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Abstract

Supersymmetry offers possible solutions to several problems that require
physics beyond the Standard Model (SM). Two of the biggest among these
problems are the dark matter (DM) and the origin of the baryonic matter.
We explore these two problems using the Minimal Supersymmetric Standard
Model (MSSM) and the Next-to-MSSM (NMSSM).

Firstly, we assume the lightest neutralino \~\chi 0
1 of the R-parity conserving

MSSM is the lightest supersymmetric particle. We consider the resonant
annihilation of \~\chi 0

1 via a Z or a light Higgs boson. A resonant annihilation
of \~\chi 0

1 produces signals that can be probed with both astrophysical and
collider experiments. In particular, we combine the current constraints
from experiments on DM direct detection, Z and Higgs invisible decay,
direct searches for electroweakinos and sleptons at the Large Hadron Collider
(LHC) and the muon anomalous magnetic moment. We implement these
constrains in scans over the parameter spaces of a simplified model and the
phenomenological MSSM. We find that the allowed parameter spaces are
very constrained and will be almost fully explored by ongoing and future
experiments, such as LUX-ZEPLIN and high luminosity LHC.

Secondly, we study the cosmological phase transitions in electroweak
baryogenesis. We use the one-loop temperature-dependent effective potential
of the two Higgs doublet model plus a singlet (THDMS) that is an effective
field theory of the NMSSM. As the Universe evolves and the temperature
decreases, we trace the path of minima of the potential and find possible phase
transitions between these minima. We scan the THDMS parameter space
looking for points such that: the deepest minimum of the potential at zero
temperature lies at the observed vacuum expectation value of the electroweak
symmetry breaking (246\mathrm{G}\mathrm{e}\mathrm{V}), the Universe experiences a strong first-order
phase transition (SFOPT) and the Large Electron-Positron Collider and LHC
constraints are satisfied. We discover and classify different patterns of the
phase structure. We find that the SM-like Higgs is almost always the next to
lightest Higgs and for some of the parameters in the model, we identify the
most favourable values for a SFOPT.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics describes elementary particles
and their interactions. It encapsulates decades of theoretical researches and
experimental findings. It explains almost all the particle physics phenomena
we observe today providing predictions with astounding precision. Indeed, it
is so successful that it deservedly gained the adjective “standard”.

Nevertheless, the Standard Model has some problems a few of which are
listed here.

Gravity The SM does not include gravity. Because of the very small value
of the coupling constant of gravity compared to other coupling constant
values, this does not affect the predictions of the model. A quantum the-
ory of gravity is however really indispensable to understand phenomena
where the strength of gravity becomes comparable to other interactions,
for example at the beginning of the Universe or in black holes or at the
Plank scale. In these cases, the SM cannot make a reliable prediction.

Dark matter and dark energy The SM only accommodates particles that
are experimentally observed. However, from astrophysical data [1] we
infer that the SM particles constitute only 5% of the matter in the
Universe, while about 26% of the energy density of the Universe is made
of some unknown kind of matter and the remaining 69% is made of the
so-called dark energy responsible for the acceleration of the Universe.
Even though there are many searches in this direction and some of them
require to modify the theory of gravity [2], dark matter and dark energy
remain a mystery in the SM.

Baryon asymmetry From astrophysical data, we know that the Universe
contains matter and there are no regions in the observable Universe
that contain substantial amount of antimatter [3]. The SM, on the
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2 CHAPTER 1. INTRODUCTION

other hand, cannot quantitatively explain how such a prominent matter-
antimatter asymmetry is created. In particular, even though the C
symmetry, the charge conjugation that transforms matter to antimatter,
is violated in the SM, the amount of asymmetry that we observe cannot
be explained within the SM.

Hierarchy problem The free parameters of the SM must be related in a
precise but unexplained way to account for some experimental results.
In particular, performing the calculation of the Higgs mass in an effective
filed theory containing the SM and so utilising its parameters that are
experimentally measured, we would expect a Higgs mass much bigger
than observed. The actual measured value of mH \simeq 125\mathrm{G}\mathrm{e}\mathrm{V} can still
be inferred from the above calculation, but it requires very precise
cancellations of terms in the mH expression. This requirement is known
as fine-tuning and represents an indication that some mechanism that
can explain such accurate cancellation is still hidden beyond the SM.
Such a mechanism can be originated from a symmetry and is indeed
implemented in supersymmetric theories.

Anomalies Some calculations performed in the SM have a significant dis-
crepancy with the corresponding experimental result. This, for example,
happens with precision experiments. An example is the value of the
magnetic dipole moment of the muon that is measured with a precision
of about half a part per million [4]. This allows a very precisely check
against the SM prediction. The predicted and measured values deviate
at 3-4 sigma level [5–8].

Free parameters The SM does not provide any mechanism that justifies
the presence and the values of 19 free parameters in the theory.1 A
deeper comprehension of the physics could relate and derive some of
these parameters, reducing the number of free parameters.

Possible solutions to these problems constitute the very active research
area of the physics beyond the SM (BSM). One of the main of these research
areas is Supersymmetry (SUSY). SUSY is a theory that postulates a symmetry,
not present in the SM, that relates bosons with fermions. This simple idea
has profound consequences. It gives a solution to many of the problems
mentioned above of the SM.

1Here we assume that the neutrinos are massless. Considering the neutrinos masses
increase the number of free parameters.
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Hierarchy problem Thanks to the new symmetry, fermion and boson loop
corrections to the Higgs mass cancel exactly, solving the hierarchy
problem.

Gravity Promoting the supersymmetry to a local symmetry, gravity emerges
as a gauge theory.

Dark Matter Assuming the lightest SUSY particle is stable, it is a DM
candidate.

Baryon asymmetry Electroweak baryogenesis can quantitatively explain
the observed matter-antimatter asymmetry.

We have to mention that besides all these the new solutions, SUSY also
offers some challenging questions. The most pressing one is the spectrum of
SUSY particles, the supersymmetric partners of the SM particles. The Large
Hadron Collider has not found evidences of SUSY particles and puts lower
bounds on their possible masses. If, with new experiments, these bounds keep
on growing the hierarchy problem comes back with the necessity to explain
why there is such a big hierarchy between SM and SUSY masses.

In the thesis, we contribute to the research in this field in two directions
corresponding to two of the problems mentioned above of the SM for which
SUSY offers a solution: the dark matter and the baryon asymmetry of the
Universe.

In particular, we structure the thesis in the following way.

Chapter 2 We review the SM introducing concepts that are used to develops
the next chapters. Specifically, we present the SM particle content that
coincides with the particles we experimentally observe and their mathematical
description. After, we introduce the interaction among these particles that
are studied with symmetries and the group theory. With this background, we
can present the electroweak symmetry breaking (EWSB): a process that leads
to the mass generation. In this context, we also present the CKM matrix, a
matrix that shows that the CP violation is allowed in the SM.

These two subjects are the foundation of the following chapters since the
CP violation in the CKM matrix is not enough to account for the amount of
matter-antimatter asymmetry that we observe in the Universe. Consequently,
to explain the observed matter-antimatter asymmetry, we will study the
electroweak baryogenesis in the BSM context that can explain the observed
excess of matter over antimatter.

Finally, we exemplify the topic of gauge fixing showing different gauge
choices and how a good choice can simplify some calculation. Again, this sub-
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ject will be useful in the electroweak baryogenesis study where an appropriate
choice of the gauge simplifies the expressions and reduces the execution time
of a computational scan that we perform in the published material.

Chapter 3 We introduce the SUSY theory presenting some findings rel-
evant to the dark matter and baryogenesis studies. In particular, we start
introducing the notation used in the Lagrangian formalism and the SUSY
algebra. Specifically, the SUSY algebra defines the operator that turns a
fermionic state into a bosonic state and vice-versa and is at the root of
SUSY. In fact, Noether’s theorem associates this operator with the SUSY
transformations of the fields.

Using a Lagrangian \scrL with scalar and fermion fields, we show these
transformations that leave \scrL invariant up to total derivatives, satisfying
Hamilton’s principle. Considering interaction terms in \scrL we derive the
superpotential, a function that holds information about the interactions.

Next, we introduce gauge theory, starting with the Abelian case. We add
Abelian vector supermultiplets together with their interactions and show the
new SUSY transformations. We finish building the Lagrangian analysing the
non-Abelian case. We include non-abelian vector supermultiplets together
with their interactions and show the general form of the Lagrangian and the
SUSY transformations. After this, motivated by experimental evidence, we
present the topic of SUSY breaking, illustrating a different possible way to
break the symmetry.

On these grounds, we introduce the Minimal Supersymmetric Standard
Model (MSSM) that is the simplest SUSY model. We present its spectrum
and superpotential. We discuss the SUSY breaking in this specific model
showing the Lagrangian breaking terms. We conclude by listing some problems
that this model shows, in particular, its inability to explain the observed
matter-antimatter asymmetry.

Motivated by these problems, we study the Next-to-Minimal Supersym-
metric Standard Model (NMSSM). Again, we show the spectrum, the superpo-
tential and the SUSY breaking terms. Also, we examine the Higgs sector that
we will use in the work on baryogenesis. We conclude the chapter studying
the Two Higgs Doublet Model plus a Singlet (THDMS). The THDMS is an
effective field theory model of the NMSSM and is utilised in our study on
baryogenesis.

Chapter 4 We introduce the matter-antimatter problem and describe the
electroweak baryogenesis. Specifically, we introduce the asymmetry parameter
that quantifies the difference between the amount of matter and antimatter
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in the Universe. A mechanism that can produce this matter-antimatter
asymmetry is called baryogenesis. The asymmetry parameter represents the
final goal of any baryogenesis theory. In contrast, the Sakharov conditions
constitute the initial requirements. We illustrate the Sakharov conditions,
the three requirements that any baryogenesis theory has to satisfy.

We present the Electroweak Baryogenesis (EWBG), a mechanism that
satisfies the Sakharov condition and that can give the observed value of
the asymmetry parameter. EWBG takes place during a first-order phase
transition at the beginning of the Universe in a very hot plasma in which
two different phases are mixed together. This is a complex scenario in
which non-perturbative processes and non-equilibrium thermodynamics play
a fundamental role. We outline the different steps of the Universe’s evolution
that lead to the matter-antimatter asymmetry. These steps start after the
Big Bang when the SU(2)\otimes U(1) gauge symmetry is still unbroken, and the
temperature-dependent Higgs potential has a parabolic-like shape. During
the cooling of the Universe, the breaking of the SU(2)\otimes U(1) gauge symmetry
can lead to a first-order phase transition. This phase transition happens
through the nucleation and expansion of bubbles. We illustrate how the
combination of these expanding bubbles and non-perturbative processes
generates a mechanism that produces matter-antimatter asymmetry. We
introduce concepts such as the phase transition strength that can quantify
the rate at which matter is created and the effective potential that describe
the potential at variable high temperature. These concepts will be used in
the study of phase transitions in the NMSSM.

Chapter 5 We present a published work in which we investigate if the
lightest neutralino of the R-parity conserving MSSM is consistent with the
current DM and collider experiments constraints.

Before the article, we describe the motivation of this study. In particular,
we wanted to investigate if the MSSM, one of the simplest SUSY model,
can still provide a candidate for dark matter. This is an important question
because the presence of dark matter is one of the SM problems where SUSY
gives a BSM solution. Be briefly review the DM problem introducing experi-
mental evidences of DM. We mention some proposed solution to the problem
noting, however, that there is still no consensus about what DM is made of.

Finally, we present our work on DM resonant annihilation in the context of
the MSSM. Here we firstly use a simplified model where all apart from three
MSSM parameters are fixed. The fixed parameters have a value such that
the SUSY particles are decoupled and we can satisfy collider experiments.

With this setting, we perform a scan over the remaining three parameters.
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For each point in the scan, we calculate the relic DM density and check it
against DM observations. In this way, DM experiments place limits on the
allowed parameter space.

After that, we consider constraints from collider experiments so that the
parameter space is further constrained. We present the allowed parameter
space and show the future projected limit given by the High Luminosity Large
Hadron Collider experiment and LUX-ZEPLIN experiment.

Finally, we examine the parameter space in the phenomenological MSSM,
repeating the same analysis with more experimental constraints.

Chapter 6 We present a published work in which we study EWBG in the
context of the NMSSM. Here, starting from the information presented in
Chapter 4, we first introduce the NMSSM. To perform precise calculations
using a one-loop NMSSM potential, we introduce the THDMS that represent
an effective field theory of the NMSSM. The precise calculations in the THDMS
are possible because the NMSSM heavy SUSY particles are integrated out so
that we avoid large logarithms in the Coleman-Weinberg correction of the tree
level NMSSM potential. To connect the NMSSM and the THDMS potentials,
we match their parameters. We complete the THDMS potential adding to
it temperature corrections that are essential to describe the early Universe
conditions.

Using this effective potential at finite temperature, we study the possible
phase transitions during EWBG. To do so, we scan the NMSSM parameter
space limiting the parameter ranges according to experimental constraints. We
adopt a different approach from previous articles in the literature. Previous
works mainly focused on calculating baryogenesis parameters such as the
critical temperature or the nucleation temperature. Our work is the first one
that studies the rich underlying phenomenology of the possible cosmological
phase transitions. In particular, we show that there are different possible
phases of the potential. We call a cosmological history the transition from
the early Universe’s phase to the today Universe’s phase. A cosmological
history can happen directly or through one or more other phases. In general,
different NMSSM points lead to different cosmological histories. We classify
the collected NMSSM points according to their corresponding cosmological
histories. We identify four classes and show the different characteristics of
each class studying:

\bullet the masses of the non-SM-like Higgs bosons,

\bullet the values of the vacua at the critical temperature,
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\bullet the values and the relationships between baryogenesis parameters and
NMSSM parameters.

Appendix A The scan performed in the EWBG study described in the
previous paragraph and Chapter 6 required to set the NMSSM parameters
at an energy scale appropriate for the early Universe conditions. These
parameters are matched to the THDMS and evolved with the renormalisation
group equations to be used in the zero-temperature potential. The matching
and running procedure is implemented by FlexibleSUSY and SARAH using
the files displayed in this Appendix.
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Chapter 2

Standard Model

The Standard Model (SM) is a model in particle physics that include all known
elementary particles and describe their dynamics and their interactions. The
SM explains all the known fundamental interactions, except the gravitational
one that is not included in the theory. Nevertheless, since current experiments
are not sensitive to quantum gravity effects, the absence of gravity does not
influence the agreement between SM predictions and high energy physics
experiments. In fact, at energies currently probed by experiments, the
gravitational coupling constant \alpha G, which expresses the “strength” of gravity,
is many order of magnitude smaller than the coupling constant of the weak,
electromagnetic and strong force. Looking at the variety of phenomena the SM
can explain and the level of agreement between predictions and experiments,
the SM is often called one of the most successful physics theory ever.

The SM is based on the theoretical framework of quantum field theory
(QFT). In QFT elementary particles are described as excited states of a
field, and interactions between particles are described by the exchange of
other additional elementary particles called mediators or force carriers. QFT
uses the Lagrangian formalism in which an operator valued function, the
Lagrangian density called Lagrangian for simplicity, includes all the infor-
mation to quantitatively describe the dynamics and interactions of fields.
Given a system of fields and given the symmetries under which the system
is invariant, the Lagrangian is typically constructed to be the most general
renormalizable function of the fields which respects the given symmetries. The
SM Lagrangian is a function of the fields describing all elementary particles
and respect the Poincaré symmetry and the SU(3)C \otimes SU(2)L \otimes U(1)Y gauge.

9
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2.1 SM particle content
The SM spectrum consists of all the known elementary particles that are
particles that, at the present understanding, are not composed of other
particles. Each elementary particle is uniquely identified by its quantum
numbers. According to the spin quantum number, or spin, all the elementary
particles in the SM are divided into two groups, see Table 2.1:

Fermions The members of this group have the distinctive characteristic
of having a half-integer spin and, according to the spin-statistic theo-
rem [10], they obey the Fermi-Dirac statistics.

Bosons The members of this group are all the force carriers and the Higgs
particle; they have the distinctive characteristic of having an integer
spin. According to the spin-statistic theorem, bosons obey to the
Bose-Einstein statistics.

2.1.1 Fermions

In addition to their half-integer spin, fermions can carry different kind of
charges. Fermions that carry a charge of colour, for example, are called quarks
while fermions with no colour charge are called leptons. The charge influences
the interactions between particles: if a particle carries a given charge it will
interact under the corresponding force. Quarks, for example, interact via the
strong force while leptons do not.

Having fixed the spin and charge, quarks and leptons are further divided
into generations or families. In the first generation of quarks, there are the
up quark, or u, with an electric charge of +2

3
e and down quark, or d, with an

electric charge of  - 1
3
e, where e is the positron electric charge. In the second

generation, the quark charm, or c, has the same spin and electrical charge of
u but has a higher mass. In the same second generation, the strange quark,
or s, has the same spin and electric charge of d but has a higher mass. In
the third generation the quarks top, or t, and bottom, or b, have the same
spin and electric charge of u and d respectively, but mass higher than all the
other quarks [11].

In the same way, in the first generation of leptons, there is the electron,
e, and the electron neutrino \nu e, while in the second generation the muon \mu 
and the muon neutrino \nu \mu , finally in the third generation the tau and the
tau neutrino \nu \tau . The e, \mu and \tau all have the same electric charge, while their
masses are such that me < m\mu < m\tau ; as stated by the lepton universality, \mu 
and \tau can be considered as a heavier copy of the electron. All the neutrinos
have a zero electric charge; in the standard model, they only interact via
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the weak interaction. Regarding the neutrino masses, it is still a very active
field of research: experimentally it has been found that neutrinos have mass
and an upper limit for these masses is around a fraction of few electronvolts
(see [12]).

There is no evidence for further generations of quarks or leptons. In
particular the possibility of a fourth type of light neutrino, that is a neutrino
whose mass is less than half the Z-boson mass, is excluded by all collider
experiments [13]. Also a possible fourth-generation quark t\prime with mass mt\prime <
1160\mathrm{G}\mathrm{e}\mathrm{V} is excluded at 95\% CL, and a similar limit holds for b\prime quarks [14,
15].

Left- and right-handed free fermions

All fermions are divided in left-handed and right-handed according to whether
they are excitations of a left-handed or right-handed chiral field. These fields
appear in the kinematic description of free fermions.

Free fermions are described by the Dirac Lagrangian:

\scrL Dirac = \=\psi 
\bigl( 
\mathrm{i}\gamma \mu \partial \mu  - m 14\times 4

\bigr) 
\psi (2.1)

where m is the mass of the fermion, 14\times 4 is the 4 by 4 identity matrix, \psi 
is the fermion field represented as a 4-component spinor, \=\psi \equiv \psi \dagger \gamma 0 is the
adjoint spinor of \psi and \gamma 0 is one of the four Dirac matrices \gamma \mu , where \mu runs
from 0 to 3, that can be expressed in the Weyl representation as:

\gamma 0 =

\Biggl( 
0 1
1 0

\Biggr) 
\gamma i =

\Biggl( 
0 \sigma i

 - \sigma i 0

\Biggr) 
(2.2)

where i runs from 1 to 3. The entries of the \gamma \mu are the zero 0, the identity 1
and the Pauli \sigma i 2 by 2 matrices defined as

0 =

\Biggl( 
0 0
0 0

\Biggr) 
1 =

\Biggl( 
1 0
0 1

\Biggr) 
(2.3)

\sigma 1 =

\Biggl( 
0 1
1 0

\Biggr) 
\sigma 2 =

\Biggl( 
0  - \mathrm{i}
\mathrm{i} 0

\Biggr) 
\sigma 3 =

\Biggl( 
1 0
0  - 1

\Biggr) 
(2.4)

where the Pauli matrices obey the commutation relations
\Bigl[ 
\sigma a, \sigma b

\Bigr] 
= 2\mathrm{i}\epsilon abc\sigma c (2.5)
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with \epsilon abc being the three dimensional Levi-Civita symbol. Defining the 4-
elements \bfitsigma and \=\bfitsigma whose elements are 2 by 2 matrices

\bfitsigma \mu =
\Bigl( 

1, \sigma 1, \sigma 2, \sigma 3
\Bigr) 

\=\bfitsigma \mu =
\Bigl( 

1, - \sigma 1, - \sigma 2, - \sigma 3
\Bigr) 

(2.6)

the Dirac Lagrangian can be written as

\scrL Dirac =
\Bigl( 
\psi \dagger 

R, \psi 
\dagger 
L

\Bigr) \Biggl(  - m1 \mathrm{i}\bfitsigma \mu \partial \mu 
\mathrm{i} \=\bfitsigma \mu \partial \mu  - m1

\Biggr) \Biggl( 
\psi L

\psi R

\Biggr) 
. (2.7)

The fields \psi L and \psi R are respectively left-handed and right-handed chiral
fields and excitations of these fields are the left-handed and right-handed
fermions.

A special case is when the mass parameter is zero m = 0; in the SM, this
is the case of neutrinos. The Dirac Lagrangian corresponds to two decoupled
Euler-Lagrange equations, one for \psi L and \psi \dagger 

L and another one for \psi R and
\psi \dagger 

R. While experiments confirm the existence of left-handed neutrinos, there
is no evidence for right-handed neutrino [12].

Left- and right-handed interacting fermions

Interactions arise from symmetry groups that are associated, via the Noether’s
theorem, with a conserved charge. Thus, particles that have a charge asso-
ciated with a symmetry are subjected to the interaction arising from that
symmetry. Left- and right-handed fermions together with their properties
under the groups that give rise to the forces, are summarised in Table 2.1.
This table shows that fermions belong to various representations of SUC(3),
SUL(2) and UY(1) carrying different charges under these gauge groups. Parti-
cles labelled by \bfone under a group are singlet under that group, that is they
are unchanged under the group transformation and do not interact via the
force described by the corresponding symmetry. Particles corresponding to a
representation different from \bfone transform under the corresponding symmetry
non-trivially and have a charge that allows interaction via the corresponding
force.

From the Table 2.1 we can see that only left-handed fermions interact via
the weak force that is described by the SU(2) symmetry group. They form
SU(2) doublets

L1 =
\bigl( 
\nu eL
eL

\bigr) 
L2 =

\bigl( 
\nu \mu L
\mu L

\bigr) 
L3 =

\bigl( 
\nu \tau L
\tau L

\bigr) 
Q1 =

\bigl( uL
dL

\bigr) 
Q2 =

\bigl( 
cL
sL

\bigr) 
Q3 =

\Bigl( 
tL
bL

\Bigr) 

(2.8)
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and these doublets transform under SU(2) as left-handed Weyl spinors. On
the other hand, right-handed fermions do not interact via the weak force and
transform as singlets under a SU(2) transformation

e1R = eR e2R = \mu R e3R = \tau R u1R = uR u2R = cR u3R = tR

d1R = dR d2R = sR d3R = bR .
(2.9)

Looking at the property under the SU(3) symmetry, Table 2.1 shows that
only quarks and gluons interact via the strong force described by the SU(3)
symmetry.

A particular property of interactions between quantised fields is that the
strength of the interaction depends on the energy scale. At low energy, for
example, the strong interaction is very strong compared to the weak and
electromagnetic interactions, while at high energy it becomes less and less
strong and eventually its strength becomes comparable to the strength of the
other interactions. At low energies (order of \mathrm{M}\mathrm{e}\mathrm{V}) the strong interaction leads
to the phenomenon of colour confinement: particles with a colour charge, the
charge associated with the SU(3) symmetry, cannot be isolated and directly
observed. We can only detect particles with a net colour charge of zero, called
colourless particles. So, if we start with a colourless particle composed of a
bound state of coloured subparticles and we try to separate these subparticles
adding more and more energy to the bound system, at some point the creation
of a colourless quark-antiquark couple becomes energetically possible. This
couple combines with the bound state resulting in the appearance of colourless
particles that can be separated and observed. This means that at low energies,
coloured particles, such as quarks and gluons, are always found in bound states.
These states are called hadrons. The only two experimentally observed hadron
states are mesons, composed of a valence quark and a valence antiquark, and
baryons, composed of three valence quarks [11]. All mesons and bound states
of mesons are unstable and decay to other particles. Among the baryons,
the proton is a stable state of uud valence quarks and the neutron is an
unstable state of udd valence quarks, with a mean life of about 880 \mathrm{s} [16]. In
the Standard Model, protons must be stable because the baryon quantum
number B, defined as

B =
1

3

\bigl( 
nq  - n\=q

\bigr) 
(2.10)

where nq is the number of quarks and n\=q is the number of antiquarks, is
conserved and protons are the lightest baryons. This is experimentally
confirmed: the proton mean life is \tau \gtrsim 1029 years [16] (the age of the Universe,
in comparison, is \sim 1010 years).

From astronomical observation, we know that the Universe is composed
only of matter, while antimatter is almost absent: about 73\% of the observed
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matter is hydrogen and 25\% is helium. Since nearly all the mass of an atom
is made of its nucleus, and since atomic nuclei are made of baryons (protons
and neutrons), the bulk of the observed matter in the Universe is baryonic
matter.

2.1.2 Bosons

In the SM there are thirteen bosons: twelve gauge bosons with spin 1 and
the Higgs boson with spin 0. Eight of the gauge bosons mediate the strong
force and they form an octet under the SU(3) group, the group that describes
strong interactions, and have colour charges. The remaining four mediate
the electroweak force and are singlet under the SU(3) group thus they do not
have a colour charge, see Table 2.1.

In the SM, gauge bosons are the particles that mediate the interactions;
interactions, on the other hand, are described by symmetries, so that gauge
bosons are related to these symmetries. The SM gauge symmetries are
described by the SU(3) SU(2) and U(1) groups.

The Higgs boson is associated with a mechanism, the Higgs mechanism,
that spontaneously breaks the SM electroweak gauge symmetry SU(3)C
\otimes SU(2)L\otimes U(1)Y to the electromagnetic gauge symmetry SU(3)C\otimes U(1)QED.

Massive gauge bosons interact with the Higgs boson field. Without this
interaction, all the gauge bosons were massless. A force mediated by a
massless particle is a long-range force, as the electromagnetic field. But the
weak force is a short-range force and the gauge bosons that mediate this
force have a mass different from zero. Gauge bosons receive mass via the
electroweak symmetry breaking (EWSB) mechanism. This mechanism, at
currently probed energies, leads to three massive bosons in the electroweak
sector. After symmetry breaking, we can thus identify the W\pm and Z0 boson
as mediators of the weak force. The photon \gamma is the fourth gauge boson in
the electroweak sector. It is massless and is identified as the mediator of the
electromagnetic field.

In the strong sector, there are eight gauge bosons that correspond to
eight linear independent types of gluons. Even though gluons are massless,
the strong interaction is a short-range interaction. This is due to the colour
confinement mechanism that prevents strong charged particles from being
separated without producing new strong charged particles. This means that,
at currently probed energies, it is not possible to isolate free quarks or gluons.
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2.2 Symmetries and interactions

The Lagrangian contains all the physical information of the system. To
describe laws of physics that do not depend on a particular choice of the
frame of an observer, the Lagrangian must be invariant under translation,
rotation and boost transformations. These are described by the translation
and Lorentz groups which together form the Poincaré group. Thus the
Lagrangian must be invariant under the Poincaré group.

In addition, the SM describes how particles interact. The description is
provided by specific terms in the Lagrangian each of which is associated with
a symmetry. The Lagrangian is typically found by studying the quantities
that are conserved in a physical system. Implementing the corresponding
symmetries in the Lagrangian ensures that the Lagrangian leads to the
observed conservations.

The strength of an interaction is given by a dimensionless parameter g
that appears in Lagrangian terms that describe the considered interaction.
Since g is dimensionless for the known fundamental interactions, it provides
a way to compare strengths of different interactions. For example, the weak
interaction is weak since its coupling constant g2 is small compared to 1. On
the other hand, the strong interaction is strong because its coupling constant
gs is order 1.

In spite of the name “constant”, the value of the coupling constants varies
with the energy scale. This means that different measurements may give
different values of the same coupling constant depending on the energy scale at
which the coupling constant is observed. This phenomenon is called running
of the coupling constants and is described by the renormalization group.

The running of the coupling constants has profound implications: if
an interaction is weak, as the weak interaction, the theory can be well
approximated using perturbative techniques. In a perturbative theory it is
possible to develop calculations using expansions in power of the coupling
constant g, since successive terms in an expansion, depending on bigger and
bigger power of g that has a value g \ll 1, are smaller and smaller. On the other
hand, if an interaction is strong, such as the strong interaction, a perturbation
theory is meaningless because successive terms in an expansion become greater
and greater. In this case, other techniques have to be developed. Nevertheless,
since the coupling constants depend on the energy, the same interaction can
be treated perturbatively in some energy regimes and non-perturbatively in
others. For example, the coupling constant of the strong interaction decreases
when the energy increase. In this way, the strong interaction becomes weaker
at high energy and we can apply perturbative techniques to study it. At
lower energies the coupling constant of the strong interaction is too big to use
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a perturbative theory: new features, such as the colour confinement, become
predominant and cannot be explained with perturbative techniques.

Another implication of the running of the coupling constants is the theo-
rized unification of the strong and electroweak interaction. Since the strength
of the interactions varies with energy, it is possible that at very high energies
these interactions have the same strength ad can be described as a unified
interaction with a single coupling constant. Such theories are called Grand
Unified Theories (GUT) and the energy scale at which the electromagnetic
and strong interactions can be described as a single interaction is called the
GUT scale.

2.2.1 Abelian interaction

Matrices together with matrix multiplication form a group. Generally, matrix
multiplication is not commutative, that is, given two matrices A and B on
which matrix multiplication is defined, AB \not = BA. The non-commutative
property implies that the group of matrices together with matrix multiplication
is a non-commutative group also called a non-Abelian group.

A particular case is represented by the 1\times 1 matrices: they correspond to
a number so that the multiplication is commutative, AB = BA. In this case
the 1\times 1 matrices together with the numeric multiplication form an Abelian
group.

An interaction that corresponds to an Abelian group is called Abelian
interaction. An example of Abelian interaction is the electromagnetic force,
the fermionic sector of which is described by the Lagrangian given in (2.7).
This Lagrangian is symmetric under the U(1) group that is composed of
all the 1 \times 1 complex unitary matrices, that is 1 \times 1 matrices U such that
UU \dagger = U \dagger U = 1. These matrices are represented by the complex numbers
\mathrm{e}\mathrm{i}\alpha and embody rotations, by the angle of rotation \alpha , about the origin in the
complex plane.

The U(1) invariance of the Dirac Lagrangian means that the Lagrangian (2.7)
and the Lagrangian obtained by the substitution

\psi \rightarrow \mathrm{e}\mathrm{i}q\alpha \psi (2.11)

(where the factor q is introduced for a subsequent use) are the same:

\scrL Dirac
\psi \rightarrow \mathrm{e}\mathrm{i}q\alpha \psi  -  -  -  -  - \rightarrow \mathrm{e} - \mathrm{i}q\alpha \=\psi 

\bigl( 
\mathrm{i}\gamma \mu \partial \mu  - m

\bigr) 
\mathrm{e}\mathrm{i}q\alpha \psi = \scrL Dirac . (2.12)

The transformation (2.11) is a global transformation, that is the angle
\alpha does not depend on the spacetime coordinate. The free Lagrangian (2.7)
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is only invariant under the global symmetry (2.11) and not under the local
symmetry

\psi \rightarrow \mathrm{e}\mathrm{i}q\alpha (x)\psi (2.13)

where x represent spacetime coordinates. In fact, applying the local transfor-
mation (2.13) to (2.1) we obtain

\scrL Dirac
\psi \rightarrow \mathrm{e}\mathrm{i}q\alpha (x)\psi  -  -  -  -  -  - \rightarrow \scrL Dirac  - q \=\psi 

\bigl( 
\gamma \mu \partial \mu \alpha (x)

\bigr) 
\psi . (2.14)

Following the principle of local gauge invariance, we require the symmetry to
be local that implies that the left hand side and the right hand side of (2.14)
can differ only by a total derivative. To achieve this, we are obligated to
modify the Dirac Lagrangian introducing an interaction. The right form for
this interaction comes from classical electromagnetism where interactions
are described using the four-potential F\mu \nu defined from the electromagnetic
potential A\mu :

A\mu \equiv (V,\bfitA ) (2.15)
F\mu \nu \equiv \partial \nu A\mu  - \partial \mu A\nu (2.16)

where V and \bfitA are the electric and magnetic potential. Since the poten-
tials V and \bfitA are not uniquely defined we can apply the following gauge
transformation

A\mu \rightarrow A\mu  - \partial \mu \alpha (x) \forall scalar function \alpha (2.17)

and the four-potential F\mu \nu remains unchanged:

F\mu \nu \equiv \partial \nu A\mu  - \partial \mu A\nu \rightarrow 
\bigl( 
\partial \nu A\mu  - \partial \nu \partial \mu \alpha 

\bigr) 
 - 
\bigl( 
\partial \mu A\nu  - \partial \mu \partial \nu \alpha 

\bigr) 
= F\mu \nu . (2.18)

This invariance under a transformation such as (2.17) is called gauge invari-
ance.

With this background, we can finally modify the Dirac Lagrangian adding
to it an interaction term. This addition is performed by substituting, in the
Dirac Lagrangian, the normal derivative \partial \mu with a covariant derivative D\mu :

\partial \mu \rightarrow D\mu = \partial \mu + \mathrm{i}qA\mu (2.19)

so that the Dirac Lagrangian (2.1) becomes

\scrL Dirac int = \=\psi 
\bigl( 
\mathrm{i}\gamma \mu D\mu  - m

\bigr) 
\psi = \=\psi 

\bigl( 
\mathrm{i}\gamma \mu \partial \mu  - m

\bigr) 
\psi  - q \=\psi \gamma \mu A\mu \psi 

= \scrL Dirac  - q \=\psi \gamma \mu A\mu \psi .
(2.20)
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The covariant derivative is thus responsible for a term  - q \=\psi \gamma \mu A\mu \psi that, thanks
to the gauge transformation (2.17) gives a term q \=\psi 

\bigl( 
\gamma \mu \partial \mu \alpha 

\bigr) 
\psi that cancels

the term  - q \=\psi 
\bigl( 
\gamma \mu \partial \mu \alpha 

\bigr) 
\psi in (2.14) and makes the Dirac Lagrangian invariant

under the U(1) symmetry. In other words, the Lagrangian \scrL Dirac int in (2.20)
is invariant when both the transformations

local U(1) symmetry: \psi \rightarrow \mathrm{e}\mathrm{i}q\alpha (x)\psi 

gauge transformation: A\mu \rightarrow A\mu  - \partial \mu \alpha (x)
(2.21)

are performed together. In fact, starting from the previous Dirac Lagrangian
(2.20), applying the local U(1) symmetry \psi \rightarrow \mathrm{e}\mathrm{i}q\alpha (x)\psi we obtain

\scrL Dirac int
\psi \rightarrow \mathrm{e}\mathrm{i}q\alpha (x)\psi  -  -  -  -  -  - \rightarrow \scrL U(1)

Dirac int =
\=\psi 
\bigl( 
\mathrm{i}\gamma \mu \mathrm{i}q\partial \mu \alpha + \mathrm{i}\gamma \mu \partial \mu  - m

\bigr) 
\psi  - q \=\psi \gamma \mu A\mu \psi 

(2.22)
where \alpha is intended to have a spacetime dependence x even though it is not
explicitly written. After, applying the gauge transformation A\mu \rightarrow A\mu  - \partial \mu \alpha (x)
to the previous expression (2.22), we obtain

\scrL U(1)
Dirac int

A\mu \rightarrow A\mu +\partial \mu \alpha  -  -  -  -  -  -  -  - \rightarrow \=\psi 
\bigl( 
 - q\gamma \mu \partial \mu \alpha + \mathrm{i}\gamma \mu \partial \mu  - m

\bigr) 
\psi  - q \=\psi \gamma \mu A\mu \psi +q \=\psi \gamma \mu 

\bigl( 
\partial \mu \alpha 

\bigr) 
\psi 

= \scrL Dirac int
(2.23)

thus we find again the Dirac Lagrangian in (2.20), that is \scrL Dirac int is invariant
under the two transformations (2.21).

In summary, modifying the Lagrangian to be invariant under the local
U(1) symmetry leads to the addition of a new term that describes interactions
via the electromagnetic potential.

2.2.2 Non-Abelian interaction

Besides the U(1) group, the SM Lagrangian is also invariant under the
SU(2) and SU(3) group. These are special unitary groups of degree 2 and
3 respectively. The word “unitary” refers to the property, already seen in
U(1), that UU \dagger = U \dagger U = 1 satisfied by all matrices U in the unitary group.
The word “special” refers to the property that \mathrm{d}\mathrm{e}\mathrm{t}U = 1 for all matrices
U in the special group. So the SU(2) and SU(3) group are fundamentally
represented by 2\times 2 matrices and 3\times 3 matrices respectively that respect
both the properties mentioned above.

Since the multiplication between 2\times 2matrices, as well as the multiplication
between 3 \times 3 matrices, is not commutative, SU(2) and SU(3) are non-
commutative, or non-Abelian, groups. An interaction that corresponds to a
non-Abelian group is called a non-Abelian interaction.
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Following a similar procedure to the Abelian case, we substitute the normal
derivative \partial \mu with a covariant derivative D\mu . In this way, we introduce new
interaction terms and make the Lagrangian invariant under the new SU(2)
and SU(3) symmetries.

In particular, the electroweak sector is described by a Lagrangian invariant
under the SU(2)L\otimes U(1)Y symmetry that gives rise to the covariant derivative

D\mu = \partial \mu + \mathrm{i}
g1
2
Y B\mu + \mathrm{i}

g2
2
\tau W\mu . (2.24)

Here g1 and g2 are the coupling constants associated, respectively, with
the U(1)Y gauge field B\mu and with the tree SU(2)L gauge fields W\mu =
(W 1

\mu ,W
2
\mu ,W

3
\mu ), Y is the weak hypercharge and \tau = (\sigma 1, \sigma 2, \sigma 3) is written in

terms of the Pauli matrices (2.4).
In the SM, leptons only have electroweak interactions. So in the La-

grangian, the left-handed lepton dynamical terms are written via the covariant
derivative (2.24):

\scrL Lepton, left = \=Li\mathrm{i} \=\bfitsigma 
\mu D\mu Li + h.c. (2.25)

where the index i runs over the three generations, as specified in equation (2.8).
Right-handed leptons do not interact with the gauge fields W\mu ; in other words
the coupling constant g2 is null for right-handed fermions so that the covariant
derivative is defined as

D\mu = \partial \mu + \mathrm{i}
g1
2
Y B\mu . (2.26)

With this covariant derivative, the right-handed dynamical term is

\scrL Lepton, right = \=eiR\mathrm{i}\bfitsigma 
\mu D\mu eiR + h.c. (2.27)

where, again, the index i represent the generation as in equation (2.9).
Fermions that also interact via the strong interaction are called quarks

(see table 2.1). The symmetry that characterizes the strong interaction is the
SU(3) symmetry.

Quarks interact through all the SM interaction so that the complete
relevant symmetry is SU(3)C\otimes SU(2)L\otimes U(1)Y. The corresponding covariant
derivative is

D\mu = \partial \mu + \mathrm{i}
g1
2
Y B\mu + \mathrm{i}

g2
2
\tau W\mu + \mathrm{i}

gs
2
\lambda G\mu (2.28)

where gs is the strong coupling constant, G\mu are the eight gluon gauge fields
and \lambda = (\lambda 1, . . . , \lambda 8) are the Gell-Mann matrices [10].

As for the right-handed leptons, we could use this covariant derivative for
all the fermions, specifying that gs is null for leptons, that is leptons do not
interact via the strong force.
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Using this covariant derivative, the left-handed Lagrangian quark dynami-
cal term is

\scrL Quark, left = \=Qi\mathrm{i} \=\bfitsigma 
\mu D\mu Qi + h.c. (2.29)

Like right-handed leptons, right-handed quarks do not interact with the W\mu 

gauge fields so that their covariant derivative is

D\mu = \partial \mu + \mathrm{i}
g1
2
Y B\mu + \mathrm{i}

gs
2
\lambda G\mu (2.30)

and the right-handed dynamical terms are

\scrL Quark, right = \=uiR\mathrm{i}\bfitsigma 
\mu D\mu uiR + \=diR\mathrm{i}\bfitsigma 

\mu D\mu diR + h.c. (2.31)

2.2.3 Gauge terms

In the covariant derivative (2.28) we introduce the gauge fields B\mu ,W\mu and G\mu .
To find their kinetic terms, we start with the group theory of the symmetry
groups SU(3), SU(2) and U(1). Each element U of these groups, and in
general of SU(N), can be written as [10, 17]:

SU(N): U = \mathrm{e}\mathrm{x}\mathrm{p} (\mathrm{i}gT a\theta a) with a = 1, . . . , N2  - 1 (2.32)

where T a are the generators of the group, which in in the fundamental
representation can be represented by Hermitian traceless matrices of dimension
N \times N , while \theta a are the transformation parameters. g is a common numerical
factor that can be fixed normalizing the generators. It plays a fundamental
role in physics: g is the coupling constant of the interaction described by
the related symmetry group. The generators T a satisfy the commutation
relations \Bigl[ 

T a, T b
\Bigr] 
= \mathrm{i}fabcT c (2.33)

where the numbers f are the structure constants. The relations (2.33) define
the algebra of the group. The normalization of the generators is arbitrary. To
normalise the generators we can impose the structure constants f to satisfy

\sum 

c,d

facdf bcd = N\delta ab (2.34)

so that the generators for SU(N) satisfy

\mathrm{T}\mathrm{r}
\Bigl( 
T aT b

\Bigr) 
=

1

2
\delta ab . (2.35)

From the structure constants f we can define the quantity

(T aadj)
bc =  - \mathrm{i}fabc . (2.36)
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Since T aadj satisfy Eq. (2.33), as can be verified using (2.34), T aadj is a valid
representation of the group and is called adjoint representation.

As we have seen in the previous sections, we start with a Lagrangian
that is invariant under a global SU(3)\otimes SU(2)\otimes U(1) transformation, that
means the Lagrangian is invariant if we apply the SU(3), SU(2) and U(1)
transfromation (2.32) to the field \psi , where \theta does not depend on the spacetime
coordinates x. Now we can apply the gauge principle, that is require the
Lagrangian to be invariant under the local transformation

\psi \rightarrow \psi \prime = U(x)\psi with U(x) = \mathrm{e}\mathrm{x}\mathrm{p}
\bigl( 
\mathrm{i}gT a\theta a(x)

\bigr) 
. (2.37)

To satisfy this requirement of invariance, we have to introduce the covariant
derivative

D\mu = \partial \mu + \mathrm{i}gAa\mu T
a . (2.38)

In the SM for the SU(2) case, the above coupling constant g correspond to
g2, the fields Aa\mu correspond to the three gauge fields W i

\mu and the T a matrices
correspond to the 1

2
\sigma a matrices where \sigma a are the Pauli matrices:

SU(2):

\left\{ 
    
    

g \rightarrow g2

Aa\mu \rightarrow W i
\mu 

T a \rightarrow 1

2
\sigma a

. (2.39)

In this case we get the covariant derivatives (2.24) and (2.26) acting on the
left- and right-handed electroweak particles.

In the SU(3) case, the coupling constant g correspond to gs, the fields Aa\mu 
correspond to the eight gluon gauge fields Ga

\mu and the T a matrices correspond
to the 1

2
\lambda a matrices where \lambda a are the Gell-Mann matrices:

SU(3):

\left\{ 
    
    

g \rightarrow gs

Aa\mu \rightarrow Ga
\mu 

T a \rightarrow 1

2
\lambda a

. (2.40)

In this case we get the covariant derivatives (2.28) and (2.30) acting on the
left- and right-handed strongly interacting particles.

In the covariant derivatives each gauge field is related to each generator
of the corresponding group. From the covariant derivative expressions, the
following generator-field associations hold:

\bullet the U(1) generator Y and the single gauge field B\mu ;
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\bullet the three SU(2) generators \tau = (\sigma 1, \sigma 2, \sigma 3) and the three gauge fields
W i
\mu ;

\bullet the eight SU(3) generators, the Gell-Mann matrices \lambda = (\lambda 1, . . . , \lambda 8)
and the eight gauge matrix valued fields Ga

\mu .

Since these gauge fields propagate in spacetime we can describe them with a
gauge invariant kinetic Lagrangian. To do so, we define the gauge field A\mu 

A\mu \equiv Aa\mu T
a (2.41)

where Aa\mu was introduced in Eq. (2.38), (2.39) and (2.40). The corresponding
field strength tensor is defined as

F\mu \nu = \partial \mu A\nu  - \partial \nu A\mu  - \mathrm{i}g
\bigl[ 
A\mu , A\nu 

\bigr] 
(2.42)

and can be expanded over the generators T a

F\mu \nu = F a
\mu \nu T

a = \partial \mu A
a
\nu  - \partial \nu A

a
\mu + gfabcAb\mu Ac\nu . (2.43)

In the expansion we used Eq. (2.33), f are the structure constants defined
in (2.33) and (2.34) and g is the coupling constant defined in (2.32). Finally,
from the field strength tensor of the gauge field, using the normalization of
the generators (2.35), we derive the kinetic Lagrangian for the gauge fields as

\scrL gauge =  - 1

2
\mathrm{T}\mathrm{r}F\mu \nu F

\mu \nu =  - 1

2
F a
\mu \nu F

\mu \nu b\mathrm{T}\mathrm{r}T aT b =  - 1

4
F a
\mu \nu F

\mu \nu a (2.44)

that is invariant under the gauge transformation

F\mu \nu \rightarrow F \prime 
\mu \nu = UF\mu \nu U

\dagger . (2.45)

From this expression we can infer the transformation of the components
F a
\mu \nu 

F a
\mu \nu \rightarrow (F a

\mu \nu )
\prime = F a

\mu \nu + f bac\theta bF c
\mu \nu = F a

\mu \nu + \mathrm{i}(T badj)
ac\theta bF c

\mu \nu (2.46)

where we have used the asymmetry of the structure constants and the defini-
tion (2.36). This expression is the infinitesimal form of

F\mu \nu = \mathrm{e}\mathrm{x}\mathrm{p}
\Bigl( 
\mathrm{i}T badj\theta 

b
\Bigr) 
F\mu \nu (2.47)

that shows that the field strength tensor F\mu \nu transforms in the adjoint repre-
sentation.
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For example, in case of the U(1)Y symmetry, from the gauge field B\mu , we
define the field strength tensor B\mu \nu 

B\mu \nu = \partial \mu B\nu  - \partial \nu B\mu (2.48)

that correspond to the 4-potential (2.16). This particular field strength tensor
does not have the structure constants f because the U(1) group is composed
of complex numbers together with the normal number multiplication and the
structure constants, that define the multiplication, all vanish. Indeed, from
the definition (2.33)

\mathrm{i}fabcTc =
\Bigl[ 
T a, T b

\Bigr] 
= T aT b - T bT a

commutative -  -  -  -  -  -  - \rightarrow 
group

T aT b - T aT b = 0 (2.49)

For a commutative group, such as U(1), all the generators commute with
each other.

Having defined the field strength tensor B\mu \nu , from (2.44) the U(1) gauge
field kinetic term is

\scrL U(1) =  - 1

4
B\mu \nu B

\mu \nu . (2.50)

In the SU(2) and SU(3) cases the structure constants are not zero. In fact,
while U(1) elements can be represented by complex numbers that commute,
SU(2) and SU(3) elements are the matrices (2.32) where the generators do
not commute.

In the particular case of SU(2), the generators are the Pauli matrices (2.4)
conventionally normalized as:

T a =
\sigma a

2
(2.51)

whose commutation relations are, from (2.5),
\Bigl[ 
T a, T b

\Bigr] 
= \mathrm{i}\epsilon abcT c . (2.52)

The structure constants are represented by the Levi-Civita symbol \epsilon abc. The
SU(2) strength tensor W a

\mu \nu is thus defined as

W a
\mu \nu = \partial \mu W

a
\nu  - \partial \nu W

a
\mu + g\epsilon abcWb\mu Wc\nu (2.53)

where W a
\mu are the SU(2) gauge fields. The kinetic Lagrangian of W\mu is

\scrL SU(2) =  - 1

2
\mathrm{T}\mathrm{r}
\bigl( 
W\mu \nu W

\mu \nu 
\bigr) 
=  - 1

4
W a
\mu \nu W

\mu \nu 
a . (2.54)
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In a similar way, we can find the generators of SU(3) that are eight 3 by 3
matrices, known as Gell-Mann matrices [10] and denoted by \lambda i. They respect
the commutations relations

\biggl[ 
\lambda i
2
,
\lambda j
2

\biggr] 
= \mathrm{i}f ijk

\lambda k
2

(2.55)

where the structure constants f ijk are completely antisymmetric in the three
indices and have values f 123 = 1, f 147 = f 165 = f 246 = f 257 = f 345 = f 376 = 1

2

and f 458 = f 678 =
\surd 
3
2
. The SU(3) gauge fields are denoted by Ga

\mu and are
called gluon fields. From the gluon fields and the structure constants, we can
define the field strength tensor Ga

\mu \nu 

Ga
\mu \nu = \partial \mu G

a
\nu  - \partial \nu G

a
\mu  - gsf

abcGb
\mu G

c
\nu (2.56)

and with Ga
\mu \nu we can write the kinetic Lagrangian of the SU(3) gauge field:

\scrL SU(3) =  - 1

2
\mathrm{T}\mathrm{r}
\bigl( 
G\mu \nu G

\mu \nu 
\bigr) 
=  - 1

4
Ga
\mu \nu G

\mu \nu 
a . (2.57)

2.3 Electroweak symmetry breaking
Experimentally, all fermions and the gauge bosons mediators of the weak
interactions, the W\pm and Z0 particles, are massive particles. This fact must
be reflected in the Lagrangian where we expect some terms, called mass terms,
to be included for fermions, W\pm and Z0. In the Dirac Lagrangian (2.1)
fermion mass terms take the form  - m \=\psi \psi =  - m

\Bigl( 
\=\psi L\psi R + \=\psi R\psi L

\Bigr) 
and such

terms imply that fermion could flip chirality. Doing so, the total hypercharge,
that is different for left and right-handed fermions, would not be conserved.
For the W\pm and Z0 bosons, a mass term of the form mA\mu A\mu would spoil the
gauge principle because a non-vanishing m breaks the local gauge invariance
of the Lagrangian. So, to generate masses, on the one hand, we need to
break the gauge symmetry, and on the other hand, we need a fully symmetric
Lagrangian.

The Higgs mechanism solves both these problems introducing a new
complex scalar field \phi that give mass to fermions, via Yukawa interactions
between fermions and Higgs fields, and to the gauge bosons W\pm and Z0,
via the spontaneous symmetry breaking (SSB) mechanism. To explain this
mechanism consider a field \phi , called Higgs field that is a SU(2)L doublet

\phi (x) =

\Biggl( 
\phi +(x)
\phi 0(x)

\Biggr) 
(2.58)
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|ϕ|

V(|ϕ|)

(a) Parabolic-like potential
|ϕ|

V(|ϕ|)

(b) Mexican hat potential (c) 3D Mexican hat

Figure 2.1: The parabolic-like potential is characterised by \mu 2 \geq 0 while the
Mexican hat potential has \mu 2 < 0; the two dimensional Mexican hat potential
has a continuous set of degenerate minima.

and start with the Lagrangian

\scrL =
\bigl( 
\partial \mu \phi 
\bigr) \dagger 
\partial \mu \phi  - V (\phi ) V (\phi ) = \mu 2\phi \dagger \phi + \lambda 

\Bigl( 
\phi \dagger \phi 
\Bigr) 2
. (2.59)

This Lagrangian is invariant under the U(1) global symmetry \phi (x) \rightarrow \mathrm{e}\mathrm{i}\alpha \phi (x)
where \alpha does not depend on the spacetime coordinate x.

To make this Lagrangian invariant under the local SU(2)L \otimes U(1)Y we
substitute the derivative with the covariant derivative (2.24) so that the
Lagrangian becomes

\scrL =
\bigl( 
D\mu \phi 

\bigr) \dagger 
D\mu \phi  - \mu 2\phi \dagger \phi  - \lambda 

\Bigl( 
\phi \dagger \phi 
\Bigr) 2
. (2.60)

In the potential V (\phi ), Eq. (2.59), the parameter \lambda is chosen to be positive,
\lambda > 0, in order that the potential is bounded from below. Regarding \mu 2

there are two possible choices, \mu 2 \geq 0 and \mu < 0. For \mu 2 \geq 0 the potential,
depicted in Fig. 2.1a, has a parabolic-like shape and it is not useful for the
Higgs mechanism. The interesting case \mu 2 < 0 leads instead to the so-called
Mexican hat potential, see Fig. 2.1b and 2.1c. With this choice, the potential
exhibits a local maximum at the origin so that the system is unstable at the
origin. Away from the origin there are minima where the system is stable.
The Higgs mechanism requires \mu 2 < 0 so we will focus on this case.

To develop a perturbative quantum field theory we need to consider
excitations around a minimum of the potential that correspond to the ground
state of the system. These field configurations can be found requiring \partial V (| \phi | 2)

\partial | \phi 2| =
0 and are such that:

| \phi | 2 =  - \mu 2

2\lambda 
\equiv 1

2
v2 (2.61)

where we have defined v \equiv 
\sqrt{} 

 - \mu 2
\lambda 
.
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In two dimensions, fig. 2.1b, there are only two solutions of (2.61):
\phi = \pm v\surd 

2
, while in three dimensions, fig. 2.1c, there is a continuous set of

degenerate minima, that can be parametrised with a phase \theta : \phi (x) = v\surd 
2
\mathrm{e}\mathrm{i}\theta .

Since these are minima of the potential, the system spontaneously tends to
settle into these configurations.

Now we consider excitations of the ground state expressing the Higgs
field \phi (x) as the sum of its vacuum expectation value (VEV), \langle \phi \rangle , given
by a solution of (2.61) that is a numerical constant, and a function H(x):
\phi (x) = \langle \phi \rangle +H(x). Plugging this expression into the Lagrangian (2.59) and
expanding it, we can identify the mass mH of the Higgs boson, the particle
associated with the excitation of the Higgs field:

mH =
\sqrt{} 

 - 2\mu 2 =
\surd 
2\lambda v . (2.62)

Once the system is in the ground state configuration, a particular minimum
of the potential V (\phi ), Eq. (2.59), have been chosen among all the degenerate
minima. This choice breaks the symmetry of the system. In one dimension it
corresponds to choosing one out of the two possible solutions of Eq. (2.61),
so that the VEV of the Higgs field \phi can be plus or minus v\surd 

2
; for simplicity

it is usual to choose the positive sign so that the VEV is \langle \phi \rangle = v\surd 
2
. In two

dimensions breaking the symmetry corresponds to choose a specific phase \theta 
among the all the possible values in [0, 2\pi [ that is a direction in the complex
plane, see fig. 2.1c. Again for simplicity, we choose the value \theta = 0 so that
the real and imaginary part of the VEV are \mathrm{R}\mathrm{e} \langle \phi \rangle = v\surd 

2
, \mathrm{I}\mathrm{m} \langle \phi \rangle = 0 that is

we choose the direction of the positive real axis.
In the standard model the Higgs field is made of four real fields: \phi =\Bigl( 

\phi +R+\mathrm{i}\phi +I
\phi 0R+\mathrm{i}\phi 0I

\Bigr) 
where the R and I subscripts indicate the real and imaginary

part of the elements of the SU(2)L doublet (2.58). Now we can parametrise
\phi (x) in terms of three angles \theta i=1,2,3(x) and a function H(x) in the following
general form:

\phi (x) =
1\surd 
2
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl[ 
\mathrm{i}
\sigma i
2
\theta i(x)

\biggr] \Biggl( 
0

v +H(x)

\Biggr) 
(2.63)

where \sigma i are the generators of SU(2)L, Eq. (2.4), and the \theta i are the Nambu-
Goldstone bosons each of which correspond, according to the Goldstone
theorem, to a generator of a broken symmetry.

Now we can take advance of the SU(2)L gauge invariance and fix the three
\theta i = 0 so that the Higgs field simplifies to

\phi (x) =
1\surd 
2

\Biggl( 
0

v +H(x)

\Biggr) 
. (2.64)
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The gauge in which the Higgs field has the expression (2.64) is called unitary
gauge. This Higgs field interacts and gives mass to fermions and gauge bosons,
as shown in the following sections.

2.3.1 Gauge bosons masses

The gauge bosons masses come from the kinetic term
\bigl( 
D\mu \phi 

\bigr) \dagger 
D\mu \phi in (2.60).

To calculate this we use the covariant derivative (2.24) and the Higgs field in
unitary gauge (2.64):

D\mu \phi =
1\surd 
2

\Biggl[ 
\partial \mu 

\Biggl( 
0

v +H(x)

\Biggr) 
+ \mathrm{i}

g1
2
Y B\mu 

\Biggl( 
0

v +H(x)

\Biggr) 

+ \mathrm{i}
g2
2

\Biggl( 
W 3
\mu W 1

\mu  - \mathrm{i}W 2
\mu 

W 1
\mu + \mathrm{i}W 2

\mu  - W 3
\mu 

\Biggr) \Biggl( 
0

v +H(x)

\Biggr) \Biggr] 
. (2.65)

Now we can introduce the physical fields

W+
\mu =

1\surd 
2

\Bigl( 
W 1
\mu  - \mathrm{i}W 2

\mu 

\Bigr) 
W - 
\mu =

1\surd 
2

\Bigl( 
W 1
\mu + \mathrm{i}W 2

\mu 

\Bigr) 
(2.66)

so that the kinetic term is

\bigl( 
D\mu \phi 

\bigr) \dagger 
D\mu \phi =

1

2

\Biggl[ \bigm| \bigm| \bigm| \bigm| \mathrm{i}
g2
2
(v +H)W+

\mu 

\bigm| \bigm| \bigm| \bigm| 
2

+

\bigm| \bigm| \bigm| \bigm| \partial \mu H + \mathrm{i}
g1
2
Y B\mu (v +H) - \mathrm{i}

g2
2
(v +H)W 3

\mu 

\bigm| \bigm| \bigm| \bigm| 
2
\Biggr] 
. (2.67)

To diagonalise masses, we rotate the B\mu and W 3
\mu fields by an angle \theta W ,

called Weinberg angle or weak mixing angle, and define the new fields as A\mu 
and Z\mu :

\Biggl( 
A\mu 
Z\mu 

\Biggr) 
\equiv R(\theta W )

\Biggl( 
B\mu 

W 3
\mu 

\Biggr) 
=

\Biggl( 
\mathrm{c}\mathrm{o}\mathrm{s} \theta WB\mu + \mathrm{s}\mathrm{i}\mathrm{n} \theta WW

3
\mu 

 - \mathrm{s}\mathrm{i}\mathrm{n} \theta WB\mu + \mathrm{c}\mathrm{o}\mathrm{s} \theta WW
3
\mu 

\Biggr) 
(2.68)

=\Rightarrow 
\Biggl( 
B\mu 

W 3
\mu 

\Biggr) 
=

\Biggl( 
\mathrm{c}\mathrm{o}\mathrm{s} \theta WA\mu  - \mathrm{s}\mathrm{i}\mathrm{n} \theta WZ\mu 
\mathrm{s}\mathrm{i}\mathrm{n} \theta WA\mu + \mathrm{c}\mathrm{o}\mathrm{s} \theta WZ\mu 

\Biggr) 
. (2.69)

Plugging these expressions into the kinetic term (2.67), expanding it and

noting that
\Bigl( 
W+
\mu 

\Bigr) \dagger 
= W - 

\mu , we find the following mass terms [10]

0A\mu A
\mu +

1

4

\Bigl( 
g21 + g22

\Bigr) 
v2Z\mu Z

\mu +
1

4
g22v

2W+
\mu W

\mu + (2.70)
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so that the photon, the Z boson and the W\pm bosons, that are the particles
associated with the A\mu , Z\mu and W\pm 

\mu fields, have masses

m\gamma = 0 mZ =
1

2
v
\sqrt{} 
g21 + g22 mW\pm =

1

2
vg2 . (2.71)

2.3.2 Fermion masses

The Higgs field couples to the fermion fields. We can describe this coupling in
the Lagrangian with a SU(3)C\otimes SU(2)L\otimes U(1)Y gauge invariant terms known
as Yukawa terms:

\scrL Y =  - Y e
ij
\=Li\phi ejR  - Y d

ij
\=Qi\phi djR  - Y u

ij
\=Qi \~\phi ujR + h.c. (2.72)

Here Y e
ij, Y d

ij and Y u
ij are the Yukawa matrices with indices i, j running over

the three generations, \phi is the Higgs field and \~\phi \equiv \mathrm{i}\sigma 2\phi \dagger , and the other fields
are defined in Eq. (2.8) and (2.9). The elements of the Yukawa matrices are
dimensionless constant that represents the strength of the interaction between
the fermion and the Higgs fields and thus depend on the fermion field taken
into consideration.

Using the unitary gauge where the Higgs field is expressed by (2.64) and
expanding the SU(2)L doublets fermion fields, the Yukawa term is

\scrL Y =  - 1\surd 
2

\Biggl[ 
Y e
ij(\=\nu eL, \=eL)

i

\Biggl( 
0

v +H(x)

\Biggr) 
ejR

+ Y d
ij

\Bigl( 
\=uL, \=dL

\Bigr) i
\Biggl( 

0
v +H(x)

\Biggr) 
djR + Y u

ij

\Bigl( 
\=uL, \=dL

\Bigr) i
\Biggl( 
v +H\dagger (x)

0

\Biggr) 
ujR

\Biggr] 
+ h.c.

(2.73)

To find the masses we consider only terms with two fields that are

\scrL m =  - v\surd 
2

\Bigl( 
Y e
ij\=e

i
Le

j
R + Y d

ij
\=diLd

j
R + Y u

ij \=u
i
Lu

j
R

\Bigr) 
+ h.c. (2.74)

To diagonalise the masses, we can write the Yukawa matrices as

Y e = U eM eKe\dagger Y d = UdMdKd\dagger Y u = UuM eKu\dagger (2.75)

where M e, Md and Mu are diagonal matrices and U e, Ud, Uu, Ke, Kd and
Ku are unitary matrices. Now we can transform the fields as

eL \rightarrow U ee\prime L dL \rightarrow Udd\prime L uL \rightarrow Uuu\prime L (2.76)
eR \rightarrow Kee\prime R dR \rightarrow Kdd\prime R uR \rightarrow Kuu\prime R (2.77)
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where the fields on the left hand side are expressed in the flavour basis, while
the prime symbol on the fields on the right hand side means the fields are
expressed in the mass basis. Plugging expressions (2.75), (2.76) and (2.77)
into the Lagrangian (2.74) removes the U and K unitary matrices leaving
only the diagonal M matrices; thus we can write the Lagrangian (2.74) as

\scrL m =  - v\surd 
2
M e

ii
\=e\prime 
i
Le

\prime i
R  - v\surd 

2
Md

ii
\=d\prime 
i
Ld

\prime i
R  - v\surd 

2
Mu

ii
\=u\prime 
i
Lu

\prime i
R + h.c. (2.78)

and we can identify the fermion masses

me\prime i =
v\surd 
2
M e

ii md\prime i =
v\surd 
2
Md

ii mu\prime i =
v\surd 
2
Mu

ii . (2.79)

2.3.3 CKM matrix

Equations (2.76) and (2.77) represent the transformation from the so called
flavour basis to the mass basis. Since the U and K matrices are unitary, in
the Lagrangian all the terms \=ff are equal to \=f \prime f \prime , where f is one of the left-
or right-handed fermion fields eL, dL, lL, eR, dR, lR in the flavour basis and f \prime 

is the corresponding field in the mass basis. Thus going from the flavour basis
to the mass basis does not change these terms.

On the other hand, Lagrangian terms that mix u and d type quarks are
modified since in general Uu\dagger Ud \not = 1. Thus, the u and d type quarks mixing
generates a new unitary matrix V :

\=uLdL =
\Bigl( 
Uuu\prime L

\Bigr) \dagger \Bigl( 
Udd\prime L

\Bigr) 
= \=u\prime LU

u\dagger Udd\prime L = \=u\prime LV d
\prime 
L (2.80)

where V is the Cabibbo-Kobayashi-Maskawa matrix, also called CKM matrix

V \equiv Uu\dagger Ud =

\left( 
  
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

\right) 
  . (2.81)

The elements of V couple all possible u and d type quarks and their square
indicate the transition probability from a u type quark to a d type quark.

The CKM matrix is a complex 3 by 3 matrix, but since by construction
it is a unitary matrix it can be expressed by 6 phases and 3 angles. Now
Lagrangian terms that mix u and d type quarks are of the form (u, c, t)V

\Bigl( 
d
s
b

\Bigr) 
=

uVudd+uVuss+uVubb+ cVcdd+ cVcss+ cVcbb+ tVtdd+ tVtss+ tVtbb so we can
absorb 5 phases of the V elements in the quark fields using the U(1) symmetry,
that is redefining, for example, u \rightarrow \mathrm{e}i\phi uu, s \rightarrow \mathrm{e}i\phi ss, b \rightarrow \mathrm{e}i\phi bb, c \rightarrow \mathrm{e}i\phi cc,
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t \rightarrow \mathrm{e}i\phi tt. After this redefinition we have 1 phase and 3 angles, so 4 real
parameters define the CKM matrix. Choosing different angles and phase leads
to different expression of the CKM matrix. The standard parametrization
uses angles \theta 23, \theta 13 and \theta 12, that correspond to rotation in the flavour planes
and a phase attached to the \theta 13 rotation:

V =

\left( 
  
1 0 0
0 \mathrm{c}\mathrm{o}\mathrm{s} \theta 23 \mathrm{s}\mathrm{i}\mathrm{n} \theta 23
0  - \mathrm{s}\mathrm{i}\mathrm{n} \theta 23 \mathrm{c}\mathrm{o}\mathrm{s} \theta 23

\right) 
  

\times 

\left( 
  

\mathrm{c}\mathrm{o}\mathrm{s} \theta 13 0 \mathrm{e} - \mathrm{i}\delta \mathrm{s}\mathrm{i}\mathrm{n} \theta 13
0 1 0

 - \mathrm{e}\mathrm{i}\delta \mathrm{s}\mathrm{i}\mathrm{n} \theta 13 0 \mathrm{c}\mathrm{o}\mathrm{s} \theta 13

\right) 
  

\left( 
  

\mathrm{c}\mathrm{o}\mathrm{s} \theta 12 \mathrm{s}\mathrm{i}\mathrm{n} \theta 12 0
 - \mathrm{s}\mathrm{i}\mathrm{n} \theta 12 \mathrm{c}\mathrm{o}\mathrm{s} \theta 12 0

0 0 1

\right) 
  

(2.82)

=

\left( 
  

c12c13 c13s12 s13\mathrm{e}
 - \mathrm{i}\delta 

 - c23s12  - c12s13s23\mathrm{e}
\mathrm{i}\delta c12c23  - s12s13s23\mathrm{e}

\mathrm{i}\delta c13s23
s12s23  - c12c23s13\mathrm{e}

\mathrm{i}\delta  - c23s12s13  - c12s23\mathrm{e}
\mathrm{i}\delta c13c23

\right) 
  (2.83)

where cij \equiv \mathrm{c}\mathrm{o}\mathrm{s} \theta ij and sij \equiv \mathrm{s}\mathrm{i}\mathrm{n} \theta ij. The experimental values, taking into ac-
count theoretical constraints such as the unitarity of the three generations [18],
are

V exp =

\left( 
  
0.97446\pm 0.00010 0.22452\pm 0.00044 0.00365\pm 0.00012
0.22438\pm 0.00044 0.97359+0.00010

 - 0.00011 0.04214\pm 0.00076
0.00896+0.00024

 - 0.00023 0.04133\pm 0.00074 0.999105\pm 0.000032

\right) 
  .

(2.84)
where each element is the measure of the absolute value of the corresponding
element in (2.83), for example, | s13\mathrm{e} - \mathrm{i}\delta | = \mathrm{s}\mathrm{i}\mathrm{n} \theta 13 = 0.00365\pm 0.00012. From
the expressions (2.83) and the values (2.84) we can infer the angles \theta ij

\theta 12 = \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}
V12
V11

= 12.975\circ \pm 0.025\circ \theta 13 = \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}V13 = 0.209\circ \pm 0.007\circ 

\theta 23 = \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}
V23
V33

= 2.42\circ \pm 0.04\circ .

(2.85)
Since the CKM matrix is almost a diagonal matrix, the most likely charged-

current transitions are between quarks belonging to the same generation. In
terms of the mixing between different generations, the angle \theta 12, that is the
angle between the first two generations, is the predominant one.

The phase \delta can be easily found in the Wolfenstein parametrization of the
CKM matrix. This parametrization relates the standard parameters \theta ij and
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the phase \delta to the parameters A, \lambda , \rho and \eta in this way, [19–21]:

\mathrm{s}\mathrm{i}\mathrm{n} \theta 12 = \lambda =
| V12| \sqrt{} 

| V11| 2 + | V12| 2
\mathrm{s}\mathrm{i}\mathrm{n} \theta 23 = A\lambda 2 = \lambda 

| V23| 
| V12| 

(2.86)

\mathrm{s}\mathrm{i}\mathrm{n} \theta 13\mathrm{e}
\mathrm{i}\delta = V \ast 

13 =
A\lambda 3(\rho + \mathrm{i}\eta )

\surd 
1 - A2\lambda 4\surd 

1 - \lambda 2
\bigl[ 
1 - A2\lambda 4(\rho + \mathrm{i}\eta )

\bigr] (2.87)

and the experimental values, given by the CKMfitter Group, are [21, 22]

A = 0.8403+0.0056
 - 0.0201 \lambda = 0.224747+0.000254

 - 0.000059

\rho = 0.1577+0.0096
 - 0.0074 \eta = 0.3493+0.0095

 - 0.0071

. (2.88)

Dividing the imaginary part by the real part of both sides of equation (2.87)
we can find the expression of \mathrm{t}\mathrm{a}\mathrm{n} \delta :

\mathrm{t}\mathrm{a}\mathrm{n} \delta =
\eta 

\rho  - A2\lambda 4
\bigl( 
\eta 2 + \rho 2

\bigr) =\Rightarrow \delta = 65.7\circ +1.4\circ 
 - 1.1\circ (2.89)

where the numerical value of \delta is given by the experimental values (2.88).

CP violation

In the CKM matrix, the phase \delta represents a crucial parameter: it implies
a complex coefficient in the SM Lagrangian. Now, since the T operator is
anti-unitary, that is T \mathrm{i} =  - \mathrm{i}T , the imaginary part of a complex term violates
T and so, to be TCP invariant, this imaginary term must violate CP too. In
this way, the phase \delta is a source of CP violation in the SM.

An important and active field of research where the CP violation is
fundamental is the study of the baryonic asymmetry of the Universe (BAU).
Astrophysical observation suggests that all the content of our Universe, for
example galaxies, stars, planets, gas clouds and atoms, is made of matter
while no antimatter is detected with similar abundance. The CP violation is
a necessary element to explain the origin of this asymmetry. However, the
CP violation originated from the phase \delta in the CKM matrix cannot explain
the abundance of matter over antimatter we observe in the Universe. Indeed,
the inability of the SM to explain the BAU is one of the theoretical problems
that require the development of physics beyond the SM.

2.4 Gauge fixing
Gauge theories describe physical systems in terms of fields that present more
degrees of freedom than the ones the physical system has. A clear example is
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given by the gauge electromagnetic theory described with the electromagnetic
potential A\mu : as seen in Equation (2.17) the scalar function \alpha (x) introduce
a new degree of freedom that does not modify the physical electric E and
magnetic B fields. The freedom given by the free choice of \alpha (x) allows us to
impose a constraint on the gauge fields A\mu ; this constraint represents a gauge
fixing.

Choosing a gauge influence deeply the calculations, so that a good gauge
choice is represented by a gauge that simplifies the calculations.

There is lots of freedom in choosing a gauge. Here we describe some
standard gauges that will be useful later.

2.4.1 Coulomb Gauge

The Coulomb gauge is fixed by the condition that the four-potential A has
no divergence:

\partial iAi = 0 (2.90)

where i runs from 1 to 3.
This gauge is useful, for example, in electromagnetism see [10]. In this

case, the four-potential A\mu describes the photon field that, in free space, can
be written as:

A\mu (x) =

\int 
\mathrm{d}4p

(2\pi )4
\mathrm{e} - \mathrm{i}p\nu x\nu \epsilon \mu (p) (2.91)

where \epsilon \mu (p) is the polarization vector that depend only on the four-momentum
p and not on the spacetime position x\mu .

Fixing the Coulomb gauge (2.90),

\partial iAi =

\int 
\mathrm{d}4p

(2\pi )4
\partial i
\Bigl[ 
\mathrm{e} - \mathrm{i}p\nu x\nu \epsilon i(p)

\Bigr] 
=

\int 
\mathrm{d}4p

(2\pi )4

\Bigl[ 
 - \mathrm{i}\mathrm{e} - \mathrm{i}p\nu x\nu pi\epsilon i(p)

\Bigr] 
= 0 (2.92)

and considering that the exponential can always be different from zero for an
appropriate choice of x\nu , leads immediately to the condition:

pi\epsilon i = 0 (2.93)

that means the photon field A\mu has a transverse polarization.
Choosing the frame in which p\mu = (E, 0, 0, E) and imposing a second

gauge condition \epsilon 0 = 0, that avoid the unphysical timelike polarization
\epsilon 0 = (1, 0, 0, 0), we can write a solution of (2.93) as

\epsilon 1\mu = (0, 1, 0, 0) \epsilon 2\mu = (0, 0, 1, 0) (2.94)



34 CHAPTER 2. STANDARD MODEL

corresponding to linearly polarized light, or as

\epsilon R\mu =
1\surd 
2
(0, 1, \mathrm{i}, 0) \epsilon L\mu =

1\surd 
2
(0, 1, - \mathrm{i}, 0) (2.95)

corresponding to circularly polarized light.
The transverse nature of the photon polarizations, valid regardless of the

particular gauge choice, is trivially found in the Coulomb gauge.

2.4.2 Lorenz Gauge

Even though the Coulomb gauge simplifies some calculations, it sacrifices a
manifest Lorenz invariance so that the field quanta in Coulomb gauge are
described in a way that is not manifestly Lorentz-covariant. A gauge that is
manifestly Lorentz invariant is the Lorenz gauge.

The Lorenz gauge is defined by

\partial \mu A\mu = 0 (2.96)

that is a Lorentz-covariant constraint.
In this gauge, for example, the free field equations have a very simple

form, see [23]. In fact, starting from the Lagrangian (2.44),  - 1
4
F\mu \nu F

\mu \nu , the
Euler-Lagrangian equation of motion are

\partial \nu F\mu \nu = 0 . (2.97)

Simply, plugging into this equation the definition (2.16), F\mu \nu \equiv \partial \nu A\mu  - \partial \mu A\nu ,
we obtain a very simple equation of motion in terms of the potential A\mu :

\partial \nu F\mu \nu = \partial \nu \partial \nu A\mu  - \partial \nu \partial \mu A\nu = 0 =\Rightarrow \partial \nu \partial \nu A\mu = 0 (2.98)

where the negative term is null because of the particular choice of the Lorenz
gauge.

2.4.3 R\xi gauges

The R\xi gauges emerge in the context of quantum electrodynamic (QED),
see [24–27].

The idea is to fix the additional degrees of freedom given by the gauge
adding to the Lagrangian, that is a function of the gauge fields, the amount

\Delta \scrL =  - 1

2\xi 

\bigl( 
\partial \mu A\mu 

\bigr) 2 (2.99)
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that depends on \xi , a parameter that fixes the gauge.
A gauge that depends on the Lagrangian in this way is called a R\xi gauge

and depend on the number \xi that can have different values.
Since the Lagrangian is defined up to a total derivative, a different defini-

tion for R\xi gauges is

\delta \scrL = B\partial \mu A
\mu +

\xi 

2
B2 (2.100)

where we have introduced an auxiliary field B.
Since the parameter \xi can vary, the R\xi gauges represent a class of gauges.

This class includes, for example, the Lorenz gauge (2.96) that is obtained with
\xi \rightarrow 0, the Feynman–’t Hooft gauge obtained with \xi = 1 and the Yennie gauge
obtained with \xi = 3, see [27]. In particular, the \xi = 1 gauge is useful to work
with the photon propagator that, in this gauge, has the simple expression
D(k)\mu \nu =  - g\mu \nu 

k2
, see, e.g. [25].

2.5 Beyond SM
Even though the SM is a very successful model, describing the electromagnetic,
weak and strong force together with all the known elementary particles, it
exhibits both theoretical and experimental problems.

Theoretical problems

The SM cannot explain or can explain in a no fully satisfactory way, important
physical phenomena. Some examples are:

Hierarchy problem In the SM, there is no satisfactory way to explain why
the ratio between the Higgs mass mH and the Plank mass mP is very small:
mH

mP
\ll 1. In fact, quantum corrections to the Higgs boson mass mH arise from

every particle that couples with the Higgs field, see [28] and references therein.
These corrections lead to quadratic divergences in mH . If new physics at the
Planck scale cuts off these divergences we see a quadratic sensitivity to that
scale. Thus it is difficult to explain how all these contributions to mH can
cancel each other without assuming a very delicate fine-tuning of the SM
parameters (for an attempt to solve this problem in the SM see, for example,
[29]).

Gravity Despite many efforts, the SM cannot explain the physics of strong
gravitational effects that, for example, has to describe black holes or the very
early Universe [30]. Attempt to investigate this area of physics with QFT
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on curved background has led to problems such as the information paradox
[31, 32] that show how we still have to understand the gravity force at the
quantum level.

Free parameters In the SM, excluding the neutrino masses, there are 19
parameters that are completely free and cannot be explained in the model.
Since there are relationships that relate free parameters with other parameters
in the theory, the choice of what are the free parameters is not univocal. A
possible list is

\bullet 3 lepton masses me, m\mu and m\tau ;

\bullet 6 quark masses mu, md, mc, ms, mt and mb;

\bullet 3 CKM angles \theta 12, \theta 13, \theta 23, see Eq. (2.85);

\bullet 1 CKM phase \delta , see Eq. (2.89);

\bullet 1 U(1) gauge coupling g\prime ;

\bullet 1 SU(2) gauge coupling g;

\bullet 1 SU(3) gauge coupling gs;

\bullet 1 QCD vacuum angle \theta QCD;

\bullet 1 Higgs vacuum expectation value v;

\bullet 1 Higgs mass mH.

It is believed that a more fundamental theory can derive these parameters
from a smaller set of parameters.

On top of these problems, there are other appealing characteristics that
are not realized in the SM and that different models beyond the standard
model (BSM) exhibit. An example is the unification of the coupling constant,
see Fig. 3.1 and Sec. 3.1: in the SM the values of the coupling constant of the
strong, electromagnetic and weak interactions become similar but not equal.
In theory such as the supersymmetry, these values unify in a single value.

Experimental problems

Even though the SM can very precisely explain an impressive amount of
experimental data, there are measurements that do not fit into the current
SM framework.
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Dark matter and dark energy One of the most evident problems is the
presence, in the Universe, of a considerable amount of dark matter and dark
energy. As the Plank collaboration reports [1], only 5% of the total energy
density in the Universe is in the form of baryonic matter, that is matter
described by the SM. About 26% of the total energy density is called dark
matter (DM) and is responsible for the structure formation in the Universe.
This DM is not composed of SM particles, and there is still no consensus
about its composition. The remaining 69% of the total energy density in
the Universe is the so-called dark energy (DE) and is responsible for the
expansion of the Universe. Again there is no a standard accepted theory that
can describe the observed rate of acceleration of our Universe.

Baryon asymmetry Another important problem is the baryon asymmetry
of the Universe (BAU). While astronomical data suggest there is no antimatter
in the observable Universe, it is not quantitatively clear how the observed
excess of matter over antimatter can be originated. Provided that a mechanism
for the production of matter exists, Sakharov showed that such a mechanism
[33] has to produce C and CP violation together with an out-of-thermal-
equilibrium process. In the SM, there is not enough CP violation to account
for the observed BAU and going out of thermal equilibrium requires the Higgs
boson to have a mass of about 75\mathrm{G}\mathrm{e}\mathrm{V} [34, 35].

Muon anomaly The anomalous magnetic dipole moment of the muon
a\mu = g - 2

2
also is generally recognized as a hint of new physics beyond the SM.

The value of a\mu was measured at the E821 experiment at Brookhaven National
Laboratory with a precision of about half a part per million [4]. Using the
SM, theoretical calculations give a value that deviate at 3-4 sigma level [5–8].
A new experiment at Fermilab [36] aims to improve about four times the
relative precision of the E821 experiment with a confidence level exceeding a
discovery threshold and to have the statistical sensitivity necessary to either
refute or confirm the discrepancy with the SM predictions.
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Chapter 3

Supersymmetry

Supersymmetry (SUSY) is a beyond SM theory that combines space-time
symmetries and internal symmetries extending the Poincaré group. Space-
time symmetries imply the invariance of the law of physics under translations,
rotations and boosts and are described by the Poincaré group. Internal symme-
tries are symmetries of the Lagrangian that imply that gauge transformations
leave the Lagrangian invariant up to total derivatives.

The Coleman–Mandula theorem [37] proves that under quite general
physical assumptions spacetime symmetries and internal symmetries can be
combined only in a trivial way. The Coleman–Mandula theorem is based on
the algebra given by the commutators of the generators of spacetime symme-
tries and internal symmetries. The Haag-Lopuszański-Sohnius theorem [38]
weakens the assumptions of the Coleman–Mandula theorem by considering
graded Lie algebras defined using anticommutation operations, as well as the
commutation operations of Lie algebras. With this more general assumption,
the Haag-Lopuszański-Sohnius theorem proves that supersymmetry repre-
sents the only non-trivial extension of the Poincaré group. This allows one to
extend the Poincaré algebra to include supersymmetry generators that change
the spin of a state. As a result supersymmetry turns out to be a symmetry
between fermions and bosons. In this chapter, we introduce supersymmetric
theories following S. Martin’s primer [28].

3.1 Motivations

Supersymmetry solves a number of SM problems. For example, the hierarchy
problem is solved by SUSY, which implies a symmetry between bosons and
fermions. As a result new BSM particles, called sparticles, are introduced.
For each standard model particle there is a sparticle with the same quantum

39
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numbers, but different spin. Considering both particles and sparticles leads to
a cancellation of quadratic divergences between fermionic and bosonic loops.
Specifically, quadratic corrections to the Higgs mass, are generated by loops
corrections involving SM fermions and bosons and these quadratic divergences
are cancelled exactly by the loop corrections from the corresponding sparticles
due to the different spin. This makes it possible to have a Higgs mass which
is much lighter than the Planck scale without requiring fine-tuning between
the quadratic divergences and the bare Higgs mass.

Regarding gravity, in the framework of supersymmetry, it is possible to de-
velop a theory, called supergravity, which introduces gravitational interactions.
This is done promoting supersymmetry to a local symmetry, which is applying
the same principle of local gauge invariance described in Sec. 2.2. Although
local supergravity is a non-renormalizable theory, the natural emergence of the
gravitational interaction is an appealing feature of SUSY, and supergravity
may be an effective theory of a correct theory of gravity.

Moreover, in the minimal realisation of SUSY (and many other super-
symmetric extensions), the coupling constants of the strong, electromagnetic
and weak interactions can evolve to a common value at the grand unification
theory (GUT) scale. Compared to the SM, a similar calculation shows that
the coupling constants evolve to different values, see fig. 3.1 taken from [28].
Successful unification in SUSY models is dependent on the SUSY breaking
scale and the particular particle content, which plays a role in the renormal-
ization group equations (RGEs) used to calculate the running of coupling
constants. This is a hint that at GUT scale the physics can be described by a
symmetry group that breaks to the SM gauge group, SU(3)C\otimes SU(2)L\otimes U(1)Y,
which describes the gauge interactions at lower scales.

Supersymmetry can also provide a particle explanation for dark matter.
The discrete Z2 symmetry, that leads to baryon and lepton number conserva-
tion, is normally imposed, see sec. 3.7.3. The Z2 symmetry also implies that
the lightest supersymmetric particle (LSP), is stable. If the LSP is one of the
neutral, weakly interacting SUSY particles, it can be a promising candidate
for the cold dark matter.

Finally, supersymmetric models, such as the Next to Minimal Supersym-
metric Model (NMSSM) can quantitatively account for the observed baryon
asymmetry of the Universe. The excess of matter over antimatter in the
Universe requires a specific mechanism to explain the origin of this excess.
One of such mechanisms is the electroweak baryogenesis, see sec. 4.2. The
electroweak baryogenesis in the SM cannot account for the measured quantity
of matter and absence of antimatter in the Universe [35, 39]. In contrast,
SUSY models such as the NMSSM, provide an ideal framework in which
the observed matter-antimatter asymmetry can be generated in the early
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Figure 3.1: The x-axis shows the energy Q on logarithmic scale, while the y-axis
shows the values \alpha  - 1

SU(3), SU(2), U(1)(Q), calculated at two-loop, of the inverse of
the SU(3)C, SU(2)L and U(1)Y coupling constants for the SM (dashed lines)
and the MSSM (solid lines) [figure taken from [28]].

Universe, see the published article in chapter 6 and references within it.

3.2 Notation

A Dirac spinor \Psi has four complex components that can be transformed
under Lorentz transformations

\Psi =

\left( 
     

\xi 1
\xi 2

\chi 
\.1\dagger 

\chi 
\.2\dagger 

\right) 
     

=

\Biggl( 
\psi L

\psi R

\Biggr) 
. (3.1)

A fermion field is described by a single left-handed two-component Weyl
fermion. The first couple of components,

\Bigl( 
\xi 1
\xi 2

\Bigr) 
, transforms as a left-chiral

spinor, while the second couple of components,
\Bigl( 
\chi 

\.1\dagger 

\chi 
\.2\dagger 

\Bigr) 
, transforms as a right-

chiral spinor. We differentiate the first and second couple using normal indices
for the first couple and dotted indices for the second couple.

Dotted and undotted indexes are raised and lowered thanks to the symbol \varepsilon 
that can be defined from the Pauli matrices \sigma 2 in Eq. (2.4):

\varepsilon ab = (\mathrm{i}\sigma 2)ab

\varepsilon \.a
\.b = (\mathrm{i}\sigma 2) \.a

\.b

\varepsilon ab = ( - \mathrm{i}\sigma 2)ab

\varepsilon \.a\.b = ( - \mathrm{i}\sigma 2) \.a\.b
. (3.2)
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Note that while dotted indices are used for the components of \psi L and undotted
indices are used for the components of \psi R, dotted and undotted indices are
interchangeable when they indicate the matrix elements, that is \sigma \.a\.b \equiv \sigma ab .

A supersymmetry transformation turns a fermion state into a boson state
and vice-versa thanks to an operator Q that satisfy the algebra

\Bigl\{ 
Qa, Q

\dagger 
\.a

\Bigr\} 
=  - 2\sigma \mu a \.aP\mu 

\Bigl\{ 
Qa, Qb

\Bigr\} 
=
\Bigl\{ 
Q\dagger 

\.a, Q
\dagger 
\.b

\Bigr\} 
= 0 (3.3a)

\Bigl[ 
Qa, P

\mu 
\Bigr] 
=
\Bigl[ 
Q\dagger 

\.a, P
\mu 
\Bigr] 
= 0

\Bigl[ 
Qa,M

\mu \nu 
\Bigr] 
= (\sigma \mu \nu )baQb (3.3b)

where P \mu is the generator of the four-momentum spacetime translations, M\mu \nu 

is the generator of Lorentz transformations and \sigma \mu \nu is the antisymmetric
product of the Pauli matrices \sigma :

(\sigma \mu \nu )ba =
\mathrm{i}

4
(\sigma \mu \=\sigma \nu  - \sigma \nu \=\sigma \mu )ba . (3.4)

This algebra represents a particular case of a graded algebra. A graded
algebra generalise the anticommutators (3.3a) introducing new operators QA

with A = 1 . . .\scrN , with the following anticommutator rules
\Bigl\{ 
QA
a , Q

\dagger 
\.aB

\Bigr\} 
=  - 2\sigma \mu a \.aP\mu \delta 

A
B

\Bigl\{ 
QA
a , Q

B
b

\Bigr\} 
= \epsilon abZ

AB (3.5)

where \delta AB is the Kronecker delta, \epsilon ab is defined in Eq. (3.2) and ZAB is called
central charge and satisfy

ZAB =  - ZBA

\Bigl[ 
ZAB, P \mu 

\Bigr] 
=
\Bigl[ 
ZAB,M\mu \nu 

\Bigr] 
=
\Bigl[ 
ZAB, QA

a

\Bigr] 
=
\Bigl[ 
ZAB, ZCD

\Bigr] 
=
\Bigl[ 
ZAB, Ta

\Bigr] 
= 0

(3.6)
where Ta are the generators of the SU(N), see Eq. (2.32) and Eq. (2.33).
We can see that the algebra Eq. (3.3) represents the special case in which
A = B = 1. This special case is the algebra of the so-called simple or \scrN = 1
supersymmetry.

Now we want to define supermultiplets in the \scrN = 1 supersymmetry. Here,
for simplicity, we consider the case when all the particles are massless, that is
before the spontaneous symmetry breaking. After the symmetry breaking,
when multiplet become massive, it is the spin (rather than the helicity, h, we
discuss here) that distinguishes the elements of the supermultiplet, see [40].
In the massless case, we can choose a reference frame in which

P\mu = (E, 0, 0, E) (3.7)
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where E is the energy. We can introduce the creation and annihilation
operators

a =
 - \mathrm{i}

2
\surd 
E
Q1 a\dagger =

 - \mathrm{i}

2
\surd 
E
Q\dagger 

\.1
(3.8)

that satisfy the anticommutation rules
\Bigl\{ 
a, a\dagger 

\Bigr\} 
= 1

\Bigl\{ 
a, a
\Bigr\} 
=
\Bigl\{ 
a\dagger , a\dagger 

\Bigr\} 
= 0 . (3.9)

The operators a and a\dagger modify the helicity of a quantum state. To see their
action on a state, consider the commutators [a, J3] and [a\dagger , J3], where Ji
are the generators of rotations. These commutators can be easily calculated
considering the Pauli-Lubanski vector W\mu 

W\mu =
1

2
\epsilon \mu \nu \rho \sigma P

\nu M\rho \sigma (3.10)

where \epsilon \mu \nu \rho \sigma is the four-dimensional totally antisymmetric Levi-Civita symbol.
In component W\mu is

W0 = \bfitP \cdot \bfitJ \bfitW = P0\bfitJ  - \bfitP \times \bfitK (3.11)

where \bfitK is the generator of the Lorentz boosts. Using Eq. (3.7) into the last
expression we derive

W0 = EJ3 . (3.12)

Also, the commutator
\bigl[ 
Qa,W\mu 

\bigr] 
can be calculated from the definition of W\mu 

in Eq. (3.10) and the commutator [Qa,M
\mu \nu ] given in Eq. (3.3):

\bigl[ 
Qa,W\mu 

\bigr] 
= \mathrm{i}P\nu (\sigma 

\mu \nu )baQb (3.13)

Using Eq. (3.12), the commutator
\bigl[ 
a, J3

\bigr] 
becomes

\Bigl[ 
a, J3

\Bigr] 
=

1

E
[a,W0] =

1

E

 - \mathrm{i}

2
\surd 
E
[Q1,W0] =

1

E

 - \mathrm{i}

2
\surd 
E
\mathrm{i}P\nu (\sigma 

0\nu )b1Qb (3.14)

where we have used the definition of a in Eq. (3.8) and the previous expression
(3.13). Considering again Eq. (3.7) and suming over \nu we have
\Bigl[ 
a, J3

\Bigr] 
=

1

E

1

2
\surd 
E
E
\Bigl( 
(\sigma 00)b1Qb + (\sigma 03)b1Qb

\Bigr) 
=

1

2
\surd 
E

\biggl( 
\mathrm{i}

2
( - \sigma 3)b1Qb

\biggr) 
(3.15)

where we have used the definitions of \sigma \mu \nu in Eq. (3.4). Finally, expanding the
sum over b and using the definition of \sigma 3 in Eq. (2.4) we obtain

\Bigl[ 
a, J3

\Bigr] 
=

 - \mathrm{i}

2
\surd 
E

\biggl( 
1

2
Q1

\biggr) 
=

1

2
a (3.16)
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where we have used the definition (3.8) of a. Now we can consider a state
with four-momentum p\mu and helicity h: | p\mu , h\rangle . Applying J3 to the state
a | p\mu , h\rangle and using the result (3.16) we obtain:

J3
\bigl( 
a | p\mu , h\rangle 

\bigr) 
=
\bigl( 
aJ3  - [a, J3]

\bigr) 
| p\mu , h\rangle =

\biggl( 
aJ3  - 

1

2
a

\biggr) 
| p\mu , h\rangle 

=

\biggl( 
h - 1

2

\biggr) \bigl( 
a | p\mu , h\rangle 

\bigr) (3.17)

that is the helicity of a | p\mu , h\rangle is h  - 1
2
. With the same steps, we can show

that [a\dagger , J3] =  - 1
2
a\dagger and

J3

\Bigl( 
a\dagger | p\mu , h\rangle 

\Bigr) 
=

\biggl( 
h+

1

2

\biggr) \Bigl( 
a\dagger | p\mu , h\rangle 

\Bigr) 
(3.18)

that is a\dagger | p\mu , h\rangle has helicity h+ 1
2
. Now, calling | p\mu , hmin\rangle a vacuum state with

minimum helicity hmin, applications of a on | p\mu , hmin\rangle must be null otherwise
a | p\mu , hmin\rangle would have helicity hmin  - 1

2
< hmin contradicting the assumption

that | p\mu , hmin\rangle has minimum helicity. Also, indicating with
\bigm| \bigm| \bigm| p\mu , hmin +

1
2

\Bigr\rangle 
the

state a\dagger | p\mu , hmin\rangle , further applications of a\dagger on
\bigm| \bigm| \bigm| p\mu , hmin +

1
2

\Bigr\rangle 
are null since

a\dagger a\dagger = 0 from the anticummutation rules (3.9). Therefore an irreducible
representation of the supersymmetry is given by the two elements,

\biggl\{ 
| p\mu , hmin\rangle ,

\bigm| \bigm| \bigm| p\mu , hmin +
1
2

\Bigr\rangle \biggr\} 
. (3.19)

The CPT conjugate of the states in the supermultiplet (3.19) are
\biggl\{ 
| p\mu , - hmin\rangle ,

\bigm| \bigm| \bigm| p\mu , - hmin  - 1
2

\Bigr\rangle \biggr\} 
. (3.20)

Merging together the states in Eq. (3.19) and Eq. (3.20) we define a super-
multiplet that is composed of four states

\biggl\{ \bigm| \bigm| \bigm| p\mu , - h - 1
2

\Bigr\rangle 
, | p\mu , - h\rangle , | p\mu , h\rangle ,

\bigm| \bigm| \bigm| p\mu , h+ 1
2

\Bigr\rangle \biggr\} 
. (3.21)

Note that, as it will be discuss in the SUSY transformations of the fields,
see sec. 3.3.2, another non-propagating field will also be included in the
supermultiplet to account for off-shell degrees of freedom.

All the SM fermions are members of a chiral supermultiplet while all the
SM gauge bosons are members of a vector supermultiplet. The Higgs boson
belongs to a chiral supermultiplet.
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3.3 Chiral SUSY Lagrangian

A chiral SUSY Lagrangian \scrL c
SUSY can be divided into kinetic terms for scalars

\scrL c
s, kinetic terms for fermions \scrL c

f , an interaction term \scrL c
int and an extra

auxiliary term \scrL c
aux:

\scrL c
SUSY = \scrL c

s + \scrL c
f + \scrL c

aux + \scrL c
int . (3.22)

We describe these terms in the following sections.

3.3.1 Free Lagrangian

A free Lagrangian describes fields that do not interact. Considering fermions
and scalars fields, it can be written as

\scrL c
free = \scrL c

s + \scrL c
f =  - \partial \mu \phi \dagger \partial \mu \phi + \mathrm{i}\psi \dagger 

\.a\=\sigma 
\mu \.ab\partial \mu \psi b (3.23)

where \phi is a scalar field and \psi a fermion field.
Hamilton’s principle requires the variation of the action S to be zero, or,

equivalently, the variation of the Lagrangian to be the total derivative of a
function f : \delta S = 0 \leftrightarrow \delta \scrL = \partial \mu f . Calling \epsilon an infinitesimal anti-commuting
constant Weyl spinor, the supersymmetry transformations of the fields that
leave the Lagrangian invariant up to total derivatives are

\delta \phi = \epsilon a\psi a

\delta \phi \dagger = \epsilon \dagger \.a\psi 
\dagger \.a

\delta \psi a =  - \mathrm{i}\sigma \mu 
a\.b
\epsilon \dagger 

\.b\partial \mu \phi 

\delta \psi \dagger 
\.a = \mathrm{i}\epsilon b\sigma \mu b \.a\partial \mu \phi 

\dagger 
=\Rightarrow \delta S = 0 (3.24)

as can be explicitly verified by plugging these variations into the variation
\delta \scrL c

free from Eq. (3.23). These transformations encode the idea that bosonic
and fermion fields are transformed one into the other.

3.3.2 Auxiliary Lagrangian

According to Noether’s theorem, a continuous symmetry transformation that
leaves the action invariant, such as the (3.24), corresponds to a conserved
current, in SUSY called supercurrent. This supercurrent and its hermitian
conjugate are associated with conserved charges Qa, Q

\dagger 
\.a, called supercharges,

which are the generators of supersymmetry transformations. These super-
charges, once promoted to quantum operators, have to satisfy the SUSY
algebra (3.3). To explicitly find the algebra of the supercharges, we need to
consider the commutator of two transformations with generic infinitesimal
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parameter \epsilon 1 and \epsilon 2. Considering the scalar field \phi , this commutator can be
expressed as,

\bigl[ 
\delta \epsilon 2 , \delta \epsilon 1

\bigr] 
\phi = \delta \epsilon 2(\epsilon 

a
1\psi a) - \delta \epsilon 1(\epsilon 

a
2\psi a) =

\Bigl( 
 - \mathrm{i}\epsilon a1\sigma 

\mu 

a\.b
\epsilon \dagger 

\.b
2 + \mathrm{i}\epsilon a2\sigma 

\mu 

a\.b
\epsilon \dagger 

\.b
1

\Bigr) 
\partial \mu \phi (3.25)

where we have used the SUSY transformations (3.24). The operator  - \mathrm{i}\partial \mu is
the generator of the spacetime translations P\mu that appears in the algebra of
the charges (3.3). Unfortunately, if instead of the scalar field \phi we consider
the spinor field \psi we get a different algebra for the charges Q and Q\dagger . In fact,
the commutator

\bigl[ 
\delta \epsilon 2 , \delta \epsilon 1

\bigr] 
\psi , using again the transformations (3.24), can be

expressed as
\bigl[ 
\delta \epsilon 2 , \delta \epsilon 1

\bigr] 
\psi a =  - \mathrm{i}\sigma \mu 

a\.b
\epsilon \dagger 

\.b
1

\bigl( 
\epsilon c2\partial \mu \psi c

\bigr) 
+ \mathrm{i}\sigma \mu 

a\.b
\epsilon \dagger 

\.b
2

\bigl( 
\epsilon c1\partial \mu \psi c

\bigr) 
(3.26)

to make the last expression more similar to Eq. (3.25) we can use the Fierz
rearrangement identity

\chi a(\xi 
b\eta b) + \xi a(\eta 

b\chi b) + \eta a(\chi 
b\xi b) = 0 (3.27)

where we need to raise and lower the index of \chi , \xi and \eta using the \varepsilon symbol
defined in equation (3.2). With this identity we can move the two derivatives
of the fermion field \partial \mu \psi from inside the spinor products to outside them:

\bigl[ 
\delta \epsilon 2 , \delta \epsilon 1

\bigr] 
\psi a = \mathrm{i}

\Bigl\{ 
(\varepsilon ad\epsilon 

d
2)[(\varepsilon cd\partial \mu \psi d)(\sigma 

\mu 

c\.b
\epsilon \dagger 

\.b
1 )] + (\partial \mu \psi a)[(\varepsilon cd\sigma \mu d\.b\epsilon 

\dagger \.b
1 )(\varepsilon cd\epsilon 

d
2)]
\Bigr\} 

 - \mathrm{i}
\Bigl\{ 
(\varepsilon ad\epsilon 

d
1)[(\varepsilon cd\partial \mu \psi d)(\sigma 

\mu 

c\.b
\epsilon \dagger 

\.b
2 )] + (\partial \mu \psi a)[(\varepsilon cd\sigma \mu d\.b\epsilon 

\dagger \.b
2 )(\varepsilon cd\epsilon 

d
1)]
\Bigr\} 
.

(3.28)

Now summing on both lines \varepsilon cd\varepsilon cd\epsilon d = \epsilon d and using the identity

\chi a\sigma \mu 
a\.b
\xi \dagger 

\.b =  - \xi \dagger \.a\=\sigma \mu \.ab\chi b (3.29)

we can rearrange the previous terms in the expression

\bigl[ 
\delta \epsilon 2 , \delta \epsilon 1

\bigr] 
\psi a =  - \mathrm{i}\epsilon 2a

\Bigl( 
\epsilon \dagger 
1\.b
\=\sigma \mu 

\.bc\partial \mu \psi c

\Bigr) 
+ \mathrm{i}\epsilon 1a

\Bigl( 
\epsilon \dagger 
2\.b
\=\sigma \mu 

\=bc\partial \mu \psi c

\Bigr) 

+ \mathrm{i}
\Bigl( 
\epsilon d2\sigma 

\mu 

d\.b
\epsilon \dagger 

\.b
1  - \epsilon d1\sigma 

\mu 

d\.b
\epsilon \dagger 

\.b
2

\Bigr) 
\partial \mu \psi a . (3.30)

The second line of the last commutator (3.30) is what we got from the
commutator for the scalar field (3.25). Unfortunately, since the first line of
Eq. (3.30) is in general different from zero, the algebra originated by the
transformations of the scalar field is different from the algebra originated by
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the transformations of the spinor field. However, if the spinor field satisfy the
equation of motion the first line of Eq. (3.30) is null. In fact, from (3.23) the
Euler-Lagrangian equations are

\partial \mu 
\partial \scrL c

free

\partial (\partial \mu \psi 
\dagger 
\.a)

 - \partial \scrL c
free

\partial \psi \dagger 
\.a

= 0 =\Rightarrow  - \mathrm{i}\=\sigma \mu \.ab\partial \mu \psi b = 0 (3.31)

that implies that the first two terms in (3.30) are zero. This is true only
when \psi satisfies the equations of motion thus Eq. (3.25) and (3.30) imply the
same algebra only on-shell. Off-shell the algebra does not close, that is the
algebra obtained by the transformations of the spinor field is different from the
algebra obtained by the transformations of the scalar field. This is problematic
because if the algebra does not close off-shell, then the supersymmetry does
not hold at the quantum mechanic level.

A solution to this problem comes analysing the degrees of freedom: a
two-component Weyl spinor contains two complex variables, so it has four
degrees of freedom if it is off-shell. These four degrees of freedom do not
match the two bosonic degrees of freedom of the complex scalar field. This
is a problem only off-shell because on-shell the equations of motions reduce
by two the fermionic degrees of freedom which then match the two bosonic
degrees of freedom. The trick is thus to introduce a bosonic field \scrF that has
two off-shell degrees of freedom and zero on-shell degrees of freedom. A field
with this property is called auxiliary field and is indicated with a calligraphic
character. In this way, the bosonic and fermion degrees of freedom are the
same both on- and off-shell. In order not to have an on-shell degree of freedom,
we require the auxiliary field \scrF to appear in the Lagrangian as \scrF \scrF \dagger :

\scrL c
free+aux = \scrL c

free + \scrF \scrF \dagger (3.32)

since there are no kinetic terms for \scrF , the equation of motion for this auxiliary
field is \scrF = \scrF \dagger = 0 and \scrF has no on-shell degree of freedom.

Having introduced the new field \scrF in the Lagrangian, we need to require
again that

\bullet the variation of the bosonic, fermionic and auxiliary fields annul the
variation of the action S;

\bullet the algebra closes on the \phi and \psi fields as well as on the new auxiliary
field \scrF .

It can be explicitly verified that the variations that satisfy these require-
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ments are

\delta (\phi )i = \epsilon a(\psi a)i

\delta (\phi \dagger )i = \epsilon \dagger \.a(\psi 
\dagger \.a)i

\delta (\psi a)i =  - \mathrm{i}\sigma \mu 
a\.b
\epsilon \dagger 

\.b\partial \mu (\phi )i + \epsilon a(\scrF )i

\delta (\psi \dagger 
\.a)
i = \mathrm{i}\epsilon b\sigma \mu b \.a\partial \mu (\phi 

\dagger )i + \epsilon \dagger a(\scrF \dagger )i

\delta (\scrF )i =  - \mathrm{i}\epsilon \dagger \.a\=\sigma 
\mu \.ab\partial \mu (\psi b)i

\delta (\scrF \dagger )i = \mathrm{i}\partial \mu (\psi 
\dagger 
\.a)
i\=\sigma \mu \.ab\epsilon b

=\Rightarrow 

\delta S = 0

Closure of the algebra
on \phi i, \psi i and \scrF i fields:\bigl[ 
\delta \epsilon 2 , \delta \epsilon 1

\bigr] 
X = f(\epsilon 1, \epsilon 2)\mathrm{i}\partial \mu X

X =
\Bigl\{ 
\phi i, \phi 

\dagger 
i , \psi i, \psi 

\dagger 
i ,\scrF i,\scrF \dagger 

i

\Bigr\} 

(3.33)
where f(\epsilon 1, \epsilon 2) is a function of the transformation parameters \epsilon 1 and \epsilon 2 showed
in the first line of Eq. (3.30) and we have introduced an index i to describe
more than one field. We use the convention that the i index is a lower index
for \phi , \psi and \scrF fields while it is a raised index for \phi \dagger , \psi \dagger and \scrF \dagger fields. Even
though this index is not a spacetime index, this conventions helps in case of
summed index.

Finally, the free Lagrangian that describes scalar, spinor and auxiliary
fields is:

\scrL c
free+aux = \scrL c

s +\scrL c
f +\scrL c

aux =  - \partial \mu (\phi \dagger )i\partial \mu (\phi )i+\mathrm{i}(\psi \dagger 
\.a)
i\=\sigma \mu \.ab\partial \mu (\psi b)i+(\scrF \dagger )i(\scrF )i .

(3.34)

3.3.3 Interaction Lagrangian

In order for the theory to be renormalizable each Lagrangian term has to
have a field content with mass dimension that is less than or equal to 4, where
[\phi ] = [\phi \dagger ] = [mass]1, [\psi ] = [\psi \dagger ] = [mass]

3
2 and [\scrF ] = [\scrF \dagger ] = [mass]2. The

interaction is given by writing all the possible Lorentz-invariant terms that
respect this requirement:

\scrL c
int = U(\phi k, \phi 

\dagger k)+xij(\phi k, \phi 
\dagger k)\scrF i\scrF j+W

i(\phi k, \phi 
\dagger k)\scrF i - 

1

2
W ij(\phi k, \phi 

\dagger k)\psi ai \psi ja+h.c.
(3.35)

where the indices of \phi and \psi label different supermultiplets and W i, W ij,
U and xij are generic function of the scalar fields \phi k and \phi \dagger k. The factor
1
2
is included to simplify later results. Note that the term \scrF \dagger i\scrF i is already

included in Eq. (3.34).
Since we require the variation of the total Lagrangian \scrL c

tot = \scrL c
free + \scrL c

int
to be invariant under the SUSY transformations (3.33) and since \delta \scrL c

free is
already invariant, we need to require \delta \scrL c

int to be invariant, that is to be equal
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to the total derivative of a function f :

\delta \scrL c
int = \delta U + \delta (xij\scrF i\scrF j) + \delta (W i\scrF i) - \delta 

\Bigl( 
1

2
W ij\psi ai \psi ja

\Bigr) 
+ h.c. = \partial \mu f . (3.36)

Now, using the transformations (3.33), \delta U is

\delta U(\phi i, \phi 
\dagger i) =

\partial U

\partial \phi i
\delta \phi i +

\partial U

\partial \phi \dagger i \delta \phi 
\dagger i =

\partial U

\partial \phi i
\epsilon a\psi ai +

\partial U

\partial \phi \dagger i \epsilon 
\dagger 
\.a\psi 

\dagger \.ai . (3.37)

Since the terms in \delta U cannot be cancelled by terms in the variations \delta (xij\scrF i\scrF j),
\delta (W i\scrF i) and \delta (W ij\psi ai \psi ja) (see Eq. (3.39), (3.42) and (3.43)), the only way in
which \delta \scrL c

int can be a total derivative is that U is a constant that can always
be set equal to zero:

U = 0 . (3.38)

Applying the same argument, the variation \delta (xlm\scrF l\scrF m) is

\delta 
\Bigl[ 
xlm(\phi i, \phi 

\dagger i)\scrF l\scrF m

\Bigr] 
=
\partial xlm

\partial \phi i
\epsilon a\psi ai\scrF l\scrF m +

\partial xlm

\partial \phi \dagger i \epsilon 
\dagger 
\.a\psi 

\dagger \.ai\scrF l\scrF m + xlm\delta (\scrF l\scrF m)

(3.39)
and again there are no other terms that can cancel the \epsilon a\psi ai\scrF l\scrF m and
\epsilon \dagger \.a\psi 

\dagger \.ai\scrF l\scrF m terms. Thus, as done for U , we set the function xij to zero:

xij = 0 . (3.40)

In this way, that the variation of the interacting Lagrangian does not depend
on U or xij: \delta \scrL c

int = \delta (W i\scrF i) - \delta (1
2
W ij\psi ai \psi ja).

The variation \delta (W i\scrF i) is

\delta (W i\scrF i) =

\Bigl( 
\partial W i

\partial \phi k
\delta \phi k

\Bigr) 
\scrF i +

\Bigl( 
\partial W i

\partial \phi \dagger k \delta \phi 
\dagger k
\Bigr) 
\scrF i +W i\delta \scrF i (3.41)

and using the SUSY transformations (3.33)

\delta (W i\scrF i) =
\partial W i

\partial \phi k
\epsilon a\psi ak\scrF i +

\partial W i

\partial \phi \dagger k \epsilon 
\dagger 
\.a\psi 

\dagger \.ak\scrF i +W i( - \mathrm{i})\epsilon \dagger \.a\=\sigma 
\mu \.ab\partial \mu \psi bi . (3.42)

The last variation in (3.36) is \delta ( - 1
2
W ij\psi ai \psi ja):

\delta 
\Bigl( 
 - 1

2
W ij\psi ai \psi ja

\Bigr) 
= - 1

2

\partial W ij

\partial \phi k
\epsilon a\psi ak\psi 

b
i\psi bj - 

1

2

\partial W ij

\partial \phi \dagger k \epsilon 
\dagger 
\.a\psi 

\dagger \.ak\psi bi\psi bj - 
1

2
W ij\delta (\psi ai \psi aj).

(3.43)
The first term  - 1

2
\partial W ij

\partial \phi k
\epsilon a\psi ak\psi 

b
i\psi bj cannot be cancelled with the other terms

in \delta \scrL c
int since its field content is different from all other terms. In order to



50 CHAPTER 3. SUPERSYMMETRY

have \scrL c
int invariant we need this term to be a constant. We require \partial W ij

\partial \phi k
to

be totally symmetric under the interchange of i, j and k so that, summing
over i and j and using the Fierz identity (3.27), the first term is zero:

\partial W ij

\partial \phi k
symmetric =\Rightarrow \partial W ij

\partial \phi k
\epsilon a\psi ak\psi 

b
i\psi bj = 0 . (3.44)

The second term in Eq. (3.43),  - 1
2
\partial W ij

\partial \phi \dagger k \epsilon 
\dagger 
\.a\psi 

\dagger \.ak\psi bi\psi bj, again has a field
content that prevents it from cancelling with other terms in \delta \scrL c

int. Since here
we cannot apply the Fierz identity, we have to impose its coefficient to be
zero:

\partial W ij(\phi k, \phi 
\dagger 
k)

\partial \phi \dagger k = 0 (3.45)

that is W ij is a holomorphic function of \phi k.
From the interaction Lagrangian (3.35), since for the spinor fields [\psi ai ] =

[\psi ja] = [mass]
3
2 , we can see that W ij has the dimension of a mass. Since

W ij(\phi k) depends only on \phi k and not on \phi \dagger 
k, we can in general express W ij(\phi k)

as
W ij(\phi k) =M ij + yijk\phi k (3.46)

where yijk has to be totally symmetric under the interchange of i, j and k as
we required \partial W ij

\partial \phi k
to be totally symmetric and we can always choose M ij to be

symmetric. In this way, W ij is symmetric under the exchange of i and j. In
general, we can express W ij(\phi k) in terms of another function W in this way:

W ij =
\partial 2W

\partial \phi i\partial \phi j
(3.47)

with

W = f(\phi \dagger 
i ) + ci\phi i + cij\phi \dagger 

i\phi j +
1

2
M ij\phi i\phi j +

1

6
yijk\phi i\phi j\phi k (3.48)

where W is the most generic function of \phi i and \phi \dagger 
i such that W ij is symmetric

under the exchange of i and j and has a form as in (3.46). The function W
is called superpotential.

The last term in Eq. (3.43) is

 - 1

2
W ij\delta (\psi ai \psi aj) =  - 1

2
W ij2\psi ai \delta \psi aj =  - W ij\psi ai

\Bigl[ 
( - \mathrm{i})\sigma \mu 

a\.b
\epsilon \dagger 

\.b\partial \mu \phi j + \epsilon a\scrF j

\Bigr] 

(3.49)
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where we have considered that W ij is symmetric under the exchange of i, j
and the SUSY transformations (3.33). To sum this term with the last term
in Eq. (3.42), we can use again the identity (3.29):

 - 1

2
W ij\delta (\psi ai \psi aj) = \mathrm{i}W ij(\psi ai \sigma 

\mu 

a\.b
\epsilon \dagger 

\.b)\partial \mu \phi j  - W ij\psi ai \epsilon a\scrF j

=  - \mathrm{i}W ij(\epsilon \dagger \.a\=\sigma 
\mu \.ab\psi bi)\partial \mu \phi j  - W ij\psi ai \epsilon a\scrF j .

(3.50)

Now, we can plug Eq. (3.38), (3.40), (3.42) and (3.43) into Eq. (3.36), and
take into account Eq. (3.44), (3.45) and (3.50):

\delta \scrL c
int=

\partial W i

\partial \phi k
\epsilon a\psi ak\scrF i +

\partial W i

\partial \phi \dagger k \epsilon 
\dagger 
\.a\psi 

\dagger \.ak\scrF i  - \mathrm{i}W i\epsilon \dagger \.a\=\sigma 
\mu \.ab\partial \mu \psi bi

 - \mathrm{i}W ij\epsilon \dagger \.a\=\sigma 
\mu \.ab\psi bi\partial \mu \phi j - W ij\psi ai \epsilon a\scrF j+h.c.

(3.51)

The two terms with \=\sigma \mu \.ab can be summed to get a total derivative. To show
this, first we need to note that, using Eq. (3.47) and considering Eq. (3.45)
that is the superpotential W is a holomorphic function of \phi i, we have

W ij\partial \mu \phi j =
\partial 2W

\partial \phi i\partial \phi j
\partial \mu \phi j = \partial \mu 

\Bigl( 
\partial W

\partial \phi i

\Bigr) 
. (3.52)

Now, the sum of two terms with \=\sigma \mu \.ab in Eq. (3.51) become:

 - \mathrm{i}W i\epsilon \dagger \.a\=\sigma 
\mu \.ab\partial \mu \psi bi  - \mathrm{i}\partial \mu 

\Bigl( 
\partial W

\partial \phi i

\Bigr) 
\epsilon \dagger \.a\=\sigma 

\mu \.ab\psi bi (3.53)

and we can finally see that setting

W i =
\partial W

\partial \phi i
(3.54)

the sum of the two terms is a total derivative:

 - \mathrm{i}W i\epsilon \dagger \.a\=\sigma 
\mu \.ab\partial \mu \psi bi  - \mathrm{i}\partial \mu W

i\epsilon \dagger \.a\=\sigma 
\mu \.ab\psi bi =  - \mathrm{i}\partial \mu 

\Bigl( 
W i\epsilon \dagger \.a\=\sigma 

\mu \.ab\psi bi

\Bigr) 
(3.55)

so that these two terms can be ignored in the variation of the interaction
Lagrangian (3.51) that becomes

\delta \scrL c
int =

\partial W i

\partial \phi k
\epsilon a\psi ak\scrF i +

\partial W i

\partial \phi \dagger k \epsilon 
\dagger 
\.a\psi 

\dagger \.ak\scrF i  - W ij\psi ai \epsilon a\scrF j + h.c. (3.56)
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Considering Eq. (3.47) and (3.54) we have

W ij =
\partial 

\partial \phi i

\partial W

\partial \phi j
=
\partial W i

\partial \phi j
(3.57)

so that, with the indices substitution i \rightarrow j and k \rightarrow i, the first term
in Eq. (3.56) becomes

\partial W j

\partial \phi i
\epsilon a\psi ai\scrF j = W ji\epsilon a\psi ai\scrF j = W ij\epsilon a\psi ai\scrF j (3.58)

where we have taken into account the symmetry of W ij given by Eq. (3.47).
The last expression is opposite to the third term in (3.56), that is the sum of
the first and third term in (3.56) is zero and the variation of the interaction
Lagrangian is:

\delta \scrL c
int =

\partial W i

\partial \phi \dagger k \epsilon 
\dagger 
\.a\psi 

\dagger \.ak\scrF i + h.c. (3.59)

Finally, since we require the variation of the interaction Lagrangian to be
zero, we impose \partial W i

\partial \phi \dagger k
= 0. This, in turn, from Eq. (3.54), implies that the

coefficient cij in the superpotential (3.48) is zero:
\partial W i

\partial \phi \dagger 
i

= 0 =\Rightarrow \partial W

\partial \phi \dagger 
i\partial \phi j

= cij = 0 . (3.60)

The function f(\phi \dagger 
i) can also be set to zero because, considering the defini-

tions (3.47) and (3.54), the Lagrangian only includes derivatives respect to
\phi i:

f(\phi \dagger 
i ) = 0 . (3.61)

With these considerations, the superpotential (3.48) become

W = ci\phi i +
1

2
M ij\phi i\phi j +

1

6
yijk\phi i\phi j\phi k (3.62)

from which we can derive the expression for the functions W ij and W i:

W i =
\partial W

\partial \phi i
= ci +M ij\phi j +

1

2
yijk\phi j\phi k (3.63)

W ij =
\partial 2W

\partial \phi i\partial \phi j
=
\partial W i

\partial \phi j
=M ij + yijk\phi k . (3.64)

Gathering Eq. (3.34) and (3.35) and considering that U = 0 and xij = 0
as in Eq. (3.38) and (3.40), the total Lagrangian is

\scrL c
SUSY = \scrL c

s + \scrL c
f + \scrL c

aux + \scrL c
int

=  - \partial \mu \phi \dagger i\partial \mu \phi i + \mathrm{i}\psi \dagger i
\.a \=\sigma 

\mu \.ab\partial \mu \psi bi + \scrF \dagger i\scrF i +

\biggl( 
W i\scrF i  - 

1

2
W ij\psi ai \psi ja + h.c.

\biggr) 
.

(3.65)
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3.3.4 Elimination of auxiliary fields

The auxiliary fields \scrF i and \scrF \dagger i can be eliminated using the equations of
motion:

\partial \mu 
\partial \scrL c

SUSY

\partial (\partial \mu \scrF i)
 - \partial \scrL c

SUSY

\partial \scrF i

= 0 =\Rightarrow \scrF \dagger i =  - W i =  - \partial W
\partial \phi i

\partial \mu 
\partial \scrL c

SUSY

\partial (\partial \mu \scrF \dagger i)
 - \partial \scrL c

SUSY

\partial \scrF \dagger i = 0 =\Rightarrow \scrF i =  - W \dagger 
i =  - 

\Bigl( 
\partial W

\partial \phi i

\Bigr) \dagger (3.66)

so that the interaction Lagrangian become

\scrL c
int =  - W iW \ast 

i  - 1

2
W ij\psi ai \psi ja + h.c. (3.67)

summing this and the \scrF \dagger i\scrF i term that appears in Eq. (3.65) gives

\scrL c
int + \scrF \dagger i\scrF i =  - W iW \dagger 

i  - W \dagger 
iW

i  - (1
2
W ij\psi ai \psi ja + h.c.)+W iW \dagger 

i

=  - 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\partial W

\partial \phi i

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

 - (1

2

\partial 2W

\partial \phi i\partial \phi j
\psi ai \psi ja + h.c.)

(3.68)

where the term W \dagger 
i \scrF i\dagger comes from the hermitian conjugate part and we have

used Eq. (3.64). Plugging this expression into the total Lagrangian (3.65) we
obtain:

\scrL c
SUSY =  - \partial \mu \phi \dagger i\partial \mu \phi i + \mathrm{i}\psi \dagger i

\.a \=\sigma 
\mu \.ab\partial \mu \psi bi  - 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\partial W

\partial \phi i

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

 - 
\Biggl( 
1

2

\partial 2W

\partial \phi i\partial \phi j
\psi ai \psi aj + h.c.

\Biggr) 

(3.69)
where W is the superpotential (3.62) whose derivatives can be expanded as
in Eq. (3.63) and (3.64):

\scrL c
SUSY =  - \partial \mu \phi \dagger i\partial \mu \phi i + \mathrm{i}\psi \dagger i

\.a \=\sigma 
\mu \.ab\partial \mu \psi bi

 - 
\bigm| \bigm| \bigm| \bigm| ci +M ij\phi j +

1

2
yijk\phi j\phi k

\bigm| \bigm| \bigm| \bigm| 
2

 - 
\biggl( 
1

2
M ij\psi ai \psi ja +

1

2
yijk\phi k\psi 

a
i \psi ja + h.c.

\biggr) 
.

(3.70)

The Lagrangian (3.70) implies that the tree level masses of a particle and
its superpartner are the same. In fact, from the equations of motion for the
scalar field \phi \dagger i we obtain

\partial \mu \partial \mu \phi k =M ijMik\phi j . (3.71)
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On the other hand, the equations of motion for the fields \psi \dagger i and \psi i are

\mathrm{i}\=\sigma \mu \.ab\partial \mu \psi bi +M \dagger 
ij\psi 

\dagger \.aj = 0 (3.72)

 - \mathrm{i}\sigma \mu 
a\.b
\partial \mu \psi 

\dagger \.bi +M ij\psi ja = 0 (3.73)

where in the second equation we have used Eq. (3.29). The equations of
motion for the scalar and spinor field employ the same mass matrix M ij

implying that all the particle and sparticles in a supermultiplet have to have
the same mass.

3.4 Abelian gauge SUSY Lagrangian
We can divide the gauge theory in Abelian and non-Abelian gauge theory.
Here we study an Abelian U(1) gauge theory whose spectrum includes one
bosonic gauge field and its supersymmetric partner, a gaugino.

We follow the procedure of the previous 3.3.1, 3.3.2, 3.3.3 and 3.3.4 sections
that is

\bullet start with a free Lagrangian;

\bullet add auxiliary fields to close the algebra;

\bullet introduce interactions;

\bullet eliminate the auxiliary fields.

3.4.1 Free Lagrangian

Consider a vector supermultiplet in which there is a bosonic gauge field A\mu 
and its supersymmetric partner denoted by \lambda . As in Eq. (3.23) and using the
field strength tensor of the gauge field A\mu as in Eq. (2.44), we can write the
Lagrangian kinetic terms:

\scrL Av
free =  - 1

4
F\mu \nu F

\mu \nu + \mathrm{i}\lambda \dagger \=\sigma \mu \partial \mu \lambda (3.74)

where the superscript Av stands for Abelian vector supermultiplet and F\mu \nu is
defined in Eq. (2.16) for the U(1) Abelian case.

Now we can introduce the SUSY transformations of the gauge field A\mu 
and the spinor field \lambda 

\delta A\mu =  - 1\surd 
2
(\epsilon \dagger \=\sigma \mu \lambda + \lambda \dagger \=\sigma \mu \epsilon ) \delta \lambda \alpha =

\mathrm{i}

2
\surd 
2
(\sigma \mu \=\sigma \nu \epsilon )\alpha F\mu \nu . (3.75)
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It can be explicitly verified that with these transformations (3.75) the variation
of the free Lagrangian (3.74) is a total derivative and so the action is invariant.
However, as in the previous section 3.3.2, the algebra does not close off-shell
on the A\mu and \lambda fields.

3.4.2 Auxiliary Lagrangian

Following sec. 3.3.2, we introduce an auxiliary field\scrD with one off-shell bosonic
degree of freedom and zero on-shell degree of freedom. This compensates
the two on-shell, three off-shell degree of freedom of the vector field A\mu and
the two on-shell, four off-shell degree of freedom of the spinor field \lambda . The
real scalar field \scrD together with its variation \delta \scrD can allow the closure of the
algebra on the A\mu , \lambda and \scrD fields. Thus, we add the auxiliary term

\scrL Av
aux =

1

2
\scrD 2 (3.76)

to the free Lagrangian (3.74). The total Lagrangian \scrL Av
free+\scrL Av

aux is not invariant
under the SUSY transformation (3.75), so we modify these transformations
in order to have both Lagrangians invariant up to total derivatives and the
closure of the algebra on the A\mu , \lambda and \scrD fields. As can be verified, the
variations

\delta A\mu =  - 1\surd 
2
(\epsilon \dagger \=\sigma \mu \lambda + \lambda \dagger \=\sigma \mu \epsilon ) \delta \lambda a =

\mathrm{i}

2
\surd 
2
(\sigma \mu \=\sigma \nu \epsilon )aF\mu \nu +

1\surd 
2
\scrD \epsilon a

\delta \scrD =
1\surd 
2
( - \epsilon \dagger \=\sigma \mu \partial \mu \lambda + \partial \mu \lambda 

\dagger \=\sigma \mu \epsilon )
(3.77)

make the Lagrangian

\scrL Av
free + \scrL Av

aux =  - 1

4
F\mu \nu F

\mu \nu + \mathrm{i}\lambda \dagger \=\sigma \mu \partial \mu \lambda +
1

2
\scrD 2 (3.78)

invariant and allow the closure of the algebra.

3.4.3 Interaction Lagrangian

In order to combine the Abelian vector supermultiplet
\bigl\{ 
A\mu , \lambda ,\scrD 

\bigr\} 
and the chi-

ral supermultiplet \{ \phi , \psi ,\scrF \} a first attempt would be to sum the Lagrangian
\scrL c
free+aux in Eq. (3.34) and the above gauge Lagrangian (3.78). However, such

a sum is not gauge-invariant. Following the methodology of sec. 2.2.1, we
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can write the gauge invariant Lagrangian

\scrL c+Av
fr+au+int= \scrL c

free + \scrL c
aux + \scrL Av

free + \scrL Av
aux

\bigm| \bigm| \bigm| 
\partial \mu \rightarrow D\mu =\partial \mu +\mathrm{i}qA\mu 

= (D\mu \phi )
\dagger (D\mu \phi ) + \mathrm{i}\psi \dagger \=\sigma \mu D\mu \psi + \scrF \dagger \scrF  - 1

4
F\mu \nu F

\mu \nu + \mathrm{i}\lambda \dagger \=\sigma \mu \partial \mu \lambda +
1

2
\scrD 2

(3.79)

where the chiral supermultiplet transform according Eq. (2.13) and we have
used the covariant derivative in place of the normal derivative, according to
Eq. (2.19), to make the Lagrangian gauge invariant. The strength field F\mu \nu 
and the corresponding gauge field A\mu of an Abelian supermultiplet are gauge
invariant. Thus, since all members of a supermultiplet have to have the same
gauge transformation, also \lambda is gauge invariant and the covariant derivative
D\mu reduces to the normal derivative \partial \mu that appears in the \mathrm{i}\lambda \dagger \=\sigma \mu \partial \mu \lambda term in
the above Eq. (3.79).

As in sec. 2.2.1, the introduction of the covariant derivative couples the
boson field A\mu with the scalar and fermion fields, \phi and \psi respectively. Indeed,
expanding D\mu = \partial \mu + \mathrm{i}qA\mu in Eq. (3.79), we find the interaction terms:

\scrL c+Av
int, covariant = \partial \mu \phi 

\dagger \mathrm{i}qA\mu \phi  - \mathrm{i}qA\mu \phi 
\dagger \partial \mu \phi + \mathrm{i}\psi \dagger \=\sigma \mu \mathrm{i}qA\mu \psi . (3.80)

Apart from the previous interaction terms, there are also the other possible
gauge invariant interaction terms

\scrL c+Av
int,residual = c1\phi 

\dagger \phi \scrD + c2

\Bigl( 
\phi \dagger \psi \lambda + h.c.

\Bigr) 
(3.81)

where c1 and c2 are dimensionless coefficient. Conversely to \scrL c+Av
int, covariant

in Eq. (3.80), these interaction terms are not already included in the La-
grangian (3.79) so we need to add them to Eq. (3.79). Any other term that
combines fields from the Abelian vector supermultiplet, with dimensions
[A\mu ] = [mass], [\lambda ] = [mass]

3
2 , [\scrD ] = [mass]2, and the chiral supermultiplet,

with dimensions [\phi ] = [mass]1, [\psi ] = [mass]
3
2 , [\scrF ] = [mass]2, is excluded be-

cause it has a dimension bigger than 4 or it do not respect Lorentz invariance.
As always, we require the total Lagrangian

\scrL c+Av = \scrL c+Av
fr+au+int + \scrL c+Av

int,residual (3.82)

sum of Eq. (3.79) and Eq. (3.81), to be invariant up to total derivatives
under some SUSY transformations to be determined. Previously, the free and
auxiliary Lagrangian \scrL c

free+aux (3.34) was invariant under the SUSY transfor-
mations (3.33). However, the variations \delta \psi and \delta \scrF are now modified by the
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introduction of the covariant derivative. Thus the variation \delta (\scrL c
free+aux| \partial \mu \rightarrow D\mu )

presents new terms that have to be taken into account when we require
\delta S = 0. It can be verified that the variation of the total Lagrangian is null
up to total derivatives if the coefficients c1 and c2 in Eq. (3.81) are

c1 =  - q c2 =  - 
\surd 
2q (3.83)

and if the fields satisfy the SUSY transformations

\delta \phi i = \epsilon \psi i \delta \psi ia =  - \mathrm{i}(\sigma \mu \epsilon \dagger )aD\mu \phi i + \epsilon a\scrF i

\delta A\mu =  - 1\surd 
2
(\epsilon \dagger \=\sigma \mu \lambda + \lambda \dagger \=\sigma \mu \epsilon ) \delta \lambda a =

\mathrm{i}

2
\surd 
2
(\sigma \mu \=\sigma \nu \epsilon )aF\mu \nu +

1\surd 
2
\scrD \epsilon a

\delta \scrD =
1\surd 
2
( - \epsilon \dagger \=\sigma \mu D\mu \lambda +D\mu \lambda 

\dagger \=\sigma \mu \epsilon ) \delta \scrF i =  - \mathrm{i}\epsilon \dagger \=\sigma \mu D\mu \psi i +
\surd 
2qi\phi i\lambda 

\dagger \epsilon \dagger 

(3.84)
where qi is the coupling constant charge that appears in the covariant deriva-
tive (2.19) and we have introduced an index i to consider more than one
chiral superfield.

3.4.4 Elimination of auxiliary fields

As we have done at the end of sec. 3.3.3, we can eliminate the auxiliary field
\scrD looking at the equations of motion of this field. Plugging Eq. (3.79), (3.81)
and (3.83) into Eq. (3.82) we obtain the Lagrangian that combine chiral and
vector supermultiplets:

\scrL c+Av = \scrL c
free + \scrL c

aux + \scrL Av
free + \scrL Av

aux

\bigm| \bigm| \bigm| 
\partial \mu \rightarrow D\mu 

+ \scrL c+Av
int,residual

= (D\mu \phi 
i)\dagger (D\mu \phi i) + \mathrm{i}\psi \dagger i\=\sigma \mu D\mu \psi i + \scrF \dagger i\scrF i  - 

1

4
F\mu \nu F

\mu \nu + \mathrm{i}\lambda \dagger \=\sigma \mu \partial \mu \lambda +
1

2
\scrD 2

 - q\phi \dagger i\phi i\scrD  - 
\surd 
2q
\Bigl( 
\phi \dagger i\psi i\lambda + h.c.

\Bigr) 

(3.85)

where the index i is used to label more than one field. The equation of motion
for \scrD is

\scrD  - q\phi \dagger i\phi i = 0 (3.86)

that can be used to replace the auxiliary field \scrD with the scalar field \phi .
The Lagrangian (3.85) combine chiral and vector supermultiplets but does

not include the interaction among members of the chiral supermultiplet. To
obtain the full Lagrangian we finally have to add to Eq. (3.85) the interaction
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Lagrangian (3.67) for chiral supermultiplet:

\scrL = \scrL c
free + \scrL c

aux + \scrL Av
free + \scrL Av

aux

\bigm| \bigm| \bigm| 
\partial \mu \rightarrow D\mu 

+ \scrL c+Av
int,residual + \scrL c

int

= (D\mu \phi 
i)\dagger (D\mu \phi i) + \mathrm{i}\psi \dagger i\=\sigma \mu D\mu \psi i  - 

1

4
F\mu \nu F

\mu \nu + \mathrm{i}\lambda \dagger \=\sigma \mu \partial \mu \lambda  - 1

2

\Bigl( 
q\phi \dagger i\phi i

\Bigr) 2

 - 
\surd 
2q
\Bigl( 
\phi \dagger i\psi i\lambda + h.c.

\Bigr) 
 - | \partial W\partial \phi i | 

2

 - (1

2

\partial 2W

\partial \phi i\partial \phi j
\psi ai \psi ja + h.c.)

(3.87)

where we have eliminated both the auxiliary field \scrD using Eq. (3.86) and the
auxiliary fields \scrF i summing \scrL c

int and \scrF \dagger i\scrF i as done in Eq. (3.68). From this
Lagrangian \scrL we can see that the scalar field potential V (\phi , \phi \dagger ) is

V (\phi , \phi \dagger ) = | \partial W\partial \phi i | 
2

+
1

2

\Bigl( 
q\phi \dagger i\phi i

\Bigr) 2
\equiv V\scrF + V\scrD (3.88)

where W is the superpotential (3.62) and we have introduced the \scrF -term and
\scrD -term

V\scrF \equiv | \partial W\partial \phi i | 
2

= \scrF \dagger i\scrF i V\scrD \equiv 1

2

\Bigl( 
q\phi \dagger i\phi i

\Bigr) 2
=

1

2
\scrD 2 (3.89)

that will be further studied in sec 3.6.1 and 3.6.2.

3.5 Non-Abelian gauge SUSY Lagrangian
In this section, we consider the SU(2) and SU(3) non-Abelian gauge theory.
As discussed in sec. 2.2.3, the SU(N) groups have N2  - 1 generators, see
Eq. (2.32), that correspond to N2  - 1 gauge fields. We indicate the gauge
fields with Aa, the gaugino fields with \lambda a and the auxiliary fields with \scrD a,
where a run from 1 to 3 in the SU(2) case and from 1 to 8 in the SU(3) case.

3.5.1 Free and Auxiliary Lagrangian

Using the result found in sec. 2.2.3, we generalise the free and auxiliary
Lagrangian in Eq. (3.74) and (3.76)

\scrL NAv
free+aux =  - 1

4
F a
\mu \nu F

\mu \nu a + \mathrm{i}\lambda \dagger a\=\sigma \mu D\mu \lambda 
a +

1

2
\scrD a\scrD a (3.90)

where F a
\mu \nu is defined in Eq. (2.43), \lambda a are the gaugino fields and \scrD a are the

auxiliary fields necessary to close the algebra. The gaugino fields are called
winos and gluinos respectively in the SU(2) and SU(3) case.
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Eq. (3.90) is a generalization of Eq. (3.78) and the covariant derivative D\mu 

takes the place of the normal derivative \partial \mu . To see the form of the covariant
derivative D\mu , we note that the gaugino fields transforms as in Eq. (3.84) for
the Abelian case, that is

\delta \lambda ab =
\mathrm{i}

2
\surd 
2
(\sigma \mu \=\sigma \nu \epsilon )bF

a
\mu \nu +

1\surd 
2
\scrD a\epsilon b (3.91)

where the superscript a index is the gauge index while the subscript b index is
the spinor index. This shows that the gauginos \lambda a, the auxiliary fields \scrD a and
the strength tensor F\mu \nu and so the corresponding the gauge field A\mu have to
transform in the same way under the gauge symmetry. As shown in Eq. (2.47),
in the non-Abelian case F\mu \nu transforms in the adjoint representation thus also
\lambda a and \scrD a transform in the adjoint representation under the gauge symmetry.
Now, generalising the transformation (3.84) for the auxiliary field \scrD a in the
non-Abelian case,

\delta \scrD a =
1\surd 
2
( - \epsilon \dagger \=\sigma \mu D\mu \lambda 

a +D\mu \lambda 
\dagger a\=\sigma \mu \epsilon ) (3.92)

and requiring that \scrD a transforms in the adjoint representation imply a
redefinition of the covariant derivative D\mu . In fact, as \lambda a transforms in
the adjoint representation, the covariant derivative acting on \lambda a, to ensure
gauge invariance, has to be defined in the adjoint representation, that is with
generators defined in Eq. (2.36). Thus, instead of the definition (2.38), in the
Lagrangian (3.90) we define the covariant derivative as

D\mu \lambda 
a \equiv Dadj

\mu \lambda a = \partial \mu \lambda 
a + \mathrm{i}g(T aadj)

bcAb\mu \lambda 
c = \partial \mu \lambda 

a + gfabcAb\mu \lambda 
c (3.93)

where (T aadj)
bc is defined in Eq. (2.36) and all the other symbols are defined

in sec. 2.2.3.
With this conventions and the transformation

\delta Aa\mu =  - 1\surd 
2
(\epsilon \dagger \=\sigma \mu \lambda a + \lambda \dagger a\=\sigma \mu \epsilon ) (3.94)

it can be verified that the variation of the Lagrangian (3.90) is null up to
total derivatives.

3.5.2 Interactions and elimination of auxiliary fields

Following sec. 3.4.3, we start with a Lagrangian that describes the interaction
between the non-Abelian vector supermultiplet

\Bigl\{ 
Aa\mu , \lambda 

a,\scrD a
\Bigr\} 

and the chiral
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supermultiplet
\Bigl\{ 
\phi b, \psi b,\scrF b

\Bigr\} 
:

\scrL c+NAv
fr+au+int = (D\mu bc\phi 

b)\dagger (D\mu 
bc\phi 

b) + \mathrm{i}\psi \dagger b\=\sigma \mu D\mu bb\prime \psi 
b\prime + \scrF \dagger b\scrF b

 - 1

4
F a
\mu \nu F

\mu \nu a + \mathrm{i}\lambda \dagger a\=\sigma \mu Dadj
\mu \lambda a +

1

2
\scrD a\scrD a (3.95)

where the index a labels the N2  - 1 fields \{ (A1
\mu , . . . , A

N2 - 1
\mu ), (\lambda 1, . . . , \lambda N

2 - 1),

(\scrD 1, . . . ,\scrD N2 - 1)\} that correspond to the N2  - 1 generators of the SU(N)
gauge theory. These fields belong to the vector supermultiplet and transform
in the adjoint representation. The index b labels the N fields \{ (\phi 1, . . . , \phi N),
(\psi 1, . . . , \psi N ), (\scrF 1, . . . ,\scrF N )\} belonging to the chiral supermultiplet and trans-
forming in the fundamental representation. Finally, we specify indices of the
covariant derivative (D\mu )ij = \delta ij\partial \mu + \mathrm{i}gAa\mu T

a
ij where Aa\mu correspond to the

gauge fields and T aij are the generators of the group.
The covariant derivatives and adjoint covariant derivatives couple both

the chiral with vector fields and the vector fields with itself. Setting the
superpotential to zero, W = 0 and expanding the covariant derivative (2.38),
D\mu = \partial \mu + \mathrm{i}gAa\mu T

a, and the adjoint covariant derivative (3.93), Dadj
\mu =

\partial \mu + \mathrm{i}gAa\mu T
a
adj, in Eq. (3.95), we get the interaction Lagrangian

\scrL c+NAv
int, covariant = [\mathrm{i}gTA\mu \phi ]

\dagger \partial \mu \phi + \partial \mu \phi 
\dagger \mathrm{i}gTA\mu \phi 

 - g2sTA\mu TA\mu \phi \phi + \mathrm{i}\psi \dagger \=\sigma \mu \mathrm{i}gTA\mu \psi + \mathrm{i}\lambda \dagger \=\sigma \mu \mathrm{i}gsTadjA\mu \lambda (3.96)

where, for simplicity, we dropped the indices.
Continuing to follow sec. 3.4.3 and mimicking the same reasoning through

which we obtained Eq. (3.81), we can again get other gauge invariant interac-
tion terms

\scrL c+NAv
int,residual = c1\phi 

b\dagger \scrD a(T a)bc\phi c + c2

\Bigl[ 
\phi b\dagger \lambda a(T a)bc\psi c + h.c.

\Bigr] 
. (3.97)

Again, we require the total Lagrangian

\scrL c+NAv = \scrL c+NAv
fr+au+int + \scrL c+NAv

int,residual (3.98)

to be invariant, up total derivative, under the SUSY transformation

\delta \phi i = \epsilon \psi i \delta \lambda ab =
\mathrm{i}

2
\surd 
2
(\sigma \mu \=\sigma \nu \epsilon )bF

a
\mu \nu +

1\surd 
2
\scrD a\epsilon b

\delta \psi ib =  - \mathrm{i}(\sigma \mu \epsilon \dagger )bD\mu \phi i + \epsilon bFi \delta Aa\mu =  - 1\surd 
2
(\epsilon \dagger \=\sigma \mu \lambda a + \lambda \dagger a\=\sigma \mu \epsilon )

\delta \scrF i =  - \mathrm{i}\epsilon \dagger \=\sigma \mu D\mu \psi i +
\surd 
2q\phi \lambda \dagger \epsilon \dagger \delta \scrD a =

1\surd 
2
( - \epsilon \dagger \=\sigma \mu D\mu \lambda 

a +D\mu \lambda 
\dagger a\=\sigma \mu \epsilon )

(3.99)
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that are the non-Abelian generalization of (3.84), as we have found in
Eq. (3.91), (3.92) and (3.94). The supersymmetry invariance requirement
constrains the coefficient c1 and c2 in the same way found in Eq. (3.83):

c1 =  - g c2 =  - 
\surd 
2g . (3.100)

Plugging Eq. (3.95), (3.97) and (3.100) into the total Lagrangian (3.98),
we get

\scrL c+NAv = (D\mu bc\phi 
b)\dagger (D\mu 

bc\phi 
b)+\mathrm{i}\psi \dagger b\=\sigma \mu D\mu bb\prime \psi 

b\prime +\scrF \dagger b\scrF b - 1

4
F a
\mu \nu F

\mu \nu a+\mathrm{i}\lambda \dagger a\=\sigma \mu Dadj
\mu \lambda a

+
1

2
\scrD a\scrD a  - g\phi b\dagger \scrD a(T a)bc\phi c  - 

\surd 
2g
\Bigl[ 
\phi b\dagger \lambda a(T a)bc\psi c + h.c.

\Bigr] 
. (3.101)

From the equation of motion for the auxiliary fields \scrD a

\scrD a  - g[\phi b\dagger (T a)bc\phi c] = 0 (3.102)

we can express \scrD a in terms of the scalar fields \phi in Eq. (3.101). Adding to
Eq. (3.101) the Lagrangian \scrL c

int, Eq. (3.67) that describe the interactions
among fields in the chiral supermultiplet, and eliminating the \scrF b auxiliary
fields summing \scrL c

int+\scrF \dagger b\scrF b as done in Eq. (3.68), we obtain the full Lagrangian

\scrL = \scrL c+NAv
fr+au+int + \scrL c+NAv

int,residual + \scrL c
int

= (D\mu bc\phi 
b)\dagger (D\mu 

bc\phi 
b) + \mathrm{i}\psi \dagger b\=\sigma \mu D\mu bb\prime \psi 

b\prime  - 1

4
F a
\mu \nu F

\mu \nu a + \mathrm{i}\lambda \dagger a\=\sigma \mu Dadj
\mu \lambda a

 - 1

2
g2[\phi b\dagger (T a)bc\phi c]

2  - 
\surd 
2g
\Bigl[ 
\phi b\dagger \lambda a(T a)bc\psi c + h.c.

\Bigr] 

 - | \partial W\partial \phi | 
2

 - (1

2

\partial 2W

\partial \phi i\partial \phi j
\psi ai \psi ja + h.c.)

(3.103)

where the superpotential W can be expanded as in Eq. (3.62). From this
total Lagrangian we can read that the scalar potential is given by

V (\phi i, \phi 
\dagger 
i ) = | \partial W\partial \phi | 

2

+
1

2
g2[\phi b\dagger i (T

a)bc\phi ci ]
2 \equiv V\scrF + V\scrD (3.104)

where, as in the Abelian case in sec. 3.4.4, we have introduced the \scrF -term
and \scrD -term

V\scrF \equiv | \partial W\partial \phi i | 
2

= \scrF \dagger i\scrF i V\scrD \equiv 1

2
g2[\phi b\dagger i (T

a)bc\phi ci ]
2
=

1

2
\scrD 2 (3.105)

that will be studied in next sec. 3.6.1 and 3.6.2.
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3.6 SUSY breaking
As we have seen at the end of sec. 3.3.4, without a symmetry-breaking
mechanism, every sparticle would have a mass equal to the mass of its particle
superpartner. For example, charged particles such as the selectron would
have a mass of about a half of \mathrm{M}\mathrm{e}\mathrm{V}, and the gluino would be massless. These
light charged sparticles would have been very easy to detect. Since we do not
observe such particles, we need a mechanism that splits sparticle and particle
masses. Such a mechanism has to break SUSY, because SUSY leads to the
degenerate masses of each particle with its superpartner.

It would be desirable to break SUSY by introducing a spontaneous sym-
metry breaking mechanism, as done in sec. 2.3, where the Lagrangian is
symmetric, but the ground state and thus the spectrum is not symmetric.
In this case, the charges Qa and Q\dagger 

\.a that generate the symmetry do not
annihilate the vacuum state | 0\rangle :

Qa | 0\rangle \not = 0 Q\dagger 
\.a | 0\rangle \not = 0 (3.106)

that is the vacuum is not invariant under SUSY transformations. Now the
algebra (3.3) constrains the Hamiltonian H, that is the operator P 0:

\Bigl\{ 
Qa, Q

\dagger 
\.a

\Bigr\} 
=  - 2\sigma \mu a \.aP\mu = 2 1a \.aP

0  - 2\sigma ia \.aP
i . (3.107)

Since the sigma matrices are traceless, taking the traces of Eq. (3.107) isolates
the Hamiltonian H = P 0:

Q
1
Q\dagger 

\.1
+Q\dagger 

\.1
Q

1
+Q

2
Q\dagger 

\.2
+Q\dagger 

\.2
Q

2
= H (3.108)

and calculating the vacuum expectation value (VEV) we obtain the relation-
ship

\langle 0 | H | 0\rangle = | | Q\dagger 
\.1
| 0\rangle | | 2 + | | Q

1
| 0\rangle | | 2 + | | Q\dagger 

\.2
| 0\rangle | | 2 + | | Q

2
| 0\rangle | | 2 > 0 (3.109)

where the strict inequality holds because of Eq. (3.106), that is when the
symmetry is broken. Considering the vacuum expectation value of the Hamil-
tonian kinetic terms null in the vacuum, the above inequality implies

\Bigl\langle 
0
\bigm| \bigm| \bigm| V (\phi i, \phi 

\dagger 
i )
\bigm| \bigm| \bigm| 0
\Bigr\rangle 
> 0 (3.110)

where the scalar potential V (\phi i, \phi 
\dagger 
i ) is given in Eq. (3.104). Since V is the sum

of two squares, to fulfil the above inequality that is to break the symmetry,
one or both terms in Eq. (3.104) have to be non zero. This happens if the
\scrF field or the \scrD field get a VEV and we speak about \scrF -terms or \scrD -terms,
respectively.
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3.6.1 \scrF -terms

In Eq. (3.104) the term | \partial W\partial \phi | 2 comes from \scrF \dagger \scrF where \scrF is the auxiliary field
in the chiral supermultiplet. Symmetry breaking terms originates from the \scrF 
field are called \scrF -terms. In the same way, the term 1

2
g2[\phi b\dagger i (T

a)bc\phi ci ]
2
comes

from the auxiliary field \scrD in the vector supermultiplet and the corresponding
symmetry breaking terms are called \scrD -terms.

When the symmetry is broken via \scrF -terms, the first term in Eq. (3.104)
is non zero, that is the superpotential W and the scalar fields \phi i are such
that the system of equations

\scrF \dagger i =
\partial W

\partial \phi i
= 0 (3.111)

has no solution.
However, breaking the symmetry in this way leads to problems. Indeed,

consider the supertrace Str defined as the following sum over all particles
with mass m and spin s

STr(m2) \equiv 
\sum 

s

( - 1)2s(2s+ 1)\mathrm{T}\mathrm{r}(m2
s) . (3.112)

For models such as the MSSM, assuming the traces of the U(1) charges over
the chiral superfields are null, the supertrace satisfy the sum rule [28]

STr(m2) = 0 . (3.113)

Since the supertrace depends on all the particle masses in the theory, this
sum rule imposes a condition on sparticle masses. For example the selectrons,
ignoring the possibility of flavour mixing that is ignoring the mixing with
other scalars, have to satisfy the condition

m2\widetilde e1 +m2\widetilde e2 = 2m2
e (3.114)

where m\widetilde e1 is the lightest selectron mass eigenstate, m\widetilde e2 is the heaviest selec-
tron mass eigenstate and me is the electron mass eigenstate. This equality
implies that the lightest selectron should have a mass m\widetilde e1 < me \simeq 0.51\mathrm{M}\mathrm{e}\mathrm{V}.
Moreover, the selectron has to be charged because it belongs to the same
supermultiplet of the electron and so it has to have the same gauge structure.
However, such a light charged scalar particle is not experimentally observed.

3.6.2 \scrD -terms

To break the symmetry via \scrD -terms we can modify the total Abelian La-
grangian in Eq. (3.85). We add to this Lagrangian a linear term in \scrD :

\scrL FI =  - \kappa \scrD (3.115)
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called Fayet-Iliopoulos term. Such a term can be introduced only in the
Abelian gauge theory because the SUSY transformation (3.84) of \scrD is a total
derivative and \scrD is gauge invariant. In the non-Abelian gauge theory, the
auxiliary fields \scrD a are not gauge invariant and we cannot add a linear \scrD a

term to the Lagrangian.
The Fayet-Iliopoulos term modifies the equations of motion for the field

\scrD so that Eq. (3.86) becomes

\scrD = \kappa  - g
\sum 

i

qi| \phi i| (3.116)

and the potential contains the \scrD -term

V\scrD \equiv 1

2
\scrD 2 =

1

2

\bigl( 
\kappa  - g

\sum 

i

qi| \phi i| 
\bigr) 2

. (3.117)

Now, if \kappa and g have opposite sign Eq. (3.117) is always positive and the
symmetry is broken. If \kappa and g have the opposite sign, Eq. (3.117) has a
zero for | \phi i| =

\sqrt{} 
\kappa 
gqi
. This means that, similarly to what we have seen in sec.

2.3, the gauge field has a non zero VEV and become massive, so even though
SUSY is not broken, the gauge symmetry is spontaneously broken.

However, like the \scrF -terms, using \scrD -terms to break SUSY models that
directly couple with the SM leads to problems. In fact, apart from the sum
mass rule, a Fayet-Iliopoulos term implies a scalar potential with form

V = V\scrF + V\scrD =
\sum 

i

| mi| 2| \phi i| 2 +
1

2

\bigl( 
\kappa  - g

\sum 

i

qi| \phi i| 2
\bigr) 2
. (3.118)

Now, for example, from the MSSM superpotential, Eq. (3.122), and NMSSM
superpotential, Eq. (3.129), only the Higgs doublets Hu and Hd and the scalar
singlet S have a mass term. In particular, squarks and sleptons do not have
mass terms. For these sparticles, setting mi = 0, the condition

\partial V

\partial | \phi i| 
= 0 =\Rightarrow 

\bigl( \sum 
i

qi| \phi i| 
\bigr) \bigl( 
g2
\sum 

i

qi| \phi i| 2  - \kappa g
\bigr) 
= 0 (3.119)

implies a Mexican hat potential for the squark and slepton fields, see fig.
2.1 and sec. 2.3. In this way, squarks and sleptons obtain a non-zero
VEVs that break SU(3)C and U(1)EM symmetries. Since this breaking is
not experimentally observed, this mechanism cannot be a source, or at least
cannot be the main source, of SUSY breaking.
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3.6.3 Soft terms

Since the spontaneous SUSY breaking via \scrF -terms or \scrD -terms shows problems,
we can parametrise the breaking mechanism without being explicit about
its actual origin. This idea is framed assuming the existence of a so-called
hidden sector, which does not have any renormalisable tree-level interactions
with the visible sector we can observe at high energy physics experiments.
We can assume that in the hidden sector SUSY is broken spontaneously via a
mechanism that is still not clear. The hidden sector can only interact with the
standard model sector through non-renormalisable or loop-induced couplings.
When SUSY is broken in the hidden sector it is then transmitted to the the
visible sector through these interactions. So according to this idea, the SUSY
breaking mechanism originates in the hidden sector and is transmitted from
the hidden sectror to the visible sector, leading to a set of soft SUSY breaking
terms in the visible sector. In this way no mass sum rules are implied for the
visible sector, so we evade this problem.

One can then build a model of SUSY breaking in the hidden sector, as
discussed in sec. 3.6.1 and 3.6.2. However for phenomenology we do not need
the details of how the hidden sector is constructed and how SUSY is broken
there and transmitted to the visible sector. Instead we can parametrise our
ignorance of how SUSY is broken, by writing down all possible soft SUSY
breaking terms and treating them as independent parameters.

To do so we can introduce by hand terms in the Lagrangian that are not
SUSY invariant. Among all terms that break SUSY, we select terms, called
soft SUSY breaking terms, that do not to spoil the SUSY cancellations of
quadratic divergences (see [41]):

\scrL soft =

\biggl( 
 - 1

2
Ma\lambda 

a\lambda a +
1

6
aijk\phi i\phi j\phi k  - 

1

2
bij\phi i\phi j + ti\phi i + h.c.

\biggr) 
 - 
\bigl( 
m2
\bigr) i
j
\phi j\dagger \phi i

(3.120)
where \phi represent a scalar field and \lambda a gaugino field. The total Lagrangian
becomes

\scrL = \scrL SUSY + \scrL soft (3.121)

and SUSY is said to be softly broken. As shown in [41], \scrL soft does not introduce
quadratic divergences and the total Lagrangian \scrL SUSY+\scrL soft exhibits at high-
energy the same well behaviour of \scrL SUSY.

3.7 MSSM
The Minimal Supersymmetric Standard Model (MSSM) is a SUSY model
that extends the SM, adding to it the minimum workable number of new
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multiplet spin 0 spin 1
2

spin 1 SU(3) SU(2) U(1)

C
hi
ra
l

\widehat Qi
\widetilde Q = (\widetilde uL, \widetilde dL)i Q = (uL, dL)i \bfthree \bftwo +1

6

\widehat ui \widetilde u\ast Ri u\dagger Ri \=\bfthree \bfone  - 2
3\widehat di \widetilde d\ast Ri d\dagger Ri \=\bfthree \bfone +1
3\widehat Li \widetilde L = (\widetilde \nu , \widetilde eL)i L = (\nu , eL)i \bfone \bftwo  - 1
2

\widehat ei \widetilde e\ast Ri e\dagger Ri \bfone \bfone +1
\widehat Hu Hu = (H+

u , H
0
u) \widetilde Hu = ( \widetilde H+

u ,
\widetilde H0
u) \bfone \bftwo +1

2\widehat Hd Hd = (H0
d , H

 - 
d )

\widetilde Hd = ( \widetilde H0
d ,
\widetilde H - 
d ) \bfone \bftwo  - 1

2

V
ec
to
r \widehat G \widetilde g g \bfeight \bfone 0

\widehat W \widetilde W\pm , \widetilde W 0 W\pm , W 0 \bfone \bfthree 0
\widehat B \widetilde B0 B0 \bfone \bfone 0

Table 3.1: Vector and chiral supermultiplets together with their bosonic and
fermionic particle content and their gauge structure. All the SM particles
have a supersymmetric partner indicated with a tilde over the field symbol.
Compared to the SM, there are two Higgs doublet. Particles in the same
supermultiplet have the same SU(3) and SU(2) representation and the same
U(1) charge. An index i \in \{ 1, 2, 3 \} is used to represent the three generations
for quarks and lepton. For the chiral supermultiplets, in spin 0 and spin 1

2
columns, we also write states in terms of their SU(2) components.

particles.

3.7.1 Spectrum

The MSSM spectrum includes all the SM particles, as depicted in table 2.1,
and their supersymmetric partners. In contrast to the SM, there are two Higgs
SU(2) doublets. From the theoretical point of view, in the SM, down and up
quark masses are generated with Yukawa terms containing H and H\dagger fields,
see Eq. (2.72) and (2.73). On the other hand, in the MSSM the superpotential
is a holomorphic function of the chiral fields, see, eg., Eq. (3.62), so that it
cannot depend on H\dagger . Thus, in place of the H\dagger fields, we introduce another
Higgs doublet that can generate the up quark mass. All the MSSM particles
are depicted in table 3.1.
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3.7.2 Superpotential

The MSSM superpotential is invariant under SU(3)\otimes SU(2)\otimes U(1) and is a
function of the chiral supermultiplet:

WMSSM = \widehat ei Y ij
e
\widehat Hd \cdot \widehat Lj + \widehat di Y ij

d
\widehat Hd \cdot \widehat Qj + \widehat ui Y ij

u
\widehat Qj \cdot \widehat Hu + \mu \widehat Hu \cdot \widehat Hd (3.122)

where we have labelled the 3 generations with i and j indices, the supermulti-
plet are reported in tab. 3.1 and all the elements in a supermultiplet have the
same SU(3) and SU(2) representation and U(1) charge; moreover the SU(2)
dot product between the \widehat Q, \widehat L, \widehat Hu and \widehat Hd doublets is defined as

\Biggl( 
a
b

\Biggr) 
\cdot 
\Biggl( 
c
d

\Biggr) 
= ad - cb . (3.123)

We can see that the two Higgs doublet have a different role after symmetry
breaking: in fact only the Hu scalar doublet, with +1

2
U(1) charge, can give

give mass to the ui quarks and only the Hd scalar doublet, with  - 1
2
U(1)

charge, can give give mass to the di quarks and ei leptons.

3.7.3 Matter parity and R-parity

Other supermultiplet combinations, apart from the one in Eq. (3.122), lead
to lepton or baryon number violation. For example, substituting the \widehat Hd

superfield in the superpotential (3.122) with \widehat L superfield, which has the same
gauge structure of \widehat Hd, we have the terms

\widehat eiAijk\widehat Lj \cdot \widehat Lk \widehat diBijk\widehat Lj \cdot \widehat Qk Ci \widehat Hu \cdot \widehat Li (3.124)

where A, B and C are coefficients. Since \widehat L has a +1 lepton number and \widehat e
has a  - 1 lepton number, while all other particles have a 0 lepton number,
these terms imply a lepton number violation. In a similar way, calling with
D a coefficient, the term

\widehat uiDijk \widehat dj \widehat dk (3.125)

violates the baryon number since \widehat u and \widehat d have a  - 1
3
baryon number.

No baryon or lepton number violating processes have been observed, and
there and various limits have been set on the couplings. The most pressing
constraint comes proton decay, which can be induced when there is both
B and L number violation. We can remove these dangerous operators by
introducing a discrete Z2 symmetry called matter parity. The matter parity
is described by the quantum number

PM = ( - 1)3(B - L) (3.126)
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where B is the baryon number and L is the lepton number. A valid term is
composed by fields, each one with a specific matter parity PM(fieldi), such
that

\prod 
i PM(fieldi) = +1.

From the matter parity, we can introduce another important quantum
number, called R-parity and defined as

PR = PM( - 1)2s = ( - 1)3(B - L)+2s (3.127)

where s is the spin. It follows from the conservation of the angular momentum
that R-parity conservation and matter parity conservation are equivalent. We
assume that the matter and R-parity are exactly conserved in the MSSM.

All the SM particles have R = 1. Since SM particles and their superpart-
ners have a spin difference of 1

2
, all sparticles have R =  - 1. An important

implication of the opposite R-parity of particle and sparticle is that, if the
R-parity is exactly conserved in all the processes, the lightest supersymmetric
particle (LSP) cannot decay into SM particles, that is the LSP must be stable.
The nature of the LSP depend on the particular SUSY model. If the LSP is
neutral weakly interacting scalar or fermion, it is a good candidate to be a
dark matter constituent.

3.7.4 Soft breaking

As we have seen in Eq. (3.71) and (3.72), the scalar and spinor tree level
masses are equal and given by the M ij matrix. This implies that each
superparticle has to have the same mass of the corresponding superpartner.
Phenomenologically, light superparticles are not observed. To explain the
experimental absence of mass degeneracy, the supersymmetry has to be broken
as described in sec 3.6. According to sec. 3.6.3, we can write the soft breaking
terms of the MSSM:

\scrL soft
MSSM =  - 1

2

\Bigl( 
M1
\widetilde B0 \widetilde B0 +M2

\widetilde W\widetilde W +M3\widetilde g\widetilde g + h.c.
\Bigr) 

 - 
\biggl( 
 - ae\widetilde \=e\widetilde LHd  - ad

\widetilde \=d \widetilde QHd + au\widetilde \=u \widetilde QHu + h.c.
\biggr) 

 - (m2\widetilde L)ij\widetilde Lj\dagger \widetilde Li  - (m2\widetilde \=e)ij\widetilde \=ej\widetilde \=e \dagger i  - (m2\widetilde Q)ij \widetilde Q\dagger j \widetilde Qi  - (m2\widetilde \=d)ij\widetilde \=d
j\widetilde \=d

\dagger 
i  - (m2\widetilde \=u)ij\widetilde \=uj\widetilde \=u\dagger i

 - m2
Hd
H\dagger 
dHd  - m2

Hu
H\dagger 
uHu  - (bHuHd + h.c.) (3.128)

where M1, M2 and M3 are the masses related to the three gauginos that,
following Eq. (3.120), come from theMa\lambda 

a\lambda a term and are called, respectively,
bino, wino and gluino, the ae, ad and au are trilinear couplings from the
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aijk\phi i\phi j\phi k term, with the lower letter m we indicate mass terms that come
from (m2)ij\phi 

j\dagger \phi i and finally the b parameter comes from the bij\phi i\phi j term.
The soft breaking terms introduce many new parameters in the MSSM.

In the absence of a satisfactory explanation to them, whose origin should be
looked for in the hidden sector, there are theoretical arguments and experi-
mental constraints that reduce the freedom in the soft MSSM Lagrangian,
see for example flavour changing neutral currents, CP-violation and lepton
flavour violation [42–47]. Other examples to reduce the number of soft break-
ing parameters come considering particular models of SUSY breaking. For
example, consider the minimal super gravity, a \scrN = 1 supersymmetric theory
which introduces gravitational interactions that are the mediators of SUSY
breaking. In this model a set of constraints relate all the soft masses to only
four parameters [28] with a drastic reduction of the number of free parameters.
These constraints are normally applied at the grand unification scale that is
the scale where the three1 fundamental interactions, ie the electromagnetic,
weak and strong interactions, are unified and can be described by a single
gauge group. From the grand unification scale the renormalisation group
equations give the set of soft SUSY breaking terms at the electroweak or
SUSY breaking scale.

3.7.5 Problems

Apart from the number of parameters, the MSSM presents also other features
that are not completely convincing and so constitute a theoretical problem.

The most important of these is the \mu problem: there is no explanation for
the order of magnitude of the mass \mu that appears in the superpotential (3.122).
Since \mu is a superpotential parameter its origin is not related to SUSY breaking
or electroweak symmetry breaking. Nothing suggests that \mu should be related
to these scales and therefore we can expect \mu to be of the order of the
Planck scale where it should be generated from a more fundamental theory
incorporating quantum gravity. However, to obtain an electroweak scale VEV
\mu must be of the same order of magnitude as the SUSY breaking scale, MSUSY

and to avoid fine tuning, both \mu and MSUSY need to be close to the EW
scale. This resembles the hierarchy problem that affects the SM, where there
is no explanation to why the Higgs boson has such a light mass compared to
the Plank mass. While supersymmetry protects the Higgs boson mass from
quadratic divergences, supersymmetry cannot protect the \mu parameter from
being set to the Plank scale. Indeed the only symmetry solution would be to
forbids the \mu -term setting \mu = 0. However, this setting would imply massless

1Not counting gravitational interactions.
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charged Higgsinos, that are not experimentally observed, unless we can also
generate a replacement with the right order of magnitude. This represents
one of the major theoretical problems of the MSSM because it brings back
the issue of fine-tuning and naturalness of the model that the MSSM was
supposed to solve, see [48–50].

Another theoretical problem of the MSSM is that it does not provide
a natural framework to explain the origin of the baryon asymmetry of the
Universe, one of the most pressing problems of contemporary physics. The
question, of which mechanism in the early Universe could have produced
the observed amount of matter removing all the antimatter, does not have a
satisfactory answer. Indeed, any mechanism that explains such asymmetry has
to generate enough C and CP violation and enough departure from thermal
equilibrium to explain the observed amount of matter, as will be discussed in
sec. 4. Compared to the SM, the MSSM provides more CP violation thanks
to the \mu term and a departure from thermal equilibrium that is consistent
with a Higgs mass of \sim 125\mathrm{G}\mathrm{e}\mathrm{V}. However, in the MSSM the CP violation
cannot be enough since it is constrained by the electric dipole moment, see
[51, 52]. Moreover, the departure from thermal equilibrium implies a scalar
stop quark mass m\~t \lesssim 120\mathrm{G}\mathrm{e}\mathrm{V} [53], that, even though it may not be entirely
ruled out by the LHC experiment [54], substantially diminishes the MSSM’s
appeal as a candidate for explaining the baryon asymmetry of the universe.

3.8 NMSSM

The next-to-minimal supersymmetric standard model (NMSSM) is a SUSY
model that extends the MSSM, adding to it a new chiral supermultiplet \widehat S.
This means that the particle content of the NMSSM is given by the particle
content of the MSSM, see table 3.1, plus the row representing the singlet
supermultiplet in table 3.2. The new supermultiplet \widehat S is a singlet under
the SU(3)\otimes SU(2)\otimes U(1) gauge symmetry and even under the matter parity
symmetry (3.126). More explicitly, the new supermultiplet is composed by
a real scalar field and a real pseudo-scalar field that form a complex scalar
field with positive R-parity (3.127) and by its fermionic superpartner with
negative R-parity.

The NMSSM is particularly attractive because it solves the \mu problem
of the MSSM, see the previous sec. 3.7.5. In particular, the \mu mass can be
generated by the Yukawa term \lambda \widehat S \widehat Hu \cdot \widehat Hd that couples the Hd, Hu and S fields:
once the singlet field get a VEV \langle S\rangle , the term \lambda \langle S\rangle \widehat Hu \cdot \widehat Hd \equiv \mu eff \widehat Hu \cdot \widehat Hd

reproduce a \mu term. The value of this \mu eff terms comes naturally from the
soft SUSY breaking terms. Since \mu eff is set by the singlet VEV it is naturally
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multiplet spin 0 spin 1
2

spin 1 SU(3) SU(2) U(1)

C
hi
ra
l

\widehat Qi
\widetilde Q = (\widetilde uL, \widetilde dL)i Q = (uL, dL)i \bfthree \bftwo +1

6

\widehat ui \widetilde u\ast Ri u\dagger Ri \=\bfthree \bfone  - 2
3\widehat di \widetilde d\ast Ri d\dagger Ri \=\bfthree \bfone +1
3\widehat Li \widetilde L = (\widetilde \nu , \widetilde eL)i L = (\nu , eL)i \bfone \bftwo  - 1
2

\widehat ei \widetilde e\ast Ri e\dagger Ri \bfone \bfone +1
\widehat Hu Hu = (H+

u , H
0
u) \widetilde Hu = ( \widetilde H+

u ,
\widetilde H0
u) \bfone \bftwo +1

2\widehat Hd Hd = (H0
d , H

 - 
d )

\widetilde Hd = ( \widetilde H0
d ,
\widetilde H - 
d ) \bfone \bftwo  - 1

2\widehat S S \widetilde S \bfone \bfone 0

V
ec
to
r \widehat G \widetilde g g \bfeight \bfone 0

\widehat W \widetilde W\pm , \widetilde W 0 W\pm , W 0 \bfone \bfthree 0
\widehat B \widetilde B0 B0 \bfone \bfone 0

Table 3.2: The particle content of the NMSSM. Compared to table 3.2, that repre-
sents the particle content of the MSSM, there is an extra chiral supermultiplets
\widehat S together with its singlet bosonic and singlino fermionic particle content and
gauge structure.

of the same order as the EW scale or SUSY breaking scale.

3.8.1 Superpotential

Given the particle content of the NMSSM, the general NMSSM superpotential
WNMSSM consist of the WMSSM superpotential (3.122) and other 4 terms that
include the singlet:

W general
NMSSM = WMSSM + \xi \widehat S +

1

2
\mu S \widehat S2 +

\kappa 

3
\widehat S3 + \lambda \widehat S \widehat Hu \cdot \widehat Hd (3.129)

where the SU(2) product is defined in Eq. (3.123) and \xi , \mu S, \kappa and \lambda are
parameters with mass dimension, respectively, of 2, 1, 0 and 0.

A common and simple scenario is when \xi = \mu S = 0 and the \mu parameter
in the WMSSM part, Eq. (3.122), also vanishes: \mu = 0. This scenario is called
Z3-invariant NMSSM because all terms in the superpotential are invariant
under the Z3 discrete symmetry defined by the transformation

\Phi \rightarrow \mathrm{e}\mathrm{i}
2\pi 
3 \Phi (3.130)

applied to every field in the chiral supermultiplets.
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From W general
NMSSM, Eq. (3.129), we can write the Z3-invariant NMSSM super-

potential:

WZ3-invariant
NMSSM \equiv WNMSSM = \widehat e Ye \widehat Hd\cdot \widehat L+\widehat d Yd \widehat Hd\cdot \widehat Q+\widehat uYu \widehat Q\cdot \widehat Hu+

\kappa 

3
\widehat S3+\lambda \widehat S \widehat Hu\cdot \widehat Hd .

(3.131)
In the literature, the NMSSM mainly refers to the Z3-invariant NMSSM
rather than the general NMSSM and from here we follow this convention.

One of the differences between the general NMSSM and the Z3-invariant
NMSSM is that the former has a larger parameter space so that, in particular,
the singlet can be lighter in the general NMSSM. These different parameter
spaces lead to different scenarios, for example, in the dark matter studies,
see [55].

Following Eq. (3.120), we assume that the symmetry breaking is driven
by the soft Lagrangian term

\scrL soft
NMSSM =  - m2

L| L| 2  - m2
e| e| 2  - m2

Q| Q| 2  - m2
u| u| 2  - m2

d| d| 2

 - m2
Hd
| Hd | 2  - m2

Hu
| Hu | 2  - m2

S| S | 2

 - 
\Bigl( 
YeAeHd \cdot Le+ YdAdHd \cdot Qd+ YuAuQ \cdot Huu

+
1

3
\kappa A\kappa S

3 + \lambda A\lambda Hu \cdot HdS + h.c.
\Bigr) 

(3.132)

where, for simplicity, we have suppressed gauge and generation indices.
As we can see, in this case all the operators in the superpotential have

a mass dimension of 3, thus all the coefficients are dimensionless. This is
particularly interesting because it solves the \mu problem present in the MSSM.
In fact, since \mu = 0, in the superpotential we do not have the \mu \widehat Hu \cdot \widehat Hd term
that caused the \mu problem, but an effective \mu eff term that emerges when, due
to the SB, the singlet acquire a VEV \langle S\rangle :

\lambda \widehat Hu \cdot \widehat Hd
\widehat S SB - \rightarrow \mu eff \widehat Hu \cdot \widehat Hd with \mu eff = \lambda \langle S\rangle . (3.133)

As a result, the value of \mu eff depends on the symmetry breaking mechanism.

3.8.2 Higgs sector

The Higgs potential V H
NMSSM in the Z3 symmetric NMSSM can be built from

two parts: the first, V\scrF + V\scrD contains the \scrF - and \scrD -terms introduced in
sec. 3.6.1 and 3.6.2; the second part, called V soft, contains soft terms that
originate in Eq. (3.132). Thus, we can write:

V H
NMSSM = V\scrF + V\scrD + V soft . (3.134)
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The part of the scalar potential that comes from the chiral supermultiplet
terms, following what we have found in a general SUSY model, sec. 3.3, 3.4
and 3.5 is given by Eq. (3.104) in which the \scrF - and \scrD -terms appear. Applying
Eq. (3.104) to the NMSSM case, the fields \phi to take into considerations are
Hu, Hd and S:

V\scrF + V\scrD =
\sum 

\phi i,\phi j=\{ Hu,Hd,S\} 

\Biggl\{ 

| \partial W\partial \phi i | 
2

+
1

2
g2a[\phi 

b\dagger 
i (T

a)bc\phi ci ][\phi 
b\dagger 
j (T

a)bc\phi cj]

\Biggr\} 

= | \lambda | 2| S | 2
\Bigl( 
H\dagger 
uHu +H\dagger 

dHd

\Bigr) 
+ | \lambda (Hu \cdot Hd) + \kappa S2| 2

+
1

2
g22| H\dagger 

uHd| 2 + g21 + g22
8

\Bigl( 
H\dagger 
uHu  - H\dagger 

dHd

\Bigr) 2

(3.135)

where the second to last line is given by the sum over | \partial W\partial \phi i | 
2 and the terms

within it are called \scrF -terms of the Higgs potential, while the last line is given
by the second term in the top line and the terms within it are called \scrD -terms
of the Higgs potential.

We see that only the \scrF -terms of the Higgs potential contain the singlet
while the \scrD -terms are not affected by the singlet and have the same expressions
as in the MSSM. This is because \widehat S is a gauge singlet and, as such, does not
interact through gauge couplings ga.

The part of the scalar potential that comes from soft terms can be found
looking at Eq. (3.132):

V soft = m2
Hd
| Hd | 2+m2

Hu
| Hu | 2+m2

S| S | 2+
\biggl( 
\kappa 

3
A\kappa S

3 + \lambda A\lambda Hu \cdot HdS + h.c.
\biggr) 
.

(3.136)
Finally, summing Eq. (3.135) and (3.136) we obtain the scalar Higgs

potential:

V H
NMSSM = | \lambda | 2| S | 2

\Bigl( 
H\dagger 
uHu +H\dagger 

dHd

\Bigr) 
+ | \lambda (Hu \cdot Hd) + \kappa S2| 2

+
1

2
g22| H\dagger 

uHd| 2 + g21 + g22
8

\Bigl( 
H\dagger 
uHu  - H\dagger 

dHd

\Bigr) 2

+m2
Hd
| Hd | 2 +m2

Hu
| Hu | 2 +m2

S| S | 2

+

\biggl( 
\kappa 

3
A\kappa S

3 + \lambda A\lambda Hu \cdot HdS + h.c.
\biggr) 
. (3.137)

Following sec. 2.3, in the spontaneous symmetry breaking mechanism the
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Higgs and the singlet develop VEVs

Hd =

\Biggl( 
1\surd 
2
(vd +H0

dRe + \mathrm{i}H0
d Im)

H - 
d Re + \mathrm{i}H - 

d Im

\Biggr) 
Hu =

\Biggl( 
H+
u Re + \mathrm{i}H+

u Im
1\surd 
2
(vu +H0

uRe + \mathrm{i}H0
uIm)

\Biggr) 

S =
1\surd 
2
(vS + SRe + \mathrm{i}SIm)

(3.138)
where the VEVs, as in the sec. 2.3, can be set to be real and non-negative.

From the vu and vd VEVs, we can define the parameter \mathrm{t}\mathrm{a}\mathrm{n} \beta :

\mathrm{t}\mathrm{a}\mathrm{n} \beta =
vu
vd

(3.139)

which is the same as in the MSSM.
We can find the relations between the three level masses m2

Hd
, m2

Hu
, m2

S

and the VEVs vu, vd, vS plugging the expansions (3.138) of the fields around
the VEVs into Eq. (3.137) and imposing that the resulting potential has an
extremum at the vacuum:

\partial V H
NMSSM

\partial H0
dRe

=
\partial V H

NMSSM

\partial H0
d Im

=
\partial V H

NMSSM

\partial H0
uRe

=
\partial V H

NMSSM

\partial H0
uIm

= 0

\partial V H
NMSSM

\partial SRe
=
\partial V H

NMSSM

\partial SIm
= 0

(3.140)

see [56]. These relations are called tadpole equations.
Finally, since the singlet mixes with the Higgs, the Higgs sector is modified

respect to the MSSM: again from Eq. (3.137) expanding the Higgs and singlet
around their VEVs, we can find the CP-even, -odd and charged Higgs mass
matrices. In particular, from terms with field mass dimension of 2 we have

\bullet 3 CP-even Higgs bosons containing a mixture of H0
dRe, H

0
uRe and SRe

fields;

\bullet 3 CP-odd Higgs bosons containing a mixture of H0
d Im, H

0
uIm and SIm

fields;

\bullet 2 charged Higgs bosons containing a mixture of H - 
d , H

 - 
d

\dagger , H+
u and H+

u
\dagger 

fields.



Chapter 4

Matter-Antimatter asymmetry
problem

Astrophysical observations reveal negligible presence of antimatter in the
observable Universe. If antimatter abundance was comparable to matter
abundance, that would imply particle-antiparticle annihilations that would
be observed and identified as the consequence of the existence of antimatter
in our observable Universe [57].

At the same time, no experimentally verified mechanism explains the
observed predominance of matter over antimatter.

In astronomy matter that constitutes astronomical objects such as, for
example, clouds of cold gas, black holes, stars, planets, comets and asteroids, is
called baryonic matter because the main contribution to the mass comes from
baryons. To have a quantitative definition of the predominance of baryonic
matter over antibaryonic antimatter, we consider the baryon-antibaryon
difference nB  - n \=B where nB is the baryonic number density in the Universe
and n \=B is the antibaryon number density in the Universe. We can quantify
the baryon-antibaryon asymmetry of the Universe (BAU) with the ratio

\eta =
nB  - n \=B

n\gamma 
(4.1)

where n\gamma is the number density of cosmic background radiation photons.
From the experimental point of view, the parameter \eta can be measured

from independent astrophysical observations. On the theoretical side, however,
\eta can vary during the early Universe: indeed, as the Universe cools down,
heavy particles annihilate and produce more photons while the number of
baryons and antibaryons is not modified by these annihilation processes. For
this reason, we introduce the baryon-antibaryon asymmetry parameter YB

75
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Figure 4.1: The coloured full bands represent, from top to bottom, the calculated
primordial abundances of 4H, 2H, 3H, and 7Li relative to primordial abundance
of H as function of \eta . The yellow boxes represent the observed primordial
abundance of 4H, 2H and 7Li. The 2H observations are particularly precise.
The wider violet vertical dashed band represents the range of \eta in which there
is concordance between 2H and 4H data. The narrow light blue vertical dashed
band represents the value of \eta deduced from CMB observations. The band
widths represent the 95\% CL range. The plot shows a very good agreement
between the \eta value from 2H calculation, 2H observations and CMB observations.
[Figure taken from [59]].

that is defined as
YB =

nB  - n \=B

s
(4.2)

where s is the entropy density of the Universe and remains approximately
constant during the early Universe evolution. At the present time the baryon-
antibaryon asymmetry YB can be related to \eta via the relation

s \simeq 7.04n\gamma =\Rightarrow YB \simeq 1

7.04
\eta (4.3)

see [58].
One way to measure \eta is from the standard big bang nucleosynthesis model

(SBBN): during this process, \eta represents a key parameter of the model and
determines the abundance of primordial elements such as 2H, 3H, 4H and 7Li.
Different missions have measured these abundances, see [59], and \eta and thus
YB can be inferred from the produced astrophysical data. The most precise
value of \eta is given by the primordial abundance of 2H and agrees with the \eta 
calculated from 3H observations, see figure 4.1 and [60]. From this value of \eta 
and Eq. (4.3), the present value of YB can be inferred:

Y exp
B = (8.2 - 9.4)\times 10 - 11 (95\% CL) . (4.4)
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It is worth noting that the values of \eta from 7Li observations shows a dis-
agreement with the previous values of 2.4\sigma  - 5.3\sigma , according to which data
is used, see [61]. This mismatch visible in Fig. 4.1, represents the so-called
lithium problem and and may require physics beyond the SBBN.

Another independent way to calculate \eta is from the temperature anisotropy
of the cosmic microwave background (CMB) [62]: using the analysis of the
power spectrum of the CBD, the relative sizes of the Doppler peaks can be
related to \eta . That is, the precise measurement of the CMB anisotropy provides
another way, not directly related to the previous primordial abundance method,
to determine the value of \eta and thus the value of YB:

Y exp
B = 8.65\pm 0.09\times 10 - 11 . (4.5)

The baryon-antibaryon asymmetry parameter YB obtained from the pri-
mordial abundance of 2H, Eq. (4.4), and YB obtained from the CMB, Eq. (4.5),
agree. The agreement between these two separate measurements represent a
triumph of astrophysical observations and establish a reliable confirmation of
the BAU.

4.1 Sakharov conditions
Even if there was a maximally allowed asymmetry before, inflation would
have diluted it to a negligible amount [63]. This implies the necessity of a
mechanism that, during the initial stages of the Universe, could have produced
the observed BAU.

In general, such a mechanism has to satisfy three assumptions, known as
Sakharov conditions for baryogenesis [64]:

1. violation of baryon number conservation (B violation);

2. violation of charge conjugation symmetry (C violation) and violation
of the composition of charge and parity conjugation symmetries (CP
violation);

3. departure from thermal equilibrium.

The first condition is obvious because after inflation the baryon asymmetry
was many orders of magnitude smaller than today, consequently a baryogenesis
mechanism cannot conserve nB  - n \=B.

To understand the need for the second condition consider a generic process
and its C conjugate

XB=0 \rightarrow YB=0 +B (4.6)
\=XB=0 \rightarrow \=YB=0 + \=B (4.7)
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where XB=0 and its C-conjugate \=XB=0 represent some initial state with
vanishing baryon number, YB=0 and its C-conjugate \=YB=0 are final states also
with B = 0, and B and \=B represent the excess of baryons produced. If the
charge conjugation is a symmetry, then both processes have the same rate \Gamma :

\Gamma 1(X \rightarrow Y +B) = \Gamma 2( \=X \rightarrow \=Y + \=B) . (4.8)

Now the difference \Gamma 1  - \Gamma 2 of these rates is proportional to the net rate
of baryon production and is zero. Thus, to have a baryon production, the
baryogenesis process must violate the C symmetry.

A similar argument also holds for the required CP violation [65]: a CP
symmetry implies that for any process that produces an excess of baryons
exists a complementary process which produces the same excess of antibaryons.
Thus no net baryon-antibaryon asymmetry can be created.

Regarding the third condition, if a generic process such as the (4.6) is in
thermal equilibrium, then, by definition, the rate for this process is equal to
the rate for the inverse process Y +B \rightarrow X:

\Gamma (X \rightarrow Y +B) = \Gamma (Y +B \rightarrow X) (4.9)

so, again, no net excess of baryons over antibaryons can be created. Thus,
to explain the observed baryon-antibaryon asymmetry, we need a departure
from thermal equilibrium.

The SM can, potentially, satisfy all the three Sakharov conditions. Gerard
’t Hooft showed that the B violation is possible at very high temperature
[66]. As said in sec. 2.5, however, the CP violation given by the CKM
matrix, see sec. 2.3.3, is too small to account quantitatively for the observed
baryon-antibaryon asymmetry (4.4) and (4.5), with the observed mass of the
Higgs boson [39]. Alternatively, the departure from thermal equilibrium that
would be enough to generate the observed baryon asymmetry requires the
Higgs to have a mass mH \lesssim 75\mathrm{G}\mathrm{e}\mathrm{V} [35], that is ruled out by experiment.
Thus, to explain the BAU, we need physics BSM.

SUSY provides a good framework to resolve quantitatively the problem of
the baryon over antibaryon excess. The first attempt in this direction employs
the MSSM, see sec. 3.7. As in the SM, the B violation becomes possible at
high temperature. Compared to the SM, in the MSSM there are many possible
sources of CP violation such as, for example, the \mu parameter. As noted in
sec. 3.7.5, however, this CP violation is constrained by the electron electric
dipole moment [51, 52]. Also, enough departure from thermal equilibrium
implies a light stop, m\~t \lesssim 120\mathrm{G}\mathrm{e}\mathrm{V}, [53]. The NMSSM, see sec.3.8, supplies
an ideal framework to study baryogenesis, see the published article in chapter
6 and references within it.
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4.2 Electroweak baryogenesis outline

A mechanism that can produce a baryon-antibaryon asymmetry at the early
stages of the Universe is called baryogenesis. Electroweak baryogenesis
(EWBG) refers to such a mechanism that happens during the electroweak
phase transition (EWPT).

EWBG can produce the BAU we observe today explaining the measured
Y exp
B values in Eq. (4.4) and (4.5). Schematically, EWBG consists of the

following steps:

1. According to the big bang theory, the early Universe was filled with
a cosmological plasma characterised by a very high energy density.
High energies correspond to high temperatures and early times, while
low energy corresponds to low temperatures and late times. At high
temperature the Higgs potential shows a parabolic like potential, see
fig. 2.1a, so that the SU(2)L\otimes U(1)Y gauge symmetry is unbroken.

2. As the Universe cools down the shape of the Higgs potential changes,
see fig. 4.2, and tends to the Mexican hat potential realised at zero
temperature, see also fig. 2.1b and 2.1c. When the shape of the Higgs
potential changes, the SU(2)L\otimes U(1)Y symmetry breaks to the U(1)em,
see sec. 2.2 and 2.3.

3. The plasma experience a phase transition from the so-called symmetric
phase to the so-called broken phase. If the transition is a first-order
phase transition, then it involves bubbles of broken phase expanding
in the symmetric phase. In this way, each bubble divides space into 3
regions:

(a) outside the bubble, where the system is still in the symmetric
phase;

(b) inside the bubble, where the system is in the broken phase;

(c) the border between the symmetric and the broken phase, called
bubble wall.

4. The bubbles expand, and as they expand:

(a) bubble wall spread over the plasma interacting with it;

(b) during the wall-plasma interaction, the moving wall hits and so
scatters particles and antiparticles that constitute the plasma;
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(c) because of CP -violating processes in the wall-plasma interaction,
the reflection and refraction rates depend on the chirality of the
particles;

(d) because of the different reflection and refraction rates, there is a
CP asymmetry between the regions in front and behind the wall.

5. Due to the different vacuum expectation value (VEV) of the symmetric
and broken phase, different processes happens outside and inside the
bubble.

(a) Outside the bubble, in the region described in step 3a, the vacuum
structure of SU(2)L consist of different vacua [67], see fig. 4.4. The
high temperature allows thermal tunnelling to different SU(2)L
vacua of the symmetric phase. The transitions to different SU(2)L
vacua are non-perturbative processes that involve sphalerons that
are unstable, static and finite-energy solutions of the classical field
equations [68]. Importantly, sphaleron transitions violate B and L
symmetry, transforming the CP asymmetry, created in step 4d, in
front of the bubble to B asymmetry;

(b) Inside the bubble, in the region described in step 3b, the non
zero VEV of the broken phase suppresses the sphaleron processes
preventing a violation of the B and L symmetry.

6. Bubbles keep on expanding, increasing the baryon excess continually
according to the previous step 5a. During their expansion, the bubbles
incorporate the baryon excess created in front of the bubble wall. Once
the baryon excess is inside the bubble, it is frozen according to the
step 5b. In this way, the bubbles accumulate baryon asymmetry inside
themselves.

7. Eventually the bubbles extend over all the Universe so that all the
Universe is in the broken phase with the baryon excess accumulated
inside the bubbles.

The physics underlying the steps 1 and 2 is described in chapter 2. In the
next sections, we analyse further the other steps.

4.3 Phase transitions

In this section we describe the physics underlying the step 3 in sec. 4.2.
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(a) Second order phase transition (b) First order phase transition

Figure 4.2: At high energy (high T and early times) the Higgs potential is parabolic-
like. At low energy (low T and late times) the potential is Mexican-hat-like.
Between the high and low energy, there are the intermediate states. The plot
in (a) shows a second order phase transition where, during the intermediate
states, from high to low energies, the minimum of the potential moves smoothly
from the origin to the EW minimum. Alternatively, the plot in (b) shows a
first order phase transition where, during the intermediate states, the potential
develops a barrier and the minimum can transit from the origin to the EW
minimum via tunnelling. In case (b), the temperature TC where the minima
are degenerate is called critical temperature. [Figure taken from [65]].
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At high temperatures, the system is in an unbroken phase, and the
minimum of the Higgs potential is at the origin. At low temperatures, the
symmetry is broken, and the minimum of the Higgs potential is away from
the origin. There are two different phase transitions that can take the system
from the unbroken to the broken phase. These two different ways are shown
in, and briefly described in the caption of fig. 4.2.

4.3.1 Second order phase transitions

In the case in which the Higgs potential do not develop a potential barrier,
fig. 4.2a, while the temperature decreases the minimum of the Higgs potential
can smoothly move from the origin and, at zero temperature, it ends to the
observed EW vacuum that represents the vacuum expectation value of the
Higgs field. This means that the transition of the system from the unbroken to
the broken phase happens smoothly, following the minimum of the potential.
There is no latent energy involved, and so the system does not release energy
unless the temperature changes. This is a second-order phase transition also
called continuous phase transition.

4.3.2 First order phase transitions

The second case, fig. 4.2b, starts as the previous case when at high tem-
peratures the minimum is at the origin. However, when the temperature
decreased, the Higgs potential develops a potential barrier, that traps the
minimum at the origin. When the Universe reaches a critical temperature
TC , the Higgs potential shows two degenerate minima: one at the origin and
one away from the origin.

After TC , while the Universe keeps on cooling down, the global minimum
is the one away from the origin, and the origin represents a point false vacuum.
Still, the system is in the false vacuum state because the potential barrier
prevents the system from moving to the true vacuum state. At this stage,
the Universe is in a supercooled state. At a later time, progressively the
energy difference between the false and the true vacuum becomes larger and
larger, while the potential barrier drops. Eventually, thanks to the thermal
energy, the system experiences a transition between the two states via thermal
fluctuations over the barrier or via quantum tunnelling under it. In general,
such a transition happens to a point in space that represents a nucleation
seed.

Once a thermal seed is created, there is a competition between physical
mechanisms that contribute to the expansion of the bubble and contrasting
physical mechanisms that contribute to the collapse and disappearance of the
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bubble. On the one hand, points surrounding the nucleation seed experience
the same transition, passing from the false to the true vacuum. This happens
because the transition from the false to the true vacuum decreases the free
energy of the system and the free energy is proportional to the bubble volume.
In a chain reaction, next surrounding points pass to the true vacuum as
well pushing the bubble wall to expand, see [69–71]. On the other hand, for
bubbles of small size, that is at the beginning of the bubble expansion, the
bubble wall has a strong surface tension proportional to the bubble area that
tends to shrink the bubble and eventually can make it disappear [72]. On top
of that, these two competing mechanisms happen in the background of an
expanding Universe. This means that the bubbles formation rate has to be
compared with the Hubble rate [73]. The temperature at which the formation
and growth of the bubbles is such that the fraction of the Universe in the
symmetric phase is 1

\mathrm{e}
is called nucleation temperature and indicated as TN .

In the literature, since the mechanisms that take part in the calculation of
TN are quite complex, the nucleation temperature TN is often approximated
with the critical temperature TC .

This transition from the false to the true vacuum represents a first-order
phase transition (FOPT). Such as, the system undergoes a violent transition
in which latent energy is released. The system contains two different phases
that are separated by the bubble wall: one phase outside the bubble in which
the VEV of the Higgs field is still 0, and one phase inside the bubble with
completed phase transition so that the VEV is different from 0. The bubble
wall separates the internal symmetry-broken-phase regime from the external
symmetry-unbroken-phase regime, see fig. 4.3.

The key characteristic of such a FOPT is the presence of a scalar field,
not necessarily the Higgs field, that:

\bullet is temperature-dependent;

\bullet has a potential that is symmetric for high energy T high and asymmetric
for low energy T low;

\bullet undergoes a symmetry breaking mechanism;

\bullet has a potential that develops a feature from T high to T low that, for some
time, freeze the system in a particular state, allowing a supercooled
state.

4.4 Arising of CP asymmetry
In this section we expand the description of step 4 in sec. 4.2.
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Figure 4.3: Matter predominance is created.

Once a bubble is nucleated, the bubble wall moves across the space that
is filled with a plasma of hot particles. Since the particles interact with the
Higgs field, they can detect the passage of the bubble wall and interact with
it. The bubble wall has a velocity relative the plasma, so during the wall-
particles interaction some particles are reflected in the direction of the wall
velocity. This reflection is possible thanks to the latent heat that, during the
interaction, is converted in kinetic energy of the scattered particle. Now, these
interactions can, in general, violate the CP symmetry. Thus the quantum
reflection depends on the chirality of the particle. A different reflection
rate brings a CP asymmetry in the spaces in front and behind the wall, as
schematically depicted in fig. 4.3. In particular, for the EWBG to produce
the observed excess of matter over antimatter, this CP asymmetry inside and
outside the bubble consist of

1. an excess of antiquarks over quarks in front of the wall, that is outside
the bubble;

2. an opposite excess of quarks over antiquarks behind the wall, that is
outside the bubble.

In other words, the CP violating interactions imply a wall-antiquark reflection
rate bigger than the wall-quark reflection rate. Overall, however, different
reflection rates cannot create B asymmetry: the excess of antiquarks outside
the bubble Y out

B \propto nB - n \=B is balanced by the opposite excess of quarks inside
the bubble Y in

B =  - Y out
B without a net baryon number increase

Y tot
B = Y in

B + Y out
B = 0 . (4.10)
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Figure 4.4: Vacuum structure of SU(2)L. [Figure taken from [65]].

4.5 Sphaleron transitions
In this section we expand the description of step 5 in sec. 4.2.

The main idea is that the CP asymmetry, created according to the previous
section, can be converted in B asymmetry thanks to the sphaleron processes
that are active only outside the bubble. The vacua inside and outside the
bubble are different. This difference leads to different physical phenomena
inside and outside the bubble.

4.5.1 Outside the bubble

Outside the bubble, the symmetry is not broken. This case leads to the
sphaleron transitions. Moreover, sphaleron transitions in a system with CP
asymmetry lead to B violation.

Sphalerons

The vacuum structure of the non-Abelian SU(2) gauge group present many
degenerate vacua [74, 75]. Each vacuum is separated by other vacua via an
energy barrier, see fig. 4.4.

In general, the system is one specific vacuum but it tunnels to another
vacuum. At low temperatures the transition rate is strongly suppressed [66].
However, at high temperatures, T \gtrsim 100\mathrm{G}\mathrm{e}\mathrm{V}, the thermal energy increases
significantly the energy of the system that becomes comparable to the energy
barrier, see [76]. In this way, the tunnelling rate becomes significant and the
system can move frequently from one minima to another. An estimation of
the tunnelling rate per unit of volume is [77]

\Gamma out

V
\simeq cT 4 (4.11)

where c is a constant that depends on the weak coupling \alpha w and has been
calculated using lattice techniques [78, 79]:

c = (25.4\pm 2.0)\alpha 5
w \simeq (1.06\pm 0.08)\times 10 - 6 (4.12)
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(a) Sphaleron transition that con-
verts quarks to leptons.
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(b) Sphaleron transition that con-
verts antiquarks to antileptons.

Figure 4.5: Two examples of sphaleron transitions that change the B and L number.
On the left there is the initial state and on the right the final state. In the
middle, the sphaleron transition is represented as a blob. [Figure taken from
[65]].

The passage from one minimum to another is a non-perturbative process
called sphaleron transition. In this way, the tunnelling rate (4.11) represents
the rate of sphaleron transitions. Importantly, as shown in [66], a sphaleron
transition violates both baryon and lepton number by three units, where three
is the number of generations, keeping the difference B  - L constant, see fig.
4.5.

B violation

Sphaleron transitions alone, however, are still not enough to explain today’s
observed excess of baryon over antibaryon. Indeed, sphaleron transitions can
both decrease the baryon number, fig. 4.5a or increase the baryon number,
fig. 4.5b.

At chemical equilibrium, the rate of sphaleron transitions that increase B
is balanced by the rate of sphaleron transitions that decrease B. Since the
system tends towards the chemical equilibrium, in the case of an excess of
baryon over antibaryon, nB > n \=B, the sphaleron processes tend to restore the
baryon-antibaryon symmetry. The restoration happens because nB > n \=B and
the probability of the transition that transform baryons in leptons \mathrm{P}\mathrm{r}(B \rightarrow L)
is equal to the probability of the transitions that transform antibaryons in
antileptons: \mathrm{P}\mathrm{r}( \=B \rightarrow \=L) = \mathrm{P}\mathrm{r}(B \rightarrow L). So there are more transitions B \rightarrow L
than transition \=B \rightarrow \=L because there are more B than \=B:

\Gamma sph(B \rightarrow L) > \Gamma sph( \=B \rightarrow \=L) . (4.13)

This process of restoring the equilibrium is called relaxation.
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The relaxation is also the reason why the baryon asymmetry, if taken as
an initial condition of the Universe, cannot explain the observed BAU. In
fact, in the early Universe, sphaleron transitions would relax any potential
baryon asymmetry.

Outside the bubble, however, there is a CP asymmetry that plays an
important role. From the previous sec 4.4, as seen in point 1 of the description
of particle excesses, outside the bubble, there is an excess of antiquarks
compared to quarks. Since there are more antiquarks than quarks, the rate
of sphaleron processes that converts antiquarks to antileptons is bigger than
the rate of sphaleron processes that converts quarks to leptons. In other
words, the transitions depicted in fig. 4.5b happen more frequently than the
transitions depicted in fig. 4.5a. The second transition increase the baryon
number by three units destroying 3 antibaryons, 3 \=B \rightarrow 3\=L, and it is not
balanced by the first transition that decreases the baryon number by three
units destroying 3 baryons, 3B \rightarrow 3L. Thus a net excess of baryons over
antibaryon is created in front of the bubble wall.

Because the bubble wall moves, this continuously created excess of baryons
is incorporated inside the bubble.

4.5.2 Inside the bubble

If the sphaleron mechanism were active inside the bubble, a precisely opposite
excess of antimatter would be created inside the bubble, with no net baryon
production. However, inside the bubble, the vacuum structure is different
from the one outside the bubble: the vacuum structure does not have the
many degenerate vacua seen in fig. 4.4, and the potential develops a VEV
separated from the minimum at the origin by an energy potential, as in fig.
4.2b.

Because of this different vacuum structures, the sphaleron tunnelling
rate given in Eq. (4.11) is no longer valid. Taking into account the broken
symmetry inside the bubble, the sphaleron tunnelling rate is [65, 80, 81]

\Gamma in

V
\simeq c\prime [mW (T )

T
]
4

[Esph(T )

T
]
3

T 4\mathrm{e} - 
Esph(T )

T (4.14)

where mW is the W boson mass at temperature T , Esph is the height of the
energy barrier and c\prime is a constant of order unity. Note that this rate is null
in case the symmetry is unbroken and so mW = 0, that is outside the bubble.

The energy barrier Esph can be calculated as a function of the VEV h(T )
at temperature T [68]:

Esph \simeq 
\sqrt{} 

4\pi 

aw
f( \lambda 

aw
) h(T ) (4.15)
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where aw is the weak coupling and f( \lambda 
aw
) is a function of order unit that

depend on the Higgs quartic coupling \lambda . Using

aw =
g22
4\pi 

\simeq 1

30
f \simeq 2 (4.16)

because f ranges as 1.5 \lesssim f \lesssim 2.7 [68], from the previous Eq. (4.14) and
(4.15) we can estimate the sphaleron tunnelling (4.14). We can see that the
exponential

\sim \mathrm{e}\mathrm{x}\mathrm{p} [ - 40
h(T )

T
] (4.17)

strongly suppresses the transition rate inside the bubble.
Some antimatter inside the bubble is created according to the same

sphaleron mechanism that is active outside the bubble and described in the
previous sec. 4.5.1. That is, the sphaleron transitions tend to relax the
CP asymmetry (that inside the bubble is opposite to the CP asymmetry
outside the bubble). During this relaxation, sphaleron transitions create some
antimatter (while an excess of matter is created outside the bubble). However,
inside the bubble, the sphaleron tunnelling rate and so creation of antimatter
is strongly suppressed according to Eq. (4.17).

4.6 Freezing out the B asymmetry

In this section we recap and finish the EWBG description in sec. 4.2 describing
steps 7 and 6.

Since the bubble wall is moving, according to sec. 4.4, a CP asymmetry is
continuously created inside and outside the bubble. As seen in the previous sec.
4.5.1 and 4.5.2, the CP asymmetry is converted in B asymmetry. Importantly,
the conversion rate is very different. Indeed, considering Eq. (4.11), (4.14)
and (4.15), we can calculate the ratio \Gamma out

\Gamma in
:

\Gamma out

\Gamma in
\propto T 7

m4
Wv

3
\mathrm{e}\mathrm{x}\mathrm{p}

\Biggl[ 
f
\surd 
4\pi 30

h(T )

T

\Biggr] 
. (4.18)

The ratio in Eq. (4.18) shows that for temperatures in the order of the
electroweak scale the excess of matter created outside the bubble is not
balanced by the excess of antimatter inside the bubble. This imbalance is
due to the different vacuum inside and outside the bubble that leads to the
different sphaleron tunnelling rate (4.11) and (4.14) that lead to different
amount of matter and antimatter inside and outside the bubble.
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As the bubbles expand the excess of matter continuously falls inside the
bubbles. Here, since the lack of antimatter production due to Eq. (4.18), only
a tiny fraction of the matter is annihilated by antimatter. Moreover, since the
sphaleron transitions are frozen out according to Eq. (4.17), the sphaleron
cannot relax the excess of matter. That is the B asymmetry cannot decrease
inside the bubbles.

This increase of B asymmetry goes on as the bubbles expand and it
finishes only when the bubbles extend over all the Universe. At this point,
the Universe consists of the inside regions of bubbles. Again, according to
Eq. (4.17), in these regions, that is in the whole Universe, the excess of matter
accumulated during the bubble expansion is not destroyed.

4.7 Phase transition strength
As we have seen, a FOPT is one of the important ingredients to achieve the
EWBG: as shown in fig. 4.2, only a FOPT, and not a second order PT, shows
the barrier potential Esph and the VEV h at TC needed in Eq. (4.14) and
(4.15). Using the outlined formalism we can quantify the excess of baryons
over antibaryons during the EW phase transition, that is we can calculate
the asymmetry parameter Y th

B . Then we can check Y th
B against the measured

one, Y exp
B in Eq. (4.4) and (4.5).

The value of Y th
B depends on the rate of the sphaleron processes. These

processes involve sphalerons, respect the Sakharov conditions and can create
a net amount of baryons. The rate of the sphaleron processes depends on
the sphaleron energy Esph(TC) at the critical temperature TC , see Eq. (4.11),
(4.14) and (4.15). This is because the rate of sphaleron processes depends
on the potential barrier in the scalar potential of a FOPT, see fig. 4.2b: the
sphalerons energy is indeed given by the height of the barrier, while the rate
of the sphaleron processes depends on the transition between the two minima.

4.7.1 Order parameter

In order to match the observed Y exp
B the sphalerons have to have a minimum

sphaleron energy [82]:
Esph(TC)

TC
\gtrsim 45 . (4.19)

Considering Eq. (4.15) and (4.16), the previous Eq. (4.19) gives a condition
on the point of global minimum h at the nucleation temperature TN :

\gamma \equiv h

TN
\gtrsim 1 . (4.20)
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A FOPT that satisfy the previous condition (4.20) is called a strong first
order phase transition (SFOPT) and \gamma is the order parameter quantifying the
strength of the transition. From the definition (4.20) the order parameter \gamma 
measures the distance between the point of global minimum, representing the
true vacuum, and the point of local minimum, representing the false vacuum.

In the case in which there are two Higgs SU(2) doublet, Hd and Hu, see
for example the MSSM, tab. 3.1 and sec. 3.7, the strength of transition is
given by the parameter \gamma EW:

\gamma EW =

\sqrt{} \bigl[ 
hd(TN) - h\prime d(TN)

\bigr] 2
+
\bigl[ 
hu(TN) - h\prime u(TN)

\bigr] 2

TN
(4.21)

where
\bigl( 
hd(TN), hu(TN)

\bigr) 
is the location of the global minimum of the scalar

Higgs potential at the nucleation temperature TN while
\bigl( 
h\prime d(TN), h

\prime 
u(TN)

\bigr) 
is

the location of the local minimum at TN . In models with an additional scalar
singlet, see for example the NMSSM, tab. 3.2 and sec. 3.8, or the THDMS
see Eq. (33) in the published material in sec. 6.1 at page 109, the relevant
quantity for EWBG is again \gamma EW [83] and the singlet VEV does not modify
\gamma EW in Eq. (4.21).

In this case hd(TN ) and hu(TN ) are two coordinate of the global minimum
of the scalar fields at the nucleation temperature TN while the local minimum
is identified by prime coordinate such as h\prime d(TN) and h\prime u(TN). Again, a phase
transition is considered strong when

\gamma EW \gtrsim 1 (4.22)

so that the distance between the point of global minimum, representing the
true vacuum, and the point of local minimum, representing the false vacuum
is big enough to boost the baryon asymmetry and to explain the observed
asymmetry parameter Y exp

B .

4.7.2 Strength of the transition

As said at the beginning of this section, the asymmetry parameter YB depends
on the rate of sphaleron processes that depends on the sphaleron energy at
the critical temperature Esph(TC) that, together with the strength parameter
\gamma , is given by the potential barrier in a FOPT scalar potential, see fig. 4.2b.
The potential barrier is originated from cubic terms in the scalar potential.
At zero temperature, they are not present in models such as the SM or the
MSSM, see Eq. (3.104). However, these terms enter in the scalar potential at
loop level, see [84, 85], with the so-called Daisy corrections.
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For model such as the MSSM, it has been showed that an agreement with
the asymmetry parameter Y exp

B implies an absolute upper bound on the stop
mass, m\~t \lesssim 120\mathrm{G}\mathrm{e}\mathrm{V}, see [53], that that is hard to satisfy considering the
current LHC limits [86]. This is because cubic terms represent a correction at
the loop level, so they give, in this case, a too small contribution to the scalar
potential. However, the contribution of cubic terms can easily be boosted
and made consistent with Y exp

B if the cubic terms appear in the potential at
tree level. This is the case of the NMSSM or the THDMS, where cubic terms

\widehat S3 and \widehat S \widehat Hu \cdot \widehat Hd (4.23)

at tree-level are originated from the scalar singlet. For the NMSSM see
Eq. (3.129) and for the effective field model THDMS see Eq. (10) in the
published material in sec. 6.1 at page 109.

4.8 Effective potential
To achieve EWBG, we need a potential that can show a SFOPT, as in fig. 4.2b
where \gamma \gtrsim 1. Moreover, to describe the conditions of the early Universe where
the energy density is very high and decrease with time, we need to consider a
temperature-dependent potential, see fig. We can use a perturbative approach
in which the potential can be approximated as:

V eff = V tree +\Delta V CW +\Delta VT + V daisy (4.24)

where V tree is the tree level potential, \Delta V CW is the one-loop or Coleman-
Weinberg correction to the tree level potential, \Delta VT is the one-loop thermal
correction and V daisy is the daisy term.

The one-loop correction depend on the used gauge. In the R\xi gauge, see
sec. 2.4.3, the \Delta V CW expression is [87]

\Delta VCW=
1

64\pi 2

\left\{ 
 
 
\sum 

h

nhm
4
h(\xi )

\left[ 
 \mathrm{l}\mathrm{n}
\Biggl( 
m2
h(\xi )

Q2

\Biggr) 
 - 3

2

\right] 
 +
\sum 

V

nVm
4
V

\left[ 
 \mathrm{l}\mathrm{n}
\Biggl( 
m2
V

Q2

\Biggr) 
 - 5

6

\right] 
 

 - 
\sum 

V

1

3
nV (\xi m

2
V )

2

\left[ 
 \mathrm{l}\mathrm{n}

\Biggl( 
\xi m2

V

Q2

\Biggr) 
 - 3

2

\right] 
  - 

\sum 

f

nfm
4
f

\left[ 
 \mathrm{l}\mathrm{n}

\Biggl( 
m2
f

Q2

\Biggr) 
 - 3

2

\right] 
 
\right\} 
 
 

(4.25)

where Q is the renormalization scale, mi are field dependent masses and the
ni are the numbers of degrees of freedom for field i.
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The one-loop thermal correction again in the R\xi gauge is [87]

\Delta VT =
\sum 

i

T 4

2\pi 2
niJB

\Biggl( 
mi(\xi )

2

T 2

\Biggr) 
+
\sum 

j

T 4

2\pi 2
njJF

\Biggl( 
m2
j

T 2

\Biggr) 
(4.26)

where the nomenclature is the same as in the \Delta V CW and the JB and JF

functions are defined as:

JB/F

\Biggl( 
m2

T 2

\Biggr) 
= \pm \mathrm{R}\mathrm{e}

\int \infty 

0

\mathrm{d}x

\Biggl[ 
x2 \mathrm{l}\mathrm{n}

\biggl( 
1\mp \mathrm{e} - 

\sqrt{} 
x2+m2

T2

\biggr) \Biggr] 
(4.27)

where the upper sign is for bosons and the lower sign is for fermions.
The daisy terms are [84]

V daisy =  - T

12\pi 

\left( 
 \sum 

h

nh

\Biggl[ \Bigl( 
\=m2
h

\Bigr) 3
2  - 

\Bigl( 
m2
h

\Bigr) 3
2

\Biggr] 
+
\sum 

V

1
3
nV

\Biggl[ \Bigl( 
\=m2
V

\Bigr) 3
2  - 

\Bigl( 
m2
V

\Bigr) 3
2

\Biggr] \right) 
 ,

(4.28)
where the \=m2 masses are field dependent mass eigenvalues that include
Debye corrections to the tree-level masses in the mass matrices. The Debye
corrections, that are active before the symmetry breaking, add additional T
dependent terms and, following [88, 89], are of the form

c\Phi T
2| \Phi | 2 for all complex scalar gauge eigenstates (4.29)

cAT
2A\mu A

\mu for all gauge bosons. (4.30)

In this way, we obtain the full one-loop finite temperature potential, which
is a function of the fields and of the temperature T and can be used to study
the EWBG, see chapter 6.

The terms V tree, \Delta V CW, \Delta VT and V daisy give different contributions to
the potential V eff. An example is in fig. 4.6. Here we used the NMSSM
potential, as described in the published material in chapter 6. The full
potential is a function of the VEV of Hd, Hu and S fields, but here we focus
on the singlet VEV and set vd = vu = 0. The different terms have different
contributions at different temperatures. However, we can see that the daisy
terms V daisy and the finite temperature corrections \Delta VT have an important
contribution. The daisy terms cancel almost exactly the finite temperature
corrections. The daisy terms indeed come from a resummation of leading
infrared divergent graphs, see fig. 4.7, that correct the finite temperature
corrections. As it is clear from lover temperatures, see the bottom right plot
in fig. 4.6, the sum of the finite temperature corrections and daisy terms
\Delta VT + V daisy have a important impact on the total potential. Indeed, the
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magnitude of \Delta VT + V daisy is comparable to the magnitude of the tree level
potential V tree. In contrast, the one loop corrections \Delta V CW are negligible
compared to \Delta VT + V daisy.
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Figure 4.6: Different contributions to V eff. The plots were produced during the
work published in chapter 6, where we employ the NMSSM. We show the value
of the potentials against the value of the singlet vev fixing the values of the
Hd and Hu vevs to zero. The temperature are fixed in this way: the top left
plot correspond to T = 1\mathrm{T}\mathrm{e}\mathrm{V}, the top right plot correspond to T = 400\mathrm{G}\mathrm{e}\mathrm{V},
the bottom left plot correspond to T = 300\mathrm{G}\mathrm{e}\mathrm{V} and the bottom right plot
correspond to T = 200\mathrm{G}\mathrm{e}\mathrm{V}. Referring to Eq. (4.24), the red line represent V eff,
the blue line represent V tree, the yellow line represent \Delta V CW, the green line
represent \Delta VT and the black line represent V daisy. Thanks Yang Zhang for the
images.
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Figure 4.7: Graphs considered in the daisy corrections.
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Chapter 5

Dark matter constraint from
combined experiments

We collect astrophysical data mainly through the electromagnetic interaction:
in other words, we obtain information about the Universe analysing the
electromagnetic radiation that arrives to us. From this information, we know
that the Universe consists of a variety of different objects, for example, dust,
interstellar medium, planets, stars, star clusters, galaxies, galaxy groups,
galaxy clusters, superclusters and galaxy filament. In general, each object
is made of other objects that constitute it and is part of a collection that
constitutes a bigger object. For example, galaxies are made of dust, interstellar
medium, planets, stars and are part of galaxy clusters. We can observe the
structure of these objects, that is their composition and how their components
are organised inside them. For galaxies, in particular, we can observe the
position, the velocity and the mass of the objects that are inside them.

Historically one of the first strongest evidence of dark matter came from
data on different galaxies. The density and distribution of the detected
matter and gas inside each galaxy was measured. Employing this data inside
a Newtonian model, we can calculate the rotation curve, that is the velocity
that an object at a specific distance from the galactic centre of mass has to
have in order to be bound to the galaxy. We can thus observe the position and
velocity of stars orbiting inside the galaxy. This data conspicuously disagree
with the predicted rotation curve. To generate a rotation curve that agrees
with the observed one, we need to assume the existence of a halo of DM, see
fig. 5.1.

The presence of dark matter can also be deduced from galaxy clusters [91],
colliding clusters of galaxies [92], structure formation [93], velocity disper-
sions [94], gravitational lensing [91, 95], cosmic microwave background [96],
baryon acoustic oscillations [97] and measurement of the cosmological mass

97
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Figure 5.1: Rotation curve of NGC6503 Galaxy. The dashed and dotted curve
represent the rotation curve expected, respectively, from the matter and gas
observed inside the galaxy. These cannot match the observed data represented
by dots with error. Assuming the presencean halo of dark matter given by the
dot-dashed curve, the data match the solid total rotational curve. [Figure taken
from [90]].

density from clustering [98]. All these observations make the existence of DM
a widely accepted fact.

Since the DM cannot be made of SM particles [99], its explanation needs
BSM physics. Many hypotheses have been made regarding the composition
of DM [100]. However, until now, there is no widely accepted explanation
of the DM nature. One of the possible and wide studied options is that the
DM is made of sparticles. In sec. 3.7.3 we have seen that in the MSSM,
to suppress baryon and lepton number violating terms, generally a discrete
Z2 symmetry is imposed. This symmetry implies that the supersymmetric
nature of sparticles is also conserved, that is sparticles cannot decay to SM
particles. Thus, the lightest SUSY particle (LSP) must be stable. Assuming
that the LSP is also weakly interacting and neutral, it represents a candidate
for the DM.

Different sparticles can be considered as the LSP. In the following published
work, we have considered the broadly investigated option that the lightest
neutralino \widetilde \chi 0

1 is the LSP.

5.1 Published material
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ZEPLIN, can explore the whole region, while the high luminosity LHC can exclude tanβ > 8 for μ > 0
and tan β > 5.5 for μ < 0. After applying the muon anomalous magnetic moment constraint only a tiny 
part of the Z/h funnel region survives which will soon be probed by ongoing experiments.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A wide range of astrophysical observations indicates the exis-
tence of dark matter (DM) at various length scales via gravitational 
effects. Motivated by this during the last decades considerable ef-
fort was made to detect DM particles at collider experiments (such 
as LEP [1] and the LHC [2,3]), in direct (by XENON1T [4], LUX [5] or 
PandaX [6]) and indirect (AMS-II [7], Fermi-LAT [8] or DAMPE [9]) 
detection experiments. Despite the lack of direct experimental ev-
idence, the lightest neutralino of the R-parity conserving Minimal 
Supersymmetric Standard Model (MSSM) [10–12] remains an espe-
cially attractive DM candidate. This is because, beyond dark matter, 
the MSSM provides solutions to several problems of the Standard 
Model (SM): the lightness of the observed Higgs mass, a dynami-
cal mechanism of electroweak symmetry breaking, the unification 
of particles and forces and beyond.

Supersymmetric (SUSY) global fits, which also include exper-
imental constraints on DM particles, have delineated the most 

* Corresponding author.
E-mail addresses: giancarlo.pozzo@monash.edu (G. Pozzo), 

yang.zhang@monash.edu (Y. Zhang).

likely model parameter regions [10–31]. In global fits of the phe-
nomenological MSSM, there is always a Z/h funnel region in which 
neutralino dark matter can achieve the right thermal relic density 
through Z or Higgs boson resonant annihilation. Consequently, in 
this region the DM mass is about half of the Z or Higgs boson 
mass. Comparing to other regions, the Z/h funnel region is an 
islet in the parameter space where some of the supersymmetric 
particles (sparticles) are relatively light. These characteristics make 
the sparticles in the Z/h funnel region the most promising candi-
dates to be detected at the LHC and DM search experiments. More 
importantly, several modest excesses of data above the expected 
background were found in the signal regions of recent CMS and 
ATLAS electroweakino searches, including signal region SR3�_ISR
(3.02 σ deviation), SR3�_LOW (2.13 σ deviation) and SR2�_ISR
(1.99 σ deviation) in ATLAS recursive jigsaw reconstruction anal-
ysis [32], SR0D (2.3 σ deviation) in ATLAS ≥ 4� + Emiss

T analy-
sis [33], and the not-tt-like signal region for masses between 96 
and 150 GeV (2.0σ deviation) in CMS 2� + Emiss

T analysis [34]. The 
global fit of the electroweakino sector performed by GAMBIT Col-
laboration shows that the Z/h funnel region is consistent with a 
new physics interpretation of these excesses [35,36]. Motivated by 
these results, in this work we carefully explore the present and 
future status of the Z/h funnel region.

https://doi.org/10.1016/j.physletb.2018.12.062
0370-2693/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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On the theoretical side, Z/h resonant annihilation is impor-
tant in natural SUSY [37], especially in the natural MSSM, since 
it allows the lightest neutralino to achieve the observed thermal 
relic density [38]. In the natural Next-to-MSSM (NMSSM), although 
the inclusion of a singlet superfield relaxes the experimental con-
straints on the electroweakinos, the exclusion of the Z/h funnel 
region increases the lower limit on the DM mass from 20 GeV to 
80 GeV [39–41]. The lower limit on the DM mass, in turn, is critical 
for any LHC sparticle search because under R-parity all sparticles 
decay to the lightest supersymmetric particle (LSP) χ̃0

1 and the 
LSP mass is folded into the analyses. Typically, stricter search lim-
its arise in analyses with light neutralinos. In a simplified model, 
for instance, with first- and second-generation mass-degenerate 
squarks, squark masses below 1.6 TeV (1.4 TeV) are excluded for 
mχ̃0

1
< 200 GeV (200 GeV < mχ̃0

1
< 400 GeV), but entirely survive 

if mχ̃0
1

> 600 GeV [42]. Therefore, in most cases, the exclusion of 
the Z/h funnel region affects the mass limits of all sparticles.

The MSSM Z/h funnel region has been examined in numerous 
recent papers [43–68]. The constraints from LHC Run-I SUSY di-
rect searchers were implemented by requiring that the SUSY signal 
events do not exceed the 95% confidence level (C.L.) upper limit 
in the signal region with the best-expected exclusion power [44,
47,63,64]. At Run-I, due to relatively small backgrounds of lep-
tonic processes, the signal region with the best-expected exclusion 
power for the Z/h funnel region comes from the “3�” search for 
the pp → χ̃±

1 χ̃0
2 → W ± Z χ̃0

1 χ̃0
1 → ��v�χ̃0

1 χ̃0
1 process [69]. How-

ever, with the increase of centre-of-mass-energy and integrated 
luminosity, the boosted jets can also be used to distinguish signals 
of heavy electroweakinos from background events. As a result, the 
sensitivities of searches for other decay modes will increase signif-
icantly, even surpassing the “3�” search. An example is the “1�2b” 
search for the pp → χ̃±

1 χ̃0
2 → W ±Hχ̃0

1 χ̃0
1 → bb̄v�χ̃0

1 χ̃0
1 process 

with one lepton, two b-jets and Emiss
T final state. At the high lu-

minosity LHC (HL-LHC), the 95% C.L. exclusion contour of “3�” 
search reaches 1100 GeV in the case of the W Z -mediated sim-
plified models [70], while the exclusion contour of “1�2b” search 
reaches 1310 GeV in χ̃±

1 , χ̃0
2 mass in the case of the W h-mediated 

simplified models using the MVA technique [71]. At Run-II the 
impact of “1�2b” search in the Z/h funnel region cannot be ig-
nored, because χ̃±

1 decay exclusively to χ̃0
1 W ± while BR(χ̃0

2 →
χ̃0

1 h) + BR(χ̃0
3 → χ̃0

1 h) � 90% [44]. A statistical combination of ex-
clusive signal regions in these searches maximizes the discovery 
potential. For example, in the case of the W Z -mediated simplified 
models, the combination performed by CMS [72] improves on the 
“3�” analysis yielding an observed lower limit of 150 GeV on the 
chargino mass.

In this work, we study the present status of Z/h funnel re-
gion under the constraint of 3l + Emiss

T [73], 2l + Emiss
T [34] and 

1l + 2b + Emiss
T [74] searches using 13 TeV 35.9 fb−1 LHC data, as 

well as the latest DM direct detection results. The rest of paper 
is organized as follows. In Section 2 we briefly describe the elec-
troweakino sector of MSSM, with focus on the properties of DM. 
We present the parameter space of the Z/h funnel region and re-
lated constraints in Section 3. The HL-LHC reach for the regions 
that survive the present LHC constraints is discussed in Section 4. 
In Section 5 we investigate the Z/h funnel region in a practical 
phenomenology model. Finally, we draw our conclusions in Sec-
tion 6.

2. The Z/h-resonant neutralino dark mater

In this section we describe the MSSM electroweakino sector, 
that is the superpartners of the electroweak gauge bosons (Bino 
B̃ and Winos W̃ ) and the two Higgs doublets (Higgsinos H̃). Af-

ter electroweak symmetry breaking the electroweakinos mix to 
form neutralino χ̃0

i (i = 1, 2, 3, 4) and chargino χ̃±
i (i = 1, 2) mass 

eigenstates. In the ψα = (B̃, W̃ 0, H̃0
d , H̃0

u) basis neutralino masses 
are given by − 1

2 [ψαMχ̃ ′
αβ

ψβ + h.c.] with the non-diagonal, sym-
metric mass matrix

Mχ̃0 =

⎛⎜⎜⎝
M1 0 −M Z sW cβ M Z sW sβ

0 M2 M Z cW cβ −M Z cW sβ

−M Z sW cβ M Z cW cβ 0 −μ
M Z sW sβ −M Z cW sβ −μ 0

⎞⎟⎟⎠ .

(1)

Here M1, M2 and μ are the Bino, Wino and Higgsino masses, sβ =
sin β and cβ = cosβ where tan β = 〈Hu〉/〈Hd〉 is the ratio of the 
vacuum expectation values of the two Higgs doublets, M Z is the Z
boson mass, and sW and cW are the sine and cosine of the weak 
mixing angle θW . With the same notation, in the (W̃ ±, H̃±) basis 
the chargino mass matrix is given by

Mχ̃± =
(

M2
√

2cβ MW√
2sβ MW μ

)
, (2)

where MW is the W boson mass. The physical masses of the 
neutralinos and charginos are given by the eigenvalues of Mχ̃0

and Mχ̃± .
Due to the mχ̃±

1
> 92 GeV chargino mass limit from LEP [75], 

the Wino mass, M2, and Higgsino mass, |μ|, must be higher than 
about 100 GeV. As a result, the lightest neutralino, with mass 
mχ̃0

1
∼ M Z /2 or Mh/2, must be Bino dominated. We demand it 

to be the LSP, and R-parity conservation renders it a DM candidate. 
The main annihilation mode for this DM proceeds via an s-channel 
Z or Higgs boson, and the corresponding annihilation cross section 
is given by [63]:

σ(χ̃0
1 χ̃0

1 → Z/h → f f̄ )

� 1

2
C2

Z/h

√
1 −

4m2
χ̃0

1

s

1

(s − M2
Z/h)

2 + (M Z/h	Z/h)
2

s

M Z/h

× 	Z/h→ f f̄ , (3)

where C Z/h is the coupling between χ̃0
1 and the Z/h boson, and 

	Z/h is the corresponding decay width. The couplings arise via 
neutralino mixing, as shown by the relevant Lagrangian term [76]:

Lχ̃0 = e

sW
h ¯̃χ0

1 (N12 − N11 tan θW )(sinαN13 + cosαN14)χ̃
0
1

+ e

sW cW
Zμ

¯̃χ0
i γ μ

[ P L

2
(N2

14 − N2
13) + P R

2
(N2

14 − N2
13)

]
χ̃0

j .

(4)

Here α is the Higgs mixing angle, and Nij are the elements of the 
4 × 4 unitary matrix that diagonalizes the neutralino mass matrix 
Mχ̃0 such that N2

11, N2
12 and N2

13,14 are the Bino, Wino and Hig-

gsino components of χ̃0
1 , respectively. Equation (4) shows that the 

Higgsino components play an important role both in the hχ̃0
1 χ̃0

1
and Z χ̃0

1 χ̃0
1 interaction.

Considering the limit M1 < 100 GeV < |μ| 
 M2, the Higgsino 
components can be expressed as [44]

N13 = M Z sW

μ

(
sβ + cβ

M1

μ

)
, N14 = − M Z sW

μ

(
cβ + sβ

M1

μ

)
,

(5)

100CHAPTER 5. DARK MATTER CONSTRAINT FROM COMBINED EXPERIMENTS



584 G. Pozzo, Y. Zhang / Physics Letters B 789 (2019) 582–591

Fig. 1. Parameter regions allowed by the observed DM relic density (0.0959 < �h2 < 0.1439) on the Higgsino mass vs. lightest neutralino mass plane for μ > 0 (left panel) 
and μ < 0 (right panel). Colours show the value of tanβ . The masses of sparticles other than the electroweakinos are fixed at 3 TeV. The value of At is also fixed to obtain 
the observed Higgs mass: At = 4.5 TeV for tanβ > 10, At = 5.0 TeV for 7 < tanβ < 10 and At = 6.0 TeV for tanβ < 7.

which decrease when the mass hierarchy between Higgsino and 
Bino increases. From equations (5) and (4), one can derive the cou-
plings

C Z = eM2
Z

μ2
cos(2β)

(
1 + M2

1

μ2

)
,

Ch = eM Z

μ

[
cos(β + α) + sin(β − α)

M1

μ

]
. (6)

Thus, the relic density of Z/h-resonant DM at tree level depends 
on M1, μ and tan β . We, therefore, perform a scan over M1, μ
and tan β to identify the parameter space where Z/h-resonant DM 
satisfies the observed DM abundance. Following that, we examine 
the impact of current and future experimental constraints on this 
parameter space.

3. The parameter space and constraints

To analyse the Z/h funnel region, we first study a simplified 
model that assumes the sfermion masses, wino mass M2 , gluino 
mass M3 and CP-odd Higgs mass M A are fixed at 3 TeV, heavy 
enough to decouple at LEP or the LHC. We set all the trilinear cou-
plings except At to zero. To match the measured value of SM-like 
Higgs mass of 125.09 GeV [77], the trilinear coupling At is fixed at 
4.5 TeV for tan β > 10, at 5.0 TeV for 7 < tanβ < 10 and at 6.0 TeV
for tan β < 7. Under these assumptions, we sample the following 
parameter space:

10 GeV < M1 < 100 GeV, 50 GeV < |μ| < 1500 GeV,

5 < tanβ < 50. (7)

We use SUSY-HIT-1.5 [78] based on SuSpect [79], together 
with SDECAY [78,80] and HDECAY [81] to generate the mass 
spectrum and to calculate the Z/h boson decay branching ratios,
micrOMEGAs-4.3.5 [82,83] to calculate the DM observables, 
and EasyScan_HEP [17] to perform the scan. Due to the low 
dimensionality and simplicity of the parameter space we generate 
samples on a grid.

In Sections 3.1–3.4 we detail the relevant constraints on the 
Z/h-resonant DM. Here we ignore other observations, such as B-
physics measurements, that tend to give mild constraints due to 
the high scale of the fixed SUSY parameters.

3.1. The thermal relic density of DM

From equations (6) and (3), we see that the measurement of 
the DM abundance by Planck [84] and WMAP [85] place severe re-
strictions on the relationship among M1, μ and tan β . We assume 
that the thermal relic density of the lightest neutralino is equal to 
the cold DM abundance �h2 = 0.1199 ± 0.0022 at 2σ level with 
10% theoretical uncertainty (cf. the Plik cross-half-mission like-
lihood in [84]). In Fig. 1 we project the allowed regions on the 
(mχ̃0

1
, |μ|) plane for both μ > 0 and μ < 0 with colours indicating 

the value of tan β .
As sketched in Section 2, to achieve both the observed DM 

abundance and a sizeable coupling to the Z/h boson, the Bino-
like χ̃0

1 must contain a certain amount of Higgsino component. 
This imposes limits on the Higgsino mass, shown in Fig. 1 by the 
coloured regions. The blank region above the coloured region leads 
to an overproduction of DM in the early universe, while the blank 
region below the coloured region has a relic density smaller than 
0.096. Due to the resonance in equation (3), the Higgsino mass is 
enhanced when mχ̃0

1
close to M Z/h , therefore the allowed region 

features two clear peaks.
The Higgs resonances (the peaks around mh/2) in the left 

(μ > 0) and right (μ < 0) panel of Fig. 1 show different depen-
dence on tan β for a fixed mχ̃0

1
. This difference is caused by the 

sign of M1/μ in the coupling between the χ̃0
1 and the Higgs bo-

son. Taking the decoupling limit of the Higgs sector, β − α = π/2, 
Ch in equation (6) can be written as

Ch = eM Z

μ

(
sin 2β + M1

μ

)
. (8)

Therefore, for M1/μ > 0 and M1 � Mh/2 to keep the coupling Ch
unchanged the Higgsino mass has to increase from 400 GeV to 
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1440 GeV and tan β has to decrease from 50 to 5. For the same 
reason, for M1/μ < 0 and M1 � Mh/2 the coupling is bracketed 
as |μ| decreases from 380 GeV to 130 GeV and tan β decreases 
from 50 to 7. For M1/μ < 0 and tan β < 7 there are two sepa-
rate regions corresponding to the observed relic density, divided by 
the so-called “blind spot” where sin 2β = M1/μ [40,52,86–88]. The 
coupling Ch changes sign between the two regions. For tan β = 5
and mχ̃0

1
= 52 GeV, for example, the regions μ < −136 GeV and 

−168 GeV < μ < −1085 GeV both correspond to �h2 < 0.14.
The Z resonance, on the other hand, is independent of the sign 

of M1/μ and it mildly depends on tan β , as shown in equation (6). 
The Higgsino can be as heavy as about 470 GeV when DM annihi-
lates via the Z resonance.

3.2. Dark matter direct detection experiments

Neutralinos with non-negligible Higgsino component can be di-
rectly detected via elastic scattering on nuclei mediated by Z or 
Higgs boson exchange [6,89–93]. The null result of the searches for 
such scattering by LUX [89], XENON1T [90,94] and PandaX-II [6]
provides limits on the spin-independent (SI) neutralino-nucleon 
elastic cross section σ SI

χ̃0
1 n

. In the χ̃0
1 mass region we consider the 

one-sided 90% C.L. upper limit on σ SI
χ̃0

1 n
is about 5 × 10pb [94]. The 

most sensitive constraints on spin-dependent (SD) DM-neutron 
elastic cross section σ SD

χ̃0
1 n

and DM-proton elastic cross section σ SD
χ̃0

1 p

come from LUX [93] and PICO-60 [95], respectively. In Fig. 2 we 
show current, as well as projected LUX-ZEPLIN (LZ) [96], con-
straints on σ SI

χ̃0
1 n

and σ SD
χ̃0

1 n
in the parameter regions that account 

for the observed DM abundance. The grey regions are excluded by 
either DM SI or SD scattering searches.

The top panels of Fig. 2 show the predicted σ SI
χ̃0

1 n
in the sur-

viving region as a function of mχ̃0
1

. In the limit of heavy scalar 
superpartners, the dominant contribution of σ SI

χ̃0
1 n

comes from the 
t-channel exchange of a Higgs boson [52,88]:

σ SI
χ̃0

1 n
� 4μ2

r

π

[ 2∑
i=1

Chi χ̃
0
1 χ̃0

1
Chi N N

2M2
hi

]2
. (9)

Here μr is the neutralino-nucleus reduced mass, Chi N N denotes 
the effective coupling between the Higgs and nucleon. As dis-
cussed in Subsection 3.1, in the vicinity of the Higgs resonance 
Chχ̃0

1 χ̃0
1

is restricted by the observed DM abundance. In this re-

gion σ SI
χ̃0

1 n
is practically independent of tan β and sign of μ, and 

it is large enough to be fully covered by the LZ projected lim-
its. On the other hand, on the Z resonance the DM relic density 
is independent of Chχ̃0

1 χ̃0
1

, and demands a fixed |μ| for certain 
mχ̃0

1
, such as |μ| � 450 GeV for mχ̃0

1
= 45 GeV. As a result, for 

μ > 0 the σ SI
χ̃0

1 n
cross section decreases when tan β increases and 

will be detectable at LZ. For μ < 0, however, due to the blind 
spot at sin 2β = M1/μ, it is impossible to test Z -resonance DM 
for tanβ = tan[arcsin(45/450)/2] � 20.

On the contrary, at tree level and in the heavy squark limit only 
the t-channel Z boson exchange diagram contributes to σ SD

χ̃0
1 n

and 

σ SD
χ̃0

1 p
. Therefore, Z -resonant DM will be detected at LZ by SD DM-

nucleon scattering, as shown in the bottom panels of Fig. 2. Since 
the 90% C.L. limit on the DM mass given by LUX [93] is about 
two times lower than the corresponding limit provided by PICO-
60 [95], while in our model σ SD

χ̃0
1 n

= 0.76σ SD
χ̃0

1 p
, in the following we 

only study the SD DM-neutron elastic cross section.

In summary, a large part of the Z/h funnel region has been 
excluded by the current DM direct detection experimental con-
straints. The surviving regions require mχ̃0

1
∈ [41, 46] ∪[58, 63] GeV

for positive μ and mχ̃0
1

∈ [40, 46] ∪ [58, 63] GeV for negative μ. 
These regions will be probed by the SI and SD DM-nucleon scatter-
ing detection at LZ. We should keep in mind, however, that these 
regions are obtained under the assumption that the masses of all 
non-electroweakino sparticle masses are 3 TeV. If that is not the 
case, for example in the case of light squarks and a light non-SM-
like CP-even Higgs, the SI DM-neutron cross section could reduce 
and modify the allowed regions.

3.3. Z and Higgs boson invisible decay

If mχ̃0
1

< M Z /2, the decay of Z boson to a pair of neutralinos 
is kinematically allowed. The decay width of this process is given 
by [63]:

	(Z → χ̃0
1 χ̃0

1 ) =
M Z C2

Z χ̃0
1 χ̃0

1

24π

⎛⎝1 −
4m2

χ̃0
1

M2
Z

⎞⎠
3
2

. (10)

45 GeV > mχ̃0
1

> 40 GeV, in which DM direct detection is pos-

sible, equation (10) gives 	(Z → χ̃0
1 χ̃0

1 ) � 0.05 MeV. This decay 
width is much below the LEP bound on the new physics con-
tribution to 	(Z → invisible) = 2 MeV at 95% C.L. LEP bounds 
on electroweakino masses, mχ̃±

1
> 92 GeV and mχ̃0

1
+ mχ̃0

2,3
>

208 GeV [97], are not constraining either in the surviving regions.
Similarly, for mχ̃0

1
< Mh/2, the Higgs boson decay width into a 

pair of neutralinos is:

	(h → χ̃0
1 χ̃0

1 ) =
MhC2

hχ̃0
1 χ̃0

1

16π

⎛⎝1 −
4m2

χ̃0
1

M2
h

⎞⎠
3
2

. (11)

The combination of several searches performed by the ATLAS [98]
and CMS [99,100] collaborations sets an upper limit of 0.24 at the 
95% C.L. on BR(h → χ̃0

1 χ̃0
1 ) for the 125 GeV Higgs boson. In Fig. 3, 

we show these limits in the (mχ̃0
1
, |μ|) logarithmic plane for dif-

ferent values of tan β . It is clear that the limits become stronger 
as tan β decreases (increases) for μ > 0 (μ < 0), but they are al-
ways weaker than the DM direct detection limits. The global fit of 
Higgs couplings will provide a stricter constraint on the invisible 
Higgs decay width. However, the constraint from global fit can be 
relaxed by tuning the SUSY masses that here we fix at 3 TeV. For 
instance, the best fit point of global fit for Z/h funnel region in 
MSSM7 requires mt̃1

� 2.1 TeV and M A � 1.8 TeV [10]. Thus we 
do not impose the Higgs invisible decay constraint from global fit 
in simplified model. The projected limit on BR(h → χ̃0

1 χ̃0
1 ), such 

as BR(h → χ̃0
1 χ̃0

1 ) > 0.4% from ILC [101], can cover the whole Z
funnel region, but not the h funnel [47,63].

3.4. Electroweakino searches at the 13 TeV LHC

The ATLAS [102–106] and CMS [34,72–74,107–109] collabora-
tions performed numerous searches for direct production of elec-
troweakinos at the 13 TeV LHC. In the simplified model in which 
the Wino-like χ̃±

1 (χ̃0
2 ) decays to a W (Z) boson and a mass-

less χ̃0
1 , the search performed by ATLAS with 36 fb−1 data for final 

states involving two or three leptons excludes Wino masses up to 
580 GeV [102]. The statistical combination of searches performed 
by CMS excludes the Wino below a mass of 650 GeV at the 95% 
C.L. [72]. The corresponding mass bounds for the Higgsino might 
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Fig. 2. Parameter regions allowed by the observed DM abundance (0.0959 < �h2 < 0.1439) on the (mχ̃0
1
, σ SI

χ̃0
1 n

) logarithmic plane (upper panels) and (mχ̃0
1
, σ SD

χ̃0
1 n

) logarithmic 
plane (lower panels) for μ > 0 (left panels) and μ < 0 (right panels). The orange solid lines mark the limit on σχ̃0

1 n given by XENON1T [90,94] and LUX [93] experiments. 
The green dashed lines mark the projected limit of LUX-ZEPLIN [96]. The colours show the value of tanβ; grey regions are excluded by DM direct detection at 90% C.L.

be lower than that at least 100 GeV because the production rate 
of Higgsino-like chargino and neutralino pair is nearly half than 
the production rate of Wino-like chargino and neutralino pair [44]. 
Based on these surviving regions of Z/h-resonance DM could be 
excluded since the DM relic density imposes strict requirements 
on the Higgsino mass, as shown in Fig. 3. In the following, we as-
sess the LHC constraints on the parameter space of interest by a 
detailed Monte Carlo simulation.

We use MadGraph5_aMC@NLO_v2.6.1 [110] in combination 
with Pythia6 [111] to generate events for the relevant processes:

pp → χ̃±
1 χ̃0

2,3, pp → χ̃0
2,3χ̃

0
2,3, pp → χ̃±

1 χ̃∓
1 , (12)

where the production rate of the first process at the LHC is much 
larger than the others. Here χ̃±

1 decays 100% to a W boson and 

a χ̃0
1 , χ̃0

2,3 decay to a Z boson and a χ̃0
1 or a h boson and χ̃0

1 . 
Although the branching ratios BR(χ̃0

2,3 → χ̃0
1 Z ) and BR(χ̃0

2,3 →
χ̃0

1 h) depend on tan β and sign of μ, 
∑

BR(χ̃0
2,3 → χ̃0

1 Z) and ∑
BR(χ̃0

2,3 → χ̃0
1 h) are roughly comparable for the whole param-

eter space [44]. The cross sections are normalized to next-to-
leading order (NLO) computed by PROSPINO2 [112]. Finally, we 
use CheckMATE-2.0.7 [113] with Delphes3.4.1 [114] to re-
peat the CMS analysis [72].

The CMS combined search related to our processes [72] in-
cluded the following channels.

• The “≥ 3�” search for the pp → χ̃±
1 χ̃0

2 → W ± Z χ̃0
1 χ̃0

1 →
��v�χ̃0

1 χ̃0
1 process, with three or more leptons and large Emiss

T
in the final state [73]. In the several signal regions (SR) cat-
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Fig. 3. Constraints on the relevant parameter regions from invisible decay limits. Regions excluded by DM direct detection are filled with grey colour. The blue dashed lines 
indicate the 95% C.L. upper limits on the invisible decay branching ratio of 125 GeV Higgs boson for different values of tan β . The green dot-dashed lines and red dotted lines 
show the 95% C.L. upper limits from the combination of CMS searches for electroweakinos at the 13 TeV LHC with 35.9 fb−1 data and at the HL-LHC with 3000 fb−1 data, 
respectively. Regions below these lines are excluded by the corresponding experimental results.

egorized by the number of lepton and lepton flavour, SR-A 
targets the W Z topology. This is done by selecting events 
with three light-flavour leptons (e, μ), two of which form an 
opposite-sign, same-flavour (OSSF) pair. These events are fur-
ther divided into 44 bins by the invariant mass of the pair M�� , 
the transverse mass MT of the third lepton and Emiss

T . In [72], 
the categorization has been updated to improve the sensitiv-
ity for the region of mχ̃0

2
− mχ̃0

1
� M Z by requiring HT , the 

scalar pT sum of the jets, with pT > 30 GeV. However, com-
pared to [73], the observed lower mass limit of the Wino-like 
χ̃±

1 for massless mχ̃0
1

has also been improved from 450 GeV 
to 500 GeV. Here we adopt the improved bins of SR-A for the 
analysis, but the validation of cut-flows is based on [73] since 
the cut-flow in [72] has not been provided.

• The “2� on-Z ” search for the pp → χ̃±
1 χ̃0

2 → Z W ±χ̃0
1 χ̃0

1 →
�� j jχ̃0

1 χ̃0
1 process, with exactly two OSSF leptons consistent 

with the Z boson mass, two non b-tagged jets consistent with 
the W boson mass and large Emiss

T in the final state [34]. The 
variable MT 2 [115,116] is defined using Emiss

T and the two 
leptons are required to be more energetic than 80 GeV to re-
duce the tt̄ background. Then four exclusive bins are defined 
based on Emiss

T . The analysis probes Wino-like χ̃±
1 masses be-

tween approximately 160 and 610 GeV for mχ̃0
1

= 0 GeV and 
BR(χ̃±

1 → W ±χ̃0
1 ) = BR(χ̃0

2 → Z χ̃0
1 ) = 100%.

• The “1�2b” search for the pp → χ̃±
1 χ̃0

2 → hW ±χ̃0
1 χ̃0

1 →
bb̄v�χ̃0

1 χ̃0
1 process, with exactly one lepton, exactly two b jets 

and large Emiss
T in the final state [74]. The invariant mass of 

the two b jets is required to be in the range [90, 150] GeV. 
The transverse mass of the lepton-Emiss

T system and the con-
transverse mass MCT of the two b jets are used to suppress 
backgrounds, and the Emiss

T separates the SR into two exclusive 
bins. The result excludes mχ̃±

1
between 220 GeV and 490 GeV 

at 95% C.L. when the χ̃0
1 is massless in the simplified model.

Additionally, there are “H(γ γ )” searches for the pp → χ̃±
1 χ̃0

2 →
hW ±χ̃0

1 χ̃0
1 → γ γ v�χ̃0

1 χ̃0
1 process, and “2� soft” searches for the 

pp → χ̃±
1 χ̃0

2 → Z∗W ±∗
χ̃0

1 χ̃0
1 → �� j jχ̃0

1 χ̃0
1 process where Z∗ and 

W ±∗ are off-shell. But we do not include them in the analysis, 
further constraining the regions that survived DM direct detection 
limits, because the former can only exclude Wino below 170 GeV 
in a simplified model and the latter targets the situation of mχ̃0

2
−

mχ̃0
1

� M Z .

As checked by CMS [72], these SRs are mutually exclusive, 
which means that they can be statistically combined to maximize 
the detection sensitivity. Thus, we combine them together though 
the modified frequentist approach, CLs method [117], by RooSt-
ats [118]. The likelihood functions are written as

L(μ) =
Nch∏

i

∫
dμ′

∫
db′

i

(μ′si + b′
j)

ni e−(μ′si+b′
j)

ni ! × e
−(μ′−μ)2

2σ2
μ

× e

−(b′
i−bi )

2

2σ2
bi , (13)

where μ is the parameter of interest, μ′ and b′
i are nuisance pa-

rameters, and ni and bi are the number of signal and background 
events in the SRs. We take μ = 1 for the signal hypothesis and 
μ = 0 for the background only hypothesis. The background event 
numbers bi and uncertainties σbi are taken from the CMS re-
ports, while the relative uncertainties of signal σμ are assumed 
to equal 5%. Covariance matrices are not included.

In Fig. 3 we show the 95% C.L. combined upper limits in the 
plane of mχ̃0

1
and μ indicated by green dot-dash lines. They barely 

depend on tan β and the sign of μ, and slightly decrease with in-
creasing mχ̃±

1
. To illustrate this, we choose four benchmark points 

of fixed mχ̃±
1

as examples and show the details of the CLs in 
Table 1. Comparing BP1, BP2 and BP3 we can see that the vari-
ation of tan β and sign of μ will affect the branching ratios of 
the Higgsino-like χ̃0

2,3, which can be easily obtained from equa-

tion (8), but hardly change BR(χ̃0
2 → χ̃0

1 Z) + BR(χ̃0
3 → χ̃0

1 Z) and 
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Table 1
Benchmark points illustrating the result of the combined CMS electroweakino searches. The uncertain-
ties in CLs only represent the uncertainties from the CLs calculation and do not include the uncertain-
ties of the signal event generation.

BP1 BP2 BP3 BP4

tanβ 30 10 30 30
M1 (GeV) 50 50 50 80
μ (GeV) 390 390 −390 390
mχ̃0

1
(GeV) 49.5 46.4 48.6 78.0

mχ̃0
2

(GeV) 401 402 402 402

mχ̃0
3

(GeV) 403 403 403 403

mχ̃±
1

(GeV) 400 399 400 399

BR(χ̃0
2 → χ̃0

1 Z ) 45% 39% 39% 33%
BR(χ̃0

2 → χ̃0
1 h) 55% 61% 61% 67%

BR(χ̃0
3 → χ̃0

1 Z ) 63% 68% 69% 75%
BR(χ̃0

3 → χ̃0
1 h) 37% 32% 31% 35%

σχ̃0
2,3χ̃±

1
(fb) 59.45 59.48 59.48 59.46

CL3l
s 0.238 ± 0.007 0.240 ± 0.007 0.251 ± 0.007 0.265 ± 0.007

CL2l
s 0.266 ± 0.018 0.246 ± 0.018 0.238 ± 0.017 0.231 ± 0.016

CL1l2b
s 0.549 ± 0.009 0.552 ± 0.009 0.563 ± 0.009 0.553 ± 0.009

CLcombine
s 0.049 ± 0.005 0.051 ± 0.006 0.052 ± 0.005 0.054 ± 0.006

BR(χ̃0
2 → χ̃0

1 h) + BR(χ̃0
3 → χ̃0

1 h). For BP4, a heavier Bino mass M1
leads to a relatively compressed spectrum and hence smaller signal 
cut efficiencies.

In summary, for Z/h funnel DM, regions in which μ is smaller 
than about 390 GeV are excluded by LHC Run-II results, which lim-
its are stricter than DM direct detection for negative μ and positive 
μ with tan β >20. The Z funnel region is on the verge of complete 
exclusion. In the case of μ < 0, the h funnel region can only sur-
vive with tan β < 7.4, while the h funnel region of μ > 0 is the 
main surviving region. The h funnel regions for μ > 0 and μ < 0
are also shown in Fig. 4 on the (tan β, |μ|) plane to display the 
surviving parameter space more clearly.

4. Electroweakino searches at the HL-LHC

Although the h funnel region of μ > 0, that is the main re-
gion that survives the current experimental limits, will be fully 
probed by LZ [96], the HL-LHC reach is still worth investigating 
as a complementary test. We employ two electroweakino analyses 
at the HL-LHC proposed by ATLAS: the “3�” search [70] and the 
“1�2b” search [71]. Similar to the “≥ 3�” search at 13 TeV, the “3�” 
search at the HL-LHC targets the pp → χ̃±

1 χ̃0
2 → W ± Z χ̃0

1 χ̃0
1 →

��v�χ̃0
1 χ̃0

1 process with three or more leptons and large Emiss
T in 

the final state. For 3000 fb−1 luminosity four signal regions, in-
dicated by ‘A’, ‘B’, ‘C’, ‘D’, optimize the discovery and exclusion 
ability. The 1�2b search for the pp → χ̃±

1 χ̃0
2 → W ±hχ̃0

1 χ̃0
1 →

v�bb̄χ̃0
1 χ̃0

1 process at the HL-LHC corresponds to two signal re-
gions, ‘C’ and ‘D’. Unlike the 13 TeV analysis, the signal regions at 
the HL-LHC are not exclusive. For example, in both analyses, the 
signal region C covers the signal region D. As a result, we choose 
the signal region with the best-expected exclusion power in each 
analysis, and then combine them together using the CLs method 
described in Subsection 3.4.

The combined expected 95% C.L. upper limits on the Z/h fun-
nel region are presented in Fig. 3 and Fig. 4 by red dot lines. We 
find that the combined result pushes the bound on μ to 960 GeV, 
which is 150 GeV stricter than the result of each individual analy-
sis. There is no doubt that the Z funnel region will be completely 
excluded. The parameter space of h funnel region will be restricted 
to a very small region: tan β < 8 for μ > 0 and tan β < 5.5 for 
μ < 0. Such small tan β , however, is highly disfavoured by exper-
imental constraints, such as the SM-like Higgs data [119,120] and 
the muon anomalous magnetic moment.

5. The Z/h funnel in phenomenological MSSM

After exhibiting the status of the Z/h funnel region in simpli-
fied MSSM, it is desirable to investigate the situation when we get 
rid of the assumptions, such as the fixed sfermion masses and the 
ratio of neutralino DM to observed DM. In this section we briefly 
examine the Z/h funnel region in a wider model scope and with 
more experimental constraints. To this end, we study the light DM 
scenario of phenomenological MSSM (pMSSM) [76] by scanning 
the following parameter space:

2 < tanβ < 60, 10 GeV < M1 < 100 GeV,

100 GeV < M2 < 1000 GeV,

100 GeV < μ < 1500 GeV, 50 GeV < M A < 2 TeV,

|At = Ab| < 5 TeV, 200 GeV < mQ 3 , mU3 = mD3 < 2 TeV,

100 GeV < mL1,2,3 = mE1,2,3 = AE1,2,3 < 2 TeV.

(14)

The mass of the gluino and the first two generation squarks are 
fixed to 2 TeV. In addition to the constraints described in Sec-
tion 3, during the scan we implement the following experimental 
constraints at 95% C.L.:

• B-physics constraints, such as the precise measurements of 
B → Xsγ , Bs → μ+μ− , Bd → Xsμ

+μ− and the mass differ-
ences Md and Ms [97];

• the muon anomalous magnetic moment (aμ), the measured 
value of which deviates from the SM prediction (aSM

μ ) [121,
122];

• global fit of the MSSM Higgs sector implemented by the pack-
ages HiggsBounds [123] and HiggsSignals [124];

• searches for direct production of charginos and neutralinos in 
events with 3� + Emiss

T [69] and 2� + Emiss
T [125] at LHC Run-I 

using CheckMATE-2.0.23.

We also require ml̃ > 2.0 mχ̃0
1

to discard the samples with DM co-

annihilation through sleptons in the early universe. Since there 
may be other sources of DM, here we set only an upper bound on 
the DM relic density. Assuming that the other sources of the DM 
have no interaction with nuclei, this implies that we have to scale 
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Fig. 4. The plots show, in the (tanβ, |μ|) plane, the h funnel region consistent with the observed DM abundance and DM direct detection limits. The green dot-dashed and 
red dotted lines show the 95% C.L. upper limits from combined CMS searches for electroweakinos at the 13 TeV LHC with 35.9 fb−1 data and limits by the HL-LHC with 3000 
fb−1 data, respectively. Regions below the lines are excluded by the corresponding experimental results at 95% C.L.

Fig. 5. Surviving parameter regions of pMSSM shown on the lightest neutralino mass vs. the SI DM-neutron elastic cross section (left panel) and vs. the Higgsino mass (right 
panel). Colours show the unified mass of sleptons, except for the grey samples that are excluded by DM direct detection at 90% C.L. or direct searches for sleptons at LHC at 
95%C.L.

the DM-neutron elastic cross section by the ratio of neutralino DM 
relic density and observed DM abundance.

The surviving parameter regions of pMSSM are presented in 
Fig. 5 with grey points indicating the samples further excluded by 
DM SI/SD direct detection and direct searches for sleptons using 
36 fb−1 data at LHC Run-II [102,126], and other colours indicating 
the unified mass of sleptons. The left panel is similar to the left top 
panel of Fig. 2, though now χ̃0

1 may represent only part of the total 
DM. Both the Z and h funnel regions are tightly restricted by the 
DM direct detection constraints that yield mχ̃0

1
∈ [43.1, 45.6] GeV

or [59.2, 63.6] GeV. In the right panel we find that the combi-
nation of electroweakino searches further excludes regions where 

the ratio of the neutralino DM relic density over the observed DM 
density is smaller than 58% (19%) for the Z (h) funnel region. Com-
paring the pMSSM model to the simplified model we find that 
the constraint on aμ , which requires tanβ > 9, reduces the height 
of the h funnel region. Furthermore, aμ also restricts the slep-
ton masses [127]. As shown by the colours in Fig. 5, the surviving 
samples require either a light slepton or a light chargino. For Z/h
resonances, the points of ml̃ � 460 GeV are excluded by the multi-
lepton plus Emiss

T searches at LHC Run-II [102,126], which further 
reduce the height of the h funnel peak from 650 GeV to 580 GeV. 
Therefore, the detection of the whole Z/h funnel region in pMSSM 
will be much faster than the one in the simplified model, in the 
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joint result of future slepton searches and electroweakino searches 
at LHC. For example, if the exclusion limits on Higgsino mass and 
slepton mass are both improved by about 150 GeV, there would 
be no surviving point in pMSSM.

6. Summary

In this work we investigate the current and future status of 
the Z/h funnel region in the MSSM with the constraints from 
DM direct detection, measurements of Z/h invisible decay, direct 
searches for electroweakinos/sleptons at the LHC and muon g-2 
measurement. Differently from previous studies in which the con-
straints from LHC were implemented by requiring the SUSY signal 
events in an individual signal region, we combine the results of 
all relevant electroweakino searches performed by the CMS, espe-
cially the “1�2b” search. Such combination increases the bound on 
the Higgsino mass parameter to |μ| > 390 GeV, which is about 80 
GeV stricter than the bound obtained from individual analyses.

With such improvement, we find that in a simplified model the 
Z funnel region is on the brink of complete exclusion, the h funnel 
of μ < 0 only survives if tan β < 7.4, and the h funnel region of 
μ > 0 is the main surviving region:

1. Z funnel region, mχ̃0
1

∈ [42.5, 45.8] GeV, μ ∈ [388, 484] GeV;

2. Z funnel region, mχ̃0
1

∈ [42.5, 45.8] GeV, μ ∈ [−388, −486]
GeV;

3. h funnel region, mχ̃0
1

∈ [59.4, 63.4] GeV, μ ∈ [−386, −1089]
GeV, tanβ ∈ [5, 7.4];

4. h funnel region, mχ̃0
1

∈ [58.4, 63.6] GeV, μ ∈ [386, 1444] GeV.

They can be entirely detected by LZ, while regions 1 and 2, and 
most of the parameter space in region 3 and 4 can be excluded by 
the HL-LHC.

In the popular pMSSM, the surviving parameter space becomes 
smaller due to other constraints. Especially, the light sleptons re-
quired by the muon anomalous magnetic moment will acceler-
ate the exclusion of Z/h funnel region at the LHC. Only a tiny 
part of the parameter space can survive the current experimental 
constraints. Though the modest excesses in recent electroweakino 
searches prefer light electroweakino, the Z/h funnel region in 
MSSM is not an ideal interpretation; this is particularly true in 
view of a plausible improvement of the bounds on σ SI

χ̃0
1 n

expected 
by the on-going DM direct detection experiments, or also in view 
of the increase of the limits on slepton and electroweakino in non-
compressed region by the forthcoming LHC 80 fb−1 results.
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Chapter 6

Electroweak phase transition in
the NMSSM

As we have seen in the previous chapter 4, the baryon asymmetry of the
universe is one of the main problems in physics whose explanation requires
BSM physics. The NMSSM, studied in sec. 3.8, provides a SUSY model
in which EWBG, can generate the amount of matter that we observe in
the Universe, see sec. 4.2. The NMSSM includes all the particles of the
MSSM plus a scalar singlet S, see tab. 3.2. The presence of the singlet is
fundamental because it introduces cubic terms, see Eq. (4.23), that contribute
at tree level to the potential barrier of the first order phase transition, see
fig. 4.2b, boosting the asymmetry parameter YB to have the measured value
(4.4)-(4.5).

In the following published work, we study phase transitions, see sec. 4.3
and 4.7, that are compatible with the currently observed characteristics of
the Universe. For this study, we considered the Higgs sector, described in
sec. 3.8.2. To make gauge independent calculations, we used the R\xi gauges
described in sec. 2.4.3. To make precise calculation we used the two Higgs
doublet model with a scalar singlet (THDMS) that is a model which can be
an effective field theory of the NMSSM at low energies. Finally, we utilised a
perturbative approach with Coleman-Weinberg corrections, one-loop thermal
corrections and daisy terms as described in sec. 4.8.

6.1 Published material
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1 Introduction

One of the enduring problems in modern physics is the origin of the baryon asymmetry

of the Universe (BAU) [1–3]. This asymmetry cannot be an initial condition in any cos-

mology that includes inflation, as that would wash out any initial asymmetry.1 Therefore

baryon asymmetry must be produced; however, as yet there is no experimental confirma-

tion of any production mechanism. Any mechanism that produces the BAU must satisfy

three criteria [5]:

1. charge (C) and charge-parity (CP) violation,

2. baryon number (B) violation, and

3. departure from equilibrium.

1For an exception to this rule of thumb see ref. [4].
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The Standard Model (SM) has the ingredients to satisfy all three criteria: there is a CP vi-

olating phase in the CKM matrix, B is violated through sphalerons which are unsuppressed

at high temperature and there could be departures from equilibrium following two phase

transitions (PTs) that occur in the SM vacuum as it cools — the electroweak (EW) and the

QCD transition. Quantitatively, however, the CP violating phase in the CKM matrix is

far too feeble to produce enough baryon asymmetry. Furthermore the two transitions that

occur in the SM at high temperature are both crossover transitions rather than first-order

phase transitions (FOPTs) and therefore do not provide a large enough departure from

equilibrium (see e.g., ref. [6]). As such one has to look beyond the SM for explanations.

While the origin of the baryon asymmetry is a mystery, its measurement is on a firm

foundation. During big bang nucleosynthesis, the baryon asymmetry is an input to the

set of Boltzmann equations that govern the production of primordial light elements. Since

we can measure some of these primordial abundances (deuterium in particular) with high

accuracy, this constrains the baryon asymmetry2 to be [7]

YB ≡
nB
s

= 8.2 – 9.4× 10−11 (95% CL). (1.1)

Furthermore the baryon asymmetry produces acoustic oscillations in the power spectrum

of the cosmic microwave background (CMB) [8]. Observing these oscillations gives an even

tighter bound on the BAU,

YB = 8.65± 0.09× 10−11. (1.2)

The fact that there is a concordance between these two unrelated measurement approaches

is a triumph of cosmology. Along with dark matter and inflation, the origin of the BAU is

a powerful cosmological argument for physics beyond the SM.

Electroweak baryogenesis is a minimal and natural explanation for the origin of the

baryon asymmetry in the Universe [3, 9–44]. It utilizes the electroweak phase transition

(EWPT) which is known to have occurred in our cosmic history providing the reheating

temperature was not unnaturally small. Although this transition is a crossover in the SM,

its character may be modified by the introduction of new weak scale bosons such that the

transition becomes a strongly FOPT (SFOPT) and proceeds by bubble nucleation. Such

a phenomenon is all the more interesting because it might directly be probed by future

gravitational wave detectors [45–50].

This mechanism can be in principle realized within supersymmetry. In the Minimal

Supersymmetric Standard Model (MSSM) a barrier between the EW symmetric and broken

vacuums arises from thermal corrections from stops; however, one requires light stops to

catalyze the PT such that it is sufficiently strongly first order [51, 52]. This is all but

ruled out by LHC constraints on stop masses [53]. Much more attractive is the possibility

of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [54, 55] where a light

singlet scalar can catalyze a strongly first order EWPT [16, 25, 56]. Unlike the stop which

catalyzes the PT through thermal effects, the singlet can change the potential such that

there is a barrier even at zero temperature.

2We convert measurements of the photon-baryon ratio to YB by ref. [2]

YB ≡ nB
s
≈ 1

7.04

nB
nγ

.

– 2 –
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Electroweak baryogenesis was recently considered within the NMSSM [15, 57–61] and

it was found that the baryon asymmetry can vary by an order of magnitude depending

on whether the singlet acquires a vacuum expectation value (VEV) before or during the

EWPT (with a simultaneous transition providing more efficient baryon production) [59].

Furthermore the baryon yield is proportional to the maximal variation of the ratio of the

two Higgs VEVs, ∆β, and it was shown in refs. [15, 30, 62–65] that ∆β can be an order of

magnitude larger in the NMSSM compared to the MSSM.

In this work we explore the plausibility of EW baryogenesis within the NMSSM, fo-

cusing on the PT and leaving CP violation to future work (see [57, 66–78] for various

approaches to generating CP violation). We consider the case where the superpartners

are all heavy enough to have their thermal contributions Boltzmann suppressed during the

transition. Thus we can match our model to a two Higgs doublet model plus a singlet

(THDMS). We sample the parameter space to find points with an EW SFOPT. For such

points, we investigate the phase structure, that is the evolution of the minima of the effec-

tive potential as the Universe cools. This investigation includes determining whether the

singlet acquires a VEV during or before the EWPT and it also involves calculating the

strength of the PT.

As we focus on the third Sakharov condition (a departure from thermal equilibrium),

we do not consider explicit or spontaneous CP violation in the Higgs sector. We instead

assume that CP violation enters the Higgs sector radiatively, though remain agnostic about

the exact source of CP violation and do not examine constraints on complex phases (such

as electric dipole moments). This simplification allows us to focus only on PTs between

the ground states of CP-even fields, easing the numerical problem of finding vacua of a

multifield scalar potential.

The structure of this paper is as follows. In section 2 we introduce the NMSSM and

the THDMS, fixing the notation we will use in the paper. Following this, in section 3 we

describe the radiative and finite temperature corrections that we include in our analysis.

Then in section 4 we outline the procedure we use to determine if a point in the param-

eter space has a FOPT or not, and if so calculate the critical temperature and transition

strength. The results of our scan are presented in section 5 and finally our conclusions are

given in section 6.

2 NMSSM

The NMSSM extends the MSSM particle content by adding one singlet superfield, Ŝ. Here

we work in the Z3 symmetric NMSSM where the µ-term of the MSSM is forbidden and

instead an effective µ-term, µeff = λ〈S〉, is generated when the singlet develops a VEV,

thus solving the µ-problem of the MSSM. The superpotential is given by

WNMSSM = (Yu)ij Q̂i ·Ĥu û
c
j+(Yd)ij Q̂i ·Ĥd d̂

c
j+(Ye)ij L̂i ·Ĥd ê

c
j ,+λ Ŝ Ĥu ·Ĥd+

1

3
κ Ŝ3, (2.1)

where a hat is used for superfields, i, j ∈ {1, 2, 3} are family indices, and we have introduced

the SU(2)L dot product, A ·B = A1B2−A2B1. The discrete Z3 symmetry is spontaneously

– 3 –
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broken when the Higgs fields or singlet obtain a VEV. We assume that following the strate-

gies of refs. [79–81] domain wall problems can in principle be avoided without impacting

any phenomenology.

Under the SM gauge group GSM = SU(3)C × SU(2)L × U(1)Y the superfields trans-

form as

Q̂ : (3,2, 1
6), ûc : (3̄,1,−2

3), d̂c : (3̄,1, 1
3), L̂ : (1,2,−1

2), êc : (1,1, 1),

Ĥd : (1,2,−1
2), Ĥu : (1,2, 1

2), Ŝ : (1,1, 0)
(2.2)

where the first two entries inside the parentheses give the representation under SU(3)C
and SU(2)L, respectively, while the third entry gives the U(1)Y hypercharges without

GUT normalization.

There are three contributions to the tree-level Higgs potential of the NMSSM:

VNMSSM = VF + VD + Vsoft. (2.3)

Here the F - and D-term contributions are

VF = |λS|2 (|Hu|2 + |Hd|2) +
∣∣λHu ·Hd + κS2

∣∣2 , (2.4)

VD =
1

8
(g2 + g′2)(|Hu|2 − |Hd|2)2 +

1

2
g2|H†uHd|2, (2.5)

where g and g′ are respectively the SU(2)L and U(1)Y gauge couplings without GUT

normalization. Finally, the soft-breaking terms are

Vsoft = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 +

[
λAλSHu ·Hd +

1

3
κAκS

3 + h.c.

]
. (2.6)

The couplings λ and κ and the corresponding trilinears, Aλ and Aκ, are in general complex.

Three of the four phases, however, may be removed through field redefinitions of Hu, Hd

and S. Since current LHC limits and the 125 GeV Higgs mass measurements require

squarks and gluinos to be TeV-scale, the mass spectrum of the NMSSM must contain a

large hierarchy between the SM particles and colored sparticles. Furthermore the states

with the largest couplings include both heavy sparticles and light SM particles, i.e., stops

and the top quark. Therefore higher-order corrections will always include large logarithms

since one cannot choose the renormalization scale Q to simultaneously minimize lnmt/Q

and lnMSUSY/Q. This makes it challenging to perform precise calculations when working

in the full theory. To improve the precision of our calculations we will integrate out the

heavy superpartners and use an effective field theory (EFT) which contains only the light

states. This makes it possible run to Q = mt and perform calculations in the EFT which

are free from large logarithms.

2.1 Matching to the THDMS

Since we want to consider scenarios in which all superpartners are too heavy to impact the

PT, we match the NMSSM to a two Higgs doublet model plus a singlet (THDMS), which

in this context is an effective field theory of the full NMSSM theory valid below MSUSY.3

3This is also the approach taken in refs. [15, 82–84].

– 4 –
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The tree-level potential of a Z3 symmetric THDMS model is

V tree
THDMS =

1

2
λ1|Hd|4+

1

2
λ2|Hu|4+(λ3+λ4)|Hu|2|Hd|2−λ4|H†uHd|2

+λ5|S|2|Hd|2+λ6|S|2|Hu|2+(λ7S
∗2Hd ·Hu+h.c.)+λ8|S|4

+m2
1|Hd|2+m2

2|Hu|2+m2
3|S|2−(m4SHd ·Hu+h.c.)− 1

3
(m5S

3+h.c.),

(2.7)

where the couplings λ7, m4 and m5 may be complex. Two of the three phases, however,

may be removed by redefinitions of Hu, Hd and S, leaving a single complex phase, as

in the NMSSM. In (2.7) we follow the conventions in refs. [15, 82–84]; in particular the

|Hu|2|Hd|2 coefficient is λ3 +λ4. We match the NMSSM to the THDMS at the scale MSUSY

by identifying the tree-level conditions

λ1 =
1

4

(
g′2 + g2

)
, λ2 =

1

4

(
g′2 + g2

)
+ ∆λ2, λ3 =

1

4

(
g2 − g′2

)
,

λ4 =
1

2

(
2|λ|2 − g2

)
, λ5 = λ6 = |λ|2, λ7 = −λκ∗, λ8 = |κ|2,

m2
1 = m2

Hd
, m2

2 = m2
Hu , m2

3 = m2
S , m4 = Aλλ, m5 = −Aκκ.

(2.8)

We furthermore included a dominant one-loop threshold correction to the matching for λ2,

∆λ2 =
3y4
tA

2
t

8π2M2
SUSY

(
1− A2

t

12M2
SUSY

)
. (2.9)

Although we stated the potential and matching conditions for λ7, m4 and m5 without

loss of generality, we later consider only real, CP conserving parameters. As discussed

in section 1 we assume that the CP violation demanded by Sakharov’s first condition

originates in a different sector of the NMSSM, e.g., the squark sector. Although CP

violation must enter the Higgs sector through loops, since we only consider the dominant

one-loop corrections in the matching, CP violating phases that may appear outside of the

Higgs sector do not enter our calculation. At higher orders, however, we would be forced to

consider complex parameters and consequently (as later discussed) PTs involving CP-odd

fields. An examination of the potential impact this could have is left for future study. Since

we match the NMSSM to a THDMS, our results are also applicable to a subspace of the

THDMS, which is well-motivated even in the absence of supersymmetry.

3 Effective potential

3.1 Effective potential at zero temperature

In the Rξ gauge the one-loop corrections to the potential, ∆V , are given by [85]

∆V =
1

64π2

(∑

h

nhm
4
h(ξ)

[
ln

(
m2
h(ξ)

Q2

)
−3/2

]
+
∑

V

nVm
4
V

[
ln

(
m2
V

Q2

)
−5/6

]

−
∑

V

1
3nV (ξm2

V )2

[
ln

(
ξm2

V

Q2

)
−3/2

]
−
∑

f

nfm
4
f

[
ln

(
m2
f

Q2

)
−3/2

])
.

(3.1)
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where Q is the renormalization scale, mi are field dependent MS masses and the ni are

the numbers of degrees of freedom for field i. The first term sums fluctuations of scalar

fields, which at the EW breaking minimum can be separated into physical Higgs bosons

and Goldstone bosons, the second term sums transverse and longitudinal massive gauge

bosons, the third one scalar gauge boson fluctuations, and the final one fermions.

We neglect contributions to the vacuum energy. The numbers of degree of freedom for

the particles that we include are

nh0
i

= nA0
i

= nH+
i

= nH−i
= 1, (3.2)

nW+ = nW− = nZ = 3, (3.3)

nt = nb = 12, nτ = 4 (3.4)

for the real scalar, vector and Dirac fermion fields in our model, where A0
i , H

+
i and H−i

include the physical Higgs states and the Goldstone bosons.

At zero temperature, the minimum of the one-loop potential lies at non-zero values for

the Higgs fields, which we refer to as VEVs, and assume may always be written as

〈Hu〉 =
1√
2

(
0

vu

)
, 〈Hd〉 =

1√
2

(
vd
0

)
, 〈S〉 =

1√
2
vS , (3.5)

where vu, vd and vS are real, i.e., we do not consider charge or CP breaking VEVs.4 As we

assume that the VEVs are CP conserving, a tadpole condition forces CP violating phases

in the potential to vanish.

To construct the field dependent masses appearing in (3.1), we consider the potential

as a function of the fields corresponding to the VEVs, i.e., we consider the hu, hd and s

components of the fields,

Hu =

(
H+
u

1√
2

(hu + iau)

)
, Hd =

(
1√
2

(hd + iad)

H−d

)
, S =

1√
2

(s+ iσ) , (3.6)

where hu, hd and s are real. The field dependent masses are functions of hu, hd and s. In

principle, we could consider variation of the charged and CP-odd fields which cannot all be

eliminated by gauge fixing. However, because we consider PTs only between charge and

CP conserving vacua, we set charged and CP-odd Higgs fields to zero in the field dependent

masses. The expressions for the field dependent masses are given in appendix A.

The effective potential also contains explicit dependence on the gauge parameter ξ.

The physical, gauge-independent content of the effective potential may be found through

Nielsen identities [88], which express the fact that at extrema, h, the gauge dependence of

the effective potential vanishes, since

∂Veff(h, ξ)

∂ξ
∝ ∂Veff(h, ξ)

∂h
, (3.7)

4Spontaneous charge and CP violation are impossible at tree-level in our THDMS model with NMSSM

matching conditions [86]. See, however, ref. [87] for a recent discussion of this issue in a general

THDMS model.
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and thus
dVeff(h, ξ)

dξ
=
∂Veff(h, ξ)

∂ξ
+
∂h

∂ξ

∂Veff(h, ξ)

∂h
= 0. (3.8)

The location of the extrema, however, are gauge dependent, i.e., ∂h/∂ξ 6= 0. See e.g.,

refs. [85, 89] for further discussion of this issue. We work in the ξ = 1 (Feynman) gauge.

The effective potential furthermore depends on a choice of renormalization scale, which

could in fact have greater impact than gauge ambiguities [90].

3.2 Effective potential at finite temperature

To describe the conditions of the early Universe we need to take into account temperature

corrections. We calculate one-loop finite temperature corrections including daisy terms

using the Arnold-Espinosa method [91] in the ξ = 1 (Feynman) gauge. The effective

potential can be written as a sum of zero temperature and finite temperature pieces

Veff = V tree
THDMS + ∆VTHDMS + ∆VT + Vdaisy. (3.9)

The one-loop thermal corrections in the Rξ gauge are [85]

∆VT =
T 4

2π2

[∑

h

nhJB

(
m2
h(ξ)

T 2

)
+
∑

V

nV JB

(
m2
V

T 2

)

−
∑

V

1
3nV JB

(
ξm2

V

T 2

)
+
∑

f

nfJF

(
m2
f

T 2

)]
,

(3.10)

where the field dependent masses are the same as those appearing in (3.1) in the previous

section, and the expressions for them are given in appendix A. The degrees of freedom,

n, are as in (3.2); we again neglect contributions to the vacuum energy and the thermal

functions are

JB/F(y2) = ±Re

∫ ∞

0
x2 ln

(
1∓ e−

√
x2+y2

)
dx. (3.11)

Here the upper/lower signs are for bosons/fermions. For m2 � T 2 the thermal functions

are exponentially suppressed by a Boltzmann factor. This ensures that the massive super-

symmetric particles that we integrated out do not impact the finite temperature corrections.

The daisy terms are

Vdaisy = − T

12π

(∑

h

nh

[(
m̄2
h

) 3
2 −

(
m2
h

) 3
2

]
+
∑

V

1
3nV

[(
m̄2
V

) 3
2 −

(
m2
V

) 3
2

])
, (3.12)

where we sum over the Higgs fields (including Goldstone bosons) and massive gauge bosons,

and m̄2 are field dependent mass eigenvalues that include Debye corrections to the tree-

level masses in the mass matrices. The Debye corrections add additional T dependent

terms of the form cΦT
2|Φ|2 for all complex scalar gauge eigenstates and cAT

2AµA
µ for

all gauge bosons associated with the original gauge symmetries before EWSB. For the
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THDMS we find,

cHu = 1
48

(
3g′2 + 9g2 + 12y2

t + 12λ2 + 8λ3 + 4λ4 + 4λ6

)
, (3.13)

cHd = 1
48

(
3g′2 + 9g2 + 12y2

b + 4y2
τ + 12λ1 + 8λ3 + 4λ4 + 4λ5

)
, (3.14)

cS = 1
48 (8λ5 + 8λ6 + 16λ8) , (3.15)

cW1,2,3 = 2g2, (3.16)

cB = 2g′2, (3.17)

where the couplings g′, g, yt, yb and yτ are as in (A.1). The corrections for the gauge

bosons are in the gauge basis before symmetry breaking and every component of a gauge

representation receives the same Debye correction. The scalar coefficients are gauge in-

dependent, as they originate from a high-temperature expansion of (3.10), in which the

dependence on ξ cancels,

cij =
1

T 2

∂2∆VT
∂φi∂φj

∣∣∣∣
T 2�m2

. (3.18)

The coefficents for the gauge bosons are the same as those of the two-Higgs doublet model,

which can be found in the literature [92]. We cross-checked our results in (3.13) – (3.17)

against general expressions in ref. [93]. Thus we have described the full finite temperature

potential, which is a function of the fields hu, hd and s and the temperature, T .

4 First-order phase transitions

Having constructed the finite temperature effective potential, we investigated whether there

was a FOPT in which the vacuum of the potential changed abruptly as the Universe cooled.

For such a transition to occur, the potential must exhibit two minima separated by a barrier.

The temperature at which the two minima are exactly degenerate is known as the critical

temperature. That is, at the critical temperature, TC , there are minima such that

Veff(hu, hd, s, TC) = Veff(h′u, h
′
d, s
′, TC) (4.1)

where caligraphic fonts, hu etc, indicate a minimum of the scalar potential, i.e.,

∂huVeff(hu, hd, s) = ∂hdVeff(hu, hd, s) = ∂sVeff(hu, hd, s) = 0. (4.2)

Below the critical temperature, the potential develops a minimum that is deeper than the

other minima. The system may tunnel through the barrier to the new vacuum state with the

lower minimum [94–96]. As discussed below, however, the transition might not complete.

We developed a C++ program, PhaseTracer, to map the temperature dependence of

the minima of the effective potential and to find potential PTs between them. It enhances

the algorithm that was developed in CosmoTransitions [97] to map out the phase struc-

ture, and to find out possible PTs between every phase. The numerical method coded

in PhaseTracer is briefly described in appendix B. This method is different from the one

applied in the code BSMPT [93] and previous works on SFOPTs in the NMSSM [61], which
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may only find a single PT between the EW symmetric vacuum and the observed EWSB

vacuum. Our method is able to map out a more complicated phase structure and find

multiple PTs in it. Of equal importance, by analyzing the phase structure obtained by

PhaseTracer, we confirmed that not all potential tunnelings actually take place in the

early Universe. This may happen because the tunneling rate is too slow or because the

PT is located on a branch of the phase structure that the system never utilizes because it

evolved in a different direction.

To exhibit spontaneous EWSB as the Universe cooled, the vacuum of the finite tem-

perature effective potential (3.9) should respect EW symmetry at high temperature, which

is 1 TeV in this work, and should violate it at zero temperature. Thus at high temperature

the global minimum should lie at the origin, hu = 0 and hd = 0, and at zero temperature

the deepest minimum should lie at the observed EWSB VEV. We can use this information

to fix the boundaries of the phase structure by finding all minima of the potential at T = 0

and T = 1 TeV and checking that spontaneous symmetry breaking occurs. Starting from

T = 0 then we can use PhaseTracer to find all possible PTs.

The strength of such a transition is described by an order parameter. For baryogenesis,

we consider the order parameter

γEW ≡
√

(hu − h′u)2 + (hd − h′d)
2

TC
. (4.3)

The singlet VEV is not included here because it does not affect EW sphalerons. Order

parameters of about γEW & 1 are considered strong and could catalyze baryogenesis.

The Nielsen identities in (3.8) imply that the critical temperature is gauge independent,

since the effective potential is gauge independent at extrema. Our one-loop truncation of

the effective potential, however, means that it is gauge independent only at the tree-level

extrema. Thus the critical temperature, which we find from the effective potential at the

one-loop minima, is gauge dependent. See ref. [85] for further discussion and a procedure

that may enforce gauge independence. The location of the minima, furthermore, and thus

the order parameter, always depend on the gauge parameter ξ.

A first order transition occurs through bubble nucleation and there is a finite proba-

bility per unit time and volume for tunneling to a new phase. The new phase dominates

once the following condition is satisfied [98, 99],

SE(TN )

TN
' 140, (4.4)

where SE stands for the Euclidean bubble action, and TN is the so-called nucleation tem-

perature. If there is no solution, we conclude that the transition cannot complete. During

the scan, we identify all possible PTs without checking whether they successfully nucleate.

After classifying phase structures, we check nucleation temperatures for a subset of our

samples using CosmoTransitions [97].
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5 Results

5.1 Parameter space, constraints and sampling strategy

To explore all possible PTs in the NMSSM, including strong EWPTs, we sampled the

parameter space of the model within the ranges shown in table 1. The first four parameters,

λ, κ, Aλ and Aκ are from the tree-level NMSSM potential and enter the matching conditions

at tree-level (2.8), while the fifth parameter, the stop trilinear At enters at the one-loop

level (2.9). These parameters are all defined at the matching scale mSUSY which we also

take as an input and represents the geometric mean of the left and right soft SUSY breaking

masses of the stops, which have been integrated out, i.e.

mSUSY =
√
mt̃L

mt̃R
. (5.1)

The final two parameters are the ratio of the Higgs VEVs tan β ≡ vu/vd and the singlet

VEV, vS , which are defined at the top quark mass, mt = 173.1 GeV. Therefore our model

has eight free parameters.

From these inputs the parameters of the THDMS at mt are obtained using Flexible-

SUSY-2.1.0 [100, 101], coupled with5 SARAH-4.12.3 [104–107], which implements the

matching and running procedure described in section 2.1, with (2.8) specified as a bound-

ary condition in the FlexibleSUSY model file.6 Since all running and effective potential

calculations are performed in the THDMS it is not necessary to specify any further soft-

breaking masses in the NMSSM. Because the quartic coupling λ can always be made

positive through field redefinitions, we do not consider negative values for it, but we do

consider both negative and positive values for the soft trilinears, κ and vS . Lastly, as

discussed earlier, for self-consistency we only consider real parameters.

The field dependent masses which enter the one-loop corrections to potential are cal-

culated with FlexibleSUSY, and the thermal functions are evaluated using the imple-

mentation described in ref. [108]. We use PhaseTracer to find the phases and critical

temperatures by exploring the finite temperature potential between T = 0 and T = 1 TeV,

as described in section 4. Since this involves varying the field values that enter the field-

dependent masses, in principle it is possible that this could re-introduce large logarithms

and lead to perturbativity problems, therefore we do not consider VEVs greater than

1.6 TeV. In practice in all our results the VEVs are significantly smaller than this, and are

less than 300 GeV in all but one very special category of points, therefore this restriction

does not have an impact on our results.7

The main experimental constraints on the parameter region of interest come from

LEP chargino searches and the observed Higgs properties. The Higgs sector of our model

must be compatible with observations of an SM-like Higgs boson with a mass close to

125 GeV. The observed Higgs, however, could correspond to any one of the three neutral

Higgs bosons in our model. We calculated tree-level reduced couplings between the neutral

5Internally FlexibleSUSY also uses some numerical routines from SOFTSUSY [102, 103].
6The SARAH and FlexibleSUSY model files we wrote for this are provided as supplementary material to

this paper published on JHEP.
7This category of points will be introduced later and can be seen in the bottom left plot of figure 7.
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Parameter Range Metric

λ 0, π/2 flat

|κ| 0, π/2 flat

|Aλ| 0, 10 TeV hybrid

|Aκ| 0, 10 TeV hybrid

|At| 0, 10 TeV hybrid

mSUSY 1, 10 TeV log

|vS | 0, 10 TeV hybrid

tanβ 1, 60 log

Table 1. Ranges and metric of parameters that we scanned in the NMSSM at the SUSY scale. We

considered positive and negative κ, vS and trilinear couplings. The “hybrid” metric is flat below

10 GeV, and logarithmic elsewhere. The top mass was fixed to its measured value 173.1 GeV [7].

Higgs bosons and SM fermions by taking into account mixing between the neutral Higgs

bosons. We furthermore calculated one-loop reduced couplings between the Higgs bosons

and photons and gluons using FlexibleSUSY routines developed in ref. [109]. By passing

this information and the Higgs masses to Lilith-1.1.4 DB-17.05 [110], we find a chi-

squared, χ2
Higgs, for our Higgs sector from Run I and II measurements of the Higgs boson

at the LHC.

We penalized points in tension with LEP bounds on charginos [7] by introducing a

chi-squared for the effective µ-parameter

χ2
LEP ≡





0 µeff ≥ 100 GeV,(
µeff−100 GeV

5 GeV

)2
µeff < 100 GeV.

(5.2)

We constructed this function to guide our sampling algorithm towards acceptable solutions

with mχ̃±1
& 100 GeV, rather than precisely reflect experimental constraints from LEP. We

furthermore penalized points without an SFOPT by the chi-squared

χ2
SFOPT ≡

(
log10 γEW

0.2

)2

. (5.3)

The role of this term is to focus our sampling algorithm on SFOPT with γEW ' 1; it is in

fact equivalent to a Gaussian penalty log10 γEW = 0± 0.2.

Since the parameter space shown in table 1 is eight-dimensional we sampled points

from our model using MultiNest-3.10 [111–113] with a chi-squared

χ2 = χ2
Higgs + χ2

SFOPT + χ2
LEP. (5.4)

We saved and considered all points evaluated by MultiNest, i.e., we disabled the cuts

ordinarily placed on saved points by the MultiNest algorithm. To be consistent with the

LHC Higgs measurements and LEP bounds on charginos [7], and to satisfy our SFOPT

requirement, we select points with

χ2
Higgs −minχ2

Higgs ≤ 6.18, µeff ≥ 100 GeV and γEW ≥ 1, (5.5)
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where minχ2
Higgs = 22.3 was the minimum χ2

Higgs found in our scan. After that, we further

required that remaining points satisfied LHC and LEP bounds on BSM Higgs bosons using

HiggsBounds-5.3.2beta [114–118], which we interfaced via NMSSMCALC [119].

5.2 Classification of phase transitions

After collecting more than three million valid points, we found that the possible phase

structures in the NMSSM harbored rich and novel phenomenology. To reflect this phe-

nomenology, we classify these points into three categories that differ by the nature of the

first possible PT in the cosmological history:

1. Type-H-and-S: EW symmetry is spontaneously broken such that at least one Higgs

field and the singlet field obtain non-vanishing VEVs simultaneously.

2. Type-Only-H: EW symmetry is spontaneously broken by one or both Higgs fields

obtaining VEVs, but the singlet VEV remains zero.

3. Type-Only-S: EW symmetry remains unbroken, but the singlet field obtains a VEV.

The Higgs obtain non-vanishing VEVs in a SFOPT afterwards, during which the sign

of singlet VEV may be maintained or flipped. Thus we further classify this type into

two subcategories:

• Type-Only-S(maintain): the strongest PT maintains the sign of singlet VEV.

• Type-Only-S(flip): the strongest PT flips the sign of singlet VEV.

It is important to understand that at this stage we do not have the means to ensure that

a PT is definitely part of the cosmological history. More precisely, for such an extensive

sample of parameter points, we are not in the position to calculate nucleation temperatures,

actions, decay rates, etc. for each potential transition in the phase structure. For this

reason, unless specified otherwise when we say ‘PT’ we typically mean ‘possible PT’.

To simplify our discussion of this non-trivial structure, we introduce the following

shorthand notation:

• We denote the minimum value of the potential in a given direction with a calligraphic

font. For example, s is a value of singlet field s at a minimum of the scalar potential.

• By the triplet of values e.g., (100, 200, 300), we mean hu = 100 GeV, hd = 200 GeV,

and s = 300 GeV.

• At a critical temperature, two vacua are degenerate. However, we always define the

true vacuum to be the deepest of these vacua just below the critical temperature,

and the other one is the false vacuum in our notation.

• In case of multiple SFOPTs we refer to the SFOPT with the greatest γEW as the

strongest one.

• We define

h ≡ sign(huhd)
√

h2
u + h2

d, (5.6)

as the signed geometric mean of the Higgs fields.
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5.3 Benchmark points

In figure 1, we present a phase history for a typical point in each category. For these

benchmark points, we checked our results with CosmoTransitions and calculated the

nucleation temperature for every possible FOPT. The corresponding input parameters,

Higgs properties and transition information are shown in table 2. On each panel, the

lines show the signed geometric mean of the Higgs fields (left) or the singlet field (right)

at a minimum of the potential as a function of temperature.8 Two phases linked by an

arrow at a given temperature are degenerate and thus a FOPT could occur in the direction

indicated by the arrow (i.e., below the critical temperature, the phase at the end of the

arrow contains a deeper minimum). When there is more than one possible sequence of

FOPTs that leads from the origin at T = 1 TeV to the observed vacuum at T = 0, we show

the FOPTs that belong to the sequence that includes the strongest FOPT by black arrows,

and PTs that are not part of that history by gray arrows. Note though that other possible

FOPTs between phases that are never degenerate are not marked. For example, in the

upper left panel, the minima in phase 2, which appears at about T = 88 GeV, always lies

shallower than that in phase 3. A FOPT between them is possible, although there is no

critical temperature.

From figure 1 we can see that in all categories at high temperature, T > 400 GeV, the

true vacuum is always at the origin (as described in section 4 this is a requirement in our

scan). In the upper left panel, the first (and only) PT occurs at T . 145 GeV between

(0, 0, 0) and (106, 117, 276) with γEW = 1.09 and nucleation temperature TN = 116 GeV.

Thus it is classified as Type-H-and-S.

In the upper right panel, only one of the Higgs fields, hu, develops a VEV during

the first crossover transition at T = 155 GeV. The first transition in the cosmological

history was never first order in our Type-Only-H samples. As the Universe cools, however,

a deeper minimum exists between T = 151 GeV and T = 124 GeV at about (0, 0, 450),

which belongs to phase 2. The FOPT to this deeper minimum would (temporarily) restore

EW symmetry; however, we find that it cannot complete as (4.4) cannot be satisfied. If it

completed, EW symmetry would subsequently be permanently broken by another SFOPT

at T . 123.6 GeV which would complete, from (0, 0, 463) to (91, 162, 274) with γEW = 1.5

and TN = 119 GeV. Indeed, in all the Type-Only-H samples that we found, EW symmetry

was broken, possibly restored and finally broken again, and the final FOPT would be the

strongest, just as in this example. However, these sequences of transitions are impossible, as

the actions for the transitions that restore EW symmetry are always so large that bubbles

cannot nucleate properly. Thus although there appear to be SFOPTs with γEW > 1 and

nucleation temperatures in the Type-Only-H samples, they cannot explain the observed

baryon asymmetry of the Universe, as a previous transition in the cosmological history

would not complete.

For the Type-Only-S(maintain) point (lower left panel) in the first transition at

T = 233 GeV only the singlet obtains a positive VEV; EW symmetry is broken with the

8Note though that two phases connected by crossover PTs are merged into one phase in order to simplify

the phase structure.
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Type-H-and-S Type-Only-H Type-Only-S

(maintain)

Type-Only-S

(flip)

λ 0.618 0.607 0.601 0.935

κ 0.229 0.191 0.175 1.137

Aλ 160.1 160.5 170.0 147.4

Aκ −93.7 −117.5 −25.2 61.4

At −21.4 38.3 −24.6 −478.6

mSUSY 6374.7 3463.1 5857.5 4164.3

vS 307.9 247.5 245.7 183.1

tanβ 1.2 2.0 2.6 3.2

mH1 91.7 47.9 45.6 126.2

mH2 127.4 124.6 125.1 184.4

mH3 237.6 226.6 252.7 366.5

mA1 167.3 145.9 103.8 145.4

mA2 229.7 225.9 248.2 325.8

mH± 214.2 206.7 233.1 294.3

χ2
Higgs 27.0 25.6 26.2 26.4

First PT

Order 1st 2nd at T = 155 1st 1st

False vac. (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

True vac. (106, 117, 276) (0,+ve, 0) (0, 0, 182) (0, 0,−12)

TC 145 N/A 233 368

TN 116 N/A 230 367

Strongest FOPT

False vac.

Same
as above

(0, 0, 463) (0, 0, 400) (0, 0,−188)

True vac. (91, 162, 274) (59, 114, 349) (66, 209, 179)

TC 124 121 104

TN 119 119 N/A; no nuc.

γEW 1.1 1.5 1.1 2.1

Ends at SM vac. Yes Yes Yes Yes

Possible Yes No; prior PT fails Yes No; no nuc.

Table 2. Benchmark points for our four scenarios. All dimensionful quantities are in GeV. The

abbreviation vac. is for vacuum and nuc. is for nucleation. The +ve in Type-Only-H means that

the field value of vacuum during the 2nd order phase transition is shifted to positive direction.

– 14 –

124CHAPTER 6. ELECTROWEAK PHASE TRANSITION IN THE NMSSM



J
H
E
P
1
1
(
2
0
1
9
)
1
5
1

−100 0 100 200
h (GeV)

0

50

100

150

200

250

300

T
(G

eV
)

Type-H-and-S

0 100 200 300
s (GeV)

Phase 1

Phase 2

Phase 3

FOPT

0 60 120 180 240
h (GeV)

0

50

100

150

200

250

300

T
(G

eV
)

Type-Only-H

0 150 300 450
s (GeV)

Phase 1

Phase 2

Phase 3

FOPT

0 60 120 180 240
h (GeV)

0

50

100

150

200

250

300

T
(G

eV
)

Type-Only-S(maintain)

0 100 200 300 400
s (GeV)

Phase 1

Phase 2

Phase 3

FOPT

0 80 160 240
h (GeV)

0

100

200

300

400

500

T
(G

eV
)

Type-Only-S(flip)

−150 0 150
s (GeV)

Phase 1

Phase 2

Phase 3

FOPT

Figure 1. Phase structures for typical points in the categories Type-H-and-S (upper left), Type-

Only-H (upper right), Type-Only-S(maintain) (lower left) and Type-Only-S(flip) (lower right).

The lines show the field values at a particular minimum as a function of temperature. The arrows

indicate that at that temperature the two phases linked by the arrows are degenerate and thus

that a FOPT could occur in the direction of the arrow. The dots in the lower panels represent

transitions that do not change the corresponding field values. The black arrows and dots show a

path that includes the strongest EW FOPT, while the gray ones are not in that path.

sign of singlet VEV maintained in the second (and final) PT at T = 121 GeV. Both of the

transitions are strongly first order and complete. Although transitions in which only the

singlet obtains a VEV cannot precipitate baryogenesis, they might nevertheless result in

interesting gravitational wave signatures.

Finally, we consider a Type-Only-S(flip) point (lower right panel). The singlet field

develops a negative value during the first transition at T = 368 GeV, which is first-order

and completes at TN = 367 GeV. At T . 368 GeV, just below the critical temperature

of the first transition, a phase with positive s develops, which is approximately symmetric
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with respect to the phase with negative s. Eventually, a second first-order transition at

T = 104 GeV breaks EW symmetry and flips the sign of the singlet by transitioning to this

approximately symmetric phase. Although this is the strongest PT, it cannot complete, as

the barrier between the phases means that the tunneling action is too large for (4.4) to be

satisfied. This phenomenon appears in a large fraction of our Type-Only-S(flip) samples.

Phase histories of types Type-H-and-S and Type-Only-S(maintain) were previously

investigated in refs. [15, 59–61]; however, the richer phase histories in Type-Only-H and

Type-Only-S(flip) have not been discussed in the literature as far as we are aware.

Note that the barrier between the minima in the Type-Only-H and Type-Only-S(flip)

are usually so high that the tunneling may not happen. This shows the importance of

studying phase structure as well as calculating the transition strength.

We also checked the robustness of our results against the change of the renormalization

scale. For the Type-H-and-S benchmark point in table 2, we found a mild (1% – 2%)

variation of the critical temperature and the transition strength as the renormalization

scale changes in the (mt/2, 2mt) range. We furthermore checked gauge dependence by

repeating our calculations for our benchmark points in the ξ = 0 (Landau) gauge. We

found, as anticipated, that gauge dependence was present but typically mild, especially

for the critical temperatures. The gauge dependence could, nevertheless, motivate the

application of gauge independent techniques in future works.

5.4 Reaching the observed SM vacuum

During the scan we required that the deepest minimum at zero temperature agreed with

the observed VEV, h = 246 GeV. We call the phase associated with the observed VEV

the SM vacuum. We split our samples by two ways of reaching the SM vacuum. First, in

section 5.4.1 we consider samples for which the strongest SFOPT ends in the SM vacuum,

which changes smoothly to h = 246 GeV at T = 0. Second, in section 5.4.2 we consider

samples for which the strongest FOPT does not end in the SM vacuum. As we discuss,

such samples must feature at least one further FOPT that ultimately ends in the observed

vacuum at T = 0. In both cases, the Type-Only-H scenario was by far the rarest, with

noticeably few samples shown in the following scatter plots.

5.4.1 The strongest FOPT ends in the SM vacuum

We selected samples in which the strongest FOPT ended in the SM vacuum. For our

samples, it was sufficient to check that hu > 0 GeV and hd > 0 GeV for the true vacuum of

strongest FOPT. All of our benchmark points in table 2 are in this category. In figure 2,

we present the true and false minima of the strongest FOPT at the critical temperature.

It demonstrates some features of each of the types of point that we described above. For

Type-H-and-S, the first transition, in which the Higgs and singlet fields acquire VEVs, is

usually also the strongest FOPT. There are however three exceptional points where the

singlet field values at the false minimum are non-zero. They have similar phase structures

to the upper right panel of figure 1 except that the minima of phase 1 is always deeper than

the minima of phase 2 in all three cases. Thus there is no critical temperature between these

phases, and so the strongest FOPT for these three points is not in the cosmological history.
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Figure 2. The Higgs and singlet field values at the true and false minima at the critical temperature

of the strongest FOPT for samples for which the strongest FOPT ends in the SM vacuum.

According to the definition of Type-Only-H, only the Higgs fields obtain VEVs in the

first transition in the history, while the upper right panel of figure 2 shows that the false

vacuums of strongest FOPT have zero Higgs VEVs, hu = hd = 0, but a non-vanishing

singlet VEV, s 6= 0. This means that there must be an intermediate transition that

restores EW symmetry and generates a singlet VEV. Since the number of Type-Only-H

scenarios that we found are quite small, we checked each one in detail. We found that this

intermediate transition exists for all Type-Only-H samples, but the corresponding tunneling

probabilities are too small. Nonetheless it is possible that there exist scenarios of this type

where the transition does complete.

The lower panels of figure 2 display samples of Type-Only-S where the strongest FOPT

maintains (left) or flips (right) the sign of the singlet VEV. We see that the singlet VEV

can evolve to up to 1.6 TeV after the first transition, and then shifts to about 150 GeV to

650 GeV during the strongest FOPT. The singlet VEV s of the true vacuum can be both
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Figure 3. The critical temperature and order parameter for the strongest PTs for samples for which

the strongest FOPT ends in the SM vacuum. The points are colored by the effective µ-parameter.

positive or negative, because the input vS includes both signs. We have checked that the

singlet VEV at the true vacuum has the same sign as the input vS .

In all scenarios, the spread in the possible true vacuum for the Higgs fields at the

critical temperature is small, and typically it matches and rarely exceeds the input EWSB

vacuum, i.e., h . 246 GeV. This can be further seen in figure 3, which shows the FOPT

strength against the critical temperature. The strength lies close to what it would be if

h = 246 GeV (dashed gray line). For higher critical temperatures, however, deviations

from the gray line are visible, as the thermal loop-corrections are relevant. The thermal

loop-corrections tend to make the potential more convex, thus decreasing h at the critical

temperature and the strength of the PT.

We now delineate the regions of the NMSSM parameter space in which our four sce-

narios occur. We checked that in all scenarios the stops were truly decoupled by checking

stop mixing, Xt = At − µeff cotβ, which could potentially split the stop mass eigenvalues

making one of them light. We found that most samples were actually concentrated within
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Figure 4. The parameters (µeff, tanβ) for samples for which the strongest FOPT ends in the SM

vacuum. The points are colored by the γEW of the strongest FOPT.

the range −mSUSY ≤ Xt ≤ mSUSY and no particular value of mSUSY was preferred by

our samples.

In figure 4 we show that the Higgs sector parameters (µeff, tanβ) are severely con-

strained. Indeed, the Type-H-and-S and Type-Only-H scenarios require tan β . 3, whereas

the Type-Only-S(maintain) and Type-Only-S(flip) scenarios permit tan β . 7 and

tanβ . 17, respectively. For all types, the upper limit of tan β decreases with µeff increas-

ing. The effective µ-parameter, and thus the higgsinos, are always light, |µeff| . 300 GeV.

Thus we find further motivation for scenarios with small µeff . 1 TeV, which are also mo-

tivated by naturalness, and we anticipate that the searches for higgsinos at the LHC could

be sensitive to our models. Samples with µeff < 0 were extremely rare in the Type-H-and-S

and Type-Only-S(maintain) scenarios, and not present in the Type-Only-H samples.

We see, furthermore, in figure 5, that quartic couplings of around λ ≈ 0.6 and κ ≈ 0.2

could result in an SFOPT in all our scenarios, though a broad range of couplings result

in SFOPTs in Type-Only-S(flip) scenario, including couplings with values far above the
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Figure 5. The quartics (λ, κ) for samples for which the strongest FOPT ends in the SM vacuum.

The points are colored by the γEW of the strongest FOPT.

limits that would be set if we required perturbativity up to the GUT scale. The constraints

strongly prefer that λκ > 0, a combination that is invariant under the field redefinition

S → −S. Since we worked in a λ > 0 convention, the inequality λκ > 0 is equivalent

to κ > 0. In the Type-Only-S(maintain) scenarios, however, we find a few solutions for

which κ < 0.

Figure 6 shows the trilinear couplings (Aλ, Aκ) with the quartic coupling κ shown

by the color bar. The trilinears play an important role. As different types of sample

require different sign of singlet VEV at low temperatures, the parameter space of each

type shows distinguishable tendency. The samples in Type-H-and-S, Type-Only-H and

Type-Only-S(maintain) scenarios are concentrated at negative Aκ with positive κ or

positive Aκ with negative κ, as well as a horizontal slice of points at Aκ ≈ 10 GeV for

Type-H-and-S and Type-Only-S(maintain). On the other hand, Aλ is typically positive

but . 500 GeV. The one point with negative Aλ in Type-H-and-S and the two points

with negative Aλ in Type-Only-S(maintain) correspond the point of negative µeff in
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Figure 6. The trilinears (Aλ, Aκ) for samples for which the strongest FOPT ends in the SM

vacuum. The points are colored by the parameter κ.

figure 4. The distinction between Type-H-and-S and Type-Only-S(maintain) is that

Type-Only-S(maintain) favors smaller Aκ and Aλ. Finally, Type-Only-S(flip) shows

two approximately symmetric regions that were previously identified in figure 4 by the sign

of µeff. The region of positive (negative) Aλ and Aκ corresponds to positive (negative) µeff.

We emphasize again that the parameter spaces shown in figure 4, figure 5 and figure 6

can only ensure the existence of a SFOPT with γEW & 1. Establishing whether this SFOPT

is definitely part of the cosmological history requires further investigation, which we only

present for our benchmark points.

5.4.2 The strongest FOPT does not end in the SM vacuum

Other than the scenario discussed above, we have plenty of samples in which the strongest

FOPT does not end in the SM vacuum, as shown in figure 7. In these samples, in the

true vacuum for the strongest FOPT, h is always negative and s is either zero or has a

different sign to µeff, so this almost certainly does not belong to the SM vacuum in which

h = 246 GeV. The spread in the possible true vacuum for the Higgs fields at the critical
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Figure 7. The Higgs and singlet fields at the critical temperature of the strongest FOPT for

samples for which the strongest FOPT does not end in the SM vacuum.

temperature is substantial, and could differ considerably from the observed EW vacuum.

Because of this, we no longer find that h ≈ 246 GeV, allowing enhancement or suppression of

the strength of the PT in figure 8, which differs markedly from figure 3. Indeed, in the Type-

Only-S(maintain) scenario, SFOPTs are possible for substantial critical temperatures of

up to TC . 500 GeV.

At first glance, these points might seem uninteresting, as they do not end in the

correct zero-temperature vacuum. They may be especially interesting, however, as this

means that in order for such samples to achieve the correct zero-temperature vacuum,

there must be another EW FOPT transition or sequence of transitions that complete and

end in the correct vacuum. Thus in figure 9 we histogram the number of possible FOPTs

with γEW & 1 for each sample. Let us stress that strictly speaking, we count the number of

temperatures at which two vacua are degenerate. This differs from the number of FOPTs

that can take place in one cosmological history, since only particular routes through the
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Figure 8. The critical temperature and order parameter for the strongest PTs for samples for

which the strongest FOPT does not end in the SM vacuum. The points are colored by the effective

µ-parameter.

phases are possible. For example the upper right panel of figure 1 exhibits one or two

FOPTs from phase 1 to phase 3, but we would count this though as three. Furthermore

FOPTs may also occur between phases that were never degenerate, but such possibilities

are not included in our count.

For the samples that end in the SM vacuum (left panel), there is usually a single FOPT

with γEW > 1, except in the Type-Only-H scenario, in which there are often two FOPTs

with γEW > 1. For the samples that do not end in the SM vacuum (right panel), almost all

of Type-Only-H and Type-Only-S(maintain) samples and about half the Type-H-and-S

samples have more than one EW SFOPTs. We also checked that for most of them the

second strongest FOPT does end in the SM vacuum.

Thus, without further calculations, the samples for which the strongest FOPT does

not end in the SM vacuum could still potentially explain the observed baryon asymmetry.

We display the parameter spaces in figure 10, figure 11 and figure 12. Compared to the
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Figure 10. (µeff, tanβ) for samples for which the strongest FOPT does not end in the SM vacuum.

The points are colored by the γEW of the strongest FOPT.
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Figure 11. (λ, κ) for samples for which the strongest FOPT does not end in the SM vacuum. The

points are colored by the γEW of the strongest FOPT.

scenario in which the strongest FOPT ends in the SM vacuum, the parameter spaces of

Type-H-and-S and Type-Only-H are roughly unchanged, while Type-Only-S(maintain)

and Type-Only-S(flip) exchange parameter spaces with each other. This is because here

the Type-Only-S(maintain) (Type-Only-S(flip)) requires a minimum on the singlet

axis with s < 0 (s > 0), opposite to the Type-Only-S(maintain) (Type-Only-S(flip))

scenarios in which the strongest FOPT ends in the SM vacuum.

From figure 10 we see that the constraints on the effective µ-parameter are stricter

than they are in the scenario in which the strongest FOPT ends in the SM vacuum, espe-

cially for small tan β. The Type-H-and-S, Type-Only-H and Type-Only-S(flip) scenarios

require an effective µ-parameter smaller than about 200 GeV, whereas the Type-Only-S

(maintain) permits µeff . 400 GeV. The slender bar in the Type-Only-S(maintain) sce-

nario at tan β ' 1 and µeff ∈ [200, 400] GeV corresponds to samples with TC & 200 GeV

for the strongest FOPT, displayed in the lower left panel of figure 8.

In figure 11, a visible difference appears in Type-Only-S(maintain) compared to

figure 5. The parameter space of λ and κ splits into two separate regions, and relatively

– 25 –

6.1. PUBLISHED MATERIAL 135



J
H
E
P
1
1
(
2
0
1
9
)
1
5
1

150 200 250 300

−200

−150

−100

−50

0

A
κ

(G
eV

)

Type-H-and-S

160 180 200 220

−115

−110

−105

−100

Type-Only-H

−1000 −500 0 500 1000
Aλ (GeV)

−200

−100

0

100

A
κ

(G
eV

)

Type-Only-S(maintain)

−200 0 200 400
Aλ (GeV)

−200

−100

0

100

200

Type-Only-S(flip)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

κ

Figure 12. (Aλ, Aκ) for samples for which the strongest FOPT does not end in the SM vacuum.

The points are colored by the κ-parameter.

large λ & 0.5 is favored. For instance, when κ ' 1.4, here λ is always larger than 1, whereas

in lower left panel of figure 5 λ can be as low as 0.5.

On the trilinear couplings (Aλ, Aκ) plane, there are two additional regions in the Type-

Only-S(maintain) scenario (lower left, figure 12) compared to the Type-Only-S(flip)

samples for which the strongest FOPT end in the SM vacuum (lower right, figure 6). First,

there is an additional region at Aλ ' 0 GeV. This region corresponds to the previously

mentioned region at tan β ' 1 and µeff ∈ [200, 400] GeV, with TC & 200 GeV for the

strongest FOPT. Second, there is an additional region at Aκ ' −50 GeV and Aλ > 0.

This region is similar to one in the Type-Only-S(flip) scenario (lower right, figure 12).

Indeed, for this region, as well as the strongest FOPT that maintains the sign of singlet,

there is another weaker FOPT that flips the sign of singlet.

In summary, the scenario in which the strongest FOPT does not end in the SM vacuum

introduces new interesting regions of parameter space that were not covered by the scenarios

in which the strongest FOPT ends in the SM vacuum. These scenarios may be especially

interesting because they could be followed by additional FOPTs. However, at the same
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time there is an additional requirements to ensure that the subsequent transitions actually

lead to the EW breaking phase we observe today, which we have not checked.

5.5 Properties of the Higgs bosons

As shown by our benchmark points, although our points pass experimental constraints

from LEP and the LHC, our scenarios are not in a decoupling regime in which Higgses

other than the 125 GeV one are heavy. This is not surprising since it is well known that

in the NMSSM a light singlet Higgs state plays an important role in generating a FOPT

that breaks EW symmetry [16, 25, 56], without the need for light stops which are heavily

constrained by LHC searches [120, 121]. In fact, in all our benchmarks, all Higgs bosons

are lighter than about 400 GeV, while there are always at least two CP even Higgs states

with masses below 600 GeV in the samples from our scan, with the SM-like Higgs being

either h1 or h2.

In figure 13 we show the masses of the non-SM-like CP even neutral Higgs bosons in

our four scenarios by plotting the mass of h3, which is never SM-like, against the mass of

the Higgs (either h1 or h2) that did not play the role of the SM-like Higgs. Samples that

are allowed by experimental constraints are shown by green points. We also show excluded

samples to aid explanations (gray and blue points).

For the samples where the strongest FOPT ends in the SM vacuum we see that the

SM-like Higgs is actually the next to lightest CP even Higgs for almost all allowed samples

(green points) in Type-H-and-S, Type-Only-H and Type-Only-S(maintain), with just

three exceptions that all appear in the Type-H-and-S samples. In contrast, in the Type-

Only-S(flip) scenarios, the SM-like Higgs can be either the lightest Higgs or the next to

lightest Higgs. The samples where the strongest FOPT does not end in the SM vacuum

show very similar results, but as usual the patterns of the Type-Only-S(maintain) and

Type-Only-S(flip) scenarios are exchanged.

The reason we see so few samples where the SM-like Higgs is the lightest state for

the categories mentioned above seems to be the constraints on the observed Higgs. We

note that, although it is not clear in the plot, for these types of scenarios there are al-

ready a significantly larger number of gray points where the SM-like Higgs is the second

lightest CP even Higgs boson than there are for the case where it is the lightest. Ap-

plying the constraints on the SM-like Higgs from Lilith-1.1.4 DB-17.05 then reduces

the number of samples where it is the lightest to almost zero. The samples excluded by

HiggsBounds-5.3.2beta in Type-Only-S(flip) scenario for which the strongest FOPT

ends in the SM vacuum and Type-Only-S(maintain) scenario for which the strongest

FOPT does not end in the SM vacuum (shown by blue points) are mainly excluded by an

LHC search for a scalar resonance decaying to a pair of Z bosons [122]. It is also worth not-

ing that even without the requirement of an SFOPT, similar observations have been made

in the NMSSM previously. A preference for the SM-like Higgs being the next to lightest

one was also found in a global analysis of the NMSSM [123] that did not consider PTs.

Lastly, we note that many of the panels in figure 13 appear to indicate an upper

bound on the mass of the heaviest Higgs, mh3 , in each scenario. For example, for the Type-

H-and-S scenario in which the strongest FOPT ends in the SM vacuum, the samples allowed
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Figure 13. Masses of the non-SM-like Higgs bosons in our four scenarios, for points for which

the strongest FOPT ends in the SM vacuum (left block of four plots) and does not end in the SM

vacuum (right block of four plots). We show points satisfying µ > 100 GeV and γEW > 1 (gray),

further allowed by Lilith-1.1.4 DB-17.05 [110] constraints on the SM-like Higgs (blue), and by

HiggsBounds-5.3.2beta [114–118] constraints on non-SM-like Higgses (green). The vertical red

line indicates mh = 125 GeV in each panel.

by collider constraints on Higgs bosons (green points) stop at about mh3 . 500 GeV.

However, despite collecting more than three million samples, we judged our coverage at the

largest Higgs masses to be inadequate to reliably address the question of whether upper

bounds on the Higgs masses exist, as large masses may just be rare with our sampling

strategy. We checked, however, that experimental constraints on the Higgs sector appear

to be (at most) weakly sensitive to mh3 . We thus anticipate that there is in fact no upper

bound on the mass of the heaviest Higgs, as we suspect that it can be arbitrarily heavy

without impacting the phase structure or Higgs observables.

6 Conclusions

Motivated by EW baryogenesis and gravitational wave experiments, in this article we in-

vestigated the properties of PTs in the NMSSM. We employed an effective field theory

approach to calculate the finite temperature effective potential by matching the NMSSM

to the THDMS. By tracing the change in the minima of the effective potential with tem-

perature, we mapped out the phase structure and computed the strengths of any EWPTs,

γEW. By scanning the parameter space of the NMSSM, we obtained millions of samples

that featured an SFOPT with γEW > 1 and satisfied the constraints from LHC Higgs

measurements and LEP bounds on charginos.

We classified them into three categories, Type-H-and-S, Type-Only-H and Type-

Only-S, based on the nature of the first PT in their cosmological histories. The Type-
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Only-S samples were further divided into Type-Only-S(maintain) and Type-Only-S

(flip) according to whether the singlet VEV changed sign during the strongest EWPT. In

the Type-H-and-S samples, the first PT in the cosmological history breaks EW symmetry

and gives the singlet a VEV at the same time. This transition is usually the strongest one.

The Type-Only-H samples, on the other hand, go through a series of PTs that break,

restore and break again EW symmetry. The first one is a crossover transition during

which only the hd field obtains a non-vanishing VEV, and the last one is the strongest EW

FOPT. This scenario was by far the rarest in our scan. For the Type-Only-S(maintain)

samples, during the first transition EW symmetry remains unbroken, but the singlet field

obtains a non-vanishing VEV. Then EW symmetry breaks through a subsequent FOPT.

Both of the transitions can be SFOPTs, which could give interesting gravitational wave

signatures [124] as well as triggering an EW baryogenesis mechanism. The first PT of

the Type-Only-S(flip) samples is usually a FOPT with very small γ, and the following

strongest FOPT flips the sign of the singlet VEV. We found, however, that the tunneling

rates in Type-Only-H and Type-Only-S(flip) scenarios could be problematic. For our

benchmarks, the SFOPT in the Type-Only-H scenario did not complete, and in the Type-

Only-S(flip) scenario, a preceding PT required to reach the SFOPT did not complete.

Thus, unfortunately, these scenarios might not help EW baryogenesis.

The regions of NMSSM parameter space in which the four scenarios occur show dif-

ferent features. In the samples for which the strongest FOPT ends in the observed zero

temperature phase:

• The observed 125 GeV Higgs is often the second lightest Higgs in the model, not the

lightest one.

• All of the input parameters are severely constrained, except the SUSY scale mSUSY

and stop trilinear At.

• Quartic couplings of around λ ' 0.6 and κ ' 0.2 could result in an SFOPT in all our

scenarios, though a broad range of couplings result in SFOPTs in the Type-Only-S

(flip) scenario, including couplings far away from limits on perturbativity.

• The scenarios predict different trilinear couplings, i.e., they are distinguishable on the

(Aλ, Aκ) plane. The Aλ and Aκ of the Type-Only-S(flip) samples always have the

same sign, while in the other scenarios the samples are concentrated in the quadrant

of negative Aκ and positive Aλ. Compared to the Type-H-and-S scenario, the Type-

Only-S(maintain) scenario favors smaller |Aκ| and Aλ.

In addition we found substantial samples for which the strongest FOPT does not end

in the SM vacuum. The regions of parameter space are similar to the samples for which

the strongest FOPT ends in the SM vacuum, except that Type-Only-S(maintain) and

Type-Only-S(flip) exchange parameter spaces with each other. There are, furthermore,

two additional regions that appear in the Type-Only-S(maintain) scenario, and one of

them results in critical temperatures higher than 200 GeV.
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In summary, we mapped out and classified intricate patterns of symmetry breaking

that are possible in the NMSSM, and checked which scenarios could in principle help

provide a viable theory of EW baryogenesis or potentially lead to a gravitational wave

signal. We found viable scenarios in which the Higgs fields and singlet or only singlet

first acquired VEVs. We checked that the sequences of required PTs actually nucleated,

contained a SFOPT, and that the model satisfied constraints from LEP and the LHC.

The combination of constraints lead to the predictions that λ ' 0.6, κ ' 0.2 and that the

observed 125 GeV Higgs tends to be the second lightest Higgs in the model.
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A Field dependent masses

When exploring the potential away from minima we need to account for the Higgs field

dependence of the MS mass eigenstates in (3.1). Therefore here we present the so-called

field dependent masses of the THDMS.

The field dependent masses of the gauge bosons and top, bottom and tau fermions are

given by the simple tree-level expressions

M2
W = 1

4g
2
(
h2
u + h2

d

)
, M2

Z = 1
4

(
g′2 + g2

) (
h2
u + h2

d

)
,

mt = 1√
2
ythu, mb = 1√

2
ybhd, mτ = 1√

2
yτhd,

(A.1)

where the gauge couplings are without GUT normalization, and the yt, yb and yτ are the

(3, 3) elements of the corresponding Yukawa matrices.

Since the Higgs states mix, the CP even, CP odd and charged MS Higgs masses are

the eigenvalues of the corresponding CP even, CP odd and charged mass matrices. The

mass matrix for the CP even neutral Higgs bosons, in the basis {Hd, Hu, S}, is

(
M2
H0

)
11

= m2
1 +

3

2
λ1h

2
d +

1

2
λ5s

2 +
1

2
(λ3 + λ4)h2

u,
(
M2
H0

)
22

= m2
2 +

3

2
λ2h

2
u +

1

2
λ6s

2 +
1

2
(λ3 + λ4)h2

d,
(
M2
H0

)
33

= m2
S −
√

2 Re(m5)s+
1

2
λ5h

2
d + Re(λ7)huhd +

1

2
λ6h

2
u + 3λ8s

2,
(
M2
H0

)
12

=
(
M2
H0

)
21

= − 1√
2

Re(m4)s+
1

2
Re(λ7)s2 + (λ3 + λ4)huhd,
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(
M2
H0

)
13

=
(
M2
H0

)
31

= − 1√
2

Re(m4)hu + λ5hds+ Re(λ7)hus,

(
M2
H0

)
23

=
(
M2
H0

)
32

= − 1√
2

Re(m4)hd + Re(λ7)hds+ λ6hus. (A.2)

where we have written m2
1, m2

2 and m2
S with a bar to denote the fact that in this context

these are fixed to fulfill the following tree-level EW symmetry breaking (EWSB) conditions

m2
1 = −1

2
(λ3 + λ4)v2

u −
1

2
λ1v

2
d −

1

2
λ5v

2
S −

1

2
Re(λ7)

vuv
2
S

vd
+

1√
2

Re(m4)
vuvS
vd

,

m2
2 = −1

2
λ2v

2
u −

1

2
(λ3 + λ4)v2

d −
1

2
λ6v

2
S −

1

2
Re(λ7)

vdv
2
S

vu
+

1√
2

Re(m4)
vdvS
vu

,

m2
S = −1

2
λ6v

2
u −

1

2
λ5v

2
d − λ8v

2
S − Re(λ7)vdvu +

1√
2

Re(m4)
vuvd
vS

+
1√
2

Re(m5)vS .

(A.3)

Note that the VEVs appearing on the right hand side are the zero temperature VEVs,

so m2
1, m2

2 and m2
S do not vary with either temperature or with the fields. If we per-

mit a complex phase in the THDMS parameters, there is in fact an additional tadpole

equation relating it to complex phases in the VEVs. As we assume real, CP conserving

VEVs, however, this extra tadpole simply forces the complex phase in the THDMS pa-

rameters to vanish. The three CP even mass eigenstates, h1, h2 and h3, are then found by

diagonalizing M2
H0 .

Similarly, the CP odd mass matrix is

(
M2
A

)
11

= m2
1 +

1

2
λ1h

2
d +

1

2
λ5s

2 +
1

2
(λ3 + λ4)h2

u,
(
M2
A

)
22

= m2
2 +

1

2
λ2h

2
u +

1

2
λ6s

2 +
1

2
(λ3 + λ4)h2

d,
(
M2
A

)
33

= m2
S +
√

2 Re(m5)s+
1

2
λ5h

2
d − Re(λ7)huhd +

1

2
λ6h

2
u + λ8s

2,
(
M2
A

)
12

=
(
M2
A

)
21

=
1√
2

Re(m4)s− 1

2
Re(λ7)s2,

(
M2
A

)
13

=
(
M2
A

)
31

=
1√
2

Re(m4)hu + Re(λ7)hus,

(
M2
A

)
23

=
(
M2
A

)
32

=
1√
2

Re(m4)hd + Re(λ7)hds.

(A.4)

Diagonalizing it results in a neutral Goldstone boson G0 and the two physical CP odd Higgs

bosons, A1 and A2. The field dependent Goldstone masses are only zero at extrema of the

tree-level potential. Thus, away from extrema, we cannot easily distinguish Goldstone

bosons from physical Higgs bosons. In the ξ = 1 gauge, however, they are treated on an

equal footing and we do not need to identify Goldstones.

Finally, the charged Higgs mass matrix is

(
M2
H±
)

11
= m2

1 +
1

2
λ5s

2 +
1

2
λ1h

2
d +

1

2
λ3h

2
u,

(
M2
H±
)

22
= m2

2 +
1

2
λ6s

2 +
1

2
λ3h

2
d +

1

2
λ2h

2
u,

(
M2
H±
)

21
=
(
M2
H±
)∗

12
=

1√
2
m4s− 1

2
λ7s

2 − 1

2
λ4hdhu.

(A.5)

Diagonalizing it results in the charged Higgs boson, H± and the charged Goldstone bo-

son G±.
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Gauge-fixing, however, alters the tree-level mass matrices, such that the field dependent

scalar masses are gauge dependent. The CP even mass matrix receives no gauge-fixing

contribution but the CP odd and charged mass matrices receive additional contributions

in the Rξ gauge,
(
M2
A

)
11
→
(
M2
A

)
11

+
1

4
ξ(g2 + g′2)h2

d,

(
M2
A

)
12
→
(
M2
A

)
12
− 1

4
ξ(g2 + g′2)hdhu,

(
M2
A

)
22
→
(
M2
A

)
22

+
1

4
ξ(g2 + g′2)h2

u,

(
M2
H±
)

11
→
(
M2
H±
)

11
+

1

4
ξg2h2

d,

(
M2
H±
)

12
→
(
M2
H±
)

12
− 1

4
ξg2hdhu,

(
M2
H±
)

22
→
(
M2
H±
)

22
+

1

4
ξg2h2

u.

(A.6)

The elements involving the singlet are unaffected. At the tree-level minimum, in which the

Goldstone bosons are otherwise massless, the gauge-fixing contributions do not affect the

masses of the physical Higgs bosons but result in Goldstone masses

M2
G0 = ξM2

Z ,

M2
G± = ξM2

W ,
(A.7)

where MW and MZ are the masses of the W and Z bosons.

B Numerical methods for FOPTs

We first find all minima of the potential at T = 0 and T = 1 TeV to check that spontaneous

symmetry breaking occurs,9 where in particular we reject points where the deepest T =

0 minima is not the observed SM vacuum. If it occurs, we trace the trajectory with

temperature of every T = 0 and T = 1 TeV minima. We call the trajectory of a particular

minima a phase (note though this definition cannot distinguish phases linked by second-

order or crossover transitions). A phase ends at the temperature at which the minima

disappears. If two phases coexist at the same temperature, there may exist a critical

temperature at which they are degenerate.

We apply an algorithm developed in CosmoTransitions [97] to trace phases in steps

no greater than ∆T :

0. We select a minima m ≡ (hu, hd, s) at temperature T to trace.

1. We use a local minimum finding algorithm, such as Nelder-Mead [125], to find the

minimum m′ at T ′ = T + ∆T .

2. We check that the new minimum m′ lies close to that expected from a shift caused

by thermal corrections.

9Our search for minima is restricted to field values within the range −1.6 TeV to 1.6 TeV.
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We calculate the difference

R = max

(∥∥∥∥m +
∂m

∂T

∣∣∣∣
m

∆T −m′
∥∥∥∥ ,
∥∥∥∥m′ −

∂m

∂T

∣∣∣∣
m′

∆T −m

∥∥∥∥
)
. (B.1)

3. If R ≤ maxR, where maxR governs the maximum acceptable changes in the field,

we accept that the minima m′ at temperature T ′ belongs to the same phase as the

minima m at temperature T . We continue to trace the phase by returning to step 1

with m→ m′ and T → T ′, and we reset any changes to ∆T .

If R > maxR, we assume that the change in temperature dramatically changed the

potential. We reduce the change in temperature by a factor of two, ∆T → ∆T/2,

and return to 1.

If, however, R > maxR and |∆T | < min ∆T , where min ∆T governs the smallest

permissible step in temperature, we conclude that the phase must have ended, as the

minima appears to change abruptly with a small change in temperature.

We save the sequence of minima and temperature found through this process — this

is a phase. We find all the phases by tracing all T = 0 minima up to at most 1 TeV (the

phase may end earlier) and all T = 1 TeV minima down to T = 0 (in which case ∆T < 0).

After removing degenerate phases, we denote the i-th phase by mi(T ).

If any two of the phases, e.g., the i-th and j-th phase, coexist between temperatures

T1 and T2, and if

Veff(mi(T1), T1) > Veff(mj(T1), T1) (B.2)

Veff(mi(T2), T2) < Veff(mj(T2), T2) (B.3)

there must exit a critical temperature, TC , between temperatures T1 and T2 at which they

are degenerate,

Veff(mi(TC), TC) = Veff(mj(TC), TC). (B.4)

We calculate the critical temperature using bisection, and find properties of the transition,

e.g., the strength of transition from (4.3).
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Chapter 7

Outlook and conclusions

We began this work by describing the elementary particles and their interac-
tions in the context of the SM. All experimentally observable particles are in
the SM spectrum. We have also seen that astrophysical observations entail
the existence in the Universe of other matter that cannot be made of SM
particles. This DM constitute a strong indication of BSM physics. Motivated
by this we introduced supersymmetry that offers, among other solutions to
SM problems, a candidate for a DM particle. In the SUSY context, we have
presented the R-parity conserving MSSM that provides the framework used
for the first published work.

In the first published paper, we studied the Z/h funnel region in the
MSSM. We started this work motivated by the CMS and ATLAS searches
that have found different excess of data above the expected background,
and by the GAMBIT Collaboration that has shown that these excesses can
be given by the Z/h funnel region. We combined constraints from different
searches using both astrophysical and collider searches. We implemented
these constraints both in a simplified model and in the phenomenological
MSSM. The combination of different searches results in stricter constraints
that provide a better understanding of the current and future experimental
bounds of the Z/h funnel region. On one hand, these new bounds add more
importance to the results of ongoing experiments that, combined, will almost
entirely probe the whole Z/h funnel region. On the other hand, the new
bounds provide helpful insights worth to consider together with global fits
performed by GAMBIT. In conclusion, we have shown that the Z/h funnel
region of the MSSM is not an ideal interpretation of the modest excesses in
recent electroweakino searches.

Secondly, going back to the SM, interactions originate from internal
symmetries of the theory. With the initial SU(3)C\otimes SU(2)L\otimes U(1)Y symmetry,
however, fermions and gauge bosons are massless. To explain the observed
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masses, we broke this symmetry using the Higgs mechanism.
After having introduced fermion masses, the transformation from the mass

basis to the flavour basis was given by the CKM matrix. We saw that the
CKM matrix also provides CP violation. Such CP violation is a fundamental
ingredient for baryogenesis as we have shown in the Sakharov conditions.

We introduced a mechanism, electroweak baryogenesis, that employs elec-
troweak symmetry breaking and the CP violation. Electroweak baryogenesis
satisfies the Sakharov conditions and can explain the observed excess of matter
over antimatter. We described the physics and the different steps that, in the
early Universe, can lead to producing the observed excess of baryons in our
Universe. For this mechanism, however, the CP violation provided by the
SM is not enough to explain the observed excess of matter over antimatter.
This is another important aspect where we need BSM physics to solve the
problem.

We also studied the NMSSM that represents the SUSY framework for
our second published work. We described the NMSSM superpotential and
spectrum, and we introduced the SUSY breaking terms. To describe the
physics of the early Universe, we added temperature corrections of the po-
tential. The 1-loop NMSSM temperature-dependent effective potential has
significant contributions from both top and stop quarks. To perform a precise
calculation, we integrated out all the heavy sparticles. In this way, we reduced
the NMSSM to an effective field theory. We introduced this EFT in the
THDMS section.

We scanned the parameter space and studied the vacuum structure at
different temperatures, following the evolution of the Universe. We have found
a novel and rich phenomenology of the possible vacuum phases. For each
point in the scan, we examined the FOPT, the properties of the Higgs bosons,
the baryogenesis and the NMSSM parameters, together with their reciprocal
relationships. This analysis allowed us to individuate and classify different
phase transition scenarios. We have shown that each scenario is characterised
by a specific cosmological history. Moreover, we found the regions of the
parameter space that are more likely to lead to SFOPT.

This work offers different starting points for future investigations. A follow-
up that we are currently developing is in the field of gravitational waves. As
shown, the electroweak baryogenesis mechanism includes bubbles of a vacuum
phase expanding in a different phase. Collisions among these bubbles lead
to interesting gravitational signals [101–103] that can potentially be probed
by future gravitational waves experiments [104, 105]. These gravitational
wave signatures can thus provide hints about the cosmological history of our
Universe and the baryogenesis model.
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SARAH files

Here we present the SARAHmodel files we wrote to perform the scan described
in the published material in sec.6.1.

A.1 THDMS.m

1 (* :: Package :: *)
2

3 Off[General ::spell]
4

5 Model ‘Name = "THDMS";
6 Model ‘NameLaTeX ="Two Higgs Doublet Model plus Singlet";
7 Model ‘Authors = "P. Athron , G. Pozzo et al.";
8 Model ‘Date = "2017 -04 -28";
9

10 (*2017 -04 -28: Added ScalarField [[3]], S, phiS ,
11 sigmaS , modified the lagrangian *)
12 (* 2014 -11 -06: Changed sign in Lagrangian *)
13 (* 2015 -11 -16: added conj[H1].H2 term *)
14

15

16 (* -------------------------------------------*)
17 (* Particle Content *)
18 (* -------------------------------------------*)
19

20 (* Gauge Superfields *)
21

22 Gauge [[1]]={B, U[1], hypercharge , g1,False};
23 Gauge [[2]]={WB, SU[2], left , g2,True};
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24 Gauge [[3]]={G, SU[3], color , g3,False};
25

26

27 (* Chiral Superfields *)
28

29 FermionFields [[1]] = {q, 3, {uL,dL}, 1/6, 2, 3};
30 FermionFields [[2]] = {l, 3, {vL,eL}, -1/2, 2, 1};
31 FermionFields [[3]] = {d, 3, conj[dR], 1/3, 1, -3};
32 FermionFields [[4]] = {u, 3, conj[uR], -2/3, 1, -3};
33 FermionFields [[5]] = {e, 3, conj[eR], 1, 1, 1};
34

35 ScalarFields [[1]] = {H1, 1, {H10 , H1m},-1/2, 2, 1};
36 ScalarFields [[2]] = {H2, 1, {H2p , H20}, 1/2, 2, 1};
37 ScalarFields [[3]] = { S, 1, Sing , 0, 1, 1};
38

39

40 (* ---------------------------------------------------*)
41 (* DEFINITION *)
42 (* ---------------------------------------------------*)
43

44 NameOfStates ={GaugeES , EWSB};
45

46 (* ----- Before EWSB ----- *)
47

48 DEFINITION[GaugeES ][ Additional ]= {
49 {LagHC , { AddHC ->True}},
50 {LagNoHC ,{ AddHC ->False}}
51 };
52

53 LagNoHC = -(M112 conj[H1].H1 + M222 conj[H2].H2
54 + 1/2 Lambda1 conj[H1].H1.conj[H1].H1
55 + 1/2 Lambda2 conj[H2].H2.conj[H2].H2
56 + Lambda3 conj[H2].H2.conj[H1].H1
57 - Lambda4 (conj[H2].H1).( conj[H1].H2)
58 + M332 conj[S].S
59 + Lambda5 conj[S].S.conj[H1].H1
60 + Lambda6 conj[S].S.conj[H2].H2
61 + Lambda8 conj[S].S.conj[S].S);
62

63 LagHC = -(-Yd H1.d.q -Ye H1.e.l +Yu H2.u.q
64 - M123 H1.H2.S -1/3 M5 S.S.S
65 + Lambda7 conj[S].conj[S].H1.H2);
66
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67

68 (* Gauge Sector *)
69

70 DEFINITION[EWSB][ GaugeSector] =
71 {
72 {{VB,VWB[3]} ,{VP,VZ},ZZ},
73 {{VWB[1],VWB[2]},{VWm ,conj[VWm]},ZW}
74 };
75

76

77 (* ----- VEVs ---- *)
78

79 DEFINITION[EWSB][VEVs]=
80 { {H10 , {v1, 1/Sqrt [2]},
81 {sigma1 , I/Sqrt [2]},{phi1 , 1/Sqrt [2]}},
82 {H20 , {v2, 1/Sqrt [2]}, {sigma2 , I/Sqrt [2]},
83 {phi2 , 1/Sqrt [2]}} ,{ Sing , {vS, 1/Sqrt [2]},
84 {sigmaS , I/Sqrt [2]},{phiS , 1/Sqrt [2]}} };
85

86 DEFINITION[EWSB][ MatterSector ]=
87 { {{phi1 , phi2 , phiS}, {hh, ZH}},
88 {{sigma1 , sigma2 , sigmaS}, {Ah, ZA}},
89 {{H1m , conj[H2p]}, {Hm,ZP}},
90 {{{dL}, {conj[dR]}}, {{DL,Vd}, {DR,Ud}}},
91 {{{uL}, {conj[uR]}}, {{UL,Vu}, {UR,Uu}}},
92 {{{eL}, {conj[eR]}}, {{EL,Ve}, {ER,Ue}}} };
93

94

95 (* ---------------------------------------------------*)
96 (* Dirac -Spinors *)
97 (* ---------------------------------------------------*)
98

99 DEFINITION[EWSB][ DiracSpinors ]={
100 Fd ->{ DL, conj[DR]},
101 Fe ->{ EL, conj[ER]},
102 Fu ->{ UL, conj[UR]},
103 Fv ->{ vL, 0} };
104

105 DEFINITION[EWSB][ GaugeES ]={
106 Fd1 ->{ FdL , 0},
107 Fd2 ->{ 0, FdR},
108 Fu1 ->{ Fu1 , 0},
109 Fu2 ->{ 0, Fu2},
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110 Fe1 ->{ Fe1 , 0},
111 Fe2 ->{ 0, Fe2} };

A.2 parameters.m

1 (* :: Package :: *)
2

3 (*Added Lambda , M332 , M123 , M5*)
4

5

6 ParameterDefinitions = {
7

8 {g1, { Description -> "Hypercharge -Coupling"}},
9 {g2, { Description -> "Left -Coupling"}},

10 {g3, { Description -> "Strong -Coupling"}},
11 {AlphaS , {Description -> "Alpha Strong"}},
12 {e, { Description -> "electric charge"}},
13

14 {Gf, { Description -> "Fermi ’s constant"}},
15 {aEWinv , { Description -> "inverse weak coupling
16 constant at mZ"}},
17

18 {Yu, { Description -> "Up -Yukawa -Coupling",
19 DependenceNum -> Sqrt [2]/v2*
20 {{Mass[Fu ,1],0,0},
21 {0, Mass[Fu ,2],0},
22 {0, 0, Mass[Fu ,3]}}}} ,
23

24 {Yd, { Description -> "Down -Yukawa -Coupling",
25 DependenceNum -> Sqrt [2]/v1*
26 {{Mass[Fd ,1],0,0},
27 {0, Mass[Fd ,2],0},
28 {0, 0, Mass[Fd ,3]}}}} ,
29

30 {Ye, { Description -> "Lepton -Yukawa -Coupling",
31 DependenceNum -> Sqrt [2]/v1*
32 {{Mass[Fe ,1],0,0},
33 {0, Mass[Fe ,2],0},
34 {0, 0, Mass[Fe ,3]}}}} ,
35

36

37 {Lambda1 , { LaTeX -> "\\ lambda_1",
38 OutputName -> Lam1 ,
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39 LesHouches -> {HMIX ,31}}} ,
40

41 {Lambda2 , { LaTeX -> "\\ lambda_2",
42 OutputName -> Lam2 ,
43 LesHouches -> {HMIX ,32}}} ,
44

45 {Lambda3 , { LaTeX -> "\\ lambda_3",
46 OutputName -> Lam3 ,
47 LesHouches -> {HMIX ,33}}} ,
48

49 {Lambda4 , { LaTeX -> "\\ lambda_4",
50 OutputName -> Lam4 ,
51 LesHouches -> {HMIX ,34}}} ,
52

53 {Lambda5 , { LaTeX -> "\\ lambda_5",
54 OutputName -> Lam5 ,
55 LesHouches -> {HMIX ,35}}} ,
56

57 {Lambda6 , { LaTeX -> "\\ lambda_6",
58 OutputName -> Lam6 ,
59 LesHouches -> {HMIX ,36}}} ,
60

61 {Lambda7 , { LaTeX -> "\\ lambda_7",
62 OutputName -> Lam7 ,
63 LesHouches -> {HMIX ,37}}} ,
64

65 {Lambda8 , { LaTeX -> "\\ lambda_8",
66 OutputName -> Lam8 ,
67 LesHouches -> {HMIX ,38}}} ,
68

69 {M112 , { LaTeX -> "m^2_1",
70 OutputName -> M112 ,
71 LesHouches -> {HMIX ,20}}} ,
72 {M222 , { LaTeX -> "m^2_2",
73 OutputName -> M222 ,
74 LesHouches -> {HMIX ,21}}} ,
75

76 {M332 , { LaTeX -> "m^2_3",
77 OutputName -> M332 ,
78 LesHouches -> {HMIX ,23}}} ,
79

80 {M123 , { LaTeX -> "m_{123}",
81 OutputName -> M123 ,
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82 LesHouches -> {HMIX ,24}}} ,
83

84 {M5, { LaTeX -> "m_{5}",
85 OutputName -> M5,
86 LesHouches -> {HMIX ,25}}} ,
87

88 {v1, { Description -> "Down -VEV",LaTeX -> "v_1"}},
89 {v2, { Description -> "Up -VEV", LaTeX -> "v_2"}},
90 {v, { Description -> "EW-VEV"}},
91

92 {\[ Beta], { Description -> "Pseudo Scalar
93 mixing angle"}},
94 {TanBeta , { Description -> "Tan Beta"}},
95 {\[ Alpha], { Description -> "Scalar mixing angle"}},
96

97 {ZH, { Description -> "Scalar -Mixing -Matrix",
98 DependenceOptional ->None }},
99 {ZA, { Description ->"Pseudo -Scalar -Mixing -Matrix",

100 DependenceOptional ->None }},
101 {ZP, { Description -> "Charged -Mixing -Matrix"}},
102

103 {ThetaW , { Description -> "Weinberg -Angle"}},
104

105 {ZZ, {Description -> "Photon -Z Mixing Matrix"}},
106 {ZW, {Description -> "W Mixing Matrix" }},
107

108

109 {Vu, {Description -> "Left -Up-Mixing -Matrix"}},
110 {Vd, {Description -> "Left -Down -Mixing -Matrix"}},
111 {Uu, {Description -> "Right -Up-Mixing -Matrix"}},
112 {Ud, {Description -> "Right -Down -Mixing -Matrix"}},
113 {Ve, {Description ->"Left -Lepton -Mixing -Matrix"}},
114 {Ue, {Description ->"Right -Lepton -Mixing -Matrix"}}
115

116 };

A.3 particles.m

1 (* :: Package :: *)
2

3 ParticleDefinitions[GaugeES] = {
4 {H0, { PDG -> {0},
5 Width -> 0,
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6 Mass -> Automatic ,
7 FeynArtsNr -> 1,
8 LaTeX -> "H^0",
9 OutputName -> "H0" }},

10

11

12 {Hp, { PDG -> {0},
13 Width -> 0,
14 Mass -> Automatic ,
15 FeynArtsNr -> 2,
16 LaTeX -> "H^+",
17 OutputName -> "Hp" }},
18

19

20 {VB, { Description -> "B-Boson"}},
21 {VG, { Description -> "Gluon"}},
22 {VWB , { Description -> "W-Bosons"}},
23 {gB, { Description -> "B-Boson Ghost"}},
24 {gG, { Description -> "Gluon Ghost" }},
25 {gWB , { Description -> "W-Boson Ghost"}}
26

27 };
28

29

30 ParticleDefinitions[EWSB] = {
31

32 {hh , { Description -> "Higgs"}},
33 {Ah , { Description -> "Pseudo -Scalar Higgs"}},
34

35 {Hm, { Description -> "Charged Higgs"}},
36

37 {VP, { Description -> "Photon"}},
38 {VZ, { Description -> "Z-Boson"}},
39 {VG, { Description -> "Gluon" }},
40 {VWm , { Description -> "W-Boson",
41 Goldstone -> Hm[{1}] }},
42 {gP, { Description -> "Photon Ghost"}},
43 {gWm , { Description -> "Negative W-Boson Ghost"}},
44 {gWmC , { Description -> "Positive W-Boson Ghost"}},
45 {gZ, { Description -> "Z-Boson Ghost" }},
46 {gG, { Description -> "Gluon Ghost" }},
47

48 {Fd, { Description -> "Down -Quarks"}},
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49 {Fu, { Description -> "Up-Quarks"}},
50 {Fe, { Description -> "Leptons" }},
51 {Fv, { Description -> "Neutrinos" }}
52

53 };
54

55

56

57 WeylFermionAndIndermediate = {
58

59 {H, { PDG -> {0},
60 Width -> 0,
61 Mass -> Automatic ,
62 LaTeX -> "H",
63 OutputName -> "" }},
64

65 {H10 , {LaTeX -> "H_1^0"}},
66 {H20 , {LaTeX -> "H_2^0"}},
67 {H1m , {LaTeX -> "H_1^-"}},
68 {H2p , {LaTeX -> "H_2^+"}},
69 {S , {LaTeX -> "S"}},
70

71 {sigma1 , {LaTeX -> "\\ sigma_1"}},
72 {sigma2 , {LaTeX -> "\\ sigma_2"}},
73 {sigmaS , {LaTeX -> "\\ sigma_S"}},
74

75 {phi1 , {LaTeX -> "\\phi_1"}},
76 {phi2 , {LaTeX -> "\\phi_2"}},
77 {phiS , {LaTeX -> "\\phi_S"}},
78

79 {dR, {LaTeX -> "d_R" }},
80 {eR, {LaTeX -> "e_R" }},
81 {lep , {LaTeX -> "l" }},
82 {uR, {LaTeX -> "u_R" }},
83 {q, {LaTeX -> "q" }},
84 {eL, {LaTeX -> "e_L" }},
85 {dL, {LaTeX -> "d_L" }},
86 {uL, {LaTeX -> "u_L" }},
87 {vL, {LaTeX -> "\\nu_L" }},
88

89 {DR, {LaTeX -> "D_R" }},
90 {ER, {LaTeX -> "E_R" }},
91 {UR, {LaTeX -> "U_R" }},
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92 {EL, {LaTeX -> "E_L" }},
93 {DL, {LaTeX -> "D_L" }},
94 {UL, {LaTeX -> "U_L" }}
95

96

97 };

A.4 SPheno.m

1 (* :: Package :: *)
2

3 OnlyLowEnergySPheno = True;
4

5

6 MINPAR ={{1, Lambda1Input},
7 {2, Lambda2Input},
8 {3, Lambda3Input},
9 {4, Lambda4Input},

10 {5, Lambda5Input},
11 {9,M12input},
12 {10, TanBeta} };
13

14 RealParameters = {TanBeta };
15

16 ParametersToSolveTadpoles = {M112 ,M222};
17

18 DEFINITION[MatchingConditions ]= {
19 {v1, vSM*Cos[ArcTan[TanBeta ]]},
20 {v2, vSM*Sin[ArcTan[TanBeta ]]},
21 {Ye, YeSM*vSM/v1},
22 {Yd, YdSM*vSM/v1},
23 {Yu, YuSM*vSM/v2},
24 {g1, g1SM},
25 {g2, g2SM},
26 {g3, g3SM}
27 };
28

29 BoundaryLowScaleInput ={
30 {Lambda1 , Lambda1Input},
31 {Lambda2 , Lambda2Input},
32 {Lambda3 , Lambda3Input},
33 {Lambda4 , Lambda4Input},
34 {Lambda5 , Lambda5Input},
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35 {M12 , M12input}
36 };
37

38

39 ListDecayParticles = {Fu,Fe,Fd,hh,Ah ,Hm};
40

41 ListDecayParticles3B = {{Fu,"Fu.f90"},{Fe,"Fe.f90"},
42 {Fd,"Fd.f90"}};
43

44

45 DefaultInputValues ={
46 Lambda1Input -> 0.1,
47 Lambda2Input -> 0.27,
48 Lambda3Input -> 1.1,
49 Lambda4Input ->-0.5,
50 Lambda5Input -> 0.5,
51 M12input ->-5000,
52 TanBeta -> 50
53 };
54

55

56 RenConditionsDecays ={
57 {dCosTW , 1/2* Cos[ThetaW] * (PiVWm /(MVWm ^2)
58 - PiVZ/(mVZ ^2)) },
59 {dSinTW , -dCosTW/Tan[ThetaW]},
60 {dg2 , 1/2*g2*( derPiVPheavy0 + PiVPlightMZ/MVZ^2
61 - (-(PiVWm/MVWm ^2)+ PiVZ/MVZ^2) / Tan[ThetaW ]^2
62 + (2* PiVZVP*Tan[ThetaW ]) / MVZ^2 ) },
63 {dg1 , dg2*Tan[ThetaW ]+g2*dSinTW/Cos[ThetaW]
64 - dCosTW*g2*Tan[ThetaW ]/Cos[ThetaW ]}
65 };
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