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ABSTRACT

Relativistic astrophysics has become an increasingly important field of study with the advent of
gravitational wave detectors and an ever-growing number of observations of extremely luminous
phenomena. These phenomena, such as active galactic nuclei, gamma-ray bursts and tidal dis-
ruption events, are powered by the accretion of matter onto black holes. Alongside observations,
numerical methods are an important tool for studying these systems.

In this thesis, we develop a general relativistic smoothed particle hydrodynamics method for
performing numerical hydrodynamics calculations in curved spacetimes around black holes. We
perform rigorous tests of our method, demonstrating its ability to capture ultra-relativistic shocks
and accurately reproduce Einstein and spin-induced precession.

We use this new numerical tool to simulate the tidal disruption of a one solar mass star by a
million solar mass, spinning black hole. We consider both eccentric and parabolic stellar orbits.
In the eccentric case, we investigate the effect of black hole spin on the formation of accretion
discs from the fallback of stellar debris after disruption. We found that Lense-Thirring precession
only delays disc formation by a few orbital periods. This broad conclusion is robust with respect
to the initial orbital inclination, the penetration factor, and the black hole spin.

In the parabolic case, we follow the debris evolution self-consistently for one year after dis-
ruption, revealing the formation of an expanding asymmetric bubble of material with an optically
thick inner region that encases the black hole. Previously hypothesised by a number of analytic
studies, we found that this ‘Eddington envelope’ correctly reproduces some puzzling features of
optical and UV emission from observed tidal disruption events. We measure a photospheric ra-
dius of ∼ 10–100 au, a photospheric temperature of ≈ 2.5 × 104 K that remains nearly constant
with time, and a peak bolometric luminosity of ∼ 1044 erg/s. The optical light curve reflects the
expansion and contraction of the photosphere, and is sensitive to the viewing angle. Our photo-
sphere evolution shows remarkable agreement to the radii inferred from observations. We find
accretion to be inefficient (∼ 10−2M�/yr), powering mechanical outflows moving at speeds up
to ∼ 20,000 km/s.
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Chapter 1

Introduction

Black holes power the brightest objects in the universe. They allow matter to release enormous
amounts of gravitational potential energy during accretion. This is in part due to their large mass,
but also due to their extreme compactness, since the gravitational potential energy per unit mass
available from an object of mass M and radius R scales as ∝ M/R. A black hole with the mass
of the Sun has a radius of only ≈ 3 km, roughly a factor of 2× 105 smaller than the radius of the
Sun. This means that matter has the potential to release 200,000 times more energy by landing
onto a solar mass black hole than by landing onto the Sun! It is this energy that powers gamma-
ray bursts (GRBs), quasars and active galactic nuclei (AGN), X-ray binaries, and tidal disruption
events (TDEs).

Although fundamentally relativistic, the basic concept of a black hole can be understood using
Newtonian physics. John Michell and Pierre-Simon Laplace both independently put forth the idea
of a ‘dark star’ in 1784 and 1796, respectively, more than two centuries ago (Montgomery et al.,
2009). They considered an object that is so massive that the escape velocity at its surface is equal
to (or exceeds) the speed of light. Assuming that light is affected in the same way as ordinary
matter by gravity, then these objects would be ‘invisible’ or ‘dark’, in the sense that no light
would be able to escape from them. The radius for such an object is R = 2GM/c2, where M
is its mass, G is the gravitational constant and c is the speed of light, which turns out to give the
correct location of the event horizon (see below).

Our modern understanding of black holes is as solutions to Einstein’s field equations of grav-
itation (Einstein, 1915). Initially, Einstein believed that his equations were so complex that no
analytic solution would be found. However, only a year later, Schwarzschild (1916) found a
spherically symmetric, static, vacuum solution, which describes spacetime around a non-rotating
point mass, or black hole. It has a true singularity at r = 0, which is the black hole, and a coordi-
nate singularity at rs = 2GM/c2, known as the Schwarzschild radius. The surface bounded by rs
is called the event horizon, since anything that crosses this invisible boundary becomes causally
disconnected from the outside universe (Finkelstein, 1958) and will inevitably fall into the central
singularity; even light cannot escape. The more general solution for a rotating black hole was
found by Kerr (1963) for which the event horizon depends on the black hole angular momentum.

Although the solutions to Einstein’s equations allow for the existence of black holes with
arbitrary mass, we are currently aware of two1 distinct classes of astrophysical black holes: stellar-

1There is some evidence to suggest that there exists a third class of intermediate-mass black holes, ∼ 102−104M�,
at the centres of large globular clusters, but this is still not known for certain (Bambi, 2018).
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2 Chapter 1. Introduction

mass black holes that are five to several ten times the mass of the Sun, and supermassive black
holes hundreds of thousands to tens of billions times the mass of the Sun. Stellar-mass black
holes are formed by the gravitational collapse of massive stars (Oppenheimer and Snyder, 1939;
Oppenheimer and Volkoff, 1939), while supermassive black holes exist at the centres of galaxies.
The origin and formation of supermassive black holes, however, is still not well understood, since
with even optimistic estimates of their growth rate it is difficult to produce these massive objects
from small seed black holes within the age of the Universe.

For many years, black holes were thought to be purely theoretical objects. Generally, most
people believed that some unknown mechanism would prevent the gravitational collapse of mas-
sive bodies from forming black holes. It was not until the development of radio astronomy,
which allowed for the discovery of luminous and compact sources at the centres of galaxies (e.g.
quasars, Schmidt, 1963), when people began to consider the reality of black holes more seriously,
since it was only supermassive black holes that were compact enough to power these phenomena
(Zel’dovich, 1964; Salpeter, 1964). Similarly, strong X-ray sources such as Cygnus X-1 were
identified to be powered by stellar-mass black holes (Bolton, 1972; Webster and Murdin, 1972).
Since then, ‘an increasing number of astronomical observations have pointed out the existence
of stellar-mass black holes in some X-ray binaries (Remillard and McClintock, 2006) and of su-
permassive black holes at the centre of many galaxies (Kormendy and Richstone, 1995)’ (Bambi,
2018).

In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first di-
rect detection of gravitational waves from the merger of two stellar-mass black holes (Abbott
et al., 2016). This was concrete evidence for the existence of black holes, and brought relativistic
astrophysics, particularly the study of black holes, into the forefront of astronomical research. In
the next three years, the Large Synoptic Survey Telescope (LSST) will become fully operational
and will be able to observe AGN and other luminous sources over the whole sky, with unprece-
dented detail (Ivezić et al., 2019). It will also dramatically increase the number of black hole
transients observed, which will be particularly useful for the study of flares from the tidal dis-
ruption of stars by supermassive black holes, of which only several dozen have been observed so
far (Komossa, 2015; Stone et al., 2019). The rate of TDE detections with LSST is expected to
be between approximately 3000–8000 per year (Thorp et al., 2019; Bricman and Gomboc, 2020),
which will help explain many of the puzzling features of recently detected TDEs in the optical/UV
(e.g. van Velzen et al., 2011) (see Chapter 6).

In addition to an increased number and better quality of observations, our understanding of
the many luminous phenomena powered by black holes can also be aided by numerical simula-
tions. The method of smoothed particle hydrodynamics (SPH) is particularly useful for modelling
many of these systems since in SPH the resolution follows mass. This makes it relatively easy
to simulate geometrically complex and dynamic systems over a wide range of spatial scales. The
main limitation of current implementations of SPH however, is the approximate treatment of gen-
eral relativity in relativistic hydrodynamics (Metzger, 2017). Since black holes are fundamentally
relativistic, this can be a significant drawback, especially in modelling tidal disruptions of stars
for which relativistic effects, such as orbital precession, are thought to play a crucial role (see
Chapter 5).

The aim of this thesis is to develop a new computational tool for performing hydrodynamics in
curved spacetimes and to apply it to the study of the tidal disruption of stars by supermassive black
holes. The structure of the thesis is as follows: In Chapter 2, we review and introduce some of
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the basic concepts relevant for non-relativistic and relativistic smoothed particle hydrodynamics.
In Chapter 3, we formulate our general relativistic smoothed particle hydrodynamics method
and implement it within an existing SPH code, performing rigorous numerical tests. Following
this, we give a brief background on tidal disruption events in Chapter 4, before undertaking two
numerical studies on TDEs using our newly developed code. In Chapter 5, we investigate disc
formation from the tidal disruption of stars on bound, eccentric orbits by rotating supermassive
black holes. We then investigate the disruption of stars on marginally bound, parabolic orbits
in Chapter 6, in which we find the formation of an optically thick Eddington-envelope that may
explain the puzzling optical and UV emission observed in TDEs.
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Chapter 2

Background: Smoothed particle hydrody-
namics

2.1 Non-relativistic fluid dynamics

Here we briefly review the fundamentals of non-relativistic smoothed particle hydrodynamics
(SPH), much of which is relevant to the formulation of general relativistic SPH discussed in
Section 2.2 and Chapter 3. For a more comprehensive review, including the formulation of mag-
netohydrodynamics and dust, see e.g. Price (2012) or Monaghan (2005).

SPH is a Lagrangian numerical method for solving the fluid equations, and was first formu-
lated by Lucy (1977) and independently by Gingold and Monaghan (1977). It discretises fluid by
mass (rather than volume) into what are typically referred to as particles. This terminology can be
somewhat confusing, however, since they do not represent real particles, but rather they should be
thought of as resolution points moving with the fluid, keeping track of hydrodynamic quantities
such as velocity, density and thermal energy.

Since the resolution points follow the mass in the fluid, SPH is well suited to model a variety
of astrophysical problems, which typically have complex, dynamically evolving geometries, and
density contrasts of many orders of magnitude. Examples include: i) cosmological structure
formation (e.g. Springel and Hernquist, 2003; Borgani et al., 2004; Governato et al., 2007); ii)
galaxy mergers (e.g. Barnes and Hernquist, 1991; Mihos and Hernquist, 1996; Di Matteo et al.,
2005); iii) star cluster formation (e.g. Bate et al., 2003; Clark et al., 2008; Liptai et al., 2017);
iv) the mergers of stars (e.g. Benz and Hills, 1987; Oechslin et al., 2007); v) planet formation
(e.g. Mayer et al., 2002; Lufkin et al., 2004; Dipierro et al., 2016); vi) black hole accretion (e.g.
Lanzafame et al., 1998; Lodato and Price, 2010; Nealon et al., 2015); and vii) tidal disruption of
stars by black holes (e.g. Evans and Kochanek, 1989; Laguna et al., 1993; Hayasaki et al., 2013).

2.1.1 Continuum equations

First, we present the equations of compressible hydrodynamics in continuum form before deriving
their discrete counterparts. The Lagrangian form of the fluid equations are given by

dρ

dt
= −ρ∇ · v, (2.1)

5



6 Chapter 2. Background: Smoothed particle hydrodynamics

Figure 2.1: Approaches to calculating density at points in space given an arbitrary distribution of point
mass particles (Price, 2012). Left: sampling via a fixed mesh Middle: local sampling with spheres Right:
weighted local sampling.

dv

dt
= −∇P

ρ
, (2.2)

de

dt
= −1

ρ
∇ · (Pv), (2.3)

where ρ, v, and P are the density, velocity, and pressure of the fluid, respectively. The total
energy per unit mass is e ≡ 1

2v · v + u, where u is the specific thermal energy. The Lagrangian
time derivative is defined according to

d

dt
≡ ∂

∂t
+ v · ∇. (2.4)

2.1.2 Computing density

SPH is founded on the way it computes density at any point in space given an arbitrary distribution
of particles. Figure 2.1 from Price (2012) illustrates three approaches to this problem. Most
straightforward is to simply construct a mesh and count the number of particles that fall within
each cell (Figure 2.1 left). While this approach is simple in its implementation, it cannot sample
both high and low density regions uniformly with a fixed mesh. An alternative, to address the issue
of under/oversampling, is to take samples using spheres containing a fixed number of particles
(Figure 2.1 middle). But this is also problematic because it is sensitive to particles that lie close
to the sampling spheres, which leads to a noisy estimate of the density.

A better approach and the one that SPH follows is to use weighted local sampling, where the
contribution of each particle to the density estimate drops off with distance (Figure 2.1 right).
That is, particles that are further away should contribute less to the density estimate than particles
that are closer. This can be represented by

ρ(r) =
N∑
b=1

mbW (|r− rb|, h), (2.5)

where ρ is the density at a point in space r, N is the number of particles, mb and rb are the mass
and position of neighbouring particles, W is a weighting function (or smoothing kernel), and h is
the smoothing length, which characterises the fall-off of W with distance.
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Figure 2.2: Comparison between the cubic spline (Eq. 2.8) and Gaussian, w(q) = σ exp(−q2). Note: the
normalisation constant σ is different for each function.

In order for Equation 2.5 to be dimensionally correct, W must have dimensions of inverse
volume. It must also be normalised such that mass is conserved. That is,∫

V
ρ(r)dV =

Nneigh∑
b=1

mb = Mtot, (2.6)

where Mtot is the mass contained in the volume V that is enclosed by the kernel W , and Nneigh

is the number of particles in V . Substituting Eq. 2.5 into Eq. 2.6 gives∫
V
W (|r− rb|, h)dV = 1. (2.7)

The functional form of W must be chosen carefully since this determines the accuracy of the
density estimate. An intuitive choice is a Gaussian since it is always positive, decreases monoton-
ically, is smooth and has smooth derivatives, and gives a weighting to all particles. But, with com-
putational costs in mind, a Gaussian is a poor choice since computing the density sum (Eq. 2.5)
on each of the N particles would scale as O(N2) (i.e. Nneigh = N ). For this reason, kernels that
are truncated after a finite distance, known as having compact-support, are more desirable from a
computational standpoint.

The most common class of kernels used in practice are the B-splines. These functions are
Gaussian shaped but tend to zero after a finite distance (see Figure 2.2). The cubic spline, for
example, is given by

w(q) = σ


1
4(2− q)3 − (1− q)3, 0 ≤ q < 1;
1
4(2− q)3, 1 ≤ q < 2;

0, q ≥ 2,

(2.8)
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where σ is a normalisation constant (equal to 1/π in 3D). In order to have dimensions of inverse
volume, the kernel is then defined according to

W (|r− rb|, h) ≡ 1

hd
w(q), (2.9)

where d is the number of dimensions, and q ≡ |r− rb|/h.
When using kernels with compact support, the number of particles contained by the kernel

Nneigh should be kept roughly constant to ensure uniform sampling. This means that, if all par-
ticles have the same mass m, the smoothing length h must depend on the local density. In other
words, low density regions require a large sampling volume (large h) and high density regions
require a small sampling volume (small h). We can represent this relation according to

h(r) = hfac

(
m

ρ(r)

)1/d

, (2.10)

where hfac is a numerical factor to control the average number of neighbours (or particles sam-
pled) 1. Thus Equations 2.5 and 2.10 are coupled and must be solved simultaneously in practice.
This is typically done via a bisection or Newton-Raphson root-finding algorithm (Price and Mon-
aghan, 2007).

2.1.3 Equations of motion

The equations of motion in SPH can be derived from the discrete Lagrangian

L =
∑
b

mb

[
1

2
vb · vb − u(ρb, sb)

]
, (2.11)

where u(ρb, sb) is the specific thermal energy of each particle, which is a function of its density ρb
and specific entropy sb. Here, we consider a fluid in the absence of any external forces, magnetic
fields, or other physics. From the principle of least action, the Euler-Lagrange equations for each
particle a are:

d

dt

(
∂L

∂va

)
− ∂L

∂ra
= 0. (2.12)

The relevant derivatives are given by

∂L

∂va
= mava, (2.13)

∂L

∂ra
= −

∑
b

mb
∂ub
∂ρb

∣∣∣∣
s

∂ρb
∂ra

, (2.14)

and from the first law of thermodynamics

du = Tds+
P

ρ2
dρ, (2.15)

where T is the gas temperature, in the absence of dissipation (i.e. constant entropy s) we have

∂ub
∂ρb

∣∣∣∣
s

=
Pb
ρ2
b

. (2.16)

1In practice we use hfac = 1.2 when using the cubic spline, which corresponds to an average of 57.9 neighbours.
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Taking the derivative of Equation 2.5 and using Equations 2.13, 2.14 and 2.16 in Equation 2.12 it
can be shown that the equations of motion are given by

dva
dt

= −
∑
b

mb

[
Pa

Ωaρ2
a

∂Wab(ha)

∂ra
+

Pb
Ωbρ

2
b

∂Wab(hb)

∂ra

]
(2.17)

where

Ωa ≡

[
1− ∂ha

∂ρa

∑
b

mb
∂Wab(ha)

∂ha

]
, (2.18)

and we have defined Wab(h) = W (|ra − rb|, h) for simplicity in notation. Equation 2.17 is the
discretised version of Equation 2.2.

The equations of motion can also be derived using kernel interpolation theory (e.g. Mon-
aghan, 1992). However, in the context of this thesis, it is more useful to consider the derivation
from a Lagrangian since the analogous relativistic equations are best derived in a similar fashion.
Beginning with a Lagrangian also highlights some important conservation properties.

2.1.4 Conservation properties and energy equation

Since our equations are derived from a Lagrangian, the discrete system will maintain the Hamil-
tonian properties that arise from symmetries in the Lagrangian. In particular, the Lagrangian is
invariant under translations and rotations in space. It is also symmetric in time and invariant under
time translations. This amounts to the exact conservation of linear momentum, angular momen-
tum, and energy. Consider for example the time derivative of the Hamiltonian (or total energy
E):

d

dt
(H) =

d

dt

(∑
a

va ·
∂L

∂va
− L

)
(2.19)

=
d

dt

∑
a

ma

(
1

2
va · va + ua

)
, (2.20)

=
∑
a

ma

(
va ·

dva
dt

+
dua
dt

)
. (2.21)

From the first law of thermodynamics (Eq. 2.16) we have the relation

dua
dt

=
Pa
ρ2
a

dρa
dt
. (2.22)

which, after taking the time derivative of Equation 2.5 becomes

dua
dt

=
Pa

Ωaρ2
a

∑
b

mb (va − vb) ·
∂Wab(ha)

∂ra
. (2.23)

Substituting the momentum and thermal energy equations (Eq. 2.17 and 2.23) into Equation 2.21
we obtain

dE

dt
= −

∑
a

∑
b

mamb

(
Pavb
Ωaρ2

a

· ∂Wab(ha)

∂ra
+
Pbva
Ωbρ

2
b

· ∂Wab(hb)

∂ra

)
= 0, (2.24)
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where the double sum equals zero because of the anti-symmetry of the kernel gradient. (You can
relabel/switch the summation indices for half of the sum and add it to the original half to get zero).
Similarly, it can be shown that

d

dt

∑
a

mava = 0, (2.25)

d

dt

∑
a

ra ×mava = 0, (2.26)

that is, linear and angular momentum are conserved exactly.
Since the total energy is E =

∑
amaea where ea is the specific energy per particle, Equa-

tion 2.24 allows us to identify the discrete version of the continuum energy equation (Eq. 2.3)

dea
dt

= −
∑
b

mb

(
Pavb
Ωaρ2

a

· ∂Wab(ha)

∂ra
+
Pbva
Ωbρ

2
b

· ∂Wab(hb)

∂ra

)
. (2.27)

Note that since both Eq.2.23 and 2.27 are derived from the Lagrangian there is no difference in
terms of conservation when evolving either u or e in practice.

2.1.5 Shock capturing

When deriving Equation 2.17 we implicitly assumed that the Lagrangian was a differentiable
function of the coordinates. This assumption means that we have excluded the possibility of
discontinuous solutions (i.e. shocks), which means that, in practice, discontinuities require careful
treatment. The standard approach is to add dissipative terms into the SPH equations, which
smooth discontinuities over a few h. The ‘careful’ part is in constructing the dissipative terms
in such a way that they only ‘activate’ near shocks, that they don’t break the conservation laws in
Section 2.1.4, and that they only ever increase the total entropy.

One way to design shock capturing terms is by analogy to Riemann solvers. The advantage
of following this line of thinking is that it gives a fairly simple procedure for constructing shock
capturing terms when more complex physics is required (such as magnetic fields and/or relativistic
hydrodynamics). In fact, this was first put forward by Chow and Monaghan (1997) in the context
of special relativistic SPH and later generalised to non-relativistic SPH by Monaghan (1997).

The basic idea is to consider two particles as the left and right states of the Riemann problem,
and identify that in approximate Riemann solvers the dissipative term acts on jumps in the con-
servative variables. The conservative variables in non-relativistic hydrodynamics are the specific
momentum p = v and specific energy e = 1

2(v · v) + u (and also density ρ, but this does not
require dissipation since Eq. 2.5 is an integral representation of the continuity equation). Thus the
dissipative terms should be something like

dva
dt

∣∣∣∣
diss

=
∑
b

Cabvsig(va − vb), (2.28)

dea
dt

∣∣∣∣
diss

=
∑
b

Dabvsig(ea − eb), (2.29)

where Cab and Dab are factors to be determined, and vsig is the maximum signal speed.
(A more in-depth discussion of this in the context of relativistic hydrodynamics is in Sec-

tion 3.4, thus for the discussion here we merely state the dissipative terms for reference).
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In PHANTOM (Price et al., 2018), we use

dva
dt

∣∣∣∣
diss

= −
∑
b

mb

[
qaab

Ωaρ2
a

∂Wab(ha)

∂ra
+

qbab
Ωbρ

2
b

∂Wab(hb)

∂ra

]
, (2.30)

dua
dt

∣∣∣∣
diss

= − 1

Ωaρa

∑
b

mbvsig,a
1

2
(vab · r̂ab)2Fab(ha)

+
∑
b

mbαuv
u
sig(ua − ub)

1

2

[
Fab(ha)

Ωaρa
+
Fab(hb)

Ωbρb

]
, (2.31)

which can be shown to reduce to forms similar to Equations 2.28 and 2.29. Here, vab ≡ va − vb,
r̂ab ≡ (ra − rb)/|ra − rb| is the unit vector along the line of sight between the particles, and
Fab(h) ≡ r̂ab · ∂Wab(h)/∂ra is the scalar part of the kernel gradient. We set

qaab =

{
−1

2ρavsig,avab · r̂ab, vab · r̂ab < 0

0, otherwise.
(2.32)

That is, artificial viscosity only applies to approaching particles. The maximum signal speed is

vsig,a = αAV
a cs,a + βAV|vab · r̂ab|, (2.33)

where in general αAV
a and βAV are numerical parameters to control the amount of dissipation.

Typically αAV ∈ [0, 1] is controlled by a switch, while βAV = 2 by default.
The second term in Equation 2.31 acts as thermal conduction, and is deliberately separate

from the artificial viscosity. i.e. The jump in thermal energy (ua−ub) is controlled by a different
numerical parameter αu. It also has a different signal speed, vusig, since artificial conductivity
is mainly used to treat contact discontinuities, which travel at a different speed to the shock.
In PHANTOM, we use two versions of vusig, depending on the physics involved (cf. Price, 2008,
2012). For problems that do not involve self-gravity or external forces we use

vusig =

√
Pa − Pb
ρab

, (2.34)

where ρab ≡ (ρa + ρb)/2, and we use

vusig = |vab · r̂ab|, (2.35)

for problems that do.
Early SPH shock capturing formulations were not constructed by analogy to Riemann solvers,

and thus did not include a conductivity term. This meant that they had difficulty treating prob-
lems involving a contact discontinuity (Price, 2008) (such as the Kelvin-Helmholtz instability).
The issue with contact discontinuities is demonstrated in Figures 2.3 and 2.4, which show 1D
SPH simulations of the Sod-shock tube both with and without artificial conductivity (αu = 1.0

and αu = 0, respectively). Without conductivity, there is a characteristic blip in the pressure
and thermal energy at the contact discontinuity. When artificial conductivity is included in the
simulation the blip is smoothed out.
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Figure 2.3: Results of the Sod-shock tube test in 1D with both artificial viscosity and conductivity. Black
circles correspond to SPH particles, while the red line is the exact solution. Artificial dissipation smooths
each discontinuity over a few h.
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Figure 2.4: As in Figure 2.3 but with no artificial conductivity (i.e. αu = 0). A sharp spike (or ‘blip’) is
present in the thermal energy and pressure at the contact discontinuity (x ≈ 1.8).
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2.1.6 Evolving entropy

It is sometimes useful to evolve an entropy variable instead of e or u (Springel and Hernquist,
2002). Assuming an ideal gas equation of state P = K(s)ργ , where γ is the adiabatic index and
K is a function that depends on entropy, we can derive the very simple entropy evolution equation

dK

dt
=
γ − 1

ργ−1

(
du

dt
− P

ρ2

dρ

dt

)
, (2.36)

= 0. (2.37)

From the first law of thermodynamics (Eq. 2.15) K is related to the specific entropy s via

T
ds

dt
=

ργ−1

γ − 1

dK

dt
, (2.38)

where T is the gas temperature. In the absence of dissipation the discrete form is also zero
(dKa/dt = 0), since the discrete term in brackets cancel exactly. i.e.

dua
dt
− Pa
ρa

dρa
dt

= 0. (2.39)

With dissipation however, the discrete entropy equation is

dKa

dt
=
γ − 1

ργ−1
a

dua
dt

∣∣∣∣
diss

. (2.40)

Note that the dissipative term is designed such that the total entropy S always increases. In other
words

dS

dt
=
∑
a

ma
dsa
dt
≥ 0. (2.41)

2.1.7 Time integration – Leapfrog

Since the SPH equations conserve energy and momentum it is desirable to use a time integration
scheme when evolving Equations 2.17 and 2.23 that also conserves energy and momentum.

The Leapfrog integrator in ‘velocity-Verlet’ form (Verlet, 1967) is used by numerous astro-
physical SPH codes (e.g. Wadsley et al., 2004; Springel, 2005; Price et al., 2018), because it is
symplectic (conserves angular momentum) and is time-reversible (has no drift in the energy er-
ror). This makes it particularly useful in ensuring the long term stability of orbital dynamics,
which other common integrators (such as Runge-Kutta) do not guarantee (see Figure 2.5).

The implementation in PHANTOM is given by

rn+1 = rn + ∆tvn +
1

2
∆tan (2.42)

v∗ = vn + ∆tan (2.43)

an+1 = a(rn+1,v∗) (2.44)

vn+1 = v∗ +
1

2
∆t
[
an+1 − an

]
, (2.45)

where the index n refers to the time step number and a ≡ dv/dt. Different to the standard
Leapfrog ‘velocity-Verlet’ integrator, the implementation above has a predictor and corrector step
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Figure 2.5: Comparison of the long term stability of Leapfrog and RK2 when integrating a highly eccentric
orbit in a point mass potential. The orbit is shown on the left, the energy conservation in the middle and
the angular momentum conservation on the right. With Leapfrog there is no long term drift in the energy,
and angular momentum is conserved to machine precision. RK2 has a drift in both the energy and angular
momentum.

(Eq. 2.43 and 2.45). This is to account for the fact that the acceleration has a velocity dependence
from the artificial viscosity terms.

In practice, the error in the predictor step is checked after each time step according to

|vn+1 − v∗|
|vmag|

< 10−2, (2.46)

where vmag is the mean velocity on the particles, and the iteration is repeated if this condition is
not met.

2.2 Relativistic fluid dynamics

Much of the above (Section 2.1) is also relevant to relativistic SPH. We leave a detailed discussion
to Chapter 3 and simply introduce the relevant equations here for reference, and for comparison
with their non-relativistic counterparts. A detailed derivation can also be found in Monaghan and
Price (2001). We follow the Einstein summation convention, where repeated indices are assumed
to be summed over, except for a and b, which are reserved for particle labels. Greek indices range
from 0 through 3, while Latin indices range from 1 through 3.

In relativity, fluid elements move through a curved spacetime that is characterised by the
metric tensor gµν . The motion of each fluid element is described by its four velocity

Uµ ≡ dxµ

dτ
, (2.47)

where xµ is the spacetime coordinate of the fluid element, and τ is its proper time. The local
conservation of energy-momentum is given by

(Tµν);µ = 0, (2.48)

where the semi-colon represents a covariant derivative, and

Tµν = (ρ+ ρu+ P )UµUν + Pgµν , (2.49)

is the stress-energy tensor for an ideal fluid. The conservation of rest mass corresponds to

(ρUµ);µ = 0. (2.50)
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2.2.1 Continuum equations

Together, Equations 2.48 and 2.50 are a compact representation of the relativistic fluid equations,
which can be expanded into Lagrangian form to give

dρ∗

dt
= −ρ∗ ∂v

i

∂xi
, (2.51)

dpi
dt

= − 1

ρ∗
∂(
√
−gP )

∂xi
+

√
−g Tµν

2ρ∗
∂gµν
∂xi

, (2.52)

de

dt
= − 1

ρ∗
∂(
√
−gPvi)
∂xi

−
√
−g Tµν

2ρ∗
∂gµν
∂t

. (2.53)

Here, ρ∗, pi and e are the conserved density, conserved momentum and conserved specific energy,
respectively, and are given by

ρ∗ =
√
−gρU0, (2.54)

pi = U0

(
1 + u+

P

ρ

)
giµv

µ, (2.55)

e = U0

[(
1 + u+

P

ρ

)
giµv

µvi − (1 + u)gµνv
µvν
]
, (2.56)

where g is the determinant of the metric tensor and U0 = (−gµνvµvν)−1/2 is the temporal com-
ponent of the four velocity (see Chapter 3).

The form of Equations 2.51, 2.52 and 2.53 are very similar to their non-relativistic counter-
parts in Equations 2.1, 2.2 and 2.3. The main differences are the new conserved variables on the
left hand side, the spatial derivatives involving the determinant of the metric, and most impor-
tantly, the additional terms in the momentum and energy equations involving derivatives of the
metric. These terms can be thought of as ‘external forces’ arising from the curvature of spacetime.

2.2.2 Computing density

Following the same logic as in Section 2.1.2, we can also write the relativistic equivalent of the
SPH density as

ρ∗a =
∑
b

mbWab(hb). (2.57)

Note however that the left hand side is ρ∗ and not ρ, because the former is the conserved variable,
i.e.
∫
ρ∗dV = Mtot.

2.2.3 Equations of motion

Equations 2.51, 2.52 and 2.53 can also be derived from a Lagrangian using the Euler-Lagrange
equations. The Lagrangian for a perfect fluid in relativity is given by (Fock, 1964)

L = −
∫
TµνUµUν

√
−gdV, (2.58)

which for a perfect fluid becomes

L = −
∫
ρ (1 + u)

√
−gdV, (2.59)
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= −
∫

ρ∗

U0
(1 + u)dV. (2.60)

Note that ρ∗ =
√
−gρU0 is a function of both position and velocity, while u is a function of ρ,

which is only a function of position.
To obtain the discrete counterparts of the continuum equations (Equations 2.51, 2.52 and

2.53), we discretise Equation 2.60 by mass (i.e. a constant number of baryons per SPH particle):

L = −
∑
b

mb

U0
b

(1 + ub). (2.61)

From the Euler-Lagrange equations

d

dt

(
∂L

∂vi

)
− ∂L

∂xi
= 0, (2.62)

we can identify the canonical momentum per unit mass

pai =
1

ma

∂L

∂via
=

[
U0

(
1 + u+

P

ρ

)
giµv

µ)

]
a

, (2.63)

and can arrive at the discrete momentum equation given by

dpai
dt

= −
∑
b

mb

[√
−gaPa
Ωaρ∗2a

∂Wab(ha)

∂xi
+

√
−gbPb

Ωbρ
∗2
b

∂Wab(hb)

∂xi

]
+

[√
−g Tµν

2ρ∗
∂gµν
∂xi

]
a

. (2.64)

2.2.4 Conservation properties and energy equation

As in Section 2.1.4, we can again construct the Hamiltonian

H =
∑
a

via
∂L

∂via
− L, (2.65)

=
∑
a

maU
0
a

[(
1 + ua +

Pa
ρa

)
giµv

ivµ +
1 + ua
U0
a

]
(2.66)

which allows us to derive the energy equation

dea
dt

= −
∑
b

mb

[√
−gaPavib
Ωaρ∗2a

∂Wab(ha)

∂xi
+

√
−gbPbvia
Ωbρ

∗2
b

∂Wab(hb)

∂xi

]
−
[√
−g Tµν

2ρ∗
∂gµν
∂t

]
a

,

(2.67)

since H = E =
∑

amaea. Note that the Hamiltonian above (Eq. 2.66) is non-separable; it
cannot be separated into kinetic and potential components. This is important when considering
Hamiltonian integrators for evolving the discrete relativistic fluid equations (see Section 3.6).

As in non-relativistic SPH, the conservation properties depend on symmetries in the La-
grangian (Section 2.1.4), which in this case depends on the metric tensor and whether or not
its response to the motion of matter is taken into account (i.e. back-reaction). In the case of a
flat spacetime, the derivatives of the metric vanish, and Equation 2.64 and 2.67 are effectively the
same as their non-relativistic counterparts (Eq. 2.27 and 2.17). It can then readily be shown, in the
same manner as in non-relativistic SPH, that energy, linear momentum and angular momentum
are conserved.
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In the case of the Schwarzschild and Kerr metric (the spacetime surrounding non-rotating and
rotating black holes), the time derivative of the metric is zero, which means that energy is con-
served as previously. The Schwarzschild metric also conserves angular momentum, and the Kerr
metric conserves the component of angular momentum in the direction of the black hole’s spin.
However, since the spatial derivatives of the metric are non-zero in both cases, linear momentum
is not necessarily conserved. If the metric is kept fixed, then the black hole’s centre of mass
cannot move in response to the motion of matter around it, meaning that linear momentum will
not be conserved. Accounting for this requires more complicated techniques, such as numerical
relativity, which is beyond the scope of this work.
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Chapter 3

General Relativistic
Smoothed Particle Hydrodynamics

We present a method for general relativistic smoothed particle hydrodynamics (GRSPH), based
on an entropy-conservative form of the general relativistic hydrodynamic equations for a perfect
fluid. We aim to replace approximate treatments of general relativity in current SPH simulations
of tidal disruption events and accretion discs. We develop an improved shock capturing formu-
lation that distinguishes between shock viscosity and conductivity in relativity. We also describe
a new Hamiltonian time integration algorithm for relativistic orbital dynamics and GRSPH. Our
method correctly captures both Einstein and spin-induced precession around black holes. We
benchmark our scheme in 1D and 3D against mildly and ultra-relativistic shock tubes, exact so-
lutions for epicyclic and vertical oscillation frequencies, and Bondi accretion. We assume fixed
background metrics (Minkowski, Schwarzschild and Kerr in Cartesian Boyer-Lindquist coordi-
nates) but the method lays the foundation for future direct coupling with numerical relativity.

3.1 Introduction

Urgent motivation for relativistic hydrodynamics simulations arises from the coincident detection
of an electromagnetic afterglow (Abbott et al., 2017b) alongside the first detection of gravitational
waves from a binary neutron star merger (Abbott et al., 2017a). The coming decade should bring
hundreds more such events as the Advanced Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) reaches design sensitivity (Abbott et al., 2017a).

Smoothed particle hydrodynamics (SPH) (Gingold and Monaghan, 1977; Lucy, 1977; Ross-
wog, 2009; Price, 2012) is perfectly suited for neutron star merger simulations because there
is no preferred geometry, resolution follows mass, and it avoids the limitations imposed by a
background density floor (e.g. Oechslin et al., 2002). The main limitation of SPH in relativistic
hydrodynamics to date is the approximate treatment of general relativity (Metzger, 2017).

Further motivation for a public GRSPH code comes from i) the race to find electromagnetic
counterparts to binary black hole mergers detected by Advanced LIGO and the forthcoming Laser
Interferometer Space Antenna (e.g. Armitage and Natarajan, 2002; Milosavljević and Phinney,
2005; Cerioli et al., 2016); ii) disc formation in tidal disruption events (e.g. Hayasaki et al., 2013,
2016; Bonnerot et al., 2016; Tejeda et al., 2017); iii) the recently discovered phenomena of ‘tear-
ing’ in warped discs around spinning black holes (e.g. Nixon et al., 2012; Nealon et al., 2015)

19
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and the possible relation to state transitions and quasi periodic oscillations (Nixon and Salvesen,
2014); iv) forthcoming observations from the Event Horizon Telescope (Akiyama et al., 2017);
and v) the need for relativistic SPH simulations of pulsar winds (Okazaki et al., 2011).

Kheyfets et al. (1990) were the first to derive relativistic SPH equations, followed by Mann
(1991) and Laguna et al. (1993). However, their formulations were not in conservative form and
had difficulty handling shocks in even mildly relativistic flows. Conservative forms of the rela-
tivistic SPH equations were derived by Chow and Monaghan (1997) (hereafter CM97); Siegler
and Riffert (2000); Monaghan and Price (2001); Rosswog (2010a) and Rosswog (2010b) for both
special and general relativity, but their applications to date have been limited to special relativ-
ity. Other recent studies have instead used post-Newtonian approximations within standard SPH
codes to account for relativistic effects in fluid flows around black holes (e.g. Tejeda and Ross-
wog, 2013; Nealon et al., 2015; Bonnerot et al., 2016; Hayasaki et al., 2016). SPH applications
to fluid flows in strong self-gravity assume conformal flatness (e.g. Oechslin et al., 2002; Faber
et al., 2004; Bauswein et al., 2010) but these papers do not include standardised tests in fixed
metrics. Most recently, Tejeda et al. (2017) applied GRSPH to tidal disruption events, but also
showed only limited standardised tests of their method.

Our goal in this paper is to present a detailed description of a fully general relativistic SPH
code, able to perform hydrodynamic simulations in any given fixed background metric, with the
potential to be applied to dynamically evolving metrics. Our requirements for a modern GRSPH
code include being able to capture relativistic shocks, a precise and accurate treatment of orbital
dynamics, and the ability to work in Kerr geometry. To this end, we derive an improved shock
capturing method and a new Hamiltonian time integration algorithm suitable for GRSPH and
relativistic orbital dynamics. We describe our complete method and its implementation in depth,
before showing the results of various benchmark tests. We implement our method in PHANTOM

(Price et al., 2018), a publicly available SPH code.

3.2 Relativistic hydrodynamics

We follow Monaghan and Price (2001) who obtained the equations of general relativistic smoothed
particle hydrodynamics from a Lagrangian. In the following, Greek indices are summed over
(0,1,2,3) while Latin indices are summed over (1,2,3). The subscripts a and b are reserved for
particle labels.

3.2.1 Definitions

The four velocity of a fluid at a given spacetime coordinate xµ is given by

Uµ =
dxµ

dτ
, (3.1)

where τ is the proper time, and xµ ≡ (t, xi). The coordinate velocity vµ is defined with respect
to the coordinate time t such that

vµ ≡ dxµ

dt
=
Uµ

U0
, (3.2)

where from the normalisation condition UµUµ = −1 we have

U0 ≡ dt

dτ
=

1
√−gµνvµvν

. (3.3)
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We assume standard relativistic units where c = G = 1 and a metric signature (−,+,+,+).

3.2.2 Conserved variables

The conserved density, momentum and energy are respectively

ρ∗ =
√
−gρU0, (3.4)

pi = U0wgiµv
µ, (3.5)

e = U0
[
wgiµv

µvi − (1 + u)gµνv
µvν
]
, (3.6)

where g is the determinant of the covariant metric gµν and we usew to denote the specific enthalpy

w = 1 + u+
P

ρ
. (3.7)

The specific internal energy, pressure, and density in the rest frame of the fluid are denoted by
u, P and ρ, respectively. Equivalently, given a 3 + 1 decomposition of the metric (Arnowitt et al.,
2008) we can express the conserved quantities as

ρ∗ =
√
γ Γρ, (3.8)

pi = wΓVi, (3.9)

e = piv
i +

α(1 + u)

Γ
, (3.10)

where Γ =
(
1− V iVi

)−1/2 is the generalised Lorentz factor, and V i =
(
vi + βi

)
/α is the fluid

velocity in the frame of a local Eulerian observer. The lapse function, shift vector, and spatial
three-metric (α, βi, γij) are related to the four-metric ds2 = gµνdxµdxν via

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (3.11)

Spatial vectors can then have their indices raised and lowered by the three-metric, e.g. vivi =

γijv
ivj = γijvivj . We note that γ is the determinant of γij , and that Equation 3.10 can be written

alternatively in terms of the enthalpy and pressure as

e = wΓ
(
α− V iβi

)
− αP

Γρ
. (3.12)

3.2.3 Equations of relativistic hydrodynamics

From Monaghan and Price (2001), the equations of relativistic hydrodynamics in Lagrangian
conservative form, assuming an ideal fluid, are given by

dρ∗

dt
= −ρ∗ ∂v

i

∂xi
, (3.13)

dpi
dt

= − 1

ρ∗
∂(
√
−gP )

∂xi
+ fi, (3.14)

de

dt
= − 1

ρ∗
∂(
√
−gPvi)
∂xi

+ Λ, (3.15)
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where the source terms containing derivatives of the metric are defined according to

fi ≡
√
−g

2ρ∗

(
Tµν

∂gµν
∂xi

)
, (3.16)

Λ ≡−
√
−g

2ρ∗

(
Tµν

∂gµν
∂t

)
. (3.17)

For an ideal fluid the stress-energy tensor is given by

Tµν = (ρ+ ρu+ P )UµUν + Pgµν , (3.18)

= ρw(U0)2vµvν + Pgµν . (3.19)

Thus, the term required to compute the source terms is
√
−g Tµν

2ρ∗
=

1

2

[
wU0vµvν +

Pgµν

ρ U0

]
. (3.20)

We close the equation set with the ideal gas equation of state

P = (γad − 1) ρu, (3.21)

where γad is the adiabatic index. For our calculations we assume an ideal atomic gas, γad = 5/3.
The internal energy u can be related to the gas temperature T through the ideal gas law

P =
ρkBT

µmH
, (3.22)

where kB is Boltzmann’s constant, µ is the mean molecular weight, and mH is the mass of a
Hydrogen atom.

3.3 SPH Equations of relativistic hydrodynamics

The discrete form of Equations 3.13, 3.14, and 3.15 in the absence of dissipation, are given
respectively by (e.g. Siegler and Riffert, 2000; Monaghan and Price, 2001; Rosswog, 2010a)

dρ∗a
dt

=
1

Ωa

∑
b

mb(v
i
a − vib)

∂Wab(ha)

∂xi
, (3.23)

dpai
dt

=−
∑
b

mb

[√
−gaPa
Ωaρ∗2a

∂Wab(ha)

∂xi

+

√
−gbPb

Ωbρ
∗2
b

∂Wab(hb)

∂xi

]
+ fai , (3.24)

dea
dt

=−
∑
b

mb

[√
−gaPavib
Ωaρ∗2a

∂Wab(ha)

∂xi

+

√
−gbPbvia
Ωbρ

∗2
b

∂Wab(hb)

∂xi

]
+ Λa, (3.25)

where Wab is the interpolating kernel, ha is the smoothing length, and Ωa is a term related to the
gradient of the smoothing length given by (Monaghan, 2002; Springel and Hernquist, 2002)

Ωa = 1− ∂ha
∂ρ∗a

∑
b

mb
∂Wab(ha)

∂ha
. (3.26)
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The conserved density can also be computed directly via

ρ∗a =
∑
b

mbWab(ha). (3.27)

We choose to compute ρ∗ by summation, rather than by integration of Equation 3.23. Given equal
mass particles, the smoothing length is adapted by simultaneously solving 3.27 and

ha = hfac

(
ma

ρ∗a

)1/d

, (3.28)

where d is the number of dimensions, and hfac is a numerical parameter specifying the smoothing
length in terms of the mean particle spacing. The term required in 3.26 is then

∂ha
∂ρ∗a

= −1

d

ha
ρ∗a
. (3.29)

For details on solving 3.27 and 3.28 simultaneously we refer the reader to Price and Monaghan
(2007).

3.3.1 Interpolating kernel

We use a kernel in the form

Wab(ha) = W (ha, Lab) ≡
Cnorm

ha
d
f(q), (3.30)

where Lab is the inter-particle spacing, Cnorm is a normalisation constant, and q = Lab/ha. The
standard choice for the dimensionless function f(q) in SPH is the cubic spline. With hfac = 1.2

this results in 57.9 neighbours per particle on average in 3D. In general, more accurate results can
be obtained by using a smoother spline such as the quintic, given by

f(q) =


(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 ≤ q < 1,

(3− q)5 − 6(2− q)5, 1 ≤ q < 2,

(3− q)5, 2 ≤ q < 3,

0, q ≥ 3,

(3.31)

for which Cnorm = [1/120, 1/(120π)] in 1D and 3D. This comes at the cost of a greater number
of neighbours per particle; 113 on average in 3D when hfac = 1. For consistency, we choose to
use the quintic spline everywhere, however the cubic spline gives satisfactory results also. The
neighbour finding procedure in more than one dimension is non trivial. We employ a kd-tree for
this process, the details of which can be found in the PHANTOM paper, Price et al. (2018) (see
their section 2.1.7).

For the inter-particle spacingLab we assume local flatness and thus use the Euclidean distance.
We define this distance in Cartesian coordinates as

Lab ≡
√
ηijriabr

j
ab, (3.32)

where ηij is the spatial part of the Minkowski metric, and riab ≡ xia − xib is the line of sight
vector pointing from particle a to particle b also in Cartesian coordinates. Computing the kernel
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and its derivative is then identical to what is done in standard non-relativistic SPH. In Cartesian
coordinates, since ηij is a constant, we can write the kernel derivative as

∂Wab(ha)

∂xi
= Ni Fab(ha), (3.33)

where Fab ≤ 0 is the scalar part of the kernel gradient. We define the line of sight projection
operator,

Ni ≡ ηij r̂jab, (3.34)

where,

r̂iab =
riab
Lab

, (3.35)

is the line of sight unit vector.
We emphasise that the choice between using the Euclidean distance norm and proper lengths

for neighbour distances is arbitrary. Using a different distance metric would simply require a
different particle placement to obtain the same conserved density. So this choice reflects how
one wishes to place particles to resolve features in the spacetime. We argue that the Euclidean
norm is the most natural choice because the particle placement is independent of the metric. For
example, a uniformly spaced lattice of particles produces a constant ρ∗. Using the proper length
for neighbour distances would require stretching or squeezing the initial particle arrangement
to compensate for the determinant of the metric in the volume element. It would also require
computing a path integral in the given metric between all neighbouring particles.

One possible advantage to using the proper distance would be that smoothing spheres would
never cross the event horizon. That is, neighbours close to the event horizon would become
infinitely distant. However, it is no longer obvious how to set up the particles to achieve a par-
ticular ρ∗ in this case, and using different metrics would require different particle setups. We
demonstrate in Section 3.8.4 that using the Euclidean distance norm indeed produces the correct
conserved densities close to the black hole so long as the horizon is sufficiently well resolved.

3.4 Shock capturing

It is necessary to introduce dissipative terms in order to capture shocks. As in CM97 and Mon-
aghan (1997) the construction of the dissipative terms is motivated by approximate Riemann
solvers used by finite volume codes (Martı́ et al., 1991). To demonstrate this, consider the equa-
tion set written in conservative form and in one spatial dimension (for simplicity)

∂u

∂t
+
∂F

∂x
= 0, (3.36)

where u = (ρ∗, pi, e) is the vector of conservative variables and F(u) is the flux. Finite volume
schemes require computing the numerical flux between adjacent states uL,uR. The simplest
approach utilises the ‘local Lax-Friedrichs’ or ‘Rusanov’ flux given by

F(uL,uR) =
1

2
[F(uL) + F(uR)]− vsig

2
(uR − uL) (3.37)

where vsig is the maximum characteristic speed. Importantly, the dissipative term (proportional
to vsig) acts on jumps in the conservative variables.
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Although the exact relationship between the dissipation introduced in approximate Riemann
solvers and physical dissipation terms is unclear in relativity, since the correct way to formulate
viscosity and heat conduction in relativistic hydrodynamics is not well understood (e.g. Andersson
and Comer, 2007), the approach used above is standard in GRMHD codes (e.g. Martı́ et al., 1991;
Gammie et al., 2003; Zhang and MacFadyen, 2006).

Our SPH shock capturing formulation is based on approximate Riemann solvers, following
CM97. If one considers adjacent particles in SPH as left and right states, an appropriate form of
the dissipative terms requires a jump in the conservative variables and a maximum signal speed
vsig between the particles. CM97 proposed corresponding terms in the momentum and energy
equations in SPH given by

dpai
dt

∣∣∣∣
diss

= αAV

∑
b

mb

ρ̄∗ab
vsig (p∗a − p∗b)

∂Wab(ha)

∂xi
, (3.38)

dea
dt

∣∣∣∣
diss

= αAV

∑
b

mb

ρ̄∗ab
vsig (e∗a − e∗b)Fab(ha), (3.39)

where p∗ and e∗ are computed using only velocities along the line of sight (v∗), ρ̄∗ab = (ρ∗a+ρ∗b)/2,
and αAV ' 1 is a numerical parameter to control the amount of dissipation.

The problem with the formulation given by CM97 is that, while they proved that the entropy
increase was positive definite for cold gas (w = 1), we found this to no longer be the case when
the enthalpy differs from unity. To remedy this, we adapted their formulation to not use the full
jump in momentum or total energy

p∗a − p∗b = waΓ
∗
aV
∗
a − wbΓ∗bV ∗b , (3.40)

e∗a − e∗b = p∗av
∗
a − p∗bv∗b +

αa(1 + ua)

Γ∗a
− αb(1 + ub)

Γ∗b
, (3.41)

where starred quantities again denote the use of the line of sight velocity v∗. Instead, in order to
have a positive definite change in entropy we use a jump only in the ‘kinetic terms’, Γ∗aV

∗
a −Γ∗bV

∗
b .

For the momentum equation we multiply the corresponding term by an average enthalpy, and for
the energy equation we multiply by an average of the term wv, in order to recover the correct
dimensions. That is, we define

p∗a − p∗b ≡ wab (Γ∗aV
∗
a − Γ∗bV

∗
b ) , (3.42)

where wab denotes a suitable average of w over particles a and b.
A second problem with the CM97 formulation was that it does not distinguish between viscos-

ity and conductivity. This leads to over-smoothing of contact discontinuities (see Section 3.8.1).
Showing how to split the dissipation into viscosity and conductivity in relativity is non-trivial. We
demonstrate in Section 3.8.1 and Appendix A.1.1 that the relevant splitting can be achieved by
defining the energy jump in two parts as follows

e∗a − e∗b ≡ wabv̄∗ab (Γ∗aV
∗
a − Γ∗bV

∗
b )︸ ︷︷ ︸

viscosity

+

(
αaua
Γa
− αbub

Γb

)
︸ ︷︷ ︸

conductivity

, (3.43)

where v̄∗ab denotes an average of v∗ over particles a and b (see below). This is equivalent to
defining a relativistic thermal energy

ũ ≡ αu

Γ
. (3.44)
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Our third change is more cosmetic. Rather than using separate averages for wab and v̄∗ab, we
average them along with the density, signal speed and kernel derivative in the manner of Price and
Federrath (2010) following the non-relativistic terms in PHANTOM (Price et al., 2018). That is,
we write the viscosity as a P + q term in the momentum and energy equations.

3.4.1 Artificial viscosity

Equations 3.24 and 3.25 with our dissipation become

dpai
dt

=−
∑
b

mb

[
(Pa + qa)

ρ∗2a
Da
i +

(Pb + qb)

ρ∗2b
Db
i

]
+ fai , (3.45)

dea
dt

=−
∑
b

mb

[
(Pa + qa)

ρ∗2a
vibD

a
i +

(Pb + qb)

ρ∗2b
viaD

b
i

]
+ Πa

cond + Λa, (3.46)

where qa and qb encapsulate the artificial viscosity, and Πa
cond the artificial conductivity. For

added simplicity in notation, we have defined

Da
i ≡
√
−ga
Ωa

∂Wab(ha)

∂xi
, (3.47)

Db
i ≡
√
−gb
Ωb

∂Wab(hb)

∂xi
. (3.48)

Our artificial viscosity terms are

qa = −1

2
αAVρ

∗
avsig,awa (Γ∗aV

∗
a − Γ∗bV

∗
b ) , (3.49)

qb = −1

2
αAVρ

∗
bvsig,bwb (Γ∗aV

∗
a − Γ∗bV

∗
b ) , (3.50)

and involve a fluid velocity that is along the line of sight between particles, similar to CM97, i.e.

V ∗a = NiV
i
a , (3.51)

Γ∗a =
1√

1− V ∗a 2
. (3.52)

If the particles are separating, Ni(v
i
a − vib) ≥ 0, we set qa = qb = 0.

3.4.2 Artificial conductivity

Our artificial conductivity term is given by

Πcond =
αu
2

∑
b

mb (ũa − ũb)
(
vusig,aGa

ρ∗a
+
vusig,bGb

ρ∗b

)
, (3.53)

where again for simplicity we define

Ga ≡
√
−ga
Ωa

∂Wab(ha)

∂xi
r̂iab = Da

i r̂
i
ab, (3.54)
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which in Cartesian coordinates is

Ga =

√
−ga
Ωa

Fab(ha). (3.55)

Note that the terms αAV and αu allow us to control the amount of artificial viscosity and conduc-
tivity, respectively. These should not be confused with αa and αb which are the lapse functions at
the positions of particles a and b.

3.4.3 Signal speed — viscosity

When constructing an approximation for the maximum signal speed in the artificial viscosity, vsig,
we impose two requirements. First, the signal speed must not exceed the speed of light. Second,
the signal speed should reduce to the form used in standard SPH codes in the non-relativistic limit,
namely

vsig,a = αAVcs,a + βAV |vab · r̂ab| , (3.56)

where cs is the sound speed, vab = va−vb is the relative velocity, and r̂ab is the unit vector along
the line of sight. The numerical parameters [αAV, βAV] control the amount of dissipation. Most
importantly, the signal speed should involve a relative velocity between the particles to avoid
excessive dissipation when there is a bulk velocity and individual particle speeds are high.

Because of these requirements, we do not use the signal speeds proposed by CM97, since
in some of their formulations the maximum signal speed may exceed the speed of light. We
also do not use the signal speed proposed by Rosswog (2010a), based on the eigenvalues of the
Euler equations. Their formulation, although limited by the speed of light, involves the absolute
velocity of the SPH particles. This means their viscosity term is no longer Galilean invariant. We
therefore require a signal speed that uses only the relative velocity between particles. To this end,
we propose a signal speed given by

vsig,a =
cs,a + |V ∗ab|

1 + cs,a

∣∣V ∗ab∣∣ , (3.57)

where the relative velocity between particles, considered along the line of sight, is defined as

V ∗ab ≡
V ∗a − V ∗b
1− V ∗a V ∗b

, (3.58)

and the relativistic sound speed is given by

cs =

√
Pγad

ρw
. (3.59)

We use the velocities in the frame of the local Eulerian observer V i rather than the coordinate
velocities vi, since only V i is a physical velocity that is limited by the speed of light, that is
|ViV i| ≤ 1. The coordinate velocity, on the other hand, is not strictly under the same restriction.

3.4.4 Signal speed — conductivity

For simplicity one may assume the same signal speed for both viscosity and conductivity. That
is, vusig = vsig. In general however, one should use different speeds since the conductivity is
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mainly required at contact discontinuities which travel at a different speed to the shock. Price
(2008) proposed using a signal speed based on the relative pressure jump, designed to eliminate
the pressure blip at contact discontinuities. We generalise this to the relativistic case using

vusig = min

(
1,

√
|Pa − Pb|
wρab

)
. (3.60)

For cases where equilibrium pressure gradients exist due to other physics (e.g. gravity) it is better
to simply use the relative speeds (Price, 2008; Wadsley et al., 2008), giving

vusig = |V ∗ab|, (3.61)

when generalised to the relativistic case. In the non-relativistic limit, both eq. 3.60 and 3.61
reduce to the non-relativistic implementation in PHANTOM (Price et al., 2018), where the choice
is based on whether or not gravity and/or external forces are used.

The main advantage of the above signal speeds is that conductivity becomes O(h2) in the
numerical code, rather than first order. For most of the tests in this paper, we simply use vusig = vsig

with a reduced value of αu. In section 3.8.1 we demonstrate the benefit of using Eq. 3.61 in the
case of a self-gravitating, oscillating polytrope.

3.5 Evolving entropy

Instead of the total specific energy e, we evolve an entropy variable (cf. Springel and Hernquist
2002) in order to guarantee positivity of the thermal energy. We define

K ≡ P

ργad
. (3.62)

Taking the time derivative and using Equation 3.21 we find

dK

dt
= (γad − 1) ρ1−γad

(
du

dt
− P

ρ2

dρ

dt

)
, (3.63)

=
K

u

(
du

dt
− P

ρ2

dρ

dt

)
. (3.64)

Comparing this to the second law of thermodynamics

T
ds

dt
=

du

dt
− P

ρ2

dρ

dt
, (3.65)

we see that in the absence of dissipation

dK

dt
= 0. (3.66)

Furthermore, using Equation 3.22, K can be related to the specific entropy s

1

K

dK

dt
= (γad − 1)

µmH

kB

ds

dt
. (3.67)

More generally, we can rewrite Equation 3.64 in terms of time derivatives of the conserved vari-
ables (ρ∗, pi, e), giving

dK

dt
=
U0K

u

[(
de

dt
− Λ

)
− vi

(
dpi
dt
− fi

)
− P
√
−g

ρ∗2
dρ∗

dt

]
, (3.68)



3.6. Time Integration 29

which, after substituting Equations 3.23, 3.45, and 3.46, gives

dKa

dt
=
U0
aKa

ua

(
Πa

cond +
∑
b

mb
qa
(
via − vib

)
ρ∗a

2 Da
i

)
. (3.69)

Thus, the evolution of K is governed purely by the dissipative terms. An important distinction
between SPH and finite-volume schemes is that when evolving K, energy remains exactly con-
served (to the accuracy of the time integration algorithm), since Eq 3.68 holds to round-off error.
In Appendix A.1 we demonstrate that Eq. 3.69 is always positive (for special relativity) thus
ensuring that entropy always increases.

3.6 Time Integration

Relativistic hydrodynamics, in the absence of dissipation, forms a Hamiltonian system where
the canonical variables are the positions xi and momenta pi. Ideally therefore one should use a
geometric integrator that preserves the Hamiltonian properties. The main complication is that the
Hamiltonian is non-separable — it cannot be separated into kinetic, thermal, and potential energy
terms.

3.6.1 Generalised leapfrog method

Leimkuhler and Reich (2005) suggest the ‘generalised leapfrog method’ for the symplectic inte-
gration of Hamilton’s equations with a non-separable Hamiltonian. With pi and xi as the conju-
gate variables, their scheme is given by

p
n+ 1

2
i = pni +

∆t

2

dpi
dt

(p
n+ 1

2
i , xi,n), (3.70)

xi,n+1 = xi,n +
∆t

2

[
dxi

dt
(p
n+ 1

2
i , xi,n) +

dxi

dt
(p
n+ 1

2
i , xi,n+1)

]
, (3.71)

pn+1
i = p

n+ 1
2

i +
∆t

2

dpi
dt

(p
n+ 1

2
i , xi,n+1), (3.72)

where the superscripts n + m refer to quantities evaluated at times tn+m = tn + m∆t. It may
be seen that this reduces to the standard Kick-Drift-Kick leapfrog scheme when vi ≡ pi and
when the acceleration dpi/dt depends only on position. It is also time-reversible and symplectic.
However, a general property of geometric integrators for non-separable Hamiltonians is that they
are implicit in one or more of the steps (e.g. Yoshida, 1993). In the above integrator this occurs in
the first ‘Kick’ step, where the momentum at the half step appears on both sides of the equation,
and in the ‘Drift’ step where the position at the full step appears on both sides.

3.6.2 Alternative generalised leapfrog method

For GRSPH, evaluating dpi/dt(pi, x
i) means performing a sum over particles, while evaluation

of dxi/dt(pi, x
i) means performing a primitive variable solve (see Section 3.7) which can be

performed independently for each particle. Hence the previous integrator would require two calls
to the summation routines, since dpi/dt used in the second Kick step is different from the one
required for the subsequent first Kick step at the start of the next timestep. For this reason we
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propose a similar integrator where the symmetrisation occurs in the drift step. Our alternative
integrator is given by

p
n+ 1

2
i = pni +

∆t

2

dpi
dt

(pni , x
i,n), (3.73)

xi,n+1 = xi,n +
∆t

2

[
dxi

dt
(p
n+ 1

2
i , xi,n) +

dxi

dt
(p
n+ 1

2
i , xi,n+1)

]
, (3.74)

pn+1
i = p

n+ 1
2

i +
∆t

2

dpi
dt

(pn+1
i , xi,n+1). (3.75)

This integrator retains the time symmetry of the previous integrator, however it does not exactly
conserve angular momentum. The difference is that the implicit steps are now in the Drift step, as
previously, and in the second Kick step. Importantly, the derivative of the momentum used in the
second Kick step is the same as that used at the beginning of the subsequent step, meaning that it
can be re-used. The integrator is also easier to start, because it merely requires an evaluation of
the momentum derivative involving position and momentum from the initial conditions.

The implicit solve in the Drift step (in the position derivative) involves only the primitive
variable solver, so is independent for each particle. The implicit nature of the second Kick step
(in the momentum derivative) in principle involves multiple loops over neighbouring particles,
but this is similar to our existing approach to dealing with viscosity and other velocity-dependent
terms in non-relativistic SPH (see below). With a good prediction of pn+1

i , only one call to the
summation routines is required.

3.6.3 Hybrid leapfrog, and implementation in GRSPH

Since our modified integrator does not exactly conserve angular momentum, we implement a
hybrid of the two algorithms in order to retain the benefits of both. Taking an operator splitting
approach similar to that of the reversible reference system propagator algorithm (RESPA) derived
by Tuckerman et al. (1992) we split the acceleration into ‘long range’ and ‘short range’ forces
(see Price et al. 2018 for an implementation in SPH). In our case, the ‘long range’ forces are the
SPH forces, while the ‘short range’ forces are the external forces arising from the curvature of
the spacetime. These correspond to the pressure gradient term and fi in the momentum equation,
respectively. i.e.

f sph
i ≡− 1

ρ∗
∂(
√
−gP )

∂xi
,

f ext
i ≡ fi.

(3.76)

(3.77)

We use the ‘long range’ forces f sph
i to update the momentum of each particle and use the ‘short

range’ forces f ext
i in updating their positions. Our complete hybrid algorithm is therefore

pi → pi +
∆tsph

2
f sph
i (pi, x

i), (3.78)
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substeps



p̃i = pi +
∆text

2
f ext
i (p̃i, x

i),

pi → p̃i,

x̃i = xi +
∆text

2

[
vi(pi, x

i) + vi(pi, x̃
i)
]
,

xi → x̃i,

pi → pi +
∆text

2
f ext
i (pi, x

i),

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

p̃i = pi +
∆tsph

2
f sph
i (p̃i, x

i), (3.84)

pi → p̃i, (3.85)

where the position update is done over m substeps (indicated by the equations in braces), such
that m = int(∆text/∆tsph + 1) and is the minimum over all particles. We denote the updating
of a variable by an arrow, some of which first require solving and implicit equation, namely
Equations 3.79, 3.81, and 3.84.

The combination of the two algorithms ensures that one of the SPH force calculations can be
reused between steps, reducing computational cost, and that angular momentum is conserved in
the case where the SPH forces can be neglected. More importantly it ensures that our method
is not restricted by the external force timestep, since computing f ext

i is cheap whereas f sph
i is

expensive.
It is useful to point out that in the absence of metric gradients the hybrid method reduces to

our proposed scheme in section 3.6.2, while for pressureless fluid it reduces to the method of
Leimkuhler and Reich (2005) in section 3.6.1.

Evaluating implicit steps

To evaluate Equations 3.79 and 3.81, we employ two first-order predictions which we refer to as
p∗i and xi,∗. That is, for Eq 3.79 we do

p∗i = pi +
∆text

2
f ext
i (pi, x

i), (3.86)

p̃i = p∗i +
∆text

2

[
f ext
i (p∗i , x

i)− f ext
i (pi, x

i)
]
, (3.87)

and for evaluating Eq 3.81 we do

xi,∗ = xi + ∆textv
i(pi, x

i), (3.88)

x̃i = xi,∗ +
∆text

2

[
vi(pi, x

i,∗)− vi(pi, xi)
]
. (3.89)

To complete the implicit step we check that

|p̃i − p∗i | < εp, (3.90)

|x̃i − xi,∗| < εx, (3.91)

after Equations 3.87 and 3.89, respectively, where εx and εp are small tolerances. If these criteria
are violated we iterate Equation 3.87 (or Eq. 3.89) by a fresh evaluation of the corresponding
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derivative with the updated value, that is, simply replacing p∗i with p̃i, and pi with p∗i on the right
hand side of Eq. 3.87 (and similarly with xi,∗ and xi in Eq. 3.89).

Equation 3.84 is evaluated in the same manner as 3.79 but with f sph
i and ∆tsph instead of

f ext
i and ∆text. We use the error criterion

e =
max(|∆p|2)

rms(|p|)
< εsph

p , (3.92)

where we define |p| ≡
√
pipjηij and ∆pi ≡ p̃i − p∗i , consistent with the implementation of the

equivalent implicit step in PHANTOM (cf. Price et al., 2018). The maximum is taken over all the
particles in the numerator, while the denominator evaluates the root mean square, also over all the
particles.

In general, iterations of Equations 3.79 and 3.81 are cheap, while iterations of Equation 3.84
are expensive, so εp and εx can be set arbitrarily small while εsph

p must allow for an efficient code.
By default the tolerance is set to εsph

p = 10−2 in PHANTOM. To try to prevent iterations from
occurring, we constrain the timestep by

∆t = min

∆t,
∆t√

max(e)/εsph
p

 , (3.93)

since an iteration is as expensive as halving the timestep.
In terms of storage, we require only one position and momenta for each particle, but storage

of two derivatives (current and previous) of both vi and fi.

3.6.4 Timestep constraint

We adopt the usual stability conditions, namely

∆tasph = min

 CC ha
max(vsig,a)

, Cf

√√√√ ha∣∣∣f sph
a

∣∣∣
 , (3.94)

where CC and Cf are the usual safety factors, set to 0.3 and 0.25, respectively by default in
PHANTOM, the maximum vsig is over neighbours to particle a, and |f | ≡

√
fifjηij . In our tests

we use global timestepping where the global timestep ∆tsph is set to the minimum value of ∆tsph
a

on the particles, although our scheme is simple to generalise to the case where particles have
individual timesteps. The timestep constraint for external force substeps is similarly

∆text
a = Cf

√
ha
|f ext
a |

, (3.95)

and the global ∆text is the minimum of ∆text
a on the particles.

3.7 Recovery of primitive variables

Computing the right hand side of Equations 3.23, 3.24, and 3.25 explicitly requires the primitive
variables (ρ, u, vi, P ). We must therefore invert the set of equations describing the conserved
variables (Eq. 3.8, 3.9, and 3.10) at every timestep. To do this we use the recovery scheme given
by Tejeda (2012).
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Figure 3.1: Mildly relativistic shock performed in 1D, with artificial conductivity. Blue circles show SPH
particles, while green line shows the analytic solution from Martı́ and Müller (1994). The initial particle
spacing to the left of the interface is 0.0005.

rh
o*

-0.4 -0.2 0 0.2 0.4

5

10 t=0.3

v x

-0.4 -0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

x

u

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

x

p
re
ss
ur
e

-0.4 -0.2 0 0.2 0.4

0

5

10

Figure 3.2: As in Figure 3.1 but in 3D. The initial particle spacing to the left of the interface is 0.0005. The
solution is similar to that obtained with our 1D code.



34 Chapter 3. GRSPH

rh
o*

-0.4 -0.2 0 0.2 0.4

5

10 t=0.3

v x

-0.4 -0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

x

u

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

x

pr
es
su
re

-0.4 -0.2 0 0.2 0.4

0

5

10

Figure 3.3: Mildly relativistic shock performed in 1D, without artificial conductivity (αu = 0). Blue circles
show SPH particles, while green line shows the analytic solution from Martı́ and Müller (1994). The initial
particle spacing to the left of the interface is 0.0005. A ‘blip’ in the pressure and thermal energy is visible
at the contact discontinuity.

1. Use the equation of state to solve for the enthalpy as a function of density and pressure
only,

w = w(ρ, P ). (3.96)

2. Express ρ, P and vi as functions of only w and the conserved variables,

ρ(w) =
ρ∗

√
γ Γ(w)

, (3.97)

P (w) =
ρ∗

α
√
γ

(
w Γ(w)α− e− piβi

)
, (3.98)

vi(w) =
α pi

w Γ(w)
− βi, (3.99)

where vi = γij v
j , and Γ(w) can be calculated from Eq. 3.9 as,

Γ(w) =

√
1 +

pipi
w2

. (3.100)

3. Given Equations 3.97 and 3.98, solve Equation 3.96 for the enthalpy using a standard root-
finding algorithm. (See Appendix A.2 for more detail).

4. Compute vi using Equation 3.99, and raise the index using the three-metric vi = γijvj .

3.8 Numerical tests

We split the testing of our numerical method into three stages.
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1. First, we developed a dedicated 1D special relativistic SPH code to test the shock capturing
terms in section 3.4, and the conservative-to-primitive algorithm in section 3.7. For the time
integration in this code we used the standard 2nd order Runge-Kutta method (RK2), with
time steps constrained by Equation 3.94). We use RK2 instead of the algorithm described
in section 3.6 to show that the particular timestepping algorithm used is not important for
shock tube tests.

2. Next, we developed a 3D N-body code to test the force terms involving the metric deriva-
tives fi. This involved integrating Equation 3.14 with P = 0, i.e.

dpi
dt

= fi and
dxi

dt
= vi. (3.101)

Although this is equivalent to solving the geodesic equation, it allowed us to test our
time integration scheme (section 3.6.3), as well as the conservative-to-primitive algorithm,
again, but with more complicated metrics than the Minkowski metric. We implemented the
Schwarzschild metric in both spherical and Cartesian coordinates, along with the Kerr met-
ric in Boyer-Lindquist coordinates (both spherical and Cartesian). For this code we used a
fixed time step.

3. Finally, after testing individual aspects of our method in the previous two codes, we incor-
porated them all into PHANTOM, a fully 3-dimensional SPH code (Price et al., 2018). In
this code, we implemented the full, hybrid-Leapfrog method for the time integration, as
described in section 3.6.3. The timestep is constrained according to Equations 3.93, 3.94,
& 3.95.

For SPH simulations we always use equal mass particles, and assume an adiabatic gas with γad =
5/3. For the artificial dissipation we use αAV = 1 and αu = 0.1, unless otherwise stated.

We quantify the error in our simulations with the dimensionless L2 error

L2 =

√√√√ 1

N max(yexact)

N∑
i=1

|yi − yexact|2, (3.102)

where N is the number of points and yexact is the exact solution at point i.

3.8.1 Special Relativity

Mildly relativistic shock

In Figures 3.1 & 3.2 we show the results for a mildly relativistic shock in both 1D and 3D,
respectively. This is ‘Problem 1’ in Martı́ and Müller (2003) with a maximum fluid Lorentz
factor of Γ = 1.38. For the initial conditions, we set

[ρ, P ] =

{
[10, 40

3 ] forx < 0,

[1, 10−6] forx > 0.
(3.103)

The particle spacing to the left of the interface is 0.0005, and 0.005 to the right. For the initial
particle arrangement in 3D, we follow Price et al. (2018). We employ a uniform close-packed
lattice of 1000× 26× 26 particles for x ∈ [−0.5, 0] and 434× 12× 12 particles for x ∈ [0, 0.5],
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Figure 3.4: Results of the blast wave performed in 1D. Blue circles show SPH particles, while green lines
show the analytic solution from Martı́ and Müller (1994). The initial particle spacing on both sides of the
interface is 0.001.
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Figure 3.5: As in Figure 3.4 but in 3D. Initial particle spacing is 0.001. According to Martı́ and Müller
(2003) this problem ‘is still a challenge for state-of-the-art codes today’. Our use of an entropy variable
and positive definite dissipation means our code remains robust and accurate for this problem.
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Figure 3.6: Details of the density spike at different resolutions for the blast wave problem in 1D. We show
the results of 500, 1000, 2000, 4000, and 8000 particle simulations, going from right to left, beginning with
the rightmost peak. This corresponds to initial particle spacings of 2× 10−3, 10−3, 5× 10−4, 2.5× 10−4,
and 1.25× 10−4, respectively.
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Figure 3.7: Results of the sine wave shocktube performed in 1D (left) and 3D (right). Blue circles show
SPH particles, while green lines show the analytic solution for the two density extremes in the sine wave.
The initial particle spacing to the left of the interface is 0.0004. The sine wave is accurately advected across
the shock front, with no noticeable loss in accuracy.
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with periodic boundaries in the y and z directions. Of the four hydrodynamic variables plotted
(ρ∗, vx, u, P ), the error is largest in vx with L2 = 4.0× 10−2 in 1D, and L2 = 3.2× 10−2 in 3D.

The most noticeable difference between the 1D and 3D simulations is the slight overshoot at
the left end of the rarefaction fan x ≈ −0.2. This is caused by the lack of dissipation applied to
the small discontinuity at the end of the rarefaction fan. It can be eliminated in 1D by applying
the viscosity term for both approaching and receding particles. In 3D, even with viscosity applied
only to approaching particles there is some dissipation applied at this location because the velocity
differences are computed more isotropically. The small excess velocity at x ≈ 0.25 seen in 3D is
caused by particles rearranging behind the shock front.

Figure 3.3 shows the same shock but with αu = 0. Without artificial conductivity we find a
‘blip’ in the pressure profile at the contact discontinuity. The same feature is discussed by Price
(2008) and Price (2012) in the context of non-relativistic SPH simulations. In both cases, the ‘blip’
can be smoothed out by including artificial conductivity. Simulations by CM97 do not contain
such a ‘blip’, but instead display excessive thermal diffusion at the contact discontinuity, since
artificial conductivity is included implicitly within their dissipation terms (compare our results to
figures 9 and 10 in their paper).

Strong blast

In Figures 3.4 & 3.5 we show the results for a strong blast wave in both 1D and 3D, respectively.
This is ‘Problem 2’ in Martı́ and Müller (2003) with a maximum fluid Lorentz factor of Γ = 3.6.
We follow the same setup as for the mildly-relativistic shock but with differing initial conditions

[ρ, P ] =

{
[1, 1000] forx < 0,

[1, 10−2] forx > 0.
(3.104)

The particle spacing is 0.001 on both sides of the interface, with 1000 × 12 × 12 particles for
the whole domain in 3D. Importantly, we use unsmoothed initial conditions, unlike in CM97 and
Rosswog (2010a). We found this was only possible when we evolved the entropy rather than
total energy as the conserved variable, otherwise negative pressures could result in the absence
of smoothing. The error is again largest in vx for both cases, with L2 = 2.5 × 10−1 in 1D and
L2 = 3.1× 10−1 in 3D. The peak of the density spike is also within 2.7% of the exact solution in
both the 1D and 3D simulations. The same differences between 1D and 3D simulations occur as
in the previous test, and for the same reasons.

Figure 3.6 shows the details of the density spike at different resolutions. At low resolutions the
shock speed is overestimated, consistent with the results of CM97. With 500 particles the centre
of the spike is ahead of the exact solution by approximately one spike width. As the resolution is
increased, our simulations approach the exact solution.

Sinusoidally perturbed shock

In Figure 3.7 we show the results in 1D and 3D for a shock tube with a sinusoidally perturbed right
density state (e.g. Del Zanna and Bucciantini, 2002; Rosswog, 2010a) where the fluid reaches a
maximum Lorentz factor of Γ = 1.15. The initial conditions for this setup are

[ρ, P ] =

{
[5, 50] forx < 0,

[2 + 0.3 sin(50x), 5] forx > 0.
(3.105)
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The particle spacing is 0.0004 on the left side of the interface, and on the right such that the
particle masses are the same as on the left. We find that the sine wave perturbation is easily
transported across the shock front in both cases, with no noticeable loss in accuracy. The peaks
of the propagated sine wave reach the correct levels of the two limiting solutions; to within 1.2%
in 1D, and within 1.3% in 3D. The left end of the rarefaction fan in 1D displays an overshoot in
the density, for the same reasons as discussed in the previous tests.

Shocks with transverse velocity

We consider two problems where the shock contains a non-zero transverse velocity to the main
flow. This is important in relativistic flows since the magnitude of the flow speed is limited by the
speed of light, and the transverse velocity is coupled to the evolution of the other hydrodynamic
variables through the Lorentz factor.

Figure 3.8 shows our results in 1D for a shocktube with initial conditions given by

[ρ, P, vx, vy] =

{
[1, 1000, 0, 0] forx < 0,

[1, 10−2, 0, 0.99] forx > 0.
(3.106)

The initial particle spacing is 0.0001 on the left side of the interface. Of the four hydrodynamic
variables plotted (ρ, vx, vy, P ), the error is greatest in ρwithL2 = 3.7×10−2, and a 5% overshoot
at the contact discontinuity. The fluid has a maximum Lorentz factor of Γ = 7.09.

A much more challenging test is the shocktube with initial conditions given by

[ρ, P, vx, vy] =

{
[1, 1000, 0, 0.9] forx < 0,

[1, 10−2, 0, 0.9] forx > 0.
(3.107)

As pointed out by Zhang and MacFadyen (2006) this tests requires a ‘very high resolution to
resolve the complicated structure of the transverse velocity’. Figure 3.9 shows the results for
this problem in 1D. We find that this test is particularly challenging since the transverse velocity
changes rapidly, requiring very high spatial resolution. The most obvious artefact is a spike in vy

at x ≈ 0.2. This is also observed in Zhang and MacFadyen (2006) but is worse in SPH since this
feature occurs in a low density part of the simulation, where the resolution is lowest. The largest
error is in ρ with L2 = 4.0× 10−1. The fluid reaches a maximum Lorentz factor of Γ = 44.5.

3D spherical blast wave

In Figure 3.10 we show the results of a spherically symmetric relativistic blast in 3D, analogous to
the non-relativistic Sedov-Taylor blast wave. This is the same problem as done by Del Zanna and
Bucciantini (2002) and Zhang and MacFadyen (2006) (see their Figures 8 and 17, respectively).

For the initial conditions we set 640 × 740 × 784 particles on a closepacked lattice within a
uniform periodic box x, y, z ∈ [−1, 1]. The density is initially set to ρ∗ = ρ = 1 everywhere.
We inject a sphere of uniform pressure Pin = 1000 at the origin with radius r0 = 0.4, and set
the pressure outside the sphere to Pout = 0. Our setup and resolution is equivalent to Zhang
and MacFadyen (2006), however we simulate the whole box x, y, z ∈ [−1, 1], instead of just the
quadrant x, y, z ∈ [0, 1] which is only possible in spherical symmetry.
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Figure 3.8: Results of the 1D shocktube with initial transverse velocity on the right side of the interface.
The initial particle spacing is 0.0001 on the left side of the interface. We find a small overshoot in the
density at the contact discontinuity.

rh
o

-0.4 -0.2 0 0.2 0.4

0

2

4

t=0.6

v x

-0.4 -0.2 0 0.2 0.4

0

0.1

0.2

0.3

0.4

x

v y

-0.4 -0.2 0 0.2 0.4
0

0.5

1

x

p
re
ss
u
re

-0.4 -0.2 0 0.2 0.4

0

500

1000

Figure 3.9: Results of the 1D shocktube with initial transverse velocity on both sides of the interface. Sim-
ulations with 1000, 4000, and 16000, particles are shown in grey for reference, and the highest resolution
simulation of 64000 particles is shown in blue. These resolutions corresponds to initial particle spacings
of 1 × 10−3, 2.5 × 10−4, 6.25 × 10−5, and 1.5625 × 10−5, respectively. The exact solution given by
Giacomazzo and Rezzolla (2006); Martı́ and Müller (2015) is shown in green. We find a large spike in vy

at the contact discontinuity with even the highest resolution.
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Following Chow and Monaghan (1997) and Rosswog (2010a) we slightly smoothed the initial
discontinuity in the pressure using

P (r) =
Pin − Pout

1 + exp( r−r0∆r )
− Pout, (3.108)

where for the characteristic transition length ∆r we used half the initial particle spacing.
We compare our results to the 1D high resolution results of Zhang and MacFadyen (2006).

Our solution shows qualitative agreement with theirs, with the most notable difference being an
∼ 8% increase in the speed of our shock front. There is also a small amount of smoothing at the
left end of the rarefaction fan (x ≈ 0.05), which is present in the 3D simulations of Del Zanna and
Bucciantini (2002) and Zhang and MacFadyen (2006). Figure 3.11 shows the (primitive) density
slice through the z = 0 plane, demonstrating our code’s ability to preserve radial symmetry and
resolve the structure of the thin shell. The fluid reaches a maximum Lorentz factor of Γ = 19.56.

Oscillating polytrope

A concern with artificial conductivity (expressed by the referee of this paper) is that it may intro-
duce unwanted side effects. For example, spuriously applied conductivity may seriously disrupt
a stellar equilibrium state. To address this concern, Figure 3.12 shows the results of a 3D oscil-
lating polytropic star with Newtonian self-gravity (see Appendix B.2) in the Minkowski metric.
The initial conditions are a relaxed star consisting of 65752

(
≈ 4π253/3

)
particles and polytropic

equation of state P (r) = Kρ(r)(n+1)/n with K = 10−10 and n = 1.5 (i.e. γad = 5/3).
To relax the star we apply an additional force to the particles in the momentum equation which

depends on the particle velocity (Gingold and Monaghan, 1977)

f idamp = −0.03 vi, (3.109)

and turn off all dissipative terms. That is, we set αAV = 0 and αu = 0. We integrate until
t = 20000 when all particle motions have been sufficiently damped.

To induce radial oscillations in the star, we perturb the relaxed star profile with a small velocity
perturbation

vi(r) = 10−4xi(r). (3.110)

Figure 3.12 compares the results of three different simulations, one with no dissipation, a second
with conductivity turned on using vusig = vsig, and a third using conductivity with vusig as in
Eq. 3.61.

With no dissipation the amplitude of the stellar oscillation does not decay with time since en-
ergy is conserved exactly (black line in both panels). However with vusig = vsig, the stellar profile
slowly becomes disturbed, and the central density increases. The results of the third simulation
demonstrate a way to remedy this issue. The signal speed in Eq. 3.61 gives conductivity ofO(h2),
and which vanishes when the star is in hydrostatic equilibrium. This allows us to reproduce the
same undamped oscillations as in the dissipation-free simulation.

3.8.2 Orbital dynamics — Schwarzschild Metric

In order to test our ability to perform orbital dynamics accurately, we use the Schwarzschild metric
in spherical Schwarzschild coordinates. We confirmed that the same results can be reproduced
using the equivalent Cartesian representation (see Appendix A.3.1). We use a black hole mass of
M = 1 in all simulations.
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Figure 3.10: Results of the spherical blast wave in 3D with 640 × 740 × 784 particles (blue circles). We
compare to the high resolution 1D results of Zhang and MacFadyen (2006) (green line).
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Figure 3.16: Precession in the Schwarzschild (left) and Kerr metrics (middle and right) with M = 1.
The orbit in the Schwarzschild metric matches the same orbit as computed from a direct integration of the
geodesic equation. With a/M = 0 in the Kerr metric we reproduce the Schwarzschild orbit as expected.
With non-zero a/M in the Kerr metric, the angle of apsidal advance is decreased for the prograde orbit
(a/M = 0.1) and increased for the retrograde orbit (a/M = −0.1). Large values of spin are also possible,
however in those cases the direction of orbital advance becomes difficult to distinguish in a figure.
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Figure 3.18: Results of spherically symmetric ‘geodesic’ Bondi accretion in the Schwarzschild metric with
M = 1 and αAV = 0. Blue dots show SPH particles while green lines show the exact solution. This
demonstrates that the time evolution of the energy equation is correct.
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Figure 3.19: As in Fig. 3.18 but artificial viscosity turned on as normal i.e. αAV = 1. This produces
excessive viscous heating, evident in the thermal energy profile (right).
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geodesic case, however it does reduce particle noise in the velocity profile (middle).

r
-10 0 10

-10

0

10

-2 -1.5 -1
log rho*

r
-10 0 10

-10

0

10

0 0.05 0.1 0.15 0.2
u

Figure 3.22: Rendered slices of spherically symmetric ‘sonic point’ Bondi accretion as in Fig. 3.20, show-
ing conserved density ρ∗ (left) and specific thermal energy u (right). Slice is taken through the z = 0

plane. The density and thermal energy gradients are correctly captured at the inner boundary so long as the
event horizon is well resolved.



3.8. Numerical tests 47

Circular orbits

The orbital frequency Ω of a circular geodesic in the Schwarzschild metric is identical to the
frequency of a Newtonian orbit

Ω2 =

(
dφ

dt

)2

=
M

r3
. (3.111)

Figure 3.13 (left) shows a test particle orbit with initial position (r, θ, φ) = (10M,π/2, 0) and
initial velocity (vr, vθ, vφ) = (0, 0,Ω), simulated for 15 orbital periods with constant time step
∆t = 0.01M throughout. Energy and angular momentum (e, pφ) are conserved to machine
precision (∆E/E ≈ 10−15), and the radius also remains constant to machine precision.

Radial geodesics

The velocity of a radially in-falling particle beginning at rest in the Schwarzschild metric is given
by

vr(r) =
1− 2M

r√
1− 2M

r0

√
2M

(
1

r
− 1

r0

)
, (3.112)

where r0 is the starting radius. Figure 3.15 shows our calculations of radially in-falling test
particles from several radii, compared to the exact solution. We integrate with constant time step
∆t = 0.01M until the particles reach r = 2.001M . The largest L2 error out of the 10 simulations
occurs for the r0 = 4M case, with L2 = 6.7× 10−8 when using data points every 31 time steps.
This confirms that radial infall is accurately captured by our code.

Apsidal advance

Figure 3.16 (left) shows the trajectory of a precessing orbit. The orbit begins at r0 = 90M with
tangential velocity vt = 0.0521157 such that the pericentre distance is ≈ 10M , i.e.

(r, θ, φ) =
(
r0,

π

2
, 0
)
, (3.113)

(vr, vθ, vφ) =

(
0, 0,

vt
r0

)
. (3.114)

The trajectory of our simulation follows the trajectory as computed from a direct integration of the
geodesic equation with coordinate time derivatives (see e.g. Equation 4.2 of Tejeda et al. 2017).
We find a change in azimuthal angle of approximately 82.3◦ between the first apocentre and the
starting position. This is consistent with the exact value of 82.4◦ (see e.g. Equation 2 of Wegg
2012) to within measurement error. A more accurate value can be obtained with higher temporal
resolution at the apocentre. This confirms that the apsidal advance is as expected from theory.

3.8.3 Orbital dynamics — Kerr Metric

We perform further tests of orbital dynamics using the Kerr metric in spherical Boyer-Lindquist
coordinates, however the same results can be reproduced using the equivalent Cartesian represen-
tation (see Appendix A.3.2). We again use a black hole mass of M = 1 in all simulations.
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Circular orbits

Circular geodesics are allowed in the Kerr metric when the plane of orbit is perpendicular to the
spin axis of the black hole (i.e. θ = π/2 in Boyer-Lindquist coordinates). The orbital frequency
for a circular orbit in the Kerr metric is given by (Abramowicz et al., 1978)

Ω =
M1/2

r3/2 + aM1/2
, (3.115)

for orbits going in the positive φ direction, where |a| ≤ M is the angular momentum parameter
of the black hole. Prograde orbits correspond to a > 0, whilst retrograde orbits are when a < 0.
Figure 3.13 (right) shows a circular orbit at a radius of 2M for a maximally rotating black hole
(a/M = 1), evolved for 15 orbital periods with constant ∆t = 0.01M and compared to the exact
orbit. Again, energy and angular momentum (e, pφ) are conserved to machine precision, and the
radius also remains constant to machine precision.

Epicyclic motion

An otherwise circular orbit given a small, linear, radial perturbation, will undergo epicyclic mo-
tion in the Kerr metric. The epicyclic frequency κ is given by (Kato, 1990; Lubow et al., 2002)

κ2 = Ω2

(
1−

[
6M

r
− 8aM1/2

r3/2
+

3a2

r2

])
. (3.116)

We compute κ for a range of values of a, by setting a series of test particles on epicyclic or-
bits at different radii. To induce the epicyclic motion we set the initial angular velocity to be
vφ = 1.00001Ω (i.e. a 0.001% increase from the circular velocity). For simplicity and because
test particles do not interact, simulations with the same a were computed simultaneously. Each
simulation was run for t = 30000M to ensure that epicycles with the lowest frequency com-
pleted at least 20 cycles. We then measure the frequency, as described in Appendix A.4. Figure
3.14 (left) shows the results of all simulations for a ∈ [−1, 1] and M = 1. The radii at which
κ = 0 correspond to the innermost stable circular orbit (ISCO). The typical errors are of order
∆κ/κ ≈ 10−3. However, the errors can be made arbitrarily small by taking a longer time series,
since the smallest frequency measurement possible with a Fourier transform is δΩ = 2π/tmax.

Vertical-oscillation frequency

A circular orbit given a small, linear, vertical perturbation, will undergo vertical oscillations in the
Kerr metric. The vertical oscillation frequency Ωz is given by (Kato, 1990; Lubow et al., 2002)

Ω2
z = Ω2

(
1−

[
4aM1/2

r3/2
+

3a2

r2

])
. (3.117)

Figure 3.14 (right) shows our calculations of the vertical oscillation frequency, following a similar
setup as above (see Section 3.8.3). To induce vertical oscillations we perturb test particles up out
of the θ = π/2 plane by 0.001% (i.e. θ = (1− 0.00001)π/2). The exact solutions for each value
of a are truncated at the radius corresponding to the ISCO. Typical errors are similar to those for
the epicyclic frequency (∆Ωz/Ωz ≈ 10−3), and can again be made smaller by taking a longer
time series.
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Apsidal advance

Figure 3.16 (middle & right) demonstrates the effect of black hole spin on apsidal advance. We
use similar initial conditions as in Section 3.8.2 however with a/M = {−0.1, 0, 0.1} in the Kerr
metric and performed these calculations in Cartesian-like coordinates. We chose relatively small
values of spin in order to distinguish the direction of orbital advance, however there is no limit
on the values of spin that the code can handle. The initial conditions for this orbit are such that
in the x–y plane the initial starting position and velocity is the same for all three orbits since
r2 6= x2 + y2 + z2 in Boyer-Lindquist coordinates, i.e.

(x, y, z) = (r0, 0, 0), (3.118)

(vx, vy, vz) = (0, vtan, 0). (3.119)

where again we use r0 = 90M and vtan = 0.0521157. The angle of precession decreases
for prograde orbits, and increases for retrograde orbits, as expected. Combined with the high
accuracy of our epicyclic frequency measurements, this confirms that we capture Kerr orbital
dynamics accurately.

Conservation of angular momentum

Figure 3.17 shows the conservation of angular momentum in our timestepping algorithm de-
scribed in Section 3.6.3. We compute the precessing orbit in the Schwarzschild metric in Carte-
sian coordinates (Section 3.8.2) using both double (64 bit) and quad (128 bit) precision, whilst
varying the number of steps per orbit (step size), and the tolerance (εx, εp) of the implicit solve.
The conserved angular momentum in the Schwarzschild metric is

L = r2 dφ

dt
U0. (3.120)

We define the orbital period for this trajectory to be the time between consecutive apocentres
(torbit ≈ 2390M with our setup). With 104 steps per orbit, we find that we conserve angular
momentum to round off error provided εp and εx are sufficiently small. Using tolerances of 10−15

(double precision) and 10−30 (quad precision) angular momentum is conserved to round-off error.
Therefore in our 3D code, which is double precision, we set εp = εx = 10−15 by default.

3.8.4 General relativity — Bondi accretion

To test our ability to perform hydrodynamics in a curved spacetime and not just special relativity,
we consider spherically symmetric flow in the Schwarzschild metric. Hawley et al. (1984a) give
the analytic solution, which is a generalisation of non-relativistic Parker-Bondi flow. To simu-
late the accretion solution, we inject shells (geodesic spheres) of SPH particles from a particular
radius at discrete, regular intervals. The particles are given density, velocity and thermal energy
corresponding to the exact solution at the radius which they are injected. For details of the algo-
rithm we refer the reader to the publicly available subroutine in PHANTOM used in applications
of stellar winds (Toupin et al. 2015a,b; Siess et al. in prep).
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Geodesic flow

The solution for marginally bound, spherically symmetric, radial flow of ‘pressure-less’ gas is
given by (Hawley et al., 1984a)1

vr(r) =

√
2M

r

(
1− 2M

r

)
, (3.121)

ρ =
ρ0

r2

√
r

2M
, (3.122)

u(r) = u0

(
r2

√
2M

r

)1−γad

, (3.123)

where ρ0 and u0 are normalisation constants. The solution assumes that u � 1 everywhere,
hence we must use u0 � 1 to be consistent. The solution is also the same for inflow and outflow,
aside from the sign of vr. For our simulations we use normalisation constants u0 = 1× 10−9 and
ρ0 = 1.

Following Hawley et al. (1984b), we inject fluid radially in toward the black hole from a
radius of rin = 18.1M . To have a smooth boundary condition at rin, we keep 10 shells of
particles, uniformly spaced in time, outside of the injection radius at all times. The hydrodynamic
quantities vr, ρ and u are fixed to the exact solution while the shells remain outside the injection
radius. As each shell moves inward and crosses rin, it is ‘released’ and left to evolve on its own.
Once a shell is released, a new boundary shell is added to the outside of the remaining boundary
shells in order to maintain a constant number of boundary shells. For the inner boundary, we
simply remove particles from the simulation when they cross r = 2.1M .

Figures 3.18 & 3.19 show our results for geodesic Bondi accretion with 8412 particles per
shell, a time spacing of δt = 0.602M between consecutive shells, and individual particle masses
of ma = 9× 10−4M . We find that we achieve best results with artificial viscosity turned off i.e.
αAV = 0 (Fig. 3.18). After evolving the simulation to t = 90M the L2 errors are 5.4 × 10−2,
1.8× 10−4 and 4.4× 10−2 for ρ∗, vr and u, respectively.

Figure 3.19 shows the same simulation but with the standard dissipation parameter αAV = 1

for comparison. Although there are no shocks present, viscous heating leads to excess thermal
energy (third panel of Figure 3.19). The excess heating is small but easily overwhelms the negli-
gible thermal energy assumed in the test problem. To reduce viscous heating away from shocks,
the standard approach in non-relativistic SPH is to implement shock detection switches. The most
widely used is the switch proposed by (Cullen and Dehnen, 2010), however this is non-trivial to
generalise to relativity. We experimented with a modified form of the older Morris and Monaghan
(1997) switch but found it ineffective for the Bondi problem since it relies on (−∂vi/∂xi) as the
shock detector, which does not switch off for adiabatic contraction.

There is a small turnover in density at the inner boundary in both cases. This is merely a
consequence of our inner boundary condition and does not reflect the accuracy of our density
calculation in a strong field regime. The drop off occurs because particles close to the accretion
radius have fewer neighbours and thus a lower density. This effect is not unique to GRSPH and
would occur wherever the inner boundary was chosen to be.

1Note that equation (67b) of Hawley et al. (1984a) is written incorrectly
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Sonic point flow

Dropping the assumption u � 1 means that the pressure between fluid elements is no longer
negligible. The solution for this flow (Michel, 1972; Hawley et al., 1984a) can be written in terms
of a temperature variable T ≡ P/ρ = (γad − 1)u, not to be confused with the gas temperature as
defined in equation 3.22,

U r(r) =
C1

r2Tn
, (3.124)

ρ(r) = K0T
n, (3.125)

u(r) = nT, (3.126)

where n ≡ 1/(γad−1) is the polytropic index andK0 is an entropy normalisation constant. T (r)

is determined by the implicit equation

C2 = (1 + (n+ 1)T )2

(
1− 2M

r
+

C1
2

r4T 2n

)
. (3.127)

The constants C1 and C2 can be both uniquely determined through the choice of a critical point
rc,

C1 = Uc rc
2 Tc

n, (3.128)

C2 = (1 + (1 + n)Tc)
2

(
1− 2M

rc
+

C1
2

rc4Tc
2n

)
, (3.129)

where

Uc ≡ U r(rc) =

√
M

2rc
, (3.130)

Tc ≡ T (rc) =
v2
cn

(1 + n)(1− nv2
c )
, (3.131)

vc ≡ vr(rc) =
Uc√

1− 3U2
c

. (3.132)

To write the solution in terms of vr(r) and ρ∗(r), we use equations 3.2 & 3.4 along with

U0 =

√
1− 2M/r + (U r)2

1− 2M/r
, (3.133)

as determined by equation 3.3 for the Schwarzschild metric. For γad = 5/3, equation 3.127 yields
two real solutions, one for inflow and the other for outflow (Michel, 1972). For our simulation
we take care to choose the correct branch, corresponding to an inflow. We choose a critical value
rc = 8M and normalise the entropy to K0 = 1.

Figures 3.20 & 3.21 show the results of our simulation. We follow the same procedure as for
the geodesic flow simulation, injecting shells of particles from rin = 18.1M , however this time
we fill the domain all the way to the accretion radius at r = 2.1M before beginning the simulation.
This reduces the time taken to reach a steady state. Each shell consists of 8412 particles, with
time intervals of δt = 1.404M between each consecutive shell, and individual particle masses of
ma = 4× 10−4M .
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Figure 3.20 shows our results with a reduced artificial viscosity parameter of αAV = 0.1.
After evolving the simulation to t = 360M in order to reach a steady state, the L2 errors are
4.2× 10−2, 2.5× 10−2 and 3.2× 10−2 for ρ∗, vr and u, respectively.

In Figure 3.21 we show the same simulation but with αAV = 1 for comparison. As with
the geodesic simulations above, we find excessive viscous heating when the standard artificial
viscosity parameter is used. A small drop off in density can again be seen at the inner boundary,
for the same reasons as discussed in the geodesic simulation. Figure 3.22 shows a rendered cross
section of the conserved density ρ∗ and the specific thermal energy u close to the inner boundary
for the same simulation as Fig. 3.20. This demonstrates that the boundary condition is not a
serious concern, so long as the event horizon is well resolved.

3.9 Conclusions

We have developed and benchmarked a 3D GRSPH code for hydrodynamics in strong field grav-
ity. The novel aspects are:

1. Shock capturing: We demonstrated how to split viscous and thermal conduction compo-
nents of the shock dissipation terms in relativistic SPH. This is important for accurate treat-
ment of contact discontinuities (Price, 2008).

2. Entropy: We show how to formulate the equations with entropy as the conserved variable.
This enables us to robustly simulate strong blast waves with no smoothing of the initial
conditions without the code failing due to negative pressures.

3. Timestepping: We showed how to generalise the Leapfrog time integration scheme to rela-
tivistic SPH. We combined a symplectic and reversible method for non-separable Hamilto-
nians from Leimkuhler and Reich (2005) with a modified algorithm that is efficient for SPH.
This allows for symplectic and reversible integration of the orbital dynamics and reversible
integration of the SPH equations in the absence of dissipation. Our algorithm generalises
the RESPA scheme (Tuckerman et al., 1992) employed by Price et al. (2018).

4. Benchmarking: We benchmark both our algorithm and codes against a series of standard-
ised tests in 1D and 3D. We showed results for mildly and ultra-relativistic shocks in 1D
and 3D, circular and eccentric orbits, radial geodesics, vertical and epicyclic oscillation
about circular orbits in Schwarzschild and Kerr metrics, 3D relativistic spherical blast, and
generalised Bondi flow.

5. Public code: We implemented our algorithms into the public SPH code PHANTOM (Price
et al., 2018). Our intention is to make GR PHANTOM publicly available in due course.

We showed how to use SPH, for flows in curved metrics of space. We captured the shocks, and
adjusted the clocks. Our tests, they all worked in each case.



Chapter 4

Background: Tidal disruption events

In this chapter we give a brief review on the basic physics and dynamics involved during a tidal
disruptions event (TDE), which will be useful for the investigations in Chapters 5 and 6.

4.1 Disruption

A TDE occurs when a star wanders too close to a black hole and the tidal force overwhelms the
self-gravity of the star. The radius from the black hole at which this occurs is called the tidal
radius RT , which can be approximated by equating the star’s self-gravitational acceleration with
the Newtonian surface tidal acceleration:

GM∗
R2
∗

=
GMBHR∗

R3
T

, (4.1)

where M∗ is the mass of the star, R∗ is its radius, MBH is the mass of the black hole, and G is the
gravitational constant. Rearranging for the tidal radius gives

RT = R∗

(
MBH

M∗

)1/3

, (4.2)

' 0.46 au

(
R∗
R�

)(
MBH

106M�

)1/3(M∗
M�

)−1/3

, (4.3)

' 47.1Rg

(
R∗
R�

)(
MBH

106M�

)−2/3(M∗
M�

)−1/3

, (4.4)

where Rg ≡ GMBH/c
2 is the gravitational radius. For stellar orbits with pericentre distance

rp ≤ RT the star is expected to be completely disrupted, while for rp > RT the star will survive
1. The ‘strength’ of the encounter is typically measured by the penetration factor,

β ≡ RT
rp
, (4.5)

where β ≥ 1 would correspond to a full disruption.
From Equation 4.4, two important points become apparent:

1If rp is only slightly greater than RT , then the star may undergo a partial disruption, in which only the outer layers
of the star are stripped away and the core survives. The exact threshold for partial disruptions depends on the internal
structure of the star. Guillochon and Ramirez-Ruiz (2013) quantify the threshold precisely for polytropic stars, while
Ryu et al. (2020) do so for more realistic stars using MESA (Modules for Experiments in Stellar Astrophysics) models.
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Figure 4.1: Parameter space for the tidal disruption of different types of stars (Tejeda et al., 2017). Here, the
y-axis is the pericentre in units of Rg , and M ≡MBH. For a given type of star (red giant, solar-type, white
dwarf) a TDE occurs if the the pericentre distance is below the corresponding solid line (red, blue, green)
i.e. rp/M < rt. The plunging regions for non-rotating and maximally rotating black holes are shown by
the solid black lines, within which a TDE will not occur because the star is completely swallowed by the
black hole.

1. Tidal disruptions for solar type stars and typical supermassive black hole masses ofMBH ≥
106M� are inherently general relativistic, i.e. RT ∼ Rg. This means that general relativis-
tic effects, such as relativistic precession, are significant.

2. There is a part of parameter space in which the tidal radius is smaller than the event horizon
(Schwarzschild radius, Rs = 2Rg) of the black hole. For a solar type star, this occurs
when the black hole mass is greater than roughly 108M�, known as the ‘Hills mass’ (Hills,
1975).

Figure 4.1 from Tejeda et al. (2017) illustrates these regions of parameter space for different types
of stars. Red giants can be disrupted by black holes with mass up to ∼ 109M�. This is a rough
upper limit on black holes that can host a TDE. It may be possible for tip-of-the-red-giant-branch
and some AGB stars to be disrupted by even larger black holes (see figure 14 of MacLeod et al.
2012). On the other hand, neutron stars can only be disrupted by stellar-mass black holes up to
∼ 10M�, depending on the black hole spin and neutron star equation of state (Foucart, 2012).

The origin of stars that are tidally disrupted by the central black hole of a galaxy is typically
from the sphere of influence with radius (Stone et al., 2019)

rh =
GMBH

σ2
' 0.43 pc

(
MBH

106M�

)(
σ

100km/s

)−2

, (4.6)

where σ is the velocity dispersion of the host galaxy. This distance is much greater than the
tidal radius and therefore also greater than the pericentre distance (since rp ≤ RT for disruption).
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Figure 4.2: Trajectory of the star and stellar debris during a TDE (Rees, 1988).

Thus, tidally disrupted stars approach the supermassive black hole on nearly parabolic (marginally
bound) orbits, with specific orbital energy close to zero. A rough schematic of a TDE and the
debris trajectory is shown in Figure 4.2.

Following disruption, there is a spread in the specific orbital energy of the debris, with roughly
half the debris becoming bound to the black hole and the other half becoming unbound. This
spreading can be modelled analytically using a ‘frozen-in’ approximation: Assume that the star’s
disruption through pericentre happens much faster than any other process that would redistribute
the kinetic of the material; in other words, assume the star has an instantaneous loss of self-gravity
as it reaches the tidal radius. Thus the spread in energy ∆ε is equal to the spread in gravitational
potential energy across the star at the tidal radius:

∆ε ≈ GMBH

RT −R∗
− GMBH

RT +R∗
, (4.7)

' 2GMBHR∗
R2
T

. (4.8)

Figure 4.3 shows the distribution of specific energy over the course of hydrodynamic simulations
performed by Lodato et al. (2009), who (along with many others) found good agreement with
Equation 4.8, even though it is a rather crude approximation.

4.2 Fallback

Once disrupted, the debris moves on nearly geodesic orbits, and the half that is bound returns to
the black hole at a characteristic rate given by (Rees, 1988; Phinney, 1989)

Ṁreturn =
dm

dε

∣∣∣∣dεdt
∣∣∣∣ =

dm

dε

(2πGMBH)2/3

3
t−5/3, (4.9)
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where ε ∝ r−1 ∝ t−2/3 from Kepler’s third law. As shown in Figure 4.3, the spread in specific
energy can be approximated by a top-hat, meaning that dm/dε ≈ 1. This gives the famous
Ṁ ∝ t−5/3 relation for the mass return rate, which is the relation that is often used to classify
observed transients as TDEs.

As the debris falls back is must be accreted onto the black hole in order to power a light curve.
Figure 4.4 shows the luminosity evolution observed from several TDEs (and super-luminous su-
pernovae), which reach peak luminosities of ∼ 1010−11L�. It is commonly assumed that the
debris will circularise very rapidly, in which case the bolometric light curve will follow Ṁreturn.
However, the exact details of debris circularisation, accretion and subsequent emission are still
uncertain, and are the subject of our investigations in Chapters 5 and 6. The results of recent TDE
simulations are summarised in Lodato et al. (2015), while Komossa (2015) outlines the status of
observations.
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Figure 4.3: Distribution of specific energy during a TDE in hydrodynamical simulations performed by
Lodato et al. (2009). Units are such that MBH = G = c = 1. Upper left: initial condition. Upper right:
star at pericentre. Lower left: star at 4 times pericentre. Lower right: star at 10 times pericentre.

Figure 4.4: Light curves of several TDEs (blue and black markers) and super-luminous supernovae
(red/pink markers), as presented in Holoien et al. (2019). The luminosity rises rapidly and decays over
the course of many months.
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Chapter 5

Disc formation from tidal disruption of stars
on eccentric orbits by Kerr black holes
using GRSPH

We perform 3D general relativistic smoothed particle hydrodynamics (GRSPH) simulations of
tidal disruption events involving 1 M� stars and 106M� rotating supermassive black holes. We
consider stars on initially elliptical orbits both in, and inclined to, the black hole equatorial plane.
We confirm that stream-stream collisions caused by relativistic apsidal precession rapidly circu-
larise the disrupted material into a disc. For inclined trajectories we find that nodal precession
induced by the black hole spin (i.e. Lense-Thirring precession) inhibits stream-stream collisions
only in the first orbit, merely causing a short delay in forming a disc, which is inclined to the
black hole equatorial plane. We also investigate the effect of radiative cooling on the remnant
disc structure. We find that with no cooling a thick, extended, slowly precessing torus is formed,
with a radial extent of 5 au (for orbits with a high penetration factor). Radiatively efficient cool-
ing produces a narrow, rapidly precessing ring close to pericentre. We plot the energy dissipation
rate, which tracks the pancake shock, stream-stream collisions and viscosity. We compare this to
the effective luminosity due to accretion onto the black hole. We find energy dissipation rates of
∼ 1045 erg s−1 for stars disrupted at the tidal radius, and up to∼ 1047 erg s−1 for deep encounters.

5.1 Introduction

The tidal disruption of stars by supermassive black holes is thought to power bright electromag-
netic flares (Lidskii and Ozernoi, 1979; Rees, 1988) that are observed at the centre of galaxies
(see Komossa, 2015, for a review). This occurs when a star gets too close to the black hole,
such that the tidal forces of the black hole exceed the self gravity of the star (Hills, 1975). The
subsequent accretion of stellar material onto the black hole proves useful as a tool for probing
quiescent supermassive black holes (SMBHs).

The luminosity for such tidal disruption events (TDEs) decays loosely as a power-law∝ t−5/3

(e.g. Gezari et al., 2008, 2012; Auchettl et al., 2017), which is consistent with the predicted mass
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return rate of stellar debris at late times (Rees, 1988; Phinney, 1989).1

After the initial disruption, the star — initially on a parabolic orbit — is torn into a long
stream, with roughly half the mass being gravitationally bound to the black hole and returning
on highly eccentric orbits. In order for the light curve to trace the fallback rate, the stellar debris
must circularise, form an accretion disc, and accrete on a timescale much shorter than the return
time of the most tightly bound debris (Stone et al., 2019) — assuming that the observed flare
is powered by accretion onto the black hole and not by fallback shocks and circularisation (e.g.
Lodato, 2012; Piran et al., 2015; Jiang et al., 2016). The manner in which material circularises is
still uncertain, but is thought to be due to shock dissipation from the self-intersection of the debris
stream, caused by relativistic apsidal precession (Rees, 1988; Cannizzo et al., 1990; Hayasaki
et al., 2013; Bonnerot et al., 2016). However, the process of circularisation is further complicated
by frame dragging. This causes precession of the orbital plane with each pericentre passage,
which can prevent stream self-intersection (Cannizzo et al., 1990; Guillochon and Ramirez-Ruiz,
2015).

Investigating TDEs numerically presents a significant challenge, since the process involves
a large range of length and time scales that need to be resolved from disruption to accretion. In
the case of a 1M� star on a parabolic orbit disrupted by a 106M� SMBH, the period of the most
bound debris is∼ 103 times greater than the dynamical time of the star, while the semi-major axis
of the most bound debris is ∼ 104 times greater than the stellar radius (Stone et al., 2019). As a
consequence, most previous numerical studies have focused on the details of the initial disruption
process, and have not simulated the subsequent debris fallback and predicted disc formation (e.g.
Evans and Kochanek, 1989; Laguna et al., 1993; Khokhlov et al., 1993; Frolov et al., 1994; Diener
et al., 1997; Lodato et al., 2009; Guillochon et al., 2009; Guillochon and Ramirez-Ruiz, 2013;
Tejeda et al., 2017; Gafton and Rosswog, 2019). The relativistic SPH calculations of Ayal et al.
(2000) did follow fallback, however they were unable to resolve an accretion disc due to the small
number of SPH particles employed. Guillochon et al. (2014) also followed debris fallback in their
simulations, but were only able to form highly elliptic accretion flows since they had no treatment
of relativistic effects, and only followed the fallback in the case of a 103M� intermediate mass
black hole. Similarly, Rosswog et al. (2008) and Shiokawa et al. (2015) showed little debris
circularisation, although they also restricted their calculations to a more numerically favourable
choice of parameters, namely the disruption of white dwarfs by intermediate-mass black holes.

Hayasaki et al. (2013) were the first to convincingly demonstrate disc formation and debris
stream self-intersection due to apsidal precession around SMBHs, using a pseudo-Newtonian
gravitational potential in SPH calculations. Similar studies by Bonnerot et al. (2016) and Sad-
owski et al. (2016) confirmed their results, although all three studies only considered non-rotating
black holes, and stars on initially bound, highly eccentric orbits. The role that black hole spin
plays in circularisation has only recently been investigated numerically by Hayasaki et al. (2016).
Using SPH with a post-Newtonian approximation for the Kerr metric, they showed that nodal pre-
cession for highly elliptical orbits out of the black hole spin plane can delay debris circularisation.

In this paper, we investigate debris circularisation and subsequent disc formation around ro-
tating black holes, with particular interest in initial orbits that are out of the black hole spin plane.
We use general relativistic smoothed particle hydrodynamics (GRSPH) in a fixed background

1 It is worth noting that the exact power-law dependence varies in both optical/UV (e.g. van Velzen et al., 2019,
2020) and quasi-thermal X-ray emission (Auchettl et al., 2017). Furthermore, at late times, UV light curves tend to
flatten, while some X-ray curves show an exponential decay.
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Table 5.1: Parameters for each simulation

No. e β a θ cooling
1 0.95 5 0 0° adiabatic
2 0.95 5 0.99 0° adiabatic
3 0.95 5 0.99 30° adiabatic
4 0.95 5 0.99 60° adiabatic
5 0.95 5 0.99 89° adiabatic
6 0.95 1 0.99 60° adiabatic
7 0.95 5 0 0° isentropic
8 0.95 5 0.99 60° isentropic

Kerr metric, allowing us to treat both apsidal precession and nodal precession correctly in the
strong field limit. As in the studies listed above, we limit ourselves to stars on initially bound,
highly eccentric orbits.

This paper is organised as follows. In Section 5.2 we describe the method and initial condi-
tions. In Section 5.3 we present our results, investigating the effect of black hole spin and inclina-
tion, penetration factor and efficiency of radiative cooling. We discuss our results in Section 5.4
and present our conclusions in Section 5.5.

5.2 Method

We simulated the tidal disruption of solar type stars in 3D using GRSPH. We used the general rel-
ativistic implementation of PHANTOM (Price et al., 2018) as described in Liptai and Price (2019)
to perform our calculations. The calculation is performed in the Kerr metric in Boyer-Lindquist
coordinates (with black hole spin vector along the z-axis), which describes the spacetime around
a rotating black hole for a distant observer, along with Newtonian self-gravity in order to hold
the star together during the pre-disruption phase (see Appendix B.2). We set an accretion radius
at racc = 5GMBH/c

2 i.e. within the innermost stable circular orbit (ISCO) for a Schwarzschild
black hole. Particles that fall within this radius are removed from the simulation. This prevents
particles requiring very small time steps close to the horizon, which would significantly hinder
code performance.

5.2.1 Setup

We consider the disruption of stars with mass M∗ = 1M� and radius R∗ = 1R� by a supermas-
sive black hole with mass MBH = 106M�. Each star is placed on an eccentric orbit at apocenter
Ra = Rp(1 + e)/(1 − e), with velocity va =

√
GMBH(1− e)/Ra, where e is the eccentricity

and Rp is the Newtonian pericentre distance. In practice, the point of closest approach can differ
fromRp by up to∼ 2GMBH/c

2 due to relativistic effects, and thus the effective penetration factor
β can differ by up to ∼ 1 for our most penetrating orbits.

We vary the orbital inclination θ, the black hole spin a, and the penetration factor β ≡ Rt/Rp,
where Rt = R∗(MBH/M∗)

1/3 is the tidal radius. For our choice of parameters we have

Rp = 47.1Rg

(
β

1

)−1(R∗
R�

)(
MBH

106M�

)−2/3(M∗
M�

)−1/3

, (5.1)
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where Rg ≡ GMBH/c
2. For orbits in the black hole equatorial plane, we place the star on the

x-axis, while for inclined trajectories we rotate the plane of orbit up by an angle θ from the x-y
plane.

We model the star as an initially polytropic sphere with polytropic index γ = 5/3, using ap-
proximately 524K particles (∼ 4π503/3). We initially place the particles on a cubic lattice, and
then stretch their radial positions to achieve the desired density profile, as given by the corre-
sponding solution to the Lane-Emden equation, using the ‘star’ setup in PHANTOM (Price et al.,
2018). We do not ‘relax’ the star prior to beginning the calculation. In practice, the relaxation
timescale is shorter than the orbital timescale and thus the stellar structure settles by the time the
star reaches pericentre.

We perform our simulations in geometric units where G = c = MBH = 1 but present results
in physical units assuming a 106M� black hole. The corresponding transformations from code to
physical units are given by

tphys = 4.926s× tcode

(
MBH

106M�

)
, (5.2)

Rphys = 0.0098au×Rcode

(
MBH

106M�

)
. (5.3)

Table 5.1 shows a list of our simulations presented in this paper and the parameters used for
each. We initially considered a wider set of parameters, including more bound orbits similar to
those computed by Bonnerot et al. (2016), but since most tidal disruptions are expected to involve
stars on marginally bound orbits, we omit these calculations from our analysis in the interest of
brevity.

5.2.2 Accretion luminosity and heating rate

We derive an effective luminosity from the mass accretion rate (cf. Vigneron et al., 2018)

Lacc = εṀc2, (5.4)

where Ṁ is the mass accretion rate crossing our inner boundary, and ε = 0.2 is the efficiency
based on our inner accretion radius.

Our second estimate of the energy release comes from the irreversible dissipation of energy
produced by shocks and viscous heating. This is fairly straightforward to compute in our GRSPH
code since we evolve an entropy variable K ≡ P/ργ according to

dK

dt
=
K

u

(
du

dt
− P

ρ2

dρ

dt

)
, (5.5)

which for an individual particle, denoted by the subscript a, involves only the SPH shock heating
term Λshock (cf. equation 69 of Liptai and Price, 2019)

dKa

dt
=
Ka

ua
U0
aΛshock

a . (5.6)

Here U0 is the temporal component of the four velocity, and ρ, P and u are the density, pressure
and specific thermal energy of the gas, respectively. Thus we identify the U0

aΛshock
a term as the
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Figure 5.1: Snapshots of the debris fallback projected in the x-y plane for the e = 0.95, β = 5, θ = 0°,
a = 0 adiabatic simulation (Sim. 1). Starting at apocentre on the +x-axis, the star travels counter-
clockwise coming within< 10Rg of the black hole at pericentre (not shown). Apsidal precession advances
the orbit by > 90° (panel 1), which on the second pericentre passage (panel 2) causes the stream to self-
intersect and dissipate orbital energy through shocks (panel 3). Over the next few orbital periods, the debris
circularises and forms a thick torus (panel 6). White circle indicates the tidal radius Rt.
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Figure 5.2: Snapshots of the debris fallback for the e = 0.95, β = 5, θ = 60°, a = 0.99 adiabatic
simulation (Sim. 4), projected in the initial orbital plane. Since the black hole is rotating rapidly and the
initial orbit does not lie in the spin plane, nodal precession moves the star into a new orbital plane after
the first pericentre passage, preventing stream self-intersection early on. However as the stream thickens, a
significant portion of the stream self-intersects and a torus is formed. White circle indicates the tidal radius
Rt.
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specific energy generation rate per particle, and hence the total injected luminosity at a given time
is

Lshock =
∑
a

maU
0
aΛshock

a , (5.7)

where ma is the particle mass. We emphasise that this does not necessarily reflect the true lumi-
nosity evolution since energy would be radiated through a photosphere in practice (see our caveats
in Sec. 5.4).

5.2.3 Radiative cooling

In our standard adiabatic calculations the heat produced by shocks (and viscosity) does not escape
from the gas i.e. radiative shock cooling is inefficient. We also perform isentropic calculations in
Section 5.3.7, where the shock heating terms are discarded from the entropy evolution in Eq. 5.6
i.e. radiative shock cooling is efficient. We note that in reality the gas behaviour is somewhere
between these two extremes, however without doing careful radiative transfer calculations, it is
not obvious how the heat generated from shocks is actually reprocessed and radiated.

5.3 Results

5.3.1 Disc formation around Schwarzschild black holes

Figure 5.1 shows snapshots of Simulation 1, in which the black hole is non-rotating and the initial
stellar orbit lies in the x-y plane with e = 0.95 and β = 5. This calculation is adiabatic.

As the star passes pericentre, relativistic apsidal precession shifts the orbit counter-clockwise
by approximately 140°. The orbital plane of the now disrupted star remains in the x-y plane. On
its return to the black hole, the stellar material is stretched into a long debris stream, with the
head returning to pericentre at approximately 28.9hrs (first panel in Fig. 5.1). Following this, the
head of the stream intersects the tail due to relativistic apsidal precession (second panel). The
intersection occurs close to pericentre since the degree of apsidal precession is large, which also
means that the tangential velocity of the head is comparable to its component perpendicular to the
tail. This produces a strong shock which is able to reduce a significant fraction of the stream’s
orbital energy, causing it to circularise and form a thick torus over the subsequent tens of hours.
The torus extends to a radius of roughly 500Rg (approximately 5 au, or 1.4 times the initial
apoapsis).

5.3.2 Disc formation around Kerr black holes

Figure 5.2 shows snapshots of the disc formation process in Simulation 4. This calculation is the
same as that shown in Figure 5.1 except the black hole is now rotating with spin a = 0.99 and the
initial stellar orbit has inclination θ = 60°.

The journey to the first pericentre passage is the same as in the equivalent Schwarzschild
calculation. However, after pericentre at 11.1hrs, nodal precession due to black hole spin moves
the disrupted material into a different orbital plane, in addition to relativistic apsidal precession
shifting the apocentre position in the prograde direction. The stellar debris after disruption is
again stretched into a long stream, with the head returning to pericentre at approximately 28.9 hrs.
This time nodal precession causes the stream to miss itself, shown at 33.4 hrs (second panel in
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Figure 5.3: Energy injection rate (Lshock) and accretion luminosity (Lacc) for the adiabatic Schwarzschild
(Sim. 1) and Kerr (Sim. 4) simulations shown in Figs. 5.1 and 5.2, and described in Sections 5.3.1 and
5.3.2. The spike at 11 hrs corresponds to the ‘pancake’ shock generated from the stellar compression
during the first pericentre passage. Accretion only begins at∼ 25–30 hrs, when material reaches pericentre
a second time. Lacc roughly tracesLshock once accretion begins. The bump inLshock for the Schwarzschild
case (left) corresponds to the first stream-stream collision. We show a t−5/3 slope for comparison, although
this fallback rate is only expected for parabolic orbits. Dotted line shows the Eddington limit.



66 Chapter 5. TDEs — I. Eccentric orbits

0 25 50 75 100 125 150 175 200 225
Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Lu
m

in
os

ity
 (e

rg
s/

s)

×1048

Lshock, θ= 0°
Lshock, θ= 30°
Lshock, θ= 60°
Lshock, θ= 89°

10 100

1040

1042

1044

1046

1048

t−5/3

0 25 50 75 100 125 150 175 200 225
Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Lu
m

in
os

ity
 (e

rg
s/

s)

×1048

Lacc, θ= 0°
Lacc, θ= 30°
Lacc, θ= 60°
Lacc, θ= 89°

10 100

1040

1042

1044

1046

1048

t−5/3

Figure 5.4: Lacc and Lshock for simulations 2, 3, 4 and 5 which differ only in their initial inclination angle.
Top: luminosity from viscous heating and shocks. Bottom: luminosity from accretion. The same plots
with log-log axes are shown as insets in each panel, along with a t−5/3 slope for comparison.
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Figure 5.5: Cross sections of the final tori formed in simulations 2, 3, 4 and 5, taken through the planes
defined by their total angular momentum vectors and the z-axis. Panels are 10 au× 10 au. The torus formed
in each case has approximately the same inclination as the corresponding initial stellar orbit, i.e. 0°, 30°,
60° and 89° from left to right. We note that the angular momentum vector for the inclined calculations
is ‘twisted’ about the z-axis due to Lense-Thirring precession by approximately 37°, 42° and 43° for
inclinations 30°, 60° and 89° respectively. The black hole spin vector is shown by the arrow, and white
circles indicates the tidal radius Rt.

Fig. 5.2). However the head and tail of the stream still have a grazing encounter, since the stream
has thickened with each pericentre compression, causing some material to begin circularising.
During the third pericentre passage, the stream has thickened substantially and a low density
cloud of material is already built up around the black hole. This causes all returning material to
mildly shock and begin circularising. By 111 hrs most of the material has formed into a thick torus
similar to the one formed around the Schwarzschild black hole, but inclined by approximately 60°
to the x-y plane. Between 100 and 220 hrs, the torus precesses about the black hole spin axis by
roughly 4°, corresponding to a precession period of 450 days.

5.3.3 Energy injection rate

Figure 5.3 compares Lacc and Lshock in Simulations 1 and 4. The sharp spike of ∼ 1046 erg
s−1 at approximately 11 hours corresponds to the heating generated by the pancake shock as the
star passes through an effective nozzle at pericentre, which compresses the star in the direction
perpendicular to its motion. The non-rotating case shows a steeper rise than the rotating case,
with a distinct peak at 33 hours in the shock luminosity, corresponding to the stream-self inter-
section. This peak is absent in the rotating case because the stream does not self-intersect at that
time. After 50 hours the energy injection rate reaches a maximum in the non-rotating case, then
steadily declines as a power law. The maximum heating in the rotating simulation is reached
slightly later at approximately 80 hours, before steadily declining. This turnover, in both cases,
corresponds roughly to the disc/torus formation phase. We show the canonical t−5/3 slope for
comparison during the decay, although this trend is expected only for stars on initially parabolic
orbits. Once accretion begins, Lacc roughly traces Lshock throughout the rest of the simulation.
This is not altogether surprising since Lshock includes both viscous heating and shock heating due
to stream-stream collisions, which are the two processes that can drive accretion. Furthermore,
the contribution to Lshock is dominated by particles at the accretion radius. We discuss this further
in Section 5.4.
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Figure 5.6: Surface density as a function of radius for Simulation 2. Inset shows the same plot with log-log
axes. We measure the surface density profile to be roughly ∝ r−2.9 in the outer part of the disc.

5.3.4 Misalignment angle

Figure 5.4 compares Lacc and Lshock between simulations 2, 3, 4 and 5, which vary only in
their inclinations, 0°, 30°, 60° and 89°, respectively, around a black hole with spin a = 0.99.
For moderate inclinations (30° and 60°) the tidal stream avoids the first self-intersection episode
that occurs at ∼ 33 hrs in the other two simulations, shown by the spikes in Lshock at that time.
However at the largest inclination of 89°, we find that nodal precession does not prevent this first
stream-stream collision.

We also find that the 0° and 89° simulations are brighter by approximately an order of magni-
tude during the early stages of the calculation, and form discs at∼ 75 hrs, roughly 1 orbital period
earlier than the 30° and 60° calculations.

For increasing inclinations, the stellar orbits penetrate fractionally deeper leading to a larger
degree of both apsidal and nodal precession. The deeper encounters also produce stronger shocks
during the pericentre compression, which output more heat and thus cause thicker debris streams.
For the 89° inclined orbit, the combination of these effects leads to a stream self-intersection
episode that is brighter than even the 0° case, which suggests that stream-stream collision be-
haviour is not a simple function of inclination.

5.3.5 Remnant disc properties

Figure 5.5 shows cross-sections of the discs/tori formed at the end of calculations 2, 3, 4 and 5.
We find that each disc has approximately the same inclination as its corresponding initial stellar
orbit, and that more inclined orbits have their angular momentum vectors ‘twisted’ about the
z-axis by a larger degree due to Lense-Thirring precession.

The torus has a similar structure in each case. Since the gas cannot cool in these simulations
the tori remain extended beyond the tidal radius, extending to a radius of roughly 500Rg, or
approximately 5 au, with an aspect ratio H/R ∼ 1. Figure 5.6 shows the surface density profile
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Figure 5.7: Snapshots of Simulations 4 and 6 after 2.5 orbital periods each, with penetration factors β = 5

and β = 1 (left and right panels respectively), projected in the initial orbital plane. The stream in the β = 5

simulation intersects close to the black hole, while for β = 1 it intersects at apoapsis where the stream has
a low density and low velocity. White circle indicates the tidal radius Rt.

of Sim. 2 at t = 222 hrs, computed in the manner of Lodato and Price (2010). That is, we bin
particles by cylindrical radius into annuli, take the mass of each annulus and then divide by their
cross-sectional area. The surface density has a peak of ≈ 9 × 104 g cm−2 at r ≈ 1.5 au, and
decays as a power law roughly ∝ r−2.9 in the outer part of the disc.

5.3.6 Penetration factor

Figure 5.7 compares snapshots of simulations 4 and 6 with e = 0.95, a = 0.99 and θ = 60°,
after 2.5 orbits each, where only the penetration factor β is varied between the two calculations.
Figure 5.8 shows Lacc and Lshock as a function of the number of orbital periods. The orbital
period for β = 1 is 53/2 ≈ 11 times that of β = 5, thus disc formation happens much more
rapidly for higher β. However, they both take approximately the same number of orbits (∼ 4 – 5)
to circularise.

In the deep encounter, the tidal stream undergoes a higher degree of both apsidal and nodal
precession. This causes the stream to have an eventual self-intersection at a few periapsis radii
from the black hole, and to form a torus in a plane that is different to the initial orbital plane
(but with the same inclination). The stellar debris for the β = 1 case, however, remains largely
in the same orbital plane in which it started. Furthermore, it self-intersects almost at apoapsis,
where the relative velocities between the head and tail are small and the debris is tenuous. As a
consequence, the heating rate is 2 orders of magnitude fainter over the course of the simulations,
and the final torus is∼ 5 times greater in size than the β = 5 case, extending to a radius of roughly
2500Rg (approximately 25 au, or 1.4 times the initial apoapsis).

The radius of self-intersection in both cases is roughly consistent with the analytical prediction
of Bonnerot et al. (2017b), but is difficult to measure accurately since the stream spreads after its
periapsis passage.
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Figure 5.8: Lacc and Lshock for simulations 4 and 6 which differ only in their penetration factor β. Al-
though the orbital period torb for β = 1 is approximately 11 times that of β = 5, their behaviour is similar
as a function of the number of orbits. The energy injection rate is approximately 2 orders of magnitude
greater for β = 5 throughout the simulation. Dotted line shows the Eddington limit.

5.3.7 Radiative efficiency

To investigate the influence of cooling on the disc formation process we repeated the simulations
from Section 5.3.1 and 5.3.2 but with an isentropic approximation as described in Section 5.2.3.
This corresponds to efficient radiative cooling, while still allowing for (reversible) heating due to
compressive PdV work.

Figure 5.9 shows the evolution of Simulation 7 in which the black hole is non-rotating. Fig-
ure 5.10 shows the equivalent calculation around a Kerr black hole with spin a = 0.99 and initial
orbital inclination θ = 60° (Simulation 8). Since the heat generated from viscosity and shocks is
no longer contained within the gas, the tidal streams in the isentropic calculations remain thinner
than in the adiabatic ones. They also form a small, thin ring at the end of the calculation close to
the periapsis radius, in contrast to the large, thick tori produced by the adiabatic calculations. The
peak energy injection and accretion luminosities produced by the isentropic calculations are also
roughly 2 orders of magnitude brighter than their adiabatic counterparts, as shown in Figure 5.11.

In the Schwarzschild case there is one self-intersection, which very quickly circularises nearly
all of the material into a thin ring in the x-y plane by ∼ 43 hrs at a radius approximately twice
the pericentre distance. This is consistent with the circularisation radius rc = (1 + e)rp predicted
from the conservation of angular momentum for Keplerian orbits (Bonnerot et al., 2016). At this
point, the black hole enters a state of roughly constant accretion, shown by the plateau in the left
panel of Figure 5.11.

In the Kerr simulation, a direct self-intersection is avoided but a grazing encounter between
the head and tail still causes some material to lose orbital energy and build up close to the black
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Figure 5.9: Snapshots of the debris fallback projected in the x-y plane for the e = 0.95, β = 5, θ = 0°,
a = 0 isentropic simulation (Sim. 7). The debris stream remains much thinner than in the corresponding
adiabatic calculation (Fig. 5.1) since energy from viscous and shock heating is discarded. A very narrow
ring is formed quickly after self-intersection, at twice the periapsis radius. White circle indicates the tidal
radius Rt.
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Figure 5.10: Snapshots of the debris fallback projected for the e = 0.95, β = 5, θ = 60°, a = 0.99

isentropic simulation (Sim. 8), projected in the initial orbital plane. The stream avoids self-intersection
after one orbit, but over subsequent orbits the stream circularises into a narrow ring at ∼ 1.6Rp inclined
by ∼ 50° to the black hole spin plane. The ring precesses about the black hole spin axis, completing ∼ 4
revolutions between approximately 70 – 110 hrs, with a period of ∼ 10 hours. White circle indicates the
tidal radius Rt.
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hole, similar to the adiabatic calculations. As the rest of the stream returns to pericentre, transient
rings of material are created and destroyed between ∼ 40–70 hrs, approximately 8 times. This
is reflected in Lacc and Lshock (Fig. 5.11 right) which take longer to reach a maximum than the
Schwarzschild simulation and show multiple peaks between 40–70 hrs. Following this, most of
the remaining material collects into a narrow ring inclined by ∼ 50° to the black hole spin plane
with a radius equal to roughly ∼ 1.6 times the pericentre distance. Over the course of the next
40 hours, the ring precesses with a period of approximately 10 hours, completing 4 revolutions
before being completely accreted by the black hole, shown by the final spike in Lacc and Lshock

at ∼ 110 hrs.

5.4 Discussion

We presented eight numerical GRSPH simulations testing the disc formation process from the
tidal disruption of stars by rotating supermassive black holes. Hayasaki et al. (2013) were the
first to demonstrate circularisation of the debris streams and formation of an accretion disc in
numerical simulations. They showed that the main cause of circularisation is relativistic apsidal
precession leading to self-intersection of the debris stream. Bonnerot et al. (2016) confirmed this
using an improved pseudo-Newtonian potential, and further showed that the structure of the resul-
tant disc depends on the cooling efficiency. Both studies performed SPH calculations in pseudo-
Newtonian potentials and were not able to simulate spinning black holes. In our Schwarzschild
metric calculations, using General Relativistic SPH without pseudo-Newtonian approximations,
we confirm this basic picture — namely that relativistic apsidal precession leads to rapid debris
circularisation.

Guillochon and Ramirez-Ruiz (2015) suggested that black hole spin would ruin this picture,
since Lense-Thirring precession causes the debris stream to change plane and thereby avoid self-
intersection (see also Hayasaki et al. 2016). Figure 5.2 shows that the stream indeed misses itself
at the second pericentre passage (at t = 33 hrs), however, this is not fatal to disc formation
because the stream does not miss by much. This is because nodal (spin-induced) precession is
weak compared to apsidal (Schwarzschild) precession, meaning that the stream crossing occurs
before nodal precession has time to move it significantly out of the plane. Hence the stream misses
by only a few degrees. By the next orbit, the stream is already wide enough to successfully
self-intersect and circularise, in contrast to the many dark windings of the stream implied by
Guillochon and Ramirez-Ruiz (2015). The ‘dark year’ proposed by these authors is therefore
bright.

We found that disc formation — at least for bound orbits — appears to be robust with regards
to black hole spin and inclination. Although nodal precession of the debris stream’s orbital plane
can prevent a direct self-intersection, the head and tail typically do not miss by much and still
have a grazing encounter owing to their non-negligible cross-sections. As a consequence, the gas
is shocked and rapidly circularises to form a thick torus as it does when the black hole is not
rotating. However, the peak energy injection rate tends to be slower, and the rise time longer, than
if the stream has a direct self-intersection.

As in Bonnerot et al. (2016), we found that the structure of the remnant disc depends strongly
on the cooling efficiency. With no cooling (i.e. the adiabatic calculations), the debris settles into
a thick and extended torus, while for radiatively efficient cooling (i.e. the isentropic calculations)
a narrow ring is formed at a radius slightly greater than the pericentre distance. In both cases,
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Figure 5.11: Lacc and Lshock for the isentropic Schwarzschild (Sim. 7) and Kerr (Sim. 8) simulations
shown in Figs. 5.9 and 5.10, and described in Section 5.3.7. The peak luminosities are roughly 2 orders of
magnitude greater than the corresponding adiabatic counterparts shown in Fig. 5.3. Dotted line shows the
Eddington limit.
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the remnant disc precesses about the black hole spin axis if it is misaligned. We estimated a
precession period of approximately 10 hours for the ring and approximately 450 days for the
torus, in the cases where θ = 60°, a = 0.99, β = 5 and e = 0.95. The global precession period
predicted by Franchini et al. (2016) for a rigidly precessing torus is between approximately 2 and
4 days around a 106M� black hole with spin a = 0.99. However, the disc properties considered
by these authors differ from those of our remnant discs. Our discs extend to ∼ 5 au when β = 5,
compared to their assumption of Rout = 2Rt corresponding to ≈ 1 au. Since Lense-Thirring
precession frequency scales as r−3, this corresponds to a factor of ∼ 125 difference in precession
timescale, which explains the discrepancy. The precession rate of the ring formed in our isentropic
calculation is consistent with the Lense-Thirring rate at its radius (≈ 15Rg).

The peak luminosity and rise time of Lacc and Lshock depend strongly on the penetration
factor β. This is because the orbital period is much shorter for orbits with high β, and the apsidal
precession frequency is higher. As a consequence the stream self-intersects at a radius close to
pericentre, leading to stronger shocks and faster circularisation. For deep β = 5 encounters, the
typical peak luminosities are on the order of ∼ 1047 erg s−1, taking several tens of hours to reach
this peak after the first pericentre passage. This is roughly 3 orders of magnitude greater than
the Eddington luminosity. In contrast, Lacc and Lshock in the β = 1 calculation are 2 orders
of magnitude lower than with β = 5, and take ∼ 11 times longer to reach their peak. Thus the
relative penetration depth may be inferrable from TDE observations.

Our remnant discs are larger than those shown in Bonnerot et al. (2016) by a factor of ∼2–3
(≈ 5Rt compared to their ≈ 2Rt, see their Fig. 8). This occurs because we consider a larger ec-
centricity of e = 0.95 compared to their calculation which used e = 0.8, implying greater orbital
energy dissipation from the circularisation process. We confirmed that our e = 0.8 calculations
produced similar disc sizes as those shown in Bonnerot et al. (2016). This suggests that even
larger and hotter remnants would be produced in the parabolic case.

The initial pericentre passage is accompanied by a sharp spike in the energy injection rate
(Lshock), corresponding to the shocks produced by the ‘pancaking’ of the star during its periapsis
compression. This has been predicted to be observable as a brief X-ray shock breakout with a
peak luminosity between ∼ 1040–1043 erg s−1 (Kobayashi et al., 2004; Guillochon et al., 2009;
Yalinewich et al., 2019), depending on the amount of energy lost as the shock moves out through
the star. For β = 5, our calculations produce a spike of ∼ 1046 erg s−1, 3–6 orders of magnitude
greater than the predicted X-ray luminosity, however this is only the energy dissipation rate and
not a true luminosity. Most of the thermal energy produced during pericentre compression is
expected to remain trapped inside the star (Kobayashi et al., 2004) and thus would fail to radiate.

Most previous studies estimated the luminosity evolution simply from the predicted mass
return rate (see studies that do not follow fallback in Section 5.1) or based on other assumptions
about the dynamics of the stream’s evolution (e.g. Bonnerot et al., 2017b). We computed the
energy injection rate from first principles, based on either the irreversible energy dissipation rate
or the accretion rate at 5Rg in our simulations. This approach is similar to Shiokawa et al. (2015)
who estimated the heating rate by integrating the divergence of the heat flux in their calculations,
however they were unable to distinguish between heating from reversible adiabatic compression
and true entropy generation.

The evolution of Lshock shows features that may be identified with the energy release caused
by the ‘pancake shock’, stream-stream collisions and viscous accretion (see Figs. 5.3, 5.4, 5.8 and
5.11). We found that the luminosity from shocks and viscous heating Lshock roughly traces the ac-
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cretion luminosity Lacc in all our calculations. This is expected since Lshock does not distinguish
between viscous dissipation and shock heating, which are the only two mechanisms available to
reduce orbital energy and drive accretion. One might expect this to be a sign that material is being
accreted ballistically (e.g. Svirski et al., 2017; Bonnerot et al., 2017b), however this is only true
if the energy release is dominated by shocks at the location of stream self-intersection. In our
calculations the heating rate is dominated by regions close to the accretion radius, suggesting that
material is being accreted viscously.

A major caveat to our approach is that our simulations do not include radiation transport.
We instead perform calculations in which the gas is either completely adiabatic or isentropic.
Although these are two extreme regimes — since adiabatic calculations trap all heat while the
isentropic calculations instantly remove heat produced by shocks and viscous heating — they
provide upper and lower bounds to the true behaviour. Since the energy generation rate is super-
Eddington, most of the energy cannot be transported as radiation and must instead be transported
via mechanical outflows. This is precisely what we find in the adiabatic calculations. Our rem-
nants in this case are likely closer to the truth, in the sense that the bulk of the energy goes into
gas heating and kinematics, and the gas is not able to radiatively cool. Furthermore, any pho-
tons radiated in shocks would take a long time to diffuse out through optically thick material (e.g.
Loeb and Ulmer, 1997; Roth et al., 2016), and be reprocessed into different wavelengths, possibly
carrying information about the outflow geometry (e.g. Nicholl et al., 2019; Leloudas et al., 2019).

The energy injection and accretion rates we calculate are only approximations to the true light
curve, particularly in the adiabatic case where Lshock represents the energy generation rate, and
not the radiated luminosity. For the isentropic calculations however, discarded shock heating does
genuinely reflect energy emitted from the gas. Our Lacc simply tracks the mass flux at r = 5Rg,
which may either produce radiation or simply be advected into the black hole. Computing the true
luminosity evolution is beyond the scope of this paper, since it would require the development of
a General Relativistic radiation hydrodynamics scheme (e.g. Dai et al., 2018).

We also do not include magnetic fields in our calculations, which are thought to be impor-
tant in the dynamics of TDEs (Bonnerot et al., 2017b,a; Svirski et al., 2017). In particular, the
magneto-rotational instability (MRI) is thought to be the mechanism driving disc accretion. In
our calculations disc accretion is driven by numerical viscosity, which is resolution dependent —
in particular, it is higher at lower resolutions. As a consequence, the black hole accretion rate may
be overestimated and thus the lifetime of the disc underestimated (see Appendix B.1).

Since the parameter space is already large for this problem, we focused on only prograde
orbits. We also did not consider stellar spin (Golightly et al., 2019; Sacchi and Lodato, 2019), or
stellar structure (Lodato et al., 2009), both of which have been shown to affect the fallback rate.
The largest caveat of all is that we restricted our simulations to bound orbits.

5.5 Conclusion

We presented general relativistic numerical simulations of the tidal disruption of stars on bound
orbits by SMBHs. Our calculations self-consistently employed relativistic hydrodynamics in the
Kerr metric along with energy injection rates calculated from the irreversible dissipation in the
gas and the mass accretion rate onto the black hole. Our key findings are as follows:

1. Nodal precession due to black hole spin does not prevent disc formation in TDEs, merely
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causing a short delay.

2. Radiatively efficient cooling produces a narrow ring of orbiting material, while no cooling
produces an extended, thick torus. Lense-Thirring precession causes the remnant disc in
both cases to precess about the black hole spin axis.

3. Thick discs/tori can be formed robustly with the same inclination as the initial stellar orbit.
They have an aspect ratio of ∼ 1, surface density profiles roughly ∝ r−3, and extend to of
order the apoapsis radius.

4. TDEs with high penetration factors are significantly more luminous and produce discs faster
than those with a lower penetration factor. We find β = 5 TDEs to have energy injection
rates ∼ 2 orders of magnitude greater than TDEs with β = 1.

Whether or not these results extend to stars disrupted on parabolic orbits remains to be investi-
gated.



Chapter 6

Eddington envelopes: The fate of stars on
parabolic orbits tidally disrupted by super-
massive black holes

Stars falling too close to massive black holes in the centres of galaxies can be torn apart by the
strong tidal forces. Simulating the subsequent feeding of the black hole with disrupted material
has proved challenging because of the range of timescales involved. Here we report a set of
simulations that capture the relativistic disruption of the star, followed by one year of evolution
of the returning debris stream. These reveal the formation of an expanding asymmetric bubble
of material extending to hundreds of au — an Eddington envelope with an optically thick inner
region. Such envelopes have been hypothesised to explain optical/UV emission in tidal disruption
events, but never produced self-consistently. Our model broadly matches the observed light curves
with low temperatures, faint luminosities, and line widths of 10,000–20,000 km/s.

6.1 Introduction

In the classical picture of tidal disruption events (TDEs), the debris from the tidal disruption of
a star on a parabolic orbit by a supermassive black hole (SMBH) rapidly circularises to form an
accretion disc via relativistic apsidal precession (Rees, 1988). The predicted mass return rate of
debris is ∝ t−5/3 (Phinney, 1989) and the light curve is assumed to be powered by accretion and
to follow the same decay.

This picture alone does not predict several properties of observed TDEs, mainly related to
their puzzling optical emission (van Velzen et al., 2011; van Velzen, 2018). These properties
include: i) low peak bolometric luminosities of ∼ 1043–1044.5 ergs s−1 (Hung et al., 2017; van
Velzen et al., 2020), ∼ 1 per cent expected from radiatively efficient accretion (Piran et al., 2015;
Stone and Metzger, 2016; Svirski et al., 2017); ii) low temperatures, more consistent with the
solar photosphere than with that of an accretion disc at a few tens of gravitational radii (Rg ≡
GMBH/c

2) (Gezari et al., 2012; Miller, 2015), and consequently large emission radii, ∼ 10–100

au for a 106M� black hole (Guillochon et al., 2014; Metzger and Stone, 2016); and iii) spectral
line widths implying gas velocities of∼ 104 km s−1, much lower than expected from an accretion
disc (Arcavi et al., 2014; Leloudas et al., 2019).

77
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As a consequence, numerous authors have proposed alternative mechanisms for powering the
TDE lightcurve via: i) distant shocks from tidal stream collisions during disc formation (Lodato,
2012; Piran et al., 2015; Svirski et al., 2017); ii) the reprocessing of photons through a large
scale optically thick ‘Eddington envelope’ or ‘radiation-dominated nebula’, which can be either
quasistatic (Loeb and Ulmer, 1997; Guillochon et al., 2014; Coughlin and Begelman, 2014; Roth
et al., 2016) or outflowing (Strubbe and Quataert, 2009; Metzger and Stone, 2016; Roth and
Kasen, 2018; Bonnerot and Lu, 2019); or iii) thermal winds, which mechanically transport radi-
ation trapped by electron scattering close to the black hole to larger radii (Strubbe and Quataert,
2009; Lodato and Rossi, 2011). But without first principles calculations, it is difficult to test any
of these hypotheses.

The wider problem is that no first principles calculations exist. The challenge is to evolve a
main-sequence star on a parabolic orbit around a SMBH from disruption to follow the subsequent
accretion of material (Metzger and Stone, 2016). The dynamic range involved when a 1M� star
on a parabolic orbit is tidally disrupted by a 106M� SMBH is greater than four orders of mag-
nitude: the tidal disruption radius is 50 times the gravitational radius, where general relativistic
effects are important, while the apoapsis of even the most bound material is another factor of
200 further away. This challenge led previous studies to consider a variety of simplifications
(Stone et al., 2019): i) reducing the mass ratio e.g. by considering intermediate mass black holes
(Ramirez-Ruiz and Rosswog, 2009; Guillochon et al., 2014) and/or considering the disruption of
white dwarfs (Rosswog et al., 2008; Shiokawa et al., 2015; Frolov et al., 1994); ii) using a New-
tonian gravitational potential (Evans and Kochanek, 1989; Rosswog et al., 2008; Lodato et al.,
2009; Guillochon et al., 2009; Golightly et al., 2019) or post-Newtonian approximations (Ayal
et al., 2000; Hayasaki et al., 2013, 2016); iii) simulating only the first passage of the star (Evans
and Kochanek, 1989; Laguna et al., 1993; Khokhlov et al., 1993; Frolov et al., 1994; Diener
et al., 1997; Kobayashi et al., 2004; Guillochon et al., 2009; Guillochon and Ramirez-Ruiz, 2013;
Tejeda et al., 2017; Gafton and Rosswog, 2019; Goicovic et al., 2019); and iv) assuming stars on
bound, highly eccentric orbits instead of parabolic orbits (Sadowski et al., 2016; Hayasaki et al.,
2016; Bonnerot et al., 2016; Liptai et al., 2019).

These studies have, nevertheless, provided useful insights into the details of the tidal disrup-
tion process. In particular, it has been shown that the energy spread following the initial disruption
is roughly consistent with the analytic prediction leading to a∝ t−5/3 mass fallback rate, although
the details can depend on many factors such as stellar spin, stellar composition, penetration factor
and black hole spin (e.g. Lodato et al., 2009; Kesden, 2012; Guillochon and Ramirez-Ruiz, 2013;
Golightly et al., 2019; Sacchi and Lodato, 2019). The importance of general relativistic effects in
circularising debris has also been demonstrated. The self-intersection of the debris stream, which
efficiently dissipates large amounts of orbital energy, is made possible by relativistic apsidal pre-
cession (e.g. Hayasaki et al., 2016; Bonnerot et al., 2016; Liptai et al., 2019). But this has only
been shown for stars on bound orbits, with correspondingly small apoapsis distances and often
deep penetration factors.

In this paper, we present a set of simulations that self-consistently evolve a main-sequence
star on a parabolic orbit around an SMBH from disruption to circularization and then accretion.
We follow the debris evolution for one year post-disruption, enabling us to compute synthetic
light curves from first principles which, to our astonishment, appear to match the key features of
observations.
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6.2 Method

We model the disruption of stars with mass M∗ = 1M� and radius R∗ = 1R� by a supermas-
sive black hole with mass MBH = 106M� using the general relativistic implementation of the
smoothed particle hydrodynamics code PHANTOM (Price et al., 2018) as described in Liptai and
Price (2019). We use the Kerr metric in Boyer-Lindquist coordinates, with the black hole spin
vector along the z-axis, and assume an adiabatic equation of state for the gas. We delete from the
simulation particles that fall within a radius of Racc = 5Rg (within the innermost stable circular
orbit of a non-spinning black hole) to avoid small timesteps close to the horizon.

We place the star on a parabolic orbit initially at a distance of r0 = 10Rt with velocity
v0 =

√
2GMBH/r0, where Rt = R∗(MBH/M∗)

1/3 is the tidal radius. The parabolic trajectory
is oriented such that the star travels counter-clockwise in the x-y plane, and that the Newtonian
pericentre Rp is located on the negative y axis. For inclined trajectories, we rotate the initial po-
sition and velocity vectors by an angle θ about the y-axis. As in our previous paper (Liptai et al.,
2019) we model the star as a polytropic sphere with adiabatic index γ = 5/3 using approximately
512K particles, we do not relax the star prior to beginning the calculation, and we include New-
tonian self-gravity in our simulations to hold the star together during the pre-disruption phase.
We define the penetration factor as β ≡ Rt/Rp. We note that the point of closest approach is
typically smaller than the Newtonian pericentre Rp due to relativistic effects, and thus the ‘true’
penetration factor is larger (by up to ∼ 1 in our β = 5 calculation, so that the true β is closer to
6).

6.3 Results

Figure 6.1 shows snapshots of the long-term debris evolution in our simulation where the black
hole is rotating with spin a = 0.99 and the initial orbit of the star is prograde and inclined by
60° to the black hole equatorial plane. The penetration factor is β = 1, and the equation of
state is adiabatic. The star takes approximately 7 hours to reach pericentre at which point it is
tidally disrupted and forms a long, thin debris stream. Approximately half of the stream is bound
while the other half is unbound (visible as the thin, dense upward stream in the figure). The
head of the stream (i.e., the most bound material) takes ∼ 26 days to return to pericentre. As the
stream passes through pericentre for a second time, it drives the formation of a bubble of material,
which spreads almost isotropically, eventually encasing the black hole. A fraction of the material
joins the returning debris and returns to pericentre, however most of it goes into a low density
mechanical outflow. Following the fallback for one year post disruption, we find that the bubble
continues to expand, without circularising into a disc. This debris structure bears remarkable
similarity to the ‘Eddington envelope’ first proposed by Loeb and Ulmer (1997), except that our
envelope is expanding, while their model assumed an envelope in hydrostatic equilibrium.

Figure 6.2 shows the density (top), radial velocity (middle) and temperature distributions (bot-
tom) of particles a year after disruption, the latter assuming a radiation pressure dominated flow.
The density of the Eddington envelope is ∼ 10−16 g cm−3, approximately 6 orders of magnitude
lower than the density of the stream, which is ∼ 10−10 g cm−3. The typical outflow velocity is
∼ 104 km s−1.

Figure 6.3 top shows the energy dissipation rate in our simulation, Lshock (cf. Liptai et al.,
2019). This includes irreversible heating due to viscosity and shocks, and is dominated by re-
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Figure 6.1: One year in the life of a tidal disruption event. We show shapshots of column density in the
long-term debris evolution of a 1M� star on a parabolic orbit with β = 1, disrupted by a 106M� Kerr
black hole with spin a = 0.99. The initial orbital plane is misaligned by 60° to the black hole spin plane.
Main panel shows the debris after 365 days projected in the x-y plane. Inset panels on the left show the
evolution projected in the x-y plane, while inset panels on the bottom show the evolution projected in the
y-z plane. The evolution is similar for tidal disruptions by a non-spinning (Schwarzschild) black hole.
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Figure 6.2: Distributions in density (top), radial velocity (middle) and temperature (bottom) at one year
post disruption. Colours represent the density of points on the plot, with orange being a high number of
points and blue being a low number. All three distributions show features that may be identified as the high
density stream and the low density, cool, expanding Eddington envelope. Typical outflow velocities are of
order 104 km s−1, similar to those measured in observed TDE spectra and to the ‘mass loaded outflows’
predicted by Metzger and Stone (2016).
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Figure 6.3: Top: Energy dissipation rate and accretion luminosity evolution, compared to the Eddington
luminosity and a t−5/3 slope. Middle: Photospheric radius evolution measured along different lines of
sight and the corresponding isotropic luminosity, assuming a photosphere temperature of 104.4 K. Markers
represent the radius evolution of black body fits to various observed TDEs, as in Figure 11 of Holoien et al.
(2019). Bottom: Estimated photon diffusion timescale along different lines of sight (see legend).
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Figure 6.4: As in Figure 6.1, but for a star plunging closer to the black hole (β = 5). We show column
density evolution for a 1M� star on a parabolic orbit with β = 5, disrupted by a 106M� Kerr black hole
with spin a = 0.99. The initial orbital plane is misaligned by 60° to the black hole spin plane. Main panel
shows the debris after 365 days projected in the x-y plane. Inset panels on the right show the evolution
projected in the x-y plane, while inset panels on the bottom show the evolution projected in the y-z plane.
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Figure 6.5: Photosphere radius and temperature evolution for a star plunging closer to the black hole
with β = 5, measured along different lines of sight (see legend). The corresponding isotropic lumi-
nosity is shown in the secondary y-axis, assuming a photosphere temperature of 104.4 K. Markers as in
Figure 6.3 (middle) represent the radius and temperature evolution of black body fits to various observed
TDEs (Holoien et al., 2019). Grey dotted line in top panel represents the Eddington luminosity.
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gions close the accretion radius Racc. The energy dissipation rate rises rapidly from ∼ 26 days,
when accretion begins, until ∼ 50 days after disruption when it reaches a peak of ∼ 1044 erg s−1

(roughly the Eddington limit). This is followed by a power law decay. We compare this to an
effective luminosity derived from our measured mass accretion rate Ṁ , given by Lacc = εṀc2.
Here, ε = 0.2 is the efficiency based on our inner accretion radius. The accretion luminosity
follows the same trend as the energy dissipation rate, but is roughly 0.5–1 orders of magnitude
greater throughout the simulation. This suggests that there is some material accreted almost radi-
ally, with little to no orbital energy dissipated before accretion (cf. Svirski et al., 2017).

Although most energy is dissipated in regions close to the black hole, where the reservoir of
gravitational binding energy is largest, this material is optically thick. The energy is transported
outward by mechanical outflows before some of it is radiated through a photosphere. In that
sense, our model is closest to the ‘super-Eddington outflows’ of Strubbe and Quataert (2009) and
Lodato and Rossi (2011).

Figure 6.3 middle shows the photospheric radius in our simulations computed along multiple
lines of sight. We measured the photospheric radius Rphoto by integrating along radial lines to
the black hole until we reached an optical depth of unity. That is, we computed

τ =

∫ ∞
Rphoto

κ ρ(r) dr, (6.1)

integrating until τ = 1, using κ = 0.4 g cm−2 as the electron scattering opacity in ionised hy-
drogen and neglecting the temperature dependence of opacity. We computed Equation 6.1 by
integrating 1920 discrete pixel values along each coordinate axis from ±1390 au. We omitted
the integration along the positive y axis since this particular line of sight crosses the high density
stream and thus does not accurately represent the photospheric radius of the Eddington envelope.
The photosphere radius varies between ∼ 20–100 au depending on the line of sight. It reaches
a peak after roughly 150 days. We compare the evolution of our measured Rphoto to the ra-
dius evolution of several observed TDEs inferred from black body fits (taken from figure 11 of
Holoien et al. 2019 and shifted by 150 days to match the approximate peak in our calculations).
The radii from PS18kh and ASASSN-14ae agree with our measured radii, while ASASSN-14li,
ASASSN-15oi and iPTF16fnl are smaller by a factor of a few. We also show the approximate
isotropic-equivalent luminosity along the same lines of sight on the secondary y-axis, computed
by assuming black-body emission from the photosphere and neglecting photon diffusion from
sub-photosphere layers. We assume a constant temperature of T = 104.4 K, which is the typical
value in the observed TDEs (see figure 10 of Holoien et al. 2019). This is consistent with the
prediction from our simulations, obtained by setting the energy density of the radiation, which
should dominate the energy and pressure balance, equal to the simulated energy density of the
nominally adiabatic gas which does not cool in our simulations. The typical luminosity is around
1043– 1044 erg s−1 (109.4– 1010.4 L�), however we caution that the exact value is sensitive to the
chosen temperature (since L ∝ T 4). Nonetheless, our approximate luminosities are consistent
with the observed values (see figure 9 of Holoien et al. 2019), as well as with the analytically
computed light curves of Lodato and Rossi (2011) (see left panel of their Figure 7).

Figure 6.3 bottom shows the approximate time taken for photons to diffuse from near the
black hole out to the photosphere radius, assuming the material remains static. We computed this
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using (e.g. Mitalas and Sills, 1992)

τdiffuse ≈
6π

c

∫ Rphoto

0
κ r ρ dr, (6.2)

using 1920 discrete pixels from 0 to±200 au along each coordinate axis (again neglecting the +y

axis). The typical photon diffusion time varies between ∼ 10–200 days, peaking approximately
80 days after disruption and decaying roughly as a power law.

Figure 6.4 shows snapshots of the debris fallback for a calculation with an increased penetra-
tion factor of β = 5. Since the star approaches much closer to the black hole, the effects of apsidal
and Lense-Thirring precession throw the star/debris stream into an orbital plane that is different
to the initial one. This changes the debris geometry projected in each coordinate plane, however
the overall picture remains unchanged. That is, the returning debris stream feeds the expansion of
a low density Eddington envelope as in the β = 1 case.

Figure 6.5 shows the evolution of Rphoto in the β = 5 case measured along multiple lines
of sight. We again compare our results to the radius evolution of observed TDEs from Holoien
et al. (2019), shifted by 100 days. The radii from observations match remarkably well with our
measured radii. The photosphere evolves faster than in the β = 1 simulation, with the radius (and
luminosity) peaking ∼ 75 days after disruption, i.e., approximately a factor of two earlier. The
typical radius and luminosity are also lower, which may help explain under-luminous TDEs such
as iPTF16fnl.

A notable feature in both the β = 1 and β = 5 cases are the almost flat lightcurves and
photosphere temperatures predicted at late times along most lines of sight. This is also seen in the
observations (e.g. Hung et al., 2017; Holoien et al., 2019). In our simulations this corresponds to
the stalling of the photospheric radii in a steadily expanding gas cloud that has roughly reached
a steady-state structure in the inner regions; however, as discussed below, our models without
cooling do not accurately describe light curves at late times.

6.4 Discussion

Our main new insight from the parabolic case is that we have been able to self-consistently form
the hypothesised ‘Eddington envelope’ for the first time, more or less as predicted by Loeb and
Ulmer (1997). With the disrupted star moving on an orbit with a mean energy of zero and low
angular momentum, we found that the dissipation of energy and angular momentum through rela-
tivistic precession and ensuing stream-stream collisions was not efficient in circularising material
at small separations necessary to allow accretion. Instead, we find numerically (and explain ana-
lytically in section C.3) that the gradual density contrast and slow mass return rates at the leading
edge of the returning stream enable efficient redistribution of energy.

Once accretion commences in the very optically thick environment with inefficient cooling
(we assume adiabatic gas), the gravitational energy of accreting material launches mechanical
outflows, yielding a large, asymmetric, optically thick Eddington envelope.

Whether or not a disc is formed is largely irrelevant to this picture (re-examining our calcu-
lations of initially eccentric encounters (Liptai et al., 2019), we find a similar envelope, but with
faster outflows ∼ 5 × 104 km/s instead of our ∼ 2 × 104 km/s). Neither disc formation nor disc
accretion plays a role in the formation of this envelope (Metzger and Stone, 2016). The structure
is broadly similar to other rapidly expanding, optically thick, quasi-spherical outflows powered by
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a central energy source, such as supernovae and kilonovae. In this case, the expanding envelope
is powered by gravitational energy, dissipated in the radiatively inefficient accretion flow onto the
black hole (our black hole mass accretion rate, shown in the top panel of Figure 6.3, is 1–1.5
orders of magnitude lower than the predicted mass fallback rate). This broad conclusion on the
formation of an Eddington envelope is unchanged by whether or not the black hole is spinning,
or by whether the star approaches closer to the black hole (see Figure 6.4). We confirmed the
robustness of this conclusion to the resolution of the simulation (see section C.1).

That our Eddington envelope, or ‘black hole sun’, is optically thick is demonstrated by our
estimated photon diffusion timescales of∼ 10–100 days shown in the bottom panel of Figure 6.3.
This means that the debris produced by the disruption cannot cool efficiently, leading to the for-
mation of a photosphere. We computed the radius of this photosphere along different lines of sight
to a distant observer, finding a photosphere of radius ∼ 10–100 au (∼ 103–104Rg) that expands
and contracts with time. Comparing these radii to photospheric radii inferred from observed tidal
disruption events shows a remarkable agreement, particularly in the simulation with higher pen-
etration factor. This is surprising, since in no sense have we attempted to tune our simulation
parameters to match any particular observation.

We employed an adiabatic approximation, meaning that none of the energy produced is ac-
tually radiated in our simulations. This is likely a good approximation at early times (near the
peak of the light curve) since the photon diffusion timescale is long, although it does not account
for the change to the radiation-pressure dominated regime after shock heating, which implies that
the adiabatic index should change to 4/3. On the other hand, the adiabatic assumption likely
breaks down by around 1 year after disruption. At late times, our estimated luminosity becomes
comparable to the energy input rate from shock heating (top vs. middle panels of Figure 6.3),
while the diffusion timescale drops to a small fraction of a year, allowing photons to escape and
the gas to cool. Therefore, at these late times, with relatively efficient diffusion, the observable
luminosity should transition to tracking the shock heating rate, which in turn roughly tracks the
mass return rate with ∝ t−5/3 scaling (top panel of Figure 6.3). Efficient cooling may also allow
disc formation (see section C.2); the question of whether or not a disc can form in the adiabatic,
parabolic case remains open.

Despite this limitation, our photospheric radius estimates yield a luminosity evolution com-
parable to optical/UV light curves from several recently observed TDEs (see Figures 6.3 and 6.5).
We do not expect that the dynamics of our simulations would be significantly affected by allow-
ing the photosphere to radiate at early times, mainly because the energy release via radiation is
small — most of the energy in our Eddington envelope is released via mechanical outflows, with
typical outflow velocities of ∼ 1–2×104 km s−1 (see bottom panel of Figure 6.2). Such veloci-
ties match those observed in spectral lines (e.g. Leloudas et al., 2019). In any case, the cooling
and subsequent retreat of the photosphere should stall or plateau at the hydrogen recombination
temperature of ∼ 6000 K.

We find that the optical light curve is sensitive to the observing angle, as suggested by Dai
et al. (2018), but due to different photospheric radii along different lines of sight (see Figures
6.3 and 6.5) rather than the presence of a disc. The mildly supersonic outflows indicate that
temperatures are also not in equilibrium across the photosphere.

The photospheric radii plateau at ∼ 20 to ∼ 100 au, depending on the line of sight and the
amount of material participating in the outflow (Figures 6.3 and 6.5). Applying a single-zone
model with uniform density ρ = 4π

3
M
R3 to a homologously expanding envelope, this stalling is
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estimated to occur when the photospheric radius is 2
3

√
κM
4π , where the mass M in the envelope

depends on the penetration factor β. This estimate yields a photospheric radius plateau of ∼ 100

au for our choice of κ and M = 0.1M�. While our predicted radius evolution might change if
we allowed radiation to escape (especially at these late times), a significant late-time flattening
has been observed in optical/UV for black holes of this mass (van Velzen et al., 2019).

If optical light curves are indeed produced by an expanding and contracting photosphere, we
predict a relatively tight anti-correlation between temperature and radius, since smaller photo-
spheric radii correspond to seeing deeper into the envelope where temperatures are higher. Such
a correlation is indeed observed (van Velzen, private communication), and was predicted analyti-
cally by Lodato and Rossi (2011).

Finally, we do not predict significant X-ray emission. This agrees with the generally low ratio
of X-ray to optical luminosities seen in the majority of TDEs (e.g. Auchettl et al., 2017), but is
in conflict with observations of ASASSN-14li which show similar X-ray and optical luminosities
(Holoien et al., 2016), though with X-rays lagging by 32 days (Pasham et al., 2017), which is
difficult to explain via reprocessing. We expect that disc formation may become possible at late
times as the material cools and the photosphere retreats to reveal regions close to the black hole.
This would produce a rising X-ray luminosity similar to that observed by Gezari et al. (2017) and
the class of ‘veiled’ TDEs (Auchettl et al., 2017). But without a better radiation treatment we are
not able to speculate further.

6.5 Conclusions

We have performed a first principles calculation of a tidal disruption event with realistic stellar
and orbital parameters, following the simulations for one year post disruption. Our main finding is
the production of an optically thick ‘Eddington envelope’ hypothesised by a number of previous
authors (e.g. Loeb and Ulmer, 1997; Metzger and Stone, 2016). Our calculations predict

1. low gas velocities, up to ∼ 2× 104 km s−1

2. large photosphere radii of ∼ 10–100 au

3. inefficient accretion (∼ 10−2M�/yr) mediated by the mechanical outflow of material

4. energy dissipation rates of ∼ 1043–1044 erg/s

5. peak luminosities of ∼ 1043–1044 erg/s

We thus confirm Eddington envelopes as the likely solution to the puzzle of TDE optical/UV
emission.



Chapter 7

Conclusions

7.1 Summary

The work presented in this thesis is composed of two main parts: the development of a general
relativistic smoothed particle hydrodynamics code, and the investigation of the tidal disruption of
stars by supermassive black holes using this new code.

In Chapter 3 we developed our method for GRSPH and presented our results of rigorous, stan-
dardised tests in both 1D and 3D. Our method is general in the sense that it can be used with any
metric, but our focus was on performing tests in special relativity using the Minkowski metric,
and tests in general relativity around black holes using the Schwarzschild and Kerr metrics. We
demonstrated that our method is precise and accurate at capturing ultra-relativistic shocks, up to
Lorentz factors of at least Γ = 44.5 and with gas velocities transverse to the shock. This was
made possible by several features of our method. Firstly, we evolved an entropy variable instead
of the specific total energy. This made our time integration robust, preventing negative pressures
from developing under extreme circumstances (such as those in ultra relativistic shocks). Sec-
ondly, we implemented new shock capturing terms that provide a positive definite contribution to
the entropy in special relativity. We also showed how to split the viscous and thermal conduc-
tion components of the shock dissipation terms, which allowed us to treat contact discontinuities
accurately. Thirdly, we carefully constructed the signal speeds involved in the dissipative terms
to be Lorentz invariant along the line-of-sight between particles, and to not exceed the speed
of light. Both the shock capturing terms and signal speeds were also designed to reduce to the
non-relativistic terms in the Newtonian limit (as implemented in PHANTOM).

We also demonstrated the ability of our method to correctly capture orbital dynamics around
both rotating and non-rotating black holes. We accurately reproduced epicyclic and vertical os-
cillation frequencies arising from relativistic precession effects. This was made possible by our
development of a new, hybrid time-integration algorithm based on generalisations of the Leapfrog
algorithm and RESPA scheme. Our scheme is symplectic and reversible for orbital dynamics,
whilst also being efficient for relativistic SPH. That is, we conserve angular momentum to ma-
chine precession in the Schwarzschild metric, and have no long term drift in the energy error. Our
algorithm’s efficiency lies in the substepping of external forces and its reuse of the SPH force
between subsequent steps.

Finally, we implemented our general relativistic method within the framework of the non-
relativistic 3D SPH code PHANTOM. We showed that our code was able to accurately perform

89
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hydrodynamics in curved spacetimes by running calculations of spherically symmetric Bondi
accretion onto a black hole and comparing our results to the exact solution.

In Chapter 5 we used GR-PHANTOM to investigate the effect of black hole spin on disc for-
mation from the tidal disruption of stars on eccentric orbits by rotating supermassive black holes.
We found that while Lense-Thirring precession can inhibit the self-intersection of tidal debris
streams, it only delays disc formation by a few orbital periods, at least for the parameters we
investigated. This broad statement was unchanged by black hole spin, inclination and penetration
factor. The structure of the remnant disc depends on the efficiency of radiative cooling. We sim-
ulated inefficient radiative cooling by employing an adiabatic equation of state, in which case the
remnant disc takes the form of a fat torus with an aspect ratio of∼ 1. By contrast, using radiatively
efficient cooling produced a narrow ring at roughly twice the pericentre distance. We modelled
this regime using an isentropic formulation, in which we discarded all irreversible heating due to
viscosity and shocks. In both cases, the remnant disc is formed at roughly the same inclination
as the initial stellar orbit, and Lense-Thirring precession causes the remnant disc to precess about
black hole spin axis.

We self-consistently computed the energy dissipation rate in our calculations, as well as the
accretion rate, which we converted into an effective luminosity (not to be confused with observed
luminosity), and which roughly tracked the dissipation rate. The general shape of these approx-
imate light curves involved a rapid rise to ∼ 1047 erg s−1 for deep encounters, or ∼ 1045 erg
s−1 for orbits with β = 1, followed by a power law decay. In both cases the luminosity was
super-Eddington.

In Chapter 6 we investigated whether the results from TDEs involving eccentric orbits ex-
tended to TDEs involving parabolic orbits — the more realistic orbital scenario. We simulated
the disruption of the star and followed the fallback of debris for one year post disruption. This
revealed the formation of a large ‘Eddington envelope’, with an optically thick inner region, en-
casing the central black hole. Such an envelope was proposed by previous authors to explain
puzzling optical and UV emission from TDEs, the idea being that high energy photons gener-
ated in the vicinity of the black hole during accretion would be reprocessed by the dense gas and
eventually diffuse out through a photosphere at lower energies. We measured the photosphere
in our calculations along multiple lines of sight. To our surprise, we found that our photosphere
evolution roughly matched observations. In particular, we correctly predicted the rise, fall and
subsequent flattening, with a typical photosphere radius between 10–100 au. We also predicted
mass loaded outflows with velocities of ∼ 20,000 km/s, low temperatures of ∼ 104 K that stay
roughly constant in time, and faint luminosities of ∼ 1043–1044 erg/s, in agreement with observa-
tions.

7.2 Future work

7.2.1 Applications

There are a number of applications for future work that do not require further development of our
GRSPH method. Much of our investigation on TDEs was restricted to a small part of parameter
space. We did not consider retrograde orbits, which can be unique and interesting since frame
dragging inside the ergosphere of the black hole can force a particle’s trajectory to reverse di-
rection. We also did not consider mass ratios other than 106, which changes the tidal radius and
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thus the importance of general relativistic effects. We neglected the role of stellar spin, which
has been shown to have an impact on the mass fallback rate in non-relativistic studies (Golightly
et al., 2019; Sacchi and Lodato, 2019). The stellar structure has also been shown to be important
(Lodato et al., 2009), which could be explored further by using a more realistic equation of state
(such as those provided by MESA1). However, this may be challenging to implement since our
entropy evolution currently assumes an adiabatic equation of state. A realistic equation of state
would also allow us to treat the transition between gas and radiation pressure dominated regimes
in the Eddington envelope.

Relativistic SPH and our ability to accurately treat ultra-relativistic shocks would also be
useful in the study of pulsar winds, since current SPH simulations employ non-relativistic flows
with a tuned momentum flux (e.g. Okazaki et al., 2011). This approach captures large scale
structures but causes differences on the small scale (Rosen et al., 1999) since flows are inherently
relativistic.

Finally, GRSPH is well suited for the study of tilted black hole accretion discs, which require
an accurate treatment of general relativistic effects. Ivanov and Illarionov (1997) and Lubow
et al. (2002) showed that the steady state structure of a tilted accretion disc is warped, and that
the innermost part of the disc is not necessarily aligned with the black hole equator but may have
an oscillatory profile. This has been demonstrated in non-relativistic 3D SPH simulations with a
post-Newtonian treatment of relativistic precession effects (e.g. Nealon et al., 2015), however the
approximations used are generally not accurate inside ≈ 10Rg, which is where the oscillations
develop. We briefly attempted to simulate this problem using GRSPH but ran into difficulties that
we were unable to overcome given time constraints.

7.2.2 Methods

Our GRSPH code also has many possible extensions that will be the subject of future work. In
particular, we would like to improve our artificial viscosity terms to be positive definite in all
circumstances and in any metric. Our current implementation only guarantees a positive defi-
nite contribution to the entropy when the fluid velocity in the frame of a local Eulerian observer
is a monotonic function of the coordinate velocity (Appendix A.1). This is typically not an is-
sue in practice, although we did find that a very small fraction of particles had negative energy
dissipation rates in our TDE simulations, which is unphysical.

While we made every effort to design an efficient time integration algorithm in Section 3.6.3,
we find that it performs slower than its non-relativistic counterpart, typically by a factor of a few.
This is because it involves implicit steps that require several iterations to solve. As a consequence,
it is computationally expensive to perform very high resolution simulations. A possible solution to
this is a class of explicit Hamiltonian integrators that are symplectic and time-reversible, even for
non-separable Hamiltonians (e.g. Pihajoki, 2015; Tao, 2016). This would be particularly useful
for our investigation in Chapter 6, since it is not yet clear if the lack of a disc in the centre of the
Eddington envelope is physical or simply a consequence of low resolution.

With the first-ever image of a black hole taken by the Event Horizon Telescope (Event Hori-
zon Telescope Collaboration et al., 2019), we have considered implementing a general relativistic
ray-tracing method to visualise our simulations more accurately. In the context of TDE simula-
tions, this would also be useful for generating synthetic, multi-wavelength light curves in post-
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processing. Furthermore, the ray-tracing method could be developed into a live radiation transport
scheme, which would allow us to model the radiative cooling of gas accurately during a TDE, and
generate self-consistent light curves.

The presence of magnetic fields may be important in discs that are predicted to form from the
tidal disruption of stars (Bonnerot et al., 2017b,a; Svirski et al., 2017). In particular, the magneto-
rotational instability (MRI) is thought to be the mechanism that drives accretion in black hole
discs. Current SPH simulations of black hole accretion discs typically assume a Shakura and
Sunyaev (1973) disc viscosity and model it using the SPH shock capturing terms (e.g. Lodato and
Price, 2010; Nealon et al., 2015). Implementing a general relativistic smoothed particle magneto-
hydrodynamics (GRSPMHD) method would allow us to model disc viscosity self-consistently, as
is done by finite-volume GRMHD codes (e.g. Fragile et al., 2007, 2009; Fragile, 2009; Morales
Teixeira et al., 2014).

Our current treatment of self-gravity in simulations of TDEs is rather crude and certainly not
covariant. We simply add the Newtonian self-gravity to our relativistic momentum equation. This
is typically not a problem in practice, since the contribution is very small and merely acts to hold
the star together during the pre-disruption phase. It is also valid in the limit of flat space i.e.
far from the black hole, which is where self-gravity is important. However, we suspect that it
may be the reason why we have had difficulty performing retrograde, parabolic TDE calculations
with high penetration factor. In future, we wish to make the implementation of the star’s self-
gravity more rigorous by treating it as a perturbation on top of the fixed background metric.
Of course, the most accurate way to incorporate self-gravity would be to allow a dynamically
evolving spacetime, however this would require coupling our method with a numerical relativity
scheme; a task worthy of a PhD in its own right. Such a method would allow us to model many
more complex relativistic systems where the spacetime itself is dynamic, such as the merger of
two neutron stars. The prospect of this is particularly exciting, given the recent detection of
gravitational waves from a binary neutron star merger (Abbott et al., 2017a), and the coincident
detection of an electromagnetic afterglow (Abbott et al., 2017b).



Appendix A

GRSPH

A.1 Positivity of the entropy change

A.1.1 Conductivity

First, we will prove that the artificial conductivity contributes to a positive definite change to the
total entropy. Taking Equation 3.69 and relating it back to the specific entropy

Ta
dsa
dt

= U0
a

(
Πa

cond +
∑
b

mb
qa
(
via − vib

)
ρ∗a

2 Da
i

)
. (A.1)

The change in total entropy is
dS

dt
=
∑
a

ma
dsa
dt

, (A.2)

and thus the contribution from artificial conductivity is

dS

dt
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cond
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∑
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maU
0
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Ta
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cond, (A.3)

=
∑
a
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ζab
U0
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U0
a

− ub
U0
b

)
, (A.4)

where we have used the relation U0 = Γ/α, and defined the negative, symmetric term

ζab ≡
1

2
αumamb

(
vusig,aGa

ρ∗a
+
vusig,bGb

ρ∗b

)
≤ 0. (A.5)

Splitting Eq. A.4 into two equal sums, interchanging the labels on one, and then recombining into
a single sum, we get

dS
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a

∑
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ζab
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U0
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. (A.6)

We note that U0 is a strictly positive quantity, and u ∝ T . Hence, if ua > ub, we must have
Ta > Tb, and (

U0
a

Ta
−
U0
b

Tb

)(
ua
U0
a

− ub
U0
b

)
< 0. (A.7)

Thus the contribution to the total entropy, due to artificial conductivity, is always positive in both
special and general relativity.
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A.1.2 Viscosity

Next, we consider the change in entropy per particle due to artificial viscosity in Cartesian coor-
dinates

dsa
dt

∣∣∣∣
visc

=
U0
a

Ta

∑
b

mb
qa
(
via − vib

)
ρ∗a

2 Da
i , (A.8)

=
∑
b

Qab (Γ∗aV
∗
a − Γ∗bV

∗
b ) (v∗a − v∗b ) , (A.9)

where v∗ = Ni v
i is a line of sight velocity, and we defined the positive quantity

Qab ≡ −
1

2

U0
a

Taρ∗a
mbαAVvsig,awaGa ≥ 0. (A.10)

In the case that V ∗ is a monotonically increasing function of v∗ in a given spacetime, if v∗a > v∗b
we must have V ∗a > V ∗b as well as Γ∗a > Γ∗b , and hence

(Γ∗aV
∗
a − Γ∗bV

∗
b ) (v∗a − v∗b ) > 0. (A.11)

The condition that V ∗ be monotonic is easily satisfied in the Minkowski metric, where V i = vi,
since there is no shift, βi = 0, and the lapse α = 1. Thus in the case of special relativity,
the artificial viscosity will only ever increase the entropy of a particle, however this cannot be
guaranteed in all spacetimes.

A.2 Recovery of primitive variables

Step 3 of section 3.7 involves solving the equation

f(w) ≡ w(ρ, P )− w = 0 (A.12)

for w, where ρ and P are functions of w (Eq. 3.97 and 3.98). For this we use the standard
Newton-Raphson algorithm

wn+1 = wn −
f(wn)

f ′(wn)
, (A.13)

which requires the derivative f ′(w). Here, the subscript n corresponds to the iteration number.
For the initial prediction, w0, we use the enthalpy computed at the previous timestep. Iterations
of Equation A.13 are repeated until the following convergence criteria is satisfied

wn+1 − wn
wn+1

≤ εw, (A.14)

for some sufficiently small number εw. In this paper we use εw = 10−12. Given the ideal gas
equation of state (Eq. 3.21), we can write

f(w) =

[
1 +

P

ρ

(
γad

γad − 1

)]
− w (A.15)

and hence the derivative can be written as

f ′(w) =
γad

γad − 1

(
1− pipi P

w3ρ Γ2

)
− 1, (A.16)
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where ρ, P , and Γ are all functions of w (Eq. 3.97, 3.98 and 3.100). Equivalently, when evolving
the entropy variable K

f ′(w) =
γad p

ipiP

w3ρ Γ2
− 1, (A.17)

where instead of Equation 3.98 for the pressure, we use

P (w) = K [ρ(w)]γad , (A.18)

= K

[
ρ∗

√
γ Γ(w)

]γad
. (A.19)

A.3 Metrics in Cartesian Coordinates

A.3.1 Schwarzschild metric

The Schwarzschild metric line element, in standard spherical coordinates (t, r, θ, φ) is

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2
(
dθ2 + sin2 θ dφ2

)
. (A.20)

If we make the coordinate transformation

x = r sin θ cosφ,

y = r sin θ sinφ, (A.21)

z = r cos θ,

we can write the components of the covariant metric in Cartesian coordinates (t, x, y, z)
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r3
,

gzy = gyz =
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r

2M

r3
,

gtx = gty = gtz = gxt = gyt = gzt = 0,

as well as the components of the contravariant metric

gtt = − 1

1− 2M
r

,
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gxx = 1− 2M
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r3
z2, (A.23)
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r3
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r3
xz,
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r3
yz,
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where r =
√
x2 + y2 + z2. In these coordinates

√
−g = 1. The derivatives ∂gµν/∂xi can be

found analytically by differentiating gµν , or through a finite difference approximation.

A.3.2 Kerr metric

The Kerr metric line element in standard Boyer-Lindquist coordinates (t, r, θ, φ) is
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where

ρ2 = r2 + a2 cos2 θ, (A.25)

∆ = r2 − 2Mr + a2, (A.26)

and |a| ≤M is the spin parameter. If we make the coordinate transformation

x =
√
r2 + a2 sin θ cosφ,

y =
√
r2 + a2 sin θ sinφ, (A.27)

z = r cos θ,

we can write the components of the covariant metric in Cartesian-like coordinates (t, x, y, z)
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R2 = x2 + y2 + z2, (A.31)
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gtφ = −2Mra

ρ2
sin2 θ, (A.35)

sin2 θ = 1− z2
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Figure A.1: Radius as a function of time (left), and the corresponding 1D power spectrum (right), for the
epicycle at r = 1.2 with black hole spin a = 1.

We again have
√
−g = 1 in the new coordinates and the derivatives ∂gµν/∂xi can be found

analytically by differentiating gµν , or through a finite difference approximation.

A.3.3 Derivatives of the metric

We compute the derivatives of the Schwarzschild metric by analytically differentiating gµν , how-
ever for the Kerr metric we choose to compute the derivatives through a 2nd order centred finite
difference approximation

∂gµν(xi)

∂xi
≈ gµν(xi + ε)− gµν(xi − ε)

2ε
, (A.37)

for ε� 1. In our simulations we use ε = 10−8.

A.3.4 Inverse

The contravariant metric gµν can also be found by inverting the matrix gµν at every point, since

gµαg
να = δνµ. (A.38)

Given the determinant of the covariant metric g, we simply compute the adjugate matrix of gµν ,
and then

gµν =
1

g
adj(gµν). (A.39)

In practice we find that this conserves Eq.A.38 better than the analytic contravariant terms near
the event horizon. As such, we compute the contravariant metric in this manner by default.

A.4 Computing oscillation frequencies

To measure the oscillation frequencies described in Sections 3.8.3 and 3.8.3, we take the maxi-
mum value of the 1-D power spectrum of r(t), using numpy.fft.fft in PYTHON. Figure A.1
shows the time series (left) and corresponding power spectrum (right) for the a = 1, r = 1.2 case.



Appendix B

Tidal disruption of stars on eccentric orbits

B.1 Effect of resolution

Figure B.1 shows the effect of resolution in Simulation 1 at three different resolutions. The top
row compares the self-intersection at t = 37.8 hrs, the middle row shows the accretion dynamics
at t = 55.6 hrs, and the bottom row compares the remnant torus formed at t = 111 hrs. We
increase the number of particles by approximately a factor of 8 between each panel from left to
right, corresponding to a factor of 2 increase in spatial resolution. The self-intersection is better
resolved and the torus is more defined with increasing resolution, however the overall structure
remains the same.

Figure B.2 compares our approximate luminosity from the accretion rate at each resolution.
At early times (see top row of Figure B.1) differences are mainly caused by progressively better
resolving of the circularisation process. The increased accretion luminosity at the highest reso-
lution (green curve) seen at t ≈ 50 hrs (see middle row of Figure B.1) is mainly driven by an
increased amount of material on plunging orbits. At late times, t > 100 hrs, these differences
become irrelevant (bottom row of Figure B.1).

B.2 Self-gravity

We consider the self-gravity of the star as a small perturbation to the background (Kerr) spacetime.
That is, we write the metric in the form

g̃µν = gµν + hµν , (B.1)

where |hµν | � |gµν | is a small perturbation. We assume a scalar perturbation to the metric, Φ, in
the usual form

h00 = −2Φ; hij = 2Φ/c2δij . (B.2)

Our assumption that |hµν | � |gµν | means that we neglect hµν in comparison to gµν always, but
do not assume that the gradient of hµν is small. We thus use gµν when computing dot products.
The only change to the method is then an additional term in the momentum equation in the form(

dpi
dt

)
sg

=
1

2
U0 v

µvν

c2

∂hµν
∂xi

, (B.3)
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Figure B.1: Effect of resolution in Simulation 1. Top row: comparison of the self-intersection at t = 37.8

hrs. Middle row: comparison of the accretion dynamics at 55.6 hrs. Bottom row: comparison of the
remnant torus at t = 111 hrs. Total number of particles increases by approximately a factor of 8 between
panels from left to right, with the right panel corresponding to the resolution shown in Fig. 5.1.
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Figure B.2: Comparison of Lacc at three different resolutions (number of particles) in Sim. 1. For lower
resolutions, the accretion rate is higher during the early stage of the fallback and then lower at late times.

where we have neglected terms of O(v/c)2. The only non-zero terms are therefore(
dpi
dt

)
sg

= −U0 ∂Φ

∂xi
+ U0δlm

vlvm

c2

∂Φ

∂xi
, (B.4)

The first term is the usual Newtonian acceleration term, while the second is a special relativistic
correction of order (v/c)2. Since self-gravity is only important at distances far from the black
hole, we neglect the special relativistic correction term, and one may neglect the prefactor to
simply use (

dpi
dt

)
sg

= − ∂Φ

∂xi
. (B.5)

This approximation breaks down close to the black hole, but within the tidal radius — by defini-
tion — the corrections due to self-gravity are negligible anyway. The Newtonian potential Φ is
computed in the usual manner by solving Poisson’s equation via a treecode (for details see Price
et al. 2018).

A possible improvement to our method would be to take account of the special relativistic
corrections in the self-gravity term. We have not attempted to do so in this paper.
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Appendix C

Tidal disruption of stars on parabolic orbits

C.1 Effect of resolution

Figure C.1 shows the effect of resolution in our simulations. The setup is identical to that shown
in Figure 6.1 except with a = θ = 0. The top row compares the large scale structure, while the
bottom compares the details of the stream fanning on a smaller scale. We increase the number of
particles by approximately a factor of 8 between each column from left to right, corresponding
to a factor of 2 increase in spatial resolution. On large scales, we find that the envelope is less
isotropic at higher resolutions, with more material in a ‘spiral arm’ that is denser than the rest of
the envelope. This is due to improved resolution of the stream at periapsis passage, as discussed
in section C.3.

C.2 Radiatively efficient cooling and disc formation

Figure C.2 demonstrates that disc formation can occur if the gas is allowed to cool. We continue
the calculation from Fig. 6.1 but at 1 year after disruption switch to an isentropic formulation
in which we discard all irreversible heating due to viscosity and shocks (cf. Liptai et al., 2019).
This corresponds to radiatively efficient cooling, which is a valid regime for the envelope after
one year since the photon diffusion time is short (Fig. 6.3 bottom) and the adiabatic cooling rate
exceeds the energy dissipation rate. However, in reality, the envelope would transition smoothly
from nearly adiabatic expansion with inefficient cooling to efficient radiative cooling represented
by the isentropic model.

We also confirmed that when the calculation is isentropic from the beginning, a similar
disc/ring is formed roughly 110 days after disruption. This demonstrates that disc formation
is suppressed by the lack of cooling and is not due to low resolution.

C.3 Stream disruption

Our numerical simulations show a significant disruption of the stream during the second periapsis
passage. Material in the returning stream, with a narrow range of energies and angular momenta,
is spread out along a range of trajectories. This seeds the formation of a thick bubble of gas and
enabling efficient energy dissipation, and ultimately accretion or ejection, of subsequent inflowing
material.
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Figure C.1: Effect of resolution in calculations with a = θ = 0 and β = 1. Top row: comparison of
the large scale structure, where each panel is 500 au × 500 au. Bottom row: comparison of the stream
fanning at small scales where each panel is 100 au × 100 au. The total number of particles increases by
approximately a factor of 8 between columns from left to right, with the third column corresponding to the
resolution used in our main calculations.
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Figure C.2: Disc formation in the core of the envelope with radiatively efficient cooling. We resumed the
main calculation show in Figure 6.1 one year after disruption assuming isentropic evolution. A narrow ring
of material develops, which is inclined by ∼ 60° to the black hole spin plane. Each panel is 20 au × 20 au.
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We find a much enhanced heating of the stream in simulations of tidal disruptions of stars on
parabolic orbits than in simulations of tidal disruptions of stars on bound eccentric orbits, even
at high eccentricities of e = 0.95 (Liptai et al., 2019). The fact that this happens close to the
periapsis at ∼ 50Rg argues against either apsidal precession or shock dissipation from material
passing through the ‘nozzle’ as being responsible for this behaviour. Resolution studies (see
section C.1) indicate that while the degree of spreading depends on the resolution, the qualitative
behaviour is unchanged.

Here, we argue that the formation of a bubble of gas and disruption of the stream passing
through periapsis for the second time is a generic feature of parabolic orbits that should be ex-
pected in realistic conditions.

Suppose that there is a small cloud of gas around the SMBH. In our simulations, this is seeded
by the first returning material (which is not well resolved), but as we will show, the required gas
density is within the range that could be expected in the vicinity of an SMBH. This cloud will
interact with the returning stream, heating it and causing it to spread out. Of course, if a large
(relative to the mass of the cloud) parcel of stream material arrives promptly, its linear and angular
momentum will overwhelm the cloud and push the cloud’s material out along with the stream.
However, if the stream returns gradually, with a slow rise in the density, the pressure and SMBH
gravity have time to rebuild the thermal cloud. This explains why streams in the parabolic case,
in which matter returns more gradually than in the eccentric case, are more easily disrupted.

We make two assumptions:

1. Gravity and pressure redistribute particle velocities inside the cloud on a timescale of order
the dynamical timescale of the cloud,

τ ∼
√
R3

p/(GMBH) . (C.1)

2. The stream can not add too much more mass than the mass of the cloud m on this redis-
tribution timescale, otherwise the newly added material will overwhelm the cloud; so at all
times,

τṁ . m (C.2)

must hold.

We can calculate ṁ and m under the assumption that, following the initial disruption of the
star at Rp, all of its material follows ballistic trajectories. Consider a slice of the star at an initial
distance Rp − R∗ + x from the SMBH; we will focus on early times, so x� R∗. This slice has
volume ∼ x2dx and mass ∼ x2dxM∗/R

3
∗, assuming a roughly uniform-density star. Its specific

energy is ∼ E0 + GMBHx/R
2
p, where E0 is the specific energy of the most-bound material:

E0 ∼ −GMBHR∗/R
2
p for the parabolic case, and E0 ∼ −GMBH(1 − e)/R∗ for the eccentric

case with eccentricity 1 − e > (M∗/MBH)1/3. (If the eccentricity of the bound orbit is more
extreme than this, it behaves much like a parabolic orbit, since the ballistic trajectory of the most-
bound material is similar in these cases and insensitive to the initial eccentricity.)

We can now compute the mass return rate:

ṁ ∼ dm

dx

(
dP

dx

)−1

∼ x2M∗
R3
∗

R2
p(−E0)5/2

(GM)2
(C.3)
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where the period P is given by P ∼ GM(−E)3/2. Substituting in the expressions for E0, we
find

ṁ ∼ x2M∗
R3

p

√
GMBH

R∗
(C.4)

in the parabolic case and

ṁ ∼ x2M∗
R3
∗

√
GMBH

Rp
(1− e)5/2 (C.5)

in the eccentric case.
Finally, we can check when the condition in equation (C.2) is satisfied. The total mass in the

cloud is m ∼ m0 +M∗x
3/R3

∗, where m0 is the initial mass. In the parabolic case, the condition
is satisfied at all times provided that m0 & (R∗/Rp)9/2M∗. In our example, Rp ≈ 100R∗, so the
cloud must initially contain at least ∼ 10−9 of the mass of the star. This requires a cloud density
of order 10−15 g cm−3 in the vicinity of the SMBH; this number density of ∼ 109 cm−3 is well
below nuclear gas distribution models extrapolated to au distances from the SMBH (e.g., Stern
et al., 2014).

Meanwhile, in the bound eccentric encounter case, the condition is satisfied only if m0 &
(Rp/R∗)

3(1 − e)15/2M∗. For Rp ≈ 100R∗, this implies that the mass of the cloud must exceed
the mass of the star for eccentricities e . 0.8; even at initial eccentricities of 0.95, the initial cloud
mass would have to exceed 10−4M�, requiring a cloud of density 10−10 g cm−3 to be present at
au distances.

We thus find that analytical estimates support spreading of streams for initially parabolic
encounters, but not for encounters on initially bound orbits of moderate eccentricity unless very
compact gas clouds are present close to the SMBH.



Bibliography

Abbott, B. P., R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T.
Adams, P. Addesso, R. X. Adhikari, and et al.: 2016, ‘Observation of Gravitational Waves from
a Binary Black Hole Merger’. Phys. Rev. Lett. 116(6), 061102.

Abbott, B. P., R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari, V. B. Adya, and et al.: 2017a, ‘GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral’. Physical Review Letters 119(16), 161101.

Abbott, B. P., R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari, V. B. Adya, and et al.: 2017b, ‘Multi-messenger Observations of a Binary
Neutron Star Merger’. ApJ 848, L12.

Abramowicz, M., M. Jaroszynski, and M. Sikora: 1978, ‘Relativistic, accreting disks’. A&A 63,
221–224.

Akiyama, K., K. Kuramochi, S. Ikeda, V. L. Fish, F. Tazaki, M. Honma, S. S. Doeleman, A. E.
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