
iOOBN: An Object-Oriented Bayesian

Network Modelling Framework with

Inheritance

Md Samiullah

A dissertation submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Information Technology

Faculty of Information Technology
Monash University, Australia

March 2020

Copyright Notice

© Md Samiullah (2020)

I certify that I have made all reasonable efforts to secure copyright permissions for third-party

content included in this thesis and have not knowingly added copyright content to my work

without the owner’s permission.

Declaration

This thesis contains no material which has been accepted for the award of any other degree

or diploma at any university or equivalent institution and that, to the best of my knowledge

and belief, this thesis contains no material previously published or written by another person,

except where due reference is made in the text of the thesis.

Signature:

Print Name: Md Samiullah

Date: March 26, 2020

Publications during enrolment

• Md Samiullah, Thao Xuan Hoang, David Albrecht, Ann Nicholson, and Kevin Korb.

"iOOBN: A Bayesian Network Modelling Tool Using Object-Oriented Bayesian Net-

works with Inheritance." In 2017 IEEE 29th International Conference on Tools with Arti-

ficial Intelligence (ICTAI), pp. 1218-1225. IEEE, 2017.

• Md Samiullah, David Albrecht, and Ann Nicholson. "Supplementary materi-

als: iOOBN framework and case study", http://bayesian-intelligence.com/

publications/TR2017_1_iOOBN_Supp.pdf, Bayesian Intelligence, Technical Re-

port TR2017/1, 2017.

http://bayesian-intelligence.com/publications/TR2017_1_iOOBN_Supp.pdf
http://bayesian-intelligence.com/publications/TR2017_1_iOOBN_Supp.pdf

This thesis is dedicated to a wonderful and lovely woman:

my better half, Lioza Noor

Acknowledgments

I would like to express my sincere gratitude and profound indebtedness to my supervisors

Prof. Ann E. Nicholson and Dr David W. Albrecht for their constant guidance, insightful ad-

vice, helpful criticism, valuable suggestions, commendable support, and endless patience with

the completion of this thesis. I am very proud to have worked with such wonderful mentors.

This research was supported by an Australian Government Research Training Program

(RTP) Scholarship. A special thanks to the Australian Government, Monash University and

their staff, for their support. I am grateful to Dr Gillian T. Fulcher (PhD in Sociology) for

proofreading parts of this thesis and to Valerie Mobley for professional editing of my final

draft.

I would like to express my gratitude to four great teachers for shaping my life: MS super-

visor Professor Chowdhury Farhan Ahmed (PhD), primary school teacher Mr Foyez Ahmed,

secondary school teacher Mr Mohammad Ali, and college teacher Mr MA Jabbar. Also, no

words are sufficient to express my gratitude to some more eminent and kind people: Prof. Mir

Hasan Ali, Mrs. Hosne Ara, Mr Mir Latafat Ali, Mr Mir Anwar Ali, Mrs. Rowshan Ara, Mr

Abul Hashem, Mr Sayem Mahmood, Syed Irfanul Hasan and Syed Rezwanul Hasan. Without

their support and guidance, it would not have been possible for me to start or progress my

study. I would like to extend my thanks to the wonderful people around me, especially Dr SM

Abdullah and Dr Shampa Shahriar, for always being there to help from the beginning of my

PhD journey. Of course, I also owe my heartiest gratitude to my family, especially my brothers,

my sister and my nephew (Mahin) for encouraging me.

This PhD journey has been challenging. One person who has never let me down, and who

has sacrificed the most in this period, is my wife, Lioza Noor. Without her constant support,

it would not have been possible for me to complete this PhD. I cannot thank her enough for

encouraging and supporting me all along the way. And in times of stress, the presence of an

angel, the best gift ever in my life, my daughter Safwana Noor, has given me strength.

No words can express how grateful I am to my parents. They have always supported me,

despite all the troubles I have caused them throughout my life.

Finally, I am grateful to Allah (SWT) for His constant grace bestowed upon me.

v

Abstract

The construction of Bayesian Decision Networks (BNs) to model large-scale real-life problems

is challenging. One approach to scaling up is to use Object-Oriented Bayesian Networks

(OOBNs). These allow modellers to define classes and construct models with a composi-

tional and hierarchical structure, enabling reuse and also supporting maintenance. In the OO

paradigm, a key concept is inheritance, the ability to derive attributes and behaviour from pre-

existing resources, which enables an even higher level of reusability and scalability. However,

the concept of inheritance in OOBNs has yet to be fully defined and implemented.

In that context, this thesis presents iOOBN, a new framework that provides a fully defined

inheritance for OOBNs. The framework allows modelling using an inheritance hierarchy of

classes and subclasses, and provides guidance on the modelling process. The study describes

a prototype implementation with an existing BN software tool (Hugin), and presents a case

study where an existing large, complex, dynamic OOBN is reengineered, thus demonstrating

the framework’s usefulness in practice.

Reasoning with OOBNs, as with BNs, involves the computational task of inference, that

is, the computing of new posterior probability distributions given a set of evidence. A widely

used inference technique in ordinary BNs involves compiling the BN into a junction tree (JT)

before performing the inference; the compilation step is only performed whenever the network

changes. In current OOBN software, the OOBN is first transformed into the underlying BN

(so-called flattening), then standard inference is performed. However, there is a method that

allows an incremental compilation of BNs, rather than recompiling from scratch after each

network modification. This technique can also be applied to OOBNs after flattening. None of

the existing techniques can make use of inheritance during the inference process.

Hence, a new incremental compilation technique is proposed that reuses existing compiled

JTs of both embedded components and superclasses, and does not require flattening. The

technique can reduce compilation time.

In addition, the thesis proposes the first ever approach to learning an iOOBN class hier-

archy from a set of BNs or OOBN classes. The approach includes constructing a hierarchical

structure based on a supergraph, using the underlying DAGs of the BNs or OOBN classes.

The effectiveness of the learning algorithm is also shown in terms of two measures – deriva-

tion cost and reusability – via a case study that shows the development of class hierarchies for

a real-life project and through the experimentation conducted on some synthetic hierarchies.

vi

Glossary

TEXTBOX 1 (GLOSSARY TABLE (ALPHABETIC))

A.K.A. Also Known As

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

BDN Bayesian Decision Network

BAIRG BAyesian Intelligence Research Group

BN Bayesian Network

CaMML Causal discovery via Minimum Message Length

CFG Context Free Grammar

CPD Conditional Probability Distribution

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DAPER Directed Acyclic Probabilistic Entity-Relationship

DBN Dynamic Bayesian Network

DELWP Department of Environment, Land, Water, and Planning

DOOBN Dynamic Object-Oriented Bayesian Network

DPCD Department of Planning and Community Development

e.g. exempli gratia (for example)

EPBC Environment Protection and Biodiversity Conservation

FOL First Order Logic

GBN Gaussian BN

GES Greedy Equivalence Search

GMRF Gaussian Markov Random Field

GUI Graphical User Interface

HBN Hierarchical BN

HDE Hugin Decision Engine

HPC Hybrid PC

IC Inductive Causation

vii

viii

InC Incremental Compilation

ID Influence Diagram

i.e. id est (in other words)

iOOBN inheritance in Object-Oriented Bayesian (Decision) Network

JF Junction Forest

JT Junction Tree

KEBN Knowledge Engineering in Bayesian Networks

LIMID LImited Memory Influence Diagram

LL Parser Left-to-right, Leftmost derivation (a top-down) Parser

MaST Maximum-weight Spanning Tree

MCMC Markov Chain Monte Carlo

MDL Minimum Description Length

MEBN Multi-Entity BN

ML Machine Learning

MML Minimum Message Length

MPS Maximum Prime Subgraph

MPSD Maximum Prime Sub-graph Decomposition

ms milli second

MSA Melbourne Strategic Assessment

MSBN Multiply Sectioned BN

MST Minimum (weight) Spanning Tree

NA Not Applicable

NOC Number of (foreign) Classes that are being instantiated in a class

NON Number of Nodes in a class

NOO Number of Objects created for each foreign class

NOP Number of maximum Parents per node in a class

NOS Number of States per node in a class

NOPAvg Number of Parents (Average) in the nodes of a class

NP-Hard Non-deterministic Polynomial-time Hardness

NPP Net Plus Plus

OO Object-Oriented

OOBN Object-Oriented Bayesian (Decision) Network

OODAG An OOBN class’s Directed Acyclic Graph

OOPRM Object-Oriented Probabilistic Relation Model

ix

Par Parent

PC Prototypical Constraint-based algorithm

PEP PEP is an Earley recursive Parser

PGM Probabilistic Graphical Model

PRM Probabilistic Relation Model

RBN Relational BN

R&D Research and Development

SIIC Shareable Inheritable Incremental Compilation

SIIC# Special SIIC (that uses existing JTs)

TAN Tree Augmented Naive Bayes

UML Unified Modelling Language

UOM Unit Of Measurement

WGR Western Grassland Reserve

w.r.t. with respect to

Symbols and Notations

TEXTBOX 2 (NOTATION TABLE)

A ⊍B Disjoint union of A and B, i.e, A ∩B = ∅
BN.N Set of vertices of BN = < N,E,Π >
BN.E Set of edges of BN = < N,E,Π >
BN.Π Set of parameters of BN = < N,E,Π >
C An iOOBN class

CI An instance or replica of an iOOBN class C

CG Clique Graph

Clq Clique

cost Hierarchy construction cost

costr Hierarchy construction cost ratio

δ Derivation cost

δch Child adding cost

δr Derivation cost ratio

E Set of edges

E Set of edges of an iOOBN class

Ec Set of causal edges of an iOOBN class

Er Set of referential edges of an iOOBN class

Einfo Set of information links of an iOOBN class

Epre Set of precedence links of an iOOBN class

G DAG representing an ordinary BN

∣G∣ Size of a graph G

Gcom A common subgraph

GC DAG of class C

Gmc A maximal common subgraph

Gr A residual graph of a graph G

G A set of graphs

I An iOOBN interface

Lc Maximal proper subset

x

xi

lab(n) The label of the node n

N Set of vertices of an ordinary Bayesian Network < N,E,Π >
∣N ∣ Size of N

N Set of Nodes of an iOOBN class

NIn Set of input nodes of an iOOBN class

NOut Set of output nodes of an iOOBN class

NEmb Set of embedded nodes of an iOOBN class

NC
In A set of input causal nodes

NC
Out A set of output causal nodes

NC
Em A set of embedded causal nodes

ND
In A set of input decision nodes

NU
Em A set of embedded utility nodes

ni → nj A causal edge from the node ni to the node nj

ni ↭ nj A Referential edge between nodes ni and nj

ni ⇢ nj Information or precedence links between ni and nj

par(n) A parent node of the node n

O Set of embedded objects of an iOOBN class

Π Parameters of a BN or of a class, i.e. a set of CPTs/CPDs

ρ Reusability

ρr Reusability ratio

S A set of subsets

⊺ Hierarchy Tree

T A Label Hierarchy Tree

Contents

Copyright Notice i

Declaration ii

Publications during enrolment iii

Acknowledgments v

Abstract vi

Glossary vii

Symbols and Notations x

List of Figures xxiv

List of Tables xxvi

List of Algorithms xxvii

1 Introduction 1

1.1 Probabilistic Graphical Models and BNs . 1

1.2 Object-Oriented Bayesian Network and Classes . 4

1.2.1 Limitations of existing OOBN frameworks 6

1.3 Contributions of the thesis . 7

1.3.1 The iOOBN framework . 8

1.3.2 Inference in iOOBN without flattening . 9

1.3.3 Learning hierarchies of BNs or OOBN classes 10

1.4 Thesis Organisation . 10

2 Background 12

2.1 Probability, Decision and Utility Theory . 12

2.1.1 Bayes Theorem . 13

2.1.2 Decision theory . 14

2.2 Probabilistic Models: An Overview . 16

xii

Contents xiii

2.3 Bayesian Networks and Bayesian Decision Networks 18

2.3.1 Bayesian networks . 18

2.3.2 Reasoning with BNs . 21

2.3.3 Bayesian decision networks . 23

2.3.4 Limitations of BNs . 25

2.4 Other Related Probabilistic Graphical Models . 26

2.5 Object-Oriented Bayesian Networks (OOBNs) . 32

2.5.1 Object-Orientation . 32

2.5.2 Motivation for OOBNs . 33

2.5.3 The OOBN proposed by Koller and Pfeffer 35

2.5.4 The OOBN proposed by Bangsø et al. 36

2.5.5 The OOBN proposed by Huang et al. 37

2.5.6 Comparison of existing OOBN frameworks 37

2.6 Software for Existing Probabilistic Models . 38

2.7 Inference / Conditioning / Belief Updating / Probability Propagation 41

2.7.1 Junction tree construction . 42

2.7.2 Message passing protocol . 43

2.7.3 Incremental compilations . 46

2.7.4 Inference in OOBNs . 50

2.8 Knowledge Engineering in BNs (KEBN) . 51

2.8.1 KEBN methodologies . 51

2.8.2 Learning BNs . 53

2.8.2.1 Learning structures . 54

2.8.2.2 Learning parameters . 55

2.8.3 Learning OOBNs . 55

2.8.3.1 Learning hierarchy . 56

2.9 Summary . 57

3 iOOBN Framework 59

3.1 iOOBN: Informal Overview . 59

3.1.1 Livestock farming example . 61

3.2 iOOBN: Classes, nodes, edges, parameters and objects 63

3.2.1 iOOBN equivalence to ordinary BNs . 73

3.3 iOOBN and Inheritance . 74

3.3.1 Motivation . 74

3.3.2 Sub-interface, subclass, inheritance hierarchy and polymorphism 75

Contents xiv

3.3.3 Changes allowed in iOOBN inheritance . 78

3.3.4 Inheritance in the livestock farming example 82

3.3.4.1 Using encapsulation and abstraction 82

3.3.4.2 Using inheritance . 84

3.3.4.3 Using polymorphism and typecasting 84

3.4 Applying iOOBN to Previous OOBN Problems . 85

3.4.1 The Asia BN . 85

3.4.2 The car accident . 87

3.4.3 Computer problem diagnosis . 93

3.4.4 Power surge problem . 100

3.4.5 Advantages of iOOBN framework in reengineering and extending systems103

3.5 Case Study: Western Grassland Reserve Project . 104

3.5.1 Introducing WGR DOOBN components . 105

3.5.2 Reverse engineering the WGR DOOBN using iOOBN 108

3.5.3 Summary of the reengineering . 111

3.5.4 Validating reengineered models . 112

3.6 Summary . 113

4 Incremental Compilation in iOOBN 115

4.1 Inference in OOBNs . 115

4.2 Inference, Clique Graph, Junction Tree, and Junction Forest 116

4.2.1 Inference techniques . 118

4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 120

4.3.1 The proposed algorithm: SIIC . 120

4.3.2 Constructing JTs using the SIIC algorithm: an example 127

4.3.3 Advantages of the proposed compilation approach 131

4.3.4 Efficiency . 131

4.3.4.1 JT construction complexity . 131

4.3.4.2 The resultant JT . 133

4.4 Complexity Analysis . 133

4.4.1 Hugin JT construction Complexity analysis 133

4.4.2 SIIC JT construction complexity analysis . 134

4.4.3 JT construction (asymptotic) costs of Hugin compared with SIIC 135

4.5 The Experimental Settings . 136

4.5.1 Complexity measures . 136

4.5.2 Parameters . 137

Contents xv

4.5.3 Generating synthetic (random) OOBNs . 138

4.5.4 Producing outcomes (JT, construction time and cost) for analysis 142

4.5.5 Complexity of generated OOBNs . 143

4.6 Performance of Hugin, SIIC and SIIC# Algorithms 146

4.6.1 Time required to compile OOBNs . 146

4.6.2 Cost comparison of the JTs produced by Hugin and SIIC 154

4.6.3 Effect of embedded objects on the performance 159

4.6.4 Summary of the experimentation . 161

4.7 Summary . 162

5 iOOBN (OOBN) Class Hierarchy Learning 164

5.1 Hierarchy of OOBN Classes . 165

5.2 Terminology . 166

5.3 Converting BNs to OOBN Classes . 172

5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 174

5.4.1 Step 1: Construction of supergraph from a set of OOBN classes 174

5.4.2 Step 2: Construction of a hierarchy tree . 176

5.4.3 Step 3: Constructing an iOOBN class hierarchy from the hierarchy tree . . 179

5.4.4 Learning an OOBN class hierarchy: an example 188

5.5 Evaluation . 193

5.5.1 Synthetic OOBN class hierarchy generation 193

5.5.2 Evaluation measures . 195

5.5.3 Experimental analysis . 196

5.5.4 Case study: Learning hierarchical structure in WGR 200

5.5.5 Summary of the evaluation . 200

5.6 Summary . 200

6 Conclusions 202

6.1 Research Contributions . 202

6.2 Future Works . 203

Appendix A iOOBN Software Development 206

A.1 iOOBN Software . 206

A.2 Targeted Features for the Developed Framework . 207

A.3 Challenges Faced . 207

A.3.1 Choosing the right skeleton framework . 208

A.3.2 Accessing the code base and adding backward compatibility 208

Contents xvi

A.3.3 Deciphering the codes used in Hugin: reengineering NET grammar and

parsing NET language codes . 208

A.3.4 Developing NPP grammar and NPP language: a dedicated back-end

grammar and language for iOOBN . 209

A.3.5 Developing a syntax translator, code optimiser and code generator for NET211

A.3.6 Interfacing with Hugin API and providing GUI facilities 211

A.4 Features of iOOBN Software . 212

A.4.1 Comparison of iOOBN features with existing software 214

A.5 Prototype Implementation . 214

A.5.1 Design goals . 215

A.5.2 System behaviour and use case view . 215

A.5.3 Logical view . 216

A.5.3.1 Detailed class design . 217

A.5.4 Process view . 220

A.5.5 Development view . 220

A.5.6 Physical view . 224

A.6 Missing Features . 225

A.7 Summary . 225

Appendix B Case Study: Western Grassland Reserve Project 226

B.1 WGR Problem Domain . 226

B.2 The WGR OOBN Model . 226

B.3 Reengineering the WGR OOBN in iOOBN . 227

Appendix C Extended Experiments of Compilation Algorithms 234

C.1 Performance Analysis of the Proposed Algorithm . 234

C.2 Performance of Hugin, SIIC and SIIC# Algorithms 235

C.2.1 Time required to compile OOBNs . 235

C.2.2 Comparing costs of the JTs produced by Hugin and SIIC 238

Appendix D Hierarchy Learning Case Study: Western Grassland Reserve Project 241

Appendix E Hierarchy Learning: An Extended Example 245

Bibliography 251

List of Figures

1.1 An ordinary BN : the classic "Chest Clinic" (A.K.A. "Asia BN") example 2

1.2 (a) Asia OOBN class and (b) Asia class object embedded in larger patient model.

Note that input nodes are dashed, output nodes are double-lined, with connec-

tions limited to input and output nodes. 6

2.1 A taxonomy of Probabilistic Graphical Models (PGMs) 17

2.2 An ordinary BN: The classic "Asia" example . 19

2.3 Types of ‘Reasoning’ in a Bayesian network [1]. 22

2.4 An ordinary BDN: Football match betting [1]. 24

2.5 Inference in a BN: (a) Compilation (originally depicted in [2]), (b) Message pass-

ing in a Junction Tree . 42

2.6 (a) The Asia BN, (b) Moral graph for the Asia BN, (c) Triangulated graph for the

Asia BN, (d) A set of cliques found from the triangulated graph, (e) The clique

graph formed by the cliques, (f) A JT for the Asia BN 43

2.7 Message passing on the Asia BN: (A) Initial potential distribution and assign-

ment on cliques and separators of JT. 44

2.8 Message passing on the Asia BN: (B) Forward message passing phase 45

2.9 Message passing on the Asia BN: (C) Backward message passing phase 45

2.10 Message passing on the Asia BN: (D) Consistency checking of the JT before and

after probability propagation. 45

2.11 Workflow diagram of the Incremental Compilation algorithm 46

2.12 (a) The Asia BN, (b) Moral graph for the Asia BN, (c) Triangulated graph for

the Asia BN, (d) A JT for the Asia BN, (e) MPS tree for the Asia BN, (f) MPS

decomposition for the Asia BN . 47

2.13 InC example of deleting an edge: (a) The Asia BN (Edge "L→ E" to be deleted);

(b) Moral graph for the modified DAG; (c) Affected portion of the MPS Tree for

the Asia BN is marked; (d)–(e) Affected graph portion extracted, moralised, and

triangulated; (f) JT construction for affected graph and connecting with MPS tree

of the Asia BN; (g)–(i) Constructing the updated JT, (j) Constructing the updated

MPS tree. 48

xvii

LIST OF FIGURES xviii

2.14 InC example of adding a node and two edges: (a) The Asia BN (with node "Z",

edges "A→ Z" and "Z →X" to be added); (b) The JT of the Asia BN after adding

node "Z"; (c) Moral graph for the modified DAG; (d) Affected portion of the

MPS Tree for the Asia BN is marked; (e)–(f) Affected graph portion extracted;

(g) JT construction for affected graph and connecting with the MPS tree of the

Asia BN; (h)–(i) Constructing updated JT; (j) Constructing updated MPS tree. . . 49

2.15 A limitation of the IC algorithm. 51

3.1 An example of the iOOBN class "Profit". (a) An abstract class "Milk Cow" is

extended to another abstract class "Milk CowExt". A concrete class is derived by

adding required CPTs, decision tables and utility tables, (b) An object of "Milk

CowExt" concrete class is used to make "Profit" (concrete) class. 62

3.2 Illustration of overriding the order of decision nodes 68

3.3 iOOBN class "Profit" flattened to a BN "Profit" . 73

3.4 OMD example: Changing CPTs of inherited nodes in the subclasses 78

3.5 OMD example: Adding edges and nodes within subclasses 79

3.6 Typecasting: Type Changing of inherited Input-Output nodes in subclasses . . . 81

3.7 Schematic diagram showing the model change required to effect a change in the

states of an input (above) or output (below) nodes. 81

3.8 Example of (a) interface hierarchy and (b) class hierarchy for the OMD livestock

example used to illustrate the components of the iOOBN framework. (c) How

different objects can be interchangeably embedded within a class: an interface

and two different abstract classes, one (Calving Cow) a subclass of the other

(Milk Cow); this demonstrates the OO features of polymorphism. 83

3.9 Example: encapsulating a BN in a class . 86

3.10 Example: forming a class by reusing by means of inheritance and instantiation . 86

3.11 (a) Car Accident OOBN Model (Koller): the car OOBN class, (b) Car Accident

iOOBN Model: the car iOOBN class . 88

3.12 (a) Car Accident OOBN Model (Koller): the "Main" class. (b) Car Accident

iOOBN Model: the "Main" class . 89

3.13 Car accident reengineered model (class hierarchies): (a) Car, Speedboat, Bus and

Ship classes, (b) Road and Waterway classes, (c) Steering and Helm classes, (d)

Tyres, Heavy-duty Tyres and Propeller classes, (e) Driver and Sailor classes, (f)

Engine class, and (g) Brakes class. 90

3.14 Ship accident iOOBN Model . 92

LIST OF FIGURES xix

3.15 The Computer class of the "Computer Diagnosis" model: (a) OOBN model (Pf-

effer) (b) iOOBN model . 94

3.16 Hard Drive, Drive Mechanism and Motor class of the Computer Diagnosis

model : (a) OOBN model (Pfeffer) (b) iOOBN model 97

3.17 Computer Diagnosis iOOBN Class Hierarchy: (a) Mouse, Keyboard, Printer and

Monitor classes, and Peripheral interface, (b) SATA and PATA classes, and Ca-

ble interfaces, (c) Hard Drive and SS Drive classes, and Storage Interface, (d)

Print Event, Read Event and Write Event classes, and Event interface and (e)

HD Mech. and SSD Mech. classes and DriverMechanism interface 98

3.18 Computer Diagnosis iOOBN model: the classes derived from the "Computer"

class (shown in Figure 3.15b) (a) Ann’s computer, (b) Sam’s computer. 99

3.19 (a) Power Surge OOPRM Model (Torti) : (1) Class dependency diagram, (2–

5) The Printer, the Computer, the PowerSupply and the Room class repre-

sented graphically. (6) inheritance of OOPRM to extend the Printer class. (b)

Reengineered Power Surge model using iOOBN hierarchies: (1–3) PowerSup-

ply, Printer and Computer classes, (4) the hierarchy with two classes, namely

computer class and multi-printer computer class, (5) the hierarchy that is rooted

at Printer class, then B&W Printer and Colour Printer. 101

3.20 The Power Surge model (a): OOPRM Model, (b): iOOBN Model with: (1) Single

computer in a room, connected with a single printer, (2) two computers in a

room, connected with one and two printers, respectively. 102

3.21 The template of the grassland DOOBN model classes. (copied and redrawn

from WGR report [3]) . 107

3.22 Two of the 129 classes of WGR (a list of the 129 classes are given in Figure B.3 of

Appendix B): (a) Themeda Harvest, (b) Burn Intervention (copied and redrawn

from WGR class repository [3]) . 107

4.1 Example of flattening an OOBN class . 117

4.2 Process-flow diagram of (A) JT-based and (B) Incremental BN Compilation [4] . 119

4.3 Process-flow diagram of (A) HUGIN OOBN Compilation and (B) Incremental

Compilation-based OOBN compilation [5, 6] . 120

4.4 Process-flow diagram of iOOBN compilation using proposed SII compilation . . 122

4.5 (a) Sample OOBN Class: C, Preprocessing C [Line-2]: (b) Duplicate node names

resolved, and (c) Pseudo Ref. Edge adding . 127

4.6 (a) Constructing Junction Forest [Line-3], (b) Connecting JTs [Line-4] 128

4.7 (a) Joining JT1 and JT4 [Line -14], (b) Postpruning JT1,4 [Line-16] 128

LIST OF FIGURES xx

4.8 (a) Joining JT1,4 and JT5 [Line-14], (b) Joining JT1,4,5 and JT2 [Line-14] 129

4.9 (a) Postpruning JT1,2,4,5 [Line-16], (b) Processing the edge having separator S

between cliques of same JT1,2,4,5 [Line-12] . 129

4.10 (a) Postpruning JT1,2,4,5 [Line-16], (b) Joining JT1,2,4,5 and JT3 [Line-14], (c)

Processing the edge having separator Y between cliques of same JT1,2,3,4,5

[Line-12], Postpruning [Line-16] . 130

4.11 (a) Final JT of class C using SII compilation, after processing the last edge with

separator X, (b) Thinning the JT (Removing redundant fill-in edges) [Line-17] . . 130

4.12 (a) Sample OOBN Class: C (no duplicate node names), (b) Flattened BN of

OOBN class C (c) HUGIN junction tree of flattened BN. 130

4.13 Example of the limitation of Incremental Compilation (InC). 132

4.14 Schematic diagram of the experimental design . 139

4.15 Flowchart to generate a synthetic (random) BN . 140

4.16 Flowchart to generate a synthetic (random) OOBN class 140

4.17 A sample OOBN with NON = 10, NOC = 2, NOO = 1, NOP = 3: (a–b) two

foreign classes C1 and C2 (no embedded objects), and (c) the "main.oobn" class

C having embedded objects . 141

4.18 Complexity distribution of the synthetic OOBNs: (a) overall, and w.r.t. (b) NOC,

(c) NON, (d) NOO, (e) NOP, and (f) NOS. Complexity increases with the increase

in NOC, NOO, NOP and NOS (except for NON). 145

4.19 Running time distribution: (a) Hugin, (b) SIIC, and (c) SIIC#; Box-plots: (d)

Hugin, (e) SIIC, and (f) SIIC#. Normal distributions are observed for all three

algorithms running times (a–c). Better performance w.r.t. running time is ob-

served for SIIC# (d–f). 147

4.20 Running time w.r.t. NOC: (a) Hugin, (b) SIIC, and (c) SIIC#; Running time w.r.t.

NON: (d) Hugin, (e) SIIC, and (f) SIIC#. Running time increases with the in-

crease in both NOC and NON. For both NOC and NON, SIIC# performs better

than SIIC and Hugin. 148

4.21 Running time w.r.t. NOO: (a) Hugin, (b) SIIC, and (c) SIIC#. All algorithms’

running time increases with the increase in NOO and SIIC# has least running

time than Hugin and SIIC. 150

LIST OF FIGURES xxi

4.22 Running time difference of Hugin and SIIC: (a) overall distribution; and w.r.t.

(b) NOC, (c) NON, (d) NOO, (e) NOP, and (f) NOS. The running time difference

exhibits a normal distribution; the difference roams around zero; the time differ-

ence is positive (SIIC performs better) for NON, NOP, and NOS; and for other

parameters, the difference is negative (Hugin performs better). 152

4.23 Running time difference of Hugin and SIIC#: (a) overall distribution; and w.r.t.

(b) NOC, (c) NON, (d) NOO, (e) NOP, and (f) NOS. The running time differ-

ence exhibits a normal distribution and the difference is always higher than zero

(SIIC# performs better). 153

4.24 JT cost distribution (overall): (a) Hugin, (b) SIIC, and (c) difference of SIIC and

Hugin (SIIC - Hugin), normal distributions are observed in a–c; JT cost distribu-

tion w.r.t. NOC: (d) Hugin, (e) SIIC, and (f) difference of SIIC and Hugin. JT cost

and difference of cost increases with the increase in NOC. 156

4.25 JT cost distribution w.r.t. NON: (a) Hugin, (b) SIIC, and (c) difference of SIIC

and Hugin (SIIC - Hugin); and w.r.t. NOO: (d) Hugin, (e) SIIC, and (f) difference

of SIIC and Hugin. JT cost and difference of cost increases with the increase in

NON and NOO. 157

4.26 JT cost distribution w.r.t. NOP: (a) Hugin, (b) SIIC, and (c) difference of SIIC

and Hugin (SIIC - Hugin); and w.r.t. NOS: (d) Hugin, (e) SIIC, and (f) difference

of SIIC and Hugin. JT cost and difference of cost increases with the increase in

NOS and NOP. 158

4.27 Time difference of Hugin and SIIC (Hugin - SIIC) distribution for: (a) all OOBNs,

(b) pure OOBNs. Normal distributions are observed in both cases. 159

4.28 Time difference of Hugin and SIIC# (Hugin - SIIC#) distribution for: (a) all

OOBNs, (b) Pure OOBNs. Normal distributions are observed in both cases. . . . 159

4.29 (a) NON vs average running time difference: (a) Hugin vs SIIC, (b) Hugin vs

SIIC for varying NOO, (c) varying NOS, (d) NON vs fitted (theoretical) values

in Model 4 with various NOSs: Hugin vs SIIC . 160

5.1 An example supergraph and subgraph. 167

5.2 Example of subgraph isomorphism and non-isomorphism: G is a isomorphic

subgraph of G′ (since G = S′ and S′ ⊂ G′) and not a isomorphic subgraph of G"

(Since, no subgraph of G" is equal to G). 167

LIST OF FIGURES xxii

5.3 (a) A DAG of an OOBN class "Cow", (b) Labelled DAG of Cow class assuming

the label of Cow class is "F", (c) A DAG of an OOBN class "Milk", (d) La-

belled DAG of Milk class assuming the label of Milk class is "M", (e) Labelled

superDAG of labelled "Cow" and "Milk" DAG . 168

5.4 Flowchart of the supergraph construction technique 184

5.5 Flowchart of the proposed learning algorithm . 185

5.6 The set of BNs found from the OMD farm example used in the class hierarchy

in Figure 3.8 of Chapter 3. The set is used here as an input to the proposed

hierarchy learning algorithm. 189

5.7 The supergraph constructed from the OOBN classes 190

5.8 Learning iteration (1): (a) A label hierarchy tree constructed from the labels:

"ACDFGM", "ACGM", "ACG", "AG", "A", "G", and "D". (b) Start traversing the

hierarchy tree from the root node "ACDFGM". (c) The sub-DAG extracted from

the supergraph where each node and edge has a label that contains "ACDFGM".

(d) The graph segment marked in red-text in the supergraph. 190

5.9 Learning iteration (2): (a) Take the left-most non-visited child of "ACDFGM",

i.e., "ACGM". (b) The sub-DAG extracted from the supergraph where each node

and edge has a label that contains "ACGM". (c) The graph segment marked in

red-text in the supergraph. 190

5.10 Learning iteration (3): (a) Take the left-most non-visited child of "ACGM", i.e.,

"ACG". (b) The sub-DAG extracted from the supergraph where each node and

edge has a label that contains "ACG". (c) The graph segment marked in red-text

in the supergraph. 191

5.11 Learning iteration (4): (a) Take the left-most non-visited child of "ACG", i.e.,

"AG". (b) The sub-DAG extracted from the supergraph where each node and

edge has a label that contains "AG". (c) The graph segment marked in red-text

in the supergraph. 191

5.12 Learning iteration (5): (a) Take the left-most non-visited child of "AG", i.e., "A".

(b) The sub-DAG extracted from the supergraph where each node and edge

has a label that contains "A". (c) The graph segment marked in red-text in the

supergraph. (d) Backtrack to the node "AG" and take the next left-most non-

visited child of "AG", i.e., "G". (e) The sub-DAG extracted from the supergraph

where each node and edge has a label that contains "G". (f) The graph segment

marked in red-text in the supergraph. 192

LIST OF FIGURES xxiii

5.13 Learning iteration (6): (a) Backtrack to the node "AG", then to "ACG" and so on

till the original root "ACDFGM" is found that still has a child unvisited. Take the

next left-most non-visited child of "ACDFGM", i.e., "D". (b) The sub-DAG ex-

tracted from the supergraph where each node and edge has a label that contains

"D". (c) The graph segment marked in red-text in the supergraph. 192

5.14 The class hierarchy learned by Algorithm 5.14. (This is same as the hierarchy

constructed for OMD farm in Figure 3.8 of Chapter 3). 193

5.15 Flowchart of the synthetic hierarchy generation process 194

A.1 The "view" model of software architecture [7]. 207

A.2 Interfacing with the Hugin engine . 212

A.3 Use case Diagram of iOOBN software. 216

A.4 Class diagram of iOOBN Editor package . 217

A.5 Class diagram of Graph Panel package . 218

A.6 Class diagram of Frames package . 218

A.7 Class diagram of GUI editor package . 219

A.8 Class diagram of OOBN components package . 219

A.9 Class diagram of ANTLR Net Plus Plus package . 219

A.10 Class diagram of the package to integrate with Hugin 220

A.11 Class diagram of Learning OOBN package . 220

A.12 How iOOBN software compiles both an OOBN and iOOBN file. 221

A.13 (a) An example iOOBN code snippet: A "horse" iOOBN class that extends an

animal iOOBN class, and (b) The steps involved in target code (NET language

Code) generation from source code (iOOBN code, also known as NPP code). . . 222

A.14 Meta Node structure of: (a) iOOBN class (abstract or concrete), (b) iOOBN in-

terface; (c) Node data structure of iOOBN . 223

A.15 Flow Diagram of the iOOBN hierarchy learning system. 224

B.1 Class hierarchy of the WGR reengineered (iOOBN) system learned by auto-

mated hierarchy construction algorithm . 230

B.2 Class hierarchy of the WGR reengineered (iOOBN) system - Decision and utility

nodes learned by automated hierarchy construction algorithm 231

B.3 Mapping of the WGR (original) classes and the WGR reengineered (iOOBN)

classes . 232

B.4 Class Diagram of the WGR reengineered (iOOBN) system with background

knowledge incorporated . 233

LIST OF FIGURES xxiv

C.1 Complexity vs Runtime: (a) Hugin, (b) SIIC, and (c) SIIC# 236

C.2 Running time w.r.t. NOP: (a) Hugin, (b) SIIC, and (c) SIIC#; Running time w.r.t.

NOS: (d) Hugin, (e) SIIC, and (f) SIIC# . 237

C.3 Hugin vs SIIC running time, (a) overall distribution; and w.r.t. (b) NOC, (c)

NON, (d) NOO, (e) NOP, and (f) NOS. 239

C.4 Hugin vs SIIC# running time, (a) overall distribution; and w.r.t. (b) NOC, (c)

NON, (d) NOO, (e) NOP, and (f) NOS. 240

D.1 Learning outcome: The class hierarchy of WGR . 242

D.2 Mapping of WGR class names and labels in the hierarchy 243

D.3 Mapping of reengineered hierarchy classes with WGR class labels 244

E.1 Classes in the Synthetic hierarchy (contd...) . 246

E.1 Classes in the Synthetic hierarchy . 247

E.2 The learned hierarchy and mapping with the original hierarchy classes 248

E.3 Classes in the learned hierarchy (contd...) . 249

E.3 Classes in the learned hierarchy . 250

List of Tables

2.1 Comparing Probabilistic Models. 31

2.2 Comparison of Koller–Pfeffer’s, Bangsø’s and Huang’s OOBN frameworks. . . . 37

2.3 Comparing key features of popular BN tools . 39

2.4 Comparing key features of popular relational modelling tools 40

3.1 iOOBN node and edge representation . 69

3.2 iOOBN inheritance types and affected components of the iOOBN class. 82

3.3 The modelling choice from the modelling options in constructing the Accident

Hierarchy. 93

3.4 The modelling choice from the modelling options in constructing the computer

diagnosis hierarchy . 95

4.1 Asymptotic analysis of the algorithms . 135

4.2 Parameters and terms used in the experimentation 138

4.3 Summary of the cases considered in the experimentation. 143

4.4 List of Units of Measurement (UOMs) for various measures used in the experi-

mentation to evaluate the performance of the algorithms. 143

4.5 Frequency of the mid-points of the bars in the histogram for time difference

between Hugin and SIIC (UOM = ms) . 150

4.6 Frequency of the mid-points of the bars in the histogram for time difference

between Hugin and SIIC#. 151

4.7 Summary of the time difference between Hugin–SIIC and Hugin–SIIC#. 151

4.8 Summary of the JT cost difference between Hugin and SIIC 154

4.9 Experimentation summary . 162

5.1 A list of terms with their full-forms used in Table 5.2 197

5.2 Comparison of class hierarchies learned from a set of classes, to the original

hierarchies, and to no hierarchies. The node and edge increment rate in the

subclasses are 30% and 40%, respectively. 198

5.3 Comparison of class hierarchies learned from a set of classes, to the original

hierarchies, and to no hierarchies. The node and edge increment rate in the

subclasses are 60% and 70%, respectively. 199

xxv

LIST OF TABLES xxvi

A.1 Supported features of BN/OOBN modelling tools 214

A.2 Hierarchy table: A tabular representation of hierarchy tree. 223

A.3 Symbolic node table used in iOOBN compiler. 224

C.1 The models built to perform analysis . 234

List of Algorithms

Algorithm 3.1. Flattening an iOOBN Class . 74

Algorithm 3.2. Modelling steps when creating a new subclass by adding states to

an input node . 80

Algorithm 3.3. Modelling steps when adding states to an output node 80

Algorithm 4.1. SII Compilation Algorithm . 121

Algorithm 4.2. Create Junction Forest . 123

Algorithm 4.3. Postpruning . 125

Algorithm 4.4. Thinning . 126

Algorithm 4.5. Generating a Random OOBN . 136

Algorithm 4.6. Generate Main OOBN class . 141

Algorithm 4.7. Partitioning OOBN nodes . 141

Algorithm 4.8. Producing outputs from the algorithms 142

Algorithm 5.1. Find Input nodes . 172

Algorithm 5.2. Find Output nodes . 173

Algorithm 5.3. Converting BNs to OOBNs . 173

Algorithm 5.4. Construction of a supergraph of a set DAGs (Step 1) 174

Algorithm 5.5. Accumulate DAG to supergraph . 175

Algorithm 5.6. Extracting the set of labels . 177

Algorithm 5.7. Map Labels To Size . 177

Algorithm 5.8. Label Hierarchy Construction (Step 2) . 178

Algorithm 5.9. Class Hierarchy Construction (Step 3) . 179

Algorithm 5.10. Form OODAG . 180

Algorithm 5.11. Construct All OODAGs . 181

Algorithm 5.12. Making an OOBN structure . 181

Algorithm 5.13. Construct DAGs from OOBN classes . 182

Algorithm 5.14. Learning iOOBN . 182

xxvii

Chapter 1

Introduction

Our daily life is full of challenges, and the biggest challenge is the unpredictability of many

of our significant life events. To deal with this unpredictability, analysing the probability of

events has become very important. In particular, the theorem of English statistician Thomas

Bayes has been revolutionary. Numerous theories and techniques have been proposed, and

many tools have been developed to solve real-life problems based on the theorem, yet it is

still very much an area of active research. It still attracts researchers dealing with cutting-

edge technologies. One tool that has been used extensively in modelling probabilistic analysis

for decades is the Probabilistic Graphical Model (PGM). This chapter briefly introduces the

Bayesian network (BN) as a PGM, and describes its various aspects. The chapter outlines

factors that motivated the research, the objective of this research, and finally describes the

organisation of the thesis.

1.1 Probabilistic Graphical Models and BNs

PGMs are one of the classes of probabilistic models where a graph represents the structure

of the conditional dependence between random variables. Bayesian decision networks (BNs),

one of the widely used PGMs, have been used for reasoning under uncertainty for decades

[8,9]. Reasoning is a critical process in real-life applications because of the complex nature and

variety of the applications and multiple challenges of uncertainty associated with the events of

the applications. PGMs are very effective in dealing with various decision-making challenges

due to their ability to present causal relationships among random variables, incorporating dy-

namic information from a variety of areas with varying degrees of uncertainty, and to perform

several kinds of reasoning (e.g., predictive, diagnostic, and intercausal). Moreover, the graph-

ical visualization of PGMs helps specialists with diverse expertise to cooperate easily.

Among the many families of PGMs, one of the most widely used and demanding is the

Bayesian network (BN) [10, 11]. A BN is a probabilistic graphical model that represents causal

relationships using a DAG and which supports the reasoning for decision-making under un-

certainty. In real-world applications, the ability to reason under uncertainty is critical for mak-

1

§1.1 Probabilistic Graphical Models and BNs 2

ing decisions. BNs [12, 13] are a powerful tool for performing and supporting many forms of

uncertain reasoning, including monitoring, prediction, diagnosis, risk assessment and decision

support. Their usefulness as a mature modelling technology is demonstrated by the extremely

wide range of areas to which they have been applied, including (with single examples only)

medicine [14], education [15], agriculture [16], ecology and environmental management [17],

biosecurity [18], surveillance [19], the military [20], weather forecasting [21] and software en-

gineering [22].

A BN [1,12] is a directed acyclic graph (DAG) whose nodes represent the random variables

in the problem. A set of directed edges connects pairs of nodes, representing the direct depen-

dencies (which are often causal connections) between variables. The set of variables pointing

to a node X are called its parents and the relationship between variables is quantified by con-

ditional probability tables (CPTs) associated with each node. The CPTs together compactly

represent the full joint distribution. Users can set the values of any combination of nodes in

the network that they have observed as evidence. This evidence, e, propagates through the

network, producing a new posterior probability distribution P (X ∣e) for each node X in the

network. There are several efficient algorithms for performing this probabilistic updating 1,

providing a powerful combination of predictive, diagnostic and explanatory reasoning.

TB (T)

Cancer (C)

Asia (A)

Chance Node

Utility Node

Decision Node

Causal Edge

Smoker (S)

TorC (E)

Xray (X) Dyspnea (D)

Bronchitis (B)

A P(A)

T 0.01
F 0.99

A P(A)

T 0.01
F 0.99

S P(S)

T 0.5
F 0.5

S P(S)

T 0.5
F 0.5

E
T = T T = F

C=T

1.0T

0.0F

C=F

1.0

0.0

C=T

1.0
0.0

C=F

0.0

0.0

E
T = T T = F

C=T

1.0T

0.0F

C=F

1.0

0.0

C=T

1.0
0.0

C=F

0.0

0.0

D
E = T E = F

B=T

0.9T

0.1F

B=F

0.7

0.3

B=T

0.8
0.2

B=F

0.01

0.99

D
E = T E = F

B=T

0.9T

0.1F

B=F

0.7

0.3

B=T

0.8
0.2

B=F

0.01

0.99

B S = T S = F

0.3T

0.7F

0.6
0.4

B S = T S = F

0.3T

0.7F

0.6
0.4

C S = T S = F

0.1T

0.9F
0.01
0.99

C S = T S = F

0.1T

0.9F
0.01
0.99

T A = T A = F

0.05T

0.95F

0.01
0.99

T A = T A = F

0.05T

0.95F

0.01
0.99

X E = T E = F

0.98T

0.02F

0.05
0.95

X E = T E = F

0.98T

0.02F

0.05
0.95

TB (T)

Cancer (C)

Asia (A)
Chance Node

Causal Edge

Smoker (S)

TorC (E)

Xray (X) Dyspnea (D)

Bronchitis (B)

A
T F

0.05T

0.01F

0.95
0.99

TB
A

T F

0.05T

0.01F

0.95
0.99

TB

T F

0.01 0.99

Asia

T F

0.01 0.99

Asia

T F

0.5 0.5

Smoker

T F

0.5 0.5

Smoker

E B

T

T

T

F

F

T 0.9

F 0.7

T 0.8

F 0.01

F

0.1

0.3

0.2

0.99

Dyspnea
E B

T

T

T

F

F

T 0.9

F 0.7

T 0.8

F 0.01

F

0.1

0.3

0.2

0.99

Dyspnea

T C

T

T

T

F

F

T 1.0

F 1.0

T 1.0

F 0.0

F

0.0

0.0

0.0

1.0

E
T C

T

T

T

F

F

T 1.0

F 1.0

T 1.0

F 0.0

F

0.0

0.0

0.0

1.0

E

S
T

T 0.1
F 0.01

F
0.9
0.99

Cancer
S

T
T 0.1
F 0.01

F
0.9
0.99

Cancer S
T

T 0.3
F 0.6

F

0.7
0.4

Bronchitis
S

T
T 0.3
F 0.6

F

0.7
0.4

Bronchitis

E
T

T 0.98
F 0.05

F

0.02
0.95

Xray
E

T
T 0.98
F 0.05

F

0.02
0.95

Xray

Figure 1.1: An ordinary BN : the classic "Chest Clinic" (A.K.A. "Asia BN") example

Figure 1.1 represents a well-known and popular "Chest Clinic BN" A.K.A. "Asia BN" [23]

example. Note that there are eight nodes and eight directed edges. The eight nodes are: "A"

to represent whether or not a patient has visited Asia, "S", "T", "B", "C", "X" and "D" to repre-

1Also known as compilation or probability propagation or conditioning or belief updating [1]

§1.1 Probabilistic Graphical Models and BNs 3

sent, respectively, whether or not the patient is a smoker, affected by tuberculosis, bronchitis,

cancer, whether the Xray is positive, and whether the patient suffers from dyspnea (shortness

of breath). This BN and inference in the BN helps in diagnosing a patient, i.e., without any

evidence, probability of each disease is P(B=T) = 45%, P(T=T) = 1.04%, and P(C=T) = 5.5%. An

evidence on the patient being a smoker (prediction) changes disease probabilities to P(B=T |

S=T) = 30%, P(T=T | S=T) = 1.04%, and P(C=T | S=T) = 10% and also the probability of having

dyspnea is P(D=T | S=T) = 30.31% (note that before entering the evidence on "S", the chance

of having dyspnea was 39.7%). If patient then presents with shortness of breath, disease prob-

abilities go up, namely P(B=T | S=T, D=T) = 80.26%, P(T=T | S=T, D=T) = 2.61%, and P(C=T

| S=T, D=T) = 25.07%, but if Xray result comes back negative, then the probability of T and

C go down, B goes up further, namely P(B=T | S=T, D=T, X=F) = 96.68%, P(T=T | S=T, D=T,

X=F) = 0.08%, and P(C=T | S=T, D=T, X=F) = 0.72%.

There are many methods proposed for BN inference (exact and approximate), all of which

are NP-Hard [24]. Among the exact inference techniques, one approach is compilation, of

which ‘JT-based Inference’ [25] is the most widely used approach. The steps in this approach

include moralisation, triangulation, clique finding, clique graph formation, and junction tree

(JT) construction. However, if this traditional approach is used, given any change in the BN

structure, all the operations related to ‘JT-based inference’ need to be revisited. These oper-

ations, especially triangulation and clique finding, are computationally expensive [26]. One

approach to addressing this problem is Flores et al.’s [2, 4] idea of incremental compilation.

BNs have been widely used in various application areas. Such widespread use is possible

due to the development of BN software tools that have allowed technologists and modellers to

build, edit, assess and deploy BNs using graphical user interfaces (GUIs) that promote ease of

use. Popular tools these days include Hugin 2 [27], GeNie 3 [28], Netica 4 [29], AgenaRisk 5 and

BayesiaLab 6. While these tools remain popular, the well-known ‘knowledge bottleneck’ (see

Section 2.8 of Chapter 2) problem has slowed and limited their further adoption. In response

to this problem, machine learning techniques were invented in order to generate BNs from

observational data. Some of the methods were developed and adopted for the causal discovery

of special kinds of BNs, i.e., causal BNs (CBNs), so called because the arcs in the network

are used for only causal interpretation, whereas BNs more generally also model non-causal

associations. This subfield also enjoyed much success in the 1990s, with many of its algorithms

incorporated into BN tools in the 2000s. Popular causal discovery algorithms and techniques

2Hugin: https://www.hugin.com/
3GeNie: https://www.bayesfusion.com/
4Netica: https://www.norsys.com/netica.html
5AgenaRisk: https://www.agenarisk.com/
6BayesiaLab: https://www.bayesialab.com/

https://www.hugin.com/
https://www.bayesfusion.com/
https://www.norsys.com/netica.html
https://www.agenarisk.com/
https://www.bayesialab.com/

§1.2 Object-Oriented Bayesian Network and Classes 4

include the PC algorithm [30] of the Tetrad research group (the most widely adopted algorithm

for causal structure discovery, probably because it is the simplest and easiest to understand),

and the BDe/BGe metrics developed by Microsoft researchers [31].

In the absence of data, BNs can be built through elicitation of domain-specific knowledge

from experts, and expert elicitation and causal discovery can be combined in so-called "knowl-

edge engineering in Bayesian networks" (KEBN). Various methodologies for KEBNs have been

proposed by researchers (see more in Section 2.8 of Chapter 2). Key concepts include build-

ing BNs iteratively and incrementally [1, 32, 33]; breaking down complex models into sub-

models [29] or fragments [32]; and building BNs with common structures or elements called

"idioms" [34].

BNs (and PGMs more generally) enable us to document a problem and its current state

of knowledge, characterizing the overall model of the problem, as well as behaving like a

storehouse of knowledge [35]. The process of creating a BN helps clarify assumptions and

identify uncertainties within the system [33]. As information expands, new data can be added

to improve the model.

However, many real-life applications are large and complex, and modelling them with BN

is a difficult process. These difficulties include construction cost, which increases significantly

with the BN’s size; inadequate, inappropriate, and incomplete data is not feasible for some

domains and applications; construction and parameterization of a BN requires significant in-

put (time and effort) for elicitation and validation. Finally, constructing BNs incrementally is

difficult because to change or add something to an existing BN requires the knowledge of the

domain and the network as a whole. These are issues of compatibility – that is, the reuse of ex-

isting BNs or any segment of a BN (as well as the reuse of any inference outcome) is anything

but straightforward. Section 2.3.4 describes these issues in more detail.

1.2 Object-Oriented Bayesian Network and Classes

From the late 1990s, researchers started to develop theories and techniques to overcome the

challenges involved in knowledge engineering BNs. These techniques include object-oriented

BNs [36, 37], generalized decision graph [38]; BN fragments [32]; and various techniques com-

bining probabilistic relational models and objects, such as module networks [39], probabilistic

relational models and plate models [40], multi-entity BNs (MEBNs) [41], Multiply Sectioned

BNs (MSBNs) [42], Idioms [34], and Templates [43]. The features, merits and disadvantages of

the above-mentioned approaches are outlined in Chapter 2.

In this thesis, the focus is on the approach inspired by the Object-Oriented (OO) princi-

ple [44, 45] from the field of software engineering. This has been useful for dealing with large-

§1.2 Object-Oriented Bayesian Network and Classes 5

scale problems, such as those seen in Object-Oriented Bayesian networks (OOBNs) [46]. The

principle allows modellers to encapsulate BNs into classes and construct objects defined with

attributes of similar characteristics, and build more complex models in a compositional hierar-

chical way, and supporting re-use of components. Due to the ever-growing complexity of con-

structing BNs, scalability and reusability are potentially useful advantages when constructing

any large BN to use in real-life applications.

OOBNs introduce techniques to scale-up by allowing the reuse of existing components that

can be connected together hierarchically and compositionally via formally defined interfaces.

OOBN exhibits all of these features: Encapsulation, Abstraction, Inheritance and Polymor-

phism. A segment of a BN is encapsulated into a class (a blueprint of an object) with an

interface of input and output nodes. A more complete and formal presentation of OOBNs,

is given in Chapter 2. Figure 1.2 (a) shows how the Asia BN can be converted into an OOBN

class, with "A" and S being the input nodes, and the three disease nodes ("T","C" and "B") being

the output nodes. That segment can be used in other models and in larger models by making

a copy (called an instance) and adding connections only to the interface node, via connections

only to the input and output nodes. Such reuse helps save design time and reduce complexity.

Figure 1.2 (b) shows the Asia BN being used in a larger model focusing on assessing treatment.

It also supports maintenance, as any changes to a class (for example, if the CPTs are updated

using new data) can be automatically applied to all the instances and its subclasses. There are

many potential advantages in using OOBNs instead of ordinary BNs. A non-exhaustive list

follows:

1. Reusability of tested and correctly functioning components avoids the complexity of re-

construction/design and correctness testing. That is, it avoids the tendency of "reinvent-

ing the wheel".

2. Abstracting/hiding the internal complexity of a class and providing a simpler interface

to its users.

3. Avoiding redundancy (with respect to reusability) provides scalability.

4. Ensuring flexibility in modelling and strong type checking to avoid unintentional flaws

in modelling.

5. Accommodating the design of large BNs with fewer flaws 7 making it easy to both main-

tain the existing model and manage changes 8.

7In the examples of Chapter 3, it is shown that how OOBN and iOOBN allow designing large scale BNs using
OO principles with fewer flaws in comparison to ordinary BNs.

8OO principles allow designing applications in simple, reusable and unique segments or modules that reduce

§1.2 Object-Oriented Bayesian Network and Classes 6

6. OOBNs provide better handling of errors. (At any point of time, a modeller has to deal

with a particular module of the model. This makes the error handling easier since they

can check if a particular class is functioning correctly or not. If a class works well and

produces correct output then the modeller need not to check for other instances of this

class but need to check other classes only or their connections for possible errors.)

7. The interface structure facilitates parallel design and makes it easier to design and inte-

grate large and complex systems with better control than the ordinary BN allows.

8. Includes modularity to accommodate dynamic domains.

9. Facilitates both spatial and temporal design.

10. Allows specification of template models in an easy and intuitive way.

11. Allows sharing and reusing of JT structures among subclasses and instances. This facili-

tates solving the greatest challenge of inference for BNs.

Note: while OO is very widely used in software engineering, there is little formal evidence

to support some of the modelling claims coming from the software engineering field [47–49].

However, in sections 3.3.3, 3.3.4 and 3.4 of Chapter 3, how OO properties and features can add

advantages in BN modelling, are described with some example scenarios.

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Interface 1

A S

X D

Interface 2

A S

Y G

A S

N

A S

T L B

F

X D

A S

N

A S

T L B

F

X D

A S

T L B

F

X D

A S

M

Obj A1: Asia

A S

X D

A S

M

A S

T L B

F

X D

M

A S

T
L

B

F

X D

A S

T L B

F

X D

A S

M

A S

T L B

F

X D

Obj A1: Asia

A S

X D

Obj A2: Asia2

A S

Y G

A S

N

Obj A1: Asia

A S

X D

Obj A2: Asia

A S

Y G

A S

N

A S

T L B

F

X D

A S

C M

R

Y G

(c) Class Asia2

(b) Class Asia

(d) Class AsiaEx2

(a) AsiaExt2 BN

(b) Class AsiaEx1

(c) Class AsiaEx1 : Expanded
(b) Class AsiaEx3 : Expanded

A S

T L B

F

X D

A S

T L
B

F

X D

(a) Asia BN (b) Class Asia

(a) Class AsiaEx4
(d) Class AsiaEx5

(f) Class AsiaEx6

(e) Class AsiaEx5 : Expanded

(g) Class AsiaEx6 : Expanded

T L B

F

X D

A S

M

T1 L1 B1

F1

X1 D1

(c) AsiaEx3 BN

Do Xray?

Cost of
XRay

Benefit of
XRay

A S

T L B

F

X D

(c) AsiaExt BN

Do
Xray?

Cost of
XRay

Benefit of
XRay

A S

T L B

F

X D

(d) Class AsiaExt1

Do

Xray?

Cost of
XRay

Benefit of
XRay

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Inherited

Inherited (changed)

Treat? Cost of XRay

AT_T AT_L AT_B

HealthBenefit

A S

T
L

B

F

X D

(b) Class AsiaExt2

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat? Cost of XRay

AT_T AT_L AT_B

Health
Benefit

A S

T
L

B

F

X D

(c) Class AsiaExt3

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat? Cost of
XRay

AT_T AT_L AT_B

Health
Benefit

(d) Class AsiaExt4

A S

T L B

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat?
Cost of
XRay

AT_T AT_L AT_B

Health
Benefit

A S

T L B

F

X D

A S

T L B

F

X D

(a) Asia BN (b) Class Asia

A S

T L B

F

X D

(c) AsiaExt BN

Do
Xray?

Cost of XRay
Benefit of

XRay

A S

T L B

F

X D

(d) Class AsiaExt1

Do

Xray?

Cost of
XRay

Benefit of
XRay

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Figure 1.2: (a) Asia OOBN class and (b) Asia class object embedded in larger patient model. Note that
input nodes are dashed, output nodes are double-lined, with connections limited to input and output
nodes.

1.2.1 Limitations of existing OOBN frameworks

There are some noteworthy limitations in existing state-of-the-art OOBN frameworks defini-

tions. A few of them are listed as follows:

complexity and, in turn, flaws. Moreover, reusability of classes by inheritance allows extending a working and
flaw-less class to construct a new class with fewer flaws, as only potential scope of incorporating flaws is in the
new elements.

§1.3 Contributions of the thesis 7

• A complete OO-definition is missing; for example, inheritance is not fully defined, and

polymorphism is not defined at all.

• The OOBN frameworks proposed by Koller [36] is not able to deal with "Time slice rep-

resentation".

• No dedicated compilation technique is proposed. Performing inference in OOBNs is not

straightforward in the existing OOBN frameworks. Thus, a complicated time-critical op-

eration like inference suffers a lot (slow performance and high expense) due to the need

for intermediate transformation into an ordinary BN and construction of a JT structure

from scratch.

• Definition of the "object" and its characteristics are not explored seamlessly in any of the

existing OOBNs.

• The framework defined in [36] does not account for the dynamic behaviour of an object

[50] and the framework in [37, 51] is limited to only dealing with the change of interface

and change of an intermediate node or link. Moreover, changing of node types, states,

CPTs or attributes is not considered.

• OOBN structure learning from sample data has not been proposed to date, so this could

have implications if the OOBN is widely adopted by technologists/tech-people.

• Type checking and typecasting are not defined in any of the existing formulations of

OOBNs yet.

1.3 Contributions of the thesis

The main contribution of this research is the development of an OOBN theoretical framework,

iOOBN, that overcomes the limitations of existing OOBN implementations by providing all the

key OO principles of inheritance, encapsulation, polymorphism, and abstraction. The research

provides the following attributes:

1. It develops a theoretical framework that gives more effective treatment of inheritance

and other important OO features such as encapsulation, polymorphism, abstraction, type

checking and typecasting by

• demonstrating the modelling power of the framework via a set of case-studies (from

the literature, and a real-world DOOBN project, i.e., Western Grassland Reserve

(WGR)), reengineering existing OOBNs into the iOOBN framework; and

§1.3 Contributions of the thesis 8

• implementing a prototype version of the iOOBN framework.

2. It provides a new incremental (as well as shareable–inheritable) compilation algorithm

for iOOBN inference, which provides computational efficiencies compared to current

methods.

3. It includes a new algorithm for learning an iOOBN inheritance hierarchy from a set of

BNs and OOBNs, and proposes novel measures to compute the reusability and efficiency

of different class hierarchies found in different modelling solutions.

1.3.1 The iOOBN framework

BNs are the most popular PGMs [8] because of their numerous advantages for modelling real-

life problems and applications. However, their construction to model large-scale real-world

problems is challenging. One suitable approach for dealing with large-scale problems is the

use of Object-Oriented Bayesian networks (OOBNs).

To the best of our knowledge, the notion of the Object-Oriented principle, especially with

regard to inheritance (a powerful feature that allows maximum reuse of existing resources), is

neither defined fully nor implemented as yet in the context of BNs or OOBNs. Other essential

features include polymorphism, type checking, typecasting, and abstraction.

Inheritance is the ability to derive attributes and behaviour from pre-existing classes. This

feature allows the deriving of new classes by adding additional required attributes to the exist-

ing classes. Thus, it allows sharing of an already constructed network segment, thus avoiding

the re-computation of an existing segment. Most of the new classes do not need to be built

or defined from scratch. Hence, inheritance plays a substantial role in achieving the goal of

scalability for real-life applications by allowing maximum reusability.

Encapsulation helps modellers protect the components of BNs (by encapsulating a segment

of the BN into a class), protecting it from unauthorized 9 access. It provides access to the

components through interface (input and output) nodes only. As well, the data abstraction

feature allows using a segment of BN (i.e., a class and its objects) without knowing the detail

of its implementation. Classes and objects help in dividing a large BN into smaller parts (i.e.

classes) to be combined later by compositional modelling. The classes can be reused, in the

form of an object, as often as required. This also adds another level of reusability. (These

points are illustrated in Section 3.5.2 in the reengineering of WGR DOOBN.)

The comprehensive power of OO have not been delineated in existing definitions of

9The security is about protecting the integrity of a BN submodel from accidental damage caused by modellers.
This might happen for various reasons such as lack of coordination, mismanagement of the repository, and lack of
proper knowledge of a large system.

§1.3 Contributions of the thesis 9

OOBNs. This was the motivation to develop a theoretical framework which has most of

the OO features (encapsulation, inheritance, polymorphism, abstraction, type checking, and

typecasting), and which also facilitates almost all the benefits of the OO paradigm. (See the

benefits outlined in sections 1.2 and 2.5.2). Hence, in this research, the principles of OO has

been defined and implemented in order to illustrate its advantages of scalability, flexibility and

robustness in the construction of BNs for large and complex real-life applications.

1.3.2 Inference in iOOBN without flattening

In the existing OOBN frameworks [36, 52], dealing with inference is not straightforward. An

OOBN needs to be converted implicitly into an ordinary BN in order to perform inference.

This approach is not efficient enough, especially when converting to a BN is a complex and

time-consuming task. A technique that can circumvent the intermediate construction of an

ordinary BN significantly contributes to reducing the computational complexity.

To date, in the literature of BN compilation, Bangsø et al. [5] proposed an incremental com-

pilation technique where flattening of an OOBN for modification of the OOBN, after building

it once, is not required. However, to the best of our knowledge, the incremental compilation

technique of BNs has been implemented only in [53] and has never been widely used. Be-

sides, it is overly complicated (it is necessary to create and maintain parallel structures. That

means, maintaining Maximal Prime Subgraph (MPS) decomposition and the MPS tree along

with maximal weight clique tree. Performing this requires operations such as clique joining,

marking and replacing the affected portion of the JT, repeatedly applying various complex

(see Section 4.4 of Chapter 4) and expensive operations (those involved in JT creation). Often

the overheads of incremental compilation are the same as for conventional compilation tech-

nique (see also Section 4.3.4.1 in Chapter 4). While these do apply to OOBNs, flattening is still

required in the beginning. A point worth noting is that the original Incremental compilation

technique [4] was proposed for the ordinary BN and its OOBN version [6] did not explain

all aspects of OOBNs, such as how to deal with multiple levels of embedding 10. Moreover,

compiling OOBNs without flattening or compiling iOOBNs (OOBNs with inheritance), as pro-

posed in Chapter 3, has not yet been proposed. To the best of our knowledge, no compilation

technique has been proposed as yet that can utilize the compilation structure of a superclass

or utilize the JTs of embedded objects in a class in order to build the JT of the class. Hence, the

development of a compilation technique (in the iOOBN) that offers all the features mentioned

above is the novel contribution of this thesis.

10Multiple level embedding occurs where a class is embedded in the form of an object within another class and
so on. Each embedding represents a level of embedding; hence, if a class is embedded in another class and the
latter class is embedded in another class, the level of embedding used is two.

§1.4 Thesis Organisation 10

1.3.3 Learning hierarchies of BNs or OOBN classes

Causal discovery, especially one which is automated, is not an easy task [54, 55]. Chicker-

ing [56] proved that finding the best causal model from the super-exponential search space

of all DAGs is NP-Hard. There are many hidden factors associated with this which are com-

plex. Nevertheless, experts and researchers proposed and developed various mechanisms to

produce a solution. A few of these provided heuristic-based methods, and many provided

various measures to compute, compare and choose the best model efficiently by avoiding ex-

ponential calculation. Likewise, machine learning techniques to find the best models are also

prevalent in this arena. However, for OOBNs, there have been no such techniques proposed to

date, perhaps because the OOBN is a relatively new extension and not yet so widely used. In

this thesis, an approach to the learning hierarchy of OOBN classes from a set of BNs or a set of

OOBN classes is proposed. The algorithm builds/learns the hierarchical relations between the

components of the existing systems. Then it searches for structures of classes, subclasses and

superclasses. The hierarchy provides guidance on how to reengineer or transform the existing

systems. This algorithm can also be viewed as an intermediate step of learning OOBN causal

structures from data, leading to the automation of causal structure learning of OOBN classes

from data.

1.4 Thesis Organisation

This chapter introduces the thesis, the motivation for the research, and the main contribution

of the project as well as providing a brief reference to the related literature. The rest of the

thesis is organized as follows:

• Chapter 2 presents, with discussion, relevant previous research to provide the necessary

background to the research presented in the remainder of this thesis.

• Chapter 3 proposes the iOOBN framework with all the necessary definitions and de-

scription of the framework, together with a set of case-studies (from the literature and

including a real-world example, WGR [57]). It also contains the development architec-

ture of a prototype version of the proposed iOOBN framework (Appendix A).

• Chapter 4 presents and analyses the Shareable Inheritable Incremental Compilation

(SIIC) technique.

• Chapter 5 presents a new algorithm to learn an iOOBN inheritance hierarchy from a set

of BNs and OOBN classes, together with analysis of its performance on artificial exam-

ples as well as the WGR real-world example.

§1.4 Thesis Organisation 11

• Finally, the thesis concludes in Chapter 6 with a summary of the research contributions

along with suggesting future directions to enhance and extend this field of research.

Chapter 2

Background

Probability plays a very significant role in our daily life. One of the biggest challenges is the

uncertainty associated with everyday events, that is, the outcomes of most events that occur

are not guaranteed. Probabilistic analysis is the best way to deal with such challenges. In order

to performing such analysis, there are some convenient probabilistic models (PMs) and tools.

This chapter introduces these models: how they help in analysing probability, how they work,

their efficiency, and also their limitations.

This chapter offers a historical perspective of probability and points to related works in

the literature relevant to the thesis. It starts with a chronological account: of the necessity of

probabilities, how the theory of probability evolved, and how such evolution has led to the

development of models for probabilistic analysis. There have been various models proposed

by researchers at different times to address different issues and with a particular goal in mind.

The models differ in nature, policy, procedure and applicability. Each model has some specific

advantages and also limitations. This chapter provides a classification of the models in terms

of their features, policy, nature, and behaviour. It then goes into the detail of some of the most

relevant models.

Next, the most essential operation in a probabilistic model (i.e. inference), is discussed. It is

followed by sections that discuss how a model uses probability analysis and how it deals with

the uncertainty of various real-life problems. The final section discusses KEBN in association

with automated learning in BNs and OOBNs, the learning hierarchy of classes, the importance

of hierarchies, how these have been serving the purpose of science and technology from an-

cient times, how they play an essential role in probabilistic analysis and what roles they play

in various sectors of science and technology.

2.1 Probability, Decision and Utility Theory

The idea of probability has been known about for hundreds of years and used to measure

the uncertainty of various facts. The application of probability is widespread in areas like

12

§2.1 Probability, Decision and Utility Theory 13

medicine, forecasting, law, gambling, farming, business, and education [58].

From the dawn of civilisation, people have had to deal with uncertainties of weather, food

supply, and various other aspects of their environment. They have striven to mitigate the un-

certainty and its effects [59,60]. Even the practice of gambling dates back to about the year 3500

BC, with games of chance being played with bone objects. It could be considered as a precursor

of playing with dice, which was apparently prevalent in ancient Egypt and elsewhere.

It is widely accepted that the mathematical theory of probability was first set out by the

French mathematician Blaise Pascal (1623–1662) and Pierre Fermat (1601–1665), when they

succeeded in deriving exact probabilities for specific gambling problems involving dice. How-

ever, numerical probabilities of various dice combinations had been calculated previously by

Girolamo Cardano (1501–1576) and Galileo Galilei (1564–1642) [61].

Since the seventeenth century, the theory of probability has been further developed and

has been widely applied in diverse fields of study [59]. Nowadays, probability theory is an

essential tool in most areas of engineering, science, and management. Researchers are ac-

tively engaged in the discovery and development of new tools and applications of probabili-

ties in disparate fields such as medicine, meteorology, information from satellites, marketing,

earthquake prediction, human behaviour analysis, the design and development of computer

systems, finance, genetics, law, farming, vegetation, weather forecasting, politics, election out-

come prediction, wars, data and network security, business, education, and research.

2.1.1 Bayes Theorem

Bayes Theorem [62] is a noncontroversial theorem of probability calculus [1]. This theorem was

developed, in the context of gambling, in 1763 by Thomas Bayes, an English statistician and

philosopher. It has found ubiquitous application in the Bayesian statistics, machine learning,

data mining, bioinformatics and almost all contemporary research fields. Bayes theorem is

expressed as:

P (hypothesis ∣ evidence) = P (evidence ∣ hypothesis) × P (hypothesis)
P (evidence)

The likelihood of a "hypothesis" with respect to a piece of "evidence" is the ratio of the joint

probability of both "hypothesis" and "evidence", and the prior probability of "evidence".

For example, an "Xray" test of an Asian patient, who is most likely suffering from "tuber-

culosis", is found to be positive. However, before advising any medication for "tuberculosis"

to the patient, the doctor decides to conduct some analysis on the previous outcomes of the

"Xray" test and its success in correctly indicating the presence of "tuberculosis". The doctor

has come to a conclusion from their analysis that the false positive rate of "Xray" is 5% (i.e., 1

§2.1 Probability, Decision and Utility Theory 14

in 20 healthy, that is, not suffering from tuberculosis) people in Asia are wrongly diagnosed

with "tuberculosis") and a true positive rate (test was successful in correctly indicating tuber-

culosis) is 98%. The analysis also showed that, in general, 40% of people in Asia suffer from

"tuberculosis". The outcomes of the analysis can be summarized as follows:

P (Xray∣T) = 0.98

P (Xray∣¬T) = 0.05

P (TB) = 0.4

P (Xray) = P (T) × P (Xray∣TB) + P (1 − T) × P (Xray∣¬T)

= 0.4 × 0.98 + 0.6 × 0.05 = 0.422

On the basis of the aforementioned prior probabilities, the doctor calculated the likelihood

of the patient being infected with "tuberculosis", given a positive "Xray" result, as follows:

P (T ∣ Xray) = P (Xray ∣ T) × P (T)
P (Xray)

= 0.98 × 0.4
0.422

= 0.93

The likelihood of the patient being infected with "tuberculosis" is thus very high and sug-

gests the doctor can be confident in advising the proper treatment for the disease.

2.1.2 Decision theory

When working with real-life applications that have associated uncertainty, probabilistic anal-

ysis on its own is not enough to make a proper and optimal decision. Along with probabilistic

analysis, sound decision making is also important. The decision may involve finding the most

suitable action from a set of available actions and while doing so, considering the preferences

between the possible outcomes of all the available actions. In dealing with such complexity,

Frank Ramsey’s Utility function [63] offers a particular utility (or value) for each possible

situation, to finally select the most appropriate action [1, 33]. A utility function can estimate

the priority that reflects desirability or expectation of the available outcomes by associating

or mapping them with numeric values. This mapping offers the facility of combining utility

theory with probability theory and points to a decision on which action maximizes the profit

(or minimises loss).

Say, for an action A, regarding all possible outcomes Oi, the utility function U(Oi∣A) is

§2.1 Probability, Decision and Utility Theory 15

available. To evaluate the actionA in terms of its Expected Utility (or, the probability-weighted

average utility), the following formula can be used.

EU(A) = ∑
i

U(Oi∣A) × P (Oi∣A)

As an example, consider the Asian patient example again, but now with some extra utilities

and actions. Suppose, the doctor has two possible actions, namely advising the patient to "Go

for Xray" or "Do not go for Xray". In this case, a utility function need to be considered, namely

"Benefit of the Xray". Now, let us assume the following mapping/association of values for the

utility, U(Xray,Action):

Xray = ”pos”,Action = ”Go for Xray”,Benefit = 80

Xray = ”neg”,Action = ”Go for Xray”,Benefit = −20

Xray = ”pos”,Action = ”Do not go for Xray”,Benefit = −60

Xray = ”neg”,Action = ”Do not go for Xray”,Benefit = 0

Hence, according to the above equation,

EU(”Go for Xray”) = P (Xray = ”pos”) ×U(Xray = pos∣”Go for Xray”)

+ P (Xray = ”neg”) ×U(Xray = pos∣”Go for Xray”)

= 0.422 × 80 + 0.578 × −20

= 33.76 − 11.56 = 22.2

EU(”Do not go for Xray”) = P (Xray = ”pos”) ×U(Xray = pos∣”Do not go for Xray”)

+ P (Xray = ”neg”) ×U(Xray = pos∣”Do not go for Xray”)

= 0.422 × −60 + 0.578 × 0 = −25.32

where,

P (Xray = ”pos”) = P (Xray = ”pos”∣T = ”yes”) × P (T = ”yes”)

+ P (Xray = ”pos”∣T = ”no”) × P (T = ”no”)

= 0.98 × 0.4 + 0.05 × 0.6 = 0.422

P (Xray = ”neg”) = 1 − P (Xray = ”pos”) = 0.578

§2.2 Probabilistic Models: An Overview 16

If no other information or special condition is provided, based on the above utility values,

the decision of the doctor should be to advise the patient to go for an Xray.

2.2 Probabilistic Models: An Overview

In order to perform probabilistic analysis, Probabilistic Models (PMs) are used as a prominent

tool. While developing various tools to assist modellers with flexibility and ease of represen-

tation, researchers developed PMs, namely a mathematical representation of a random phe-

nomenon defined by its sample space and the events within, and probabilities associated with

each event [64]. PMs can incorporate probability distributions with random variables, where

random variables represent the potential outcomes of an uncertain event. In a dice game, the

probability of getting a "6" before throwing the dice can be represented using a variable. Prob-

ability distributions assign probabilities to the potential outcomes of the associated events. If

the dice is fair, then all six sides have the same probability, that is, 1
6 . Assigning this value to

all six variables representing the probability of getting a particular dice face is an example of a

probability distribution.

The role of PMs in decision making is to acknowledge the associated uncertainty of the

inputs and outputs. That means, in some complex applications, that even the input-taking

process and the generated outputs may have uncertainty associated with them. Using a PM

allows us to be able to formulate a new model to be more relevant and more appropriate for

the complicated situation. The key feature of a PM is that it incorporates uncertainty explicitly

in order to understand and quantify risk and to make better management decisions. There are

many PMs and different people classify them differently. A snapshot of the taxonomy of PMs

is shown in Figure 2.1 based on summaries in [43, 65, 66].

In order to perform probabilistic analysis, a suitable model is chosen that best represents

the problem and then, in order to get the expected outcome from the model, a special oper-

ation called ‘Inference’ is performed. Inference in a PM calculates the final outcome for the

application using the defined approach for the particular model.

A model that expresses the conditional dependence between random variables in a graph-

ical structure is known as a probabilistic graphical model (PGM). It offers a framework that

helps in visually representing causal dependencies between variables within a set of random

variables in order to perform probabilistic analysis. Examples include the Bayesian network

and the Markov network. PGMs use graphical representation to encode a complete distribu-

tion over multi-dimensional space. The graph represents a set of dependencies of a particular

distribution in a compact form.

PGMs are mostly used in applications associated with probability theory, statistics (es-

§2.2 Probabilistic Models: An Overview 17

Pr
ob

ab
ili

st
ic

M
od

el
(P

M
)

Pr
ob

.G
ra

ph
ic

al
M

od
el

(P
G

M
)

Directed

Causal Network

Bayesian network (BN) [12]

Dynamic BN

OOBN [46]

Multiply Sectioned BN (MSBN) [42]

Influence Diagram (ID) [67]

Limited Memory ID (LIMIDS) [27]

Decision Network (BDN) [68]

Plate Model [69]

Probabilistic Relational Model (PRM) [70]

Undirected Markov Network

Conditional Probability Model

Class Probability Tree [71]

Graph & rules [72]

Feed Forward Net [73]

Regression Model

Generalized Linear Model [74]

Mixed Model Chain Graphs [75]

Re
la

tio
na

lM
od

el Probabilistic Relational Model (PRM) [70]

OOPRM [76]

Relational BN [77]

Multi-Entity BN [41]

Lo
ca

lP
ro

ba
b.

M
od

el

Conditional BN

Noisy-Or

Generalized Linear Model

Te
m

pl
at

e

Temporal Dynamic BN

Directed
Plate

Probabilistic Relational Model (PRM) [70]

Undirected Relational Markov Network

G
au

ss
.N

et
.

Directed Gaussian BN (GBN)

Undirected Gaussian Markov Random Field (GMRF)

Fi
gu

re
2.

1:
A

ta
xo

no
m

y
of

Pr
ob

ab
ili

st
ic

G
ra

ph
ic

al
M

od
el

s
(P

G
M

s)

§2.3 Bayesian Networks and Bayesian Decision Networks 18

pecially Bayesian statistics), data mining, data analysis and machine-learning. To deal with

uncertainty and probability, PGMs seem to be very effective and have become increasingly

popular because of their ability to represent the conditional independence between random

variables, incorporate dynamic information, and perform both predictive and diagnostic rea-

soning. Moreover, real-world problems usually need a combination of knowledge from a vari-

ety of areas, and this makes PGMs an ideal choice. One of the distinct characteristics of PGMs

is their graphical visualization capability, a facility that, helps specialists from different fields

to cooperate more efficiently.

Probabilistic relational models 1 (PRMs) [70] arose in the early 2000s inspired by relational

database theory, relational algebra and relational logic programming. It is also significant that

BNs were developed for data with the traditional 2D format in mind. Due to tremendous

advancement in the technology, the data is becoming more complex with expanded dimen-

sions and a number of associated attributes [78]. Ordinary BNs are not reliable in modelling

applications to deal with such data.

To provide full access to the class components in order to allow modellers to model large

and complex BN applications, a PRM contains reference slots to establish relations among

objects. However, these reference slots violate the encapsulation and data hiding mechanism

of the OO paradigm and hence introduce challenges in decomposing large applications that

were developed across a group of modellers.

2.3 Bayesian Networks and Bayesian Decision Networks

2.3.1 Bayesian networks

A Bayesian network (BN) [10, 11] is a probabilistic graphical model that (a) compactly repre-

sents the joint distribution over a set of variables in the form of conditional probability tables

(CPTs), one for each variable, and (b) represents a set of conditional dependencies and inde-

pendencies between the set of random variables by means of a directed acyclic graph (DAG).

In a BN, nodes and edges of the DAG represent random variables and their conditional de-

pendencies, respectively. Nodes are connected with an edge or a path consisting of a set of

edges representing conditional dependencies. If there is no such edge or path between two

nodes, then the nodes are known to be conditionally independent. Also, each node has a CPT

attached to it. More details on the BN and its classes are in Section 2.4. BNs can be used to

perform reasoning under uncertainty: more specifically, there are algorithms to compute the

posterior probability distributions over the states of a subset of the variables, given a set of

1Note that some authors classify PRMs as directed graphical models. In this thesis, PRM has been classified
separately because of the difference in the underlying principles of graphical and relational models.

§2.3 Bayesian Networks and Bayesian Decision Networks 19

evidence. A variable does not necessarily represent an event.

The BN, being a graph-based framework, represents the causal relationship among vari-

ous events (cause to effect) using DAGs. This framework provides ease of understanding and

enhances the expressiveness of the dependencies and conditionalization in calculating the like-

lihood of associated events. The calculation of the likelihood of some hypotheses (state of an

event) with respect to a set of evidence (as depicted in Section 2.1.1) can be represented more

effectively using a BN.

DEFINITION 2.1 : BAYESIAN NETWORK

A Bayesian Network (BN) (following [13]) is a Directed Acyclic Graph (DAG) given by

a 3-tuple < N,E,Π >, where

(i) N = a set of chance nodes representing random variables,

(ii) E = a set of directed causal edges representing the direct dependencies between

nodes, with no directed cycles, and

(iii) Π = a set of conditional probability tables (CPTs) or distributions (CPDs), one for

each chance node.

A node ni is a parent of node nj if there exists an edge from ni to nj , denoted by ni → nj .

For each n ∈ N , par(n) ⊂ N is the set of parent nodes of n, and the CPD P (n∣par(n)) is

a function Φ: par(n) ∪ {n} → [0 ∶ 1].

TB (T)

Cancer (C)

Asia (A)

Chance Node

Utility Node

Decision Node

Causal Edge

Smoker (S)

TorC (E)

Xray (X) Dyspnea (D)

Bronchitis (B)

A P(A)

T 0.01
F 0.99

A P(A)

T 0.01
F 0.99

S P(S)

T 0.5
F 0.5

S P(S)

T 0.5
F 0.5

E
T = T T = F

C=T

1.0T

0.0F

C=F

1.0

0.0

C=T

1.0
0.0

C=F

0.0

0.0

E
T = T T = F

C=T

1.0T

0.0F

C=F

1.0

0.0

C=T

1.0
0.0

C=F

0.0

0.0

D
E = T E = F

B=T

0.9T

0.1F

B=F

0.7

0.3

B=T

0.8
0.2

B=F

0.01

0.99

D
E = T E = F

B=T

0.9T

0.1F

B=F

0.7

0.3

B=T

0.8
0.2

B=F

0.01

0.99

B S = T S = F

0.3T

0.7F

0.6
0.4

B S = T S = F

0.3T

0.7F

0.6
0.4

C S = T S = F

0.1T

0.9F
0.01
0.99

C S = T S = F

0.1T

0.9F
0.01
0.99

T A = T A = F

0.05T

0.95F

0.01
0.99

T A = T A = F

0.05T

0.95F

0.01
0.99

X E = T E = F

0.98T

0.02F

0.05
0.95

X E = T E = F

0.98T

0.02F

0.05
0.95

TB (T)

Cancer (C)

Asia (A)
Chance Node

Causal Edge

Smoker (S)

TorC (E)

Xray (X) Dyspnea (D)

Bronchitis (B)

A
T F

0.05T

0.01F

0.95
0.99

TB
A

T F

0.05T

0.01F

0.95
0.99

TB

T F

0.01 0.99

Asia

T F

0.01 0.99

Asia

T F

0.5 0.5

Smoker

T F

0.5 0.5

Smoker

E B

T

T

T

F

F

T 0.9

F 0.7

T 0.8

F 0.01

F

0.1

0.3

0.2

0.99

Dyspnea
E B

T

T

T

F

F

T 0.9

F 0.7

T 0.8

F 0.01

F

0.1

0.3

0.2

0.99

Dyspnea

T C

T

T

T

F

F

T 1.0

F 1.0

T 1.0

F 0.0

F

0.0

0.0

0.0

1.0

E
T C

T

T

T

F

F

T 1.0

F 1.0

T 1.0

F 0.0

F

0.0

0.0

0.0

1.0

E

S
T

T 0.1
F 0.01

F
0.9
0.99

Cancer
S

T
T 0.1
F 0.01

F
0.9
0.99

Cancer S
T

T 0.3
F 0.6

F

0.7
0.4

Bronchitis
S

T
T 0.3
F 0.6

F

0.7
0.4

Bronchitis

E
T

T 0.98
F 0.05

F

0.02
0.95

Xray
E

T
T 0.98
F 0.05

F

0.02
0.95

Xray

Figure 2.2: An ordinary BN: The classic "Asia" example

§2.3 Bayesian Networks and Bayesian Decision Networks 20

As an illustration, Figure 2.2 represents the well-known Asia BN [23] example (note that

this BN is briefly used in Chapter 1 to introduce the BN concept). The nodes of the BN rep-

resent the factors/parameters in the form of random variables. The edges represent various

dependencies and relationships among the nodes. The nodes are: "A" to represent the chance

of a patient has visited Asia, "S", "T", "B", "C", "X" and "D" to represent, respectively, the likeli-

hood of the patient being a smoker, the probability of the patient being affected by tuberculosis,

bronchitis, cancer, the chance of the Xray being positive, and the possibility of the patient suf-

fering from Dyspnea. The node "E" is used as a modelling choice to reduce the number of

parents for Dyspnea and Xray. It does not have any other direct relation with the model. Each

node has its own Conditional Probability Table (CPT) containing the likelihood of its different

states with respect to the related nodes, i.e., parent nodes.

In a Bayesian network that is represented by a DAG, G = {V , E}, the joint probability dis-

tribution of n random variables X1, ..., Xn is stated as:

P (X1, ...,Xn) =
n

∏
i=1
P (Xi∣par(xi))

where par(xi) is the set of parents of node Xi. As an example, for the BN in Figure 2.2, the

joint distribution over all the variables can be represented compactly by CPTs in the BN in the

following way:

P (A,S,T,C,B,E,X,D) = P (A).P (S).P (T ∣A).P (C ∣S).P (B∣S).P (E∣T,C).P (X ∣E).P (D∣E,B)

where A = "Asia"(Visited?), S = "Smoker", C = "Cancer", T = "Tuberculosis", E = "TorC", B =

"Bronchitis", X = "Xray" and D = "Dyspnoea".

The main rationale for building a BN is to calculate the posterior probability of a set of

random variables using the prior probability and conditional probability of the variables and

the evidence available at that time.

BNs are very effective in dealing with various decision-making processes, due to their abil-

ity to represent causal relationships among random variables, incorporating dynamic infor-

mation from a variety of areas with varying degrees of uncertainty, and performing both pre-

dictive and diagnostic reasoning. Moreover, the graphical visualization power of BNs helps

specialists with diverse expertise to cooperate easily [79]. BNs also allow documenting of a

problem and its current state of knowledge, characterizing the overall model of the problem,

as well as behaving like a storehouse of knowledge [33,35]. The process of creating a BN helps

clarify assumptions and identify uncertainties within the system. As information improves,

new data can be added to improve the model.

§2.3 Bayesian Networks and Bayesian Decision Networks 21

2.3.2 Reasoning with BNs

The process of thinking in a logical, sensible way to take a suitable action in a right time is

known as reasoning. According to Charles Sander’s Pierce [80], there are three basic irre-

ducible and indispensable kinds of inference:

1. Deduction: deriving logical conclusions from known premises

2. Induction: deducing a universal conclusion from particular premises

3. Abduction: the only kind of reasoning that helps in introducing new ideas

Handling an uncertain situation and calculating the likelihood of a consequence (conclu-

sion) with logic, statistics, and probability (premises) is known as probabilistic reasoning. An

example of probabilistic reasoning is using past situations and statistics to predict the outcome

of a future event. Analogously in the case of BN, the reasoning is a special action or operation

to draw a conclusion using the premises or evidence provided in the network. As an example,

consider the BN depicted in Figure 2.4: If the chance of "Weather" being "Wet" and evidence of

the "Forecast" on the day of the match is "rainy", then the likelihood computation of the match

"Result" is known as reasoning.

The process of conditioning is performed through a flow of information over the network.

The flow is not bound to be directed towards the direction of the arcs. In a BN "information

flow" refers to computing the posterior probability distribution for a set of query nodes, given

values for some evidence (or observation) nodes. There are four types of reasoning [1]. Fig-

ure 2.3 illustrates the types of reasoning in terms of information-flow pictorially.

1. Diagnostic reasoning: If the information flows from symptoms to causes. The direction

of information flow is opposite of network arcs in this kind of reasoning.

2. Predictive reasoning: When the information flow is from change in causes to the change

in belief of effects. Here the direction of information flow follows the direction of network

arcs.

3. Intercausal reasoning: The reasoning that involves the mutual causes of a common ef-

fect. If multiple causes of a common effect are initially independent, but in the presence

of evidence from any of the causes, other causes are explained away and intercausal rea-

soning takes place.

4. Combined reasoning: In a BN, any node can become a query node, and any node may

contain evidence. In such a situation, none of the aforementioned reasoning types fits

§2.3 Bayesian Networks and Bayesian Decision Networks 22

puting the posterior probability distribution for a set of query nodes, given values
for some evidence (or observation) nodes.

2.3.1 Types of reasoning

Bayesian networks provide full representations of probability distributions over their
variables. That implies that they can be conditioned upon any subset of their vari-
ables, supporting any direction of reasoning.

For example, one can perform diagnostic reasoning, i.e., reasoning from symp-
toms to cause, such as when a doctor observes Dyspnoea and then updates his belief
about Cancer and whether the patient is a Smoker. Note that this reasoning occurs in
the opposite direction to the network arcs.

Or again, one can perform predictive reasoning, reasoning from new information
about causes to new beliefs about effects, following the directions of the network
arcs. For example, the patient may tell his physician that he is a smoker; even before
any symptoms have been assessed, the physician knows this will increase the chances
of the patient having cancer. It will also change the physician’s expectations that the
patient will exhibit other symptoms, such as shortness of breath or having a positive
X-ray result.

Query

direction of reasoning
di

re
ct

io
n

of
 r

ea
so

ni
ng

Query Evidence

Query

QueryQuery

Query

Evidence

EvidenceQuery

Evidence

(explaining away)

Evidence

Evidence

COMBINED

PREDICTIVE

INTERCAUSAL

DIAGNOSTIC

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

D

P

X

SP

C

D

P S

C

X

P S

C

X

P

C

S

DX D

FIGURE 2.2
Types of reasoning.

© 2004 by Chapman & Hall/CRC Press LLC

Figure 2.3: Types of ‘Reasoning’ in a Bayesian network [1].

well. Thus, a combined approach that fits well, can be used for reasoning. This approach

is known as combined reasoning.

.

§2.3 Bayesian Networks and Bayesian Decision Networks 23

2.3.3 Bayesian decision networks

Bayesian networks can be used to make intelligent decisions under uncertainty. To perform

such a crucial task, ordinary BNs are extended by adding decision and utility nodes. This

extended BN is known as Bayesian decision network (Definition 2.2).

DEFINITION 2.2 : BAYESIAN DECISION NETWORK

A Bayesian Decision Network (BDN) is a Directed Acyclic Graph (DAG) given by a

3-tuple < N,E,Π >, where

(i) N = a set of nodes (chance nodes representing random variables, decision nodes

representing actions and utility nodes representing value or utility);

(ii) E = a set of edges (directed causal edges representing the direct dependencies

between chance/decision nodes and chance/utility nodes, with no directed cy-

cles, or directed dotted information links from chance nodes to decision nodes or

precedence links between decision nodes);

(iii) Π = a set of conditional probability tables (CPTs) or distributions (CPDs), one for

each chance node; a set of decision tables, one for each decision node; and a set of

utility functions, one for each utility node.

A node ni is a parent of node nj if there exists a causal edge from ni to nj , denoted by

ni → nj or a link (information or precedence) ni ⇢ nj . For each n ∈ N , par(n) ⊂ N

is the set of parent nodes of n. A node n and its parent node set par(n) jointly define

conditional probability or Utility function or decision table if n is a chance, utility or

decision node, respectively.

Figure 2.4 shows an example of a BDN and its related symbol list. The network is built for

predicting the outcome of a football match based on the weather conditions. A decision is to

be taken to accept the bet or not, based on the weather forecast and the profit or loss in terms

of the utility of winning or losing the bet. "Weather", "Result" and "Forecast" are the chance

nodes representing, respectively, the probability of every possible state of the weather in the

match day, the probability of possible results of the match, and the probability distribution of

various forecasting states. "Accept Bet" is a decision node, representing a decision made by the

system on the basis of posterior probabilities of the chance nodes calculated from their priors,

provided evidences and the utility value defined as a utility function in the utility node "U".

There are four edges "Weather" to "Forecast" and "Result", and "Result" and "Accept Bet" to

utility. These edges represents the causal dependencies (child nodes are causally dependant

on the parent nodes) between the random variables. The only edge from "Forecast" to "Accept

§2.3 Bayesian Networks and Bayesian Decision Networks 24

Forecast
(F)

Result
(R)

Weather
(W)

U

Accept Bet
(AB)

R AB U(R, AB)

win
win
lose
lose

yes 40
no 20
yes -5
no -20

W P(W)

wet 0.3
dry 0.7

F Accept Bet

rainy

cloudy

sunny

yes

no

no

R W = wet

win 0.6
lose 0.4

W = dry

0.25
0.75

F W = dry

rainy 0.60

cloudy 0.25

sunny 0.15

0.10

0.40

0.50

W = wet

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Forecast
(F)

Result
(R)

Weather
(W)

U

Accept Bet
(AB)

R AB U(R, AB)

win
win
lose
lose

yes 40
no 20
yes -5
no -20

Decision

yes

no

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link
wet dry

0.3 0.7

Weather (W)

W

win

wet 0.6

dry 0.25

lose

0.4

0.75

Result (R)

rainy

wet 0.6

dry 0.1

cloudy

0.25

0.4

sunny

0.15

0.5

Forecast (F)
W

F

rainy

cloudy

nosunny

P(W=wet)

0.720

0.211

0.114

P(R=win)

0.502

0.324

0.290

EU(yes)

10.12

-0.56

-2.61

EU(no)

7.55

3.10

2.25

Accept Bet

EU
Accept Bet

(AB)

???

???

yes

no

Expected Utility calculation to make a decision on “Accept

Bet” for the evidence on W = “wet” and R = “win”

Figure 2.4: An ordinary BDN: Football match betting [1].

Bet" is an information link. This link indicates that the "Forecast" node needs to be observed

before a decision is made. The nodes, edges/links, their types and functions are explained

formally in Section 3.2 of Chapter 3. A point worth noting that the decision outcome shown in

the decision table for the decision node "Accept Bet" is not predefined or defined by a modeller;

rather, it is calculated based on the posterior probability of the chance nodes and the utility

value of the utility node. To illustrate this situation, in Figure 2.4, the decision table for the

"Accept Bet" decision node, the Expected Utility (EU) column contains "???" to indicate that

the value is not settable. At the bottom of the figure, a table is shown with a set of evidences

and the calculated EU value for each of the states of the "Forecast" node (a node that must be

observed before a decision is made). Then, based on the maximum expected utility policy, a

decision is taken as shown in the last column of the table.

BDNs have been used for reasoning under uncertainty for decades. The reasoning is sub-

stantial in real-life applications because of their complex nature, large span and associated

§2.3 Bayesian Networks and Bayesian Decision Networks 25

challenges such as the uncertainty of events.

To use the facilities of BDNs, constructing BDNs or modelling in BDNs is the first step.

BDNs can be built in four ways [1]:

1. By-hand, using elicitation methods to capture expert knowledge

2. From models in the literature

3. By automated learning if data is available, or

4. By combinations of the aforementioned techniques.

More detail is provided about the so-called "knowlege engineering" of Bayesian networks be-

low in Section 2.8.

2.3.4 Limitations of BNs

Ordinary BNs suffer from several performance-related issues. The most important is that BNs

are not capable of scaling-up in real-life complex domains. The limitations of BNs can be

divided into the following two classes (though these are overlapping and closely related).

1. Representational issues: An ordinary BN follows a simple propositional logic like rep-

resentation of knowledge in order to construct a knowledge base that can model under

uncertainty. To overcome this issue, several approaches have been proposed, such as

the dynamic BN, the relational BN, the Multi-Entity BN, and the Multiply Sectioned BN

(described in the following section).

2. Scalability issues: The underlying techniques to build a BN are complex and elementary

operations in performing inference are computationally very expensive. Note that BNs

are complex and expensive to construct with cost 2 directly proportional on the size of

the network. When much, or all, of the model is built by hand, as the complexity of the

problem increases, BN modelling methods struggle to scale up. The resultant large com-

plex BNs are difficult to visualise and hard for the domain experts and decision makers

to understand, reducing the uptake and subsequent use of the model. An interesting

fact is that almost all real-life applications are large and complex and suffer from scala-

bility issues. To cope with such complex, large-scale and dynamic real-life problems, an

ordinary BN is not the right choice.

In order to address this issue, various scaling techniques like Idioms, Fragments, Object-

Orientation, relational and template models have proposed; these are described in the

following section.
2The construction cost includes the relevant human experts’ experience and efforts, modellers endeavour, re-

quired hardware and software resources and other relevant stuffs.

§2.4 Other Related Probabilistic Graphical Models 26

2.4 Other Related Probabilistic Graphical Models

From the late 1990s, researchers started to develop theories and techniques to scale up BN

modelling. Thus, there has been much effort to improve BNs in many ways over the years. The

concept of BN and inference in BN have also been extended to suit particular fields to serve

the purpose of probability analysis. The approaches to extending BNs also include versions of

well-known techniques for handling complexity, such as dividing the problem into subparts

and then combining the BN models for the subproblems, and reusing a BN model previously

built and validated for another application. These techniques include Dynamic BNs [81–84],

BN fragments [32], generalised decision-graphs [38], OOBNs [46], PRM [70], OOPRM [76],

varieties combining PRMs and objects, such as module networks [39], PRMs and plate models

[40], multi-entity BNs (MEBNs) [41], idioms [34], and template-based representations [43].

BNs do not represent temporal relationships between variables. The only way of capturing

the temporal relationships between the value of the variables at different points in time (past,

present and future) is to add extra variables of the same type but with different names. In

real-life applications, it is important to model how the world changes with the change in time

from a particular point of time. Dynamic BNs (DBNs) are an extension of BNs that are capable

of modelling changes of probabilities, actions and evidence with respect to time. According to

Korb and Nicholson [1], for a BN with n nodes that model a domain of n variables X = {X1, ...,

Xn}, the DBN that models the change of values in the variables over time should contain one

node for each Xi for each instance of time. For a current time instance t, the immediate past

time instance and immediate future time instance are represented by t−1 and t+1, respectively.

Hence, the nodes for DBN to model such a temporal system is:

1. Current (in time t): {Xt
1, ..., Xt

n}

2. Immediate past (in time t − 1): {Xt−1
1 , ..., Xt−1

n }

3. Immediate future (in time t + 1): {Xt+1
1 , ..., Xt+1

n }

Each time instance is called a "time-slice", and two new types of arcs are introduced, namely

"Intra-slice arcs" and "Inter-slice or temporal arcs". As the names suggest, the arcs that repre-

sent a temporal relation between variables within a time-slice are intra-slice arcs and the arcs

between the variables of successive time instances are inter-slice arcs. The latter type can be

between the same variables or between different variables at successive times. These arcs deal

with the effect of the change in one variable in time t on the other variable of time t + 1.

In recent years, with the growing interest of relational pattern extraction, Relational BNs

(RBNs) have gained much importance. These are an extension of ordinary BNs that allow

§2.4 Other Related Probabilistic Graphical Models 27

relational data representation [78]. This model was called the "Probabilistic Relational Model"

(PRM) and was first proposed by Koller and Pfeffer [85]. The concept of objects (as opposed

to random variables and their attributes in BNs), objects’ properties, and relationship between

objects are at the core of this model. It has a similar different relation to BNs as relational logic

has to propositional logic. The model specifies a template for a probability distribution for a

database. The template includes a relational component for describing the relational schema

and a probabilistic component for describing the probabilistic dependencies [86].

Later, Nevile and Jensen [87] proposed the term "RBN" to refer to the BNs that can model

relational data, i.e., the "PRMs" as proposed by Koller. They also proposed the use of the term

"PRM" for the type of PGMs that mines statistical patterns from relational data rather than

extended BNs that model relational databases. Note that there is another kind of RBN, pro-

posed by Jaeger [88]. This is entirely different from the PRMs (renamed as RBNs) proposed by

Koller. Jaeger’s RBN is an extension of the BN using First-Order logic (FOL). For representing

probabilistic relations, it is more powerful and expressive than the ordinary BN, as it uses a

powerful FOL in contrast to propositions. Using FOL allows the adding of constraints on the

equality of events, defining complex, nested functions and a recursive network.

Gaussian Bayesian networks (GBNs) [89] are a particular type of BN where all of the vari-

ables are continuous, and all of the CPDs for the variables are linear Gaussians. It is used to

define a continuous joint distribution and provide an alternative representation for a multi-

variate Gaussian distribution class [70].

Multiply-sectioned BNs (MSBNs) [42] were proposed with the localisation of queries and

evidence in mind. By localisation, the authors meant that at a particular point in time, queries

are directed towards a part of the whole network. A point to note is that the original for-

mulation of BNs (ordinary BNs) do not consider the structure in the domain and the whole

network is treated as a homogeneous network of the variables under consideration. In such

a system, probability propagation for inference is inefficient since, for localized evidence, the

whole network needs to be updated. MSBN offers a localisation-preserving partition of a BN

by allowing a set of separate Bayesian sub-networks. These sub-networks are transformed

into a set of permanent JTs such that evidential reasoning can occur in any one of them at any

time. This also ensures that the calculated marginal probabilities are the same as if they were

calculated in the homogeneous network.

The Multi-entity Bayesian network (MEBN) [41] is a first-order language for modelling

uncertainty using first-order logic language. It combines BNs with FOL to provide BNs with

the power of first-order expressiveness and uses FOLs as the means of modelling probability.

The MEBN specifies parameterized fragments of BNs (a.k.a. MFrags) to express probabilistic

§2.4 Other Related Probabilistic Graphical Models 28

relationships among a small collection of related hypotheses in order to form a probabilistic

knowledge base. A set of instantiated, combined MFrags form an arbitrary degree of complex

graphical probability models. An MFrag can be instantiated any number of times, and that en-

ables an MEBN to express complex graphical models with repeated structures. Hence, MEBN

is a compact language capable of representing knowledge at a natural level of granularity. Like

BNs, the MEBN also uses directed graphs to define joint probability distributions.

Fragments, proposed by Laskey and Mahoney [32], are large-scale BN construction

schemes where knowledge is specified in larger and semantically meaningful units, called

"fragments". A fragment is a set of related random variables that can be constructed and rea-

soned about separately from the others. The OO concepts are used to represent and manipulate

fragments. In fragments, input variables are used to specify interfaces and so-called "resident"

variables are used to encapsulate private data.

Authors emphasise network composition rather than network construction. In fact, any

vast network can be constructed from non-decomposable small units. If any method can pre-

compute and store them, then computation for a new but slightly different (perhaps larger)

network construction need not be started from scratch. The framework allows for representing

asymmetric independence and canonical intercausal interaction.

Idioms: Although fragments [32] provide the ability to solve real-world, large-scale prob-

lems by providing methods for defining component-level BNs and combining them into a

consistent model, knowledge engineers still need a guide to adopting past inference solutions

to current problems. Inspired by design patterns, Fenton [34] described a solution to these

problems based on the notion of generally applicable "building blocks" that can be combined

into objects: they named these "idioms".

By combining the idea of idioms, some large-scale problems may be addressed and solved.

However, there are some common problems of patterns in software engineering and Idioms in

BNs. These are:

1. There is no guarantee that patterns are suitable enough to model all real-life applications.

2. It is hard to find appropriate patterns/Idioms due to overlapping segments among pat-

terns.

3. Some complex real-life applications require more than one pattern which may lead to

undesirable overheads.

Sub-networks: GeNIe [28] supports another specialised form of BNs, i.e., sub-networks.

Sub-networks cannot be characterised as classes in OOBNs (see Section 2.5 for more on OOBNs

and classes). It allows building a hierarchy of embedded networks and the hierarchy needs

§2.4 Other Related Probabilistic Graphical Models 29

manual maintenance. In the case of any change in one sub-network at any level of the hier-

archy, all other sub-networks in the lower levels connected to this sub-network need manual

changes. Moreover, if a modeller embeds multiple copies of the same sub-network, they have

to make changes in each of the instances.

Object Oriented BNs (OOBNs) [46], incorporates OO features in BNs to resolve the so-

called "scalability" problem by ensuring reuse of existing and previously defined components.

It allows encapsulating a BN segment in a class and reuse that segment in the form of "objects".

It is a great approach to utilize the OO features, such as encapsulation, abstraction, inheritance,

and polymorphism, in BN arena to provide various facilities to the modellers. More on OOBNs

are explained later in Section 2.5 in detail.

In Template-based representation, a PGM specifies a joint distribution over a fixed set of

random variables. This fixed set and the distribution can be used in many different situa-

tions. For example, a student performance observation network can be applied to multiple

students. Basically, all the students share the same structure – the components in this structure

can be viewed as attributes. Only the attributes’ variables differ between students. Koller and

Friedman [43] called this model "variable-based" because of the focus on the presentation on

random variables.

Koller and Friedman [43] offered a general framework for defining templates for fragments

of the probabilistic model. These templates can be reused both within a single model and

across multiple models with different structures. The two template-based representation lan-

guages that can be applied to the theory of OOBNs are Plate models and PRMs [40].

Object Oriented Probabilistic Relational Model (OOPRM): Probabilistic relational mod-

els (PRMs) [70] (introduced briefly in Section 2.2) are an alternative to OOBNs that were pro-

posed in the early 2000s, inspired by relational database theory, relational algebra and rela-

tional logic programming.

While the original PRM did not include inheritance, the OOPRM [76] extends the PRM

framework by introducing OO concepts such as interfaces, inheritance and polymorphism.

Compared with the PRM, it has another special feature, i.e., the inverse reference slot, which

helps in more efficiently accessing the attributes of classes. However, an interesting fact is that

the OOPRM has the same issues as the PRM with reference slots, while inverse reference slots

also violate encapsulation, and the OOPRM is thus less flexible to extension, modification,

decoupling, and decomposition. Moreover, in an OOPRM, the reference slot chains and in-

verse reference slot chains make modification and reuse far more complicated, as the modeller

needs to consider how a class is embedded in the whole system when making even a simple

modification to a single class. In addition, while the PRM and OOPRM frameworks allow

§2.4 Other Related Probabilistic Graphical Models 30

the compact representation of relationships between classes that are instantiated with multi-

ple objects, they do not provide the utility and decision nodes that allow BNs (and OOBNs)

to be used for decision-making and utility computation. Finally, while the OOPRM has been

implemented in a research software tool, AGrUM [90], it is not available in any commercial

modelling tool, and there seem to be very few real-world OOPRM models described in the

literature.

Table 2.1 demonstrates a comparative study of the probabilistic models, described in Sec-

tion 2.4 and Section 2.5, in terms of their significant features, limitations and a suggestive

model to overcome the limitations.

§2.4 Other Related Probabilistic Graphical Models 31

Ta
bl

e
2.

1:
C

om
pa

ri
ng

Pr
ob

ab
ili

st
ic

M
od

el
s.

M
od

el
s

Fe
at

ur
es

Li
m

it
at

io
ns

O
ve

rc
om

in
g

Te
ch

ni
qu

es

O
rd

in
ar

y
B

N
R

ep
re

se
nt

s
kn

ow
le

dg
e

us
in

g
pr

op
os

it
io

ns
an

d
pr

ob
ab

ili
ty

D
is

tr
ib

ut
io

ns

Sc
al

ab
ili

ty
O

O
BN

,T
em

pl
at

es
,F

ra
gm

en
ts

,I
di

om
s,

PR
M

,O
O

PR
M

Ti
m

e-
sl

ic
e

re
pr

es
en

ta
ti

on
D

yn
am

ic
BN

R
ep

ea
te

d
st

ru
ct

ur
e

O
O

BN
,T

em
pl

at
e,

Id
io

m
s,

Fr
ag

m
en

ts
D

ea
lin

g
w

it
h

lo
ca

lis
at

io
n

of
qu

er
y

M
SB

N
Ex

pr
es

si
ve

ne
ss

M
EB

N
,R

el
at

io
na

lB
N

D
yn

am
ic

B
N

M
od

el
lin

g
ch

an
ge

in
un

ce
rt

ai
nt

y
w

it
h

re
sp

ec
tt

o
ti

m
e

R
eq

ui
re

s
ex

tr
a

no
de

s
to

de
al

ex
pl

ic
it

ly
w

it
h

ti
m

e
st

ep
s

O
O

BN
,O

O
PR

M

Sc
al

ab
ili

ty
O

O
BN

,O
O

PR
M

R
el

at
io

na
lB

N
Ex

te
nd

s
BN

by
ad

di
ng

Fi
rs

tO
rd

er
Lo

gi
c,

fa
ci

lit
at

es
ne

st
ed

an
d

co
m

pl
ex

fu
nc

ti
on

de
fin

it
io

ns
Sa

m
e

as
BN

s
ex

ce
pt

ex
pr

es
si

ve
ne

ss
O

O
BN

,T
em

pl
at

es
,F

ra
gm

en
ts

Id
io

m
s,

PR
M

,O
O

PR
M

M
SB

N
(1

)F
ac

ili
ta

te
s

lo
ca

liz
ed

qu
er

y
(2

)A
vo

id
s

pr
ob

ab
ili

ty
pr

op
ag

at
io

n
th

ro
ug

ho
ut

w
ho

le
BN

(1
)D

oe
s

no
tp

ro
vi

de
m

ax
im

um
re

us
ab

ili
ty

su
ch

as
O

O
de

fin
it

io
ns

(2
)S

am
e

as
BN

ex
ce

pt
sc

al
ab

ili
ty

O
O

BN
,O

O
PR

M

M
EB

N
(1

)P
ro

vi
de

s
a

Fi
rs

t-
or

de
r

la
ng

ua
ge

fo
r

m
od

el
lin

g
ap

pl
ic

at
io

n
un

de
r

un
ce

rt
ai

nt
y

(2
)D

efi
ne

s
M

Fr
ag

to
al

lo
w

re
pe

at
ed

st
ru

ct
ur

e

(1
)D

oe
s

no
tp

ro
vi

de
m

ax
im

um
re

us
ab

ili
ty

lik
e

O
O

de
fin

it
io

ns
(2

)S
am

e
as

BN
ex

ce
pt

fo
r

ex
pr

es
si

ve
ne

ss
(3

)D
ec

is
io

n
an

d
U

ti
lit

ie
s

ar
e

no
ts

up
po

rt
ed

O
O

BN
,O

O
PR

M

Fr
ag

m
en

ts
(1

)O
ff

er
s

fr
ag

m
en

t(
no

n-
de

co
m

po
sa

bl
e

un
it

)a
s

a
se

to
fv

ar
ia

bl
es

(2
)P

re
lim

in
ar

y
Id

ea
of

O
O

BN
s

N
ot

a
co

m
pl

et
e

O
O

-s
ys

te
m

an
d

pa
st

in
fe

re
nc

e
re

su
lt

s
ca

nn
ot

be
us

ed
O

O
BN

,I
di

om
s

Id
io

m
s

(1
)O

ff
er

s
co

m
po

si
ti

on
al

pr
ob

ab
ili

ty
m

od
el

lin
g

(2
)A

la
rg

e
sy

st
em

ca
n

be
re

pr
es

en
te

d
by

a
se

to
fI

di
om

s
to

so
lv

e
it

by
co

m
bi

ni
ng

th
e

so
lu

ti
on

s
of

th
e

id
io

m
s

(1
)A

ll
pr

ob
le

m
s

m
ay

no
tb

e
de

co
m

po
sa

bl
e

by
Id

io
m

s
(2

)m
ay

le
ad

to
un

de
si

re
d

ov
er

he
ad

s
O

O
BN

Te
m

pl
at

es
(1

)O
ff

er
s

a
sp

ec
ia

ls
et

of
ra

nd
om

va
ri

ab
le

s,
ca

lle
d

te
m

pl
at

e.
(2

)T
em

pl
at

e
is

a
ge

ne
ra

lf
or

m
of

an
an

al
og

ou
s

se
gm

en
ts

in
a

m
od

el
an

d
he

lp
s

in
de

fin
in

g
a

co
m

m
on

so
lu

ti
on

A
ll

th
e

fe
at

ur
es

of
O

O
-p

ar
ad

ig
m

su
ch

as
in

he
ri

ta
nc

e,
en

ca
ps

ul
at

io
n,

po
ly

m
or

ph
is

m
ar

e
no

td
efi

ne
d

O
O

BN

O
O

B
N

In
tr

od
uc

es
O

O
fe

at
ur

es
(i

nh
er

it
an

ce
,e

nc
ap

su
la

ti
on

,
po

ly
m

or
ph

is
m

)t
o

BN
s

R
ec

ur
si

ve
de

fin
it

io
n

no
ta

llo
w

ed
O

O
PR

M

PR
M

(1
)E

xt
en

ds
BN

s
by

in
tr

od
uc

in
g

cl
as

se
s

an
d

de
fin

in
g

th
e

re
la

ti
on

s
of

at
tr

ib
ut

es
by

re
fe

re
nc

e
sl

ot
s

(2
)M

od
el

s
re

la
ti

on
al

da
ta

by
re

la
ti

on
al

lo
gi

c

R
ef

er
en

ce
sl

ot
s

vi
ol

at
e

en
ca

ps
ul

at
io

n
Pu

re
O

O
-n

ot
io

n
D

ep
en

de
nc

y
ad

de
d

by
re

fe
re

nc
e

sl
ot

s
m

ak
es

ex
te

ns
io

n,
m

ai
nt

en
an

ce
an

d
de

co
m

po
si

ti
on

di
ffi

cu
lt

O
nl

y
ra

nd
om

va
ri

ab
le

s
ar

e
su

pp
or

te
d

O
O

BN

O
O

PR
M

(1
)I

nt
ro

du
ce

s
O

O
fe

at
ur

es
(i

nh
er

it
an

ce
,e

nc
ap

su
la

ti
on

,p
ol

ym
or

ph
is

m
)t

o
PR

M
s

(2
)I

nv
er

se
re

fe
re

nc
e

sl
ot

an
d

in
te

rf
ac

e

C
om

pl
ex

re
pr

es
en

ta
ti

on
O

O
BN

O
nl

y
ra

nd
om

va
ri

ab
le

s
ar

e
su

pp
or

te
d

O
O

BN
R

ef
er

en
ce

an
d

in
ve

rs
e

sl
ot

s
vi

ol
at

es
en

ca
ps

ul
at

io
n

Pu
re

O
O

-n
ot

io
n

M
ai

nt
en

an
ce

,d
ec

om
po

si
ti

on
an

d
ex

te
ns

io
n

is
di

ffi
cu

lt
Pu

re
En

ca
ps

ul
at

io
n

an
d

ab
st

ra
ct

io
n

§2.5 Object-Oriented Bayesian Networks (OOBNs) 32

2.5 Object-Oriented Bayesian Networks (OOBNs)

This section introduces OOBNs, a variant of ordinary BNs which include object-oriented fea-

tures from software engineering, and is the focus of this thesis. The core features and principles

of Object-Orientation are discussed briefly before several variants of OOBNs are explained and

compared. Note that a fuller and more formal presentation of OOBNs is given in Chapter 3, as

part of the new iOOBN framework.

2.5.1 Object-Orientation

If the whole universe can be seen as a programmed system, then every component in the uni-

verse is an object of a particular class. This notion has been adopted in the programming

paradigm to introduce object-oriented programming. Object-Oriented programming (OOP) is

a paradigm that represents real-life entities as "objects" (an entity with particular attributes/-

data and behaviour of the attributes in the form of methods or functions) [91]. By defining the

interaction between these objects, computer programs and applications are created [92]. A fea-

ture of objects is that an object’s procedures can access and often modify the data fields of the

object with which they are associated with (note that objects have a notion of "this" or "self").

In OO programming, computer programs are designed by building them out of objects that

interact with one another. The Object-Oriented concept revolutionised software technology by

allowing maximum reuse of the existing resources and by providing scalability.

In general, objects are instances of classes which typically also determine their type. The

classes are considered as blueprints (how and what makes an object, how all components are

related), and objects are their instances. The four most significant features of OOP are,

1. Encapsulation: Hiding data from unauthorized access (see Footnote 9 of Chapter 1). Data

and its behaviour defining methods are packetized into objects.

2. Abstraction: Providing a generalized view to allow distributed, modularized, reusable

and expandable development.

3. Polymorphism: Having multiple forms with a single name. This allows substituting the

appropriate version of an object/instance for a particular application.

4. Inheritance: The same properties between classes are written once in a class (in the parent

class or superclass) and are inherited in other classes (in the child class or subclass). This

avoids the need to create a class from scratch. Inheritance helps avoid "reinventing the

wheel" by ensuring reusability of existing resources and minimizing redundancy, and

thus it supports scalability.

§2.5 Object-Oriented Bayesian Networks (OOBNs) 33

2.5.2 Motivation for OOBNs

A well-known drawback of the BN is that it becomes complex when used to design large

real-life applications. Extending the system to add functionalities, modifying an existing ap-

plication to fit that in modelling a similar application, and maintaining a large complex BN

system are hard. Even very little change in the system requires full domain knowledge. One

approach that has been adopted from object-oriented principles of software engineering that

has been useful in dealing with large-scale problems is Object-Oriented Bayesian networks

(OOBNs) [36, 37]. OO principles allow BNs to encapsulate networks into classes and objects

defined with attributes of similar characteristics and with a single goal of computation which

provides scalability (in terms of reusability) to BNs. Due to the ever-growing complexity of

constructing BNs, reusability is a potential technique for constructing a large BN to use in

real-life applications. Introducing OO features in the BN paradigm solves a lot of well-known

limitations of BNs. Reusability, anti-redundancy, and modularity (where a particular class is

responsible for one particular type of operation) decouples a large system and makes it easy-

to-maintain and extend. Encapsulation enables data hiding and privacy. Abstraction provides

an easy interface in working with some segments of BNs without knowing the details of the

segment. These attributes make the OO concept attractive for use in BNs to be used in large

and complex applications.

There are many advantages claimed for using OOBNs instead of ordinary BNs. A non-

exhaustive list follows:

1. Provision of a modular structure which allows greater flexibility and robustness [6]. It

adopts encapsulation and makes probabilistic objects reusable

2. Reusability of tested and correctly functioning components avoids the complexity of re-

construction/design and correctness testing. That is, it avoids the tendency of "Reinvent-

ing the wheel"

3. Abstracting/hiding the internal complexity of a class and providing a simpler interface

to its users

4. Redundancy (with respect to reusability) avoidance provides scalability

5. Along with its flexibility, strong type checking can ensure avoidance of unintentional

flaws in modelling

6. Enables design of large BNs with fewer flaws with easier maintenance and management

of changes

§2.5 Object-Oriented Bayesian Networks (OOBNs) 34

7. Superior error handling

8. Interface structure facilitates parallel design and thus supports a team approach in de-

signing and integrating large and complex systems

9. Provides modularity to accommodate dynamic domains

10. Facilitates both spatial and temporal design [93]

11. Allows specification of template models in an easy and intuitive way

12. Allows sharing and reusing of JT structures among subclasses and instances that in turn

solves the greatest challenge of inference for BNs

OOBNs are inspired by object-oriented principles from software engineering (e.g. [94]),

where subparts of the overall model are represented by classes that contain both nodes and

objects (instances of other classes), giving a composite and hierarchical structure. These key

concepts were first introduced by Koller and Pfeffer [36], and are described in some detail

below. Connections between objects are strictly limited to define input and output inter-

face nodes, supporting the OO concepts of encapsulation, abstraction and information hiding.

Thus a modeller may embed an object in the larger model without knowing its details, and the

decision-maker can view all or parts of the model at different levels of abstraction, aiding un-

derstanding and acceptance. The use of classes also supports the maintenance of the models,

as any change (e.g., updating the model parameters when new data becomes available) needs

only be made once, in the class, and the change is automatically propagated to all the objects

of that class, in any number of OOBNs. Other advantages of OOBNs include supporting the

building of large OOBNs in parallel by multiple modellers, who only need to agree on the class

interfaces; providing modularity which limits the scope of changes and reduces the chance of

a model change introducing errors; and facilitating the design of both temporal 3 and spatial

models.

In the OO paradigm, inheritance is the ability to derive attributes and behaviour from pre-

existing classes, which enables a greater level of reusability and scalability. In current OOBN

modelling, every new class is a separate entity, regardless of its similarities to existing classes.

Incorporating inheritance into an OOBN framework means allowing classes to be "extended",

with new classes – called subclasses – to be defined in terms of "inheriting" certain elements

from the original class, along with the differences. This should allow the reuse of already

constructed network segments, as well as supporting maintenance.

3Hugin implements dynamic Bayesian networks, used for explicit reasoning over time, using OOBNs.

§2.5 Object-Oriented Bayesian Networks (OOBNs) 35

To solve the limitations of BN, especially scalability issues, OOBN theories, and techniques

have been developed to cope with large-scale modelling problems by adopting OO concepts

from software engineering. This approach integrates abstraction and composition concepts

into BNs’ structure, giving them the ability to model compositionally and hierarchically.

Until now, OOBNs have been applied in a variety of fields, such as medicine [95], environ-

mental management [96], agriculture [97] and mechatronics [98]. A survey of the applications

of OOBNs can be found in [1]. The application area of BNs is vast. Some of the applications are

listed in [1, 99–102]. Moreover, from their inception, BNs have been improved in many ways

and applied in uncountable applications. Listing all of them is beyond the scope of the thesis;

however it is clear that while BNs are now very widely used, OOBNs have not been anywhere

near as widely adopted, despite their potential to help what has been called a “bottleneck” in

BN knowledge engineering [1].

The claimed advantages for modelling OOBNs (listed above), over ordinary BNs, are in the

most part based on claimed advantages of an OO approach in software engineering [47–49].

However many of them have not been demonstrated in practice in OOBN, in part because of

the limited support for OO features, including inheritance, and the limited number of OOBN

applications (at least compared to other BN applications).

2.5.3 The OOBN proposed by Koller and Pfeffer

Koller and Pfeffer first proposed Object-Oriented BNs in [36], where they extended Bayesian

networks formulation with encapsulation and inheritance capabilities, to deal with scalability

issues, and to achieve compactness and modularization.

Koller and Pfeffer proposed OOBNs in terms of classes and objects with a particular inter-

face for objects. The interface helps objects to deal/interact with the outer world. This defi-

nition allows OOBNs to be interpreted as a stochastic function. In addition, their framework

provides an algorithm for belief propagation in OOBNs.

This framework, however, has several significant drawbacks. Though the encapsulation

is well defined and inheritance is introduced, the latter concept (inheritance) was not fully

defined and hence was never implemented. More specifically, they described inheritance in

terms of some graphical structure sharing but offered no clear guidelines for parameter shar-

ing among OOBN classes. For example, if a class is given (DAG), it can be used to define new

classes, where the new class DAG is a super-DAG of the given DAG. Moreover, other key as-

pects of object-orientation in software engineering, for example, type checking and typecasting

facilities, were neither described nor defined at all. Further, polymorphism, a vital feature of

object-orientation arising from inheritance, is not explained. Moreover, how to deal with many

§2.5 Object-Oriented Bayesian Networks (OOBNs) 36

practical issues such as (a) interfaces having unequal number of nodes, (b) different number of

embedded nodes, and (c) differences in the types of the nodes in a subclass, were not defined

in Koller and Pfeffer’s formulation of OOBNs. Other notable OO-features such as polymor-

phism, abstraction and type checking are also missing. The framework does not contain any

definition or explanation on how to change an object, embedded in a class, or how to construct

an object. Hence, the real power of the OO paradigm is not exploited. Most importantly, these

authors did not implement their proposed OOBN framework.

2.5.4 The OOBN proposed by Bangsø et al.

Bangsø et al. [5, 37] proposed another OOBN framework, the "Plug and Play OOBN", where

several limitations of the existing OOBN (Koller-Pfeffer’s) definitions have been overcome and

some additional features, such as the dynamic changing of object structures, have been intro-

duced. This framework introduces incremental compilation and performing probability prop-

agation in an OOBN very efficiently.

The authors proposed a mechanism for changing the dynamic object via minimal operation

and also an efficient technique for belief propagation by a JT modification based approach. This

approach means that there is no need to construct a JT from scratch for each and every change

in the BN or OOBN. Instead, it is only necessary to modify the minimal subgraph(s) that have

been affected by the change, and only the affected portion in the JT. This approach has proved

to be significantly effective one for compiling a BN.

However, there are still some gaps in the definition. The authors did not define inheritance

in details in the framework as this formulation still lacks: A definition of multiple-level embed-

ding (as described in Footnote 10 above), any policy to deal with different types of nodes in the

interface or in the embedded level of a class, and facility to restrict the sharing of a particular

segment of a superclass. Furthermore, their framework did not include type checking or poly-

morphism. Most importantly, even the features they allow for have never been implemented

in any of the existing frameworks or software applications to date.

The concepts of object formation, instantiation, dynamic maintenance, inheritance and

other important properties of the OO paradigm, which enable the highest level of reusabil-

ity, have not been fully adopted or developed as yet. These concepts have only been proposed

and described as a promising extension of OOBNs in several publications such as [36,37], [97],

and [1].

§2.5 Object-Oriented Bayesian Networks (OOBNs) 37

2.5.5 The OOBN proposed by Huang et al.

Recently, Huang et al. proposed another formulation of OOBNs [50] with the limitation of the

previous two formulations (i.e., Koller’s and Bangsø’s OOBNs) in mind. It is claimed that this

framework contains a better and clearer explanation of inheritance in OOBNs. Indeed, the ex-

planation of encapsulation in this framework is clearer and the guidelines provided regarding

inheritance is superior than the other formulations/frameworks. However, the inheritance ex-

planation is still not adequate. These authors did not explain any specific inference technique

dedicated to the framework that best uses the inheritance facility. Moreover, some very signif-

icant features of OO-paradigm, such as polymorphism, type checking and typecasting, are not

defined in the framework.

The framework is partially implemented (not all inheritance features are implemented) by

the authors using the API of UnBBayes in Java programming language. There are some Java

and UnBBayes version related inconsistencies in the implementation. Hence, the code base

(that they shared on request) for the implementation is not helpful for adding new features or

extending the existing features.

2.5.6 Comparison of existing OOBN frameworks

Table 2.2 illustrated a comparison of the features supported by the OOBN formulations pro-

posed by Koller and Pfeffer, Bangsø and Huang et al.

The first implementation of OOBNs was in the 2003 version of Hugin [103], a widely used

and (with Netica) the longest-established commercial BN software tool, but one that still does

not include any implementation of inheritance. The OOBN framework presented by Bangsø

et al. [37] did provide a limited form of inheritance (although only a subclass is able to change

the interface and the hidden structure).

Table 2.2: Comparison of Koller–Pfeffer’s, Bangsø’s and Huang’s OOBN frameworks.
Features OOBN (Koller) OOBN (Bangsø) OOBN (Huang)

Encapsulation ✓✓ ✓✓ ✓✓
Inheritance ✓ ✓ ✓✓
Abstraction ✓ ✓ ✓✓
Inference ✓ ✓✓ ✓
Time-slice representation − ✓✓ ✓✓
Real object notion − − −
Typecasting and Type-checking − − −
Polymorphism − − −

✓✓ : Clearly defined ∣ ✓ : Vaguely defined ∣ − : Not defined at all

§2.6 Software for Existing Probabilistic Models 38

2.6 Software for Existing Probabilistic Models

There are numerous implementations of various Probabilistic Graphical Models. Each has

some speciality and a list of features. Some are free, some are open source, and some are com-

mercial. Some support BNs (directed models), while some support relational or undirected

models. They also differ in underlying methodologies, mechanisms to perform inference,

learning, and making decisions. Some of the tools support particular programming languages

and are compatible with various operating systems. Each serves a particular purpose and has

limitations for some features as opposed to others. Some of the tools support GUI+API, some

offer only API, or only programming languages, and some offer query languages.

Table 2.3 compares the critical features of some popular BN tools, while Table 2.4 does the

same for some popular relational modelling tools.

§2.6 Software for Existing Probabilistic Models 39

Ta
bl

e
2.

3:
C

om
pa

ri
ng

ke
y

fe
at

ur
es

of
po

pu
la

r
BN

to
ol

s
B

ay
es

ia
n

ne
tw

or
k

To
ol

na
m

e
C

om
m

er
ci

al
/

O
pe

n
so

ur
ce

G
U

I
/

Pr
og

ra
m

m
in

g
O

O
-f

ea
tu

re
s

Su
pp

or
te

d
In

fe
re

nc
e

Fe
at

ur
e

Le
ar

ni
ng

Fe
at

ur
e

C
on

ti
nu

ou
s

D
at

a
Su

pp
or

t

La
ng

ua
ge

s
su

pp
or

te
d

fo
r

A
PI

W
el

l
D

oc
um

en
te

d
in

En
gl

is
h

O
th

er
Fe

at
ur

es

H
ug

in
[1

03
]

C
om

m
er

ci
al

G
U

I
Ye

s
Ex

ac
ta

nd
A

pp
ro

xi
m

at
e

Le
ar

ni
ng

BN
s

w
it

h
m

is
si

ng
da

ta
Ye

s
C

,C
++

,
Ja

va
,.

N
ET

,
A

ct
iv

eX
-s

er
ve

r
Ye

s
Se

ns
it

iv
it

y
A

na
ly

si
s

N
et

ic
a

[2
9,

10
4]

C
om

m
er

ci
al

G
U

I
N

o
V

ar
io

us
In

fe
re

nc
e

Le
ar

ni
ng

w
it

h
m

is
si

ng
da

ta

D
is

cr
et

iz
ed

C
on

ti
nu

ou
s

D
at

a

C
,C

++
,C

#,
V

is
ua

lB
as

ic
,

M
at

La
b,

C
Li

sp
Ye

s
Se

ns
it

iv
it

y
A

na
ly

si
s

Ba
ye

si
aL

ab
[1

05
]

C
om

m
er

ci
al

G
U

I
N

o
Ex

ac
ta

nd
ap

pr
ox

im
at

e

Pa
ra

m
et

er
le

ar
ni

ng
by

m
ax

im
um

lik
el

ih
oo

d.
St

ru
ct

ur
e

le
ar

ni
ng

w
it

h
m

is
si

ng
da

ta

D
is

cr
et

iz
ed

C
on

ti
nu

ou
s

D
at

a
Ja

va
Ye

s

Su
pe

rv
is

ed
an

d
un

su
pe

rv
is

ed
le

ar
ni

ng

Pr
ob

aY
es

/
Pr

oB
T

[1
06

]
C

om
m

er
ci

al
St

ru
ct

ur
ed

Pr
og

ra
m

m
in

g
La

ng
ua

ge
N

o
Ex

ac
ta

nd
ap

pr
ox

im
at

e
Pa

ra
m

et
er

an
d

St
ru

ct
ur

e
w

it
h

m
is

si
ng

va
lu

e
Ye

s
C

++
,C

#,
Ja

va
,

Py
th

on
,

Ex
ce

lp
lu

gi
n

Ye
s

D
BN

,
H

M
M

,

G
en

ie
[2

8]
C

om
m

er
ci

al
G

U
I

Ye
s

a
Ex

ac
ta

nd
ap

pr
ox

im
at

e
Pa

ra
m

et
er

an
d

St
ru

ct
ur

e
Ye

s
C

++
,P

yt
ho

n,
Ja

va
,

.N
ET

,
M

S
Ex

ce
l

Ye
s

W
eb

-b
ro

w
se

r
an

d
M

ob
ile

de
vi

ce

U
nB

Ba
ye

s
[1

07
]

O
pe

n
so

ur
ce

G
U

I
Ye

s
Ex

ac
tI

nf
er

en
ce

Le
ar

ni
ng

:K
2,

B,
C

BL
-A

,
C

BL
-B

,a
nd

In
cr

em
en

ta
l

N
o

Ja
va

M
os

tl
y

in
Po

rt
ug

ue
se

su
pp

or
ts

M
SB

N
an

d
H

BN

Ba
ye

sN
et

fo
r

M
at

la
b

[1
08

]
O

pe
n

so
ur

ce
A

PI
on

ly
N

o
Ex

ac
ta

nd
ap

pr
ox

im
at

e
Pa

ra
m

et
er

an
d

st
ru

ct
ur

e
le

ar
ni

ng
w

it
h

m
is

si
ng

da
ta

M
C

M
C

,I
C

,P
C

ar
e

th
er

e
A

PI
on

ly
M

at
la

b,
C

Ye
s

Bo
th

D
ir

ec
te

d
an

d
U

nd
ir

ec
te

d
PG

M

BN
Le

ar
n

in
R

[1
09

]
O

pe
n

so
ur

ce
N

o
N

o
Ex

ac
ta

nd
ap

pr
ox

im
at

e
Pa

ra
m

et
er

an
d

St
ru

ct
ur

e
M

ax
M

in
H

ill
C

lim
bi

ng
H

yb
ri

c
H

PC
Ye

s
R

Ye
s

R
an

do
m

da
ta

ge
ne

ra
ti

on
,

TA
N

O
pe

nM
ar

ko
v

[1
10

]
O

pe
n

so
ur

ce
G

U
I

N
o

Ex
ac

tI
nf

er
en

ce
PC

an
d

H
ill

cl
im

bi
ng

Pa
ra

m
et

er
by

La
pl

ac
e-

lik
e

co
rr

ec
ti

on

N
o

ev
id

en
ce

Ja
va

Ye
s

Se
ns

it
iv

it
y

A
na

ly
si

s

El
vi

ra
[5

3]
O

pe
n

so
ur

ce
Bo

th
N

o
Ex

ac
tI

nf
er

en
ce

St
ru

ct
ur

e
Le

ar
ni

ng
N

o
Ja

va
In

Sp
an

is
h

D
ec

is
io

n
M

ak
in

g
BN

To
ol

in
Ja

va
[1

11
]

O
pe

n
so

ur
ce

A
PI

N
o

St
ru

ct
ur

e
Le

ar
ni

ng
C

on
ti

nu
ou

s
St

at
e

Ja
va

Ye
s

ID
an

d
D

BN

A
PI

=
A

pp
lic

at
io

n
Pr

og
ra

m
m

in
g

In
te

rf
ac

e,
G

U
I

=
G

ra
ph

ic
al

U
se

r
In

te
rf

ac
e,

PC
=

Pr
ot

ot
yp

ic
al

C
on

st
ra

in
t-

ba
se

d
al

go
ri

th
m

,H
PC

=
H

yb
ri

d
PC

,
IC

=
In

du
ct

iv
e

C
au

sa
ti

on
,M

C
M

C
=

M
ar

ko
v

C
ha

in
M

on
te

C
ar

lo
,H

BN
=

H
ie

ra
rc

hi
ca

lB
N

,T
A

N
=

T
re

e
A

ug
m

en
te

d
N

ai
ve

Ba
ye

s,
ID

=
In

flu
en

ce
D

ia
gr

am
,L

IM
ID

=
LI

m
it

ed
M

em
or

y
ID

.

a G
eN

Ie
su

pp
or

ts
ub

-n
et

w
or

ks
(t

ho
ug

h
no

ta
s

cl
as

se
s

-y
ou

ca
n

bu
ild

a
hi

er
ar

ch
y

of
em

be
dd

ed
ne

tw
or

ks
,t

ho
ug

h
no

tc
on

ne
ct

ed
vi

a
an

in
te

rf
ac

e,
an

d
if

yo
u

em
be

dd
ed

m
ul

ti
pl

e
co

pi
es

of
th

e
sa

m
e

su
bn

et
w

or
k

yo
u

ha
ve

to
m

ak
e

ch
an

ge
s

in
ea

ch
of

th
e

in
st

an
ce

s.

§2.6 Software for Existing Probabilistic Models 40

Ta
bl

e
2.

4:
C

om
pa

ri
ng

ke
y

fe
at

ur
es

of
po

pu
la

r
re

la
ti

on
al

m
od

el
lin

g
to

ol
s

R
el

at
io

na
lM

od
el

li
ng

to
ol

s

To
ol

na
m

e
C

om
m

er
ci

al
/

O
pe

n
so

ur
ce

G
U

I
/

Pr
og

ra
m

m
in

g
O

O
-f

ea
tu

re
s

Su
pp

or
te

d
In

fe
re

nc
e

Fe
at

ur
e

Le
ar

ni
ng

Fe
at

ur
e

C
on

ti
nu

ou
s

D
at

a
Su

pp
or

t

La
ng

ua
ge

s
su

pp
or

te
d

fo
r

A
PI

W
el

l
D

oc
um

en
te

d
in

En
gl

is
h

O
th

er
Fe

at
ur

es

Pr
ob

R
eM

[1
12

]
Fr

ee
an

d
O

pe
n

so
ur

ce

La
ng

ua
ge

to
de

sc
ri

be
th

e
re

la
ti

on
sh

ip
N

o
In

fe
re

nc
e

fo
r

D
A

PE
R

m
od

el
s

by
M

C
M

C

Pa
ra

m
et

er
le

ar
ni

ng
by

M
L

(m
ax

.l
ik

el
ih

oo
d)

N
o

Py
th

on
X

M
L

ba
se

d
da

ta
re

pr
es

en
ta

ti
on

Ye
s

D
ir

ec
te

d
G

ra
ph

ic
al

M
od

el

A
lc

he
m

y
[1

13
]

O
pe

n
so

ur
ce

Pr
og

ra
m

m
in

g
N

o
Lo

gi
c

in
fe

re
nc

e
in

M
ar

ko
v

lo
gi

c
ne

t
st

at
is

ti
ca

lr
el

at
io

na
l

le
ar

ni
ng

,s
tr

uc
tu

re
le

ar
ni

ng
Ye

s
C

++
Ye

s
Li

ft
ed

Be
lie

f
Pr

op
ag

at
io

n
Sa

m
pl

in
g

Pr
im

ul
a

[1
14

,1
15

]
O

pe
n

so
ur

ce
G

U
I

N
o

Ex
ac

ta
nd

A
pp

ro
xi

m
at

e
In

fe
re

nc
e

fo
r

R
BN

pa
ra

m
et

er
le

ar
ni

ng
fo

r
R

BN
s,

C
om

pl
ex

an
d

ne
st

ed
m

od
el

s
N

o
ev

id
en

ce
Ja

va
Ye

s
Su

pp
or

ts
In

he
ri

ta
nc

e
an

d
N

es
ti

ng
an

d
D

BN

BL
O

G
[1

16
]

O
pe

n
so

ur
ce

Pr
ob

ab
ili

st
ic

M
od

el
lin

g
La

ng
ua

ge
N

o
D

ef
au

lt
In

fe
re

nc
e

N
o

ev
id

en
ce

Ye
s

(L
im

it
ed

to
st

at
ic

co
nt

in
uo

us
)

Ja
va

.N
ET

Ye
s

Pr
ov

id
es

a
Q

ue
ry

la
ng

ua
ge

,
D

yn
am

ic

U
nB

Ba
ye

s
[1

07
]

O
pe

n
so

ur
ce

G
U

I
N

o
In

fe
re

nc
e

N
o

ev
id

en
ce

N
o

Ja
va

M
os

tl
y

in
Po

rt
ug

ue
se

Su
pp

or
ts

M
EB

N

Pr
ox

im
it

y
[1

17
]

O
pe

n
so

ur
ce

Pr
og

ra
m

m
in

g
an

d
Q

G
ra

ph
N

o
In

fe
re

nc
e

Le
ar

n
fr

om
re

la
ti

on
al

da
ta

bu
tn

ot
fo

r
R

BN
s

Ye
s

Q
G

ra
ph

vi
su

al
qu

er
y

la
ng

ua
ge

N
o

ev
id

en
ce

Su
pp

or
ts

hi
gh

ly
ex

pr
es

si
ve

do
m

ai
ns

A
G

rU
M

[9
0,

11
8]

O
pe

n
so

ur
ce

Pr
og

ra
m

m
in

g
A

PI
Ye

s
Li

ft
ed

pr
ob

.i
nf

er
en

ce
Le

ar
ni

ng
gr

ap
hi

ca
lm

od
el

s
Ye

s
C

++
Ye

s
D

ec
is

io
n

Tr
ee

s

IB
A

L
[1

19
]

O
pe

n
so

ur
ce

Pr
og

ra
m

m
in

g
N

o
A

pp
ro

xi
m

at
e

an
d

Ex
ac

t
In

fe
re

nc
e

Pa
ra

m
et

er
Le

ar
ni

ng
in

th
e

fo
rm

of
Ba

ye
si

an
pa

ra
m

et
er

es
ti

m
at

io
n

N
o

O
bj

ec
ti

ve
C

A
M

L
Ye

s
St

ro
ng

ly
ty

pe
d

bu
ilt

-i
n

ex
te

ns
ib

ili
ty

D
A

PE
R

=
D

ir
ec

te
d

A
cy

cl
ic

Pr
ob

ab
ili

st
ic

En
ti

ty
-R

el
at

io
ns

hi
p,

M
C

M
C

=
M

ar
ko

v
C

ha
in

M
on

te
C

ar
lo

,M
L

=
M

ac
hi

ne
Le

ar
ni

ng
.

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 41

2.7 Inference / Conditioning / Belief Updating / Probability Propa-

gation

Inference (see Section 2.3.2) is essential to perform reasoning in a BN [120]. It is a step towards

reaching a conclusion on the basis of evidence and reasoning. Korb and Nicholson [1] describe

belief updating or probabilistic inference in an inference system as the rudimentary operation

in computing a posterior distribution for a set of query nodes with given values for some

evidence nodes.
DEFINITION 2.3 : INFERENCE

Inference, following [1], in a BN, represented by a DAG G = <V , E>, is the process of

calculating posterior probabilities of a set of variables X (where each variable is rep-

resented as a node v ∈ V) with respect to a set of evidence E and can be denoted as

P (xi∣E) xi ∈ X . This process is also known as compilation or probability propagation

or conditioning or belief updating.

Cooper [24] has shown that performing inference in an ordinary BN is an NP-Hard prob-

lem. Various approaches have been proposed to reduce the computational cost by avoiding

combinatorial explosion [42]. The approaches are broadly classified into two types.

1. Approximate inference: Refers to which value of x maximizes P (x∣e) is calculated pro-

vided that x is the query event and e is the evidence in the network. Instead of calculating

exact posterior probability, it eliminates very small numbers to reduce computation cost

(such as in [121]) to save computation The approaches that explore approximations by

stochastic simulation are outlined in [122].

2. Exact inference: The approaches that compute exact probabilities P (x∣e) (where x is the

query event and e being the evidence provided) efficiently by exploiting the structure of

the problem [42].

To calculate the whole probability distribution over the variable D in the Asia BN (shown

earlier in Figure 2.2), the following equation can be used:

P (D) = ∑
A,T,S,E,C,B,X

P (A,T,S,E,C,B,X,D)

= ∑
D

P (D∣E,B)∑
E

P (E∣T,C) ∑
C,B

P (C,B∣S)∑
T

P (T ∣A)P (A)P (S)

Approximate inference is beyond the scope of this thesis and so only exact inference is

considered here.

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 42

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

Compilation

Edit window : A BN Run window: JT of the BN

Message Passing

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

Fo
rw

ar
d

B
ac

kw
ar

d

(a)

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

Compilation

Edit window : A BN Run window: JT of the BN

Message Passing

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

Fo
rw

a
rd

B
ac
kw

ar
d

(b)

Figure 2.5: Inference in a BN: (a) Compilation (originally depicted in [2]), (b) Message passing in a
Junction Tree

One of the widely used existing exact inference approaches was proposed by Madsen et

al. and is known as the JT-based approach [25, 123]. In this approach, the inference has two

phases as follows:

1. Compilation: To performing belief updating in a BN, an intermediate conversion from

BN to JT is performed. This conversion is known as compilation (refer to Figure 2.5a).

2. Probability propagation: After constructing the JT, it is subjected to a procedure that

follows "Message Passing Protocol". This calculates the final posterior probability by

propagating the potentials of the cliques throughout the whole JT (See Figure 2.5b).

2.7.1 Junction tree construction

To construct the Junction Tree for a BN, the DAG of the BN is transformed into an undirected

graph, and moral edges are added to the graph. Moral edge refers to the edge added between

any two of the parent nodes of a node in the DAG of a BN. After adding all the moral edges to

the undirected version of the DAG, the graph is triangulated by adding fill-in edges.

After finding the triangulated graph, a set of maximal cliques are detected. The set of

cliques form a set of nodes. A clique graph is formed using the set of nodes where the edges

for the graph are formed by connecting clique nodes with at least one common variable. The

number of common items (variables) between any two clique nodes is referred to as the weight

of the edge.

From the clique graph, a maximum (weight) spanning tree is formed based on the weight

of the edges. To form this maximum spanning tree, a simple modification of the minimum

spanning tree algorithm is sufficient, i.e., instead of minimizing the sum of the weights of the

edges, maximise the sum of the weights. Note that the number of edges remains the same for

the spanning tree, i.e., for n nodes, n − 1 edges are added in the tree to connect the nodes. The

resultant Maximum Spanning Tree (MST) is then the JT. Figure 2.6 demonstrates the aforemen-

tioned JT construction procedure step by step for the Asia BN. For some graphs, more than one

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 43

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

Compilation

Edit window : A BN Run window: JT of the BN

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

L

B

E
B

E

D

S

L

B

A

T

E

X

T L

E

L

B

E
B

E

D

S

L

B

A

T

E

X

T L

E

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

E

L

E

E
E

(a) Asia BN (b) Moral graph (c) Triangulated graph

(d) Cliques (e) Clique graphs (f) Junction-Tree

(e) MPS Tree

L

B

E
B

E

D

S
A

T

E

X

T L

E

L

B

E
B

E

D

S
A

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

Figure 2.6: (a) The Asia BN, (b) Moral graph for the Asia BN, (c) Triangulated graph for the Asia BN,
(d) A set of cliques found from the triangulated graph, (e) The clique graph formed by the cliques, (f)
A JT for the Asia BN

MST is possible. Similarly, for some clique graphs, multiple JTs can be formed.

Note that triangulation, especially minimal triangulation, and hence JT construction, are

expensive operations regarded as NP-Hard. Hence, for finding minimal triangulation, various

heuristics [124] and algorithms [26, 125–128] have been proposed. Some approaches address

the issue of finding minimal triangulation and constructing efficient JTs in different ways.

These include the maximum cardinality search for computing minimal triangulations [129];

generating the minimal separators and the maximal cliques of a chordal graph [130]; optimal

JT construction [131]; vertex elimination order finding [132, 133]; triangulation by retriangula-

tion [134]; applying genetic algorithm [127]; and finding perfect orders [135].

2.7.2 Message passing protocol

To calculate the conditional posterior probability with respect to evidence on a set of ran-

dom variables, the JT of the BN and a decomposable form of the probability is passed to the

message-passing procedure. Each node in the JT contains a cluster of random variables and

knows only the local potential of the cluster and its neighbours. Then each node sends a mes-

sage, comprised of potentials, to all of its neighbours. Each node combines its local potential

with the received messages from its neighbours and computes the marginal distribution of its

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 44

variables. The message-passing protocol operates in two phases:

1. Collect message: The leaf nodes of a JT send a message (i.e., their local potential) to their

parents, and the parents pass the message after augmenting it by multiplying their own

local potential with the potential in the received message. This upward message passing

continues up to the root node and the first phase of message passing, that is, "Collect

message" finishes. Figure 2.7 represents the initial stage of the potential distribution for

the JT (of Asia BN) nodes before message passing begins. Figure 2.8 demonstrates the

"Collect message" phase for the JT of the Asia BN.

2. Distribute message: In the "Distribute message" phase, collected messages from neigh-

bours are augmented with their own potential and are then propagated from the root

node down to the leaf nodes. Figure 2.9 shows the "Distribute message" phase in a JT of

the Asia BN.

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y
*
(B, E,

L)

y(B, D, E)y(E, X)

y*(E, L,

T)

f*(T) f*(BL)

f*(EL)

f*(E) f*(BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y**(A, T) y*(B, L, S)

y**(B, E, L)

y*(B, D, E)y**(E, X)

y**(E, L, T)

f**(T)

f
**

(BL)

f**(EL)

f**(E) f
*
(BE)

Initially,
y(A, T) = p(A) p(T | A)

y(E, L, T) = p(E | LT)

y(E, X) = p(X | E)

y(B, L, S) = p(S) p(L | S) p(B | S)

y(B, E, L) = 1

y(B, D, E) = p(D | BE)

f (T) = 1

f (E) = 1

f (EL) = 1

f (BE) = 1

f (BL) = 1

f*(T) = A y (A, T) = A p(A) p(T | A) = p(T)

f*(E) = X y (E, X) = X p(X | E) = 1

y
*
(E, L, T) = (f

*
(T) / f (T))  (f

*
(E) / f (E))  p(E | LT)

 = p(T)p(E | T, L)

f*(EL) = T y (E, L, T) = T p(T) p(E | LT) = p(E | L)

f*(BL) = S y (B, L, S) = S p(S) p(L | S) p(B | S)

 = p(L)p(B)

f*(BE) = D y (B, D, E) = D p(D | BE) = 1

y*(B, E, L) = (f*(LB) / f (LB))  (f*(BE) / f (BE))

  (f*(LE) / f (LE))  y(B, E, L)

 = p(L)p(B)p(E | L)

f**(BL) = E y* (B, E, L) = E p(L) p(B) p(E | L)

 = p(L)p(B)

f
**

(BE) = L y
*
 (B, E, L) = L p(L) p(B) p(E | L)

 = p(B)p(E)

f**(EL) = B y* (B, E, L) = B p(L) p(B) p(E | L)

 = p(L)p(E | L)

y**(E, L, T) = (f**(EL) / f*(EL))  y*(E, L, T)

 = p(L)p(T)p(E | T, L)

y**(B, L, S) = (f**(BL) / f*(BL))  y*(B, L, S)

 = p(S)p(L | S)p(B | S)

y**(B, D, E) = (f**(BE) / f*(BE))  y*(B, D, E)

 = p(B)p(E)p(D | B, E)

f**(T) = EL y*(E, L, T) = EL p(L) p(T) p(E | L, T)

 = EL p(E, T, L) = p(T)

f**(E) = LT y* (E, L, T) = LT p(L) p(T) p(E | L, T)

 = LT p(E, T, L) = p(E)

y**(A, T) = (f**(T) / f*(T))  y(A, T) = p(A)p(T|A)

y**(E, X) = (f**(E) / f*(E))  y(E, X) = p(E)p(X|E)

f**(BL) = p(L)p(B)

S y
**(B, L, S) = S p(S)p(L | S)p(B | S) = p(L) p(B)

E y
**(B, E, L) = E p(B)p(L)p(E | L) = p(L) p(B)

f**(BE) = p(B)p(E)

D y
**(B, D, E) = D p(B) p(E) p(D | BE) = p(B) p(E)

L y
*(B, E, L) = E p(B)p(L)p(E | L) = p(B) p(E)

f
**

(EL) = p(L)p(E | L)

T y
**

(E, L, T) = T p(L) p(T) p(E | LT) = p(L)

p(E|L)

B y
*(B, E, L) = B p(B)p(L)p(E | L) = p(L) p(E|L)

P(A, T, S, L, B, E, X, D) = P(A)P(T|A)P(S)P(L|S)P(B|S)P(E|T,L)P(D|B,E)P(X|E)

Forward Message Passing: Message Collection Phase

Backward Message Passing: Message Distribution Phase

Consistency in conditional probabilities after Message passing complete

f**(T) = p(T)

EL y
**(E, L, T) = EL p(L) p(T) p(E | LT) = p(T)

A y
**

(A, T) = A p(A)p(T | A) = p(T)

f**(E) = p(E)

LT y
**(E, L, T) = LT p(L) p(T) p(E | LT) = p(E)

X y
**(E,X) = X p(E)p(L)p(X | E) = p(E)

Figure 2.7: Message passing on the Asia BN: (A) Initial potential distribution and assignment on
cliques and separators of JT.

Figure 2.10 demonstrates consistency preservation in the local potential distribution after

message passing in the JT finishes.

Note that, in the last phase of message passing, a consistency check is performed where the

potentials of the cliques on both sides of each separator are same and equal to the potential of

the separator. This situation indicates that message passing is complete and no more potential

calculation is required. In the meantime, soon after both phases of message passing are com-

plete, the posterior for each of the node of the BN has been calculated. To get the posterior of

each node, some simple calculation, such as ratio computation of the potentials of the separa-

tors and cliques, is sufficient. Depiction of each posterior calculation based on some particular

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 45

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y
*
(B, E,

L)

y(B, D, E)y(E, X)

y*(E, L,

T)

f*(T) f*(BL)

f*(EL)

f*(E) f*(BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y**(A, T) y*(B, L, S)

y**(B, E, L)

y*(B, D, E)y**(E, X)

y**(E, L, T)

f**(T)

f
**

(BL)

f**(EL)

f**(E) f
*
(BE)

Initially,
y(A, T) = p(A) p(T | A)

y(E, L, T) = p(E | LT)

y(E, X) = p(X | E)

y(B, L, S) = p(S) p(L | S) p(B | S)

y(B, E, L) = 1

y(B, D, E) = p(D | BE)

f (T) = 1

f (E) = 1

f (EL) = 1

f (BE) = 1

f (BL) = 1

f*(T) = A y (A, T) = A p(A) p(T | A) = p(T)

f*(E) = X y (E, X) = X p(X | E) = 1

y
*
(E, L, T) = (f

*
(T) / f (T))  (f

*
(E) / f (E))  p(E | LT)

 = p(T)p(E | T, L)

f*(EL) = T y (E, L, T) = T p(T) p(E | LT) = p(E | L)

f*(BL) = S y (B, L, S) = S p(S) p(L | S) p(B | S)

 = p(L)p(B)

f*(BE) = D y (B, D, E) = D p(D | BE) = 1

y*(B, E, L) = (f*(LB) / f (LB))  (f*(BE) / f (BE))

  (f*(LE) / f (LE))  y(B, E, L)

 = p(L)p(B)p(E | L)

f**(BL) = E y* (B, E, L) = E p(L) p(B) p(E | L)

 = p(L)p(B)

f
**

(BE) = L y
*
 (B, E, L) = L p(L) p(B) p(E | L)

 = p(B)p(E)

f**(EL) = B y* (B, E, L) = B p(L) p(B) p(E | L)

 = p(L)p(E | L)

y**(E, L, T) = (f**(EL) / f*(EL))  y*(E, L, T)

 = p(L)p(T)p(E | T, L)

y**(B, L, S) = (f**(BL) / f*(BL))  y*(B, L, S)

 = p(S)p(L | S)p(B | S)

y**(B, D, E) = (f**(BE) / f*(BE))  y*(B, D, E)

 = p(B)p(E)p(D | B, E)

f**(T) = EL y*(E, L, T) = EL p(L) p(T) p(E | L, T)

 = EL p(E, T, L) = p(T)

f**(E) = LT y* (E, L, T) = LT p(L) p(T) p(E | L, T)

 = LT p(E, T, L) = p(E)

y**(A, T) = (f**(T) / f*(T))  y(A, T) = p(A)p(T|A)

y**(E, X) = (f**(E) / f*(E))  y(E, X) = p(E)p(X|E)

f**(BL) = p(L)p(B)

S y
**(B, L, S) = S p(S)p(L | S)p(B | S) = p(L) p(B)

E y
**(B, E, L) = E p(B)p(L)p(E | L) = p(L) p(B)

f**(BE) = p(B)p(E)

D y
**(B, D, E) = D p(B) p(E) p(D | BE) = p(B) p(E)

L y
*(B, E, L) = E p(B)p(L)p(E | L) = p(B) p(E)

f
**

(EL) = p(L)p(E | L)

T y
**

(E, L, T) = T p(L) p(T) p(E | LT) = p(L)

p(E|L)

B y
*(B, E, L) = B p(B)p(L)p(E | L) = p(L) p(E|L)

P(A, T, S, L, B, E, X, D) = P(A)P(T|A)P(S)P(L|S)P(B|S)P(E|T,L)P(D|B,E)P(X|E)

Forward Message Passing: Message Collection Phase

Backward Message Passing: Message Distribution Phase

Consistency in conditional probabilities after Message passing complete

f**(T) = p(T)

EL y
**(E, L, T) = EL p(L) p(T) p(E | LT) = p(T)

A y
**

(A, T) = A p(A)p(T | A) = p(T)

f**(E) = p(E)

LT y
**(E, L, T) = LT p(L) p(T) p(E | LT) = p(E)

X y
**(E,X) = X p(E)p(L)p(X | E) = p(E)

Figure 2.8: Message passing on the Asia BN: (B) Forward message passing phase

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y
*
(B, E,

L)

y(B, D, E)y(E, X)

y*(E, L,

T)

f*(T) f*(BL)

f*(EL)

f*(E) f*(BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y**(A, T) y*(B, L, S)

y**(B, E, L)

y*(B, D, E)y**(E, X)

y**(E, L, T)

f**(T)

f
**

(BL)

f**(EL)

f**(E) f
*
(BE)

Initially,
y(A, T) = p(A) p(T | A)

y(E, L, T) = p(E | LT)

y(E, X) = p(X | E)

y(B, L, S) = p(S) p(L | S) p(B | S)

y(B, E, L) = 1

y(B, D, E) = p(D | BE)

f (T) = 1

f (E) = 1

f (EL) = 1

f (BE) = 1

f (BL) = 1

f*(T) = A y (A, T) = A p(A) p(T | A) = p(T)

f*(E) = X y (E, X) = X p(X | E) = 1

y
*
(E, L, T) = (f

*
(T) / f (T))  (f

*
(E) / f (E))  p(E | LT)

 = p(T)p(E | T, L)

f*(EL) = T y (E, L, T) = T p(T) p(E | LT) = p(E | L)

f*(BL) = S y (B, L, S) = S p(S) p(L | S) p(B | S)

 = p(L)p(B)

f*(BE) = D y (B, D, E) = D p(D | BE) = 1

y*(B, E, L) = (f*(LB) / f (LB))  (f*(BE) / f (BE))

  (f*(LE) / f (LE))  y(B, E, L)

 = p(L)p(B)p(E | L)

f**(BL) = E y* (B, E, L) = E p(L) p(B) p(E | L)

 = p(L)p(B)

f
**

(BE) = L y
*
 (B, E, L) = L p(L) p(B) p(E | L)

 = p(B)p(E)

f**(EL) = B y* (B, E, L) = B p(L) p(B) p(E | L)

 = p(L)p(E | L)

y**(E, L, T) = (f**(EL) / f*(EL))  y*(E, L, T)

 = p(L)p(T)p(E | T, L)

y**(B, L, S) = (f**(BL) / f*(BL))  y*(B, L, S)

 = p(S)p(L | S)p(B | S)

y**(B, D, E) = (f**(BE) / f*(BE))  y*(B, D, E)

 = p(B)p(E)p(D | B, E)

f**(T) = EL y*(E, L, T) = EL p(L) p(T) p(E | L, T)

 = EL p(E, T, L) = p(T)

f**(E) = LT y* (E, L, T) = LT p(L) p(T) p(E | L, T)

 = LT p(E, T, L) = p(E)

y**(A, T) = (f**(T) / f*(T))  y(A, T) = p(A)p(T|A)

y**(E, X) = (f**(E) / f*(E))  y(E, X) = p(E)p(X|E)

f**(BL) = p(L)p(B)

S y
**(B, L, S) = S p(S)p(L | S)p(B | S) = p(L) p(B)

E y
**(B, E, L) = E p(B)p(L)p(E | L) = p(L) p(B)

f**(BE) = p(B)p(E)

D y
**(B, D, E) = D p(B) p(E) p(D | BE) = p(B) p(E)

L y
*(B, E, L) = E p(B)p(L)p(E | L) = p(B) p(E)

f
**

(EL) = p(L)p(E | L)

T y
**

(E, L, T) = T p(L) p(T) p(E | LT) = p(L)

p(E|L)

B y
*(B, E, L) = B p(B)p(L)p(E | L) = p(L) p(E|L)

P(A, T, S, L, B, E, X, D) = P(A)P(T|A)P(S)P(L|S)P(B|S)P(E|T,L)P(D|B,E)P(X|E)

Forward Message Passing: Message Collection Phase

Backward Message Passing: Message Distribution Phase

Consistency in conditional probabilities after Message passing complete

f**(T) = p(T)

EL y
**(E, L, T) = EL p(L) p(T) p(E | LT) = p(T)

A y
**

(A, T) = A p(A)p(T | A) = p(T)

f**(E) = p(E)

LT y
**(E, L, T) = LT p(L) p(T) p(E | LT) = p(E)

X y
**(E,X) = X p(E)p(L)p(X | E) = p(E)

Figure 2.9: Message passing on the Asia BN: (C) Backward message passing phase

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y(B, E, L)

y(B, D, E)y(E, X)

y(E, L, T)

f (T) f (BL)

f (EL)

f (E) f (BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y(A, T) y(B, L, S)

y
*
(B, E,

L)

y(B, D, E)y(E, X)

y*(E, L,

T)

f*(T) f*(BL)

f*(EL)

f*(E) f*(BE)

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

y**(A, T) y*(B, L, S)

y**(B, E, L)

y*(B, D, E)y**(E, X)

y**(E, L, T)

f**(T)

f
**

(BL)

f**(EL)

f**(E) f
*
(BE)

Initially,
y(A, T) = p(A) p(T | A)

y(E, L, T) = p(E | LT)

y(E, X) = p(X | E)

y(B, L, S) = p(S) p(L | S) p(B | S)

y(B, E, L) = 1

y(B, D, E) = p(D | BE)

f (T) = 1

f (E) = 1

f (EL) = 1

f (BE) = 1

f (BL) = 1

f*(T) = A y (A, T) = A p(A) p(T | A) = p(T)

f*(E) = X y (E, X) = X p(X | E) = 1

y
*
(E, L, T) = (f

*
(T) / f (T))  (f

*
(E) / f (E))  p(E | LT)

 = p(T)p(E | T, L)

f*(EL) = T y (E, L, T) = T p(T) p(E | LT) = p(E | L)

f*(BL) = S y (B, L, S) = S p(S) p(L | S) p(B | S)

 = p(L)p(B)

f*(BE) = D y (B, D, E) = D p(D | BE) = 1

y*(B, E, L) = (f*(LB) / f (LB))  (f*(BE) / f (BE))

  (f*(LE) / f (LE))  y(B, E, L)

 = p(L)p(B)p(E | L)

f**(BL) = E y* (B, E, L) = E p(L) p(B) p(E | L)

 = p(L)p(B)

f
**

(BE) = L y
*
 (B, E, L) = L p(L) p(B) p(E | L)

 = p(B)p(E)

f**(EL) = B y* (B, E, L) = B p(L) p(B) p(E | L)

 = p(L)p(E | L)

y**(E, L, T) = (f**(EL) / f*(EL))  y*(E, L, T)

 = p(L)p(T)p(E | T, L)

y**(B, L, S) = (f**(BL) / f*(BL))  y*(B, L, S)

 = p(S)p(L | S)p(B | S)

y**(B, D, E) = (f**(BE) / f*(BE))  y*(B, D, E)

 = p(B)p(E)p(D | B, E)

f**(T) = EL y*(E, L, T) = EL p(L) p(T) p(E | L, T)

 = EL p(E, T, L) = p(T)

f**(E) = LT y* (E, L, T) = LT p(L) p(T) p(E | L, T)

 = LT p(E, T, L) = p(E)

y**(A, T) = (f**(T) / f*(T))  y(A, T) = p(A)p(T|A)

y**(E, X) = (f**(E) / f*(E))  y(E, X) = p(E)p(X|E)

f**(BL) = p(L)p(B)

S y
**(B, L, S) = S p(S)p(L | S)p(B | S) = p(L) p(B)

E y
**(B, E, L) = E p(B)p(L)p(E | L) = p(L) p(B)

f**(BE) = p(B)p(E)

D y
**(B, D, E) = D p(B) p(E) p(D | BE) = p(B) p(E)

L y
*(B, E, L) = E p(B)p(L)p(E | L) = p(B) p(E)

f
**

(EL) = p(L)p(E | L)

T y
**

(E, L, T) = T p(L) p(T) p(E | LT) = p(L)

p(E|L)

B y
*(B, E, L) = B p(B)p(L)p(E | L) = p(L) p(E|L)

P(A, T, S, L, B, E, X, D) = P(A)P(T|A)P(S)P(L|S)P(B|S)P(E|T,L)P(D|B,E)P(X|E)

Forward Message Passing: Message Collection Phase

Backward Message Passing: Message Distribution Phase

Consistency in conditional probabilities after Message passing complete

f**(T) = p(T)

EL y
**(E, L, T) = EL p(L) p(T) p(E | LT) = p(T)

A y
**

(A, T) = A p(A)p(T | A) = p(T)

f**(E) = p(E)

LT y
**(E, L, T) = LT p(L) p(T) p(E | LT) = p(E)

X y
**(E,X) = X p(E)p(L)p(X | E) = p(E)

Figure 2.10: Message passing on the Asia BN: (D) Consistency checking of the JT before and after
probability propagation.

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 46

numeric prior probabilities is beyond the scope of the thesis. Neapolitan demonstrated such

computation in detail in [135].

2.7.3 Incremental compilations

To perform belief updating in a BN, it must be converted into a JT. This process is known

as compilation. Each modification of a BN requires repeating the compilation steps from the

beginning: that means revisiting the steps of JT-based inference which include various com-

putationally expensive operations such as triangulation and clique finding [26].

Motivated by the above-mentioned issue of revisiting expensive operations repeatedly, Flo-

res et al. [4] proposed a variant of JT-based compilation known as incremental compilation

(InC). InC does not require rebuilding a new JT every time there is any change in the BN.

Flores et al. proposed a Maximal Prime subgraph (MPS) decomposition-based compilation

technique [136] where to get an updated JT (following any modification to the BN) does not

require performing the steps of "JT-based inference" for the whole BN. It constructs an MPS

tree in parallel to JT construction during ordinary BN compilation. Then it keeps track of the

changes performed in the last BN structure and marks the parts of the MPS tree that are af-

fected by the changes. Then the marked portion is re-triangulated, and an intermediate JT for

the affected portion is constructed which finally replaces the marked portion of the original JT.

This new JT corresponds to the changed BN. This compilation technique is particularly useful

when the BN is only partially modified.

In brief, MPS [137–139] are the minimal subgraphs that can be triangulated independently.

In a model where frequent changes are made, an incremental compilation approach is the most

appropriate because it requires no JT construction from scratch, and it saves a considerable

amount of time. Changes required are usually limited to alteration (adding or deleting) of

nodes and edges. The approach produces a minimal JT for a particular BN, a process which

might take a long time if the minimal JT had to be constructed from scratch.

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

G G
M

G
T

JT0 MPD_JT0

g
M

g
T

jt MPD_jt

G1 G1
M

JT1 MPD_JT1G1
T

(1)

(2)

(3a)

(3b)

(4) (5)

(6a)

(6b)

(7)

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

EB

LS

S

B

BS

TE

E EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

L

B

E

S

T

BE

LS

S

B

BS

ET

E EX

AT

T

E

BDE

BE

LS

S

B

BS

ET

E

EXAT T E

BDE

LS

S

B

BS

ET

E

EXAT T E

BDE

(a)
A S

T L

B

E

X D

(c)

(e)

(f)

(g) (h) (i)

EX

AT

T

E

ELT EL

BDE

BE

BELS

(a)
A

S

T L

B

E

X D

(d)

(i)

Z

Z

(b)
A S

T L

B

E

X D

(b)
A S

T L

B

E

X D

(c)

A
S

T L

B

E

X D

Z

(d)A S

T L

B

E

X D

(e)

A

S

T L

B

E

X D

Z

(f)

A

T

L

E

X

Z

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BELS

(j)

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BEL

BLS

BL

LS

S

B

BS

ET

E

EXAT T E

BDE

(j)

EXZ

ATZ

TZ

E

ETZ ELTET

(g)

EX

AT

T

E

ELT EL

BDE

BE

BELS

Z

EXZ

ATZ

TZ

E

ETZ ELTET

(h)

EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

(b)

Z

Notation Ful form

G DAG representing a BN

GM Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Notation Ful form

G DAG representing a BN

GM Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Figure 2.11: Workflow diagram of the Incremental Compilation algorithm

Figure 2.11 shows a high-level view of the "Incremental Compilation" algorithm (redrawn

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 47

from [5]). This figure illustrates the steps and their order of execution to provide incremental

compilation to a BN. In the algorithm, the authors considered the following four basic opera-

tions and defined the steps required to perform them.

1. Adding a node

2. Deleting a node

3. Adding an edge

4. Deleting an edge

Any subsequent operations such as adding or deleting a set of nodes and edges can be

transformed into a series of these basic operations. However, any subsequent operations could

lead to a set of additional operations from the above list. For example, deleting a node may

also lead to deleting a set of edges.

Figure 2.12 illustrates the formation of a JT and MPS decomposition as an intermediate

step of incremental compilation for the Asia BN. The DAG of the Asia BN is moralised and

triangulated. The triangulated graph is used to find the JT and the MPS tree. In the figure, the

MPS tree is followed by MPS decomposition.

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

G G
M

G
T

JT0 MPD_JT0

g
M

g
T

jt MPD_jt

G1 G1
M

JT1 MPD_JT1G1
T

(1)

(2)

(3a)

(3b)

(4) (5)

(6a)

(6b)

(7)

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

EB

LS

S

B

BS

TE

E EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

L

B

E

S

T

BE

LS

S

B

BS

ET

E EX

AT

T

E

BDE

BE

LS

S

B

BS

ET

E

EXAT T E

BDE

LS

S

B

BS

ET

E

EXAT T E

BDE

(a)
A S

T L

B

E

X D

(c)

(e)

(f)
(g)

(h) (i)

EX

AT

T

E

ELT EL

BDE

BE

BELS

(a)
A

S

T L

B

E

X D

(d)

(i)

Z

Z

(b)
A S

T L

B

E

X D

(b)
A S

T L

B

E

X D

(c)

A
S

T L

B

E

X D

Z

(d)
A S

T L

B

E

X D

(e)

A

S

T L

B

E

X D

Z

(f)

A

T

L

E

X

Z

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BELS

(j)

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BEL

BLS

BL

LS

S

B

BS

ET

E

EXAT T E

BDE

(j)

EXZ

ATZ

TZ

E

ETZ ELTET

(g)

EX

AT

T

E

ELT EL

BDE

BE

BELS

Z

EXZ

ATZ

TZ

E

ETZ ELTET

(h)

EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

(b)

Z

Notation Ful form

G DAG representing a BN

GM Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Notation Ful form

G DAG representing a BN

GM Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Figure 2.12: (a) The Asia BN, (b) Moral graph for the Asia BN, (c) Triangulated graph for the Asia BN,
(d) A JT for the Asia BN, (e) MPS tree for the Asia BN, (f) MPS decomposition for the Asia BN

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 48

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

G G
M

G
T

JT0 MPD_JT0

g
M

g
T

jt MPD_jt

G1 G1
M

JT1 MPD_JT1G1
T

(1)

(2)

(3a)

(3b)

(4) (5)

(6a)

(6b)

(7)

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

EB

LS

S

B

BS

TE

E EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

L

B

E

S

T

BE

LS

S

B

BS

ET

E
EX

AT

T

E

BDE

BE

LS

S

B

BS

ET

E

EXAT T E

BDE

LS

S

B

BS

ET

E

EXAT T E

BDE

(a)
A S

T L

B

E

X D

(c)

(e)

(f)
(g)

(h) (i)

EX

AT

T

E

ELT EL

BDE

BE

BELS

(a)

A
S

T L

B

E

X D

(d)

(i)

Z

Z

(b)
A S

T L

B

E

X D

(b)
A S

T L

B

E

X D

(c)

A S

T L

B

E

X D

Z

(d)
A S

T L

B

E

X D

(e)

A

S

T L

B

E

X D

Z

(f)

A

T
L

E

X

Z

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BELS

(j)

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BEL

BLS

BL

LS

S

B

BS

ET

E

EXAT T E

BDE

(j)

EXZ

ATZ

TZ

E

ETZ ELTET

(g)

EX

AT

T

E

ELT EL

BDE

BE

BELS

Z

EXZ

ATZ

TZ

E

ETZ ELTET

(h)

EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

(b)

Z

Notation Ful form

G DAG representing a BN

G
M

 Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Notation Ful form

G DAG representing a BN

G
M

 Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Figure 2.13: InC example of deleting an edge: (a) The Asia BN (Edge "L→ E" to be deleted); (b) Moral
graph for the modified DAG; (c) Affected portion of the MPS Tree for the Asia BN is marked; (d)–(e)
Affected graph portion extracted, moralised, and triangulated; (f) JT construction for affected graph
and connecting with MPS tree of the Asia BN; (g)–(i) Constructing the updated JT, (j) Constructing the
updated MPS tree.

Figure 2.13 demonstrates how the incremental compilation algorithm constructs a new JT

when the edge "L → E" is deleted from the Asia BN (as shown in part (a)) and how the algo-

rithm takes the initial JT and the MPS tree and builds the updated JT from that information.

The steps are ordered as per the execution of the algorithm and the corresponding operations

performed on the different underlying structures. Part (b) shows the moral graph of the BN

after deleting the edge "L → E". In part (c–d) of the figure, the affected portions of the MPS

tree and the moral graph, respectively, due to edge deletion in the BN are marked. Part (e) rep-

resents the triangulation of the affected graph segment. Part (f) shows a significant operation

of the connecting process of the affected JT, formed from the affected part of the MPS tree and

moral graph, to the original JT. Parts (g–j) show the process of replacing the affected portion of

the JT by the newly formed JT constructed from the affected graph segment and building the

final updated JT.

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 49

Figure 2.14 represents the steps required in the incremental compilation algorithm to up-

date a JT when a node "Z" and two edges "A→ Z" and "Z →X" are added to the original Asia

BN. In part (a) of the figure, the new BN is depicted. Figure 2.14 (b–j) illustrates the execution

of the incremental compilation algorithm, starting with the initial JT and the MPS tree of the

Asia BN and ending in building the updated JT. Part (b) shows the updated JT of the Asia BN

after adding the node "Z". The new moral graph for the extended Asia BN (after adding the

node and the two edges) is shown in part (c) of the figure. In parts (d–e), the affected portions

of the MPS tree and the extended BN, respectively, due to adding the node and edges in the

BN, are marked. Part (f) represents the triangulation of the affected graph segment. Part (g)

shows the connecting process of the JT formed from the affected part to the original JT. Parts

(h-j) illustrate the process of replacing the affected portion of the JT by the newly formed JT

constructed from the affected graph segment and building the final updated JT.

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

G G
M

G
T

JT0 MPD_JT0

g
M

g
T

jt MPD_jt

G1 G1
M

JT1 MPD_JT1G1
T

(1)

(2)

(3a)

(3b)

(4) (5)

(6a)

(6b)

(7)

(e) MPS Tree

L

B

E
B

E

D

SA

T

E

X

T L

E

L

B

E
B

E

D

SA

T

E

X

T L

E

(f) MPS Decomposition

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BLS

BL

BE

BEL

(d) Junction Tree

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

A S

T L

B

E

X D

(a) Asia BN (b) Moral graph (c) Triangulated graph

EB

LS

S

B

BS

TE

E EX

AT

T

E

ELT EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

L

B

E

S

T

BE

LS

S

B

BS

ET

E
EX

AT

T

E

BDE

BE

LS

S

B

BS

ET

E

EXAT T E

BDE

LS

S

B

BS

ET

E

EXAT T E

BDE

(a)
A S

T L

B

E

X D

(c)

(e)

(f)
(g)

(h) (i)

EX

AT

T

E

ELT EL

BDE

BE

BELS

(a)

A
S

T L

B

E

X D

(d)

(i)

Z

Z

(b)
A S

T L

B

E

X D

(b)
A S

T L

B

E

X D

(c)

A S

T L

B

E

X D

Z

(d)
A S

T L

B

E

X D

(e)

A

S

T L

B

E

X D

Z

(f)

A

T
L

E

X

Z

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BELS

(j)

EXZ

ATZ

TZ

E

ETZ ELTET EL

BDE

BE

BEL

BLS

BL

LS

S

B

BS

ET

E

EXAT T E

BDE

(j)

EXZ

ATZ

TZ

E

ETZ ELTET

(g)

EX

AT

T

E

ELT EL

BDE

BE

BELS

Z

EXZ

ATZ

TZ

E

ETZ ELTET

(h)

EL

BDE

BE

BELS

EX

AT

T

E

ELT EL

BDE

BE

BELS

(b)

Z

Notation Ful form

G DAG representing a BN

G
M

 Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Notation Ful form

G DAG representing a BN

G
M

 Moralized G

GT Triangulated GM

JT Junction-Tree of GT

MPD_JT MPSD version of GM

gM, gT

 Moral and Triangulated graph

 of affected portion of the original

 graph due to any change in the BN

jt Junction-tree of gT

Figure 2.14: InC example of adding a node and two edges: (a) The Asia BN (with node "Z", edges
"A → Z" and "Z → X" to be added); (b) The JT of the Asia BN after adding node "Z"; (c) Moral graph
for the modified DAG; (d) Affected portion of the MPS Tree for the Asia BN is marked; (e)–(f) Affected
graph portion extracted; (g) JT construction for affected graph and connecting with the MPS tree of the
Asia BN; (h)–(i) Constructing updated JT; (j) Constructing updated MPS tree.

The illustration of the other two basic operations like "adding a node" and "deleting a node"

(provided that it requires no edge deletion) are not considered here as those are quite straight-

forward. Interested readers are referred to the original work proposed in [5].

§2.7 Inference / Conditioning / Belief Updating / Probability Propagation 50

This compilation technique is particularly useful when the BN is partially modified. If a

traditional approach is used instead of InC, expensive operations need to be revisited repeat-

edly.

2.7.4 Inference in OOBNs

To the best of our knowledge, there is no inference algorithm that works on the OOBN struc-

ture itself. Currently, to perform inference in an OOBN, "Flattening" to an ordinary BN is done

first, then any of the existing inference approaches (notably, the JT-based approach [25]) can

be applied. Even in the most widely used tool, Hugin [103], an OOBN is first flattened into an

ordinary BN, and then inference technique is applied. Any change to the OOBN requires start-

ing with flattening the new OOBN. Moreover, if the OOBN supports inheritance, as in [140],

where any OOBN class can be derived from another class, then any change in a class in the

hierarchy would result in a series of changes to the related OOBN classes, starting by flattening

for all of the OOBN classes that were changed.

Although "Incremental Compilation" (InC) [4] could be a potential approach to perform

efficient inference in OOBNs, it has not been explored practically yet. Both of these techniques

(Hugin’s OOBN compilation and InC), however, have some significant issues because of the

complexities of these approaches. (Note that InC is still required to use a flattened BN, instead

of directly working on an OOBN). Moreover, this approach needs retriangulation of certain

portions of the existing structure as well as extra computational and storage burden for the

MPS tree structure, besides JT construction. It may encounter some scenarios, as in Figure 2.15,

where the whole network structure, or a large portion of the structure, needs to be retriangu-

lated, thus leading to complexity similar to that seen with a traditional flattening approach.

Suppose InC is being used to add an edge X → N to the network, as shown in Figure 2.15 (left

window). The right window of the figure also contains the JT for the initial network with the

affected and marked JT segment due to the adding of the edge. The incremental compilation

approach affects eight cliques out of ten of the JT. This implies that almost the whole network

needs to be re-triangulated, and the marked portion needs to be replaced with the modified

portion to arrive at the resultant structure.

In [140] (and outlined in Chapter 3), an extended OOBN framework, iOOBN, has been

proposed, based on the findings of this research, where features of the OO paradigm have been

exhaustively explored, especially inheritance and polymorphism. In Chapter 4 an algorithm

is proposed for inference in OOBNs that does not require flattening. The approach, known as

"Shareable and Inheritable Incremental Compilation" (SIIC), allows inference to be performed

in an iOOBN while building it in an incremental fashion. It works directly on the OOBN

§2.8 Knowledge Engineering in BNs (KEBN) 51

MST

CMT

MT

FXBFS

FS

FBDF

ST

FLST

R

GNY

GRY

BF

GY

ACT CT CMRCM

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Figure 2.15: A limitation of the IC algorithm.

structure to perform inference of iOOBN classes without flattening. The JT of a class can be

shared within subclasses. In concrete classes, partial compilation can be borrowed from its

parent class, as well as, from the corresponding classes of the embedded objects. This is a

potential way of saving a large amount of computation effort.

2.8 Knowledge Engineering in BNs (KEBN)

This section presents Knowledge Engineering with Bayesian Networks (KEBN) which is a pro-

cess that consists of the elements of BN technology, automatic discovery of causal structures,

learning parameters from data, examples and ideas about how to utilize these techniques in

developing expert systems.

The KEBN process is a collection of some methodologies that combines the aforementioned

diverse techniques into a single process, i.e. "knowledge engineering", to facilitate the con-

struction of BN models under a variety of circumstances. This means, binding together various

techniques and algorithms for building BNs and supplementing them with additional meth-

ods adapted from the software engineering field to propose a generalized methodology for the

development and deployment of BNs known as KEBN. [1, Chapter 10]

Knowledge Engineering is the acquisition, structuring and refinement of knowledge [141].

The goal of knowledge engineering is to make information accessible to people or computer

systems [142].

2.8.1 KEBN methodologies

Deploying BNs to solve Artificial Intelligence (AI) and reasoning-related problems has up to

now been limited due to their computational complexity. Hence, the initial focus of the BN

community was on discovering efficient inference algorithms to make BN technology compu-

§2.8 Knowledge Engineering in BNs (KEBN) 52

tationally viable.

BN modellers struggle for methods to build and parameterise their systems [143]. Knowl-

edge engineering (i.e., finding human domain experts, extracting their knowledge and putting

it into production systems) is a potential avenue for a solution. However, knowledge engi-

neering, especially finding domain experts and encoding their knowledge into BNs, is chal-

lenging and this creates a knowledge acquisition bottleneck. To deal with this impediment

within expert systems, researchers have transferred their attention to automated learning of

BNs (structure and parameters). But very few studies have been published in the field and

these only briefly refer to the area of knowledge engineering [10,144]. Moreover, to date, there

have been very few works, such as [1, Chapter 10] and [33] that aim to, develop a methodol-

ogy for the creation of large-scale BNs to solve real-life problems and provide expert system

based knowledge. An approach similar to software development that embraces the principles

of Knowledge Engineering is greatly needed. Knowledge Engineering with BNs (KEBN), is

one such approach.

KEBN can be performed via three main approaches, namely, (1) expert elicitation and man-

ual construction by hand, (2) automated learning from data, and (3) a combined approach.

Knowledge elicitation is the method of KEBN that involves encoding human knowledge

and decision making rules. The encoding is targeted at construction of the causal structure and

associating probabilities (CPTs) using the experience and reasoning power of human experts.

Both structure building and parameterisation present different kinds and levels of difficulties.

For example, CPTs can grow exponentially [145, 146] and graphical structures need a signifi-

cant amount of time and effort and are not free from human errors. Structure learning involves

two primitive jobs to be done, namely, domain variable identification and adding causal re-

lationships to the variables [147]. The more complicated the system/structure is, the better

reasoning it can be provided with [143]. Parameterising is the process of eliciting probabili-

ties [143]. It is hard to access human expertise/knowledge. Human knowledge may contain

inconsistencies that are unrecognised or unacknowledged [148]. Some techniques have been

developed to better parameterise BNs [149]. An early approach involves the use of "bets".

Another process of probability elicitation is an analytical hierarchy process, a ranking solicita-

tion process adapted to probability solicitation [148]. The quest for more accurate probability

solicitation is ongoing.

Automated BN learning from data is a KEBN process that has attracted the attention of

many researchers. In this process, from a set of data, a BN structure is built using various

machine learning or pattern-mining techniques. Among various approaches, Causal discovery

with MML (CaMML) [150] that follows the Minimum Message Length (MML) principle with

§2.8 Knowledge Engineering in BNs (KEBN) 53

Gibbs sampling [151] is a pioneering work. To deal with the exponential search space in finding

the best causal structure, it uses a machine learning approach, namely the "MCMC" (Markov

Chain Monte Carlo) greedy algorithm.

The combined approach of KEBN uses automated learning of BNs in association with ex-

pert elicitation. Of course, the approach is not free from the risk of combining two different

approaches or their outcomes [147], which may lead to the worst consequences. This might

be likely to happen when different approaches have different assumptions. In particular, ex-

perts’ opinions are given in the form of constraints or heuristics (as guidance) to the automated

learning algorithms. In [152], such an idea is implemented by O’Donnell.

Although there are some noteworthy (though not comprehensive) works on KEBN, there

has been no work on OOBN knowledge engineering methodologies, i.e., "KEOOBN". This

thesis proposes an algorithm for automated learning of an OOBN class hierarchy and it can

thus be considered as a pioneering work in the KEOOBN domain.

2.8.2 Learning BNs

BN structure and parameter estimations are broadly referred to as "Bayesian Network Learn-

ing". Because of the widespread acceptance and popularity of BNs, the associated challenges

of modelling large, complex real-life applications by hand, and the need for scarce dependency

on human experts to build the networks, researchers have sought to develop methods to auto-

mate the learning of BNs.

Constructing BNs by hand requires expert elicitation with domain knowledge. This pro-

cess is time-consuming, hard to manage without proper domain knowledge and expertise,

expensive and the resultant models are often not feasible to extend. Moreover, in domains

where no expert knowledge or very little expert knowledge is available, automated learning

becomes the only solution for modelling.

Automated learning of BNs is referred to as learning BNs from a set of stored informa-

tion, data, and knowledge using machine-learning techniques. Automation of BN construc-

tion is vitally important to overcome the drawbacks of manual construction. However, auto-

mated learning techniques also have limitations. For instance, they require large, clean and

complete datasets, and the algorithms devised so far are not as capable of capturing sensi-

ble domain knowledge as a human expert. To overcome these limitations, researchers have

proposed various techniques, such as "Learning Continuous Time" BNs [153], Learning lin-

ear causal models by MML sampling [154], "Learning Bayesian Belief Networks" based on the

MDL principle [155], Learning BNs with discrete variables from data [156], variations on the

PC algorithm [157], a Bayesian approach to Causal Discovery [158], Learning BNs by unifying

§2.8 Knowledge Engineering in BNs (KEBN) 54

discrete and Gaussian domains [159], Learning causal structure from mixed data with missing

values using Gaussian copula models [160], Learning causal models from relational data [161],

Causal discovery with weak links and small samples [162], Ordering-based search for learning

BNs [163], Learning BNs with restricted causal interactions [164], Learning BN model struc-

tures from data [165] and learning the PRMs of link structures [166].

2.8.2.1 Learning structures

In the two main areas of BN learning (structure learning and parameter learning), the more

challenging is the learning of structures. Chickering proved that the automated learning of a

BN structure is an NP-Hard problem [56]. Parameter estimation can easily be accomplished

using a statistical or Bayesian approach [38], once the structure is available or learned. Hence,

most emphasis has been placed on learning BN structures. BN structure learning methods fall

into three main classes [78].

1. Constraint Satisfaction Problem (CSP): this approach looks for conditional (causal) de-

pendencies and uses statistical tests. Then it finds the best fitting graphical structure

to represent the available information. In the literature of automated BN learning, lots

of algorithms have been proposed to date that follow this strategy. Some very interest-

ing methods include the Inductive Causation (IC) algorithm [167], the Spirtes-Glymour-

Scheines (SGS) algorithm [168], and the Prototypical Constraint-based (PC) algorithm

[30]. These approaches work well with sparse networks but are prone to fail in statistical

independence tests. Hence these techniques are neither scalable nor reliable for large and

complex system learning.

2. The Score-based Optimisation problem (SOP): this approach tests for a fit of a structure

in terms of a score function. Then a structure that maximizes the score is chosen. There

are numerous algorithms proposed for learning BNs that follow this approach, such as

K2 [169], the Greedy Equivalence Search (GES) [170], the Maximum Weight Spanning

Tree (MWST) [171], and the Causal MML (CaMML) [150].

3. Hybrid approach (SOP and CSP): this approach, pioneered by Singh and Valrota [172],

is a combination of the two approaches as mentioned above. It is scalable and superior

to the previous two approaches. Some popular algorithms that follow this method are

the feature selection based algorithm [173], and the Benedict algorithm [174].

§2.8 Knowledge Engineering in BNs (KEBN) 55

2.8.2.2 Learning parameters

Inference on unobserved variables, parameter learning, and causal structure learning are the

three most critical operations in a Bayesian network. In the previous section, BN structure

learning techniques are briefly described. However, without parameterization, the structure

of the BN is useless. With the intention of completing a BN model (i.e., to fully define the joint

probability distribution), it is necessary to specify the probability distribution of each node in

terms of its parents [31, 38].

The distribution can be a Gaussian distribution or a constraint-based distribution deter-

mined by the principle of maximum entropy. Often the constraint can be missing parameters

or incomplete data. Based on the degree of completeness of the data, parameter learning tech-

niques can be divided into two classes. According to [175], the classes are:

1. Algorithms that work on complete data: (a) Maximum likelihood estimate [176] and

(b) Bayesian method [177].

2. Algorithms that work on incomplete data: (a) Expectation-Maximisation [178] (deter-

ministic approach) (b) Gibbs sampling [179] (a stochastic approach) (c) The Monte Carlo

method [180] and (d) Gaussian approximation method [181].

As a detailed discussion on the methods for learning parameters is beyond the scope of the

thesis, readers are referred to the works cited above for more information.

2.8.3 Learning OOBNs

The trend of using OOBNs is steadily increasing. People are turning to modelling applications

with OOBNs that need probability analysis and have uncertainty associated with them. This

interest is due to the facilities of the OO paradigm provided in an OOBN. Therefore, it is im-

perative to have some methodologies to learn OOBNs automatically from a set of data, for the

same reasons that automated learning of BNs is desirable (see the preface to Section 2.8). How-

ever, to the best of our knowledge, there has been almost no work done on automated learning

of OOBN structures from data. However, Langseth et al. proposed a parameter learning ap-

proach for OOBNs from data [182] and Bangsø et al. proposed a method for structure learning

in OOBNs [183]. The structure learning algorithm requires expert elicitation/opinion and can

only be partially automated. Moreover, these approaches are not widely used in practice.

This deficiency is not very surprising, as the first OOBN was only proposed in 1997, and

the first commercially developed OOBN was released in Hugin [103] in 2003. Hence, OOBNs

have only recently started to emerge into the mainstream. An extensive literature survey has

been undertaken for this research and it confirms the urgency of developing a method to learn

§2.8 Knowledge Engineering in BNs (KEBN) 56

OOBNs from data. Before taking "hierarchy learning" into consideration, the initial interest

for the present research was focused on the structure learning of OOBNs. In that context the

following Heuristic 1 was developed:

Heuristic 1. If BN structure (a DAG) could be constructed from data, then frequent induced subgraphs

of the graph (DAG) can be mined using any of the well-known graph mining algorithms such as [184–

186]. The mined subgraphs can be fed to a machine-learning algorithm (yet to be devised) to suggest

some classes, one for each such frequent subgraph where instances of the classes could replace all of the

occurrences of the subgraphs.

This heuristic needs more work, such as developing a framework to prove its admissibil-

ity, accuracy and effectiveness. Moreover, the approach also needs an extensive investigation

to check whether the OOBN classes built by this approach are robust enough not to fail in

an "independence test" and other property tests such as local Markov property test, and the

faithfulness test.

These matters are left for future research work.

2.8.3.1 Learning hierarchy

OOBNs are new and not widely used as BNs. There are some reasons for this, such as not all

features of OOBNs (especially "inheritance") being available in any of the existing software,

and that some OO features are hard to understand by users, especially if they do not belong

to Information Technology or Computer Science, have a little or no background in computer

programming. Moreover, people who are interested in working on OOBNs after realising their

merits find it challenging to convert their existing BN projects and BN repositories into OOBN

projects and repositories.

Therefore, devising a mechanism to convert ordinary BN repositories into OOBN repos-

itories seems more important than OOBN structure learning. An exhaustive search in the

literature resulted in the conclusion that there has been no work done on automated learning

of OOBN hierarchies or the conversion of ordinary BN repositories into OOBN repositories.

Some related studies in other domains (i.e., software engineering and Object-Oriented pro-

gramming) have been undertaken to date. The proposed methods are for maximising reuse

and factoring the codes written in OO programming language to build software. Manually

designing an inheritance hierarchy that has maximised factoring is very difficult, particularly

if the system is large, complex and has been constructed by a group of people working in a dis-

tributed manner. Moreover, sometimes, a well-designed system may not be optimal in terms of

factoring, or it may lose factorisation due to maintenance, extension or upgrading [187]. To ad-

dress these issues and to resolve them, researchers have developed various techniques such as

§2.9 Summary 57

the evolution of inheritance hierarchy [187], the automatic restructuring of hierarchy [188], the

automatic inferring of inheritance [188–195], to mention a few of those in the current software

development arena.

The aforementioned studies have added a new dimension to automated hierarchy learning

in OOBNs. If there is already a hierarchy of classes for an OOBN project, automated hierar-

chy learning can assist in checking for its effectiveness and efficiency in terms of factoring

and reusability and also to check if it can be improved or whether its hierarchy can be bet-

ter designed. Moreover, reshaping of a previously built hierarchy that has been updated and

extended in a non-organised way can be done with such a method.

Heuristic 2 below might support automatic learning of the hierarchy of OOBN classes.

Heuristic 2. If a BN repository can be treated as a set of DAGs and an order between the DAGs can be

formed where a graph comes after the subgraphs of the graph itself in the order, then this order suggests

a hierarchy

In Chapter 5 an algorithm to find such an order by constructing a supergraph from the

DAGs of the OOBN classes is proposed. There have been numerous works done on graph to

find efficient algorithms such as constructing supergraphs [196], finding subgraphs by check-

ing subgraph isomorphism [197] efficiently, and counting the frequency of subgraphs in a sin-

gle large graph [185], or from a set of graphs [186, 198, 199]. The proposed algorithms and

related works in the aforementioned works have helped in devising the approach of construct-

ing/learning a hierarchy in Chapter 5.

2.9 Summary

This chapter presented the historical background of probabilistic analysis, various probabilis-

tic models, their families, pedigree, properties, features, limitations and advantages. The main

focus of the discussion was on the original formulation of the BN, its purpose, limitations and

ways of extending the original formulation to overcome the limitations. The limitations of

the BN are divided into two main classes, and corresponding remedial models are suggested

and discussed. A summary table represents the core of the discussion in a nutshell. This is

followed by a list of existing software for modelling applications that have uncertainty associ-

ated with the related events. The discussion also highlights the importance of OO features in

BNs and how these overcome the issues of BN modelling efficiently. The chapter also empha-

sises the shortcomings of the existing frameworks and why those should be addressed in new

frameworks or software and then outlines how BNs are used in order to reason under uncer-

tainty. The discussion is followed by a discussion of the types of reasoning and inference, and

§2.9 Summary 58

how the types of reasoning vary and the usefulness of the variations in probabilistic analysis.

Then types of inference, the steps and actions required to perform inference in a BN, and how

to efficiently perform the operations are discussed. An approach to overcome the issues of

traditional inference, incremental compilation, is suggested and its mechanisms and potential

problems are outlined. How the compilation process, required for inference, can be done more

efficiently, is discussed next. Finally, the importance of automated learning of BNs (parame-

ter and structure) are presented with a pair of heuristics suggesting approaches to automatic

learning of OOBN structures and hierarchy. This chapter concludes with the importance of

learning (and reshaping) an inheritance hierarchy and a discussion on how the learning of

hierarchy can be performed.

Chapter 3

iOOBN Framework

The construction of Bayesian decision networks (BNs) 1 to model large-scale real-life problems

is challenging. Given that most or all of the model is built by hand, BN modelling methods

do not scale up well; the resultant large and complex BNs are difficult to visualise and hard

for the domain experts and decision makers to understand, reducing the acceptance and sub-

sequent use of the model. One useful approach to scaling up is the Object-Oriented Bayesian

decision networks (OOBNs). This innovation provides modellers with the ability to define

classes and develop a compositional and hierarchical structure, enabling reuse of the model

and supporting maintenance. However, as discussed in chapters 1 and 2, there are limitations

in existing OOBN frameworks. In the OO programming paradigm, a key concept is inheri-

tance, the ability to derive attributes and behaviour from preexisting classes, which enables

an even higher level of reusability and scalability (as shown in Section 3.5.2 by demonstrat-

ing the reengineering of WGR DOOBN). The problem is that inheritance in OOBNs has yet to

be fully defined and implemented. This thesis therefore presents iOOBN, a framework that

provides a fully defined inheritance for OOBNs, including concepts such as polymorphism,

and abstraction, as well as encapsulation. This chapter provides guidance on modelling in the

iOOBN and demonstrates its applicability by referring to several problems in the literature il-

lustrating how OOBN (without inheritance) has been applied. It also discusses a case study of

reengineering an existing, large complex OOBN, namely the WGR [3, 57] DOOBN system. A

prototype version of the framework has been implemented using Java programming language

and the HUGIN-Expert API; see Appendix A).

3.1 iOOBN: Informal Overview

This chapter describes the iOOBN components and outlines a proper treatment of all the fea-

tures of the OO paradigm, especially inheritance. The definition of OOBNs used in [200]

1The acronym BN covers the Bayesian network and Bayesian decision network interchangeably. Similarly,
the acronym OOBN stands for the object-oriented Bayesian network or object-oriented Bayesian decision network
throughout the whole thesis unless stated otherwise.

59

§3.1 iOOBN: Informal Overview 60

and [1], and implemented in Hugin are extended, adopting the terminology and notation used

by Hugin. In this section, an informal summary of the terminology and definitions of iOOBN,

as originally presented in [140] is provided. More formal treatment is given in the following

sections.

The ordinary BN definitions of chance nodes (representing random variables), decision

nodes and utility nodes, directed arcs, and conditional probability tables (CPTs), as presented

in Chapter 2, are assumed.

The main components of an iOOBN, the proposed Object-Oriented BN framework, are

"class" (the blueprint of objects) and "object" (an instance of a class). An iOOBN model is itself

an object of a top-level class consisting of nodes, objects (which are instances of other classes),

and edges. The aim of building the model is that this top-level class can be compiled and run

to perform reasoning.

As with standard BNs (see Section 2.3.1 of Chapter 2), all the nodes in an iOOBN class are

named and are either chance nodes, decision nodes or utility nodes. Chance nodes represent

random variables. They have a set of states, a CPT, and are represented by an oval shape.

Decision nodes represent the possible actions from which a decision-maker must choose. They

have a set of actions and are represented by a rectangular shape. Finally, there is the utility node,

which has an associated utility table (representing a utility function over its parent chance and

decision nodes) and is represented by a diamond shape.

In an iOOBN class (as in ordinary OOBNs) there are four types of edges or links: causal

edges, information links, precedence links, and referential edges. Causal edges are the standard

edges in a BN; they can be from a chance node to a chance node, from a chance node to a

utility node, decision to chance, or from a decision node to a utility node. An information

link is represented by a dotted line arrow that run from a chance node to a decision node; it

indicates when a chance node must be observed before a decision is made (see Section 2.3.3).

A precedence link is also represented by a dotted line arrow and is from a decision node to a

decision node; it represents the sequence order between decisions. Finally, referential edges are

used to connect nodes to nodes within objects and are represented by double dotted lines. For

two nodes to be linked by a referential link, they must either be both chance nodes with the

same states or both decision nodes with the same actions. When an iOOBN is converted into

an ordinary BN, so-called "flattening" (see Section 3.2.1), nodes that are joined by referential

links are represented by a single node. The edges within an iOOBN must be such that it flattens

out to a valid BN, that is, a DAG.

Nodes in classes (and hence objects) in iOOBN (as in ordinary OOBNs) are categorized

as input, output and embedded nodes. The input and output nodes of a class are also called its

§3.1 iOOBN: Informal Overview 61

interface, while the nodes other than interface nodes are embedded nodes. A class can also contain

objects, or instances of other classes. An object is connected to a node in the class in which it

sits (called its encapsulating class) if there is a referential link between the node and an input

node in the object’s interface. A node in the interface can only have one referential link to a

node outside the object. In addition, there may be standard links from an object’s output nodes

to embedded or output nodes outside the object. If an input node of an embedded object (of

a concrete class) is not connected via a referential edge, it must have a default CPT for chance

nodes (as per [13]), default decision table for decision nodes, and default utility table for utility

nodes; if connected via a referential link, the CPT/decision table/utility table of the connected

node overrides the default one.

There are two types of classes: abstract and concrete. Concrete classes correspond to classes

as defined in previous formulations of the OOBN. In contrast, abstract classes are not fully

parameterized, i.e., cannot be used for reasoning. Furthermore, iOOBN has a special data

structure called an interface that contains the interface nodes of a class without any parameter.

An iOOBN allows the creation of new classes (subclass) from existing classes and inter-

faces and new interfaces (sub-interface) from existing interfaces. This process is known as

"inheritance" in the OO-paradigm. Here the new iOOBN component, i.e., class or interface,

contains all the graphical structure and parameters (if any) of the existing graphical structures

with additional required components (nodes or edges) and parameters if class inheritance is

used (see Section 3.3 for type of inheritance). Moreover, if interface inheritance is used, then

any embedded node can be shared, any embedded node can be skipped from sharing and

all the interface nodes must be shared in subclasses. The iOOBN also allows substituting an

instance of a subclass by an instance of its superclass. In the OO paradigm, this is known as

polymorphism.

3.1.1 Livestock farming example

The livestock farming example of the "Old McDonald" (OMD) OOBN [201] is used here as a

running illustrative example, with extensions where required to capture components of the

iOOBN framework. In OMD, the farm has several relevant classes ("cow", "milk", "drafting",

"calving"), augmented with decision and utility nodes to model farming decisions based on

profit-making.

Figure 3.1 presents the "Profit" iOOBN class including all the required elements of iOOBN

(and the notation) that have been presented informally above. A table shown upper-left con-

tains a notation table of the components where dotted, double-lined and shaded shapes are

for input nodes, output nodes and embedded nodes, respectively. Ovals, rectangles and dia-

§3.1 iOOBN: Informal Overview 62

Betting

Forecast
Result

Weather

Gain
Accept Bet

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Resolution

InvestWeather

Opponent
Strength

Bidding

Trend

Bid result

Location

Profit

Accept Bid

Location

Condition

Output

Embedded

Input

Forecast
Result

Gain
Accept Bet

Resolution

InvestWeather

Opponent
Strength

Trend

Bid result

Profit

Accept Bid

Location

Condition

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

MilkCowExt: MCE
Meat

FoodFood
supplement

Profit class

Food

Milk

Locale

Locale

Sex

Sex

Profit

Food
supplement

Milk CowExt

Metabolism

Meat

Food

Cost

Food
supplement

Milk

Locale Sex

Benefit

Milk CowExt (abs)

Metabolism

Meat

Food

Cost

Food
supplement

Milk

Locale Sex

Benefit

 Milk Cow (abs)

Metabolism

Meat

Food

Milk

Locale Sex

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Profit BN

Metabolism

Meat

Food

Cost

Food
supplement

Milk

Locale Sex

Benefit

Profit

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

(a)

(b)

Sex

M
0.5

F
0.5

Sex

M
0.5

F
0.5

Met U(Met)

H 200
L 50

Met U(Met)

H 200
L 50

B M

H

H

H

L

L

H 1.0

L 0.0

H 0.0

L 0.0

M

0.0

1.0

1.0

0.0

Profit

L

0.0

0.0

0.0

1.0

B M

H

H

H

L

L

H 1.0

L 0.0

H 0.0

L 0.0

M

0.0

1.0

1.0

0.0

Profit

L

0.0

0.0

0.0

1.0

Loc

Hyg
0.6

NonH
0.4

Loc

Hyg
0.6

NonH
0.4

Food

G
0.7

L
0.3

Food

G
0.7

L
0.3

F.Sup

Add
0.5

Don’t
0.5

F.Sup

Add
0.5

Don’t
0.5

F.Sup U(F.Sup)

Add 100
Don’t 0

F.Sup U(F.Sup)

Add 100
Don’t 0

Met S

T

H

H

L

L

M 0.0

F 0.0

M 0.9

F 0.3

F

1.0

1.0

0.1

0.7

Milk
Met S

T

H

H

L

L

M 0.0

F 0.0

M 0.9

F 0.3

F

1.0

1.0

0.1

0.7

Milk

Met

H

H 0.9

L 0.2

L

0.1

0.8

Meat (B)
Met

H

H 0.9

L 0.2

L

0.1

0.8

Meat (B)

Loc F

T

Hyg

Hyg

NonH

NonH

G 1.0

L 0.8

G 0.65

L 0.4

F

0.0

0.2

0.35

0.6

Metabolism
F.Sup

Add

Add

Add

Add

Hyg

Hyg

NonH

NonH

G 0.9

L 0.6

G 0.5

L 0.0

0.1

0.4

0.5

1.0

Don’t

Don’t

Don’t

Don’t

Loc F

T

Hyg

Hyg

NonH

NonH

G 1.0

L 0.8

G 0.65

L 0.4

F

0.0

0.2

0.35

0.6

Metabolism
F.Sup

Add

Add

Add

Add

Hyg

Hyg

NonH

NonH

G 0.9

L 0.6

G 0.5

L 0.0

0.1

0.4

0.5

1.0

Don’t

Don’t

Don’t

Don’t

Figure 3.1: An example of the iOOBN class "Profit". (a) An abstract class "Milk Cow" is extended
to another abstract class "Milk CowExt". A concrete class is derived by adding required CPTs, decision
tables and utility tables, (b) An object of "Milk CowExt" concrete class is used to make "Profit" (concrete)
class.

In the tables of the figure, the CPTs are represented with C: Cow, M: Milk, F: Food, Loc: Locale, Met:
Metabolism, and P: Profit; the decision table is represented by F.Sup: Add Food Supplement?; and the utility
tables are represented by Cost and Benefit. Furthermore, the states are represented with H: High, L: Low, Med:
Medium, Male: Male, Fem: Female, Hyg: Hygienic, NonH: Non-hygienic, Don’t: Don’t add, and G: Good Quality.

monds are used for, respectively, chance, decision and utility nodes; double-lined undirected

edges, solid directed lines, dashed and dotted lines are for referential edges, causal edges, in-

formation links and precedence links, respectively. Part (a) of Figure 3.1 contains a hierarchy

of classes. The root of the hierarchy is the abstract class "Milk Cow (abs)" from the extended

OMD farm. This class has three input chance nodes to represent the factors that have impact

on milk production, namely Food provided to the cows, Locale of the farm and Sex of the

cattle; an embedded node Metabolism that represents the general health of the cattle; and

two output chance nodes to represent the production of each animal, namely Meat and Milk.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 63

The "milk" class is extended in "Milk CowExt (abs)" abstract class by adding an input decision

node "Food supplement" to help in deciding whether adding food supplements in the cow’s food

would improve the animal’s metabolism, and hence increase milk or meat production. There

are two utility nodes, namely "Cost" for the cost of the food supplement and "Benefit" for the

expected benefit of good metabolism. In order to use the class, say, by instantiating an object,

a fully parameterized class needs to be built. Hence, the abstract class "MilkCowExt (abs)" is

parameterized in the concrete version of the class, i.e., "MilkCowExt". An instance, "MCE" of

the class "MilkCowExt" is used to model a class "Profit" (as shown in part (b) of the figure) to

predict the expected level of profit.

3.2 iOOBN: Classes, nodes, edges, parameters and objects

The formal iOOBN definitions and terminologies are now given, starting with the components

that are also present in ordinary OOBNs. This section should be considered in conjunction

with Section 3.1 where an informal description is given that maintains a sequential order of

the components and their dependency, and Section 3.3 where examples are given showing

how to build a class and use various components and features. In addition, we would expect

people to be using the software with the GUI interface that gives more support (and examples)

of how to create an iOOBN model, rather than reading formal definitions.

First, a partial definition of a class is given, then each of its components is defined in turn.

Note that as per the informal formulation in Section 3.1, each iOOBN class and each node in

an iOOBN class has a unique and valid name that is used as an unique identifier in the iOOBN

model. Moreover, an iOOBN class may also contain the name of it’s parent class and a list of

names of it’s parent interfaces. However, the names are more implementation-related and not

important for theoretically defining the framework. Hence, the definitions in this section do

not contain any name information.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 64

DEFINITION 3.1 : CLASS

An iOOBN Class C is a Directed Acyclic Graph (DAG) given by a 4-tuple < N,E,Π,O >,

where

(i) N = a set of nodes (defined in Definition 3.2)

(ii) E = a set of edges (defined in Definition 3.8)

(iii) Π = a set of parameters (defined in Definition 3.13)

(iv) O = a set of objects (defined in Definition 3.16).

Here, each o ∈ O is encapsulated within C, and C is called the encapsulating class

of the object o.

As the iOOBN is a type-based framework, the type of BN/OOBN nodes and OOBN classes

play a significant role in the overall framework.

DEFINITION 3.2 : IOOBN NODES

The set of iOOBN Nodes of class C is N a =NIn⊍NEm⊍NOut whereNIn, NEm andNOut

are mutually disjoint b, and

(i) NIn = NC
In ⊍ ND

In = a set of input nodes, where

(a) NC
In = A set of input chance nodes

(b) ND
In = A set of input decision nodes

(ii) NOut = NC
Out = a set of output chance nodes,

(iii) NEm = NC
Em ⊍ NU

Em = a set of embedded c nodes, where

(a) NC
Em = A set of embedded chance nodes

(b) NU
Em = A set of embedded utility nodes

Any node n ∈ (NIn ⊍NOut) b is called an Interface node.

aThe attributes of chance, decision and utility nodes are well-defined in the literature and in Sec-
tion 2.1.1 and 2.1.2

bn sets A1, A2, . . . An are mutually disjoint if Ai⋃Aj = ∅ for i ≠ j and denoted as A1 ⊍ A2 ⊍ ⋅ ⋅ ⋅ ⊍ An.
Note that if the set of input and output nodes are not mutually disjoint then a node can be marked as
both input and output node and that does not add anything in the modelling. Because, an input node nIn

connected via a referential edge is same as the external node n on the other side of the referential edge.
Hence, any purpose of additionally marking nIn as output node (say, the node becomes nIn_Out) can be
served without doing so. As an instance, any edge nIn_Out →m going out from that node (marked as both
input and output) to an external node m can be replaced by a direct edge n→m.

cEmbedded nodes are elsewhere called Hidden attributes [46] and Protected nodes [5].

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 65

DEFINITION 3.3 : TYPE OF A NODE

The Type of a node (following [27]) is a 4-tuple < Sub-type, StateSpace, Category,

Kind > where

• Sub-type is one of the following four attributes: "Chance", "Decision", "Utility"

• StateSpace is the number of states of the node

• Category is either "Discrete" or "Continuous" if the node is a "Chance" node a

• Kind is one of the following four attributes ("Boolean", "Categorical", "Ordered"

and "Number") if the node is a "Chance" node
a"Discrete" represents that the random variable has a discrete state-space, where "continuous" is for the

random variables that are continuous and has acquired discrete state space.

Type of node is required to check for compatibility of interface nodes of an embedded

object (an OOBN class) and the external embedded nodes connected to the interface nodes.

Note, there is another "type" definition in any iOOBN, i.e., type of an OOBN class. This is

required for polymorphism and dynamic typecasting/changing. Knowing the "type" of a class

is essential for testing the compatibility of classes/objects to replace an object of one class by

an object of a type-compatible class.

DEFINITION 3.4 : TYPE OF AN OOBN CLASS

The Type of an OOBN class C is a 3-tuple < ParentClass, ParentInterfaces,

InterfaceNodes > where

• ParentClass is the class from which the class C is extended/derived,

• ParentInterfaces is the set of interfaces the class C implements, and

• InterfaceNodes is the set of input and output nodes of the class C

Similar to the ordinary BNs, all the nodes in an iOOBN class have a name and a type. The

three categories of the iOOBN nodes, namely, input, output, and embedded, are defined as

follows.
DEFINITION 3.5 : INPUT NODES

In iOOBN, Input Nodes NIn of class C is a set (i.e., ∣NIn∣ > 1) of nodes that have no

parent node in C and are only accessible by nodes from the external nodes through

referential edges.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 66

DEFINITION 3.6 : OUTPUT NODES

In iOOBN, Output Nodes NOut of class C is a set (i.e., ∣NOut∣ > 1) of nodes that are the

only nodes of C that can be the possible parents of the nodes in any encapsulating class

of an object representing C.

DEFINITION 3.7 : EMBEDDED NODES

In iOOBN, Embedded Nodes NEm of class C is a set of nodes that are neither accessible

by the external nodes nor visible from outside of class C.

The four types of iOOBN edges: causal edges, referential edges, information links, and

precedence links are defined below. Note that two of the edge types are named as "edges" and

two as "links". The reason behind using the two different terminologies are that edges refer

to the connections in a mathematical graph to represent a relationship between the terminal

nodes whereas links are the connections that represent an ordering between terminal nodes.

DEFINITION 3.8 : IOOBN EDGES

The set of iOOBN edges is E = Ec ⊍Er ⊍Ei ⊍Ep in a class C where

• Ec is a set of causal edges

• Er is a set of referential undirected edges

• Ei is a set of information links

• Ep is a set of precedence links

The iOOBN edges, except referential edges which are only relevant to OOBNs/iOOBNs,

are also defined in Definition 2.2 of Chapter 2. That chapter describes the attributes, functions

and purposes of BNs with an example network.

For each node n ∈ N, in C =< N,E,Π,O >, parents par(n) is a subset of {N⊍ ⋃
o∈O

Nout}, where

Nout is the set of output nodes of the embedded objects o ∈ O.

DEFINITION 3.9 : CAUSAL EDGES

In iOOBN, the set of causal edges is Ec = {e ∶ ni → nj} (i.e., a set of directed edges) in

class C =< N,E,Π,O >, where

• ni is an output chance or decision node of an object in C or ni ∈ {NC
In ⊍ NC

Out ⊍
NC

Em ⊍ND
In} (any chance node or input decision node), and

• nj ∈ {NC
Out ⊍NC

Em ⊍NU
Em};

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 67

DEFINITION 3.10 : REFERENTIAL EDGES

In an iOOBN, the set of referential edges is Er = {e ∶ ni ↭ nj} (i.e., a set of undirected

edges) in a class C =< N,E,Π,O > where ni and nj have the same state-space and type,

and ni ↭ nj is a one-to-one connection,

(a) ni ∈ NEm ⊍NIn and nj is an input node of an object in C; or

(b) ni is an output node of an object in C and nj is an input node of another object in

C a. Further, referential edges to NC
In are optional, however referential edges to all

ND
In are required.

aNote that this connection is not allowed between the output nodes of one encapsulated object and the
input nodes of another, because Hugin makes this constraint. However, it is an artificial constraint and
can be easily overcome by going via an additional chance node in C, as done in [202], at the expense of
modelling complexity.

Note that when ni and nj are joined by a referential edge, this implies that they represent

the same variable in the flattened version (same chance node, same decision node or same

utility node), which must be taken into account in any inference algorithm. This implication

is essential in the compilation algorithm proposed in Chapter 4. Referential edges are used to

connect nodes to nodes within objects and are represented by double dotted lines. For two

nodes to be linked by a referential edge, they must be both chance nodes with the same states

and types, or both decision nodes with the same actions, or both utility nodes of the same

type. When an iOOBN is flattened into a BN, nodes that are joined by referential edges are

represented by a single node. The edges within an iOOBN must be such that it flattens out (see

Algorithm 3.1) to a valid BN, that is, a DAG.

DEFINITION 3.11 : INFORMATION LINKS

In an iOOBN, the set of information links is Ei = {e ∶ na ⇢ nb} (i.e., a set of directed

edges) in a class C =< N,E,Π,O >, where

(a) na is an output chance node of an object in C or na ∈ {NC
In ⊍ NC

Out ⊍ NC
Em} (any

chance node), and

(b) nb ∈ {ND
In};

In other words, information links are directed edges from a chance node to a decision node.

An information link na ⇢ nb indicates that chance node na must be observed before making

any decision for node nb. Note that the term "information link" in a decision network is stan-

dard terminology. A decision node without an information link is also possible and functions

accordingly.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 68

DEFINITION 3.12 : PRECEDENCE LINK

In an iOOBN, the set of precedence links is Ep = {e ∶ na ⇢ nb, (na, nb) ∈ ND
In and na ≠ nb}

i.e., a set of directed edges representing an order between the nodes in ND
In in a class

C =< N,E,Π,O >, where na ⇢ nb represents an order na ≺ nb.

A precedence link na ⇢ nb indicates that decision node na precedes decision node nb in

the whole decision-making process (see Section 2.1.2) in the network. This precedence plays a

significant role in calculating the expected utility of a decision node in the network.

Note that there is a potential threat of conflict between the orders of decision nodes defined

within an object (the order defined by a modeller during building the corresponding class) and

the external decision nodes that are connected via referential edges. In an iOOBN the default

order defined in the class is overridden by the order of external decision nodes connected

via referential edges. This was the motivation behind requiring all ND
In nodes in embedded

object classes to have referential links, and it ensures that all the decisions are pushed up to

the outermost external class, where precedence ordering on all the decision nodes at that level

must be given. This also has the additional benefit of enforcing information hiding in the

embedded objects. See Figure 3.2 as an illustration of order overriding.

Sample iOOBN object

Co1

Ci1

Dp

C02

Ci2

Cin

C0m

Dq

Dr

Sample iOOBN object

Co1

Ci1

Da

C02

Ci2

Cin

C0m

Dc

Db

Sample iOOBN object

Co1

Ci1

Da

C02

Ci2

Cin

C0m

Dc

Db

Da DbDc Da DbDc

(a)

Sample iOOBN object

Co1

Ci1

Dp

C02

Ci2

Cin

C0m

Dq

Dr

Sample iOOBN object

Co1

Ci1

Da

C02

Ci2

Cin

C0m

Dc

Db

Sample iOOBN object

Co1

Ci1

Da

C02

Ci2

Cin

C0m

Dc

Db

Da DbDc Da DbDc

(b)

Figure 3.2: Illustration of overriding the order of decision nodes

In Figure 3.2a, there are three external decision nodes in the order Da ≺ Dc ≺ Db and three

input decision nodes in the sample object. When the input decision nodes are connected with

the external decision nodes via referential edges, the order of the object’s input decision nodes

are overridden (see in Figure 3.2b) 2.

Table 3.1 summarises the notation and style that is followed to denote various nodes, edges

and links in an iOOBN unless otherwise stated.
2If there are two different orders in decision nodes connected via referential edges, one order in the external

decision nodes and another in the input decision nodes of an object, then there is an inconsistency in the overall
ordering of the decisions. This inconsistency would lead to complications in computing expected utility from the
network.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 69

DEFINITION 3.13 : PARAMETERS

In an iOOBN class C = < N,E,Π,O >, the parameter π ∈ Π associated with a node n ∈ N
w.r.t. the parent chance nodes and parent decision nodes (if any) is either of the follow-

ing.

• A conditional probability distribution (CPD) if n is a chance node. Note that the

CPD P (n∣par(n)) is a function Φ: par(n) ∪ {n} → [0 ∶ 1].

• A decision table if n is a decision node. The decision table states a function Ψ:

par(n) ∪ {n} → o, where o ∈ O is an outcome from a set of plausible outcomes.

• A utility table representing a utility function if n is a utility node (see Section 2.1.2)

.

Table 3.1: iOOBN node and edge representation

Locality Element Class
Notation
(for a set) Shape Format Textual

Input
Chance NC

In Circle
Single Dotted line Italic

Decision ND
In Rectangle

Output Chance NC
Out Circle Double-lined Bold face

Embedded
Chance NC

Em Circle
Shaded UnderlineUtility NU

Em Diamond
Instance O 3-D Box

Causal edge Ec Arrow Single line →
Referential edge Er line Double dotted ↭
Information link Ei Arrow dotted line ⇢
Precedence link Ep Arrow dotted line ⇢

To recap, an iOOBN class consists of nodes, objects which are instances of classes, and edges;

these components are now formally defined, so now the definition of "Class" can be extended,

given partially in Definition 3.14, for two kinds of classes: concrete and abstract.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 70

DEFINITION 3.14 : CONCRETE CLASS

An iOOBN Concrete Class C is a Directed Acyclic Graph (DAG) given by a 4-tuple

< N,E,Π,O >, where

(i) N = a set of nodes = NIn ⊍NEm ⊍NOut, where

• NIn = a non-empty set of input nodes,

• NEm = a set of embedded nodes,

• NOut = a non-empty set of output nodes,

(ii) E = a set of edges = Ec ⊍Er ⊍Ep ⊍Ei, where

• Ec is a set of causal edges

• Er is a set of referential undirected edges

• Ei is a set of information links

• Ep is a set of precedence links

(iii) Π = a set of CPDs, one for each chance node; a set of decision tables one for each

decision node; and a set of utility functions, one for each utility node.

(iv) O = a set of objects, representing instances of iOOBN concrete classes that have

been specified previously,

Here, each o ∈ O is encapsulated within C, and C is called the encapsulating class of

the object o.

DEFINITION 3.15 : ABSTRACT CLASS

An iOOBN Abstract Class C′ of a concrete class C = < N,E,Π,O > is a Directed Acyclic

Graph (DAG) given by a 4-tuple < N,E, π,O >, where N = a non-empty set of nodes

(standard chance, decision or utility) , E = a set of edges, O = a set of objects (replicas a

of other classes) and π = a set of CPDs, decision tables, and utility tables with π ⊂ Π .

aGenerally, a "Replica" is a copy of something. In OOBN/iOOBN a replica is an exact copy of a class
that represents an instance of that class. In a replica, the graphical structure and the parameters of an
OOBN/iOOBN class are preserved. However, as a graphical distinction and ease of use, Hugin shows
only the interface nodes of a class to represent an instance of it.

Concrete classes are fully parameterized – with fully specified tables for all three kinds of de-

cision nodes – and thus can be flattened (see Algorithm 3.1) into an ordinary BN, compiled and

used to compute posterior probabilities and expected utilities (as for all BNs, as described in

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 71

Section 2.3.1). These also correspond to classes as defined in previous formulations of OOBN.

In contract, abstract classes are not fully parameterized, i.e., do not have fully specified CPTs,

decision or utility tables, and therefore cannot be compiled, i.e., cannot be used for reason-

ing. To our knowledge, the iOOBN is the first OOBN framework to include abstract classes, as

distinct from fully specified (concrete) classes.

An abstract class is useful when modellers have partial data or no data available during

the modelling phase to specify tables (CPD, decision or utility). The abstract class allows mod-

elling to progress when there is a complete graphical structure and partial or missing tables.

As shown in the following Section 3.3.4, it also forms part of the class inheritance hierarchy.

Associated with every abstract and concrete class, there is also a "type", which refers to types

of the interface nodes of that class.
DEFINITION 3.16 : INSTANCE

An instance or an object (following [36]) CI is a replica or copy of a concrete class C. a

The type of an instance is the same as the type of its encapsulating class.

aIn the OOP an object is created based on the definition of a class. Some of the data in the object are
initialized statically during compilation and some of them are set dynamically in run-time through the
parameters to a setter method. The same could be done for OOBN objects, i.e., the structure of the objects
can be obtained by copying the class structure statically during compilation time. Later, the parameters
to the nodes of the object structures can be assigned dynamically in the run time. However, Hugin does
not do the instantiation of classes in this way. This is because, the model keeps checking if any cycle has
been added during modelling so that the modellers become aware of an erroneous model instantly. Hence,
allowing the modellers to model an application based on the interface of a class and adding the detailed
structure later at compile time is not possible.

An object is connected to a node in the class in which it sits (called its encapsulating class)

via a referential edge between the node and an input node in the object’s interface. If an input

node of an embedded object (of a concrete class) is not connected via any referential edge, it

must have a default CPT/decision table/utility table. However, on the other hand, if an input

node is connected via a referential edge, the CPT/decision table/utility table of the connected

node overrides the default one.

In addition to concrete and abstract classes, the iOOBN also includes an interface as a sep-

arate data structure, containing only input and output nodes, without any parameters (i.e.,

these nodes have empty CPTs). This structure is new for iOOBN and is not defined in previ-

ous formulations of OOBNs.

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 72

DEFINITION 3.17 : INTERFACE

An iOOBN Interface I is a non-empty set of nodes N = < NIn, NOut >, representing the

signature of an iOOBN class C, where

• NIn = a non-empty set of random variables representing input nodes of C,

• NOut = a non-empty set of random variables representing output nodes of C.

The type of an interface is the list of type information of the nodes in the interface.

For every abstract or concrete class, there is always exactly one associated interface (though

the modeller might not choose to use it explicitly). An interface acts as a placeholder in the

encapsulating class during the model design process, allowing the model builder to use sub-

models built previously, or being built simultaneously by other modellers, without having

to understand the inner details of that submodel. Hence, when building a large, complex

iOOBN, the modellers need only agree on the mutual interfaces of classes beforehand and

combine their works later. The aim of the model building process is to produce a fully spec-

ified iOOBN, that is an object (instance) of the top-level class that can be compiled and run.

At some stages during that process, all interfaces and abstract classes must be replaced by an

object, an instance of a concrete class, having the same interface nodes.

The "type" of an interface is comprised of the types of the nodes in the interface. As an

example, the type of the interface "Milk cow" in Figure 3.8 (a) is {Type(Food), Type(Locale),

Type(Sex), Type(Milk), Type(Meat)}, where, according to Definition 3.3, Type(Food) = <
"Chance", {"Good", "Bad"}, "Discrete", "Boolean">. Similarly, the type of other nodes can be

found.

An interface can be viewed as a special type of incompletely specified class, where edges,

embedded nodes, CPDs/decision/utility tables associated with any node and objects are ab-

sent. The interface allows modellers to design a very high-level skeleton model. Thus in the

iOOBN, the hierarchy of structures is maintained: interface, the least specified, at the top; then

the abstract class, with only the parameters not fully specified; and, finally, the concrete class,

fully specified, at the bottom of the hierarchy.

The specification of abstract classes, and interfaces, which provide the OO features of ab-

straction, encapsulation and generalisation, are key components of the iOOBN that make it

different from previous OOBN formulations. Limiting the connections between classes to the

interface nodes provides encapsulation, a way to deny unauthorized access to the informa-

tion and structure of the encapsulated submodels. However, the information hiding within

an iOOBN is not "pure". Evidence can be entered for any node in the iOOBN, no matter how

§3.2 iOOBN: Classes, nodes, edges, parameters and objects 73

deeply it is embedded, and the posteriors (for chance nodes), and expected utilities for deci-

sions are computed by the inference algorithm and are available as the iOOBN model "out-

puts". 3

3.2.1 iOOBN equivalence to ordinary BNs

Next, the flattening of an iOOBN class is considered. This flattening must be carried out in

the iOOBN and motivated from the OOBN to BN flattening (as discussed in Section 2.7.4 of

Chapter 2) so that it is able to use any of the existing compilation and inference algorithms.

Flattening (Algorithm 3.1) of an iOOBN class C is the process of forming an ordinary BN

from the components of C. The formation includes the following operations:

• recursively replacing all object nodes by the components of the corresponding class

• collapsing each node pair connected via a referential link into a single node

The edges within an iOOBN must be such that it flattens out 4 to a valid BN, that is, a

directed acyclic graph. Figure 3.3 shows a flattened version of the iOOBN class "Profit" (see

Figure 3.1).

Betting

Forecast
Result

Weather

Gain
Accept Bet

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Resolution

InvestWeather

Opponent
Strength

Bidding

Trend

Bid result

Location

Profit

Accept Bid

Location

Condition

Output

Embedded

Input

Forecast
Result

Gain
Accept Bet

Resolution

InvestWeather

Opponent
Strength

Trend

Bid result

Profit

Accept Bid

Location

Condition

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

MilkCowEx: MCE

Meat

FoodAdd food
supplement?

Profit class

Food

Milk

Locale

Locale

Sex

Sex

Profit

Add food
supplement?

P
B = H B = L

M=H

1.0H

0.0Med

M=L

0.0

1.0

M=H

0.0
1.0

M=L

0.0

0.0

0.0L 0.0 0.0 1.0

P
B = H B = L

M=H

1.0H

0.0Med

M=L

0.0

1.0

M=H

0.0
1.0

M=L

0.0

0.0

0.0L 0.0 0.0 1.0

Milk CowEx

Metabolism

Meat

Food

Cost

Add food
supplement?

Milk

Locale Sex

Benefit

Met

F.Sup = Add

Loc=Hyg

1.0H

0.0L

0.8

0.2
0.65
0.35

Loc=NonH

0.4

0.6

F.Sup = Don’t

Loc=Hyg

0.9
0.1

0.6

0.4
0.5
0.5

Loc=NonH

0.0

1.0

F=G F=L F=G F=L F=G F=L F=G F=L

Met

F.Sup = Add

Loc=Hyg

1.0H

0.0L

0.8

0.2
0.65
0.35

Loc=NonH

0.4

0.6

F.Sup = Don’t

Loc=Hyg

0.9
0.1

0.6

0.4
0.5
0.5

Loc=NonH

0.0

1.0

F=G F=L F=G F=L F=G F=L F=G F=L

B Met = H Met = L

0.9H

0.1L

0.2

0.8

B Met = H Met = L

0.9H

0.1L

0.2

0.8

F P(F)

G 0.7
L 0.3

F P(F)

G 0.7
L 0.3

F.Sup

Add 0.5
Don’t 0.5

F.Sup

Add 0.5
Don’t 0.5

Loc P(Loc)

Hyg 0.6
NonH 0.4

Loc P(Loc)

Hyg 0.6
NonH 0.4

Sex P(Sex)

Male 0.5
Fem 0.5

Sex P(Sex)

Male 0.5
Fem 0.5

Cost Utility

F.Sup = Add 0.5
F.Sup = Don’t 0.5

Cost Utility

F.Sup = Add 0.5
F.Sup = Don’t 0.5

Benefit Utility

Met = H 0.5
Met = L 0.5

Benefit Utility

Met = H 0.5
Met = L 0.5

Milk CowEx (abs)

Metabolism

Meat

Food

Cost

Add food
supplement?

Milk

Locale Sex

Benefit

 Milk Cow (abs)

Metabolism

Meat

Food

Milk

Locale Sex

 Milk Cow (abs)

Metabolism

Meat

Food

Milk

Locale Sex

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Profit BN

Metabolism

Meat

Food

Cost

Add food
supplement?

Milk

Locale Sex

Benefit

Profit

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

(a)

(b)

M
Met = H Met = L

S=Male

0.0H

1.0L

S=Fem

0.0

1.0

S=Male

0.9
0.1

S=Fem

0.3

0.7

M
Met = H Met = L

S=Male

0.0H

1.0L

S=Fem

0.0

1.0

S=Male

0.9
0.1

S=Fem

0.3

0.7

Figure 3.3: iOOBN class "Profit" flattened to a BN "Profit"

3The process of entering evidence and obtaining the posterior of embedded nodes are analogous to I/O in OO
programming, which can occur in any object in the overall software.

4This is the process whereby Hugin converts the OOBN into the underlying BN, as per its API function "Cre-
ating Runtime Domain" [27].

§3.3 iOOBN and Inheritance 74

ALGORITHM 3.1 (FLATTENING AN IOOBN CLASS)

Call : Flattening_iOOBN (C) → BN

Input: C =< N,E,Π,O >: (N = NIn ⊍NEm ⊍NOut, E = Ec ⊍Er ⊍Ep ⊍Ei)

Output: BN =< N,E,π >: An ordinary BN

1 begin

2 N ← N

3 E ← Ec ⊍Ep ⊍Ei

4 π ← Π

5 foreach instance o ∈ O do

6 c← o.class()
7 // Assuming that instance "o" has an attribute "class" holding the associated

class name

8 bn← Flattening(c) // The recursive call to the flattening process

9 foreach Referential edge er =< ni, nj >∈ Er do

10 foreach edge e =< nj , nk >∈ bn.E do

11 bn.E ← bn.E ⋃ e′ =< ni, nk >
12 bn.E ← bn.E ∖ e

13 bn.N ← bn.N ∖ nj

14 N ← N ⋃ bn.N

15 E ← E ⋃ bn.E
16 π ← π ⋃ bn.Π

17 return BN

3.3 iOOBN and Inheritance

3.3.1 Motivation

The BN modelling process, in practice, is usually iterative and incremental [1, 32], particularly

when building a model partially or entirely by hand, rather than learning from data. So the

modelling process can be seen as a sequence of changes to the BN: adding or deleting nodes or

edges, changing the name or states of a node, changing some or all of a CPT, and so on. Also,

some of these changes necessarily generate others: for example, adding a new state to a node

means changing the CPT of both the node itself and also the CPTs of any child nodes.

When building an OOBN, as well as the ordinary BN modelling changes, there are other

possibilities for modelling steps, such as embedding an object within a class, creating a new

class, changing the referential edges to an embedded object, and so on. When modelling with

ordinary OOBNs, as implemented in Hugin, if the modeller wants to create a new class that

§3.3 iOOBN and Inheritance 75

has common elements with an existing class – for example, if s/he had created a "Cow" class,

and wanted to make a new "Milk Cow" class, this would involve copying the "Cow" class,

giving it a new name, then making changes in the new "Milk Cow" class. When modelling

complex problems, the number of classes can grow quite large (as in the case study in Sec-

tion 3.5, making it difficult for the modeller to keep track of the differences and similarities of

the various new classes and increasing the chance of inadvertent errors and inconsistencies. In

addition, if at any point the modeller wants to change some part of the model that is common

to more than one class, the modeller often needs to make the same change in more than one

class. For example, in ordinary OOBN modelling, changing the state-space of the Locale node

in the "Cow" class node would suggest the same change should be made in the "Milk Cow"

class (and any others) 5.

Inheritance provides an approach for solving these issues. By using inheritance, the con-

nection can be recorded between the variations of a class, and this allows a change in one class

to flow through to other relevant classes. Thus, using the iOOBN framework, the modelling

steps are: create a new subclass (e.g. "Cow"), give it a new name (e.g. "Milk Cow"), then make

a sequence of changes to the new subclass itself. The iOOBN system must then first check that

any given change is valid, and then keep track of those changes. Thus the subclass is inter-

nally represented by what it inherits from its parent, i.e., where it is identical, and then by the

changes that override elements of the parent class.

3.3.2 Sub-interface, subclass, inheritance hierarchy and polymorphism

Inspired by the OO principle of inheritance, in iOOBN all classes and interfaces can inherit

structure and parameters (analogous to inheriting attributes and/or behaviours in OO pro-

gramming) from another entity. The class or interface that inherits is then known denoted

as "sub-types". A sub-type entity is a variation, usually thought of as a specialisation, that

includes changes to structure and/or parameters.

In OO programming there are two types of inheritance, namely "subtyping" or "interface

inheritance" and "implementation inheritance". In subtyping, the interface of the superstruc-

ture (class or interface) is maintained in the substructures, but the underlying implementation

may vary. In implementation inheritance, the implementation of the superstructure, along

with its interface, is copied and extended in the substructure. Both of these types facilitates

maximal resource reuse and enhance simultaneous workability. This advantage motivated the

introduction of subclasses and sub-interfaces that give the modellers "subtyping" capability
5Of course, ordinary OOBNs still provide efficiency in that a change to a class is pushed out to any object

created from that class. In contrast, when using subnetworks in the GeNIe software [28], the modeller can make
copies of the same network fragment, but to make a change in that fragment, s/he has to change it in all the
subnetwork copies, a tedious process.

§3.3 iOOBN and Inheritance 76

while extended class and extended interface have now been defined to allow"implementation

inheritance".
DEFINITION 3.18 : SUB-INTERFACE

In iOOBN, let I′ =< N ′
In,N

′
Out > is a Sub-interface of an interface I = < NIn,NOut > if

NIn ⊆ N ′
In and NOut ⊆ N ′

Out. In other words, I is a superinterface of I′.

DEFINITION 3.19 : SUBCLASS

In iOOBN, C′ =< N′,E′,Π′,O′ > (where N′ = N ′
In ⊍N ′

Em ⊍N ′
Out) is a Subclass of class C

= < N,E,Π,O > (where N = NIn ⊍NEm ⊍NOut) if NIn ⊆ N ′
In and NOut ⊆ N ′

Out. In other

words, C is a Super-class of C′ a.
aThere are certain cases, particularly when making a concrete class from an abstract class before instan-

tiating an object of a class, where a subclass needs to be defined with reference to probability tables. There
is no general mapping between Π and Π’, i.e., the CPDs of the superclass and the subclass, respectively,
because as part of the hierarchy, all the CPTs (in an extreme case) could be replaced. However, in practice,
many will be the same, or when arcs are deleted, there may be marginalisation.

A sub-interface is defined as one which inherits all the input and output nodes from its

superinterface, and one that may have any number of additional input or output nodes. Sim-

ilarly, a subclass inherits all the input and output nodes from its superclass, and may have any

number of additional input or output nodes. The subclass inherits all of the internal structure

of the superclass (embedded nodes and objects), and may also contain additional nodes and

edges. The interface nodes of the subclass then become a superset of the superclass. Because

all input nodes in concrete classes must have default parameters specified, an object of a super-

class may be replaced with a subclass. The inheritance relationship is denoted with a solid line

with an open arrow directed into the superclass, following standard UML inheritance notation.

DEFINITION 3.20 : EXTENDING A CLASS

In iOOBN, a class C′ =< N′,E′,Π′,O′ > (where N′ = N ′
In ⊍N ′

Em ⊍N ′
Out) is an Extended

Class of

• an interface I = < NIn,NOut > if NIn ⊆ N ′
In and NOut ⊆ N ′

Out, or

• a class C = < N,E,Π,O > ifNIn ⊆ N ′
In,NOut ⊆ N ′

Out,NEm ⊆ N ′
Em, O ⊆ O′ and Π ⊆ Π′

In other words, if C′ is constructed by adding necessary additional structures and pa-

rameters to a copy of I or C, then C′ is called an extended class of I or C.

Next, an important structure Inheritance hierarchy, is introduced, which is constructed

through the relationships between subclasses and the superclass, concrete classes and abstract

classes, and interfaces and classes.

§3.3 iOOBN and Inheritance 77

DEFINITION 3.21 : INHERITANCE RELATIONSHIP AND HIERARCHY

An Inheritance hierarchy in iOOBN is a tree T =< V,E >, where each vertex v ∈ V is

an iOOBN class or interface and each edge e = vi → vj ∈ E represents a relationship

called inheritance relationship between the corresponding classes or interfaces, with

the following restrictions:

• If vj is an interface, then vi can only be an interface, i.e., no interface can be ex-

tended from an abstract or a concrete class.

• If vj is an abstract class, then vi can only be an interface or an abstract class, i.e., no

abstract class can be extended from a concrete class.

• If vj is a concrete class, then vi can be an interface, an abstract class or a concrete

class.

The edge/relationship also denotes that vj is extended from vi.

A crucial aspect of OO inheritance, which must apply here in iOOBN as well, is that the

classes remain backward compatible; this means that an encapsulated object can be replaced

by an object of any sub-type (direct, or via the hierarchy) and the resultant iOOBN is still a

valid iOOBN – nothing "breaks", and when made fully concrete, it can be compiled and run

(i.e., used for reasoning). The inclusion of backward compatibility gives the iOOBN another

prominent feature of the OO paradigm, namely "polymorphism", which allows an object to

take many forms if and when required. Unlike OO programming, this replacement of an

object by another that is a sub-type cannot be done at runtime; instead, it must be done during

the modelling process. This particular case can be simply be modelled as a set of classes that

differ only in their embedded objects, as a hierarchy of classes.

DEFINITION 3.22 : POLYMORPHISM

Let T =< V,E > be an inheritance hierarchy and a pair < A,D > of iOOBN interface or

class where A,D ∈ V . D is known to be Polymorphic of A if A is an ancestor of D in T .

Polymorphism in an iOOBN (as in any OO paradigm) is a compelling feature. It allows

modellers to model a system with a simpler structure (a partially defined class, a superclass

or an interface) or any structure that is available at the time of modelling and later to extend

the model by replacing with a relatively more complex or more suitable structure (the most

appropriate concrete class).

Further analogies can be made with OO programming where an iOOBN subclass inherits

certain elements from its superclass, such that any changes to those elements, (e.g., changes

§3.3 iOOBN and Inheritance 78

in the domain or types of node, constitute a form of overriding. An iOOBN is a strongly

typed framework where each entity has an associated type, which allows type checking to be

performed to ensure that the types of interface nodes are preserved in the subclass. Moreover,

when an object of any subclass can replace a superclass object, then this is referred to as a form

of typecasting.

3.3.3 Changes allowed in iOOBN inheritance

Class {abs}

CowFood Locale

Meat

Metabolism

Class:

Bradford Cow

Food Locale

Meat

Metabolism Food Loc
P(Met =T |

Food, Loc)

Low

Low

High

High

Neg 0.01

Pos 0.02

Neg 0.03

Pos 0.05

Food Loc
P(Met =T |

Food, Loc)

Low

Low

High

High

Neg 0.01

Pos 0.02

Neg 0.03

Pos 0.05

Class:

Brangus Cow

Food Locale

Meat

MetabolismFood Loc
P(Met =T |

Food, Loc)

Low

Low

High

High

Neg 0.02

Pos 0.03

Neg 0.04

Pos 0.07

Figure 3.4: OMD example: Changing CPTs of inherited nodes in the subclasses

The simplest form of subclass is one where only the parameters of the subclass are changed,

and all the structural elements remain the same. Figure 3.4 gives an example of this, with two

subclasses of the "Cow" class created to represent two different species of cows, where the

CPT of the Metabolism node has been changed from the parent "Cow" class, to represent the

different metabolic rates of two different breeds of cows (Bradford and Brangus). Note that

the figure shows the resultant new CPT, not the internal representation of the inherited CPT

plus changed elements.

Any node – input, output or embedded – can be added to a subclass. Node adding would

typically involve the addition of edges; otherwise, the change results in the degenerate case

having a disconnected node. Embedded nodes can be deleted, but the definition of inheritance

– where the interface of a class and subclass must be identical – forbids the deletion of input or

output nodes. However, if an input node is not relevant in the subclass, it is possible to delete

the edges from an input node to its children, disconnecting it from the rest of the structure.

Figure 3.5 illustrates an example where the subclass has involved the creation of new nodes

§3.3 iOOBN and Inheritance 79

Class {abs}

Calving CowFood Locale

Meat

Metabolism

Milk Calves

Reproduction

Class {abs}

Milk CowFood Locale

Meat

Metabolism

Milk

Met Rep
P(Meat =T |

Met, Rep)

T

T

F

F

T 0.55

F 0.50

T 0.25

F 0.10

P(Meat =T |

Met, Rep)

0.75

Met

T

F 0.25

Figure 3.5: OMD example: Adding edges and nodes within subclasses

as well as edges, in order to model the reproduction process in the OMD example.

Another modelling step the iOOBN system must handle is a change in the states of a node.

The first example for this is a change to the states for an embedded node in a class; this is

straightforward and handled in exactly the same way as a change in the CPT of a node.

A second and more interesting case is when the desired change is either to the states of an

input node or the states of an output node of a class, C. By definition, this is not allowed, as

the interface of a class and its subclass must be the same. However, the desired change can be

made by modifying the non-interface structure of the class, adding a duplicate node with the

different type and connecting it to the interface node, leaving the interface unchanged. Thus,

the algorithm for the modelling steps to, in effect, change the type of an input node I, without

changing the actual interface, is shown in Algorithm 3.2, while the steps to change the type of

an output node, O, in class C are shown in Algorithm 3.3.

Figure 3.6 depicts an example of this state change, when the states {pos, Neg} for the node

Locale, are changed to {Fav, Neut, Harsh}, and the states {Good, Bad} for the node Meat are

changed to {High, Avg, Low}.

Figure 3.7 gives a schematic representation of the changes effected by Algorithms 1 and 2.

Since in the input node case, its children can be either embedded or output nodes, the notations

are combined (shading plus bolded outline) for these child nodes, while for the output node

case, its parents can be either embedded or input nodes, and the shaded and dotted outline

§3.3 iOOBN and Inheritance 80

ALGORITHM 3.2 (MODELLING STEPS WHEN CREATING A NEW SUBCLASS BY ADDING

STATES TO AN INPUT NODE)

Call: AddingStateToInput(C, I) → C′

Input: Class C

Input Node I

Output: Subclass C′

1 Create the subclass C′ /* Replica of C */

2 Add a new node I ′ that has the new set of states

3 Add an edge from I to I ′

4 foreach edge e from I to its children (child) in C do

5 Remove e

6 Add a new edge from I ′ to child

7 Update CPT of child

8 Construct a CPT for I ′

9 return subclass C′

ALGORITHM 3.3 (MODELLING STEPS WHEN ADDING STATES TO AN OUTPUT NODE)

Call: AddingStateToOutput(C,O) → C′

Input: Class C

Output Node O

Output: Subclass C′

1 Create the subclass C′ /* Replica of C */

2 Add a new node O′ that has the new set of states

3 Add an edge from O′ to O

4 foreach edge e to O from its parents (parent) in C do

5 Remove e

6 Add a new edge from parent to O′

7 Create the CPT for O′

8 Construct a CPT for O

9 return subclass C′;

notations are combined for these parent nodes.

As these examples show, there are many possible changes that can be made when creating

a new subclass, and it is both domain-dependent and at the discretion of the modeller, as to

§3.3 iOOBN and Inheritance 81

Class{abs}

CowFood Locale

Meat

Metabolism

Class:

 Brangus

 Cow
Food Locale

Meat

Metabolism

Meat’

Locale’ Loc
P(Loc' =

Fav |Loc)

Pos 0.75

Neg 0.25

P(Loc' =

Neut |Loc)

0.55

0.45

P(Loc' =Harsh

| Loc)

0.10

0.90

Meta
P(Meat =Good |

Meta)

F 0.19

T 0.70

P(Meat =Bad |

Meta)

0.81

0.30

Food Loc
P(Meta =True |

Food, Loc)
High Pos 0.75
High Neg 0.70
Low Pos 0.65
Low Neg 0.45

P(Meta =False |

Food, Loc)

0.35
0.65

0.25
0.3

Meta
P(Meat'=

Low| Food, Met)

P(Meat'=

Avg | Food, Met)
T 0.01 0.15
F 0.45 0.25

P(Meat'=

Hgh | Food, Met)
0.84
0.30

Food Loc’
P(Meta =True |

Food, Loc)
High Fav 0.75
High Neut 0.70
High Harsh 0.65
Low Fav 0.45
Low Neut 0.40
Low Harsh 0.35

P(Meta =False |

Food, Loc)
0.25

0.30
0.35
0.55

0.60

0.65

Meat’ P(Meat =Good | Meat')

High 0.85

Avg 0.75

Low 0.65

P(Meat =Bad | Meat')

0.15

0.25

0.35

Figure 3.6: Typecasting: Type Changing of inherited Input-Output nodes in subclasses

Input’

O/E 1 O/E 2 O/E 3

Input

Input

O/E 1 O/E 2 O/E 3

I/E 1 I/E 2

Output’

I/E 3

Output

I/E 1 I/E 2

Output

I/E 3

Class C
Subclass C’

Class C Subclass C’

Figure 3.7: Schematic diagram showing the model change required to effect a change in the states of an
input (above) or output (below) nodes.

how many changes to make in a single inheritance step. There can be decisions about whether

to create multiple levels of subclasses or to create a single level with multiple subclasses. Note

that, in some cases, an iOOBN class hierarchy created incrementally (as the algorithm pro-

posed in Chapter 5) might well be suboptimal and that regular reengineering might be benefi-

cial; however, that is undoubtedly an area for future investigation, after further experience in

§3.3 iOOBN and Inheritance 82

modelling within the iOOBN framework.

Table 3.2 shows a summary of the allowed operations. It shows affected components due

to the operations, and refers to an appropriate example.

3.3.4 Inheritance in the livestock farming example

Figure 3.8 (part (a) and part (b)) shows a UML-type representation of the OMD hierarchy

in the iOOBN. Here, the fundamental components are described in this iOOBN example; the

following section describes the class and interface hierarchy elements of the example.

Table 3.2: iOOBN inheritance types and affected components of the iOOBN class.

Inheritance Type
(Changes allowed in a subclass)

Affected Components
Example

Figure No.
Interface nodes Embedded nodes

Objects Edges CPTs
Name Type States Name Type States

Replacing an abstract class
with a concrete class - - - - - - - - ✓ 3.8 (part-c)

Replacing an interface with a class - - - ✓ ✓ ✓ ✓ ✓ ✓ 3.8 (part-c)
Update CPTs values - - - - - - - - ✓ 3.4

Add edges - - - - - - - ✓ ✓ 3.5
Remove edges* - - - - - - - ✓ ✓

Add interface nodes ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ 3.8(part-b)
Remove interface nodes Not allowed
Modify interface nodes ✓ - - ✓ ✓ ✓ - ✓ ✓ 3.6

Add-alter embedded nodes - - - ✓ ✓ ✓ - ✓ ✓ 3.5
Remove embedded nodes* - - - ✓ ✓ ✓ - ✓ ✓
Add-alter-replace objects - - - - - - ✓ ✓ ✓ 3.8(part-b)

Remove objects* - - - - - - ✓ ✓ ✓
Replacing a superclass instance

with a subclass instance - - - - - - ✓ ✓ ✓ 3.8(part-c)

* : Removing components is subject to the policy of the modellers.
✓ : The component in the column is affected by the action in the row.
- : The component is not affected by the action.

3.3.4.1 Using encapsulation and abstraction

Consider the concrete "Calving Cow" class in Figure 3.8 (part-b, bottom): it has five in-

put nodes (Food, Locale, Sex, Health and Breed), two embedded nodes (Metabolism and

Reproduction), an embedded object Productivity, which is an instance of the Productivity class,

and three output nodes (Meat, Milk and Calves). There are referential edges (undirected dou-

ble dotted lines) from three of those input nodes (Health, Locale, and Breed) to the input

nodes of the Productivity object, and a single causal edge (solid line) from the embedded ob-

ject (the output Productivity node, not shown) to the embedded Reproduction node. Because

it is a concrete class, all the CPTs must be fully specified (although this is not shown in the

figure for reasons of space). The abstract Calving Cow class has the same input and output

nodes as the concrete Calving Cow class; it has a different internal structure – this is explained

§3.3 iOOBN and Inheritance 83

C
la

s
s
 {

a
b

s
}

C
o

w
F

o
o
d

L
o
c
a
le

M
e
a
t

M
e
ta

b
o
lis

m

<
<
in

te
rf

a
c

e
>
>

M
il
k
 C

o
w

F
o
o
d

S
e
x

M
e
a
t

M
ilk

L
o
c
a
le

C
la

s
s
 {

a
b

s
}

D
ra

ft
In

g
 C

o
w

F
o
o
d

L
o
c
a
le

M
e
a
t

M
e
ta

b
o
lis

m

D
ra

ft

S
tr

e
n
g
th

C
a

s
tr

a
ti
o
n

C
la

s
s
 {

a
b

s
}

M
il
k
 C

o
w

F
o
o
d

S
e
x

M
e
a
t

M
e
ta

b
o
lis

m

M
ilk

L
o
c
a

le

C
la

s
s
 (

a
b

s
)

C
a

lv
in

g
 C

o
w

F
o
o
d

L
o
c
a
le

M
e
a
t

M
e
ta

b
o
lis

m

M
ilk

C
a

lv
e
s

R
e

p
ro

d
u
c
ti
o
n

S
e
x

H
e

a
lt
h

B
re

e
d

C
la

s
s
:

C
a

lv
in

g
 C

o
w

F
o
o
d

L
o
c
a
le

M
e
a
t

M
e
ta

b
o
lis

m

M
ilk

C
a

lv
e
s

R
e

p
ro

d
u
c
ti
o
n

P
ro

d
u

c
ti

v
it

y

B
re

e
d

H
e

a
lt
h

L
o
c
a
le

P
ro

d
u
c
ti
v
it
y

P
ro

d
u
c
ti
v
it
y

S
e
x

H
e

a
lt
h

B
re

e
d

<
<
in

te
rf

a
c

e
>
>

C
o

w

F
o
o
d

L
o
c
a
le

M
e
a
t

<
<
in

te
rf

a
c

e
>
>

C
a

lv
in

g
 C

o
w

F
o
o
dL
o
c
a
le

C
a

lv
e
s

M
ilk

M
e
a
t

S
e
x

H
e

a
lt
h

B
re

e
d

<
<
in

te
rf

a
c

e
>
>

D
ra

ft
in

g
 C

o
w

F
o
o
d

L
o
c
a
le

M
e
a
t

D
ra

ft

C
a

s
tr

a
ti
o
n

<
<
in

te
rf

a
c

e
>
>

M
il
k
 C

o
w

F
o

o
d

L
o

c
a
le

M
il
k

M
e
a
t

P
ro

fi
t

L
o

c
a
le

F
o

o
d

W
e
a
th

e
r

E
n

v
ir

o
n

m
e
n

t

C
la

s
s
 (

a
b

s
):

F
a
rm

P
ro

fi
t_

m
il
k
C

o
w

_
In

f

C
la

s
s
 {

a
b

s
}

M
il
k
 C

o
w

F
o

o
d

L
o

c
a
le

M
e
a
tM

e
ta

b
o

li
s
m M

il
k

P
ro

fi
t

L
o

c
a
le

F
o

o
d

W
e
a
th

e
r

E
n

v
ir

o
n

m
e
n

t

C
la

s
s
 (

a
b

s
):

F
a
rm

P
ro

fi
t_

m
il
k
C

o
w

_
A

b
s

C
la

s
s
 {

a
b

s
}

 C
a

lv
in

g

C
o

w
F

o
o

d
L

o
c

a
le

M
e
a
t

M
e
ta

b
o

li
s
m

M
il
k

C
a

lv
e
s

R
e

p
ro

d
u

c
ti

o
n

P
ro

fi
t

In
d

ir
e
c

t
D

ir
e
c
t

L
o

c
a
le

F
o

o
d

W
e
a
th

e
r

E
n

v
ir

o
n

m
e
n

t

C
la

s
s
 (

a
b

s
):

F
a
rm

P
ro

fi
t_

c
a
lv

in
g

C
o

w
_

A
b

s

(a
)

(b
)

(c
)

Fi
gu

re
3.

8:
Ex

am
pl

e
of

(a
)i

nt
er

fa
ce

hi
er

ar
ch

y
an

d
(b

)c
la

ss
hi

er
ar

ch
y

fo
rt

he
O

M
D

liv
es

to
ck

ex
am

pl
e

us
ed

to
ill

us
tr

at
e

th
e

co
m

po
ne

nt
s

of
th

e
iO

O
BN

fr
am

ew
or

k.
(c

)H
ow

di
ff

er
en

to
bj

ec
ts

ca
n

be
in

te
rc

ha
ng

ea
bl

y
em

be
dd

ed
w

it
hi

n
a

cl
as

s:
an

in
te

rf
ac

e
an

d
tw

o
di

ff
er

en
ta

bs
tr

ac
tc

la
ss

es
,o

ne
(C

al
vi

ng
C

ow
)a

su
bc

la
ss

of
th

e
ot

he
r

(M
ilk

C
ow

);
th

is
de

m
on

st
ra

te
s

th
e

O
O

fe
at

ur
es

of
po

ly
m

or
ph

is
m

.

§3.3 iOOBN and Inheritance 84

below. There is also an interface Calving Cow class (part-a), connected via a dotted line with

open arrowhead going from the abstract class to its corresponding interface class (following

standard OO UML notation).

Consider the OMD example in Figure 3.8 again. The highest level class is the abstract Cow

class (part-b, top) because all cows in this farm example can be used for meat production. The

Cow class, in turn, has two (abstract) subclasses (Milk Cow and Drafting Cow). Both these

subclasses inherit the Cow superclasses input nodes (Food and Locale) and the output node

(Meat) but have additional interface nodes (Sex and Milk for Milk Cow class, Castration and

Draft for Drafting Cow). Drafting Cow has an additional interface node, Strength, an essential

attribute for a drafting cow, as well as an additional output node (Draft). Similarly, the previ-

ously described Calving Cow abstract class is a subclass of Milk Cow and has a more complex

structure: two new input nodes (Health and Breed) and the additional output node (Calves) and

different internal structure around the new embedded node Reproduction. The concrete Calv-

ing Cow is itself a subclass of the abstract Calving Cow class, with the same interface nodes,

but with a different internal and more complex structure, specifically around an additional em-

bedded object Productivity. Similarly, there is an inheritance hierarchy between the interfaces

Cow, Milk Cow and Calving Cow, with the same solid line with an open arrow notation; as to

be expected, these correspond to the different interfaces found in the class hierarchy.

3.3.4.2 Using inheritance

As an example depicted in Figure 3.8 (part-c), where the FarmProfit_milkCow_Inf su-

perclass contains an embedded interface object ("Milk Cow" interface), its subclass, Farm-

Profit_milkCow_Abs, contains an embedded object of the corresponding "Milk Cow" abstract

class, and in turn the FarmProfit_calvingCow_Abs subclass (derived from the class, Farm-

Profit_milkCow_Abs), contains an embedded object of the abstract subclass "Calving Cow" 6.

3.3.4.3 Using polymorphism and typecasting

The iOOBN is a strongly typed framework. It allows changing the type as a special feature

with a systematic approach. The type changing mechanism follows the definition of "Type" for

BNs and OOBNs.

In checking compatibility for polymorphism (dynamic changing of objects) of class C with

another class C ′, the "Type" of both classes is compared. If the "ParentClass", "ParentInterface"

6Note that adding an additional element to iOOBN has been considered, namely to have "variants" of a class
which differ only in the embedded object and all the rest of the class remains the same (including the referential
edges to the encapsulated object). This feature would be utilised in applications where a script is used to generate
different versions of the model for different purposes (as in the WGR case study described in Section 3.5), allowing
a form of run time binding. However, this remains a possible future extension to the iOOBN.

§3.4 Applying iOOBN to Previous OOBN Problems 85

and "InterfaceNodes" of C are subsets of the "ParentClass", "ParentInterface" and "InterfaceN-

odes" of C′, respectively.

Figure 3.8, part-c illustrates replacing an interface with its implementing abstract class in-

stance, and later this instance is replaced by another instance of the abstract subclass extended

from this abstract class. This replacing process is an example of polymorphism.

3.4 Applying iOOBN to Previous OOBN Problems

This section revisits some well-known real-life examples of BN/OOBN modelling such as the

car accident [36], computer diagnosis problem [203], farmland modelling [37], and power

surge problem [76]. The aforementioned problems have been re-visited (reengineered or

reengineered and extended) and, using the proposed iOOBN system, some ways have been

demonstrated of extending the systems in order to enable them to cope-up with changes. The

limitations of the existing frameworks are compared to the capability of the proposed iOOBN

and the limitations are considered in modelling the extended/reengineered systems. Further-

more, once the reengineering is accomplished, a "validation" (see Section 3.5.4) must be con-

ducted to ensure the correctness of the reengineered model and its viability.

3.4.1 The Asia BN

As an example, the classic "Asia BN" case is revisited in order to test for the feasibility of

the iOOBN framework. A modeller, using an ordinary BN such as the Asia BN (shown in

Figure 3.9 (a)), needs to know the complete network configuration in order to work with the

BN (For example, using it somewhere else, extending or modifying it). Moreover, let us say

the modeller wants to extend the model by adding some extra nodes (e.g., decision and utility)

in order to make it a decision-making system, as shown in Figure 3.9 (c) (i.e., into an AsiaExt

BN). The AsiaExt BN can now help a user to decide whether performing an Xray is beneficial

or not with respect to the provided evidence. This additional facility is added by using the

decision node Do Xray? and utility nodes Cost of Xray and Benefit of Xray. In order to build

such a BN from the Asia BN in part (a), the modeller needs to know full details of the Asia BN.

However, if the modeller uses OOBN and makes a class, Asia, (as shown in Figure 3.9 (b))

in the Asia BN, where A and S are marked as input nodes and T, L and B as output nodes, then

the modeller does not need to know the details of the network other than the interface nodes

(A, S, T, L, and B).

In order to use the BN, encapsulating it in a class, instantiating (i.e., making an instance of)

the class, i.e., Asia, and adding the required additional nodes and edges is sufficient to extend

§3.4 Applying iOOBN to Previous OOBN Problems 86

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Interface 1

A S

X D

Interface 2

A S

Y G

A S

N

A S

T L B

F

X D

A S

N

A S

T L B

F

X D

A S

T L B

F

X D

A S

M

Obj A1: Asia

A S

X D

A S

M

A S

T L B

F

X D

M

A S

T
L

B

F

X D

A S

T L B

F

X D

A S

M

A S

T L B

F

X D

Obj A1: Asia

A S

X D

Obj A2: Asia2

A S

Y G

A S

N

Obj A1: Asia

A S

X D

Obj A2: Asia

A S

Y G

A S

N

A S

T L B

F

X D

A S

C M

R

Y G

(c) Class Asia2

(b) Class Asia

(d) Class AsiaEx2

(a) AsiaExt2 BN

(b) Class AsiaEx1

(c) Class AsiaEx1 : Expanded
(b) Class AsiaEx3 : Expanded

A S

T L B

F

X D

A S

T L
B

F

X D

(a) Asia BN (b) Class Asia

(a) Class AsiaEx4
(d) Class AsiaEx5

(f) Class AsiaEx6

(e) Class AsiaEx5 : Expanded

(g) Class AsiaEx6 : Expanded

T L B

F

X D

A S

M

T1 L1 B1

F1

X1 D1

(c) AsiaEx3 BN

Do Xray?

Cost of
XRay

Benefit of
XRay

A S

T L B

F

X D

(c) AsiaExt BN

Do
Xray?

Cost of
XRay

Benefit of
XRay

A S

T L B

F

X D

(d) Class AsiaExt1

Do

Xray?

Cost of
XRay

Benefit of
XRay

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Inherited

Inherited (changed)

Treat? Cost of XRay

AT_T AT_L AT_B

HealthBenefit

A S

T
L

B

F

X D

(b) Class AsiaExt2

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat? Cost of XRay

AT_T AT_L AT_B

Health
Benefit

A S

T
L

B

F

X D

(c) Class AsiaExt3

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat? Cost of
XRay

AT_T AT_L AT_B

Health
Benefit

(d) Class AsiaExt4

A S

T L B

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat?
Cost of
XRay

AT_T AT_L AT_B

Health
Benefit

A S

T L B

F

X D

A S

T L B

F

X D

(a) Asia BN (b) Class Asia

A S

T L B

F

X D

(c) AsiaExt BN

Do
Xray?

Cost of XRay
Benefit of

XRay

A S

T L B

F

X D

(d) Class AsiaExt1

Do

Xray?

Cost of
XRay

Benefit of
XRay

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Figure 3.9: Example: encapsulating a BN in a class

the model. Another approach that is well suited in this situation is to extend the class Asia,

using the inheritance feature of iOOBN and form the class, AsiaExt1, (as shown in Figure 3.9

(d)).

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Interface 1

A S

X D

Interface 2

A S

Y G

A S

N

A S

T L B

F

X D

A S

N

A S

T L B

F

X D

A S

T L B

F

X D

A S

M

Obj A1: Asia

A S

X D

A S

M

A S

T L B

F

X D

M

A S

T
L

B

F

X D

A S

T L B

F

X D

A S

M

A S

T L B

F

X D

Obj A1: Asia

A S

X D

Obj A2: Asia2

A S

Y G

A S

N

Obj A1: Asia

A S

X D

Obj A2: Asia

A S

Y G

A S

N

A S

T L B

F

X D

A S

C M

R

Y G

(c) Class Asia2

(b) Class Asia

(d) Class AsiaEx2

(a) AsiaExt2 BN

(b) Class AsiaEx1

(c) Class AsiaEx1 : Expanded
(b) Class AsiaEx3 : Expanded

A S

T L B

F

X D

A S

T L
B

F

X D

(a) Asia BN (b) Class Asia

(a) Class AsiaEx4
(d) Class AsiaEx5

(f) Class AsiaEx6

(e) Class AsiaEx5 : Expanded

(g) Class AsiaEx6 : Expanded

T L B

F

X D

A S

M

T1 L1 B1

F1

X1 D1

(c) AsiaEx3 BN

Do Xray?

Cost of
XRay

Benefit of
XRay

A S

T L B

F

X D

(c) AsiaExt BN

Do
Xray?

Cost of
XRay

Benefit of
XRay

A S

T L B

F

X D

(d) Class AsiaExt1

Do

Xray?

Cost of
XRay

Benefit of
XRay

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Inherited

Inherited (changed)

Treat? Cost of Treat

AT_T AT_L AT_B

HealthBenefit

A S

T
L

B

F

X D

(b) Class AsiaExt2

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat? Cost of Treat

AT_T AT_L AT_B

Health
Benefit

A S

T
L

B

F

X D

(c) Class AsiaExt3

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat? Cost of
Treat

AT_T AT_L AT_B

Health
Benefit

(d) Class AsiaExt4

A S

T L B

Do

Xray?

Cost of
XRay

Benefit of
XRay

Treat?
Cost of
Treat

AT_T AT_L AT_B

Health
Benefit

A S

T L B

F

X D

A S

T L B

F

X D

(a) Asia BN (b) Class Asia

A S

T L B

F

X D

(c) AsiaExt BN

Do
Xray?

Cost of XRay
Benefit of

XRay

A S

T L B

F

X D

(d) Class AsiaExt1

Do

Xray?

Cost of
XRay

Benefit of
XRay

Chance Node

Utility Node

Decision Node

Causal Edge

Information link

Precedence link

Referential edge

Input Output Embed.

Figure 3.10: Example: forming a class by reusing by means of inheritance and instantiation

Let’s say the modeller is interested in making a decision making tool in order to help users

know if taking treatment for a particular disease would be beneficial or not in a given situation

§3.4 Applying iOOBN to Previous OOBN Problems 87

where associated cost and profit are provided. In the case of an ordinary BN, theAisaExt2 BN

(as shown in Figure 3.10 (a)) serves the purpose 7. The AsiaExt2 BN is obtained by adding

three extra chance nodes: AT_T (after treatment the chance of TB), AT_C (after treatment the

chance of cancer) and AT_B (after treatment the chance of bronchitis); one decision node: Treat?

(should take treatment?); and two utility nodes: Cost of treatment and Health Benefit (the benefit

of taking the treatment). In order to utilize the reusability feature of iOOBN, there are several

ways of accomplishing the design and obtaining the class AsiaExt2, as shown in Figure 3.10

(b).

One of the approaches can be to use inheritance and extend the class AsiaExt1, of Figure 3.9

(d). The extension of the class is shown in Figure 3.10 (c) with the inherited segments marked in

colours. Another approach is to use the alternative options provided by the polymorphism and

abstraction features of the iOOBN framework. Since the modellers only need to know the in-

terface nodes of a class in order to use it, the aforementioned iOOBN features allow modellers

to work more flexibly. They can design a system in the abstract form beforehand (as shown in

Figure 3.10 (d)). This facility is especially helpful if they have no predefined submodel or class

available to fit in, or have no data at all, or have incomplete data available during the construc-

tion of the model. This technique can also be referred to as building a prototype model where

detailed class implementations are postponed by adding a placeholder/interface for the class

that might be completed later or added by another group of people. In order to complete the

modelling, the placeholder/interface can be replaced by instance of a detailed implementation

class, or it can be replaced either by an instance of class, as an example AsiaExt1 (Figure 3.9

(d)), or an instance of a class that has the same (or superset of) interface nodes.

3.4.2 The car accident

Figures 3.11a and 3.12a present the car accident model proposed in [36] as an OOBN model.

The model consists of a class containing instances of three different subclasses (1. Driver,

2. Car, 3. Road) and some embedded standard nodes. Among those instances, the class for

the instance Car is shown in detail. It consists of standard embedded nodes and some objects

from 1. Owner; 2. Engine; 3. Steering; 4. Tyre; 5. Brake classes.

The original car accident model was designed in OOBN. As iOOBN is a backward-

compatible framework, reproducing the car-model in it is quite straight forward. In fig-

ures 3.11b and 3.12b, the reengineered model is shown. The iOOBN offers more facilities,

such as extending the already built model without changing the existing system, and allows

maximal reuse of the existing components.

7The AsiaExt BN and AsiaExt2 BN, and their equivalent OOBN classes shown in Figure 3.9 and 3.10 are for
illustration purpose only and were not developed in consultation with medical experts.

§3.4 Applying iOOBN to Previous OOBN Problems 88

A
ge

In
co

m
e

Ty
pe

O
ri

gi
na

l-
va

l
A

ge
M

a
in

te
n

a
n

ce

M
ile

a
ge

M
ax

-S
p

ee
d

C
ur

re
n

t-
va

l
St

ee
ri

n
g-

Sa
fe

ty

B
ra

ki
n

g-
Po

w
er

P
o

w
e

r
R

el
ia

bi
lit

y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

Ty
pe

E
n

g
in

e
P

o
w

e
r

R
el

ia
bi

lit
y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

Ty
pe

E
n

g
in

e
P

o
w

erM
ai

n
te

n
an

ce
M

ile
a

ge

B
ra

ke
s

P
o

w
erM

ai
n

te
n

an
ce

M
ile

a
ge

B
ra

ke
s

H
an

dl
in

g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

St
e

e
ri

ng
H

an
dl

in
g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

St
e

e
ri

ng
B

al
an

ce
Tr

ac
ti

o
n

M
ai

n
te

n
an

ce
M

ile
a

ge

Ty
re

s

B
al

an
ce

Tr
ac

ti
o

n

M
ai

n
te

n
an

ce
M

ile
a

ge

Ty
re

s

In
co

m
e

A
ge

C
ar

A
ge

In
co

m
e

D
ri

ve
r

A
gg

re
ss

io
n

D
ri

vi
n

g-
Sk

ill

W
ea

th
er

Sp
ee

d
-

Li
m

it

W
ea

th
er

R
o

ad

C
on

di
ti

o
n

C
ar

-S
p

ee
d

A
cc

id
en

t

A
cc

id
en

t-
Le

ve
l

D
a

m
ag

e

M
ax

-
Sp

ee
d

C
ur

re
n

t
-v

al

St
ee

ri
n

g
-S

af
et

y
B

ra
ki

n
g-

Po
w

er

C
ar

Ty
p

e

En
gi

n
e

Po
w

er

 R
el

ia
b

ili
ty

Ty
re

s

B
al

an
ce

Tr
ac

ti
o

n

St
e

e
ri

n
g

H
an

dl
in

g

B
ra

ke
s

Po
w

er

O
w

n
e

r

A
ge

 I
n

co
m

e

A
ge

O
ri

gi
n

al
-V

al
M

ai
n

te
n

an
c

e

M
ile

ag
e

M
ax

-S
p

ee
d

C
ur

re
nt

-V
al

St
e

e
ri

ng
-S

af
et

y
B

ra
ki

ng
-P

ow
er

Ty
p

e

En
gi

n
e

Po
w

er

 R
el

ia
b

ili
ty

Ty
re

s

B
al

an
ce

Tr
ac

ti
o

n

St
e

e
ri

n
g

H
an

dl
in

g

B
ra

ke
s

Po
w

er

O
w

n
e

r

A
ge

 I
n

co
m

e

A
ge

O
ri

gi
n

al
-V

al
M

ai
n

te
n

an
c

e

M
ile

ag
e

M
ax

-S
p

ee
d

C
ur

re
nt

-V
al

St
e

e
ri

ng
-S

af
et

y
B

ra
ki

ng
-P

ow
er

D
ri

ve
r

A
ge

 I
n

co
m

e

 A
gg

re
ss

io
n

 D

ri
vi

n
g-

Sk
ill

C
ar

C
ur

re
n

t-
V

al

 B

ra
ki

ng
-P

o
w

er

 S
te

er
in

g-
Sa

fe
ty

 M

ax
-S

p
ee

d

R
o

ad

Sp
ee

d
-L

im
it

 C
o

nd
it

io
n

W
ea

th
er

C
ar

-S
p

ee
d

A
cc

id
en

t

A
cc

id
en

t-
Le

ve
l

D
am

ag
e

(a
)

A
ge

In
co

m
e

Ty
pe

O
ri

gi
na

l-
va

l
A

ge
M

a
in

te
n

a
n

ce

M
ile

a
ge

M
ax

-S
p

ee
d

C
ur

re
n

t-
va

l
St

ee
ri

n
g-

Sa
fe

ty

B
ra

ki
n

g-
Po

w
er

P
o

w
e

r
R

el
ia

bi
lit

y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

Ty
pe

E
n

g
in

e
P

o
w

e
r

R
el

ia
bi

lit
y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

Ty
pe

E
n

g
in

e
Po

w
erM

ai
n

te
n

an
ce

M
ile

a
ge

B
ra

ke
s

Po
w

erM
ai

n
te

n
an

ce
M

ile
a

ge

B
ra

ke
s

H
an

dl
in

g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

n
al

-
va

l

St
e

e
ri

n
g

H
an

dl
in

g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

n
al

-
va

l

St
e

e
ri

n
g

B
al

an
ce

Tr
ac

ti
o

n

M
ai

n
te

n
an

ce
M

ile
a

ge

Ty
re

s

B
al

an
ce

Tr
ac

ti
o

n

M
ai

n
te

n
an

ce
M

ile
a

ge

Ty
re

s

In
co

m
e

A
ge

C
ar

A
ge

In
co

m
e

D
ri

ve
r

A
gg

re
ss

io
n

D
ri

vi
n

g-
Sk

ill

W
ea

th
er

Sp
ee

d
-

Li
m

it

W
ea

th
er

R
o

ad

C
on

di
ti

o
n

C
ar

-S
p

ee
d

A
cc

id
en

t

A
cc

id
en

t-
Le

ve
l

D
a

m
ag

e

M
ax

-
Sp

ee
d

C
ur

re
n

t
-v

al

St
ee

ri
n

g
-S

af
et

y
B

ra
ki

n
g-

Po
w

er

C
ar

Ty
p

e

En
gi

n
e

Po
w

er

 R
el

ia
bi

lit
y

Ty
re

s

B
al

an
ce

Tr
ac

ti
o

n

St
e

e
ri

n
g

H
an

dl
in

g

B
ra

ke
s

Po
w

er

O
w

n
e

r

A
ge

 I
n

co
m

e

A
ge

O
ri

gi
n

al
-V

al
M

ai
n

te
n

an
c

e

M
ile

ag
e

M
ax

-S
p

ee
d

C
ur

re
nt

-V
al

St
e

e
ri

ng
-S

af
et

y
B

ra
ki

ng
-P

ow
er

Ty
p

e

En
gi

n
e

Po
w

er

 R
el

ia
bi

lit
y

Ty
re

s

B
al

an
ce

Tr
ac

ti
o

n

St
e

e
ri

n
g

H
an

dl
in

g

B
ra

ke
s

Po
w

er

O
w

n
e

r

A
ge

 I
n

co
m

e

A
ge

O
ri

gi
n

al
-V

al
M

ai
n

te
n

an
c

e

M
ile

ag
e

M
ax

-S
p

ee
d

C
ur

re
nt

-V
al

St
e

e
ri

ng
-S

af
et

y
B

ra
ki

ng
-P

ow
er

D
ri

ve
r

A
ge

 I
n

co
m

e

 A
gg

re
ss

io
n

 D

ri
vi

n
g-

Sk
ill

C
ar

C
ur

re
n

t-
V

al

 B

ra
ki

ng
-P

o
w

er

 S
te

er
in

g-
Sa

fe
ty

 M

ax
-S

p
ee

d

R
o

ad

Sp
ee

d
-L

im
it

 C
o

nd
it

io
n

W
ea

th
er

C
ar

-S
p

ee
d

A
cc

id
en

t

A
cc

id
en

t-
Le

ve
l

D
am

ag
e

(b
)

Fi
gu

re
3.

11
:(

a)
C

ar
A

cc
id

en
tO

O
BN

M
od

el
(K

ol
le

r)
:t

he
ca

r
O

O
BN

cl
as

s,
(b

)C
ar

A
cc

id
en

ti
O

O
BN

M
od

el
:t

he
ca

r
iO

O
BN

cl
as

s

§3.4 Applying iOOBN to Previous OOBN Problems 89

Age Income

Type Original-valAge Maintenance

Mileage

Max-Speed Current-val Steering-
Safety

Braking-
Power

Power Reliability

MaintenanceMileage
Original-

val
Type

EnginePower Reliability

MaintenanceMileage
Original-

val
Type

Engine
Power

MaintenanceMileage

Brakes
Power

MaintenanceMileage

Brakes

Handling

MaintenanceMileage
Original-

val

SteeringHandling

MaintenanceMileage
Original-

val

Steering Balance Traction

MaintenanceMileage

Tyres

Balance Traction

MaintenanceMileage

Tyres

IncomeAge
Car

Age Income

Driver

Aggression
Driving-

Skill

Weather

Speed-
Limit

WeatherRoad

Conditi
on

Car-Speed

Accident

Accident-
Level

Damage

Max-
Speed

Current
-val

Steering
-Safety

Braking-
Power

Car

Type

Engine

Power Reliability

Tyres

Balance Traction

Steering

Handling

Brakes

Power

Owner

Age Income

Age Original-Val Maintenanc
e

Mileage

Max-Speed Current-Val Steering-Safety Braking-Power

Type

Engine

Power Reliability

Tyres

Balance Traction

Steering

Handling

Brakes

Power

Owner

Age Income

Age Original-Val Maintenanc
e

Mileage

Max-Speed Current-Val Steering-Safety Braking-Power

Driver

Age Income Aggression Driving-Skill

Car

Current-Val Braking-Power Steering-Safety Max-Speed

Road

Speed-Limit Condition

Weather

Car-Speed

Accident

Accident-Level

Damage

(a)

Age Income

Type Original-valAge Maintenance

Mileage

Max-Speed Current-val Steering-
Safety

Braking-
Power

Power Reliability

MaintenanceMileage
Original-

val
Type

EnginePower Reliability

MaintenanceMileage
Original-

val
Type

Engine
Power

MaintenanceMileage

Brakes
Power

MaintenanceMileage

Brakes

Handling

MaintenanceMileage
Original-

val

SteeringHandling

MaintenanceMileage
Original-

val

Steering Balance Traction

MaintenanceMileage

Tyres

Balance Traction

MaintenanceMileage

Tyres

IncomeAge
Car

Age Income

Driver

Aggression
Driving-

Skill

Weather

Speed-
Limit

WeatherRoad

Conditi
on

Car-Speed

Accident

Accident-
Level

Damage

Max-
Speed

Current
-val

Steering
-Safety

Braking-
Power

Car

Type

Engine

Power Reliability

Tyres

Balance Traction

Steering

Handling

Brakes

Power

Owner

Age Income

Age Original-Val Maintenanc
e

Mileage

Max-Speed Current-Val Steering-Safety Braking-Power

Type

Engine

Power Reliability

Tyres

Balance Traction

Steering

Handling

Brakes

Power

Owner

Age Income

Age Original-Val Maintenanc
e

Mileage

Max-Speed Current-Val Steering-Safety Braking-Power

Driver

Age Income Aggression Driving-Skill

Car

Current-Val Braking-Power Steering-Safety Max-Speed

Road

Speed-Limit Condition

Weather

Car-Speed

Accident

Accident-Level

Damage

(b)

Figure 3.12: (a) Car Accident OOBN Model (Koller): the "Main" class. (b) Car Accident iOOBN Model:
the "Main" class

A number of plausible ways to extend the model are suggested as follows.

1. The first thing to be considered is how to extend the model to a generalized vehicle

accident model. The general vehicle can be categorized into Bus, Ship, Speedboat, and

Plane if only motor vehicles are considered. The car accident model then falls into a

§3.4 Applying iOOBN to Previous OOBN Problems 90

subcategory of the motor vehicle class. Coping-up with such a significant paradigm shift

is possible using an iOOBN modelling framework.

2. The components in the vehicles can also be categorized based on the Medium they run

on (Road, Water way or Air way), the part that is used to control the direction (Steering or

Helm), the person who controls/drives it (Driver, Sailor or Pilot), and the part that helps

in moving the vehicle (Tyres or Propeller).

3. Subdivisions can be plugged in using iOOBN without starting the modelling afresh so

the accident model can incorporate the alternatives crash, damage, faulty/breakdown,

burnt and sunk.

Accident
Model

Hierarchy

Engine

Power Reliability

Medium

Condition

Car

Max Speed Cur-val Steer-Safe Br-Power

Tyres

Balance Traction

Steering

Handling

Brakes

Power

Heavy-duty Tyres

Balance Traction

Helm (lever)

Handling

Road

Speed limit Condition

Water way

Vessel Speed Limit Condition

Driver

Age Income Aggression Driving-Skill

Sailor

Age Income Experience Sailing-Skill

Bus

Max Speed Cur-val Steer-Safe Br-Power

Speedboat

Max Speed Cur-val Helm-Safe Br-Power

Ship

Max Speed Cur-val Helm-Safe Br-Power

Type Mileage Org-val Maintenance

Engine

Power Reliability

Type Mileage Org-val Maintenance

Engine

Power Reliability

Mileage Maintenance

Brakes

Power

Mileage Maintenance

Brakes

Power

Age Income

Car

Max Speed Cur-val Steer-Safe Br-Power

Age Income

Bus

Max Speed Cur-val Steer-Safe Br-Power

Age Income

Speedboat

Max Speed Cur-val Helm-Safe Br-Power

Age Income

Ship

Max Speed Cur-val Helm-Safe Br-Power

Age Income

Car

Max Speed Cur-val Steer-Safe Br-Power

Age Income

Bus

Max Speed Cur-val Steer-Safe Br-Power

Age Income

Speedboat

Max Speed Cur-val Helm-Safe Br-Power

Age Income

Ship

Max Speed Cur-val Helm-Safe Br-Power

{ No Inputs here }

Driver

Age Income Aggression Driving-Skill

{ No Inputs here }

Sailor

Age Income Experience Sailing-Skill

{ No Inputs here }

Driver

Age Income Aggression Driving-Skill

{ No Inputs here }

Sailor

Age Income Experience Sailing-Skill

Mileage Maintenance

Tyres

Balance Traction

Mileage Maintenance Capacity

Heavy-duty Tyres

Balance Traction

Mileage Maintenance

Propeller

Balance Traction

Mileage Maintenance

Tyres

Balance Traction

Mileage Maintenance Capacity

Heavy-duty Tyres

Balance Traction

Mileage Maintenance

Propeller

Balance Traction

Mileage Org-val Maintenance

Steering

Handling

Mileage Org-val Maintenance

Helm (lever)

Handling

Mileage Org-val Maintenance

Steering

Handling

Mileage Org-val Maintenance

Helm (lever)

Handling

{ No Inputs here }

Medium

Condition

weather

Road

Speed limit Condition

weather

Water way

Vessel Speed Limit Condition

{ No Inputs here }

Medium

Condition

weather

Road

Speed limit Condition

weather

Water way

Vessel Speed Limit Condition

(e)

(d)

(f)

(g)

(a) (b)

(c)

Figure 3.13: Car accident reengineered model (class hierarchies): (a) Car, Speedboat, Bus and Ship
classes, (b) Road and Waterway classes, (c) Steering and Helm classes, (d) Tyres, Heavy-duty Tyres and
Propeller classes, (e) Driver and Sailor classes, (f) Engine class, and (g) Brakes class.

For reasons of space, the hierarchy is shown in a semi-graphical format where interface nodes are represented
textually rather than using ovals. The classes are represented by three lines of text within a solid-lined rectangle,
(1st Line) List of input node names, shown in Italic fonts, (2nd Line) The class name, shown in Bold-Italic fonts,
and (3rd Line) List of output node names, shown in Bold fonts.

Figure 3.13 shows a potential class hierarchy tree to further extend the car accident prob-

lem. This model is reengineered and extended using the proposed iOOBN framework. As dis-

§3.4 Applying iOOBN to Previous OOBN Problems 91

cussed earlier, the framework allows the reuse of components and facilitates the extension of

a model. Hence, the hierarchy indicates that a car accident scenario can be extended to model

a ship accident, bus accident, or speedboat accident with minimal effort. By using iOOBN, the

Bus class and Speedboat classes can be derived from theCar class by changing parameters and

types of nodes, adding or removing nodes, edges and objects. In the same way, the Speedboat

class can be extended to a Ship class that can be used to model ship accidents. Furthermore,

a Medium class is created that is used as a parent class of the Road class used in the original

model (Koller). The Road class is further used to derive a new class, Waterway, by changing

the type of Speed Limit to the Vessel Speed Limit. The Medium class helps to maximise

reusability in case of defining a class which contains any of the attributes of the Road and Wa-

terway classes. The Driver class can be easily extended to Sailor; thus, that is not shown here.

Similarly, the Helm and Heavy-duty Tyre classes are derived from the Steering and Tyres

classes, respectively, with necessary modifications. All these derivations facilitate modelling

a more comprehensive, extensible and dynamic system. Table 3.3 shows how the extended

classes for the extended model are found and what the alternative modelling choices are 8.

A Ship Accident model is shown in Figure 3.14 that uses the hierarchy of Figure 3.13, built

using iOOBN. The advantages of the iOOBN in extending the original model are discussed in

Section 3.4.5.

8 The modelling choice is a random selection from a candidate list of potential ways of making a hierarchy.

§3.4 Applying iOOBN to Previous OOBN Problems 92

A
ge

In
co

m
e

Ty
pe

O
ri

gi
n

a
l-

va
l

A
ge

M
ai

n
te

n
an

ce

M
ile

ag
e

M
ax

-S
p

ee
d

C
ur

re
n

t-
va

l
St

ee
ri

n
g-

Sa
fe

ty

B
ra

ki
n

g-
Po

w
er

Po
w

er
R

el
ia

bi
lit

y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

n
al

-
va

l
Ty

pe

En
gi

n
e

Po
w

er
R

el
ia

bi
lit

y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

n
al

-
va

l
Ty

pe

En
gi

n
e

Po
w

er

M
ai

n
te

n
an

ce
M

ile
ag

e

B
ra

ke
s

Po
w

er

M
ai

n
te

n
an

ce
M

ile
ag

e

B
ra

ke
s

H
an

dl
in

g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

H
e

lm
in

g
H

an
dl

in
g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

H
e

lm
in

g
B

al
an

ce
Tr

ac
ti

o
n

M
ai

n
te

n
an

ce
M

ile
ag

e

P
ro

pe
lle

r

B
al

an
ce

Tr
ac

ti
o

n

M
ai

n
te

n
an

ce
M

ile
ag

e

P
ro

pe
lle

r

In
co

m
e

A
ge

Sh
ip

A
ge

In
co

m
e

Sa
ilo

r

A
gg

re
ss

io
n

Sa
ili

ng
-

Sk
ill

W
ea

th
er

Sp
e

e
d

-
Li

m
it

W
ea

th
er

W
a

te
r

w
a

y

C
on

di
ti

o
n

Sh
ip

-S
p

ee
d

A
cc

id
en

t

A
cc

id
en

t-
Le

ve
l

D
am

ag
e

M
ax

-
Sp

ee
d

C
ur

re
n

t
-v

al

H
el

m
in

g
-S

a
fe

ty
B

ra
ki

n
g-

Po
w

er

Sh
ip

(a
)

A
ge

In
co

m
e

Ty
pe

O
ri

gi
n

a
l-

va
l

A
ge

M
ai

n
te

n
an

ce

M
ile

ag
e

M
ax

-S
p

ee
d

C
ur

re
n

t-
va

l
St

ee
ri

n
g-

Sa
fe

ty

B
ra

ki
n

g-
Po

w
er

Po
w

er
R

el
ia

bi
lit

y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

Ty
pe

En
gi

n
e

Po
w

er
R

el
ia

bi
lit

y

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

Ty
pe

En
gi

n
e

Po
w

er

M
ai

n
te

n
an

ce
M

ile
ag

e

B
ra

ke
s

Po
w

er

M
ai

n
te

n
an

ce
M

ile
ag

e

B
ra

ke
s

H
an

dl
in

g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

H
e

lm
in

g
H

an
dl

in
g

M
ai

n
te

n
an

ce
M

ile
a

ge
O

ri
gi

na
l-

va
l

H
e

lm
in

g
B

al
an

ce
Tr

ac
ti

o
n

M
ai

n
te

n
an

ce
M

ile
ag

e

P
ro

pe
lle

r

B
al

an
ce

Tr
ac

ti
o

n

M
ai

n
te

n
an

ce
M

ile
ag

e

P
ro

pe
lle

r

In
co

m
e

A
ge

Sh
ip

A
ge

In
co

m
e

Sa
ilo

r

A
gg

re
ss

io
n

Sa
ili

ng
-

Sk
ill

W
ea

th
er

Sp
e

e
d

-
Li

m
it

W
ea

th
er

W
a

te
r

w
a

y

C
on

di
ti

o
n

Sh
ip

-S
p

ee
d

A
cc

id
en

t

A
cc

id
en

t-
Le

ve
l

D
am

ag
e

M
ax

-
Sp

ee
d

C
ur

re
n

t
-v

al

H
el

m
in

g
-S

a
fe

ty
B

ra
ki

n
g-

Po
w

er

Sh
ip

(b
)

Fi
gu

re
3.

14
:S

hi
p

ac
ci

de
nt

iO
O

BN
M

od
el

§3.4 Applying iOOBN to Previous OOBN Problems 93

Table 3.3: The modelling choice from the modelling options in constructing the Accident Hierarchy.
Extended Classes Modelling Options Modelling Choice

Bus
1) Changing parameters of Car class
2) Start from scratch

Changing parameters of Car class

Speedboat
1) Changing parameters of Car class
2) Changing the type of nodes of Car class
3) Start from scratch

Changing the type of nodes of Car class

Ship
1) Changing the type of nodes of Car class
2) Changing parameters of Speedboat class
3) Start from scratch

2) Changing parameters of Speedboat class

Road
1) Extending Medium class
2) Start from scratch

Extending Medium class

Waterway

1) Extending Medium class
2) Change type of Road class nodes
3) Change parameters of Road class nodes
4) Start from scratch

Change type of Road class nodes

Helm
1) Changing internal structures and
parameters of Steering class
2) Start from scratch

Changing internal structures and parameters
of Steering class

Heavy-duty Tyres
1) Adding nodes to Tyres class and changing
parameters as required
2) Start from scratch

Adding nodes to Tyres class and changing
parameters as required

Propeller
1) Changing internal structures and
parameters of Tyres class
2) Start from scratch

Changing internal structures and
parameters of Tyres class

Sailor
1) Changing parameters of Driver class
2) Changing the type of nodes of Driver class
3) Start from scratch

Changing the type of nodes of Driver class

3.4.3 Computer problem diagnosis

In the original model for Computer Diagnosis, modelled in Pfeffer’s thesis [203], (and as

shown in figures 3.15a and 3.16a), there is a main class, namely Computer that uses instances

of the following subclasses: 1. HardDrive; 2. PowerSupply; 3. PowerSource; 4. Printer;

5. Monitor; 6. Keyboard; 7. Mouse; 8. MotherBoard; 9. ReadEvent; 10. WriteEvent;

11. PrintEvent; and 12. Some embedded standard nodes. The class HardDrive contains

instances of the following subclasses: 1. DriveMechanism; (which consists of instances of

(a) Motor (b) Head) 2. FAT ; 3. Controller; 4. Surface; 5. Cable; and 6. Some embedded stan-

dard nodes.

The depicted diagnosis system is modelled on the existing OOBN framework. As the

iOOBN is a backward compatible system, reengineering the diagnostic system in iOOBN

needs no changes. The Computer Diagnosis model is reengineered using iOOBN, as shown

in figures 3.15b and 3.16b.

In order to exhibit more features of the OO paradigm, the system can be extended into

an iOOBN. Since iOOBN allows inheritance, polymorphism, typecasting and abstraction, re-

designing the whole system is possible to make it more flexible, extensible and more reusable.

In the original model (Pfeffer), all the possible computer system components are not in-

cluded. If we seek to extend the system by adding more components (e.g.) for a more com-

§3.4 Applying iOOBN to Previous OOBN Problems 94

Drive
Mechanism

Connected Controller

Ok

Status

Data

Transfer

Data

Access

Temperature Age
Head

Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

AgeTemp

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age Head

Crash

Damage

Surface 3

Age Head

Crash

Damage

Surface 4

Age Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk

Spins

Dead Stiction

Motor

Age Temperature

Disk

Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age
Head

Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Drive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

AgeDrive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

(a)

Drive
Mechanism

Connected Controller

Ok

Status

Data

Transfer

Data

Access

Temperature Age
Head

Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

AgeTemp

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age Head

Crash

Damage

Surface 3

Age Head

Crash

Damage

Surface 4

Age Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk

Spins

Dead Stiction

Motor

Age Temperature

Disk

Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age
Head

Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Drive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

AgeDrive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

(b)

Figure 3.15: The Computer class of the "Computer Diagnosis" model: (a) OOBN model (Pfeffer) (b)
iOOBN model

plete diagnosis or if we want a system that is incremental, able to add new features on the go

with the use of various technologies, then the iOOBN is a perfect fit. An original model can be

extended to support the addition of more features with less effort (maximum reusability) us-

ing iOOBN. The hierarchy of classes and interfaces, constructed to extend the original model,

§3.4 Applying iOOBN to Previous OOBN Problems 95

is shown in Figure 3.17. The hierarchy allows, for example, replacing Hard Drive with SSD

Drive or adding support for SSD. The storage interface contains all the common IO nodes of

Hard Drive and SSD Drive. This situation allows the reuse of common attributes by defining

them only once. Similarly, the Keyboard class is derived from the Mouse class where Mouse

is extended from the Peripheral interface. The Printer class is derived from the Peripheral

interface and is used to derive the Monitor class. The hierarchy is easy to extend and ensures

maximum reuse. In Section 3.4.5, more advantages of the hierarchy are suggested.

Figure 3.17 has three more hierarchies that start with the interfaces Cable, Event and Drive-

Mechanism. The Cable interface is extended by SATA and PATA classes to support both old

and new technology of data transfer. The Drive Mechanism interface is used to derive HD

Mech. and SSD Mech. classes to control the HardDrive and SS Drive operations. The Event

interface is extended in building the PrintEvent, ReadEvent and WriteEvent classes. These

classes model the event manager of printers and storage devices.

Table 3.4: The modelling choice from the modelling options in constructing the computer diagnosis
hierarchy

Extended Classes Modelling Options Modelling Choice

Mouse
1) Extending the Peripheral Interface
2) Start from scratch

Extending the Peripheral Interface

Keyboard
1) Extending the Mouse class
2) Extending the Peripheral Interface
3) Start from scratch

Extending the Mouse class

printer
1) Extending the Peripheral Interface
2) Start from scratch

Extending the Peripheral Interface

Monitor
1) Extending the Printer class
2) Extending the Peripheral Interface
3) Start from scratch

Extending the Printer class

SATA
1) Extending the Cable Interface
2) Changing the parameter of PATA class
3) Start from scratch

Extending the Cable Interface

PATA
1) Extending the Cable Interface
2) Changing the parameter of SATA class
3) Start from scratch

Extending the Cable Interface

Hard-Drive
1) Extending the Storage Interface
2) Changing the parameter and type of SS-Drive class
3) Start from scratch

Extending the Storage Interface

SS-Drive
1) Extending the Storage Interface
2) Changing parameter and type of Hard-Drive class
3) Start from scratch

Extending the Storage Interface

HD-Mechanism
1) Extending the DriveMechanism Interface
2) Changing the type and parameter of SSD-Mechanism class
3) Start from scratch

Extending the DriveMechanism Interface

SSD-Mechanism
1) Extending the DriveMechanism Interface
2) Changing the type and parameters of HD-Mechanism class
3) Start from scratch

Extending the DriveMechanism Interface

Print-event
1) Extending the Event Interface
2) Changing parameters of Read-event or Write-event class
3) Start from scratch

Extending the Event Interface

Read-event
1) Extending the Event Interface
2) Changing parameters of Print-event or Write-event class
3) Start from scratch

Extending the Event Interface

Write-event
1) Extending the Event Interface
2) Changing parameters of Print-event or Read-event class
3) Start from scratch

Extending the Event Interface

§3.4 Applying iOOBN to Previous OOBN Problems 96

Each of the hierarchies, shown in Figure 3.17, can be built in several alternative ways and

different forms, and the hierarchies displayed are representative of all possible hierarchies. A

list of the possible ways is shown in Table 3.4 with the possible modelling options 8 and the

chosen option to build the hierarchies is shown in Figure 3.17.

To demonstrate the extended model and how it can be used in making an extensible, grow-

ing and incremental model that supports a vast range of devices connected to the computer,

where each type of device can represent a different technology or manufacturer, figures 3.18a

and 3.18b represent two computers (Ann’s and Sam’s). Ann’s computer has a HardDrive and

related mechanism, whereas Sam’s computer has an SS Drive and related mechanism. Both

of the computer models are built using the classes in the hierarchies to support a generalized

computer diagnosis.

§3.4 Applying iOOBN to Previous OOBN Problems 97

Drive
Mechanism

Connected Controller

Ok

Status

Data

Transfer

Data

Access

Temperature Age
Head

Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

AgeTemp

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age Head

Crash

Damage

Surface 3

Age Head

Crash

Damage

Surface 4

Age Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk

Spins

Dead Stiction

Motor

Age Temperature

Disk

Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age
Head

Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Drive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

AgeDrive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

(a)

Drive
Mechanism

Connected Controller

Ok

Status

Data

Transfer

Data

Access

Temperature Age
Head

Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

AgeTemp

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age Head

Crash

Damage

Surface 3

Age Head

Crash

Damage

Surface 4

Age Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk

Spins

Dead Stiction

Motor

Age Temperature

Disk

Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age
Head

Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Drive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

AgeDrive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

(b)

Figure 3.16: Hard Drive, Drive Mechanism and Motor class of the Computer Diagnosis model : (a)
OOBN model (Pfeffer) (b) iOOBN model

§3.4 Applying iOOBN to Previous OOBN Problems 98

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age Head Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface Damage FAT

Lost Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

Age
Temp-

erature

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age
Head

Crash

Damage

Surface 3

Age
Head

Crash

Damage

Surface 4

Age
Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

Temper

ature
Age

Comm

and

Status

Full

Lost

Clusters

 Hard Drive

Temper

ature
Age

Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Printer

Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk Spins

Dead Stiction

Motor

Age Temperature

Disk Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age Head Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface Damage FAT

Lost Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

Temper

ature
Age

Comm

and

Status

Full

Lost

Clusters

 Hard Drive

Temper

ature
Age

Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Printer

Status

Connected Command Figure 3.17: Computer Diagnosis iOOBN Class Hierarchy: (a) Mouse, Keyboard, Printer and Monitor
classes, and Peripheral interface, (b) SATA and PATA classes, and Cable interfaces, (c) Hard Drive and
SS Drive classes, and Storage Interface, (d) Print Event, Read Event and Write Event classes, and Event
interface and (e) HD Mech. and SSD Mech. classes and DriverMechanism interface

The hierarchy is shown in a semi-graphical format where interface nodes are represented textually rather than
using ovals. The classes/interfaces are represented by three lines of text within solid-lined rectangles and
interfaces are shown with dotted line rectangles, (1st Line) list of input node names, shown in Italic font, (2nd

Line) class name shown in Bold-Italic font, and the (3rd Line) list of output node names is shown in Bold font.

§3.4 Applying iOOBN to Previous OOBN Problems 99

Drive
Mechanism

Connected Controller

Ok

Status

Data

Transfer

Data

Access

Temperature Age
Head

Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

AgeTemp

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age Head

Crash

Damage

Surface 3

Age Head

Crash

Damage

Surface 4

Age Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk

Spins

Dead Stiction

Motor

Age Temperature

Disk

Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age
Head

Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Drive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

AgeDrive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

(a)

Drive
Mechanism

Connected Controller

Ok

Status

Data

Transfer

Data

Access

Temperature Age
Head

Crash

Motor

Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Temperature Age OS-Status

Status Full

Surface 1

Head

Crash

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

Temp. OS-Status

Storage

Output

{ No Input }

Cable

Status

Temp. Age OS-Status

Hard Drive

Status Full LostCluster

Command

Peripheral

Status

{ No Input }

PATA

Status

{ No Input }

SATA

Status

Command Connected

Printer

Status

Command

Mouse

Status

Temp. OS-Status PowerSurge

SS Drive

Status Full LostData

Spill Command

Keyboard

Status

Command Connected Power

Monitor

Status

CtrlOK PowerSurge HeadCrash

DriveMechanism

Status

Conn. CtrlOK Temp PowerSurge HeadCrash

SSD Mech.

Status

Conn. CtrlOK Temp Age HeadCrash

HD Mech.

Status

AgeTemp

Disk Spins

Head Head

Crash
Age

Head

Moving

Head Head

Crash
Age

Head

Moving

Status

Control

Stat

Temp.
Age

Head

Crash

Damage

Surface 2

Age Head

Crash

Damage

Surface 3

Age Head

Crash

Damage

Surface 4

Age Head

Crash

Damage

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

Command Done?

Event

Status

Command Done?

Read Event

Status

Command Done?

Printe Event

Status

Command Done?

Write Event

Status

Motor

Age Temperature

Disk

Spins

Dead Stiction

Motor

Age Temperature

Disk

Spins

Dead Stiction

Sam’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

 SS Drive

Temp.
Pow.

Surg
Comm

and

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command
Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read

Write

HD

Printer

Status

Connected Command

Pow.

Surg

(a)

(e)

(b) (c)

(d)

Motor

Age Temperature

Disk Spins

Dead Stiction

Drive
Mechanism

Connected Controller Ok

Status

Data Transfer

Data Access

Temperature Age
Head

Crash

Motor Head

Computer

Power Source

Power Supply

Printer

Monitor

Print Event

Motherboard

Keyboard

Mouse

Write EventRead Event

Hard Drive

OS

Fan Warmed Up

Temperature

Dust

Age

Crash

Spill

Hard
Drive

Controller

Cable

Drive Mechanism

Temperature Age OS-Status

Status Full

Surface 2Surface 1

Head

Crash

Surface 4Surface 3

Surface

Damage FAT

Lost

Clusters

Capacity

Usable
Used

DBR
MBR

Bootable

iOOBN Model

OOBN Model (Pfeffer)

Read Event

status

Done?command

Read Event

status

Done?command

Keyboard

status

Spill command

Keyboard

status

Spill command

Drive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

AgeDrive Mechanism

Functioning

Cable

-stat

Control

-stat
Temp.

Age

Ann’s Computer

Warmed Up

Temperature

Dust

Age

Crash

Spill

Monitor

status

Powered

commandConnected
Monitor

status

Powered

commandConnected

Motherboard

status

Powered

Temp

Spill Age

Motherboard

status

Powered

Temp

Spill Age

Power Supply

supplying

Connected

Power Supply

supplying

Connected

Power Source

working

Power Source

working

Fan

Status

Fan

Status

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

 Hard Drive

TempAgeCommand

Status

Full

Lost

Clusters

Mouse

status

command

Mouse

status

command

Print Event

status

Done? command

Print Event

status

Done? command

Keyboard

status

Spill command

Keyboard

status

Spill command

Read Event

status

Done?command

Read Event

status

Done?command

Write Event

status

Done?command

Write Event

status

Done?command

OS

Monitor

Crash Mot.Board

Printer

Keyboard

Mouse

Read
Write

HD

Printer
Status

Connected Command

Printer
Status

Connected Command

(b)

Figure 3.18: Computer Diagnosis iOOBN model: the classes derived from the "Computer" class (shown
in Figure 3.15b) (a) Ann’s computer, (b) Sam’s computer.

§3.4 Applying iOOBN to Previous OOBN Problems 100

3.4.4 Power surge problem

The original power surge (voltage spike) problem was proposed and modelled in [76] by Torti

et al. They modelled a system using OOPRM (see OOPRM at the end of Section 2.4) to deal

with such a problem. The dependency diagram in Figure 3.19a (1) depicts the relation between

the classes and connections among their components. The classes in the model are: 1. Printer,

2. Room, 3. PowerSupply, and 4. Computer, as shown in the diagrams of Figure 3.19a (2–5).

The dependency diagram has two types of links, namely Dependency and Reference links.

The former links are equivalent to the causal edges in the BN, OOBN and iOOBN. The latter

links help to complete the semantics of the dependency links. To be precise, the reference

links actualize the dependencies between the attributes (equivalent to chance nodes in BN) by

pointing to the actual terminal nodes of a dependency link. As an example, in Figure 3.19a,

there is a dependency between the State attributes of the PowerSupply and Printer classes.

This link represents that in a BN version of the Printer class, there are two nodes, namely the

state and room.power.state. The latter node is obtained by the reference slot room in the Printer

class. This slot is connected with the Room class, and the Room class has a reference slot,

namely power, via which a Room is connected to the PowerSupply. This class has an attribute,

namely state; hence, the other node of the Printer class is room.power.state. The reference slots

in this model are truly analogous to pointers in programming languages.

The model designed in OOPRM (Figure 3.20a) describes how sets of computers and print-

ers are located in different rooms and powered by the electricity supplies of the corresponding

rooms. Generally, power sources can fail due to voltage spikes, caused by power outages,

tripped circuit breakers, lightning strikes, and various other reasons. Electronic devices like

computers and printers may break down, depending on the intensity of the power surge and

the age of the devices.

Each equipment has an attribute state = {OK,NOK}. Computers have an additional at-

tribute canPrint = {can, cannot}. The power supplies are described by one of three power

states, power = {on, off, surge}. Finally, a computer is usually plugged in to one or more print-

ers, and it can print if at least one of its printers is functional. The model also includes in-

heritance, as depicted in Figure 3.19, where a Printer class is extended to a B&W or Colour

printer.

Reengineering of the model with an iOOBN is straightforward as OOPRM is a probabilis-

tic analysis model that is based on relational algebra. An iOOBN, as a modern-day PGM, has

the necessary capacity to deal with all the parameters that could previously be handled by

OOPRMs and "relational algebra" and to perform robust probabilistic analysis. There are sev-

eral ways to model such a system in an iOOBN. One way is to assign a different class for the

§3.4 Applying iOOBN to Previous OOBN Problems 101

Room
power

Printer

state

room

Computer

state

roomprinters

exists

canPrint

Attribute

Reference
slot

Dependency
link

Reference
link

Legends

Attribute

Reference
slot

Dependency
link

Reference
link

Legends Printer

room.power.state

room

state

PowerSupply

state

PowerSupply

state

(1) The class dependency diagram of the power surge example

(2) The Printer class

(3) The Computer class

PowerSupply

state

PowerSupply

state

RoomRoom

power

Room

power

(4) The PowerSupply class
(5) The Room class

Computer

state

roomprinters

exists

canPrint

printers.state room.power.state

(6) Hierarchy created in OOPRM

Color Printer

Room.power.state

room

state

hasInkhasPaper

black
magenta

cyan

yellow

Printer

room.power.state

room

state

B&W Printer

Room.power.state

room

state

hasInkhasPaper

PowerSupply
power

(1)

Room
powerSupply

Printer
room

state

Computer
room

printers
state

canPrint

PowerSupply
Power

State: OK

(2)

Room R1

Printer P1
State: OK

Computer C1
canPrint: false

state: OK

Computer C2
canPrint: true

state: OK

Printer P2
State: OK

Printer P3
State: OK

Room R2

OOPRM Model

OOPRM Model

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state
Printer

PowerState

state

Printer

PowerState

state

B&W Printer PowerState

state

hasInkhasPaper

B&W Printer PowerState

state

hasInkhasPaper

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

(5) Printer Hierarchy

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state

PowerSupply ps

state

PowerSupply ps

state

Printer

PowerState

state

Printer

PowerState

state

(1) PowerSupply iOOBN class

(2) Printer iOOBN class

(3) Computer iOOBN class

iOOBN Model

(1)

Printer P

state

state

Printer P

state

state

PowerSupply ps

state

PowerSupply ps

state

Computer C1

stateexists

canPrint

P_state PS_state

Computer C1

stateexists

canPrint

P_state PS_state

Printer P2

state

state

Printer P2

state

state

PowerSupply ps

state

PowerSupply ps

state

 Computer C1

stateexists

canPrint

P2_state PS_state

Printer P3

state

state

Printer P3

state

state

Computer C2

stateexists

canPrint

P3_state PS_state

Computer C2

stateexists

canPrint

P3_state PS_state

Printer P1

state

state

Printer P1

state

state

P1_state

(2)

iOOBN Model

(4) Computer Hierarchy

(a)

Room
power

Printer

state

room

Computer

state

roomprinters

exists

canPrint

Attribute

Reference
slot

Dependency
link

Reference
link

Legends

Attribute

Reference
slot

Dependency
link

Reference
link

Legends Printer

room.power.state

room

state

PowerSupply

state

PowerSupply

state

(1) The class dependency diagram of the power surge example

(2) The Printer class

(3) The Computer class

PowerSupply

state

PowerSupply

state

RoomRoom

power

Room

power

(4) The PowerSupply class
(5) The Room class

Computer

state

roomprinters

exists

canPrint

printers.state room.power.state

(6) Hierarchy created in OOPRM

Color Printer

Room.power.state

room

state

hasInkhasPaper

black
magenta

cyan

yellow

Printer

room.power.state

room

state

B&W Printer

Room.power.state

room

state

hasInkhasPaper

PowerSupply
power

(1)

Room
powerSupply

Printer
room

state

Computer
room

printers
state

canPrint

PowerSupply
Power

State: OK

(2)

Room R1

Printer P1
State: OK

Computer C1
canPrint: false

state: OK

Computer C2
canPrint: true

state: OK

Printer P2
State: OK

Printer P3
State: OK

Room R2

OOPRM Model

OOPRM Model

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state
Printer

PowerState

state

Printer

PowerState

state

B&W Printer PowerState

state

hasInkhasPaper

B&W Printer PowerState

state

hasInkhasPaper

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

(5) Printer Hierarchy

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state

PowerSupply ps

state

PowerSupply ps

state

Printer

PowerState

state

Printer

PowerState

state

(1) PowerSupply iOOBN class

(2) Printer iOOBN class

(3) Computer iOOBN class

iOOBN Model

(1)

Printer P

state

state

Printer P

state

state

PowerSupply ps

state

PowerSupply ps

state

Computer C1

stateexists

canPrint

P_state PS_state

Computer C1

stateexists

canPrint

P_state PS_state

Printer P2

state

state

Printer P2

state

state

PowerSupply ps

state

PowerSupply ps

state

 Computer C1

stateexists

canPrint

P2_state PS_state

Printer P3

state

state

Printer P3

state

state

Computer C2

stateexists

canPrint

P3_state PS_state

Computer C2

stateexists

canPrint

P3_state PS_state

Printer P1

state

state

Printer P1

state

state

P1_state

(2)

iOOBN Model

(4) Computer Hierarchy

(b)

Figure 3.19: (a) Power Surge OOPRM Model (Torti) : (1) Class dependency diagram, (2–5) The Printer,
the Computer, the PowerSupply and the Room class represented graphically. (6) inheritance of OOPRM
to extend the Printer class. (b) Reengineered Power Surge model using iOOBN hierarchies: (1–3) Pow-
erSupply, Printer and Computer classes, (4) the hierarchy with two classes, namely computer class and
multi-printer computer class, (5) the hierarchy that is rooted at Printer class, then B&W Printer and
Colour Printer.

specific number of printers connected to each computer and a different class for all the com-

puters in a room. These classes specify the connections between the components or attributes.

§3.4 Applying iOOBN to Previous OOBN Problems 102

Room
power

Printer

state

room

Computer

state

roomprinters

exists

canPrint

Attribute

Reference
slot

Dependency
link

Reference
link

Legends

Attribute

Reference
slot

Dependency
link

Reference
link

Legends Printer

room.power.state

room

state

PowerSupply

state

PowerSupply

state

(1) The class dependency diagram of the power surge example

(2) The Printer class

(3) The Computer class

PowerSupply

state

PowerSupply

state

RoomRoom

power

Room

power

(4) The PowerSupply class
(5) The Room class

Computer

state

roomprinters

exists

canPrint

printers.state room.power.state

(6) Hierarchy created in OOPRM

Color Printer

Room.power.state

room

state

hasInkhasPaper

black
magenta

cyan

yellow

Printer

room.power.state

room

state

B&W Printer

Room.power.state

room

state

hasInkhasPaper

PowerSupply
power

(1)

Room
powerSupply

Printer
room

state

Computer
room

printers
state

canPrint

PowerSupply
Power

State: OK

(2)

Room R1

Printer P1
State: OK

Computer C1
canPrint: false

state: OK

Computer C2
canPrint: true

state: OK

Printer P2
State: OK

Printer P3
State: OK

Room R2

OOPRM Model

OOPRM Model

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state
Printer

PowerState

state

Printer

PowerState

state

B&W Printer PowerState

state

hasInkhasPaper

B&W Printer PowerState

state

hasInkhasPaper

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

(5) Printer Hierarchy

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state

PowerSupply ps

state

PowerSupply ps

state

Printer

PowerState

state

Printer

PowerState

state

(1) PowerSupply iOOBN class

(2) Printer iOOBN class

(3) Computer iOOBN class

iOOBN Model

(1)

Printer P

state

state

Printer P

state

state

PowerSupply ps

state

PowerSupply ps

state

Computer C1

stateexists

canPrint

P_state PS_state

Computer C1

stateexists

canPrint

P_state PS_state

Printer P2

state

state

Printer P2

state

state

PowerSupply ps

state

PowerSupply ps

state

 Computer C1

stateexists

canPrint

P2_state PS_state

Printer P3

state

state

Printer P3

state

state

Computer C2

stateexists

canPrint

P3_state PS_state

Computer C2

stateexists

canPrint

P3_state PS_state

Printer P1

state

state

Printer P1

state

state

P1_state

(2)

iOOBN Model

(4) Computer Hierarchy

(a)

Room
power

Printer

state

room

Computer

state

roomprinters

exists

canPrint

Attribute

Reference
slot

Dependency
link

Reference
link

Legends

Attribute

Reference
slot

Dependency
link

Reference
link

Legends Printer

room.power.state

room

state

PowerSupply

state

PowerSupply

state

(1) The class dependency diagram of the power surge example

(2) The Printer class

(3) The Computer class

PowerSupply

state

PowerSupply

state

RoomRoom

power

Room

power

(4) The PowerSupply class
(5) The Room class

Computer

state

roomprinters

exists

canPrint

printers.state room.power.state

(6) Hierarchy created in OOPRM

Color Printer

Room.power.state

room

state

hasInkhasPaper

black
magenta

cyan

yellow

Printer

room.power.state

room

state

B&W Printer

Room.power.state

room

state

hasInkhasPaper

PowerSupply
power

(1)

Room
powerSupply

Printer
room

state

Computer
room

printers
state

canPrint

PowerSupply
Power

State: OK

(2)

Room R1

Printer P1
State: OK

Computer C1
canPrint: false

state: OK

Computer C2
canPrint: true

state: OK

Printer P2
State: OK

Printer P3
State: OK

Room R2

OOPRM Model

OOPRM Model

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state
Printer

PowerState

state

Printer

PowerState

state

B&W Printer PowerState

state

hasInkhasPaper

B&W Printer PowerState

state

hasInkhasPaper

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

Color Printer

PowerState

state

hasInkhasPaper

black
magenta

cyan

yellow

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

 Computer_multiP

stateexists

canPrint

P2_state PS_stateP1_state

(5) Printer Hierarchy

Computer

stateexists

canPrint

P3_state PS_state

Computer

stateexists

canPrint

P3_state PS_state

PowerSupply ps

state

PowerSupply ps

state

Printer

PowerState

state

Printer

PowerState

state

(1) PowerSupply iOOBN class

(2) Printer iOOBN class

(3) Computer iOOBN class

iOOBN Model

(1)

Printer P

state

state

Printer P

state

state

PowerSupply ps

state

PowerSupply ps

state

Computer C1

stateexists

canPrint

P_state PS_state

Computer C1

stateexists

canPrint

P_state PS_state

Printer P2

state

state

Printer P2

state

state

PowerSupply ps

state

PowerSupply ps

state

 Computer C1

stateexists

canPrint

P2_state PS_state

Printer P3

state

state

Printer P3

state

state

Computer C2

stateexists

canPrint

P3_state PS_state

Computer C2

stateexists

canPrint

P3_state PS_state

Printer P1

state

state

Printer P1

state

state

P1_state

(2)

iOOBN Model

(4) Computer Hierarchy

(b)

Figure 3.20: The Power Surge model (a): OOPRM Model, (b): iOOBN Model with: (1) Single computer
in a room, connected with a single printer, (2) two computers in a room, connected with one and two
printers, respectively.

Another way of accomplishing such modelling in the iOOBN is to use the inheritance fa-

cility. If there is a class, n_Computer, having n number of printers connected (actually n in-

stances of Printer class is embedded), then for another computer that is connected with more

than n printers, the n_Computer class can be extended by adding only the additional printers.

This strategy can be adopted where rooms might have different numbers of computers. The

modelling of such a system would save modelling time and effort. As well, it saves compu-

tation time if incremental compilation or compilation (like SIIC as presented in Chapter 4) is

applied.

§3.4 Applying iOOBN to Previous OOBN Problems 103

Figures 3.19b and 3.20b show a reengineered model, built using iOOBN, with Computer,

Printer and Power Supply classes and their hierarchies (depicting the extensibility via inher-

itance). The classes in the root of the hierarchies are extended by adding required additional

attributes (i.e., nodes) and edges for constructing new classes in order to make the model flex-

ible to change and extensible.

A snapshot of the reengineered iOOBN model is shown in Figure 3.20b. In part (1) of the

figure, the required number of instances of the three classes Printer, Computer and PowerSup-

ply are shown. The state-space of the attributes are the same as the attributes of the OOPRM

Model. A catch in the over all model is that a room might have one printer connected to a

computer, while another room can have multiple printers connected to a single computer. In

part (2) of the figure, a modelling technique to deal with such a critical scenario is shown. This

kind of modelling is also accomplished easily in iOOBN and shown in the figure.

3.4.5 Advantages of iOOBN framework in reengineering and extending systems

The advantages of the aforementioned reengineering using iOOBN are discussed below:

A group of people can work on different parts of the system in parallel as per their exper-

tise. So, in the beginning, an initial design can be made based on interfaces or abstract classes.

This initial design helps to test and use the minimal system, as well as combining each part

once they are complete.

The reengineered system is easy to extend and pluggable to similar domain problems, such

as vehicle accidents those run on water (for car accident problem) and to a scanner or other

peripheral device (for the power surge problem).

Every class (as shown in the hierarchy of figures 3.13, 3.17 and 3.19b) extends to subclasses,

making it possible to add new ones to the model, such as one for the driver’s physical or

mental condition. Because the proposed framework makes the system incremental, this helps

reduce the computation time and maximise the reuse of resources.

If inheritance is used to extend/derive one class from another class, then the proposed

compilation technique (as outlined in Chapter 4) also helps to reduce the processing time of

the network. In addition, the use of inheritance makes it easy to increment or extend the

system. Simply adding additional components to the existing class results in a new class.

The proposed iOOBN system creates a model adaptable to change. If the target is enabling

the portability of a system to cope-up with changes from the traditional to cutting-edge tech-

nologies, the iOOBN system can meet this challenge. New features can be added easily and

changing some existing ones to new ones using the interface feature and dynamic binding is

straightforward. To explain, dynamic binding is replacing an object of a class with an object of

§3.5 Case Study: Western Grassland Reserve Project 104

its superclass or subclass without making any additional change in the instantiating class.

The modelled system becomes modular, thus helping to diagnose system issues easily and

reducing the overall complexity of design and other system elements.

The iOOBN allows designing of a shadow-system when complete data is not to hand. It

also facilitates different groups of people working with different technologies to combine their

work thus meeting the the requirement to facilitate compositional modelling.

One of the biggest competitors of the OOBN is the OOPRM. This system has a significant

issue in its formulation. It uses "reference slots" to define relations. The reference slots allow

accessing components of a class remotely, i.e., without using an instance of the class, which

actually violates the encapsulation property. The iOOBN, however, supports encapsulation

and all the other principles of an OO system.

Another advantage of the iOOBN over the OOPRM relates to visualization. Although the

OOPRM is a structured way of representing relations, it is a complicated model in which it is

difficult to visualize; compared with the iOOBN, detecting faults and troubleshooting is hard.

Problems of visualization, fault detection and troubleshooting in the OOPRM are largely due

to the complex reference slots in that system, whereas the iOOBN system, using graphical

representation, avoids these problems.

3.5 Case Study: Western Grassland Reserve Project

As a proof-of-concept case study, reengineering a real-life modelling project "WGR" (Western

Grassland Reserve) [3] that was undertaken in Melbourne, Australia, was considered. The

source project of this modelling project is the "Western Grassland Reserve" project run by the

State of Victoria, Department of Environment, Land, Water and Planning (DELWP). (A detailed

introduction to WGR is available in [3]). Originally, Bayesian Intelligence Pte Ltd (BAIPL) 9,

a consulting firm, collaborated with DELWP in the project to develop an environmental de-

cision support tool, modelling grassland species composition and forecasting how this might

change under different management regimes. The tool was modelled using a Dynamic Object-

Oriented Bayesian network (DOOBN) and implemented in Hugin software.

For reengineering purposes, this collaborative research activity was carried out with ex-

perts from DELWP and BAIPL, the bodies involved in the WGR project. Long discussion

sessions, workshops and frequent meetings took place with the experts to gain insight into the

whole underlying system.

The whole DOOBN model of WGR was analysed. That enabled extraction of a hierarchi-

cal structure from the hidden relations between the factors and components of the original

9www.bayesian-intelligence.com

www.bayesian-intelligence.com

§3.5 Case Study: Western Grassland Reserve Project 105

DOOBN system. Then the whole system was redesigned using iOOBN software (see Ap-

pendix A for more about the software). The feasibility of the reengineered model was dis-

cussed with the experts.

3.5.1 Introducing WGR DOOBN components

The original DOOBN model for the grassland project included several input variables that rep-

resent the grassland at a particular time marked as "Start" time. The model predicts the values

of these variables at a time marked as "end" time. The "end" predictions are then used as new

“start” variables and make another prediction, and so it continues in time steps. Each time-

step is considered as one season. The model was designed to make necessary management

predictions over the long term (5 to 20 years).

The model predicts the state and likelihoods for the following variables: 1. Foliage cov-

ers, 2. Basal areas, and 3. Plant densities of species groups that inhabit the relevant grasslands

(15 groups)). The grass/herb species are: 1. Kangaroo Grass; 2. Red-Leg Grass; 3. Windmill

Grass and Panics; 4. Spear Grasses; 5. Wallaby Grasses; 6. Serrated Tussock; 7. Needle Grasses;

8. Exotic Annual Grasses; 9. Grain Crop; 10. Sens. Native Herbs; 11. Hardy Native Herbs;

12. Native Ruderals; 13. Blanket Weed; 14. Broadleaf Weeds; 15. Onion Grass. Experts defined

these groups and aggregated the species based on similarity in growth histories and manage-

ment responses. The relative covers, basal areas and growing densities of these species jointly

describe the target grassland and allow assessment of its quality [3, 57].

The original DOOBN model is modular in construction, where each separate object repre-

sents each species group, allowing for viewing, editing, running and testing the species sepa-

rately. There are certain factors and properties of each of the species that need consideration

for the restoration of the grassland. These factors influence the predictions made by the model.

These can be categorised into two groups: management interventions and the impact of na-

ture (environmental factors). Certain management interventions were taken for plant species’

preservation as follows. 10

1. Burn: This removes all cover and basal area (at different rates for different species). This

action is only taken if there is sufficient biomass.

2. Grazing by cattle: In order to remove the basal area and cover from certain species

groups, cattle can be introduced. The introduction of cattle depends on the species’ vul-

nerability to grazing. Grazing is performed at different combinations of time duration

and rates of stocking.

10The management interventions with their brief discussion are mostly taken from the WGR report [3] that is
available in the official website of DELWP.

§3.5 Case Study: Western Grassland Reserve Project 106

3. Herbicide: Herbicides can be applied to remove basal area and cover. A specific herbi-

cide removes basal area and cover from species groups that are vulnerable to the herbi-

cide. Multiple herbicides and spraying areas (a single spot or across the whole site) need

to be accommodated in the model.

4. Remove rocks: To convert an intact grassland into cultivatable land, physically removing

rocks is performed, and this item models the action in DOOBN.

5. Scarify: Scarifying the soil makes the site more favourable for seedling growth and sur-

vival.

6. Sow Themeda: Sowing Kangaroo Grass (Scientific name "Themeda triandra", hereafter

"Themeda") introduces new Themeda plants, which respond favourably to climate, com-

petition with rival plants and local soil conditions to mature and thus increase basal area

and basal cover.

7. Remove Topsoil: In order to re-set an area with low nutrients by removing all basal area

and cover, it is necessary to remove seed banks. Topsoil removal is one way to do this.

8. Carbon Boost (add Carbon): Another action that temporarily reduces nutrient is Carbon

boosting. That is a tool used to increase the competition among the species groups.

9. Add fertiliser: this action makes some of the species groups relatively stronger in the

competition to survive by improving the soil composition of the grassland.

The environmental (natural) factors that need to be considered in the model are:

1. Competition: In different seasons the cover and basal area are added or subtracted to

different species group. This mimics the effect of competition between species. Given a

particular season, the amount of cover added or subtracted to a species group depends

on its competitive ability. This ability varies according to climate, nutrient status, the

abundance of other species groups, and soil scarification.

2. Climate: The DOOBN model is capable of cycling through summer, autumn, winter

and spring in turn by assigning different growth conditions using meteorological data.

This cycling action allows simulation of the scheduling of management interventions in

different seasons.

Finally, "Cost" and "Benefit" are the two other critical factors considered in the modelling

of WGR. Each management intervention has a cost associated with the implementation of the

§3.5 Case Study: Western Grassland Reserve Project 107

action. The costs incurred by implementing the management actions are reported as a cumu-

lative cost. Some interventions are expensive if applied on a large area (e.g. spot spraying),

others are not necessarily expensive, even if applied on a larger patch (e.g. burning). Thus,

the inputs specify the size of the site in order to adjust the cost accordingly. In order to assess

the benefits of outcomes, the ‘Key Performance Indicators’ (KPIs) as defined by DELWP are

used. Outcomes may be both positive and negative depending on the KPIs. Another metric is

developed by DELWP to balance (i.e. trading off) between the KPIs. It can assess the overall

change in grassland quality.

Veg
attribute1

t = x

Vegetation
‘state’
 t = x

Natural change
(contains BN)

Management
Intervention
(contains BN)

Value
t=x

Cost

Veg
attribute1

t = x+1

Vegetation
‘state’
 t = x+1

Value
t=x+1

Last season

N
ext seaso

n

Veg
attribute3

t = x

Veg
attribute2

t = x

Veg
attribute2

t = x+1

Veg
attribute3

t = x+1

Figure 3.21: The template of the grassland DOOBN model classes. (copied and redrawn from WGR
report [3])

Input
Seedling
Density

Input Dead
Cover

Biomass
Residue

Cover
Reduction

Output
Seedling
Density

Output
Dead
Cover

Input
Cover

Input Basal
Area

Output
Basal Area

Output
Cover

Seedling
Reduction

Basal Area
Reduction

Harvest
Happens?

Left over
Biomass

Input
Seedling
Density

Input Dead
Cover

Biomass
Residue

Cover
Reduction

Output
Seedling
Density

Output
Dead
Cover

Input
Cover

Input Basal
Area

Output
Basal Area

Output
Cover

Seedling
Reduction

Basal Area
Reduction

Harvest
Happens?

Left over
Biomass

Total
Cover

Basal
Cover

Season
Live

Cover
Burn

Difficulty
Strategy Scale

Targeted
Burn?

Wildlife
Burn?

Burn
Happens?

Value
t=x

Total
Cover

Basal
Cover

Season
Live

Cover
Burn

Difficulty
Strategy Scale

Targeted
Burn?

Wildlife
Burn?

Burn
Happens?

Value
t=x

(a)
(b)

Figure 3.22: Two of the 129 classes of WGR (a list of the 129 classes are given in Figure B.3 of Ap-
pendix B): (a) Themeda Harvest, (b) Burn Intervention (copied and redrawn from WGR class reposi-
tory [3])

§3.5 Case Study: Western Grassland Reserve Project 108

In Figure 3.21, a template DOOBN network structure, used in WGR modelling, is shown.

The veg attributes on the left are inputs to the model for the current state in time "x" that gets

potentials from the output nodes of the previous state, i.e., in time "x-1". The attributes on

the right are the output of the current state and provide the potential to the next state, i.e.

in time "x+1". The nodes on the top are to model natural and management interventions with

associated utility "cost". The utilities can also be carried forward to the next states, as presented

at the bottom. In the original WGR model, there are 129 classes (as listed in Figure B.3 of

Appendix B) and Figure 3.22, part (a) and (b), shows two of them as an example to illustrate

the use of the template.

3.5.2 Reverse engineering the WGR DOOBN using iOOBN

In order to check the suitability and efficiency of the proposed framework in large-scale com-

plex real-life applications, the WGR [3] was chosen for reengineering. In a grassland reserve,

there are many factors to consider and many of them are uncertain. The factors include vari-

ous species of grasses and a variety of behaviours, the effect of weather and environment, and

the need for numerous classes in the DOOBN modelling. Hence, the reengineered system is

modelled using the proposed framework in order to provide a simplified view of the problem

and a scalable expandable solution with inputs from domain experts involved in developing

the original WGR DOOBN. Domain experts in this case are the group of people with knowl-

edge and experience in agriculture and species of plants prevalent in western grasslands. Lo-

cal experts provided with information of similarities and dissimilarities of the characteristics,

behaviours, biological attributes of the plants and plant species; their reactions to foreign sub-

stances like chemicals, fertilisers, and insecticides; and how they respond to managerial actions

like burning off and soil scarifying.

The limitations of the original implementation with the DOOBN model are also consid-

ered in reengineering the model. There is already a form of OOBNs proposed [5, 46, 50] (see

sections 2.5.3, 2.5.4, and 2.5.5 of Chapter 2) and available implemented with Hugin BN soft-

ware. It is not only a well-designed and fully implemented working model, but also contains

sufficient complexity to demonstrate what is expected to be revealed as the advantages of us-

ing an iOOBN. For example, it can accommodate multiple class structures that have similar

elements, e.g., Themeda and other native grasses. By reengineering (and re-implementing)

using iOOBN, the accuracy and efficiency of the iOOBN version can be compared with the

original DOOBN version. In Section 5.5.4 of Chapter 5 and Appendix D, there is another kind

of comparison with the original WGR and the automatically learned model, learned by the

proposed algorithm (Chapter 5).

§3.5 Case Study: Western Grassland Reserve Project 109

The ecological management response model presented in [3] is complex and has several

backward features due to the Hugin software used for implementation, which does not sup-

port inheritance. These relate to OO principles, including absence of reusability and inheri-

tance. The weak points of the model, other than lack of inheritance are:

1. Much specific information is required (e.g., the life history and germination requirements

of many grassland species).

2. Many interventions are needed.

3. Multiple scales of management.

4. The incorporation of many expert opinions.

The analysis of components started by considering the semantics, as well as the common-

alities of structures, of the 129 classes in the original WGR DOOBN. Broadly, two clusters of

classes, with no intercluster similarity were identified; hence the reengineering into iOOBN

was done separately for each of the two clusters as noted below.

1. Group of 96 classes: containing only chance nodes and the same set of attributes dis-

tributively (representing the growth cycle of different kinds of native and exotic grasses).

Figure B.1 shows the reengineered model in the form of a UML class diagram for this

cluster.

2. Group of 33 classes: containing another set of attributes. They contain chance, decision

and utility nodes containing other sets of attributes (representing the management strate-

gies and their effect on the growth cycle) Figure B.2 depicts this part of the reengineered

model in the form of a UML class diagram.

The mapping between the new classes (in the reengineered model) and the original WGR

classes is shown in Figure B.3. Note, the mapping is between the leaf nodes of the hierarchy

tree of the reengineered model and the original 129 classes of the WGR DOOBN. The leaf nodes

of the reengineered models are not the actual concrete classes that can replace the original 129

classes. Actually, the mapping represents that the classes in the leaf nodes can be extended to

derive a particular set of original WGR classes.

In the first phase, the chance-node-only classes were classified into 25 groups based on

their similarities and dissimilarities with respect to ecological and biological characteristics.

The classification and clustering resulted in eight interface nodes, three abstract classes and

25 concrete classes; these were in four distinct hierarchies with 23 derived classes (classes that

have been constructed by inheriting properties of other classes or interfaces rather than from

§3.5 Case Study: Western Grassland Reserve Project 110

scratch). For a concrete class representing different species and original WGR classes with their

only difference being that of parameters, the concrete class is extended, and the parameters are

changed accordingly. Objects of those classes are then created to use in the final model to act

and serve like the original WGR model. As well, among the 25 classes, most have been con-

structed by inheriting the properties of existing classes or interfaces rather than from scratch.

This fact also plays an important role in the proposed framework to provide efficiency. If a

new class (reengineered iOOBN class) in Figure B.1 and B.2 has mapping with more than one

of the old classes (from the original WGR DOOBN), it means that those old classes have same

structure but different parameters. Hence, the reengineered classes then can be extended into

different concrete classes with required parameterization to use them in the main class of the

WGR model to make it fully functional.

The new system was modelled using the developed prototype version of the iOOBN tool.

It ensures an optimized and scalable system design. From the first cluster, the gain obtained

is 63% less computation due to reusing of components (since for 96 original classes the reengi-

neered iOOBN model has eight interfaces, three abstract and 25 concrete classes, that is, 36

total structures, we have 96−36
96 = 63%). Such scalability is an indicator of the efficiency of the

proposed framework. Note, the 63% efficiency gain is just an indication of how much effort can

be saved in constructing the graphical structures of the classes if the proposed framework with

inheritance is used. However, in terms of parameterisation and number of concrete classes re-

quired to construct, this gain is negligible. In reality, it is difficult to actually quantify the gain.

As an example, assume that "Kangaroo grass", "Wallaby grass", and "Onion" are three classes

representing three different plants. Also assume that "Wallaby grass" has a superstructure of

"Kangaroo grass" and "Onion" also has a superstructure of "Wallaby grass". Now, if a mod-

eller wishes to make "Wallaby grass" class from "Kangaroo grass" class and then "Onion" class

from "Wallaby grass" with no inheritance, they need to manually copy and paste the classes

and make the required changes. This manual class creation has the risk of human error and

requires human effort. Let us suppose a set of changes is required to be performed in "Kan-

garoo grass" and similar changes need to be conducted in "Wallaby grass" and also in "Onion"

class. This is also known as propagation of changes in an inheritance hierarchy that needs

considerable effort and has a high potential of risk if performed manually. If the modeller uses

systems/tools that support inheritance, such as iOOBN, these issues will be managed with no

human effort and hence no risk of human errors.

There is another way of measuring the efficiency of the reengineered model, presented in

Chapter 5 and applied to the reengineered WGR model in Section 5.5.4. In section 5.5.4, the

computation is detailed for the reengineered WGR model.

§3.5 Case Study: Western Grassland Reserve Project 111

In the second phase, the 33 more complex classes were considered. They contained 13

classes that were distinct, dissimilar and large in size; no reengineering into a class hierarchy

was possible for these. Of the remaining 20 classes, the reengineering resulted in 16 concrete

classes of three hierarchies with 13 derived classes. A UML class diagram for the reengineered

WGR model, along with a mapping of the original WGR classes into the iOOBN classes, is

provided Figure B.1 and B.2, respectively.

3.5.3 Summary of the reengineering

Knowledge extraction from the original DOOBN system is laborious and requires extensive

computation of the same repeated redundant structures. Inference, decision-making, or gener-

ating reports from such a large system is subject to efficiency and scalability issues. Moreover,

extending such a complex and vast system is quite challenging.

In contrast, the proposed iOOBN framework is extensible, reusable, scalable and efficient.

Overall, for the original 129 classes with no hierarchy and inheritance (reuse of existing com-

ponents/classes), iOOBN modelling offers an inheritance hierarchy with eight interfaces, three

abstract classes, 55 concrete classes (25 in cluster-1 + 13 in cluster-2 (not reengineered) + 16 in

cluster 2 (reengineered) + 1 main class) and 36 derived classes. These classes can be used to

derive the original 129 classes with no extra structures to be added. Therefore, in terms of hu-

man effort, required to construct the 129 classes, there is an evident 49% reduction (129 classes

down to 66 components). This reduction demonstrates that in large complex models, a class

hierarchy can represent common elements in more compact ways (rather than working with a

large number of unrelated classes that actually have many common elements, as in the original

WGR OOBN).

The reengineering case study suggests that the iOOBN framework can be useful in produc-

ing more efficient, reusable, extensible and scalable complex BN models. More importantly, the

reengineering demonstrates the potential to capture in the iOOBN framework commonalities

across different parts of a model, captured in interface, abstract and concrete classes that are

not leaves of the class hierarchy. These also show the potential for reuse. The reengineered

iOOBN version retained the encapsulation of the original OOBN model (via embedded ob-

ject), and demonstrated that the implemented iOOBN type checking/typecasting worked as

expected.

The reengineered model of WGR, implemented in iOOBN had the following advantages:

1. The reengineered model is flexible enough to cope with group-based development. In-

terfaces and abstract classes provide abstraction and facilitate even incomplete and par-

tial implementation of a particular segment. Later these segments could be replaced by

§3.5 Case Study: Western Grassland Reserve Project 112

completed, more efficient or more related segments.

2. More specialisation can be assured by strong type checking where only explicit typecast-

ing is possible. Along with encapsulation and inheritance, typecasting and overriding

provide scalability and ensure maximisation of resource reuse.

3. More compact representation such as this facilitates understanding of the model and

obviously reduces the complexity of the associated documentation.

4. Extending such a complex and large real-life model is quite challenging, especially if the

original BN modellers and/or the domain experts who build the original version are no

longer available.

3.5.4 Validating reengineered models

A reengineered model needs to be validated to check for its feasibility, and, ideally, should be

equivalent to the original model. A reengineered model is worthless unless its viability and

validity is proved. There are three ways to check for equivalence of the systems.

1. Flattening both systems into BNs and comparing the resultant BNs: In Section 3.2.1, a

special operation, "flattening" is described. This process is used to transform an iOOBN

and OOBN class into a BN. This BN is used for inference in the absence of incremental

compilation or advanced compilation techniques such as SIIC (proposed in Chapter 4).

Therefore, to check for the equivalence of the reengineered iOOBN system with the orig-

inal WGR DOOBN, both systems were flattened into BNs and their structural similarity

check was performed using a simple graph matching technique. Then node-by-node

parameter testing was performed. This ensured the equivalence of both systems. Ac-

cording to WGR DOOBN experts, the original project is huge and not runnable directly

in Hugin. Hence, they had to develop a stochastic system to retrieve the inference out-

come from the system. The reengineered iOOBN system is able to produce an inference

outcome if a SIIC compilation algorithm is used. Hence, it would not be straightforward

to check for equivalence of the systems by the flattening method.

2. Expert opinion: A second validation method, used for the WGR case study, was to have

domain experts (in this case, some of the same people used for expert elicitation to build

the original DOOBN model) review and validate the reengineered iOOBN WGR classes.

They accepted the semantics of the revised hierarchy and confirmed the similarity in in-

§3.6 Summary 113

ference outcomes of partial and small segments of both the original and the reengineered

systems.

3. Comparing the reasoning/decision outcomes of both systems: The final method for val-

idating the reengineered models is by comparing the posterior probabilities and/or ex-

pected utility computations for decisions from the reengineered models to the originals.

This was done for all the toy example models presented in Section 3.4 above; however it

was not possible to perform this for the complete WGR model, as only the OOBN classes

were provided, not the software to run the 20-year model predictions (using stochastic

simulation, rather than exact compilation-based methods).

3.6 Summary

Various forms of OOBNs have been proposed in the literature to help make BN technology

cope with large-scale problems and to support reuse and ease of maintenance. These frame-

works have resulted in OOBN systems that contain hierarchical composition along with encap-

sulation. However, the key OO feature of inheritance, which brings a higher level of reusabil-

ity and scalability, although proposed long ago, has not been formally or fully specified for

OOBNs, nor implemented in any OOBN software that we are aware of. This chapter presented

the iOOBN theoretical framework, which defines inheritance, polymorphism, encapsulation

and abstraction for OOBNs. A prototype version of the framework has been implemented (see

Appendix A) using the API of an existing BN software package. The framework has been illus-

trated via a simple running example, and its potential efficacy has been demonstrated by the

reengineering of a number of small OOBN examples from the literature, as well as by reengi-

neering a large real-world dynamic OOBN, into the iOOBN framework. The reengineered

WGR iOOBN class hierarchy demonstrates the framework’s potential to capture similarities in

different parts of the model, i.e. generalise elements of the model.

The iOOBN framework has been designed to support team-based development of com-

plex BN models. Its interfaces and abstract classes provide abstraction and should support the

incomplete and partial implementation of parts of a larger system, where later in the model de-

velopment process, these segments can be replaced by more detailed or fully concrete classes.

The strong type checking feature within iOOBNs should assist modellers to avoid confusion or

modelling flaws which may lead to significant problems in the resultant model. Along with en-

capsulation and inheritance, typecasting and overriding may provide scalability and increase

the potential for component reuse. While the WGR reengineering case study gives some indi-

cation that iOOBN may lead to such benefits, until there is extensive real-world development

§3.6 Summary 114

of iOOBN models, there can be no definite evidence for or against these claims.

It is apparent that compiling an iOOBN into a flattened BN (as done in the Hugin software)

introduces a complexity issue for either exact or approximate inference (as occurred with the

WGR DOOBN model). The next chapter presents an exact inference algorithm for classes in

iOOBNs which can be used to avoid flattening.

Chapter 4

Incremental Compilation in iOOBN

Object-Oriented Bayesian Decision networks (OOBNs) allow modellers to construct composi-

tional and hierarchical models, using an inheritance hierarchy of classes and subclasses, en-

abling reuse and supporting maintenance. Reasoning with both ordinary BNs and OOBNs

requires the important computational task of inference, the computing of new posterior prob-

ability distributions given a set of evidence. A widely used inference technique in ordinary

BNs involves compiling the BN into a junction tree (JT) before performing inference; the com-

pilation step is only performed when the network changes. In current OOBN software, the

OOBN is transformed into the underlying BN (so-called "flattening") and; then any standard

inference can be performed. Researchers have proposed methods for the incremental compila-

tion of BNs, rather than recompiling from scratch for each network modification; these can also

apply to OOBNs after flattening. This chapter presents a new incremental compilation tech-

nique that reuses existing compiled JTs of both embedded components and superclasses, and

that does not require flattening. The description of the proposed technique follows detailed

and illustrative related terms. It is shown that this can reduce compilation time. Afterwards,

the performance of the proposed algorithm is analysed asymptotically and empirically and

compared with the compilation technique used by a widely used commercial software pack-

age (Hugin) [27].

4.1 Inference in OOBNs

Bayesian Decision networks (BNs) [13, 204] are a powerful and widely used tool for reasoning

under uncertainty. They can be built by automated learning if data is available or by using

elicitation methods to capture expert knowledge when it is not. One of the key objectives of

building a BN is to perform inference in order to perform reasoning under uncertainty. There

have been many attempts to perform such a complicated and expensive operation efficiently.

Inference in a BN is divided into two main steps, namely, compilation and message-passing.

Compilation is the most complicated and expensive step which involve some underlying oper-

115

§4.2 Inference, Clique Graph, Junction Tree, and Junction Forest 116

ations that are NP-Hard in complexity if performed optimally. Some heuristic-based methods

have been adopted to suboptimally performing the task. However, there is no direct compila-

tion (or inference) technique proposed to date. Currently, to perform inference in an OOBN,

the network is first transformed into the underlying "flattened" ordinary BN (as shown in Algo-

rithm 3.1) 1, then any of the existing inference approaches, including the widely used junction

tree (JT)-based approach [205], can be applied. Flores et al. [4] proposed "Incremental Com-

pilation" (InC), to make the ordinary BN inference more efficient by only re-compiling part of

the network, with Bangsø et al. [5] proposing a similar incremental compilation for OOBNs,

after flattening the network first.

In this chapter, a new incremental inference algorithm is presented for the iOOBN that

reuses JTs compiled for either embedded classes, or when the new class is inherited from a

previously compiled class. Section 4.2, presents the background, definitions and terminology

of the relevant BN and iOOBN representations, including JT inference.

4.2 Inference, Clique Graph, Junction Tree, and Junction Forest

This section adopts, the ordinary BN and OOBN/OOBN definitions and terminologies, as

used in [200] and [1] and as implemented in Hugin. Terminologies of iOOBN defined in Chap-

ter 3 are used to formulate the proposed compilation algorithm. Note that for a BN with

decision and utility nodes [13], incremental compilation applies only to the chance nodes rep-

resenting random variables, so the algorithm does not consider decision and utility nodes. The

algorithm also treats only discrete BNs, where all the nodes have discrete state spaces. The ex-

tension of the algorithm to cover classes with the chance (discrete and continuous), decision

and utility nodes are a subject for further research and investigation. Hence, it is left as a future

research direction.
DEFINITION 4.1 : INFERENCE

Inference in a BN (Definition 2.2) is the process of calculating posterior probabilities of

a set of variables X (where each variable v ∈X is represented as a node v) given a set of

evidence E and is denoted by P (v∣E) v ∈ X . This process is also known as compilation

or probability propagation or conditioning or belief updating [1].

Note that the iOOBN framework defined in Chapter 3 and in [140] has two types of classes:

abstract and concrete. In an abstract class, some of the parameters Π are not fully defined. So

only instances of concrete classes can be compiled, and hence are the only classes used in the

compilation algorithm. For the remainder of this chapter, all classes are assumed to be concrete

1An assumption is made that all OOBNs considered in this chapter can be flattened to a valid connected BN.

§4.2 Inference, Clique Graph, Junction Tree, and Junction Forest 117

classes and are referred to as simply classes. Moreover, Chapter 3 proposes two types of inher-

itance, namely interface inheritance and class inheritance. In class inheritance, subclasses are

derived by only adding new components to an existing class, whereas in interface inheritance

subclasses are derived by both adding and removing components other than interface nodes

of an existing class. In this chapter, only class inheritance is considered in order to keep things

simple. Incremental compilation of OOBNs where interface inheritance is allowed is left for

future research work.

Also, note that once two nodes vi and vj have been joined by a referential edge, implying

that they represent the same random variable. This association must be taken into account in

any inference algorithm, including the one proposed.

Moreover, the edges within an iOOBN must be such that it "flattens out" 2 to a valid BN,

that is, a DAG.

(a) Example iOOBN Class (b) Example of flattened iOOBN Class

Figure 4.1: Example of flattening an OOBN class

Figure 4.1a shows an example of an iOOBN class having two input nodes (dashed ovals),

namely A and S, two embedded objects (rectangles) and an output node N (double-lined oval).

The embedded object on the left is an instance of the well-known Asia BN [23] where A and S

are also the names of its input nodes, X and D are its output nodes, and T, L, B, and F are its

embedded nodes. The other embedded object is an instance of another class with A and S also

being its input nodes, Y and G being its output nodes, and C, M, and R being its embedded

nodes. This example iOOBN class flattens into the BN given in Figure 4.1b.

2This is the process where Hugin converts the OOBN into the underlying BN, as per its API function "Creating
run-time Domain" [27].

§4.2 Inference, Clique Graph, Junction Tree, and Junction Forest 118

DEFINITION 4.2 : CLIQUE GRAPH

A Clique Graph CG = {V , E } of an iOOBN class C is a weighted undirected graph

where V is a set of clique nodes, V = {Clq1, Clq2, ..., Clqn}, with each clique containing

nodes of C, and E is a set of edges, where each edge is a connection between a pair of

clique nodes Clqi and Clqj and the weight of the connection is ∣Clqi⋂Clqj ∣ ≥ 1. The

set Clqi⋂Clqj is called the separator set. Also associated with each clique node is a

probability potential, which is a function of the variables in the clique and the product

of all the potentials is the joint probability of all the variables in the clique graph.

DEFINITION 4.3 : JUNCTION TREE

A graph JT is a junction tree if it is a clique graph that (i) is a tree and (ii) it has the

running intersection property: for any pair of cliques, Clqi, Clqj ∈ JT , all the cliques in

the path between Clqi and Clqj in the tree must contain Clqi⋂Clqj

DEFINITION 4.4 : JUNCTION FOREST

A Junction Forest, JF , is a finite set of disjoint junction trees.

4.2.1 Inference techniques

Inference (see Section 2.7 of Chapter 2), the most important purpose behind BN construction,

has been extensively studied and explored in numerous pieces of research such as [24, 206–

211]. One of the very widely used techniques of BN inference is "JT-based inference" [205].

The main steps of this method, as depicted in Figure 4.2 (A), are (i) moralization (making

the DAG undirected and marrying/connecting the parents of each node), (ii) triangulation

(adding fill-in edges to form triangulation and cliques), (iii) clique graph formation (making

a graph of the cliques found from the previous step where nodes are cliques and any two

nodes are connected by an edge if there are common items between them with weight equal

to the number of common items), (iv) formation of JT/ Junction Forest (finding the Maximum

spanning tree of the clique graph, where cost function works on the weight of the edge) and

(v) message passing (collect and distribute) to propagate joint probabilities and evidence.

Figure 4.2 (B) depicts the steps of Incremental Compilation (InC) proposed by Flores et

al. [4]. This approach was motivated by the fact that all the operations in JT-based infer-

ence, especially triangulation and clique finding, are computationally expensive [26]. InC is

an MPS (Maximal Prime Subgraph) decomposition-based compilation technique [136] where

any modification to the BN does not require performing the steps mentioned in Figure 4.2 nor

constructing the JT from scratch. Instead, it constructs an MPS tree in parallel with JT con-

§4.2 Inference, Clique Graph, Junction Tree, and Junction Forest 119

Moralization

JT-based Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction

OOBN

Flatten BN

A
n

y
 c

h
a

n
g

e
 i

n
 O

O
B

N

(A) OOBN Compilation :

HUGIN

Equivalent BN

changes

Any change in OOBN

Moralization

 JT-Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction MPS

Decomposition

MPS Tree

Construction

Mark Affected

MPS Tree

MPS* for

affected MPS

JT* for

affected MPS
Join JT*

with JT

OOBN

Flatten BN

(B) Incremental Compilation based

OOBN Compilation

Moralization

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction

A
n

y
 c

h
a

n
g

e

in
 B

N

Ordinary BN

Moralization

JT-based Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction MPS

Decomposition

MPS Tree

Construction

Mark Affected

MPS Tree
MPS* for

affected MPS

JT* for

affected MPS
Join JT*

with JT

Ordinary BN

(B) Incremental Compilation (A) JT-based Inference

Figure 4.2: Process-flow diagram of (A) JT-based and (B) Incremental BN Compilation [4]

struction during ordinary BN compilation. It keeps track of the changes made in the last BN

structure and marks the affected parts of the MPS tree and the JT. Then the marked portion

is re-triangulated, and an intermediate JT for only the affected portion is constructed, which

finally replaces the marked portion of the original JT. The resultant new JT presents the modi-

fied BN. The InC method is particularly useful when the modification to the BN is minor and

local, with expensive operations avoided for parts of the networks that are unchanged.

A potential solution to avoid the cost of repeated JT construction that utilises the InC was

proposed by Bangsø [5], with an implemented version described by Merten [6]. As depicted in

Figure 4.3 (A), changes in the OOBN classes are transformed into a series of equivalent changes

to the corresponding flattened BN, and then InC is applied. There are also some situations

where, using this method, a large portion of the BN needs to be re-triangulated (because InC

re-triangulates affected portions of the MPS tree); an example of this scenario is given in more

detail in Section 4.3.4.

For OOBNs, to the best of our knowledge, no inference algorithm has been developed that

works on the OOBN structure itself. In Hugin [27], an OOBN is flattened into an ordinary

BN, and any traditional exact or approximate inference technique may be applied (see Fig-

ure 4.3 (A)). Any change, no matter how minor it is, to the OOBN structure generates full

re-compilation, starting from flattening the new OOBN.

If an OOBN framework supports inheritance, such as iOOBN [140] (also described in Chap-

ter 3), where any OOBN class can be derived from another class, then any change in the hier-

archy generates a series of changes to all the subclasses below it in the inheritance hierarchy,

so incremental compilation becomes even more important.

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 120

Moralization

JT-based Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction

OOBN

Flatten BN

A
n

y
c
h
a

n
g

e
in

 O
O

B
N

(A) OOBN Compilation :

HUGIN

Equivalent BN

changes

Any change in OOBN

Moralization

 JT-Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction MPS

Decomposition

MPS Tree

Construction

Mark Affected

MPS Tree

MPS* for

affected MPS

JT* for

affected MPS
Join JT*

with JT

OOBN

Flatten BN

(B) Incremental Compilation based

OOBN Compilation

Moralization

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction

A
n

y
c
h
a

n
g

e

in
 B

N

Ordinary BN

Moralization

JT-based Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

DAG

extraction MPS

Decomposition

MPS Tree

Construction

Mark Affected

MPS Tree
MPS* for

affected MPS

JT* for

affected MPS
Join JT*

with JT

Ordinary BN

(B) Incremental Compilation (A) JT-based Inference

Figure 4.3: Process-flow diagram of (A) HUGIN OOBN Compilation and (B) Incremental Compilation-
based OOBN compilation [5, 6]

4.3 Shareable Inheritable Incremental Compilation (SIIC) Algo-

rithm

4.3.1 The proposed algorithm: SIIC

In this section, the proposed "Shareable Inheritable Incremental Compilation" (SII compilation)

algorithm is presented; it constructs the junction tree (JT) for an iOOBN, by reusing previously

constructed JTs (of embedded objects and superclasses) without flattening it into an ordinary

BN. The algorithm can significantly reduce the amount of recompilation required when a class

in an iOOBN class hierarchy is modified.

At a high-level, the SII compilation algorithm (see Algorithm 4.1 and Figure 4.4) takes an

iOOBN class C as input, performs some preprocessing, retrieves any previously constructed

JTs for its superclass (if there is one) and for any of its embedded objects, constructs any new

JTs required, produces a Junction Forest (JF), then connects the junction trees in the JF to form

a single resultant JT for C. Below, the algorithm is described in more detail.

The algorithm has four main stages:

1. Preprocessing (Line 2 Algorithm 4.1)

2. Creating a JF, including previously compiled JTs (Line 3, Algorithm 4.1) and the JTs con-

structed by any JT construction algorithm using the remaining class components after re-

moving inherited (superclass) components and embedded objects; then joining the trees

in the forest using referential edges (line 4).

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 121

ALGORITHM 4.1 (SII COMPILATION ALGORITHM)

Call : SIIC(C) → JTnew

Input: C: an iOOBN class

(a set of interfaces, embedded standard and instance nodes)

Output: JTnew: A junction tree

1 begin

2 C ← Preprocessing(C) /* Adding pseudo Ref. edges */

3 < JF,RE > ← CreateJunctionForest(C)

4 Edges← ConnectJunctionTrees(JF, RE)

5 JTnew ← φ

6 foreach edge E ∈ Edges do

7 {Clqi,Clqj} ← getTerminalCliques(E)

8 JTi ← JunctionTree(Clqi)

9 JTj ← JunctionTree(Clqj)

10 if JTi == JTj then

11 /* connection between two cliques of same JT */

12 JTnew ← AddByMaintainingJTProperty(JTi, Clqi, Clqj)

13 else

14 JTnew ← JoinJTPair(JTi, JTj , Clqi, Clqj)

15 JTnew ← PostPruning(JTnew)

16 // Assuming minimum clique size = 3

JTnew ← Thinning(JTnew, 3)

17 JTnew ← PostPruning(JTnew)

18 return JTnew

3. Construction of the JT (Lines 5–15, Algorithm 4.1), and

4. Post-processing (Lines 16–17, Algorithm 4.1).

In Preprocessing stage, for each standard edge from an output node in an embedded object

to an embedded node in the encapsulating class, a copy of the output node is introduced

together with a referential edge between the original output node and its copy (see Figure 4.5c).

These referential edges are referred to as pseudo-referential edges, as in practice these edges do

not ever have to exist, and this step is only added to simplify the explanation of the algorithm.

Another vital operation in this stage is renaming. There are two types of renaming.

1. Embedded node renaming: the embedded nodes of different objects, those having the

same name, have to be renamed. In fact this situation is handled easily by adding the

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 122

Moralization

JT Based Inference

Triangulation

Clique Graph

Construction

Junction Tree

Construction

BN DAG

A
ny

 c
ha

ng
e

in
 B

N

Incremental Compilation

MPS

Decomposition

MPS Tree

Construction

Mark Affected

MPS Tree

MPS’ for

affected MPS

JT’ for

affected MPS

Jo
in

 J
T

’ w
ith

 J
T

 Jo
in

 M
P

S’
 w

ith
 M

P
S

OOBN Compilation

OOBN

Flatten BN

A
ny

 c
ha

ng
e

in
 O

O
B

N

Equivalent BN

changes

Moralization

(2a) JT-based Inference

Triangulation

Clique Graph

Junction Tree

BN DAG

Proposed SII (iOOBN) Compilation

OOBN

(3) Join JTs in the

JF to create the JT

(4) Post pruning:

Thin the JT

A
ny

 c
ha

ng
e

in
 O

O
B

N

(1a) Get/Construct

JTs for instances and

Parent class

(1b) Residual of OOBN

after removing Instances

and inherited part

Return the JT

(2b) Construct a

JF

Figure 4.4: Process-flow diagram of iOOBN compilation using proposed SII compilation

object name as a prefix to the node name. In this chapter, a different name is used for

simplicity and illustration purpose. The renaming operation is straightforward and just

needs O(n) times adding a prefix to the variable name where n is the number of nodes

in a class.

2. Renaming of terminal nodes of a referential edge: In OOBN and in iOOBN, two nodes

connected via a referential (and pseudo referential) edge are considered as the same node.

Hence, giving them a single name (if they are named differently within different embed-

ded objects) is important for the JT construction algorithm to be correct.

The JF creation stage requires the recursive generation of the JF (via Algorithm 4.2). First,

the JF is retrieved (if previously compiled) or recursively created from the superclass. Then

the algorithm (Algorithm 4.2, Line 10) identifies the components (nodes and edges) of the

class being compiled that were not present in the superclass. In the case of no superclass

existing, the components will be all of them. The referential edges and pseudo-referential

edges are then removed (Lines 11–12), as well as any embedded object. Then the remaining

class components are used to create new JT(s) (Line 13). The creation of the new JT can be done

using any JT-based inference algorithm since there are no embedded objects left in the class.

The JT construction of the remaining portion of the class that has no embedded object is the

base case of the recursive JT/JF creation process.

In the Joining of JTs stage, the junction trees are linked together into a single junction tree.

The joining operation is performed for each of the referential edges and pseudo referential

edges. At first, all referential and pseudo referential edges are converted to JT connections.

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 123

ALGORITHM 4.2 (CREATE JUNCTION FOREST)

Call : CreateJunctionForest(C) → <JF , RE>

Input: C: an iOOBN class

Output: JF : A set of junction trees

RE: A set of referential edges

1 begin

2 Csup ← superClass(C)

3 if Csup exists then

4 if Csup is Compiled then

5 JF ← getJunctionForest(Csup)

6 else

7 JF ← CreateJunctionForest(Csup)

8 /* if any class C is extended from Csup with additional components in C then only the

Junction Forest for C −Csup needs to be formed */

9 /* Remove inherited components from C */

10 C ← removeComponents(C, Csup)

11 RE ← popOutReferentialEdges(C)

12 Obj ← popOutInstanceNodes(C)

13 /*Traditional JTConstruction() returns a set of JTs using traditional JT-Based

inference approach*/

JF ← JF ⋃ TraditionalJTConstruction(C)

14 /*Due to the deletion of instance nodes and Referential edges, remaining C returns a

Junction Forest with at least one Junction Tree*/

15 foreach instance O ∈ Obj do

16 /* Get/create the JF for the corresponding classes of the instances */

17 classO ← getClass(O)

18 if classO is Compiled then

19 /* a compiled class has its JT constructed */

20 JF ← JF ⋃ getJunctionForest(classO)

21 else

22 JF ← JF ⋃ CreateJunctionForest(classO)

23 return JF , RE

The connections are made between those cliques that contain the terminal nodes of the refer-

ential edges. Since a terminal node connected via a referential edge may reside in more than

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 124

one clique, the SIIC algorithm ensures that for each referential edge, a single JT connection is

created. This conversion from edge to connection can be done more effectively to build a more

compact JT. However, in this version of SIIC, the clique pair that have more items in common

got the preference. In case of a tie, the cliques that have fewer such existing connections get

preference.

While joining the JTs into a JF, one of the following two operations are performed for each

of the JT connections.

• Joining a pair of JTs straightaway. If a JT connection exists between the two cliques of

two different JTs, then a single JT is formed by joining both of the JTs. The joining is per-

formed by adding a separator connection between the two cliques those were connected

by the JT connection.

• Just maintaining JT property is enough. If a JT connection exists between the two cliques

of the same JT, there is nothing to add here other than just adding some common items

between the two cliques to all of the separators and cliques that reside in the path be-

tween the two cliques.

During this process, the newly formed clique graph (JTnew) is regularly pruned (via Algo-

rithm 4.3), which involves removing unnecessary cliques and separators.

Finally, in the Postprocessing stage, some thinning is done (via Algorithm 4.4), which in-

volves splitting large cliques up into a path of smaller connected cliques, using the information

of the cliques that constructed the large cliques. This thinning step is a simple linear check-

ing and removal of redundant fill-in edges similar to the recursive thinning proposed in [200].

Then a final pruning step, as taken in stage three of the algorithm (via Algorithm 4.3), is taken.

The pruning step removes unnecessary cliques and separators from a JT. Note that a clique is

referred to as an "unnecessary clique" if it is connected with the JT to a clique through a sepa-

rator having the same item/node set as the clique (the former one) itself has. As an example,

in Figure 4.7a, the clique "A" is connected with JT1,4 to clique "AT" via the separator "A".

Hence, the clique "A" is unnecessary and can be absorbed in clique "AT". This absorption is

performed in the postpruning step of the algorithm. In the Algorithm 4.3, a linear scanning

is performed to check if a clique and any of its separators are the same in terms of the node

group that makes the clique or separator. If they are same, then both of them are removed

from the JT in a way so as not to violate JT properties. A point worth noting here is that the

pruning takes place on the edge of the tree and the pruning operation is "loss-less". Generally,

the "running intersection property" is affected only if a clique or a separator in the middle of

a branch of a tree is changed. Therefore, the JT property holds after the pruning if it was held

before pruning.

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 125

ALGORITHM 4.3 (POSTPRUNING)

1 /*It prunes unnecessary cliques from a clique Tree to ensure its JT properties*/

Call : PostPruning(JT) → JF

Input: JT : a Junction Tree

Output: JT : a pruned Junction Tree

2 begin

3 foreach Clique Clq in JT do

4 NC ← NeighbourClique(Clq)

5 foreach Clique N in NC do

6 if Clq == S then

7 S ← N ⋂ Clq
8 /* S is the separator between N and Clq */

9 JT.Clq ← JT.Clq − Clq
10 JT.Sep ← JT.Sep − S
11 RNC ← NC − N
12 foreach Clique K in RNC do

13 Sep←K ⋂ N
14 connect(K, Sep, N)

15 return JT

Theorem 1. Proposed SII compilation (Algorithm 4.1) generates junction tree.

Proof:

When creating the JF (Algorithm 4.2), assuming any precompiled JFs retrieved are valid,

and any new JT (line 15–22) is constructed using a standard valid JT construction method, Cre-

ateJunctionForest() returns a valid JF. Also assuming, there is no variable names in common

between any two JTs in a JF. There are two cases to consider when creating the new JT from the

JF as discussed earlier in the Joining of JTs stage of the SIIC algorithm.

1. Let Clq1 be a clique in JT1 containing V1 and Clq2 be a clique in JT2 containing V2.

Replace V2 in JT2 by V1, and denote this tree by JT ∗2 . Then connect Clq1 to Clq2 with

an edge to form the clique graph G. Since G is a clique graph constructed by joining

two trees by a single edge, it follows that it is a clique tree. Now to prove that G has a

Running Intersection Property, take any cliques Clq∗1 and Clq∗2 in G and let X ∈ Clq∗1 ⋂
Clq∗2 . If Clq∗1 and Clq∗2 belong to the subgraph JT1, then since JT1 is a junction tree, it

follows that X belongs to all cliques in the path between Clq∗1 and Clq∗2 . If Clq∗1 and Clq∗2

belong to subgraph JT ∗2 , then since JT ∗2 is a junction tree, it follows that X belongs to all

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 126

ALGORITHM 4.4 (THINNING)

1 /*It performs a specialised operation, thinning, on the JT*/

Call : Thinning(JT , τ) → JT

Input: JT : a Junction Tree,

τ : Clique size threshold

Output: JT : a thinned Junction Tree

2 begin

3 CS ← stack of cliques in JT of size ≥ τ
4 while CS is not empty do

5 C ← CS.pop()
6 NC ← NeighbourCliques(C)

7 AOC ← AssociatedOriginalCliques(C)

8 JT_is_thinner ← True

9 foreach Partition P of AOC into ∣NC ∣ parts do

10 NewCliques ← φ

11 foreach Part of Cliques of P do

12 NP ←MergeCliques(Cliques)

13 if ∣NP ∣ == ∣C ∣ then

14 JT_is_thinner ← False

15 break

16 NewCliques ← NewCliques ⋃ NP

17 if JT_is_thinner then

18 JT ← Replace(JT , C, NewCliques)

19 push any clique in NewCliques of size ≥ τ onto CS

20 break

21 return JT

cliques in the path between Clq∗1 and Clq∗2 . The last possibility to consider is Clq∗1 is in

JT1 and Clq∗2 is in JT ∗2 . Since JT1 and JT2 have no variables in common (actually, the

algorithm ensures that through the renaming of embedded nodes), Clq∗1 ⋂ Clq∗2 = ∅ or

{V1}. In case, Clq∗1 ⋂ Clq∗2 = ∅, G follows the running intersection property. In the case of

X = V1, the path between Clq∗1 and Clq∗2 must contain V1, since JT1 and JT ∗2 are junction

trees, and Clq1 and Clq2 contain V1. Therefore G has the running intersection property

and hence is a junction tree.

2. Let JT be a junction tree, and Clq1 be a clique in JT containing V1 and Clq2 be a clique in

JT containing V2. Also, let P be the path between Clq1 and Clq2 in JT. Replace V2 in JT by

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 127

V1. Now add V1 to each clique in the path P to form the graph G. It is assumed that any

clique contains at most one V1 in G, so that any clique containing multiple V1’s has them

replaced by a single V1.

Since JT is a tree, it follows that G is a also clique tree. Also, since JT is a junction tree, it

has the running intersection property. Moreover, by adding a variable to all the cliques

in a path in JT, it still has the running intersection property. Hence G has the running

intersection property and hence is a junction tree.

4.3.2 Constructing JTs using the SIIC algorithm: an example

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

T L

R

X G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

T L

R

X G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(c)

Figure 4.5: (a) Sample OOBN Class: C, Preprocessing C [Line-2]: (b) Duplicate node names resolved,
and (c) Pseudo Ref. Edge adding

Figures 4.5 to Figure 4.12 show how Algorithm 4.1 constructs a JT for the same example

OOBN from Figure 4.1a (repeated in Figure 4.5b for easy reference). Note that this example

only shows reuse of the JT from the embedded object JTs, but does not show reuse of a JT from a

superclass. Figure 4.5c shows the result after preprocessing where duplicate names have been

changed following the approach discussed in Section 4.3 under the preprocessing step, and

pseudo-referential links have been added to the copies of the embedded output nodes X, Y and

G, which are parents of N. In Figure 4.6a, the JF has been formed using previously compiled

JTs, JT4 and JT5, as well as the derived JTs, namely JT1, JT2 and JT3, and connected into a

JT via referential edges (shown with double lines): for example, JT4 and JT3 are connected

via a referential edge between clique nodes FX and GNXY. Note that each clique is given a

unique index, shown in blue. Figure 4.6b shows the networks after these referential edges

have been converted to edges in the clique graph (red dashed lines), indicating connections

between the JTs, with the separators also shown; for example, X is the separator on the red

edge connecting JT4 and JT3. Figure 4.7a shows the result after joining JT1 and JT4. Next,

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 128

postpruning removes clique node 1 containing only variable A, shown in Figure 4.7b; note that

clique AT is now labelled "1, 3", indicating it was created by the merger of cliques 1 (A) and 3

(AT). Figure 4.8a shows the result after joining JT1,4 and JT5; this step was straightforward,

with the edge between AT and AC (with separator A) remaining and no other changes or

post-processing required.

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

Figure 4.6: (a) Constructing Junction Forest [Line-3], (b) Connecting JTs [Line-4]

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

Figure 4.7: (a) Joining JT1 and JT4 [Line -14], (b) Postpruning JT1,4 [Line-16]

Similarly, Figure 4.8b shows the formation of JT1,2,4,5. After this formation step, postprun-

ing by merging clique 2 (S) with clique 8 (BLS) is performed as shown in Figure 4.9a. Next,

Figure 4.9b shows the removal of the connection between BLS and MS by adding S (shown in

blue) where required to cliques along another path between BLS and MS, in order to preserve

the running intersection property (Figure 4.10a). Figure 4.10b shows the structure after join-

ing all five original JTs in the JF, JT1,2,3,4,5, while Figure 4.10c shows the result after removing

the connection from RY to GNXY (postpruning step), which then required adding Y to two

other cliques; at this point there is only one unresolved connection from the original referential

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 129

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

Figure 4.8: (a) Joining JT1,4 and JT5 [Line-14], (b) Joining JT1,4,5 and JT2 [Line-14]

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

Figure 4.9: (a) Postpruning JT1,2,4,5 [Line-16], (b) Processing the edge having separator S between
cliques of same JT1,2,4,5 [Line-12]

edges remaining (coloured red), that from FX to GNXY. Figure 4.11a shows the JT after merg-

ing cliques 4 and 5, and resolving that final edge, with the associated addition of X to cliques

13, 9–10–11, 1–3 and the new 4–5, and another postpruning.

The last remaining step is the thinning, which uses information about the original cliques

that was stored throughout the JT combination steps (via the blue numbers associated with

each clique). The thinning takes large cliques (using a clique size threshold) and iteratively

splits them. For example, the CMRSXY clique is removed (Figure 4.11b), first replaced by

CMSX and CMRXY, then by CMSX, CMRX, RXY and finally by CMSC and CMRX (after the

final postpruning of the unnecessary RXY). Figure 4.11b shows the final resultant JT.

In order to compare the JT produced by SII compilation to Hugin’s method (flattening and

recompiling from scratch), the flattened ordinary BN for the example OOBN class C is shown

in Figure 4.12b and the Hugin-generated JT in Figure 4.12c. It can be seen that, not surprisingly,

there are some similarities, including the two cliques (GRXY and GNXY) at the right end of the

SIIC generated JT (Figure 4.11b), with the clique at the left end (BDF) also being a leaf in the

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 130

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(c)

Figure 4.10: (a) Postpruning JT1,2,4,5 [Line-16], (b) Joining JT1,2,4,5 and JT3 [Line-14], (c) Processing
the edge having separator Y between cliques of same JT1,2,3,4,5 [Line-12], Postpruning [Line-16]

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

Figure 4.11: (a) Final JT of class C using SII compilation, after processing the last edge with separator
X, (b) Thinning the JT (Removing redundant fill-in edges) [Line-17]

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(a)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

(b)

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

 JT3

GNXY

JT2

S

JT2

S

 JT1

A

 JT1

A

A
A S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT4

 JT3

GNXY

JT2

S

 JT1

A

A
A S

S

X
Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

SA

A
A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

SA

A
A

S

S

X Y

G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4,5

 JT3

GNXY

 JT2

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X
Y G

AC

RY

C

R

GRMS M CMR R

 JT5

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT3

GNXY

 JT2

S

 JT2

S

A

S

S
AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

AC

RY

C

R

GRMS M CMR R

 JT5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

JT1,4

 JT3

GNXY

 JT2

S

A

S

S

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

S

A

S

S
AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

JT1,2,4,5

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

S

A

S

S

AC

RY

C

R

GRMS M CMR R

X Y
G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AT

FLT

FX

T

F

BLS

BFL

BDF

BL

BF

FL

 JT3

GNXY

A

S

JT1,2,4,5

AC

RY

C

R

GRMS M CMR R

X

Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

 JT3

GNXY

AS
JT1,2,4,5

ACS

RY

CS

R

GRCMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

AST

FLST

FX

ST

F

BLS

BFLS

BDF

BLS

BF

FLS

 JT3

GNXY

AS JT1,2,4,5ACS

RY

CS

R

GRMS MS CMRS R

X Y G

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

ASTX

FLSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT1,2,3,4,5
ACSX

CSX

GRXYCMRSXY RXY

GXY

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS

CFST

FLST

FST

BDFBFS

FS

BF

GNXY

CFS

CFRS FR

GRXY

FRX

RX

GXY

ACT CT

CMRS CRS
T L B

F

X D

C M

R

Y G

A S

N

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

ASTX

FSTX

STX

BFLS

BDF

BF

FLS

GNXY

ASX JT_ThinACSX

CSX

GRXY

CMSX

RX

GXYFLST

FST

CMX

CMRX

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1 2

3

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9 10

11

13

14

12

1, 3

2

4

5

6

7

8

9
10

11

13

14

12

1, 3

2

4

5 6

7

8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5

6

7

2, 8

9 10

11

13

14

12

1, 3

4

5
7

2, 6, 8

9, 10

11

13

14

12

1, 3

4, 5

7

2, 6, 8

9, 10, 11 13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

X
Y G

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

RY

CS

R

GRCMRS R

X

Y

G

1, 3

4

5

7

2, 6, 8
9, 10

11

13

14

12

AST

FLST

FX

ST

F

BFLS

BDF

BF

FLS

GNXY

AS JT1,2,3,4,5ACS

CS

GRYCMRSY RY

X

GY

1, 3

4

5

7

2, 6, 8
9, 10, 11

13

14

12

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Farming

Calving: C2

Food Locale

Meat

Milk

Calves

Calving: C2

Food Locale

Meat

Milk

Calves

Milk: C1

Food Locale

Meat Milk

Milk: C1

Food Locale

Meat Milk

Profit

Food Locale

A S

T L B

F

X D

A S

C M

R

Y G

A S

N (c)

Figure 4.12: (a) Sample OOBN Class: C (no duplicate node names), (b) Flattened BN of OOBN class C
(c) HUGIN junction tree of flattened BN.

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 131

Hugin JT. Overall, the JTs are very different, with the SII compilation JT tending to have larger

cliques; this feature is further discussed in the following subsection.

4.3.3 Advantages of the proposed compilation approach

In brief, the prime advantages of the compilation technique are as follows:

1. No flattening is required for an iOOBN/OOBN class, no matter how deep the level of

embedding.

2. It can reuse the compilation outcome, i.e., JTs, produced previously for a same (unedited)

BN or OOBN/iOOBN class.

3. The technique allows sharing of partial compilation outcome of an OOBN/iOOBN class

through reuse of the JTs of embedded objects.

4. The compilation outcome of a parent iOOBN class can be used/reused/shared to create

JTs of its child classes.

5. Any modification in a compiled class, i.e., a class having a JT created, does not require

recreating the JT from scratch. Only newly added nodes and edges can be added in a

form of a small JT added to the previous JT. Note that the current formulation of the

algorithm has no direct way of dealing with incrementally adjusting the JT in case of

deletion of nodes and edges.

6. No complex and time-consuming operations required, no matter whether a fresh JT is

created or an existing JT is adjusted.

4.3.4 Efficiency

The efficiency of the proposed compilation technique can be evaluated from two perspectives:

it reduces JT compilation computation time, and makes the resultant JT more efficient for sub-

sequent inference.

4.3.4.1 JT construction complexity

SII compilation allows reusing the JT of its superclass if it exists, and class inheritance is used

where deriving a subclass from a another class (e.g., a superclass) does not involve the removal

of any of the superclass nodes or edges. It also allows the reuse of, if there exist, previously

compiled JTs from embedded objects. In the base case of the recursion of the algorithm, new

§4.3 Shareable Inheritable Incremental Compilation (SIIC) Algorithm 132

JTs are compiled on an ordinary BN using any JT compilation method. However, it is not pos-

sible to give performance guarantees as to the reduction of compilation computation because

that depends on the specific structure of the class being compiled and the structures of any

embedded objects. Naturally, in an extreme case, if there are no superclasses or embedded

classes (i.e., if it is not an iOOBN), SII compilation incurs computation overheads without any

reduction in compilation/computation time. An empirical investigation (see Section 4.5) is

performed of the computational savings that can be achieved in practice, over a range of real

and synthetic OOBNs.

The widely used traditional flattening approach always required starting from scratch and

does not allow reuse of existing outcomes. Its primary computation involves flattening of

the OOBN as well as the standard triangulation and JT construction costs. Though flattening

is a linear-time operation, with hierarchies of embedded classes, it may introduce significant

complexities to the computation [26]. The JT construction cost is polynomial, according to the

number of cliques in the clique graph, incurring the same cost as Prim’s Minimum Spanning

Tree construction. Minimal triangulation is an NP-Hard problem because such heuristic-based

suboptimal triangulation requires polynomial-time depending on the number of variables in

the BN.

MST

CMT

MT

FXBFS

FS

FBDF

ST

FLST

R

GNY

GRY

BF

GY

ACT CT CMRCM

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Figure 4.13: Example of the limitation of Incremental Compilation (InC).

As described in Section 4.2.1, the incremental compilation (InC) approach allows reusing

existing compiled structures. However, it still retriangulates a portion of the existing structure

as well as incurring extra computational and storage burdens for the MPSD structure main-

tained in parallel with the JT. It has also been observed that it may encounter scenarios where

the whole network structure, or a large portion of the structure, needs to be re-triangulated and

that this leads to similar redundant computational steps as the traditional flattening based ap-

proach. For example, suppose InC is being used to add an edge X → N to the network shown

in Figure 4.13. Figure 4.13 also contains the JT for the initial network with the affected and

§4.4 Complexity Analysis 133

marked JT segment due to the addition of the edge. The incremental compilation approach

affects eight of the ten cliques of the JT, which means that almost the whole network needs to

be re-triangulated and the modified portion needs to be joined, in order to obtain the resultant

structure.

4.3.4.2 The resultant JT

The structure of the resultant JT has implications for the subsequent inference computation

time. A metric to roughly measure this time based on a message passing inference algorithm

is the so-called JT cost [212] [1, p 74]:

JTcost = ∑
Ci∈{C1,...,Cn}

⎛
⎝
Ki ∏

X∈Ci

∣ΩX ∣
⎞
⎠

where C1, ...,Cn represent the cliques in the JT,Ki denotes the sum of the number of parent

and child cliques of Ci in JT (reflecting the Arity of the JT), and ΩX is the state-space of node

X in clique Ci.

The JT cost, therefore, depends on the structure of the JT, as well as the size of the state

spaces of the nodes of the OOBN class. For the example OOBN C, if all the nodes are bi-

nary, the cost of the JT produced by Hugin’s traditional flattening JT-based approach (shown

in Figure 4.12c) is 8096. In comparison, the cost of the JT produced by SII compilation prethin-

ning (Figure 4.11a) is 13312, which after thinning (Figure 4.11b) reduces to 5376 (significantly

smaller than the Hugin-generated JT).

One reason behind this observed efficiency, at least in this example, is that the JT produced

by SII compilation in this case, is a binary JT (a JT with no clique node with more than three

connections). In [213, 214] Shenoy et al. proved that a binary JT is more efficient than a non-

binary JT. However, any theoretical result about the arity of the resultant JT has not yet been

established. This remains an area for further research.

4.4 Complexity Analysis

To compile an OOBN/iOOBN classC = < N,E,Π,O >, Hugin flattens the class into an ordinary

BN.

4.4.1 Hugin JT construction Complexity analysis

The JT construction includes moralization, triangulation, and then construction of JT from

clique graphs.

§4.4 Complexity Analysis 134

Moralization is a polynomial-time operation which depends on the number of nodes (vari-

ables); constructing JT is also polynomial according to the number of cliques. An underlying

cost of identifying cliques to construct the clique graph is also polynomial to the number of

variables. The most significant and crucial operation is the triangulation which has a subopti-

mal solution of polynomial-time. The optimum solution is known to be NP-complete.

The cost involved in the JT construction algorithm used by Hugin is as follows:

1. Moralization: O(∣V ∣ + ∣E∣)

2. Triangulation: O(∣V ∣2)

3. Identifying cliques: O(3∣V ∣/3)

4. Clique graph construction: O(q2)

5. JT construction: O(q2logq)

where q is the number of cliques in JT.

If class C is compiled using the traditional approach assuming each object in C has L lev-

els of recursive embedded objects in it connected through r number of referential edges, the

flattening cost is O(p×(r× e)L). Here p = ∣O∣ is the number of objects in C, and e = ∣E∣ − r is the

number of causal edges going out from the input nodes those connected with external nodes

by the referential edges.

4.4.2 SIIC JT construction complexity analysis

The proposed SIIC considers that the nodes in class C are clustered/grouped into external

embedded nodes (i.e., N), and the nodes embedded in the other classes are named as "foreign"

classes in the proposed approach: i.e., those that instantiate various embedded objects in O.

For p = ∣O∣ number of embedded objects in C, there are p + 1 number of clusters (assuming the

nodes in N create a single JT instead of a JF, for simplicity).

JTs are constructed for each of the clusters that correspond to each of the embedded objects.

If the instantiating classes of the embedded objects have been previously compiled, the already

constructed JTs are used for those classes. Then a JT is constructed using the embedded nodes

N. Finally, the JTs are joined to produce the JT of class C.

Assuming each cluster of nodes pi has a JT with qi number of cliques, then the SIIC JT

construction cost involves the following components:

1. Preprocessing: (Adding pseudo-referential links) O(
p

∑
i=1

∣Nout∣), where Nout is the set of

output nodes of Oi.

§4.4 Complexity Analysis 135

2. Partition-based JT construction: O(
p+1
∑
i=1

q2
i logqi)

3. JT joining: To join any two JTs with q1 and q2 number of cliques, Joining cost is O(q2
1 +

q1q2). Therefore, the joining cost of a set of clusters {q1, ..., qp+1}, is O(
j≤p+1
∑

i=1,j=2
q2

i + qiqj)

4. Postprocessing: In order to remove unwanted redundant cliques, the required cost is

O(
p+1
∑
i=1

qi)

4.4.3 JT construction (asymptotic) costs of Hugin compared with SIIC

In order to compare the complexity of both algorithms, a neutral platform is needed because

both have their own scope and limitations.

Assuming class C has only one embedded object which has no embedded object in it, the

DAG associated with the flattened BN of C is G = < V,E >. SIIC assumes V = V1 ⊍ 3V2 and

E = E1 ⊍ 3E2, where V1 is the set of embedded chance nodes in C and V2 is the set of nodes

embedded in the only object of C. This means that there are two clusters from where q1 and q2

number of cliques can be constructed. The following table (Table 4.1) depicts the underlying

step-wise comparison of SIIC and Hugin JT construction algorithms.

Table 4.1: Asymptotic analysis of the algorithms
Steps Hugin JT SIIC

involved Complexity Complexity
Flattening O(p × (r × e)L) = O(E2) ×

where, L = 1, ∣O∣ = 1

Preprocessing × O(
p

∑
i=1

∣Nout∣) = O(∣V2∣)

Moralization O(V +E) O(V1 +E1) +O(V2 +E2) = O(V +E)
Triangulation O(V 2) O(V 2

1 + V 2
2)

Identifying cliques O(3V /3) O(3V1/3)
Clique Graph O(q2) O(q2

1)
JT Construction O(q2logq) O(q2

1logq1 + q2
2logq2 + q2

1 + q1q2 + q1 + q2)
= O(q2logq), [where q1 = q2 = q]

For a class with only a single and simple (no recursive embedding) object, SIIC is supe-

rior to Hugin. In real-life modelling, classes that contain multiple objects and multiple levels

of embedding are generally more complex. The embedding makes flattening, triangulation,

clique identifying, clique graph-building and JT construction much more expensive.

3n sets A1, A2, . . . An are mutually disjoint if Ai ∩Aj = ∅ for all i, j where 1 ≤ i, j ≤ n and i ≠ j and denoted as
A1 ⊍A2 ⊍ ⋅ ⋅ ⋅ ⊍An

§4.5 The Experimental Settings 136

4.5 The Experimental Settings

To analyse and compare the performance of the proposed incremental algorithm, Hugin (a

widely used commercial software for OOBN), has been used. The proposed approach has

two versions, SIIC and SIIC# (where SIIC reuses the existing JTs of embedded objects and

superclasses if there are any, rather than constructing them from scratch). The compilation time

of professionally developed Hugin and the proposed SIIC are computed with a PC (Intel(R)

Core(TM) i5-8259U CPU, 8GB RAM). The analysis was performed on a synthetic repository of

OOBN classes. The approach for generating OOBNs is outlined in Algorithm 4.5 below.

ALGORITHM 4.5 (GENERATING A RANDOM OOBN)

Call : generateRandomOOBN(NOC, NON, NOP, NOS)→ Cmain

Input: NOC: Number of instantiating additional classes,

NON : Number of nodes per class,

NOO: Number of objects per class instantiating class,

NOP : Number of maximum parents per node,

NOS: Number of States per node

Output: Cmain: An OOBN

1 begin

2 LISTobj ← ∅
3 for i : 1 to NOC do

4 bn ← GenerateRandomBN(NON , NOP , NOS) // using the algorithm of [215]

5 C ′ ← ConvertBNToOOBN(bn) // Using the algorithm 5.3 of Chapter 5

6 for j : 1 to NOO do

7 LISTobj ← LISTobj ⋃ C ′

8 BNmain ← GenerateRandomBN(NON , NOP , NOS) //using the algorithm of [215]

9 C ← ConvertBNToOOBN(BNmain) // Using the algorithm 5.3 of Chapter 5

10 Cmain ← GenerateMainOOBN(C, LISTobj)

11 return Cmain

4.5.1 Complexity measures

In [216], Nicholson et al. proposed an equation of computing the complexity of BNs as follows.

comp(BN) = ∑
n∈N

(∣Ωn∣ − 1)
⎛
⎝ ∏

pa∈par(n)
∣Ωpa∣

⎞
⎠

where,

§4.5 The Experimental Settings 137

• N is the set of nodes in BN

• Ωn is the set of parameters for a node n

• par(n) is the set of parent nodes of the node n

The above-mentioned "Nicholson" measure is a noncontroversial measure of estimating the

complexity required to calculate the posterior in a BN. This measure represents the number

of parameters or the size of the CPTs of a BN model to perform inference in it. The above

complexity measure is generalized for OOBNs. For an OOBN class C, the complexity-deriving

equation can be defined as follows.

comp(C) =
Oi=CI

j

∑
Oi∈O

comp(Cj) + ∑
n∈N

(∣Ωn∣ − 1)
⎛
⎝ ∏

pa∈par(n)
∣Ωpa∣

⎞
⎠

where,

• N is the set of nodes in C

• O is the set of objects in C

• Oi = CI
j means Oi is an object instantiated by class Cj ; in the other words, Oi is a replica

of the class Cj

• Ωn is the set of parameters for a node n

• par(n) is the set of parent nodes of the node n

4.5.2 Parameters

The performance of the proposed algorithm was compared over a range of different OOBNs

that were generated using the parameter values given in Table 4.2.

The parameters are varied to some extent so as to make the OOBNs realistic, by choosing

parameter values of small, medium and large. In order to justify this point, the larger OOBNs

were chosen big enough that Hugin would fail to compile in some cases, leading to the Java

run-time error "Memory limit exceeded". As an example, a main class comprised 50 nodes,

where each node had five states, an average of five parents, and into which three additional

classes were instantiated three times (that means nine instances in total). Each of these classes

had the same configuration as the main class.

Using the parameter and their values (as shown in Table 4.2, columns 1 and 2), 1456 (7×4×
4+7×4×4×3×4) different parameter configurations are generated and for each configuration

five OOBN classes were generated to perform a 5-fold analysis, thus constituting in total 1456

§4.5 The Experimental Settings 138

Table 4.2: Parameters and terms used in the experimentation
Parameters Terms Full form Ranges (Values)

Num. of Nodes NON
Number of Nodes per
class (main and foreign)

5, 10, 15, 20, 25, 30, 50

Num. of States NOS
Number of States per
Node in a class

2, 3, 4, 5

Num. of Parents NOP
Max. Number of Parents
per Node in a class

2, 3, 4, 5

Num. of Foreign Classes NOC
Number of (foreign) classes
used for instantiating objects

0, 1, 2, 3

Num. of Objects NOO
Number of Objects instantiated
from each foreign class

1, 2, 3, 4

Num. of Parents (Average) NOPAvg
Average Number of Parents
per node in a class

JT Exists?
If the JTs of the classes preexist
in the storage for reuse instead
of building the JTs

Yes (SIIC#), No (SIIC)

Num. of Folds per Class
How many OOBN classes are
built for each configuration

5

Run Repeats per Class
How many times each algorithm
is run on an OOBN class

4

× 5 = 7280 OOBNs. During the experimentation, an average of four runs for each algorithm

was performed so as to reduce the fluctuation of the run time differences. Along with the

run-time of the algorithms, the complexity of the flattened BN is computed (equivalent to

the OOBN complexity presented in the equation of Section 4.5.1), Cost of JTs (as proposed by

Kanazawa [212]) produced by the Hugin and SIIC (SIIC#) algorithm.

4.5.3 Generating synthetic (random) OOBNs

In order to run the experiments, random OOBNs were generated. Algorithm 4.5 represents the

adopted approach for generating the OOBNs. The approach is also illustrated in Figure 4.14

as a flowchart that uses two modules (depicted in figures 4.16 and 4.15). It takes the following

parameters, namely (i) configuration of an OOBN and (ii) number of folds (number of ran-

domly generated OOBNs with the same configuration), as input. Configuration refers to the

number of nodes per class, the maximum number of parents per node, the number of states

per node, the number of instantiated objects per foreign class (classes to instantiate embedded

objects in the main OOBN class referred to as "Foreign class" in this chapter) and the number

of foreign OOBN classes. Using the algorithm proposed in [215], an ordinary BN is generated.

The BN is converted to an OOBN using Algorithm 5.3 proposed in Chapter 5. This OOBN will

be used as the basic skeleton of the intended OOBN named as "main.oobn". Then for each of

the additional classes, one ordinary BN is generated using the same algorithm given in [215].

The BNs are converted to OOBNs using Algorithm 5.3. The OOBNs are copied "number of

§4.5 The Experimental Settings 139

objects per instantiating class" times to create objects as per the specification.

To keep things simple, in the current implementation of the generation of synthetic (ran-

dom) OOBNs (Algorithm 4.5), the level of embedding was kept to 1; that means, there is no

multi-level embedding of objects in an OOBN. Regardless, the next step is to connect the

"main.oobn" class nodes to the OOBNs representing objects to be encapsulated in the main

OOBN class (shown in Algorithm 4.6). In order to make the connections, the nodes in the main

class are partitioned into "input partition" (potential nodes to be connected with input nodes

of the objects) and "output partition" (potential nodes to be added to an incoming causal edge

from the output nodes of the objects). The partitioning procedure is outlined in Algorithm 4.7.

The partition is done carefully to avoid the potential threat of adding cycles in the OOBNs.

The nodes of the main class are sorted in topological order, and a specific section of the sorted

nodes is identified as the input partition and the remaining section as the output partition. The

ratio of the number of input nodes of an object to the total number of nodes in the main class

is taken into consideration to make the partitions even.

Generate
Random
OOBN

Generate
Random BNs

Hugin

SIIC

SIIC#

Li
st

of

B

N
s

JT Cost

Hugin
Time

JT Cost

OOBN
Complexity

SIIC
Time

SIIC#
Time

Num of
foreign

class

Num of Obj
per foreign

class

Num of
Node per

class

Num of
max parent

of nodes

Num of
state per

node

An
OOBN
Class

Figure 4.14: Schematic diagram of the experimental design

A node is selected from the input partition randomly for each of the input nodes of the

objects, connecting them via a referential edge. Then a node from the output partition is ran-

domly selected that follows the configuration of the OOBN given in the specification, so that

the maximum number of parents holds. Then a causal edge is added from one of the output

nodes of the objects to the selected output partition node. Adding such edges is done for each

of the output nodes of the object. In the worst case scenario, if no such output partition node is

left, in order to keep the creation of the OOBN simple, the constraint of the maximum number

of parents per node could be relaxed, and the output node could be added as a node hav-

ing a minimum number of parents. The output node could be left with no connections, and

§4.5 The Experimental Settings 140

Li
st

o

f
B

N
s

Num of foreign
class

Num of Obj per
foreign class

Num of Node
per class

Num of max
parent of nodes

Num of state per
node

Generate Random BNs

NOC

NON

NOO

NOS

NOP

Start

Get Input :
NOC, NON, NOO, NOP, NOS

GenerateRandomBN
(NON, NOP, NOS)

CountClass =
CountClass + 1

CountClass = 0

CountClass <
NOC+1?

Store the BN in BN List

End

Yes

No

Return the list of BNs

Figure 4.15: Flowchart to generate a synthetic (random) BN

Generate Random OOBNs

Repl = Replicate
(OOBN)

CntObjPerClass = 0

Store Repl in Obj List

CountObject
PerClass <

NOO?

CntObjPerClass =
CntObjPerClass + 1

Mark 1st OOBN as
Main OOBN

index = 1

OOBN = get index-th
OOBN from the list

index = index + 1
Index <
NOC+1?

Start

End

Yes

No

Yes

No

Li
st

o

f
B

N
s

Start

Get Input : List of BNs

b = Extract one of the
BNs

Count = 0

Count <
NOC+1?

End

Yes

No

Find nodes having
no parent in b and
mark them input

nodes

Find nodes having no
child in b and mark
them output nodes

Count = Count + 1

Start

Get Input : Main
OOBN, List of Objects

O = extract an object

Count = 0

Count <
NOC*NOO?

End

Yes

No

Ord = Topologically
order nodes of Main

X = Num Input of O / Num Output
of O * Total Nodes in Main

inputPart = take 1st X nodes from Ord
Outpart = take remaining from Ord

Connect inputs of O with
random nodes from inputPart

Connect outputs of O with
random nodes from OutputPart

Count = Count + 1

Return a list of
OOBNs

Return the list of replica
OOBNs and the main OOBN Return the

mainOOBN

An
OOBN
Class

Converting BNs to OOBNs

Making list of Objects
Constructing the OOBN

Figure 4.16: Flowchart to generate a synthetic (random) OOBN class

that would still produce a valid OOBN. Alternatively, the MCMC approach could be used to

ease the constraints by repartitioning the nodes. This possibility is left for future work on the

effective generation of OOBNs.

A randomly generated synthetic OOBN following the procedure outlined above is shown

in Figure 4.17.

§4.5 The Experimental Settings 141

Class C2

C8

C1

C9

C2 C3

C5

C10

C6
C7

C4

Class C1

C8

C1

C9

C2 C3

C4

C10

C5

C6

C7

Main iOOBN class C

C8

C1

C9

C2 C3

C4

C10

C5

C6 C7

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C1 obj: O1,1

C8

C1

C9

C2

C10

Class C1 obj: O1,1

C8

C1

C9

C2

C10

Main iOOBN class C

C8

C1

C9

C2 C3

C4

C10

C5

C6 C7

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C1 obj: O1,1

C8

C1

C9

C2

C10

(a)

Class C2

C8

C1

C9

C2 C3

C5

C10

C6
C7

C4

Class C1

C8

C1

C9

C2 C3

C4

C10

C5

C6

C7

Main iOOBN class C

C8

C1

C9

C2 C3

C4

C10

C5

C6 C7

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C1 obj: O1,1

C8

C1

C9

C2

C10

Class C1 obj: O1,1

C8

C1

C9

C2

C10

Main iOOBN class C

C8

C1

C9

C2 C3

C4

C10

C5

C6 C7

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C1 obj: O1,1

C8

C1

C9

C2

C10

(b)

Class C2

C8

C1

C9

C2 C3

C5

C10

C6
C7

C4

Class C1

C8

C1

C9

C2 C3

C4

C10

C5

C6

C7

Main iOOBN class C

C8

C1

C9

C2 C3

C4

C10

C5

C6 C7

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C1 obj: O1,1

C8

C1

C9

C2

C10

Class C1 obj: O1,1

C8

C1

C9

C2

C10

Main iOOBN class C

C8

C1

C9

C2 C3

C4

C10

C5

C6 C7

Class C2 obj: O2,1

C8

C1

C9

C2 C3

C10

C4

Class C1 obj: O1,1

C8

C1

C9

C2

C10

(c)

Figure 4.17: A sample OOBN with NON = 10, NOC = 2, NOO = 1, NOP = 3: (a–b) two foreign classes
C1 and C2 (no embedded objects), and (c) the "main.oobn" class C having embedded objects

ALGORITHM 4.6 (GENERATE MAIN OOBN CLASS)

Call : GenerateMainOOBN(C, LISTobj) → Cmain

Input: C: An OOBN class,

LISTobj : A list of objects

Output: Cmain: An OOBN class

1 begin

2 foreach O ∈ LISTobj do

3 < N′I ,N′O > ← partitionOOBNNodes(C, O)

4 foreach input : Nin ∈ O do

5 ni ← RandomlySelectANode(N′I)

6 AddRefEdge(C, ni, input)

7 foreach output : Nout ∈ O do

8 no ← RandomlySelectANodeWithConstraint(N′O)

9 AddACausalEdge(C, output, no) // output→ no

10 return C

ALGORITHM 4.7 (PARTITIONING OOBN NODES)

Call : partitionOOBNNodes(C, O) → < N′I ,N′O >
Input: C: An OOBN class,

O: The object to be connected

Output: < N′I ,N′O >: a pair of node partitions for potential causal and referential edges

1 begin

2 N ← topologicalOrdering(N ∈ C)

3 Nobj ← GetAllNodes(O)

4 Nin ← GetAllInputNodes(O)

5 x← ∣Nin∣
∣Nobj ∣ × ∣N ∣

6 N′I ← selectFirstParition(N , x) //select 1st x items from N

7 N′O ← Nobj ∖N′I
8 return < N′I ,N′O >

§4.5 The Experimental Settings 142

4.5.4 Producing outcomes (JT, construction time and cost) for analysis

Algorithm 4.8 outlines a high-level view of the approach followed to achieve the experimental

outcomes of the compilation algorithms. In short, an OOBN class is randomly chosen, Hugin

compilation is then applied and provided Hugin can successfully compile the class, it stores

three values: compilation time, produced JT-cost, and the complexity of the flattened BN of

the class.

ALGORITHM 4.8 (PRODUCING OUTPUTS FROM THE ALGORITHMS)

Call : produceCompilationOutcomes(Algos, LISTOOBN) →
< CostJTH

,CostJTS
,Complexity,RTHug,RTSIIC ,RTSIIC# >

Input: Algos: A list of compilation algorithms,

LISTOOBN : A list of OOBNs

Output: CostJTH ,CostJTS
: Cost of JTs

Complexity: Complexities of the OOBNs

< RTHug,RTSIIC ,RTSIIC# >: Running time list of 3-tuple (Hugin, SIIC, SIIC#)

1 begin

2 < RTHug,CostJTH
> ← ∅

3 < RTSIIC ,CostJTS
,Complexity > ← ∅

4 RTSIIC# ← ∅
5 while LISTOOBN ≠ ∅ do

6 C ← extractAnOOBNRandomly(OOBN)
7 < RTHug,CostJTH

> ← < RTHug,CostJTH
> ⋃ HuginCompilation(C)

8 < RTSIIC ,CostJTS
,Complexity > ←< RTSIIC ,CostJTS

,Complexity > ⋃
SIICompilation(C)

9 RTSIIC# ← RTSIIC# ⋃ SIICompilationJTExist(C)

10 return < CostJTH
,CostJTS

,ComplexityBN ,RTHug,RTSIIC ,RTSIIC# >

Irrespective of the success of the Hugin compilation, SIIC and SIIC# are run on the same

OOBN class. SIIC returns the compilation time and the produced JT-cost. SIIC# looks for

existing JTs for each of the encapsulated objects, hence producing the same JT as SIIC. Hence,

only the compilation time of SIIC# is recorded.

As the OOBNs are generated randomly with very high and low values of the parameters,

the complexity, running time and JT costs of the OOBNs reside within a extremely wide range

between the very high and very low values. In the experimentation, recorded in the following

sections, logarithmic scale is used to capture the values that fall within a reasonable range.

Table 4.3 shows, a summary of the overall number of cases considered in the experimen-

tation. In order to build a fairer performance comparison platform, the table depicts how the

experimentation outcome was cleaned.

§4.5 The Experimental Settings 143

Table 4.3: Summary of the cases considered in the experimentation.
#Cases

Input 29120
Cases where all algorithms run 11976

Successful Folds:
Count #Cases

1 930
2 966
3 986
4 1539

Total (1x930 + 2 x 966 + 3 x 986 + 4 x 1539) 11976
After removing cases where Folds = 1 11046

After removing Hugin outlier (i.e., Hugin log(running time) >11) 11043
After removing SIIC# outlier (i.e., SIIC# log(running time) >8) 11043

Table 4.4: List of Units of Measurement (UOMs) for various measures used in the experimentation to
evaluate the performance of the algorithms.

Evaluation Measures Unit of Measurement (UOM) Explanation (if UOM = NA)
Running/Compile time Milli second (ms)
Running time difference Milli second (ms)
JT cost NA A number found by the Equation in Section 4.3.4.2
JT Construction cost NA Asymptotic notation of Complexity analysis of Section 4.4
BN Complexity NA A number found by applying the first Equation in Section 4.5.1
OOBN Complexity NA A number as per the second Equation in Section 4.5.1

To report and demonstrate the experimental analysis, mostly box-plots and bar-charts (for

distribution) were used. Box plots are ideal to compare distributions because the centre of the

distribution (median), spread (quarters) and overall range of the distribution are immediately

apparent. This is a way of summarising a set of interval-scaled data and is often used in

explanatory data analysis [217].

The data points (dependant variable values) found in the empirical analyses were scattered

over a wide range of values. The reason for this scattering (variation) relates to is various

parameters considered in generating the OOBNs, the mutual effects of the parameters, their

overlapping behaviour, and the wide range of the values of independent variables. To deal

with such unusual behaviour of the values, some of the outliers were removed by filtering

a particular range of values. Then, plots were made from the filtered data. Furthermore, to

neutralise the effects of any remaining scattered values, median values were considered (with

the use of box-plots) rather than mean values.

4.5.5 Complexity of generated OOBNs

Figure 4.18 shows the distribution of the complexity (the generalized complexity of OOBNs de-

scribed in Section 4.5.1) of the synthetic OOBNs using the approach described in Section 4.5.3.

§4.5 The Experimental Settings 144

In Figure 4.18a, the overall distribution of complexities of all the generated OOBNs are shown.

Then figures 4.18b to 4.18f show the distributions of complexities in terms of varying NOC,

NON, NOO, NOP, and NOS, respectively. It can be inferred that OOBN complexity increases

if any value of NOC, NON, NOP, or NOS increases. The only exception is NON, where the

complexity increases for increasing values of NON only up to 15. After 15 the complexity

median exhibits a fall. The reason is that for higher NON, all the algorithms, namely Hugin,

SIIC and SIIC#, fail to produce output and the current implementation of the algorithms fails

to calculate the complexity of OOBNs if the algorithm fail to generate any JT.

The table in Figure 4.18g summarizes the analyses performed using histograms in Fig-

ure 4.18a.

§4.5 The Experimental Settings 145

OOBN complexity distribution

Complexity (log−scale)

F
re

qu
en

cy

4 6 8 10 12

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

(a)

●●

●●●
●●●●

●●
●●

●

●●●

●●●●
●●●●
●●●●

●

●●●

●●●

●●

0 1 2 3

4
6

8
10

12

NOC

lo
g(

C
om

pl
ex

ity
)

(b)

●●
●
●●

●●●

●●●●●●●●

●●●
●●●

●●
●●●●●●
●●●

●●

●●●●

●●●●

●●●●●●●●●●●●●

●●●●

●●●●

5 10 15 20 25 30 50

4
6

8
10

12

NON

lo
g(

C
om

pl
ex

ity
)

(c)

●●

●●
●●●●●●●

●●●●

●

●●●

●●●

●●●●●●●●●

●●
●●
●●

0 1 2 3 4

4
6

8
10

12

NOO

lo
g(

C
om

pl
ex

ity
)

(d)

●●●●●●●●
●
●
●
●●●
●●
●●●●

●●●●
●●●
●
●●●●●●●●

●

●●
●●

●

●●●

●
●
●●

●

●
●

●

●●●●●●●●●

●
●

●

●
●●
●●
●
●●
●
●●

●●●●

●●●●

●●●●●●

●●●

●●

●●
●

●●

●●

2 3 4 5

4
6

8
10

12

NOP

lo
g(

C
om

pl
ex

ity
)

(e)

●●
●
●
●●
●●●●●●
●
●●
●●
●
●●

●
●●●●●
●●●●
●
●●
●●
●
●●●
●
●●●
●●
●●
●●●
●●●
●
●●●●●●

●●

●

●●
●●

2 3 4 5

4
6

8
10

12

NOS

lo
g(

C
om

pl
ex

ity
)

(f)
Summary Min 1st Qu Median Mean 3rd Qu Max

Complexity 2.944 6.308 7.371 7.425 8.484 13.247

(g) Summary of the overall complexity distribution of the generated OOBNs

Figure 4.18: Complexity distribution of the synthetic OOBNs: (a) overall, and w.r.t. (b) NOC, (c) NON,
(d) NOO, (e) NOP, and (f) NOS. Complexity increases with the increase in NOC, NOO, NOP and NOS
(except for NON).

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 146

4.6 Performance of Hugin, SIIC and SIIC# Algorithms

This section outlines the experimental comparison of the existing (Hugin JT construction) and

proposed compilation (SIIC and SIIC#) algorithms. Note that SIIC# is a special SIIC that re-

trieves JTs rather than constructing JTs for objects embedded in an OOBN class and JTs for a

superclass if there are any. The comparison of the performance of the algorithms is performed

based on two main factors, namely time required to create JTs (i.e., running time) and the

cost [212] of the produced JTs.

4.6.1 Time required to compile OOBNs

Figures 4.19a, 4.19b and 4.19c show the distributions of the running time of Hugin, SIIC and

SIIC# algorithms. Running times (logarithmic scale) range between 3.5 and 10 for Hugin with

the maximum frequency between 4 and 5. For SIIC, the frequency range is from 3 to 10, with

higher frequencies observed between 4 and 6. For SIIC#, the running time frequency is from 0

to 6, and high frequency is between 3 and 4.

In figures 4.19d, 4.19e and 4.19f, the running times of Hugin, SIIC and SIIC#, respectively,

are plotted. The median of running times of Hugin and SIIC are approximately 5.0, where

SIIC#’s running time median is between 3 and 4. Note that only the cases where all three

algorithms ran successfully are considered.

Figures 4.20 to 4.21 show the performance of Hugin, SIIC and SIIC# algorithms in terms of

running time with varying values of the parameters NOC, NON, and NOO (See Appendix C

for the analyses based on NOP and NOS shown in Figure C.2).

Figures 4.20a, 4.20b and 4.20c represent the distribution of Hugin, SIIC and SIIC# in terms

of running time for increasing values of NOC. All three algorithms’ running time increases

with the increase in NOC. The median of running time (in log scale) for Hugin and SIIC ranges

from 4 to 5 whereas for SIIC# the running time median ranges between 2.75 and 3.5.

Figures 4.20d, 4.20e and 4.20f demonstrate the performance plot of the three algorithms for

using the running times with varying NON-values. The running time of the three algorithms

increases with the increase in NON except for SIIC and SIIC# when NON = 50. The increasing

tendency is not evident there. This discrepancy is observed because for larger values of NON,

the cases where Hugin successfully generated JTs, Hugin required a huge amount of time and

hence there was a sharp increase in Hugin’s distribution. However, for the very few cases

where all three algorithms worked with high NON value, SIIC and SIIC# did not require such

a long time. Hence, the median value experienced a downfall for NON=50. The median of

Hugin and SIIC running time is between 4 and 6, whereas for SIIC# the median is between

2.75 and 4.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 147

H
ug

in
 r

un
ni

ng
 ti

m
e

di
st

rib
ut

io
n

H
ug

in
 r

un
ni

ng
 ti

m
e

(lo
g−

sc
al

e)

Frequency

4
6

8
10

010002000300040005000

(a
)

S
IIC

 r
un

ni
ng

 ti
m

e
di

st
rib

ut
io

n

S
IIC

 r
un

ni
ng

 ti
m

e
(lo

g−
sc

al
e)

Frequency

3
4

5
6

7
8

9
10

01000200030004000

(b
)

S
IIC

ru

nn
in

g
tim

e
di

st
rib

ut
io

n

S
IIC

ru

nn
in

g
tim

e
(lo

g−
sc

al
e)

Frequency

0
2

4
6

01000200030004000

(c
)

● ●● ● ●● ●● ●● ● ● ● ● ●●●● ● ●●●●● ●●●● ●● ●● ●●●● ●● ● ●● ● ●●●●●● ●● ●● ●● ●●● ●● ●●● ●●●●● ● ●●● ● ●● ●●●● ● ●● ●●● ● ●● ●● ● ●●● ● ● ●●●●● ●●●●● ● ● ●● ●●● ● ● ●●●● ●●● ●●● ● ● ● ● ●●● ● ●●● ●●●●● ● ● ●●● ●● ●●●● ●●●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ●● ● ●● ● ●●● ● ●●● ●● ●●● ●● ● ● ●●●● ●● ● ● ● ●● ●●● ●● ● ●● ●● ●● ●●● ● ● ● ●●●● ●● ●●●● ●● ●● ●● ●●●● ● ●●●●● ●● ●●● ●●● ● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ●●●●● ●● ●● ●● ● ● ●●● ●● ●● ●●● ●●● ●●● ●● ● ●●●●●● ●● ●●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●● ● ●●● ● ● ●● ●●●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ● ●●●●● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ●● ● ●●●● ●●● ●● ●●● ●●● ●●●● ● ● ●● ●●● ● ●● ● ● ● ●●● ● ● ● ● ●● ● ●● ●●● ●●● ● ●●●● ●● ●● ●● ●● ● ● ●●●● ● ●●●●● ● ●● ●● ● ●● ●● ● ●● ● ●●● ● ●●●● ●●● ●● ● ●●●● ●● ●● ●● ●● ● ●●● ● ●●●● ● ●● ●● ●● ● ●● ●●●● ●●●● ●● ● ● ●●● ● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ● ●●● ●●● ● ●●●●● ●●● ● ●●●● ●●● ● ● ● ● ●●● ● ● ●●● ● ●●● ● ●● ● ●● ● ●● ● ●● ● ●●● ● ●●● ● ●● ●●●●● ●●● ●●● ●●● ●● ●● ●●●● ● ●● ● ●● ● ● ●●● ● ●● ●● ●●● ●●●● ● ●● ●● ● ●● ●● ●●● ●●●● ●● ●●●● ●● ● ●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●●● ●● ●●● ● ●● ●●●● ●● ●●● ●●● ● ● ●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ● ●● ●●● ● ● ●● ● ●●●●●●● ●● ●● ●● ● ●● ● ● ●● ● ●● ● ●● ●● ● ●●● ●●●● ●● ●● ● ●●● ●● ●● ● ● ●● ● ●● ● ● ●● ●●●● ● ●●●● ●●● ● ●● ●● ●●● ● ● ● ●●● ● ●●● ●●● ●●●●●● ● ●● ● ● ●●● ●●●● ● ●●●● ●●●● ● ● ●●● ●● ● ● ●● ●● ● ● ●● ● ●● ● ●● ● ●●●● ●●●● ●● ●●●● ● ●●●● ● ●● ●● ●●●● ●● ●●●●● ●●● ●●● ● ● ●● ●●● ●●● ●●● ●● ●●●●●● ●●●● ●●● ● ● ●● ●●● ●● ●● ●●● ●● ●● ● ●●●● ●●● ●● ● ● ●●● ●● ●●● ●●● ● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●●● ●● ● ● ●●● ● ●●●●●● ● ●●● ● ● ● ●● ● ●●●● ● ●● ● ●● ● ●● ●● ●●● ●●●● ●● ●● ●●●●● ●● ●●● ● ●●● ●● ●● ●●● ● ●● ● ●●●● ● ●●● ● ●●● ● ●● ● ● ●●● ●● ● ● ●● ● ●● ●● ● ●● ● ●●● ●● ● ●● ●●●● ●● ● ●● ●●● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ● ● ●●● ●● ●● ● ●●● ● ● ●● ●● ●●● ● ● ●● ●● ●● ●● ●● ● ● ● ● ●● ●● ●● ●● ● ●● ● ● ●● ●● ●● ● ● ●● ●● ● ●●●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ● ● ● ●●● ●● ●● ●● ● ●●●● ●● ● ●●●●● ●● ●●● ●●● ● ●● ● ●● ● ●● ● ●●● ●●●● ●●●●● ●● ●●● ●●● ●● ●●● ●● ● ●● ● ●●●● ● ●● ●● ●●● ● ●●● ● ● ● ●●● ● ●●● ●● ● ● ●●●●● ● ●● ●● ●● ● ●● ● ●●●●● ● ● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●● ● ● ●● ●● ●●●● ● ● ●● ●●●● ● ●● ● ●● ● ●●●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ● ● ●●● ●

45678910

log(Hugin running time)

(d
)

● ●●● ●●●

45678910

log(SIIC running time)

(e
)

●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ● ● ● ●● ●●●● ●●●● ●●●● ●● ● ●●● ● ●● ●●● ● ● ●● ●● ●● ● ●● ●● ●● ●● ● ● ●●●●● ●● ●●●● ●● ●● ●● ● ●● ●● ●● ●● ●●● ●●●●● ●● ●● ●●● ●● ●●● ● ●●●●● ● ●●● ●●●●● ●●● ●● ●● ●● ● ●● ●●●● ● ● ●●● ● ●● ● ●● ● ●●● ● ●● ● ●● ●●● ● ● ●●● ●●● ●●● ●● ●●●● ● ●● ● ●● ● ●●●● ●●● ●● ● ●● ● ●●●●● ●●● ●●● ●●● ●● ●● ● ●●●●● ● ● ●● ●● ●● ● ● ●●● ●●●● ●●● ●● ●●● ●● ● ●●●● ●●● ● ●●●●●●● ● ●● ●●● ●● ●● ●●● ●● ●● ●● ●●●●● ●●● ● ●●● ●● ●● ●●●● ●●

01234567

log(SIIC# running time)

(f
)

Fi
gu

re
4.

19
:R

un
ni

ng
ti

m
e

di
st

ri
bu

ti
on

:(
a)

H
ug

in
,(

b)
SI

IC
,a

nd
(c

)S
II

C
#;

Bo
x-

pl
ot

s:
(d

)H
ug

in
,(

e)
SI

IC
,a

nd
(f

)S
II

C
#.

N
or

m
al

di
st

ri
bu

ti
on

s
ar

e
ob

se
rv

ed
fo

r
al

l
th

re
e

al
go

ri
th

m
s

ru
nn

in
g

ti
m

es
(a

–c
).

Be
tt

er
pe

rf
or

m
an

ce
w

.r.
t.

ru
nn

in
g

ti
m

e
is

ob
se

rv
ed

fo
r

SI
IC

#
(d

–f
).

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 148

● ●● ● ●● ● ●● ● ● ●● ●●●● ● ●●● ● ●● ●● ●●● ●●● ●●● ●●● ●●●● ●● ●●● ● ● ●● ●●● ●● ● ●● ●●● ●●●● ●●● ●● ● ●●● ●●●● ●●● ● ●●●●● ●● ●● ● ●● ●●● ● ●● ●● ●● ● ● ●●● ●●● ●● ●●● ●● ● ●●● ●● ● ●● ●● ●●● ●

●● ●● ●● ● ● ● ● ●●●● ● ●●● ● ●●● ●●● ●● ●● ●● ● ●●●● ●●●●● ● ●● ●● ●●● ●●●●● ●● ● ●● ● ● ●●● ● ●● ●●● ●● ●● ● ●● ● ●●● ● ●● ●● ●● ●●● ●● ●●● ●●● ● ● ● ● ●●● ●● ●●● ●● ●●● ●● ● ●●●● ●●● ● ● ●● ●●● ●● ●●● ●● ●● ● ● ● ●● ●● ●● ●● ● ●● ●● ●● ●●● ● ● ● ●●●● ●● ● ●● ●● ● ● ●●●●● ●● ●●●● ●● ● ● ●●● ● ● ●●●●●● ●● ● ●●● ●●● ●● ● ●● ●●● ●● ● ●● ●● ●●●● ●● ● ●● ●●● ● ●● ●●●● ● ● ● ●● ●●● ●●● ● ●● ● ● ● ●●● ● ● ● ● ●● ● ●● ●●● ●●● ● ●●● ●● ●● ● ●● ● ●●● ●● ●●●●●● ● ●●●● ● ●● ● ●● ● ●●● ● ● ●●●●● ●● ●●● ●● ●● ● ● ●● ● ●●● ●●●● ●●● ● ● ●●●● ●● ● ● ●●● ●● ● ●● ● ●●● ●● ●● ● ●● ●●● ●●● ● ● ●●● ● ●● ●●● ●● ●●● ● ● ●●● ● ● ● ● ●● ● ●●● ●●●● ● ● ● ● ●●● ● ●●● ●●● ●●● ● ● ●● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ● ●● ● ●● ● ●●● ● ●● ●●●● ●●● ● ● ●●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●● ● ●● ●●●● ● ● ●●● ●●● ● ● ● ●● ●● ● ●● ● ● ●● ●● ●● ●● ●● ● ●●● ● ● ●●● ● ●● ●● ●●●●● ●● ● ● ●● ●●● ●●● ● ● ● ● ● ●●● ●● ● ● ● ●● ●● ●● ● ●●● ● ●● ●●● ● ● ●● ● ● ●● ● ●● ● ● ●●● ●●● ● ●●● ● ● ● ●●● ●● ●● ● ●●● ● ●● ●

● ●● ●● ●●● ● ● ●●●● ● ● ●●● ● ● ●● ●● ●●●● ●● ●● ● ●● ● ● ●●● ●● ●● ●● ●●●● ● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●●●● ●● ●● ●● ● ●● ● ● ●● ● ●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ●● ● ● ●●●●● ● ●●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ● ●●●●● ●●● ●●● ● ● ●● ● ● ● ●● ●● ●●● ● ● ●●● ●● ●● ●●● ●● ● ●● ●●● ● ●● ●● ● ●● ● ●●●●●●●● ●● ● ●● ●● ● ●● ● ● ●● ● ●● ●● ●●● ●● ●●●●● ● ●● ● ● ●● ●●● ●● ● ● ●● ●● ● ● ●● ●●● ●●● ●●●● ● ●● ● ●● ●●●● ●● ●● ●● ●● ●●●● ● ●● ●●● ●● ●●● ●● ●●●●● ●● ● ● ●●● ● ● ●●● ● ●●●● ● ● ●● ● ● ●● ● ● ●●●● ●● ●●●●● ●● ● ● ●●● ●●● ● ●● ● ●● ● ●●●● ●● ●● ●●●● ● ●●●●● ●●● ●● ●●● ●●● ● ● ●●● ● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ●●●● ●●● ●●●●● ● ● ●● ● ●● ● ●●● ● ●●● ●●●●● ● ●●

● ● ●●● ●●●● ●●●● ●● ●● ● ● ●● ● ●●● ●● ●●● ●●● ●● ●●● ●●●●● ● ● ●● ●●●● ● ●● ●● ●● ●●●● ●●● ●● ● ●●●●● ● ●● ●● ●● ●● ●● ●● ● ● ●●●● ●●●● ●● ● ● ● ●●●● ●●● ● ● ● ● ●●● ● ● ●●● ● ●●● ●● ● ● ●● ●●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ●●●●● ● ●● ●●●●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●● ● ●●● ●●● ●● ● ●●●● ● ●● ●●●● ●●●● ●●● ● ●● ●● ●●●● ●●●●● ●●●●● ● ● ●● ●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●●● ● ●● ● ●● ●● ● ● ●●● ●● ●●●● ●●● ● ●●● ● ●●●● ● ● ● ●● ●●● ●● ● ●●●●●● ●● ●● ●●● ● ●●● ●● ●● ●

0
1

2
3

45678910

N
O

C

log(Hugin running time)

(a
)

● ●●● ●●●

●●●

●●●

●●●

0
1

2
3

45678910

N
O

C

log(SIIC running time)

(b
)

●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●● ●●●●●●●●●● ●●●●●● ●● ●●● ●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●●●●● ●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●● ●●●●● ●●● ●●●●● ● ● ●● ●●● ●●●● ●●● ●● ●● ●●● ●● ●●●● ● ●●● ●●● ●●● ●● ●●●● ●● ●●●●●● ●●● ●● ●● ●●●●●● ●● ● ●● ●●●●●●●● ●● ●●●●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ●● ● ●● ● ●● ● ●●●●● ●●
● ●●●●●● ●●● ● ●● ●● ●●● ●●●● ●● ●● ●● ● ●● ●● ●● ● ● ●●●● ● ●● ●● ●● ● ●● ●● ●●● ●●●●● ●● ●●● ●● ● ●●●●●● ●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ● ● ●●● ●● ●●●● ● ●● ● ●● ● ●● ●●●● ● ●● ● ●●●●● ●●● ● ●●● ●● ● ●●●● ● ●● ●● ● ●●●●● ●●●● ●●●● ● ●●● ●●●●●● ●● ●●●● ● ●●● ●●

● ●● ● ● ●●● ●● ●●● ●● ●●● ● ●●● ●●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●●

0
1

2
3

01234567

N
O

C

log(SIIC# running time)

(c
)

● ●●●●● ●●●● ●●● ●●●● ● ●●●●● ●● ●● ● ●●

●● ● ●● ●●●● ●●● ● ● ●● ●● ●●●●● ● ●● ●●●● ● ● ●● ●● ●●● ● ● ●●●● ●● ● ●● ● ●● ● ●● ●● ●● ● ● ●●●● ●● ● ●● ●● ●●●●● ●● ● ●●● ●●● ● ●● ● ●●● ● ● ● ●●●●● ●● ●●●● ●● ●● ● ●● ●●● ● ●● ●●● ● ● ●●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ● ●●● ● ●●● ●● ● ●●●● ● ●●●● ●●● ● ●● ●●●● ●● ● ● ●●●●●

●●● ● ●● ●●● ●●● ● ●● ● ●● ● ●●● ●● ● ● ●● ●●●●● ●●● ● ●●● ● ● ●●● ●● ● ●● ●●● ● ●● ●● ● ●●● ● ●● ● ●●● ●●● ● ● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ● ●●● ● ● ●● ●●● ●●● ●●● ●●● ●● ● ● ●● ●● ●● ●●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ● ● ●●

●● ●● ● ● ●● ● ●●●● ●●● ● ●● ● ●●● ●●●●

● ●●●● ●● ●● ●●● ● ●● ●●●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●● ● ● ●●● ●● ●● ● ●● ●

●● ● ● ●●● ●● ●●● ●● ●● ●●● ●● ● ●●●● ● ● ●● ●● ●●●● ● ● ●●●●●● ●● ● ● ●

5
10

15
20

25
30

50

45678910

N
O

N

log(Hugin running time)

(d
)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●

● ●●● ●●●●●●●●●●●●●●●

5
10

15
20

25
30

50

45678910

N
O

N

log(SIIC running time)

(e
)

●●●●●●●●●

●●● ●●

●● ●

●●

●●● ●

● ●●● ● ●● ●●

5
10

15
20

25
30

50

01234567

N
O

N

log(SIIC# running time)

(f
)

Fi
gu

re
4.

20
:

R
un

ni
ng

ti
m

e
w

.r.
t.

N
O

C
:(

a)
H

ug
in

,(
b)

SI
IC

,a
nd

(c
)

SI
IC

#;
R

un
ni

ng
ti

m
e

w
.r.

t.
N

O
N

:(
d)

H
ug

in
,(

e)
SI

IC
,a

nd
(f

)
SI

IC
#.

R
un

ni
ng

ti
m

e
in

cr
ea

se
s

w
it

h
th

e
in

cr
ea

se
in

bo
th

N
O

C
an

d
N

O
N

.F
or

bo
th

N
O

C
an

d
N

O
N

,S
II

C
#

pe
rf

or
m

s
be

tt
er

th
an

SI
IC

an
d

H
ug

in
.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 149

The box-plots in figures 4.21a, 4.21b and 4.21c, respectively, analyses the running time per-

formance of Hugin, SIIC and SIIC# w.r.t. NOO. Though all three algorithms’ running time

increased with the increase in NOO, the impact of varying NOO was clearly visible in SIIC

and SIIC#. Both Hugin and SIIC had the same range of median values, i.e., 4 to 5, but SIIC#

had a considerable gain, with the median being between 2.9 and 4. The reason behind this dif-

ference in the performance of SIIC and SIIC# is that SIIC may involve generating JTs for each

embedded object but SIIC# fetches all JTs of embedded objects from the database. In other

words, the JT of a class is created only once and reused as many times as the number of objects

are there for the same class in SIIC whereas in SIIC# the step of creating the JT, even for the

first time, is not needed. This technique saves the time for flattening and compilation that is

required in Hugin.

This analysis has demonstrated the strength of the SIIC and SIIC# algorithms, i.e., the more

objects, the better the performance of these algorithms is. Hence, in Section 4.6.3, more analy-

ses were performed for OOBN classes with and without embedded objects.

In Appendix C, Figure C.1, another very essential performance investigation of the algo-

rithms is performed: i.e., running time performance of SIIC, SIIC# and Hugin is plotted against

the complexity of the generated OOBNs.

These results are shown in Figure 4.22. It can be inferred from the analyses shown in Fig-

ure 4.22 that SIIC performs better than Hugin, even after only considering the cases where both

Hugin and SIIC failed. In Figure 4.22a, the distribution of the overall running time difference of

Hugin and SIIC is shown. The plot supports the claim mentioned above. For varying values of

different parameters, such as NOC, NON, NOO, NOP, and NOS, the running time difference is

documented in figures 4.22b, 4.22c, 4.22d, 4.22e, and 4.22f, respectively. For NOP, the median

of the difference is almost consistent but not less than 0 which indicates that Hugin requires

more time in most cases than SIIC if the number of parents per node increases. For NOC and

NOO, the difference decreases but does not become lower than 0. That means for more classes

and objects, SIIC’s performance is not improving significantly though its performance is still

better than Hugin. Finally, for NON and NOS, the greater the parameter values, the higher

is the difference between Hugin and SIIC. This is a clear indication that for high NON and

NOS values, SIIC performs way better than Hugin. The following table 4.7 summarises the

outcome of the plotting shown in Figure 4.22. The reason behind such superior performance

in SIIC is that SIIC partitions the whole compilation process and can reuse JTs for embedded

objects if there is more than one objects from the same class. In Hugin, an OOBN with more

objects needs to be flattened and compiled into a large BN (flattened OOBN class).

Table 4.5 summarizes the analysis of the overall distribution of the running time difference

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 150

●●●●

●

●

●
●

●●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●

●
●

●

●

●●●●

●

●●●●●

●●

●

●
●

●●●

●●
●●

●

●

●

●

●

●●

●●
●

●

●●

●●●●

●●●●

●●

●●●

●

●

●

●

●●●

●

●●

●

●●●
●●

●

●●

●●●●

●

●●●

●●●●

●

●
●●

●

●●
●●

●

●●●●

●

●

●●

●

●
●
●

●

●
●●

●

●●●●

●●●●●●
●●
●●●●

●●

●●●

●●●

●●

●●●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●●

●●●

●●●

●
●
●

●

●

●●●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●
●

●●

●●

●●●

●

●●

●
●

●

●●

●

●●●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●●●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●

●●

●
●
●●

●

●●

●
●●
●

●

●●

●●
●

●

●

●●
●
●●

●

●

●

●

●●

●

●

●●

●●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●●

●

●●

●

●●●

●●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●

●

●●

●

●●●

●●

●

●●●

●

●●

●

●
●●
●●
●●

●

●

●●

●

●●

●

●
●

●
●

●

●

●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●●

●●
●●●●

●●

●●
●

●●

●●

●●

●

●

●

●●●

●●●

●●
●

●

●●

●●●

●●

●●●

●

●

●

●

●

●

●●

●●●●

●
●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●●●

●●

●

●●

●●●

●

●●●●

●

●●●

●

●

●

●●

●

●●

●

●●

●●

●●

●●●

●

●

●

●●●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●●

●

●●

●

●●●

●●

●●

●

●●

●

●●

●

●●●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●

●●

●
●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●
●●

●

●●

●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●●

●●

●●●

●

●●●

●
●

●

●

●

●●

●
●●●
●●●●
●●

●●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●●

●●●

●

●

●

●●

●●●●●

●●●

●●
●●
●●
●

●

●●●●●

●●●

●●●

●●
●●●
●

●

●

●

●●●●●●

●

●●

●●

●

●

●●

●●●

●●

●

●

●●

●●●

●
●●

●

●●●●

●

●

●

●

●

●

●
●

●●●●●

●●●

●●●

●
●

●●●

●●

●●●●

●●●

●●●●

●

●●

●●

●
●

●

●●

●

●
●

●

●

●●●

●
●
●
●
●

●●

●●

●●●

●●●

●

●

●

●

●
●

●

●●●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●●

●●●

●●

●

●

●●

●●

●

●

●
●●

●●●

●

●●●●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●
●●
●

●●●

●

●●
●●

●

●

●

●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●●

●

●

●

●

●

●●

●●

●●●

●

●●

●
●●

●

●●

●

●

●●

●●

●

●●

●●●●
●●●

●●●

●

●●

●

●●●

●

●

●●●

●●●
●

●
●

●

●●

●●

●

●●●●●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●●
●
●

●●

●●●●

●

●

●●

●

●

●●●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●

●
●●

●

●

●●●

●●

●●●●●

●

●
●
●●●

●●●
●
●

●

●●

●
●●

●

●

●●

●●●

●

●●●

●●

●●●●

●
●●

●

●●●●●●

0 1 2 3 4

4
5

6
7

8
9

10

NOO

lo
g(

H
ug

in
 r

un
ni

ng
 ti

m
e)

(a)

●●●●

●●●●●●●●●
●●●●
●●●●●●
●●●
●●●
●●●
●●●
●●
●●●●

●●●●●
●
●●●●
●●●●●
●●●●●●●
●
●●
●
●●●
●●●
●●
●●●●
●●●●●●●●●
●

●●●●●
●●●●●●
●●●●●
●

●●●

●
●

●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●
●●●●●●●

●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●
●●●●●●
●

●●●●●●
●●●●●●
●
●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●
●●●●●●
●●●●●
●●●
●●●●●●●
●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●
●●●●
●
●●
●●●●

●
●●●●●
●●●

●●●

●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●
●●
●

●
●●

●●●●

●●●

●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●
●●

●●●●●

●●●●

●●●●

●●●●●●

0 1 2 3 4

4
5

6
7

8
9

10

NOO

lo
g(

S
IIC

 r
un

ni
ng

 ti
m

e)

(b)

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●

●●

●●●●

●

●●●●

●●

●

●●●

●

●●

●

●●●●●

●

●

●●

●●●●

●

●●●

●●●●

●

●

●

●

●●●

●●●●●●

●

●●

●●●●●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●●●●●●●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●●●●●●●

●●●●●●●●●

●

●

●●

●

●

●●●●●

●●

●●

●

●●

●

●●●●●●●●

●

●●●

●

●●●

●

●●●●

●

●●●●

●

●●

●

●●●

●

●●

●

●

●●●●●●

●

●●●

●

●●

●

●

●●●●

●

●●●●

●●

●●

●

●●●●●●●●

●

●

●●●
●●
●●●●

●

●●●

●

●
●
●●●●●
●●●

●

●●
●
●
●
●

●

●

●

●●●
●●
●●●

●●●●●

●
●
●

●
●
●
●
●
●
●

●●●
●
●

●
●
●●

●

●

●

●
●

●
●

●

● ●
●●●●●●●
●●
●
●
●●
●
●●●●
●
●

●

●

●
●●
●●
●
●
●

●

●
●

●●●●
●

●
●●
●
●
●
●

●●
●
●●●
●
●
●

●
●
●

●

●●●
●
●

●

●●

●

●●
●

●

●
●

●

●●
●●
●●●
●●
●●
●●
●

●

●
●●
●

●●●
●●
●
●
●
●
●

●●●
●●●

●
●

●●

●●
●
●

0 1 2 3 4

0
1

2
3

4
5

6
7

NOO

lo
g(

S
IIC

ru

nn
in

g
tim

e)

(c)

Figure 4.21: Running time w.r.t. NOO: (a) Hugin, (b) SIIC, and (c) SIIC#. All algorithms’ running time
increases with the increase in NOO and SIIC# has least running time than Hugin and SIIC.

between Hugin and SIIC.

Table 4.5: Frequency of the mid-points of the bars in the histogram for time difference between Hugin
and SIIC (UOM = ms)

Mid Points Counts Mid Points Counts Mid Points Counts
-3.25 1 -0.25 5386 2.75 181
-2.75 1 0.25 2010 3.25 114
-2.25 10 0.75 524 3.75 86
-1.75 21 1.25 336 4.25 33
-1.25 213 1.75 281 4.75 6
-0.75 1625 2.25 213 5.25 2

Alike analyses were performed to investigate the performance gain of SIIC# over Hugin.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 151

Refer to Figure 4.23 to see the performance comparison of Hugin and SIIC#. The overall dis-

tribution (irrespective of any specific parameter) of the running time difference of Hugin and

SIIC# is shown in Figure 4.23a. This plot of the performance implies that Hugin is outper-

formed by SIIC# in almost all cases. The bars in the histograms are higher at around 1 to 3.

The distribution is mostly biased towards positive values. Then in figures 4.23b to 4.23f, the

performance gain of SIIC# over Hugin is shown with different values of NOC, NON, NOO,

NOP, and NOS, respectively. No matter which parameter is considered nor how much its

value increases, SIIC# performed better than Hugin. The superior performance of SIIC# is ev-

ident because SIIC# partitions the whole compilation process and can reuse JTs for embedded

objects created beforehand. Note that the difference decreases for higher values of NOC and

NOO, this is because for new foreign classes, SIIC# needs to fetch JTs from storage, which is

normally a slow operation. Hence, there is still some scopes to improve SIIC#’s performance

by faster accessing the JTs held in disc storage.

The summary of the running time distribution of Hugin, SIIC, SIIC# and the difference

between Hugin–SIIC and Hugin–SIIC# is illustrated in Table 4.7. The table can be used for

getting further insight into the analysis performed for running time of the algorithms.

Table 4.6 summarizes the analysis of the overall distribution of the running time difference

between Hugin and SIIC#.

Table 4.6: Frequency of the mid-points of the bars in the histogram for time difference between Hugin
and SIIC#.

Mid points Counts Mid points Counts Mid points Counts
-2.25 1 1.25 3110 4.75 207
-1.75 9 1.75 2210 5.25 152
-1.25 26 2.25 1082 5.75 63
-0.75 197 2.75 574 6.25 33
-0.25 385 3.25 425 6.75 9
0.25 542 3.75 242 7.25 7
0.75 1563 4.25 206

Table 4.7: Summary of the time difference between Hugin–SIIC and Hugin–SIIC#.

Summary Hugin Time SIIC Time SIIC# Time
(Hugin - SIIC)

Time
(Hugin - SIIC#)

Time
Min 3.434 3.434 0 -3.14745 -2.189

1st Qu 4.143 4.357 2.708 -0.37753 1.043
Median 4.357 4.595 2.773 -0.12401 1.435
Mean 4.871 4.78 3.206 0.09133 1.665

3rd Qu 4.942 5.05 3.829 0.18659 2.105
Max 10.587 9.976 7.158 5.28675 7.325

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 152

Running time difference (Hugin − SIIC)

Difference of log of running times

F
re

qu
en

cy

−2 0 2 4

0
10

00
20

00
30

00
40

00
50

00

(a)

●●●●●●●●●●●●●●
●
●
●●●

●

●

●

●

●●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●●

●●

●●●
●

●●
●●●●

●●

●●●

●

●

●●

●●

●

●●

●●●●

●●●●

●

●●

●

●

●●●

●●●●●

●●●

●

●

●●●

●

●●

●
●
●

●
●●
●●●●

●●

●●

●●●

●

●●●

●●

●

●●●

●

●
●
●

●

●●●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●●●●

●
●

●

●●

●
●●

●●●●

●●●

●

●
●

●●

●●

●
●

●●●

●

●
●

●
●

●

●●

●

●●

●●●●

●

●●

●●●

●

●●

●
●●

●
●●

●

●●●

●●

●

●

●

●

●●

●
●

●●●
●

●●

●●
●

●●

●

●●

●

●

●

●●
●
●

●●
●

●●

●●●

●●●

●●

●

●●●

●

●

●●●●

●

●●●

●●●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●

●

●●●
●●●●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●●

●●

●●

●

●

●●●

●●
●
●

●●

●●●●

●●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●●●

●

●●

●

●

●

●●●

●●

●●●●●●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●
●
●●

●●●
●●●

●

●

●

●●

●●

●

●●

●

●●●

●●
●

●●●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●●

●●●●●●●●●●●●

●●
●●●

●

●

●

●●

●

●

●●

●●
●●
●

●

●
●

●●

●●

●●

●

●●

●●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●●

●●●●●●

●●

●●

●

●
●●●
●●

●

●●
●●●●●

●

●
●

●●

●●●

●●

●

●

●●

●●

●

●

●

●

●
●●

●

●●

●●

●

●●

●●

●●●

●●

●

●●●

●

●

●●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●●

●

●

●●
●●●

●

●●●●

●

●

●●

●●

●●●

●●●

●●●

●

●

●

●●

●

●●

●
●

●

●●

●
●

●●●

●
●

●

●●●●

●●

●

●

●●

●●

●●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●●

●

●●

●

●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●●

●●●
●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●
●

●●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●

●●

●●●

●

●

●
●
●●

●

●

●●●
●●

●

●
●

●

●

●

●

●●●

●

●●

●

●●●●

●
●

●

●

●

●●●

●

●●

●●●●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●●

●●●

●

●

●●

●

●●

●●

●●●

●●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●●

●

●●

●

●●

●●

●

●●●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●●●●●●●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●●●

●

●●

●

●●
●

●
●

●●

●●

●

●
●●

●●●●

●

●
●●

●●

●

●●●

●

●
●●

●

●●

●●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●
●●●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●
●

●

●●

●

●
●

●●

●

●
●●
●

●

●●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●●●

●●●●

●●
●●

●●

●●●●

●

●●

●●

●●●

●
●●

●

0 1 2 3

−
2

0
2

4

Running time difference (Hugin − SIIC)

NOC

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(b)

●

●
●●●

●●●●●●●●●●●●●●
●●●●

●

●●●
●●●

●●
●●●
●●●●
●●●
●●
●

●●
●
●

●

●●

●●

●

●

●●●●●●

●

●

●

●

●●●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●
●

●

●

●

●

●●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●●

●●●

●

●

●●

●●●

●●

●
●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●
●

●

●●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●●
●

●●

●
●

●●

●

●

●●●●

●

●●●●●

●●●●

●●

●
●●

●●

●

●●●●

●

●●

●●●
●

●

●

●●

●

●

●

●●

●●
●●●

●●●●

●

●●

●

●

●●

●●

●●

●

●

●●●

●
●

●●●●

●●

●

●

●●

●
●

●

●●

●

●

●

●●●

●

●

●●

●●

●●●

●

●

●

●●●

●●

●

●●

●

●

●

●●

●

●
●●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●
●

●

●●
●

●

●

●●

●

●●

●●

●

●●●

●

●

●●

●

●

●

●●●

●●

●
●

●●

●

●●

●●
●
●

●●●

●●●●●
●●●

●

●

●

●●●

●●

●●

●●●

●●●

●

●

●●

●
●
●

●●●●

●●●●●●

●●●

●

●

●●●●●

●●●

●●

●

●

●

●

●●●●●●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●●●
●
●●

●●●

●●

●

●

●●●

●

●●
●

●

●

●
●●

●●●

●●

●●
●●

●

●●

●

●●●●
●●●●

●●●

●●
●●

●

●

●●●

●●●

●
●

●

●

●

●●●

●●
●●●●

●

●

●

●

●

●

●

●

●●

●

●●
●
●
●●

●

●●●

●

●

●●●

●●

●

●

●

●

●
●
●●●

●●

●●

●●
●

●
●●

●
●

●
●●

●

●

●
●

●●
●●●●

●●

●●
●

●
●

●

●

●●

●

●

●

●
●

●●

●

●●
●

●●●

●

●●

●●●

●

●

●

●

●

●●●

●●●●

●●●

●●●

●●

●

●

●

●●

●

●
●

●
●

●
●●
●
●
●

●●

●
●
●

●●●
●

●

●●●

●

●
●

●

●

●

●

●●

●●

●●●●

●●●
●●●

●

●●

●

●●●●

●

5 10 15 20 25 30 50

−
2

0
2

4

Running time difference (Hugin − SIIC)

NON

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(c)

●●●●●●●●●●●●●●
●
●
●●●

●

●

●

●

●●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●●

●●

●●●
●

●●
●●●●

●●

●●●

●

●

●●

●●

●

●●

●●●●

●●●●

●

●●

●

●

●●●

●●●●●

●●●
●

●●●

●

●●

●
●
●

●
●●
●●●●

●●

●●

●●●

●

●●●

●●

●

●●●

●●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●●

●●

●

●●
●

●●

●

●

●●●

●●●

●●●

●
●

●
●

●

●

●

●●●

●

●

●●
●●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●●
●
●

●●
●

●●

●●●

●

●●

●●

●

●

●●

●

●●

●

●●

●●●

●

●

●
●
●

●●
●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●●

●

●●

●●

●
●

●

●

●

●●

●●●●

●

●●

●
●●

●

●

●

●●

●●
●

●

●

●●
●
●●

●

●●●

●

●

●●

●●

●

●●●

●

●●

●

●●●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●●

●●●●

●●

●●

●

●●●●

●●●

●●●●
●●

●●●

●●

●

●●●
●●
●

●●●●

●●●
●

●●●●

●
●
●

●

●

●

●

●●●

●●
●●●

●●

●●●

●

●

●●
●

● ●

●●●

●●
●●
●
●

●

●●●
●●●
●
●

●

●

●●

●

●
●
●
●

●

●●

●●

●●●●

●
●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●
●●●

●

●●●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●●

●
●●

●●●

●●

●

●●
●●●

●

●

●

●

●●●

●

●●●

●●●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●●

●●

●

●

●
●

●●

●

●●●●

●●

●

●

●

●

●

●●

●

●●
●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●●

●

●●

●

●●●

●●

●●

●

●●

●

●●

●

●●●

●

●
●

●

●

●

●●

●●●

●

●

●

●●
●●

●

●●●

●●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●
●

●

●

●●●

●

●●

●●●

●●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●●●

●●

●●●
●●●

●

●

●

●●

●

●●

●

●

●●

●
●●

●

●

●●●

●

●

●

●

●●

●●

●

●

●●

●●●

●●●

●●●●●●

●

●●●

●●
●

●●●●●●●

●●●●●

●●●

●●●

●●
●●
●
●

●●●

●

●

●
●●●●

●●●

●●●

●●●

●
●●

●

●●●●

●

●
●

●

●

●

●
●

●●●●●

●●●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●●

●
●●

●●●●

●●●●

●

●

●●

●●●

●●

●●●●

●

●●

●●●

●

●●

●

●
●

●

●●

●

●
●

●●

●

●

●

●●●

●

●

●

●●●●

●
●

●●

●●

●●●

●●●

●●●

●

●

●

●

●

●

●
●

●

●

●●●
●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●●

●●

●

●●●

●●

●

●

●●

●

●●

●

●

●
●●

●●●

●

●●●●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●●
●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●●

●
●
●

●
●

●

●●

●

●

●

●

●●
●

●●

●
●●

●●●

●●

●

●●

●●●●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●
●●

●

●●

●●

●
●

●●●
●

●●

●

●

●

●●●

●●●

●●●

●

●

●●●

●●

●●

●

●

●

●●

●●

●

●●●●●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●

●

●●
●
●

●●

●●●●

●●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●●●

●
●●●

●●

●●●●
●●●●●●

●●●
●
●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●●

●●

●●●

●●
●●●●
●
●●

●

0 1 2 3 4

−
2

0
2

4

Running time difference (Hugin − SIIC)

NOO

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(d)

●●●●●

●●●
●

●●●

●●
●
●

●
●●
●●●●

●●

●●

●●●

●

●●●

●●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●●

●
●

●

●

●●

●

●

●

●●

●●●●

●

●
●●

●●●●

●

●●

●●
●

●●

●●
●●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●●●

●

●

●

●

●

●
●●

●●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●
●

●●

●●
●

●●

●

●

●●
●●
●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●●

●●●

●

●●

●●●

●●●

●

●

●●●

●

●

●●

●

●●

●

●

●●●●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●

●●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●●

●

●
●●
●

●

●
●
●
●
●●

●●

●

●

●●

●●●●

●

●
●●
●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●

●●●

●

●●●●

●

●

●●

●
●

●
●●

●●
●

●●

●●

●

●●

●●

●
●

●●●
●

●

●

●

●

●●●

●●

●

●

●●●

●●●

●

●●

●●

●●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●●

●●

●●●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●●
●

●
●

●

●●

●●

●
●●

●●

●

●

●●●

●

●

●●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●●

●

●
●

●

●

●

●●

●

●

●
●●

●●

●●

●

●
●

●

●

●

●

●●

●●

●

●●

●

●

●●

●●

●●

●●●

●

●

●●

●●
●●

●●

●●

●

●●

●

●
●●

●●

●

●
●

●
●●●●●

●●

●

●

●

●
●

●●

●●

●●●

●
●●

●

●●
●●

●●

●●

●

●

●●

●●●

●

●

●●

●

●

●●●

●●●

●●●●

●●●

●

●●

●●●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●
●
●●●

●●●

●●

●●

●

●

●●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●●●

●

●●

●●

●

●●

●

●●●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●
●
●●●
●

●●●

●

●

●
●
●

●

●●
●●

●

●

●

●

●●●

●

●●●
●●●

●

●●●

●

●●

●

●●

●

●
●
●

●●●

●

●●●

●

●●
●●

●●

●
●●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●
●●●

●
●
●

●●

●
●

●
●●●
●

●

●
●
●●

●

●

●

●

●

●●

●●
●●
●

●●

●●●●●
●

●

●

●

●
●

●

●●

●●

●●●

●

●
●●●

●

●

●●●

●●
●

●●●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●●●●●

●

●

●

●
●●

●●●●

●

●●

●

●●

●●

●

●●●
●●

●

●

●
●

●

●●

●●●

●
●●

●

●

●●
●

●

●●

●

●

●●

●●

●
●●●

●

●

●

●

●●●
●

●

●

●

●

●
●

●●●

●●
●

●●●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●●

●

●

●●●

●

●

●●

●●●

●

●●●

●●
●

●●
●●●●

●●●

●●

●

●

●●●

●●

●●

●

●
●●●

●

●

●
●

●●

●●

●

●●
●

●

●

●

●●

●●●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●

●

●●

●
●●

●

●●●●●

●●●

●●

●

●

●●

●

●●

●

●●

●●
●

●●●

●
●●

●

●●●

●

2 3 4 5

−
2

0
2

4

Running time difference (Hugin − SIIC)

NOP

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(e)

●

●

●

●●

●●●

●

●

●

●●●
●●
●●

●

●

●

●●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●●●●

●

●

●

●●●

●
●
●
●●

●

●

●●●

●

●

●

●●
●
●
●●

●●
●

●

●

●

●

●●●●●●●

●●

●
●

●

●

●

●
●

●●

●●●●

●●●
●

●

●

●

●●

●●

●

●●●

●●●●

●●●
●●

●●●

●●
●

●●

●●●

●●

●
●

●

●

●
●

●

●

●●●●

●

●●
●

●●●
●●●

●●●

●
●

●

●
●

●●

●

●●

●

●●

●●●
●●●●●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●●
●
●

●●

●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●

●●●

●

●●●

●

●●

●

●

●●●

●

●

●●

●

●●●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●●●

●●

●

●
●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●●

●●

●

●

●

●●●

●

●●

●

●

●●

●

●●
●●●

●●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●●

●●●

●

●

●●●
●

●●
●

●

●

●
●●

●
●

●

●

●

●●●
●●
●

●

●

●●●●

●●●●●●●●

●●●

●

●●

●

●●●●●

●

●
●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●●●●

●●

●●●

●
●●

●

●

●

●

●

●●

●

●●

●

●
●
●

●
●●
●●●●

●●

●●

●●●
●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●●

●●
●

●●●

●●

●
●

●
●

●●●●

●
●●

●

●●

●

●●●
●

●
●

●

●

●

●

●
●●
●●●

●

●●
●●●

●

●

●

●

●

●●●

●

●

●

●●

●●

●
●

●

●

●
●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●●●

●●

●

●

●●

●

●●●

●

●●

●●

●

●

●●

●●●

●●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●●

●●

●

●

●

●●

●

●●●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●●
●

●●

●●

●

●
●●●
●●

●●
●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●●●

●

●
●●
●●

●●
●●

●●●●●

●●
●●

●●

●
●●

●

●

●●●

●●●

●

●

●●

●

●

●
●
●●
●●●●

●●

●

●●●

●●●

●●●●

●
●
●●
●●●

●

●

●

●
●
●
●●

●●
●
●

●

●●●

●
●

●

●

●

2 3 4 5

−
2

0
2

4

Running time difference (Hugin − SIIC)

NOS

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(f)

Figure 4.22: Running time difference of Hugin and SIIC: (a) overall distribution; and w.r.t. (b) NOC, (c)
NON, (d) NOO, (e) NOP, and (f) NOS. The running time difference exhibits a normal distribution; the
difference roams around zero; the time difference is positive (SIIC performs better) for NON, NOP, and
NOS; and for other parameters, the difference is negative (Hugin performs better).

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 153

Running time difference (Hugin − SIIC#)

Difference of log of running times

F
re

qu
en

cy

−2 0 2 4 6

0
50

0
10

00
15

00
20

00
25

00
30

00

(a)

●●●●

●●●●

●●
●●●
●●●●●

●●●●

●●●
●

●

●
●

●

●●
●●●●

●

●
●

●
●●

●

●●

●

●●●●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●●

●

●●●

●
●●

●
●●

●

●

●●

●●●
●●
●
●
●

●

●●●

●

●

●

●

●
●

●●

●●

●●

●●

●●

●

●

●●
●
●●

●
●●●

●●

●
●
●

●

●●●

●
●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●
●

●●

●

●●

●

●●

●●●
●
●

●●

●

●

●

●

●●●
●●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●
●
●

●●●●

●
●
●

●

●

●

●

●

●

●

●●

●●●●

●●
●

●

●

●

●●●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●●●●

●

●●●

●
●

●
●

●●

●●●

●

●●●

●

●

●●

●●

●●

●
●●●●●

●

●

●

●●●

●

●

●

●●

●
●●●●●

●

●

●

●●

●●

●●

●●●

●

●

●●

●
●

●

●

●

●

●●●●

●●

●

●●

●●●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●
●

●
●●

●

●

●
●
●

●

●

●●●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●●●
●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●
●●

●

●

●
●

●

●
●
●●

●

●
●
●

●

●●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●●

●

●
●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●●●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●●
●

●●●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●
●●

●
●

●

●

●
●

●

●

●●●
●

●

●

●●
●●●●

●

●

●
●
●

●●

●

●

●

●●●●

●

●

●

●
●●
●
●

●●

●

●

●●

●●

●

●●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●
●●●●

●

●●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

0 1 2 3

−
2

0
2

4
6

Running time difference (Hugin − SIIC#)

NOC

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(b)

●●●●●●
●
●
●
●

●

●

●

●●●

●
●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●●

●

●●
●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●●●

●

●●
●

●

●●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●●

●●●

●
●●

●
●●●

●

●●

●●●
●●

●●

●

●

●●

●●●●●

●

●

●
●●

●●
●

●

●●

●●

●●

●

●

●

●●●

●

●

●
●

●

●●●

●

●

●

●●

●
●
●
●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●●
●●

●

●
●

●

●

●●

●

●

●●●

●●●

●
●●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●●
●●●●●

●●●

●
●●

●●
●●
●●●

●
●

●

●●●
●
●

●
●●●

●●
●
●
●
●●●●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●

●●●●●

●

●

●

●

●●

●

●
●

●

●
●●●
●
●
●

●
●

●

●

●●

●●●

●●●●

●●

●

●

●●●●●●

●●●

●●●

●●●
●

●
●
●●
●●●

●

●●

●●

●

●
●●●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●●●●●
●

●

●●

●
●

●

●

●●●
●
●

●

●

●
●●

●

●
●

●●

5 10 15 20 25 30 50

−
2

0
2

4
6

Running time difference (Hugin − SIIC#)

NON

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(c)

●●●●

●●●●

●●
●●●
●●●●●

●●●●

●●●
●

●

●
●

●

●●
●●●●

●

●
●

●
●●

●

●●

●●●

●●

●

●

●

●
●

●

●●●●

●

●

●●●
●●●●●

●

●●

●●
●●●●
●

●

●
●
●●●
●

●

●
●

●

●
●●●●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●

●●●●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●●●

●●
●●
●
●
●
●

●●●
●●●
●●●

●

●

●●

●

●

●●

●

●

●●
●

●

●●

●●

●●●
●●

●

●

●
●
●

●●●

●

●

●

●

●●

●

●
●

●●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●●●●●

●

●

●

●

●●●

●

●●

●●

●

●●
●●

●●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●
●

●

●

●
●●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●●

●●●●●

●

●
●

●●

●
●●
●
●

●

●

●●

●

●●
●

●●●

●

●

●●

●●

●

●●
●●●●●

●

●

●

●●

●●

●●
●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●●●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●●

●

●

●

●●●

●

●●
●

●●●

●

●
●●

●●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

●●

●●

●●

●●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●
●

●
●

●

●
●●
●

●

●
●●●

●

●

●

●

●
●
●
●

●●

●

●

●

●●●

●

●●●●
●
●

●

●

●

●
●●
●

●

●●●●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●●●●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●●

●

●

●

●

●

●
●
●●

●●●

●

●

●

●

●

●●

●●

●
●

●
●●

●

●●

●●●
●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●●

●●●

●

●

●

●

●

●

●●
●●
●
●

●

●

●
●

●

●
●

●
●

●●

●

●●●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●
●●●●●●●
●●
●●●
●●●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●
●●
●

●

●●●

●
●

●

●

●

●

0 1 2 3 4

−
2

0
2

4
6

Running time difference (Hugin − SIIC#)

NOO

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(d)

●
●●

●

●●

●●

●

●●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●

●●

●●

●

●
●●

●●●
●

●

●

●●●●

●

●

●
●

●●

●

●
●
●

●●●

●

●
●●

●●

●
●

●●●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●●
●

●

●
●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●
●
●●

●
●●

●

●

●●

●●●

●

●●

●
●
●

●

●
●●

●

●●●●
●●

●●●●

●●
●

●

●●

●●

●

●
●●

●●●

●
●●

●
●●

●
●

●

●
●●

●●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●●

●●●●

●●●

●
●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●●

●

●●●

●

●

●

●●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●●
●
●●
●
●
●
●

●
●
●
●

●

●
●

●

●●

●

●
●●

●

●

●

●●
●

●

●●●●

●●

●
●●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●

●

●●

●

●

●●

●
●

●●

●

●●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●
●

●
●

●
●

●

●

●

●●
●
●●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●●●

●

●●

●

●
●
●

●

●●●

●●

●

●

●

●
●
●

●●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●●

●●

●

●

●
●

●
●●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●
●●

●●

●●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●
●

●●

●●●

●●

●●●

●

●
●●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●●●
●

●●
●●

●

●

●
●

●

●

●

●
●●

●●

●

●
●●

●●●

●●●

●

●●●●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●
●●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●●

●●

●●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●

●

●

●

●●

●●

●●●

●

●

●

●●

●●

●●●

●●

●

●

●●
●

●

●

●
●
●

●

●●

●

●

●
●

●●

●

●

●

●

●●●●●
●●●

●

●●●
●
●
●●

●

●
●●

2 3 4 5

−
2

0
2

4
6

Running time difference (Hugin − SIIC#)

NOP

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(e)

●●

●●

●
●●

●

●●

●

●●●

●

●
●●

●●●
●
●
●●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●●
●

●●●●

●
●

●

●●

●

●●

●●●

●●●

●
●●● ●

●●●●

●

●

●

●●

●

●
●●
●

●●

●
●

●
●

●

●●●

●

●
●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●
●
●

●

●

●●

●

●
●

●●
●●

●●

●

●
●●

●

●

●
●

●
●

●●●●●
●●●●

●●●

●
●

●

●

●●●
●

●

●●●
●
●

●●

●

●

●

●

●

●●●

●
●●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●●
●●

●●

●
●

●
●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●●

●
●●●●●

●

●
●●
●●●●
●
●
●
●

●●●

●
●
●●
●

●

●

●●

●

●●

●
●●●●

●

●

●
●●
●
●

●
●

●
●

●

●●

●●
●●

●

●

●
●
●

●

●●●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●●●

●●●

●
●

●●

●

●●

●●

●●

●

●

●

●
●

●●

●
●

●

●
●

●

●●●

●

●

●●

●●

●●●●

●●

●
●●
●

●

●

●

●

●

●

●
●
●

●

●●●
●
●
●

●●●
●

●

●●

●●●

●
●
●●●●

●●●

●●

●
●
●●●●
●●●●●●
●●
●

●

●●
●●
●
●●●

●

●

●
●

2 3 4 5

−
2

0
2

4
6

Running time difference (Hugin − SIIC#)

NOS

D
iff

er
en

ce
 o

f l
og

 o
f r

un
ni

ng
 ti

m
es

(f)

Figure 4.23: Running time difference of Hugin and SIIC#: (a) overall distribution; and w.r.t. (b) NOC,
(c) NON, (d) NOO, (e) NOP, and (f) NOS. The running time difference exhibits a normal distribution
and the difference is always higher than zero (SIIC# performs better).

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 154

4.6.2 Cost comparison of the JTs produced by Hugin and SIIC

In this section, an essential outcome of the compilation algorithms, i.e., JTs are analysed in

terms of the cost of the JTs (a measure proposed by Kanazawa [212]). Note that SIIC and SIIC#

both produce the same JT and hence the cost of the JT for SIIC and SIIC# are the same. To avoid

repetition, SIIC#’s JT cost is not analysed in this thesis.

Figures 4.24a and 4.24b, respectively, show the JT-cost of the JTs created by the algorithms

Hugin and SIIC. The distributions of the JT-cost exhibits a normal distribution and does not

show any tendency to a particular value or range. As the SIIC is not expected to generate

efficient JTs (i.e., the JT-cost of the produced JT is minimal), it is obvious that the JT-cost of SIIC

is higher than the JT-cost of Hugin because the clique sizes in the JT created by SIIC are larger

than those created by Hugin. The current implementation did not include the thinning process

of the cliques in the JT generated by SIIC. This particular crucial task was left as an extension

of the implementation, as the main focus was on reduction of compilation time for very large

OOBNs. Figure 4.24c shows the distribution of the difference of the JT-costs of Hugin and SIIC.

The difference indicates that the cost of the JTs produced by SIIC are mostly higher than for

Hugin. To get a better idea about the distribution, Table 4.8 shows the summary of the JT cost

distribution for Hugin, SIIC and the difference between the Hugin and SIIC JT cost.

Table 4.8: Summary of the JT cost difference between Hugin and SIIC
Summary Hugin JT Cost SIIC Cost JT (SIIC -Hugin) JT Cost

Min 2.773 2.773 -5.6843
1st Qu 9.566 11.617 0.7882

Median 12.889 16.072 2.3534
Mean 13.018 16.633 3.6143

3rd Qu 16.253 20.756 5.1036
Max 21.889 49.671 31.225

Figures 4.24 to 4.26 show the correlation of the JT-cost of Hugin and SIIC with various

parameters listed in Table 4.2.

For the increase in NOC, both the Hugin and SIIC JT-cost increases. However, the in-

crease in SIIC JT-cost is higher than for the Hugin (see figures 4.24d and 4.24e). Hugin JT-cost

increases with the increase in NON but SIIC JT-cost increases for lower values of NON and re-

mains stationary for higher NON. Then Figure 4.24f shows the distribution of the differences

of Hugin’s JT cost and SIIC’s JT cost for the same OOBN with varying NOC. The difference

increases with the increment of NOC and this is evident in the figure.

In figures 4.25a and 4.25b, the distribution of JT cost of the JTs produced by the algorithms

Hugin and SIIC, respectively, are shown with varying values of NON. For the increase in

NON, both the Hugin and SIIC JT-cost increases. However, the increase in Hugin JT-cost is

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 155

higher than for the SIIC though the overall value of SIIC JT-cost is higher than for Hugin. The

Hugin JT-cost increases with the increase in NON but SIIC JT-cost increases for lower values

of NON and remains stationary for higher NON values. Then in Figure 4.25c the distribution

of the differences of the JT costs of Hugin and SIIC for the same OOBN with varying NON is

depicted. The decrease in difference is evident for the higher values of NONs.

For NOO (figures 4.25d and 4.25d) the Hugin and SIIC JT-cost increase. The difference

between the JT costs of the two algorithms (Hugin and SIIC) also increases with the increasing

value of NOO (refer to Figure 4.25f).

For NOP, Hugin (Figure 4.26a) and SIIC (Figure 4.26b) JT-cost increases up to 4 but starts

decreasing where NOP = 5. The reason behind this abnormality is that for higher NOP, Hugin

(and hence SIIC also) fail to generate any JT. Since there are very few cases here a JT is created,

the box-plot for the JT-cost with NOP= 5 can be ignored. In Figure 4.26c, the depicted distri-

bution indicates that the difference between Hugin’s and SIIC’s JT cost remain steady but is

always greater than zero. The non-zero difference indicates that for varying NOP, the JT cost

of SIIC is always higher than Hugin’s.

Figures 4.26d to 4.26f, respectively, plot the distribution of the JT costs of Hugin and SIIC

algorithms and the difference between the two with respect to increasing value of NOS. The

plots indicate that the costs increase with an increasing value of NOS in all cases.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 156

Hugin JT−cost distribution

Hugin JT−cost (log−scale)

F
re

qu
en

cy

5 10 15 20

0
20

0
40

0
60

0
80

0

(a)

SIIC JT−cost distribution

SIIC JT−cost (log−scale)

F
re

qu
en

cy

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00
25

00
30

00

(b)

Distribution of the difference of JT−Costs (SIIC cost − Hugin cost)

Difference of log of Costs

F
re

qu
en

cy

0 10 20 30

0
10

00
20

00
30

00

(c)

0 1 2 3

5
10

15
20

NOC

lo
g(

H
ug

in
 J

T
−

C
os

t)

(d)

●●●

●

●

●

●●●●

●

●

●●

●●●●

●

●

●●

●●●●

●

●●

●●

●●●●

●●

●●●

●●●●

●●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●
●●

●●

●

●

●●
●

●●

●
●

●

●●

●

●

●

●●●

●●●●

●●
●
●●
●●
●
●

●●●●

●●●●

●●●

●●●●

●●●●●

●●●

●

●

●

●

●

●●

●

●●
●
●

●

●

●●●

●
●

0 1 2 3

10
20

30
40

50

NOC

lo
g(

S
IIC

 J
T

−
C

os
t)

(e)

●●●●
●●●
●●●●
●●
●
●●

●
●
●

●
●●●●

●

●

●
●●●
●
●

●
●

●

●

●

●

●

●●●●●●●●●●●●
●●●●●
●
●
●●
●●●
●●●●

●
●●
●●●●●●

●

●●●●●●●●
●●●●

●

●●●
●
●●
●●●

●

●

●●●

●●●

●

●
●
●

●●●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●

●●●
●●

●
●●

●●●

●
●
●

●●
●
●

●●

●

●●●

●
●●

●●●●
●●
●●

●

●
●
●●●●

●●

●

●

●●
●●

●●●
●
●
●
●●
●●
●●

●

●

●
●
●

●●

●●

●●
●

●

●

●●●

●●●●●●●

●

●●

●
●

●

●●●●

●

●

●

●●

●●●

●

●

●●

●●●●
●

●

●

●

●

●●●●●●●●●●●●●●

●●●

●

●

●
●
●●●
●

●●

●
●●

●●●●●

●●●●

●

●

●●
●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●●●

●●

●●●

●●
●

●●

●

●●●●
●

●●●●

●
●●
●

●●

●

●

●●
●
●

●

●

●●
●
●
●●

●

●

●●
●●

●

●
●

●
●
●●●

●●●●

●

●

●●●

●●

●

●●

●●

●●

●
●
●●

●●

●●●●●●
●●

●●●

●

●●

●●
●●●●

●

●●●●

●

●

●

●●●
●●●

●●
●

●●

●

●
●●●●

●●

●

●

●

●●

●●●●●●

●

●

●

●

●

●●

●●

●●●●

●

●●

●

●●
●

●
●
●

●

●●

●●

●

●

●

●
●●

●

●●

●

●

●●

●●●

●●

●●●

●

●●●

●

●●

●●●

●

●●●

●●
●●

●●

●
●●
●●●●

●●●

●

●●●

●●

●

●●

●●

●●●●●●●●

●●●●●●●●●
●●●

●●●●

●
●●●

●
●
●

●

●

●

●●

●

●●

●

●
●

●●●

●

●●

●●●

●●●

●
●

●●

●●

●●

●

●●●

●

●●
●●

●

●

●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●●●

●

●

●●

●●

●

●

●●●

●

●

●
●

●●

●

●

●●●

●

●

●
●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●
●

●●

●●

●●

●
●

●●

●
●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●●●

●

●

●

●
●●
●●
●
●

●

●●

●

●

●●

●

●●●

●●●●

●
●
●
●●
●●

●

●●●

●●●

●

●●●●●
●

●

●

●

●●

●●●●

●

●
●
●

●●●●

●
●
●●
●●●
●

●●●

●

●●

●

●●●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●

●

●

●

●●●
●

●●●●

●

0 1 2 3

0
10

20
30

NOC

D
iff

er
en

ce
 o

f l
og

 o
f C

os
ts

(f)

Figure 4.24: JT cost distribution (overall): (a) Hugin, (b) SIIC, and (c) difference of SIIC and Hugin (SIIC
- Hugin), normal distributions are observed in a–c; JT cost distribution w.r.t. NOC: (d) Hugin, (e) SIIC,
and (f) difference of SIIC and Hugin. JT cost and difference of cost increases with the increase in NOC.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 157

●●
●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●●
●●

●●●●

●

●●●●●●●

●●●

●●●

5 10 15 20 25 30 50

5
10

15
20

NON

lo
g(

H
ug

in
 J

T
−

C
os

t)

(a)

●
●
●
●●●

●

●

●●

●

●●●

●●●
●

●●
●
●
●
●
●

●

●

●●
●●●●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●●●

●

●●●
●●●●
●●●

●●●●

●●●

●●

●●

●●●

●

●
●●●●●●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●●

●●

●●●

●

●

●●

●

●●●●

●

●●

●●

●●

●

●

●●

●

●

●

●

●●
●
●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●
●
●●

●

●●
●
●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●●●

●●●

●

●
●●

●●

●●
●

●

●

●

●

●●●●

●●●●

●●
●
●●
●●
●
●

●●●●

●●●●

●●

●

●●●●

●●
●●

●●●

●●●●

●

●

●●●

●●●●

●

●●●

●●
●●●●

5 10 15 20 25 30 50

10
20

30
40

50

NON

lo
g(

S
IIC

 J
T

−
C

os
t)

(b)

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●●

●

●
●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●●
●●●●●●●

●●●●

●●●

●●●
●●●●
●

●●
●
●

●

●

●

●

●
●●

●●

●●●

●
●

●●

●●

●●

●

●
●●●

●●●

●●●

●●●

●

●●●●

●

●

●●

●

●

●●●●●

●

●

●

●

●
●●
●

●●

●●

●

●●

●

●

●

●

●

●
●
●
●●●

●●

●
●●●●

●●●

●

●

●

●●
●

●●

●

●●

●
●
●●

●

●

●●

●

●

●
●

●

●●

●

●●●●●

●

●

●
●●●●

●●
●●●●
●●

●

●●

●

●●●

●

●

●●

●

●●●

●
●

●

●

●●

●

●●

●

●●●

●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●

●

●●

●●

●

●●
●●●●

●●●●

●

●●●●
●

●

●

●●

●●
●●
●

●

●

●
●
●●●●
●

●●

●●●

●●●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●●●●

●●●●

●●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●●●

●

●

●●

●

●

●

●

●
●●
●●
●

●

●

●

●●

●

●●

●
●●
●
●●●●

●●●●

●●

●
●●●●

●

●

●●●● ●●●●
●●●●

●●

●●

●●●

●●

●●●●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●
●●
●●

●●

●●

●●●●

●●●●

●●
●

●●●●

5 10 15 20 25 30 50

0
10

20
30

NON

D
iff

er
en

ce
 o

f l
og

 o
f C

os
ts

(c)

0 1 2 3 4

5
10

15
20

NOO

lo
g(

H
ug

in
 J

T
−

C
os

t)

(d)

●●●●●●

●

●●

●●●

●●●●●

●●●●
●●●

●●●●

●

●●

●

●

●●

●●●

●
●

●

●

●●

●●
●
●

●
●●●

●●

●

●

●●●●●●

● ●●●●●●

●

●●

●●●●●

●●

●

●

●

●●●

●●●

●●

●●●●

●●●●

●●●●

●

0 1 2 3 4

10
20

30
40

50

NOO

lo
g(

S
IIC

 J
T

−
C

os
t)

(e)

●●●●
●●●
●●●●
●●
●
●●

●
●
●

●
●●●●

●

●

●
●●●
●
●

●
●

●

●

●

●

●

●●●●●●●●●●●●
●●●●●
●
●
●●
●●●
●●●●

●
●●
●●●●●●

●

●●●●●●●●
●●●●

●

●●●
●
●●
●●●

●

●

●●●

●●●

●

●
●
●

●●●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●

●●●
●●

●
●●

●●●

●
●
●

●●
●
●

●●

●

●●●

●
●●

●●●●
●●
●●

●

●
●
●●●●

●●

●

●

●●
●●

●●●
●
●
●
●●
●●
●●

●

●

●
●
●

●●

●●

●●
●

●

●

●●●

●●●●●●●

●

●●

●
●

●

●●●●

●

●

●

●●

●●●

●

●

●●

●●●●
●

●

●

●

●

●●●●●●●●●●●●●●

●●●

●

●

●
●
●●●
●

●●

●
●●

●●●●●

●●●●

●

●

●●
●●●●●●●

●

●●

●

●●●

●

●

●

●
●

●●

●●●●

●●
●●
●

●

●●●●

●●●

●

●

●

●●
●●
●

●

●●●

●
●●●●●●●●

●●●●

●●●
●

●●●

●

●

●
●
●
●

●

●

●●●

●●

●●

●●●●

●●●

●
●
●
●

●●

●

●●●
●●

●●●

●

●●

●

●

●●●

●●

●

●●●●●

●

●●

●
●

●●●●

●

●
●●

●
●

●

●●●●

●●

●

●
●

●

●

●
●

●●
●●●

●●●

●●●

●●●

●●●

●●

●

●
●
●●●●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●●

●●●●●

●●

●

●●

●

●●

●

●

●

●

●

●●●●

●●

●●●●

●

●●●

●●●●

●●●
●●●●

●●●

●●●

●●

●●●

●●●●●●●

●

●

●●●●●

●●

●

●

●●

●

●●
●●●

●

●●

●

●●●

●

●●●

●

●●

●

●●

●●

●

●●●●●●●

●

●●●●●●

●●

●●

●

●

●

●●

●

●

●●●

●●●

●●

●●●●

●●

●●

●
●

●

●

●

●●

●●

●

●

●

●●

●
●
●
●
●●
●●●

●

●

●

●

●●

●●●

●

●

●●●●●●●●

●●

●

●●

●●●

●●●●

●

0 1 2 3 4

0
10

20
30

NOO

D
iff

er
en

ce
 o

f l
og

 o
f C

os
ts

(f)

Figure 4.25: JT cost distribution w.r.t. NON: (a) Hugin, (b) SIIC, and (c) difference of SIIC and Hugin
(SIIC - Hugin); and w.r.t. NOO: (d) Hugin, (e) SIIC, and (f) difference of SIIC and Hugin. JT cost and
difference of cost increases with the increase in NON and NOO.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 158

2 3 4 5

5
10

15
20

NOP

lo
g(

H
ug

in
 J

T
−

C
os

t)

(a)

●●

●●●●

●

●●●

●

●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●●

●●
●
●

●

●●●●

●

●●

●●

●

●●

●●●●●

●●●

●●●●

●●●●

●●●
●●●

●●
●
●●
●●●●

●

●

●●

●
●●

●

●

●●

●●●

●●

●

●
●●

●

●●

●

●
●
●

●●

●

●●●●

●
●

●●●●●●●●●●●

●●●●

●

●

●●

●●

●
●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●●●

●●●
●●●●

●●●●

●●
●●●

●

●●●●

●●●●●●●

●●●

●●●●

2 3 4 5

10
20

30
40

50

NOP

lo
g(

S
IIC

 J
T

−
C

os
t)

(b)

●●●●●●

●

●

●●
●
●

●

●

●

●●●

●

●●

●●●

●●

●●

●

●
●●●

●●●

●●●

●●●

●

●●●●

●●●

●

●

●●

●

●

●

●

●
●●●●
●

●●●

●

●●●

●

●

●

●

●●

●

●

●●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●●●

●●●

●

●

●

●●

●

●●●●

●

●
●
●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●●

●

●

●

●●●●

●

●●

●●

●

●●

●●●●●

●●●●

●●●

●●●●

●
●
●
●●
●●

●

●

●
●

●●●

●
●

●
●

●

●

●
●●●

●●●●●●

●
●

●

●
●
●

●

●
●

●

●

●

●
●●

●●

●●

●

●●

●

●

●

●

●

●
●

●
●●●

●

●

●
●●●
●

●

●

●●

●

●●

●●●●

●

●

●●

●●●

●

●

●●●

●

●

●

●

●

●●

●●
●●●

●

●

●●●●●●

●●●

●●

●

●●●

●●●●

●●●●

●

●

●●●

●●●●

●

●

●●

●●●

●

●●

●●

●●

●

●●●
●●●●

●

●●●

●

●

●●●

●●

●

●●

●●
●●

●

●

●
●

●

●

●●●

●
●●●

●●

●

●

●●

●●
●●●

●
●

●

●

●●●

●●

●

●●

●

●

●●

●●●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●

●

●
●

●

●
●
●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●●●

●●●

●

●

●
●●

●

●
●●

●

●●
●●●

●

●
●
●
●
●
●●

●●●

●●●

●

●●

●●
●●
●●

●

●

●

●
●●

●●

●
●●

●●

●●●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●●●●●
●

●

●●●●

●

●●●●●

●

●

●●

●

●●
●
●

●
●
●●

●
●

●●

●●

●

●

●●●
●
●
●●
●
●
●
●

●●●

●●●●●

●●

●●●

●

●●
●●
●
●●
●

●●●●

2 3 4 5

0
10

20
30

NOP

D
iff

er
en

ce
 o

f l
og

 o
f C

os
ts

(c)

2 3 4 5

5
10

15
20

NOS

lo
g(

H
ug

in
 J

T
−

C
os

t)

(d)

●●●●

●●●●

●●
●●
●●
●●

●●●

●●

●

●

●

●●●●

●●

●

●
●●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●●●

●
●●●
●●

●

●

●

●

●
●

●●

●●
●

●

●

●

●●●●

●●●●

●●●●●

●●

●

●

●

●
●●

●●

●●
●

●

●

●

●

●●●●

●●
●
●●
●●
●
●

●●●●

●●●●

●●●●

●
●●●

●

●

●

●●

●●

●
●
●●●●●
●●
●●●

●●●
●

●
●
●●

●●
●
●

●

●●

●●

●

●●

●

●●●

●

●●●

●●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●●

●●●

●

●

●

●●
●
●●●●●●

●●

●

●

●●●●●●

2 3 4 5

10
20

30
40

50

NOS

lo
g(

S
IIC

 J
T

−
C

os
t)

(e)

●

●●●●●

●●

●

●

●
●●

●●
●●
●
●●

●

●
●
●●

●

●●

●

●

●

●

●
●

●●

●●

●●

●

●●●

●

●

●

●●

●

●

●
●

●

●●

●●
●

●
●●
●●
●
●
●●●●●●●●

●●

●

●

●

●●

●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●●

●
●●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●●

●

●●●

●●●●●

●

●
●

●
●

●
●●
●●

●

●

●
●

●●●●●●

●

●●●

●

●●

●●●●

●●

●

●●●●●●

●●●●
●

●

●●●●

●

●●

●●

●

●

●

●●

●●

●●●●●●●

●

●

●●

●

●●

●●

●●

●

●●●

●

●

●●

●●

●
●

●

●

●●
●●●

●

●

●

●

●

●●

●

●●

●●

●●
●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●

●
●●
●●
●
●

●●●●

●●●●

●●●●

●●●●●●

●●●●

●●●

●

●
●●●

●●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●●●●

●●

●●

●●●

●
●
●

●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●●

●

●●

●

●●●
●

●●●●
●●●●●●●

●
●●●

●●●
●

●

●

●

●●

●●

●

●

●●

●

●●●●●●

●

●

●●

●

●

●●●

●●●

●

●

●●●●●●●

●●

●

●
●●

●

●

●●●

●●●

2 3 4 5

0
10

20
30

NOS

D
iff

er
en

ce
 o

f l
og

 o
f C

os
ts

(f)

Figure 4.26: JT cost distribution w.r.t. NOP: (a) Hugin, (b) SIIC, and (c) difference of SIIC and Hugin
(SIIC - Hugin); and w.r.t. NOS: (d) Hugin, (e) SIIC, and (f) difference of SIIC and Hugin. JT cost and
difference of cost increases with the increase in NOS and NOP.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 159

4.6.3 Effect of embedded objects on the performance

SIIC and SIIC# achieve no gain over Hugin in cases where the OOBNs have no embedded

objects (non-pure OOBNs). To illustrate how much the performance of SIIC degrades in case

of all OOBNs (i.e., both pure and non-pure OOBNs), Figure 4.27a shows the running time

difference between Hugin and SIIC for all OOBNs (whereNOC ≥ 0), while Figure 4.27b shows

this for pure OOBNs (where NOC > 0). For all OOBNs, the difference ranges from -2 to 4 with

a high frequency at 0, and for pure OOBNs, the range is from -2 to 6 with a high frequency

at 1 to 2. One point needs to be mentioned, namely, that the more positive the difference, the

better the performance of the SIIC algorithm is. Hence, in the case of pure OOBNs (OOBNs

with embedded objects where reusability can be introduced), SIIC performs better than Hugin

and better than models with non-pure OOBNs.

(a) (b)

Figure 4.27: Time difference of Hugin and SIIC (Hugin - SIIC) distribution for: (a) all OOBNs, (b) pure
OOBNs. Normal distributions are observed in both cases.

(a) (b)

Figure 4.28: Time difference of Hugin and SIIC# (Hugin - SIIC#) distribution for: (a) all OOBNs, (b)
Pure OOBNs. Normal distributions are observed in both cases.

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 160

Similarly, to illustrate the performance of SIIC# with and without embedded objects in a

class, Figure 4.28a plots the running time difference between Hugin and SIIC# for all OOBNs

(where NOC ≥ 0), while Figure 4.28b plots the time difference of Hugin and SIIC# for pure

OOBNs (where NOC > 0), respectively. Similar to the difference between Hugin and SIIC, the

more positive the difference between Hugin and SIIC#, the better the performance of SIIC#. In

both cases, the frequency of the time difference is more positive than negative. This implies

that SIIC# performs better than Hugin.

(a) (b)

(c) (d)

Figure 4.29: (a) NON vs average running time difference: (a) Hugin vs SIIC, (b) Hugin vs SIIC for
varying NOO, (c) varying NOS, (d) NON vs fitted (theoretical) values in Model 4 with various NOSs:
Hugin vs SIIC

Figures 4.29a, 4.29b and 4.29c illustrate the performance of the algorithms w.r.t. NON, NOO

and NOS. The figures plot the average values of the running time difference in the vertical axis.

The average running times are plotted against NON (Figure 4.29a). Results indicate that with

an increase in NON, the performance of SIIC improves. In figures 4.29b and 4.29c, the average

time difference is plotted against NON, but the points with different NOO and NOS values are

plotted in different colours. The plots signify that for higher NOO and NOS with increasing

NON, the performance of SIIC improves. This analysis is supported by the analysis performed

§4.6 Performance of Hugin, SIIC and SIIC# Algorithms 161

in Figure 4.29d which shows an increasing trend of fitted values (Model 4 of Table C.1) for

different NOS with increasing NOO.

An extensive analysis and comparison of the performance of the proposed algorithms is

included in Appendix C, Section C.2.2.

4.6.4 Summary of the experimentation

The three algorithms (Hugin, SIIC and SIIC#) did not successfully generate JTs for all OOBNs.

The most significant reasons behind the failure of the algorithms are (i) excessively big BN-

s/OOBN classes in terms of number of nodes, (2) large numbers of states per node and large

numbers of parents per node caused compilation to fail in compiling, and (3) repeated perfor-

mance of complex operations like triangulation, clique finding, and JT construction. Hugin’s

performance suffered from all of the aforementioned issues; SIIC avoided some of them and

SIIC# could avoid them more successfully than SIIC. In fact, SIIC# never suffered from the

third issue because of its ability to reuse JTs. Hence, the success of compilation should also

be considered as a performance factor, indicating that SIIC# performed better than SIIC. Ta-

ble 4.9 shows a summary of these experiments. It has two parts. The upper part contains the

statistics of the experimentation showing the total number of cases and configurations used in

the study. It shows the number and percentage of cases in which the algorithms ran or failed.

The lower part of the table compares the three algorithms (Hugin, SIIC, SIIC#) on their relative

performance against each other and shows the number and percentage of wins, losses and tied

outcomes for each. In order to make the comparisons statistically significant, the algorithms

were compared using the paired t-test for the four runs of each of the trialled and distinct

networks.

In order to run the experimentation, the total configurations were 1456 (as in Table 4.2) and

for each of the configurations, five OOBNs (a total of 7,280 OOBNs) were generated. Each of

the three algorithms (Hugin, SIIC and SIIC#) was tested four times on every single OOBN.

That means the experimentation was conducted on a total of 29,120 cases and produced the

following outcomes: In 51% of cases, Hugin failed to produce any JT, while SIIC and SIIC#

failed in 27% and 17% occasion, respectively. Therefore, to compare the performance further,

only the 14,060 cases where all three algorithms were able to generate a JT successfully were

considered.

It is worth noting that SIIC and SIIC# failed because Hugin failed to generate any JT for

the embedded objects in an OOBN class. Also, where the proposed algorithms for SIIC and

SIIC# were implemented to produce JTs without embedded objects, Hugin’s JT construction

was used. This was justified because SIIC and SIIC# can, in principle, construct JTs for classes

§4.7 Summary 162

with no embedded objects and no parent classes by using any traditional approach. So, using

Hugin, in this case, ensured that any traditional algorithm would work successfully within

SIIC and SIIC#. Also, note that the required running time of Hugin for creating the JTs for

embedded objects was taken into account in computing the running time of SIIC and SIIC#.

Table 4.9: Experimentation summary
Count %

Total Configurations 1456
Total OOBNs 7280
Total cases 29120
Hugin Fails 15060 51.72%
SIIC Fails 7899 27.13%
SIIC# Fails 4991 17.14%
All algo. Pass 14060 48.28%

t-test statistics
Total cases = 3515 (14060 / 4)

Hugin wins Hugin loses Tied
Hugin vs SIIC 312 8.88% 65 1.84% 3138 89.28%
Hugin vs SIIC# 4 0.11% 762 21.68% 2725 78.21%

SIIC wins SIIC loses Tied
SIIC vs SIIC# 0 0.00% 1151 32.75% 2340 67.26%

The detailed comparison on how many times Hugin wins and loses against SIIC and SIIC#,

how many times the algorithms tie, and how many times SIIC# outperforms SIIC, are listed, as

mentioned, in the lower part of the table, where it is clear that even if the 51% of times where

Hugin failed are ignored, SIIC# outperformed both Hugin and SIIC. The percentage of cases in

which Hugin outperformed SIIC is low, namely 8.88%. In computing the differences and their

significance, a "t-test" was used.

4.7 Summary

A new incremental compilation algorithm, SII compilation, has been proposed for OOBNs,

that, unlike previous methods, does not require transforming the OOBN into its underlying

BN. There are two kinds of reuse: (1) when compiling a subclass, to reuse the JT of its su-

perclass; and (2) when compiling a class with embedded objects, to reuse the JTs from those

objects. It has been proven that SIIC compilation produces a valid JT. The JT constructed from

the proposed SIIC algorithm may, and in examples to date tends to, contain larger cliques

in comparison to the cliques of existing approaches. Nevertheless, after the final thinning

step, an example showing that the resultant JT can be more compact has been shown, using

a JT-cost measure that captures the complexity of inference on that JT. A future plan is to ex-

plore whether further optimization can be done in the algorithm to reduce the clique sizes and

§4.7 Summary 163

whether there are theoretical results regarding the quality (the maximum number of branches)

of the resultant JT.

The extent to which the proposed incremental compilation algorithm reduces the compu-

tation obviously depends on the structures of the class being compiled and the classes of any

embedded objects, as well as the location, nature and extent of the modifications. Next, an

experimental analysis should be conducted across a range of real-world and synthetic classes

to explore what reductions can be achieved in practice. In sum, the proposed SIIC and SIIC#

algorithms were efficient in compiling complex and very large OOBNs with large numbers

of parents per node. Moreover, it was shown that Hugin (the most widely used, most sta-

ble commercial BN/OOBN modelling software) is not capable of compiling very complex and

large real-life models like the WGR (Western Grassland Reserve project) whereas both SIIC

and SIIC# were able to compile the whole project in a reasonable time.

Chapter 5

iOOBN (OOBN) Class Hierarchy
Learning

The automated learning of causal structures 1 from data has received attention from re-

searchers for decades [155]. Numerous algorithms have been proposed, and several ap-

proaches have been taken to learning the causal structures of BNs [154, 156]. However, to

our knowledge there has been no work done to date to develop a technique for fully auto-

mated structure learning for OOBNs, although Bangsø et al. [183] proposed a semi-automated

OOBN structure learning that relied on experts’ opinion or guidance. Some possible reasons

are that it is difficult to capture Object-Oriented notions from data and OOBNs are relatively

new and still not widely used. Inheritance, one of the most interesting and promising features

of OO, has not yet been defined well, nor practised enough in the OOBN paradigm.

With an increasing trend to model real-life large and complex problems using BNs, the

value of OOBNs is more in focus. In fact modellers are using OOBNs in most of the recent

modelling projects [18, 57, 93]. However, in spite of the massive interest in OOBNs, modellers

find it challenging to switch from traditional ordinary BNs to OOBNs. One of the biggest

challenges to switching is that of converting an on going and currently in use project that

was originally modelled in a BN into an OOBN model. Moreover, an OOBN system may

become large and complex to maintain if an inappropriate hierarchy is constructed or an initial

hierarchy has been extended by different people at different times.

These facts have motivated the learning of hierarchical relations between BNs or restruc-

turing the OOBN hierarchy by learning a new hierarchy from a set of OOBN classes. Hier-

archy learning is a step towards automated learning of OO models from data and provides

a novel approach to converting a BN repository into an OOBN repository. This thesis pro-

poses a supergraph-based hierarchy learning for OOBN classes. The algorithm converts or-

dinary BNs to OOBNs using some simple heuristics, and learns causal structures for iOOBN

classes from a constructed hierarchy (note that some classes are the original input classes that

1Causal structure is the graphical structure of a BN. It is one of the vital components of a BN. The remaining of
a BN are the parameters associated with the nodes and causal connections of the structure.

164

§5.1 Hierarchy of OOBN Classes 165

can be a class built by transforming a BN into the class, and some are inferred intermediate

classes) with maximum reusability of the existing/previously formed classes. The proposed

algorithm, however, proved suboptimal and deterministic. The efficiency of the algorithm is

tested against synthetic (randomly generated) hierarchies by empirical analysis.

5.1 Hierarchy of OOBN Classes

The concept of Hierarchy provides a great deal of meaningful information about a system.

Looking at the hierarchy of a system helps in understanding the whole system in a nutshell,

the properties of its various components, what comes before what, the level of components

and classes, and their similarities and differences. From the dawn of science, scientists have

been constructing hierarchies for groups of things such as animals (the animal taxonomy of

Aristotle), plants (plant taxonomy, i.e., Historia Plantarum by Theophrastus), objects, names,

values and people. The idea of taxonomy has migrated from the biological and natural sciences

to the contemporary sciences , for example, in Phylogenetic trees [218–222]; in Bio-informatics

and Dendrograms in the agglomerative clustering [223] used in Data Science. Inheritance and

hierarchy cover a vast area of computer science, especially software development, through the

use of object-orientation (OO).

OO and its features, especially inheritance, provide various facilities in developing large

complex systems. Inheritance reduces computation, reduces the effort to build a class by en-

abling reuse of existing resources (classes). It suggests a hierarchical structure where subclasses

derived from a class are placed as children of that class. However, hierarchy and inheritance

come with some inherent problems: for example, the Yo-Yo 2 problem [224], imperfect con-

struction of hierarchy, inappropriate use of inheritance, and inconsistencies that occur when a

group of people develop a system together.

Manually designing inheritance hierarchies to maximise factoring is very difficult, partic-

ularly if the system is large and has been built by different people. Even though a system may

be well designed initially, maintenance and evolution cause the hierarchy to degrade to below

standard [187]. To address these issues and resolve them, researchers have developed various

techniques such as the evolution of Inheritance hierarchy [187], the automatic restructuring of

hierarchy [188], the automatic inferring of inheritance [188–195], to mention some common in

the software development arena.

Motivated from software development, the iOOBN framework (proposed in Chapter 3),

for the first time allows the use of inheritance in an OOBN by constructing an inheritance
2The Yo-Yo problem is a special issue of the OO-paradigm where a designer has to work with a class whose

inheritance graph is very long and complicated. This requires the designer to keep flipping between many different
class definitions. One solution is to make class hierarchies shallow.

§5.2 Terminology 166

hierarchy of classes. Certainly, there is a very high risk that any iOOBN system will suffer

from the problems related to inheritance, outlined above. On the other hand, restructuring an

already built hierarchy and automated learning-building of hierarchies makes systems more

compact, improves consistency, and helps maintain the system with less effort and expense

[187]. Although there has been much interesting work done on causal structure learning for

BNs from data [150, 152, 225, 226], to the best of our knowledge, for OOBNs, there has been no

work on the automated learning of hierarchies or restructuring a hierarchy.

The merits of inheritance in the OO paradigm, the importance of hierarchy in better-

utilizing inheritance and managing OO-systems with inheritance, automated learning and the

restructuring of a previously built OO-system played an important role in designing and con-

ducting this research. Since iOOBNs support all the features of OOBNs along with some extra

facilities, this chapter describes the proposed algorithm of learning iOOBN class structures

from a set of BNs or a set of OOBN classes. The proposed approach converts a set of BNs to

some form of OOBN classes. The conversion is only done by marking interface nodes using

the basic properties of the OOBN input and output nodes. Finally, a hierarchy of the OOBN

classes is constructed making it possible to learn iOOBN classes from this hierarchy.

5.2 Terminology

This section contains some relevant terminologies and notations used to present the proposed

learning algorithm.

Any BN, OOBN class and iOOBN class, contains a DAG as one of its main components.

As discussed in the BN literature, the DAG is a graphical structure required to define the

dependency between standard (chance, decision and utility) nodes. OOBN classes and iOOBN

classes may also contain complex instance nodes that are replicas of another class. Hence, at its

deepest level, the whole class can be represented by a DAG with standard nodes and complex

instance nodes. When flattening is performed, the resultant class is a simple DAG with only

standard nodes and standard edges (causal edges, information and precedence links).

DEFINITION 5.1 : SUBGRAPH AND SUPERGRAPH

A graph G′ =< V ′,E′ > is a Supergraph of another graph G =< V,E >, iff V ⊆ V ′ and

E ⊆ E′ and denoted as G ⊆ G′. Note that G is called a subgraph of G′.

The DAGs also have a superDAG and sub-DAG relationship with the same properties as a

subgraph and a supergraph (see Definition 5.1). Figure 5.1 shows an example supergraph and

an example subgraph of a DAG.

In iOOBN, defining subclasses and the superclass of a class is allowed. Consequently,

§5.2 Terminology 167

DAG G

Food Locale

Meat

Metabolism

Milk Calves

Reproduction

DAG G

Food Locale

Meat

Metabolism

Milk Calves

Reproduction

Sub-graph of G

Food Locale

Meat

Metabolism

Milk

Sub-graph of G

Food Locale

Meat

Metabolism

Milk

Super-graph of G

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

Super-graph of G

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

Figure 5.1: An example supergraph and subgraph.

the subclass DAG and superclass DAG have a supergraph and subgraph relationship with

the DAG of the class in consideration. To check the subgraph and supergraph relationships

between graphs, isomorphism testing (an NP-complete task) needs to be done.

DEFINITION 5.2 : ISOMORPHISM

A graphG =< V,E > is isomorphic to a subgraph [227] of a graphG′ =< V ′,E′ > denoted

by G ≅ S′ ⊆ G′, if there exists a one-to-one function ϕ ∶ V → V ′ such that, for every pair

of vertices vi, vj ∈ V , if (vi → vj) ∈ E then (ϕ(ni) → ϕ(nj)) ∈ E′.

G’’

Castration

Strength

Locale
G’’

Castration

Strength

Locale
G’

Food Locale

Meat

Metabolism

Milk

G’

Food Locale

Meat

Metabolism

Milk

G

Meat

Metabolism

Food
Draft

S’

Figure 5.2: Example of subgraph isomorphism and non-isomorphism: G is a isomorphic subgraph of
G′ (since G = S′ and S′ ⊂ G′) and not a isomorphic subgraph of G" (Since, no subgraph of G" is equal to
G).

Figure 5.2 demonstrates subgraph isomorphism with examples. The DAG G shown in

the first slot is contained in the graph G′ shown in the next slot. Hence, G is an isomorphic

subgraph of G′. In the last slot, another graph G" is shown, which does not contain G as a

subgraph. Therefore, G is not an isomorphic subgraph of G".

DEFINITION 5.3 : COMMON SUBGRAPH

For a set of N graphs G = {G1, G2, ..., GN } where each graph Gi =< Vi,Ei >∈ G. The

common subgraph Gcom =< Vcom,Ecom > of the set of graphs G is a graph such that

Gcom ⊆ Gi for 1 ≤ i ≤ N . Vcom ⊂ V1⋂V2⋂ ...⋂VN and Ecom ⊂ E1⋂E2⋂ ...⋂EN .

§5.2 Terminology 168

DEFINITION 5.4 : RESIDUAL GRAPH

Given a set of N graphs G = {G1, G2, ..., GN } where Gi =< Vi,Ei > where i = 1,2, ...,N .

Let Gcom =< Vcom,Ecom > be the common subgraph of the set of graphs G. The graph

Gr
i = Gi ∖ Gcom is a residual graph of Gi with respect to Gcom where Gr

i =< V r
i ,E

r
i >,

V r
i = Vi ∖ Vcom and Er

i = Ei ∖Ecom.

In the proposed algorithm, all the nodes and edges in a graph are labelled with a unique

label associated with the graph. Hence, for a given graph, G =< V,E >, where V is a set of

Nodes and E is a set of Edges, each node v ∈ V and each edge e ∈ E has a label lab(G). The

associated label for a graphG can be obtained by a function, lab(G), that returns a unique label

for that graph.

CowFood Locale

Meat

Metabolism

CowFood Locale

Meat

Metabolism

MilkFood Locale

Meat

Metabolism

Milk

MilkFood Locale

Meat

Metabolism

Milk

FFood Locale

Meat

Metabolism

FFood Locale

Meat

Metabolism

MFood Locale

Meat

Metabolism

Milk

MFood Locale

Meat

Metabolism

Milk

F

F

F

F

F

F F

M

M

M
M

M

M

M

M

FMFood Locale

Meat

Metabolism

Milk

FMFood Locale

Meat

Metabolism

Milk

FM

FM

MFM

FM

FM

FMFM

M

M
(a) DAG of Cow class (b) Labelled DAG of Cow class

(c) DAG of Milk class (d) Labelled DAG of Milk class

 (e) Labelled super-graph of F & M

Figure 5.3: (a) A DAG of an OOBN class "Cow", (b) Labelled DAG of Cow class assuming the label
of Cow class is "F", (c) A DAG of an OOBN class "Milk", (d) Labelled DAG of Milk class assuming
the label of Milk class is "M", (e) Labelled superDAG of labelled "Cow" and "Milk" DAG

As an example, in Figure 5.3, (a) and (c) show the DAGs for "Cow" and "Milk Cow" classes,

respectively; (b) and (d) show the labelled version of the DAGs in (a) and (c), respectively. Part

(e) depicts a labelled supergraph of the graphs in (b) and (d).

The proposed algorithm forms a supergraph using all the graphs (DAGs) given as input.

To keep track of which node and which edge belongs to which DAG, each node and edge of a

DAG in the input is labelled with a unique label of the graph.

§5.2 Terminology 169

DEFINITION 5.5 : MAXIMAL PROPER SUBSET

Let S be a set of subsets. Lc ∈ S is a maximal proper subset of L ∈ S iff Lc ⊂ L and there

exists no label L′ ∈ S where Lc ⊂ L′ and L′ ⊂ L.

As an example, if the set of subsets S = {abcde, abc, ab, a, de, cde}, then abc and cde are two

Maximal proper subsets of abcde.

DEFINITION 5.6 : MAXIMAL COMMON SUBGRAPH

For a set of N graphs G = {G1, G2, ..., GN } where each graph Gi =< Vi,Ei >∈ G. The

maximal common subgraph Gmc =< Vmc,Emc > of the set of graphs G is a graph such

that Gmc ⊆ Gi for 1 ≤ i ≤ N . Vmc = V1⋂V2⋂ ...⋂VN and Emc = E1⋂E2⋂ ...⋂EN .

DEFINITION 5.7 : HIERARCHY TREE

⊺ = < N ,E > is a Hierarchy Tree whereN is a set of DAGs and E is a set of edges between

the DAGs such that

1. ⊺ is a tree

2. For every edge (D′ →D) ∈ E , D′ ⊂D where D,D′ ∈ N

DEFINITION 5.8 : LABEL HIERARCHY TREE

Label Hierarchy Tree T = < N,E > is a 2-tuple, where N is a set of subsets of labels, E

is a set of Edges, and for each edge (u → v) ∈ E, where u, v ∈ N , v is a maximal proper

subset of u. As T is a tree, u is the parent of v and denoted as u= P(v).

The proposed algorithm constructs a labelled hierarchy tree where each node in the tree

has a unique label. A node is said to be a parent of another node (if there is any) if the label

of the latter node is a maximal proper subset of the former one. The algorithm also constructs

a hierarchy tree where each node of the tree contains a DAG, and the DAG is the maximal

common subgraph of its children DAGs.

Following are some terms defined for finding an optimized hierarchy tree that maximises

reusability and minimises construction cost. Although the main terms are "reusability" and

"construction cost", other terms are required to compute them. Some of the terms, defined in

Section 5.5.2, are used for evaluating the efficacy of a constructed hierarchy. Those terms are

extensions of the following terms, obtained by necessary modifications for comparing various

hierarchy trees.

§5.2 Terminology 170

DEFINITION 5.9 : DERIVING A GRAPH

Given a hierarchy tree, ⊺ = < N ,E > (Definition 5.7) and a DAG D, D is derived from ⊺
if there exists D′ ∈ N such that D′ ⊆D. In other words, D can be constructed by adding

some nodes or edges to D′.

DEFINITION 5.10 : SIZE OF A GRAPH

Let G =< V,E > be a graph where V is the set of nodes and E is the set of edges. The

size of the graph G is the sum of the number of nodes and number of edges in G and

denoted as ∣G∣ = ∣V ∣ + ∣E∣.

DEFINITION 5.11 : DERIVATION COST

Given a hierarchy tree, ⊺ = < N ,E > (Definition 5.7), a graph G is derived from ⊺ and

D ⊆ G where D is a DAG and D ∈ N .

The Derivation cost of G with respect to the DAG D is

δ(G,D) = ∣G∣ − ∣D∣

The derivation cost of G with respect to the hierarchy tree ⊺ is,

δT (G,⊺) = min
D∈N

δ(G,D)

DEFINITION 5.12 : ADDING A CHILD DAG TO A HIERARCHY

Let ⊺ = < N ,E > be a hierarchy tree constructed by the proposed learning algorithm.

Child-adding is the procedure of adding a DAG C to the hierarchy tree before adding

C, i.e., ⊺′ = < N ∖C, E ∖ e > in order to construct ⊺, where e = u→ C, u ∈ N ∖C.

DEFINITION 5.13 : CHILD-ADDING COST

Let a hierarchy tree ⊺ = < N ,E > be obtained by adding a child DAG C (Definition 5.12).

The child-adding cost of C, to obtain ⊺, is the derivation cost of C with respect to ⊺′ (⊺
before adding C). It is denoted as,

χ(C,⊺) = min
D∈N ′

δ(C,D)

§5.2 Terminology 171

DEFINITION 5.14 : HIERARCHY CONSTRUCTION COST

Let, ⊺ = < N ,E > be a hierarchy tree. The construction cost of ⊺ is,

Cost(⊺) = ∑
D∈N

χ(D,⊺)

In other words, starting with an empty hierarchy tree, the cost required to add all the

DAGs needed in order to construct the hierarchy tree is called the hierarchy construc-

tion cost.

As an example, in a hierarchy tree, constructed by the proposed learning algorithm, the

root graph, say G, has a child-adding cost of ∣G∣. That is, all the nodes and edges of G need to

be added in the hierarchy tree. Suppose another graph G′ is added as a child node of G in the

hierarchy tree, then the child-adding cost of G′ is ∣G′ −G∣.
One of the prime reasons for adapting OO-features is the reuse of existing components.

Inheritance provides maximal reuse if classes are extended in a well-organized manner. Inher-

itance allows constructing a hierarchy of a set of classes based on the subgraph–supergraph

relationships among the classes. Assessing such hierarchies can be performed based on the

number of reused components in the overall hierarchy. In Definition 5.15, such a measure is

defined.
DEFINITION 5.15 : REUSABILITY

For a hierarchy tree, ⊺ = < N ,E > (Definition 5.7), the reusability in deriving the set of

DAGs G = {G1,G2, ...,GN } is,

ρ(⊺,G) =
N

∑
i=1

∣Gi∣ − (Cost(⊺) +
N

∑
i=1
δT (Gi,⊺))

DEFINITION 5.16 : REUSABILITY OF HIERARCHY FOREST

Given a set of DAGs G = {G1,G2, ...,GN } and a set of z hierarchy trees (aka a hierarchy

forest), HF = {⊺1, ⊺2, ..., ⊺z}, constructed using the proposed learning algorithm, the

reusability of HF is,

ρ(HF) =
z

∑
i=1
ρ(⊺i,Gi)

where Gi is a group of graphs obtained from G having a non-empty maximal common

subgraph, and Gi ⊆ G.

Measures of reusability, derivation cost and hierarchy tree construction cost are extended

in Definition 5.19 to compare the performance of the proposed algorithm with a synthetic

§5.3 Converting BNs to OOBN Classes 172

hierarchy. The ratio is taken to get a normalized derivation and construction cost. This measure

plays a significant role in providing a fair comparison ground for evaluating and comparing

the proposed hierarchy learning algorithm with synthetic hierarchies.

5.3 Converting BNs to OOBN Classes

If the target is that of learning OOBN or iOOBN classes from data using the proposed learn-

ing algorithm, a set of BNs from some datasets needs to be learned using any of the existing

causal structure learning approaches, such as CaMML [150]. Then the set of BNs needs to be

converted to a set of OOBN classes. Some simple heuristics have been used to convert BNs

into OOBN classes.

Heuristic 3. A set of nodes in a BN, having no parent nodes, forms a set of input nodes in the converted

OOBN class.

ALGORITHM 5.1 (FIND INPUT NODES)

Call : FindInputNodes(DAG) → InputNodes

Input: DAG: a Directed Acyclic Graph

Output: InputNodes: a set of input nodes

1 begin

2 InputNodes← ∅
3 V ← NodesInDAG(DAG)

4 // Heuristic : node with no parent is an input node

5 foreach v ∈ V do

6 if v.par == ∅ then

7 InputNodes← InputNodes ⋃ v

8 return InputNodes

Algorithm 5.1 finds a set of potential nodes using Heuristic 3: those could be marked as

input nodes in the converted OOBN class without breaking the properties of an OOBN class.

Heuristic 4. A set of nodes in a BN, having no child nodes, forms a set of output nodes in the converted

OOBN class.

Heuristic 4 is used in Algorithm 5.2 to find a set of potential nodes of a BN to use them

as output nodes in the converted OOBN class, and it does not violate any of the properties of

OOBN classes.

§5.3 Converting BNs to OOBN Classes 173

ALGORITHM 5.2 (FIND OUTPUT NODES)

Call : FindOutputNodes(DAG) → OutputNodes

Input: DAG: a Directed Acyclic Graph

Output: OutputNodes: a set of Output nodes

1 begin

2 OutputNodes← ∅
3 V ← NodesInDAG(DAG)

4 foreach v ∈ V do

5 // Heuristic : node with no child is an output node

6 if v.child == ∅ then

7 OutputNodes← OutputNodes ⋃ v

8 return OutputNodes

Finally, Algorithm 5.3 converts a set of BNs to a set of OOBN classes by marking the input

and output nodes of each BN using Algorithm 5.1 and Algorithm 5.2. The set of OOBNs,

found from a set of BNs using Algorithm 5.3, could be used to build a hierarchy tree and learn

iOOBN structures.

Note that Heuristic 4 has some limitations if applied in real-life applications. In particular,

from the definition of OOBNs and iOOBNs, it is quite obvious that a node that has no children

nodes in an OOBN may not be an output node. Even in some real-life real-world problems

considered in this thesis (e.g., in the DOOBNs of the WGR [3, 57] project and the example

OOBNs revisited in Section 3.4 of Chapter 3), this limitation of Heuristic 4 is evident.

ALGORITHM 5.3 (CONVERTING BNS TO OOBNS)

Call : ConvertBNsToOOBNs(BNs) → OOBNStrucs

Input: BNs: a set of BNs

Output: OOBNStrucs: a set of OOBN class structures

1 begin

2 DAGs ← extractDAGs(BNs)

3 foreach DAG ∈DAGs do

4 OOBNStruc.In← FindInputNodes(DAG)
5 OOBNStruc.Out← FindOutputNodes(DAG)
6 OOBNStrucs← OOBNStrucs ⋃ OOBNStruc

7 return OOBNStrucs

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 174

5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of

OOBN Classes

The proposed class hierarchy learning method consists of the following three steps:

1. Construct a supergraph: Taking a set of OOBN classes as input, extract a set of DAGs,

then build a supergraph by amalgamating all the DAGs.

2. Construct a label-hierarchy tree: a tree that represents multiple alternative consistent

OOBN class hierarchies, constructed from the set of unique labels of the nodes and edges

of the supergraph.

3. Construct an OOBN class hierarchy: by traversing the label-hierarchy tree, construct a

class hierarchy using the derivation cost to choose which class to extend.

In the following subsections, each of the above-mentioned steps are described in some de-

tail and algorithms are presented in detail with pseudo code for all the steps. The mechanism

of the algorithm is also illustrated throughout with a simple example (the Cow example, as

used in [201]), and illustrated in Figure 5.6.

5.4.1 Step 1: Construction of supergraph from a set of OOBN classes

Let there be a set of t input OOBN classes C1,C2, ...,Ct where Ci =< Ni,Oi,Ei,Πi > and each

node nj ∈ Ni, each object ok ∈ Oi, each edge el ∈ Ei has the label lab(Ci), i.e., lab(Ci) is consid-

ered as a unique identifier for Ci and the DAG associated with Ci. This identifier can be a any

valid string such as number, letter, or name.

ALGORITHM 5.4 (CONSTRUCTION OF A SUPERGRAPH OF A SET DAGS (STEP 1))

Call : Construct_SuperGraph(dAGSet) → Gs

Input: dAGSet: a set of DAGs, DAG1,DAG2, ...,DAGt

Output: Gs: A supergraph

1 begin

2 // Construct a supergraph

3 Gs ← < ∅,∅ >
4 foreach DAG ∈ dAGSet do

5 Gs ← Accumulate(Gs, DAG)

6 return Gs

A supergraph is constructed from the set of t DAGs of the aforementioned OOBN classes.

Each of the nodes, objects and edges of the supergraph contain a set of labels of the classes

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 175

that contain the node, the object or the edge. The nodes and objects of a class form the set of

vertices for the DAG and the edges of the class constitute the edges of the DAG. Algorithm 5.4

takes a set of OOBN classes as input and constructs a supergraph by amalgamating the DAGs

of the classes, one by one, using Algorithm 5.5.

ALGORITHM 5.5 (ACCUMULATE DAG TO SUPERGRAPH)

Call : Accumulate(Gs, DAG) → Gs

Input: DAG =< V,E > : a set of labelled nodes and a set of labelled directed non-cyclic

edges

Gs =< Vs,Es > : a supergraph

Output: Gs =< Vs,Es > : the accumulated supergraph

1 begin

2 foreach v ∈ V do

3 flagFound← False

4 foreach v′ ∈ Vs do

5 if v == v′ then

6 v′.label ← v′.label ⋃ v.label
7 flagFound← True

8 break

9 if flagFound == False then

10 Vs ← Vs ⋃ v

11 foreach e ∈ E do

12 flagFound← False

13 foreach e′ ∈ Es do

14 if e == e′ then

15 e′.label ← e′.label ⋃ e.label
16 flagFound← True

17 break

18 if flagFound == False then

19 Es ← Es ⋃ e

20 return Gs

To be more specific, a supergraph is constructed by accumulating each DAG of the classes.

Initially, it begins with an empty supergraph, Gs = < Ns,Es > where Ns = ∅,Es = ∅. Then

for the DAG, G1 associated with C1 is added in Gs. The resulting graph Gs =< Ns,Es >
where Ns = N1,Es = E1, and each node in Ns and each edge in Es has a label 1. Now,

for G2 =< N2,E2 > of C2, each node of N2 and each edge of E2 is added in Gs. If any

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 176

node or edge does not exist in Gs, they are added with label 2; otherwise, label ‘2’ is

appended with the previous label of the nodes and edges. This results in a supergraph,

Gs =< N1⋃N2,E1⋃E2 >. In the same way, all the DAGs are added which then turns into

a supergraph, Gs =< N1⋃N2⋃ ...⋃Nt,E1⋃E2⋃ ...⋃Et >.

5.4.2 Step 2: Construction of a hierarchy tree

The second step in the method involves constructing a hierarchy tree that represents the

subgraph–supergraph relationship among the underlying DAGs of a set of OOBN classes.

Checking for the subgraph requires a subgraph isomorphism check, which is an asymptoti-

cally complex and expensive task. Fortunately, in any OOBN class, the node names, object

names, and the edge labels are unique. This fact simplifies the subgraph isomorphism check-

ing and makes it a linear-time operation.

This supergraph is used in finding the hierarchy of the OOBNs. The edges and nodes,

having the same set of labels, form a particular DAG of an OOBN class. Another OOBN class

is called a child class of the former OOBN class if formed by edges and nodes having a subset

of the former label.

Hence, to construct the hierarchy, the unique sets of labels are collected from the super-

graph’s nodes and edges (as shown in Algorithm 5.6). The set of labels is used to construct a

tree structure where each node is a set of labels; its ancestor is a superset of the label, and its

descendants are subsets of the label. In Algorithm 5.8, a set of labels is taken as input. The

labels are lexicographically sorted and mapped by their length. In the map, all size one sets

are put into a list mapped with 1; size two sets are mapped with 2 and so on. This procedure

is shown in Algorithm 5.7.

The map facilitates the construction of the hierarchy smoothly and efficiently because the

search space of superset–subset finding is clustered and subdivided. For a set of size i (starting

with 1), in order to find its parent in the hierarchy tree, all sets of size i+1 to n are checked as to

whether there exists any set for which the size i set is a subset. The algorithm stops as soon as it

obtains an aforementioned superset. If such a set is not found, an empty set∅ is assigned as the

parent of the set. A set of such nodes with a maximal proper subset and superset relationship

inherently captures a tree structure rooted at ∅.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 177

ALGORITHM 5.6 (EXTRACTING THE SET OF LABELS)

Call : Extract_LabelSet(Gs) → labSet

Input: Gs: a supergraph

Output: labSet: a set of labels

1 begin

2 labSet ← ∅
3 Vs ← NodesInDAG(Gs)

4 Es ← EdgesInDAG(Gs)

5 foreach node v ∈ Vs do

6 l ← v.label

7 if l /∈ labSet then

8 labSet ← Add(labSet, l)

9 foreach edge e ∈ Es do

10 l ← e.label

11 if l /∈ labSet then

12 labSet ← Add(labSet, l)

13 labSet ← Lexicographical_Sort(labSet)

14 return labSet

ALGORITHM 5.7 (MAP LABELS TO SIZE)

Call : MapLabelSetsToSize(labSet) →MAP < Size,LabelSets >
Input: labSet: a set of subsets of labels

Output: MAP < Size,LabelSets >: A data structure that maps a list of labels w.r.t. their

size

1 begin

2 Map < Size,LabelSets > ← < ∅,{} >
3 foreach label ∈ labSet do

4 s ← size(label)

5 if s ∈Map.keys() then

6 Map[s] ←Map[s] ⋃ label

7 else

8 Map ←Map ⋃ < s, label >

9 return Map < Size,LabelSets >

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 178

ALGORITHM 5.8 (LABEL HIERARCHY CONSTRUCTION (STEP 2))

Call : Construct_Label_Hierarchy(labSet) → T
Input: labSet: a set of subset of labels

Output: T : A label hierarchy tree, T = < V,E >
1 begin

2 Map < Size,LabSets > = MapLabelSetsToSize(labSet)

3 T = < V = ∅,E = ∅ >
4 // Assuming the map has keys in increasing order

5 minS = min(Map.keys())
6 maxS = max(Map.keys())
7 for (cSize =minS; cSize ≤maxS; cSize ++) do

8 if cSize ∈Map.keys() then

9 cSizeLabSet =Map.get(cSize)
10 foreach lab ∈ cSizeLabSet do

11 T .V = T .addNode(lab)

12 for (nSize = cSize+1; nSize ≤maxS; nSize++) do

13 if nSize ∈Map.keys() then

14 nSizeLabSet =Map.get(nSize)
15 flagMPS = False

16 foreach nLab ∈ nSizeLabSet do

17 if lab ⊂ nLab then

18 T .V = T .addNode(nLab)

19 T .E = T .addEdge(nLab→ lab)

20 flagMPS = True

21 if flagMPS == True then

22 break

23 return T

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 179

5.4.3 Step 3: Constructing an iOOBN class hierarchy from the hierarchy tree

In this step, a method is presented for extracting a consistent iOOBN class hierarchy from the

hierarchy tree, where each class in that hierarchy is either one of the original OOBN classes, or

it is a new inferred class.

Algorithm 5.9 constructs a class hierarchy tree (a single-parent hierarchy tree) from the la-

bel hierarchy tree (a multi-parent hierarchy tree) by considering maximum reuse (minimum

construction and derivation cost). Note that in the iOOBN framework, as proposed in Chap-

ter 3, multiple class inheritance is not allowed. Hence, a single, best inheritance with maximum

reuse (and the minimum derivation cost , δT (G,⊺)) is chosen here. It uses the formula given in

Definition 5.15 to calculate reusability and only keeps a parent with the maximum reusability

among all parents of any node in the multi-parent tree.

ALGORITHM 5.9 (CLASS HIERARCHY CONSTRUCTION (STEP 3))

Call : Construct_Hierarchy_SingleParent(T) → HT

Input: HT : a multi-parent label hierarchy, T = < V,E >
Input: Gs: a supergraph of a set of graphs

Output: HT : A hierarchy tree, ⊺ = < N ,E >
1 begin

2 V = DFS_ordered_Nodes(V)

3 HT ← < N = ∅, E = ∅, L = V >
4 foreach node v ∈ V do

5 minDeriveCost ← 0

6 minCostParent ← ∅
7 chDAG← FormOODAG(Gs, v)
8 HT.N ←HT.addNode(chDAG)
9 foreach edge (u → v) ∈ E do

10 parDAG← FormOODAG(Gs, u)
11 derivCost ← δ(parDAG, chDAG)
12 if minDeriveCost > derivCost then

13 HT.E = HT .removeEdge(minCostParent→ v) // remove prev. max

edge

14 minDeriveCost ← derivCost

15 minCostParent ← u

16 HT.E = HT .addEdge(u→ v) // add current max edge

17 return HT

An OOBN class C is constructed from each of the nodes of the label hierarchy tree. It is a

DAG derived from the supergraph, Gs, say with label L. Any class C′, derived from Gs using

a set of labels L′ ⊂ L which is found in one of the descendant nodes of Ndesc ≻ N in the tree,

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 180

is a subclass of C, denoted as C′ ⊂ C. Algorithm 5.10 depicts all the actions required to derive

a DAG from the supergraph for a particular label set L obtained from the hierarchy tree. It

derives a DAG for any node in the hierarchy tree with label set L by finding the nodes and

edges in the supergraph with a label set of L or a superset of L. These DAGs are used to form

OOBN classes later. For each of the nodes of the hierarchy tree, an OOBN class is constructed

using Algorithm 5.11. This algorithm traverses the hierarchy tree ⊺ in a DFS (Depth-First

Search) manner. While traversing nodes in each level of the tree, it forms DAGs for the children

nodes of the nodes in the current level. This strategy makes future reuse of components easy.

ALGORITHM 5.10 (FORM OODAG)

Call : FormOODAG(Gs, L) → OODAG

Input: Gs: a supergraph of a set of BNs

Input: L: label

Output: OODAG: an OODAG

1 begin

2 OON ← ∅
3 OOE ← ∅
4 Vs ← NodesInDAG(Gs)

5 Es ← EdgesInDAG(Gs)

6 foreach node v ∈ Vs do

7 if L ⊆ v.label then

8 OON ← OON ⋃ v

9 foreach edge e ∈ Es do

10 if L ⊆ e.label then

11 OOE ← OOE ⋃ e

12 OODAG ← < OON,OOE >
13 return OODAG

In an iOOBN, extending subclasses from a class is allowed. As to which class should be

used to derive/extend which class with maximum reusability, this kind of information can be

easily derived while traversing the hierarchy tree to form OODAGs. If an OODAG is formed

using a node in the tree, then the OODAG structure can be reused to form OODAGs for the

children nodes of the node in the tree.

Algorithm 5.12 forms OOBN class structures for the DAGs constructed in the algorithms

described previously. The formation of an OOBN structure is straightforward. It follows

Heuristic 3 and Heuristic 4 in order to find nodes in DAGs without parent nodes or child

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 181

ALGORITHM 5.11 (CONSTRUCT ALL OODAGS)

Call : Construct_OODAGs(Gs, HT) → OODAG

Input: Gs: a supergraph of a set of BN

Input: HT : hierarchy tree, < N ,E , L >
Output: OODAGs: a set of DAGs of OOBN classes

1 begin

2 // find root of Hierarchy Tree

3 nroot ← ∅
4 foreach n ∈HT.N do

5 // root node has no parent

6 if P(n) == ∅ then

7 nroot ← n

8 break

9 QN ← nroot // traversing the tree by looking for child nodes of root

10 while QN ≠ ∅ do

11 nroot ← QN .serve()
12 foreach n ∈HT.N do

13 if P(n) == nroot then

14 oodag ← FormOODAG(Gs, Ln)
15 OODAGs← OODAGs ⋃ oodag

16 return OODAGs

ALGORITHM 5.12 (MAKING AN OOBN STRUCTURE)

Call : Make_OOBN_Structure(DAGs) → OOBNStrucs

Input: DAGs: a set of DAGs of OOBN classes

Output: OOBNStrucs: a set of OOBN class structures

1 begin

2 foreach DAG ∈DAGs do

3 tempStruc.In← FindInputNodes(DAG)
4 tempStruc.Out← FindOutputNodes(DAG)
5 OOBNStrucs← OOBNStrucs ⋃ tempStruc

6 return OOBNStruc

nodes, then marks them as input and output nodes accordingly. Though these heuristics may

not cover all the input and output nodes of a valid OOBN classes, more sophisticated heuristics

and expert elicitation may help to work them out more effectively.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 182

ALGORITHM 5.13 (CONSTRUCT DAGS FROM OOBN CLASSES)

Call : constructDAGsOOBNs(OOBNs) → dAGSet

Input: OOBNs: a set of OOBN classes

Output: DAGSet: a set of DAGs

1 begin

2 DAGSet← ∅ // a set of DAGs

3 foreach class C ∈ OOBNs do

4 dag ← ∅ // a DAG, dag =< V,E >
5 dag.v ← C.N ⋃ C.O // C.N = set of nodes in C,

6 // C.O = a set of objects/instance nodes in C

7 dag.e← C.Ec ⋃ C.Er // C.Ec = set of causal edges in C,

8 // C.Er = a set of referential edgesin C

9 DAGSet ← DAGSet ⋃ dag

10 return DAGSet

ALGORITHM 5.14 (LEARNING IOOBN)

Call : Learn_iOOBN (BNs) → OOBNs

Input: BNs: a set of BNs

Output: OOBNs: a set of iOOBN classes

1 begin

2 OOBNs← ConvertBNsToOOBNs(BNs)

3 dAGSet← constructDAGsOOBNs(OOBNs)

4 Gs ← Construct_SuperGraph(dAGSet)

5 labSet ← Extract_labelSet(Gs)

6 HT ← Construct_Hierarchy(labSet)

7 OODAGs ← Construct_OODAGs(Gs, HT)

8 OOBNStruc ←Make_OOBN_Structure(OODAGs)

9 return OOBNs

Algorithm 5.14 describes all the elementary steps and flow of the whole iOOBN learning

algorithm. If there is a set of BNs, then the whole procedure of the algorithm can be executed.

If a set of OOBNs is available, the first line of the algorithm can be ignored, and the algorithm

starts from constructing DAGs from a set of OOBNs using function "constructDAGsOOBNs()"

that takes a set of OOBN classes and constructs a set of DAGs. This function considers the

objects/instances as simple nodes, ignoring the complex and embedded structures in them.

Indeed, this is a limitation of the current version of the algorithm. However, if an efficient

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 183

algorithm can be devised that can consider the embedded complex structures then replacing

this function would mitigate the limitation. One such approach could be flattening the OOBNs

first before using the classes as OOBN and then collapsing (an imaginary inverse operation of

flattening) after the algorithm finishes execution. Along with the above pseudo codes, fig-

ures 5.4 and 5.5 show the flow diagrams of the proposed learning algorithm to explain the

whole procedure.

Theorem 2. Given a set of DAGs G = {G1, G2, ..., GN }

1. Algorithm 5.9, produces a Hierarchy Tree ⊺ =< N ,E >

2. Every Gi ∈ G is derived from ⊺

3. The root node of ⊺ is G1⋂G2⋂ ...⋂GN

4. For every node, D ∈ N there exists Gi1 ,Gi2 , ...,Gim such that D =
m

⋂
k=1

Gik
, where ik ∈ {1, ...,N}

and k = 1, ...,m.

Proof: Suppose the learning algorithm takes a set of N DAGs G = {G1,G2, ...,GN} and

construct a hierarchy tree ⊺ =< N ,E >.

1. ⊺ has a set of nodes, and the nodes are connected via a set of edges. There is no cycle in

⊺ as the algorithm starts with a root node in level 0, and in level 1, it generates children

nodes of the root node. In the next level (2nd level), it finds the children nodes of these

nodes and so on. Hence, the nodes expand to next level children nodes, and the tree

grows downward. Hence, there is no chance to add a cycle. The algorithm chooses a

single parent from a list of potential parents with the maximum similarity or minimum

derivation cost. Thus, each node has exactly one parent in ⊺, the exception being the

root node that has 0 parents.

2. All the input DAGs to the algorithm have at least one non-empty subgraph in ⊺ because

from root to leaves, all the nodes in any level are constructed based on the maximal com-

mon subgraphs among a group of graphs in that level. Hence, by adding the required

nodes and edges to a most suitable (least derivation cost) graph in the tree ⊺, any input

graph can be derived.

3. The algorithm takes the maximal common subgraph of all input DAGs to find the root

graph in the tree. If the maximal common graph is empty, then it finds z groups of graphs

from N graphs. In each of the groups, there is at least a maximal common subgraph

Gmc with ∣Gmc∣ ≥ 1. These z maximal common subgraphs form z root nodes for the

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 184

Super-graph Construction
A set of N OOBN DAG with

unique identifiers G1, G2, …, GN

I = 1

Take DAG GI = <VI, EI>

VI = {v1I, v2I, … vmI}

EI = {e1I, e2I, … enI}

J = 1

Super Graph Gs = <Vs, Es>

Vs = {}

Es = {}

Take Node vJ

Does vJ exist

 in Vs?

Yes

No

Append the label ‘I’

to the node in Vs

Append the node vJ

in Vs with label ‘I’

J = J + 1

J > m?

No

J = 1

Take Node eJ

Does eJ

exist in Es?

yes

No

Append the label ‘I’

to the node in Es

Append the node eJ

in Es with label ‘I’

J = J + 1

J > n?

No

I > N?

Yes

Yes

I = I + 1

No

Yes

Return

Super Graph Gs = <Vs, Es>

Learning Hierarchy
A set of N OOBN DAG with

unique identifiers G1, G2, …, GN

I = 1

CurLabel = Ith label in LabelSet

J = I + 1

LabelSet = SortOnLength(LabelSet)

TempLab = Jth label in LabelSet

Construct Super Graph

Gs = <Vs, Es>

Tree = {V | V = <Label, MaximalSubsets>}

Label = {LI | 1 ≤ I ≤ N, LI an identifier of graph GI}

LabelSet = Labels(Vs) U Labels(Es)

 = L1, L2, ...Lx

Return Tree

 Is TempLab
a subset of
CurLabel ?

Append Vcur in

Tree

Vcur = <CurLabel,

MaxSub>

Append TempLab in

MaxSub

Is TempLab a
subset of any of the
labels in MaxSub?

MaxSub = {}

J = J + 1

J > Size of

LabelSet?

I > Size of

LabelSet?

I = I + 1

Yes

Yes

Yes

Yes

No

No

No

No

Random Hierarchy Generation
1) A Root OOBN DAG

G = <V, E, DT, NInc, Einc, Level, Par>

2) MaxChild per OOBN

3) Max Level per branch

4) NInc : Increment of Nodes

5) EInc : Increment of edgea

6) DT : Density threshold of Graph

7) Dev: Deviation of Density

Append G in Q

G.Level = 0 G.Par = {}

G.NInc = NInc G.VInc = EInc

NumChild = random(0,

MaxChild)

I = 1

I >

NumChild?

Yes

No

CG = Extend(G)

I = I + 1

|CG.DT – DT|

> Dev

CG.NInc = (G.NInc + CG.DT – DT) * |CG.V|

CG.EInc = (G.EInc + CG.DT – DT) * |CG.E|

Tree = {}

Q = {}

G = Q.pop()

Q is empty?

Append CG in Q

Append CG in T

G.level >=

MaxLevel?

Yes

No

No

NoYes

Return Tree
Yes

CG.Par = G

CG.Level = G.Level + 1

Extending a DAG

G: A graph to extend

G = <V, E, DT, NInc, Einc, Level, Par>

NodeToAdd = Random(0, G.NInc)

EdgeToAdd = Random(0, G.EInc)

CG = Copy of G

CG = AddRandomNodes(CG)

PotEdges = Find possible DAG edges (CG)

EdgeToAdd <

PotEdges?

Add ‘EdgeToAdd’ num. of randomly

selected edges from PotEdges to CG

Add all PotEdges to

CG

Return CG

Figure 5.4: Flowchart of the supergraph construction technique

set of z hierarchy trees. If in a group, there are 1 ≤ m ≤ N number of graphs, then a

maximal common subgraph for that group is Gmc =
m

⋂
k=1

Gik
where ik ∈ {1, ...,N} and

k = 1, ...,m. Hence, if the N input graphs form a single root node then the maximal

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 185

Super-graph Construction
A set of N OOBN DAG with

unique identifiers G1, G2, …, GN

I = 1

Take DAG GI = <VI, EI>

VI = {v1I, v2I, … vmI}

EI = {e1I, e2I, … enI}

J = 1

Super Graph Gs = <Vs, Es>

Vs = {}

Es = {}

Take Node vJ

Does vJ exist

 in Vs?

Yes

No

Append the label ‘I’

to the node in Vs

Append the node vJ

in Vs with label ‘I’

J = J + 1

J > m?

No

J = 1

Take Node eJ

Does eJ

exist in Es?

yes

No

Append the label ‘I’

to the node in Es

Append the node eJ

in Es with label ‘I’

J = J + 1

J > n?

No

I > N?

Yes

Yes

I = I + 1

No

Yes

Return

Super Graph Gs = <Vs, Es>

Learning Hierarchy
A set of N OOBN DAG with

unique identifiers G1, G2, …, GN

I = 1

CurLabel = Ith label in LabelSet

J = I + 1

LabelSet = SortOnLength(LabelSet)

TempLab = Jth label in LabelSet

Construct Super Graph

Gs = <Vs, Es>

Tree = {V | V = <Label, MaximalSubsets>}

Label = {LI | 1 ≤ I ≤ N, LI an identifier of graph GI}

LabelSet = Labels(Vs) U Labels(Es)

 = L1, L2, ...Lx

Return Tree

 Is TempLab
a subset of
CurLabel ?

Append Vcur in

Tree

Vcur = <CurLabel,

MaxSub>

Append TempLab in

MaxSub

Is TempLab a
subset of any of the
labels in MaxSub?

MaxSub = {}

J = J + 1

J > Size of

LabelSet?

I > Size of

LabelSet?

I = I + 1

Yes

Yes

Yes

Yes

No

No

No

No

Random Hierarchy Generation
1) A Root OOBN DAG

G = <V, E, DT, NInc, Einc, Level, Par>

2) MaxChild per OOBN

3) Max Level per branch

4) NInc : Increment of Nodes

5) EInc : Increment of edgea

6) DT : Density threshold of Graph

7) Dev: Deviation of Density

Append G in Q

G.Level = 0 G.Par = {}

G.NInc = NInc G.VInc = EInc

NumChild = random(0,

MaxChild)

I = 1

I >

NumChild?

Yes

No

CG = Extend(G)

I = I + 1

|CG.DT – DT|

> Dev

CG.NInc = (G.NInc + CG.DT – DT) * |CG.V|

CG.EInc = (G.EInc + CG.DT – DT) * |CG.E|

Tree = {}

Q = {}

G = Q.pop()

Q is empty?

Append CG in Q

Append CG in T

G.level >=

MaxLevel?

Yes

No

No

NoYes

Return Tree
Yes

CG.Par = G

CG.Level = G.Level + 1

Extending a DAG

G: A graph to extend

G = <V, E, DT, NInc, Einc, Level, Par>

NodeToAdd = Random(0, G.NInc)

EdgeToAdd = Random(0, G.EInc)

CG = Copy of G

CG = AddRandomNodes(CG)

PotEdges = Find possible DAG edges (CG)

EdgeToAdd <

PotEdges?

Add ‘EdgeToAdd’ num. of randomly

selected edges from PotEdges to CG

Add all PotEdges to

CG

Return CG

Figure 5.5: Flowchart of the proposed learning algorithm

common subgraph of the input graphs that represent the root node is G1⋂G2⋂ ...⋂GN .

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 186

4. Let’s assume, there are Vmc nodes and Emc edges maximal common among the set of

input DAGs G = {G1,G2, ...,GN }. Therefore, the hierarchy tree has a root node and N

children nodes which implies that the learned hierarchy has an extra DAG, a parent/root

DAG, constructed from the Vmc common nodes and Emc common edges, denoted with

Gmc. In the N children DAGs, Gr
i =< V r

i ,E
r
i >=< Vi − Vmc,Ei − Emc > for each input

DAG Gi where 1 ≤ i ≤ N . Hence, to derive the original N DAGs using the hierarchy

requires adding Gr
i with common DAG Gmc, i.e., Gi = < Vmc + V r

i ,Emc +Er
i > = < Vmc +

Vi − Vmc,Emc +Ei −Emc > = < Vi,Ei >.

Say the algorithm creates a set of residual graphs Gr = {Gr
1, Gr

2, ..., Gr
N } in level 1, then

recursively finds maximal common subgraphs in the residual DAGs form z groups of

graphs based on some common graphs in each of the groups. Say, the groups are

G1,G2, ...,Gz with Gmc1 ,Gmc2 , ...,Gmcz , respectively, maximal common subgraphs. If

they form a set of hierarchy trees ⊺r
1,⊺r

2, ...,⊺r
z , their root node will beGmc1 ,Gmc2 , ...,Gmcz ,

where Gmci =
m

⋂
k=1

Gik
, 1 ≤ i ≤ z, ik ∈ {1, ...,N} and k = 1, ...,m.

The recursions terminate if the residual graph set, Gr, is null or the algorithm has a single

graph as input. Hence, from the third property, for every DAG, D ∈ N , Gi1 ,Gi2 , ...,Gim

where D =
m

⋂
k=1

Gik
, and ik ∈ {1, ...,N} and k = 1, ...,m.

Lemma 1. Let an algorithm "A" for learning hierarchy be optimal, and it produces a hierarchy tree

"⊺∗". Then the minimal derivation cost for a set of DAGs and the construction cost of "⊺∗" is minimal.

Proof: Let G = {G1,G2, ...,GN} is a set ofN DAGs given as input to the proposed hierarchy

learning algorithm. ⊺ = < N ,E > is the learned hierarchy from the input DAGs. ⊺, and hence

the algorithm, is optimal if the reusability, ρ(⊺) is maximal.

According to Definition 5.15,

ρ(⊺,G) =
N

∑
i=1

∣Gi∣ − (Cost(⊺) +
N

∑
i=1
δT (Gi,⊺))

From the equation above, reusability increases if the Cost(⊺) and derivation cost of all the

input DAGs decreases. In other words, reusability is maximal if the tree construction cost and

input DAG derivation costs are minimal.

1. Minimal tree construction cost: An algorithm "A" that produces a total order of the

input graphs, where all input graphs have a mutual subgraph–supergraph relationship,

constructs a hierarchy tree with minimum cost. If such a relationship does not exist

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 187

among the input graphs, then some minimal number of intermediate DAGs are inferred

by the algorithm, and those along with the input DAGs can form the aforementioned

total order. The hierarchy tree constructed using the input DAGs and the intermediate

DAGs (if there are any) incur a minimal cost.

2. Minimal derivation cost: The more the input DAGs are similar to the DAGs contained

in the hierarchy tree nodes, the lower is the derivation cost. The lowest possible deriva-

tion cost of a set of DAGs from a hierarchy tree is 0. This condition is only valid in the

case where all input DAGs are included in the set of nodes in the hierarchy tree.

Therefore, any algorithm "A" that produces a hierarchy tree with minimal cost and derives all

the input DAGs from the hierarchy with minimal derivation cost is optimal.

Theorem 3. The proposed hierarchy learning algorithm is suboptimal.

Proof: The proposed learning algorithm tries to find the best possible hierarchy tree with

minimal construction cost. The smallest non-empty common graph among the input DAGs

is the root node in the hierarchy. Say, the node is present in all N DAGs. In the learning

algorithm, this node is used only once andN −1 times this is reused. Similarly, for each level of

the tree, each node is constructed based on the similarity of the graphs where, for any number

of graphs having the same similar graph segment, the segment is used only once in the tree.

This technique ensures maximum reuse and minimal derivation and construction cost.

The hierarchy tree ⊺ was constructed by checking the maximum similarity among the

graphs in every level using the maximal proper subset and maximal common subgraphs.

Based on the similarity found among the DAGs, the algorithm made several clusters and re-

cursively performed the same tasks, like make a root of a subtree using the maximal common

subgraph, find residual graphs, and so on, until the system finally produced it ended up with

a cluster of size one or a set of residual graphs having no maximal common subgraph in them

except an empty graph. Furthermore, while adding a child graph in the tree, if there were

multiple options, the algorithm added the child graph to a node which entailed the minimum

child-adding cost.

This attempt by the proposed algorithm is not guaranteed to be safe from being stuck in

local maxima, as it is a greedy-like algorithm. An overall optimal tree could be constructed

by choosing the optimal extension option at each step. However, this is not guaranteed in the

case of the proposed tree-searching-based algorithm.

On the other hand, the hierarchy tree ⊺, constructed using the proposed algorithm, has

minimal construction costs.

Theorem 4. The proposed supergraph based hierarchy learning algorithm is deterministic.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 188

Proof: In the proposed algorithm, there are three main steps.

1. Supergraph construction

2. Label hierarchy construction

3. Hierarchy tree construction from the Label hierarchy tree

4. Learning the input DAGs from the hierarchy

The proposed algorithm assumes that all the nodes in a DAG are unique, which is always

true for Bayesian networks. Hence, all the edges are also distinct in a DAG. So, the construction

of a supergraph never involves making any choice from multiple alternatives. Instead, its

construction is straightforward and deterministic.

Label hierarchy construction involves the finding of maximal proper subsets, which is also

deterministic in nature. The method is used to construct a hierarchy tree for a given set of input

DAGs. In the construction process, the algorithm constructs the tree by forming a parent–child

relationship among all the DAGs as it finds pairs of graphs with minimum derivation costs.

This process is also straightforward and does not involve any non-deterministic action.

The final step, that of learning the input DAGs from the hierarchy, involves a preorder

traversal of the hierarchy tree and the extraction of nodes and edges from the supergraph by

the checking subset–superset relationships. All these underlying operations and the whole

procedure are deterministic.

Therefore, the proposed algorithm is deterministic.

5.4.4 Learning an OOBN class hierarchy: an example

As an example, a set of BNs is considered as shown in Figure 5.6, given as input to the algo-

rithm. These may be previously constructed from expert elicitation or learned from a dataset

using causal structure learning algorithms. The BNs are first converted to a set of OOBN

classes, as shown in Figure 5.6. The conversion is done by the technique documented in Algo-

rithm 5.3 which uses the two heuristics defined in Section 5.3.

From the set of OOBN classes, a set of DAGs is extracted, and a supergraph is constructed

by amalgamating all the DAGs in one place. These operations are performed in Algorithm 5.4.

The supergraph (as shown in Figure 5.7) contains all the information from the subgraphs that

constituted it. All the nodes and edges in the supergraph have labels constructed from the

label of the associated graphs (see Figure 5.6). Hence, each vertex and edge has a non-empty

set of labels.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 189

F
Food Locale

Meat

Metabolism

F
Food Locale

Meat

Metabolism

C
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

C
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

 D

Food Locale

Meat

Metabolism

Draft

Strength

Castration

 D

Food Locale

Meat

Metabolism

Draft

Strength

Castration

G
Food Local

e

Meat

Metabolism

Milk Calves

Reproduction

Sex

Grazing

A
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

A
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

M
Food Locale

Meat

Metabolism

Milk

M
Food Locale

Meat

Metabolism

Milk

Cow
Food Locale

Meat

Metabolism

Calving
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

 Draft

Food Locale

Meat

Metabolism

Draft

Strength

Castration

Graze
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Grazing

 Accessory
Food Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

Milk
Food Locale

Meat

Metabolism

Milk

Figure 5.6: The set of BNs found from the OMD farm example used in the class hierarchy in Figure 3.8
of Chapter 3. The set is used here as an input to the proposed hierarchy learning algorithm.

Then the whole supergraph is traversed in order to extract a list of labels of the vertices and

edges. The redundant labels are then removed and a set of labels formed from the list of labels.

A hierarchy tree is constructed using the labels, where each node in the tree has a label that is

a superset of all the labels of its descendant node and a subset of all the labels of its ancestor

nodes. The hierarchy for the example OOBNs is shown in the left-most window of Figure 5.8.

Constructing the OOBN classes begins with traversing the hierarchy tree in preorder, i.e.,

root node > left child node > right child node. The traversal of the hierarchy is marked in

iterations 1 to 6 (Figures 5.8 to 5.13). The current node under consideration is marked green,

and the path from the root to the current node is marked using red colour in the nodes of

the path, though the order or style of traversal makes no changes provided that a top-down

traversal is followed.

Accordingly, step 1 of the execution (as shown in Figure 5.8) starts with the root node hav-

ing the label "ACDFGM". Then the nodes and edges of the supergraph having the label "ACD-

FGM" or a superset of "ACDFGM" are searched. The DAG obtained in the way mentioned

above forms an OOBN/iOOBN class.

In the same way, in steps 2 to 6 (figures 5.9 to 5.13), the hierarchy tree is traversed and,

for each of the labels found in the tree nodes, the nodes and edges in the supergraph hav-

ing the same label or superset of the label are searched. This procedure provides the seven

OOBN/iOOBN classes in the six steps described in the figures.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 190

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

G

A ACDFGM ACGM ACG

D

DAG

D

D

ACG

ACDFGM

ACDFGM

ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

A = Accessory

A_G = Both A and G

C = Calving

D = Draft

F = Cow (Meat = Flesh)

G = Graze

M = Milk

Edge Label

Node Label

Figure 5.7: The supergraph constructed from the OOBN classes

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM
ACG

G

A ACDFGM ACGM ACG

D

DAG

D

D

ACG

ACDFGM

ACDFGM
ACG

G

A
ACDFGM

ACG

ACG

ACG

ACGM

ACG

Food
Locale

Meat

Metabolism

ACDFGM ACDFGM

ACDFGM

ACDFGM

ACDFGM

ACDFGM

ACDFGM Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

G

A ACDFGM ACGM ACG

D

DAG

D

D
ACG

ACDFGM

ACDFGM
ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

ACDFGM

D

ACG

AG

GA

ACGM

A = Accessory

A_G = Both A & G

C = Calving

D = Draft

F = Meat (Flesh)

G = Graze

M = Milk

Edge Label

Node Label

ACDFGM

ACGM

ACG

AG

GA

D

(a) (b) (c) (d)

Figure 5.8: Learning iteration (1): (a) A label hierarchy tree constructed from the labels: "ACDFGM",
"ACGM", "ACG", "AG", "A", "G", and "D". (b) Start traversing the hierarchy tree from the root node
"ACDFGM". (c) The sub-DAG extracted from the supergraph where each node and edge has a label
that contains "ACDFGM". (d) The graph segment marked in red-text in the supergraph.

Food
Locale

Meat

Metabolism

Milk

ACDFGM ACDFGM

ACDFGM

ACDFGM ACGM

ACDFGM

ACDFGM

ACDFGM
ACGM

ACDFGM

ACGM

ACG

AG

GA

D

(a) (b) (c)

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

A ACDFGM ACGM ACG

D

DAG

D

D
ACG

ACDFGM

ACDFGM
ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

G

Figure 5.9: Learning iteration (2): (a) Take the left-most non-visited child of "ACDFGM", i.e., "ACGM".
(b) The sub-DAG extracted from the supergraph where each node and edge has a label that contains
"ACGM". (c) The graph segment marked in red-text in the supergraph.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 191

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

ACDFGM ACDFGM

ACDFGM
ACG

ACDFGM ACGM ACG

ACG

ACDFGM

ACDFGM ACG

ACDFGM

ACG

ACG

ACG

ACGM

ACG

ACDFGM

ACGM

ACG

AG

GA

D

(a) (b) (c)

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

ACDFGM ACGM ACG

D

DAG

D

D
ACG

ACDFGM

ACDFGM
ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

G

A

Figure 5.10: Learning iteration (3): (a) Take the left-most non-visited child of "ACGM", i.e., "ACG".
(b) The sub-DAG extracted from the supergraph where each node and edge has a label that contains
"ACG". (c) The graph segment marked in red-text in the supergraph.

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

ACDFGM ACDFGM AG

ACDFGM
ACG

ACDFGM ACGM ACG

AG

ACG

ACDFGM

ACDFGM
ACG

ACDFGM

ACG

ACG

ACG

ACGM

ACG

ACDFGM

ACGM

ACG

AG

GA

D

(a) (b) (c)

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

ACDFGM ACGM ACG

D

DAG

D

D
ACG

ACDFGM

ACDFGM
ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

A

G

Figure 5.11: Learning iteration (4): (a) Take the left-most non-visited child of "ACG", i.e., "AG". (b) The
sub-DAG extracted from the supergraph where each node and edge has a label that contains "AG". (c)
The graph segment marked in red-text in the supergraph.

The classes constructed in the proposed learning algorithm also contain hierarchical in-

formation derived from the hierarchy tree. If two classes are formed from two nodes in the

hierarchy tree, where one of the nodes is a parent (ancestor) node of another node, the class

found by the parent (ancestor) node is a parent (ancestor) class of the later one. The whole

procedure provides a hierarchy of classes, as shown in Figure 5.14.

Note, in the above running example, each class has exactly one extension option i.e. only

one parent class to be extended from. This is not a usual case and hierarchies in real-life prob-

lems may not be quite so simple. Hence, how the proposed algorithm deals with choosing an

appropriate parent class from multiple parent classes is shown using an extended example in

Appendix E.

§5.4 A Method for Learning an iOOBN Class Hierarchy from a Set of OOBN Classes 192

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

ACDFGM ACDFGM AG

ACDFGM ACG

G

ACDFGM ACGM ACG

AG

ACG

ACDFGM

ACDFGM
ACG

G

ACDFGM ACG

ACG

ACG

ACGM

ACG

ACDFGM

ACGM

ACG

AG

GA

D

ACDFGM

ACGM

ACG

AG

GA

D

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

A ACDFGM ACGM ACG

D

DAG

D

D

ACG

ACDFGM

ACDFGM

ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

A ACDFGM ACGM ACG

D

DAG

D

D

ACG

ACDFGM

ACDFGM
ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

G

G

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

ACDFGM ACDFGM AG

ACDFGM ACG

A ACDFGM ACGM ACG

AG

ACG

ACDFGM

ACDFGM

ACG

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

ACDFGM ACDFGM AG

ACDFGM ACG

A ACDFGM ACGM ACG

AG

ACG

ACDFGM

ACDFGM

ACG

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Learning iteration (5): (a) Take the left-most non-visited child of "AG", i.e., "A". (b) The
sub-DAG extracted from the supergraph where each node and edge has a label that contains "A". (c)
The graph segment marked in red-text in the supergraph. (d) Backtrack to the node "AG" and take
the next left-most non-visited child of "AG", i.e., "G". (e) The sub-DAG extracted from the supergraph
where each node and edge has a label that contains "G". (f) The graph segment marked in red-text in
the supergraph.

Food
Locale

Meat

Metabolism

Draft

Strength

Castration

ACDFGM ACDFGM D

D

D

ACDFGM

ACDFGM

D

D

D

D

ACDFGM

ACDFGM

ACDFGM

ACDFGM

ACGM

ACG

AG

GA

D

(a) (b) (c)

Grazing

Food
Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory
Draft

Strength

Castration

ACDFGM ACDFGM AG D

D

D

ACDFGM ACG

G

A ACDFGM ACGM ACG

D

DAG

D

D
ACG

ACDFGM

ACDFGM
ACG

G

A

ACDFGM

ACG

ACG

ACG

ACGM

ACG

Figure 5.13: Learning iteration (6): (a) Backtrack to the node "AG", then to "ACG" and so on till the
original root "ACDFGM" is found that still has a child unvisited. Take the next left-most non-visited
child of "ACDFGM", i.e., "D". (b) The sub-DAG extracted from the supergraph where each node and
edge has a label that contains "D". (c) The graph segment marked in red-text in the supergraph.

§5.5 Evaluation 193

FFood Locale

Meat

Metabolism

FFood Locale

Meat

Metabolism

CFood Locale

Meat

Metabolism

Milk Calves

Reproduction

CFood Locale

Meat

Metabolism

Milk Calves

Reproduction

 D
Food Locale

Meat

Metabolism

Draft

Strength

Castration

 D
Food Locale

Meat

Metabolism

Draft

Strength

Castration

AFood Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Accessory

GFood Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Grazing

GFood Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

Grazing

MFood Locale

Meat

Metabolism

Milk

MFood Locale

Meat

Metabolism

Milk

A_GFood Locale

Meat

Metabolism

Milk Calves

Reproduction

SexFood Locale

Meat

Metabolism

Milk Calves

Reproduction

SexA_GFood Locale

Meat

Metabolism

Milk Calves

Reproduction

SexA_GFood Locale

Meat

Metabolism

Milk Calves

Reproduction

Sex

ACDFGM

ACGM

ACG

AG

GA

D

Label Hierarchy

ACDFGM

ACGM

ACG

AG

GA

D

Label Hierarchy

Figure 5.14: The class hierarchy learned by Algorithm 5.14. (This is same as the hierarchy constructed
for OMD farm in Figure 3.8 of Chapter 3).

5.5 Evaluation

In this section an experimental analysis on synthetically created class hierarchies is given, us-

ing the measures defined above, to assess the efficiency of the learned class hierarchy com-

pared to the original synthetic class hierarchies.

5.5.1 Synthetic OOBN class hierarchy generation

Because there are so few existing OOBN class hierarchies, in order to analyse the proposed

learning algorithm and its effectiveness, a novel synthetic hierarchy generator has been devel-

§5.5 Evaluation 194

Super-graph Construction
A set of N OOBN DAG with

unique identifiers G1, G2, …, GN

I = 1

Take DAG GI = <VI, EI>

VI = {v1I, v2I, … vmI}

EI = {e1I, e2I, … enI}

J = 1

Super Graph Gs = <Vs, Es>

Vs = {}

Es = {}

Take Node vJ

Does vJ exist

 in Vs?

Yes

No

Append the label ‘I’

to the node in Vs

Append the node vJ

in Vs with label ‘I’

J = J + 1

J > m?

No

J = 1

Take Node eJ

Does eJ

exist in Es?

yes

No

Append the label ‘I’

to the node in Es

Append the node eJ

in Es with label ‘I’

J = J + 1

J > n?

No

I > N?

Yes

Yes

I = I + 1

No

Yes

Return

Super Graph Gs = <Vs, Es>

Learning Hierarchy
A set of N OOBN DAG with

unique identifiers G1, G2, …, GN

I = 1

CurLabel = Ith label in LabelSet

J = I + 1

LabelSet = SortOnLength(LabelSet)

TempLab = Jth label in LabelSet

Construct Super Graph

Gs = <Vs, Es>

Tree = {V | V = <Label, MaximalSubsets>}

Label = {LI | 1 ≤ I ≤ N, LI an identifier of graph GI}

LabelSet = Labels(Vs) U Labels(Es)

 = L1, L2, ...Lx

Return Tree

 Is TempLab
a subset of
CurLabel ?

Append Vcur in

Tree

Vcur = <CurLabel,

MaxSub>

Append TempLab in

MaxSub

Is TempLab a
subset of any of the
labels in MaxSub?

MaxSub = {}

J = J + 1

J > Size of

LabelSet?

I > Size of

LabelSet?

I = I + 1

Yes

Yes

Yes

Yes

No

No

No

No

Random Hierarchy Generation
1) A Root OOBN DAG

G = <V, E, DT, NInc, Einc, Level, Par>

2) MaxChild per OOBN

3) Max Level per branch

4) NInc : Increment of Nodes

5) EInc : Increment of edgea

6) DT : Density threshold of Graph

7) Dev: Deviation of Density

Append G in Q

G.Level = 0 G.Par = {}

G.NInc = NInc G.VInc = EInc

NumChild = random(0,

MaxChild)

I = 1

I >

NumChild?

Yes

No

CG = Extend(G)

I = I + 1

|CG.DT – DT|

> Dev

CG.NInc = (G.NInc + CG.DT – DT) * |CG.V|

CG.EInc = (G.EInc + CG.DT – DT) * |CG.E|

Tree = {}

Q = {}

G = Q.pop()

Q is empty?

Append CG in Q

Append CG in T

G.level >=

MaxLevel?

Yes

No

No

NoYes

Return Tree
Yes

CG.Par = G

CG.Level = G.Level + 1

Extending a DAG

G: A graph to extend

G = <V, E, DT, NInc, Einc, Level, Par>

NodeToAdd = Random(0, G.NInc)

EdgeToAdd = Random(0, G.EInc)

CG = Copy of G

CG = AddRandomNodes(CG)

PotEdges = Find possible DAG edges (CG)

EdgeToAdd <

PotEdges?

Add ‘EdgeToAdd’ num. of randomly

selected edges from PotEdges to CG

Add all PotEdges to

CG

Return CG

Figure 5.15: Flowchart of the synthetic hierarchy generation process

oped, as shown in Figure 5.15 in the form of a flowchart. The synthetic hierarchy generator

starts with an initial DAG (which may be empty, provided by the user, or randomly generated)

as the root of the hierarchy. Note, the hierarchy is a tree structure with each node of the tree

containing a DAG. Starting with the initial DAG as the root node, some children nodes (each

node containing a superDAG of the root node) are added by extending the root node. Then,

recursively, each newly generated node (containing a DAG) is considered to extend in order to

complete the hierarchy. The recursion terminates when a particular number of children and a

§5.5 Evaluation 195

specific depth in the hierarchy is reached. The maximum number of children per hierarchy tree

node and the maximum depth for any branch is specified by the user. They can also specify a

range for the percentage increase in the number of nodes and edges in a newly generated child

class, as well a range for its density (i.e., the number of edges per node). The generator adds a

random number of children classes for each node in the hierarchy tree, without violating the

overall maximums for number of children and maximum depth of any branch. The synthetic

hierarchy generator is implemented in Python 3.7.

The synthetic hierarchy generator randomly selects the number of children to be generated

for each node and recursively keeps adding children nodes unless it reaches the maximum

number of children or the maximum depth of any branch. For some nodes, there might be

no child at all due to a random number of children within a range being generated. For each

child of a graph, a random number (chosen from a range) of nodes and edges are added that

satisfies the density threshold.

5.5.2 Evaluation measures

In Section 5.2, some costs are defined, namely, the derivation cost, a hierarchy tree construc-

tion cost and an overall reusability cost. However, we need to compare the learned hierarchies

with the original synthetic hierarchies, which may have different numbers of classes. So, addi-

tional measures that give a normalised derivation and construction cost, have been defined to

provide more effective comparison.
DEFINITION 5.17 : DERIVATION COST RATIO

Given a hierarchy tree, ⊺ = < N ,E > (Definition 5.7) and a DAG G, the derivation cost

ratio of G with respect to ⊺ is,

δTr(G,⊺) = min
D∈N

δ(G,D)
∣D∣

DEFINITION 5.18 : CONSTRUCTION COST RATIO

Given a hierarchy tree, ⊺ = < N ,E > (Definition 5.7) and a DAG G, the Child-adding

cost ratio of a DAG C in T is

χr(C) = min
D∈N

δ(C,D)
∣D∣

§5.5 Evaluation 196

DEFINITION 5.19 : RATIO COST

Given a hierarchy tree, ⊺ = < N ,E > (Definition 5.7) and a DAG G, the Ratio Cost of ⊺
and G = {G1, G2, ..., GN } is,

Costr(⊺) = ∑
D∈N

χr(D) +
N

∑
i=1
δTr(Gi,⊺)

5.5.3 Experimental analysis

In the experiment to support the theoretical proof, two phases of experimentation were con-

ducted. In each of the phases, 32 synthetic hierarchies were generated with various values

of the parameters of the generation method (i.e. maximum number of children–"Max Child",

maximum depth–"Max Depth", maximum node increase rate–"Max Inc Nodes", maximum

edge increase rate–"Max Inc Edges" and maximum density of a generated DAGs–"Max Den-

sity"), with one row for each of the 32 cases, The parameters used to produce the synthetic hi-

erarchies are given in the first five columns; "Number of DAGs generated Randomly" (NODR)

shows the number of DAGs (i.e. the number of OOBN classes) generated in the synthetic hi-

erarchy and "Number of DAGs Learned" (NODL) represents the number of DAGs generated

by the proposed hierarchy learning algorithm. The table then gives the results of computing

the different measures (combined construction and derivation cost, reusability and ratio cost)

on the learned hierarchy (LH), the original synthetic hierarchies (SH), and the base case where

there is no hierarchy (NH) 3. For each row, for each measure, the better measure is bolded;

lower is better for derivation–construction costs and ratio cost, higher is better for reusability.

The row below all 32 cases gives the total count of cases where one hierarchy is better than the

other. In other words, it can be seen how many times the learned hierarchy is better than the

original synthetic hierarchy.

In both phases of the experimentation, the generation process starts with a randomly cho-

sen DAG (from the six Cow OOBN classes plus the empty DAG). Then the proposed learning

algorithm is applied to those 32 sets of classes in each phase. Note that in both the tables the

number of DAGs generated in some learned hierarchies is sometimes smaller than the number

of DAGs generated randomly for synthetic hierarchies. This is because the learning system is

able to detect the similarity of two classes residing in two different branches of the synthetic

hierarchy. The proposed algorithm keeps only one copy in the system and suggests that two

original classes could be generated from that one single node.
3The result for no hierarchy is only given as a base case for the combined derivation and construction cost,

D+C, as of course there is no reusability measure, and since for D+C we have found NH is worse in every case,
there was no point in computing the ratio cost for NH.

§5.5 Evaluation 197

Table 5.2 shows an analysis of the first phase. For the combined construction and derivation

cost, and the corresponding reusability, the learned hierarchy is better in one third of the cases

(11 out of 32). However, these measures do not consider the size of the DAGs. So to avoid a flat

comparison of the derivation and construction cost by the number of nodes and edges added to

the children DAGs, the ratio is computed with respect to the size of the parent DAG from which

the child DAG is derived. In the Table 5.2 column "RatioCost", the LH and SH hierarchies each

win in half the cases for the measures that incorporate ratios for a fairer comparison.

Table 5.1: A list of terms with their full-forms used in Table 5.2
Short term Full form

MC Maximum number of Children class per class
MD Maximum Depth per branch in the hierarchy
MN Maximum number of Nodes per class
ME Maximum number of Edges per class

MDe Maximum Density of a DAG of a class
NODR Number of DAGs Randomly generated within a hierarchy
NODL Number of DAGs generated within a Learned hierarchy
D+C Derivation and Construction cost

D+C Ratio
Ratio of Derivation and Construction cost

over the size of a DAG of a class
LH Learned Hierarchy
SH Synthetic Hierarchy

D+C Ratio LH leaves
D+C Ratio for the DAGs in the leaf level

of the learned hierarchy tree

D+C Ratio SH leaves
D+C Ratio for the DAGs in the leaf level

of the synthetic hierarchy tree

Note, in the toy example (shown in Section 5.4.4), that the learning algorithm may some-

times exactly reconstruct an original hierarchy. It is also true that the learning algorithm may

not produce an optimal class hierarchy. Further investigations and changes are required to get

an optimal outcome from the algorithm. The above empirical results suggest that, in practice,

the algorithm can find class hierarchies that have a higher degree of reusability, i.e. are a more

efficient representation.

To support the above assertion, further investigation was conducted. The analyses per-

formed in Phase 1 generated hierarchies where the rate of node and edge increment to extend

superclass to subclasses were estimated at 30% and 40%, respectively. Hence, an analysis was

performed with node and edge increment rate estimated at 60% and 70%, respectively. A bet-

ter outcome was observed in this phase of the experimentation. In Table 5.3 the row below

all 32 cases shows that 26 times out of 32 learned hierarchies were found better than synthetic

hierarchies if reusability and combined derivation and construction cost are considered. Fur-

thermore, 27 times learned hierarchies performed better in terms of ratio cost.

§5.5 Evaluation 198

Table 5.2: Comparison of class hierarchies learned from a set of classes, to the original hierarchies, and
to no hierarchies. The node and edge increment rate in the subclasses are 30% and 40%, respectively.

Parameters
NODR NODL

DerCost+HCCost Reusability (ρ) RatioCost
MC MD MN ME MDe NH LH SH LH SH LH SH

3

3
5 15 10 8 12 89 31 38 58 51 6.55 13.75

10 20 15 10 24 276 134 128 142 148 15.36 29.98

4
5 15 10 12 17 139 44 53 95 86 6.85 11.76

10 20 15 9 15 339 161 153 178 186 12.62 26.28

5
5 15 10 7 9 101 34 39 67 62 6.16 7.36

10 20 15 21 62 1300 798 608 502 692 30.083 33.9

6
5 15 10 32 40 702 188 177 514 525 14.19 19.71

10 20 15 29 72 4897 4331 3060 566 1837 63.65 46.7

4

3
5 15 10 10 14 83 26 40 57 43 5.57 11.93

10 20 15 16 37 450 226 197 224 253 20.97 32.99

4
5 15 10 35 37 560 169 175 391 385 16.55 30.15

10 20 15 34 86 1469 689 549 780 920 35.65 41.45

5
5 15 10 93 81 1754 632 482 1122 1272 53.31 48.95

10 20 15 81 149 6013 4042 2687 1971 3326 132.06 91.71

6
5 15 10 130 114 3587 1258 788 2329 2799 71.35 53.6

10 20 15 167 361 32212 16141 20304 16071 11908 390.52 260.7

5

3
5 15 10 16 22 235 72 100 163 135 9.07 25.91

10 20 15 26 40 699 306 294 393 405 25.25 45.23

4
5 15 10 49 44 694 249 249 445 445 26.9 32.5

10 20 15 71 95 3200 1599 1131 1601 2069 74.11 70.84

5
5 15 10 119 97 2714 1044 680 1670 2034 75.65 62.26

10 20 15 174 369 12330 9629 5354 2701 6976 311.82 143.45

6
5 15 10 279 166 8806 3020 1869 5786 6937 139.04 88.29

10 20 15 517 422 119807 28891 78089 90916 41718 567.36 867.52

6

3
5 15 10 48 50 676 282 269 394 407 31.58 50.11

10 20 15 58 59 1726 813 677 913 1049 54.71 74.71

4
5 15 10 161 97 3174 1222 874 1952 2300 99.19 92.56

10 20 15 185 124 8087 4237 2881 3850 5206 204.9 142.83

5
5 15 10 475 256 10898 2714 4393 8184 6505 310.45 195.94

10 20 15 615 380 49502 31803 22689 17699 26813 942.96 527.38

6
5 15 10 683 356 19618 7894 4333 11724 15285 428.85 219.48

10 20 15 1492 2434 366973 51517 241803 315456 125170 13471 2564.62
Count of times a hierarchy is better 0 11 21 11 21 16 16

Notations

MC: Maximum number of Children class per class, MD: Maximum Depth per branch in the hierarchy,
MN: Maximum number of Nodes per class, ME: Maximum number of Edges per class,

MDe: Maximum Density of a DAG of a class, NODR: Number of DAGs (classes) generated Randomly
within a hierarchy, NODL: Number of DAGs (classes) generated within a Learned hierarchy,

LH:Learned Hierarchy, SH:Synthetic Hierarchy, Bold-numbers: to indicate better

§5.5 Evaluation 199

Table 5.3: Comparison of class hierarchies learned from a set of classes, to the original hierarchies, and
to no hierarchies. The node and edge increment rate in the subclasses are 60% and 70%, respectively.

Parameters
NODR NODL

DerCost+HCCost Reusability (ρ) RatioCost
MC MD MN ME MDe NH LH SH LH SH LH SH

3

3
5 15 10 5 8 28 14 19 14 9 3.50 5.60
10 20 15 6 8 37 17 26 20 11 4.63 6.17

4
5 15 10 10 21 62 29 32 33 30 2.95 6.20
10 20 15 7 19 100 17 28 83 72 5.26 14.29

5
5 15 10 17 28 46 30 21 16 25 1.64 2.71
10 20 15 20 32 127 59 66 68 61 3.97 6.35

6
5 15 10 18 33 198 128 123 70 75 6.00 11.00
10 20 15 20 28 1223 521 664 702 559 43.68 61.15

4

3
5 15 10 12 18 58 41 33 17 25 3.22 4.83
10 20 15 10 28 192 120 123 72 69 6.86 19.20

4
5 15 10 25 29 115 57 96 58 19 3.97 4.60
10 20 15 19 52 455 305 214 150 241 8.75 23.95

5
5 15 10 45 51 519 181 253 338 266 10.18 11.53
10 20 15 47 54 1153 472 997 681 156 21.35 24.53

6
5 15 10 84 77 1723 419 675 1304 1048 22.38 20.51
10 20 15 101 261 7221 3167 6149 4054 1072 27.67 71.50

5

3
5 15 10 13 19 54 33 46 21 8 2.84 4.15
10 20 15 14 30 270 154 140 116 130 9.00 19.29

4
5 15 10 41 49 265 120 232 145 33 5.41 6.46
10 20 15 36 71 538 205 440 333 98 7.58 14.94

5
5 15 10 100 75 1099 355 615 744 484 14.65 10.99
10 20 15 112 149 863 348 288 515 575 5.79 7.71

6
5 15 10 152 94 3146 810 1092 2336 2054 33.47 20.70
10 20 15 251 382 15168 6701 13866 8467 1302 39.71 60.43

6

3
5 15 10 19 31 172 99 101 73 71 5.55 9.05
10 20 15 22 41 323 181 227 142 96 7.88 14.68

4
5 15 10 69 67 484 201 470 283 14 7.22 7.01
10 20 15 71 66 2108 797 1011 1311 1097 21.94 29.69

5
5 15 10 158 84 2320 680 1047 1640 1273 17.62 14.68
10 20 15 229 129 8533 3032 5067 5501 3466 35.15 37.26

6
5 15 10 295 168 8531 2113 4286 6418 4245 20.78 28.92
10 20 15 755 523 43399 19804 39613 23595 3786 32.98 57.48

Count of times a hierarchy is better 0 26 6 26 6 27 5

Notations

MC: Maximum number of Children class per class, MD: Maximum Depth per branch in the hierarchy,
MN: Maximum number of Nodes per class, ME: Maximum number of Edges per class,

MDe: Maximum Density of a DAG of a class, NODR: Number of DAGs (classes) generated Randomly
within a hierarchy, NODL: Number of DAGs (classes) generated within a Learned hierarchy,

LH:Learned Hierarchy, SH:Synthetic Hierarchy, Bold-numbers: to indicate better

§5.6 Summary 200

5.5.4 Case study: Learning hierarchical structure in WGR

As a proof-of-concept case study, the proposed learning algorithm was applied to the OOBN

classes constructed for a real-world environmental modelling project [3] using the Hugin

OOBN software (which does not support inheritance). These consisted of 129 OOBN classes

with no reusability of components, giving a combined construction + derivation cost of 3993.

The hierarchy learned using the proposed algorithm contained 159 classes with a construction

and derivation cost of 2135 (a 46% reduction) and a reusability score of 1858 (a 54% increase).

The derivation cost and hierarchy tree construction cost ratio was 309.84 (8%). The hierarchy

for WGR classes, learned by the proposed algorithm, is given in Appendix D, together with

a mapping between the original class names and the reengineered class names. Again, this

suggests that the proposed algorithm could be useful in practice.

5.5.5 Summary of the evaluation

The analyses performed in Section 5.5.3 and the proof-of-concept case study (see Section 5.5.4)

identified gains in terms of reusability, combined derivation and construction cost, and ratio

cost for the hierarchy learned by the proposed algorithm in comparison with the synthetic hi-

erarchy. In summary, the experiment results support the theoretical analysis that the proposed

learning algorithm is suboptimal. Suboptimal means here that the outcome was not the best, a

fact that is evident in the experimental analysis and supported by proof of non-optimality (see

Theorem 3). However, in practice, the algorithm was useful and it points to a new direction in

automated learning of OOBNs from data.

5.6 Summary

This chapter presented the first algorithm for learning an OOBN class hierarchy from a set

of OOBN classes. It takes a set of OOBN classes as input and suggests a hierarchy tree that

minimises the number of nodes and edges that need to be added in deriving the input DAGs.

The algorithm first constructs a supergraph by amalgamating all the input DAGs, adding a

label for each node and edge that keeps track of its source DAGs. Next, it constructs a forest of

multi-parent hierarchy trees based on the maximal proper subset property of the labels. Finally,

from these hierarchy trees and the supergraph, it constructs hierarchies of OOBN classes, con-

taining all the original classes as well as inferred new classes, where having additional classes

reduces the overall derivation and construction costs of the hierarchies.

In order to evaluate the proposed new algorithm, a novel synthetic hierarchy generator was

developed, and new measures of derivation cost and reusability were proposed that capture

§5.6 Summary 201

the relative efficiency of a given class hierarchy. These measures are also used in the learning

algorithm, when there is a choice between alternative parent classes in the hierarchy, to choose

the one with a minimal derivation cost and hence maximise reusability.

While it is observed that the performance of the algorithm is suboptimal, the experimental

results on synthetically generated hierarchies, and on a real-world environmental modelling

case study, show that the algorithm is prospectively useful and efficient in practice. The algo-

rithm can be used either to create a class hierarchy from ordinary BNs or from OOBNs that

were built in a software that does not support inheritance, or it can be used to restructure an

existing hierarchy to make it more compact and efficient.

One limitation of the current algorithm is that an embedded object is treated as a node; the

algorithm could be improved if these objects could be treated as instances of the classes. A

future extension is to investigate combining this new class hierarchy learning with learning

the OOBN classes themselves from data. Further, there is potential for inheritance in object-

oriented programming to be reshaped or learned using a similar approach to the algorithm

proposed here, provided the programs can be represented graphically.

Chapter 6

Conclusions

6.1 Research Contributions

The Bayesian network (BN) is one of the most suitable tools for making decisions under un-

certainty. However, ordinary BNs present various limitations, and hence several techniques

to overcome the limitations have been proposed. Among these techniques, object-oriented

Bayesian (decision) networks (OOBNs) are the most promising. The thesis address a vital is-

sue in the current state-of-the-art tools and frameworks for developing OOBNs and suggest an

important solution with required demonstrations. The solution is a new OOBN framework,

"iOOBN", that exhibits most of the OO features; such as encapsulation, inheritance, abstrac-

tion, polymorphism, type checking, and typecasting. This new framework provides flexibility

in modelling, robustness in extending/reusing existing models and scalability in modelling

large-scale real-life applications. iOOBN offers the potential for better reuse of existing com-

ponents (classes, structures and parameters) by utilising inheritance, which builds a hierar-

chy internally. Proper treatment of the inheritance hierarchy facilitates propagating changes

among classes that will in turn support better reuse of the existing components. A prototype of

the framework was implemented to check the correctness of the functionalities included in the

theoretical framework. As a proof-of-concept case study, a real-life project, WGR was reengi-

neered using the developed tool, "iOOBN". The proposed iOOBN framework is backward

compatible. In order to prove compatibility, the toy example problems that existing frame-

works had considered are revisited, and possible extensions of the models are listed. The

extensions demonstrate that iOOBN allows incremental modelling. The thesis also includes a

short architectural view of the developed tool.

To date, there is no inference (actually compilation, a vital step of inference) technique pro-

posed and developed that directly works on an OOBN. The present research study offers a

compilation technique that not only directly works on the OOBN (i.e., avoids the need for flat-

tening the OOBN into a BN) but also allows the reuse of already built junction trees (JTs). This

reuse helps subclasses to use the JT of their parent classes and classes to reuse the JTs of em-

bedded objects. The efficiency of the algorithm was analysed asymptotically, mathematically

202

§6.2 Future Works 203

and experimentally. The proposed algorithm was found efficient in subsequent analyses. In

order to analyse the algorithm experimentally, synthetic OOBNs were generated using a wide

range of varying parameters. The proposed SIIC algorithm performs better when there are

embedded objects in a class, and the performance gets better when the number of objects per

instantiated class increases. Furthermore, the SIIC algorithm was able to successfully compile

the whole WGR project, whereas Hugin (a well-known and widely used OOBN modelling

software) failed to compile the project due to its enormous size. Instead the WGR modellers

had to write a stochastic simulation inference algorithm to compute the posterior probabilities

and expected utilities for a 20 year scenario projection.

This thesis proposes a new algorithm for automated learning of class hierarchy from a set

of OOBN classes. Learning the hierarchy of OOBN classes has the potential to play a signifi-

cant role in the OO-arena, because, in the OO paradigm, re-shaping of inheritance hierarchy is

a vital task that contributes to refactoring the components and helps to maximise opportunity

for reuse. The new hierarchy learning algorithm is deterministic and suboptimal. In order

to determine the efficiency of the learning algorithm empirically, a novel synthetic hierarchy

generator was proposed and developed. Using the generator, a set of synthetic hierarchies

(and hence, a set of OOBNs in each hierarchy) was generated. Some evaluation measures

are proposed to evaluate the efficacy of hierarchies built by both approaches (i.e., learned by

proposed algorithm and built by the synthetic hierarchy generator). The hierarchies learned

by the proposed algorithm were compared with the synthetic hierarchies in terms of the pro-

posed measures such as reusability and in most of the cases, the reusability of the hierarchies

learned by the proposed algorithm performed better than synthetic hierarchies. Another case

study was conducted on the real-life project WGR by reengineering the original model using

the proposed learning algorithm. An inheritance hierarchy was constructed from the original

OOBN classes and the new classes formed from the hierarchy. This reengineering achieved

more scalability in terms of reusability in comparison to the original model. The empirical and

case study results demonstrate that the hierarchy learning algorithm will be useful in future

real-life applications, such as to reshape the hierarchy of an existing model or to ensure better

reuse of existing components by building a better hierarchy of classes. Hierarchy learning is

also a step towards automated learning of OOBN classes from data; this algorithm could be

used in future algorithms to learn the hierarchy from a set of data by integrating any of the

existing algorithms to learn BNs from a set of data.

6.2 Future Works

There are a number of promising directions for extending the research presented in this thesis.

§6.2 Future Works 204

Improving the SIIC Algorithm: The SIIC algorithm could be improved by adding an addi-

tional post-processing step to thin the cliques. Experimental results have also shown that the JT

cost from using SIIC is sometimes higher than from using Hugin, which suggests there is scope

for incorporating further heuristics to reduce those JT costs. Further, SIIC, like Hugin, cur-

rently only works for ordinary OOBNs. There is potential for extending these to Jensen’s [228]

strong JTs, which incorporate decision and utility nodes. The current SIIC also assumes that

all nodes and edges in a superclass exist in the subclass (not a constraint in iOOBNs). Thus the

SIIC could be extended to handle classes where edges and nodes are deleted in the inheritance

hierarchy. Finally, the SIIC algorithm is defined in this thesis for OOBNs where only class in-

heritance is allowed. Extending the SIIC algorithm to work in an iOOBN system that allows

interface inheritance could be a topic for future research work.

Extending iOOBN learning: The current hierarchy learning algorithm is suboptimal because

sometimes it gets stuck in local optima. An optimal learning algorithm, possibly based on dy-

namic programming, is a plausible future research topic. In addition, the class hierarchy learn-

ing only identifies inheritance involving structure changes. A natural and simple extension

would be to identify classes that vary in parameters only.

The current algorithm is limited to learning a hierarchy with no embedded objects in the in-

put classes. Even if there were embedded objects, the proposed algorithm considered them as

simple nodes. Therefore, an extension of the algorithm to learn iOOBN classes with embedded

structures is a potential direction for future research.

As surveyed in Chapter 2, there are many existing large BN models. A promising further

direction, (and useful for building up a library of iOOBN classes for reuse), is to develop a

method for automated decomposition of a large BN into simpler and smaller BNs that could

be treated as embedded objects of OOBN/iOOBN classes.

The proposed method works on an existing set of BNs or OOBN classes. It would be more

interesting to adapt existing causal discovery algorithms to learn OOBNs directly from data.

Knowledge engineering in iOOBNs: In this thesis, pre-existing OOBN models were used

for reengineering and testing purposes. An obvious next direction is to work directly with

domain experts to build some iOOBNs from scratch. The learning from these new case studies

should inform the development of an iOOBN knowledge engineering methodology or mod-

elling guidelines, possibly extending the methodology proposed by Boneh [33].

The nature and scope of the concept of "class" in the iOOBN allows the incorpora-

tion/embedding of expert knowledge. In the reengineering of existing models (see Chapter 3),

sharedness associated with the different examples (e.g. different vehicles) was illustrated. This

§6.2 Future Works 205

sharedness links to the Bradford Hill properties of causation. One can elicit people’s causal

knowledge from some generic reasoning and then project that into an instance through the

iOOBN hierarchy. Such a property of "class" could be formulated to embed expert knowledge

and to formalise the idea of causation.

iOOBN software: It would be beneficial for both the BN research community, and for BN

modellers, to develop/implement a functional and independent version of iOOBN (not de-

pendent on the Hugin decision engine) that supports all OO features, all type of nodes and all

edges/links.

A long-term vision would be to generate a substantial set of iOOBN classes (possibly using

the learning methods outlined above), and make these publicly available, to help bootstrap

modelling for new iOOBN modelling applications.

Appendix A

iOOBN Software Development

In Chapter 2, Section 2.6, a comparative study of the existing popular tools for modelling is

presented. Each has some common features, some special features, and associated limitations.

It is clear that very few tools support OO-features, and they are either not cost-free or not well

documented. Finding the best software that allows proper support of the extended features

of OOBNs is very hard. The journey towards developing the software "iOOBN" that supports

OO features, especially inheritance, its challenges and overcoming those challenges, features

and limitations of the current version of the software is described in this Appendix.

A.1 iOOBN Software

The importance of the Object-Orientated (OO) features in modelling, especially the inheri-

tance, is significant. The limitations of currently available tools to provide these features hinder

the capability of modellers and discourage people from using them. Moreover, for large real-

life applications, scalability becomes a significant challenges for existing tools. At the same

time we know that the scalability issue can be resolved better with OO features. As an exam-

ple, WGR [3] is a large real-life project: it fails to compile in Hugin. However, the reengineered

version of the WGR successfully compiles and runs to perform inference.

Developing a complete, standalone tool for modelling with OO-features is challenging and

requires much time, effort and funding. Therefore, the target of the project was to develop a

prototype version and to test its functionality and feasibility. Instead of starting from scratch,

the project aimed to build the tool on an existing framework (referred to as the "Skeleton"

framework) that had the maximal required functionality to create the target tool. Onto this

framework, we added the required components to support the existing OOBN features.

This appendix presents the challenges faced during the development of this tool and an ar-

chitectural view of the software following the "4+1 view model" [7] (Figure A.1). A preliminary

version of the software architecture can be found in the technical report [229] of the "iOOBN

tool". The appendix concludes with a note about the limitations and some future development

206

§A.2 Targeted Features for the Developed Framework 207

plans for this project.

Logical View
Development

View

Process View Physical View

Scenarios

Figure A.1: The "view" model of software architecture [7].

A.2 Targeted Features for the Developed Framework

Existing frameworks have various functionalities and features that support Bayesian network

modelling. Nevertheless, some well-known limitations of the existing tools necessitate a new

OOBN tool that supports most of the OO features. Among the limitations, lack of support

for inheritance is most significant. Other limitations include lack of provision for reuse of

existing components, lack of strong type checking, the need for proper abstraction of classes

and reusable-incremental compilation.

Therefore, the target of the new software is to address all the aforementioned limitations

and overcome them, along with supporting the main OO features, i.e. inheritance, abstraction,

polymorphism, and encapsulation.

A.3 Challenges Faced

According to a principle of software engineering, replicating previous work should be avoided

when developing a new system, or software or framework. Since there is plenty of software

available for BN modelling, the first challenge is to find the most appropriate skeleton frame-

work to develop the target software.

A non-exhaustive list of challenges faced during the development of the software is as

follows:

• Starting from scratch or choosing a skeleton framework or API

• Finding the right API

• Accessing the code base of the API to add features

• Accessing through an alternative door, i.e., NET grammar

§A.3 Challenges Faced 208

• Reengineering the grammar and adding features through ".net" file creation

• Developing NPP grammar for supporting extended features

• Developing a compiler to translate the ".net" code to and from the ".NPP" code

• Adding a GUI and interfacing with Hugin

A.3.1 Choosing the right skeleton framework

A list of desired software features was drawn up and software was tested and compared to

find the best backbone framework. The comparison suggested the most popular and free open

source framework UnBBayes. However, the UnBBayes core systems have many shortcomings

due to problems in resolving dependency and their lack of backward compatibility. Moreover,

proper documentation in the English language was difficult to manage in developing a plugin

for UnBBayes.

Finally, Hugin Expert (another popular framework providing OOBN features) was cho-

sen. However, the free edition (Hugin Lite) has only limited facilities and is not suitable for

developing powerful features. A licence for two users of the Hugin Researcher package was

therefore purchased to start the development.

A.3.2 Accessing the code base and adding backward compatibility

Hugin Experts provide only an API (Application Programming Interface) to use the function-

alities and GUI (Graphical User Interface) to model applications using Bayesian theory. The

owners of the system do not disclose or share their code base with others. Even several at-

tempts to collaborate with them in the R&D (Research and Development) process failed to

convince them.

Since HUGIN was chosen for the core of the decision engine, and the proposed framework

has some significantly improved OO-features compared with HUGIN, backward compatibility

became an issue. To overcome this issue and to develop an iOOBN tool based on Hugin, it was

necessary to analyse the file structure and contents structure of the text file, the language to

define networks for the Hugin API. The language follows a grammar called NET grammar.

Parsing Hugin text files that contain NET language codes required using NET grammar.

A.3.3 Deciphering the codes used in Hugin: reengineering NET grammar and

parsing NET language codes

NET grammar (used to define the textual definition of OOBN classes in HUGIN) is not pub-

licly available, which posed another challenge. Hence, NET language specification had to be

§A.3 Challenges Faced 209

studied extensively, and around three hundred codes were analysed from various real-life ap-

plications: these were modelled using Hugin (as in the WGR project [3]), and then the codes

were reengineered into a grammar that resembles the NET grammar used in Hugin and NET

language.

Next, a parser had to be either developed from scratch or borrowed from existing systems.

The latter method was chosen to avoid re-inventing the wheel. Initially, PEP [230] (an Earley

recursive parser) was chosen, which took a considerable amount of time (approximately 50

seconds) to parse an average of 400 lines of NET code. (The reason behind this slowness is that

it generates all possible parse trees for given inputs).

Finally, the ANTLR 4.6 [231] parser (an LL(*) parser) was adopted, which performed much

better than PEP. ANTLR requires about 800 milliseconds (0.8 seconds) to handle an average of

1000 lines of NET code.

A.3.4 Developing NPP grammar and NPP language: a dedicated back-end gram-

mar and language for iOOBN

The target was to provide extended OO-facilities, NET language and NET grammar not being

sufficient. Hence, a dedicated grammar development was needed. An extended version of

NET grammar (refer to Textbox A.3.1 and Textbox A.3.2 for NPP grammar) has been devel-

oped. It is called Net Plus Plus (NPP), and the language that follows this grammar is called

NPP language.

TEXTBOX A.3.1 (CONTEXT FREE GRAMMAR : NET PLUS PLUS)

iOOBN ∶ concClass ∣ abstractClass ∣ interface

concClass ∶ class name parClass parInterface ′{′ elem* ′}′
abstractClass ∶ abstract class name parClass parInterface ′{′ elem* ′}′
interface ∶ interface name parInterface ′{′ interfaceElem* ′}′
interfaceElem ∶ basicNode ∣ attrib+ ∣ classInstance

parClass ∶ extends name ∣ ε

parInterface ∶ implements interfaceList ∣ ε

interfaceList ∶ name (’,’ name)*

elem ∶ domainElem ∣ attrib+ ∣ classInstance

domElem ∶ basNode ∣ ptnt

classInstance ∶ instance name ’:’ cName ’(’ binds ’)’ ′{′ iAttr ′}′
iAttr ∶ label ∣ pos ∣ attr

binds ∶ inBinds ∣ inBinds ’;’ outBinds ∣ ’;’ outBinds ∣ ε

§A.3 Challenges Faced 210

inBinds ∶ inBind (’,’ inBind)*

inBind ∶ formalName ’=’ actualName

outBinds ∶ outBind (’,’ outBind)*

outBind ∶ formalName ’=’ actualName

basicNode ∶ node ndName ′{′ nodeAttrib* ′}′
∣ nodeType node ndName ′{′ nodeAttrib* ′}′
∣ decision ndName ′{′ nodeAttrib* ′}′
∣ utility ndName ′{′ nodeAttrib* ′}′

nodeType ∶ discrete ∣ continuous

nodeAttrib ∶ state ∣ label ∣ pos ∣ attr ∣ sType

state ∶ states ’=’ ’(’ STR* ’)’ ’;’

label ∶ label ’=’ STR ’;’

pos ∶ position ’=’ ’(’ xCoord yCoord ’)’ ’;’

TEXTBOX A.3.2 (CONTEXT FREE GRAMMAR : NET PLUS PLUS)

sType ∶ subtype ’=’ boolean ’;’

∣ subtype ’=’ label ’;’

∣ subtype ’=’ number ’;’ stVals

∣ subtype ’=’ interval ’;’ stVals

stVals ∶ state_values ’=’ ’(’ NUM* ’)’ ’;’

potential ∶ potential edgeInfo ′{′ potentialAttrib* ′}′
edgeInfo ∶ ’(’ childNodes ’)’ ∣ ’(’ childNodes ∣ parNodes ’)’

childNodes ∶ ID+

parNodes ∶ ID+

data ∶ data ’=’ ’(’ tuple ’)’ ’;’

tuple ∶ NUM ∣ ’(’ tuple ’)’ ∣ tuple NUM ∣ ’(’ tuple ’)’ tuple

potentAttrib ∶ data ∣ modelAttribs

attrib ∶ attribName ’=’ attribValue ’;’

modelAttribs ∶ model_data ’=’ stmt ’;’ ∣ attrib ∣ model_nodes ’=’ ’(’ ID* ’)’ ’;’

stmt ∶ ’(’ stmt ’)’ ∣ expr ’,’ stmt ∣ expr ∣ ε

attribValue ∶ STR ∣ NUM ∣ ’(’ NUM+ ’)’ ∣ ’(’ ID+ ’)’ ∣ ’(’ ’)’

func_call ∶ ID ’(’ ’)’ ∣ ID ’(’ parameters ’)’

params ∶ expr ∣ params ’,’ expr

expr ∶ sumExpr (logicExpr sumExpr)*

§A.3 Challenges Faced 211

logicExpr ∶ ′ <′ ∣ ′ <=′ ∣ ′ >′ ∣ ′ >=′ ∣ ’==’ ∣ ’!=’

sumExpr ∶ prodExpr ((’-’ ∣ ’+’) prodExpr)*

prodExpr ∶ primary ((’/’ ∣ ’*’) primary)*

primary ∶ literal ∣ funct_call ∣ ’(’ formula ’)’

literal ∶ true ∣ false ∣ NUM ∣ STR ∣ ID

The overall plan was to open for use the full functionalities of the OO paradigm for BN, i.e.,

inheritance, polymorphism, encapsulation, and abstraction. However, for the computation of

belief, inference, and reasoning, the system relies on the Hugin decision engine. Thus, the next

challenge was to develop a syntax converter for translating NPP to NET code.

A.3.5 Developing a syntax translator, code optimiser and code generator for NET

Although there are lots of similarities in the reengineered NET grammar and NPP grammar,

there are significant differences too, especially in their principles. For example, NET language

has no facility to share or reuse code as NPP has. The NET language cannot provide ab-

straction, type checking, overloading, overriding or polymorphism facilities, all of which NPP

language can offer.

Hence, a syntax translator was developed that translates NPP code into NET, after per-

forming intermediate optimized code generation.

A.3.6 Interfacing with Hugin API and providing GUI facilities

Figure A.2 illustrates the process of interfacing with the Hugin Decision Engine (HDE) given

that the built-in GUI and API of Hugin Expert developer package (as explained above) are

not able to be modified or extended. The figure also shows the NET language code, which is

parsed by the HDE in order to generate BN components for real-life applications. Hence, two

components have been developed, that is, an NPP language code generator and compiler for

NPP code in order to produce NET code to be parsed by HDE.

Writing code in the NPP language with use of NPP grammar is a tedious and laborious

job that would certainly discourage users from using iOOBN software. A GUI system would

make it much easier for users to model a BN/OOBN. Thus users would not need to follow the

structure or grammar or NPP rules explicitly, i.e., they would not need to memorize and write

code as in programming. For those reasons, a GUI was added to the iOOBN to allow easy

interfacing with the Hugin API within modelling environment. Hence, in the current iOOBN

system, users can model in BN/OOBN without directly writing Net or NPP code, instead

§A.4 Features of iOOBN Software 212

Real-life ApplicationsReal-life Applications

HUGIN
API

iOOBN
Code

NPP CompilerNPP Compiler

iOOBN GUIiOOBN GUIiOOBN GUIiOOBN GUIiOOBN GUI

iOOBN SYSTEM

NET
Language

Code

jGraphXjGraphX

iOOBN SYSTEM

NET
Language

Code

jGraphX

iOOBN_
DE

iOOBN Decision Engine

iOOBN_
DE

iOOBN Decision Engine

iOOBN_
DE

iOOBN Decision Engine

HUGIN
API

iOOBN
Code

NPP Compiler

iOOBN GUIiOOBN GUI

iOOBN SYSTEM

NET
Language

Code

jGraphX

iOOBN_
DE

iOOBN Decision Engine

iOOBN_
DE

iOOBN Decision Engine

NET Language
Code

HDE

Hugin Decision Engine

HDE

Hugin Decision Engine

HUGIN GUIHUGIN GUIHUGIN GUIHUGIN GUIHUGIN GUI

HUGIN OOBN SYSTEMHUGIN OOBN SYSTEM

NET Language
Code

HDE

Hugin Decision Engine

HUGIN GUIHUGIN GUI

HUGIN OOBN SYSTEM

ANTLRANTLR

NPP
Gram
mar

Figure A.2: Interfacing with the Hugin engine

using the developed GUI to suit their modelling requirements. The system then internally

generates NPP code. This code is fed to the iOOBN core engine that converts the NPP code

to Net code and feeds the net code to the HDE by using the Hugin API for inference and

reasoning.

A.4 Features of iOOBN Software

The developed iOOBN system uses all the facilities provided by Hugin, as it was developed on

the skeleton framework of Hugin. Capabilities of the developed software are listed as follows:

1. Users can create interfaces, abstract and concrete classes using GUI with a ".ioobn" ex-

tension as follows:

• An interface can have input and output nodes with no CPTs defined in it.

• An abstract class can have input-output nodes, embedded nodes, objects, and

edges. There can be fully defined, partially defined, or non-defined CPTs for nodes.

• A concrete class can have input, output, embedded nodes, objects and edges. There

can be fully defined CPTs for embedded nodes.

• Abstract classes and interfaces are not eligible for inference, i.e., cannot be instan-

tiated. They are used mainly for inheritance purpose and facilitating placeholders

§A.4 Features of iOOBN Software 213

for concrete classes.

• An interface can implement multiple interfaces.

• A class can implement multiple interfaces but can extend a maximum of one class,

that is, a single parent class is allowed.

2. The "compile" function can be run to compile/convert a file with extension ".ioobn" to

create ".oobn" files. This step will actually convert an iOOBN code (also known as NPP

code) into a Net language code (native code in Hugin). Hence, the source file/code, i.e.,

iOOBN code (also known as NPP code) will be converted to an equivalent OOBN/Net

language code, i.e. the target code. Note that "iOOBN code" (also known as NPP code)

contains some texts defining the formation of iOOBN components like nodes, edges,

CPTs, classes, and interfaces. It may be hand-written by a modeller or generated by

iOOBN software by converting the drawings (drawn by a modeller) in the GUI of the

iOOBN software.

3. The "Belief Propagation" function can perform the computation of beliefs and inference.

This step will simply use the functionalities provided by Hugin through Hugin’s APIs.

4. With the GUI, users can define various nodes, edges and CPTs as well as inherit attributes

like nodes, edges and CPTs from their parent interfaces (only interface nodes, i.e., IO

nodes) and parent classes (nodes, edges and CPTs).

5. Users are also allowed to change/alter/edit any component as per their requirements

or redefine any component inherited from parent classes or parent interfaces. This alter-

ation of inherited components is called overriding.

6. Sharing interface allows users to work in a parallel manner, independently in a group

or interact remotely. As well, this allows multiple forms of definition with unique sig-

natures for any components like classes and interfaces. This facility is introduced to

facilitate polymorphism.

7. Abstract classes provide flexibility to define or redefine CPTs and classes as per require-

ments and to amplify code sharing facilities among components.

8. Abstract classes and interfaces allow abstraction of components.

9. The software allows dynamically changing objects by abstraction classes through inter-

faces and abstract classes and the overriding facilities of specific components.

10. Instances of classes can be utilised to define time-slice representation.

§A.5 Prototype Implementation 214

A.4.1 Comparison of iOOBN features with existing software

Bayesia Lab [105], UnBBayes [107], Hugin [103, 232], Netica [29] and GeNIe [35] are state-of-

the-art and widely used BN modelling tools. They support particular features very well, but

some features are not well supported or not supported at all. Table A.1 compares the features

of existing tools and the new iOOBN tool.

Table A.1: Supported features of BN/OOBN modelling tools

Features Netica GeNIe UnBBayes HUGIN iOOBN

DBNs ✓✓ ✓✓✓ ✓ ✓ ✓✓✓
Submodels × ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
OOBNs × × ✓✓✓ ✓✓✓ ✓✓✓
Supports inheritance × × × × ✓✓✓
Supports polymorphism × × × × ✓✓✓
Supports typecasting × × × × ✓✓✓
Incremental compilation × × × × ✓✓✓
Reuse of JT × × × × ✓✓✓
Sensitivity to findings ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
Sensitivity to parameters × × ✓✓ ✓✓ ✓✓
Continuous nodes ✓ ✓✓ ✓✓ ✓✓✓ ✓✓✓
Equations ✓✓ ✓ ✓ ✓✓✓ ✓✓✓
Learn parameters from data ✓✓✓ ✓✓ ✓✓ ✓ ×
Learn structure from data ✓ ✓✓ ✓✓ ✓ ×
Ease of use ✓✓✓ ✓✓ ✓✓ ✓ ✓✓✓
Cost ✓✓ ✓✓✓ open source ✓ free

✓✓✓ : High ∣ ✓✓ : Medium ∣ ✓ : Low ∣ × : Not available a

aTicks and crosses are derived from the survey of user experience per-
formed in a workshop of the 2016 ABNMS conference and user feedback pro-
vided on various web pages relating to the software packages.

A.5 Prototype Implementation

A prototype iOOBN implementation was carried out using Java programming language and

the Hugin BN software API [27]. This prototype is based on a newly defined language NET++

(NPP), an extended version of the NET code that is used in Hugin. The interpreter integrated

into iOOBN converts the iOOBN definitions of nodes, edges, classes (abstract and concrete)

and the interfaces defined in NPP language to the equivalent NET language. The HUGIN

engine is then used to perform all the standard belief updating and other BN operations. The

grammar for "NET Plus Plus" is given in the following text boxes.

§A.5 Prototype Implementation 215

A.5.1 Design goals

The design priorities of iOOBN software are presented before the design is presented.

The design priorities for the iOOBN software are:

• The design was targeted at minimizing the complexity. "Re-inventing the wheel" was

avoided by making the best use of existing resources.

• The iOOBN tool was developed as part of this PhD research project and mainly designed

for a prototype implementation. The development was done in a well-coordinated fash-

ion by a very tiny group of people. Hence, the development process was well-organized

with no chance of miscommunication or mismanagement.

• The overall system is designed to be extendable. Adding features to the existing system

without breaking the working status is straightforward.

• All the standards used to design and develop the basic software were followed to make

it easier for users to operate it with minimum effort and also for developers to develop

and extend it easily.

A.5.2 System behaviour and use case view

Use case view of a system is used to drive the design phase and validate the output of the

design phase. The architecture description presented in Figure A.3 for the software iOOBN

starts with a review of the expected system behaviour.

The diagram consists of four main components or subsystems, namely

1. GUI editor

2. Hugin Integration

3. SIIC Compilation

4. Learning iOOBN

The overall iOOBN system is also divided into the aforementioned four subsystems. Users

can directly interact with the system through the GUI editor. They can create a class (abstract

or concrete) or an interface, and save/open/close new or existing files containing definitions of

iOOBN components (class/interface). They can also instruct the system to perform inference

as well as to learn iOOBN classes from a set of data or a set of OOBN classes. In other words,

they can convert an existing OOBN repository into an iOOBN repository using the learning

module of iOOBN software.

§A.5 Prototype Implementation 216

BN Modeller

A group of BN
Modeller

A group of BN
Modeller

Inference Compilation<<include>>

Message
Passing

<<include>>
Compilation

JT Construction

Probability
Propagation

<<include>>

<<include>>

Compilation

JT Construction

Probability
Propagation

<<include>>

<<include>>

JF Creation

JTs Joining

<<include>>

<<include>>

Find JT
for instamces

Find JT
for parent Class

<<include>> <<include>>

Use Hugin for JT Find JT
in repository

Create BDN Create iOOBN

Create iOOBDN

Create BN

<<include>>

<<include>>

Create Class Create absClass

Create instance

Create insterface

Make node

Make edge

<<include>>

<<include>>
<<include>>

<<include>> <<include>>

<<include>>

Learn OOBN
From Data

Learn BN
from Data

Find Hieararchy
of BNs

<<include>><<extend>>

Figure A.3: Use case Diagram of iOOBN software.

A.5.3 Logical view

The main functional components of a system are described in logical view. The components

include modules, the static relationships between modules, and their dynamic patterns of in-

teraction.

In this view, the modules of a system are expressed by detailed components and classes

that come with specific attributes and operations. However, an in-detail class diagram seems

beyond the scope of the thesis and unnecessarily increases the word count. Therefore, class

diagram details are kept to a minimum.

§A.5 Prototype Implementation 217

A.5.3.1 Detailed class design

This section presents class diagrams of various packages of the software iOOBN.

Figure A.4 depicts the class diagram of the package iOOBN GUI editor that is an essen-

tial part of the user interface. In Figure A.5 the class diagram of the package "Graph panel"

is shown, which is mostly borrowed from jGraphX [233] framework that deals with graph

editing. The functionalities of the package are modified and extended as per the requirement

of iOOBN. This module is one of the submodules of the iOOBN editor module, whereas Fig-

ure A.6 depicts the class diagram of the package "Frames", another submodule of the iOOBN

editor. It mostly contains the frames to take user inputs, such as name, attributes, CPTs and

other necessary inputs.

Figure A.4: Class diagram of iOOBN Editor package

Figure A.7 illustrates the class diagram of the package iOOBN GUI editor package, an-

other submodule of the iOOBN editor. It contains all the classes necessary to facilitate iOOBN-

specific operations/actions such as super (class or interface) adding, instance adding, compil-

ing, and code generation. Figure A.8 shows the class diagram of the package "components".

This package consists of classes representing attribute storage and functionalities of the main

iOOBN components such as class (abstract and concrete), interface, nodes, and potentials.

Figure A.9 shows the class diagram of the package ANTLR [231]. This package contains

the required classes to use the facility of ANTLR API to develop the core compiler techniques.

Figure A.10 represents the class diagram of the package Hugin API [27] Integration. This pack-

age is made up of the classes that handle communication between the iOOBN and Hugin and

§A.5 Prototype Implementation 218

Figure A.5: Class diagram of Graph Panel package

Figure A.6: Class diagram of Frames package

utilization of Hugin API. Figure A.11 presents a class diagram of the package "Learn OOBN"

that contains the classes required to learn OOBN and iOOBN classes from a set of data. This

feature is unique to iOOBN software, and the first-ever in the literature on BNs.

§A.5 Prototype Implementation 219

Figure A.7: Class diagram of GUI editor package

Figure A.8: Class diagram of OOBN components package

Figure A.9: Class diagram of ANTLR Net Plus Plus package

§A.5 Prototype Implementation 220

Figure A.10: Class diagram of the package to integrate with Hugin

Figure A.11: Class diagram of Learning OOBN package

A.5.4 Process view

The process view is essential in understanding how the separate components and subcompo-

nents communicate with each other in a concurrent application. However, iOOBN software is

a single process and single-threaded system. The "process view" is omitted, as there is no mul-

tithreading or multiprocessing and no need for interprocess, or interthread communication.

A.5.5 Development view

The iOOBN can be viewed as a high-level compiler, working in the back-end of a GUI editor.

The whole system stores the drawn and constructed network in two different formats. The for-

mer file type has an extension ".ioobn" containing all the GUI components’ definitions and the

latter file type has one of the following extensions: ".class", ".absClass", or ".interface" contain-

ing all the iOOBN components’ (nodes, edges, and instances) definitions and their properties

such as potentials and states.

Once any of the iOOBN definitions (abstract class, concrete class or interface) is found, the

OOBN (HUGIN [27] compatible) code is generated by translating the iOOBN definition using

the reengineered NPP grammar shown in Textbox A.3.1 and Textbox A.3.2. The OOBN code is

§A.5 Prototype Implementation 221

then used in the Hugin decision engine to perform inference if SIIC (proposed in Chapter 4) is

not used for compilation.

In the iOOBN tool (see Figure A.2), in order to build the compiler module, the ANTLR [231]

framework is used; this uses NPP grammar, as defined in the framework, to generate the

compiler for the iOOBN. This compiler produces Hugin-compatible net code from iOOBN-

compatible NPP code so that the HUGIN API can be used without redefining features (e.g.,

message passing, and JT creation) from scratch for the iOOBN.

The graphical editor of the iOOBN is built on top of the jGraphX [233] framework, which

is an open source graph editing tool. This popular and widely used graph editing framework

is used to avoid having to redevelop the GUI.

In the iOOBN tool, an iOOBN code (also known as NPP code) is generated from the GUI

file that is generated by users using the GUI editor. Then lexical analysis and syntax analysis

are performed. If no problem is found in the code, or a valid code is generated, a symbol

table and a syntax tree are constructed. The symbol table and the syntax tree are then used

to generate an optimized and correct Hugin OOBN code to best utilize the functionality of

the Hugin decision engine. The compilation system is depicted in Figure A.12. If the iOOBN

encounters an OOBN file, it can pass it directly to either the SIIC inference engine or the Hugin

decision engine to perform the inference. Otherwise, if it encounters an iOOBN file, it first

generates an OOBN from the source iOOBN file using the integrated compiler system and

then works on it as it does for an input OOBN file.

iOOBN
Code

NPP CompilerNPP Compiler

iOOBN Compilation SYSTEM

NET
Language

Code

iOOBN Compilation SYSTEM

NET
Language

Code

HDE

Hugin Decision Engine

HDE

Hugin Decision Engine

SIICSIIC

a sd va d ha d ha vd a sd h av hd a vd a sg dv

a hd v av dh a sv hd v ad a db a jd b jah b d ja

h d ha sb d hb a sjd ba jh db a jb d jah b d jh

a bd jh ab d jha b djh a bd h b asd h a bd jh a

b sd h ba a ds ad a da ad

iOOBN
Code

NPP Compiler

iOOBN Compilation SYSTEM

NET
Language

Code

HDE

Hugin Decision Engine

SIIC

a sd va d ha d ha vd a sd h av hd a vd a sg dv

a hd v av dh a sv hd v ad a db a jd b jah b d ja

h d ha sb d hb a sjd ba jh db a jb d jah b d jh

a bd jh ab d jha b djh a bd h b asd h a bd jh a

b sd h ba a ds ad a da ad

Figure A.12: How iOOBN software compiles both an OOBN and iOOBN file.

The compilation follows all the steps of a standard compiler system, like preprocessing, lex-

ical analysis, syntax analysis or parsing, semantic analysis, and target code generation. The in-

termediate code generation and code optimization steps, however, are skipped. The flowchart

in Figure A.13b illustrates how the integrated compiler generates an OOBN code from a given

iOOBN code (also known as NPP code).

§A.5 Prototype Implementation 222

(a)

Lexical Analysis

Syntax Analysis/
Parsing

Semantic
Analysis

Target Code
Generation

Error? Report error

Error?

Error?

Yes

Yes

Yes

No

No

No

iOOBN
Code

Lexical
Elements

a

b c

x

+a

b c

x

+ Syntax
Tree

Annotated
Syntax
Tree

Hugin
OOBN
Code

a

b c

x

+a

b c

x

+

(b)

Figure A.13: (a) An example iOOBN code snippet: A "horse" iOOBN class that extends an animal
iOOBN class, and (b) The steps involved in target code (NET language Code) generation from source
code (iOOBN code, also known as NPP code).

An iOOBN class (abstract or concrete) contains a set of nodes, potentials and instances

definition in its body. In the header, it contains a unique and valid name, an optional set of

iOOBN interfaces names and an optional parent class name. A high-level view of the class

structure is shown in Figure A.14a. Each line may have optional comments that begin with a

"//" symbol (single line comment marker).

Similarly, an iOOBN interface contains a set of input and output node definitions in its

body. In the header of an interface, there has to be a unique and valid name for the interface

§A.5 Prototype Implementation 223

and an optional set of parent interface names. A high-level view of the interface structure is

presented in Figure A.14b.

In sum, the main difference between an OOBN and an iOOBN class is the header section.

Type (Concrete/Abs) Name

 … Component Definition goes here …

 Nodes …

 Potentials …

 Instances ...

ParentRef List ChildRef List

ParClass name ParInterface List

(a)

Type (Interface) Name

 … Component Definition goes here …

 Nodes …

ParentRef List ChildRef List

ParInterface List

(b)

MetaType

(Instance?)
Name

 … Node Properties & potentials …

 State …

 Potentials …

 Category ...

NodeRef

ParClassCopy? InterfaceCopy?

(c)

Figure A.14: Meta Node structure of: (a) iOOBN class (abstract or concrete), (b) iOOBN interface; (c)
Node data structure of iOOBN

Table A.2 represents the hierarchy of classes that was shown in Figure 3.8 graphically. Here

the tabular format is the underlying representation of this hierarchy in iOOBN.

Table A.2: Hierarchy table: A tabular representation of hierarchy tree.
Ind Name Meta Node Ref Child Index Parent Index
0 Cow MetaNodeCow 1, 2 ∅
1 MilkCow MetaNodeMilk 3 0
2 DraftingCow MetaNodeDraft ∅ 0
3 CalvingCow MetaNodeCalve ∅ 1
4
.
.
.

In the table, Ind is the index of a node in the tree to track the parent-child relationship

(Child − index and Parent − index) between nodes. The Name has to be a unique, valid name

for a class/interface where MetaNode Ref is a reference to the instance of the structure as

shown in Figure A.14a for classes and Figure A.14b for interfaces.

Table A.3 is an analogy to the so-called "symbol table" of a typical compiler. It stores static,

dynamic and all other required information to execute a set of instructions in a traditional

compiler. Here, a node table serves almost the same purpose but one more relevant to infer-

ence. In Table A.3, an example of a node table is shown for a class "MilkCow" and how the

inheritance of each component in a class are tracked. Here, Id is a unique identifier generated

by iOOBN internally, and Name is a valid unique name given by users for each component

(nodes, instances, potentials) of an iOOBN meta component (class/interface).

NodeRef in Table A.3 is a reference to the instance of the structure that stores necessary

contents and information for an element of a BN or OOBN/iOOBN class or interface. Fig-

§A.5 Prototype Implementation 224

Table A.3: Symbolic node table used in iOOBN compiler.
Id Name Node Ref Node Src Instance? Overridden?
id0 Food NodeFood par × ×
id1 Locale NodeLocale par × ×
id2 Sex NodeSex self × NA

id3 Metabolism NodeMetabolism par × ×
id4 Milk NodeMilk self × NA

id5 Cow NodeCow par × ×
.
.
.

ure A.14c depicts a very high-level view of such a structure. The column NodeSrc in the table

is for tagging whether a node is a copy/reference of a parent class/interface or an element of

its own class/interface. The column Instance? marks whether a node is a complex instance

node or a simple decision/utility/chance node. Finally, the column overridden? tags whether

a node is inherited from parent class/interface or changed in the child class/interface.

Finally, the high-level architecture of the learning iOOBN class element (which is integrated

into the iOOBN) is presented. Figure A.15 shows a block diagram of the learning system.

iOOBN classes can be learned from a set of data or a set of BNs or a set of OOBN classes.

If data or BNs are given, they are automatically converted to OOBN classes and sent to the

main learning engine. The engine extracts a set of DAGs and finds a hierarchy (as proposed

in Chapter 5) of the OOBNs. This hierarchy helps in designing or building iOOBN classes in a

more efficient and cost-effective way by allowing maximum reusability of existing resources.

Set of
Data

iOOBN Learning SYSTEM

CaMMLCaMML

BN -> OOBNBN -> OOBN
iOOBN_
Learning

iOOBN Decision Engine

iOOBN_
Learning

iOOBN Decision Engine

iOOBN_
Learning

iOOBN Decision Engine

iOOBN Learning SYSTEM

CaMML

BN -> OOBN
iOOBN_
Learning

iOOBN Decision Engine

iOOBN_
Learning

iOOBN Decision Engine

Set of
BNs

Set of
OOBN
Classes

Set of
BNs

Set of
OOBN
Classes

Set of
iOOBN
Classes

Figure A.15: Flow Diagram of the iOOBN hierarchy learning system.

A.5.6 Physical view

iOOBN software is a single-processor based system, and neither parallel processing nor

parallel-distributed computing has yet been added. Hence, this aspect is not relevant to the

present discussion.

§A.6 Missing Features 225

A.6 Missing Features

In the current version, there are limited features. Some noteworthy omissions need to be ad-

dressed to make the software usable by general users.

• Addition of structure and parameter learning is not possible at this stage.

• OO-structure and parameter learning are missing. Since no relevant algorithm has been

devised to date, it was not possible to add this feature.

• User documentation is not complete.

• Error and exception handling is yet to be properly done.

• Multiple file opening at one time in a single window is not possible.

• The internal inheritance tree is not capable of propagating changes (pushing downward

or pulling upward in the hierarchy) between subclasses and superclasses.

• Sensitivity analysis is yet to be added.

Most of the limitations can be overcome by adding all of the supported features of Hugin to

iOOBN. The current implementation is easily extensible. Therefore, it is quite straightforward

to add more facilities to the prototype version of "iOOBN". A set of proper GUI buttons/op-

tions need to be added, and the action-listener can be used to call up appropriate functions

from Hugin API functions.

A.7 Summary

The current implementation is not complete. It has a lot of issues and limitations. Exception

handling needs special attention to make the user experience smooth. The whole system needs

thorough testing. All the features that would make it a standalone tool are yet to be added.

The next step towards the improvement of the tool is to add all the facilities provided by the

Hugin API. Making the system more user-friendly would add great value to the software in

the modelling arena. Developing a decision engine to avoid dependency on the Hugin tool

could also be a future project.

Appendix B

Case Study: Western Grassland Reserve
Project

This appendix contains a brief introduction to the Western Grassland Reserve (WGR) project

and the figures show the hierarchies (and mapping between the classes) constructed in the

iOOBN system to reengineer the "WGR" (Western Grassland Reserve) Project.

B.1 WGR Problem Domain

The State Government of Victoria in Australia is reserving 15,000 hectares of land to protect na-

tive grasslands to the west of Melbourne, to be managed by the Department of Environment

and Primary Industries (DEPI). The WGR currently contains a mixture of high quality native

grasslands, degraded grasslands and non-native vegetation, including improved pasture and

cultivated pasture (cropland). Managing these areas for conservation will require a complex

management approach involving weed control, biomass management using fire and grazing,

pasture resting and restoration involving the re-introduction of native plants and their seeds.

The reserve must be managed as soon as land is required, but the best management techniques

are largely unknown. Thus an adaptive management approach has been taken – where man-

agement and monitoring are adjusted over time as understanding of the ecosystem’s needs are

better known. In order to assist adaptive management, BN technology was chosen to model

ecological change in a grassland ecosystem, to provide probabilistic predictions to evaluate

management actions (e.g. weed control, fire) and to justify the choice of actions to be trialled

within the reserve [57].

B.2 The WGR OOBN Model

The WGR model is a complex BN, employing a number of extensions to the basic BN structure.

The original system is a dynamic BN, representing the change in state variables over time, with

seasonal time steps, rolled-out for a 30-year prediction window. It act as a decision network,

226

§B.3 Reengineering the WGR OOBN in iOOBN 227

with decision nodes representing management options grouped into management strategies,

which are sequences of actions across seasons, and utility nodes which represent the costs as-

sociated with interventions and the environmental value of the site. It needs an object-oriented

model, to manage the complexity of the number of species and seasonal transitions. The WGR

dynamic object-oriented BN model is presented here. The model is now deployed and be-

ing used by DEPI to: make predictions about changes in the grassland ecosystem; act as a

repository of knowledge, to be updated as understanding of the grassland ecosystem changes

or improves; quantitatively evaluate the ecological and financial consequences of management

actions; and rank management options with the highest probability of success for trialling [57].

In Chapter 3, Section 3.5.1, a brief introductory description of the over all project and the com-

ponents of the model is given. Figure B.3 shows a list of names of the 129 DOOBN classes of

the original WGR project. It also shows a mapping between original WGR DOOBN classes

with the first reengineered model iOOBN classes.

B.3 Reengineering the WGR OOBN in iOOBN

In order to validate the models built to trial the new iOOBN, WGR was chosen for reengineer-

ing. The reengineered WGR model was built as a component of this PhD research. The aims

of the reengineering can be classified broadly as follows:

1. Fully automated learning

2. Semi-automated modelling (reengineering with background knowledge and expert elic-

itation)

3. Manually built model with expert elicitation

The outcomes of the last two approaches were quite identical and hence only one of them

is explicated in this thesis.

The reengineered models for the WGR were implemented directly using iOOBN software

(see Appendix A for the details of iOOBN software) and a GUI designed specifically for the

iOOBN.

The reengineered model of WGR version-1 (figures B.1 and B.2) includes inheritance, ab-

straction and encapsulation. First, using the hierarchy learning approach (proposed in Chap-

ter 5), available as a function/feature in iOOBN software, a hierarchy of the classes was

learned. Initially, all 129 DOOBN classes of the original WGR were input into the hierarchy

learning function. This function then constructed a hierarchy of classes (129 original classes),

§B.3 Reengineering the WGR OOBN in iOOBN 228

abstract classes (inferred), and interfaces (inferred). This hierarchy diagram and the hierarchi-

cal relation among the iOOBN classes and interfaces were used to specify the classes needed

for WGR.

Version-2 of the reengineered model (Figure B.4) used expert elicitation, background and

domain knowledge with iOOBN features, such as encapsulation, abstraction, and inheritance.

The inheritance hierarchy was built based on background knowledge of the project. For every

different group of species of plants, separate hierarchies were created and these hierarchies

(referred to as subhierarchies) were later combined in to a single hierarchy based on the simi-

larities of the root classes of the subhierarchies. The resulting hierarchy was validated by the

WGR experts and also validated by comparing it with the manual version of the hierarchy

built by expert elicitation.

The hierarchies learned in the above-mentioned ways have their own merits and demer-

its. However, there is a common factor in both hierarchies; i.e., the automated one places

emphasis on the flat similarities of the attributes of plants/classes whereas the manual one is

based on expert knowledge of plant species, where attributes and genetic similarities of par-

ticular species are well understood. Hence, there were no remarkable differences between

the hierarchies except for the part of the hierarchies where classes relate to managerial action-

s/decisions/interventions. This occurred because, in the automatic learned hierarchies, some

decision network segments were classified similarly to some plant classes, as they shared some

attributes in common.

The BN model describes in some detail the species composition of the grassland and how

this composition is predicted to change under different management regimes. Within this

adaptive management approach, the BN has been used for three primary purposes: [3]

• To make predictions about the effects of management (including cost-benefit considera-

tions), thereby allowing us to select a small set of promising options to trial in the field

from the vast array of possible management options.

• To make detailed assumptions about grassland ecology and management explicit, and

thus open to criticism and improvement.

• As a tool to help in learning and a framework in which to house that learning. The

BN parameters can be regularly updated as we learn more about grasslands and their

management and hence strengthen the knowledge base.

In Figure B.4, another reengineered version of the WGR project is shown. This version

was built after discussing the reengineering project with WGR experts from the Bayesian In-

§B.3 Reengineering the WGR OOBN in iOOBN 229

telligence Pte Ltd (BAIPL) 1 and was also based on background knowledge of vegetation and

agriculture. The modelling also exhibits most of the OO features provided by an iOOBN. This

allowed comparison with the earlier version that was built from the knowledge and advice

provided by WGR DELWP experts.

The learning algorithm not only constructs a hierarchical tree that has classes (abstract and

concrete) and interfaces as nodes but also sketches the structure of the classes and components

of the interfaces. In order to implement the reengineered WGR model, the GUI designed for

the of iOOBN software was used to construct the class and interface structures. The software

also has the facility to add parameters manually and share among classes. The iOOBN param-

eter adding/sharing facility is used to complete the class definitions. Finally, the compilation

facility converts iOOBN classes into OOBN classes. The OOBN classes can then be used as

input to the Hugin decision engine in order to perform inference. iOOBN software facilitates

the inference by using Hugin APIs.

A point worth noting is that in all the hierarchies (figures B.1, B.2 and B.4), the actual con-

crete classes are not shown. These are the concrete classes where the parameters differed from

the superclass (shown as leaf nodes in the hierarchy). When an iOOBN model is built for a

specific problem, it will be this concrete class that is used in the overall model. In the case of

the reengineered WGR, these concrete classes are the same 129 classes that existed in the origi-

nal OOBN. Therefore, the need for validation is obsolete. More importantly, the reengineering

is all about safe reuse of existing classes/components (structures and parameters) through the

use of inheritance, encapsulation, polymorphism and type checking/typecasting.

1www.bayesian-intelligence.com

www.bayesian-intelligence.com

§B.3 Reengineering the WGR OOBN in iOOBN 230

+
In

:
C

o
v
e
r(

)

+
In

:
D

e
a

d
 C

o
v
e
r(

)

+
O

u
t:
 C

o
v
e

r(
)

+
O

u
t:
 D

e
a
d

 C
o
v
e
r(

)

«
in

te
rf

a
c
e

»

C
o

m
m

o
n

IO

+
In

:
C

o
v
e
r(

)

+
In

:
D

e
a

d
 C

o
v
e
r(

)

+
O

u
t:
 C

o
v
e

r(
)

+
O

u
t:
 D

e
a
d

 C
o
v
e
r(

)

«
in

te
rf

a
c
e

»

C
o

m
m

o
n

IO
+

In
:
T

S
R

H
?

+
In

:
B

a
s
a

l
A

re
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
 (

O
ld

:
7
4
)

+
In

:
T

S
R

H
?

+
In

:
B

a
s
a

l
A

re
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
 (

O
ld

:
7
4
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

C
2
 (

O
ld

:
7
0

-7
3

,
7

5
,
7

6
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

C
2
 (

O
ld

:
7
0

-7
3

,
7

5
,
7

6
)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
3
 (

O
ld

:
6
9
)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
3
 (

O
ld

:
6
9
)

+
C

o
v
e

r
R

e
d

u
c
ti
o

n
()

+
A

D
R

()

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

A
b

s
tr

a
c

t
C

la
s
s
 A

c
ti

v
it

y

+
C

o
v
e

r
R

e
d

u
c
ti
o

n
()

+
A

D
R

()

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

A
b

s
tr

a
c

t
C

la
s
s
 A

c
ti

v
it

y

+
B

io
m

a
s
s
 R

e
s
id

u
e

()

+
L
e

ft
 o

v
e
r

b
io

m
a

s
s
()

+
In

:
H

a
rv

e
s
t
H

a
p
p

e
n

s

C
4
 (

O
ld

:
7
,
8

4
,

8
5
,

1
1

4
)

+
B

io
m

a
s
s
 R

e
s
id

u
e

()

+
L
e

ft
 o

v
e
r

b
io

m
a

s
s
()

+
In

:
H

a
rv

e
s
t
H

a
p
p

e
n

s

C
4
 (

O
ld

:
7
,
8

4
,

8
5
,

1
1

4
)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(i
n
 ~

)

C
5
 (

O
ld

:
4
8
)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(i
n
 ~

)

C
5
 (

O
ld

:
4
8
)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

-O
u

t:
 S

e
e

d
li
n
g

 D
e

n
s
it
y

C
6
 (

O
ld

:
1
0
7

)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

-O
u

t:
 S

e
e

d
li
n
g

 D
e

n
s
it
y

C
6
 (

O
ld

:
1
0
7

)

+
R

e
d
u

c
.

B
io

m
a

s
s
()

+
N

it
ro

g
e

n
 H

o
ld

in
g
()

+
In

:
F

ir
e
 H

a
p
p

e
n

s
?

+
O

u
t:
 N

it
ro

g
e

n
 i
n
.

C
7
 (

O
ld

:
4
4

-4
6

)

+
R

e
d
u

c
.

B
io

m
a

s
s
()

+
N

it
ro

g
e

n
 H

o
ld

in
g
()

+
In

:
F

ir
e
 H

a
p
p

e
n

s
?

+
O

u
t:
 N

it
ro

g
e

n
 i
n
.

C
7
 (

O
ld

:
4
4

-4
6

)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(i
n
 ~

)

C
8
 (

O
ld

:
4
7
,

8
3

)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(i
n
 ~

)

C
8
 (

O
ld

:
4
7
,

8
3

)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

-O
u

t:
 S

e
e

d
li
n
g

 D
e

n
s
it
y

C
9
 (

O
ld

:
1
1
3

)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

-O
u

t:
 S

e
e

d
li
n
g

 D
e

n
s
it
y

C
9
 (

O
ld

:
1
1
3

)

+
F

ir
e

 H
a
p

p
e

n
s
(i
n

 ~
)

C
1
0
 (

O
ld

:
2
8

-3
0

)

+
F

ir
e

 H
a
p

p
e

n
s
(i
n

 ~
)

C
1
0
 (

O
ld

:
2
8

-3
0

)

+
F

ir
e

 H
a
p

p
e

n
s
(i
n

 ~
)

C
1
1
 (

O
ld

:
1
2

4
-1

2
5
)

+
F

ir
e

 H
a
p

p
e

n
s
(i
n

 ~
)

C
1
1
 (

O
ld

:
1
2

4
-1

2
5
)

+
F

ir
e

 H
a
p

p
e

n
s
(i
n

 ~
)

C
1
2
 (

O
ld

:
1
1

1
)

+
F

ir
e

 H
a
p

p
e

n
s
(i
n

 ~
)

C
1
2
 (

O
ld

:
1
1

1
)

+
C

o
v
e

r
D

e
a

th
()

+
S

C
R

()

+
C

/B
/A

 R
e
d

u
c
ti
o
n
()

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
A

p
p
li
c
a
ti
o
n

-O
u

t:
 S

e
e

d
 D

e
n
s
it
y

A
b

s
tr

a
c

t
C

la
s
s
 H

e
rb

ic
id

e

+
C

o
v
e

r
D

e
a

th
()

+
S

C
R

()

+
C

/B
/A

 R
e
d

u
c
ti
o
n
()

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
A

p
p
li
c
a
ti
o
n

-O
u

t:
 S

e
e

d
 D

e
n
s
it
y

A
b

s
tr

a
c

t
C

la
s
s
 H

e
rb

ic
id

e

+
In

:
P

ro
d
u

c
t

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
1
3
 (

O
ld

:1
,2

,1
2
,1

3
,
1

9
-2

2
)

+
In

:
P

ro
d
u

c
t

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
1
3
 (

O
ld

:1
,2

,1
2
,1

3
,
1

9
-2

2
)

+
T

a
rg

e
t(

in
 ~

)

C
1
4
 (

O
ld

:
8
,

2
6

,
3
3

)

+
T

a
rg

e
t(

in
 ~

)

C
1
4
 (

O
ld

:
8
,

2
6

,
3
3

)

+
In

:
P

ro
d
u

c
t

+
In

:
B

a
s
a

l
A

re
a

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 B

a
s
a
l
A

re
a

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
1
5
 (

O
ld

:
1
0

-1
1

)

+
In

:
P

ro
d
u

c
t

+
In

:
B

a
s
a

l
A

re
a

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 B

a
s
a
l
A

re
a

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
1
5
 (

O
ld

:
1
0

-1
1

)

+
T

a
rg

e
t(

in
 ~

)

C
1
6

(O
ld

:
1
4

,3
9
,5

1
,6

2
,6

7
,7

8
,

9
0

,9
9
,1

0
3
,1

0
8
,1

1
7
,1

2
1
)

+
T

a
rg

e
t(

in
 ~

)

C
1
6

(O
ld

:
1
4

,3
9
,5

1
,6

2
,6

7
,7

8
,

9
0

,9
9
,1

0
3
,1

0
8
,1

1
7
,1

2
1
)

+
C

S
I(

)

+
R

C
C

C
()

+
O

b
j.
 B

C
G

D
()

+
C

o
v
e

r
C

a
p

()

+
N

it
ro

g
e

n
 H

o
ld

in
g
()

+
C

o
v
e

r
G

ro
w

th
()

+
C

o
v
e

r
G

ro
w

th
()

+
C

o
v
e

r
D

e
a

th
()

+
D

C
D

()

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
S

e
a
s
o
n

+
In

:
N

u
tr

ie
n
t

L
o

a
d

+
In

:
C

o
m

p
.
S

u
m

.

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

+
O

u
t:
 N

it
ro

g
e

n
 U

p
.

C
1
7
 (

O
ld

:
8
1

,8
8
)

+
C

S
I(

)

+
R

C
C

C
()

+
O

b
j.
 B

C
G

D
()

+
C

o
v
e

r
C

a
p

()

+
N

it
ro

g
e

n
 H

o
ld

in
g
()

+
C

o
v
e

r
G

ro
w

th
()

+
C

o
v
e

r
G

ro
w

th
()

+
C

o
v
e

r
D

e
a

th
()

+
D

C
D

()

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
S

e
a
s
o
n

+
In

:
N

u
tr

ie
n
t

L
o

a
d

+
In

:
C

o
m

p
.
S

u
m

.

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

+
O

u
t:
 N

it
ro

g
e

n
 U

p
.

C
1
7
 (

O
ld

:
8
1

,8
8
)

+
S

e
e

d
 P

ro
d

 R
a

te
()

+
G

e
m

 R
a
te

()

+
S

u
rv

iv
e
 R

a
te

()

+
S

e
e

d
 S

u
rv

iv
a
l
R

a
te

()

+
A

d
u

lt
 S

u
rv

iv
a
l
R

a
te

()

+
N

e
w

 A
d
u

lt
s
()

+
R

C
C

S
()

-A
d
u

lt
 D

e
n

s
it
y

C
1
8
 (

O
ld

:
9
,2

7
,3

4
)

+
S

e
e

d
 P

ro
d

 R
a

te
()

+
G

e
m

 R
a
te

()

+
S

u
rv

iv
e
 R

a
te

()

+
S

e
e

d
 S

u
rv

iv
a
l
R

a
te

()

+
A

d
u

lt
 S

u
rv

iv
a
l
R

a
te

()

+
N

e
w

 A
d
u

lt
s
()

+
R

C
C

S
()

-A
d
u

lt
 D

e
n

s
it
y

C
1
8
 (

O
ld

:
9
,2

7
,3

4
)

+
In

:
B

a
s
a

l
A

re
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
9

(O
ld

:1
7
,4

0
,5

2
,6

3
,1

0
0

1
0

4
,1

0
9
,1

1
8
,1

2
2
)

+
In

:
B

a
s
a

l
A

re
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
9

(O
ld

:1
7
,4

0
,5

2
,6

3
,1

0
0

1
0

4
,1

0
9
,1

1
8
,1

2
2
)

+
C

S
I(

)

+
R

P
D

()

+
R

P
L

()

+
O

b
j
B

A
C

G
()

+
In

:
S

e
a
s
o
n

-I
n
:

D
u

ra
ti
o

n

A
b

s
tr

a
c

t
C

la
s
s
 G

r
a
z
e

+
C

S
I(

)

+
R

P
D

()

+
R

P
L

()

+
O

b
j
B

A
C

G
()

+
In

:
S

e
a
s
o
n

-I
n
:

D
u

ra
ti
o

n

A
b

s
tr

a
c

t
C

la
s
s
 G

r
a
z
e

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
2
0
 (

O
ld

:
5
,2

4
,3

1
)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
2
0
 (

O
ld

:
5
,2

4
,3

1
)

+
S

h
e

e
p
 P

a
l
S

u
m

(i
n
 ~

)

C
2
1
(O

ld
:

6
,2

5
,

3
2
)

+
S

h
e

e
p
 P

a
l
S

u
m

(i
n
 ~

)

C
2
1
(O

ld
:

6
,2

5
,

3
2
)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
B

a
s
a

l
A

re
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
2
2
 (

O
ld

:
1
5

,3
7
,4

9
,6

0
,6

5
,

7
9

,8
6
,9

7
,1

0
1

,1
1
5

,1
1
9

)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
B

a
s
a

l
A

re
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
2
2
 (

O
ld

:
1
5

,3
7
,4

9
,6

0
,6

5
,

7
9

,8
6
,9

7
,1

0
1

,1
1
5

,1
1
9

)

+
S

h
e

e
p
 P

a
l
S

u
m

(i
n
 ~

)

C
2
4
 (

O
ld

:1
6
,3

8
,5

0
,6

1
,6

6

8
0

,8
7
,9

8
,1

0
2

,1
1
6

,1
2
0

)

+
S

h
e

e
p
 P

a
l
S

u
m

(i
n
 ~

)

C
2
4
 (

O
ld

:1
6
,3

8
,5

0
,6

1
,6

6

8
0

,8
7
,9

8
,1

0
2

,1
1
6

,1
2
0

)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
2
3
 (

O
ld

:
8
4

)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
2
3
 (

O
ld

:
8
4

)

-I
n
:

S
e

e
d

li
n
g
 D

e
n

s
it
y

-O
u

t:
 S

e
e

d
li
n
g

 D
e

n
s
it
y

C
2
5
 (

O
ld

:
1
0

6
)

-I
n
:

S
e

e
d

li
n
g
 D

e
n

s
it
y

-O
u

t:
 S

e
e

d
li
n
g

 D
e

n
s
it
y

C
2
5
 (

O
ld

:
1
0

6
)

A

B

:
A

 i
n
h
e
ri
ts

 a
tt
ri
b
u
te

 o
f

B

A

C

:
A

 i
m

p
le

m
e
n
ts

 a
tt
ri
b
u
te

 o
f
C

D
()

:
D

 i
s
 a

n
 e

m
b
e
d
d
e
d
 a

tt
ri
b
u

te

F
(~

)

:
F

 i
s
 a

n
 o

v
e
rr

id
d
e
n
 a

tt
ri
b
u
te

A

B

:
A

 i
n
h
e
ri
ts

 a
tt
ri
b
u
te

 o
f

B

A

C

:
A

 i
m

p
le

m
e
n
ts

 a
tt
ri
b
u
te

 o
f
C

D
()

:
D

 i
s
 a

n
 e

m
b
e
d
d
e
d
 a

tt
ri
b
u

te

F
(~

)

:
F

 i
s
 a

n
 o

v
e
rr

id
d
e
n
 a

tt
ri
b
u
te

:
A

d
u
lt
 D

e
n
s
it
y
 R

e
d
u
c
ti
o
n

:
B

a
s
a
l
A

re
a
 R

e
d
u
c
ti
o
n

:
T

o
p

 S
o

il
 R

e
m

o
v
e

 H
a
p
p
e
n
s
?

:
S

e
e
d
li
n
g
 D

e
n
s
it
y
 R

e
d
u

c
ti
o
n

:
S

e
e
d
 C

o
v
e
r

R
e
d
u
c
ti
o
n

:
C

o
v
e
r/

B
a
s
a

l/
A

d
u
lt
 R

e
d
u

c
ti
o
n

:
c
o
m

p
 s

u
m

 i
n
d

e
x

:
R

e
l.
 C

o
m

p
 C

o
n
d
 C

o
v
e
r

:
D

e
a
d
 C

o
v
e
r

D
e
te

ri
o
ra

ti
o
n

:
R

e
l.
 C

o
m

p
 C

o
n
d
 S

e
e
d
li
n
g
s

:
R

e
la

ti
v
e
 P

a
l.
 L

iv
e

:
R

e
la

ti
v
e
 P

a
l.
 D

e
a
d

 A
D

R

B
A

R

T
S

R
H

S
D

R

S
C

R

C
/B

/A
 R

e
d
u

c
ti
o
n

C
S

I

R
C

C
C

D
C

D

R
C

C
S

R
P

L

R
P

D

A
D

R

B
A

R

T
S

R
H

S
D

R

S
C

R

C
/B

/A
 R

e
d
u

c
ti
o
n

C
S

I

R
C

C
C

D
C

D

R
C

C
S

R
P

L

R
P

D

:
A

d
u
lt
 D

e
n
s
it
y
 R

e
d
u
c
ti
o
n

:
B

a
s
a
l
A

re
a
 R

e
d
u
c
ti
o
n

:
T

o
p

 S
o

il
 R

e
m

o
v
e

 H
a
p
p
e
n
s
?

:
S

e
e
d
li
n
g
 D

e
n
s
it
y
 R

e
d
u

c
ti
o
n

:
S

e
e
d
 C

o
v
e
r

R
e
d
u
c
ti
o
n

:
C

o
v
e
r/

B
a
s
a

l/
A

d
u
lt
 R

e
d
u

c
ti
o
n

:
c
o
m

p
 s

u
m

 i
n
d

e
x

:
R

e
l.
 C

o
m

p
 C

o
n
d
 C

o
v
e
r

:
D

e
a
d
 C

o
v
e
r

D
e
te

ri
o
ra

ti
o
n

:
R

e
l.
 C

o
m

p
 C

o
n
d
 S

e
e
d
li
n
g
s

:
R

e
la

ti
v
e
 P

a
l.
 L

iv
e

:
R

e
la

ti
v
e
 P

a
l.
 D

e
a
d

 A
D

R

B
A

R

T
S

R
H

S
D

R

S
C

R

C
/B

/A
 R

e
d
u

c
ti
o
n

C
S

I

R
C

C
C

D
C

D

R
C

C
S

R
P

L

R
P

D

R
e

m
o
v
e
 T

o
p
 S

o
il

H
a

rv
e
s
t

F
ir
e

S
c
a
ri

fy

H
e

rb
ic

id
e

H
e

rb
ic

id
e
 T

a
rg

e
t

N
a

tu
ra

l

G
ra

z
in

g

 I

n
te

rf
a
c
e

 A

b
s
tr

a
c
t

Fi
gu

re
B

.1
:C

la
ss

hi
er

ar
ch

y
of

th
e

W
G

R
re

en
gi

ne
er

ed
(i

O
O

BN
)s

ys
te

m
le

ar
ne

d
by

au
to

m
at

ed
hi

er
ar

ch
y

co
ns

tr
uc

ti
on

al
go

ri
th

m

§B.3 Reengineering the WGR OOBN in iOOBN 231

C
la

s
s
 3

2
 (

O
ld

:
1
8

)

+
In

:
s
e

a
s
o
n

,
T

C
o
v
e
r,

 S
c
a

le

+
In

:
L
C

o
v
e
r,

 B
a
s
C

o
v
e

r

+
In

:
S

tr
a

te
g

y
,
B

u
rn

 D
if
fi
c
u
lt
y

+
O

u
t:

 B
u
rn

 H
a
p
p

e
n
s

+
U

ti
:
B

u
rn

 C
o
s
t

C
la

s
s
 3

4
 (

O
ld

:
4
2

)

+
In

:
S

T
C

o
v
e
r,

 N
e
e

d
le

C
o
v
e

r,

+
In

:
B

la
n
k
e
tC

o
v
e
r,

P

ro
d
u
c
t

+
In

:
S

tr
a

te
g

y
,
D

e
-R

o
c
k
e
d

+
In

:
B

ro
a
d
W

e
e

d
C

o
v
e
r,

 S
c
a

le

+
O

u
t:

 T
a
rg

e
t,
 C

o
v
e
r,

 A
p
p

li
c
a

ti
o
n

+
U

ti
:
H

e
rb

ic
id

e
 C

o
s
t

+
E

m
:
C

3
 T

a
rg

e
tG

ra
s
s
C

o
v
e

r

+
E

m
:
B

ro
a
d
L

e
a
fT

a
rg

e
tC

o
v
e
r

C
la

s
s
 3

3
 (

O
ld

:
4
3

)

+
In

:
S

T
C

o
v
e
r,

 N
e
e

d
le

C
o
v
e

r,

+
In

:
B

la
n
k
e
tC

o
v
e
r,

 S
tr

a
te

g
y

+
In

:
B

ro
a
d
W

e
e

d
C

o
v
e
r

+
O

u
t:

 T
a
rg

e
t,
 C

o
v
e
r,

 A
p
p

li
c
a

ti
o
n

+
U

ti
:
H

e
rb

ic
id

e
 C

o
s
t

C
la

s
s

 3
1

 (
O

ld
:

9
6

)

+
In

:
s
e

a
s
o
n

,
S

c
a

le

+
In

:
S

tr
a

te
g

y

+
U

ti
:
S

o
w

 C
o
s
t

C
la

s
s

 2
6

 (
O

ld
:

2
3

)

+
In

:
S

c
a

le

+
In

:
S

tr
a

te
g

y

+
U

ti
:
C

a
rb

o
n

 B
o

o
s
t

C
o
s
t

C
la

s
s

 2
8

 (
O

ld
:

4
1

)

+
In

:
S

c
a

le
,
D

e
 R

o
c
k
e
d

?

+
In

:
S

tr
a

te
g

y

+
O

u
t:

 H
a
rv

e
s
t
H

a
p

p
e
n
s
?

+
U

ti
:
H

a
rv

e
s
t
H

a
p

p
e
n
s

C
o
s
t

C
la

s
s

 3
0

 (
O

ld
:

7
7

)

+
In

:
S

c
a

le
,
D

e
 R

o
c
k
e
d
?

+
In

:
S

tr
a

te
g

y

+
O

u
t:

 R
e
m

o
v
e
 T

o
p
 S

o
il

H
a
p

p
e
n
s
?

+
U

ti
:
R

e
m

o
v
e
 T

o
p
 S

o
il

H
a
p

p
e
n
s
 C

o
s
t

C
la

s
s

 2
9

 (
O

ld
:

8
2

)

+
In

:
S

c
a

le
,
D

e
 R

o
c
k
e
d

?

+
In

:
S

tr
a

te
g

y

+
O

u
t:

 S
c
a

ri
fy

 H
a
p
p
e

n
s
?

+
U

ti
:
S

c
a

ri
fy

 H
a
p
p
e

n
s

C
o
s
t

C
la

s
s

 3
5

 (
O

ld
:

5
4

)

+
In

:
N

it
ro

g
e

n
,

C
a

rb
o

n

+
In

:
P

h
o

sp
h

o
ro

u
s

+
O

u
t:

 N
u
tr

ie
n

t
L
o

a
d

+
E

m
:

N
it

ro
g

e
n

,
C

a
rb

o
n

+

E
m

:
P

h
o

sp
h

o
ro

u
s

C
la

s
s

 2
7

 (
O

ld
:

3
5

,3
6

)

+
In

:
S

c
a

le
,
D

u
ra

ti
o

n

+
In

:
H

a
s
 F

e
n
c
e

?

+
O

u
t:

 H
a
s
 F

e
n
c
e

?

+
U

ti
:
G

ra
z
e
 C

o
s
t

C
la

s
s

 3
7

 (
O

ld
:

5
5

,
5
8

)

+
In

:
N

it
ro

g
e

n
 U

p
ta

k
e

+

In
:

N
it

ro
g

e
n

,
C

a
rb

o
n

+

In
:

P
h

o
sp

h
o

ro
u

s
+

O
u
t:

 N
u
tr

ie
n

t
L
o

a
d

+
E

m
:

N
it

ro
g

e
n

,
C

a
rb

o
n

+

E
m

:
P

h
o

sp
h

o
ro

u
s

C
la

s
s

 3
8

 (
O

ld
:

5
9

)

+
In

:
R

e
m

o
v

e
 T

o
p

 S
o

il
?

+
In

:
N

it
ro

g
e

n
,

C
a

rb
o

n

+
In

:
P

h
o

sp
h

o
ro

u
s

+
O

u
t:

 N
u
tr

ie
n

t
L
o

a
d

+
E

m
:

N
it

ro
g

e
n

,
C

a
rb

o
n

+

E
m

:
P

h
o

sp
h

o
ro

u
s

C
la

s
s
 3

6
 (

O
ld

:
5
6

,5
7

)

+
In

:
D

u
ra

ti
o

n
+

In
:

N
it

ro
g

e
n

,
C

a
rb

o
n

+

In
:

P
h

o
sp

h
o

ro
u

s
+

O
u
t:

 N
u
tr

ie
n

t
L
o

a
d

+
E

m
:

N
it

ro
g

e
n

,
C

a
rb

o
n

+

E
m

:
P

h
o

sp
h

o
ro

u
s

C
la

s
s

 3
9

 (
O

ld
:

9
1

,9
2

)

+
In

:
F

ri
a

b
il
it
y

+
O

u
t:

 F
ri
a

b
il
it
y

C
4
0

 (
O

ld
:

9
4

)

+
In

:
F

ri
a

b
il
it
y

+
In

:
R

e
m

o
v

e
 T

o
p

 S
o

il
?

+
O

u
t:

 F
ri
a

b
il
it
y

C
4
1

 (
O

ld
:

9
5

)

+
In

:
F

ri
a

b
il
it
y

+
In

:
S

ca
ri

fy
?

+
O

u
t:

 F
ri
a

b
il
it
y

Fi
gu

re
B

.2
:C

la
ss

hi
er

ar
ch

y
of

th
e

W
G

R
re

en
gi

ne
er

ed
(i

O
O

BN
)s

ys
te

m
-D

ec
is

io
n

an
d

ut
ili

ty
no

de
s

le
ar

ne
d

by
au

to
m

at
ed

hi
er

ar
ch

y
co

ns
tr

uc
ti

on
al

go
ri

th
m

§B.3 Reengineering the WGR OOBN in iOOBN 232

M
a
p

p
in

g
 o

f
c
la

s
s
 n

a
m

e
s

:
N

e
w

 c
o
lu

m
n
 r

e
p

re
s
e
n

ts
 t
h
e
 c

la
s
s
 n

a
m

e
s
/n

u
m

b
e
rs

 i
n

 r
e
v

e
rs

e
 e

n
g

in
e
e

re
d

 v
e

rs
io

n
 a

n
d

 (
O

ld
 +

 N
a
m

e
)

c
o
lu

m
n
s
 r

e
p
re

s
e

n
t
th

e
 c

la
s
s
 n

a
m

e
s
 i
n
 o

ri
g

in
a
l
W

G
R

 v
e

rs
io

n

T
a
b

le
 w

it
h

 B
lu

e
 H

e
a

d
e
r

re
p
re

s
e
n

ts
 c

o
n
s
tr

u
c
ts

 t
h
o
s
e
 a

re
 o

n
ly

 a
v
a
il
a
b
le

 I
O

O
B

N
.

D
a
rk

 r
o
w

s
 i
n
d
ic

a
te

s
 “

C
la

s
s
e
s
 n

o
t

a
v
a
il
a

b
le

 i
n
 t
h

e
 h

ie
ra

rc
h
y
”.

N
e

w
O

ld

N
a

m
e

1
7

4
R

e
m

o
ve

 T
o

p
 S

o
il

6
2

7
0

R
e

m
o

ve
 T

o
p

 S
o

il
2

7
1

R
e

m
o

ve
 T

o
p

 S
o

il
3

7
2

R
e

m
o

ve
 T

o
p

 S
o

il
4

7
3

R
e

m
o

ve
 T

o
p

 S
o

il
5

7
5

R
e

m
o

ve
 T

o
p

 S
o

il
7

7
6

R
e

m
o

ve
 T

o
p

 S
o

il
8

3
6

9
R

e
m

o
ve

 T
o

p
 S

o
il

1
4

7
B

la
n

ke
t

H
ar

ve
st

8
4

Se
n

si
ti

ve
 H

ar
ve

st
 1

8
5

Se
n

si
ti

ve
 H

ar
ve

st
 2

1
1

4
T

o
le

ra
n

t
H

ar
ve

st
5

4
8

M
o

d
e

ra
te

 H
ar

ve
st

6
1

0
7

T
h

e
m

e
d

a
H

ar
ve

st
7

4
4

K
ill

e
d

 F
ir

e
1

4
5

K
ill

e
d

 F
ir

e
2

4
6

K
ill

e
d

 F
ir

e
3

8
4

7
M

o
d

e
ra

te
 F

ir
e

8
3

Se
n

si
ti

ve
 F

ir
e

9
1

1
3

T
o

le
ra

n
t

Fi
re

1
0

2
8

Fr
ag

ile
 S

ca
ri

fy
 1

2
9

Fr
ag

ile
 S

ca
ri

fy
 2

3
0

Fr
ag

ile
 S

ca
ri

fy
 3

1
1

1
2

4
T

e
n

ac
io

u
s

Sc
ar

if
y

1

1
2

5
T

e
n

ac
io

u
s

Sc
ar

if
y

2
1

2
1

1
1

T
h

e
m

e
d

a
Sc

ar
if

y
1

3
1

A
n

n
u

al
 G

ra
ss

 H
e

rb
ic

id
e

 1

2
A

n
n

u
al

 G
ra

ss
 H

e
rb

ic
id

e
 2

1
2

B
ro

ad
 L

e
af

 T
ar

ge
t

H
e

rb
ic

id
e

 1

1
3

B
ro

ad
 L

e
af

 T
ar

ge
t

H
e

rb
ic

id
e

 2

1
9

C
3

 G
ra

ss
 H

e
rb

ic
id

e

2
0

C
3

 G
ra

ss
 T

ar
ge

t
H

e
rb

ic
id

e
 1

2
1

C
3

 G
ra

ss
 T

ar
ge

t
H

e
rb

ic
id

e
 2

2
2

C
4

 G
ra

ss
 H

e
rb

ic
id

e
1

4
8

B
la

n
ke

t
H

e
rb

ic
id

e
 T

ar
ge

t

N
e

w
O

ld

N
a

m
e

1
4

2
6

E
xo

ti
c

A
n

n
u

al
 H

e
rb

ic
id

e
 T

ar
ge

t

3
3

G
ra

in
 H

e
rb

ic
id

e
 T

ar
ge

t
1

5
1

0
B

ro
ad

 L
e

af
 H

e
rb

ic
id

e
 1

1
1

B
ro

ad
 L

e
af

 H
e

rb
ic

id
e

 2
1

6
1

4
B

ro
ad

 W
e

e
d

 H
e

rb
ic

id
e

 T
ar

ge
t

3
9

H
ar

d
y

N
at

iv
e

 H
e

rb
ic

id
e

 T
ar

ge
t

5
1

N
e

e
d

le
 H

e
rb

ic
id

e
 T

ar
ge

t

6
2

O
n

io
n

 H
e

rb
ic

id
e

 T
ar

ge
t

6
7

R
e

d
 L

e
g

H
e

rb
ic

id
e

 T
ar

ge
t

7
8

R
u

d
e

r
H

e
rb

ic
id

e
 T

ar
ge

t

9
0

Se
n

si
 N

at
iv

e
 H

e
rb

ic
id

e
 T

ar
ge

t

9
9

Sp
e

ar
 H

e
rb

ic
id

e
 T

ar
ge

t

1
0

3
ST

 H
e

rb
ic

id
e

 T
ar

ge
t

1
0

8
T

h
e

m
e

d
a

H
e

rb
ic

id
e

 T
ar

ge
t

1
1

7
W

al
la

b
y

H
e

rb
ic

id
e

 T
ar

ge
t

1
2

1
W

in
d

m
ill

 H
e

rb
ic

id
e

 T
ar

ge
t

1
7

8
1

R
u

d
e

r
N

at
u

ra
l

8
8

Se
n

si
 N

at
iv

e
 N

at
u

ra
l

1
8

9
B

la
n

ke
t

N
at

u
ra

l

2
7

E
xo

ti
c

A
n

n
u

al
 N

at
u

ra
l

3
4

G
ra

in
 N

at
u

ra
l

1
9

1
7

B
ro

ad
 W

e
e

d
s

N
at

u
ra

l

4
0

H
ar

d
y

N
at

iv
e

 N
at

u
ra

l

5
2

N
e

e
d

le
 N

at
u

ra
l

6
3

O
n

io
n

 N
at

u
ra

l

6
8

R
e

d
 L

e
g

N
at

u
ra

l

1
0

0
Sp

e
ar

 N
at

u
ra

l

1
0

4
ST

 N
at

u
ra

l

1
0

9
T

h
e

m
e

d
a

N
at

u
ra

l

1
1

8
W

al
la

b
y

N
at

u
ra

l

1
2

2
W

in
d

m
ill

 N
at

u
ra

l
2

0
5

B
la

n
ke

t
G

ra
ze

 C
at

tl
e

2
4

E
xo

ti
c

A
n

n
u

al
 G

ra
ze

 C
at

tl
e

3
1

G
ra

in
 G

ra
ze

 C
at

tl
e

N
e

w
O

ld

N
a

m
e

2
1

6
B

la
n

ke
t

G
ra

ze
 S

h
e

e
p

2
5

E
xo

ti
c

A
n

n
u

al
 G

ra
ze

 S
h

e
e

p

3
2

G
ra

in
 G

ra
ze

 S
h

e
e

p
 (

*
)

2
2

1
5

B
ro

ad
 W

e
e

d
 G

ra
ze

 C
at

tl
e

3
7

H
ar

d
y

N
at

iv
e

 G
ra

ze
 C

at
tl

e

4
9

N
e

e
d

le
 G

ra
ze

 C
at

tl
e

6
0

O
n

io
n

 G
ra

ze
 C

at
tl

e

6
5

R
e

d
 L

e
g

G
ra

ze
 C

at
tl

e

7
9

R
u

d
e

r
G

ra
ze

 C
at

tl
e

8
6

Se
n

si
t

N
at

iv
e

 G
ra

ze
 C

at
tl

e

9
7

Sp
e

ar
 G

ra
ze

 C
at

tl
e

1
0

1
ST

 G
ra

ze
 C

at
tl

e

1
1

5
W

al
la

b
y

G
ra

ze
 C

at
tl

e

1
1

9
W

in
d

m
ill

 G
ra

ze
 C

at
tl

e
2

3
1

0
5

T
h

e
m

e
d

a
G

ra
ze

 C
at

tl
e

2
4

1
6

B
ro

ad
 W

e
e

d
 G

ra
ze

 S
h

e
e

p

3
8

H
ar

d
y

N
at

iv
e

 G
ra

ze
 S

h
e

e
p

5
0

N
e

e
d

le
 G

ra
ze

 S
h

e
e

p

6
1

O
n

io
n

 G
ra

ze
 S

h
e

e
p

6
6

R
e

d
 L

e
g

G
ra

ze
 S

h
e

e
p

8
0

R
u

d
e

r
G

ra
ze

 S
h

e
e

p

8
7

Se
n

si
t

N
at

iv
e

 G
ra

ze
 S

h
e

e
p

9
8

Sp
e

ar
 G

ra
ze

 S
h

e
e

p

1
0

2
ST

 G
ra

ze
 S

h
e

e
p

1
1

6
W

al
la

b
y

G
ra

ze
 S

h
e

e
p

1
2

0
W

in
d

m
ill

 G
ra

ze
 S

h
e

e
p

2
5

1
0

6
T

h
e

m
e

d
a

G
ra

ze
 S

h
e

e
p

N
e

w
O

ld

N
a

m
e

2
6

2
3

C
ar

b
o

n
 B

o
o

st
2

7
3

5
G

ra
ze

 I
n

te
rv

e
n

ti
o

n
 C

at
tl

e

3
6

G
ra

ze
 I

n
te

rv
e

n
ti

o
n

 S
h

e
e

p
2

8
4

1
H

ar
ve

st
 In

te
rv

e
n

ti
o

n
2

9
8

2
Sc

ar
if

y
In

te
rv

e
n

ti
o

n
3

0
7

7
R

e
m

o
ve

 T
o

p
 S

o
il

In
te

rv
e

n
ti

o
n

3
1

9
6

So
w

 In
te

rv
e

n
ti

o
n

3
2

1
8

B
u

rn
 In

te
rv

e
n

ti
o

n
3

3
4

3
H

e
rb

ic
id

e
 In

te
rv

e
n

ti
o

n
 T

ar
ge

t
3

4
4

2
H

e
rb

ic
id

e
 In

te
rv

e
n

ti
o

n
3

5
5

4
N

it
ro

ge
n

 C
ar

b
o

n
 B

o
o

st
3

6
5

6
N

u
tr

ie
n

t
G

ra
ze

 C
at

tl
e

5
7

N
u

tr
ie

n
t

G
ra

ze
 S

h
e

e
p

3
7

5
5

N
u

tr
ie

n
t

Fi
re

5
8

N
u

tr
ie

n
t

N
at

u
ra

l
3

8
5

9
N

u
tr

ie
n

t
R

e
m

o
ve

 T
o

p
 S

o
il

3
9

9
1

So
il

G
ra

ze
 C

at
tl

e

9
2

So
il

G
ra

ze
 S

h
e

e
p

4
0

9
4

So
il

R
e

m
o

ve
 T

o
p

 S
o

il
4

1
9

5
So

il
Sc

ar
if

y
4

2
3

B
as

al
 A

d
u

lt
 C

o
ve

r
G

ra
ze

 (
B

A
C

G
)

4
3

4
B

io
m

as
s

N
at

u
ra

l
4

4
6

4
P

la
n

t
In

te
rv

e
n

ti
o

n
4

5
5

3
N

u
i A

d
d

e
r

4
6

8
9

Se
n

si
ti

ve
 N

at
iv

e
 S

o
w

4
7

9
3

So
il

N
at

u
ra

l
4

8
1

1
0

T
h

e
m

e
d

a
P

la
n

t
4

9
1

1
2

T
h

e
m

e
d

a
So

w
5

0
1

2
3

B
as

al
 C

o
ve

r
G

ro
w

th
 D

e
at

h
 (

B
C

G
D

)
5

1
1

2
6

B
io

m
as

s
Su

m
m

ar
ie

s
5

2
1

2
7

M
ai

n
5

3
1

2
8

E
n

vV
al

u
e

5
4

1
2

9
N

u
tr

ie
n

t
H

ar
ve

st
 [

Fo
u

n
d

 B
la

n
k]

C
o

n
st

ru
ct

s
N

a
m

e

In
te

rf
ac

e
C

o
m

m
o

n
IO

A
b

st
ra

ct

C
la

ss
e

s
A

ct
iv

it
y

G
ra

ze
H

e
rb

ic
id

e

Fi
gu

re
B

.3
:M

ap
pi

ng
of

th
e

W
G

R
(o

ri
gi

na
l)

cl
as

se
s

an
d

th
e

W
G

R
re

en
gi

ne
er

ed
(i

O
O

BN
)c

la
ss

es

§B.3 Reengineering the WGR OOBN in iOOBN 233

+
In

:
C

o
v
e
r
()

+
In

:
D

e
a

d
 C

o
v
e
r(

)

+
O

u
t:
 C

o
v
e

r(
)

+
O

u
t:
 D

e
a
d

 C
o
v
e
r
()

«
in

te
rf

a
c
e

»

In
te

r
v
e

n
ti

o
n

s

+
In

:
C

o
v
e
r
()

+
In

:
D

e
a

d
 C

o
v
e
r(

)

+
O

u
t:
 C

o
v
e

r(
)

+
O

u
t:
 D

e
a
d

 C
o
v
e
r
()

«
in

te
rf

a
c
e

»

In
te

r
v
e

n
ti

o
n

s

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
 (

O
ld

:
 7

4
)

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
 (

O
ld

:
 7

4
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

C
2
 (

O
ld

:
 7

0
-7

3
,
7

5
,
7

6
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

C
2
 (

O
ld

:
 7

0
-7

3
,
7

5
,
7

6
)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
3
 (

O
ld

:
 6

9
)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
3
 (

O
ld

:
 6

9
)

+
C

o
v
e

r
D

e
a

th
()

+
S

C
R

()

+
C

/B
/A

 R
e
d

u
c
ti
o
n
(
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
A

p
p
li
c
a
ti
o
n

-O
u

t:
 S

e
e

d
 D

e
n
s
it
y

A
b

s
t
r
a
c

t
C

la
s
s

R
e
m

o
v
e

 S
p

e
c
ie

s

+
C

o
v
e

r
D

e
a

th
()

+
S

C
R

()

+
C

/B
/A

 R
e
d

u
c
ti
o
n
(
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
A

p
p
li
c
a
ti
o
n

-O
u

t:
 S

e
e

d
 D

e
n
s
it
y

A
b

s
t
r
a
c

t
C

la
s
s

R
e
m

o
v
e

 S
p

e
c
ie

s

+
In

:
P

r
o
d
u

c
t

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
1
3
 (

O
ld

:1
,2

,1
2
,1

3
,
1

9
-2

2
)

+
In

:
P

r
o
d
u

c
t

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
1
3
 (

O
ld

:1
,2

,1
2
,1

3
,
1

9
-2

2
)

+
T

a
r
g
e

t(
in

 ~
)

C
1
4
 (

O
ld

:
8
,

2
6

,
3
3

)

+
T

a
r
g
e

t(
in

 ~
)

C
1
4
 (

O
ld

:
8
,

2
6

,
3
3

)

+
In

:
P

r
o
d
u

c
t

+
In

:
B

a
s
a

l
A

r
e
a

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 B

a
s
a
l
A

re
a

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
1
5
 (

O
ld

:
1
0

-1
1

)

+
In

:
P

r
o
d
u

c
t

+
In

:
B

a
s
a

l
A

r
e
a

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 B

a
s
a
l
A

re
a

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
1
5
 (

O
ld

:
1
0

-1
1

)

+
T

a
r
g
e

t(
in

 ~
)

C
1
6

(O
ld

:
1
4

,3
9
,5

1
,6

2
,6

7
,7

8
,

9
0

,9
9
,1

0
3
,1

0
8
,1

1
7
,1

2
1
)

+
T

a
r
g
e

t(
in

 ~
)

C
1
6

(O
ld

:
1
4

,3
9
,5

1
,6

2
,6

7
,7

8
,

9
0

,9
9
,1

0
3
,1

0
8
,1

1
7
,1

2
1
)

+
C

S
I(

)

+
R

C
C

C
(
)

+
O

b
j.
 B

C
G

D
(
)

+
C

o
v
e

r
C

a
p

()

+
N

it
r
o
g
e

n
 H

o
ld

in
g
(
)

+
C

o
v
e

r
G

r
o
w

th
()

+
C

o
v
e

r
G

r
o
w

th
()

+
C

o
v
e

r
D

e
a

th
()

+
D

C
D

()

+
In

:
N

u
tr

ie
n
t

L
o

a
d

+
In

:
C

o
m

p
.
S

u
m

.

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

C
1
7
 (

O
ld

:
8
1

,8
8
)

+
C

S
I(

)

+
R

C
C

C
(
)

+
O

b
j.
 B

C
G

D
(
)

+
C

o
v
e

r
C

a
p

()

+
N

it
r
o
g
e

n
 H

o
ld

in
g
(
)

+
C

o
v
e

r
G

r
o
w

th
()

+
C

o
v
e

r
G

r
o
w

th
()

+
C

o
v
e

r
D

e
a

th
()

+
D

C
D

()

+
In

:
N

u
tr

ie
n
t

L
o

a
d

+
In

:
C

o
m

p
.
S

u
m

.

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

 D
e

n
s
it
y

C
1
7
 (

O
ld

:
8
1

,8
8
)

+
S

e
e

d
 P

ro
d

 R
a

te
()

+
G

e
m

 R
a
te

()

+
S

u
r
v
iv

e
 R

a
te

(
)

+
S

e
e

d
 S

u
rv

iv
a
l
R

a
te

()

+
A

d
u

lt
 S

u
r
v
iv

a
l
R

a
te

(
)

+
N

e
w

 A
d
u

lt
s
(
)

+
R

C
C

S
()

+
A

d
u

lt
 D

e
n
s
it
y

C
1
8
 (

O
ld

:
9
,2

7
,3

4
)

+
S

e
e

d
 P

ro
d

 R
a

te
()

+
G

e
m

 R
a
te

()

+
S

u
r
v
iv

e
 R

a
te

(
)

+
S

e
e

d
 S

u
rv

iv
a
l
R

a
te

()

+
A

d
u

lt
 S

u
r
v
iv

a
l
R

a
te

(
)

+
N

e
w

 A
d
u

lt
s
(
)

+
R

C
C

S
()

+
A

d
u

lt
 D

e
n
s
it
y

C
1
8
 (

O
ld

:
9
,2

7
,3

4
)

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
9

(O
ld

:1
7
,4

0
,5

2
,6

3
,1

0
0

1
0

4
,1

0
9
,1

1
8
,1

2
2
)

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
1
9

(O
ld

:1
7
,4

0
,5

2
,6

3
,1

0
0

1
0

4
,1

0
9
,1

1
8
,1

2
2
)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
2
0
 (

O
ld

:
5
,2

4
,3

1
)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
2
0
 (

O
ld

:
5
,2

4
,3

1
)

+
In

:
S

h
e
e
p

 P
a

l
S

u
m

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
2
1
(
O

ld
:
 6

,2
5
,

3
2
)

+
In

:
S

h
e
e
p

 P
a

l
S

u
m

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

C
2
1
(
O

ld
:
 6

,2
5
,

3
2
)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
2
2
 (

O
ld

:
1
5

,3
7
,4

9
,6

0
,6

5
,

7
9

,8
6
,9

7
,1

0
1

,1
1
5

,1
1
9

)

+
In

:
C

a
tt

le
 P

a
l
S

u
m

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
2
2
 (

O
ld

:
1
5

,3
7
,4

9
,6

0
,6

5
,

7
9

,8
6
,9

7
,1

0
1

,1
1
5

,1
1
9

)

+
In

:
S

h
e
e
p

 P
a

l
S

u
m

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
2
4
 (

O
ld

:1
6
,3

8
,5

0
,6

1
,6

6

8
0

,8
7
,9

8
,1

0
2

,1
1
6

,1
2
0

)

+
In

:
S

h
e
e
p

 P
a

l
S

u
m

+
In

:
B

a
s
a

l
A

r
e
a

+
O

u
t:
 B

a
s
a
l
A

re
a

C
2
4
 (

O
ld

:1
6
,3

8
,5

0
,6

1
,6

6

8
0

,8
7
,9

8
,1

0
2

,1
1
6

,1
2
0

)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
2
3
 (

O
ld

:
8
4

)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
2
3
 (

O
ld

:
8
4

)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
2
5
 (

O
ld

:
1
0

6
)

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
2
5
 (

O
ld

:
1
0

6
)

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
S

e
a
s
o
n

+
O

u
t:
 N

it
ro

g
e

n
 U

p
.

«
in

te
rf

a
c
e

»

N
a
tu

r
a
lI
n
te

r
v
e

n

+
In

:
S

e
e
d
 D

e
n

s
it
y

+
In

:
S

e
a
s
o
n

+
O

u
t:
 N

it
ro

g
e

n
 U

p
.

«
in

te
rf

a
c
e

»

N
a
tu

r
a
lI
n
te

r
v
e

n

«
in

te
rf

a
c
e

»

H
u
m

a
n
In

te
r
v
e

n

«
in

te
rf

a
c
e

»

H
u
m

a
n
In

te
r
v
e

n

«
in

te
rf

a
c
e

»

R
e
d
u

c
e
N

u
tr

ie
n
ts

«
in

te
rf

a
c
e

»

R
e
d
u

c
e
N

u
tr

ie
n
ts

«
in

te
rf

a
c
e

»

R
e
m

o
v
e

B
io

m
a
s
s

«
in

te
rf

a
c
e

»

R
e
m

o
v
e

B
io

m
a
s
s

+
In

:
F

ir
e
 H

a
p
p

e
n

s
?

«
in

te
rf

a
c
e

»

B
u
r
n

+
In

:
F

ir
e
 H

a
p
p

e
n

s
?

«
in

te
rf

a
c
e

»

B
u
r
n

+
C

S
I(

)

+
R

P
D

()

+
R

P
L

()

+
O

b
j
B

A
C

G
()

+
In

:
S

e
a
s
o
n

-I
n
:

D
u

ra
ti
o

n

A
b

s
t
r
a
c

t
C

la
s
s
 G

r
a
z
e

+
C

S
I(

)

+
R

P
D

()

+
R

P
L

()

+
O

b
j
B

A
C

G
()

+
In

:
S

e
a
s
o
n

-I
n
:

D
u

ra
ti
o

n

A
b

s
t
r
a
c

t
C

la
s
s
 G

r
a
z
e

+
C

o
v
e

r
R

e
d

u
c
ti
o

n
(
)

+
A

D
R

()

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

A
b

s
t
r
a
c

t
C

la
s
s

H
a
r
v

e
s
t
-S

c
a

r
if

y

+
C

o
v
e

r
R

e
d

u
c
ti
o

n
(
)

+
A

D
R

()

+
In

:
A

d
u
lt
 D

e
n

s
it
y

+
O

u
t:
 A

d
u
lt
 D

e
n
s
it
y

A
b

s
t
r
a
c

t
C

la
s
s

H
a
r
v

e
s
t
-S

c
a

r
if

y

+
B

io
m

a
s
s
 R

e
s
id

u
e

()

+
L
e

ft
 o

v
e
r
 b

io
m

a
s
s
()

+
In

:
H

a
r
v
e

s
t
H

a
p
p

e
n

s

C
4
 (

O
ld

:
 7

,
8

4
,

8
5
,

1
1

4
)

+
B

io
m

a
s
s
 R

e
s
id

u
e

()

+
L
e

ft
 o

v
e
r
 b

io
m

a
s
s
()

+
In

:
H

a
r
v
e

s
t
H

a
p
p

e
n

s

C
4
 (

O
ld

:
 7

,
8

4
,

8
5
,

1
1

4
)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(
in

 ~
)

C
5
 (

O
ld

:
 4

8
)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(
in

 ~
)

C
5
 (

O
ld

:
 4

8
)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
6
 (

O
ld

:
 1

0
7

)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
6
 (

O
ld

:
 1

0
7

)

+
R

e
d
u

c
.

B
io

m
a

s
s
()

+
N

it
r
o
g
e

n
 H

o
ld

in
g
(
)

+
O

u
t:
 N

it
ro

g
e

n
 i
n
.

C
7
 (

O
ld

:
 4

4
-4

6
)

+
R

e
d
u

c
.

B
io

m
a

s
s
()

+
N

it
r
o
g
e

n
 H

o
ld

in
g
(
)

+
O

u
t:
 N

it
ro

g
e

n
 i
n
.

C
7
 (

O
ld

:
 4

4
-4

6
)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(
in

 ~
)

C
8
 (

O
ld

:
 4

7
,

8
3

)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(
in

 ~
)

C
8
 (

O
ld

:
 4

7
,

8
3

)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
9
 (

O
ld

:
 1

1
3

)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
9
 (

O
ld

:
 1

1
3

)

+
B

io
m

a
s
s
 R

e
s
id

u
e

()

+
L
e

ft
 o

v
e
r
 b

io
m

a
s
s
()

+
In

:
S

c
a
r
if
y
 H

a
p
p

e
n
s

C
1
0
 (

O
ld

:
2
8

~
3
0

+
B

io
m

a
s
s
 R

e
s
id

u
e

()

+
L
e

ft
 o

v
e
r
 b

io
m

a
s
s
()

+
In

:
S

c
a
r
if
y
 H

a
p
p

e
n
s

C
1
0
 (

O
ld

:
2
8

~
3
0

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(
in

 ~
)

C
1
1
 (

O
ld

:
1
2

4
~

1
2

5
)

+
B

a
s
a
l
A

re
a
(i
n

o
u

t
~

)

+
B

A
R

(
in

 ~
)

C
1
1
 (

O
ld

:
1
2

4
~

1
2

5
)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
1
2
 (

O
ld

:
1
1

1
)

+
S

D
R

()

+
In

:
S

e
e
d
li
n

g
 D

e
n
s
it
y

+
O

u
t:
 S

e
e
d

li
n
g

 D
e
n

s
it
y

C
1
2
 (

O
ld

:
1
1

1
)

+
In

:
T

S
R

H
?

«
in

te
rf

a
c
e

»

R
e
m

o
v
e

T
o
p

S
o
il

+
In

:
T

S
R

H
?

«
in

te
rf

a
c
e

»

R
e
m

o
v
e

T
o
p

S
o
il

A

B

:
A

 i
n
h
e
ri
ts

 a
tt
ri
b
u
te

 o
f

B

A

C

:
A

 i
m

p
le

m
e
n
ts

 a
tt
ri
b
u
te

 o
f
C

D
()

:
D

 i
s
 a

n
 e

m
b
e
d
d
e
d
 a

tt
ri
b
u

te

F
(~

)

:
F

 i
s
 a

n
 o

v
e
rr

id
d
e
n
 a

tt
ri
b
u
te

A

B

:
A

 i
n
h
e
ri
ts

 a
tt
ri
b
u
te

 o
f

B

A

C

:
A

 i
m

p
le

m
e
n
ts

 a
tt
ri
b
u
te

 o
f
C

D
()

:
D

 i
s
 a

n
 e

m
b
e
d
d
e
d
 a

tt
ri
b
u

te

F
(~

)

:
F

 i
s
 a

n
 o

v
e
rr

id
d
e
n
 a

tt
ri
b
u
te

:
A

d
u
lt
 D

e
n
s
it
y
 R

e
d
u
c
ti
o
n

:
B

a
s
a
l
A

re
a
 R

e
d
u
c
ti
o
n

:
T

o
p

 S
o

il
 R

e
m

o
v
e

 H
a
p
p
e
n
s
?

:
S

e
e
d
li
n
g
 D

e
n
s
it
y
 R

e
d
u

c
ti
o
n

:
S

e
e
d
 C

o
v
e
r

R
e
d
u
c
ti
o
n

:
C

o
v
e
r/

B
a
s
a

l/
A

d
u
lt
 R

e
d
u

c
ti
o
n

:
c
o
m

p
 s

u
m

 i
n
d

e
x

:
R

e
l.
 C

o
m

p
 C

o
n
d
 C

o
v
e
r

:
D

e
a
d
 C

o
v
e
r

D
e
te

ri
o
ra

ti
o
n

:
R

e
l.
 C

o
m

p
 C

o
n
d
 S

e
e
d
li
n
g
s

:
R

e
la

ti
v
e
 P

a
l.
 L

iv
e

:
R

e
la

ti
v
e
 P

a
l.
 D

e
a
d

 A
D

R

B
A

R

T
S

R
H

S
D

R

S
C

R

C
/B

/A
 R

e
d
u

c
ti
o
n

C
S

I

R
C

C
C

D
C

D

R
C

C
S

R
P

L

R
P

D

A
D

R

B
A

R

T
S

R
H

S
D

R

S
C

R

C
/B

/A
 R

e
d
u

c
ti
o
n

C
S

I

R
C

C
C

D
C

D

R
C

C
S

R
P

L

R
P

D

:
A

d
u
lt
 D

e
n
s
it
y
 R

e
d
u
c
ti
o
n

:
B

a
s
a
l
A

re
a
 R

e
d
u
c
ti
o
n

:
T

o
p

 S
o

il
 R

e
m

o
v
e

 H
a
p
p
e
n
s
?

:
S

e
e
d
li
n
g
 D

e
n
s
it
y
 R

e
d
u

c
ti
o
n

:
S

e
e
d
 C

o
v
e
r

R
e
d
u
c
ti
o
n

:
C

o
v
e
r/

B
a
s
a

l/
A

d
u
lt
 R

e
d
u

c
ti
o
n

:
c
o
m

p
 s

u
m

 i
n
d

e
x

:
R

e
l.
 C

o
m

p
 C

o
n
d
 C

o
v
e
r

:
D

e
a
d
 C

o
v
e
r

D
e
te

ri
o
ra

ti
o
n

:
R

e
l.
 C

o
m

p
 C

o
n
d
 S

e
e
d
li
n
g
s

:
R

e
la

ti
v
e
 P

a
l.
 L

iv
e

:
R

e
la

ti
v
e
 P

a
l.
 D

e
a
d

 A
D

R

B
A

R

T
S

R
H

S
D

R

S
C

R

C
/B

/A
 R

e
d
u

c
ti
o
n

C
S

I

R
C

C
C

D
C

D

R
C

C
S

R
P

L

R
P

D

R
e

m
o
v
e
 T

o
p
 S

o
il

H
a

rv
e
s
t

F
ir
e

S
c
a
ri

fy

H
e

rb
ic

id
e

H
e

rb
ic

id
e
 T

a
rg

e
t

N
a

tu
ra

l

G
ra

z
in

g

 I

n
te

rf
a
c
e

 A

b
s
tr

a
c
t

R
e

m
o
v
e
 T

o
p
 S

o
il

H
a

rv
e
s
t

F
ir
e

S
c
a
ri

fy

H
e

rb
ic

id
e

H
e

rb
ic

id
e
 T

a
rg

e
t

N
a

tu
ra

l

G
ra

z
in

g

 I

n
te

rf
a
c
e

 A

b
s
tr

a
c
t

Fi
gu

re
B

.4
:C

la
ss

D
ia

gr
am

of
th

e
W

G
R

re
en

gi
ne

er
ed

(i
O

O
BN

)s
ys

te
m

w
it

h
ba

ck
gr

ou
nd

kn
ow

le
dg

e
in

co
rp

or
at

ed

Appendix C

Extended Experiments of Compilation
Algorithms

C.1 Performance Analysis of the Proposed Algorithm

This section outlines the extended experimental comparison of the existing and proposed com-

pilation algorithms. To analyse the performance of the proposed algorithms, linear regression

models, ANOVA, Mean, and the Standard deviation of several runs and other standard statis-

tical approaches were applied. The following two subsections contain, respectively, an analysis

of the algorithms on various combinations of parameters and a comparison of the performance

of the algorithms according to various factors.

Table C.1: The models built to perform analysis
#Model Details Parameters

1
Linear Regression Model
For all OOBNs
Diff ∼ NOO +NON +NOC +NOS +NOP +NOPAvg

(1) Diff = log(HuginT ime) − log(SIICTime)
(2) NOO (3) NOC (4) NON
(5) NOS (6) NOP (7) NOPAvg

2
Linear Regression Model
For all OOBNs
Diff ∼ NOO +NON +NOS

(1) Diff = log(HuginT ime) − log(SIICTime)
(2) NOO (3) NON(4) NOS

3
Linear Regression Model
For all OOBNs
Diff ∼ NON +NOS

(1) Diff = log(HuginT ime) − log(SIICTime)
(2) NON (3) NOS

4
Linear Regression Model
For pure OOBNs
Diff ∼ NOO +NON +NOC +NOS +NOP +NOPAvg

(1) Diff = log(HuginT ime) − log(SIICTime)
(2) NOO (3) NOC (4) NON
(5) NOS (6) NOP (7) NOPAvg

5
Linear Regression Model
For pure OOBNs
Diff ∼ NOO +NON +NOC +NOS +NOP

(1) Diff = log(HuginT ime) − log(SIICTime)
(2) NOO (3) NOC
(4) NON (5) NOS (6) NOP

6
Linear Regression Model
For all OOBNs
Diff ∼ NOO +NON +NOC +NOS +NOP +NOPAvg

(1) Diff = log(HuginT ime) − log(SIIC#Time)
(2) NOO (3) NOC (4) NON
(5) NOS (6) NOP (7) NOPAvg

7
Linear Regression Model
For all OOBNs
Diff ∼ NOO +NOC +NOS +NOP +NOPAvg

(1) Diff = log(HuginT ime) − log(SIIC#Time)
(2) NOO (3) NOC (4) NOS
(5) NOP (6) NOPAvg

8
Linear Regression Model
For pure OOBNs
Diff ∼ NOO +NON +NOC +NOS +NOP +NOPAvg

(1) Diff = log(HuginT ime) − log(SIIC#Time)
(2) NOO (3) NOC (4) NON
(5) NOS (6) NOP (7) NOPAvg

9
Linear Regression Model
For pure OOBNs
Diff ∼ NOO +NOC +NOS +NOP +NOPAvg

(1) Diff = log(HuginT ime) − log(SIIC#Time)
(2) NOO (3) NOC (4) NOS
(5) NOP (6) NOPAvg

234

§C.2 Performance of Hugin, SIIC and SIIC# Algorithms 235

The nine linear models; built for statistical analysis of the parameters NON , NOO, NOS,

NOP , NOPAvg (see Table 4.2 for the full terms), and outcomes of the algorithm’s JT (gen-

erated by Hugin and SIIC) cost, complexity of the OOBN class that was compiled and the

running times of SIIC, SIIC#, and Hugin; are listed in Table C.1. ANOVA was applied on the

following pairs of models: Model 1, Model 2; Model 2, Model 3; Model 4, Model 5; Model 6,

Model 7; and Model 8, Model 9. The outcome of ANOVA was carefully observed to see the

effect of input parameters on the outputs. The parameters and the outcomes were correlated

significantly and then analysed and plotted as illustrated in the following subsections.

C.2 Performance of Hugin, SIIC and SIIC# Algorithms

This section outlines the extended experimental comparison of the existing (Hugin JT con-

struction) and proposed compilation (SIIC and SIIC#) algorithms. The contents and figures of

those that have less evidence of correlation to the performance comparison are placed in this

section.

C.2.1 Time required to compile OOBNs

The running times of the compilation algorithms have a strong correlation with NOP of the

OOBN classes. If NOP increases, the complexity of the classes, and hence the running time of

the compilation, increases. However, the experimentation exhibits a somewhat strange effect

of NOP on the running time, as shown in figures C.2a, C.2b and C.2c, respectively, for Hugin,

SIIC and SIIC#. For SIIC, the impact is almost consistent; however, for Hugin and SIIC#, there

is a discrepancy in the median of the running time. The reason for this inconsistency is that

NOP is the maximum number of parents in a synthetic OOBN class which does not guarantee

that all the nodes have the same maximum number of parents. The synthetic OOBN class

may also have different density, and hence have a different degree of complexity, which could

contribute to the inconsistency.

The complexity (a term defined in [216] for BN and generalized in Section 4.5.1 for OOBNs)

of an OOBN class plays a significant role in the running time of the compilation algorithms.

Figures C.1a, C.1b and C.1c show performance analyses of the algorithms in terms of running

time with respect to OOBN complexity. The plots indicate that Hugin running time increased

sharply with increase in complexity; SIIC running time also increased, though the increment

was not as sharp as for Hugin. The increase of SIIC#’s running time with respect to an increase

in complexity was significantly less than for Hugin or SIIC.

Figures C.2d, C.2e and C.2f demonstrate the performance of Hugin, SIIC and SIIC# al-

§C.2 Performance of Hugin, SIIC and SIIC# Algorithms 236

●

●
●●

●●●●

●●● ●●

●

●

●●●

●

●

●●●●●

●

●

●●● ●

●

●●●● ●

●● ●●●

●● ●

●

●
●●

● ●
●

●

●

●

●●
●

● ●
●

●
●

● ●
●●●

● ● ●● ●●●●●
●

●●
●

●●

●
●

●

●
● ●

●
●
●

●●
●

●
●
●

●●
●●

●●
●

●●●●● ●
●●● ●●● ●●

●● ●
●

●●●●
●
●●

●●
● ●●●● ●●

●●
●● ●

●
●

●
●●●●

●

●

●
●
●●

●
●

●

● ●

●

●●
●
● ●

●
●

●
●●●

●● ●
● ●●●

●
●●

● ●●● ●
●

●

●
●
●

●
●●

●
●● ●

●
●●

● ●●
● ●●● ●●●

●

●
●

●●
●

●
●

●
● ●

●●● ●

●
●●●● ●

●
● ●

●

●● ●

●●●

●●

● ●● ●●

●
●●●

●●

●

●●

●

●
●

●●●●●

●● ● ● ●● ● ●

●●●

●●

●

● ●

● ●●

● ●
●

● ●●

●●

● ●●

●

●

●

●
●

●
●●

●

●●●●●●

●●●

●●●●

●

●●
●●●

●

●

●●

●

●●

●

●● ●●●●●

●

●●●●●

● ●●

●

●

●●●●

●●

●

●

●

●

●●●

●●●

●

●●

●

●
●●● ●●●●●●●●●●●

●

●●●●● ●●

●

●●●●●● ●●●●●

●

●●●●●●

●

●●●

●

●●

●

●● ● ●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●● ●●●

●

●●● ●●●

●

●
●

● ●●● ●●●●●●●●

●

●●

●

●

●

●●

● ●

●●

●

●●

●● ●

●

●●●

● ●

●

●●

●

●

●●

●

●●

●

●

● ●●●

●

●●●●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●

●●

●

●

●

●●

●●●●●

●

●●●●●● ●●●●●●●

●

● ●●

●

●●●●●

●

●●●●●●● ●●●●● ●●●

●

● ●●● ●

●

●● ●

● ●

●●● ●●● ●

●

●

●

●●

●

●

●●●●
●

●

●●

●
●●

●●

●
●●●

●

● ●●●●● ● ●●●
●
● ●●●

●
●●●

●●●
●

●
●●●

●

●

●
●

●●●●
●

●
●

●●

●

●●
●

●

●●
●

●
●●●
●

●
● ● ●●●●●

●
● ●●

●● ●

●●●●●
●●●

●
●● ●●

●

●
●
●●

●
●

●
●
●

●
●

●
●

●
●●●●● ●

● ● ●
● ●●● ●●

●
●

●
●●●

●●
●

●
● ●● ●

●●
●●●●

●●
●● ● ●●● ●●●●
●

● ● ●
●●

●●●
●

●
●

●
●

●
●

●
●● ●● ●●

●
●

● ●●
●● ● ●●●

●
●●

●
●

●●● ●●●
●●

● ●
● ●●

●
●●

●
●●●●●

● ●● ●
●

●
●● ●● ●●

●

●● ●● ●● ●●
●●
●●●● ●●

●●●●●● ●●
●●

●
●

●●● ●
●
●

●
●● ●

●

●
●

●● ●●●● ●● ● ●● ● ●●●● ● ● ●●
●

●
●

●

●
● ●●●

●
●●
● ●

● ●● ●●
●

●
●●

● ●
● ● ● ●● ●●

●
●

● ●●●●●●● ●
●● ●

● ●●
● ●●● ●●● ●●●

● ●
●● ● ●● ●●●●

●
●●

● ● ●●
●●

●●●● ● ●
● ●●

● ●● ●● ●
●●●● ●● ●●

●
●

●
●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●●

●●

●●

●●

● ●

●

●●

●

●●

● ●●

●●

●●●

●

●

●

●●●●

●

● ●

●

● ●● ●●●●● ●

●

●

●●

●●●●● ●●●●

●

●●

●●●

●

●

●●

●

●

●●●

●●●●

●●

●
●

●●
●

●

●●

●●●●●

●

●

●●

●● ●

● ●

●●●

●

●

●●

●

●

●●●

●● ●● ●● ●

● ● ●
●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●

●●●●

●

●

●●●

●

● ● ●

●
●
●

●●●

●

●
●

●
● ●●

●●●

●●

●

●●●● ●

●

●

●

●

●

●●●●
●●

●

●●

●

●
●

●
● ●●

●

●

●●

●

●●

●

●

●●●

●

●

●
●

● ●

●

● ●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●●●● ●●

●●
●●●●

●

●

●● ●● ●

●
●

●
● ● ●●

●

●

●

●

●
●

●●

●●● ●●

●●

●

●

●●

● ●

●● ●

● ●

● ●●●●● ●●●●●● ●●●

●●

●● ●●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●●● ●●●

●●

●●●

●

●●● ●●

●
●●

●
●●

●●●●● ●●● ●●
● ●

●
●

●

●
●
● ●

●

● ●
●

●

●

●

●

●●●●

●
●

●

●●● ●●

●

●

●●

●

●

●

●

●

●

●●●●

● ●

●

●

●

●

●

●●●●

●

●

●

● ● ●●● ●

●

● ●

●

●●●

●

● ● ●●●● ●●

●

●●●●●

● ●●

●●

●

●

●

●● ●

● ● ●

●●● ●

●

●●

●●●

●●●● ●

●
● ●

● ●

●

● ● ●

●

●

●

●●

●●● ●

●●

●

●

●●

●

●● ●●●●●●

●

● ● ●●

●

●●●

●

●

●

●

●

●●

●

●●

●●● ●

●

●

●●

●●

●●● ●

●●

●

●

●

● ●

● ●

●

●

●

●
●

●●●●●● ● ●●●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●●

● ●●

●

●

●

●●
●

●

●

● ●●●

●

●
●

●

● ●●●

● ●● ●●● ●●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●
●●

●●●

●

●

●

●
●●

●●

●

●

● ●

●

● ●

●●

●

●

●●

●●●

●

● ●●

●●

●
●●●

●

●●

●●

●

●●

●

● ●

●●●●●

●

●

●

●●● ●
●

●

● ●●● ●

●

●●●

●

●
●

●● ●●

●

●

●

● ●●●

●●

●●

●
●

● ● ●

●

●●

●

●

●

●
●●

●

●●●●●

●

●●●

●

●

●

●●

●●

●
● ●●●●

●

●

●●

●
●

●
●

●●

●
●

●

●●

● ●

●

●

●●●●●●

●

●

● ● ●●●

●●

● ● ●●●

●

●●●●

●

●

●

●●

●● ●

●●

● ●

●

●● ●

●

● ● ●

●

● ●●

●●

●●●●

●

●

●●
●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●

●
●

● ●

●●

● ●● ● ●

●

●●●●● ● ●
●

●●

●

● ●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●● ● ●●●

●

●

●●

●

●

●●

● ●●

●

●●

●●●●● ●

●

●●

●
● ●

●

●

●●●●

●

●

● ●

●●●●

●

●●

●

●

●

●

●

●● ●●

●

●●

●● ● ●
●

●
●

●●●●●
● ● ●

●

●●●● ●●●●●
● ● ●●●

●●●
●

●●
●● ●● ●●

●●
●

●● ● ●●●● ●
●
●●

●

●
●●●

●●
●

●
●●

● ●● ●●

●
●

●●

●
●● ●●●●

● ● ●●
●● ●● ●
●

●
●

●

●

●●● ●●● ●● ●● ●
●
● ●

●
●● ● ●

●
●

●

●●●●●
●●

●●
●

●● ● ●●
●●

●

●
●

●●

●

● ●
●

●
●●

●

●
● ●

● ●

●

●
● ●●●

●●

●
●●● ●

●●
● ●

●
●

● ●
●
●

●

●

●
●●●

●
●

●●

●
●

●●● ●● ● ●
●●

●
●

● ●●● ●● ●● ●● ●
●

●
●● ●●

●

●

●●●

●●

●● ● ●●●●●
● ●

●
●

●
● ●

●
●● ●

●
●

●
●● ●

●●● ●●●

●
● ●

●
●

●●● ●● ●● ●●●●● ● ●●●
● ●

●●●●
● ●● ●●

●
●

●
● ● ●

●
●
● ●

●

●●●●

●

● ● ● ●●● ●
●
●

●

●
●

●
●

●●● ●
● ●

●●

●●●
●

●●

●

●
● ● ●●

●
●
●●

●

●
●
●

●
●

●●
●● ●●● ●

●
●

● ● ●●●

●

●

●
● ● ●●

●
●●●

●
●
●
● ●

● ●●●
● ●

●

●
●

●●
●●●● ●

● ●●●●
●

●
●

●●
●

●● ●
●

●

●

●

●
●● ●●

● ●
●● ●

● ●●
●

●● ●
●

● ●
●
●
●

●●
● ●

●

● ● ● ●
●
●●● ● ●●

●

●

●
●
●

●●

●
●● ● ●

●●
●

●●
●●

●

●●●
● ●● ●

●

●●

●
● ●

●
●●
●● ●

●

●

●●

●
●●

●
●

● ●●●●

●
●●●●

●
●

● ●● ●
●● ●

●

●
●

●

●

●● ●
●

●●●

●

●
●
●
●

●

●●●

●

●

●

●●●
●
●
●

●

●
●

●

●

●

●

●●

● ●

●●

●
●

●

●●

●
●
●

●

●

●

●

● ●
●●●●

● ●

●● ●

●●●

●●

●

●● ●●

●

●
●
●

●

●●
●
●
●
●●●

●●

●● ●
●
●

●

●

●

●

●

●

●●● ● ●●
●●
●
●●
●

●

●

●

●
●

●

●●●

● ●

●

● ●●

●

●●●

●

●●

●●

●●

●

●

●

●●

●

●
●
●

●
●●
●●●●

●●

●●

●

●● ●
●●

●●

●

●

●●

●

●

●
●

●
●

●●●

●

●●●

●●

●

●

●
●

●●●●

●

●●

●

●●

●

●

●

● ●

●●●●●●

● ●

●

●●●

●

●●●

●●●●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●●●●●
●

●●

● ●●

●

●

●●

●

●●●

●●●●●● ●

●●●

●

●●

●

●●

●

●

●
●●●

●

●

●

●

●●

●●
●●●●●●●●●

●●●●

●
●

●

●

●●
●

●●
●

●
●

●

●

●●

●●●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

● ●
●
●●●●●●

●●

●● ●

●●

●
●
●

●

●

●●●
●●
●

●

●

●

●●●●●●

●●●

●

●

●
●

●

●●

●●●

●●

●

●

●●

● ●●●●

●

●

●

●

●●

●●

● ●●●●●●

●

●●

●●●

●

●

●

●●●●

●●●●●

●

●
●●

●

●

●

●

●●

●

● ●●

● ●

●

●

●

●

●●●

●

●

●

●

● ●●

●

●

● ●●

●

●●●
●

●

●●●

●

●●

●

● ●

●

●●

●●

●●

●● ●

●

●

●●●

●●

●●●

●●●●●

●

●

●

●●●

●

●

● ●

●

●●

●

●

●

●

●

●●● ●

●●●

●●●●●●

●

● ●●●●● ●

●

●

●

●

●

●

●●●

● ●●

● ●●

●●●●

●

●

● ●

●

●●

● ●●

●

●●

●

●●

●

●●●●●●

●

●

● ●

●

●●

●●●●●●● ●

●● ●●●

●

● ●

● ●

●

●●●● ●●

●●●●●

●●

●

●●

●

●

●

●●

●

●

●●● ●●

●
●

●●●●

●●

●

●

●

● ● ●●

●

●●

●

●●
●

●●

●

●●

●●●

●

●

●●

●

●●●

● ●●

●

●●

●

●

●●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●● ●●

●
●

●●●
●

●
●
●●

●

●●●
●

●

●
●

● ●●

●

●

●●

●

●

●●

●●

●●

●

●
●●

●●

●

●

●

●

●

●

●
●

●●●
●

●●●●●
●●

●● ●●
●●

●

●●
●
●●

●●

● ●●●

●●

●

●

●●
●●
●●

●
●●●●●●●● ●

●

●

●●

●

●

●

●

●
●● ●

●

●
●

●

●●●

●
●●

●
●

●
●

●
●

●

●
●

●●●

●
●
●

●●

●●

●

●

●

●

● ●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●●●●

●●

●● ●

●●

●●●
●●●●

●●

● ●

●

●

●

●●

●●

●●●
●

●

●

●

●

●
●

●
●

●●

●● ●

●

●●

●

●●

●

●●

●

●●● ●
●

●

●● ●●●

●

●●●

●

●
●

●

●

●

●

●●●●●

●

●

●

●
●

●
●●

●

●●

●

●●

●●● ●●

●

●

●

●●● ●

●●●

●●

●

●●●●●

●●

● ●●

●

●● ●

●

●● ●●●●

●

● ●

●●● ●

●

● ●

●

●

● ●

●●●●● ●●● ●

●

●●

●

● ●●

●●

●

●

● ● ●

●●
●
● ●●●●●●

●

●●● ●

●●●●

●

●

●

●

●

●

●
●

●

●

●
●
●●●

●
●
● ●● ●

●●●
● ●

●
● ●
●

●

●●
●●
●

●●

●

●
● ●

●

●

●
●

● ●●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●●●

●

●●

●
●●
●

●

●

●

●

●● ●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●●

●● ●

●● ●

●

●

●● ●●

●●

●

●

●● ●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●● ●

●

●●●
●

●
●
●

● ●

●

●

●●
●

●

●

●

●

● ●

● ●

●● ●●

●
●●
●●

●

●

●
●

●

●

●●●
●
● ●

●
●

●

● ●

●

●

● ●

●●●

● ● ●

●●● ●

●

●

●
● ●

●●

●●

●●●

●

●
●

●
●● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●●

●

● ●

●

● ●
●

●
●

●

● ●

●

●

●

●

●

●

●●

●
●●

●
●●

●

●
●
●●●

●
●

●
●●
●● ●

●

●
●

●

●●●

●

●
●

●

●
●

●●

●●
●

●●

●

●
●●

●
● ●

●●●
●● ●

●●● ●
●●● ●●

●

●●
● ●

●●
●

●

●
●●●

● ●
●● ●

●
●●

●

●

● ●

●
●

●
●

●
●

●●
●●

●●●
●

●●
●●

●●● ● ●●
●

●●

●●

●
●

●

●

●

●

● ●
●

●
●●●●●

●
●●

●
● ●
●●

●● ● ● ●

●● ● ●● ●●●●● ●
●

●●●

●

●

●●

● ●
●●

●

●

● ●

●
●
● ● ●

● ●●● ●
●● ●

●

●

●●
●

● ●●● ●
●● ●●

● ● ●
● ●● ●● ●

●
●● ●

●● ●
●

●●

●
●

●
● ● ●

●
●●

●● ●

● ●
●

●

●●
●

● ●●●● ●
●

●

●

●

● ●●
●●

●
●

●
●

● ●●●
●●●

●

●

●

●

●

●

●
● ●●● ●● ●

●

●
●

●
●

● ●●
●

●
●●●

●
●●

●
●●

●

●●
●

●
●

● ●
● ●

●
●●

●
●●

●
●

●

●
●

● ●●● ●●●● ●●●●● ●

●

●● ●● ●●●

● ●
●●

●

●● ● ●
●

●

●

● ●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●
●●

●●
●

●

●

●

● ●

●

●

●
●
●

●

●

●

●●

●

●●

●●● ●●●● ●●
●

●
●

●

●●

●●●● ●● ●

● ●

●● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

● ● ●● ● ●●

●

●

●
●●

●
● ●

●

●

●

●●●● ●

●● ●

●

●

●

●

●●●●●

● ●●

●
●●

●

●
●●

●

●
● ●

●●

●
● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●●

●●
●

●

●

●● ●

●● ●●

●

●

●
●

●
●

● ● ●●●●

●

●
●

●

●

●

●

● ●

●

●

●● ●●●

●
●

●●● ●● ● ●●●

●

● ●● ● ●●

● ●

●●●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

● ●● ●●

●●●

●

●

●
●

●
●

●●●●
●

●

●
● ●

●●●
●●● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●
● ●

●
●

● ●●

●

●

●

●

●

●

● ● ●

●●●

● ●

●

●

●
●
●

● ●
●●●

●●
●

●●●●
●

●●
●

●

●
●● ●●

●
●●

●
●●●●

●●
●

●

●
●

●
●

●●
●
●

● ●●
●●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●
●

●

●
● ●●

●●●● ●●●
●●
●●

●

●
●

●

●

●●
●

●●●
●

●●●
●

●

● ●
●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●●
● ●●

●

●●

●●

●●●●

●
●

●
●

●

●
●

●

● ●

●●●●

●

●
●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●●

●

●●●
●
●●●●

●●

●● ●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●●

●●

●
●

●

● ●●●

●
●●

●●●●

●●

●●●
●

●●

●

●

●

●

● ●

● ●

●

●●●

●

●

●●

●●●●

●

●●

●●

●●

●●

●● ●●

●

●●

●

●

● ●

●●●

●●

●

●
●

●
●

● ●

●

●

●

●

●●

●

● ●

●

●

●●●

●

●●

●●●

●

●●

●

●

●

● ●● ●

●

●●●

●

●●

●
●

●●●

●

●

●

●●●

●

●

●
●

●

●

●

●

● ●●

● ●●

●●

●

●●

●●

●

●

●

●●

●

●

●

●●

●●

●

●● ●●

●

●

●

●● ●●
●●●
● ●

●●●
●

● ●
●●

●●
●

●

●

●

● ●
●
●
●

●
●●
●●

●●

●

●
●
●●

●

●

●●

●● ●
●

●
●

●
●

●
●●●

●

●●

●●

●●

●●

●

●
●
●
●
●●

●

●●

●

●
●
●● ●●●●●● ●

●

●●●

●

●●●

●●●●●

●
●
●

●

●●●

●●

●
● ●●

●

●
● ●●

●
●
●

●
●

●●●●
●

●●●●●● ●
●

●

● ●

●

●

●

● ●●●●●

●

●
●●●

● ●●
●

●

●

●●

●

●

●

●●

●●

●

●
●
●

●
●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●
●

● ●

●

●

●●●●

●

●● ●●

●

●

●●

●

●●●

●●

●

●

●

● ●

●

●

●●●●

●

●●

●● ●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

● ●

●●

● ●

●

●●

●●

●

●

●●●●

●

●●

●●●

●●

●

●

●●●

●

●●

●●

●●
●
●

●

●●●
●

●●●
●●

●

●

●
●

●

●
●

●
●
●●
●
●

●●
●
●

●
●

●
●● ●●●●● ●

●
●

●●●● ●
●

●●

●
●
●●
●● ●●● ●

●● ●●
●

●
●●●●

●

●

●
●

●●
●

●●
●

●
●● ●
●●

●

●●

●●

●

●

●
●

●

●●●

●

●

●●

●●●
●
●
●

●

●

● ●●

●

●●

●

●

●

●

● ● ●●● ●●

●

●

● ● ●●●

●
●

●●

●●

●

●

●

●

●

● ●●

●●●

●●

●●

●●

● ●●

●

●●●
●

●●

●

● ●

●●

●●
● ●●●●

●●●
●●

● ●
● ●

●

●
●

●

●
●

●
●

●

●

●

●●●●
● ● ● ●●●

●●●
●●

● ● ●

●

●●

●
●

●
● ●

●

●● ●
●

●● ●●●
●●

●
●● ●

●

●●

●

●
●

●

●
●

●

●
●
●
●
●

●
●

●● ● ●●●● ●● ● ●●
●

●
●● ●● ●●

●●
●● ●●

● ● ●
●● ● ● ●●●●●●

●
●
●

●
● ●●

●
●

●● ● ●●

●

●
● ●●● ●●

●

●● ●
●●

●

●●

●

● ●●

● ●
●

● ●
● ●●●●

●

●● ●
●

●●

●

●

●●●

●
●

●

●

●●

●
●● ● ●●

●

●●

●

●

●

● ● ●

●

●●

●

●

●
●●

●

●
●●● ●●

●
●

●

●

● ●
●

● ● ●● ●
●

●●
●

● ●
●

●

● ●
●

●●
●

●
●

●

●
●

●
● ●

●
● ●

●

● ●

●●●
● ●

●
●● ● ● ●●●

●
●

●
●●

●

●●
●

●●

●

●●

● ●

●●
●
●

●
●

●●●●●
●●

●

●

●
●

●

●

●

●

●
●

● ●

●
● ●●

●
●

●

●
●●
●●●
●

●●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●●●

●

●

●
●
●

●

●
●

●
● ●● ●

●
●

●

●●

●
● ●●

●●

●●●●

●●

●

●
●
●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●●●

● ●●●●● ●●●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●●

●
●

●

●

●
●

●

●●●

●

●

●

●
●●

●

●●

●

●
●

●

● ●

●

●

●●●

●●●
●

●

●

●●

●● ●

●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●●

●●
●●
●

●
●●●
● ●

●

● ●

●

●
●

●

●

●
●
●
●

●

●●●

●

●

●●

●●

●

●●

●●●●● ●●●

●

●

●

●
●

●●●
●

●

●

●
●

●

●●●

●
●● ●

●●
●●● ●●●●

●
● ●● ●

●
●
●
●

●●
●

●

●

●
● ●

●

●
●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

● ●●●

●

●

●●

● ●

●●
●
●●●

●

●
●

●
●

●

●

●
●

●

●●●●

●

●

●
●●

●●

●

●

●

●
●

●●●●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

● ●●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●

● ●

●●●

●

●

●●
●●

●

●

●

●

●●

● ●
●
●●

● ●
●

●
●
●

●

● ●●●
●
●●

●

●●●
●●●

●● ●

●

●●
●

●

●
●●

●
●

●

●

● ●●

●

●●

●

●

●

●●

●
●●

●●

●

●

●

●

●
●

●

●
●

● ●
● ●●

●●

●

●

●

●
●●
●●

●●
●●

●●

● ●

● ●●
●

●

●

●

●●

●
●●

●●

●

●●●

●

●

●

●●

●

● ●●

●

●●

●

●● ●●

●●

●● ●

●

●

●

●

● ●

●

●●
●

●
●

● ●
●

●●

●

●

●

●

●
●

●

●●

●

●
● ●●

●

●

●
●

●

●●
●
● ●

● ●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●●

●●

●

●

●
●

●●

●●

●●
●

●●

●

●

●●●

●●

●
●●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

● ● ●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●
●

●●●●

●

● ●

●

●●
●●

●●

●

●
●● ●

●
●

●
●

●

●

●●

●

●

●

●

●● ● ●●●●

●
●●●●●

●
●

●
●

●
●

●●

● ●
●●

●●
●

●

●●

●

● ●

● ●●●

●

●●

●●●

●

●

●

● ●● ●

●●

●

●

●●

●
●

●

●

●

●
●

●
●
●

●

●

●
●

●
●●
●●

●

●

●
●

●
●
●
●
●
●

●●
●

●●

●

●● ●

●
●

●

●

● ●●

●

●
●●● ●

●

●

●●●
●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●● ●
●

●

●

●

●●

● ●

●

●
●●

●
●●

●●●

●
●

●

●
●

●

●

● ●

● ●

● ●

● ●●●
●● ●

●

●

●●

●

●

●
●

●●
●●●

● ●●
●

●
●●

● ●
●●

●

●

●

●

●

●

●

●●
●

●

● ●
●●

●●
● ●●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●
●

●

●

●●
●

●● ● ●

●

●
●

●
●

●●

●
●●●● ●

●

●
●

●●
● ●

●
●●●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●●

●● ●●
●

● ● ●

●●● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●●

●
●

●

●

●
●

●●
●● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●
●
●

●●

●
●
●

●

●

●

●

●●

●●●

●●●●

●
●

●●●● ●●●
●

●
●●●●●

●
●
●

●●

●●●

●
●

●●

●●

●

●

●
●

●

●●●
●

●●●
● ●

●
●

●
●

●
●

●

●

●

●

●

●●●

●
●

●●●

●

●

●

●
●
●
●

●●

●●

●

●

●●

●

●

●
●
●

●●

●●●
●

●
●
●●●●

●
●●
●

●

●

●

●

●

●

●●
●

●

●●

●●● ●

●●

●

●● ●
●

●●

●

●●

●

●

●

●●●

●●●

●
●
●

●

●●

● ●

●

●

●

●

●

●

●

●
●●

●

●●

●●●

●●
●

●

●●

●

●●

●●●

●●

●
●●●

●

●

●●
● ●

●●

●
●

●
●●●●

●
●

●

●
●
●

●
●
●

●

●
●

●●

●●

●

● ●●●

● ●
●●
●●
●●
●●

●

●

●
●●●●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●●

●●

●
●

●●●

●

●
●

●

●

●

●
●

●●●

●

●

●●

●●

●●●
●●
● ●●●

●

●

●●●●
●

●● ● ●
●

●●
●
●

●

●
●
●● ●

●
●●●● ●

●●
●
●●●

●●
● ●●

●
●●

●●
●

●
●●● ●●

●

●
●● ●● ●●●

●

●●●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●●

●

●

●●●

●

●

● ●

●●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●●

●●
●
●

●●

●● ●

●

●

●●

●

●

●●

●●●● ●●●

●

●● ●●

●

●

●

●●

●●●

●

●●

●

●

●

●

● ●

●●●

●●

●

●
●●

●●●

●

●●
●
●

●
●

●

●

●
● ●

●

● ●●

●●
●
●
●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●●●●●●
●
●● ●●●

●
●●

●
●

●

●●

●●●●

●●

●

●●
●●

●
●
●
●

●
●

●●
●
●
●
●

●●●
●

●
●

● ●●

●

●●●●
●
●

●●
●

●●

●

●

●
●
●●●●

●
●
●
●

●●
●

●●
●

●
●

●

●
●

●

●
●●
●

●●

●●●

●●

●●

●

●

●

●

●

●●

●●

●●●

●
●●●

●
●

●
●●●

●●

● ● ●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●
●
●

●● ●

●

●●

●

● ● ●

●●

● ●

●

●

●
● ●

●
●●

●
●●● ●

●
●

●
●

●

●

●●
●

●

●● ●

●
●

● ●●●

● ●●

●

●

●

●● ●●

● ●

●
●

●

●

●
●

●
●●●

●
●

●
●

●

●●

●
●●

●
●

● ●

●

●

●

●
●● ●

● ●

●
●

●

● ●

●
●

● ●
● ●

●

●

● ●● ●

●

●

●

●●
●

●●●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●●
●●

●

●
● ●

●

●

●●
●
●● ●●

●

● ●● ●
●●

●

● ●
●

●
●

●●

●●

●

●

●

●●

●

●

●

●●

●
●●

●
●●

●

●
●

●●
●

●
●●
●●

●
●

●●

●

●

●

●

●●

●

●

●
●

●●●
●●
●● ●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●
●

●

● ● ●●

●

● ●●●

●

●

●

●

●
●

●●

●

●● ●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●● ●●●● ●

●
●

●
●

●

●
●
●

●

●

●

●●

●

●

●
●●

●
●●
●
● ●●

●

●

●

●

●

●
●

●●
●

●
●● ●

●●

●

●●

●
●●

●●

●

●

●
●

●

●
●●

●

●

●●●

●
●●

●

●

●
● ●●● ●

●

●
●
●●

●
●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●
●●

●●
●●

●

●● ●
●●

●
●●

●●●

●

●●

●
●

●

●

●

●●

●

●
●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●●●
●

●
● ● ●● ●

● ●●●
●

●● ●

●●●

● ●

●
●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●● ● ●

●●

●

●

●
●

●●

●
●

●●
●

●
●●

●

●● ●
●●
●● ●

●

●

●
●

●
●

●

●

●
● ●

●

●●

●

●

●

●
●
●

●●●●
●

●●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
● ●

●

●
●

●

●●

● ●●

●●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●●

●

●
●

●

●●

●●

●

●●●
●

● ●
●
●

●
●●●

●

●
●●

●
●
●
● ●●●

●
●
●

●●●●
●

●
●●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●●

●
●

●
●●
●

●

●

●●
●●

●●●

●●

●●●

●

●
●
●

●
●

●

●
●

●●

●

●●

● ●

●●

●
●

● ●
●
● ●

●

●●

●

●

●
●

●
●
●●
●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●● ●

●

●
●

●
●●

●●

●
●
●● ● ●

●

●●

●

●

●●

●
●

● ●

●

●●
●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●● ●●●
●

●

●●

●

●●

●

●●

●

●

● ●

●

●

●
● ●

●
●●

●

●

●●

●

●●

●
●
●

●
●
●●●

●

● ●●
●
●

●
●●
●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●●

●

●

●●

●

●

●● ●
●

● ●

●

●

●

●

● ●●

●

●
●

●●●

●

● ●

●

●
●

●

●
●●

●

●

●●

●

●
●

●

●
●

●
●●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

● ● ●

●

●

●●●●
●

●●

● ●

●

●●

●

●

●●●

●●●

●●

●
●
●

●●

●
●
●

●

●
●●●

●

●
●

●●

●

●●

●

●

●

●●●

●
●
●
●

●

●●
●

●

●

●

●●
●
●

●●

●
●

●●●●

●

● ●

●
●
●

●

●

●

●

●●

●●

●●

●●
●●
●

●●
●
●

●

●

●

●●●

●

●●●

●

●●
●

●
●
●●
●

●

●

●

●
●●

●●● ●●

●●

●●

●●

●●

●

●
●

● ●●

●

●

●

●● ●●
●
●

●●

●●●● ●●
●

●●

●●●

● ●

●
●

●
●

●
●

●●

●

●

●

●

● ●

●
●
●

●

●
●
●
●

●
●

●●●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●●
●●
●

●

●

●●

●
● ●

●●
●●

●
●

●

●

●
●
●

●
●

●
● ●

●●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●●
●

●●
●

●

●

●
●●

●
●●
●●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●
●

●

●
●

●

●●

●
●

●●

●

●
●
●

● ●
●
●

●

●
●

●
●

●
●

●

●

●●
●

●●

●● ●●
●
●

●

●

●

●
●

●●

●

●

●●

●
●

●●
●

●

●

●●

●● ●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●●●

●

●●●

●

●
●

●
●

● ●● ●
●

●

●

●

●

● ●●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●●●

●● ●

●●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●●●●

●●

●
●
●

●

●

●

●

●●● ●

●●

●

●●

●
●
●

●

●●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●●●

●
●

●

●

●

●●

●●

●
●●

●
●●●

●

●
●

●●

●

●

●
●

●●●

●

●●

●

●●

●●

●

●

●

●

●

●●●

●

●●

●●●
●●●

●

●●

●

●●

●

●●

●
●

●●

●●●●●

●

●
●

●

●

●●

●●

●

●
●

●●

●

●●

●●
●

●

●

●

●

●

●
●
●●

●
● ●

●

●●

●

●

●

●●●

●
●●

●●
●

●

●

●●●

●

●●

●
●

●●

●

●

●
● ●●

●
●●
●

●

●●

●

●●●

●

●

●

●

●
●

●
●

●

●

●●

●
●
●●

●
● ●

●

●
●

●

●●
●

●●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●
●●●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●
●

●

●

●●

●●

●●

●

●

●●

●

●

●

●●

●
●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●●●●

●

●
●
●

●
●

●

●

●
●
●

●
●

●●●

●●

●

●

● ●●
●

●

●

●

●

●

●●
●

●●

●

●●
●

●
●

●

●

● ●●

●

●
●

●

●

● ●

●

●●●

●

●

●

● ●

● ●
●

●●

●

●

●

●

●
●

● ●

●
●●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●●

●●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●
●● ●

●

●

●●

●

●
●
●●

●

●●●

●

●●

●●
●

●
● ●●

●
●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●
● ●

●

●

●

●
●
●

●

●

●

●●
●

●
● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●
●

●●

●

●

●●●

●●

●
●● ● ●●

●
●● ●

●
●
●

●
●

●

●

● ●

●●●

●

●

●●

●●
●
●

●●

●
●●
●

●

●

●
●● ●

●
●

●●
●

●

●
●

●

●● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
● ●

●●

●

●●

●

● ●

●

●●

●

●

●
●

●

●

●

● ●●

●●

●●

●

●

●●●

●●

●

●
●●

●

●●

●●

●●

●

●

● ●

●
●

●

●
●
●

●

●

●

●

●●
●

●

●●

●

●●

●●

●

●●

●
●

●

●

●●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●●●

●

●

●

●

●● ●

●

●
●

●
●

●
●
●

●●●

●●

●

●●

● ●
●

●

●

●

●

●●

●●

●

●

●●
●● ●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●
●
●

●

●

●●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●●●

●
●

●●●

●
● ●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●●

●

●

● ● ●

●●

●●●●
●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●●●

●
●

●

●

●●●

●●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●
●

● ●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●●

●

●

●
●

●
● ●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

●●
●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●

●●●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ● ●

●●

●

●

●

●

●●

●●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●
●

●
●

●

●
●
●

●●●

●

●
●

●●

●

● ●

●●

●

●●

●
●●●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●
●

●

●●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●●

●

●

●

●●●
●● ●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●● ●

●●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●
●●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

● ●

●

●●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●● ●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●
●●

●

●●
●●

●

●

●

●●

●

●

●●

●

●

●●

●●●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●●

●

●

●

●

●

●

●●

● ●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●●

● ●●

●

●● ●

●
●

●

●●●

●
●●

●●

●

●●
●

●

●●

●●

●

●●●

●●●●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●● ●

●● ●

●

●

●

●

● ●●

●

●●

●

●

●

●

● ●● ●●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●● ●● ●●

●

●
●
●

●●

●●

●●●

4 6 8 10 12

4
5

6
7

8
9

10

Complexity (log−scale)

H
ug

in
 r

un
ni

ng
 ti

m
e

(lo
g−

sc
al

e)

(a)

●●●●

●●●●

●●● ●●● ● ●●● ●●●●●●●● ●●●● ●● ●●●● ●●● ●●●●● ● ●● ●● ● ●● ●● ●●●●● ●●● ●● ●●●●● ● ●● ●●●●●●●●● ●●●●● ●● ●● ●●●●● ●●●●●●● ●●● ●●●●● ● ●●● ●●● ●●●● ● ●●●●●●●● ●●● ●●●● ●●●●●● ●●● ●●●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●●●●● ● ● ●●●●●● ● ●●● ●●● ●●● ●●●● ●● ●●●● ● ●● ● ●●● ●●● ●●●●●●●● ●● ●●●● ● ●●●●● ●●● ● ●●● ● ●●● ●● ● ●● ●●● ●●● ●●● ●● ●●● ●●●●● ●● ● ● ●● ● ● ●●●●● ●● ●● ●● ● ●●● ●● ●●● ●● ●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ● ● ●●●●●●●●● ● ●●●●●●●●●● ● ● ●● ●●● ●●●●●●● ●●●●● ●● ●●● ●●●●●●●● ●●● ●●●●●● ●●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●● ● ●●● ●●●●●●●●●●● ●● ●●●● ●● ● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●● ●● ● ●●●●●●●●●●●●● ●●●●● ●●● ●● ●●● ●●●● ● ● ●●●● ●●● ●● ●● ●● ●●●●●● ●●●● ●●●●●● ●●●●● ●●●●● ● ●●●●● ●●● ●●●● ●●●●● ●●●●●●● ●●●●● ●●●●●●● ●● ●●● ●●●●●●● ● ●●●●●● ● ●●●● ● ●●●●● ●●●●●● ●● ●● ●●●● ●●●●● ●● ● ●●●●●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ● ●● ●● ● ●●●●●●●● ●● ● ●●● ●●●●●● ● ●●● ●●●●●●●●●● ●●● ●● ●●● ●● ●●●● ● ●●●● ●● ●●●●● ●●●●●● ●● ●●●●● ●●●●●●● ●● ●●●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●●●●●● ●●●●●● ●●● ● ●●● ●● ●●●● ●● ●●●● ●● ● ●● ● ●●●● ● ● ●● ●●● ●● ● ●●●●●●● ●● ●● ●●● ●●●● ● ● ● ● ●● ●●● ●● ●●●●●●● ●●● ●● ●● ● ●●● ●●● ●●●● ● ●● ● ●● ●●●● ●●●● ● ●● ●●●●●● ● ●● ●●● ●● ●● ●●●●● ●● ●●●● ●●● ● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●● ●● ●●●●● ●●●●●●●●● ● ●● ●● ●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●●● ●●●● ●● ●●●●●●● ●●●●●● ●● ●●●●● ●●● ●●●●● ●● ●● ●● ●● ● ●●●● ●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●● ● ●●●● ●●●●●●●● ●● ●●● ●● ●●●●● ●●●●●● ●●●● ●●●●● ●●● ● ● ●●● ●●●●●● ●● ●●●● ●●● ● ●●● ●●●● ● ●●● ●●●●● ●● ●●●●● ●●●●●● ●●●● ●●●● ●●●●● ●●● ●● ●●● ● ● ● ●● ●●●● ●● ●● ●●● ●● ●● ● ●●●● ●●● ●● ●● ●●●●● ●●●●●● ●●● ●●●● ●●● ●●● ●●● ● ●●● ●● ●● ●● ●● ●●●● ●●●● ● ●●●● ●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●●● ● ●● ●●●●●● ●●●● ●●●●●● ●●● ● ● ●●●●●● ● ●●●● ●●●●● ●●●● ● ●●● ● ●● ●● ●●●● ● ● ●●●● ●● ●●●●●●● ●● ●●●● ● ●● ●● ● ● ●●● ●●●●●●●●●●● ● ●● ●● ●●● ● ● ●● ●●● ●●● ●●● ●● ●●●●● ●●●●●● ●● ● ●● ●●●●●●●●●●● ●●●●●● ● ●●●● ●●●●● ●●●● ●●● ●● ●● ●●●● ●●●●●● ● ●●●●●●●● ●●●●●● ●●●● ●●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●●● ●● ●●● ●● ● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●● ●●●●● ● ●● ●●● ● ●●●●●●●● ●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●● ● ●●● ●●● ●●●●● ●●● ●● ●●●●●● ●●● ●●●●●●● ● ●● ●●● ●●●●● ●●●●●● ●●●●●●●●● ●●● ● ●●●● ●● ●●●●● ● ●●●● ●●● ● ●●● ●●●●●●●●● ● ●●●●●● ● ●●● ●●●●● ●●● ●● ●● ● ●●● ●●●● ●●● ● ●●● ●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●● ●●●●●● ●● ● ●●●● ●● ● ●●●●●●● ● ●● ●● ●● ●●●●● ● ●●●● ●●● ●●● ●●●● ● ●●● ● ●●●●● ●●● ●●● ●● ●●●●● ● ●●● ●● ●● ● ●●●●●●● ● ●●●●●●●●●● ● ●●● ●●● ●●●● ● ●● ●● ●●●●●● ● ●●●●●● ●●●●● ● ● ●●●●●●●●● ●● ●● ●● ●●●●● ● ●●●● ● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ● ●● ●●● ●●●● ● ● ●●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●●● ●● ●● ● ● ●●●●●●●●●●●● ●●● ● ●●●● ● ●●●●● ● ● ●●●●● ●● ●● ● ● ● ● ●●●●●●●●● ●●●● ● ● ●● ●●● ● ●● ●●●●●●●● ●●●● ●● ● ● ●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ●●●● ●●●● ● ●●●●●● ●● ●●● ● ●●● ●●●●●● ● ●●● ●●●● ● ●● ●●●● ●● ●● ●●●●● ● ●●●● ●●●●● ● ●● ●●●●● ● ● ●●●● ●●●●●●●● ● ● ●●● ●●● ●● ●●●●●● ●● ● ●●●●● ●●● ●●● ● ●● ●●●●●●●● ● ● ●●●● ●●● ●●● ● ● ●●●●● ●● ● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●●●● ●● ●●●● ●●●●●●●● ●● ●●● ●●● ●●● ●●● ●● ●●●●● ● ● ● ●●●●●● ● ●●● ● ● ●●●●● ● ●● ● ●●●● ●● ●●● ● ●●● ● ●●●●●●●● ● ●● ●●●●● ● ● ● ●●●● ●●●●●● ●●●●● ●●●●● ●●●● ●●● ●● ● ●● ●●●● ●●●● ● ●●●●● ●●●● ●●●● ● ●●●●● ●●●● ● ●●● ●●●●● ● ●●●●●●● ●●● ●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ● ●●●● ●● ● ●●●● ● ●●●●●●●●●● ● ●●●●●●● ● ● ● ●●●●●●●●● ●●●● ●●● ●● ●●●●● ●●●●●●●●●●● ●● ●●● ●● ●● ●●●● ●●●●●●● ●●●●●●● ● ●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●● ●● ●●●●●●●● ●●●●●● ●●●●●●● ●●●● ● ●●●● ●●●● ●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●● ●●●●●●● ●● ●● ●● ●●●●●●●● ●●● ● ●●●●●●●●●●● ●●●●●● ● ●●●●●●● ●● ● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●● ●● ● ●●● ●● ●●● ●●●● ● ●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●● ● ●● ●● ●●●● ●● ●●●● ●●●● ●●●●●●● ● ●●●●● ● ●●●● ●●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●● ●●●●●●●●●● ●●● ●● ●●●●●●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●● ●●●●●●●●●●● ● ● ●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●● ●●●●●● ● ●●●●●●●● ●●●●●●●● ●●●●● ●●●●●● ●● ●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●● ●● ● ●●●●●● ● ●●●●●●● ●●●●●●●● ● ●●●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●● ●● ●● ●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●● ●●●●● ●●●● ●●●●● ●● ● ●●●● ●●●●●●● ●●● ●●●● ●● ●●● ●●●●●●●● ●● ●●● ● ●●●●●●●● ●● ●●●●●●●●●●●● ●● ● ●●●●● ●●●●●● ● ●●●●●●●● ●●●●● ●●●● ●●●●● ● ●●●● ●●● ●●●● ●●●●●● ●●● ●●●●● ● ●● ●● ●●● ● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●● ● ●●●● ●●● ●●● ●●●●● ●●●●● ●●● ●●● ●●● ●●●●● ●● ●●● ●●●● ●●●● ●●●●●●● ●●●●● ● ●● ●●●●●● ●●●●●● ●●● ● ●●●●● ●●●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ● ●● ● ●● ●●● ●●● ●● ● ●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ● ●● ●●● ●●●●● ●●● ● ●●●●●● ●●●●● ● ●● ● ●●●●● ● ● ●●● ●●● ●● ● ●●●●●●● ●● ● ●●● ●● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ● ● ●●●●●●●● ●● ●●●●●● ●●● ●●●● ● ●●● ● ●●● ●● ●● ●● ●●●●●●●●● ●● ● ● ●●●●●● ●●●● ● ●●● ●● ● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ● ● ●●●● ● ● ●● ●●●●●●●● ●● ●●● ● ●● ●●●●● ● ●●● ●● ● ●●●●●●●● ●●● ●● ●●● ●● ● ● ●●● ● ●● ●●●●● ● ●●●● ●● ●● ● ●●● ●●● ●●●● ● ●● ●●● ●●● ● ●● ●●●● ●●● ●●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ●● ●●● ● ● ●●●● ●●● ●●● ●● ●● ● ●●●● ●●●●●●● ●●●● ●●● ●●● ●● ● ● ●●● ●● ●●●● ●●● ●●●● ●● ● ●● ●●●● ●● ●● ●●●●● ● ●● ●●● ●●● ●●●● ●●●●● ●●●● ●● ●●●● ● ●● ●●● ● ●● ●●● ●●●●●● ● ●●●●● ● ●●●● ●●● ●●●● ●●●●●● ● ● ●●●●●●● ● ●● ●●● ●●● ●●●● ●●●●●●●●●●●● ●● ●● ●●● ●●●●● ●● ●●● ● ●●●● ●●● ●●●● ●●●● ●●● ● ●● ● ●● ●●● ●●●● ● ●● ●●●●● ●●● ●● ●●●●●●●●● ●● ●●●● ●●●● ●● ● ●●●● ● ● ●●●● ● ●●●●●● ● ●●●● ● ● ●●●●● ● ●●● ●●● ●●● ●● ●●● ● ● ●●●● ●● ● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ● ●●●●● ●● ● ●● ● ●●●●●● ●●● ●●●● ● ●● ●●● ● ●● ●● ●●●● ● ●● ●● ●●●●● ●●● ● ●●● ●●● ●● ●●●●●● ●●●● ●● ●●●●● ● ●● ● ●● ● ●● ●● ●● ● ●●●●● ● ●● ●●● ● ●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ● ●●● ●● ●●● ●●● ●●●●●● ● ●● ●●●●● ●●●●●● ●●●●●●●●●● ●●●● ● ●●●●●●●●●● ● ● ●●●●●●● ●●●● ●● ● ●●● ●●● ●●●●●●●● ● ● ●● ● ●●●● ●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●●● ●●● ● ●●●●●● ●● ●●● ●● ●●●● ●●●●●●●●●● ●●●●●● ●● ●● ●● ● ●● ●●●●●● ● ●●●●●●● ●●●●●●●●●● ●●●●●●● ● ●●●●●●●● ●●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●● ●● ●● ●● ●●●●● ● ●●●● ●●●●● ●●●●● ●● ●●● ●● ● ●●● ●●●● ●●●●●●●● ●● ●●● ●●●●●●● ●● ● ●● ●● ●●●●●● ●●●●●● ● ●● ●●● ●●●● ● ●●● ●●●●●●● ●●●●●●● ●●●● ●● ●●● ● ● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●● ● ●●●●●●●●●●●●● ●●●● ●●●●● ●● ●●● ●● ●●●●●●●●●●●● ●●●●●● ●●●● ●●●● ● ●●●●●●●●●●● ●●● ●● ●●● ●●●● ●●●● ●●●●● ● ● ●●●●● ● ●●●●●●●●●●●●● ● ● ●●●●●●● ●●● ●●● ● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●● ●●●● ●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●●● ●●●● ●●● ●●●● ●●●●●● ●●●●●●●●●●●● ●● ●●●●●●● ●●●●● ●● ● ●●●● ●● ●●● ●●●●● ●●● ●●● ●●● ●●●●●● ●● ● ●●● ●●●●●● ●●●● ●● ●●●● ● ● ●●●●●● ●●●●● ●●●●●● ●●●●● ●● ●●● ● ●●● ●●●●● ● ●●● ●● ●●●●●● ●● ●● ●●●●● ●● ●●●●● ●●●●●● ●●● ●● ●●●●● ● ●●●●●●●●● ● ●● ●● ● ●●● ●● ● ●●●●●●● ● ● ● ●●● ●●● ●●● ● ●●●● ●● ●● ●●●● ●●●● ●●● ●●● ●● ●● ●●●●● ●● ●●●●●●● ●●●● ● ●●●● ●● ● ●●●● ●● ●● ●●●●●● ●●● ● ●●● ● ● ●●●●●● ● ●● ●● ●● ●●●● ● ●●●● ● ●●● ●●●●● ● ●●● ●●●● ●●● ● ●● ●● ●●●●●●● ● ●●● ● ● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●● ●● ● ●●●● ●●● ●●●●●●● ●● ●●●●● ● ●● ● ●● ● ●●●● ● ●●●● ●● ●●● ●●● ●●●● ●● ● ●●● ● ●●● ● ●● ●● ● ● ●●●● ● ● ●●● ●●● ●●● ●●● ● ●● ●● ●●●●●●●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ●●●●●●● ●●● ●●● ●● ●●● ●●● ●● ● ●●● ● ● ●●●● ●●●●●●● ●● ●● ● ●●●●● ●● ●●●● ●●●● ●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●●● ●●●● ●●● ● ●●● ●●●●●● ●●● ● ●● ●●●● ●●●● ● ●● ●●● ●●●● ● ●●● ●●●● ●●● ●●●●● ●●● ● ●●●●● ●●●●● ●●●● ●●● ●●●●● ●●●●● ●●●●●●●● ●●●●● ●● ●●●●●●●● ●●●●●● ●●●● ●● ●● ● ●●●●●●● ●●●● ●● ●●●●●● ●●● ●●●● ●● ●● ●● ● ●●●● ●● ●●●● ● ●●● ●●●●●●●●●● ●● ●● ●●●●●●● ●●●●● ●● ● ●● ●●●●●● ●●● ● ●●●● ● ●● ●●●●● ●● ●●●●●●● ●● ●●●●●● ●● ●●●● ●●●●●●●● ●●● ●●●● ●● ●●●● ●●●●●●● ●●●●● ●●● ●●●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●● ● ●●● ●●●●●●●● ●● ●●● ●●●●● ● ●●●● ●● ●● ●●●●●●● ● ●●●●●● ●●●●● ●● ●●●● ●●●●● ●● ●●●●●● ●●●●● ●● ●● ●●●● ●● ●● ●●●● ●●● ● ●● ● ●●● ● ●●● ● ● ●●● ●●●● ● ●●●●●● ●●● ●● ● ●●● ●● ●● ● ●● ● ●●●●●●●●●● ●●●●● ● ●●●●●●●●●●●● ●● ●●● ●●● ●●●●●● ●● ●● ●●●●● ● ●● ●●●●●●● ● ●●●● ●● ● ●●● ● ●● ●●● ● ●● ●●●● ● ●● ● ● ●● ● ●● ●●●●● ● ●●●●●● ●● ●● ●●●●●●● ●●● ● ●●●●●● ●●● ● ● ●●● ● ●●●● ●●●●●● ●●●● ●●●● ● ●●● ●● ●● ●●●● ●● ●●●●●● ●●●●● ●● ●● ●●●● ● ●● ●● ●●●●●● ●● ● ●●● ●●●●●●● ●●● ●●●●●●●● ●●● ●● ●● ● ●●● ●●● ●●●● ●●● ●●● ● ●●●● ●●● ●● ●● ●●●●● ●●● ●●● ●● ● ●●●●● ●● ●●● ●●● ●●●● ●●● ● ● ●● ●● ● ● ●● ●●●●● ●●● ●●● ●●● ●●●●●● ●●● ● ●● ● ●●● ● ●● ●● ●●●● ●●● ● ●●●●● ●●● ●● ● ● ●●● ●● ● ●●● ●● ●● ●●●● ●● ● ●● ●●●● ●● ● ●●●● ●● ●●●●● ● ●●●●● ● ●● ●●● ●●●● ●●● ●● ●●●●● ●● ●● ● ●●●● ●●●● ● ●● ●●● ●● ●●● ● ●● ● ● ●●● ●● ●● ●●●●●● ● ● ● ●●●● ●● ● ● ●● ●●● ●●● ●●● ●●●● ●●●●●●● ● ●●● ●●● ●●●● ●●●●●● ●●●● ● ●●●●●●●● ●● ●●●●● ●●●● ● ●● ●● ●●●●●●●● ●● ●●●● ●●●● ● ●●●● ●●●●● ● ● ● ●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●● ● ●●●●● ● ●●●● ●●●● ● ●●●●●●● ●●● ●●● ●●●●●● ● ● ●●●● ●●●●●●● ● ●●●●●● ●●● ●● ●●●● ●●●●● ●●● ●●●●●●●●●● ●●● ● ●●● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●● ● ●●● ●● ●●●●●● ●●●● ● ●●●●●● ● ●●●●●●●●●● ●●● ●●●●●●●●● ● ●●●●●●●● ●●● ● ●●●●● ● ●●●●●●●●● ●●●●●●●●●●●● ●● ●● ●● ●● ●●●● ●●●●●● ●●●●● ●●●●●● ● ●●●●●●●● ●●● ●● ●●●●●● ●●●●● ●● ●●●●●● ●●●● ●●●●●●●●● ●●●● ● ●●●●●●●●● ●● ●●●●●●● ●● ●●●● ●●●●●● ●●●●●●● ●●● ●●● ●● ●●● ●●●●●●● ● ●● ●●●●●●●● ●●●● ●● ● ●● ●●●●●●●●●●● ●●●●● ●●●●● ●● ●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●● ●● ●●●●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●●● ● ●●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●● ●● ●●●● ●●● ● ●● ●●●●●●●●● ●● ●● ●●●● ●●●● ● ●●●●● ● ●●●● ●● ●●● ● ●●● ●●●● ●● ● ● ●●● ●●● ● ●● ● ●● ● ●●●● ●●● ● ●●● ●●● ● ●● ●●● ● ●●●●● ●●● ● ●● ● ●●●●● ● ● ●● ● ●● ● ● ● ●●●● ● ● ●● ●● ●●●● ●● ●●●● ●● ● ●●●● ●●●●● ●●●●●● ● ● ●●●● ●●●●● ● ●● ● ●●●●●●● ●●●● ●● ●●●●● ●●● ● ●●●●● ●● ●● ●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●●●● ●●●● ●● ●● ●●●●●●● ● ●●●●●●● ●● ●● ● ●● ●●●●● ● ● ●●●● ●●●● ●●●●●●● ●●● ● ●●● ● ●● ●● ●●●● ●● ● ●●●● ●●●● ●● ●●● ● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●●●● ●●●●● ●●●● ●●● ● ●● ●●● ●● ●●● ●● ●●●● ●●●● ● ●●● ●●● ●●● ● ● ●●●●●●●●●●● ●●●● ●●●● ●●● ●●● ● ● ●●● ●●●● ●● ●●●●●●●●●● ●●●●● ● ●●● ●●●●● ●●●●●● ● ● ●●●●●●●● ●●● ● ● ●● ●● ●●●● ●●●● ●● ● ●● ● ● ●●●● ●● ●●●●● ● ●●●● ●● ●●●● ● ● ●●●●●●● ● ●●● ●●● ● ●●● ●● ●●● ●● ●● ● ●●●● ●●●●●●● ●● ●●●●●●● ●●●●● ● ●●●● ●●● ● ●● ●● ●●● ●●● ●● ●●●● ● ●●● ●●●●● ●●●●●● ● ●● ●● ●● ●● ●●●●●●● ●● ●●●●●● ●●●●● ●●● ●●● ● ●● ● ● ●● ● ● ● ●● ●●● ●● ●● ●● ●●● ●●● ● ●● ●● ●●●● ● ●●● ●●● ●● ●●● ● ●●● ●●●●● ●●● ●●● ●● ●●●●● ● ● ●●●●●● ●● ●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●● ● ●●●● ●●●● ●● ●●●●● ●●●●● ●●● ●● ●●●●●●●●● ●●●●● ●●● ● ●●●●●● ●●● ●● ●●●● ●● ●●●●●●● ●● ●●● ●●●●●● ● ●● ●●● ●●●● ●●● ●●●●●● ● ●● ●●●● ●● ●●● ●●●●●●●●●●●● ●● ● ●●●●●●● ●● ●●●●●●● ● ●● ●●●●●● ● ●●●● ●●●●● ● ●●●●●●●● ● ●●●● ●● ●●●● ●●●●●●● ●● ●● ●● ●● ● ●● ●●● ● ●●● ●● ●●● ● ●●●● ● ● ●●● ●●● ●● ● ●● ●●● ● ●●● ● ● ●●●● ● ●● ●●● ●●● ●● ●●●●●●● ●● ●● ● ● ● ●●●● ●●● ●●● ●● ● ●●●●● ● ●● ●●●●●●● ● ●● ● ●● ● ●● ●●● ●●●● ●● ● ●● ●● ●● ●●● ● ●●●● ●●●● ● ●●●● ●●● ●● ●● ●●● ● ●●● ●●●●● ●●● ● ●●● ●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●●● ●● ●●●●●●● ●●●●●● ●●●●● ●● ●● ●●●●● ● ●●●●● ●●● ●●●●●●●●●●● ●●●●●●● ●●●● ●●● ●●●● ●●●●●● ●●● ●●●●● ●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●● ●●●● ●●●● ●●● ●● ●●●● ●●●●● ●● ●●●● ●●● ●●●●●● ●●●●● ●●●●● ●●● ●● ●●●●● ●●● ●●●●●● ●●●● ●● ●●●●●●● ● ●●●●●● ●● ●●●● ●●●●● ●●● ●● ●●●● ●●●● ●● ●●●●● ●● ● ●●● ●●●●●● ● ●● ●●●●● ●●●●● ●●●● ●●●●●●●●●● ●●● ●● ●●●●●● ●● ●●● ●● ● ● ● ●● ●●●● ●●● ●●●● ●●●● ● ●●● ● ●●●● ●● ●●●● ●●●●● ●●●● ●●●● ●● ●●● ●● ●●●●●●●● ● ●● ●●●● ● ●●●●●● ● ●●● ●● ● ●●● ●●●● ●● ●●●● ●●● ●● ●●●● ●● ● ●● ●●●● ●●● ● ●●● ●● ● ●● ● ● ●● ● ● ●● ●●●●● ● ●●● ●● ●●●●● ●●●● ● ● ●●●● ●●● ●●●●●●● ● ●●● ●●●● ●●●●●●● ● ●●●● ● ●●● ●●●●● ●●● ● ●●●●●●●● ●● ●●●●●●●●● ●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●● ●●● ● ●●● ●●●●●● ●●●●● ●●●●●●● ●● ●●● ●● ● ●●●●● ●● ●●●●●●● ● ● ●● ●●●● ●●●●● ●●●● ●●● ●●●●●● ●● ●● ●●●● ●● ●●●● ●●●●●●● ●● ● ●●● ●●●● ●●●●●● ● ● ● ●●●● ●●●●● ●● ●●● ●●●●● ●●● ● ● ●● ● ●●●●● ● ● ●●●●● ●● ●● ●● ●●●●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●● ● ● ●●●● ●●● ●● ● ●●● ●●●●● ●●●● ● ●●●●●●● ●●●● ●●●● ● ●●●● ●●● ●●●●●●●● ●●● ● ●●●●● ●●●●● ●●●●● ●●●●● ●● ● ●● ●●● ●● ●●● ●●●●● ●●●●● ● ●●● ●● ●● ●●●● ● ●●●● ● ● ●● ●● ●● ●●● ●● ●●●● ●●●● ● ●●●●● ●●●● ●● ● ●●● ●●● ● ●●●●● ●●●●●●●●●● ●●●●● ●●●● ●●●●● ● ● ●●●● ●●●●● ●●●● ●●●●● ● ● ●● ●●●● ● ● ●●● ● ●●● ●●● ●● ● ●● ●●● ●● ●●●●● ● ● ●● ●●● ●● ● ●● ● ●● ● ● ●● ●● ● ● ● ●●● ●● ● ●●●● ●● ●●● ●●● ●●●● ● ●● ●● ● ● ●● ● ●● ●●●● ●● ● ● ● ●● ●●●●●●●●● ● ●●● ●●●●● ● ●● ●●● ● ●●●●● ● ●● ●●●● ●● ●●●● ●●●● ●●●●●●●●● ● ●●●● ● ●● ●●●● ● ●●●● ●● ●● ●●●● ● ●●● ●●●● ●●● ● ●● ●● ● ●● ●● ●● ●●● ● ●●● ● ●●●● ● ●●● ● ● ● ● ●●●● ●●●● ●●● ●● ●●●● ● ●● ●●●●●●● ● ●● ●●●● ● ● ●●●●● ●●● ●●●●● ●●● ● ● ● ● ●● ●●● ● ● ● ●●● ● ●●● ● ●● ●●● ●●●●●●● ● ●● ●●● ●●●●● ●●●● ●●● ●●● ●●● ●● ●● ●● ●●●● ●● ●●●● ●●●●● ● ● ●● ● ● ●●●●● ●●●●● ● ●●●● ● ● ●●● ●● ● ●● ●● ●● ● ●● ●● ●● ●● ● ●●● ● ●● ●● ●●●●● ●●●●● ●●● ●● ●●● ●●●●●● ●●●●●● ●● ●●●●●● ●●● ● ● ●●●●●● ● ●● ● ●●● ● ●●● ● ● ●●●● ● ●● ●●●● ● ●● ● ●●●●●●● ●●● ●●● ●●●●● ●● ● ●●● ●● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ● ● ●● ● ●●●●● ●●●● ●●●● ● ●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●●● ● ●● ●● ●●●● ●●● ●●●●●● ● ● ●● ●●● ● ●● ●●●●● ● ●● ● ●● ●●● ●● ● ●●●● ●●●●● ●●● ●●● ●●● ●● ●● ● ● ● ●●● ●●● ● ●● ● ●● ● ●●● ● ● ●● ●● ●●● ● ●●●●●●●● ● ●●● ● ●●● ●●● ●●●●●●● ●●● ● ●●● ●●●● ●● ● ●●●●● ● ●●●● ●●●● ●●●● ●●●● ●●● ●●●● ●●● ●● ●● ●●●●● ●● ●●●● ●●●● ● ●●● ●●● ●● ●●● ● ●●● ●● ●●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●●●●●●● ●● ●● ●●●● ● ●● ● ●●●●● ●● ●● ●●●● ● ● ●●● ●●●●● ●●●● ● ●●● ● ●●● ●● ●● ● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●● ●●● ●● ● ●●●● ●●● ●● ● ●●●● ● ●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●●●● ● ●● ●●●● ●●● ●●● ● ●●●● ● ●● ●●● ● ●● ●●● ●●● ●●●●●● ●● ●●● ●● ●●●●●● ●●●● ●● ● ●● ● ●●● ●● ●●●● ●●●● ● ●●● ●● ●● ● ● ● ●●●● ●● ● ● ●● ● ●● ●● ●● ●●●● ● ●●●●● ●●●● ● ●● ●●● ●●● ●● ● ●● ●●●●● ●●●●● ●●● ●●● ●● ● ●●●●● ● ● ●●●●● ●●●● ●●● ● ● ●●●● ●●● ●● ● ●● ● ●● ●● ●●● ● ●● ●●● ●●● ● ●●● ●●● ●● ●●●●● ●●●● ●● ●● ●● ●● ●●●● ● ● ●● ●●●●● ● ● ●●● ●●●● ● ●●● ●● ● ●● ●● ●●● ●●● ● ●●● ●●● ●●●●●●● ●●● ●● ●●●●● ●●● ●● ●● ● ● ●●● ●●●●●● ●● ●● ●● ● ● ●●●● ●●●● ●●● ● ●● ●● ●●● ●●●●●● ●●● ●●●● ●●●●● ●●●● ●●●● ● ● ●● ●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●●●● ●● ● ●●●●● ● ●● ●●● ●●●● ●● ●●● ● ●● ●●●● ●●● ●●●●●●● ●●●● ●●●●●●●● ● ●● ●●● ● ●● ● ●●●● ●● ●●●● ●●● ●●● ●● ●
●● ●●● ●●● ●●● ● ●● ●● ●●● ● ●● ● ●●●● ●● ● ●● ●●●● ●●● ●●● ●●●●●

●● ●● ●● ●●

●●●

●● ●● ●●

●●
●●

●●
●●

●●●

4 6 8 10 12

4
5

6
7

8
9

10

Complexity (log−scale)

S
IIC

 r
un

ni
ng

 ti
m

e
(lo

g−
sc

al
e)

(b)

●●

●
●

●●●●●●● ●●● ● ●●● ●●●●●●●● ●●●● ●● ●●●● ●●● ●●●

●● ● ●

●

●● ● ●●

●

●

●

●●

●

● ●●●

●

● ●

●

●●● ● ●● ●●●●●

●

●

●

●

●

●

●

●

●

●

● ●● ●●●●●

●

●
●

●●

●● ●

●● ●

●

●●●

●

●

●● ●●● ●●

●

●

●

●

●

●

●●●●

●

●

●● ●●●● ●●

●

●●

●

●●

●

●

●

●●

●● ●● ●

●

●●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●●

●

●●● ●●

●

●●● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●●● ●

●
●

●●●

●

●

●

●

●

●●

● ●●● ●● ● ●● ●●

●

●●

●

●●● ●● ●●

●

●●●●● ●● ● ● ●● ● ● ●●●●
● ●● ●● ●● ● ●

●

● ●● ●●● ●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●● ●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●● ●●●●

●

●
●

●●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●● ●● ●

●

●●●●●●●●● ● ●●●●●●●●●

●

● ● ●● ●●● ●●●●●●● ●●

●

●●

●

● ●●● ●●●●●●●● ●●● ●●●●●● ●●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●● ● ●●● ●●●●●●●●●●● ●● ●●●● ●● ● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●● ●● ● ●●●●●●●●●●●●● ●●●●● ●●● ●● ●●● ●●●● ● ● ●●●● ●●● ●● ●● ●● ●●●●●

●

●●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●
●

● ●●
●

●

●●
● ●

●●●

●

●
●●

●

●●

● ●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●●●●

●

● ●●●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

● ●
●

●●

●

● ●●

● ●

● ●●●

●

●

●

●

●

●
●

● ●●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●● ●

● ●●●

●

●

●

●
●
●

●
●●

●● ●

●
●

●

●

●

●

●●●

●●● ●●

●

●

●

●●

●●●●●●

●

●

●
●
●

●

●

●

●

●
●

●●

●●

●●

●

●

●●

●
●

●●

●

●

●

●

●●●
●●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

● ●●●● ●●

●

●●

● ●●

●

●● ●
●

●
●

● ●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

● ●
●
● ●●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●
●

●●

● ●
●

●

●

●

●
●

● ●

●
● ●

●
●

●

●
●

●
●

●

●

● ●●
●

●

●

●

●
●

●● ● ●● ●●

●

●
●

●
●

●●

●

●
● ●● ●

● ●●

●

●

●
●● ●

●

●

●

●
●

●

● ●●●●●●●●

●

●●●●● ●●●●●●●●●● ●●●●●●●●

●

●

●●●●● ●●●●●●●●●

●

●● ●● ●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●

●

●●●●● ●●

●●

●● ●●●●●●● ●●●●●● ●● ●●●●● ●●● ●●●●● ●● ●● ●

●

●● ● ●●

●

● ●●●● ●●●

●

●●●●●●●●●●

●●

●●●

●

●●●●● ● ●●●● ●●●●●

●
●

● ●●

●●● ●● ●●●●● ●●●●●● ●

●●●

●●●●●

●

●

● ●

● ●●

●

●●●●●● ●● ●●●● ●●

●

●

●●● ●●

●●

●

●

●

●

●●●●● ●● ●●●

●

●

●●●●●

●

●●●

●

●

●
●●

●●●●● ●●● ●●

●

●

●

●

● ● ●● ●●●● ●

●

●● ●●●

●

● ●● ● ●●●● ●●● ●● ●●

●

●●●● ●

●●●

●●

●

●● ●●●● ●●● ●●● ●●● ● ●●●

●

● ●● ●● ●● ●●●● ●●●● ● ●●●● ●●●●●●●●

●

●●● ●●

●

●●●●●●●●●● ●●●

●

●
●

●

●
●

●●

●
●

●●● ●

●

● ● ●● ●●●

●

●

●

●

●

●

● ●●●●●● ●●●

●

● ●●●●●● ● ●●●● ●●●●● ●●●●

●

●●● ● ●● ●● ●●●● ● ● ●●●● ●● ●

●

●●●●● ●● ●

●

●● ● ●● ●● ● ● ●●● ●●●●●●

●

●●●● ● ●● ●● ●●● ● ● ●● ●●● ●●● ●●● ●● ●●●●● ●●●●●●

●

● ● ●● ●●●●●●●●●●● ●●●●●● ● ●●●● ●●●●● ●●●● ●●● ●● ●● ●●●

●

●●●●●● ● ●●●●●●●● ●●●●●● ●●●●

●●

● ● ●●● ●

●

●●● ●●●

●

●● ●● ●●● ●●●

●

●● ●●

●

●● ● ●●●●●●

●

●●●● ●●●●●●●●● ●●●●●●

●
●

●

●●●●●● ●

●●

●●●●● ● ●● ●●● ● ●●●●●●●● ●●●●

●

●●●

●
●
●

●●●●●● ● ●

●

●●●●●●

●●●● ●

●●

●

●●● ●●●●●

●

●

●

●● ●●●●●● ●●● ●●●●●

●

● ● ●● ●●● ●●●

●

●

●

●●●●● ●●●●●●●●● ●

●

●

● ●

●

●

●

●● ●●●

●
●

●

●●●

●

●●● ● ●●● ●●●●●●●●● ●

●

●●●●● ● ●●● ●●●●● ●●● ●● ●● ● ●●● ●●●● ●●● ● ●●● ●●●● ●●●● ●●●●●

●●

●●●●●●●● ●●●●● ●●

●

●●● ●

●

● ●●●● ●● ● ●●●●

●●
●

● ●
●

●● ●● ●●●●● ● ●●

●

● ●●● ●●● ●●●● ● ●●●

● ●

●●●● ●●● ●●● ●● ●●●●● ● ●●● ●

●

●● ● ●●●

●

●●● ● ●

●

●●●●●●●● ● ●●● ●●● ●●●● ● ●

●

●●

●

●●

●●
●

●

●

●

●●

●
● ●

●

●
●●

●
●

●

●
●

●

●
●
●

●
●

●
●

●

●
●
● ●●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●
● ●

● ●

●

●
●

●

●

●

●

●

●

●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●●● ●
●

●
●● ●

●
●●

●

●

●

●

●

●

●
●●
●

●●

●●●

●

●●
● ●●

●

●
●

●

●● ●

●

●

●
●

●

● ● ●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●●●

●

●

●

●●

●
●

● ●

●

●

●
●
●

●

●

●

●

●●

●●●●
●

●●
●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●
● ●●

●

●●

●

●
●

● ●
●●

●

●● ●

●

●

●

●

●●

●
● ●

●

●

●
●

●
●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●
●
●

●

●● ●●●●

●

●
●

●
●●●

●
●

●

●

●

●●
●

●

●
●

●●

●
●●

●
● ●

●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
● ●

● ●

●●

●

●
●●●

●
●

●

●

●

●

●●●
●

●

● ● ●

●
●

●

●
●

●

● ●

●

●

● ●
●

●
●

●●●
●
●

●

●●

●
●

●

●
●

●

●
●●
●
●

●
●

●●
●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●
●

●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●
●

●
● ●

●

●
●

●
●●● ●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

● ● ●●
●

●

●

●
●
●●● ● ●●

●

●

● ●●●● ●●●● ● ●●●●● ●●●● ● ●●● ●

●

●●● ● ●●●●●●●

●●

● ●● ●●●

●●●●●

● ●●● ●●●●

●

●

●●

● ●●

●●

●●

●

●

●●

●●●●●●●●● ●
●

●

●

●

●● ● ●●●●

●

●

●

●●●

●

●●

●

● ●

●

●●

●●

●● ● ● ● ●●●●●●●●● ●●●● ●●● ●●

●

●

●

●●

●●●●●●●●●●

● ●● ●●● ●● ●● ●●●● ●●●●

●

●

● ●

●●

●

●

●

● ● ●●●●●● ●●●

●

●●●●●●

●

●●

●

●

●

●● ●●●●●

●●●●●●●●

●●

●●

●

●

●

●●●

●● ●●

●●●

●

●

●

●●● ●● ●●●

●

●●●● ●●●●●●

●●●●

●●●

●

●●● ●

●

●

●●

●

●

●● ●● ●●●●●●●●●●●●●●●● ●●●

●

●

●

●

●

●●● ●● ●●●●●●●

●

● ●● ●● ●●●●●●●● ●●● ● ●●●●●●●●●●● ●●●●●

●

●

●●

●●●●● ●● ● ●●●●●●●

●

●●●

●

●●

●

●●●●●●●●

●

●● ●

●●●

● ●●●●●●●● ●●

●

●●

●●●●●

●●●● ●●●●

●●●●

●

●

●● ●●●●●●●●●● ●●● ●●●●●●●●●● ●● ● ●●● ●●

●●

●

●●●

●

● ●●●

●

●●●

●

●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●

●

●● ●●

●

●●●

●

● ●

●

●● ●●●● ●●●●●●● ● ●●●●● ● ●●●●

●●●

●

●● ●

●●

●

●

●●●

●●●● ●●●●● ●● ●●● ●●●●●●●●●● ●●● ●● ●●●●

●●

●●●

●●●

●●●●● ●● ●● ●●●●

●

●●●●●●●●● ●●●●

●

●

●

●

●●●●

●●

●●

●●

●

●●

●

●●● ● ● ●●

●●

●● ●●●●●●

●

●●●●●●●●●●●●● ●●●

●

●

●

●●●●● ●● ●●●●●● ● ●●●●●●

●

●

●●●●●●●

●

●●●●● ●

●

●

●

●● ●●

●

●●

●●

●●●

●●

●

●

●

●

●●●

● ●

●

●

●● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●

●●

● ●● ● ●●

●

●●

● ●

●●

●

●●

●
●

●●●●●●

●●

● ●●●●●●●●● ●●

●

● ●

●

● ●●

●

●●●●●●●●●● ●● ●

●●

●●●

●

●

●

●●●

● ●● ●● ●●●●

●

●●

●

●●● ●●●●●●● ●●●● ●●

●
●

●

●

●

●●

●●●● ●●

●

●●●●●

●

●●●

●●

●

●

●
●
●

● ●●●● ●●

●

●●●●

●

●● ●●

●

● ●●

●

●● ●●

●●

●●●● ●

●

●●● ● ●●

●●

●

●

●●

●

● ●●●●●●●●●●●● ●● ● ●●●●● ●●●●●● ● ●●●●●●●● ●●●●● ●●●● ●●●●● ● ●●●

● ●

●● ●

●

●● ●●●●●● ●

●

● ●

●

●

●

● ● ●● ●● ●●● ● ●

●

●●●

●●●●

●

●●●●● ●●●●●

●

●

●●

●●●

●

●
●

●●●●●

●

●

●

●
●

●

●●●● ●●● ●●● ●

●●

●●

●●●

●

●

●

●

●

●●● ●

●

●

●●●

●

● ●● ●●● ●●●● ●●●● ●●●●●●●

●●

●

●● ● ●● ●●●●

●

● ●●●●

●

● ●●● ● ●●●●●

●

●●● ●● ●●●● ●

●●

●

●

●

●● ●● ●● ●●●● ●●● ●●●● ●●

●

● ●● ● ●

●
●
●

●

●

●
●

●●

● ●

●●
● ●

●

●

●● ●● ●

●
●

●● ●

● ●

● ●● ● ●

●

●●● ●●●

●

● ●

●

●

● ●●●●

●

● ●●●

●

● ● ●● ● ●

●

●●

●

● ● ●●● ●●●

●

● ● ●●●●●●● ●● ●

●

●● ●

●

●● ●● ●● ●●

●

●●

● ●

● ● ●●● ●

●

●●

●●

●
●

●●

●

●

●
●

●

● ● ●●● ●
● ●●●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

● ●
●

●●

● ●

●●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

● ●●

●

● ●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●●

●

● ●

●

● ●

●

●

● ●●

●
●

●

●
●

● ● ●
●

●

●
●

●

●

●●●●
●

●
●
●
●

●
●

●
●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

● ●●●

● ●
●●

●

●●

●●
● ●

●

● ●●
●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

● ●

●
●

●
●

●

●

●●
●

●

●

●

●●
●

● ●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●
● ●

●

●
●
●

●

●

●
● ● ●

●
● ●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●
●
●

●

●

●

●

●
●

●

●

●
●

●●
●●

●
●

●

●
●

●

●
●

●

●●

●
●●

●

● ●● ●

●●

● ●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

● ●

●●●

●●

●

●●

●

●
●●

●●●●

●

● ●●

●●●

●●

● ●●

●●

● ●

●● ●

●●● ●●

●

●●●●●●●●●

●

● ●

● ●●

● ●●●●

●

●

● ●●

● ● ●

●

●●

●●

●

●●

●

●

●●

●● ●

●

●

● ●

●

●

●● ●●

● ●●

●

●

● ●● ●●

●

●● ●●

●

●● ●●●●●●●●●

●● ●●●●

●

●

●

● ●●
●

●●●

●

●

●

●●●

● ● ●●●●

●

● ● ●●●● ● ● ●

●

●●

●

● ●●●

●●● ●●●

●

●

●

●

●

● ●

●●●

● ●

● ● ●

●

●

●● ●● ●
●

●

●●●

●●

●

●

●

●

●
● ●●

●

●

● ●

● ● ●

●

● ●●●●●●

●

●● ●

●

●● ● ●

●

●●● ● ●● ●● ●●●● ● ●●

●

●

●

●

●●● ●●● ● ●●● ●●●

●

●

●●

●●●●

●

●

●● ●●

●●

●

●

●

●
●

●

● ●●

●

●●

●

● ●● ● ●●●●

●

● ●

●

●●● ● ●●●●●●

● ●●●●●●

● ●●

●●

●

●

●

●

●

●

●●●●●

●●●●●●

●

●●●●●

● ●

●

●●●

●

● ● ●●● ●

●

●

●●

●●● ●●

●

●

●

●

● ●● ●●●●

●

●

●●●

●

● ●●●●●●●●●●

●

●●●

●

●

●●●●●●

●●● ●

●

●●●●

●

●●

●●●● ●● ● ●●●

●

●●

●

●●

●●

●

●

●

●

●

●

● ● ●●●●

●

●

●●

●●

● ●

●

●●●

●

●●● ●

●

●●●●

●

●●

●

●

●

●●●●●

● ●●

●● ●● ●

● ●

●●

●●

●●

●

●

●

●●

●

●● ●

●

●

●● ●

●

●●

●● ●●●

●

●

●

●

●●● ●●●

●

●

● ●

●

●

● ●

● ● ●● ●●●●●● ●

●●

●

●

●●●

●●

●

●●

●

●●●●

●●

●

●

●

●●

● ●●●

●●●

●

●

●●●

●

●

●●

●●

●●●●

●●

●●●● ●●

●●●●●●●

●

●

●●

●

●

●●●

●

● ● ●

●

●● ●●

●●● ●●●

●

●

●

● ●

●● ●● ●

●

●

●

●●●●

●

●●●●●●

●

●● ●●● ●

●

●●●

●

●

●

● ● ●

●

●

●

●●

●●●

● ●●●●

●●

●

●

● ●●

●

●

●

●●

●

●●●

●●●●●●●

●●●●●

●

●

●●

●

●

●●

●

●● ● ● ●●●

●●●●

●

●

●●

●

● ●●●●●

●●

●●●●

●

●

●

●●

●●●

● ●

●

●

●

●●●●●●●●●●

●●

●

● ●

●●●

●

●● ●●● ●●

●

●

●●

●

●●●

●●●

●

●

●

●●

●

● ●

●●● ●●●● ● ●●●●●●●●●●●

●●

●

●

● ●●● ●

●

●● ●●

●

● ●●

●

●

●

●
●

●

●●●● ● ●●

●●●●●

●

●●●

●

●

● ● ●

●●●●●

●

●

●
●

●●● ● ●

●●

●
●

●

●●●●●● ●

●

●●●

●

●●●●

●

● ●

●

●●●●●● ●

●

●● ●●● ●●

●

●● ●●●● ●

●

●●●●●● ●●●●

●

●● ●●●●● ●●●●●●●● ●●●● ●●● ●●●●

●

●

●●●

●

●●

●

●

●●●●●●●● ●●

●

●●●

●●● ●●●●● ●● ●

●●●

●

●

●

●

●

● ●●●●● ●●●

●

●● ●●● ●●●●●●

●

● ●

●●●

●

●●

●●● ●●●●

●●

●●●● ●

●

●

●●

●

●● ●●●●● ●●●●●● ●●

●

●●

●

● ●●● ●

●●

● ●

●●

●

●

● ●

●●

●● ●●●●●

●

●●

●

● ●●

●●

● ●● ●●●●● ●●

●

●

●

● ●

●
●

●
● ●

●

●

●

●
●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●●

●
●●● ●

●

●

●●
●● ●

●
●●

●
●

●

●

●
● ●●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●●

● ● ●●

●

●
●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●●
●

●
●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●●● ●

●

●

●●
●

●

●

●

●
● ●●

●
●

●
●

● ●

●
●

●

●
●

●

●

●

● ●

●
● ●

●

●

● ●
●

● ●

●

●

●

●●

●

● ●●
●●

●

● ●
●

●

●

●

●

●

●

●
●●● ●

●

● ●●● ● ●

● ●

●

●●

●●●●

●

●● ●

●

● ●●

●

●

● ●●●

●

●●

●

●

●●●

●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

● ●

●● ● ● ●●●●

●●●●●●

● ●

● ●

●

●
●

●●

●

● ●● ●●●● ●●●

● ●

●

●●

●●●

●

●

●●

●

●●● ●●●●

● ●●

●●●●●

●●

●

●

●●

●

●

●●●

●●●●●●●

●●●

●● ●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●● ●

●

●

●

●●

●

●●

●●●●

●

●

● ●

●

●

●●●●

●

●●● ●

●● ●●●

●●

●

●

●

●●

●

●●

●●

●

●●

●

●

●●● ●

●

●

● ●

●

●

●

●

●●

●

●●

●●●

●

●

●●

●

●●●●

●

●

●●●

●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

● ●● ●

●●

●●●

●

● ●●

●

●

●●

●

●

●●●●

●

●

● ●●

●

● ●●

●● ●● ● ●

●●● ●

●

●●●

● ●

●●● ●

●●

●●

●●●

●

●

●● ●●

●

●

●

●

●

●

● ●

●●

●● ●●

●

●● ●

●●●●

●

●●● ● ●

●●

● ●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●●●● ●

● ●●●

●

●●●

●

●

●

●● ●

●● ●●●●

●●

●●●● ●●

●

●●●● ●

●●

●●

●

●● ●●●●

●●●●●●

●●●●

●●● ●

●

●●●●

●●

●●●● ● ●●

● ●●●●

●

●

●●

●

●

●●●

●

●

●●

● ● ●●●● ●
●

●●

●

●●●

●●●

● ●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●● ●

●

●●

●●●

● ●●●●

●

●

● ●● ●●●● ●● ●● ●●●● ●

●

●

● ●● ● ●

●●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●● ● ●●

●

●●

●

●●

●●●

●

●

●●

●●●

●

●

●●●●

●

●●●●●● ●

●

●

●

●

●●

●

●

●

●

●●

● ●

● ●● ●

●

●

●

● ● ●● ●●●

●

●●●

●

●●●● ●

●

●

●

●● ●

●● ●

●

●

● ●●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

● ●

●

●

●

●●●

●●

●●

●

●●●●●

●

●

●●

● ●

●

●●

●

● ●●

●

● ● ●●

●

●

●●●

●
●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●●

●●

●● ●●●● ●

●

●

●

●

●●●●●●

●●

●

●●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●●●

●● ●

●

● ●●

●

●●

● ●●●

●

●●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

● ●●

●

●●

●

●● ●●

● ●

●

● ●●●●

●

●

●

●●

●

●

●● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

● ●

●

●
●

●

● ●●●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●●

●

●

●
● ●

●
●

●

●

●
●

●
●

● ●
●

●

●●

●

●
●

●
●●

●

●
●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●●
●
●

●

●

●

●

● ●

●●

●

●

●●
●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●
● ●

●

●

●

●

●●

●●
● ● ●

● ●●● ●●● ●●

●

●

●●

●

●●●●

●●●

● ●

●●

●●● ●

●

●

●

●

●●●●

●

●●

●●

●

●●●●

●

●

●

● ●

● ●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●●● ● ●●●

● ●

●

●

●

●

● ● ●

●

●

●●

●

● ●●●

●

●●

●●

● ●

●●

●●

●●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●

●

● ●

●

●

●●

● ● ●

●

●●

●●●●

● ●●

●

●

●

●●

●●● ●

●

●

●

●

●

●●●

●

● ●

●●●

●●

●●

●

●●

●

●●

●

●●● ●●●

●

● ●

●

●● ●

●

●

●

● ●

●

● ●●

●

●●●●

●

●

● ●●

●

●

●●

●

●

●●●

●●●●

●●

●

●

●●●●●

●

●●

●

●

●●●●●

●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

● ●●

●●●● ●●

●● ● ●●●

●

●

●

●

●●●●

●●●●

●

● ●●●

●

●

●●

●●●

●●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●●●

●●

●

●●

●●●

●●●●●●

●●●

●

●

●

●

●

● ●●

●

●

●

● ●●●

●

●●

●●●●●

●

●●

●

●●

● ●

●●

●●●●● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●● ●●

●●

●●

●

●

●●●●● ●●

●

● ●

●

●

●

●

●●●●●

●

●

●●

●

●●●● ●

● ●

●

●

●

●

●●●●●

●

●●

●

●●● ●●●

●●

●

●

●

●●● ●●●●

●●

● ●

●

●

●●●●

●

●●

● ●

●

●

●

●

● ● ●

●

●●

●●

●

●●

●

●

●●

●●

●

●● ●

●

●

●●

●

●

●●

●●

●

●

●●●

●●

●●

●

●●●●●

●

●●●●

●

●●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●● ●●●

● ●

●●●

●

●●

●

●
●
● ●

●

●

●●●●●● ●

●

●

●

●

●

●

● ●

●●

●●

●●●

● ●

●● ●●

●● ●

●●●

●

●

●●●●

●●●●●● ●

●● ●

●●

●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●●

●●●

●

●●

●● ●●●

● ●●

●

●

● ●●

●

●

● ● ●●

●
●

●●

●

●

●

●
●

●

●

●●●

●
●

●

●

● ●

●●

●

●

● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●
●●● ●

●
●

●
●●

● ●●

●●
● ● ●

●
●

●
●

● ●

●
●

●●

●●

●

●
●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●● ●● ●

●●●

●

●●

●

● ●

●●●●

●

●

●

● ●

●

● ●●

●●●

●

●

●

●

●●●

●●

●

●

●●●

●● ●●●●

●●●●

●

●

●

●

●●

●

●

●●● ●

●

●●●●●●

●

●

●● ●

●● ●

●●

●

●

● ● ●

●●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

● ●●

●● ●

●

● ●

●

●

●

●

●●● ●

●

●

●● ● ●

●

●

●

●

● ●

●●

●

●
●

●

●

●

● ●

● ●●

●●●● ●

●

●●

●

●●●

●

●●● ● ●

●

●●●

●●

●●

●

●

● ●

●

●● ●●

●

●

● ●●

●

●

●● ●

●●

●

●

●●●

●●

●
●

●

●

●●

●●●

●

●

●

●● ●●●

●

●

●

● ●

●

●

●

●●

●

● ●●

●●●●

●

●

●

●

●●

●●●

●●

● ●●

● ●●

●

●

● ●

●

●●●●

●

●

●●

●●●

●

●

●

●●

● ● ● ●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●● ●

● ●●●●

●

●

●

●

●●

●

● ●●

●

●

● ● ●●●

●

●

●

●

●

●

●● ●

●

● ● ●●

● ●●

●●●

●

●

●

●

●

●●●

● ●

●

●●●●

● ●●

●

●

●●

●●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●● ●●

●●●● ● ●●

●

● ●●

●

● ●●●●

●●● ●

●

●

●●●

●●

●

●●

●● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
● ●

●

●

●
●

●

●●● ●●

●

●

●

●

●●

●●●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

● ●●● ●●
●

●

● ●●

●

●●●●

●●●
●

●●●

●

●

●

●

●

●

●

●

●●

●● ●

●●
●
●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●●●

●

●●

● ●

●
●

●●●

●

●

● ●

●

●●●

●

●● ●●

●●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●

●

● ●

●

●

●

●

●●

● ●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●●

●

●

●●

●● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●● ●

●

●

●

●●

●● ●

● ●●

●

●

●

●

●●

● ●

● ●●

●

● ●●●

● ●

●●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●● ●

●

● ●

●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●●

●
●

●
●

●●

●

●● ●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

● ●● ●● ●

●● ●

●

●

●

●●●●●

●●

●
●

●●

●

●

●

●●●

●

●●●●●

●

●

●
●
●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●

●

●●

●

●
●
●●

●
●●●●

●

●
●
●
●●

●●

●

● ●

●●●

●

●

●●●●

●

●

●

●

●●●●●●

●

●

●●●

●

●●●●●

●

●●

●

●

●●

●

●

●●

● ●
●
●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●●

●

● ●

●

●

●

●● ●●

● ●

●●

●●●

●

●●●●

●

●

●●
●

●

●

● ●●

●

●

●●

●

●●

●

●●

●

●

●● ●

●●●

●

●

●●●●

●●

●

●

●●●●

●

● ●

●

●

●

●

●

●●●

●

● ●

●

● ●

●

●●●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ● ●●

●

●●●

●●

●

●

●

●

●

●●

●
● ●

●●●

●

●

●●

● ●

●
●

●●

●

●

●●●
●●●

●●

●●●

●●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●●

●

●●

●

●

●●

●

●

●
●
● ●●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●●●

●●

● ●●

● ●

● ● ●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●
●

●●
●
●

●

●●

●
●

●●

●
●
●

●

●●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●●

●
●
● ●

●

●
● ●● ●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

● ●●

●● ●

●

●

●●

●
●

●

●

●●●
●

●

●

● ●●

●
●●

●

●

●

●

●

●

●●●●●● ●● ●●

●●●●

●
●
●

●

●

●●

●
●
●●●●

●●●
●●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

● ●●

●
●●

●
●

●● ●

●

●
●
●

●
●
●
●
●●●

●● ●

●

●

●

●

●

●●

●
●● ●

●

●
●
●●
●
●●

● ●

●
●

●●

●
●

●

●●●

●

●

●●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●

●●

●●
●

●
●

●
●●
●

●

●

●

●

●●

●●

●●

●

●

●●
●

●
●

●

●

●●●

●

●

●●●●

●●

●●

●

●●●●

●

●●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●●

●

●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
● ●

●
●

●●●

●●

●●●

●

●

●

●
●

●
●●
●●

●

●●
●
●

●

●
●●

●

●

●
●●

●

●●

●

●

● ●●●

●●
●●●●●

●

●
●●●

●● ●

●

● ●●

●

●

●

●●
●

●
●
●●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●●

●

●

●●● ●●
●●

●

●

●

●●

●

●

●
●
●

●

●
●

●
●

●

●
●
●
●
●

●

●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●
●●

●

●

●
●
●

● ●

●

●
●

● ● ●

●

●

●
●

●

●

●

●●

●● ●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●

●●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●●●
●

●

●

●

●

●●● ●● ●

●
●
●

●

●●

●

●

●

●

●●

● ●

●

●

●

●●
●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●

●●

●

●

●

●

● ●

●

●

●

●

●●

●●
●

●

●
●
●

●
●

●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●●

●●
●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●●●●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●●
●

●●●
●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

● ●

●
●

●●

●●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

● ●● ●
●

● ●●●

●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●●●●●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●
●●●

●

●

●●
●
●

●●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●●

●●
●

●●

●●●

●

●
● ●

● ●

● ● ● ●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

●

● ●

●
●●
● ● ●●

●●●
●

●
●

●
●

●●

●

●

●

●
●●

●

●

●
●
●●●●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●● ● ●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

● ●●●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●●●

●

●

●●

●●

●●

●

●
●

●

●●

●

● ● ●●

●

●●

●●●

●

●

●

●

●

●

●
● ● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●●

●
●
●

●
●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

● ● ●●●●

●●
●

●

●

● ●

●

●

●
● ●

●●

●
●
●

●

●●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●●

●
●●

●●
●

●

●●

●

●●
●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

● ●
●● ●

●●●
●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●●
●

●●

● ●

●●● ●

●

●

●

●

● ●● ●
●

●

●●●● ●

● ●

●

●

●
● ●

●

●

●

●●

●●●

● ●

●

●

●●

●
●

●
●

●
● ●●

●

●

● ●●
●

●●

●

●

●

●

●

●

●●

●●●●

● ●
●
●

●

●

●

●●
●

●●●●● ●

●

●

●●

●

●

●●

●

●

●

●● ●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

● ●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●● ●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●●

●

●●●

●●●●

●

●●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●● ●●● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●●

●●

●

●

●

●

●

●

●

●●●

● ●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●●●●● ●●●

4 6 8 10 12

0
1

2
3

4
5

6
7

Complexity (log−scale)

S
IIC

ru

nn
in

g
tim

e
(lo

g−
sc

al
e)

(c)

Figure C.1: Complexity vs Runtime: (a) Hugin, (b) SIIC, and (c) SIIC#

gorithm in terms of running time with respect to varying NOS. In Hugin the running time

increased with the increase in NOS. For SIIC, the NOS had almost no impact on the running

time and the running time decreased a little in SIIC#. This strange strange outcome is found

because for SIIC and SIIC# when the value of NOS goes up, the algorithms fail to compile be-

cause their "helper" Hugin compilation fails. The notion of helper means, as discussed earlier,

that SIIC and SIIC# use Hugin for compiling classes with no embedded objects. Therefore, for

the observed experimental results, Hugin can show a true correlation, but SIIC and SIIC# show

a false correlation due to having little evidence for higher NOS values.

§C.2 Performance of Hugin, SIIC and SIIC# Algorithms 237

●● ●● ● ● ● ● ●● ●●●● ● ●●● ● ●●● ●●● ●● ●● ●● ●●● ●● ● ● ●● ●● ● ● ●●● ●● ●●● ●● ●●● ● ●●● ●● ● ●● ● ●●● ● ●● ●● ● ●●● ● ●● ●●● ● ●●●● ● ● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ● ● ● ●●● ●● ●●● ● ● ●● ●● ●● ●●● ●●● ●●● ● ● ●● ● ●● ● ●● ●● ● ●●● ●● ● ●● ●● ● ●● ● ● ●● ●●● ●●●● ●● ●● ●● ●● ●● ● ●●● ● ●●●● ● ●●● ●●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●●● ●● ●● ● ●●● ●●● ● ●● ● ●●● ● ●● ● ●● ●●● ●●● ●● ●●● ● ● ●● ●●● ● ●●● ● ●● ● ● ●● ● ●● ●● ● ●● ● ● ●● ●● ● ●●● ●● ● ●● ●● ●●● ●●● ●● ●●●●● ● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ● ●● ● ● ●●● ●● ●●● ●● ●● ● ●● ● ●●● ● ●● ● ● ●● ●● ●● ●●● ●● ● ●● ●●● ●● ● ●●●● ● ●●●● ●●● ● ●●●●● ● ●● ● ●●●● ● ●● ●●●

● ●● ●● ●● ● ●●●● ●●● ●● ●● ●●● ●●● ●● ● ●●●● ●●●● ● ●●● ●● ●● ●● ● ●●●● ●● ●● ● ●●●● ● ●● ● ●● ● ● ●● ●●● ●●● ● ● ●● ● ●● ●●● ● ● ●●● ●●● ●● ● ● ●● ● ●●●● ● ●●●● ●●● ●● ● ●● ●● ●● ● ●● ●●● ● ● ●● ●● ● ●●● ● ● ●●●● ●● ●● ●●● ●● ●●● ●● ● ●●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●●●● ●●● ● ● ●●● ●● ● ● ● ● ●● ●●● ● ●●● ●● ●● ● ●● ●●●● ●● ●● ●●●● ● ● ● ●● ●● ● ●●● ● ●● ● ●●● ● ●●●●●●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●●● ●● ● ●●●● ●● ● ● ● ●● ●●● ●● ●●●● ● ● ● ●●● ●● ● ●●●● ●●● ●●●● ● ●●● ● ● ●● ●● ●●● ●● ●● ●● ● ●●●● ●● ●● ●

●●● ● ●●● ●●●●● ● ●●●● ● ●● ●● ●●● ● ●●● ●● ● ● ● ● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ● ● ●●● ●● ●● ●●● ●● ● ●●●● ●●● ●● ● ●● ●● ● ●●● ●●●● ●● ● ●● ● ● ●● ● ●● ●●●●● ●● ●●● ● ●● ● ● ●● ●● ● ●●●● ●●●●● ●● ●● ● ●● ●● ●●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●●●●●● ●● ● ● ● ●● ●● ● ●● ●● ●●● ●● ●● ● ● ●● ● ● ● ●●●●● ●● ● ●● ●● ● ●● ●● ● ●● ●●●●● ●●● ●●● ●● ●●●● ● ●●● ●● ●●● ●● ● ●● ●●●● ● ● ●● ●● ● ●●●●●● ●●●●● ● ●● ● ●● ●● ●●●●● ●● ●● ●● ●●● ● ● ● ●● ●●●● ●● ●●● ●● ● ● ● ● ●● ●● ● ● ●● ●● ● ● ●●●● ● ●● ●● ● ●● ● ●● ●●●● ●●●●● ●● ● ●● ●● ● ● ● ●● ●● ●●● ● ●●●● ● ●●● ● ● ●●● ●● ● ● ●● ●●●● ●●● ● ●●● ●● ●● ● ●●● ● ●● ●

●● ●●● ●●● ● ● ●●●● ●● ●●● ● ● ●● ● ● ●●●● ●●● ●●●● ●●●● ● ●●●● ●●●●● ● ● ● ● ●●●●● ●● ●●● ●● ●●● ● ●●●●● ●●●● ●● ●●● ●● ● ●● ●●● ●●●● ● ● ●● ●●● ●●●● ●●● ●●●●● ● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ● ● ● ●●● ● ●●● ● ● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●●● ●● ●● ●●●● ● ● ●● ●●● ● ● ● ●● ●● ●●●● ● ●● ●●●● ●● ●●● ● ●● ●●● ●●● ● ●●● ●●●● ●● ●● ● ●● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●●●●●● ● ● ●●● ● ●●●● ● ●●● ● ● ●●●● ●● ● ●● ● ● ●●●●● ● ●● ● ●● ● ●●● ●● ●● ● ●● ●● ● ●● ● ●● ●●● ●●● ● ●● ●● ●● ●●● ●

2
3

4
5

45678910

N
O

P

log(Hugin running time)

(a
)

●●●

● ●●● ●●●

●●●

●●

2
3

4
5

45678910

N
O

P

log(SIIC running time)

(b
)

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●● ●● ● ●● ● ●●● ●●●● ● ●● ●● ●● ●● ●● ●●●● ● ●● ●●● ● ●● ●●●● ●●●● ● ●●●●●● ●● ● ●●● ●

●● ●●●●●● ●●●●●●● ●●●●●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●●●●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●● ●● ●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●● ●●●● ●●● ●●●● ●● ●●●●● ● ●●●● ●● ●●● ●●● ●●● ● ●● ●●●●● ●● ●●●● ●●●● ● ●● ●●● ●● ●●● ● ● ●●●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ● ●●●● ● ●●●● ● ●● ● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ●●●● ●● ●● ●● ● ●●●●● ●● ●●●●● ●● ●●●● ●● ● ● ● ●●●● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ● ●●

●●● ●●● ●●● ● ●●●● ●●● ● ● ●●● ●● ● ●● ●● ●●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●●● ●●● ● ● ●●● ●● ● ●● ● ● ●● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●●●●● ● ● ●● ●●●● ●● ●● ●● ●●

●●●●● ●●●● ●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●●● ●● ●●●● ● ●●●●●●●● ●●● ●●●●●●● ● ●●● ●● ●●●●●● ●● ●●●●● ●● ●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●● ●● ●●● ●● ● ●●● ●● ● ●●● ● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●●●● ●●●● ●●● ●●● ● ● ●●● ●● ● ●●●● ●● ●●●● ● ●●●● ● ●● ●● ● ●●● ● ●●● ●●●● ●●● ●● ●●● ●●● ● ● ●●● ●●●●●● ●● ● ●●● ● ●●●● ● ●

2
3

4
5

01234567

N
O

P

log(SIIC# running time)

(c
)

● ●● ●● ●● ●● ● ●● ● ●●●●● ● ●●●●● ● ●●● ●●● ● ●● ●● ●●● ●●● ● ● ●●● ●● ●●●●● ● ● ●● ●● ● ● ● ●●● ●●●● ● ● ●● ● ●●● ●● ●● ● ● ●●● ●● ● ●●● ● ● ● ●●● ●●●● ● ● ●● ●●● ●● ● ●● ●●● ●●● ● ●●● ●●●●● ●●● ● ●●● ● ● ●●●● ● ●● ● ● ● ●●●● ● ● ●● ●● ● ● ●● ●● ●●● ● ●● ●●● ● ●●● ●● ●● ●●● ● ●● ●●● ● ●● ●● ● ● ●● ● ● ●● ●●● ●● ●●● ●● ●

● ●● ●● ● ● ●●● ●●● ● ●●●● ●●● ●●● ●●● ● ● ● ●● ●●● ● ●●●● ●●●● ●● ●●● ●● ●●● ● ● ● ●● ●● ●● ● ●●● ● ● ●● ●●● ●●●● ●● ● ●●● ● ●●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●● ● ● ●● ● ●● ● ●● ●● ● ●●● ● ● ●●●● ●●● ●● ●● ●●●● ●● ● ●● ●●● ●● ●● ●●●● ● ●● ●● ●●●● ● ● ●●● ● ●● ● ●●● ● ●●● ● ●● ●●●●●●● ●● ● ●● ● ●● ● ●● ● ●●● ●●● ●● ● ●● ● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ● ● ●●● ●●●●● ● ●●●● ● ●●● ●● ● ●●●● ●● ●● ● ●● ●●● ●●● ● ●●● ●●●●●●● ●● ●●●● ● ● ●● ●● ●●●●● ●● ●● ● ●●● ● ● ●● ● ●●●● ●● ●●● ●●● ●● ● ●● ●●●● ● ●● ●● ● ● ●●● ●●● ● ●● ●●● ●● ●● ●● ● ●●● ● ● ●● ● ● ● ● ●● ● ●● ● ● ●●●● ●● ●● ● ●●● ● ● ●●●● ●● ●●●● ●● ● ● ●● ●●● ●●● ● ● ● ●●● ●● ● ● ● ●● ●● ●●● ●● ● ●●●● ●● ● ● ●● ● ● ●●● ● ●● ● ●●●● ●●● ● ● ●

●●● ● ●●●●● ●● ●● ●●●● ● ● ● ●●●●● ●● ●● ●●●●●● ●● ● ●● ● ●● ●●● ●●● ● ●●● ● ●●●●● ●●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●● ●●● ● ● ●●● ●● ●● ●● ●●●●● ●● ● ● ●●● ● ●●● ●● ●● ● ● ●● ●● ●● ●● ●●● ●●●● ● ●●● ●● ● ●● ●●●●● ● ●● ●● ● ●● ● ● ●●● ●●● ● ●● ● ●●●● ●● ● ● ●●●● ●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ● ● ● ●● ● ●●●●●●● ●● ●●●● ●●● ●● ● ● ●● ● ●●●● ●●●● ● ●●●●● ●● ● ●●● ● ● ●●●● ● ● ●● ●●●●● ● ●●● ●●● ●●● ●● ● ●●●● ●● ● ●● ●

●●

2
3

4
5

45678910

N
O

S

log(Hugin running time)

(d
)

●●●

●●●

●●●

● ●●● ●●

2
3

4
5

45678910

N
O

S

log(SIIC running time)

(e
)

●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ● ●●● ●●● ●●●●● ● ●●●● ●● ● ●●●●●●● ● ●● ●● ● ●● ●●● ●● ●● ●●●●● ●●● ● ●●● ●● ●●

●●●●●● ●●● ● ●●●●● ● ●●● ●● ●●● ●● ●● ● ●● ●●

●●●●●●●●●●●● ●●●● ●●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●● ●●●●● ●●●●●●●● ●● ●●● ●●●●●●● ●●●●●● ●●●● ●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●● ●● ●●●●●● ●●● ● ● ●●●●●● ● ●● ●● ●● ● ●●● ●● ● ●●● ● ●●●●●● ●● ●●● ●● ●●● ●● ●●●●● ●● ● ●● ●● ● ●

● ● ●●●● ●● ●●● ●●

2
3

4
5

01234567

N
O

S

log(SIIC# running time)

(f
)

Fi
gu

re
C

.2
:R

un
ni

ng
ti

m
e

w
.r.

t.
N

O
P:

(a
)H

ug
in

,(
b)

SI
IC

,a
nd

(c
)S

II
C

#;
R

un
ni

ng
ti

m
e

w
.r.

t.
N

O
S:

(d
)H

ug
in

,(
e)

SI
IC

,a
nd

(f
)S

II
C

#

§C.2 Performance of Hugin, SIIC and SIIC# Algorithms 238

C.2.2 Comparing costs of the JTs produced by Hugin and SIIC

Figure C.3a compares the running time of Hugin with SIIC. It is easy to infer that SIIC is

significantly faster than Hugin. For ease of understanding, the reference line is drawn in pink.

Figures C.3b to C.3f compare the running time of Hugin and SIIC with respect to varying

values of NOC (in Figure C.3b) , NON (in Figure C.3c), NOO (in Figure C.3d), NOP (in Fig-

ure C.3e), and NOS (in Figure C.3f). The aforementioned figures stipulate that for increasing

value of NOC, NON, NOO, NOP and NOS, SIIC is superior to Hugin in terms of running time.

Figure C.4a compares the running time of Hugin with SIIC#. The comparison indicates that

SIIC# is significantly better than Hugin in terms of running time. For ease of understanding,

the reference line is drawn in pink.

The running time performance of SIIC# and Hugin algorithms are compared in terms of

varying values of NOC, NON, NOO, NOP and NOS, respectively, in figures C.4b to C.4f. The

fact stipulated from the aforementioned analyses is that for increasing value of NOC, NON,

NOO, NOP and NOS, SIIC# performs way better than Hugin in terms of running time.

§C.2 Performance of Hugin, SIIC and SIIC# Algorithms 239

(a) (b)

(c) (d)

(e) (f)

Figure C.3: Hugin vs SIIC running time, (a) overall distribution; and w.r.t. (b) NOC, (c) NON, (d) NOO,
(e) NOP, and (f) NOS.

§C.2 Performance of Hugin, SIIC and SIIC# Algorithms 240

(a) (b)

(c) (d)

(e) (f)

Figure C.4: Hugin vs SIIC# running time, (a) overall distribution; and w.r.t. (b) NOC, (c) NON, (d)
NOO, (e) NOP, and (f) NOS.

Appendix D

Hierarchy Learning Case Study:
Western Grassland Reserve Project

As a proof-of-concept case study, the real-life project "WGR" (Western Grassland Reserve in

Melbourne, Australia) [3], used for the iOOBN framework viability checking in Section 3.5 of

Chapter 3, was chosen again.

There are 129 OOBN classes in WGR. The extracted DAGs of the classes contain a total of

3993 nodes and edges. The proposed learning algorithm (in Chapter 5) constructs a hierarchy

(as shown in Figure D.1) taking the 129 DAGs as input. The hierarchy suggests 159 DAGs each

for a potential "iOOBN" class with a total number of 2135 nodes and edges, provided that,

inheritance and maximum reusability are considered.

Reusability and inheritance not only provide scalability in modelling large applications

but also reduces the time required for compilation and inference, because the SIIC compilation

algorithm (proposed in Chapter 4) allows reusing the junction tree of parent-classes or super-

classes as well as replicating JTs for instances of classes. The approach saves time by avoiding

redundant construction of JTs.

Figure D.2 presents a mapping between the input DAGs to the learning algorithm (first col-

umn) and symbols used by the algorithm to represent the DAGs in constructing a supergraph

(second column). The supergraph is used by the learning algorithm to build a hierarchy, as

shown in Figure D.1. The DAGs in the hierarchy are represented by another set of symbols.

Figure D.3 shows a map between the DAGs in the learned hierarchy represented by uppercase

symbols (first column) and a set of symbols of the input DAGs (second column). The set of

symbols in the second column represents a DAG derived from the supergraph. Since the WGR

is a project owned by DELWP, Australia, the structures or parameters of the classes are not

publicly available and cannot be shared. Therefore, the actual structural information of the

DAGs, the super-DAG and the parameters of the WGR or reengineered WGR classes are not

specified in this thesis.

241

242

Fi
gu

re
D

.1
:L

ea
rn

in
g

ou
tc

om
e:

Th
e

cl
as

s
hi

er
ar

ch
y

of
W

G
R

243

DA
G

La
be

l
Inp

ut
Fil

e N
am

e
DA

G
La

be
l

Inp
ut

Fil
e N

am
e

DA
G

La
be

l
Inp

ut
Fil

e N
am

e
DA

G
La

be
l

Inp
ut

Fil
e N

am
e

DA
G

La
be

l
Inp

ut
Fil

e N
am

e
0a

da
g_
An

nu
alG

ras
sH

erb
ici
de
1

ac
da
g_
Ex
oti
cA
nn
ua
lH
erb

ici
de
Ta
rge

t
be

da
g_
Nu

iAd
de
r

cg
da
g_
Ru

de
rH
erb

ici
de
Ta
rge

t
di

da
g_
Th
em

ed
aG

raz
eS

he
ep

0b
da
g_
An

nu
alG

ras
sH

erb
ici
de
2

ad
da
g_
Ex
oti
cA
nn
ua
lN
atu

ral
bf

da
g_
Nu

trie
ntC

arb
on
Bo

os
t

ch
da
g_
Ru

de
rN
atu

ral
dj

da
g_
Th
em

ed
aH

arv
es
t

0c
da
g_
Ba

sa
lAd

ult
Co

ve
rG
raz

e
ae

da
g_
Fr
ag
ile
Sc
ari
fy1

bg
da
g_
Nu

trie
ntF

ire
ci

da
g_
Sc
ari
fyI
nte

rve
nti
on

dk
da
g_
Th
em

ed
aH

erb
ici
de
Ta
rge

t
0d

da
g_
Ba

sa
lC
ov
erG

row
thD

ea
th

af
da
g_
Fr
ag
ile
Sc
ari
fy2

bh
da
g_
Nu

trie
ntG

raz
eC

att
le

cj
da
g_
Se

ns
itiv

eF
ire

dl
da
g_
Th
em

ed
aN

atu
ral

0e
da
g_
Bio

ma
ss
Na

tur
al

ag
da
g_
Fr
ag
ile
Sc
ari
fy3

bi
da
g_
Nu

trie
ntG

raz
eS

he
ep

ck
da
g_
Se

ns
itiv

eH
arv

es
t

dm
da
g_
Th
em

ed
aP

lan
t

0f
da
g_
Bio

ma
ss
Su

mm
ari
es

ah
da
g_
Gr
ain

Gr
az
eC

att
le

bj
da
g_
Nu

trie
ntH

arv
es
t

cl
da
g_
Se

ns
itiv

eH
arv

es
t2

dn
da
g_
Th
em

ed
aS

ca
rify

0g
da
g_
Bla

nk
etG

raz
eC

att
le

ai
da
g_
Gr
ain

Gr
az
eS

he
ep

bk
da
g_
Nu

trie
ntN

atu
ral

cm
da
g_
Se

ns
itiv

eN
ati
ve
So

w
do

da
g_
Th
em

ed
aS

ow
0h

da
g_
Bla

nk
etG

raz
eS

he
ep

aj
da
g_
Gr
ain

He
rbi
cid

eT
arg

et
bl

da
g_
Nu

trie
ntR

em
ov
eT
op
So

il
cn

da
g_
Se

ns
itN

ati
ve
Gr
az
eC

att
le

dp
da
g_
To
ler
an
tFi
re

0i
da
g_
Bla

nk
etH

arv
es
t

ak
da
g_
Gr
ain

Na
tur
al

bm
da
g_
On

ion
Gr
az
eC

att
le

co
da
g_
Se

ns
itN

ati
ve
Gr
az
eS

he
ep

dq
da
g_
To
ler
an
tH
arv

es
t

0j
da
g_
Bla

nk
etH

erb
ici
de
Ta
rge

t
al

da
g_
Gr
az
eIn

ter
ve
nti
on
Ca

ttle
bn

da
g_
On

ion
Gr
az
eS

he
ep

cp
da
g_
Se

ns
itN

ati
ve
He

rbi
cid

eT
arg

et
dr

da
g_
W
all
ab
yG

raz
eC

att
le

0k
da
g_
Bla

nk
etN

atu
ral

am
da
g_
Gr
az
eIn

ter
ve
nti
on
Sh

ee
p

bo
da
g_
On

ion
He

rbi
cid

eT
arg

et
cq

da
g_
Se

ns
itN

ati
ve
Na

tur
al

ds
da
g_
W
all
ab
yG

raz
eS

he
ep

0l
da
g_
Br
oa
dle

afH
erb

ici
de
1

an
da
g_
Ha

rdy
Na

tiv
eG

raz
eC

att
le

bp
da
g_
On

ion
Na

tur
al

cr
da
g_
So

ilG
raz

eC
att
le

dt
da
g_
W
all
ab
yH

erb
ici
de
Ta
rge

t
0m

da
g_
Br
oa
dle

afH
erb

ici
de
2

ao
da
g_
Ha

rdy
Na

tiv
eG

raz
eS

he
ep

bq
da
g_
Pla

ntI
nte

rve
nti
on

cs
da
g_
So

ilG
raz

eS
he
ep

du
da
g_
W
all
ab
yN

atu
ral

0n
da
g_
Br
oa
dle

afT
arg

etH
erb

ici
de
1

ap
da
g_
Ha

rdy
Na

tiv
eH

erb
ici
de
Ta
rge

t
br

da
g_
Re

dL
eg
Gr
az
eC

att
le

ct
da
g_
So

ilN
atu

ral
dv

da
g_
W
ind

mi
llG

raz
eC

att
le

0o
da
g_
Br
oa
dle

afT
arg

etH
erb

ici
de
2

aq
da
g_
Ha

rdy
Na

tiv
eN

atu
ral

bs
da
g_
Re

dL
eg
Gr
az
eS

he
ep

cu
da
g_
So

ilR
em

ov
eT
op
So

il
dw

da
g_
W
ind

mi
llG

raz
eS

he
ep

0p
da
g_
Br
oa
dW

ee
ds
Gr
az
eC

att
le

ar
da
g_
Ha

rve
stI
nte

rve
nti
on

bt
da
g_
Re

dL
eg
He

rbi
cid

eT
arg

et
cv

da
g_
So

ilS
ca
rify

dx
da
g_
W
ind

mi
llH
erb

ici
de
Ta
rge

t
0q

da
g_
Br
oa
dW

ee
ds
Gr
az
eS

he
ep

as
da
g_
He

rbi
cid

eIn
ter
ve
nti
on

bu
da
g_
Re

dL
eg
Na

tur
al

cw
da
g_
So

wI
nte

rve
nti
on

dy
da
g_
W
ind

mi
llN
atu

ral
0r

da
g_
Br
oa
dW

ee
ds
He

rbi
cid

eT
arg

et
at

da
g_
He

rbi
cid

eIn
ter
ve
nti
on
Ta
rge

t
bv

da
g_
Re

mo
ve
To
pS

oil
1

cx
da
g_
Sp

ea
rG
raz

eC
att
le

0s
da
g_
Br
oa
dW

ee
ds
Na

tur
al

au
da
g_
Kil
led

Fir
e1

bw
da
g_
Re

mo
ve
To
pS

oil
2

cy
da
g_
Sp

ea
rG
raz

eS
he
ep

0t
da
g_
Bu

rnI
nte

rve
nti
on

av
da
g_
Kil
led

Fir
e2

bx
da
g_
Re

mo
ve
To
pS

oil
3

cz
da
g_
Sp

ea
rH
erb

ici
de
Ta
rge

t
0u

da
g_
C3

Gr
as
sH

erb
ici
de

aw
da
g_
Kil
led

Fir
e3

by
da
g_
Re

mo
ve
To
pS

oil
4

da
da
g_
Sp

ea
rN
atu

ral
0v

da
g_
C3

Gr
as
sT
arg

etH
erb

ici
de
1

ax
da
g_
ma

in
bz

da
g_
Re

mo
ve
To
pS

oil
5

db
da
g_
ST

Gr
az
eC

att
le

0w
da
g_
C3

Gr
as
sT
arg

etH
erb

ici
de
2

ay
da
g_
Mo

de
rat
eF
ire

ca
da
g_
Re

mo
ve
To
pS

oil
6

dc
da
g_
ST

Gr
az
eS

he
ep

0x
da
g_
C4

Gr
as
sH

erb
ici
de

az
da
g_
Mo

de
rat
eH

arv
es
t

cb
da
g_
Re

mo
ve
To
pS

oil
7

dd
da
g_
ST

He
rbi
cid

eT
arg

et
0y

da
g_
Ca

rbo
nB

oo
stI
nte

rve
nti
on

ba
da
g_
Ne

ed
leG

raz
eC

att
le

cc
da
g_
Re

mo
ve
To
pS

oil
8

de
da
g_
ST

Na
tur
al

0z
da
g_
En

vV
alu

e
bb

da
g_
Ne

ed
leG

raz
eS

he
ep

cd
da
g_
Re

mo
ve
To
pS

oil
Int
erv

en
tio
n

df
da
g_
Te
na
cio

us
Sc
ari
fy1

aa
da
g_
Ex
oti
cA
nn
ua
lG
raz

eC
att
le

bc
da
g_
Ne

ed
leH

erb
ici
de
Ta
rge

t
ce

da
g_
Ru

de
rG
raz

eC
att
le

dg
da
g_
Te
na
cio

us
Sc
ari
fy2

ab
da
g_
Ex
oti
cA
nn
ua
lG
raz

eS
he
ep

bd
da
g_
Ne

ed
leN

atu
ral

cf
da
g_
Ru

de
rG
raz

eS
he
ep

dh
da
g_
Th
em

ed
aG

raz
eC

att
le

Fi
gu

re
D

.2
:M

ap
pi

ng
of

W
G

R
cl

as
s

na
m

es
an

d
la

be
ls

in
th

e
hi

er
ar

ch
y

244

N
o

ta
ti

o
n

L
a
b

e
l
N

a
m

e
N

o
ta

ti
o

n
L

a
b

e
l
N

a
m

e
N

o
ta

ti
o

n
L

a
b

e
l
N

a
m

e
N

o
ta

ti
o

n
L

a
b

e
l
N

a
m

e
N

o
ta

ti
o

n
L

a
b

e
l
N

a
m

e

0
A

a
q
,
d
e
,
d
u
,
b
d
,
0
s
,
a
d
,
b
u
,
d
y
,

a
k
,
0
k
,
d
a
,
b
p

A
N

b
b
,
d
h
,
d
i,
 b

m
,
b

n
,
a
n
,
a
o
,
d
r,

 d
s
,
b

r,
 b

s
,

d
v
,
d
w

,
c
x
,
c
y
,
d

b
,
b
a
,
d
c

B
S

c
w

,
c
m

,
d

o

C
Z

d
d

,
b
c
,
d

e
,
0
r,

 b
d

,
d

f,
 0

s
,
0

u
,
0

v
,
d

j,

0
w

,
d

k
,
0

x
,
d

n
,
d

p
,
b

o
,
b

p
,
d

t,
 d

u
,
b

t,

b
u

,
d

x
,
d

y
,
a
c
,
c
g
,
a

j,
 c

p
,
a

p
,
a

q
,
0

a
,

0
b

,
c
z
,
0

j,
 0

k
,
0

l,
 0

m
,
d

a
,
0

n
,
0

o
D

W

d
d

,
b

c
,
0

r,
 b

d
,
d

g
,
0
u

,
0

v
,
0
w

,
d

k
,

0
x
,
d

l,
 d

n
,
b

o
,
b

p
,
d

t,
 b

t,
 d

x
,
d

y
,

a
c
,
a

e
,
c
g

,
a

f,
 a

g
,
a

j,
 a

k
,
c
p

,
c
q

,
a

p
,
a

q
,
0

a
,
0

b
,
c
z
,
0

j,
 0

l,
 0

m
,
0

n
,

0
o

B
T

c
m

0
B

a
r,

 c
d
,
a
s
,
0
t,
 c

w
,
c
i,
 a

x
,
0
y
,
a
l,

a
m

,
b
q

A
O

b
g

B
U

0
e

,
0

f

A
P

d
d
,
b
c
,
0
r,

 b
d
,
d
f,
 0

s
,
d
g

,
0

u
,
0
v
,
0

w
,
d

k
,

0
x
,
d
l,
 d

n
,
b

o
,
b

p
,
d
t,
 d

u
,
b
t,
 b

u
,
d
x
,
d
y
,

a
c
,
a
e
,
c
g

,
a
f,
 c

h
,
a

g
,
a
j,
 c

p
,
c
q
,
a
p

,
a
q

,
0
a

,
0

b
,
c
z
,
0
j,
 0

k
,
0
l,
 0

m
,
d

a
,
0
n

,
0

o

B
V

0
f,
 a

x
0
C

d
h
,
d
i

B
W

c
c
,
b

v
,
b
w

,
b

x
,
b

y
,
b
z
,
c
b

D
A

b
g

,
b
k

0
D

c
k
,
0
i,
 c

l
B

X
b

b
,
0
q

,
a

b
,
c
f,
 d

i,
 a

i,
 b

n
,
c
o

,
a
o

,
d

s
,

b
s
,
d

w
,
0
e

,
c
y
,
0

h
,
d

c
D

B
a

q
,
d

u
,
b

d
,
0

s
,
b

u
,
c
h
,
d

y
,
d

l,
 0

k
,
d

a
,

b
p

,
c
q

D
X

a
q

,
d
e

,
d

u
,
d

y
,
d

l,
 b

p
0
E

d
f,
 d

n
D

Y
d
d

,
b

c
,
0

r,
 a

c
,
c
g

,
d

k
,
a

j,
 b

o
,
c
p

,
a

p
,
d

t,
 a

s
,
b

t,
 a

t,
 d

x
,
c
z
,
0

j
0
F

c
c
,
b
y
,
b
z

A
Q

0
y

B
Y

0
g

,
0
h

D
C

a
q

,
d

e
,
d

u
,
b

p
0
G

a
g
,
c
j,
 a

y
,
a
z
,
d
n
,
d
p

A
R

d
d

,
b

c
,
0
r,

 a
c
,
c
g
,
d
k
,
a

j,
 b

o
,
c
p

,
a

p
,
d

t,
 b

t,

d
x
,
c
z
,
0
j

B
Z

c
t

D
D

a
a

,
a
b

,
a

h
,
a

i
D

Z
d

j,
 0

i,
 c

l,
 d

q
0
H

d
e
,
d
u
,
b
d
,
a
d
,
b
u
,
d
y
,
0
k
,
d
a

C
A

c
u

D
E

d
e

,
b

d
,
0

s
,
a

d
,
c
h

,
d

l,
 a

k
,
b
p

,
c
q

,
a

q
,

d
u

,
b

u
,
0

e
,
d

y
,
0

k
,
d

a
E

A
0

f,
 a

x
,
0

z
0
I

a
s
,
a
t,
 0

f,
 a

x
,
0
z

A
S

0
z

C
B

d
e

,
b
d

,
0

s
,
a
d

,
b

f,
 b

g
,
c
h
,
b

h
,
b

i,
 d

l,

b
k
,
a

k
,
b

l,
 b

p
,
c
q
,
a

q
,
d

u
,
b

u
,
d
y
,
0

f,

a
x
,
0

k
,
d

a

E
B

a
u
,
a

v
,
d
j,
 c

j,
 a

y
,
0
i,
 c

l,
 d

p
0
J

0
p
,
0
q
,
c
e
,
c
f,
 c

n
,
c
o

A
T

b
l

D
F

a
u

,
a

v
,
c
j,
 a

y
,
d

p

E
C

d
d

,
b

c
,
0

r,
 0

u
,
0

v
,
0

w
,
d
k
,
0

x
,
b

o
,

d
t,
 b

t,
 d

x
,
a

c
,
c
g

,
a

j,
 c

p
,
a
p

,
0

a
,

0
b

,
c
z
,
0

j,
 0

l,
 0

m
,
0
n

,
0

o

0
K

d
e
,
d
u
,
b
d
,
d
a
,
b
p

A
U

d
j,
 a

z
,
d
q

D
G

0
p

,
b

b
,
0

q
,
d

h
,
d
i,
 b

m
,
b

n
,
d

r,
 d

s
,
b

r,

b
s
,
d
v
,
d

w
,
a

a
,
a

b
,
c
e

,
c
f,
 a

h
,
a

i,
 c

n
,

c
o

,
a
n

,
a

o
,
0

c
,
c
x
,
c
y
,
0
g

,
0

h
,
d

b
,
b

a
,

d
c

0
L

d
d
,
b
c
,
0
r,

 0
u
,
0
v
,
0
w

,
d
k
,
0
x
,
b
o
,

d
t,
 b

t,
 d

x
,
a
c
,
c
g
,
a
j,
 c

p
,
a
p
,
0
a
,

0
b
,
a
s
,
a
t,
 c

z
,
0
j,
 0

l,
 0

m
,
0
n
,
0
o

A
V

a
d

,
a

k
C

C
0

a
,
0

b
,
0

u
,
0
v
,
0

w
,
0
x
,
0

l,
 0

m
,
0

n
,

0
o

A
W

b
q

C
D

c
v

E
D

b
v
,
b

w
,
b

x
,
c
a

,
c
b

A
X

d
f,
 d

g
,
a
e
,
a
f,
 a

g
,
d
j,
 c

j,
 c

k
,
c
l,
 d

n
,
d

p
,
d

q
,

0
c
,
a

u
,
a
v
,
a
w

,
a
y
,
0
i,
 a

z
C

E
c
w

E
E

0
d

,
d

l

0
M

d
d
,
b
c
,
0
r,

 d
f,
 d

h
,
0
u
,
d
i,
 0

v
,
d
j,

0
w

,
d
k
,
0
x
,
d
l,
 d

m
,
d
n
,
d

p
,
b
o

,
d
t,

b
t,
 b

v
,
d
x
,
c
g
,
c
p
,
a
p
,
c
z
,
0
l,
 0

m
,

0
o

C
F

d
g

,
a

e
,
a

u
,
a
f,
 a

v
,
a
w

,
c
k
,
0

i,
 c

l
D

H
d

y

E
F

0
p
,
b

b
,
0

q
,
d

e
,
b

d
,
0

s
,
d

h
,
d

i,
 d

l,

b
m

,
b

n
,
b

p
,
d

r,
 d

s
,
b

r,
 b

s
,
d

u
,
d

v
,

b
u
,
d

w
,
d

y
,
a

a
,
a

b
,
c
e
,
a

d
,
c
f,
 c

h
,

a
h
,
a

i,
 a

k
,
c
n

,
c
o

,
a

n
,
a

o
,
c
q
,
a

q
,

c
x
,
c
y
,
0

g
,
0

h
,
0

k
,
d

a
,
d

b
,
b
a

,
d

c
A

Y

d
e
,
d
h
,
d
i,
 d

l,
 d

r,
 d

s
,
d
u
,
d
v
,
d

w
,
d
y
,
a
a

,
a

b
,
a
d
,
a
h
,
a
i,
 a

k
,
a
n
,
a
o

,
a

q
,
0
d
,
0

f,
 0

g
,

0
h
,
0
k
,
b

a
,
0
p
,
b
b
,
0
q

,
b

d
,
0

s
,
0
t,
 b

m
,
b

n
,

b
p

,
b

r,
 b

s
,
b

u
,
c
e
,
c
f,
 c

h
,
c
n
,
c
o
,
c
q
,
c
t,

c
w

,
c
x
,
c
y
,
d
a

,
d

b
,
d
c

C
G

0
p

,
b

b
,
0

q
,
d

h
,
d

i,
 b

h
,
b
i,
 b

m
,
b
n

,
d
r,

d
s
,
b
r,

 b
s
,
d

v
,
d

w
,
a

a
,
a

b
,
c
e

,
c
f,
 a

h
,

a
i,
 a

l,
 c

n
,
a

m
,
c
o
,
a

n
,
a

o
,
0

c
,
c
x
,
c
y
,

0
g

,
0
h

,
d

b
,
b

a
,
d

c
D

I

d
d

,
b

c
,
0

r,
 b

d
,
d
f,
 0

s
,
d
g

,
0

u
,
0

v
,
0

w
,

d
k
,
0

x
,
d

l,
 d

n
,
b

o
,
b

p
,
d

t,
 d

u
,
b

t,
 b

u
,

d
x
,
d

y
,
a

c
,
a

d
,
a

e
,
c
g

,
a

f,
 c

h
,
a

g
,
a
j,

a
k
,
c
p

,
c
q
,
a

p
,
a

q
,
0

a
,
0

b
,
c
z
,
0

j,
 0

k
,

0
l,
 0

m
,
d
a

,
0

n
,
0

o

0
N

a
q
,
d
e
,
d
u
,
d
y
,
b
p

0
O

d
e
,
b
d
,
0
s
,
a
d
,
c
h
,
c
j,
 d

l,
 a

k
,
d
p
,

b
p
,
c
q
,
a
q
,
d
u
,
b
u
,
a
u
,
a
v
,
d
y
,

a
w

,
a
y
,
0
k
,
d
a

C
H

a
q

,
d

e
,
d

u
,
b

d
,
0

s
,
b

u
,
d

y
,
d

a
,
b

p
E

G
a

x
,
d

l
A

Z
b
u

C
I

0
t,
 0

f
E

H
b

d
,
d
a

0
P

0
p
,
a
a
,
c
e
,
d

h
,
a
h
,
b
m

,
c
n
,
a
n
,

d
r,

 b
r,

 d
v
,
c
x
,
0
g
,
d
b
,
b
a

B
A

0
t,
 a

u
,
a
v
,
b

g
,
a
w

,
c
j,
 a

y
,
d

p
C

J
0

t,
 a

x
D

J
d

d
,
b
c
,
0

r,
 d

f,
 d

h
,
0
u

,
d
i,
 0

v
,
d

j,
 0

w
,

d
k
,
0
x
,
d

m
,
d

n
,
d

p
,
b

o
,
d

t,
 b

t,
 b

v
,
d

x
,

c
g

,
c
p
,
a

p
,
c
z
,
0

l,
 0

m
,
0

o

E
I

a
q

,
0

s
,
b

p
B

B
b
v

C
K

d
d

,
d
e

,
d
f,
 d

j,
 d

k
,
d
q

,
d

r,
 d

s
,
d

t,
 d

u
,

d
v
,
d

w
,
d

x
,
a

n
,
a

o
,
a

p
,
a

q
,
0
l,
 0

m
,

0
o
,
b

a
,
0

p
,
b

b
,
0
q

,
b

c
,
0
r,

 0
u

,
0

v
,

0
w

,
0

x
,
b

m
,
b

n
,
b

o
,
b

p
,
b
r,

 b
s
,
b

t,

c
e

,
c
f,
 c

g
,
c
h

,
c
n

,
c
o

,
c
p
,
c
x
,
c
y
,
c
z
,

d
b

,
d
c

E
J

c
s
,
c
u

,
c
v
,
c
r

0
Q

a
k

B
C

a
q
,
b

d
,
d
y
,
b
p

E
K

d
d

,
b

c
,
d

e
,
0

r,
 b

d
,
0
s
,
0

u
,
0
v
,
0

w
,

d
k
,
0

x
,
d

l,
 d

n
,
d

o
,
b

o
,
b

p
,
d

t,
 d

u
,

b
t,
 b

u
,
b

v
,
d

x
,
b
w

,
d

y
,
b

x
,
b

y
,
b

z
,

c
b

,
c
c
,
a

c
,
a
d

,
c
g

,
a

j,
 a

k
,
c
p

,
a
p

,
a

q
,
0

a
,
0

b
,
c
z
,
0
j,
 0

k
,
0

l,
 0

m
,
d

a
,

0
n

,
0
o

0
R

c
j,
 a

y
,
d
p

B
D

d
j,
 c

k
,
0

i,
 a

z
,
c
l,
 d

q
D

K
d

j,
 d

n
,
d

p

0
S

d
g
,
b
y
,
b
z
,
a
a
,
c
c
,
a
b
,
a
c
,
a
d
,
a
e
,

a
f,
 a

h
,
a
i,
 c

k
,
a
j,
 c

l,
 a

k
,
0
a
,
0
b

,
a
u
,
a
v
,
a
w

,
0
g
,
0
h
,
0
i,
 0

j,
 0

k
,
0
n

B
E

a
l,
 a

m
D

L
a

q
,
c
q

B
F

d
e
,
b
d
,
0
s
,
a

d
,
c
h
,
d
l,
 a

k
,
b
p
,
c
q
,
a
q

,
d

u
,

b
u
,
d

y
,
0
k
,
d
a

D
M

d
u

,
b

d
,
d

a
,
b

p
C

L
d

e
D

N
a

w
,
c
l

0
T

a
r

B
G

a
d

,
0

k
C

M
d

f

D
O

d
d

,
d

e
,
d

f,
 d

h
,
d

i,
 d

j,
 d

k
,
d

l,
 d

n
,
d

p
,
d

q
,

d
r,

 d
s
,
d

t,
 d

u
,
d

v
,
d
w

,
d

x
,
d

y
,
a

g
,
a

n
,

a
o

,
a

p
,
a

q
,
a

y
,
a

z
,
0

l,
 0

m
,
0

o
,
b
a

,
0

p
,

b
b

,
0

q
,
b

c
,
0

r,
 b

d
,
0

s
,
0

u
,
0

v
,
0

w
,
0

x
,

b
m

,
b

n
,
b

o
,
b

p
,
b
r,

 b
s
,
b

t,
 b

u
,
b

v
,
b

w
,

b
x
,
c
a

,
c
b
,
c
e

,
c
f,
 c

g
,
c
h

,
c
j,
 c

m
,
c
n

,
c
o

,
c
p
,
c
q

,
c
x
,
c
y
,
c
z
,
d

a
,
d

b
,
d
c

0
U

a
s

B
H

0
p
,
a
a

,
c
e
,
d
h
,
a
h
,
b
m

,
c
n

,
a

n
,
d
r,

 b
r,

 d
v
,

0
e
,
c
x
,
0
g
,
d
b

,
b

a

C
N

d
d

,
d

e
,
d
f,
 d

g
,
d

h
,
d

i,
 d

j,
 d

k
,
d

l,
 d

n
,

d
p

,
d

q
,
d

r,
 d

s
,
d
t,
 d

u
,
d

v
,
d

w
,
d

x
,
d

y
,

a
c
,
a
e

,
a
f,
 a

g
,
a

j,
 a

n
,
a

o
,
a

p
,
a
q

,
0

a
,

0
b

,
a

u
,
a

v
,
a

w
,
0

g
,
0

h
,
a
y
,
0

i,
 a

z
,
0

j,

0
k
,
0

l,
 0

m
,
0
n

,
0

o
,
b

a
,
0

p
,
b

b
,
0
q

,
b

c
,
0

r,
 b

d
,
0
s
,
0
u

,
0
v
,
0

w
,
0

x
,
b
m

,
b

n
,
b

o
,
b

p
,
b

r,
 b

s
,
b

t,
 b

u
,
b

v
,
b

w
,
b

x
,

b
y
,
b

z
,
c
a

,
c
b

,
c
c
,
c
e

,
c
f,
 c

g
,
c
h

,
c
j,

c
k
,
c
l,
 c

n
,
c
o
,
c
p

,
c
q

,
c
x
,
c
y
,
c
z
,
d

a
,

d
b

,
d
c

E
L

a
u

,
a
v
,
a

w
,
c
j,
 a

y
,
d

p
0
V

d
f,
 a

g
,
d
n

E
M

c
c
,
b

v
,
b
w

,
b

x
,
b

y
,
b

z
,
c
a

,
c
b

0
W

d
e
,
b
d
,
0
s
,
a
d
,
c
h
,
d
l,
 b

p
,
c
q
,
a
q
,

d
u
,
b
u
,
d
y
,
0
k
,
d
a

B
I

a
q

,
d

u
,
0

s
,
d
l,
 a

k
,
0
k
,
c
q

E
N

d
g

,
a

e
,
a
f

B
J

0
p
,
b
b
,
0
q

,
d
h

,
d

i,
 b

m
,
b
n
,
d
r,

 d
s
,
b

r,
 b

s
,

d
v
,
d
w

,
a
a
,
a
b
,
c
e

,
c
f,
 a

h
,
a

i,
 c

n
,
c
o

,
a

n
,

a
o
,
c
x
,
c
y
,
0

g
,
0
h
,
d
b
,
b
a

,
d

c
E

O
0

p
,
b

b
,
0

q
,
d

h
,
d

i,
 b

m
,
b

n
,
d

r,
 d

s
,

b
r,

 b
s
,
d

v
,
d

w
,
c
e

,
c
f,
 c

n
,
c
o

,
a

n
,

a
o

,
c
x
,
c
y
,
0

g
,
0
h

,
d

b
,
b
a

,
d

c
0
X

0
c

0
Y

a
t

0
Z

0
d

B
K

d
j,
 c

k
,
0
i,
 a

z
E

P
b
e

,
b

g
,
b

k
A

A
0
e

B
L

a
q
,
d
e
,
d
u

,
b
d

,
0

s
,
a
d
,
b
u

,
d
y
,
d
l,
 0

k
,
d
a

,
b
p

D
P

d
d

,
b

c
,
d

e
,
0

r,
 b

d
,
0

s
,
0

u
,
0

v
,
0

w
,
d

k
,

0
x
,
d

l,
 d

n
,
d

o
,
b

o
,
b

p
,
d

t,
 d

u
,
b
t,
 b

u
,

b
v
,
d
x
,
b

w
,
d

y
,
b
x
,
b

y
,
b

z
,
c
b

,
c
c
,
a

c
,

a
d

,
c
g

,
a

j,
 c

p
,
a

p
,
a
q

,
0

a
,
0

b
,
c
z
,
0
j,

0
k
,
0

l,
 0

m
,
d

a
,
0

n
,
0

o

E
Q

d
e

,
b

d
,
0

s
,
a

d
,
c
h

,
a

k
,
b
p

,
c
q

,
a

q
,

d
u

,
b

u
,
d

y
,
0

k
,
d

a
A

B
c
t,
 0

t,
 0

f,
 0

z
A

C
0
f

B
M

c
d

C
O

d
j

E
R

d
f,
 c

v
,
d
g

,
a

e
,
a

f,
 a

g
,
c
i,
 d

n
A

D
a
w

B
N

c
t,
 d

l,
 c

m
C

P
a
r,

 d
j,
 c

k
,
0
i,
 a

z
,
c
l,
 d

q
E

S
a

q
,
d

e
,
d

u
,
b

d
,
0

s
,
a

d
,
b

u
,
d

y
,
0

k
,

d
a

,
b
p

A
E

a
x

B
O

c
h

C
Q

d
l

A
F

b
b
,
0
q
,
a
b
,
c
f,
 d

i,
 a

i,
 b

n
,
c
o
,
a
o
,

d
s
,
b
s
,
d
w

,
c
y
,
0
h
,
d
c

B
P

a
s
,
a

t
C

R
a

q
,
d

e
,
d

u
,
b

d
,
0
s
,
b

u
,
c
h

,
d

y
,
0

k
,

d
a

,
b
p

,
c
q

E
T

b
d
,
0

s
,
a
d

,
c
h

,
d
l,
 a

k
,
b

p
,
c
q
,
a

q
,

d
u

,
b

u
,
d

y
,
0

k
,
d

a
B

Q
c
i

D
Q

d
e

,
b

d
,
0

s
,
a

d
,
c
h

,
c
j,
 a

k
,
d

p
,
b

p
,
c
q

,
a

q
,
d

u
,
b

u
,
a

u
,
a

v
,
d

y
,
a

w
,
a
y
,
0

k
,
d

a
A

G

d
d
,
b
c
,
0
r,

 d
g
,
0
u
,
0
v
,
0
w

,
d
k
,
0
x
,

d
n
,
b
o
,
d
t,
 b

t,
 d

x
,
a
c
,
a
e
,
c
g
,
a
f,

a
g
,
a
j,
 c

p
,
a
p
,
0
a
,
0
b
,
c
z
,
0
j,
 0

l,

0
m

,
0
n
,
0
o

B
R

d
d

,
d

e
,
d
f,
 d

g
,
d
h
,
d
i,
 d

j,
 d

k
,
d
l,
 d

n
,
d

p
,
d
q

,
d
r,

 d
s
,
d
t,
 d

u
,
d
v
,
d
w

,
d
x
,
d
y
,
a

a
,
a
b

,
a

c
,

a
d
,
a

e
,
a
f,
 a

g
,
a
h
,
a
i,
 a

j,
 a

k
,
a
n

,
a

o
,
a

p
,

a
q
,
0
a

,
0
b

,
a

u
,
a
v
,
a
w

,
0
g
,
0
h

,
a
y
,
0

i,
 a

z
,

0
j,
 0

k
,
0

l,
 0

m
,
0
n
,
0
o

,
b

a
,
0

p
,
b
b
,
0

q
,
b

c
,

0
r,

 b
d
,
0
s
,
0
u

,
0

v
,
0
w

,
0
x
,
b
m

,
b
n
,
b

o
,
b
p

,
b

r,
 b

s
,
b

t,
 b

u
,
b

v
,
b
w

,
b
x
,
b
y
,
b

z
,
c
a

,
c
b
,

c
c
,
c
e
,
c
f,
 c

g
,
c
h
,
c
j,
 c

k
,
c
l,
 c

n
,
c
o

,
c
p

,
c
q

,
c
x
,
c
y
,
c
z
,
d

a
,
d
b
,
d
c

C
S

a
q

,
b
d

,
0

s
,
a
k
,
0

k
,
c
q

E
U

a
q

,
0

s
,
a

d
,
c
h

,
a

k
,
b

p
,
c
q

C
T

a
d

,
a
k
,
0

k
E

V
a

q
,
b

d
,
a

d
,
d

y
,
b

p
,
c
q

D
R

a
u

,
a

v
,
a
w

E
W

c
c
,
c
d
,
c
u

,
b
v
,
b

w
,
b

x
,
b

y
,
b

z
,
b

l,

c
a

,
c
b

A
H

d
u
,
b
u
,
d
y
,
d
l,
 0

k
C

U
d

e
,
b

d
,
0

s
,
a

d
,
d

l,
 a

k
,
b

p
,
a

q
,
d

u
,
b

u
,

d
y
,
0

k
,
d

a
D

S
0

a
,
0

b
,
a

s
,
0

u
,
0

v
,
0

w
,
0

x
,
0

l,
 0

m
,
0
n

,
0

o
A

I
d
e
,
b
d
,
d
a

E
X

a
c
,
d

g
,
a

e
,
a

f,
 c

k
,
a

j,
 a

k
,
0
a

,
0

b
,

a
u

,
a

v
,
0

i,
 0

k
A

J
a
q
,
b
d
,
c
h
,
d
y
,
d
l,
 b

p
C

V
d

o
D

T
b

f,
 b

g
,
b

h
,
b
i,
 b

k
,
b

l
A

K
b
e

C
W

d
p

D
U

d
f,
 a

g
,
d

j,
 c

j,
 a

y
,
a

z
,
d

n
,
d

p
,
d

q
E

Y
c
t,
 0

t,
 0

f
A

L
0
s

C
X

b
h

,
b

i
D

V
a

r,
 c

d
,
a

s
,
c
i,
 a

x
,
0

z
E

Z
a
q

,
d

e
,
d

u
,
c
h

,
b
p

A
M

0
t

C
Y

b
u

,
0
k

F
A

a
q

,
b
d

,
0

k
,
b
p

Fi
gu

re
D

.3
:M

ap
pi

ng
of

re
en

gi
ne

er
ed

hi
er

ar
ch

y
cl

as
se

s
w

it
h

W
G

R
cl

as
s

la
be

ls

Appendix E

Hierarchy Learning: An Extended
Example

In Chapter 5 an approach of hierarchy learning from a set of iOOBN classes was proposed.

The running example chosen there is simple and illustrative. However, it was decided to also

construct a synthetic hierarchy to better explain the process of extracting a single parent class

hierarchy from a multiparent label hierarchy to investigate how reusability and construction

costs might be used to identify best potential parent classes when there are multiple options to

select.

The synthetic hierarchy and class generator, as mentioned in Chapter 5, was created with

the maximum number of children = 3, maximum depth = 4, maximum nodes per class = 15,

maximum edges per class = 20, maximum density = 10. This results in the hierarchy shown in

Figure E.1a and the classes shown in figures E.1b to E.1p.

The classes shown in figures E.1b to E.1p are provided as input to the hierarchy learning

algorithm. The algorithm constructs a supergraph and then extracts a set of labels associated

with the nodes and edges of the supergraph. The labels are used by the algorithm to construct

a label (multiparent) hierarchy as shown in Figure E.2a and E.2b. Here, most of the terminal

nodes (the leave nodes representing the original classes) have more than one parent. This

is a tricky situation, where we need to choose a parent node that maximises reusability and

also minimises construction cost of the hierarchy. Hence, derivation cost and reusability are

used to choose the best of the possible available parents. The table in Figure E.2c shows a

mapping between the original (synthetic) classes and the learned classes, constructed using

the proposed algorithm. The mapping also shows which parent nodes were chosen to extend

classes that represent the original synthetic classes. As an instance, "0K" is derivable from

three different nodes in the learned hierarchy. The learning algorithm takes the 18th node with

parent "0K, 0O" as having maximum reusability and minimum derivation cost among the three

available options.

Figures E.3a to E.3q show all the classes generated by the learning algorithm. These classes

include classes equivalent to the original classes and additional inferred classes.

245

246

0A

0B 0C

0D 0E 0F 0G

0L 0M 0N 0O0H 0I 0J 0K

(a) A synthetically generated hierarchy
where Maximum number of child = 3,
Maximum depth = 4, Maximum nodes
per class = 15, Maximum edges per class
= 20, Maximum density = 10.

Food

Metabolism Strength

Locale Castration

Meat Draft

(b) Class 0A

a

Strength

Metabolism

Draft

Meat

Food

Locale

Castration

(c) Class 0B

a

Food Castration

Strength

DraftMeat

Metabolism

Locale

(d) Class 0C

a

Strength

b

Metabolism

c

Draft

Meat

Food

Locale

Castration

(e) Class 0D

a

Strength

Metabolism

c

Draft

Meat

b

Food

Locale

Castration

(f) Class 0E

a

Food Castration c

Strength

DraftMeat

Metabolism

Locale

b

(g) Class 0F

a

FoodCastration

d c

e

Strength

Draft Meat

Metabolism

Locale

b

(h) Class 0G

Figure E.1: Classes in the Synthetic hierarchy (contd...)

247

a

Strength

b

Metabolism

c

Draft

d

e

Meat

Food

Locale

Castration

(i) Class 0H

a

Strength

b

Metabolism

c

Draft

e

d

Meat

Food

Locale

Castration

(j) Class 0I

a

Strength

Metabolism

c

Draft

e

d

Meat

b

Food

Locale

Castration

(k) Class 0J

a

Strength

Metabolism

c

g

Draft

e

d

Meat

b

f

Locale

Food

Castration

(l) Class 0K

a

Food Castration c

Strength

Draft

e

Meat

g

d

Metabolism

Locale

b

(m) Class 0L

a

Food Castration c

Strength

Draft

e

Meat

Metabolism

Locale

b d

(n) Class 0M

a

Food Castration c

Strength

Draft

e

d

Meat

Metabolism

Locale

b

(o) Class 0N

a

Food

Castration

d c

e

Strength

Draft

Meat

g

f

Metabolism

Locale b

(p) Class 0O

Figure E.1: Classes in the Synthetic hierarchy

248

['0D', '0H', '0I']

0D 0I 0H ['0K', '0O']

0K 0O

['0K', '0L', '0O']

0L

['0C', '0F', '0G', '0L', '0M', '0N', '0O']

['0G', '0O']0F 0C0N 0M

['0B', '0D', '0E', '0H', '0I', '0J', '0K']

['0E', '0J', '0K']0B

['0G', '0H', '0I', '0J', '0K', '0L', '0M', '0N', '0O']

['0H', '0L', '0M']['0I', '0J', '0K', '0N']

0G

['0B', '0C', '0D', '0E', '0F', '0G', '0H', '0I', '0J', '0K', '0L', '0M', '0N', '0O']

['0D', '0E', '0F', '0G', '0H', '0I', '0J', '0K', '0L', '0M', '0N', '0O']

['0E', '0F', '0G', '0J', '0K', '0L', '0M', '0N', '0O']

['0B', '0C', '0D', '0E', '0F', '0G', '0H', '0I', '0J', '0K', '0L', '0M', '0N', '0O', '0A']

0A

[]

0E0J

(a) The label (multi-parent) hierarchy constructed using the learning algorithm.

Graph
Label

Occurrences (with max matching %)

0A, 0B, 0C, 0D, 0E, 0F, 0G, 0H, 0I, 0J, 0K, 0L, 0M, 0N, 0O (1)

0B, 0D, 0E, 0H, 0I, 0J, 0K (4)

0C, 0F, 0G, 0L, 0M, 0N, 0O (3)

0D, 0H, 0I (7)

0E, 0J, 0K (8)

0E, 0F, 0G, 0J, 0K, 0L, 0M, 0N, 0O (10)

0G, 0O (6)

0D, 0H, 0I (7)

0D, 0H, 0I (7)

0E, 0J, 0K (8)

0K (18)

0K, 0L, 0O (13)

0H, 0L, 0M (12)

0I, 0J, 0K, 0N (14)

0K, 0O (17)

0A

0B

0C

0F

0L

0M

0N

0G

0D

0H

0I

0E

0J

0K

0O

1

2

3 4 5

6 7 8 9 10

11 12 13 14

15 16 17

18

(b) The class (single parent) hierarchy
Graph
Label

Occurrences (with max matching %)

0A, 0B, 0C, 0D, 0E, 0F, 0G, 0H, 0I, 0J, 0K, 0L, 0M, 0N, 0O (1)

0B, 0D, 0E, 0H, 0I, 0J, 0K (4)

0C, 0F, 0G, 0L, 0M, 0N, 0O (3)

0D, 0H, 0I (7)

0E, 0J, 0K (8)

0E, 0F, 0G, 0J, 0K, 0L, 0M, 0N, 0O (10)

0G, 0O (6)

0D, 0H, 0I (7)

0D, 0H, 0I (7)

0E, 0J, 0K (8)

0K (18)

0K, 0L, 0O (13)

0H, 0L, 0M (12)

0I, 0J, 0K, 0N (14)

0K, 0O (17)

0A

0B

0C

0F

0L

0M

0N

0G

0D

0H

0I

0E

0J

0K

0O

1

2

3 4 5

6 7 8 9 10

11 12 13 14

15 16 17

18

(c) Mapping between learned and original hierarchy classes constructed by taking maximum reusability
and minimum derivation-construction cost

Figure E.2: The learned hierarchy and mapping with the original hierarchy classes

249

Locale

Metabolism Strength

a

Draft

Castration

Meat

Food

(a) Class 0B_0C_0D_0E_0F-
_0G_0H_0I_0J_0K_0L_0M-
_0N_0O

Locale

Metabolism Strength

a b

Draft

cCastration

Meat

Food

(b) Class 0D_0E_0F_0G_0H_0I_0J-
_0K_0L_0M_0N_0O

Locale

Metabolism Strength

a b

c

Draft

Castration

Meat

Food

(c) Class 0E_0F_0G_0J_0K_0L-
_0M_0N_0O

Locale

Metabolism Strength

a b

Draft

c dCastration e

Meat

Food

(d) Class 0G_0H_0I_0J_0K_0L_0M_0N_0O

Locale

MetabolismStrength

a

Castration Food

Draft Meat

(e) Class 0C_0F_0G_0L-
_0M_0N_0O

Locale

Metabolism

Strength

a

Draft

Castration

Food

Meat

(f) Class 0B_0D_0E_0H-
_0I_0J_0K

Locale

Metabolism

Strength

a

b

Draft

c

Castration

Food

Meat

(g) Class 0D_0H_0I

Locale

b

Metabolism

Strength

a

c

Draft

Castration

Food

Meat

(h) Class 0E_0J_0K

Locale

Metabolism Strength

a

d

CastrationFood

b

c

Draft

e

Meat

(i) Class 0G_0O

Locale

Metabolism

Strength

a

b

Draft

c d

e

Castration

Food

Meat

(j) Class 0H

Figure E.3: Classes in the learned hierarchy (contd...)

250

Locale

Metabolism Strength

a b

Draft

c d

e

Castration

Meat

Food

(k) Class 0H_0L_0M

Locale

Metabolism Strength

a b

Draft

c

d

Castration e

Meat

Food

(l) Class 0I_0J_0K_0N

Locale

b

Metabolism

Strength

a

c

g

d

e

f

Meat

Draft

Castration

Food

(m) Class 0K

Locale

MetabolismStrength

a

Castration Food

b

c d

e

g

MeatDraft

(n) Class 0L

Locale

f

Metabolism

Strength

a

d

Castration

Food

b

c

eg

Meat

Draft

(o) Class 0O

Locale

Metabolism Strength

a b

c

d e f g

Meat Draft

CastrationFood

(p) Class 0K_0O

Locale

Metabolism Strength

a b

c

d e g

Meat Draft

CastrationFood

(q) Class 0K_0L_0O

Figure E.3: Classes in the learned hierarchy

Bibliography

[1] K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence. CRC Press, 2010. xvii, 2,

4, 13, 14, 21, 22, 24, 25, 26, 35, 36, 41, 51, 52, 60, 74, 116, 133

[2] M. Flores, J. Gámez, and K. Olesen, “Incremental compilation of Bayesian

networks in practice,” Proceedings of the Fourth International Conference On Intelligent

Systems Design and Applications (ISDA 2004), pp. 843–848, 2004. [Online]. Available:

http://conf.uni-obuda.hu/isda2004/144{_}ISDA2004.pdf xvii, 3, 42

[3] Owen Woodberry, Jessica Millett-Riley, Ann Nicholson and Steve Sinclair, “A Bayesian

network model to assist grassland vegetation management,” Arthur Rylah Institute for

Environmental Research, Department of Environment, Land, Water and Planning, Tech.

Rep. 1, 6 2016. xix, 59, 104, 105, 107, 108, 109, 173, 200, 206, 209, 228, 241

[4] M. J. Flores, J. A. Gámez, and K. G. Olesen, “Incremental compilation of Bayesian net-

works,” in Proc. of 19th Int’l Conf of Uncertainty in Artificial Intelligence UAI ’03, 2003, pp.

233–240. xix, 3, 9, 46, 50, 116, 118, 119

[5] O. Bangsø, M. Flores, and F. Jensen, “Plug and Play Object Oriented Bayesian Net-

works,” Current Topics in Artificial Intelligence, vol. 3040, no. Ic, pp. 457–467, 2004. xix,

9, 36, 47, 49, 64, 108, 116, 119, 120

[6] C. Merten, “Incremental Compilation of Object-Oriented Bayesian Networks,” pp. 1–8,

2005. xix, 9, 33, 119, 120

[7] P. B. Kruchten, “The 4+ 1 view model of architecture.” IEEE software, vol. 12, no. 6, pp.

42–50, 1995. xxiii, 206, 207

[8] E. Charniak, “Bayesian networks without tears.” AI magazine, vol. 12, no. 4, pp. 50–50,

1991. 1, 8

[9] D. Nikovski, “Constructing Bayesian networks for medical diagnosis from incomplete

and partially correct statistics,” IEEE Transactions on Knowledge and Data Engineering,

vol. 12, no. 4, pp. 509–516, 2000. 1

[10] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier,

2014. 1, 18, 52

251

http://conf.uni-obuda.hu/isda2004/144{_}ISDA2004.pdf

Bibliography 252

[11] ——, “Causality: models, reasoning and inference,” Econometric Theory, vol. 19, no. 675-

685, p. 46, 2003. 1, 18

[12] J. Pearle, “Probabilistic reasoning in intelligent systems,” 1988. 2, 17

[13] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs, 2nd ed. New York:

Springer Verlag, 2007. 2, 19, 61, 115, 116

[14] T. Charitos, L. van der Gaag, S. Visscher, K. Schurink, and P. Lucas, “A dynamic Bayesian

network for diagnosing ventilator-associated pneumonia in ICU patients,” Expert Sys-

tems with Applications, vol. 36, no. 2, pp. 1249–258, 2009. 2

[15] C. Conati, A. Gertner, K. VanLehn, and M. Druzdzel, “On-Line Student Modeling for

Coached Problem Solving Using Bayesian Networks,” in UM97 – Proc. of the 6th Int’l

Conf. on User Modeling, 1997, pp. 231–242. 2

[16] K. Kristensen and I. Rasmussen, “The use of a Bayesian network in the design of a de-

cision support system for growing malting barley without use of pesticides,” Computers

and Electronics in Agriculture, vol. 33, no. 3, pp. 197–217, 2002. 2

[17] P. A. Aguilera, A. Fernández, R. Fernández, R. Rumí, and A. Salmerón, “Bayesian Net-

works in Environmental Modelling,” Environmental Modelling & Software, vol. 26, no. 12,

pp. 1376–1388, 2011. 2

[18] R. Baker, A. Battisti, J. Bremmer, M. Kenis, J. Mumford, F. Petter, G. Schrader, S. Bacher,

P. DeBarro, P. Hulme, O. Karadjova, A. Lansink, O. Pruvost, P. Pysek, A. Roques,

Y. Baranchikov, and J.-H. Sun, “ PRATIQUE: a research project to enhance pest risk anal-

ysis techniques in the European Union,” EPPO Bulletin, vol. 39, no. 1, pp. 87–93, 2009. 2,

164

[19] S. Mascaro, K. Korb, and A. Nicholson, “Anomaly Detection in Vessel Tracks using

Bayesian Networks.” Int’l Journal of Approximate Reasoning. Elsevier Science, vol. 55, no. 1,

pp. 84–96, 2011. 2

[20] L. Falzon, “Using Bayesian network analysis to support centre of gravity analysis in

military planning,” European Journal of Operational Research, vol. 170, no. 2, pp. 629–643,

2006. 2

[21] T. Boneh, G. Weymouth, P. Newham, R. Potts, J. Bally, A. Nicholson, and K. Korb, “Fog

forecasting for Melbourne Airport using a Bayesian network.” Weather and Forecasting,

vol. 30, no. 5, pp. 1218–1233, 2015. 2

Bibliography 253

[22] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using Bayesian belief networks for change

impact analysis in architecture design,” Journal of Systems and Software, vol. 80, no. 1, pp.

127–148, 2007. 2

[23] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graph-

ical structures and their application to expert systems,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 157–224, 1988. 2, 20, 117

[24] G. F. Cooper, “The computational complexity of probabilistic inference using Bayesian

belief networks,” Artificial intelligence, vol. 42, no. 2-3, pp. 393–405, 1990. 3, 41, 118

[25] A. L. Madsen and F. V. Jensen, “Lazy Propagation in Junction Trees,” in Proc. of 14th Int’l

Conf of Uncertainty in Artificial Intelligence UAI ’98, 1998, pp. 362–369. 3, 42, 50

[26] M. Mezzini and M. Moscarini, “Simple algorithms for minimal triangulation of a graph

and backward selection of a decomposable Markov network,” Theory of Comput. Sci., vol.

411, no. 7-9, pp. 958–966, 2010. 3, 43, 46, 118, 132

[27] F. Jensen, “Hugin API Reference guide,” Hugin Experts, Tech. Rep. 8, 2 2016. 3, 17, 65,

73, 115, 117, 119, 214, 217, 220

[28] BayesFusion.com. (2018) GeNIe Modeler: Complete Modeling Freedom. [Online;

accessed 19-February-2019]. [Online]. Available: https://www.bayesfusion.com/genie/

3, 28, 39, 75

[29] N. S. Corp., “Netica Application for Belief Networks and Influence Diagrams,” Norsys

Software Corp, Vancouver, BC, Canada, Tech. Rep. 5, 3 1997. 3, 4, 39, 214

[30] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, Second Edition,

ser. Adaptive computation and machine learning. MIT Press, 2000. 4, 54

[31] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian Networks: The

combination of knowledge and statistical data,” Machine learning, vol. 20, no. 3, pp. 197–

243, 1995. 4, 55

[32] K. B. Laskey and S. M. Mahoney, “Network Fragments: Representing Knowledge for

Constructing Probabilistic Models,” in Proc. of the 13th Conf. on Uncertainty in Artificial

Intelligence (UAI), USA, 1997, 1997, pp. 334–341. 4, 26, 28, 74

[33] T. Boneh, “Ontology and Bayesian Decision Networks for Supporting the Meteorologi-

cal Forecasting Process,” Ph.D. dissertation, Clayton School of Information Technology,

Monash University, 2010. 4, 14, 20, 52, 204

https://www.bayesfusion.com/genie/

Bibliography 254

[34] N. Fenton and M. Neil, “Building large-scale Bayesian networks,” The Knowledge Engi-

neering Review, vol. 15, no. 3, pp. 257–284, 2000. 4, 26, 28

[35] M. Horny, “Bayesian networks,” School of Public Health, Department of Health Policy

and Management, Boston University, Tech. Rep. 5, 4 2014. 4, 20, 214

[36] D. Koller and A. Pfeffer, “Object-Oriented Bayesian Networks,” in Proc. of the 13th Conf.

on Uncertainty in Artificial Intelligence (UAI), USA, 1997, 1997, pp. 302–313. 4, 7, 9, 33, 34,

35, 36, 71, 85, 87

[37] O. Bangsø, M. J. Flores, and F. V. Jensen, “Plug & Play Object Oriented Bayesian Net-

works,” in Current Topics in Artificial Intelligence, 10th Conf. of the Spanish Association for

Artificial Intelligence, CAEPIA 2003, 2003, pp. 457–467. 4, 7, 33, 36, 37, 85

[38] C. Meek and D. Heckerman, “Structure and Parameter Learning for Causal Indepen-

dence and Causal Interaction Models,” in Proc. of the 13th Conf. on Uncertainty in Artificial

Intelligence (UAI), USA, 1997, 1997, pp. 366–375. 4, 26, 54, 55

[39] E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman, “Learning Module Networks,”

in UAI ’03, Proc. of the 19th Conf. in Uncertainty in Artificial Intelligence, Acapulco, Mexico,

August 7-10 2003, 2003, pp. 525–534. 4, 26

[40] D. Heckerman, C. Meek, and D. Koller, “Probabilistic entity-relationship models, PRMs,

and plate models,” in Introduction to statistical relational learning, 2007, pp. 201–238. 4, 26,

29

[41] K. B. Laskey, “MEBN: A language for first-order Bayesian knowledge bases,” Artif. Intell.,

vol. 172, no. 2-3, pp. 140–178, 2008. 4, 17, 26, 27

[42] D. P. Xiang, Yang and M. P. Beddoes., “Multiply Sectioned Bayesian Networks and

Junction Forests for Large Knowledge-Based Systems,” Computational Intelligence, vol. 9,

no. 2, pp. 171–220, 1993. [Online]. Available: http://www.blackwell-synergy.com/doi/

abs/10.1111/j.1467-8640.1993.tb00306.x 4, 17, 27, 41

[43] D. Koller and N. Friedman, Probabilistic Graphical Models - Principles and Techniques. MIT

Press, 2009. 4, 16, 26, 29

[44] B. J. Cox and A. J. Novobilski, Object-oriented programming - an evolutionary approach (2.

ed.). Addison-Wesley, 1991. 4

[45] J. Huang, A brief history of object-oriented programming. University of Tennessee Depart-

ment of Electrical Engineering and Computer . . . , 2013. 4

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-8640.1993.tb00306.x
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-8640.1993.tb00306.x

Bibliography 255

[46] D. Koller and A. Pfeffer, “Object-oriented Bayesian networks,” in Proc. of the 13th conf. on

Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1997, pp. 302–313.

5, 17, 26, 29, 64, 108

[47] M. Cartwright and M. Shepperd, “An empirical investigation of an object-oriented soft-

ware system,” IEEE Transactions on software engineering, vol. 26, no. 8, pp. 786–796, 2000.

6, 35

[48] L. C. Briand and J. Wüst, “Empirical studies of quality models in object-oriented sys-

tems,” in Advances in computers. Elsevier, 2002, vol. 56, pp. 97–166. 6, 35

[49] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, “Empirical evidence on the link be-

tween object-oriented measures and external quality attributes: a systematic literature

review,” Empirical Software Engineering, vol. 20, no. 3, pp. 640–693, 2015. 6, 35

[50] T. Xuan Hoang, “Inheritance in Object Oriented Bayesian Network,” Master’s thesis,

Clayton school of IT, Monash University, Australia, 10 2013. 7, 37, 108

[51] O. Bangsø and P.-H. Wuillemin, “Top-down Construction and Repetitive Structures Rep-

resentation in Bayesian Networks,” in Thirteenth International Florida Proceedings of the

Artificial Intelligence Research Society Conference, 2000, pp. 282–286. 7

[52] ——, “Object Oriented Bayesian Networks A Framework for Topdown Specification of

Large Bayesian Networks and Repetitive Structures,” Department of Computer Science,

AALBORG University, Tech. Rep. 1, 4 2000. 9

[53] A. Cano, “Elvira: Home Page for users of the Elvira System,” http://leo.ugr.es/elvira/,

[Online; accessed 07-May-2019]. 9, 39

[54] D. Chickering, D. Geiger, and D. Heckerman, “Learning Bayesian networks: Search

methods and experimental results,” in proceedings of fifth conference on artificial intelligence

and statistics, 1995, pp. 112–128. 10

[55] D. M. Chickering, “A transformational characterization of equivalent Bayesian Network

structures,” in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence.

Morgan Kaufmann Publishers Inc., 1995, pp. 87–98. 10

[56] ——, “Learning Bayesian Networks is NP-Complete,” in Learning from Data - Fifth Inter-

national Workshop on Artificial Intelligence and Statistics, AISTATS 1995, Key West, Florida,

USA, January, 1995. Proceedings., 1995, pp. 121–130. 10, 54

http://leo.ugr.es/elvira/

Bibliography 256

[57] O. Woodberry, J. Millett-Riley, A. Nicholson, and S. Sinclair, “An Object-Oriented Dy-

namic Bayesian Decision Network Model for Grasslands Adaptive Management (Ab-

stract Only),” in the 11th UAI Bayesian Modeling Applications Workshop (BMAW 2014), Eds.

Kathryn B. Laskey, James Jones and Russell Almond. CEUR Workshop Proc., 1218, 2014. 10,

59, 105, 164, 173, 226, 227

[58] F. N. David, Games, gods and gambling: The origins and history of probability and statistical

ideas from the earliest times to the Newtonian era. Hafner Publishing Company, 1962. 13

[59] M. H. Degroot and M. J. Schervish, Probability and statistics. Pearson Education, 2012.

13

[60] S. M. Stigler, The history of statistics: The measurement of uncertainty before 1900. Harvard

University Press, 1986. 13

[61] F. N. David, Games, gods, and gambling: A history of probability and statistical ideas. Courier

Corporation, 1988. 13

[62] T. Bayes, “An essay towards solving a problem in the doctrine of chances.” Philosophical

Transactions of the Royal Society of London, vol. 45, no. 3, pp. 243–315, 1958. 13

[63] F. P. Ramsey, “Truth and probability,” in Readings in Formal Epistemology. Springer, 2016,

pp. 21–45. 14

[64] V. J. Easton and J. H. McColl. (1997) Statistics Glossary. [Online; accessed 15-July-2019].

[Online]. Available: http://www.stats.gla.ac.uk/steps/glossary/ 16

[65] W. L. Buntine, “Operations for Learning with Graphical Models,” CoRR, vol.

abs/1105.2519, 2011. [Online]. Available: http://arxiv.org/abs/1105.2519 16

[66] R. G. Cowell, A. P. Dawid, and D. J. Spiegelhalter, “Sequential Model Criticism in Proba-

bilistic Expert Systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 3, pp. 209–219,

1993. 16

[67] R. D. Shachter and C. R. Kenley, “Gaussian influence diagrams,” Management Science,

vol. 35, no. 5, pp. 527–550, 1989. 17

[68] R. D. Shachter, “Evaluating Influence Diagrams,” Operations Research, vol. 34, no. 6, pp.

871–882, 1986. 17

[69] D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen, and R. G. Cowell, “Bayesian analysis in

expert systems,” Statistical science, vol. 8, no. 3, pp. 219–247, 1993. 17

http://www.stats.gla.ac.uk/steps/glossary/
http://arxiv.org/abs/1105.2519

Bibliography 257

[70] D. Koller, “Probabilistic Relational Models,” in Int’l Conf. on Inductive Logic Programming.

Springer, 1999, pp. 3–13. 17, 18, 26, 27, 29

[71] L. Breiman, Classification and regression trees. Routledge, 2017. 17

[72] R. L. Rivest, “Learning Decision Lists,” Machine Learning, vol. 2, no. 3, pp. 229–246, 1987.

17

[73] W. Buntine, “Representing learning with graphical models,” Artificial Intelligence Re-

search Branch, NASA Ames Research Centre, Technical Report FIA-94-14, 1994. 17

[74] P. McCullagh, Generalized linear models. Routledge, 2019. 17

[75] M. Frydenberg, “The chain graph Markov property,” Scandinavian Journal of Statistics,

pp. 333–353, 1990. 17

[76] L. Torti, P.-H. Wuillemin, and C. Gonzales, “Reinforcing the Object-Oriented aspect of

probabilistic relational models,” in European Workshop on Probabilistic Graphical Models,

2010, pp. 273–280. 17, 26, 29, 85, 100

[77] M. Jaeger, “Relational Bayesian Networks,” CoRR, vol. abs/1302.1550, 2013. 17

[78] M. B. Ishak, “Probabilistic relational models: learning and evaluation. (Les

modèles probabilistes relationnels : apprentissage et évaluation),” Ph.D. dissertation,

University of Nantes, France, 2015. [Online]. Available: https://tel.archives-ouvertes.

fr/tel-01179501 18, 27, 54

[79] M. Cossalter, O. Mengshoel, and T. Selker, “Visualizing and understanding large-scale

Bayesian networks,” in Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelli-

gence, 2011. 20

[80] S. Psillos, “An Explorer upon Untrodden Ground: Peirce on Abduction.” 2011. 21

[81] P. Dagum, A. Galper, and E. Horvitz, “Dynamic network models for forecasting,” in

Uncertainty in artificial intelligence. Elsevier, 1992, pp. 41–48. 26

[82] A. E. Nicholson, “Monitoring discrete environments using dynamic belief networks

(robotics),” Ph.D. dissertation, PhD thesis, University of Oxford (United Kingdom), 1992.

26

[83] U. Kjærulff, “A computational scheme for dynamic Bayesian networks,” 1993. 26

[84] T. L. Dean and K. Kanazawa, “Probabilistic Temporal Reasoning.” in AAAI, 1988, pp.

524–529. 26

https://tel.archives-ouvertes.fr/tel-01179501
https://tel.archives-ouvertes.fr/tel-01179501

Bibliography 258

[85] D. Koller, “Probabilistic Relational Models,” in Inductive Logic Programming, 9th Interna-

tional Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings, 1999, pp. 3–13. 27

[86] N. F. D. K. A. P. Getoor, Lise and B. Taskar, “Probabilistic relational models. Introduc-

tion to statistical relational learning,” in Introduction to statistical relational learning, vol. 8,

2007. 27

[87] J. Neville and D. D. Jensen, “Dependency Networks for Relational Data,” in Proceedings

of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004,

Brighton, UK, 2004, pp. 170–177. 27

[88] M. Jaeger, “Relational Bayesian Networks,” in UAI ’97: Proceedings of the Thirteenth Con-

ference on Uncertainty in Artificial Intelligence, Brown University, Providence, Rhode Island,

USA, August 1-3, 1997, 1997, pp. 266–273. 27

[89] M. Grzegorczyk, “An introduction to Gaussian Bayesian networks,” in Systems Biology

in Drug Discovery and Development. Springer, 2010, pp. 121–147. 27

[90] C. Gonzales, L. Torti, M. Chopin, and P.-H. Wuillemin, “aGrUM: A GRaphical Universal

Modeler,” https://forge.lip6.fr/projects/agrum, [Online; accessed 27-June-2017]. 30, 40

[91] N. Mitchell and G. Sevitsky, “LeakBot: An Automated and Lightweight Tool for Di-

agnosing Memory Leaks in Large Java Applications,” in ECOOP 2003 - Object-Oriented

Programming, 17th European Conference, Darmstadt, Germany, July 21-25, 2003, Proceedings,

2003, pp. 351–377. 32

[92] E. Kindler and I. Krivý, “Object-oriented simulation of systems with sophisticated con-

trol,” Int. J. General Systems, vol. 40, no. 3, pp. 313–343, 2011. 32

[93] Y. E. Chee, L. Wilkinson, A. E. Nicholson, P. F. Quintana-Ascencio, J. E. Fauth, D. Hall,

K. J. Ponzio, and L. Rumpff, “Modelling spatial and temporal changes with GIS and

Spatial and Dynamic Bayesian Networks,” Environmental Modelling & Software, vol. 82,

pp. 108–120, 2016. 34, 164

[94] B. Bruegee and A. Dutoit, Object-Oriented software engineering: Practical software develop-

ment using UML, Patterns and Java, 3rd ed. Pearson, 2009. 34

[95] N. Shiratori and N. Okude, “Bayesian Networks layer model to represent anesthetic

practice,” in Proc. of the IEEE Int’l Conf. on Systems, Man and Cybernetics, Montréal, Canada,

7-10 October 2007, 2007, pp. 674–679. 35

https://forge.lip6.fr/projects/agrum

Bibliography 259

[96] M. R. Krebs, E. H. Bromley, and A. M. Donald, “The binding of thioflavin-T to amyloid

fibrils: localisation and implications,” Artif. Intell., vol. 149, no. 1, pp. 30–37, 2005. 35

[97] F. V. Jensen and T. D. Nielsen, “Probabilistic decision graphs for optimization under

uncertainty,” Annals OR, vol. 204, no. 1, pp. 223–248, 2013. 35, 36

[98] Renninger, Harald and Hermann von Hasseln, “Object-Oriented Dynamic Bayesian

Network-Templates for Modelling Mechatronic Systems,” in DAIMLER CHRYSLER AG

STUTTGART (GERMANY), 2002. 35

[99] W. Wiegerinck, W. Burgers, and B. Kappen, “Bayesian Networks, Introduction and Prac-

tical Applications,” in Handbook on Neural Information Processing, 2013, pp. 401–431. 35

[100] R. S. Kenett, “Applications of Bayesian networks,” Available at SSRN 2172713, 2012. 35

[101] D. TEAM. (2019) Top 10 Real-world Bayesian Network Applications – Know

the importance! [Online; accessed 14-October-2019]. [Online]. Available: https:

//data-flair.training/blogs/bayesian-network-applications/ 35

[102] Pourret, Olivier and Naïm, Patrick and Marcot, Bruce, Bayesian networks: a practical guide

to applications. John Wiley & Sons, 2008. 35

[103] A. L. Madsen, M. Lang, U. B. Kjærulff, and F. Jensen, “The Hugin Tool for Learning

Bayesian Networks,” Learning, pp. 594–605, 2003. 37, 39, 50, 55, 214

[104] N. S. Corporation. (1995) Netica Application. [Online; accessed 16-August-2017].

[Online]. Available: http://www.norsys.com/netica.html 39

[105] S. Conrady and L. JOUFFE, Bayesian Networks and Bayesia Lab. Bayesia Lab., 2007, vol. 1,

no. 1. 39, 214

[106] ProbaYes.com. (2019) ProBT. [Online; accessed 29-August-2019]. [Online]. Available:

http://www.probayes.com/fr/recherche/probt/ 39

[107] S. Matsumoto, R. N. Carvalho, M. Ladeira, P. C. G. da Costa, L. L. Santos, D. Silva, M. On-

ishi, E. Machado, and K. Cai, “UnBBayes: a java framework for probabilistic models in

AI,” Java in academia and research, p. 34, 2011. 39, 40, 214

[108] K. Murphy, “The bayes net toolbox for matlab.” Computing science and statistics, vol. 33,

no. 2, pp. 1024–1034, 2001. 39

[109] M. Scutari. (2018) bnlearn - an R package for Bayesian network learning and inference.

[Online; accessed 02-November-2019]. [Online]. Available: http://www.bnlearn.com/

research/ 39

https://data-flair.training/blogs/bayesian-network-applications/
https://data-flair.training/blogs/bayesian-network-applications/
http://www.norsys.com/netica.html
http://www.probayes.com/fr/recherche/probt/
http://www.bnlearn.com/research/
http://www.bnlearn.com/research/

Bibliography 260

[110] R. C. for Intelligent Decision-Support Systems, “OpenMarkov: A open source

tool for Probabilistic Graphical Models,” http://www.openmarkov.org/docs/tutorial/

openmarkov-tutorial.pdf, National University for Distance Education (UNED), [Online;

accessed 27-June-2017]. 39

[111] K. S. University. (2013) Bayesian Network tools in Java (BNJ). [Online; accessed

02-November-2017]. [Online]. Available: https://sourceforge.net/projects/bnj/ 39

[112] M. U. (Quebec). (2019) ProbRem. [Online; accessed 21-July-2019]. [Online]. Available:

https://www.cs.mcgill.ca/~fkaeli/probrem/ 40

[113] U. of Washington. (2018) Alchemy: Open Source AI. [Online; accessed 02-August-2018].

[Online]. Available: http://alchemy.cs.washington.edu 40

[114] K. C. J. S. M. T. Manfred Jaeger, Mark Chavira and A. G. Collado, “Primula,” 2009,

[Online; accessed 19-September-2017]. [Online]. Available: http://people.cs.aau.dk/

~jaeger/Primula/primula-manual2.2.pdf 40

[115] ——. (2002) Primula. [Online; accessed 12-February-2017]. [Online]. Available:

http://people.cs.aau.dk/~jaeger/Primula/ 40

[116] M. Inc. (2019) BLOG programming Language. [Online; accessed 17-June-2019]. [Online].

Available: https://bayesianlogic.github.io 40

[117] U. of Massachusetts. (2018) Proximity. [Online; accessed 27-August-2019]. [Online].

Available: http://kdl.cs.umass.edu/software.html 40

[118] agrum.org. (2018) aGrUM a GRaphical Universal Model. [Online; accessed 21-

March-2019]. [Online]. Available: https://docs.agrum.org/aGrUM/latest/index.html

40

[119] A. Pfeffer, “IBAL: A Probabilistic Rational Programming Language,” in Proceedings of

the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle,

Washington, USA, August 4-10, 2001, 2001, pp. 733–740. 40

[120] P. O’Rourke and J. Josephson, “Automated abduction: inference to the best explanation,”

1997. 41

[121] S. K. Andersen and F. Jensen, “Approximations in Bayesian belief universes for knowl-

edge based systems,” in Proceedings of the Sixth Conference on Uncertainty in Artificial In-

telligence, 1990, Cambridge, Ma, Usa, 1990, pp. 162–169. 41

http://www.openmarkov.org/docs/tutorial/openmarkov-tutorial.pdf
http://www.openmarkov.org/docs/tutorial/openmarkov-tutorial.pdf
https://sourceforge.net/projects/bnj/
https://www.cs.mcgill.ca/~fkaeli/probrem/
http://alchemy.cs.washington.edu
http://people.cs.aau.dk/~jaeger/Primula/primula-manual2.2.pdf
http://people.cs.aau.dk/~jaeger/Primula/primula-manual2.2.pdf
http://people.cs.aau.dk/~jaeger/Primula/
https://bayesianlogic.github.io
http://kdl.cs.umass.edu/software.html
https://docs.agrum.org/aGrUM/latest/index.html

Bibliography 261

[122] M. Henrion, “Propagating uncertainty in Bayesian networks by probabilistic logic sam-

pling,” in Machine Intelligence and Pattern Recognition. Elsevier, 1988, vol. 5, pp. 149–163.

41

[123] A. L. Madsen and F. V. Jensen, “LAZY Propagation: A Junction Tree Inference Algorithm

Based on Lazy Evaluation,” Artif. Intell., vol. 113, no. 1-2, pp. 203–245, 1999. 42

[124] A. Cano and S. Moral, “Heuristic Algorithms for the Triangulation of Graphs,” in Ad-

vances in Intelligent Computing - IPMU’94, 5th International Conference on Processing and

Management of Uncertainty in Knowledge-Based Systems, Paris, France, July 4-8, 1994, Se-

lected Papers, 1994, pp. 98–107. 43

[125] P. Heggernes, J. A. Telle, and Y. Villanger, “Computing Minimal Triangulations in Time

O(nalpha log n) = o(n 2.376),” SIAM J. Discrete Math., vol. 19, no. 4, pp. 900–913, 2005. 43

[126] M. Shindo and E. Tomita, “A Simple Algorithm for Finding a Maximum Clique and Its

Worst-Case Time Complexity,” Systems and Computers in Japan, vol. 21, no. 3, pp. 1–13,

1990. 43

[127] P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga, “Decomposing Bayesian

networks: triangulation of the moral graph with genetic algorithms,” Statistics and Com-

puting, vol. 7, no. 1, pp. 19–34, 1997. 43

[128] P. Heggernes, “Minimal triangulations of graphs: A survey,” Discrete Mathematics, vol.

306, no. 3, pp. 297–317, 2006. 43

[129] A. Berry, J. R. S. Blair, and P. Heggernes, “Maximum Cardinality Search for Computing

Minimal Triangulations,” in Graph-Theoretic Concepts in Computer Science, 28th Interna-

tional Workshop, WG 2002, Cesky Krumlov, Czech Republic, June 13-15, 2002, Revised Papers,

2002, pp. 1–12. 43

[130] A. Berry and R. Pogorelcnik, “A simple algorithm to generate the minimal separators

and the maximal cliques of a chordal graph,” Inf. Process. Lett., vol. 111, no. 11, pp. 508–

511, 2011. 43

[131] F. V. Jensen and F. Jensen, “Optimal Junction Trees,” CoRR, vol. abs/1302.6823, 2013. 43

[132] D. J. Rose, R. E. Tarjan, and G. S. Lueker, “Algorithmic Aspects of Vertex Elimination on

Graphs,” SIAM J. Comput., vol. 5, no. 2, pp. 266–283, 1976. 43

[133] E. Dahlhaus, “Minimal Elimination Ordering Inside a Given Chordal Graph,” in Graph-

Theoretic Concepts in Computer Science, 23rd International Workshop, WG ’97, Berlin, Ger-

many, June 18-20, 1997, Proceedings, 1997, pp. 132–143. 43

Bibliography 262

[134] M. J. Flores and J. A. Gámez, “Triangulation of Bayesian networks by retriangulation,”

Int. J. Intell. Syst., vol. 18, no. 2, pp. 153–164, 2003. 43

[135] R. E. Neapolitan et al., Learning Bayesian Networks. Pearson Prentice Hall, 2004, vol. 38.

43, 46

[136] K. G. Olesen and A. L. Madsen, “Maximal prime subgraph decomposition of Bayesian

networks,” IEEE Trans. Systems, Man, and Cybernetics, Part B, vol. 32, no. 1, pp. 21–31,

2002. 46, 118

[137] ——, “Maximal prime subgraph decomposition of Bayesian networks,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 32, no. 1, pp. 21–31, 2002.

46

[138] D. Wu, “Maximal prime subgraph decomposition of Bayesian networks: A relational

database perspective,” International Journal of Approximate Reasoning, vol. 46, no. 2, pp.

334–345, 2007. 46

[139] D. Wu and S. K. M. Wong, “Maximal Prime Subgraph Decomposition of Bayesian Net-

works: A Relational Database Perspective,” in Proceedings of the Eighteenth International

Florida Artificial Intelligence Research Society Conference, Clearwater Beach, Florida, USA,

2005, pp. 793–798. 46

[140] M. Samiullah, T. X. Hoang, D. Albrecht, A. Nicholson, and K. Korb, “iOOBN: a Bayesian

Network Modelling Tool using Object Oriented Bayesian Networks with Inheritance,”

in Proc. of 29th IEEE ICTAI, BOSTON, MA, USA, November 6-8, 2017, pp. 1218–1225. 50,

60, 116, 119

[141] Oboler, Andre, “The kebn process: A new approach to knowledge engineering with

Bayesian nets,” Technical report, Monash University, Tech. Rep., 2002. 51

[142] L. M. Davidson, Knowledge extraction technology for terminology. University of Ottawa

(Canada), 1998. 51

[143] K. B. Laskey and S. M. Mahoney, “Network engineering for agile belief network models,”

IEEE Transactions on knowledge and data engineering, vol. 12, no. 4, pp. 487–498, 2000. 52

[144] D. Heckerman, “Probabilistic similarity networks,” Networks, vol. 20, no. 5, pp. 607–636,

1990. 52

[145] A. Zagorecki and M. J. Druzdzel, “Knowledge engineering for Bayesian Networks: how

common are noisy-max distributions in practice?” in ECAI, 2006, p. 482. 52

Bibliography 263

[146] ——, “Knowledge engineering for Bayesian networks: How common are noisy-MAX

distributions in practice?” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 43, no. 1, pp. 186–195, 2012. 52

[147] M. J. Druzdzel and F. J. Diez, “Criteria for combining knowledge from different sources

in probabilistic models,” in Working Notes of the UAI 2000 Workshop on Domain Knowledge

with Data for Decision Support, 2000. 52, 53

[148] S. Monti and G. Carenini, “Dealing with the expert inconsistency in probability elicita-

tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 4, pp. 499–508,

2000. 52

[149] R. L. Keeney and H. Raiffa, “Decision analysis with multiple conflicting objectives,” Wi-

ley& Sons, New York, 1976. 52

[150] C. S. Wallace, K. B. Korb, and H. Dai, “Causal Discovery via MML,” in Machine Learning,

Proceedings of the Thirteenth International Conference (ICML ’96), Bari, Italy, July 3-6, 1996,

1996, pp. 516–524. 52, 54, 166, 172

[151] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images,” IEEE Transactions on pattern analysis and machine intelligence, no. 6,

pp. 721–741, 1984. 53

[152] R. T. O’Donnell, L. Allison, and K. B. Korb, “Learning Hybrid Bayesian Networks by

MML,” in AI 2006: Advances in Artificial Intelligence, 19th Australian Joint Conference on

Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, 2006, pp. 192–203.

53, 166

[153] U. Nodelman, C. R. Shelton, and D. Koller, “Learning Continuous Time Bayesian Net-

works,” in UAI ’03, Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence,

Acapulco, Mexico, August 7-10 2003, 2003, pp. 451–458. 53

[154] C. S. Wallace and K. B. Korb, “Learning linear causal models by MML sampling,” in

Causal models and intelligent data management. Springer, Berlin, Heidelberg, 1999, pp. 89–

111. 53, 164

[155] W. Lam and F. Bacchus, “Learning Bayesian Belief Networks: An Approach Based on

the MDL Principle,” Computational Intelligence, vol. 10, pp. 269–294, 1994. 53, 164

[156] P. Spirtes and C. Meek, “Learning Bayesian Networks with Discrete Variables from

Data,” in Proceedings of the First International Conference on Knowledge Discovery and Data

Mining (KDD-95), Montreal, Canada, August 20-21, 1995, 1995, pp. 294–299. 53, 164

Bibliography 264

[157] J. Abellán, M. Gómez-Olmedo, and S. Moral, “Some Variations on the PC Algorithm,”

in Third European Workshop on Probabilistic Graphical Models, 12-15 September 2006, Prague,

Czech Republic. Electronic Proceedings., 2006, pp. 1–8. 53

[158] C. M. Heckerman, David and G. Cooper, “A Bayesian Approach to Casual Discovery,”

Microsoft Research, Advanced Technology Division, Microsoft Corporation, One Mi-

crosoftway, Redmond, WA 98052, Tech. Rep. 19, February 1999. 53

[159] D. Heckerman and D. Geiger, “Learning Bayesian Networks: A Unification for Discrete

and Gaussian Domains,” CoRR, vol. abs/1302.4957, 2013. 54

[160] R. Cui, P. Groot, and T. Heskes, “Learning causal structure from mixed data with missing

values using Gaussian copula models,” Statistics and Computing, vol. 29, no. 2, pp. 311–

333, 2019. 54

[161] S. Lee and V. G. Honavar, “On Learning Causal Models from Relational Data,” in Proceed-

ings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,

Arizona, USA., 2016, pp. 3263–3270. 54

[162] H. Dai, K. B. Korb, C. S. Wallace, and X. Wu, “A Study of Causal Discovery With Weak

Links and Small Samples,” in Proceedings of the Fifteenth International Joint Conference on

Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes, 1997, pp.

1304–1309. 54

[163] M. Teyssier and D. Koller, “Ordering-Based Search: A Simple and Effective Algorithm

for Learning Bayesian Networks,” CoRR, vol. abs/1207.1429, 2012. 54

[164] J. R. Neil, C. S. Wallace, and K. B. Korb, “Learning Bayesian Networks with Restricted

Causal Interactions,” CoRR, vol. abs/1301.6727, 2013. 54

[165] D. Margaritis, “Learning Bayesian network model structure from data,” Ph.D. disserta-

tion, Carnegie-Mellon University, Pittsburgh Pa School of Computer Science, Pittsburgh,

PA 15213, USA, 2003. 54

[166] L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning Probabilistic Models of Link

Structure,” J. Mach. Learn. Res., vol. 3, pp. 679–707, 2002. 54

[167] T. Verma and J. Pearl, “Equivalence and synthesis of causal models,” in UAI ’90: Proceed-

ings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, MIT, Cambridge,

MA, USA, July 27-29, 1990, 1990, pp. 255–270. 54

Bibliography 265

[168] C. N. G. Spirtes, Peter and R. Scheines, “Causality from probability.” Laboratory for Com-

putational Linguistics, vol. 112, 1989. 54

[169] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Probabilistic

Networks from Data,” Machine Learning, vol. 9, pp. 309–347, 1992. 54

[170] D. M. Chickering, “Learning Equivalence Classes of Bayesian-Network Structures,” J.

Mach. Learn. Res., vol. 2, pp. 445–498, 2002. 54

[171] C. K. Chow and C. N. Liu, “Approximating discrete probability distributions with de-

pendence trees,” IEEE Trans. Information Theory, vol. 14, no. 3, pp. 462–467, 1968. 54

[172] M. Singh and M. Valtorta, “Construction of Bayesian network structures from data: A

brief survey and an efficient algorithm,” Int. J. Approx. Reasoning, vol. 12, no. 2, pp. 111–

131, 1995. 54

[173] G. M. Provan and M. Singh, “Learning Bayesian Networks Using Feature Selection,”

in Learning from Data - Fifth International Workshop on Artificial Intelligence and Statistics,

AISTATS 1995, Key West, Florida, USA, January, 1995. Proceedings., 1995, pp. 291–300. 54

[174] S. Acid and L. M. de Campos, “BENEDICT: An algorithm for learning probabilistic belief

networks.” in International Conference on Information Processing and Management of Uncer-

tainty in Knowledge-based Systems, 1996, pp. 979–984. 54

[175] Z. Ji, Q. Xia, and G. Meng, “A review of parameter learning methods in Bayesian net-

work,” in International Conference on Intelligent Computing. Springer, 2015, pp. 3–12. 55

[176] N. A. Furlotte, D. Heckerman, and C. Lippert, “Quantifying the uncertainty in heritabil-

ity,” Journal of human genetics, vol. 59, no. 5, p. 269, 2014. 55

[177] D. Titterington et al., “Bayesian methods for neural networks and related models,” Sta-

tistical Science, vol. 19, no. 1, pp. 128–139, 2004. 55

[178] S. L. Lauritzen, “The EM algorithm for graphical association models with missing data,”

Computational Statistics & Data Analysis, vol. 19, no. 2, pp. 191–201, 1995. 55

[179] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721–741,

1984. 55

[180] D.-x. Niu, H.-f. Shi, and D. D. Wu, “Short-term load forecasting using Bayesian neural

networks learned by Hybrid Monte Carlo algorithm,” Applied Soft Computing, vol. 12,

no. 6, pp. 1822–1827, 2012. 55

Bibliography 266

[181] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited„ 2016. 55

[182] H. Langseth and O. Bangsø, “Parameter learning in object-oriented Bayesian networks,”

Annals of Mathematics and Artificial Intelligence, vol. 32, no. 1-4, pp. 221–243, 2001. 55

[183] O. B. H. Langseth and T. Nielsen, “Structural learning in object oriented domains,” in

Proceedings of the Fourteenth Florida Artificial Intelligence Research Society Conference, 2001,

pp. 340–344. 55, 164

[184] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GRAMI: Frequent Subgraph

and Pattern Mining in a Single Large Graph,” PVLDB, vol. 7, no. 7, pp. 517–528, 2014. 56

[185] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a Large Sparse Graph*,”

Data Min. Knowl. Discov., vol. 11, no. 3, pp. 243–271, 2005. 56, 57

[186] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern Mining,” in Proceedings of

the 2002 IEEE International Conference on Data Mining (ICDM 2002), 9-12 December 2002,

Maebashi City, Japan, 2002, pp. 721–724. 56, 57

[187] M. I. Wood, L. Ivanov, and Z. Lamprou, “An Analysis of Inheritance Hierarchy Evolu-

tion,” in Proceedings of the Evaluation and Assessment on Software Engineering, EASE 2019,

Copenhagen, Denmark, April 15-17, 2019, 2019, pp. 24–33. 56, 57, 165, 166

[188] I. Moore, “Automatic Inheritance Hierarchy Restructuring and Method Refactoring,” in

Proceedings of the 1996 ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages & Applications (OOPSLA ’96), San Jose, California, USA, October 6-10, 1996.,

1996, pp. 235–250. 57, 165

[189] E. Casais, “An Incremental Class Reorganization Approach,” in ECOOP ’92, European

Conference on Object-Oriented Programming, Utrecht, The Netherlands, June 29 - July 3, 1992,

Proceedings, 1992, pp. 114–132. 57, 165

[190] H. Dicky, C. Dony, M. Huchard, and T. Libourel, “On Automatic Class Insertion with

Overloading,” in Proceedings of the 1996 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages & Applications (OOPSLA ’96), San Jose, California, USA,

October 6-10, 1996., 1996, pp. 251–267. 57, 165

[191] W. F. Opdyke and R. E. Johnson, “Creating Abstract Superclasses by Refactoring,” in

Proceedings of the ACM 21th Conference on Computer Science, CSC ’93, Indianapolis, IN, USA,

February 16-18, 1993, 1993, pp. 66–73. 57, 165

Bibliography 267

[192] I. Moore and T. Clement, “A Simple and Efficient Algorithm for Inferring Inheritance

Hierarchies,” 1996. 57, 165

[193] G. W. Mineau and R. Godin, “Automatic Structuring of Knowledge Bases by Conceptual

Clustering,” IEEE Trans. Knowl. Data Eng., vol. 7, no. 5, pp. 824–828, 1995. 57, 165

[194] E. Casais, “Managing class evolution in object-oriented systems,” in Object-Oriented Soft-

ware Composition, 1995, pp. 201–244. 57, 165

[195] W. W. Pun and R. L. Winder, “Automating class hierarchy graph construction,” Bayesian

Intelligence, Technical Report RN 89/23, 1989. 57, 165

[196] H. Bunke, X. Jiang, and A. Kandel, “On the Minimum Common Supergraph of Two

Graphs,” Computing, vol. 65, no. 1, pp. 13–25, 2000. 57

[197] X. Yan, P. S. Yu, and J. Han, “Graph Indexing: A Frequent Structure-based Approach,”

in Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris,

France, June 13-18, 2004, 2004, pp. 335–346. 57

[198] Y. Chen, X. Zhao, X. Lin, Y. Wang, and D. Guo, “Efficient Mining of Frequent Patterns on

Uncertain Graphs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 287–300, 2019. 57

[199] A. Inokuchi, T. Washio, and H. Motoda, “An Apriori-Based Algorithm for Mining Fre-

quent Substructures from Graph Data,” in Principles of Data Mining and Knowledge Discov-

ery, 4th European Conference, PKDD 2000, Lyon, France, September 13-16, 2000, Proceedings,

2000, pp. 13–23. 57

[200] U. B. Kjærulff and A. L. Madsen, “Bayesian networks and influence diagrams,” Springer,

vol. 200, p. 114, 2008. 59, 116, 124

[201] H. Langseth and O. Bangsø, “Parameter Learning in Bayesian Networks,” Annals of

Mathematics and AI, pp. 221–243, 2001. 61, 174

[202] M. J. Flores, A. E. Nicholson, and R. F. Ropero, “Dynamic OOBNs applied to water man-

agement in dams,” in 2016 IEEE International Conference on Knowledge Engineering and

Applications (ICKEA). IEEE, 2016, pp. 255–260. 67

[203] A. J. Pfeffer, “Probabilistic Reasoning for Complex Systems,” Ph.D. dissertation, Stanford

University, Stanford, CA, USA, 2000, aAI9961943. 85, 93

[204] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier,

2014. 115

Bibliography 268

[205] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, “Bayesian updating in causal probabilistic

networks by local computations,” Computational Statistics Quarterly, vol. 4, pp. 269–282,

1990. 116, 118

[206] H. Guo and W. Hsu, “A survey of algorithms for real-time Bayesian network inference,”

in Join Workshop on Real Time Decision Support and Diagnosis Systems, 2002. 118

[207] J. Cheng and M. J. Druzdzel, “Confidence inference in Bayesian networks,” arXiv preprint

arXiv:1301.2260, 2013. 118

[208] R. G. Cowell, P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic networks and

expert systems: Exact computational methods for Bayesian networks. Springer Science &

Business Media, 2006. 118

[209] J. Cheng, “Efficient stochastic sampling algorithms for Bayesian networks,” University of

Pittsburgh, 2001. 118

[210] F. G. Cozman et al., “Generalizing variable elimination in Bayesian networks,” in Work-

shop on probabilistic reasoning in artificial intelligence. Editora Tec Art São Paulo, Brazil,

2000, pp. 27–32. 118

[211] A. Darwiche, “Recursive conditioning,” Artificial Intelligence, vol. 126, no. 1-2, pp. 5–41,

2001. 118

[212] K. Kanazawa, “Probability, time, and action,” Ph.D. dissertation, PhD thesis, Brown Uni-

versity, Providence, RI, 1992. 133, 138, 146, 154

[213] P. P. Shenoy, “Binary Join Trees,” in UAI ’96: Proc. of the 12th Int’l Conf. on Uncertainty

in Artificial Intelligence, Reed College, Portland, Oregon, USA, August 1-4, 1996, 1996, pp.

492–499. 133

[214] ——, “Binary join trees for computing marginals in the Shenoy-Shafer architecture,” Int.

J. Approx. Reasoning, vol. 17, no. 2-3, pp. 239–263, 1997. 133

[215] J. S. Ide and F. G. Cozman, “Random Generation of Bayesian Networks,” in Advances in

Artificial Intelligence, 16th Brazilian Symposium on Artificial Intelligence, SBIA 2002, Porto de

Galinhas/Recife, Brazil, November 11-14, 2002, Proceedings, 2002, pp. 366–375. 136, 138

[216] A. Nicholson and J. Flores, “Combining state and transition models with dynamic

Bayesian networks,” Journal of Ecological Modelling, vol. 222(3), pp. 555–566, 2011. 136,

235

Bibliography 269

[217] J. A. Legge. (2017) Statistics Canada: Constructing box and whisker plots. [Online;

accessed 13-February-2020]. [Online]. Available: https://www150.statcan.gc.ca/n1/

edu/power-pouvoir/ch12/5214889-eng.htm 143

[218] W. F. Doolittle, “The attempt on the life of the Tree of Life: science, philosophy and

politics.” Biology & Philosophy, vol. 25, no. 4, pp. 455–473, 2010. 165

[219] B. Larget and D. L. Simon, “Markov chain Monte Carlo algorithms for the Bayesian

analysis of phylogenetic trees,” Molecular biology and evolution, vol. 16, no. 6, pp. 750–759,

1999. 165

[220] R. D. Page, “Tree View: An application to display phylogenetic trees on personal com-

puters.” Bioinformatics, vol. 12, no. 4, pp. 357–358, 1996. 165

[221] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic inference under

mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. 165

[222] R. D. Page, “Space, time, form: viewing the Tree of Life.” Trends in ecology & evolution,

vol. 27, no. 2, pp. 113–120, 2012. 165

[223] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd edition. Morgan

Kaufmann, 2011. [Online]. Available: http://hanj.cs.illinois.edu/bk3/ 165

[224] D. H. Taenzer, M. Ganti, and S. Podar, “Problems in Object-Oriented Software Reuse,” in

ECOOP ’89: Proceedings of the Third European Conference on Object-Oriented Programming,

Nottingham, UK, July 10-14, 1989., 1989, pp. 25–38. 165

[225] R. T. O’Donnell, A. E. Nicholson, B. Han, K. B. Korb, M. J. Alam, and L. R. Hope, “Causal

Discovery with Prior Information,” in AI 2006: Advances in Artificial Intelligence, 19th

Australian Joint Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006,

Proceedings, 2006, pp. 1162–1167. 166

[226] K. B. Korb, “Learning Graphical Models,” in Encyclopedia of Machine Learning and Data

Mining, 2017, pp. 715–723. 166

[227] R. C. Read and D. G. Corneil, “The graph isomorphism disease,” Journal of Graph Theory,

vol. 1, no. 4, pp. 339–363, 1977. 167

[228] F. Jensen, F. V. Jensen, and S. L. Dittmer, “From influence diagrams to junction trees,” in

Uncertainty Proceedings 1994. Elsevier, 1994, pp. 367–373. 204

https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch12/5214889-eng.htm
https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch12/5214889-eng.htm
http://hanj.cs.illinois.edu/bk3/

Bibliography 270

[229] M. Samiullah, D. Albrecht, and A. Nicholson, “Supplementary materials: iOOBN

framework and case study,” http://bayesian-intelligence.com/publications/TR2017_

1_iOOBN_Supp.pdf, Bayesian Intelligence, Technical Report TR 2017/1, 2017. 206

[230] NGINX. (2001) PEP is an Earley Parser. [Online; accessed 02-February-2016]. [Online].

Available: http://www.coffeeblack.org/ 209

[231] T. Parr. (1989) Another Tool for Language Recognition. [Online; accessed 21-December-

2016]. [Online]. Available: http://www.antlr.org/ 209, 217, 221

[232] F. V. Jensen and T. D. Nielsen, “Bayesian Networks and Decision Graphs,” Knowledge

Eng. Review, vol. 23, no. 4, p. 413, 2008. 214

[233] JGraph Ltd. (2017) JGraphX (JGraph 6) User Manual. [Online; accessed 02-February-

2019]. [Online]. Available: https://jgraph.github.io/mxgraph/docs/manual_javavis.

html/ 217, 221

http://bayesian-intelligence.com/publications/TR2017_1_iOOBN_Supp.pdf
http://bayesian-intelligence.com/publications/TR2017_1_iOOBN_Supp.pdf
http://www.coffeeblack.org/
http://www.antlr.org/
https://jgraph.github.io/mxgraph/docs/manual_javavis.html/
https://jgraph.github.io/mxgraph/docs/manual_javavis.html/

