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Abstract

This thesis deals with distributed adaptive control of mobile sensor networks. Mobile

sensor network refers to a network of autonomous agents with sensors which can measure

some phenomenon of interest. The particular problems investigated in this thesis are

area coverage control problems and scalar field estimation using mobile sensor networks.

The control and estimation algorithms we develop are distributed in the sense that each

mobile agent or sensor requires only local information (information from the given agent

and its neighbouring agents) for computing its control or update laws. The algorithms

are adaptive in the sense that the density function is assumed to be unknown and the

algorithms are required to adapt for the unknown density function in order to achieve its

objectives. Coverage control refers to the deployment of mobile sensors in order to cover a

given region in space where some event of interest described by a scalar field or a density

function occurs.

This thesis can be broadly divided into three parts. In the first part of the thesis, we

discuss algorithms for adaptive coverage control of differential drive robots using the loc-

ational optimization framework where the density function is unknown. We consider the

full dynamic model of the differential drive robots for developing the control algorithm.

We also extend the adaptive coverage control algorithm to the case where there are un-

certainties present in the robot dynamics. The control algorithms are validated using

simulations.

In the second part of the thesis, we propose a more general formulation of the coverage

control problem, namely minimization of a suitable distance function between density

functions. The core idea of this approach is to define an aggregate sensing function for

the mobile agents, based on the sensing capabilities of the individual sensors. The solution

to the coverage problem is then proposed as the minimization of an appropriate distance

function between the aggregate sensing function of the agents and the target density
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function. We show that the locational optimization problem can be viewed as a special

case of this formulation under certain assumptions. We also consider the L2-distance as

a possible alternative to achieve coverage. We discuss parameter convergence issues and

compare the locational optimization framework with the L2 framework with experimental

data using differential drive robots.

In the third and final part of the thesis, we discuss the related problem of estimating

the density function or scalar field using mobile sensor networks. The density func-

tion is approximated using positive definite radial basis functions, and the corresponding

parameters are estimated using methods from adaptive control and Lyapunov analysis.

Compared to many of the previous works in scalar field estimation, we also provide the-

oretical guarantees for the convergence of the estimates assuming that the scalar field

can be exactly parameterized using the radial basis functions. We develop two types of

algorithms: (1) where each mobile sensor estimates the entire parameter vector, (2) where

each mobile sensor estimates only a subset of the parameters. The first method is seen

to be accurate but computationally expensive, while the second method is less accurate

but computationally less expensive. A modified form of the second method is also seen

to provide better estimates with only a slight increase in computation. Simulations are

used to validate and compare the various algorithms proposed.
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Chapter 1

Introduction

In recent years, cooperative control problems using multiple agents where multiple

agents work together to achieve common tasks in an autonomous manner have become

very popular. Some of the cooperative tasks which have been investigated include ren-

dezvous where the agents try to converge to a common state, formation control where

the agents try to maintain a given spatial formation and coverage control where the

agents are deployed to cover a given region of interest. The applications include surveil-

lance, patrolling, environmental monitoring, and sensing, where multiple mobile robots

or UAVs are used.

The agents in the cooperative setting are typically assumed to be capable of com-

municating with other agents. The communication topology is described in terms of a

graph with nodes and edges where the nodes correspond to the agents, and two nodes

are connected by an edge if the two agents can communicate with each other. In most

cases, communication graphs correspond to proximity graphs meaning that two agents

communicate if they are close to each other. This also motivates the use of decentralized

or distributed control strategies for an efficient solution of multi-agent problems where

the control laws of individual agents are determined by the information exchange with

their neighbouring agents.

The type of problems that are of interest in this thesis are sensing tasks where the

mobile agent or robot is equipped with sensors to measure some quantity of interest at the

agent’s location. In particular, this thesis discusses decentralized or distributed control

strategies using such mobile sensors for coverage control and field estimation problems.

Coverage is an important cooperative control problem where the objective is deploying
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2 Introduction

the mobile agents/sensors to optimally cover a given area of interest according to some

phenomenon occurring in the region characterized by a scalar field, also called a density

function. Such problems find applications in sensing, surveillance, and rescue operations.

Consider, for example, autonomous agents deployed to sense nuclear radiation in a region,

or for monitoring temperature or oil spills in part of the ocean, or networks of UAVs in

a reconnaissance mission for detecting enemy presence in a region. The density function

may be thought of as giving the probability of the particular event to be sensed. In other

applications, the density function may describe the intensity of the phenomenon to be

measured. For example, in the case of mobile sensors deployed to sense nuclear radiation

over a region, the density function could be the intensity of radiation over the region. In

this case, we would like the mobile agents starting at initial positions to converge to an

optimal configuration for sensing purpose.

In many cases, such as the nuclear radiation spill scenario, the density function may

not be known, and in such cases, we may need to adapt for the unknown density function

in the coverage algorithm. In this thesis, we assume that the unknown density function

can be linearly parameterized in terms of known functions. We can then use adaptive

algorithms to estimate the unknown density function as the mobile sensors move and

cover the region. The most widely studied method for achieving coverage is the locational

optimization framework, which is introduced in Chapter 2. The region to be covered

is partitioned into Voronoi cells, and the optimal configuration in this framework is the

centroidal Voronoi configuration, where the agents converge to the centroids of their

partitions. The first part of this thesis is concerned with this problem of adaptive coverage

control of differential drive robots.

In many situations where the density function is not known, it may be beneficial or

even imperative to estimate the density function. Once the density function is estimated,

coverage may then be achieved using the estimated density function, without requiring

adaptation for the unknown density function. The second part of this thesis is concerned

with the problem of estimating the density function or scalar field accurately. This is

different from the adaptive control framework in the first part of the chapter in that

here the objective is field estimation rather than coverage. Once the field is estimated

accurately, the robots can be deployed for coverage without the need to adapt for the

density function. In other words, coverage in the presence of unknown density function
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may be achieved in two ways: (1) deploy robots for coverage and in the process adapt for

the unknown density function, (2) first deploy robots to explore the region and estimate

the density function, and then deployment of robots for coverage can be done. The first

part of the thesis deals with the first case above, while the second part of the thesis deals

with the second case.

More concretely, the contributions of this thesis consist of the following:

• Adaptive coverage control using nonholonomic (differential drive) mobile robots: We

derive adaptive coverage control laws for differential drive robots in the locational

optimization framework. The full dynamic model for differential drive robots is

assumed. We then consider the case where there are unknown parameters in the

robot model and derive adaptive coverage control laws for the same. This also

requires the additional computation of the time derivative of the centroids. We study

the algorithms extensively using simulations in which we compare the dynamics-

based coverage algorithm with the algorithm based on kinematics alone.

• A new formulation of the coverage control problem in terms of distance between

density functions: For each agent, we define a sensing function, and coverage is

obtained by minimizing a distance function between an aggregated sensing function

(among the agents) and the target density function. We show that the locational

optimization problem can be formulated as the minimization of the K-L divergence

with the agent sensing functions being Gaussian functions and the aggregate func-

tion formed by taking the max-operator among the agents. In addition, we con-

sider the L2-distance as a possible means to achieve coverage. In the literature, a

consensus-based adaptation law is seen to provide better convergence of parameters.

We propose a modified form of consensus-based adaptation law for faster conver-

gence of parameters. We present results from a series of experiments on differential

drive robots of the coverage algorithm and compare the performance of L2 coverage

with locational optimization-based coverage, focusing primarily on the performance

of parameter estimation.

• Estimation of the density function or scalar field using a mobile sensor network:

Here we consider the estimation of a scalar field or density function as the primary

objective, as opposed to coverage. We approximate the unknown scalar field as a
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linear combination of radial basis functions and use methods from adaptive control

and Lyapunov analysis to estimate the parameters. This method of scalar field

estimation has not been reported in the literature to the best of our knowledge.

We consider mainly two cases: (1) where each mobile sensor estimates the entire

parameter vector, which can be computationally heavy, (2) where each mobile sensor

estimates only part of the parameter vector, which is computationally much lighter.

We also test and verify the algorithms using simulations.

1.1 Structure of the thesis

In Chapter 2, we present a brief survey of literature related to decentralized coverage

control and scalar field estimation. We will focus on the formulation of the coverage prob-

lem using the locational optimization framework, and this forms the starting point for

the subsequent work in this thesis. In particular, we will focus on an adaptive algorithm

which assumes that the density function is unknown. In Chapter 3, we extend the decent-

ralized adaptive control algorithm to agents with double integrator dynamics and then to

non-holonomic mobile robots. We also discuss the case where the dynamics of the robots

have unknown parameters. In Chapter 4, we compare and discuss simulation results for

the algorithms presented in Chapter 3. In Chapter 5, we consider a more general formu-

lation of the coverage problem where we define coverage as achieving the minimum of a

cost function defined in terms of a distance between the aggregated sensing function of

the agents and the target density function. The notion of L2-distance based coverage is

also introduced in this chapter. In Chapter 6, we discuss coverage and adaptation laws

for differential drive robots in the L2 framework. We also discuss the use of consensus

terms for improved parameter convergence in the adaptation law in Section 6.2. The

experimental results for the coverage algorithms implemented on differential drive robots

are presented in Sections 6.3 and 6.4. In Chapter 7, we formulate the problem of estima-

tion of the density function, and we discuss various algorithms for estimation along with

simulations for validating the algorithms. Finally, we conclude the thesis with Chapter 8,

where we present possible directions for further research.



Chapter 2

Literature Survey

In this chapter, we survey the existing literature on decentralized coverage control

in multi-agent systems.

2.1 Decentralized Coverage Control

In [1], the coverage problem is formulated as follows. This also forms the starting

point of the work in this thesis. Consider N agents and a convex region Q ⊂ Rn in

which the agents are deployed to cover the region for sensing an event of interest. The

position of each agent will be denoted by pi ∈ Rn, and the corresponding velocities are

denoted by ṗi for each i ∈ {1, 2, . . . , N}. The event of interest is described by a density

function φ : Q → R+ over Q which describes the relative importance of various regions

of Q with respect to the sensing objective i.e. the regions where φ has higher values

are more important than the regions with lower values of φ and in the optimal coverage

configuration, the agents should cover the region in proportion to the value of φ. The

Voronoi partitions generated by a set of points {p1, p2, . . . pN} is defined as

Vi = {q : ||q − pi|| ≤ ||q − pj||, ∀j ∈ {1, 2 . . . N}, j 6= i}. (2.1)

Assume that each agent at position pi covers a region Wi. Also, assume that the

sensing reliability of a point in the domain by an agent decreases with the distance of

the point from the agent’s location. Then optimal coverage is formulated in terms of the

following cost function ([1],[2]):

H(p1, . . . , pN ,W1, . . . ,WN) =
N∑

i=1

∫

Wi

||q − pi||2φ(q)dq. (2.2)

5



6 Literature Survey

The optimal coverage configuration is then the set of agent positions pi and the corres-

ponding coverage region of agents Wi such that cost function (2.2) is minimized. It can

be shown that for a given set of agent positions, the cost function (2.2) is minimized when

the coverage region of the agents Wi correspond to the Voronoi partitions Vi generated

by the agent positions P = {p1, p2, . . . , pN} (see [3]). Then we have

H(p1, . . . , pN) =
N∑

i=1

∫

Vi
||q − pi||2φ(q)dq. (2.3)

This minimization problem is also called locational optimization.

The gradient of H with respect to the agent positions pi (see [4],[1],[3]) is given by

∂H
∂pi

= MVi(pi − CVi), (2.4)

where

LVi =

∫

Vi
qφ(q)dq, (2.5)

MVi =

∫

Vi
φ(q)dq, (2.6)

CVi =
LVi
MVi

, (2.7)

MVi is called the mass of φ(·) over Vi, LVi is the first moment of φ(·) over Vi and CVi is

the centroid of φ(·) over Vi. From equation (2.4), it can be seen that the cost function

(2.3) achieves local minimum when pi = CVi , i.e., location of each agent corresponds to

the centroid of its Voronoi partition. Such a configuration is called the centroidal Voronoi

configuration. Thus the objective is to obtain control laws for the agents to cover the

region Q optimally by making the agents converge to a centroidal Voronoi configuration.

Assuming that the agent dynamics are given by

ṗi = ui, (2.8)

the control law is given by

ui = −kp(pi − CVi), (2.9)

where kp is a positive gain. The control law is proportional to the negative gradient of

the cost function and thus drives the robots to a configuration with minimum value of

the cost function (see [1]).
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Various extensions to this approach have been proposed in the literature. In [5], the

authors extend the work of [1] to cover heterogeneous robots whose sensor footprints are

not uniform. They also consider robots having a finite size for avoiding collisions, and

extend the work for non-convex environments using the notion of geodesic distance. In [6],

the authors propose a decentralized coverage control algorithm using the locational op-

timization framework for the case where the sensing performance of the individual sensors

is assumed to be location-dependent. Their work assumes that the sensor performance

at a location depends on both the distance of the location from the sensor as well as the

location of the sensor rather than the distance of the location from the sensor alone. In

[7], the authors discuss coverage for autonomous aerial robotic camera networks. They

propose decentralized coverage control strategies for six degree of freedom robotic camera

network such that the objective function ’information per pixel’ of the camera image is

maximized. The objective function assumes the form of the location optimization object-

ive function, and the optimal configuration is the centroidal Voronoi configuration. In [8],

the authors propose a modification of the Voronoi partition-based method for exploration

and coverage of non-convex domains by multiple robots. They modify the distance metric

(which was the euclidean distance) to a graph-based metric obtained by discretizing the

domain and constructing a graph with the discrete cells as the nodes and a link between

the neighbouring nodes. They also propose entropy-based formulations for exploration

of a given unknown environment. In [9], the authors discuss coverage on infrastructure

networks such as water pipelines where the sensors could be placed anywhere along the

edges of the network or the nodes. Voronoi partition-based method is used to obtain the

optimum configuration, and the sensor locations are updated from their initial conditions

using a gradient law to reach the optimum configuration. They also propose methods for

choosing the initial configuration so that faster convergence is achieved.

In [10], the authors propose a decentralized control algorithm for coverage of robotic

sensors where a density function is defined on the domain representing the frequency of

random events taking place. A gradient-based law is proposed for maximizing the joint

probability of detecting a random event. In [11], the authors talk about task switching in

multi-agent networks in a cooperative manner. All the agents are required to carry out

multiple cooperative tasks. The consensus-like algorithm determines when to switch to the

next task in a synchronous manner. In particular, the paper gives an example where the
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agents do an exploration task first and then switch to a coverage task. In [12], the authors

discuss coverage for a one-dimensional problem where the sensory distribution function

is unknown and stochastic. The coverage cost function is optimized in terms of the usage

probabilities of the agents, which are the probabilities of the occurrence of the random

events to be sensed within each agent’s Voronoi region. i.e., it tells how frequently each

agent is being used. In [13] and [14], the authors discuss coverage using a method inspired

from the behavior of bacteria. The method is compared with the Voronoi partition-based

method of [1] and found to give similar results. In [15], the authors propose algorithms

for coverage enhancement by removing redundant links in communication graph among

the agents and reconfigures the agents using potential function based control laws so that

the agents between whom a link was removed separates out of the communication range

of each other while keeping those agents close enough between whom a communication

link exists. In [16], the authors talk about coverage of a region using virtual springs.

The neighbouring robots are assumed to be connected through virtual springs with three

parameters - the spring constant, the damping constant, and a nominal length of the

spring. The authors talk about the adaptation of the spring constant and damping con-

stant parameters so as to achieve fast convergence to a stable configuration. In [17], the

authors propose a game theory-based solution for the coverage control problem assum-

ing the environment is unknown but modelled using a Gaussian mixture model whose

parameters are updated as the algorithm runs. The utility function for the individual

agents depends on the coverage worth of a given area as well as the energy required to

achieve the coverage of the area. In [18], the authors use receding horizon control for the

coverage of mobile robots. They develop a distributed algorithm where each robot solves

a receding horizon optimal control problem at each discrete time. In [19], the authors

talk about persistent awareness coverage. Persistent coverage implies that each agent

visits each point in the domain periodically. Persistent coverage problems have also been

investigated in [20, 21]. In [22, 23, 24], the authors talk about different generalizations

of the coverage problem based on locational optimization by using different assumptions

on the agent sensing capabilities. More recently, in [25], the authors develop coverage

control laws for time-varying density functions, where the time variation is assumed to be

known. In [26], the authors consider coverage problem where agent sensing capabilities

are described by polynomial functions and uses tools from algebraic geometry to solve



2.2 Adaptive Decentralized Coverage Control 9

the problem. In [27], the authors develop a coverage control algorithm for heterogeneous

teams of robots deployed to sense multiple phenomena. In [28], the authors consider the

extension of the locational optimization-based coverage problem with multiple phenom-

ena, each modelled as a separate density function, and propose distributed algorithms for

locally optimal solutions.

2.2 Adaptive Decentralized Coverage Control

In [29] and [30], the authors extend the algorithm of [1] for the case where the density

function is unknown. It is assumed that the density function can be written in the form

φ(q) = K(q)Ta, (2.10)

where K : Rn → Rm
+ and a ∈ Rm

+ is a constant parameter vector. It is assumed that K(q)

is known to all the agents, but a is unknown. The parameter vector a is assumed to be

lower bounded and thus satisfies

ai ≥ amin, i = 1, 2, . . . ,m, (2.11)

where ai is the ith component of a, and amin is the lower bound assumed to be known.

It is assumed that each agent can measure the value of density function φ(q) at its

current location. Since the true parameter a is not known, each agent will use an estimate

of a denoted by âi. The corresponding estimated quantities are given by φ̂i(q) = K(q)T âi

which is the agent i’s estimate of the density function, M̂Vi =
∫
Vi φ̂i(q)dq which is the

agent i’s estimate of the mass of φ(·) over Vi, L̂Vi =
∫
Vi qφ̂i(q)dq which is the agent i’s

estimate of LVi and ĈVi =
L̂Vi
M̂Vi

which is agent i’s estimate of the centroid CVi . The control

law for single integrator agents is given by

ui = −k1(pi − ĈVi). (2.12)

In addition the following quantities are defined, ([29]),

Λi(t) =

∫ t

0

e−α(t−τ)Ki(τ)Ki(τ)Tdτ, (2.13)

λi(t) =

∫ t

0

e−α(t−τ)Ki(τ)φi(τ)dτ, (2.14)
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bi = −
∫

Vi
K(q)(q − ĈVi)Tdq êi − γ(Λiâi − λi), (2.15)

where Ki(t) := K(pi(t)), φi(t) = φ(pi(t)) which corresponds to agent i’s measurement

of the density function φ(·), êi = ĈVi − pi is the estimated error, α and γ are positive

constants. Then the adaptation law for âi is given by

˙̂ai = Γ(bi − Iβibi), (2.16)

where Iβi is a diagonal matrix with diagonal elements given by

Iβi(j) =





0 for âi(j) > amin,

0 for âi(j) = amin & bi(j) ≥ 0,

1 otherwise,

(2.17)

and Γ > 0 is positive definite. The adaptation law consists of the term bi in addition to

a projection defined by (2.17) to make sure that the updated parameter value is always

greater than the assumed minimum amin.

We now state the main theorem in [29],[30].

Theorem 2.1. Consider n agents with dynamics given by

ṗi = ui.

With the control law given by (2.12) and the update law for âi given by (2.16), the following

holds:

(a) limt→∞(pi − ĈVi) = 0, ∀i ∈ {1, 2, . . . , n},
(b) limt→∞Ki(τ)ãi(t) = 0, ∀τ s.t 0 ≤ τ ≤ t and ∀i ∈ {1, 2, . . . , n},
where ãi = âi − a is the parameter estimation error of the i-th agent.

In [31], the authors extend the work to nonholonomic sensors with the agent models given

by the kinematic equations. The authors use the kinematic equations for unicycle robots

in polar coordinates. We will consider differential drive kinematics together with the

complete dynamics of the robots to derive the coverage and adaptation laws in chapter 3.

In [32], a continuum model is considered where a large number of agents forming a swarm

is considered as defining a flow. Ideas from optimal transport are used for generating a

gradient flow to move the initial configuration to a target configuration. In [33], coverage

control is performed by minimizing the statistical distance called the f -divergence. This



2.3 Field Estimation using Mobile Sensor Networks 11

work relates to aspects of work in the current thesis in chapter 5, where we generalize the

coverage problem in terms of distance functions, though our formulation is more general

and we do not consider f -divergence in this thesis.

2.3 Field Estimation using Mobile Sensor Networks

Several works have studied field estimation using wireless sensor networks. See,

for example [34, 35]. In [36] the scalar field is assumed to be modelled using a partial

differential equation, and finite element methods are used for estimating the field. In

[37, 38, 39, 40, 41, 42], the field is modelled as a spatial random process and estimated using

samples from the sensor nodes. In [43], field reconstruction is posed as an optimization

problem constrained by linear dynamics, and a gradient-based method is used to solve

the problem. In [44], the scalar field is assumed to be linearly parameterized in terms of

Gaussian basis functions and the measurements from the sensors are fused together to

form an estimate for the scalar field. In most of these cases, the sensors are assumed to

be fixed and distributed over the region of interest. Usually, a large number of sensors

are required to be installed for achieving enough spatial resolution. Using mobile sensor

networks can be highly advantageous since they can move around the region of interest

and collect measurements adaptively; the number of sensors required is greatly reduced.

In [45, 46], scalar field estimation is done with mobile sensor network by fusing sensor

measurements using consensus filters. The region of interest is divided into cells, and the

scalar field value at each cell is estimated by fusing sensor measurements of the various

mobile sensors at the cell using a consensus algorithm whose weights are updated to

ensure improvement in the confidence level of the estimate. The mobile sensors move

in a formation with a leader which moves so that the sensors are able to cover all the

cells. In [47], information about a scalar field is obtained by exploring the level surfaces

of the field using a mobile sensor network. In [48], a static sensor network is used along

with a mobile robot to estimate a scalar field by combining the robot measurements with

the sensor network measurements and planning the robot trajectory to minimize some

reconstruction error.
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Chapter 3

Adaptive Coverage Control of

Mobile Robots

In this chapter, we will extend the adaptive coverage control algorithm discussed in

section 2.2 to mobile robots. As in section 2.1, we consider N mobile robots or agents

deployed over a bounded and convex region Q ⊂ Rn. The density function φ : Q → Rn
+

describes a phenomenon of interest with respect to which the robots are deployed to cover

the region. The individual robot positions are denoted as pi, i = 1, 2, . . . , N . See figure

3.1.

It is assumed that the density function φ(·) is unknown to the agents. We make

the same assumptions on the density function φ(·) as described in section 2.2, which are

re-stated below. It is assumed that the density function can be written in the form

φ(q) = K(q)>a, (3.1)

where K : Rn → Rm
+ and a ∈ Rm

+ is a constant parameter vector. It is assumed that K(·)
is known to all the agents whereas a is unknown. K(q)> = [K1(q) K2(q) . . . Km(q)] can

be interpreted as a set of basis functions whose weighted combination gives the density

function φ(q). The parameter vector a is assumed to be lower bounded and thus satisfies

ai ≥ amin, i = 1, 2, . . . ,m, (3.2)

where ai is the ith component of a. This assumption is required to make sure that the

estimate of φ(·) never becomes zero, and thus the control inputs are always well defined.

It is assumed that each agent can measure the value of density function φ(·) at its

current location. Since the true parameter a is not known, each agent will use an estimate

13
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Bounded Convex Region

Q ⊂ Rn
φ : Q → R+

p1

p2
p3

p4

p5

Figure 3.1: The coverage problem

of a denoted by âi. Adaptation law will be derived for âi so that the desired objectives are

achieved. We also define the corresponding estimated quantities φ̂i(q) = K(q)T âi which

is the agent i’s estimate of the density function, M̂Vi =
∫
Vi φ̂i(q)dq which is the agent i’s

estimate of the mass of Vi, L̂Vi =
∫
Vi qφ̂i(q)dq which is the agent i’s estimate of LVi and

ĈVi =
L̂Vi
M̂Vi

which is agent i’s estimate of the centroid of Vi.
First, we derive the control and adaptation law for agents with double integrator

dynamics. Then we extend the algorithm to nonholonomic mobile dynamics. Next, we

discuss the extension of the control and adaptation laws to the case where the robot

dynamics are unknown.

3.1 Double Integrator Dynamics

We consider the following dynamics for the individual agents:

p̈i = ui, i = 1, 2, . . . , N. (3.3)

This can be rewritten as

ṗi1 = pi2 ,

ṗi2 = ui,
(3.4)
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where pi1 := pi is the position of agent i and pi2 := ṗi is the velocity of agent i.

Theorem 3.1 below gives an adaptive decentralized control law for agents with dy-

namics (3.4) to converge to centroidal Voronoi configuration under the above stated as-

sumptions. The control law is given by

ui = −k1M̂Vi(pi1 − ĈVi)− k2pi2 (3.5)

= −k1M̂Vi(pi − ĈVi)− k2ṗi. (3.6)

The control is of P-D type with a position error term and a velocity feedback term. In

addition the following quantities are defined [29],

Λi(t) =

∫ t

0

e−α(t−τ)Ki(τ)Ki(τ)Tdτ, (3.7)

λi(t) =

∫ t

0

e−α(t−τ)Ki(τ)φi(τ)dτ, (3.8)

bi = −k1

∫

Vi
K(q)(q − pi)Tdq pi2 − γ(Λiâi − λi), (3.9)

where Ki(t) := K(pi1(t)), φi(t) = φ(pi1(t)) which corresponds to agent i’s measurement of

the density function φ(q), α, and γ are positive constants. Λi(t) and λi(t) can be obtained

using the following filter equations with zero initial conditions:

Λ̇i = −αΛi(t) +Ki(t)Ki(t)T , (3.10)

λ̇i = −αλi(t) +Ki(t)φi(t). (3.11)

Then the adaptive law for âi is given by

˙̂ai = Γ(bi − Iβibi), (3.12)

where Iβi is a diagonal matrix with diagonal elements given by

Iβi(j) =





0 for âi(j) > amin,

0 for âi(j) = amin & bi(j) ≥ 0,

1 otherwise,

(3.13)

and Γ > 0 is positive definite. The adaptation law consists of the term bi in addition to

a projection defined by (3.13) to make sure that the updated parameter value is always

greater than the assumed minimum amin.

We now state the theorem.
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Theorem 3.1. Consider N agents with dynamics given by (3.4). With the control law

given by (3.6) and the update law for âi given by (3.12), the following holds:

(a) limt→∞(pi1 − ĈVi) = 0,

(b) limt→∞ pi2 = 0,

(c) limt→∞Ki(τ)ãi(t) = 0, ∀τ s.t t− T ≤ τ ≤ t for any finite positive T,

for all i ∈ {1, 2, . . . , N}.

Proof. The proof essentially follows the proof of the main theorem in [29]. Define the

function

V (t) = k1H +
1

2

N∑

i=1

ãTi Γ−1ãi +
1

2

N∑

i=1

pTi2pi2 , (3.14)

where ãi = âi − a. This function is non-negative and hence, lower bounded. We next

prove that its time derivative is non-positive. i.e., V is non-increasing.

V̇ =
N∑

i=1

{
k1
∂H
∂pi1

ṗi1 + ãTi Γ−1 ˙̂ai + pTi2 ṗi2

}

=
N∑

i=1



−k1

∫

Vi

(q − pi1)Tφ(q)dq pi2 + ãTi Γ−1 ˙̂ai + pTi2ui



 .

Putting φ(q) = K(q)Ta = K(q)T (âi − ãi) = φ̂(q) − K(q)T ãi and also substituting for ui

from (3.6), we get

V̇ =
N∑

i=1



−k1

∫

Vi

(q − pi1)T φ̂(q)dq pi2 + k1

∫

Vi

ãTi K(q)(q − pi1)Tdq pi2 + ãTi Γ−1 ˙̂ai + pTi2ui





=
N∑

i=1

{
−k1M̂Vi(ĈVi − pi1)Tpi2 + ãTi k1

∫

Vi

K(q)(q − pi1)Tdqpi2 + ãTi Γ−1 ˙̂ai

+ pTi2

(
−k1M̂Vi(pi1 − ĈVi)− k2pi2

)}
.

The first term in the above expression cancels out leading to

V̇ =
N∑

i=1



ã

T
i k1

∫

Vi

K(q)(q − pi1)Tdqpi2 + ãTi Γ−1 ˙̂ai − k2p
T
i2
pi2



 .

Substituting for ˙̂ai with the adaptation law given by equations (3.12) and (3.13), we get

V̇ =
N∑

i=1

{
ãTi [−γ(Λiâi − λi)− Iβibi]

}
−

N∑

i=1

k2p
T
i2
pi2
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=
N∑

i=1

{
−γãTi (Λiâi − λi)− ãTi Iβibi

}
−

N∑

i=1

k2p
T
i2
pi2

=
N∑

i=1

{
−γãTi

[∫ t

0

e−α(t−τ)Ki(τ)KTi (τ)âidτ −
∫ t

0

e−α(t−τ)Ki(τ)φi(τ)dτ

]
− ãTi Iβibi

}

−
N∑

i=1

k2p
T
i2
pi2

=
N∑

i=1

{
−γ
∫ t

0

e−α(t−τ)(KTi (τ)ãi(t))
2dτ − ãTi Iβibi

}
−

N∑

i=1

k2p
T
i2
pi2 .

It is clear that the first and the last terms in the above expression are non-positive. We

can also show that the second term is non-positive as follows: From equation 3.13, it is

clear that when âi(j) > amin or when âi(j) = amin and bi(j) ≥ 0, the term ãTi Iβibi vanishes.

When âi(j) = amin and bi(j) < 0, we have that ãi(j) ≤ 0 by assumption (2.11). This

means that the term ãTi Iβibi ≥ 0, making the second term in the above V̇ expression

non-positive. Thus we have shown that V̇ is non-positive or non-increasing.

Now, since V is positive (and thus is bounded below by zero) and its time derivative V̇ is

non-positive, it follows that limt→∞ V (t) <∞ is finite. This implies that V̇ is integrable

and limt→∞
∫ t

0
V̇ dt < ∞ is finite. This together with the fact that pi2 , ṗi2 are bounded

allows us to conclude that

lim
t→∞

pi2 = 0, (3.15)

using Barbalat’s lemma. In a similar manner, we can show that

lim
t→∞

∫ t

0

e−α(t−τ)(KTi (τ)ãi(t))
2dτ = 0. (3.16)

Equation (3.15) along with the fact that ṗi2 is uniformly continuous (this is because each

term of p̈i2 = u̇i is bounded, see Lemma 1 in the appendix of [30]) implies that limt→∞ ṗi2 =

0 using Barbalat’s lemma. This along with the fact that ṗi2 = ui = −k1M̂Vi(pi1 − ĈV〉)−
k2pi2 allows us to conclude that

lim
t→∞

(pi1 − ĈVi) = 0. (3.17)

Now consider equation (3.16). The integrand is always non-negative which implies that

the integral can be zero only if the integrand converges to zero. This, in turn, implies

that

lim
t→∞

e−α(t−τ)(Ki(τ)ãi(t))
2 = 0, ∀τ s.t 0 ≤ τ ≤ t, (3.18)
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for all i ∈ {1, 2, . . . , N}. Now, given any finite T > 0, e−α(t−τ) > 0 for t − T < τ < t.

Then for equation (3.18) to hold, we require

lim
t→∞

(Ki(τ)ãi(t)) = 0, ∀τ s.t t− T ≤ τ ≤ t. (3.19)

Thus equations (3.15), (3.17), (3.19) hold, and the theorem is proved.

Remark 3.2. Equation (3.19) implies

lim
t→∞
Ki(τ)T âi(t) = Ki(τ)Ta,

∀τ s.t t − T ≤ τ ≤ t and ∀i ∈ {1, 2, . . . , n} where a is the true parameter, i.e., the

estimated density function φ̂ converges to the true value for points on the robot trajectory

and not necessarily for all points in Q. Since the agents converge only towards the

estimated centroids, we will call such a configuration near-optimal configuration. See also

[29, 30]. In [30], it is shown that if limt→∞ Λi(t) is positive definite, then limt→∞ ãi(t) = 0

and thus, the estimated centroid ĈVi converges to the true centroid CVi which corresponds

to the optimal coverage configuration. This condition is similar to (but weaker than) the

persistency of excitation condition. We will discuss parameter convergence in more detail

in chapter 6.

3.2 Extension to dynamics of nonholonomic robots

In the literature, control of mobile robots is often accomplished using the kinematic

model (unicycle model, for example). In this section, we will extend the result for coverage

control to nonholonomic agents using dynamic models. In particular we will consider

mobile robots of differential drive type. The general model for mobile robots obtained

using the Euler-Lagrange equation is (see [49])

Mi(qi)q̈i + Vmi(q, q̇i)q̇i + Fi(q̇i) +G(qi) = B(qi)τi − ATi (qi)ηi, (3.20)

where the subscript i denotes the ith robot, qi ∈ Rq gives the generalized coordinates,

Mi(qi) ∈ Rq×q is inertia matrix (symmetric, positive definite), Vm(qi, q̇i) ∈ Rq×q is the

centripetal and Coriolis matrix, Fi(q̇i) ∈ Rq is the vector representing the surface friction,

Gi(qi) ∈ Rq is the vector representing the gravitational force, Bi(qi) ∈ Rq×l is the input

transformation matrix, τi ∈ Rl is the input vector, Ai(qi) ∈ Rc×q is the constraint matrix
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Figure 3.2: Mobile robot

and ηi ∈ Rc is the vector of constraint forces. The non-holonomic constraints are given

by

Ai(qi)q̇i = 0. (3.21)

We also define a matrix Si(qi) ∈ Rq×(q−c) whose columns span the null space of Ai(qi),

STi (qi)A
T
i (qi) = 0. (3.22)

Now we consider the dynamic model for a nonholonomic planar mobile robot with two

actuated wheels, which also integrates the kinematic model as presented in [49]. We will

assume that the robots are identical, with mass m, radius of the wheels equal to r, length

of the axle between the two wheels equal to 2R and the distance between the center of

mass and the axle equal to d. See figure 3.2. In this case qi = [xci yci θi]
T where (xci, yci)

gives the coordinates of the center of mass of the ith robot and θi gives the orientation of

the ith robot. The nonholonomic constraints are given by (assuming no-slip condition)

ẏcicos(θi)− ẋcisin(θi)− dθ̇i = 0, (3.23)
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which gives

Ai(qi) = [−sin(θi) cos(θi) − d ] ,

and Si(qi) is given by

Si(qi) =




cos(θi) −dsin(θi)

sin(θi) dcos(θi)

0 1


 . (3.24)

We get the kinematic equations as

qi = Si(qi)vi, (3.25)

where vi := [ui ωi]
T . Here ui is the linear velocity of the center of mass and ωi is the

angular velocity. The other dynamical quantities are given by

M(q) =




m 0 md sin(θi)

0 m −md cos(θi)

md sin(θi) −md cos(θi) I


 ,

Vi(qi, q̇i) =




mdθ̇2
i cos(θi)

mdθ̇2
i sin(θi)

0


 , Gi(qi) = 0,

Bi(qi) =
1

r




cos(θi) cos(θi)

sin(θi) sin(θi)

R −R


 , τi =


 τir

τil


 ,

where τir and τil are the torque inputs to the right and left wheels of the ith robot,

respectively. We can convert the above dynamical model given by (3.20) into the following

form, as presented in [49].

q̇i = Si(qi)vi, (3.26)

M̄i(qi)v̇i = B̄iτi − V̄mi(qi, q̇i)vi − F̄ (vi), (3.27)

where M̄i = STi MiSi is a symmetric and positive definite inertia matrix, V̄mi = STi (MiṠi+

VmiSi) is the centripetal and Coriolis matrix, F̄i(vi) is the surface friction term, B̄i = STi Bi

is a constant non-singular matrix. We will use the model given by equations (3.26) and

(3.27) in what follows. Also, we will assume that all the parameters and other quantities

in the model equations are fully known for deriving the coverage control.
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It can be shown that the matrix ˙̄
iM − 2V̄mi is skew symmetric (see [49]), i.e.,

1

2
ζT ( ˙̄

iM − 2V̄mi)ζ = 0, ∀ ζ ∈ R2, and all i ∈ {1, 2, . . . , N}. (3.28)

We also note that qi = [xci yci θi]
T = [pTi θi]

T where pi = [xci yci]
T is the location of the

ith robot. Correspondingly, we divide the matrix Si(qi) as


ṗi
θ̇i


 =


S

1
i (qi)

S2
i (qi)


 vi. (3.29)

We now have the following theorem.

Theorem 3.3. Consider N agents with dynamics given by (3.26) and (3.27). With the

control law for the ith given by

τi = B̄−1
i

{
−k1M̂Vi(S

1
i )
T (pi − ĈVi)− k2vi + F̄i

}
, (3.30)

where k1, k2 are positive scalar gains, and the adaptation law for âi given by

˙̂ai = Γ(bi − Iβibi), (3.31)

with

bi = −k1

∫

Vi
K(q)(q − pi)Tdq S1

i vi − γ(Λiâi − λi), (3.32)

Γ > 0 a positive definite gain matrix, Λi given by equation (3.7), λi given by equation

(3.8) and Iβi given by equation (3.13), the following holds:

(a) limt→∞(pi − ĈVi) = 0,

(b) limt→∞ vi = 0,

(c) limt→∞Ki(τ)ãi(t) = 0, ∀τ s.t t− T ≤ τ ≤ t for any finite positive T,

for all i ∈ {1, 2, . . . , N}.

Proof. The proof proceeds in the same manner as in the proof of Theorem 3.1 by consid-

ering

V (t) = k1H +
1

2

N∑

i=1

ãTi Γ−1ãi +
1

2

N∑

i=1

vTi M̄ivi. (3.33)

Taking the derivative,

V̇ =
N∑

i=1

{
k1
∂H
∂pi

ṗi + ãTi Γ−1 ˙̂ai + vTi M̄iv̇i +
1

2
vTi

˙̄Mivi

}
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=
N∑

i=1



−k1

∫

Vi

(q − pi)Tφ(q)dq S1
i vi + ãTi Γ−1 ˙̂ai + vTi (B̄iτi − V̄mivi − F̄i) +

1

2
vTi

˙̄Mivi





=
N∑

i=1



−k1

∫

Vi

(q − pi)Tφ(q)dq S1
i vi + ãTi Γ−1 ˙̂ai + pTi2(B̄iτi − F̄i) +

1

2
vTi ( ˙̄Mi − 2V̄mi)vi



 .

Using the skew-symmetric property (3.28) and the equation for control τi given by (3.30),

we get

V̇ =
N∑

i=1



−k1

∫

Vi

(q − pi)Tφ(q)dq S1
i vi + ãTi Γ−1 ˙̂ai + vTi (−k1M̂Vi(S

1
i )
T (pi − ĈVi))− k2v

T
i vi





=
N∑

i=1



−k1M̂Vi(ĈVi − pi)TS1

i vi + ãTi k1

∫

Vi

K(q)(q − pi)TdqS1
i vi + ãTi Γ−1 ˙̂ai





+
N∑

i=1

{
vTi

(
−k1M̂Vi(S

1
i )
T (pi − ĈVi)

)
− k2v

T
i vi

}
.

Substituting the adaptation law (3.31) and simplifying, we get

V̇ =
n∑

i=1

{
−γ
∫ t

0

e−α(t−τ)(KTi (τ)ãi(t))
2dτ − ãTi Iβibi

}
−

n∑

i=1

k2v
T
i vi.

As in the proof of Theorem 3.1, it can be shown that all the three terms in the above

expression are positive, which means that V̇ is non-increasing. Since V is non-negative

(bounded below by zero) and its time derivative V̇ is non-positive, it follows that limt→∞ V (t) <

∞ (is finite). This implies that V̇ is integrable and limt→∞
∫ t

0
V̇ dt < ∞ (is finite). This

together with the fact that vi, v̇i are bounded allows us to conclude that

lim
t→∞

vi = 0, (3.34)

using Barbalat’s lemma. In a similar manner, we can show that

lim
t→∞

∫ t

0

e−α(t−τ)(K>i (τ)ãi(t))
2dτ = 0. (3.35)

Equation (3.34) along with the fact that v̇i is uniformly continuous (this is because each

term of v̈i = d
dt

[
M̄−1

i

(
−k1M̂Vi(S

1
i )
>(pi − ĈVi)− k2vi − V̄mi(qi, q̇i)vi

)]
is bounded; also

see Lemma 1 and 2 in the appendix of [30]) implies that limt→∞ v̇i = 0 using Barbalat’s

lemma. This along with the fact that the closed loop dynamics are given by M̄iv̇i =

−k1M̂Vi(S
1
i )
>(pi − ĈV〉)− k2vi − V̄mi(qi, q̇i)vi allows us to conclude that

lim
t→∞

(pi1 − ĈVi) = 0 (3.36)
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since S1
i is non-singular. Now consider equation (3.35). Similar to the proof of Theorem

3.1, we can conclude from equation (3.35) that

lim
t→∞

(Ki(τ)ãi(t)) = 0, ∀τ s.t t− T ≤ τ ≤ t, (3.37)

given any finite T > 0. Thus equations (3.34), (3.36), (3.37) hold and the statements (a),

(b) and (c) of the theorem are proved.

Remark 3.4 (Regarding orientations of the robots). Theorem (3.3) states that utilizing the

control law and adaptation law given by (3.30) and (3.31), the robot positions converge

to the estimated centroids. Regarding the orientation of the robots, we can only conclude

from the above theorem that θ̇i is bounded, and limt→∞ θ̇i = 0. This is the case since

limt→∞ vi = 0 implies limt→∞ ωi = 0 which in turn implies that limt→∞ θ̇i = 0.

3.3 Adaptive Coverage Control with Model Uncer-

tainties

In practical scenarios, the parameters in the robot dynamics such as friction coef-

ficients or inertia parameters may not be well known. In this section, we extend the

adaptive coverage control algorithm for the case where the robot dynamics contain un-

known parameters. We use an additional adaptation law to account for the unknown

parameters in the design of the control law.

We assume that the kinematics of the robots are fully known i.e., the entries of the

matrix S(q) in equation (3.26) is known. The dynamics equation given by (3.27) contains

unknown/uncertain parameters. We also make the following assumption concerning the

unknown parameters:

Assumption 3.5.

M̄i(qi)ż + V̄mi(qi, q̇i)z + F̄ (v) := Wi(q, q̇, v, z, ż)Tη, ∀z ∈ R2, (3.38)

where η ∈ Rd is a constant vector.

We cannot use the Lyapunov function from Theorem 3.3 in section 3.2 for deriving the

control since it will lead to a detectability obstacle and the desired stability cannot be

established. The problem is that vi tending to zero (see equation (3.34)), does not imply
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from the closed loop dynamics that the position error pi − ĈVi goes to zero, since the

parameters are not exactly known and thus the control input cannot exactly cancel the

terms containing the parameters. The control law, in this case, can be designed using the

backstepping approach. Considering the kinematic equation (3.26) with vi as the control

and the Lyapunov function

V1 = k1H +
N∑

i=1

1

2
ãTi Γ−1

a ãi. (3.39)

Its derivative is given by

V̇1 = k1

N∑

i=1

{
M̂Vi(pi − ĈVi)T ṗi + ãTi

∫

Vi
K(q)(q − pi)Tdq ṗi

}
+

N∑

i=1

ãTi Γ−1
a

˙̂ai. (3.40)

Using the adaptation law for âi given by equation (3.31) and the control law for vi as

vi = vid := −(S1(q))T (pi − ĈVi), (3.41)

we get

V̇1 = −k1M̂Vi

N∑

i=1

‖(S1(q))T (pi − ĈVi)‖2 −
N∑

i=1

{
γ

∫ t

0

e−α(t−τ)(KTi (τ)ãi(t))
2dτ + ãTi Iβibi

}
.

(3.42)

The fact that V1 is lower bounded and V̇1 is non-positive implies that limt→∞ V1(t) exists.

This, in turn, implies that V̇1 is integrable. This along with the fact that the first term of V̇1

is uniformly continuous and S1(q) is non-singular allows us to conclude that limt→∞(pi−
ĈVi) = 0. Also, the statement (c) of Theorem 3.3 holds in this case.

Now we consider the full dynamical model given by equations (3.26) and (3.27).

Using assumption 3.5, we define

M̄i(qi)v̇id + V̄mi(qi, q̇i)vid + F̄ (vi) = Wi(q, q̇, vi, vid, v̇id)
Tη := W T

i ηi, (3.43)

where ηi ∈ Rd is an unknown constant parameter. We will use η̂i to denote the estimate

of ηi computed by agent i. We now have the following theorem:

Theorem 3.6. Consider N agents with dynamics given by (3.26) and (3.27). With the

control law for the ith agent given by

τi = B̄−1
i

{
W T
i η̂i − k1M̂Vi(S

1(q))T (pi − ĈVi)− k2(vi − vid)
}
, (3.44)
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with vid given by (3.41), the adaptation law for âi given by

˙̂ai = Γa(bi − Iβibi), (3.45)

the adaptation law for η̂i given by

˙̂ηi = ΓηWi(vi − vid), (3.46)

bi and Iβi given by equations (3.9) and (3.13), Γa and Γη are positive definite gain

matrices, Λi and λi given by equations (3.7) and (3.8), the following holds:

(a) limt→∞(pi − ĈVi) = 0,

(b) limt→∞ vi = 0,

(c) limt→∞Ki(τ)ãi(t) = 0, ∀τ s.t t− T ≤ τ ≤ t and any finite positive T,

for all i ∈ {1, 2, . . . , N}.

Proof. Consider the Lyapunov function

V2 = V1 +
1

2

N∑

i=1

ṽ>i M̄ṽi +
1

2

N∑

i=1

η̃>i Γ−1
η η̃i, (3.47)

where η̃i = η̂i − ηi, ṽi = vi − vid.
Computing the derivative of V2, we have

V̇2 = V̇1 +
N∑

i=1

[
ṽ>i M̄ ˙̃vi +

1

2
ṽ>i

˙̄Mṽi

]
+

N∑

i=1

η̃>i Γ−1
η

˙̂ηi

=
N∑

i=1

{
k1M̂Vi(pi − ĈVi)>S1(q)vi + ṽ>i

[
B̄iτi − V̄mivi − F − M̄v̇id

]

+
1

2
ṽ>i

˙̄Mṽi + η̃>i Γ−1
η

˙̂ηi − γ
∫ t

0

e−α(t−τ)(K>i (τ)ãi(t))
2dτ − ã>i Iβibi

}
.

Rearranging terms and using equation (3.43),

V̇2 = k1

N∑

i=1

M̂Vi(pi − ĈVi)>S1(q)vi +
N∑

i=1

{
ṽ>i
[
B̄iτi −W T

i ηi
]

+
1

2
ṽ>i (

1

2
˙̄M − V̄mi)ṽi

}

+
N∑

i=1

η̃>i Γ−1
η

˙̂ηi −
N∑

i=1

{
γ

∫ t

0

e−α(t−τ)(K>i (τ)ãi(t))
2dτ + ã>i Iβibi

}
.

Using the skew-symmetry property (3.28), control law (3.44) and the adaptation law

(3.46) for η̂i, we get

V̇2 = k1

N∑

i=1

M̂Viv
>
id[S

1(q)]>(pi − ĈVi)− k2

N∑

i=1

ṽ>i ṽi
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−
N∑

i=1

{
γ

∫ t

0

e−α(t−τ)(K>i (τ)ãi(t))
2dτ + ã>i Iβibi

}

= −k1

N∑

i=1

M̂Vi‖(S1(q))>(pi − ĈVi)‖2 − k2

N∑

i=1

‖ṽi‖2

−
N∑

i=1

{
γ

∫ t

0

e−α(t−τ)(K>i (τ)ãi(t))
2dτ + ã>i Iβibi

}
.

V2 is non-negative and V̇2 is non-increasing. Using a similar analysis to that in the proof

of Theorem 3.3, it can be shown that for each i ∈ {1, 2, . . . , N},

lim
t→∞
‖(S1(q))>(pi − ĈVi)‖ = 0, (3.48)

lim
t→∞
‖vi − vid‖ = 0, (3.49)

lim
t→∞
Ki(τ)ãi(t) = 0, ∀τ s.t t− T ≤ τ ≤ t, where T > 0. (3.50)

Statement (a) of the theorem follows from equation (3.48) and the fact that S1(q) is non-

singular. Equations (3.48) and (3.49) imply statement (b) of the theorem. Statement (c)

of the theorem follows from equation (3.50).

Remark 3.7. Regarding the orientation of the agents, as in the case of Theorem 3.3, we

have that θ̇i is bounded and limt→∞ θ̇i = 0 for all i ∈ {1, 2, . . . , N}.

Remark 3.8. Computing the adaptive control law (3.44) requires computing v̇id which in

turn requires the knowledge of
˙̂
CVi . Computation of

˙̂
CVi requires computing the time

derivative of spatial integrals whose area of integration depends on time and is thus a

non-trivial task. We look at the computation of
˙̂
CVi for planar robots below.

Computing
˙̂
CVi

We have

ĈVi =
L̂Vi

M̂Vi
, where L̂Vi =

∫

Vi
qφ̂(q)dq, M̂Vi =

∫

Vi
φ̂(q)dq. (3.51)

Then,

˙̂
CVi =

M̂Vi
˙̂
LVi − L̂Vi ˙̂

MVi

M̂2
Vi

. (3.52)
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To compute
˙̂
CVi , we thus need to compute the time derivatives

˙̂
LVi and

˙̂
MVi . Both L̂Vi

and M̂Vi are of the form

Ii :=

∫

Vi
f(q, t)dq, with f(q, t) =




φ(q) for M̂Vi ,

q φ(q) for L̂Vi ,

where the region of integration Vi is a function of agent positions pi’s. The derivatives

can be computed as

˙̂
LVi =

∂L̂Vi
∂t

+
n∑

j=1

∂L̂Vi
∂pj

ṗj,
˙̂
MVi =

∂M̂Vi
∂t

+
n∑

j=1

∂M̂Vi
∂pj

ṗj, (3.53)

where
∂L̂Vi
∂t

=

∫

Vi
K(q)T ˙̂aidq,

∂M̂Vi
∂t

=

∫

Vi
qK(q)T ˙̂aidq. (3.54)

It remains to compute
∂L̂Vi
∂pj

and
∂L̂Vi
∂pj

. Let Ni denote the set of Voronoi neighbours of

agent i. For j /∈ Ni ∪ {i},
∂L̂Vi
∂pj

=
∂M̂Vi
∂pj

= 0 (3.55)

since the Voronoi region Vi does not depend on pj. For j ∈ Ni ∪ {i},

∂Ii
∂pj

=

[
∂Ii
∂pjx

∂Ii
∂pjy

]
,

where (see [50])

∂Ii
∂pjx

=

∫

∂Vi
f(q, t)nTq

∂q

∂pjx
dq,

∂Ii
∂pjy

=

∫

∂Vi
f(q, t)nTq

∂q

∂pjy
dq,

where ∂Vi is the boundary of Vi and nq is the normal to ∂Vi at the point q. This can be

further simplified as (see figure 3.3)

∂Ii
∂pjx

=

∫

cij

f(q, t)nTq
∂q

∂pjx
dq (j 6= i),

∂Ii
∂pix

=
∑

j∈Ni

∫

cij

f(q, t)nTq
∂q

∂pix
dq, (3.56)

∂Ii
∂pjy

=

∫

cij

f(q, t)nTq
∂q

∂pjy
dq (j 6= i),

∂Ii
∂piy

=
∑

j∈Ni

∫

cij

f(q, t)nTq
∂q

∂piy
dq, (3.57)

where cij is the segment of ∂Vi that is shared between agents i and j. The terms nTq
∂q
∂pjx

and nTq
∂q
∂pjy

can be computed to be (see Lemma 2.2 in [51])

nTq
∂q

∂pjx
=

cos(θq)

2
+ sin(θq)

dqc
dij
, nTq

∂q

∂pix
=

cos(θq)

2
− sin(θq)

dqc
dij
, (3.58)
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p1(
p1x , p1y

)

p2(
p2x , p2y

)

p3(
p3x , p3y

)

c12

c23

c13

o x

y

Figure 3.3: A Voronoi diagram with 3 agents

nTq
∂q

∂pjy
=

sin(θq)

2
+ cos(θq)

dqc
dij
, nTq

∂q

∂piy
=

sin(θq)

2
− cos(θq)

dqc
dij
, (3.59)

where θq is the angle (in radians) between the x-axis and nq, dij = ‖pi−pj‖ is the distance

between agents i and j, dqc is the distance between point q of ∂Vi and the point c =
(pi+pj)

2
.

3.4 Note on failure of agents

In this section, we briefly look at the effects of agents failing or becoming faulty.

Two modes of failure which may happen frequently are:

1. Communication breakdown: The communication system of individual agents may

fail, and the agents will not be able to communicate with their Voronoi neighbours:

in this case, the faulty agent will not be able to compute its Voronoi region since

it requires communication between Voronoi neighbours. If q agents fail in this way,

the remaining n− q agents may perform the coverage task.

2. Mobility breakdown: The agents may break down so that they may not be able

to move; the faulty agents are still assumed to be able to communicate with other

agents. Suppose q agents fail. Then we have (assuming single integrator dynamics
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for agents)

ẋi = 0, i ∈ Iq.

Then the time-derivative of the cost function H (equation (2.3)) becomes

Ḣ =
N∑

i=1

∂H
∂xi

ẋi (3.60)

=
N∑

i=1,i 6=Iq

∂H
∂xi

ẋi, (3.61)

where Iq is the set of indices of the faulty agents. In this case, using the gradient

control law (for the non-faulty agents) will lead to the non-faulty agent converging

to the centroids of their respective Voronoi partitions whereas the faulty agents

remain at their initial positions.
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Chapter 4

Simulation based study of Mobile

Robots for Coverage

In this chapter, we provide a simulation-based study of the algorithms presented

in chapter 3 for mobile robots. We compare the performance of the coverage algorithm

developed based on the dynamic model with that based on the kinematic model alone. We

also compare the performance of the adaptive algorithm (in case of model uncertainties)

with that of the non-adaptive algorithm with wrong values of the model parameters.

Block diagram representations of the coverage controllers for mobile robots discussed in

the previous chapter are shown in Figure 4.1.

For simulations, we consider the unit square region Q with N = 10 agents. The

density function φ(.) is a combination of two Gaussians and a constant term: φ(q) =

K(q)>a where K(q) = [K1(q), K2(q), K3(q) ]> and Ki(q) = 1√
2πσ

exp
(

(q−µi)>(q−µi)
2σ2

)
for

i = 1, 2, K3(q) = 1. The values of various constants used are given in Table 4.1. One of

the Gaussians is weighted more than the other and forms the major component of the

density function φ(·).

4.1 Coverage with known dynamics

The simulation results are shown in Figure 4.3– 4.4. In the plots, we also give a

comparison of the proposed controller (with known dynamics) with that of the coverage

controller derived based on kinematics alone. The motivation is to study to what extent

the controllers derived above based on the full dynamics give advantage over controllers

31
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ĈVi

CALC

DYNAMIC
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(a) Controller for agent i: Known dynamics
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(b) Controller for agent i: Unknown dynamics

Figure 4.1: Block diagram of the proposed decentralized optimal coverage controllers
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neighbours

Figure 4.2: Block diagram of the kinematic optimal coverage controller used in comparison
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Table 4.1: Simulation parameters: I represents the identity matrix

Parameter Value Parameter Value

n 10 k1 5

m 3 k2 10

µ1 [0.5, 0.3] Γη 10I

µ2 [0.7, 0.5] m 10 kg

σ2 0.2 d 0.25 m

a [100, 0.3, 0.3]> r 0.05 m

Γa I R 0.5 m

γ 300 I 5 kg.m2

α 1 kf 0.3 N.s.m−1

derived based on kinematics alone. The kinematic model is given by (3.26) and the

coverage control law for the kinematic model is given by vi = kvid where vid is given by

(3.41). A block diagram representation of a robot with kinematic coverage controller is

shown in Figure 4.2. A separate PID-based velocity controller is used for tracking the

velocity command for the mobile robots. The parameters of the velocity controller was

tuned to obtain similar average position error estimates as that with the dynamic model

based coverage control. The values for the PID gains were kp = 100, kd = 5, ki = 5.

The initial and final positions of the robots and the corresponding Voronoi regions are

shown in Figures 4.3a, 4.3b and 4.3c, respectively. The averaged position error (pi− ĈVi)
and velocity vi are plotted in Figures 4.4a and 4.4b, respectively. The averaged integrated

parameter error which is given by
∫ t

0
e−α(t−τ) (K>i ãi(t))2 dτ is plotted in figure 4.4c. This

quantity is a weighted integral of the error in the density function estimate at time t

along the path the agent has traversed till time t, and corresponds to the assertion (c) in

theorems 3.3 and 3.6. It can be seen that the quantities approach zero with time. The

average control torques are plotted in Figure 4.4d. It can be seen that the kinematic

controller requires much higher torque initially as compared to the dynamic controller.

The peak torque value for the kinematic case is 0.94 N.m and for the dynamic case is

0.24 N.m. In practical scenarios, the higher torque required may cause actuator saturation

and wheel slips. The coverage cost function given by (2.3) is plotted in Figure 4.3d.
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It can be seen that the cost function settles at a lower value for the dynamic case as

compared to the kinematic case. The lower value of the true cost indicates better true

coverage using the dynamic model based decentralized coverage law. The orientations of

the agents and the average parameter error (across the agents) with the proposed dynamic

coverage controller are plotted in figures 4.4e and 4.4f respectively, which indicates that the

orientations converge to some constant value. We have not shown the plot of orientations

for the kinematic controller case, as it is similar. We also see that the parameter errors

converges to some constant value (not necessarily zero), but the integrated parameter

error (shown in figure 4.4c) is guaranteed to converge to zero, as per Theorem 3.3. We

find from the simulations that the dynamics based optimal coverage controller performs

much better in terms of the position error convergence, coverage as well as the peak input

torque required for the agents. It may also be noted that the initial conditions have an

impact on the robot’s final configuration since the final configuration the robots try to

settle into is the minimizer of the coverage cost function (2.3). Convergence is guaranteed

only to a local minimum of the cost function, and thus, different initial positions can lead

to different final positions, although the behavior of the system (the nature of various

plots) does not change with different initial conditions. The adaptation of the parameter

estimates also changes with different initial conditions, which may also lead to changes

in the robot trajectories, although convergence of the robots is guaranteed as per the

theorems 3.3 and 3.6.

In figure 4.5, we also show how the agents reorganize themselves in case of failures

discussed in section 3.4. The agents were simulated for 30 seconds, with the fault occuring

at time t = 10 seconds. The initial positions and the final positions without faults is given

in figure 4.3. In the case of communication breakdown, it is as if the faulty agent does

not exist, since the other agents are not able to detect the faulty agent. In this case the

whole configuration of agents seems to be skewed to the right where the faulty agent is.

We do not further discuss the issue of faults in agents, and leave this for future work.

4.2 Coverage with unknown dynamics

We assume that the friction term F̄ (v) is given by F̄ (v) = kfsgn(v) where kf is

unknown. For simplicity, the other parameters in the agent dynamics are assumed to be
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Figure 4.3: Simulations of optimal coverage control for the known dynamics case: The

blue squares indicate the robot positions. The filled red circle indicates the mean of the

Gaussian with the higher weight and the unfilled red circle indicates the mean of the other

Gaussian component.
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known. The true value of kf is given in Table 4.1. The initial value for the adaptation

law of kf is assumed to be 0.1. In the plots, we also compare the performance of the

adaptive algorithm (given in Theorem 3.6) with that of the non-adaptive algorithm (given

in Theorem 3.3) with the unknown parameter assuming the value kf = 0.1 (same as the

initial value for the adaptive case). The initial and final positions of the robots with the

corresponding Voronoi regions are shown in figures 4.6a, 4.6b, and 4.6c, respectively. The

plots for average position error and average velocity is given in figures 4.7a and 4.7b,

respectively. The average integrated parameter error is shown in figure 4.7c. The average

control torque magnitude is plotted in figure 4.7d, and the cost function is plotted in

figure 4.6d.

Comparing the adaptive and the non-adaptive controller case with an offset initial

parameter value, we find that the average estimated position error is significantly larger

for the latter due to the error in the parameter value whereas the adaptive algorithm is

able to successfully converge towards the estimated centroid although the convergence

rate is slower compared to the case with known dynamics. The average control torque

required is much higher than the adaptive case (Peak torque magnitude values: adaptive

case - 0.17 N.m, non-adaptive case - 1.03 N.m). Further, the true coverage cost is also

much lower for the adaptive coverage controller. The orientations of the agents for the

adaptive algorithm are shown in figure 4.7e. We have not shown the plot of orientations

for the non-adaptive case as it is similar. We find from the above simulations that the

adaptive controller performs much better compared to the non-adaptive controller with

inexact values of the parameter.
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Figure 4.4: Simulation of decentralized optimal coverage controller for the known dynam-

ics case: Comparison of dynamic and kinematic coverage controller
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Figure 4.5: Final positions of agents after faults: the faulty agent is marked with a brown

circle.
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Figure 4.6: Simulation of optimal coverage control for the unknown dynamics case: The

blue squares indicate the robot positions. The filled red circle indicates the mean of the

Gaussian with the higher weight and the unfilled red circle indicates the mean of the other

Gaussian component.
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Figure 4.7: Simulation of decentralized optimal coverage control for the unknown dynam-

ics case



Chapter 5

Towards a more general Coverage

Problem Formulation

In this chapter, we try to formulate the coverage problem in a more general context,

as an optimization problem in the space of density functions. In much of the works

cited in the literature (see chapter 2), coverage problems are studied in the locational

optimization framework, and generalized by using different weight functions describing

the sensing capabilities of agents. In this chapter, we pose the coverage problem in a more

general framework. We have the target density function which represents the phenomenon

with respect to which coverage is to be achieved. We can also define an agent sensing

function corresponding to each agent depending on the position as well as the sensing

capabilities of the agent. Then the multiple agents located at different positions in the

domain can be thought of as defining an aggregate density function of the agents. The

coverage problem can then be posed as an optimization problem that seeks to minimize

the distance between the target density function and the aggregate density function of

the agents for an appropriately defined distance. This way of looking at coverage can lead

to different notions of coverage by using different distance and agent density functions,

depending on the application. We focus on the use of L2-distance as a means of achieving

coverage.

41
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5.1 Coverage as Distance between Densities

We consider the coverage problem over a region Q ⊂ Rn. The density function

describing the event of interest with respect to which coverage is to be obtained (we will

call this the target density function) is given by φ : Q → R+.

Consider N agents to be deployed in region Q in order to cover the region with

respect to the target density function φ(.). The location of the agents in Q will be

denoted by pi, i = 1, 2, . . . , N . We will use P to denote the set of all agent positions. i.e.

P = {p1, p2, . . . , pN} Each agent is assumed to have a sensing capability which decreases

with the distance from the agent location. We quantify this sensing capability of each

agent as the sensing function denoted by fi(pi, q). The sensing function describes the

capability of the agent at position pi to sense event at point q ∈ Q. In this work, we assume

isotropic sensors whose sensing is independent of direction. We can thus represent the

sensing function as fi(‖pi−q‖). We require fi : R+ → R+ to be an appropriate decreasing

function of its argument. An illustration of the one-dimensional case is shown in figure

5.1. Given N agents each with its sensing functions, we define an aggregate agent density

Figure 5.1: Two agents covering the interval Q = [0, 1]: p1 and p2 are positions of two

agents, with q representing a generic point of Q.

function defined by

fP (q) := α(f1(‖p1 − q‖), f2(‖p2 − q‖), . . . , fN(‖pN − q‖)),

where α : RN
+ → R+ is an aggregation function that is to be chosen appropriately. The

aggregate agent density gives a measure of the quality of sensing of the region Q using
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all the N agents. The general coverage problem can then be posed as the following

optimization problem:

min
P={p1,p2,...,pN}

d(φ, fP ), (5.1)

where d(·, ·) is an appropriate measure of divergence/distance between φ and fP . The

agents should move to a configuration such that the distance between the target density

φ and the aggregate agent density fP is minimized. The optimal locations of the agents

is then given by

P ∗ = {p∗1, p∗2, . . . , p∗N} = arg min
P
d(φ, fP ). (5.2)

The choice of d(·, ·) will generally be determined by the class of functions we work with

which depends on the nature of the coverage density function φ(·) as well as the nature

of sensors in the mobile agents employed. Similarly for the aggregate density function,

there are no general properties required to be satisfied. But depending on the choice

of the distance function, some requirements may be enforced on α(·). For example, in

the sequel we consider the squared integral cost, which requires both α(·) and φ(·) to be

square integrable.

5.1.1 Choice of the agent sensing functions and aggregate dens-

ity

The agent sensing functions fi(‖pi− q‖) as mentioned above is required to be a non-

increasing function of its argument, and depends on the nature of sensors. Some examples

which we can be used are given below:

1. Gaussian function

fi(‖pi − q‖) = Ai exp

(
−‖pi − q‖

2

σ2
i

)
. (5.3)

2. Constant sensing function

fi(‖pi − q‖) = χ{‖pi−q‖≤ri}, (5.4)

where χS is the characteristic function of the set S, and ri > 0 is some constant.

3. Quartic function

fi(‖pi − q‖) =





M
r4i

(‖pi − q‖2 − r2
i )

2
if ‖pi − q‖ < ri,

0 if ‖pi − q‖ ≥ ri,
(5.5)



44 Towards a more general Coverage Problem Formulation

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

(a) Gaussian

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

(b) Constant

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

(c) Quartic

-2 -1 0 1 2

0

0.1

0.2

0.3

0.4

(d) Bump

Figure 5.2: Examples of sensing functions

for some constants M > 0, ri > 0.

4. Bump function

fi(‖pi − q‖) =





exp
{
− 1

1−‖pi−q‖2

}
if ‖pi − q‖ < 1,

0 if ‖pi − q‖ ≥ 1.
(5.6)

The constant sensing function, the bump function and the quartic function (unlike the

Gaussian function) allow us to model sensors with a finite sensing range since they take

zero value outside a finite region of radius ri around the agent position. Accordingly, we

consider these functions as examples of limited range sensing functions, and the Gaussian

function as an example of a full range sensing function. An illustration of the various

one-dimensional functions are given in figure 5.2. The choice of aggregate agent density
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fP (·) could be made in different ways. We give here two natural choices:

1. Average/sum function

fP (q) = γ

N∑

i=1

fi(‖pi − q‖), (5.7)

2. Max function

fP (q) = γmax
i
fi(‖pi − q‖), (5.8)

where γ is a positive constant. The max function defines the aggregate density at a point

as the value of the agent sensing function with the maximum value at the point. If the

agents are identical, then the aggregate density at a point, in this case, is the agent density

corresponding to the agent that is closest to the point. We will see that this naturally

leads to a partition of the region Q and allows using distributed control schemes.

5.2 Locational Optimization as a special case

Now, we consider the locational optimization problem defined by the cost function

(2.3) (see also [1])

H(p1, . . . , pN) =

∫

Q

min
i
‖pi − q‖2φ(q)dq (5.9)

=
N∑

i=1

∫

Vi
‖pi − q‖2φ(q)dq, (5.10)

where the domain Q is assumed to be compact and convex, pi are the locations of the

agents and {Vi} is the Voronoi partition of Q corresponding to {pi}. The minimizer of

the function H corresponds to the centroidal Voronoi configuration. These are the points

p∗i such that p∗i = CVi where CVi = (
∫
Vi qφ(q)dq)/(

∫
Vi φ(q)dq). See chapters 2 and 3 for

more on locational optimization.

We wish to pose the locational optimization problem in the general framework dis-

cussed above (equation (5.1)). In order to do that we consider the relative entropy or

Kullback-Leibler divergence of two integrable functions f : Q → R+ and g : Q → R+

where g(q) > 0, defined as

dKL(f, g) =

∫

Q

f(q) log(
f(q)

g(q)
)dq. (5.11)
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dKL is not a metric (since it is not symmetric), but it is a measure of divergence (dis-

tance) of g with respect to f and dKL(f, f) = 0 (see [52, 53]). If we interpret the density

function φ(·) as defining the probability density of events occurring in the domain Q, and

agent sensing functions as defining the probability of detecting an event, then minimiz-

ing dKL(φ, fP ) would mean that we are choosing those agent positions which results in

maximum likelihood of detection of these events.

Proposition 5.1. Assume that

• The target density φ(·) is integrable.

• The sensing functions of the agents are Gaussian (equation (5.3)) with Ai = 1 and

σi = 1.

• The aggregate density function of the agents is given by the max function (5.8) with

γ = 1.

Under the above assumptions,

arg min
P

dKL(φ, fP ) = arg min
P

H(P ),

i.e., minimizing dKL(φ, fP ) is equivalent to minimizing H(P ).

Proof. For each agent i

fi(‖pi − q‖) = exp(−‖pi − q‖2),

and the aggregate density is given by

fP (q) = max
i

exp(−‖pi − q‖2).

Then,

dKL(φ, fP ) =

∫

Q

φ(q) log
φ(q)

fP (q)
dq

=

∫

Q

φ(q) log φ(q)dq −
∫

Q

φ(q) log fP (q)dq.

Since the first term is independent of P , we have

min
P
dKL(φ, fP ) = min

P
−
∫

Q

φ(q) log fP (q)dq

= min
P
−
∫

Q

φ(q) log max
i
fi(‖pi − q‖)dq
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= min
P
−
∫

Q

φ(q) max
i

log fi(‖pi − q‖)dq

= min
P

∫

Q

φ(q) min
i
‖pi − q‖2dq

= min
P
H(P ).

As discussed in chapter 2, it can be shown (see [1]) that for agents with single integrator

dynamics ṗi = ui, the gradient control law given by

ui = −∂H
∂pi

= −kMVi(pi − CVi)

allows the agents to converge to the centroidal Voronoi configuration.

5.3 L2-norm-based coverage

We assume that the target density φ(·) belong to L2(Q)1. We further assume that

φ(·) is lower bounded, i.e., φ(q) ≥ β for some constant β > 0. Assuming that the aggregate

density of the agents also belong to L2(Q), we can define the following cost function

d2(φ, fP ) =

∫

Q

|φ(q)− fP (q)|2dq. (5.12)

We now investigate the multi-agent coverage problem using the above cost function. Tak-

ing the derivative of d2(φ, fP ) with respect to the pi’s

∂d2

∂pi
(φ, fP ) =

∫

Q

∂

∂pi

(
|φ(q)− fP (q)|2

)
dq

= −
∫

Q
2 (φ(q)− fP (q))

∂

∂pi
fP (q) dq.

(5.13)

Any minima of the cost function d2(., .) with respect to P satisfies the condition ∂d2
∂pi

= 0

for every i.

As a simple example, considerQ = [0, 1] with one agent with f(|p−q|) = exp{−|p−q|2} =:

fP (q). Assume the density function is given by φ(q) = exp{−|c − q|2} where c ∈ (0, 1).

Minimizing the L2 norm implies ∂d2
∂p

= 0 which implies from (5.13) that p = c.

In the following, we consider the L2-distance with the max aggregate density function

for two cases: (1) fi(‖pi − q‖) > 0 ∀q ∈ Q i.e. fi is a full range sensing function, and

(2) fi(‖pi − q‖) = 0 ∀q ∈ Q \ Ci for a given set Ci ⊂ Q i.e. fi is a limited range sensing

function.
1i.e.,

∫
Q |φ(q)|2dq <∞.
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5.3.1 Full range sensing function fi

Consider a convex and compact region Q ⊂ Rq with N agents and let

fP (q) = γmax
i
f(‖pi − q‖),

where the agent sensing function f(.) is assumed to be the same for all the agents. We also

assume that the support of the agent density f(.) is the region Q itself (i.e., f(‖pi−q‖) >
0 ∀q ∈ Q ). Then

d2(φ, fP ) =

∫

Q
|φ(q)− fP (q)|2 dq

=

∫

Q

∣∣∣φ(q)− γ
[
max
i
f(‖pi − q‖)

]∣∣∣
2

dq.

(5.14)

Since f(.) is a decreasing function of its argument, we can write the above as

d2(φ, fP ) =
N∑

i=1

∫

Vi
|φ(q)− γ.f(‖pi − q‖)|2 dq, (5.15)

where Vi are the Voronoi partitions defined by (see chapters 2 and 3)

Vi = {q : ‖pi − q‖ ≤ ‖pj − q‖, ∀j 6= i} .

Lemma 5.1. The gradient of the L2 cost function (5.15) with respect to pi is given by

∂d2

∂pi
=

∫

Vi

∂

∂pi
|φ(q)− γ.f(‖pi − q‖)|2 dq.

Proof. Computing the gradient with respect to pi,

∂d2

∂pi
=

∂

∂pi

∫

Vi
|φ(q)− γ.f(‖pi − q‖)|2 dq

+
∑

j∈Ni

∂

∂pi

∫

Vj
|φ(q)− γ.f(‖pj − q‖)|2 dq,

(5.16)

whereNi denotes the set of neighbours of agent i. It should be noted that in the expression

above the regions of integration Vi and Vj are themselves functions of pi. Thus we have

(see [4, 50])
∂d2

∂pi
=

∫

Vi

∂

∂pi
|φ(q)− γ.f(‖pi − q‖)|2 dq

+

∫

∂Vi
|φ(q)− γ.f(‖pi − q‖)|2 n>iq

∂q

∂pi
dq

+
∑

j∈Ni

∫

cij

|φ(q)− γ.f(‖pj − q‖)|2 n>jq
∂q

∂pi
dq,

(5.17)
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where ∂Vi is the boundary of the Voronoi region Vi , Ni is the set of Voronoi neighbours

of agent i, niq is the unit normal at point q pointing outward from the region Vi, and cij is

the boundary segment of Voronoi region Vi that is shared with the Voronoi region of agent

j (Vj) (see also [4]). The boundary ∂Vi consists of segments cij and possibly parts of ∂Q
(the boundary of Q). The integrand of the second term is zero over ∂Q. Thus the second

and third terms in the above expression cancel each other (since the outward normals niq

and njq in the two terms point opposite to each other), and the proof is complete.

Now consider the Gaussian agent density function, f(‖pi − q‖) = exp{−‖pi−q‖2
σ2 }, i =

1, 2, . . . , N . In this case, the gradient becomes

∂d2

∂pi
=

∫

Vi

∂

∂pi
|φ(q)− γ.f(‖pi − q‖)|2 dq

=
4γ

σ2

∫

Vi
(φ(q)− γ.f(‖pi − q‖)) (pi − q) exp

{
−‖pi − q‖

2

σ2

}
dq

=
4γ

σ2

{
pi

∫

Vi

[
φ(q)− γ. exp

{
−‖pi − q‖

2

σ2

}]
exp

{
−‖pi − q‖

2

σ2

}
dq

−
∫

Vi
q

[
φ(q)− γ. exp

{
−‖pi − q‖

2

σ2

}]
exp

{
−‖pi − q‖

2

σ2

}
dq

}

=
4γ

σ2

{
pi

∫

Vi
λi(q)dq −

∫

Vi
qλi(q)dq

}
,

(5.18)

where

λi(q) :=

[
φ(q)− γ · exp

{
−‖pi − q‖

2

σ2

}]
exp

{
−‖pi − q‖

2

σ2

}
. (5.19)

Setting the gradient ∂d2
∂pi

= 0 gives

pi =

∫
Vi qλi(q)dq∫
Vi λi(q)dq

=
LλVi
Mλ
Vi
, (5.20)

with LλVi =
∫
Vi qλi(q)dq and Mλ

Vi =
∫
Vi λi(q)dq.

Lemma 5.2. For 0 < γ ≤ β (recall that β is the lower bound on φ), λi(q) ≥ 0 for q ∈ Vi
and i = 1, 2, . . . , N .

Proof. The second term in equation (5.19) an exponential and is always positive. The

first term (in the square brackets) is non-negative if 0 < γ ≤ β. Thus proved.

Remark 5.1. Choosing γ as per the above lemma guarantees that the aggregate density

function of the agents fP (.) is scaled below the lower bound of φ(.) function. This might

be detrimental to matching fP and φ if the lower bound β is very small and there is a
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large variation in φ(.). An alternative could be to add a constant bias to the density

function. We will not, however, consider this case here and leave it for future work.

Remark 5.2. Although we have derived the expression for λi’s assuming that the agent

density functions fi are Gaussians, the above computations carry over to any definition

of fi’s which are decreasing as a function of ‖pi − q‖2.

We define

CλVi :=
LλVi
Mλ
Vi

=

∫
Vi qλi(q)dq∫
Vi λi(q)dq

. (5.21)

Thus the critical points of the L2 optimization problem is described by pi = CλVi . λi

defines a density on Vi and CVi is the generalized centroid of Vi corresponding to the

density function λi. We call the critical point defined by pi = CλVi ; i = 1, 2, . . . , N as a

generalized centroidal Voronoi configuration corresponding to the λi’s. From the definition

of CλVi and Lemma 5.2, we can conclude that CλVi ∈ Vi for 0 < γ ≤ β, i.e., CλVi is contained

in the convex set Vi.

5.3.1.1 Gradient control laws for single integrator agents

Consider N agents deployed in region Q ⊂ Rn. The agent dynamics are given by

ṗi = ui, i = 1, 2, . . . , N, (5.22)

where pi ∈ Q is the position of agent i and ui ∈ Rn is the control input. Then we have

the following result.

Theorem 5.3. For agents with dynamics given by 5.22, the control law given by

ui = −Kp(pi − CλVi), (5.23)

with 0 < γ ≤ β and Kp > 0, drives the agents to a minimum of the cost function (5.12)

which is the generalized centroidal Voronoi configuration with respect to the λi’s.

Proof. Consider the function

V (t) = d2(φ, fP ).

Taking the derivative,

V̇ =
N∑

i=1

∂d2

∂pi

>

ṗi =
N∑

i=1

∂d2

∂pi

>

ui

=
N∑

i=1

4γMλ
Vi(pi − CλVi)>ui.
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Substituting the control law, we get

V̇ = −
N∑

i=1

4γKpM
λ
Vi‖pi − CλVi‖2.

V is continuously differentiable on the compact set Q, and Q is positively invariant with

respect to the closed-loop dynamics. Since V̇ ≤ 0, from LaSalle invariance principle ([54]),

we conclude that the trajectories converge to the largest invariant set in {pi : ‖pi−CλVi‖ =

0}, which is the set itself. Since the cost function V is decreasing with time, we see that

it converges to a minimum. This concludes the proof.

Remark 5.4. The above control law is similar to the control law derived for the loca-

tional optimization case discussed in section 2 ([1]) except that in defining the generalized

centroid, φ(q) is replaced by the modified function λi(q) for q ∈ Vi.

5.3.2 Limited range sensing function fi

In this section, we discuss the L2 cost function case with the max aggregate density

where the agent sensors have a finite range or the support of the agent sensing function

is finite. Let Ci represent the support of function f(‖pi − q‖), i.e. Ci, f(‖pi − q‖) is zero

outside of Ci. Let us define e(q) := |φ(q)−fP (q)| and ei(q) := |φ(q)−γf(‖pi−q‖)|. Then

the L2 cost functional can be written as

d2(φ, fP ) =

∫

Q
(e(q))2 dq

=

∫
⋃
i Ci

(e(q))2 dq +

∫

Q\
⋃
i Ci

(e(q))2 dq

=
N∑

i=1

∫

Di

(ei(q))
2 dq +

∫

Q\
⋃
kDk

|φ(q)|2dq,

(5.24)

where the domains Di are defined by:

Di := {q ∈ Ci : ‖pi − q‖ ≤ ‖pj − q‖, ∀j 6= i} . (5.25)

Thus the setDi represent a Voronoi partition of the set
N⋃
i=1

Ci. In other words, Di = Vi∩Ci.

Lemma 5.3. The gradient of the L2 cost function (5.24) is given by

∂d2

∂pi
=

∫

Di

∂

∂pi
|φ(q)− γf(‖pi − q‖)|2dq.
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Proof. Computing the gradient of d2,

∂d2

∂pi
=

∫

Di

∂

∂pi
e2
i (q)dq +

∫

∂Di

e2
i (q)n

>
q

∂q

∂pi
dq

+
∑

j∈Ni

∫

∂Dj

e2
j(q)n

>
q

∂q

∂pi
dq +

∫

∂{Q\
⋃
kDk}

|φ(q)|2n>q
∂q

∂pi
dq.

(5.26)

The boundaries ∂Di of the partitions Di in consists of a union of spherical sectors and

disks in 3D space (n = 3). In 2D (n = 2) space, they consist of union of circular arcs

and line segments. We will use the 2D case to develop the expressions further. Similar

extensions apply to the 3D case, although the computations are more involved. Let the

line segments in ∂Di be denoted by li,j where j ∈ Ni and the circular arcs be denoted by

ci,j where j = 1, 2, . . . , nci . Then we have

∂d2

∂pi
=

∫

Di

∂

∂pi
e2
i (q)dq +

nci∑

j=1

∫

ci,j

e2
i (q)n

>
q

∂q

∂pi
dq +

∑

j∈Ni

∫

li,j

e2
i (q)n

>
q

∂q

∂pi
dq

+
∑

j∈Ni

∫

li,j

e2
j(q)n

>
q

∂q

∂pi
dq +

∫

∂{Q\
⋃
kDk}

|φ(q)|2n>q
∂q

∂pi
dq,

where nci is the number of circular arc components in ∂Di. The two integrals over li,j

cancel each other since on li,j, fi(q) = fj(q) and the normal vector nq point opposite each

other resulting in

∂d2

∂pi
=

∫

Di

∂

∂pi
|φ(q)− γfi(q)|2dq +

nci∑

j=1

∫

ci,j

|φ(q)− γfi(q)|2n>q
∂q

∂pi
dq

+

∫

∂{Q\
⋂
Di}
|φ(q)|2n>q

∂q

∂pi
dq.

(5.27)

Noting that ∂{Q \⋃kDk} =
⋃
j ci,j, we get

∂d2

∂pi
=

∫

Di

∂

∂pi
|φ(q)− γfi(q)|2dq +

nci∑

j=1

∫

ci,j

|φ(q)− γfi(q)|2n>q
∂q

∂pi
dq

+

nci∑

j=1

∫

ci,j

|φ(q)|2n>q
∂q

∂pi
dq.

(5.28)

Since the agent sensing function f(‖pi−q‖) reduces to zero on ci,j (since the ci,j’s are part

of the boundary of the support of the sensing function), we see that the second and third

terms in the above expression cancel each other (the unit normals nq in the two integrals

are opposite each other) resulting in,

∂d2

∂pi
=

∫

Di

∂

∂pi
|φ(q)− γfi(‖pi − q‖)|2 dq, (5.29)
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and the proof is complete.

Now consider the quartic sensing function given by equation (5.5).

fi(‖pi − q‖) =





1
r4s

(‖pi − q‖2 − r2
s)

2
if ‖pi − q‖ < rs,

0 if ‖pi − q‖ ≥ rs,

for some constant rs > 0. Computing the gradient using Lemma 5.3 for this function, we

have
∂d2

∂pi
=

8γ

r4
s

Mµ
Di

(
pi − CµDi

)
, (5.30)

where Mµ
Di

=
∫
Di

µi(q)dq, L
µ
Di

=
∫
Di

qµi(q)dq, CµDi =
LµDi
Mµ
Di

,

and µi(q) =
[
φ(q)− γ

r4s

(
‖pi − q‖2 − r2

s

)2] (
r2
s − ‖pi − q‖2

)
. Similar to Lemma 5.2, we have

the following result.

Lemma 5.4. For 0 < γ < β · r4
s , µi(q) ≥ 0 for all q ∈ Di and i = 1, 2, . . . , N .

Theorem 5.5 (Gradient control law - limited range case). Consider N agents with single

integrator dynamics ṗi = ui. Assume that the agent sensing function is given by the quartic

function, and the aggregate density is given by the max function with 0 < γ < β ·r4
s . Then

the control law given by

ui = −Kp

(
pi − CµDi

)

drives the agents to a minimum of the cost function (5.15).

Proof. The proof is omitted here as it is identical to the proof of Theorem 5.3.

5.4 Simulations

In this section, we present a few simulation results for the L2-distance based coverage

algorithm. We consider the unit square planar region Q with N = 10 agents. The density

function φ(.) is assumed to be the sum of three components: φ(q) = K(q)>a where

K(q) = [K1(q) K2(q) K3(q)]> and Ki(q) = 1√
2πσ

exp
(

(q−µi)>(q−µi)
2σ2

)
for i = 1, 2, K3(q) = 1.

The a vector represents the strength of the individual components of the density function.

The values of various parameters are given in table 5.1. The density function is dominated

by the Gaussian function K1(q). The simulations are run for 30 seconds.
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Figure 5.3: Simulation results: Gaussian Sensing function

5.4.1 Gaussian sensing function

The simulation result for the L2-coverage algorithm described in section 5.3.1 is

shown in figure 5.3a. In the plot, the dark circular spots refer to the final positions of

the agents, and the light circular spots refer to the initial positions of the agents. The

red square represents the center of the dominant component of the density function. The

agent sensing functions fi(.) are assumed to be Gaussian (see section 5.1.1) and the value

of γ is chosen to be 1. The average position error defined by e = 1
N

∑N
i=1 ‖pi − CλVi‖ is

plotted in figure 5.3b. In the plot, we also show the average position error for coverage

control using the locational optimization cost function (2.3) under the same conditions.

We see that there is not much difference in the rate of convergence in the two cases,

although it must be noted that the cost functions are different, and the two cases lead

to different final configurations. Thus it is very hard to compare the quality of coverage

in the two cases. Developing methods to compare different notions of coverage is part of

future work.

Table 5.1: Simulation parameters

Par. Value Par. Value Par. Value

n 10 Kp 1 a [100, 0.3, 1]>

µ1 [0.5, 0.3]> µ2 [0.5, 0.7]> σ2 0.2
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Figure 5.4: Simulation results: Limited range (quartic) sensing function

5.4.2 Limited range sensing function

This case corresponds to that discussed in section 5.3.2. The agent sensing functions

are assumed to be the quartic function (see section 5.1.1). The value of the radius rs was

chosen to be 0.25, and γ was chosen to be 0.0035. The trajectories are shown in figure

5.4a. The average position error defined by e = 1
N

∑N
i=1 ‖pi−CµDi‖ is shown in figure 5.4b.

The convergence seems to be slower in this case compared to the case with the gaussian

sensing function. We also plot the result for a modified version of locational optimization

with limited range sensing. The convergence is seen to be similar in both cases.
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Chapter 6

Hardware Implementation and More

on Parameter Convergence

In this chapter, we discuss the hardware implementation of the coverage algorithm

on differential drive robots. ROS (Robot Operating System) is used for implementing the

algorithms. Control and adaptation laws for differential drive robots are derived in the L2

framework. Experimental results are used to compare the locational optimization method

with the L2-distance method, focusing on the issue of parameter convergence. Using a

consensus term in the adaptation law was shown to improve parameter convergence [30].

We discuss a method to improve upon the existing consensus algorithm to provide faster

convergence of parameters.

6.1 Control and Adaptation laws

In this section, we describe the coverage control and adaptation laws for the mobile

robots in the L2-distance framework. The robot model we consider is the differential drive

kinematic model described in chapter 3:




ẋi

ẏi

θ̇i


 =




cos(θi) −dsin(θi)

sin(θi) dcos(θi)

0 1





 ui

ωi


 . (6.1)

Here, (xi, yi) is the position of the center point of robot i, which corresponds to the point

which is tracked by the localization system). θi is the orientation of robot i. ui and ωi

57
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are the linear and angular velocity commands. d is the distance of the center point from

the wheel axis.

We now derive the L2 coverage control and adaptation laws for the differential drive

robots. The derivation is similar to that in Section 3.3. We denote the estimate of

parameter a of agent i at time t by âi(t) and the measurement of φ(·) by the agent i

by φi(t) = φ(pi(t)), where pi(t) is the position of agent i at time t. Now we define the

following filters:

Λ̇i(t) = −αΛi(t) +Ki(t)Ki(t)>,

λ̇i(t) = −αλi(t) +Ki(t)φi(t),
(6.2)

where Ki(t) = K(pi(t)), Λi(0) = 0, λi(0) = 0.

The control and adaptation laws are then given by

vi = −k1

[
S1
i (q)

]−1
(pi − Ĉλ

Vi), (6.3)

˙̂ai = Γ(bi − Iβibi), (6.4)

bi = −k2

∫

Vi
e−
‖pi−q‖

2

σ2 K(q)(q − pi)Tdq S1
i (q)vi − γ(Λiâi − λi), (6.5)

where k1, k2 > 0 are positive gains and S1
i (q) is the matrix defined as

S1
i (q) =


 cos(θi) −dsin(θi)

sin(θi) dcos(θi)


 . (6.6)

We can now state the following theorem.

Theorem 6.1. Consider N differential drive robots deployed in the region Q for covering

the region. Assume that the robots implement the control law (6.3) and the adaptation

law (6.4) and (6.5). Then the following statements hold:

1. limt→∞ ‖pi − Ĉλ
Vi‖ = 0,

2. limt→∞ ‖vi‖ = 0,

3. limt→∞Ki(τ)ãi(t) = 0, for ∀τ s.t t− T < τ < t, where T > 0,

for all i = 1, 2, . . . , N .

Proof. Consider the Lyapunov function

V = d2(φ, fP ) +
1

2

N∑

i=1

ã>i Γ−1ãi.
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Taking the derivative,

V̇ =
N∑

i=1

∂d2

∂pi

>

ṗi +
N∑

i=1

ã>i Γ−1 ˙̂ai.

Using (5.18), we get

V̇ =
N∑

i=1

4γ

σ2
Mλ
Vi(pi − Cλ

Vi)
>ṗi +

N∑

i=1

ã>i Γ−1 ˙̂ai.

Using the definitions of Mλ
Vi and Cλ

Vi given in section 5.3.1,

V̇ =
4γ

σ2

N∑

i=1

∫

Vi
(pi − q)>λi(q)dq ṗi +

N∑

i=1

ã>i Γ−1 ˙̂ai. (6.7)

Now λi(q) can be written as

λi(q) = e−
‖pi−q‖

2

σ2

[
φ(q)− γe−

‖pi−q‖
2

σ2

]

= e−
‖pi−q‖

2

σ2

[
K(q)>(âi − ãi)− γe−

‖pi−q‖
2

σ2

]

= e−
‖pi−q‖

2

σ2

[
φ̂(q)− γe−

‖pi−q‖
2

σ2

]
− ã>i K(q)e−

‖pi−q‖
2

σ2

= λ̂i(q)− ã>i K(q)e−
‖pi−q‖

2

σ2 ,

where λ̂i(q) := e−
‖pi−q‖

2

σ2

[
φ̂(q)− γe−

‖pi−q‖
2

σ2

]
.

Using this in equation (6.7), we get

V̇ =
4γ

σ2

N∑

i=1

{∫

Vi
(pi − q)>λ̂i(q)dq ṗi + ã>i

∫

Vi
K(q)e−

‖pi−q‖
2

σ2 (pi − q)>dq ṗi
}

+
N∑

i=1

ã>i Γ−1 ˙̂ai.

Using (6.1), the control law (6.3), adaptation law (6.4) and simplifying, we get

V̇ = −4γ

σ2
k1

N∑

i=1

‖pi − Ĉλ
Vi‖2 −

N∑

i=1

ã>i Iβibi − ã>i
∫ t

0

e−α(t−τ)Ki(τ)Ki(τ)>dτ ãi.

It can be shown that all three terms of V̇ above are non-positive (see the proof of Theorem

3.3). Since V is bounded below by zero and its time derivative is non-positive, it follows

that limt→∞ V (t) is finite. This implies that V̇ is integrable. Using Barbalat’s lemma, we

can conclude that limt→∞ V̇ = 0. Statements 1 and 3 of the theorem follow immediately.

Statement 2 follows from statement 1 and equation (6.3). The proof is thus complete.

Remark 6.2. From the statements of Theorem 6.1, we also observe that limt→∞ θ̇i = 0 for

all i = 1, 2, . . . , N .
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Remark 6.3. The control and adaptation laws in the component form is given by

ui = −k1

(
cos(θi)(xi − Cλ

Vi,x) + sin(θi)(yi − Cλ
Vi,y)

)
,

ωi = −k1

(
−sin(θi)(xi − Cλ

Vi,x) + cos(θi)(yi − Cλ
Vi,y)

)
,

˙̂ai = Γ (bi − Iβbi) ,

bi = −k1

∫

Vi

K(q)
[
(qx − xi)(xi − Cλ

Vi,x) + (qy − yi)(yi − Cλ
Vi,y)

]
exp{−‖q − pi‖2}dq

− γ(Λiâi − λi),

for the L2 coverage case. A similar derivation for locational optimization yields

ui = −k1 (cos(θi)(xi − CVi,x) + sin(θi)(yi − CVi,y)) ,

ωi = −k1 (−sin(θi)(xi − CVi,x) + cos(θi)(yi − CVi,y)) ,
˙̂ai = Γ (bi − Iβbi) ,

bi = −k1

∫

Vi

K(q) [(qx − xi)(xi − CVi,x) + (qy − yi)(yi − CVi,y)] dq − γ(Λiâi − λi).

6.2 Consensus for better parameter convergence

From the proof of Theorem 6.1 as well as Theorems 3.3 and 3.6, it can be observed

that the parameter estimate âi converges to the true value a if the matrix

lim
t→∞

∫ t

0

e−α(t−τ)Ki(τ)Ki(τ)>dτ (6.8)

is positive definite. In [30], a consensus term is proposed to be included in the adaptation

law to improve parameter convergence. It is shown that using a consensus term in the

adaptation law makes the parameter estimates of the agents converge to a common value

and thus also weakens the sufficient richness condition required for parameter convergence.

The modified adaptation law is given by

˙̂ai = Γ (bi − Iβbi) , (6.9)

bi = −Fi(pi)− γ(Λiâi − λi)− ζ
N∑

j=1

lij(âi − âj), (6.10)

where Fi(pi) is the integral term in the adaptation law. The underlying graph used for

consensus is the Delaunay graph where the agents sharing an edge of Voronoi partition
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have the corresponding coefficients lij non-zero. In [30], the authors propose that lij be

equal to the length of the shared Voronoi edge (|Vi ∩ Vj|) between agent i and j. An

important consequence of using consensus-based adaptation law is the following corollary

[30].

Corollary 6.4 (Corollary 2, [30]). Using the consensus adaptation law, in addition to the

convergence of position and velocity, if the agent paths are such that

N∑

i=1

t∫

0

e−α(t−τ)Ki(τ)Ki(τ)>dτ

is positive definite, each agent’s parameter estimate converges to the true value of the

parameter.

The above condition is weaker since, with consensus, the positive definiteness condition

is over the sum of trajectories of all agents as opposed to the individual trajectories for

each of the agents.

6.2.1 Directed Consensus

It can be seen that the agents whose trajectories follow a certain path estimate certain

parameters to large accuracy, whereas for other parameters, they have poor estimates.

This can be observed from the adaptation term −(Λiâi − λi) which means that the error

between the measured and the estimated value of φ(.) is weighted by the corresponding

regressor element K(j)
i for updating the corresponding parameter estimate â

(j)
i . Thus if

the agent trajectory is such that the regressor element always takes a low value, then the

corresponding parameter estimate is also very poor. This means that using a consensus

term can sometimes reduce the accuracy and/or convergence speed of parameter estimates

of those agents which are otherwise able to accurately estimate the parameter.

Based on the above observation, we propose a modified consensus law. Correspond-

ing to each parameter a(j), we construct a directed sub-graph G(j)(t) of the Delaunay

graph G(t) as follows: a directed edge between Voronoi neighbours i and l exists if

K(j)
i (t) ≥ K(j)

l (t). (6.11)

The weights for the directed edges are taken as constant. This protocol creates a separate

directed sub-graph of the undirected Delaunay graph corresponding to each parameter at

each time t. An illustration is shown in figure 6.1.
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1 2

34

Figure 6.1: Illustration of directed graphs for consensus: 4 agents with 2 parameters - the

peak of the basis functions are shown in color with the directed graph for the corresponding

parameter shown in the same color; the black color shows the original Delaunay graph.

Lemma 6.1. If the Delaunay graph G(t) is connected and the basis functions in K(·)
are radial functions (i.e., the functions have their peak value at some point and the value

reduces with distance from that point), then the directed graphs G(j)(t) for each j has a

rooted tree. The root of the tree is the agent having the maximum value of K(j)
i (t) among

all agents i = 1, 2, . . . , N .

Proof. For any j and each pair of agents (i, l) which are Voronoi neighbours, we see from

condition (6.11) that there is always a directed edge either from i to l or from l to i.

Then the agent with the largest value of K(j)
i (t), say nj, will only have outgoing edges,

and the agent with the smallest value of K(j)
i (t) will only have incoming edges. For the

illustration in Figure 6.1, the directed edges for each of the two parameters are shown

seperately in Figure 6.2. Given any node (agent) l, there always exists at least one path

in the Delaunay graph G(t) (since G(t) is connected) from agent nj to l. In particular,

there exists a path such that the sequence of nodes starting from nj in the path is in

decreasing order with respect to the value of Kj(·), i.e., Kj(pnj) ≥ · · · ≥ Kj(pl). This

assertion can be proved as follows: Given node nj, either nj is connected to l, or it is not.

If it is connected, we are done. If it is not connected, there exists another node which is at
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1 2

34

(a) Parameter 1: 4 is the root agent.

1 2

34

(b) Parameter 2: 2 is the root agent.

Figure 6.2: The directed graph and edges corresponding to the parameters in Figure 6.1.

a lower distance from node nj as compared to node l. This new node is either connected

to l, or there has to exist another node which is at a smaller distance from this new node

as compare to node l. This can be continued until all such nodes are exhausted. If all

such nodes are exhausted, and the node l is still not connected to one of these nodes, it

means that the graph is disconnected which is not possible. Thus there exists a sequence

of nodes in increasing order of distance from the node nj. This, along with the fact that

the functions Kj(·) are radial, proves the assertion. Using (6.11), it easily follows that in

the directed graph G(j)(t), there always exists a directed path from the root node nj to

any other node. This completes the proof.

Now we modify the adaptation law with each parameter j having separate consensus law

according to the directed sub-graph G(j)(t). Thus we have the following adaptation law

for agent i’s parameter estimate:

bi = −Fi(pi)− γ(Λiâi − λi)− ζ
N∑

j=1

Lij(âi − âj) (6.12)

= −Fi(pi)− γ(Λiâi − λi)−
p∑

α=1

ζ

N∑

j=1

lαij

(
â

(α)
i − â(α)

j

)
, (6.13)

where Lij = diag({lαij}pα=1) and Lα =
[
lαij
]

is the Laplacian matrix for graph G(α)(t).

Theorem 6.5. Using the modified adaptation law 6.13, and assuming that all the other

conditions of Theorem 6.1 hold, all the statements of the Theorem 6.1 hold. In addition

lim
t→∞

(âi(t)− âj(t)) = 0, (6.14)
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for all i, j ∈ {1, 2, . . . , N}.

Proof. Proceeding the same way as in the proof of Theorem 6.1, we have an additional

term in the derivative of the Lyapunov function V̇ , all other terms remaining exactly the

same. The term is given by −∑N
i=1 ã

>
i

∑N
j=1 Lij(âi − âj). Simplifying this,

N∑

i=1

ã>i

N∑

j=1

Lij(âi − âj) =
N∑

i=1

[
ã

(1)
i ã

(2)
i . . . ã

(p)
i

] N∑

j=1

Lij




â
(1)
i − â(1)

j

â
(2)
i − â(2)

j

...

â
(p)
i − â(p)

j




=

p∑

α=1

N∑

i=1

N∑

j=1

ã
(α)
i lαij(â

(α)
i − â(α)

j )

=

p∑

α=1

{
N∑

i=1

ã
(α)
i

[
lαi1(â

(α)
i − â(α)

1 ) + lαi2(â
(α)
i − â(α)

2 ) + · · ·+ lαiN(â
(α)
i − â(α)

N )
]}

=

p∑

α=1

[
ã

(α)
1 ã

(α)
2 . . . ã

(α)
N

]




lα12 + lα13 + · · ·+ lα1N . . . . . . −lα1N
−lα21 . . . . . . −lα2N

...
...

...
...

−lαN1 . . . . . .
...







â
(α)
1

â
(α)
2

...

â
(α)
N




=

p∑

α=1

ãα
>
Lαâα =

p∑

α=1

âα
>
Lαâα,

where âα =
[
â

(α)
1 â

(α)
2 . . . â

(α)
N

]>
.

Thus the term contributed by the consensus term in V̇ is non-positive. The term is also

uniformly continuous. The other terms in V̇ remain non-positive and uniformly continu-

ous, as in the proof of Theorem 6.1. Thus using Barbalat’s lemma, all the statements of

the Theorem 6.1 holds. In addition, we have that limt→∞ â
α>Lαâα = 0 for each α. Since

Lα is the Laplacian matrix of the directed graph G(α), we have that limt→∞ â
α = cα1 for

each α (cα is a positive constant), i.e., the agents achieve consensus on the parameter

values and the theorem holds.
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6.3 Experiment Setup

6.3.1 Differential Drive Robots

The robots used are custom-built differential drive robots based on the Turtlebot3

Burger1 platform. Each robot consists of two rear wheels with motor drivers, and a castor

wheel in front. The controller board OpenCR 1.0 is used along with a Raspberry Pi 3 2

module for controlling each robot. The robots communicate to each other and the host

PC via WLAN.

6.3.2 Workspace and Localization System

The workspace where the robots move is a flat 4m×4m square region. For localization

of robots, we use the motion-capture system from OptiTrack3. The system comprises

of 16 cameras with infrared sensors that detect the markers fixed atop the robots. A

proprietary software (Motive, by Optitrack) uses data in the form of images captured

by the cameras, performs localization computations, and provides position data for all

the robots in the workspace. This data is streamed over the local network using the

Virtual Reality Peripheral Network 4 (VRPN) protocol. The localization system provides

millimeter-level precision at high frequencies up to 200 Hz. See figure 6.3 for the overall

setup.

6.3.3 Sensors

The density function is implemented as a light distribution using Xiaomi smart

bulbs5. The Adafruit TCS34725 light sensors6 are used for measuring the light intensity.

6.3.4 Host PC

The robots communicate with the host PC via WLAN. ROS (Robot Operating

System) is used for the software implementation. Each robot runs multiple ROS nodes

1http://www.robotis.us/turtlebot-3/
2https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
3https://optitrack.com
4https://github.com/vrpn/vrpn/wiki
5https://www.mi.com/in/mi-led-smart-bulb/
6https://www.adafruit.com/product/1334
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Workspace with Optitrack Motion Sensors

Optitrack Server

Host PC

(Laptop)

Workspace with Optitrack Motion Sensors

WLAN NETWORK

Figure 6.3: Experiment Setup

which implement the coverage algorithm, receives localization data from the Optitrack

system as well as communicate with other robots. The host PC runs the ROS master

node and subscribes to the position data from the localization system (using VRPN

protocol), which are then distributed to the individual robots. The ROS nodes launched

by the individual robots connects to the ROS master of the host PC. Figure 6.4 shows

the overall software implementation using ROS.

6.4 Experiment Results

In this section, we discuss the experimental results obtained. We consider two types

of coverage control laws for the robots: (1) based on the locational optimization cost

function, and (2) based on the L2-distance cost function. In addition, we do two sets of

experiments: (1) The density function is simulated, and (2) the density function is imple-

mented using white light sources, and the agents measure the same using RGB sensors.

In the case of simulated density function, the density function is implemented in the

software, and this case allows us to study the performance of the coverage algorithm

and parameter convergence in better detail since there is no sensor noise and associated

issues. Using actual sources and sensors allows us to evaluate how well the algorithms

behave in the real world with noisy measurements. The values of various constants used

in the simulation are given in Table 6.1. The parameters to be estimated correspond to

the strengths of the individual light sources (parameter a in table ??). Video record-

ings of the experiments are available at: https://www.youtube.com/playlist?list=

https://www.youtube.com/playlist?list=PLH0udZHyB-e2A9gFZbvdLXygOIFZa6Ynv
https://www.youtube.com/playlist?list=PLH0udZHyB-e2A9gFZbvdLXygOIFZa6Ynv
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Figure 6.4: ROS Implementation: the blue blocks represent ROS nodes and the yellow

blocks represent the data exchanged between nodes.

PLH0udZHyB-e2A9gFZbvdLXygOIFZa6Ynv.

6.4.1 Simulated Density Function

The true density function consists of two Gaussian components. The various con-

stants related to the density function are given in Table 6.1. The trajectories, average

position error, and the average velocity of the agents are shown in Figure 6.5. The average

position and velocity errors are given by

ep =
N∑

i=1

‖pi − ĈVi‖, ev =
N∑

i=1

‖vi‖.

The corresponding plots for the locational optimization-based coverage are also shown

in the figure for comparison. The initial position error and velocity are higher for the

locational optimization case. The agent parameter estimation errors are compared in

Figures 6.6 and 6.7 for the two parameters. It can be seen that for three of the agents,

the estimation errors for Parameter 1 drops significantly from the initial value, with one

agent able to estimate Parameter 1 accurately. The other two agents are not able to

adapt for Parameter 1. Similarly, two of the agents are able to estimate Parameter 2

better while for the rest of the agents, Parameter 2 estimation error barely changes from

the initial estimation error.

https://www.youtube.com/playlist?list=PLH0udZHyB-e2A9gFZbvdLXygOIFZa6Ynv
https://www.youtube.com/playlist?list=PLH0udZHyB-e2A9gFZbvdLXygOIFZa6Ynv
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Parameter Value Description

Domain related

borderx [-2.0, 2.0, 2.0, -2.0] x-coordinates of vertices of the domain

bordery [-2.0, -2.0, 2.0, 2.0] y-coordinates of vertices of the domain

Density function related

centrex [1.0, 1.0] x-coordinates of centres of density fcn.

centrey [0.98, -0.8] y-coordinates of centres of density fcn.

σ [0.6, 0.3] std. deviation

a [85, 30] true strengths to be estimated

Control and Adaptation gains

k1 0.1 controller gain

Γ 0.1I adaptation gain matrix

Loop rates

Control loop 10 Hz. rate at which control loop runs

Position update loop 20 Hz. rate at which position data is available

Robot related

d 0.05 m distance of the centre from wheel axis

Adaptation law related

paramInitValue 10 initial value of parameter estimates

α 1.0 filter parameter

γ 2 measurement update gain

ζ 1 consensus related gain

Table 6.1: Experiment related parameters
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It also appears that the L2 algorithm performs slightly better from Figure 6.6. This

could be due to the fact that the integral term in the L2 adaptation law (6.4) is much

smaller (due to the presence of the exponential term) than for the locational optimization

adaptation law (3.31). This term can be viewed as a coupling term between the coverage

task (through the cost function d2(·)) and the estimation task. The term being smaller

means that the estimate âi is better able to adapt through the measured error in φ(·)
given by the second term in the adaptation law (6.4).

The parameter errors for adaptation with the consensus terms are shown in Figures

6.8 and 6.9. We show the average parameter estimation errors across all the agents for

ease of comparison since the agent estimation errors closely follow each other due to the

consensus term. From the plots, we see that overall, the parameter estimation errors start

dropping faster in the locational optimization case, although towards the end, the drop

in error becomes slower compared to the L2 case. This could be due to the fact that the

initial velocity is higher for the locational optimization case, and thus, it is able to initially

move faster to regions where significant measurements are available for adaptation.

Overall, the final values of parameter estimates are slightly better for the L2 case.

It can also be seen that the directional consensus algorithm leads to a significantly faster

convergence as opposed to the undirected consensus algorithm.

6.4.2 Density Function implemented using Light Sources

There are two light sources, one of high intensity and the other of lower intensity.

Each agent is equipped with a TCS34725 RGB sensor to measure the light intensity. The

measurements were observed to be quite noisy, as shown in figure 6.10.
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Figure 6.5: Results for L2 coverage: simulated φ(·).
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Figure 6.6: Simulated φ(·): Parameter 1 estimation errors with time - No consensus.
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Figure 6.7: Simulated φ(·): Parameter 2 estimation errors with time - No consensus.
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Figure 6.8: Simulated φ(·): Avg. parameter estimation errors with time - with consensus.
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Figure 6.9: Simulated φ(·): Avg. parameter estimation errors with time - with directed

consensus.
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Figure 6.10: Measured signal from various sensors with time

Therefore, the error plots shown in this section were obtained by averaging across

2-3 runs. It can be observed that the plots are less smooth as compared to the simulated

density function case due to the noisy sensors. The trajectories, average position error,

and the average velocity of the agents for L2 coverage are shown in Figure 6.11. The

plots also show the results of locational optimization-based coverage for comparison. As

with the results for simulated density function, we see that the initial position error and

velocity are larger for the locational optimization case. The agent parameter estimation

errors are compared in Figures 6.12 and 6.13 for the two parameters with no consensus

term in the adaptation law. The parameter errors for adaptation with the consensus

terms are shown in Figures 6.14 and 6.15. Overall the parameter estimates using the L2

coverage framework seems to be more accurate. It can be seen in Figure 6.14 that the

parameter error drops to zero and then increases. This is because the algorithm does

not guarantee that parameter errors go to zero, and the sensor noise may perturb the

parameter estimate and make it settle at a higher value, though this value of estimate

guarantees statement (3) of Theorem 6.1 to hold. For the noise-free simulated density

function case in Figure 6.8, it is seen that the errors decrease monotonically. It can also

be seen from the plots that the directed consensus leads to faster convergence of the

parameter errors as expected.
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Figure 6.11: Results for L2 coverage: RGB sensors.
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Figure 6.12: RGB sensors: Parameter 1 estimation errors with time - No consensus.
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Figure 6.13: RGB sensors: Parameter 2 estimation errors with time - No consensus.
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Figure 6.14: RGB sensors: Avg. parameter estimation errors with time - with consensus.
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Figure 6.15: RGB sensors: Avg. parameter estimation errors with time - with directed

consensus.



Chapter 7

Estimating the Density Function

In this chapter, we look at a slightly different problem closely related to the coverage

problem we looked at in the previous chapters. The problem is the accurate estimation

of the density function. In the coverage problem, we were interested in controlling the

robots so that the robots attain an optimal configuration (or a near-optimal configuration)

with respect to the density function. In order to achieve this goal, the robot needs to

adapt the density function parameters so that the density function is close to the actual

density function. As discussed in section 6.2, the exact estimation (asymptotically) of

the density function parameters require a time integral quantity (given by equation (6.8))

to be positive definite, which is a sufficient richness condition for the robot trajectories.

See [30] for more details. In general, the robot trajectories need not meet this condition

since the trajectories of the robots are decided based primarily on the gradient of the

coverage cost function and not on estimating the density function parameters. However,

it is crucial to estimate the true values of those parameters since the estimation of the

unknown scalar field is often the primary objective for a robotic sensor network, and it

may lead to more efficient deployment of robots. For example, in the case of radiation

spill, if we have a good estimate of the radiation concentration, we may directly deploy

agents to regions of high concentration. Thus in this chapter, we look at a slightly different

problem closely related to and motivated by the coverage problem discussed above. Our

primary aim in this chapter is to accurately estimate the scalar field, not coverage. The

unknown scalar field is approximated using positive definite radial basis functions and a

similar adaptive approach as that in chapter 3 is adopted for parameter estimation while

ensuring the positive-definiteness of the time integral (6.8). Compared to previous works

77
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in literature on scalar field estimation (see section 2.3), we provide theoretical guarantees

for the convergence and boundedness of parameter estimates when the scalar field can be

exactly parameterized using RBFs.

7.1 Problem Statement

We consider a compact region Q ⊂ Rn with N mobile sensors. The position of

the sensors is denoted by pi; i = 1, 2, . . . , N . There also exists a continuous scalar field

φ : Q → R+ over Q, which is unknown. The objective is to estimate the unknown scalar

field using N mobile sensors assuming the sensors can measure the value of the scalar field

at their respective positions. We assume that the unknown scalar field can be represented

by positive definite radial basis functions (RBFs). In other words, we assume the density

function can be parameterized as

φ(q) = K(q)>a (7.1a)

=
m∑

i=1

Ki(q)ai, (7.1b)

where a ∈ Rm is a constant vector, and K(q) = [K1(q) K2(q) . . . Km(q)]
>

with Ki :

Q → R+ given by Ki(q) = ϕ(‖ci − q‖) are radial basis functions for a set of points ci.

This assumption is common in neural networks and justified as follows:

Theorem 7.1 ([55, 56]). For any continuous function f(q) and any ε > 0, there is an

RBF network with p elements, a set of centers {ci}mi=1, such that we can define

f̂(q) =
m∑

i=1

aiKi(q) = a>K(q),

with ‖f − f̂‖2
L2
≤ ε = O

(
p−

1
n

)
.

The theorem tells us that we can approximate a continuous function to an arbitrary

accuracy by using a network of RBF elements. An example of positive definite radial

kernel is the Gaussian kernel,

Ki(q) = ϕ(‖ci − q‖) = exp

{
−‖ci − q‖

2

σ2
i

}
, (7.2)

where ci are the centres of the Gaussian kernels. The main problem studied in this work is

to accurately determine the parameters ai so that the scalar field φ(.) may be accurately

reconstructed. We make the following assumption:
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Assumption 7.2. The centers ci of the radial functions are known to all the mobile

agents.

The strengths ai of individual radial functions are unknown and need to be estimated.

To proceed, we require the following theorem:

Theorem 7.3 (Micchelli’s Theorem [57]). Given p distinct points c1, c2, . . . , cp in Rn, the

p× p matrix K, whose elements are Kij = Ki(cj) = ϕ(‖ci − cj‖) is non-singular.

The theorem says that for positive definite radial kernels, the p × p matrix formed by

evaluating the radial functions at each of the centers is non-singular. In what follows,

we assume that φ(.) can be exactly parameterized by the RBF kernels. A consequence of

Theorem 7.3 is given below:

Lemma 7.1. Given that φ is parameterized as in (7.1a), the matrix S given by

S :=

∫

Q
K(q)K(q)>dq, (7.3)

where K(q) = [K1(q) K2(q) . . . Kp(q)]> is positive definite.

Proof. From the definition of S, we know it is at least positive semi-definite. Therefore

for any v 6= 0, v>Sv ≥ 0 or ∫

Q
|K(q)>v|2dq ≥ 0.

Now, since K(q) consists of positive definite radial kernels, we have from Theorem 7.3

that 


K1(c1) K1(c2) . . . K1(cp)

K2(c1) K2(c2) . . . K2(cp)

. . .
. . . . . .

...

Kp(c1) Kp(c2) . . . Kp(cp)




is positive definite. This implies that the vectors K(cj); j = 1, 2, . . . , p are linearly inde-

pendent. Thus, given any v 6= 0, v ∈ Rp, there exists some j ∈ {1, 2, . . . , p} such that

K(cj)
>v is non-zero. This along with the fact that K(·) is continuous allows us to conclude

that ∫

Q

|K(q)>v|2dq > 0, for any v 6= 0.

Hence, S is positive definite.
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7.2 Single Mobile Robot Sensor

In this section, we consider the case of a single mobile sensor (N = 1) with position

p(t) at time t deployed in the region Q to estimate the scalar field parameter a. Then we

can state the following corollary to Lemma 7.1.

Corollary 7.4. Suppose the mobile sensor moves continuously within the domain Q, such

that in time T , it passes through each of the RBF centers ci ; i = 1, 2, . . . ,m, then

ST :=

∫ T

0

K(p(t))K(p(t))>dt (7.4)

is positive definite.

Proof. The proof is essentially the same and follows from Lemma 7.1.

Now consider the following integrators running on the mobile sensor:

Λ̇ = K(t)K(t)>,

λ̇ = K(t)φ(t),
(7.5)

where K(t) := K(x(t)) denotes the value of function K(·) at the point where the robot is

at time t and φ(t) is the measured value of the density function φ(·) by the robot at time

t.

Proposition 7.1. Suppose the mobile sensor moves such that it passes through each of

the centres ci; i = 1, 2, . . . ,m in some finite time T > 0, and during this motion updates

its estimate â of a by

˙̂a = −Γ (Λâ− λ) , (7.6)

where Γ is a positive definite gain matrix, then the estimate â is bounded and converges

asymptotically to the true value a.

Proof. Under the given assumptions and Corollary 7.4,

S(T ) :=

∫ T

0

K(τ)K(τ)>dτ

is positive definite. This implies that

S(t) =

∫ t

0

K(τ)K(τ)>dτ
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is positive definite for all t ≥ T .

Now consider the positive definite candidate Lyapunov function,

V =
1

2
ã>Γ−1ã, (7.7)

where ã = â− a is the estimation error. Taking the derivative of V , we obtain

V̇ = ã>Γ−1 ˙̂a.

Substituting the update law from (7.6) and simplifying, we get

V̇ = −ã>S(t)ã

≤





0 for 0 ≤ t < T,

−αV for t ≥ T,

where α = λmin(S(T ))
λmax(Γ−1)

> 0, λmin(·) and λmax(·) denoting the minimum and maximum

eigenvalues of their argument. Since V is always non-increasing and bounded from below,

ã(t) is bounded for all t > 0. Since V̇ < 0 for all t ≥ T , then we have V (t)→ 0 as t→∞.

This implies that ã→ 0 as t→∞.

Remark 7.5. The matrix S(t) being positive definite for all t ≥ T is a sufficient excitation

condition, similar to (but weaker than) the persistency of excitation condition, on the

robot trajectories which ensures parameter convergence. See [30] for more information.

7.2.1 Relaxing the condition in Corollary 7.4

In Corollary 7.4, it was required that the mobile sensor passes through the centers

ci of the radial kernels. This can be relaxed so that the mobile sensor need only move

through a sufficiently small neighbourhood of each of the centers ci, as described in [58].

Consider the vector X (q) := K−1K(q), where K is the matrix specified in Theorem 7.3.

Then X (q) has the property that X j(ck) = δjk where δjk is the Kronecker delta function

and X j(ck) is the j-th component of X (ck). Now consider the diagonal dominance sets

defined by (0 < ε < 1)

Aεj :=

{
q ∈ Q : |X j(q)| −

m∑

i=1,i 6=j

|X i(q)| > ε

}
.

It can be easily seen that Aεj contains the center cj, and thus, Aεj is an open subset

containing cj. The following lemma is an adaptation of Theorem 1 in [58]:
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Lemma 7.2. Suppose that the mobile sensor moves continuously throughout the domain

Q such that in time T , the trajectory traverses through each of the neighbourhoods Aεj , j =

1, 2, . . . ,m, then the matrix ST given by equation (7.4) is positive definite.

Proof. ST can be written as ST = KS̄TK> where

S̄T =

∫ T

0

X (p(t))X (p(t))>dt.

Since K is invertible, ST is positive definite iff S̄T is positive definite. S̄T is positive definite

iff there exists some δ > 0 such that
¯
σ(S̄T ) ≥ δ where

¯
σ(A) denotes the minimum singular

value of A. Suppose S̄T is not positive definite under the conditions of the theorem. Then

there exists no δ > 0 such that
¯
σ(S̄T ) ≥ δ. This implies that for any δ > 0, there exists

u 6= 0, ‖u‖ = 1 such that u>S̄Tu < δ, i.e.,

∫ T

0

u>X (p(t))X (p(t))>u dt < δ.

Let i be the index of the components of u which has the largest absolute value. i.e.,

|ui| ≥ |uj| ∀j. Also let [ti1, ti2] ⊂ [0, T ] be the subinterval during which the mobile sensor

trajectory is contained in the set Aεi . Clearly since the set Aεi is open and the trajectory

is continuous, [ti1, ti2] has finite positive length. Then,

∫ T

0

u>X (p(t))X (p(t))>u dt =

∫ T

0

|X >u|2 dt (7.8)

≥
∫ ti2

ti1

|X >u|2 dt =

∫ ti2

ti1

|
m∑

j=1

X juj|2 dt (7.9)

≥
∫ ti2

ti1

(|X iui| − |
m∑

j=1,j 6=i

X juj|)2 dt (7.10)

≥
∫ ti2

ti1

(|X iui| −
m∑

j=1,j 6=i

|X juj|)2 dt (7.11)

≥
∫ ti2

ti1

((|X i| −
m∑

j=1,j 6=i

|X j|)|ui|)2 dt (7.12)

≥
∫ ti2

ti1

ε2|ui|2 dt = (ti2 − ti1)ε2|ui|2. (7.13)

Choosing δ < (ti2 − ti1)ε2|ui|2 leads to a contradiction. Therefore, S̄T is positive definite

and hence, ST is positive definite.
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A sufficient condition for satisfaction of Lemma 7.2’s assump-

tions:

Since checking the condition of the mobile sensor traversing through the sets Aεj in

Lemma 7.2 involves transforming the vector K(q) at each instant which can be cumber-

some if the number of parameters are large, we, therefore, present a simpler sufficient

condition which ensures that a given point q is inside the set Aεj . Note that the conditions

derived are not equivalent to the conditions of the lemma, but only sufficient and thus

can be conservative. However, it may be useful during implementations.

Lemma 7.3. Given the mobile sensor position p, if

‖K(p)−K(cj)‖∞ <
(1− ε)

2(m− 1)‖K−1‖∞
, (7.14)

then p ∈ Aεj.

Proof. We have the i-th component of X (p), X i(p) = [K−1K(p)]
i
. Then

X i(p)−X i(cj) =
[
K−1(K(p)−K(cj))

]i
. (7.15)

Now consider the mapping

 y1

y2


 = Bj (X (p)−X (cj)) , (7.16)

where

Bj =


 0 . . . 0 1 0 . . . 0

1 . . . 1 0 1 . . . 1


 . (7.17)

The 1 in the first row and the 0 in the second row occurs at the j-th column. If the

infinity-norm of y = [y1, y2]>, ‖y‖∞ < (1 − ε)/2, then it is guaranteed that p ∈ Aεj . We

also have

‖y‖∞ ≤ ‖B‖∞‖X (p)−X (cj)‖∞ (7.18)

≤ ‖B‖∞‖K−1‖∞‖K(p)−K(cj)‖∞. (7.19)

Requiring the above bound to be less than (1−ε)
2

and noting that ‖B‖∞ = (m−1) we have

‖K(p)−K(cj)‖∞ <
(1− ε)

2(m− 1)‖K−1‖∞
. (7.20)

Any point p which satisfies the above condition will lie in the set Aεj although all

points in Aεj are not characterized by the above condition.
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7.3 Mobile Sensor Network

Suppose that we have N mobile sensors deployed in the regionQ, with the position of

mobile sensor i denoted by pi. We want to estimate the function φ : Q → R+ collectively.

We assume that equation (7.1a) holds so that we can linearly parameterize φ(·) in terms

of radial basis functions. We partition the region into N components Qi (i = 1, 2, . . . , N).

Correspondingly we partition the basis function vector K(q) and the parameter vector a

as

K(q) =




K(1)(q)

K(2)(q)
...

K(N)(q)



, a =




a(1)

a(2)

...

a(N)



. (7.21)

Each regionQi contains the centers of the basis functions in the sub-vector K(i). We assign

each region Qi to one of the mobile sensors where the sensor operates. This assignment

is permanent and each mobile sensor starts within its region Qi and moves in Qi. The

algorithms presented below do not depend on any particular partition or assignment of

mobile sensors, and this can be done arbitrarily. One particular method to divide the

region and assign the sensors will be discussed in section 7.5. Assuming the region Q is

partitioned and the mobile sensors are assigned to each partition, we consider the graph

G with the vertices representing the mobile sensors and an edge existing between two

sensors if they belong to adjacent partitions. See figure 7.1 for an illustration. Now we

consider two cases: (1) each mobile sensor estimates the entire parameter vector, and (2)

each mobile sensor estimates only part of the parameter vector.

7.3.1 Each mobile sensor estimates the full parameter vector

In this subsection, we consider the case where each mobile sensor estimates the entire

parameter vector, the estimate of sensor i being denoted by âi. To proceed, we consider

the following integrators running on mobile sensor i:

Λ̇i = Ki(t)Ki(t)>, (7.22)

λ̇i = Ki(t)φi(t), (7.23)

where Ki(t) = K(pi(t)) and φi(t) = φ(pi(t)) is the measurement of φ(·) obtained by sensor

i at its location at time t.
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Q

1

2

3
4

Figure 7.1: Illustration of four mobile sensors with a partition of domain Q: A graph

with mobile sensors as root nodes and edge between neighbouring sensors is depicted in

the figure. Gaussian RBFs are also indicated in the figure using dark circles.

We consider the following update law for the parameter estimate of mobile sensor i:

˙̂ai = −Γ (Λiâi − λi)− Γζ
N∑

j=1

lij (âi − âj) , (7.24)

where ζ is a positive constant, lij is the weight of the edge between sensors i and j. The

weight lij is zero if there is no edge between sensor i and j and positive otherwise. The

first term corresponds to the measurement update of mobile sensor i and the second term

is a consensus term to ensure that the estimates of all the mobile sensors asymptotically

agree or come close to each other. This is critical in establishing the convergence of the

estimation error, as will be shown below.

Lemma 7.4. Suppose the mobile sensors translate continuously such that in some time

T , each sensor i passes through each of the centers in the region Qi so that

T∫

0

K(i)
i (t)K(i)

i (t)>dt > 0, for i = 1, 2, . . . , N,

where K(i)
i (t) denotes part of the vector Ki(t) corresponding to the partition (7.21). Then,
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we have
N∑

i=1

T∫

0

Ki(t)Ki(t)>dt > 0.

Proof. Since each mobile sensor i passes through the centers in the region Qi, the union

of the trajectories of all mobile sensors cover all the centers, which implies that the matrix

N∑

i=1

T∫

0

Ki(t)Ki(t)>dt (7.25)

is positive definite using the same arguments as in the proof of Corollary 7.4 and Lemma

7.1.

Remark 7.6. Lemma 7.4 states that each agent passing through the centers in its partition

Qi is sufficient to ensure that the total sum matrix (7.25) is positive definite.

Now we have the following result:

Theorem 7.7. Suppose the N mobile sensors adopt the parameter adaptation law (7.24).

Further, assume that each mobile sensor i produces a trajectory going through all the basis

function centers in Qi. Then

lim
t→∞

(âi − a) = 0, (7.26)

for each i ∈ {1, 2, . . . , N}, i.e., the mobile sensors arrive at a common value for the

parameters, the common value being the true parameter value.

Proof. Consider the function

V =
1

2

N∑

i=1

ã>i Γ−1ãi. (7.27)

Taking the derivative of V ,

V̇ =
N∑

i=1

ã>i Γ−1 ˙̂ai

= −
N∑

i=1

ã>i (Λiâi − λi)− ζ
N∑

i=1

ã>i lij (âi − âj) .

Substituting for the variables Λi, λi and rearranging the second term,

V̇ = −
N∑

i=1

ã>i

t∫

0

Ki(τ)K>i (τ)dτ ãi − ζ
m∑

α=1

âα
>
Lâα (7.28)

≤ 0, (7.29)
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where âα = [aα1 a
α
2 . . . a

α
N ]> is the vector of the estimate of parameter α of all the sensors

stacked together. The function V is lower bounded and non-increasing, and therefore

tends to a limit. This implies that V̇ is integrable and also that the estimates âi are

bounded. V̇ is also uniformly continuous since the derivative of each term in V̇ is bounded.

Using Barbalat’s lemma, we conclude that V̇ tends to zero as t → ∞. From the second

term in V̇ , noting that L is the Laplacian matrix of the connected graph G with nullspace

k1 where 1 is the vector of ones and k ∈ R, we see that as t → ∞, âα → kα1 for some

kα. Then,

lim
t→∞

(âi − âj) = 0

since âi = [a1
i a

2
i . . . a

m
i ]>. Now from the first term of V̇ we have, as t→∞,

−ã>
N∑

i=1

t∫

0

Ki(τ)K>i (τ)dτ ã = 0,

where ã is the common value to which the mobile sensor parameter estimation errors

ãi converge. Then using Lemma 7.4, it follows that limt→∞ ã = 0 and the parameter

estimates converge to the true parameter values.

Remark 7.8. Although Lemma 7.4 and Theorem 7.7 requires that the mobile sensors move

through the centers, the relaxation given in section 7.2.1 (requiring that the mobile sensors

move only through the neighbourhoods Aεj of the centers) also applies here, as well as in

all the following results, which requires the sensors to move through the centers.

7.3.2 Each mobile sensor estimates only part of the parameter

vector

If the number of parameters m is large as could be the case when the density function

is completely unknown, each mobile sensor estimating the entire parameter vector could

be computationally intensive, as it would require computing
(
m(m+1)

2
+m

)
filter variables

in addition to the m parameter estimates. In such cases, it would be beneficial to have

each mobile sensor estimate only part of the parameters. Suppose each mobile sensor i

is to estimate only part of the a-vector a(i) given by (7.21). Now we use âi to denote the

estimate of a(i) by sensor i. We write

φ(q) = K(q)>a (7.30)
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= K(i)(q)>a(i) + K̄(i)> ā(i), (7.31)

where K(q) and the parameter a are partitioned appropriately. Since the mobile sensor

i’s measurement is denoted by φi(t) := φ(pi(t)), we have

φi(t) = K(i)
i (t)>a(i) + K̄(i)

i (t)>ā(i) (7.32)

= K(i)
i (t)>a(i) + ∆φi(t), (7.33)

where Ki(t) := K(pi(t)) and ∆φi(t) := K̄(i)
i (t)>ā(i). The basis functions in K̄(i)

i (t) are

centered outside the region Qi and thus their values at the points pi(t) are assumed to be

small. Under this condition, we consider the contribution to φ(.) from these terms as a

disturbance ∆φi(t).

Let C = {c1, c2, . . . , cm} be the set of centers of the basis functions, Ci ⊂ C be its subset

which belongs to Qi. We can then bound ∆φi(t) as follows:

Lemma 7.5. For each mobile sensor i, i ∈ {1, 2, . . . , N},

|∆φi(t)| ≤ mδiamax, (7.34)

where δi := max
j∈{1,...,m}

exp
{
− d2i
σ2
j

}
, di := dist(Ci, C \ Ci), dist(A,B) = min

a∈A,b∈B
‖a − b‖, and

amax is an upper bound for the parameters, i.e., |ai| ≤ amax ∀i ∈ {1, 2, . . . ,m}.
To make the bound independent of i, we have

|∆φi(t)| ≤ mδamax, (7.35)

where δ = max
j∈{1,...,N}

δi.

Proof. The lemma follows from the definition of ∆φi(t) using Cauchy-Schwartz inequality.

We now define the following integrators:

Λ̇i = sK(i)
i K(i)>

i ,

λ̇i = sK(i)
i φi,

(7.36)

where s is a switching signal which takes values in the set {0, 1}. Consider the following

adaptation law:

˙̂ai = −Γ (Λiâi − λi) . (7.37)

Then we have the following result:
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Theorem 7.9. Suppose the N mobile sensors implement the parameter adaptation law

(7.37) with each sensor i only estimating part of the full parameter vector a(i). Further,

assume that each mobile sensor i produces a trajectory going through all the basis function

centers in Qi in time T . Then setting s = 1 for t ≤ T and s = 0 for t > T in (7.36), we

have

lim
t→∞
‖âi(t)− a(i)‖ ≤ ri,

where

ri =
Tmδiamax

αηi
,

amax is the upper bound on the parameter values in a(i), α ∈ (0, 1) and ηi is the smallest

eigen-value of the matrix
∫ T

0
K(i)
i K(i)>

i dτ .

Proof. Consider

V =
1

2

N∑

i=1

ã>i Γ−1ãi. (7.38)

Taking the derivative,

V̇ = −
N∑

i=1

ã>i (Λiâi − λi) (7.39)

= −
N∑

i=1

ã>i

t∫

0

sK(i)
i

(
K(i)
i

>
âi −K(i)

i

>
a(i) −∆φi

)
dτ (7.40)

= −
N∑

i=1

ã>i

t∫

0

sK(i)
i

(
K(i)
i

>
ãi −∆φi

)
dτ (7.41)

= −
N∑

i=1

ã>i

t∫

0

sK(i)
i K(i)

i

>
dτ ãi +

N∑

i=1

ã>i

t∫

0

sK(i)
i ∆φidτ. (7.42)

For t ≥ T , the first term becomes negative definite. We then have

V̇ = −
N∑

i=1

ã>i

T∫

0

K(i)
i K(i)

i

>
dτ ãi +

N∑

i=1

ã>i

T∫

0

K(i)
i ∆φidτ, (7.43)

for t > T . Then

V̇ ≤ −
N∑

i=1

ηi‖ãi‖2 +
N∑

i=1

‖ãi‖Tmδiamax (7.44)

≤ −κV −
N∑

i=1

‖ãi‖ (αηi‖ãi‖ − Tmδiamax) , (7.45)

where κ = ηmin

λmax(Γ−1)
, α ∈ (0, 1) and ηmin = mini∈{1,2,...,N} ηi. Thus for ‖ãi‖ > ri, we have

V̇ ≤ −κV and V decays exponentially. Therefore the statement of the theorem holds.
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Q

1

2

3
4

a(1)

a(2)

a(3)

a(4)

Figure 7.2: Illustration of four mobile sensors with the directed graphs corresponding to

a(1) and a(4). The Gaussian RBFs are also indicated in the figure using dark circles.

7.3.3 Improving the steady state error

In this section, we propose a strategy to improve the steady-state error with the

strategy in Theorem 7.9. Note that the strategy in Theorem 7.9 is completely decent-

ralized in that there is no real-time communication required between the mobile sensors

to implement the estimation strategy. On the other hand, we may be able to get better

parameter estimates at the cost of exchanging information about parameter estimates

with other mobile sensors.

The term ∆φi(t) depends on the true value of parameters corresponding to the other

mobile sensors (denoted ā(i)). Since we do not know the true values, we cannot cancel this

term and treat it as a disturbance. But we may do better since we know that the other

mobile sensors have estimates for the true values of ā(i). We can use these parameter

estimates to reduce the effect of the ∆φi(t) term on the estimation algorithm. Note that

the vector ā(i) consists of the sub-vectors a(j) for all j 6= i. Now, corresponding to each

a(i), we construct a directed graph with a rooted out-branching (see [59]), denoted Gi
which is a sub-graph of the undirected graph G with mobile sensor i as the root node. An

illustration is shown in figure 7.2.

For each mobile sensor i, we introduce additional states bji for each j ∈ {1, 2, . . . , N}
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and j 6= i, which evolves according to the equation

ḃji = −
N∑

k=1

ldik

(
b̂ji − b̂jk

)
, (7.46)

where we define bii := âi for ease of notation and ldik is zero if there is no directed path

from node i to k in graph Gj, and non-zero constant value otherwise. This implements a

directed consensus protocol on the variables bji with i = 1, 2, . . . , N (see [59]) converging

to the root value bjj = âj for each j. Thus bji is an estimator of âj by mobile sensor i. We

now use the modified integrators:

Λ̇i = sK(i)
i K(i)>

i , (7.47)

λ̇i = sK(i)
i

(
φi − K̄(i)>

i bi

)
, (7.48)

where bi is the concatenated vector given by bi =
[
b1>
i . . . bj

>

i . . . bN
>

i

]>
(j = i not in-

cluded). Using the adaptation law (7.37) we can see that the disturbance term now

becomes

∆φ′i(t) := K̄(i)
i (t)>(ā(i) − bi), (7.49)

which is expected to be smaller than ∆φi(t), although we cannot put a theoretical bound

better than ri in Theorem 7.9. The stability and convergence in case of the above modi-

fication is not proved here as it is essentially a similar exercise to that in the previous

section. We will investigate the effect of the above modification in section 7.5.

7.4 Unknown Centres

In this section, we assume as before that the scalar field is a finite linear combination

of radial basis functions. We further assume that the centers are not exactly known, but

known to within an accuracy of εc, i.e., ‖ĉi − ci‖ ≤ εc. We will evaluate the quality of

parameter estimates in this case. Define

K̃(q) = K̂(q)−K(q),

where K̂(q) is the RBF evaluated at the known values of the centers and K(q) corresponds

to the true values of the centers.
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7.4.1 Each mobile sensor estimates only a part of the parameter

vector

As in section 7.3.2, we assume that each mobile sensor estimates part of the para-

meter vector a(i) corresponding to the partition Qi. In this case we propose the following

modified filters,

Λ̇i = sK̂(i)
i K̂(i)>

i , (7.50)

λ̇i = sK̂(i)
i φi, (7.51)

with equation (7.37) as the adaptation law. Then we have the following result.

Proposition 7.2. Assuming the centers are only known to within an accuracy of εc, let

each mobile sensor pass through the set of known (inaccurate) centers in Qi in time T . If

each mobile sensor implements the adaptation law (7.37) along with (7.51) setting s = 1

for t ≤ T and s = 0 for t > T , the estimation error ãi converges to within a bound ri of

the origin, where

ri =
Tmamax(

√
mkεc + δi)

αηi
,

with k > 0 is the Lipschitz constant such that |Ki(q) − K̂i(q)| ≤ kεc, ηi is the smallest

eigen-value of
T∫
0

K̂(i)
i K̂(i)>

i dτ and α ∈ (0, 1) .

Proof. Consider the same Lyapunov function as before,

V =
N∑

i=1

ã>i Γ−1ãi.

Taking the time derivative,

V̇ = −
N∑

i=1

ã>i (Λiâi − λi)

= −
N∑

i=1

ã>i

t∫

0

sK̂(i)
i

(
K̂(i)
i

>
âi −K(i)

i

>
a(i) −∆φi

)
dτ

= −
N∑

i=1

ã>i

t∫

0

sK̂(i)
i K̂(i)

i

>
dτ ãi −

N∑

i=1

ã>i

t∫

0

sK̂(i)
i K̃(i)

i

>
dτ a(i) +

N∑

i=1

ã>i

t∫

0

sK̂(i)
i ∆φidτ.

Setting s = 1 for t ≤ T and s = 0 for t > T as before and, assuming the first term

becomes negative definite at time T , while noting that |K̂i(q)| ≤ 1 =⇒ ‖K̂(q)‖ ≤ √m,
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and |K̃i(q)| ≤ kεc =⇒ ‖K̃(q)‖ ≤ √mkεc for some k (Lipschitz constant), we now have

V̇ ≤ −
N∑

i=1

ã>i

T∫

0

K̂(i)
i K̂(i)

i

>
dτ ãi +

N∑

i=1

‖ãi‖Tmamax(
√
mkεc + δi)

≤ −κV −
N∑

i=1

‖ãi‖
(
αηi‖ãi‖ − Tmamax(

√
mkεc + δi)

)
,

for t ≥ T . Therefore, the statement of the proposition follows.

7.4.2 Each mobile sensor estimates the entire parameter vector

We define the following filter equations,

Λ̇i = sK̂iK̂>i , (7.52)

λ̇i = sK̂iφi. (7.53)

The adaptation law is given by equation (7.24). In this case, we have

Proposition 7.3. Suppose the N mobile sensors adopt the parameter adaptation law

(7.24) with the integrators (7.53), other conditions remaining the same as in Proposition

7.2. Then the parameter estimation errors of the mobile sensors converge to within a

bound ri of origin, where

ri =
Tm
√
mkεcamax

αηmin

,

where k is the Lipschitz constant and ηmin is the smallest eigen-value of
(
Q+ P>LP

)
with

Q, L, and P given by (7.54), (7.55), and (7.57).

Proof. Consider the Lyapunov function

V =
N∑

i=1

ã>i Γ−1ãi.

Taking the derivative of V ,

V̇ =
N∑

i=1

ã>i Γ−1 ˙̂ai

= −
N∑

i=1

ã>i (Λiâi − λi)− ζ
N∑

i=1

ã>i lij (âi − âj) .

Substituting for the variables Λi, λi and rearranging the second term,

V̇ = −
N∑

i=1

ã>i

t∫

0

sK̂iK̂>i dτ ãi −
N∑

i=1

ã>i

t∫

0

sK̂iK̃i
>
dτ a(i) − ζ

m∑

α=1

âα
>
Lâα.
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Simplifying,

V̇ = −
N∑

i=1

ã>i

T∫

0

K̂iK̂>i dτ ãi −
N∑

i=1

ã>i

T∫

0

K̂iK̃i
>
dτ a(i) − ζ

m∑

α=1

ãα
>
Lãα,

for t ≥ T . We can write the first and last terms in the above equation in terms of stacked

vectors as

V̇ = −ã>Qã− ζ ã>P>LP ã− ã>Ea

= −ã>
(
Q+ ζ P>LP

)
ã− ã>Ea,

where ã = [ã>1 ã
>
2 . . . ã>N ]>,

Q =




∫ T
0
K̂1K̂>1 dτ . . . 0

0 . . . 0
...

. . .
...

0 . . .
∫ T

0
K̂NK̂>Ndτ



, (7.54)

L =




L 0 . . . 0

0 L . . . 0
...

...
. . .

...

0 0 . . . L



, (7.55)

E =




∫ T
0
K̂1K̃>1 dτ . . . 0

0 . . . 0
...

. . .
...

0 . . .
∫ T

0
K̂NK̃>Ndτ




(7.56)

and P is the permutation matrix

P =




1 0 . . . 0 0 . . . 0

0 0 . . . 1 0 . . . 0
...

...
...

...
...

...
...

0 1 . . . 0 0 . . . 0

0 0 . . . 0 1 . . . 0
...

...
...

...
...

...
...




(7.57)

of dimension mN×mN . We show that the matrix
(
Q+ P>LP

)
is positive definite. Each

of the terms are positive semi-definite. The nullspace of matrix L contains elements of
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the form

c1




1m

0
...

0




+ c2




0

1m
...

0




+ · · ·+ cN




0

0
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Therefore P>LP has nullspace elements of the form

c1
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0
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+ c2


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0
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+ · · ·+ cN




0

0
...

1

0

0
...

1




,

i.e., elements of the form [ c1 c2 . . . cN c1 c2 . . . cN ]>. Correspondingly the Q term can be

written as

c>
N∑

i=1

∫ T

0

K̂iK̂>i dt c,

where c = [ c1 c2 . . . cN ]>. Under the assumptions of the proposition, and Lemma 7.4, the

above term is strictly positive. Hence
(
Q+ P>LP

)
is positive definite. Let ηmin be the

smallest eigen-value of
(
Q+ P>LP

)
. Then we have

V̇ ≤ −κV − αηmin‖ã‖2 +
N∑

i=1

‖ãi‖Tm
√
mkεcamax

= −κV − αηmin

N∑

i=1

‖ãi‖
(
‖ãi‖ −

Tm
√
mkεcamax

αηmin

)
,

for some κ > 0. Thus for ‖ãi‖ > Tm
√
mkεcamax

αηmin
, V decreases exponentially and the result

holds.

7.5 Simulations

In this section, we verify the algorithms presented using simulations. First, we con-

sider the exact parameterization case where the true scalar field is a linear combination
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ci,x 0.20 0.35 0.60 0.85 0.70 0.75 0.15 0.35

ci,y 0.25 0.26 0.18 0.30 0.75 0.90 0.75 0.60

ai 2.0 1.0 1.5 1.8 1.2 1.6 2.5 1.1

Table 7.1: Parameters of the simulated scalar field
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Figure 7.3: The scalar field used for verifying the algorithms

of RBFs where the centers of RBFs are known. This case allows us to verify the cor-

rectness of the algorithms presented in the chapter. Next, we consider a scalar field that

is completely unknown and use the algorithms presented to reconstruct the scalar field.

The mobile sensors in the simulations are assumed to be single integrators with dynamics

given by ṗi = ui where pi is the position of sensor i and ui is its control input. For ease

of comparing various algorithms, we refer to the algorithm in section 7.3.1 as Algorithm

S1, the algorithm presented in section 7.3.2 as Algorithm S2, and the modified version of

algorithm S2 in section 7.3.3 as Algorithm S3.

7.5.1 Exact parameterization

We consider the unit square region Q with four mobile sensors. The scalar field to be

estimated is exactly parameterized in terms of Gaussian RBFs (given by equation (7.2)),

the x and y coordinates of the RBF centers ci being given in table 7.1. The standard

deviation of each of the Gaussians σi is chosen to be 0.1. The true parameter values ai

are given in table 7.1. The scalar field is shown in figure 7.3. The initial positions of
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(a) Partitions
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(b) Algorithm 1.

Figure 7.4: Left: Initial positions (blue squares), corresponding partitions and centres of

RBFs (red circles); Right: Reconstructed field using algorithm S1.

the mobile sensors were chosen randomly and shown in figure 7.4. The partition of the

region was done by constructing the Voronoi cells for each mobile sensor. The Voronoi

cell of mobile sensor i (denoted Qi) consists of those points which are closer to sensor i

as compared to all other sensors:

Qi = {q ∈ Q : ‖q − pi‖ ≤ ‖q − pj‖, j = 1, 2, . . . , N ; j 6= i} (7.58)

For motion control of the sensors, we use a proportional control law ui = k(pi−pgi) where

pgi is made to switch between all the centers in the region Qi making sure the condition in

Lemma 7.2 is satisfied. The control gain k was chosen to be 5. The simulation ran for 16.5

seconds. The excitation condition was achieved in T = 1.5 seconds. The reconstructed

scalar field with algorithm S1 is shown in figure 7.4 on the right and the average (across all

the mobile sensors) parameter estimation error is shown in figure 7.5. It can be seen that

the parameters converge exactly to the true values and exact reconstruction is achieved.

The reconstructed field with algorithm S2 and algorithm S3 is shown in figure 7.6.

The corresponding estimation errors are shown in figures 7.7 and 7.8, respectively. The

maximum parameter estimation error using algorithm S2 was found to be 0.030, and

using the algorithm S3 was found to be 0.017. Thus the algorithm S3 is seen to give

better parameter estimates in this case.

We also present simulation results where we do not know the exact value of the
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Figure 7.5: Algorithm S1: Average parameter estimation error with time

(a) Algorithm S2. (b) Algorithm S3.

Figure 7.6: The reconstructed field using algorithms S2 and S3.
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Figure 7.7: Algorithm S2: Average parameter estimation error with time
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Figure 7.8: Algorithm S3: Average parameter estimation error with time
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Max. est. error

Algorithm S1 0.16

Algorithm S2 0.62

Algorithm S3 0.44

(a) Max. parameter estimation errors.

(b) Algorithm S1.

Figure 7.9: Unknown Centres: Max. parameter estimation errors (left) and the recon-

structed field using algorithm S1 (right).

centers of the RBFs (as in section 7.4). We assume we know the centers within an

accuracy of εc = 0.05. For this, we add a random perturbation (bounded by εc) to the

true center coordinates and use the perturbed centers in the estimation algorithm. The

reconstructed fields with algorithm S1, algorithm S2, and algorithm S3 are shown in

figures 7.9 and 7.10, respectively. Table 7.9a also compares the maximum steady-state

parameter errors in the three cases. As expected, algorithm S1 has much lower steady

state error compared algorithm S2 and the algorithm S3 performs better than algorithm

S2. It should be noted that all the algorithms identify the main features of the true field,

as seen from the reconstructed field plots.

7.5.2 Fully unknown scalar field

Now we test the estimation algorithm on a more general scalar field which is not a

linear combination of RBFs. For this we consider the continuous scalar field given by

φ(x, y) = 3x2e
−(x−0.7)2−(y−0.7)2

0.05 + e
−(x−0.4)2−(y−0.4)2

0.06 +
1

3
e
−(x−0.2)2−(y−0.2)2

0.08

over the unit square region Q. A plot of φ(·) is shown in figure 7.11. We use N = 5

mobile sensors with the partitions Qi determined as follows: We first run a uniform

coverage algorithm (coverage algorithm presented in [1] with a uniform density function

φ(q) ≡ 1). This makes the mobile sensors uniformly spread out in the region Q. We then
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(a) Algorithm S2. (b) Algorithm S3.

Figure 7.10: Unknown Centres: Reconstructed field.

σi = 0.04 T (sec) ‖e‖2 σi = 0.05 T (sec) ‖e‖2

Algorithm S1 3.1 0.045 Algorithm S1 3.9 0.012

Algorithm S2 3.1 0.054 Algorithm S2 3.7 0.053

Algorithm S3 3.1 0.048 Algorithm S3 3.7 0.028

Table 7.2: Comparison of algorithms for m = 100 parameters.

compute the Voronoi partition (7.58) of the sensors and use it as the required partition

Qi.
We first show the results for approximating the field φ(·) with m = 100 Gaussian

RBFs. The centers of the Gaussian are arranged in a uniform grid over the region Q. The

reconstructed field plots for two values of σi (standard deviation of the Gaussian RBFs)

are shown in figures 7.12, 7.13, and 7.14 with the three algorithms. To compare the

various algorithms, we use the integral error (see Theorem 7.1)

‖e‖2 =

∫

Q
|φ(q)−K(q)>â|dq,

where â is the final parameter estimate obtained from the given algorithm. The integral

error for approximation of φ(·) using m = 100 parameters is shown in table 7.2. The table

also shows the time T in seconds at which the excitation (positive definiteness) condition

is achieved. The total runtime of the estimation algorithms was T + 20 seconds.

The reconstructed field plots for m = 196 parameters is shown in figures 7.15, 7.16
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Figure 7.11: The scalar field φ(x, y) used in the simulation
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(a) σi = 0.04.
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(b) σi = 0.05.

Figure 7.12: Reconstructed field (m = 100) with algorithm S1.
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(a) σi = 0.04.
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(b) σi = 0.05.

Figure 7.13: Reconstructed field (m = 100) with algorithm S2.
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(a) σi = 0.04.
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(b) σi = 0.05.

Figure 7.14: Reconstructed field (m = 100) with algorithm S3.
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(a) σi = 0.03.
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(b) σi = 0.04.

Figure 7.15: Reconstructed field (m = 196) with algorithm S1.

σi = 0.03 T (sec) ‖e‖2 σi = 0.04 T (sec) ‖e‖2

Algorithm S1 6.6 0.031 Algorithm S1 8.9 0.008

Algorithm S2 6.6 0.059 Algorithm S2 8.8 0.073

Algorithm S3 6.6 0.053 Algorithm S3 8.8 0.039

Table 7.3: Comparison of algorithms for m = 196 parameters.

and 7.17 with the three algorithms. The comparison of various algorithms is given in

table 7.3.

We see that algorithm S1 gives better approximation compared to the others as

expected. Also, the algorithm S3 performs significantly better compared to algorithm

S2. Increasing the number of parameters gives a better approximation as expected for

algorithm S1, though for the other algorithms this is not the case. This is because for

Algorithm S1, the error incurred in estimation is only due to the error in approximation

of φ(·) using the m RBFs. Using a larger number of RBFs improves the approximation

(reduces the approximation error) and thus results in lower approximation error. This is

not the case with algorithms S2 and S3 since for these algorithms the error incurred in

estimation is not just due to the RBF approximation, but also due to the ∆φi(·) term,

which may increase with an increase in the number of RBFs (see also Theorem 7.9). σi also

plays an important role in the reconstruction of the original field. For m = 100, σi = 0.05
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(a) σi = 0.03.
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(b) σi = 0.04.

Figure 7.16: Reconstructed field (m = 196) with algorithm S2.
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(a) σi = 0.03.
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(b) σi = 0.04.

Figure 7.17: Reconstructed field (m = 196) with algorithm S3.
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seems to provide a better approximation compared to σi = 0.04, and for m = 196,

σi = 0.04 seems to provide a better approximation compared to σi = 0.03. Regarding

computation and memory requirements, Algorithm S1 requires each agent to maintain

5150 integrator variables for m = 100 while algorithms S2 and S3 requires 405 and 478

variables, respectively (approximately 13X lower than S1). For m = 196, Algorithm S1

requires each agent to maintain 19306 integrator variables whereas Algorithm S2 and

S3 requires each agent to maintain a maximum of 1539 and 1681 integrator variables,

respectively. Correspondingly, one loop of updates required average computation time of

0.0024 sec, 0.0010 sec, and 0.0012 sec for algorithms S1, S2 and S3 respectively1. The

corresponding computation times for m = 196 are 0.0055 sec, 0.0019 sec, and 0.0020 sec.

To summarize, algorithm S1 gives better approximation compared to the others though it

is more compute and memory intensive. The algorithm S3 also gives a good approximation

requiring much less memory. It may also be noted that in many applications, we may only

be interested in identifying the main features of the original field, which was successfully

done in most of the cases discussed.

1The computation times were obtained on MATLAB® 9.4 running on an Intel core-i5 processor (7th

gen) with 8GB of RAM.



Chapter 8

Conclusions and Future Work

This thesis discusses distributed adaptive control strategies for coverage control and

scalar field estimation using mobile sensor networks. First, we consider the coverage con-

trol problem where the density function is unknown but can be linearly parameterized in

terms of constant parameters. We develop coverage control algorithms for nonholonomic

mobile robots using the locational optimization framework. We derive control and ad-

aptation laws such that the robots converge to the estimated centroids of their Voronoi

region. We also look at the case where the robot dynamics parameters are unknown. In

this case, using an additional adaptation law for the robot parameters, convergence to

estimated centroids is guaranteed. We verify the above algorithms using simulations. We

also compare the dynamics based coverage control with the coverage control law based

on kinematics alone and conclude that the dynamics based algorithm performs better.

Next, we propose a new framework for the formulation of the coverage control prob-

lem in terms of a distance function between density functions. We quantify the sensing

performance of the individual mobile sensors using a sensing function, and the coverage

problem is posed in terms of minimizing some distance function between an aggregated

sensing function and the target density function. We show that the locational optimiza-

tion can be formulated as the minimization of the K-L divergence with the agent sensing

functions being Gaussian functions and the aggregate function formed by taking the max-

operator among the agents. We also consider the notion of L2 coverage where coverage is

obtained by minimizing the L2 distance between the aggregate sensing function and the

target density function. We also propose a modified form of consensus-based adaptation

law for the parameters, which results in faster convergence of parameters. We implement

107
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the coverage algorithm on actual differential drive robots and present the hardware ex-

periment results and also compare the performance of the L2 coverage with the locational

optimization-based coverage, concentrating primarily on the performance for parameter

estimation. We find that L2 coverage gives better estimates for the parameters overall.

The locational optimization seems to start the parameter adaptation faster than the L2

optimization in some cases.

Finally, we discuss the problem of estimation of scalar field using mobile sensor

networks. We assume that the scalar field to be estimated is a linear combination of

positive definite radial basis functions. Parameter estimation algorithms are derived for

the case where each mobile sensor estimates all the parameters (Algorithm S1), as well

as the case where each mobile sensor estimates only a subset of parameters (Algorithms

S2 and S3). We test the algorithms using simulations and verify that S1 performs better

compared to S2 and S3 although computational requirements are higher. Algorithm S3

also performs well and is found to give a good balance between estimation performance

and computational requirements.

One of the issues with the mobile sensor deployment algorithms for tasks like coverage

is that they are only guaranteed to approach local minima, which can be many since the

objective functions are generally non-convex, and the algorithms are generally sensitive

to initial conditions. Methods for avoiding poor local minima still needs investigation.

Another direction for future research is incorporating the orientation of the mobile sensors

into the coverage problem. This can be much more challenging because for this case, the

analysis and control law design proposed in this thesis may not extend in a straight

forward manner. We also argue that such problems can be posed much more elegantly

using the distance-function based approach. Another line of investigation is to try to

generalize the distance function optimization framework for other multi-agent problems

such as consensus/rendezvous problems, formation problems, etc.

An interesting extension to the scalar field estimation problem is to consider noisy

sensors with measurement accuracy decreasing with distance from the sensors. Also,

the current work on scalar field estimation assumes the scalar field to be fixed. One

direction for further work in this line is to consider time-varying scalar fields. This is in

general difficult since then the parameters would be time-varying and the adaptive control

methods discussed in this thesis may not work. One way to tackle this issue would be
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to model the time-variation using models such as partial differential equations or the

like. We have also assumed in the current work that the radial basis functions used for

approximating the scalar field are fixed. It would be interesting to consider the case where

the centers of basis functions need not be fixed but may be adapted to better approximate

the given scalar field. This could possibly lead to better approximation using the same

number of parameters.
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