HU) 

values in every CT volume were rescaled by 

subtracting the mean (μ) and dividing by the σ of 

the training dataset at initialization. 

ResNets are based on residual learning with the 

introduction of residual blocks [24, 25]. The 

improved performance of ResNets, when 

compared to earlier networks, e.g. VGG [26], 

arises due to the skip connection that adds the 

output from the previous layer to the layer ahead. 

The ResNet stage was defined as two blocks of 

sequential layers of convolution, batch 

normalization, activation, convolution, and 

addition with the skip connection. Fig. 4 shows 

the architecture utilized for the axial network, 

consisting of three ResNet stages and 24 filters for 

the first convolution operations. For the coronal 

and sagittal networks, one extra ResNet stage and 

34 filters were used on the first convolution due 

to the difference in input sizes. The input to the 

ResNet for each calculation was the slice of 

interest in the current view, with the eight 

surrounding slices – the four immediately 

preceding and the four immediately following; for 

example, if slice 27 in the axial direction was 

under consideration for the presence or absence of 

a femur, axial slices 23 to 31 inclusive were 

processed to give volumetric context [21, 27-29]. 

The slice that was being analyzed was therefore 

located in the middle of a sub-volume supplied as 

the input. During the training stage, the LUT was 

supplied to indicate whether or not the network 

should detect a femur in the central slice of the 

current sub-volume. 

 

The ResNets used He-normal and Ridge 

regression (L2) as initializer and regularization 

techniques, respectively, and were trained using 

random sub-volumes selected from the n = 350 

CT volumes over five sequential runs in order to 

maximize statistical strength (similar to a 5-fold 

cross validation). The batch sizes were 64, 32 and 

32 for axial, coronal and sagittal networks, 

respectively. The difference in batch sizes was 

due to the differences in shapes of the sub-

volumes for the different orthogonal views. 

During training, data augmentation consisting of 

random rotations and scaling was applied to 

reduce overfitting. The possible rotations ranged 

from -20o +20o and scaling factors ranged 

from 0.8 to 1.2. The output layer presented a 

sigmoid activation, and the loss was calculated 

using binary cross-entropy. Methods for early 

stopping and reduction of the learning rate on 

plateau were used during training to improve the 

resulting model. 

3.1. PUBLICATION

31



 

  

 
Fig. 3. Diagram of the approach to obtain 3D bounding boxes for femur localization from 3D whole 

body CT scans. 

 
Fig. 4. ResNet architecture utilized for organ localization. For the axial view shown, the sub-volume 

of the CT scan analyzed for whether its central slice contained a femur was 9×256×256 voxels. For 

the coronal and sagittal views, the sub-volumes were 1024×9×256 and 1024×256×9, respectively.  

In order to evaluate the performance of the organ 

localization, the predicted 3D bounding boxes 

were compared to the ground truth (the interrater 

reliability is presented with the results) using the 

mean absolute error (MAE), the Dice score (also 

called the F1 score) and Jaccard similarity 

coefficient (also known as intersection over union 

or IoU). In case of disagreement between raters, 

the larger box is selected to ensure the complete 

presence of the femur in the volume. The mean 

error refers to the difference between the 

predicted and the real wall slice locations as a 

physical distance in the CT scan. The Dice score 

and the Jaccard similarity coefficient are 

commonly reported in the literature and are 

defined as [19], 

 𝐷𝑆(𝐴, 𝐵) =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
, (Eq. 1) 

 𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
, (Eq. 2) 

 

where 𝐴 and 𝐵 are the ground truth and predicted 

volumes, while 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁  represent the 

true positives, false positives, and false negatives, 

respectively. 

 

A regression analysis was performed to determine 

which factors were significant in affecting the 

performance of the localization algorithm. The 

effect on the MAE (dependent variable) for each 

of the three views (axial, coronal, and sagittal) and 

for the combined results for the bounding box was 

investigated for a total of 11 independent 

variables: 

• age – presented as continuous variable; 

• body mass index (BMI) – calculated as a 

continuous variable; 
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Fig. 5. Diagram of the approach for feature extraction of the femoral epiphyses. The encoder 

converted the epiphysis to an ND representation that was used for clustering and data analysis. 

The decoder was an unsupervised stage that ensured the latent space was a good representation of 

the input. The classifier, branched from the latent space, allowed the system to leverage extra 

information to improve clustering performance. 

• time since death – calculated as a continuous 

variable showing the number of hours 

between death and the triage CT scan; 

• incomplete femur – binary True in the 

absence of any section of the femur from the 

field of view (FoV) of the CT scan; 

• incomplete long leg bones – binary True in 

the absence of any section of lower limb long 

bone from the CT scan. 

• metal on primary femur – binary True in the 

presence of any metal implant in the primary 

femur (that being localized); 

• metal on secondary femur – binary True in 

the presence of any metal implant in the 

secondary femur; 

• significant trauma – binary True in the 

presence of any discontinuity that breaks the 

femur into more than one section;  

• foreign object – binary True in the presence 

of any non-anatomical object in the body bag;  

• rotation – the angle in degrees of the femur 

from the <001> unit vector that represented 

the direction of motion of the patient bed; and 

finally,  

• bed – binary True in the presence of the 

patient bed in the FoV of the CT scan. 

 

Feature classification 

Once the femur was localized using the 

aforementioned ResNet approach, the proximal 

and distal epiphyses were separated into two 

16×64×64 voxel sub-volumes for feature 

extraction and classification. The feature 

extraction was performed by a hybrid 

convolutional autoencoder (HCAE), where the 
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clustering of the latent vector space determined by 

the HCAE was performed using a k-NN analysis. 

 

The traditional implementation of a CAE takes a 

2D image as input and reconstructs it in the output 

following both encoding (compression) and 

decoding (expansion) steps (see Fig. 5). The 

output of the encoder and input of the decoder is 

a compressed vector (latent space) that represents 

the original input. In this work, the CAE was 

modified to receive a 3D volume as input. Also, 

an additional branch that uses the latent space 

vector for classification was added to leverage 

additional case information known about the 

decedent, in this case age was used. This 

additional step allowed the HCAE to add structure 

to the latent space which improved clustering. 

Both the network with and without the classifier 

branch were tested. Fig. 6 shows three axial slices 

of a proximal epiphysis determined from the 

organ localization step being fed into the HCAE. 

The result of the encoder was the N-dimensional 

(ND) latent vector space with clusters determined 

from features detected by the network. 

 

The HCAE was trained using sets with a batch 

size of 128. Data augmentation analogous to that 

previously described was also implemented. The 

activation layers for the decoder and classifier 

outputs were sigmoid and softmax functions, 

respectively, while the losses were mean squared 

error (ℒ𝑟) and categorical cross-entropy (ℒ𝑐) for 

the reconstruction and classification. The total 

loss (ℒ𝑡) was a mixture of the two losses with a 

balancing factor, where ℒ𝑡 = ℒ𝑟 + 𝜆 ∙ ℒ𝑐 , with 

𝜆 = 0.01 was chosen empirically after analyzing 

the magnitude of both loss values. 

 

The ND vectors obtained from the bottleneck 

were located in the latent space. For data analysis 

and visualization, t-Distributed Stochastic 

Neighbour Embedding (t-SNE) was utilized [30]. 

t-SNE is a widely used nonlinear dimensionality 

reduction technique for embedding high-

dimensional data in a 2D or 3D space. This 

technique has been shown to recover well-

separated clusters [31]. For this work, the output 

visualization was performed in 2D and the axes 

will be referred as 𝑧[0] and 𝑧[1]. 

 

The 2D output was post-processed using k-NN 

[32] in order to partition the observations into k 

clusters, where the value of k was defined after 

analyzing the 2D visualization and determining 

the information that was encoded in the clusters. 

To present the results more clearly, a confusion 

matrix was constructed to indicate the 

performance of the classification model when 

known features were selected as the true values 

for the clusters. Using the confusion matrix, 

several performance metrics were calculated: the 

accuracy, defined as the ratio of the number of 

correct classifications to the total number of 

classifications; the precision, measured as the 

ratio of the TPs of the class in question to the sum 

of its TPs and FPs; TP-rate or recall, calculated as 

the ratio of the TPs of a specific class to the sum 

of its TPs and FNs; and finally, the F1 score, 

which conveys the balance between the precision 

and the recall. At this final stage, the database of 

n = 350 cases was augmented with an additional 

100 cases with verified presence of metallic 

implants. 

 

 
Fig. 6. First (left), middle (center), and last (right) slices of an arbitrarily selected proximal 

epiphysis sample. 
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Results 

Femur localization 

The reproducibility analysis showed an ICC(3,1) 

>0.99 for the axial, coronal, and sagittal femur 

localizations, indicating an excellent interrater 

reliability. The MAEs between mean of the 

medical imaging technicians and the experts were 

1.0 mm, 1.4 mm and 1.5 mm for the axial, coronal 

and sagittal directions. 

Table 1 presents the results from the performance 

metrics selected for the organ localization task. 

The results were averaged over the test set of each 

of the five executions of random processing of 

subsets with the algorithm. For the Jaccard 

coefficient and the Dice score, a value of 1.0 

indicates a perfect match between the predicted 

box and the defined ground truth. The MAE 

measures the wall distance in mm between the 

two boxes and is 0.0 in cases where the walls are 

at the same locations. The reader should note that 

the due to the down-sampling of the data, a 

prediction error of one slice in any direction gave 

rise to a MAE of 2 mm. 

 

 

 

Table 2 presents the results from the regression 

analysis demonstrating the significance of factors 

that affected the calculation of the MAE for each 

of the three views (axial, coronal, and sagittal) and 

for the combined results for the bounding box. 

Because the MAEs between mean of the medical 

imaging technicians and the experts were less 

than one slice, cases with a MAE ≥2 mm, were 

selected for the regression analysis to attempt to 

explain the remaining variance. 

 

Data representation of femoral epiphyses 

and knees 

Fig. 7 and Fig. 8 present the 2D representation of 

the latent space for all n = 450 cases (the same 350 

cases used for femur localization plus 100 cases 

with high incidence of presence of metallic 

implants) without and with the use of additional 

age information, respectively. Each data point 

was color coded according to age and assigned a 

“Y” symbol with 90° clockwise rotations to 

differentiate left proximal femoral epiphysis, left 

distal femoral epiphysis, right proximal femoral 

epiphysis, and right distal femoral epiphysis, 

respectively. Regions that constitute the presence 

of a hip replacement, nail, or knee replacement are 

highlighted. 

 

Table 3 and Table 4 present the confusion 

matrices demonstrating the performance of the 

classification technique for the CAE and HCAE 

networks, respectively, where k=3. The algorithm 

was executed 8 times with random subsets to 

increase statistical power (similar to 8-fold cross 

validation). The overall accuracy (OA) was 

97.7% and 99.1% for the networks without and 

with the use of age information, respectively. 

Accuracy, precision, recall, and F1 score are 

reported for the classes defined: those without 

implants (I-), those with nails in the femoral head, 

hip replacements, and knee replacements. 

 

Table 1 

Average Jaccard similarity coefficient, Dice score, and mean absolute error for the five executions of femur 

localization on random test cases. 

 Axial (μ±σ) [avg. length] Coronal (μ±σ) [avg. length] Sagittal (μ±σ) [avg. length] 

Jaccard coefficient 0.99±0.02 0.93±0.06 0.96±0.05 

Dice score 1.00±0.01 0.96±0.03 0.98±0.03 

MAE [mm] 3.2±3.9 [459.0] 7.1±6.0 [95.9] 4.2±4.2 [117.4] 
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Table 2 

Regression results showing p-values obtained after training the femur localization algorithm and analyzing 

the MAEs for cases with MAE ≥ 1 slice (2 mm), 𝒓𝟐 = 𝟎. 𝟐𝟔. 

 p-value 

All Axial Coronal Sagittal 

Age 0.64 0.78 0.29 0.41 

BMI 0.07 0.09 0.11 0.59 

Time since death 0.65 0.94 0.76 0.26 

Incomplete primary femur 0.17 0.08 0.45 0.77 

Incomplete other long leg bones 0.17 0.81 0.34 0.39 

Metal on primary femur <0.001*** <0.05* <0.05* 0.31 

Metal on secondary femur 0.11 0.78 0.10 0.32 

Significant trauma 0.49 0.22 0.39 0.23 

Foreign object 0.64 0.96 0.76 0.64 

Rotation <0.01** 0.19 0.60 <0.01** 

Bed 0.57 0.57 0.68 0.33 

Table 3 

The confusion matrix showing the performance of the clustering technique when the age information was 

not used. 

    Predicted label 
Acc Precision Recall 

F1 

Score     I- Nail Hip rep. Knee rep. 

T
ru

e 
la

b
el

 I- 2400 8 0 2 0.98 0.98 1.00 0.99 

Proximal Nail 20 19 7 0 0.99 0.70 0.41 0.52 

Hip rep. 8 0 46 0 0.99 0.87 0.85 0.86 

Knee rep. 14 0 0 3 0.99 0.60 0.18 0.27 

 

Table 4 

The confusion matrix showing the performance of the clustering technique when the age information was 

used. 

    Predicted label 
Acc Precision Recall 

F1 

Score     I- Nail Hip rep. Knee rep. 

T
ru

e 
la

b
el

 I- 2400 3 0 0 0.99 0.99 1.00 0.98 

Proximal Nail 15 31 1 1 0.99 0.91 0.65 0.76 

Hip rep. 0 0 61 0 0.97 0.97 1.00 0.98 

Knee rep. 0 0 1 16 1.00 0.94 0.94 0.94 
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Fig. 7. A 2D data representation of the latent space determined by the CAE after applying t-SNE. The 

age information was not used. Both training and test cases are plotted. The solid ellipse (green), dashed 

box (purple), and solid box (blue) represent regions that constitute the presence of a hip replacement, 

nail, or knee replacement, respectively.  

 
Fig. 8. A 2D data representation of the latent space determined by the HCAE after applying t-SNE. 

Age information was used to provide structure. Both training and test cases are plotted. The solid 

ellipse (green), dashed box (purple), and solid box (blue) represent regions that constitute the presence 

of a hip replacement, nail, or knee replacement, respectively.  

Discussion  
The femur localization was performed by 

combining the output of three different networks, 

where the coronal and sagittal architectures 

shared the same number of layers. The difference 

in the size of the networks was related to the size 

of the input volumes. This size also affected the 

number of sub-volumes that were obtained from 

each case, with the axial network being trained 

with four times more sub-volumes per case than 

the sagittal and coronal networks due to the 

geometry of the reconstructed volumes. In 

practice, the difference in the number of sub-

volumes used for training affected the 

performance of the localization algorithm, as can 

be observed in Table 1, where the performance of 
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the axial network was best for all three defined 

metrics. In previous works [16, 19, 21, 33], the 

localization of the femoral head within clinical 

abdominal CT scans using the bounding box 

approach has been reported to have errors in the 

range of 1 to 11 mm. Our results are considered to 

be consistent with these when allowing for the 

fact that a patient in a clinical scanner is either 

manipulated or instructed to lay flat, and the 

patient bed does not typically include the foreign 

objects present in forensic scans. Furthermore, the 

difficulty caused by the variability in the 

positioning and cause of death is exacerbated by 

the localization of the whole femur in comparison 

to other works that only localized the femoral 

head. Due to this, the MAEs must be analyzed in 

the context of the mean average size of the box in 

each direction, especially in the coronal and 

sagittal views, where MAEs of 7.1 and 4.2 mm are 

measured with respect to mean lengths of 95.9 and 

117.4 mm. This effect can also be observed when 

considering the MAE between the experts and the 

medical imaging technicians, with a value almost 

three times the value reported by Humpire-

Mamani et al. [19]. As a visual contrast of the 

aforementioned differences, Fig. 5 in Humpire-

Mamani et al. [19] can be compared to Fig. 9 in 

this work. 

 

 

 

Table 2 demonstrates that the rotation angle of the 

femur with respect to the scanner bed axis of 

movement and the presence of metallic implants 

had statistically significant effects on the 

performance of the femur localization. The 

factors referred to in Table 2 were able to explain 

26% of the variance for cases with a MAE worse 

than that obtained by the human readers, with 

other forms of rotation (pelvis, legs crossing) that 

were difficult to calculate being suspected of 

accounting for the remaining observed error. Fig. 

9 shows coronal maximum intensity projections 

(MIPs) that visually demonstrate the key 

independent variables tested for (other than BMI). 

The rotation of the femur (Fig. 9a) had a 

statistically significant effect in the sagittal 

network, where the view of the angled bone 

affected the capabilities of the network to 

properly classify the slice. The incompleteness of 

the femur, the presence of significant trauma, the 

presence of foreign objects, and the presence of 

the scanner bed in the FoV (see Fig. 9a-d) did not 

significantly affect the performance of the 

algorithm in any single orientation and validated 

the use of the discrete processing of the different 

views in order to localize the anatomy of interest 

as a preliminary pipeline step. 

 

After rotation of the femur, the most significant 

effect in identifying the location of the femur was 

the presence of metal implants, e.g. hip 

replacement, surgical nails. This effect can be 

more clearly observed in the axial images (see 

Fig. 10a) and is caused by the beam hardening and 

photon starvation [34]. The most severe form of 

metal artefacts, that occurs when metal couples 

with other metal or dense structures such as bone, 

is of significant interest in forensic CT scans; the 

requirement for the preservation of evidence or 

presence of rigor-mortis can mean that re-

positioning of the body is not feasible. Indeed, this 

effect can manifest in a range of locations, e.g. the 

inability to raise the decedent’s arms above their 

head introduces artefacts that distort the HUs of 

organs in the thorax and fluid in the lungs (see Fig. 

10b). Whilst these effects were not explicitly 

accounted for in this work, DL approaches have 

been shown to enable reductions in metal streak 

artefacts [35]. 

 

The HCAE component of this work was 

configured to analyze 3D sub-volumes. Whilst 

this approach is more computationally expensive 

than processing 2D images, our aim was to define 

an automated pipeline that would ultimately be 

more general than simply auditing the presence of 

different types of metallic orthopedic implants. In 

radiology, 3D representations of anatomy are 

generally preferred due to the enhanced contrast 

that arises from non-overlapping structures 

inherent in 2D imaging. From Fig. 9, it can be 

argued that the use of extra dimensionality is more 

beneficial as the presence of a wide range of 

foreign objects makes interpretation of the 

contents of the body bag more complicated. 
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Fig. 9. a-d) Maximum intensity projections (MIPs) generated from the triage CT scans of four 

representative cases from the PMCT database. a) Limb outside of FoV. b) High-force fracture. c) 

Presence of metal objects both in front of and behind the body. d) Presence of dense surface of the 

scanner bed in the FoV.  

 

 
Fig. 10. a) Axial slice for case with bi-lateral total hip replacement. b) Lung HU values being affected 

by the coupling between the bones in the arms located along the thorax. 

In the discipline of Orthopedics, implants in the 

long leg bones can be classified into three 

categories: screws or nails, knee replacements, 

and hip replacements. The presented pipeline was 

able to cluster cases according to the type of 

metallic implant without any information relating 

to these variables during training. Furthermore, 

the use of age as an output ensured that only the 

imaging information needs to be used during the 

testing phase and yielded an increase in the 

overall accuracy and recall value for the nail and 

knee replacement classes (Table 3 and Table 4). 

The clustering algorithm was able to differentiate 

the cases with hip replacements, even when the 

database presented cases with hemiarthroplasty or 

total hip arthroplasty, which constitute different 

shapes in the CT scan. 

 

The pipeline presented can be used separately, 

with the organ localization stage being an 

important pre-processing step for a number of 

imaging tasks. It must be noted that the down-

sampling of the original volumes affected the 

performance of the localization due to partial 

volume effects [36] and loss of resolution. Results 

could be improved by using the high-resolution 

3.1. PUBLICATION

39



 

images, having considered the computational 

costs that this implies. Semi-automatic techniques 

such as that presented here for the labelling of vast 

databases could help with finding patterns in the 

data to improve content-based image retrieval 

when answering medico-legal questions that arise 

during forensic investigations. 

 

Conclusion 
In this paper we presented a workflow that can be 

used to automate the labelling of CT images in a 

forensic database and applied it to the femur. The 

initial processing step used ResNets to predict the 

localization of the desired body part, in this case 

the femur. Dice scores of 1.00, 0.96, and 0.98 and 

wall distances of 3.2, 7.1, and 4.2 mm were 

calculated for the localization in the axial, 

coronal, and sagittal views, respectively.  

 

After localization of the femur, sub-volumes were 

parameterized using an HCAE for feature 

extraction. Analysis of the resulting clusters 

demonstrated the ability to separate left and right 

I- femurs and knees, and the presence of different 

types of metal implants. Test cases were properly 

labelled as I-, nail, hip replacement, or knee 

replacement with an accuracy >97%, where the 

recall for I- and hip replacement cases was 1.00, 

but falling to 0.82 and 0.65 for cases with knee 

replacements and nails, due to the variability in 

the number of slices containing metal present in 

the sub-volume. 

 

Limitations 

The use of information different to age during the 

training of the clustering stage, e.g. height, 

weight, time since death, could improve the 

performance of the k-NN technique, but special 

consideration must be given to the pertinence of 

the utilized variable and its relationship to the 

body part being investigated. Only males were 

included in this work in order to improve 

statistical power by removing a variable, but the 

femur localization results were not significantly 

affected by biological variables. It is expected that 

the presented technique present favorable results 

when new variables such as sex or reconstructions 

protocols are used. The proposed pipeline should 

be able to generalize to other clinical/forensic 

environments, with the use of a normalization 

technique that keeps the pixel value distribution 

similar to that of the data used during training. 

 

The performance of the presented pipeline could 

be improved by utilizing transfer learning to take 

advantage of networks that have been previously 

trained in databases with millions of images. The 

use of this method provides a baseline 

performance that can be fine-tuned for the 

specific application, potentially decreasing 

training time and errors. 
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CHAPTER 4

Numerical model of the trabecular bone structure

Development of a simple numerical model for trabecular bone structures

C. A. Peña-Solórzano, D. W. Albrecht, D. M. Paganin, P. C. Harris, C. J. Hall, R. B.
Bassed, M. R. Dimmock

Published in Medical Physics, Volume 46, Issue 4, Pages 1766–1776, 2019
DOI: 10.1002/mp.13435

This chapter is an exact copy of the journal paper referred above

Chapter 3 demonstrated the capabilities of ML systems for automatically differentiating
between the presence or lack of metallic implants and their sub-classification in CT scans.
Future applications of the presented pipeline are related to the determination and auto-
matic classification of pathology, including osteoporosis and fractures. As the presence of
bone diseases and small fractures can be subtle in CT, the use of models for the training
of ML approaches could overcome the difficulties in finding the required data in clinical
and forensic databases through the application of transfer learning [55]. ML requires an
appropriate dataset to act as a surrogate to initially train a pipeline at identifying the
kinds of attributes for which the algorithm will ultimately be used.

This chapter is divided into two parts: firstly, a manuscript that presents a new and
simple approach for the generation of synthetic trabecular bone structures that could be
customised to the desired application; and secondly, the 3D printing of the generated
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models for phantom development. The proposed model only uses seven parameters to
capture the pseudo-random structure observed in trabecular bone and can therefore be
considered to have more widespread uses than those previously described in the literature
[56,57].

4.1 Publication

The following publication has been published and reprinted from [58]. Copyright 2019,
with permission from WILEY.
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Purpose: Advances in additive manufacturing processes are enabling the fabrication of surrogate

bone structures for applications including use in high-resolution anthropomorphic phantoms. In this

research, a simple numerical model is proposed that enables the generation of microarchitecture with

similar statistical distribution to trabecular bone.

Methods: A human humerus, radius, ulna, and several vertebrae were scanned on the Imaging and

Medical beamline at the Australian Synchrotron and the proposed numerical model was developed

through the definition of two complex functions that encode the trabecular thickness and position-

dependant spacing to generate volumetric surrogate trabecular structures. The structures reproduced

those observed at 19 separate axial locations through the experimental bone volumes. The applicabil-

ity of the model when incorporating a two-material approximation to absorption- and phase-contrast

CTwas also investigated through simulation.

Results: The synthetic structures, when compared with the real trabecular microarchitecture, yielded

an average mean thickness error of 2 lm, and a mean difference in standard deviation of 33 lm for

the humerus, 24 lm for the ulna and radius, and 15 lm for the vertebrae. Simulated absorption- and

propagation-based phase contrast CT projection data were generated and reconstructed using the

derived mathematical simplifications from the two-material approximation, and the phase-contrast

effects were successfully demonstrated.

Conclusions: The presented model reproduced trabecular distributions that could be used to gener-

ate phantoms for quality assurance and validation processes. The implication of utilizing a two-

material approximation results in simplification of the additive manufacturing process and the

generation of synthetic data that could be used for training of machine learning applications. © 2019

American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13435]

Key words: numerical model, PB-CT, trabecular

1. INTRODUCTION

Anthropomorphic phantoms are commonly used in radiol-

ogy for quality assurance (QA)1,2 and investigation of the

effects of changing experimental settings, for example,

mAs and image reconstruction kernel.3 More advanced

QA procedures require bone microarchitecture, for exam-

ple, the validation of high-resolution cone beam computed

tomography (CB-CT) images4 and the use of high-resolution

peripheral quantitative CT (HR-pQCT).5,6 In addition, the

planning of experimental design impacts such as object-

to-detector propagation distance in phase-contrast synchrotron

based studies7–9 can be better predicted with realistic

phantoms.

An important clinical consideration for high-resolution

CT techniques is the requirement for multicenter, temporal

consistency checks and validation. In order to ensure such

reproducibility, phantoms have been constructed using

1766 Med. Phys. 46 (4), April 2019 0094-2405/2019/46(4)/1766/11 © 2019 American Association of Physicists in Medicine 1766
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cadaveric bone tissue10 and then mailed between centers; this

is a time consuming, inefficient process. With the advent of

cost-effective additive manufacturing processes, a solution to

overcoming the aforementioned issues could be the use of

three-dimensional printed (3DP) trabecular structures,11–13

provided that the appropriate bone equivalent material could

be identified.14,15 Such a process would also require a numer-

ical model from which the appropriate bone pattern could be

generated.

Additional benefits of producing phantoms with microar-

chitecture that strongly represents that observed in medical

imaging include the ability to improve clinical radiographic

image quality and to generate training sets for machine learn-

ing (ML) applications for future radiologic workflow opti-

mization. With respect to clinical radiography, medical

imaging technologists (MITs) use trabecular structure in

assessing patient positioning and technique factor optimiza-

tion16 for plain film x-ray acquisition. For ML applications,

the workflows require large numbers of physical or simulated

phantoms with feature architecture that can be synthesized in

a controlled manner.17

The trabecular structures in bone can be represented as a

quasi-random network comprising interconnected plates and

rods.18 Mathematical models and phantoms of trabecular

bone structures have been studied in the field of acoustics in

order to determine factors such as ultrasonic attenuation,19

phase velocity and dispersion,20,21 and the experimental

observation of ultrasound waves through real trabecular sam-

ples vs 3D printed phantoms.22 In these works, authors have

used surrogates such as grids of nylon strands.

For x-ray imaging techniques including plain film and

high-resolution CT, the cortical structure and trabecular

microarchitecture of bone have been characterized through

the calculation of cortical thickness,23,24 plate-to-rod ratios,25

and more recently tensor-based morphometry26. In these

works, the authors have generated simulated microarchitec-

ture using skeletonized continuous spaces comprising unions

of sinusoidal, cylindrical, and elliptical surfaces and

curves18,24; however, their appearance can be considered

somewhat different to that observed in clinical images, for

example, see Fig. 3 in Saha et al.18 with respect to Fig. 10 in

Liu et al.24 In this work we present an alternative model and

justify the use of a two-material approximation for ease of

fabrication and simplification of simulation for synthetic data

generation.

We close this introduction with a brief overview of the

organization of this paper. In Section 2, we present a new

numerical model for the generation of synthetic trabecular

bone structures in two-dimensional (2D) and 3D settings. We

also present simplifications to the image reconstruction pro-

cess that can be achieved assuming that the bone and/or

extremity as a whole can be comprised of two materials only.

Section 3 presents examples of the trabecular bones gener-

ated with our model, results comparing the average trabecular

thickness between the synthetic structures and real bone, and

the reconstruction of propagation-based phase-contrast CT

(PB-CT) images from the generated projection data. Finally,

Sections 4 and 5 present the discussion and conclusions of

the paper, respectively.

2. MATERIALS AND METHODS

In this paper, we start by evaluating a clinical CT scan of a

currently available anthropomorphic phantom and

subsequently develop a numerical model that could produce

3D trabecular structures with similar qualitative appearance

and quantitative statistical attributes to those observed

experimentally.

2.A. Currently available phantom

We investigated the performance of a current best prac-

tice anthropomorphic phantom in order to determine the

degree to which bones are accurately simulated. The right

leg of the PBU-50 whole body phantom (Kyoto Kagaku

Co. Ltd, Kyoto, Japan) was scanned with a Discovery

CT750 HD CT scanner (GE Healthcare, Chicago, IL,

USA), using 100 kVp energy and with one pixel being

equivalent to 0.39 mm 9 0.39 mm of scanned area

(Fig. 1). The cortical thickness of the phantom’s tibial

bone was measured from contours applied to the axial

slices for which a gradient function was then used to cal-

culate the normal to the surface for sampling. Figure 1(b)

shows the contour and three normal vectors from which

sampling occurred. A flat map was then produced to pre-

sent the calculated cortical bone thickness values.

2.B. Numerical models

Due to the observed deficiency in the microarchitecture in

current phantoms, we developed a numerical model that

could produce 3D structures that approximate the trabecular

structure observed in real bones. The structures were devel-

oped with a multi-step process:

FIG. 1. Right leg of the PBU-50 phantom. (a) Photograph. (b) Axial com-

puted tomography slice showing tibia and fibula bones, and orthogonal vec-

tors for three surface points. No internal trabecular microstructure was

observed. [Color figure can be viewed at wileyonlinelibrary.com]
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1. implementation of a simple model that reproduces tra-

becular bone distributions within a single axial slice;

then

2. evolution of the single-slice model into a volumetric

structure; and

3. evaluation of the efficacy of utilizing a two-material

approximation of the bone, and extremity as a whole,

specifically with application to PB-CT reconstruction.

A two-material approximation could be readily gener-

ated using 3DP techniques and is shown to provide

both simplified projection data generation in conven-

tional CT and reconstruction in PB-CT.

2.B.1. Trabecular bone model

A series of ex vivo human bones and lamb extremities

were imaged with a resolution of 19.8 lm at x-ray energies

of 40 and 70 keV on the Imaging and Medical beam-

line (IMBL) at the Australian Synchrotron (AS). The

IMBL provided multiple simultaneous benefits, including:

the acquisition of high-resolution projection data; the ability

to scan at single energies with effectively parallel rays; and

the ability to reconstruct both absorption- and PB-CT images.

The aforementioned factors significantly simplified the sub-

sequent analysis and model development, while also provid-

ing assessment of the ability to acquire phase-contrast

enhancement. The experimentally acquired projection data

were processed using X-TRACT27 which facilitated both

absorption- and PB-CT reconstruction. The reconstructed

images were used to demonstrate how the model could be

used with the two-material approximation to generate syn-

thetic data. Figure 2 shows the workflow of the numerical

model.

Before proceeding with the mathematical description for

our numerical trabecular-bone model, we give a brief qualita-

tive explanation of how our overall theoretical framework

works. The overarching desideratum governing this model is

that it is simple enough to generate synthetic trabecular struc-

tures using a very small number of numerical parameters, yet

yield structures that are complex enough to mimic some key

features of genuine trabecular bone. In words, the key steps of

our numerical model are as follows: (a) Since there is a

degree of spatial randomness associated with trabecular bone,

our numerical model for generating synthetic trabecular dis-

tributions takes a spatially random function as a starting

point. For each slice, this input is taken to be white noise,

namely a 2D array of pixels, each of which is seeded with an

independent random value. (b) Fourier filtration, a form of

low-pass filter that suppresses fine detail, is then used to

smooth the white-noise spectrum so as to generate a spatially

random structure that has a feature size that can be tuned to

match that of a typical trabecular bone structure. This typical

feature size is the first numerical parameter used in our

method. (c) Since trabecular bone possesses nonrandom as

well as random features, for example, the approximate cylin-

drical symmetry imposed by encasing cortical bone, the pre-

viously obtained filtered-noise map needs to be shaped by a

deterministic background function, which we incorporate in a

simple manner into our model. As we shall see, it is the gra-

dient of this background function that sculpts the trabecular-

bone distribution, rather than the background function by

itself. (d) Lastly, our simple mathematical model will gener-

ate wall thicknesses that are the same on average as the corre-

sponding pore thickness. To introduce a difference between

wall and pore thicknesses, a simple power-law transformation

is applied to our model; the associated power is a final key

parameter that can be tuned.

The first length scale (proportional to the mean trabecular

thickness) was encoded by taking the point-wise product of

the white noise distribution (N(j,k)) with an enveloping

function (M(j,k)), as,

N 0ðj; kÞ ¼ Mðj; kÞ � Nðj; kÞ; (1)

where j and k are pixel coordinates in the y and z transverse

directions, respectively. A Gaussian enveloping function

(Mðj; kÞ ! MGðj; kÞ) centered at the origin of the input

white-noise map [Eq. (2)] was utilized for regions where

cylindrical statistical symmetry was prevalent; however, since

the Fourier transform of a piece of trabecular structure was

found to achieve a better fit from a Lorentzian distribution

(Mðj; kÞ ! MLðj; kÞ), this enveloping function was also

investigated [Eq. (3)]. Figure 3(b) shows the enveloping pro-

cess of the white noise distribution for a Gaussian with

rj;k ¼ 75 pixels [Figure 3(a)].

Explicitly, the Gaussian and Lorentzian distributions are

given by the functions:

MGðj; kÞ ¼ A � exp � j2

2r2j
þ k2

2r2k

 !" #

; (2)

MLðj; kÞ ¼ A
rj

ðj� j0Þ2 þ r2j

 !

rk

ðk � k0Þ2 þ r2k

 !

; (3)

where A is an arbitrary scaling constant and ðj0; k0Þ is the cen-
ter of the Lorentzian distribution. In each case, the distribu-

tions MGðj; kÞ and MLðj; kÞ are characterized by rj and rk (or

FIG. 2. Workflow of the numerical model that creates synthetic trabecular distributions.
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rj;k if it is the same value for both) which controls the stan-

dard deviations. Equation (1) was then Fourier transformed

over horizontal and transverse pixel coordinates (F½N 0ðj; kÞ�)
to yield a speckle distribution with characteristic spacing

K ¼ 1=rj;k. The Fourier transform, which will in general be

a complex-valued function at each pixel coordinate, was

then scaled to have unit modulus, where,

N 0ðq; rÞ ¼ F½N 0ðj; kÞ�
jF½N 0ðj; kÞ�j : (4)

Here, vertical bars denote the modulus operation. A second

complex function R(q,r) = exp [�i�B(q,r)] was introduced

to incorporate the trabecular spacing characteristic length

scale (L),

L ¼ 1

jr?Bj
; (5)

where r? denotes the transverse gradient operator. The back-

ground function B(q,r) is in general arbitrary, however below

it is taken to be an ellipsoid. The function R(q,r) also encodes

the spatial gradient, for instance, if an elliptical function is

used,

Rðq; rÞ ¼ exp �i
½aðq� q0Þ2 þ bðr � r0Þ2�0:8

L

 !

: (6)

here, 1=
ffiffiffi

a
p

and 1=
ffiffiffi

b
p

denote the principal axes (i.e., semi-

major axis and semi-minor axis) of an ellipse that encodes

the spatial gradient. Similarly, q0 and r0 denote the offset in

the horizontal and vertical directions, respectively, and i is

the complex unit
ffiffiffiffiffiffiffi

�1
p

.

The two complex fields were combined and converted

back to real space by raising the modulus to a factor > 2

(i.e., g > 1) in order to reduce the resulting wall thickness in

a tunable manner, hence:

Tðj; kÞ ¼ jN 0ðq; rÞ þ Rðq; rÞj2g: (7)

Using a power greater than 2 (i.e., g > 1) reduces the wall

thickness because of the fact that it erodes smaller values and

hence narrows the width of a peaked function. This can be

seen, for example, by plotting the series of sinusoidal func-

tions j sinðxÞj2g vs x, for g = 1,2,3 etc., which demonstrate

progressive narrowing as g is increased.

In Eq. (6), if ðq0; r0Þ ¼ ð0; 0Þ, and a = b 6¼ 1, the separa-

tion between structures can be varied asymmetrically

[Fig. 4(a)]. If an offset is applied, the center of the distribu-

tion generated shifts accordingly. Figure 4(b) shows the varia-

tion of the middle location of the synthesized trabecular bone

density, when both q0 and r0 are negative, while Fig. 4(c)

presents the pattern obtained when a and b have different val-

ues.

Some regions of bone do not present such strong concen-

tricity as sections of long bones, therefore a region-based

approach can be utilized. For these regions, sections of tra-

becular structure can be generated with a constant spatial gra-

dient, where Eq. (7) can be simplified as,

Tðj; kÞ ¼ jN 0ðq; rÞ þ exp½�iðcqþ drÞ�j2g; (8)

where c and d are constants.

To demonstrate the flexibility of the model, Eq. (7) was

used to create concentric distributions with the same mean

thickness as axial slices obtained from high-resolution scans

of human humerus, radius, and ulna. In addition, synthetic

distributions for the vertebrae were generated using Eq. (8)

with a Lorentzian input to obtain an idealized model with ver-

tical columns and horizontal struts.28 19 synthetic trabecular

patterns were generated for an image of size 1200 9 1200

pixels, where the model was constrained according to the res-

olution achieved through imaging on the IMBL (19.8 lm).

For each of the aforementioned bones, a randomly sampled

region was quantitatively assessed in order to determine the

slices with the minimum and maximum trabecular thick-

nesses, and then those slices were reproduced with the model.

2.B.2. Volumetric trabecular structure model

So far, the algorithm presented is able to generate a 2D

section of the structure in an axial plane. For a proper analy-

sis of the capabilities of the model, it was extended with the

intention of producing a volume similar to what is obtained

after scanning a 3D section of bone.

In order to generate a sequence of slices with connected

components on the y axis (superiorly or inferiorly along a

limb), an iteration loop with the number of desired slices was

used, inside which the white noise map was defined as the

white noise map from the previous iteration plus a fraction of

a new white noise distribution, as,

Nsþ1ðj; kÞ ¼ Nsðj; kÞ þ ðd � Nðj; kÞÞ; (9)

(a) (b)

FIG. 3. Combined input and enveloping function for an image of size

1200 9 1200 pixels (zoom). (a) Gaussian function with rj;k ¼ 75 pixels. (b)

Combined white noise input and Gaussian enveloping function.

Medical Physics, 46 (4), April 2019

1769 Pe~na-Sol�orzano et al.: Development of a simple trabecular bone model 1769

4.1. PUBLICATION

48



where d�1 is an arbitrary positive scaling factor. The scaling

factor was used to modify the white noise distribution from

the previous iteration, ensuring there are not significant dis-

continuities in the longitudinal variation of the trabecular

structure. Note that the right side of Eq. (9) is always rescaled

to have values between 0 and 1, after the addition has been

performed. This evolution of the white-noise map gives a

slice-by-slice series of inputs into our synthetic trabecular

bone model, which then outputs a slice-by-slice series of tra-

becular bone densities that is subsequently assembled into a

3D density map.

In order to compare the generated trabecular structures

against the real tissue, we used the Thickness plug-in from

ImageJ,29 which is based in the work from Hildebrand and

R€uegsegger.23 The computation of the local thickness at a

given point of the trabecular bone is the diameter of the lar-

gest sphere (or circle in the case of 2D images) that includes

the point and that can be fitted inside the structure. By fitting

maximal spheres to every point in the structure, a mean thick-

ness and the thickness distribution can be calculated. This

allowed the model to be compared in a standardized way that

can be accessed in an open source platform.

2.B.3. Projection data generation of PB-CT

As stated in Section 1, our numerical model could be

applied to both the physical fabrication of anthropomorphic

phantoms or incorporation into simulations of experimental

CT configurations in order to generate synthetic projection

data for the training of ML workflows. In this section, we

have incorporated the images obtained with the numerical

model into a simplified simulation to demonstrate the useful-

ness of the assumption of a two-material approximation

(Fig. 5). With such an assumption, surrogate bones can be

readily produced in additive manufacturing processes and

projection data for phase contrast applications can be simu-

lated with significant mathematical simplifications for vali-

dating synchrotron configurations.30 Note that due to the

ethical difficulties in acquiring cadaveric bone, Fig. 5 shows

the histograms and fitted peaks for a femoral axial slice from

an ex-vivo ovine sample. The peaks from both 40 and

70 keV were fitted. The distributions demonstrate that a sim-

ple two-material approximation is sufficient to characterize

an extremity.

The remainder of this section will show how we simulated

the phase-contrast effect that can give rise to edge enhance-

ment in synchrotron imaging [Eqs. (10)–(16)] and simplifica-

tions that result from a two-material approximation [Eqs.

(17)–(23)].

PB-CT exploits refraction of the x-ray field at tissue inter-

faces and utilizes the propagation distance from the object to

the detector to amplify the interference of the propagating

field.7,31–33 Figure 6 shows a representation of our simple

model, where a flat field of monoenergetic x rays was inci-

dent on the trabecular distribution generated using the algo-

rithm outlined in Section 2.B.1. A simple forward model was

generated using the ASTRA toolbox34,35 to yield absorption-

based data that would be obtained at each projection angle

for a detector positioned on the plane z = 0. The extremity

phantom image was generated assuming a two-material

approximation. The properties of the two materials are

described in Table I. The phantom was defined on a

4096 9 4096 pixel grid with physical dimension of

16 mm 9 16 mm. The projection data sampled on the detec-

tion plane was 4096 9 υ, where υ was the length expressed

as a number of pixels in the longitudinal (y) direction.

In Table I, l is the linear attenuation coefficient calculated

with the energy of the incident photons and the atomic num-

ber of the material, < Z/A > is the mean ratio of atomic

FIG. 4. Representative trabecular distributions obtained using Eq. (7). (a) a = b 6¼ 1 and q0; r0 ¼ 0. (b) a,b = 1 and q0; r0\ 0. (c) a 6¼ b and q0; r0 ¼ 0.

FIG. 5. Histograms and fitted peaks for linear attenuation coefficient of bone

and soft tissue for an axial slice from an ex vivo ovine femoral bone imaged

at the imaging and medical beamline. The distribution at each energy shows

two peaks used as justification for the two-material approximation. [Color

figure can be viewed at wileyonlinelibrary.com]
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number Z to atomic weight A for the compound, q is the mass

density of the material with units of g=cm3, and 1-d is the real

part of the complex refractive index, which can be approxi-

mated as,31

dðx; y; zÞ ¼ C � q �\Z=A[

E2
; (10)

where C is a constant of value 4:152 � 10�4 cm3 keV,2 and

E is in keV. Throughout, the Cartesian coordinate z is taken

to correspond to the optical axis, with (x,y) being coordinates

in planes perpendicular to this optical axis.

The complex wave field at the plane z = 0, Ψ(x,y,0)

(Fig. 6), can be completely described by the phase /(x,y,0)

and amplitude a(x,y,0) maps at that plane. If the sample is

composed of a single material, then the complex wave field

at z = 0 is determined by the intensity I(x,y,0) as follows:

Wðx; y; 0Þ ¼ aðx; y; 0Þ � exp i/ðx; y; 0Þ½ �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðx; y; 0Þ
p

� exp ik � ln Iðx; y; 0Þ dðx; yÞ
lðx; yÞ

� �

:

(11)

Here, Iðx; y; 0Þ ¼ jaðx; y; 0Þj2 is the normalized incident

x-ray intensity, k is the wave number, d(x,y) is the projection

of d(x,y,z) along the z direction, and l(x,y) is the projection of

l(x,y,z) along the z direction. Note that an incident z-directed

unit-intensity plane wave has been assumed above, together

with the paraxial and projection approximations.36 Note also

that k refers to the wave number in Eqs. (11)–(14), whereas it

refers to the pixel index in the z dimension in all other sec-

tions of the paper.

To extend the utility of the model to PB-CT, the Fresnel

diffraction approximation36 was applied to calculate the prop-

agated intensity data at the plane z = D. The complex wave

field distribution at the detector plane (Ψ(x,y,D)) can be

obtained from the convolution of Ψ(x,y,0) with the Fresnel

propagator P(x,y,z),

Wðx; y;DÞ ¼ Wðx; y; 0Þ � Pðx; y;DÞ; (12)

where D is the distance between the central plane of the sam-

ple and the detector plane, and,

Pðx; y;DÞ ¼ � ik � exp ikDð Þ
2pD

exp
ikðx2 þ y2Þ

2D

� �

: (13)

Practically, this convolution is achieved in Fourier space by

application of angular-spectrum diffraction operator,

DD ¼ F�1 exp iD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2x � k2y

q� �

F; (14)

giving,

Wðx; y;DÞ ¼ DDWðx; y; 0Þ: (15)

The propagated intensity that contains the phase-contrast sig-

nal when the detector is positioned at z = D is then given by:

Iðx; y;DÞ ¼ jWðx; y;DÞj2: (16)

Note that Eq. (14) is in fact more general than the Fresnel

propagator described by Eqs. (12) and (13), but for the calcu-

lations used in the present paper, the difference is negligible.

Equation (15) maps the wave function from a position z = 0

to a distance z = D, making it possible to simulate the infor-

mation of the fringes obtained during propagation-based PB-

CT (Fig. 6). For the approximation assumed in this work for

which the phantom comprises two materials, bone-like and

tissue-like (Fig. 5), where the radius (R) of the disk is known

(Fig.6), the thickness of the soft tissue ðttÞ can be written as,

tt ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

� tc; (17)

where tc is the thickness of the cortical bone and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. Assuming monoenergetic x rays incident on

the phantom, the Beer–Lambert law can be expressed as,

FIG. 6. Simple model of the computed tomography (CT) configuration showing the absorption-based and phase-contrast CT detector locations, z = 0 and z = D,

respectively.

TABLE I. Material properties at 40 keV energy.

l (m�1) < Z/A > (mole g�1) q (g cm�3) d

Soft tissue 25.0 0.54903 1.127 1.61 � 10�7

Cortical bone 96.0 0.51478 1.920 2.56 � 10�7
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ln
I0

I

� �

¼ lttt þ lctc (18)

where I is the transmitted intensity and I0 is the incident

intensity. Inserting Eq. (17) into (18),

ln
I0

I

� �

¼ lt 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

� tc

� �

þ lctc; (19)

and solving for tc then gives,

tc ¼
ln I0

I

� �

� 2lt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

lc � lt
: (20)

From this, we have now demonstrated that it is possible to

generate phase-contrast data using a simple two-material

model with arbitrarily complicated shape, where the thickness

of the materials can be derived from the intensity distribution

on the detector (projection data). To do this, Eq. (20) is sub-

stituted into Eq. (21), yielding the following projection-

approximation for the phase / of the x rays at the exit surface

of the sample,

/ ¼ �kdctc � kdttt; (21)

where 1� dc and 1� dt, respectively, denote the real part of

the X-ray refractive indices for bone and soft tissue. Combin-

ing Eqs. (17), (20), and (21) then gives,

/¼�kdc
ln I0

I

� �

�2lt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2�r2
p

lc�lt

 !

�kdt 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2�r2
p

� ln I0
I

� �

�2lt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2�r2
p

lc�lt

 ! !

; (22)

/ ¼ �k
ln I0

I

� �

� 2lt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

lc � lt

 !

dc � dtð Þ

� 2kdt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

: (23)

Finally, Eq. (23) is substituted into the first equality in

Eq. (11) and then propagated using Eqs. (12)–(16). The

result is then the intensity distribution at the plane z = D.

Note that for the detector at z = 0 we would emulate con-

ventional CT.

In order to incorporate realistic detector effect, the projec-

tion data at z = D = 6 m was re-binned to 8 lm pixels and

Poisson noise was added. The same methodology was also

applied to the data on the plane z = 0 and the two datasets

were reconstructed in order to compare the contact and

down-stream detector signals. Both datasets were recon-

structed using the X-TRACT software.27 A filtered back-pro-

jection algorithm was selected for the reconstruction, and

phase-retrieval was performed on the down-stream data using

single-material transport-of-intensity (TIE) phase retrieval

algorithm developed by Paganin et al.37, and implemented as

the “TIE-Hom" option in X-TRACT.27

3. RESULTS

3.A. Currently available phantom

Figure 7 presents the flat map of the PBU-50 phantom

with measurements of the cortical thickness and histogram,

respectively.

The cortical thickness of the human tibia as measured

with current clinical scanners usually ranges between 2

and 6 mm,38–40 where the upper values are found on the

mid shaft, whereas Fig. 7(b) shows a distribution peak at

0.8 mm. It should be noted that when specialist high-reso-

lution CT scanners are utilized, the cortical thickness on

the distal tibia reduces to approximately 0.41 mm for lCT

and 0.7 mm for HR-pQCT.41 It is therefore evident that

the cortical and trabecular structures are insufficient for

detailed quality assurance as there is no trabecular struc-

ture and the cortical thickness does not present the

required range.

3.B. Numerical models

3.B.1. Trabecular bone model

Figures 8 and 9 show visual comparison of real bone vs

the synthetic structures generated with our model for the

regional [Eq. (8)] and global implementations [Eq. (7)],

respectively. The trabecular structures were fitted using

ImageJ (see Table II), with brighter areas depicting thicker

sections.

For the region-based approach demonstrated in Fig. 8, two

synthetic structures [Figs. 8(a) and 8(b)] were generated sepa-

rately and combined to achieve a model of vertebral trabecu-

lar bone comprising columns and struts as motivated by

Jensen et al.28 The structures were comparable with differ-

ences between mean standard deviations of trabecular thick-

ness of � 15 lm (see Table II).

For the global approach, Fig. 9 shows a section of human

humerus and the synthetic trabecular structure cropped to the

general shape of the real bone. The structures were compara-

ble with differences between mean standard deviations of tra-

becular thickness of � 33 lm. The reader should note from

Table II that whilst other sections of more concentric bone

showed better agreement, this slice was selected for presenta-

tion as it demonstrates the difficulty in generating close quali-

tative matches in regions that are neither highly concentric or

grid-like (Fig. 8). However, a more detailed optimization of

the parameter space including selection of a more appropriate

background function could yield a closer match in these

regions.

The measured values for the mean and standard deviation

of the trabecular thickness for real trabecular tissue and syn-

thetic structures are presented in Table II. The generated pat-

terns for the humerus, ulna, and radius were created using the
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ellipsoidal function in Eq. (6), and the region-based approach

using Eq. (8) was utilized to generate the synthetic vertebral

distributions.

For the aforementioned regional and global implementa-

tions of the model, an empirical approach was used in

selecting the parameters for Table II, ensuring that the mean

synthetic and real trabecular thicknesses achieved the closest

match at a given average spacing. It can be seen from the

results in Table II, that on average, the mean trabecular thick-

ness can be achieved with the synthetic structure (the parame-

ters can be chosen for an optimal fit by applying small

changes to the g value). Also, the patterns generated to mimic

the trabecular distribution of the different bones present a

mean difference in standard deviation of 33 lm for the

humerus, 24 lm for the ulna and radius, and 15 lm for the

vertebrae.

3.B.2. Volumetric trabecular structure model

The capability of the numerical model to generate 3D tra-

becular structures is shown in Fig. 10. Equations (7) and (9)

were utilized with d = 0.1 and 300 slices. Figure 10(a) shows

a render of the trabecular distribution in 3D, while Figs. 10(b)

and 10(c) presents axial and sagittal views showing the

(a) (b)

(c) (d)

FIG. 8. Visual comparison of synthetic vs human trabecular structure using a

region-based approach and implementation of Eq. (8). (a) Synthetic trabecu-

lar region with general direction left–right. (b) Synthetic trabecular region

with general direction top–bottom. (c) Axial slice of a human vertebra show-

ing thickness distribution. (d) Axial synthetic trabecular structure with thick-

ness distribution after adding the regions (a) and (b), and cropping to the

general shape of the vertebra slice. [Color figure can be viewed at wileyon

linelibrary.com]

FIG. 9. Human humerus imaged at the IMBL, and generated synthetic tra-

becular structure. (a) Fitted human humerus for thickness measurement. (b)

Synthetic trabecular structure with thickness distribution and cropped to the

general shape of the axial slice of the human humerus. [Color figure can be

viewed at wileyonlinelibrary.com]

FIG. 7. Right leg of the PBU-50 phantom. (a) Flat map of the cortical thickness derived from the CT scan. (b) Histogram of the flat map with cortical thickness

values between 0 and 4 mm.
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variability through the volume whilst maintaining intercon-

nectivity of adjacent slices, which presents similarities to

those observed in real bone (Fig. 10(d)).

3.B.3. Projection data generation of PB-CT

In order to demonstrate the applicability of the model and

the two-material approximation to the generation of simu-

lated data, the projections were reconstructed for both

absorption- and PB-CT. Figure 11(a) shows the reconstruc-

tion from the simulated PB-CT scan. Line profiles for both

the absorption- and PB-CT reconstructions for the profile at

y = 0 are shown in Fig. 11(b). The expected reduction in

noise due to the application of phase retrieval was observed.

This demonstrates the simplifications derived from Eqs.

(17)–(23) due to the two-material approximation can be suc-

cessfully implemented in generating synthetic data.

4. DISCUSSION

Analysis of the leg of a PBU-50 phantom demonstrated

limited reproduction of the anatomical features observed in

real bone. Due to the requirement for more representative

fabricated and simulated synthetic trabecular structures for

applications such as QA for HR-pQCT and lCT, the training

of MITs, the local analyses of trabecular thickness, and

the training of ML algorithms, a numerical model has been

proposed.

The numerical model presented can be implemented with

a spatial gradient to shape the pattern distribution, for exam-

ple, concentric patterns using an ellipsoidal function, which

more closely resemble the trabecular distribution observed in

some sections of the long bones (Fig. 9). Furthermore, bone

regions where the trabecular structures are oriented in a gen-

eral direction can be synthesized and mixed together to

obtain known grid-like patterns that more closely resemble

the trabecular structure of vertebrae (Fig. 8). This model

serves as an alternative to existing computer generated phan-

toms composed of sinusoidal cross-plates (Fig. 12) where the

structure is known,18,25 which do not incorporate the pseudo-

randomness or concentricity observed.

Four different types of human bone were used during test-

ing: a humerus, radius, ulna, and several vertebrae, yielding

an average mean thickness error of 2 lm, and a mean differ-

ence in standard deviation of 33 lm for the humerus, 24 lm

for the ulna and radius, and 15 lm for the vertebrae. The lar-

ger differences observed in standard deviations for the long

bones can be primarily attributed to the significant variability

in concentricity from slice to slice.

While we have presented the theoretical underpinnings of

the model and used some simple parametrization to

TABLE II. Measured trabecular thickness for 19 realand 19 synthetic trabecu-

lar distributions. The parameters used for the generation of the synthetic

structures are listed. Note that two distributions were used to create the syn-

thetic vertebral images.

Human

bone

Trab. thickness

(mean 	 SD)
Error

(Dstd)

(lm)

Model

parameters

Real

(lm)

Synthetic

(lm)

Humerus rjk ¼ 75,

L = 1500,

a = 2.0,

b = 1.0,

q0 ¼ 0:0,
r0 ¼ 0:0

g = 7.1 167 	 52 166 	 83 32

g = 7.5 170 	 53 171 	 90 37

g = 7.0 174 	 63 173 	 91 28

g = 5.0 205 	 69 204 	 103 34

Ulna and

radius

rjk ¼ 75,

L = 1500,

a = 2.0,

b = 1.0,

q0 ¼ 0:0,
r0 ¼ 0:0

g = 9.0 146 	 51 146 	 71 20

g = 8.5 153 	 58 152 	 80 22

g = 6.5 170 	 59 171 	 88 29

g = 6.0 184 	 68 185 	 99 31

g = 2.8 248 	 96 247 	 113 17

g = 2.8 255 	 134 255 	 120 14

g = 2.8 259 	 104 261 	 140 35

Vertebrae rjk ¼ 30,

j0 ¼ ½0;�50�,
k0 ¼ ½50; 0�

g = 10.0 183 	 84 184 	 73 11

g = 10.0 187 	 85 187 	 75 10

g = 8.0 202 	 107 202 	 85 22

g = 8.0 205 	 93 204 	 80 13

g = 7.0 214 	 100 216 	 88 12

g = 7.0 220 	 117 219 	 96 21

g = 7.0 222 	 100 221 	 87 14

g = 5.7 238 	 111 238 	 93 17

FIG. 10. Generated synthetic three-dimensional (3D) model of the trabecular structure using Eqs. (7) and (9), with d = 0.1, rjk ¼ 75, L = 850.0, a = 0.5,

b = 0.5, q0 ¼ 0:0, r0 ¼ 0:0, and 300 slices. (a) 3D volume render. (b) Axial and (c) sagittal views of the generated 3D structure showing interconnectivity of

adjacent slices. (d) Sagittal slice of human radius bone showing distribution similarities to those created by the numerical model. [Color figure can be viewed at

wileyonlinelibrary.com]
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demonstrate the generalized flexibility, it is left to the reader

to perform systematic optimization of the parameters for their

specific human or animal imaging task.

The background noise at the heart of our model allows for

a more qualitatively natural representation of the trabecular

structure, while the capability of seeding the noise generator

allows for the reproducibility of the results, which is required

for the phantom fabrication to be used in QA and also syn-

thetic simulated projection and reconstruction CT data gener-

ation for ML.

When considering the specific problem of multicenter

QA, advantages of the proposed approach over the use of

phantoms constructed using cadaveric bones include:

portability, due to the possibility of creating 3D models

that can be printed in the different centers; structural and

material stability over time, achieved by proper selection

of the printing materials; and realistic and customisable

models of human and animal bones, by changing the

parameters of the model to control the thickness and spa-

tial distribution.

Note that a real CT scanner gives rise to additional arti-

facts such as partial volume,24,25 which arise when high-den-

sity materials, for example, bone, affect the CT values of

surrounding voxels due to a low-resolution detector or a thick

acquisition section width. In our simple model of projection

data generation of PB-CT we have not accounted for effects

such as this.

A further limitation of this study is that the patterns of the

synthetic vertebral structures should ideally be influenced by

the contour of the cortical bone that encircles the trabecular

structure. For our model and its application to the generation

of vertebral patterns shown, the trabecular structure is gener-

ated and then clipped by the bounding cortical structure. This

order of processing generates a somewhat artificial

appearance to the intersection of the trabecular and cortical

structures.

5. CONCLUSION

In this paper, we presented a numerical method for the

generation of high-resolution 3D distributions that repro-

duce surrogate trabecular structures which are statistically

similar to real bone with a mean difference in standard

deviation of 33 lm for the humerus, 24 lm for the ulna

and radius, and 15 lm for the vertebrae with the parame-

ter values presented here. The developed model could

potentially be used for quality assurance in CT systems as

recent advances in additive manufacturing will facilitate

the printing of 3D trabecular structures. The production of

synthetic human and animal bones would also allow the

validation of protocols for synchrotron imaging applica-

tions to reduce the potential dose to animals and humans.

With the advances in machine learning, a model such as

the presented may also be used to produce synthetic train-

ing data.
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FIG. 12. Computer-generated phantom image of sinusoidal cross-plates.
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4.2. SYNTHETIC TRABECULAR STRUCTURE APPLICATIONS

4.2 Synthetic trabecular structure applications

The developed numerical model was shown to be able to faithfully generate synthetic
3D trabecular structures. The model was subsequently applied to the task of generating
a trabecular structure that could be incorporated into a standardised anthropomorphic
phantom. The efficacy of 3D printing the generated model was studied in this section,
with special consideration to the limitations (resolution) for currently available commer-
cial 3D printing devices. The 3D printing of physical structures was made possible thanks
to the successful award of a grant from the Victorian Orthopaedic Research Trust (VORT)
in 2017.

The printers utilised were the Form 2, the Object500 Connex3, and the Guider 3D printer.
Form 2 (Formlabs) is a stereo-lithography (SLA) 3D printing system, which uses a laser to
cure solid parts from a vat of liquid photopolymer resin. The Object500 Connex3 (Strata-
sys) is a PolyJet printer, which also uses UV light to cure liquid photopolymer, but instead
of a vat, a fine print nozzle deposits droplets of the material onto a platform. Finally, the
Guider 3D printer (FlashForge) uses a fused filament fabrication (FFF) technology, also
called fused deposition modelling (FDM), which lays down layers of material at high tem-
peratures, where each adjacent layer has to first cool down and bond together before the
next layer is deposited. The printing materials used in this study were Durable, Flexible,
Grey Pro, and Dental SG from Formlabs, VeroClear from Stratasys, Ltd., and ABS and
PETG for the Guider 3D printer.

In order to test the resolution limits of the available 3D printers and candidate materials,
Derenzo phantom [59] structures were generated (see Figure 4.1a). Figure 4.1b-c show the
high- and low-resolution Derenzo phantoms printed using the Dental SG material. The
low-resolution phantom had cylinder radii that varied from 500 µm to 1200 µm in 100 µm
steps. The high-resolution phantom had cylinder radii that varied from 150 µm to 500 µm
in 50 µm steps. The printed structures enabled the study of the feature resolution of the
printer and the stiffness of the materials after fabrication.

Figure 4.1: Derenzo phantom. a) 3D model. b) Small 3D printed model. c) Large 3D
printed model.
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Once fabricated, the phantoms were imaged at the IMBL of the Australian Synchrotron.
Each object was scanned twice at two different monochromatic energies (40 keV and 70
keV) so that DECT reconstructions could be performed and subsequently transformed into
electron density (ρe) and effective atomic number (Zeff ) bases in order to assess the mater-
ial characteristics [60]. Whilst DECT imaging can be performed on commercial scanners,
the synchrotron offers superior spatial resolution and removes the ambiguity caused by
the beam hardening effect [61]. The ρe-Zeff transformation can be used as a quantitative
approach to characterise materials [62], although high levels of noise are known to be gen-
erated in the output image [63].

In order to acquire a test pattern that could be mimicked using the numerical model and
then subsequently printed, an appropriate substitute of the human leg, an ovine leg, was
scanned at the IMBL, along with solid cylinders of the seven chosen printing materials.
Figure 4.2 shows the ρe-Zeff transformation of one slice of the scanned lamb legs. The
Zeff histogram shows peaks at 9.0 and 13.5 for soft tissue and bone, respectively. The ρe
histogram presents a peak close to 0.0 for background information, while the peaks for soft
tissue and bone are found at 1.0 and 1.35, respectively, as expected from the literature ρe.

Figure 4.2: ρe-Zeff transformation and histogram of lamb leg scan. Left column presents
obtained Zeff and ρe images, with their respective histograms on the right column.

Figure 4.3 shows the ρe-Zeff transformation for the printed cylinders. The Zeff histogram
shows two peaks, the first at 6.5 for all the cylinders except the PETG material printed
using the Guider 3D, whose peak was found at 9.1. The histogram for the ρe image shows
three peaks, one close to 0.0 for the background, 1.1 for the regular cylinders, and 1.36
for the PETG cylinder. Although the relative electron density of PETG was closer to
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Figure 4.3: ρe-Zeff transformation and histogram of material cylinders scan. Left column
presents obtained Zeff and ρe images, with their respective histograms on the right column.

that of bone, the material could not support structures printed to the resolution of the
other systems trialled. The most successful low- and high-resolution Derenzo phantoms
were printed using the Dental SG material. This material was selected due to its stiffness
and fine details determined through visual inspection of the pillars (Figure 4.4). With a
pixel resolution of 19.8 µm in the reconstructed CT images, the diameters of the smallest
properly printed group of cylinders were 475 µm.

Figure 4.4: Scan of small Derenzo phantom (30 keV) with Dental SG material.

After characterisation of the materials from the synchrotron scans, the model presented
in Section 4.1 was used to generate a 3D bone structure that could be printed, as an al-
ternative to current techniques for producing bone phantoms [57, 64, 65]. The parameters
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Figure 4.5: synchrotron scan obtained from human bone and synthetic trabecular structure
before and after been downsampled from a pixel resolution of 19.8 µm to the diameter of the
smallest properly printed cylinder (475 µm). a) Human bone. b) Synthetically generated
trabecular structure.

of the numerical model were modified to control the thickness and distribution of the tra-
becular structures. Due to the restrictions of the resolution found with the 3D printers
trialled, a limitation commonly found during printing of trabecular bone structures [66–68],
a down-sampling technique was utilised to modify both the real and synthetic images of
the trabecular bone. Figure 4.5 shows that down-sampling images to the maximum feature
resolution of the printer gives rise to discontinuities in the synthetic trabecular structures.

An important limitation of the results obtained in this section relates to the number of
materials and printers tested. A comprehensive study of printing systems and materials is
necessary to determine the potential resolution that can be achieved with research print-
ing systems, as other authors have shown a vertical, or depth, resolution of 16 µm [67].
Approaches for micro- and nano-fabrication are being widely investigated [69,70], and ad-
vances in this area are constantly improving the resolution and range of polymers that can
be utilised. A further limitation in the work presented in this section arose from insufficient
data collection at IMBL. Significant noise can be observed in the ρe-Zeff transformation
images; a higher dwell time at each projection angle when acquiring the synchrotron data
was required and a more sophisticated analysis than that presented here requires the data
to be collected again at a subsequent beam-time.
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CHAPTER 5

Metal artefacts from the coupling of dense objects in CT

Effect of external fixation rod coupling in computed tomography

C. A. Peña-Solórzano, M. R. Dimmock, D. W. Albrecht, D. M. Paganin, R. B. Bassed, M.
Klein, P. C. Harris

Published in Strategies in Trauma and Limb Reconstruction, Volume 13, Issue 3, Pages
137–149, 2018
DOI: 10.1007/s11751-018-0318-x

This chapter is an exact copy of the journal paper referred above

The physical nature of the acquisition of CT data means that the image quality is in-
fluenced by various types of artefacts. The most commonly encountered artefacts in the
forensic setting are partial volume [71], beam hardening [49], and photon starvation [50].
Metal artefacts are the extreme combination of beam hardening and photon starvation
that result from the most dense type of materials (metal implants, teeth, foreign objects,
e.g. bullets) encountered in a CT scanner. Whilst beam hardening and metal artefacts
can result from the presence of a single dense object in the scanner, the most significant
effect on image quality is observed when two or more dense objects are aligned such that
X-rays have to traverse both objects in a single line of sight. Some examples of these types
of artefacts can be seen in Figure 5.1.
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Figure 5.1: Examples of coupling artefacts found in the CT database. a) Between bilateral
hip replacement. b) Between the arms, affecting the HU values of the tissues in the thorax.
c) Between metal fillings in the teeth.

As can be seen from Figure 5.1, the aforementioned artefacts appear in different anatom-
ical regions. Whilst techniques such as MARS can be applied at the time of acquisition
in cases for which it is known that metal is directly affecting the pathological assessment
of the CT images, use of these algorithms also affects the visibility of structures in other
regions of the body. Therefore, MARS might not be routinely applied to every scan ac-
quired and the retrospective analysis of images already acquired will therefore have these
types of artefacts in different regions of the body. In this chapter, the effect of the coupling
of different numbers of dense structures on image quality was investigated using external
fixation devices (ex-fix) as a surrogate for the types of artefacts shown in Figure 5.1. As
the ex-fix uses metal rods positioned at various angular spacings, the artefacts that arise
can be referred as those from rod coupling.

This chapter comprises two sections: firstly, a manuscript that quantified the effect of
ex-fix and rod coupling on image quality, as assessed by the peak characteristics in the
histograms of the images presented; secondly, the denoising of synthetic data generated
using a pipeline that combined the models from Chapter 4 and the first section of this
chapter.

5.1 Publication

The following paper has been published and reprinted from [51]. Copyright 2018, with
permission from Springer (open access).

61



Vol.:(0123456789)1 3

Strategies in Trauma and Limb Reconstruction 
https://doi.org/10.1007/s11751-018-0318-x

ORIGINAL ARTICLE

Effect of external fixation rod coupling in computed tomography

Carlos A. Peña‑Solórzano1  · Matthew R. Dimmock1 · David W. Albrecht2 · David M. Paganin3 · Richard B. Bassed4,5 · 
Mitzi Klein6 · Peter C. Harris7,8

Received: 19 February 2018 / Accepted: 11 September 2018 
© The Author(s) 2018

Abstract
External fixation is a common tool in the treatment of complex fractures, correction of limb deformity, and salvage arthro-
desis. These devices typically incorporate radio-opaque metal rods/struts connected at varying distances and orientations 
between rings. Whilst the predominant imaging modality is plain film radiology, computed tomography (CT) may be per-
formed in order for the surgeon to make a more confident clinical decision (e.g. timing of frame removal, assessment of degree 
of arthrodesis). We used a fractured sheep leg to systematically assess CT imaging performance with a Discovery CT750 
HD CT scanner (GE Healthcare) to show how rod coupling in both traditional Ilizarov and hexapod frames distorts images. 
We also investigated the role of dual-energy CT (DECT) and metal artefact reduction software (MARS) on the visualisation 
of the fractured leg. Whilst mechanical reasons predominantly dictate the rod/strut configurations when building a circular 
frame, rod coupling in CT can be minimised. Firstly, ideally, all or all but one rod can be removed during imaging resulting 
in no rod coupling. If this is not possible, strategies for configuring the rods to minimise the effect of the rod coupling on the 
region of interest are demonstrated, e.g., in the case of a four-rod construct, switching the two anterior rods to a more central 
single one will achieve this goal without particularly jeopardising mechanical strength for a short period. It is also shown 
that the addition of DECT and MARS results in a reduction of artefacts, but also affects tissue and bone differentiation.

Keywords Computed tomography · Rod coupling · Dual-energy CT · Metal artefact reduction · Metal artefacts

The work was performed at Western Health, Footscray Hospital, 
Gordon St, Footscray, Melbourne, VIC 3011, Australia.

 * Carlos A. Peña-Solórzano 
 carlos.penasolorzano@monash.edu

 Matthew R. Dimmock 
 matthew.dimmock@monash.edu

 David W. Albrecht 
 david.albrecht@monash.edu

 David M. Paganin 
 david.paganin@monash.edu

 Richard B. Bassed 
 richard.bassed@vifm.org

 Mitzi Klein 
 Mitzi.Klein@monash.edu

 Peter C. Harris 
 chris.harris@rch.org.au

1 Department of Medical Imaging and Radiation Sciences, 
Monash University, Wellington Rd, Clayton, Melbourne, 
VIC 3800, Australia

2 Clayton School of Information Technology, Monash 
University, Wellington Rd, Clayton, Melbourne, VIC 3800, 
Australia

3 School of Physics and Astronomy, Monash University, 
Wellington Rd, Clayton, Melbourne, VIC 3800, Australia

4 Victorian Institute of Forensic Medicine, 57-83 Kavanagh 
St., Southbank, Melbourne, VIC 3006, Australia

5 Department of Forensic Medicine, Monash University, 
Wellington Rd, Clayton, Melbourne, VIC 3800, Australia

6 Australian Synchrotron, 800 Blackburn Rd, 
Clayton, Melbourne, VIC 3168, Australia

7 The Royal Children’s Hospital Melbourne, 50 Flemington 
Road, Parkville, Melbourne, VIC 3052, Australia

8 Department of Orthopaedic Surgery, Western Health, 
Footscray Hospital, Gordon St, Footscray, Melbourne, 
VIC 3011, Australia

5.1. PUBLICATION

62



 Strategies in Trauma and Limb Reconstruction

1 3

Introduction

Circular external fixation is one of several tools available 
for the orthopaedic surgeon to use in the management of a 
number of orthopaedic conditions [1], including the treat-
ment of complex fractures, correction of limb deformity, and 
salvage arthrodesis.

During the post-operative period, imaging is performed 
to assess, amongst other things, alignment and progress of 
healing (callus formation, union, etc.). Whilst the predomi-
nant imaging modality is plain film radiology, computed 
tomography (CT) may be performed when plain film radi-
ology does not give sufficient detail of a region of interest 
(ROI) in order for the surgeon to make a more confident 
clinical decision (e.g. timing of frame removal, assessment 
of degree of arthrodesis).

The frame components, being relatively radio-opaque, 
have the capacity to either obscure the view of the region 
of interest (predominantly in the case of plain film radiol-
ogy) or distort the quality of the image to some degree 
(in the case of CT). For both of these imaging modalities, 
strategies to minimise this fall under three general cat-
egories. Firstly, the surgeon has some degree of choice as 
to the positioning of certain components (e.g. rings and 
rods) relative to the region of interest. Secondly, the way 
in which the patient is positioned during image acquisition 
can be optimised [2]. Thirdly, some components, such as 
the connecting rods, can be temporarily removed or repo-
sitioned during imaging. With CT there is an additional 

strategy; many modern scanners have the facility to reduce 
the effect of metal artefacts through the use of dual-energy 
CT (DECT) and/or metal artefact reduction algorithms 
[3–6]. However, such scanner settings are not specific to 
the individual patient/frame construct, and so not only do 
they have varying ability to reduce metallic artefacts, but 
in addition they may also adversely affect image quality 
in general.

Since there are situations in which the orthopaedic 
surgeon may rely heavily on the quality of the CT image, 
this study focuses on the nature of the adverse effect of 
metal rods/struts on the quality of the image and on how 
to optimise the image quality in the presence of metallic 
components.

Materials and methods

The leg of a sheep that had been euthanised for reasons unre-
lated to this research was used. A mid-shaft oblique fracture 
was created by making a single drill hole followed by the use 
of an osteotome whilst bending the bone. The soft tissues 
were left in place.

The frame consisted of two 130-mm aluminium rings 
(Taylor Spatial Frame, Smith & Nephew), spaced 196 mm 
apart. Two construct types were studied. Construct one rep-
resents the traditional Ilizarov frame, where the rings are 
connected by threaded stainless steel rods (Ilizarov, Smith 
& Nephew) (see Fig. 1b). Construct two is a hexapod, where 

Fig. 1  X-rays (anterior–posterior views) showing various frame constructs. a Initial positioning of the rings. b Ilizarov frame (4 rods). c Taylor 
Spatial Frame. Dotted lines show the position of the slices used for the study
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the rings are connected by six struts attached at the outer 
mounting holes of the tabs (Taylor Spatial Frame, Smith 
& Nephew) (see Fig. 1c). For the Ilizarov frame, the rods 
were varied both in number and in configuration, whilst for 
the Taylor Spatial Frame (TSF), only one configuration was 
used, with all 6 struts at the same length. Each ring was 
attached to the bone using two crossed and tensioned wires. 
The rings were connected with three plastic threaded rods, 
which allowed a baseline scan to be performed without any 
metal between the rings whilst ensuring that the fracture 
position remained unchanged. The frame was taped to the 
CT bed in an orthogonal orientation, ensuring that a constant 
and idealised position was maintained for all study images. 
To further ensure standardisation of slice acquisition, the 
proximal ring was used as a reference level for each axial 
slice (Fig. 2). 

The scans were performed with a Discovery CT750 HD 
CT scanner (GE Healthcare), which has the facility for both 
DECT and metal artefact reduction software (MARS). The 
frame/leg construct was scanned initially at 100 kVp, which 
represents the single-energy setting that would typically be 
used in the presence of metal. It was then scanned at dual 
energy (80/140 kVp) with and without MARS. A single 
axial slice is composed of 512 × 512 (262,144) pixels, whilst 
the field of view chosen for this study resulted in one pixel 
being equivalent to 0.39 mm × 0.39 mm of scanned area. 
Each individual pixel is a measure of relative radiodensity 
and is given a value termed a Hounsfield unit (HU). Water 
(at standard pressure and temperature) has a HU of zero, 

whilst anything of lesser radiodensity is a negative value 
and anything of greater radiodensity is a positive value [7].

For the purposes of this study, the pixel values are dis-
played in two distinct ways: a traditional axial 2D image 
and a histogram. For the 2D image, the Hounsfield units 
are displayed as a greyscale, with negative values being 
increasingly dark and positive values being increasingly 
white (Fig. 3a, left). We used display settings with a centre 
of 300 HU and a window width of 2800 HU, which is not a 
typically used window width, but allows us to better observe 
the metal artefacts affecting the background of the images. 
The histogram is a graphical representation of the number of 
pixels of particular HU that are present in the field of view 
(Fig. 3a, right). To make the histogram more specific, a ROI 
around the tibia was defined (Fig. 3b, left); this removes the 
peak produced by air, making it easier to appreciate any 
change in the other two peaks (Fig. 3b, right). Whilst the 
histogram gives no spatial appreciation of individual pixels, 
it allows a quantitative analysis of the effect of the metal 
artefact on image quality by using Gaussian fitting of the 
bone and soft tissue peaks (Fig. 3b; dashed line; note that 
a Gaussian function appears as an inverted parabola on a 
logarithmic scale). The parameters of the peak that were 
analysed for the Gaussian functions were the mean HU value 
and the width (2.35 times the standard deviation).

Results

Results are displayed as 2D images and ROI histogram, 
using the scale shown in Fig. 3. The ROI varies according 
to the slice being analysed, with the shape of an approxi-
mately elliptical shape that follows the outer boundary of the 
bone. Unless otherwise mentioned, the images show scans 
performed with single-energy CT.

Baseline image

Figure 4a shows the 2D image and ROI histogram of an 
axial slice through the fracture site in a construct where 
there is no metal between the rings (although the plastic 
rods are evident). It represents the best quality image that 
can be obtained and therefore serves as the baseline for com-
parison with all subsequent images, where the presence of 
varying degrees of metal produces some degree of image 
degradation.Fig. 2  Photograph of the frame/leg construct in the CT scanner
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Ilizarov frame

The presence of a single metal rod (Fig. 4b) causes fine 
streaks artefacts to radiate from it, but they have little effect 
on the quality of the image. On the histogram, the bone 
and soft tissue peaks are similar to those obtained from the 
image without rods.

When two rods are used, the effect on the region of inter-
est is highly dependent upon where they are placed (Fig. 5). 
On the 2D image it can be seen that the rods act as a cou-
ple, producing a broader and more noticeable streak that 
runs between them. This streak has a dark centre and bright 
edges. Where this streak crosses a part of the image that is 

already dark (Fig. 5a), its effect is negligible. However, if it 
crosses the region of interest, then its effect on detail is more 
pronounced (Fig. 5b). This can be appreciated on the histo-
gram as a change in the spikes (wider bases and a change in 
the mean values).

Interestingly, when 3 rods are used, the effect on the 
region of interest is minimal (Fig. 6a); broad dark streaks 
with bright edges still occur between rods, but because they 
do not cross the ROI, they have little adverse effect. For the 
four-rod construct there are six such streaks, but only two 
of them cross the region of interest (Fig. 6b). The histogram 
shows a change in the spikes (wider bases), indicating loss 
of contrast and therefore image quality.

Fig. 3  Example of information used for the analyses. a 2D axial slice 
(left) and histogram of whole image (right), with the three peaks rep-
resenting air (black), soft tissue (grey), and bone (white). b 2D axial 
slice showing the region of interest circled in red (left) and histogram 

of the pixels inside the chosen area (right), where mean HU value and 
width are determined for bone and soft tissue using Gaussian fitting, 
shown in dotted lines
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Taylor Spatial Frame

Geometric shape: The oblique orientation of the struts in 
the frame results in a distinctive geometric pattern of broad 
streaks, the nature of which differs according to the level 
scanned (Fig. 7). There are slices where the ROI is not 
directly affected by the streak (Fig. 7a), whilst in others, it 
is crossed several times (Fig. 7b).

Strut material: The makeup of the strut differs along its 
length, with one end being tubular casing (Fig. 7c) and the 

other end being a solid rod (Fig. 7a). In the middle, these 
two materials overlap to some degree (Fig. 7b). The sever-
ity of the broad streaks depends on which part of the strut is 
present in the particular slice.

Dual‑energy scanning/metal artefact reduction 
software

Figures 8 and 9 show the effect of techniques used to reduce 
metal artefacts with the four-rod Ilizarov and TSF constructs, 

Fig. 4  a Axial slice and histogram of the fracture site when there are not metallic components present. b Axial slice and histogram of the frac-
ture site when only one rod is present
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respectively. Figures 8a and 9a present the single-energy scans 
shown previously, whilst Figs. 8b and 9b are scans performed 
using DECT, and Figs. 8c and 9c present scans using DECT 
and MARS. Both of these modalities are associated with a 
decrease in the overall clarity of the image, particularly so 
with the MARS. For the histograms, the higher-energy scan 
has altered the HU value for bone from its mean of 2400 on 
the single-energy scan to around 1100, whilst the addition of 
MARS further results in the peaks tending to merge into one.

Discussion

Obtaining good-quality images is a key part of the decision-
making process for patients with circular external fixation. 
Frequently, nearby metal can obscure or have an adverse 

effect on details of the images obtained with plain film radi-
ography and CT [3, 8].

The idea for this study came about because it is the prac-
tice of the senior author (PCH) to remove as many rods as 
possible (or exchange struts for rods) when CT imaging. 
Typically, this is done whilst the patient is lying on the CT 
bed, so that the temporarily weakened frame is not subjected 
to undue forces. The rods are then reinserted after the scan 
has been performed and before the patient gets off the bed. 
Since the scan itself is relatively quick, the surgeon may 
end up being present during the whole process of removal, 
scanning, and reattachment. It requires that the scan is per-
formed at a time when the surgeon is available and is clearly 
time-consuming, for both the surgeon and the CT depart-
ment. It therefore raises the question of how much benefit 
is derived by such a practice; is the improvement in image 

Fig. 5  Axial slice and histogram of the fracture site when there are two metal rods. a The rods are located at the same side of the leg. b The rods 
are located at opposite sides of the leg. The rod coupling goes through the ROI
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quality really worth all that effort? The aim of our study 
was therefore to investigate how the presence of rods/struts 
affects image quality. We chose a sheep leg over a human 
subject in order to scan it as many times as needed without 
concern for the adverse effects that ionising radiation can 
have on living humans.

The degradation of the CT image arises from the inter-
action between the poly-energetic X-ray beam and dense 
structures [4], creating two distinctive effects. The first 
effect (generalised noise proportional in degree to the over-
all amount of metal present on the axial slice) is seen as fine 
dark and bright streaks on the image [9, 10]. In this case, the 
artefact is distributed fairly proportionately throughout the 
image. The second effect, which is due to a pairing between 
rods and struts, causes a more noticeable broad dark streak 

with surrounding bright edges, and is a function of the heli-
cal manner in which the scan is acquired (Fig. 10). Whilst 
the general existence of artefacts from geometric considera-
tions has been previously acknowledged [8, 11], our study 
focuses on its relevance for circular external fixation, for 
which we have coined the term rod coupling. Our study 
demonstrates that, in the case of circular external fixation, it 
is rod coupling that is the main factor causing degradation of 
image quality. The histograms show how changes in the val-
ues of bone and soft tissue due to the metal artefacts affect 
the contrast of the image. The spreading of the peaks in the 
histograms, which corresponds to bone and soft tissue, in 
general causes a loss of visibility of the trabecular structure 
which lays between the peaks, and therefore loses definition.

Fig. 6  a Axial slice and histogram of the fracture site when there are three metal rods present. b Axial slice and histogram of the fracture site in 
the presence of four metal rods
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Fig. 7  Axial slices and histograms of the leg when using the TSF. a 
Slice proximal to fracture site, with only the solid rods of the strut, 
can be observed. b Slice of the fracture site, showing a mixture of 

the solid rod and the tubular casing. c Slice distal to the fracture site, 
where only the tubular casing of the struts is observed
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Whilst we acknowledge that mechanical reasons predomi-
nantly dictate the rod/strut configurations when building a 
circular frame, the effect of rod coupling during CT imag-
ing can be minimised. Firstly, all or all but one rod can be 
removed during imaging; we see this as the ideal (Fig. 4), 

as in these cases there is no rod coupling. If this is not a 
possibility at that particular time, the second option is to 
configure the rods in a way that minimises the effect of the 
rod coupling on the area of interest. It can be appreciated 
in Fig. 6 that in the case of a four-rod construct, simply 

Fig. 8  Effect of metal artefact reduction techniques in image clar-
ity in the presence of 4 metal rods. a Single-energy scan. b DECT. 
c DECT + MARS. The bone peak moves to the left for DECT and 

DECT + MARS, which causes this tissue to become darker in the 
images when the window is conserved
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switching the two anterior rods to a more central single 
one will achieve this goal without particularly jeopardis-
ing mechanical strength for a short period. In the case of 
hexapod frames, whilst temporarily switching struts for rods 

would also appear to be a good idea, this can be more time-
consuming, as often with hexapods the rings are not parallel, 
and therefore requiring the use of dished (conical) washers 
or the construction of hinges.

Fig. 9  Effect of metal artefact reduction techniques in image clarity in the presence of the TSF. a Single-energy scan. b DECT. c DECT + MARS
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Can the CT technician configure the scan in a way that 
negates the need to remove or reconfigure rods/struts? In 
DECT, scans are acquired using two different energy set-
tings and then synthesising pseudo-monochromatic scans 
at a variety of energies [12, 13]. The advantage of pseudo-
monochromatic reconstructions is that the effect of streak-
ing due to beam hardening, typically seen in CT imag-
ing, is greatly reduced. Whilst the higher-energy setting 
reduces photon starvation and beam hardening, it results in 
some loss of detail (analogous to an over-penetrated plain 
X-ray). MARS works by evening out unexpected variation 

in pixels, but our study suggests that the image it produces 
compares poorly with the original; the mean HU values 
change considerably.

One limitation of our study relates to assessment of 
the quality of an image. Image quality is determined by, 
amongst other things, the resolution and the contrast. In 
this paper, our assessment/comparison of the quality of 
the 2D images is purely subjective. Whilst efforts are being 
made to produce an objective scoring system for the quality 
of digital images in general [14–16], to our knowledge no 
such score currently exists for radiography. By making our 
results section predominantly a display of images, we have 
allowed the reader to draw their own conclusions about the 
effects of the various constructs and metal artefact reduc-
tion modalities on image quality. Whilst Gaussian-fitting 
analysis of the histograms produces some degree of quan-
titative data analysis, it is a relatively crude measure of 
contrast and is not useful in clinical orthopaedic practice. 
For readers that are familiar with the attributes of Gauss-
ian peak fitting, the quantitative parameters extracted from 
the peak-fitting procedure are displayed in Tables 1, 2, 3, 
and 4. The general observation is that as the peaks get 

Fig. 10  Helical nature of the CT 
scanning process, with X-ray 
source and detectors shown in 
three positions A–C. When the 
source completes a full rotation, 
a reconstruction algorithm 
converts the information to a 
2D image slice. These slices 
can be displayed individually or 
assembled together to generate a 
3D volume of the patient

Table 1  Mean and width values 
for soft tissue and bone peaks as 
calculated from the histograms 
when the number of metal rods 
is changed in single-energy 
scans

Number of rods/figure number Soft tissue Bone

Mean (HU) Width (HU) Mean (HU) Width (HU)

0/Figure 4a − 38 207 2396 251
1/Figure 4b − 48 237 2377 280
2 (coupling outside ROI)/Fig. 5a − 44 244 2355 298
2 (coupling crossing ROI)/Fig. 5b − 23 284 2382 388
3/Figure 6a − 50 284 2337 322
4/Figure 6b 16 367 2344 505

Table 2  Mean HU and width values for soft tissue and bone peaks as 
calculated from the histograms of different slices of the TSF single-
energy CT scan

TSF
Figure number

Soft tissue Bone

Mean (HU) Width (HU) Mean (HU) Width (HU)

Figure 7a − 18 256 2160 416
Figure 7b − 13 682 2111 846
Figure 7c − 33 190 2231 212
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broader and closer together, the ability to resolve features 
relating to those peaks diminishes. It can be seen that for 
Figs. 8 and 9, the data in Tables 3 and 4 demonstrate that 
the application of MARS reduces the level of artefacts but 
also affects the separability between the peaks.   

From our perspective, the key point of this study is an 
appreciation of the phenomenon of rod coupling. Before CT 
scanning a limb with a circular external fixator, a thoughtful 
analysis should be made as to the selection of which rods 
to remove, or if they cannot be removed, how to configure 
them to avoid the worst effect of the metal artefacts on the 
region of interest. In our opinion, the best option is to tem-
porarily reduce the number of rods to the bare minimum and/
or to avoid rods at opposite sides of the ROI. That way, the 
surgeon can optimise image quality in the ROI, making it 
potentially easier to take medical decisions that impact the 
treatment and/or recovery of the patient.

Removal of rods

A rod-coupling line goes straight from every rod to every 
other rod (Fig. 11a; case with six rods). When a rod is 
removed, all lines connected to it are also deleted. One 
wishes to remove as many rods as are needed, to not have 
any rod-coupling lines going through the ROI. For example, 
if the maximum number of rods that can be left remain-
ing is 3, then one could remove B + D + F, so as to have no 
rod couplings going through the ROI. A systematic process 
would be as follows:

1. Identify the rod(s) with the greatest number of lines 
passing through the ROI. In Fig. 11, B and C are the 
only rods with more than one line passing through the 
ROI. So, rod C is removed (Fig. 11b).

2. Again, we identify the rod(s) with the greatest number 
of lines passing through the ROI. Removing rod B will 

Table 3  Mean HU and width 
values for soft tissue and 
bone peaks as calculated from 
the histograms of four-rod 
Ilizarov construct scans with 
single-energy CT, DECT, and 
DECT + MARS

Ilizarov (4 rods)
Figure number/modality

Soft tissue Bone

Mean (HU) Width (HU) Mean (HU) Width (HU)

Figure 8a/single energy 16 367 2344 505
Figure 8b/DECT − 22 132 1040 141
Figure 8c/DECT + MARS 5 284 922 181

Table 4  Mean HU and width 
values for soft tissue and bone 
peaks as calculated from the 
histograms of TSF construct 
scans with single-energy CT, 
DECT, and DECT + MARS

TSF
Figure number/modality

Soft tissue Bone

Mean (HU) Width (HU) Mean (HU) Width (HU)

Figure 9a/single energy − 13 682 2111 846
Figure 9b/DECT − 4 125 1067 160
Figure 9c/DECT + MARS 13 430 618 486

Fig. 11  Schematic representation of rod coupling in the presence of 6 rods and the effect of rod removal on the metal artefacts. a Complete 
graph. b Resulting coupling after removal of rod C. c Resulting coupling after the removal of rods B and C
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reduce the number of rod couplings in the ROI by two 
(Fig. 11c). If more than one rod reduces the number of 
rod couplings in the ROI by the same amount, a dif-
ferent criterion can be chosen, for example, if a more 
rigid frame can be obtained by removing one and not 
the other.
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5.2. DEEP LEARNING DENOISING OF A SYNTHETICALLY GENERATED LEG
DATABASE

5.2 Deep learning denoising of a synthetically generated leg
database

The numerical model proposed in Chapter 4 was utilised to generate a synthetic database
of lower extremity volumetric data. Each volume approximated the CT reconstruction of
a femur and comprised three concentric elliptic cylinders on a background with appropri-
ate Hounsfield unit values; from outermost to innermost ellipses, the values mimicked CT
values for soft tissue, bone, and soft tissue, to simulate the bone marrow (Figure 5.2a, left).

The rod coupling observed in Section 5.1, consisting of a pairing between highly-dense
objects, causes a noticeable broad dark streak with surrounding bright edges. The dark
streaks were reproduced in the synthetic database by incorporating a function in the axial
view that generates appropriately weighted dark and light bands between highly-dense cyl-
inders that were placed radially around the leg. The voxels in contact with the generated
line were multiplied by a factor smaller than 1, making them darker in the resulting image.
For the bright streaks, the width of the lines was increased, and voxels in contact with the
expanded section of the line were multiplied by a factor greater than 1. To obtain a pixel
distribution similar to the observed in real CT scans of the leg, Gaussian noise was added
to the synthetic volumes before the addition of rod coupling (Figure 5.2a, right), and the
radii of the different tissues inside the synthetic leg were randomly selected to improve the
algorithm’s generalisability.

In order to reduce the noise in medical images, several approaches can be found, including
convolutional denoising autoencoders, CNNs with residual learning approaches, and gener-
ative adversarial networks (GANs). Convolutional denoising autoencoders [53] are based on
CAEs, where the network is trained with the noisy image as input, and the noise-free image
as output, intrinsically learning the process to remove the artefacts. CNNs with residual
learning approaches [54] learn the noise from the noisy inputs, and the denoised images
are obtained by subtracting the learned residual from the noisy image. GANs [72] are used
to translate images between different domains, in this case between noisy and clean. A
DNN with a similar architecture to the CAE presented in Chapter 3, called VNet [52],
was implemented to reduce the metal artefacts of the synthetic volumes. VNets present
edge preserving properties that are not found in regular CAEs. Volumes of 8× 512× 512

(n=360) were generated and divided into training, validation, and testing with a 70:15:15
ratio. Histograms obtained from the original volumes (before adding the dense objects),
for the volumes with metal artefacts, and for the predicted volumes were compared (Table
5.1). The mean values and widths, or 2σ, obtained for soft tissue, were not significantly
affected by the addition of the rod coupling. For bone, the average mean value decreased
7% and the width increased 51% when the rod coupling was added. The use of DL for
denoising can be seen in Figure 5.2c, where the artefacts are still perceptible, but the Gaus-
sian fit was similar to the histogram of the original volume. The average mean value and
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Table 5.1: Mean and width values for Gaussians fitted to the histograms of the synthetic
volumes, with and without metal artefacts, and after prediction on the test cases.

Soft tissue Bone
Mean [HU] Width [HU] Mean [HU] Width [HU]

With artefacts (input) 35 656 2271 1072
Without artefacts (ideal) 38 709 2433 710
De-noised (output) 33 653 2350 704

width of the predicted volumes decreased only 3% and 1%, respectively, when compared
to the average mean value and width of the original synthetic volumes.

76



5.2. DEEP LEARNING DENOISING OF A SYNTHETICALLY GENERATED LEG
DATABASE

Figure 5.2: Sample of generated synthetic database and prediction using DL. a) Axial
slice of synthetic volume next to the histogram and fitted Gaussian curves obtained from
dashed patch in the image. The fitting for soft tissue and bone tissue can be observed.
b) Axial slice and histogram after the addition of the dense objects and simulated metal
artefacts. The standard deviations of the fitted curves increase due to the resulting noise.
c) Predicted denoised version of the axial slice shown in b). Although the artefacts are
still visible, the standard deviation of the Gaussian fitted to the bone tissue has decreased
and is closer to that of the original image shown in a).
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CHAPTER 6

Discussion

The amount of information that is being generated by health care systems around the
world, and more specifically imaging data, is continuously increasing the burden on primary
healthcare practitioners, e.g. radiologists and pathologists [3, 4]. ML approaches are be-
ing applied to automate and guide aspects of diagnostic and prognostic tasks [73–75] to
improve workflow efficiency. Interactive or human-in-the-loop approaches [76], where al-
gorithms can optimise their learning by interacting with radiologists or pathologists or
even AI augmented radiologists/pathologists [77–81].

In order to achieve an appropriate level of performance, these ML algorithms require large
databases of expert-labelled data. The current clinical workflows, typically involving the
radiographer or radiologist, only require the labelling of small portions of case data, leaving
large volumes unannotated [7, 8]. Since vast databases of images already exist, tools that
can be used to standardise metadata formats and workflows, and to label data by means of
content-based image retrieval processes (CBMIR) or automatic and semi-automatic clas-
sification (labelling) approaches are required. Standardisation, as shown by Gauriau et
al. [82] and Willemink et al. [83], has the ability to unlock the potential of large-scale
well-structured medical databases, while CBMIR allows for the mining of knowledge from
big-data by providing searching capabilities using images as the query [84], and depending
on the implementation, can also be used to assign tags to the cases in the database [85].
Both CBMIR and classification approaches have been successfully implemented in clinical
databases using ML techniques [10, 86, 87], but the applications are still to be translated
to the forensic setting. In contrast to the clinical setting, the use of readily available ap-
plications to forensic databases is not only hindered by the different reports accompanying
forensic cases (e.g. autopsy reports, interviews, and crime scene related transcripts), but
also by the high degree of variability found in forensic images due to positioning and CoD,
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as was shown in this thesis.

The DL pipeline presented in this work is ultimately intended to provide a flexible yet
robust method for reducing the burden on radiologists and pathologists in retrospectively
labelling the extensive archives of CT scans that exist at forensic institutions. Although
the localisation errors measured were in the same range as those previously reported in
the clinical setting [88–91], the variability in the positioning of the decedent, objective of
localising the whole femur (as opposed to just the femoral head) meant that the results
of the network should be interpreted as robust. The subsequent automatic labelling of
proximal and distal epiphyses according to the presence and type of metallic implant, with
the addition of the decedent’s age confirmed the improvement in performance shown in the
literature when a small subset of labelled data was added to an unlabelled set [92, 93]. It
is important to note that a more exhaustive evaluation of the precision and recall values
under different conditions is necessary, due to its potential impact in tagging and searching
capabilities of the database.

The two main factors found to influence the localisation and labelling of organs in CT scans
were studied: image artefacts, and patient-related variables, e.g. demographic information.
Decedent condition can be characterised according to the level of incomplete anatomy in
the CT scans and variability presented by the CoD. A review of the existing literature
(Chapter 2) demonstrated that typical applications of ML in medical imaging relate to
the classification of patients or tissues into healthy or diseased, and the localisation of
pathologies in organs or structures observed in volumetric data. The performance of the
techniques documented in the literature was found to be poor when tested on cases that
were outside the norm (outliers), and the training dataset was not properly selected. In
the forensic setting, this characteristic is of special importance due to the high variability
in positioning and changes in the structures related to the CoD. The presence of a metallic
implants and the rotation of the femur with respect to the motion axis of the scanner bed
were found to be a significant factor in the localisation pipeline developed in this work.
Demographic information such as age and BMI presented no significance for the presented
task, as was also reported by Estrada et al. [94] for the task of adipose tissue segmentation
in MRI.

The coupling artefacts commonly found in forensic CT databases [95] affect the visibility of
structures throughout the body. The most significant coupling artefacts found in forensic
databases result from the prevalence of bilateral knee replacements and hip replacements,
whose incidence is expected to grow by 276% and 208%, respectively, by 2030 [96]. Coup-
ling artefacts were also found to affect the thorax due to the presence of the arms besides
the body [50], and in the jaw due to metal fillings in teeth [50]. The models developed
in this thesis proved valuable in facilitating the quantitative analysis of how the denoising
capabilities of a VNet could be used to remove these types of artefacts retrospectively,
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improving the anatomical visibility of structures. The results showed that the bone tissue
was significantly affected by the artefacts, with the width of the peak-fit increasing 39%
when two highly-dense objects were used, compared to the width of the Gaussian when
only one dense object was utilised. These types of artefacts have been shown to decrease
the contrast between tissues [97], thus potentially affecting diagnostic accuracy and inter-
radiologist and -pathologist agreement [98–100].

Coupling artefacts are commonly reduced by the utilisation of MARS and/or virtual mono-
energetic (VME) images constructed from the DECT data [101]. In Chapter 5, it was found
that these two approaches were not always appropriate due to changes caused in voxel dis-
tributions across the image. The results confirmed what was previously documented in the
literature, in that the optimal noise reduction approach depended on the desired applic-
ation, type of metal implant, and anatomical localisation [101, 102]. Furthermore, DECT
acquisition must be selected prior to acquisition of the scan, while MARS was most com-
monly used during reconstruction or before saving the data to the PACS.

The use of ML in medical imaging is proving beneficial in enhancing retrospective data once
it has been acquired. The most recent approaches for improving image quality utilising ML
have shown promising results [103, 104], however, a major limitation of these techniques
is the requirement for vast databases with high variability, to avoid decreased accuracy or
non-generalisable models [105]. In order to tackle this limitation, synthetic data genera-
tion, data augmentation, and transfer learning (TL) are being investigated. Synthetic data
generation is being widely studied using adversarial training with GANs. GANs consist
of two ANNs, the generative network that tries to create novel sample candidates (similar
to the training database) able to fool the second network, the discriminator, into thinking
the sample is not synthetic. With enough training, the generator produces better images,
and the discriminator becomes more skilled at flagging synthetic images. GANs can be
used e.g. to generate CTs given MRIs [106] or to create synthetic abnormal MRI images
with brain tumours [107]. Furthermore, data augmentation can be performed using the
previously discussed synthetic data to increase the number of samples during training,
or through direct image/voxel manipulation to create variations of a small dataset [108].
TL on the other hand entails the training of the required ML algorithm with a surrogate
database from a more general domain, that is subsequently fine-tuned for the specific ap-
plication [109,110]. Since a large variability can be difficult to achieve in medical scans due
to the number of pathologies, organ sizes, and positioning, the use of synthetic databases is
being widely investigated [111–114]. The numerical model presented in this thesis was used
to generate synthetic trabecular structures with the definition of only seven parameters,
and has potential application for generating customised training data for bone pathologies,
e.g. osteoporosis and subtle bone fractures.
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In Section 5.2, a synthetic database that mimics CT scans of the human leg was generated.
A VNet algorithm for denoising of the synthetic database was implemented. Although the
denoised images still displayed subtle residual artefacts, the Gaussian fits to the histo-
grams of the anatomical features in the images were closer to those in the ideal volumes
generated prior to the inclusion of artefacts. A similar approach to quantifying the noise
reduction capabilities of DL architectures was performed by Yang et al. [115]. In order to
compare the results of our denoising approach with those found in the literature, TL would
first be required to be implemented in order to fine-tune the network to a medical database.
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CHAPTER 7

Conclusion

Three different ML approaches (ResNet, CAE and VNet) and two synthetic models (one
for trabecular bone and one for coupling artefacts) were developed and used in order to
understand how a pipeline could be constructed to process retrospectively accessed CT
volumes from forensic databases.

The performance of a DL pipeline that utilised coupled ResNets and a CAE for the auto-
matic retrospective localisation and labelling of organs in forensic databases was quantified
and contextualised with reference to parameters relevant to forensic investigations. The
pipeline was applied to femoral bones, with intrinsic features of the localised organ being
utilised to automatically classify the forensic cases as healthy, or with the presence of knee
replacements, hip replacements, or nails.

The two synthetic models were combined to understand the significant artefacts resulting
from the coupling of dense objects in the field of view of the CT scanner and the effect of
the use of ML for denoising. Coupling artefacts commonly found in forensic databases can
result from metallic implants and positioning of the body on the scanner bed. The VNet
approach was found to offer significant improvements in object visibility as quantified by
fitting the histograms of the resulting images.

Future work applications include the use of the DL pipeline to the lungs. The lungs were
selected for this application due to the added difficulty caused by the low contrast between
neighbouring tissues, and the forensic importance due to the potential for automatic la-
belling of the fluid content that can be related to the CoD. Furthermore, the DL denoising
approach will be fine-tuned and tested in real CT scans with the presence of coupling
artefacts like those shown in Section 5.1.
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[43] Štern D, Payer C, Lepetit V, Urschler M. Automated age estimation from hand MRI
volumes using deep learning. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer; 2016. p. 194–202. Available
from: https://doi.org/10.1007/978-3-319-46723-8_23.

[44] Ebert LC, Heimer J, Schweitzer W, Sieberth T, Leipner A, Thali M, et al. Auto-
matic detection of hemorrhagic pericardial effusion on PMCT using deep learning-
a feasibility study. Forensic Sci Med Pat. 2017;13(4):426–431. Available from:
https://doi.org/10.1007/s12024-017-9906-1.

[45] Arigbabu OA, Liao IY, Abdullah N, Mohamad Noor MH. Computer vision methods
for cranial sex estimation. IPSJ Trans Comput Vis Appl. 2017;9(1):19. Available
from: https://doi.org/10.1186/s41074-017-0031-6.

[46] Heimer J, Thali MJ, Ebert L. Classification based on the presence of skull fractures on
curved maximum intensity skull projections by means of deep learning. J Forensic
Radiol Imaging. 2018;14:16 – 20. Available from: https://doi.org/10.1016/j.

jofri.2018.08.001.

[47] Gureyev T, Mayo S, Myers D, Nesterets Y, Paganin D, Pogany A, et al. Refracting
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